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Abstract  
 

 

Although it is not difficult to observe the healing of induced wounds in animal embryos, mapping the 

forces that drive lesion closure has proved challenging. Laser microsurgery, Atomic Force Microscopy 

(AFM) and other techniques can provide local information at fixed times, but all are invasive and some 

disrupt further development. Video Force Microscopy (VFM) has been able to map driving forces during 

ventral furrow formation in Drosophila (fruit fly) , but challenges arose when it was applied under the 

assumption that the only driving forces are intracellular pressures and forces (including purse string action) 

along cell edges. Other possible forces of relevance include far-field stresses and in-plane cellular 

contractions. Mapping the forces that drive wound closure is an important problem, and so far it has 

remained unsolved. 

 

To investigate the process of dorsal closure, this study used a cell-based finite element (FE) model to 

identify the mechanical signatures of a wide variety of possible driving forces. Geometric parameters 

were developed to characterize the associated cell shapes and tissue motions and to quantitatively 

compare FE simulations with each other and with experimental data. It was discovered that edge tensions 

and pressures were not sufficient to drive wound healing. Wound healing can only be achieved when far-

field boundary motions, edge tensions and apical area tensions act together. 

 

This thesis shows that a suitable FE model can provide information about the forces that drive wound 

healing, and its simulations take us one step closer to understanding the mechanics of wound healing. It 

also contributes to our general understanding of the forces that drive morphogenetic movements and 

ultimately helps us to better understand cell-based processes important for human quality of life. 
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Chapter 1   

Introduction  
 

 

 

One of the most fascinating phenomena in nature is the ability of biological systems to heal and recover 

from injuries that range from the cellular to skeletal scale. The ability to heal is crucial to survival. In an 

epithelial injury, the cells surrounding the wound undergo significant changes and rearrangements so as to 

reseal the damaged area. Much research has been done during the last several decades to understand the 

morphogenetic movements of the wound healing processes in different animals and insects (Brock et al., 

1996; Galko & Krasnow, 2004; Hutson et al., 2003; Jacinto & Martin, 2001; Kiehart et al., 2000; Ramet 

et al., 2002; Wang et al., 2009; Wood et al., 2002). However, identifying the forces that drive lesion 

closure has proved to be a challenge.  

 

For many years, researchers have been trying to map the forces that drive morphogenetic movements 

such as wound healing and embryogenesis. Although progress has been made, biological tissues are 

fragile and the forces generated are of the order of micro- or pico-Newtons, and physical measurements 

are difficult to make.  

 

One technique that can be used to determine the forces that drive wound healing involves ablating 

parts of one or more cells using a laser micro-scalpel (Hutson et al., 2003; Kiehart et al., 2000). Laser 

microsurgery has been refined over many years to the point where a single cell, membrane, or even a 

single cytoskeletal component can be ablated in a controlled manner. The Hutson group from Vanderbilt 

University in Tennessee, who is one of our collaborators, uses this technique to study morphogenetic 

movements in Drosophila (fruit fly) embryos and the experimental data presented here are from his lab. 

Although advancements were made in understanding morphogenetic movements through this technique, 

it has a number of drawbacks. When a laser insertion is made, it causes significant damage to the cells. 

The biological system is changed, and so stress from recoil information can be obtained only at a single 

location and instant in time. Despite the drawback to this technique, measurements acquired using this 

technique in conjunction with biological morphology studies have led researches to identify a number of 

possible driving forces responsible for wound healing including actomyosin cables, lamellipodia, area 

contractions, and purse string tensions (Jacinto & Martin, 2001; Martin & Lewis, 1992; Ramet et al., 2002; 

Wood et al., 2002).  

 

An important question to ask regarding this problem is: ñWhy is it important to be able to map these 

forces?ò A good answer is that it will provide a deeper understanding of how tissues move and rearrange. 

At a fundamental level, it offers the possibility to manipulate motion through controlling the driving 

forces at its source. Whether the motion is mechanical or chemically induced, having the ability to control 

the driving factors will allow the manipulation of cell movements for experimental or therapeutic ends. 
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Likewise, through genetic engineering, certain genes may be enhanced or suppressed to control the cell 

structures and proteins that contribute to morphogenetic movements. In the case of embryogenesis, there 

are many birth defects that arise from incomplete or incorrect morphogenetic movements. Common birth 

defects such as spina bifida and cleft palate arise from incomplete morphogenetic movements. For 

example, the failure in the closure of the neural tube will result in spina bifida. This birth defect could be 

prevented if the driving forces that cause the neural tube to close functioned normally (Brodland et al., 

2010a; Stark, 1977). A better understanding of the forces that drive wound healing, in particular, could 

help improve the recovery of patients suffering from injuries by shortening recovery time and preventing 

scarring. Thus, information about driving forces could advance the biomedical industry and enhance 

patient quality of life.  

