I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Abstract

Several important compiler optimizations such as instruction scheduling and register allocation are fundamentally hard and are usually solved using heuristics or approximate solutions. In contrast, this thesis examines optimal solutions to three combinatorial problems in compiler optimization. The first problem addresses instruction scheduling for clustered architectures, popular in embedded systems. Given a set of instructions, the optimal solution gives the best possible schedule for a given clustered architectural model. The problem is solved using a decomposition technique applied to constraint programming which determines the spatial and temporal schedule using an integrated approach. The experiments show that our solver can tradeoff some compile time efficiency to solve most instances in standard benchmarks giving significant performance improvements. The second problem addresses instruction selection in the compiler code generation phase. Given the intermediate representation of code, the optimal solution determines the sequence of equivalent machine instructions as it optimizes for code size. This thesis shows that a large number of benchmark instances can be solved optimally using constraint programming techniques. The third problem addressed is the placement of data in memory for efficient cache utilization. Using the data access patterns of a given program, our algorithm determines a placement to reorganize data in memory which would result in fewer cache misses. By focusing on graph theoretic placement techniques, it is shown that there exist, in special cases, efficient and optimal algorithms for data placement that significantly improve cache utilization. We also propose heuristic solutions for solving larger instances for which provably optimal solutions cannot be determined using polynomial time algorithms. We demonstrate that cache hit rates can be significantly improved by using profiling techniques over a wide range of benchmarks and cache configurations.
Acknowledgements

I would like to thank all the people who made this thesis possible and assisted me during my time in Waterloo. I would specially like to thank my supervisor Peter van Beek for his continuous support, his valuable advice and his endless patience throughout my doctoral studies. I would also like to thank my supervisor Ondrej Lhotak for his support and advice. I cannot fully thank my wife and children for their constant support and their tremendous patience during my time at Waterloo. I would like to thank my external examiner Gregory Steffan for his insightful comments which helped me improve my thesis. I would like to thank the other committee members, Peter Buhr, Gordon Cormack and Patrick Lam for their corrections and review of the thesis. I would like to thank Imtiyaz for his incessant care, continuous assistance and encouragement to complete this thesis. I would like to thank Nabeel Ahmed for his assistance, Syed Farogh for keeping my level of sanity in check, the late Tariq Naqvi for clearing my thought process, Rafay Jamil for showing me how to focus, Nabeel Ishtiaq for showing me the will to sacrifice, Adil Cheema for his creative ideas, Ashar Burghuri for his lively character, Ahmar Buhrguri for showing me how to be steadfast, Furqan Khan for showing me what potential means, Riaz-ul-Haq for encouraging me to grab opportunities, Umar Farooq Minhas for the motivation to finish, Taha Rafiq for being the good office-mate that he was, Abid Malik for his initial advice, Usman Ali for showing me that there is something positive in everybody, Mohammed Waqqas for showing me that everyone is not at the same level, Shaik Abdullah ElSayed for his teaching, Syed Abdul Mannan for showing me that there is more to life than just survival, Hafiz Kaleem for showing me what is consistency in purpose, Sharjeel Sohail for showing me how confusing the world has become, Nayyar Sohail for his etiquette, Alkan Mehmet for taking the burden of my financial paperwork, Ashraf Beg for his unrelenting checks, Niaz Ahmed for showing me that retirement is only a state of mind, and Omer Thai for showing me that not everything has to be said in words. Lastly, I would like to thank my family, especially Khala, for their moral support and encouragement.
Dedication

To my parents, for their love
Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
 1.1 Motivation .. 2
 1.2 Problems and Questions 2
 1.3 Thesis Organization 5

2 Scheduling for Clustered Architectures 7
 2.1 Motivation ... 8
 2.2 Background ... 10
 2.2.1 Clustered Architectures 10
 2.2.2 Instruction Scheduling 12
 2.2.3 Constraint Modeling 15
 2.3 Constraint Programming Approach 17
 2.3.1 Symmetry Breaking 19
 2.3.2 Branch and Bound 21
 2.3.3 Connected Structures 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Solving an Instance</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental Evaluation</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Experimental Setup</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Experimental Results & Analysis</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Related Work</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Exact Instruction Selection</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Motivation</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Background</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Constraint Programming Approach</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Selection Algorithm</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Constraint Propagation</td>
<td>56</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Branch and Bound</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental Evaluation</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Implementation Framework</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Experimental Setup</td>
<td>60</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Experimental Results & Analysis</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Related Work</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>Cache-Conscious Data Placement</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Motivation</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Background</td>
<td>73</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Processor Cache Optimization</td>
<td>74</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Graph Theory</td>
<td>76</td>
</tr>
</tbody>
</table>
4.3 Data Assignment to Cache .. 79
 4.3.1 Conflict Graph Construction 79
 4.3.2 Conflict Graph Classification 82
 4.3.3 Data Placement ... 84
4.4 Experimental Evaluation ... 87
 4.4.1 Experimental Setup ... 87
 4.4.2 Experimental Results & Analysis 90
4.5 Related Work ... 94
4.6 Discussion ... 97
4.7 Summary .. 99

5 Conclusions and Future Work 100

APPENDICES .. 103

A ILP formulation in Koes and Goldstein (2008) 104

B Suboptimality of Dynamic Programming on DAGs 107

References .. 109
List of Tables

2.1 Table of notations for the scheduling problem ... 14
2.2 Table of architectural models ... 29
2.3 Table of scheduling results ... 37
2.4 Table of frequency based scheduling results .. 39

3.1 Table of notations for the instruction selection problem 52
3.2 Table of instruction selection results with $-Os$ flag 61
3.3 Table of instruction selection results for the epic benchmark 62
3.4 Table of instruction selection results with $-O3$ flag 64
3.5 Table of results for epic benchmark on various architectures 66

4.1 Table of benchmark descriptions .. 88
4.2 Table of various cache configurations ... 89
4.3 Table of results for the bisort benchmark .. 96
4.4 Table of results for the mst benchmark .. 97
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Model of a dual-cluster processor</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustrated example of the temporal/spatial scheduling problem</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Constraint programming example</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Example basic block and search tree</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Search tree for the improved constraint model</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>An example of inconsistent assignment in the constraint model</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Examples of connected structures</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Scheduling results for a 2-cluster 2-issue architecture</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Scheduling results for a 4-cluster 2-issue architecture</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Scheduling results on average</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>Scheduling results for the applu benchmark</td>
<td>34</td>
</tr>
<tr>
<td>2.12</td>
<td>Scheduling results for the gzip benchmark</td>
<td>35</td>
</tr>
<tr>
<td>2.13</td>
<td>Superblocks from applu and gzip benchmarks</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Instruction selection in a typical compiler</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Running example for the instruction selection problem</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Example tiles from the PowerPC architecture</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Two different tilings for the running example</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Constraint propagation illustrated</td>
<td>58</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

This thesis demonstrates that difficult combinatorial problems that arise in optimizing compilers can be practically solved using techniques in mathematical optimization. Compiler optimizations attempt to minimize the resource consumption of the compiled code such as the execution time or memory usage. Compiler optimization is a well studied area and multitudes of techniques for optimizing compilers have been developed and improved upon for several decades.

Several problems in compiler optimization have been shown to be NP-complete or NP-hard. This implies that no algorithm currently exists that can solve worst case instances of the problem in a reasonable length of time. Therefore, compiler programmers as well as compiler researchers have invested an enormous amount of time and effort to develop heuristics and approximate solutions for problems such as instruction selection, instruction scheduling and register allocation. However, the worst case instances rarely occur in practice. In this work we demonstrate that it is possible to solve difficult compiler problems more precisely than existing heuristic solutions. This thesis examines combinatorial solutions for spatial and temporal scheduling, instruction selection and cache optimization. We show that the problems can be solved efficiently and accurately for several benchmark instances representing commonly used computer programs.

In this chapter we discuss the motivation for selecting the three compiler optimization problems and we highlight the questions posed by the problems studied in this thesis. A brief outline of the rest of the thesis is then provided.
1.1 Motivation

The tasks computers perform are a consequence of software programs. Each program is written in a specific programming language which is then transformed by a compiler into machine understandable code. This means that the performance of programs is heavily dependent on the quality of code that compilers generate. Many problems that a compiler solves during the different stages of program transformation are fairly complex.

Compiler writers have long been aware of the hardness of several compiler optimization problems. Problems such as instruction selection, instruction scheduling and register allocation are examples of a few hard problems that the compiler has to handle during the code generation phase. In practice, compilers employ heuristics that efficiently solve these problems but give no guarantees on the quality of the solution. However, in many instances, these problems can be solved precisely within reasonable compile times. We are interested in solving compiler optimization problems accurately. Combinatorial optimization techniques provide tools that not only can be used to solve these problems precisely but also provide guarantees on the solution quality and produce better results, in most cases, as compared to heuristic techniques.

Until recently, combinatorial optimization techniques were not considered practical for solving difficult compiler optimization problems because of unreasonably long computation times as compared to their heuristic counterparts. However, recent advances in combinatorial optimization techniques along with advances in CPU technology and the availability of more memory has decreased the computation time for exact solutions to within tolerable limits. It is worth mentioning here that most programs are compiled once before being deployed and executed repeatedly, sometimes for years. This means that a compile time extending over a few days is not out of the question for a release version of a program if it results in a better performing executable.

1.2 Problems and Questions

Code generation refers to the last phase of compiler optimizations that includes instruction selection, instruction scheduling and register allocation. Code generation has been studied extensively and a large body of research exists that studies both the practical aspects as well as computational complexity of the problems in this phase of compilation. The first
problem addressed in this thesis is spatial and temporal scheduling for clustered architectures, commonly featured in embedded processor designs. Clustered architectures feature groups of functional units grouped together to form individual processing units with the ability to communicate with other clusters on the same chip. The problem differs from other scheduling problems in that scheduling for space and time requires distribution of instructions over the clusters as well as obtaining the best schedule given the resource and communication constraints. However, like regular instruction scheduling, this problem is known to be NP-hard.

Besides being an interesting combinatorial problem, scheduling for clustered architectures is of practical interest since these architectures feature in commonly used embedded processors such as the TMS320C64x digital signal processor family. Earlier works have proposed greedy approaches based on list scheduling [Nagpal and Srikant, 2008], and phased approaches based on graph partitioning [Chu et al., 2003]. These methods employ heuristics and can produce results which differ significantly from the optimal solution. Other than improving the quality of the solution, another interesting research question is whether a given schedule is provably optimal or not and whether there is any benefit in applying further optimizations.

The initial phase of code generation is known as instruction selection. In this phase of optimization the compiler transforms the intermediate representation of code to architecture specific machine instructions. Later phases in code generation use the same set of instructions determined by instruction selection. Optimal algorithms that can solve the problem in polynomial time exist if the intermediate code representation is in the form of a tree. In practice, however, the compiler intermediate representation is given by directed acyclic graphs on which instruction selection is known to be NP-complete. Production compilers employ heuristic solutions to solve instruction selection. However, given its impact on the later stages of compiler optimization, specifically scheduling, it is interesting to determine how the current techniques compare with exact selection algorithms.

The study of instruction selection has focused on swift code transformation. Techniques that attempt to solve or model the problem exactly either do so for unconventional architectures [Bashford and Leupers, 1999][Bashford and Leupers, 1999] or falter by describing an erroneous ILP formalization [Koes and Goldstein, 2008](see Appendix A). The reason for examining this problem is to determine how combinatorial optimization performs in solving instruction selection accurately for practical programs and architectures. Another
aspect of studying exact instruction selection is to see the practical viability of the optimal techniques. Even if the solution quality does not improve significantly in many cases, as shown later, there is a benefit for compiler writers in knowing which algorithms are very close to optimal and further efforts can be diverted to other optimizations.

Another interesting optimization question, unrelated to code generation, is whether cache optimizations can be applied at compile time. To answer this question this thesis studies the theoretical and practical limits of offline cache optimization. Processors make use of caches by loading frequently accessed data onto the chip to improve performance. The efficient utilization of processor caches can improve data availability and thereby improve program performance. Offline cache optimization refers to the problem of reorganizing the data in memory, given the sequence of accesses on a finite set of data objects, such that cache-misses are minimized. In earlier work, a complete cache optimization framework was developed that uses heuristics to layout data in memory [Calder et al., 1998]. Later, theoretical results have shown that the problem of data placement in cache is not only NP-hard but also cannot be approximated within reasonable bounds [Petrank and Rawitz, 2005]. In this thesis we concern ourselves with the techniques of determining a cache placement for data objects which is the most challenging component of the cache conscious data placement framework described in [Calder et al., 1998].

This thesis answers an interesting question about the theoretical aspect of offline cache optimization: even though the problem is NP-hard in general, are there instances in practice for which a placement can be efficiently determined? Furthermore, if the offline problem cannot even be approximated, meaning that no guarantees can be given for any solution, then what is the best that can be achieved? Specifically, can we improve on the commonly used techniques? and what are the practical limitations of the offline cache optimization approaches in general? This thesis attempts to answer these questions and presents solutions where appropriate.

In summation, this thesis studies three distinct compiler optimization problems which mix optimization, design, constraint modeling, and graph theoretic analysis to improve performance of compiler generated code. The techniques have also been evaluated on a diverse set of standard compiler benchmarks.
1.3 Thesis Organization

The rest of this thesis is organized as follows:

- **Chapter 2** examines the problem of spatial and temporal scheduling for clustered architectures. An integrated constraint programming approach is presented that employs problem decomposition techniques for solving the two problems in tandem. A basic model is presented which is later extended, allowing the solver to scale the solution for practical benchmark instances. Scalability of the constraint programming solution is also examined by comparing the performance results with traditionally used techniques.

Some of the results in this chapter appear in the following publications.

- **Chapter 3** studies the problem of instruction selection in code generation optimizations. This chapter presents a constraint programming model for selecting the best sequence of machine instructions for a given program. Having presented the basic model, an application of existing and novel enhancements to the model are introduced for improving the performance of the solver.

- **Chapter 4** starts by demonstrating that traditionally used techniques for mapping data to cache have a fickle effect on cache performance. The improvements made by recent cache optimizations are then examined. Furthermore, this chapter presents a theoretical analysis of data interaction with cache utilization and presents the details of a profile-driven approach towards cache optimization. The practical implications of the approach are then detailed and discussed.
Some of the results in this chapter appear in the following publication.

• Chapter 5 concludes this thesis by giving an overview of our findings and results. In particular, this chapter discusses the practicality of the results given in the other chapters. In addition, we also suggest areas of future research, particularly related to cache utilization.
Chapter 2

Scheduling for Clustered Architectures

Many embedded processors use clustering to scale up instruction level parallelism in a cost effective manner. In a clustered architecture, the registers and functional units are partitioned into small clusters that communicate through register-to-register copy operations. Texas Instruments, for example, has a series of architectures for embedded processors which are clustered. Such an architecture places a heavier burden on the compiler, which must now assign instructions to clusters (spatial scheduling), assign instructions to cycles (temporal scheduling), and schedule copy operations to move data between clusters. We consider the problem of scheduling instructions in superblocks on clustered architectures to improve performance. Scheduling for space and time is known to be a hard problem. Previous work has proposed greedy approaches based on list scheduling to simultaneously perform spatial and temporal scheduling, and phased approaches based on first partitioning a block of code to do spatial assignment and then performing temporal scheduling. Greedy approaches risk making mistakes that are then costly to recover from and partitioning approaches suffer from the well-known phase ordering problem. In this chapter, we present a constraint programming approach for scheduling instructions on clustered architectures. We employ a problem decomposition technique that solves spatial and temporal scheduling in an integrated manner. We analyze the effect of different hardware parameters—such as the number of clusters, issue-width and inter-cluster communication cost—on application performance. We found that our approach was able to achieve an improvement of
up to 26%, on average, over state-of-the-art techniques on superblocks from SPEC 2000 benchmarks.

2.1 Motivation

Optimizing code for embedded processors is becoming increasingly important because of their pervasive use in consumer electronics. For example, millions of cellular phones are powered by members of the ARM11 processor family. Similar processors are widely used in consumer, home and embedded applications. Their low-power and speed optimized designs (350MHz–1GHz) make them feasible for mobile devices, media processing and real-time applications. Billions of the ARM processors are shipped each year by various semiconductor manufacturers [ARM, 2011].

With the increasing complexity of embedded processor designs, clustering has been proposed to organize the functional units on a processor (see Figure 2.1). A clustered architecture has more than one register file with a number of functional units associated with each register file called a cluster. Clusters do not fetch instructions independently but share a single thread of control. Among recent examples of clustered architectures are the Texas Instruments TMS320C6x family of DSPs [Texas Instruments, 2011]. In particular, the TMS320C64x features two clusters with four functional units each and a 32×32 register file (32 registers, each of 32 bits). Clusters communicate with each other using an on-chip interconnect [Fisher et al., 2005]. Data can be moved between two clusters through an inter-cluster interconnect using an explicit copy operation.

A compiler for a clustered architecture is responsible for scheduling instructions to both time cycles (temporal scheduling) and clusters (spatial scheduling). The primary goal of scheduling on a clustered architecture is to identify parts of the program which can be executed concurrently on different clusters in the processor and exploit instruction level parallelism. Previous work has proposed heuristic approaches to partition straight-line regions of code for clustered architectures (see [Aleta et al., 2009] and the references therein; for some recent work, also see [Ellis, 1986; Rich and Farrens, 2000; Lee et al., 1998, 2002]). Chu et al. [2003] describe a hierarchical approach, called RHOP, to determine partitions of a given dependence graph (see the Related Work section for details). We use RHOP for comparison in the evaluation section.
In this chapter, we present a constraint programming approach for spatial scheduling for clustered processors where clusters can communicate with each other using a cluster interconnect with some non-zero cost. Our approach is robust and searches for an optimal solution. In a constraint programming approach, a problem is modeled by stating constraints on acceptable solutions, where a constraint defines a relation among variables, each taking a value in a given domain. The constraint model is usually solved using backtracking search. The novelty of our approach lies in the decomposition of the problem and our improvements to the constraint model in order to reduce the effort required to search for the optimal solution. Our approach is applicable when larger compile times are acceptable. In contrast to previous work we assume a more realistic instruction set architecture containing non-fully pipelined and serializing instructions.
In our experiments we evaluate our approach on superblocks from the SPEC 2000 integer and floating-point benchmarks, using different clustered architectural configurations. We compare our results against the hierarchical partitioning scheme for spatial and temporal scheduling, RHOP [Chu et al., 2003]. We experiment with various inter-cluster communication costs from one to eight cycles to analyze the effects of inter-cluster communication on program performance. We discover from our experiments that our algorithm was able to improve schedule costs of superblocks in the SPEC2000 benchmarks up to 26% on average over RHOP, depending on the architectural model. Also in our experiments we were able to solve a large percentage of blocks optimally with a reasonable timeout for each instance. This represents a significant improvement over existing solutions. Furthermore, there is no current work that systematically evaluates the impact of communication cost on the amount of extractable parallelism.

The rest of this chapter is organized as follows. Background material is given in Section 2.2. Section 2.3 gives details of our approach and improvements to a basic constraint model. Section 2.4 describes the experimental setup, the results, and an analysis of the results. Section 2.5 gives an overview of related work. Finally, the chapter concludes with a summary in Section 2.6.

2.2 Background

This section provides the necessary background required to understand the material described in the rest of this chapter. It also gives formal problem statements along with the assumptions made for our solutions.

2.2.1 Clustered Architectures

For the purposes of this chapter the following architectural model is assumed. We consider a clustered architecture commonly featuring in DSPs such as TMS320C64x DSP family [Texas Instruments, 2011] of processors from Texas Instruments and CEVA CEVA-X DSP family [CEVA, 2012]. These DSPs feature a small number of clusters with each cluster having a private set of registers. The register values can be transferred between clusters over a fast interconnect using explicit move operations. In general, the following holds for our architecture model.
• Clusters are homogeneous. This means that all clusters have the same number of identical functional units and the same issue-width. A functional unit is a specialized component of a processor that is responsible for executing the operation specified by an instruction. The issue-width specifies the maximum number of instructions that can simultaneously begin execution on a cluster.

• The instruction set architecture is realistic as compared to commonly used architectural models in instruction scheduling. In addition to pipelined instructions, the instruction set contains non-pipelined instructions, requiring the instruction pipeline to be clear when it is issued, as well as serializing instructions. A serializing instruction needs the entire cluster on which it is issued in the cycle it is issued. Thus, both of these types of instructions may disrupt the instruction pipeline.

• A value computed by one cluster can be communicated to another cluster to be used as an operand in subsequent computations. This is called an inter-cluster move. This move has a constant non-zero latency of \(c \) cycles. After the result of an instruction is available, it would take \(c \) cycles to transfer the resultant value to a different cluster where it is needed. We assume no limit on the inter-cluster communication bandwidth; i.e., the number of inter-cluster moves that can occur in a given cycle. We assume every cluster can communicate values to every other cluster, as is typical in architectures such as TMS320C64x.

The architectural model given above is similar to the model used in evaluating the graph-based hierarchical partitioning technique RHOP [Chu et al., 2003]. The differences are the following. Our model is more restricted in that RHOP does not assume homogeneous clusters. Our model is more general in that RHOP does not consider non-pipelined or serializing instructions which are common features of realistic instruction set architectures. In addition RHOP has so far only been evaluated with an inter-cluster communication cost of one.

Communication between clusters is a well studied problem. Terechko and Corporaal [2007] present a comparative evaluation of different techniques for inter-cluster communication including dedicated issue slots, extended operands, and multicast. Parcerisa et al. [2002] discuss an evaluation of various cluster-interconnect topologies including mesh, ring and bus interconnects and their variants. Aggarwal and Franklin [2005] examine hierarchical interconnects. The important item to note here is that, while the inter-cluster
communication cost is small on some popular architectures, it is not always negligible in practical clustered architectures.

2.2.2 Instruction Scheduling

A compiler schedules instructions to take advantage of the features of the architecture and exploit instruction level parallelism in the code. Instruction scheduling is performed on certain regions of a program. A basic block is a region of straight-line code with a single entry point and a single exit. A superblock is a sequence of instructions with a single entry point and multiple possible exits. We use the directed acyclic graph (DAG) representation for basic blocks and superblocks. In our evaluation a DAG represents a superblock. Each vertex in the DAG corresponds to an instruction and there is an edge from vertex i to vertex j if instruction j uses the result of instruction i. The edge is labeled with a non-negative integer $l(i,j)$ which represents the delay or latency between when the instruction is issued and when the result of instruction i is available for instruction j.

The critical path distance from a vertex i to vertex j in a DAG is the maximum sum of the latencies along any path from i to j. The earliest start time of a vertex i is a lower bound on the earliest cycle in which the instruction i can be scheduled; i.e., the minimum number of time cycles needed for the execution of the instructions on which i depends. Exit vertices are special nodes in a DAG representing branch instructions in superblocks. Each exit vertex i is associated with a weight $w(i)$ representing the probability that the flow of control will leave the block through this exit point. These have been calculated through profiling. See Figure 2.2(a) for a DAG representing a superblock.

