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ABSTRACT 
	  

Changes in intracellular Ca2+ ([Ca2+]f) and high-energy phosphates are known to 

induce adaptive changes in skeletal muscle during endurance exercising training, 

including mitochondrial biogenesis. Levels of [Ca2+]f are regulated by 

sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) which are further regulated by 

sarcolipin (SLN), through a reduction in the apparent affinity of SERCAs for Ca2+. 

Furthermore, SLN reduces the efficiency of Ca2+ transport by SERCAs supporting a 

thermogenic role for SLN in skeletal muscle. Thus, it is possible SLN ablation could 

reduce Ca2+ and metabolic signaling during exercise training and attenuate increases in 

mitochondrial content. To investigate the potential role of SLN in the exercise-induced 

adaptive response of skeletal muscle, mice devoid of SLN (SLNKO) underwent 

endurance training for 8 weeks and were compared to WT controls. Maximal oxygen 

uptake (V̇O2 max) was measured with an exercise stress test while mitochondrial content 

was assessed through measurement of protein expression and maximal enzyme activities 

of several mitochondrial enzymes in soleus and extensor digitorum longus (EDL) 

muscles, which express high and low levels of SLN, respectively. All data were analyzed 

using a two-way analysis of variance (ANOVA) and student t-tests were conducted on 

enzyme data. V̇O2 max was found to not be significantly altered with exercise training in 

either genotype. Exercise training significantly increased the contents of adenine 

nucleotide translocase (ANT), cytochrome-c (cyt-c) and cytochrome-c oxidase subunit IV 

(COXIV) in soleus independent of genotype. Likewise, exercise training significantly 

increased cyt-c and COXIV expression (P<0.04), while increases in ANT expression 

were not significant (P=0.13) in the EDL. Two-way ANOVAs of mitochondrial enzymes 
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in soleus revealed an interaction existed for succinate dehydrogenase (SDH) where its 

activity was increased only in the SLNKO mice (P<0.02). In comparison, exercise 

training significantly elevated activities of cytochrome c oxidase (COX) and citrate 

synthase (CS) activities (P<0.02) but not β-hydroxyacyl-CoA dehydrogenase (β-HAD; 

P=0.08), independent of genotype. Upon closer examination using student t-tests, it was 

determined that exercise training induced greater increases in COX and CS activity in 

SLNKO compared to WT controls (P<0.02), similar to and consistent with SDH data. In 

EDL, only SDH activity increased following exercise training, an effect that was 

independent of genotype. In conclusion, these data suggest that SLN ablation does not 

attenuate exercise-induced mitochondrial adaptations and may increase mitochondrial 

enzyme adaptations to exercise training in slow-twitch muscle. Further examination of 

the effects of SLN on Ca2+ and metabolic signaling may provide mechanisms explaining 

the results of this thesis. 
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Thesis Overview 
	  
 It is well known that endurance exercise training induces an adaptive response 

within skeletal muscle to increase oxidative capacity (Holloszy and Booth, 1976). Only 

recently we have been able to identify several muscle contraction signals and 

corresponding signaling pathways involved in the regulation of mitochondrial gene 

expression with exercise training. In the exercising skeletal muscle, increases in the 

[AMP]/[ATP] ratio and elevations in intracellular Ca2+ ([Ca2+]f) can stimulate 

mitochondrial biogenesis through induction of the PGC-1α expression and activity, 

resulting in mitochondrial gene expression (Joseph et al., 2006). PGC-1α is considered to 

be a major regulator of mitochondrial biogenesis in skeletal muscle (Lin et al., 2005; Lira 

et al., 2010).  

During exercise, decreases in ATP coinciding with increases in AMP, activate 

AMP-protein kinase (AMPK), an enzyme regulating energy status in skeletal muscle 

(Hardie and Sakamoto, 2006). Activation of AMPK induces metabolic changes including 

mitochondrial biogenesis, gene expression of proteins regulating glucose and fatty acid 

(FA) uptake, and stimulation of FA oxidation (Jørgensen et al., 2006). Studies utilizing 

pharmacological agents such as AICAR (5-Aminoimidazole-4-carboxamide 

ribonucleotide) or transgenic animals, have demonstrated the importance of AMPK 

signaling in mitochondrial biogenesis (Jørgensen et al., 2006). Elevation in [Ca2+]f 

resulting from increased motor activation during exercise promotes the activation of two 

primary Ca2+-dependent transcriptional pathways promoting mitochondrial biogenesis. 

Increases in Ca2+ transient duration and amplitude represent primary exercise signals that 

are decoded by Ca2+-dependent signaling molecules such as Ca2+/calmodulin-dependent 
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kinases (CaMKII and CaMKIV) and calcineurin (CnA). Studies using cultured myocytes 

and transgenic animals have shown that increases in [Ca2+]f induce expression of 

mitochondrial enzymes concomitant with transcription factors promoting mitochondrial 

biogenesis (Chin, 2005). 

The essential role of Ca2+ as an intracellular signaling molecule in numerous 

cellular processes is well established, particularly in excitation-contraction (EC) coupling 

(Rasmussen, 1986; Berchtold et al., 2000).  The rate of contraction and relaxation of a 

muscle is governed by the release and uptake of Ca2+ by the sarcoplasmic reticulum (SR). 

Uptake of Ca2+ by sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) promotes 

relaxation and the activity of SERCAs can be altered by the SERCA regulatory protein, 

sarcolipin (SLN; Tupling, 2009). Specifically, SLN reduces the apparent affinity of 

SERCA for Ca2+ and reduces the optimal coupling ratio from 2:1 (Ca2+:ATP hydrolyzed). 

Experiments utilizing cardiomyocytes and skeletal muscle have demonstrated the 

significant role of SLN in regulating SERCA. First, the absence of SLN increases 

SERCA efficiency and reduces skeletal muscle metabolism when compared to wild type 

(WT) counterparts (Bombardier et al., unpublished; Bal et al., 2012). Secondly, ablation 

of SLN alters Ca2+ transients and enhances contractility in both cardiomyocytes 

(Gramolini et al., 2006; Bhupathy et al., 2007; Bhupathy et al., 2009), and skeletal 

muscle (Tupling et al., 2011). The ability of SLN to regulate skeletal muscle metabolism 

and Ca2+ transients suggests that SLN may modulate the adaptive response of skeletal 

muscle to increase oxidative capacity with endurance exercise training. The role of SLN 

in exercise training-induced mitochondrial biogenesis is unknown. Thus it is of interest to 

determine if SLN ablation has an effect on exercise-induced mitochondrial biogenesis in 
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skeletal muscle. Since SLN ablation would be expected to reduce metabolic signals that 

activate AMPK and increase the amplitude and decrease the duration of Ca2+ transients, it 

is hypothesized that exercise- induced mitochondrial biogenesis would be attenuated in 

SLN knock-out mice (SLNKO) compared to wild type (WT) controls.  
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Introduction 

Exercise Training and Mitochondrial Biogenesis 

It has been long known that endurance exercise training is a potent inducer of 

mitochondrial biogenesis and increases oxidative capacity in skeletal muscle (Holloszy 

and Booth, 1976; Coffey and Hawley, 2007; Hood, 2009; Gunderson, 2011). 

Furthermore, differences in oxidative capacity between fibre types could be attributed to 

differences in oxidative genes expressed (Chin, 2005) which is influenced by the pattern 

of muscle excitation (Pette and Staron, 1997). Holloszy (1967) first demonstrated that 

endurance exercise training resulted in greater fatigue resistance that occurred 

concomitant with elevated mitochondrial content and enzyme activities. Since then, 

extensive research has gone into identifying the mechanisms by which exercise increases 

skeletal muscle oxidative capacity. 

Increased mitochondrial content accompanying chronic contractile activity is 

commonly referred to as mitochondrial biogenesis. This process is complex and requires 

coordinated expression of nuclear and mitochondrial encoded genes, which is regulated 

by several important transcriptional factors (Joseph et al., 2006).  One such protein 

mediating these adaptations is the peroxisome proliferator-activated receptor γ 

coactivator-1α (PGC-1α), a transcriptional co-activator that has been identified as the 

“master” regulator of mitochondrial biogenesis (Lin et al., 2005; Lira et al., 2010). 

Downstream targets of PGC-1α include the nuclear respiratory factors 1 and 2 (NRF-1, 

NRF-2) and mitochondrial transcription factor A (TFAM), which regulate the expression 

of several nuclear encoded electron transport chain (ETC) genes and mitochondrial DNA 

(mtDNA), respectively (Scarpulla, 2002; Baar, 2004).  
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Multiple signaling pathways have been implicated in regulation of PGC-1α 

expression and/or activity at transcriptional and post-translational levels. These signaling 

pathways are activated through the concerted action of intramuscular metabolic signals 

generated during contractile activity. Decreased levels of high-energy phosphates (Hardie 

and Sakamoto, 2006), generation of reactive oxygen species (ROS; Powers et al., 2011), 

and increased levels of [Ca2+]f  (Chin, 2005), which has been suggested to be fundamental 

for inducing skeletal muscle mitochondrial biogenesis, have been implicated in the 

adaptive response of skeletal muscle to endurance exercise training. The remainder of 

this thesis will focus on the role of Ca2+ and metabolic signaling in mitochondrial 

biogenesis. 