 

Mapping the forces of morphogenetic movement was an unsolved problem until a biomechanical 

research group at the University of Waterloo under the supervision of Professor Wayne Brodland 

developed a technique called Video Force Microscopy (VFM) (Cranston, 2009), the first technique able 

to map the forces that drive morphogenetic movements, VFM is a computational method that uses 

engineering principles, Finite Element Modeling (FEM) and inverse methods. It is common in FEM to 

consider the force as an in input and the displacement as an output. In contrast, VFM uses the 

displacement history as its input and calculates the driving forces responsible for the observed motions as 

the output. Here in our lab, cell-based Finite Element (FE) models have been developed and are used to 

track changes in motion, thereby computing the edge tensions and pressures in the cells that induce shape 

changes and rearrangements of cells (Brodland, 2002; Brodland et al., 2007). This technique not only 

overcomes the drawbacks of the laser insertion technique, but also advances the way morphogenetic 

movements are studied. VFM was used to map the forces that drive ventral furrow formation in 

Drosophila melanogaster embryos (Brodland et al., 2010b; Conte et al., 2012).  

 

When a version of VFM in which edge tensions and pressures alone were assumed to act was first 

applied to wound healing, the edge tensions and pressures results were not convincing. Could other 

mechanical forces be at work? The objective of this study is to determine the driving forces responsible 

for wound healing in Drosophila embryos during the dorsal closure stage through finite element modeling. 

A wide range of possible driving forces will be considered and mechanical and geometric tools used to 

assess the computational results. 
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Chapter 2  

Background  
 

 

 

This chapter provides background information on the biology of wound healing and morphogenesis in 

Drosophila embryos. It also provides background information relevant to the modeling of biological cells, 

including forward modeling and simulations, inversion techniques, and biological experiments.  

 

 

 

2.1 Wound Healing  
 

 

2.1.1 Uncovering the Secrets of Wound Healing  
 

For many years, researchers have been trying to answer the question, ñHow does wound healing occur?ò 

and that question has remained largely unanswered. When a wound is introduced, cells rearrange and 

reduce the wound hole until it is completely sealed. Young infants are prone to recover from a wound 

much faster and in completion than full grown adults (Redd et al., 2004). Continual research in the 

therapeutic work has been progressing to improve healing for patients recovering from injuries. There are 

many theories suggesting how cells rearrange and wound healing may occur but it has clearly been a 

challenge to pin point its driving forces and how this process occurs (Brodland, 2002; Harris, 1976; Redd 

et al., 2004). One of the challenges is the lack of experimental techniques for studying lesion closure. In 

many cases, studies are conducted on insects and small mammals, and they may not necessarily reflect the 

morphogenetic response of humans. Although there are many challenges, researchers have managed to 

advance our understanding in wound healing and morphogenetic movements (Hutson et al., 2003; Jacinto 

& Martin, 2001; Kiehart et al., 2000; Wood et al., 2002).  

 

 

2.1.2 Wound Healing and the Drosophila Embryo  
 

Drosophila (fruit fly)  embryos are widely used for studying wound healing and morphogenetic 

movements (Belacortu & Paricio, 2011; Galko & Krasnow, 2004). A Drosophila has a short cycle time 

from the formation of an egg to becoming a full grown fruit fly and is easily accessible as it grows. Dorsal 

closure, an important process in embryo development, has been an excellent model for studying healing 

and cell movements. Dorsal closure can be considered the last process in morphogenetic development in a 

Drosophila embryo (Campos-Ortéga & Hartenstein, 1997). During this process, the epidermal cells 
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overlap the amnioserosa cells until the two leading edges meet. Figure 2.1 shows the 3 step process of 

dorsal closure.  

 

 
Figure 2.1 ï Drosophila embryo. The figure on the left shows the process 

through which dorsal closure occurs. The figure on the r ight illustrates a typical 

cross section. Image courtesy of Dr Martinez-Arias, Cambridge, UK. (Kiehart et al., 

2000) 

 

Intensive studies have been conducted to understand the biomechanics of dorsal closure. One of the 

most common techniques used to study this phenomenon, besides genetic perturbations, was through the 

use of micro laser surgery. Micro laser surgery has been refined over many years to the point where a 

single cell, membrane, or even a single cytoskeletal component can be ablated in a controlled manner. By 

ablating a cell edge, the stress at that location may be acquired through relating material properties and 

recoiling of neighboring cells.  

