
A Client-Centric Data Streaming
Technique for Smartphones: An

Energy Evaluation

by

Abdulhakim Abogharaf

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Abdulhakim Abogharaf 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With advances in microelectronic and wireless communication technologies, smart-
phones have computer-like capabilities in terms of computing power and communication
bandwidth. They allow users to use advanced applications that used to be run on com-
puters only. Web browsing, email fetching, gaming, social networking, and multimedia
streaming are examples of wide-spread smartphone applications. Unsurprisingly, network-
related applications are dominant in the realm of smartphones. Users love to be connected
while they are mobile. Streaming applications, as a part of network-related applications,
are getting increasingly popular. Mobile TV, video on demand, and video sharing are some
popular streaming services in the mobile world. Thus, the expected operational time of
smartphones is rising rapidly.

On the other hand, the enormous growth of smartphone applications and services adds
up to a significant increase in complexity in the context of computation and communica-
tion needs, and thus there is a growing demand for energy in smartphones. Unlike the
exponential growth in computing and communication technologies, the growth in battery
technologies is not keeping up with the rapidly growing energy demand of these devices.
Therefore, the smartphone’s utility has been severely constrained by its limited battery
lifetime. It is very important to conserve the smartphone’s battery power. Even though
hardware components are the actual energy consumers, software applications utilize the
hardware components through the operating system. Thus, by making smartphone appli-
cations energy-efficient, the battery lifetime can be extended. With this view, this work
focuses on two main problems: i) developing an energy testing methodology for smart-
phone applications, and ii) evaluating the energy cost and designing an energy-friendly
downloader for smartphone streaming applications.

The detailed contributions of this thesis are as follows: (i) it gives a generalized frame-
work for energy performance testing and shows a detailed flowchart that application devel-
opers can easily follow to test their applications; (ii) it evaluates the energy cost of some
popular streaming applications showing how the download strategy that an application
developer adopts may adversely affect the energy savings; (iii) it develops a model of an
energy-friendly downloader for streaming applications and studies the effects of the down-
loader’s parameters regarding energy consumption; and finally, (iv) it gives a mathematical
model for the proposed downloader and validates it by means of experiments.

iii

Acknowledgements

All praise is due to Allah for granting me the strength and knowledge to complete
this work. I would like to express my deep and sincere gratitude and appreciation to
my supervisor Dr. Sagar Naik for his continuous encouragement, helpful discussion, and
insightful guidance throughout the research presented in this thesis. I would also like to
thank all my colleagues who created an excellent environment for the research work. Last
but not least, I am indebted to my mother and brothers for their continuous support,
patience, and prayers.

iv

Dedication

To my parents.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Solution Strategies . 4

1.4 Summary and Contributions . 6

2 Literature Review 7

2.1 Testing Energy Consumption of Smartphone Applications 7

2.2 Techniques to Save Energy in Smartphone Streaming Applications 8

2.2.1 Layer-Wise Mechanisms . 9

2.2.2 Cross-Layer Mechanisms . 17

3 Testing Strategy 23

3.1 Energy Assessment Framework . 23

3.1.1 Introduction . 23

3.1.2 Generalized Approach . 26

3.1.3 Description of the Methodology . 30

3.1.4 Experimental Setup . 34

3.2 Network-Traffic Analysis . 35

vi

4 Streaming Strategy 37

4.1 Motivation . 37

4.2 System Model . 41

4.3 Mathematical Model . 45

4.3.1 Energy Required for Establishing and Terminating a Connection (EC) 45

4.3.2 Energy Required to Download one Packet (EPacket) 48

4.4 System Parameters . 49

4.4.1 Buffer Size . 50

4.4.2 Low Water Mark . 52

4.4.3 Socket-reading . 53

4.5 Discussion . 55

5 Conclusion 57

References 59

vii

List of Tables

1.1 Battery capacities of some recent smartphones. 3

3.1 Some of smartphones’ parameters. 25

3.2 Configurations table for HTC Nexus One smartphone (mA = 5). 31

4.1 WNIC timeouts of different smartphones. 46

4.2 Parameter settings for the experiment of changing buffer size. 50

4.3 Parameter settings for the experiment of changing LWM. 52

viii

List of Figures

1.1 Energy performance test bench for smartphone applications 5

3.1 Flowchart for filling out the configuration table, (AllCo and Cross are ex-
plained in the text, and T is a local variable). 31

3.2 Experimental setup. 35

3.3 Network traffic analysis at the wireless link. 36

4.1 Streaming 5 different 5-minute YouTube contents using the YouTube App
to an iPhone via WiFi interface. 38

4.2 Power consumption of streaming a 10-minute Youtube video using two dif-
ferent applications to an iPhone via WiFi interface. 39

4.3 Tcptrace of streaming a 10-minute Youtube video using two different appli-
cations to an iPhone via the WiFi interface. 40

4.4 The percentage of time for each of the WNIC states while streaming a 10-
minute Youtube video using two different applications to an iPhone via WiFi
interface. 41

4.5 System model. 42

4.6 The GUIs for the server and the client’s streaming applications. 43

4.7 Power consumption of openning 1000 HTTP persistent connections in Galaxy
Nexus smartphone. 47

4.8 Power consumption of openning 1000 TCP connections with 0.21 second
pausing time for Galaxy Nexus smartphone. 48

4.9 Power consumption of downloading 10, 000 full-sized packets for Galaxy Nexus. 49

ix

4.10 Energy consumption of streaming a 31.7 MB, 5 minute video file with dif-
ferent buffer sizes for Galaxy Nexus smartphone. 51

4.11 Power consumption of streaming a 31.7 MB, 5 minute video file with a 3
MB buffer. 51

4.12 The energy consumption of downloading 51 MB, 5 minute video content
with different values of α. 53

4.13 Interplay of TCP sockets and applications via buffers. 54

4.14 The Energy consumption of downloading 50 MB video content for different
values of socket-reading parameter. 54

4.15 The Power consumption of downloading 50 MB video content for two values
of socket-reading (1-Byte & 100-Byte). 55

4.16 TCP-traces of streaming 50 MB video content for two values of Socket-
Reading (S-R). 56

x

Chapter 1

Introduction

1.1 Background

Mobile phones have become the favorite means of communication among users worldwide.
According to the International Telecommunication Union (ITU), by early 2013, there are
almost as many mobile users as people on earth [49]. PC-like smartphones have overtaken
the ordinary mobile phones. That is because users appreciate portable devices combining
the functions of cellphones with the functions of computers. By the end of 2011, about 16%
of mobile subscribers in the world used smartphones with 25% annual growth, and about
51% of mobile users in developed countries used smartphones [48][47]. With this booming
growth of smartphones worldwide, soon enough, smartphones will be more pervasive than
ordinary mobile phones.

What actually helps smartphones to become so popular is the number of applications
and services they provide. As of early 2013, there are about 800, 000 applications in each
of the Apple App Store and the Google Play Store showing 60% growth from the year
before. Users of different ages and interests enjoy a variety of mobile applications ranging
from business to game applications, entertainment to educational applications and many
more. The avalanche of progress in smartphone applications allows users to use their
PC applications (similar to their PC applications) on the go. In actual fact, with the
combinations of the built-in sensors in smartphones (such as accelerometers, gyroscopes,
barometers, proximity detectors, light sensors, high-resolution cameras and microphones),
smartphone applications are much more powerful than laptop applications. In addition to
the context, the immediacy and simplicity are also advantages of smartphone applications.

1

The use of software applications as “computing” tools has become archaic. The age
of software as a communication medium has arrived. Rather than the more traditional
PC tasks of document creation and local computations, many of today’s applications are
communication-centered and based on data centers and cloud-computing. Users can use
their computers indirectly through their smartphones. Network-related applications such
as web browsing, email fetching, multimedia streaming and social networking are very
popular mobile applications. It is expected that mobile phones will overtake PCs as the
most common Web-access devices worldwide by the end of 2013 [17].

Streaming applications are gaining increasing popularity among other mobile network-
related applications. Many TV businesses allow users to access live TV shows through their
smartphones. Some other applications allow smartphone users to access media contents
stored in their computers, and other applications enable users to watch live streaming
contents broadcasted by other users. Not to mention, Netflix, YouTube and Dailymotion
are among the most popular video-on-demand streaming websites. According to Cisco,
mobile video traffic accounted for 51% of all mobile traffic by the end of 2012, and it is
expected that two-thirds of the global mobile traffic will be video streaming by 2017 [28].
YouTube as the dominant application in mobile devices accounts for about 28% of all
mobile traffic in North America [46].

Smartphones have been equipped with fast processors and lots of memory, which are
comparable with those in their computer counterparts. Despite the limited size of handheld
devices, it is easy today to find a smartphone with a 2 GB RAM and a 1.5 GHz dual-core
processor, which were what laptops had just a few years ago. The significant evolution
of the semiconductor industry, whose growth has been following Moore’s Law of doubling
the number of transistors in a chip every 18 months, makes it possible to have handheld
devices with increasingly powerful processing capability, memory and screen resolution.

On the other side, the battery technology is not keeping pace with the growth of
semiconductors. Whereas semiconductor technology is doubling every 18 months, the
average annual gain in battery capacity is growing by only 5% [34]. The small size and
light weight requirements of a handheld device imply that its battery be proportionately
small in volume. Consequently, the system energy is severely limited. Table 1.1 shows the
battery capacities of some smartphones released within the last few years. Clearly, in the
last few years, there is not much growth in battery capacity compared to the growth in
other smartphone resources.

Network related applications, more specifically streaming applications, are energy-
hungry. It has been shown that streaming multimedia content consumes about 50% more
energy than playing the multimedia content locally [8][60]. Streaming the content shortens

2

Phone Battery Capacity Phone Battery Capacity

iPhone 3GS 1250 mAh Samsung Galaxy S 1500 mAh

iPhone 4 1420 mAh Samsung Galaxy S II 1650 mAh

iPhone 4S 1432 mAh Samsung Galaxy Nexus 1850 mAh

iPhone 5 1440 mAh Samsung Galaxy S III 2100 mAh

Table 1.1: Battery capacities of some recent smartphones.

the battery life time by half. Since multimedia streaming requires downloading the content
involving the network interface usage, decoding the content involving the CPU usage, and
playing the content involving the screen usage, it is not surprising that streaming applica-
tions are very energy-hungry. Since smartphone batteries are energy-poor, it is essential
that mobile multimedia streaming applications avoid excessive energy consumption.

1.2 Problem Statement

The utility of smartphones is severely constrained by battery lifetime. So, it is important
to reduce the amount of energy drawn from the battery by making the applications more
energy efficient. In order to make smartphone applications more energy efficient, it is es-
sential to have an effective and robust energy evaluation mechanism. Unlike the functional
evaluation of an application, energy evaluation of an application is more challenging and
requires more effort. Smartphones are highly configurable, and users can set the values of
different parameters of the hardware components manually or via various utility programs
attached to the operating system. For example, the volume parameter (which affects the
energy consumption) of a device can be set to different values, or the Bluetooth parameter
can be set to be discoverable. The states of the hardware components play a vital role in
the energy consumption of smartphones, and it is important to consider the states of the
hardware while evaluating the energy performance of an application. Due to the enormous
number of phone configurations and application parameters, an immense number of test
cases exists. Therefore, a selection technique reducing the number of test cases is desired.

Since streaming applications are energy-hungry, and since the energy cost of content
delivery is high, evaluating the energy consumption of content delivery and designing an
energy-friendly downloader for streaming applications get the priority. The energy con-
sumption at the wireless network interface (WNIC) of a smartphone mainly depends on the
answers to the following two questions: i) how much data is downloaded during the stream-

3

ing session? ii) how is such data downloaded? Downloading more data would make the
WNIC work longer and consequently consume more energy. Practically, a user can choose
a low quality version of the same multimedia content and expect less energy consumption.
However, discovering how to download the content in order to reduce energy consumption
is not that easy. Since all smartphones use WiFi interface cards which support the IEEE
802.11 power saving mode (PSM) by default, it is straightforward that the PSM should
be utilized to minimize the energy consumption during streaming sessions. However, the
standard PSM has limited effectiveness for streaming applications since streaming appli-
cations often involve bulk data transmission in a continuous fashion. Thus, the WNIC is
not given many opportunities to switch into PSM.

The problems this thesis is trying to tackle can be best summarized in the following
two points:

1. From a software development perspective, how is it possible to perform energy per-
formance evaluation to smartphone applications?

2. Since streaming applications are energy-hungry, how is it possible to evaluate the
energy consumption and design an energy-friendly downloader for mobile streaming
applications?

1.3 Solution Strategies

The limited battery capacity of mobile devices presents an increasingly important challenge
since data transmission consumes a lot of battery power. Energy efficient applications
are prerequisite for saving energy in a mobile device. In order to evaluate the energy
performance of an application, a methodology to select user-level test cases for energy
cost evaluation of smartphone applications is needed. As shown in figure 1.1, smartphones
interact with users and communication networks, and they draw battery energy based on
the activities of the OS and applications running on top of the OS. The energy consumption
of the device can be calculated by monitoring the power discharge rate from the battery.
The energy consumed by an application can be estimated by taking the difference between
the energy consumptions with and without running the application. When the application
is not executed, the OS still consumes a certain amount of energy to make the device ready
for running applications. In both cases, the settings of the smartphone parameters, termed
as device configurations, play an important role even if an application does not access all
the hardware components.

4

Figure 1.1: Energy performance test bench for smartphone applications

The work in [69] studied the parameters of five different state-of-the-art smartphones,
and categorized them into three groups to reduce the number of test configurations for
conducting energy performance testing. However, it dealt with a special case, where only
one phone parameter is emphasized and considered in the primary parameter group. In
this work, we generalize the methodology in [69] by allowing more than one parameter
in the primary parameter group of the smartphone parameters. General expressions are
derived to compute the number of test configurations for a given smartphone. We relate
the work in [69] as a special case of this proposed work, and apply the methodology to
HTC Nexus One smartphone as an example. We express the methodology in the form of
a detailed flowchart that application developers can easily follow.

Since streaming applications are power-hungry, application developers should not only
focus on the functionality aspect of their application, but also the energy performance
aspect. Streaming applications consume energy at three stages of the streaming session: i)
downloading the content; ii) decoding the content; and iii) playing the content. It is known
that, for smartphones, the downloading cost is more significant than the decoding cost
and the playing cost. Some application developers choose an energy-hungry downloading
strategy without knowing the consequences. We evaluate the energy consumption of some
popular streaming applications. We show that different streaming applications use different
downloading strategies which lead them to consume different amounts of energy. We
develop an energy-friendly streaming downloader and give a mathematical model of its
energy cost. Then, we validate the mathematical model by means of experiments. We also
study the effect of each of the parameters in the proposed streaming downloader on the
energy consumption.

