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Abstract 

Short interfering RNAs (siRNAs) are 21-23 nucleotide-long double-stranded RNA molecules 

that can trigger the RNA interference (RNAi). RNAi is a post-transcriptional gene silencing 

process whereby siRNAs induce the sequence-specific degradation of complementary 

messenger RNA (mRNA). Despite their promising therapeutic capabilities, siRNA-based 

strategies suffer from enzymatic degradation and poor cellular uptake. Several carrier-based 

approaches have been employed to enhance the stability and efficiency of siRNA delivery. 

Considering their safety, efficiency, and targeting capabilities, peptide-based delivery 

systems have shown great promise for overcoming the main obstacles in siRNA therapeutic 

delivery. Peptides are versatile and easily designed to incorporate a number of specific 

attributes required for efficient siRNA delivery.  

This thesis focuses on the design, characterization and utilization of a new class of 

amphipathic peptides for siRNA delivery. The study includes: (i) designing amphipathic, 

amino acid pairing peptide sequences for siRNA delivery, (ii) siRNA delivery experiments in 

vitro to evaluate transfection efficacy of the designed peptides, (iii) physicochemical 

characterization of the interaction between promising peptides and siRNA, and (iv) 

identifying internalization pathway and kinetics of a promising peptide, C6M1. 

The peptide C6, an 18-mer amphipathic, amino acid pairing peptide, was designed as an 

siRNA delivery carrier by incorporating three types of amino acids, i.e., arginine, leucine, 

and tryptophan. This peptide adopted a helical structure upon co-assembling with siRNA. 

The C6-siRNA co-assembly showed a size distribution between 50 and 250 nm, confirmed 

by dynamic light scattering and atomic force microscopy.  The C6-siRNA interaction 

enthalpy and stoichiometry were 8.8 kJ.mol-1 and 6.5, respectively, obtained by isothermal 

titration calorimetry. A minimum C6:siRNA molar ratio of 10:1 was required to form stable 

co-assemblies/complexes, indicated by agarose gel shift assay and fluorescence 
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spectroscopy. C6 showed lower toxicity and higher efficiency in cellular uptake of siRNA, 

compared with Lipofectamine 2000, a lipid-based positive control. Fluorescence microscopy 

images confirmed the localization of C6-siRNA complexes in the cytoplasm.  

In order to enhance the solubility and delivery efficiency further, a modified peptide, C6M1, 

was designed by replacing three leucine with tryptophan residues in the C6 sequence. The 

fluorescence assay confirmed that the sequence mutation significantly increased the 

solubility of C6M1.  C6M1 adapted a stable helical structure in saline or upon interaction 

with siRNA. The toxicity assay showed lower toxicity of C6M1 with an IC50 (the 

concentration of peptide at 50% cell viability) of 22 μM, compared with C6 with that of 

12 μM. Naked siRNA was completely degraded after 4 h incubation in 50% serum, while the 

siRNA in complex with C6M1 was preserved even after 24 h. Western blotting showed a 

significant decrease in GAPDH protein contents (75%) in CHO-K1 Chinese hamster ovary 

cells, 48 h after treatment with C6M1-GAPDH siRNA complexes. 

The interaction of C6M1-siRNA complexes with cell surface and the mechanisms involved 

in the internalization of the complex in different size ranges were studied. Heparin and 

chlorate treatments revealed that the electrostatic interaction of the C6M1-siRNA complex 

with heparan sulphate proteoglycans at the cell surface is required to trigger the uptake 

process. Using endocytic inhibitors, it was found that small C6M1-siRNA complexes (mean 

~155 nm) mainly enter CHO-K1 cells through an energy-independent mechanism, most 

likely involving direct translocation. In contrast, large complexes (mean ~460 nm) internalize 

the cells mainly through a lipid raft-dependant macropinocytosis.  The integrity of the 

cytoskeletal components also showed significant impact on the efficient internalization of the 

C6M1-siRNA complex.  The kinetics experiments confirmed the fast internalization of small 

complexes (with uptake half-time of 25 min) in comparison to large complexes (70 min). 

This work provides essential information for peptide design and characterization in the 

development of amphipathic peptide-based siRNA delivery. 
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Chapter 1 
Introduction 

 

1.1 Overview 

Thanks to the genome projects, new classes of pharmaceuticals (peptides, proteins and nucleic 

acid (NA) based therapeutics) are emerging. These novel drugs have shown promising 

therapeutic potential in the lab; however, they have experienced only limited success in clinical 

studies. Poor stability and transport through biological barriers, such as the cell membrane, 

prevent these drugs from reaching their target(s). These new drugs typically cannot be effectively 

delivered by conventional means. For instance, conventional liposomes, as drug delivery 

carriers, have been suffering from major limitations in rapid removal from bloodstream, low 

drug loading capacity, and physical or chemical instability. Furthermore, the efficacy of many 

conventional pharmaceutical agents may be improved and the side effects reduced if the drug is 

continuously released in a controlled manner rather than through conventional burst release 

techniques [1]. 

Over the past two decades, we have witnessed tremendous progress in our understanding of the 

role of RNA molecules in the regulation of gene expression. The main contribution to this 

progress was offered by the discovery of RNA interference (RNAi) process. First identified in C. 

elegans by Fire and Mello [2], RNAi is an evolutionarily conserved mechanism that brings about 

a sequence specific, post transcriptional gene silencing (PTGS) through the use of short RNAs. 

The basic idea behind RNAi is that a double stranded RNA, termed short interfering RNA or 

siRNA, complementary to a segment of the mRNA, can be exogenously synthesized and 

introduced into the cell. This triggers a process which finally degrades the homologous mRNA 

and inhibits the production of the corresponding protein.  
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siRNA is a double stranded RNA molecule with 19-23 base-pair core duplex followed by two 

nucleotides at the 3’ end overhang on both the sense and anti-sense strands (Figure  1.1). It can be 

either produced synthetically or can be a product of the enzymatic cleavage of long dsRNA by 

RNase III-like enzyme called Dicer [3]. Upon its introduction to the cytoplasm, siRNA 

assembles into endoribonuclease-containing complex known as RNA-induced silencing complex 

(RISC). RISC then mediates the unwinding of siRNA duplex. The anti-sense strand of siRNA 

then directs the RISC to complementary RNA molecule to cleave it. Cleavage of cognate RNA 

takes place near the middle of the region bound by the siRNA strand [4,5]. Since the cleaved 

RNA fragments lack either the cap structure m7G or the polyA tail, which are essential to RNA 

stability, this leads to further degradation of the mRNA molecule (Figure  1.1). 

Like other newly-emerging NA-based therapeutics, the major limitations for the use of siRNA 

are the instability of naked siRNA in physiological conditions and the bloodstream, and the 

inability to cross the cellular membrane to gain access to the intracellular environment. Due to 

their small size and hydrophilicity, a significant portion of these NA-based drugs are removed 

from bloodstream through the reticuloendothelial system (RES). It was also reported that highly 

charged particles can be recognized by the RES more rapidly than neutral or slightly charged 

particles [6,7]. Furthermore, the enzymatic degradation of NA based drugs during circulation and 

within the cell declines their potency, and in some cases an increase of drug dosage is required to 

compensate these effects. Chemical modifications of siRNA may be applied to improve these 

characteristics without interfering with its silencing efficiency. Chemical modifications in the 

sugars, nucleobases, and the phosphate ester backbone of siRNA can significantly increase its 

nuclease resistance [8-10]. In order to improve cellular uptake, conjugation with hydrophobic 

functional groups has also been reported [11].  

The carrier-mediated delivery system has been recently applied as the main solution to overcome 

the delivery obstacles and improve the cellular uptake of siRNA therapeutics. The carriers, self-

associated or covalently conjugated with siRNA, are designed to enhance cell targeting, prolong 
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drug circulation time, and improve membrane permeation. Different types of carriers including 

lipids, peptides, polysaccharides, synthetic and natural polymers, and virus capsids have been 

applied to improve the delivery of nucleic acids [12].  

In this research, a special class of short amphipathic peptides was designed and used to explore 

their capabilities in encapsulating siRNA and delivering it in vitro. The interaction of peptide 

with siRNA was characterized using several biophysical, thermodynamic, spectroscopic and 

microscopic approaches. The penetration mechanism of the designed peptide was also identified. 
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Figure  1.1 The RNA interference process and the biochemical machinery involved. Double-
stranded RNA is cut into short pieces (siRNA) by the endonucleases Dicer. The antisense strand 
is loaded into the RISC complex and links the complex to the mRNA strand by base-pairing. The 
RISC complex cuts the mRNA strand, and the mRNA is subsequently degraded. (Adapted from 
[5]) 
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1.2 Research objectives 

The main objective of this study was to design and apply a novel class of peptides for siRNA 

delivery into mammalian cells. To achieve this goal, a comprehensive study of the interaction of 

peptide with siRNA and cell membrane and also the cellular internalization pathway of the 

peptide was required.  

The specific objectives of this thesis are listed in the following: 

1. Design a class of amphipathic peptides considering several parameters such as size, surface 

charge, self/co-assembly, and siRNA interaction, loading capacity, and penetration ability. 

2. Screen the library to evaluate the efficacy of peptides as carriers for siRNA delivery in vitro. 

3. Conduct experiments for physicochemical characterization of promising peptides and their 

complexes with siRNA assemblies using several spectroscopic, microscopic, thermodynamic, 

and biophysical approaches. 

4. Perform experiments to identify the major pathway(s) of peptide’s cellular uptake. 

  

1.3 Outline of the thesis 

This thesis consists of seven chapters. The scope of each chapter is listed as follows: 

Chapter 1 gives a brief introduction to siRNA structure, RNAi process, gene delivery systems, 

and peptides and their applications in gene delivery. The research objectives and the thesis 

organization are also given. 

Chapter 2 provides a review of current gene delivery approaches including physical methods and 

viral and non-viral carrier-based delivery systems. Different classes of peptides applied in gene 

delivery are also reviewed. 

Chapter 3 introduces peptide C6, a designed amphipathic peptide for siRNA delivery. The design 
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principles and physicochemical properties of C6 and its complex with siRNA are discussed. 

Cellular toxicity and uptake of C6 in Chinese hamster ovary (CHO-K1) cells are also reported in 

this chapter. 

Chapter 4 reports the modification of the sequence of peptide C6 to design peptide C6M1. The 

effect of this modification on peptide solubility, secondary structure, cytotoxicity and cellular 

internalization are also explained.   

Chapter 5 investigates the effect of ionic strength of solution on size, charge, and secondary 

structure of C6M1. The stability of C6M1-siRNA complexes against serum RNase degradation 

and the knockdown efficiency of C6M1-GAPDH siRNA complexes in CHO-K1 cells are also 

studied.  

Chapter 6 deals with size-dependent cellular internalization mechanism of C6M1 and its 

complex with siRNA. The cytotoxicity and specificity of several chemical endocytosis inhibitors 

and internalization kinetics of C6M1-siRNA complex are also reported. 

Chapter 7 summarizes principle outcomes and original contributions of this research and 

recommendations for future work. 
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Chapter 2∗ 

 Literature review 

 

2.1 Current advances in gene delivery 

Gene therapy is based on the substitution or replacement of a defective gene with a functional 

copy or manipulation of a gene function or expression using short nucleic acids (NAs). 

Therapeutic NAs comprise DNA (oligonucleotides, plasmid, viruses, artificial chromosomes, 

and bacteria) and RNA (oligonucleotides, ribozymes, siRNA, mRNA, and viruses). The 

polyanionic nature and high molecular weight of free nucleic acids prevent them from efficiently 

crossing the negatively-charged plasma membrane. Inside the cell, further hurdles, such as 

escape from the endosome and transport to the nucleus, need to be overcome [13].  All these 

obstacles emphasize the importance and necessity of a safe and effective delivery system. 

The two essential components in carrier-mediated gene delivery are the features of the delivery 

system, carrying the therapeutic to the target site, and the effectiveness of the gene expression at 

the target site. Several viral and non-viral carriers have been developed to overcome problems 

associated with naked NA delivery. Viral vectors show high transfection efficiency, but have 

some serious safety problems such as inflammatory responses and mutagenesis. Non-viral 

methods are preferred due to their low pathogenicity. However, they tend to have lower 

efficiency compared with viral vectors in gene transfer in clinical applications. Incorporation of 

targeting ligands to the non-viral carriers can manipulate and direct the biodistribution of the 

                                                                                                 

∗ This Chapter is adapted from published papers: 
M. Jafari, M. Soltani, S. Naahidi, N. Karunaratne, P. Chen, Nonviral approach for targeted nucleic acid delivery, 
Current Medicinal Chemistry, 2012, 19: 197-208. 
M. Jafari, P. Chen, Peptide Mediated siRNA Delivery, Current Topics in Medicinal Chemistry, 2009, 9: 1088-1097 



 

 8 

systemically administrated gene to the target cells or tissue, resulting in higher gene expression 

at the target site [14].  

Besides carrier-mediated gene delivery, targeting the therapeutic to the treatment site may be 

achieved by ‘physical targeting’ which relies on physical methods. Several methods, such as 

hydrodynamic delivery, ultrasound (US), electroporation, magnetofection, gene gun or 

photodynamic therapy where a physical force (mechanical impact, magnetic or electrical field), 

heat or light is used to target a specific localization have been reported. Local delivery is 

advantageous over systemic delivery since it avoids first pass hepatic clearance and is likely to 

reach the target site at higher concentration. Therefore lower doses can be utilized, which may 

result in fewer side effects and more site specific delivery [15]. 

In this chapter, the methods utilized for physical targeting of NAs and carrier optimization 

techniques that have been developed to ensure efficient delivery of NAs have been reviewed. 

2.1.1 Physical targeting of nucleic acids 

Physical forces such as electric or magnetic field, light, hydrodynamic pressure or mechanical 

forces are used in some strategies for NA delivery. Some of these approaches have shown high 

efficiency. These physical methods are further explained here. 

2.1.1.1 Naked DNA injection 

The main advantage of this method is its simplicity, involving direct plasmid injection, but 

results in low levels of gene transfer. Several reports on direct injection to various tissue sites 

have been documented with one example of this method being the intratumoral delivery of a 

cytosinedeaminase suicide gene [16]. 

2.1.1.2  Hydrodynamic delivery of NAs 

Hydrodynamic delivery employs the force generated by a relatively rapid injection of a large 
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volume of solution into the bloodstream to overcome the physical barriers of endothelium and 

cell membranes. This approach introduces naked plasmid DNA into cells in highly perfused 

internal organs such as liver with a remarkable efficiency [17,18]. Gene delivery efficiency in 

this method is a function of factors which include the anatomic structure of the organ, the 

injection volume, and the speed of injection [19]. A large variety of substances with different 

molecular weights and chemical structures such as small dye molecules, proteins, 

oligonucleotides, siRNA, and linear or circular DNA fragments can be transferred by this 

method [20,21]. Naturally this method is nonspecific; therefore, it can be applied to intracellular 

delivery of any water-soluble compounds, small colloidal particles, or viral particles directly into 

cytoplasm without endocytosis [19]. However, successful liver transfection has been achieved 

using balloon catheter–based procedures indicating that with modification, this method can be 

clinically relevant [22-24]. 

2.1.1.3 Electroporation  

In this method, short-duration electric field pulses are applied to various tissues such as muscle, 

skin, liver, lung, and tumor after local administration of NAs to overcome the barrier of the cell 

membrane [25,26]. Although, this method was introduced to handle gene transfer problems, it is 

now applicable in delivering of a large variety of molecules and materials such as ions, drugs, 

dyes, tracers, antibodies, oligonucleotides, RNA and DNA, both in vivo and in vitro. Injection of 

DNA followed by local electroporation in tumors enhances gene transfer into cells [26-28]. 

Another example is applying local electroporation in targeting brain region in RNAi induced 

gene knockdown [29]. New advancements in this method have minimized the cell damaging 

effects. This approach has been effectively applied in humans in order to increase gene transfer 

and is now showing promise for application to some diseases such as brain carcinomas, 

Alzheimer, Parkinson, and depression [25]. 
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2.1.1.4 Ultrasound (US)  

This approach facilitates the intratumoral injected DNA delivery into tumor tissues and gene 

transfer at cellular and tissue levels [30-32]. In a transient process, called sonoporation, US 

waves cause microbubbles to cavitate, making the cell membrane temporarily more permeable to 

the therapeutical macromolecules. Several factors such as the frequency, the output strength of 

the US applied, the duration of US treatment, and the amount of plasmid DNA used are 

important to transfection efficiency of this method [33]. Recently, vehicles such as gas-filled 

poly(D,L-lactide-co-glycolide) (PLGA) microparticles were systemically used to encapsulate 

plasmid DNA and US was applied to destruct the gas core and release the plasmid at the target 

site [34]. Applying this method, a 10- to 20-fold enhancement of reporter gene expression can be 

achieved with respect to naked DNA [19]. This method appears to be ideal for noninvasive gene 

transfer into cells of the internal organs as it is able to target deep tissues with minimum damage 

[19,26]. 

2.1.1.5 Gene gun 

Particle-mediated transfection (PMT) or gene gun is a useful approach of non-viral gene transfer 

in cancer therapy. Recent studies show that this approach is an efficient non-viral transfection 

method for a system in which high-level of gene expression is not required [35]. In this 

approach, a helium gas gun shoots DNA, coated on the surface of microscopic biocompatible 

heavy metal (gold or tungsten) beads, into the tissue in which target cells are in the upper cell 

layers of tissue. The main applications of this method are DNA vaccination and cytokine gene 

therapy [36].  

2.1.1.6 Photochemical internalization (PCI) 

Photodynamic therapy is an emerging technique which can be applied efficiently for NA 

delivery to a specific light-exposed site. For instance, in order to improve endosomal escape of 

NAs, Høgset et al. [37] developed a new technique, photochemical internalization (PCI), in 
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which photosensitizing compounds localized in endocytic vesicles can be excited by the light in 

a specific wavelength and initiate photochemical reactions. The result of this procedure is the 

destruction of endocytic membrane structures with the release of co-endocytosed NAs into the 

cell cytosol. Applying this method, recent studies show promising results in improving the 

efficiency of NA/polycation polyplexes, including EGF receptor-targeted polyplexes [38].  

2.1.2 Carrier-mediated nucleic acid delivery 

2.1.2.1 Viral vectors 

The gene delivery vectors can be generally categorized into viral and nonviral vectors. Typically, 

viral systems are the most effective carriers for gene delivery. A virion is made up of genetic 

materials protected by a protein coating, which is referred to as capsid. Virus capsids or virus-

like particles are made up of multiple copies of one or a few proteins. Drug particles can be 

loaded within the capsid or grafted on the exterior. Also, various types of molecules such as 

fluorophores, antibodies, and peptides can be conjugated to specific locations on the capsid 

surface for cell targeting, to act as probes, or to improve solution properties of carrier-drug 

complexes [12].They can selectively target cells and usually possess a high transfection 

efficiency [12]. However, their isolation from biological sources and their processing can be very 

costly. Furthermore, the safety risks due to their oncogenic potential and their inflammatory and 

immunogenic effects have limited the clinical application of the strategies based on viral vector 

delivery [39,40]. New generation of adenoviral vectors, where all viral coding genes are 

removed, have shown high transfection efficiency with significantly reduced cytotoxicity 

[39,40]. 

2.1.2.2 Non-viral vectors 

Although viral vectors possess many of the desired characteristics for efficient NA delivery, 

nonviral vectors offer several advantages. Due to their lack of immunogenicity, synthetic vector 

systems are usually safer than viral vectors. In addition, they can be easily modified and 
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produced in large scale. A wide spectrum of materials has been engineered and developed to 

obtain desired capabilities to act as carriers for drug/gene delivery. They may include lipids 

[41,42], polymers [43,44], peptides [45,46], gold particles [47], and ceramics [48]. Among them, 

lipids and polymers have been widely applied in gene delivery. 

2.1.2.2.1 Lipids 

siRNA molecules are associated with liposomes mainly via electrostatic interaction with the 

charged head group. Among the non-viral drug carrier systems, liposomes represent a mature 

technology for both drug and gene delivery [42,49]. However, some issues have led to limited 

clinical usage of the liposomal systems. The immune system, which tracks foreign materials for 

destruction, can be a major obstacle to liposomes. Furthermore, the lipid toxicity and lack of long 

term expression and targeting are problems associated with their use in vivo [50,51]. Recent 

studies based on neutral liposomes have shown promising results. Delivery of siRNA for cancer 

treatment using neutral liposomes based on Dioleoyl phosphatidyl-Choline (DOPC) carriers will 

be going into Phase 1 clinical trials since safety studies have been completed or are underway in 

mice and in nonhuman primates [52]. These researchers have found that neutral nanoliposomal 

siRNA is a safe and effective delivery system for intratumoral administration. An indepth 

analysis on the use, design and stability of lipid-based carriers for therapeutic siRNA delivery is 

reviewed by Schroeder et al.  [53]. 

2.1.2.2.2 Polymers 

Synthetic and natural polymers, made up of repeated units of covalently bonded monomers, are 

other classes of non-viral macromolecules which have been widely used as carriers for various 

drug molecules over the past three decades. In particular, such synthetic polymers as polylactic 

acid (PLA) and polylactic-co-glycolic acid (PLGA) are very attractive, as compared to 

biopolymers, since they can be produced in high quantity for relatively low costs. Among the 

cationic polymers, polyethyleneimine (PEI) has been widely examined for siRNA delivery 
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[54,55]. Chitosan [56], polyamidoamine (PAMAM) [57], and poly ß-amino esters [58] are other 

examples of cationic polymers, employed in gene delivery. 

