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Abstract

In this thesis, I study quantum transport of electron (e.g., current and noise)

in quantum dots exploring microscopic processes responsible for spin-relaxation

in double quantum dots in Pauli spin blockade regime. This is a regime where

current is blocked due to the spin configuration of electrons in the dot. The Pauli

spin blockade provides a means for preparation, manipulation and readout in spin

qubits. Hence, understanding the underlying mechanism which lifts this blockade

is extremely important.

First, I have developed a theory of spin-flip cotunneling (higher order tunneling)

processes in double quantum dots in the Pauli spin blockade regime. Utilizing this

theory, I have calculated the full analytical dependence of the stationary current

on applied magnetic fields, gate voltages, and an inter-dot tunnel coupling in Pauli

spin blockade. This work is important for understanding the nature of leakage,

especially in systems where other spin-flip mechanisms (due, e.g., hyperfine coupling

to nuclear spins or spin-orbit coupling) are weak, including silicon and carbon-

nanotube or graphene quantum dots. This theory explains recent experiments on

carbon nanotubes and silicon double quantum dot.

In addition, I propose a new scheme based on the current noise to probe spin-

relaxation mechanisms in double quantum dot in the Pauli spin blockade regime,

where spin-selection rule applies. As a result, I provide a simple closed-form expres-

sion which can be used to fit experimental data to extract multiple spin-relaxation

rates, even at very low energy splitting. This method allows for the characterization

of different aspects of decay process in these systems.
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Chapter 1

Introduction

The rapid progress of nanoengineering in the last decades has enabled the devel-

opment of wide variety of low dimensional nanostructures. A quantum dot is a

confined region in nanostructures, enabling us to trap electrons and holes. At these

short scales, quantum mechanical effects in combination with Coulomb interactions,

immensely affect the observable physical properties.

There are several experimental realizations of quantum dots, including self as-

sembled [80, 91], vertical [4, 129], and laterally defined quantum dots in semicon-

ductor heterostructures [77], carbon nanotubes [88, 11, 120], and graphene nanos-

tructures [92]. In this thesis, we focus on electron transport in 2D lateral quantum

dots in semiconductor heterostructures. In these materials, the band structure

causes the conduction electrons to be confined in the direction of heterointerface,

however, the electrons can freely move in the transverse direction, and form a two

dimensional electron gas (2DEG). In such 2DEGs, a quantum dot is formed by pat-

terning metallic top gates. It is possible to isolate a pool of electrons, a quantum

dot, by applying a negative voltage to these gates. The primary advantage of this

type of quantum dots is that its properties such as the number of electrons in the

dot, or the tunneling rates to the dot, can be tuned by adjusting the gate voltages.

Quantum dots are proven to be useful to investigate physical properties of model

Hamiltonians in a controlled environment. For example, recently observed Klein

tunneling in Graphene [64], was also demonstrated in tunable double quantum dot
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[127]. Normally to observe such phenomena a large electric field is required due to

the large rest mass of a free electron, however, the low effective rest mass of the

electrons in small-band gap nanotubes makes the observation of Klein tunneling

in carbon nanostructures possible [64, 127]. As another example, quantum dots

have provided a framework to experimentally test theoretical predictions about the

Kondo model [89, 48, 93, 24, 69, 70, 2].

The range of applications of quantum dots is not limited to test model systems.

Additionally, quantum dots provide a unique framework as future quantum devices.

Semiconductor-based quantum electronics are extremely appealing, due to their

commonalities with current classical electronics [85, 62]. Quantum dot can be

used, as a spin filter [55], spin pump [133], or as a spin memory [112, 78].

Another important application of quantum dots is, as building blocks of quan-

tum information processing, where this thesis is devoted to. For quantum informa-

tion purposes a quantum two level system, a qubit, is desired. The basic require-

ments for experimentally feasible realization of a qubit are, high-fidelity initializa-

tion, coherent manipulation and read-out. The electron spin is a true two-level

quantum system, which is a natural candidate for realization of a qubit. In 1998,

Loss and DiVincenzo in their seminal paper [85] have shown that all the necessary

steps toward building a quantum computer can be achieved, using single electron

rotation, and two electron spin coupling through exchange interaction. Since the

original proposal by Loss and DiVincenzo, significant experimental progress has

been made. The first experimental demonstration of single electron manipulation

was achieved by Koppens et al [73] in 2006. Petta et al [102] successfully realized

coherent coupling of two spins in two neighboring quantum dots. Moreover, Elzer-

man et al [33], and Hanson et al [54], performed different measurement schemes to

detect the spin orientation in a quantum dot.

Pauli spin blockade [98], where current through a double quantum dot is blocked

conditional on the microscopic spin state of electrons due to Pauli exclusion princi-

ple, is useful in initialization, manipulation and read-out. The Pauli spin blockade

is, however, imperfect; any source of spin-flip can lift this blockade. Different
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mechanisms which can induce spin-flip include, spin-orbit interaction , hyperfine

interaction, or dot-lead higher order tunneling (cotunneling) [109, 79, 84]. One of

the major issues in heterostructures, is the presence of nuclear spins in (some of)

the host material, leading to relatively short spin relaxation and coherence times

[40, 39, 65, 99, 1, 74, 18]. However, recently several methods have been suggested

to suppress the effect of hyperfine interaction [68, 47, 43]. Interplay of nuclear spin

and electron spin offer an interesting platform to study quantum many body effects

in real systems [115, 104, 116, 86, 117]

The spin-orbit interaction causes spin relaxation by providing a mechanism

for coupling electron spin to electric fluctuations in the leads [67, 50, 118, 51].

This coupling induces spin-relaxation and since the relaxation necessarily destroys

superposition, it sets an upper bound on the decoherence time through T2 ≤ 2T1.

In order to avoid spin relaxation by nuclear spin and spin-orbit interaction

one can use materials with small spin-orbit coupling and no net nuclear spin such

as carbon or silicon [18, 79]. Even in these materials, spin-mixing occurs due to

natural interaction of electron spins with leads through cotunneling [83, 132, 109].

Usually, cotunneling is relatively small compared to the other spin-flip mechanisms,

however, recent theoretical studies have shown that cotunneling could be important

to better understand the electron transport in quantum dots [83, 132, 109, 22].

These theoretical studies have recently been supported by experimental observation

of leakage current in silicon double dot [79], and carbon nanotubes [138].

Although all necessary steps toward quantum computation using electron spins

are provided, yet the full control over electron spin requires a through understanding

of interactions between the electron spin and its environment. For example, a

complete theoretical picture of spin decay in quantum dots is still missing [18, 138].

The organization of this thesis is as follows. In chapter 2 we review the basic

physics of lateral double quantum dots. We also briefly review the spin-orbit and

hyperfine mediated relaxation in quantum dots. In chapter 3, we discuss the spin-

flip cotunneling in double quantum dot in the Pauli spin blockade. This chapter is

published in the Physical Review Letters [109]. In chapter 4, we extend our previous
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studies to develop an analytical equations for leakage current at finite temperature,

magnetic field and detuning. This chapter is published in Physical Review B [22].

In chapter 5, the theoretical and experimental aspects of singlet-triplet spin qubit

in silicon qubits are studied. This chapter is published in Nature, Scientific Reports

[79]. In chapter 6, we present a novel method to probe different relaxation rates

in a double quantum dot using finite frequency current autocorrelation. Finally

in chapter 7, we summarize the work presented in this thesis and possible future

research directions.

As a main author in the first two papers, I was responsible to carry out calcu-

lations, develop the texts, and create figures. In the third paper, I analyzed and

discussed the experimental data with the experimental group. Additionally, I was

responsible to develop the theory for this experiment, and I have also contributed

in writing the manuscript. The details for my contribution is stated at the end of

this paper.
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Chapter 2

Double quantum dots

In this chapter, we provide the background information necessary to follow the rest

of this thesis. We briefly review the physical features of lateral quantum dots. There

are many excellent reviews on quantum dots (e.g. see Ref. [53]), which we frequently

refer to. First, we provide a cursory introduction to the physical properties of a two

dimensional electron gas (2DEG). In sec. 2.2 we go over the transport properties

in the Coulomb blockade regime. In sections 2.3 and 2.4, we explain the double

quantum dot charge stability and Pauli spin blockade, respectively. Finally, in

sec. 2.5, hyperfine and spin-orbit mediated spin relaxation in quantum dots are

discussed.

2.1 Lateral quantum dots

In a typical lateral quantum dot in semiconductor heterosctures, electrons are con-

fined between two semiconductor layers which have different band gaps. For ex-

ample, in a AlGaAs/GaAs heterostructure a 2DEG is formed between undoped

GaAs and AlGaAs. Additionally, such structures consist of dopant atoms (e.g.,

Silicon donors), which are placed at some distance away from the interface. Silicon

is an n-type dopant, and the electrons move from AlGaAs to GaAs, leaving behind

the positively charged ions. Due to the separation between positive and negative

charges, an electric field is produced in the direction of charge transfer, which limits
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the amount of transferred electrons. Since there is an offset between AlGaAs and

GaAs bandgap, the electrons remain trapped at the interface (See Fig. 2.1). Due

to large level spacing in the direction of material growth, the electrons are confined

at the interface, while they are free to move in the transverse direction. A set of

gates are patterned on the surface of heterostructure, which are capacitively cou-

pled to the electron distribution in the 2DEG underneath. Finally, a quantum dot

is formed by isolating electrons in a small region of 2DEG (typically less than 100

nm) by applying negative voltages to the gate electrodes.

Several energy scales are relevant to the understanding of the general properties

of the charge states in the quantum dots in 2DEG. The first is the temperature, T ,

which determines the broadening of the Fermi distribution in the leads. Typically,

an electron temperature between 50mk-150mk is achieved in dilution refrigerators.

The second important energy scale is the orbital level energy spacing, due to spatial

confinement of electrons. Similar to a particle in a box, this energy spacing is

roughly ∆E ∼ ~2
2m∗a

, where a is the length scale of the confining potential, m∗ is

the effective electron mass, and ~ is the Plank constant. For example, for GaAs,

m∗ = 0.067me, where me is the electron free mass. Typically, this level spacing in

quantum dots is in the order of a few meV. If the electrons were non-interacting,

they would fill energy levels according to the Hund’s rule, with two electrons (with

opposite spins) in each orbital, until all the energy levels below the Fermi level

are filled. However, due to electron-electron Coulomb repulsion, it takes a certain

amount of energy, the so-called charging energy, to add the second electron in the

dot. In constant-interaction model, charging energy is characterized by U ∼ e2

C
,

where C is the sum of all capacitance to the dot.
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Figure 2.1: a) Schematic of heterostructure materials used for the fabrication of
2DEGs. b) Electron micrograph of the gates geometry in a lateral quantum dot
[3]. The gates SG1, LP1, PL, LP2, SG2, and OG are used to form a quantum dot
coupled to the source and the drain (labeled 1 and 2), by two tunnel barriers. A
quantum point contact (QPC) is formed by applying a negative voltage to the gate
QG2.
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2.2 Electron transport in a single dot: Coulomb

blockade

A common method for probing a quantum dot is to apply a source-drain voltage

across the quantum dot, and then measure the electron transport through the quan-

tum dot. The interplay between different energy scales mentioned in the previous

section leads to interesting phenomena in quantum dots. In particular, Coulomb

blockade corresponds to the regime where charging energy, U , dominates over other

energy scales, i.e., U � ∆E � kT . In this regime, the linear conductance (the mea-

sured current divided by the applied gate voltage) exhibits sharp resonances, where

between these conductance peaks the measured current is exponentially suppressed,

see fig. 2.2 b. This oscillatory feature is called, the Coulomb blockade oscillation.

The Coulomb blockade can also be observed in measurements of nonlinear current

characteristics of quantum dots. Coulomb blockade provides information about

the orbital level spacing, charging energy, and spin states of single quantum dots

[131, 53].

(a) (b)

Figure 2.2: (a) Energy diagram for a single electron in a quantum dot. All relevant
energy scales namely the temperature, kT , confining energy ∆E, and charging
energy U are depicted in this picture. By changing the gate voltage Vg, the electron
chemical potential, µQ(N), in the dot changes, where N is the total number of
electrons in the quantum dot. Once the dot chemical potential is placed between
the left and right leads Fermi energy, electrons can hop on and off the dot. (b)
Schematic plot of current vs. gate voltage in Coulomb blockade regime.
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We use a simple, yet general and intuitive way, to explain Coulomb blockade in

quantum dots. For this purpose, consider a quantum dot coupled to a source and

a drain, Fig. 2.2 a. First, we focus on the occurrence of conductance peaks, as a

function of the applied gate voltage. Here, we consider only (first-order) energy-

conserving processes. Starting from an empty quantum dot, electrons can only

tunnel through the dot when the chemical potential of QD falls within the bias

window, i.e. when µs ≥ µQD(N) ≥ µd. Here µs and µd are the source and drain

chemical potentials. µQD is the quantum dot chemical potential, which depends

linearly on the gate voltage. Hence, we can control the number of electrons in

quantum dots by changing the gate voltage.

To better understand the dot chemical potential quantitatively, we model the

quantum Hamiltonian of an isolated quantum dot using the Hubbard model, where

the details of the electron’s wave function are neglected and the Coulomb interaction

is given only in terms of on-site interaction [53],

HQD =
∑

k,σ

εkσnkσ +
1

2
UN(N − 1)− eVgN, (2.1)

where εkσ is the kth orbital energy, and nkσ = d†kσdkσ gives the number of

electrons in level k with spin σ, and dkσ/d†kσ annihilates/creates electron in orbital

level k with spin σ. N =
∑

k,σ nkσ counts the total number of electrons in the

quantum dot, where N commutes with the quantum dot Hamiltonian. We can

therefore, label the quantum dot energy levels by the number of electrons in the

dot EQD(N) =
∑N

n=1 εn + UN(N − 1)− eVgN , where
∑N

n=1 εn is the sum over the

occupied single-particle energy levels. Hence, the quantum dot chemical potential

is given by µQD(N) = EQD(N) − EQD(N − 1) + εN , where the single particle

occupation energy εN is irrelevant in our discussion.

At large negative gate voltages, the dot contains zero number of electrons. Since

the one electron state is above the Fermi energy of the leads, this energy offset

forbids the electron tunneling. We can adjust one-electron chemical potential in

the dot, via lowering the dot energy level by changing the electrode gate voltages on
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the top. Once the dot chemical potential is within the bias window, µs ≥ µQD ≥ µd,

electrons can tunnel through the quantum dot. Thus, by shifting the gate voltage

we can move the whole ladder of the electrochemical potential levels up or down,

which leads to appearance of conductance peaks.

2.3 Charge stability diagrams

Consider two serially coupled quantum dots labeled by 1 (left) and 2 (right), whose

electrochemical potential is controlled by independent gate voltages, V1, V2, applied

locally to each quantum dot. Similar to the single quantum dot case, physical

characteristics (energy levels, tunneling rates, etc) of double quantum dots can be

probed by electron transport through the double dot. The primary tool used to

understand double quantum dots is the charge stability diagram. The stability

diagram is a two-dimensional plot of current, or differential conductance, through

the double dot, or through a neighboring QPC, given as a function of applied gate

voltages V1, V2 (See Fig. 2.3). This two-dimensional plot visualizes the equilibrium

charge states of double quantum dots, which consists of regions where the double-

dot has a charge configuration (N1, N2), for various N1, N2 (see fig. 2.3). Transport

through double quantum dots, and the relevant charge stability diagram have been

discussed thoroughly in [131].

To study differential conductance through the double dot, we start from a model

Hamiltonian to obtain the electron state configurations in double quantum dots.

Similar to the single quantum dot case, we use the Hubbard Hamiltonian to inves-

tigate properties of the isolated double quantum dot [23, 139],

HC
DQD =

∑

l,kσ

εlkσnlkσ +
1

2

∑

l

UNl(Nl − 1) + U ′N1N2 −
∑

l

eVlNl (2.2)

where U is the on-site Coulomb interaction for each dot, and U ′ is the interdot

electrostatic repulsion in the double quantum dot. The effect of local top gate po-
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tential is given by V1(2). The total number of electrons in each dot is represented

by N1(2) =
∑

kσ n1(2)kσ, where n1(2)kσ is the left(right) dot occupation number op-

erator. The Hamiltonian in equation 2.2 conserves the number of electrons on each

dot, i. e., [HC
DQD, Ni] = 0 for i = 1, 2, therefore, we label the ground state by the

two-dot occupation numbers (N1, N2), where N1(2) is the number of electrons on

the left(right) dot.

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,0) (0,1) (0,2)

(1,1)
(1,0)

(1,2)

(2,0) (2,1)

Figure 2.3: Charge stability diagrams for (a) capacitively decoupled and (b) coupled
double quantum dots, labelled by the equilibrium electron numbers (N1, N2) in dots
1 and 2, respectively. The lines indicate the gate voltage values at which the electron
number changes.

At each vertex, in the charge stability plot at finite interdot electrostatic Coulomb

energy (U ′ 6= 0), three different charge states are energetically degenerate. These

points are called triple points. At low source-drain bias voltages, electron transport

through the double dot is only possible at these triple points. Transport at these

triple points is extensively studied in [53].

2.4 Spin to charge conversion: Pauli spin blockade

In laterally confined double quantum dots, electrons can be moved from one dot to

the other, by changing the gate voltages applied locally to each dot. The interdot
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tunneling, which is due to electrons wave functions overlap at two quantum dots,

is generally spin independent. Hence, in situations where initial and final spin

states are orthogonal, the transition is forbidden by spin selection rules, leading to

a phenomenon called Pauli spin blockade. To understand Pauli spin blockade, we

first examine the spin states in the isolated (from source and drain leads) double

dot, and the possible transitions between these spin states, neglecting spin-flip

processes. These spin-flip mechanisms will be studied in the next section.

We work in the region of the charge stability diagram where the occupancy of the

double dot changes from (0, 1)→ (1, 1)→ (0, 2)→ (0, 1). For (0,1) and (0,2) charge

configurations, the spin physics is identical to the single dot case since the left quan-

tum dot is not occupied. In the (0,1) charge state, the two spin states are degenerate

at zero magnetic magnetic field. However, an external magnetic field, B, induces

a Zeeman splitting in the spin states, ∆EZ = E↑ − E↓, where ∆EZ = gµBB is the

Zeeman energy splitting (g is the electron gyromagnetic ratio and µB is the elec-

tron Bohr magneton). In the (0,2) charge state, there are four possible spin states:

the singlet, denoted by S(0, 2) = (|(0, ↑↓)〉 − |(0, ↓↑)〉)/
√

2 and the three triplets

T+(0, 2) = |(0, ↑↑)〉 , T−(0, 2) = |0, ↓↓〉, and T0(0, 2) = (|(0, ↑↓)〉 + |(0, ↓↑)〉)/
√

2.

At zero magnetic field, the three spin triplets are degenerate, which are separated

from spin singlet ground state by U ∼ meV . Since most of experiments are per-

formed in the bias regime that (0,2) spin triplets are energetically inaccessible, and

in this thesis, we do not study their contributions to the transport through double

quantum dot.

In the (1,1) charge state, the two-electron states are also form spin singlets and

triplets, namely, S(1, 1) = (|(↑, ↓)〉 − |(↓, ↑)〉)/
√

2, T+(1, 1) = |(↑, ↑)〉 , T−(1, 1) =

|↓, ↓〉, and T0(1, 1) = (|(↑, ↓)〉 + |(↓, ↑)〉)/
√

2. However, in this case electrons are

localized in different dots. Here, the energy difference between the lowest-energy

singlet and unpolarized spin triplet state depends on the tunneling and the single

dot charging energy.

