
Automatic Document Topic
Identification Using Hierarchical
Ontology Extracted from Human

Background Knowledge

by

Mostafa Hassan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

© Mostafa Hassan 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The rapid growth in the number of documents available to various end users from
around the world has led to a greatly increased need for machine understanding of their
topics, as well as for automatic grouping of related documents. This constitutes one of the
main current challenges in text mining.

We introduce in this thesis a novel approach for identifying document topics. In this
approach, we try to utilize human background knowledge to help us to automatically
find the best matching topic for input documents. There are several applications for this
task. For example, it can be used to improve the relevancy of search engine results by
categorizing the search results according to their general topic. It can also give users the
ability to choose the domain which is most relevant to their needs. It can also be used
for an application like a news publisher, where we want to automatically assign each news
article to one of the predefined news main topics. In order to achieve this, we need to
extract background knowledge in a form appropriate to this task. The thesis contributions
can be summarized into two main modules.

In the first module, we introduce a new approach to extract background knowledge
from a human knowledge source, in the form of a knowledge repository, and store it in a
well-structured and organized form, namely an ontology. We define the methodology of
identifying ontological concepts, as well as defining the relations between these concepts.
We use the ontology to infer the semantic similarity between documents, as well as to
identify their topics. We apply our proposed approach using perhaps the best-known of
the knowledge repositories, namely Wikipedia.

The second module of this dissertation defines the framework for automatic document
topic identification (ADTI). We present a new approach that utilizes the knowledge stored
in the created ontology to automatically find the best matching topics for input docu-
ments, without the need for a training process such as in document classification. We
compare ADTI to other text mining tasks by conducting several experiments to compare
the performance of ADTI and its competitors, namely document clustering and document
classification. Results show that our document topic identification approach outperforms
several document clustering techniques. They show also that while ADTI does not require
training, it nevertheless shows competitive performance with one of the state-of-the-art
methods for document classification.

v

Acknowledgements

First and foremost, all thanks and praise is due to The Great Almighty Allah for
granting me the strength, guidance, blessing, and knowledge, that enabled me to complete
this work.

This thesis would not be possible without the support of many individuals, to whom I
would like to express my gratitude.

I will always be indebted to my supervisors, Prof. Fakhri Karray and Prof. Mohamed
Kamel, for their support, encouragement, guidance, and most importantly trust. Prof.
Karray’s trust and support was instrumental in giving me confidence to achieve many
accomplishments. I would like to thank Prof. Karray for his encouragement and guidance
throughout my research. Prof. Kamel’s input and guidance was invaluable to the quality
and contribution of the work presented in this thesis, as well as in other publications. I
would like to thank Prof. Kamel for his advice, valuable insights and feedback throughout
my research. Without them this research would not have been possible.

I would like also to thank many faculty members of the University of Waterloo, most
notably my committee members, Prof. Chrysanne DiMarco, Prof. Krzysztof Czarnecki
and Prof. Zhou Wang as well as my external examiner Prof. Reda Alhajj for taking the
time to assess my research work, as well as for their pertinent advice and feedback.

I wish to thank many of my colleagues at the Centre of Pattern Analysis and Machine
Intelligence (CPAMI) and University of Waterloo, especially Ahmed Elgohary, Haitham
Amar, Nabil Drawil, Abbas Ahmadi, and Mehrdad J. Gangeh for valuable discussions and
insights.

I also would like to thank Ahmed K. Farahat for being such a great friend and for his
constant support and help during my studies. I would like also to thank Ahmed Elmogy,
Abdulrahman Seleim, Mohamed Hamouda, Moataz El Ayadi, Ahmed Othman, Mohamed
AbdelRazik, Ahmed Gawish, and Shady Shehata for being such great friends. I would like
also to extend my appreciation to my friends in Egypt and Canada for their support and
encouragement. Not forgetting to thank my previous supervisor, Prof. Amir Atiya, who
led me into the field of data mining and gave me kind guidance in both of my Master and
Bachelor degrees.

My family is the most precious treasure in my life. They motivated and encouraged me
unfailingly. Many thanks to my wife for her optimism, and her resolve. This thesis is as
much a product of her unconditional support and patience, as it is of my efforts. Words
fail me to express my appreciation to her. I would like to thank my son, Abdulrahman, for
brightening my life. I wish also to thank my brother, my sisters, and my whole family for

vii

their continued support, patience, and prayers. Last and by far not least, a huge thanks
to my parents, who taught me the value of a good education. Thanks to them for their
unlimited support and encouragement throughout my life, and for everything that they
offered to me without my even needing to ask. Therefore, my deepest gratitude goes to
them, and I dedicate this thesis to my father, mother, and all my family.

viii

To My Gracious Parents, My Wife and My Son.

ix

Table of Contents

List of Tables xv

List of Figures xvii

List of Algorithms xix

1 Introduction 1

1.1 Motivations . 3

1.2 Goals . 4

1.3 Thesis Outline . 4

2 Background and Literature Review 7

2.1 Overview . 7

2.2 Text Mining . 7

2.2.1 Document Representation Models 8

2.2.1.1 Vector Space Model (VSM) 9

2.2.2 Deriving Patterns and Trends . 12

2.2.2.1 Document Classification 12

2.2.2.2 Document Clustering . 14

2.2.2.3 Document Topic Indexing 19

2.2.3 Performance Measures . 21

2.3 Ontology . 28

xi

2.3.1 Lightweight Ontology . 29

2.3.2 Ontology Evaluation . 31

2.3.3 Using Ontologies in Text Mining 32

2.3.4 Using Wikipedia in Text Mining . 35

2.4 Summary . 37

3 Extracting an Ontology from a Human Knowledge Repository 39

3.1 Overview . 39

3.2 Ontology Creation Framework . 42

3.2.1 Extracting the Ontology Taxonomy 43

3.2.2 Manipulating Knowledge Repository Articles 49

3.2.3 Building the Concept-Term Mapping 50

3.3 Using Wikipedia to Construct the WHO 51

3.3.1 Extracting WHO from Wikipedia 52

3.3.2 Wikipedia and WHO Scalability Issue 55

3.4 Ontology Evaluation and Applications . 56

3.4.1 Using WHO for Document Modeling 56

3.4.2 Revisiting the Running Example 59

3.5 Summary . 60

4 Automatic Document Topic Identification Using WHO 61

4.1 Overview . 61

4.2 Automatic Document Topic Identification Methodology 63

4.2.1 Extracting Representative Concepts for Input Topics 64

4.2.1.1 Manual Matching . 64

4.2.1.2 Automatic Matching Using Semantically Related Concepts 64

4.2.2 Enhance Topic Representation by Utilizing Ontology Taxonomy . . 65

4.2.2.1 Handling Redundant Sub-concepts 66

xii

4.2.2.2 Applying Penalty Function 67

4.2.2.3 Filtering Concept Sub-tree 68

4.2.3 Identification Approaches . 70

4.2.3.1 Nearest Centroid Approach 70

4.2.3.2 K-means-Based Approach 71

4.3 ADTI vs other Text Mining applications 72

4.3.1 ADTI vs Document Clustering . 72

4.3.2 ADTI vs Document Classification 73

4.3.3 ADTI vs Document Topic Indexing Tasks 74

4.4 Summary . 75

5 Experiments and Results 77

5.1 Experimental Setup . 77

5.1.1 Data sets . 77

5.1.2 Development Environment and Tools 78

5.1.3 ADTI Parameters Tuning Experiments 80

5.1.4 Result Summarization . 82

5.2 Comparing ADTI to Document Clustering 83

5.2.1 Performance Measures . 85

5.2.2 Results and Discussions . 85

5.3 Comparing ADTI to Document Classification 96

5.3.1 Comparing ADTI to Document Classification With External Train-
ing Data . 97

5.3.1.1 Results and Discussions 98

5.3.2 Comparing ADTI to Ordinary Document Classification 104

5.3.2.1 Results and Discussions 104

5.4 Summary . 110

xiii

6 Conclusion and Future Research 111

6.1 Proposed Framework and Achievements 111

6.2 Contributions . 112

6.2.1 Survey of the Task . 113

6.2.2 New Techniques . 113

6.3 Future Work . 114

Permissions 117

References 119

xiv

List of Tables

2.1 Topic indexing tasks . 20

3.2 Terms correlation matrix . 59

5.1 Summary of data sets used to evaluate the performance of ADTI, m is the
number of documents, n is the total number of terms in all documents, n

′
is

number of used terms where the other terms that are not present in WHO
are ignored, and k is the number of topics. 79

5.2 The overall relative performance measures for the different document clus-
tering methods and ADTI approaches . 87

5.3 Comparison between ADTI approaches and different document clustering
methods based on statistical significance (using t-test) 88

5.4 The overall relative performance measures for the different document clas-
sification methods with external training source and ADTI approaches with
level 0 and 3. 100

5.5 Comparison between ADTI approaches with level 0 and 3 and different docu-
ment classification methods with external training source based on statistical
significance (using t-test) . 100

5.6 The overall relative performance measures for the different document clas-
sification methods and ADTI approaches. 105

5.7 Comparison between ADTI approaches and different document classification
methods based on statistical significance (using t-test) 105

xv

List of Figures

1.0.1 Text Processing active domains . 2

2.2.1 Different linkage types . 15

2.3.1 Kinds of ontologies. Adopted from [1] . 30

3.1.1 Hierarchical Knowledge Repository . 41

3.2.1 Ontology creation framework . 42

4.2.1 ADTI basic idea. 63

4.2.2 Redundant Sub-concepts . 66

4.2.3 Shared Sub-concepts . 69

5.1.1 The average improvements of F-measure with increasing the number of levels
over the non-enrichment case . 81

5.1.2 The average of the running time of ADTI with increasing number of levels 81

5.2.1 The output F-measure of the different document clustering methods and
ADTI approaches for 8 data sets. 89

5.2.2 The output precision of the different document clustering methods and
ADTI approaches for 8 data sets. 90

5.2.3 The output recall of the different document clustering methods and ADTI
approaches for 8 data sets. 91

5.2.4 The output purity of the different document clustering methods and ADTI
approaches for 8 data sets. 92

5.2.5 The output NMI of the different document clustering methods and ADTI
approaches for 8 data sets. 93

xvii

5.2.6 The output entropy of the different document clustering methods and ADTI
approaches for 8 data sets. 94

5.2.7 The output running time of the different document clustering methods and
ADTI approaches for 8 data sets. 95

5.3.1 The output F-measure of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data
sets. 98

5.3.2 The output precision of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data
sets. 101

5.3.3 The output accuracy of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data
sets. 102

5.3.4 The output running time of the different document classification methods
with external training source and ADTI approaches with level 0 and 3 for 8
data sets. 103

5.3.5 The output F-measure of the different document classification methods and
ADTI approaches for 8 data sets. 106

5.3.6 The output precision of the different document classification methods and
ADTI approaches for 8 data sets. 107

5.3.7 The output accuracy of the different document classification and ADTI ap-
proaches for 8 data sets. 108

5.3.8 The output running time of the different document classification methods
and ADTI approaches for 8 data sets. 109

xviii

List of Algorithms

3.1 RemoveCycles(H,R) . 46
3.2 RemoveMinimumFAS(H) . 47
3.3 RemoveMinimumFASRecursive(H) . 48

xix

Chapter 1

Introduction

The increasing demand for organizing and gathering knowledge from large numbers of doc-
uments has led to a corresponding demand for better text processing tools. Text processing
is the set of techniques and tools that are used to extract information from text. There
are many different domains for text processing. Grobelnik [2] has classified the text pro-
cessing module into four different active domains as shown in Figure 1.0.1. Information
retrieval (IR) is the process of gathering information, usually in the form of a document,
that matches a required information need, in the form of a query, from a collection of
information resources. Search engines are a good example of an application of IR. This
process includes all the sub-tasks, starting from modeling documents, through retrieval of
matching documents, to measuring performance of this process. Natural language pro-
cessing (NLP) is the field of computer science that is concerned with handling human
natural language. Natural language understanding and computational linguistics are the
most common sub-fields of NLP.

Knowledge representation (KR) is the area of artificial intelligence that is concerned
with extracting and representing knowledge to be used in different text processing ap-
proaches. Text mining is the process of gathering well-structured information from un-
structured text documents. In other words, it applies different data mining techniques to
text documents to derive patterns and trends. Unlike data mining, which accesses data in
a raw and easily-manipulable numeric format, text mining often deals with amorphous and
hard-to-manipulate text documents (e.g., news, email messages, spoken documents, etc.).

The text mining process can be divided into four main steps. The first step is document
pre-processing, in which the text document is parsed and tokenized into terms, and the
stop words are removed from the output terms. Next is the document modeling step, in
which documents are converted from the textual representation to a numerical format so

1

Figure 1.0.1: Text Processing active domains

that they can be handled in the next step. Third, the derivation of patterns and trends
step, where a data mining technique (such as classification and clustering) is applied to
this numerical representation of the documents to accomplish a specific data-mining task
(spam filter, topic prediction, summarization). The last step is to measure the performance
of the previous steps, using several available metrics.

Usually, any text processing task consists of a combination of two or more tasks from
different domains. In our proposed work, we introduce the use of some knowledge repre-
sentation techniques to improve the performance of some text mining tasks. The scope of
the thesis is grouped in the dashed ellipse area in Figure 1.0.1.

Recently, many approaches in the literature employ the use of background knowledge to
improve performance of various text mining tasks. In our proposed work here, we introduce
a new approach to extract this background knowledge from any knowledge repository and
store it in a well-structured, organized form, which is easy to apply to text mining tasks. Of
course, this knowledge repository must have certain features to be usable for our approach.
We refer to our created form of background knowledge as an ontology. An ontology in text
mining is defined as any knowledge representation consisting of a set of concepts whose
definitions and interrelations are explicitly described. We apply our proposed approach
to one of the best-known knowledge repositories, namely Wikipedia. We use our created
ontology to infer the semantic relatedness between terms, as well as to identify the topics

2

of the documents.

Document topic identification - or, in short, topic identification - is usually used to refer
to the task of finding relevant topics in a set of input documents[3, 4]. These topics are
usually extracted from an external background knowledge base. This definition of topic
identification is similar to the definition of the document tagging task, where more than
one topic is assigned to each input document. Sometimes, we have a set of topics that has
been marked as being “of interest”, and we want to assign each input document to one of
these topics. For instance, if we are interested in the following topics: economics, politics,
and sports, and we have a document declaring “Barack Obama is the new President of the
United States”, we want to identify the most relevant topic as“politics”. This task is usually
needed for an application like a news publisher, where we want to automatically assign
each news article to one of the predefined news topics. We refer to this task as Automatic
Document Topic Identification (ADTI). In this work, we present a new approach that
utilizes the knowledge stored in our ontology to automatically identify document topics.
The main goal of this application is to identify an input document’s topic from a set of
input topics with the help of the background knowledge - without the need of training.

1.1 Motivations

The main motivation of building the hierarchical ontology is that we are trying to imitate,
in some sense, the way that humans learn about a new subject. For example, when we read
an article that talks about “document modeling”, we know that this subject falls under the
topic of “text mining” or “information retrieval”, and we know also that these topics are
under a bigger category called “computer science”, which is in turn under the “science”
category. This hierarchical representation of human knowledge led us to use hierarchical
knowledge representation.

Also, when we read more articles on these topics, we learn that a term like “Vector
Space Model” frequently co-occurs with terms like “bag of words”, “document modeling”,
“Salton”, and so on. Although these terms are not synonymous to one another, they are
semantically related and the co-occurrence of these terms in a document indicates that the
topic of it is in the field of text mining or information retrieval. This is what we want to
store in our ontology. Here we give a motivating example which points out the importance
of inferring the semantic relationship between terms:

Example 1: Consider the following sentences:

� “Securing a more balanced global economy”,

3

� “The Unemployment rates are going down all over the world”,

� “The government wants to see more universities accorded such autonomy”,

� “Most certainly, the direction of world politics has been changed”, and

� “Barack Obama is the new president of the U.S.”

Let us suppose that these represent five different short documents, and we want to
measure the similarity between these documents. In conventional document modeling
techniques such as the VSM, the similarity between these documents is nonexistent,
because there are no terms in common amongst them.

Although this is objectively true, human beings still could identify some similarity
between these sentences. For example, we can easily find some correlation between
the first two sentences. This is because the terms “economy” and “unemployment”
have some embedded relation to one another. This relation is referred to as“semantic
relatedness”. Hence, we could find similarity between documents even if they do not
have any terms in common. We refer back to this example in section 3.4.2.

1.2 Goals

The main goal of the proposed approach is to build an expert document-manipulating
system. It should be able to identify the document topics by assigning each document
to a topic from a given set of input topics. We refer to this as Automatic Document
Topic Identification (ADTI), which is described in detail in chapter 4. To fulfill these
requirements, we break this task down into the following two main tasks of our proposed
approach:

1. Building a knowledge structure which covers a large portion of human knowledge.
This structure should be organized in such a way that it can be easily used for
different tasks in text mining.

2. Using the extracted knowledge structure to build topics representation, hence iden-
tifying the best matching topic for input documents.

1.3 Thesis Outline

After a brief introduction and discussion of the motivations and goals of the research, the
organization of the thesis will be as follows: In chapter 2, we start by discussing some

4

of the background material about text mining tasks and modules that are related to our
proposed work. This includes an overview of the basic document representation model, and
a review of some of the text mining tasks, such as document clustering and document topic
indexing. Then we describe what is meant by an ontology, and how it is used for different
text mining tasks. After that, we emphasize studying those methods in the literature which
use background knowledge for text mining tasks.

In chapter 3, we introduce the process of extracting background knowledge from any
knowledge repository. We also show the requirements that must be met by any knowledge
repository, to be able to extract its knowledge in the form of an ontology. Then we demon-
strate how to apply the proposed knowledge extraction approach to Wikipedia, to create
the Wikipedia Hierarchical Ontology, WHO. This includes the discussion of the reason for
choosing Wikipedia, and how we evaluated the performance of WHO.

Chapter 4 presents a novel approach for topic indexing, the Automatic Document Topic
Identification (ADTI) approach. We start by giving a brief introduction to this approach,
then describe it in detail, discussing the different modules and the aspects that affect its
performance. After that, we conduct a comparison between this approach and the similar
text mining tasks.

In chapter 5, we provide simulations and results of applying ADTI using the proposed
WHO, and compare its performance to the performance of both conventional document
clustering and document classification techniques. Finally, chapter 6 concludes the work
and proposes a plan for further research.

5

Chapter 2

Background and Literature Review

2.1 Overview

As noted above, we are proposing in this research a method for extracting the background
knowledge from one of the knowledge repositories, and storing it in a form that can be used
in different text mining tasks, namely an ontology. In order to cover the related background
issues and the state of the art, we start by giving a review of different text mining tasks
that are related to our proposed research work. This includes document classification,
document clustering, and document topic indexing. Then we cover the definition of the
ontology, and review the different approaches that employ ontologies in text mining, in the
literature. Since we have used Wikipedia as a knowledge source to create the ontology, we
have also surveyed a portion of the research done in the literature which utilizes Wikipedia
as a source of background knowledge to accomplish different text mining tasks.

2.2 Text Mining

Text mining is the process by which we deal with a collection of documents to extract
some useful information. In contrast with data mining, text mining deals with the data in
an unstructured, textual format, such as is found in document collections. The term “text
mining”was first proposed in 1995 by Feldman and Dagan [5]. As we pointed out in chapter
1, text mining consists of four different modules. The first step is document preprocessing.
The second step of the text mining process is the conversion of the input data from its
raw format to a structured, easy-to-manipulate format. This module is called Document

7

Modeling, which we discuss in detail in section 2.2.1. Another module in text mining
is Deriving Patterns and Trends, in which there are some predefined tasks that extract
different types of information from text documents. Examples of these tasks are: Document
Clustering, Document Classification, Document Summarization, Document Tagging, and
Document Topic Identification. In subsections (2.2.2.2 and 2.2.2.3), we discuss some of
these tasks in detail. The last module in text mining is Measuring the Performance, which
we review in section 2.2.3.

2.2.1 Document Representation Models

In data mining, the first step to deal with a given problem is to convert the data from
its raw format to a compact representation which is easier to manipulate. This step is
called feature extraction or data modeling. In text mining applications, the documents
need to be represented in such a way that this representation reflects the meaning of the
document. So, the selection of a representation for text depends on what one considers as
the meaningful text units. These meaningful text units or “text features” are called terms,
thus the document is represented as a set of terms.

There are many different document representation methods which generate different
types of terms for documents. The choice of the term set has a huge effect on the quality
of the text mining process overall. The most common basic approach for document rep-
resentation is the Bag-Of-Words model (BOW), where the term is identified as a single
word. This assumes that there is no significance for grammar, or even word order, in the
document.

The Boolean model is an example of a simple retrieval model. In this model, each term
in the document is associated with naught, which means that the term does not appear in
the document, or with unity, which means that the term appears in the document at least
once. The main disadvantage of this model is that if there are no common terms between
two documents, there will be no similarity between them. Sometimes this is not true and
there should be a partial similarity between them.

There are other document representation models based on the BOW’s basic idea. One
of these models that is very popular in the literature of information retrieval is the Vector
Space Model (VSM). This was first proposed by Salton et al. [6] in 1975. In the following
subsection, we discuss this model in detail.

8

2.2.1.1 Vector Space Model (VSM)

It was realized that the use of the Boolean model for document representation was in-
sufficient, and that there was a need for a model that would allow for partial matching
between documents. There was also need of a method to measure the degree of the sim-
ilarity between these documents. The vector space model was proposed to achieve these
requirements, after being introduced by Salton et al. [6] in the 1970s. Currently, this model
is widely used in information retrieval and text mining tasks.

In the vector space model, documents are modeled as vectors in a vector space. Each
dimension corresponds to a separate term, but instead of assigning each term a Boolean
value to represent whether it exists or not, each term is associated with a certain weight.
This weight represents how this term contributes to the meaning of the document. This
implies that all the algebraic rules and operations for vectors can be applied to the docu-
ments. Therefore, if we have a set of p documents {di : i = 1, . . . ,m}, each document di
is represented as:

−→
di = (wi1, wi2, . . . , win)

where n is the total number of terms. The Vector Space Model was mainly proposed
to evaluate the degree of similarity between two documents from the closeness between the
vectors representing these documents. Although dot-product can be used to measure the
correlation between vectors, the cosine of the angle between the vectors is preferable as it
is a normalized measure and is not affected by document length. So, the similarity, Sij,
between a document di and a document dj can be defined as follows:

Sij =

−→
di •
−→
dj∣∣∣−→di ∣∣∣× ∣∣∣−→dj ∣∣∣

=

n∑
k=1

wik × wjk√
n∑
k=1

w2
ik +

√
n∑
k=1

w2
jk

where
−→
di •
−→
dj is the dot product between the document vectors and

∣∣∣−→di ∣∣∣,∣∣∣−→dj ∣∣∣ are the

norms of the document vectors. This model implicitly considers terms as orthogonal vectors

9

in an n-dimensional Cartesian space, Rn. Wong et al. [7] stated that without this assump-
tion, it is not possible to characterize the vector space completely. The above similarity
measure can be expressed in a matrix form as follows:

S = L−1AATL−1

where A, which is known as the Document-Term matrix, is defined as

A =

w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

. . .
...

wm1 wm2 · · · wmn

 (2.1)

where each row in A represents a document, each column represents a term, AAT

represents the dot product between all documents’ vectors, and L is defined as:

L =

√
diag

(∑(
AT
)2
)

The Vector Space Model can be used with different term representation. Single-word
representation is the most commonly-used approach for term representation, where each
term is represented as a single word. While this method is direct and quite simple, it is
very powerful in document representation. There are various forms of term representation
proposed in the literature. The most common approaches are n-grams of words, n-grams
of characters, and phrases, each of which is used in different applications [8]. In the
phrases approach, documents are represented in terms of their important phrases. Different
approaches have been proposed to extract these phrases from documents. One of these
approaches is the Document Index Graph (DIG), which is based on finding the matching
phrases between documents[9, 10, 11].

There are various methods to evaluate the weight that should be associated with each
term in the document. This weight should reflect the importance of that term to the
meaning of the document. A simple method to calculate this weight is the term count,
which is defined as:

tcij = nij

10

where nij is the number of occurrences of the term ti in document dj. The main problem
with this measure is that the weight of the term is affected by the document length. In
other words, if term t1 occurs n11 times in document d1 and n12 in document d2, and
n11 > n12, this does not necessarily mean that t1 is more important to d1 than to d2; it
may be that the size of d1 is much greater than the size of d2. The term frequency weight
is the normalized version of the term cont weight, where tf is defined as:

tfij =
tcij

size of di
=

nij
nj∑
k=1

nkj

where nj is the total number of terms in document dj. This measure is considered
to be a local measure, as it represents how important (discriminative) the term ti is to
the document dj, rather than the other terms in this document. There is another weight
which evaluates how discriminative the term ti is to the document dj rather than to other
documents, which is the inverse document frequency. It reflects the global importance of
the term. It is defined as:

idfi =
m

mi

where m is the total number of documents, and mi is the number of documents that
contains the term ti. If a term occurs in numerous documents, it implies that it is not that
important to all documents, similar to stop words, hence it will have a small value of idf.
The combination of the previous two measures is called tf-idf. It is defined as:

tf-idf = tf× log (idf) .