With the given architectural model and the dependency DAG for a basic block or a superblock, the spatial scheduling problem can be described as an optimization problem where each instruction has to be assigned to a clock cycle and also assigned to a cluster such that the latency and resource constraints are satisfied.

Definition 2.2.1 (Temporal Schedule) A temporal schedule S for a block is a mapping of each instruction in a DAG to a start time measured in processor clock cycles.

Definition 2.2.2 (Weighted Completion Time) The weighted completion time for a superblock schedule is given by the summation $\sum_{i=1}^{n} w(i)S(i)$, where n is the number of
Figure 2.2: (a) DAG representation of a superblock, where G and H are branch instructions with exit probabilities of 20% and 80% respectively. B is a serializing instruction and C is a non-pipelined instruction. (b) A possible schedule for the superblock given in (a) for a single cluster which is dual-issue and has two functional units. One functional unit can execute clear instructions and the other can execute shaded instructions. The weighted completion time for the schedule is $8 \times 0.2 + 9 \times 0.8 = 8.8$ cycles. (c) A possible schedule for the same superblock for a dual-cluster processor where the clusters can communicate with unit cost and each cluster is the same as the cluster in (b) The assignment of C, E and G to cluster c_1 and the rest of the instructions to c_0 results in a schedule with weighted cost of $6 \times 0.2 + 8 \times 0.8 = 7.6$ cycles.

exit nodes, $w(i)$ is the weight of exit i and $S(i)$ is the clock cycle in which i is issued in a schedule.

Given the definition of weighted completion time, which applies to both basic blocks and superblocks, the spatial scheduling problem can be stated as follows. Here, it should be noted that basic blocks are special superblocks with a single exit, with the flow of control
Definition 2.2.3 (Spatial Schedule) The spatial schedule for a superblock is an assignment A giving a mapping of each instruction in a DAG to a cluster. Thus the purpose of spatial scheduling is to find a cluster assignment for each instruction in the block while minimizing the weighted completion time of the block. Spatial and temporal scheduling can be combined to form a single scheduling problem where an array of all possible time/cluster slots is defined and each instruction is assigned to one of these slots. This combined approach has been the focus of earlier approaches described in the Related Work section but the proposed solutions run into scalability problems. In contrast, we define the problem in a manner such that it can be decomposed easily for our proposed solution.

Definition 2.2.4 (Spatial and Temporal Scheduling) Given the dependence graph $G = (V,E)$ for a superblock and the number of available clusters k in a given architectural model, the spatial and temporal scheduling problem is to find a spatial schedule A and a temporal schedule S that minimizes the weighted completion of the superblock, where $A(i) \in \{0, \ldots, k - 1\}$ and $S(i) \in \{1, \ldots, \infty\}$ for each instruction i in $\{1, \ldots, |V|\}$. The spatial and temporal schedules must satisfy the resource and communication constraints of the given architectural model.
Temporal scheduling on realistic multiple issue processors is known to be NP-hard and compilers use heuristic approaches to schedule instructions. On clustered architectures the compiler has an additional task of spatial scheduling, partitioning instructions across the available computing resources. The compiler has to carefully consider the tradeoffs between parallelism and locality because a small mistake in spatial scheduling is more costly than a small mistake in temporal scheduling. For example, if a critical instruction is scheduled one cycle late then only a single cycle is lost. But if the same is scheduled on a different cluster then multiple cycles may be lost from unnecessary communication delays and resource contention. The combination of spatial and temporal scheduling is a much harder problem than the temporal scheduling problem. In our approach we partition the DAG and schedule each partition on a cluster. To overcome the well-known phase ordering problem; i.e. determining the order in which a particular set of optimizations should be applied, we backtrack over the possible partitions, searching for a partition that leads to an optimal schedule. The distinguishing feature of our solution is the collection of techniques for accelerating the search which makes our approach useful in practice.

Definition 2.2.5 (Balanced Graph Partitioning) The balanced graph partitioning problem consists of splitting a graph \(G \) into \(k \) disjoint components of roughly equal size such that the number of edges between different components is minimized.

When \(k = 2 \), the problem is also referred to as the graph bisection problem. Balanced graph partitioning is known to be NP-hard for \(k \geq 2 \) [Andreev and Räcke, 2004]. In practice, however, the spatial scheduling problem described above can be even harder than balanced graph partitioning because the optimal partitions of the DAG can also be fewer than \(k \) (so it would need to consider solutions with number of partitions from 1 to \(k \)).

2.2.3 Constraint Modeling

We use constraint programming to model and solve the integrated spatial and temporal scheduling problem. Constraint programming is a methodology for solving hard combinatorial problems, where a problem is modeled in terms of variables, values and constraints (see [Rossi et al., 2006]).
Definition 2.2.6 (Constraint Model) A constraint model consists of a finite set of variables \(X = \{x_1, \cdots, x_n\} \), a finite domain of values \(\text{dom}(x_i) \) that each variable \(x_i \in X \) can take and a set of constraints \(C = \{C_1, \cdots, C_m\} \) where each constraint is defined over a subset of variables in \(X \). A solution to the constraint model is an assignment of a value to each variable in \(X \) such that all of the constraints in \(C \) are satisfied.

Once the problem has been modeled such that the variables along with their domains have been identified and the constraints specified, backtracking over the variables is employed to search for a solution. At every stage of the backtracking search, there is some current partial solution that the algorithm attempts to extend to a full solution by assigning a value to an uninstantiated variable. One of the reasons behind the success of constraint programming is the idea of constraint propagation. During the backtracking search when a variable is assigned a value, the constraints are used to reduce the domains of the uninstantiated variables by ensuring that the values in their domains are consistent with the constraints. Given sufficient time the constraint programming backtracking approach is guaranteed to find a solution if one exists. If running time is a constraint, then the solver uses a timeout for the search algorithm and returns the best solution that was found before search is terminated without any guarantees for the quality of the solution.

Example 2.2.7 We illustrate constraint programming using the well-known graph coloring problem. The problem is to determine whether a graph can be colored with \(k \) colors such that

![Figure 2.3](image-url)
adjacent vertices are assigned different colors. In one possible constraint formulation of the problem there is a variable for each vertex, \(v_1, \ldots, v_n \), the domains of the variables are the possible colors \(\{1, \ldots, k\} \) and the binary constraints are that two adjacent vertices should not have the same color; i.e., \(v_i \neq v_j \) if \(v_i \) and \(v_j \) are adjacent. Consider the constraint formulation for the graph with five vertices shown in Figure 2.3(a), where \(k \) is 3. Each of the five vertices can be assigned one of the three colors \(\{1, 2, 3\} \). In constraint programming, instantiating one of the variables, such as \(v_1 \) to 1 adds an additional constraint to the model and results in the removal of some values from the domains of some other variables; i.e., \(v_2 \) and \(v_3 \) can no longer be assigned the color 1. This is called constraint propagation (see Figure 2.3(b)). A partial solution is consistent if the values in the domains of variables have support. A value having support means that it can be a part of a solution given the set of constraints. For example, given that \(v_1 \) is 1, the color 1 no longer has support in \(v_2 \). Backtracking search traverses the search tree by examining alternate values for the variables in the constraint model in order to find a solution. Backtracking algorithms maintain a level of consistency using constraint propagation.

2.3 Constraint Programming Approach

In this section we present a constraint model for the spatial scheduling problem. A block of code given by either a basic block or superblock is represented by a DAG where each node is an instruction and the edges represent the dependency between instructions. Each node \(i \) in the graph is represented by two variables in the model, \(x_i \) and \(y_i \). The variable \(x_i \in \{1, \ldots, m\} \) is the temporal variable representing the cycle in which the instruction is to be issued. The upper-bound \(m \) to these variables can be calculated using a heuristic scheduling method for a single cluster. The variable \(y_i \in \{0, \ldots, k - 1\} \) is the spatial variable that identifies the cluster to which instruction \(i \) is to be assigned. The key is to scale up to large problem sizes. In developing an optimal solution to the spatial scheduling problem we have applied and adapted several techniques from the literature including symmetry breaking, branch and bound [Rossi et al., 2006] and structure based decomposition techniques [Benders, 1962]. It should be noted here that spatial scheduling cannot be feasibly and reliably solved independently as it heavily relies on temporal scheduling to determine the cost of a given cluster assignment. This leads us to an integrated solution design.
Figure 2.4: (a) Example basic block. (b) Search tree for the simple constraint model associated with the basic block. Each level in the search tree corresponds to assigning a value to a variable; i.e., a partial solution is constructed. For example, at a depth of one, the assignment $y_A = 0$ corresponds to assigning instruction A to cluster 0. At a leaf, all of the variables have been assigned.

The main technique is to solve the problem using a master-slave decomposition which preserves optimality makes our solution scale to large problem sizes. We solve spatial scheduling as the master problem. Once a probable spatial schedule is determined the temporal scheduler solves for the optimal schedule of instructions for the given cluster assignment. The master problem determines the assignment to the y variables (i.e., the cluster assignment to each instruction) and the slave problem schedules each instruction to a time cycle.

Example 2.3.1 (Example Basic Block) Figure 2.4(a) shows a simple dependency DAG for a basic block. The search tree for a simple constraint model for a 4-cluster architecture is shown in Figure 2.4(b) where the assignment of each instruction to a cluster is determined at the leaf nodes and the optimal scheduler is used to calculate the temporal schedule for the given assignment. We use this as our running example.
The design of our solution was inspired by [Benders, 1962] and [Dantzig and Wolfe, 1960] decomposition techniques in integer programming, where an integer program is decomposed into a master-slave problem and the master problem generates many subproblems (or slave problems) which are solved hierarchically.

2.3.1 Symmetry Breaking

Symmetry can be exploited to reduce the amount of search needed to solve the problem. Backtracking over symmetric states does not improve the solution and consumes valuable computation time. If the search algorithm is repeatedly visiting similar states then recognizing and excluding equivalent states can significantly reduce the size of the search space. Using the technique of symmetry breaking, we aim to remove provably symmetric assignments to instructions. An example of symmetry breaking would be assigning the first instruction to the first cluster and thus discarding all the solutions where the first instruction is on any other cluster. This approach guarantees the preservation of at least one optimal assignment. This is because only redundant solutions are removed from the search. Thus, an optimal solution is removed using symmetry breaking only if an equivalent but symmetric solution has been evaluated earlier.

Our approach to symmetry breaking is to reformulate the problem such that the algorithm does not revisit symmetric states repeatedly. We model the problem such that each edge \((v_i, v_j)\) in the DAG is represented by a variable \(z_{ij} \in \{=, \neq\}\). The \(z\) variables are introduced to express whether a pair of instructions should be executed on the same cluster or on different clusters. Our model inherently breaks symmetry by using backtracking search to assign values to the \(z\) variables, which represent the edges in the blocks. For a variable \(z_{ij}\), assigning a value of \(=\) means that variables \(y_i\) and \(y_j\) must take the same value and assigning a value of \(\neq\) means that \(y_i\) and \(y_j\) must take different values.

Example 2.3.2 (Improved Model for Running Example) Consider the basic block of our running example given in Figure 2.4. The search tree for the improved model for the example is shown in Figure 2.5.

The improved model reduces the size of the search tree significantly by eliminating symmetric solutions. Symmetry breaking by remodeling the problem using the aforementioned
technique guarantees optimality for clusters with homogeneous communication cost. This results in the equivalence of spatial schedules such as $y = (2, 3, 3, 2)$ and $y = (0, 2, 2, 3)$ where it does not matter if instructions A and D are assigned to the same cluster or not because there is no direct dependency between A and D and hence no constraint between variables y_A and y_D.

Once the variables $z_{ij} \in \{=, \neq\}$ are set, a spatial schedule to all instructions can be determined; i.e., values can be assigned to all variables y_i for $i \in \{1, \ldots, n\}$. If no such assignment exists—i.e., the algorithm determines that the instructions do not have a valid spatial schedule for the given z variable constraints—then this assignment of z variables is marked as invalid and hence discarded. In the case where an assignment is not possible for the given values of z variables, a conflict is detected (see Figure 2.6). Once an assignment to all instructions is available, an existing optimal temporal scheduler [Malik et al., 2008] is used to compute the best weighted completion time for the block for the given cluster assignment. The backtracking algorithm continues exhaustively, updating the minimum
cost as it searches the solution space.

2.3.2 Branch and Bound

During the search for a solution, the backtracking algorithm can determine a complete assignment at the leaf nodes of the search tree. But certain branches of the search tree can be pruned if it can be guaranteed that all of the leaf nodes in that branch can be safely eliminated without eliminating at least one optimal solution. There are two cases in which an internal node of the search tree can be labeled as such.

1. The first case is where an assignment to the y variables is not possible for the partial or complete assignment to the z variables. This can be detected if even one of the y
variables cannot be assigned a value in \{0, ..., k−1\} without violating the constraints given by the \(z\) variables. An example of such a violation is given in Figure 2.6. In the example, consider instructions F and G. Since \(z_{FG}\) is = they are assigned to the same cluster, say \(c_0\). Now H cannot be correctly assigned to either \(c_0\) or any other cluster since \(y_H\) should be different from \(y_F\) but the same as \(y_G\) which is not possible. To discover such violations early in the search, the \(z\) variables are assigned in a fixed order that corresponds to a breadth-first traversal of the DAG. Breadth-first traversal detects triangular patterns such as the ones given in Figure 2.6 faster than other possible orderings such as depth-first.

2. The second case is where the partial assignment to the \(y\) variables can be proven to only result in a temporal schedule with a cost greater than the established upper bound. Proving that such a case holds is done by adding the cost of the temporal schedule of the instructions assigned to clusters with a lower bound on the cost of a temporal schedule of the instructions not yet assigned to clusters. Thus, any assignment that contains the given subset of cluster assignment cannot result in a better temporal schedule. The search space can be reduced by eliminating all such assignments containing this sub-assignment. Also note that the upper bound is gradually improved upon as better solutions are found.

In both the above mentioned cases the backtracking algorithm does not descend further in the search tree. Branch and bound continuously prunes the search during the execution of the algorithm as upper-bounds are improved upon.

2.3.3 Connected Structures

The amount of search done by the algorithm can be reduced if it can be pre-determined that a subset of instructions in a block are tightly coupled and would be assigned to the same cluster in at least one optimal solution to the scheduling problem. Recall that the earliest start time of an instruction is the earliest possible cycle in which an instruction can be issued. Given a set \(C\) of such instructions in a block, an outgoing edge \(e\) is an edge for which one of the nodes connected to \(e\) is in \(C\) and the other one is not in \(C\). Similarly, an incoming edge is an edge from an instruction on which the current instruction depends. Using these definitions we define a connected structure as follows.
Figure 2.7: Examples of connected structures in blocks. Each of the connected structures is marked by a bounding box. Chains like the ones given in (a) and (b) form connected structures in all architectures whereas complex connected structures may also exist like in (c) where the connectedness is conditional upon the types of instructions and the architectural configuration for which the code is being compiled. Note that the larger connected structure in (c) is not a chain.

Definition 2.3.3 (Connected Structure) A connected structure of a dependency DAG is a set of instructions and all of the edges between those instructions with the properties: (i) there is a distinguished first node and a distinguished last node in the connected structure,
where first and last is determined by considering the edges in the connected structure as a partial order; (ii) there is a path from the first node to the last node; (iii) all incoming edges are incident with the first node; (iv) all outgoing edges are incident with the last node; and (v) the set of instructions can be scheduled on a single cluster such that the latency and resource constraints are satisfied and each instruction can be scheduled at its earliest start time.

The definition implies that the given set of instructions in a connected structure, if considered separately, cannot have a better schedule even if there are more functional units in the cluster or if there are more clusters. Some examples of connected structures are given in Figure 2.7. For example, in Figure 2.7(a) the three connected structures in the block are identified with boxes form chains. A chain is a totally ordered set of three or more instructions in the dependency DAG.

Lemma 2.3.4 A chain is a connected structure in our architectural model.

Proof: A chain consists of a set of totally ordered instructions which means that the second instruction in the chain cannot be executed until the result of the first is available. Similarly, the third instruction cannot begin execution until the second instruction has completed execution and so forth. The simplest architectural model is a single issue clustered architecture having a single functional unit. The instructions in the chain can be executed on this functional unit one by one. Now consider that the number of functional units on this cluster are increased along with the issue-width. There is no better schedule for the chain compared to the previous architecture since there is no instruction level parallelism (ILP) that can be exploited by extending the architecture. Similarly, if we increase the number of clusters, there is no more ILP that can be exploited by the additional clusters. Hence the number of cycles required to execute the chain remain the same regardless of the architectural model. □

Once the connected structures in a superblock have been identified, the superblock can be decomposed if there are no dependency edges between these structures and each instruction, other than distinguished source and sink nodes, belongs to a connected structure. For example, all of the superblocks shown in Figure 2.7 are decomposable into connected structures.
Theorem 2.3.5 Given a superblock that can be decomposed into one or more chains, if the number of chains is less than or equal to the number of available clusters, the instructions within each chain can be assigned to the same cluster without eliminating at least one optimal assignment of the instructions to clusters.

Proof: By Definition 2.3.3, each instruction in a chain can be scheduled at its earliest start time. As the number of chains is less than or equal to the number of available clusters, no instruction can be issued earlier than the resulting schedule. □

For the purpose of the experiments reported in this chapter we only consider chains as connected structures. The solver still finds the optimal solution but recognizing the non-chain connected structures would have reduced the amount of search needed to compute the solution.

2.3.4 Solving an Instance

Given an architectural model which consists of the number of clusters k, the communication cost c, the issue width, and the number and type of the functional units, solving an instance of the spatial scheduling problem proceeds with the following steps (see Algorithm 1). First, a constraint model for edge assignment is constructed. The lower-bound and the upper-bound on the cost of the schedule on the given number of clusters is established. The lower-bound is computed using the optimal temporal scheduler [Malik et al., 2008]. To compute the lower-bound for the given clustered architectural model, we schedule for a simpler architecture that has no serializing instructions and a single cluster. The single cluster has the same total number and types of functional units as all of the clusters in the given architectural model combined. Effectively this simulates a communication cost of zero between clusters and gives us a lower bound on the true cost of the schedule. The upper-bound is initially established using an extension to the list-scheduling algorithm. The extension to the list scheduler consists of a fast greedy heuristic to assign superblock instructions to clusters. The algorithm greedily assigns instructions to clusters as soon as the dependency, resource and communication constraints are satisfied. These sophisticated methods are employed to compute tight lower and upper bounds so that the algorithm does not spend valuable compile time in search. The lower and upper-bounds are passed on to the backtracking algorithm along with the constraint model.
In order to expedite the search for a solution we develop the following optimization in Algorithm 1: Given a superblock with one or more chains, if the number of chains is less than or equal to the number of available clusters, the instructions within each chain are assigned to the same cluster (line 6). The optimization helps in speeding up the search for a solution even though it may lead to sub-optimal solutions under certain circumstances. However, these pathological cases do not seem to arise in practice.

ALGORITHM 1: Spatial Scheduling

Input: DAG G, an architectural model.

Output: The spatial and temporal schedule of G.

1. Construct constraint model for edge assignment
2. $U \leftarrow$ Establish upper bound using list-scheduler extension
3. $L \leftarrow$ Establish lower bound using optimal scheduler
4. if $U \neq L$ then
5. $E \leftarrow$ Edges in G with domain $\{=, \neq\}$
6. Identify connected structures and set edges to $\{=\}$
7. // start backtracking on the first edge
8. Backtrack($E[0], U, L$)
9. end
10. return schedule and assignment given by U

Backtracking search interleaves propagation of branch and bound checks with branching on the edge variables (see Algorithm 2). During constraint propagation the validity check of an assignment at each search node is enforced. Once a complete assignment can be computed, it is passed on to the optimal instruction scheduler to determine the cost of the block (line 6). The optimal scheduler computes the cost of the schedule using an extended constraint model of the problem considering the cost of inter-cluster communication. If the computed schedule cost is equal to the lower-bound then an optimal solution has been found. On the other hand if the cost is better than the existing upper-bound, the upper-bound as well as the respective schedule is updated. This is repeated, until the search completes. The returned solution is the final schedule corresponding to the last upper-bound recorded by the algorithm. If the algorithm terminates, a provably optimal solution has been found. If, instead, the time limit is exceeded, the existing upper-bound solution is returned as the best result. Consistency check (line 4), which examines the search node
ALGORITHM 2: Backtrack

Input: \(E[i] \) the current edge, architectural model, an upper bound on the schedule cost \(U \), and a lower bound on the schedule cost \(L \).

Output: Spatial and temporal schedule associated with \(U \).

1. **for all values that can be assigned to the current edge do**
2. \(n \leftarrow \) search node corresponding to the current assignment of variables
3. **if** \(n \) is a leaf node of search tree **then**
4. \(\quad \) if ConsistencyCheck(\(n \)) **then**
5. \(\quad \quad A \leftarrow \) generate assignment for \(n \)
6. \(\quad \quad S \leftarrow \) determine schedule for assignment \(A \)
7. \(\quad \quad U \leftarrow \) Update(\(U \)) using \(S \)
8. \(\quad \) end
9. **end**
10. **if** \(n \) is an internal node of search tree **then**
11. \(\quad \) if ConsistencyCheck(\(n \)) \&\& BoundsCheck(\(n \)) **then**
12. \(\quad \quad \) // continue onto the next edge
13. \(\quad \quad \) Backtrack(\(E[i+1] \), \(U \), \(L \))
14. \(\quad \) end
15. **end**
16. **if** \(U = L \) **then**
17. \(\quad \) return \(A, S \) for the upper bound \(U \) as solution
18. **end**
19. **end**
20. **return** \(A, S \) for the upper bound \(U \) as solution

for the first case in sub-section 2.3.2 and bounds check (line 11) are intended to prune the search tree and save computation time. The following step-by-step execution on the running example provides a better description of the algorithms.

Example 2.3.6 (Solving the Running Example) Consider the basic block DAG from our running example given in Figure 2.4(a) on a 4-cluster 1-issue architecture with inter-cluster communication cost of 1. Spatial scheduling (Algorithm 1) proceeds by creating a constraint model. Determining the upper bound \(U \) on the schedule length yields 4 (i.e.,
$U \leftarrow 4$) and lower bound (L) is determined to be 3 ($L \leftarrow 3$). Since there are no connected structures in the DAG, the algorithm proceeds by backtracking on the edges (AC, BC and CD). Algorithm 2 iteratively assigns \{$=, \neq\}$ to the z variables. For example, initially z_{AC} is assigned $=$. Then a consistency check is run to make sure that it is possible to assign the y variables valid values if $z_{AC} \leftarrow =$ constraint is added to the model. This corresponds to the first case in subsection 2.3.2. Since the current search node (n) is an internal node of the search tree (corresponding to the left child of the root in the search tree shown in Figure 2.5) the second condition starting at line 10 is executed. It runs a bounds check on n which computes a lower bound for a partial assignment (which is 2) where $y_A = y_C$ making sure that it does not exceed U. Backtracking continues recursively on the edges. Consider the search node where \{$z_{AC} \leftarrow =, z_{BC} \leftarrow \neq, z_{CD} \leftarrow =\}. The algorithm finds it to be consistent, generates an assignment (0,1,0,0), and determines the optimal schedule for the given spatial assignment (lines 5, 6). The optimal scheduler uses an extended model with the inter-cluster communication constraints for instructions which are scheduled on different clusters. The condition on line 16 determines that since $U = L$ the assignment is an optimal solution and hence returns it without searching the entire tree.