Recall that we are working at a triple point, where electrons are transferred

through the double quantum dot (0, 1)→ (1, 1)→ (0, 2)→ (0, 1). In this cycle the
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Figure 2.4: Current (I) as a function of source-drain voltage (V) in a vertical dou-
ble dot system. Nonzero current is measured over the entire range of negative
voltages. For positive bias, current is blocked in the range 2mv-7mV. At bias volt-
ages exceeding 7 mV, the (0,2) triplet state becomes accessible and Pauli blockade
is lifted. Insets: Device schematic and energy-level configuration at positive and
negative bias voltages. This plot is reproduced from Hanson et al. [53].

right dot always contains at least one electron. Assume this electron is spin up.

Once an electron tunnels from the source lead, the double dot can either form a

spin triplet T (1, 1), or a spin singlet S(1, 1). If the two electrons form a singlet state

S(1, 1), the electron in the left dot can transfer to the right dot forming S(0, 2).

However, if electrons form one of the triplet states T (1, 1), the electron in the left

dot will not be able to tunnel to the right dot, because T (0, 2) is not energetically

favorable. Hence, in the absence of any spin-flip mechanism, the system will remain

stuck in a (1, 1). Because it is the Pauli exclusion principle that forbids electrons

to make a transition from a T (1, 1) state to S(0, 2), this blockade is also referred to

as Pauli blockade. The origin of Pauli blockade is schematically illustrated in the

insets of Fig. 2.4.

Pauli spin blockade was first observed in experiments on vertically coupled quan-
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tum dots (Ono et al[98]). Later experiments in few-electron lateral dots combined

charge sensing and transport to study this effect [60].

2.5 Spin-flip processes: Hyperfine interaction, spin-

orbit coupling, and cotunneling processes

Electron spin states in a quantum dot are mixed due to coupling to the environment.

As mentioned earlier in the introduction, there are three primary channels that an

electron spin can couple to its surrounding, namely, spin-orbit interaction, hyperfine

interaction, and cotunneling. The spin-orbit interaction couples the electron spin to

its orbital state, and therefore, makes the spin sensitive to the electric fluctuations

in the environment (e.g., due to phonons). Additionally, the hyperfine interaction,

which couples the electron spin to the bath of nuclear spins of the host material.

The hyperfine interaction is the main source of phase randomization (decoherence)

in materials with non-zero nuclear magnetic moment, such as GaAs. The spin-orbit

and hyperfine interaction strengths depend on the host material specifications. For

example, the hyperfine interaction is suppressed in materials with zero net nuclear

spin, such as silicon. The electron higher order tunnel coupling to the source and

drain leads, also mixes the electron spin states together. It has been shown that in

materials with no net nuclear spin, and with small spin-orbit coupling, cotunneling

can explain the observed leakage current due to spin state mixing [79, 138].

In this section we give an overview of the spin-relaxation rates due to hyperfine

and spin-orbit interactions. The spin-flip relaxation rates due to cotunneling in

quantum dots have been explicitly calculated in Chapter 3.

2.5.1 Spin-orbit interaction

The spin-orbit interaction is a relativistic effect, which is caused by the electron

motion through electric fields intrinsic to the semiconductor heterostructure [31,

111]. In the electron’s rest frame, these electric fields transform to magnetic fields,
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which interact with the electron spin.

There are two main contributions to the spin-orbit interaction in semiconduc-

tors. The first contribution is caused by the lack of inversion symmetry in the

heterostructure, which gives rise to Rashba spin-orbit coupling [111]. The second

contribution to the spin-orbit interaction is due to the lack of crystal inversion

symmetry, which causes the Dresselhaus spin-orbit coupling [31].

In nearly two dimensional quantum dots, the dominant mechanism for spin-

relaxation is due to the linear-in-momentum spin-orbit Hamiltonian given by [50],

HSO = (β − α)pyσx + (β + α)pxσy, (2.3)

where α and β are Rashba and Dresselhaus coupling strength, respectively. While

the Dresselhaus coupling is fixed for a given semiconductor layer, the Rashba pa-

rameter is externally tunable by changing gate voltages.

The Rashba and Dresselhaus spin-orbit interactions have different symmetries,

and this causes the spin relaxation rate to vary by changing the orientation of the

applied magnetic field with respect to the heterostructure crystalline axes [50]. For

some orientations of the field, the Rashba and Dresselhaus interactions are cooper-

ate, and the relaxation rate is maximized. For other orientations, the interactions

oppose one another, and the relaxation rate is suppressed. If the Rashba and Dres-

selhaus parameters are equal, then the two interactions can cancel one another at

the minimum, and the spin relaxation would become dominated by other mecha-

nisms, such as hyperfine-mediated relaxation. A priori the Rashba and Dresselhaus

parameters are not necessarily equal.

2.5.2 Hyperfine Interaction

The wavefunction of an electron trapped in quantum dots is spatially extended over

many lattice sites of the host crystal lattice. For example in GaAs, the element

Ga comes in two stable isotopes in nature, which both have finite nuclear magnetic
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moments with nuclear spin 3/2. In addition, the only stable isotope of As has

nuclear spin 3/2. Each electron spin, therefore, can interact with a large ensemble

of nuclei (typically 106). Similar to spin-orbit interaction discussed in the previous

section (sec. 2.5.1), electron spin-nuclear spin hyperfine interaction comes naturally

out of Dirac equation [42]. Assuming the electron wavefunction is just the product

of orbital and spin component, the contact hyperfine interaction in terms of pure

spin operator is expressed as,

HHF ∝
∑

i

AiIi ⊗ S, (2.4)

where S is the electron spin operator, Ii is the nuclear spin operator at lattice

site i, and Ai is the coupling between electron spin and nuclear spin at lattice site

i. generally hyperfine interaction also contains an anisotropic part which has been

neglected here. The product of spin operators can be rewritten in terms of spin-

ladder operators as I⊗S = 1
2

(I+ ⊗ S− + I− ⊗ S+) +SzIz, where X± = Xx±Xy for

X = I, S. The first terms, I+⊗S−+I−⊗S+, correspond to the electron spin-nuclear

spin flip-flop term, where the electron spin flip is accompanied by a nuclear spin

flop. This flip-flop term is the source of many interesting physical phenomena such

as dynamic nuclear polarization [8, 115, 43]. The last term, SzIz, corresponds to a

change in the electron Zeeman term, which due to the stochastic nature of nuclear

spins ensemble, will cause decoherence in the electron spin state. The hyperfine

interaction has been identified as the main source of decoherence in host materials

with nonzero nuclear magnetic moment, such as GaAs [65].

The quantum behavior of the electron spin in the presence of a bath of nuclear

spins is the subject of recent studies [114, 86]. However, the action of nuclear spins

ensemble can be approximated by a classical magnetic field called Overhauser field,

where an electron experiences an effective magnetic field given by [20],

BN =
1

gµB

∑

i

Ai 〈Ii〉 , (2.5)

where 〈...〉 indicates the expectation value with respect to the nuclear spin state. For
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large electron Zeeman splitting, ∆EZ � gµBB
x,y
N , hyperfine interaction effectively

does not mix spin states together. However, similar to the spin-orbit interaction,

hyperfine interaction leads to mixing of electron spin and orbital states. Then,

phonons would cause transitions between perturbed electron spin states.

In the following table spin-relaxation rates in terms of confining potential ~ω

and Zeeman splitting ∆EZ = |g|µBB are presented at zero temperature limit [3],

Mechanism Wsf

Hyperfine+piezoelectric phonon ∝ ∆E3
Z(~ω0)−2

Hyperfine+Ohmic fluctuation ∝ ∆EZ(~ω0)−2

Spin-orbit+piezoelectric phonon ∝ ∆E5
Z(~ω0)−1

Spin-orbit+Ohmic fluctuation ∝ ∆E3
Z(~ω0)−1

Table 2.1: Summary of spin-orbit and hyperfine induced relaxation mechanism with
their dependence on the relevant energy scales at zero temperature limit, are given
here. Wsf denote spin-flip rates between electron spin states. At high magnetic
fields, spin-orbit interaction dominates but at low magnetic fields other mechanisms
may contribute. Ohmic fluctuations correspond to voltage fluctuations intrinsic to
a conductor, and are present in the gates and the ohmic leads.
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Chapter 3

Stationary and Transient Leakage

Current in the Pauli Spin Blockade

regime

3.1 Outline

We study the effects of cotunneling and a non-uniform Zeeman splitting on the

stationary and transient leakage current through a double quantum dot in the

Pauli spin blockade regime. We find that the stationary current due to cotunneling

vanishes at low temperature and large applied magnetic field, allowing for the dy-

namical (rapid) preparation of a pure spin ground state, even at large voltage bias.

Additionally, we analyze current that flows between blocking events, characterized,

in general, by a fractional effective charge e∗. This charge can be used as a sensitive

probe of spin relaxation mechanisms and can be used to determine the visibility of

Rabi oscillations.

3.2 Introduction

Initialization and readout of well-defined quantum states are necessary for spin co-

herence measurements [102, 113, 75], single-spin resonance [73, 97, 107], and quan-
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tum information processing. Single electron spins in quantum dots show promise for

quantum information tasks [85] due to their long coherence times, but their quan-

tum states can be difficult to initialize (relying on slow spin relaxation processes)

and read out. The Pauli spin blockade (PSB) [98] partially solves these problems,

where current through a double quantum dot (DQD) is blocked conditional on the

microscopic spin state of electrons.

The PSB is, however, imperfect; hyperfine interaction between electron and

nuclear spins in III-V semiconductors lifts spin selection rules and can lead to a

finite leakage current [99, 74, 38, 44, 61, 59, 6]. Very recently, PSB has been

observed in DQDs made from silicon [84, 122] and carbon nanotubes [18, 19], in

which the majority isotope has no nuclear spin. Even in these systems, the PSB can

be lifted through spin exchange with the leads due to, e.g., cotunneling processes

[83, 134, 132]. Significantly, cotunneling events have been shown to be essential

even in nuclear-spin-carrying quantum dots to describe nuclear-spin polarization in

the PSB regime [8, 115], and therefore should be taken into account.

Single-spin resonance measurements often rely on the transient current that

flows before current is blocked as a probe of the electron spin state [73, 97, 107].

An anomalously large transient current has recently been found [73], characterized

by an effective charge e∗ that passes through a DQD between blocking events.

Without a complete understanding of this additional leakage, it may not be possible

to determine the visibility of Rabi oscillations in these systems.

3.3 Our model

Here, we evaluate both the stationary and transient leakage current through a DQD,

giving simple analytical expressions for the stationary current and the transient

effective charge e∗. We find that e∗ reaches universal fractional values and that a

measurement of e∗ in general can be used to extract valuable information related

to slow spin relaxation processes.

We consider a series-coupled DQD in a magnetic field gradient (Fig. 3.1(a)).
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Figure 3.1: A DQD coupled to leads (a). The charge stability diagram is shown
in (b). At low temperature, inelastic cotunneling (c) induces transitions to lower-
energy dot levels. Two-electron states at ε = 0 are shown in (d) with allowed T = 0
cotunneling transitions indicated with straight dashed arrows and curved arrows
indicating sequential-tunneling processes.

A field gradient is important in spin resonance experiments for local addressing,

and may arise from the stray field of a nanomagnet [107] or the Overhauser field

due to non-uniformly polarized nuclear spins [73]. We work in a regime where

only the (0, 1), (1, 1), and (0, 2) charge states are relevant (the triangular region in

Fig. 3.1(b)). Here, (nL, nR) indicates nl electrons in dot orbitals l = {L,R}. The

Hamiltonian in this projected subspace is H = H0 + V , where

H0 =
∑

j

Ej |j〉 〈j|+
∑

lkσ

εlkc
†
lkσclkσ, (3.1)

V = δb |S〉 〈T0|+
∑

klσjj′

tlA
jj′

lσ clkσ |j〉 〈j′|+ h.c. (3.2)

The first term in H0 describes the eigenstates |j〉 = {|σ〉 , |α〉} of the unperturbed

DQD, with single-electron states labeled by spin σ = {↑, ↓} and two-electron states

labeled with α, shown in Fig. 3.1(d) (three spin triplets, (α = Tms , ms = 0,±)
and two spin singlets, (α = S±), giving hybridized (1, 1) and (0, 2) charge states

due to an interdot tunnel coupling t 1). The second term in H0 gives the energy

1Explicitly, the double-dot eigenstates are |T+〉 = |↑↑〉, |T−〉 = |↓↓〉, |T0〉 = (|↑↓〉 + |↓↑〉)/
√

2,
|S+〉 = cos

(
θ
2

)
|S〉 − sin

(
θ
2

)
|S(0, 2)〉, and |S−〉 = sin

(
θ
2

)
|S〉 + cos

(
θ
2

)
|S(0, 2)〉, where |S〉 =
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Figure 3.2: Leakage current in the PSB regime due to inelastic cotunneling pro-
cesses. We have taken ε = 0, ΓL = ΓR = 10µeV , t = 100µeV , ∆ = 1meV ,
and g = 2.0. We show the evolution of I(B) as δB is varied from 0 mT (dashed
line), to 20 mT (dotted line), 200 mT (solid line), and for WT0→σ � Wα→β, T = 0
(dash-dotted line, from Eq. (3.7)). Evolution of the curve for δB = 200 mT as
temperature is raised is shown in the inset.

of Fermi-liquid leads. The Zeeman gradient δb = gµB(BL − BR)/2 couples the

(1, 1)-singlet |S〉 and ms = 0 triplet |T0〉 (here, g is the g-factor and Bl is a local

magnetic field in dot l). The second term in V describes hopping processes from

dot l to lead l with coupling tl and matrix elements Ajj
′

lσ = 〈j| d†lσ |j′〉. Here, d†lσ
creates an electron in dot l with spin σ and c†lkσ creates an electron in lead l and

orbital k, with spin σ.

Working from a standard Hubbard model for the DQD, we find the energies

E↑(↓) = −(ε + ∆)/2 + (−)b/2, where ε is the detuning (energy difference) between

the (1, 1) and (0, 2) charge states and ∆ controls the depth of the two-electron levels

(see Fig. 3.1(c)). For the two-electron states, we have ET0 = −∆, ET± = −∆± b,
and ES± = −∆− ε/2±

√
ε2 + 8t2/2, with b = gµB(BL +BR)/2.

We solve for the diagonal elements of the reduced (DQD) density matrix ρi with

the Pauli master equation:

ρ̇i =
∑

j

(ρjWj→i − ρiWi→j). (3.3)

We calculate the transition ratesWi→j = W st
i→j +W cot

i→j directly from Fermi’s golden

(|↑↓〉 − |↓↑〉)/
√

2, with |σσ′〉 = d†Lσd
†
Rσ′ |0〉 and |S(0, 2)〉 = d†R↑d

†
R↓ |0〉. Here, tan θ = −2

√
2t/ε.
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rule. Here, the sequential-tunneling rates (W st
i→j =

∑
lW

l
i→j ∝ |tl|2) describe direct

hopping at leading order in the dot-lead coupling and the cotunneling rates (W cot
i→j ∝

|tl|η, η > 2) are higher-order in tl.

We consider standard initial conditions, with lead l held in thermal equilibrium

with Hamiltonian H0 at chemical potential µl. At first order in V , only the second

term in Eq. (3.2) contributes to transport, giving the usual sequential-tunneling

rates (~ = 1) [112, 50]:

W l
σ→α =

∑

σ′

Γl|Aασlσ′ |2fl(ωασ),

W l
α→σ =

∑

σ′

Γl|Aασlσ′ |2 [1− fl(ωασ)] . (3.4)

Here, Γl = 2πν|tl|2, where ν =
∑

k δ(εF − εlk) is the density of states per spin at

the Fermi level, fl(E) is a Fermi function at temperature T and chemical potential

µl, and ωij = Ei − Ej.
For large bias, µL − µR = ∆µ > |∆| > 2kBT , the stationary current is given

by I = e
∑

αW
R
α→σρ̄α, where ρ̄i is a solution to Eq. (3.3) with ρ̇i = 0. At leading

order in V , current will be blocked if one of the triplet states is populated, since

WR
Tms→σ = 0. This is the PSB effect. In the absence of other spin-relaxation

mechanisms, higher-order contributions in V must be considered to explain a finite

leakage current. At second order in V we find:

WR
T0→σ = ΓR

δb2

8t2
[1− fR(ωT0σ)] , (3.5)

W cot
α→β =

2Γ2
L

π(∆− ε)2

∑

σσ′σ′′

|Aασ′′Lσ |2|Aβσ
′′

Lσ′ |2F (ωαβ, T ), (3.6)

where F (ω, T ) = ω/(1 − e−ω/kBT ). Eq. (3.5) gives the rate for field-assisted

sequential-tunneling processes, where δb converts T0 to a singlet, which can then

escape from the DQD via first-order (sequential) tunneling to the right lead (see

the curved dashed arrow in Fig. 3.1(d)). Eq. (3.6) gives the rate for an inelas-

tic cotunneling process (Fig. 3.1(c)), allowing for conversion of triplets to singlets
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(dashed straight arrows in Fig. 3.1(d)). A competition between the two rates in

Eqs. (3.5) and (3.6) will determine the leakage current in the PSB regime when

other spin relaxation mechanisms due, e.g., to hyperfine and spin-orbit interactions

are suppressed. We note that Eq. (3.5) is independent of ΓL, whereas Eq. (3.6) is

independent of ΓR, so an asymmetric coupling of the DQD to the leads will play a

role in determining the relative scales of the two contributions.

At high temperature (kBT > |ω|) we have F (ω, T ) ' kBT , a regime that has

been explored previously [83, 132]. In this work, we focus on the low-temperature

regime (kBT < |ω|), where F (ω, T ) ' ωθ(ω), giving rates that vanish linearly

for small energy separation, with significant consequences (allowing, e.g., for the

initialization of a pure spin state – see below). In Eq. (3.6), we have assumed

|∆− ε| � |ωαβ| and have neglected resonant cotunneling contributions [71], which

are exponentially suppressed for ∆/2 > kBT . Corrections due to spin exchange with

the right lead are smaller in ∆/U ′ � 1, where U ′ is the interdot charging energy.

Additionally, we have considered the resonant tunneling regime [130] (ε . t).

We have numerically solved for the stationary current using the rates given in

Eqs. (3.4)-(3.6) and have plotted the result vs. B = b/gµB in Fig. 3.2. There

is a sharp cutoff in the leakage current at large b (|b| > |ES−|), which can be

understood directly from Fig. 3.1(d). When the lowest-energy triplet state (T−

for b > 0) is below the lowest-energy singlet (S−), current will be blocked as soon

as T− is populated, since the transition from T− to S− vanishes as WT−→S− ∝
ωT−,S−θ(ωT−,S−). Thus, at low temperature a pure spin state can be prepared (|T+〉
or |T−〉 depending on the sign of b). We note that this preparation can be achieved

even in the presence of a large bias ∆µ > kBT . This is a nontrivial result, since a

large bias will generally drive the DQD out of equilibrium, resulting in a stationary

state that is not determined by thermal equilibrium with the leads 2. Moreover,

using this method a pure spin state can be dynamically prepared on a time scale

τprep ∼ t−1 (∆/ΓL)2 ∼ 0.1µs (using parameter values from the caption of Fig. 3.2)
2We find that processes leading to DQD excitation in our considered large-bias regime are,

however, suppressed by the small parameter ∆/U � 1 A, where U is the single-dot charging
energy.
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without the need to wait for slow spin relaxation processes.