Over the past few years, there have been several drug delivery systems developed that rely on 

organic polymer technology. Such delivery systems are based on drug entrapment within 

micelles [59,60], nanoparticles or the hydrophobic corona formed by block copolymers [44,61], 

and they are used to improve solubility and protection of drugs. In particular, polyethylene glycol 

(PEG) is one of the most frequently used polymers for drug delivery with high water solubility, 

biocompatibility and chain flexibility [62,63]. In some cases, it was employed to help protect the 

siRNA due to its minimum interaction with serum proteins. It was also found that covalent 

attachment of the PEG to the siRNA or its delivery system enhanced stability and efficient 

delivery to targeted sites [64,65]. 

2.2 Different classes of peptides in gene delivery 

Peptides are short sequences of amino acids, usually 30 or less amino acids, covalently linked 

through an amide or peptide bond. Considering the safety concerns and efficacy issues, peptide-

based drug/gene delivery constructs are emerging as alternatives for safe and efficient delivery 

means since the 1990s. Due to their relatively high polarity, it was generally believed that 

peptides would be unable to translocate through cell membrane. However, the complex nature of 

the cell membrane was neglected. The rationale for peptide mediated NA delivery initially 

evolved from the biochemical knowledge that the active sites of enzymes, receptor ligands and 

antibodies involve about 5 to 20 amino acids. Thus, it should be possible to design small 

synthetic peptides to mimic the active sites of proteins, especially the sites which are responsible 

for cell penetration, and formulate synthetic peptide based drug/gene delivery systems that may 

be as efficient as viruses without their limitations. Peptide-based delivery systems have the 

potential to deliver therapeutic proteins, bioactive peptides, small molecules, and any size 

nucleic acids [66-68]. 
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Several peptides investigated as NA carriers are of biological origin which makes them 

biodegradable and likely to be biocompatible. For example, cell penetrating peptides (CPPs) 

[66], fusogenic peptides [69], and receptor-based targeting peptides [70] are derived from 

existing cellular or viral proteins. The main attraction of the peptide carriers is their versatility, 

through the use of the 20 naturally occurring amino acids, each with different hydrophobicity, 

size, and other solution properties. Because of their diversity and versatility in design, through 

the use of amino acids with different physicochemical properties, peptides might be the only 

biomaterials which can actually play all the roles to safely and efficiently deliver genes to the 

target sites. Cationic peptides rich in basic amino acids can electrostatically interact with small 

NAs or condense DNA into small stable particles. CPPs can facilitate the translocation of the 

complex through the cell membrane. Histidine-rich pH-sensitive or fusogenic peptides can 

enhance the endosomal escape and cytoplasmic release of the gene complex. Involvement of 

CTPs in gene delivery systems mediates cell and/or tissue-specific targeting. Finally, attachment 

of a nuclear localization signal NLS peptide improves nuclear localization of the gene complex 

[66]. 

The secondary structure of peptides seems to play an important role in the cell membrane 

translocation. Depending on the sequence and the solvent, a peptide can attain such secondary 

structures as an α-helix or β-pleated sheet. The importance of α-helical [71] and β-sheet [72] 

structures to membrane translocation has been discussed previously. However, some peptides, 

such as oligoarginine, can also deliver drugs across the cell membrane in the random coil 

conformation, indicating that the secondary structure is not the only factor that determines 

cellular uptake of drug molecules [73]. 

In the next sections, different classes of peptides employed in gene delivery including protein-

derived CPPs, cationic peptides, and model amphipathic peptides, cell targeting peptides (CTP) 

[70], and peptides containing a nuclear localization signal [74] will be discussed. 
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2.2.1  Protein-derived cell penetrating peptides 

A cell penetrating peptide, by definition, is a relatively short peptide, 5-40 amino acids, with the 

ability to gain access to the cell interior by means of different mechanisms and with the capacity 

to promote the intracellular delivery of covalently or noncovalently conjugated bioactive 

cargoes. The mechanism(s) by which peptides enter the cell and mediate the entry of cargo 

molecules inside the cell are still not understood in any detail. In the early 1990s, the discovery 

of CPPs led to proposals of direct entry mechanism [66]. In general, cellular uptake can either be 

energy dependent or independent. The energy dependent pathways for cells generally include 

macropinocytosis, clathrin-mediated endocytosis, and caveolin-mediated endocytosis [75]. 

Endocytotic mechanisms were almost ruled out in the present cases because the translocation 

could be observed at low temperature. The most discussed energy independent cellular uptake 

mechanism is inverted micelle based [76]. In this model, the peptide first associates with the 

bilayer surface through electrostatic interaction. The lipid bilayer reorganizes the peptide-cargo 

complex, and minimizes the exposure of the complex to the solvent, which eventually leads to 

the formation of an inverted micelle in the bilayer and is later released to the cytosol. 

 Table  2.1 shows a number of CPPs derived from some viral proteins. These peptides are the 

shortest peptide sequences responsible for cell penetration in the corresponding viruses. Among 

these peptides, penetratin and Tat are the most studied peptides. Penetratin is the third α-helix of 

Antennapedia, a membrane transduction protein [77]. It is internalized by energy-independent 

mechanism at both 4 and 37 °C, and has access to the cytoplasm and nucleus. The presence of 

three lysine residues confers to the peptide an isoelectric point above 12. It has α- helical 

structure in a hydrophobic environment but is poorly structured in aqueous solution. Experiments 

have shown that the basic amino acids and the tryptophan residue at position 6 of the peptide (48 

of Antp) are essential to cellular uptake of penetratin [78]. Moreover, the α-helical structure is 

not essential to membrane translocation since disturbing the secondary structure of the peptide 

by point mutation with proline did not prevent its internalization [79]. 
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Table  2.1 Sequences of some protein-derived CPPs 

Peptide Origin Sequence Reference 
Penetratin 
(43-58) Antennapedia RQIKIWFQNRRMKWKK [80] 
Tat (48-60) HIV-1 GRKKKRRQRRRPPQ [81] 

Transportan 
Galanin-wasp 
venom GWTLNSAGYLLGKINLKALAALAKKIL [82] 

pVEC  LLIILRRRIRKQAHAHSK [83] 
peptide mu Adeno virus MRRAHHRRRRASHRRMRGG [84] 

E5 
Influenza 
virus GLFEAIAEFIEGGWEGLIEG  [85] 

E5CA 
Influenza 
virus GLFEAIAEFIEGGWEGLIEGCA  [86] 

E5WYG 
Influenza 
virus GLFEAIAEFIEGGWEGLIEGWYG [87] 

gp41 fusion 
Influenza 
virus GALFLGWLGAAGSTMGA [88] 

H5WYG 
Influenza 
virus GLFHAIAAHFIHGGWHGLIHGWYG  [89] 

HA 
Influenza 
virus GLFEAIAGFIENGWEGMIDG [90] 

HBV  PLSSIFSRIGDP [91] 
hCT  LGTYTQDFNKFHTFPQTAIGVGAP [92] 
Integrin  VTVLALGALAGVGVG [93] 

INF-1 
Influenza 
virus GLFEAIAGFIENGWEGMIDGGGC  [94] 

INF-7 
Influenza 
virus GLFEAIEGFIENGWEGMIDGWYG  [95] 

K5 
Influenza 
virus GLFKAIAKFIKGGWKGLIKG [96] 

Melittin 
venom of 
Apis GIGAVLKVLTTGLPALISWIKRKRQQ [97] 

MPM K-FGF AAVALLPAVLLALLAP [98] 
PDX-1  RHIKIWFQNRRMKWKK  [99] 
SynB1 Protegrins RGGRLSYSRRRFSTSTGR [100] 

 

Discovered in 1988 by two independent groups, trans-activating transcriptional activator (Tat) 
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from Human Immunodeficiency Virus 1 (HIV-1) can be efficiently taken up from the 

surrounding media by numerous cell types in culture [46,101]. The Tat protein has 86 amino 

acids but only the cluster of basic amino acids, RKKRRQRRR, residues 49 to 57, is responsible 

for the cell penetrating property of the Tat peptide. Due to charge repulsion resulting from six 

arginine and two lysine residues, the Tat peptide undergoes a random coil configuration in 

solution. The Tat peptide has been successfully used to deliver oligonucleotides [102], proteins 

[103], and fluorophores [104] in both in vitro and in vivo models.   

2.2.2 Cationic peptides 

Basic amino acids, such as lysine (K) and arginine (R), are positively charged in physiological 

pH; thus, they can interact with negatively charged drug molecules, such as siRNAs, and cell 

membranes through columbic interactions. Fuchs et al. reported that the oligomers of the four 

cationic amino acids, arginine, lysine, histidine, and ornithine can cross the cell membrane and 

be localized in the cytosol and the nucleus [105]. Due to the removal of highly charged 

oligolysine by the RES, the transfection efficiency of therapeutic materials delivered by 

oligolysine is generally low [6,7]. Various methods have been employed to increase its 

efficiency. It was found that incorporation of cysteine in a lysine-rich peptide allows the 

formation of disulfide bond between peptide molecules, resulting in smaller complexes and 

lower opsonisation rate compared with uncross-linked complexes [106]. Also, the disulfide bond 

reduction in the cytosol triggers the release of NAs, resulting in higher in vitro transfection 

efficiency [107]. Bhadra et al. have also reported that Conjugation of oligolysine with PEG can 

increase transfection efficiency and protect it from serum attacks [63].  

2.2.3 Designed Amphiphilic Cell Penetrating Peptides 

Since the lipid bilayer of a cell membrane is amphiphilic, it seems reasonable to employ an 

amphiphilic peptide to carry a drug across the cell membrane. In this delivery model, the 

hydrophilic section of the peptide first interacts with the membrane surface with subsequent 



 

 18 

translocation to the cytosol assisted by the hydrophobic section of the peptide. There are two 

major types of amphiphilic cell penetrating peptides, namely primary and secondary amphiphilic 

peptides (Figure  2.1). Primary amphiphilic peptides have specific hydrophobic and hydrophilic 

domains joined by a linker in the primary sequence. The hydrophobic region can interact with 

hydrophobic drugs and anchor itself in the cell membrane. The hydrophilic region, on the other 

hand, interacts with hydrophilic drugs and the cell membrane surface through electrostatic 

interactions. In general, the primary amphiphilic peptides adopt a random coil structure at neutral 

pH but a defined secondary structure upon a change in pH or interaction with the cell membrane 

[72,108]. The high efficiency of primary amphiphilic peptides may be attributed to the change in 

secondary structure at low pH, which can induce leakage of the endosomal membrane and 

facilitate endosomal escape of carrier-drug complexes.  

In secondary amphiphilic peptides, the amphiphilic nature of the molecule is originated from its 

secondary structure, i.e., α-helix or β-sheet structures. Many peptide delivery carriers are 

designed based on α-helix amphiphilicity [71,109] while investigations based on amphiphilic β-

sheet peptides are relatively limited [72,110]. Secondary amphiphilic peptides can be embedded 

in the cell membrane so that the hydrophobic side is anchored in the hydrophobic core of the 

bilayer and the hydrophilic side interacts with the hydrophilic heads of the lipid bilayer. 

Alternatively, the peptides can first form micelles or aggregates to minimize the exposure of 

hydrophobic residues to the solvent, and then associate with the cell membrane. One example of 

this class of peptides is model amphiphilic peptide (MAP) with a sequence of 

KLALKLALKALKAALKLA [101]. Table  2.2 shows some sequences of amphiphilic cell 

penetrating peptides and their types of amphiphilicity. 
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Figure  2.1 Schematic representation of amphiphilic peptides. (A) In a primary amphiphilic 
peptide, hydrophobic and hydrophilic segments at the opposite ends of the peptide can be 
separated by a linker, usually polyglycine (green), (B) A secondary amphiphilic peptide requires 
adapting a secondary structure (helical conformation) to attain amphiphilicity. In this 
arrangement, the hydrophobic and hydrophilic residues face opposite sides of helical structure 
[111]. 

 

MPG was the first peptide used to introduce siRNA into cells. It consists of a hydrophobic 

domain derived from a HIV gp41 fusion sequence GALFLGFLGAAGSTMGA and a nuclear 

localization sequence (NLS) KSKRKV, joined through a linker WSQP [72]. The linker domain 

contains a proline residue, which improves the integrity of both hydrophobic and hydrophilic 

domains. The sequence of MPG has been modified by a single mutation of a lysine residue in 

NLS to a serine residue in order to limit its nuclear translocation and rapid release of the cargo in 

the cytoplasm. The resulting peptide, MPGΔNLS, MPG with mutated NLS sequence, has shown 

high efficiency in siRNA delivery as the target site of the siRNA is the cytoplasm. MPG family 

mediated delivery of siRNA has shown significant gene knock-down both in vitro [112-117] and 

in vivo [66]. The Divita group has also recently reported high siRNA delivery efficiency of 

CADY peptide in different cell lines [118].   
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Table  2.2 Amphiphilic cell penetrating peptides 

Names Sequence 
 
Amphiphilicity Reference 

CADY GLWRALWRLLRSLWRLLWRA Secondary [118] 
MPG  GALFLGFLGAAGSTMGAWSQPKKKRKV  Primary [72] 
MPG-NLS GALFLGFLGAAGSTMGAWSQPKSKRKV  Primary [72,119] 
Pep-1  KETWWETWWTEWSQPKKKRKV  Primary [120] 
Pep-2  KETWFETWFTEWSQPKKKRKV  Primary [120] 
GALA  WEAALAEALAEALAEHLAEALAEAEALEALAA Secondary [121] 
KALA  WEAKLAKALAKALAKHLAKALAKALKACEA  Secondary [122] 
MAP KLALKLALKALKAALKLA  Secondary [123] 
SP  MGLGLHLLVLAAALQGAWSQPKKKRKV  Primary [124,125]
SP-NLS  MGLGLHLLLAAALQGAKKKRKV  Primary [124,126]
SPM  MGLGLWLLVLAAALQGAKKKRKV  Primary [127] 
Transportan  GWTLNSAGYLLGKINLKALAALAKKIL  Primary [82] 
Hel 9-9 KLLKKLLKLWKKLLKKLK Secondary [109] 
Hel 11-7 KLLKLLLKLWKKLLKLLK Secondary [109] 
Hel 13-5 KLLKLLLKLWLKLLKLLL Secondary [109]} 
[Pa] GALFLAFLAAALSLMGLWSQPKKKRKV Primary [72] 
[Pb] GALFLGFLGAAGSTMGAWSQPKKKRKV Primary [72] 
gp41 fusion  GALFLGWLGAAGSTMGA Primary [128] 

 

2.2.4 Cell targeting and NLS containing peptides 

Because of their small size and biocompatibility, short cell targeting peptides (CTPs) are 

emerging as alternatives to monoclonal antibodies for targeting purposes. These peptides can 

directly bind to cell surface receptors or the endothelial cell surface of tumor vasculatures. This 

ability to specifically target a specific cell/tissue could significantly reduce the required drug 

dose and potential side effects. Among all CTPs, RGD is the most used and investigated peptide. 

This short segment of fibronectin protein has shown high affinity to most integrins, the cell 

surface glycoproteins over-expressed in neovasculature of tumor sites [129]. Several attempts 

have been made to improve the affinity and specificity of RGD peptide to the integrins by 

modification of the RGD sequence, e.g. cyclization of RGD [130]. This simple modification 

showed 200-fold more affinity for binding αVβ3 integrins than linear RGD [131].   
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2.2.5 Peptide-siRNA conjugates/complexes 

In order to enhance the cellular uptake and gene silencing efficiency, siRNA should properly 

bind or co-assemble with its carrier molecules. Two different strategies are mainly applied to 

form peptide-siRNA conjugates: either peptides are covalently attached to siRNAs, or they 

interact through electrostatic interactions to form non-covalent complexes.      

2.2.5.1 Covalent peptide-siRNA conjugates 

Covalent attachment of peptides to siRNA molecules offers a potential strategy for peptide-

mediated siRNA delivery. It can be of several advantages for in vivo applications, including 

reproducibility of the procedure, and control of the stoichiometry of peptide/siRNA ratios. Also, 

less peptide is required in this method as compared to non-covalent strategies. This is especially 

important if the peptide shows toxicity in high concentrations. Several options are available for 

covalent conjugation of peptides to NAs, including the use of cross-linking agents, triplehelix- 

forming oligonucleotides, and chemical attachment to the end of linear NAs [66,132]. The main 

method applied for the peptide-siRNA conjugation is disulfide linkage, which is cleaved in the 

cytosol due to its reducing environment. There are limited literature (Table  2.3), reporting 

significant gene silencing through covalent attachment of peptides and siRNAs as it is suspected 

to alter the biological activity of siRNA molecules [133].  

2.2.5.2 Non-covalent peptide-siRNA complexes 

As an alternative to covalent strategies, non-covalent interactions of carrier peptides and cargos 

have recently been developed. Positively charged peptides can interact with the negatively 

charged backbone of siRNA through non-specific electrostatic interactions, providing cell 

permeability for siRNA molecules by covering the siRNA surface with positive charges of the 

peptides. This is a very simple and effective strategy for carrier mediated siRNA delivery 

without any need to chemical modification of siRNA. However, if high peptide/siRNA molar 

ratios are applied, the high concentration of positively charged peptides may induce some side-
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effects through interactions with anionic molecules in the cell. The molar excess of the peptide as 

compared to siRNA can also yield complexes of varying sizes. This could be considered as a 

disadvantage of this strategy as a certain size of complexes is required in most therapeutic 

applications. One example of peptides employing this strategy is MPG as we discussed before. 

Table  2.3 lists some reports of using non-covalent peptide-siRNA complexes for RNAi.  

Table  2.3 siRNA delivery by covalent and non-covalent peptide-siRNA conjugates/complexes 

Peptide Cell line  Target gene Reference 
Covalent conjugates 
Tat  NIH-3T3 MDR MDR1 [134] 
Tat Hela P38 [135] 
Penetratin Neuron SOD1 [136] 
Penetratin CHO Luciferase [137] 
Transportan CHO Luciferase [137] 
Non-covalent complexes 
CADY U2OS GAPDH [118] 
MPG, MPG-NLS HS-68 GAPDH [117] 
MPG, MPG-NLS Hela Luciferase [117,138] 
MPGα ECV304 Luciferase [139] 
H2A-Penetratin Hela Luciferase [140] 
Bprp Hela Luciferase [140] 
Tat CHO EGFP [141] 
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Chapter 3∗ 

A New Amphipathic, Amino Acid Pairing (AAP) Peptide as siRNA 
Delivery Carrier: Physicochemical Characterization and in vitro 

Uptake  

 

RNA interference has emerged as a powerful tool in biological and pharmaceutical research. 

However, the enzymatic degradation and polyanionic nature of short interfering RNAs (siRNAs) 

lead to their poor cellular uptake and eventually biological effects. Among non-viral delivery 

systems, cell-penetrating peptides (CPPs) have been recently employed to improve the siRNA 

delivery efficiency. Here, we introduce an 18-mer amphipathic, amino acid pairing peptide, C6, 

as an siRNA delivery carrier. Peptide C6 adopted a helical structure upon co-assembling with 

siRNA. The C6-siRNA co-assembly showed a size distribution between 50 and 250nm, 

confirmed by dynamic light scattering and atomic force microscopy.  The C6-siRNA interaction 

enthalpy and stoichiometry were 8.8 kJ.mol-1 and 6.5, respectively, obtained by isothermal 

titration calorimetry. A minimum C6:siRNA molar ratio of 10:1 was required to form stable co-

assemblies/complexes, indicated by agarose gel shift assay and fluorescence spectroscopy. 

Peptide C6 showed lower toxicity and higher efficiency in cellular uptake of siRNA, compared 

with Lipofectamine 2000. Fluorescence microscopy images also confirmed the localization of 

C6-siRNA complexes in the cytoplasm using Cy3-labeled siRNAs. These results indicate high 

capabilities of C6 in forming safe and stable complexes with siRNA and enhancing its cellular 

uptake.   

                                                                                                 

∗ This chapter is adapted from a paper “M. Jafari, W. Xu, S. Naahidi, B. Chen, and P. Chen, A New Amphipathic, 
Amino Acid Pairing (AAP) Peptide as siRNA Delivery Carrier: Physicochemical Characterization and in vitro 
Uptake. J. Phys. Chem. B, 2012, 116: 13183–13191”. 
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3.1 Introduction 

The field of gene therapy has witnessed significant expansion over the past decades. The 

discovery of RNA interference (RNAi) offered the main contribution to this growth. RNAi is a 

highly regulated process, in which double-stranded, short interfering RNA, siRNA, cleaves the 

complementary messenger RNA (mRNA), causing post-transcriptional gene silencing (PTGS) 

[2]. This sequence-specific gene knockdown eventually hinders the production of the target 

protein in a highly specific manner. This exceptional feature of RNAi makes it a valuable tool in 

studying gene function and signaling pathways, as well as developing siRNA-based 

pharmaceutical agents.     

However, despite abundant promise, the translation of RNAi to a realistic therapeutics has faced 

serious obstacles. The large size and polyanionic nature of free siRNAs prevent them from 

translocating across the negatively-charged cell membrane. Moreover, without protection, 

siRNAs are subject to enzymatic degradation in physiological conditions. These highlight the 

importance of developing an efficient siRNA delivery system, which can (i) interact with siRNA 

and condense it into small nanoparticles, (ii) protect siRNA against degradation, (iii) cross the 

cell membrane, and (iv) release siRNA to the target site, i.e., cytosol. Several non-viral siRNA 

delivery systems, including polymers [142-144], lipids [41,42,49], and peptides 

[45,118,133,145,146], have been developed for this purpose.  