2.4 Experimental Evaluation

In this section, we present an empirical evaluation of our scheduler for clustered architectures.

2.4.1 Experimental Setup

We evaluated our integrated solution to the spatial and temporal scheduling problem on superblocks from the SPEC 2000 integer and floating point benchmarks. Our approach is equally applicable to basic blocks, but we present only the results for superblocks as these consistently show better improvements than the basic blocks. Our approach performs better on the superblocks because superblocks are more complex and hence more challenging to schedule for heuristic approaches. Also, our constraint programming solution has a global view of the problem as compared to heuristic approaches which tend to have a local view. The benchmark suite consists of source code for software packages chosen to represent a variety of programming languages and types of applications. The
results given in this chapter are for superblocks. The benchmarks were compiled using the IBM Tobey compiler [Blainey, 1994] targeted towards the PowerPC processor [Hoxey et al., 1996], and the superblocks were captured as they were passed to Tobey’s instruction scheduler. The compiler also marks serializing instructions and non-pipelined instructions. Note that on the PowerPC, for example, 15% of the instructions in the superblocks are serializing instructions.

<table>
<thead>
<tr>
<th>issue width</th>
<th>integer units</th>
<th>memory units</th>
<th>branch units</th>
<th>floating point units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-issue</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-issue</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4-issue</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.2: Architectural models and their composition in terms of the number and types of functional units.

The compilations were done using Tobey’s highest level of optimization, which includes aggressive optimization techniques such as software pipelining and loop unrolling. The Tobey compiler performs instruction scheduling once before global register allocation and once again afterward. Spatial scheduling is performed on the superblocks after register allocation. The results given are for the most frequently executed superblocks in the benchmarks—superblocks that executed at least 100,000 times during profiling. Experiments were also performed that included less frequently executed superblocks (not shown) but the overall results were qualitatively similar. Following Faraboschi et al. [1998], in the experiments we present our results relative to a baseline configuration which is an architecture with a single cluster having the same number of functional units and same issue width as a single cluster in the multi-cluster configuration being experimented with.

We compare against two versions of the graph-based hierarchical partitioning technique RHOP [Chu et al., 2003] (see Related Work, Section 2.5 for a detailed description of RHOP). The first version of RHOP—a reimplementation of the version that appears in the Trimaran compiler [Chakrapani et al., 2009]—uses a regular list scheduler for instruction scheduling (denoted here as rhop-ls). The second version of RHOP uses an optimal instruction scheduler [Malik et al., 2008] (denoted here as rhop-opt).

We conducted our evaluation using the three architectural models which are similar to real clustered architectures. The configuration for each cluster is shown in Table 2.2.
We experimented with 2-8 fully connected, homogeneous clusters [Terechko, 2007] with issue widths ranging from 1 to 4 on each cluster. In these architectures, the functional units are not fully pipelined, the issue width of the cluster is not always equal to the number of functional units, and there are serializing instructions. We run our experiments for homogeneous clusters; i.e., all clusters have exactly the same number and type of functional units. Additionally, clusters can communicate with each other with a non-zero latency. In our model, communication between clusters happens via an inter-cluster interconnect which is an explicit copy operation. A realistic communication model has a 4-cycle latency on a four cluster and 6-cycles on an eight cluster processor [Parcerisa et al., 2002]. We also study the impact of various communication latencies on performance. We measure the speedup by computing the cycle count improvements over the baseline. The experiments were run on the whale cluster of the Sharcnet systems (www.sharcnet.ca). Each node of the whale cluster is equipped with four Opteron CPUs at 2.2 GHz and 4.0 GB memory.

2.4.2 Experimental Results & Analysis

In this section we present the results of our experiments. We structure the presentation of the results and our analysis as follows. First, we perform a general comparison of our constraint-programming-based integrated spatial and temporal scheduler, referred to as cp, with two versions of RHOP: RHOP using the regular list scheduler for scheduling (rhop-ls) and RHOP using the optimal instruction scheduler (rhop-opt), which is also being used by our algorithm. Second, we perform a detailed comparison that examines the impact of the number of clusters on the performance of the algorithms. Third, we perform a detailed comparison that examines the impact of the communication cost due to the different cluster-interconnect topologies on the performance of the algorithms. Finally, as our integrated scheduler is more costly in terms of scheduling time, we examine the time taken to schedule the superblocks in the various benchmarks.

A general comparison of our integrated spatial and temporal scheduler with RHOP. In Figures 2.8 and 2.9 we present detailed performance results for the constraint programming algorithm cp as compared to the two flavors of the RHOP algorithm, rhop-ls and rhop-opt where rhop-ls is the original approach presented in [Chu et al., 2003] and that our results for rhop-ls closely match the experimental results presented therein. We include rhop-opt to factor out the contribution of the optimal instruction scheduler and examine
the contribution of our partitioning scheme in improving performance. We compare the algorithms on a 2-cluster-2-issue architecture and a 4-cluster-2-issue. In our experiments \textit{cp} always performs better than rhop-opt which in turn always performs better than rhop-ls. It can also be noted that the speedup from \textit{cp} never falls below 1.0—i.e., \textit{cp} never results in a slowdown over the baseline—whereas RHOP often suffers from slowdowns.

Consider the 2-cluster configurations (Figure 2.8). For example, on the benchmark applu, our \textit{cp} approach attains a speedup of 60\% compared to 20\% for rhop-opt when
the inter-cluster communication cost is one cycle, a performance gap of 40%, and our cp approach attains a speedup of 40% compared to 20% for rhop-opt when the inter-cluster communication cost is four cycles, a performance gap of 20%. On average across all 26 benchmarks the performance gap between cp and rhop-opt is close to 15% when the communication cost is one cycle and approximately 10% when the communication cost is four cycles.
Consider next the 4-cluster configurations (Figure 2.9). For example, on the benchmark ammp, our \textit{cp} approach attains a speedup of 15\% compared to 2\% for rhop-opt when the inter-cluster communication cost is one cycle, a performance gap of 13\%, and our \textit{cp} approach attains a speedup of 10\% compared to -20% for rhop-opt when the inter-cluster communication cost is four cycles, a performance gap of 30\%. On average across
all 26 benchmarks the performance gap between cp and rhop-opt is close to 7% when the communication cost is one cycle and approximately 12% when the communication cost is four cycles.

The impact of the number of clusters on the performance of the algorithms. We examine the scalability of the algorithms as the number of clusters increases. Figure 2.10 presents the average improvements over all the benchmarks for various architectural configurations...
with inter-cluster communication latency varying from one to eight cycles. In general, in our experiments as the number of clusters increases the performance gap between \(cp \) and rhop-ls and rhop-opt increases. As well, the speedup for \(cp \) increases with the number of clusters whereas the speedup of rhop-ls and rhop-opt decreases as the number of clusters increase.

Consider the configurations where the communication cost is four cycles (see Fig-
Figure 2.10, bottom left). On the architectures with an issue width of one, as the number of clusters $\alpha = 2, 4, 8$ increases—i.e., architectural models 2–1, 4–1, and 8–1—the performance gap of our cp approach over rhop-opt increases from approximately 10% to more than 40%. As well, as the number of clusters increases, cp achieves an increasing speedup over the baseline, whereas both rhop-opt and rhop-ls decrease in performance. In general, similar observations can be made for the architectures with larger issue widths and for the architectures with different communication costs.

Figure 2.13: Representative superblocks from the (a) applu benchmark and (b) gzip benchmark.

The impact of the inter-cluster communication cost on the performance of the algorithms. Figure 2.10 also presents some results on what performance improvements we can obtain with various inter-cluster topologies which have different communication latencies. In our experiments, as inter-cluster communication cost increases the speedup for all algorithms decreases, but the gap in performance of cp over rhop-ls and rhop-opt increases. This is because once RHOP makes poor decisions it is expensive to recover—a well-known drawback of a phased approach. It is worth noting here that even with a high communication cost, the speedup increases with the number of clusters. However, as expected, topologies with faster inter-cluster communication always yield higher performance.
<table>
<thead>
<tr>
<th>benchmark</th>
<th>superblocks</th>
<th>2-cluster-2-issue ($c = 1$)</th>
<th>4-cluster-2-issue ($c = 2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>num.</td>
<td>ave.</td>
<td>max.</td>
</tr>
<tr>
<td>ammp</td>
<td>94</td>
<td>35</td>
<td>332</td>
</tr>
<tr>
<td>applu</td>
<td>21</td>
<td>58</td>
<td>200</td>
</tr>
<tr>
<td>apsi</td>
<td>156</td>
<td>28</td>
<td>95</td>
</tr>
<tr>
<td>art</td>
<td>29</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>bzip2</td>
<td>113</td>
<td>21</td>
<td>157</td>
</tr>
<tr>
<td>crafty</td>
<td>508</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>eon</td>
<td>132</td>
<td>39</td>
<td>225</td>
</tr>
<tr>
<td>equake</td>
<td>26</td>
<td>40</td>
<td>213</td>
</tr>
<tr>
<td>facerec</td>
<td>57</td>
<td>29</td>
<td>159</td>
</tr>
<tr>
<td>fma3d</td>
<td>389</td>
<td>26</td>
<td>586</td>
</tr>
<tr>
<td>galgel</td>
<td>71</td>
<td>23</td>
<td>75</td>
</tr>
<tr>
<td>gcc</td>
<td>2383</td>
<td>23</td>
<td>219</td>
</tr>
<tr>
<td>gzip</td>
<td>136</td>
<td>19</td>
<td>221</td>
</tr>
<tr>
<td>lucas</td>
<td>43</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>mcf</td>
<td>64</td>
<td>21</td>
<td>94</td>
</tr>
<tr>
<td>mesa</td>
<td>74</td>
<td>37</td>
<td>226</td>
</tr>
<tr>
<td>mgrid</td>
<td>28</td>
<td>17</td>
<td>69</td>
</tr>
<tr>
<td>parser</td>
<td>628</td>
<td>19</td>
<td>681</td>
</tr>
<tr>
<td>perlbmk</td>
<td>878</td>
<td>26</td>
<td>278</td>
</tr>
<tr>
<td>sixtrack</td>
<td>95</td>
<td>34</td>
<td>108</td>
</tr>
<tr>
<td>swim</td>
<td>6</td>
<td>31</td>
<td>77</td>
</tr>
<tr>
<td>twolf</td>
<td>186</td>
<td>25</td>
<td>380</td>
</tr>
<tr>
<td>vortex</td>
<td>476</td>
<td>41</td>
<td>303</td>
</tr>
<tr>
<td>vpr</td>
<td>229</td>
<td>26</td>
<td>173</td>
</tr>
<tr>
<td>wupwise</td>
<td>47</td>
<td>31</td>
<td>157</td>
</tr>
</tbody>
</table>

Table 2.3: For each SPEC 2000 benchmark, total number of superblocks (num.), average size of superblocks (ave.), maximum size of superblocks (max.), total scheduling time for our scheduler, percentage of superblocks for which a provably optimal schedule was found (% solved), for various architectural models and communication costs $c = 1, 2$.
Consider the configurations with four clusters and an issue width of one (see Figure 2.10). As expected, as the communication cost increases the performance of all of the schedulers \(cp \), rhop-opt, and rhop-ls decreases. More surprisingly, as the communication cost \(c \) increases, the gap between the performance of \(cp \) and rhop-opt increases from 20\% when \(c = 1 \) to more than 35\% when \(c = 8 \) (see architectural model 4–1 in Figure 2.10, for \(c = 1 \) top left, \(c = 2 \) top right, \(c = 4 \) bottom left, and \(c = 8 \) bottom right). In general, similar observations can be made for the architectures with larger issue widths and for the architectures with different numbers of clusters.

Figures 2.11 and 2.12 present the breakdown of performance improvements for two specific benchmarks—applu and gzip, respectively—for various architectural configurations. The applu benchmark (a floating point benchmark) is an example for which \(cp \) gets the best speedup that approach a factor of 2.8 on an eight cluster architecture. Conversely, the gzip benchmark (an integer benchmark) is an example where the speedup is more modest and approach 15\% on an eight cluster architecture, which is due to the lack of instruction-level parallelism (ILP) in most SPEC integer benchmarks. For example, Figure 2.13 shows two representative superblocks from the applu and gzip benchmarks, respectively. Of note is the width of these graphs; i.e., there is much more available instruction level parallelism in applu than in gzip.

The scheduling time and percentage of provably optimal schedules. Table 2.3 lists the time it takes for the benchmarks to compile on two architectural configurations along with the percentage of superblocks on which our algorithm proved optimality within the ten minute timeout. The good news is that for almost all benchmarks \(cp \) can solve a majority of the superblocks in the SPEC benchmarks to optimality. However this comes at a cost of increased compilation time with some benchmarks requiring more than a day to schedule all the superblocks in the benchmark. It is worth noting that even in the case where most of the schedules are not provably optimal, we still get a speedup. In such cases we may well have an optimal schedule but not provably so because the search algorithm timed out. For example, for the benchmark eon (see Table 2.3), only 37\% of the superblocks are solved optimally yet \(cp \) yields a speedup of 15\% on eon (see Figure 2.8). The scheduling times for RHOP alone are not given as they are negligible and the scheduling times for RHOP-opt are similar to the scheduling times for the optimal temporal scheduler alone (see [Malik et al., 2008]).
<table>
<thead>
<tr>
<th>benchmark</th>
<th>ls cycles</th>
<th>rhop-ls % impr.</th>
<th>rhop-opt % impr.</th>
<th>cp % impr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammp</td>
<td>22366.2</td>
<td>−8.9%</td>
<td>−8.5%</td>
<td>19.3%</td>
</tr>
<tr>
<td>applu</td>
<td>1156.8</td>
<td>6.2%</td>
<td>10.1%</td>
<td>53.8%</td>
</tr>
<tr>
<td>apsi</td>
<td>4586.4</td>
<td>−4.1%</td>
<td>−1.1%</td>
<td>26.9%</td>
</tr>
<tr>
<td>art</td>
<td>3559.2</td>
<td>−8.9%</td>
<td>−7.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>bzip2</td>
<td>17119.4</td>
<td>−8.0%</td>
<td>−0.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>crafty</td>
<td>7186.3</td>
<td>−17.2%</td>
<td>−15.8%</td>
<td>8.3%</td>
</tr>
<tr>
<td>eon</td>
<td>10746.3</td>
<td>1.1%</td>
<td>2.4%</td>
<td>14.8%</td>
</tr>
<tr>
<td>equake</td>
<td>3734.4</td>
<td>−4.2%</td>
<td>−4.2%</td>
<td>13.7%</td>
</tr>
<tr>
<td>facerec</td>
<td>5655.3</td>
<td>−5.4%</td>
<td>−3.9%</td>
<td>4.7%</td>
</tr>
<tr>
<td>fma3d</td>
<td>9203.7</td>
<td>17.2%</td>
<td>18.3%</td>
<td>32.2%</td>
</tr>
<tr>
<td>galgel</td>
<td>1228.5</td>
<td>−20.4%</td>
<td>−17.9%</td>
<td>3.9%</td>
</tr>
<tr>
<td>gcc</td>
<td>5291.0</td>
<td>−28.1%</td>
<td>−22.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>gzip</td>
<td>17615.3</td>
<td>−23.5%</td>
<td>−18.8%</td>
<td>4.2%</td>
</tr>
<tr>
<td>lucas</td>
<td>330.1</td>
<td>−21.6%</td>
<td>−21.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>mcf</td>
<td>4405.2</td>
<td>−16.4%</td>
<td>−13.1%</td>
<td>1.2%</td>
</tr>
<tr>
<td>mesa</td>
<td>12836.1</td>
<td>9.6%</td>
<td>10.8%</td>
<td>19.3%</td>
</tr>
<tr>
<td>mgrid</td>
<td>304.0</td>
<td>−16.9%</td>
<td>−15.4%</td>
<td>15.3%</td>
</tr>
<tr>
<td>parser</td>
<td>22501.7</td>
<td>−12.3%</td>
<td>−7.9%</td>
<td>14.1%</td>
</tr>
<tr>
<td>perlbmk</td>
<td>28617.0</td>
<td>−6.3%</td>
<td>−3.5%</td>
<td>20.6%</td>
</tr>
<tr>
<td>sixtrack</td>
<td>3494.2</td>
<td>−15.7%</td>
<td>−15.1%</td>
<td>1.2%</td>
</tr>
<tr>
<td>swim</td>
<td>8.2</td>
<td>0.0%</td>
<td>3.2%</td>
<td>26.1%</td>
</tr>
<tr>
<td>twolf</td>
<td>20761.2</td>
<td>−23.8%</td>
<td>−20.7%</td>
<td>8.3%</td>
</tr>
<tr>
<td>vortex</td>
<td>8389.7</td>
<td>4.0%</td>
<td>5.5%</td>
<td>11.2%</td>
</tr>
<tr>
<td>vpr</td>
<td>12097.0</td>
<td>−12.2%</td>
<td>−10.2%</td>
<td>2.1%</td>
</tr>
<tr>
<td>wupwise</td>
<td>8907.3</td>
<td>−21.7%</td>
<td>−19.2%</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

Table 2.4: For the frequently executed superblocks in each SPEC 2000 benchmark, the total number of cycles ($\times 10^9$) taken by the list scheduler on a baseline architecture consisting of a dual-issue single cluster (ls cycles). For a dual-issue 4-cluster architecture with inter-cluster communication cost of 4, the improvement in the number of cycles over the baseline for rhop-ls (rhop-ls impr.), the improvement in the number of cycles over the baseline for rhop-opt (rhop-opt impr.), and the improvement in the number of cycles over the baseline for our approach (cp impr.).
The weighted scheduling time and percentage improvement. Table 2.4 shows the frequency based scheduling results for the frequently executed superblocks. A percentage improvement is determined as follows. Each superblock in a benchmark is scheduled by the given algorithm and the expected number of cycles for that superblock is computed by multiplying the weighted completion time by the frequency of execution (as determined by profiling). The total number of cycles is the sum of the expected number of cycles over all superblocks. We then determine the percentage improvement over the baseline. For example, for the benchmark ammp, rhop-ls achieves a percentage improvement of -8.9% (i.e., it degrades performance by 8.9%), rhop-opt achieves a percentage improvement of -8.5%, and cp achieves a percentage improvement of 19.3\% (i.e., it improves performance by 19.3\%).

Overall, our experimental results show that our constraint programming approach produces better results than RHOP, as the number of clusters increases and also as the inter-cluster latency increases. RHOP sometimes partitions the superblocks more aggressively than necessary which results in a slowdown instead of a speedup, whereas our approach always results in a speedup. The application of constraint programming to the spatial scheduling problem has enabled us to solve the problem to near optimality for a significant number of code blocks. Solving the spatial scheduling problem with constraint programming has an added value over heuristic approaches in instances where longer compilation time is tolerable or the code-base is not very large. This approach can be successfully used in practice for software libraries, digital signal processing in addition to embedded applications—domains where longer compile times are tolerable and the code is frequently executed. Our approach can also be used to evaluate the performance of heuristic techniques.

2.5 Related Work

Traditionally, instruction scheduling has been employed by compilers to exploit instruction level parallelism in straight-line code in the form of basic blocks [Heffernan and Wilken, 2005; Malik et al., 2008] and superblocks [Heffernan et al., 2006; Malik et al., 2008]. In this section we review the different approaches towards solving the spatial scheduling problem.

The most well known solutions for spatial scheduling are greedy and hierarchical partitioning algorithms which assign the instructions before the scheduling phase in the com-
piler. The bottom-up greedy, or BUG algorithm [Ellis, 1986], which is the earliest among spatial scheduling algorithms, proceeds by recursing depth first along the data dependence graph, assigning the critical paths first. It assigns each instruction to a cluster based on estimates of when the instruction and its predecessors can complete execution at the earliest. These values are computed using the resource requirement information for each instruction. The algorithm queries this information before and after the assignment to effectively assign instructions to the available clusters. This technique works well for simple graphs, but as the graphs become more complex the greedy nature of the algorithm directs it to make decisions that negatively affect future decisions. Chung et al. [1995] also gave an early solution to spatial scheduling for distributed memory multiprocessors based on heuristics for list scheduling algorithms. Leupers [2000] present a combined partitioning and scheduling technique using simulated annealing. Lapinskii et al. [2002] propose a binding algorithm for instructions which relies on list scheduling to carry out temporal scheduling.

Lee et al. [2002] present a multi-heuristic framework for scheduling basic blocks, superblocks and traces. The technique is called convergent scheduling. The scheduler maintains a three dimensional weight matrix \(W_{i,c,t} \), where the \(i \)th dimension represents the instructions, \(c \) spans over the number of clusters and \(t \) spans over possible time slots. The scheduler iteratively executes multiple scheduling phases, each one of which heuristically modifies the matrix to schedule each instruction on a cluster for a specific time slot, according to a specific constraint. The main constraints are pre-placement, communication minimization and load balancing. After several passes the weights are expected to converge. The resultant matrix is used by a traditional scheduler to assign instructions to clusters. The framework has been implemented on two different spatial architectures, RAW and Chorus clustered VLIW infrastructure. The framework was evaluated on standard benchmarks, mostly the ones with dense matrix code. An earlier attempt was made by the same group for scheduling basic blocks in the Raw compiler [Lee et al., 1998]. Inter-cluster moves on RAW take 3 or more cycles and the Chorus infrastructure assumes single cycle moves in its simulation. This technique iteratively grouped together instructions with little or no parallelism and then assigned them to the available clusters. A similar approach was used to schedule instructions on a decoupled access/execute architectures [Rich and Farrens, 2000]. These techniques seem to work well on selective benchmark suites with fine tuned system parameters which are configured using trial and error. It is difficult to evaluate the actual effectiveness of these techniques mainly because they attempt to solve the temporal and spatial scheduling intermittently. In contrast our approach attempts to solve spatial
scheduling first. In an earlier attempt on spatial scheduling [Amarasinghe et al., 2002] presented integer linear formulations of the problem as well as an 8-approximation algorithm for it. The evaluation in the unpublished report only included results from heuristic algorithms and were from a simulation over a select group of benchmarks.