 

Using this technique, it was shown that there are four major biological processes that may be 

responsible for dorsal closure and are shown in Figure 2.2 (Hutson et al., 2003; Kiehart et al., 2000; 

Peralta et al., 2008).  

1. Contractile force of the actomyosin-rich purse string 

2. Contractile force of the cortical actomyosin networks of the amnioserosa cells 

3. Resistant forces that arise from stretching of the lateral epidermis 

4. Zipping at each canthus 

 

A 

A 

Section A-A 

Dorsal 

Ventral  

Yolk 

Ventral Epidermis 

Lateral Epidermis 

Leading Edge of the 

Lateral Epidermis 

Amnioserosa 
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Figure 2.2 ï Forces acting on a Drosophila embryo 

 

While other forces contribute to dorsal closure, the stretching of the lateral epidermis resists dorsal 

closure and is counter balanced with isotropic tensions acting on the amnioserosa. Laser perturbations 

introduce only a small delay in the closing process of the amnioserosa while the presence of amnioserosa 

is crucial in closure and zipping of the epidermis (Hutson et al., 2003; Scuderi & Letsou, 2005). 

 

Although Drosophila embryos are an excellent model for analyzing wound healing, traditional laser 

ablation techniques have been shown to have challenges of their own. Traditional laser micro surgery 

cause significant damage to the cells and provide stress data at a single location and instance in time. 

Despite the drawbacks of micro laser surgery technique, studies have shown that lesion closure may still 

be achieved through actin cable and dynamic protrusions (Anon et al., 2012; Wood et al., 2002).  

 

Jacinto et al. (2002) use micro laser ablation techniques to study the wound healing process in 

Drosophila embryos during dorsal closure. They noted that wound closure is achieved by changes in cell 

shape and rearrangements while actin cable and dynamic protrusions are the driving forces (Jacinto et al., 

2002). Previous study have shown that the protein GTPases Rho is responsible for the formation of actin 

cable and Cdc42 is responsible for the formation of filopodia (Wood et al., 2002). Through genetic 

perturbations of GTPases Rho and Cdc42, it was suggested that at the wound sight, actin cable formed 

around the perimeter of the wound to act as a purse string, causing the hole to close in. Rho mutant 

embryos were not able to assemble actin cable at the site of the wound, but were still able to close the 

wound, suggesting that purse string contraction was not the only driving force in wound closure. When 

Cdc42 was modulated, wound closure was still achieved however, it took twice as long and the hole was 

not fully repaired. The modulation of Cdc42 suggested that dynamic filopodial/lamellipodial protrusions 

were responsible to knitting the wound while other factors could have been responsible for lesion closure 

(Jacinto et al., 2002). 

 

Interestingly enough, lesion closure was achieved with modulating either actin cable or dynamic 

protrusion, but there still remained a possibility that neither may have been the driving force to which 

wound closure was achieved. Whether the conclusions obtained through various experiments may be 

correct, there is an emerging need for studying wound closure using non-traditional techniques to provide 

a different perspective and insight to this problem. Furthermore, understanding these changes in shape 

and healing abilities during embryogenesis is significant into providing insight to healthy and normal 

embryonic development.  
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2.2 Tissue Mechanics Modeling and Experimentation  
 

 

The use of computer modeling has been increasing, especially in the bioengineering field. In the past, 

computer aided design (CAD) and computer simulations have been carried out on mechanical systems 

and materials but in recent years, researchers have been utilizing computer modeling and simulations in 

the bioengineering field. Many discoveries made in cell mechanics and morphogenesis would not have 

possible without the use of computer technology (Brodland et al., 2010a; Brodland et al., 2010b; Chen & 

Brodland, 2008). Before we apply modeling techniques to embryonic development and wound healing, 

cell modeling and existing models will be introduced.  

 

 

2.2.1 The Anatomy of a Cell  
 

A cell can be considered to be the fundamental building block in all biological beings. There are many 

different components that form the cell. Figure 2.3 is an example of a cell model showing a few of its 

main parts. The cell membrane is a flexible bilayer composed primarily of phospholipids. At the surface 

of the cell membrane, there are various molecules that control transportation through the membrane while 

other molecules are responsible for cell adhesion. The cellôs membrane is known to be under tension.  

 

 
Figure 2.3 ï Cell structure and components 

 

Inside the membrane, are the cytoplasm and cytoskeleton, where the cytoplasm is a clear gel 

containing various proteins and the cytoskeleton gives structure to the cells (Ethier & Simmons, 2007). 