In Fig. 3.2, we show cuts at ε = 0 describing the evolution of I(B) as the

field gradient δB = δb/gµB is increased from zero (see the appendix A, for the

dependence on ε). For sufficiently large δB, a dip appears near B = 0. Similar

zero-field dips have been seen experimentally in several DQD systems and have

been attributed to effects due to hyperfine [74] or spin-orbit [105, 18] coupling. In

the present context, this zero-field dip can be understood from Fig. 3.1(d), without

additional spin relaxation mechanisms. When δb (or ΓR) is large, T0 has a fast

direct escape path by virtue of Eq. (3.5), so only the T+ and T− states can block

current. At b = 0, all triplets are degenerate, resulting in a vanishing inelastic

cotunneling rate at low temperature (WT±→T0 ' 0); transport can only occur if T±

escapes via S−. However, for a small nonvanishing Zeeman splitting b > 0, we have

WT+→T0 ∝ b 6= 0, allowing an additional escape route for T+. This results in an

initial rise in current for small b, which eventually must fall to zero when b '
√

2t,

where T− goes below S−. In the limit where WT0→σ � Wα→β, we find a simple

expression for the stationary leakage current:

I =
e

π

(
ΓL
∆

)2
(
√

2t− |b|)(
√

2t+ 3|b|)√
2t+ |b|

θ(
√

2t− |b|), (3.7)

where we have taken ε = 0, and T = 0. The current reaches a maximum at

bmax = ±
√

2t(2/
√

3 − 1) ≈ ±0.22t. Eq. (3.7) is shown as a dash-dotted line in

Fig. 3.2. We note that the limit WT0→σ � Wα→β required for Eq. (3.7) can

also be achieved for much smaller δb when ΓR � ΓL. A sufficiently large electron

temperature will wash out the zero-field dip, but provided bmax & kBT , this feature

will still be visible (see the inset of Fig. 3.2). Reaching this regime for T ' 100 mK

should be possible in nanowire [105] or nanotube DQDs [52] where t & 100µeV is

common.
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3.4 Transient current

We now turn to the transient (time-dependent) current that flows between blocking

events. We consider the instant after an electron has tunneled from the DQD

to the right lead. With spin-independent tunneling rates, this leaves the dot in

an equal mixture of the states |↑〉 and |↓〉, setting the initial condition: ρσ(0) =

1/2, ρα(0) = 0. The transient current into the right lead is then given by IR(t) =

e
∑

αW
R
α→σρα(t). The average number of electronsm that passes through the DQD,

given a charge collection (measurement) time TM is

m(TM) =
1

e

∫ TM

0

dτIR(τ). (3.8)

In Fig. 3.3 we plot m(TM) found by integration of Eq. (3.3) for a range of pa-

rameters when the stationary current is zero (i.e., kBT = ε = 0, b >
√

2t). The

accumulated charge shows a series of plateaux at time scales determined by the

three types of rates given in Eqs. (3.4), (3.5), and (3.6). To better understand

these plateaux, we consider the long-time saturation value m = limTM→∞m(TM),

which has been measured experimentally [73] and can be evaluated directly.

We assume a probability PB for the DQD to be in a blocking state each time an

additional electron tunnels onto the DQD. The probability of exactly n electrons

passing through the DQD before current is blocked is then Pn = (1 − PB)nPB,

from which we find m =
∑

n nPn = (1 − PB)/PB. In the simplest case, there

may be NB blocking levels out of N total, giving PB = NB/N . Assuming the

two spin-polarized triplets |T±〉 are perfect blocking states, we set PB = 1/2 since

2 out of 4 (1, 1)-states block perfectly, giving m = 1 (the expected value in Ref.

[73]; the measured value was m ' 1.5). However, in the presence of some de-

cay mechanism, transitions between the various two-electron states (see the inset

of Fig. 3.3) no longer allow for a clear definition of “blocking” levels. Never-

theless, we can still determine PB from the sum of probabilities for each inde-

pendent path leading to a blocking state (T− for the case shown in Fig. 3.3):

PB = Pσ→T− +Pσ→T0→T− +Pσ→T+→T0→T− = (1 + p+ qp)/4, where PA→B... indicates
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Figure 3.3: Average number m(TM) of electrons passing through the DQD within
measurement time TM . All values are as in Fig. 3.2 with the addition of b =
1.01
√

2t, T = 0, and ΓR = 10ΓL = 10µeV . m(TM) is shown for δB = 0 mT
(solid line), δB = 3 mT (dash-dotted line), and δB = 100 mT (dashed line). The
predicted saturation points for 3 of 4 levels blocking (m = 1/3), 2 of 4 levels blocking
(m = 1) and 1 of 4 levels blocking (m = 3) are shown with dotted lines. The decay
cascade (inset) defines the branching ratios p and q.

the probability for a transition from state A to B, etc., and where the branching

ratios are given (for b > 0) by: p = WT0→T−/(WT0→T− +WT0→S− +
∑

σWT0→σ) and

q = WT+→T0/(WT+→T0 +WT+→S− +WT+→S+). Inserting this result gives:

m =
3− p− pq
1 + p+ pq

. (3.9)

The average effective charge transported between blocking events e∗ = (m + 1)e

is non-integral in general, ranging from e∗ = 4
3
e to e∗ = 4e. Eq. (3.9) allows for

a precision measurement of slow spin-relaxation processes characterized by p and

q, independent of the microscopic mechanism 3. For concreteness, we consider the

effects of cotunneling and field-assisted sequential tunneling below.

In the limit of zero detuning (ε = 0), we find q = 1/2, independent of b and t,
3For example, in the limit of small b, we find m ' 3−γbη, where η = 5, 3, and 1 for spin-orbit,

hyperfine-, and cotunneling-mediated spin relaxation, respectively A.
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leaving

m =
2− p
2
3

+ p
; p =

2|b|
√

2t+ 2|b|+ π
2

(
∆δb
ΓLt

)2

ΓR

. (3.10)

Thus, at ε = 0, m can be tuned from m = 3/5 to m = 3 by varying b, δb, ΓL,R, and

t. Eq. (3.10) correctly predicts the saturation values at m=0.96, 1.4, and 3.0 for

the solid, dash-dotted, and dashed lines, respectively, in Fig. 3.3.

We have analyzed the effects of inelastic cotunneling and a magnetic field gra-

dient on the PSB. We find and explain a zero-field dip in the stationary current,

which may help to explain recent experimental results [74, 105, 18]. We have shown

that a pure spin state can be dynamically initialized, even at large bias, which is

an important step on the way to full control over the quantum states of electron

spins. We have offered a possible explanation for an anomalously large value of

the effective charge passing through the DQD found in experiments [73], which is

important for single-spin resonance studies. Our expression for this effective charge

can be used to probe slow spin relaxation processes in the DQD to help understand

the underlying physical mechanisms. A fractional effective charge e∗ in transport

is often taken as evidence of exotic electronic states [121, 30, 110]. Here, we have

shown that e∗ can reach universal fractional values in a simple system, without

many-body correlations.

We thank D. G. Austing, J. Baugh, J. Gambetta, and D. Loss for useful discus-

sions. We acknowledge funding from an NSERC discovery grant, QuantumWorks,

IQC, WIN, CIFAR, and an Ontario PDF (WAC).
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Chapter 4

Leakage-current lineshapes from

inelastic cotunneling in the Pauli

spin blockade regime

4.1 Outline

We find the leakage current through a double quantum dot in the Pauli spin block-

ade regime accounting for inelastic (spin-flip) cotunneling processes. Taking the

energy-dependence of this spin-flip mechanism into account allows for an accurate

description of the current as a function of applied magnetic fields, gate voltages,

and an inter-dot tunnel coupling. In the presence of an additional local dephasing

process or nonuniform magnetic field, we obtain a simple closed-form analytical ex-

pression for the leakage current giving the full dependence on an applied magnetic

field and energy detuning. This work is important for understanding the nature of

leakage, especially in systems where other spin-flip mechanisms (due, e.g., to hy-

perfine coupling to nuclear spins or spin-orbit coupling) are weak, including silicon

and carbon-nanotube or graphene quantum dots.
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4.2 Introduction

Spin-dependent current blockade effects have been observed in quantum dots [98,

106] as well as in molecular [57] and single-atom transport.[87] These effects are

the basis of spin-to-charge conversion schemes, essential for measurements of spin

coherence and relaxation [102, 103, 73, 107] as well as the accurate initialization and

readout of spin states for spin-based quantum information processing.[85] Blockade

effects have further allowed the observation of intriguing slow periodic oscillations

in current, dependent on nuclear spins.[99] A detailed microscopic understanding

of how this blockade can be lifted is important to develop an accurate description

of these effects and to point the way to generate a more robust blockade for the

study of further spin-dependent phenomena.

The Pauli spin blockade of current through a double quantum dot occurs when

each of two quantum dots in series energetically favors a one-electron configuration

(we will refer to this as the (1, 1) regime, where (n,m) refers to n electrons on the

left dot and m electrons in the right). Restricting to only the lowest non-degenerate

single-particle orbital state in each dot, there are four possible spin configurations

in the (1, 1) subspace: one spin singlet and three spin triplets. To generate se-

quential transport of electron charge from left to right, the double-dot must pass

through the (0, 2) charge configuration, but due to the Pauli exclusion principle,

the lowest-energy (0, 2)-state is a spin singlet when only the lowest single-particle

orbital state is accessible. An inter-dot tunnel coupling preserves the spin of the

two-electron state and therefore couples only the (1, 1) singlet to the (0, 2) state.

After a small number of electrons has passed through the double-dot, eventually one

of the spin-triplet states will be occupied by chance, leaving the double dot stuck

in a “blocked” configuration. This blockade can be lifted either through the direct

hybridization of singlet and triplet states with the addition of spin-non-conserving

terms to the Hamiltonian (due, e.g., to the spin-orbit or hyperfine interactions), or

through direct energy-conserving transitions between triplet and singlet levels. In

spite of this relatively simple explanation for the Pauli spin blockade, the situation
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is complicated by several possible microscopic mechanisms that may dominate in

determining the leakage current depending on the material and device characteris-

tics. It is therefore important to understand precisely what influence each of the

possible microscopic mechanisms may have on the overall leakage current in order

to identify the most relevant mechanism and possibly to suppress it.

Most mechanisms that lift spin blockade are particular to the materials used to

manufacture a double-dot device; the contact hyperfine interaction between elec-

tron and nuclear spins lifts the blockade in GaAs double dots,[99, 74, 61, 59] and

a strong spin-orbit interaction plays the predominant role in lifting the blockade in

InAs nanowire double dots.[105, 27, 96] Both of these mechanisms can be suppressed

by manufacturing double dots using silicon[83, 84, 122, 79] or carbon-based[15, 18]

materials, in which the majority isotope has no nuclear spin and the spin-orbit cou-

pling strength ∝ Z4 is significantly weaker due to a smaller atomic number Z. One

blockade-lifting mechanism that is present in all double-dot devices, independent

of the material composition, is exchange of spins with the leads through higher-

order tunneling (cotunneling) processes.[46, 83, 132, 109] By understanding and

controlling these processes, one can accurately calibrate single-spin readout and

improve on rapid spin preparation schemes.[109] Moreover, cotunneling processes

have been shown to be significant in determining dynamic nuclear-spin polarization

processes, both in experiment[8] and in theory,[8, 115] so a further understanding of

cotunneling may allow for the preparation of a more highly-polarized nuclear-spin

system.

In this article we derive analytic expressions for leakage-current lineshapes ac-

counting for inelastic cotunneling processes in well-defined and generically accessible

limits. Some results of this analysis have recently been shown, experimentally, to

be consistent with transport measurements on silicon double quantum dots,[79] and

have proven useful in determining microscopic parameters associated with those de-

vices. A similar application of the results presented here to other material systems

may shed light on, e.g., unusually broad lineshapes in the magnetic-field-dependent

current through isotopically enriched 13C nanotube double dots.[18]
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Inelastic (spin-flip) cotunneling has been known as a significant spin-flip mecha-

nism since early measurements of triplet-to-singlet decay in vertical double quantum

dots,[45] where the triplet-to-singlet decay rate was shown to be limited by inelastic

cotunneling.[46] In the context of the Pauli spin blockade, spin-flip cotunneling rates

have been calculated and compared to experimental data in the high-temperature

regime where the associated transition rates between energy levels are independent

of the energy-level spacing.[83, 132] More recently, the consequence of the full energy

dependence of these rates has been calculated[109] and verified in experiment.[79]

In this chapter we apply and extend the analysis presented in refs. [109] and [79]

to a broader range of parameters and provide a general and intuitive formalism for

the calculation of leakage current through blockaded structures. For simplicity, in

specific calculations we neglect orbital/valley degeneracy in our treatment, which

may be relevant for quantum dots made from graphene, carbon nanotubes, or sil-

icon nanostructures and can lead, in general, to a more complicated spin-valley

blockade.[100, 101] However, the general formalism we present can also be applied

directly to systems with valley degeneracy and many of the results we present will

be qualitatively unchanged in the presence of additional orbital degeneracies.

The remainder of this article is organized as follows: In Sec. 4.3 we present

an intuitive and general procedure for the calculation of current through blockaded

structures given a set of decay rates obtained from a microscopic calculation. In

Sec. 4.4 we specialize to the case of a double quantum dot in the Pauli spin blockade

regime. We recall the calculation of sequential-tunneling and spin-flip cotunneling

rates from ref. [109] and apply the procedure of Sec. 4.3 to find leakage-current

lineshapes as a function of an applied magnetic field and energy detuning (the

energy difference between (1, 1) and (0, 2) charge states). In the limit of a strong

local spin dephasing mechanism or nonuniform magnetic field, we then obtain a

single simple closed-form analytical expression giving a full two-dimensional map

of the current as a function of detuning and magnetic field. In Sec. 4.5 we conclude

with a summary of the main results and a discussion of extensions and possible

future work.
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Figure 4.1: (a) A typical transport scenario in the sequential-tunneling regime. In
the high-bias limit (δµ > |Eα − Eσ|, T , where Ej is the energy of level j) electrons
hop only in one direction: from the left lead to the dot at a rate ∝ ΓL, and from
the dot to the right lead at a rate ∝ ΓR. (b) The transport cycle in the sequential
tunneling regime is a loop that carries the dot from an N -electron state (labeled
with {σ, σ′}) to an N + 1-electron state (labeled here with Greek letters {α, β}).
A current blockade will be set up if one or some of the accessible N + 1-electron
states α have negligible transition rates Wσα ' 0, in which case the current may be
limited by rates Wβα inducing transitions within the N + 1-electron subspace.
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4.3 Leakage current through blockaded systems

In this section we establish a generic theory of the current through blockaded nanos-

tructures, incorporating internal transition rates between levels that can lead to a

lifting of the blockade. The formalism developed in this section will be used in

later sections to derive simple analytical formulas for the dependence of the current

on various parameters in the specific case of the Pauli spin blockade of trans-

port through a double quantum dot, accounting for inelastic cotunneling processes.

Throughout this chapter, we work in units where gµB = e = kB = ~ = 1, with

electron g-factor g, Bohr magneton µB, electron charge e, Boltzmann’s constant kB

and Planck’s constant ~.

We consider a nanoscale system weakly tunnel coupled to leads, set at chemical

potentials µl and with tunneling rates Γl (l = L,R for the tunneling rate between the

system and the left and right leads, respectively, see Fig. 4.1(a)). In the sequential-

tunneling regime, electron charge is transported from left to right through energy-

conserving transitions between N -electron states of the system, denoted σ, and N+

1-electron states, denoted α. These transitions are associated with the exchange of

an electron with one of the leads (Fig. 4.1(b)). Finally, we consider the simplifying

limit of a large bias δµ = µL − µR > 0:

|µL − µασ| > T, (4.1)

|µR − µσα| > T, (4.2)

with chemical potential µασ = Eα − Eσ (where Ei is the energy of isolated system

level i and Latin characters are taken to run over all system eigenstates, indepen-

dent of the occupation number, i.e.: i = {α, σ}). In this limit, energy-conserving

transitions that add one electron to the system σ → α (with rate Wασ) necessarily

involve the removal of an electron from the left lead and transitions that remove an

electron from the system, α → σ (with associated rate Wσα), involve the addition

of an electron to the right lead (see Fig. 4.1(a)). Other processes that change the

electron number are exponentially suppressed.
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The sequential-tunneling current in the high-bias limit (defined by Eqs. (4.1)

and (4.2)) is given simply by

I =
∑

ασ

Wασρ̄σ, (4.3)

where ρ̄i solves the (stationary) Pauli master equation for the diagonal elements of

the system density matrix:

ρ̇i =
∑

j

Wij ρ̄j −Wiρ̄i = 0; Wi =
∑

j

Wji, (4.4)

where we define the average ρ(t) = limτ→∞
1
τ

∫ τ
0
dtρ(t). The diagonal elements of

the stationary density matrix ρ̄i must satisfy the normalization

∑

i

ρ̄i = 1. (4.5)

Use of the classical (Pauli) master equation to describe the diagonal elements of the

system density matrix is strictly valid in the high-bias, weak-coupling limit |δµ| >
ΓL,R, where coherences (off-diagonal elements with respect to the isolated system

energy eigenbasis) decay to zero on a time scale ∼ 1/|δµ| that is short compared

to the tunneling time ∼ 1/Γl. In Eq. (4.3), we have explicitly assumed that

higher-order current-carrying cotunneling corrections ∝ ΓLΓR are small relative to

the sequential-tunneling terms ∝ Γl. In Sec. 4.4, we will account for cotunneling

processes that do not carry current, ∝ Γ2
l , involving exchange with the same lead.

These processes typically dominate over the current-carrying cotunneling processes

in the case of a double quantum dot considered in Sec. 4.4.

Solving the linear system given by Eqs. (4.4) and (4.5) for the stationary pop-

ulations ρ̄σ is sufficient to determine the current I from the set of all rates Wij.

However, it is physically intuitive to switch to new variables ki, defined in terms

of the current I, stationary populations ρ̄i and the total escape rate from state i,

Wi =
∑

jWji, as:

ki =
Wiρ̄i
I

=
flux out of state i

flux into all states α
. (4.6)
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The quantities ki have a natural physical interpretation: ki is the number of times

state i will be visited, on average, per transport cycle (σ → α→ σ′ → . . ., depicted

in Fig. 4.1(b)). From the definition (4.6) and normalization (4.5), we find the

current

I =

(∑

i

ki
Wi

)−1

. (4.7)

This formula can be understood directly in terms of the interpretation given above

for the coefficients ki. The average time to leave state i if it were occupied is

1/Wi, while ki is the number of times (on average) that state i is occupied in each

transport cycle. The ratio ki/Wi is therefore the average time spent in state i per

transport cycle and so the total average time per transport cycle (average time to

transfer an elementary electron charge) is simply
∑

i ki/Wi. The inverse of this

time is the rate at which charge is transferred from left to right, giving the current,

Eq. (4.7).