Chu et al. [2003] describe a region-based hierarchical operation partitioning algorithm (RHOP), which is a pre-scheduling method to partition operations on multiple clusters. In order to produce a partition that can result in an efficient schedule, RHOP uses schedule estimates and a multilevel graph partitioner to generate cluster assignments. This approach partitions a data dependence graph based on weighted vertices and edges. The algorithm uses a heuristic to assign weights to the vertices to reflect their resource usage and to the edges to reflect the cost of inter-cluster communication in case the two vertices connected by an edge are assigned to different clusters. In the partitioning phase, vertices are grouped together by two processes called coarsening and refinement [Hendrickson and Leland, 1995; Karypis and Kumar, 1998]. Coarsening uses edge weights to group together operations by iteratively pairing them into larger groups while targeting heavy edges first. The coarsening phase ends when the number of groups is equal to the number of desired clusters for the machine. The refinement phase improves the partition produced by the coarsening phase by moving vertices from one partition to another. The goal of this phase is to improve the balance between partitions while minimizing the overall communication cost. The moves are considered feasible if there is an improvement in the gain from added parallelism minus the cost of additional inter-cluster communications. The algorithm has been implemented in the Trimaran compiler and simulation framework. The framework has the capability to model homogeneous as well as heterogeneous architectures and assumes a single cycle cost for inter-cluster moves. Their technique was evaluated on the SPEC benchmark and compared against BUG, which RHOP always outperforms. Subsequent work using RHOP partitions data over multi-core architectures with a more complex memory hierarchy [Chu et al., 2007; Chu and Mahlke, 2006]. Unlike other approaches which are mostly evaluated on basic blocks, RHOP has also been evaluated over hyperblocks.

Nagpal and Srikant [2004, 2008] give an integrated approach to spatial and temporal scheduling by binding the instructions to functional units in clusters. The approach extends the list scheduling algorithm to incorporate a resource need vector for effective functional unit binding. Their scheme utilizes the exact information about the available communication requirements, functional units and the load on different clusters in addition to the constraints imposed by the architecture to prioritize instructions that are ready to
be scheduled. The algorithm and its variations have been implemented for Texas Instruments VelociTI architecture using the SUIF compiler framework. They evaluated their technique using the TI simulator for TMS320C6X on the most frequently executed benchmark kernels from MediaBench and report a speedup of up to 19% over Lapinskii et al. [2002].

In contrast to our work, which presents an optimal integrated approach for spatial and temporal scheduling, Kessler, Bednarski, and Eriksson [Bednarski and Kessler, 2006; Kessler and Bednarski, 2006; Eriksson and Kessler, 2009] pursue a much more ambitious agenda of integrating spatial and temporal scheduling with instruction selection, register allocation, and software pipelining. Although successful on smaller basic blocks, their fully integrated approaches, which use dynamic programming and integer linear programming, do not scale beyond blocks of size 20–40 instructions using a timeout of one hour (our constraint programming technique scales consistently to blocks with up to 100 instructions using a timeout of 10 minutes).

Other related works have also dealt with software pipelining for clustered architectures [Nystrom and Eichenberger, 1998; Sánchez and González, 2000; Codina et al., 2001]. Most of these techniques extend the greedy scheduling algorithms and apply them after unrolling frequently executed loops.

2.6 Summary

This chapter presents a constraint programming approach for spatial and temporal scheduling problem for taking advantage of instruction level parallelism in clustered architectures. We also study the effect of different hardware parameters including issue-width and cost of inter-cluster communication performance.

Our approach takes advantage of the problem decomposition technique to solve spatial scheduling in two stages, yet it is integrated with temporal scheduling. We also employ various constraint programming techniques including symmetry breaking and branch-and-bound to reduce the time in searching for a solution. Reformulation of the problem model in terms of the edges of the DAG instead of the vertices breaks the symmetry nicely to reduce the search space. In addition we also use techniques from graph theory to predetermine instructions which can be grouped together before the search algorithm starts.
We compared our implementation against RHOP on various architectural configurations. We found that our approach was able to achieve an improvement of up to 26%, on average, over the state-of-the-art techniques on superblocks from SPEC 2000 benchmarks. Clustered architectures are becoming increasingly important because they are a natural way to extend the embedded processors without significant increase in power utilization, which is vital for these architectures. Also many of the applications which run on embedded devices are compiled once and usually run throughout the lifetime of the device without recompilation and hence reasonably long compile times are also acceptable.
Chapter 3

Exact Instruction Selection

In this chapter we study the problem of instruction selection. Instruction selection is an important phase in code generation that transforms the intermediate representation of code to architecture specific machine instructions. It is a well studied problem and polynomial time exact solutions have been proposed for instances where the intermediate representation is in the form of a tree. However, in most production compilers, intermediate code is represented by directed acyclic graphs. Instruction selection is known to be NP-complete on directed acyclic graphs. Production compilers employ graph heuristics incorporated into dynamic programming algorithms to solve the problem approximately. In this chapter we use constraint programming to model and solve the instruction selection problem. Previous attempts at solving the problem optimally have not been general purpose or scale only to basic blocks of size 40. Our constraint programming approach can solve basic blocks of size 100. We evaluate the constraint programming technique with two LLVM implementations of carefully hand-tuned instruction selection algorithms. The results suggest that even though the current state-of-the-art techniques have left little room for improvement, our technique can be used to evaluate the accuracy of selection in different compilers.

3.1 Motivation

Advances in semiconductor technology and the pervasive use of consumer electronics have fueled the advancement of general purpose computing as well as application specific devices
called embedded systems. Embedded systems [Fisher et al., 2005] are generally domain specific and are widely used in mobile devices, multimedia assistants and digital cameras in addition to industrial hardware such as in the automotive industry, medical equipment and sensor networks to name a few. Most embedded systems use low-power processors with limited resources. Software running on these systems is expected to perform complex computational tasks remaining within resource limitations. Compilers are responsible for generating and optimizing code for architecture specific constraints. In the code generation phase of a compiler, instruction selection is an important architecture specific transformation (see Figure 3.1 for instruction selection in the architecture of a typical compiler).

![Figure 3.1: Instruction selection in a typical compiler (adapted from Engineering a Compiler, [Torczon and Cooper, 2007]).](image)

The goal of instruction selection is to map the intermediate representation (IR) within a compiler to architecture specific assembly instructions. In this phase the compiler typically makes no assumptions on register constraints. Given the IR of a program as a directed acyclic graph of expressions and the set of machine instructions for a given architecture, the job of the instruction selector is to map the graph onto a sequence of machine specific instructions with the same semantics. For each instruction there is a set of well defined patterns, called tiles, which represent the machine instruction as a semantically equivalent pattern in the IR format. Instruction selection makes use of pattern matching to cover the entire selection graph based on a cost model. This is known as tiling. The cost model can optimize for code size, performance or energy consumption, or a combination of these. Most compilers, when performing instruction selection, optimize for code size as code size reduction translates directly into performance. The smaller the size of the compiled code, the less memory it occupies resulting in fewer memory accesses, in most
cases. Memory access latency is a major factor in program performance. Hence, smaller code sizes usually result in fewer instruction fetches and also benefits from improved instruction cache locality.

Instruction selection can be solved using dynamic programming in polynomial time if the intermediate representation is in the form of a tree. However, in most compilers, intermediate code is represented by directed acyclic graphs for which instruction selection is NP-complete [Koes and Goldstein, 2008; Proebsting, 1998]. Production compilers employ heuristics based on dynamic programming to solve the problem.

In this chapter, we apply constraint programming techniques for solving the instruction selection problem exactly, optimizing for code size, searching for the best match of machine instructions for a given block of intermediate code. First, we model the problem as a set of variables, finite domains of these variables, and constraints defined over them. The model is then solved using backtracking search. The novelty of this approach lies in the formalization of the instruction selection problem using constraint modeling and in our improvements to the model to make it scale for larger instances. Our improvements to the constraint model reduce the effort required to search for an optimal solution.

In order to evaluate our approach we implement the constraint model in the LLVM compiler framework. In this chapter we make the following contributions:

1. We describe a constraint programming model for the instruction selection problem.
2. We describe improvements to the constraint model and show that constraint optimization can indeed be used successfully to solve the instruction selection problem optimally.
3. We present a quantitative evaluation of our constraint programming approach. We implement our model in a production compiler and compare it to the commonly used instruction selection technique based on dynamic programming.

The rest of this chapter is organized as follows. Section 3.2 summarizes the background material required for understanding the problem and our solution described in this chapter. In Section 3.3, we describe the constraint programming model for instruction selection and improvements to the model. Section 3.4 gives a quantitative evaluation of our approach. Section 3.5 gives an overview of related work in recent research literature and we present a summary of this chapter in Section 3.6.
3.2 Background

In this section the instruction selection problem is defined followed by an overview of the needed background material. We give a formal statement of the problem along with the assumptions and cost model.

Instruction selection is a transformation phase in a compiler where the intermediate representation (IR) of code is transformed into machine instructions for a specific target architecture without considering register or scheduling constraints. The IR is an internal representation of program code in a compiler specific format which the compiler then optimizes (see Figure 3.2; for more background on intermediate representations see Chapter 7 of Appel [1998]). The IR representation of a program and its constituent basic blocks is given by an expression DAG. We use the standard expression DAG representation of the basic block in the compiler and call it the IR DAG. The IR DAG can be defined as:

Definition 3.2.1 (IR DAG) An IR DAG is a finite directed acyclic graph where each internal node is an IR operation with an associated type and opcode and leaf nodes represent constants and variables.

An instruction set architecture (ISA) is given by a well-defined set of machine instructions. Each machine instruction can be represented by one or more tiles, where each tile has a specified cost and is a tree where each internal node is an IR operation and the leaf nodes represent constants and variables in registers. Thus, a tile can be viewed as a fragment of an IR DAG. More formally:

Definition 3.2.2 (Tile) A tile T is a tree fragment of an IR DAG where all nodes in T are typed, internal nodes are operations in the compiler IR, and leaf nodes represent values in registers.

The ISA can is defined as:

Definition 3.2.3 (Instruction Set Architecture) A finite set of k architecture specific instructions represented by a set of tiles $T = \{T_1, \ldots, T_k\}$.

48
Figure 3.2: Example code fragment for the expression \(((X+Y)\times Y)+Z\) and its DAG. (a) is the LLVM IR instruction representation of the expression and (b) is the corresponding expression DAG and (c) is the equivalent graph used in constraint modeling. Note that nodes like \(v_5\) and \(v_6\) have null opcodes, meaning that these values are in registers or are constants, whereas \(v_1\) and \(v_3\) represent operations and have non-null opcodes in the intermediate representation.

Each tile has a root node. The root of the tile is always an operation specified by \(\text{opcode}(T)\) which uses a specific type and format of operands, given by \(\text{type}(T)\). Let \(\text{operands}(T)\) denote the number of operands required by the root operation of the tile. In addition, every tile has an associated cost and complexity. The cost function \(\text{cost} : T \rightarrow Z^+\) binds each tile with a non-negative cost. For a set of example tiles and their corresponding machine instructions see Figure 3.3. For the purposes of this work, the cost of a tile is a measure of the size of the corresponding instruction encoding in memory. The complexity of a tile represents the number of nodes it covers in a DAG. Each tile \(T\) maps onto a machine instruction in the ISA where each machine instruction consists of an architecture specific instruction opcode and a set of operands representing registers and values in an architecture.

Definition 3.2.4 (Tiling) Given an IR DAG \(G\) representing the computation of a basic block and a set of tiles \(T\), a tiling is a mapping of tiles to nodes in \(G\) such that the resulting sequence of machine instructions that correspond to the mapped tiles is semantically equivalent to \(G\).

Syntactically, a tiling matches nodes in tiles to nodes in \(G\) such that the leaves of each
Figure 3.3: A subset of relevant tiles for a PowerPC architecture and the corresponding instructions. The first instruction adds the two values in the given floating point registers (FRA and FRB), whereas the second multiplies the two register values. The result is stored in the target register (FRT). The third instruction multiplies its first two operands and adds the result to the third. The register values are marked with an r with the subscript showing that it is of floating point type.

Tiles are either available as the roots of other tiles or they are available as register values, and each operation node in G is uniquely mapped to an internal node of a tile. For a tile to match, two constraints must hold. First, the type constraints enforce that the type of each tile node must be the same as the type of the corresponding node in G. Second, the structural constraints enforce that the number of successors of each tile node must be the same as the number of successors of the corresponding node in G. Additionally, a tiling must satisfy a coverage constraint that enforces that every node in G is covered; i.e., there are no nodes in G that are not mapped by some tile. For an example of tiling see Figure 3.4.

Example 3.2.5 Consider the example given in Figure 3.2 which shows an IR DAG for the given intermediate code. Given a set of tiles for a specific architecture given in Figure 3.3, the IR DAG can be tiled in different ways as shown in Figure 3.4. The better tiling (b) requires only two tiles with a cost of 8 whereas the alternate tiling requires three tiles with a cost of 9.

The optimal tiling of an IR DAG is the tiling with the smallest cost. The goal of this work is to generate a tiling such that the tiling cost is minimized. The instruction selection problem can be defined formally as:
Definition 3.2.6 (Instruction Selection) Given an IR DAG and a set of tiles representing the ISA, determine a tiling with the minimum cost.

A solution to the instruction selection problem gives a mapping of tiles to nodes in the IR DAG such that all nodes are covered. The nodes of the tiles that map to nodes in the IR DAG must have matching types and opcodes. The cost of a tiling is the sum of the costs of all tiles included in the tiling. In this chapter we again use constraint programming for solving the instruction selection problem (see Section 2.2 for more background on constraint programming). Constraint programming is a methodology for solving difficult combinatorial problems modeled in terms of variables, values and constraints.

Constraint models are generally solved using backtracking search. Every stage in the search algorithm represents a partial solution to the problem. During each stage an uninstantiated variable is assigned a value to extend the partial solution to a complete solution. Each assignment is then used to propagate constraints in order to prune the domains of other uninstantiated variables. This is accomplished by ensuring that the remaining values in the domains have support. A value having support means that it is consistent with the domain values of other variables and is possibly a part of a correct solution. This is
nodes of the DAG, \(v_i \in V, i < n \)

variable representing node \(v_i \)

a tile \(T_i \)

an internal node in tile \(T_i \)

the number of operands for a tile \(T_i \)

type associated with node \(v_i \), \(type(v_i) \in \Sigma(\text{set of all types}) \)

opcode associated with \(v_i \), if none then \(opcode(v_i) = 0 \)

the number of immediate successors of node \(v_i \)

set of all immediate predecessors of node \(v_i \)

set of all immediate successors of node \(v_i \)

cost of tile \(t_i \)

Table 3.1: Notation for specifying constraints.

called local consistency. Backtracking proceeds until the best solution is detected or all the possibilities are exhausted.

3.3 Constraint Programming Approach

This section first presents a simple correct model formulating the instruction selection problem. This model, however, does not scale up to larger instances. We then describe improvements to the model that allow it to scale up to blocks of size approximately one hundred. Consider an expression DAG given by the graph \(G = (V, E) \). The objective is to find an optimal tiling. The tiling must satisfy coverage, structural and type constraints.

The instruction selection problem can be formulated as a constraint optimization problem if for every node in the IR DAG there is a variable and the domain of each variable is the set of available tiles in a given architecture. An assignment of a tile \(T_i \), to a variable \(v \) means that the root of \(T_i \) matches the vertex in the IR DAG represented by \(v \). If a vertex is covered by a non-root node of \(T_i \) the respective variable is assigned a value \(T_i' \). Using the notation given in Table 3.1 we describe a simple constraint model for the running example.

The constraints in the model are: structural constraints, opcode constraints, type constraints, a coverage constraint, and predecessor constraints. The notation we use to specify
the constraints is summarized in Table 3.1. Given an IR DAG $G = (V, E)$ every variable x_i corresponding to $v_i \in V$ is subject to these constraints. Structural constraints for each variable are unary constraints of the form $op(x_i) = deg(v_i)$. For each variable the structural constraints are added to the constraint model to ensure that the number of successors of a node v_i ($succ(v_i)$) are the same as the number of successors of the assigned node ($succ(x_i)$) in the selected tile. These constraints ensure that each tiled operation has the correct number of operands being passed to it. The opcode constraints which are of the form $opcode(x_i) = opcode(v_i)$ ensure that the tiled operations are consistent with the operations in the DAG. The type constraints are of the form $type(x_i) = type(v_i)$. Type constraints ensure that the operands of an operation are of the correct type and format. In order to enforce correct tiling, a coverage constraint is added. Recall that the coverage constraint ensures that all nodes in the DAG are covered by some tile. Thus, a coverage constraint is over all of the variables in the constraint model. Predecessor constraints ensure that if the result of an operation is required by multiple operations ($pred(v_i) > 1$) then it must be available in a register.

Example 3.3.1 Consider the constraint model for the example instruction selection problem given in Example 3.2.5 with variables $x_1, x_2, x_3, x_4, x_5, x_6$, each with domain $\{T_1, T_2, T_3\} \cup \{T_1', T_2', T_3'\}$ and constraints,

- $operands(x_1) = 2$, $opcode(x_1) = +$, $type(x_1) = f32$,
- $operands(x_2) = 0$, $opcode(x_1) = \emptyset$, $type(x_1) = f32$,
- $operands(x_3) = 2$, $opcode(x_3) = \star$, $type(x_3) = f32$,
- $operands(x_4) = 2$, $opcode(x_4) = +$, $type(x_4) = f32$,
- $operands(x_5) = 0$, $opcode(x_1) = \emptyset$, $type(x_1) = f32$,
- $operands(x_6) = 0$, $opcode(x_1) = \emptyset$, $type(x_1) = f32$,

where $operands(x_i)$ enforces a constraint on the number of operands of an operation matched with the number of operands of the root node of the tile, $opcode(x_i)$ on the operation of the root node of the tile and similarly $type(x_i)$ on the type of the node. Enforcing consistency using the constraints reduces the domains of the variables to: $\text{dom}(x_1) = \{T_1, T_3\}$, $\text{dom}(x_2) = \{T_1', T_3\}$, $\text{dom}(x_3) = \{T_2\}$, $\text{dom}(x_4) = \{T_1, T_3, T_2'\}$, $\text{dom}(x_5) = \{T_1', T_2', T_3'\}$, $\text{dom}(x_6) = \{T_1', T_3'\}$.

Note that the domains of some variables (for example, x_5 and x_6) only contain internal nodes as soon as consistency is enforced. Every variable does not need to be assigned to
be the root of a tile. A solution is valid as long as all nodes in the IR DAG are covered by some tile.

We model each node $v_i \in V$, of the IR DAG with a variable x_i. The domain of each variable is $\text{dom}(x_i) = \{T_1, \ldots, T_k\} \cup \{T'_1, \ldots, T'_k\}$, which is the set of available tiles in a given target set architecture. Assigning a tile T_i to a variable x_j has the intended meaning that the node v_j in the DAG will be covered by tile T_i.

What has been described above is the minimal correct model for the instruction selection problem. It is well known that adding implied constraints, symmetry breaking and preprocessing techniques can greatly improve the efficiency of the search for a solution. Without these improvements the search does not scale beyond DAGs of size 30 to 40. With the improved model the search scales up to instances of size 100 to 200 and is able to get the optimal solutions for a vast majority of benchmark blocks.

3.3.1 Selection Algorithm

Given an instance of the instruction selection problem, the solution proceeds in two phases. The first phase consists of constructing a constraint model and some preprocessing to refine the model by pruning the domains. The second phase consists of backtracking search with constraint propagation.

A sketch of the selection algorithm is given as Algorithm 3. The first phase consists of constructing the constraint model by setting up the variables, their domains as being the set of all tiles, and constraints. It proceeds with domain preprocessing where the domain of each variable is pruned as described earlier. An upper bound on selection cost is established using a dynamic programming algorithm [Appel, 1998, p.197]. The tiling from the dynamic programming algorithm which corresponds to the upper bound is used as the seed tiling in the search and is used to prune the search. If the cost of a partial tiling exceeds the cost of the current upper bound the search tree is pruned. The constraint model and the upper bound are passed onto the backtracking algorithm.

The second phase consists of backtracking search over the refined model. Backtracking search interleaves constraint propagation along with branch and bound checks as it branches over the variable assignments (see Algorithm 4). Once an unassigned variable is selected (line 9), matching tiles are iteratively assigned to the selected variable if the match is found to be consistent with the current partial tiling.
ALGORITHM 3: InstructionSelection

Input: G the expression DAG and, T a set of architecture specific tiles.

Output: A tiling C.

1. **SEARCH**(G, T)
2. **begin**
3. $CSP \leftarrow ConstructConstraintModel(G, T)$
4. $U \leftarrow$ cost of tiling using a dynamic programming approach
5. $C \leftarrow$ tiling associated with U
6. **PruneDomains**(CSP)
7. **Backtrack**(CSP, C, U)
8. **return** tiling C
9. **end**

If the chosen tile is consistent with the current partial tiling then it is assigned to the respective variable and constraints are propagated. The consistency check also matches the entire structure of the tile with the subgraph that it is tiling (line 11). Predecessor constraints are enforced during the consistency checks. The check makes sure that if there is a node in the graph with more than one predecessor then it is not mapped to an internal node of a tile. Along with consistency checks, a branch and bound check is also performed at this stage.

Once a tile is found to be consistent and the branch and bound check passes then it is added to the tiling and constraints are propagated. During constraint propagation (line 13) the variables which correspond to the nodes covered by the assigned tile are also marked as assigned. When a variable is unassigned during backtracking (line 15), the variables corresponding to nodes covered by the unassigned tile are also marked as unassigned.

As the search proceeds and a complete tiling is found (line 3), the tiling cost is compared with the current best. If it is found to be better, then it is recorded as the best tiling. The upper bound on the cost is simultaneously updated. If the backtracking algorithm terminates without timing out then a provably optimal tiling has been found. On the other hand, if the time limit is exceeded, the current best tiling is returned.
ALGORITHM 4: BacktrackingSearch

Input: CSP a constraint model, a tiling, and an upper bound on tiling cost U
Output: A tiling C.

1 Backtrack(CSP, tiling, U)
2 begin
3 if IsComplete(tiling) then
4 if Cost(tiling) $<$ U then
5 U ← Cost(tiling)
6 C ← Tiling(U)
7 end
8 else
9 var ← SelectUnassignedVariable(variables[CSP])
10 for each tile \in values[CSP] do
11 if IsConsistent(tile, tiling) $\&\&$ BranchAndBound(U, tiling) then
12 Assign(var, tile, tiling)
13 PropagateConstraints(CSP, tiling)
14 Backtrack(CSP, tiling, U)
15 UnAssign(v, tiling)
16 end
17 end
18 end
19 return
20 end

3.3.2 Constraint Propagation

Constraints propagation can be used to improve the performance of our technique both
before and during the search. Before beginning the search for the optimal tiling for a given
DAG we can preprocess the constraint model by preprocessing the domain set for each
variable. We can safely prune the domains of most variables using the set of constraints
described earlier. For each variable x_i structural constraints, opcode constraints and type
constraints are enforced on the root node of each of the tiles in the domain. Thus a tile is
ruled out of the domain of x_i iff its root node does not match v_i in its type, opcode or the
number of successors. This significantly reduces the size of the domains for each variable.

