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Abstract

This thesis explores option pricing and hedging in a discrete time regime-switching

environment. If the regime risk cannot be hedged away, then we cannot ignore

this risk and use the Black-Scholes pricing and hedging framework to generate a

unique pricing and hedging measure. We develop a risk neutral pricing measure by

applying an Esscher Transform to the real world asset price process, with the focus

on the issue of incompleteness of the market. The Esscher transform turns out to

be a convenient and effective tool for option pricing under the discrete time regime

switching models. We apply the pricing measure to both single variate European

options and multivariate options. To better understand the effect of the pricing

method, we also compared the results with those generated from two other risk

neutral methods: the Black-Scholes model, and the natural equivalent martingale

method.

We further investigate the difference in hedging associated with different pricing

measures. This is of interest when the choice of pricing method is uncertain under

regime switching models. We compare four hedging strategies: delta hedging for

the three risk neutral pricing methods under study, and mean variance hedging. We

also develop a more general tool of tail ordering for hedging analysis in a general

incomplete market with the uncertainty of the risk neutral measures. As a result

of the analysis, we propose that pricing and hedging using the Esscher transform

may be an effective strategy for a market where the regime switching process brings

uncertainty.
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Chapter 1

Pricing European Options under

Markov Regime-switching Models

with the Esscher Transform

1.1 Introduction

The regime switching framework for modeling econometric series provides an in-

tuitive and transparent way to capture market behaviors under different economic

conditions. Markov regime switching process have been widely used in econometrics

since the pioneering work of Hamilton (1989). In actuarial applications, Hardy (2001)

used a discrete time regime switching process for modeling long term index prices

and pricing derivatives, and in Hardy (2003) and Hardy et al (2006), the model was

used for risk management of maturity guarantees in equity linked insurance. Many

other authors, including Duan et al. (2002), Bollen (1998), Mamon and Rodrigo

(2005), Elliott et al. (2005), and Liew and Siu (2010) have considered option pric-

ing under various different Markov regime switching models, while Boyle and Liew

(2007) and Till (2011) investigated the optimization of hedge fund asset allocation

under a regime switching economic model.

My thesis explores an option pricing approach and conducts delta hedging anal-

1



ysis in a discrete time regime switching environment. The object of this chapter

is the pricing of a European option in a market where there is one risky asset and

one risk free asset. We focus on the issue of market incompleteness associated with

the regime switching process. We develop a martingale pricing scheme, where the

equivalent martingale probability measure is identified using the Esscher Transform

technique. To do this, we will first specify the market model, discuss the incomplete-

ness issue, and review some well-documented risk neutral pricing methods developed

for the regime switching environment in the literature and distinguish our work from

them.

For readers’ convenience, I denote the source of cited definitions, lemmas, and

propositions in my thesis, and use the annotation CQ to indicate my contribution to

this work.

1.1.1 Model

A regime switching model can be expressed as a bivariate process, say {ρt, Yt}, where

ρt denotes the regime process and Yt represents the process, whose conditional distri-

bution at time t depends on the time t regime, ρt (Hamilton, 1989). In some cases,

the distribution of Yt is solely determined by the regime at time t. In these cases, we

may label the distribution with the single regime state ρt. That is, conditional on

ρt, Yt ∼ Fρt , where Fρt represents the conditional distribution function determined

by ρt. The structure of this model is illustrated in Figure 1.1. In more compli-

cated models, the distribution of Yt may depend on other information, such as the

lagged values of Yt. In this thesis, we focus on the former one with a discrete time

Markov regime switching process. Although some of the results may be generalized,

for example, to regime switching auto-regressive processes, this development is left

for future research.

The underlying model in our study is

(Bt, St)0≤t≤T , (1.1.1)

where Bt and St denote respectively the prices of a bond and a stock index at time

2
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1. uncertainty between regimes 2. uncertainty within regimes

Figure 1.1: Decomposition of uncertainty for Yt+1 under regime switching models

t. Assume a constant risk free rate of return r is associated with the bond. Then,

the price processes of the assets are{
Bt = B0 e

rt

St = S0 exp(
∑

1≤s≤t Ys),
(1.1.2)

where the return process eYs follows a Markov regime switching model with, say, R

regimes, where R is a positive integer. Let FY
t and Fρ

t denote the P-augmentation of

the natural filtrations generated by the yield process {Ys}t
s=0 and the regime process

{ρs}t
s=0, separately. Then, we write Ft = FY

t ∨ F
ρ
t representing the minimal sigma

algebra containing FY
t and Fρ

t . It is worth noting that we assume here that we can

observe ρt given the filtration Ft. We do not consider (ρt) as a hidden Markov chain

process, although this is a more realistic assumption for applications. In practice,

assuming a hidden Markov regime switching model, we may use the historical data of

the underlying asset to calibrate the model and identify ρt. For a detailed discussion,

see, for example, Till (2011). Alternatively, the model for regimes may be specified

under Q measure, after identifying the model for regimes under the Q measure and

calibrating the model using the corresponding derivative data in the market. In this

thesis, the Markov model is specified under measure P and ρt ∈ Ft. Based on the

filtration, we have the following additional assumptions for t = 1, . . . , T .

3



(A1) ρt follows a finite state Markov chain process;

(A2) Yt is a continuous random variable; and the distribution of Yt conditional on

ρt is independent of ρs, s 6= t.

(A3) ess inf Yt < r < ess supYt; and the moment generating function exists for Yt

under P measure.

If we do not consider the model with Yt ≡ r, then the condition ess inf Yt < r <

ess supYt in (A3) is necessary for a non-trivial arbitrage free model. The existence

of moment generating function is a necessary condition for our pricing method.

1.1.2 Incompleteness of the Markets under the Regime Switch-

ing Models

We first analyze the randomness of log return random variables Yt, and then discuss

the issue of market incompleteness. As illustrated in Figure 1.1, the randomness of

Yt+1 under a Markov regime switching model can be decomposed into two parts: the

part from the regime switching process and the part within each regime. In view

of the above decomposition on the log return, we may price a European option, as

the discounted expected payoff under a chosen equivalent martingale measure Q,

through the law of iterated expectation as follows. Recall that Ft = FY
t ∨F

ρ
t . Based

on the filtration Ft, the price of a European option with payoff H(ST ) is

Pt := Pt(H(ST )) = e−r(T−t)EQ[H(ST ) | FY
t ∨ F

ρ
t ], (1.1.3)

where EQ denotes the expectation under Q measure. We will specify EQ in our pricing

method later. Based on the Markov property of the regime switching process (ρt)
T
t=0,

equation (1.1.3) can be rewritten, using the law of iterated expectation, as

Pt = e−rEQ [EQ [H(ST ) | {Ys}t
s=1 , ρt+1

]
|{Ys}t

s=1 , ρt

]
(1.1.4)

In (1.1.4), there are two pricing steps related to the two parts of the randomness of

Yt. In step one, conditional on ρt+1, the price EQ [H(ST )|FY
t , ρt+1

]
is determined.
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Then in step two, the price Pt is obtained by averaging over regimes ρt+1. The

filtration for the out expectation is Ft while the σ−field for the inner expectation at

time t is σ(Ft ∨ {ρt+1})

It is also worth noting that no perfect replication strategy exists for the option

pricing process under our model, since it is assumed that there is no replicating

process available for regime switching. As an illustration, Figure 1.2 uses a simplified

pricing tree for a two-state regime switching model, with different payoffs under

different regimes. In the tree, the only opportunity to replicate the payoffs is at

the square box. Assume that we have different replicating strategies with respect to

different regimes ρt+1. In this case, even if the replicating can be perfect conditional

on ρt+1, with the uncertainty of the regime switching, the payoff cannot be replicated.

Thus, this market must be incomplete. In my thesis, we assume a continuous random

variable Yt in a discrete time model; the conditional distribution of Yt given the

filtration Ft reflects both the uncertainty of regime switching and the uncertainty

within each regime.
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Pt

Pt|{ρt+1 = 2}

Pt|{ρt+1 = 1}

payoff4

payoff3

payoff2

payoff1

Figure 1.2: Illustration of the uncertainty for pricing under regime switching models

1.1.3 Distinction of Our Approach

This chapter addresses option pricing and hedging under discrete time Markov regime

switching models. This section briefly distinguishes our pricing approach from those

in the existing literature. The pricing approach used by previous authors can be

expressed as a double expectation, with the inner expectation conditional on the
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physical path of regime transition, as follows

Pt = e−r (T−t) EP
t ( EQ

t [H(ST ) | ρs, s = t+ 1, . . . , T ] ), (1.1.5)

where H(ST ) represents the contingent claim of the derivative, EP
t = EP(· | Ft) rep-

resents the expectation under the physical probability measure given information by

time t, and EQ
t = EQ(· | Ft) represents the expectation under the risk neutral proba-

bility measure Q, given information by time t. In (1.1.5), the formula uses P-measure

to specify the probability distribution associated with the future regime switching

paths (ρs)
T
s=t+1. An example of this distribution is given as the distribution of so-

journ in each regime along a regime switching path; see, for example, Hardy (2001)

for more details. Under Q-measure in (1.1.5), the log-return process in each regime

is adjusted to be risk neutral, i.e.,

EQ(eYt|ρt) = er.

We will term this pricing formula (1.1.5) for the natural equivalent martingale measure

method (NEMM). You can find this pricing method in Hardy (2001), Elliott et al.

(2005) and Liew and Siu (2010), and many others. In this formula, there is no

satisfactory explanation for using the P measure for the outer expectation. Assuming

(as we do) that the regime switching risk is non-diversifiable, and that it is non-

replicable, there should be a price of this risk, and the use of the P-measure for the

expectation fails to allow for the price of regime switching risk. For more discussion

on the pricing of the outer expectation, see, for example, Siu (2011), which supports

the case that this approach does not price the systemic regime risk.

An alternative approach to option pricing is through identifying an equivalent

martingale measure (EMM), taking account of the joint risk factors (ρt) and (Yt).

Some pricing measures have been explored using this approach. Two interesting

examples proposed in the literature are as follows.

For a continuous time Markov regime switching model, Naik (1993) proposed an

equivalent martingale measure assuming there are state prices associated with regime
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switching. However, this approach does not seem to have been developed further,

and identifying the state prices remains a challenge.

Another equivalent martingale measure in an incomplete market model is the

so–called minimal martingale measure (Föllmer and Schweizer, 1991), found by min-

imizing the quadratic function of hedging errors. However, Elliott and Madan (1998)

show that the minimal martingale measure is not a practical measure since its exis-

tence requires that St is restrictively bounded from above. Usually St (and, hence Yt)

are assumed unbounded, for example, assuming a normal distribution for Yt. In this

situation, the minimization of quadratic functions of hedging errors will not avoid

arbitrage opportunities.

Therefore, the measures used in the above two examples are not practical mea-

sures. In this chapter, we identify an equivalent martingale measure under discrete

time Markov regime switching models by applying the Esscher Transform. The Ess-

cher transform has previously been applied to the pricing formula (1.1.5) by Elliott et

al. (2005). However, their method implicitly assumes that the regime switching risk

is diversifiable. In this work, we use the Esscher transform to identify the Q measure,

with the incorporation of the non-diversifiable regime risk, and derive option prices

that are therefore different from the NEMM prices.

The Esscher Transform is a convenient tool for tilting a distribution, which has

a long history of application in actuarial science (eg, Kahn, 1962). It has been

used to determine the risk premium in insurance, as in Bühlmann (1980, 1983) and

Bühlmann et al. (1996, 1998). Gerber and Shiu (1994) pioneered its application

in identifying the risk neutral measure to value options for Lévy processes. Its

application in incomplete market financial problems highlights the important role of

actuarial methods in risk management.

In the remaining part of the present chapter, we will identify the equivalent

martingale measure and deduce the resulting distribution of the underlying asset

prices; then, we specifically derive the European option prices under the two state

regime switching lognormal (RSLN2) models. The Esscher transform can be justified

theoretically as the measure which maximizes an expected power utility, but in the

option pricing context, it is not clear exactly what this means, compared with prices
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generated by different EMMs. By developing the Esscher transform pricing formula,

we can compare the price and the implied hedge strategy with other EMMs.

1.2 No-arbitrage Pricing Approach by Using the

Esscher Transform

In an incomplete market model, any martingale measure which is equivalent to the

physical measure, is a potential pricing measure. We employ the Esscher transform to

identify a specific equivalent martingale measure (EMM), from the range of EMMs,

and use the resulting measure to price options. The obtained prices are compared

with two other related risk neutral approaches: the Black–Scholes formula (BS) and

the natural equivalent martingale measure method (NEMM).

We will first recall the general framework of a martingale approach for no-

arbitrage pricing under discrete time models, and then introduce the Esscher Trans-

form. The absence of arbitrage opportunities in a discrete time multiperiod model

is defined similar to the definition in a single period model as follows (see Föllmer

and Schied (2004) chapter one). Consider a market of one risk free asset S0
t with

constant rate of return r and m risky assets. Denote St = (S0
t , . . . , S

m
t ); the price

process (St)0≤t≤N is adapted to a filtration (Ft)0≤t≤T . Let ξ = (ξt)0≤t≤T denote a

trading strategy, where ξt is Ft-measurable and ξt = (ξ0
t , . . . , ξ

m
t ) with ξi

t representing

the units of asset i in the strategy at time t.

Definition 1.2.1. (Resnick, 1999) A strategy ξ is a self-financing trading strategy

if

ξt · St+1 = ξt+1 · St+1, 0 ≤ t ≤ T − 1

That is, the changes of the portfolio is due to the change of the underlying stock

prices.

Definition 1.2.2. (Panjer, H. (Ed.), 1998) In a multi-period securities market
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model, an arbitrage opportunity is a self-financing strategy (ξt) such that

ξ0 · S0 ≤ 0, and ξT · ST ≥ 0 with P(ξT · ST > 0) > 0. (1.2.6)

A securities market model is no-arbitrage if there is no arbitrage opportunities.

The no-arbitrage condition of a market model is achieved through the existence

of the so-called equivalent risk-neutral measure, or equivalent martingale measure.

In the context of the relationship between numéraires and measure changes, the risk

neutral measure in our case is associated with the money market account as the

numéraire.

Definition 1.2.3. (Föllmer and Schied 2004) A risk-neutral measure is a probability

measure Q satisfying EQ(St) <∞ and

Si
t = EQ (e−rSi

t+1|Ft

)
, i = 0, . . . ,m; t = 0, 1, . . .

Two probability measures Q and P defined on a same measurable space (Ω,F)

are said to be equivalent, denoted as Q ∼ P, if, for A ∈ F , Q(A) = 0 if and only

if P(A) = 0. Based on Definition 1.2.3, we define the set of equivalent martingale

measures (EMM) as follows

Q = {Q |Q is a risk-neutral measure with Q ∼ P}, (1.2.7)

where P is the physical probability measure. Based on the EMMs, we have the

following well-known results known as the Fundamental Theorem of Asset Pricing.

Lemma 1.2.1. (Föllmer and Schied 2004) A market model is arbitrage-free if and

only if Q is a nonempty set.

Proof. See the proof of Theorem 1.6 in Föllmer and Schied (2004). �

A European derivative on the underlying assets Si
T , i = 0, . . .m has a payoff

H = g(S0
T , . . . , S

m
T ), where g is a measurable function on Rm+1. After introducing
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the derivative for a price at time t, denoted by Pt(H), the market is expanded by

having a new asset with the initial price at time t as follows:

Sm+1
t := Pt(H) (1.2.8)

We intent to identify the price Pt(H) which does not generate arbitrage opportunities

in the expanded market.

Definition 1.2.4. (Föllmer and Schied 2004) We call the real number Pt(H) ≥ 0 a

no-arbitrage price of the derivative with payoff H, if this expanded market through

(1.2.8) is arbitrage-free.

Then, the set of no-arbitrage prices of the derivatives are as follows.

Lemma 1.2.2. (Föllmer and Schied 2004) Assume that the set Q of equivalent

martingale measures, defined in (1.2.7), for the market model is non-empty. Then

the set of arbitrage-free prices at time t, denoted by Pt(H), of a contingent claim H

is non-empty and

Pt(H) =
{

EQ (e−r(T−t)H | Ft

)∣∣Q ∈ Q such that EQ(H | Ft) <∞ a.s.
}

Proof. See proof of Theorem 1.30 in Föllmer and Schied (2004). �

Next, we introduce the tool to identifying the EMM: the Esscher transform of a

random variable Y , defined as

E :=
eh Y

EP[eh Y ]
, (1.2.9)

where EP denotes the expectation under the physical probability measure P. In

(1.2.9), EP[eh Y ] is the moment generating function of Y under P–measure, if it exists,

for some constant h, named the Esscher transform parameter. We always assume,

throughout the chapter, that the moment generating functions EP[ehYt ] exist over

their corresponding domains. For a discrete time adapted process {Yt,Ft}T
t=1, we use
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conditional Esscher transform (Bühlmann et al., 1996) as defined below:

Ẽ :=
T∏

t=1

ehtYt

EP[ehtYt|Ft−1]
, (1.2.10)

where {ht}T
t=1 is a sequence of random variables, with ht adapted to Ft−1, treated as

parameters in the transform. Using the conditional Esscher transform with appro-

priately chosen parameters {ht}T
t=1, we can generate an EMM (denoted by Q) from

the physical probability measure P as we will specify later on.

Now, we apply the conditional Esscher transform to the Markov regime switching

models. Recall that St denotes the price of the stock on which the option under

consideration is written, and the log-returns

Yt = log
St

St−1

, for t = 1, . . . , T,

where T denotes the expiration date of the option; the filtration Ft := FY
t ∨ Fρ

t

with FY
t and Fρ

t being the P-augmentation of the natural filtrations generated by

the log-return process {Ys}t
s=0 and the regime process {ρs}t

s=0 respectively. Based on

Lemma 1.2.2, the price of the option, with a payoff H(ST ), at time s for s = 1, . . . , T ,

is given by

Ps(H(ST )) = e−r(T−s)EQ[H(ST ) | Fs], (1.2.11)

where EQ means the expectation under an equivalent martingale measure Q. We

define Q-measure through the following Radon-Nikodym derivative with respect to

P on Fs:

dQ
dP

∣∣∣∣
Fs

=
s∏

t=1

eh∗t Yt

EP[eh∗t Yt| Ft−1]
, (1.2.12)
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where the parameter h∗t is a Ft−1-measurable random variable satisfying

er =
EP[e(h

∗
t +1) Yt | Ft−1]

EP[eh∗t Yt | Ft−1]
, for t = 1, . . . , s. (1.2.13)

It is worth noting that, for s′ < s,

dQ
dP

∣∣∣∣
Fs′

= EP
[(

dQ
dP

∣∣∣∣
Fs

)∣∣∣∣Fs′

]
.

Hereafter, we call the probability measure Q obtained through equation (1.2.12)

conditional Esscher transform Q measure (abbreviated ET-Q), as the right hand

side of (1.2.12) is a conditional Esscher transform.

As we can see shortly in Proposition 1.2.1, the ET-Q is a uniquely determined

EMM. To establish such a result, we first need to recall the definition of stochastic

ordering and some of its properties.

Definition 1.2.5. (Ross, 1996) (a). Let Y be a random variable with support [a, b]

under two equivalent probability measures Q1 and Q2. Y is said to be stochastically

larger under Q1 than under Q2, denoted Q1 ≥st Q2, if

Q1(Y > y) ≥ Q2(Y > y), ∀ y ∈ R. (1.2.14)

(b). Y is strictly larger under Q1 than under Q2, denoted by Q1 >st Q2, if (1.2.14)

holds with “≥” replaced by “>” for some y.

Lemma 1.2.3. (Ross, 1996) If Q1 ≥st Q2 for a random variable Y , then

EQ1 [ g(Y ) ] ≥ EQ2 [ g(Y ) ] (1.2.15)

for any increasing function g defined on the support of Y .

Proof. See proposition 9.1.2 in Ross (1996). �

We can also characterize stochastic ordering between two probability measures

by their Radon Nikodym derivative as shown in the next lemma.
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Lemma 1.2.4. (CQ) Let Y be a random variable with support [a, b], where a, b ∈ R
and a and b can be −∞ and ∞ respectively. Assume that under two probability

measures Q1 and Q2, a continuous random variable Y has positive density functions

fQ1(y) and fQ2(y) with regard to the Lebesgue measure, respectively. If the densities

satisfy fQ1(y) = g(y) fQ2(y) for a continuous non-negative and strictly increasing

function g, then Q1 >st Q2.

Proof. First note that there must exist a constant y0 ∈ (a, b) such that{
g(y) < 1, y < y0,

g(y) > 1, y > y0.
(1.2.16)

Otherwise, if g(y) > 1 for all y ∈ R, then we must have∫ b

a

fQ1(y) dy >

∫ b

a

fQ2(y) dy,

which contradicts the assumption that both fQ1 and fQ2 are density functions and

hence both integrals in the last display are equal to one. Similarly, we could achieve

a contradiction by assuming g(y) < 1 for all y ∈ R. Thus, taking into account the

continuous and strictly increasing properties of g, we immediately know that the

claim in (1.2.16) is true.

Next, we shall show that Q1(Y > y1 ) > Q2(Y > y1 ) holds for all y1 ∈ (a, b).

We prove this by considering the following mutually exclusive cases, with regard to

the position of y1, respectively as below.

(i) If y1 ≤ y0. Then, 0 < g(y) < 1 for a < y < y1. Hence,∫ y1

a

g(y)fQ2(y) dy <

∫ y1

a

fQ2(y) dy,

which immediately implies that Q1(Y > y1 ) > Q2(Y > y1 ) for all a < y1 ≤ y0.

If a < y1 < y0, then f(y1) > 0.
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(ii) If y0 < y1 < b. Then, g(y) > 1 for y1 < y < b; and hence

∫ b

y1

g(y)fQ2(y) dy >

∫ b

y1

fQ2(y) dy,

which immediately implies that Q1(Y > y1 ) > Q2(Y > y1 ) for all y1 ∈ (y0, b).

�

Remark 1.2.1. In the following proposition, we state the result of identify a unique

(up to almost surely) Ft−1-measurable random variable h∗t through solving the equa-

tion (1.2.13). To make the proof easy to carry out, we focus on the regime switching

models with the filtration specified by Ft = FY
t ∨ F

ρ
t , even though the proof can be

extended to other filtration.

Proposition 1.2.1. (CQ) Suppose Ft = FY
t ∨ Fρ

t . Define conditional cumulant

generating functions

Ψt−1(ht) = log EP [ehtYt|Ft−1

]
, for t = 1, . . . , T, and ht ∈ R.

Assume that the domain of Ψt−1(ht) is non-empty with the boundaries (u1, u2), where

u1 + 1 < u2 and u1 and u2 can be −∞ and ∞ respectively. Assume Ψt−1(ht) tends

to infinity at the boundary u1 if −∞ < u1, and at the boundary u2 if u2 < ∞,

almost surely, and suppose that for each t, Ψt−1(ht) is strictly convex and twice

differentiable almost surely. Furthermore, we assume that P(Yt > r|Ft−1) > 0 and

P(Yt < r|Ft−1) > 0 hold almost surely for all t = 1, 2, . . . , T . Then, we have the

following results:

(a) There exists a unique (up to almost surely) Ft−1-measurable random variable

h∗t satisfying equation (1.2.13).

(b) The probability measure Q defined by the Radon-Nikodym derivative (1.2.12)

with condition (1.2.13) is an EMM.

Proof. (a). For notational convenience, in this proof, denote Ft−1 := (Y1, . . . , Yt−1, ρ0,

. . . , ρt−1) in this proof. Similarly, f(yt|Ft−1) = f(yt|Y1, . . . , Yt−1, ρ0, . . . , ρt−1), as the
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density defined for the random variable Yt conditional on Y1, . . . , Yt−1, ρ0, . . . , ρt−1.

To show that there is a unique solution h∗t given Ft−1 in (1.2.13), let

fht(yt|Ft−1) =
ehtyt

EP(ehtYt|Ft−1)
f(yt|Ft−1) (1.2.17)

be the Esscher Transformed density generated from f(yt|Ft−1), the physical density of

Yt conditional on Ft−1. Accordingly, we will use Eht(·|Ft−1) to denote the expectation

under the above density in (1.2.17) with parameter ht. Then, equation (1.2.13) can

be expressed as

er = Eh∗t [eYt|Ft−1]

Consequently, it would be sufficient if we could establish the following results: (i)

Eht(eYt|Ft−1) is a strictly increasing function of ht almost surely; (ii) Eht(eYt|Ft−1) is a

continuous function of ht almost surely; (iii) inf
ht

Eht(eYt|Ft−1)≤er≤ sup
ht

Eht(eYt|Ft−1)

almost surely. For notational convenience, without confusion, we omit the term

“almost surely” in the following proof.

Results (i) and (ii) can be proved in a completely parallel way as in Proposition

1.2 of Christoffersen et al. (2010). Indeed, result (i) follows from the assumption

that log EP[ehtYt|Ft−1] is strictly convex in ht, and result (ii) is the direct result of the

twice differentiable assumption on the Ψ = log EP[ehtYt|Ft−1]. To show result (iii),

we consider the following four distinct cases separately, with regard to the range of

domain of Ψ.

Case 1: Assume the domain of Ψt−1(ht) is ht ∈ (−∞,∞). We show that

lim
ht→−∞

Eht(eYt|Ft−1)≤er≤ lim
ht→∞

Eht(eYt|Ft−1), a.s. (1.2.18)
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To prove (1.2.18), we first express Eht(eYt|Ft−1) as follows:

Eht(eYt|Ft−1) =
∫∞
−∞ eytfht(yt |Ft−1) dyt =

∫∞
−∞ eytehtytf(yt |Ft−1) dyt

EP(ehtYt|Ft−1)

=: I1(ht) + I2(ht),

where

I1(ht) =

∫∞
r
eytehtytf(yt |Ft−1) dyt

EP(ehtYt|Ft−1)
and I2(ht) =

∫ r

−∞ eytehtytf(yt |Ft−1) dyt

EP(ehtYt|Ft−1)

Clearly, for any ht ∈ R

I1(ht) ≥ er

∫ ∞

r

fht(yt |Ft−1) dyt,= er Pr ht(Yt > r|Ft−1),

and therefore

Eht(eYt|Ft−1) ≥ er Pr ht(Yt > r|Ft−1) ∀ht ∈ R (1.2.19)

If we show that limht→∞ Prht(Yt > r|Ft−1) = 1, then we have limht→∞ Eht(eYt|Ft−1) ≥
er.

In addition, since

I2(ht) ≤ er
ht

Pr(Y ≤ r | Ft−1) ≤ er, ∀ht ∈ R

If we show that limht→−∞ I1(ht) = 0 and limht→−∞ I1ht = 0, then we have

lim
ht→−∞

Eht(eYt|Ft−1) = lim
ht→−∞

I1(ht) + I2(ht) ≤ er

Then, it would be sufficient if we could establish the following two conditions.

1. Limiting probabilities:

Pr ht(Yt > r|Ft−1) → 1 and Pr ht(Yt ≤ r|Ft−1) → 0, as ht →∞; (1.2.20)
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Pr ht(Yt > r|Ft−1) → 0 and Pr ht(Yt ≤ r|Ft−1) → 1, as ht → −∞.(1.2.21)

2. Limiting expectation conditions:

lim
ht→−∞

I1ht = 0

Regarding the limiting probabilities, we will prove the case ht →∞ only, as it can be

similarly proved for ht → −∞. Let R = P(Yt > r|Ft−1). Then, the given conditions

imply that 0 < R ≤ 1 almost surely. Therefore, given Ft−1, there exists a constant

y′ > r such that P(Yt > y′|Ft−1) >
R
N

for some positive integer N . Let ∆ = y′ − r.

We have, ∀ht > 0,

Prht(Yt > r|Ft−1) ≥ Prht(Yt > y′|Ft−1)

=

∫ ∞

y′

ehtyt

EP(ehtYt|Ft−1)
f(yt|Ft−1) dyt

≥ ehty′

EP(ehtYt|Ft−1)

∫ ∞

y′
f(yt|Ft−1) dyt

≥ ehty′

EP(ehtYt|Ft−1)

R

N

=
eht∆ eht r

EP(ehtYt|Ft−1)

R

N
,

(1.2.22)

and

Prht(Yt ≤ r|Ft−1) =

∫ r

−∞

ehtyt

EP(ehtYt|Ft−1)
f(yt|Ft−1) dyt

≤ eht r

EP(ehtYt|Ft−1)

∫ r

−∞
f(yt|Ft−1) dyt

=
eht r

EP(ehtYt|Ft−1)
(1−R).

(1.2.23)

Combining (1.2.23) and (1.2.22), we get

Pr ht(Yt ≤ r|Ft−1) ≤
Prht(Yt ≤ r|Ft−1)

Prht(Yt > r|Ft−1)
≤ ( 1−R )

/(
eht∆

R

N

)
,
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whereby,

lim
ht→∞

Pr ht(Yt ≤ r|Ft−1) ≤ lim
ht→∞

( 1−R )

/(
eht∆

R

N

)
= 0.

This immediately implies the limits in (1.2.20).

Regarding the limiting expectation condition, we consider ht < 0, since the con-

dition is required for ht → −∞. Define

g(yt) =
eht ytf(yt|Ft−1)

EP(eht Yt|Ft−1) Prht(Yt > r|Ft−1)
, and q(yt) =

f(yt|Ft−1)

P(Yt > r|Ft−1)
.

which can be considered as two density functions for Yt with the same support of

(r,∞). In addition, the ratio q(yt)/g(yt) =
e−ht ytEP(eht Yt|Ft−1) Prht(Yt > r|Ft−1)

P(Yt > r|Ft−1)
is strictly increasing in yt for a fixed ht < 0. According to Lemma 1.2.4, Yt is

stochastically larger under probability measure with density q(yt) than under g(yt),

given a fixed ht < 0. Then, based on Lemma1.2.3,∫ ∞

r

eytg(yt) dyt ≤
∫ ∞

r

eytq(yt) dyt, ∀ ht < 0. (1.2.24)

Consequently,

∫ ∞

r

eyt
eht ytf(yt|Ft−1)

EP(eht Yt|Ft−1) Prht(Yt > r|Ft−1)
dyt ≤

∫ ∞

r

eytf(yt|Ft−1)/P(Yt > r|Ft−1) dyt

≤ EP(eYt|Ft−1)/P(Yt > r|Ft−1),

(1.2.25)

where the second inequality is due to (1.2.24). From the arbitrariness of ht < 0, we

also have, with P(Yt > r|Ft−1) = R,

er ≤
∫ ∞

r

eyt
eht ytf(yt|Ft−1)

EP(eht Yt|Ft−1) Prht(Yt > r|Ft−1)
dyt ≤ EP(eYt|Ft−1)/R. (1.2.26)

Thus, with the boundary results in (1.2.26), the limiting expectation condition is
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satisfied, since

lim
ht→−∞

I2(ht) = lim
ht→−∞

Pr ht(Yt > r|Ft−1)

∫ ∞

r

eyt
eht ytf(yt|Ft−1)

EP(eht Yt|Ft−1) Prht(Yt > r|Ft−1)
dyt = 0,

as limht→−∞ Prht(Yt > r|Ft−1) = 0.

Case 2: Assume the domain of Ψt−1(ht) is −∞ < a < ht < b <∞, where a+1 < b.

Based on the assumption that Ψt−1 = log EP [ehtYt|Ft−1

]
is twice differentiable

with regard to ht, and tends to infinity at the finite boundaries of its domain of ht

almost surely, we have the following result. As ht → a, EP [ehtYt|Ft−1

]
tends to infin-

ity at the boundary of its domain of ht almost surely, while EP(e(ht+1) Yt|Ft−1) <∞.

Thus,

lim
ht→a

Eht(eYt|Ft−1) = lim
ht→a

EP(e(ht+1) Yt|Ft−1)

EP(eht Yt|Ft−1)
= 0 (1.2.27)

Similarly, as ht → b,

lim
ht→b−1

Eh
t (e

Yt|Ft−1) = lim
ht→b−1

EP(e(ht+1) Yt|Ft−1)

EP(eht Yt|Ft−1)
= ∞ (1.2.28)

As a result, we have lim
ht→−∞

Eht(eYt|Ft−1)≤er≤ lim
ht→h′

Eht(eYt|Ft−1).

Case 3: Assume the domain of Ψt−1(ht) is ht ∈ (−∞, b). Based on the result from

(1.2.18) and (1.2.28), we have

lim
ht→−∞

Eht(eYt|Ft−1)≤er≤ lim
ht→b−1

Eht(eYt|Ft−1), a.s.

Case 4: Assume the domain of Ψt−1(ht) is ht ∈ (a,∞). Similarly, we have

lim
ht→a

Eht(eYt|Ft−1)≤er≤ lim
ht→∞

Eht(eYt|Ft−1), a.s.
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(b). We need to show EQ
[
St

ert

∣∣∣∣Ft−1

]
=

St−1

er(t−1)
, or equivalently

EQ
[
St

St−1

∣∣∣∣Ft−1

]
= er, for t = 1, . . . , T . In fact, by part (a), h∗t is uniquely determined

given Ft−1 and hence, it follows from the tower rule for the conditional expectation

that

EQ
[
St

St−1

∣∣∣∣Ft−1

]
= EP

[
eYt

dQ
dP |Ft

dQ
dP |Ft−1

∣∣∣∣∣ Ft−1

]
(1.2.29)

= EP
[

e(h
∗
t +1)Yt

EP[eh∗t Yt|Ft−1]

∣∣∣∣ Ft−1

]
= er,

where the last equality is due to condition (1.2.13) with s = t. �

Remark 1.2.2. It is worth noting that the conditions in Proposition 1.2.1 are quite

mild in that they are satisfied by many popular regime switching models in finance,

and therefore the ET-Q can be used as a valid EMM in option pricing for a wide range

of models. To demonstrate this fact, we analyze the well-known regime switching

lognormal models in Example 1 and the regime switching auto-regressive model in

Example 2 below.

Example 1. In the regime switching lognormal models with R regimes, Yt only

depends on ρt and Yt|ρt ∼ N(µρt , σ
2
ρt

) under P–measure. Therefore,

Ψt−1(h) ≡ log EP [ehYt|Ft−1

]
= log EP [ehYt|ρt−1

]
,

and for any i from the regime state space,

log EP [ehYt|ρt−1 = i
]

= log

(
R∑

j=1

(
EP [ehYt|ρt = j

]
· P(ρt = j|ρt−1 = i)

))

= log
R∑

j=1

exp

(
µjh+

1

2
σ2

jh
2 + log pij

)
,

where pij = P(ρt = j|ρt−1 = i). Obviously, the above conditional cumulant gener-

ating function is twice differentiable and tends to infinity as h tends to either −∞
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or ∞. Next we show the strict convexity of log EP [ehYt|ρt−1 = i
]

as a function of h.