The coefficients ki can be found systematically in terms of the rates Wij using

the identity

ki =
∑

j

Pijkj; Pij = Wij/Wj, (4.8)

where the branching ratios, Pij, give the probability for a transition to state i

conditioned on starting in state j. Eq. (4.8) follows directly from Eq. (4.4) and

the definition ki ∝ Wiρ̄i (Eq. (4.6)). Solving the linear system given in Eq. (4.8)

and substituting the result into Eq. (4.7) is formally equivalent to solving for the

populations ρ̄i and substituting the result into Eq. (4.3) for the current. However,

for the particular case of blockaded systems, we will find that Eq. (4.8) lends itself

better to approximation schemes and often the solution for the ki can be determined

quickly on physical grounds without directly solving the linear system.
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Figure 4.2: Isolated double-quantum-dot energy eigenstates and transition rates
between them. The spin-polarized triplet states |T±〉 are split from the spin-
unpolarized triplet |T0〉 by an applied magnetic field B and the hybridized spin-
singlet states |S±〉 are split from |T0〉 by the detuning-dependent quantities ω±,
given in Eq. (4.35), below.

4.4 Inelastic cotunneling and the Pauli spin block-

ade regime

Here we apply the formalism of Sec. 4.3 to perform an explicit microscopic cal-

culation for the leakage current through a double quantum dot in the Pauli spin

blockade regime, accounting for transition rates due to inelastic cotunneling pro-

cesses. Inelastic cotunneling is a second-order tunneling process associated with a

change in energy of the isolated quantum-dot state with a compensating change

in energy of the lead state. Since the total energy is conserved, the energy of the

combined dot-plus-leads system is, of course, unchanged in this process.

The simple formalism derived in the previous section allows us to efficiently

obtain closed-form analytical expressions for the leakage current in terms of all

transition rates Wij. We begin by reviewing the calculation of transition rates due

to sequential tunneling and inelastic cotunneling, presented in ref. [109].
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4.4.1 Transition rates

Our starting point is a Hamiltonian,

H = H0 +
∑

l

Hdl, (4.9)

where H0 gives the free Hamiltonian of the double quantum dot and Fermi-liquid

leads. In the subspace of (1, 1) and (0, 2) charge states, the isolated double-dot

Hamiltonian eigenstates consist of two spin-singlets |S±〉, describing (1, 1) and (0, 2)

charge states hybridized due to inter-dot tunneling t, as well as three spin triplets

(|T±〉 , |T0〉), see Fig. 4.2. Sequential transport further involves the (0, 1) charge

state with spin σ =↑, ↓, denoted: |σ〉. The Hamiltonian Hdl describes the coupling

of lead l to dot l (l = L,R for the left and right dot and lead, respectively), with

tunneling amplitude tl (a full specification is given in the appendix B, below).

Transition rates are calculated via Fermi’s golden rule:

Wkm = 2π
∑

if

ρ(i) |〈fk|V |im〉|2 δ (Efk − Eim) , (4.10)

where i, f label the initial and final states of the leads, respectively, m, k label the

initial and final states of the double dot, ρ(i) describes a product of initial Fermi

distributions in the leads, held at electron temperature T and chemical potentials

µl, and Eim, Efk give the total initial and final energies of both the double-dot and

leads. The effective perturbation V , accounting for transitions up to second order

in Hdl, is

V =
∑

l

Hdl +
∑

abgll′

|a〉 〈b| 〈a|Hdl |g〉 〈g|Hdl′ |b〉
Ea − Eg

, (4.11)

where the indices a, b, g describe the collective state of the double dot and leads.

In the high-bias regime (Eqs. (4.1) and (4.2)), we find the sequential tunneling
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rates from Eqs. 4.10 and 4.11:

Wασ = ΓL
∑

σ′

|AασLσ|2, (4.12)

Wσα = ΓR
∑

σ′

|AασRσ|2, (4.13)

where the tunneling rates Γl and transition matrix elements Ajj
′

lσ are, respectively,

Γl = 2πνl|tl|2, (4.14)

Ajj
′

lσ = 〈j| d†lσ |j′〉 . (4.15)

Here, νl is the density of states per spin at the Fermi level in lead l. We assume

that both νl and tl are approximately energy-independent in our regime of interest.1

The operator d†lσ creates an electron in single-particle orbital l with spin σ.

The inelastic cotunneling rates Wαβ, arising from the second-order term in Eq.

(4.11) with l = l′, are given by[109]

Wαβ = 2cTMαβF (ωβα/T ), (4.16)

with dimensionless prefactor c, matrix elements Mαβ, and energy-dependent factor

F (ω/T ) given by

c =
1

π

[(
ΓL

∆− ε

)2

+

(
ΓR

∆ + ε− 2U ′ − 2δµ

)2
]
, (4.17)

Mαβ =
∑

σσ′σ′′

|Aασ
′′

Lσ |2|Aβσ
′′

Lσ′ |2 =
∑

σσ′j

|AjαRσ|2|AjβRσ′|2, (4.18)

F (ω/T ) =
ω/T

1− e−ω/T . (4.19)

The coefficient c ∼ Γ2
l in Eq. (4.17) reflects the second-order nature of the cotun-

1The tunneling amplitudes tl will be approximately energy-independent when the bias is small
compared to the height of the barrier coupling dot to lead. For a clean system, the density of
states νl will be independent of energy as long as the bias is small compared to the Fermi energy
EF.
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neling process and we have taken the convention µL = 0, µR = −δµ with positive

bias δµ > 0. Here, the energy detuning ε = E(1,1) − E(0,2) measures the separa-

tion in energy between (1, 1) and (0, 2) charge configurations, and ∆ = E(1,1) − U
sets the energy of the (1, 1) charge configuration with on-site charging energy U .

The transition matrix elements Mαβ arise from processes involving spin exchange

with the left lead (associated with virtual states in the (0, 1)-subspace) or spin ex-

change with the right lead (associated with virtual states |j〉 in the (1, 2)-subspace).

The dominant energy and temperature dependence of the cotunneling rates is

due to the function F (ω/T ), which arises from an integral over Fermi functions

fl(E) = 1/(e(E−µl)/T + 1):

F (ω/T ) =
1

T

∫ ∞

−∞
dEfl(E) [1− fl(E + ω)] . (4.20)

In our analysis, we have neglected resonant cotunneling contributions, which for-

mally lead to a divergence in evaluating rates directly from Eq. (4.11). How-

ever, these contributions can be systematically regularized[71] and are suppressed

exponentially in the high-bias limit considered here. We have further neglected

current-carrying cotunneling processes (those arising from the second-order term

with l 6= l′ in Eq. (4.11)). We find that these processes are suppressed relative

to the considered processes by at least a factor ∼ U ′/U , where U ′ is the nearest-

neighbor charging energy.[109]

Since the energy dependence of the rates Wαβ will play an important role in the

following analysis, it is useful to consider F (ω/T ) in the limits of large positive and

negative energy difference ω at low T :

F (ω/T ) ' ω

T
Θ(ω/T ), ω > T, (4.21)

F (ω/T ) ' |ω/T |e−|ω/T |, ω < −T. (4.22)

Eq. (4.21) reflects the fact that the inelastic relaxation rates increase for large

energy-level separation ω > T , as the density of states of the environment increases
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and Eq. (4.22) describes exponential suppression of excitation compared to relax-

ation processes, consistent with detailed balance.

In the high-temperature limit, the inelastic cotunneling rates for both excitation

and relaxation approach a constant, energy-independent value since, in this limit,

F (ω/T ) ' 1, T > |ω|. (4.23)

This high-T limit has been explored in the context of Pauli spin blockade in previous

works.[83, 132] In the present work, we are more concerned with the limits where the

energy dependence described by Eqs. (4.21) and (4.22) is significant in determining

the leakage current.[109]

4.4.2 Leakage current: No local dephasing

Solving the linear system (Eq. (4.8)) for ki with the rates given in Eqs. (4.12),

(4.13), and (4.16) immediately gives the current via the expression in Eq. (4.7).

For any set of parameters, one can find the leakage current by solving the full

linear system, giving a complex expression in general. However, to understand

the physical significance of the results, or in order to perform experimental fits

to traces of leakage current vs. magnetic field or energy detuning, it is useful to

derive simple analytical expressions, valid in experimentally relevant limits. In this

section, we derive expressions for the leakage current in the limit where there is no

significant local dephasing mechanism, leading to decay rates that are comparable

for all three spin-triplet states, WT+ ∼ WT− ∼ WT0 . This limit applies to double

dots in silicon or carbon when there is no magnetic field gradient. In Sec. 4.4.3

below, we consider the opposite limit of a strong local spin dephasing mechanism

or nonuniform magnetic field, leading to WT0 � WT± , in which case the analysis

simplifies considerably.
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Figure 4.3: Current I vs. magnetic field B at zero detuning (ε = 0) from the
full expression given in Eq. (4.28) (black solid line) and the approximation, Eq.
(4.30) (red circles). This form is valid when the temperature T is large compared
to the tunnel coupling t and when the direct dot-lead tunneling rates Γl are large
compared to inelastic cotunneling rates Wαβ, i.e. T > t and Γl > Wαβ. For
example, for Silicon (g = 2) 100mK corresponds to 75mT.

4.4.2.1 B-field dependence (high-T limit)

First we restrict ourselves to the dependence of the leakage current on an applied

magnetic field B, which splits the spin-polarized triplet states |T±〉 from |T0〉 (see
Fig. 4.2). We further consider the limit Γl � Wαβ at zero detuning, ε = 0, in

which the current is dominated by rates of escape from the three spin-triplet states

WTa � WS± ,Wσ. Noting that kS± , kσ ∼ O(1) in this limit since the singlets |S±〉
and one-electron states |σ〉 are accessed at most once per transport cycle, Eq. (4.7)

simplifies to

I '
(
kT0
WT0

+
kT+
WT+

+
kT−
WT−

)−1

, Γl � Wαβ. (4.24)

We obtain the relevant coefficients kα from Eq. (4.8), with the cotunneling rates

given in Eq. (4.16). We find kσ = 1/2, since both spin states, σ =↑, ↓, are equally

probable and one of the two is accessed in each transport cycle. For an unpolarized

source lead, we find the branching ratios PT+↑ = PT−↓ = 1/2, PT0σ = 1/4, and

finally, directly inserting the relevant rates in the limit ε = 0, t < T , we find

PT0T± = 1/2. Inserting these results into Eq. (4.8) and solving the linear system in
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terms of the two remaining branching ratios gives:

kT0 =
1

2− p+ − p−
, (4.25)

kT± =
1

4
+

p±
2− p+ − p−

, (4.26)

with branching ratios

p± = PT±T0 =
WT±T0

WT0

. (4.27)

Substituting the cotunneling rates given in Eq. (4.16) into Eqs. (4.27), (4.25),

and (4.26), and inserting the results for T > t into Eq. (4.24) directly gives an

expression for the current vs. B:

I(B, ε = 0) =
4

3
cTG(B/T )

B/T

sinh (B/T )
, (4.28)

with

G(x) = 3
2(coshx− 1) + x sinhx

2(coshx− 1) + 5x sinhx
. (4.29)

Since G(B/T ) differs from a constant only at third order in B/T , while I(B, ε = 0)

is exponentially suppressed for B/T & 1, to a very good approximation we take

G(B/T ) ' G(0) = 1 leaving the simple expression

I(B, ε = 0) ' 4

3
cT

B/T

sinh (B/T )
; T > t,Γl � Wαβ. (4.30)

The approximate expression, Eq. (4.30), is virtually indistinguishable from the full

expression given in Eq. (4.28), see Fig. 4.3.

At zero magnetic field, B = 0, Eq. (4.30) simply gives I ' n̄Wcot, where n̄ = 4/3

gives the average number of electrons that pass through the double dot between

“blocking events”. This number is 4/3 if three of four (1, 1) charge states block

current – in this case, the three spin triplets – see ref. [109]. Wcot = cT is the rate

at which any one of the triplets converts to a singlet through a cotunneling process

in the limit T > t.

Physically, the current in Fig. 4.3 falls to zero when |B| > T since the excitation
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Figure 4.4: Detuning dependence at B = 0 from Eq. (4.48) for α = 100 and
t = 5T (black solid line), t = 3T (blue dashed line), and t = T (red dotted line).
The central peak with width ∼ t is described by the function g(ε, t, T ) and the
broad background describes a Lorentzian of width δε = αt. (100mK corresponds
to 8.6 µeV )

rate out of the ground-state triplet is exponentially suppressed.

4.4.2.2 Detuning dependence

To find the full ε-dependence of the current, even in the limit Γl � Wαβ we find

that it is necessary to include the escape rates from the singlets WS± , which can

control the resonant-tunneling current at large detuning, where WS± ∼ WT0 ,WT± .

As in the last section, we aim to find a good approximate solution for the current,

starting from the linear equations given in Eq. (4.8). In the limit Γl � Wαβ,

assumed here, the escape rate from the singlets can be taken to be essentially

instantaneous except at sufficiently large detuning |ε| � t, since WσS± ∝ (t/ε)2ΓR

for ε → ±∞ (the rate WσS± is limited by the overlap of |S±〉 with the (0, 2)

charge state). It is therefore sufficient to approximate rates by their large-ε forms

to determine kS± . We assume that transition rates between the singlets are small

compared to the direct escape rate (i.e.,WS−S+ ∼ (t/ε)2c|ε| � min
(
WσS+ ,WσS−

)
∝

(t/ε)2ΓR, which simplifies to c|ε| � ΓR). Provided this is satisfied, in the limit

|ε| � t, we find that only kS+ (kS−) is relevant for ε > 0 (ε < 0), allowing us to
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introduce a single parameter kS = θ(ε)kS+ + θ(−ε)kS+ , where θ(x) is a Heaviside

step function. At B = 0, we further find that kT+ = kT− = kT . The remaining three

independent parameters are then given by the linear equations, from Eq. (4.8) after

inserting all rates:

kT =
1

4
+

1

2 + g
kT0 +

1

3 + η
kS, (4.31)

kT0 =
1

4
+

2

1 + g
kT +

1

3 + η
kS, (4.32)

kS =
1

4
+

1

3
kT0 + kT , (4.33)

with

g = g(ε, t, T ) =
ω+F (ω−/T ) + ω−F (−ω+/T )√

ε2 + 8t2
, (4.34)

ω± =
1

2

[√
ε2 + 8t2 ∓ ε

]
, (4.35)

and

η =

∑
σWσS

Wcot

' 2ΓR
cT

(
t

ε

)2

=
16

3

(
δε

ε

)2

, |ε| � t. (4.36)

Here we have introduced a new energy scale δε, giving the value of the detuning at

which the inelastic cotunneling rates are comparable to the escape rate from the

double dot:

δε = αt; α =
√

3ΓR/8cT . (4.37)

As the detuning ε→ ±∞ is increased, the escape rate from the relevant singlet

state WσS± ∝ (t/ε)2ΓR decreases until it becomes smaller than the cotunneling

rates ∼ cT . In the extreme limit, η = 0 and g = 1, Eqs. (4.31), (4.32), and (4.33)

only have the singular solution kT = kT0 = kS = ∞, reflecting the fact that each

state is visited an infinite number of times; the system becomes ‘stuck’ in loops,

as depicted between states |α〉 and |β〉 in Fig. 4.1. To arrive at the leading finite

corrections in the limit of large detuning ε� δε (equivalently, η � 1), we set g = 1,

and determine the leading asymptotic solution of Eqs. (4.31), (4.32), and (4.33)
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Figure 4.5: Detuning dependence at B = 0 from Eq. (4.48) for t = 5T and α = 200
(black solid line), α = 50 (blue dashed line), and α = 10 (red dotted line).

for small η, giving

kT = kT+ = kT− =
2

η
+ const., ε� δε, (4.38)

kT0 ' kS =
3

η
+ const., ε� δε. (4.39)

In the same large-detuning limit, we have the total decay rates (at any finite tem-

perature T )

WT+ = WT− ' 2cT, ε→ ±∞, (4.40)

WT0 ' WS± ' 3cT, ε→ ±∞. (4.41)

In the opposite limit of small detuning (ε � δε, or equivalently η � 1), Eqs.

(4.31) and (4.32) decouple from Eq. (4.33). For |ε| . t and low temperature T . t,

it is necessary to keep the g-dependence. The resulting solutions in this limit are

kT0 =
1

4
+

1

2g
, ε� δε, (4.42)

kT = kT± =
1

4
+

1

4g
, ε� δε, (4.43)
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with corresponding rates given by

WT± = cT (1 + g) , (4.44)

WT0 = cT (2 + g) . (4.45)

Combining the above results gives

∑

j

kj
Wj

' 4

cT

1

η
=

3

4cT

( ε
δε

)2

, ε� δε, (4.46)

∑

j

kj
Wj

' 3

4cT
g−1(ε, t, T ), ε� δε. (4.47)

Since the result in Eq. (4.46) vanishes for ε� δε, but dominates over Eq. (4.47) for

ε� δε, we can simply add the two results to find the appropriate denominator for

the current, Eq. (4.7), giving an expression that closely approximates the current

everywhere except possibly in a small region around ε ∼ δε.

The resulting lineshape for the leakage current as a function of detuning ε is

I(B = 0, ε) '
4
3
cT

g−1(ε, t, T ) + (ε/δε)2 , Γl � Wαβ. (4.48)

In general, the leakage current lineshape may be dominated by the function g(ε, t, T ),

due to escape from the triplets at small detuning ε . t, and by a broad Lorentzian

with width δε, limited by escape from the singlets at large detuning, ε > t. Eq.

(4.48) is plotted in Fig. 4.4 for various values of the tunnel coupling t, demon-

strating the crossover from a narrow central peak dominated by triplet relaxation

to a broad Lorentzian background, when each of the states is visited many times

before an electron escapes the double dot. The balance between broad Lorentzian

and peaked resonant tunneling can be tuned with the ratio of escape rate ∼ ΓR to

cotunneling rate ∼ cT , controlled by the parameter α. The evolution of the current

vs. detuning as α is varied is shown in Fig. 4.5.

The lineshape given in Eq. (4.48) simplifies considerably in the high-temperature
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Figure 4.6: Detuning dependence at B = 0 from Eq. (4.48) for α = 100 and
t = 0.5T (black solid line), t = 0.1T (blue dashed line), and t = 0.01T (red dotted
line). Open circles give the equivalent curves from Eq. (4.49), valid in the limit
t . T .

limit T > t, in which case the function g(ε, t, T ) ' 1, leaving a simple Lorentzian:

I(B = 0, ε) '
4
3
cT

1 + (ε/δε)2 , T > t,Γl � Wαβ. (4.49)

Eq. (4.49) is plotted in Fig. 4.6 and compared with the full expression given in Eq.

(4.48) in the relevant high-temperature limit.

Eq. (4.49) is consistent with recent experiments on silicon double quantum

dots.[79]

4.4.3 Leakage current in the strong-dephasing limit

An especially simple and ubiquitous limit occurs when there is a strong local de-

phasing process2 or a magnetic field gradient, allowing rapid escape for the spin-

unpolarized triplet state |T0〉 (i.e., WT0 ' WσT0 � Wαβ). The advantage of this

limit is the absence of closed ‘loops’ that complicated the analysis in Sec. 4.4.2.