The logarithm is used here to decrease the effect of the inverse document frequency
factor. This measure is the most commonly used weighting function. It combines the local
importance of the term to the document with the global discrimination weight of this term
to the document.

Shortcomings of VSM As noted above, VSM assumes that the terms’ vectors are
orthogonal. Since the terms are really correlated, this assumption is not true, which affects
the performance of the model. For example, terms like “Economy” and “Unemployment”
are semantically correlated. So, when a term like “Economy” occurs in one document and
another term like “Unemployment” occurs in another document, this implies that these two
documents are semantically correlated. In VSM, “Economy” and “Unemployment” terms
are represented as orthogonal vectors. Thus, these two terms are considered uncorrelated.

11

2.2.2 Deriving Patterns and Trends

In this section, we review some of the well-known approaches which are related to our
proposed work and are used in text mining to derive patterns and trends.

2.2.2.1 Document Classification

Statistical classification is the process of finding the best matching category (class) for each
new observation on the basis of a set of training observations whose category membership
is given. Observations are represented in a form of a set of properties which are called
features. The algorithm that implements the classification process is called a classifier.
Given a set of categorized observations, the goal of a classifier is to find the pattern that
links the observations that belong to the same category together and differentiate between
the observations that belong to different categories, then to apply the learned pattern to
new observations. Hence, classification can be considered a supervised learning approach
as it needs a training set, a set of correctly identified categories, to learn the pattern from
as opposed to the unsupervised learning approaches - such as clustering, which groups
data points into clusters based on their similarity without any given categorization. We
will discuss clustering in detail in the next section.

Accordingly, document classification is the process of assigning each document a cat-
egory (class) based on some labeled documents. Usually, documents are represented as
vectors in the term space, as we discussed in section 2.2.1. Documents can be classified
according to different aspects, such as their topics, size, author, and so on. They can
also be classified to a more generic form of topic, such as spam and non-spam for emails.
Unless it is explicitly mentioned, document classification usually refers to document topic
classification.

There are many different algorithms and techniques in the literature for classification
generally, and for document classification specifically. These algorithms include k-nearest
neighbour classifier, nearest centroid classifier, näıve Bayes classifier, Bayesian networks,
neural networks, and support vector machines. One of the most challenging issues in
document classification is document representation. Documents usually contain a large
number of features, typically thousands of terms. Also, documents’ feature vectors are
very sparse. Both of these issues affect the performance of the classifier dramatically.
The most well-known approach that can handle these document classification issues is the
Support Vector Machines classifier technique, SVM. In the next subsection, we will discuss
the support vector machines approach in more detail. Afterwards, we will discuss the
nearest centroid classifier, as it has some similarity with our proposed approach in chapter
4.

12

Support Vector Machines Classifier The support vector machines classifier is one of
the most commonly used classification algorithms in text mining. It was originally proposed
by Cortes and Vapnik in 1995 [12]. Its main strength for text mining is that it can handle
the sparsity of the document representation. It is also proven to be the state-of-the-art
method for document classification [13]. The basic SVM is a binary linear classifier, which
means that it can only handle data sets with two classes, labeled 1 and −1.

Its basic idea is to use the training examples to create a linear decision boundary which
separates the training samples of the two classes with a gap, which should be as wide as
possible. This boundary is represented in a form of a separating hyperplane which aims
to minimize the total classification error. This hyperplane is defined by a set of support
vectors which are a subset of the training set, that occur on the boundaries between the
two classes. Then in the class prediction phase, it assigns each new sample to one of the
two classes based on its position relative to the decision boundaries.

Usually, data sets are not linearly separable. Thus, SVM can handle the non-linear
separable data by mapping the data set into a high dimensional feature space where the
data set classes will be linearly separable. This mapping operation is called the kernel trick.
SVM can also be extended to handle multiple classes. There are two different approaches
for this extension. The first approach is to reduce the single multi-class problem into
multiple binary classification problems. This approach includes building binary classifiers
which distinguish between one class against the rest or between every pair of classes [14, 15],
directed acyclic graph SVM[16], and error-correcting output codes[17]. The other approach
is to cast the multi-class SVM method into a single optimization problem, which was
proposed by Crammer and Singer[18].

Nearest Centroid Classifier Nearest centroid classifier, also called nearest prototype
classifier, is a classification algorithm which assigns each new observation to one of the
classes based on the similarity between the new observation and the classes’ prototypes.
The nearest prototype to the observation corresponds to the class that the observation
should be assigned to. Prototypes are usually evaluated by calculating the mean value
of each class of observations, hence the name centroid. Although fairly simple, Han and
Karypis have shown that this classification outperforms other algorithms such as näıve
Bayes, k-nearest neighbour, and C4.5 classifiers[19]. When this classifier is applied to
documents, it is also referred to as the Rocchio classifier, since it is very similar to the
Rocchio algorithm for relevance feedback. The nearest centroid classifier algorithm in text
mining is very straightforward; it starts with a training phase, where classes’ centroids
are measured by calculating the vector summation of all documents’ vectors that have the
same class label. Then in the class prediction phase, the cosine similarity between each

13

class centroid and the test document vector is measured, and the document is assigned to
the nearest centroid vector class.

2.2.2.2 Document Clustering

Clustering is the process of assigning each input pattern to a group (cluster), such that each
group contains similar patterns. The similarity measure depends on the nature of these
patterns. Accordingly, text document clustering is the process of grouping text documents
into groups of similar documents. The similarity in document clustering is measured by
how the documents are semantically related to each other. It depends on the document
representation model. The similarity between documents can be represented as a distance
measure.

In cluster analysis, there are different distance measures defined to calculate the similar-
ity, such as Euclidean distance, Manhattan distance, Mahalanobis distance, cosine distance,
and Hamming distance. Cosine distance is often used when clustering high dimensional
data, such as those derived from documents - hence the most commonly used distance
measure in document clustering is cosine distance.

Data clustering algorithms can be classified into different categories based on the tech-
niques used for clustering. Some of these algorithms are based on statistical analysis such
as Hidden Markov Models (HMM) or Expectation Maximization (EM) [20], while other
algorithms are based on Neural Networks such as Self Organizing Maps [21]. Also, they can
be categorized based on the technique for structuring clusters into hierarchical clustering
and partitional clustering.

Hierarchical clustering Hierarchical clustering algorithms are the category of cluster-
ing algorithms in which a hierarchy of clusters is created in a tree-like structure called a
Dendrogram. The root of the tree represents one cluster which contains all the data points
(documents). The number of the leaves of the tree is equal to the total number of data
points (documents) and each leaf represents a cluster which corresponds to a single data
point (document).

A hierarchical clustering algorithm is either bottom-up (agglomerative) or top-down
(divisive). In an agglomerative algorithm, it starts with each data point in one cluster.
Then, it selects the two clusters with the strongest link and combines them. The strongest
link here means that the two clusters are most similar and have minimum pairwise distance.
It repeats the last step until all data points have been merged. A divisive algorithm, on
the other hand, starts with one cluster which contains all data points. Then, it separates

14

the cluster into two clusters using the weakest link between data points in the cluster. It
repeats this step until each point is separated into its own cluster.

There are different methods to measure the distance between two clusters A and B.
The most common methods are:

� Single linkage: The single linkage distance between clusters A and B is defined by the
minimum pairwise distance between each pair of points from the different clusters:

min {dist (x, y) , x ∈ A, y ∈ B}

� Complete linkage: The complete linkage distance between clusters A and B is defined
by the maximum pairwise distance between each pair of points from the different
clusters:

max {dist (x, y) , x ∈ A, y ∈ B}

� Average linkage: The average linkage distance between clusters A and B is defined
by the average of all pairwise distances between each pair of points from the different
clusters:

1

|A| |B|
∑
x∈A

∑
y∈B

dist (x, y)

Figure 2.2.1: Different linkage types

Figure 2.2.1 shows an example of the three linkage types where the black solid lines
represent the single linkage distances, the dashed lines represent the complete linkage dis-

15

tances, and the gray lines represent the average linkage distances between the given three
clusters.

Partitional clustering The other type of clustering algorithm is called partitional clus-
tering algorithms, which start by potential partitions or clusters of data points, then update
these clusters iteratively using some objective function. The most well-known algorithm of
this type is the k-means clustering.

K-means Clustering The k-means algorithm is considered one of the best tech-
niques of document clustering. It is also considered as a prototype type method for clus-
tering, similar to nearest centroid classifier for classification. The prototype method’s basic
idea is to represent the input data by a set of points, prototypes, in the feature space. Usu-
ally the number of the prototypes is much less than the number of the input data points.
In the case of the k-means, there is one prototype for each cluster which is the center point
of the cluster. Each input data point is assigned to the cluster with the closest prototype.

The k-means algorithm starts with random centers for the clusters, which are called
the clusters’ centroids. Then, it assigns each data point to the nearest cluster centroid.
For each cluster, it calculates the new cluster centroid by taking the mean value for all
cluster members. It repeats the last two steps for a certain number of iterations or until
convergence (the cluster assignment ceases to change).

There are different variants of the k-means algorithm such as k-medoids [22], fuzzy
c-means [23], bisecting k-means [24], kernel k-means [25], and spherical k-means [26]. In
spherical k-means, the distance measure that is used in clustering is the cosine distance,
rather than the euclidean distance used in standard k-means. Spherical k-means is the most
appropriate version of k-means for document clustering, as the documents are represented
as vectors, and the most fit proximity measure used for the vectors is the cosine similarity.
The main drawback of this algorithm is that its performance is highly affected by the
initial centroids’ values: therefore, there is no guarantee that it will converge to the global
optimum. In the following section, we review some of the literature work that deals with
the k-means initialization problem

Handling the k-means Cluster Center Initialization Problem: The study of
selecting the appropriate values for the k-means initial class centers began a long time ago.
One of the earliest works on the issue was by Forgy [27]. He suggest picking the initial
cluster centers randomly from the input data points. In 1967, Macqueen [28] updated the
k-means algorithm to work as follows: select the k initial centroids at random from the
input data points as proposed by Forgy. Then assign the rest of the points to the nearest

16

cluster centroid. After each assignment, cluster centroids must be recalculated. Tou and
Gonzales [29] proposed a simple cluster seeking algorithm (SCS). They suggest selecting
the first centroid at random. Then, they sequentially pick the rest of the points one by one,
and compute the distance between them and the initial cluster centroid. If the distance is
greater than some threshold, they consider it to be the second cluster centroid. Then, they
repeat the same steps to choose the k centroids. Kaufman and Rousseeuw [30] proposed
an approach to pick the k initial centroids in a sequential manner. They select the most
centered data point as the first initial centroid. Then, they select the second centroid which
produces the lowest distortion according to some distortion function they defined in their
work. The rest of the k centroids are picked in the same fashion. Pena et al. [31] have
created a comparative study between the methods proposed by Forgy[27], Macqueen[28],
and Kaufman and Rousseeuw[30].

The proposed approach of Katsavounidis et al.[32] starts by selecting a surface data
point as an initial centroid. Then they search for the furthest data point from the initial
centroid and set it as the second initial centroid. The distances from the rest of the points
to the nearest seed are calculated. The point with the furthest distance from its nearest
centroid is considered the next centroid. This process is repeated until they get the k
initial centroids. Bradley and Fayyad [33] proposed another technique to initialize the
cluster centers. They split the input data set into n subset(s). Then, they run the k-means
clustering on each subset using the initial values as described by Forgy [27]. So, they end
up with n ∗ k cluster centroids. Then they apply the k-means algorithm n time(s) on the
whole data set, and the output centers of these n run(s) are used as the initial clusters’
centroids.

Recently, Redmond and Heneghan[34] proposed a method that depends on the use of
a kd-tree to perform a density estimation of the data at various locations. They apply a
modified version of Katsavounidis’ algorithm [32], which incorporates this density informa-
tion, to choose k initial centroids. Suo et al. [35] have proposed a method of selecting the
initial cluster centroids based on sub-graph division. They represent the entire set of input
documents as the vertices of a graph based on the similarity matrix of the documents.
Then, they connect the documents with distance less than some threshold to sub-graphs.
They use the sub-graphs’ centers as the initial centroids. In chapter 4, we will refer back to
the k-means centroid initialization problem when we try to utilize the k-means algorithm
to adapt the extracted background knowledge.

Spectral Clustering Spectral clustering is a family of clustering algorithms that use
the spectrum, eigenvalues, of data to perform dimensionality reduction, then applying a
clustering technique on it in the lower-dimension space. The similarity matrix between

17

each pair of data points is used to evaluate the eigenvalues decomposition. It starts by
evaluating the similarity matrix S between each pair of data points in the input data set.
In case of document clustering, dot product can be used to calculate the similarity matrix.
Then, it constructs a graph whose vertices are the input data points, and whose edges are
defined by the similarity matrix, S. It uses S to calculate the graph Laplacian matrix L,
then solves the eigenvalues decomposition of the Laplacian matrix. The k eigenvectors that
correspond to the smallest eigenvalues are used to represent the data in k-dimensional space
where k is the required number of clusters. Then another clustering algorithm, typically
k-means, is used to cluster the data.

There are several other approaches for calculating the similarity between data points.
Some of these approaches use the local neighborhood of data points [36] instead of full
pairwise similarity. An example of such an approach is the Gaussian similarity function:
S = exp

(
−d2

ij/2σ
)

where dijis the distance between data point i and data point j, and σ is
a parameter that controls the size of the neighborhood. Also, there are different methods
of calculating the Laplacian matrix L from the similarity matrix. The standard, non-
normalized, approach defines L as: L = D−S where D is a diagonal matrix which is called

the degree matrix, whose elements are the sum of similarity matrix where: Dii =
n∑
j=1

Sij.

Another approach was presented by Meila and Shi [37] by normalizing L as follows: L =
I −D−1S. Ng et al. [38] proposed the use of another form of normalization for Laplacian
matrix, L = I −D−1/2SD−1/2.

Non-negative Matrix Factorization (NMF) Clustering Non-negative matrix
factorization is a family of algorithms that tries to factor a matrix X into two matrices
Y and Z in such a way that the matrix X can be approximately reconstructed from the
product of Y and Z as follows:

X ' Y Z

There is also a constraint on the factor matrices Y and Z that both must be non-negative,
i.e., all elements must be equal to or greater than zero. This approach of factorization
was proposed before in other fields with different names. It was introduced to the machine
learning field with this name by Lee and Seung [39, 40]. They investigated its properties
and some useful algorithms for two types of factorizations.

Xu et al. [41, 42] have applied the NMF for document clustering. They suggested
an algorithm for document clustering that factors a document term matrix X as a linear
combination of latent concepts (or clusters): X:j =

∑
∀i
YijZ:j where Z ′ represents the latent

concepts matrix. The algorithm first finds the non-negative factorization of the term-

18

document matrix X into Y and Z using the method proposed by Lee and Seung [39, 40].
Then documents are assigned to clusters according to their weights along the factors using
equation li = arg max

i
Yij.

2.2.2.3 Document Topic Indexing

Document topic indexing, or as it is sometimes called, document topic identification, is usu-
ally used to refer to the task of finding relevant topics for a set of input documents[3, 4]. It
is used in many different real applications, such as improving retrieval of library documents
pertaining to a specific topic. It could also be used to improve the relevancy of search en-
gine results, by categorizing the search results according to their general topic and giving
users the ability to choose the domain which is more relevant to their needs. There are
some different tasks in text mining that fall under document indexing, including document
tagging and keyphrase extraction. Medelyan [43] has classified these tasks according to two
aspects. First, the source of the terminology that the topics are extracted from. Second,
the number of topics that can be assigned to the documents. She has set three different
values for the first aspect, which are: vocabulary-restricted, document-restricted, and no
restriction. In vocabulary-restricted, the source of the topic is usually some sort of back-
ground knowledge such as a thesaurus or a structured glossary. In document-restricted,
the source of the topics is the input documents themselves, where we try to select the most
representative terms from these documents. In no-restriction, the topics that are assigned
to the documents are selected freely with no restriction to a knowledge source.

The number of the topics aspect has three different values, which are: very few (main
topics), detailed topics, and all possible topics. In main topics, the number of topics is
limited to a small set of topics (usually less than a hundred). In detailed topics, more
specific topics are included, which makes the number of topics much bigger (usually from
hundreds to thousands), and usually more than one topic is assigned to each document.
In all possible topics, the number of topics is limited to all the terms found in the input
documents. This type is usually called full-text indexing.

In order to complete this classification of tasks, we would add a third aspect to these
two aspects, which is the learning paradigm. As is well-known, learning paradigms can be
classified into three types: supervised learning, semi-supervised learning, and unsupervised
learning. Table 2.1 shows a list of possible topic indexing tasks classified based on these
three aspects.

Considering document classification as a type of topic indexing is debatable, where the
first task is to assign documents to classes, while the second one is to assign a topic to

19

Task
Source of

terminology
Number of

topics
Learning
paradigm

Document
classification

vocabulary-restricted main topics only supervised

Document clustering
with cluster labeling

document-restricted main topics only unsupervised

Term assignment vocabulary-restricted detailed topics
supervised/

unsupervised

Keyphrase
extraction

document-restricted detailed topics
supervised/

unsupervised

Document tagging unrestricted detailed topics
supervised/

unsupervised

Table 2.1: Topic indexing tasks

each document. Lancaster has argued that this distinction is not fruitful [44]. We do not
totally agree with the previous statement; we discuss this issue in more details in section
4.3.2.

We already discussed the details of document classification and document clustering in
section 2.2.2.1 and section 2.2.2.2 respectively. There is a complementary task to document
clustering, in order to be a complete topic indexing task; this task is called cluster labeling.
Cluster labeling [45] is the process of selecting a representative label (topic) for each cluster
obtained from the document clustering process. The source of these labels is usually from
the terms and/or the phrases which the input documents are indexed with. One of the
approaches used for cluster labeling is to use a feature selection technique, such as mutual
information and chi-squared feature selection, to differentiate cluster labeling.

Term assignment, or subject indexing, is the process of finding the best representative
topics for each document. The source of terminology is usually extracted from an external
thesaurus, unlike the keyphrase extraction task where the main goal is to extract the most
distinct phrases appearing in the documents. Lastly in document tagging, or in short
tagging, tags can be chosen freely without any formal guideline. Usually the last three
tasks, term assignment, keyphrase extraction, and tagging, are referred to as document
topic identification. Although they differ in the source of terminology, they more or less do
the same task, which is assigning each document a set of representative terms/phrases/tags.

20

Also, these three tasks have implementations for both learning paradigms.

The document topic identification task using background knowledge has been tackled
in different ways in the literature. Coursey et al. [3, 46] proposed an unsupervised method
based on a biased graph centrality algorithm, applied to a large knowledge graph built from
Wikipedia. They map the input documents to Wikipedia articles based on the similarity
between them, then they use their proposed biased graph centrality algorithm to find
the matching topics. Similar is the work presented by Schönhofen in [47], but instead of
using the Wikipedia full articles’ contents, they used the articles’ titles to match the input
documents to the Wikipedia categories. Huynh et al. [48] suggested an update to the work
proposed by Schönhofen in [47]: they added use of the hyperlinks in Wikipedia to use of
the articles’ titles, to improve topic identification.

Janik and Kochut [49, 50] have used the Wikipedia RDF (which is defined in [51])
to create their ontology. They then transfer the document text into a graph structure,
employing entity matching and relationship identification. The categorization is based on
measuring the semantic similarity between the created graph and the categories defined in
their ontology.

This concludes the review of different text mining approaches for deriving patterns and
trends that are related to our proposed work. Next, we review the different performance
measures that we use to evaluate the performance of the proposed approach.

2.2.3 Performance Measures

Generally, text mining has two different sets of performance measures which depend on the
learning paradigm of the technique under test: internal and external performance measures.
As our proposed approach in chapter 4 is a semi-supervised approach, we will investigate
only the external performance measures.

The external performance measures can be used for both supervised and unsupervised
techniques. They are that set of measures which are concerned with measuring how the
predicted data partitioning, either classes or clusters, is equivalent to a predefined (ground-
truth) partitioning. In text mining, normally, this ground-truth partitioning is defined by
human annotators and it is based on the semantics (the meaning) of the text. In this
section, we refer to the ground-truth partitioning as categories.

Let D = {d1, d2, ..., dm} be the set input documents, let Φ = {φ1, φ2, ..., φl} be the
set of categories, and let Ψ = {ψ1, ψ2, ..., ψu} be the set of clusters/classes obtained by a
clustering/classification algorithm. In order to calculate the external measures, we need
first to create the contingency matrix J , which shows the number of matches between each

21

cluster/class and each category. Hence, J can be represented as a matrix whose size is
l × u. If u is less than l, this means that the number of obtained clusters/classes is less
than the expected number of categories. In this case, we augment the matrix J with zeros
in such a way that the size of J becomes l× l. Each element in the contingency matrix Jij
represents the number of the documents that are in category i and are clustered/classified
as cluster/class j.

As the cluster labels are not known in document clustering output, the cluster-category
mapping should be defined first, to be able to calculate most of the external measures.
There are different methods for finding this mapping; they are used to reorder the contin-
gency. We applied in this thesis the Hungarian algorithm [52] for the assignment problem,
using the negation of the contingency matrix J as the input of the algorithm. We sorted
the contingency matrix using the returned mapping in such a way that the category φi
is mapped to the cluster ψi. Hence, the contingency matrix for clustering becomes very
similar to the classification contingency matrix, where the elements on the diagonal of the
matrix Jii represent the number of correctly clustered/classified documents.

Most of the external performance measures are calculated based on defining four quan-
tities that can be extracted from the contingency matrix for each category:

� TPi (true positive with the category φi) is the number of documents which belong to
category φi and are correctly clustered/classified under the cluster/class ψi. Using
the contingency matrix, TPi can be defined as TPi = Jii.

� FPi (false positive with the category φi) is the number of documents which belong
to category φi but are incorrectly clustered/classified under a different cluster/class
other than the cluster/class ψi. Using the contingency matrix, FPi can be defined as

FPi =
l∑

j=1

Jji − Jii.

� FNi (false negative with the category φi) is the number of documents which do not be-
long to category φi and yet are incorrectly clustered/classified under the cluster/class

ψi. Using the contingency matrix, FNi can be defined as FNi =
l∑

j=1

Jij − Jii.

� TNi (true negative with the category φi) is the number of documents which do not
belong to category φi and are correctly clustered/classified under a different clus-
ter/class other than the cluster/class ψi. Using the contingency matrix, TNi can be
defined as the set of documents that do not belong to TPi, FPi, nor FNi. Hence we
can define TNi as TNi = m− TPi − FPi − FNi.

22

There are many different external measures based on the above quantities. We describe
here some of the well-known external measures used in text mining. Some of these measures
are used for document clustering, some are used for document classification, and some can
be used for both.

� Accuracy: This measure is used for document classification. It measures how ac-
curate the obtained classes are. It can be defined as the fraction of the documents
which were correctly classified. Using the contingency matrix J defined above, the
accuracy AΨ of a classification output can be calculated as follows:

AΨ =

l∑
i=1

Jii

m

The higher the value of the accuracy, the more accurate the algorithm output obtained
is.

� Precision: This measure can be used for both classification and clustering. Preci-
sion can be defined as the fraction of the documents that are clustered/classified to
cluster/class ψi, and which belong to the category φi. Using this definition and using
the defined contingency matrix J , we can calculate the precision Pi for a cluster/class
ψi as follows:

Pi =
TPi

TPi + FPi

=
Jii

Jii +
l∑

j=1

Jji − Jii

=
Jii
l∑

j=1

Jji

where
l∑

j=1

Jji is the total number of documents that are clustered/classified as clus-

ter/class ψi. Then the overall precision PΨ of a clustering/classification output can

23

be calculated by averaging1 Pi of all clusters/classes. The higher the value of the
precision, the more precise the algorithm output obtained is.

� Recall: This measure can be used for both classification and clustering (it is also
called the sensitivity measure in classification). Recall can be defined as the fraction
of the documents of a category φi which are clustered/classified as cluster/class ψi.
Using this definition and using the defined contingency matrix J , we can calculate
the recall Ri for a cluster/class ψi as follows:

Ri =
TPi

TPi + FNi

=
Jii

Jii +
l∑

j=1

Jij − Jii

=
Jii
l∑

j=1

Jij

where
l∑

j=1

Jij is the total number of documents that belong to the category φi. Similar

to precision calculation, the overall recall RΨ of a clustering/classification output can
be calculated by averaging1 Ri of all clusters/classes. The higher the value of the
recall, the better the algorithm output obtained is.