 

The Role of Ca2+ in Skeletal Muscle Mitochondrial Biogenesis 

The intensity of muscle loading during exercise is associated with distinct patterns 

of muscle excitation (Pette and Staron, 1997) and oscillations of [Ca2+]f. In addition to 

eliciting contraction, the duration and amplitude of Ca2+ transients determine genes 

expressed. This link between muscle excitation and gene transcription is called excitation 

transcription coupling (Chin, 2004). Numerous studies have demonstrated increased 

[Ca2+]f is fundamental in activating transcriptional responses to increase mitochondrial 

content in cultured myocytes and transgenic animals where Ca2+ handling is altered 

(Chin, 2005). Changes in the amplitude and temporal distribution of Ca2+ are decoded by 

at least two major Ca2+-signaling molecules; calcineurin, a Ca2+/calmodulin-dependent 

protein phosphatase, and Ca2+/calmodulin-dependent protein kinases (CaMKs; Chin, 

2004) (Figure 1). Calcineurin is activated by sustained, low amplitude elevations in 
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[Ca2+]f, typical of slow-twitch (type I) fibres activated by low frequencies (10-30 Hz; 

Chin, 2004). In contrast, CaMKs are sensitive to greater amplitudes and frequencies of 

Ca2+ transient oscillations, which is representative of fast-twitch (type II) fibre activation. 

A number of CaMK isoforms exist; however, CaMKII appears to be predominantly 

expressed in skeletal muscle (Chin, 2005). CaMKII activity and expression is rapidly 

increased at the onset of exercise and sustained throughout the duration of activity (Rose 

et al., 2006). Furthermore, the magnitude of CaMKII activation is dependent on the 

intensity of exercise (Rose et al., 2006) and remains elevated following exercise training 

(Rose et al., 2007). Thus, repeated elevations of [Ca2+]f occurring with exercise, increase 

the activation of these Ca2+ signaling molecules. 

 
Figure 1. Ca2+-dependent transcriptional signaling (adapted from Chin, 2005). 
Abbreviations: Ca2+/calmodulin-dependent protein kinases (CaMK), p38γ mitogen 
activated protein kinase (p38γ MAPK), peroxisome proliferator-activated receptor γ 
coactivator-1α (PGC-1α), histone deacetylase (HDAC), nuclear factor of activated T-
cells (NFAT), nuclear respiratory factors (NRF) 1 and 2, peroxisome proliferator-
activated receptors (PPARs) and myocyte enhancer factor-2 (MEF2). 
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 Initial experiments showed continuous treatment of L6 myotubes with a Ca2+ 

ionophore increased mRNA expression of cytochrome-c (cyt-c; Freyssenet et al., 1999) 

and protein expression of mitochondrial enzymes, δ-aminolevulinate synthase (ALAS) 

and cytochrome oxidase subunit 1 (COX1; Ojuka et al., 2002). However, continuous 

exposure to a Ca2+ ionophore had a detrimental effect on cell viability and caused a loss 

of myotubes (Ojuka et al., 2002). To circumvent this, intermittent treatment of L6 

myotubes (5h/day) with other Ca2+ mobilizing agents (ionomycin, caffeine or W7) 

increased protein expression of ALAS, COX, and cyt-c without myocyte loss (Ojuka et 

al., 2002). Furthermore, intermittent caffeine exposure of L6 myotubes increased protein 

expression of PGC-1, NRF-1, NRF-2, and TFAM, an adaptation that was prevented by 

dantrolene (RyR blocker) or EGTA (Ca2+ chelating agent; Ojuka et al., 2003). The 

exposure of cultured myocytes to Ca2+ agonists, is intended to mimic exercise conditions 

where [Ca2+]f would be elevated in skeletal muscle. Increases in mitochondrial protein 

expression occurring with rising [Ca2+]f in cultured myocytes demonstrate the importance 

of Ca2+ in mediating mitochondrial biogenesis. 

One limitation of cell culture studies is that the levels of [Ca2+]f do not reflect 

physiological conditions. In vivo evidence of Ca2+ mediated mitochondrial biogenesis has 

come from several studies involving transgenic animal models. For example, mice 

lacking parvalbumin (PV), a Ca2+ buffering protein expressed exclusively in fast twitch 

muscle, display a slower rate of [Ca2+]f decay compared to WT mice (Chen et al., 2001). 

Consequently, fast-twitch muscle displays increased fatigue resistance, mitochondrial 

fractional volume, and expression of mitochondrial proteins (Chen et al., 2001; Racay et 

al., 2006). The lack of PV allows [Ca2+]f to remain elevated and activate calcineurin 
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and/or CaMKs resulting in transcriptional signaling to increase mitochondrial content. 

Conversely, overexpression of PV in mouse slow-twitch muscle decreased twitch and 

relaxation times which was associated with reduced calcineurin activity and lowered 

oxidative capacity (Chin et al., 2003). Both PV transgenic models confirmed that the 

oxidative capacity of skeletal muscle is modulated by physiological alterations to Ca2+ 

regulatory proteins and their consequent alterations to [Ca2+]f . 

Further support for Ca2+-dependent mitochondrial biogenesis has come from 

transgenic mouse models where Ca2+ signaling molecules have been altered. 

Overexpression of a constitutively active form of CaMKIV increased both mitochondrial 

content and the proportion of type I fibres, and increased resistance to fatigue in skeletal 

muscle (Wu et al., 2002). However, CaMKIV is not expressed in skeletal muscle, 

whereas CaMKII appears to be the dominant isoform (Wu et al., 2002; Rose et al., 2006). 

Consistent with the lack of CaMKIV in skeletal muscle, mice without CaMKIV 

responded to long-term voluntary running with similar increases compared to WT mice in 

oxidative and slow-fibre specific proteins (Akimoto et al., 2004). In another example, 

mice expressing activated calcineurin displayed enhanced lipid oxidation (Long et al., 

2007) and greater skeletal muscle oxidative capacity (Jiang et al., 2010). The resultant 

increase in skeletal muscle mitochondrial content and oxidative capacity occurring with 

manipulation of calcineurin and CaMK expression in transgenic mice provide further 

evidence that activation of Ca2+ signaling is important for mitochondrial biogenesis.  
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The Role of AMPK in Skeletal Muscle Mitochondrial Biogenesis 

AMPK is an energy-sensing enzyme that is activated during exercise (Hardie and 

Sakamoto, 2006; Jørgensen et al., 2006; Freyssenet, 2007). More specifically, AMPK is 

activated when the concentration of high-energy phosphates are decreased or through 

phosphorylation by upstream kinases such as liver kinase B1 (LKB1) and CaMK kinase β 

(CaMKK-β; Hardie and Sakamoto, 2006). In addition to responding to metabolic stress, 

AMPK can also be activated by increased ROS production (Hood, 2009; Lira et al., 

2010). Activation of AMPK in skeletal muscle induces metabolic changes to glucose and 

fatty acid metabolism, and increases in mitochondrial gene expression (Figure 2; Hardie 

and Sakamoto, 2006; Jørgensen et al., 2006). Moreover, it has been demonstrated that 

activation of AMPK is highly responsive to exercise in a time and intensity dependent 

manner (Stephens et al., 2002; Chen et al., 2003). Thus, increases in the [AMP]/[ATP] 

ratio occurring in endurance exercise would activate AMPK signaling to reduce 

metabolic stress in skeletal muscle. 
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Figure 2. AMPK-dependent transcriptional signaling. Abbreviations: Ca2+/calmodulin-
dependent protein kinase β (CaMKK-β), liver kinase B1 (LKB1), sirtuin 1 (SIRT1), 
AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ 
coactivator-1α (PGC-1α), histone deacetylase (HDAC), nuclear factor of activated T-
cells (NFAT), nuclear respiratory factors (NRF) 1 and 2, peroxisome proliferator-
activated receptors (PPARs) and myocyte enhancer factor-2 (MEF2). 

 

The role of AMPK signaling for mitochondrial biogenesis has come from 

numerous cell and animal studies utilizing pharmacological agents. Treatment of L6 

myotubes with the AMPK agonist AICAR (5-aminoimadazole-4-carboxamide riboside) 

has been shown to increase expression of cyt-c, CS (Ojuka et al., 2002a) and PGC-1α 

(Irrcher et al., 2003). Likewise, administration of AICAR to mice induced increases in 

cyt-c, COX1 and CS expression in vivo (Jørgensen et al., 2007). Another drug, β-

guanadinopropionic acid (β-GPA), has been used to mimic chronic energy deprivation by 

inhibiting creatine kinase in non-exercising muscle. Treatment with β-GPA in mice 

expressing a dominant-negative mutant of AMPK (DN-AMPK) failed to increase 
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mtDNA or protein expression of cyt-c and ALAS, whereas WT controls displayed 

significant increases in the aforementioned mitochondrial markers (Zong et al., 2002). 

These results provide evidence that activation of AMPK or imitation of high-energy 

phosphate depletion can increase mitochondrial content. Moreover, increases in PGC-1α 

expression (Irrcher et al., 2003) and promoter activity (Irrcher et al., 2008) have been 

demonstrated in vivo and in vitro during contractile activity. Recently, the activity of 

AMPK has been linked to the actions of sirtuin 1 (SIRT1), an enzyme responsible for 

deactylation of proteins including PGC-1α (Cantó et al., 2010; Yan et al., 2011), further 

demonstrating the importance of AMPK in regulating mitochondrial biogenesis. 

Specifically, AMPK was shown to enhance the activity of SIRT1 through increasing 

cellular levels of NAD+ (Cantó et al., 2009). Thus, these studies demonstrate that 

increased AMPK signaling induces the expression and activity of transcriptional proteins 

involved in mitochondrial biogenesis. 

 

Excitation - Contraction Coupling and Regulation of Ca2+ 

Skeletal muscle EC coupling describes the processes linking an action potential to 

contraction of striated muscle. More specifically, it is the link between sarcolemmal 

depolarization and release of intracellular free Ca2+ ([Ca2+]f ); Dulhunty, 2006). This 

process begins with the generation of an action potential by the α-motor neuron, which 

travels along the sarcolemmal membrane towards the transverse tubule (T-tubule). 