5

1.4 Summary and Contributions

This work has mainly dealt with two broad problems: i) testing the energy performance
of smartphone applications, and ii) evaluating the energy cost and designing an energy
efficient downloader for smartphone streaming applications. The main contributions of
this work can be summarized as follows:

1. generalizing the energy performance testing framework in [69] and giving a detailed
flowchart that application developers can easily follow,

2. evaluating the energy cost of some popular streaming applications showing how down-
load strategy that an application developer adopts may cause inefficient energy usage,

3. developing a model of an energy-friendly downloader for streaming applications and
studying the effect of its parameters on the energy consumption,

4. giving a mathematical model for the proposed downloader and validating it by means
of experiments.

The remainder of this work is organized as follows. In chapter 2, a comprehensive
literature review for energy performance testing and delivering strategies for streaming
applications is given. Chapter 3 introduces the generalized strategy for evaluating the
energy performance of smartphone applications. The proposed model of an energy-friendly
downloader for streaming applications and its mathematical representation are given in
chapter 4, and chapter 5 concludes this work.

6

Chapter 2

Literature Review

The rapid growth of smartphones and internetworking has brought lots of network-related
applications to App Stores. Many of these applications make use of Internet access, re-
quiring considerably large amounts of energy. Since multimedia applications are known
to be energy-hungry and mobile devices are energy-poor, having power-efficient multime-
dia streaming applications for handheld devices is important for prolonging the battery
recharging time and improving user satisfaction. In order to evaluate and enhance the
energy consumption of a smartphone application and detect any energy bugs, energy per-
formance testing is required. This chapter reviews the literature in terms of i) energy
testing for smartphone applications, and ii) enhancing energy consumption of streaming
applications.

2.1 Testing Energy Consumption of Smartphone Ap-

plications

In the world of application testing, the number of possible inputs (parameters such as WiFi,
3G, GPS, Camera ...etc) for any application is very large if all of them are considered for
a test. Exhaustive testing that considers all possible combinations of the test cases is
desirable [27]; however, due to time and resource limitations, only a subset of all test cases
can practically be considered as a test space [61]. Many techniques have been developed
to reduce the number of test cases and yet improve the reliability and the performance
of the application under test. Pairwise testing is a well-known technique that covers all

7

possible pairs of parameter states. For each and every pair of states that belong to different
parameters, there is at least one test case that contains both of those states [35].

However, an application could misbehave only with three or more combinations. Study
results found that all the known application misbehaviors are caused by interactions among
six or fewer parameters [54]. Another technique called t-wise testing requires that every
combination of any t parameter values must be tested at least once [29].

A more practical and efficient approach in examining applications than t-wise testing
is variable strength interaction testing [30]. This technique focuses on a specific set of
parameters and applies a higher strength testing to them without ignoring the rest. This
is required because interactions do not often exist uniformly among parameters. Some
parameters have strong interactions with each other while others may have few or no
interactions.

All of the aforementioned techniques were proposed for functional testing. Their main
aim is to maximize the chance of finding errors and bugs in the application under test.
There is not much work that has been done on evaluating the energy consumption of
smartphones applications. The work in [69] is one of the basic and important studies
that were done in the area of energy testing of smartphone applications. In that work, a
test selection technique was proposed to have a reliable parameter configurations among
smartphones and to obtain the behavior of energy consumption for an application. The
parameter that mostly affects the power consumption of the application under test is chosen
as a primary parameter. The rest of the parameters are called standalone parameters.
The combinations of the standalone parameters one-by-one with the primary parameter
are considered as test space. Our work improves this methodology by considering more
than one primary parameter.

2.2 Techniques to Save Energy in Smartphone Stream-

ing Applications

Energy consumption in battery-based handheld devices that are wirelessly capable of mul-
timedia streaming has been a significant research issue for the last decade. That is because
streaming multimedia contents over wireless networks consumes lots of power for reception,
decoding and displaying of the content. It has been shown that the energy cost of receiving
a multimedia content over a WiFi interface is approximately three times more than the
energy cost of decoding it [43]. Since our work mainly focuses on multimedia reception, this
chapter reviews the publications regarding the energy cost of receiving multimedia contents

8

and omits the ones dealing with the energy cost of decoding and displaying multimedia
contents.

Energy consumption of delivering multimedia content is affected by all layers of the
protocol stack, ranging from the physical layer to the application layer. Lots of layer-wise
and cross-layer approaches for energy saving have been proposed [66][43][50][36][62]. We
briefly summarize the energy saving mechanisms according to the protocol layers.

2.2.1 Layer-Wise Mechanisms

1 - Physical Layer:

The PHY layer deals with data transmission/reception over wireless channels. It consists
of radio frequency, modulation, power control and channel coding units. Using multimedia
streaming applications, the radio interface is usually capable of a much higher data rate
than the stream rate (including the overhead), and it is obvious that using the full capacity
of the radio while only a small fraction of it is needed is impractical. Many techniques
have been proposed to enhance the power consumption of the PHY layer.

Schurgers et al. [76][75] proposed a Dynamic Modulation Scaling technique (DMS) that
dynamically adapts the modulation level to match the instantaneous traffic load and hence
controls the power consumption. When the instantaneous traffic load is lower than the
peak value of the radio component, transmissions can be slowed down, possibly all the way
to the optimal operating point. This technique (DMS) is the exact counterpart of Dynamic
Voltage Scaling (DVS), which has been shown to be extremely effective for processor power
management.

Cui et al. [32] have shown that applying DMS that is based only on the streaming
rate does not guarantee the minimal energy savings because energy consumption does not
depend only on the transmission rate but also on the transmission distance. They show
that for short transmission distance the lower transmission rate may not result in better
energy savings due to the circuit energy consumption.

Multiple-Input Multiple-Output (MIMO) is a promising technique that could enhance
energy consumption at the PHY layer [38]. However, MIMO is not always more energy
efficient than Single Input and Single Outout (SISO) because MIMO requres more antenna
devices that consequently consume more circuit power [59]. For low transmission rates,
SISO is more power efficient than MIMO. However, for high transmission rates, MIMO
outperforms SISO from an energy-saving point of view. A dynamically switching mecha-

9

nism between MIMO and SIMO has been proposed in [51]. It is shown that this switching
mechanism is more energy efficient than MIMO.

2 - Link Layer:

Lots of solutions enhancing energy consumption at the link layer have been proposed [80].
Some of these solutions require modifications to the standard protocols. Since our interest
is on WiFi interface, we summarize the important WiFi link layer solutions.

The IEEE 802.11 standard supports Power Saving Mechanism (PSM) to conserve en-
ergy [68]. The wireless station (STA) and the Access Point (AP) agree upon a beacon
period. The AP buffers packets destined for the STA. The STA wakes up periodically to
listen for the beacon. The beacon frame contains a Traffic Indication Map (TIM) that
tells the STA if packets are currently being buffered at the AP. If the AP has buffered
packets for the STA, the STA sends a PS-POLL frame to the AP, and the AP sends a
buffered packet back to the STA. If the MORE flag in the received packet is set, the STA
continues to PS-POLL till no more packets are buffered at the AP. The PSM approach
saves energy by keeping the radio interface off except during the beacon period where the
STA briefly wakes up to communicate with the AP. However, the PSM adds a delay in
between beacon periods when the radio is off. This delay affects real-time applications
such as live-streaming and VoIP. Furthermore, buffering packets at the AP may cause the
TCP to estimate higher Round Trip Time (RTT) and consequently the TCP congestion-
control mechanism will significantly slow down the traffic rate in TCP-based streaming
applications [43][53].

Because of the latency inherited with the static PSM approach, an Adaptive PSM
(PSM-A) that dynamically switches between Continuous Awake mode (CAM) and PSM
has been widely adopted [53]. In PSM-A, the device switches between PSM and CAM based
on some heuristics (e.g. reception of a threshold number of packets or lack of network
activity for a pre-defined duration). The device informs the AP of its transitioning to
PSM or CAM by sending NULL data frames with the power management bit set to 1 or
0, respectively. It has been shown that the overhead cost of switching the radio interface
between CAM and PSM is trivial [79]. However, since the device remains in CAM for an
idle timeout period after every CAM to PSM transition, for applications with intermittent
network activity, PSM-A is more energy inefficient than static PSM [33].

In order to enhance power savings while supporting QoS-sensitive applications such as
VoIP, multiple power saving protocols have been proposed in the family of 802.11 stan-
dards. In 802.11e [1], an Automatic Power Save Delivery (APSD) protocol is proposed. It

10

introduces two modes based on the delivery mechanism, namely, the unscheduled APSD
(U-APSD) and the scheduled APSD (S-APSD). In U-APSD, if a mobile station is informed
that it has data buffered for it, it issues a trigger frame to the AP and the AP responds
with the frames buffered for it. In S-APSD, the unicast pending data are scheduled period-
ically by the AP to deliver at a designated time, given that the mobile station has agreed
with the AP about the scheduling intervals. Both modes aim at improving the energy
utilization using bursty frame transmissions. However, the uncoordinated trigger frames
can cause the mobile station to wait for an excessively long time before the data trans-
mission commences [71]. Meanwhile, the S-APSD depends on the resource reservation per
stream by negotiation between AP and the mobile station, which degrades the flexibility
compared to U-APSD and is not fit for the traffic with a variable bit rate. Further, none
of them tackle the issue of multicast data.

In the 802.11n [2], the APSD is enhanced by a Power Save Multi-Poll (PSMP)procedure.
Similar to APSD, the PSMP procedure can be triggered by a frame (U-PSMP) or sched-
uled periodically by the AP (S-PSMP). It starts with broadcasting a PSMP message by
the AP to the network which contains the scheduling information for downlink and up-
link transmissions. The mobile station is assumed to wake up to receive this message and
arranges its network activities and power state transitions based on the scheduling infor-
mation. The PSMP creates effective transmission periods for broadcast, multicast, and
unicast data, and the power consumption is greatly reduced by periodical occurrence of
the PSMP procedure and its scheduled frame transmissions. However, compared to the
static PSM, the overhead of the management frames is non-trivial and the mechanism to
maintain the uplink transmissions is fairly complex.

The 802.11v [3] introduces a Flexible Broadcast Multicast Service (FBMS) to provide
flexible management over the multicast traffic in power saving protocols. In FBMS, a
multicast stream can choose to be served at a configurable delivery interval, Thus, traffic
of different multicast groups can be differentiated by selecting different delivery intervals.
The mobile station does not have to pay extra energy to receive irrelevant multicast traffic.
The major disadvantage of the FBMS is that it significantly increases the delay of the
multicast streams, and the energy saving is reduced when the number of multicast streams
increases; as in this case, some streams have to be delivered within the same periods.

Besides these standards, lots of solutions requiring modifications to the standard link
layer protocols are proposed. Many of these solutions are based on prediction policies.
Some history-based prediction strategies have been proposed in literature such as the work
in [25]. The authors show that streaming traffic tends to be regular and predictable. They
calculate the next sleep interval as the average n earlier idle times. Such strategies result
in good energy-saving. However, for some streaming formats, there was relatively high

11

packet loss. This led the authors of [81] to develop a linear prediction-based time series
technique. They showed that a linear prediction-based approach is more energy-efficient
than a history-based approach. However, because many media streaming techniques exhibit
high variation in the data packet sizes and inter-packet arrival times, it is hard for the
prediction algorithms to reliably predict the lengths of no-data intervals.

Liu et al. [58] inspired by the mismatch between the high bandwidth of the 802.11
interfaces and the modest data rate requirements of many popular network applications,
and presented micro power management (µPM) to reduce the idle time (the timeout of
PSM-A) even when the idle time is less than 200ms. µPM does this by relying on a link
layer retransmission mechanism for frames missed during a short nap and by predicting
frame intervals based on history in order to limit the frame delay. Experimental results
with µPM implementation demonstrate up to 30% power savings for multimedia streaming
with a very low frame loss rate.

He and Yuan [42] pointed out that the power consumption of a PSM client depends
not only on the traffic load destined for it, but also on the traffic loads destined for other
clients. The reason is that when the access point serves more than one client, the packet
transmission from the access point to the PSM client may be delayed by data transmission
to/from other hosts. This results in the prolonging of the waiting time for the PSM client
to receive the buffered data, and thus more power consumption. For this reason, they
further scheduled packet transmission for PSM clients using precise timing slots. Their
TDMA-like scheduling algorithm eliminates contentions and achieves near optimal power
saving for the mobile hosts.

3 - Network Layer:

The main functions of the network layer are routing packets and congestion control. In
wireless mobile networks, the network layer has the added functionality of routing under
mobility constraints and mobility management including user location update, etc.

In [70], the author proposed an information-centric approach to networking, which
allows multimedia streaming to be transformed from an energy-heavy network service to
a lightweight one. Unlike the current host-centric mobile networking paradigm based on
end-to-end always on connectivity, an information-centric approach could be used to reduce
the time network interfaces have to remain active. Such mobile networking architecture
will bring in new toggles that allow users, operators, and service providers to make their
own communication/computation/storage trade-offs and enhance the energy consumption.

12

However, the information-centric approach would require an adoption of a new networking
paradigm and a change in the way the information is distributed to its intended recipients.

4 - Transport Layer:

The transport layer provides end-to-end delivery services for applications. There are two
most common transport layer protocols that streaming applications might use: Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP). Although traditionally
UDP is the ideal protocol for streaming delivery, today TCP-based streaming accounts
for more than 90% of the Internet streaming traffic due to i) the easiness of deploying
TCP/HTTP streaming applications , and ii) the wide use of NAT and firewalls that are
not UDP-friendly [84][41][18][79]. Because this work concerns TCP-based streaming, we
focus on the main TCP-based solutions that appear in the literature and omit UDP-based
solutions.

Effectively saving energy during a TCP streaming session is difficult because TCP traffic
tends to be smooth, leaving little potential for the WNIC to switch to sleep mode. The
basic idea behind most TCP techniques is that the client increases the amount of time
that can be spent in sleep mode by shaping the traffic, i.e forming bursts out of constant
or variable bit rate stream and scheduling them in such a way that the existing link layer
PSM can be beneficially used.

Bertozzi et al. [22] proposed a way that modifies the TCP flow control mechanism
in order to generate TCP idle periods. They utilize two orthogonal cases in which TCP
becomes inactive: when the TCP buffer is full and when the TCP buffer is empty. In the
case where the buffer is full, the client advertises zero window, and the window is never
open till the buffer is completely drained by the application. The WNIC can go to sleep
during this period (between the full buffer and empty buffer conditions). In the case where
the buffer is empty (e.g. no active sockets or temporarily un-utilized sockets), if there is
no activity for a timeout, the WNIC is switched off, and it is switched back on when a new
TCP packet transmission or a read operation from the TCP buffer has to be carried out.
Their experimental results indicate energy savings between 28% and 69% compared with
static PSM. However, this approach increases the number of re-transmission attempts as
well as transmission delays.