At sufficiently small detuning ε < δε, the rate of transition from one of the
2A spin dephasing process that acts locally on the right and left spins of a double quantum

dot will convert the coherent triplet |T0〉 = (|↑↓〉+ |↓↑〉) /
√

2 to an incoherent mixture of |↑↓〉 and
|↓↑〉, both of which have a finite overlap with the singlets |S±〉, and hence, a finite transition rate
to (0, 1) charge states via dot-lead tunneling.
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Figure 4.7: Map of the leakage current vs. detuning, ε, and magnetic field, B,
in the strong-dephasing limit, WT0 � WT± from Eqs. (4.50) and (4.51). A tunnel
coupling t = 5T was chosen to generate this plot. Cuts vs. B at finite ε (dotted
line) and vs. ε at finite B (dashed line) are shown in Figs. 4.8 and 4.9 below,
respectively.

Figure 4.8: Cut of magnetic field dependence at finite detuning ε/T = 50 along
the dotted vertical line in Fig. 4.7. At finite positive detuning ε, the magnetic-field
dependence shows a central peak with width set by ∼ T due to inelastic escape
processes involving the triplet T0 and excited-state singlet S+, followed by a long
slow decay at larger B, with a width B ∼ ε, after which the ground state becomes
a spin triplet.
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Figure 4.9: Cut of the detuning dependence at fixed finite magnetic field B/T = 5,
along the dashed horizontal line in Fig. 4.7. At finite magnetic field, the detuning-
dependent leakage current due to inelastic cotunneling is asymmetric in ε, since
the ground state has spin-singlet character for ε > 0, but spin-triplet character for
ε < 0.

singlet states to a triplet is small compared to the singlet escape rate, WαS± �
WσS± . Consequently, the spin-polarized triplets |T±〉 are visited at most once in

each transport cycle, giving kT± = 1/4, since each of the four spin states in the (1, 1)

charge configuration has equal probability of being occupied during a transport

cycle. This gives immediately, from Eq. (4.7),

I ' 4

W−1
T+

+W−1
T−

, Γl � Wαβ, WT0 � WT± , WσS± � WαS± . (4.50)

It is important to emphasize the generality of the simple expression given in

Eq. (4.50). In particular, this expression is valid for arbitrary spin-flip processes

leading to transitions from the spin-polarized triplet states to the singlets or spin-

unpolarized triplet T0, e.g. WS+T± 6= 0, WT0T± 6= 0, or direct transitions leading

to escape from the double dot, WσT± 6= 0. These processes can be mediated by

coupling to nuclear spins, spin-orbit interaction, or any other mechanism. The

existence of a fast local dephasing mechanism (e.g., coupling to nuclear spins) even

when spin relaxation rates may be slow is common. Even if there is no dephasing

mechanism, a magnetic field gradient across the double dot is sufficient to reach
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the limit WT0 � WT± .[109]

When only inelastic cotunneling processes account for the rate WT± , the direct

transitions carrying an electron out of the double dot vanish WσT± = 0 and the

remaining contributions can be found directly from Eq. (4.16):

WT±/cT =
(
WT0T± +WS+T± +WS−T±

)
/cT

= F

(
±B
T

)
+
ω−F

(
±B−ω+

T

)
+ ω+F

(
±B+ω−

T

)

√
ε2 + 8t2

. (4.51)

We recall that the energies ω± are defined in Eq. (4.35) and the functions F (x) are

defined by Eq. (4.19). Inserting the rates given in Eq. (4.51) into Eq. (4.50) im-

mediately gives a complete map of the leakage current, with amplitude determined

by the high-temperature cotunneling rate ∼ cT and all other features determined

by only three dimensionless parameters: the magnetic field, detuning, and tunnel

coupling, scaled by the temperature: B/T, ε/T, t/T . We show a map of the leakage

current as a function of B/T and ε/T in Fig. 4.7 for the case of t = 5T .

Taking the limit B = ε = 0, T � t, we find that the current saturates at a

maximum value:

I(B = 0, ε = 0) = 4cT = n̄Wcot, (4.52)

Wcot = 2cT, T � t. (4.53)

Here, we find the average number of electrons passing through the double dot for

each cotunneling event is n̄ = 2, in contrast to the situation in Sec. 4.4.2, where

n̄ = 4/3 for the same parameter values. This is due to the fact that now only two

out of four of the (1, 1) charge states are blocked (|T±〉), giving n̄ = 4/2 = 2.

A cut of I vs. B at finite detuning ε > 0 is shown in Fig. 4.8. The central peak in

this figure has width ∼ T , due to thermally activated escape from the ground state

triplet through the T0 state. The broad background current falls to zero at B ' ε,

where the ground state becomes a spin-triplet (|T−〉 [|T+〉] for B > 0 [B < 0]). A

similar effect is shown as a function of ε at finite magnetic field B > T in Fig. 4.9.
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Here, for ε < 0 the ground state becomes a spin triplet and current is suppressed

exponentially in B/T , whereas for ε > 0 the ground state is a spin-singlet and

relaxation processes can still lead to escape with a slow rate ∼ 1/ε until ε becomes

very large. A detuning asymmetry such as this one is often ascribed to phonon-

assisted tunneling, but can result (as it does for the inelastic cotunneling mechanism

considered here) from any other mechanism for which excitation is exponentially

suppressed relative to relaxation.

4.4.3.1 B-field dependence (low-T limit)

In the low-temperature limit, T � t, we use the approximation given in Eq. (4.21)

to find the relevant escape rates from Eq. (4.51). For, e.g., B > 0 and ε = 0, these

rates are

WT+ = cB +
c

2

(√
2t+B

)
Θ(
√

2t+B), (4.54)

WT− =
c

2

(√
2t−B

)
Θ(
√

2t−B). (4.55)

Inserting these rates into Eq. (4.50) directly gives the low-temperature expression

for the current, previously reported in ref. [109],

I =
c(
√

2t− |B|)(
√

2t+ 3|B|)
(
√

2t+ |B|)
Θ(
√

2t− |B|), T � t. (4.56)

Eq. (4.56) is plotted in Fig. 4.10. The current falls to zero at |B| =
√

2t when

the ground-state triplet falls below the ground-state singlet |S−〉. At larger B,

excitation processes are exponentially suppressed and the system becomes locked

in the ground-state triplet. The dip at B = 0 occurs because relaxation processes

from T± to T0 vanish when the levels become degenerate, while at small finite B,

an additional “escape route” is available for the highest-energy triplet through |T0〉.
From Eq. (4.50), it is clear that the current will experience a dip at B = 0

whenever the rates WT± are reduced at B = 0. This effect becomes especially

pronounced for contributions to WT± from, e.g., the spin-orbit coupling, which
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Figure 4.10: T = 0 expression for I vs. B (valid for T < t).

must necessarily vanish at B = 0 due to time-reversal invariance.[51] This effect

due to spin-orbit coupling has been demonstrated in the context of the Pauli spin

blockade regime using a phenomenological model that preserves time-reversal, but

hybridizes the triplet and singlet states.[27] For a microscopic theory, an additional

magnetic-field gradient or local spin dephasing process is likely necessary to arrive

at this conclusion in general, since the spin triplet state |T0〉 does not hybridize

with the spin singlets at leading order in the spin-orbit coupling.[51]

4.5 Conclusions

We have presented a generic and simple procedure for calculating leakage current

through blockaded structures. Using this generic theory, we found simple analyti-

cal expressions for current lineshapes as a function of an applied magnetic field B,

energy detuning ε, and inter-dot tunnel coupling t. These lineshapes fully account

for inelastic cotunneling in two limits: weak-dephasing and strong-dephasing. The

results we have found in the weak-dephasing limit are consistent with recent ex-

periments performed on silicon double quantum dots[79] and may be applicable to

carbon-based double dots, which are also expected to have weak spin-orbit inter-

actions and only weak dephasing. In the strong-dephasing limit, we have found
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a simple expression that gives the full two-dimensional map of leakage current vs.

B and ε in the presence of inelastic cotunneling. Finally, we have given a general

understanding of zero-field current dips in the limit of strong dephasing.

To simplify the analysis directly associated with the Pauli spin blockade in a

double quantum dot, we have neglected orbital and valley degeneracy, which may

be relevant in silicon and carbon-based double dots. Effects of these degeneracies

can, however, be included in a systematic and straightforward way using the general

methodology outlined in Sec. 4.3. We leave the details of such an analysis to future

study.
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Chapter 5

Pauli Spin Blockade in a Highly

Tunable Silicon Double Quantum

Dot

5.1 Outline

Double quantum dots are convenient solid-state platforms to encode quantum in-

formation. Two-electron spin states can be conveniently detected and manipulated

using strong quantum selection rules based on the Pauli exclusion principle, lead-

ing to the well-know Pauli spin blockade of electron transport for triplet states.

Coherent spin states would be optimally preserved in an environment free of nu-

clear spins, which is achievable in silicon by isotopic purification. Here we report

on a deliberately engineered, gate-defined silicon metal-oxide-semiconductor dou-

ble quantum dot system. The electron occupancy of each dot and the inter-dot

tunnel coupling are independently tunable by electrostatic gates. At weak inter-

dot coupling we clearly observe Pauli spin blockade and measure a large intra-dot

singlet-triplet splitting > 1 meV. The leakage current in spin blockade has a pecu-

liar magnetic field dependence, unrelated to electron-nuclear effects and consistent

with the effect of spin-flip cotunneling processes. The results obtained here provide
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excellent prospects for realizing singlet-triplet qubits in silicon.

Gate-defined semiconductor quantum dots enable the confinement and manip-

ulation of individual electrons and their spin [53]. Most of the relevant parameters

– electron filling, energy splittings, spin states, exchange interaction – can be tuned

in situ by electric and magnetic fields. Because of this exquisite level of control,

quantum dots are being investigated as candidate systems for spin-based quan-

tum information processing [85]. In group III-V semiconductors such as GaAs,

the development of highly tunable double quantum dots has allowed the study of

both single-electron and two-electron spin dynamics [98, 102, 74, 60, 73]. However,

the nuclear spins always present in these materials produce strong decoherence

of the electron spin degree of freedom and result in phase coherence times T2 of

below 1 ms [7, 13]. Conversely, group-IV semiconductors such as silicon, silicon-

germanium and carbon can be isotopically purified, leaving only spinless isotopes.

The weak spin-orbit coupling [128] and the absence of piezoelectric electron-phonon

coupling [41] allow for extremely long spin relaxation times T1 of order seconds, as

already demonstrated in several experiments [137, 94, 123]. The phase coherence

times have not been measured yet, but they are expected to reach ∼ 1 s as well, in

highly purified 28Si substrates with low background doping concentration [135].

A widely successful method to observe and control spin phenomena in quan-

tum dots [53] consists of defining a double quantum dot in a series configuration

and tuning the potentials such that sequential electron transport requires a stage

where two electrons must occupy the same dot. The eigenstates of a two-electron

system are singlet and triplet spin states, separated by an energy splitting ∆ST

which can be large in tightly confined dots. The electron transport then becomes

spin-dependent and can be blocked altogether when the two-electron system forms

a triplet state [98, 44]. This phenomenon, known as Pauli spin blockade, has been

extensively exploited to investigate the coherence of single-spin [73] and two-spin

states [102] in GaAs and InAs [95] quantum dots. Therefore, observing and con-

trolling spin blockade in silicon is a key milestone to unravel the full potential

of highly coherent spin qubits. Preliminary success has been obtained in Si [84]
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Figure 5.1: SEM and schematic view of the device. (a) Scanning electron
micrograph of a device identical to that measured. (b) (Not to scale) Schematic
cross-section view of the Si MOS double quantum dot. The architecture is defined
by B1, B2 and B3 (barrier gates), L1 and L2 (lead gates), and P1 and P2 (plunger
gates). The gates are separated by an Al2O3 layer (light gray). Positive voltages
applied to the lead and plunger gates induce an electron layer (black dashes) un-
derneath the SiO2. By tuning the barrier gates, Dot 1 and Dot 2 are formed.
The coupling of the dots is adjusted using the middle barrier (B2). The regions
coloured with red are the n+ source (S) and drain (D) contacts formed via diffused
phosphorus.
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and SiGe [122] devices, but in each case the double dot system under study re-

sulted from local variations in the potential of a lithographically-defined single dot,

making it difficult to control individual dot occupancies or inter-dot coupling. Spin-

based quantum dot qubits require exquisite control of these parameters, so a highly

tunable double-dot system in silicon is essential. For singlet-triplet qubits in mul-

tivalley semiconductors it is also crucial to ensure that a large valley-orbit splitting

is present, to avoid the lifting of Pauli blockade due to valley degeneracy [100, 26].

Here we present an engineered silicon double quantum dot which shows excellent

tunability and robust charge stability over a wide range of electron occupancy (m,

n). The silicon metal-oxide-semiconductor (MOS) structure utilizes an Al-Al2O3-

Al multi-gate stack that enables very small dots to be defined, each with indepen-

dent gate control, together with gate-tunable inter-dot coupling. Such multi-gate

stacks have previously been used to construct single Si quantum dots with the

ability to achieve single electron occupancy [82]. The double dot presented here

exhibits spin blockade in the few-electron regime, from which we are able to ex-

tract a large singlet−triplet energy splitting and also investigate a new mechanism

of singlet−triplet mixing in the weak-coupling regime.

5.2 Results

Device architecture. Figure 5.1 shows a scanning electron micrograph (SEM)

and cross-sectional schematic of the device, which incorporates 7 independently

controlled aluminium gates. When a positive bias is applied to the lead gates (L1

and L2) an accumulation layer of electrons is induced under the thin SiO2, to form

the source and drain reservoirs for the double dot system. A positive voltage on the

plunger gate P1 (P2) causes electrons to accumulate in Dot 1 (Dot 2). Independent

biasing of P1 and P2 provides direct control of the double-dot electron occupancy

(m, n). The tunnel barriers between the two dots and the reservoirs are controlled

using the barrier gates: B1, B2 and B3. The middle barrier gate B2 determines

the inter-dot tunnel coupling. The electrochemical potentials of the coupled dots
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can also be easily tuned to be in resonance with those of the source and drain

reservoirs. As shown in Fig. 5.1(b), gates L1 and L2 extend over the source and

drain n+ contacts, and also overlap gates B1 and B3. The upper-layer gates (P1

and P2) are patterned on top of the lead and barrier gates. The lithographic size

of the dots is defined by the distance between adjacent barrier gates (∼30 nm) and

the width of the plunger gates (∼50 nm), as shown in Fig. 5.1(a).
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Figure 5.2: Characteristics at different inter-dot tunnel coupling. Measured
stability diagrams and energy landscape of the double dot system ranging from weak
to strong inter-dot tunnel coupling (a)−(c) and (d)−(f) respectively, for VL1 = VL2

= 3.0 V, VB1 = 0.76 V, VB3 = 1.0 V and VSD = 0. From lower to higher VB2,
the tunnel barrier height decreases resulting in stronger inter-dot tunnel coupling.
(a) A checker box pattern, (b) honeycomb pattern and (c) diagonal parallel lines
indicate that the two dots merge into a single dot as the coupling is increased [131].

Inter-dot tunnel coupling tunability. Figure 5.2 shows the measured differ-

ential conductance of the device as a function of the plunger gate voltages, VP1 and

VP2, with all other gate voltages held constant, together with sketches of the energy

landscape of the double dot. The charge-stability maps moving from Fig. 5.2(a)

to 5.2(c) clearly show the effects of an increasing inter-dot coupling as the mid-
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dle barrier-gate voltage VB2 is increased, lowering the tunnel barrier between the

dots. Fig. 5.2(b) shows the characteristic honeycomb-shaped stability map repre-

senting intermediate inter-dot coupling [131], obtained at VB2 = 1.32 V. At lower

middle barrier-gate voltage, VB2 = 1.20 V, we observe a checker-box shaped map

[Fig. 5.2(a)], since the middle barrier is opaque enough to almost completely decou-

ple the two dots. In contrast, the stability map in Fig. 5.2(c) shows the formation

of diagonal parallel lines at VB2 = 1.40 V. Here the two dots effectively merge into

a single dot due to the lowering of the middle barrier [Fig. 5.2(f)]. The transport

measurements shown here do not allow a precise determination of the electron oc-

cupancy (m, n) in the dots, since it is possible that electrons remain in the dots

even when ISD is immeasurably small. For the regime plotted in Fig. 5.2 there were

at least 10 electrons in each dot, based on our measurement of Coulomb peaks as

we further depleted the system. An absolute measurement of dot occupancy would

require integration of a charge sensor into the system [60]. These results never-

theless demonstrate that the multi-gated structure provides excellent tunability of

coupling while maintaining charge stability over a wide range of electron occupancy.

Capacitances and charging energies. Application of a DC source-drain bias

VSD causes the triple-points in the weakly-coupled regime [Fig. 5.2(a)] to extend

to form triangular shaped conducting regions [Fig. 5.3(a)] from which the energy

scales of the double dot system can be determined [131]. From a triangle pair, we

extract the conversion factors between the gate voltages and energy to be α1 =

eVSD/δVP1 = 0.089e and α2 = eVSD/δVP2 = 0.132e, where δVP1 and δVP2 are the

lengths of the triangle edges, as shown in Fig. 5.3(a). The total capacitances of

Dot-1 and Dot-2 can then be calculated [131], giving C1 = 16.3 aF and C2 = 14.5

aF. The charging energies of the two dots are then EC,1 = e2/C1 = 9.8 meV and

EC,2 = e2/C2 = 11 meV, indicating that the left dot is slightly larger than the right

dot.

59



2.008
VP2 (V)

2.016 2.032
VSD = - 2.5 mV

VSD = + 2.5 mV

(a) (b)

V P
1 (

V
)

2.140

2.120

VP2 (V)

-80 (pA)ISD

2.024

2.124

2.104

B = 0 T

B = 0 T

V P
1 (

V
)

80 (pA)ISD

S

T

S

T

S

T
S

T

S

T

S

T

δV
P1

δVP2

Figure 5.3: Pauli spin blockade at weakly coupled regime. Current ISD as a
function of VP1 and VP2 for B = 0 T. The lead and barrier gate voltages were fixed
at VL1 = VL2 = 3.2 V, VB1 = 0.656 V, VB2 = 1.176 V and VB3 = 0.940 V throughout
the experiment. (a) For VSD = −2.5 mV, the ground state and excited states of a
full bias triangle are shown. The current flows freely at the S(0,2)−S(1,1) transition
as illustrated in the box marked by red dot. (b) The same configuration at VSD

= +2.5 mV, the current between the singlet and triplet states is fully suppressed
by spin blockade (green star box) except on the bottom (blue cross box) of the
bias triangle. The blue cross box shows how a leakage current arises the Pauli spin
blockade region.

Pauli spin blockade. Figure 5.3 shows the current ISD through the double

dot as a function of the two plunger gate voltages when measured with both pos-

itive [Fig. 5.3(a)] and negative [Fig. 5.3(b)] source-drain biases. Here we observe

a suppression of current at one bias polarity, the characteristic signature of Pauli

spin blockade [74, 60]. At VSD = −2.5 mV we observe a pair of overlapping full bias

triangles, as shown in Fig. 5.3(a). Resonant transport through the ground state

and the excited states in the double dot occurs when the states within the dots

are exactly aligned, leading to peaks in the current which appear as straight lines

parallel to the triangle base in Fig. 5.3(a). The non-resonant background current
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level at the centre of the triangle is attributed to inelastic tunneling. The non-zero

current throughout the triangular region indicates that electrons from the reservoir

can tunnel freely from the S(0,2) singlet state to the S(1,1) singlet state, as depicted

in the cartoon (red box in Fig. 5.3). Note that here we define (m, n) as the effective

electron occupancy [84], while the true electron occupancy is (m+m0, n+n0). The

Pauli blockade expected for two-electron singlet and triplet states occurs when the

total electron spin of each dot is zero in the (m0, n0) state.