Located here are voltage sensitive dihydropyridine receptors (DHPRs), which physically 

interact with ryanodine receptors (RyRs) located adjacently on the sarcoplasmic 

reticulum (SR) to form Ca2+ release units. Changes in voltage induced by depolarization 
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are sensed by DHPRs triggering a conformational change. This results in opening of the 

RyRs of the SR and subsequent Ca2+ efflux into the cytosol (Rossi and Dirksen, 2005). 

Increased levels of [Ca2+]f  allows Ca2+ to bind troponin-C along the actin thin filament, 

which removes steric inhibition of tropomyosin, and exposes myosin-binding sites along 

actin. As a result, strong binding state crossbridge formation occurs between actin and 

myosin. The release of inorganic phosphate (Pi) and adenosine diphosphate (ADP) causes 

myosin crossbridge movement, producing contraction and generation of force. Relaxation 

occurs with termination of the action potential, closure of RyRs, and uptake of Ca2+ into 

the SR by the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs; Meissner and Lu, 

1995; Melzer et al., 1995; Stephenson et al., 1998). 

The primary regulators of [Ca2+]f  in resting muscle are SERCA pumps (Wu and 

Lytton, 1993). These are SR integral membrane proteins comprised of a large 

cytoplasmic headpiece with three domains (actuator, nucleotide binding, and 

phosphorylation), ten transmembrane helices (M1-M10), and short luminal loops 

(Toyoshima and Inesi, 2004). Several SERCA isoforms exist within mammalian muscle; 

fast-twitch skeletal muscle predominantly expresses SERCA1a while slow-twitch skeletal 

muscle and cardiac muscle express SERCA2a (Wu and Lytton, 1993). The uptake of 

Ca2+ into the SR is an energy-dependent process due to a large Ca2+ gradient (>104) 

across the SR membrane (Rossi and Dirksen, 2005). Under optimal conditions, SERCAs 

can transport 2 Ca2+ ions into the SR for each ATP hydrolyzed. This coupling ratio (2:1) 

is in agreement with the two Ca2+ binding sites and one ATP binding site found on each 

SERCA molecule, as determined by X-ray crystallography (Rossi and Dirksen, 2005; 
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Toyoshima and Inesi, 2004). However, the coupling ratio is reduced under physiological 

conditions (de Meis, 2001b; Smith et al., 2001; Bombardier, 2010). 

A SERCA reaction cycle begins with binding of 2 Ca2+ ions to a high affinity 

Ca2+ binding pocket found in the transmembrane domain facing the cytoplasm (Asahi et 

al., 2003; Morita et al., 2007). ATP binding to the nucleotide binding domain results in 

phosphorylation of SERCA. Subsequently, this induces conformational change of the 

transmembrane domain transforming the Ca2+ binding pocket to a state of low Ca2+ 

binding affinity as it faces the SR lumen (Lee, 2002). One cause of reduced SERCA 

coupling ratio is a premature release of Ca2+ to the cytoplasm during conformational 

changes, commonly referred to as slippage (Mall et al., 2006). This is a result of 

decreased Ca2+ affinity of SERCAs due to high luminal [Ca2+] within the SR, or the 

presence of SERCA regulatory proteins such as sarcolipin (SLN; Odermatt et al., 

MacLennan et al., 2003; Tupling, 2009). SLN can physically interact with SERCAs and 

block the Ca2+ binding pocket within the transmembrane domain, thus altering Ca2+ 

binding affinity and causing slippage (Bhupathy et al., 2007). Ultimately, less Ca2+ is 

taken up into the SR and remains in the cytosol thereby modulating Ca2+ transients and 

potentially, activation of transcriptional signaling. Furthermore, slippage reduces the 

transport of Ca2+ and energy derived from ATP hydrolysis is converted to heat, thereby 

uncoupling the two processes (Smith et al., 2002). As a result, in the presence of SLN, a 

greater amount of ATP is required to transport Ca2+ into the SR and there is an increase 

in heat production. The significant role SLN has in Ca2+ uptake and skeletal muscle 

thermogenesis suggests it may be important in regulating Ca2+ and AMPK-mediated 

mitochondrial biogenesis, a hypothesis that will be tested in this thesis. 
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Regulation of SERCA by SLN 

SLN is a small 31 amino acid SR integral membrane protein that physically 

interacts with SERCA and effectively inhibits its activity by reducing the apparent Ca2+ 

affinity of SERCA (Odermatt et al., 1998). Sequencing of SLN revealed it is comprised 

of a 7 amino acid N-terminal domain, a 19 amino acid transmembrane domain, and a 5 

amino acid C-terminal domain protruding into the SR lumen (Odermatt et al., 1997). 

SLN was originally identified as a low molecular weight proteolipid associated with 

SERCA1a of rabbit fast-twitch skeletal muscle (MacLennan et al., 1974). Since then, 

protein expression of SLN has been found to be both tissue and species specific 

(Vangheluwe et al., 2005; Babu et al., 2007). In small mammals such as mouse, SLN is 

highly expressed in tongue, diaphragm, soleus, red gastrocnemius (RG), and atria, and to 

a lesser extent in extensor digitorum longus (EDL), white gastrocnemius (WG), and 

ventricle of the heart. In larger mammals such as dog and rabbit, SLN expression was 

found in all skeletal muscles examined and atrium, but not in ventricle (Vangheluwe et 

al., 2005; Babu et al., 2007; Tupling et al., 2011). 

 Over the past three decades, SLN has emerged as an important regulator of 

SERCA activity. The physiological role of SLN has been well researched in cardiac 

muscle but less is known about its function in skeletal muscle. SLN regulates SERCA in 

part through its physical interactions with SERCAs Ca2+ binding sites (Asahi et al., 

2003), reducing the apparent affinity for Ca2+ (Tupling et al., 2002; Tupling et al. 2011). 

The inhibitory effect of SLN was found to be reversible in cardiac muscle whereby SLN 

inhibition is relieved upon phosphorylation (Gramolini et al., 2006; Bhupathy et al., 

2009). Regulation of SLN function in skeletal muscle has yet to be elucidated however 
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recent evidence has suggested that a similar mechanism exists (Tupling et al., 2011). 

Further research is needed to confirm whether phosphorylation/dephosphorylation 

processes in skeletal muscle regulate SLN. 

 

SLN Expression Alters Ca2+ Transients and Muscle Contractility 

The role of SLN in regulating SERCA has been well established. Despite this, the 

physiological role of SLN has only been investigated recently and is slowly being 

clarified. As a consequence of reduced Ca2+ affinity of SERCA, SLN was found to alter 

Ca2+ handling dynamics and muscle contractility (Tupling, 2009). Overexpression of 

SLN in cardiomyocytes reduced Ca2+ uptake and Ca2+ transient amplitude, resulting in 

impaired cardiac contractility (Babu et al., 2006; Gramolini et al., 2006). The reduction 

in Ca2+ uptake is thought to prolong Ca2+ transient duration and decrease SR refilling of 

Ca2+, thereby diminishing subsequent Ca2+ release and contractile force. Likewise, SLN 

overexpression in slow-twitch skeletal muscle decreased peak twitch and tetanic force, 

reduced muscle contractility, and increased muscle fatigability (Tupling et al., 2002). 

Furthermore, in nebulin-free skeletal muscle, SLN expression was reported to be 

upregulated and was associated with lower maximal Ca2+ transport and longer half-

relaxation time (Ottenheijm et al., 2008). In cardiac muscle, with an enhancement in Ca2+ 

uptake, SR refilling is increased which effectively results in greater Ca2+ release upon 

subsequent stimulation and greater contractility. Not surprisingly, ablation of SLN in 

atria increased the affinity of SERCA for Ca2+ resulting in increased Ca2+ transient 

amplitudes and enhanced contractility (Babu et al., 2007; Xie et al., 2012). Moreover, 

skeletal muscle devoid of SLN displayed increased Ca2+ uptake and enhanced relaxation 
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(Tupling et al., 2011). It is evident that SLN is a key regulator of [Ca2+]f, whereby it 

affects SR Ca2+ uptake and subsequently skeletal muscle contractility. Furthermore, SLN 

overexpression has been shown to reduce the amplitude and prolong the duration of Ca2+ 

transients thereby potentially impacting transcriptional signaling activated by exercise 

training. In particular, given the known role of SLN on Ca2+ handling, it is possible that 

SLN could exert an effect on Ca2+-dependent signaling in mitochondrial biogenesis. 

 

SLN Ablation Improves SERCA Energetic Efficiency 

SLN is known to effectively inhibit SERCAs through reduction of the apparent 

affinity for Ca2+ (Odermatt et al., 1998) and as a result, uncouples ATP hydrolysis from 

the movement of Ca2+ (Smith et al., 2002). The uncoupling of ATP hydrolysis by SLN 

has been shown to increase the production of heat (Smith et al., 2002; Mall et al. 2006). 