A client-centric scheme [82] is proposed to reshape the TCP traffic into bursts, and
put the WNIC to sleep between two bursts by modifying the client TCP stack. The basic
idea is that the client forces the server to send each window of packets in a burst so that
potential sleep time between bursts is maximized. The client monitors the TCP receiving

13

buffer. Zero window TCP-ACK or full window TCP-ACK is sent from the client to the
TCP server depending on the condition of the receiving buffer of the client. Although
this scheme has the potential to save energy, it increases the data transmission time as a
trade-off, which can be a high cost for some bulk data transmissions and unacceptable for
streaming media applications with stringent QoS demands.

It has been shown that the power consumption of streaming data at a mobile host
is negatively affected by the congestion (and consequently the TCP congestion control)
occurring at the wired network. The wireless single-hop link between the mobile host
and the access point usually achieves a much higher bandwidth. Thus, the WNIC spends
most of the time in the idle state waiting for the congested packets to arrive. For that
matter, the work of [15] and [12] proposes an alternative to the legacy TCP protocol for the
management of communications between mobile hosts and fixed hosts: the indirect-TCP.
It divides the end-to-end TCP connection between the mobile host and the fixed host into
two connections, one between the mobile host and the access point, the other between the
access point and the fixed host. At the access point, a Power-Saving Transport Protocol
(PS-TP) daemon is in charge of transferring the traffic between the two connections. The
link between the mobile host and the access point is a single-hop link; therefore, some
functionalities of the classical TCP such as the congestion control mechanism are not
required in this connection. A Simplified TCP (STP) is used between the the mobile host
and the access point, and the legacy TCP is used between the access point and the fixed
host. This approach saves energy by reducing the total transfer delay and the amount of
time the WNIC is active.

5 - Application Layer:

Energy efficiency at the application layer is becoming an important area of research as is
indicated by industry. Many APIs and power management analysis tools are being devel-
oped to assist software developers in creating programs that are more power conserving [66].
Lots of research is being done in application layer energy saving [66]. However, since this
work is solely interested in content-delivery techniques for energy conservation, other tech-
niques such as computations offloading, adaptive encoding rate, encoding schemes, and
GUI design are ignored here.

A good amount of research has proposed proxy-based solutions at the application level.
A proxy can enable a mobile host to save energy by making downloaded stream bursty
so that the intervals between bursts are long enough to let the communication interfaces
sleep. Hoque et al. [44] tackled the energy consumption of a TCP-based multimedia
streaming application using a traffic shaping proxy. Their approach relied on the default

14

PSM available in the mobile host. The proxy is placed between the mobile client and the
server. Once the proxy receives a request from the client, it establishes a connection to
the server and forwards the client’s request to the server. The proxy repeatedly buffers the
constant bit rate traffic received from the server for a fixed period of time and forwards
the buffered data to the client in the form of bursts. They showed that using a proxy can
save up to 65% of the energy consumed if using only the default PSM. They also found
that the location of the proxy has an impact on the energy savings. Their results show
that using a proxy which is close to the client can gain around 40% more energy savings
than using one further away.

The authors of [37] presented a scheme, called CatNap, that saves energy by combining
tiny gaps between packets into meaningful sleep intervals using a proxy at the access point.
CatNap (i) utilizes an application-level proxy to decouple the wired segment from the
wireless segment, (ii) estimates the available bandwidth in the wired and wireless segments
(the wireless segment usually has a much higher bandwidth than the wired segment), and
(iii) schedules the segments to be transferred to the client in a burst with high speed but in
a short time without increasing the overall transfer time. Streaming applications provide
the proxy with workload hints specifying the data block size and the willingness to tolerate
delay. CatNap proxy uses these hints to schedule delivery of the segments. According to
the experimental results, CatNap allows the WNIC to sleep for up to 70% of the total
transfer time.

Korhonen et al. [52] studied the impact of the burst length and peak transmission
rate for observed packet loss and delay characteristics. They then proposed an adaptive
streaming technique for the UDP-based multimedia streaming. The system works at the
server or a proxy and manipulates the burst interval depending on the packet loss and
network situation experienced by the streaming client. Their experimental results show
that this adaptive streaming technique can achieve up to 46% energy savings

Zhang and Chanson [85] suggested two proxy-based scheduling algorithms for multiple
streaming mobile hosts. In the first algorithm, the proxy is oblivious to the host’s power
characteristics and schedules a host with the lowest burst reception time with the highest
priority. The second algorithm is based on a heuristic approach that considers the host’s
idle power consumption and battery state. The first scheme minimizes the sum of times
required by all the clients to finish streaming media contents, while the second scheme
exploits battery information of all the clients to minimize the weighted sum of the times
needed. The drawback of the first algorithm is that the client with the highest reception
time experiences the longest waiting time and therefore consumes more energy, whereas the
second algorithm lets the client with the highest battery capacity experience the longest
waiting time and consequently consume more energy.

15

Chandra and Vahdat [26] proposed an application-specific proxy-based system that
consists of a client side proxy and a server side proxy. The server side proxy informs the
client side proxy of the next arrival. The client then can sleep between data transfers. Al-
though it seems promising, this scheme is not compatible with the IEEE 802.11 standard.
Mohapatra et al [65] proposed a proxy-based traffic regulation mechanism to enhance en-
ergy consumption by the network interface. Their scheme dynamically adapts to changing
network and device conditions. The proxy buffers the data and transmits it to the host
as optimized bursts along with control information. Rosu et al. [74] focused on using an
HTTP proxy to shape incoming traffic to create longer idle periods, thus enabling wireless
devices behind the proxy to sleep for longer periods of time.

Since a server-client relationship can be seen as a producer-consumer relationship, a
buffer can be utilized to enhance the energy consumption by creating idle periods wherein
the producer or the consumer can go to sleep (without buffers, the consumer and the
producer are always busy) [24][23][72]. In [24] the authors presented a general method to
enhance power consumption using a data buffer and calculated the optimal buffer sizes for
constant producing rates and consuming rates. This work is extended in [73] by consid-
ering variable consuming rates and including the delay needed to awaken the producer.
The results show that using this approach can save up to 74% of the energy for video
streaming applications. Cia and Lu [23] further enhanced this work by providing a general
approach for energy management based on buffer insertion and the concept of inventory
control which is a scheduling problem . In this work, the authors proposed a method to
find the minimum-energy schedules and the corresponding minimum buffer size. In [72],
the authors farther investigated energy conservation using buffer insertion. They proposed
analytic formulas for obtaining the optimum buffer sizes for application-specific QoS with-
out heuristic decisions. Their simulation results show that the average buffer size for LAN
and WAN adapters is about 16MB.

Another approach to shape streaming traffic is by utilizing a buffer at the server side.
Adams and Muntean [8][9] proposed a buffering technique that exploits the inherent power
saving mode of IEEE 802.11. Data destined to a certain mobile client is hidden and
thus not made available to it for multiple beacon intervals. The authors estimated that
using this scheme increases the battery life 160% compared to static PSM. Also their tests
show that packet sizes and intervals between packets have a significant effect on the power
consumption.

Li et al. [57] investigated the effect of the TCP keep-alive and zero-window probes in
HTTP video streaming and user viewing behavior on power consumption. They found that
the TCP zero window probes and the corresponding keep-alive acknowledgments bring the
WNIC into the active mode. Even though these TCP segments are very small and last for a

16

short time, they keep the WNIC awake for a longer time waiting for the timeout to elapse.
They studied this in 3G and 4G network interfaces where the timeout (the Tail state) is
relatively long. They also found that most video sessions are short, and users tend not
to watch the whole video content. Based on their statistics, 80% of YouTube sessions are
less than half of the corresponding video durations. Motivated with these findings, they
proposed GreenTube [57], a system that reduces the power consumption of smartphone
YouTube streaming over 3G and LTE networks. GreenTube achieves that by closing the
TCP connections in between bursts to prevent zero-window probes and by adapting burst
size to user viewing behavior (based on history) and network conditions. Experimental
results show that GreenTube achieves power savings up to 70% in 3G and 4G networks.

2.2.2 Cross-Layer Mechanisms

Standalone traffic manipulation techniques at layers might not be adequate to provide sig-
nificant energy savings. Thus, lots of cross-layer techniques have been proposed to improve
the energy savings of delivering multimedia streams to mobile hosts. Since this work is
mainly focused on the application layer, in this section we review cross-layer techniques
wherein the application layer is involved.

Bertozzi et al. [21] proposed a technique that is based on an application level buffer.
During multimedia streaming, the link interface is shut down whenever the application
buffer is full, and it is turned on when the buffer is reduced to a threshold level. During
the disconnection period, the access point buffers the incoming stream for the mobile device
and thus creates bursty traffic. However, turning on the Wi-Fi interface is a high energy
consuming process, because it requires powering up the chip, re-associating with the AP
and in turn re-establishing the connection (for TCP-based streaming). Their simulation
results show that the minimum buffer size is a function of the network bandwidth, and they
suggested that buffers should be as large as possible. By using large buffers, the awakening
overhead energy is reduced across a longer interval. Bagchi [20] implemented another
multimedia streaming technique based on a fuzzy logic adaptive buffering algorithm. In
this technique, a client player would pull streaming traffic from the streaming server via the
WiFi interface according to the client player buffer status, variations of network bandwidth,
and required QoS. This approach also switches off the WiFi interface in-between bursts
to save energy. It is illustrated through experimentation that this technique reduces data
pause delay and data loss while enhancing energy savings.

In [6], Acquaviva et al. proposed two Dynamic Power Management (DPM) techniques
to control the playback buffer and thus power consumption. In the first technique called

17

Closed-Loop DPM, a client informs its server when to send and not to send data based
on the buffer status. The server continues refilling the client’s playback buffer. When the
playback buffer reaches the high-water mark, the client tells the server to stop sending and
shuts down the WNIC. When the playback buffer reaches the low-water mark, the client
wakes up the WNIC and informs the server that the low-water mark has been reached so
that the server can start refilling the client’s playback buffer. In the second technique called
Open-Loop DPM, the server predicts when the client buffer will be empty by exploiting its
knowledge of the workload. The server decides the burst size and the time between bursts
to fully exploit the playback buffer at the client side. Each burst of data transmitted by
the server is preceded by a special control packet carrying information about the number
of packets in the burst and the transmission time of the next burst.

Anand et al. [11][10] implemented a Self-Tuning Power Management (STPM) module
which dynamically adjusts the power management mechanism for wireless interfaces us-
ing application hints. STPM operates at the Operating System level, and exploits hints
provided by the applications. Essentially, hints describe the near future requirements of
applications in terms of networking activities, such as next-transmission time, maximum
delay-tolerance, number of transmissions and type of transmission (foreground or back-
ground). STPM exploits these hints, and the energy characteristics of the entire system,
to manage the wireless interface appropriately. When these hints are not available, STPM
estimates the traffic features by spoofing it. Anastasi et al. [13] further proposed a generic
architecture, called Cross-Layer Energy Manager (XEM). XEM also exploits application
behavior. However, unlike the STPM scheme that switches the WiFi interface between
PSM mode and CAM mode, XEM switches the WiFi interface between PSM mode and
off mode according to the traffic observation. Their results show that the XEM scheme
can save from 20% to 96% compared to the standard PSM. Howevr, it is not suitable for
interactive applications and multimedia streaming because of the inherent delay.

Acquaviva et al. [5][7] proposed a server controlled power management scheme where
the server exploits the workload, traffic-related information and feedback from the mobile
client to minimize the energy consumption of the mobile network interface card. Their
approach involves a Client Power Manager (C-PM) running on the client device and a
Server Power Manager (S-PM), running on the server. The two managers exchange power
control information through a dedicated TCP connection. C-PM obtains the buffer size,
depletion rate and transition time between on and off states for client’s WNIC and sends
this information to the S-PM. Based on the information the S-PM gets from the C-PM and
the traffic conditions, the S-PM decides when to enable the client’s WNIC power saving
mode and schedules transmissions to the client in bursts (The burst size and delay are
computed at the S-PM). Their experimental results show that their strategy saved 67% of

18

the energy as compared to CAM, and 50% as compared to the standard PSM.

Radu et al. [31] proposed an annotation-based technique that is different from other
historical or statistical prediction based techniques. Annotations specifying data size and
time of packets are generated at the server side (on-the-fly or offline). These annotations
are embedded into the media stream (or transmitted over a separate channel) and sent to
the client. On the way, annotations are used by the access point to shape traffic into bursts
before forwarding it to the client. Using the information in the annotations, the access
point can accurately estimate transfer rates and buffer network packets with a minimal
overhead. Since packets are transmitted in bursts to the client, the WNIC is switched into
sleep mode between the burst transmissions. The card is switched back to active mode
just before the next burst arrives at the client side. A buffer is used at the client side to
allow smooth playback. Simulation results show that this annotation-side technique can
save up to 75% more energy than the standard PSM. The authors also showed that this
approach is not susceptible to packet drops occurring in prediction based techniques due
to prediction errors.

Mohapatra et al. [63][64] proposed a proxy-based technique that utilizes a dedicated
control channel used to exchange information/commands between the proxy and the mo-
bile host. The proxy utilizes the feedback knowledge sent by the client, the bandwidth
availability and the attributes of the wireless access points and accordingly transmits opti-
mized bursts to the client. Even though packets are transmitted in bursts by the proxy, the
device receives packets that are skewed over time due to the the fair queueing algorithms
implemented at the access point. Their mechanism optimizes the stream, such that the
optimal video burst sizes are sent for a given noise level. The excremental results show
that this mechanism can provide 50% energy saving. However, the proposed mechanism
will probably not perform well in light network application due to the overhead network
usage by the control channel especially in mobile phones where the network interface is the
major energy consumer [67].

In [16] the proxy idea along with the playback buffer is again implemented, introducing
the novel Real Time and Power Saving (RT-PS) protocol for the communication between
the server and the mobile host. The proxy is responsible for planning bursty transmissions
to the client and warns the client of a non-transmission period when it starts. It also notifies
the client of the duration of the next non-transmission period so as to switch the network
interface to sleep mode for that entire period. The authors proposed that plans of trans-
mission are dynamically obtained by considering an estimate of the available bandwidth
on the wireless link along with the current client buffer level. A non-transmission period
ends when the client buffer level falls below a threshold, a low-water mark, that is dynam-
ically changed according to the available bandwidth. Along with the media stream, the

19

proxy and the client host exchange command and information packets. Their experimental
results show that implementing this RT-PS protocol can save up to 90.83% energy. The
RT-PS protocol is further studied in [14]. The authors implemented the RT-PS protocol
running on top of UDP between the mobile host and the access point for audio streaming.
The client-side component of the RT-PS protocol i) sends the request for an audio file to
the proxy at the access point specifying its playback buffer, ii) estimates the throughput
of the wireless channel and notifies the proxy, iii) switches the WNIC to sleep when a
sleep command is received from the proxy and switches WNIC back to active mode when
the sleep time is elapsed. The proxy-side component of the RT-PS protocol i) transmits
the audio frames to the client during the active periods, ii) keeps track of the WLAN
bandwidth and the level of the user buffer, iii) decides whether or not to stop transmit-
ting and calculates the sleep time. The authors performed experiments to show that this
technique allows energy saving from 76-91% of the total consumption. They also show
that the fraction of frames discarded by the proxy (those frames were estimated to arrive
late for playback) or lost during transmission was below 5% of the total frames which is
acceptable for audio playback.