Cell penetrating peptides (CPP), net positively charged peptides with less than 30 amino acids, 

have been widely applied to deliver cargos into cells. Despite numerous reports on CPP’s high 

efficiency, their cellular uptake mechanism is still under debate. Several pathways including 

energy-dependent endocytosis [147,148] and direct translocation [149,150] have been proposed 

as the major uptake mechanism of CPPs. The interaction of CPP with the cargo can occur 

through either chemical linkage or non-covalent forces. Considering the negatively-charged 

backbone of siRNA, the non-covalent electrostatic interaction is usually preferred to obtain 

stable peptide-siRNA complexes without any need for chemical linkage or modification of 
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siRNA.    

Considering the amphiphilic nature of the cell membrane, most CPPs possess both hydrophilic 

and hydrophobic moieties. The hydrophilic side interacts with the hydrophilic heads of the lipid 

bilayer, and hydrophilic drugs/genes through electrostatic interaction, while the hydrophobic side 

is anchored in the hydrophobic core of the bilayer, triggering the endocytosis pathways or 

assisting the direct translocation of peptide-cargo to the cytosol. The amphiphilicity of the 

peptides may evolve from their primary structure, e.g., MPG [72], or secondary structure, e.g., 

penetratin [80], and CADY [118]. In the latter case, the peptide needs to adapt a helical structure 

in order to organize hydrophilic and hydrophobic moieties at different sides of the peptide 

[80,118]. 

Over the past several years, we have been studying the concept of amino acid pairing (AAP) and 

have established principles to design peptides to form a variety of stable nanostructures, such as 

fibers, rods, tubes, and globules [146,151-154]. Different mechanisms including electrostatic, 

hydrogen bonding, hydrophobic, and π-π stacking are incorporated in peptide assembly. 

Applying this strategy, we designed the 18 amino acid peptide, C6, as siRNA delivery carrier.  

Three types of amino acids were incorporated in the design of C6 peptide (Ac-

RLLRLLLRLWRRLLRLLR-NH2). i) Seven arginine residues to interact with siRNA and cell 

membrane. Positively charged arginine residues can interact with the negatively charged 

phosphate groups on the siRNA backbone via ionic interactions. These basic residues also 

interact with negatively charged cell surface proteoglycans to initiate their cellular uptake [155]. 

CPPs with six to nine arginine residues have been reported to have the highest translocation 

efficiency [156]. ii) Ten leucine residues to induce the amphiphilicity and helicity to the peptide 

structure. These hydrophobic residues are found abundantly in the helical regions of proteins 

[157]. They also interact with hydrophobic tails of lipid bilayer and facilitate the translocation of 

peptide [66]. iii) An aromatic tryptophan residue incorporated in the middle of the sequence for 
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use as an intrinsic fluorescence probe to study the structural change of the peptide upon changing 

the environment or interaction with siRNA.  

As each turn of a peptide helix includes 3.6 residues, arginine residues were distributed along the 

peptide sequence in three or four residue intervals, so when the helical structure is formed, they 

all face the same side of the helix (Figure  3.2A). This induces amphiphilicity to the peptide 

structure as polar (R) and non-polar (L, W) residues face opposite sides, when the peptide adopts 

a helical structure.  This arrangement of amino acids facilitates the self-assembly of the peptide, 

mainly through hydrophobic interaction of leucine faces of the helices. Furthermore, the 

presence of all arginine residues on the hydrophilic face of the helix facilitates ionic interaction 

of positively charged residues with the siRNA backbone, maximizing the loading capacity of the 

peptide.    

This chapter will focus on physicochemical characterization of C6 and its co-assembly/complex 

with siRNA, as well as C6-mediated cellular uptake of siRNA, using several biophysical, 

spectroscopy and microscopy approaches. 

  

3.2 Experimental Methods 

3.2.1 Peptide and siRNA 

The C6 peptide (Ac-RLLRLLLRLWRRLLRLLR-NH2, MW=2470.2 g/mol) was purchased from 

CanPeptide, Inc. (Quebec, Canada). High performance liquid chromatography (HPLC) analysis 

indicated that the synthetic peptide was at least 98% pure.  The unlabelled (AM4624) and 5’ cy3 

dye labeled glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA (AM4649) were 

purchased from Ambion (Austin, USA). The siRNA used in agarose gel electrophoresis and 

fluorescence spectroscopy is eGFP siRNA, which was purchased from Dharmacon with an 
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extinction coefficient of 362408 L/mol cm. The sense sequence is GACGUAAACGG 

CCACAAG UUC and antisense sequence is ACUUGUGGCCGU UUACGUCGC. 

3.2.2 Cell culture 

The CHO-K1 (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (ATCC CCL-61). Cells were cultured in F-12K (Thermo Scientific, Ottawa, Canada) 

supplemented with 10% FBS (Sigma-Aldrich, Oakville, Canada). Cells were incubated at 37 °C 

in a humidified atmosphere containing 5% CO2. 

3.2.3 Preparation of peptide-siRNA co-assembly/complex 

The C6 peptide was prepared by dissolving peptide powder in RNase free water. A stock 

solution of 1mM was made and diluted at desirable concentrations for various experiments. The 

solution was vortexed for 10 seconds and sonicated for 10 minutes in a tabletop ultrasonic 

cleaner (Branson, model 2510, USA). siRNA was diluted in RNase free water to a concentration 

of 50µM. Peptide-siRNA complexes were formed by adding peptide solution into siRNA in 

proportion according to the designed experiment. The complexes were incubated for 20 minutes 

at room temperature before each experiment.  

3.2.4 Dynamic Light Scattering (DLS) and Zeta potential 

The hydrodynamic diameter of the peptide C6 self-assemblies/aggregates (4 μM) and the C6-

siRNA co-assemblies/complexes were measured on a Zetasizer Nano ZS (Malvern Instruments, 

U.K.) equipped with a 4 mW He-Ne laser operating at 633 nm. Samples at molar ratios of 10:1, 

20:1 and 40:1 with final siRNA concentration of 100nM were prepared as mentioned above. A 

quartz microcell (45 μL) with a 3 mm light path was used and the scattered light intensities were 

collected at an angle of 173°. Clear disposable zeta cells were used for Zeta potential 

measurements. The intensity-based size distribution and zeta potential values were acquired 

using the multimodal algorithm CONTIN, Dispersion Technology Software 5.0. Three 
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independent measurements were performed for each sample 20 min after sample preparation at 

25°C. 

3.2.5 Atomic Force Microscopy (AFM) 

The nanostructures of peptide C6 (40µM) and C6-siRNA (molar ratio of 40:1) complex were 

characterized by AFM. The sample solution (10 µl) was placed on a freshly cleaved mica 

surface, fixed on a glass slide, and incubated for 30 min at room temperature to allow the sample 

to adhere onto the mica surface. The mica was then rinsed five times with Milli-Q water to 

remove any unattached particles, followed by air-drying overnight. The mica surface was 

analyzed by a PicoScanTM AFM (Molecular Imaging, Phoenix, AZ) at room temperature using 

the tapping mode with silicon single-crystal tips (NCL type, Molecular Imaging, Phoenix, AZ), 

with a typical tip radius of 10 nm and resonance frequency of <170 kHz. A scanner with the 

maximum scan size of 5 μm × 5 μm was used. All AFM images were obtained at a resolution of 

512 × 512 pixels on a scale of 2 μm × 2 μm. 

3.2.6 Circular Dichroism (CD) spectroscopy 

Spectra from 250 to 190 nm with spectral resolution and pitch of 1 nm and scan speed of 200 

nm/min were recorded with a J-810 spectropolarimeter (Jasco, USA). Increasing amounts of 

siRNA were added to a fixed peptide concentration of 20 µM to obtain different molar ratios. 

Samples were transferred into 1 mm long quartz cells and maintained at 25°C. Spectra shown are 

the average of three replicates. 

3.2.7 Isothermal Titration Calorimetry (ITC) 

Isothermal titration calorimetry experiments were conducted on a Nano-ITC calorimeter (TA 

Instruments) with a cell volume of 174 μl. The peptide C6 (250 μM) and siRNA (6 μM) were 

prepared in RNase-free water. All samples were degassed in a degassing station (TA 

Instruments) prior to experiments. Milli-Q water was used in the ITC reference cell. For each 
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titration, 2 μl of the peptide in a pipette stirring at 300 rpm was automatically added to siRNA 

solution in the sample cell of the calorimeter, equilibrated at 25°C, with an interval of 300s 

between injections. The heat of dilution was measured by titrating C6 solution into RNase free 

water and subtracted from the measured sample heat.  A single site independent model was used 

to determine the binding constant (K), stoichiometry (n), and the binding enthalpy (ΔH), using 

NanoAnalyze software v.2.3.0. The change in free energy (ΔG) and entropy (ΔS) were calculated 

using the equations ΔG = -RTlnK and ΔG = ΔH - TΔS, respectively, where R is the gas constant, 

T is absolute temperature, and K is the equilibrium constant. 

3.2.8 Agarose gel-shift assay 

The ability of C6 to co-assemble with siRNA was investigated by agarose gel (1.2% wt/vol) shift 

assay. siRNA was incubated for 30 minutes at 37°C in RNase free water with different 

concentrations of C6 to obtain peptide:siRNA molar ratios ranging from 1:1 to 80:1. The 

samples (10 μl containing 0.3 μg of siRNA per well) and loading dye were loaded to each well 

and electrophoresis was carried out at a constant voltage of 55V for 1.5 h in TBE buffer (4.45 

mM Tris–base, 1 mM sodium EDTA, 4.45 mM boric acid, pH 8.3) containing 0.5 μg/ml 

ethidium bromide.  

In the case of heparin competition, different amounts of heparin corresponding to final 

concentrations from 0.5 to 10 μg heparin per 10 μl of complex were added to C6/siRNA 

complexes at molar ratios of 15:1, 40:1, 60:1, and 80:1. Ten microliters of each sample, 

corresponding to 50 pmol of siRNA, was then analyzed by electrophoresis on agarose gel (1.2% 

wt/vol) stained with ethidium bromide. 

3.2.9 Fluorescence spectroscopy 

Since the peptide C6 has a tryptophan (Trp) residue, which is an important intrinsic fluorescent 

probe, fluorescence spectroscopy was applied as a powerful technique to characterize the 
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interaction between siRNA and peptide. The peptide fluorescence was acquired on a Photon 

Technology International spectrafluorometer (Type LS-100, London, Canada) with a pulsed 

xenon lamp as the light source. Samples (80 µl) were transferred to a quartz cell (1cm×1cm) and 

excited at 280 nm and spectra were collected in the range of 300nm-500nm. The standard 

fluorescence intensity Is was obtained by taking the average of the fluorescence of C6 only 

sample from 480 to 500 nm. Different volumes of siRNA stock solution were added to the fixed 

peptide concentration of 160 nM to obtain peptide:siRNA molar ratio from 80:1 to 1:1.  

Cy-3 labeled siRNA was also used as an extrinsic fluorescent probe, and the change in 

fluorescence spectra was studied at a fixed concentration of siRNA (2 µM) and increasing 

concentration of peptide to achieve different molar ratios. The samples were excited at 540nm 

and spectra were collected in the range of 550-800 nm. The spectra were normalized by taking Is 

as the average of the fluorescence of Cy-3 siRNA only sample from 780 to 800nm.   

3.2.10 Cytotoxicity 

CHO-K1 cells were used for in vitro cellular toxicity studies of C6 and C6-siRNA complexes. 

Cells were detached from the flasks by adding trypsin-EDTA and incubating for 5 min, 

centrifuged at 500 rpm for 5 min, and resuspended in fresh cell culture media at a concentration 

of 6 × 104 cells per mL. 100 µL of cell suspension was added into each well of a flat bottom, 96-

well plate and incubated for 24 h. The media was then replaced with fresh media with different 

final concentrations of C6 or C6-siRNA complex or control (Lipofectamine 2000). 48 hr post-

treatment, the cell counting kit-8 (CCK-8) (Dojindo, Japan) was used to perform cytotoxicity 

assays. 10µl of CCK-8 substrate was added to each well and incubated for an additional 2 h at 

37°C in the dark. Absorbance was measured at a wavelength of 450nm with a reference 

wavelength of 620nm using a microplate reader (FLUOstar OPTIMA, BMG, NC). 

3.2.11 Fluorescence-activated cell sorting (FACS) 

The amount of Cy-3 labeled siRNA uptaken by the cells was studied by Flow Cytometry (type 
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BD Biosciences, BD FACSVantage SE Cell Sorter, USA). Approximately 50,000 CHO-K1 cells 

were seeded in a 24-well cell culture plate 24 hours before treatment. Cy3 labeled GAPDH 

siRNA was complexed with C6 peptide at molar ratios of 15:1, 25:1, and 40:1 and incubated at 

room temperature for 20 minutes. Lipofectamine 2000 (Invitrogen) was complexed with labeled 

siRNA according to manufacturer’s protocol and used as a positive control. The complexes were 

added to cells with a final siRNA concentration of 50nM per well and incubated at 37°C for 3 

hours in Opti-MEM (Invitrogen). The medium was removed by aspiration and the wells were 

washed with heparin (10 U/ml, three times totally for one hour at 37°C). After washing, the cells 

were detached from the plate by adding trypsin-EDTA and re-suspended in fresh 4% 

paraformaldehyde (PFA) in phosphate bufferred saline (PBS) and collected in FACS tubes for 

analysis.  

3.2.12 Fluorescence microscopy  

To investigate the distribution of the C6-siRNA complexes in CHO-K1 cells, Cy-3 labeled 

siRNA was used. CHO-K1 cells were treated with C6-Cy3siRNA complexes at molar ratios of 

15:1 and 40:1 or Lipofectamine 2000 at 37 °C for 3 hours in Opti-MEM as described above. The 

medium was discarded and the wells were washed with PBS and heparin and fixed with 500 

µl/well of fresh 4% PFA solution for 30 minutes. The fixation agent was aspirated, and the cells 

were washed twice with PBS and covered with Fluoroshield with DAPI solution (Sigma-Aldrich, 

Oakville, Canada) to stain the cell nuclei. The samples were visualized using an inverted 

fluorescence microscope (Zeiss AxioObserver Z1, Canada). Images were analyzed using 

AxioVision software package.  
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3.3 Results and Discussion 

3.3.1 Morphology, size, and zeta potential of C6-siRNA co-assemblies 

Considering net positively-charged C6 and net negatively-charged siRNA, the non-covalent 

electrostatic interaction was used to prepare peptide-siRNA co-assemblies. 

Considering 7 arginine residues in C6 sequence and 42 phosphate groups in siRNA backbone, 6 

molecules of C6 were theoretically required to form C6-siRNA core (Figure  3.1A). This ratio 

was confirmed by ITC experiment (Figure  3.4). However, further experiments showed that the 

formed peptide-siRNA core was not stable and extra layers of peptide were required to enhance 

the stability and efficiency of the siRNA. Taking advantages of amino acid pairing properties of 

C6, more layers of peptide was formed to protect the C6-siRNA core. The C6 molecules self-

assembly also facilitated the presence of arginine residue on the surface of the complex, 

improving its solubility and enhancing its cellular uptake via interaction with negatively charged 

cell membrane.        

 

 

Figure  3.1 A) One siRNA molecule co-assembles with six C6 molecules through electrostatic 
interaction to form C6-siRNA core. B) More C6 molecules interact with the first layer, taking 
advantages of amino acid pairing properties of the peptide, to form C6-siRNA complex (at molar 
ratio of 20:1 at this case). Arginine, Leucine and Tryptophan residues are shown in green, yellow 
and blue, respectively 

A    Peptide-siRNA Core B         Peptide-siRNA Complex 
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The particle size and charge significantly affect its circulation in the blood stream, 

biodistribution and uptake by the cells. The particle size ranging from 100 to 500 nm would be 

ideal for passive targeting to solid tumors through the enhanced permeability and retention 

(EPR) effect [158-160]. The size can also dictate the pathway of cellular uptake [161]. It was 

also reported that highly charged particles can be recognized by the reticuloendothelial system 

(RES) more rapidly than neutral or slightly charged particles [6,7]. Thus, engineering the 

nanoparticle to obtain appropriate physical properties could significantly enhance its therapeutic 

effect.  

Figure  3.2 shows the average intensity and number based size and zeta potential of C6-siRNA 

co-assemblies at different molar ratios. The intensity-based data is highly influenced by the 

presence of large particles even though they are a few in the solution. Number-based data 

represents the size distribution of particles based on their population. For monodisperse particles, 

these two values should be almost identical. However, the intensity-based average size is always 

higher than that of number-based in polydisperse particles.   

As shown in Figure 1B, the majority of C6-siRNA co-assemblies at molar ratios of 10:1 to 20:1 

had the average size of ~50 nm. However some larger particles (~200 nm) were also observed. 

The average size of complexes was increased by adding more peptides, as the extra peptides 

added layers to the initially formed peptide-RNA cores. This finding was in agreement with 

AFM images (Figure  3.3 A), which shows the high population of small nanoparticles (~50 nm) 

as well as the presence of larger complexes (~100-200 nm). At the molar ratio of 40:1, the 

complexes became more uniform as the intensity and number based DLS results showed the 

average size between 150 and 250 nm.  
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Figure  3.2 (A) Helical wheel projection of peptide C6. A downward cross-sectional view of the 
alpha helix axis, orthogonal to the paper plane, is shown. The bigger the circle is, the upper turn 
the residue is located at, when viewing from the top. R (green), L (yellow), and W (blue) 
represent Arginine, Leucine and Tryptophan residues, respectively. Size (B) and zeta potential 
(C) of C6-siRNA complexes at different molar ratios.  The siRNA concentration was 100 nM 
and the peptide concentration in “peptide only” sample was 4 µM. Three independent 
measurements were performed for each sample 20 min after sample preparation at 25 °C. Error 
bars represent standard deviation of three replicates. (MR= peptide:siRNA molar ratio) 

CB 

A 
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The peptide only sample formed aggregates of 200-300 nm in solution. However on the mica 

surface (Figure  3.3 B), the peptide sample formed globular structures with an average diameter 

of ~45nm, eventually organized to form a network of strings of nanospheres. The formation of 

these globular structures was derived by hydrophobic attraction between leucine residues, 

distributed along the peptide sequence. As there was not such a template for nanoparticles in 

solution in DLS experiment to form the network, they aggregated, instead, as larger particles to 

minimize the interaction of hydrophobic residues and water molecules. This self-

assembly/aggregation process is thermodynamically favored by minimizing Gibbs free energy 

through limiting the exposure of hydrophobic residues to the aqueous environment and having 

mostly charged arginine residues on the surface of globules. We have already reported similar 

morphology for another AAP peptide [162].  

The surface charge of C6-siRNA complex at molar ratio of 10:1 was slightly negative which 

implies that siRNA molecules was not fully saturated by peptides (Figure  3.2 C). Considering 7 

positively charged arginine groups of the peptide C6 and 21 pairs of negatively charged 

nucleotides in a siRNA molecule, it was theoretically expected to neutralize negative charge of 

siRNA at molar ratio of 6:1. However at a higher molar ratio, i.e., 15:1, the zeta potential of the 

complex jumped to +30mV, indicating that peptides fully covered the surface of the complex. 

With the increasing concentration of peptide at the same siRNA concentration, the positive value 

of the surface charge of the complexes increased from +30mV (MR=15:1) to +60mV (MR=40:1) 

due to the increase in the number of positively-charged arginine residues. The net positive charge 

of the particles is crucial as it inhibits particle aggregation and enhances electrostatic interaction 

with the negatively charged phospholipids of the cell membrane upon siRNA delivery.  
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Figure  3.3 AFM images of (A) C6-siRNA complex (MR=40:1) and (B) C6 peptide 
aggregates/assemblies (40µM). The sample solution (10 µl) was placed on the mica surface, and 
incubated for 30 min at room temperature. The mica was then rinsed five times with Milli-Q 
water, followed by air-drying overnight. The scan size of the images is 2 × 2 μm2. 

 

3.3.2 Peptide-siRNA co-assembly detected by ITC 

In order to study the thermodynamic aspects of C6-siRNA interaction, ITC was used to detect 

the heat exchanged during the titration of siRNA with C6 solution. 

As shown in Figure  3.4, the interaction between C6 and siRNA created small exothermic peaks, 

followed by a gradual decrease in the exchanged heat after the first several injections. The heat 

measured for the last injections was almost the same as the dilution heat (control experiment), 

implying there was no significant interaction after saturation ratio. The thermodynamic 

parameters of the interaction were obtained by fitting the raw ITC data to a single site model 

using NanoAnalyze software v.2.3.0 (Table  3.1).  

  

A B

200nm200nm
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Table  3.1 Thermodynamic parameters of the interaction between peptide and siRNA 

stoichiometry K (106 M−1) ΔH (kJ/mol) TΔS (kJ/mol) ΔG (kJ/mol) 

6.49 ± 0.33 9.23 ± 0.63 -8.86 ± 0.55 30.95 ± 1.14 -39.81 ± 1.69 

A single site independent model was used for fitting the data points in Figure 3 (solid curve in lower 
panel) to determine the binding constant (K), stoichiometry (n), the binding enthalpy (ΔH), the change in 
free energy (ΔG), and entropy (ΔS). 
 

Interestingly, the obtained molar stoichiometry of ~6.5 was very close to the theoretical one, i.e., 

6. With a low enthalpy of 8.8 kJ.mol-1, the binding was mostly entropy driven, with a ΔS of 103 

J.mol-1.K-1, which contributes to 78% of the binding free energy. This combination of 

thermodynamic parameters, i.e., low enthalpy and high positive entropy values, is consistent 

with a typical charge neutralization or ionic interaction process, e.g., the interaction of basic 

amino acids with RNA [163] or DNA [164]. 