Example 3.3.2 Consider Example 3.3.1 which describes the constraint model for our running example. Simply enforcing the three constraints reduces \(\text{dom}(x_3) \) to \(\{T_2\} \) and the domains of \(x_2, x_5 \) and \(x_6 \) to internal nodes of tiles only. In the case of \(x_3 \), the only tile among \(\{T_1, T_2, T_3\} \) whose opcode at the root node (opcode\((x_3) = \star \)) matches the node \(v_3 \)'s opcode is \(T_2 \) and hence the other tiles are pruned from the domain of \(x_3 \). A domain with only internal nodes means that there are no tiles in the domain set which can be rooted at that node. The coverage constraint ensures that all nodes in the DAG are covered.

After the preprocessing phase, the domain of each variable has been pruned to a subset of tiles which can be rooted at the corresponding node in the DAG. Pruning only removes domain values that cannot be part of a solution. Using the root of a tile for matching ensures that if a node in the IR DAG can be matched to a node in a tile, that tile is in the domain of the variable where it should be rooted if it is included in a tiling.

During the search, constraints are propagated as variables are assigned values. Once a tile is assigned to a variable all the nodes in the DAG that match the tile nodes are marked as covered and corresponding variables in the model are marked as assigned. This means that these variables are not considered as the search progresses down the tree which results in fewer branches on the path to the leaf nodes (i.e., solutions).

Constraint propagation also handles over-tiling. Over-tiling refers to operation nodes being covered by multiple tiles. Over-tiling may not result in incorrect code, but can delay the search for the optimal solution. The following example highlights how over-tiling is handled by our approach.

Example 3.3.3 Consider the example given in Figure 3.5 which illustrates constraint propagation during the tiling of the running example. If \(x_3 \) is the first variable to be assigned a value, i.e. \(T_2 \), the partial tiling looks like Figure 3.5(a). Subsequently when \(x_1 \) is assigned the tile \(T_3 \), the partial tiling looks like Figure 3.5(b) which means that \(v_3 \) is now over-tiled. This over-tiling may not result in incorrect code but the cost of this partial tiling is eight. When the constraints are propagated, this over-tiling is detected as the cost exceeds the current upper bound. Thus, the value of \(T_2 \) is removed from the domain of \(x_3 \)—as illustrated in Figure 3.5(c)—bringing down the cost of the partial tiling to five. This partial tiling is part of the optimal solution in this case.
Figure 3.5: (a) Tile T_2 assigned to variable x_3 in the constraint model. (b) later in the search tile T_3 is assigned to variable x_1 in the constraint model. (c) Propagating constraints prunes the domain of x_3 as it handles over-tiling.

Constraint propagation not only reduces the search space but also enforces consistency of the tiling by propagating predecessor constraints. Predecessor constraints ensure that if the result of an operation is required by more than one operation then its result is available as a register value (see Figure 3.3). Recall that once an operation instruction is executed its result is available in a register. During constraint propagation it is made sure that when such nodes are tiled the operation is covered by the root of a tile. See Figure 3.6 for an example.

3.3.3 Branch and Bound

Branch and bound refers to a check at each assignment during the backtracking algorithm to recognize early in the search whether the solutions within the sub tree would be optimally feasible or not. A fast dynamic programming solution for selecting instructions is used to obtain a solution which is recorded as the best initial solution and its cost is recorded as the upper bound on the cost of tiling. As the search progresses during backtracking the upper bound is updated.

The update happens as we find better solutions during the search and the upper bound reflects the cost of the best solution so far. The cost of each partial tiling is compared with this upper bound at each internal node in the search tree. If the cost is found to be above the upper bound the search does not descend the tree any further.
Figure 3.6: (a) Tile T_3 is assigned to a variable in the constraint model. (b) Another variable assigned tile to T_1. Due to a predecessor constraint, this is inconsistent as one of the operands of T_1 is not available as a register value. (c) T_2 would be the correct tile to choose in this case.

3.4 Experimental Evaluation

In this section we present the performance results of our constraint programming approach for the instruction selection problem. We describe the implementation framework, experimental setup and a quantitative analysis of the results in the following subsections.

3.4.1 Implementation Framework

The constraint programming model has been implemented in the LLVM 3.0 [Lattner and Avde, 2004] compiler infrastructure. We modified the common code selection algorithm to incorporate our constraint programming approach. LLVM provides a hand-tuned dynamic programming selection algorithm as well as a greedy selector based on BURG [Fraser et al., 1992] (see the Related Work, Section 3.5 for a description of these approaches). We compare the performance of our approach primarily with the default LLVM selection algorithm which is an implementation of the dynamic programming solution. In addition we compare the effect of all three approaches on code size.
3.4.2 Experimental Setup

We evaluated the constraint programming implementation on C and C++ benchmarks from the MiBench [MiBench, 2001], MediaBench [MediaBench, 1997] and VersaBench [VersaBench, 2004]. The benchmarks were compiled using the LLVM compiler framework. The compilations were done at two different levels of optimizations, −Os which aggressively optimizes for code size and −O3 which includes more complex optimization techniques such as loop unrolling but may result in larger code. Some of the benchmarks like ghostscript, mpeg2, pegwit, and pgp from MediaBench have been omitted because LLVM fails to compile them completely with issues unrelated to instruction selection.

Our algorithm works on basic block expression DAGs also known as Selection DAGs in LLVM. It is worth noting that instruction selection is practically the first phase in backend compiler optimizations and precedes both instruction scheduling and register allocation.

3.4.3 Experimental Results & Analysis

In this section we present the results of our experiments. First, we compare the cost of tiling of our constraint programming algorithm with the tiling cost of the better of the two LLVM selection algorithms which is also the LLVM default: dynamic programming selector (DP). Second, we compare the impact on code size for our optimal tiling approach against the dynamic programming approach. Third, we examine the impact of the more aggressive optimization level, −O3, on selection cost and code size. Finally, as our optimal selector is more costly in terms of selection time, we examine the additional time taken to perform instruction selection on the benchmarks. All of the results presented are for the x86 architecture unless specified otherwise.

Improvements in selection cost and percentage of provably optimal tilings. Performance results for our instruction selection algorithm are given in Table 3.2. Our algorithm is able to solve more than 90% of the basic blocks within each benchmark optimally. However, the average improvements in selection cost do not exceed 4% for any benchmark even with the increased compilation time. For some smaller benchmarks there is no improvement at all (for example, crc32 and qsort) even though all the blocks were solved optimally. This is partly due to the small size and fewer basic blocks in the benchmark and partly due to the highly optimized nature of dynamic programming selector of LLVM which does not produce provably optimal solutions but appears to be close to optimal in practice.
<table>
<thead>
<tr>
<th>benchmark</th>
<th>#basic blocks</th>
<th>max size</th>
<th>average size</th>
<th>#solved optimally</th>
<th>%solved optimally</th>
<th>%imp. impr. (%)</th>
<th>average time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8b10b</td>
<td>28</td>
<td>79</td>
<td>24</td>
<td>28</td>
<td>100.0</td>
<td>10.7</td>
<td>1.53</td>
</tr>
<tr>
<td>802.11a</td>
<td>15</td>
<td>90</td>
<td>38</td>
<td>12</td>
<td>80.0</td>
<td>6.6</td>
<td>0.06</td>
</tr>
<tr>
<td>bmm</td>
<td>37</td>
<td>67</td>
<td>24</td>
<td>36</td>
<td>97.2</td>
<td>5.4</td>
<td>0.32</td>
</tr>
<tr>
<td>vpenta</td>
<td>29</td>
<td>142</td>
<td>44</td>
<td>22</td>
<td>75.8</td>
<td>24.1</td>
<td>3.37</td>
</tr>
<tr>
<td>dbms</td>
<td>692</td>
<td>297</td>
<td>24</td>
<td>674</td>
<td>97.3</td>
<td>21.8</td>
<td>1.90</td>
</tr>
<tr>
<td>beamformer</td>
<td>66</td>
<td>78</td>
<td>25</td>
<td>65</td>
<td>98.4</td>
<td>6.0</td>
<td>0.34</td>
</tr>
<tr>
<td>fmradio</td>
<td>49</td>
<td>123</td>
<td>29</td>
<td>46</td>
<td>93.8</td>
<td>6.1</td>
<td>0.22</td>
</tr>
<tr>
<td>adpcm</td>
<td>48</td>
<td>71</td>
<td>27</td>
<td>46</td>
<td>95.8</td>
<td>10.4</td>
<td>0.66</td>
</tr>
<tr>
<td>epic</td>
<td>705</td>
<td>473</td>
<td>29</td>
<td>683</td>
<td>96.8</td>
<td>4.8</td>
<td>0.33</td>
</tr>
<tr>
<td>g721</td>
<td>271</td>
<td>165</td>
<td>25</td>
<td>259</td>
<td>95.5</td>
<td>6.2</td>
<td>0.71</td>
</tr>
<tr>
<td>mesa</td>
<td>12350</td>
<td>1135</td>
<td>24</td>
<td>11999</td>
<td>97.1</td>
<td>5.1</td>
<td>1.21</td>
</tr>
<tr>
<td>rasta</td>
<td>1355</td>
<td>1237</td>
<td>27</td>
<td>1328</td>
<td>98.0</td>
<td>5.7</td>
<td>0.64</td>
</tr>
<tr>
<td>basicmath</td>
<td>71</td>
<td>75</td>
<td>35</td>
<td>58</td>
<td>81.6</td>
<td>4.2</td>
<td>0.28</td>
</tr>
<tr>
<td>gsm</td>
<td>743</td>
<td>975</td>
<td>30</td>
<td>725</td>
<td>97.5</td>
<td>8.6</td>
<td>0.88</td>
</tr>
<tr>
<td>crc32</td>
<td>19</td>
<td>71</td>
<td>24</td>
<td>19</td>
<td>100.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>fft</td>
<td>58</td>
<td>119</td>
<td>27</td>
<td>57</td>
<td>98.2</td>
<td>6.8</td>
<td>0.27</td>
</tr>
<tr>
<td>bitcount</td>
<td>59</td>
<td>86</td>
<td>25</td>
<td>58</td>
<td>98.3</td>
<td>8.4</td>
<td>1.18</td>
</tr>
<tr>
<td>qsort</td>
<td>25</td>
<td>60</td>
<td>30</td>
<td>25</td>
<td>100.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>susan</td>
<td>492</td>
<td>470</td>
<td>33</td>
<td>462</td>
<td>93.9</td>
<td>4.6</td>
<td>0.39</td>
</tr>
<tr>
<td>typeset</td>
<td>14701</td>
<td>2199</td>
<td>28</td>
<td>14190</td>
<td>96.5</td>
<td>9.0</td>
<td>0.73</td>
</tr>
<tr>
<td>jpeg</td>
<td>4649</td>
<td>399</td>
<td>25</td>
<td>4454</td>
<td>95.8</td>
<td>10.2</td>
<td>0.97</td>
</tr>
<tr>
<td>patricia</td>
<td>62</td>
<td>51</td>
<td>27</td>
<td>62</td>
<td>100.0</td>
<td>25.8</td>
<td>2.09</td>
</tr>
<tr>
<td>dijkstra</td>
<td>72</td>
<td>55</td>
<td>25</td>
<td>72</td>
<td>100.0</td>
<td>11.1</td>
<td>0.91</td>
</tr>
<tr>
<td>blowfish</td>
<td>183</td>
<td>513</td>
<td>42</td>
<td>157</td>
<td>85.7</td>
<td>9.2</td>
<td>1.01</td>
</tr>
<tr>
<td>sha</td>
<td>40</td>
<td>72</td>
<td>33</td>
<td>38</td>
<td>95.0</td>
<td>2.5</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 3.2: Statistics from the constraint programming solution to instruction selection problem using the LLVM default and −Os flag: name of the benchmark, number of basic blocks it contains, size of the largest basic block, average size of the basic blocks, number of basic blocks and percentage of basic blocks for which the algorithm was able to determine the optimal tiling with a 10 second timeout, percentage of basic blocks for which our algorithm derived a better tiling as compared to the LLVM default, and average percentage improvement of tiling cost over the LLVM default.
Table 3.3: Details of instruction selection performance on basic blocks in epic benchmark at optimization level $-Os$.

<table>
<thead>
<tr>
<th>Range</th>
<th>#blocks</th>
<th>#solved optimally</th>
<th>avg. #nodes searched</th>
<th>#solutions (median)</th>
<th>#optimal solutions (median)</th>
<th>average impr. (%)</th>
<th>average sol time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>6-10</td>
<td>55</td>
<td>55</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>11-20</td>
<td>240</td>
<td>240</td>
<td>26</td>
<td>4</td>
<td>3</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>21-30</td>
<td>148</td>
<td>148</td>
<td>129</td>
<td>12</td>
<td>6</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>31-50</td>
<td>184</td>
<td>181</td>
<td>108275</td>
<td>64</td>
<td>18</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>51-100</td>
<td>61</td>
<td>54</td>
<td>738687</td>
<td>8192</td>
<td>1134</td>
<td>0.1</td>
<td>1.7s</td>
</tr>
<tr>
<td>101-250</td>
<td>11</td>
<td>2</td>
<td>3475560</td>
<td>227592</td>
<td>10692</td>
<td>0.0</td>
<td>8.8s</td>
</tr>
<tr>
<td>250+</td>
<td>3</td>
<td>0</td>
<td>3449920</td>
<td>90637</td>
<td>30528</td>
<td>0.0</td>
<td>10.0s</td>
</tr>
<tr>
<td>overall</td>
<td>705</td>
<td>683</td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
<td>4:38s</td>
</tr>
</tbody>
</table>

Table 3.3 gives a breakdown of the performance results for the epic benchmark by the different sizes of basic blocks in epic. As expected, the results show that most of the blocks of up to size 100 were solved optimally by our algorithm within the time out limit as it struggled to optimally tile larger blocks. The improvements in tiling cost are again very small and come from mid-sized blocks rather than relatively larger ones.

The impact on code size. The objective of performing optimal instruction selection is usually to reduce the size of the resultant object code which is a metric of concern especially in embedded systems. Figure 3.7 compares the size of object code compiled with our constraint programming implementation against the fast and greedy BURG selector and the LLVM default dynamic programming selector. The results show that our selection algorithm performs significantly better than the BURG approach, but is practically indistinguishable from the LLVM default dynamic programming approach. We also compare the difference between our approach and the LLVM default in terms of actual code size (see Figure 3.8). Our approach, which always finds a better or an equally good tiling as the LLVM default based on cost, unfortunately results in slightly larger actual object code for most benchmarks. This can be explained by the effect of other compiler phases, such as register allocation and spill code generation, on the final code size.
Comparing the effect of different levels of compiler optimizations on the performance of the selection algorithm. Table 3.4 shows the performance of our instruction selection approach compared to the LLVM default at the most aggressive compiler optimization level (−O3). The average improvements in selection cost do not exceed 3.6% for any benchmark even with the increased compilation time. Again, for some smaller benchmarks there is no improvement at all (for example, crc32 and qsort).

63
<table>
<thead>
<tr>
<th>benchmark</th>
<th>#basic blocks</th>
<th>max size</th>
<th>average size</th>
<th>#solved optimally</th>
<th>%solved optimally</th>
<th>%imp. impr. (%)</th>
<th>average time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8b10b</td>
<td>36</td>
<td>79</td>
<td>23</td>
<td>35</td>
<td>97.2</td>
<td>8.3</td>
<td>1.19</td>
</tr>
<tr>
<td>802.11a</td>
<td>15</td>
<td>90</td>
<td>38</td>
<td>12</td>
<td>80.0</td>
<td>6.6</td>
<td>0.07</td>
</tr>
<tr>
<td>bmm</td>
<td>57</td>
<td>84</td>
<td>22</td>
<td>54</td>
<td>94.7</td>
<td>3.5</td>
<td>0.21</td>
</tr>
<tr>
<td>vpenta</td>
<td>27</td>
<td>171</td>
<td>46</td>
<td>20</td>
<td>74.0</td>
<td>25.9</td>
<td>3.62</td>
</tr>
<tr>
<td>dbms</td>
<td>702</td>
<td>305</td>
<td>24</td>
<td>680</td>
<td>96.8</td>
<td>21.6</td>
<td>1.90</td>
</tr>
<tr>
<td>beamformer</td>
<td>80</td>
<td>135</td>
<td>27</td>
<td>76</td>
<td>95.0</td>
<td>8.7</td>
<td>1.17</td>
</tr>
<tr>
<td>fnradio</td>
<td>84</td>
<td>206</td>
<td>30</td>
<td>79</td>
<td>94.0</td>
<td>9.5</td>
<td>0.54</td>
</tr>
<tr>
<td>adpcm</td>
<td>48</td>
<td>71</td>
<td>27</td>
<td>46</td>
<td>95.8</td>
<td>10.4</td>
<td>0.67</td>
</tr>
<tr>
<td>epic</td>
<td>792</td>
<td>474</td>
<td>28</td>
<td>769</td>
<td>97.0</td>
<td>5.1</td>
<td>0.37</td>
</tr>
<tr>
<td>g721</td>
<td>350</td>
<td>165</td>
<td>24</td>
<td>337</td>
<td>96.2</td>
<td>4.5</td>
<td>0.46</td>
</tr>
<tr>
<td>mesa</td>
<td>13590</td>
<td>1129</td>
<td>24</td>
<td>13191</td>
<td>97.0</td>
<td>7.2</td>
<td>1.31</td>
</tr>
<tr>
<td>rasta</td>
<td>1460</td>
<td>1237</td>
<td>27</td>
<td>1431</td>
<td>98.0</td>
<td>6.0</td>
<td>0.73</td>
</tr>
<tr>
<td>basicmath</td>
<td>71</td>
<td>75</td>
<td>35</td>
<td>59</td>
<td>83.0</td>
<td>4.2</td>
<td>0.28</td>
</tr>
<tr>
<td>crc32</td>
<td>19</td>
<td>71</td>
<td>24</td>
<td>19</td>
<td>100.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>fft</td>
<td>61</td>
<td>119</td>
<td>28</td>
<td>60</td>
<td>98.3</td>
<td>4.9</td>
<td>0.14</td>
</tr>
<tr>
<td>bitcount</td>
<td>59</td>
<td>90</td>
<td>27</td>
<td>58</td>
<td>98.3</td>
<td>8.4</td>
<td>1.18</td>
</tr>
<tr>
<td>qsort</td>
<td>25</td>
<td>60</td>
<td>30</td>
<td>25</td>
<td>100.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>susan</td>
<td>537</td>
<td>470</td>
<td>32</td>
<td>505</td>
<td>94.0</td>
<td>4.6</td>
<td>0.41</td>
</tr>
<tr>
<td>typeset</td>
<td>14964</td>
<td>6395</td>
<td>29</td>
<td>14448</td>
<td>96.5</td>
<td>9.2</td>
<td>0.75</td>
</tr>
<tr>
<td>jpeg</td>
<td>5332</td>
<td>399</td>
<td>25</td>
<td>5116</td>
<td>95.9</td>
<td>10.9</td>
<td>1.07</td>
</tr>
<tr>
<td>patricia</td>
<td>62</td>
<td>51</td>
<td>27</td>
<td>62</td>
<td>100.0</td>
<td>25.8</td>
<td>2.09</td>
</tr>
<tr>
<td>dijkstra</td>
<td>100</td>
<td>55</td>
<td>24</td>
<td>100</td>
<td>100.0</td>
<td>8.0</td>
<td>0.70</td>
</tr>
<tr>
<td>blowfish</td>
<td>153</td>
<td>513</td>
<td>56</td>
<td>118</td>
<td>77.1</td>
<td>8.4</td>
<td>0.88</td>
</tr>
<tr>
<td>sha</td>
<td>47</td>
<td>72</td>
<td>34</td>
<td>42</td>
<td>89.3</td>
<td>2.1</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table 3.4: Statistics from the constraint programming solution to instruction selection problem using the LLVM default and −O3 flag: name of the benchmark, number of basic blocks it contains, size of the largest basic block, average size of the basic blocks, number of basic blocks and percentage of basic blocks for which the algorithm was able to determine the optimal tiling with a 10 second timeout, percentage of basic blocks for which our algorithm derived a better tiling as compared to the LLVM default, and average percentage improvement of tiling cost over the LLVM default.
Figure 3.9: The code size comparison for the different fast Burg, the default LLVM (DP selector) and CP selector with the \(-O3\) flag on for all selection algorithms.

The impact on code size with \(-O3\) flag. Figures 3.9 and 3.10 show the effect of our instruction selection algorithm on code size at optimization level \(-O3\). The results show that our selection algorithm performs significantly better than the BURG approach, but is practically indistinguishable from the LLVM default dynamic programming approach, even with all of the additional optimizations. It should be noted here that the dynamic programming solution for instruction selection is fast and tiles each block within one second.

Figure 3.10: The code improvement of CP selector over the default LLVM (DP selector) with the \(-O3\) flag on for all selection algorithms.
Table 3.5: Details of instruction selection performance on basic blocks in epic benchmark for different architectures using llc with optimization flag −Os. The table shows the percentage of basic blocks for which a provably optimal tiling was found using CP (% solved optimally), and the percentage of blocks improved by CP (% blocks impr.), for various architectures. The percentage of basic blocks for which a provably optimal tiling was found using DP can be determined by subtracting percentage of blocks improved by CP from percentage solved optimally by CP.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>#blocks</th>
<th>max size</th>
<th>avg size</th>
<th>solved optimally</th>
<th>%solved optimally</th>
<th>%blocks impr.</th>
<th>average impr.(%)</th>
<th>solution time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppc32</td>
<td>255</td>
<td>383</td>
<td>30</td>
<td>251</td>
<td>98.4</td>
<td>4.3</td>
<td>0.34</td>
<td>44.4</td>
</tr>
<tr>
<td>ppc64</td>
<td>251</td>
<td>456</td>
<td>34</td>
<td>251</td>
<td>100.0</td>
<td>5.1</td>
<td>0.21</td>
<td>19.7</td>
</tr>
<tr>
<td>mips</td>
<td>255</td>
<td>441</td>
<td>33</td>
<td>252</td>
<td>98.8</td>
<td>0.0</td>
<td>0.00</td>
<td>30.6</td>
</tr>
<tr>
<td>sparc</td>
<td>255</td>
<td>389</td>
<td>29</td>
<td>251</td>
<td>98.4</td>
<td>7.0</td>
<td>0.29</td>
<td>48.6</td>
</tr>
<tr>
<td>arm</td>
<td>255</td>
<td>419</td>
<td>31</td>
<td>254</td>
<td>99.6</td>
<td>0.0</td>
<td>0.00</td>
<td>10.3</td>
</tr>
<tr>
<td>x86</td>
<td>248</td>
<td>473</td>
<td>34</td>
<td>237</td>
<td>95.5</td>
<td>10.8</td>
<td>0.95</td>
<td>117.6</td>
</tr>
<tr>
<td>x86-64</td>
<td>247</td>
<td>395</td>
<td>30</td>
<td>242</td>
<td>97.9</td>
<td>3.6</td>
<td>0.85</td>
<td>64.5</td>
</tr>
</tbody>
</table>

Tiling for different instruction set architectures. Table 3.5 gives results of tiling for the epic benchmark for various instruction sets. Using our approach we can determine provably optimal tilings for more than 97% of basic block instances in the epic benchmark. For the x86, which has a relatively more complex instruction set, we see close to 1% of improvement in tiling cost over the LLVM default approach. However, for MIPS and ARM, which have simpler instructions sets, we do not see any improvement.