Shenoy and Radkov [77] proposed two proxy-assisted techniques. In the first technique,
a proxy sends multimedia traffic at a periodic interval to a client and the client uses a
history-based traffic prediction mechanism to power on and off its WNIC interface. In the
second technique, the proxy forwards the traffic stream at a periodic interval and sends
one control packet to indicate the next arrival time of the future packets. A mobile host
uses this information to switch on the interface on time. Their experimental results show
that their proxy-based technique where control packets are used can reduce the potential
energy wastage at the network interface by 65-98%.

Gundlach et al. [40] developed a transparent proxy to schedule both TCP web traffic
and UDP-based bursty streaming traffic to all active clients in a WiFi network. The proxy
broadcasts the new schedule prior to a burst and after all the clients have received the
data of the previous schedule. The proxy marks the type-of-service bit in the IP header of
the last packet so that the client knows when to transition its WNIC back to low-power
mode. The proposed transparent proxy collects client addresses using ARP spoofing in
order to achieve transparency, so it must be implemented within the WiFi network. The
experimental results show that about 53-77% power saving with less than 2% packet loss
can be achieved using this scheduling-based transparent proxy.

A very recent work [45] has studied the relationship between burst size and power con-
sumption for TCP-based multimedia streaming when traffic shaping is used. The authors
modeled the power consumption of bursty streaming traffic over TCP by considering two
scenarios: i) the total buffer size is bigger than the burst size; and ii) the buffer size is

20

smaller than the burst size. They found that burst size that equals the sum of the applica-
tion playback buffer and the TCP receive buffer gives the minimum power consumption.
The authors also proposed a proxy-based energy-aware multimedia streaming system called
EStreamer. In this cross-layer approach, a proxy keeps track of the received TCP acknowl-
edgments coming from the client. Once the proxy encounters zero window advertisement,
it tunes the burst size accordingly in order to get a burst size that just fits the sum of the
TCP buffer and the playback buffer. Their experimental results show that using EStreamer
can achieve energy savings up to 65% with WiFi interface, 50-60% with LTE interface, and
35% with 3G interface. A similar recent work [78] also used EStreamer to study the power
consumption of multimedia streaming over 3G and LTE networks. The authors showed
the effect of different network configurations on the achievable energy savings. They also
studied the impact of background traffic (application level signaling between server and
client) and found that the background traffic for YouTube applications can increase the
average current up to 27%.

Yan et al. [83] proposed a client-centric technique to generate bursty traffic for TCP
based applications in order to save energy. The basic idea is to modify the client’s TCP
receive window size to zero periodically at the network layer. Once the window size is set
to zero, the server-side TCP cannot send packets to the client, and the client can turn its
WNIC interface off for this idle time. When the clients receive window size is restored; the
TCP at the server sends all the data in the congestion window resulting in a traffic burst.
This technique leverages the TCP timestamp option at the client-side in order to estimate
the Round-Trip-Time (RTT). In order for the client to detect the end of a burst, the client
sends a window probe packet to the server immediately before it sends a close window
acknowledgment, and the server will respond with a probe response packet which marks
the end of a burst. Their experimental results show that this client-centered technique can
achieve about 21% energy savings compared to standard PSM.

The idea of shaping traffic in order to reduce power consumption is not novel. Lots of
traffic shaping solutions have been proposed at the link layer to create opportunities for
WNIC to shut down. However, application-level traffic shaping approaches can create long
idle periods for the WNIC with less-frequent on-off mode switching, so that the high shut-
down transition cost (in terms of latency and energy) can be fully amortized and power
can be saved during long idle times. Lots of the proposed solutions at the application
level are based on the following approaches: i) shaping the traffic at the server ii) shaping
the traffic at the proxy iii) shaping the traffic at the client. In addition to the easiness of
implementation, client-centric traffic shaping has the advantage of knowing how the power
hungry components are being used and consequently can save energy without overhead
traffic. Most of the client-centered approaches found in literature are either history-based,

21

prediction-based or buffer-based. However, besides prediction errors, history-based and
prediction-based approaches require assistance from the server or a proxy. A client-centric
buffer-based approach does not require any assistance from network infrastructure and
provides good energy savings with smooth multimedia playback. Unlike our approach, to
the best of our knowledge, all the buffer-based approaches found in literature either are
cross-layer approaches or discard the standard PSM altogether and propose customized
scheduling solutions for the MAC layer. Our client-centric buffer-based approach does
not require any cross-layer communication, and it relies on the standard Adaptive Power
Saving Mechanism (PSM-A) implemented in most of today’s hand-held devices.

22

Chapter 3

Testing Strategy

In this chapter, methodologies and tools used to evaluate the energy consumption of smart-
phone network-related applications are presented. More specifically, a framework to assess
the energy consumption and find energy bugs of applications is described in section 3.1,
and section 3.2 presents the method we use to capture the network traffic wirelessly.

3.1 Energy Assessment Framework

3.1.1 Introduction

The requirements in energy performance testing are different than those in functional
testing. Whereas functional testing most likely treats the parameters (the input) equally
and fairly, energy performance testing puts more weight on particular parameters that
mostly impact the power consumption. In functional testing, all parameters are equally
expected to cause a bug; however, in energy performance testing, the parameters that
control the hardware (e.g. GPS) are more expected to cause energy bugs. Also, in energy
performance testing, the relationship between parameters (dependency, for example) can
be considered to reduce the number of required test configurations.

Due to the enormous number of phone configurations and application contents, an
immense number of test cases exists [19]. Therefore, a selection technique reducing the
number of test cases is desired. For this reason, a framework to select user-level test
cases for energy cost evaluation of smartphone applications [69] has been proposed. In the

23

current work, we have generalized the methodology in [69] and explained it by means of a
detailed flow chart.

The concepts of parameters, configurations, application contents, and test cases are at
the core of this methodology. An explanation of these terms is as follows:

• Parameters: The settings of smartphone parameters affect the power consumption
of applications. For example, the power consumption of a music player application
is affected by the level of the device volume. Most of the parameters have various
states representing different values. Some of those parameters are display size, Blue-
tooth, and brightness level. Table 3.1 shows some parameters with their states for
five different smartphones, namely, BlackBerry 9700, HTC HD2, HTC Nexus One,
Nokia E71, and iPhone 3GS. In the table, ‘Yes’ means the parameter is available
on that particular smartphone, ‘No’ implies that the parameter is not available, and
‘Alternative’ denotes that a similar parameter is available. Some parameters take
discrete values, and others take continuous values.

• Configurations: A configuration of a smartphone is an instance of all parameters
for which a device is used to run an application [19][69]. Since the total number of
all possible combinations of parameters’ values is vastly large, there is an enormous
number of configurations.

• Application contents: Application contents represent the settings of the application
under test. Since this is an energy performance testing, only application contents that
affect the energy performance metric are considered. For example, a video playing
application supports different file formats (contents), and these different file formats
require different amounts of processing time. Also, they use different amounts of
memory. As a result, the type of video file affects the power consumption of a video
player application.

• Test cases: A test case represents input and output of an experiment. A device
configuration and application contents are the input of the test case. The output is
the power consumption. We are not interested in the user output (the service given
by the application). We observe the power consumption during the execution time
and consider it as a test output. Since there is an enormous number of configurations
and a large number of application contents, the number of possible test cases is very
large.

24

Table 3.1: Some of smartphones’ parameters.

25

3.1.2 Generalized Approach

The work in [69] is one of the basic studies that were done in the area of energy performance
testing for smartphone applications. In that work, a methodology of test selection technique
was proposed to have a reduced number of configurations which is used to obtain the
energy behavior of an application. Since this work mainly generalizes the work in [69], a
brief summary of [69] is given next.

Assume that there are m parameters in a smartphone d grouped in the set Gd =
{B1, B2, · · · , Bm}. A specific state of a parameter Bj is blj, and it has η(Bj) states. For
example, the Volume parameter B31 for HTC Nexus One smartphone (refer to Table 3.1)
has a state b131 = ‘0’, and the number of states for this parameter is η(B31) = 16. A
configuration βi represents an instance of all settable parameters of a smartphone. A
smartphone application Ai has a type of content Ci. The number of contents for a particular
application A1 is denoted by η(Ci). For example, a music player application A1 supports
only two file formats: c11 = ‘MP3’ and c21 = ‘WAV’. The number of contents for this
application is η(C1) = 2.

The number of test cases Nc is expressed as:

Nc = Sd ×
M∑
i=1

Xd(Ai)× η(Ci), (3.1)

where Sd is the number of configurations for a smartphone d. M is the number of chosen
applications. Xd(Ai) indicates whether or not the application Ai is available in the phone
d.

The number of all possible configurations for a smartphone d is expressed as:

Sd =
m∏
j=1

η(Bj) (3.2)

This number is extremely large for any smartphone [69], and it is not feasible to consider
all the configurations of a smartphone while testing. To reduce the number of configura-
tions, firstly the smarphone parameters are categorized as follows:

• Basic Parameters (Gd
0): This group contains all the parameters whose values are

fixed. A user cannot change or adjust the values of those parameters. Processor,

26

memory and size of display fall into this group. Table 3.1 shows some basic param-
eters of the five smartphones mentioned earlier. Those parameters are kept aside
during the testing process. However, when two or more smartphones are compared
from an energy performance viewpoint, the differences in these parameters must be
considered during the analysis of the test results.

• Active Parameters (Gd
1): This group contains the parameters of which the user can

control and adjust their values. Basically, these parameters are some utility programs
on top of the operating system (OS), which control hardware components. Appli-
cations for controlling the volume of a device and the brightness of the display are
examples of active parameters. Table 3.1 illustrates some of the active parameters.
The active parameters are further divided into two subgroups:

– Primary Parameters (Gp
1): A subset of active parameters are included in a

set named as primary parameters. This subset of active parameters appears to
consume a significant proportion of the total power consumptions. So, they (the
primary parameters) strongly impact the power consumption of an application,
and their variations yield more informative test results. Those parameters are
given more weight when selecting test configurations.

– Standalone Parameters (Gs
1): These parameters are the rest of the active pa-

rameters. With the primary parameters, standalone parameters are considered
for performing standalone configurations.

• Passive Parameters (Gd
2): This group contains the rest of the parameters whose

values are also adjustable by the users. They are also utility programs incorporated in
the OS or from third parties. For example, WiFi Hotspot and Bluetooth Discoverable
are programs which use WiFi and Bluetooth interfaces, respectively. They do not
control the hardware components, but they use hardware components, and thus, they
affect the test outcomes. During the testing process, we need to take out the effect
of these applications by keeping their values fixed throughout the testing process.
Table 3.1 shows some of the passive parameters.

Only the active parameters are considered for the device configurations. The basic
parameters are omitted and the passive parameters are fixed to certain values. The number
of active parameters is mA. The total number of test cases is given as

NC = (SPd + SSd)×
M∑
i=1

Xd(Ai)× η(Ci), (3.3)

27

where SPd is the number of primary configurations, and SSd is the number of standalone
configurations. Primary configurations are obtained by considering primary parameters
only. Standalone configurations are obtained by considering standalone parameters one by
one with the primary parameters.

The work in [69] considers only one parameter in the primary set. However, for some
applications, there may be more than one parameter highly impacting the energy con-
sumption of a smartphone. For example, location related applications usually rely on the
GPS parameter as well as the network access mode parameter. Therefore, it is important
to consider multiple parameters in the primary set. This work considers the general case
where there are k ≤ m parameters in the primary set.

The dependency between parameters is a key idea in our methodology. Suppose the pa-
rameters Bi = {b1i , b2i · · · , bIi } and Bj = {b1j , b2j · · · , bJj } are active parameters, and θ(bui , b

q
j)

is the energy cost of a test case where the parameter bui ∈ Bi and the parameter bqj ∈ Bj.
The parameters Bi and Bj are independent of each other if their energy costs are additive;
that is:

Bi⊥Bj ⇐⇒[(
θ
(
bui , b

q
j

)
− θ

(
bvi , b

q
j

))
'
(
θ
(
bui , b

r
j

)
− θ

(
bvi , b

r
j

))]
u6=v,q 6=r

In order to check the dependency between two parameters, the energy costs of at least
four test cases are required. Suppose the set Gp

1, a subset of G1 (Gp
1 ⊆ G1), represents the

set of primary parameters for smartphone d. In order to obtain general expressions for a
number of configurations, we make the following assumptions:

• The set Gp
1 is called to be independent if all parameters in this set are independent

of each other. The notation Ind(Gp
1) means that the set Gp

1 is an independent set,
while the notation Dep(Gp

1) means Gp
1 is a dependent set.

• A parameter Bj is independent of the set Gp
1 if it is independent of all the parameters

in that set. The notation Ind(Bj , G
p
1) signifies that the parameter Bj is independent

of the set Gp
1, whereas Dep(Bj , G

p
1) states that the parameter Bj is dependent on

the set Gp
1.

The number of the primary configurations Spd can then be expressed as follows:

SPd =


1 +

∑
∀Bi∈Gp

1

[η (Bi)− 1] + k(k−1)
2

, Ind(Gp
1)∏

∀Bi∈Gp
1

η (Bi) , otherwise,
(3.4)

28

where k is the number of parameters in the primary set Gp
1, and Ind(Gp

1) means that all
the parameters in the primary set are independent of each other. Looking at the upper
expression of Eq. 3.4 which is applied when the primary set Gp

1 is independent (Ind(Gp
1)),

the first term represents the first experiment needed to be conducted which could have
any parameter settings. Since the primary set is independent, the second term represents
the number of test cases required to be conducted across each parameter in the primary
set with subtracting one state, which was conducted in the first experiment, from each
parameter. The third term which was derived from the binomial coefficient formula stands
for the minimum number of test cases that are required to examine the independency
among the parameters. The lower expression basically represents all possible combinations
of the parameters in the primary set since they are dependent on each other.

The number of standalone configurations Ssd related to a standalone parameter Bj is
Qj which can be expressed as:

Qj =


η(Bj)− 1 + k , Ind(Bj , Gp

1)

[η (Bj)− 1]

[
1 +

∑
∀Bi∈Gp

1

(η (Bi)− 1)

]
, Ind(Gp

1)

[η (Bj)− 1]
∏

∀Bi∈Gp
1

η (Bi) , Otherwise,

(3.5)

where Ind(Bj, G
p
1) means the standalone parameter Bj is independent of all primary pa-

rameters Gp
1. In the case where Bj is independent of Gp

1 in Eq. 3.5, the first and second
terms represent the number of experiments required to be conducted across Bj where one
of the states of Bj was already conducted in the primary stage. The third term represents
the minimum number of experiments required to verify the independency of Bj among all
parameters in Gp

1.