At the complementary positive bias of VSD = +2.5 mV we observe strong cur-

rent suppression in the region bounded by the dashed lines in Fig. 5.3(b). The

suppression arises because the transition from T(1,1) to S(0,2) is forbidden by spin

conservation during electron tunneling. Once the T(1,1) triplet state is occupied,

further current flow is blocked until the electron spin on the right dot reverses its

orientation via a relaxation process (green star box in Fig. 5.3) [74, 60].

Singlet-triplet splitting. In a magnetic field B there are four accessible spin

states: the singlet S; and three triplets T−, T0 and T+, corresponding to SZ =

−1, 0, +1. The singlet−triplet splitting ∆ST is the energy difference between the

blockaded ground state S(0,2) and the excited state T−(0,2) [60, 84]. Here we

study ∆ST as a function of B, applied parallel to the substrate, by measuring spin

blockade at a positive bias. Figures 5.4(a−c) show the bias triangles in the spin

blockade regime at increasing magnetic fields B = 2, 4 and 6 T, with the splitting

∆ST marked in Fig. 5.4(a). The measured splitting ∆ST decreases linearly with

increasing B [Fig. 5.4(d)], as expected, since the triplet states split linearly by the

Zeeman energy, EZ = ±SZ|g|µBB, where µB is the Bohr magneton and SZ is −1,
0, +1. A linear fit through ∆ST(B) yields a Landé g-factor of 2.1 ± 0.2, consistent

with electrons in silicon.

We observe an exceptionally large value of the (0,2) singlet-triplet splitting at

B = 0, ∆ST ≈ 1.4 meV. This result is striking because it implies that the nearest

valley-orbit state must be at least 1.4 meV above the ground state. The first excited

valley-orbit state should be a combination of the ±z valleys. It would lift the spin

blockade [100, 26], and show no remarkable energy shift in a magnetic field, in
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Figure 5.4: Singlet-triplet splitting. (a)−(c) DC measurements of the triangle
pair analysed in Fig. 5.3, at VSD = +2.5 mV, for different in-plane magnetic fields, B
(scale bar same as Fig. 5.3(b)). The singlet−triplet splitting, ∆ST, is defined by the
triplet and singlet state of (0,2) as depicted in (a). As the magnetic field increases,
∆ST decreases along the detuning axis of the triangle [labeled ε in (b)]. (d) The
energy spacing ∆ST as a function of in-plane magnetic field B. ∆ST decreases at a
rate ∼0.12 meV/T and is expected to approach zero at 11.3 T. From the linear fit
(red line) through ∆ST, the g-factor is 2.1 ± 0.2.
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contrast with our observations. Therefore, such a state must lie above the triplet

state we observe in Fig. 5.4. The ability of our structures to generate such a large

valley-orbit splitting removes a major concern on the realizability of singlet-triplet

qubits in a multivalley material such as silicon.

Leakage current in blockade regime. If some mechanism exists to mix

the singlet and triplet states or to induce transitions between them, then the spin

blockade can be lifted, leading to a measurable leakage current [74]. As shown in the

blue cross box in Figure 5.3, transitions from T(1,1) to S(1,1) can lift the blockade,

allowing electrons to transit the double dot until the next triplet is loaded, resulting

in a non-zero time-averaged leakage current. Fig. 5.5(a) shows the surface plot of

the leakage current ISD as a function of both detuning ε and magnetic field B, while

Figs. 5.5(b) and 5.5(c) show line traces of ISD as a function of B at zero detuning

and ISD as a function of ε at zero magnetic field, respectively. We find that the

leakage current has a maximum at B ≈ 0 and falls to zero at |B| ∼ 700 mT.

5.3 Discussion

The suppression of leakage current by an applied magnetic field has been observed

in GaAs double quantum dots (DQDs) [74] and attributed to the effect of hyperfine

coupling between the electron spins and the surrounding bath of nuclear spins. In

that case the width δB of ISD(B) yields the average strength of the hyperfine

field. For an unpolarized nuclear spin bath δB ≈ δBmax/
√
N , where δBmax is

the hyperfine field assuming fully polarized nuclei and N is the number of nuclei

overlapping with the electron wave function. For a typical GaAs dot overlapping

with ∼ 106 − 107 nuclei, δBmax ∼ 6 T ⇒ δB ∼ 2 − 6 mT [74, 60, 90]. In natural

silicon, however, the hyperfine interaction is much smaller than in GaAs, with

δBmax ≈ 1.9 mT [5]. Therefore, hyperfine coupling can be ruled out as a mechanism

for the leakage current here.

An alternative mechanism for a transition from triplet to singlet has been re-

cently proposed, where the spin flip is caused by inelastic cotunneling [109]. The
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Figure 5.5: Spin-flip cotunneling in Pauli spin blockade regime. (a) A sur-
face plot of leakage current through spin blockade as a function of energy detuning
ε and magnetic field B, with gates settings as in Fig 5.3(b). (b) Cut along B at
ε = 0 energy detuning axis (black arrow) while (c) Cut along ε at B = 0 field (blue
arrow). Fits of experimental data with spin-flip cotunneling relation give ΓD = 34
µeV, t = 0.5 µeV and T = 115 mK.
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spin-flip rates due to cotunneling from the spin-polarized triplet states, T±(1, 1), are

exponentially suppressed when the Zeeman energy is large compared to the thermal

broadening of the electron states in the leads (i.e., for gµBB > kBT , where T is the

electron temperature and B is the applied magnetic field). A rate-equation analysis

accounting for the energy dependence of the spin-flip cotunneling rates [109] then

gives a simple form in the limit of weak inter-dot tunneling t and weak cotunneling

W 0
cot compared to the tunnel rates ΓS,D between a dot and its nearby source or

drain lead (
√

2t < kBT , W 0
cot � ΓS,D) [22]:

ISD(B) = e
4

3

3W 0
cot/2

1 + kBT
2gµBB

sinh
(
gµBB
kBT

) , ε = 0. (5.1)

Here, the B = 0 spin-flip cotunneling rate (for kBT >
√

2t and |ε| < |∆|, |e|VSD) is:

W 0
cot =

kBT

π~

[(
~ΓS

∆

)2

+

(
~ΓD

∆− 2U ′ − 2|e|VSD

)2
]

(5.2)

with mutual (inter-dot) charging energy U ′ and ∆ = α1δVP1 + α2δVP2 for plunger

gate voltages δVP1,P2 measured from the effective (0, 1)− (1, 1)− (0, 2) triple point

(lower-left corner of the bias triangle in Fig. 5.3(b)). Eq. (5.2) accounts for virtual

transitions between effective (1, 1) and (0, 1) (first term) as well as effective (1, 1)

and (1, 2) charge states (second term).

In the present case, ∆ ' |e|VSD � U ′. The higher current level in the upper

right corner of Fig. 5.3(b) further suggests ΓD � ΓS, giving (for this particular

experiment):

W 0
cot '

kBT

π~

(
~ΓD

|e|VSD

)2

. (5.3)

Using the above expression forW 0
cot, we then use Eq. (5.1) to fit to the ISD(B) data

in Fig. 5.5(b), giving us ΓD = 34 µeV for the tunneling rate and T = 115 mK for

the electron temperature.

The B = 0 spin-flip cotunneling rate W 0
cot is energy-independent in the limit

√
2t < kBT . However, the leakage current does acquire a dependence on the energy
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detuning, ε = α1VP1 − α2VP2, when the escape rate from the double-dot due to

resonant tunneling is suppressed below the spin-flip cotunneling rate. This leads to

a Lorentzian dependence of the current on detuning ε with a t-dependent width δε:

ISD(ε) = e
4

3

W 0
cot

1 + (ε/δε)2 , B = 0, (5.4)

δε =

(
3ΓDt

2

W 0
cot

)1/2

. (5.5)

Eq. (5.4) is valid in the same limit (
√

2t < kBT , W 0
cot � ΓS,D) as Eq. ((5.1)).

In the strong-tunneling limit,
√

2t > kBT , the theory predicts that I(ε) should

show a strong resonant-tunneling peak of width ∼ t, followed by a slowly-varying

Lorentzian background described by Eq. ((5.4)) at large ε. The absence of a

strong resonant-tunneling peak in the data of Fig. 5.5(c) confirms that the device

is operating in the regime
√

2t < kBT , justifying our use of Eqs. (5.1) and (5.4) to

analyse the data.

A nonlinear fit to the ISD(ε) data in Figs. 5.5(c) using Eq. (5.4) yields t = 0.5

µeV for the inter-dot tunneling rate, using our previously determined values ΓD =

34 µeV and T = 115 mK. These parameter values are well within the experimen-

tally expected range. The small value of t indicates weak inter-dot tunnel coupling,

consistent with the results shown in Fig. 5.3(b). We conclude that the spin-flip co-

tunneling mechanism provides a fully consistent explanation of the observed leakage

current in the spin blockade regime. The mechanism could be applied to reanal-

yse previous experiments in group IV semiconductors [18] where the nature of the

leakage current was not fully understood.

In conclusion, we have presented a lithographically-defined double quantum dot

in intrinsic silicon showing excellent charge stability and low disorder. The multi-

gate architecture provides independent control of electron number in each dot as

well as a tunable tunnel coupling. We observed Pauli spin blockade in an effective

two-electron system from which we extracted the singlet−triplet splitting. The

leakage current in the spin blockade regime is well explained by a spin-flip cotun-
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neling mechanism, which could be of widespread importance in group-IV materials

with weak hyperfine coupling. The results obtained here provide a pathway towards

investigation of spin blockade in silicon double quantum dots with true (1,1) and

(2,0) electron states. Towards this end, we are planning future experiments incor-

porating a charge sensor to monitor the last few electrons [124]. We anticipate that

such an architecture will provide excellent prospects for realizing singlet−triplet
qubits in silicon [25]. It should be noted that my contribution was to the data anal-

ysis and understanding of the physics. The whole fabrication and measurement

process have been performed at Dzurek’s group the University of South Wales.
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Chapter 6

Probing spin relaxation in a double

quantum dot using

frequency-dependent shot noise

6.1 Outline

We formulate a theory of frequency-dependent shot noise of a current through a

double quantum dot in Pauli spin blockade regime. We use the general full counting

statistics method to relate the average current and the shot noise at various time

scales. Finally, we provide a general analytical equation for the frequency dependent

Fano factor which can be used to determine both relaxation and dephasing.

6.2 Introduction

Understanding microscopic spin-relaxation processes in a double quantum dot is

important for potential applications in the electron-spin-based quantum informa-

tion processing [85] and spintronics (e.g., spin valves and spin diodes) [136], as well

as molecular transport.[87] Complete understanding of the limits on spin lifetimes

in quantum dots would provide a physical picture of underlying interactions and

point to methods of suppressing unwanted decoherence and relaxation.
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It is possible, in principle, to determine a single relaxation rate directly from the

stationary current or zero-frequency noise of current passing through the quantum

dot. However, to characterize multiple relaxation processes that occur simultane-

ously, it is useful to measure the transient current or the frequency-dependent noise

to properly disentangle the relevant decay times.

Pulsed-gate techniques that measure spin relaxation via transport in single

quantum dots are typically limited to measuring relaxation processes in a suffi-

ciently large magnetic field[56, 103], as they require that the relevant levels are

Zeeman split by more than the thermal broadening in the leads. The dominant

spin-relaxation mechanism in most quantum dots (involving spin-orbit interaction

and phonon emission) [66, 40, 67, 50] is strongly suppressed at small magnetic field

(1/T1 ∝ B5) (see, e.g., Table 1 of Ref. [21]). Thus, to determine the relaxation

rates in these systems at low magnetic fields (B . 1 T) and typically achievable

cryogenic temperatures, it is necessary to use a probe that is immune to thermal

smearing in the leads. Such a probe is provided by the Pauli spin blockade of trans-

port through a double quantum dot, which relies on spin-selection rules rather than

energy conservation[98, 60, 138].

In this chapter, we apply a master equation approach to study shot noise. We

compute ratio of the noise to current, the so called Fano factor [12], generalizing

the method of ref. [76] to include spin and higher-order tunneling. We formulate a

theory of the frequency-dependent current noise through a double quantum dot in

the Pauli spin blockade regime including the effects of multiple relaxation processes.

This theory gives a one-to-one correspondence between the form of the frequency-

dependent Fano factor and the relevant relaxation rates and can therefore be used

to determine these rates through a measurement of the current noise.
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6.3 Double quantum dot in the Pauli spin blockade

regime

The Pauli spin blockade [98, 74] (PSB) refers to the blockade of current based on

the Pauli exclusion principle. PSB is crucial for the initialization and read-out

of spins in quantum dots, [102] where the blocking of current through a double

quantum dot (DQD) is conditional on the microscopic spin state of the electrons.

The blockade can be lifted by any spin-flip mechanism. In quantum dots such spin-

flip processes can be mediated by hyperfine interaction[60], spin-orbit interaction

[105], or higher-order dot-lead tunneling (cotunneling) processes[79]. The blockade

may also be partially lifted through relaxation processes mediated by a local spin

dephasing process due to an inhomogeneous magnetic field [109, 79].

In this chapter we work in a regime where the three charge states (0, 1), (1, 1),

(0, 2) can be accessed through energy-conserving transitions. Here, (nL, nR) indi-

cates nL(R) electrons in the lowest orbital of the left(right) dot. We assume source

and drain leads coupled to the left and right dot, respectively[53]. Including spin,

seven states are involved in transport. There are two single-electron states (|↑〉 =

|(0, ↑)〉 and |↓〉 = |(0, ↓)〉, corresponding to a spin-up and spin-down electron in the

right dot, respectively), three spin-triplet states (|T+〉 = |(↑, ↑)〉 , |T−〉 = |(↓, ↓)〉 and
|T0〉 = (|(↑, ↓)〉+ |(↓, ↑)〉) /

√
2). Additionally, there are two hybridized spin-singlet

states |S±〉, which describe linear combinations of (1, 1)- and (0, 2)-singlets due to

an interdot tunnel coupling [109]. The exchange interaction due to an inter-dot tun-

neling lifts the degeneracy of singlet and triplet states and we assume an in-plane

magnetic field induces a Zeeman splitting, so the energies corresponding to these

seven states are all different (see Fig. 6.1). When the double dot is in a one-electron

state, an electron may enter from the source lead, inducing a transition to one of

the two-electron states. If the double dot ends up in one of the hybridized singlets,

an electron may rapidly tunnel to the drain, contributing to the flow of current.

However, if the double dot is in a spin-triplet state, tunneling transport is blocked

until this triplet state undergoes a transition to a singlet. This is an example of
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Pauli spin blockade.
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Figure 6.1: Double quantum-dot energy levels as a function of magnetic field B.
Downward-pointing arrows represent the relaxation channel for each state. At B∗,
the lowest-energy spin-polarized triplet becomes degenerate with the lowest-energy
singlet, i.e., for a positive electron g-factor, g > 0, ET−(B∗) = ES− where Eα is
the energy of state |α〉. At B∗ the relaxation rate from |T−〉 to |S−〉 vanishes since
WS−T− is assumed to be proportional to |ET− − ES−|η with η > 0. This is the
case, e.g., for relaxation due to hyperfine interactions and phonon emission (η =
3),[40] spin-orbit interactions and phonon emission (η = 5),[67] or low-temperature
cotunneling (η = 1).[109]

For this study, we consider a double quantum dot influenced by potentially

several spin relaxation rates, as depicted in Fig. 6.1 (we assume excitation processes

are weak compared to relaxation and can therefore be neglected). As will be shown,

the frequency-dependent current noise, Eq. (6.1) below, typically features several

steps with heights and widths that depend on these relaxation rates (See Fig. 6.2).

The remainder of this chapter will be concerned with calculating the current noise

and relating it to double-dot spin relaxation processes.

The noise spectrum SI(ω) is given by the Fourier transform of the autocorrela-
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tion function for the fluctuation in the source current δI(t) = I(t)− 〈I〉,

SI(ω) =
1

2

∫ ∞

−∞
〈{δI(τ), δI(0)}〉 e−iωτdτ. (6.1)

Here, {, } is an anticommutator and 〈· · · 〉 denotes an average over the joint quantum

state of double dot and left and right leads. In the large-bias and weak-coupling

limit (∆µ � ∆E � Γ, kT , where ∆µ is the bias, ∆E is the typical double-dot

energy level spacing, Γ is the dot-lead tunneling rate [throughout this thesis we

set ~ = 1] and T is the lead temperature with Boltzmann’s constant k), we apply

the Born approximation (weak coupling to the source and drain leads), as well as

the Markov approximation (short dot-lead correlation time compared to tunneling

time)[37]. In addition, we assume a short phase-coherence time for superpositions

of isolated double-dot eigenstates. In this regime the average of the current operator

I can be expressed as[37]

〈I〉 ≈ 〈I〉 =
∑

α,β

Iαβ ρ̄β, (6.2)

where Iαβ = −|e|∑j=±1 jδnα+j,nβW
s
αβ gives the matrix elements of the current

superoperator, I, in the sequential-tunneling regime, in which electrons tunnel one

by one. nα gives the number of electrons in the double dot in state |α〉. W s
αβ is

the transition rate from state |β〉 to |α〉 allowing the transfer of one electron to the

double dot from the source lead when ∆µ � kT . The current superoperator, I,
acts on the reduced double-dot density matrix, with diagonal element ρα, where α

runs over all seven relevant one- and two-electron states (α, β ∈ {↑, ↓, S±, T±, T0}).
In Eq. (6.2), ρ̄α is the stationary solution ( ˙̄ρα = 0) of the Pauli master equation,

ρ̇α(t) =
∑

β

Mαβρβ(t), (6.3)

where the rate matrix isMαβ = −δαβWα+Wαβ,Wαβ is the transition rate from |β〉
to |α〉, and Wα =

∑
γWγα is the total decay rate out of state |α〉. For notational
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convenience we use Wx ≡ WTx , with x = {0,±}. The stationary solution, ρ̄, is the

right eigenvector of the rate matrix,M, with eigenvalue equal to zero.

To make analytical progress, we reduce the total number of coupled equations

in the Pauli master equation, Eq. (6.3), by making physically realistic assump-

tions about spin-independent tunneling rates. We rewrite the occupation prob-

abilities of the two states, |↑〉 and |↓〉, through a change of variables, ρg(t) ≡
ρ+
g (t) = ρ↑(t) + ρ↓(t), and ρ−g (t) = ρ↑(t) − ρ↓(t). As shown in appendix C, if

Wg ≡ 1
2

∑
α (Wα↑ +Wα↓) � 1

2
|∑α (Wα↑ −Wα↓)| and Wg � |

∑
α (W↑α −W↓α)|,

then ρ−g decouples from the rest of the original Pauli master equation, with negligi-

ble corrections. Assuming spin-independent tunneling from the source to the double

dot, as well as the high-bias regime, these conditions are satisfied. We define tran-

sition rates associated with the ground-state doublet population, ρg, by Wgα =

(W↑α +W↓α) and Wαg = 1
2

(Wα↑ +Wα↓). The singlets, |S±〉, are directly coupled

to the drain in the sequential tunneling regime, and we assume this coupling is

large compared to the double-dot spin relaxation rates, i.e., WTxS± � WgS± , where

x ∈ {±, 0}. Thus, we neglect transitions from singlets, |S±〉, to the triplets, |T±,0〉.
Focusing on the resonant tunnelling regime 1, we have WS = 1

2

(
WgS+ +WgS−

)
�

1
2

∣∣WgS+ −WgS−

∣∣ and WS �
∣∣∑

α

(
WS+α −WS−α

)∣∣, which enables us to decouple

ρ−S (t) = ρS+(t) − ρS−(t) from the original Pauli master equation. Thus, we de-

fine a singlet-state doublet population, ρS(t) = ρS+(t) + ρS−(t) with corresponding

rates WSα = WS+α + WS−α and WαS = 1
2

(
WαS+ +WαS−

)
, by direct analogy with

the new variable ρg(t). We assume a pure magnetic dipole coupling induces spin-

flips, so that the transition rate connecting the two spin-polarized triplets vanishes,

WT+T− = 0 (see Fig. 1), and the remaining spin-triplet transitions depend only on

the relative energy of the initial and final states (due to, e.g., the energy-dependent

density of states of an environment). In the absence of a zero-field splitting, we then

find that the nonzero triplet rates are equal (WTT = WT0T+ = WT−T0). Assuming

a spin-independent tunnelling rate from source to the double quantum dot gives
1With interdot tunnel coupling t and energy detuning ε separating the (1,1) and (0,2) charge

states, the resonant-tunnelling regime corresponds to ε . t.
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WSg = WT0g = WT±g.