Indeed, gij(h) := µjh+ 1
2
σ2

jh
2 + log pij is obviously strictly convex as a function of h

so that its second derivative g′′ij(h) > 0 for all h ∈ R, and therefore

∂2 log EP [ehYt|ρt−1 = i
]

∂h2

=
1(∑R

j=1 e
gij(h)

)2

( R∑
j=1

(
egij(h)[g′′ij(h) + (g′ij)

2]
))( R∑

j=1

(
egij(h)

))
−

(
R∑

j=1

egij(h)g′ij(h)

)2


>
1(∑R

j=1 e
gij(h)

)2

( R∑
j=1

(
egij(h)(g′ij)

2
))( R∑

j=1

(
egij(h)

))
−

(
R∑

j=1

egij(h)g′ij(h)

)2


≥ 0,

where the last step is due to Hölder’s inequality.

The above analysis implies that, with probability one, Ψt−1(h) is strictly convex,

twice differentiable and tends to infinity as h tends to either −∞ or∞. Therefore,the

conditions in Proposition 1.2.1 are satisfied. �

Example 2. In this example, we consider the the following regime switching AR(1)

model (Yt, ρt)
T
t=0, where the log-return Yt depends on not only the regime state ρt

but also the log-return in the previous period:

Yt = µρt + αYt−1 + σρtεt, t = 1, . . . , T, (1.2.30)

where (εt)
T
t=1 is a sequence of white noises with εt ∼ N(0, 1) under P–measure. From

(1.2.30) and the Markov property of (ρt)
T
t=0,

Ψt−1(h) ≡ log EP [ehYt|Ft−1

]
= log EP [ehYt|Yt−1, ρt−1

]
,
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and for any i from the regime state space and real number y,

log EP [ehYt|Yt−1 = y, ρt−1 = i
]

= log

(
R∑

j=1

EP [ehYt|Yt−1 = y, ρt = j
]
· P(ρt = j|ρt−1 = i)

)

= log
R∑

j=1

exp

(
(µi + αy)h+

1

2
σ2

jh
2 + log pij

)
,

where pij = P(ρt = j|ρt−1 = i). Following exactly the same argument as in Example

1, we can easily show that the above function of h satisfies all the conditions in

Proposition 1.2.1. �

Remark 1.2.3. Although the analysis in Examples 1 and 2 is quite straightforward,

it has very important implications. For instance, Example 1 indicates that, when

the log-return Yt only depends on ρt, to verify the conditions in Proposition 1.2.1,

it is sufficient to investigate whether they are satisfied by the conditional cumulant

generating function log EP [ehYt|ρt−1 = i
]

for each regime state i. This provides us

with a very transparent method for verification, and more importantly, by this

fact we can easily show that conditions in Proposition 1.2.1 are indeed satisfied for

many other distributions besides the normal distribution. The verification approach

conducted in Example 2 can be extended to AR models with a higher order and

even other more sophisticated models such as regime switching ARCH and GARCH

models.

1.2.1 Distributions under the Risk Neutral Measure

In the previous section, we have established an EMM Q measure through the Radon-

Nikodym derivative given in (1.2.12) with conditions (1.2.13). In this section, we

consider the Q measure distribution of the underlying asset price in an R state

Markov regime switching model. First, we derive the distribution of Yt conditional

on Ft−1; then, we consider the joint distribution of Yt, . . . , YT . Let ut denote a

real number at which the moment generating function of Yt conditional on Ft−1
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exists. Then, similar to (1.2.29), the moment generating function for the conditional

distribution of Yt given Ft−1 can be written as follows:

EQ [eutYt| Ft−1

]
= EP

[
eutYt

dQ
dP |Ft

dQ
dP |Ft−1

∣∣∣∣∣ Ft−1

]
(1.2.31)

=
EP [e(ut+h∗t )Yt

∣∣ Ft−1

]
EP[eh∗t Yt| Ft−1]

.

Recall Ft = FY
t ∨ Fρ

t under regime switching models. Based on the filtration

Ft and the Markov property of the regime process imposed in section 1.1.1, we can

replace the result in (1.2.31) by

EQ(es Yt| FY
t−1

⋂
{ρt−1 = i}) =

EP [e(s+h∗t )Yt
∣∣ FY

t−1

⋂
{ρt−1 = i}

]
EP[eh∗t Yt| FY

t−1

⋂
{ρt−1 = i}]

. (1.2.32)

For the simplicity of the computation, we further set up the following independence

assumption, which is common in the literature.

(A4) Y1, . . . , YT are independent given {ρt}T
t=0.

red Assumption (A4) rules out the dependent models like Autoregressive-moving-

average (ARMA) models. Based on assumptions (A1) to (A4), (1.2.31) implies

EQ(es Yt| ρt−1 = i) =
EP [e(s+h∗t )Yt

∣∣ ρt−1 = i
]

EP[eh∗t Yt| ρt−1 = i]
. (1.2.33)

So we may condition on the regime process only, and no longer need the full Ft−1,

when we consider the distribution of the underlying asset price under Q measure.

Proposition 1.2.1 applied to the regime switching model implies that h∗t is the

unique σ(ρt−1)-measurable random variable such that

er =
EP[e(h

∗
t +1) Yt |ρt−1]

EP[eh∗t Yt | ρt−1]
(1.2.34)
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This means that under the RSLN framework with R regimes there are R possible

values for h∗t , depending on the regime at time t− 1. Let h(i) be the unique value of

h∗t conditional on ρt−1 = i. {As we assume that the state space of ρt−1 is finite. }

Expanding (1.2.33) with h(i), the density function of Yt under the Esscher trans-

formed Q measure (ET-Q density) conditional on {ρt−1 = i, ρt = j} is

fQ
ij (yt) =

eh(i)yt fP(yt|ρt = j)

EP [eh(i)Yt|ρt−1 = i, ρt = j
] (1.2.35)

and similarly, the Q density of Yt conditional on {ρt−1 = i},

fQ
i (yt) =

eh(i)yt fP(yt|ρt−1 = i)

EP [eh(i)Yt|ρt−1 = i
] , (1.2.36)

where fP denotes the corresponding density function of Yt under the P-measure.

The following proposition shows that fQ
i can be expressed as a mixture of the fQ

ij

functions.

Proposition 1.2.2. The ET-Q density of Yt conditional on {ρt−1 = i} is a mixed

density,

fQ
i (yt) =

R∑
j=1

qij f
Q
ij (yt), (1.2.37)

where

qij =
pij EP(eh(i) Yt | ρt−1 = i, ρt = j)

EP(eh(i) Yt | ρt−1 = i)
, i, j ∈ {1, . . . , R}, (1.2.38)

Proof. The proof follows from the fact that

fP(yt|ρt−1 = i) =
R∑

j=1

pij f
P(yt|ρt = j).
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Indeed, substituting the above into (1.2.35) and using (1.2.36), we immediately have

fQ
i (yt) =

eh(i) yt fP(yt|ρt−1 = i)

EP[eh(i) Yt |ρt−1 = i]

=
eh(i) yt

∑R
j=1 pij f

P(yt|ρt = j)

EP[eh(i) Yt |ρt−1 = i]

=
R∑

j=1

(
pij EP[eh(i) Yt | ρt−1 = i, ρt = j]

EP[eh(i) Yt |ρt−1 = i]

)
eh(i) yt fP(yt|ρt = j)

EP[eh(i) Yt | ρt−1 = i, ρt = j]

=
R∑

j=1

qijf
Q
ij (yt).

Clearly,
∑R

j=1 qij = 1, since

EP[eh(i)Yt|ρt−1 = i] =
R∑

j=1

pijE
P[eh(i)Yt|ρt−1 = i, ρt = j]. (1.2.39)

�

Remark 1.2.4. Using Proposition 1.2.2, we can represent the distribution law of the

process of (St) under the ET-Q measure by a new Markov regime switching process

denoted by (S∗t ) and specified as follows. Let (ρ∗t ) denote a regime process with R2

states {[ij] : i, j = 1, . . . , R}, where ρ∗t = [ij] corresponds to the event of the physical

regime process {ρt−1 = i, ρt = j}. Then the regime transition probabilities under Q
measure are

Q
(
ρ∗t+1 = [ij]

∣∣ρ∗t = [kl]
)

=

{
0 i 6= l

qij i = l
(1.2.40)

Having obtained the conditional distribution of Yt given Ft−1 with densities ex-

pressed from (1.2.35) to (1.2.38), we further investigate the joint density of Y1, . . . , YT .

We observe from equation (1.2.35) that, conditional on {ρ∗t}T
t=0, the distribution of

Yt is given as fQ
ij , which is independent of Ys, s 6= t under ET-Q measure. We
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summarize in the following lemma.

Lemma 1.2.5. Based on assumptions (A1) to (A4), Y1, . . . , YT are conditionally

independent under ET-Q measure given {ρ∗t}T
t=0.

Proof. Based on assumptions (A1) to (A4), under ET-Q measure, the density of Yt

conditional on ρ∗t , f
Q(yt|ρ∗t ), is given in (1.2.35). According to assumption (A4),

Y1, . . . , YT conditional on {ρt}T
t−0 are independent under P-measure. Therefore, the

term fP(yt|ρt = j) in (1.2.35) is independent of Ys, s 6= t. Also, since the parameter

h
(i)
t is determined by ρt−1 = i, the term EP

[
eh(i)Yt|ρt−1 = i, ρt = j

]
in (1.2.35) is

jointly determined by ρt and ρt−1, i.e., independent of Ys, s 6= t and ρs, s < t− 1. As

a result,

fQ(yt| y1, . . . , yt−1; ρ
∗
1, . . . , ρ

∗
t ) = fQ(yt|ρ∗t ), (1.2.41)

by which we complete the proof. �

Lemma 1.2.6. Based on assumptions (A1) to (A4), the distribution of Yt conditional

on ρ∗t , under ET-Q measure, is independent of ρ∗s for s 6= t.

Proof. Based on the same argument for lemma 1.2.5. �

Based on Lemma 1.2.5 and Lemma 1.2.6, the distribution of Yt is solely deter-

mined by ρ∗t under the ET-Q measure.

It is worth noting that, in (1.2.35), to compute the probability associated with

the path {ρ∗t}T
t=1 under the ET-Q measure, we need to sum over all the paths {ρt}T

t=0

which generate the regime switching path {ρ∗t}T
t=1. In this study there is a one-to-

one relationship between the paths {ρ∗t}T
t=1 and {ρt}T

t=0 according to Remark 1.2.4.

Therefore no sum is needed.

We can obtain the moment generating function of Y1, . . . , YT . Let (u1, . . . , uT )

be a vector of real numbers such that the moment generating function EQ(e
∑T

t=1 utYt)

exists. Then,

EQ [eu1Y1+···+uT YT
]

= EQ [EQ (eu1Y1+···+uT YT | {ρ∗t}T
t=1

)]
, (1.2.42)
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where

EQ (eu1Y1+···+uT YT |{ρ∗t}T
t=1

)
=

T∏
t=1

EQ(eutYt | ρ∗t ) (1.2.43)

=
T∏

t=1

EP(e(ut+ht)Yt| ρt−1, ρt)

EP(ehtYt| ρt−1, ρt)
.

The distribution of {ρ∗t}T
t=1 follows a Markov chain as described in Remark 1.2.4 with

transition probabilities given in (1.2.38).

The distribution of ST = S0 exp(
∑T

t=1 Yt) given (ρ∗1, ρ
∗
2 . . . , ρ

∗
T ) can be obtained

in the same way as in (1.2.43). Let c be a constant such that the moment generating

function of the log return
∑T

t=1 Yt exists conditional on {ρ∗t}T
t=1. Then,

EQ

(
exp

[
c

T∑
t=1

Yt

]∣∣∣∣∣ {ρ∗t}T
t=1

)
=

T∏
t=1

EQ(ecYt | ρ∗t ) (1.2.44)

Next, we give an example to illustrate the result in Proposition 1.2.2.

Example 3. Assume a 2-state Markov regime switching models where Yt follows the

univariate natural exponential family within each regime. Under the ET-Q measure,

the mixed density of Yt given ρt−1 under P -measure is

f(yt | ρt−1 = i) = pi1 g1(yt) exp[ θ1yt − A1(θ1) ] + pi2 g2(yt) exp[ θ2yt − A2(θ2) ]

where gj(yt) and Aj(θj), j = 1, 2 are given functions. θi, i = 1, 2 are parameters. The

moment generating function E(eh∗t Y |ρt−1 = i, ρt = j) is

E(eh∗t Y |ρt−1 = i, ρt = j)

=

∫
Yt

eh∗t y gj(yt) exp[θj yt − Aj(θj)] dyt

= exp[Aj(θj + h∗t )− Aj(θj)].
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Two Esscher transform parameter h∗t , denoted by {h[(1), h(2)} are uniquely deter-

mined by ρt−1 = 1 or 2 through equation (1.2.13). From the proposition 1.2.2 (a),

the resulting transition probabilities under the risk neutral measure are

qij =
pij exp[Aj(θj + h(i))− Aj(θj)]

E(eh(i) Yt | ρt−1)
i, j ∈ {1, 2}, (1.2.45)

and the conditional density

fQ
ij (yt) = gj(yt) exp[ (θj + h(i))yt − Aj(θj + h(i)) ] (1.2.46)

The maximum number of different fQ
ij (yt) is four. �

1.2.2 Calculating Option Prices

We consider the price at time t of a European option with a payoff function H(ST )

at the expiration date T . The price under the ET-Q measure is

P0(H(ST )) = e−rT EQ[H(ST ) | ρ0 ], (1.2.47)

where EQ denotes the expectation under the ET-Q measure. We can compute this

price by a two-step procedure, using iterated expectation. In the first step, we

compute the prices of the option corresponding to each possible path of the regime

switching process. In the second step, we calculate the expectation over all the

possible paths of the regime switching process. In other words, we compute the price

through the following iterated expectation:

P0 = EQ [EQ [e−rTH(ST )|{ρ∗t}T
t=1

]]
, (1.2.48)

where (ρ∗k) are the regimes defined by successive pairs of regimes under the original

process.

Next let us briefly analyze the computation associated with the two expectations

in equation (1.2.48). The inner expectation of equation (1.2.48) needs the distri-
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bution of ST = S0 exp(
∑T

t=1 Yt). We are given in (1.2.44) the moment generating

function of
∑T

t=1 Yt conditional on (ρ∗1, ρ
∗
2 . . . , ρ

∗
T ). The distribution of ST is the aver-

aged distribution over all paths of {ρ∗t}. The outer expectation in equation (1.2.48)

requires the average of the inner expectation over the Markov regime switching

process (ρ∗1, ρ
∗
2, · · · , ρ∗T ); the associated issue is to compute the distribution of all

scenarios of the regime switching. The computation time increases rapidly with the

increase of the size of state space of regimes and the expiry date of target options.

Hence, it is quite non–trivial when the expiration date T is large. To overcome this

difficulty, we develop a solution illustrated under the regime switching lognormal

models.

1.3 Pricing European Options using ET-Q under

the RSLN2 Models

In the remaining part of this chapter we apply the distributions obtained through

the risk neutral Esscher transform to price call and put options, with the focus on

the option on a single risky asset under the Markov regime switching model with

two regimes under the log-normal distributions (RSLN2). Our pricing approach

can be applied to many other distribution families which are closed under n-fold

convolution, and can be adapted for more than 2 regimes.

1.3.1 The RSLN2 Process under P–measure

As demonstrated by Hardy (2001), the RSLN2 model is a significant improvement

over many other models in modeling long term stock returns. This model assumes

that there are two economic regimes (bear or bull) behind the stock prices, and that

the transition of regime variable, denoted by {ρt, t = 1, 2, · · · , T}, from one period

to the next follows a discrete time Markov chain with a transition matrix, denoted
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by ℘, as follows:

℘ =

( 1 2

1 p11 p12

2 p21 p22

)
(1.3.49)

Given the value (either 1 or 2) of the regime variable ρt for the tth period, the

distribution of the log return Yt is normally distributed:

Yt|ρt ∼ N(µρt , σ
2
ρt

),

where different ρt results in different µρt , σ
2
ρt

. The distribution of Yt only depends on

the regime variable ρt in the regime switching model. With the above specification,

it is said that (eYt)0≤t≤T follows the RSLN2 model.

1.3.2 The Distribution under the Q-measure

The inner expectation of the right hand side is generally quite straightforward for

each individual path, but the computation time increases rapidly with the number

of time steps. To overcome this difficulty, we develop an algorithm for 2-regime

lognormal models (RSLN-2). For details on the path reduction, see subsection 1.3.3.

For the RSLN-2 model, we have 6 parameters under the P-measure; let µ1 and

µ2, denote the means for the log-returns in regime 1 and regime 2 respectively, σ1

and σ2 denote the corresponding standard deviations, and p12 and p21 denote the

transition probabilities. Then, the conditional density of Yt conditional on ρt−1 = i

under P-measure is

f(y| ρt−1 = i) = pi1
1

σ1

φ

(
y − µ1

σ1

)
+ pi2

1

σ1

φ

(
y − µ2

σ2

)
i = 1, 2 (1.3.50)

where φ(·) is the density of the standard normal distribution. We have, under this
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model, for i = 1, 2,

EQ[es Yt|{ρt−1 = i, ρt = j}] = exp

(
µ∗[i,j] s+

σ2
j

2
s2

)
(1.3.51)

and

EQ[es Yt| ρt−1 = i] = qi1 exp

(
µ∗[i,1] s+

σ2
1

2
s2

)
+ qi2 exp

(
µ∗[i,2] s+

σ2
2

2
s2

)
where

µ∗[ij] = µj + σ2
jh

(i) (1.3.52)

qij = pij
EP[eYt h(i) |ρt−1 = i, ρt = j]

EP[eYt h(i) |ρt−1 = i]
(1.3.53)

EP[eh(i) Yt|ρt−1 = i] = pi1 EP[eh(i) Yt | ρt = 1] + pi2 EP[eh(i) Yt | ρt = 2]

EP[eh(i) Yt|ρt−1 = i, ρt = j] = exp
(
µj h

(i) + σ2
j (h

(i))2/2
)

The process {Yt}, under the ET-Q measure, is a Markov regime switching Gaus-

sian process with four regimes. The regime at t, ρ∗t = [ij], corresponds to a pair of

consecutive regimes under the P measure as explained in Remark 1.2.4 in subsection

1.2.1. From (1.3.51), we see that Yt|ρ∗t = [ij] has a normal distribution under Q,

with parameters µ∗[ij] and σ2
j .

Now, as the option that we are valuing is European, the price depends only on

ST , not on the path, {St}t<T . Consider the time 0 price of a European option with

payoff H(ST )|ρ∗ over a given path ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗T ) of the Markov chain regime

switching process. Let Nij, respectively denote the numbers of periods that the

process spends in regime [ij], for each pair i, j = 1, 2. Then, under Q measure,

T∑
k=1

Yk|(ρ∗1, . . . , ρ∗T )∼N

(
2∑

i=1

2∑
j=1

Nijµ
∗
[ij],

2∑
j=1

(N1j +N2j)σ
2
j

)
, (1.3.54)
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where µ∗[ij] are defined in (1.3.52), and σ2
j is the variance parameter for regime j

under the P-measure. This means that for each regime path, we can calculate the

option cost using standard Black-Scholes analysis, which is particularly convenient

for plain vanilla options. The final cost would be the weighted average of prices over

all such paths, where the weight for each path is the Q measure probability for that

path.

We also infer from (1.3.54) that different paths will generate the same option

price, if the values of Nij are the same for all i, j. Where the number of time

steps is large, the process of determining the price and associated path probability

for each possible path is computationally burdensome. In the following section, we

demonstrate how similar paths can be grouped together to reduce the computation

significantly for longer term options.

1.3.3 Reduction of Path Dimension

The regime process is demonstrated in the multi–period binomial tree in Figure 1.3.

Given the starting regime at time zero, the process has two possible regimes at time

one, and four possible regimes [ij], i, j = 1, 2 at time two. The four end points are

[ij]

[j1]

[j2]

[11]

[12]

[21]

[22]

. . .��
����*

H
HHH

HHj

������:

XXXXXXz

������:

XXXXXXz

t = 0 t = 1 t = 2

Figure 1.3: Regime Transition in the 4-Regime Model

distinct in this model, and the four paths cannot be recombined. The total number

of paths in the tree increases exponentially with the number of time units for the

problem, so for an n period tree there are 2n paths, but, as mentioned above, there

are not 2n distinct option values.
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We develop an iterative approach to reducing the dimension by adopting an idea

from Hardy(2001), and using the fact that the inner conditional expectation in the

option valuation, EQ[H(ST )|ρ∗] is the same for all paths that share the same values

of Nij, i, j = 1, 2.

To proceed, we need to introduce some notation. Let ρ∗(t, T ) denote the set of all

distinct pathes of the regime process ρ∗ between times t and T for a regime process

ρ∗. The critical information about the path is encapsulated in the following vector

process Πt:

Πt|ρ∗(t,T ) = (ρt N11(t) N12(t) N21(t) N22(t))
′ (1.3.55)

where Nij(t) represents the number of periods in state [ij], between t + 1 and T ,

for the regime process ρ∗. Recall that the process ρ∗ is in [ij] at t if and only if the

process ρt is in regime i at t− 1 and j at t.

The objective is to collect together, and count, all paths with identical values

of Π0. To this end, we work backwards from T − 1. We construct recursively, all

possible values of Πt, as well as the count N(Πt), which denotes the number of paths

sharing the same Πt.

At T − 1 there are four distinct paths, corresponding to the four possible combi-

nations for ρT−1 and ρT . For t ≤ T − 2, let

g(i,Π′
t+1) = Π′

t|{ρt=i, Πt+1},

where the subscript {ρt = i, Πt+1} takes the same role as ρ∗(t, T ) does in (1.3.55)

as they provide information in the same capacity needed for the functional Π. So,

each Πt+1 generates two values for g, corresponding to i = 1 and i = 2. If ρt+1 = j

then the Nij element will increase by one from Πt+1 to g(i,Π′
t+1), and the other Nkl
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values will remain the same. That is,

g(1, (1, a, b, c, d)) = (1, a+ 1, b, c, d),

g(1, (2, a, b, c, d)) = (1, a, b+ 1, c, d),

g(2, (1, a, b, c, d)) = (2, a, b, c+ 1, d),

g(2, (2, a, b, c, d)) = (2, a, b, c, d+ 1).

This recursion generates 8 possible values for ΠT−2, and each is distinct, so the count

for each feasible ΠT−2 is 1.

We then generate 16 candidate values for ΠT−3, and find that there are only

14 distinct values; in two cases, 2 paths generate the same ΠT−3. These 14 values

generate 22 distinct feasible values for ΠT−4.

We determine the count, N(Πt) for each distinct feasible value, by summing the

counts of the associated values for Πt+1. That is,

N(Πt) =
∑

{Πt+1 : g(j,Πt+1) = Πt}
N(Πt+1).

where j denotes the value of ρt in the vector Πt. We use the counts to determine the

appropriate Q measure probabilities associated with each distinct path. Suppose we

have summarized some paths of a T -period process in the vector

Π0 = (1, n11, n12, n21, n22)
′ with count N(Π0)

Then

Q[Π0|ρ0 = 1] = N(Π0)× qn11
11 × qn12

12 × qn21
21 × qn22

22 ,

where qij are given in (1.2.38).

If we know the starting regime, we can use only the paths with the correct ρ0. If

we do not, we generally assume the starting state is random, with probabilities from

the stationary distribution of the Markov chain ρt under the physical P-measure.
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For longer options, this algorithm substantially reduces the computation time.

As shown in Table 1.1, for a T -year option, there are 2T+1 possible paths for ρ∗, and

there are T 2 + T + 2 distinct values for Π0; see Proposition 1.3.1. That means, for

example, that for a 10-year option with monthly time steps, working through each

path requires 2.6× 1036 calculations, while using the algorithm above requires only

14,764 calculations. Proposition 1.3.1 states the total number of distinct path for

Π0. Let NA denote the total number of path sets identified by (1.3.55) for T periods.

Table 1.1: Comparison of Path Numbers

T: Number of Period Path after Iteration(T 2 + T + 2) 2T+1(Multinomial Tree)
1 4 4
2 8 8
3 14 16
4 22 32
5 32 64
6 44 128
7 58 256
8 74 512
9 92 1024

10 112 2048
11 134 4096
12 158 8192
24 602 33554432

120 14522 2.66×1036

Proposition 1.3.1. (CQ) NA = T 2 + T + 2

Proof. To count NA, we first set up a relationship between N12 and N21 as follows.

Based on (1.2.40) and the relation between ρ∗t and ρt for the RSLN2 models, we have

the following transitions available: [11] → [11] or [12], with the same for [21]. We

also have [12] → [21] or [22], with the same for [22]. As a result,

N21 +N11 = N11 +N12 + c

N12 +N22 = N21 +N22 + c,
(1.3.56)
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where c ∈ {−1, 0, 1}. Equation (1.3.56) is the same as

N21 = N12 + c. (1.3.57)

Based on (1.3.57), we can show that, from

T = N11 +N12 +N21 +N22, (1.3.58)

if N11 and N22 are given, then the values of N12 and N21 are uniquely determined

based on ρ0 in Π0. As a result, the value of N(Πt) is determined by the total number

of combination of N11 and N22 within T periods. In the next step, we discuss the

number of combination of N11 and N22 in three cases based on the value of N11.

(i). Assume N11 = 0. We have the following relationships.

Conditions Resulting
N11 ρ0 N22 {N12, N21} Relationships

T is even N11 = 0 ρ0 = 1 N22 = T − 1, . . . , 0 if N22 is even N21 = N12

if N22 is odd N12 = N21 + 1

T is odd N11 = 0 ρ0 = 1 N22 = T − 1, . . . , 0 if N22 is even N12 = N21 + 1
if N22 is odd N12 = N21

For example, if ρ0 = 1, then the initial regime ρ∗1 = [12] given N11 = 0.

Also, since N21 = N12 + c is satisfied for c ∈ {−1, 0, 1}, if N22 and T are even,

then N21 = N12; if N22 is odd and T is even, then N21 = N12 + 1. That is,

for any 0 ≤ N22 ≤ T − 1, we have a scenario available in the candidate path

to represent the combination of Nij, the regime occupations. As a result, if

N11 = 0 and ρ0 = 1, then the number of count for different combination of Nij

is T . Similarly, if N11 = 0 and ρ0 = 2, the number of paths is T + 1.

(ii). Assume N11 = T . Then N12 = N21 = N22 = 0; the number of path is 1.

(iii). Assume N11 = i, 1 ≤ i ≤ T − 1, if T ≥ 2. Since [11] → [22] does not occur, we
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have N22 = T −N11 − 1, . . . , 0. There are total T −N11 different values of N22

corresponding to each N11, based on ρ0 = 1 or 2. In addition, we can show,

in the similar way as in (i), that N12 and N21 are uniquely determined given

I,N11, N22. Therefore, the total number of combination in (iii) is

2
T−1∑

N11=1

(T −N11 − 1) = T 2 − T. (1.3.59)

Based on (i)-(iii), we have the total number of paths NA is

NA = (T + T + 1) + 1 + (T 2 − T ) = T 2 + T + 2. (1.3.60)

�

1.3.4 Calculating Option Prices

By the previous subsection, we can express the option price formula in terms of the

vectors Π0, and their associated probabilities. Given

Π0 = (j, n11, n12, n21, n22)

for a T -year RSLN process, the option price is the discounted expected value of the

payoff, under the lognormal distribution with parameter values

µ∗(Π0) =
2∑

i=1

2∑
j=1

nijµ
∗
[ij]

and

σ∗(Π0) =

√√√√ 2∑
i=1

2∑
j=1

nijσ2j.
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Then, summing over all feasible Π0, we have the option price P , say, where

P =
∑
Π0

e−rT EQΠ0 [H(ST )] q(Π0)

where EQΠ0 denotes expectation under the lognormal distribution with parameters

µ∗(Π0) and σ∗(Π0), and

q(Π0) = Q[Π0|ρ0 = j]×Q[ρ0 = j]

For straightforward put and call options, the discounted price has the Black-

Scholes format. For example, a put option with strike K on a non-dividend paying

stock is

BSP (Π0) = Ke−rT Φ(−d2)− S0 exp

(
−rT + µ′k +

σ
′2
k

2

)
Φ(−d1) (1.3.61)

where

d2 =
log(S0/K) + µ∗(Π0)

σ∗(Π0)
; d1 = d2 + σ∗(Π0) (1.3.62)

and the price is

P =
∑
Π0

BSP (Π0) q(Π0) (1.3.63)

1.4 Numerical Comparison of Esscher Transform,

Black-Scholes and NEMM Method Option Prices

In this section, we calculate prices for European put options on non-dividend paying

stocks. We use a range of strike values and terms. We compare the ET-Q mea-

sure prices with two other approaches used in the literature. The first is a naive

Black-Scholes approach, which is used in Hardy (2003), where the hedge errors are

separately accumulated under the RSLN-2 P-measure. The second is the approach
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used in Bollen (1998) and Hardy (2001), and elsewhere, where the EMM is red

constructed] by using the P measure regime switching process, adjusting parameters

within each regime to ensure risk neutrality. This is a discrete analogue of the neutral

equivalent martingale measure approach of Elliott et al. (2005).

We use parameters for the RSLN2 model from Hardy(2001), estimated from the

monthly total returns on the Toronto Stock Exchange index from 1956 to 1999. The

parameters are shown in Table 1.2. We also assume a risk free rate of return of

Table 1.2: RSLN2 Parameters

Regime 1 µ1 = 0.012 σ1 = 0.035 p12 = 0.037
Regime 2 µ2 = −0.016 σ2 = 0.078 p21 = 0.210

r = 0.5% per month, continuously compounded.

1.4.1 Esscher Transform Put Option Prices

To calculate the Esscher Transform prices, we solve the Esscher transform equations

for h(1) and h(2), where

er =
EP[e(h

(1)+1)Yt|ρt−1 = 1]

EP[eh(1)Yt|ρt−1 = 1]

=
p11 e

(µ1(h(1)+1)+σ2
1(h(1)+1)2/2) + p12 e

(µ2(h(1)+1)+σ2
2(h(1)+1)2/2)

p11 e
(µ1h(1)+σ2

1(h(1))2/2) + p12 e
(µ2h(1)+σ2

2(h(1))2/2)

and similarly

er =
EP[e(h

(2)+1)Yt|ρt−1 = 2]

EP[eh(2)Yt|ρt−1 = 2]

=
p21 e

(µ1(h(2)+1)+σ2
1(h(2)+1)2/2) + p22 e

(µ2(h(2)+1)+σ2
2(h(2)+1)2/2)

p21 e
(µ1h(2)+σ2

1(h(2))2/2) + p22 e
(µ2h(2)+σ2

2(h(2))2/2)
.

This leads to h(1) = −4.546 and h(2) = 2.458.
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Table 1.3 reports the parameters for the 4-state regime switching process ρ∗t under

the ET-Q measure, corresponding to the P-measure defined by the parameter values

from Table 1.2. In the computation, we plug parameters h(1) and h(2) into equations

(1.3.52) and (1.3.53) to obtain the µ∗[ρ∗t ] and the transition probabilities. The values

of σ∗[ρ∗t ] given ρ∗t = [ij] is equal to the physical volatilities in regime ρt = j.

Regime Parameters at t Transition Probabilities given ρ∗t under Q measure
ρ∗t µ∗[ρ∗t ] σ∗[ρ∗t ] ρ∗t+1 = [11] ρ∗t+1 = [12] ρ∗t+1 = [21] ρ∗t+1 = [22]

[11] 0.0064 0.035 0.9561 0.0439 0.0000 0.0000
[12] -0.0437 0.078 0.0000 0.0000 0.2191 0.7809
[21] 0.0150 0.035 0.9561 0.0439 0.0000 0.0000
[22] -0.0010 0.078 0.0000 0.0000 0.2191 0.7809

Table 1.3: Regime and transition parameters under the ET-Q measure for the RSLN
model.

Using these parameters, we apply the results in section 1.3.4 to calculate the

exact prices for European put options (on a non-dividend paying stock), for a range

of terms and strike prices. In the computation, we sum the conditional expected

values of the contingent payoff given in (1.3.61) over all the distinct paths identified

using the recursive algorithm from section 1.2. Some sample values are shown in

Table 1.4.

K T = 120 24 12 4
50 0.0687 0.0079 0.0010 0.0000

100 2.2155 3.9585 3.5686 2.5449
150 10.5673 34.1329 41.3789 47.0323
200 25.8436 77.4444 88.3556 96.0397

Table 1.4: Put option prices under the ET-Q measure. The starting stock price
is $100, T is term in months, and the risk free rate is r = 0.5% per month. Other
parameters are from Tables 1.2 and 1.3.
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1.4.2 The Black–Scholes Prices

We compare the ET-Q prices above with the Black-Scholes prices, with volatility

equal to the stationary volatility of the RSLN2 model, which is

σ2 = EP[Var[Yt|ρt]] + Var[EP[Yt|ρt]] = 0.0453072, (1.4.64)

where the variance is calculated under the physical P-measure. As discussed at the

beginning of this chapter, with the assumption that there is no replicating strategy

available for the regime switching process, the risk neutral Gaussian measure assumed

under the Black-Scholes method is not a desired equivalent martingale measure with

the consideration of both risks associated with {ρt} and {Yt}. This method is used

here for comparison purpose only, to measure the difference in pricing and hedging

performance. The put option prices for the same range of terms and strikes as in

Table 1.5.

K T = 120 24 12 4
50 0.0364 0.0004 0.0000 0.0000

100 1.9837 3.8660 3.5984 2.6746
150 10.3495 34.2333 41.3553 47.0298
200 25.7897 77.4296 88.3530 96.0397

Table 1.5: Put option prices using the Black-Scholes formula. The starting stock
price is $100, T is term in months, the risk free rate is r = 0.5% per month, and the
volatility is 4.5307% per month.

1.4.3 The NEMM Method

Hardy (2001) and Bollen (1998) use a simple transformation of the RSLN model

P–measure to a risk neutral Q measure, by changing the regime parameters such

that each regime is risk neutral, that is

EQ[eYt|ρt = j] = er ∀j
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Then a European option payoff H(ST ) can be valued at, say t = 0, by conditioning

first on the P-measure regime path, ρ = {ρ1, ..., ρT}, then by taking expectations

over all regime paths, using the P-measure transition matrix. That is,

e−rT EP[EQ[H(ST )|ρ].

This is analogous to the natural equivalent martingale measure approach used by

Elliott et al (2005) for the continuous time regime switching geometric Brownian

motion model. More details of the implementation of this method are given in

Hardy (2001).

In Table 1.6 we show prices for European put options, for the same range of

strikes and terms, and using the same parameters, as in Tables 1.4 and 1.5.