In the case where Gp
1 is independent, the same number of configurations required in

the primary configurations in the case where Gp
1 is independent is needed to be conducted

for the rest of the states of Bj; in here we don’t need to include the term used to examine
the independency because we would already know, from the primary stage, that Gp

1 is
independent. When Gp

1 is a dependent set, all possible combinations are required to be
considered with subtracting the configurations which were conducted in the primary stage.

The number of all standalone configurations SSd can now be expressed as:

SSd =
∑
∀Bj∈Gs

1

Qj (3.6)

29

Considering the case where only one parameter is in the primary set (k = 1) gives the
special case shown in [69] (where the primary set contains only one parameter.)

3.1.3 Description of the Methodology

In this section, a HTC Nexus One smartphone will be considered as an example to explain
the flow chart shown in Fig. 3.1 and to show how to fill up the configuration table shown
in Table 3.2.

1. As a first step, all the phone’s parameters have to be grouped in a set Gd. The HTC
Nexus One smartphone has 21 parameters that affect its power consumption [4].
However, parameters in Gd are categorized into three sets, Gd

0, G
d
1 and Gd

2. The
set Gd

0 includes the basic parameters. For the HTC Nexus One phone, there are
six basic parameters. The set Gd

1 includes the active parameters that control the
hardware components. the HTC Nexus One smartphone has five active parameters
(mA = 5). The set Gd

2 contains the passive parameters that use, but do not control,
the hardware components. There are ten passive parameters in the HTC Nexus One
phone.

The parameters in Gd
1 are further classified into two subgroups, Gp

1 and Gs
1. The

primary parameters Gp
1 appear to consume a large proportion of energy. The rest of

the active parameters are called standalone parameters Gs
1. Techniques for selecting

primary parameters Gp
1 are beyond the scope of this work. For the HTC Nexus

One smartphone, only Data Access Mode and Volume are considered in Gp
1; that is

Gp
1 = {B31, B34} and k = |Gp

1| = 2.

2. After categorizing the parameters, all settable parameters (Gd
1 and Gd

2 parameters)

should be set to initial values b0j

∣∣∣Bj∈(Gd
1∪Gd

2)
. Passive parameters are kept fixed to

those initial values during the whole experiment. Now, we need to initiate the set of
configurations Tc = φ. This set will include all the selected configurations.

3. We need to check the dependency among all primary parameters Gp
1. In order to do

so, we need to conduct some experiments. Two parameters are said to be independent
if their energy costs are additive [4]. The dependency has to be checked for each and
every pair of the primary parameters Gp

1. The function Ind(Gp
1) takes the set of the

parameters Gp
1 and checks the dependency among each and every pair of the param-

eters in that set. The outcome of this function is either “True,” if all the parameters
are independent of each other or “False,” otherwise. To check the dependency for

30

Figure 3.1: Flowchart for filling out
the configuration table, (AllCo and
Cross are explained in the text, and
T is a local variable).

Table 3.2: Configurations table
for HTC Nexus One smartphone
(mA = 5).

31

a pair of parameters, at least four configurations are required. However, the same
configurations can be used to check the dependency for many pairs. Although being
mainly used to check the dependency, those configurations are also used to fill up the
configuration table. The set Dp represents the set of configurations used to check the
dependency among Gp

1. In our example, the set of configurations Dp consists of the
first four configurations in the Table 3.2. That is Dp = {Ct

1, C
t
2, C

t
3, C

t
4}.

4. We make a decision about how to get the primary configurations depending on the
results of the dependency check. If all parameters in Gp

1 are independent (that is,
Ind(Gp

1) = true), we need to go to step (5) to get the primary configurations. Oth-
erwise, we get the primary configurations via step (6). In our example, we assumed
that the two primary parameters we have are independent of each other; that is
Ind(Gp

1) = true.

5. We try to get a set of configurations T representing a subset of the primary configu-
rations Tcp. Since the primary parameters are independent, we need to choose con-
figurations only across each of the primary parameters [4]. The function Cross(Gp

1)
takes the primary parameters Gp

1 and returns a set of configurations T by going across
each of the primary parameters. In our example, by going across both of the primary
parameters, we get T = {Ct

1 ∼ Ct
3, C

t
5 ∼ Ct

19}.

6. Since the primary parameters are not independent, we need to consider all possible
combinations of the primary parameters in order to get the set of configurations T .
The function AllCo(Gp

1) takes the primary parameters and returns a set of configu-
rations T by considering all possible combinations of those parameters.

7. Some of the configurations in the set T were already considered in the set of con-
figurations Dp used to check the dependency among primary parameters. The
set of all primary configurations Tcp can now be determined by the union of T
and Dp; that is Tcp = T

⋃
Dp. Then, the set Tc has to be updated by consid-

ering the primary configurations Tcp in it. In our example, the set of the pri-
mary configurations Tcp = {Ct

1, C
t
2, ..., C

t
19}. We can verify the number of pri-

mary configurations by applying Eq. 3.4. Now, we update the set Tc; that is
Tc = Tc

⋃
Tcp = Tcp = {Ct

1, C
t
2, ..., C

t
19}.

8. From now on, we will be dealing with the standalone parameters. We choose one
(new) standalone parameter Bj, and then we check the dependency between the
standalone parameter Bj and the primary parameters Gp

1. In our example, we chose
GPS parameter (B35) [4] as the first standalone parameter. The function Ind(Bj, G

p
1)

32

checks the dependency between the standalone parameter and each of the primary
parameters. It returns “True” if the standalone parameter is independent of all
of the primary parameters. Otherwise, it returns “False”. We need to conduct
some experiments using a set of configurations Dj

s in order to check the dependency.
The set Dj

s contains the configurations used to check the dependency between the
standalone parameter Bj and each of the primary parameters in Gp

1. We used the
configurations {Ct

3, C
t
4, C

t
20, C

t
21} to check the dependency between the GPS param-

eter and the volume parameter, and the configurations {Ct
3, C

t
5, C

t
21, C

t
22} to check

the dependency between the GPS parameter and the Data Access Mode parame-
ter. Thus D35

s = {Ct
3, C

t
4, C

t
5, C

t
20, C

t
21, C

t
22}. The set D′js is a subset of Dj

s, which
represents the configurations in Dj

s that are not yet included in the Tc. That is
D′35s = D35

s \Tc = {Ct
20, C

t
21, C

t
22}.

9. At this point, a decision about how to get the standalone configurations is made
based on the results of the dependency check. If the standalone parameter Bj is
independent of all the primary parameters, we go to step (10). Otherwise, we go to
step (11). In our example, we assumed that standalone parameters are independent
of all primary parameters.

10. At this point, we eliminate the initial state of the standalone parameter Bj from its
set of states because the initial state was already considered in the primary stage,
and we call the new set of states B′j. Since Ind(Bj, G

p
1) = True, we get standalone

configurations related to Bj by going only across B′j. In our example, only the
configuration Ct

22 is considered (T = {Ct
22}).

11. In this case, we need to look again at the dependency among the primary parameters,
which was already checked in step (3). In order to get the standalone configurations,
we go to step (13) if the primary parameters are independent, and we go to step (12)
otherwise.

12. We eliminate the initial value b0j of the standalone parameter Bj and form a new
set of states B′j. After that, we get the set of configurations T related to Bj by
considering all possible combinations between the primary parameters Gp

1 and the
set {B′j}.

13. For this case, we basically consider the primary configurations with the rest of the
states of the standalone parameter Bj in order to get the standalone configurations
related to Bj. In other words, to get the set of configurations T , we apply the function
Cross(Gp

1) with each state of the standalone parameter Bj except the initial state.

33

14. At this point, we have already got the set of configurations T . We can get the
set of standalone configurations Tcsj corresponding to the standalone parameter Bj

by taking the union between the set T and the set D′js . The set Tc is updated by
considering the standalone configurations Tcsj . In our example, the standalone config-
urations corresponding to the GPS parameter are Tcs35 = T

⋃
D′35s = {Ct

20, C
t
21, C

t
22},

and the set of configurations Tc = Tc
⋃
Tcs35 = {Ct

1, C
t
2, ..., C

t
22}. We can verify that

Q35 = |Tcs35| via Eq. 3.5.

15. At this point, we check if there is a standalone parameter which has not been chosen
yet. If so, we go back to step (8). Otherwise, we end. In our example, and by
assuming that the rest of the standalone parameters (Bluetooth ‘B33’ and Brightness
‘B32’) are also independent of Gp

1, we get Tcs33 = {Ct
23 ∼ Ct

25} and Tcs32 = {Ct
26 ∼

Ct
31}. The configurations {20 ∼ 31} represent all standalone configurations (see

Eq. 3.6).

From the above application for HTC Nexus One phone, and referring to Table 3.2, we
notice that: mA = 5; k = 2; η(B34) = 3; η(B31) = 16; η(B35) = 2; η(B33) = 2; η(B32) = 5;
Gp

1 = {B34, B31}; Ind(B35, G
p
1) = True; Ind(B33, G

p
1) = True, and Ind(B32, G

p
1) = True.

By referring to Eqs. (3.4 ∼ 3.6), now we can get Spd = 19; Q35 = 3; Q33 = 3; Q32 = 6;
Ssd = 12, and Sd = 31.

Application developers and testers can follow this process to select a reduced set of
configurations in order to evaluate the energy performance of their applications. Also, they
can use this process to compare applications’ behaviors on different devices and platforms.

3.1.4 Experimental Setup

Our approach uses a test bench to measure the power consumption (the output of the test)
of the application under test for every test case. As shown in Fig. 3.2, a smartphone is
powered by a power supply with a high precision current measurement unit. This power
supply is connected to a computer in order to read and store the measurements. During the
experiment, we disconnect the battery’s power interface and power the smartphone from
the power supply; however, the battery communication interface should stay connected to
the smartphone. Also the battery has to have enough power during all experiments so that
no power-saving state takes place.

34

Figure 3.2: Experimental setup.

3.2 Network-Traffic Analysis

In order to have a better picture of the power consumption of network-related applications,
a network-traffic analyzer is needed in addition to the power measurement bench introduced
earlier in this chapter. Analyzing the traffic generated by an application can provide
information about when and for how long the WNIC is transmitting, receiving. idling or
sleeping. For this purpose, Wireshark, a network protocol analyzer, is used to sniff the
network traffic in the wireless link between the access point and the smartpnone. Figure 3.3
shows where the traffic sniffing is taking place. Wireshark is installed in a laptop running
linux kernel. In order to be able to sniff the traffic wirelessly, the WiFi interface of the
laptop is switched into monitoring mode. Also, WEP encryption information is given to
wireshark so that wireshark is able to decrypt the IEEE802.11 packets.

35

Figure 3.3: Network traffic analysis at the wireless link.

Sniffing the traffic wirelessly helps to track the Power Flag in the headers of IEEE
802.11 frames. This flags tells when a station is switching to a sleep mode (PSM). Also,
the broadcast frames sent by the access point and the Null Function frames can be tracked.
In addition to that, the signal straight and noise information in the wireless channel can
also be monitored.

36

Chapter 4

Streaming Strategy

Mobile video streaming applications have become the most popular trends in smartpnone
applications. However, these kinds of applications consume lots of energy and thus signifi-
cantly hurt user experience. In this chapter, we test the energy consumption of delivering
multimedia contents to streaming applications and suggest a client-centric streaming tech-
nique.

4.1 Motivation

As was shown in chapter 2, there are many different techniques that can be applied for
streaming applications in order to enhance the energy cost of multimedia delivery. At the
application level, different application developers could adopt different delivery techniques
to build their streaming applications. Motivated by this, we have used the testing technique
explained in chapter 3 on different smartphone streaming applications and compared their
energy consumption. We chose YouTube streaming applications as YouTube is one of the
most popular video streaming providers. As of the end of 2011, it was reported that 10%
of the Internet traffic in North America was YouTube sessions [39]. First, the impact
of different video contents on the energy consumption of a YouTube applications was
explored. Five different 5-minute YouTube video contents with the same resolution were
played while testing the energy consumption of the YouTube application on iPhone 3GS
over a WiFi interface. Figure 4.1 shows the power consumptions of streaming 5 different
YouTube Videos. As the figure shows, the power cost of delivering the video contents to
the client application is almost twice the power cost of decoding and playing them. The
YouTube application starts playing the video contents after it has enough frames buffered,

37

and it then keeps downloading and playing at the same time. At some point, the whole
video content is downloaded, and the application continues playing the video from the
playback buffer. Also, this figure shows that content variation has very little impact on
energy consumption. Different video contents with the same length and the same resolution
consume the same battery power.

Figure 4.1: Streaming 5 different 5-minute YouTube contents using the YouTube App to
an iPhone via WiFi interface.

Having known that the content variation does not have much impact on energy con-
sumption, we compare the energy costs of streaming video content on two applications:
namely YouTube App and FoxTube App (both of them are YouTube applications found in
Apple App Store.) We streamed the same video content from the same server to the same
client (iPhone 3GS) using the two YouTube applications mentioned. Figure 4.2 shows the
power consumption of streaming a 10 minute video content to the two applications. Even
though exactly the same video content was streamed from the same server over the same
network to the same mobile device, FoxTube App finishes downloading the whole video
contents in about 40 seconds, whereas it takes YouTube App about 283 seconds to finish
downloading the whole video. Thus, the YouTube App consumes 13% more energy than
the FoxTube App. As is shown in the figure, the power consumption of playing the video

38

content is the same for both applications. That is to say that the two applications use
different techniques to download the video content, which led them to consume different
amounts of energy. It is worth mentioning that the two applications give exactly the same
user experience for streaming the video content.

Figure 4.2: Power consumption of streaming a 10-minute Youtube video using two different
applications to an iPhone via WiFi interface.

In order to understand the differences in content delivery of the two applications, a
traffic analyzer is used as explained in section 3.2. At the transport layer, figure 4.3 shows
the Tcptrace of the traffic flows of both applications. This figure confirms that the FoxTube
App takes about 40 seconds to finish downloading the whole 10-minute video file, whereas
it takes the YouTube App about 284 seconds to download the same file. The sub-figures
within figure 4.3 show zoomed-in graphs of both flows. For the FoxTube App, the traffic
is continuous, and the server application transmits the file as fast as TCP can deliver. For
the YouTube App, however, the traffic flow is discrete, and the server application pushes
a burst of about 64KByte to the transport layer and then pauses for some time before
pushing the next burst. It takes the TCP about 0.051 seconds to transmit a burst, and
then the TCP at the server side has no packets to send for about 0.37 seconds when the
server application is pausing. In other words, the YouTube App applies an application-level
flow control, whereas the FoxTube App relies on the TCP flow control. This explains why

39

it takes the YouTube App that long to finish downloading the whole file. However, it does
not really explain why the YouTube App consumes 13% more energy than the FoxTube.