� F-measure: This is also called F-score or F1score. It can be used for both classifi-
cation and clustering, and was introduced by Rijsbergen [53]. It measures the output
accuracy with regard to a specific ground-truth. It is defined as the harmonic mean
of the precision and recall. Using the previous definitions of precision and recall, we
can calculate the F-measure Fi for a cluster/class ψi as follows:

1This can also be calculated as a weighted average with respect to category sizes.

24

Fi =
2PiRi

Pi + Ri

=
2 TPi

TPi+FPi

TPi

TPi+FNi

TPi

TPi+FPi
+ TPi

TPi+FNi

=
2TPi

2TPi + FNi + FPi

=
2Jii

l∑
j=1

Jij +
l∑

j=1

Jji

The overall F-measure FΨ of a clustering/classification output can be calculated by
averaging1 Fi of all clusters/classes. The higher the value of the F-measure, the
better the algorithm output obtained is.

� Purity: This measure is used for document clustering. It measures how pure each
cluster is. It is defined as the ratio between the dominant category φj in the cluster
ψi, and the size of this cluster. Hence, the purity Pui of the cluster i can be evaluated
as follows:

Pui =
max
∀j

(Jji)

l∑
j=1

Jji

Note that, max
∀j

(Jji) is not always equivalent to Jii, as sometimes the dominant

category in the cluster ψi is not the category φi. The total purity for the clustering
PuΨ can be defined as the weighted average of the purity of all clusters, which can
be formulated as follows:

25

PuΨ =
u∑
i=1

mi

m
Pui

=
u∑
i=1

l∑
j=1

Jji

m

max
∀j

(Jji)

l∑
j=1

Jji

=
1

m

u∑
i=1

max
∀j

(Jji)

Note that, if max
∀j

(Jji) is equivalent to Jii then the purity measure is similar to the

accuracy measure for the classification. The higher the value of the purity, the better
the obtained output is.

� Entropy: Entropy is one of the common external measures that is used for document
clustering. It evaluates the homogeneity of the clusters with respect to the ground-
truth categories. The higher the homogeneity of the clusters, the lower value of
entropy is obtained, hence, the better are the clusters. To evaluate the entropy of the
clusters, we need to calculate for each cluster ψj the probability that the members of

that cluster belong to a specific category φi, Pij =
Jij
l∑

i=1
Jij

. Hence, the entropy of the

cluster j can be calculated as follows:

Ej = −
l∑

i=1

Pij log (Pij)

= −
l∑

i=1

Jij
mj

log

(
Jij
mj

)

where mj =
l∑

i=1

Jij is the number of the documents in cluster ψj. The total entropy

for the whole output EΨ can be defined as the weighted average of the entropy of all
clusters, which can be formulated as follows:

26

EΨ =
u∑
j=1

mj

m
Ej

=
−1

m

u∑
j=1

l∑
i=1

Jij log

(
Jij
mj

)

The lower the value of the entropy, the better the obtained output is.

� NMI: Normalized Mutual Information (NMI) is a well-known document clustering
performance measure. It estimates the amount of shared information between the
clusters’ labels and the categories’ labels. It measures the amount of information
that can be obtained from the cluster labels by observing the category labels. It can
be written as a function of the ground-truth partitioning Φ and the output cluster
partitioning Ψ as follows:

NMI (Φ,Ψ) =
MI (Φ,Ψ)√
H (Φ) H (Ψ)

where MI (Φ,Ψ) is the mutual information between ground-truth Φ and the output
clusters Ψ, and H (Φ) and H (Ψ) are the entropies of the ground-truth Φ and the
output clusters Ψ respectively. MI (Φ,Ψ) can be defined as:

MI (Φ,Ψ) =
l∑

i=1

u∑
j=1

P (φi ∩ ψj) log
P (φi ∩ ψj)
P (φi)P (ψj)

=
l∑

i=1

u∑
j=1

Jij
m

log
mJij
mimj

where P (ψj), P (φi), and P (φi ∩ ψj) are the probabilities of a document being in

cluster ψj, category φi, and in the intersection of ψj and φi respectively, mj =
l∑

i=1

Jij

is the number of the documents in cluster ψj, and mi =
u∑
j=1

Jij is the number of the

documents in category φi. The entropies H (Φ) and H (Ψ) measure the amount of
information contained in the cluster and category labels respectively. They can be

27

calculated as follows:

H (Φ) = −
l∑

i=1

P (φi) logP (φi)

= −
l∑

i=1

mi

m
log

mi

m

H (Ψ) can be evaluated similarly. The higher the value of the NMI, the better the
obtained output is.

2.3 Ontology

Due to the rapid growth of the Internet, the availability of different knowledge sources has
been increased dramatically. Many of these knowledge sources are structured in the form
of a knowledge repository, such as web directories, wikis, online encyclopedias, and so on.
Recently, a new line of research introduced the use of knowledge repositories to enhance
the efficiency of different text mining tasks. They start first by extracting the background
knowledge from one of these knowledge repositories in such a way that it can be used in their
presented application in text mining. Usually, they structure this background knowledge
in the form of an ontology. Although most of the works done in this field do not mention
explicitly that they are creating an ontology, the form of the background knowledge that
they use can be considered as a form of a lightweight ontology, as we will see later. So, we
will start by defining what is meant by ontology, then review some of the work done which
has used ontologies in different text mining tasks.

The word ontology has been applied in many different ways according to the domain
that it was used in. It is originally defined in philosophy as a systematic account of
existence. Then, it was borrowed in AI to express what exists as what you can represent
[54].

Gruber has defined it as “an explicit specification of a conceptualization” in [55, 54]. A
conceptualization here refers to an abstract form of human thoughts about different things
in the world. An explicit specification means that the concepts in that conceptualization,
and their relations and properties, must be explicitly named and defined. Guarino and
Giaretta [56] have altered this definition slightly to “an explicit account or representation
of some part of a conceptualization”to be more generic, as they tried to soften the definition
of an ontology to cover only part of a conceptualization. Garshol [57] has given a clearer

28

definition for ontology within computer science as “a model for describing the world, that
consists of a set of types (concepts), properties, and relationship types”. In other words,
an ontology defines different kinds of things in some conceptualization. These kinds of
things are called classes (or concepts). These concepts have some properties (also called
slots) that describe the features and the attributes of them. These properties have some
restrictions (sometimes called facets) on the values that they can take. The concepts
are arranged in the form of a taxonomy of concepts and sub-concepts, which means that
this taxonomy defines the explicit relations between the defined concepts. We can see that
there is some similarity between ontology development, in this manner, and object-oriented
design process. Despite this, there are also some significant differences between them2.

The major difference is that object-oriented design emphasizes the operational proper-
ties of a class, whereas ontology design decisions are based on the structural properties of
a class. Consequently, a class description and properties, and relations among classes in an
ontology, should be different from the structure for a similar domain in an object-oriented
design [58]. Noy et al. [59] showed that the process of developing an ontology consists of
the following four steps:

1. Defining classes in the ontology.

2. Arranging the classes in a taxonomic (subclass–super-class) hierarchy.

3. Defining classes’ properties and describing their restrictions.

4. Filling in the values for properties for instances.

2.3.1 Lightweight Ontology

To this point, it is still debatable what can be considered as an ontology and what cannot.
Nevertheless, most ontologies have at least:

� a list of terms that refers to the concepts.

� some definitions of the semantic relations between these concepts.

There are different types of ontology used in different types of application. They vary
in terms of usability from human-readable ontology, such as the Semantic Wiki [60], to

2A detailed comparison between object-oriented and ontology implementation issues is discussed in
http://www.w3.org/TR/sw-oosd-primer/#comparison

29

Figure 2.3.1: Kinds of ontologies. Adopted from [1]

an ontology which can only be processed by machine. In terms of coverage, they vary
from upper-level generic ontologies [61] to domain-specific ontologies, such as a biological
ontology [62]. They also vary in the degree of expressiveness, from lightweight ontology
to formal ontology. An ontology that consists of a list of terms and little specification of
the semantic relations between these terms is considered a lightweight ontology (LWO).
A taxonomy can be considered a good example of a LWO. On the other hand, a full
fledged ontology (formal ontology) contains more expressive concepts and relations. Its
concepts are represented in more detail by including more description of the concepts,
their properties, and restrictions of the values for these properties, going even further by
including additional semantic relationships between the concepts other than the simple
taxonomy (is-a) relationship. Figure 2.3.1 shows a continuum of kinds of ontologies. It
shows that ontologies can vary from LWO, such as ordinary glossaries and thesauri, to
more formal ontologies with inference, such as frames and description logics. On the other
hand, what should not be considered an ontology is any representation of concepts without
a clear explicit definition of them. Latent Semantic Analysis (LSA) is a good example of
what should not be considered an ontology since it is, as its name implies, a representation
of knowledge in the form of a list of semantically related latent concepts, which mean that
there is no explicit definition for these concepts.

30

Ontology Examples

The following is a list of some famous and large scale ontologies used in different domains:

� WordNet : a lexical database for the English language [63].

� Basic Formal Ontology : a formal upper-level ontology [64].

� BMO : an e-Business Model Ontology based on a review of enterprise ontologies and
business model literature [65].

� Cyc: an artificial intelligence project that attempts to assemble a comprehensive
ontology and knowledge base of everyday commonsense knowledge, with the goal of
enabling AI applications to perform human-like reasoning [66].

� OBO Foundry : a collaborative experiment involving developers of science-based
ontologies. The foundry is concerned with establishing a set of principles for ontology
development, with the goal of creating a suite of orthogonal interoperable reference
ontologies in the biomedical domain [67].

2.3.2 Ontology Evaluation

As we mentioned, ontologies vary in usability, coverage, and the degree of expressiveness.
Hence, there may exist many different ontologies for the same conceptualization of a specific
domain of knowledge. We should be able to determine which of the present ontologies can
fit our requirements. Thus, there is a need for a definition of some ontology evaluation
methods, to help in selecting the best matching ontology for any task or application. Also,
ontology engineers need to have a method to judge their created ontologies and possibly help
them to adjust them. As well, for the automated and semi-automated ontology learning
techniques, ontology evaluation is needed to tune the ontology parameters and values.

There are different evaluation approaches that are present in the literature. Brank et
al. [68] have classified them into four different categories of evaluation techniques, based
on the kind of the ontologies that are being evaluated and for what purpose they are used,
as follows:

� Golden standard evaluation: Comparing the ontology to a“golden standard” [69].
In this approach, the created ontology is compared with a manually created ontology
which is built by domain experts.

31

� Application-based evaluation: Using the ontology in an application and evaluat-
ing the results [70].

� Data-driven evaluation: Comparisons with a source of data about the domain
to be covered by the ontology [71]. This form of data is usually in the form of a
collection of text documents, web pages, or dictionaries.

� Assessment by humans evaluation: Human evaluation is the most popular eval-
uation method. The evaluation is done by humans who try to assess how well the
ontology meets a set of predefined criteria, standards, requirements, etc. [72].

2.3.3 Using Ontologies in Text Mining

In text mining and information retrieval, ontologies have been employed in many different
tasks such as query expansion and document representation. In both tasks, an ontology
is used to better represent text semantics, in order to retrieve documents which are more
relevant to the input query. A possible application of ontology in text mining is the
enrichment of document modeling. In this application, instead of using the conventional
“bags of words”model, one can model the document using concepts. And, rather than using
the simple structure of “bags”, we can use a more sophisticated structure such as the one
found in ontologies. Thus, documents will be represented in a structure of concepts that
reflects the document meaning, rather than using a collection of words that just occurred
in the document. The process of representing the documents in concept space has many
names including semantic indexing [73], concept mining, and explicit semantic analysis
[74]. Nevertheless, most of the recent works in the literature that utilize an ontology to
improve a text mining task do not use the term “ontology” to describe their technique;
rather, they use the term “background knowledge” or even the name of the ontology itself,
such as WordNet. Most of these techniques, as we review in the following subsections, use
a form of lightweight ontology.

Ontology Applications in Document Representations In the remaining part of
this section, we explore some of the work done in the literature which uses different types
of ontologies to give a better representation of documents. These representations will be
used to improve the performance of different text mining applications.

Aussenac and Mothe [75] used ontologies as background knowledge to explore a collec-
tion of documents. First, they built up a domain-specific ontology from a collection of text
documents using tools like KAON and Terminae. KAON [76] is is a standard workbench

32

for the analysis of texts in German and English. Terminae is a general workbench to build
up ontologies from large text corpora in French or English [77]. Then, they constructed
a hierarchy on top of the ontology with the help of the ontology entries. Each hierarchy
corresponds to a dimension on which documents can be mapped. Next, they associated
documents to the concepts from the different concept hierarchies using an approach that
they proposed in [78]. Finally, they built up a tool that helped the user to navigate and
explore the documents using the hierarchy they have defined. They did not supply any
evaluation measures for their technique.

Shehata et al. [79] proposed a new method to build an ontology using the set of the
documents to be processed. They presented a new concept-based model to be used for
document representation, wherein they extract concepts based on terms’ relationships at
both sentence and document levels. The concept-based model can effectively discriminate
between non-important terms, with respect to sentence semantics, and terms which hold
the concepts that represent the sentence’s meaning. The term which contributes to the
sentence semantics is assigned two different weights to introduce their importance in both
sentence and document levels. These two weights are combined into a new weight. The
concepts that have maximum combined weights are selected by the concept extractor.

Choudhary and Bhattacharyya [80] proposed a new method for constructing the feature
vector that represents a document in a document clustering task. They use the Universal
Networking Language (UNL) to determine the universal words of the documents (UWs)
and the importance of each UW in the document. The UNL is an artificial language that
can be used as a knowledge representation language in information retrieval applications.
It is organized in an ontology-like structure based on language sentences. It is described
in detail in [81]. They proposed two different techniques for document representation.
In the first technique, they used the UNL Graph Links to determine the importance of
each UW. They assigned to each UW in the document a weight, which represents the
importance of that UW for the document. This was calculated using the number of links
that connected this UW to other UWs in the document. They updated these weights
in the second technique, by weighting each link label in the graph so that the weight of
each UW equals to the summation of all links’ weights which connected this UW to other
UWs in the document. They showed that by using the first technique, they achieved better
improvement (about 16%) in document clustering than the basic BOW technique. Further,
they achieved even greater improvement (about 26%) by using the second technique.

33

WordNet-Based Approaches

WordNet is one of the most famous lexical databases for the English language. It defines
the type of each English word, whether it is a noun, verb, adverb, or adjective. It groups
the words which are synonymous with one another into synonym sets, named synsets.
Each synset represents one underlying lexical concept. Each word may have numerous
different senses, which means that it would belong to various synsets. For example, a
synset which is described by “A motor vehicle with four wheels; usually propelled by
an internal combustion engine” represents a concept which contains the words car, auto,
automobile, motorcar, and machine. The synsets also have different semantic relations with
each other, like antonyms, hypernyms, hyponyms, coordinates, holonyms, and meronyms.
These synsets and the relations between them define the WordNet linguistic ontology.

The WordNet ontology was developed manually by the Cognitive Science Laboratory
at Princeton University under the direction of George A. Miller [82, 83]. WordNet has
been applied to a variety of problems in machine learning, natural language processing,
information retrieval, and artificial intelligence. In this section, we discuss some of the
methods which used WordNet as an ontology for document representation.

Hotho et al. used WordNet to improve text document clustering [84, 85, 86]. They
proposed different strategies to amend the “bag of words” document representation with
concepts from WordNet. They have three different sets of strategies for extending the
bag of words model. These sets of strategies are generic and can be applied with other
ontologies, therefore we review their method in some detail. The first set of strategies deals
with how to represent the concepts in the term vector model. They suggest three different
strategies: either concatenating the concepts with the term vectors, replacing the terms
that have representative concepts with these concepts, or using the representative concepts
only.

The second set of strategies deals with the disambiguation of terms. Two different
disambiguation strategies are proposed: first concept and context concepts strategies. In
the first concept strategy, they used the first concept in the ordered list of concepts returned
from WordNet, since it represents the most common representative concept in the synset. In
the context concepts strategy, they used a simplified version of word sense disambiguation
defined by Agirre et al. [87].

The last set of strategies is concerned with the hypernyms of the concepts. In this
strategy, they try to assign to generic concepts higher weights than the specific concepts.
They add to each concept weight the sum of the weights of its sub-concepts that occur in
the same document up to a given n level. So that, n = 0 means that they add nothing to
the weight of the concept and n =∞ means that they add all the weights of the concept’s

34

sub-concepts. The cluster algorithm that they have used is the bisecting k-means[24]. They
have applied their approach to two data sets: Reuters-215783 [88] and Java-Corpus data
set.

They reported the results with different performance measures: purity, inverse-purity,
f-measure, and entropy. Different observations have been reported out of their work. The
best strategy for representing the concepts is by augmenting the concepts vector to the
term vectors. The best disambiguation strategy is the context strategy, since the “first
concept” strategy does not improve the results significantly. One last conclusion they have
drawn is that the best number of hypernyms levels is 5. They have achieved a significant
result by using the above framework.

Sedding et al. [89] proposed an update to the approach described above by Hotho et
al. They suggested using Part-of-Speech Tagging (PoS) as a new strategy for word dis-
ambiguation. They compared their results with the basic VSM. They observed that when
using PoS only, the performance of the clustering does not change. They also noticed that
the best number of hypernyms levels is 5, and the performance is decreased dramatically
when using all hypernyms levels (n =∞).

One of the recent researches that used WordNet semantics for document clustering
was done by Gad and Kamel [90]. They have proposed an update to the standard term
weighting function (tf-idf) using the semantically related terms in the same document. The
new weight is calculated as follows:

w̃ij1 = wij1 +
n∑

j2=1, j2 6=j1

wij2 × simLesk (tj1 , tj2)

where wij is the tf-idf weight of term j in document i, and simLesk (tj1 , tj2) is the
semantic information between terms j1 and j2 using the adapted Lesk algorithm proposed
by Lesk [91].

2.3.4 Using Wikipedia in Text Mining

Wikipedia4 is a free online encyclopedia. Its contents have been written collaboratively
by a large number of volunteer contributors around the world. Wikipedia web-pages can
be edited freely by any internet user. This leads to a rapid increase of its good-quality

3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4http://en.wikipedia.org/

35

contents, as any potential mistakes are quickly corrected within the collaborative environ-
ment. Wikipedia coverage of topics has become as comprehensive as other well-known
encyclopedias such as Britannica5 [92], with reasonable accuracy.

The strength of Wikipedia lies in its size and its wide coverage for different topics,
which could be used to overcome the limitations of the coverage and scalability of other
knowledge bases and ontologies. These features have encouraged research using Wikipedia
to build a well-structured knowledge base which can be used in different text mining tasks.
In the following sections, we discuss some of the applications proposed using Wikipedia as
a knowledge base.

Computing Semantic Relatedness

One of the initial tasks that involves Wikipedia as a knowledge base is computing the
semantic relatedness between documents (Wiki-Relate) [93]. They proposed to take the
Wikipedia categorization system as a semantic network, which served as a basis for com-
puting the semantic relatedness of words.

Gabrilovich and Markovitch introduced the idea of representing the terms and the doc-
uments in the Wikipedia concept space to compute semantic relatedness between fragments
of natural language text [74]. They regarded each Wikipedia Article as a concept. Each
term is represented as a vector of weights in the direction of all concepts that this term
occurred in. Similar to the Latent Semantic Analysis (LSA), which maps the document to
a latent lower dimension space, they map them to the concept space. They named their
approach “Explicit Semantic Analysis” (ESA), as they use concepts that are explicitly de-
fined by users. They reported that the performance is significantly better than other state
of the art methods.

After the idea of mapping the documents to the Wikipedia concepts space presented
by Gabrilovich and Markovitch, many researchers have used this approach to accomplish
different tasks. For example, Syed et al. [94] introduced a similar approach to build a
Wikipedia ontology, which they named Wikitology. They consider each Wikipedia article
as a specific concept as well, and each Wikipedia category as a generic concept. In their
approach, they measure the pairwise distance between the input documents and all the
Wikipedia articles using the conventional cosine distance. Then, they select the most
similar Wikipedia articles for each document and set the title of these articles as the
most specific concepts for that input document. After that, they identify the more generic
concepts for each input document using Wikipedia inter-category article relationship. They
showed the effectiveness of their approach using some preliminary results.

5http://www.britannica.com/

36

Wikipedia has been used also for text classification. Pu Wang et al. [95] have presented
a new approach to improve text classification using Wikipedia as background knowledge.
They built a large thesaurus from Wikipedia, and then used this thesaurus to build an
ontology of concepts. They extracted the relationships between the concepts of the the-
saurus from the structure of the Wikipedia’s knowledge. For example, they extracted the
synonymy relationships between concepts from the ”Redirect” links, polysemy relation-
ships from the ”Disambiguation pages”, and hyponymy from the category structure of the
Wikipedia. By using this thesaurus, they overcame the problems of the original vector
space model. They claim that by using their approach, text classification performance im-
proved significantly with respect to the baseline algorithm (VSM). Other researches that
use Wikipedia for text classification can be found in [96, 97, 98, 95].

Wikipedia has been used as an online knowledge base for conducting several other
text mining researches. In [99, 100, 101, 102, 103], Wikipedia was used to enhance a text
clustering task. It was also used for driving a large scale taxonomy in [104].

2.4 Summary

In this chapter, several text mining tasks have been reviewed. These tasks include docu-
ment classification, document clustering, and document topic indexing. This revision was
done in order to outline the features and properties of these tasks, as we are going to
compare them with our proposed approach later. We also covered the definition of the
ontology and reviewed different approaches which employ it in text mining. As we have
used Wikipedia as a knowledge source to create the ontology later, we surveyed a portion
of the research done in the literature which utilizes Wikipedia as a source of background
knowledge to accomplish different text mining tasks.

37

Chapter 3

Extracting an Ontology from a
Human Knowledge Repository

As we discussed in chapter 2, ontologies have been employed in a variety of tasks for text
mining. These ontologies vary from very lightweight ontologies where the concepts are
presented as a set of weighted terms [96, 94], to somewhat well-structured ontologies such
as the WordNet. One of the first works that introduced the use of the co-occurrence theory
to generate a lightweight ontology was done by Ding and Engels [105]. In this chapter, we
introduce a new approach to create a lightweight ontology from a knowledge repository.
We start by discussing the required features of a knowledge repository that can be used
in our approach, then present the steps we followed to build our ontology. After that, we
apply this approach to one of the well-known knowledge repositories, namely Wikipedia.
We discuss the different features and issues associated with using Wikipedia as a knowledge
repository. Lastly, we introduce the different applications that can use our created ontology
in different text mining tasks.

3.1 Overview

Creation of an ontology consists of four steps as we described in section 2.3: defining the
ontological concepts, defining the taxonomical relationships between the concepts, defining
the properties and restrictions of the concepts, and filling the values for these properties.
In our case, we are building a lightweight ontology which has a simpler structure than a
full-fledged ontology. Our ontology consists only of concepts, the taxonomy connecting
the concepts, and the concept-term relation. Concept-term relation represents the only

39

concept property in our ontology, mainly used for different text mining tasks. Also, it can
be used to find the non-taxonomical relation between concepts, which we call the semantic
relation. Thus, there are some minimum requirements that should be met in order to be
able to create our ontology. In the following subsection, we discuss these requirements in
detail.

Knowledge Repository Requirements

There are three main features that should be met by this Knowledge Repository (KR) to
create our ontology:

1. The first feature is associated with the first step in ontology creation, which is the
definition of ontological concepts. We need the KR to contain a collection of topics
which covers a wide range of human knowledge. These topics must have explicit
labels that represents the idea of the topic, such as “Biology” to represent a topic that
covers biology-related concepts. We use these topics to represent the concepts of our
ontology, which are considered the basic building blocks of the ontology. Formally,
for a Knowledge Repository (KR), we can define the set C to represent the list of all
ontological concepts as follows:

C = {ci : i = 1, .., n} (3.1)

where n is the total number of concepts in our ontology.

2. The topics, concepts, in the KR should have some taxonomical relationship to one
another. These taxonomical relations should be in the form of a parent-sibling rela-
tionship. This relation may cover any of the following relations: part-of, inherited-
from, instance-of (is-a), or any type of relation of that nature. Thus, when we move
in the up direction of the relation, we move to more abstract or general topics. Con-
versely, when we move in the down direction of the relation, we move to the more
specific topics. We call this relationship a hypernym. So, the hypernym relationship
between two concepts can be defined by P where

P = {(ci, cj) : i = 1, .., n; j = 1, .., n; i 6= j} (3.2)

shows that concept ci is a hypernym for concept cj.

3. The KR must have a huge set of textual data, articles, A which constitute the detailed
knowledge of the KR. We use these articles to extract the background knowledge.