Thus, in the absence of SLN, uncoupling is reduced and less energy is required to 

transport Ca2+ into the SR. In support of this, SLNKO mice have a higher SERCA 

coupling ratio in isolated soleus compared to their WT counterparts. Furthermore, 

SLNKO mice display lower whole body V̇O2 under sleeping and resting conditions 

(Bombardier et al., unpublished). Recently it has been demonstrated that SLNKO mice 

exhibit impaired muscle-based thermogenesis in skeletal muscle and are more susceptible 

to diet-induced obesity (Bal et al., 2012). The effect of SLN on skeletal muscle 

thermogenesis provides evidence that SLNKO mice are more energy efficient. Therefore, 

it might be expected that SLN influences the energy status of skeletal muscle during 

exercise and potentially could play a role in AMPK-mediated mitochondrial biogenesis. 
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Study Rationale 
	  
 SLN is an important regulator of SERCAs, which is apparent by its effects on 

Ca2+ handling and contractility in cardiac and skeletal muscle. Furthermore, the effect of 

SLN on SERCA energetics suggests it is an important regulator of muscle thermogenesis 

and whole body metabolism. It is well recognized that elevated [Ca2+]f and decreases in 

high energy phosphates are important signals activating mitochondrial biogenesis in 

skeletal muscle. Given the importance of [Ca2+]f and metabolic signaling in exercise 

induced mitochondrial biogenesis, it is of interest to determine if SLN ablation would 

alter the adaptive response to exercise training. Previously it was shown that skeletal 

muscle oxidative metabolism did not differ between WT and SLNKO mice under 

sedentary or voluntary exercising conditions (Gamu, 2012); however, the exercise 

stimulus was too mild to elicit an adaptive response and reveal potential phenotype 

differences. This study expands on the earlier study by using a forced exercise training 

protocol to investigate if any phenotype differences in exercise induced mitochondrial 

biogenesis between trained WT and SLNKO mice exist. To investigate if SLN ablation 

alters the adaptive response to exercise training, an examination of oxidative capacity in 

WT and SLNKO mice in response to endurance exercise training was conducted. 
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Study Objectives and Hypotheses 
	  

Objectives 

1) Determine if the adaptive increase in skeletal muscle mitochondrial content in 

response to endurance exercise training is altered in the soleus muscle of SLNKO 

mice in comparison to WT mice. 

2) Determine if the adaptive increase in skeletal muscle mitochondrial content in 

response to endurance exercise training is altered in the EDL muscle of SLNKO 

mice in comparison to WT mice. 

Hypotheses 

1) Given that SLN ablation has been shown to reduce the duration and increase the 

amplitude of Ca2+ transients, it would be expected that a reduction in the duration 

of [Ca2+]f oscillations would reduce the activation of transcriptional signaling. 

Therefore it is hypothesized that SLNKO mice would display an attenuated 

response to increasing mitochondrial content in soleus following endurance 

exercise training compared to WT mice. 

2) Fast-twitch muscles, such as extensor digitorum longus, have low endogenous 

levels of SLN thus, it would be expected that no genotype differences in 

mitochondrial enzymes would exist between WT and SLNKO mice following 

endurance exercise training.	  
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Methods 
	  

Experimental Animals 

 SLNKO mice (Babu et al., 2007) were generously donated by Dr. Muthu 

Periasamy from the Ohio State University and were used to establish a breeding colony at 

the University of Waterloo. SLNKO mice were crossbred with mice of a C57BL/6 

background to create heterozygous SLN null (HET, +/-) breeding pairs. Breeding of HET 

mice yielded homozygous SLN knockout (SLNKO, -/-), heterozygous (HET, +/-), and 

homozygous wild type (WT, +/+) mice. Mouse genotype was determined at four weeks 

of age, where ear clippings were taken, digested, and DNA extracted using a PureLink 

DNA kit (Invitrogen). Approximately 50 ng of extracted DNA was added to a Taq DNA 

polymerase mixture (Fermentas) containing 3 mM MgCl2, 200 µM dNTP, 10x Taq buffer 

(containing 750 mM Tris-HCL, 200 mM (NH4)2SO4, and 0.1% (v/v) Tween 20), 1.5 µL 

Taq DNA polymerase, and 0.4 µM of appropriate forward and reverse primers (WT 

forward: 5’-TGT CCT CAT CAC CGT TCT CCT-3’, WT reverse: 5’-GCT GGA GCA 

TCT TGG CTA ATC-3’, SLNKO forward: 5’- GTG GCC AGA GCT TTC CAA TA-3’, 

SLNKO reverse: 5’- CAA AAC CAA ATT AAG GGC CA-3’). Extracted DNA was 

placed in a thermal cycler (S1000 Thermal Cycler; Bio-Rad) and denatured at 94ºC for 3 

min, followed by 30 cycles of denaturation at 94ºC for 30 sec, annealing at 54ºC for 30 

sec, and extension at 72ºC for 60 sec, finishing with a final extension at 72ºC for 7 min. 

Amplified target DNA was resolved using electrophoresis on a 1% agarose gel containing 

0.013% ethidium bromide (BioShop), and identified under UV light using a bio-imaging 

system and GeneSnap software (Syngene). 
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 At 3-4 months of age, WT and SLNKO male mice were separated into individual 

cages and housed in a temperature-controlled room under a reverse light/dark cycle 

(12/12 hr). Mice were given ad libitum access to water and standard rodent chow (22/5 

Rodent Diet 8640; Harland-Tekland, Madison, WI). All animal experiments were 

approved by the University of Waterloo Animal Care Committee and performed in 

accordance with guidelines by the Canadian Council on Animal Care.  

 

Treadmill Acclimation 

Prior to initiation of the exercise-training program, mice were acclimated to a 

motor driven treadmill for one week (Exer -3/6 Treadmill; Columbus Instruments). The 

treadmill was divided into six lanes and a pulsed stimulus platform (200ms bursts with 

user adjustable rate) was used to provide a mild shock to promote running. Mice were 

acclimated over five consecutive days for 20 min each day. The first three days consisted 

of sitting on the treadmill for 5 min, followed by 15 min of running at 9 m/min at 0° 

incline. During the last two days of treadmill acclimation, mice sat on the treadmill for 5 

min followed by running for 15 min at 9 m/min and a 5° incline.  

 

Exercise Training 

 At the end of the acclimation period, WT and SLNKO male mice (n=36) were 

randomly assigned to either an exercise-training group or a control group (Figure 3, n=9 

per group). Body weights of mice were monitored weekly.  
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Figure 3. Experimental design (WT: wild type; SLNKO: sarcolipin knock-out). 
 

The exercise training protocol was similar to previous mouse exercise training studies 

(Leick et al., 2008; Narker et al., 2008; Silva et al., 2009; Safdar et al., 2011; McFarlan et 

al., 2012), but with minor modifications. Briefly, mice assigned to the exercise-training 

group ran 5 days per week for a total of 8 weeks, while those assigned to the control 

group walked at 9 m/min at 0° incline 3 times a week for 15 min to ensure control mice 

remained acclimated to the treadmill (Figure 4). The majority of exercise-trained mice 

completed the required amount of running time for each daily bout of exercise and 

completed the training protocol. Occasionally however, some exercise-trained mice were 

unable to maintain the training speed thus, were removed early during that exercise bout 

and did not complete the running time for that given day.  
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Figure 4. Experimental timeline for endurance exercise trained mice.  
 

The exercise-training program was characterized by progressive increases in running 

speed and duration. Trained mice began each bout of exercise with a warm up starting at 

8 m/min and the running speed was slowly increased by 1 m/min up to the target training 

speed for the week. The incline of the treadmill remained at 5° throughout the exercise 

program for trained mice. A final speed of 17 m/min and a running time of 60 min were 

achieved at the end of 8 weeks (Table 1).  

 

Table 1. Endurance exercise training schedule 
 

Week Time  
(min) 

Incline (°) Speed 
(m/min) 

1 15 5 13 
2 30 5 13 
3 45 5 13 
4 60 5 13 
5 60 5 14 
6 60 5 15 
7 60 5 16 
8 60 5 17 
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V̇O2 Max Test 

 Maximal oxygen uptake (V̇O2 max) was measured in WT and SLNKO mice using 

an enclosed, airtight Modular Treadmill (Columbus Instruments, Columbus, OH), 

designed for integration with the Comprehensive Laboratory Animal Monitoring System 

(CLAMS; Oxymax Series, Columbus Instruments, Columbus, OH). Mice performed the 

V̇O2 max test two days after completing the exercise-training program.  

 The V̇O2 max test began with a 30 min sitting period within the enclosed treadmill 

which was set to a 5° incline. Measurement of V̇O2 began during the last 10 min of the 

sitting period. At the end of this period, mice began running at a speed of 3 m/min, after 

which the speed was increased incrementally by 3 m/min every 1.5 minutes (Figure 5). 

The test was terminated once the mouse was unable to maintain position on the treadmill 

(sat on the pulsed stimulus platform for approximately 15 s) and/or V̇O2 plateaued.  

	  

 
Figure 5. Experimental timeline for a V̇O2 max running test. 
	  
	  

Tissue Collection 

Two days following the V̇O2 max test, mice were fasted for 4 hours before tissue 

was collected. Mice were euthanized by cervical dislocation and weighed. The soleus and 

extensor digitorum longus (EDL) muscles of both hind limbs were immediately excised, 

dissected free of any connective tissue or visible fat and weighed.  One set of skeletal 

muscles were frozen immediately in liquid N2 and stored at -80ºC until further enzymatic 
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analysis (described below). Skeletal muscle from the contralateral limb were diluted 10:1 

(vol/wt) in ice cold PMSF buffer (250 mM sucrose, 5 mM HEPES, 10 mM NaN3, and 0.2 

mM phenylmethanesulfonyl fluoride, pH 7.5) and homogenized using a handheld glass 

homogenizer before being frozen immediately in liquid nitrogen at -80ºC. These 

homogenates were used to examine the tissue expression of mitochondrial proteins by 

Western blotting analysis. The total protein concentration of all samples was determined 

in triplicate using the bicinchoninic acid (BCA) procedure using bovine serum albumin 

(BSA) standards (Sigma-Aldrich) and BCA assay reagents. 

