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Abstract

This thesis explores option pricing and hedging in a discrete time regime-switching
environment. If the regime risk cannot be hedged away, then we cannot ignore
this risk and use the Black-Scholes pricing and hedging framework to generate a
unique pricing and hedging measure. We develop a risk neutral pricing measure by
applying an Esscher Transform to the real world asset price process, with the focus
on the issue of incompleteness of the market. The Esscher transform turns out to
be a convenient and effective tool for option pricing under the discrete time regime
switching models. We apply the pricing measure to both single variate European
options and multivariate options. To better understand the effect of the pricing
method, we also compared the results with those generated from two other risk
neutral methods: the Black-Scholes model, and the natural equivalent martingale
method.

We further investigate the difference in hedging associated with different pricing
measures. This is of interest when the choice of pricing method is uncertain under
regime switching models. We compare four hedging strategies: delta hedging for
the three risk neutral pricing methods under study, and mean variance hedging. We
also develop a more general tool of tail ordering for hedging analysis in a general
incomplete market with the uncertainty of the risk neutral measures. As a result
of the analysis, we propose that pricing and hedging using the Esscher transform
may be an effective strategy for a market where the regime switching process brings

uncertainty.
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Chapter 1

Pricing European Options under
Markov Regime-switching Models

with the Esscher Transform

1.1 Introduction

The regime switching framework for modeling econometric series provides an in-
tuitive and transparent way to capture market behaviors under different economic
conditions. Markov regime switching process have been widely used in econometrics
since the pioneering work of Hamilton (1989). In actuarial applications, Hardy (2001)
used a discrete time regime switching process for modeling long term index prices
and pricing derivatives, and in Hardy (2003) and Hardy et al (2006), the model was
used for risk management of maturity guarantees in equity linked insurance. Many
other authors, including Duan et al. (2002), Bollen (1998), Mamon and Rodrigo
(2005), Elliott et al. (2005), and Liew and Siu (2010) have considered option pric-
ing under various different Markov regime switching models, while Boyle and Liew
(2007) and Till (2011) investigated the optimization of hedge fund asset allocation

under a regime switching economic model.

My thesis explores an option pricing approach and conducts delta hedging anal-
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ysis in a discrete time regime switching environment. The object of this chapter
is the pricing of a European option in a market where there is one risky asset and
one risk free asset. We focus on the issue of market incompleteness associated with
the regime switching process. We develop a martingale pricing scheme, where the
equivalent martingale probability measure is identified using the Esscher Transform
technique. To do this, we will first specify the market model, discuss the incomplete-
ness issue, and review some well-documented risk neutral pricing methods developed
for the regime switching environment in the literature and distinguish our work from
them.

For readers’ convenience, I denote the source of cited definitions, lemmas, and
propositions in my thesis, and use the annotation CQ to indicate my contribution to

this work.

1.1.1 Model

A regime switching model can be expressed as a bivariate process, say {p;, Y;}, where
pr denotes the regime process and Y; represents the process, whose conditional distri-
bution at time ¢ depends on the time ¢ regime, p; (Hamilton, 1989). In some cases,
the distribution of Y; is solely determined by the regime at time . In these cases, we
may label the distribution with the single regime state p,. That is, conditional on
pt, Yy ~ F,, , where F, represents the conditional distribution function determined
by ps. The structure of this model is illustrated in Figure 1.1. In more compli-
cated models, the distribution of Y; may depend on other information, such as the
lagged values of Y;. In this thesis, we focus on the former one with a discrete time
Markov regime switching process. Although some of the results may be generalized,
for example, to regime switching auto-regressive processes, this development is left

for future research.

The underlying model in our study is

(Bt St)o<i<r, (1.1.1)

where B; and S; denote respectively the prices of a bond and a stock index at time



I
.

Pt

pr1 = R: Yigr ~ Fpt+1=R

pry1 = 1: <Yt+1 ~ Fp =1 >

1. uncertainty between regimes 2. uncertainty within regimes

Figure 1.1: Decomposition of uncertainty for Y;,; under regime switching models

t. Assume a constant risk free rate of return r is associated with the bond. Then,

the price processes of the assets are

Bt = BO 6” (1 1 2)
Sy = S eXp(ZlgsﬁtY;)?

where the return process es follows a Markov regime switching model with, say, R
regimes, where R is a positive integer. Let F and F/ denote the P-augmentation of
the natural filtrations generated by the yield process {Y;}._, and the regime process
{ps}_o, separately. Then, we write F; = F) V Ff representing the minimal sigma
algebra containing F} and Ff. It is worth noting that we assume here that we can
observe p; given the filtration ;. We do not consider (p;) as a hidden Markov chain
process, although this is a more realistic assumption for applications. In practice,
assuming a hidden Markov regime switching model, we may use the historical data of
the underlying asset to calibrate the model and identify p;. For a detailed discussion,
see, for example, Till (2011). Alternatively, the model for regimes may be specified
under Q measure, after identifying the model for regimes under the Q measure and
calibrating the model using the corresponding derivative data in the market. In this
thesis, the Markov model is specified under measure P and p; € F;. Based on the

filtration, we have the following additional assumptions fort=1,...,T.



(A1) p; follows a finite state Markov chain process;

(A2) Y, is a continuous random variable; and the distribution of Y; conditional on

p¢ is independent of py, s # t.

(A3) essinfY; < r < esssupY;; and the moment generating function exists for Y;

under P measure.

If we do not consider the model with Y; = r, then the condition essinfY;, < r <
esssup Y; in (A3) is necessary for a non-trivial arbitrage free model. The existence

of moment generating function is a necessary condition for our pricing method.

1.1.2 Incompleteness of the Markets under the Regime Switch-
ing Models

We first analyze the randomness of log return random variables Y;, and then discuss
the issue of market incompleteness. As illustrated in Figure 1.1, the randomness of
Y;+1 under a Markov regime switching model can be decomposed into two parts: the
part from the regime switching process and the part within each regime. In view
of the above decomposition on the log return, we may price a European option, as
the discounted expected payoff under a chosen equivalent martingale measure Q,
through the law of iterated expectation as follows. Recall that F; = FY V F/. Based
on the filtration F;, the price of a European option with payoff H(Sr) is

P,:= P(H(Sp)) = e "TYEH(Sy)|F Vv F], (1.1.3)

where E2 denotes the expectation under Q measure. We will specify E¥ in our pricing
method later. Based on the Markov property of the regime switching process (p;)i_,

equation (1.1.3) can be rewritten, using the law of iterated expectation, as

P = e "EX [E2 [H(Sp) [{Yi} oy pren ] HYSYer i (1.1.4)

In (1.1.4), there are two pricing steps related to the two parts of the randomness of

Y,. In step one, conditional on p,y1, the price E© [ H(Sr)|FY, per1] is determined.

4



Then in step two, the price P, is obtained by averaging over regimes p;.1. The
filtration for the out expectation is F; while the o—field for the inner expectation at
time ¢ is O'(ft vV {pt+1}>

It is also worth noting that no perfect replication strategy exists for the option
pricing process under our model, since it is assumed that there is no replicating
process available for regime switching. As an illustration, Figure 1.2 uses a simplified
pricing tree for a two-state regime switching model, with different payoffs under
different regimes. In the tree, the only opportunity to replicate the payoffs is at
the square box. Assume that we have different replicating strategies with respect to
different regimes p;. 1. In this case, even if the replicating can be perfect conditional
on p;y1, with the uncertainty of the regime switching, the payoff cannot be replicated.
Thus, this market must be incomplete. In my thesis, we assume a continuous random
variable Y; in a discrete time model; the conditional distribution of Y; given the
filtration F; reflects both the uncertainty of regime switching and the uncertainty

within each regime.
payoff;

Pl{pt+1 =1} <
payoff,

payoff,

Pl =2 <
payoff,

Figure 1.2: Illustration of the uncertainty for pricing under regime switching models

By

1.1.3 Distinction of Our Approach

This chapter addresses option pricing and hedging under discrete time Markov regime
switching models. This section briefly distinguishes our pricing approach from those
in the existing literature. The pricing approach used by previous authors can be

expressed as a double expectation, with the inner expectation conditional on the



physical path of regime transition, as follows
Po=e " T OENEH(S) | ps,s =t +1,...,T]), (1.1.5)

where H(Sr) represents the contingent claim of the derivative, E; = E(-|F;) rep-
resents the expectation under the physical probability measure given information by
time ¢, and EZ = E%(-| ;) represents the expectation under the risk neutral proba-
bility measure Q, given information by time ¢. In (1.1.5), the formula uses P-measure
to specify the probability distribution associated with the future regime switching
paths (ps)’_, ;. An example of this distribution is given as the distribution of so-
journ in each regime along a regime switching path; see, for example, Hardy (2001)
for more details. Under Q-measure in (1.1.5), the log-return process in each regime

is adjusted to be risk neutral, i.e.,
EY(e"|py) = ¢”.

We will term this pricing formula (1.1.5) for the natural equivalent martingale measure
method (NEMM). You can find this pricing method in Hardy (2001), Elliott et al.
(2005) and Liew and Siu (2010), and many others. In this formula, there is no
satisfactory explanation for using the P measure for the outer expectation. Assuming
(as we do) that the regime switching risk is non-diversifiable, and that it is non-
replicable, there should be a price of this risk, and the use of the P-measure for the
expectation fails to allow for the price of regime switching risk. For more discussion
on the pricing of the outer expectation, see, for example, Siu (2011), which supports

the case that this approach does not price the systemic regime risk.

An alternative approach to option pricing is through identifying an equivalent
martingale measure (EMM), taking account of the joint risk factors (p;) and (Y;).
Some pricing measures have been explored using this approach. Two interesting

examples proposed in the literature are as follows.

For a continuous time Markov regime switching model, Naik (1993) proposed an

equivalent martingale measure assuming there are state prices associated with regime



switching. However, this approach does not seem to have been developed further,

and identifying the state prices remains a challenge.

Another equivalent martingale measure in an incomplete market model is the
so—called minimal martingale measure (Foéllmer and Schweizer, 1991), found by min-
imizing the quadratic function of hedging errors. However, Elliott and Madan (1998)
show that the minimal martingale measure is not a practical measure since its exis-
tence requires that S; is restrictively bounded from above. Usually S; (and, hence Y)
are assumed unbounded, for example, assuming a normal distribution for Y;. In this
situation, the minimization of quadratic functions of hedging errors will not avoid

arbitrage opportunities.

Therefore, the measures used in the above two examples are not practical mea-
sures. In this chapter, we identify an equivalent martingale measure under discrete
time Markov regime switching models by applying the Esscher Transform. The Ess-
cher transform has previously been applied to the pricing formula (1.1.5) by Elliott et
al. (2005). However, their method implicitly assumes that the regime switching risk
is diversifiable. In this work, we use the Esscher transform to identify the Q measure,
with the incorporation of the non-diversifiable regime risk, and derive option prices
that are therefore different from the NEMM prices.

The Esscher Transform is a convenient tool for tilting a distribution, which has
a long history of application in actuarial science (eg, Kahn, 1962). It has been
used to determine the risk premium in insurance, as in Biihlmann (1980, 1983) and
Biithlmann et al. (1996, 1998). Gerber and Shiu (1994) pioneered its application
in identifying the risk neutral measure to value options for Lévy processes. Its
application in incomplete market financial problems highlights the important role of

actuarial methods in risk management.

In the remaining part of the present chapter, we will identify the equivalent
martingale measure and deduce the resulting distribution of the underlying asset
prices; then, we specifically derive the European option prices under the two state
regime switching lognormal (RSLN2) models. The Esscher transform can be justified
theoretically as the measure which maximizes an expected power utility, but in the

option pricing context, it is not clear exactly what this means, compared with prices
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generated by different EMMs. By developing the Esscher transform pricing formula,
we can compare the price and the implied hedge strategy with other EMMs.

1.2 No-arbitrage Pricing Approach by Using the

Esscher Transform

In an incomplete market model, any martingale measure which is equivalent to the
physical measure, is a potential pricing measure. We employ the Esscher transform to
identify a specific equivalent martingale measure (EMM), from the range of EMMs,
and use the resulting measure to price options. The obtained prices are compared
with two other related risk neutral approaches: the Black—Scholes formula (BS) and

the natural equivalent martingale measure method (NEMM).