40

Each topic in the KR should be associated with a collection of these articles which
describes, discusses, and presents the ideas of that topic. We use these textual data
to construct the concept-term relation for each concept. Hence for each concept ci,
we can define the set of articles Aci as follows:

Aci = {aj : j = 1, ..,mci} (3.3)

where mci is the total number of articles that fall under the topic ci.

Figure 3.1.1 shows an example of the required knowledge repository structure, where the
upper topics represent more abstract ideas, and leaves of these topics represent more specific
ideas. For example, for the topic“Biology”which represents a more generic topic, the topics
“Anatomy”, “Ecology” and “Zoology” are a subset of the leaves of that topic. Moreover,
each topic (concept) has a list of related articles that expresses the ideas of this topic.

Figure 3.1.1: Hierarchical Knowledge Repository

Due to rapid advances in information processing, and Internet growth, many sources
of world knowledge have become available in recent years. This kind of wide-ranging
knowledge repository can be found in different web directories such as the Open Directory
Project (ODP), Google Web Directory (which is based on the ODP Hierarchy), and Yahoo!
Web Directory. Also it can be found in various types of Encyclopedias such as Wikipedia.

41

3.2 Ontology Creation Framework

In this section, we show how we build the ontology using any knowledge repository. In
section 3.3, we point out some implementation issues which we have when using Wikipedia
as the knowledge repository. This process of creating the ontology consists of three main
modules: Extracting the Ontology Taxonomy, Manipulating Knowledge Repository Arti-
cles, and Building the Concept-Term Mapping. We discuss each module in detail in the
following subsections.

Basic Idea

To build an ontology from a knowledge repository, we need first to extract the ontology
tree from the knowledge structure. This step involves many different issues which will be
dealt with in detail later in this chapter. Next, we extract the representative terms from
the articles under each node of the tree constructed in the previous step. Last comes the
concept-term mapping, completing the construction of the ontology.

After explaining the steps of building the ontology, we show how to use it in different
text mining applications. Figure 3.2.1 outlines the proposed ontology creation framework.

Figure 3.2.1: Ontology creation framework

42

As mentioned above, each topic in the KR represents a concept which has some articles
associated with it. Using these articles, we want to extract the set of terms that represent
these articles. After extracting these terms (discussed in detail later in this chapter), let
T be defined as the set of all terms found in the KR:

T = {tj : j = 1, .., l}

where l is the total number of terms found in the KR. Then we use the concept-articles
relation Aci defined in equation (3.3) to associate to each concept ci a list of terms Tci .
Furthermore, we need to associate with each term a weight that represents the strength
of the relation between this term and that concept. Thus, for each concept ci, we need to
define a list of term and weight pairs as follows:

Wci = {(tj, wcij) : j = 1, .., l}

These weights are calculated based on the frequency of occurrence of these terms in the
articles under that concept. In other words, the weight wci1 is calculated based on the
frequency of occurrence of the term t1 in the set of articles Aci . Note that if a term tj
is not found in any of the articles Aci , the weight wcij is set to 0. So, we can define the
mapping from all concepts to terms as M, where M is defined as

M = {(ci,Wci) : i = 1, .., n} (3.4)

Thus, M can be defined as the mapping function which associates each concept ci ∈ C
to each term tj ∈ T . Our extracted ontology can be represented with the following three
main components: the set of concepts, C (3.1); the taxonomical concept relations, P (3.2);
and the concept-term mapping, M (3.4). This concludes the basic idea of the ontology
extraction process. Next, we describe the steps of ontology creation in detail.

3.2.1 Extracting the Ontology Taxonomy

The first step in ontology creation is defining ontological concepts. As we mentioned above,
a concept in the ontology must have a representative label, and it must cover a topic or an
idea of the human knowledge. So for example the label “Biology” can represent a concept,
while the label “Foreign” cannot. The “Foreign” label does not represent a concept as it is
a very ambiguous term. But the label “Foreign policy” or “Foreign language” can represent
topics. Usually, the process of filtering KR topics to decide what to include and what to
not include in the ontology concept list is a KR-based issue, which differs from one KR
to another. For example, the structure of the web directories can be used more or less

43

as-is, as when it was built it was meant to be used as a taxonomy of topics. On the other
hand, the article or category structure of a KR like Wikipedia was not built to represent a
taxonomy, so it was not taken into account that they may be used for tasks like ontology
creation. Hence, we cannot use this structure of the knowledge repository as-is.

In the literature, many tools are available to create a taxonomy from a collection of
documents, such as TaxGen [106]. Ponzetto and Strube [104] have proposed a Natural
Language Processing (NLP) approach to construct a taxonomy from Wikipedia. They
extract the generic is-a relations from Wikipedia category links. As this task of defining
the ontology concepts is a KR-based issue, we discuss it in detail with the Wikipedia
implementation issues (section 3.3).

After defining the set of concepts C as in equation (3.1), we need to organize the
taxonomical relations between concepts in a form that can be used in later steps in text
mining. A taxonomy can be represented as a tree or as a directed graph. In our case, the
tree representation cannot be used as each concept may have multiple parent concepts,
so we have used the directed graph representation to represent our ontology’s taxonomy.
In this graph, each node represents a concept, each edge (arc) represents a taxonomical
relation between two concepts, and the direction of the edge maps the hypernym relation.
In other words, if a concept ci is a hypernym for a concept cj, there will be a directed
edge that goes from the node that represents the concept ci to the node that represents
the concept cj.

One of the possible mathematical formulations of a graph is the adjacency matrix. An
adjacency matrix, X, is a square matrix with size n × n where n is the number of the
graph nodes (the number of concepts in our case). Hence, we can represent the taxonomic
hierarchy of our ontology as an adjacency matrix H. If the entry Hij of the adjacency
matrix H equals one, this means that the concept ci is a hypernym for a concept cj.

One of the issues of the KR taxonomies is that they may contain cycles. A cycle is a
path that starts from a concept and ends with the same concept. Taxonomy cycles should
not exist in the ontology’s taxonomy. The cycles can be a direct cycle (loop) where there
exists an edge from a concept to itself. Handling direct cycles, loops, is very trivial. It
can be done by setting the diagonal values of the matrix H to zero. Obviously, we cannot
remove other larger cycles manually as the number of concepts is huge and the length of
the path of a cycle can be very long. In other words, we want to convert the directed graph
represented in H to a directed acyclic graph, DAG, automatically. This can be done by
removing one of the edges, arcs, that exist in each cycle.

There are two possible methods to convert a directed graph to DAG based on the
available information for the given taxonomy. The first method is the simpler one. We

44

assume that the top level concepts, the hierarchy roots, are given with the taxonomy.
Algorithm 3.1 shows how to convert a graph to a DAG given that the root concepts are
known. This algorithm is more like the breadth-first tree traversal. It starts by setting the
root concepts in the open set, the nodes to be visited, and sets the closed set, the already
visited nodes, to empty. Then, for each node in the open list, it check its fan-out links. If
any of them points back to one of the already traversed nodes, this arc is removed. Next, it
put this node in the closed set and removes it from the open set. Note that this algorithm
does not try to minimize the number of removed arcs.

If the root concepts are not given, the problem becomes much harder. The assessment
of which edge can be removed without dramatically affecting the taxonomy is hard to make.
In other words, we want to select as few edges as possible to be removed from the taxonomy
graph to convert it to a DAG. This problem is an NP-hard problem called the minimum
feedback arc set problem, FAS [107, 108], or the maximum acyclic sub-graph problem [109].
There are many algorithms in the literature that try to use different heuristics to solve this
problem [110]. One possible reduction of this problem is to find the best vertex sequence of
all graph vertices in such a way that the leftward arcs, from a vertex to any of the vertices
on the left hand side of it in the sequence, are minimized. Then, the problem is solved by
removing all the leftward arcs[111].

We propose here a new FAS algorithm that tries to minimize the number of removed
edges. Our proposed approach is based on two remarks. First, some of the arcs may occur
in multiple cycles. As we want to minimize the number of deleted arcs, removing arcs that
occur in multiple cycles first will minimize the total number of removed ones. Second,
graph nodes in the upper levels usually have more fan-out arcs than fan-in (source nodes
have zero fan-in arcs) and vice versa, the nodes on the lower levels of the graph have more
fan-in arcs than fan-out (sink nodes have zero fan-out arcs). To keep the graph hierarchy
order unchanged, we try to remove the arcs that connect from lower level nodes to upper
level ones. So, we suggest using the formula F = FanIn/FanOut to order the nodes. So,
nodes in upper levels usually will have a smaller value of F than the nodes in lower levels.
Hence, we remove the cyclic arcs that are connected from nodes with higher value of F to
nodes with lower value of F. Algorithm 3.2 lists the steps to convert a directed graph to a
DAG based on the above remarks.

This algorithm consists of two repetitive steps. The first is to call another recursive
algorithm (as listed in Algorithm 3.3) to retrieve the list of arcs to be removed from the
graph. The second step is to remove these arcs and check if the graph has become acyclic
or not. If it is not acyclic yet, it repeats those two steps. Algorithm 3.3 is a recursive
algorithm. It starts by splitting the graph into a set of sub graphs, each of which represents
a strongly connected component of the input graph. A strongly connected component is a

45

Algorithme 3.1 RemoveCycles(H,R)

Input: The adjacency matrix H, the set of root concepts R.
Output: The updated adjacency matrix H∗that represents the DAG of the graph H with
R nodes as roots
Initialization: set H∗ = H, define the empty closed set C ← {}, define the open set
O ← R
1: Begin

2: For each a ∈ O, retrieve the row H∗a,:

3: Remove a from O, O ← O − a

4: SetC ← C + a

5: For each non zero node b in the row H∗a,:

6: If b ∈ C Then

7: Set H∗a,b = 0

8: Else If b /∈ O Then

9: SetO ← O + b

10: End If

11: End For

12: End For
13: End

46

Algorithme 3.2 RemoveMinimumFAS(H)

Input: The adjacency matrix H
Output: The updated adjacency matrix H∗that represents the DAG of the graph H
Initialization: set H∗ = H,

1: Begin

2: Repeat

3: Retrieve A = RemoveMinimumFASRecursive(H∗)

4: Remove A from H∗

5: Until H∗ is DAG
6: End

sub graph of the graph that contains at least one cycle that connects all the nodes in this
sub graph. Going from bigger sub graphs to smaller ones, we create an adjacency H1 matrix
to represent that sub graph. In step 6, we select the set of arcs that occur in a maximum
number of cycles. This is done by weighting each of the arcs in H1 based on the number
of the newly reformed strongly connected sub graphs if that arc is removed from H1, then
selecting the arcs with the highest weight and store it in A1. If A1 contains multiple arcs,
which means that there are multiple arcs with the same weight, then we select the arc a
with maximum F where F is defined as F=FanInsource×FanOutsink

FanOutsource×FanInsink
. This means that we select

the arc that most probably connects a lower level node to a higher level one. Then, we
remove that arc, a, from the sub graph H1. The sub graph H1 now contains either no
cycles or a smaller set of cycles. So, we call the algorithm again but with H1 as an input
instead of H. The returned set of arcs along with the arc a are added together to A. Then,
the last steps are repeated for all other sub graphs. Then the algorithm returns the set of
arcs that should be removed in A.

After applying the previous steps, we have finished extracting the representative con-
cepts, C, of our ontology. Also, we have finished creating the taxonomy H of the ontology.
Next, we manipulate the knowledge repository articles in order to create concept-term
mapping, which represents the core part of the ontology.

47

Algorithme 3.3 RemoveMinimumFASRecursive(H)

Input: The adjacency matrix H
Output: The set of feedback arcs A to be removed from H
Initialization: set A = {}
1: Begin

2: Get the sets of Strongly Connected Components S of the graph H

3: Sort S from the bigger to smaller sets

4: For each set S1 ∈ S (ignoring the sets of size = 1)

5: Generate adjacency matrix H1 from H including nodes only from S1

6: Select the set of arcs A1 from H1 that occur in maximum number of cycles

7: If A1 contains multiple arcs Then

8: Select the arc a with maximum value of F

9: Else

10: Set a = A1

11: End If

12: Remove a from H1

13: Retrieve A2 =RemoveMinimumFASRecursive(H1)

14: Set A = A ∪ a ∪ A2

15: End For
16: End

48

3.2.2 Manipulating Knowledge Repository Articles

The second part in the creation process of the ontology is to extract the background
knowledge associated with each topic in the knowledge repository. Then, we assign this
knowledge to the corresponding ontology concept. Each topic in the knowledge repository
has a collection of articles that represent the ideas and concepts of that topic as we discussed
earlier. The extraction of usable knowledge from these articles is done in several steps.
First, we gather all the representative articles of each topic. As we do not care about the
articles’ structure, we merge all the representative articles of each topic together in the form
of one representative article. In some cases, these articles are not sufficient to represent
the topic. This situation occurs often in the abstract topics. In this case, we can augment
the knowledge associated with each topic with the knowledge associated with it through
an ancestral hierarchy of topics. For example, we add the knowledge that are associated
with “Anatomy”, “Botany”, “Zoology”, etc., to the knowledge associated with the “Biology”
topic. This includes all the topics in the hierarchy up to a specific level l. We used this
strategy mainly in the ADTI application, which is discussed in detail in chapter 4.

Note that some of the articles may be merged to multiple representative articles, as
they may appear under multiple topics in the knowledge repository. For example, an
article that covers “Document clustering” may appear under both the “Data mining” and
“Machine learning” topics. After generating the representative article for each KR topic,
we apply the next three processing steps for each representative article.

Article Cleaning

Most of the knowledge repositories are available from the web. The articles of these KRs
are usually stored in a web format such as HTML, XML, and so on. In this step, we remove
all kind of formatting found in the representative articles, such as tags, links, character
entity references, and so on. We also remove all the punctuation. The output articles
would be in a form of text with alphabetic characters. Then, the articles are broken down
into a list of consecutive words. After this cleaning step, the input articles are ready to be
used in the next step.

Stop-word Removal

One of the standard steps in document preprocessing is stop-word removal. Stop-words
are the list of words that occur frequently in all documents and do not add to the meaning
of the document. Some examples of such stop-words are prepositions, articles, pronouns,

49

etc. There are more than one list of stop-words defined for English which vary in size.
Although this step is essential for any text mining task, we have only removed a very small
set of common stop-words, such as the determiners. As we will see later, we can use our
ontology to determine the most frequently occurring words in the concepts of the ontology,
to remove them from the ontology.

Stemming

After removing the basic stop-words found in the articles’ lists of words, we stem the
words in the articles’ lists to their canonical forms. Stemming is the process of converting
the input text from its original form to basic or root form. For example, terms such
as “economy”, “economic”, “economist”, “economies”, and “economize” will be stemmed as
“econom”. Using stemming as a preprocessing step has become a requirement in any text
mining application. It implicitly converts the word to a standard semantic form which
represents the meaning of that word whatever its original form (singular, plural, verb,
noun, etc.). We used the Porter stemming algorithm introduced in [112]. We call the
output of the stemming step terms.

3.2.3 Building the Concept-Term Mapping

After performing the article preprocessing step, the articles contain a combination of
stemmed terms. We augment all these lists into one list of terms, T of size l, which
represents the whole ontology list of terms. Then we create for each concept defined in C,
extracted in the first step, a vector for all terms found in T . Next, we use the representative
processed article, defined in the previous step, for each concept to assign the values for its
term vector as follows: if a term ti does not appear in that list, we put a value of zero in
its place in the vector, otherwise we put the number of occurrences, term count, of ti in its
place in the vector. Then, we update the weight for each term ti, based on its importance
to a concept cj, according to the following equation:

tf-icfij =
tfij × log (icfi)√∑
∀k

(tfkj × log (icfk))
2

where tfij is defined as the number of occurrences of the term ti in a concept cj divided
by the total number of terms in that concept, and icfi is defined as the total number of
concepts divided by the number of concepts that contain the term ti. The denominator of

50

this ratio is used to normalize the fraction in such a way that each concept vector in the
term space will have a unit length. This equation is very similar to the tf-idf equation,
which is the most common weighting method used in text mining. Using this equation, we
can construct the concept-term mapping matrix M as follows:

M =

tf-icf1,1 . . . tf-icf1,j . . . tf-icf1,l
...

. . .
... . .

. ...

tf-icfi,1 . . . tf-icfi,j . . . tf-icfi,l
... . .

. ...
. . .

...

tf-icfn,1 . . . tf-icfn,j . . . tf-icfn,l

(3.5)

where n is the total number of concepts that we have extracted in the first step and l
is the total number of terms that we have found for all the extracted concepts. Note that,
if the term x has not occurred in the concept y, then tf-icfx,y = 0. The previous step is
more or less similar to the vector space document modeling approach. Hence, if we have

C = (−→c1 ,
−→c2 , ...,

−→cn) as the matrix of all concept vectors and T =
(−→
t1 ,
−→
t2 , ...,

−→
tl

)
as the

matrix of all term vectors, then we can write the concept representation as follows:

C = MT (3.6)

At this stage, we have finished discussion of the process of building the ontology. All
the previous steps are done just once, and offline. Once the ontology is created, we can
use it to accomplish different text mining tasks.

3.3 Using Wikipedia to Construct the WHO

In this section, we apply the approach that we proposed in the previous section using
Wikipedia as the knowledge repository. We discuss in this section the reasons for selecting
Wikipedia as our knowledge source. We also show how we have applied each of the ontology
creation steps to Wikipedia to construct what we call the Wikipedia Hierarchical Ontology,
WHO. Lastly, we discuss some of the issues related to Wikipedia as a knowledge repository.

Why Wikipedia?

We have chosen Wikipedia as our Knowledge Repository for the following reasons:

51

� Wide range of topics: Wikipedia has about four million articles contributed by
hundreds of thousands of volunteers. Despite that it allows open editing for its ar-
ticles, this approach shows remarkable quality. A special report published in the
journal Nature [92] showed that Wikipedia accuracy compares well with that of En-
cyclopedia Britannica. Also the size of Wikipedia is growing quickly, which makes it
either cover new topics or enrich the already represented topics.

� Hierarchical structure: Wikipedia contains a hierarchy of categories which we
need to build the taxonomy of concepts. Although the categories hierarchy is not
well organized and in some cases it has loops, our suggested method discussed in
section 3.2.1 can deal with this problem.

� Multilanguage support: Wikipedia supports many languages. This feature can
be used to apply our approach to Wikipedia with different languages.

Using Wikipedia as a background knowledge source in different text mining applications
was proposed before, as noted in section 2.3.4. Nevertheless, we propose a new approach
for handling, organizing, and extracting Wikipedia knowledge in a well structured form
of knowledge, an ontology. This ontology can be used in different applications as we will
present later.

3.3.1 Extracting WHO from Wikipedia

As we discussed earlier in this chapter, the ontology extraction process is the process of
defining the three main components of the ontology: the set of concepts C, the taxonomical
concept relations H, and the concept-term mapping matrix M . So, in the next section we
start by defining the ontology taxonomy.

Defining WHO Concepts and Taxonomy from Wikipedia

There are two different options when defining the ontology concepts from Wikipedia: either
use Wikipedia articles to represent the ontology concepts, or use Wikipedia categories to
represent them. There are three main issues with using Wikipedia articles as concepts. The
first issue is that the number of articles in Wikipedia is huge, about four million articles,
which overwhelms the ontology with concepts and increases the complexity of handling it.
The second issue is the coverage of Wikipedia articles. Some of them are very rich and
can well represent a topic, but Wikipedia contains many irrelevant articles, which cannot
be used as concepts - including them in the ontology introduces too much noise, and the

52

process of finding and filtering out the irrelevant articles is not an easy task. The last
issue in this approach is that the articles do not have a firm inter-relationship that can be
used to build the ontological taxonomy. Although there is a line of research which makes
use of the articles’ links in Wikipedia to build the concepts’ relationships, these links still
cannot be used to build the taxonomy. On the other hand, the hierarchical structure of
the Wikipedia categories are more organized, and contains much less noise than the ones
found in articles’ links. Also the number of categories is much less than the number of
articles, and the coverage of each category is wider than the articles. Hence, we decided to
select the Wikipedia categories to represent WHO concepts.

Although our approach is language-independent, we have used the English version of
Wikipedia1. In the Wikipedia version that we have used, the number of the extracted
categories is 565,104. The number of inter-category relations, graph arcs, found between
these categories is 1,253,107. We have applied the following steps to clean the hierarchy:

Removing the Minimum Feedback Arc Set We have applied the algorithm listed in
3.2. The number of removed arcs is 546 which represents about 0.04% of the total number
of arcs. In order to check the effectiveness of our algorithm, we also applied the algorithm
presented in [111]. It takes nearly the same time, 51 seconds compared to 53 seconds for
our algorithm, while it suggests removing 1475 arcs, representing about 0.12% of the total
number of arcs.

Removing Categories not in the Mainstream Hierarchy Most of the Wikipedia
categories falls under one mainstream hierarchy. In order to keep the taxonomy of WHO
connected, we remove any category that does not fall in the mainstream hierarchy. This
is done by finding the biggest weakly-connected sub graph of the categories graph, and
ignoring the other categories. This reduces the number of categories to 546,511.

Removing Categories with No Content There are many categories in Wikipedia that
have no articles attached to them. We call them, the categories with no contents. There
are two reasons for a category to not have contents. First, the category represents a very
abstract idea or topic whose description comes under its descendant categories. The other
reason is that the category is not referring to a topic, rather it is just used for grouping
or organizing other categories. We remove only the second type of categories and keep the
other ones. The first type can be utilized by using its descendants as we will discuss in

1We have used the Wikipedia dump version 2010-03-12, other more recent versions of English Wikipedia
are available at http://dumps.wikimedia.org/enwiki/

53

chapter 4. In this type of filter, we do not directly remove the category as it may affect
the structure of the taxonomy, rather we just mark them for deletion.

Removing Categories by their Name Many categories in Wikipedia cannot be con-
sidered as concepts. They are either used by Wikipedia internally for maintenance and
administration issues, such as “Wikipedia articles needing copy edit”, or for grouping other
categories such as “1950 deaths”. Including these categories in the ontology adds a con-
siderable amount of noise. We have defined different filters for these types of categories.
All of these filters are based on the categories’ names. Here are some examples of these
filters: filtering categories whose names contain a year number, in the form of “X by Y”,
those which end with a highly repetitive word such as “films”, and so on. Similar to the
previous filter, we mark these categories for deletion.

For the previous two filters, the categories that need to be filtered out from the taxon-
omy were just marked for deletion. The reason for this is that we do not want to break
down the taxonomy by removing these categories. Also, removing a category that occurs
between two related categories will implicitly remove the connection between these two
categories. Therefore, we have applied a pruning algorithm for these categories. The basic
idea of this algorithm is to remove the categories which are marked for deletion and are
either sources, without parent categories, or sinks, without child categories. Then we re-
peat the last step until there are no other sources or sinks marked for deletion. Although
some of the categories that are marked for deletion will remain in the taxonomy, we will
consider them as dummy concepts which are used for linking other concepts, and they will
not be used in the concept-term mapping matrix.

Constructing the Concept-Term Mapping Matrix From Wikipedia

After determining WHO concepts, we define the concepts’ properties in the form of the
concept-term mapping. We gather the articles that fall under each category in Wikipedia
that have a corresponding concept in WHO. Then we clean these articles, and extract the
concept-term mapping matrix using the approach discussed in sections 3.2.2 and 3.2.3.
One of the steps that we would like to revise here is the stop-word removal module.

Revisiting the Stop-word Removal Module One of the steps of the article prepro-
cessing stage of the proposed approach is stop-word removal. We noticed after generating
the concept-term mapping matrix that there are some terms which occur in almost all
concepts. These terms cannot be used to differentiate between concepts, thus they are use-
less in WHO. We considered these terms as stop-words, and hence we decided to remove

54

them as they also introduce noise to the ontology. We defined a specific concept frequency,
cfth hi, threshold using heuristics from the concept-term matrix. Any term that occurs in
a number of concepts greater than cfth hi is removed from WHO. On the other hand, any
terms that occur in very few categories are useless too and introduce noise to the ontology.
Hence we defined another specific concept frequency, cfth low, where any term occurring
in a number of concepts below the threshold is removed from WHO. We can also use the
same idea to define a domain specific stop-word removal module.

3.3.2 Wikipedia and WHO Scalability Issue

As noted, Wikipedia’s strength comes from the collaborative work done by a large number
of volunteer contributors. This causes the size and coverage of Wikipedia to increase
rapidly. One of the major requirements of the proposed technique is the scalability of
WHO. This means that the knowledge contained in WHO could be easily updated to be
consistent with Wikipedia knowledge. We are proposing here a technique which would
fulfill this requirement.