 

SDS-Page and Western Blotting 

 Relative protein expression of adenine nucleotide translocase (ANT), 

cytochrome-c (cyt-c) and cytochrome c oxidase subunit IV (COXIV) was determined in 

homogenates of both soleus and EDL muscles. Proteins of interest were separated by size 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Equal 

quantities of proteins were loaded into each well while densities of polyacrylamide gels 

(Mini-PROTEAN II, Bio-Rad, Canada) varied as a result of differences in size between 

proteins measured (14% for ANT and cyt-c; 12.5% for COXIV). Following separation, 

proteins were transferred to a polyvinylidene difluoride membrane (PVDF membrane; 

Bio-Rad, Canada) using a semi-dry transfer unit at 23 mV for 45 min (Trans-Blot Cell, 

Bio-Rad, Canada). Membranes were then blocked for one hour with 5% skim milk in 

Tris-buffered saline (pH 7.5) at room temperature followed by incubation with primary 

anti-ANT1/2 (N-19) (1:100; sc-9299), anti-cytochrome-c (A-8) (1:2000; sc-13156) or 

anti-COX subunit IV (1:5000; mAbcam). Afterwards, membranes were washed with 
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Tris-buffered saline 0.1% Tween followed by treatment with the appropriate horseradish 

peroxidase-conjugated anti-mouse or anti-goat secondary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA). Membranes were washed a final time and signals were 

detected with an enhanced chemiluminescence kit (Amersham Pharmacia Biotech, 

Piscataway, NJ) using a bio-imaging system and densitometric analysis using GeneSnap 

software (Syngene, Frederick, MD). All membranes were stained with Ponceau S to 

confirm equal loading and allowed for normalization of densitometric results. 

	  

Enzyme Assays 

Enzymes chosen for analysis that represented their respective metabolic pathways 

included citrate synthase (CS) and succinate dehydrogenase (SDH) of the citric acid 

cycle, cytochrome c oxidase (COX) of the ETC, and β-hydroxyacyl-CoA dehydrogenase 

(β-HAD) of mitochondrial fatty-acid oxidation. Muscle samples were homogenized 1:50 

(w/v) in ice-cold phosphate-glycerol buffer (containing 16 mM Na2HPO4, 4 mM 

KH2PO4, 0.02% BSA, 5 mM 2-mercaptoethanol, and 0.5 mM EDTA) using a glass 

homogenizer and stored at -80ºC. Maximal activities of all enzymes were measured in 

triplicate, except COX, using NAD+/NADH-linked fluorometric end-point assays at room 

temperature (~22ºC). To avoid repeated freezing/thawing, SDH was measured on freshly 

homogenized tissue while all other enzymes were measured on thawed homogenate. 

Assay procedures for all enzymes except for COX were carried out according to 

Henriksson and colleagues (1986), as modified by Green and colleagues (1995).  

COX activity was measured using a reaction mixture containing 970 µl of 10 mM 

potassium phosphate buffer and 20 µl of reduced cytochrome C (Sigma C-2506) at 37°C. 



26 

The original muscle homogenate was diluted 10:1 using 10 mM potassium phosphate 

buffer to produce a final dilution of 1:500 of the original homogenate. The reaction was 

run in duplicate and began with adding 10 µl of dilute homogenate to the reaction 

mixture. Decreases in absorbance at 550 nm was measured spectrophotometrically for 3 

min. COX activity was calculated using the measured slope and millimolar extinction 

coefficient of reduced cytochrome C at 550 nm, and expressed as millimoles per hour per 

gram protein.  

 

Statistical Analysis 

 All data were analyzed using a two-way analysis of variance (ANOVA). When 

appropriate, post-hoc comparisons were made using a Newmans-Keuls test to examine 

specific mean differences. If interaction trends (P<0.1) were observed then student t-tests 

were employed for additional post-hoc analysis. Data are presented as mean ± standard 

error (S.E.). Statistical significance was considered at α = 0.05. 
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Results 
	  

V̇O2 Max and Body Weights 

 The final body weights (g) of control (WT, 37.9 ± 1.3; SLNKO, 35.7 ± 0.7) and 

trained (WT, 38.7 ± 1.2; SLNKO, 36.8 ± 0.8) WT and SLNKO mice were not different 

and were unchanged from the initial weight of control (WT, 37.4 ± 1.1; SLNKO, 36.4 ± 

0.9) and trained (WT, 40.0 ± 1.7; SLNKO, 38.5 ± 0.8) counterparts. The V̇O2 max values 

of control and trained mice are displayed in Figure 6. Exercise training did not 

significantly increase V̇O2 max for WT (5569 ± 185 ml/kg/hr vs. 5533 ± 169 ml/kg/hr) or 

SLNKO (6069 ± 162 ml/kg/hr vs. 5952 ± 274 ml/kg/hr) mice. SLNKO mice had greater 

relative V̇O2 max values compared to WT mice (P=0.05) regardless of training status 

(6030 ± 194 ml/kg/hr vs. 5551 ± 171 ml/kg/hr, respectively); however, absolute V̇O2 max 

did not significantly differ between WT mice and SLNKO mice (3.53 ± 0.3 l/min vs. 3.58 

± 0.3 l/min, respectively). In addition to relative V̇O2 max, SLNKO mice achieved a 

significantly greater running speed during V̇O2 max testing compared to WT mice 

(P<0.0001) regardless of training status (40 ± 1.0 m/min vs. 33 ± 1.3 m/min 

respectively). 
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Figure 6. Comparison of V̇O2 max (ml/kg/hr) in control wild type (WT; n=8) and 
sarcolipin knockout (SLNKO; n=9) mice to trained WT (n=8) and SLNKO (n=4) mice. 
SLNKO mice had higher V̇O2 max than WT mice, P=0.05. Values are presented as mean 
± S.E.  
 

Expression of Mitochondrial Proteins  

 To assess mitochondrial biogenesis, the relative expression of a select number of 

mitochondrial proteins was measured. A main effect of exercise training was observed 

that was independent of genotype for both soleus and EDL. Therefore WT and SLNKO 

mouse data were group together and comparisons between control and trained animals 

were performed. Exercise training significantly increased ANT (P<0.03), cyt-c (P<0.02) 

and COXIV (P<0.03) expression by 14%, 33% and 28%, respectively, in the soleus 

independent of genotype (Figure 7). Similarly in EDL, exercise training induced 

significant increases in cyt-c (P<0.04) and COXIV (P<0.01) by 31% and 26%, 

respectively, but increases in ANT expression (19%) were insignificant (P=0.13; Figure 

8).  
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A        

 

B                

 
C   

 
Figure 7. Relative expression of mitochondrial proteins in soleus of wild type and 
sarcolipin knockout mice in control and trained groups. Proteins are expressed in 
arbitrary units (AU). A) adenine nucleotide translocase (ANT). B) cytochrome-c (cyt-c). 
C) cytochrome c oxidase subunit IV (COXIV). A significant main effect of exercise 
training was found (trained > control) independent of genotype (P<0.05) for all proteins. 
Sample sizes for each group are indicated at the bottom of each bar. Values are mean ± 
S.E. 
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A      

 

B                

 
C   

 
Figure 8. Relative expression of mitochondrial proteins in extensor digitorum longus of 
wild type and sarcolipin knockout mice in control and trained groups. Proteins are 
expressed in arbitrary units (AU). A) adenine nucleotide translocase (ANT). B) 
cytochrome-c (cyt-c). C) cytochrome c oxidase subunit IV (COXIV). A significant main 
effect of exercise training existed (trained > control) independent of genotype (P<0.05) 
for cyt-c and COXIV. Exercise training did not significantly increase ANT (P=0.13). 
Sample sizes for each group are indicated at the bottom of each bar. Values are mean ± 
S.E.  
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Skeletal Muscle Mitochondrial Enzyme Activities 

 To determine if skeletal muscle oxidative capacity was increased following 

training, the maximal activities of SDH, β-HAD, CS, and COX were measured. Two-way 

ANOVA results revealed that a genotype-training interaction existed for SDH; 

specifically, exercise training increased SDH activity in SLNKO (26%) but not in WT 

soleus (Figure 9A; Interaction effect, P<0.02). In contrast to SDH, exercise training 

significantly increased COX (P=0.01; Figure 9B) and CS (P<0.01; Figure 9C) enzyme 

activities in soleus by 11% and 17%, respectively, independent of genotype. Post-hoc 

comparisons indicated that genotype-training interactions were not significant (P=0.06) 

for COX and CS activities, however comparisons with student’s t-tests revealed that 

exercise training significantly elevated COX (P<0.02) and CS (P<0.01) activity only in 

SLNKO and not WT soleus (Table 2). Two-way ANOVA results showed exercise 

training tended (P=0.08) to increase β-HAD activity in soleus (Figure 9D) and 

comparisons with student’s t-tests revealed no differences between genotypes (Table 2).  

Within the EDL, exercise training only increased SDH activity (Figure 10A; 

P<0.05) by 16%, with no significant differences between genotype. Exercise training did 

not significantly alter activities of COX, CS or β-HAD in the EDL (Figure 10C-D).  
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Table 2. Mitochondrial enzyme activities of control or trained wild type and sarcolipin 
knockout mice in the soleus. SDH: succinate dehydrogenase, β-HAD: β-hydroxyacyl-
CoA dehydrogenase, CS: citrate synthase, COX: cytochrome c oxidase. Activities are 
expressed as mean ± S.E. (n) and in units mmol/hr/g prot. *Activity following exercise 
training was significantly different (P<0.02) than control group as determined by 
student’s t-test. 
 