K T = 120 24 12 4
50 0.0383 0.0037 0.0005 0.0000

100 1.8341 3.5842 3.3058 2.4284
150 9.8757 34.1810 41.4195 47.0336
200 25.1952 77.4709 88.3579 96.0397

Table 1.6: Put option prices under the NEMM measure. The starting stock price
is $100, T is term in months, the risk free rate is r = 0.5% per month. Other
parameters from table 1.6.

1.4.4 Remarks

It is interesting to note that there is no clear ordering of prices under these measures

introduced in the previous three subsections. For the long term options, say T=120

months, the ET prices are greater than the Black Scholes prices for all strikes, but

for shorter term options, the ET prices dip below the BS prices for options near to

the money. Similarly, the ET prices exceed the NEMM prices for all strikes for long

term options, but are slightly lower for in-the-money options for shorter terms. The

price comparison at time t connects with the the comparison of the distributions of
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∑T
s=t Ys under the respective Q measures, which we discuss in more details in chapter

4.

If we compare the three different Q measures more directly, we might gain some

insight. Each Q measure comprises a number of Gaussian regimes, each regime

having µQ and σQ given below, corresponding to the lognormal parameters. We also

show the stationary probabilities for the regimes.

Black Scholes:

One Regime

σQ = 0.0453 µQ = 0.0040

NEMM:

Two Regimes

σQ
1 = 0.035 µQ

1 = 0.0044 Probability 0.8502

σQ
2 = 0.078 µQ

2 = 0.0020 Probability 0.1498

ET:

Four Regimes

σQ
[11] = 0.035 µQ

[11] = 0.0064 Probability 0.7965

σQ
[12] = 0.078 µQ

[12] = −0.0437 Probability 0.0366

σQ
[21] = 0.035 µQ

[21] = 0.015 Probability 0.0366

σQ
[22] = 0.078 µQ

[22] = −0.0010 Probability 0.1303

Now, the paths for the NEMM process that result in a low stock price are those

that are weighted more to Regime 2, and for the ET process are those that are

weighted more to regimes [12] and [22]. The ET regimes are rather more adverse

than the NEMM regimes, as the µQ parameters are much lower. This would indi-

cate higher option prices for out-of-the-money put options under ET compared with

NEMM; similarly, ET regimes 2 and 4 would generate more weight for low stock

prices compared with the BS model, with higher volatility and lower means. On the

other hand, regimes 1 and 3 of the ET process have low variance and high mean,

and will generate potentially heavier right tails for the stock price compared with

the other two models.
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However, the comparison of the distributions based on two moments are not

sufficient to determine the levels of option prices. In Chapter 4, more analysis of the

difference between two distributions under risk neutral measures are investigated,

and the pricing and hedging performance are compared. Overall, there are no clear

conclusions here. The ET prices are not consistently higher than the prices using two

other measures for shorter terms; for longer terms, the impact of the two ‘negative

mean, high volatility’ regimes in the ET process appears to generate higher prices

for all the put options, compared with the other two processes. For shorter options

there is no obvious intuition as to how the three prices will be ordered, and, in fact,

selecting different terms and strikes from Tables 1.4, 1.5 and 1.6, we see that all

possible orderings of prices from the three measures are achieved.

1.4.5 Preliminary Hedging Results

The price of an option is more meaningful when it is associated with a strategy for

hedging the contingent claim. Here some preliminary numerical analysis is presented

for the RSLN-2 prices in the section.

We simulated 10,000 paths for the underlying stock price, using the RSLN-2 P-

measure, with the parameters from Table 1.2. We also determined the delta hedge

costs for each of the three measures, assuming monthly rebalancing. Because the

underlying process is incomplete, and because the hedge is discretely rebalanced,

the hedge will not be self financing. For each simulated path, we determine the

present value of the hedging loss (PVHL), discounting at the risk free rate of interest,

summing over all the months of the contract. The result is a Monte Carlo estimate

of the distribution of the PVHL for each of the pricing measures. We consider a

12-month and a 120-month put option, and we assume the strike K and the starting

asset price, S0 are both 100.

We have summarized the effectiveness of the hedge using the following two mea-

sures:

1. The probability that the PVHL is positive – that is, that the hedge portfolio

is insufficient overall, and
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K Option Price Pr[PVHL >0] CTE95%(PVHL)
BS 100 1.9842 0.4155 (0.0049) 3.4172 (0.0777)
NEMM 100 1.8341 0.4406 (0.0050) 3.6800 (0.0812)
ET-Q 100 2.2155 0.3039 (0.0046) 3.1622 (0.0836)

Table 1.7: Present Value of Hedging Loss, 120 month Put Options, 10,000 simula-
tions. Values inside brackets are the corresponding standard errors of Pr and the
CTE.

K Option Price Pr[PVHL >0] CTE95%(PVHL)
BS 100 3.5983 0.3654 (0.0048) 6.4873 (0.1380)
NEMM 100 3.3058 0.3974 (0.0049) 6.9582 (0.1454)
ET-Q 100 3.5686 0.3148 (0.0046) 6.1543 (0.1243)

Table 1.8: Present Value of Hedging Loss, 12 month Put Options, 10,000 simulations.
Values inside brackets are the corresponding standard errors of Pr and the CTE.

2. The 95% Conditional Tail Expectation (CTE) (or TailVaR) of the PVHL –

that is, the average cost of the worst 5% of outcomes. The standard errors of

the CTE are evaluated using the method suggested by Manistre and Hancock

(2005).

In Table 1.7 we show the results for a 10-year at-the-money put option, where the

probability and CTE are calculated under P–measure. It appears from this ex-

periment that the additional cost of the option under the ET method pays some

benefits, in terms of a significantly reduced loss probability, and in a lower 95% CTE

value. However, the reduction in the CTE, compared with the Black Scholes hedge,

is only around $0.25, and when that is compared with an additional option cost of

$0.23, it does not make a compelling argument for the ET hedge. The results for

the 12-month option are more interesting, as summarized in Table 1.8. In this case,

the Black-Scholes price is greater than the ET price, but the ET measure appears to

create a more effective hedging strategy, both in terms of the probability of hedging

loss, and with a lower CTE value. More research into whether these results apply
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more generally with the ET price could be valuable.

1.5 Conclusions

The Esscher transform offers a pricing measure for discrete time regime switching

models that differs from the natural equivalent martingale measure approach. This

is intuitively attractive, as the regime switching risk is assumed to be undiversifiable.

The calculation of European option prices under regime switching models has

been shown in this chapter to be relatively tractable – either through the dimension

reduction algorithm, or, for more complex models (for example, with more regimes)

through Monte Carlo pricing, once the full specification of the Q measure process is

derived. In the next chapter, we extend the model to multivariate option pricing. The

pricing is more complex, but the fundamental principles still follow the development

in this chapter.

Pricing is only the first part of the story, however. Preliminary experiments

with hedging indicate some potential for improved hedge performance using the ET

measure. In later chapters, we analyze the ET hedge in more details.
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Chapter 2

Esscher Transform Pricing of

Multivariate Options under

Discrete Time Regime Switching

2.1 Introduction

We proposed an approach, using the Esscher transform, to price univariate options

under discrete time Markov regime switching models in Chapter 1. This chapter

aims to extend this approach to the multivariate discrete time regime switching

models. The Esscher transform has been a widely used tool for multivariate pricing

in the literature, such as Bertholon et al. (2008) and Gourieroux and Monfrot

(2007) for a general econometric asset pricing, Bühlmann (1980) for multivariate

equilibrium pricing, Kajima (2006) and Wang (2007) for the links between distortion

and the Esscher transform in multivariate equilibrium pricing, Song, et al. (2010) for

multivariate option valuation under Markov chain models, and Ng and Li (2011) for

the valuation of multivariate asset pricing annuity guarantees, among many others.

Our work focuses on the market incompleteness due to regime uncertainty. Some
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notation used in this chapter is listed as follows.

t t = 0, 1, . . . , T the range of discrete time points

St,l t = 0, . . . , T ; l = 0, . . . , N asset prices at time t for lth asset

Yt,l t = 1, . . . , T ; l = 1, . . . , N log returns of asst prices at time t for lth asset

ht,l t = 1, . . . , T ; l = 1, . . . , N Esscher transform parameters at t for lth asset

St,• = (St,1, . . . , St,N)′ the column vector of St,• at time t

S•,l = (S0,l, . . . , ST,l) the row vector of S•,l for lth asset

Yt,• = (Yt,1, . . . , Yt,N)′ the column vector of Yt,• at time t

Y•,l = (Y1,l, . . . , YT,l) the row vector of Y•,l for lth asset

ht,• = (ht,1, . . . , ht,N)′ the column vector of ht,• at time t

ρt ρt = 1, . . . R the undelying regimes

(2.1.1)

2.2 Market Models and Objective

Assume that there are N underlying risky assets in the market. The multivariate

regime switching process can be represented as

(ρt, St,0, . . . , St,N)0≤t≤T ,

where St,l is the price of asset l at time t, with St,0 representing the price of the risk

free asset, and ρt represents the regime of the market at time t. For notational conve-

nience, we use vector representation in this chapter. Define St,• = (St,1, . . . , St,N)′ and

S•,l = (S0,l, . . . , ST,l). Similarly, we define vectors Yt,• and Y•,l for the log-returns

of the underlying asset prices. The corresponding realized values are denoted by

small letters, e.g., yt,• = (yt,1, . . . , yt,N) represents the realization of Yt,•. Assume a
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constant risk free rate r. Then, the market model is{
St,0 = St−1,0e

rt

St,l = St−1,le
Yt,l , l = 1, . . . , N,

(2.2.2)

where {Yt,•}T
t=1 follows a regime switching process, i.e., the multivariate distribution

of Yt,• = (Yt,1, . . . , Yt,N) depends on ρt.

The objective of this chapter is to price options written on the multiple risky

assets. The pricing approach is illustrated for a European put options written on

the geometric average of stock prices. We do not discuss hedging. Indeed, since the

geometric average can be treated as a single risky asset price, the delta hedging for the

put option can be conducted based on the delta of the portfolio which approximately

replicates the geometric average. As a result, the hedging results for this European

put option will be similar to the hedging results for a put option written on a single

risky asset, as illustrated in Chapter 1.

Let FY
t and Fρ

t denote the P-augmentation of the filtration generated by {Ys,•}t
s=0

and {ρs}t
s=0, respectively. We write Ft = FY

t ∨ F
ρ
t , representing the minimal sigma

algebra containing FY
t and Fρ

t . Based on the filtration, we assume ρt is adapted

to the filtration {Ft}; that is, we can observe the state of ρt at time t. We do not

assume, for our discrete time model, the predictability of ρt. Similar to chapter 1,

we also impose the following assumptions for the market model (2.2.2).

(A1) The process {ρt}T
t=0 follows a finite state Markov chain process, with a state

space of R regimes. Assume the transition probability matrix ℘ = {pij}, where

pij = P(ρt = j | ρt−1 = i), is time homogeneous.

(A2) The distribution of Yt,• conditional on ρt is independent of ρs and Ys,• for

s 6= t.

The so-called MET-Q pricing measure is developed in section 2.3 of this chapter, and

can be applied to option pricing for models such as the regime switching AR model,

where the distribution of Yt,• conditional on ρt is dependent on Ys,•, s < t. However,
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for computational convenience, the independence of Y1,•, . . . ,YT,• conditional on

{ρt} is a assumed here.

(A3) Yt,l is a continuous random variable which satisfies ess inf Yt,l < r < ess supYt,l

for all t = 1, . . . , T and l = 1, . . . , N ;

(A4) EP(eh
′
t,•Yt,•|Ft−1) <∞ for all real vector ht,• ∈ RN .

Assumption (A3) is necessary in a no-arbitrage market. (A4) is a necessary condition

for our pricing method.

2.3 Multivariate Esscher Transformed Q Measure

To conduct risk neutral pricing, we start with an equivalent risk neutral measure Q
identified using the Esscher transform. This section further discusses the properties

with the Esscher transform parameters and investigates the distribution under the

identified Q measure.

2.3.1 Multivariate Esscher Transform

The Esscher transform is defined similarly as in Chapter 1, except that the single

risky asset in the transform is replaced by multiple risky assets. If we let H(ST,•)

denote the payoff of the European option under consideration, then, after we identify

the pricing measure Q, the no-arbitrage price can be computed as the expectation

of its discounted payoff, i.e.

Pt(H(ST,•)) = e−r(T−t)EQ[H(ST,•) | Ft ], (2.3.3)

where EQ[·|Ft] denotes the expectation conditional on Ft under the Q measure. In

this study, the Q measure is identified by employing the conditional Esscher trans-
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form introduced by Bühlmann (1996), and it is defined through the following Radon-

Nikodym derivative

dQ
dP

∣∣∣∣
Ft

=
t∏

s=1

eh
′
s,•Ys,•

EP(eh
′
s,•Ys,•| Fs−1)

, t = 1, . . . , T, (2.3.4)

where the only parameters are the Esscher transform parameters hs,•, and EP(·|Fs−1)

represents the conditional expectation under P measure. Equation (2.3.4) denotes

the Radon-Nikodym derivative of Q over P on Ft. To make the probability measure

Q a risk neutral probability measure, the Esscher transform parameters in hs,• =

(hs,1, . . . , hs,N)′ in (2.3.4) must satisfy the following N equations

er =
EP[eh

′
s,•Ys,•+Ys,l| Fs−1]

EP[eh
′
s,•Ys,•| Fs−1]

, l = 1, . . . , N, (2.3.5)

for all s = 1, . . . , T . We call the measure Q obtained through dQ
dP

∣∣
Ft

defined by (2.3.4)

and (2.3.5) the multivariate Esscher transform Q (MET−Q) measure.

Proposition 2.3.1. (CQ) The MET-Q measure identified through the Radon-Nikodym

derivative (2.3.4) under conditions (2.3.5) is a risk neutral measure.

Proof. As hs,• ∈ Ft−1 for all s ≤ t, we apply dQ
dP

∣∣
Ft
, defined in (2.3.4) as follows:

EQ
(

St,l

St−1,l

∣∣∣∣ Ft−1

)
= EP

[
eYt,l

dQ
dP |Ft

dQ
dP |Ft−1

∣∣∣∣∣ Ft−1

]
(2.3.6)

= EP

[
eYt,l

eh
′
t,•Yt,•

EP[eh
′
t,•Yt,•|Ft−1]

∣∣∣∣∣ Ft−1

]
= er

where the last equation is due to the condition (2.3.5) with s = t. Thus, the MET-Q
measure is a risk neutral measure. �
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2.3.2 Identifiability of the Esscher Parameters

The Esscher transform parameters ht,1, . . . , ht,N are obtained by solving the system

of nonlinear equations in (2.3.5). It is challenging to address the existence and

uniqueness of the solution to the system, and we leave this issue for future research.

In what follows, we will illustrate how to identify the Esscher transform parameters

in some specific and yet important cases.

Example 4. Assume that, conditional on Ft−1, Yt,• follows a multivariate normal

MVN(µ,Σ) with a mean vector µ = (µ1, . . . , µN)′ and a covariance matrix Σ =

(σij)N×N . Let el represent the column vector with one in the lth coordinate and

zeros in all the others. Then, condition (2.3.5) becomes

er =
exp

(
(ht,• + el)

′µ + 1
2
(ht,• + el)

′Σ(ht,• + el)
)

exp
(
h′t,•µ + 1

2
h′t,•Σht,•

) , l = 1, . . . , N. (2.3.7)

Equation (2.3.7) can be rewritten in a more concise form of

Σht,• = r1− µ− 1

2
b,

where 1 denotes a vector with all elements equal to one, and b = (σ11, . . . , σNN)′.

If the covariance matrix Σ is positive definite, then there is a unique ht,• satisfying

(2.3.5) with ht,• = Σ−1(r1− µ). �

Example 5. Assume that Yt,1, . . . , Yt,N are independent conditional on Ft−1. Then,

EQ(eYt,l|Ft−1) =
EP(e(ht,l+1)Yt,l|Ft−1)

EP(eht,lYt,l|Ft−1)

∏
k 6=1

EP(eht,kYt,k |Ft−1)

EP(eht,kYt,k |Ft−1)

=
EP(e(ht,l+1)Yt,l|Ft−1)

EP(eht,lYt,l|Ft−1)
, l = 1, . . . , N.

As a result, the multivariate Esscher transforms are reduced to univariate Esscher

transforms for Yt,l, l = 1, . . . , N , conditional on Ft−1. �

Example 6. Assume that there are 2 risky assets in the market under a two-state
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regime switching model, with the log return Yt,• conditional on Ft−1 following the

mixed multivariate normal distribution
∑2

j=1 pijMVN(µj,Σj), where pij = P(ρt =

j|ρt−1 = i). We define a function L as below:

Figure 2.1: The surface of EQ[eht,lYt,l|ρt−1] over the ranges of ht,1 and ht,2

L =

∣∣∣∣∣er − EP[eh′t,•Yt,•+Yt,1| ρt−1]

EP[eh′t,•Yt,•| ρt−1]

∣∣∣∣∣+
∣∣∣∣∣er − EP[eh′t,•Yt,•+Yt,2 | ρt−1]

EP[eh′t,•Yt,•| ρt−1]

∣∣∣∣∣
It is sufficient to investigate the solution to L = 0 for the analysis of the existence

and uniqueness of the solutions to (2.3.5). We conduct the analysis numerically,

based on manipulated parameters for the multivariate RSLN2 models, assuming a

positive covariance in one regime and negative covariance in the other. Parameters

and correlation matrices on the joint distribution of (Yt,1, Yt,2) are given Table 2.5

and 2.6 in section 2.4.1, with three assets replaced by two assets.
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Figure 2.2: Intersection of EQ[eht,lYt,l|ρt−1] and EQ[eht,lYt,2|ρt−1] over the ranges of ht,1

and ht,2

Figure 2.3: The surface of L over the ranges of ht,1 and ht,2

We first observe the surface of EQ[eht,lYt,l|ρt−1] and EQ[eht,lYt,2|ρt−1] over the range

of ht,1 and ht,2 in Figure 2.1, and observe their intersection in Figure 2.2. We can

see that the surface of EQ[eht,lYt,l|ρt−1] and EQ[eht,lYt,2|ρt−1] are not parallel, and they
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intersect in an increasing curve. A point (ht,1, ht,2, e
r) is in the curve. That is, there

exist a pair of real numbers ht,1 and ht,2 at which er is a value of both functions

EQ[eht,lYt,l|ρt−1] and EQ[eht,lYt,2|ρt−1]. Figure 2.3 illustrates a surface of the values

of L over the ranges of ht,1 and ht,2, for the RSLN2 model with the manipulated

parameters. We can obtain the unique numerical value of ht,• which makes L = 0.

2.3.3 Distribution under the MET-Q Measure

Assume we identify the Esscher transform (2.3.4) satisfying conditions (2.3.5); then,

we need to derive the distribution under the MET-Q measure of log-returns of the

underlying asset prices, in order to conduct option pricing using the formula (2.3.3).

We obtain the underlying distributions in a similar way as we do for the univariate

models in section 1.2.1 of Chapter 1. Here we first derive the distribution of Yt,•

conditional on Ft−1, under the measure MET-Q identified by (2.3.4). Let u =

(u1, . . . , uN)′ be a vector of real numbers such that EP(eu
′Yt,•| Ft−1) < ∞. Then,

similar to (2.3.6), we have

EQ
[
eu

′Yt,•
∣∣∣ Ft−1

]
= EP

[
eu

′Yt,•
dQ
dP |Ft

dQ
dP |Ft−1

∣∣∣∣∣ Ft−1

]
(2.3.8)

= EP

[
eu

′Yt,•
eh′t,•Yt,•

EP[eh′t,•Yt,•|Ft−1]

∣∣∣∣∣ Ft−1

]

Recall the notation Ft = FY
t ∨F

ρ
t . As a result, the distribution of Yt,• conditional

on Ft−1, under the MET-Q measure, can be obtained through expanding the moment

generating function (2.3.8). The density function of Yt,• conditional on ρt = j and

Ft−1, under the MET-Q measure, is

fQ(yt,•|Ft−1

⋂
{ρt = j}) =

eh
′
t,•yt,•fP(yt,•|Ft−1

⋂
{ρt = j})

EP[eh
′
t,•Yt,•| Ft−1

⋂
{ρt = j}]

. (2.3.9)

For a Markov regime switching process assumed in assumptions (A1) and (A2),
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(2.3.9) can be simplified as

fQ
ij (yt,•) := fQ(yt,•|ρt−1 = i, ρt = j}) =

eh
′
t,•yt,•fP(yt,•|ρt = j})
EP[eh

′
t,•Yt,•| ρt = j]

. (2.3.10)

We denote the density function of Yt,• given ρt−1 = i by fQ
i (yt,•), i.e.,

fQ
i (yt,•) = fQ(yt,•|ρt−1 = i).

Then, fQ
i can be expressed as a mixture of those fQ

ij as demonstrated in the following

Proposition.

Proposition 2.3.2. (CQ) Under assumptions (A1), (A2) and (A4) which we im-

posed in section 2.2, we have

fQ
i (yt,•) =

R∑
j=1

qij f
Q
ij (yt,•), (2.3.11)

where

qij =
pij EP(eh

′
t,• Yt,• | ρt−1 = i, ρt = j)

EP(eh
′
t,• Yt,• | ρt−1 = i)

, i, j ∈ {1, . . . , R}, (2.3.12)

Proof. The proof is completely parallel to that of Proposition 1.2.2, and hence omit-

ted. �

Remark 2.3.1. Proposition 2.3.2 provides a way for us to compute the distribu-

tion of St,• by introducing a new Markov process ρ∗t with the following transition

probabilities under the MET-Q measure:

Q[ ρ∗t = [ij] | ρ∗t−1 = [kl] ] =

{
0, i 6= l;

qij, i = l.

where {ρ∗t = [ij]} = {ρt−1 = i, ρt = j} for t = 1, 2, . . . , T .
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Lemma 2.3.1. (CQ) Assume (A1) to (A4). Then, under the MET-Q measure,

Y1,•, . . . ,YT,• are independent conditional on {ρ∗t}T
t=0, and the distribution of Y1,•

conditional on ρ∗t is independent of ρ∗s for s 6= t.

Proof. The proof is similar to the proof of Lemma 1.2.5 and Lemma 1.2.6 in Chapter

1. �

Remark 2.3.2. Based on Lemma 2.3.1, the distribution of Yt,• is solely determined

by ρ∗t under the ET-Q measure. As a result, the joint density of (Y1,•, . . . ,YT,•)

given {ρ∗t}T
t=0 is

fQ(y1,•, . . . ,yT,•|{ρ∗t}T
t=0) =

T∏
t=1

fQ(yt,•|ρ∗t ).

Let ut,• = (ut,1, . . . , ut,N)′, t = 1, . . . , T , be the vectors of real numbers such that the

moment generating function EQ(e
∑T

t=1 u′t,•Yt,•) exists. Then, based on the assumptions

(A1) to (A4),

EQ
[
eu

′
1,•Y1,•+···+u′T,•YT,•

]
= EQ

[
EQ
(
eu

′
1,•Y1,•+···+u′T,•YT,• | {ρ∗t}T

t=1

)]
= EQ

[
T∏

t=1

EQ(eu
′
t,•Yt,• | ρ∗t )

]
,

where the distribution of {ρ∗t}T
t=1 follows a Markov chain as discussed in Remark

2.3.1, with the transition probabilities under the MET-Q measure given in (2.3.12).

Consequently, to identify the distribution of (Y1,•, . . . ,YT,•), we may focus on its

conditional moment generating function EQ
(
eu

′
t,•Yt,• | ρ∗t

)
.
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2.4 European Option Pricing for Multivariate Regime

Switching Models under MET-Q

In this section, we consider a European option with payoff H(ST,•). Its price at time

t = 0 can be computed as the following expectation

P0(H(ST,•)) = e−r(T−t)EQ [H(ST,•) | ρ0 ]. (2.4.13)

where EQ[·] denotes the expectation under MET-Q measure identified by the Radon-

Nikodym derivative (2.3.4) and conditions (2.3.5). In section 2.3.3, we have shown

that, based on the market model (2.2.2) and assumptions (A1) to (A4) described in

section 2.2, under the MET-Q measure, Yt,•, t = 1, 2, . . ., follows a Markov regime

switching process, and the distribution of Yt is solely determined by ρ∗t . The option

pricing formula in (2.4.13) can then be computed as

P0(H(ST,•)) = EQ [EQ [ e−r(T−t)H(ST,•) | {ρ∗t}T
t=1

] ]
. (2.4.14)

In this formula, we compute the option price in two steps. In step one, we compute

the time zero value of the payoff assuming the path of regime switching {ρ∗t}T
t=1.

In step two, we take the average of the values obtained in step one over all regime

paths under the MET-Q measure. If the option payoff is not path-dependent, such

as the payoff of European call and put options, we can apply the path reduction

algorithm we developed in section 1.3.3 to reduce the computation time for the outer

expectation. In the following content of this section, we focus on computation of

the inner expectation and the regime-transition probabilities of {ρ∗t}. This section

starts with the regime switching log-normal models; then discuss pricing under more

general distributions using characteristic functions.

2.4.1 Pricing under the Multivariate RSLN Models

Assume a R-state multivariate regime switching lognormal (RSLN) model under

P measure. Let the distribution of Yt,• given ρt = j is MVN(µj,Σj), where µj
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and Σj are the column vector of mean and covariance matrix for regime j. The

moment generating function of Yt,• given ρt, denoted by M(s) with a real vector

s = (s1, . . . , sN)′, is

M(s) = exp

(
s′µj +

1

2
s′Σjs

)

As we commented before, an European options can be priced by using the double

expectation in (2.4.14). To compute the inner expectation in the equation, we first

investigate the moment generating function of Yt,• given ρ∗t under Q measure:

EQ[ es
′Yt,•|ρ∗t = [ij] ]

= EP

[
es

′Yt,•
eh

′
t,•Yt,•

EP(eh
′
t,•Yt,•| ρt)

∣∣∣∣∣ ρt−1 = i, ρt = j

]

= exp

(
(s + ht,•)

′µj +
1

2
(s + ht,•)

′Σj(s + ht,•)

)
exp

(
−h′t,•µj −

1

2
h′t,•Σjht,•

)
= exp

(
s′(µj + h′t,•Σj) +

1

2
s′Σjs

)
= exp

(
s′µ∗

[ij] +
1

2
s′Σjs

)
, i, j = 1, . . . , R, (2.4.15)

where

µ∗
[ij] = µj + Σjht,•, (2.4.16)

where ht,• is determined by equation (2.3.5). (2.4.15) implies that Yt,• given ρ∗t = [ij]

follows a multivariate normal distribution with mean µ∗
[ij] and covariance matrix

Σj under the MET-Q measure. In addition, Let Nij denote the frequency of the

occurrence of ρ∗t = [ij] within the path (ρ∗1, . . . , ρ
∗
T ). For notational convenience, let

Z = (Z1, . . . , ZN)′, where Zl =
T∑

t=1

Yt,l. (2.4.17)
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Then, the moment generating function of Z is as follows:

EQ
(
es

′Z
∣∣∣ {ρ∗t}T

t=1

)
= EQ

(
exp

(
s1

T∑
t=1

Yt,1 + · · ·+ sN

T∑
t=1

Yt,N

)∣∣∣∣∣ {ρ∗t}T
t=1

)

= EQ

(
exp

(
N∑

l=1

slYt,1 + · · ·+
N∑

l=1

slYT,l

)∣∣∣∣∣ {ρ∗t}T
t=1

)

=
T∏

t=1

EQ

(
exp

(
N∑

l=1

slYt,l

)∣∣∣∣∣ {ρ∗t}T
t=1

)

= exp

(
s′ ·

R∑
i=1

R∑
j=1

Nijµ[ij] +
1

2
s′ ·

R∑
i=1

R∑
j=1

NijΣj · s

)

The above display implies that Z, conditional on {ρ∗t}T
t=1, is also a multivariate

normal random variable under the MET-Q measure, i.e.,

(Z1, . . . , ZN)| {ρ∗t}T
t=1

Q∼ MVN

(
R∑

i=1

R∑
j=1

Nijµ[ij],
R∑

i=1

R∑
j=1

NijΣj

)
. (2.4.18)

To compute the outer expectation in (2.4.14), we can compute the regime transition

probability as follows:

qij = pij exp

(
h′t,•µj +

1

2
h′t,•Σjht,•

)( R∑
l=1

pil exp

(
h′t,•µl +

1

2
h′t,•Σlht,•

))−1

(2.4.19)

After obtaining the distribution of
(∑T

t=1 Yt,1, . . . ,
∑T

t=1 Yt,N

)
under the MET-Q

measure, we can then compute the price of European options by using the double

expectation as defined in (2.4.13).

Geometric Average European Option

In the remaining sections of this chapter, we will illustrate how to compute the

multivariate European options under the MET-Q measure by focusing on the so-
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called geometric average European option. It is written on multiple underlying stocks

and its payoff, with a strike price K, is given by

H(ST,•) =

(
N∏

l=1

Sωl
T,l −K

)+

, (2.4.20)

where ωl is the geometric weight on the lth asset with
N∑

l=1

ωl = 1 and ωl > 0 for

l = 1, . . . , N . The pricing of this option is usually used to approximate the value of

the option written on the arithmetic average of the corresponding stock prices. See,

for example, a review of the approximation in Musiela and Rutkowski (2004).

Based on the the MET−Q measure identified for the multivariate RSLN2 mod-

els, the geometric average
∏N

l=1 S
ωl
T,l is log−normally distributed with parameters

(cµ̃, c2σ̃2), where µ̃ =
∑K

i=1

∑K
j=1Nijω

′µ[ij], σ̃
2 =

∑K
i=1

∑K
j=1Nijω

′Σjω and c =∏N
l=1 S

ωl
0,l. After obtaining the distribution of the geometric average

∏N
l=1 S

ωl
T,l under

the MET-Q measure, the price of H(ST,•) can be computed as we did for a univariate

option in Chapter 1.

2.4.2 Pricing under General Models Using Characteristic

Functions

When the distribution of Yt,•, conditional on ρt is not multivariate normal, the con-

ditional distribution function of
∏N

l=1 S
ωl
T,l may not have a closed form expression. In

this case, the computation of the inner expectation in formula (2.4.14) is no longer

the same as in Chapter 1. We have to develop a new method, and we propose a fast

Fourier transform method in this section for option pricing in a more general multi-

variate case. The pioneer work of using the fast Fourier transform (FFT) method for

option pricing is given by Carr and Madan (1999). In our studies, (Yt,•) and (ρt)

satisfy the assumptions in section 2.2, and we use the geometric average European

call and put options to illustrate our method.

We first compute the characteristic function of Z under the MET−Q measure.
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The characteristic function can be obtained based on the expectation of the char-

acteristic functions of Yt,•, t = 1, . . . , T under the MET−Q measure conditional on

{ρ∗t}T
t=1. The corresponding conditional density of Yt,• = yt,• is given in (2.3.10). Let

u = (u1, . . . , uN)′ being a column of real numbers. Then, the characteristic function

of Yt,• under MET-Q measure, conditional on ρ∗t is

ψQ
Yt,•

(u | ρ∗t ) =

∫
eiu′yt,•fQ(yt,•|ρ∗t )dyt,•,

where dy = dy1,1 · · · dyT,N . Consequently, the characteristic function of Z conditional

on {ρ∗t}T
t=1 under MET−Q measure, denoted by ψQ

Z(u | {ρ∗t}T
t=1), is

ψQ
Z(u | {ρ∗t}T

t=1) = EQ (ei(u1Z1+···+uNZN )|{ρ∗t}T
t=1

)
= EQ

(
exp

[
iu1

T∑
t=1

Yt,1 + · · ·+ iuN

T∑
t=1

Yt,N

]∣∣∣∣∣ {ρ∗t}T
t=1

)

=

∫
exp

[
iu1

T∑
t=1

yt,1 + · · ·+ iuN

T∑
t=1

yt,N

]
T∏

t=1

fQ
ij (yt,•|ρ∗t ) dy

=

∫ T∏
t=1

[
exp(iu1yt,1 + · · ·+ iuNyt,N)

eh
′
t,•yt,•

EP[eh
′
t,•yt,•| ρt]

fP(yt,•|ρt)

]
dy

=
T∏

t=1

EP(ei(u+ht,•)′Yt,•| ρt)

EP(eh
′
t,•Yt,•| ρt)

=
T∏

t=1

ψQ
Yt,•

(u | ρ∗t ), (2.4.21)

where the parameters ht,• = (ht,1, . . . , ht,N) are obtained by solving the N risk neutral

equations (2.3.5). The unconditional characteristic function of Z is

ψQ
Z(u) = EQ [ψQ

Z(u | {ρ∗t}T
t=1)
]
, (2.4.22)

where the outer expectation can be obtained using the path reduction algorithm we

developed in section 1.3.3 of Chapter 1, and the regime transition probability under

MET-Q measure is given by (2.3.12).
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Based on the characteristic function of Z, we can evaluate a geometric average

European call option, with payoff given in (2.4.20). Specifically, let

k = log

(
K∏N

l=1 S
ωl
0,l

)
.

Then, the option price is

Pc(k) :=

∫
e−rT

(
N∏

l=1

Sωl
T,l −

N∏
l=1

Sωl
0,le

k

)+

fQ
Z (z)dz, (2.4.23)

where z = (z1, . . . , zN) and fQ
Z (z) denotes the density function of Z defined in

(2.4.17). Based on ψQ
Z(u) in (2.4.22), we can apply the FFT method from Carr

and Madan (1999) to evaluate Pc(k) in (2.4.23). To proceed, we first need to solve

the issue regarding the convergence of the Fourier transform of option prices. As

Carr and Madan (1999) pointed out, the pure Fourier transform

L̃ :=

∫ ∞

−∞
eivkPc(k)dk

may not converge for a real number v, since the value of Pc(k) does not vanish as

k → −∞. Therefore, we use the modified call option price as follows. Let

P̃c(k) = eαkPc(k), α > 0. (2.4.24)

Then,

lim
k→−∞

P̃c(k) = 0. (2.4.25)
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Denote by L(v) the Fourier transform of the modified prices P̃c(k). Then,

L(v) =

∫ ∞

−∞
eivkP̃c(k)dk

=

∫ ∞

−∞
eivkeαk

∫
z

e−rT

(
N∏

l=1

Sωl
T,l −K

)+

fQ
Z (z)dzdk

=

∫
z

e−rTfQ
Z (z)

∫ ∞

−∞
eivkeαk

(
N∏

l=1

Sωl
0,le

ωlzl −
N∏

l=1

Sωl
0,le

k

)+

dkdz

=
N∏

l=1

Sωl
0,l

∫
z

e−rTfQ
Z (z)

∫ ∑N
l=1 ωlzl

−∞
eivkeαk

(
ec(z) − ek

)
dkdz

=
N∏

l=1

Sωl
0,l

∫
z

e−rTfQ
Z (z)

(
e(α+1+iv)

∑N
l=1 ωlzl

α+ iv
− e(α+1+iv)

∑N
l=1 ωlzl

α+ 1 + iv

)
dz

=
N∏

l=1

Sωl
0,l

e−rT

(α+ 1 + iv)(α+ iv)

∫
z

fQ
Z (z)e(α+1+iv)

∑N
l=1 ωlzldz (2.4.26)

=
N∏

l=1

Sωl
0,l

e−rT

(α+ 1 + iv)(α+ iv)
ψQ

Z

(
(ω1(v − iα− i), . . . , ωN(v − iα− i))′

)
,

where ψQ
Z(·) is given in (2.4.22). Then, the option price can be computed by inverting

the above formula L(v) as follows:

Pc(k) = e−αk 1

2π

∫ ∞

−∞
e−ivkL(v)dv (2.4.27)

It is worth noting that the Fourier transform method reduces the multiple integration

for option pricing in (2.4.23) to a single integration in (2.4.27). The value of Pc(k) in

(2.4.27) can be computed numerically by applying the fast Fourier transform. The

put option prices can be obtained in either of two ways. First, we can use the put-call

parity; second, we can assume a < −1 and let

P̃p(k) = eαkPp(k),

where Pp(k) is the put option price under consideration. Then, we can obtain the

64



put option price by following the same procedure as demonstrated in (2.4.26) and

(2.4.27).