The cytoskeleton is composed of microfilaments, intermediate filaments and microtubules (Cowin & 
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Doty, 2006). Microfilaments are flexible and relatively strong, which give structural integrity to the cell 

while resisting buckling, and are composed of actin. Intermediate filaments are protein fibers that brace 

the microfilaments and microtubules, giving mechanical strength and also supporting organelles within 

the cell. The largest cytoskeleton structures are microtubules, which are hollow cylindrical tubes that aid 

in the transportation of nutrients and play a key role in mitosis (cell division). At the core of the cell is the 

nucleus. The nucleus contains DNA, RNA, and chromosomes and it controls cell activity by regulating 

gene expression.  

 

 

2.2.2 Quantif ication of Cell  Properties  
 

There are many reasons to why it is necessary to understand the mechanical properties of the cells. 

Designing biocompatible materials, modeling biological tissues, tissue engineering and many other 

applications, all depend on understanding the mechanical behavior of cells and tissue. However, taking 

measurements on cells is not an easy task because the forces generated are of the order of micro- or pico-

Newtons. Despite the difficulty of the protocol, researchers have managed to develop techniques to obtain 

the mechanical properties of cells.  

 
One of the techniques used to measure cell properties is micropipette aspiration (Ethier & Simmons, 

2007; Mitchison & Swann, 1954). This is one of the first devices used to measure mechanical properties 

of cells. A glass pipette is placed on the surface of the tissue and a negative pressure is created, allowing 

the cell to bulge into the glass pipette as shown in Figure 2.4. From the deformed geometry of the cell, the 

mechanical properties of the cell can be obtained based on the applied pressure. Laplaceôs Law can also 

be used to relate the pressure, membrane curvature and tension by Eq. (2.1), where ɔ is the surface tension, 

ȹP is the pressure gradient and ɟ is the radius of curvature (Morris & Homann, 2001).  

 

2

r
g

³D
=

P
            (2.1) 

 

 
Figure 2.4 ï Micropipette aspiration (Cranston, 2009) 

 

In addition to the cell edge tensions, the adhesive strength of the cell can be measured using a second 

pipette. As the first pipette holds the cell in place the second pipette is used to pull them apart.  
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Atomic force microscopy (AFM) is another method used to obtain cell properties. In this method, a 

flexible beam with a probe attached to its tip is used to deform the surface of the cell. Using a laser, the 

position of the beam is determined and by approximating the beam as a linear spring, the force is 

calculated using Eq. (2.2), where E is the stiffness of the cell, Ŭ is the half-angle of the conical probe tip, 

F is the applied force, ŭ is the displacement, and ɜ is the Poissonôs ratio (Ethier & Simmons, 2007).  

 

( )

a

np
d

tan

1

2

2

2

E

F -
=            (2.2) 

 

Another method used for measuring properties of cell is optical tweezers. Optical tweezers use a pair 

of laser beams to manipulate a bead that is manually inserted inside the cell. Through the exploitation of 

the photonsô momentum, the bead can be displaced in a controlled manner. Beads may also be 

manipulated using magnetism rather than laser beams. In either case, the force on the bead is calculated 

using empirical calibration because it cannot be calculated directly. By using Eq. (2.3), the bead is 

calibrated in a known medium and the forces are calculated using Stokeôs Law, where F is the drag force, 

ɛ is the fluid viscosity, r is the radius of the bead, and v is the velocity (Dai et al., 1997).  

 

rvF pm6=            (2.3) 

 

In most cases, the cell of interest needs to be in isolation to conduct these tests due to the nature of the 

test devices and method protocol. These tests are not only invasive, but would be difficult to conduct on 

biological tissues that are in a dynamic environment such as morphogenesis or wound healing. Although 

it may be difficult to use these methods for our purpose and study, the results obtained from these 

experiments are essential to tissue modeling and finite element models that exist today.     

 

 

2.2.3 Tissue Rearrangement and D ifferentiation   
 

Biological cells have the ability to rearrange and differentiate during embryonic development, 

morphogenetic processes, cell sorting, and wound healing. Although chemical or genetics may trigger the 

outcome of the cellsô movement, studies have shown that cell sorting and differentiation are essentially 

mechanical (Arrkas, 1994; Beloussov, 1998; Cowin & Doty, 2006; Nuri Akkaĸ, 1994).  

 

Wilson (1907) was the first person to observe cell sorting in multicellular organisms (Arrkas, 1994). 