 Control Trained 
Enzyme WT KO WT KO 

SDH 4.20 ± 0.27 
(8) 

3.61 ± 0.09 
(8) 

4.15 ± 0.19 
(9) 

4.55 ± 0.11* 
(8) 

COX 1.73 ± 0.05 
(8) 

1.76 ± 0.09 
(9) 

1.94 ± 0.15 
(9) 

2.15 ± 0.11* 
(9) 

CS 39.3 ± 1.28 
(3) 

37.19 ± 0.40 
(3) 

42.23 ± 1.06 
(6) 

42.93 ± 0.85* 
(6) 

β-HAD 8.15 ± 0.60 
(8) 

7.29 ± 0.52 
(8) 

8.77 ± 0.63 
(9) 

8.40 ± 0.57 
(9) 
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Figure 9. Mitochondrial enzyme activities within the soleus of wild type and sarcolipin 
knockout mice in control or trained groups. All enzymes activities are expressed in 
mmol/hr/g prot. A) succinate dehydrogenase (SDH) activity. B) cytochrome c oxidase 
(COX) activity. C) citrate synthase (CS) activity. D) β-hydroxyacyl-CoA dehydrogenase 
(β-HAD) activity. A significant main effect of exercise training existed (trained > 
control) independent of genotype (P<0.05) for CS and COX while a trend towards 
increased β-HAD activity (P=0.08) was observed. Sample sizes for each group are 
indicated at the bottom of each bar. * Interaction observed where SDH activity following 
exercise training was significantly greater than control SLNKO mice (P<0.02). Values 
are mean ± S.E. 
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Figure 10. Mitochondrial enzyme activities within the extensor digitorum longus of wild 
type and sarcolipin knockout mice in control or trained groups. All enzymes activities are 
expressed in mmol/hr/g prot. A) succinate dehydrogenase (SDH) activity. B) cytochrome 
c oxidase (COX) activity. C) citrate synthase (CS) activity. D) β-hydroxyacyl-CoA 
dehydrogenase (β-HAD) activity. A significant main effect of exercise training existed 
(trained > control) independent of genotype (P<0.05) for SDH. Exercise training did not 
alter activities of any other enzymes. Sample sizes for each group are indicated at the 
bottom of each bar. Values are mean ± S.E. 
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Discussion 

Prior work by Gamu (2012) showed that skeletal muscle oxidative metabolism 

did not differ between WT and SLNKO mice under sedentary or voluntary exercising 

conditions. In that study, voluntary wheel running may have been too mild to induce an 

adaptive response and reveal potential phenotype differences. Therefore this thesis 

expanded on the previous study by using a forced exercise training protocol to investigate 

if increases in  mitochondrial content in soleus and EDL muscles differed between WT 

and SLNKO in response to exercise training. For soleus where SLN is abundant, it was 

expected that ablation of SLN would reduce the signals inducing increases in 

mitochondrial content (i.e. increased [Ca2+]f and AMPK activation) leading to attenuation 

of the adaptive response. In contrast, no genotype differences following exercise training 

were expected in EDL due to low endogenous SLN expression in that muscle. Exercise 

training has been well established as an inducer of mitochondrial biogenesis (Holloszy, 

1967; Chow et al., 2007). Although V̇O2 max was not significantly increased following 

training (Figure 6), skeletal muscle oxidative capacity of trained mice was increased. The 

expression of mitochondrial proteins was significantly greater in both soleus and EDL 

independent of genotype (Figure 7 and 8). In soleus, exercise training elevated SDH 

activity only in SLNKO mice (Figure 9A) whereas other mitochondrial enzyme activities 

were increased independent of genotype (Figure 9). Post-hoc comparisons indicated that 

genotype-training interactions were not significant (P=0.06) however, further 

comparisons using student t-tests revealed that COX and CS activities were significantly 

increased only in SLNKO mice and not WT controls, consistent with SDH activity 

results. In the EDL, exercise training only increased SDH activity whereas other 
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mitochondrial enzymes remained unaltered (Figure 10). Overall, the results of this study 

do not support the original hypothesis since SLN ablation does not attenuate the adaptive 

increase in mitochondrial content in response to exercise training. Instead, this study 

provides some evidence that SLN ablation may increase the sensitivity of skeletal muscle 

to exercise training and augment mitochondrial enzyme activities. Future investigations 

are needed to confirm these results.  

 Increases in V̇O2 max have been demonstrated in mice under voluntary wheel 

running (Swallow et al., 1998) or forced exercise-training conditions (Kemi et al., 2002; 

Chow et al., 2007). The lack of improvement in V̇O2 max of trained mice (Figure 6) 

comes surprisingly considering mitochondrial protein expression and enzyme activities 

(Figure 7-10) were increased in trained mice. Underlying this divergence in results is the 

potential contribution of mouse strain on performance during treadmill running. 

Compared to other strains, C57BL/6J mice are the poorest performers during forced 

endurance exercise testing (Lerman et al., 2002) and display lower aerobic capacities as 

assessed by graded treadmill testing (Lightfoot et al., 2001). It has been shown that high 

intra-mouse variability exists for repeated treadmill testing with an enclosed chamber and 

shock stimulus (Knab et al., 2009) thus, lack of improvement in V̇O2 max could reflect 

C57BL/6J mice running performances during treadmill stress testing and not due to the 

lack of adaptive changes. Previous aforementioned exercise studies from which this 

exercise training protocol was modeled used time-to-exhaustion testing to determine 

genotype or training differences (Narker et al., 2008; Safdar et al., 2011; McFarlan et al, 

2012), which may have been a more appropriate test to assess functional differences. 

Interestingly, SLNKO mice displayed greater relative V̇O2 max values compared to WT 
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mice regardless of training status, in contrast to previous observations (Bombardier et al., 

unpublished). Absolute V̇O2 max did not significantly differ between genotypes, 

indicating the slightly lower weights of SLNKO mice likely contributed to the higher 

V̇O2 max values. Interestingly, SLNKO mice achieved significantly greater running 

speeds compared to WT mice during V̇O2 max testing (P<0.0001; 40 ± 1.0 m/min vs. 33 

± 1.3 m/min respectively), suggesting greater running performance in SLNKO mice 

compared with WT.  

In addition to V̇O2 max, increases in mitochondrial protein content and enzyme 

activities in skeletal muscle are hallmark characteristics of exercise training (Holloszy 

and Booth, 1976). Observed increases in cyt-c and COXIV, electron transport chain 

(ETC) proteins, and ANT, a key regulator of mitochondrial ATP/ADP flux, would 

indicate greater mitochondrial size and/or number in both soleus and EDL. However, 

ANT expression was significantly increased in soleus (Figure 7A) but not in EDL 

(Figure 8A). Previous exercise training studies have demonstrated skeletal muscle 

increases of cyt-c and COXIV expression in mice (Leick et al., 2008; Li et al., 2011; 

McFarlan et al., 2012), and ANT expression in humans (Fernström et al., 2004). 

Unexpectedly, the increases in mitochondrial proteins with training were independent of 

genotype, indicating that SLNKO mice do not display an attenuated adaptive response to 

exercise training compared with WT mice.  

Coinciding with protein expression, exercise training would be expected to 

elevate maximal activities of mitochondrial enzymes involved in the ETC (SDH and 

COX), citric acid cycle (CS), and fatty acid oxidation (β-HAD). Increases in the 

aforementioned enzymes are a well-characterized response to long-term running and has 
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been observed in a number of mouse exercise studies (Davidson et al., 2003; Chow et al., 

2007; McFarlan et al., 2012). Two-way ANOVAs, indicated that with the exception of 

SDH, increases in COX, CS and β-HAD activities within the soleus (Figure 9) following 

exercise training occurred independent of genotype. A genotype-training interaction for 

SDH was observed where exercise training increased SDH activity within the soleus of 

SLNKO mice but not in WT mice, which was opposite to what was hypothesized and not 

totally consistent with the protein expression data. Genotype-training interactions for 

COX and CS were not significant (P=0.06); however detection of interactions may have 

been limited by small sample sizes. Comparison by student’s t-tests were conducted and 

it was revealed that significant increases in COX and CS activity were confined to trained 

SLNKO mice, similar to SDH activity. These results indicate that SLN ablation did not 

attenuate the adaptive response to exercise training as hypothesized but instead, may have 

increased mitochondrial enzyme adaptations. In contrast to the soleus, exercise training 

increased only SDH activity in EDL, an effect that was independent of genotype and 

consistent with the hypothesis, and all other measured enzymes were unaltered (Figure 

10). It is unclear whether the increases in mitochondrial enzyme activities reflect greater 

protein expression or indicate that activation of enzymes is greater thus, potentially 

contributing to the discrepancy seen between mitochondrial protein expression and 

enzyme activities in relation to genotype.  

Due to the endurance nature of the exercise program, activation of Ca2+ and/or 

AMPK mediated signaling likely resulted in greater PGC-1α activity and expression, 

subsequently leading to mitochondrial biogenesis. Greater increases in mitochondrial 

enzyme activities in SLNKO mice indicate that SLN ablation might augment the adaptive 
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response to exercise training. Historically, SR Ca2+ release has been implicated as the 

major source of Ca2+ in skeletal muscle contraction (Melzer et al., 1995) and signaling 

for gene expression (Chin, 2005). More recently, there is growing evidence indicating 

that additional sources of Ca2+ may be important contributors to contraction and mediate 

signaling in skeletal muscle (Dirksen, 2009; Rosenberg et al., 2009). Specifically, store 

operated Ca2+ entry (SOCE) has been suggested to be a requirement in replenishing and 

sustaining SR [Ca2+] required for contraction. Depletion of SR Ca2+ is sensed by stromal 

interaction molecule 1 (STIM1), which induces a conformational change and 

translocation of the protein to the SR-plasma membrane junction. Here, it activates the 

highly selective Ca2+ channel Orai1 via protein-protein interaction and allows entry of 

extracellular Ca2+ into the SR and cytosol (Dirksen, 2009; Soboloff et al., 2012). 