Figure 4.3: Tcptrace of streaming a 10-minute Youtube video using two different applica-
tions to an iPhone via the WiFi interface.

In order to understand the differences in the energy consumptions of these two appli-
cations, it is worth looking at what is happening at the link layer. The WiFi interface was
used for both applications. The iPhone, as most of today’s smartphones, uses the PSM-A
technique (explained in section 2.2.1, page 10). If the WNIC is in a CAM (Continuous
Awake Mode) and there is no traffic (or the traffic is less than a threshold) for a timeout,
the WNIC will switch to PSM. Based on our experiments and the results in [43], most of
the smartphones’ WNICs have a timeout between 30ms to 200ms. For the iPhone 3GS, the
timeout is 60ms. Because the server application pauses for 370ms after each burst when
using the YouTube App, the WNIC of the iPhone stays idle for 60ms (the timeout period)
after each and every burst and then switches to the PSM. Tracking the Power Flag in the
IEEE 802.11 frames shows how long the WNIC is active (CAM), idle (timeout) and asleep
(PSM). Figure 4.4 shows the percentages of time the WNIC is in a particular state for both

40

applications. The figure indicates that the WNIC is idle for 7.38% of the time when the
YouTube App is used, whereas it is idle for only 0.07% of the time when the FoxTube App
is used. This explains the reason why the YouTube App consumes 13% more energy than
the FoxTube App while the same video content is being streamed from the same server for
both applications.

Figure 4.4: The percentage of time for each of the WNIC states while streaming a 10-
minute Youtube video using two different applications to an iPhone via WiFi interface.

Both applications streamed the multimedia content from the same YouTube server.
The FoxTube App forces YouTube server not to apply application-level flow control by
setting the parameter “ratebypass=yes” in the URL of the HTTP request, whereas the
YouTube App does not set this parameter. It is worth mentioning that decisions made by
application developers at the application level directly impact the energy consumption of
the underneath protocols in the other layer of the protocol stack.

Motivated by this, we have suggested a client-centric streaming technique. In this
technique, the client controls the downloading process, and it saves energy by generating
big bursts separated by long time periods. By doing this, the number of transitions between
CAM and PSM is reduced, and consequently the amount of time the WNIC is in the idle
state is also reduced.

4.2 System Model

In our model, the client controls the download process. Figure 4.5 shows the system model.
As shown in the figure, the client application consists of three main components, namely

41

Downloader, Buffer and Player. The player takes multimedia frames from the buffer at a
constant rate and plays them back. The downloader fetches the multimedia frames from
the server and puts them in the buffer. The downloader and the buffer play the most
important roles in our model since we are mainly interested in content delivery.

Figure 4.5: System model.

We have implemented an HTTP server using JAVA programming language. The server
is deployed in a desktop machine (located in our lab) running Windows 7. Also, we have
implemented a client-side streaming application using Android SDK. The client application
is deployed in a Galaxy Nexus smartphone running Android V4.2.1. The client is connected
to a Cisco Linksys access point over IEEE802.11g interface. All the experiments were
conducted using these settings. Figure 4.6 shows the GUIs of the client and the server
applications.

The downloader opens a connection with the server and downloads a range of multi-
media bytes (using the Range field in the header of HTTP Get method) that will just fill
up the buffer. The Player starts playing back the multimedia content as soon as there
are enough frames in the buffer. Once the buffered frames are below a Low Water Mark
(LWM), the downloader fetches the next range of bytes that will just fill up the buffer.

The pseudocode shown in Algorithm 1 explains how the downloader works. The process
takes 1) file size, 2) buffer size, 3) LWM, and 4) socket-reading as its input. The file size is

42

(a) Server GUI. (b) Client GUI.

Figure 4.6: The GUIs for the server and the client’s streaming applications.

commonly obtained by sending an HTTP request specifying the range field to be the first
couple of bytes of the file. The server sends back an HTTP response specifying the Content-
Length field to be the file size. The output of the downloader, line 5, is the downloaded file.
The process starts, at line 6 in the algorithm, by initializing a counter for the number of
bytes downloaded so far. Line 8 calculates the range of bytes to be downloaded (the burst
size), which directly depends on the buffer size. The function “occupied Buffer” returns
the amount of data in the buffer. The function “fetch Range” at line 9 sends an HTTP
request specifying the requested range of bytes. The received TCP stream is accessible by
the input byte stream “new Data[].” The byte array “bytes []” used to read the input TCP
stream is initialized with a length of “socket Reading” bytes at line 10. At line 12, the
function “read Stream” reads “socket Reading” bytes form the input stream “new Data”
and saves them in the byte array “bytes [].” The function “buffer Data” buffers the bytes
read from the input stream into the playback buffer. After all the data in the input stream

43

“new Data[]” is read, the downloader keeps monitoring the state of the playback buffer at
lines 16 to 18. The function “Sleep” at line 17 causes the current thread to sleep for the
specified amount of time, and the function “time Needed To Playback” returns the amount
of time required to play back the specified amount of data. Once the data in the playback
buffer is below the LWM, the downloader goes back to line 8 and starts fetching the next
range of bytes.

Algorithm 1: Client-centric streaming downloader

Input:
1: file Size
2: buffer Size
3: LWM . Low Water Mark
4: socket Reading

Output:
5: Downloaded file

Procedure:
6: downloaded Bytes← 0
7: while downloaded Bytes < file Size do
8: range← min{(buffer Size − occupied Buffer ()) ,

(file Size − downloaded Bytes)}
9: new Data []← fetch Range(downloaded Bytes+ 1 ,

downloaded Bytes+ range)
10: Initializing ⇒ bytes [socket Reading]
11: repeat
12: bytes []← read Stream(new Data [] , socket Reading)
13: buffer Data(bytes [])
14: until new Data has been fully read
15: downloaded Bytes← downloaded Bytes+ range
16: while occupied Buffer () > LWM do
17: Sleep(time Needed To P layback(occupied Buffer () − LWM))
18: end while
19: end while

44

4.3 Mathematical Model

The energy consumption of the client-centric technique described in 4.2 can be mathemat-
ically modeled as follows:

Edownloading =
FS
PS
Epacket +NoC × EC (4.1)

where
Edownloading is the energy consumption of downloading a given multimedia file with a given
buffer;
FS is the size of the multimedia file to be downloaded;
PS is the the packet size without headers overhead (equals to the MSS “Maximum Segment
Size” of TCP). For most of the experiments we have conducted, PS = 1448 bytes;
Epacket is the Energy consumption of downloading one packet;
EC is the the energy required for establishing and tearing down one connection;
NoC is the number of connections required to download the whole multimedia file for a
given buffer size. NoC is expressed as follows:

NoC =

{ ⌈
FS−BS

BS(1−α)
+ 1
⌉

; FS ≥ BS

1 ; Otherwise
(4.2)

where
BS is the buffer size, and
α is the minimum percentage of data in the buffer; that is α = LWM

BS
, where α ∈ (0, 1).

4.3.1 Energy Required for Establishing and Terminating a Con-
nection (EC)

The energy required to establish and tear down one connection is measured experimentally.
EC is an overhead that is required each time a new range of data is fetched. This overhead
includes the following:

1. TCP connection establishment: When a range of data is required, an HTTP request
is needed to be sent to the server. A TCP connection is required to send this request
to the server and to receive the corresponding response from the server. In order to

45

establish a TCP connection, a three-way handshake packets have to be exchanged
between the client and the server.

2. HTTP request/response: Each time a new range is required, the client streaming
application has to tell the server application what is the range of data it needs . In
order to do that, the client sends an HTTP request with a Range Field indicating the
required range of data. The server sends an HTTP response confirming the range
and the encryption used. Then the server application sends the required range of
data to the client application.

3. TCP connection termination: After the required range of data is received, the TCP
connection is probably not needed in the short run. So, the client and the server
terminate the connection. A typical TCP tear-down requires four-way handshake
packets to be exchanged between a client and a server.

4. WNIC idle period: After a TCP connection is terminated, the WNIC at the client
side stays in CAM mode waiting for the timeout to elapse before switching to PSM
mode (explained in section 4.1). This timeout is hardware-specific, and different
smartphones’ network adapters have different timeout values. Table 4.1 shows the
WNIC idle timeout, which were determined experimentally, for some smartphones.
Also, whenever a WNIC changes mode, it has to notify the access point by sending
special packets (called Null Function) and setting the Power Flag accordingly.

Phone WNIC idle timeout (ms)

Nokia E71 130

iPhone 3GS 60

iPhone 4 75

Galaxy Nexus 200

Table 4.1: WNIC timeouts of different smartphones.

5. WNIC mode switching: After the idle timeout elapses, the WNIC switches its mode
into PSM. Similarly, once the traffic rate at the WNIC exceeds a threshold, the WNIC
switches its mode into CAM. The process of changing modes at the hardware level
costs some time and energy.

These costs all together accumulate for the coefficient EC . We have measured the EC
for Galaxy Nexus smartphone. This measurement was done in two stages:

46

1. Over one TCP connection, the client successively establishes 1000 HTTP persistent
connections. The client sends an HTTP request to the server asking for one byte of
data, and the server responds with an HTTP response. Figure 4.7 shows the power
consumption of opening 1000 HTTP connections using a Galaxy Nexus smartphone.
From this experiment, the energy consumption of an HTTP request/response pair
can be measured.

Figure 4.7: Power consumption of openning 1000 HTTP persistent connections in Galaxy
Nexus smartphone.

2. In this stage, 1000 TCP connections are successively established with a 0.21 sec-
ond pause time in between. Because the WNIC idle timeout for Galaxy Nexus (as
indicated in table 4.1) is 0.2 second, the pause between the TCP connections was
chosen to be 0.21 second. From this experiment, the energy consumption of opening
a TCP connection, terminating a TCP connection, waiting for the WNIC timeout
(idle period), and switching a WNIC mode can be measured. Figure 4.8 shows the
power consumption of openning 1000 TCP connections with a 0.21 second pause in
between for a Galaxy Nexus smartphone.

47

Figure 4.8: Power consumption of openning 1000 TCP connections with 0.21 second paus-
ing time for Galaxy Nexus smartphone.

For the Galaxy Nexus smartphone, combining the energy costs from the two stages
gives:

EC =
12 + 49.2

1000
= 0.0612 Joule

4.3.2 Energy Required to Download one Packet (EPacket)

The server application delivers the multimedia stream to the TCP socket at the server
side; then the TCP protocol at the server side packetizes the stream and sends it to the
client-side TCP protocol which will deliver it to the client-side streaming application. The
energy cost of downloading one packet (EPacket) consists of the energy cost of receiving the
packet and the energy cost of sending the corresponding acknowledgment. This energy cost
is determined experimentally by downloading a range of bytes that will make up a certain
number of full-sized packets. Thus, the energy cost of downloading a packet is nothing but

EPacket =
Energy of downloading a range of bytes− EC

Number downloaded packets
.

By using a Galaxy Nexus smartphone and our test network, figure 4.9 shows the energy
cost of downloading a range of bytes packetized into 10, 000 full-sized packets (1448 byte
each). The energy cost of downloading one packet for Galaxy Nexus smartphone (EPacket)
is about 0.00067053 Joule.

48

Figure 4.9: Power consumption of downloading 10, 000 full-sized packets for Galaxy Nexus.

4.4 System Parameters

There are some parameters associated with this client-centric streaming technique. Some
of these parameters are associated with the server, and other parameters are associated
with the client. These parameters are as follows:

1. Buffer size (at the client).

2. Low water mark (LWM) for the buffer (at the client).

3. The amount of data read from the client’s TCP socket at a time, termed as socket-
reading (at the client).

4. The amount of data read from the playback buffer at a time, termed as buffer reading
(at the client)

5. The burst size sent by the server (at the server).

6. The pausing time (at the server).

As far as this work is concerned, only client-side parameters are considered. Buffer size
is one of the most important parameters at the client. The Low Water Mark (LWM) is the
minimum amount of data in the buffer. During the playback time, the data in the buffer
should not be less than the LWM in order to keep continuous playback. The amount of
data the downloader reads from the TCP socket at a time and puts in the playback buffer
is also another parameter, termed Socket-reading. The effects of each of the client side
parameters (namely buffer size, LWM, and socket-reading) on the energy consumption of
the proposed downloader are studied next.

49

4.4.1 Buffer Size

The playback buffer size plays an important role in streaming applications. By using an
appropriate buffer size, the delays or network throughput fluctuation can be absorbed.
Thus, it will allow the client to continue playing back the content during short-term lapses
in network bandwidth. However, the main use of the buffer here is not only to compensate
for bandwidth variations, but to save energy by allowing the WNIC to sleep for long periods
of time while the media content is played back from the buffer.

In order to understand the effect of buffer size on energy consumption, an experiment
is needed. The parameter settings used in this experiment are shown in Table 4.2. The
test cases chosen for this experiment include changing the buffer size from 61, 440 bytes
to 1, 026, 048 bytes with steps of 8, 192 bytes. All phone parameters and other application
parameters are kept fixed during the experiment. For consistency, the experiment was
repeated 4 times. Figure 4.10 shows the measured and the expected changes in energy
consumption with respect to the changes in the buffer size. The expected curve was
determined using the mathematical model developed in section 4.3, whereas the measured
results were observed experimentally using the system model explained in section 4.2. From
the figure, the results obtained from the mathematical model match the experimental
results. As expected, by increasing the buffer size, the number of required connections
NoC is reduced, and consequently the energy consumption of streaming the multimedia
file is also reduced. The buffer size is bounded below by the minimum buffer size required
to compensate for network variations (which is out of the scope of this work). In the
best interest of the user, the buffer size should be greater than or equal to the file size.
However, most operating systems limit the amount of memory an application can use. For
the Galaxy Nexus smartphone running Android V4.2.1, our streaming application cannot
allocate a buffer size greater than 50 MB.

Parameter Value

File Size (FS) 33243196 Byte

Packet Size (PS) 1448 Byte

LWM (α) 0.1

Video Duration 5 : 10 m : s

Socket-Reading 1024 Byte

Table 4.2: Parameter settings for the experiment of changing buffer size.

50

Figure 4.10: Energy consumption of streaming a 31.7 MB, 5 minute video file with different
buffer sizes for Galaxy Nexus smartphone.

Figure 4.11: Power consumption of streaming a 31.7 MB, 5 minute video file with a 3 MB
buffer.

Figure 4.11 shows the power consumption of streaming 31.7−MB, 5−minute video
content using 3 −MB buffer and LWM = 10%. For this experiment, and according to
eq. 4.2, the client had to send 12 requests to the server to fully download the video content.
The spikes in the figure represent these requests. By having a bigger buffer size, the number

51

of the spikes is reduced, and hence the overhead cost of establishing new connections (EC)
is reduced. Moreover, the slow-start phase of the TCP protocol leads to an increase in the
total downloading time.

4.4.2 Low Water Mark

The LWM is another parameter that affects the number of required connections (eq. 4.2.)
To test the effect of the LWM on the energy consumption of a streaming application,
an experiment needs to be conducted. Table 4.3 shows the parameter settings for this
experiment.