It should be noted that the thermodynamic parameters of the interaction are strong functions of 

experimental conditions, e.g., temperature, pH and ionic strength. The values reported here were 

the results of experiments conducted in water (pH=6) at 25 °C.  
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Figure  3.4 Titration of 250 µM peptide C6 into the solution of 6µM siRNA. The upper panel 
shows baseline-corrected thermogram of released heat at each injection and the lower graph 
shows the integrated areas of the net heat of each titration after subtracting the heat of the 
dilution of peptide to water as a function of the molar ratio of peptide to siRNA. A single site 
independent model was used for fitting the data points (solid curve in lower panel). 

 

3.3.3 Agarose gel shift assay 

Agarose gel shift assay was used to detect the interaction between siRNA and peptide molecules 

and the stability of the formed complex in the presence of heparin. Peptide can interact with 

siRNA through non-covalent interactions such as coulombic forces and hydrogen bonding. In 

particular, basic amino acids such as lysine, arginine or histidine can interact with the negatively 

charged phosphate groups on the siRNA sugar rings through electrostatic interactions. Free 
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siRNA molecules could move toward the positive electrode when the voltage is applied; while, 

the inability of peptide-siRNA complexes to enter the agarose gel suggests the formation of 

stable complex with no free siRNAs to be shown in siRNA bands. 

As shown in Figure  3.5 B, the effective formation of the peptide-siRNA complex started at molar 

ratio of as low as 5:1, since the band was less bright than that of siRNA only. At the molar ratio 

of 10:1, siRNA molecules were almost completely associated with peptide C6, as very small 

amount of free siRNA was observed on siRNA band. This band completely disappeared at the 

molar ratio of 15:1. This finding suggests that excess peptide molecules are needed to obtain 

stable peptide/RNA complexes as six molecules of peptides are theoretically required to 

electrostatically neutralize one molecule of siRNA. Further experiments showed that the excess 

peptide molecules can provide a shield to protect siRNA molecules against degradation, and also 

interact with cell membrane to initiate the peptide-siRNA cellular uptake.  

The stability of C6-siRNA complexes at different molar ratios in the presence of heparin was 

also analyzed by gel electrophoresis. As shown in Figure  3.5 A, C6-siRNA complexes were 

stable in the absence of heparin (second well from left) and no free siRNA was shown in siRNA 

bands at all MRs. The complex at MR of 15:1 was stable at very low concentration of heparin, 

i.e., 0.5 μg per 10 μl of sample, but dissociated at higher heparin concentration. The minimum 

concentration of heparin required for dissociation of the complex increased by increasing the MR 

up to 60:1. However, the complex at the molar ratio of 80:1 was completely stable even at high 

heparin concentration (10 μg in 10 μl of loaded sample). 



 

 40 

 

 

 

 

  

 

Figure  3.5 (A) Stability of C6-siRNA complex indicated by heparin competition assay. Different 
amounts of heparin were added to C6-siRNA complexes at different molar ratios (MRs). 
Stability of complexes was analyzed by electrophoresis on agarose gel (1.2% wt/vol.). For better 
comparison, the siRNA bands of four independent gels were put in the same image. (B) The 
formation of C6-siRNA complexes at different MRs. siRNA was incubated with different 
concentrations of C6 corresponding to a MR ranging from 1:1 to 80:1. Lane 1 refers to siRNA 
control in the absence of C6, and lanes 2–8 to different MRs. (C) Secondary structure of peptide 
C6 (20 µM) alone and with siRNA at MRs of 40:1 and 10:1, obtained by CD spectroscopy. 

C

A

B 



 

 41 

3.3.4 Conformational Changes of C6 upon co-assembling with siRNA 

The impact of siRNA on the secondary structure of C6 was evaluated by CD spectroscopy. As 

reported in Figure  3.5 B, C6 in water showed a small content of a random coil conformation with 

a minimum at 203nm. By adding a small amount of siRNA (MR of 40:1) a clear shift in the 

spectrum minimum from 203 to 208 along with a maximum around 190 nm were observed, 

which represents a typical helical conformation. The absolute values of the minima at 208 and 

222 nm, and the maximum at 190 nm were increased by adding more siRNAs to MR of 10:1, 

which indicates the increase in helical content in secondary structure of the peptide at a higher 

concentration of siRNA. Adding further siRNA beyond the MR of 10:1 did not significantly 

change the secondary structure of the peptide (not shown), indicating a saturation point, as also 

observed in the gel electrophoresis and ITC tests. Considering the nature of C6 and siRNA 

interaction, i.e., ionic interaction, the charge neutralization of seven arginine residues in the 

peptide sequence may decrease the repulsion between them, which eventually facilitated the 

peptide adoption to a helical conformation. 

3.3.5 Fluorescence spectroscopy 

The formation of siRNA/C6 complexes was also evaluated by intrinsic fluorescence 

spectroscopy, using the Trp residue in C6 as the fluorescent probe to monitor the interaction with 

siRNA. As shown in Figure  3.6 A, the peptide only sample had an emission peak at 354 nm. The 

binding of C6 to siRNA from molar ratio of 80:1 to 1:1 induced quenching of Trp fluorescence 

as well as a blue shift in the maximum. As shown in Figure  3.6 A, at the molar ratio of 10:1, 

55% quenching of fluorescence, accompanied by a 20nm blue shift from 354 nm to 334 nm 

(Figure  3.6 A, inset) was observed. No significant change in fluorescence intensity and peak 

wavelength was observed by adding more siRNAs (e.g., at MR=1:1), which indicates a 

saturation in peptide-siRNA interaction at MR=10:1.  
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Figure  3.6 C6-siRNA interaction monitored by fluorescence spectroscopy. (A) The intrinsic Trp 
fluorescence of C6 was excited at 280 nm and the emission spectra were recorded from 300 to 
500 nm. A fixed concentration of 160 nM of peptide was titrated by increasing siRNA 
concentration from molar ratio 80/1 to 1/1. (B) Cy-3 labeled siRNA was used as extrinsic 
fluorescent probe and the change in fluorescence spectra was studied at a fixed concentration of 
siRNA (2 µM) and increasing concentration of peptide to achieve different molar ratios. The 
samples were excited at 540 nm and spectra were collected in the range of 550-800 nm. 
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This finding is in agreement with what was reported for agarose gel assay. The blue shift 

signifies a change in the environment of Trp residue from polar to non-polar, indicating 

conformational change of C6 upon interaction with siRNA as also confirmed by CD [165]. 

Similarly, the interaction of C6 with labeled siRNA induced a red shift along with quenching in 

maximum spectra of extrinsic Cy-3 label of siRNA, starting from molar ratio of 10:1 (Figure  3.6 

B). The red shift and quenching reached their maximum of 10nm and 15%, respectively, at molar 

ratio of 40:1, as adding more peptide did not change the spectra (MR=80:1). This may suggest 

that the extra peptides did not interact with the pre-formed C6-siRNA complexes. Considering 

the results of all the performed characterization experiments, a C6:RNA molar ratio between 

15:1 and 40:1 was suggested to perform transfection experiments.      

3.3.6 Cyto-toxicity of peptide-siRNA complex 

Cell viability studies were performed, using the CCK-8 assay, on CHO-K1 cells. As shown in 

Figure  3.7 A, no significant difference was observed in the viability of cells treated with C6-

siRNA complexes or C6 only samples at the same concentration. None of the peptide-siRNA 

samples showed considerable toxicity on CHO cells, as the viability of the cells was not reduced 

below 85% even at molar ratio of 40:1. However, the cells treated with Lipofectamine showed 

significant toxicity. These results clearly show that peptide C6 can be used as a safe siRNA 

delivery carrier with lower cytotoxicity, compared with commonly used lipid-based reagents.  
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Figure  3.7 (A) Cyto-toxicity of peptide C6 in complex with siRNA (50 nM) at different molar 
ratios or peptide alone at the same concentrations. (N.T.=Non-treated, MR=peptide:siRNA molar 
ratio), (B) Flow cytometry results for Cy3- labelled siRNA delivered by Lipofectamin 2000 and 
C6 at different molar ratios (MRs). 

 

3.3.7 Cellular uptake of peptide-siRNA complex 

The efficiency of C6 to deliver siRNA into CHO cells was evaluated using fluorescence-

activated cell sorting (FACS).  As shown in Figure  3.7 B, cellular uptake efficiency of siRNA 

was correlated to the molar ratio of C6-siRNA. Even though a 15:1 molar ratio was sufficient to 

deliver even higher amount of siRNA into cells compared with lipofectamine 2000, the 

intracellular fluorescence intensity increased with increasing molar ratio (MR25 and MR40).  

To study the cellular uptake, distribution, and localization of siRNA complexed with C6, CHO 

cells were transfected with Cy3-labeled siRNA alone or in complex with C6 or lipofectamine 

2000. CHO cells were incubated with or without complexes for 3 hours and observed under a 

fluorescence microscope (Figure  3.8). 

A B
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As expected, Cy-3 siRNA alone was not able to enter the cells by itself, due to the negative 

charge and lack of an appropriate delivery vector (Figure  3.8 B). siRNA internalization happened 

within three hours of incubation at the present of transfection reagent, lipofectamine 2000, as 

shown as small red dots in the cytosol of most of the cells (Figure  3.8 D). In the cells treated with 

C6-siRNA complexes (Figure  3.8 E, and F), siRNA was localized to regions in close proximity 

to the nuclear membrane. siRNAs delivered by C6 showed a punctual non-homogeneous 

distribution pattern around the periphery of the nucleus inside the cell, which indicated the 

possibility of endocytosis pathways [166]. Further research to study the uptake mechanism of 

this family of peptides is currently in progress.    

   

   

Figure  3.8 Subcellular distribution pattern of Cy3-labeled siRNA 3 hours post-treatment. Cy3-
labeled GAPDH siRNA (red) was transfected to CHO cells with positive control reagent and 
different molar ratio of C6 at a concentration of 50nM. Cells were analyzed by fluorescence 
microscopy 3 hours after transfection (magnification, 40X). Nuclei were stained with DAPI 
(blue). (A) nontreated cells, (B) cells treated with 50nM siRNA only, (C) with C6 peptide only, 
(D) with Lipofectamine 2000 as positive control, (E) with siRNA complexed with C6 at molar 
ratio of 15:1, and (F) molar ratio of 40:1. 
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C6-siRNA complexes at high molar ratios (MR=40:1) may form high molecular weight 

complexes or aggregate, as previously documented for other CPPs. These large complexes may 

be internalized through the macropinocytosis pathway, which can include all pinosomes larger 

than 200 nm [147]. However the uptake of large aggregates by fluid phase endocytosis may not 

result in the effective release of siRNA into the cytoplasm and eventually significant gene 

knockdown. Thus, precautions should be taken into account while increasing the molar ratio, as 

the large aggregates might have problems dissociating and releasing siRNA in the cells, 

eventually decreasing the knockdown efficiency of the complex. 

 

3.4 Conclusions 

C6, an amphipathic, amino acid pairing (AAP) peptide, was introduced as a safe and efficient 

carrier for siRNA delivery in vitro. The non-covalent interaction/co-assembly between C6 and 

siRNA and the physicochemical properties of the resulting co-assemblies were studied. C6 alone 

showed a random coil secondary structure in water but adopted a helical conformation upon 

binding to siRNA. The ITC results showed an entropy-driven interaction between C6 and siRNA 

with stoichiometry of 6.5, which was close to the theoretical value of 6, required for charge 

neutralization. The gel electrophoresis, fluorescence spectroscopy, DLS, and AFM results 

confirmed stable C6-siRNA complex formation in the molar ratios from 10:1 to 40:1. The flow 

cytometry data and fluorescence microscopy images also indicated the high cellular uptake and 

cytoplasmic localization of siRNA delivered by C6. Considering these results and the fact that 

C6 is non-toxic at the concentrations used, this peptide demonstrated potential as an efficient 

carrier for siRNA delivery. 
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Chapter 4∗ 

Modification of peptide C6 to improve its solubility and efficiency 

 

The development of safe and efficient nonviral gene delivery carriers has received a great deal of 

attention in the last decade. A class of amphipathic peptides has shown to be able to cross cell 

membrane and deliver cargos to intracellular environment. Here, we introduce an 18-mer 

amphipathic peptide, C6M1, as a modified version of peptide C6 for short interfering RNA 

(siRNA) delivery. The importance of tryptophan residues and the effect of peptide sequence 

modification on its solubility, secondary structure, cytotoxicity, and uptake efficiency were 

investigated. The solubility of C6M1 in aqueous solutions was greatly enhanced compared with 

that of C6, confirmed by ANS fluorescence assay. C6M1 had a random/helical structure in water 

with ability to attain a helical conformation in the presence of anionic components or membrane-

mimicking environments. The modification significantly reduced the cytotoxity of the peptide, 

making it a safer carrier for siRNA delivery. C6M1 was also found ~90% more efficient than C6 

in delivering Cy3 labeled siRNA in CHO-K1 cells.      

 

 

 

 

 

 

                                                                                                 

∗ This chapter is adapted from a paper draft “M. Jafari, N. Karunaratne, C. M. Sweeting, and P. Chen, Modification 
of a designed amphipathic cell penetrating peptide and its effect on solubility, secondary structure and efficiency, 
submitted to J. Biochemistry” 
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4.1 Introduction 

With the ability of siRNA to function as a therapeutic in gene therapy, efficient delivery and 

transfection of siRNA are of critically importance. The traditional non-viral carriers for gene 

therapy, such as liposomes, and cationic polymers, are known to have more versatility than viral 

vectors. However, with the discovery that cell penetrating peptides (CPPs) are able to cross 

biological membranes and deliver cargo into the intracellular matrix, an interest in peptides as 

carriers of nucleic acids has emerged. Peptide-based delivery systems have also shown the 

potential to deliver bioactive peptides, therapeutic proteins, and nucleic acids [66-68]. Their role 

is to deliver polypeptides and proteins into cells through either of two strategies: covalent or 

complexed in a non-covalent fashion.  

Primary amphipathic peptides with hydrophilic and hydrophobic parts in the two opposite ends 

(a highly hydrophilic N-terminus and a mainly hydrophobic C-terminus) were reported to have 

cellular uptake ability [72]. Most CPPs have such an arrangement of the amino acids. On the 

other hand, secondary amphipathic peptides with the polar residues placed on one face of the 

helix while the hydrophobic side chains pointing to the opposite face have been reported to have 

better interaction with the cell membrane [109]. 

Positively charged amphipathic peptides are well suited for interactions with negatively charged 

biomolecules, such as siRNA. They are short chain peptides usually containing 20 – 30 amino 

acids, and are rich in lysine and arginine residues. The interactions between these carriers and 

their cargo have been reported to involve a combination of hydrophobic and electrostatic 

contacts through aromatic and charged groups. For example, CADY [167], and PEP family 

peptides [168] are amphipathic peptides, which have been shown to deliver nucleic acids, 

peptides, and proteins into a wide variety of cells through formation of non-covalent complexes. 

Both the PEP and CADY peptides are rich in tryptophan residues, which appear to play a major 

role in stabilization of the carrier/cargo complex and insertion into the membrane owing to their 

hydrophobic nature. The helical conformation of these peptides, associated with their 



 

 49 

amphipathic character, has been reported to be essential for their interaction with the cell 

membrane and their overall function as a CPP [169]. 

In biological systems, many types of supramolecular assemblies of proteins play pivotal roles. 

Many proteins assemble by interactions between secondary structures, such as α-helices and ß-

sheets, to form large aggregates or assemblies. For example, interactions between α-helices result 

in capsule-like protein assemblies, such as ferritin [170] and clathrins [171]. The internal 

skeleton of tomato bushy stunt virus is built by the formation of intermolecular ß-sheets among 

C3 symmetric protein units [172]. Alzheimer patients have amyloid fibrils of extended ß-sheets 

deposited in their brains [173]. 

The design of peptides as carriers for delivery of nucleic acids must take into account the 

stability of the complex, its ability to penetrate and most crucially the release of the cargo inside 

the cell. Both lysine and arginine based peptides have been used for efficient packaging of DNA 

into nanoparticles to prevent cellular degradation and improve DNA availability. However, it 

was reported that lysine containing peptides show differential release of DNA in vitro compared 

to arginine containing peptides [174]. On the other hand, the guanidine moiety in arginine was 

reported to play a crucial role in interaction of the peptide with cell membrane and its 

internalization, as replacing arginine with lysine residues that have the same net charge 

significantly reduced the peptide uptake [175]. 

In the previous chapter, we introduced and characterized C6 peptide as an siRNA delivery carrier 

[176]. The current work introduces C6M1 peptide, a modified version of C6. As shown in Figure 

 4.1, three leucine residues in C6, i.e., leu3, leu7, and leu14, were replaced by tryptophan residues 

(C6M1). As mentioned, tryptophan seems to play an important role in the interaction of peptide 

with cell membrane components, facilitating the direct internalization or endocytosis. The effect 

of this modification on the peptide solubility, secondary structure, and internalization efficiency 

will be discussed. 
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4.2 Materials and methods: 

4.2.1 Peptides, siRNA and Chemicals 

C6 (MW=2470.2 g/mol, purity>98%) and C6M1 (MW=2689.4 g/mol, purity>98%) were 

purchased from CanPeptide, Inc. (Quebec, Canada). Unlabeled and Cy3-labeled Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) siRNA were purchased from Ambion (Austin, USA). 

Trifluoro ethanol (TFE), anilinonaphthalene sulfonate (ANS) and all other chemicals for buffer 

preparations were obtained from Sigma-Aldrich (Oakville, ON, Canada) and used as received.  

4.2.2 Formulation of peptide-siRNA complexes 

The peptide solution was prepared by dissolving peptide powder in RNase free water. A stock 

solution of 1 mM was made and diluted at desirable concentrations for various experiments. The 

solution was then vortexed for 10 seconds and sonicated for 10 minutes in a tabletop ultrasonic 

cleaner (Branson, model 2510, USA). siRNA was diluted in RNase free water to a concentration 

of 50 µM. Peptide-siRNA complexes were formed by adding peptide solution into siRNA in 

proportion according to the designed experiment. The complexes were incubated for 20 minutes 

at room temperature before each experiment. 

4.2.3 Fluorescence spectroscopy 

To evaluate the hydrophobicity of C6 and C6M1 peptides, the well-established ANS 

fluorescence assay was applied. Fresh peptide solutions at different concentrations were mixed 

with the same volume of the ANS solution (20 µM) on a vortex mixer for 20 s. As a control 

sample, the ANS solution was also mixed with the same volume of pure water. The ANS 

fluorescence was acquired on a Photon Technology International spectrofluorometer (Type LS-

100, London, Canada) with a pulsed xenon lamp as the light source. Samples (80 µl) were 

transferred to a quartz cell (1 cm×1 cm) and excited at 360 nm and the emission spectra were 

collected at wavelengths from 420 to 670 nm. The spectra were normalized with the average 

intensity of control sample (Is) from 650 to 670 nm. 
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4.2.4 Surface tension measurement 

The dynamic surface tension of fresh C6 and C6M1 solutions (100 µM) and C6M1-siRNA 

solutions was measured over a period of 1.5 h using the Axisymmetric Drop Shape Analysis-

Profile (ADSA-P) technique [177]. A pendant drop of the sample solution was formed at the tip 

of a vertical Teflon needle (0.92 mm inner diameter) connected to a motor-driven microsyringe. 

The sample was placed in a temperature-controlled chamber, saturated with water vapor to 

maintain consistent humidity. The entire system was placed on a vibration-free table. The images 

of the pendant drop were magnified by an optical microscope and then captured by a CCD 

camera at 30 s intervals before being transferred to a computer. Images were analysed by image 

processing software to generate a profile of the pendant drop. A theoretical curve governed by 

the Laplace equation of capillarity was then fitted to the profile, generating the surface tension 

value as a fitting parameter.  

4.2.5  Circular Dichroism (CD) spectroscopy  

C6 and C6M1 solutions (80 µM) were prepared in water, 50% TFE, or NaCl solutions. Spectra 

from 250 to 190 nm with spectral resolution and pitch of 1 nm and scan speed of 200 nm/min 

were recorded with a J-810 spectropolarimeter (Jasco, USA). Samples were transferred into 1 

mm long quartz cells and maintained at 25 °C. Spectra shown are the average of three replicates. 

The raw CD ellipticity (in millidegrees) was converted to residue molar ellipticity 

(deg.cm2.dmol-1.residue-1): θ=θraw/ (10×C×N×l), where θraw is the ellipticity in millidegrees, C is 

the peptide concentration (mol/L), l is the optical path length of the cell (cm) and N is the 

number of residues. The secondary structure composition of the peptide was estimated from CD 

spectra using K2D3 program [178]. 

4.2.6 Fourier transform infrared (FTIR) spectroscopy 

A Vertex 70 (Bruker Optics Inc., MA, USA) FTIR spectrometer, equipped with a liquid nitrogen 

cooled MCT detector, was used to determine the secondary structure of C6M1 (40 µM) in water 
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and 200 mM NaCl solution. The FTIR spectrum of the sample was recorded at a wavenumber 

resolution of 4 cm−1 between 4000 and 400 cm−1 using the OPUS 5.5 software (Bruker Optics 

Inc., MA, USA). After subtracting the baseline, the absorption spectrum was analyzed in the 

range of 1575–1725 cm−1, where the amide I band is located. 