We will first recall the general framework of a martingale approach for no-
arbitrage pricing under discrete time models, and then introduce the Esscher Trans-
form. The absence of arbitrage opportunities in a discrete time multiperiod model
is defined similar to the definition in a single period model as follows (see Follmer
and Schied (2004) chapter one). Consider a market of one risk free asset SP with
constant rate of return r and m risky assets. Denote S; = (S?,...,S™); the price
process (Sy)o<i<n is adapted to a filtration (F;)o<i<r. Let & = (&)o<t<r denote a
trading strategy, where & is Fi-measurable and & = (£, ..., &™) with & representing

the units of asset 7 in the strategy at time t.
Definition 1.2.1. (Resnick, 1999) A strategy ¢ is a self-financing trading strategy
if

§ - Stp1 = &1+ Sig1, 0<t<T -1

That is, the changes of the portfolio is due to the change of the underlying stock

prices.

Definition 1.2.2. (Panjer, H. (Ed.), 1998) In a multi-period securities market



model, an arbitrage opportunity is a self-financing strategy (&;) such that
fo . SO < 07 and §T . ST >0 with P(&r . ST > O) > 0. (126)

A securities market model is no-arbitrage if there is no arbitrage opportunities.

The no-arbitrage condition of a market model is achieved through the existence
of the so-called equivalent risk-neutral measure, or equivalent martingale measure.
In the context of the relationship between numéraires and measure changes, the risk
neutral measure in our case is associated with the money market account as the

numéraire.

Definition 1.2.3. (Follmer and Schied 2004) A risk-neutral measure is a probability
measure Q satisfying E®(S;) < oo and

SZ:EQ(Q_TSZ—&-”ft)a Z:O77m7t:0717

Two probability measures Q and P defined on a same measurable space (2, F)
are said to be equivalent, denoted as Q ~ P, if, for A € F, Q(A) = 0 if and only
if P(A) = 0. Based on Definition 1.2.3, we define the set of equivalent martingale

measures (EMM) as follows
Q = {Q|Qis a risk-neutral measure with Q ~ P}, (1.2.7)

where P is the physical probability measure. Based on the EMMs, we have the

following well-known results known as the Fundamental Theorem of Asset Pricing.

Lemma 1.2.1. (Féllmer and Schied 2004) A market model is arbitrage-free if and

only if Q is a nonempty set.

Proof. See the proof of Theorem 1.6 in Follmer and Schied (2004). O
A European derivative on the underlying assets Si,i = 0,...m has a payoff
H = g(S%,...,5%), where g is a measurable function on R™*!. After introducing
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the derivative for a price at time ¢, denoted by P;(H), the market is expanded by

having a new asset with the initial price at time ¢ as follows:
Sl .= P(H) (1.2.8)

We intent to identify the price P,(H) which does not generate arbitrage opportunities

in the expanded market.

Definition 1.2.4. (Fo6llmer and Schied 2004) We call the real number P,(H) > 0 a
no-arbitrage price of the derivative with payoff H, if this expanded market through
(1.2.8) is arbitrage-free.

Then, the set of no-arbitrage prices of the derivatives are as follows.

Lemma 1.2.2. (Féllmer and Schied 2004) Assume that the set Q of equivalent
martingale measures, defined in (1.2.7), for the market model is non-empty. Then
the set of arbitrage-free prices at time t, denoted by Py(H), of a contingent claim H

1s non-empty and

Pu(H)={E® (e_’"(T_t)H | ;)| Q € Qsuch that EY(H|F) < 0 a.s.}

Proof. See proof of Theorem 1.30 in Féllmer and Schied (2004). O

Next, we introduce the tool to identifying the EMM: the Esscher transform of a

random variable Y, defined as

(1.2.9)

where E¥ denotes the expectation under the physical probability measure P. In
(1.2.9), EF[e"Y] is the moment generating function of Y under P-measure, if it exists,
for some constant h, named the Esscher transform parameter. We always assume,
throughout the chapter, that the moment generating functions EP[eth] exist over

their corresponding domains. For a discrete time adapted process {Y;, F;: }1_,, we use

10



conditional Esscher transform (Biithlmann et al., 1996) as defined below:

ehtYe

H (1.2.10)

ehth|ﬂ 1]

where {h;}]_, is a sequence of random variables, with h; adapted to F;_i, treated as
parameters in the transform. Using the conditional Esscher transform with appro-
priately chosen parameters {h;}L_,, we can generate an EMM (denoted by Q) from

the physical probability measure P as we will specify later on.

Now, we apply the conditional Esscher transform to the Markov regime switching
models. Recall that S; denotes the price of the stock on which the option under

consideration is written, and the log-returns

Ytzlogi, fort=1,...,T,
St—1
where T denotes the expiration date of the option; the filtration F, := F v F7f
with Y and F/ being the P-augmentation of the natural filtrations generated by
the log-return process {Y;}._, and the regime process {p;}’_, respectively. Based on
Lemma 1.2.2, the price of the option, with a payoff H(S7), at time s for s = 1,...,T,

is given by
P,(H(Sp)) = e "T=9EQH(Sy) | Fl, (1.2.11)

where E? means the expectation under an equivalent martingale measure Q. We
define Q-measure through the following Radon-Nikodym derivative with respect to
P on Fi:

ehiYt

H B L] (1.2.12)

dP | .
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where the parameter h; is a F;_j-measurable random variable satisfying

v BTN F

e =
¥ (e | i

, for t=1,...,s. (1.2.13)

It is worth noting that, for s’ < s,

_er[(1Q
e (L)1)

Hereafter, we call the probability measure Q obtained through equation (1.2.12)

dQ
dp

conditional Esscher transform @Q measure (abbreviated ET-Q), as the right hand

side of (1.2.12) is a conditional Esscher transform.

As we can see shortly in Proposition 1.2.1, the ET-Q is a uniquely determined
EMM. To establish such a result, we first need to recall the definition of stochastic

ordering and some of its properties.

Definition 1.2.5. (Ross, 1996) (a). Let Y be a random variable with support [a, b]
under two equivalent probability measures Q; and Q5. Y is said to be stochastically
larger under QQ; than under s, denoted Q; >4 Qs, if

QY >y) =2 QY >y), VyeR (1.2.14)

(b). Y is strictly larger under @Q; than under Qq, denoted by Q; > Qo, if (1.2.14)
holds with “>” replaced by “>” for some y.

Lemma 1.2.3. (Ross, 1996) If Q1 >4 Qo for a random variable Y, then
E¥[g(Y)] = E®[g(Y)] (1.2.15)
for any increasing function g defined on the support of Y.

Proof. See proposition 9.1.2 in Ross (1996). 4

We can also characterize stochastic ordering between two probability measures

by their Radon Nikodym derivative as shown in the next lemma.
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Lemma 1.2.4. (CQ) Let Y be a random variable with support [a,b], where a,b € R
and a and b can be —oco and oo respectively. Assume that under two probability
measures Q1 and Qy, a continuous random variable Y has positive density functions
f@(y) and 2 (y) with regard to the Lebesque measure, respectively. If the densities
satisfy fO(y) = g(y) f@(y) for a continuous non-negative and strictly increasing
function g, then Qp >4 Q.

Proof. First note that there must exist a constant yy € (a,b) such that

<1 <
gly) > 1, y>yo.

Otherwise, if g(y) > 1 for all y € R, then we must have

/a () dy > / " e (y) dy,

which contradicts the assumption that both f@ and f@ are density functions and
hence both integrals in the last display are equal to one. Similarly, we could achieve
a contradiction by assuming g(y) < 1 for all y € R. Thus, taking into account the
continuous and strictly increasing properties of g, we immediately know that the

claim in (1.2.16) is true.

Next, we shall show that Qi(Y > y1) > Qa2(Y > y;) holds for all y; € (a,b).
We prove this by considering the following mutually exclusive cases, with regard to

the position of y,, respectively as below.

(i) If y; < yo. Then, 0 < g(y) < 1 for a < y < y;. Hence,

/ L)) dy < / ")y,

a

which immediately implies that Q;(Y > y; ) > Qo(Y >y ) foralla < 3, < yp.
If a < y1 < yo, then f(y;) > 0.

13



(ii) If yo < y3 < b. Then, g(y) > 1 for y; < y < b; and hence

b b
/ 9(1) % (y) dy > / 1% (y) dy,

v v
which immediately implies that Q;(Y > y; ) > Qa(Y > y; ) for all y; € (yo,b).

g

Remark 1.2.1. In the following proposition, we state the result of identify a unique
(up to almost surely) F;_;-measurable random variable i} through solving the equa-
tion (1.2.13). To make the proof easy to carry out, we focus on the regime switching
models with the filtration specified by F; = F) V F{, even though the proof can be

extended to other filtration.

Proposition 1.2.1. (CQ) Suppose F; = FY V Ff. Define conditional cumulant

generating functions
U, 1 (h) = log E [ehth|ft_1} , fort=1,....T, and h; € R.

Assume that the domain of Vy_1(hy) is non-empty with the boundaries (uy, us), where
uy + 1 < ug and uy and ug can be —oo and oo respectively. Assume W, _1(h;) tends
to infinity at the boundary u, if —oo < uy, and at the boundary us if us < oo,
almost surely, and suppose that for each t, W, 1(h;) is strictly convex and twice
differentiable almost surely. Furthermore, we assume that P(Y; > r|F;_1) > 0 and
P(Y;, < r|Fi-1) > 0 hold almost surely for all t = 1,2,...,T. Then, we have the

following results:

(a) There exists a unique (up to almost surely) F,_1-measurable random variable

hi satisfying equation (1.2.13).

(b) The probability measure Q defined by the Radon-Nikodym derivative (1.2.12)
with condition (1.2.13) is an EMM.

Proof. (a). For notational convenience, in this proof, denote F;_1 := (Y7, ..., Y1, po,

.., pr—1) in this proof. Similarly, f(yi|Fi—1) = f(yelY1, ..., Yie1,p0,...,p—1), as the
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density defined for the random variable Y; conditional on Yy,...,Y; 1,p0,..., pt—1-

To show that there is a unique solution A} given F;_; in (1.2.13), let

ety

ht F ) =
P = g

f(ye| Fe-r) (1.2.17)
be the Esscher Transformed density generated from f(y;|F;_1), the physical density of
Y; conditional on F,_;. Accordingly, we will use E"(-|F,_;) to denote the expectation
under the above density in (1.2.17) with parameter h,. Then, equation (1.2.13) can

be expressed as
e = EM[eM| Fi_y]

Consequently, it would be sufficient if we could establish the following results: (i)
E™(e¥¢|F,_1) is a strictly increasing function of A, almost surely; (ii) E™ (e¥t|F,_,) is a

continuous function of h; almost surely; (iii) mf EM (e¥| Fi_y)<e"<sup EM(e¥t|F_y)
he

almost surely. For notational convenience, Wlthout confusion, we omit the term

“almost surely” in the following proof.

Results (i) and (ii) can be proved in a completely parallel way as in Proposition
1.2 of Christoffersen et al. (2010). Indeed, result (i) follows from the assumption
that log E*[e"Yt| F,_,] is strictly convex in hy, and result (ii) is the direct result of the
twice differentiable assumption on the ¥ = log E¥[e"?|F,_;]. To show result (iii),
we consider the following four distinct cases separately, with regard to the range of
domain of W.

Case 1: Assume the domain of W,y (h;) is hy € (—00,00). We show that

lim E"(eM|F,_1)<e"< hm E™(e¥|F_1), as. (1.2.18)

ht——o0 ht—o00
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To prove (1.2.18), we first express E™ (e'*|F,_1) as follows:

Jo e f(y | Fioy) dyy

EPe (Y| F, = eyt fhi Fi_)dy, =
(e"[Fi1) I e (e | Fiea) dyy £ (7 Fy)

= Li(he) + Lo(hy),

where

Cevety f(y, | Fyy) dyy

T (h ) _ fr fTOO eytehtytf(yt | Ft—l) dyt
T TR e L)

and [2(ht): — EP(Ghthlﬂ_l)

Clearly, for any h; € R
B = ¢ [ 1 B dy = & PECY; > ),
and therefore
E'(e¥|Fiq) > " Pr™ (Y, > r|F_1) Vh eR (1.2.19)

If we show that limp, .o P (Y; > 7| F,_1) = 1, then we have limy, o E™ (Y| F,_y) >

eT

In addition, since

hi
IQ(ht) S e’ PI’(Y S r | ./Tt_l) S 6T, Vht eR
If we show that limp, ., [1(h:) = 0 and limy, .o I1hy = 0, then we have

 lim EM(eM|Fiy) = i Ty(hy) + Iy(hy) < €
Then, it would be sufficient if we could establish the following two conditions.