Myocytes devoid of STIM1 display diminished SR [Ca2+] content (Seth et al., 2012) and 

during repetitive stimulation, subsequent Ca2+ transient amplitudes are rapidly decreased 

(Stiber et al., 2008). Thus, refilling of the SR stores via SOCE is important for 

maintaining Ca2+ release required in generating contractile force during exercise.  

Additionally, SOCE has been shown to modulate Ca2+ transients and influence 

Ca2+-mediated transcriptional signaling (Stiber et al., 2011). Recent evidence has 

demonstrated that the overexpression of activated STIM1 in myotubes increases NFAT 

activation (Stiber et al., 2008), which has been demonstrated to be important in skeletal 

muscle adaptation to exercise (Chin et al., 1998; Jiang et al., 2010). Moreover, protein 

expression of NFAT and transcription factors PGC-1α, PPARs β/δ and MEF2 were 

reduced in skeletal muscle of STIM1-null mice compared to WT animals (Li et al., 

2012). STIM1 ablation reduces SOCE causing decreased Ca2+ signaling that would 
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contribute to the reduction of transcription factors regulating mitochondrial biogenesis. 

Interestingly during muscle development, STIM1-null myotubes exhibit marked 

increases in SLN expression (Seth et al., 2012). In skeletal muscle, SLN overexpression 

was shown to reduce SR [Ca2+] load and impair contractility (Tupling et al., 2002) while 

SLN ablation in atrial myocytes resulted in greater SR [Ca2+] stores and enhanced 

contractility (Babu et al., 2007). Likewise, overexpression of SLN in myotubes reduced 

STIM1 expression, reduced SOCE and delayed muscle differentiation indicating SLN 

and STIM1 are expressed in opposing fashion (Seth et al., 2012). These current findings 

suggest that SLN may inhibit STIM1 and reduce SR [Ca2+] content. Consequently, 

smaller SR [Ca2+] stores results in less Ca2+ release, thereby attenuating Ca2+-mediated 

transcriptional signaling. Collectively, these results suggest that SLN ablation could 

potentially activate or increase STIM1 expression leading to greater SOCE and SR Ca2+ 

stores which could possibly explain the results of this study, namely greater increases in 

mitochondrial enzyme activities in SLNKO mice following exercise training. 

Recently, ablation of SLN in atrial myocytes was shown to increase SR Ca2+ leak 

through RyR, which was attributed to greater CaMKII activity, and resulted in atrial 

remodeling (Xie et al., 2012). Greater CaMKII activity corresponds to greater activation 

of Ca2+ signaling and increases mitochondrial biogenesis. By impairing SERCA function, 

SLN blocks refilling of SR Ca2+ and STIM1 action and possibly attenuate Ca2+ signaling. 

Ablation of SLN could potentially increase SR [Ca2+] stores which subsequently gives 

rise to greater [Ca2+]f  amplitudes and increased activation of CaMKII or calcineurin. As a 

result, the exercise induced adaptive response would be augmented in SLNKO mice, 

which is indicated by greater mitochondrial enzyme activity in the soleus (Figure 9) and 
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RG (Appendix A), which was used to confirm soleus results. In comparison, no 

significant genotype differences in mitochondrial protein expression or enzyme activities 

were found in the EDL (Figure 10), which is consistent with the fact that low 

endogenous levels of SLN are found in EDL naturally. The importance of SOCE in 

skeletal muscle contraction and signaling in vivo has only been recently investigated thus, 

future studies should determine the physiological relevance of SOCE in modulating SR 

function or cellular signaling, and whether SLN inhibits SOCE in vivo.  

Inherent differences in adaptive capacity exist between subsarcolemmal (SS) and 

intermyofibrillar (IMF) mitochondria, with SS mitochondria displaying greater metabolic 

plasticity to exercise (Krieger et al., 1980; Bizeau et al., 1998; Koves et al., 2005). 

Interestingly, mice expressing activated CaMKIV display a greater number of SS 

mitochondria (Wu et al., 2002). Moreover, exercise training (Koves et al., 2005) or 

modest PGC-1α overexpression (Benton et al., 2008) have been shown to enhance fatty 

acid oxidation in SS mitochondria compared to IM mitochondria. Thus, in response to a 

common stimulus (e.g. contractile activity), two distinct, compartmentalized signaling 

pathways mediating biogenesis of specific mitochondrial subpopulations may exist 

(Koves et al., 2005). Recent evidence of direct tethering of SS mitochondria to the SR 

(Boncompagni et al., 2009) suggests an interaction between mitochondria and SLN could 

potentially exist. Further research is warranted to determine if enhanced exercise training-

induced mitochondrial biogenesis in SLNKO mice is specific to SS mitochondria. 

Multiple signaling pathways mediate the adaptive response to exercise and there 

is a high degree of cross talk and redundancy among pathways. PGC-1α is regulated by 

Ca2+ (Wu et al., 2002; Lin et al., 2002; Handschin et al., 2003; Long et al., 2007; 
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Guerfali et al., 2007; Wright et al., 2007), AMPK (Irrcher et al., 2008; Cantó et al., 2009; 

Cantó et al., 2010;), p38 MAPK (Akimoto et al., 2005; Wright et al., 2007), and ROS 

(Kang et al., 2009), further supporting the complexity and convergence of exercise 

signals in mitochondrial biogenesis. Due to the prolonged nature of the exercise-training 

program, metabolic signals such as increased [AMP]/[ATP] ratio, would have induced 

AMPK activation and contributed to the adaptive response. These metabolic changes 

trigger the activation of AMPK, which has been shown to increase mitochondrial content 

in skeletal muscle (Winder et al., 2000; Irrcher et al., 2003; Koh et al., 2008). It would be 

expected that AMPK mediated signaling would be decreased in SLNKO mice given the 

fact that they display lower V̇O2 during submaximal exercising conditions (Bombardier et 

al., unpublished). Furthermore, the effect of SLN on skeletal muscle thermogenesis 

(Bombardier et al., unpublished; Bal et al., 2012) provides evidence that SLNKO mice 

are more energy efficient. Therefore, metabolic signaling would be expected to decrease 

in SLNKO mice relative to WT mice. Despite potential decreases in metabolic signaling, 

SLNKO mice displayed greater increases in mitochondrial enzyme activities compared to 

WT mice indicating the adaptive response was not attenuated and other signals, such as 

elevated [Ca2+]f, may be more important. In support of this notion, transgenic mice with 

impaired AMPK signaling display equal training induced increases in mitochondrial 

content (Jørgensen et al., 2007). This thesis did not measure the expression of signaling 

molecules such as AMPK or CaMKII, therefore limiting our conclusions to phenotype 

characteristics. Further investigation is needed to determine the relative importance of 

Ca2+ and/or AMPK mediated signaling in skeletal muscle of SLNKO mice. 
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The extent of an adaptive response generally reflects the magnitude of the 

inducing stimulus. Although fast-glycolytic muscles, such as EDL, have a greater 

capacity to increase oxidative metabolism (Pette and Staron, 1997), these muscles are 

recruited less during endurance exercise compared to slow-oxidative muscles and 

consequently, undergo less of an adaptive response (Holloszy and Booth, 1976). 

Furthermore, the EDL is a non-weight bearing muscle that is activated during the swing 

phase of hind limb movement (Nicolopoulos-Stournaras and Iles, 1984), thus, the weight 

bearing stimulus of running would be reduced and attenuate the adaptive response. 

Moreover, buffering of Ca2+ by PV in fast twitch skeletal muscle could also lead to 

quicker [Ca2+]f decay and potentially lower activation of calcineurin or CaMKIV. The 

lower recruitment and weight bearing stimulus imposed on EDL could contribute to the 

less robust increase in oxidative capacity observed in EDL, and dissociation between 

increased mitochondrial protein expression (Figure 8) and unaltered enzyme activities 

(Figure 10) following exercise training.  

 In summary, due to the key role SLN has in regulating Ca2+ handling and skeletal 

muscle thermogenesis, it was hypothesized that SLN ablation would attenuate the 

adaptive response to exercise training in slow-oxidative muscle. This thesis provides 

evidence that ablation of SLN does not attenuate the adaptive response of soleus muscle 

to exercise training. Furthermore, fast-twitch muscles were not expected to display 

genotype differences due to low endogenous levels of SLN which is supported by EDL, 

which exhibited no genotype differences in mitochondrial markers that were increased 

with exercise training. There is some evidence suggesting the adaptive response may be 

greater in SLNKO mice, demonstrated by increases in mitochondrial enzyme activities 
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following exercise training in the soleus of SLNKO mice. Future investigations should be 

conducted to confirm these findings. The effects of SLN ablation specifically on Ca2+ and 

AMPK mediated signaling in mitochondrial biogenesis remains to be determined and the 

physiological mechanisms regulating SLN function in skeletal muscle are poorly 

understood thus, future studies should also address these problems to further elucidate the 

role of SLN in exercise training. 
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Study Limitations 
	  

The greatest limitation of this study was the difficulty of getting mice to exercise. 

Mice often refused to run despite having previous treadmill exposure with the use of 

shock or physical stimuli, making it highly difficult to implement exercise training. It has 

been noted that up to 25% of rats refuse to run on a treadmill (Bedford et al., 1979; 

Kregel et al., 2006) although no observations to the author’s knowledge have been made 

for mice. Moreover, the SLNKO mice were crossbred on a C57BL/6J background, a 

strain of mice that are among the worst performers on a treadmill compared to other mice 

(Lightfoot et al., 2001; Lerman et al., 2002). Furthermore, due to high variability that 

exists for repeated treadmill running (Knab et al., 2009), it is difficult to ensure that each 

bout of exercise is equal in running performance and exertion for individual mice, 

potentially affecting the adaptive response.  