4.2.7 Cytotoxicity 

Chinese hamster ovary (CHO-K1) cells were used for in vitro cellular toxicity studies of C6 and 

C6M1 peptides. Cells were detached from the flasks by adding trypsin-EDTA and incubating for 

5 min, centrifuged at 500 rpm for 5 min, and resuspended in fresh cell culture media, F-12K 

containing 10% FBS, at a concentration of 1 × 105 cells per mL. 100 µL of cell suspension was 

added into each well of a flat bottom, 96-well plate and incubated for 24 h. The media was then 

replaced with fresh medium with different final concentrations of C6 and C6M1 or controls. The 

cell counting kit-8 (CCK-8) (Dojindo, Japan) was used to perform cytotoxicity assays, 24 hr 

post-treatment. 10µl of CCK-8 substrate was added to each well without discarding the old 

media and incubated for an additional 1 h at 37 °C in the dark. Absorbance was measured at a 

wavelength of 450 nm with a reference wavelength of 620 nm using a microplate reader 

(FLUOstar OPTIMA, BMG, NC). The 50% inhibitory concentration (IC50) of peptides on cells 

was calculated using CCK-8 data. 

4.2.8 Flow cytometry 

The amount of intracellular Cy-3 labeled siRNA was quantified by Flow Cytometry (type BD 

Biosciences, BD FACSVantage SE Cell Sorter, USA). Approximately 50,000 CHO-K1 cells 

were seeded in a 24-well cell culture plate, 24 hours before treatment. Cy3 labeled GAPDH 

siRNA was complexed with C6 and C6M1 peptide at peptide:siRNA molar ratios of 15:1, 30:1 

and incubated at room temperature for 20 minutes. The complexes or naked siRNA samples 

were added to cells at a final siRNA concentration of 50 nM and incubated at 37 °C for 3 hours 

in Opti-MEM (Invitrogen). The medium was then removed by aspiration and the wells were 
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washed with trypsin (0.5 mg/ml in PBS for 5 min), and heparin (0.5 mg/ml in PBS for 3×10 min) 

to remove surface-bound complexes. After washing, the cells were detached from the plate by 

adding trypsin-EDTA and re-suspended in fresh 4% paraformaldehyde (PFA) in phosphate 

bufferred saline (PBS) and collected in FACS tubes for analysis.  

 

4.3 Results 

4.3.1 Design of C6M1 by sequence modification of C6 

The C6 peptide was previously reported as a designed amphipathic peptide for siRNA delivery 

[176]. Despite its ability in cellular delivery of siRNA, C6 suffered from relatively poor 

solubility and aggregation due to its hydrophobic nature. The solubility of a peptide in the 

medium is an important factor in the assembly of the peptide-siRNA complex. Moreover, the 

size of the complex determines the membrane penetration mechanism and efficiency [179].  

Figure  4.1 shows the sequence and helical wheel projection of C6 and C6M1. In the helical 

wheel presentation, the side chains of residues forming the alpha-helix are projected onto a circle 

in a plane perpendicular to the axis of the helix. Assuming the periodicity of an ideal alpha-helix, 

there is a 100° angle between consecutive amino acid residues in the wheel diagram. As shown 

in Figure  4.1, both peptides were designed to show amphiphilicity by clustering of hydrophilic 

residues (i.e., arginine) on one side and hydrophobic residues (i.e., leucine and tryptophan) on 

the opposite side of the circle. C6M1 was originally designed from C6 by replacing leucine 

residues with tryptophan in 3, 7, and 14 positions. Tryptophan content and distribution were 

reported to alter the cellular uptake of the cell penetrating peptides [180] This modification was 

also meant to improve the helicity and solubility of peptide in a polar environment.  

The modified 18-mer peptide, C6M1, consists of three types of amino acids, i.e., 7 arginine, 7 
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leucine and 4 tryptophan residues.  Arginine residues interact with negatively-charged cell 

membrane phospholipids or proteoglycans mainly through guanidine moieties to trigger direct 

translocation or endocytosis [155]. They also form non-covalent complexes with negatively-

charged cargos, e.g., siRNA, through electrostatic interaction. Leucine residues interact with 

hydrophobic tails of lipid bilayer, facilitating the translocation of peptide [66]. They are also 

required for self-assembly of the peptide which can create external layers to protect the peptide-

siRNA core from degradation. The aromatic tryptophan residues have been reported to greatly 

enhance the cellular uptake of arginine-rich peptides [169]. The design of C6M1 allows the 

arrangement of all tryptophan residues at the same face of the helix. This arrangement is also 

expected to stabilize the helical structure through π- π interaction between tryptophan rings. 

 

Figure  4.1 Peptides C6 and C6M1 sequences and helical wheels representation. A downward 
cross-sectional view of the helix axis is shown for C6 and C6M1. The axis of the alpha helix is 
orthogonal to the paper plane. Considering 3.6 residues per turn, each amino acid corresponds to 
100° turn in the helix. R, L, and W represent Arginine, Leucine and Tryptophan residues, 
respectively. 
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4.3.2 Effect of sequence modification on the hydrophobicity of the peptide 

ANS is a hydrophobic dye molecule, which binds to hydrophobic areas of folded proteins. 

Because of the high sensitivity of ANS to the polarity of the environment, it has been widely 

used as a probe to study the hydrophobicity of the molecules, protein aggregation, and cell 

membrane composition [181,182]. The fluorescence intensity and peak position of ANS change 

depending on its environment. In a low polar environment, the fluorescence intensity of ANS 

increases along with a blue shift in fluorescence spectrum peak toward lower wavelengths.   

As shown in Figure  4.2, the peak positions for ANS fluorescence were different at different 

solutions; it located at ~520 nm for water (inset), but shifted to ~490 and ~460 nm for C6M1 

(500 µM) and C6 (500 µM) solutions, respectively. The normalized ANS fluorescence intensity 

was also much higher for C6, compared with that of C6M1 at the same concentration. This 

indicates that the sequence modification in C6M1 has greatly decreased its hydrophobicity and 

improved its solubility in aqueous solutions. The calculation of hydropathy indexes (H.I.) of both 

peptides by averaging those of all amino acids also confirms the ANS results. The replacement 

of three leucine resides (H.I. of +3.8) with three tryptophan residues (-0.9) led to the H.I. of -0.47 

for C6M1, compared with that of C6 (+0.31). The number of arginine residues (H.I. of -4.5) 

remained the same in both peptides. Further experiments with C6 showed that the intensity of the 

fluorescence was concentration-dependant. At higher C6 concentrations, ANS molecules had 

access to more hydrophobic regions at the surface of C6 aggregates, leading to more pronounced 

shift in peak position along with higher fluorescence intensity, until it reached saturation at 

concentrations above 400 µM.  

The hydrophobicity of the drug/gene carrier is an important factor as it can affect the drug-carrier 

complex formation, biodistribution, and bioavailability and limit the solubility of the complex in 

aqueous solutions. 
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Figure  4.2 ANS fluorescence of C6 (10-500 µM) and C6M1 (500 µM). The final concentration 
of ANS was 10 µM. The inset plot shows the fluorescence of ANS in water at the absence of 
peptides. The fluorescence intensity of all samples was normalized to that of water sample at 
670 nm (Is). 

 

4.3.3 Kinetics of adsorption of C6 and C6M1 at the air-water interface 

Considering the amphipathic feature of C6 and C6M1, ADSA technique was employed to 

measure the kinetics of adsorption of peptide at air-water interface. Figure  4.3 shows the change 

in surface tension of C6 and C6M1 solutions (100 µM) over the time. The surface tension of C6 

solution dropped fast initially and reached equilibrium after ~30 min. This indicates fast 

adsorption of C6 molecules and assemblies at air-water interface. In contrast, the surface tension 

of C6M1 solution showed no significant decrease at the first ~5 min, followed by a gradual 

decrease to reach equilibrium in ~90 min. The two different patterns of dynamic surface tension 

of C6 and C6M1 solutions corresponds to different kinetics of adsorption of peptides molecules 
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or assemblies at the air-water interface. Due to the more hydrophobic leucine residues, C6 

molecules and aggregates diffuse very quickly from bulk to the liquid-air interface to minimize 

the exposure of hydrophobic residues/regions to the aqueous environment, affecting the surface 

free energy and decreasing the surface tension. However, the sequence modification in C6M1 

enables the assembly of peptide in the bulk and gradual absorption of peptide molecules and 

assemblies at the interface, resulting in the slower decrease in surface tension of the solution. 

The lower equilibrium surface tension of C6 (~37 mN/m) compared to that of C6M1 (~41 

mN/m) may also reflect the more hydrophobic nature of C6 in comparison to C6M1, confirming 

the results of ANS fluorescence assay. 

 

 

Figure  4.3 Dynamic surface tension of C6 and C6M1 solutions at a concentration of 100 µM. 

 

4.3.4 Effect of complex composition on the adsorption of C6M1 at the air-water 
interface 

The surface activity of C6M1 and its complex with siRNA at different molar ratios was further 
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studied using ADSA technique.  The concentration dependence aggregation/assembly of 

amphipathic peptides is expected to be analogous to that of surfactants, which have both 

hydrophilic and hydrophobic moieties. The peptide-induced reduction in surface tension was 

measured as a function of peptide bulk concentration. The critical aggregation concentration 

(CAC) is defined as the concentration for which no further change in surface tension was 

detected. This was shown as the intersection of a diagonal line fitted to low concentration data 

and a horizontal line fitted to high concentration data point for which the surface tension values 

were almost constant (Figure  4.4 A). The CAC of C6M1, i.e., ~30 μM, was lower than CACs 

reported for other amino acid pairing (AAP) peptides (~ 60μM for EAK-16-II) [177,183]. 

However, the reduction in surface tension at CAC (~30 mN/m) was much higher than those of 

other reported AAP peptides (~10 mN/m for EAK-16-II), which reflected the stronger surface 

activity of C6M1. 

The adsorption property of C6M1 was changed by its interaction with siRNA. Peptide:siRNA 

complexes at molar ratios from 0 to 80:1 were obtained using a fixed peptide concentration of 

100 μM and varying siRNA concentration. As shown in Figure  4.4B, the surface tension of 

siRNA solution (20 μM) was as the same as that of water, indicating that siRNA did not have 

surface active nature. At low molar ratios up to 10:1, the siRNA molecules were enough to 

interact with whole C6M1 molecules which could eventually trap them in the bulk, resulting in 

no change in surface tension of the solution. However, at higher molar ratios, e.g., 80:1, the 

excess of C6M1 molecules could create extra layers on already formed peptide-siRNA complex 

core through AAP peptide-peptide interactions. The presence of C6M1 molecules on the surface 

of the complex could regain the ability of complex to be absorbed in air-water interface, resulting 

in the same drop in surface tension as that of free peptide, i.e., ~30 mN/m. According to Figure 

 4.4 B, a molar ratio of at least 20:1 was required to gain surface active properties. The surface 

activity of the complex is required to efficiently interact with cell membrane component and 

internalize the cells. 
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Figure  4.4 A) Equilibrium surface tension of C6M1 solution as a function of peptide 
concentration. The intersection of two fitted lines indicates the CAC of C6M1 (~30 μM), B) 
Surface tension of solutions containing C6M1/siRNA complexes at fixed peptide concentration 
of 100 μM and different molar ratios. The maximum standard deviation of the surface tension 
values was less than 0.3 mN/m. (MR= peptide:siRNA molar ratio) 

 

4.3.5 Effect of sequence modification on secondary structure of the peptide 

The secondary structure of C6 and C6M1 was characterized in water and a membrane-

mimicking environment (50% TFE), using CD spectroscopy. As shown in Figure  4.5A, C6 in 

water showed a mostly random coil structure with only ~9% helical content (Table  4.1). 

However, C6M1 in water partially (~37%) adapted a helical structure. This increased helicity 

might be associated with more tryptophan residues in C6M1 which can stabilize the helical 

structure through π-π stacking of aromatic rings [184]. Both peptides showed a significant 

increase in helical content in 50% TFE solution (Figure  4.5A). The secondary structure of C6 

and C6M1 in 50% TFE solution included 80 and 93% α-helices, respectively, implying that both 

peptides adapt mainly helical conformation upon interaction with cell membrane.  TFE provides 

a membrane-mimicking environment and has been reported to have similar effect on CPPs 

A B 
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secondary structure as phospholipids do [185]. By changing its conformation, the peptide attains 

a more stable structure which allows better interaction with cell membranes and enhances cell 

penetration [186].  

Further experiments with C6M1 showed that the helical contents of C6M1 increased with 

increasing the ionic strength of the media (Figure  4.5B). Changing the media from water to 30 

and 100 mM NaCl solutions led to 40 and 50% helical contents in secondary structure of C6M1, 

respectively (Table  4.1). The presence of anionic components in media can screen the positive 

charge of arginine residues in one face of helical structure, resulting in decrease in their charge 

repulsion and adopting a stable helical structure. This finding was further confirmed by FTIR 

spectroscopy. Figure  4.6 shows the FTIR spectra of C6M1 in the wavenumber range of 1575-

1725 cm-1, which corresponds to amide I band. At this band, the peak of ~1650 cm-1 is attributed 

to the formation of α-helices; whereas random coil structures occur at 1640 cm-1. The peaks of 

~1630 and ~1690 cm-1 represent ß-sheet structures. As shown in Figure  4.6, C6M1 in water 

showed the peak around 1640 cm-1 with a wide shoulder around 1650 cm-1, indicating the 

presence of a combination of random coil and α-helical structures. On the other hand, C6M1 in 

200 mM NaCl solution adapted mainly α-helical structure (main peak at 1650 cm-1) with a 

shoulder at 1640 cm-1 (random coil). These results are in full agreement with those obtained by 

CD spectroscopy (Figure  4.5 and Table  4.1). 
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Figure  4.5 A) CD spectra of C6 (80 µM) and C6M1 (80 µM) in water and in 50% TFE. B) CD 
spectra of C6M1 (80 µM) in water, and saline. 
 

 
Figure  4.6  FTIR spectra (Amide I region) of C6M1 in water or 200 mM NaCl solution 

B A 
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Table  4.1- Secondary structure composition of C6 and C6M1 at different conditions 

Sample 
α-helix 

(%) 
r.c. (%) 

Other 

(%) 

C6 in water 9 57 34 

C6 in 50% TFE 80 20 0 

C6M1 in water 37 45 18 

C6M1 in 50% TFE 93 7 0 

C6M1 in 30mM NaCl 40 44 16 

C6M1 in 100mM NaCl 50 38 12 

r.c. = random coil, TFE= Trifluoroethanol 

 

4.3.6 Cytotoxicity of C6 and C6M1 peptides 

In order to evaluate the cellular toxicity of C6 and C6M1 peptides and whether the modification 

of C6 peptide could alter its cytotoxicity behavior, dose-response toxicity assay of both peptides 

at final concentrations, ranging from 0.1 to 100 μg/ml, was performed on A549 cells. As reported 

in Figure  4.7A, peptide C6M1 showed lower toxicity with an IC50 (the concentration of peptide 

at 50% cell viability) of 22 μM, compared with C6 with an IC50 of 12 μM. This shows that 

modification of peptide C6 by replacing three Leucine residues with less hydrophobic tryptophan 

residues significantly reduced its cytotoxicity. Peptide C6 has shown high membrane perturbing 

activity and pore formation tendency, leading to cytotoxicity at high concentration above 2 μM 

(Not published). However, the modification of peptide sequence in C6M1 reduced toxic 

properties, making this peptide a safer carrier at concentrations used for siRNA delivery (below 

4 μM). 
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Figure  4.7 A) Effect of C6 and C6M1 peptides on the viability of CHO-K1 cells. Cells were 
cultivated in F-12K medium with indicated concentrations of peptides for 24 h. The cell viability 
was measured by CCK-8 assay. B) uptake of Cy3 labeled siRNA alone or in complex with C6 
and C6M1 peptides at peptide:siRNA molar ratios (MRs) of 15:1 and 30:1. Fluorescence values 
were normalized to that of non-treated cells (uptake=0%). Error bars represent standard deviation 
of three independent experiments in both figures. 

 

4.3.7 Effect of sequence modification on the peptide uptake efficiency 

The efficiency of C6 and C6M1 peptides in delivering labeled Cy3-siRNA was evaluated by 

flow cytometry. This technique determines the quantity of intracellular complexes by measuring 

the Cy3 fluorescence intensity. Because of high tendency of these peptides to attach to cell 

membrane surface, a trypsin/heparin washing procedure was employed to ensure detachment of 

surface-bound complexes. After treatment with C6-siRNA or C6M1-siRNA complexes for 2 h at 

37 °C, cells were washed with PBS, trypsin (0.5 mg/ml in PBS for 5 min), and heparin (0.5 

mg/ml in PBS for 3×10 min), before flow cytometry analysis. 

A B 
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As shown in Figure  4.7B, siRNA by itself was unable to cross cell membrane; however, the 

complex of siRNA with C6 or C6M1 showed significant uptake in CHO-K1 cells which was 

dependent on the molar ratio (MR) of peptide:siRNA. Replacing three leucine (C6) with 

tryptophan residues (C6M1) led to ~90% increase in uptake efficiency of the peptide at both 

MR’s, implying the role of tryptophan residues in facilitating the uptake of the complex. In a 

similar study, Bechara et al. reported the unique role of tryptophan residues in the interaction of 

cationic CPP’s with cell surface glycosaminoglycans (GAGs), facilitating direct penetration or 

GAG-dependent endocytosis [187]. It is worth noting that the uptake efficiency of the peptide-

siRNA complex does not necessarily reflect its transfection efficiency, as some complexes may 

trap in endosomes or have difficulties in releasing siRNA in the case of aggregation. 

 

4.4 Conclusions 

In this study, a new amphipathic peptide, C6M1, a modified version of already-reported C6 

peptide, was introduced as a safer and more efficient carrier for siRNA delivery. The impact of 

the replacement of three leucine with tryptophan residues in peptide sequence on its solubility, 

secondary structure, cytotoxicity, and uptake efficiency was investigated. ANS fluorescence 

assay showed that the sequence modification significantly enhanced the solubility of the peptide 

in aqueous solutions.  C6M1 also showed more helical content in its secondary structure 

compared with C6. This modification significantly reduced the cytotoxity of the peptide, making 

it a safer carrier. C6M1 was also found ~90% more efficient than C6 in delivering Cy3 labeled 

siRNA in CHO-K1 cells.      
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Chapter 5∗ 

Physicochemical characterization, stability studies, and delivery 
efficiency of C6M1 

The efficient delivery of nucleic acids as therapeutic agents is a major challenge in gene therapy. 

Peptides have recently emerged as a novel carrier for delivery of drugs and genes. The potential 

for peptides as vectors for nucleic acid delivery lies in their properties such as efficiency of cell 

penetration and capacity to bind and deliver. C6M1 is a designed amphipathic peptide with the 

ability to form stable complexes with short interfering RNA (siRNA). The peptide showed a 

combination of random coil and helical structure in water but mainly adapted a helical 

conformation in the presence of anions or siRNA. Revealed by DLS, TEM, and AFM 

techniques, the interaction of C6M1 and siRNA in water and HEPES led to complexes of ~70 

and ~155 nm in size, but showed aggregation as large as ~500 nm in PBS. The time-dependent 

aggregation of the complex in PBS was studied by DLS and fluorescence spectroscopy. At molar 

ratio of 15:1, C6M1 was able to completely encapsulate siRNA; however, higher molar ratios 

were required to obtain stable complexes. Naked siRNA was completely degraded in 4 h in the 

solution of 50% serum; however C6M1 protected siRNA against serum RNase over the period of 

24 h. Western blotting experiment showed ~75% decrease in GAPDH protein level of the cells 

treated with C6M1-siRNA complexes; while, no significant knockdown was observed for the 

cells treated with naked siRNA.     

 

 

                                                                                                 

∗ This chapter is adapted from a paper draft “M. Jafari, Wen Xu, Ran Pan, C. M. Sweeting, N. Karunaratne, and P. 
Chen, Physicochemical characterization, stability studies, and delivery efficiency of C6M1 peptide, submitted to J. 
Biochimica et Biophysica Acta 2012”. 
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5.1 Introduction 

Over the past two decades, major advances have been made in the field of gene therapy. Since its 

discovery, RNA interference (RNAi) has provided new perspectives in developing novel nucleic 

acid (NA)-based therapeutics [2,3,5]. However, their development has been restricted by their 

poor stability and cellular uptake. NAs are vulnerable to enzymatic degradation in physiological 

environment, reducing their potency, and lack the ability to cross impermeable barriers of 

biological membranes. For the clinical advancement of RNAi, the design and development of 

safe and effective delivery systems is vital. Several viral and non-viral delivery systems, 

including lipids [41,42], polymers [43,44], and peptides [45,46] have been engineered and 

developed to obtain desired capabilities to overcome the cellular delivery barriers.  

Cell penetrating peptides (CPPs) are short positively-charged peptides, usually less than 30 

amino acids, with the ability to cross the cellular plasma membrane. CPPs have been reported to 

mediate the delivery of a large panel of cargos including siRNA, plasmid DNA, protein, and 

liposome in vitro and in vivo [168,188,189].Two different strategies are mainly applied to form 

peptide-cargo conjugates: either peptides are covalently attached to the cargo, or they interact 

through non-covalent, mainly electrostatic, interactions to form complexes. Considering the 

opposite charges of CPPs and NAs, the non-covalent approach has been mostly applied for the 

formulation of peptide-NA complexes. 