In order to check the validity of knowledge in WHO with Wikipedia, we need to examine
two different issues: the taxonomy and the concept-term mapping of the WHO. To check
the taxonomy, we know that each node in the WHO taxonomy (topic) reflects one of the
Wikipedia categories. We can check the (FanIn+ FanOut) value for each category. If we
find that this value for a specific category is dramatically changed, the difference between
the stored value and the Wikipedia value is greater than a certain value, we update the
sup graph that contains this category. This will allow us to add new topics to the WHO
hierarchy if there are any, after filtering noisy ones as described in the previous section.
Also, if this new hierarchy structure has been changed dramatically, we can restructure the
WHO hierarchy without affecting its content.

We know that the weighted representative term lists for each WHO node are generated
using the combination of all articles under each category. We store with each topic the
number of articles which contribute to the knowledge content of each topic. To check the
knowledge content of WHO, we can check the number of articles under each category in
Wikipedia which reflects a topic in the WHO structure. If the number of articles of a
category increased by a certain ratio, we can update the list of representative terms of
this category. By applying these two techniques for the taxonomy and the concept-term
mapping of the WHO, the knowledge in the WHO will be scalable.

55

3.4 Ontology Evaluation and Applications

We discussed in section 2.3.2 the different approaches that are used for evaluating the
ontology. One of these approaches is the application-based evaluation. In this evaluation
approach, the ontology is used for a specific application and the results are compared to
the results without using the ontology. If the performance of the application is improved,
then the ontology is useful and can be used for this application.

We have used this approach to evaluate our ontology, as our main goal of creating the
ontology is to use it to improve the performance of different text mining applications. There
are several text mining applications in which WHO can be employed. These applications
include measuring the semantic relatedness between terms or topics, document tagging,
enriching document modeling, and so on. As we reviewed in section 2.3.3, the most common
application in the literature that employs background knowledge in text mining is the
document modeling enrichment. This is done by representing each document as a vector
in the concept space, instead of the common term space. This means that documents
are represented as a weighted average of the concepts they represent. This representation
can be used to improve the performance of text mining applications, such as document
clustering and document classification. Although this application is not the main goal of
this ontology creation, we review in the next subsection how to utilize our ontology in such
an application.

Our main application of WHO is Automatic Document Topic Identification (ADTI).
In this application, we are given some topics of interest from the user, and asked to find
the best matching topic for each input document. In contrast to the document modeling
enrichment application, both documents and concepts are represented as vectors in term
space. The best matching topic for a document is identified by finding the best matching
concept. This approach is discussed in detail in Chapter 4.

3.4.1 Using WHO for Document Modeling

Let D = {di : i = 1, ...,m} be a set of input documents that need to be processed. Let
−→
di be the vector representing the document di. Using the Vector Space Model (VSM)

notation, the document di is represented as a vector
−→
di as follows:

−→
di =

∑
∀k

wik
−→
tk

where
−→
tk is a vector that represents the term tk, and wik is the weight of the term tkin

56

the document di. The most commonly used weighting is tf-idf (described earlier in section
2.2.1.1). Thus a document di can be represented as a vector of all its terms’ weights. So,
the document-term relation can be shaped in a form of a matrix A, where Aij is the weight
of the term tj in the document di. Hence, we can express the above equations in a matrix
form as follows:

D = AT (3.7)

where D =
(−→
d1 ,
−→
d2 , ...,

−→
dm

)
, T =

(−→
t1 ,
−→
t2 , ...,

−→
tl

)
. In our approach, the concepts are

represented as vectors in the term space as shown in Equation (3.6). Here we assume that
we can represent the terms T as vectors in the concepts space C by using the MT . Then,
we map the documents to a concept space of the ontology. We can express the concept
term relation as follows:

T = MTC

where C = (−→c1 ,
−→c2 , ...,

−→cn) , and M is the mapping matrix previously defined in Equation
(3.5). By substituting T with MTC, the document matrix D defined in Equation (3.7) can
be rewritten as follows:

D = AMTC

The resultant matrix of the multiplication AMT can be considered the document-concept
mapping matrix. We call this matrix Ã. Hence, we can map the input documents to our
ontology concept space by calculating Ã as follows:

Ã = AMT

where Ãij is the weight of the term cj for the document di.

Documents Similarity Measure

Usually the similarity between the vectors is calculated based on their dot product. For
two documents a and b, it is defined as:

s (a, b) =
−→a •
−→
b

||−→a || ||
−→
b ||

57

where • refers to the dot product and ‖−→a ‖refers to the length of the vector −→a . Since
D represents a vector of all documents, we can define the similarity between documents in
a matrix form, S, as follows:

S = DDT

= ATT TAT

= AGAT (3.8)

G represents the Gram matrix which is the matrix of all possible inner products of T . It
also can be interpreted as the correlation between terms and can be represented as follows:

G = TT T =

−→
t1 •
−→
t1
−→
t1 •
−→
t2 · · · −→t1 •

−→
tl

−→
t2 •
−→
t1
−→
t2 •
−→
t2 · · · −→t2 •

−→
tl

...
...

. . .
...

−→
tl •
−→
t1
−→
tl •
−→
t2 · · · −→tl •

−→
tl

In VSM the matrix G can be assumed to be the identity matrix (G = I) as the terms

are assumed to be orthogonal. In our approach, the Gram matrix G can be calculated in
the new concept space as follows:

G = TT T

= MTCCTM

By assuming that the concepts’ vectors are orthogonal in an n-dimensional Cartesian
space of concepts, Rn, the multiplication CCT is equal to identity matrix I. Hence, the
Gram matrix will be:

G = MTM

So by this definition of G and Equation (3.8), the similarity between the documents
can be calculated as follows:

58

S = AGAT

= AMTMAT

= ÃÃT

We have detailed the use of this document modeling to improve the performance of the
document clustering task in [113].

3.4.2 Revisiting the Running Example

Let us revisit the example that we proposed in chapter 1. We introduced five different
sentences and showed that by using the conventional VSM, we could not find any similarity
between these sentences. Also, we can show that the other standard document modeling
approaches such as the GVSM and the LSI will fail to distinguish between the input
sentences, as the input data are very small and we could not infer any term correlation
from them.

On the other hand, we can show that the WHO document modeling could find some
similarity based on these small input documents. We have used the proposed approach to
calculate the similarity between the key term of each sentence. We have selected the terms
“economy”, “unemployment”, “government”, “politics”, and “president” as the key terms for
sentences 1, 2, 3, 4, and 5 respectively. Table 3.2 shows a correlation matrix between these
terms. This matrix is calculated based on the cosine similarity between the corresponding
rows from the matrix MT .

economy unemployment government politics president

economy 100.0% 9.2% 2.5% 0.5% 0.3%

unemployment 9.2% 100.0% 1.2% 0.7% 0.2%

government 2.5% 1.2% 100.0% 3.3% 3.7%

politics 0.5% 0.7% 3.3% 100.0% 1.7%

president 0.3% 0.2% 3.7% 1.7% 100.0%

Table 3.2: Terms correlation matrix

59

From the table, we can notice that the nearest term to the “economy” term is “unem-
ployment” and vice versa. Also the term “government” is near to the terms “economy”,
“politics”, and “president” while the nearest term is “president”, and so on. We can see
from the above table that these percentages of similarity between terms are logical and
similar to simple human judgment of the similarity between terms.

3.5 Summary

In this chapter, we first discussed the need for using background knowledge to enrich doc-
ument representation. We showed how to build an ontology, which contains an organized
and structured form of knowledge, from a different format of knowledge repository. At
the end of this chapter, we investigated the reasons for selecting Wikipedia as a knowledge
repository, and discussed the various difficulties and implementation issues when using it
for creating the Wikipedia Hierarchical Ontology, WHO. In the next chapter, we show the
main application that we proposed for the ontology created in this chapter.

60

Chapter 4

Automatic Document Topic
Identification Using WHO

This chapter introduces the proposed Automatic Document Topic Identification (ADTI)
approach using our constructed ontology (WHO). We start by giving a brief introduction
to this approach. Then we describe this approach in detail discussing the different modules
and aspects that affect its performance. Finally, we compare it with similar text mining
tasks.

4.1 Overview

As we have reviewed in chapter 2, the term“topic identification”has been used as equivalent
to “topic indexing”, which means predicting the best topic or topics to represent the input
document set. In most cases, this prediction is based on some background knowledge
extracted from a knowledge repository which is different from the source of the input
documents. A good example of these approaches is document tagging. The purpose of the
document tagging approach is to predict the best matching tags for each input document.
Usually this set of tags is very large and extracted from the knowledge base. Usually each
document is assigned multiple tags. In this work, we have a different definition for the
term “topic identification”. Given that we have a set of topics labels, L = {b1, b2, . . . , bp},
that has been marked as being “of interest”, and we have a set of input documents, D =
{d1, d2, . . . , dm}, and we want to assign each input document dito one of these topics bj,
we refer to this task as Automatic Document Topic Identification (ADTI).

61

As we can see from the above definition, we use the word“identification”to mean finding
the best match between the input document set and the input topic list. In contrast to other
approaches, the list of topics is a known entity in our approach, which means that we do not
need to predict them. On the other hand, our approach makes sure that the topic assigned
to each document is one of the input list of topics. To better understand the difference, let’s
consider the following example: let’s assume that we are interested in the following topics:
economics, politics, and sports, and we have a document declaring “Barack Obama is the
new President of the United States”. Usually other topic indexing approaches will use some
form of background knowledge to predict the topic of this document, and they might give
the following topics as the best matching topics: “US presidential election”, “Presidents
of the USA”, and so on. These topics usually will be very specific to this document. In
contrast, our approach will try to identify the most relevant topic from the list of given
topics, and will identify it as “politics”.

ADTI can be used in many different real applications, for example, improving retrieval
of library documents pertaining to a certain topic. It can also be used to improve the
relevancy of search engine results, by categorizing search results according to their general
topic and giving users the ability to choose the domain which is more relevant to their
needs. It is also needed for an organization like a news publisher or news aggregators,
where they want to automatically assign each news article to one of the predefined news
main topics. Similarly, it can be applied for digital libraries to assign each new article to
one of the predefined list of topics.

ADTI can also be used to improve the output of an automatic speech recognition
(ASR) system. In order to produce the recognized text, an ASR system usually needs
to be supplied with a language model. The efficiency of the ASR system is very much
dependent on the accuracy of the supplied language model. So if we could know the topic
of the speech input, we could supply a more relevant language model. Most of the time we
do not know this kind of information in advance, therefore we provide a generic language
model, which leads to a lower accuracy of the ASR system. To overcome this problem,
we can provide the output of the ASR system using this kind of generic language model
to the document identification system. The document identification system will provide in
return the most relevant topic using the inaccurate output of the ASR. Consequently, we
could supply a more relevant language model, and get a more accurate result when this is
applied to the ASR task.

The rest of this chapter is organized as follows: Section 4.2 shows how we utilized our
proposed ontology, WHO, in ADTI. This includes the different methods that we used to
extract the desired topics from WHO concepts, the different approaches using the WHO
taxonomy to improve the topics’ representation, and the different proposed identification

62

Figure 4.2.1: ADTI basic idea.

approaches to select the best matching topics for the documents. After that, we will do a
comparison between ADTI and the other common text mining applications in section 4.3.

4.2 Automatic Document Topic Identification Method-

ology

As previously noted, the idea of ADTI is to map topics and input documents to the same
space, then find the closest topic to each input document. Here the common space between
input documents and topics is the term space. Figure 4.2.1 illustrates the concept of ADTI
in a graphic presentation. It shows a sample of the representation for four documents’

vectors
{−→
d1 ,
−→
d2 ,
−→
d3 ,
−→
d4

}
and two vectors of topics’ labels

{−→
b1 ,
−→
b2

}
in a three-dimensional

space of terms {t1, t2, t3}. Using this representation, we can see that the documents’ vectors
−→
d1 and

−→
d2 are closer (based on the cosine similarity) to the topic vector

−→
b1 than to topic

vector
−→
b2 . Hence, we can identify the topic of d1 and d2 as b1, and the topic of d3 and d4

as b2.

It can be seen above that the better the representation of the topic in the term space is,
the better identification results. So, ADTI is the process of finding the best representation
for the input topics, then matching input documents to those topics. We can split this

63

process into three different steps. The first step is to extract the representative concept
vector for each input topic from the constructed ontology. The second step is to use the
concept taxonomy in WHO to enrich the topics’ representations. The last step is to use
extracted topics vectors to identify documents’ topics. In the next section, we explore
the different ways to extract the representative concept vector that we examined in our
approach.

4.2.1 Extracting Representative Concepts for Input Topics

As we stated earlier, one of the inputs of the ADTI application is a list of topics of interest,
to which we want to classify input documents. In this module, we try to find the matching
list of concepts to these topics. Usually, this process is done by direct matching of topics’
names and concepts’ names. The problem is that sometimes there is no direct match be-
tween some topics and concepts, or the direct matching is not so accurate. For example,
sometimes the given topic of interest is “technology”, but the best matching concept de-
scribing the input document set is “information technology”. Or as an example of a topic
with no direct matching concept, consider “economy”. The best matching concept label for
this topic is “economics” not “economy”. To resolve this problem, we propose two different
approaches to select the best matching concepts for the input topics, manual matching and
semantically related automatic matching.

4.2.1.1 Manual Matching

In this approach, we use the data set provider’s experience about the input document set
to find the matching concepts. Given the list of the ontology concept labels L that we
extracted in section (3.2.1), for each given topic label, we start by searching that list for all
available concept labels that contain this topic label. We sort the output list for each topic
label based on the orthographic similarity between the topic label and the list of concepts’
labels. We pass on these lists of concepts’ labels to the data set provider to select the best
matching concept(s) for each topic, based on their experience with the input data set. The
main drawback of this approach is that it makes the whole technique partially manual, as
we still need a human to select the matching concepts.

4.2.1.2 Automatic Matching Using Semantically Related Concepts

In contrary with the manual matching approach, we try to resolve the matching problem
automatically. For each input topic, we want to find the set of the semantically similar

64

concepts from our ontology. We use a lexical database to identify the best matching con-
cepts’ labels. As we reviewed in section 2.3.3, WordNet is considered the most famous
English lexical database. The proposed approach is as follows. For each given topic label,
we extract from WordNet the synsets for that topic. Each of these synsets points to a list
of terms that are synonymous to the input topic label; also, each of the output synsets is
possibly connected to some other synsets which have a semantic relation to that synset.
These semantic relations include, but are not limited to, antonym, hypernym, hyponym,
and so on. Here we are interested in the “derivationally related” semantic relation. ”Deriva-
tionally related” is a relation between a set of terms with similar meanings but in different
form, such as “economy” and “economics”. We use both the original list of synsets and their
derivationally-related synsets to extract a list of possible candidate concepts. We use this
list to search for the exact-match concepts from the list of the ontology concept labels, L.
The output list of matching concepts is considered the list of representative concepts for
that topic. The main drawback of this approach is that the output list of concepts will not
be as accurate as in the manual approach, in which we select the concepts manually based
on human experience.

After identifying the matching concepts either manually or automatically, we construct
the topic-concept map matrix P . Each row of this matrix represents a topic and each
column represents a concept. In other words, if the number of the input topics is p and the
total number of concepts extracted in WHO is n, then P size will be p×n. Each element of
this matrix, Pi,j, is equal to one when the concept j is considered a representative concept
for the topic i, according to the list matching concepts extracted in the previous step, and
is zero otherwise. Notice that the matrix P is too sparse and n� p.

4.2.2 Enhance Topic Representation by Utilizing Ontology Tax-
onomy

In some cases, this concept-term matrix P does not suffice to represent the topic well.
This situation occurs often in abstract topics where the number of relevant articles in
Wikipedia is too small, hence the representing concept vector will have a very small list of
representing terms. For example, the Wikipedia category ”computer science”is only covered
by only four articles. Consequently this will affect the identification of the topic. As we
introduced in chapter 3, each concept in our extracted ontology, WHO, has a conceptual
relationship to other concepts which are represented in the ontology taxonomy, in addition
to its representative terms’ vectors. We utilize the hierarchical structure of concepts to
increase the amount of information that is associated with each topic; this also increases
the generality of the topics. We do this by augmenting to the concept-term mapping vector

65

of each topic of interest, the set of term-mapping vectors associated with each concept under
the hierarchy of that topic of interest. For example, if the topic of interest is “Biology”,
we add term mapping vectors that are associated with the concepts “Anatomy”, “Botany”,
“Zoology”, etc., to its associated concept-term mapping vector. This includes not only the
directly-connected concepts to this topic, but also all the topics in the hierarchy down to
a specific level l.

4.2.2.1 Handling Redundant Sub-concepts

As we have mentioned before, the extracted taxonomy for our hierarchical ontology, WHO,
is not a tree structure, rather it is a directed acyclic graph. This means that each concept
may have multiple parent concepts. Although it does not contain loops, it may contain
multiple paths from one concept to its sub-concepts. We call these sub-concepts the redun-
dant sub-concepts, RSCs. RSCs can also occur if we have multiple concepts representing
the main topic and there are some shared sub-concepts of these concepts. Figure 4.2.2
shows four different examples of the redundant sub-concepts for a concept C.

Figure 4.2.2: Redundant Sub-concepts

We have two different options to handle these RSCs. The first option is to consider
multiple occurrence of a sub-concept as way of emphasizing this sub-concept. Hence, when
we augment the information associated with an RSC to the main concept, we will multiply
it by p if there are p paths from the main concept to that RSC. The logic behind this
option is that when there are multiple paths between two concepts, this means that these
two concepts are highly correlated. Thus, using the adjacency matrix H defined in section
(3.2.1), we can define the enrichment matrix E as:

E = I +H +H2 + ...+H l (4.1)

66

where I is the identity matrix of size n× n. Here we are using the useful fact that the
entry Hk

i,j of the kth power of the adjacency matrix H counts the number of paths of length
exactly k from concept ci to concept cj. Hence the summation H+H2 + ...+H l represents
the total number of paths between two concepts up to length l. Consequently, we can use
the concept term mapping matrix defined in Equation (3.5) to define the enriched mapping
matrix M (E), where each concept is enriched with the knowledge stored in its sub-tree down
to a specific level l as follows:

M (E) = EM (4.2)

The other option is to consider each RSC only once, so the number of paths between the
main concept and an RSC does not count. The logic behind this option is that the paths
represent connections between concepts. Thus multiple connections between concepts do
not affect the relatedness between these concepts. In this case, we can modify the enriched
mapping function M (E) as follows:

M (E) = I (E)M

where I (A) is a binarization indicator function that takes a matrix A as input and
returns a matrix B of the same size such that

Bij =

{
1 Aij > 0

0 otherwise
(4.3)

Hence, if we have B = I (E), each element of the output matrix Bij is equal to 1 if a
path exists from the concept ci to the concept cj with maximum length l, or to 0 otherwise.

4.2.2.2 Applying Penalty Function

Although the previous augmentation of sub-concepts’ information to the main concept
increases the amount of information that is associated with the main topic, it also adds
some noise. Noise here means a subset of the information that is related to the sub-topic,
but is not related to the main topic. Since the relatedness between the main concept and
its sub-concepts decreases as they get farther from it, the quantity of noise increases as
we go deeper into the hierarchy of concepts. To resolve this problem, we introduced a
penalty function α to penalize the information coming from the sub-concepts. The penalty
term should be a function of the level of the sub-topic, so that as you go deeper into the
hierarchy the penalty value increases.

67

To choose the best, we propose three different penalty functions. The first penalty
function is the identically one function, α1 (x) = 1. This function assigns the same weight
to all the hierarchy levels, which makes the penalized version of the enrichment matrix
E(α) more or less equivalent to E defined in Equation (4.1). The second penalty function
is the multiplicative inverse function, αi (x) = 1/(x+1) where the amount of information
added from sub-concepts to the main concept is inversely proportional to their distance
from it. The last penalty function is the exponentially decreasing function, αe (x) = e−x.
In this function, the amount of information added from sub-concepts to the main concept
exponentially decreases with their distance from it.

Going back to the redundant sub-concept issue, the calculation of the penalty function
will be straightforward if the RSC occurred at specific level l from the main concept, as
in Figure 4.2.2 (a) and (d). On the other hand, if the RSC occurs at multiple levels of
distance from the main concept, as in Figure 4.2.2 (b) and (c), we have two options: either
consider the RSC as occurring more than once, as in the first option of handling RSCs,
or consider the RSC to occur once at the lower/higher level. Hence we can update the
enrichment matrix E to include the penalty as follows:

E(α) = I + G
(
α (1)× I

(
H1
)
, α (2)× I

(
H2
)
, ... α (l)× I

(
H l
))

(4.4)

where α (x) is one of the proposed penalty functions (α1 (x) , αi (x) , αe (x)), I (A) is the
binarization indicator function as described in Equation (4.3), and G

(
A(1), A(2), ... A(k)

)
is

an aggregation function which takes k matrices of the same size and returns a matrix G
whose(i, j) th element is calculated based on the aggregation of the (i, j) th elements of the
k matrices. This aggregation function can be the sum, maximum, minimum, or average of
Aij’s elements. Thus, if G is the sum function, we are considering RSC as occurring more
than once. On the other hand, if the G is the maximum function, we are considering RSC
as occurring at the lowest level, and so on.

4.2.2.3 Filtering Concept Sub-tree

As we stated above, the main objective of the ADTI application is to extract a good
representation for the topics of interest to better identify the input documents. In order
to do so, we have augmented the concepts of the sub-tree of each representing concept
to enrich the concept representation. One of the issues that arises as a result of this
augmentation is that sometimes the main concepts have a shared set of the sub-concepts
such as those which appear in Figure 4.2.3.

68

Figure 4.2.3: Shared Sub-concepts

Handling Shared Sub-concepts Shared sub-concepts, or in short SSCs, are the subset
of concepts that occur in the sub-tree of any two main concepts. In other words, suppose
that C1 and C2 are two concepts that represent two of the main topics of interest. If we
have a sub-concept SC that occurs under the sub-tree of both C1 and C2, then we consider
SC as an SSC. Figure 4.2.3 shows three different examples of the shared sub-concepts for
concepts C1 and C2. In some cases, one of the main concepts occurs underneath another
main concept, as in Figure 4.2.3 (c). A good example of this case, which occurred in one
of our data sets, are the two main topics of interest “entertainment” and “sports”, where in
WHO the concept “sports” occurs under the concept “entertainment”.

The idea of ADTI is to generate representative concept vectors for the input topics.
These concepts’ vectors need to be as coherent and discriminative as possible. The existence
of SSCs might affect the performance of ADTI, particularly if the number of SSCs is very
large, since these SSCs will affect the separation between the representative concepts. One
possible way of dealing with this issue is to delete all the shared sub-concepts for each
pair of main concepts excluding the main concepts themselves. The main drawback of this
method is that it can delete many of the sub-concepts, which will necessarily affect the
richness of the representation of the main concepts. For example, in the above example,
we will have to delete all the sub-concepts of the “sports” concept, which will lead to a
poor representation of the “sports” concept.

We propose a different approach to handle this issue. We augment any SSC to the
nearest main concept and then remove it from all other main concepts. For instance, in
Figure 4.2.3 (b), as the SSC is closer to main concept C1 than to the other main concept C2,

69

we will augment it to C1 representative concepts and remove it from C2 sub-tree (removing
the edge from SC node to SSC node in the graph). A good practical example of this case
is the concept “political economy” in WHO. This concept falls under both “economics” and
“politics” sub-trees but it is closer to the“economics”concept than to the“politics”concept,
thus we will augment this concept to the “economics” concept. This is consistent with the
meaning of the concept, as “political economy” is more semantically related to “economics”
than to “politics”.

In the other case in Figure 4.2.3 (c), where the main concept C2 falls under the other
main concept C1, we will augment all the SSCs to the C2 concept as they are closer to it,
and remove the whole sub-tree starting from C2 from C1 sub-tree (removing the edge from
C1 node to C2 node in the graph). The last possible situation is that where the set of the
SSCs are at the same distance from both parents, as shown in Figure 4.2.3 (a). In this case
we have two possible handling options: either augment these sub-concepts to both main
concepts, or remove them from both main concepts. The main advantage of augmenting
them to both main concepts is that these SSCs will enrich both main concepts, and may
increase the separation between them and the other main concepts. The main disadvantage
is that it will affect the separation between these two concepts themselves.

4.2.3 Identification Approaches

The last step after selecting the list of concepts that will represent the given list of topics is
utilizing these extracted concepts to identify the topics of input documents. In this section,
we propose two different approaches for identifying documents’ topics: the nearest centroid
approach, and the k-means-based approach.