1. Limiting probabilities:

Pr(Y, > r|F_1) — L and Pr™(Y; <r|F,_1) — 0, as hy — oo; (1.2.20)
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Pr(Y, > r|F_1) — 0and Pr™(Y; <r|F,_1) — 1, as by — —00(1.2.21)

2. Limiting expectation conditions:

lim LA, =0

hi——o0

Regarding the limiting probabilities, we will prove the case h; — oo only, as it can be
similarly proved for hy — —oo. Let R = P(Y; > r|F;_1). Then, the given conditions
imply that 0 < R < 1 almost surely. Therefore, given F;_;, there exists a constant
y' > r such that P(Y; > y/|F_1) > £ for some positive integer N. Let A =y —r.
We have, V h; > 0,

P (Y > ) > PY(Y >y F)

> ehtyt |f )d
N /y’ mf(yt t—1) QY

ey’ e

> Fi1)d

2 E]P’(ehtl/}’f;til) /y/ f (el Fier) dy (1.2.22)
eht’ R

Z —

E(eh Fiy) N

6htA eht T R

EF (Y| Fpoy) N

and

T eyt
Pr'(Y;, < r|Fy) = /_oo mﬂyﬁﬂ—l)d@/t

eht’r‘ a
< ——7—— Fio1)d 1.2.23
< FEE | fwiF d (12.29
SR S—

EX ("1 Fi)

Combining (1.2.23) and (1.2.22), we get

Pri (Y, < r|Fil1) /( R
Pri(y, <r|F_,) < = <(1-R htﬁ—),
T (t_T| tl)_Prht(Yz>T|ft,1)_( ) e N
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whereby;,

lim Pr(Y; <r|F_1) Shlim (1—R)/(ehtA£) =0.

hi—o00 +—00

This immediately implies the limits in (1.2.20).

Regarding the limiting expectation condition, we consider h; < 0, since the con-

dition is required for h; — —oo. Define

e f(yy| Fior)
Ep(ehfyf|.7:t_1) Prh (Y, > r|}"t_1)’

f Wil Fi—1)
]P)(Y; > T"ft71> ’

9(ye) = and q(y;) =

which can be considered as two density functions for Y; with the same support of
e~ v ER (eht Y| Fyy) Pr (Y, > 7| Fimr)

P(Y; > r|Fi_1)
is strictly increasing in y; for a fixed hy < 0. According to Lemma 1.2.4, Y is

(r,00). In addition, the ratio q(y;)/g(y:) =

stochastically larger under probability measure with density ¢(y;) than under g(y;),
given a fixed h; < 0. Then, based on Lemmal.2.3,

/ e’ g(y) dyr < / e”q(ye) dyr, Ve <0. (1.2.24)
Consequently,
o MY f (| Fia) /oo
eVt dy, < eVt Fi1)/P(Yy > r|Fioq)d
| e e dn < [ el RO > 1) d

EX (Y| Fm) /P(Y: > r| Fiea),
(1.2.25)

IN

where the second inequality is due to (1.2.24). From the arbitrariness of h; < 0, we
also have, with P(Y; > r|F;_1) = R,

ehtytf(ytp t—l) P
el < eYt dy; < EF(e¥|F_1)/R. 1.2.26
/7“ E]P)(ehtnlj tfl) Prht(it > T|ft,1) = ( | ! 1)/ ( )

Thus, with the boundary results in (1.2.26), the limiting expectation condition is
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satisfied, since

0o ht yt F
lim I(h) = lim Pr™ (Y, > r|F_ 1)/ eytE( e il Fio) Y =0,

ht——o00 ht——o0 P €hth|f‘t_1) Prht(Yt > 7"|th_1)

as limy, o Pr™ (Y > 7| F_1) = 0.
Case 2: Assume the domain of U, (h;) is —co < a < hy < b < 00, where a+1 < b.

Based on the assumption that ¥, ; = log EF [ehth|.7:t_1] is twice differentiable
with regard to h;, and tends to infinity at the finite boundaries of its domain of h;
almost surely, we have the following result. As h; — a, E¥ [eh’tYf |ft_1] tends to infin-

ity at the boundary of its domain of h, almost surely, while E* (e +1)Y|F,_}) < oo.
Thus,

P (he+1) Yy
lim Eht(Yt]]: 1) = h ET(e! |Fi1)

=0 1.2.27
hi—a h—a  EF (MY F_y) ( )

Similarly, as hy — b,

P (ht+1) Yz
lim E!(eM|F_1) = lim E (¢ Fi1) -

ht—b—1 he—b—1  EF(ehtYe|F, ) (1228)

As a result, we have lim E™(e¥|F,_;)<e"< hlin}L E™ (e Fioy).
t—h'

ht——o0

Case 3: Assume the domain of W;_(h;) is hy € (—o0,b). Based on the result from
(1.2.18) and (1.2.28), we have

lim EM(e¥t|F_))<e"< lim EM(e¥*|Fi_y), as.

hi——o0 ht—b—1
Case 4: Assume the domain of W, ;(h;) is h: € (a,00). Similarly, we have

hm EM (eM| Fi_q)<e"< hm E™(e¥t|F, 1), as.

t*}CL t*)OO
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S Sy
b). We need to show E? | =X | Fi1| = t—l, or equivalently
=y
er\it—
S,
EQ [S LIF | =€, fort=1,...,T. In fact, by part (a), hy is uniquely determined
t—1

given F;_; and hence, it follows from the tower rule for the conditional expectation
that

Q St P Y, %b‘t
E ft,1 = E (& td(@— ft,1 (1229)
St-1 aP | Fi—1
(hi+1)Y:
P € r
— _—_ f_ =€ 3
{Eﬂ”[ehmm_ﬂ t ]
where the last equality is due to condition (1.2.13) with s = ¢. O

Remark 1.2.2. It is worth noting that the conditions in Proposition 1.2.1 are quite
mild in that they are satisfied by many popular regime switching models in finance,
and therefore the ET-Q can be used as a valid EMM in option pricing for a wide range
of models. To demonstrate this fact, we analyze the well-known regime switching
lognormal models in Example 1 and the regime switching auto-regressive model in

Example 2 below.

Example 1. In the regime switching lognormal models with R regimes, Y; only

depends on p; and Yi|p; ~ N(p,,, 07,) under P-measure. Therefore,
Wy 1(h) = log E” [ehYtW‘—t—l} = log E” [ehn|f)t—1] )

and for any ¢ from the regime state space,
R
log E¥ [e"|p1 =] = log (Z (E¥ ["]pe = 5] - Plpe = jlpe—1 = i)))
]:1
= logZeXp (ujh + = 02h2 + logpij> ,

where p;; = P(pr = jlpt—1 = 7). Obviously, the above conditional cumulant gener-

ating function is twice differentiable and tends to infinity as h tends to either —oo
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or co. Next we show the strict convexity of log EF [ehYt| Pio1 = z] as a function of h.
Indeed, g;;(h) = p;h + 1a2h2 + log pi; is obviously strictly convex as a function of h
so that its second derivative g;;(h) > 0 for all A € R, and therefore

9?log EX [ehytypt,l = z}
Oh?

1 R R R
— . (Z (2™ gl (h) + (g};)° ) (Z (e ) _ (Z e gl

Jj=1 J=1 Jj=1

(Zf:l e (h)>

1 R R R 2
S - . (Z egzj g” > (Z egu ) _ (Z egij(h)ggj(h)>
(ijl egij(h)) j=1 j=1 j=1

> 0,

where the last step is due to Holder’s inequality.

The above analysis implies that, with probability one, W;_;(h) is strictly convex,
twice differentiable and tends to infinity as h tends to either —oo or co. Therefore,the

conditions in Proposition 1.2.1 are satisfied. U

Example 2. In this example, we consider the the following regime switching AR(1)
model (Y, p;)L,, where the log-return Y; depends on not only the regime state p;

but also the log-return in the previous period:
Yi=p,, +aY, 1 +o,e, t=1,...T, (1.2.30)

where (g;)I_; is a sequence of white noises with e, ~ N (0, 1) under P-measure. From
(1.2.30) and the Markov property of (p;)L,,

U,_,(h) = logE" [ehyt|.7:t_1} = log E¥ [ehYt|Yt_1,pt_1} ,
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and for any ¢ from the regime state space and real number vy,
log = [ehYt|Yt—1 =Y, Pt-1 = Z}

R
= log (Z EX [ Yier =y, p = j] - Ploe = jlpe-1 = Z))

J=1

R
1
= logZexp <(,u1 + ay)h + 50?]12 + logpij) :

j=1

where p;; = P(p; = j|pi—1 = i). Following exactly the same argument as in Example
1, we can easily show that the above function of h satisfies all the conditions in
Proposition 1.2.1. O

Remark 1.2.3. Although the analysis in Examples 1 and 2 is quite straightforward,
it has very important implications. For instance, Example 1 indicates that, when
the log-return Y; only depends on p;, to verify the conditions in Proposition 1.2.1,
it is sufficient to investigate whether they are satisfied by the conditional cumulant
generating function log EX [ehyt\ptq = z] for each regime state i. This provides us
with a very transparent method for verification, and more importantly, by this
fact we can easily show that conditions in Proposition 1.2.1 are indeed satisfied for
many other distributions besides the normal distribution. The verification approach
conducted in Example 2 can be extended to AR models with a higher order and
even other more sophisticated models such as regime switching ARCH and GARCH
models.

1.2.1 Distributions under the Risk Neutral Measure

In the previous section, we have established an EMM Q measure through the Radon-
Nikodym derivative given in (1.2.12) with conditions (1.2.13). In this section, we
consider the Q measure distribution of the underlying asset price in an R state
Markov regime switching model. First, we derive the distribution of Y; conditional
on JF;_1; then, we consider the joint distribution of Y;,...,Yr. Let u; denote a

real number at which the moment generating function of Y, conditional on F, ;
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exists. Then, similar to (1.2.29), the moment generating function for the conditional

distribution of Y; given F;_; can be written as follows:

dQ
EQ [euth|f’t_1] _ E]P’ euthdé_[Pb:t
W’ftfl

EP [e(ut-ﬁ-hz‘)yt ‘ ftfl]
EF[ehiYe| Fy_y]

fH] (1.2.31)

Recall F; = FY VvV F/ under regime switching models. Based on the filtration
F; and the Markov property of the regime process imposed in section 1.1.1, we can
replace the result in (1.2.31) by

EP [e(s+h;)Yt| ]:t{l M{pe—1 = ZH
B[ | A2 Mo = i}]

EQ(QSYt‘ Floopa=i}) = (1.2.32)

For the simplicity of the computation, we further set up the following independence

assumption, which is common in the literature.
(A4) Yy,..., Yy are independent given {p;}_,.

red Assumption (A4) rules out the dependent models like Autoregressive-moving-
average (ARMA) models. Based on assumptions (A1) to (A4), (1.2.31) implies

EP [el+hi)¥| g,y = i]
EQesYi|p, 1 =1) = . 1.2.33
o= = T =) .

So we may condition on the regime process only, and no longer need the full F;_ 1,

when we consider the distribution of the underlying asset price under Q measure.

Proposition 1.2.1 applied to the regime switching model implies that h; is the
unique o(p;_1)-measurable random variable such that
EP [ehi+D Y2

er

’Pt—l]
" (1.2.34)
E]P[eht Y| pr—1)
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This means that under the RSLN framework with R regimes there are R possible
values for h¥, depending on the regime at time ¢t — 1. Let () be the unique value of

h; conditional on p;_1 = i. {As we assume that the state space of p;,_; is finite. }

Expanding (1.2.33) with A, the density function of ¥; under the Esscher trans-
formed Q measure (ET-Q density) conditional on {p;,_ 1 =1i,p; = j} is

@) .
e v fE (yilpe = J)

f3m) = i : . (1.2.35)
’ EX [e" Ve oy = i, pr = j]
and similarly, the Q density of Y; conditional on {p; 1 = i},
h@Dy, P _
1o(y) = S Wlpr =) (1.2.36)

e

where f¥ denotes the corresponding density function of Y; under the P-measure.
The following proposition shows that le can be expressed as a mixture of the fg

functions.