Considering the amphiphilic nature of the cell membrane, the majority of protein-derived and 

designed CPPs are amphipathic. This feature facilitates the interaction of peptide with charged 

phospholipids or proteoglycans on the surface of cell membrane and hydrophobic core of the 

bilayer. It also enables peptides to interact with both hydrophilic and hydrophobic drugs.  The 

amphiphilicity of the peptides may evolve from their primary structure, e.g., MPG [72], or 

secondary structure, e.g., CADY [118], and penetratin [80]. In Primary amphipathic peptides, the 

hydrophilic and hydrophobic moieties are located in the two opposite ends of the peptide 

sequence while, secondary amphipathic peptides are required to adapt a helical structure in order 
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to organize hydrophilic and hydrophobic moieties at opposite sides of the helix [109,176].  

In this chapter we characterize the interaction of a designed amphipathic peptide, C6M1, with 

siRNA, using several spectroscopic and microscopic techniques. The change in the size and 

charge of the C6M1-siRNA complexes in different media will be discussed. The stability of 

C6M1-siRNA complexes in the presence of heparin and serum will be examined using gel 

electrophoresis. The effect of interaction with siRNA and anions on the secondary structure of 

C6M1 will be also explained. 

 

5.2 Materials and methods 

5.2.1 Peptides, siRNA and Chemicals 

N-terminal acetylated and C-terminal amidated C6M1 peptide (MW=2689.4 g/mol, purity>98%) 

were purchased from CanPeptide, Inc. (Quebec, Canada). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) siRNA were purchased from Ambion (Austin, USA). All chemicals 

for buffer preparations were obtained from Sigma-Aldrich (Oakville, ON, Canada) and used as 

received.  

5.2.2 Formulation of peptide-siRNA complexes 

The peptide solution was prepared by dissolving peptide powder in RNase free water, HEPES (6 

mM, pH=7.4), or phosphate buffered saline (PBS, pH=7.4), according to the designed 

experiment. A stock solution of 1mM was prepared and diluted at required concentrations. The 

solution was then vortexed for 10 seconds and sonicated for 10 minutes in a tabletop ultrasonic 

cleaner (Branson, model 2510, USA). siRNA was diluted in RNase free water , HEPES, or PBS, 

to a concentration of 50 µM. Peptide-siRNA complexes were formed by adding peptide solution 

into siRNA in proportion according to the designed experiment. The complexes were incubated 
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for 20 minutes at room temperature before each experiment, unless specified otherwise. 

5.2.3 Dynamic Light Scattering (DLS) and Zeta potential 

The size of the peptide-siRNA complexes was measured on a Zetasizer Nano ZS (Malvern 

Instruments, U.K.) equipped with a 4 mW He-Ne laser operating at 633 nm. Samples at molar 

ratios of 1:1 to 60:1 with final siRNA concentration of 100 nM were prepared as mentioned 

above. A quartz microcell (45 μL) with a 3 mm light path was used and the scattered light 

intensities were collected at an angle of 173°. Clear disposable zeta cells were used for Zeta 

potential measurements. The size distribution and zeta potential values were acquired using the 

multimodal algorithm CONTIN, Dispersion Technology Software 5.0. Three independent 

measurements were performed for each sample 20 min after sample preparation at 25°C. 

5.2.4 Transmission Electron Microscopy (TEM) 

5μl samples of peptide/siRNA complexes at siRNA concentration of 200 nM and molar ratio of 

30:1 in water, HEPES, and PBS were deposited onto 400 mesh Formva coated copper grids 

(Canemco-Marivac, Canada) for 10 minutes. The excess was blotted with a filter paper. The 

grids were then washed by plunging into an RNase free water bath, followed by drying 

overnight. The samples were stained with 2% uranyl acetate solution (Electron Microscopy 

Sciences) and analyzed on TEM (Philips CM10 TEM).  

5.2.5 Atomic Force Microscopy (AFM) 

The nanostructures of C6M1-siRNA (molar ratio of 30:1) complex were characterized by AFM. 

The sample solution (10 µl) was placed on a freshly cleaved mica surface, fixed on a glass slide, 

and incubated for 30 min at room temperature to allow the sample to adhere onto the mica 

surface. The mica was then rinsed five times with Milli-Q water to remove any unattached 

particles, followed by air-drying overnight. The mica surface was analyzed by a PicoScanTM 

AFM (Molecular Imaging, Phoenix, AZ) at room temperature using the tapping mode with 
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silicon single-crystal tips (NCL type, Molecular Imaging, Phoenix, AZ), with a typical tip radius 

of 10 nm and resonance frequency of <170 kHz.  

5.2.6 Fluorescence spectroscopy 

Since C6M1 has four tryptophan residues as intrinsic fluorescent probes, fluorescence 

spectroscopy was applied to characterize the interaction between siRNA and peptide. The 

peptide fluorescence was acquired on a Photon Technology International spectrofluorometer 

(Type LS-100, London, Canada) with a pulsed xenon lamp as the light source. Samples (80 µl) 

were transferred to a quartz cell (1cm×1cm) and excited at 280 nm and spectra were collected in 

the range of 300-500 nm. The standard fluorescence intensity Is was obtained by taking the 

average of the fluorescence of peptide only sample from 480 to 500 nm.  

5.2.7 Circular Dichroism (CD) spectroscopy  

C6M1-siRNA complexes in water or HEPES-buffered saline (HBS: 6 mM HEPES, 150 mM 

NaCl) at molar ratios of 10:1, 20:1, and 40:1 were prepared at fixed C6M1 concentration of 80 

µM and varying concentration of siRNA. Spectra from 250 to 190 nm with spectral resolution 

and pitch of 1 nm and scan speed of 200 nm/min were recorded with a J-810 spectropolarimeter 

(Jasco, USA). Samples were transferred into 1 mm long quartz cells and maintained at 25 °C. 

Spectra shown are the average of three replicates. The raw CD ellipticity (in millidegrees) was 

converted to residue molar ellipticity (deg.cm2.dmol-1.residue-1): θ=θraw/ (10×C×N×l), where θraw 

is the ellipticity in millidegrees, C is the peptide concentration (mol/L), l is the optical path 

length of the cell (cm) and N is the number of residues. The secondary structure composition of 

the peptide was estimated from CD spectra using K2D3 program [178]. 

5.2.8 Gel electrophoresis  

To study the ability of C6M1 to co-assemble with siRNA, the agarose gel electrophoresis was 

carried out at 50 V for 60 min in TBE buffer (4.45 mM Tris–base, 1 mM sodium EDTA, 4.45 
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mM boric acid, pH 8.3). C6M1 and siRNA were mixed at different molar ratios ranging from 1:1 

to 40:1 and incubated at 37 oC for 20 min, to form complexes. Samples were analyzed on a 0.8% 

wt/vol agarose gel, stained with 0.5 μg/ml ethidium bromide and revealed by UV illumination.  

To evaluate the stability of the complexes at different molar ratios, the heparin completion assay 

was performed. Different amounts of heparin corresponding to final concentrations from 0.5 to 

10μg heparin per 10 μl of the complex were added to C6M1/siRNA complexes at molar ratios of 

15:1, 40:1, 60:1, and 80:1. Ten microliters of each sample, corresponding to 50 pmol of siRNA, 

was then analyzed by electrophoresis on agarose gel (1.2% wt/vol) stained with ethidium 

bromide. 

5.2.9 Stability of naked siRNA and complexes in the presence of serum 

The ability of C6M1 in protecting siRNA against degradation by serum components was studied 

by agarose gel electrophoresis. C6M1-siRNA complexes at molar ratio of 30:1 were incubated 

with equal volume of fetal bovine serum (FBS) (final concentration of 50% v/v) at 37 °C. The 

inactivated serum, treated with 0.5M EDTA, was used as a control. 20 μl aliquots were taken at 

30min, 2h, 4h, 6h, 18h and 24h. 1μl of 0.5M EDTA was immediately added to stop the 

degradation. After the addition of 1% heparin to displace siRNA from the complex, aliquots 

were analyzed by 0.8% agarose gel electrophoresis. 

5.2.10 C6M1-mediated siRNA knock down analysis by Western blotting 

CHO cells were cultured in 12-well cell culture plates at a concentration of 80000 cell/ml to 

reach ~60% confluency the next day. 24 h later, the medium was replaced with Opti-MEM. The 

complexes of C6M1 with GAPDH siRNA or scrambled (negative control) siRNA at molar ratio 

of 30:1 were prepared in Opti-MEM and incubated in 37°C for 20 min. The complexes or naked 

siRNA were then added to the cells and incubated at 37 °C humidified atmosphere containing 

5% CO2. 3 hours later, growth medium with 20% FBS was added. 24 h post-treatment, the cells 

were washed with PBS. Cells were detached by adding trypsin 48 hours after transfection, 
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incubated with ice-cold lysis buffer 50 mM Tris-base, 150 mM NaCl, pH 8.0, 1% Triton X-100) 

containing Protease Inhibitor Cocktail (Cell Signaling Tech.) for 20 min, mixed every 5 min and 

then centrifuged at 4°C for 10 min at 13000 g. The supernatants were collected and total protein 

concentration was measured using BCA protein assay kit (Pierce) (Appendix A). 15 mg cell 

extract proteins were separated by 12% SDS-PAGE and transferred onto a nitrocellulose 

membrane, blocked with TBS containing 5% dried skimmed milk for 1 h, followed by overnight 

incubation at 4°C with mouse anti-ß-actin (AM4302, Ambion) and mouse anti-GAPDH 

(AM4300, Ambion). After washes in 0.05% Tween in PBS, the membrane was incubated with 

anti-mouse-HRP secondary antibody (Sigma-Aldrich). The blots were exposed by ECL Plus 

substrate and developed on X-Ray film (Fisher Scientific). 

 

5.3 Results  

5.3.1 Peptide structure 

Considering several factors, including peptide self assembly, peptide-siRNA co-assembly, 

siRNA loading and protection capability, peptide C6M1 was designed. Figure  5.1 shows the 

sequence, helical structure, and helical wheel projection of C6M1. The distribution of amino 

acids in C6M1 sequence enables the appearance of the same residues on the same face of the 

helix, inducing the amphiphilicity to the peptide. This arrangement facilitates the interaction of 

the peptide with siRNA and cell membrane and mediates the internalization of the peptide and its 

associated complex. 

It is generally believed that the hydrogen bonding between N-H and C=O groups in the backbone 

of the peptide is involved in the formation of the helical structure. However, the role of 

hydrophobic, hydrogen bonding, π-π stacking, and electrostatic interactions between side chains 

in stabilizing the helices has also been revealed [190,191]. Considering the unique arrangement 
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of amino acids in C6M1 helical structure, hydrophobic interaction between leucine residues, π-π 

stacking interaction between tryptophan residues, and hydrogen bonding between arginine 

residues are expected to stabilize the helical conformation of the peptide (Figure  5.1). 

 

   

Figure  5.1 Helical structure and helical wheels representation of C6M1. A) A downward cross-
sectional view of the helix axis is shown. The axis of the alpha helix is orthogonal to the paper 
plane. The bigger the circle is, the upper turn the residue is located in, when viewing from the 
top, B) In helical structure, same amino acids (side chains) face the same side of the helix. The 
schematic was generated using RaptorX web server [192]. R (green), L (yellow), and W (blue) 
represent arginine, leucine and tryptophan residues, respectively. 

 

5.3.2 Size and surface charge of the C6M1-siRNA complexes in different media 

The size of the C6M1-siRNA complexes at molar ratio of 30:1 was measured by dynamic light 

scattering. The complexes were incubated for 20 min in water, HEPES, or PBS prior to size 

measurement. As shown in Figure  5.2A, complexes in water and HEPES buffer showed an 

average size of ~70 and ~155 nm, respectively; however, the incubation in PBS led to the 

aggregation of the complex (~460 nm). As the surface charge of the complex has been reported 

to affect its size, bio-distribution, and cellular uptake [193], zeta potential experiments were 

A B 
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carried out for the complexes in water, HEPES, and PBS at molar ratios from 5:1 to 30:1. As 

shown in Figure  5.2B, Complexes in all three media at MR of 5:1 showed a negative zeta 

potential, implying that the peptide molecules were not enough to cover all negatively-charged 

siRNA molecules. At MR of 10, complexes in water and HEPES showed positive zeta potential; 

while those in PBS possessed negative surface charge. This indicated that the ions in PBS may 

interfere with the electrostatic interaction between the peptide and siRNA, leading to mostly 

uncovered siRNAs. Increasing the MR to 30:1 led to zeta potential of + 57, +31 and +5 mV in 

water, HEPES, and PBS, respectively. The charge repulsion in highly-charged complexes in 

water prevented their aggregation, keeping the size around 70 nm. HEPES, as a zwitterionic 

buffering agent, can maintain the physiological pH without significant contribution to the ionic 

strength of the solution and is a commonly-applied buffer in cell culture media. The low ionic 

strength of HEPES only slightly increased the size of the complex to ~155 nm, considering the 

zeta potential of +31 mV. In contrast, the high concentration of phosphate and chloride anions in 

PBS mainly neutralized the positive charge of the complex surface, as arginine residues on the 

surface of the complexes could act as phosphate and chloride binding sites [194]. This promoted 

the aggregation of the almost neutral particles mainly through hydrophobic interaction of leucine 

residues.  

In a similar study, Hao et al.  reported the dependency of size and charge of a cationic polymer-

DNA complex  on the nature of the media [195]. In their experiments, the complex had a high 

zeta potential and low particle size in water and 5% glucose solution. In contrast, PBS, DMEM 

or saline, lowered the zeta potential and mediated the aggregation of the particles. This is in 

accord with our observation and indicates that the ions in the medium could alter the size and 

charge of the complexes of cationic peptides/polymers with NAs. 

These findings were confirmed by microscopic approaches.  Figure  5.3 shows the TEM images 

of C6M1-siRNA complexes in water, HEPES and PBS. The sample in water and HEPES showed 

nanoparticles of irregular shape with less than 100 and 200 nm, respectively; whereas, those in 
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PBS showed aggregates of larger than 700 nm. The AFM images confirmed a size distribution of 

20-200 nm for the complex in water (Figure 5.4A); while, the image of the sample in PBS 

proved the presence of large aggregation (Figure 5.4B).    

Figure  5.2 A) Size of the C6M1-siRNA complexes in water, HEPES, and PBS, B) Zeta potential 
of C6M1-siRNA complexes at different molar ratios in water (black bars), HEPES (white bars), 
and PBS (grey bars). Error bars represent standard deviation of triplicates. (MR= C6M1:siRNA 
molar ratio) 

 

Figure  5.3 Transmission electron microscope images of C6M1-siRNA complexes (MR=30:1) in 
water (A), HEPES buffer (B), and PBS (C). Scale bars are 100 nm. 

A B 

A B C 
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Figure  5.4 AFM images of C6M1-siRNA complex (MR=30:1) in water (A) and PBS (B). The 
sample solution (10 µl) was placed on the mica surface, and incubated for 30 min at room 
temperature. The mica was then rinsed with Milli-Q water, followed by air-drying overnight. The 
blue curve shows the border of an aggregate in PBS. The scan size of the images is 2 × 2 μm2. 

5.3.3 Time-dependant aggregation of C6M1-siRNA in PBS 

 

The size of the C6M1-siRNA complex formed in PBS varied with time and the peptide:siRNA 

molar ratio (MR). As shown in Figure  5.5, the size of the complex remained unchanged at the 

MR of 1:1. At the MR of 5:1, the size of the complex changed from 50 to 120 nm over a time 

period of 3 h. When the ratio was increased to 20:1, a larger aggregation (~500 nm) was 

observed in a short time of 30 min.  Further investigation showed that the size of the complex 

could grow up to 1 µm at higher MRs (Figure  5.5). It should be noted that change in the size of 

the complexes was only observed in PBS and the size of the complexes in water and HEPES 

remained below 100 and 200 nm, respectively, even after 24 h incubation. These results show the 

importance of choosing suitable media especially during the formulation process, to avoid the 

aggregation or degradation of the complex which can greatly affect its functionality. Considering 

the buffering capabilities and “salt free” nature, HEPES was suggested as the solution for 
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peptide-siRNA formulation. 

  
Figure  5.5 Size of C6M1/siRNA complexes at different molar ratios in PBS solution over time. 
Error bars represent standard deviation of three independent experiments. 

5.3.4 Change in fluorescence spectra over time  

Using tryptophan residues in C6M1 as internal fluorescent probes, the change in fluorescence 

spectra of C6M1-siRNA complexes at MR of 20:1 was measured over a time period of 70 min.  

As tryptophan fluorescence is sensitive to the local environment, changes in the fluorescence 

emission spectra provide information on the conformation and aggregation of the peptide [196]. 

As shown in Figure  5.6, a decrease in the fluorescence intensity of the complex was observed 

over time until it reached a plateau at ~60 min. This change in fluorescence intensity could only 

correlate to the change in the particle size as no other physicochemical parameter was changed 

during the experiment. Increasing the size of the complexes minimized the total surface area and 

number of tryptophan residues on the surface of the complexes, compared to smaller complexes, 

leading to decrease in the fluorescence intensity. The DLS experiment also revealed that there 

was no significant change in size of the complexes after ~60 min (not shown). The change in the 
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fluorescence of the complex in water was negligible since there was no significant aggregation of 

the complex (Figure  5.6, inset).  

5.3.5 Conformational Changes of C6M1 upon interacting with siRNA 

The impact of siRNA on the secondary structure of C6M1 in water and HBS (6 mM HEPES, 150 

mM NaCl) was evaluated by CD spectroscopy. As shown in Figure  5.7A and Table  5.1, C6M1 in 

water showed a combination of helical structure (37%) and random coil (45%) in its secondary 

structure. Introducing small amount of siRNA (MR of 40:1) increased the absolute values in 

spectrum minima at 208 and 222 nm, and the maximum around 190 nm, which represent the 

helical structure. The helical content of C6M1 secondary structure increased to 81% at higher 

concentration of siRNA (MR of 10:1). The secondary structure of C6M1 did not change by 

introducing more peptides, indicating a saturation point at MR of 10:1. Considering the 

arrangement of amino acids in C6M1 (Figure  5.1), the ionic interaction between siRNA and 

arginine residues may stabilize C6M1 helical structure by neutralizing positive charge of 

arginine residues and reducing the charge repulsion between them. In HBS, however, the MRs of 

20:1 and 40:1 showed the highest helical contents (69%) (Figure  5.7B and Table  5.1). 

Interestingly at MR of 10:1, the presence of high amount of oligonucleotide and chloride anions 

led to a deformation of the CD spectra with a decrease in helical structure. This might be related 

to helix aggregation at high anion and RNA concentrations as also reported for CADY peptide 

[150]. 
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Figure  5.6 Change in fluorescence intensity of C6M1-siRNA complex (MR=20:1) over time in 
PBS. Inset Plot shows the change in maximum fluorescence intensity of the complex in PBS and 
water over time. 
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Table  5.1 Secondary structure composition of C6M1 at different conditions 

Sample α-helix 
(%) r.c.    (%) Other 

(%) 
C6M1 in water 37 45 18 

C6M1-si MR=40 in water 54 36 10 

C6M1-si MR=20 in Water 74 24 2 

C6M1-si MR=10 in Water 81 19 0 

C6M1 in HBS 63 31 6 

C6M1-si MR=40 in HBS 69 27 4 

C6M1-si MR=20 in HBS 69 27 4 

C6M1-si MR=10 in HBS  26 50 24 

r.c. = random coil 
MR= peptide:siRNA molar ratio 
 

  

Figure  5.7 CD spectra of C6M1 peptide (80 µM) with varying amounts of siRNA in water (A) 
and in HBS (B). (MR= C6M1:siRNA molar ratio). 

A B 
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5.3.6 Agarose gel shift assay to characterize the interaction of C6M1 with siRNA 
and stability of the complex 

Agarose gel shift assay was applied to evaluate the interaction between siRNA and C6M1 

molecules, the stability of the formed complex in the presence of heparin and serum. Positively-

charged peptides interact with siRNA mainly electrostatic interaction between basic residues and 

phosphate groups in siRNA backbone. Free negatively-charged siRNA molecules could move 

toward the positive electrode when the voltage is applied; while, stable peptide-siRNA 

complexes prevent the internalization of siRNA molecules to agarose gel, suggesting that there is 

no free siRNA to appear in siRNA bands. 

Figure  5.8B shows the agarose gel shift assay of C6M1-siRNA complexes at different MRs. As 

shown, at MR of 1:1, there was no significant difference between siRNA bands of free “siRNA 

only” and “MR=1:1” samples, suggesting that this MR was not enough to encapsulate the 

majority of siRNA molecules. The siRNA band in MR of 5:1 was less bright than that of “siRNA 

only” sample, implying an effective interaction between C6M1 and siRNA molecules at this 

ratio. At the molar ratio of 10:1, very small amount of free siRNA was observed on siRNA band, 

indicating that siRNA molecules were almost completely complexed with C6M1. The siRNA 

band was completely disappeared at the MR of 15:1. Considering 7 arginine residues in C6M1 

and 42 nucleotides in an siRNA molecule, 6 molecules of C6M1 should theoretically be enough 

to encapsulate one siRNA molecule; however, this finding suggests that excess C6M1 molecules 

are needed to achieve stable complexes.  