3.5 Related Work

In compilers instruction selection precedes both instruction scheduling and register allocation. Over the years several techniques have been proposed for instruction selection ranging from greedy algorithms, dynamic programming approaches as well as some attempts at solving the problem optimally. For tree-based intermediate representations the most popular tiling algorithm is Maximal Munch [Appel, 1998, p.195]. Maximal Munch is a top-down algorithm that proceeds by covering the root node of the tree with the
largest possible tile leaving several subtrees. Each subtree is then tiled in a similar manner. BURG [Fraser et al., 1992] is an early instruction selection algorithm which applies graph matching techniques on selection trees. It decomposes the graph into trees and applies graph grammar parsing to instruction selection by associating constant costs with each production rule. Dynamic programming is used for optimum tiling of tree based IRs [Appel, 1998, p.197]. The dynamic programming algorithm proceeds bottom up, finding the cost of all children and choosing the tiling with the minimum cost. In general, least cost instruction selection is known to be NP-complete for directed acyclic graphs [Koes and Goldstein, 2008; Proebsting, 1998]. Thus, dynamic programming applied to DAGs does not guarantee an optimal solution to the instruction selection problem (see Appendix B for an example).

Eckstein et al. [2003] present a technique which maps the instruction selection problem for SSA graphs to partitioned Boolean quadratic problem (PBQP). The algorithm takes into account the computational flow of the whole function. Once the SSA graph has been mapped onto PBQP, the PBQP solver computes its grammar with minimal costs and based on this grammar the code is generated. Tiles are defined as graph grammar rules.
The concept has been integrated with the CC77050 C-Compiler for NEC DSP family which features VLIW architectures for mobile multimedia applications. The evaluation measures the number of nodes which can be eliminated by this technique as compared to a conventional tree pattern matcher. Schäfer [2007] present a technique which uses chain-rule matching on SSA graphs. The technique updates the control flow graph to match types in the DAG so that the instruction selector can correctly identify matching tiles. Another group of researchers have recently presented a combined approach for instruction selection and register allocation [von Koch et al., 2010]. They show a size reduction of 16% and performance improvement of 17% for a relatively uncommon ISA and the unconventional CoSy compiler.

Koes and Goldstein [2008] present a linear-time dynamic programming algorithm which they name NOTLIS. The algorithm operates on the expression DAG of basic blocks tiling the nodes and computes the best choice instructions for each node in terms of the cost function. They also present a 0-1 integer programming formulation of the problem to compute the nearness to optimality of NOTLIS. The ILP formulation is incorrect as it does not account for matching constraints (see Appendix A). Hence the conclusions based on the results presented in their paper are not reliable. They implement NOTLIS in LLVM 2.1 compiler infrastructure targeting Intel x86 architecture and evaluate it on basic blocks in SPEC2006, MediaBench, MiBench and VersaBench. NOTLIS optimizes for code size and gives average improvements of 1%. Ebner et al. [2008] employ the partitioned Boolean quadratic problem (PBQP) (known to be NP-complete) for solving the instruction selection problem. The paper extends the instruction selector [Eckstein et al., 2003] and is primarily concerned with identifying complex tiles within basic blocks using the SSA properties of the intermediate representation. The implementation is done in LLVM 2.1 for an embedded ARMv5 architecture and evaluated MiBench and SPECINT 2000 benchmarks. The experiments compare the execution cycles for the object code produced by gcc, LLVM original and the approach given by the authors and report performance improvements of up to 10% for the SPEC benchmarks. However, the experiments were performed only against the BURG approach, and not the newer dynamic programming approach. Our experimental results against the BURG approach are consistent with these experimental results.

Buchwald and Zwinkau [2010] reformulate the instruction selection problem based on graph transformation and identify and resolve known problems with PBQP-based approaches. They also present formal foundations to verify the correctness of generated
code. They implement their approach within the LIBFIRM compiler and evaluate their technique on the SPECINT 2000 benchmarks. They compare the execution times of the benchmarks compiled with GCC 4.2.1 with their implementation and find that their technique improves execution time of the benchmarks up to 7%.

The current implementation of the instruction selector in LLVM Lattner and Avde [2004] consists of two algorithms. The first is based on BURG and the other is a dynamic programming instruction selection implementation. LLVM uses the SSA graphs to build BURG trees. A BURG tree is a tree of instructions, where the children of an instruction, \(I \), are those that compute the operands of \(I \), and the parent (if any) is some instruction that uses the result of \(I \). In the SSA graph and in real code, however, an instruction may have multiple users, and at most one user can be represented in the tree. The need for trees in pattern-matching rather than DAGs is one of the major limitations of the BURG approach.

3.6 Summary

In this chapter we present a constraint programming approach for the instruction selection problem. Our approach is optimal and scales to basic blocks of size approximately one hundred. We implement our approach in the LLVM compiler and perform an extensive experimental evaluation of our technique on a variety of benchmarks. The evaluation compares the results of our optimal technique with the state-of-the-art tiling technique implemented in LLVM, a highly tuned dynamic programming based instruction selector. The results demonstrate that our approach slightly improves the selection cost as compared to the state-of-the-art approach and would be feasible if where slight improvements in selection quality improve the performance significantly.
Chapter 4

Cache-Conscious Data Placement

Processors make use of on-chip memory in the form of caches to improve program performance. Caches are designed to transparently hide the latency of accessing main memory. The effective utilization of caches requires that cache misses be minimized. A cache miss occurs when the desired object is not found in the cache and has to be fetched from main memory. Numerous hardware and software techniques have been proposed to minimize the number of misses. Among the software proposals are profile-driven data placement techniques, which carefully place data objects in memory. Optimally placing data objects in memory to minimize cache misses is known to be NP-hard and thus assumed to be intractable in the worst-case. Furthermore, it cannot even be approximated within reasonable bounds. However, previous work has presented data placement algorithms that can be effective in practice. In this chapter we use results from the theory of interval graphs to show that it is possible to identify instances where data objects can be arranged in memory such that there are no avoidable cache misses. Any miss that is not compulsory or results due to the capacity of the cache is considered avoidable. For instances where a placement is possible such that there are no avoidable misses, the placement can be determined in polynomial time. We present a general algorithm for placing data in memory. The algorithm is optimal if there exists a placement such that cache misses can be avoided altogether. For the general case, the algorithm uses a novel graph reduction technique to determine a good layout of the objects. On a variety of realistic cache configurations and benchmarks, our graph-theoretic approach improves the cache hit ratio over the best previous techniques by 9% to 21% on average.
4.1 Motivation

Latencies from the memory hierarchy have a significant impact on program performance. Caches are designed to improve memory access times by copying frequently accessed data into relatively smaller on-chip storage that is readily accessible to the processor. Since caches are relatively much smaller in comparison to memory, cache performance is sensitive to the layout of data and the replacement policy. Cache performance is measured as the ratio of the number of misses—where needed objects are not in the cache—to the total number of accesses. A cache miss can increase the latency of a memory load by an order of magnitude.

In reality, the number and kind of cache misses depends heavily on the pattern in which the data in memory is laid out and accessed. One kind of cache miss occurs when an object is accessed for the first time by a program and that object had not been previously loaded into the cache. This is called a compulsory miss. Prefetching techniques can be employed to avoid the miss penalty resulting from compulsory misses. When an object in the cache is replaced by another object mapped to the same set in the cache and the original object is accessed again, a conflict miss occurs. A conflict miss can be avoided if the object had not been evicted from the cache earlier. Capacity misses occur due to the finite size of the cache regardless of associativity or set size. This means that when an object is accessed, it cannot be loaded into the cache without evicting a frequently accessed object residing in the cache. Note that conflict misses and capacity misses are not mutually exclusive.

Our focus is on improving cache performance by using profile information to determine a placement of data objects in memory such that conflict misses can be avoided and capacity misses minimized. The problem of optimally placing data in memory to minimize cache misses is known to be intractable in the worst-case, both to solve exactly and to approximate within reasonable bounds [Petrank and Rawitz, 2002]. Bixby et al. [1994] present a framework to find an exact placement using integer programming, but the approach does not scale. Calder et al. [1998] present a comprehensive framework for cache conscious data placement that utilizes a heuristic data placement algorithm. Their framework is a proposal to modify the memory manager to make use of program profile information to carefully lay out data in memory. The algorithm described in this thesis can replace their technique of determining a data placement (Phase 6 in [Calder et al., 1998]).

Previous studies on data access patterns in general-purpose programs have shown that
only a small percentage (10%) of data objects are responsible for a bulk of the accesses (90%) and the largest contributor to cache misses [Chilimbi, 2001]. If these so-called hot objects can be prioritized when a data layout is determined, cache misses can be reduced significantly [Chilimbi and Shaham, 2006]. Prioritizing hot data streams or references that frequently repeat in the same order can be accomplished by reserving a portion of the cache exclusively for the hot objects. The size of the portion to reserve and assigning the hot objects to this portion in order to minimize conflicts requires that the pattern of accesses be determined in advance through profiling.

In this chapter, we build on theoretical results from [Petrank and Rawitz, 2002] and present an algorithm to improve the framework given in [Calder et al., 1998]. Our work has been inspired by recent work in solving the register allocation problem that uses results from colorability of chordal graphs, of which the interval graphs are a subset [Hack and Goos, 2006]. Specifically, we make the following three contributions.

1. We show that an important special case of the problem of optimally placing data in memory to minimize cache misses can be identified and solved in worst-case polynomial time. In particular, we use results from the theory of interval graphs to identify instances where data objects can be arranged in memory such that there are no conflict misses. The results apply to both direct mapped and set associative caches.

2. We also present a graph-theoretic data placement algorithm for finding a good layout of the objects in memory. The algorithm is optimal if there exists a placement with no conflict misses. For larger instances where no such placement exists due to capacity misses, the problem size is heuristically reduced using a novel graph reduction technique until our result for the polynomial-time special case becomes applicable. Our algorithm is applicable to both direct mapped and set associative caches (see Figure 4.1 for a preview of the impact of the data placement scheme on cache misses).

3. Finally, we also present an empirical comparison of our algorithm with the standard modulo scheme that maps data objects to cache sets and the data placement algorithm of Calder et al. [1998]. In order to evaluate this approach, a program is first profiled to record the order of its memory accesses. The profile information thus gathered is used to construct a conflict graph for the program. The conflict graph is then used by the algorithm to determine an assignment of memory objects to cache
sets which minimizes the number of cache misses. The assignment can then be used to guide the memory manager to create a placement for objects in memory such that it complies with the assignment determined by the placement algorithm. The evaluation measures the improvements in the cache hit ratio resulting from the data placement determined by the placement algorithm. On a variety of realistic cache configurations and benchmarks, our graph-theoretic approach improves the cache hit ratio over the state-of-the-art techniques by 9% to 21% on average and up to 160% in the best case.

The solution presented in this chapter has some practical limitations. These limitations are enumerated below and discussed further in Section 4.6. We assume that:

1. The sequence of object accesses is given.
2. Each object is of the same size and fits a single cache block.
3. Each element of an array is considered an object.
4. Array elements can be placed arbitrarily in memory.

The rest of the chapter is organized as follows. The next section (Section 4.2) gives a formal definition of the problem and an overview of the background material. Section 4.3 describes the solution to the cache conscious data placement problem. Section 4.4 presents the evaluation methodology and results on a set of standard benchmarks. Section 4.5 describes related work. Section 4.6 discusses some practical issues related to our implementation. Finally, Section 4.7 concludes by giving a summary of the contributions of this work.

4.2 Background

In this section, we review the needed background on cache optimization and the theory of interval graphs (for more on these topics see, for example, [Hennessy and Patterson, 2004] and [Golumbic, 2004], respectively).
Figure 4.1: Comparison of the usual cache set address calculation using the modulo operator (MOD) vs our graph theoretic approach (CCP) on cache performance for an fft benchmark instance with 134 objects and more than a million accesses, for direct mapping caches of increasing size. (For illustrative purposes only. Note that cache sizes in practice are a power of two.)

4.2.1 Processor Cache Optimization

Processor caches reduce the cost of data accesses from memory by keeping frequently accessed data closer to the processor. Given an address, the processor first checks if the value at that address is in the cache. If the value is found (i.e., a cache hit) it is returned otherwise it is loaded from memory (i.e., a cache miss). A value is loaded in cache whenever there is a miss. If data values have a conflict—i.e., their addresses map onto the same cache set—then the later value replaces one of the older values in the set. Caches are divided into k sets, where each set is further divided into a blocks, where a is the associativity. A cache is called direct-mapped if $a = 1$; otherwise it is called a-way set associative. An object in memory is mapped to a set in the cache. For set associative caches, the object can be placed in any block within the set, where the block is determined by the replacement policy of the cache.

Consider the problem of cache optimization where the cache configuration is given along with the profile information for a program. Cache optimization can be described using the set of objects $O = \{o_1, \cdots, o_m\}$ accessed by a given program. Given a cache with k sets
and a data access sequence \(\sigma = (\sigma_1, \cdots, \sigma_n) \) where \(\sigma_i \in O \) for all \(i \in \{1, \cdots, n\} \), a solution assigns each object in \(O \) to a cache set such that cache misses are minimized.

The access sequence is obtained by profiling the program. The problem can now be considered as a mapping problem for all objects in \(O \) where the domain of \(o_i \in O \) is \(\{0, \cdots, k - 1\} \) for all \(o_i \) where \(i \in \{1, \cdots, m\} \). A valid solution is an assignment of values to all the objects in \(O \). An optimal assignment would entail that cache misses are minimum for the given sequence \(\sigma \). For simplicity, we assume that each object fits in a single cache block. The assumption simplifies the presentation of our theoretical results and we discuss how the assumption can be relaxed in practice in Section 4.4. The objective is to find a mapping for each object \(o_i, i \in \{1, \cdots, m\} \) to a cache set so that it can be placed in a memory location that maps to a cache set and results in the fewest possible cache misses computed by the function \(\text{Misses}((O, \sigma), f) \). The problem can be formally defined as [Petrank and Rawitz, 2005]:

Definition 4.2.1 (Minimum Cache Misses Problem) Given a set of objects \(O \), a sequence of accesses \(\sigma \), and the number of sets \(k \) in the cache, find a mapping \(f : O \rightarrow \{0, \cdots, k - 1\} \) such that \(\text{Misses}((O, \sigma), f) \) is minimized.

Petrank and Rawitz [2002] prove that the minimum cache miss problem is NP-complete and cannot be approximated within reasonable bounds in the worst-case. Their results show that cases where there are a small number of misses cannot be distinguished from those where there are a large number of misses for both direct mapped and set associative caches. The work described in this chapter does not contradict their results but gives a solution to a solvable subproblem. Furthermore, we propose a novel heuristic solution that is shown to work well in practice.

We present results for direct-mapped caches, which are the most interesting cases in cache conscious data placement as they do not involve a replacement policy, and we extend our results to set associative caches. The problem for fully-associative caches is known to have a trivial solution as it entirely depends on the replacement scheme.

The usual cache set address mapping for objects is calculated using the modulo operator in the following manner,

\[
\text{(object address) MOD (number of sets in cache)}.
\]

Hereafter, this is referred to as the *modulo algorithm*.
4.2.2 Graph Theory

In this subsection, we give an overview of the relevant results from graph theory that are used to define the data placement algorithm (for more on relevant graph-theoretic results, see [Golumbic, 2004]).

The approach described in this chapter relies heavily on a special class of graphs known as interval graphs (see Figure 4.2 for an example of an interval graph).

Definition 4.2.2 (Interval Graph) Given a set of intervals \(I = \{I_1, \ldots, I_m\} \) on a real line a vertex \(v_j \in V \) can be defined for each interval \(I_j \in I \), and an edge \((v_j, v_k) \in E \) exists if and only if the two corresponding intervals intersect; i.e., \(I_j \cap I_k \neq \emptyset \). A graph \(G = (V, E) \) is called an interval graph if it is formed from the intersection of a set of intervals.

![Figure 4.2: A set of intervals and its associated interval graph.](image)

Given an undirected graph \(G = (V, E) \), where \(v_i \in V \), a vertex order \((v_1, \ldots, v_m) \) can be obtained by directing each edge \((v_i, v_j) \in E \) as \(v_i \to v_j \) if \(i < j \) and \(v_j \to v_i \) if \(i > j \) in the total ordering of intervals. This means that each edge is directed from left to right in the order \((v_1, \ldots, v_m) \). If \(v_i \to v_j \) is an edge implied by the vertex order, then \(v_i \in \text{predecessor}(v_j) \), where each predecessor of \(v_j \) is its direct predecessor. This total ordering of vertices in the interval graph is described as a perfect elimination order.

Definition 4.2.3 (Perfect Elimination Order) A perfect elimination order is a vertex ordering \((v_1, \ldots, v_m) \) such that for all \(i \in \{1, \ldots, m\} \), the set \(\{v_i \cup \text{predecessors}(v_i)\} \) forms a clique.

Theorem 4.2.4 ([Golumbic, 2004]) Every interval graph has a perfect elimination order.
Proof 4.2.5 If the vertices of an interval graph are ordered by the left end-point of the intervals then the set $v_i \cup \text{predecessors}(v_i)$ forms a clique for any i. This means that if an interval intersects with v_i and is a predecessor of v_i, it must intersect v_i at the left most endpoint of v_i where it also intersects all the other predecessors of v_i (see illustration in Figure 4.3).

Figure 4.3: Perfect elimination order of an interval graph. All the predecessors of v_i intersect v_i at its leftmost end-point α_{v_i} and also intersect with each other at the points between α_{v_i} and $\alpha_{v_i} + \epsilon$, where ϵ is smaller than the shortest possible length of an interval.

Theorem 4.2.6 ([Golumbic, 2004]) For a graph G where the vertices in G can be ordered into a perfect elimination order, the chromatic number $\chi(G)$ can be determined in linear time.

Proof 4.2.7 Given the vertex order (v_1, \cdots, v_m), scan the vertices in order and color each vertex v_i with the smallest color not used in predecessors(v_i). The number of incoming edges incident on vertex v_i are given by indegree(v_i). Since a vertex v_i has indegree(v_i) predecessors, at least one of the colors in $\{1, \cdots, \text{indegree}(v_i) + 1\}$ is not used among the predecessors. The algorithm finds a coloring with at most $\max_i\{\text{indegree}(v_i) + 1\}$ colors. Let v_{i^*} be the vertex with the largest number of incoming edges. So, $\chi(G) \leq \text{indegree}(v_{i^*}) + 1$. Since, (v_1, \cdots, v_m) is a perfect elimination order, the set predecessors(v_{i^*}) form a clique. All these predecessors are also adjacent to v_{i^*}, so $\{v_{i^*}\} \cup \text{predecessors}(v_{i^*})$ forms a clique. If $\omega(G)$ is the maximum clique of G then $\omega(G) \geq \text{indegree}(v_{i^*}) + 1$. But, $\chi(G) \geq \omega(G)$, so $\chi(G) = \omega(G) = \text{indegree}(v_{i^*}) + 1$, which implies that this is an optimal coloring.
Example 4.2.8 Consider the interval graph shown in Figure 4.2. A perfect elimination for this graph is shown in Figure 4.4; i.e., \(v_1, v_2, \ldots, v_8 \). A coloring for this graph is also shown in Figure 4.4. For example, \(v_1 \) receives color 1 and \(v_5 \) receives color 3.

Theorem 4.2.9 ([Golumbic, 2004]) For a graph \(G \) where the vertices in \(G \) can be ordered into a perfect elimination order, the maximal cliques can be found in linear time.

The proof of this theorem is given in [Golumbic, 2004] which gives an algorithm to find all the maximal cliques in the graph.

Definition 4.2.10 (Edge Contraction) Given an edge \(e = (u, v) \) in graph \(G \), contracting the edge \(e \) results in an induced subgraph \(G' \) in which the edge \(e \) is removed and the two vertices \(u \) and \(v \) are merged. All edges incident to \(u \) and \(v \) in \(G \) become incident to the merged vertex.

Theorem 4.2.11 ([Golumbic, 2004]) An induced subgraph \(G' \) of an interval graph \(G \), resulting from contracting an edge, is also an interval graph.

Proof 4.2.12 Let \((u, v) \) be the edge to be contracted in \(G \). Consider the interval representation of \(G \) where \(I_u \) and \(I_v \) represent the two intervals corresponding to \(u \) and \(v \). Replace the intervals \(I_u \) and \(I_v \) with \(I_{uv} \) where the left end-point of \(I_{uv} \) is the left-most point in \(I_u \) or \(I_v \) and the right-most end point of \(I_{uv} \) is the right-most point in \(I_u \) or \(I_v \). Now remove \(I_u \) and \(I_v \) and add \(I_{uv} \) to the interval representation. The intersection graph of the new set of intervals is \(G' \).
4.3 Data Assignment to Cache

In this section, we describe our algorithm for the minimum cache misses problem.

Cache conscious data placement of objects attempts to map objects to different cache sets if an analysis of the access sequence indicates that there would be a large number of misses if the objects are assigned to the same cache set. By assigning highly conflicting objects to different cache sets the placement aims to achieve fewer cache misses, which can result in better cache hit ratio, improved program performance as well as lower energy consumption.

4.3.1 Conflict Graph Construction

Our data placement algorithm makes use of a representation we denote as a data conflict graph. The conflict graph is constructed from the given sequence of memory accesses. The graph representation used in the placement algorithm is similar to Thabit’s [1982] proximity graph (Thabit was the first to study the hardness of cache conscious data placement) and Calder et al.’s [1998] temporal relationship graph. A data conflict graph represents the objects as its vertices. An edge between two vertices is a representation of a conflict between the two respective objects. An edge exists only if the live ranges of two objects intersect. More formally, the data conflict graph can be defined as follows.