Proposition 1.2.2. The ET-Q density of Y; conditional on {p;—1 = i} is a mized
density,

R
£ =" ai; f2 ), (1.2.37)
j=1
where
ZE]P h() v, = _
i (" oy =1, pe = j) ijell. R} (1.2.38)

By =i)

Proof. The proof follows from the fact that

R
FF o =) = v [ wilon = J).
j=1
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Indeed, substituting the above into (1.2.35) and using (1.2.36), we immediately have

eh® w TE (el pe—1 = 1)
EP (" Y pyy = i
N Zle i f¥ (el pe = 4)
EP[eh(i>)/t |Pt—1 _ Z]
R (@) . . (4) .
— Z (Pij EP[eh K | pio1 =1, p0 = ]]) e fp(yt\pt =)

EX[eh® Yt |p,_y = 1] EX[eh® Y | pyy =i, py = j]

sz(yt)

j=1

R
= Z%’fg(yt)
j=1

Clearly, Zle ¢ij = 1, since

R
EF[ ilpr = i) = 3 pyE 1" Y ey = i pu = ], (1.2.39)

j=1
O

Remark 1.2.4. Using Proposition 1.2.2, we can represent the distribution law of the
process of (S;) under the ET-Q measure by a new Markov regime switching process
denoted by (S;) and specified as follows. Let (p}) denote a regime process with R?
states {[ij] : 4,5 = 1,..., R}, where p; = [ij] corresponds to the event of the physical
regime process {p;—1 =i, p; = j}. Then the regime transition probabilities under Q

measure are

Q (prr = ligl]pr = [K1]) = { 2 i; (1.2.40)

Having obtained the conditional distribution of Y; given F;_; with densities ex-
pressed from (1.2.35) to (1.2.38), we further investigate the joint density of Y7, ..., Y7.
We observe from equation (1.2.35) that, conditional on {p;}._,, the distribution of
Y, is given as fg, which is independent of Y, s # t under ET-QQ measure. We
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summarize in the following lemma.

Lemma 1.2.5. Based on assumptions (A1) to (A4), Y1,...,Yr are conditionally

independent under ET-Q measure given {p} }H_o-

Proof. Based on assumptions (Al) to (A4), under ET-Q measure, the density of Y;
conditional on pf, f@(y:|p;), is given in (1.2.35). According to assumption (A4),
Y1, ..., Y7 conditional on {p;}{ , are independent under P-measure. Therefore, the
term ¥ (y¢|p; = j) in (1.2.35) is independent of Y, s # t. Also, since the parameter
hﬁi) is determined by p_; = i, the term E¥ [eh(i)y’f|pt_1 =1, :j] in (1.2.35) is
jointly determined by p; and p;_1, i.e., independent of Y, s # t and ps,s <t —1. As

a result,
Ul vy o1 = fRwler), (1.2.41)
by which we complete the proof. O

Lemma 1.2.6. Based on assumptions (A1) to (A4), the distribution of Y; conditional
on p;, under ET-Q measure, is independent of p% for s # t.

Proof. Based on the same argument for lemma 1.2.5. U

Based on Lemma 1.2.5 and Lemma 1.2.6, the distribution of Y; is solely deter-
mined by p; under the ET-Q measure.

It is worth noting that, in (1.2.35), to compute the probability associated with
the path {p;}L_, under the ET-Q measure, we need to sum over all the paths {p;}7_,
which generate the regime switching path {p;}Z,. In this study there is a one-to-
one relationship between the paths {p;}]_; and {p;}{_, according to Remark 1.2.4.

Therefore no sum is needed.

We can obtain the moment generating function of Yi,...,Yr. Let (uq,...,ur)
be a vector of real numbers such that the moment generating function EQ(eZtT:1 ut¥e)

exists. Then,

EQ [eu1Y1+"'+UTYT:| — EQ [EQ (6U1Y1+"'+UTYT | {pzﬂ}?zl)] 7 (1.2.42)
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where

T
EQ (6“1Y1+"'+UTYT‘{P:}Z;1) — H E@(euth |pz<) (1'2'43)
t=1
= 11 EX (et ppy, py)
=1 EP(ehth| po1,p)

The distribution of {p;}Z_, follows a Markov chain as described in Remark 1.2.4 with

transition probabilities given in (1.2.38).

The distribution of Sp = Sy exp(Z?zl Y:) given (pi, p5 ..., p5) can be obtained
in the same way as in (1.2.43). Let ¢ be a constant such that the moment generating

function of the log return 3./ V; exists conditional on {p}}7_,. Then,

EQ (exp

Next, we give an example to illustrate the result in Proposition 1.2.2.

T

cZYt

t=1

{pl‘}L) = JIE%e™100) (1.2.44)

Example 3. Assume a 2-state Markov regime switching models where Y; follows the
univariate natural exponential family within each regime. Under the ET-Q measure,

the mixed density of Y; given p;_; under P-measure is

f(yt ’ Pt—1 = Z) = Pi1 gl(yt) eXP[Qlyt - A1(91)] + Pio 92(%) eXp[Gzyt - A2(92)]

where g;(y;) and A;(6;),7 = 1,2 are given functions. 6;,7 = 1,2 are parameters. The

moment generating function E(e™Y|p;_1 =i, p; = j) is

E(e"Y |py =i, pr = j)
- /Y "t g;(ye) expl0; yr — A;(65)] dy,

= expl4,;(0;+ hi) — A;(0;)].
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Two Esscher transform parameter h¥, denoted by {hl(), h®} are uniquely deter-
mined by p,_1 = 1 or 2 through equation (1.2.13). From the proposition 1.2.2 (a),
the resulting transition probabilities under the risk neutral measure are

_ pig explA;(0; + A1) — A;(6))]

ij . ,J € 11,24, 1.2.45

and the conditional density
Fib(we) = g;(ue) expl (6; + hD)y, — A;(0; + hD)] (1.2.46)
The maximum number of different fg(yt) is four. O

1.2.2 Calculating Option Prices

We consider the price at time ¢ of a European option with a payoff function H(St)

at the expiration date T. The price under the ET-QQ measure is
Po(H(Sr)) = e "TE®[H(Sr) | po], (1.2.47)

where E? denotes the expectation under the ET-Q measure. We can compute this
price by a two-step procedure, using iterated expectation. In the first step, we
compute the prices of the option corresponding to each possible path of the regime
switching process. In the second step, we calculate the expectation over all the
possible paths of the regime switching process. In other words, we compute the price

through the following iterated expectation:
By = EQ[E? [ H(SHIp L] (1.2.48)

where (p;) are the regimes defined by successive pairs of regimes under the original

process.

Next let us briefly analyze the computation associated with the two expectations
in equation (1.2.48). The inner expectation of equation (1.2.48) needs the distri-

28



bution of Sr = S exp(X:f:1 Y:). We are given in (1.2.44) the moment generating
function of ZtT:l Y; conditional on (pf, g5 . .., pi). The distribution of St is the aver-
aged distribution over all paths of {p;}. The outer expectation in equation (1.2.48)
requires the average of the inner expectation over the Markov regime switching
process (pi, p5, -, pr); the associated issue is to compute the distribution of all
scenarios of the regime switching. The computation time increases rapidly with the
increase of the size of state space of regimes and the expiry date of target options.
Hence, it is quite non—trivial when the expiration date T is large. To overcome this
difficulty, we develop a solution illustrated under the regime switching lognormal

models.

1.3 Pricing European Options using ET-() under
the RSLIN2 Models

In the remaining part of this chapter we apply the distributions obtained through
the risk neutral Esscher transform to price call and put options, with the focus on
the option on a single risky asset under the Markov regime switching model with
two regimes under the log-normal distributions (RSLN2). Our pricing approach
can be applied to many other distribution families which are closed under n-fold

convolution, and can be adapted for more than 2 regimes.

1.3.1 The RSLN2 Process under P—-measure

As demonstrated by Hardy (2001), the RSLN2 model is a significant improvement
over many other models in modeling long term stock returns. This model assumes
that there are two economic regimes (bear or bull) behind the stock prices, and that
the transition of regime variable, denoted by {p;,t = 1,2,--- ,T}, from one period

to the next follows a discrete time Markov chain with a transition matrix, denoted
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by ¢, as follows:

1 2
1
o= (pll p12> (1.3.49)
2\ pa1 D2

Given the value (either 1 or 2) of the regime variable p; for the tth period, the
distribution of the log return Y; is normally distributed:

Y;5|pt ~ N(:uptvo-?;t)a
2

pt’
the regime variable p; in the regime switching model. With the above specification,

it is said that (e'*)p<i<7 follows the RSLN2 model.

where different p; results in different 11,,, 05 . The distribution of Y; only depends on

1.3.2 The Distribution under the Q-measure

The inner expectation of the right hand side is generally quite straightforward for
each individual path, but the computation time increases rapidly with the number
of time steps. To overcome this difficulty, we develop an algorithm for 2-regime
lognormal models (RSLN-2). For details on the path reduction, see subsection 1.3.3.

For the RSLN-2 model, we have 6 parameters under the P-measure; let ©; and
{2, denote the means for the log-returns in regime 1 and regime 2 respectively, oy
and oy denote the corresponding standard deviations, and p;» and ps; denote the
transition probabilities. Then, the conditional density of Y; conditional on p; 1 =1

under P-measure is

f(y|pt—1:i):pi1i¢<y_ﬂl> +pi20i¢(y_“2) i=1,2 (1350

01 01 1 09

where ¢(-) is the density of the standard normal distribution. We have, under this
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model, for 7 =1, 2,

. . 0-2

£l (s == Y = e w5+ 2°) (1.351)

and
Qr sY: . * O.% 2 * 0’% 2

E-le”™ [ pr—1 =] = gin exp | pj; 1 s + 5 + Gio exp | K;g S + 58

where
EX (e |pr_y =i, pr =
qij = Pij | i = (1.3.53)

E 7 I =

EF (e Y| poy = i] = pi EX " Y | pr = 1] + pin EX [ Y0 | py = 2]

EP[ehm Ypeo1 =i, pr = j] = exp (“j O+ Jﬂz(h(i))Q/Q)

The process {Y;}, under the ET-Q measure, is a Markov regime switching Gaus-
sian process with four regimes. The regime at ¢, p; = [ij], corresponds to a pair of
consecutive regimes under the P measure as explained in Remark 1.2.4 in subsection
1.2.1. From (1.3.51), we see that Yi|pj = [ij] has a normal distribution under Q,

with parameters i, and 3.

Now, as the option that we are valuing is European, the price depends only on
St, not on the path, {S;}i<r. Consider the time 0 price of a European option with
payoff H(St)|p* over a given path p* = (p7, p5, -+ , p) of the Markov chain regime
switching process. Let N;;, respectively denote the numbers of periods that the

process spends in regime [ij], for each pair i, 7 = 1,2. Then, under Q measure,
T

2 2 2
> Yil(pr, .. pp) ~ N (ZZNU,%, > (Vi + NQj)a§> , (1.3.54)

k=1 i=1 j=1 j=1
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where ME;]'] are defined in (1.3.52), and 0]2- is the variance parameter for regime j
under the P-measure. This means that for each regime path, we can calculate the
option cost using standard Black-Scholes analysis, which is particularly convenient
for plain vanilla options. The final cost would be the weighted average of prices over
all such paths, where the weight for each path is the Q measure probability for that
path.

We also infer from (1.3.54) that different paths will generate the same option
price, if the values of N;; are the same for all 7,j. Where the number of time
steps is large, the process of determining the price and associated path probability
for each possible path is computationally burdensome. In the following section, we
demonstrate how similar paths can be grouped together to reduce the computation
significantly for longer term options.

1.3.3 Reduction of Path Dimension

The regime process is demonstrated in the multi-—period binomial tree in Figure 1.3.
Given the starting regime at time zero, the process has two possible regimes at time

one, and four possible regimes [ij],4,j = 1,2 at time two. The four end points are

1]
11
1] < .
]
21]
12
2] < ”
t=20 t=1 t=2

Figure 1.3: Regime Transition in the 4-Regime Model

distinct in this model, and the four paths cannot be recombined. The total number
of paths in the tree increases exponentially with the number of time units for the
problem, so for an n period tree there are 2" paths, but, as mentioned above, there

are not 2" distinct option values.
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We develop an iterative approach to reducing the dimension by adopting an idea
from Hardy(2001), and using the fact that the inner conditional expectation in the
option valuation, EX[H (Sr)|p*] is the same for all paths that share the same values
of Njj, 4,7 =1,2.