Example 7. Assume that (Yt,1, . . . , Yt,N)T
t=1 follows a multivariate Markov regime

switching model with two regimes, where Yt,1, . . . , Yt,N has a multivariate normal

distribution conditional on ρt at regime one, and a multivariate Laplace distribution

at regime two. The Laplace distribution has fatter tails than a normal distribution

(Eltoft et al., 2006). The characteristic function of Yt,•, conditional on ρt = 1, is

ψP
Yt,•(u|ρt = 1) = exp

(
iu′µ1 −

1

2
u′Σ1u

)
,

where µ1 is the mean vector, Σ1 is the covariance matrix of Yt,•, and u = (u1, . . . , uN)′.

The characteristic function of Yt,•, conditional on ρt = 2, is

ψP
Yt,•(u|ρt = 2) =

1

1 + λu′Σ2u
2

,

where λ is a constant and Σ2 is the matrix parameter. The moment generating

function of the Laplace distribution is given by

EP
(
eu

′Yt,•|ρt = 2
)

=
1

1− λu′Σ2u
2

.

With these assumptions, condition (2.3.5) is equivalent to the following equations:

er =
pi1E

P (eh′t,•Yt,•+Yt,l|ρt−1 = i, ρt = 1
)

+ pi2E
P (eh′t,•Yt,•+Yt,l|ρt−1 = i, ρt = 2

)
pi1E

P (eh′t,•Yt,•|ρt−1 = i, ρt = 1
)

+ pi2E
P (eh′t,•Yt,•|ρt−1 = i, ρt = 2

) ,

(2.4.28)

for i = 1, 2. Solving equations in (2.4.28), we can obtain the values of the Esscher

transform parameters ht,• = (ht,1, . . . , ht,N). The resulting Esscher transformed char-

acteristic functions of Yt,• conditional on ρ∗t under the MET-Q measure are used to
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compute the characteristic function for multi-period, which as shown in (2.4.21) is

ψQ
Z(u | {ρ∗t}T

t=1) =
T∏

t=1

ψQ
Yt,•

(u | ρ∗t ),

where

ψQ
Yt,•

(u | ρ∗t ) =
ψP

Yt,•(u− iht,•| ρt−1, ρt)

EP(eh
′
t,•Yt,•| ρt−1, ρt)

.

As a result, under MET-Q measure, if ρ∗t = [i1], i = 1, 2, then

ψQ
Yt,•

(u | ρ∗t = [i1]) = exp

(
iu′µ∗

[i1] −
1

2
u′Σ1u

)
, i = 1, 2

where µ∗
[i1] = µ1 + Σ1ht,•. If ρ∗t = [i2], then

ψQ
Yt,•

(u | ρ∗t = [i2]) =
2− λh′t,•Σ2ht,•

2 + λ(u− iht,•)′ Σ2 (u− iht,•)

The transition probability qij is

qij =
pijE

P(eh
′
t,•Yt,•| ρt−1 = i, ρt = j)

pi1 EP(eh
′
t,•Yt,•| ρt−1 = i, ρt = 1) + pi2 EP(eh

′
t,•Yt,•| ρt−1 = i, ρt = 2)

(2.4.29)

�

2.5 Numerical Results of Option Pricing

In this section, we evaluate geometric average European call and put options written

on multiple non-dividend paying stocks, for the Markov regime switching models

discussed in the previous section. Specifically, we conduct the numerical computation

for the multivariate RSLN2 model and for the Markov regime switching model with

multivariate normal distribution in one regime and multivariate Laplace distribution

in the other regime.
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2.5.1 Prices under the Multivariate RSLN2 Model with Real

Data

In this section, we use real stock data to fit the multivariate RSLN2 models. The

data are from three sub-sectors of monthly S&P TSX indices during January 1988

and September 2011, obtained from the CHASS Data Center: Sector 10 (Energy)

Monthly Total Return Index, denoted by (St,1); Sector 15 (Materials) Monthly Total

Return Index, denoted by (St,2); and Sector 20 (Industrials) Monthly Total Return

Index, denoted by (St,3).

We use the package RHmm in the software R to estimate the parameters of the

underlying model. The transition probability matrix between the two regimes is

℘ =

( 1 2

1 0.774 0.226

2 0.033 0.967

)
.

The mean vectors and the covariance matrices of the multivariate Gaussian distribu-

tions within each regime are displayed in Table 2.1. From the results, we can denote

State 1 State 2
mean Covariance Matrix mean Covariance Matrix

Yt,1 Yt,2 Yt,3 Yt,1 Yt,2 Yt,3

Yt,1 -0.0181 0.0079 0.0045 0.0051 0.0138 0.0015 0.0006 0.0010
Yt,2 -0.0176 0.0045 0.0139 0.0034 0.0094 0.0006 0.0030 0.0011
Yt,3 -0.0296 0.0051 0.0034 0.0094 0.0094 0.0010 0.0011 0.0019

Table 2.1: Distribution parameters within 2 regimes

the state one as the regime with a high volatility, and state two as the regime with

a low volatility.

Let e1 = (1, 0, 0)′, and we define e2 and e3 in a similar way. Then, conditional
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on ρt−1 = i, the conditions (2.3.5) are equivalent to the following equations:

er =
2∑

j=1

qij exp

(
e′l
(
µj + Σjht,•

)
+

1

2
e′lΣjel

)
, l = 1, 2, 3, (2.5.30)

where ht,• = (ht,1, ht,2, ht,3) and qij is given in (2.4.19). We solve (2.5.30) numerically,

and obtain parameters (ht,1, ht,2, ht,3) displayed in Table 2.2. There are four regimes,

ρt−1 ht,1 ht,2 ht,3

1 0.0635 0.2429 2.6829
2 -5.4903 -0.7771 1.6278

Table 2.2: The Esscher transform parameters

denoted by [ij] for i, j ∈ {1, 2}, under the MET-Q measure. The mean vectors of

Yt,• within each regime and the regime transition probabilities under the MET-Q
measure are reported in Table 2.3. The covariance matrix within regime ρ∗t = [ij] is

the same as the physical covariance matrix Σj within regime ρt = j.

Mean T ransition Probabilities given ρ∗t under Q measure
[ij] µ∗[ij] ρ∗t+1 = [11] ρ∗t+1 = [12] ρ∗t+1 = [21] ρ∗t+1 = [22]

[11] -0.0030 -0.0050 -0.0031 0.7593 0.2407 0.0000 0.0000
[12] 0.0168 0.0132 0.0147 0.0000 0.0000 0.0403 0.9597
[21] -0.0566 -0.0476 -0.0440 0.7593 0.2407 0.0000 0.0000
[22] 0.0066 0.0054 0.0059 0.0000 0.0000 0.0403 0.9597

Table 2.3: Regime and transition parameters under the MET−Q measure for the
multivariate RSLN2 model.

To evaluate the option with the payoff H(ST,•) =
(∏3

i=1 S
ωi
T,i −K

)+
, we assume

that S0,i = K = 100 and ωi = 1
3

for i = 1, 2, 3, and a constant risk free rate r = 0.005

per month. The computed option prices are displayed in Table 2.4, where we can see

the difference between the option prices given different initial regimes. For example,

the 4-month at-the-money option (K=100) is $4.21 given ρ0 = 1, and is only $2.46

given ρ0 = 2.
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ρ0 = 1 High Volatility Regime ρ0 = 2 Low Volatility Regime
K T = 120 24 12 4 T = 120 24 12 4
50 0.1222 0.0183 0.0034 0.0001 0.1035 0.0090 0.0001 0.0000

100 3.1189 5.2816 5.0988 4.2110 2.8870 4.3042 3.6965 2.4633
150 13.2198 36.2435 42.6260 47.5542 12.7029 35.3598 42.0229 47.2389
200 30.2123 76.3208 89.4561 96.5514 29.5522 75.8546 89.0468 96.2485

Table 2.4: Prices of European put options on geometric averages on three assets

2.5.2 Price Comparison under Different Multivariate RSLN2

Models

It is of interest to investigate the connection between portfolio construction and the

option price written on the portfolio. This section compares the prices of geometric

average European options written on a portfolio of three assets, under the multivari-

ate RLSN2 models with different assumptions on geometric weights for assets and

the covariance matrix. We suppose three different covariance matrices of the under-

lying assets: all positively correlated, uncorrelated, and some negatively correlated.

Assume that S0,l = 100 for l = 1, 2, 3. Then, we compute option prices for four differ-

ent portfolios. The first option is written on the portfolio with the geometric weights

ω1 = 0.5, ω2 = 0.1, ω3 = 0.4 for assets with positive covariance as specified in Table

2.6. The other three options written on portfolios, with the same geometric weights,

ω1 = ω2 = ω3 = 1/3, but different covariance matrices given in Table 2.6. The model

parameters under P measure, including regime transition probabilities, mean vectors

and correlation coefficient matrices of (Yt,1, Yt,2, Yt,3) within each regime, are given

in Table 2.5 and 2.6. The option prices under different combination of the above

assumptions are respectively reported in Tables 2.7– 2.10.

We first compare prices of options written on portfolios with different geometric

weights for the underlying assets. The option prices under two different portfolios

are illustrated in Table 2.7, where the underlying portfolio has unequal geometric

weights for assets, and in Table 2.8, where the underlying portfolio has equal weights.

The tables show that out-of-money put options written on the former portfolio are
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Mean pij

ρt µt,1 µt,3 µt,3 σt,1 σt,3 σt,3 1 2
1 0.012 0.012 0.012 0.035 0.035 0.035 0.963 0.037
2 -0.016 -0.016 -0.016 0.078 0.078 0.078 0.21 0.79

Table 2.5: Means of Yt,• conditional on ρt and transition probabilities under P
measure

Positive Correlated Uncorrelated Negative Correlated
Yt,1 Yt,2 Yt,3 Yt,1 Yt,2 Yt,3 Yt,1 Yt,2 Yt,3

Yt,1 1 0.5 0.5 1 0 0 1 0.5 -0.5
Yt,2 0.5 1 0.5 0 1 0 -0.5 1 -0.5
Yt,3 0.5 0.5 1 0 0 1 -0.5 0.5 1

Table 2.6: Conditional correlation matrices within each regime under P measure

K T = 120 24 12 4
50 0.0255 0.0020 0.0002 0.0000

100 1.5453 3.1826 2.9315 2.1197
150 9.2487 33.5480 41.2998 47.0315
200 24.8305 77.3965 88.3532 96.0397

Table 2.7: European put option prices on geometric averages, with geometric weights
(0.5, 0.1, 0.4) and positive covariance

K T = 120 24 12 4
50 0.0206 0.0015 0.0001 0.0000

100 1.4305 3.0440 2.8184 2.0459
150 8.9946 33.4712 41.2922 47.0300
200 24.6297 77.3929 88.3531 96.0397

Table 2.8: European put option prices on geometric averages, with geometric weights
(1/3, 1/3, 1/3) and positive covariance

cheaper than those written on the latter portfolio, while, on the contrary, most in-the-

money put options prices are more expensive written on the former portfolio. This

pricing difference arises from the fact that different geometric weights imply different
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K T = 120 24 12 4
50 0.0016 0.0000 0.0000 0.0000

100 0.6222 1.9451 1.9125 1.4346
150 6.9464 33.0891 41.2656 47.0298
200 23.3960 77.3842 88.3529 96.0397

Table 2.9: European put option prices on geometric averages, with geometric weights
(1/3, 1/3, 1/3) and uncorrelated covariance

K T = 120 24 12 4
50 0.0003 0.0000 0.0000 0.0000

100 0.3816 1.5353 1.5792 1.2125
150 6.1820 33.0475 41.2647 47.0298
200 23.2706 77.3841 88.3529 96.0397

Table 2.10: European put option prices on geometric averages, with geometric
weights (1/3, 1/3, 1/3) and negative covariance

underlying processes (
∏3

i=1 S
ωi
T,i ), which in turn imply different option prices. We

illustrate in Table 2.11 the values of σp
t , the volatility of an imaged portfolio to

represent the geometric average (
∏3

i=1 S
ωi
t,i ) at time t given the current regime ρt = i,

under two portfolios with different weights. For comparison, Table 2.11 also displays

a so-called benchmark volatility σ defined as follows. From Table 2.5 we can see that

the three assets have the same volatilities. If their correlation is 1, then the portfolio

volatility achieve the maximum (the benchmark) and is equal to 0.0350 given ρt = 1

and 0.0780 given ρt = 2. This portfolio resembles a single asset (St,l).

Portfolio 1 Portfolio 2 Benchmark σ (σt of a single asset St,l

σp
t given ρt = 1 0.0295 0.0286 0.0350
σp

t given ρt = 2 0.0657 0.0637 0.0780

Table 2.11: Different portfolios have different volatility σp
t . Suppose two portfolios represent the

price process (
∏3

i=1 Sωi
t,i). In this table, portfolio 1 denotes the underlying portfolio in Table 2.7

and has unequal geometric weights for assets; while portfolio 2 denotes the the portfolio in Table
2.7 and has equal geometric weights.

Second, Table 2.8 – 2.10 show that the option price also relies on the dependency
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among the underlying assets for a geometric average European option. For an in-

the-money put option, the prices derived from a mixture of positive and negative

correlated underlying assets are smaller than those in the uncorrelated case, and the

latter are in turn smaller than those under positive covariance.

We also compare the prices of the geometric average European put options with

the prices of the univariate European put options, written on the single underlying

asset S0,1 with S0,1 = 100. It is worth noting that the multivariate option is usually

cheaper than the univariate option. This is because that the option price increases

with the dependence among assets in the underlying portfolio, and that a single

underlying asset can be treated as a portfolio with perfect correlation among assets.

The comparing between Table 2.12 and Table 2.7 implies such a conclusion.

K T = 120 24 12 4
50 0.0687 0.0079 0.0010 0.0000

100 2.2155 3.9585 3.5686 2.5449
150 10.5673 34.1329 41.3789 47.0323
200 25.8436 77.4444 88.3556 96.0397

Table 2.12: Single variate put option prices under the ET-Q measure, with S0 = 100,
T the term in months, and r = 0.5% per month

2.5.3 Prices under Models with Multivariate Normal and

Laplace distributions

In this section, we still consider 2 state regime switching models. However, we assume

a multivariate normal distribution for Yt,• under one regime, while a multivariate

Laplace distribution under the other. We calculate the geometric average European

option prices based on the results in Example 7 and the following assumptions.

1. Three risky assets are available in the market with initial prices S0,l = 100;

geometric weights are (1/3, 1/3, 1/3); the risk free rate is 0.005 per month.
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2. Assume the multivariate Gaussian distribution within regime one; parameters

include µl = (0.012, 0.012, 0.012)′, σl,l = 0.035 for l = 1, 2, 3, and a positive

correlation given in Table 2.6. Assume the Laplace distribution within regime

two; parameters include σt,k = 0.078, a positive correlation in Table 2.6, and

λ = 2.

We obtain the Esscher parameters by solving equations in (2.4.28) and transition

probabilities under MET-Q measure using (2.4.29). Results are reported respectively

in Table 2.13 and 2.14.

ρ∗t−1 ht,1 ht,2 ht,3

1 -2.730760533 -2.730701742 -2.730902478
2 0.21130023 0.211357128 0.211162703

Table 2.13: The Esscher transform parameters

Transition Probabilities given ρ∗t under Q measure
ρ∗t ρ∗t+1 = [11] ρ∗t+1 = [12] ρ∗t+1 = [21] ρ∗t+1 = [22]
[11] 0.9576 0.0424 0.0000 0.0000
[12] 0.0000 0.0000 0.2112 0.7888
[21] 0.9576 0.0424 0.0000 0.0000
[22] 0.0000 0.0000 0.2112 0.7888

Table 2.14: Regime transition parameters under the MET−Q measure for the RSLN2
model.

To compute the option price using the FFT method in (2.4.27), we need the

value of L(v) in (2.4.26), in which we need the characteristic function ψQ
Z(u) with

u = (1
3
(v−ia−i), 1

3
(v−ia−i), 1

3
(v−ia−i))′. ψQ

Z(u) is obtained through ψQ
Z(u|{ρ∗t}T

t=1)

defined in (2.4.21), based on (2.4.22). Let Nij represents the number of [ij] in a path

of {ρ∗t}T
t=1. We have

ψQ
Z(u|{ρ∗t}T

t=1) =
2∑

i=1

2∑
j=1

[
ψQ

Yt,•
(u|ρ∗t = [ij])

]Nij

. (2.5.31)
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By plugging u = (1
3
(v − ia − i), 1

3
(v − ia − i), 1

3
(v − ia − i))′ into the characteristic

functions ψQ
Yt,•

(u|ρ∗t = [ij]) of multivariate normal under the MET-Q measure is

ψQ
Yt,•

(u|ρ∗t = [i1])

= exp

(
iu′µ∗

[i1] −
1

2
u′Σ1u

)
(2.5.32)

= exp

(
(a+ 1 + iv)

1

3

3∑
l=1

µ∗
t,l −

1

18
(v − ia− i)21′Σ11

)
, i = 1, 2,

where 1 = (1, 1, 1)′. Similarly, we plug u into the characteristic function of multi-

variate Laplace distribution under the MET-Q measure, with λ = 2, to obtain

ψQ
Yt,•

(u | ρ∗t = [i2]) =
2− 2h′t,•Σ2ht,•

2 + 2(u− iht,•)′ Σ2 (u− iht,•)
. (2.5.33)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

∑3

l=1

∑12

t=1
(1

3
Yt,l)

de
ns

ity

12 Month Q Densities

 

 
normal and Laplace
mixed normal

Figure 2.4: Densities under Q-measure: Normal and Laplace vs. Two Normal
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Figure 2.4 shows the densities of the 12-month cumulative log-return
∑3

l=1

∑12
t=1(

1
3
Yt,l)

of the geometric average, under the MET-Q measure. In the figure, the solid line is

the density under the multivariate RSLN2 model, and the dashed line is the density

under the regime switching model with multivariate normal and Laplace distribu-

tions. It shows that the density of the latter has fatter tails than the multivariate

RSLN2 models.

The pricing is carried out using the fast Fourier Transform (see, for example,

Paolella (2007)). Table 2.15 displays the European Put Option Prices on Geometric

Averages. Compared with those of the multivariate regime switching log-normal

models given in Table 2.7–2.12, in our case study, the prices are higher under the

regime switching models with multivariate normal and Laplace distributions.

K T = 120 24 12 4
50 0.2868 0.0342 0.0320 0.0476

100 7.3723 5.5198 4.2649 2.6079
150 18.0414 34.5417 41.5187 47.0559
200 33.2960 77.5515 88.3712 96.0410

Table 2.15: European put option prices on geometric averages, for multivariate
Laplace-normal regime switching models, with geometric weights (1/3, 1/3, 1/3)
and positive covariance

Remark 2.5.1. The Fourier transform method is usually accurate in obtaining den-

sity functions, as the tails of density functions decay, while its application in the

computation of tail expectation is much worse, as the values may not decay in both

tails. See, for example, Čı́žek et al. (2005). As discussed in Carr and Madan

(1999), if we choose a value α with α < 0 in (2.4.24) for computing option prices,

we enlarge the computing errors for using P̃c(k) instead of Pc(k) when k > 0. In

the option pricing using the FFT methods, different α may result in different part

of pricing errors. Thus, the choice of the parameter α in (2.4.24) plays an important

role. Unfortunately, to the best of my knowledge, there is no uniformly best choice

available for α. The method used by Carr and Madan (1999) to choose α is based

on the observation of the price curves. Figure 2.5 displays some price curves based
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on different choice of α. Based on the observation, we choose α between 0.15 to 0.2.
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Figure 2.5: Price (curve) vs. Payoff when ST = 100 (straight lines) under different
choice of α (K: strike prices; S0 = 100)

Remark 2.5.2. After obtaining the prices for the geometric average European op-

tions, we can use them to evaluate the European options written on the arithmetic

average of stock prices, which is called the basket option with payoff H(ST,•) =

(
∑N

l=1 ωlSt,l − K)+. The basket option is priced using the same approaching as
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Asian options, since these two options are both written on the arithmetic average of

the underlying asset prices. The commonly used pricing approaches for the geometric

average European options include the following two. The first one uses Monte Carlo

simulation with control variate method. As commented by Boyle et al. (1997), the

control variate method is the most efficient compared with other variance reduction

methods. The second one is an approximation approach suggested by Vorst (1992).

2.6 Conclusion

In this chapter, we apply the Esscher transform to identify the risk neutral pric-

ing measure for derivatives written on multiple assets under a discrete time regime

switching model, and calculate the prices of the geometric average European options.

The pricing is through a double expectation, with the inner expectation calculated

conditional on a given regime transition path while the outer expectation is with

respect to the probabilities over each path. For the inner expectation, there is no un-

certainty associated with regime transition involved and hence we can borrow many

well-developed pricing methods available in literature. Moreover, since the prices

of all underlying assets are assumed to follow a same regime switching process, the

techniques developed in Chapter 1 to reduce the computation time is still applicable

to calculate the outer expectation. Derivative pricing often come along with the

hedging strategies, to make the pricing more meaningful. In the later part of this

thesis, we will investigate more on hedging which is of particular interest for regime

switching models.
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Chapter 3

Comparison of Hedging

Performance among the 3

Risk-neutral Methods along with

MV Hedging

3.1 Introduction

In Chapter 1, we developed the ET-Q method to price European options in an

incomplete market consisting of two assets: a bond and a stock, with stock prices

(St) following the RSLN2 model. We also introduced two other pricing methods

and compared their prices. The goal of this chapter is to investigate hedging using

the ET-Q method, through a comparative study based on simulation. We focus

on discrete time hedging for European options written on a single underlying risky

asset. The comparison is organized in two parts. The first part compares discrete

time delta hedging from the three risk-neutral methods: the Black–Scholes, the

NEMM methods, and the ET-Q methods. The second part, section 3.3 conducts the

comparative analysis of the 3 risk-neutral methods with the mean-variance method

in terms of their hedging performance. It is worth noting that in the study, the
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hedging of loss is from the option’s issuer point of view.

Our hedging comparison is conducted based on the analysis of hedging loss for the

writer of the option. The comparison is separate for single-period and multiperiod

settings. Without loss of generality, let the single period be [0, 1]. Based on this

single period, we measure and compare the delta hedging loss at maturity, denoted

by L(Y1), as a function of the log-return Y1 as follows:

L(Y1) = P1 − (∆0 S0e
Y1 +B0 e

r), (3.1.1)

where P1 represents the maturity value of the option (or the payoff), ∆0 and B0

respectively represent the units of stock and the value of bonds in the delta hedging

portfolio constructed at t = 0. As a result, L > 0 represents a loss.

For multiperiod options, we measure and compare the present value of the cu-

mulative hedging errors. Assume hedging is implemented over a set of discrete time

points t = 0, 1, . . . , T . Let Pt denote option values, and ζt denote hedging portfolio

values at time t. The hedging portfolio is constructed at time t = 0 with ζ0 = P0, and

is rebalanced at t = 1, . . . , T − 1 to achieve ζt = Pt. At any intermediate time, say s

for t− 1 < s < t, ζs = ∆t−1 Ss +Bt−1 e
r(s−t+1), in which ∆t−1 and Bt−1 representing

the units of stocks and the value of bonds in the portfolio after rebalancing at time

t− 1 for a delta hedging. As a result, the hedging error for each period, denoted by

εt for the period (t− 1, t), is

εt = Pt − ζt− (3.1.2)

where ζt− represents the value of the portfolio immediately before rebalancing at t,

and ζt− = ∆t−1 St +Bt−1 e
r for delta hedging. In the study for multiperiod hedging,

the present value of cumulative hedging errors, denoted by PV HL, is

PV HL =
T∑

t=1

εt e
−rt. (3.1.3)

Based on the distribution of L(Y1) or PV HL, we conduct the hedging effects
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analysis. To analyze the effects for the single period setting, we employ a tool of

effective hedging range, denoted by the interval [D,U ] of the continuous random

variable, the asset price S1 or its log-return Y1 = log(S1/S0), defined as follows.

Definition 3.1.1. Let L(Y1) : Ω → R as defined in (3.1.1). Then, an interval

[D,U ] is called the effective hedging range (EHR) of Y1, if L(Y1) ≤ 0 if and only if

Y1 ∈ [D,U ].

We may also define the EHR of S1 similar to Definition 3.1.1, with [0, D) and

(U,∞) representing the left and right ranges of S1 generating a loss. It is worth

noting that, the EHR may not exist for PV HL on the cumulative yield
∑T

t=1 Yt

in multiperiod dynamic hedging, because the PV HL, defined in (3.1.3), is not only

dependent on the value of
∑T

t=1 Yt, but may also dependent on the path of Y1, . . . , YT .

That is, for the same value of
∑T

t=1 Yt, two different paths of Y1, . . . , YT may result

in different hedging losses. As a result, we may not have a EHR defined only on∑T
t=1 Yt.

However, single period EHRs could still be interesting information for comparing

hedging difference between different methods, and helpful in interpreting the differ-

ence in multiperiod hedging results. In section 3.2, we will verify the existence of

EHRs of Y1 in discrete time hedging for a single period under three risk neutral meth-

ods: the Black–Scholes, the NEMM methods, and the ET-Q methods, and compare

their values. The locations and length of the effective hedging range is of interest for

hedging analysis. Indeed, from the hedging case study in the following two sections,

we will see that among the three risk-neutral approaches, the ET-Q method has the

widest EHR, covering the EHRs of the two other methods. We also observe that the

mean-variance method tends to shift both boundaries of [D,U ] to the right compared

to the risk-neutral approaches, implying a different hedging strategy with a weaker

protection for downside loss. We may also analyze other risk measures based on

EHRs if the risk measures on the ranges are comparable. For example, in the period

[0, 1] under regime switching models, let [Di, Ui] denote the EHR for hedging in the

period given ρ1 = i. Then, we can compute and compare hedging loss probabilities
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P(L > 0|ρ1 = i):

P(L > 0|ρ1 = i) = 1−
∫

[Di,Ui]

fP(y1|ρ1 = i) dy1, (3.1.4)

where fP(y1|ρ1 = i) is the conditional physical density of Y1 = y1. As an example,

since ET-Q method has the widest EHR, it has the lowest loss probability in either

side of tails. However, the hedging probabilities are more complicated to compare

between mean-variance methods and risk neutral methods.

Besides EHRs, we also compute risk measures such as the Value at Risk (VaR) and

the Conditional Tail Expectation (CTE) under both single period and multiperiod

settings.

Definition 3.1.2. (McNeil et al., 2005) The Value at Risk (VaR) at the confidence

level α of the loss L is defined as

V aRα = inf{l ∈ R : P(L > l) ≤ 1− α}

Definition 3.1.3. (McNeil et al., 2005) The Conditional Tail Expectation (CTE)

at the confidence level α of the loss L is defined as

CTEα =
1

1− α

∫ 1

α

V aRu(L)du

The CTE can be interpreted as “the expected loss given that the loss falls in the

worst (1 − α) part of the loss distribution” (Hardy, 2006). We use the confidence-

level α = 95%, at which the values of VaRα and CTEα can be compared for different

methods.

The organization of the remaining content of this chapter is as follows. In section

3.2, we obtain analytical results of the single period EHRs [D,U ] for the three risk-

neutral methods we mentioned above; compare their EHRs and risk measures such

as probabilities of having a loss and the CTE95% of the loss distributions for hedging

a European put option. In section 3.3, we compute the mean-variance hedging cost

and compare hedging loss between mean-variance methods and the ET-Q methods.
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At the end of this section, we specifically discuss the difference of the effective hedging

ranges and its impact on the associated risk measures between these two methods.

3.2 Hedging Comparison for Risk Neutral Meth-

ods

The objective of this section is to compute and compare hedging difference, in terms

of effective hedging ranges and some risk measures of hedging loss, among three risk-

neutral methods: the Black–Scholes, the NEMM methods, and the ET-Q methods.

We first compute and compare EHRs for hedging a European put option in the

single period [0, 1]. We assume the put option is expired in one period, instead of

assuming it is expired after the period. The result of the study for one period options

also provides useful information for hedging a multiperiod option.

3.2.1 Single Period EHR for the Black–Scholes Method

In this section, we compute the effective hedging range [D,U ] for the Black–Scholes

method. The hedging portfolio is constructed at t = 0 for a put option. At t = 0

the value of the delta hedging portfolio is

ζ0 = B0 − S0∆0,

where B0 = e−rKΦ(−d2) and ∆0 = −Φ(−d1), with Φ(·) denoting the standard

normal distribution function,

d1 =
log(S0/K) + (r + σ2

2
)

σ
, and d2 = d1 − σ. (3.2.5)

At t = 1 before making payoff, the portfolio value becomes

ζ1− = KΦ(−d2)− S0 e
Y1Φ(−d1).
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Then, the loss function L(Y1) is

L(Y1) =

{
LL(Y1), if Y1 < log(K/S0)

LU(Y1), if Y1 ≥ log(K/S0)
(3.2.6)

where LL(Y1) denotes the hedging loss when the put option expires in the money,

and LU(Y1) denotes the hedging loss function when the option expires out of the

money. More specifically,

LL(Y1) = K − S0 e
Y1 − (K Φ(−d2)− S0 e

Y1 Φ(−d1) ),

and

LU(Y1) = −(K Φ(−d2)− S0 e
Y1 Φ(−d1) ).

Based on L, we can have the result of [D,U ] given in Proposition 3.2.1. To proceed,

we first define the term U–shaped as follows.

Definition 3.2.1. Let T (x) : R → R. We say T is U–shaped against x, if and only

if the following two conditions are met:

1. T is a continuous function of x;

2. T (x) is a continuous increasing function of x over (a,∞) and a continuous

decreasing function over (−∞, a)

As a result, there ∃ a ∈ R satisfying a = arg minx∈R T (x).

Proposition 3.2.1. (CQ) There exists D,U ∈ R such that L ≤ 0, for L defined in

(3.2.6), if and only if Y1 ∈ [D,U ]. Moreover, minY1 L is obtained at Y1 = log(K/S0)

and

[D,U ] =

[
log

(
K Φ(d2)

S0 Φ(d1)

)
, log

(
K Φ(−d2)

S0 Φ(−d1)

)]
.
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Proof. To show the existence of [D,U ], we show L is U–shaped against the value of

Y1, and minY1 L ≤ 0, obtained at Y1 = log(K/S0); then, we can compute [D,U ] by

letting L = 0 in equation (3.2.6). Indeed, from (3.2.6), we have

∂L

∂Y1

=

{
−S0 e

Y1 (1− Φ(−d1)) < 0 if Y1 < log(K/S0)

S0 e
Y1 Φ(−d1) > 0 if Y1 > log(K/S0)

.

In addition, LL(Y1) and LU(Y1) in (3.2.6) are continuous functions of Y1, and be

equal at Y1 = log(K/S0). As a result, L is U–shaped against Y1. Thus, L achieves

the minimum at Y1 = log(K/S0).

To show minY1 L ≤ 0, from (3.2.5), it is clear that d2 < d1, i.e., −d2 > −d1, i.e.,

Φ(−d2) > Φ(−d1). Thus, at Y1 = log(K/S0), we have

minY1 L = (K − S1)
+ − (K Φ(−d2)− S0 e

Y1 Φ(−d1))
∣∣
Y1=log(K/S0)

= −K (Φ(−d2)− Φ(−d1)) < 0.
(3.2.7)

�

Remark 3.2.1. Based on the loss function (3.2.6), we can compute the CTEα of

hedging loss. Conditional on the initial regime ρ(0) = i for i = 1, . . . , R, the CTEα

of the hedging loss is

CTEα =

∫
(−∞,y′1)

⋃
(y′2,∞)

L(y1) f
P(y1|ρ0 = i) dy1,

where y′1 and y′2, with y′1 < y′2, are determined by

1− α = P(Y1 ≤ y′1|ρ0 = i) + P(Y1 > y′2|ρ0 = i) (3.2.8)

and

LL(y′1) = LU(y′2). (3.2.9)

Equation (3.2.9) implies y′1 < log(K/S0) < y′2. The reason is as follows. Since L

is U–shaped against Y1, and Y1 = log(K/S0) is the unique minimizer of the loss
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function L, the minimum point must locate between any two y′1 and y′2 which result

in a same value for L. Regarding the length of the range [y′1, y
′
2], the interval [y′1, y

′
2]

determined in the above equations (3.2.8) and (3.2.9) may not have the smallest

length among all the α–level intervals of Y1. The reason is as follows. The equality

fP(y′1|ρ0 = i) = fP(y′2|ρ0 = i) is a necessary condition for the confidence interval

to be smallest at a fixed α–level significance. However, LL(y′1) = LU(y′2) for an

asymmetric loss function L may imply fP(y′1|ρ0 = i) 6= fP(y′2|ρ0 = i).

3.2.2 Single Period EHR for the NEMM Method

The NEMM pricing method under the RSLN2 models is introduced in Section 1.4.3.