![Figure 4.5: The conflict graph for an access sequence $\sigma = (o_1, o_2, o_3, o_1, o_2, o_3, o_1, o_2, o_1, o_4, o_1, o_4, o_1, o_4, o_3, o_2, o_5, o_2, o_5, o_5, o_2, o_5, o_2, o_4, o_5, o_5, o_4, o_5, o_5)$.](image)
Definition 4.3.1 (Data Conflict Graph) Let \(O = \{o_1, \ldots, o_m\} \) be the set of objects referenced in a program. For a sequence of accesses \(\sigma = (\sigma_1, \ldots, \sigma_n) \), where \(\sigma_i \in O \) for all \(i \in \{1, \ldots, n\} \), the data conflict graph can be given by an undirected graph \(G = (V, E) \) where \(|V| = m \) and each vertex \(v_i \in V \) represents the memory object \(o_i \) and an edge \((v_i, v_j) \in E \) exists if and only if mapping \(o_i \) and \(o_j \) to the same cache block results in one or more conflict misses.

An edge between two vertices \(v_i \) and \(v_j \) means that there is a subsequence in \(\sigma \) of the form \(\sigma_i = (o_i, \ldots, o_j, \ldots, o_i) \) or \(\sigma_j = (o_j, \ldots, o_i, \ldots, o_j) \). A data conflict graph is an undirected graph where the labels on the edges are weights representing the degree of conflict between the connected objects.

Definition 4.3.2 (Conflict Graph Edge Weight) Each edge \((v_i, v_j) \in E \) in the data conflict graph is assigned a weight which is one less than the number of unique transitions of the form \((o_i, \ldots, o_j)\) or \((o_j, \ldots, o_i)\) in the sequence \(\sigma \), where \(o_i \) and \(o_j \) exist only at the start and end of the subsequences.

Example 4.3.3 Consider the edge between \(o_1 \) and \(o_3 \) in the conflict graph shown in Figure 4.5. If the instances of all objects other than \(o_1 \) and \(o_3 \) are removed from the access sequence \(\sigma \) we get a subsequence \((o_1, o_3, o_1, o_3, o_1, o_1, o_1, o_1, o_1)\). Now assume that both objects \(o_1 \) and \(o_3 \) are mapped to the same cache block and no other objects are mapped to that block. The first access of \(o_1 \) results in a compulsory miss and so does the first access of \(o_3 \). The second access of \(o_1 \) results in the first conflict miss. The subsequent access of \(o_3 \) results in another conflict miss making it two conflict misses. The next access of \(o_1 \) results in another conflict miss increasing the total to three. The next four accesses of \(o_1 \) do not result in any misses. The last access of \(o_3 \) results in another conflict miss, resulting in a total of four conflicts between \(o_1 \) and \(o_3 \).

The edge weight of \((v_i, v_j) \) represents the number of times the two objects will be swapped out of the cache if they are assigned to the same cache block and no other object is assigned to that block. The weight of each edge is intended to capture the number of conflict misses of the two objects represented by the vertices if the conflict was allowed to exist during execution of the program. Alternatively, but equivalently, the weight is the number of alternating occurrences of \(o_i \) and \(o_j \) in \(\sigma \), other than the first occurrence, which...
represents a compulsory miss. The data conflict graph for a given access sequence can be constructed in time linear in the length of the sequence.

Example 4.3.4 Consider the conflict graph illustrated in Figure 4.5. It represents the data conflict graph for a program which accesses objects in the set \(O = \{ o_1, o_2, o_3, o_4, o_5 \} \) where the access sequence is given by \(\sigma \). The first access of an object results in a compulsory miss and is not represented in the edge weight. After the first access, each alternating access of a conflicting object is counted as a miss which can possibly be avoided.

The sum of all edges in the graph or even in a subgraph may not represent the total number of misses if all the objects are assigned to the same cache block. Thus, if two or more objects are assigned to some cache block the sum of all the edges in between these objects is greater than or equal to the actual number of conflict misses that would result in this case. Consider the example where \(O = \{ o_1, o_2, o_3, o_4 \} \) and \(\sigma = (o_1, o_2, o_3, o_4, o_1, o_2, o_3, o_4) \). The sum of all edge weights in the conflict graph is 12 but the total number of conflict misses is 4, if all the objects are assigned to the same cache block. Sometimes the sum of all edge weights \((\sum_{e \in E} w(e)) \) gives a tighter upper-bound on the total number of conflict misses than the number of elements in the sequence \(\sigma (|\sigma|) \) but this is not always true as can be seen from the examples above. Therefore, a reasonable upper-bound would be \(\min(|\sigma|, \sum_{e \in E} w(e)) \).

The data conflict graph is an accurate representation of data conflicts if the program is read only. In cases where data reads are intertwined with writes the conflict graph gives an approximation of the actual conflicts between data objects. For example, assuming a write-no-allocate cache scheme, let \(o_i^r \) denote a read of \(o_i \), and \(o_i^w \) a write of \(o_i \). Consider the access sequence \(\sigma = (o_1^w, o_1^r, o_2^w, o_2^r, o_1^w, o_1^r) \). If \(o_1 \) and \(o_2 \) are assigned to the same cache block then although there is a miss when \(o_1 \) is read the second time, there is no conflict; i.e., the miss is not avoidable. Note that the second value of \(o_1 \) cannot be relabeled as a different object, and hence avoid the problem, because once an object is allocated in memory it is not trivial to relocate the object without a heavy performance penalty. However, most general-purpose programs are read-intensive and thus the conflict graph can be classified as a reasonably accurate representation of actual data conflicts [Hennessy and Patterson, 2004].
4.3.2 Conflict Graph Classification

Our central insight is that the data conflict graph represents an intersection of intervals. Consider an interval beginning from the first occurrence of an object in the data access sequence and ending at its last occurrence. We call it the live range of the object. Now consider the set of intervals for all objects representing the live ranges of the respective objects. A conflict can only occur if two objects are alive at the same time during program execution; i.e., their live ranges intersect. The data conflict graph can now be formally classified as an interval graph. This classification can then be used to simplify the problem of data placement.

Theorem 4.3.5 Given a sequence of data accesses, the data conflict graph of a program is an interval graph.

Proof 4.3.6 Given that \(\sigma \) is a finite and totally ordered sequence, each object has a well defined first and last occurrence in \(\sigma \). Also given that exactly one object occupies each position in the sequence \(\sigma \), each object can be represented by a unique interval from the first to the last occurrence of that object in \(\sigma \). Since each object can be represented by an interval given an access sequence \(\sigma \) and a conflict miss only occurs if two intervals intersect, the data conflict graph is an intersection graph of intervals.

Once it is established that the data conflict graph is an interval graph, the results which are applicable to interval graphs can also be applied to the data conflict graph. The immediate consequences are that problems such as colorability and max-clique can be computed in linear time for the data conflict graph. Colorability of a conflict graph can be defined as follows.

Corollary 4.3.7 Colorability of a data conflict graph of any program can be determined in linear time.

Proof 4.3.8 By Theorem 4.3.5 the data conflict graph is an intersection graph of intervals. By Theorem 4.2.4 interval graphs can be represented by a perfect elimination order. Finally, by Theorem 4.2.6 the chromatic number for a graph represented by a perfect elimination order can be determined in linear time.
Corollary 4.3.9 Maximal cliques of a data conflict graph can be listed in linear time.

Proof 4.3.10 Proof is similar to Corollary 4.3.7, but using Theorem 4.2.9.

Corollary 4.3.11 Size of the maximum clique of a data conflict graph can be determined in linear time.

Proof 4.3.12 For interval graphs the size of the maximum clique is equal to its chromatic number. Since the chromatic number of the data conflict graph can be determined in linear time by Corollary 4.3.7, so can the size of the maximum clique.

We next apply our results on conflict graphs to the minimum cache misses problem.

Theorem 4.3.13 The chromatic number for the conflict graph gives the minimum number of cache sets required to achieve zero conflict misses for a given sequence.

Proof 4.3.14 The chromatic number gives the minimum number of colors needed to color the conflict graph such that no two adjacent vertices have the same color. If all vertices having the same color are considered, and the respective objects are placed in the same cache set, since there are no edges between vertices of the same color, no conflict misses would result. Similarly, if all vertices are placed in a cache with at least \(\chi(G) \) sets, the result is zero conflict misses.

A consequence of the theorem is that if a placement results in zero conflict misses, there are no edges between objects which have been assigned to the same cache block.

Example 4.3.15 Consider once again Example 4.3.4 and the conflict graph shown in Figure 4.5. The chromatic number of the conflict graph is four. Thus, if there are four blocks to assign the five objects a placement can be found which would result in zero conflict misses. For example, consider a direct mapped cache with four blocks. If \(o_1, o_2, o_3, \) and \(o_4 \) are all mapped to different blocks and \(o_5 \) is placed either with \(o_1 \) or \(o_3 \), this would result in zero conflict misses.
Corollary 4.3.16 Given a conflict graph G and a set associative cache with k sets and associativity a, an assignment with zero conflicts can be determined if $\chi(G) \leq k$.

Proof 4.3.17 By Theorem 4.3.13, if the graph can be colored using k or fewer colors and all the objects of the same color are placed in the same set, k or fewer sets are required to achieve zero conflict misses.

The above corollary gives similar guarantees for set associative caches as in the case of direct mapped caches. The guarantees hold true in relatively smaller instances of the problem. In larger instances the replacement policy plays a critical role in determining the exact number of cache misses. Thus, the algorithm would be most effective for direct mapped caches as it can determine the exact set to which an object is mapped. However, the algorithm can still be used for set associative caches given a reasonable replacement policy such as the LRU. Measuring the effectiveness of cache replacement policies is not a part of this work and has been discussed in detail in literature. For fully associative caches the problem is trivial as there is only a single set to which data can be assigned.

4.3.3 Data Placement

The data placement algorithm uses the conflict graph—constructed from the sequence of memory accesses—and the configuration of the cache to determine a mapping for each object to a cache set to minimize cache misses. Algorithm 5 gives an outline of the cache conscious placement (CCP) algorithm. CCP returns a mapping for each object to a set of cache based on the coloring of the conflict graph.

At the start of the algorithm, the data conflict graph is constructed from the memory access sequence. The algorithm considers the colorability of the graph as the main criteria to process the conflict graph. The classification of the data conflict graph as an interval graph is used to find the chromatic number for the graph. Given that there are k sets in the cache, if the chromatic number of G is less than or equal to k, we color the graph with k colors which results in an optimal mapping (Corollary 4.3.16).

Example 4.3.18 Consider once again Example 4.3.4 and the data conflict graph shown in Figure 4.5. The chromatic number of the conflict graph is four. Assuming a direct
Algorithm 5: CCP (Cache Conscious Placement)

Input: Set of objects O, object access sequence σ, number of sets in the cache k, and associativity a.

Output: The mapping of each object to a set in the cache, $c : o_i \in O \to \{0, \cdots, k-1\}$.

1. $G = \text{CreateConflictGraph}(O, \sigma)$
2. $l = k \times a$ // number of blocks in the cache
3. if $\chi(G) \leq l$ then
 4. return $\text{Color}(G, l) \mod k$
4. else
 5. while size of $\text{MaximumClique}(G) > l$ do
 6. $C = \text{MaximalClique}(G, l)$, where C is any maximal clique of size $> l$
 7. $e^* = \min_{e \in C} \{ \frac{w(e)}{q(e, l)} \}$, where $w(e)$ is the weight if edge e and $q(e, l)$ is the number of cliques of size $> l$ containing e
 8. $G = \text{Contract}(e^*)$
 9. $G = \text{UpdateEdgeWeights}(G)$
 10. end
 11. return $\text{Color}(G, l) \mod k$
12. end

If the number of cache blocks available is greater than or equal to four then the algorithm finds a perfect placement as illustrated in Example 4.3.15. Now consider the case where only three blocks of cache are available. In this case the algorithm reduces the size of the largest clique in the conflict graph—which includes the vertices o_1, o_2, o_3 and o_4, and is of size four—by contracting the edge which results in the least possible misses. This edge can either be (o_2, o_4) or (o_3, o_4) since both of these edges have weight two and $q(e, l)$ is one. The algorithm resolves the conflict by choosing the first of the two possibilities which is (o_2, o_4), contracts this edge, and updates the weights on the other edges. The algorithm then outputs a placement that results in two conflict cache misses.

If the chromatic number of the data conflict graph is greater than k but less than or equal to the number of blocks in the cache, given by $l = k \times a$, where a is the associativity,
CCCP colors the graph using \(l \) or fewer colors and the final mapping to cache sets is determined by taking the \(l \)-coloring and applying the mod operator to distribute the objects equally over cache sets. This gives a better placement than reducing the size of the graph to make it \(k \)-colorable which is also an alternative heuristic but is worse in terms of time complexity than the constant time mod. The coloring algorithm has linear time complexity (see Algorithm 6). If the chromatic number of the data conflict graph is greater than the number of cache blocks \(l \), the algorithm heuristically selects vertices of the conflict graph to merge until the graph becomes \(l \)-colorable. The objective of this exercise is to merge vertices connected by the least-weighted edges.

In order to make the graph colorable the size of large cliques is systematically decreased. This is because the chromatic number of an interval graph is equal to the size of the largest clique in the graph. Decreasing the size of the largest clique decreases the chromatic number of the graph. A list of all the maximal cliques that are of size greater than the number of blocks in the cache \(l \) is determined and iteratively reduced by merging vertices in each one of these cliques until the maximum clique in the reduced graph is of size \(l \). A maximal clique is not the maximum clique in the graph but it is not a part of a larger clique. The maximal cliques in an interval graph can be listed in linear time (see Theorem 4.2.9).

Once a clique of size greater than the number of blocks in the cache \(l \) has been identified, the next step is to choose the best possible edge to contract (merge the two vertices connected by it) and reduce the size of the clique by one. To find the edge which would be the overall optimal choice is a hard problem if there are two or more overlapping cliques of size greater than \(l \) in the data conflict graph. In such cases the idea is to reduce the size of as many maximal cliques as possible by contracting edges with the least combined weight (\(\text{Contract}(e^*) \)). To that end, an edge \(e^* \) is selected for contraction which minimizes the fraction \(\frac{w(e)}{q(e,l)} \) where \(w(e) \) is the weight of the edge and \(q(e,l) \) are the number of cliques larger than size \(l \) that include \(e \) as an edge. Once the edge is contracted the weights of all the edges adjacent to the contracted edges are recomputed (\(\text{UpdateEdgeWeights}(G) \)). This recomputation reflects the change in the number of misses between the newly combined objects and other objects. The resulting graph is still an interval graph, as contracting an edge can be seen as merging two intervals. The process is repeated by choosing another edge until the size of the reduced clique is equal to \(l \).

After all the large cliques have been reduced to size \(l \), the resulting graph (which is still an interval graph, see Theorem 4.2.11) can be colored using the interval graph coloring
Algorithm 6: Color

Input: Interval graph, $G(V, E)$, and a positive integer k such that $\chi(G) \leq k$.

Output: The assignment of each vertex in G to a value in $\{1, \cdots, k\}$ (the coloring $c : v_i \in V \rightarrow \{1, \cdots, k\}$).

1. $\rho = \text{PerfectEliminationOrder}(V)$
2. for each $v_i \in \rho$; in increasing order do
3. \hspace{1em} $c(v_i) =$ smallest color not used in $\text{predecessors}(v_i)$
4. end
5. return c

algorithm. In this scenario all the objects represented by merged vertices are given the same color. This l-coloring is used to generate a mapping for each object to a cache set by applying the mod operator.

4.4 Experimental Evaluation

In this section, we empirically evaluate the effectiveness of our cache-conscious data placement algorithm on a variety of standard benchmarks and selected cache configurations.

4.4.1 Experimental Setup

Our evaluation framework consists of (1) a profiler, (2) an implementation of our cache-conscious placement algorithm (CCP), and (3) a cache simulator to determine the number of misses for a given assignment of objects to cache sets. The current implementation has several limitations: we assume that all objects are of the same size and fit in a cache block, stack and heap objects are indistinguishable, and all objects are known from profiling. Calder et al. [1998] distinguish stack and heap objects because (more realistically) in their work they consider objects on the stack as one large contiguous object that cannot be moved around. The assumption on the size of the objects could be relaxed in a complete framework by coalescing highly conflicting small-sized objects or splitting large objects and regrouping conflicting object fields based on locality analysis (see, for example, [Chilimbi et al., 1999a][Chilimbi et al., 1999b][Ding and Zhong, 2003]). Similarly, the issues of distin-
| Benchmark | Description | Data structure | |O| | |σ|
|-----------|---|-------------------|---|---|
| bisort | Conducts a forward and backward sort of integers using two disjoint bitonic sequences which are merged to get the sorted result. | Binary tree | 2,047 | 307,060 |
| cachekiller | A 2D image processing program that reads the pixels of an image, performs a 1D filter, and writes to an output image. | 2D integer arrays | 2,603 | 15,598 |
| fft | Computes the Fourier transform or inverse transform of its complex inputs to produce complex outputs. It uses several floating point arrays for doing Fourier transforms and inverse Fourier transforms and optimizes for trigonometric calculations. | Floating point arrays | 2,396 | 360,126 |
| fir | Implements a digital filter that selectively filters an input signal to remove unwanted noise and distortion. | Floating point arrays | 2,054 | 194,425 |
| llu | A memory intensive benchmark simulating a linked list. | Linked lists | 3,189 | 55,724 |
| mm | The regular matrix multiplication benchmark that creates and multiplies two matrices and sums up all the elements of the resulting matrices. | 2D integer arrays | 4,800 | 139,200 |
| mst | Performs a hash-based search, with the linked lists originating from the indices of the hash table to compute the minimum spanning tree of a graph. | Array of lists | 1,534 | 280,533 |
| wave | The wavefront computation | 2D array | 3,605 | 46,930 |

Table 4.1: Benchmark instances used for evaluation.
guishing stack and heap objects and objects that have not been seen before can be handled by reserving part of the cache for the stack objects and part for heap objects, where the heap part of the cache is further partitioned for known and unknown objects (see [Calder et al., 1998]). Nevertheless, the results in this section show the promise of our approach.

The objective of profiling is to develop a data conflict graph for a program. A profiler API has been developed to record memory allocations and memory reads. When memory is allocated on the stack or the heap, an identifier is assigned to the object. In this work globals and constants are ignored, but can be dealt with in a similar fashion. A record is then created for the object location and size mapped by the given identifier. Every read access to an object is recorded by the profiler to generate a totally ordered sequence of memory accesses. The profiler also implements intelligent optimizations to compress the data sequence without losing any critical information. Profiling optimizations include treating consecutive accesses of the same object as a single access but our optimizations do not merge consecutive patterns because pattern merging results in similar issues as storing pairwise information about memory accesses (see [Petrank and Rawitz, 2005] for more details).

The program to be profiled is instrumented by inserting calls to the profiler API. Each memory allocation and each data access is recorded in the profile. The instrumented program, when executed, generates a totally ordered sequence of accesses to data objects in which each element is uniquely identified by its index and maps onto the object accessed.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Processor</th>
<th>Cache size (#sets)</th>
<th>Associativity</th>
<th>Example usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Instruments</td>
<td>TMS320C64x</td>
<td>1024</td>
<td>1</td>
<td>Nokia N900</td>
</tr>
<tr>
<td>AMD</td>
<td>Athalon 64</td>
<td>512</td>
<td>2</td>
<td>PCs, Laptops</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>OMAP4430</td>
<td>128</td>
<td>4</td>
<td>Blackberry Playbook</td>
</tr>
<tr>
<td>Apple</td>
<td>Apple A5</td>
<td>256</td>
<td>4</td>
<td>iPad2, iPhone4S</td>
</tr>
<tr>
<td>Freescale</td>
<td>Power e200z6</td>
<td>64</td>
<td>8</td>
<td>Automotive and industrial control systems</td>
</tr>
</tbody>
</table>

Table 4.2: Cache configurations of some commonly used processors and DSPs.
A cache simulator was developed to accurately compute the cache hit ratio. The cache simulator accepts a memory access sequence, a cache configuration and a mapping of objects to sets in the cache and outputs the number of misses resulting from the given assignment. The simulator computes the misses for each cache block by looking up the objects assigned to the block and traversing the data access sequence. The summation of misses from all cache sets determines the total number of misses.

In our experiments, the least recently used (LRU) cache block replacement policy was used for set associative caches, as LRU outperforms other popular replacement policies [Hennessy and Patterson, 2004, p. 400]. In the LRU policy, when all blocks in a cache set are occupied and a memory access causes a data load into the cache, the block in the set whose last occurrence appears earliest in the access sequence is replaced.

We evaluated our CCP algorithm (Algorithm 5) for cache hit ratio and compared our algorithm to the standard modulo algorithm that maps data objects to cache sets, denoted here as MOD, and the data placement algorithm of Calder et al. [1998], denoted here as CKJA. MOD evenly distributes objects over the cache blocks simply by a modulo operation on the virtual address of the location of an object in memory. MOD was chosen for comparison as it (or its variants) is the algorithm of choice in most cache system implementations and is easy to implement in hardware. CKJA was chosen for comparison as, to the best of our knowledge, it represents the state-of-the-art in software approaches using profile-driven data placement. Both CCP and CKJA use profiling to create a graph that represents memory objects and conflicts between these objects. However, the way the algorithms process the graphs differs significantly. CCP coalesces vertices to put objects into the same cache block until the meta-vertices can be assigned to the cache with zero conflicts, whereas CKJA coalesces vertices to put objects into different cache blocks until the graph is a single meta-vertex. As well, CKJA is designed for direct mapped caches, whereas CCP has also been extended to set associative caches.

4.4.2 Experimental Results & Analysis

Eight benchmarks from a variety of benchmark suites have been selected for evaluating the effectiveness of CCP. These benchmarks are selected because of their intensive use of memory and a diverse set of data access patterns. Two of these benchmarks, *bisort* and *mst*, are part of the Olden benchmark suite which has been popular for data structure layout
Figure 4.6: (a) Cache hit ratio for a direct mapped cache with 1024 sets. (b) Cache hit ratio for a 2-way set associative cache with 512 sets. The graphs compare the hit ratio from the cache conscious placement algorithm (CCP) against [Calder et al., 1998] (CKJA) and the modulo algorithm (MOD).

and data prefetching studies. The fft benchmark is part of the benchFFT benchmarks. The fir benchmark is a part of the Trimaran benchmark suite, whereas mm is a matrix multiplication benchmark. The cachekiller benchmark is an image processing program targeted to debilitate most cache architectures. It was posted to the USENET forum where it generated some discussion for its effect on cache performance on different machines. These benchmarks are deliberately chosen from various sources in order to thoroughly examine the effectiveness of the CCP algorithm. A brief description of each benchmark is given in Table 4.1 along with the primary data structure used in them. The table also gives the size of the instances—i.e., the number of objects and size of the access sequence—for each benchmark. It should also be noted that no assumptions about the order of access of the array elements are made, and thus each element in the array is treated as a separate object.