To proceed, we need to introduce some notation. Let p*(¢,T) denote the set of all
distinct pathes of the regime process p* between times ¢t and 7T for a regime process
p*. The critical information about the path is encapsulated in the following vector

process II;:

1T,

P*(t,T):<Pt Nii(t) Nio(t) Noi(t) Nao(t)) (1.3.55)

where N;;(t) represents the number of periods in state [ij], between ¢ + 1 and T,
for the regime process p*. Recall that the process p* is in [ij] at ¢ if and only if the

process p; is in regime ¢ at t — 1 and j at t.

The objective is to collect together, and count, all paths with identical values
of IIy. To this end, we work backwards from T — 1. We construct recursively, all
possible values of I1;, as well as the count N(II;), which denotes the number of paths

sharing the same II;.

At T — 1 there are four distinct paths, corresponding to the four possible combi-

nations for pr_; and py. For t <T — 2, let

9(27 H;-i-l) = H;|{pt=i, ey}

where the subscript {p; =i, Il;11} takes the same role as p*(¢,T) does in (1.3.55)
as they provide information in the same capacity needed for the functional II. So,
each II;,; generates two values for g, corresponding to i =1 and i = 2. If p;y 1 = J

then the N;; element will increase by one from II, 44 to g(4,II; ), and the other Ny
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values will remain the same. That is,

9(1,(1,a,b,¢c,d)) = (1,a+1,b,¢,d),
9(1,(2,a,b,¢,d)) = (1,a,b+ 1,¢,d),
9(2,(1,a,b,¢c,d)) = (2,a,b,c+ 1,d),
9(2,(2,a,b,¢,d)) = (2,a,b,c,d+ 1).

This recursion generates 8 possible values for I[I7_5, and each is distinct, so the count

for each feasible II;_5 is 1.

We then generate 16 candidate values for Ilr_3, and find that there are only
14 distinct values; in two cases, 2 paths generate the same I1r_3. These 14 values

generate 22 distinct feasible values for 1I7_4.

We determine the count, N(II;) for each distinct feasible value, by summing the

counts of the associated values for II;,;. That is,

N(IL;) = Z N (1)
{Ht+1 290, L) = Ht}

where j denotes the value of p; in the vector II;. We use the counts to determine the
appropriate (Q measure probabilities associated with each distinct path. Suppose we

have summarized some paths of a T-period process in the vector
[Ty = (1,111, 12, no1, N9a)’  with count N (Tl)

Then
Q[Iolpo = 1] = N(Ilo) X ¢11" X ¢15° X @57" X 537,

where ¢;; are given in (1.2.38).

If we know the starting regime, we can use only the paths with the correct pg. If
we do not, we generally assume the starting state is random, with probabilities from

the stationary distribution of the Markov chain p; under the physical P-measure.
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For longer options, this algorithm substantially reduces the computation time.
As shown in Table 1.1, for a T-year option, there are 27*! possible paths for p*, and
there are T? 4+ T + 2 distinct values for Ily; see Proposition 1.3.1. That means, for
example, that for a 10-year option with monthly time steps, working through each
path requires 2.6 x 103 calculations, while using the algorithm above requires only
14,764 calculations. Proposition 1.3.1 states the total number of distinct path for
ITy. Let N4 denote the total number of path sets identified by (1.3.55) for T periods.

Table 1.1: Comparison of Path Numbers

T: Number of Period Path after Iteration(7? + T + 2

~—

21+ (Multinomial Tree)

1 4 4
2 8 3
3 14 16
4 22 32
) 32 64
6 44 128
7 58 256
8 74 512
9 92 1024
10 112 2048
11 134 4096
12 158 8192
24 602 33554432
120 14522 2.66x103°

Proposition 1.3.1. (CQ) N4 =T?+T +2

Proof. To count N4, we first set up a relationship between N5 and Ny, as follows.
Based on (1.2.40) and the relation between p; and p; for the RSLN2 models, we have
the following transitions available: [11] — [11] or [12], with the same for [21]. We
also have [12] — [21] or [22], with the same for [22]. As a result,

Noy +Niy = Nip+Nipg+ec

(1.3.56)
Nig + Nyg = Ny + N+,
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where ¢ € {—1,0,1}. Equation (1.3.56) is the same as

Ny = Np+e. (1.3.57)
Based on (1.3.57), we can show that, from

T = N1 + Nig + Naj + Nog, (1.3.58)

if Ni; and Ny, are given, then the values of N5 and Ny are uniquely determined
based on py in I1y. As a result, the value of N(II;) is determined by the total number
of combination of Ni; and Niy within 7' periods. In the next step, we discuss the

number of combination of N;; and Nas in three cases based on the value of Ny;.

(i). Assume Ny; = 0. We have the following relationships.

Conditions Resulting
N1y £0 Nao {N12, No1 } Relationships

T is even N11:0 ,0021 NQQZT—l,...,O inggiseven N21:N12
if N22 is odd N12 = N21 + 1

T is odd N11:0 p():l NQQZT—l,...,O ifNQQiSGVGH N12:N21+1
if Nog is odd | Nig = Noy

For example, if py = 1, then the initial regime p; = [12] given N;; = 0.
Also, since Ny; = Nio + c¢ is satisfied for ¢ € {—1,0, 1}, if Nyp and T are even,
then No; = Njg; if Nog is odd and T is even, then Ny = Njp + 1. That is,
for any 0 < Ny, < T — 1, we have a scenario available in the candidate path
to represent the combination of V;;, the regime occupations. As a result, if
Ni1 = 0 and pg = 1, then the number of count for different combination of V;;
is T'. Similarly, if Ny; = 0 and pg = 2, the number of paths is 7"+ 1.

(i1). Assume Nj; = T. Then Ny = Noy = Nyg = 0; the number of path is 1.

(iii). Assume Ny =4,1 <i<T —1,if T"> 2. Since [11] — [22] does not occur, we
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have Nog =T — N1 —1,...,0. There are total T' — Ny; different values of Noy
corresponding to each Ny, based on py = 1 or 2. In addition, we can show,
in the similar way as in (i), that Njo and Ny; are uniquely determined given

I, N1y, Nog. Therefore, the total number of combination in (iii) is

T-1
2Y (T-Ny-1)=T"-T. (1.3.59)

Based on (i)-(iii), we have the total number of paths N4 is

NA=(T+T+1)+1+(T*-T)=T*+T +2. (1.3.60)

1.3.4 Calculating Option Prices

By the previous subsection, we can express the option price formula in terms of the

vectors Ily, and their associated probabilities. Given
My = (j, n11, M2, Na1, Mag)

for a T-year RSLN process, the option price is the discounted expected value of the

payoff, under the lognormal distribution with parameter values

2 2
(o) =3 > nihy
i=1 j=1
and
2 2
O'*(HU): Z?’LijUQj.
i=1 j=1
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Then, summing over all feasible Iy, we have the option price P, say, where

P =" e B9 [H(Sy)|q(TTy)

where E¥90 denotes expectation under the lognormal distribution with parameters
w*(Ip) and o*(Ily), and

q(Ily) = Q[Ly|po = j] x Q[po = j]

For straightforward put and call options, the discounted price has the Black-

Scholes format. For example, a put option with strike K on a non-dividend paying

stock is

BSP(Ily) = Ke ™' ®(—dy) — Spexp (—T’T + wy, + %;3) O(—dy) (1.3.61)
where

dy = log(SO/ff()Hj;)“*(HO); dy = dy + o™ (I1y) (1.3.62)
and the price is

P =" BSP(Ily) q(I) (1.3.63)

1)

1.4 Numerical Comparison of Esscher Transform,
Black-Scholes and NEMM Method Option Prices

In this section, we calculate prices for European put options on non-dividend paying
stocks. We use a range of strike values and terms. We compare the ET-Q mea-
sure prices with two other approaches used in the literature. The first is a naive
Black-Scholes approach, which is used in Hardy (2003), where the hedge errors are

separately accumulated under the RSLN-2 P-measure. The second is the approach
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used in Bollen (1998) and Hardy (2001), and elsewhere, where the EMM is red
constructed] by using the P measure regime switching process, adjusting parameters
within each regime to ensure risk neutrality. This is a discrete analogue of the neutral

equivalent martingale measure approach of Elliott et al. (2005).

We use parameters for the RSLN2 model from Hardy(2001), estimated from the
monthly total returns on the Toronto Stock Exchange index from 1956 to 1999. The

parameters are shown in Table 1.2. We also assume a risk free rate of return of

Table 1.2: RSLN2 Parameters

Regime 1 | pup = 0.012 o, =0.035 p12 = 0.037
Regime 2 | ps = —0.016 09 = 0.078 py; = 0.210

r = 0.5% per month, continuously compounded.

1.4.1 Esscher Transform Put Option Prices

To calculate the Esscher Transform prices, we solve the Esscher transform equations
for A and h®, where

B EP[G(h<1)+1)Kg|pt_l — 1]
EF ey = 1]
(11 (RO +1)+03 (R +1)2/2)

T

¥ prg o (r2(h V41403 (D 11)2/2)

(mhM+o?(h(1D)?/2) t o

_bue

(Mh(1>+g§(h(1))2/2)

bue %€

and similarly

B EP[e(h<2)+1)Yt’pt71 — 2]
EX[eh®Yi|p,y = 2]
(m (A1) 4o} (b +1)2/2) |

T

Das o (m2(BD+1) 403 (h)11)2/2)

+ D22 6(

_ b€

mh(2)+g§(h<2))2/2) Mzh(2)+gg(h(2))2/2)

P21 6(

This leads to hY) = —4.546 and h(® = 2.458.
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Table 1.3 reports the parameters for the 4-state regime switching process p; under
the ET-Q measure, corresponding to the P-measure defined by the parameter values
from Table 1.2. In the computation, we plug parameters (1) and A into equations
(1.3.52) and (1.3.53) to obtain the .., and the transition probabilities. The values

of of,.) given pi = [ij] is equal to the physical volatilities in regime p; = j.

Regime Parameters at ¢ | Transition Probabilities given p; under Q measure
Py pr;] U[kp;;] pia =111 pig=[12] pi =121 piy =[22]
[11]  0.0064 0.035 0.9561 0.0439 0.0000 0.0000
[12] -0.0437  0.078 0.0000 0.0000 0.2191 0.7809
[21]  0.0150 0.035 0.9561 0.0439 0.0000 0.0000
[22] -0.0010  0.078 0.0000 0.0000 0.2191 0.7809

Table 1.3: Regime and transition parameters under the ET-Q measure for the RSLN
model.

Using these parameters, we apply the results in section 1.3.4 to calculate the
exact prices for European put options (on a non-dividend paying stock), for a range
of terms and strike prices. In the computation, we sum the conditional expected
values of the contingent payoff given in (1.3.61) over all the distinct paths identified
using the recursive algorithm from section 1.2. Some sample values are shown in
Table 1.4.

K | T =120 24 12 4
50 0.0687  0.0079  0.0010  0.0000
100 2.2155  3.9585  3.5686  2.5449
150 | 10.5673 34.1329 41.3789 47.0323
200 | 25.8436 77.4444 88.3556 96.0397

Table 1.4: Put option prices under the ET-QQ measure. The starting stock price
is $100, T is term in months, and the risk free rate is r = 0.5% per month. Other
parameters are from Tables 1.2 and 1.3.
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1.4.2 The Black—Scholes Prices

We compare the ET-Q prices above with the Black-Scholes prices, with volatility
equal to the stationary volatility of the RSLN2 model, which is

o? = E¥[Var[Yi|p/]] + Var[E'[Y;| p:]] = 0.0453072, (1.4.64)

where the variance is calculated under the physical P-measure.  As discussed at the
beginning of this chapter, with the assumption that there is no replicating strategy
available for the regime switching process, the risk neutral Gaussian measure assumed
under the Black-Scholes method is not a desired equivalent martingale measure with
the consideration of both risks associated with {p;} and {Y;}. This method is used
here for comparison purpose only, to measure the difference in pricing and hedging
performance. The put option prices for the same range of terms and strikes as in
Table 1.5.

K | T =120 24 12 4
20 0.0364  0.0004  0.0000  0.0000
100 1.9837  3.8660 3.5984  2.6746
150 | 10.3495 34.2333 41.3553 47.0298
200 | 25.7897 77.4296 88.3530 96.0397

Table 1.5: Put option prices using the Black-Scholes formula. The starting stock
price is $100, T is term in months, the risk free rate is r = 0.5% per month, and the
volatility is 4.5307% per month.