Due to the high degree of cross talk and redundancy among signaling pathways in 

exercise induced mitochondrial biogenesis, the alteration of a specific pathway during 

exercise may be masked by another pathway to maintain the adaptive response. For 

example, AMPKα2-null mice display normal training induced increases in mitochondrial 

enzymes despite having impaired AMPK signaling (Jørgensen et al., 2007). The lack of 

AMPK signaling was likely mitigated by Ca2+ signaling, thereby demonstrating 

redundancy in signaling pathways to maintain a normal adaptive response. Although 

SLNKO mice exhibited greater mitochondrial content following exercise training, 

changes to the underlying mechanisms or signaling were not determined in this thesis 

thus, restricting the conclusion to phenotype changes. Measuring the expression of 

signaling molecules such as CaMKII and AMPK would provide greater information 
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regarding the effects of SLN ablation specifically on Ca2+ and/or metabolic signaling. 

Additionally, the emerging importance of SOCE to skeletal muscle function and 

signaling suggests the expression of STIM1 and Orai1 should have been examined in 

response to SLN ablation and exercise. This would have given greater insight into the 

potential relationship between SLN and STIM1 in regulating [Ca2+]f. 
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Summary and Conclusions 
	  
 In skeletal muscle, the increase in [Ca2+]f or [AMP]/[ATP] resulting from exercise 

plays a significant role in mediating mitochondrial biogenesis. SLN has been established 

as a key regulator of Ca2+ handling and thermogenesis in skeletal muscle. Thus it was 

hypothesized that SLN ablation could influence Ca2+ and metabolic signaling thereby 

attenuating exercise induced mitochondrial biogenesis. Opposite to what was 

hypothesized, this study demonstrated that the phenotypic adaptive response to exercise 

training in skeletal muscle was not attenuated within the soleus of SLNKO mice. V̇O2 

max was found to be unchanged with exercise training in both genotypes however 

mitochondrial protein expression was significantly increased in response to training, 

independent of genotype. Unlike mitochondrial protein expression, mitochondrial 

enzyme adaptations appeared to be greater in SLNKO mice, which displayed 

significantly greater SDH, COX and CS activities within the soleus following exercise 

training. In contrast to soleus, EDL displayed a less robust increase in mitochondrial 

content likely due to lower recruitment of the EDL during running. Moreover, the few 

mitochondrial markers that were increased with exercise training in EDL displayed no 

genotype differences, supporting the hypothesis that exercise-induced adaptations in 

muscles with low endogenous levels of SLN would be unaffected by genotype. It can be 

concluded that SLN ablation does not attenuate the adaptive response of skeletal muscle 

to exercise training but instead, may increase mitochondrial enzyme adaptations. 

Additionally, this thesis does not yield information regarding the effects of SLN ablation 

on Ca2+ or metabolic signaling, which should also be included in future investigations.  
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Future Directions 
	  

Inclusion of a time-to-exhaustion test at submaximal V̇O2 for post-exercise 

training assessments could be better reflective of aerobic exercise capacity, as a number 

of previous studies (Narker et al., 2008; Safdar et al., 2011; McFarlan et al, 2012) have 

used this test instead of V̇O2 max testing. The highly orchestrated network of signaling 

pathways involved in the exercise induced adaptive response indicates alterations to 

specific pathways should be determined to explain the mechanisms underlying the 

enhancement of mitochondrial biogenesis in SLNKO mice following exercise training. 

Biochemical and molecular analyses should include measurement of protein expression 

for AMPK, calcineurin, CaMKII and downstream targets such as NFAT, MEF2, and 

PGC-1α. Moreover, the emerging importance of SOCE to contractile function and 

signaling indicates the protein expression of STIM1 and Orai1 should be measured to 

determine if they are affected by exercise training in general. Furthermore, evidence 

showing SLN and STIM1 are expressed in opposing fashion during muscle 

differentiation suggests their relationship might influence Ca2+ signaling (Seth et al., 

2012). Thus, further investigations should be made into examining possible interactions 

between SLN and SOCE in skeletal muscle of SLNKO mice. This will further elucidate 

the impact SLN has on Ca2+ signaling in skeletal muscle. 

Increases in mitochondrial protein expression occurred independent of genotype 

whereas increases in mitochondrial enzyme activities appeared to be greater in the 

SLNKO mice. The greater mitochondrial enzyme activities could reflect post-

translational modifications in the SLNKO mice that may differ from WT mice; however, 

given the length of the training period, increases could also indicate greater enzyme 
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protein expression. This cannot be determined from activity alone and measurement of 

mitochondrial enzyme protein expression should be included in future investigations to 

explain the discrepancy between protein expression and enzyme activities. 

Additional measurements including morphological assessment and mitochondrial 

function should be included in future studies to yield more comprehensive results. Given 

the possibility that SS mitochondria are more sensitive to exercise training (Krieger et al., 

1980), fractioning mitochondria into subpopulations and examining protein expression 

and oxidative enzyme activities would reveal population specific changes occurring with 

exercise. Furthermore, transmission electron microscopy would determine if 

morphological or proliferative changes of both SS and IM mitochondria are altered in 

response to SLN ablation. In addition to mitochondrial proliferation, exercise training is 

known to alter mitochondrial function and improve quality (Koves et al., 2005; Yan et 

al., 2012). Measurement of palmitate oxidation ([1-14C]) or mitochondrial respiration 

([state III]/[state IV]) for either whole muscle homogenates or isolated mitochondria 

would provide information pertaining to changes in mitochondrial function with exercise 

training. There are several sites in a metabolic pathway (i.e. uptake or catabolism) that 

could limit mitochondrial function, therefore a measurement such as palmitate oxidation 

would provide greater inference to functional alterations of mitochondria and allow for 

more comprehensive conclusions. 

 The physiological mechanisms regulating SLN function in skeletal muscle are 

poorly understood. Initially, studies demonstrated that SLN inhibition could be removed 

by β-adrenergic stimulation in cardiomyocytes (Asahi et al., 2004; Babu et al., 2006; 

Gramolini et al., 2006; Babu et al., 2007). It was also determined that CaMKII could 
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phosphorylate the threonine-5 (T5) residue of the N-terminus of SLN in vitro of cardiac 

myocytes (Bhupathy et al., 2009), providing a mechanism by which SLN function is 

modulated by phosphorylation. Unlike cardiac muscle, the physiological regulation of 

SLN in skeletal muscle has only recently been examined (Tupling et al., 2011, Bal et al., 

2012; Bombardier et al., unpublished). Repeated tetanic stimulation at 70 Hz of mouse 

soleus was found to increase the rate of relaxation by the 10th tetanus in WT mice but not 

in SLNKO mice, suggesting SLN may have been inactivated (Tupling et al., 2011). 

Therefore, the onset of contractile activity would increase [Ca2+]f  thereby activating 

CaMKII and result in SLN phosphorylation at residue T5 to relieve inhibition and 

improve relaxation. Despite this evidence, recent studies have shown that SLN inhibition 

is not relieved during skeletal muscle contractile activity. Throughout submaximal 

exercise, WT mice display greater V̇O2 values compared to SLNKO mice (Bombardier et 

al., unpublished), indicating that SLN continues to uncouple ATP hydrolysis thereby 

increasing energy expenditure. Furthermore, cross-linking studies show SLN continues to 

interact with SERCA in the presence of high [Ca2+]f (100 µM; Bal et al., 2012). 

Utilization of point mutations, measurement of SLN phosphorylation and SERCA Ca2+ 

uptake could yield information on the regulation of SLN function, and whether SLN 

inhibition is governed by phosphorylation/dephosphorylation processes in skeletal 

muscle. 
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Appendix A 
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Figure A1. Relative expression of mitochondrial proteins in red gastrocnemius of wild 
type and sarcolipin knockout mice in control and trained groups. Proteins are expressed 
in arbitrary units (AU). A) adenine nucleotide translocase (ANT). B) cytochrome-c (cyt-
c). C) cytochrome c oxidase subunit IV (COXIV). A significant main effect of exercise 
training existed (trained > untrained) independent of genotype (P<0.05) for ANT and 
COXIV. Exercise training did not significantly increase cyt-c (P=0.07). Sample sizes for 
each group are indicated at the bottom of each bar. Values are mean ± S.E.  
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Figure A2. Succinate dehydrogenase activity (SDH) within the red gastrocnemius of 
wild type and sarcolipin knockout mice in control or trained groups. Enzyme activity is 
expressed in mmol/hr/g prot. Sample sizes for each group are indicated at the bottom of 
each bar. * Interaction observed where SDH activity following exercise training was 
significantly greater than control SLNKO mice (P<0.04). Values are mean ± S.E. 
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Appendix B 

 
Figure B1. Nonspecific protein stains used to normalize adenine nucleotide translocase 
(ANT), cytochrome-c (cyt-c) and cytochrome c oxidase subunit IV (COXIV) expression 
in soleus and extensor digitorum longus (EDL). Actin is detected at ~ 42 kDa. 
Representative stains used for: A) cyt-c and ANT in soleus, B) COXIV in soleus, C) cyt-
c and ANT in EDL, D) COXIV in EDL. 
 
 
 

 
Figure B2. Nonspecific protein stains used to normalize adenine nucleotide translocase 
(ANT), cytochrome-c (cyt-c) and cytochrome c oxidase subunit IV (COXIV) expression 
in red gastrocnemius. Actin is detected at ~ 42 kDa. Representative stains used for: A) 
cyt-c and ANT, B) COXIV. 
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