For the evaluation, four cache configurations were selected which exist in widely used processors and DSPs (see Table 4.2 for cache configurations of some processors). The cache hit ratio is used as the performance evaluation metric. It is computed by subtracting the total number of cache misses from the total number of memory accesses and then taking the ratio of the resultant value with the total number of memory accesses.
Figure 4.7: (a) Cache hit ratio for a 4-way set associative cache with 256 sets. (b) Cache hit ratio for a 8-way set associative cache with 64 sets. The graphs compare the hit ratio from the cache conscious placement algorithm (CCP) against [Calder et al., 1998] (CKJA) and the modulo algorithm (MOD).

Figure 4.6 presents the experimental results for a direct mapped cache with 1024 blocks and a 2-way set associative cache with 512 sets. The CCP algorithm is able to improve upon each benchmark except wave. It improves the hit ratio for the direct mapped cache by 19% over MOD and 14% over CKJA, and for the 2-way set associative cache by 19% over MOD and 19% over CKJA. Figure 4.7 presents the experimental results for a 4-way set associative cache with 256 sets and an 8-way set associative cache with 32 sets. For the 4-way set associative cache CCP improves the hit ratio by 21% over MOD and 20% over CKJA, and for the 8-way set associative cache by 9% over MOD and 8% over CKJA.

Figures 4.8, 4.9, and 4.10 present detailed results for the fir, llu, and cachekiller benchmarks on cache configurations ranging from direct mapped 32 block cache to 8-way set associative 1024 block cache. For the fir benchmark CCP consistently performs better than MOD and CKJA. CCP improves the cache hit ratio by 16% over MOD and 17% over CKJA on average for the fir benchmark. The improvement in CCP performance increases as cache size increases. Interestingly MOD performs similarly for all configurations of the cache and CKJA performs only slightly better than MOD. This means that MOD and CKJA are unable to reduce conflicts by better utilizing the blocks of large caches. For the llu benchmark, CCP improves the cache hit ratio by 104% over MOD and 102% over CKJA on average, with a maximum improvement of 160% for the 8-way set associate cache with
Figure 4.8: Experimental results for the fir benchmark for various cache sizes and associativity. The x-axis is labeled as \(a - k \) where \(a \) is the associativity and \(k \) represents the number of sets in the cache. The graph compares the hit-ratio from the cache conscious placement algorithm (CCP) against [Calder et al., 1998] (CKJA) and the modulo algorithm (MOD).

128 sets. Note, however, that lhu is a memory intensive benchmark which accesses memory randomly, and even our best performing CCP algorithm does not achieve hit ratios above 0.5. For the cachekiller benchmark, CCP improves the cache hit ratio by 31% over MOD and 30% over CKJA. This benchmark is designed to rigorously test cache performance because of its unique data access pattern targeted to debilitate the cache. The hit ratio for most instances on this benchmark are low. CCP performs better than MOD and CKJA for large cache configurations but sometimes does poorly on smaller cache configurations. The algorithm does particularly well when the data conflict graph has edges with a diversity in weights rather than homogeneity.

On some of the benchmarks, our CCP algorithm gives significant performance improvements over CKJA and MOD. On other benchmarks, such as bisort and mst, the differences are not so obvious. Table 4.3 and Table 4.4 present detailed results for the bisort and mst benchmarks. Following Hennessy and Patterson [2004] (see Figure 5.6), if a heuristic has a cache miss rate of 0.5% or better, it is considered to outperform another heuristic. By this criteria, on the bisort benchmark CCP outperforms MOD but the CKJA outperforms CCP. On the mst benchmark, CCP outperforms both CKJA and MOD. Note also that these experimental results are consistent with those of Cantin and Hill [2001], where there
Figure 4.9: Experimental results for the llu benchmark for various cache sizes and associativity. The x-axis is labeled as $a - k$ where a is the associativity and k represents the number of sets in the cache. The graph compares the hit-ratio from the cache conscious placement algorithm (CCP) against [Calder et al., 1998] (CKJA) and the modulo algorithm (MOD).

are small improvements in miss rates as associativity is increased and more significant improvements in miss rates as cache size is increased.

4.5 Related Work

A significant amount of research has been done to optimize caches. Both hardware and software techniques have been employed for improving cache utilization. Hardware enhancements to caches include increased associativity for reducing conflicts between objects mapped to the same set, multibanked caches to increase cache bandwidth and multi-level caches to reduce miss penalty, among others (see, e.g., [Hennessy and Patterson, 2004]). Software techniques, including compile-time optimizations as well as run-time optimizations, have also been useful in reducing cache misses. Among the most well known ones are prefetching [Jula and Rauchwerger, 2009], loop interchange [Wolf et al., 1998], code and data rearrangement [Ding and Kennedy, 1999; Prokopski and Verbrugge, 2008], blocking [Jin et al., 2001], and structure splitting [Chilimbi and Larus, 1998; Chilimbi et al., 1999a; Chilimbi and Hirzel, 2002; Chilimbi et al., 1999b; Lattner and Adve, 2005]. Re-
Figure 4.10: Experimental results for the cachekiller benchmark for various cache sizes and associativity. The x-axis is labeled as $a - k$ where a is the associativity and k represents the number of sets in the cache. The graph compares the hit-ratio from the cache conscious placement algorithm (CCP) against [Calder et al., 1998] (CKJA) and the modulo algorithm (MOD).

Recently there has been much work on accurately computing reference locality of objects to improve cache performance [Chilimbi, 2001; Ding and Zhong, 2003; Gu et al., 2009; Shen et al., 2007; Zhang et al., 2006; Zhong and Chang, 2008; Zhong et al., 2009]. Reference locality can be used, for example, for structure splitting and structure coalescing.

The offline problem of cache conscious data placement is known to be a hard problem and has been studied for more than three decades. Thabit [1982] was the first to study the theoretical aspects of the problem. He discussed the problem of minimizing cache misses by constructing an object conflict graph which he called the *proximity graph*. He formulated the optimal data placement problem as a graph partitioning problem and discussed its hardness. Petrank and Rawitz [2005] further improved on the theoretical results by showing that the offline version of the cache conscious data placement problem is not only NP-hard but also difficult to approximate. They show that there does not exist an approximation algorithm with a sub-linear factor to solve the problem unless $P = NP$. In this paper we use their formulation to describe the problem. Without contradicting the results given in [Petrank and Rawitz, 2005], we show that there are instances of cache conscious data placement which can be identified and solved efficiently.
Table 4.3: Cache miss rates for the bisort benchmark for various cache configurations, where the range of possible values is [0, 1], 0 means no cache misses, and 1 means every access resulted in a miss.

<table>
<thead>
<tr>
<th>Size (kb)</th>
<th>Direct CCP</th>
<th>Direct CKJA</th>
<th>Direct MOD</th>
<th>2-way CCP</th>
<th>2-way CKJA</th>
<th>2-way MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.151</td>
<td>0.122</td>
<td>0.200</td>
<td>0.128</td>
<td>0.116</td>
<td>0.136</td>
</tr>
<tr>
<td>64</td>
<td>0.104</td>
<td>0.092</td>
<td>0.149</td>
<td>0.096</td>
<td>0.091</td>
<td>0.106</td>
</tr>
<tr>
<td>128</td>
<td>0.075</td>
<td>0.072</td>
<td>0.113</td>
<td>0.075</td>
<td>0.072</td>
<td>0.083</td>
</tr>
<tr>
<td>256</td>
<td>0.056</td>
<td>0.056</td>
<td>0.086</td>
<td>0.057</td>
<td>0.056</td>
<td>0.065</td>
</tr>
<tr>
<td>512</td>
<td>0.041</td>
<td>0.041</td>
<td>0.068</td>
<td>0.042</td>
<td>0.042</td>
<td>0.049</td>
</tr>
<tr>
<td>1024</td>
<td>0.028</td>
<td>0.028</td>
<td>0.035</td>
<td>0.030</td>
<td>0.028</td>
<td>0.035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (kb)</th>
<th>4-way CCP</th>
<th>4-way CKJA</th>
<th>4-way MOD</th>
<th>8-way CCP</th>
<th>8-way CKJA</th>
<th>8-way MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.120</td>
<td>0.115</td>
<td>0.121</td>
<td>0.117</td>
<td>0.115</td>
<td>0.117</td>
</tr>
<tr>
<td>64</td>
<td>0.094</td>
<td>0.091</td>
<td>0.097</td>
<td>0.093</td>
<td>0.091</td>
<td>0.093</td>
</tr>
<tr>
<td>128</td>
<td>0.074</td>
<td>0.072</td>
<td>0.077</td>
<td>0.074</td>
<td>0.072</td>
<td>0.074</td>
</tr>
<tr>
<td>256</td>
<td>0.057</td>
<td>0.056</td>
<td>0.061</td>
<td>0.057</td>
<td>0.056</td>
<td>0.059</td>
</tr>
<tr>
<td>512</td>
<td>0.042</td>
<td>0.042</td>
<td>0.046</td>
<td>0.043</td>
<td>0.042</td>
<td>0.045</td>
</tr>
<tr>
<td>1024</td>
<td>0.031</td>
<td>0.028</td>
<td>0.031</td>
<td>0.031</td>
<td>0.029</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Practical frameworks have also been proposed for intelligently placing data in memory to reduce cache misses. Bixby et al. [1994] presents a framework to determine the optimal data placement using state-of-the-art 0-1 integer programming. Calder et al. [1998] present a comprehensive framework for placing data in memory for effective cache utilization. Their framework uses profiling to determine a representative data access sequence for a program which is then used to determine a data placement in memory using a heuristic technique. Calder et al. [1998] iteratively choose two vertices with the highest conflict, assign the two vertices (the objects that they represent) to two different sets of the cache, and then merge these vertices. In contrast, our approach iteratively merges the pair of vertices that are in least conflict until the data conflict graph can be perfectly laid out in the cache. In our experimental evaluation we show that our proposed approach for data placement improves
<table>
<thead>
<tr>
<th>Size (kb)</th>
<th>Direct CCP</th>
<th>Direct CKJA</th>
<th>Direct MOD</th>
<th>2-way CCP</th>
<th>2-way CKJA</th>
<th>2-way MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.146</td>
<td>0.180</td>
<td>0.188</td>
<td>0.146</td>
<td>0.163</td>
<td>0.163</td>
</tr>
<tr>
<td>64</td>
<td>0.121</td>
<td>0.156</td>
<td>0.166</td>
<td>0.122</td>
<td>0.155</td>
<td>0.158</td>
</tr>
<tr>
<td>128</td>
<td>0.048</td>
<td>0.072</td>
<td>0.091</td>
<td>0.058</td>
<td>0.105</td>
<td>0.116</td>
</tr>
<tr>
<td>256</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.005</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>512</td>
<td>0.005</td>
<td>0.005</td>
<td>0.006</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>1024</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (kb)</th>
<th>4-way CCP</th>
<th>4-way CKJA</th>
<th>4-way MOD</th>
<th>8-way CCP</th>
<th>8-way CKJA</th>
<th>8-way MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.147</td>
<td>0.163</td>
<td>0.163</td>
<td>0.150</td>
<td>0.163</td>
<td>0.163</td>
</tr>
<tr>
<td>64</td>
<td>0.123</td>
<td>0.157</td>
<td>0.159</td>
<td>0.126</td>
<td>0.158</td>
<td>0.159</td>
</tr>
<tr>
<td>128</td>
<td>0.064</td>
<td>0.129</td>
<td>0.138</td>
<td>0.067</td>
<td>0.134</td>
<td>0.141</td>
</tr>
<tr>
<td>256</td>
<td>0.005</td>
<td>0.006</td>
<td>0.005</td>
<td>0.005</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>512</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>1024</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Table 4.4: Cache miss rates for the mst benchmark for various cache configurations, where the range of possible values is [0, 1], 0 means no cache misses, and 1 means every access resulted in a miss.

4.6 Discussion

This section discusses some of our assumptions and practical limitations of the current implementation and their effect on our experiments.

Firstly, it must be noted that this work does not present a complete framework for cache conscious optimization unlike Calder et al., 1998; it presents a data placement algorithm which can be incorporated in the comprehensive Calder framework by replacing their data placement technique with our algorithm. Thus, practical issues such as the
distinction between stack and heap objects, and handling unknown objects which do not appear in the profile have been discussed thoroughly by [Calder et al., 1998]. In future work we will address some of these issues by creating the conflict graph from a small set of data access profiles for each program and reserving a small number of sets in the cache to handle objects for which a reasonable placement cannot be determined from the training profiles. This would allow us to test our algorithm for arbitrary data access sequences for a program once it has been profiled.

Secondly, the assumption that all objects are of the same size and fit a single cache block does not hold true for most programs. This assumption does have an impact on the evaluation of our approach, but does not affect the theoretical results presented in this chapter. In a complete evaluation framework this assumption can be relaxed by integrating existing split and merge techniques such as the ones given in [Chilimbi et al., 1999a][Chilimbi et al., 1999b][Ding and Zhong, 2003] in order to improve the utilization of cache blocks by coalescing conflicting objects or splitting large objects and regroup conflicting fields. Since objects rarely fit a single block in the cache, coalescing and splitting of objects is expected to dramatically reduce the size of the data conflict graph and hence the runtime of the algorithm in practice.

Lastly, our approach does not cleanly address contiguous memory structures such as arrays. We assume that each element of the array is an independent object which can be mapped to any set in the cache. However, in reality, such an implementation would require hardware support using mapping tables to map array elements to cache sets. Software solutions may include introducing an additional level of indirection for array elements based on the indices but may result in eliminating all performance gains achieved through data placement. In order to extend the current solution we propose to handle array objects as contiguous chunks of memory in future work.

In this work we highlight some of the theoretical issues related to cache-conscious data placement. Although we acknowledge that more work needs to be done to make our approach of practical interest, it contributes to our understanding of cache conscious optimizations and allows us to appreciate the difficulty of the problem.
4.7 Summary

This study highlights the theoretical aspects of cache conscious data placement of objects in memory. Cache conscious placement of data in memory is known to be intractable in the worst-case, both to solve exactly and to approximate within reasonable bounds. The main theoretical contribution of this chapter is the classification of data conflict graph as an interval graph. This classification allows graph-theoretic results for interval graphs to be applied to conflict graphs and to solve a special case of the cache conscious data placement problem. We also present a cache conscious placement algorithm for finding a layout of the objects in memory that is optimal if there exists a placement with no conflict misses. Further, graph-theoretic techniques are used to heuristically reduce larger instances until the optimization results can be applied. In summary, our graph-theoretic algorithm performed well on most instances. On a variety of realistic cache configurations and benchmarks, our approach improves the cache hit ratio over the best previous techniques by 9% to 21% on average.
Chapter 5

Conclusions and Future Work

This thesis examined three different compiler optimization problems. The first problem was spatial and temporal scheduling for clustered architectures and we presented a solution using decomposition techniques and constraint programming. The second problem was the selection of architecture specific instructions in the compiler code generation phase. A constraint programming approach was proposed to identify the exact solution for transforming compiler specific code to machine instructions. The third problem was the offline version of cache optimization and was solved using graph theoretic optimization techniques.

In further detail, for the first problem we extended and improved upon a constraint programming solution for temporal scheduling. Specifically, instructions are assigned to different clusters in addition to assigning them to clock cycles. We applied problem decomposition techniques to solve spatial and temporal scheduling in an integrated manner and to scale the solution to large problem sizes. The effect of different hardware parameters has been analyzed—such as the number of clusters, issue-width and inter-cluster communication cost—on application performance. The inclusion of symmetry breaking constraints and the detection of connected structures reduces the scheduling time considerably. The results of the experiments show that the constraint programming approach is able to improve the schedule quality by up to 26% on average. The algorithm successfully solved more than 80% of the benchmarks optimally with a few additional hours of compile time.

The second problem addressed in this thesis is instruction selection in the code generation phase of the compiler. Instruction selection is an interesting problem as it has an impact on the other phases of code generation including instruction scheduling and register
allocation. To solve the instruction selection problem, we again employed techniques from constraint modeling along with constraint propagation to improve the quality of compiled code and scale the solution to large problem sizes. The experimental evaluation that uses an implementation of the constraint satisfaction problem integrated into the LLVM compiler, shows that the exact algorithm can solve over 95% of all benchmarks. However, the resultant performance improvements in selection cost as compared to the hand-tuned LLVM selector are less than 4% on average. The algorithm results in an improvement of about 1% in terms of code size.

The third problem addressed in this thesis is that of offline cache optimization. Using a graph theoretic framework, we showed that certain instances can be identified such that the generally hard cache optimization problem can be solved accurately and efficiently. For such instances, we propose a cache placement algorithm that is optimal and conflict misses can be avoided altogether. We also propose a second algorithm that employs graph theoretic techniques to solve the memory data layout problem for larger instances where the size of the cache forces conflict misses. On a variety of benchmark instances the algorithm has been shown to improve cache hit rates by up to 21% on average.

All together, our results show that exact solutions for difficult combinatorial problems in compilers can be found. Here, exact solutions were obtained through the application and development of theoretical and constraint programming techniques. These problem-solving techniques are effective for compiler optimization in that they lead to significant improvements.

For future work, several improvements can be identified to improve the current state of the solutions proposed in this thesis. In regard to the spatial and temporal scheduling problem, it can be further improved upon by identifying implied constraints and improving the detection mechanism for complex connected structures that are not chains. The instruction selection problem can be extended to integrate other compiler optimizations. For example, our experimental results suggest that register allocation can have a significant impact on the code size. Hence, a combined solution for instruction selection, instruction scheduling and register allocation could be a topic for future work. The offline problem of cache optimization can be extended in several ways. One avenue for future work that our current solution and previous work does not adequately address is the issue of contiguous memory structures like arrays. A second, potentially promising, avenue for future work is the investigation of whether structure splitting and coalescing techniques can be used
within our proposals to significantly reduce the size of the conflict graph. Smaller problem instances could then be solved using optimal techniques to find a more accurate placement of data in memory.
APPENDICES
Appendix A

ILP formulation in Koes and Goldstein [2008]

Koes and Goldstein [2008] present a linear time instruction selection algorithm called NOTLIS. They conclude that their algorithm is near optimal by comparing it with their 0-1 integer programming formulation of the problem.

The 0-1 programming formulation states that \(\forall i \in \) nodes of a DAG \(G \) and \(\forall j \in \) the set of tiles \(T \), the model contains a binary variable \(M_{i,j} \), which is one if tile \(j \) matches node \(i \) and zero otherwise, \(cost_j \) is the cost of tile \(j \), and the set \(edgeNodes(i,j) \) are nodes at the edge of tile \(j \) when it is rooted at \(i \). The cost function is:

\[
\min \sum_{i,j} cost_j M_{i,j}
\]

subject to constraints

\[
\sum_j M_{i,j} \geq 1, \quad \forall i \in roots
\]

\[
M_{i,j} - \sum_{j'} M_{i',j'} \leq 0, \quad \forall i, j \forall i' \in edgeNodes(i,j)
\]
Consider the example in Figure 3.2 and the set of tiles in Figure 3.3. The cost function minimizes

\[
cost_{T_1} M_{v_1,T_1} + cost_{T_2} M_{v_1,T_2} + cost_{T_3} M_{v_1,T_3} +
\]

\[
cost_{T_1} M_{v_3,T_1} + cost_{T_2} M_{v_3,T_2} + cost_{T_3} M_{v_3,T_3} +
\]

\[
cost_{T_1} M_{v_4,T_1} + cost_{T_2} M_{v_4,T_2} + cost_{T_3} M_{v_4,T_3}
\]

which evaluates to

\[
3(M_{v_1,T_1} + M_{v_1,T_2} + M_{v_3,T_1} + M_{v_4,T_1} + M_{v_4,T_2}) +
\]

\[
5(M_{v_1,T_3} + M_{v_3,T_3} + M_{v_4,T_3})
\]

subject to (root nodes \(v_1, v_3, v_4 \))

\[
M_{v_1,T_1} + M_{v_1,T_2} + M_{v_1,T_3} \geq 1
\]

and

\[
M_{v_1,T_1} - (M_{v_2,v_1^2} + M_{v_3,v_1^3}) \leq 0
\]

\[
M_{v_1,T_2} - (M_{v_2,v_2^2} + M_{v_3,v_2^3}) \leq 0
\]

\[
M_{v_1,T_3} - (M_{v_2,v_3^2} + M_{v_4,v_3^4} + M_{v_5,v_3^5}) \leq 0
\]

\[
M_{v_3,T_1} - (M_{v_4,v_1^2} + M_{v_5,v_1^3}) \leq 0
\]

\[
M_{v_3,T_2} - (M_{v_4,v_2^2} + M_{v_5,v_2^3}) \leq 0
\]

\[
M_{v_3,T_3} - (M_{v_5,v_3^2} + M_{v_6,v_3^4} + M_{v_5,v_3^5}) \leq 0
\]

\[
M_{v_4,T_1} - (M_{v_5,v_1^2} + M_{v_6,v_1^3}) \leq 0
\]

\[
M_{v_4,T_2} - (M_{v_5,v_2^2} + M_{v_6,v_2^3}) \leq 0
\]

\[
M_{v_4,T_3} - (M_{v_5,v_3^2} + M_{v_6,v_3^4}) \leq 0
\]
Note that matching v_4 with T_3 is not possible as the number of edge nodes in T_3 are more than what can be matched when T_3 is rooted at v_4. So in the last constraint M_{v_4,T_3} is only matching the internal operation in T_3 with v_4.

As is evident from equation (1), the cost is between 9 and 15 given only constraints in equations (2). Constraints (3) to (5) attempt to match the tiles but only are able to match the structure and not the types and can possibly result in a flawed solution.

The flaw in the formulation is that the $M_{i,j}$ are decision variables assigned values by the solver which can assign $M_{v_1,T_1} = 1$ as well as $M_{v_4,T_2} = 1$ and the constraints would still hold. This is because the constraints do not handle the mismatch of opcodes or types. Thus, the 0-1 programming model presented is incomplete and $M_{v_1,T_1} = 1$, $M_{v_3,T_3} = 1$ and $M_{v_4,T_3} = 1$ would be regarded as a correct solution by the solver. In this instance its cost is equal to the correct optimal solution, but the resultant tiling is incorrect.
Appendix B

Suboptimality of Dynamic Programming on DAGs

Figure B.1: (a) An example DAG (b) Available tiles and their respective cost and complexity.

Consider the example in Figure B.1. Dynamic programming solution [Appel, 1998, p.197] for optimal tiling works bottom-up from the edges of the DAG. At each node first
all its children are tiled and subsequently the node itself is tiled. For each node the tile with the lowest cost to complexity ratio is chosen.

In Figure B.2(a) dynamic programming solution chooses T_2 for the lower part of the DAG because the cost:complexity ratio is 5:3 for T_2 and 6:2 for T_1 and T_3. Also note that the constant once covered by a tile is still not available for the other tile to be used because only the result at the root of a tile is available for other expressions as in (b).
References