To proceed with the frequency-dependent noise calculation, we work from the

Pauli master equation, Eq. (6.3), where ρ =
(
ρT+ , ρT0 , ρT− , ρS, ρg

)T and the rate

matrixM is as follows,

M =




−W+ 0 0 0 Wg/4

WTT −W0 0 0 Wg/4

0 WTT −W− 0 Wg/4

WST+ WST0 W− −WS Wg/4

0 WgT0 0 WS −Wg




. (6.4)

Here, WgT0 is the rate for a transition from T0 to either one-electron state, |↑〉 , |↓〉,
which can be assisted by a local dephasing mechanism or a gradient in the mag-

netic field [109]. To evaluate the frequency-dependent noise in Eq. (6.1), we first

find the superoperator corresponding to the two-time current correlation function

within the Born-Markov approximation. The autocorrelation function for the cur-

rent 〈I(τ)I(0)〉 has two parts: the first part arises due to interactions in the un-

derlying system, and the second contributes to the noise due to the discreteness

of the electron charge and gives rise to white noise, the so-called Schottky term,

[58, 76, 37]
1

2
〈{δI(τ), δI(0)}〉 ≈ 〈IR(τ)I〉+ SP δ(τ)− 〈I〉2 . (6.5)

where 〈IR(τ)I〉 is defined through Eq. (6.2). Here, SP = e 〈I〉 is the Poisso-

nian (Schottky) noise. The matrix R(τ) = eM|τ | generates the time evolution of

ρα(τ) from Eq. (6.3). The symmetry in time, |τ |, occurs because we calculate the

symmetrized (classical) noise in the stationary regime, see Eq. (6.1). By Fourier

transforming Eq. (6.5), and decomposing the resolvent, R(ω) [Fourier transform

of R(τ), i. e., R(ω) =
∫∞
−∞ dτe−iωτR(τ)], into the eigenbasis ofM, the frequency-

dependent Fano factor is expressed in terms of a sum over Lorentzians[34]

F (ω) = SI(ω)/SP = 1 +
4∑

j=1

∆Fj
λ2
j

ω2 + λ2
j

. (6.6)
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Here, ∆Fj = 2
λj〈I〉 〈IEjI〉 for j ≥ 1. The eigenvalues of M are denoted λ =

−{λ0, λ1, · · · , λ4} with λj+1 > λj, and where λ0 = 0 is the the zero eigenvalue of

M corresponding to the stationary solution of Eq. (6.3). Ej is the projector onto the
eigenvector corresponding to eigenvalue λj. A set of orthonormal projectors {Ej =

|λj)(λj|} can be constructed from the right and left eigenvectors (|λj) and (λj|,
respectively). Note that sinceM is not Hermitian, the left and right eigenvectors

are not conjugates. We further note that the contribution from the zero eigenvalue

ofM (λ0 = 0) in the spectral decomposition of R(ω) cancels the term proportional

to 〈I〉2 in Eq. (6.5). [29]

log λi−1

log λi

∆
F
i

logω

F
(ω
)
=

S
I
(ω
)

eI

Figure 6.2: For well-separated eigenvalues of the rate matrix M (λi−1 � λi)
the Fano factor has several plateaus on a linear-log plot. The height of each step
between plateau is determined by Fi [defined in Eq. (6.17)] and the plateaus width
is set by log λi.

Although it is always possible to evaluate F (ω) from eq. (6.6) by numerically

diagonalizing the rate matrix to obtain the eigenvalues and right/left eigenvectors,

a closed-form analytical expression is often difficult to obtain. In the remainder of

this chapter, we focus on deriving simple analytical expressions for the Lorentzian

prefactors ∆Fj and the eigenvalues λj for a double quantum dot without evaluating
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the eigenvectors explicitly.

We now assume spin-flip rates that vanish near a degeneracy at applied mag-

netic field B = B∗ (see caption of fig. 6.1 for examples). In this case, for a

magnetic field B close to B∗, we have W− � W+,W0. Furthermore, we assume

W+,W0 � WS,Wg. In this regime, we find the eigenvalues ofM by expanding the

characteristic equation for the rate matrix in Eq. (6.4), with small corrections of

order O
(
Wx

Wg

)
and O

(
Wx

WS

)
(x ∈ {±, 0}), giving the following approximation in the

limit of vanishing WT− :

λ ≈ −
{

0,
1

3

(
W ±

√
W 2 + 3W+ (−W +W+)− 3W 2

TT

)
,

1

2

(
Σ±

√
Σ2 − 3WSWg

)}
, (6.7)

where W = WTT + W0 + W+, and Σ = Wg + WS. Σ−1 is the effective transit

time for an electron to pass from the left lead to the right lead, when no triplet

state is occupied. Any strong local dephasing mechanism will generically lead to

W0 � W+, based on which Eq. (6.7) can be further approximated, giving

λ ≈ −
{

0,
W+

2
,
2W0

3
,
3WSWg

4Σ
,Σ− 3WSWg

4Σ

}
. (6.8)

Each distinct eigenvalue λj is associated with a frequency (or time) scale at which a

blocked state begins to contribute to transport. This leads to a sequence of plateaus

in the frequency-dependent Fano factor F (ω) (Fig. 6.2). In the next section we

explain how the Fano factor is related to the charge transferred during bursts of

transient current in order to approximate the Lorentzian prefactors ∆Fj, which set

the step heights in Fig. 2.
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6.4 Dynamical channel blockade and electron bunch-

ing

In this section, we use the method of full counting statistics [81, 9] to relate the

Fano factor to the first moment of charge transported through the quantum dot.

Although the technique allows a direct extension to higher-order cumulants, it is

used here merely as a tool to calculate the current and the noise. These results are

important for a general understanding of the frequency-dependent noise calculation

presented in the remainder of this chapter.

The Cumulant Generating Function (CGF), S(χ), is defined through [81]

eS(χ) =
∑

N

eiNχPN , (6.9)

where PN is the probability that exactly N electrons are transferred through the

double dot during an experiment of duration t0, and χ is the counting field, an

auxiliary variable. From the cumulant generating function, the kth cumulant is

found through

Ck = (−i)k lim
χ→0

dkS(χ)

dχk
, (6.10)

where C1 = N̄ , C2 = (N − N̄)2, and Nk =
∑∞

N=0N
kPN for k = 1, 2, .... The

stationary current through the double dot 〈I〉 and zero-frequency noise SI(0) are

related to the first and second cumulant through 〈I〉 = limt0→∞ eC1/t0 and SI(0) =

limt0→∞ e
2C2/t0, respectively.2

Here, we aim to find the CGF, S(χ), in the dynamical channel blockade regime[9],
2The second cumulant of the transported electron number C2 is related to the current noise

by making the identification C2 = (δN(t0))
2

=
〈

(δN(t0))
2
〉
, where δN(t) = N(t) − 〈N(t)〉.

With δQ(t0) = eδN(t0) =
∫ t0
0
dtδI(t), we have C2 = e−2

∫ t0
0
dt
∫ t0
0
dt′ 〈δI(t)δI(t′)〉. Us-

ing the fact that 〈δI(t)δI(0)〉 = 〈δI(t+ t′)δI(t′)〉 (i.e., δI(t) is a stationary random process)
gives e2C2 = t0

∫ t0
−t0 dt 〈δI(t)δI(0)〉. For t0 � τc, where τc ∼ 1/γ is the correlation time

of 〈δI(t)δI(0)〉, and assuming [δI(t), δI(t′)] = 0 (the classical-noise limit), we find e2C2/t0 '
2−1

∫∞
−∞ 〈{δI(t), δI(0)}〉 = SI(ω = 0), using the definition given in Eq. (6.1).
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where one or some of states in the double dot have small escape rate compared to

other states. For a double quantum dot in the Pauli spin blockade regime, we

consider the case where there is a hierarchy of spin relaxation rates [such a regime

has already been assumed in deriving Eq. (6.8)]. We use this hierarchy to approx-

imate the cumulant generating function, S(χ). To illustrate the idea, let us first

consider a simplified model in which escape from the blockaded double quantum

dot is associated with only two rates, one fast (Γ) and the other slow (γ � Γ).

The fast rate Γ represents the typical timescale for a spin singlet to be converted

to a single-electron state allowing an electron to tunnel to the drain, while the slow

rate γ describes a slow triplet-to-singlet relaxation process. As shown in Fig. 6.3,

current through the double dot is characterized by bursts of duration ∼ 1/Γ, in

which several electrons may pass through the double dot, followed by a long pause

of zero current for a time ∼ 1/γ, when the double dot remains in a blocked (spin

triplet) configuration.

∼ 1/Γ ∼ 1/Γ ∼ 1/Γ

∼ 1/γ ∼ 1/γ

tA tB
t

I
(t
)

n̄ = e−1
∫ tB
tA

I(t)dt

Figure 6.3: Schematic illustration of the transient current. Transient current is a
sequence of current bursts with duration Γ−1 and separation γ−1. We characterize
each burst with the total number of electrons that have passed through the system,
electron bunching, n. Here |tB − tA| ∼ γ−1.

The current is measured for a long time t0 such that γt0 � 1. Since γ � Γ, the

bursts of current can be taken to be independent and the experiment averages over

many individual bursts. In this case, the CGF is given by the weighted sum of CGFs

for many independent Poissonian processes [9], S(χ) =
∑

n fnSn, each of which
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carries an elementary charge ne (where Sn(χ) = einχ−1) with an average frequency

fn. The probability that the double dot is in a blocked configuration after a single

electron is transferred to the double dot from the source is PB. The probability

that exactly n electrons are transferred between blocking events is (1− PB)n−1PB,

which gives fn = γt0(1−PB)n−1PB, where γt0 is the total number of current bursts

during time t0. Thus,

S(χ) = γt0

∞∑

n=1

PB(1− PB)n−1(einχ − 1) (6.11)

= γt0
eiχ − 1

1− eiχ(1− PB)
. (6.12)

Eq. (6.12) has been previously derived in Ref. [9] for the special case of a three-

level quantum dot with a single blocked state, leading to PB = 1/2. The average

number of electrons transferred from the source to the double dot in each current

burst is

n̄ =
∞∑

n=1

nPB(1− PB)n−1 =
1

PB
. (6.13)

Inserting Eq. (6.12) into Eq. (6.10) gives the first and second cumulants as well as

their ratio (the Fano factor F ):

C1 =
γt0
PB

= γt0n̄, (6.14)

C2 = C1 (2n̄− 1) , (6.15)

F =
C2

C1

= 2n̄− 1. (6.16)

For any PB 6= 1, Eq. (6.11) describes a non-Poissonian process. Consequently,

the Fano factor does not have a simple interpretation in terms of the ratio of an

effective charge to the electron charge, i.e. F 6= e∗/e with e∗ = n̄e. However,

a simple linear relationship still exists between the effective charge and the Fano

factor as given by Eq. (6.16). It is interesting to note that F is fully determined

by the blocking probability PB regardless of the physical origin of the blockade;
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i.e., different physical systems have the same Fano factor whenever they have the

same blocking probability (the same ratio of blocked to unblocked states). For

example, F = 3 (corresponding to PB = 1/2) is predicted and measured in many

systems with dynamical-channel blockade [32, 125, 126, 14] and the above argument

explains why F = 3 is ubiquitous (this value of the Fano factor is found whenever

the number of blocked and unblocked states is equal).

One interesting consequence of Eq. (6.13) is that the effective charge e∗ = n̄e

has a universal fractional value whenever the blocking probability PB is fractional.

For example, in the Pauli spin blockade regime of transport through a double

quantum dot and in the absence of spin relaxation or dephasing processes, three

of four two-electron spin states are blocked, giving PB = 3/4 (triplets are blocked,

while singlets conduct current). This results in n = 4/3,[109] leading to a universal

fractional Fano factor F = 5/3 based on Eq. (6.16). This value of F = 5/3 for the

spin blockade has been found previously.[119] A fractional Fano factor of F = 5/3

has also been cited as evidence of many-body correlations in the backscattering from

a Kondo impurity.[121, 140, 28] However, based on the above analysis, it is clear

that the same ratio occurs in a simple theory of uncorrelated tunneling processes

through a system that only has strong two-body correlations.

6.5 Analytical Fano factor

There may be several decay rates associated with transitions between different

double-quantum-dot levels. For well-separated decay rates, and consequently eigen-

values, λi � λi+1, from Eq. (6.6) we find,

Fi+1 ≈ 1 +
4∑

j=i+1

∆Fj, i = 0, · · · , 3 (6.17)

where Fi+1 ≡ F (λi � ω � λi+1) and we have neglected terms of order of O
(

ω2

λ2i+1

)

and O
(
λ2i
ω2

)
. From Eq. (6.17) we find a direct relationship between the Lorentzian
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prefactors, ∆Fj, and Fano factor step height as

∆Fj = Fj − Fj+1. (6.18)

As shown in the previous section (Sec. III), the value of the Fano factor can

be determined from the average number of electrons transferred, and consequently

from the blocking probability. Since, we are interested in the frequency-dependent

behaviour of the Fano factor we need to study the time-dependent blocking proba-

bility. We use an n-resolved master equation [141, 108] to provide a mathematical

definition for the blocking probability. In the n-resolved master equation approach

the population density after nth electron transfer (nth jump), ρn(t), is given by,

ρ̇n(t) = M0ρ
n(t) + J ρn−1(t) (6.19)

where Jαβ = δgβW
s
αg is the source jump superoperator andM0 =M−J . Within

this formalism the blocking probability, the probability that the double dot is in

a blocked configuration after a single electron is transferred, is given by: PB(t) =

Tr[ρ1(t)] where the Tr gives the sum of the vector elements. Solving for ρ1(t) from

Eq. (6.19) gives,

PB(t) ≡ Tr

[
eM0t

∫ t

0

dσe−M0σJ eM0σρ(0)

]
. (6.20)

Here, R0(t) = eM0t is the “free” time translation superoperator of occupation

probabilities with no transfer of electron from the source. Using Eq. (6.13) and Eq.

(6.16), the Lorentzian prefactors in terms of blocking probabilities are found to be

∆Fj = 2
[
P−1
B (tj)− P−1

B (tj+1)
]
, (6.21)

where we set t−1
i ' (λiλi+1)1/2, the geometric mean of λi and λi+1. Hence, in order

to find a closed form expression for the Lorentzian prefactors, ∆Fi, we need to

approximate blocking probabilities, PB(ti).
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To evaluate the blocking probability, PB(ti), from eq. 6.20, we assume that Wg

is the largest rate in the system (Wg � Wα where α 6= g) and we start from the

one-electron subspace at time zero, i.e., ρα(0) = δαg. Then, the blocking probability

for t� W−1
g is found through, (α 6= g)

PB(t) = Tr
(
eM0tJ ρ(0)/Wg

)
+O

(
Wα

Wg

)
, (6.22)

since ρ(0) is the eigenvector ofM0 with eigenvalue −Wg which gives: R0(t′)ρ(0) =

e−Wgt′ρ(0). To further investigate properties of PB(t), it is convenient to work with

the Laplace transform of PB(t), i.e., P̃B(s) =
∫∞

0
e−stPB(t)dt. Using Eq. (6.22),

the Laplace transform of PB(t) is given by

P̃B(s) = Tr
[
(s−M0)−1 J ρ(0)/Wg

]
(6.23)

DecomposingM0 into diagonal, −D, and off-diagonal, T , parts as: M0 = −D+T .
Thus we rewrite Eq. (6.23) as,

P̃B(s) = Tr
[
(1− P(s))−1D−1(s)J ρ(0)/Wg

]
(6.24)

where P(s) = T D−1(s) and D(s) = D + s. Since D(s) is a non-singular diagonal

matrix, its inverse is simply the inverse of its diagonal element.

Now we want relate P̃B(s) and PB(t) directly without inverting the Laplace

transform. First note that, we have PB(0) = lims→∞ sP̃B(s) and PB(∞) = lims→0 sP̃B(s),

respectively. Since PB(t) can be written as superposition of exponentially decay

function, i.e., PB(t) =
∑

j cje
−λjt. Hence, the Laplace transform can simply be

found as P̃B(s) =
∑

j
cj

λj+s
. For well-separated eigenvalues λj � λj+1, we find,

lim
t→ti

PB(t) = lim
s→si

sP̃B(s) +O
(√

λiλ
−1
i+1

)
, (6.25)

where si ' t−1
i '

√
λiλi+1. In the logarithmic plot, (see Fig .6.2), log(si) is the

arithmetic mean of log(λi) and log(λi+1). It only remains to take the limit of sP̃B(s)
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when s→ si as following,

PB(ti) ≈ siP̃B(si) (6.26)

= Tr
[
(1− P(si))

−1siD−1(si)J ρ(0)/Wg

]
(6.27)

where si ' t−1
i and we have dropped terms of the order

√
λiλ

−1
i+1. Approximating

Pαβ(si) =
Wβα

si+Wα
≈ Pαβ(0)θ(Wα− si) and siD−1

αβ (si) = si
si+Wα

δαβ ≈ δαβθ(si−Wβ) in

eq. 6.26, give,

PB(ti) ≈ Tr
[
(1− P(si))

−1u(si)
]

(6.28)

where u(si) = siD−1(si)J ρ(0)/Wg which for well separated decay rates is approxi-

mated by uα(si) ≈ Wαg

Wg
θ(si −Wα).

For a double quantum dot, γ ∼ W− � W+ � W0 � λ3 ∼ λ4 ∼ Γ is used. For

a long time scale, W−1
+ � t1 � W−1

− , the two-electron ground state T− is the only

blocked state at the long time, and the result is PB(t1) = 1
4

(1 + p+ pq), where the

branching ratios are introduced:

p = PT−T0 = WTT/W0, (6.29)

q = PT0T+ = WTT/W+. (6.30)

For W−1
0 � t2 � W−1

+ , both T± states are blocked, which leads to PB(t2) =

1
4

(2 + p). For Γ−1 � t3 � W−1
0 , all three triplets are blocked, but singlets still

contribute resulting in PB(t3) = 3
4
and finally, for very short times t� Γ−1, all the

states are blocked, i.e., PB(0) = 1. Although noise in the Pauli spin blockade regime

is super-Poissonian, as shown below the presence of sub-Poissonian noise (F (ω) < 1)

is inevitable at some higher frequency scale. Noting that ∆Fj = 2
λj〈I〉 〈IEjI〉 and∑4

j=0 Ej = 1 we find that,

4∑

j=1

λj∆Fj ≈ −2e−1 〈I〉 (6.31)
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where we have neglected the contribution of double electron transfer, i.e., 〈I2〉 = 0.