1.4.3 The NEMM Method

Hardy (2001) and Bollen (1998) use a simple transformation of the RSLN model
P—measure to a risk neutral Q measure, by changing the regime parameters such

that each regime is risk neutral, that is

EQ[eYt|pt =jl=¢€" Vj
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Then a European option payoff H(Sr) can be valued at, say t = 0, by conditioning
first on the P-measure regime path, p = {p1,..., pr}, then by taking expectations

over all regime paths, using the P-measure transition matrix. That is,
e T EF[EY[H(Sr)|p].

This is analogous to the natural equivalent martingale measure approach used by
Elliott et al (2005) for the continuous time regime switching geometric Brownian
motion model. More details of the implementation of this method are given in
Hardy (2001).

In Table 1.6 we show prices for European put options, for the same range of

strikes and terms, and using the same parameters, as in Tables 1.4 and 1.5.

K | T =120 24 12 4
20 0.0383  0.0037  0.0005  0.0000
100 1.8341  3.5842  3.3058  2.4284
150 9.8757 34.1810 41.4195 47.0336
200 | 25.1952 77.4709 88.3579 96.0397

Table 1.6: Put option prices under the NEMM measure. The starting stock price
is $100, T is term in months, the risk free rate is r = 0.5% per month. Other
parameters from table 1.6.

1.4.4 Remarks

It is interesting to note that there is no clear ordering of prices under these measures
introduced in the previous three subsections. For the long term options, say 7=120
months, the ET prices are greater than the Black Scholes prices for all strikes, but
for shorter term options, the ET prices dip below the BS prices for options near to
the money. Similarly, the ET prices exceed the NEMM prices for all strikes for long
term options, but are slightly lower for in-the-money options for shorter terms. The

price comparison at time ¢ connects with the the comparison of the distributions of
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T . . : . a
>« Y5 under the respective Q measures, which we discuss in more details in chapter

4.

If we compare the three different Q measures more directly, we might gain some
insight. Fach @Q measure comprises a number of Gaussian regimes, each regime
having 4@ and 6@ given below, corresponding to the lognormal parameters. We also

show the stationary probabilities for the regimes.

Black Scholes:
One Regime
o® =0.0453 1@ = 0.0040

NEMM:

Two Regimes
o2 =0.035 u¥=0.0044 Probability 0.8502
o2 =0.078 u¥ =0.0020 Probability 0.1498

ET:

Four Regimes

oy = 0.035  puf,; =0.0064  Probability 0.7965

0y = 0.078  pifjy = —0.0437  Probability 0.0366
;=0.035 pg5, =0015  Probability 0.0366
]

0y = 0.078  pi3, = —0.0010  Probability 0.1303

Q
I121

Now, the paths for the NEMM process that result in a low stock price are those
that are weighted more to Regime 2, and for the ET process are those that are
weighted more to regimes [12] and [22]. The ET regimes are rather more adverse
than the NEMM regimes, as the y@ parameters are much lower. This would indi-
cate higher option prices for out-of-the-money put options under ET compared with
NEMM; similarly, ET regimes 2 and 4 would generate more weight for low stock
prices compared with the BS model, with higher volatility and lower means. On the
other hand, regimes 1 and 3 of the ET process have low variance and high mean,
and will generate potentially heavier right tails for the stock price compared with
the other two models.
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However, the comparison of the distributions based on two moments are not
sufficient to determine the levels of option prices. In Chapter 4, more analysis of the
difference between two distributions under risk neutral measures are investigated,
and the pricing and hedging performance are compared. Overall, there are no clear
conclusions here. The ET prices are not consistently higher than the prices using two
other measures for shorter terms; for longer terms, the impact of the two ‘negative
mean, high volatility’ regimes in the ET process appears to generate higher prices
for all the put options, compared with the other two processes. For shorter options
there is no obvious intuition as to how the three prices will be ordered, and, in fact,
selecting different terms and strikes from Tables 1.4, 1.5 and 1.6, we see that all

possible orderings of prices from the three measures are achieved.

1.4.5 Preliminary Hedging Results

The price of an option is more meaningful when it is associated with a strategy for
hedging the contingent claim. Here some preliminary numerical analysis is presented
for the RSLN-2 prices in the section.

We simulated 10,000 paths for the underlying stock price, using the RSLN-2 IP-
measure, with the parameters from Table 1.2. We also determined the delta hedge
costs for each of the three measures, assuming monthly rebalancing. Because the
underlying process is incomplete, and because the hedge is discretely rebalanced,
the hedge will not be self financing. For each simulated path, we determine the
present value of the hedging loss (PVHL), discounting at the risk free rate of interest,
summing over all the months of the contract. The result is a Monte Carlo estimate
of the distribution of the PVHL for each of the pricing measures. We consider a
12-month and a 120-month put option, and we assume the strike K and the starting

asset price, Sy are both 100.

We have summarized the effectiveness of the hedge using the following two mea-

sures:

1. The probability that the PVHL is positive — that is, that the hedge portfolio

is insufficient overall, and
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K  Option Price  Pr[PVHL >0] CTEgs%(PVHL)
BS 100 1.9842  0.4155 (0.0049) 3.4172 (0.0777)
NEMM | 100 1.8341  0.4406 (0.0050) 3.6800 (0.0812)
ET-Q 100 2.2155 0.3039 (0.0046) 3.1622 (0.0836)

Table 1.7: Present Value of Hedging Loss, 120 month Put Options, 10,000 simula-
tions. Values inside brackets are the corresponding standard errors of Pr and the
CTE.

K Option Price  Pr[PVHL >0] CTEgs%(PVHL)
BS 100 3.5983 0.3654 (0.0048) 6.4873 (0.1380)
NEMM | 100 3.3058  0.3974 (0.0049) 6.9582 (0.1454)
ET-Q |100  3.5686  0.3148 (0.0046) 6.1543 (0.1243)

Table 1.8: Present Value of Hedging Loss, 12 month Put Options, 10,000 simulations.
Values inside brackets are the corresponding standard errors of Pr and the CTE.

2. The 95% Conditional Tail Expectation (CTE) (or TailVaR) of the PVHL —
that is, the average cost of the worst 5% of outcomes. The standard errors of

the CTE are evaluated using the method suggested by Manistre and Hancock
(2005).

In Table 1.7 we show the results for a 10-year at-the-money put option, where the
probability and CTE are calculated under P-measure. It appears from this ex-
periment that the additional cost of the option under the ET method pays some
benefits, in terms of a significantly reduced loss probability, and in a lower 95% CTE
value. However, the reduction in the CTE, compared with the Black Scholes hedge,
is only around $0.25, and when that is compared with an additional option cost of
$0.23, it does not make a compelling argument for the ET hedge. The results for
the 12-month option are more interesting, as summarized in Table 1.8. In this case,
the Black-Scholes price is greater than the ET price, but the ET measure appears to
create a more effective hedging strategy, both in terms of the probability of hedging

loss, and with a lower CTE value. More research into whether these results apply
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more generally with the ET price could be valuable.

1.5 Conclusions

The Esscher transform offers a pricing measure for discrete time regime switching
models that differs from the natural equivalent martingale measure approach. This

is intuitively attractive, as the regime switching risk is assumed to be undiversifiable.

The calculation of European option prices under regime switching models has
been shown in this chapter to be relatively tractable — either through the dimension
reduction algorithm, or, for more complex models (for example, with more regimes)
through Monte Carlo pricing, once the full specification of the Q measure process is
derived. In the next chapter, we extend the model to multivariate option pricing. The
pricing is more complex, but the fundamental principles still follow the development

in this chapter.

Pricing is only the first part of the story, however. Preliminary experiments
with hedging indicate some potential for improved hedge performance using the ET

measure. In later chapters, we analyze the ET hedge in more details.
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Chapter 2

Esscher Transform Pricing of
Multivariate Options under

Discrete Time Regime Switching

2.1 Introduction

We proposed an approach, using the Esscher transform, to price univariate options
under discrete time Markov regime switching models in Chapter 1. This chapter
aims to extend this approach to the multivariate discrete time regime switching
models. The Esscher transform has been a widely used tool for multivariate pricing
in the literature, such as Bertholon et al. (2008) and Gourieroux and Monfrot
(2007) for a general econometric asset pricing, Biithlmann (1980) for multivariate
equilibrium pricing, Kajima (2006) and Wang (2007) for the links between distortion
and the Esscher transform in multivariate equilibrium pricing, Song, et al. (2010) for
multivariate option valuation under Markov chain models, and Ng and Li (2011) for
the valuation of multivariate asset pricing annuity guarantees, among many others.

Our work focuses on the market incompleteness due to regime uncertainty. Some
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notation used in this chapter is listed as follows.

t t=0,1,...,T the range of discrete time points

St t=0,....,751=0,...,N asset prices at time ¢ for {** asset

Yii t=1,....7;1=1,...,N log returns of asst prices at time ¢ for I** asset
hig t=1,....T;1=1,...,N Esscher transform parameters at ¢ for [ asset
Ste = (St1,-.-,5nN) the column vector of S;, at time ¢

Se: = (Sos---,511) the row vector of S,; for I asset
Yie = (Yir,...,Yin) the column vector of Y;, at time t
Y. = (Yig,. ., Y1) the row vector of Y, for [ asset

hie = (ha,....hun) the column vector of h;, at time ¢

Pt pr=1,...R the undelying regimes

(2.1.1)

2.2 Market Models and Objective

Assume that there are N underlying risky assets in the market. The multivariate

regime switching process can be represented as

(ptv St,Oa cee ,St,N)OStSTu

where S;; is the price of asset [ at time ¢, with S}y representing the price of the risk
free asset, and p; represents the regime of the market at time ¢. For notational conve-
nience, we use vector representation in this chapter. Define S; 4 = (S¢1,...,Sin)" and
Ses = (Sous...,S7;). Similarly, we define vectors Y;, and Y, for the log-returns
of the underlying asset prices. The corresponding realized values are denoted by

small letters, e.g., Yio = (Y11, ...,y n) represents the realization of Y;,. Assume a
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constant risk free rate r. Then, the market model is

(2.2.2)

St,o = Stfl,Oert
Y,
St,l = St_ue N | = 1,...,N,

where {Y; .}, follows a regime switching process, i.e., the multivariate distribution

of Yie = (Yi1,...,Y:n) depends on p,.

The objective of this chapter is to price options written on the multiple risky
assets. The pricing approach is illustrated for a European put options written on
the geometric average of stock prices. We do not discuss hedging. Indeed, since the
geometric average can be treated as a single risky asset price, the delta hedging for the
put option can be conducted based on the delta of the portfolio which approximately
replicates the geometric average. As a result, the hedging results for this European
put option will be similar to the hedging results for a put option written on a single

risky asset, as illustrated in Chapter 1.

Let )Y and F/ denote the P-augmentation of the filtration generated by { Y.« i
and {p,}'_,, respectively. We write F; = F) V Ff, representing the minimal sigma
algebra containing FY and F/. Based on the filtration, we assume p; is adapted
to the filtration {F;}; that is, we can observe the state of p; at time ¢. We do not
assume, for our discrete time model, the predictability of p;. Similar to chapter 1,

we also impose the following assumptions for the market model (2.2.2).

(A1) The process {p;}I_, follows a finite state Markov chain process, with a state
space of R regimes. Assume the transition probability matrix p = {p;;}, where

pij = P(pt = j| pi—1 = 1), is time homogeneous.

(A2) The distribution of Y, conditional on p; is independent of ps and Y, for
s #t.

The so-called MET-Q pricing measure is developed in section 2.3 of this chapter, and
can be applied to option pricing for models such as the regime switching AR model,

where the distribution of Y, conditional on p; is dependent on Y, ,, s < t. However,
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for computational convenience, the independence of Y;,,..., Y, conditional on

{p:+} is a assumed here.

(A3) Y;,; is a continuous random variable which satisfies essinf Y;; < r < esssup Yy,
forallt=1,...,Tandl=1,...,N;

(A4) EF(ePteYre|F,_ ) < oo for all real vector h; o € RV,

Assumption (A3) is necessary in a no-arbitrage market. (A4) is a necessary condition

for our pricing method.

2.3 Multivariate Esscher Transformed Q Measure

To conduct risk neutral pricing, we start with an equivalent risk neutral measure Q
identified using the Esscher transform. This section further discusses the properties
with the Esscher transform parameters and investigates the distribution under the

identified Q measure.