In the case of embryonic vertebrates, it was determined that cells dissociated and mixed randomly, 

suggesting that cells themselves produced the driving force necessary to differentiate and rearrange 

(Wilson, 1907). Later on, morphogenetic experiments were conducted with different types of cells by 

Townes and Holtfreter (1955). They observed that the grouping of cells tended to have the same final 

configuration despite different starting configurations (Townes & Holtfreter, 1955). They suggested that 

cell engulfment, invagination and sorting had the same or similar driving mechanism (Arrkas, 1994). 

Besides the scientist mentioned previously, extensive research has been conducted in cell sorting and 

differentiation and all evidence suggest that it is a self driven and mechanical in nature (Steinberg, 1962; 

Steinberg, 1970).  
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There have been two hypotheses to describe how cellular self-rearrangements are driven: the 

Streingerg's Differential Adhesion Hypothesis (DAH) and Brodland's Differential Interfacial Tension 

Hypothesis (DITH) (Brodland, 2002; Harris, 1976). DAH suggests that cell sorting behaves like 

immiscible liquids. In other words, depending on the adhesion molecular force, cells will engulf or be 

engulfed by cells that have different adhesion molecular forces (Steinberg, 1970). However, the DAH 

theory has been deemed unviable in recent years. The DITH is an alternate theory that suggests that cell 

self-rearrangements are driven by differences in interfacial tensions (Arrkas, 1994; Brodland, 2002; 

Harris, 1976). The interfacial tensions are the consequence of membrane contraction, actin forces and 

adhesion systems.  

 

If cells are in equilibrium, the interfacial tensions will determine the geometry of the triple junctions. 

In a perfectly annealed cell patch, the triple junction of three cells will form 120 degrees angle with one 

another if all boundaries carry the same effective tension. Studies have suggested that the principle stress 

direction is correlated with cell geometry (Beloussov, 1998; Goodwin & Trainor, 1985; Hutson et al., 

2009; Hutson et al., 2009; Odell et al., 1981; Steinberg, 1978; Thompson, 1942). When analyzing tissue 

mechanics, many three dimensional (3D) problems can be simplified into a two dimensional (2D) 

problem because generally speaking, tissues are composed of planar aggregates and 2D models have been 

shown to be sufficient for these problems (Brodland et al., 2006).  

 

 

 

2.3 Finite Element Modeling  
 

 

As the research field of tissue modeling and testing advanced, mathematical models of cell behavior using 

a one dimensional (1D) equivalent mechanical circuit were developed. The 1D cell models were based on 

viscoelastic material comprised of Maxwell, Kelvin and Maxwell-Kelvin models (Ethier & Simmons, 

2007). These models were later used in conjunction with the DITH to develop 2D cell models. Other 

models include tensegrity cell structure, lattice, and cellular automata model which were essential to the 

development of the finite element (FE) models of cells and tissues (Coughlin & Stamenovic, 1997; Ingber, 

1993; Ingber, 1997). Computational models of cells were developed as early as 1981 by Odell et al. In 

more recent years, Davidson et al. (1995) developed a FE model to simulate the gastrulation process in 

sea urchin. Through finite element modeling and experiments, Davidson was able to test the feasibility of 

several potential driving mechanisms (Davidson et al., 1999). In 2006, a cell-based constitutive model 

was developed by Brodland et al. which related tissue deformations, in-plane stresses, topological 

evolution of cellular fabric, mitosis, and cell rearrangement. This was the first of its kind for studying 

embryonic development using finite element modeling. Other finite element models were developed by 

Brodland et al. and provided a new avenue in studying morphogenesis and embryonic development 

(Brodland & Chen, 2000; Brodland et al., 2007; Chen & Brodland, 2008; Clausi & Brodland, 1993; 

Hutson et al., 2008).  
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2.3.1 Finite Element Model  
 

A finite element model, called Simba, was used as the basis of our finite element analysis. Simba is a 

custom written C++  simulator developed in our lab over the last 20 years. Similar to other finite element 

analysis software, an input geometry is read by the code and the algorithm calculates resulting 

displacements from the applied forces, mechanical properties, and constraints over a series of successive 

time steps. The details of the finite element model and analysis are explained in the following subsections. 

Figure 2.5 shows an example of a 2D finite element model of a collection of biological cells. The cells 

appear as contiguous polygons which are assumed to be connected with each other at their vertices or 

nodes. Their mechanical properties derive from their in-plane areas and their edges.  