Gel electrophoresis was also applied to study the stability of C6M1-siRNA complexes at 

different MRs in the presence of heparin. Heparin is an anionic competitive binding agent and a 

chemical analog of heparan sulphate proteoglycans (HSPG). The complex is expected to be 

stable at low concentration of heparin, as HSPG are abundantly found in the extracellular matrix 

and can dissociate the complex in extracellular environment. On the other hand, the complex 

should be able to dissociate and release siRNA easily, following cellular entry. As shown in 
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Figure  5.8 B, C6-siRNA complexes were stable in the absence of heparin (second well from left) 

and no free siRNA was shown in siRNA bands at all MRs. The complex at MR of 15:1 was 

dissociated at heparin concentration of 2.5 μg per 10 μl of sample and higher. The minimum 

concentration of heparin required for dissociation of the complex increased by increasing the 

MR, indicating that higher amount of peptide could protect siRNA against dissociation from the 

complex. Interestingly, the complex at molar ratio of as high as 80:1released siRNA at high 

concentration of heparin, implying its ability to release siRNA even at high MR. 

 

 

Figure  5.8 A) The formation of siRNA-C6M1 complex indicated by agarose gel, B) The stability 
of C6M1-siRNA complex indicated by heparin competition assay. Different amounts of heparin 
corresponding to final concentrations of 0.5 to 10μg heparin per 10 μl of complex were added to 
C6M1-siRNA complexes at different molar ratios. The stability of complexes were analyzed by 
electrophoresis on agarose gel (1.2% wt/vol) stained with ethidium bromide. For better 
comparison, the siRNA bands of four independent gels were put in the same image. 

 

5.3.7 Stability of the complex to serum RNase degradation 

Naked siRNAs are vulnerable to RNase degradation. In our study, we were interested in 

A B
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measuring the protection afforded by the peptide against serum RNase. Naked siRNA and 

C6M1-siRNA complexes at MR of 30:1 were incubated in the presence of 50% active fetal 

bovin serum (FBS) and aliquots were taken at determined time intervals. Heparin was added to 

the complex after incubation with serum to release siRNA from the serum associated complexes.  

As shown in Figure  5.9A, Naked siRNA was completely degraded after 4 h incubation with 

active serum; however, it was stable in the presence of inactive serum. In contrast, C6M1 was 

able to protect siRNA even after 24 h incubation with high concentrations of serum, showing the 

ability of C6M1 in protecting siRNA against serum RNase. 

 

Figure  5.9 Stability of the C6M1-siRNA complexes to serum RNase degradation over time. 
Naked siRNA or C6M1-siRNA complex at molar ratio of 30:1 were incubated in the presence of 
50% active serum (FBS) over the period of 24 h or 50% heat-inactive serum (control) for 4 h. 
Aliquots (20 µl) were taken at 30min, 2h, 4h, 6h, 18h and 24h and EDTA (1 µl) was immediately 
added to stop the degradation. After the addition of 1% heparin to displace siRNA from the 
complex, aliquots were analyzed by 0.8% agarose gel electrophoresis. For better comparison, the 
siRNA bands of three independent gels were put in the same image. B) GAPDH protein levels 
were determined by western blotting using ß-actin as a control for quantification. CHO-K1 cells 
were treated with naked GAPDH siRNA or the complex of C6M1 with GAPDH siRNA (or 
negative control NC-siRNA) at MR of 30:1 at 50 nM siRNA final concentration. 24 h post-
treatment, the cells were lysed and analyzed by western blotting for the GAPDH protein levels as 
described in “Materials and Methods” section.  

A B
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5.3.8 Knock-down efficiency of C6M1-siRNA complexes 

The efficiency of C6M1 in intracellular delivery of siRNA and the knock-down of GAPDH gene 

were analyzed in protein level by Western blotting technique. As shown in Figure  5.9B, the 

treatment of CHO-K1 cells with naked GAPDH siRNA did not change the level of this protein, 

implying that siRNA without an efficient carrier was not able to gain access to intracellular 

environment. However, the C6M1-siRNA complexes significantly decreased the level of 

GAPDH protein. Analysis of the gel images by ImageJ software showed ~75% decrease in the 

GAPDH protein level in the cells treated with C6M1-GAPDH siRNA complexes compared to 

non-treated cells; while, those treated with naked siRNA or C6M1-NC siRNA showed no 

significant knockdown. ß-actin protein was used in this experiment as an internal control for 

quantification.       

5.4 Conclusions 

Understanding the properties of peptides is necessary for their effective use as siRNA delivery 

systems. C6M1, an 18-mer amphipathic peptide, formed small complexes in water and HEPES 

(<200 nm), but aggregated to larger particles in PBS. Using DLS and fluorescence spectroscopy, 

the study of the aggregation kinetics of complex in PBS revealed that the size of the complex 

remained almost constant after 1 h incubation. The secondary structure of C6M1 in water 

involved a combination of helical and random coil structures; however, upon binding to siRNA 

or in the presence of anions, C6M1 adapted mainly an α-helical structure. Agarose gel 

experiments showed that C6M1 was able to completely encapsulate siRNA molecules at molar 

ratio of 15:1; however, higher molar ratios were required to achieve stable complexes. C6M1 

showed high capability in protecting siRNA against serum nuclease over the period of 24 h; 

while naked siRNA was completely degraded in 4 h. Western blotting experiment showed ~75% 

decrease in GAPDH protein content of the cells treated with C6M1-siRNA complexes. 
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Chapter 6∗ 

Size-dependent internalization pathways of peptide C6M1 

 

Understanding the mechanisms of cellular attachment, uptake, and intracellular pathways 

facilitates the development of safe and efficient gene delivery vectors. Cell penetrating peptides 

(CPPs) have been recently applied for intracellular delivery of a variety of therapeutic agents; 

however, their uptake mechanism is still a matter of debate. In this work, we investigated the 

interaction of a novel amphipathic peptide, C6M1, in complex with short interfering RNA 

(siRNA), with cell surface and the mechanisms involved in the internalization of the complex at 

different size ranges. Heparin and chlorate treatments revealed that the electrostatic interaction of 

the C6M1-siRNA complex with heparan sulphate proteoglycans (HSPGs) at the cell surface is 

required to trigger the uptake process. Using physical and chemical endocytic inhibitors, we also 

found that small C6M1-siRNA complexes (mean ~155 nm) mainly enter Chinese hamster ovary 

(CHO-K1) cells through an energy-independent mechanism, most likely involving direct 

translocation. In contrast, large complexes (mean ~460 nm) internalize CHO-K1 cells mainly 

through a lipid raft-dependant macropinocytosis.  The integrity of the cytoskeletal components, 

e.g., actin filaments, and microtubules, also showed significant impact on the efficient 

internalization of the C6M1-siRNA complex.  The kinetics experiments also confirmed the fast 

internalization of small complexes (with uptake half-time of 25 min) in comparison to large 

complexes (70 min). 

                                                                                                 

∗ This chapter is adapted from a paper “M. Jafari, S. Naahidi, R. Pan, and P. Chen, Size-dependent internalization 
pathways of a novel amphipathic cell penetrating peptide, submitted to J. Nanomedicine 2012”. 
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6.1 Introduction 

Cell-penetrating peptides (CPPs), net positively charged peptides of 8-30 amino acids, have 

recently gained increasing attention due to their ability to cross biological membranes and 

mediate intracellular delivery of various types of cargos [66,154,188]. Despite their widespread 

use as delivery systems, the mechanism through which CPPs internalize the cells is still under 

debate. A combination of both direct translocation and endocytosis has been suggested as the 

uptake mechanism for CPPs [197,198]. Earlier observation in which CPPs could internalize into 

the cells even at low temperature (4 °C) suggested direct translocation as the main uptake 

mechanism as endocytosis is suppressed at this temperature [79,103]. However later studies 

showed that high cell surface binding properties of most CPPs might have led to experimental 

artifacts by overestimation of internalization [199]. Recent studies revealed that several factors 

including the experimental conditions, peptide concentration, particle size, nature of the cargo, 

and cell type have significant effects on the uptake mechanism of CPPs [200]. 

As the most common mechanism of cellular uptake for gene delivery vectors, endocytosis is an 

energy-dependent process by which cells take up material by engulfing them in membrane 

invaginations. It could be subdivided into four distinguished and well-characterized pathways 

(Figure  6.1). (i) Phagocytosis is limited to some specialized cells such as macrophages, 

monocytes, dendritic cells, and neutrophils and is not covered in this study. Phygocytes have 

been reported to take up particles as large as 20 μm [201]. (ii) Clathrin-dependent endocytosis 

(CDE) is the most studied pathway among all endocytosis pathways. It occurs through formation 

of clathrin-coated pits, resulting from the assembly of clathrin on the cell membrane and has been 

reported to be the preferred pathway for particles up to 200 nm in size. Using a number of accessory 

signaling molecules, e.g., adaptor protein AP2, and GTPase, to regulate its function, CDE is a 

receptor-mediated pathway and is involved in the uptake of various ligands, e.g., transferrin, 

antibodies, and growth factors [202]. (iii) Caveolae-mediated endocytosis (Cav-ME) is the most 

reported and well-characterized pathway among clathrin-independent (CIE) pathways. Cav-ME 

involves the invagination of cholesterol-enriched domains on the cell membrane, forming flask- 
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shaped structures, caveolae (50-100 nm), which contain the hairpin-like membrane protein, caveolin. 

This pathway is particularly of importance for development of nanomedicine as it has been shown to 

bypass lysosomes, preventing the degradation of the cargo [202]. (iv) Macropinocytosis involves 

formation of membrane ruffles and large vacuoles (0.5-5 μm), coated with F-actin, and is responsible 

for uptake of material from/with the extracellular fluid. Unlike phagocytosis, macropinocytosis can 

be stimulated on many cell types and regulated by actin polymerization protein/enzymes present in 

cells. It has been reported as the uptake pathway for some bacteria (e.g., Salmonella) [203], viruses 

(e.g., HIV type I) [204] and CPPs (e.g., Tat) [205]. Exploring new endocytosis pathways is still an 

active and evolving field of research and new clathrin- and caveolae-independent pathways, e.g., 

flotillin-dependent endocytosis, Arf6-dependent endocytosis, are being introduced and 

studied.[206,207] The focus in this study will be on the mentioned major pathways.  

Among CPPs, several cationic, amphipathic peptides have been designed and employed as 

delivery vectors for short interfering RNAs (siRNAs) [118,146,150]. In chapter 4, the modified 

amphipathic, amino acid-paring peptide, C6M1, was introduced as siRNA delivery carrier [176]. 

In this chapter, the penetration mechanism of C6M1 and its complex with siRNA will be studied 

using several endocytic chemical inhibitors. The specificity and toxicity of each inhibitor on 

Chinese hamster ovary (CHO-K1) cells and the effect of size of the complex in the uptake 

pathway and kinetics will be also discussed.   
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Figure  6.1 Different mechanisms of endocytosis (adapted from Ref [202]). 

 

6.2 Materials and methods 

6.2.1 Materials 

Heparin, sodium chlorate, and all chemical inhibitors (Table  6.1) were purchased from Sigma-

Aldrich (Oakville, Canada). Alexa Fluor-488 labeled human Transferrin, Oregon Green-514 
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labeled dextran (70 kDa), and BODIPY FL C5- Lactosylceramide (LacCer) complexed to bovine 

serum albumin (BSA) were purchased from Invitrogen (Burlington, Canada). The C6M1 peptide 

(Ac-RLWRLLWRLWRRLWRLLR-NH2, MW=2689.4 g/mol, purity>98%) was purchased from 

CanPeptide, Inc. (Quebec, Canada). Cy3-labeled glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) siRNA (AM4649) were purchased from Ambion (Austin, USA). All chemicals for 

buffer preparations were obtained from Sigma-Aldrich (Oakville, Canada) and used as received. 

6.2.2 Formulation of peptide-siRNA complexes 

A stock solution (1 mM) of C6M1 peptide was prepared by dissolving peptide powder in HEPES 

(5 mM, pH=7.4) or phosphate buffered saline (PBS, pH=7.4). The solution was vortexed for 10 

seconds and sonicated for 10 minutes in a tabletop ultrasonic cleaner (Branson, model 2510, 

USA). siRNA was diluted in HEPES or PBS to a stock concentration of 50 µM. Peptide-siRNA 

complexes were formed by adding peptide solution into siRNA in proportion according to the 

designed experiment. The complexes were incubated for 20 minutes at room temperature before 

each experiment. 

6.2.3 Dynamic Light Scattering (DLS) and Zeta potential 

The hydrodynamic diameter of the C6M1-siRNA complexes in HEPES and PBS at a molar ratio 

of 30:1 with final siRNA concentration of 100nM were measured on a Zetasizer Nano ZS 

(Malvern Instruments, U.K.) equipped with a 4 mW He-Ne laser operating at 633 nm. A quartz 

microcell (45 μL) with a 3 mm light path was used and the scattered light intensities were 

collected at an angle of 173°. Clear disposable zeta cells were used for Zeta potential 

measurements. The intensity-based size distribution and zeta potential values were acquired 

using the multimodal algorithm CONTIN, Dispersion Technology Software 5.0. Three 

independent measurements were performed for each sample 20 min after sample preparation at 

25 °C. 
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6.2.4 Cytotoxicity analysis of chemical inhibitors 

CHO-K1 cells (Chinese hamster ovary, ATCC CCL-61) were cultured in F-12K medium 

(Invitrogen, Burlington, Canada) supplemented with 10% fetal bovine serum (Sigma-Aldrich, 

Oakville, Canada). Cells were incubated at 37 °C with 5% CO2. Cells were detached from the 

flasks by adding trypsin-EDTA 0.25% (Sigma-Aldrich, Oakville, Canada) and incubating for 5 

min, and resuspended in fresh media at a concentration of 6 × 104 cells per mL. 100 µL of cell 

suspension was added into each well of a flat bottom, 96-well plate and incubated for 24 h. The 

media was then replaced with fresh optiMEM with different final concentrations of chemical 

inhibitors (Figure  6.3) for 3 h. 48 h after inhibitor treatment, the cell counting kit-8 (CCK-8) 

(Dojindo, Japan) was used to perform cytotoxicity assays. 10µl of CCK-8 substrate was added to 

each well and incubated for an additional 2 h at 37 °C in the dark. Absorbance was measured at a 

wavelength of 450 nm with a reference wavelength of 620 nm using a microplate reader 

(FLUOstar OPTIMA, BMG, NC). 

6.2.5 Treatments of the cells with endocytic inhibitors, markers and C6M1-siRNA 
complex 

Approximately 50,000 cells per well were seeded in a 24-well cell culture plate to reach 60-70% 

confluency 24 hours later. The media was then discarded and cells were treated with fresh 

chemical inhibitors in optiMEM at concentrations listed in Table  6.1 for 1 h. The cells were 

subsequently treated with the C6M1-siRNA complex for 2 h, followed by discarding the media  

and washing the cells with trypsin (0.5 mg/ml in PBS for 5 min), and heparin (0.5 mg/ml in PBS 

for 3×10 min) to remove surface-bound complexes. Alternatively, cells were treated with 

transferrin 18 μg/ml for 15 min, dextran 0.5 mg/ml for 3 h, or LacCer 0.75 μM for 15 min. To 

remove cell surface-associated transferrin and LacCer, cells were washed three times with ice-

cold F-12K medium, followed by 2 min incubation in ice-cold acid wash buffer (0.2 M acetic 

acid and 0.2 M NaCl) or four times for 10 min in ice-cold 5% defatted BSA at 4 °C, respectively. 

The cells were then washed twice with ice-cold F-12K. For Oregon Green-514 labeled dextran, 
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the cells were incubated with 0.2% trypan blue in PBS to quench extracellular fluorescence. For 

low temperature experiments, cells were kept at 4 °C for 1 h before treatment. All buffers, 

chemicals, and complexes were also kept in ice-cold water to avoid any temperature rise during 

the treatment. Cells were then again kept at 4 °C before fixation. 

6.2.6 Flow cytometry to quantify intracellular complexes or endocytic markers 

The amount of intracellular Cy-3 labeled siRNA and fluorescently labeled markers was 

quantified by Flow Cytometry (type BD Biosciences, BD FACSVantage SE Cell Sorter, San 

Jose, USA). After washing, the cells were detached from the plate by adding trypsin-EDTA and 

re-suspended in fresh 4% paraformaldehyde (PFA) in PBS and collected in FACS tubes for 

analysis. The fluorescence of Cy-3 siRNA was detected by FL2 channel (585/42 nm bandpass 

filter); while, those of labeled markers was detected by FL1 channel (530/30 nm). At least 10000 

events were recorded for each sample. 

 

6.3 Results and Discussion 

6.3.1 Washing procedure to remove cell surface bound complexes  

The flow cytometry technique, used in this study to quantify the complex uptake, cannot 

distinguish between cell surface-bound and intracellular fluorescence. Because of the strong cell 

surface binding tendency of poly-arginine peptides, the washing procedure is crucial to remove 

the non-internalized complexes from the cell surface to avoid any overestimation of the quantity 

of intracellular complexes. After treatment with the C6M1-siRNA complexes for two hours at 37 

°C, cells were washed with PBS, trypsin (0.5 mg/ml in PBS for 5 min), heparin (0.5 mg/ml in 

PBS for 3×10 min), or a combination of trypsin/heparin (T/H).   

As shown in Figure  6.2A, washing the cells with trypsin, heparin or their combination 
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significantly decreased the mean fluorescence of the cells compared with that of cells washed 

with only PBS (control), indicated by flow cytometry analysis. The trypsin treatment caused an 

almost 30% decrease in total fluorescence. However, a treatment with heparin decreased 40% of 

cells’ mean fluorescence. This indicates the suitability of heparin washing compared with trypsin 

treatment to remove surface-bound complexes, probably due to the smaller size of heparin 

molecules. The large size of trypsin protease may limit its access to smaller complexes, 

associated with cell surface, resulting in incomplete removal of external bound complexes [199]. 

We also reported that heparin at this concentration could dissociate extracellular peptide-siRNA 

complexes, releasing labeled siRNA in extracellular media which could be easily washed away 

[176]. It is worth reminding that the fluorescence of Cy3-siRNA was measured by flow 

cytometry. A combination of T/H treatment resulted in an almost 50% decrease in the cells mean 

fluorescence and complete removal of surface-bound complexes. The remaining represents the 

fluorescence of intracellular complexes as further treatment did not significantly reduced the 

cellular fluorescence.    

6.3.2 The role of cell surface proteoglycans in cellular attachment and uptake of 
C6M1-siRNA complexes 

The first step in transduction of the complex is the interaction of the complex with extracellular 

matrix and cell membrane components. There are several reports that cell surface associated 

anionic heparan sulphate proteoglycans (HSPGs) play an important role in the internalization of 

arginine-rich cell penetrating peptides [148,155,208].  In order to examine the involvement of 

HSPGs in the cellular uptake of C6M1-siRNA, cells were co-treated with heparin (1 mg/ml) and 

the complex for 2 h. As a chemical analog of HSPG, anionic heparin could compete with the cell 

surface associated HSPG for binding to cationic complex. After 2h treatment, cells washed with 

PBS (Figure  6.2B, black bars) or T/H (grey bars). As shown in Figure  6.2B, co-treatment with 

heparin completely abolished the cellular attachment and uptake of the complex. One may argue 

that co-incubation of C6M1-siRNA complex with heparin could dissociate the complex. As the 
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fluorescence of labeled siRNA was measured for this study, this may have led to a misconclusion 

about the attachment and internalization of peptide itself. To address this, cells were co-treated 

with labeled peptide and heparin; no attachment and internalization of peptide assemblies was 

observed (not shown).   

As the sulfated region of HS chains were reported as the main site of interaction for cationic 

peptides, we attempted to alter the sulfate constituent of HSPG. For this purpose, cells were pre-

incubated with sodium chlorate (60 mM) for 48 h and then incubated with C6M1-siRNA 

complex for 2 h. Sodium chlorate pre-treatment has been reported to result in remarkable 

reduction of the sulfation of the HSPG, by inhibiting ATP-sulfurylase, which catalyzes the 

transfer of sulfate to polysaccharides [209]. As shown in Figure  6.2B, pre-treatment of cells with 

sodium chlorate resulted in significant decrease of both attached and internalized complexes, 

implying that highly anionic sulfated region of HSPG was the major site to interact with 

positively-charged guanidinium group in arginine residues. Overall, the results of heparin and 

sodium chlorate treatments indicated that the electrostatic interaction between the anionic HSPG 

and positively charged C6M1-siRNA complex initiated the cellular attachment and 

internalization of the complex.    
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Figure  6.2 A) Effect of different washing procedures on the removal of surface bound 
complexes, B) Role of cell surface proteoglycans in cellular attachment and uptake of C6M1-
siRNA complexes in CHO-K1 cells. Cells were co-treated with the complex and heparin (1 
mg/ml) for 2 h or pre-treated with sodium chlorate (60 mM) for 48 h, then treated with the 
complex for 2 h. Error bars in both figures represent standard deviation of triplicates. 

  

6.3.3 Chemical inhibitors and their cytotoxicity 

In order to cover all known major endocytosis pathways, seven different chemical inhibitors 

were used in this study (Table  6.1). It should be noted that phagocytosis was not studied here as 

it was an irrelevant study for non-phagocytic CHO-K1 cells. 

Chlorpromazine (Cpz) was used to specifically inhibit clathrin-mediated endocytosis (CDE) by 

translocation of clathrin and AP2 adaptor from cell membrane to intracellular vesicles and 

preventing the formation of clathrin-coated pits. There is no report on inhibiting lipid raft 

endocytosis by Cpz; however, this drug may partially inhibit macropinocytosis by increasing the 

fluidity of cell membrane [210]. EIPA (5-(N-ethyl-N-isopropyl) amiloride) has been reported to 
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block macropinocytosis and phagocytosis in a large selection of mammalian cell types by 

blocking the Na+/H+ exchanger. Some studies have concluded inhibitory activity of EIPA 

towards clathrin-mediated pathway [211]. Methyl-β-cyclo- dextrin (MBCD) depletes cholesterol 

from the cell membrane and was primarily employed to determine whether the uptake 

mechanism was dependent on the integrity of lipid rafts. As caveolae-mediated endocytosis and 

macropinocytosis require lipid rafts, MBCD was applied to inhibit those pathways [212]. 