In this method and the ET-Q method, we assume that the current regime ρ0 = i

is known and the process in [0, 1] switches to regime j with probability pij. Based

on its pricing formula, the effective hedging ranges can be obtained similarly as for

the Black–Scholes method. The hedging portfolio, conditional on ρ0, at t = 0 is the

mixture of two Black–Scholes delta hedging portfolios as follows:

ζ0 = pi1(K e−r Φ(−dσ1
2 )− S0 Φ(−dσ1

1 )) + pi2(K e−r Φ(−dσ2
2 )− S0 Φ(−dσ2

1 )),

where d
σj

1 and d
σj

2 are the d1 and d2 values dependent on σj specified by ρ1 = j. The

hedging–loss function L(Y1), given ρ0 = i, becomes LL(Y1) or LU(Y1), with

LL(Y1) = K − S0e
Y1 − pi1

[
KΦ(−dσ1

2 )− S0e
Y1Φ(−dσ1

1 )
]

−pi2

[
KΦ(−dσ2

2 )− S0e
Y1Φ(−dσ2

1 )
]
, Y1 < log(K/S0),

LU(Y1) = −pi1

[
KΦ(−dσ1

2 )− S0e
Y1Φ(−dσ1

1 )
]

−pi2

[
KΦ(−dσ2

2 )− S0e
Y1Φ(−dσ2

1 )
]
, Y1 ≥ log(K/S0).

(3.2.10)

Proposition 3.2.2. (CQ) There exist real values D,U such that L ≤ 0, if and only
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if Y1 ∈ [D,U ], and [D,U ] is
D = log

{
K (1− pi1 Φ(−dσ1

2 )− pi2 Φ(−dσ2
2 ))

S0 (1− pi1 Φ(−dσ1
1 )− pi2 Φ(−dσ2

1 ))

}

U = log

{
K (pi1 Φ(−dσ1

2 ) + pi2 Φ(−dσ2
2 ))

S0 (pi1 Φ(−dσ1
1 ) + pi2 Φ(−dσ2

1 ))

}

Proof. The proof is based on similar argument as in the proof of Proposition 3.2.1.

The existence of [D,U ] is based on the U–shape of the loss function L against

the value of Y1 and the fact that minY1 L < 0. First, because 0 < pi1 Φ(−dσ1
1 ) +

pi2 Φ(−dσ2
1 )) < 1, the slope of the loss function L satisfies

∂L

∂Y1

=


−S0 e

Y1 (1− pi1 Φ(−dσ1
1 )− pi2 Φ(−dσ2

1 )) < 0, Y1 < log(K/S0),

S0 e
Y1 (pi1 Φ(−dσ1

1 ) + pi2 Φ(−dσ2
1 ) > 0, Y1 > log(K/S0).

In addition, L is continuous in Y1. Thus, L is U–shaped against Y1. As a result, L

achieve its unique global minimum at Y1 = log(K/S0). Second, since [KΦ(−dσ1
2 ) −

S0e
Y1Φ(−dσ1

1 )] > 0 at Y1 = log(K/S0), from (3.2.10), we have minY1 L < 0. Based on

these two properties of L, the values of D,U can be computed by letting LL(Y1) = 0

and LU(Y1) = 0 in (3.2.10). �

3.2.3 Single Period EHR for the ET-Q Method

The ET-Q method pricing is described in section 1.3 in Chapter 1. Based on the

pricing formula, we compute its discrete time delta hedging ranges [D,U ] in this

section. Let ηj = e−r+µij+
σ2

j
2 , j = 1, 2. For notational convenience, let d

[ij]
1 and d

[ij]
2

represent the parameters d1 and d2 in (1.3.62), respectively, given the single period

transition {ρ0 = i, ρ1 = j}. Recall the transition probability under ET-Q measure,
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qij, is given in (1.3.53). Then, the loss function L(Y1), given ρ0 = i, is

LL(Y1) = K − S0 e
Y1 − qi1

(
K Φ(−d[i1]

2 )− S0 e
Y1 η1 Φ(−d[i1]

1 )
)

−qi2
(
K Φ(−d[i2]

2 )− S0 e
Y1 η2 Φ(−d[i2]

1 )
)

Y1 < log(K/S0)

LU(Y1) = −qi1
(
K Φ(−d[i1]

2 )− S0 e
Y1 η1 Φ(−d[i1]

1 )
)

−qi2
(
K Φ(−d[i2]

2 )− S0 e
Y1 η2 Φ(−d[i2]

1 )
)

Y1 ≥ log(K/S0)

Proposition 3.2.3. (CQ) There exist real values D,U such that L(Y1) ≤ 0 if and

only if Y1 ∈ [D,U ], where [D,U ] is

D = log

 K
(
1− qi1 Φ(−d[i1]

2 )− qi2 Φ(−d[i2]
2 )
)

S0

(
1− qi1 η1 Φ(−d[i1]

1 )− qi2 η2 Φ(−d[i2]
1 )
)
 ,

U = log

 K
(
qi1 Φ(−d[i1]

2 ) + qi2 Φ(−d[i2]
2 )
)

S0

(
qi1 η1 Φ(−d[i1]

1 ) + qi2 η2 Φ(−d[i2]
1 )
)
 .

Proof. Based on the similar argument as in Proposition 3.2.1. We first show the

slope of L against Y1 satisfying

∂L

∂Y1

=


−S0 e

Y1

(
1− qi1 η1 Φ(−d[i1]

1 )− qi2 η2 Φ(−d[i2]
1 )
)
< 0, Y1 < log(K/S0),

S0 e
Y1

(
qi1 η1 Φ(−d[i1]

1 ) + qi2 η2 Φ(−d[i2]
1 )
)
> 0, Y1 < log(K/S0).

(3.2.11)

In (3.2.11), the second expression is positive, since all qij, ηj,Φ(·) are positive. The
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first term is negative, which can be seen as follows. Since

qi1 η1 + qi2 η2

=
pi1 e

µ1 h∗1+
σ2
1
2

h∗1
2

EP(eY1 h∗1 | ρ0 = i)
e−r+µi1+

σ2
1
2 +

pi2 e
µ2 h∗1+

σ2
2
2

h∗1
2

EP(eY1 h∗1 | ρ0 = i)
e−r+µi2+

σ2
2
2

= e−r EP(eY1 (h∗1+1) |ρ0 = i)

EP(eY1 h∗1 |ρ0 = i)

= 1.

(3.2.12)

Also 0 < Φ(·) < 1. As a result, we have 1 − qi1 η1 Φ(−d[i1]
1 ) − qi2 η2 Φ(−d[i2]

1 ) > 0.

Thus, the first term in equation (3.2.11) is negative. L is a continuous function of

Yt. Thus, the loss L is U–shaped against the value of Y1. The global minimum of L

is obtained at the point Y1 = log(K/S0).

Second, we also have minY1 L < 0 as follows. LL = LU < 0 at Y1 = k if and only

if

qi1 Φ(−d[i1]
2 ) + qi2 Φ(−d[i2]

2 )− qi1 η1 Φ(−d[i1]
1 )− qi2 η2 Φ(−d[i2]

1 ) > 0. (3.2.13)

To verify this, let

F (− log(S0/K)) := qi1 Φ(−d[i1]
2 ) + qi2 Φ(−d[i2]

2 )

F̃ (− log(S0/K)) := −qi1 η1 Φ(−d[i1]
1 )− qi2 η2 Φ(−d[i2]

1 ).

Then

F (− log(S0/K)) =

∫ − log(S0/K)

−∞
fQ

i (y1) dy1

where,with φ(z) representing the standard normal density function,

fQ
i (y1) = qi1 φ

(
y1 − µQ

[i1]

σ1

)
1

σ1

+ qi2 φ(−d[i2]
2 )

(
y1 − µQ

[i2]

σ2

)
1

σ2

.
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Also,

F̃ (− log(S0/K)) =

∫ − log(S0/K)

−∞
gQ

i (y1) dy1

where gQ
i (y1) = ey1−rfQ

i (y1). As a result of Lemma 1.2.4, the distribution under

gQ
i (y1) is strictly stochastically larger than the distribution under fQ(y1) for Y1.

That is

F (− log(S0/K)) > F̃ (− log(S0/K)).

(3.2.13) is proved. �

3.2.4 Numerical Results of Single Period Hedging

In this section, we will compare hedging performance among these aforementioned

three pricing methods, from the option issuer’s point of view, under a single-period

setting. Model parameters are as follows: the parameters of the RSLN2 model,

borrowed from Hardy(2003), are given in Table 3.1; S0 = 100; the constant interest

rate r = 0.005 per month. Numerical results are given for hedging out–of–money

Regime 1 µ1 = 0.012 σ1 = 0.035 p12 = 0.037
Regime 2 µ2 = −0.016 σ2 = 0.078 p21 = 0.210

Table 3.1: RSLN2 parameters

and at–the–money European put options.

As assumed, the single period is [0, 1]. To compare the hedging results from the

three risk-neutral methods, we compute the analytical values of their option prices,

effective hedging ranges, loss probabilities, and the CTEα of hedging loss. Here,

loss probability is the probability that a positive loss occurs. The corresponding

numerical results are presented in Tables 3.2– 3.6, where we assume the strike price

K = 90. Based on these results, we have the following three interesting observations.
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First, for the out–of–money put option with small values, the price based on

the regime switching pricing methods, especially the ET-Q method, are significantly

higher than the price of the Black–Scholes method. This can be seen from Table 3.2,

which lists the put option prices (multiplied by 1000) for the three risk-neutral meth-

ods, with the average of option prices computed based on the stationary probabilities

for the two regimes.

ρ0 = 1 ρ0 = 2 Average
BS 9.9 9.9 9.9

NEMM 10.4 207.9 39.8
ET-Q 36.6 222.2 64.4

Table 3.2: 1-month put option price ×1000; S0 = 100, K = 90

Second, we see significant differences in option hedging results. The ET-Q
method has the widest effective hedging ranges [D,U ], which covers both ranges

of the NEMM method and the Black–Scholes method, for hedging the out–of–money

put option; see Table 3.3. As a result, the ET-Q method has the corresponding

ρ0 = 1 ρ0 = 2
BS (89.92, 101.99) (89.92, 101.99)

NEMM (89.95, 103.54) (89.13, 104.10)
ET-Q (89.87, 104.75) (89.08, 104.15)

Table 3.3: Intervals of EHR for hedging a 1-month put option, with S0 = 100 and
K = 90

lowest loss probabilities, as given in Table 3.4. In the table, the probability of

lower tail loss is the probability of loss occurred when the option expires in the

money, and upper tail loss probability is the probability of loss occurred when

the option expires out of the money. The average is the expected loss probabil-

ity: P(L > 0) =
∑2

i=1 πi P(L > 0 | ρ0 = i), where πi is the stationary probabilities

for the regime process.

Third, based on the empirical distribution of L, Table 3.5 illustrates that the

ET-Q method has the lower values of the VaR95% and the CTE95% than the Black-
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ρ0 = 1 ρ0 = 2 Average
(two tails, ρ1 = 1 or 2)
BS 0.414 0.440 0.418
NEMM 0.262 0.311 0.270
ET-Q 0.169 0.307 0.19
(lower tail & ρ1 = 1)
BS 0.00036 0.00036
NEMM 0.00037 0.00014 –
ET-Q 0.00034 0.00013
(upper tail & ρ1 = 1)
BS 0.4128 0.4127
NEMM 0.2573 0.2105 –
ET-Q 0.1628 0.2063
(lower tail & ρ1 = 2)
BS 0.1236 0.1236
NEMM 0.1246 0.1021 –
ET-Q 0.1222 0.1007
(upper tail & ρ1 = 2)
BS 0.3235 0.3235
NEMM 0.2574 0.2357 –
ET-Q 0.2118 0.2337

Table 3.4: Loss probability P(L > 0) of hedging 1-month put option: K = 90, S0 =
100

Scholes methods, based on the loss on two sides. Based on the loss on the downside

only, Table 3.6 also illustrates that the ET-Q method has the lowest values of the

VaR95% and the CTE95% among the three risk neutral methods under the discrete

time hedging for single period put option with K = 90. Thus, our results shows that

if the RSLN2 model represents the market behavior for the underlying asset, then

delta hedging under the ET-Q measure provides the most effective hedging for a

writer of put options, in terms of VaR95% and CTE95% of hedging loss.
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S1 values corresponding VaR95% CTE95% σ(L|L > V aR95%)
to VaR95% of L

(ρ0 = 1)
BS {89.8825, 107.5196} 0.0368 0.355248 1.2724
NEMM {89.9396, 107.5231} 0.0137 0.333292 1.2902
ET-Q {89.8470, 107.5174} 0.0240 0.330542 1.2614
(ρ0 = 2)
BS {87.3655, 482.7820} 2.5371 5.4062 2.4490
NEMM {87.3543, 133.1109} 1.6776 4.3827 2.3324
ET-Q {87.3496, 130.9600} 1.6229 4.3142 2.3240

Table 3.5: Risk measures of hedging loss L for hedging a 1-month put option, with
S0 = 100 and K = 90 (σ represents standard deviation)

S1 corresponding to VaR95% CTE95% σ(L|L > V aR95%)
VaR95% of L for one-tail test

( ρ0 = 1)
BS 89.9701 -0.0502 0.3109 1.2830
NEMM 89.9701 -0.0167 0.3153 1.2945
ET-Q 89.9701 -0.0981 0.3054 1.2700
( ρ0 = 2)
BS 87.35724 2.5453 5.4001 2.4592
NEMM 87.35724 1.6748 4.3826 2.3326
ET-Q 87.35724 1.6156 4.3139 2.3243

Table 3.6: Risk measures of one-tail (left-tail) hedging loss, occurred when S1 < K,
for hedging a 1-month put option (S0 = 100, K = 90).

Note: In Tables 3.5 and 3.6, no standard errors are associated with VaR95% and CTE95%, because
the values are accurately (σ = 0) computed, not estimated, based on the assumption of the given
RSLN2 model.

3.2.5 Simulated Hedging Results for Multiperiod Hedging

In this section, we conduct a simulation study to investigate the hedging loss in

a multiperiod case. Recall that Pt represents the option value, and ζt represents

the hedging portfolio value at time t. In the multiperiod simulation, the hedging

portfolio is constructed at time t = 0, and rebalanced at t = 1, . . . , T − 1 to achieve
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Pt = ζt for integer time points t = 0, . . . , T − 1. At an intermediate time, say s

for t − 1 < s < t, we have ζs = ∆t−1 Ss + Bt−1 e
r(s−t+1). To study the multiperiod

dynamic hedging effects, we analyze PV HL, the present value of the cumulative

hedging errors, defined below:

PV HL =
T∑

t=1

e−rt (Pt − ζt−) , (3.2.14)

where ζt− represents the hedging portfolio values immediately before the rebalancing

at time t for t = 1, . . . , T . Recall that ζt− = ∆t−1 St + Bt−1 e
r, with ∆t−1 and Bt−1

respectively representing the units of stocks and the value of bonds in the rebalanced

portfolio at time t− 1.

The simulation is carried out through the following steps. First, simulate regime

paths {ρt}T
t=0, and the stock prices {St}T

t=0 conditional on the simulated regime path,

under the RSLN2 models with S0 = 100. Then, the option prices Pt are evaluated and

the rebalanced hedging portfolios ζt are set up, for each simulated (St, ρt). Third, at

the discrete time t for 1 ≤ t ≤ T , the values of hedging portfolio ζt−1 are updated and

the hedging errors εt are computed based on (3.1.2). Finally, with all εt, 1 ≤ t ≤ T ,

the value of PV HL is obtained using equation (3.1.3). As a result, risk measures

can then be evaluated based on the empirical distribution of PV HL. The simulation

is based on the same RSLN2 model parameters given in Table 3.1. Other same

parameters include S0 = 100 and r = 0.005 per month.

Hedging and pricing may not be based on the same information. In hedging a

model risk is choosing a wrong initial regime ρ0, which leads to the risk for hedging

design. In our hedging study, if the initial regime cannot be identified, it is assigned

an associated probability, and the hedging portfolio may be determined from the

combination of two portfolios corresponding to the two possible states. To improve

the hedging efficiency, we may improve the accuracy of the probability assigned

to each regime. In this study, we apply the recursive approach proposed by Hardy

(2003) to estimate these probabilities at each time of setting up the hedging strategy.

The simulated results are given in Tables 3.7 – 3.10 as follows. The results in

Table 3.7 are obtained from 10, 000 simulations for a 12 month put option with the
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K Option Price P(PV HL > 0) CTE95% σ
BS 90 1.0840 0.3622 (0.0048) 5.5154 (0.1244) 1.9849
NEMM 90 1.008 0.3292 (0.0047) 5.8408 (0.1300) 2.0783
ET-Q 90 1.2449 0.2466 (0.0043) 5.5483 (0.1274) 2.0206

BS 100 3.5983 0.3654 (0.0048) 6.4873 (0.1380) 2.1115
NEMM 100 3.3058 0.3974 (0.0049) 6.9582 (0.1454) 2.2834
ET-Q 100 3.5686 0.3148 (0.0046) 6.1543 (0.1243) 2.1558

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.7: Option prices and risk measures of hedging loss for hedging 12-month put
options, with S0 = 100, based on simulated RSLN2 stock prices (10,000 projections).
Standard errors are given in the brackets besides P and the CTE.

K Option Price P(PV HL > 0) CTE95% σ
BS 90 1.0840 0.3878 (0.0049) 4.9655 (0.1429) 2.0807
NEMM 90 1.0076 0.3483 (0.0048) 5.6911 (0.1569) 2.1539
ET-Q 90 1.2449 0.2444 (0.0043) 5.1429 (0.1528) 2.1654

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.8: Option prices and risk measures of hedging loss for hedging 12-month put
options, with S0 = 100, based on simulation with bootstrapped TSE data (10,000
projections)

strike price K = 90; the results in Table 3.8 are simulated using blocked (6 months)

bootstrapped TSE data from 1956 to 1999, with 10, 000 simulations; Table 3.9 and

3.10 give the results for options with 120 month maturity, with 10, 000 simulations,

regarding the strike prices K = 90, . . . , 110. In the tables, the CTE values are

computed for the present values of hedging loss PV HL. The variance of the CTEα

is evaluated using the method given by Manistre and Hancock (2005) as follows

var( ˆCTEα) ≈ var(PV HL |PV HL > V aRα) + α(CTEα − V aRα)2

n(1− α)
,

where n is the number of simulations.
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K Option Price P(PV HL > 0) CTE95% σ
BS 90 1.1944 0.4131 (0.0049) 2.8032 (0.0708) 1.1041
NEMM 90 1.1017 0.4299 (0.0050) 3.0333 (0.0767) 1.1953
ET-Q 90 1.3924 0.2891 (0.0045) 2.4278 (0.0708) 1.1087

BS 100 1.9842 0.4155 (0.0049) 3.4172 (0.0777) 1.2329
NEMM 100 1.8341 0.4406 (0.0050) 3.6800 (0.0812) 1.2994
ET-Q 100 2.2155 0.3039 (0.0046) 3.1622 (0.0836) 1.2497

BS 110 3.0510 0.4189 (0.0049) 4.0344 (0.0852) 1.3464
NEMM 110 2.8349 0.4515 (0.0050) 4.4419 (0.0900) 1.3606
ET-Q 110 3.3036 0.3164 (0.0047) 3.7874 (0.0902) 1.3982

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.9: Option prices and risk measures of hedging loss for hedging 120-month
puts, with S0 = 100, based on 10,000 projections with simulated RSLN2 stock prices

K Option Price P(PV HL > 0) CTE95% σ
BS 90 51.8013 0.4131 (0.0049) 2.8032 (0.0707) 1.1041
NEMM 90 51.7086 0.5060 (0.0050) 3.2056 (0.0777) 1.1846
ET-Q 90 51.9996 0.2834 (0.0045) 2.5360 (0.0769) 1.1960

BS 100 47.103 0.4155 (0.0049) 3.4172 (0.0777) 1.2328
NEMM 100 46.9529 0.4975 (0.0050) 3.7653 (0.0803) 1.2871
ET-Q 100 47.3346 0.2950 (0.0046) 3.1079 (0.0790) 1.2311

BS 110 42.6817 0.4189 (0.0049) 4.0344 (0.0852) 1.3464
NEMM 110 42.4656 0.4942 (0.0050) 4.4052 (0.0897) 1.4630
ET-Q 110 42.9346 0.3066 (0.0046) 3.6702 (0.0866) 1.3982

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.10: Call option prices and risk measures of hedging loss for hedging 120-
month options based on 10,000 simulations, with S0 = 100 (Hedging results are
similar for call and put options)

It is worth noting that the results from the single period study may not be
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directly applied in the multiperiod case, because in the single period study, we study

the hedging for an out-of-money put option, while in a multiperiod dynamic hedging

process, the ratio K/St varies at t = 1, . . . , T − 1 and the target option may not

always be an out–of–money option at t 6= 0. Tables 3.7 – 3.10 illustrate that

the ET-Q method developed on the underlying regime switching models provides

better hedging than the Black–Scholes method, in terms of lower loss probability

and the lower CTE95% of loss. The ET-Q method also performs better than the

NEMM method for hedging a put option. The hedging difference is due to the

hedging strategies implied by different pricing measures, which is further discussed

in chapter 4.

3.3 Comparison with the Mean Variance Hedging

Mean variance hedging (MV) is widely used for hedging in incomplete markets. It

was first introduced into finance by Markowitz (1952, 1959), and was introduced to

derivative pricing and hedging by Föllmer and Sondermann (1986), followed by many

papers such as Föllmer and Schweizer (1991), Zhou and Yin (2004) and others. We

are interested in comparing it to the risk-neutral methods to see hedging difference

under the RSLN2 models. We compare the probabilities of resulting a loss from the

hedging and the CTE95% of the hedging loss, for both single-period and multiperiod

settings. We will also discuss differences in effective hedging ranges from these two

approaches.

The principle of the mean-variance hedging is to minimize the mean squared

hedging errors occurred for the remaining periods before expiration, assuming a

static hedging (see Föllmer and Schied, 2004). Assume the period is [t, T ]. The

hedging portfolio is constructed at t, and its construction remains untouched during

(t, T ). Let at denote the units of stock, and Bt denote the bond value in the portfolio.

Then, the value of the hedging portfolio at time t is at St +Bt. Let Z = log(ST/St),

and H(Z) denote the payoff at maturity T . Then, the hedging error is

ε(Z) := H(Z)−
(
at Ste

Z +Bte
r(T−t)

)
. (3.3.15)
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The determination of at and Bt is through the minimization of EP(ε2), as EP(ε) = 0

under the mean-variance method. It is worth noting that, the distribution of Z is

generated based on the multiperiod process St under the RSLN2 models.

3.3.1 Hedging Portfolio

This section constructs the mean-variance hedging portfolio for hedging European

put options. The market model is (St, Bt)0≤t≤T , with Bt = Bt−1e
r for a constant

rate r, and with St following the RSLN2 model. That is, the distribution of Z =∑T
s=t+1 Ys, where Yt = log(St/St−1), has the physical density f(z) as follows:

f(z) =
∑

l

pl φ

(
z − µl

σl

)
,

where l labels the regime switching path with probability pl, and φ(·) represents the

standard normal density. Parameters µl and σl are determined by the path l of the

switching process. Under the RSLN2 model, the number of regime switching paths

is finite within a finite time period.

The hedging loss function ε for a European put option is

ε(Z) = (K − St e
Z)+ − (aput

t St e
Z +Bput

t er (T−t)), (3.3.16)

where aput
t denotes the units of stock and Bput

t denotes the bond value in the hedging

strategy set up at time t. The target function of the optimization is

J =

∫ ∞

−∞
ε2(z) fP(z) dz . (3.3.17)

The mean-variance hedging minimizes J , to obtain the optimal portfolio parameters,

denoted by âput
t , B̂put

t , as follows:(
âput

t , B̂put
t

)
= arg min

(aput
t ,Bput

t )
J
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As a result, we have the following proposition regarding the construction of the

optimal hedging portfolio, where we will see that the cost of the mean-variance

hedging is

ζt = EP [e− r (T−t)(K − St e
Z)+
]
+ âput

t St

[
1− e− r (T−t)EP (eZ

)]
.

Proposition 3.3.1. (CQ) The optimal hedging portfolio (âput
t , B̂put

t ) under the mean-

variance method is

âput
t =

Cov
([
K − St e

Z
]+
, St e

Z
)

Var (St eZ)
,

B̂put
t = EP [e− r (T−t)(K − St e

Z)+
]
− âput

t St e
− r (T−t)EP (eZ

)
,

(3.3.18)

with

Var
(
St e

Z
)

= EP [(St e
Z)2
]
−
[
EP(St e

Z)
]2
, (3.3.19)

EP[(St e
Z)2] = S2

t

∑
l

pl e
2 µl+2 σ2

l , EP (St e
Z
)2

= S2
t

(∑
l

pl e
µl+σ2

l /2

)2

,

where l represents a regime path from time t to T , and

Cov
([
K − St e

Z
]+
, St e

Z
)

= K St

∫ k

−∞
ez fP(z) dz − S2

t

∫ k

−∞
e2z fP(z) dz −K

∫ k

−∞
fP(z) dz EP (St e

Z
)

+
∫ k

−∞ St e
z fP(z) dz EP (St e

Z
)
,

where k = log (K/St), and

K St

∫ k

−∞
ez fP(z) dz = K St

∑
l

pl e
µl+σ2

l /2 Φ

(
k − µl − σ2

l

σl

)
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S2
t

∫ k

−∞
e2z fP(z) dz = S2

t

∑
l

pl e
2 µl+2 σ2

l Φ

(
k − µl − 2σ2

l

σl

)

K

∫ k

−∞
fP(z) dz EP(St e

Z) = St

∑
l

pl e
µl+σ2

l /2
∑

l

pl K Φ

(
k − µl

σl

)
∫ k

−∞
St e

z fP(z) dz EP(St e
Z) = S2

t

∑
l

pl e
µl+σ2

l /2
∑

l

[
pl e

µl+σ2
l /2 Φ

(
k − µl − σ2

l

σl

)]

Proof. In the proof, for notational convenience, let a and B respectively represent

aput
t and Bput

t . The proof is achieved in two steps. In the first step, we consider the

first order optimality conditions:

∂J

∂a
= 0 &

∂J

∂B
= 0. (3.3.20)

In the second step, we verify the global optimality of a and B by showing that the

matrix of the second order partial derivatives of J over a and B is positive definite.

In the first step, we need to obtain the function J , based on the double expectation

of squared hedging loss. The inner expectation is the expected squared hedging

errors, denoted by Jl, conditional on a given path l of regime switching; the external

expectation J is the expected Jl over all paths l. To begin with, from the loss function

(3.3.16), we have

Jl =

∫ ∞

−∞

(
aSt e

z +B er (T−t)
)2
φ(z) dz +∫ k

−∞

[
(K − St e

z)2 − 2 (K − St e
z)(aSt e

z +B er (T−t)
)
]φ(z) dz.
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Then, we obtain

J = EP(Jl)

=
∑

l

pl

{
a2 S2

t e
2 µl+σ2

l (eσ2
l − 1) + (aSt e

µl+σ2
l /2 +B er (T−t))2+

(K2 − 2K B er(T−t)) Φ

(
k − µl

σl

)
−

2 [K St(1 + a)−B St e
r(T−t)] eµl+σ2

l /2 Φ
(

k−µl−σ2
l

σl

)
+

S2
t (1 + 2a) e2 µl+2 σ2

l Φ

(
k − µl − 2σ2

l

σl

)}
.

(3.3.21)

As a result, plugging (3.3.21) into (3.3.20) and solving for a and B, we obtain the

results in (3.3.18).

In the second step, we prove that J achieves the global minimum at a and B

obtained above. Denote X = [a, B]. From equations (3.3.21), the target function J

is continuously differentiable in X. Let X0 = (â, B̂) represent the values obtained

in the first step, and let ∆X = (∆a, ∆B) represent the change of the portfolio

parameters; then, the target function J can be expanded by Taylor series around X0

as follows:

J(X0 + ∆X) = J(X0) +

[
∂J

∂a

∣∣∣∣
a=â

∆a +
∂J

∂B

∣∣∣∣
B=B̂

∆B

]
+

1

2!
(θ∆X)′A|X0 (θ∆X),

where 0 < θ < 1, and A =


∂2J

∂a2

∂2J

∂a ∂B

∂2J

∂B ∂a

∂2J

∂B2

 . If A is positive definite, then J(X0)

is the global minimum. A is positive definite if and only if the determinants of all

the leading principal minors of A are positive, i.e.,

∂2J

∂a2
> 0, and |A| > 0.
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After taking twice partial derivatives of equation (3.3.21) with respect to a, we have

∂2 J

∂ a2
=

n∑
i=1

pi

[
2S2

t e
2 µi+2 σ2

i

]
> 0, (3.3.22)

where n represent the number of regime paths. In addition,

|A| =
∂2 J

∂ a2

∂2 J

∂ B2
−
(

∂2 J

∂ a ∂ B

)2

= 4e2r(T−t)Var(ST )

> 0.

i.e., A is strictly positive definite at all points. Therefore, the portfolio with param-

eters a and B minimizes the expected squared hedging errors globally.

�

3.3.2 Numerical Hedging Study

Based on the mean-variance method described in section 3.3.1, we compute the

initial cost for hedging European put options, and conduct hedging study for single

period and multiperiod settings. In the study, the RSLN2 model’s parameters are

given in Table 3.1. As can be seen shortly, the initial hedging costs of the mean-

variance method are not no-arbitrage prices. The comparison of hedging is separate

for single-period and multiperiod settings. Our numerical study shows that, for

hedging a single period out–of–money put option, the mean-variance method has a

larger probability for hedging in a loss, larger CTE95% of hedging loss given ρ0 = 1,

and lower CTE95% given ρ0 = 2, compared with ET-Q methods and NEMM methods.

Further discussion on these hedging results are conducted in section 3.3.3, based on

the analysis of EHRs. For multiperiod hedging, however, the hedging comparison

between the mean-variance method and the ET-Q method is more complicated.
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K T = 120 60 24 12 8 4
10 7.12E-06 1.09E-06 4.36E-10 2.6E-17 5E-25 1.1E-48
40 0.0199 0.0226 0.0062 0.0005 2.62E-05 3.85E-09
70 0.3022 0.5767 0.4809 0.2332 0.1165 0.0179
80 0.5503 1.1561 1.1718 0.7265 0.4601 0.1491
90 0.9175 2.0769 2.4608 1.8447 1.3744 0.6876

100 1.4290 3.4268 4.6236 4.1497 3.6358 2.7443
110 2.1079 5.2827 7.9413 8.3878 8.4625 8.6992
120 2.9748 7.7044 12.5992 14.8414 15.9967 17.7075
150 6.8621 18.6243 33.6250 41.2805 44.1187 47.0298
180 12.8734 34.6415 59.5754 69.5153 72.9418 76.4358
210 21.0545 54.3028 86.2195 97.7702 101.7658 105.8417
240 31.2651 75.9591 112.8526 126.0234 130.5895 135.2477
270 43.2529 98.4330 139.4666 154.2764 159.4131 164.6536
300 56.7175 121.1031 166.0756 182.5294 188.2368 194.0596

Table 3.11: Portfolio cost for hedging put options using the mean-variance method
(S0 = 100)

K T = 120 60 24 12 8 4
10 94.5119 95.5918 91.1308 90.5724 90.3921 90.1981
40 78.0675 70.3899 64.5294 62.3299 61.5685 60.7921
70 61.8854 48.7194 38.3964 34.3097 32.8612 31.4040
80 56.6453 41.8906 30.2181 25.3853 23.5970 21.7332
90 51.5245 35.4033 22.6380 17.0859 14.9034 12.4697

100 46.5479 29.3450 15.9316 9.9732 7.5569 4.7244
110 41.7386 23.7927 10.3800 4.7937 2.7756 0.8773
120 37.1174 18.8062 6.1688 1.8296 0.7020 0.0836
150 24.5404 7.5015 0.5870 0.0158 0.0003 -4.3E-05
180 14.0873 1.2942 -0.0703 -0.0023 -0.0003 -4.4E-06
210 5.8040 -1.2690 -0.0338 -0.0035 -2.7E-05 -6.1E-08
240 -0.4497 -1.8373 -0.0083 -4.8E-05 -2.2E-06 -6.3E-10
270 -4.9263 -1.5879 -0.0020 -6.9E-06 -1.8E-07 -6E-12
300 -7.9260 -1.1421 -0.0005 -1.1E-06 -1.5E-08 -2.2E-13

Table 3.12: Portfolio cost for hedging call options using the mean-variance method,
with S0 = 100 (Negative values show that the initial costs cannot be no-arbitrage
prices.)
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Figure 3.1: Comparison of prices among four methods (Mean variance method prices
are significant different from others, and have negative values in the up left plot.)

Arbitrage Prices

The prices of the mean-variance method are given in Table 3.11 and 3.12. Figure

3.1 and 3.2 illustrates the price comparison with the risk-neutral methods. From the

given results we have the following three observations.

First, negative values exist in Table 3.12 for the initial hedging cost for call

options. Figure 3.1 also displays negative values when K is very large. Since the

price of a call option should be positive, if the initial costs under the mean-variance

hedging are considered to be the option price, then they are not arbitrage–free prices.

Second, there is a significant gap between the risk-neutral prices and the mean-

variance method initial costs, as illustrated in Figure 3.1. When T is small, the price

difference is not obvious. The difference is magnified as T increases.

Third, it is worth noting that the initial cost of the mean-variance hedging is
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heavily affected by the optimization constraints such as the knowledge of initial

regimes. Consider the price of the mean-variance hedging for a put option, given in

Table 3.14. Given ρ0 = 1, the put option price is 0.0284; given ρ0 = 2, then the price

is 0.2106. However, if we assume P(ρ0 = 1) = π1 when we price at time zero, then

the price is 0.0836. We have the following inequality:

0.0284π1 + 0.2106π2 = 0.0557 < 0.0836 . (3.3.23)

The inequality in equation (3.3.23) illustrates that the knowledge of ρ0 affects the

price and the hedging performance in the mean-variance method. Indeed, in this

example, it is consistent with the intuition that, for an optimization, with more

knowledge, the prices are lower.

We also compute the hedging cost to minimize the expectation of squared hedging

loss in the tail of the distribution of S1. If the minimization is focused on the left

tail, then the optimal hedging strategy for a put option is to sell one share of stock

and deposit K e−r in the bank. The hedging cost is

ζ0 = −S0 +K e−r.

Consequently, the hedging error is zero when the option expires in the money. How-

ever, the hedging error is larger than that of delta hedging with −1 < ∆ < 0

when the option expires out of the money. In another case, Table 3.13 illustrates

hedging costs for the optimal hedging over intervals (0, s′]
⋃

[s”,∞) with s′ < s”.

The table shows that if the mean-variance hedging is conducted to minimize the tail

loss, the hedging cost would be much higher than the cost computed based on the

minimization of hedging loss over the entire distribution.