 

 
Figure 2.5 ï Cell 2D finite element model 

 

 

Nodes: 

 

In a 2D model each node has two degrees of freedom (DOF), with displacement in the x- and y-directions, 

only. In most cases, nodes form a double or triple junction, where two or three cells meet. However, it is 

possible for a node to form a quad junction which commonly occurs during cell neighbor changes. These 

neighbor changes are frequent events and have an important role in morphogenesis and cell 

rearrangement. A neighbor change occurs in three major steps, as demonstrated in Figure 2.6. Two cells, 

labeled B and D, begin with a short horizontal contacting edge. As this edge shortens to zero length and a 

new vertical edge forms, cells B and D become separated and cells A and C come into contact. Although 

neighbor exchanges are a common occurrence in most tissues, they are rare in the amnioserosa during 

dorsal closure.  

 

 

Node 

Edge 

Element 
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Figure 2.6 ï Neighbour change (Cranston, 2009) 

 

 

Edges: 

 

Edges are straight line segments that represent the interface between adjacent cells or a cell and the 

surrounding medium, and they always connect two nodes. According to the DITH, a net tension force acts 

along each edge, a force which arises from various sub-cellular components. The net force that arises 

from intra-cellular forces can be represented as 
AB
g

 
for an edge that is between cell A and B. Figure 2.7 

depicts the structural components that contribute to the net interfacial tension in Eq. (2.4) (Brodland & 

Chen, 2000).  
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Figure 2.7 ï Contribution to interfacial tensions (Cranston, 2009)  

 

 The term Cyto

A
F  represents the forces that arise from the cytoplasm and its embedded intermediate 

filaments. The term Mem

A
F  represents the membrane tension acting along the particular interface and also 

includes the tensions arising from the cortical actin layer (CAL). Forces from cell adhesion molecules 

(CAM) are represented by Adh

A
F  and they lower the interfacial tension. Other forces, which have not been 

mentioned above, may contribute to the net interfacial tensions acting along the cell edge and is 

represented by Other

A
F . 
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Elements: 

 

The cytoplasm in biological cells can be modeled as a massless, viscous, incompressible fluid since strain 

rates are typically in the order of 10
-6
/s during tissue remodeling (Clausi & Brodland, 1993; Hutson et al., 

2009). This allows the cells to be modeled as a viscous material using dashpots. Dashpots are models that 

resist motion where its resulting forces are dependent on the velocity. There are three different vicous 

models available in the Cell2D element class, viscous triangles, radial/circumferential dashpots, and 

orthogonal dashpots (Figure 2.8).  

 

 
Figure 2.8 ï (a) The components in cells. (b) A viscous triangle viscous model. (c) 

Radial and circumferential dashpot model. (d) Orthogonal dashpot model. 

(Brodland et al., 2007)  

 

The viscous triangle model breaks a cell into multiple triangular elements with a center point. The 

radial/circumferential dashpot model has dashpots along the radial and circumferential direction. The 

orthogonal dashpot model allows each dashpot to be connected to one node and a common ground. Figure 

2.8 (d) only displays the dashpots along the major axis for clarity whereas in the model, there are dashpots 

along the major and minor axis of the cell. A comparative study was conducted to analyze the different 

approaches to model cells and the orthogonal dashpot was deemed more viable (Brodland et al., 2007). 

As a result, the orthogonal dashpot model will be used for our study with the stiffness of the dashpot 

defined by Eq. (2.5) (Brodland et al., 2007). 

 

nA

hBg

A

pm
m

4
=            (2.5) 

 

where g is the form factor = 0.682, m is the  viscosity, n is the number of nodes in cell, h is the cell 

thickness, A and B are the major and minor (length) axes of the cells, respectively. 
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2.3.2 FE Model Solution 
 

An object in motion can be governed by a general dynamics equation as shown in Eq. (2.6), where the 

first term accounts for the inertia forces, the second term accounts for the viscous forces, and the third 

term accounts for the elastic forces. In the case of morphogenesis and embryo development, the inertia 

forces may be ignored because the scale and accelerations are small. As a result, the general equation of 

motion can be reduced to a first order equation. In the case of biological cells, cells have a viscous 

behavior rather than an elastic behavior and this allows the elastic forces to be neglected. Thus, the 

general equation of motion is reduced to Eq. (2.7), where C is the damping matrix, ȹt is the time 

increment, u is the displacement, and F is the equivalent joint force vector.  
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The nodal displacements are solved for a given increment of time from the simplified equation of the 

general equation of motion. The problem is geometrically nonlinear and is solved incrementally. The 

resulting solution gives vectors of nodal displacements and Lagrange multiplier values for each time step.  

 

 
Figure 2.9 ï The differential tension finite element model (Cranston, 2009) 
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2.4 VFM Inverse Approach   
 

 

In traditional finite element modeling, the driving forces are applied and the model outputs the 

displacements. Here, we use an inverse formulation in which driving forces are determined from tissue 

displacements. The first generation of this inverse technique was developed by P. Graham Cranston in 

2009 as part of his thesis (Cranston, 2009). This software package was called Scar.   