Since, the stationary current is proportional to the smallest rate in the system,

here, 〈I〉 ∝ W−. Thus, for the case where W− → 0 and using the fact that the

Fano factor step height at very large frequencies (short time scale) is unity, F (ω &

λ4) = 1, (we can see this by setting ω & λ4 in Eq. (6.17)) we find
∑4

j=1 λj∆Fj =
∑4

j=1 (Fj − 1) ∆λj ≈ 0 where ∆λj = λj − λj−1. The above equation, Eq. 6.31,

implies that if some of the Fano factor step heights, Fj, are larger than one (super-

Poissonian) then some other have to be less than one (sub-Poissonian). Note that,

in our formalism we can not associate a blocking probability to the sub-Poissonian

Fano factor, F < 1. However, we use the following sum rule in Eq. (6.31), to

approximate the step height of the Fano factor at sub-Poissonian regime.

Combining all of the above information the frequency-dependent Fano factor is

determined to

F (ω) = 1 +
4W 2

+

4ω2 +W 2
+

+
16W 2

0

3 (9ω2 + 4W 2
0 )

+
2

3

(
λ2

3

ω2 + λ2
3

− λ4λ3

ω2 + λ2
4

)
+O(p, q),

(6.32)

where λ3 = 3WSWg

8Σ
and λ4 = 2Σ − 3WSWg

8Σ
. For ω � λ3, only the super-Poissonian

part appears where we can simplify the Fano factor further to,

F (ω) =
5

3
+

4W 2
+

4ω2 +W 2
+

+
16W 2

0

3 (9ω2 + 4W 2
0 )

+O
(
λ3

λ4

)
. (6.33)

The comparison between the above analytical result from Eq. (6.32) and the

numerical result given directly from the numerical calculation of Eq. (6.6) is plotted

in Fig. (6.4), where we assume cotunneling as a source of spin-flip relaxation. As

it was shown [109] the cotunneling relaxation depends linearly on the magnetic

field (Wcot ∝ B) which implies WST0 = WTT at B∗ where T− and S is degenerate.

Furthermore, since at B∗ Zeeman splitting of T+ is twice the T0 ( |ET+ − ES| =

2|ET0 − ES|), then WST+ = 2WST0 = 2WTT .
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Figure 6.4: We assume strong local dephasing mechanism which gives WgT0 =
100WTT , and also we assume Wg ' 10WS = 104WTT . For WTT ∼ 10−8 − 10−3µeV
we can tune Wg ∼ 10−4 − 10µeV which is experimentally accessible. At these
values we have plotted both (exact) numerical plot (solid curve) and analytical plot
(dashed curve) in Eq. (6.32). In this case p ≈ 0 and q ≈ 1

2
which result in F1 ≈ 7,

F2 = 3 and F1 = 5
3
which are the values of plateau exhibited by horizontal dashed

lines. Inset: the sup-Poissonian dip which appears in the circled area is shown in
the inset.

As shown in Fig. 6.4, we find an excellent agreement between our analytical

result, Eq. (6.32), and numerical solution.

6.6 Conclusions

Conventional pulsed-gate techniques for measuring spin relaxation in a quantum

dot operate only at large energy splitting, where the electron Zeeman energy ex-

ceeds the thermal broadening (∼ kBT ) of Fermi-liquid leads. An alternative is to

measure a transient effective charge e∗, or equivalently, the zero-frequency noise in

the Pauli spin blockade regime [109], where spin-selection rules, rather than energy

conservation, provide the mechanism for initialization and readout. This method

allows for the characterization of certain aspects of the decay process. However,

multi-level systems (such as double quantum dots) often exhibit several decay rates

due to distinct physical mechanisms.
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In this work, we formulate a theory of the frequency-dependent current noise

through a double quantum dot in the Pauli spin blockade regime, including the

effects of multiple relaxation processes. This theory provides a one-to-one corre-

spondence between the form of the frequency-dependent Fano factor and the rele-

vant relaxation rates and can therefore be used to determine these rates through a

measurement of the current noise.

For future work we want to include off-diagonal terms in Master equation, in

order to measure T2 in double quantum dot similar to the case described in Engel

et al [35, 36]. Furthermore, we can calculate higher-order cumulants to increase the

number of independent rates that can be extracted in experiment.
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Chapter 7

Summary and Outlook

The main theme of this thesis is to study the electron transport through double

quantum dots coupled to normal leads, in the so-called spin-blockade regime. Here,

the current is blocked due to the absence of transitions between singlet and triplet

states within the quantum dots. A small leakage current will flow if the singlet

and triplet states are mixed. This spin mixing occurs due to several possible spin-

flip processes. In the first two chapters, we provide the necessary background

information about double quantum dots. We also briefly review the spin mixing

due to phonon-induced hyperfine and spin-orbit interaction.

In chapter 3, we consider the effect of natural dot-lead higher order tunneling

(cotunneling) on transport in the spin-blockade regime. This interaction is an

intrinsic property of these systems. Despite the fact that this interaction is rather

weak, it can, as shown in this thesis, strongly influence the dynamics of electron

spins in quantum dots. In this chapter, a theory of spin-flip cotunneling process

is developed and its basic properties of stationary and transient leakage current in

the Pauli spin blockade regime in double quantum dot is presented.

The general magnetic and detuning dependent stationary leakage current due

to (any) spin-flip processes at finite magnetic fields are studied in chapter 4. First

we have presented a general theory of the stationary current in an intuitive way.

In the presence of an additional local dephasing process or nonuniform magnetic

field, we obtain a simple analytical expression for the leakage current giving the full
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dependence on the applied magnetic field and the energy detuning. Our findings

are important for understanding the nature of the leakage, especially in systems

where other spin-flip mechanisms are absent.

The subject of chapter 5 is to study the observed leakage current in a silicon

double dot in Pauli spin blockade regime. In group III-V semiconductors such

as GaAs, nuclear spins are always present and produce strong decoherence of the

electron spin degree of freedom. Group-IV semiconductors such as silicon, silicon-

germanium and carbon can be isotopically purified, leaving only spinless isotopes.

The weak spin-orbit coupling and the absence of piezoelectric electron-phonon cou-

pling allow for extremely long spin relaxation times. We have shown that the leak-

age current in spin blockade has a peculiar magnetic field dependence, unrelated

to electron-nuclear effects and consistent with the effect of spin-flip cotunneling

processes.

In the last chapter, I present the theory of frequency-dependent shot noise of a

double quantum dot in the Pauli spin blockade regime, including the effects of mul-

tiple relaxation processes. Understanding the microscopic spin-relaxation processes

in the double quantum dot is important for future spin-based quantum devices. A

complete theoretical picture of the limits on the spin lifetimes in quantum dots is

still missing. In this chapter, we apply a quantum master equation approach to

study current autocorrelation in a double quantum dot, where we compute noise to

current ratio, the so-called Fano factor. This theory gives a one-to-one correspon-

dence between the form of the frequency-dependent Fano factor and the relevant

relaxation rates and can therefore be used to determine these rates through a mea-

surement of the current autocorrelation.

The results in this thesis point toward several directions for later studies. In

future, I aim to study recently observed anomalies in dynamical nuclear polariza-

tions in double quantum dots utilizing our calculations of spin-flip cotunneling.

Interesting phenomena such as hysteresis, switching and long period oscillatory be-

haviour of electric current were observed in Pauli-spin blockade regime in lateral

double quantum dots [99, 8, 115, 114]. Strong evidences were presented, linking
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the observed phenomena to the collective behaviour of the nuclear spins in the

lattice. Recent studies [8, 115] have shown that nuclear spin polarization in dou-

ble quantum dots requires an additional mechanism of spin-flip, independent of

electron-nuclear hyperfine interaction, to create a preferred polarization direction.

So far, this mechanism was only taken into account phenomenologically and may

not be able to predict qualitative behavior on the external fields.

There is also more work to be done to exploit applications of spin-orbit in-

teraction in low dimensional systems. Recently, spin-orbit coupling in correlated

electron materials has provided an exciting opportunity in creating a new class of

electronic states. Several new collective states of matter have been proposed in

this context, including novel spin-orbital ordered states, spin liquid, and various

topological phases [63, 72, 16, 17, 10]. Additionally, spin-orbit interaction is proven

to be useful in implementing holonomic quantum gates in quantum dots [49].
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Appendix A

Auxiliary materials for Chapter 3

A.1 Identifying spin decay

In this supplement we show how to extract the magnetic-field dependence of mi-

croscopic relaxation processes at low field from the observed number of electrons

that pass through the double dot between blocking events in the Pauli spin blockade

regime. This measurement can be used to distinguish between spin-orbit, hyperfine-

, and cotunneling-mediated spin relaxation mechanisms at low magnetic field, where

other methods for single-spin detection fail[33].

We recall the definitions for the branching ratios p and q (given before Eq. (9)

of the main text),

p =
WT0→T−

WT0→T− +WT0→S− +
∑

σWT0→σ
, (A.1)

q =
WT+→T0

WT+→T0 +WT+→S+ +WT+→S−
. (A.2)

These expressions can be simplified under certain experimental conditions. In par-

ticular, we consider the case when there is no magnetic field gradient present, δb = 0,

and a sufficiently weak Zeeman splitting, so that transition rates from triplets to

triplets (split by the Zeeman energy) are smaller than those from triplets to sin-

glets (split by exchange) (WTm→Tm′ � WTm→S±). With δb = 0, the field-assisted
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sequential-tunneling rates vanish:

WT0→σ = 0, (A.3)

and for a generic spin-flip Hamiltonian 1,

WT+→T0 = WT0→T− = WTT . (A.4)

The rateWT0→S− is independent of Zeeman splitting, b = gµB, since the T0−S−
splitting is independent of the global field. In contrast,WTT ∝ bη for small magnetic

field, depending on the spin-flip mechanism (as we have shown in the main text,

η = 1 for cotunneling-mediated spin-flips at low temperature, and previous work

has shown η = 5 for spin-orbit-mediated spin flips with phonon emission [67], and

η = 3 for hyperfine-mediated spin flips with phonon emission [39]). For sufficiently

small Zeeman splitting b, the triplets become degenerate resulting in vanishing

rates, allowing us to approximate

WTT

WT+→S±
,

WTT

WT0→S−
� 1 (A.5)

⇒ p ≈ WTT

WT0→S−
� 1 (A.6)

⇒ q ≈ WTT∑
α=±WT+→Sα

� 1 (A.7)

In this regime, we approximate m by its leading-order form in the small ratio

WTT/WS± :

m =
3− p− pq
1 + p+ pq

= 3− 2p+O(p2) +O(pq), (A.8)

m = 3− 2
WTT

WT0→S−
+O

((
WTT

WT→S

)2
)
. (A.9)

1We calculate golden-rule spin-flip rates assuming a perturbation of the form Vsf =
∑
l S

+
l Σl+

Σ†lS
−
l , where S

±
l is a raising/lowering operator for the spin on dot l and Σl is a general (local)

environment operator.

91



Thus, by measuring m(b) ∼= 3 − γbη, it is possible to extract the relevant spin-flip

mechanism: η = 5,3, or 1 for spin-orbit interaction with phonon emission [67],

hyperfine interaction with phonon emission [39], or cotunneling, respectively.

A.2 Processes leading to dot excitation

In our analysis we have neglected processes that can lead to excitation of the double

dot at finite bias (see, e.g., Fig. A.1(b) for an example). These processes can lead to

nonvanishing stationary populations of excited dot states, which would correspond

to “initialization errors” in the scheme we have proposed. However, we find that

the leading excitation processes are suppressed by the small parameter

W b
αβ

W a
αβ

∝
(

∆

U

)2

� 1, (A.10)

where U is the energy cost for double occupancy of one of the dots. Specifically,

we have neglected virtual transitions to (1, 0)-charge states. Here, W a(b)
αβ is the

transition rate from |α〉 to |β〉 due to process a(b) in Fig A.1. The purity of the

initial state will be reduced by a correction of the order
(

∆
U

)2 which is negligible in

our chosen regime.

A.3 Detuning and field dependence of current

In Fig. A.2, we show a density plot of the stationary current as a function of

magnetic field and detuning for typical experimental parameters. The current shows

a suppression at B = 0 corresponding to the zero-field dip in Fig. 2 of the main

text. Solid white lines are drawn to indicate when the lowest-energy triplet state

becomes the ground state (i.e., when |gµBB| > |ES−|). Fig. 2 of the main text

corresponds to a cut along ε = 0 of Fig. A.2, indicated here with a white dashed

line.
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Figure A.1: |α〉 and |β〉 are double dot energy eigenstates and ∆E = Eα−Eβ > 0.
a) Available cotunneling processes b) Neglected cotunneling processes
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Figure A.2: Magnetic field and detuning dependence of leakage current in the spin-
blockade regime. We have taken T = 40 mK, µL = µR = 10µeV , t = 100µeV ,
∆ = 1 meV , δB = 200 mT, and g = 2.0. A density plot shows a suppression in the
current at B = 0 and a sharp cutoff when |gµBB| > |ES− | (solid white lines). The
current runs from I = 0 (dark blue) to I = 1.7 pA (dark red).
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Appendix B

Hamiltonian and eigenstates

In this appendix we set the precise definition for the Hamiltonian and isolated

double-dot eigenstates. The starting point is a standard tunneling Hamiltonian for

a double quantum dot coupled to leads

H = Hdd +
∑

l

Hl +
∑

l

Hdl, (B.1)

where Hdd is the Hamiltonian of the double dot, Hl describes Fermi liquid lead l,

and Hdl gives the tunnel coupling between lead l and dot l, with l = L(R) for the

left (right) dot/lead, respectively:

Hdd = HC +HT +HZ , (B.2)

Hl =
∑

kσ

εlkσc
†
lkσclkσ, (B.3)

Hdl =
∑

kσ

(
tlc
†
lkσdlσ + h.c.

)
. (B.4)

Here, clkσ annihilates an electron in lead l, orbital state k with spin σ having

energy εlkσ. The operator dlσ annihilates an electron in dot orbital l with spin

σ. The Coulomb interaction HC, inter-dot tunneling Hamiltonian HT and Zeeman
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term HZ are

HC =
∑

l

[
U

2
nl(nl − 1)− Vlnl

]
+ U ′nLnR, (B.5)

HT = −t
∑

σ

(
d†LσdRσ + h.c.

)
, (B.6)

HZ =
B

2

∑

l

(nl↑ − nl↓), (B.7)

with number operator defined in the usual way, nl =
∑

σ nlσ; nlσ = d†lσdlσ. In

the above expressions, U and U ′ describe the on-site and nearest-neighbor charging

energies, respectively, in a constant-interaction model, Vl gives the local electrostatic

potential for dot orbital l, t is the inter-dot tunnel coupling, and B is the applied

magnetic field (assumed here to be in-plane so that orbital effects are negligible).

It is convenient to define new energy variables

ε = VR − VL − U + U ′, (B.8)

∆ = VR + VL − U − U ′, (B.9)

where physically, the energy detuning ε gives the relative energy difference between

(1, 1) and (0, 2) charge configurations and ∆ describes the absolute ‘depth’ of the

(1, 1) charge configuration. Diagonalizing Hdd in the space of (1, 1), (0, 1) and

(0, 2) charge configurations gives the eigenenergies, assuming a real positive tunnel

coupling, t > 0 (and defining E0(∆) = −U −∆):

Eσ = −E0(∆)− 1

2
(ε−∆) + σB/2, (B.10)

ET± = −E0(∆)±B, (B.11)

ET0 = −E0(∆), (B.12)

ES± = −E0(∆)− 1

2

(
ε∓
√
ε2 + 8t2

)
. (B.13)
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The associated eigenstates are

|σ〉 = d†Rσ |0〉 , (B.14)

|T+〉 = d†L↑d
†
R↑ |0〉 , (B.15)

|T−〉 = d†L↓d
†
R↓ |0〉 , (B.16)

|T0〉 =
1√
2

(
d†L↑d

†
R↓ + d†L↓d

†
R↑

)
|0〉 , (B.17)

|S±〉 =
√
C± |S(1, 1)〉 ∓

√
C∓ |S(0, 2)〉 . (B.18)

where the hybridization of the |S(1, 1)〉 and |S(0, 2)〉 singlet states in |S±〉 is con-

trolled by the parameters

C± =

√
ε2 + 8t2 ± ε
2
√
ε2 + 8t2

. (B.19)

The singlets are defined more precisely in terms of creation and annihilation oper-

ators by

|S(1, 1)〉 =
1√
2

(
d†L↑d

†
R↓ − d†L↓d†R↑

)
|0〉 , (B.20)

|S(0, 2)〉 = d†R↑d
†
R↓ |0〉 . (B.21)

96



Appendix C

State reduction criteria

In this appendix we show how to reduce the total number of equations from the

Pauli master equation, when the decay rates for two states are of the same order.

Consider two different states, say |↑〉 and |↓〉 with the following equations of motion,

ρ̇↑(t) = −W↑ρ↑(t) +
∑

α

W↑αρα(t), (C.1)

ρ̇↓(t) = −W↓ρ↓(t) +
∑

α

W↓αρα(t), (C.2)

where Wσ =
∑

αWασ for σ =↑, ↓. Now, writing the above equations in terms of

ρ±g (t),

ρ±g (t) = ρ↑(t)± ρ↓(t), (C.3)

we can rewrite the sum and difference of Eqs. (C.1,C.2) as

ρ̇+
g (t) = −ρ+

g (t)W+
g + ρ−g (t)W−

g +
∑

α

W+
gαρα(t), (C.4)

ρ̇−g (t) = −ρ−g (t)W+
g + ρ+

g (t)W−
g +

∑

α

W−
gαρα(t). (C.5)

Here, W±
g = 1

2

∑
α (Wα↑ ±Wα↓) and W±

gα = (W↑α ±W↓α). Assuming ρ↑(0) =

ρ↓(0) = 1
2
, i.e., ρ−g (0) = 0, integrating Eq. (C.5), and using the mean-value theorem,
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we find,

ρ−g (t) = ρ+
g (τ)

W−
g

W+
g

(
1− e−W+

g t
)

+ (C.6)

+
∑

α

ρα(τα)
W−
gα

W+
g

(
1− e−W+

g t
)

where τ, τα ∈ [0, t]. Noting that ρ+
g (τ), ρα(τα) ≤ 1 and

(
1− e−W+

g t
)
≤ 1, we can

bound the value of ρ−g in Eq. (C.4) as

ρ−g (t) ≤ W−
g +

∑
αW

−
gα

W+
g

. (C.7)

Now, if we have,

∣∣∣∣
W−
g

W+
g

∣∣∣∣+

∣∣∣∣
∑

αW
−
gα

W+
g

∣∣∣∣� 1, (C.8)

we can safely neglect ρ−g (t) from the original Pauli master equation. In the text

we neglect all the W− contributions and use the following notation: Wg ≡ W+
g ,

Wgα ≡ W+
gα = (W↑α +W↓α) and Wαg ≡ W+

αg = 1
2

(Wα↑ +Wα↓).
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