Single Period Hedging Results

In a single period setting with the period [0, 1], the hedging loss L is the same as the

ε in (3.3.15) with T = 1. To compare different methods for a single period hedging,

we study three risk measures for hedging loss: the loss probability P(L > 0 | ρ0),
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ρ Different ranges (η) of S1 within Price EP(L|L ∈ η)
which L is minimized

ρ1 = 1 η = (0,∞) 0.0006 -9.7E-13
ρ1 = 1 η = (0, s′]

⋃
[s”,∞) 0.2517 -1.7E-12

ρ1 = 2 η = (0,∞) 0.2393 -1.7E-4
ρ1 = 2 η = (0, s′]

⋃
[s”,∞) 1.5345 -9.6E-10

ρ0 = 1 η = (0,∞) 0.0284 -1.2E-12
ρ0 = 1 η = (0, s′]

⋃
[s”,∞) 1.2989 -4.5E-11

ρ0 = 2 η = (0,∞) 0.2106 -9.7E-12
ρ0 = 2 η = (0, s′]

⋃
[s”,∞) 1.5228 -9.1E-10

Table 3.13: Option prices and conditional expected hedging loss from minimization
of hedging loss over different ranges, for a 1-month put option with S0 = 100, K = 90

1. ρ0 represents the initial original, while ρ1 represents the future regime at time one.

2. s′ = 89.8825 and s” = 107.5196, which are given in Table 3.5, corresponding to V aRα=95%

of delta hedging loss using the Black–Scholes method.

the tail expected loss denoted by EP(L|S1 ∈ A) where A denotes the sets in the tails

specified in Table 3.14, and the variance of tail loss Var(L|S1 ∈ A). We numerically

compute the quantities for a 1-month out–of–money European put option with strike

price K = 90. Assume also S0 = 100 and r = 0.005 per month.

The results are given in Table 3.14. Some observations are as follows. Let

P(LQ > 0) and EP(LQ|A) respectively represent the loss probability and the tail loss

expectation under P measure, using the hedging strategies under the Q measure.

Let P(LM > 0) and EP(LM |A) respectively represent the corresponding quantities

using the mean-variance hedging strategies. From Table 3.14 we can see that, if Q
represents the NEMM method or the ET-Q method, then for an out–of–money put

option or in–the–money call, conditional on ρ0 = 1 or 2

P(LQ > 0 | ρ0) < P(LM > 0 | ρ0). (3.3.24)

The loss probability in the Black–Scholes method is larger, however, with a much
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Identities Values (ρ0 = 1) Values (ρ0 = 2)
a = -0.0186 -0.0994
b = 1.8872 10.1492

Price|ρ0 = 0.0284 0.2106
Left-tail P(L > 0, S1 < K|ρ0) = 0.0047 0.0705

Two-tail loss P(L > 0|ρ0) = 0.4092 0.3761

BS: P(L > 0|ρ0) = 0.414 0.440
NEMM: P(L > 0|ρ0) = 0.262 0.311
ET-Q: P(L > 0|ρ0) = 0.169 0.307

η1: test range of S1 = (0,∞) (0,∞)

MV method: EP(L|S1 ∈ η1, ρ0) = -1.2E-12 -9.7E-12
Var(L|S1 ∈ η1, ρ0) = 0.0856 1.3161

η2: test range of S1 = (0, 89.8824]
⋃

(0, 87.3655]
⋃

[107.5260,∞) [482.7820,∞)

MV method: EP(L|S1 ∈ η2, ρ0) = 0.4169 3.7069
Var(L|S1 ∈ η2, ρ0) = 1.4633 4.97558

B–S method: EP(L|S1 ∈ η2, ρ0) = 0.3551 5.4062

η3: test range of S1 = (0, 89.9396]
⋃

(0, 87.3534]
⋃

[107.5231,∞) [133.1109,∞)

MV method: EP(L|S1 ∈ η3, ρ0) = 0.4156 3.7149
Var(L|S1 ∈ η3, ρ0) = 1.4595 4.9660

NEMM method: EP(L|S1 ∈ η3, ρ0) = 0.3333 4.3827

η4: test range of S1 = (0, 89.8470]
⋃

(0, 87.3496]
⋃

[107.5157,∞) [130.9600,∞)

MV method: EP(L|S1 ∈ η4, ρ0) = 0.4159 3.7175
Var(L|S1 ∈ η4, ρ0) = 1.4579 4.9588

ET-Q method: EP(L|S1 ∈ η4, ρ0) = 0.3305 4.1841

Table 3.14: Comparison of 1-month put hedging results: mean-variance method vs.
three risk neutral methods (S0 = 100, K = 90, and r = 0.005 per month)

• “Left-tail P(L > 0, S1 < K|ρ0)” represents the joint probability of loss occurred and the put
option expires in-the-money.

• η1 is the whole range of S1; η2, η3, η4 corresponds to the ranges determined in Table 3.5 for
the Black–Scholes methods, the NEMM methods, and the ET-Q methods respectively.
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K Option Price P(PV HL > 0) CTE95% σ
BS 90 1.0840 0.3622 (0.0048) 5.5154 (0.1244) 1.9849
NEMM 90 1.008 0.3292 (0.0047) 5.8408 (0.1300) 2.0783
ET-Q 90 1.2449 0.2466 (0.0043) 5.5483 (0.1274) 2.0206
MV 90 1.8447 0.1968 (0.0040) 4.0845 (0.0943) 1.7634

BS 100 3.5983 0.3654 (0.0048) 6.4873 (0.1380) 2.1115
NEMM 100 3.3058 0.3974 (0.0049) 6.9582 (0.1454) 2.2834
ET-Q 100 3.5686 0.3148 (0.0046) 6.1543 (0.1243) 2.1558
MV 100 4.4197 0.2519 (0.0043) 5.4806 (0.0954) 1.8333

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.15: Option prices and risk measures of hedging loss for hedging 12-month
put options, with S0 = 100, based on 10,000 simulations

lower cost. In addition, the expected tail loss has the following relationship:

EP(LQ|A, ρ0 = 2) > EP(LM |A, ρ0 = 2)

EP(LQ|A, ρ0 = 1) < EP(LM |A, ρ0 = 1),

where Q represents the three risk-neutral methods. That is, the tail loss expectation

under the mean-variance hedging method is smaller when ρ0 = 2, and is larger when

ρ0 = 1, i.e., the risk measure EP(LQ|A) is not consistently better or worse under the

mean-variance method than under the risk neutral methods. We further discuss the

results in section 3.3.3.

Multiperiod Hedging Results

In the simulation study for multiperiod hedging, we analyze the random variable

PV HL, the present value of cumulative hedging errors defined in (3.1.3). Recall Pt
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K Option Price P(PV HL > 0) CTE95% σ
BS 90 1.1944 0.4131 (0.0049) 2.8032 (0.0708) 1.1041
NEMM 90 1.1017 0.4299 (0.0050) 3.0333 (0.0767) 1.1953
ET-Q 90 1.3924 0.2891 (0.0045) 2.4278 (0.0708) 1.1087
MV 90 0.9175 0.1444 (0.0035) 5.6363 (0.2178) 3.3031

BS 100 1.9842 0.4155 (0.0049) 3.4172 (0.0777) 1.2329
NEMM 100 1.8341 0.4406 (0.0050) 3.6800 (0.0812) 1.2994
ET-Q 100 2.2155 0.3039 (0.0046) 3.1622 (0.0836) 1.2497
MV 100 1.4290 0.1703 (0.0038) 8.1193 (0.2344) 3.3032

note: σ := σ(PV HL|PV HL > V aR95%)

Table 3.16: Option prices and risk measures of hedging loss for hedging 120-month
put options, with S0 = 100, based on 10,000 simulations

denote the option value, and ζt denote the hedging portfolio value at time t. Then,

PV HL =
T∑

t=1

e−rt (Pt − ζt−) . (3.3.25)

where ζt− = at−1 St + Bt−1 e
r, with at−1 and Bt−1 representing the units of stocks

and the value of bonds in the rebalanced portfolio at time t− 1. The values of at−1

and Bt−1 for hedging a European put option are given in (3.3.18). The simulation

for PV HL is similar to the simulation for the risk neutral methods in section 3.2.5.

The multiperiod hedging results are given in Table 3.15 for 12–month put options

and in Table 3.16 for 120–month put options. The number of simulations is 10, 000.

Further results are given in Figures 3.2–3.4. Based on the results obtained for the

multiperiod study, we have the following two observations:

i) In our example, compared with the delta hedging results for a put option, the

mean-variance method shifts the effective hedging ranges to the right. As a

result, the mean-variance method and the risk neutral methods have different

results for hedging the left tail and right tail of loss, and the former one has

poorer hedging on the left tail and better hedging on the right tail

108



50 100 150 200 250 300
0

2

4

6

8

10

12
Delta Ratio of Put, T=30

K

 

 
ET−Q /B−S
MeanVariance /B−S

50 100 150 200 250 300
0

10

20

30

40
Price Ratio of Put, T=30

K

 

 
ET−Q /B−S
MeanVariance /B−S

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
Delta Ratio of Put, T=60

K

 

 
ET−Q /B−S
MeanVariance /B−S

50 100 150 200 250 300
0

2

4

6

8
Price Ratio of Put, T=60

K

 

 
ET−Q /B−S
MeanVariance /B−S

Figure 3.2: Ratios of Delta and Prices. S0 = 100 (The comparison of delta and
price between the ET-Q method and the mean-variance (MV) method, based on the
difference of their ratios over the values of the Black-Scholes (B-S) method. The MV
method has much smaller delta for options around at-the-money option than the B-S
method and the ET-Q method.)

The points given in (i) can be observed in Figures 3.3 and 3.4. Figure 3.3 displays

the values of PV HL from different methods. In the plots, the dashed lines are the

hedging errors from the mean-variance method, the solid lines are the hedging errors

from the method using the ET-Q. The six figures have different combination of strike

prices and the length of maturity, with K : 90−110 and maturity T : 12−24 months.

In five of the six figures, the mean-variance method has the larger loss in the left tail

and smaller loss in the right tail, compared with the risk-neutral methods.

The intuition behind the hedging difference described in (i) is the reflection of

different hedging targets between the mean variance methods and risk-neutral meth-

ods. In our study, the mean-variance method is a quadratic optimization which is to

minimize the mean squared hedging errors. As a result, the squared unlimited loss
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in the right tail requires more efforts to reduce the loss when the put option expires

out-of-money. The hedging can be considered as a zero-sum game. That is, provided

that the hedging costs are close and that there are only two assets available in the

hedging portfolios, if a hedging strategy hedges more on the right tail, then it is

likely to hedge less on the left tail. With this hedging difference, the mean-variance

method maybe less useful for hedging put options.

ii) In addition, the overall optimization in the long term hedging effects, in term

of P(PV HL > 0) and E(PV HL|ST ∈ A), are quite different from those of

the single period, regarding the comparison with the risk-neutral methods. It

is more difficult to predict the difference between the mean-variance methods

and the risk-neutral methods for the long term hedging. Figure 3.2 displays

two graphs about the delta ratios of the mean-variance method and the Black-

Scholes method and the delta ratios of the ET-Q method and the Black-Scholes

method. Based on the figure, we can see the delta ratios for the mean variance

method and ET-Q method are not the same over the range of K. Specifically,

for hedging a put option, the delta of the mean-variance method, denoted by

aM , is much lower around the center area and gets closer or even higher in

the tails than the delta under the risk-neutral method, denoted by aQ. This

varying delta ratios makes the comparison complex. In addition, the value of

delta implies the volatility of hedging portfolio. This means that using the

mean-variance method, hedging will be less volatile for at-the-money options,

and more volatile for the out-of-money options, compared with the risk neutral

methods. More interesting, based on Table 3.15 for at-the-money options, it

appears that the mean-variance method is more attractive to use for short

options as it has a higher price and lower loss probability and CTE95%, while

the ET-Q method for long such options.

Based on Table 3.15 and 3.16, for a 12-month option, the mean-variance method

has a higher cost and lower CTE95% values, while for a 120-month option, the method

has a lower cost and higher CTE95% values. This is the evidence that in the long
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Figure 3.3: Hedging Loss against Log-yield log(ST/S0): ET-Q(–) vs Mean Variance
(- -), discussed at page 109.

0 50 100 150 200 250 300
−5

0

5

10

15

20
Left EHR boundary Difference, T=30

K

 

 
(ET−Q)−(B−S)
(MeanVariance)−(B−S)

0 50 100 150 200 250 300
−5

0

5

10

15

20

25
Right EHR boundary Difference, T=30

K

 

 
(ET−Q)−(B−S)
(MeanVariance)−(B−S)

0 50 100 150 200 250 300
−10

0

10

20

30

40
Left EHR boundary Difference, T=60

K

 

 
(ET−Q)−(B−S)
(MeanVariance)−(B−S)

0 50 100 150 200 250 300
−20

0

20

40

60
Right EHR boundary Difference, T=60

K

 

 
(ET−Q)−(B−S)
(MeanVariance)−(B−S)

Figure 3.4: Difference of the EHR Boundaries from Hedging: the compari-
son between ET-Q method and mean-variance (MV) method, based on difference
of their distance over the B-S method (

(
DET−Q −DB−S, UET−Q − UB−S

)
and(

DMV −DB−S, UMV − UB−S
)
). MV methods has boundaries on the right sides of

ET-Q methods (or B-S methods), discussed at page 109.
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run, it is not easy to be predict the hedging difference between the mean-variance

method and the risk neutral methods, due to the varying of delta ratios aM/aQ.

From the comparison of hedging efficiency, the ET-Q method appears to lie be-

tween the Black–Scholes method and the mean-variance method, and much closer to

the former one. It may be a more suitable approach for hedging out–of–money put

options among the four pricing methods (MV, Black–Scholes, NEMM, ET-Q).

3.3.3 Discussion of Effective Hedging Ranges

As stated in section 3.3.2, we observe from Table 3.14, regarding the loss L for the

out-of-money put options, conditional on ρ0, that

P(LQ > 0 | ρ0) < P(LM > 0 | ρ0)

for Q representing the NEMM or ET-Q measures. Moreover, we observe that

EP(LM |A, ρ0 = 2) < EP(LQ|A, ρ0 = 2) and EP(LM |A, ρ0 = 1) > EP(LQ|A, ρ0 = 1) for

a tail A specified in Table 3.14. In this section, we discuss these results based on the

structure of the hedging portfolio under the regime switching models, for a single

period [0, T ].

To proceed, we first show the put-call parity of the hedging strategy under the

mean-variance methods in the following Proposition 3.3.2. The parity also brings

some convenient properties for studying hedging errors. For example, with put call

parity, the hedging errors are the same for hedging call and put options, conditional

on the same strike price and the same maturity. Let Z = log(ST/S0). Then, in the

mean-variance method (see Föllmer and Schied, 2004), for European put and call

options, the delta of the hedging portfolio are

aput
0 =

Cov([K − S0 e
Z ]+, S0 e

Z)

Var(S0 eZ)
; acall

0 =
Cov([S0 e

Z −K]+, S0 e
Z)

Var(S0 eZ)
. (3.3.26)

The bond values, denoted by Bcall
0 , Bput

0 for hedging call and put options, are given
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by {
Bput

0 = e−rT [ EP([K − S0 e
Z ]+)− aput

0 S0E
P(eZ) ]

Bcall
0 = e−rT [ EP([S0 e

Z −K]+)− acall
0 S0E

P(eZ) ].
(3.3.27)

Let ζc and ζp represent the hedging cost of call and put options. Then,

ζc = acall
0 S0 +Bcall

0 , and ζp = aput
0 S0 +Bput

0

Proposition 3.3.2. (CQ) For hedging European call and put options, the mean-

variance hedging costs ζc and ζp satisfy the put-call parity, i.e., ζc−ζp = S0−e−rT K.

Proof. The proof is trivial if we note that acall
0 − aput

0 = 1 and Bput
0 −Bcall

0 = e−rT K.

�

Here, we discuss the effective hedging ranges defined on ST for two different hedg-

ing approaches. We first carry out the discussion based on two assumed strategies.

Then, we extend our discussion on the hedging strategies from the mean-variance

method and the risk-neutral method under the RSLN2 models. Let P i
c , a

c
i and Bc

i

represent the hedging portfolio price, delta and bond values for hedging a call option

under strategy i, i = 1, 2. Similarly, P i
p, a

p
i and Bp

i can be defined for hedging a put

option under strategy i. We further assume the hedging strategies consist of only

bonds and stocks, and the following two conditions:

(a) Hedging portfolio prices satisfy put-call parity P i
c − P i

p = S0 −Ke−rT .

(b)
P 2

c

P 1
c

≤ ac
2

ac
1

and
P 2

p

P 1
p

≥ ap
2

ap
1

. This means that, based on the same price, in the

hedging portfolios for hedging a call option, strategy two has more units of

stock than strategy one; and, for hedging a put option, strategy two short less

stock.

Then, based on condition (a), we have that the effective hedging ranges [Di, Ui], i =

1, 2 are the same for hedging call and put options under strategy i. With 0 < ac
i < 1,
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Di can be obtained by solving LL(ST ) = 0. That is, from

LL(ST ) = (K − ŜT )− (aP
i ŜT +Bp

i e
rT ) = 0,

we have

Di = (K −Bp
i e

rT )/(1 + aP
i ).

From put-call parity for hedging cost, we have

Di = −Bc
i e

rT/ac
i . (3.3.28)

Similarly, by solving right tail loss LU = 0 for hedging call options, we have

Ui = −Bp
i e

rT/ap
i .

With Di and Ui obtained and the assumptions (a)-(b) in the above, we have the

following result.

Proposition 3.3.3. (CQ) Assume [Di, Ui], i = 1, 2 are the effective hedging ranges

of ST for two hedging strategies with conditions (a) and (b) satisfied. Then, we have

D1 ≤ D2, and U1 ≤ U2.

Proof. Before computing the difference D2 − D1 and U2 − U1, we establish an in-

equality as follows. Condition (b) implies that
ac

2St +Bc
2

ac
1St +Bc

1

≤ ac
2

ac
1

, which in turn means

Bc
1

ac
1

≥ Bc
2

ac
2

. Thus, using (3.3.28), we obtain

D2 −D1 =
−Bc

2e
rT

ac
2

− −Bc
1e

rT

ac
1

=

(
Bc

1

ac
1

− Bc
2

ac
2

)
erT ≥ 0.

Similarly, based on P 2
p /P

1
p ≥ ap

2/a
p
1, we can obtain U1 ≤ U2. �

Remark 3.3.1. Since the condition (b) is not easy to use, in practice, we can use

an alternative but more strict condition as follows:
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(b’) 1 > ac
2 > ac

1 > 0, and P 2
c = P 1

c

where P 2
c = P 1

c can be replaced by P 2
c ≈ P 1

c in practice, which means the option

prices obtained from method one and two are very close to each other. Based on

(b’), we can make judgement by comparing option prices and deltas, individually.

Indeed, if the condition 1 > ac
2 > ac

1 > 0 in (b’) is satisfied, from put–call parity, we

have ap
2 > ap

1, and vice versa. It is worth noting that ac is positive and ap is negative.

Thus, if ac
2/a

c
1 > 1, then ap

2/a
c
1 < 1. In addition, P 2

c ≈ P 1
c implies P 2

p ≈ P 1
p . As a

result, the condition (b) is satisfied if condition (b’) is satisfied. The application of

(b’) is indeed the case we will illustrate in the following case study.
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Figure 3.5: Effective hedging ranges of delta hedging call and put options

ζM represents the maturity value of the hedging portfolio under the mean-variance method, while
ζQ represents the value under the ET-Q method.

We compare mean-variance methods and the ET-Q (Q) methods, with (aM , DM , UM)

representing the delta and the effective hedging range boundaries in the former

method and (aQ, DQ, UQ) representing the corresponding quantities in the latter

method. Some observations from numerical results are as follows.
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a) In Figure 3.2, we observe two curves of delta ratios over the Black-Scholes

methods for the two approaches. Let aB represent the delta of the Black-Scholes

methods. For options in a wide range of strike prices, the delta ratio for the

ET-Q method is larger than the ratio for the mean-variance method. That is,

aQ/aB > aM/aB. Since a delta for a put option is negative (aM , aQ, aB < 0),

we have, for a put option,

aM > aQ.

What is more, in the figure, the prices are much closer between these two

methods. From remark 3.3.1, conditions (a) and (b’) are satisfied. Therefore,

from Proposition 3.3.3, we have

DQ ≤ DM , UQ ≤ UM .

That is, compared with the risk-neutral methods described in Chapter 1, the

mean-variance method shifts the boundaries of effective hedging ranges [D,U ]

to the right, which may not be desirable for hedging put options. Figure 3.4

verifies the results, with the difference DM −DQ given in the top two figures

and UM − UQ given in the bottom two figures.

b) The difference of [D,U ] between these two approaches can be used to determine

the probability relationship between P(LQ > 0 | ρ0) and P(LM > 0 | ρ0), if

additional information is given. For example, for the out–of–money put options,

i) if the physical distribution is skewed to the right so that the range of

(DM , DQ) is close to the central area, where the density function f(Z) is

higher, and (UM , UQ) is far in the right tail, where the density function

f(Z) is much smaller, as illustrated in Figure 3.3; and

ii) if the length of the interval (DM , DQ) is not too small compared with the

length of (UM , UQ), as illustrated in Figure 3.4 for many K.

then we could have P(LQ > 0 | ρ0) < P(LM > 0 | ρ0).
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c) The difference of [D,U ] also affects risk measures such as the CTE of loss.

Figure 3.3 gives some example of loss L for different methods. The dashed

lines represent the loss from the mean-variance method, which is significantly

different from the risk-neutral methods. Since the loss in the right tail is

significantly less under the mean-variance method, it is reasonable to expect

that the tail loss can be lower than the risk-neutral methods under the thick

right tail distributions given ρ0 = 2, i.e.,

EP(LM |A, ρ0 = 2) < EP(LQ|A, ρ0 = 2)

for tail event A. While under ρ0 = 1, the order is opposite as the left side loss

plays a more important role.

3.4 Conclusion

In this chapter we conducted a simulation study for hedging the out–of–money Euro-

pean put and some call options. We proposed and compared effective hedging ranges

under single period hedging setting, and connected them with other risk measures.

We also conducted the simulation study for hedging loss in multiple periods, based

on risk measures such as the loss probability and CTE95%. From the study, we can

see that the ET-Q method provides a reasonable cost and more efficient hedging

for put options under regime switching models, compared with the Black–Scholes

method and the NEMM method.

In addition, we see that the mean-variance method can be less favorable for

hedging put options, besides that the measure generated by the mean-variance

method is not an equivalent martingale measure and the resulting option prices are

not arbitrage free. Based on their different hedging costs and effective hedging ranges,

it is of interest to balance these two methods for hedging. In the next chapter, we will

extend the analysis to more general models with the different choice of risk neutral

measures.
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Chapter 4

On Single Period Discrete Time

Delta Hedging Errors and Option

Prices Analysis Using Tail

Ordering

It is well-known that the market is incomplete under regime switching models, due

to the uncertainty of regimes. Incompleteness of the market means that there is an

infinite number of risk neutral probability measures, and each of them may lead to

a different price and different hedging results for a contingent claim. As shown

in previous chapters, the difference of hedging performance from two or more risk

neutral measures are complicated in comparison. In this chapter, we apply the tool

of stochastic ordering to conduct some comparison, and our comparison is focused

on discrete time delta hedging errors over one period (t, T ] and the resulting option

prices.

Stochastic ordering has been widely used to compare two distributions; see, for

example, Shaked and Shanthikumar (2007). It has also been widely used in risk

theory and management; see, for example, Hadar and Russell (1969), Bawa (1975),

Denuit et al. (2005), Kaas et al. (2008), and Höse and Huschens (2011). Some
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interesting statistical inference using stochastic order can be found in Ahmad (2001),

Ng, et al. (2011) and other references therein. In this chapter, we will propose a new

concept of tail ordering to serve our comparison purposes.

This chapter is organized as follows. In section 4.1, we review the strict stochastic

ordering and define tail ordering for a random variable under different risk neutral

measures. In section 4.2, we recall the effective hedging ranges and discuss relation-

ships between tail ordering and discrete time delta hedging for European call and put

options. In section 4.3, we apply tail ordering to study the results of option pricing

under different probability measures and its implication on volatility smiles. Finally,

this chapter is completed with some applications to models using the discrete time

regime switching processes.

4.1 Tail Ordering

We first discuss a property associated with strict stochastic ordering, which implies

the limitation of its application on comparing risk neutral measures. This motivates

tail ordering as we define in subsection 4.1.2 below.

4.1.1 Strict Stochastic Ordering

Suppose all random variables and probability measures are defined on the same

measurable space (Ω,F) throughout this chapter. In terms of probability measures,

the usual strict stochastic ordering is defined through a selected random variable,

say Z. Recall that, in definition 1.2.5, a random variable Z is stochastically larger

under Q2 than under Q1, denoted Q2 ≥st Q1, if

Q2(Z > a) ≥ Q1(Z > a), ∀ a ∈ R; (4.1.1)

and Z is strictly larger under Q2 than under Q1, denoted by Q2 >st Q1, if inequality

(4.1.1) holds strictly for some a ∈ R.
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Based on the definition, we have following results regarding the order of EQ1(Z)

and EQ2(Z), where EQi(Z) represent the expectation of Z under Qi, assuming strict

stochastic ordering.

Lemma 4.1.1. (Modified from Proposition 9.1.1 Ross, 1996) If Q2 >st Q1 for

a random variable Z, then EQ2(Z) > EQ1(Z).

Proof. The assumption Q2 >st Q1 implies that

Q2(Z > z) ≥ Q1(Z > z), ∀z ∈ R

and

Q2(Z > z0) > Q1(Z > z0), for some zo ∈ R.

Due to the left continuous property of survival function, given ε > 0 small enough

we must have

Q2(Z > z)−Q1(Z > z) > ε

for all z ∈ (z0 − δ, z0) and some constant δ > 0. Hence∫ z0

z0−δ

[ Q2(Z > z)−Q1(Z > z) ] dz > εδ > 0. (4.1.2)

Noticing that

EQ(Z) =

∫ ∞

0

Q(Z > z) dz −
∫ 0

−∞
Q(Z ≤ z) dz

=

∫ ∞

0

Q(Z > z) dz +

∫ 0

−∞
[ Q(Z > z)− 1] dz,
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(4.1.2) implies

EQ2(Z)− EQ1(Z)

=

∫ ∞

−∞
[ Q2(Z > z)−Q1(Z > z) ] dz

=

∫ z0−δ

−∞
[ Q2(Z > z)−Q1(Z > z) ] dz +

∫ z0

z0−δ

[ Q2(Z > z)−Q1(Z > z) ] dz

+

∫ ∞

z0

[ Q2(Z > z)−Q1(Z > z) ] dz

> 0,

by which the proof is complete. �

Lemma 4.1.2. (Modified from Proposition 9.1.2 Ross, 1996) For a random

variable Z, Q2 >st Q1 if and only if EQ2 [ g(Z) ] > EQ1 [ g(Z) ] for any strictly increas-

ing function g defined on the support of Z.

Proof. Suppose that Q2 >st Q1 for the random variable Z and g(z) is a strictly

increasing function of z. We show that EQ2 [ g(Z) ] > EQ1 [ g(Z) ]. Actually, for any

number a ∈ R,

Q2(g(Z) > a) = Q2(Z > g−1(a)) ≥ Q1(Z > g−1(a)) = Q1(g(Z) > a)

for all a ∈ R, and

Q2(g(Z) > a0) = Q2(Z > g−1(a0)) > Q1(Z > g−1(a0)) = Q1(g(Z) > a0)

for some a0 ∈ R. The above implies that Q2 >st Q1 for the random variable g(Z),

which, by Lemma 4.1.1, yields EQ2 [g(Z)] > EQ1 [g(Z)].

Next, suppose for any strictly increasing function g, EQ2 [g(Z)] > EQ1 [g(Z)]. We

show that Q2 >st Q1 for Z. Based on the fact that the strictly increasing function

tan−1(a) ∈ (−π/2, π/2) for any a ∈ R, we construct the following sequence of strictly
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increasing functions:

gn(z) =

{
1 + (tan−1 z) /n if z ≥ a

(tan−1 z) /n if z < a,
(4.1.3)

for n = 1, 2, . . . Let g(z) := limn→∞ gn(z). Then,

g(z) =

{
1, if z ≥ a,

0, if z < a.
(4.1.4)

Hence, EQi [g(Z)] = Qi(Z > a) and EQi [g(Z)] = limn→∞ EQi [gn(Z)] for i = 1, 2,

according to the Dominated Convergence Theorem. Since gn(z) is strictly increasing,

the assumption implies EQ2 [gn(Z)] > EQ1 [gn(Z)] for n = 1, 2, . . .. EQi [gn(z)] is also

bounded. Consequently, since

EQ2 [g(Z)] = lim
n→∞

EQ2 [gn(Z)] ≥ lim
n→∞

EQ1 [gn(Z)] = EQ2 [g(Z)]

we have Q2(Z > a) ≥ Q1(Z > a) for all a ∈ R. Moreover, there must exist some a0 ∈
R such that Q2(Z > a0) > Q1(Z > a0). Otherwise, we have EQ2 [gn(Z)] = EQ1 [gn(Z)]

for any n = 1, 2, . . ., which contradict to the assumption. Thus, the proof is complete.

�

4.1.2 Tail Ordering Under Risk Neutral Measures

Strict stochastic ordering is a partial ordering and hence it is not necessarily appli-

cable to a general pair of probability distributions. In particular, as indicated by

the following proposition, it is not applicable when it comes to compare a pair of

risk neutral distributions. By risk neutral distribution, we mean the distribution

of the log return Z = log (ST/St) of the underlying asst price under a risk neutral

probability measure.

Proposition 4.1.1. (CQ) For the underlying asset price log return random variable

Z, a risk neutral distribution can not be strictly stochastically larger than any other

risk neutral distribution.

122



Proof. Let Q1 and Q2 be two risk neutral probability measures associated with Z,

the asset-price log return. Assume Q2 is strictly stochastically larger than Q1. Then,

Lemma 4.1.2 implies

EQ2 [ g(Z) ] > EQ1 [ g(Z) ] (4.1.5)

must hold for any strictly increasing function g. By the definition of equivalent

martingale probability measure, the discounted asset price process (e−rtSt)
T
t=0 is a

martingale under either Q1 or Q2. This implies that

e−r(T−t)EQ1
t [eZ ] = e−r(T−t)EQ2

t [eZ ] = 1,

which clearly contradicts to (4.1.5), and hence the proof is complete. �

Remark 4.1.1. A similar result, given in Proposition 3.3.17 of Denuit et al. (2005)

can be restated as follows, for a random variable X, if Q1 ≤st Q2 and EQ1(X) =

EQ2(X) then Q1 = Q2. Here, we use strict stochastic ordering instead of usual

stochastic ordering for comparison purpose.

As a substitute, we can define the so-called tail ordering to compare tail behaviors

of two equivalent martingale measures. The definition can be made separately for

left and right tails as below.

Definition 4.1.1. (CQ) Consider a random variable Z and two probability measures

Q1 and Q2.

(a) Right Tail Ordering: Q2 is said to be stochastically larger than (or dominates)

Q1 for the random variable Z on the right tail at a point k ∈ R, denoted by

Q2>RTO Q1 at k, if and only if both the following two conditions are satisfied:

Q2(Z > a) ≥ Q1(Z > a) ∀ a ≥ k,

Q2(Z > a0) > Q1(Z > a0) for some a0 ≥ k.

(b) Left Tail Ordering: Q2 is said to be stochastically larger than (or dominates)

Q1 on the left tail at a point k ∈ R, denoted by Q2>LTO Q1 at k, if and only
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if both the following two conditions are satisfied:

Q2(Z ≤ a) ≥ Q1(Z ≤ a), ∀ a ≤ k,

Q2(Z ≤ a0) > Q1(Z ≤ a0) for some a0 ≤ k.

Remark 4.1.2. The introduction of “>RTO” and “>LTO” is to apply stochastic

ordering. Assume Z is a random variable. Let Y denote the left censored Z, i.e.,

Y = max(k, Z). Then, Y follows a mixed distribution:

Qi(Y ≤ a) =


0 if a < k

Qi(Z ≤ k) if a = k

Qi(Z ≤ k) +
∫ a

k
fQi(z) dz if a > k

.

According to the definition of strictly stochastic larger, Q2 >st Q1 for Y if and only

if

Q2(Y > a) ≥ Q1(Y > a) ∀ a ∈ R,

Q2(Y > a0) > Q1(Y > a0) for some a0 ∈ R.

Thus, Q2>RTO Q1 at k for Z is equivalent to that Q2 >st Q1 for Y . Similarly, we

often need to consider a random variable X = min(k, Z). Then,

Qi(X ≤ a) =

{
Qi(Z ≤ a) if a < k

1 if a ≥ k
.

Recall that Q1 >st Q2 for X if and only if

Q1(X ≤ a) ≤ Q2(X ≤ a) ∀ a ∈ R,

Q1(X ≤ a0) < Q2(X ≤ a0) for some a0 ∈ R.

Thus, Q2>LTO Q1 at k for Z is equivalent to that Q1 >st Q2 for X.

Remark 4.1.3. Tail ordering is similar to the thicker-tailed relationship defined in

Definition 7.3.1 in Kaas et al. (2008), which can be restated as follows: Q2 is thicker-
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tailed than Q1 for a random variable X, if EQ2(X) = EQ1(X), and that a x0 exists

such that Q1(X ≤ x) ≤ Q2(Y ≤ x) for x < x0 and Q1(X ≤ x) ≥ Q2(Y ≤ x) for

x > x0. Our definition is a modified strict version of the thicker-tailed relationship,

without the requirement of the existence of the unique x0.

4.2 Tail Ordering and Option Hedging

In this section, we apply the tool of tail ordering to compare the hedging of Euro-

pean call and put options under different risk neutral measures in a single period

discrete time framework, using discrete time delta hedging strategies. The compari-

son is based on the EHRs obtained from different pricing measures, which is of great

interest for hedging studies as discussed in Chapter 3. In the remaining content of

this section, we first discuss the existence of the effective hedging ranges in section

4.2.1. Then, analysis on call and put options is respectively presented in subsections

4.2.2 and 4.2.3.

4.2.1 Existence of Effective Hedging Ranges

The effective hedging range (EHR) is defined as follows. Assume a single period

starting at t and ending at T . Let ST denote the price of the underlying risky asset

at maturity, and L(ST ) denote hedging loss for hedging a European option. Then,

similar to Definition 3.1.1, we define the interval [D,U ] to be the effective hedging

range of L(ST ) over ST , if L(ST ) ≤ 0 if and only if ST ∈ [D,U ]. In this definition,

we define the EHR over ST instead of YT , since it is more convenient to compute the

EHRs over the range of ST .