Parameter Value

File Size (FS) 53935553 Byte

Packet Size (PS) 1448 Byte

Buffer size (BS) 1048576 Byte

Video Duration 5 : 00 m : s

Socket-Reading 1024 Byte

Table 4.3: Parameter settings for the experiment of changing LWM.

The parameter α represents the LWM such that α = LWM
BS

. The test cases chosen
for this experiment include changing the parameter α from 0.05 to 0.95 with 0.05 incre-
ment. All phone parameters and other application parameters are kept fixed during the
experiment. For consistency, the experiment was repeated 5 times. Figure 4.12 shows the
experimental results as well as the expected results. The expected results obtained from
the mathematical model match the average measured results. Since the number of con-
nections increases by increasing α, the energy consumption also increases. The smaller the
LWM is, the more energy savings. However, the LWM should be big enough to compensate
for network variations. The minimum value of the LWM needed to compensate for jitter
is out of the scope of this work. Interested readers can find more information in [55] and
[56].

52

Figure 4.12: The energy consumption of downloading 51 MB, 5 minute video content with
different values of α.

4.4.3 Socket-reading

The socket is the interface between the application layer and the transport layer. The term
“Socket-reading” means the amount of data an application reads from its input-stream
socket at a time. Figure 4.13 shows the interplay of TCP sockets and application processes
via buffers. When the server application wants to send content to the client application, it
pushes this content to the TCP send buffer via a socket interface. The TCP transmits the
content if the congestion and the receive windows allow. The client application reads the
content from the TCP receive buffer via the socket interface and stores it into the playback
buffer. Socket-reading (the amount of data read from the TCP socket at the client side)
is a parameter that can be manipulated by the application developers.

In order to check the impact of the socket-reading parameter on the energy consump-
tion, an experiment was conducted. A 50 MB video file was streamed from the server to
the client. The test cases chosen for this experiment include changing the socket-reading
parameter from 1 byte to 100 bytes with steps of 1 byte. All other parameters are kept fixed
during the experiment. For consistency, the experiment was repeated 4 times. Figure 4.14
shows the results. Surprisingly, the energy consumption of downloading the content when
the socket-reading is 1 byte is 150% more than the energy consumption of downloading
the content when the socket-reading size is 100 bytes.

53

Figure 4.13: Interplay of TCP sockets and applications via buffers.

Figure 4.14: The Energy consumption of downloading 50 MB video content for different
values of socket-reading parameter.

Figure 4.15 shows the power traces of streaming a 50 MB file with two socket-reading
values (1 byte and 100 bytes). The time needed to fully download the file in the case
of 1 byte socket-reading is twice as much as that in the case of 100-byte socket-reading.
This explains why the energy consumption in the case of small values of the socket-reading
parameter is much higher than in the case of large values of the socket-reading parameter.

54

Figure 4.15: The Power consumption of downloading 50 MB video content for two values
of socket-reading (1-Byte & 100-Byte).

Figure 4.16: TCP-traces of streaming 50 MB video content for two values of Socket-Reading
(S-R).

Looking at the TCP layer, Figure 4.16 shows the TCP-traces of streaming the 50 MB

55

video file in two cases: i) 1 byte socket-reading, ii) 100-byte socket-reading. The streaming
application takes about 60 seconds to download the content file in the case of 1 byte socket-
reading, whereas it takes about half of that time to download the same content in the case
of 100-byte socket-reading. When the streaming application reads 1 byte at a time from the
TCP receive buffer (i.e. 1 byte socket-reading), the TCP receive buffer at the client side
gets full, and consequently the receive windows advertised by TCP at the client side get
small. Because of the TCP flow control mechanism and Silly-Window-Syndrome avoidance
algorithms, these small advertised receive windows throttle the server and slow down the
packet stream. This causes the client device to keep its WNIC active for relatively long
time. In the case of the 100-byte socket-reading, however, the server is not constrained by
the client receive window as shown in the figure. That means the server sends the packet
stream as fast as the network can deliver.

4.5 Discussion

The main idea of this streaming technique is to reduce the amount of time the WNIC
is idle. Resulting from using the PSM-A technique in WiFi interface of most of today’s
smartphones, each time the WiFi interface is to be switched from CAM to PSM, it stays
idle for a timeout. The duration of the timeout period is hardware-specific. Based on
our observations of some of today’s smartphones, it ranges between 30ms and 200ms.
Reducing the number of transitions between CAM and PSM will reduce the overall idle
time and, thus, reduce the energy consumption.

The buffer size is one of the important parameters that affect the energy consumption.
Having a bigger playback buffer at the application level allows to fetch large bursts of data.
That reduces the number of transitions between CAM and PSM and saves energy. The
LWM is another parameter in streaming applications. It also affects the required number
of transitions between CAM and PSM. However, LWM has to be big enough to compensate
for network variations and small enough to allow more energy savings.

Socket-reading is another very important parameter. Unlike buffer size and LWM,
which affect the idle time of the WNIC, socket-reading affects active time of the WNIC.
When socket-reading parameter is small, the streaming application reads slowly from the
TCP socket, and, thus, the advertised receive window of the TCP at the client-side will
be small. This throttles the available bandwidth and slows down the flow. Eventually, the
time needed to download a burst increases, and the WNIC stays active for longer period
of time.

56

Chapter 5

Conclusion

Smartphones are getting increasingly more popular among all users. They have computer-
like capabilities and provide sophisticated services to the users. Despite the enormous
growth in smartphones ubiquity and their applications and services, their utility has been
severely limited by their battery lifetime. Since the growth of the battery is not keeping up
with the rapid evolution of other smartphone components, it is very important to conserve
smartphones’ energy. The hardware components are the actual energy consumer. Software
applications, however, use hardware resources through the operating system, which in turn
consume battery power when they are in use. Thus, being at the application level, software
applications play the most important role in the energy consumption of smartphones.

Owing to the limited battery life, smartphone applications should be energy efficient.
Application developers need a tool that helps them make well-functioning applications
with minimum power consumption. Alongside with functional testing, energy performance
testing is sorely essential. Chapter 3 explains the proposed, generalized methodology of our
energy performance testing. Application developers and testers can follow this process to
select test configurations and conduct experiments in order to evaluate the energy perfor-
mance of their applications during the development process. A detailed flow chart was used
to explain the process steps, and a specific smartphone, namely HTC Nexus One, was used
as an example to illustrate the process. We have derived general mathematical expressions
representing the number of required configurations. We showed an energy evaluation test
bench. It is crucial to standardize a test bench in order to be able to compare test results.

Among all smartphone applications, streaming applications are known to be energy-
hungry. On the other hand, they are gaining more and more popularity. From mobile TV
to streaming websites, users enjoy streaming multimedia content on their smartphones.

57

However, user perception is hurt by the limited battery lifetime. It is essential that mobile
video streaming applications not only provide a good viewing experience but also avoid
excessive energy consumption. Streaming applications consume energy in three stages
during a downloading session: i) content delivery; ii) content decoding; iii) content playing.
It has been shown that the cost of content delivery is the dominant one among all other
costs in streaming applications. The cost of downloading the multimedia content is about
treble the cost of decoding it when using the WiFi interface.

In chapter 4, using our proposed test bench, we have evaluated the energy consumption
of some popular streaming applications. Among different streaming applications, we found
that there is not much different in the decoding and playing costs of streaming a video
content. However, application developers adopt different downloading strategies, which
cause the applications to consume different amounts of energy while downloading. Many
delivery techniques for streaming applications are proposed, which were reviewed in chap-
ter 2. Most of the techniques focus on shaping the stream by making bursts out of constant
or variable bit rate traffic.

We have developed a model of an energy-efficient client-centric data downloader for
streaming applications. The client controls the downloading mechanism. It saves energy
by downloading long bursts into the playback buffer, which reduces the time the WNIC is
idle. We have also given a mathematical model representing the energy consumption for our
downloader. The effect of each of the downloader’s parameters on the energy consumption
was studied, and the mathematical model was validated by means of experiments. We
have shown that, by increasing the playback buffer of the application, the idle time of the
WNIC at the link level decreases, which leads to less energy consumption. Similarly, by
decreasing the low water mark (LWM) value, the idle time of the WNIC at the link level
decreases. Also, by increasing the socket-reading value, the cost of downloading a packet
decreases significantly, which leads to significant energy savings.

There is no panacea for power saving in multimedia streaming on smartphones, and
power consumption of streaming applications is still far from optimum. As future work,
the server side parameters of streaming applications will be studied. Since some users tend
not to watch the whole content while others tend to, user profile should be considered in
the model.

58

References

[1] IEEE standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks - specific requirements
part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifi-
cations amendment 8: Medium access control (MAC) quality of service enhancements.
IEEE Std 802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003)),
pages 1 –189, 2005.

[2] IEEE standard for information technology– local and metropolitan area networks–
specific requirements– part 11: Wireless LAN medium access control (MAC)and phys-
ical layer (PHY) specifications amendment 5: Enhancements for higher throughput.
IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE
Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std
802.11w-2009), pages 1 –565, 2009.

[3] Ieee standard for information technology– local and metropolitan area networks– spe-
cific requirements– part 11: Wireless LAN medium access control (MAC) and phys-
ical layer (PHY) specifications amendment 8: Ieee 802.11 wireless network manage-
ment. IEEE Std 802.11v-2011 (Amendment to IEEE Std 802.11-2007 as amended
by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE
Std 802.11w-2009, IEEE Std 802.11n-2009, IEEE Std 802.11p-2010, and IEEE Std
802.11z-2010), pages 1 –433, 2011.

[4] A. Abogharaf, R. Palit, K. Naik, and A. Singh. A methodology for energy performance
testing of smartphone applications. In Automation of Software Test (AST), 2012 7th
International Workshop on Automation of Software Test, pages 110–116, 2012.

[5] A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy. Server controlled power man-
agement for wireless portable devices. HP-Labs, HPL-2003, 82, 2003.

59

[6] Andrea Acquaviva, Emanuele Lattanzi, and Alessandro Bogliolo. Design and sim-
ulation of power-aware scheduling strategies of streaming data in wireless lans. In
Proceedings of the 7th ACM international symposium on Modeling, analysis and sim-
ulation of wireless and mobile systems, MSWiM ’04, pages 39–46, New York, NY,
USA, 2004. ACM.

[7] Andrea Acquaviva, Tajana Simunic, Vinay Deolalikar, and Sumit Roy. Remote power
control of wireless network interfaces. In JorgeJuan Chico and Enrico Macii, editors,
Integrated Circuit and System Design. Power and Timing Modeling, Optimization
and Simulation, volume 2799 of Lecture Notes in Computer Science, pages 369–378.
Springer Berlin Heidelberg, 2003.

[8] J. Adams and G-M. Muntean. Adaptive-buffer power save mechanism for mobile
multimedia streaming. In Communications, 2007. ICC ’07. IEEE International Con-
ference on, pages 4548 –4553, june 2007.

[9] J. Adams and G.-M. Muntean. Power save adaptation algorithm for multimedia
streaming to mobile devices. In Portable Information Devices, 2007. PORTABLE07.
IEEE International Conference on, pages 1 –5, may 2007.

[10] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Ghosts in the machine:
interfaces for better power management. In Proceedings of the 2nd international con-
ference on Mobile systems, applications, and services, MobiSys ’04, pages 23–35, New
York, NY, USA, 2004. ACM.

[11] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning wireless network
power management. Wirel. Netw., 11(4):451–469, July 2005.

[12] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. Balancing energy saving and
qos in the mobile internet: an application-independent approach. In System Sciences,
2003. Proceedings of the 36th Annual Hawaii International Conference on, page 10
pp., jan. 2003.

[13] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. 802.11 power-saving mode for
mobile computing in wi-fi hotspots: limitations, enhancements and open issues. Wirel.
Netw., 14(6):745–768, December 2008.

[14] G. Anastasi, M. Conti, E. Gregori, A. Passarella, and L. Pelusi. An energy-efficient
protocol for multimedia streaming in a mobile environment. International Journal of
Pervasive Computing and Communications, 1(4):301–312, 2005.

60

[15] G. Anastasi, M. Conti, and W. Lapenna. Power saving policies for wireless access to
tcp/ip networks. In Proceedings of the 8-th IFIP Workshop on Performance Modelling
and Evaluation of ATM and IP Networks (IFIP ATM&IP2000), Ilkley (UK). Citeseer,
2000.

[16] G. Anastasi, A. Passarella, M. Conti, E. Gregori, and L. Pelusi. A power-aware
multimedia streaming protocol for mobile users. In Pervasive Services, 2005. ICPS
’05. Proceedings. International Conference on, pages 371 – 380, july 2005.

[17] C. Andrews, V. Vitaliev, M. Harris, C. Edwards, J. Hayes, and M. Venables. Predic-
tions for 2013 across our seven sectrors [looking forward 2013 predictions]. Engineering
Technology, 7(12):29–36, 2013.

[18] A.S.M. Arif, O. Ghazali, and S. Hassan. A survey on buffer and rate adaptation
optimization in tcp-based streaming media studies. Executive Development, 21:22,
2008.

[19] R. Arya, R. Palit, and K. Naik. A methodology for selecting experiments to measure
energy costs in smartphones. In Wireless Communications and Mobile Computing
Conference (IWCMC), 2011 7th International, pages 2087 –2092, july 2011.

[20] Susmit Bagchi. A fuzzy algorithm for dynamically adaptive multimedia streaming.
ACM Trans. Multimedia Comput. Commun. Appl., 7(2):11:1–11:26, March 2011.

[21] D. Bertozzi, L. Benini, and B. Ricco. Power aware network interface management
for streaming multimedia. In Wireless Communications and Networking Conference,
2002. WCNC2002. 2002 IEEE, volume 2, pages 926 – 930 vol.2, March 2002.

[22] Davide Bertozzi, Anand Raghunathan, Luca Benini, and Srivaths Ravi. Transport
protocol optimization for energy efficient wireless embedded systems. In Proceedings
of the conference on Design, Automation and Test in Europe - Volume 1, DATE ’03,
pages 10706–, Washington, DC, USA, 2003. IEEE Computer Society.

[23] L. Cai and Yung-Hsiang Lu. Energy management using buffer memory for streaming
data. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 24(2):141 – 152, Feb. 2005.

[24] Le Cai and Yung-Hsiang Lu. Dynamic power management using data buffers. In
Proceedings of the conference on Design, automation and test in Europe - Volume 1,
DATE ’04, pages 10526–, Washington, DC, USA, 2004. IEEE Computer Society.

61

[25] S. Chandra. Wireless network interface energy consumption: implications for popular
streaming formats. Multimedia Systems, 9(2):185–201, 2003.

[26] S. Chandra and A. Vahdat. Application-specific network management for energy-
aware streaming of popular multimedia formats. In the General Track, 2002 USENIX
Annual Technical Conference, pages 329 –342, Jun. 2002.