2.3.1 Multivariate Esscher Transform

The Esscher transform is defined similarly as in Chapter 1, except that the single
risky asset in the transform is replaced by multiple risky assets. If we let H(Sr.)
denote the payoff of the European option under consideration, then, after we identify
the pricing measure Q, the no-arbitrage price can be computed as the expectation

of its discounted payof, i.e.
P(H(Sr.)) = e "TYE°[H(Sr.)| F], (2.3.3)

where E[-| ;] denotes the expectation conditional on F; under the Q measure. In

this study, the Q measure is identified by employing the conditional Esscher trans-
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form introduced by Bithlmann (1996), and it is defined through the following Radon-
Nikodym derivative

t b, Y.

H e s,
Fi - s=1 EP(ehlS"YS" :stl)?

dQ
dP

t=1,...,T, (2.3.4)

where the only parameters are the Esscher transform parameters h,,, and E*(:|F,_;)
represents the conditional expectation under P measure. Equation (2.3.4) denotes
the Radon-Nikodym derivative of Q over P on F;. To make the probability measure
Q a risk neutral probability measure, the Esscher transform parameters in hy, =

(hsis-..,hsn) in (2.3.4) must satisfy the following N equations

T

EF[ehseYootYor| F,_4]

: I=1,....N, 2.35
Ep[ehs,oYs,. f871] ( )

forall s =1,...,T. We call the measure QQ obtained through % ‘]'—t defined by (2.3.4)
and (2.3.5) the multivariate Esscher transform Q (MET—Q) measure.

Proposition 2.3.1. (CQ) The MET-Q measure identified through the Radon-Nikodym

derivative (2.3.4) under conditions (2.3.5) is a risk neutral measure.

Proof. As hse € F;_1 for all s <t, we apply fl%

St
EY ( -
Si—14

} 7, » defined in (2.3.4) as follows:

' 49
_ EP| Yy _dP !t

ft—l) = E (& @’
dP | Fi—1

fH] (2.3.6)
h;,oYtu'

Fil

e
EIP’ [Gh’é"Yt’.

= EP|eYu

ft—l] =e

where the last equation is due to the condition (2.3.5) with s = ¢t. Thus, the MET-Q

measure is a risk neutral measure. O
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2.3.2 Identifiability of the Esscher Parameters

The Esscher transform parameters hy 1, ..., hy n are obtained by solving the system
of nonlinear equations in (2.3.5). It is challenging to address the existence and
uniqueness of the solution to the system, and we leave this issue for future research.
In what follows, we will illustrate how to identify the Esscher transform parameters

in some specific and yet important cases.

Example 4. Assume that, conditional on F;_;, Y, , follows a multivariate normal

MVN(u, ¥) with a mean vector p = (p1,...,puy) and a covariance matrix 3 =

lth

(0ij)nxn- Let e represent the column vector with one in the coordinate and

zeros in all the others. Then, condition (2.3.5) becomes
exp (hye + &) p+ 2(hee +€)S(hye + €))

e" = ,l=1,...,N. 2.3.7
exp (hg,,p, + %ha,th,.) ( )

Equation (2.3.7) can be rewritten in a more concise form of

1
Yhie =71—-p— b,

2
where 1 denotes a vector with all elements equal to one, and b = (011,...,05n)"
If the covariance matrix X is positive definite, then there is a unique h;, satistying
(2.3.5) with hy e = X7 (r1 — p). O
Example 5. Assume that Y;;,...,Y; y are independent conditional on F;_;. Then,

EP (e(heatD)Yer| F,
EQ(M | F,_)) = (e T 1)H

Ep(ehtxln*l|ft—1> k;ﬁl

E]P> (he g +1)Yy, F
— (]: | t1)7 l:17,N
E (eht,zYt,z|ft_1>

EF (eherYer | F_y)
E]P(eht,kyt,k |ﬂ_1)

As a result, the multivariate Esscher transforms are reduced to univariate Esscher

transforms for Y;;,l = 1,..., N, conditional on F;_;. O

Example 6. Assume that there are 2 risky assets in the market under a two-state
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regime switching model, with the log return Y;, conditional on F;_; following the
mixed multivariate normal distribution Z?:l piiMV N (u;, %), where p;; = P(py =
Jlpi—1 = i). We define a function L as below:

E®(e 1l =1) E®(e¥alp, =1

100 100

h -100 -100 h h -100 -100 h

E%(=1lp,,=2) E®(e¥2ln, ,=2)

BRL

Figure 2.1: The surface of E¢[e1Y1¢|p, 1] over the ranges of h;; and hy o

EP[ehgy.Yi,""YtJ ’ ,Ot_l] EP[ehg,-Y},-'ﬁ‘YtQ’ ,Ot—l]

s

L=]|e

+ le

EP[ehé,o}/ﬁ' E]P[eh;,o}/ﬁ'

ﬂt—l] /Jt—l]

It is sufficient to investigate the solution to I = 0 for the analysis of the existence
and uniqueness of the solutions to (2.3.5). We conduct the analysis numerically,
based on manipulated parameters for the multivariate RSLN2 models, assuming a
positive covariance in one regime and negative covariance in the other. Parameters
and correlation matrices on the joint distribution of (Y;,Y:2) are given Table 2.5

and 2.6 in section 2.4.1, with three assets replaced by two assets.
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intersection: EQ(EV1|pt_1=1) 8 EQ(eyzlpl_1=1)

0.5

100

2458 —-

intersection EQ(EYﬂF‘l_.‘ =2] & EQ(e*'zlpt__I =2

15—~

0-f... : :
— . s SRS
P w0100 970 00 50 o 50 -100
' t2 h P4
: ~ Q[ he Y Q[ hui Vi '
Figure 2.2: Intersection of E*[e""tt|p, 1] and E*[e""2|p, 1] over the ranges of h;
and ht’g

0 o 100 -50

0 50 100

Figure 2:3: The surface of L over the ramges of hyy and hy o

We first observe the surface of E2[e1Y1¢|p,_,] and E%[e¥#2|p,_,] over the range

of hyy and h; o in Figure 2.1, and observe their intersection in Figure 2.2. We can

see that the surface of E¢[e"1Ye1|p,_1] and E@[e™1¥2:2|p,_,] are not parallel, and they
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intersect in an increasing curve. A point (h: 1, hto,€”) is in the curve. That is, there
exist a pair of real numbers h,; and h,o at which e” is a value of both functions
EQehtYet|p,_q] and E@[et1¥e2|p,_1]. Figure 2.3 illustrates a surface of the values
of L over the ranges of h;; and h;o, for the RSLN2 model with the manipulated

parameters. We can obtain the unique numerical value of h;, which makes I. = 0.

2.3.3 Distribution under the MET-Q Measure

Assume we identify the Esscher transform (2.3.4) satisfying conditions (2.3.5); then,
we need to derive the distribution under the MET-Q measure of log-returns of the
underlying asset prices, in order to conduct option pricing using the formula (2.3.3).
We obtain the underlying distributions in a similar way as we do for the univariate
models in section 1.2.1 of Chapter 1. Here we first derive the distribution of Y;,
conditional on F;_1, under the measure MET-Q identified by (2.3.4). Let u =
Fi—1) < oo. Then,

(uy,...,uy) be a vector of real numbers such that E* (e Yoo

similar to (2.3.6), we have

/ / _|f
E¢ [foYt” ftfl] = EF|ewWYee db -t

fH] (2.3.8)

-

Recall the notation F, = FY VF{. As aresult, the distribution of Y; . conditional

on F;_1, under the MET-Q measure, can be obtained through expanding the moment

— E]ID eu/Yt,.

generating function (2.3.8). The density function of Y;. conditional on p; = j and
Fi_1, under the MET-Q measure, is

. eh’g"yt"fp(}’t o Fici (o =14})
Q _ P 9
f (yt'|‘/ft_1 ﬂ{pt - ]}) - EP[ehi,.Yt,. ft—l ﬂ{pt _ ]}] : (239)

For a Markov regime switching process assumed in assumptions (Al) and (A2),
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(2.3.9) can be simplified as

eh;,.yt,.fﬂ"(yt o’Pt _ j})
Feyie) = U ialprs =i p0 = j}) = ;O 1) (2.3.10)
’ E¥[ehiYre| oy = j]

We denote the density function of Y;, given p,_; =i by fi@(yt,.), ie.,

fz‘Q(Ym) = fQ(Yt,-|/0t—1 =1).

Then, le can be expressed as a mixture of those fg as demonstrated in the following

Proposition.

Proposition 2.3.2. (CQ) Under assumptions (A1), (A2) and (A4) which we im-

posed in section 2.2, we have

R
FRyee) =D i 15 (), (2.3.11)
j=1

where

- Pij EX (e | s =i, py = )
1 E]P(eh;" Yie Pio1 = 7/)

. i,je{l,...,R}, (2.3.12)

Proof. The proof is completely parallel to that of Proposition 1.2.2, and hence omit-
ted. U

Remark 2.3.1. Proposition 2.3.2 provides a way for us to compute the distribu-
tion of S;, by introducing a new Markov process p; with the following transition
probabilities under the MET-Q measure:

0, i#1;

@[pzzwp:_lzwnz{ e
Gij, t=1.

where {P: = [Z.]]} = {ptfl = Z.71015 :j} for ¢ = 1727"'7T~
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Lemma 2.3.1. (CQ) Assume (A1) to (A4). Then, under the MET-Q measure,
Yi.,...,Yr. are independent conditional on {p;}l_,, and the distribution of Y.

conditional on p; is independent of p% for s # t.

Proof. The proof is similar to the proof of Lemma 1.2.5 and Lemma 1.2.6 in Chapter
1. O

Remark 2.3.2. Based on Lemma 2.3.1, the distribution of Y, , is solely determined
by pf under the ET-Q measure. As a result, the joint density of (Yie,...,Y7s)

given {p; }i_o is

T
Py yrel{oitico) = [ /% (yeslei)-
t=1
Let ure = (U, ...,urn),t =1,...,T, be the vectors of real numbers such that the

T /
moment generating function E¢(eXi=1 Ut.eYte)

(A1) to (A4),

exists. Then, based on the assumptions

EQ e11’1,.Y14,.+~---l-u’T,.YT,.} — EC [EQ <BU’1,.Y1,.+~-+u’T7.YT,.

T
- B [H EG (e Yre pi)] :
t=1

{pf}leﬂ

where the distribution of {p;}L, follows a Markov chain as discussed in Remark
2.3.1, with the transition probabilities under the MET-Q measure given in (2.3.12).

Consequently, to identify the distribution of (Yi.,..., Yr.), we may focus on its

/
ut,.Yty. | *

conditional moment generating function EZ (e Py
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2.4 European Option Pricing for Multivariate Regime
Switching Models under MET-Q

In this section, we consider a European option with payoft H(Sr.). Its price at time

t = 0 can be computed as the following expectation
Py(H(St.)) = e T(T-OEQ [H(S14) | pol- (2.4.13)

where E2[-] denotes the expectation under MET-Q measure identified by the Radon-
Nikodym derivative (2.3.4) and conditions (2.3.5). In section 2.3.3, we have shown
that, based on the market model (2.2.2) and assumptions (A1) to (A4) described in
section 2.2, under the MET-Q measure, Y,,,t = 1,2, ..., follows a Markov regime
switching process, and the distribution of Y; is solely determined by p;. The option

pricing formula in (2.4.13) can then be computed as
Py(H(Sr.)) = E2 [E® [T H(Sr2) [ {pi 1] ] (2.4.14)

In this formula, we compute the option price in two steps. In step one, we compute
the time zero value of the payoff assuming the path of regime switching {p;}L_,.
In step two, we take the average of the values obtained in step one over all regime
paths under the MET-Q measure. If the option payoff is not path-dependent, such
as the payoff of European call and put options, we can apply the path reduction
algorithm we developed in section 1.3.3 to reduce the computation time for the outer
expectation. In the following content of this section, we focus on computation of
the inner expectation and the regime-transition probabilities of {p;}. This section
starts with the regime switching log-normal models; then discuss pricing under more

general distributions using characteristic functions.