4.2.3.1 Nearest Centroid Approach

This approach is very similar to the nearest centroid classification approach discussed in
section 2.2.2.1. The idea of the nearest centroid classification is to create a prototype,
a centroid in this case, for each class, to then use this prototype to classify the input
documents by assigning each input document to the closest prototype. Similarly, we define
a prototype for each topic, to use it in identifying input documents’ topics. We use the
constructed topic-concept map matrix P , defined in section 4.2.1 and the WHO concept-
term mapping M , defined in Equation (3.5), to extract the matrix Q that represents the
topics of interest prototypes as follows:

Q = PM (4.5)

70

The size of the output matrix Q is p× l, where l is the total number of terms in WHO
and p is the number of the input topics. Notice that each row in this matrix represents
a topic which is a vector of summation of all its representative concepts’ vectors. We can
also notice that the size of the matrix Q is much smaller than the original matrix M as
p � n, where n is the total number of concepts in WHO. Alternatively, we can use M (E)

instead of M , which is the enriched version of M defined in Equation (4.2) with one of the
penalty functions defined.

The next step is to construct the document-term matrix A from input documents
according to the conventional VSM representation as shown in Equation (2.1). The size
of the output matrix A is m× l′, where m is the total number of input documents, and l′

is the total number of terms in the input document set. Then we remove all terms in A
which are not defined in Q, as we consider them to be out-of-vocabulary terms and vice
versa, all terms found in Q and not defined in A are considered to be out-of-interest terms,
and are removed from Q. Then we normalize each vector of Q to be a length of 1. Hence,
the new mapping matrix will be:

Q̂ = L−1Q

where L is a diagonal matrix whose elements are the lengths of the matrix Q. We can
use the following equation to calculate the document-topic similarity S matrix as follows:

S = AQ̂T

where each row Si,: in the matrix S represents the similarity between a document i and
the list of the topics of interest. Then we can define the identification function h (x) as
follows:

h (x) = arg max
e∈1:p

Sx,e

where h (x) is a function that takes an index of a document x and returns the index of
the most similar topic, e.

4.2.3.2 K-means-Based Approach

The k-means clustering algorithm is also considered a prototype-based approach. The
main difference between the nearest centroid classification and k-means clustering is that
k-means is an unsupervised learning approach. In k-means, the prototypes of the clusters
are randomly initialized, and are then updated in an iterative way, as we discussed in
section 2.2.2.2. The main drawback of the k-means algorithm is that its performance is

71

highly affected by the initial centroids’ values, which means there is no guarantee that it
will converge to the global optimum. We also reviewed some of the literature approaches
that suggest appropriate values for the k-means initial centroids. We can observe that
most of the reviewed methods try to estimate the best initial centroids for k-means by
using some statistical or data mining techniques to either generate them or pick them up
from the data. In this section, we utilize background knowledge to identify the best initial
clusters’ centroids.

We use the topics’ prototypes defined in Equation (4.5) as the initial cluster centroids,
then we run the k-means algorithm normally as we discussed in section 2.2.2.2. The
idea behind this approach is to augment the information that implicitly comes in the
data set with the knowledge stored in the ontology. In other words, we start with our
background knowledge which is stored in WHO, then we try to adapt this knowledge with
the information embedded in data, in the form of the distribution of the data points.

4.3 ADTI vs other Text Mining applications

In this section, we compare the proposed ADTI approach and some of the other text
mining approaches, including definitions and goals of each task. Also we compare their
learning paradigm, whether supervised or unsupervised learning, and show how to use each
of these tasks to identify documents’ topics. We start by comparing ADTI with document
classification, then with document clustering, and finally with the other topic indexing
techniques.

4.3.1 ADTI vs Document Clustering

Document clustering is the process of assigning a set of documents into groups, such that
the documents in each group are more semantically similar to each other than to the
documents in other groups. This task is usually done by representing the documents in the
vector space model (VSM), then applying one of the common data clustering techniques.
As we can see from the ADTI definition, ADTI will split the input documents into groups
(clusters) based on the given set of topics. In this manner, ADTI is similar to the document
clustering task.

On the other hand, ADTI is different from the document clustering task, in that it
lets you specify a list of topics that you are interested in beforehand. Then by utilizing
background knowledge on these topics, the similarity between these topics and the input

72

documents is measured, allowing identification of the most relevant topics of these docu-
ments. This is different from document clustering, which measures the similarity between
the documents themselves. Hence, adding or removing a document to or from the doc-
ument collection will affect the outcome of the document clustering - whereas in topic
identification, the identification of one document will not affect the identification of the
others. But these two tasks are similar in that they both depend on similarity measures
to partition the input documents.

Lastly, document clustering cannot be used to automatically identify document topics.
In order to overcome this problem, we can use one of the cluster labeling approaches to
assign labels to each clusters. Typically, the labels are extracted from the vocabulary found
in the documents in each cluster. The best representative label for the cluster is that which
can summarize the idea (topic) of the cluster and differentiate that cluster from the others.
As we can see, the resultant set of labels are extracted from the documents’ text. In order
to use this approach to identify document topics, we still need to find the mapping between
the input set of topics and the extracted set of labels. To better understand the mapping
problem, let’s consider the following example.

Suppose that we have the topic “Politics” as one of the required topics. After apply-
ing clustering and cluster labeling, suppose that the best representative label for one of
the clusters is “US Presidential Election”. Although that we can see that “US Presiden-
tial Election” does represent the “Politics” topic, we still need some approach to find this
mapping.

4.3.2 ADTI vs Document Classification

As we reviewed in section 2.2.2.1, document classification is the process of finding the best
matching category (class) for each new document on the basis of a training set of documents
whose category membership is known. Based on this definition, the document classification
goal is very similar to the goal of ADTI, which is finding the best matching category (class)
for each new document. ADTI differs from document classification in that it does not re-
quire a training set of documents with known membership, using background knowledge
to identify document topic instead. In this manner, document classification can be con-
sidered a supervised learning approach, while ADTI is considered semi-supervised learning
approach, as it only requires the topics’ labels to identify their matching documents.

It can be argued that the process of extracting, organizing, and utilizing the background
knowledge is considered the training phase of ADTI, so it could be considered as a document
classification technique. Although this argument has some superficial plausibility, it fails in

73

the proving for the following reasons. The first difference between document classification
and ADTI is that document classification is not concerned about learning the topics of the
documents; instead, it is concerned about finding the match between documents and a set
of labels. Sometimes these labels are meaningless, or their representative topics are missing,
which means that if we want to identify document topics using document classification we
need to first find the match between documents and labels, then we need to find the match
between these labels and the input set of topics.

The second difference is that document classification techniques are usually data set-
dependent, which means that if we trained a classifier with some data set and then tried to
use it to classify another data set, most probably we will get poor results even if both data
sets have the same categorization of topics. This is because of the change in the vocabulary
used for each data set. This is in contrast with ADTI, which depends on a large coverage of
vocabulary used from the background knowledge. The data set dependency also includes
the list of topics of the data set. When we train a classifier, we train it with a specific list
of topics. If we decide to change this set of topics by adding new topics or removing some
of them, we need, in most classification techniques, to retrain the classifier. In ADTI, we
need just to select different topics from WHO and use them to identify documents topics.

To sum up, ADTI and document classification tasks have the same general main goal,
which is assigning new documents to one of a predefined set of labels. Document classi-
fication uses a subset of the input documents with known label membership for training
then classifies each new document to one of the labels. Then another technique is needed
to find the match between these labels and the input set of topics. In contrast, ADTI uses
extracted background knowledge to directly identify the topics of each new document.

4.3.3 ADTI vs Document Topic Indexing Tasks

Document topic indexing is the set of tasks that are concerned with finding relevant topics
for a set of input documents. As we reviewed in section 2.2.2.3, they have many different
real applications. The most well-known document topic indexing techniques are term
assignment, document tagging, and keyphrase extraction. In this section, we compare our
proposed approach (ADTI) with these common document topic indexing techniques.

The main difference between these techniques and ADTI is that ADTI requires a set of
topics of interest to be given to the algorithm as input in order to identify the documents’
topics. So, ADTI can be considered a semi-supervised learning approach. On the other
hand, the topic indexing techniques are known to be unsupervised or supervised learning
techniques. Also as we showed in section 2.2.2.3, the source of terminology for term as-
signment is usually extracted from an external thesaurus, and is restricted to those terms

74

in that thesaurus. In document tagging, the source of terminology is usually unrestricted
to any source. As for keyphrase extraction, the source of terminology is restricted to the
document vocabulary. In ADTI, the source of terminology is vocabulary restricted to the
set of topics given beforehand. As for the number of topics aspect, ADTI usually deals
with very few main topics - the number of topics is usually limited to fewer than a hundred
whereas for the document topic indexing techniques, the number of the topics is usually
much bigger (from hundreds to thousands), as they deal with more specific and detailed
topics. Based on the above comparison, we can conclude that ADTI is a totally different
task than the predefined topic indexing techniques.

In terms of topic assignment, ADTI finds the best matching topic, thus it is considered
a single topic assignment approach, while the document topic indexing techniques usu-
ally assign multiple topics to each document. Hence, the performance measures used for
ADTI and for other document topic indexing approaches are different. Consequently, we
would not be able to compare ADTI performance with the other document topic indexing
techniques.

4.4 Summary

We have introduced in this chapter a new approach for document topic identification.
the proposed Automatic Document Topic Identification (ADTI) approach using our con-
structed ontology (WHO). We started by giving a brief introduction to this approach then
described it in detail discussing the different modules and the aspects that affects its per-
formance. Next, we compared it with similar text mining tasks.

75

Chapter 5

Experiments and Results

In this chapter, we test the performance of our approach for topic identification. In order to
do that, we have conducted a comparative study between our approach and the competing
text mining approaches which were previously discussed. In Section 4.3, we showed that
the task of document clustering is similar to the task of the ADTI, as each tries to group
the input documents into groups of semantically related topics. Also, we showed that the
task of document classification is similar to the task of the ADTI, as each tries to find the
category membership of input documents. Hence, we have compared the performance of
our proposed approach for ADTI to that of conventional document clustering and document
classification. Section 5.2 shows the comparative experiments, results, and discussions of
our proposed approach and a set of document clustering techniques. Next, section 5.3 does
the same with a set of document classification techniques. We conducted these experiments
using a number of real-world benchmark document sets. We overview these data sets and
their properties in the following section.

5.1 Experimental Setup

5.1.1 Data sets

The selection of data sets that can fit ADTI requirements is more complicated than that
for document clustering and document classification. We need data sets that are split
into groups or classes, each of which explicitly represents a specific topic. Many of the
benchmark data sets that are available for text mining do not meet this requirement. Some
data sets are not split according to topics, but rather according to some other feature such

77

as the author name, the year of publication, and so on. This type of data sets do not fit
ADTI. Other data sets are split according to their topics, but the topic label of each class
is unknown; an example of these data sets is the fbis data set, which is a part of the TREC
collection.

We have selected eight different benchmark data sets that fit ADTI requirements. Most
of these data sets have been previously used by Zhao and Karypis [114] to evaluate the
performance of different document clustering algorithms. Their properties are summarized
in table 5.1. The reviews, sports, hitech, and mm data sets are derived from the San Jose
Mercury newspaper articles that are distributed as part of the TREC collection1. The k1b
and wap2 data sets are from the WebACE project [115]. Each document corresponds to a
web page listed in the subject hierarchy of Yahoo!3. These data sets were preprocessed and
distributed with the CLUTO Toolkit [116]. The preprocessing steps which have been ap-
plied to these data sets are stop-word removal and stemming. The bbc and bbc-sports data
sets are published from the Machine Learning Group (MLG) at UCD School of Computer
Science and Informatics, Dublin, Ireland [117]. The bbc data set consists of documents
from the BBC news website corresponding to stories in five topical areas from 2004-2005.
The bbc-sports consists of documents from the BBC Sport website corresponding to sports
news articles in five topical areas from 2004-2005. We have preprocessed these last two
data sets in the same manner as the rest. In all data sets, terms that appear in only one
document or do not appear in our ontology, WHO, are removed. Hence, we have n

′
in

table 5.1 to represent the total number of terms after removing these terms. Then, the
term weights inside documents are normalized according to the TF-iDF weighting. Lastly,
all documents are normalized to represent unit vectors in different directions in term space.

5.1.2 Development Environment and Tools

ADTI development consists of two parts. The first part is the creation of the ontology.
We used Microsoft Visual C# as the programming environment, and had the help of the
parsing tools that are available at Wikimedia to convert Wikipedia to our ontology, WHO.
We stored WHO in an SQL server database. Then we extracted the ontology knowledge
to MATLAB format in order to process it. We used the built-in functions in MATLAB
version 7.13 (R2011b) for hierarchical clustering. Simulations were carried out on an IBM
compatible PC with Intel (R) Core(TM) i5 CPU 3.20GHz and 16.0GB RAM.

1http://trec.nist.gov
2The original # of documents of the wap data set was 1560 and the # of classes was 20, but we removed

the documents, which their classes do not represent topics.
3http://www.yahoo.com.

78

Data set Source m n n
′

Topics k

k1b WebACE 2340 21839 19021 business, entertainment, health,
politics, sports, tech

6

wap WebACE 1311 8460 7293 people, television, health, media,
art, film, business, culture, music,

politics, sports, entertainment,
industry, multimedia

14

reviews
San Jose

Mercury

(TREC)

4069 36746 32921 food, movie, music, radio,
restaurant

5

sports
San Jose

Mercury

(TREC)

8580 27673 24115 baseball, basketball, bicycle,
boxing, football, golf, hockey

7

hitech
San Jose

Mercury

(TREC)

2301 22498 20268 computer, electronics, health,
medical, research, technology

6

mm
San Jose

Mercury

(TREC)

2521 29973 27262 movie, music 2

bbc BBC
News

2225 9636 7992 business, entertainment, politics,
sport, tech

5

bbc-sports BBC
Sport

737 4613 3804 athletics, cricket, football, rugby,
tennis

5

Table 5.1: Summary of data sets used to evaluate the performance of ADTI, m is the
number of documents, n is the total number of terms in all documents, n

′
is number of

used terms where the other terms that are not present in WHO are ignored, and k is the
number of topics.

79

5.1.3 ADTI Parameters Tuning Experiments

As we discussed in section 4.2, ADTI has some parameters that may affect its performance.
In this section we study them to determine their appropriate values so that we can use
them in the next comparative experiments. We can sum them up to the following five
parameters:

Topic-concept Matching

As we described in section 4.2.1, there are two methods of finding the matching con-
cept/concepts for each given topic: Manual and Automatic matching. We have tested
both approaches on sub-sets of the data sets. We have found that Manual topic matching
has better results in most cases. We also noticed that as we use more levels of sub concepts
to represent topics, the performance of the two approaches becomes more similar. Based
on these observations, we will use the manual matching in the comparative study.

Number of Levels

As we discussed before, we use the taxonomical relations between concepts to enrich top-
ics’ representative concepts. This parameter corresponds to the number of levels of sub-
concepts that we will use to enrich the representative concepts. In order to determine the
best value of this parameter, we conducted a small experiment of sub-set of the data sets.
We have tried values from 0 to 5 for this parameter, where zero means we included no sub-
concepts, and thus no enrichment. We have used the F-measure performance measure for
this experiment. Figure 5.1.1 shows the average improvements of F-measure as the number
of levels increases, over ADTI performance with zero levels (no enrichment). As can be
seen, the performance of the ADTI approach increases with the increase of the number
of levels for enrichment. We can also notice that the gain in performance diminishes as
the number of levels increases. Figure 5.1.2 shows the average running time of ADTI with
different numbers of levels. As we can see the efficiency of ADTI decreases exponentially
as the number of levels increases. So there is a tradeoff between the performance of ADTI
and its efficiency when increasing the number of levels. Hence, we select the value three
for the number of levels as the best value for this tradeoff.

Penalty and Aggregation Functions

In section 4.2.2.2, we have proposed the final enrichment matrix as represented in Equation
(4.4). In this equation, we have defined two functions: the penalty function α and the

80

 0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F−measure ↑

Number of Levels (l)

Figure 5.1.1: The average improvements of F-measure with increasing the number of levels
over the non-enrichment case

 0 1 2 3 4 5
0

1

2

3

4

5

Running time ↓

Number of Levels (l)

Figure 5.1.2: The average of the running time of ADTI with increasing number of levels

81

aggregation function G. We have proposed three different penalty functions which are α1,
αi, and αe. We also proposed four different aggregation functions which are summation,
maximum, minimum, or average. We have studied the effect of these two parameters
together along with the number of levels as they are correlated to each other. We have found
that the effect of the penalty and aggregation functions on the performance of ADTI is very
low when we use a small number of levels, typically from one to three. When we increase
the number of levels we found that the penalty function αe has the best performance,
along with the summation aggregation function. Hence, we used these two functions in all
experiments.

Handling Redundant Sub-concepts

We can handle the redundant sub-concepts by either removing them from the concepts’
sub-trees or by keeping them. Removal is by applying the binarization function as described
in Equation (4.4). After testing both options, we found that this parameter also has a low
effect on the performance of ADTI when we use a small number of levels. We found also
that with a large number of levels, removing the redundant sub-concepts increases the
overall performance.

Handling Shared Sub-concepts

As we discussed earlier, the shared sub-concepts are handled by measuring the taxonomical
distance between the shared sub-concept and the main concepts, and assigning the shared
sub-concept to the nearest main concept. A problem occurs when both main concepts have
the same distance to the shared sub-concept. We have one of two options: either keep or
remove this shared sub-concept. After testing these options on sub-sets of the data sets, we
found that in most cases this parameter has no effect on the performance as the number of
the shared sub-concepts is very low, but keeping the shared sub-concepts has overall better
performance.

5.1.4 Result Summarization

In order to compare the overall performance of the proposed approach against other ap-
proaches and to see how significant the difference is, we need a method to summarize the
results over all different data sets. The direct way of averaging the performance measures
over data sets will obtain biased results, as the range of measures may vary from one
data set to another. We used the summarization technique proposed by Zhao and Karypis

82

[118]. For each performance measure, p, in a specific data set, if the value of p is directly
proportional to the performance, then p is updated by dividing it by the best performing
method value for that measure. Otherwise, p is updated by dividing the best performing
method value for that measure by p. Suppose that we have the vector p that represents
the performance measure p of different methods for a specific data set. So, in the case that
the value p is directly proportional to the performance, such as F-measure, the vector p is
updated as follows:

p̃ =
p

max (p)

Otherwise, if p is inversely proportional with the performance, such as entropy, the
vector p is updated as follows:

p̃ =
min (p)

p

Hence, the resultant vector p̃ represents the relative performance for the measure p
between methods in a specific data set. These ratios are less sensitive to the actual values
of p for a particular data set. The values of p̃ ranges from 0 to 1. The closer the value to
0, the worse the performing method; the best performing method has a value of 1. Now,
we can average the values of each method over all data sets to get the overall relative
performance P̃ for each method. We can use P̃ to evaluate the statistical significance of
the relative performance of each competing method.

5.2 Comparing ADTI to Document Clustering

To test the performance of the proposed approach for ADTI, we have conducted a com-
parative study with competing text mining tasks. In this experiment, we compare ADTI
with four different both standard and state-of-the-art clustering techniques. After applying
ADTI and the document clustering, the output labels are compared against ground-truth
labels to evaluate each method. In the case of document clustering, we need to find the
mapping between the clusters’ labels and the provided ground-truth labels. As we men-
tioned in section 2.2.3, we have used the Hungarian algorithm to find this matching [52].
In the case of ADTI, we do not need to find the matching as ADTI not only partitions the
data, but also provides the topics of these partitions. Hence, we can match these labels
with the provided ground-truth labels. Both approaches were applied to the eight data
sets mentioned earlier.

83

Techniques

We compared the performance of four different document clustering approaches with the
proposed two different variants of ADTI approaches:

� K-means clustering (K-MEANS): The spherical k-means version is used since
the documents are represented as vectors, and the distance measure used is the cosine
similarity. We used the MATLAB implementation of the Lloyd’s algorithm[119]. As
is well-known, k-means clustering output depends on the initial step. Hence, the
cluster assignments are changed for the different runs. So, we applied the k-means
clustering 10 times. We report here the mean and standard deviation of these runs.

� Hierarchical clustering: Two different linkage methods are used in hierarchical
clustering, average (HIC-AVG) and complete (HIC-CMP) linkage. We also used
the MATLAB implementation for the hierarchical clustering. As the hierarchical
clustering does not depend on any initial conditions, there is no need to apply it
multiple times.

� Spectral clustering (SC): We have used the cosine similarity as the measure of
similarity documents. Regarding the Laplacian matrix normalization, we have used
the Ng et al [38] proposed approach: L = I − D−1/2SD−1/2. We have used the
same k-means implementation for clustering. As this method depends on k-means
approach, the cluster assignments are changed for the different runs. We applied this
algorithm 10 times as for k-means, and we report the mean and standard deviation
of these runs.

� NMF clustering (NMF) : We have used the Xu et al [41, 42] approach for NMF
clustering. As factorization of matrices is generally non-unique, NMF is considered
a non-deterministic approach. Hence, we applied the NMF clustering algorithm 10
times and we report the mean and standard deviation of these runs.

� ADTI: The two different variations of the proposed topic identification approaches
are used in this comparison: ADTI with nearest centroid identification approach
(ADTI-CENTl) and ADTI with k-means-based identification approach (ADTI-
KMEANl), where l is the number of levels used for the method. We reported here
the results of these techniques using three levels of enrichment. For the other ADTI
parameters, we selected the most appropriate values for these parameters according
to section 5.1.3. We used the manual topic-concept mapping, the exponential penalty
function αe and the sum aggregation function. Neither the redundant nor the shared

84

sub-concepts are handled. Both ADTI-CENTl and ADTI-KMEANl techniques
have deterministic outputs, therefore multiple runs are not needed.

5.2.1 Performance Measures

In order to judge the performance of our topic identification method against the document
clustering approaches, we have to use performance measures that are applicable for both
methods. As discussed in section 2.2.3 some of the external performance measures that are
commonly used for document clustering, these measures can be used also for ADTI. It is
meaningless to use the clustering internal performance measures with ADTI, as the parti-
tioning between the documents is not based on the pairwise similarity between documents
as in document clustering, and the aim of ADTI is to identify the topics of documents,
not to minimize the separation between classes nor to increase the compactness of each
class. In this experiment, we used F-measure (Fm), precision (P), recall (R), purity (Pu),
NMI, and entropy (E) to compare the performance. We also measured running time, T,
of each technique to compare the efficiency of these approaches.

5.2.2 Results and Discussions

Figures 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, and 5.2.6 show the output performance measures
using five different document clustering approaches and our proposed approaches for eight
data sets. They also show the standard deviation of each measure as error-bars with each
average value for the measure. Note that the hierarchical approaches and the proposed
approaches have no error-bars as they have deterministic outputs.

Regarding F-measure results, we can see from Figure 5.2.1 that ADTI with its both
approaches outperforms both hierarchical clustering techniques for all data sets. We can
also see that ADTI-KMEAN3 outperforms all other partitional clustering methods for five
data sets and has a competitive performance in hitech, bbc, and bbc-sports data sets with
both spectral clustering and k-means. Similarly for ADTI-CENT3, we can see that it
outperforms the partitional clustering methods in five data sets. In the hitech data set,
ADTI-CENT3 has a competitive performance with partitional clustering methods. For bbc
and bbc-sports data sets, we can see that ADTI-CENT3 has a competitive performance
with NMF, and poorer performance than both spectral clustering and k-means.

Regarding recall measure results, Figure 5.2.3 shows more or less the same perfor-
mance as F-measure. Figure 5.2.2 shows precision performance for different approaches.
It can be seen that ADTI-KMEAN3 outperforms all clustering methods in five data sets,

85

has a competitive performance with partitional clustering approaches in bbc and bbc-
sports, and poorer performance than both hierarchical clustering with average linkage and
NMF in hitech data set. ADTI-CENT3 has more or less similar precision performance as
ADTI-KMEAN3, except that ADTI-CENT3 performed worse than spectral clustering and
k-means in bbc and bbc-sports data sets.

Regarding purity measure, Figure 5.2.4 shows that the proposed ADTI approaches have
broadly similar performance to partitional clustering methods, except with the mm data
set, where ADTI approaches outperform all clustering approaches. We can also see that
the proposed ADTI approaches outperform both hierarchical clustering approaches in all
data sets. Figure 5.2.5 shows the output performance comparison with NMI measure.
ADTI-KMEAN3 outperforms all different clustering techniques in all data sets. As for
ADTI-CENT3, it also outperforms the hierarchical clustering methods too in all data sets
and outperforms all different partitional clustering techniques in five data sets, while it has
a very competitive performance with the partitional clustering techniques in second data
set, but has poorer performance on the last two data sets. Entropy output performance is
shown in Figure 5.2.6. The performance of the proposed approaches for this performance
measure is more or less similar to the NMI performance measure, except for the first two
data sets where ADTI-CENT3 performs similarly to the partitional clustering.

Figure 5.2.7 shows the running time comparison of these approaches. We can see that
NMF is the slowest approach. As for ADTI approaches, they have nearly the same running
time to most clustering approaches in almost all data sets.