 

 

2.4.1 Inverting the FE M odel   
 

In forward FE methods, Eq. (2.7) is used to solve for the nodal displacements. However, in VFM, Eq. 

(2.7) is first solved for the forces at each node and then for the edge tensions and pressures, as described 

below. In any FE model, boundary conditions and constraints must be specified. Without proper 

constraints and conditions, the system will not be statically determinant (Lay, 2003). In the model 

demonstrated in Figure 2.10, the cell patch is constrained by a pin joint at one node and a spring joint at 

another. The pin joint constrains two DOF while the spring, assigned a low stiffness, adds a third. Nodal 

forces are assumed to arise only from viscous forces, pressures and cell edge tensions.  

 

 
Figure 2.10 ï Constraining the input model for inversion (Cranston, 2009) 

 

With the system well constrained, the nodal forces can be calculated using Eq. (2.7). The resulting 

nodal forces can be decomposed to forces generated from subcellular structures through the geometric 

matrix, a matrix that relates nodal forces to subcellular forces based on the cellôs structure.  

 

 

Force Generators : 

 

Some of the subcellular forces acting on a typical cell are shown in Figure 2.11. There are two forces that 

contribute to nodal forces, edge tensions and pressure forces. It is assumed that all edges are under tension 

K<<1 



15 

 

and is the case for node 26. The edge tensions surrounding node 26 are shown in red and it is assumed 

that the tensions differ in magnitude.  

 

 
Figure 2.11 ï Translation of forces acting on nodes (Cranston, 2009) 

 

The nodal force contribution from the cell pressure is shown along edges 12 and 13. The pressure 

load acts normal to the surface and is modeled as a distributed load. The pressure load can arise from in-

plane loads generated along the apical and basal membranes and volume constancy of the cell. The 

intracellular pressure is represented as a negative load. The distributed pressure load can be represented as 

two point load, equal in magnitude, acting on both ends perpendicular to the edge. The magnitude of these 

forces can be calculated from Eq. (2.8), where P is the pressure and l is the length of the edge. 

 

2

Pl
P =R            (2.8) 

 

 

Assembling the Geometric Matrix : 

 

Equivalent joint loads are calculated using Eq. (2.9), where G is a geometric matrix, F is a vector of nodal 

forces, and T is a vector of unknown tensions and pressures. Details of the equations are given below, but 

briefly, the first term relates edge tensions to nodal forces and the second term relates pressures to nodal 

forces.  
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Tensions : 

 

The geometric matrix GT relates the edge tension TT to the forces exerted at the nodes on which they 

impinge. For a given edge (of length l), the componential forms of ȹx and ȹy for the x and y components 

of the edge are used, respectively. Figure 2.12 and Eq. (2.11) demonstrates how the edge tension 

geometric matrix is assembled from the associated components (direction cosines). For details, see 

Cranston (2009).  

 

  
Figure 2.12 ï Development of edge tension geometric matrix (Cranston, 2009) 
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(2.11) 

 

The rows of GT correspond to the degree of freedom (DOF) of the model and the columns to the 

edge tensions. In the example above, Node 26 corresponds to the 53
rd
 and 54

th
 DOF and the matrix shows 

how edge tension 
33

T
T  contributes to the calculated forces.  

 

 

Pressures: 

 

The geometric matrix GP relates the pressure in a cell to the forces exerted at its perimeter nodes. For 

each side, the effect is equivalent to a distributed load normal to the edge. To represent the force in 

Cartesian coordinates, binormal vectors are employed as shown in Figure 2.13. 
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Figure 2.13 ï Development of pressure geometric matrix (Cranston, 2009) 

 

Two vectors are defined where vector c  extends from the node to the center of the cell, and vector e  

extends along the edge on which the pressure is acting. By taking the cross product of the two vectors in 

Eq. (2.12), a new vector n (normal to the cell plane) is defined. Taking the second cross product with 

vector e  and vector n  in Eq. (2.13), vector 'R  pointing perpendicular to the cell edge is created. Vector 

'R  is then scaled to give R , such that the resultant force on the node is RP  determined from Eq. (2.8). 

The resulting R  is determined from Eq. (2.14), where l is the length of the edge the pressure is being 

applied. 