Before comparison, we first show the existence of the EHRs for hedging European

call and put options under a risk neutral measure Qi, using the single period discrete

time delta hedging strategy. Let k = logK/St, where K is the strike price in the

options; let r denote the risk free rate. Then, the call price evaluated under Qi,
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denoted by PQi
c , is

PQi
c = e−r (T−t) EQi

t

[
(ST −K)+

]
= St∆

c
i − e−r (T−t)K

[
1− FQi(k)

]
, (4.2.6)

where

∆c
i = e−r (T−t)

∫ ∞

k

ez fQi(z) dz (4.2.7)

represents the delta value under Qi, f
Qi(z) denotes the density of Z = logST/St

under Qi, and FQi(z) represents the corresponding distribution function. Equa-

tion (4.2.6) also displays the delta hedging portfolio, denoted by ζc(t), in which the

number of stocks held is ∆c
i and the bond value shorted (or owed at time t) at rate

r is e−r (T−t)K[ 1− FQi(k) ]. Similarly, let PQi
p , i = 1, 2 denote the put option price

under Qi. Then

PQi
p = e−r (T−t) EQi

t [(K − ST )+] = e−r (T−t)K FQi(k) + St∆
p
i , (4.2.8)

where

∆p
i = −e−r (T−t)

∫ k

−∞
ez fQi(z) dz. (4.2.9)

Equation (4.2.8) also displays the delta hedging portfolio for the put option, denoted

by ζp(t), and ∆p
i represents the units of stock short in the portfolio.

A discrete time hedge assumes the hedging portfolio unchanged during the hedg-

ing interval (t, T ). As a result, the hedging loss at time T is

L(ST ) := PT − (∆t ST +Bt e
r(T−t)), (4.2.10)

where ∆t and Bt ∈ R are the delta and bond value associated the portfolio at time t,

and PT represents the option value at maturity. A positive value of L(ST ) represents

a loss for the option writer. To show the existence of EHRs, we recall the U–shaped

relationship defined in Definition 3.2.1 as follows. T (x) : R → R is U–shaped against

x, if T (x) is a continuous function of x and is strictly (or continuously) increasing
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in x for x ∈ (a,∞) and strictly decreasing in x for x ∈ (−∞, a). As a result, there

exists a constant a satisfying a = arg minx∈R T (x).

We can see that there exists an EHR, if the following three conditions are satisfied:

first, L(ST ) is U–shaped against ST ; second, minST
L(ST ) < 0; and third, L(ST ) > 0

as ST → 0 and as ST →∞. To proceed, we have the following lemma.

Remark 4.2.1. Consider the delta values ∆c
i and ∆p

i defined respectively in (4.2.7)

and (4.2.9). We have

− 1 < ∆p
i < 0 < ∆c

i < 1. (4.2.11)

This is trivial, due to the risk neutral equation St = e−r (T−t)EQi(ST ). Since

1 = e−r (T−t)

∫ +∞

−∞
ez fQi(z) dz, (4.2.12)

the term e−r (T−t) ez fQi(z) is an appropriate density function. Thus,

0 < ∆c
i =

∫ +∞

k

e−r (T−t) ez fQi(z) dz < 1.

Similarly, combining equation (4.2.9) and (4.2.12), we obtain −1 < ∆p
i < 0.

We now establish the existence of EHRs for delta hedging European call and put

options.

Lemma 4.2.1. (CQ) For the hedging loss defined in equation (4.2.10), we have the

following results:

(a). L(ST ) is U-shaped against ST , and K = arg minST
L(ST );

(b). L(ST ) > 0, as ST → 0 or ST →∞ for ST > 0;

(c). L(ST ) < 0 at ST = K.

Proof. (a). Consider the delta hedge of a European call option,

L(ST ) = (ST −K)+ − (∆c
t ST +Bc

t e
r(T−t)),
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where ∆c
t is given in (4.2.7), and Bc

t = −e−r (T−t)K [ 1− FQi(k)]. We have

L(ST ) =

{
(1−∆c

t)ST + C, ifST ≥ K.

−∆c
t ST + C ′, ifST < K.

(4.2.13)

where C and C ′ are constants. Based on Remark 4.2.1, it is clear that L(ST ) in-

creases linearly in ST for ST ≥ K, and L(ST ) decreases linearly in ST if ST < K.

In addition, since L(ST ) is continuous at ST , L(ST ) takes the minimum at ST = K.

Thus, L(ST ) is U -shaped against ST . The result can be proved in the similar way

for the hedging loss for a European put option.

(b). For call options, from equation (4.2.13),

lim
ST→0

L(ST ) = e−r (T−t)K[ 1− FQi(k) ] > 0

For put options, we can obtain

lim
ST→0

L(ST ) = e−r (T−t)K FQi(k) > 0.

The results for ST → ∞ can be obtained in a similar way for both call and put

options.

(c). To show L(ST ) < 0 at ST = K is equivalent to showing that

L(ST ) =

{
−
(
∆c

i −
[
1− FQi(k)

])
< 0, for call options,

−
(
FQi(k) + ∆p

i

)
< 0 for put options.

(4.2.14)

We show that it is satisfied for call options. If k ≥ r(T − t), then e−r (T−t)ez > 1 for

z > k. Thus,

∆c
i =

∫ +∞

k

e−r (T−t) ez fQi(z) dz >

∫ +∞

k

fQi(z) dz = 1− FQi(k).
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If k < r(T − 1), then e−r (T−t)ez < 1 for z < k. Thus,

∆c
i = 1− e−r (T−t)

∫ k

−∞
ez fQi(z) dz > 1− FQi(k).

That is, we have −
(
∆c

i −
[
1− FQi(k)

])
< 0 at ST = K for call options. Similarly,

we can obtain −
(
FQi(k) + ∆p

i

)
< 0 at ST = K for put options, and the proof is

complete. �

Lemma 4.2.1 implies the existence of effective hedging ranges for both call and

put options as summarized in the following proposition.

Proposition 4.2.1. (CQ) For delta hedging European call and put options, the

effective hedging range over ST exists for hedging loss L(ST ) defined in (4.2.10).

4.2.2 Right Tail Ordering and One-period Discrete Time

Delta Hedging for European Call Options

This subsection compares EHRs resulting from conducting discrete time delta hedg-

ing for a European call option under two pricing measures Q1 and Q2 over the single

period [t, T ], through applying right tail ordering. Consider a call option with matu-

rity at T . Assume Q2>RTO Q1 for Z = log(ST/St) at the strike yield k = logK/St,

with t < T .

Proposition 4.2.2. (CQ) Assume Q1 and Q2 are two risk neutral probability mea-

sures satisfying Q2>RTO Q1 for Z at k = logK/St. Let ∆c
i , defined in (4.2.7), de-

note the delta of a call option price at a strike price K under Qi for i = 1, 2. Then,

∆c
2 > ∆c

1.
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Proof. Let Y = max(k, Z) and ξ(y) = e−r(T−t) ey. Then, by (4.2.7)

∆c
i =

∫ +∞

k

ξ(z) fQi(z) dz

=

∫ +∞

k

ξ(z) fQi(z) dz + ξ(k)Qi(Z ≤ k)− ξ(k)Qi(Z ≤ k)

= EQi [ξ(Y )]− ξ(k)Qi(Z ≤ k) (4.2.15)

Since Q2 >RTO Q1 for Z at k is equivalent to Q2 >st Q1 for Y by Remark 4.1.2, from

Lemma 4.1.2 and the strictly increasing property of ξ(y) as a function of y, we have

EQ2 [ξ(Y )] > EQ1 [ξ(Y )] (4.2.16)

Moreover, Q2 >st Q1 for Y implies

Q2(Z ≤ k) = Q2(Y ≤ k) ≤ Q1(Y ≤ k) = Q1(Z ≤ k) (4.2.17)

Therefore, combining (4.2.15), (4.2.16) and (4.2.17) we obtain

∆c
2 = EQ2 [ξ(Y )]− ξ(k)Q2(Z ≤ k)

> EQ1 [ξ(Y )]− ξ(k)Q1(Z ≤ k) = ∆c
1

�

Next, based on the above results, we study EHRs under Q1 and Q2. Recall the

call price in (4.2.6) and the corresponding discrete time delta hedging strategies. At

maturity T , there are two cash flows. The first one is the option payoff and the second

one is the maturity value of the hedging portfolio. Let l0 label the payoff V0(ST ),

and li label the functions of the maturity values Vi(ST ) of the hedging portfolios

constructed based on Qi for i = 1, 2. Then,

l0 : V0(ST ) = (ST −K)+,

l1 : V1(ST ) = ∆c
1 ST −K [1− FQ1(k)],

l2 : V2(ST ) = ∆c
2 ST −K [1− FQ2(k)].

(4.2.18)
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We can see that Vi(ST ) is a linear function of ST for i = 1, 2, and a piecewise linear

function for i = 0. Based on these maturity values, we can compute effective hedging

ranges [DQi , UQi ] for two hedging strategies under Q1 and Q2 respectively. According

to Proposition 4.2.1, the EHR over ST exists for the single period discrete time delta

hedging of European call options. With i = 1, 2, we compute DQi through solving

li = 0 for ST , i.e., at DQi the portfolio has zero value at ST = DQi ; and UQi is the

value of ST to solve l0 = li conditional on ST > K, i.e. at UQi the portfolio value is

the same as the call payoff. As a result, we have[
DQi = K

1− FQi(k)

∆c
i

, UQi = K
FQi(k)

1−∆c
i

]
(4.2.19)

The relative positions of two EHRs are among 9 scenarios, based on the combi-

nation of three possible relationship {DQ2 < DQ1 , DQ2 = DQ1 , DQ2 > DQ1}, with

DQ2 S DQ1 denoting the set consists of all three cases, and other three relationship

{UQ2 < UQ1 , UQ2 = UQ1 , UQ2 > UQ1}, with UQ2 S UQ1 similarly defined. As a result

of tail ordering, we can see that the relative positions of EHRs for two portfolios are

among five of the nine scenarios, as stated in the following proposition.

Proposition 4.2.3. (CQ) Assume Q1 and Q2 are two risk neutral probability mea-

sures satisfying Q2>RTO Q1 for Z at k = logK/St. Then, the relative positions of

the EHRs under Q1 and Q2 can only be among the following five scenarios.

(i) DQ2 < DQ1 and UQ2 > UQ1,

(ii) DQ2 = DQ1 and UQ2 > UQ1,

(iii) DQ2 > DQ1 and UQ2 < UQ1,

(iv) DQ2 > DQ1 and UQ2 = UQ1,

(v) DQ2 > DQ1 and UQ2 > UQ1.

Proof. Recall the existence of EHRs is given in proposition 4.2.1. To show that the

relative positions of EHRs [DQ1 , UQ1 ] and [DQ2 , DQ2 ] are among the five scenarios,

it is sufficient to have the following two conditions satisfied.
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Figure 4.1: Lines of call payoffs and portfolio values, scenario one

Figure 4.1 to 4.5 illustrate relationships between call payoffs and maturity values of two hedging
portfolios constructed using Q1 and Q2. l0: call option payoff; li, i = 1, 2: maturity values of the
portfolios; [DQi , UQi ], i = 1, 2: EHRs, where the portfolio values are greater than option payoffs.

The first is that 0 < DQi < K for i = 1, 2, which is obvious. Based on the

conditions for the existence of the EHR given in Lemma 4.2.1, L(0) > 0 and L(K) < 0

for L(ST ) defined in (4.2.10). DQi is obtained by letting L(ST ) = 0, so there exists

0 < DQi < K. The second condition is that 0 < ∆c
1 < ∆c

2 < 1, which is satisfied as

given in Remark 4.2.1. �

The five scenarios stated in Proposition 4.2.3 are demonstrated in figures 4.1 to

4.5. Figure 4.1 demonstrates DQ2 < DQ1 and UQ2 > UQ1 . That is, hedging with the

portfolio constructed using Q2 is less likely to have a loss as ST changes and the call

option expires in and out of the money. Figure 4.2 demonstrates DQ2 = DQ1 and

UQ2 > UQ1 . So the left side hedging are the same for portfolios of Q2 and Q1. The

portfolio of Q2, however, has a better hedging positions when ST goes up. Figure 4.3

to 4.5 demonstrate the three other scenarios associated with DQ2 > DQ1 . Similar

conclusion can be drawn from there.

Remark 4.2.2. Let Y = max{k, Z}. We further classify the distributions of Y

under Q1 and Q2 measures into four types, as demonstrated in Figure 4.6, based on

the movement of the ratio of densities fQ2(y)/fQ1(y) as y →∞ in the right wing of
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Figure 4.2: Lines of call payoffs and portfolio values, scenario two

-

6

��
���

���
���

���
���

���
���

���

��������������������������������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��-

@
@

@
@@R

A
A
A
A
A
AU

UQ1 UQ2

ST

0

Maturity Values

KDQ1 DQ2

l0

l2

l1

Figure 4.3: Lines of call payoffs and portfolio values, scenario three
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Figure 4.4: Lines of call payoffs and portfolio values, scenario four
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the distributions. These four types are defined respectively as follows:

(a) fQ2(y)/fQ1(y) is decreasing in y, with fQ2(y)/fQ1(y) > 1 for y > k;

(b) fQ2(y)/fQ1(y) = c for c > 1 and y > k;

(c) fQ2(y)/fQ1(y) is increasing for y > k, and fQ2(y)/fQ1(y) > 1 for y > k′ with a

k′ > k;

(d) fQ2(y)/fQ1(y) has other shapes in the tail. An example is given in graph four,

where fQ2(y)/fQ1(y) fluctuates and becomes greater than one after certain

point on the right tail.

In the remaining studies, we will focus on the first three cases (a)-(c) defined in the

above.

Proposition 4.2.4. (CQ) Assume two risk neutral measures Q2 and Q1 associ-

ated with Z = log(ST/St). Let DQi and UQi denote the EHRs boundaries defined in

(4.2.19). Then we have the results summarized in Table 4.1.

DQ1 vs. DQ2 UQ1 vs. UQ2

Y = max(Z, k) ( Q2>RTO Q1* at k)
fQ2(y)

fQ1(y)
is strictly increasing in y DQ2 < DQ1 UQ2 > UQ1

fQ2(y)

fQ1(y)
is a constant DQ2 = DQ1 UQ2 > UQ1

fQ2(y)

fQ1(y)
is strictly decreasing in y DQ2 > DQ1 UQ2 S UQ1

Table 4.1: (Proposition4.2.4) EHR positions based on the movement of density ratios

* That is, the condition requires that Q2 >RTO Q1 for Z = log(ST /St) at k = log K/St.

Proof. To determine the relative positions of EHRs, we consider the EHR given

in (4.2.19) and focus on the comparison of DQi = K [1 − FQ1(k) ]/∆c
1. Because

135



6

-

fQ2 (y)

fQ1 (y)

1

k
Y

type one

6

-

fQ2 (y)

fQ1 (y)

1

k
Y

type two

6

-

fQ2 (y)

fQ1 (y)

1

k k′
Y

type three

6

-

fQ2 (y)

fQ1 (y)

1

k
Y

type four

Figure 4.6: Four types of movements of fQ2(y)/fQ1(y) on the right tail

1 > ∆c
2 > ∆c

1 > 0 under the assumption Q2 >st Q1, if the relative positions of DQi

are given, then the relative positions of UQi can be determined.

(i). If the ratio fQ2(y)/fQ1(y) is a constant in y, then assume fQ2(y) = C fQ1(y) for

all y > k with a positive constant C. Then,

1− FQ2(k)

∆c
2

=

∫ +∞
k

fQ2(y) dy

e−r (T−t)
∫ +∞

k
ey fQ2(y) dy

=

∫ +∞
k

C fQ1(y) dy

e−r (T−t)
∫ +∞

k
ey C fQ1(y) dy

=
1− FQ1(k)

∆c
1

.
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That is, (4.2.19) implies DQ1 = DQ2 .

(ii). Assume fQ2(y) = g(y) fQ1(y) for all y > k with some strictly increasing function

g(y). We construct two density functions:

p1(y) =
fQ1(y)∫ +∞

k
fQ1(y) dy

p2(y) =
fQ1(y) ey∫ +∞

k
fQ1(y) ey dy

.

Note that p2(y)/p1(y) = ey C, where C =
∫ +∞

k
fQ1(y) dy/

∫ +∞
k

fQ1(y) ey dy > 0 is a

constant. Thus, the ratio p2(y)/p1(y) is strictly increasing in y. From Lemma 1.2.4,

Y is strictly stochastically larger under probability measure with density p2 than

with density p1. As a result, since g(y) is strictly increasing in y, from Lemma 4.1.2,

we have∫ +∞

k

g(y)
fQ1(y)∫ +∞

k
fQ1(y) dy

dy <

∫ +∞

k

g(y)
fQ1(y) ey∫ +∞

k
fQ1(y) ey dy

dy. (4.2.20)

That is,∫ +∞
k

fQ2(y) dy∫ +∞
k

fQ2(y) ey dy
<

∫ +∞
k

fQ1(y) dy∫ +∞
k

fQ1(y) ey dy
,

or

1− FQ2(k)

∆c
2

<
1− FQ1(k)

∆c
1

From (4.2.19), we have DQ2 < DQ1 .

(iii). Similarly, if fQ2(y)/fQ1(y) is strictly decreasing in y, we have DQ2 > DQ1 . The

proof is similar to that of (ii) by assuming fQ1(y) = g(y) fQ2(y) for some strictly

increasing function g(y). Then, exchange the notation fQ1(y) with fQ2(y) in equa-

tion (4.2.20) to obtain the result. �

Remark 4.2.3. Under assumption that Q2 >st Q1 for Y at k, i.e. Q2>RTO Q1 for
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Z at k

1− FQ1(k) ≤ 1− FQ2(k). (4.2.21)

Also note that the amount of e−r(T−t)K[1 − FQi(k)] for the bond is shorted in the

hedging portfolio. Thus, (4.2.21) implies that the bond shorted under Q1 is less than

or equal to the bond shorted under Q2.

4.2.3 Left Tail Ordering and Hedging Put Options

Similar to the previous subsection, this subsection compares the EHRs for delta

hedging a European put option over single period [t, T ], by applying left tail ordering.

Consider an option at time t and assume it is written on St with the strike price K

and the expiry date T > t. Assume Q2>LTO Q1 for Z = log(ST/St) at k = logK/St.

Recall the put option prices PQi
p , i = 1, 2 in (4.2.8).

Proposition 4.2.5. (CQ) Assume Q1 and Q2 are two risk neutral probability mea-

sures satisfying Q2>LTO Q1 for Z at k = logK/St. Let ∆p
i , defined in (4.2.9), de-

note the delta of a put option price at a strike price K under Qi for i = 1, 2. Then,

∆p
2 < ∆p

1, or equivalently |∆p
2| < |∆

p
1|.

Proof. Let X = min(k, Z) and ξ(y) = e−r(T−t)ey
. By (4.2.9)

∆p
i = −

∫ k

−∞
ξ(z)fQi(z)dz

= −
∫ k

−∞
ξ(z)fQi(z)dz − ξ(k)Qi(Z > k) + ξ(k)Qi(Z > k)

= −EQiE[ξ(X)] + ξ(k)Qi(Z > k) (4.2.22)

Since Q2 >LTO Q1 for Z at k is equivalent to Q1 >st Q2 for X by Remark 4.1.2, it

follows from Lemma 4.1.2 that

EQ1 [ξ(X)] < EQ2 [ξ(X)] (4.2.23)

138



Moreover, Q1 >st Q2 for X implies

Q1(Z > k) = Q1(X ≥ k) ≥ Q2(X ≥ k) = Q2(Z > k) (4.2.24)

Therefore, combining (4.2.22), (4.2.23) and (4.2.24) we obtain

∆p
1 = −EQ1 [ξ(X)] + ξ(k)Q2(Z > k)

> −EQ2 [ξ(X)] + ξ(k)Q1(Z > k) = ∆p
2

�

To proceed, let l̃0 label the option payoff function with payoff Ṽ0(ST ) and l̃i, i =

1, 2 label the functions of the maturity values Ṽi(ST ) of hedging portfolios, con-

structed based on Qi, as follows:

l̃0 : Ṽ0(ST ) = (K − ST )+,

l̃1 : Ṽ1(ST ) = K FQ1(k) + ST ∆p
1,

l̃2 : Ṽ2(ST ) = K FQ2(k) + ST ∆p
2.

(4.2.25)

Then, Ṽ1(ST ) and Ṽ2(ST ) are linear functions of ST for i = 1, 2, and Ṽ0(ST ) is a

piecewise linear function. According to Proposition 4.2.1, the EHR over ST exist

for the discrete time delta hedging of European put options. As a result, UQi is the

root to solve l̃i = 0 for i = 1, 2; and DQi is the root to solve l̃i = l̃0 conditional on

ST < K. Thus,[
DQi = K

1− FQi(k)

1 + ∆p
i

UQi = K
FQi(k)

−∆p
i

]
. (4.2.26)

Based on the maturity values, we can compare the EHRs for two delta hedging

portfolios. The relative positions of two EHRs are among 9 scenarios, based on

the combination of the relationships {UQ2 < UQ1 , UQ2 = UQ1 , UQ2 > UQ1} and

{DQ2 < DQ1 , DQ2 = DQ1 , DQ2 > DQ1}. As a result of tail ordering, we will see in

the following proposition that the relative positions of EHRs for two portfolios.

Proposition 4.2.6. (CQ) Let k = logK/St, and Z = log(ST/St). Then, Assume
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Q2>LTO Q1 for Z at k. Then,

(i). If UQ2 ≥ UQ1 then DQ2 < DQ1;

(ii). If UQ2 < UQ1, we may have DQ2 < DQ1, DQ2 = DQ1, or DQ2 > DQ1;

(ii). If DQ1 ≤ DQ2, then UQ2 ≤ UQ1.

Proof. The proof is parallel with the proof in proposition 4.2.3.

�

Remark 4.2.4. Similar to the classification in Remark 4.2.2, we also classify the

distributions of Z under Q1 and Q2 measures into four types, based on the movement

of the density ratios fQ2(z)/fQ1(z) in the left tail z ∈ (−∞, k).

(a) fQ2(z)/fQ1(z) is increasing in z, with fQ2(z)/fQ1(z) > 1, for z < k;

(b) fQ2(z)/fQ1(z) = c > 1 for z < k;

(c) fQ2(z)/fQ1(z) is decreasing in z for z < k, and fQ2(z)/fQ1(z) > 1 for z < k′

with a k′ ≤ k;

(d) fQ2(z)/fQ1(z) has other shapes in the tail. An example is given in graph four.

In the remaining studies, we will focus on the first three cases (a)-(c) defined

above.

Proposition 4.2.7. (CQ) Assume two risk neutral measures Q2 and Q1 associated

with Z = log(ST/St). Then we have the results summarized in Table 4.2.

Proof. (i). Suppose fQ2(z)/fQ1(z) is constant in z for z ∈ (−∞, k). Then, parallel

to the proof for part (i) in Proposition 4.2.4, we have UQ1 = UQ2 .
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DQ1 vs. DQ2 UQ1 vs. UQ2

for z ∈ (−∞, k) (Q2>LTO Q1 )*
fQ2(z)

fQ1(z)
is strictly decreasing in z UQ2 > UQ1 DQ2 < DQ1

fQ2(z)

fQ1(z)
is a constant UQ2 = UQ1 DQ2 < DQ1

fQ2(z)

fQ1(z)
is strictly increasing in z UQ2 < UQ1 DQ2 S DQ1 ,

Table 4.2: EHR positions based on the movement of density ratios

* The right column results assumes that Q2 >LTO Q1 for Z = log(ST /St) at k = log K/St.

(ii). Suppose fQ2(z)/fQ1(z) is decreasing in z for z ∈ (−∞, k). Then, for X =

max(−k,−Z), the ratio fQ2

X (x)/fQ1

X (x) is increasing in x. Assume

fQ2

X (x) = g(x)fQ1

X (x), for all x > −k,

with a strictly increasing function g(x). Construct two densities

p1(x) =
fQ1

X (x)∫ +∞
−k

fQ1

X (x) dx
, and p2(x) =

e−xfQ1

X (x)∫ +∞
−k

e−xfQ1

X (x) dx
.

Since e−x is positive and decreasing in x, the ratio p1(x)/p2(x) is increasing in x for

x > −k. From Lemma 1.2.4, Y is strictly stochastically larger under probability

measure with density p1 than with density p2. In addition, since g(x) is a strictly

increasing function of x, from Lemma 4.1.2, we have∫ +∞

−k

e−xfQ1

X (x) g(x)∫ +∞
−k

e−xfQ1

X (x) dx
dx <

∫ +∞

−k

fQ1

X (x) g(x)∫ +∞
−k

fQ1

X (x) dx
dx (4.2.27)

That is, ∫ k

−∞ fQ1(z) dz

e−r(T−t)
∫ k

−∞ ezfQ1(z) dz
<

∫ k

−∞ fQ2(z) dz

e−r(T−t)
∫ k

−∞ ezfQ2(z) dz
,
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i.e.,

K FQ1(k)

−∆p
1

<
K FQ2(k)

−∆p
2

As a result, (4.2.26) implies that UQ1 < UQ2 , where UQi = −
(
K FQi(k)

)
/∆p

i for

i = 1, 2.

(iii). Suppose fQ2(z)/fQ1(z) is an increasing function for z ∈ (−∞, k). Then,

fQ1

X (x)/fQ2

X (x) is a decreasing function of x. Assume

fQ1

X (x) = g(x)fQ2

X (x), for all x > −k,

with an increasing function g(x). Then, following the step in (ii), with the exchange

of fQ1

X (x) and fQ2

X (x) in (4.2.27), we have
K FQ1(k)

−∆p
1

>
K FQ2(k)

−∆p
2

, which along with

(4.2.26) implies UQ1 > UQ2 .

Having compared UQ1 and UQ2 , we can obtain the corresponding results with

regard to the comparison of DQ1 and DQ2 , based on the assumption of Q2>RTO Q1

for Z = log(ST/St) at k = logK/St. From Proposition 4.2.5, we have |∆p
2| < |∆p

1|,
and the result in Table 4.2 can be directly obtained. �

4.2.4 Hedging Information between Calls and Puts

In subsection 4.2.2 we applied right tail ordering to compare hedging results for call

options under two different risk neutral measures Q1 and Q2, and in subsection 4.2.3

we used left tail ordering for the comparison of hedging put options. However, as

Proposition 4.1.1 claims, no risk neutral measure can be stochastically strictly larger

than another, and thus right and left tail ordering does not hold for the parameter

k over the entire support of Z. As a result, the analysis for hedging a call or a put

option can be conducted only when the strike price K belongs to a particular range.

In this section, we shall use put-call parity to develop more insight into the hedging

results for call and put options. Indeed, as we can see shortly, the information we
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obtained in the previous subsections for a call option can be used to analyze a put

option at the same strike price and expiry date, and vice versa.

Let Ps and Ss represent the option price and stock price at time s for t < s < T ,

and ∆t and Bt represent the delta and bond values at time t. Then, the interim

hedging error, denoted by ε(Ss), for an option at time s is

ε(Ss) = Ps − (∆t Ss +Bt e
r(s−t)). (4.2.28)

We further define the put-call parity for delta hedging strategies as follows.

Definition 4.2.1. (CQ) Let ζc(t) and ζp(t) denote the values of the hedging port-

folios for call and put options with the same strike price K. ζc(t) and ζp(t) are said

to satisfy put–call parity if and only if

ζc(t)− ζp(t) = St −Ke−r(T−t). (4.2.29)

Remark 4.2.5. Delta hedging strategies under a risk neutral measure Q satisfy put-

call parity. Other strategies such as mean variance hedging strategies for call and

put options, consisting with bonds and stocks, also satisfy the put–call parity.

Lemma 4.2.2. (CQ) If Pp and Pc and their associated hedging strategies ζc(t) and

ζp(t) satisfy put-call parity, then the hedging errors defined in (4.2.28) are equal for

hedging a European call and a put option, based on the same strike price and expiry

date.

Proof. The proof is trivial by Definition 4.2.1 and put-call parity. �

Based on Lemma 4.2.2, the delta hedging error expressed in (4.2.28) is the same

for a European call and a put option under a Qi-measure, provided that the univariate

options have the same K and expiry dates. This fact implies that to analyze the

hedging error and the corresponding EHRs from a call option, we can investigate the

EHRs for a put option, and vice versa. Indeed, the EHRs [DQi , UQi ] are the same
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for hedging a univariate European call and a European put option, as in Corollary

4.2.1 as below.
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Figure 4.7: Delta hedging intervals of call and put options

Corollary 4.2.1. Denote DQi(put) and UQi(put) the EHR boundaries of discrete

time delta hedging for a European put option, given in (4.2.26), and DQi(call) and

UQi(call) denoted the EHR boundaries for hedging a European call option, given in

(4.2.19). Then, with the same strike prices K and expiry dates T , we have

DQi(put) = DQi(call) & UQi(put) = UQi(call) (4.2.30)

Corollary 4.2.1 can be easily verified based on equations (4.2.19) and (4.2.26) and

the condition 1 = −∆put +∆call. The results of (4.2.30) are illustrated in Figure 4.7.
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4.2.5 Examples

In this section, we apply the hedging results based on tail ordering to some option

pricing models, including the discrete time regime switching models investigated in

previous chapters.

Example 8. In this example, we compare the hedging positions of EHRs for call

and put options under two risk neutral Gaussian distributions having σi, i = 1, 2.

Let Gi(r − σ2
i /2, σi), with σ1 < σ2, denote the Gaussian distribution function of Z

under risk neutral probability measures. Then, the ratio of densities is

fG2(z)

fG1(z)
= exp

(
σ2

2 − σ2
1

2σ2
1σ

2
2

(z − r)2 + log σ1 − log σ2 +
1

8
(σ2

1 − σ2
2)

)
The terms in the exponential function form a upward parabolic curve of z, with the

minimum at z = r. That is, the above density ratio is increasing as z goes to ±∞,

and

G2(Z ≤ r) = G1(Z ≤ r)

Let k = log (K/St). We have G2>LTO G1 for Z at k < r and G2>RTO G1 at k > r.

Based on Propositions 4.2.3 and 4.2.6 and Corollary 4.2.1, the positions of EHRs,

denoted by [DGi , UGi ], for hedging European call and put options using discrete time

delta hedging, are compared in Table 4.3.

options D U
call DG2 < DG1 UG2 > UG1

put DG2 < DG1 UG2 > UG1

Table 4.3: Comparison of EHRs between two Gaussian distributions

Example 9. This example investigates the delta hedging difference between the

Black–Scholes method and the ET-Q methods discussed in chapter 1. Figure 4.8

illustrates their underlying densities and the density ratios for multiple periods—

60 and 120 month period. Let fET−Q(z) and fG(z) denote the densities under the
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ET-Q measure and of the Gaussian distributions. We can see the density ratio

fET−Q(z)/fG(z) increases as z → −∞. Based on the tail ordering in the left tails,

we expect the ET-Q method has higher prices and delta values for out-of-money put

options, as well as the wider EHRs according to Proposition 4.2.6.

The results of one-period delta values of put options are displayed in Figure 4.9,

where the ET-Q method has larger delta values for the out-of-money put options,

and smaller delta values for some in-the-money options. The hedging difference

for the put options between the ET-Q method and the Black–Scholes method is

displayed in Figure 4.10. The ET-Q method has a wider EHRs for out-of-the-

money put options, but the ET-Q methods do not always have a wider EHR. For

some in-the-money put options, the EHRs are smaller for the ET-Q methods. This

is possible since the densities from the ET-Q measure and the Gaussian measure

does not satisfy left or right tail ordering at these strike prices. The hedging results

are the same for call options.

Example 10. This example compares the one-period delta hedging between the

NEMM method and the ET-Q method. Figure 4.12 compares their option prices

with maturity T = 60 but no rebalancing, and shows that the ET-Q method has

higher prices for put options, while the NEMM method has higher prices for the

out-of-money call options with K > 220.

Figure 4.12 further illustrates that the ET-Q method and the NEMM methods

have different hedging performance, with regard to options with different strike price

K. In the figure, the hedging comparison is based on the difference of the EHR

boundaries. Let DNEMM −DET−Q and UNEMM − UET−Q denote the differences re-

spectively for left (D) and right (U) EHR boundaries between the NEMM methods

and the ET-Q methods. It shows that the ET-Q method has a better hedging perfor-

mance, in terms of wider EHRs, when K < 150, which is consistent with the results

in Proposition 4.2.7. If K is very large, the NEMM method has a better hedging

performance. This hedging difference is due to the difference of the distribution un-

der these two risk neutral measures, as the ET-Q measure has thicker left tails, while

the NEMM measure has thicker right tails, as shown in Figure 4.11.
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Figure 4.8: Risk neutral densities and density ratios between the ET-Q measure and
the Gaussian measure)

In Figure 4.8, Y-axis in the top two graphs represents the density values under the ET-
Q measure (ET-Q) and risk neutral Gaussian Distributions (B-S), identified under the
RSLN2 model in chapter 1. In the bottom two graphs, Y-axis represents the density ra-
tio fET−Q/fG under the two measures. X–axis in the figure represents the stock price
ST = 50, . . . , 250;S0 = 100.

4.3 Tail Ordering and Option Pricing

In this section, we apply right and left tail ordering to compare the prices of European

options calculated under two different risk neutral measures.
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Figure 4.9: Ratio of put delta: ET-Q/Black-Scholes

Denote ∆ET−Q and ∆B−S the delta values from the ET-Q method and the Black-Scholes

methods. In Figure 4.9, Y–axis represents the ratio
∆ET−Q

∆B−S
, and X–axis represents the strike

price K = 50, . . . , 300;S0 = 100.
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Figure 4.10: EHR boundary difference between the ET-Q and the B-S method

In Figure 4.10, Y-axis is the difference of the left EHR boundaries DET−Q−DB−S and right
EHR boundaries UET−Q − UB−S ; X–axis is the strike price K = 0, . . . , 300;S0 = 100.
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Figure 4.11: Ratio of densities: ET-Q / NEMM

In Figure 4.11, Y-axis measures the densities under the ET-Q measure and the NEMM
measure and density ratios; X–axis is the stock price ST = 50, . . . , 300;S0 = 100.
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Figure 4.12: Price ratios and boundary difference of EHRs: NEMM - ET-Q

In Figure 4.12, Y-axis is the difference DNEMM −DET−Q and UNEMM − UET−Q; X–axis
is the strike price K = 50, . . . , 300;S0 = 100.

149



4.3.1 Option Price Difference

An immediate result on the difference of call and put prices under Q1 and Q2 obtained

from the tail ordering is as follows. Recall Z = log(ST/St), k = log(K/St), and PQi
p

and PQi
c represent, respectively, the put and call option price determined under Qi.

Proposition 4.3.1. (CQ) For call and put options with the same strike price K =

Ste
k and the same maturities,

(a). If Q2>RTO Q1 for Z at k, then PQ2
c > PQ1

c .

(b). If Q2>LTO Q1 for Z at k, then PQ2
p > PQ1

p .

(c). PQ2
p − PQ1

p = PQ2
c − PQ1

c .