Table 5.2 shows the overall relative performance measures and running time for the dif-
ferent document clustering methods and ADTI approaches. The best output performance
is shown in bold and the second best is underlined. This table summarizes the previous
results using the approach discussed in section 5.1.4. We can see that our ADTI proposed
methods outperforms all the different document clustering techniques in all overall relative
performance measures. In terms of running time, ADTI-CENT3 is better than all cluster-
ing except the spectral clustering, while ADTI-KMEAN3 has average running time similar
to that of K-MEANS and hierarchical clustering.

In order to validate these observations, we evaluated the statistical significance based
on the paired sample one-tailed t-test. As we only care about how our proposed methods
perform against document clustering techniques, we conducted a pairwise comparison be-
tween both ADTI-CENT3 and ADTI-KMEAN3 and each document clustering technique.
In this test, each overall relative performance measure for both competing methods, M1

and M2, are tested against each other. If the average performance of M1 is higher than
M2, we evaluate the right tailed t-test, otherwise we evaluate the left tailed t-test. If the
null-hypothesis is accepted, both methods are considered statistically equivalent. In all

86

F̃m P̃ R̃ P̃u ˜NMI Ẽ T̃

HIC-AVG 0.40±0.21 0.71±0.16 0.48±0.18 0.61±0.20 0.43±0.37 0.35±0.20 0.54±0.29

HIC-CMP 0.35±0.13 0.52±0.10 0.40±0.13 0.55±0.13 0.24±0.19 0.30±0.20 0.54±0.29

K-MEANS 0.79±0.17 0.81±0.13 0.79±0.16 0.91±0.10 0.78±0.24 0.70±0.22 0.56±0.23

SC 0.75±0.23 0.82±0.14 0.76±0.21 0.88±0.13 0.73±0.30 0.64±0.25 0.83±0.34

NMF 0.72±0.19 0.81±0.14 0.72±0.19 0.84±0.14 0.70±0.27 0.55±0.23 0.09±0.09

ADTI-CENT3 0.95±0.04 0.93±0.08 0.95±0.05 0.94±0.05 0.88±0.08 0.69±0.28 0.64±0.32

ADTI-KMEAN3 0.97±0.06 0.94±0.11 0.98±0.04 0.99±0.03 0.99±0.03 0.99±0.04 0.53±0.24

Table 5.2: The overall relative performance measures for the different document clustering
methods and ADTI approaches

t-tests, we use a confidence interval of 95%. The results of this comparison are shown on
Table 5.3. �, �, or ≡ indicate that M1 is significantly superior, inferior or equivalent to
M2, respectively.

From Table 5.3, we can observe that ADTI-KMEAN3 performance is significantly supe-
rior to all other document clustering approaches. We can also observe that ADTI-CENT3

performance is significantly superior to hierarchical clustering approaches, and it is either
significantly superior or equivalent to partitional clustering, depending on the measure
used. We can also observe that NMF is the most inefficient approach, while ADTI-CENT3

and ADTI-KMEAN3 have more or less equivalent efficiency to the document clustering
techniques.

87

M1 M2 F̃m P̃ R̃ P̃u ˜NMI Ẽ T̃

ADTI-CENT3

HIC-AVG � � � � � � ≡

HIC-CMP � � � � � � ≡

K-MEANS � � � ≡ ≡ ≡ ≡

SC � � � ≡ ≡ ≡ ≡

NMF � � � � ≡ ≡ �

ADTI-KMEAN3

HIC-AVG � � � � � � ≡

HIC-CMP � � � � � � ≡

K-MEANS � � � � � � ≡

SC � � � � � � �

NMF � � � � � � �

Table 5.3: Comparison between ADTI approaches and different document clustering meth-
ods based on statistical significance (using t-test)

88

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F−measure ↑

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.1: The output F-measure of the different document clustering methods and
ADTI approaches for 8 data sets.

89

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision ↑

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.2: The output precision of the different document clustering methods and ADTI
approaches for 8 data sets.

90

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall ↑

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.3: The output recall of the different document clustering methods and ADTI
approaches for 8 data sets.

91

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity ↑

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.4: The output purity of the different document clustering methods and ADTI
approaches for 8 data sets.

92

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NMI ↑

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.5: The output NMI of the different document clustering methods and ADTI
approaches for 8 data sets.

93

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Entropy ↓

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.6: The output entropy of the different document clustering methods and ADTI
approaches for 8 data sets.

94

k1b wap reviews sports hitech mm bbc bbc−sport
0

5

10

15

20

25

30

35

40
Running time ↓

Data sets

HIC−AVG HIC−CMP K−MEANS SC NMF

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.2.7: The output running time of the different document clustering methods and
ADTI approaches for 8 data sets.

95

5.3 Comparing ADTI to Document Classification

In this section, we present the experiments that compare our proposed approach ADTI to
document classification. As we discussed in the previous chapter, document classification
and ADTI are inequivalent tasks. Hence, in order to make a fair comparison between both
tasks, we have conducted two separate experiments. In the first experiment, we wanted
to test the effect of using a different data source for training on document classification
and compare it with ADTI. The details of this experiment are discussed in section 5.3.1.
In the second experiment, we compared ADTI with the ordinary document classification.
Although we did not expect that ADTI would perform the same, we wanted to test how
much worse the untrained ADTI approach was compared to the trained approach.

Competing Techniques

We compared the performance of two document classification approaches with the proposed
ADTI approaches:

� Nearest Centroid Classifier (NEAR-CENT): We implemented this classifier
using MATLAB. In the training phase, the vectors of classes’ centroids are calculated
using the input document vectors as described in section 2.2.2.1. In the test phase,
each document is assigned to the nearest centroid.

� Support Vector Machines Classifier (SVM): We have used the libsvm imple-
mentation to conduct this experiment [120]. As we use libsvm for document classifi-
cation and the document representation has a large number of features, we decided
to use the liblinear version of libsvm [121]. As reported by liblinear developers, it
has the same performance as the libsvm when used for document classification, but
it is much more efficient. We have done a parameter tuning on sub-sets of the data
sets, and found that the best approach for muli-class SVM is one against all, with a
penalty parameter value of 100.

� ADTI: The two different variations of the proposed topic identification approaches
are used in this comparison: ADTI with nearest centroid identification approach
(ADTI-CENTl) and ADTI with k-means-based identification approach (ADTI-
KMEANl) where l is the number of levels used for the method. We reported
here the results of these techniques using different number of levels depending on the
experiment. We indicate the number of levels for each experiment separately. For the
other ADTI parameters, we used the same parameter values as the last experiments.

96

Performance Measures

In order to judge the performance of our topic identification method against the docu-
ment classification approaches, we used the common document classification performance
measures. As we reviewed in section 2.2.3, the most common performance measures for
document classification are accuracy, F-measure, precision, and recall. The precision, re-
call, and F-measure of the output is calculated as a weighted average of the per-class values
with respect to classes’ sizes. In this case, the recall performance measure is equivalent
to accuracy. Hence we have reported only F-measure (Fm), precision (P), and accuracy
(A). We also measured running time of each technique to compare the efficiency of these
approaches.

5.3.1 Comparing ADTI to Document Classification With Exter-
nal Training Data

As we stated earlier, this experiment tested the performance of ADTI against document
classification trained from a source other than the input documents. To make the compar-
ison of the two techniques fair, we used the same source that our ontology is created from,
Wikipedia, to train the classifiers. As we described in the ADTI methodology, the first
step in ADTI is to find the match between the requested topics and the ontology concepts.
We know that each concept in our ontology corresponds to a Wikipedia category, so for
each data set, we used ADTI topic-concept mapping to gather the whole set of articles
that fall under each topic representative category in Wikipedia. These articles are used
as the training set for the competing classifiers, then we used input documents as the test
set. As we can see, there is no need for multiple training and testing rounds, because the
output results for both classifiers and ADTI are deterministic.

In this experiment, we used ADTI approaches without enrichment (ADTI-CENT0

and ADTI-KMEAN0), as the ontology information supplied to our techniques will be
the processed version of the documents supplied to the classification techniques. We
also reported the results of our approach with 3 levels of enrichment (ADTI-CENT3 and
ADTI-KMEAN3) to see the effect of adding more information to our technique compared
to the classification techniques.

97

5.3.1.1 Results and Discussions

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F−measure ↑

Data sets

NEAR−CENT SVM ADTI−CENT
0

ADTI−KMEAN
0

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.1: The output F-measure of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data sets.

Figures 5.3.1, 5.3.2, and 5.3.3 show the output performance measures using nearest
centroid classifier, SVM, and ADTI approaches with 0 and 3 levels of enrichment for eight
data sets. Figure 5.3.1 compares the F-measure performance of these methods. From this
figure, we can see that ADTI-CENT3 and ADTI-KMEAN3 outperforms both classification
techniques in all data sets except in hitech data set where NEAR-CENT classification
outperforms all other methods. It can also be observed that ADTI-CENT0 outperforms
SVM classification in all data sets except in k1b and wap where they have very close results.

98

When ADTI-CENT0 is compared with NEAR-CENT classification, we can see that NEAR-
CENT classification outperforms ADTI-CENT0 in the reviews and hitech data sets and
they have close performance in other data sets. ADTI-KMEAN0 outperforms NEAR-
CENT classification in six data sets while they have close results in the reviews data set,
and NEAR-CENT classification outperforms ADTI-KMEAN0 in hitech data set.

Regarding accuracy measure results, we can observe from Figure 5.3.3 more or less sim-
ilar performance as F-measure. Figure 5.3.2 shows precision performance for different ap-
proaches. From this figure, it can be seen that ADTI-CENT3 and ADTI-KMEAN3 outper-
forms both classification techniques in all data sets except in hitech data set where NEAR-
CENT classification outperforms all other methods as in F-measure. ADTI-KMEAN0

outperforms NEAR-CENT classification in 6 data sets while they have close results in
reviews data set, and NEAR-CENT classification outperforms ADTI-KMEAN0 in hitech
data set. ADTI-CENT0 has close performance to NEAR-CENT classification except in re-
views and hitech data sets where NEAR-CENT classification outperforms ADTI-CENT0.
As for SVM classification, ADTI-KMEAN0 outperforms SVM classification in four data
sets while they have close results on other four.

Figure 5.3.4 shows the running time comparison of all the approaches. We can see that
NEAR-CENT is the fastest approach, ADTI-CENT0 comes in second, and SVM comes in
third.

Table 5.2 shows the overall relative performance measures and running time for the
different document classification methods and ADTI approaches. The best output per-
formance is shown in bold and the second best is underlined. This table summarizes the
previous results using the approach discussed in section 5.1.4. Table 5.3 shows the statis-
tical significance based on the paired sample one-tailed t-test as described in section 5.2.2.
From Table 5.2 and Table 5.3, we can observe that NEAR-CENT classification performance
is equivalent to proposed approaches performance for all measure and regardless the num-
ber of levels used. We can also notice that SVM classification is significantly inferior to the
proposed approaches’ performance for all measures, except the ADTI-CENT0 which has
equivalent performance to SVM. Regarding the efficiency, we can notice that the proposed
approaches are significantly inferior to classification approaches, except in two cases where
they are either significantly superior or equivalent to SVM classification.

99

F̃m P̃ Ã T̃

NEAR-CENT 0.73±0.29 0.78±0.29 0.73±0.30 1.00±0.00

SVM 0.42±0.25 0.63±0.30 0.49±0.27 0.04±0.03

ADTI-CENT0 0.64±0.26 0.71±0.27 0.65±0.25 0.34±0.12

ADTI-KMEAN0 0.91±0.07 0.94±0.07 0.89±0.08 0.07±0.03

ADTI-CENT3 0.93±0.08 0.92±0.07 0.93±0.08 0.00±0.00

ADTI-KMEAN3 0.95±0.10 0.96±0.10 0.94±0.12 0.00±0.00

Table 5.4: The overall relative performance measures for the different document classifica-
tion methods with external training source and ADTI approaches with level 0 and 3.

M1 M2 F̃m P̃ Ã T̃

ADTI-CENT0

NEAR-CENT ≡ ≡ ≡ �

SVM ≡ ≡ ≡ �

ADTI-KMEAN0

NEAR-CENT ≡ ≡ ≡ �

SVM � � � ≡

ADTI-CENT3

NEAR-CENT ≡ ≡ ≡ �

SVM � � � �

ADTI-KMEAN3

NEAR-CENT ≡ ≡ ≡ �

SVM � � � �

Table 5.5: Comparison between ADTI approaches with level 0 and 3 and different document
classification methods with external training source based on statistical significance (using
t-test)

100

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision ↑

Data sets

NEAR−CENT SVM ADTI−CENT
0

ADTI−KMEAN
0

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.2: The output precision of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data sets.

101

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy ↑

Data sets

NEAR−CENT SVM ADTI−CENT
0

ADTI−KMEAN
0

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.3: The output accuracy of the different document classification methods with
external training source and ADTI approaches with level 0 and 3 for 8 data sets.

102

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.5

1

1.5

2

2.5
Running time ↓

Data sets

NEAR−CENT SVM ADTI−CENT
0

ADTI−KMEAN
0

ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.4: The output running time of the different document classification methods
with external training source and ADTI approaches with level 0 and 3 for 8 data sets.

103

5.3.2 Comparing ADTI to Ordinary Document Classification

In this experiment, we tested the performance of ADTI against ordinary document classi-
fication. What we mean here by “ordinary” is that the classifier is trained from the same
document source that we test. This will of course give an advantage to the classifier over
our approach, but we want to test if there is a significant difference between ADTI and doc-
ument classification. We used in our approach three levels of enrichment (ADTI-CENT3

and ADTI-KMEAN3) as in the last two experiments.

We have used the repeated random sub-sampling validation type of the cross-validation
technique to compare the performance of the classier. In this approach, we randomly split
the input document set into two parts, training and testing parts, in such a way that the
training set is 66% of the whole document set and the rest are used for testing. After
training the classifiers, we use the test set to check the performance of both ADTI and
classifiers. We performed this cross-validation ten times using different partitions, and we
report the mean and standard deviation of these rounds.

5.3.2.1 Results and Discussions

Figures 5.3.5, 5.3.6, and 5.3.7 show the output performance measures using nearest cen-
troid classifier, SVM, and ADTI approaches with 0 and 3 levels of enrichment for eight data
sets. As we were expecting, classification techniques have better performance in almost all
cases. But we can see also that the difference in performance is not large. So, we created
Table 5.6 to show the overall relative performance measures and running time for the dif-
ferent document classification methods and ADTI approaches. It summarizes the previous
results using the approach discussed in section 5.1.4. We also created Table 5.3 to show
the statistical significance of the obtained results based on the paired sample one-tailed
t-test as described in section 5.2.2. We can observe that although ADTI-CENT3 perfor-
mance is significantly inferior to document classification methods in almost all measures,
ADTI-KMEAN3 has equivalent performance to SVM classification.

104

F̃m P̃ Ã T̃

NEAR-CENT 0.99±0.01 0.99±0.01 0.99±0.01 1.00±0.00

SVM 0.94±0.17 0.94±0.17 0.94±0.17 0.05±0.04

ADTI-CENT3 0.85±0.12 0.87±0.11 0.85±0.11 0.03±0.01

ADTI-KMEAN3 0.88±0.12 0.90±0.12 0.87±0.13 0.03±0.01

Table 5.6: The overall relative performance measures for the different document classifica-
tion methods and ADTI approaches.

M1 M2 F̃m P̃ Ã T̃

ADTI-CENT3

NEAR-CENT � � � �

SVM ≡ ≡ ≡ ≡

ADTI-KMEAN3

NEAR-CENT � � � �

SVM ≡ ≡ ≡ ≡

Table 5.7: Comparison between ADTI approaches and different document classification
methods based on statistical significance (using t-test)

105

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F−measure ↑

Data sets

NEAR−CENT SVM ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.5: The output F-measure of the different document classification methods and
ADTI approaches for 8 data sets.

106

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision ↑

Data sets

NEAR−CENT SVM ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.6: The output precision of the different document classification methods and
ADTI approaches for 8 data sets.

107

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy ↑

Data sets

NEAR−CENT SVM ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.7: The output accuracy of the different document classification and ADTI ap-
proaches for 8 data sets.

108

k1b wap reviews sports hitech mm bbc bbc−sport
0

0.5

1

1.5

2

2.5

3
Running time ↓

Data sets

NEAR−CENT SVM ADTI−CENT
3

ADTI−KMEAN
3

Figure 5.3.8: The output running time of the different document classification methods
and ADTI approaches for 8 data sets.

109

5.4 Summary

In this chapter, we conducted several experiments to test the performance of the proposed
ADTI approaches, comparing the performance of ADTI to both document clustering and
document classification tasks. In the first experiment, five different clustering approaches
with both hierarchical and partitional schema were used. The results show that ADTI
outperforms all the tested document clustering approaches. They also showed that ADTI
has equivalent efficiency to the document clustering approaches. In the second experiment,
we compared ADTI against two document classification approaches with external data
for training. We observed that ADTI outperformed SVM classification and achieved an
equivalent performance to nearest centroid classification. In the third experiment, we
compared ADTI against ordinary document classification. We showed that ADTI has
equivalent performance to SVM.

110

Chapter 6

Conclusion and Future Research

The use of background knowledge to enhance the performance of text mining has been pro-
posed and widely used in different applications. This work proposes yet another approach
for extracting, organizing, and utilizing the background knowledge in the form of an ontol-
ogy. This ontology can be used to improve the performance of different text mining tasks.
We introduce a novel task in text mining for topic indexing. We utilize the knowledge
extracted in the ontology to automatically identify document topics. We call this task the
automatic document topic identification, ADTI.

In this chapter, we summarize the main contributions we have proposed and achieve-
ments that we have attained so far. This is followed by the future plan for this research.

6.1 Proposed Framework and Achievements

In our framework, to benefit from the background knowledge and to use it to enrich the text
mining task, we have defined the following main modules. The first module is concerned
with how to build an organized and structured form of knowledge, ontology, from a different
format of knowledge repository. The second module details how to utilize this knowledge
structure, an ontology, for a newly defined task, ADTI. In the remainder of this section, we
summarize how the proposed framework defines these three modules, then we show how
we applied this framework to Wikipedia.

� Building the ontology: We have proposed the mechanism needed to build the
ontology used for text mining tasks. We have discussed how to extract the concepts
structural relations which is used to construct the the ontology taxonomy. We also

111

proposed how to extract nonstructural relations between the concepts in a form of
semantic relatedness between them. This is done by utilizing the representative
articles for each concept. After preprocessing these articles, we showed how to select
and weight the terms from these articles to represent concepts. Hence, they can be
used to evaluate the semantic relatedness between concepts.

� Using Wikipedia as a knowledge repository: We have investigated the reasons
for selecting Wikipedia as a knowledge repository. The various difficulties and the
implementation issues have been discussed in detail in section 3.3. Therefore, we
have used Wikipedia to create the Wikipedia Hierarchical Ontology, WHO.

� Automatic document topic identification using WHO: We have applied the
proposed ontology to automatically identify documents’ topics. We use a specific
topics to find the best match one for each input document. We have shown in
chapter 4 the setups that we used for this application.

We have obtained results with high values for the performance metrics. We have also
observed that although the document identification task is very similar to the docu-
ment clustering task in the sense that they are both unsupervised learning (the input
documents are not used for training), the performance of the document identification
task is much better. This is a consequence of two major causes.

First, identifying the topic of interest simplifies the problem of grouping similar docu-
ments. Instead of trying to match the documents blindly, it matches them according
to a specific set of topics. In most real-world cases, we know the topics of interest
and want to group similar documents according to these topics. Second, using well-
formatted background knowledge helps to find the similarity between that topic and
the documents, and hence tends to group the most similar documents together.

We also compared ADTI against document classification. We showed that ADTI out-
performs one of the state-of-the-art methods for document classification [13], SVM,
when it is trained from the same source as ADTI (Wikipedia) and ADTI achieved
equivalent performance with SVM when it is trained normally. This makes ADTI
superior to SVM, as ADTI does not need to be trained with every new input data
set.

6.2 Contributions

This thesis makes the following research contributions:

112

6.2.1 Survey of the Task

In the literature, there are many highly related research problems to our proposed work.
Chapter 2 surveys the different text mining tasks that are related to our proposed work. It
also surveys the task of ontology creation along with the different features that differentiate
between different ontologies. It also reviews the state-of-the-art methods and techniques
that employ the use of the background knowledge in text mining.

6.2.2 New Techniques

Finding the most appropriate topic for a document is a difficult task. There are many
approaches in text mining that are concerned with this goal. Some of these approaches
are unsupervised, such as document clustering with cluster labeling, and some of them
are supervised, such as document classification. Also there are some other techniques that
accomplish the task with the help of background knowledge, such as document tagging. In
this dissertation, we propose a novel semi-supervised learning approach to automatically
identify document topics. In this approach, we utilize human background knowledge to
select the most relevant topic for input documents. What makes this approach a semi-
supervised learning one is that we take a list of required topics as an input to the approach.
This also introduces a restriction to this approach as the output assignment should only
be from this list.

We also showed how to extract the human background knowledge to a machine-usable
form, namely ontology. The format of the knowledge represented in the ontology is generic
and hence it can be used for other text mining tasks. As an example of another application
of the ontology, we showed how we can utilize this ontology to improve the document
representation. Although the proposed ontology extraction approach is generic and can
be applied on any knowledge repository that meets some requirements, we showed how to
apply this approach to Wikipedia.

The list of contributions can be summarized as follows:

� Designed and introduced a new ontology structure that can store the human back-
ground knowledge in a form that can be used for text mining tasks.

� Proposed and developed a new technique for extracting the knowledge from any
knowledge repository to our proposed ontology.

� Applied the ontology extraction approach to Wikipedia to create a Wikipedia Hier-
archical Ontology, WHO.

113

� Defined a new task in text mining that takes a list of topics of interests and assign
a single topic to each input documents using only background knowledge. We called
this task Automatic Document Topic Identification, ADTI.

� Proposed and developed two new techniques that utilize the proposed ontology struc-
ture in the newly defined task, ADTI.

6.3 Future Work

We have proposed many ideas and techniques for building the WHO and for employing
it in document modeling and in different applications in text mining. This work can be
extended to be utilized in different applications. Following are some thoughts as to how
this work could be expanded.

Tree-based Document Clustering. We have presented the document clustering
using the standard similarity measure after modeling documents with the ontology. We
can apply this task using a different similarity measure based on the document ontology
taxonomy. After mapping the document to WHO concepts, we can evaluate different
similarity measures which could be calculated, based on the paths that connect the concepts
of each document.

Cluster Topic Prediction. Cluster labeling is the process of selecting a representa-
tive label (topic) for each obtained cluster from document clustering process. The source
of these labels is usually from the terms and/or the phrases which the input documents
are indexed with. Instead of using documents’ frequent terms for labels, we can use the
ontology concepts to label clusters. In contrast with document terms, ontology concepts
are usually representative of topics. Also, concepts have more mature features defined in
the ontology, in the form of a taxonomy and semantic relatedness. So these features can
be used to identify the most appropriate label for each cluster.

Use a Different Knowledge Repository. So far, all the reported performance
and results are based on using WHO, which is created from Wikipedia. Our ontology
extraction approach, proposed in chapter 3, is generic and can be applied to different
knowledge repositories which meet some specifications. Hence, our approach can be applied
to different knowledge repositories, such as the Open Directory Project (ODP), Google Web

114

Directory, or Yahoo! Web Directory, with examination of how this affects the performance
of the system.

Applying Proposed Ontology to Different Text Mining Tasks. We have ex-
amined the use of an ontology for ADTI. We can examine the effect of mapping documents
to WHO on text classification, and how it will improve the output performance with re-
spect to VSM. Also we can use the ontology for document tagging. This task is different
from ADTI in that the topics for the document are not known beforehand. We can assign
to each document the most relevant concepts (tags) to its contents.

Applying ADTI on Big Data. Recently, many different techniques and algorithms
have been developed to deal with big data. Big data usually refers to data sets with
sizes that are beyond the normal storage size, and which need to be split to many storage
units, machines, to be able to store it. The common techniques for handling the data and
deriving patterns and trends from it are not applicable for this type of data set as the
data is distributed over multiple machines. One of the common frameworks that is used to
develop efficient algorithms that can handle big data is the MapReduce framework [122].
One of the proposed extension of ADTI is to develop a good implementation of it over the
MapReduce framework. By doing so, our algorithm will be applicable on huge data sets
that are distributed over thousands machines.

Measuring Knowledge Repository Growing Effect. We have used Wikipedia
as our source of knowledge to create our ontology. One of the features of Wikipedia is
that it is continuously growing with time. One of the extension ideas for our proposed
work is to test the effect of the increase of the knowledge on the ontology and hence on
ADTI application. This test can be done by using a small subset of Wikipedia articles and
categories to create the ontology and test it on ADTI. Then, we can increase this subset
gradually and test how this increase affects the quality of the topics’ assignments. We can
also check if there is a certain threshold after which an increase in information would not
increase the performance.