 

 cen ³=             (2.12) 

neR ³='             (2.13) 
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The resultant vector R  is defined in 
3

Á , having 3 components x, y, and z. However, the two 

dimensional nature of the problem allows the z-component to always be zero; while the x and y 

components are incorporated in the GP geometric matrix. Equation 2.15 demonstrates the placement of 

these components for Cell 3 at Node 11 from Figure 2.11. The 
3,23

P
G  has two terms, Rx

(12)
 and Rx

(13)
 where 

the symbol Rx refers to the x component of vector R  and includes the contribution of the distributed 

pressure from edge 12 and 13.  
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Solution : 

 

With the tension and pressure geometric matrix assembled, the unknown edge tensions and pressures in 

the system of equations can be solved by equating Eq. (2.7) and Eq. (2.9). Generally speaking, a system 

of equations can either be underdetermined, overdetermined, or hold a unique solution. If a system is 

underdetermined, it will have an infinite number of solutions whereas, an overdetermined system will 

have no unique solution. A patch of cells surrounded by medium generally has more equations than 

unknowns and tends to be an overdetermined system.  

 

There are many different methods to find an approximate solution for an overdetermined system. The 

most common method is known as the least square method and it determines the solution with the lowest 

residual (RMS) error r .  A suitable set of equations is formed by premultiplying the left and right side of 

Eq. (2.17) by GT (Nash, 1990). 

 

FGTr -=            (2.16) 

FGGTG
TT

=               (2.17) 

 

 

2.4.2 Applying VFM to Synthetic Data  
 

Extensive tests and simulations were conducted to verify the inversion algorithm. Many synthetic patches 

of cells were generated using Simbaôs 2D Voronoi Generator and these were run in the standard forward 

direction so that the time course was obtained. The data from this forward model was then used as the 

input for the Scar algorithm, so it could calculate the edge tensions and pressures through the 

mathematical algorithm described in the previous section. Different configuration and load experiments 

were conducted and the inversion algorithm was able to accurately depict the driving forces. 

 

 

2.4.3 VFM on Live Data for Ventral F urrow  Formation   
 

Ventral furrow formation (see Figure 2.14) is an important morphogenetic process in Drosophila, and it 

occurs over a period of approximately twenty minutes. This process is relatively simple and well 

understood by researchers although a lack of quantitative and numerical analysis still exists (Leptin, 

1999). VFM, however, allowed the edge tensions and pressures that drive this process to be mapped.  
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Figure 2.14 ï Ventral furrow invagination (Brodland et al., 2010b) 

 

The first step in conducting VFM on experimental data is to collect images of the embryo at regular 

intervals during the development process. The cell edges are made visible through florescent markers 

(Kaltschmidt et al., 2002). A sample of a typical image with florescent-dyed embryo is shown in Figure 

2.15. Individual cells are then demarcated using the watershed technique (Beucher & Meyer, 1992).  

 

 
Figure 2.15 ï Sample image of a florescent dyed embryo. a) The whole 

Drosophila embryo dyed in florescent markers. b) Image capturing a section of the 

embryo. The upper half of the image shows the amnioserosa cells and the bottom 

half of the image shows the epidermis cells. (Kaltschmidt et al., 2002) 

 

The cellularized images were then digitized and used as input for VFM. VFM showed that a strong 

tension acted along the apical surface of the dorsal-most cells, while the inside surface of the upper cells 

(the ectoderm) was also under tension. Figure 2.16 shows the tensions as a function of angular position 

and time. The edge tensions yielded a parabolic profile as a function of angular position where the 

maximum edge tension occurred at the base of the cross section or the angular position of zero degrees 

(Brodland et al., 2010b; Conte et al., 2012).  

 

a) b) 
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Figure 2.16 ï VFM results of ventral furrow invagination  (Brodland et al., 2010b) 

 

This study was able to demonstrate the potential of using VFM to study embryogenesis. Mutant 

phenotype embryos were also studied. Bnt was used to test the contribution of surrounding forces, arm 

was used to determine the role of cell-cell adhesion, and cta/t48 was used to test the contribution of apical 

constriction. The potential of VFM as a tool to study morphogenetic problem was well demonstrated and 

was of great interest to analyze other morphogenetic processes (Conte et al., 2012).  

 

 

2.4.5 VFM Applied to Wound H ealing  
 

Wound healing in Drosophila embryos is another well known morphogenetic process. When a wound is 

introduced, the surrounding cells undergo significant movements and shape changes as the healing 

progresses. Figure 2.17 is a sample of one of many wound healing experiments conducted in Professor 

Hutsonôs lab, where a laser point wound was initiated and the healing progress was captured using a 

confocal microscope.  

 

 
Figure 2.17 ï Point wound experimental data healing process  
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