Proof. (a). The assumption Q2>RTO Q1 for Z at k implies that Q2 >st Q1 for

Y = max(Z, k) according to Remark 4.1.2. Since the payoff function St e
Y − K is

strictly increasing function in the support of Y , it follows from Lemma 4.1.2 that

EQ2
t [St e

Y −K ] > EQ1
t [St e

Y −K ],

i.e.

e−r (T−t) EQ2
t [ (St e

Z −K)+ ] > e−r (T−t) EQ1
t [ (St e

Z −K)+ ],

That is, the call price is larger under Q2.

(b). Let X = min(k, Z). The put option can be expressed as follows:

e−r (T−t)EQ2
t [ (K − St e

Z)+ ] = e−r (T−t) EQ1

X,t[K − St e
X ],

The functoin −(K − St e
x) is a strictly increasing in x. Since Q2>LTO Q1 for Z

implies Q1 >st Q2 for X according to Remark 4.1.2, it follows from Lemma 4.1.2

that

EQ1

X,t(K − St e
−X ) < EQ2

X,t(K − St e
−X ),
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which implies

e−r (T−t) EQ1
t [ (K − St e

Z)+ ] < e−r (T−t) EQ2
t [ (K − St e

Z)+ ],

i.e., PQ2
p > PQ1

p as desired.

(c). This is a direct result of the put-call parity under the Q measure. �

Let PQi denote the European call or put option prices under Qi measure. Then,

we further investigate the shape of PQ2 − PQ1 , the price difference, under two dif-

ferent Qi-measures. Without loss of generality, assume options are priced at t = 0.

Proposition 4.3.2 below describes the movement of the price difference along the

strike price K, and Remark 4.3.2 describes the movement of price difference along

the increasing of St. To proceed, we need the following lemma.

Lemma 4.3.1. (CQ) Under two risk neutral measures Q1 and Q2 for a continuous

random variable Z, there exists k such that Q1(Z ≤ k) = Q2(Z ≤ k).

Proof. The proof is a direct result from Proposition 4.1.1 as follows: if no such k

exists, then Q1 and Q2 satisfy strict stochastic ordering, in contradiction to Propo-

sition 4.1.1. �

Remark 4.3.1. The existence of k in Lemma 4.3.1 makes it possible to construct a

simple relationship between Q1 and Q2, where we assume a k satisfying Q2>LTO Q1

and Q2>RTO Q1 for the random variable Z = log(ST/St) at k. We give an illustra-

tion in Example 11 in section 4.3.4.

Proposition 4.3.2. (CQ) Assume Q2>LTO Q1 and Q2>RTO Q1 at a k′ ∈ R for the

random variable Z = log(ST/St). Let k = log(K/St). Then,

(a). k′ = arg maxk P
Q2 − PQ1 with k′ satisfying Q1(Z ≤ k′) = Q2(Z ≤ k′);

(b). PQ2 − PQ1 is monotonically decreasing in k for k > k′, and monotonically

increasing in k for k < k′, assuming other parameters are fixed for the options.
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Proof. (a.) It is obvious that k′ satisfies Q1(Z ≤ k′) = Q2(Z ≤ k′) from the assump-

tion. Next, we show that k′ = arg maxk P
Q2 − PQ1 . We note that PQi depends on

the strike price K and hence on k. For put options, if k ≤ k′, or K ≤ Ste
k′ , we have

∂(PQ2
p − PQ1

p )

∂K
=

∂

∂K
e−r

∫ log K/St

−∞
(K − Ste

z)(fQ2(z)− fQ1(z)) dz

= e−r

∫ log K/St

−∞
(fQ2(z)− fQ1(z))dz

≥ 0.

(4.3.31)

Therefore, PQ2
p − PQ1

p is monotonically increasing in k for k ≤ k′. Noticing PQ2
p −

PQ1
p = PQ2

c −PQ1
c from Proposition 4.3.1, we know PQ2

c −PQ1
c is also increasing in k

for k ≤ k′. Similarly, for call options, if k ≥ k′, we have

∂(PQ2
c − PQ1

c )

∂K
=

∂

∂K
e−r

∫ ∞

log K/St

(Ste
z −K)(fQ2(z)− fQ1(z))dz

= e−r

∫ ∞

log K/St

(fQ1(z)− fQ2(z))dz

≤ 0.

Therefore, PQ2
c − PQ1

c is decreasing in k for k ≥ k′. Again, from Proposition 4.3.1,

PQ2
p − PQ1

p is also decreasing in k for k ≥ k′.

Combining the above, as a continuous function of k, PQ2 − PQ1 is increasing for

k ≤ k′ and decreasing for k ≥ k′. Thus, k′ is its minimizer.

(b). It is the direct result from the proofs in (a) that the option-price difference

PQ2 − PQ1 monotonically decreases as k moves away from k′. �

Remark 4.3.2. We can also investigate the price difference PQ2 − PQ1 against a

sequence of St, which is useful for analyzing option prices at a future initial time

point t, over the range of St. Recall that the option deltas are denoted by ∆c
i and

∆p
i under Qi. We have

∂(PQ2
c − PQ1

c )

∂St

= ∆c
2 −∆c

1, and
∂(PQ2

p − PQ1
p )

∂St

= ∆p
2 −∆p

1.
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In addition, ∆c
2 −∆c

1 = ∆p
2 −∆p

1. That is, the changing rates of the price differences

are the same for call and put options, based on the same strike price and maturity.

According to Proposition 4.2.3, if Q2>RTO Q1, then ∆c
2 > ∆c

1 for call options.

That is, ∆c
2 −∆c

1 > 0, and the price difference PQ2 − PQ1 increases as St increases.

As an example, assume K is larger than St. In other words, for a fixed K, St

is assumed to be smaller. Then, the price difference PQ2 − PQ1 increases in St,

assuming Q2>RTO Q1.

In addition, ∆p
2 < ∆p

1 under Q2>LTO Q1. That is, the price difference PQ2 −PQ1

decreases in St. In this case, the strike price K is on the left tail of St, and St is

larger than K. As an example, for a fixed K, assume St is larger than K. Then, the

option price difference PQ2 −PQ1 decreases in St, assuming Q2>LTO Q1. As a result

of these two examples, the option price difference may show a bell shape along the

range of St. We given an illustration in Example 15 in section 4.3.4.

4.3.2 Option Price Ratios and Volatility Smiles

This section investigates the impact on the option price ratios from the movement

of fQ2(z)/fQ1(z) in the tails. We will apply the obtained results to discuss volatility

smiles. Let fQi(z) denote the density function of Z under Qi. Proposition 4.3.3

describes the movement of the price ratios for the European call and put options,

dependent on the behavior of fQ2(z)/fQ1(z).

Proposition 4.3.3. (CQ) Let fQi denote the density functions of Z = logST/St (or

Y = max[k, Z]) under Qi measure, and k = logK/St. Let ↗,→ and ↘ denote the

behavior of increasing, being constant, and decreasing. Then, we have the relationship

between the behavior of option price ratios and the density ratios given in Tables 4.4

and 4.5 below.

Proof. We prove the results given in the table for call and options separately. For

put options, we consider the behavior of the option price ratios as strike price K
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Movement of Density Ratios Corresponding Movement of Price
for Z|Z < k Ratios (Put options) for K < S0e

k

fQ2(z)

fQ1(z)
↗ as z decreases

PQ2
p

PQ1
p

↗ as K decreases

fQ2(z)

fQ1(z)
→ as z decreases

PQ2
p

PQ1
p

→ as K decreases

fQ2(z)

fQ1(z)
↘ as z decreases

PQ2
p

PQ1
p

↘ as K decreases

Table 4.4: Put option price ratios vs left tail density ratios

Movement of Density Ratios Corresponding Movement of Price
for Y = max[k, Z] Ratios (Call options) for K > S0e

k

fQ2(y)

fQ1(y)
↗ as y increases

PQ2
c

PQ1
c

↗ as K increases

fQ2(y)

fQ1(y)
→ as y increases

PQ2
c

PQ1
c

→ as K increases

fQ2(y)

fQ1(y)
↘ as y increases

PQ2
c

PQ1
c

↘ as K increases

Table 4.5: Call option price ratios vs right tail density ratios

decreases. From equation (4.2.8) and (4.3.31), we have

∂(PQ2
p /PQ1

p )

∂K

=
(PQ2

p )′PQ1
p − PQ2

p (PQ1
p )′

(PQ1
p )2

=

{
e−rT

∫ log(K/St)

−∞
fQ2(z)dz PQ1

p − PQ2
p e−rT

∫ log(K/St)

−∞
fQ1(z)dz

}/
(PQ1

p )2

(4.3.32)
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According to Proposition 4.2.7, if fQ2(z)/fQ1(z) increases as z decreases in the left

tail for z < k, then

KFQ1(k)

−∆1

<
KFQ2(k)

−∆2

.

We then have

e−rT

∫ log(K/St)

−∞
fQ2dz PQ1

p < PQ2
p e−rT

∫ log(K/St)

−∞
fQ1dz.

As a result, equation (4.3.32) is negative. Thus, PQ2
p /PQ1

p increases as K decreases

towards 0. Similarly, we can obtain the results for the movement of the ratio PQ2
p /PQ1

p

in the cases where fQ2(z)/fQ1(z) is constant and decreasing in z for z < k.

For call options, we consider the behavior of the option price ratios as strike price

K increases. Let Y = max[k, Z]. From equation (4.2.6), we have

∂(PQ2
c /PQ1

c )

∂K

=

{
e−rT

∫ ∞

log(K/St)

(−fQ2(y))dy PQ1
c + PQ2

c e−rT

∫ ∞

log(K/St)

fQ1(y)dy

}/
(PQ1

c )2

(4.3.33)

According to Proposition 4.2.4,if fQ2(y)/fQ1(y) increases as y increases, then,

K(1− FQ2(k))

∆2

<
K(1− FQ1(k))

∆1

We then have

PQ2
c e−rT

∫ ∞

log(K/St)

fQ1(y)dy > e−rT

∫ ∞

log(K/St)

fQ2(y)dy PQ1
c .

Then, equation (4.3.33) is positive. As a result, PQ2
c /PQ1

c increases as K increases.

Similarly, we can obtain the results for the movement of the ratio PQ2
c /PQ1

c in the
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cases where fQ2(z)/fQ1(z) is constant and decreasing in y. �

Remark 4.3.3. It is worth noting that the price ratios PQ2/PQ1 are not the same

for put and call options, unlike the price difference PQ2 −PQ1 . As an example, even

if PQ2
c /PQ1

c increases for call options, by assuming fQ2(z)/fQ1(z) increases in the

tail, PQ2
p /PQ1

p does not necessarily increase for put options. Therefore, according

to Proposition 4.3.3, we will separately discusses the movement of PQ2/PQ1 as K

increases or decreases, based on call and put options respectively.

Remark 4.3.4. As an application of the results obtained in Proposition 4.3.3, we

discuss implied volatilities, which are obtained by inverting the Black-Scholes option

pricing formulas on observed option prices. We can use the movement of the price

ratio for inferring the shape of implied volatilities at different strike prices K. Ac-

cording to Proposition 4.3.3 and Remark 4.3.3, if K is small, we can use put option

prices for the inverting. If K is large, we use call option prices. Nevertheless, it is

worth noting that inverting call prices or put prices obtains the same implied volatil-

ity. This is because, first, in the Black–Scholes formula, there is one to one relation

between PQi and σ, as ∂PQi/∂σ = Stφ(d1)
√
T > 0, where φ(·) is the density of

standard normal distribution. Second, each pair of put and call prices in the put-call

parity correspond to a common σ.

To generate the volatility smiles from option prices PQ2 , two conditions need to be

satisfied for the distributions of the underlying asset under the risk neutral measure.

First, fQ(z)/φ(z) is increasing in z moves towards tails, where fQ(z) denotes the

density of the underlying distribution under a Q measure. According to Proposition

4.3.3, this condition implies that the call or put option price ratio PQ2/PBS is

increasing as K moves towards ∞ or 0, where PBS denotes the Black-Scholes prices.

Second, the function fQ(z) is not Gaussian density function. Without the second

condition, even fQ2(z)/φ(z) satisfies the first condition, the option prices PQ2 cannot

generate volatility smiles. Assume the log return underlying asset prices is generated

from a Gaussian distribution with volatility σ. Under risk neutral measures, the

distribution of Yt under a risk neutral measure is normal with volatility equal to σ

and the mean equal to the risk-free rate r. That is, all option prices PQ2 corresponds

to a single volatility value. With the second condition satisfied, the increasing ratio
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of fQ(z)/φ(z) ensures that fQ(z) interacts with multiple Gaussian distributions with

different volatilities. This ends up with volatility uncertainty implied from option

prices.

As an example, the distributions under the ET-Q measures satisfy the two con-

ditions to generate volatility smiles. The ratio of the prices under these two methods

increases as K moves towards 0 or ∞. It turns out that, the volatility smiles or

smirks may be observed if we invert the Black-Scholes option pricing formulas on the

option prices, obtained through the Esscher transform in the pervious chapters, at

different strike prices K.

4.3.3 On Discrete Time Delta Hedging for a Single Interim

Period Before Maturity

-
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Figure 4.13: The relative positions of possible realized option prices (two curves) and
the values of two hedging portfolios (straight line segments l̃1, l̃2) at time t
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In this section, we discuss a single interim period hedging for a multi-period

European option, with regard to the positions of EHRs. We focus on a put option.

Nevertheless, the hedging for a call option will have similar loss results based on

the equivalence of hedging error stated in Lemma 4.2.2. Suppose we set up a single

period hedging at time t− 1 for t < T , to hedge the time t value of a European put

option with the expiry date at T , under a two-state regime switching models. The

interim hedging error, denoted by εt, for a European put option is

εt = Pt − (∆t−1 St +Bt−1 e
r),

where Pt and St represent the option price and the underlying stock price at time

t, and ∆t−1 and Bt−1 represent the delta and bond values fixed at time t − 1. The

corresponding Pt, ∆t−1 and Bt−1 are given in (4.2.6) and (4.2.8) for call and put

options respectively. Based on εt, we have the following observations regarding the

effective hedging ranges over St for hedging εt from discrete delta hedging.

First, we can see that the EHR over St may exist for the discrete delta hedging.

The EHR exists if εt satisfies two conditions. First, there exists a stock price St, say,

St = S̃t, such that εt is negative. Second, εt monotonically increases if St moves

away from S̃t, i.e. as St moves towards 0 and as St increases from S̃t. Indeed,

∂εt/∂St = ∆t −∆t−1, (4.3.34)

where ∆t−1 is a constant and −1 < ∆t−1 < 0, given Ft−1. The value of ∂εt/∂St

depends on the value of ∆t. We have the following results for ∆t according to (4.2.9).

First, −1 < ∆t < 0; second, ∆t is increasing in St, since ∆t is computed in (4.2.9)

and is decreasing in k = log(K/St) for a fixed K; and third,

lim
St→0

∆t = −1, & lim
St→∞

∆t = 0. (4.3.35)

As a result of the second point, ∂εt/∂St is monotonically increasing in St. From

Equations (4.3.35) and (4.3.34), and the monotonic increasing property of ∂εt/∂St

in St, we see that −1 −∆t−1 < ∂εt/∂St < 0 −∆t−1 and that there exists a value
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S̃t ∈ (0,∞) satisfying

sgn(∂εt/∂St) =

{
− if St < S̃t

+ if St > S̃t

where sgn(·) is the sign function. Thus, the hedging error εt is decreasing in St as

St < S̃t and increasing in St as St > S̃t. As a result, the second condition of the

existence of EHR satisfied.

However, the first condition may not be satisfied for the existence of the EHR.

That is, we may not have minSt εt < 0. We illustrate this issue in Figure 4.13, where

the curves represent option prices and the straight line segments represent the value

of hedging portfolio at time t. In the figure, the EHR exists if there is a range of St

at which the portfolio values are greater than option prices. However, in the figure,

if the curve in the above represents option prices, then the portfolio value is smaller

than the option price for each St. That is, no EHR exists.

In the content of regime switching models, two curves illustrated in Figure 4.13

may represent different realized option prices at time t given different regimes ρt.

If the option price is always higher than the value of the hedging portfolio in one

regime, the hedging is insufficient. This ia an extra risk under the regime switching

models. To set up an investment portfolio, we need to balance the earning in one

regime and reducing the risk of insufficient hedging in other regimes.

4.3.4 Examples

In this section, we illustrate the results obtained in this section with examples under

the discrete time regime switching models investigated in previous chapters.

Example 11. This example discusses the simplest relationship between density func-

tions, say, fQ1(z) and fQ2(z), under two risk neutral measures displayed in Fig-

ure 4.14. In the figure, fQ1(z) and fQ2(z) intersect at k1 and k2.

Lemma 4.3.2. (CQ) Let Ñ denote the number of intersections between densities

under two risk neutral measures Q1 and Q2 for a continuous random variable Z =
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fQ2(z), fQ1(z)

Figure 4.14: Risk neutral densities fQ2(z), fQ1(z) under the thick-tailed relationship
Assume fQ2(z) > fQ1(z) in tails and fQ2(z) < fQ1(z) in the center.

-

6

k′ K

0

PQ2 − PQ1

Figure 4.15: Price difference
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logST/St,

(a). Ñ ≥ 2;

(b). If Ñ = 2, say k1 and k2, then there exists a unique k′, k1 < k′ < k2 satisfies

Q1(Z ≤ k′) = Q2(Z ≤ k′) for two risk neutral measures Q1 and Q2 with two

cross points in their densities (illustrated in Figure 4.14).

Proof. (a). Ñ 6= 0; otherwise, one density curve is always above the other. As a

result, one of them is not a proper probability density functions. If Ñ = 1, then

Q1 and Q2 satisfy the strict stochastic ordering, a contradiction to Proposition 4.1.1

regarding two risk neutral measures.

b). From Lemma 4.3.1, there exists k = k′ such that Q1(Z ≤ k′) = Q2(Z ≤ k′).

It is obvious that k1 < k′ < k2. The uniqueness of k′ in Figure 4.14 can be proved

if Ñ = 2, say Z = k1 and Z = k2 as the only two cross points of the two density

functions. In this case, Q2(Z ≤ k)−Q1(Z ≤ k) is strictly positive or negative{
Q2(Z > k)−Q1(Z > k) < 0, ∀k < k′

Q2(Z > k)−Q1(Z > k) > 0, ∀k > k′,
(4.3.36)

which is obvious. �

Based on fQ2 and fQ1 in Figure 4.14, with fQ2 assumed to be higher in the tails,

we have Q2>LTO Q1 and Q2>RTO Q1 at a k′ ∈ R for Z. According to Proposi-

tion 4.3.2, PQ2 − PQ1 has a bell shape as displayed in Figure 4.15 for European call

or put options.

Example 12. In this example, we study the price difference between the ET-Q
method and the Black–Scholes method, based on the comparison of their risk neural

measures. Let QET−Q represent the ET-Q probability measure, and fET−Q(z) rep-

resent the density of the random variable Z; let Φ(·) represent the standard normal

distribution function, with density function φ(·). The density functions fET−Q(z) and

φ
(

z−r
σ

)
are illustrated in Figure 4.16 for T = 30 months. Compared with φ

(
z−r
σ

)
,

the density fET−Q(z) has a higher kurtosis, which means it is higher in the tails and

around the center area.
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Figure 4.16: Q Densities of T = 30 (ET-Q: dotted line, Black–Scholes: solid line)

The two densities are illustrated by Figure 4.17. In the figure, based on the results

in Lemma 4.3.2, there exists k1, k2, k3 to divide the range of z into four regions: A, B,

C, and D, with QET−Q(Z ≤ ki) = Φ
(

z−ki

σ

)
for i = 1, 2, 3. Thereby, the probabilities

of Z falling within each of the four regions are the same under ET-Q measure and

under the risk neutral Gaussian measure; thus, the probability of Z in each region

can be normalized to one. Let WET−Q
A = ZI(Z∈A), where I(·) is an indicator function

and WET−Q
A has the density function

f(WA = w) =

{
fET−Q(z)/QET−Q(Z ≤ k1) w ∈ A
0 o.w.

Similarly, we can define WET−Q
i for i = B,C,D and WLN

i for i = A,B,C, and D.

Then, we have the stochastic ordering relationships given in Table 4.6.

Based on these stochastic orders for W , we can infer the price difference, ap-

proximated by Figure 4.18, according to Proposition 4.3.2. It is worth noting again

that in the relationship the density under the ET-Q measure has a larger kurtosis
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Figure 4.17: Densities of φ
(

z−r
σ

)
and f ET−Q (z), which is higher in the tails and in

the center.
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Figure 4.18: Option price difference
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stochastic ordering

−WET−Q
A >st. −WLN

A

−WET−Q
B <st. −WLN

B

WET−Q
C <st. W

LN
C

WET−Q
D >st. W

LN
D

Table 4.6: Stochastic ordering in 4 regimes

compared with the normal density. This property is consistent with the observations

based on market prices, and it implies the volatility smiles (see Hull, 2006). More

specifically, let PET−Q(K) represent the option price under the ET-Q method, and

PLN represent the Black–Scholes prices. Let D := PET−Q(K) − PLN(K). Then,

D increases with K in region A, decreases in region B, increases in region C, and

decreases in region D.

Example 13. This example illustrates the volatility smiles or smirks implied by the

ET-Q prices. Figures 4.19 and 4.20 illustrate that the price ratio PET−Q(K)/PLN(K)

increases as K moves towards zero for put options, and increases or decreases for call

options as K increases. As a result, according to Remark 4.3.4, the prices PET−Q(K)

generate the volatility smiles or volatility smirks as shown in Figure 4.21

Example 14. Figure 4.22 illustrates the bell shape of option price differences PQ2−
PQ1 against the strike prices K, with two risk neutral measures Q1 and Q2 satisfying

Q2 >LTO Q1 and Q2 >RTO Q1 at a k ∈ R. In the RSLN2 model, the risk neutral

distribution of ST conditional on ρ0 = 2 has thicker tails than the distribution

conditional on ρ0 = 1. If Qρ0=i denotes the pricing measure under ρ0 = i, we have

Qρ0=2 >RTO Qρ0=1 and Qρ0=2 >LTO Qρ0=1 at a k ∈ R. Thus, the price differences

Pρ0=2−Pρ0=1 has a bell shape for both calls and puts, according to Proposition 4.3.2.

In Figures 4.22, the difference Pρ0=2 − Pρ0=1 is smaller if the option maturity

is longer. This can be explained by that the two underlying distributions in the

RSLN2 model get closer to each other when T gets longer (see, for example, Lawler

2006). Let R[ij], i, j ∈ {1, 2} denote the sojourn of regime [ij]. Then, we can see

that the expectation EP(R[ij]|ρ0 = j) converges to the stationary probability πij for
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Figure 4.19: Call Option Price Ratio: ET-Q/B-S

Y-axis: call price ratios PET−Q
c /PB−S

c ; X–axis: strike prices K = 0, . . . , 300;S0 = 100.
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Figure 4.20: Put Option Price Ratio: ET-Q/B-S

Y-axis: put price ratios PET−Q
p /PB−S

p ; X–axis: strike prices K = 0, . . . , 300;S0 = 100.
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Figure 4.21: Volatility Smile Implied from the Option Prices under ET-Q Method

all regimes, i.e., in the long run,

lim
T→∞

[
EP (R[ij]|ρ0 = 1

)
,EP (R[ij]|ρ0 = 2

)]
=
[
π[ij], π[ij]

]
.

Consequently, in the long term, the underlying distributions converges to each other,

and the option price difference diminishes with regard to different ρ0.

Example 15. Figure 4.23 illustrates the bell shapes of PQ2−PQ1 against the initial

underlying asset price S0, with the two risk neutral measures Q1 and Q2 satisfying

Q2 >LTO Q1 and Q2 >RTO Q1 at a k ∈ R. More specifically, under the RSLN2

models, the risk neutral distribution of ST conditional on ρ0 = 2 has thicker tails

than the distribution conditional on ρ0 = 1. As a result, Qi refers to the pricing

measure conditional on ρ0 = i, and satisfies the claimed tail ordering relationship.

According to the Remark 4.3.2, the option prices obtained from Q1 and Q2 are

different and their difference has a bell shape against S0. This result is observed in
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Figure 4.23, for both call and put options.

4.4 Summary and Conclusion

In this chapter, we show the restriction of applying strict stochastic ordering for

comparing distributions under different risk neutral measures. As a result, we define

right and left tail ordering as a tool. With this tool, we study the hedging results,

by comparing the defined effective hedging ranges for European call and put options

for single period discrete time delta hedging errors. We also investigate the option

prices using the tail ordering, and use the results of option price ratios to deduct

the implication of implied volatility smiles. In a conclusion, the difference in the tail

thickness under different risk neutral measures can be represented by tail ordering.

This ordering may be an effective tool for pricing and hedging analysis.
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Figure 4.22: Bell shapes of price difference Pρ0=2−Pρ0=1 against K under the RSLN2
models, with different maturities (1 month - 120 months) at Example 14.
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Figure 4.23: Bell shapes of price difference Pρ1=2−Pρ1=1 against S0 under the RSLN2
models, with different maturities (1 month - 120 months) at Example 15.
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Chapter 5

Conclusion and Future Works

The regime switching lognormal model is widely used to model the asset price pro-

cesses in an incomplete market. Pricing and hedging derivative under such a model

is of great interest. To price under the no arbitrage condition, we need an equivalent

martingale measure. However, under regime switching models, the market is incom-

plete, and hence there is an infinite number of equivalent martingale measures. In

my thesis, I adopted the risk neutral conditional Esscher transform to determine an

equivalent martingale measure (ET-Q), and formally proved that the market will not

admit arbitrage opportunity if options are priced under such a equivalent martingale

measure.

In my research up to now, I have focused on European options. The resulting

pricing formula developed based on the ET-Q is expressed as a double expectation,

where the inner expectation can be calculated by the usual Black-Scholes formula

conditional on the regime paths, while the outer expectation is the average over all

possible regime paths. As the number of the regime paths increases exponentially

with the length of the expiration, I developed an iteration algorithm to efficiently

reduce the number from an exponential time to a polynomial time. Moreover, I also

conducted some comparison between the prices for European options obtained by

our ET-Q method with those by the Black–Scholes method and the NEMM method.

The ET-Q method captures interesting characteristics for option prices and displays
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its advantage in a preliminary hedging study.

We apply the Esscher transform to risk neutral pricing for derivatives on mul-

tiple assets under the discrete time regime switching processes. The option prices

are calculated using double expectations, with the inner expectation calculated con-

ditional on a fixed regime transition path. For the inner expectation, there is no

uncertainty for regime transition involved and hence we can borrow many developed

pricing methods available in literature. Through the study on multivariate options,

we investigated various multivariate pricing issues such as the impact of different

dependence structure.

Besides pricing, we analyzed hedging by comparing delta hedging performance

from three different risk neutral methods (the Black-Scholes method, the NEMM

method and the ET-Q method) along with the study of hedging performance from the

mean variance hedging method, under the regime switching lognormal models. The

study shows that the ET-Q method provides consistent better protection, at extra

costs, for out–of–money put options with different length of maturities, in terms

of hedging loss probabilities, expected hedging loss, and the positions of effective

hedging ranges.

We further study delta hedging for more general incomplete markets with the

choice of different risk neutral measures. By exploiting the so-called tail stochastic

ordering, and more specifically the monotonic behavior of the ratio of two probability

densities in the tails, we study the pricing and delta hedging difference for European

options under two different risk neutral pricing measures. The analysis also helps to

better understand some practical issues, such as volatility smiles.

5.1 Future Work

Capitalizing on the momentum of my research program, I plan to explore further

in directions of both hedging and pricing options under regime switching models.

For example, I plan to explore the application of the Esscher transform to more

complex derivatives, and for dynamic hedging strategies in the incomplete markets
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models incorporating the regime switching process. Some of my future plans are

listed below.

5.1.1 Bermudan and Other Path-dependent Options

Our pricing method is developed for long term options; thus it is of interest to apply

it to the embedded options in insurance and annuity products. Many of these are

path-dependent. It may be difficult to directly apply the regime path reduction

developed in chapter 1. We may instead use simulation, with variance reduction, for

pricing. We plan to start with the Bermudan option.

A Bermudan option gives the owner the right to exercise the option at a set

of discrete times. The free exercising time raises difficulty in determining the no-

arbitrage price. Motivated by prevalent tools in pricing the American put options,

I plan to explore the value of the Bermuda put option by solving a discrete time

optimal stopping problem.

Assume a discrete time line t = 0, . . . , T , and consider the time 0 price of a

Bermudan put option with maturity date at T . Let τ̂ represent the optimal exercising

time. Then, τ̂ is the solution to the following optimization problem:

τ̂ = arg max
τ

EQ[e−rτ (K − Sτ )
+], (5.1.1)

and the option price is

EQ[e−rτ̂Vτ̂ ]. (5.1.2)

To determine τ̂ , we solve the optimization by the backward dynamic programming,

which is a sequence of optimizations from t = T − 1 to t = 0, and achieve a sequence

of values, denoted by Vt, 0 ≤ t ≤ T , as follows:{
VT = (K − ST )+

Vt = max[ (K − St)
+, e−rEQ(Vt+1|Ft) ], 0 ≤ t ≤ T − 1,

(5.1.3)
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where (K − St)
+ is called the intrinsic value at time t and e−rEQ(Vt+1|Ft) is called

the continuing value, which is denoted by ξt and is Ft–measurable. In dynamic

programming, the value VT , is the payoff of a put option. The value Vt, 0 ≤ t < T

is the maximum of the intrinsic value and the continuing value. The value V0 is

the resulting option price. Based on backward dynamic programming, the optimal

stopping time τ̂ is

τ̂ = min(t, t ∈ (0, 1, . . . , T )|(K − St)
+ ≥ ξt), (5.1.4)

To determine the dynamic program under the RSLN2 models, we try to employ

the risk neutral measure obtained by the Esscher transform, as described in chapter

one, and to develop the no–arbitrage pricing methods. The no–arbitrage pricing

should be feasible based on the extension of the pricing for European options, with

additional consideration of all possible exercising times.

5.1.2 Alternative Multivariate Esscher Transforms

Based on different information of market data, it is also of interest to investigate

alternative multivariate Esscher transforms to identify the unique risk neutral pricing

measure. The following are some examples.

The Esscher Transform on the Returns of Asset Prices

Let ηs,l = Ss,l/Ss−1,l and ηs,• = (ηs,1, . . . , ηs,N). Then, an alternative Esscher trans-

form is defined on ηs,l (Mcleish, 2005) as follows

dQ
dP

∣∣∣∣
Ft

=
t∏

s=1

eh
′
s,•ηs,•

EP(eh
′
s,•ηs,•| Fs−1)

, (5.1.5)
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for t = 1, . . . , T , and the Esscher transform parameters hs,k, k = 1, . . . , N satisfies

the following N equations

er =
EP[ηs,l e

h′s,•ηs,•| Fs−1]

EP[eh
′
s,•ηs,•| Fs−1]

= EQ [eYs,l| Fs−1

]
, l = 1, . . . , N, (5.1.6)

for all s = 1, . . . , t, where Q is identified by the Radon-Nikodym derivative (5.1.5).

We denote the resulting Q as METS-Q.

Based on the Esscher transform defined in (5.1.5), we can obtain the Ft−1-

measurability of ht,• (based on, say, the results of Corollary 2.5 in Brown (1986)).

However, a disadvantage of using this approach is the existence of the moment gen-

erating function of ηt,• = (eYt,1 , . . . , eYt,N ) conditional on Ft−1. However, this model

is still worth being investigated for certain models, and has potential interest due to

its relationship with entropy optimization.

Lemma 5.1.1. The METS-Q measure identified through the Radon-Nikodym deriva-

tive (5.1.5) and conditions (5.1.6) is a risk neutral measure.

Proof. As hs,• ∈ Ft−1 for s ≤ t, we apply dQ
dP

∣∣
Ft

defined in (5.1.5) as follows:

EQ
(

St,l

St−1,l

∣∣∣∣ Ft−1

)
= EP

[
eYt,l

dQ
dP |Ft

dQ
dP |Ft−1

∣∣∣∣∣ Ft−1

]
(5.1.7)

= EP

[
ηt,l

eh
′
t,•ηt,•

EP[eh
′
t,•ηt,•|Ft−1]

∣∣∣∣∣ Ft−1

]
= er,

where ηs,l = Ss,l/Ss−1,l, and the last equation is given in the conditions (5.1.6) with

s = t. Thus, the METS-Q measure is a risk neutral measure. �

Alternative Risk Neutral Conditions

Another alternative method to obtain the uniqueness of ht,• is based on the mod-

ification of the risk neutral conditions as follows. The Radon-Nikodym derivative
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dQ/dP|Ft defined as follows

dQ
dP

∣∣∣∣
Ft

=
t∏

s=1

eh
′
s,•ys,•

EP(eh
′
s,•Ys,•| Fs−1)

, t = 1, . . . , T, (5.1.8)

where the Esscher transform parameter hs,• satisfies the following N equations

r =
EP[Ys,le

h′s,•Ys,•| Fs−1 ]

EP[eh
′
s,•Ys,•| Fs−1]

= EQ [Ys,l| Fs−1] , l = 1, . . . , N, (5.1.9)

for a constant risk free rate r and for s = 1, . . . , t. The equivalent martingale measure

identified by (5.1.8) is denoted by METY-Q. Using this approach, we can achieve

the Ft−1-measurability of ht,•. It is, however, a great challenge to develop the risk

neutral pricing based on the new numeraire, the martingale process of (Yt,•)t, instead

of stock prices.

Alternative Risk Neutral Conditions II

We may represent the underlying assets Y1, . . . , YN , using other random variables

Z1, . . . , ZN , as follows.

Yt,1 = a1,0 + a11Z1

Yt,2 = a2,0 + a21Z1 + a22Z2

· · · (5.1.10)

Yt,N = aN,0 + aN1Z1 + aN2Z2 + · · ·+ aNNZN

This representation is possible when Yt,1, . . . , Yt,N is multivariate normal. As a result,

the Esscher transform parameters may be determined one by one, from ht,1 associated

with the risk neutral condition of St,1, to ht,N associated with that of St,N .

5.1.3 Other Topics

The following are some examples.
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1. Consider optimal hedging under the RSLN2 model. In the RSLN2 model, the

exact replicating function for V (St+1) is uncertain and dependent on ρt+1. As a

result, the hedging may not be simply obtained from pricing, due to the lack of

replicating process for regime switching. Thus, the hedging may use a dynamic

optimization process. The hedging strategy at time t may be optimized based

on the analysis of prices and hedging effects for different ρt+1 according to

results in chapter 4.

2. It may be of interest to investigate the more general form of univariate and

multivariate Esscher transforms, and the possibility of representing an ad hoc

risk neutral measure through the Esscher transform. In the literature, Kajima

(2006) and Wang (2007) have studied the links between distortion and the

Esscher transform; Monfort and Pegoraro (2012) have studied second moment

Esscher transforms for asset pricing. We plan to incorporate other forms of

transform on the underlying random variables into the Esscher transform to fit

the selected risk neutral measures.
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