[27] Kyoung Youn Cho, S. Mitra, and E.J. McCluskey. Gate exhaustive testing. In Test
Conference, 2005. Proceedings. ITC 2005. IEEE International, pages 7 pp. –777, Nov.
2005.

[28] Inc. Cisco Systems. Cisco visual networking index: Global mobile data traffic forecast
update, 20122017, 2013. http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf.

[29] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. The AETG system: an
approach to testing based on combinatorial design. Software Engineering, IEEE Trans-
actions on, 23(7):437 –444, Jul 1997.

[30] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, C.J. Colbourn, and J.S. Collofello. A
variable strength interaction testing of components. In Computer Software and Appli-
cations Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual International,
pages 413 – 418, Nov. 2003.

[31] Radu Cornea, Alex Nicolau, and Nikil Dutt. Annotation based multimedia streaming
over wireless networks. In Embedded Systems for Real Time Multimedia, Proceedings
of the 2006 IEEE/ACM/IFIP Workshop on, pages 47 –52, Oct. 2006.

[32] Shuguang Cui, A.J. Goldsmith, and A. Bahai. Energy-constrained modulation opti-
mization. Wireless Communications, IEEE Transactions on, 4(5):2349 – 2360, Sept.
2005.

[33] Y. Cui, X. Ma, H. Wang, I. Stojmenovic, and J. Liu. A survey of energy efficient
wireless transmission and modeling in mobile cloud computing. Mobile Networks and
Applications, pages 1–8, 2012.

[34] Yong Cui, Xiao Ma, Hongyi Wang, Ivan Stojmenovic, and Jiangchuan Liu. A survey of
energy efficient wireless transmission and modeling in mobile cloud computing. Mobile
Networks and Applications, 18:148–155, 2013.

62

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf

[35] J. Czerwonka. Pairwise testing in the real world: Practical extensions to test-case
scenarios. Microsoft Corporation, Software Testing Technical Articles, 2008.

[36] M. De Sanctis, E. Cianca, and V. Joshi. Energy efficient wireless networks towards
green communications. Wireless Personal Communications, 59(3):537–552, 2011.

[37] F.R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: exploiting high bandwidth
wireless interfaces to save energy for mobile devices. In Proceedings of the 8th Inter-
national Conference on Mobile Systems, Applications, and Services, pages 107–122.
ACM, 2010.

[38] D. Feng, C. Jiang, G. Lim, L. Cimini, Jr., G. Feng, and G. Li. A survey of
energy-efficient wireless communications. Communications Surveys Tutorials, IEEE,
PP(99):1 –12, 2012.

[39] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: rate lim-
iting youtube video streaming. In Proceedings of the 2012 USENIX conference on
Annual Technical Conference, USENIX ATC’12, pages 17–17, Berkeley, CA, USA,
2012. USENIX Association.

[40] M. Gundlach, S. Doster, H. Yan, D.K. Lowenthal, S.A. Watterson, and Surendar
Chandra. Dynamic, power-aware scheduling for mobile clients using a transparent
proxy. In Parallel Processing, 2004. ICPP 2004. International Conference on, pages
557 – 565 vol.1, aug. 2004.

[41] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, Oliver Spatscheck, and Xiaodong
Zhang. Delving into internet streaming media delivery: a quality and resource utiliza-
tion perspective. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, IMC ’06, pages 217–230, New York, NY, USA, 2006. ACM.

[42] Yong He and Ruixi Yuan. A novel scheduled power saving mechanism for 802.11
wireless lans. Mobile Computing, IEEE Transactions on, 8(10):1368 –1383, oct. 2009.

[43] M. Hoque, M. Siekkinen, and J. Nurminen. Energy efficient multimedia streaming to
mobile devices - a survey. Communications Surveys Tutorials, IEEE, PP(99):1 –19,
2012.

[44] M.A. Hoque, M. Siekkinen, and J.K. Nurminen. On the energy efficiency of proxy-
based traffic shaping for mobile audio streaming. In Consumer Communications and
Networking Conference (CCNC), 2011 IEEE, pages 891 –895, Jan. 2011.

63

[45] M.A. Hoque, M. Siekkinen, and J.K. Nurminen. Tcp receive buffer aware wireless
multimedia streaming - an energy efficient approach. In Proceedings of the 23rd ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video,
NOSSDAV ’13, February 2013.

[46] Intelligent Broadband Networks. Global internet phenomena report, 2012.
http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/

Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf.

[47] International Telecommunication Unio. Mobile traffic forecasts 2010-2020, 2011.
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=

1497&mid=5129.

[48] International Telecommunication Unio. Key global telecom indicators for the world
telecommunication service sector, 2012. http://www.mincom.tn/fileadmin/PDF/

Indicateurs_TIC/Rapports/ITU-D_ict_statistics.pdf.

[49] International Telecommunication Unio. The world in 2013: ICT facts and figures,
2013. http://www.itu.int/ITU-D/ict/facts/material/ICTFactsFigures2013.

pdf.

[50] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and Jyh Cheng Chen.
A survey of energy efficient network protocols for wireless networks. Wirel. Netw.,
7(4):343–358, September 2001.

[51] Hongseok Kim, Chan-Byoung Chae, G. de Veciana, and R.W. Heath. A cross-layer
approach to energy efficiency for adaptive mimo systems exploiting spare capacity.
Wireless Communications, IEEE Transactions on, 8(8):4264 –4275, August 2009.

[52] Jari Korhonen and Ye Wang. Power-efficient streaming for mobile terminals. In
Proceedings of the International Workshop on Network and Operating Systems Support
for Digital audio and Video, NOSSDAV ’05, pages 39–44, New York, NY, USA, 2005.
ACM.

[53] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless web access
with bounded slowdown. In Proceedings of the 8th Annual International Conference
on Mobile Computing and Networking, MobiCom ’02, pages 119–130, New York, NY,
USA, 2002. ACM.

[54] R. Kuhn, Yu Lei, and R. Kacker. Practical combinatorial testing: Beyond pairwise.
IT Professional, 10(3):19 –23, May-June 2008.

64

http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf
http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=1497&mid=5129
http://groups.itu.int/LinkClick.aspx?fileticket=jUF0k4SHa-U%3D&tabid=1497&mid=5129
http://www.mincom.tn/fileadmin/PDF/Indicateurs_TIC/Rapports/ITU-D_ict_statistics.pdf
http://www.mincom.tn/fileadmin/PDF/Indicateurs_TIC/Rapports/ITU-D_ict_statistics.pdf
http://www.itu.int/ITU-D/ict/facts/material/ICTFactsFigures2013.pdf
http://www.itu.int/ITU-D/ict/facts/material/ICTFactsFigures2013.pdf

[55] Kang Li, Charles Krasic, Jonathan Walpole, Molly Shor, and Calton Pu. The minimal
buffering requirements of congestion controlled interactive multimedia applications.
Interactive Distributed Multimedia Systems, pages 181–192, 2001.

[56] Mingzhe Li, Mark Claypool, and Robert Kinicki. Playout buffer and rate optimization
for streaming over IEEE 802.11 wireless networks. ACM Trans. Multimedia Comput.
Commun. Appl., 5(3):26:1–26:25, August 2009.

[57] Xin Li, Mian Dong, Zhan Ma, and Felix C. A. Fernandes. GreenTube: power opti-
mization for mobile videostreaming via dynamic cache management. In 20th ACM
International Conference on Multimedia, pages 279–288, 2012.

[58] Jiayang Liu and Lin Zhong. Micro power management of active 802.11 interfaces. In
Proceedings of the 6th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’08, pages 146–159, New York, NY, USA, 2008. ACM.

[59] Wenyu Liu, Xiaohua Li, and Mo Chen. Energy efficiency of mimo transmissions in
wireless sensor networks with diversity and multiplexing gains. In Acoustics, Speech,
and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Confer-
ence on, volume 4, pages iv/897 – iv/900 Vol. 4, March 2005.

[60] Yao Liu, Lei Guo, Fei Li, and Songqing Chen. An empirical evaluation of battery
power consumption for streaming data transmission to mobile devices. In Proceedings
of the 19th ACM international conference on Multimedia, MM ’11, pages 473–482,
New York, NY, USA, 2011. ACM.

[61] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation of
exhaustive testing for data structures. Technical report, Technical Report MIT-LCS-
TR-921, MIT CSAIL, Cambridge, MA, 2003.

[62] Guowang Miao, Nageen Himayat, Ye (Geoffrey) Li, and Ananthram Swami. Cross-
layer optimization for energy-efficient wireless communications: a survey. Wireless
Communications and Mobile Computing, 9(4):529–542, 2009.

[63] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Dynamo: A cross-
layer framework for end-to-end qos and energy optimization in mobile handheld de-
vices. Selected Areas in Communications, IEEE Journal on, 25(4):722 –737, May
2007.

[64] Shivajit Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, Nikil Dutt, Rajesh Gupta,
A. Nicolau, Sandeep Shukla, and Nalini Venkatasubramanian. A cross-layer approach

65

for power-performance optimization in distributed mobile systems. In Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, page
8 pp., April 2005.

[65] Shivajit Mohapatra, Radu Cornea, Nikil Dutt, Alex Nicolau, and Nalini Venkata-
subramanian. Integrated power management for video streaming to mobile handheld
devices. In Proceedings of the Eleventh ACM International Conference on Multimedia,
MULTIMEDIA ’03, pages 582–591, New York, NY, USA, 2003. ACM.

[66] K. Naik. A survey of software based energy saving methodologies for handheld wire-
less communication devices. Technical Report 2010, Department of Electrical and
Computer Engineering, University of Waterloo, 2010.

[67] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review of middleware
approaches for energy management in distributed environments. Software: Practice
and Experience, pages n/a–n/a, 2012.

[68] B. O’hara and A. Petrick. IEEE 802.11 handbook: a designer’s companion. Standards
Information Network, 2005.

[69] Rajesh Palit, Renuka Arya, Kshirasagar Naik, and Ajit Singh. Selection and execution
of user level test cases for energy cost evaluation of smartphones. In Proceedings of the
6th International Workshop on Automation of Software Test, AST ’11, pages 84–90,
New York, NY, USA, 2011. ACM.

[70] K. Pentikousis. In search of energy-efficient mobile networking. Communications
Magazine, IEEE, 48(1):95 –103, January 2010.

[71] X. Perez-Costa and D. Camps-Mur. IEEE 802.11E QoS and power saving features
overview and analysis of combined performance [accepted from open call]. Wireless
Communications, IEEE, 17(4):88 –96, August 2010.

[72] N. Pettis, L. Cai, and Yung-Hsiang Lu. Statistically optimal dynamic power manage-
ment for streaming data. Computers, IEEE Transactions on, 55(7):800 – 814, July
2006.

[73] N. Pettis, Le Cai, and Yung-Hsiang Lu. Dynamic power management for streaming
data. In Low Power Electronics and Design, 2004. ISLPED ’04. Proceedings of the
2004 International Symposium on, pages 62 –65, Aug. 2004.

66

[74] M Rosu, C Olsen, Lu Luo, and Chandrasekhar Narayanaswami. The power-aware
streaming proxy architecture. In Proceedings of BROADNETS, 2004.

[75] Curt Schurgers, Vijay Raghunathan, and Mani B. Srivastava. Modulation scaling for
real-time energy aware packet scheduling. In Global Telecommunications Conference,
2001. GLOBECOM ’01. IEEE, volume 6, pages 3653 –3657 vol.6, 2001.

[76] Curt Schurgers, Vijay Raghunathan, and Mani B. Srivastava. Power management for
energy-aware communication systems. ACM Trans. Embed. Comput. Syst., 2(3):431–
447, August 2003.

[77] Prashant J. Shenoy and Peter Radkov. Proxy-assisted power-friendly streaming to
mobile devices. pages 177–191, 2003.

[78] M. Siekkinen, M. Ashraful, J.K.N. Hoque, and M. Aalto. Streaming over 3G and LTE:
How to save smartphone energy in radio access network-friendly way. In Proceedings
of the 5th ACM Workshop on Mobile Video, MoVid ’13, February 2013.

[79] Enhua Tan, Lei Guo, Songqing Chen, and Xiaodong Zhang. Psm-throttling: Minimiz-
ing energy consumption for bulk data communications in wlans. In Network Protocols,
2007. ICNP 2007. IEEE International Conference on, pages 123 –132, oct. 2007.

[80] Shiao-Li Tsao and Chung-Huei Huang. A survey of energy efficient MAC protocols
for IEEE 802.11 WLAN. Computer Communications, 34(1):54 – 67, 2011.

[81] Yong Wei, S.M. Bhandarkar, and S. Chandra. A client-side statistical prediction
scheme for energy aware multimedia data streaming. Multimedia, IEEE Transactions
on, 8(4):866 –874, Aug. 2006.

[82] H. Yan, R. Krishnan, S.A. Watterson, D.K. Lowenthal, K. Li, and L.L. Peterson.
Client-centered energy and delay analysis for TCP downloads. In Quality of Service,
2004. IWQOS 2004. Twelfth IEEE International Workshop on, pages 255 – 264, June
2004.

[83] H. Yan, S.A. Watterson, D.K. Lowenthal, K. Li, R. Krishnan, and L.L. Peterson.
Client-centered, energy-efficient wireless communication on IEEE 802.11b networks.
Mobile Computing, IEEE Transactions on, 5(11):1575 –1590, Nov. 2006.

[84] Jinyao Yan, W. Muhlbauer, and B. Plattner. Analytical framework for improving the
quality of streaming over tcp. Multimedia, IEEE Transactions on, 14(6):1579 –1590,
Dec. 2012.

67

[85] Fan Zhang and SamuelT. Chanson. Proxy-assisted scheduling for energy-efficient
multimedia streaming over wireless lan. In Raouf Boutaba, Kevin Almeroth, Ramon
Puigjaner, Sherman Shen, and JamesP. Black, editors, NETWORKING 2005. Net-
working Technologies, Services, and Protocols; Performance of Computer and Com-
munication Networks; Mobile and Wireless Communications Systems, volume 3462 of
Lecture Notes in Computer Science, pages 980–991. Springer Berlin Heidelberg, 2005.

68

	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Solution Strategies
	Summary and Contributions

	Literature Review
	Testing Energy Consumption of Smartphone Applications
	Techniques to Save Energy in Smartphone Streaming Applications
	Layer-Wise Mechanisms
	Cross-Layer Mechanisms

	Testing Strategy
	Energy Assessment Framework
	Introduction
	Generalized Approach
	Description of the Methodology
	Experimental Setup

	Network-Traffic Analysis

	Streaming Strategy
	Motivation
	System Model
	Mathematical Model
	Energy Required for Establishing and Terminating a Connection (EC)
	Energy Required to Download one Packet (EPacket)

	System Parameters
	Buffer Size
	Low Water Mark
	Socket-reading

	Discussion

	Conclusion
	References