Testing ADTI with Multilabel Assignment. As we mentioned in our proposed
approach, ADTI is used to assign each of the input documents to one of the input topics.
Sometimes input documents may belong to multiple topics. For example, an input doc-
ument may cover the effect of some political actions on the economics. In this case, this
document may fall under both the “Economics” topic and the “Politics” topic. So, we can

115

use our proposed approach to assign each document to more than one topic from a pool of
topics based on the similarity measure as we proposed. Thus we propose, as an extension
to ADTI, a multilabel assignment test to check the performance of ADTI if it were used
to assign to each document more than one label.

116

Permissions

Parts of Chapters 3 and 4 are reprinted from the following papers.

M. M. Hassan, F. Karray, and M. S. Kamel, “Automatic Document Topic Identification
using Wikipedia Hierarchical Ontology,” in Proceedings of the Eleventh IEEE International
Conference on Information Science, Signal Processing and their Applications (ISSPA’12),
2012, pp. 237-242. Copyright © 2012 IEEE. The IEEE Thesis/Dissertation Reuse state-
ment is included on the following page.

117

Title: Automatic Document Topic
Identification using Wikipedia
Hierarchical Ontology

Conference
Proceedings:

Information Science, Signal
Processing and their
Applications (ISSPA), 2012
11th International Conference
on

Author: Hassan, M.M.; Karray, F.;
Kamel, M.S.

Publisher: IEEE

Date: 2-5 July 2012

Copyright © 2012, IEEE

 Logged in as:

 Mostafa Hassan

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these
papers) users must give full credit to the original source (author, paper, publication) followed by the
IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of
original publication] IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author,
also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: ©
[year of original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE
publication title, and month/year of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or
your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in
a prominent place on the website: In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of [university/educational entity's name
goes here]'s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply
single copies of the dissertation.

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

118

References

[1] M. Uschold and M. Gruninger, “Ontologies and semantics for seamless connectivity,”
ACM SIGMod Record, vol. 33, no. 4, pp. 58–64, 2004.

[2] M. Grobelnik, “Text mining for ontology learning,” SEKT 1st Advisory Board Meet-
ing, 2004.

[3] K. Coursey and R. Mihalcea, “Topic identification using Wikipedia graph centrality,”
in Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Compan-
ion Volume: Short Papers. Association for Computational Linguistics, 2009, pp.
117–120.

[4] O. Medelyan, I. Witten, and D. Milne, “Topic indexing with Wikipedia,” in Pro-
ceedings of AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving
Synergy, AAAI Press, Chicago, USA, 2008, pp. 19–24.

[5] R. Feldman and I. Dagan, “Knowledge discovery in textual databases (KDT),” in
Proceedings of the First International Conference on Knowledge Discovery and Data
Mining (KDD-95), 1995, pp. 112–117.

[6] G. Salton, A. Wong, and C. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, vol. 18, pp. 613 – 620, November 1975.

[7] S. Wong, W. Ziarko, and P. Wong, “Generalized vector spaces model in information
retrieval,” in Proceedings of the 8th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM New York, NY, USA,
1985, pp. 18–25.

[8] M. Keikha, N. Razavian, F. Oroumchian, and H. Razi, “Document Representation
and Quality of Text: An Analysis,” Survey of Text Mining II: Clustering, Classifica-
tion, and Retrieval, pp. 219–232, 2007.

119

[9] K. M. Hammouda and M. S. Kamel, “Phrase-based document similarity based on an
index graph model,” in ICDM, 2002, pp. 203–210.

[10] ——, “Document similarity using a phrase indexing graph model,” Knowl. Inf. Syst.,
vol. 6, no. 6, pp. 710–727, 2004.

[11] ——, “Efficient phrase-based document indexing for web document clustering,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 10, pp. 1279–1296, 2004.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp.
273–297, 1995, 10.1007/BF00994018.

[13] J. D. M. Rennie and R. Rifkin, “Improving multiclass text classification with the
support vector machine,” Artificial Intelligence Lab, MIT, Tech. Rep., 2001.

[14] K. Duan and S. Keerthi, “Which is the best multiclass svm method? an empirical
study,” Multiple Classifier Systems, pp. 732–760, 2005.

[15] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector
machines,” Neural Networks, IEEE Transactions on, vol. 13, no. 2, pp. 415 –425, mar
2002.

[16] J. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for multiclass
classification,” Advances in neural information processing systems, vol. 12, no. 3, pp.
547–553, 2000.

[17] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-
correcting output codes,” CoRR, vol. cs.AI/9501101, 1995.

[18] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass kernel-
based vector machines,” The Journal of Machine Learning Research, vol. 2, pp. 265–
292, 2002.

[19] E.-H. Han and G. Karypis, “Centroid-based document classification: Analysis and
experimental results,” in Principles of Data Mining and Knowledge Discovery, ser.
Lecture Notes in Computer Science, D. Zighed, J. Komorowski, and J. Zytkow, Eds.
Springer Berlin / Heidelberg, 2000, vol. 1910, pp. 116–123.

[20] T. Hofmann, “The Cluster-Abstraction Model: Unsupervised Learning of Topic Hier-
archies from Text Data,” in International Joint Conference on Artificial Intelligence,
vol. 16, 1999, pp. 682–687.

120

[21] S. Kaski, T. Honkela, K. Lagus, and T. Kohonen, “Websom - self-organizing maps
of document collections,” Neurocomputing, vol. 21, no. 1-3, pp. 101 – 117, 1998.

[22] L. Kaufman, P. Rousseeuw, D. D. o. M. Technische Hogeschool, and Informatics.,
“Clustering by means of medoids,” Technische Hogeschool, Delft(Netherlands). Dept.
of Mathematics and Informatics., Tech. Rep., 1987.

[23] J. Bezdek and R. Ehrlich, “FCM: The fuzzy c-means clustering algorithm.” Comp.
Geosci., vol. 10, no. 2, pp. 191–203, 1984.

[24] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clustering
techniques,” in KDD workshop on text mining, vol. 34, 2000, p. 35.

[25] I. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clustering and nor-
malized cuts,” in Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM New York, NY, USA, 2004, pp.
551–556.

[26] I. Dhillon and D. Modha, “Concept decompositions for large sparse text data using
clustering,” Machine Learning, vol. 42, no. 1, pp. 143–175, 2001.

[27] E. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability of
classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[28] J. MacQueen et al., “Some methods for classification and analysis of multivariate ob-
servations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, vol. 1, no. 281-297, 1967, p. 14.

[29] J. Tou and R. Gonzalez, “Pattern recognition principles,” Image Rochester NY, vol. 7,
1974.

[30] L. Kaufman, P. Rousseeuw, and E. Corporation, Finding groups in data: an intro-
duction to cluster analysis. Wiley Online Library, 1990, vol. 39.

[31] J. Pena, J. Lozano, and P. Larranaga, “An empirical comparison of four initialization
methods for the k-means algorithm,” Pattern recognition letters, vol. 20, no. 10, pp.
1027–1040, 1999.

[32] I. Katsavounidis, J. Kuo, and Z. Zhang, “A new initialization technique for gener-
alized lloyd iteration,” Signal Processing Letters, IEEE, vol. 1, no. 10, pp. 144–146,
1994.

121

[33] P. Bradley and U. Fayyad, “Refining initial points for k-means clustering,” in Pro-
ceedings of the Fifteenth International Conference on Machine Learning, vol. 66.
Citeseer, 1998.

[34] S. Redmond and C. Heneghan, “A method for initialising the k-means clustering
algorithm using kd-trees,” Pattern Recognition Letters, vol. 28, no. 8, pp. 965–973,
2007.

[35] H. Suo, K. Nie, X. Sun, and Y. Wang, “One optimized choosing method of k-means
document clustering center,” Information Retrieval Technology, pp. 490–495, 2008.

[36] U. von Luxburg,“A tutorial on spectral clustering,”Statistics and Computing, vol. 17,
no. 4, pp. 395–416, 2007.

[37] M. Maila and J. Shi, “A random walks view of spectral segmentation,” in AI and
STATISTICS (AISTATS) 2001, 2001.

[38] A. Ng, M. Jordan, Y. Weiss et al., “On spectral clustering: Analysis and an al-
gorithm,” Advances in neural information processing systems, vol. 2, pp. 849–856,
2002.

[39] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[40] ——, “Algorithms for non-negative matrix factorization,” Advances in neural infor-
mation processing systems, vol. 13, pp. 556–562, 2001.

[41] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix
factorization,” in Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval. ACM, 2003, pp. 267–273.

[42] W. Xu and Y. Gong, “Document clustering by concept factorization,” in Proceedings
of the 27th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval. ACM, 2004, pp. 202–209.

[43] O. Medelyan, “Human-competitive automatic topic indexing,” Ph.D. dissertation,
The University of Waikato, 2009.

[44] F. Lancaster, Indexing and abstracting in theory and practice. Facet, 2003.

[45] A. Popescul and L. H. Ungar, “Automatic labeling of document clusters,” 2000.

122

[46] K. Coursey, R. Mihalcea, and W. Moen,“Using encyclopedic knowledge for automatic
topic identification,” in Proceedings of the Thirteenth Conference on Computational
Natural Language Learning. Association for Computational Linguistics, 2009, pp.
210–218.

[47] P. Schönhofen, “Identifying document topics using the Wikipedia category network,”
Web Intelligence and Agent Systems, vol. 7, no. 2, pp. 195–207, 2009.

[48] D. Huynh, T. Cao, P. Pham, and T. Hoang, “Using Hyperlink Texts to Improve
Quality of Identifying Document Topics Based on Wikipedia,” in Knowledge and
Systems Engineering, 2009. KSE’09. International Conference on. IEEE, 2009, pp.
249–254.

[49] M. Janik and K. Kochut, “Training-less ontology-based text categorization,” in ECIR
workshop on exploiting semantic annotations in information retrieval (ESAIR’08),
2008.

[50] ——, “Wikipedia in action: Ontological knowledge in text categorization,” in Seman-
tic Computing, 2008 IEEE International Conference on. IEEE, 2008, pp. 268–275.

[51] S. Auer and J. Lehmann, “What have innsbruck and leipzig in common? extracting
semantics from wiki content,” in The Semantic Web: Research and Applications.
Springer, 2007, pp. 503–517.

[52] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research
Logistics (NRL), vol. 52, no. 1, pp. 7–21, 2005.

[53] C. J. van Rijsbergen, Information Retrieval, 2nd ed. Butterworths, 1979.

[54] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl-
edge acquisition, vol. 5, no. 2, pp. 199–199, 1993.

[55] T. Gruber, “Toward principles for the design of ontologies used for knowledge shar-
ing,” International Journal of Human Computer Studies, vol. 43, no. 5, pp. 907–928,
1995.

[56] N. Guarino and P. Giaretta, “Ontologies and knowledge bases: Towards a termi-
nological clarification,” Towards very large knowledge bases: knowledge building and
knowledge sharing, vol. 1, no. 9, p. 9, 1995.

[57] L. Garshol, “Metadata? Thesauri? Taxonomies? Topic maps! Making sense of it
all,” Journal of Information Science, vol. 30, no. 4, p. 378, 2004.

123

[58] W. Siricharoen, “Ontologies and object models in object oriented software engineer-
ing,” IAENG International Journal of Computer Science, vol. 33, no. 1, pp. 19–24,
2007.

[59] N. Noy, D. McGuinness et al., “Ontology development 101: A guide to creating your
first ontology,” 2001.

[60] M. Boulos, “Semantic wikis: A comprehensible introduction with examples from the
health sciences,” Journal of Emerging Technologies in Web Intelligence, vol. 1, no. 1,
pp. 94–96, 2009.

[61] I. Niles and A. Pease, “Origins of the ieee standard upper ontology,” in Working Notes
of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology. Citeseer, 2001,
pp. 4–10.

[62] J. Blake, C. Bult et al., “Beyond the data deluge: data integration and bio-ontologies,”
Journal of biomedical informatics, vol. 39, no. 3, pp. 314–320, 2006.

[63] R. Beckwith and G. Miller, “Implementing a lexical network,” International Journal
of Lexicography, vol. 3, no. 4, pp. 302–312, 1990.

[64] D. Pisanelli, “Biodynamic ontology: applying bfo in the biomedical domain,” Ontolo-
gies in medicine, vol. 102, p. 20, 2004.

[65] A. Osterwalder, Y. Pigneur et al., “An e-business model ontology for modeling e-
business,” in 15th Bled Electronic Commerce Conference. Bled, Slovenia, 2002, pp.
17–19.

[66] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, “Cyc: toward
programs with common sense,” Commun. ACM, vol. 33, no. 8, pp. 30–49, 1990.

[67] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. Goldberg,
K. Eilbeck, A. Ireland, C. Mungall et al., “The OBO Foundry: coordinated evolution
of ontologies to support biomedical data integration,” Nature biotechnology, vol. 25,
no. 11, pp. 1251–1255, 2007.

[68] J. Brank, M. Grobelnik, and D. Mladenić, “A survey of ontology evaluation tech-
niques,” in In In Proceedings of the Conference on Data Mining and Data Warehouses
(SiKDD), 2005.

124

[69] A. Maedche and S. Staab, “Measuring similarity between ontologies,” in Knowledge
Engineering and Knowledge Management: Ontologies and the Semantic Web, ser.
Lecture Notes in Computer Science, A. Gómez-Pérez and V. Benjamins, Eds.
Springer Berlin / Heidelberg, 2002, vol. 2473, pp. 15–21.

[70] R. Porzel and R. Malaka, “A task-based approach for ontology evaluation,” in ECAI
Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer, 2004.

[71] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks, “Data driven ontology
evaluation,” in International Conference on Language Resources and Evaluation
(LREC 2004), 2004.

[72] A. Lozano-Tello and A. Gómez-Pérez, “Ontometric: A method to choose the appro-
priate ontology,” Journal of Database Management, vol. 2, no. 15, pp. 1–18, 2004.

[73] R. Mihalcea and D. Moldovan, “Semantic indexing using WordNet senses,” in Pro-
ceedings of ACL Workshop on IR & NLP, 2000, pp. 35–45.

[74] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness using wikipedia-
based explicit semantic analysis,” in Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, 2007, pp. 6–12.

[75] N. Aussenac-Gilles and J. Mothe, “Ontologies as background knowledge to explore
document collections,” in Actes de la Conférence sur la Recherche d’Information
Assistée par Ordinateur (RIAO), 2004, pp. 129–142.

[76] A. Maedche and S. Staab, “Ontology learning,” in Handbook on ontologies. Springer
Verlag, 2004, pp. 173–190.

[77] N. Aussenac-Gilles, B. Biébow, and S. Szulman, “Revisiting ontology design: A
method based on corpus analysis,” in 12th Int. Conference in Knowlegde Engineering
and knowledge Management, vol. 1937. Springer, 2000, pp. 172–188.

[78] J. Mothe, C. Chrisment, B. Dousset, and J. Alaux, “DocCube: multi-dimensional vi-
sualisation and exploration of large document sets,” Journal of the American Society
for Information Science and Technology, vol. 54, no. 7, pp. 650–659, 2003.

[79] S. Shehata, F. Karray, and M. Kamel, “A concept-based model for enhancing text
categorization,” in KDD, 2007, pp. 629–637.

[80] B. Choudhary and P. Bhattacharyya, “Text clustering using semantics,” in Proceed-
ings of the 11th International World Wide Web Conference, 2002.

125

[81] H. Uchida, M. Zhu, and S. T.D., “Unl: A gift for a millennium.” The United Nations
University, Tech. Rep., 1995.

[82] G. Miller, “WordNet: a lexical database for English,” Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[83] E. Christiane Fellbaum, WordNet. An electronic lexical database. preface by George
Miller. Cambridge, MA: MIT Press, 1998.

[84] A. Hotho, S. Staab, and G. Stumme, “Ontologies improve text document clustering,”
in Third IEEE International Conference on Data Mining, 2003. ICDM 2003, 2003,
pp. 541–544.

[85] ——, “Text clustering based on background knowledge,” University of Karlsruhe,
Institute AIFB, Tech. Rep., 2003.

[86] ——, “Wordnet improves text document clustering,” in Proc. of the SIGIR 2003
Semantic Web Workshop, 2003, pp. 541–544.

[87] E. Agirre and G. Rigau, “Word sense disambiguation using conceptual density,” in
Proceedings of COLING, vol. 96, 1996, pp. 16–22.

[88] D. Lewis, “Reuters-21578 text categorization test collection,” AT&T Research Lab,
Tech. Rep., 1997.

[89] J. Sedding and D. Kazakov, “Wordnet-based text document clustering,” in COL-
ING 2004 3rd Workshop on Robust Methods in Analysis of Natural Language Data,
V. Pallotta and A. Todirascu, Eds. Geneva, Switzerland: COLING, August 29th
2004, pp. 104–113.

[90] W. K. Gad and M. S. Kamel, “Enhancing Text Clustering Performance Using Se-
mantic Similarity,” in Enterprise Information Systems: 11th International Confer-
ence, ICEIS 2009, Milan, Italy, May 6-10, 2009, Proceedings. Springer, 2009, pp.
325–335.

[91] M. Lesk, “Automatic sense disambiguation using machine readable dictionaries: How
to tell a pine cone from an ice cream cone,” in Proceedings of the 5th annual inter-
national conference on Systems documentation. ACM New York, NY, USA, 1986,
pp. 24–26.

[92] J. Giles, “Internet encyclopaedias go head to head,” Nature, vol. 438, no. 7070, pp.
900–901, 2005.

126

[93] M. Strube and S. Ponzetto, “WikiRelate! Computing semantic relatedness using
Wikipedia,” in Proceedings of the National Conference on Artificial Intelligence,
vol. 21, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006, p. 1419.

[94] Z. Syed, T. Finin, and A. Joshi, “Wikipedia as an ontology for describing documents,”
in Proceedings of the Second International Conference on Weblogs and Social Media.
AAAI Press, 2008.

[95] P. Wang, J. Hu, H. Zeng, and Z. Chen, “Using wikipedia knowledge to improve text
classification,” Knowledge and Information Systems, vol. 19, no. 3, pp. 265–281, 2009.

[96] E. Gabrilovich and S. Markovitch, “Overcoming the brittleness bottleneck using
Wikipedia: Enhancing text categorization with encyclopedic knowledge,” in Pro-
ceedings of the National Conference On Artificial Intelligence, vol. 21, no. 2. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006, p. 1301.

[97] S. Banerjee, “Boosting inductive transfer for text classification using wikipedia,” in
Proceedings of the 6th International Conference on Machine Learning and Applica-
tions (ICMLA), 2007, pp. 148–153.

[98] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify short and sparse
text & web with hidden topics from large-scale data collections,” in WWW ’08:
Proceeding of the 17th international conference on World Wide Web. New York,
NY, USA: ACM, 2008, pp. 91–100.

[99] S. Banerjee, K. Ramanathan, and A. Gupta, “Clustering short texts using
Wikipedia,” in Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM New York, NY, USA,
2007, pp. 787–788.

[100] J. Hu, L. Fang, Y. Cao, H. Zeng, H. Li, Q. Yang, and Z. Chen, “Enhancing text
clustering by leveraging Wikipedia semantics,” in Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM New York, NY, USA, 2008, pp. 179–186.

[101] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou, “Exploiting Wikipedia as external
knowledge for document clustering,” in KDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, ACM
New York, NY, USA. ACM, 2009, pp. 389–396.

127

[102] A. Huang, D. Milne, E. Frank, and I. Witten, “Clustering Documents with Active
Learning using Wikipedia,” in Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. IEEE Computer Society Washington, DC, USA, 2008,
pp. 839–844.

[103] ——, “Clustering Documents Using a Wikipedia-Based Concept Representation,” in
Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining. Springer, 2009, pp. 628–636.

[104] S. Ponzetto and M. Strube, “Deriving a large scale taxonomy from Wikipedia,” in
PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, vol. 22, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2007, p. 1440.

[105] Y. Ding and R. Engels, “Ir and ai: Using co-occurrence theory to generate lightweight
ontologies,” in Database and Expert Systems Applications, 2001. Proceedings. 12th
International Workshop on. IEEE, 2001, pp. 961–965.

[106] A. Muller, J. Dorre, P. Gerstl, and R. Seiffert, “The TaxGen framework: automating
the generation of a taxonomy for alarge document collection,” in System Sciences,
1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference
on, 1999.

[107] D. Younger, “Minimum feedback arc sets for a directed graph,” Circuit Theory, IEEE
Transactions on, vol. 10, no. 2, pp. 238–245, 1963.

[108] P. Festa, P. Pardalos, M. Resende et al., “Feedback set problems,” Handbook of com-
binatorial optimization, vol. 4, pp. 209–258, 1999.

[109] B. Berger and P. W. Shor, “Approximation alogorithms for the maximum acyclic
subgraph problem,” in Proceedings of the first annual ACM-SIAM symposium on
Discrete algorithms, ser. SODA ’90. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 1990, pp. 236–243.

[110] K. H. F. Brandenburg, “Sorting Heuristics for the Feedback Arc Set Problem,” 2011,
no. MIP-1104.

[111] P. Eades, X. Lin, and W. Smyth, “A fast and effective heuristic for the feedback arc
set problem,” Information Processing Letters, vol. 47, no. 6, pp. 319 – 323, 1993.

[112] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,
1980.

128

[113] M. Hassan, F. Karray, and M. S. Kamel, “Improving document clustering using a hi-
erarchical ontology extracted from wikipedia,” in SIAM SDM Text Mining Workshop.
Columbus, OH, USA: SIAM, May 2010.

[114] Y. Zhao, G. Karypis, and U. Fayyad,“Hierarchical clustering algorithms for document
datasets,” Data Mining and Knowledge Discovery, vol. 10, no. 2, pp. 141–168, 2005.

[115] E. Han, D. Boley, M. Gini, R. Gross, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher, and J. Moore, “WebACE: A web agent for document categorization and
exploration,” in Proceedings of the second international conference on Autonomous
agents. ACM, 1998, pp. 408–415.

[116] G. Karypis, “Cluto - a clustering toolkit,” University of Minnesota, Department of
Computer Science, Tech. Rep. 02-017, 2002.

[117] D. Greene and P. Cunningham, “Practical solutions to the problem of diagonal dom-
inance in kernel document clustering,” in Proc. 23rd International Conference on
Machine learning (ICML’06). ACM Press, 2006, pp. 377–384.

[118] Y. Zhao and G. Karypis, “Empirical and theoretical comparisons of selected criterion
functions for document clustering,” Machine Learning, vol. 55, no. 3, pp. 311–331,
2004.

[119] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[120] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[121] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874,
Jun. 2008.

[122] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

129

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivations
	Goals
	Thesis Outline

	Background and Literature Review
	Overview
	Text Mining
	Document Representation Models
	Vector Space Model (VSM)

	Deriving Patterns and Trends
	Document Classification
	Document Clustering
	Document Topic Indexing

	Performance Measures

	Ontology
	Lightweight Ontology
	Ontology Evaluation
	Using Ontologies in Text Mining
	Using Wikipedia in Text Mining

	Summary

	Extracting an Ontology from a Human Knowledge Repository
	Overview
	Ontology Creation Framework
	Extracting the Ontology Taxonomy
	Manipulating Knowledge Repository Articles
	Building the Concept-Term Mapping

	Using Wikipedia to Construct the WHO
	Extracting WHO from Wikipedia
	Wikipedia and WHO Scalability Issue

	Ontology Evaluation and Applications
	Using WHO for Document Modeling
	Revisiting the Running Example

	Summary

	Automatic Document Topic Identification Using WHO
	Overview
	Automatic Document Topic Identification Methodology
	Extracting Representative Concepts for Input Topics
	Manual Matching
	Automatic Matching Using Semantically Related Concepts

	Enhance Topic Representation by Utilizing Ontology Taxonomy
	Handling Redundant Sub-concepts
	Applying Penalty Function
	Filtering Concept Sub-tree

	Identification Approaches
	Nearest Centroid Approach
	K-means-Based Approach

	ADTI vs other Text Mining applications
	ADTI vs Document Clustering
	ADTI vs Document Classification
	ADTI vs Document Topic Indexing Tasks

	Summary

	Experiments and Results
	Experimental Setup
	Data sets
	Development Environment and Tools
	ADTI Parameters Tuning Experiments
	Result Summarization

	Comparing ADTI to Document Clustering
	Performance Measures
	Results and Discussions

	Comparing ADTI to Document Classification
	Comparing ADTI to Document Classification With External Training Data
	Results and Discussions

	Comparing ADTI to Ordinary Document Classification
	Results and Discussions

	Summary

	Conclusion and Future Research
	Proposed Framework and Achievements
	Contributions
	Survey of the Task
	New Techniques

	Future Work

	Permissions
	References