2.4.1 Pricing under the Multivariate RSLN Models

Assume a R-state multivariate regime switching lognormal (RSLN) model under

P measure. Let the distribution of Y;, given p;, = j is MVN(u;, 3;), where p;
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and X, are the column vector of mean and covariance matrix for regime j. The
moment generating function of Y;, given p;, denoted by M(s) with a real vector

S:<31,...,SN),, is
/ 1/
M(s) = exp suj+§s 3s

As we commented before, an European options can be priced by using the double
expectation in (2.4.14). To compute the inner expectation in the equation, we first

investigate the moment generating function of Y, , given p; under () measure:

%Y} = [ig]]
Pl &Y elie Ve
— P |V =i =
EP( h“Y“|p) Pt—1 Pt =17
1 1
exp ( s+ hy.) 2 (s+hye) (s + ht7.)) exp (—h;.uj -5 h;}.Ejht,)
1 !/
exp [ s'( ;) + 38 s
exp (s i js> , i,j=1,...,R, (2.4.15)
where
Hiij) = K+ Zjhe, (2.4.16)

where h; , is determined by equation (2.3.5). (2.4.15) implies that Y; e given p; = [i]]
follows a multivariate normal distribution with mean p,f;.j] and covariance matrix
3; under the MET-Q measure. In addition, Let N;; denote the frequency of the

occurrence of pf = [ij] within the path (p7,..., p%). For notational convenience, let

T
Z=(Z,...,Zy), where Z =) Yy (2.4.17)
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Then, the moment generating function of Z is as follows:

T T
(7] if) = €0 <exp ( S it on zm) ‘ {p:}L)
t=1

t=1

N N
= E° (exp (Z siYii+ -+ Z SlYT,l> ‘ {P;sk}tT:1>
=1

T - N
= H E® (exp (Z SlY;s,l>
t=1 =1
R R 1 R R
= exp (S' 0 Nijpgg + 5 s’ ‘ > Ny%; - S)

i=1 j=1 i=1 j=1

{P:}tT=1>

The above display implies that Z, conditional on {p;}L,, is also a multivariate

normal random variable under the MET-Q measure, i.e.,

(Z1,.... Zw) P}, ® MVN (ZZNWM, ZZNiJ'Ej)' (2.4.18)

i=1 j5=1 =1 j=1

To compute the outer expectation in (2.4.14), we can compute the regime transition

probability as follows:

R —1
1 1
Gij = Pij €Xp (h;,.ﬂj +3 h;,.zjht,-) (Z pi1 €Xp (hi,.m +3 hi,.Ezht,.>>
=1

(2.4.19)

After obtaining the distribution of (Zthl Yii,.. .,ZtT:l K&,N) under the MET-Q
measure, we can then compute the price of European options by using the double

expectation as defined in (2.4.13).

Geometric Average European Option

In the remaining sections of this chapter, we will illustrate how to compute the

multivariate European options under the MET-Q measure by focusing on the so-
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called geometric average European option. It is written on multiple underlying stocks

and its payoff, with a strike price K, is given by

H(Sr.) = (ﬂ ST —K) : (2.4.20)

N
where w; is the geometric weight on the [ asset with Zwl =1 and w; > 0 for

1=1
[ =1,...,N. The pricing of this option is usually used to approximate the value of

the option written on the arithmetic average of the corresponding stock prices. See,

for example, a review of the approximation in Musiela and Rutkowski (2004).

Based on the the MET—Q measure identified for the multivariate RSLN2 mod-
els, the geometric average Hf\il S;fl is log —normally distributed with parameters
(cfi, *62), where i = S5, Zjil Nijjw' iz, 62 = SE Zjil Njjw'¥w and ¢ =
Hi\; Soy- After obtaining the distribution of the geometric average HJJL Sy, under
the MET-Q measure, the price of H(Sz,.) can be computed as we did for a univariate

option in Chapter 1.

2.4.2 Pricing under General Models Using Characteristic

Functions

When the distribution of Y, ,, conditional on p; is not multivariate normal, the con-
ditional distribution function of Hf\il S;fl may not have a closed form expression. In
this case, the computation of the inner expectation in formula (2.4.14) is no longer
the same as in Chapter 1. We have to develop a new method, and we propose a fast
Fourier transform method in this section for option pricing in a more general multi-
variate case. The pioneer work of using the fast Fourier transform (FFT) method for
option pricing is given by Carr and Madan (1999). In our studies, (Y:.) and (p;)
satisfy the assumptions in section 2.2, and we use the geometric average European

call and put options to illustrate our method.

We first compute the characteristic function of Z under the MET—Q measure.
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The characteristic function can be obtained based on the expectation of the char-
acteristic functions of Y;,,t = 1,...,7T under the MET—Q measure conditional on
{pr}L_,. The corresponding conditional density of Y; . = y; . is given in (2.3.10). Let
u = (u,...,uy) being a column of real numbers. Then, the characteristic function

of Y; o under MET-Q measure, conditional on p; is

wgt,o (u | p:) e /ve’iu’yt,of'@(},t.|p’t'<)d},t’.7

where dy = dy; 1 - - - dyr n. Consequently, the characteristic function of Z conditional
on {pf}L, under MET—Q measure, denoted by ¥g(u|{p:}L,), is

vy (ul{pi}l,) = EQ (Mm@t tunin|fpal )

T T
= EQ (exp [iul ZY;’l + -+ Z.UNZY;,N
t=1 t=1
T T
= /exp [z’ul Zyt,l + - +iuy Z%,N
t=1 t=1
ehg,.}’t,o

T
= /H [exp(lU/lyt,l —|— o e + ZUNyt,N)W

{P:}?1>

T
H fa(yeelpr) dy
t=1

fp(yt,.!pt)] dy
Pt]

_ ﬁ EF (¢/luthes)Yee| )
t=1 Ep(eht”Yt"‘ Pt)
T
= [[¢%. i), (2.4.21)
t=1
where the parameters hy o = (hy1, ..., ke ) are obtained by solving the N risk neutral

equations (2.3.5). The unconditional characteristic function of Z is

g (u) = E¥ [Ug(ul {p;}L0)] (2.4.22)

where the outer expectation can be obtained using the path reduction algorithm we
developed in section 1.3.3 of Chapter 1, and the regime transition probability under
MET-Q measure is given by (2.3.12).
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Based on the characteristic function of Z, we can evaluate a geometric average

European call option, with payoff given in (2.4.20). Specifically, let

K
121 Soo

Then, the option price is

P.(k) := / -7 (Hs;ll HS&@’“) f(z)dz (2.4.23)

where z = (z1,...,2y) and f2(z) denotes the density function of Z defined in
(2.4.17). Based on ¥3(u) in (2.4.22), we can apply the FFT method from Carr
and Madan (1999) to evaluate P.(k) in (2.4.23). To proceed, we first need to solve
the issue regarding the convergence of the Fourier transform of option prices. As

Carr and Madan (1999) pointed out, the pure Fourier transform
L= / ek P,(k)dk

may not converge for a real number v, since the value of P.(k) does not vanish as

k — —o0o. Therefore, we use the modified call option price as follows. Let

P.(k) = e**P.(k), a>0. (2.4.24)
Then,
lim P.(k) =0. (2.4.25)
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Denote by £(v) the Fourier transform of the modified prices P,(k). Then,

L) = /_ooei“kﬁc(k:)dk

9]
N

+
= / ei”keo‘k/e_rT (H Sth —K) f(z)dzdk

=1

= /erng(z)/ eivkeo‘k< S(‘)‘”le“’lzl HS&@’“) dkdz
z - =1 =1

N Zzlilwlzl )
= H Sf)‘jll /eTTféQ(z)/ e'vk ok (ec(z) — ek) dkdz
=1 z -

[e.9]

a+1+iv) ZZN Wiz e(a—l—l—l—iv) Zf\L1 w2 )
dz

N
( = =
e
— qwi —rT £Q .
H 0’l/z€ fZ(Z)( a+w a+1+w

N _
6 a A0 Wiz
- SOl(oz+1+zv ) (o + i) /fz ey (2.4.26)
=1
N efrT
N %o (a+ 1+ ) (a+ w)wg (v —ia =0, on(v —ia =),
=1

where 13 (-) is given in (2.4.22). Then, the option price can be computed by inverting

the above formula £(v) as follows:

P.(k) = eak%/ e FL(v)dv (2.4.27)
™ — 00

It is worth noting that the Fourier transform method reduces the multiple integration
for option pricing in (2.4.23) to a single integration in (2.4.27). The value of P.(k) in
(2.4.27) can be computed numerically by applying the fast Fourier transform. The
put option prices can be obtained in either of two ways. First, we can use the put-call

parity; second, we can assume a < —1 and let

Py(k) = e** By (k),

where P,(k) is the put option price under consideration. Then, we can obtain the
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put option price by following the same procedure as demonstrated in (2.4.26) and

(2.4.27).

Example 7. Assume that (Y;1,...,Y; n)]; follows a multivariate Markov regime
switching model with two regimes, where Y;,,...,Y; y has a multivariate normal
distribution conditional on p; at regime one, and a multivariate Laplace distribution
at regime two. The Laplace distribution has fatter tails than a normal distribution
(Eltoft et al., 2006). The characteristic function of Y, ,, conditional on p, =1, is

, 1
Uy, (ulpy = 1) = exp (zu’ul — §u’21u> :

where g, is the mean vector, ¥ is the covariance matrix of Yy ,, and u = (u1,...,uy)".

The characteristic function of Y;,, conditional on p, = 2, is

1

Uy, (ulpy =2) = PR S
14 e

where A is a constant and 3, is the matrix parameter. The moment generating

function of the Laplace distribution is given by

/ 1
E]P‘ (6u Yo — 2) — . )
|10t 1 _ Augzu

With these assumptions, condition (2.3.5) is equivalent to the following equations:

- piE" (ehé"Yt’°+Yt’l|Pt—1 =i,p=1) + ppE" (ehi"Y“JrYt’l \pr1 =1, p = 2)

piE (ehé"Yt"|,0t—1 =10 = 1) + piE” (eh;"Yt" Pr—1=1,pt = 2)

I

(2.4.28)

for i = 1,2. Solving equations in (2.4.28), we can obtain the values of the Esscher
transform parameters hy o = (A1, ..., hen). The resulting Esscher transformed char-

acteristic functions of Y, conditional on p; under the MET-() measure are used to
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compute the characteristic function for multi-period, which as shown in (2.4.21) is

T
vp(al {3 )) = 1%, ulp).
t=1

where

Q X wgp}t,. (u—ihyo| pi—1, p1)
@Z)Yt,. (u | pt) - P, h Yie .
E (™= " pr—1, pr)

As a result, under MET-Q measure, if p} = [il],i = 1,2, then

. ! ,
Yy, (u] pf = [i1]) = exp (Zu/u’[il] - 5“'2111) , i=1,2

where pi; = py + Eihe o If pf = [i2], then

2 _ Ah/.3,h
Q * _ [;9]) — t,e <21t 0
Uy, (ulpr=1i2)) = o AU — ihy,.) 5 (4 — ihy,)

The transition probability g;; is

pijEP(ehé"Yt’ﬂ Pr—1=1,pt = J)
Pr-1 =1, pt = 1) + Pi2 EP(ehQ»'Yt"

ii = 7 2.4.29
b pi EF (eMe¥ee ( )

|pt—1 = i’pt = 2)
[l

2.5 Numerical Results of Option Pricing

In this section, we evaluate geometric average European call and put options written
on multiple non-dividend paying stocks, for the Markov regime switching models
discussed in the previous section. Specifically, we conduct the numerical computation
for the multivariate RSLN2 model and for the Markov regime switching model with
multivariate normal distribution in one regime and multivariate Laplace distribution

in the other regime.
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2.5.1 Prices under the Multivariate RSLN2 Model with Real
Data

In this section, we use real stock data to fit the multivariate RSLN2 models. The
data are from three sub-sectors of monthly S&P TSX indices during January 1988
and September 2011, obtained from the CHASS Data Center: Sector 10 (Energy)
Monthly Total Return Index, denoted by (S;1); Sector 15 (Materials) Monthly Total
Return Index, denoted by (S:2); and Sector 20 (Industrials) Monthly Total Return
Index, denoted by (S;3).

We use the package RHmm in the software R to estimate the parameters of the

underlying model. The transition probability matrix between the two regimes is
1 2
10774 0.226
= 910033 0967 )
The mean vectors and the covariance matrices of the multivariate Gaussian distribu-

tions within each regime are displayed in Table 2.1. From the results, we can denote

State 1 State 2
mean Covariance Matrix mean Covariance Matrix
Yia Yio