Cytochalasin D (CytoD) inhibits F-actin polymerization and elongation by attaching to the 

growing ends of actin filaments. Actin polymerization has been reported as a requirement for 

phagocytosis, macropinocytosis and to some extend for caveolin-mediated endocytosis [213]. 

Nocodazole triggers the depolymerization of the microtubules and eventually disrupts the 

structure of cytoskeleton [214]. Nystatin and fillipin, polyene antibiotics, were used to inhibit 

lipid raft/caveolin-mediated endocytosis. Both drugs have been reported to interact with lipid 

cholesterol thereby creating large aggregates of cholesterol to sequester membrane from this 

steroid. This distortion of cholesterol rich domains is thought to inhibit caveolin-mediated 

endocytosis. Unlike MBCD, these chemicals show relatively high specificity for inhibiting this 

pathway. 

Table  6.1. Endocytosis inhibitors used in this study 

Inhibitor Inhibition or effect Concentration

Chlorpromazine CDE 5 μg/ml 

EIPA MPC 20 μg/ml 

MBCD MPC, Cav-ME 5 mg/ml 

Cyto D Actin depolymerization 3 μg/ml 

Nocodazole Microtubule disruption 5 μg/ml 

Nystatin Cav-ME 40 μg/ml 

Fillipin Cav-ME 4 μg/ml 

CDE: clathrine-mediated endocytosis; Cav-ME: caveolin-mediated endocytosis, MPC: macropinocytosis, 
EIPA: ethyl-isopropyl amiloride, MBCD: methyl-ß-cyclodextrin, CytoD: cytochalasin D  
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Figure  6.3 Cytotoxicity of chemical endocytosis inhibitors on CHO-K1 cells. Cells were treated 
with different concentrations of inhibitors for 3 h and viability of the cells was assessed using 
CCK-8 assay. Error bars represent standard deviation of quadruplicates. (Noco: nocodazole, Nys: 
nystatin, Flp: fillipin, CytoD: cytochalasin D, MBCD: methyl-ß-cyclodextrin, Cpz: 
chlorpromazine, EIPA: ethyl-isopropyl amiloride)    

 

To minimize the influence of toxicity of chemical inhibitors on their performance and optimize 

the inhibition protocol, cellular toxicity of inhibitors at a range of concentrations was evaluated. 

CHO-K1 cells were incubated with five different concentrations of each inhibitor in OptiMEM 

for 3 h and the viability of the cells was measured using CCK-8 assay. As shown in Figure  6.3, 

nocodazole, nystatin, and fillipin showed no acute toxicity at the concentrations tested. 

Chlorpromazine and EIPA exhibited strong toxicity at concentrations above 5 and 20 μg/ml, 

respectively. For all inhibitors, concentrations with cell viability of 80% or higher were 

considered safe. It should be noted that the final suitable concentrations of inhibitors, listed in 

Table  6.1, were selected considering both cytotoxicity data and microscopic images. For 
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instance, CCK-8 assay did not show any significant toxicity for cytoD at a concentration as high 

as10 μg/ml; however, the cells treated with cytoD at this concentration underwent strong 

morphological changes (not shown).       

6.3.4 Size of the peptide-siRNA complexes in HEPES and PBS 

In addition to the shape and surface chemistry, and concentration, the particle size has been 

reported to influence the cellular uptake pathway and intracellular trafficking of particles 

[161,179]. Particles as large as 1 μm can internalize into non-phagocytic eukaryotic cells; 

however, in tumor therapy, particle size of 100-500 nm is ideal for passive targeting through the 

enhanced permeability and retention effect [159,160].  

Figure  6.4 A) Size distribution of C6M1-siRNA complexes (molar ratio of 30:1) in HEPES and 
PBS buffers, determined by DLS. The numbers at the top of each curve show the average 
diameter. B) Zeta potential of C6M1-siRNA complexes in water, HEPES and BPS. Error bars in 
both figures represent standard deviation of triplicates. 
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As presented in Figure  6.4A, C6M1-siRNA complexes in HEPES showed a size distribution 

from 50 to 300 nm with an average size of 155 nm. In PBS, however, the particles aggregated to 

a size range of 140-1100 nm with an average of 460 nm. The surface of peptide-siRNA 

complexes at molar ratio of 30:1 was mainly covered by hydrophilic arginine residues, leading to 

positively-charged surfaces (Figure  6.4B). Complexes in water showed an average zeta potential 

of + 57 mV. This value dropped to +31 and +5 mV in HEPES and PBS, respectively, due to 

different level of ionic strength of these buffers. The high surface charge of the particles in water 

prevented their aggregation due to the charge repulsion, keeping the particles size below 70 nm 

(not shown). As a zwitterionic buffering agent, HEPES can maintain the physiological pH 

without significant contribution to the ionic strength of the solution and is commonly used for 

buffering the cell culture media. In contrast, the high concentration of phosphate anions in PBS 

mainly neutralized the positive charge of the complex surface, as arginine residues could act as 

sites for phosphate binding [194]. This facilitated the aggregation of the particles mainly through 

hydrophobic interaction of leucine residues.   

6.3.5  Size-dependent uptake mechanism of C6M1-siRNA complex  

Taking advantages of different size distributions of C6M1-siRNA complexes in HEPES and 

PBS, the size-dependency of complex internalization mechanism was studied. Flow cytometry 

was employed as a technique to quantify the intracellular complexes by measuring the intensity 

of fluorescence of labeled Cy3-siRNA. As an example, Figure  6.5A shows fluorescence 

distribution histogram of untreated cells or cells treated with complex (in PBS) for 2h with or 

without pre-incubation with a chemical inhibitor (EIPA). As shown, pretreatment of cells with 

EIPA caused a left-shift in intensity peak, implying that EIPA significantly reduced the quantity 

of intracellular complexes by inhibiting the uptake pathway. 

Several studies suggest that CPPs use both energy-independent direct translocation and energy-

dependent endocytosis to enter cells. To elucidate whether the complex uptake was energy-

dependent, uptake experiments were performed at 4 °C and 37 °C. Assuming that all intracellular 
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activities including endocytosis are inhibited at low temperature (4 °C), the complex 

internalization at this temperature likely reflects direct penetration [198]. As shown in Figure 

 6.5B, complexes with different sizes showed different behavior when treated at 4 °C. The uptake 

of larger complexes (formed in PBS) was significantly decreased at 4 °C in comparison with that 

at 37 °C; while the uptake of smaller complexes (formed in HEPES) only slightly affected by the 

temperature. This clearly suggested that the major penetration mechanism for small complexes 

was direct translocation while the energy-dependent endocytosis was responsible for only ~20% 

of the total complex uptake. In contrast, endocytosis contributed the most (~80%) to the uptake 

of larger complexes.           

In order to provide further evidence to support our observation in a physical inhibition 

experiment (4 °C), chemical inhibitors were employed to block specific endocytosis pathways. 

The experiments were performed using chlorpromazine, EIPA, and nystatin, inhibitors of CDE, 

MPC and Cav-ME, respectively. As revealed in Figure  6.5B, none of the inhibitors caused 

significant inhibition to the uptake of small complexes (black bars). In the presence of 

chlorpromazine, internalization of large complexes was partially inhibited, implying that CDE 

might be involved in the uptake process. Pre-incubation of the cells with EIPA, an inhibitor of 

MPC, strongly inhibited the uptake of large complexes with no effect on the uptake of small 

complexes. Pre-treatment of the cells with nystatin even increased the uptake of complexes by 

40-50%. As a side-effect, nystatine has been reported to increase cell membrane permeability by 

interacting with membrane phospholipids, which may account for the increased complex uptake. 

Overall, we found that the uptake of small complexes was not inhibited by physical or chemical 

endocytic inhibitors, implying that C6M1-siRNA complexes at this size range (mean 155 nm) 

internalized into the cells through the energy-independent direct translocation; however, large 

complexes with a mean size of 460 nm were mainly taken up by endocytosis which will be 

discussed in detail in the next section.            
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Figure  6.5 A) Cy3 fluorescence intensity histograms of CHO-K1 cells, nontreated (blue), treated 
with C6M1-Cy3siRNA (formed in PBS) for 2h (red), or preincubated with EIPA for 1 h and then 
treated with C6M1-Cy3siRNA for 2h (black), obtained by flow cytometry. B) Effects of 
endocytic inhibitors on cellular uptake of C6M1-siRNA complexes, prepared in HEPES (black 
bars) or PBS (grey bars). Cells were treated with C6M1-siRNA complex in the absence (control) 
or presence of chemical or physical (4 °C) endocytic inhibitors. Error bars represent standard 
deviation of triplicates. (Cpz: chlorpromazine) 

 

6.3.6 Studying the involvement of different endocytosis pathways in the complex 
uptake 

As the C6M1-siRNA complex, formed in PBS, showed a strong reduction in cellular uptake 

when treated at 4 °C, we used a more comprehensive set of chemical inhibitors to unravel the 

role of each endocytic pathway in the complex uptake by CHO-K1 cells. In order to ensure the 

specificity and efficiency of each inhibitor, at the concentrations used, three fluorescently-

labeled endocytic markers were employed. Human transferrin is a ligand which exclusively uses 

CDE to enter the cells and was used as the marker of this pathway [215]. Dextran 70 kDa is a 
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hydrophilic polysaccharide which internalizes into the cells specifically via macropinocytosis 

and was used to adjust the concentrations and evaluate the specificity of inhibitors employed to 

block this pathway [199]. Lactosylceramide (LacCer) is a glycosphingolipid which traffics 

through CIE [216] and was used here as a probe for lipid raft/cav-ME. 

6.3.6.1 Role of clathrin-dependent endocytosis in the complex uptake 

To study the possible role of CDE in the uptake process, chlorpromazine was used to inhibit this 

pathway by interfering with the formation of clathrin-coated pits. As shown in Figure  6.6, 

chlorpromazine significantly reduced the uptake of transferrin, the marker of CDE. However, 

pre-treatment of the cells with chlorpromazine did not alter the internalization of LacCer, 

indicating that chlorpromazine did not inhibit cav-ME. This drug slightly inhibited the uptake of 

Dextran, the marker of macropinocytosis, by most likely increasing the fluidity of cell membrane. 

The uptake of the complex was also partially (~32%) inhibited by chlorpromazine, implying that 

CDE might have a role in the cellular uptake of the complex specifically at the lower size range 

(<200 nm). However, one may argue that the partial inhibition of macropinocytosis might have 

caused the partial reduction in the complex uptake, when treated with chlorpromazine.  

6.3.6.2 Role of macropinocytosis in the complex uptake 

EIPA has been widely used as a specific inhibitor of macropinocytosis. As expected, the 

internalization of Dextran was remarkably reduced by EIPA treatment (Figure  6.6). In contrast, it 

had no significant effect on the uptake of transferrin and LacCer. This indicates the specificity 

and efficiency of EIPA, at the concentration used, to exclusively block macropinocytosis 

pathway in CHO-K1 cells. The uptake of the complex was also dramatically inhibited in the 

presence of EIPA, implying that macropinocytosis is the main route of complex internalization. 

To further confirm this finding, we also used MBCD which has been reported as an inhibitor for 

macropinocytosis and lipid raft/cav-ME, by depleting the cholesterol from the cell membrane 

[212]. As shown, MBCD treatment had only slight effect on transferrin uptake but almost 
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abolished the uptake of Dextran and significantly decreased that of LacCer, showing strong 

inhibition effect of MBCD on macropinocytosis and cav-ME. This treatment also caused a 

substantial decrease in the complex uptake, confirming the observation upon EIPA treatment. 

This also indicates the dependency of the complex uptake on the integrity of lipid raft. CytoD 

has also been reported as a macropinoytosis inhibitor in some studies; however its primary action 

is to inhibit actin polymerization which could eventually affect all the pathways. This highlights 

the non-specificity of this inhibitor and care should be taken when analyzing its inhibitory 

effects. As shown in Figure  6.6, treatment of CHO-K1 cells with CytoD partially inhibited the 

uptake of CDE, macropinocytosis, and cav-ME markers, suggesting the non-specificity of this 

inhibitor in exclusively blocking any of pathways in CHO-K1 cells at the concentration used. 

The uptake of the complex was also partially inhibited by actin disruption.     

6.3.6.3 Role of caveolin-mediated endocytosis in the complex uptake 

Filipin and Nystatin have been regularly used for inhibition of lipid raft/cav-ME. Both chemicals 

have been reported to interact with lipid cholesterol, creating large aggregates to sequester this 

lipid from the membrane structure [217]. As reported in Figure  6.6, both inhibitors had no 

inhibitory effect on the uptake of CDE and macropinocytosis markers; however, they exhibited a 

pronounced inhibition of LacCer, indicating the specificity of both inhibitors, unlike MBCD, for 

lipid raft/cav-ME. Interestingly, the complex uptake was increased by ~40% in the presence of 

nystatin, mainly due to the increased cell membrane permeability as a side-effect of nystatin 

treatment. In the case of fillipin, the complex uptake did not change. Overall, these results 

suggest that cav-ME was not involved in C6M1-siRNA complex cellular uptake. 

6.3.6.4  Importance of cell structural integrity in the complex uptake 

As reported, pre-treatment of CHO-K1 cells with MBCD which extracts cholesterol out of the 

cell membrane led to a pronounced inhibition of the complex uptake. This clearly suggests the 

importance of lipid raft integrity in the uptake process. We also confirmed the contribution of 
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actin filaments to the uptake of all endocytic markers and the complex by treating the cells with 

CytoD. Microtubules are other major components of cytoskeleton which play important role in 

some endocytic processes [218,219].  To investigate whether the complex uptake was 

microtubule-dependent, the cells were treated with nocodazole to induce depolymerization of 

microtubules. As shown in Figure  6.6, nocodazole had only minor effect on the uptake of 

chlorpromazine and LacCer; but significantly reduced the uptake of dextran, implying the 

dependency of macropinocytosis to microtubules polymerization. The internalization of the 

complex was also decreased by ~25%. Overall, the integrity of the cytoskeletal structures is 

important for efficient internalization of the C6M1-siRNA complex.  

Considering the results collectively, lipid raft-dependent HSPG-mediated macropinocytosis 

plays the major role in internalization of large C6M1-siRNA complexes. The mechanism of how 

the interaction of the complex with cell surface proteoglycans induces macropinocytosis or 

facilitates direct penetration needs to be elucidated. Recent studies have shown that high local 

concentration of arginine-rich peptides in contact with proteoglycans could activate intracellular 

signaling via Rac1 protein which could eventually lead to remodeling of the actin network, 

triggering macropinocytosis or increasing the fluidity of the membrane for direct penetration of 

the peptide [220]. The unique amino acid pairing feature of C6M1 enables high local clustering 

of peptide at the cell surface even at low bulk concentrations, facilitating its entry into the cell. 

6.3.7 Kinetics of the complex uptake 

Figure  6.7 shows the kinetics of uptake of C6M1-siRNA complexes at different size ranges. As 

reported, complexes at smaller size range internalized the cells through mainly temperature-

insensitive direct translocation; while the major route for the uptake of larger complexes was 

endocytosis. In order to evaluate the effect of internalization route on the kinetics of uptake and 

determine the optimal complex treatment time, the uptake of the complex was quantified over 

the time. As shown in Figure  6.7, smaller complexes internalized the cells faster than larger 

complexes with uptake half-times of 25 and 70 min, respectively.  
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Figure  6.6 Uptake of the complex and labeled endocytic markers following the pre-treatment of 
CHO-K1 cells with different endocytic chemical inhibitors. Cells were pre-incubated with 
chemical inhibitors at the concentrations listed in Table  6.1 for 1 h, followed by treatment with 
either C6M1-siRNA complex or endocytic markers (transferrin, dextran 70 kDa, and LacCer) at 
the concentrations and durations mentioned in Materials and Methods section. The intracellular 
fluorescence of the cells was measured by flow cytometry and the values were normalized 
considering 0% uptake for non-treated cells and 100% uptake for the cells treated with the 
complex or the markers without inhibitors at 37 °C. Error bars represent standard deviation of 
quadruplicates. (CytoD: cytochalasin D, MBCD: methyl-ß-cyclodextrin, Cpz: chlorpromazine, 
EIPA: ethyl-isopropyl amiloride, CDE: Clathrin-dependent endocytosis, MPC: 
Macropinocytosis, Cav-ME: Caveolae-mediated endocytosis).    

 

The internalization of small complexes was almost saturated after 1 h; while that of large 

complexes occurred after 3 h.  The uptake of large complexes followed an interesting pattern. 

For the first 60 min, the uptake pattern was similar to that of small complexes. This might be 
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associated with the direct penetration of the fraction of complex with size smaller than 300 nm, 

considering the polydispersity of the samples and the overlap of size distributions of complexes 

formed in PBS and HEPES (Figure  6.4A). This may also explains partial uptake of large 

complexes at 4 °C (Figure  6.5B). After 60 min, the uptake kinetics followed a typical 

endocytosis pattern (S-shape), reported for some CPPs [221]. The relatively slow uptake of large 

complexes also suggests macropinocytosis as the main pathway, as the internalization through 

this pathway has been reported to be slower than that of the receptor-mediated endocytosis. 

 

 

Figure  6.7 Effect of complex size on the kinetics of its uptake. CHO-K1 cells were treated with 
C6M1-Cy3siRNA complexes and the intracellular complexes were quantified by flow cytometry 
over the time. Experiments were performed in triplicates and error bars represent standard 
deviations. 
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6.3.8 Model for cellular uptake mechanism of C6M1-siRNA complexes 

Based on the results of physical (4 °C) and chemical inhibition experiments, the following model 

is proposed for cellular uptake of C6M1-siRNA complexes (Figure  6.8). 

1) C6M1-siRNA complexes bind to cell surface proteoglycans through electrostatic interaction. 

As revealed in heparin and sodium chlorate experiments, this interaction is required to trigger the 

next steps of cellular uptake of the complex.   

2) Interaction with proteoglycans increases the fluidity of cell membrane, leading to direct 

translocation of small complexes. 

3) Interaction with proteoglycans triggers the remodeling of cytoskeletal network, in particular 

F-actin, resulting in macropinocytosis of large complexes. 

 

Figure  6.8 Proposed model for cellular uptake of C6M1-siRNA complexes. First step is the 
interaction of the complex with cell surface proteoglycans (1), followed by direct penetration of 
small complexes (2) or macropinocytosis of larger complexes (3). 
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6.4 Conclusions 

In this study, the attachment and uptake of C6M1-siRNA complexes in CHO-K1 cells were 

investigated. Heparin and sodium chlorate treatment unraveled the importance of cell surface 

proteoglycans in the attachment and uptake of the complex. Applying physical and chemical 

endocytic inhibitors, the uptake mechanism of the complexes at different size ranges were 

studied. It was shown that small complexes (mean ~155 nm) internalized the cells via energy-

independent non-endocytic mechanism, most likely involving direct translocation; however, 

larger complexes (mean ~460 nm) mainly utilized endocytosis for cellular uptake. A detailed 

study using the inhibitors of different pathways identified cholesterol-dependent 

macropinocytosis as the main pathway of the complex uptake. Using endocytic markers, the poor 

specificity of some inhibitors in exclusively blocking a specific pathway was revealed; thus, care 

should be taken when evaluating the inhibitory effects of chemical inhibitors. The internalization 

kinetics of large complexes followed a typical endocytosis pattern with an uptake half-time of 70 

min compared with 25 min for direct penetration of small complexes. 
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Chapter 7 
Original Contributions and Recommendations 

 

7.1 Original contributions to research 

This thesis presented the potential of designed amphipathic peptides as carriers for siRNA 

delivery. A special class of secondary amphipathic peptides was designed, their interaction with 

siRNA was characterized, and their potency in siRNA delivery and the mechanism of cellular 

internalization was explored. The thesis includes the following parts: (i) design and 

characterization of an amphipathic, amino acid pairing peptide, C6, for siRNA delivery in CHO-

K1 cells; (ii) sequence modification of C6 and its effect on solubility, secondary structure, 

cytotoxicity and cellular internalization of the modified peptide, C6M1; (iii) investigation of the 

effect of ionic strength of the solution and complexation with siRNA on size, charge, and 

secondary structure of C6M1; (iv) study of the stability of C6M1-siRNA complexes against 

serum nuclease degradation and the knockdown efficiency of C6M1-GAPDH siRNA complexes 

in CHO-K1 cells; (v) investigation of cellular internalization mechanism and kinetics of C6M1-

siRNA complex in CHO-K1 cells and studying the cytotoxicity and specificity of common 

chemical endocytosis inhibitors. The major outcomes of each part are summarized in the 

following sections. 

Design and characterization of an amphipathic peptide, C6, for siRNA delivery 

C6, a secondary amphipathic peptide, was designed and introduced as a safe and efficient carrier 

for siRNA delivery in vitro. The physicochemical features of the non-covalent interaction 

between C6 and siRNA were characterized. Upon binding to siRNA, C6 adopted a helical 

conformation; while C6 alone showed a random coil structure in water. The fluorescence 
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spectroscopy, DLS, AFM, ITC, and gel electrophoresis results confirmed the formation of stable 

C6-siRNA complex. The fluorescence microscopy images and flow cytometry data also 

indicated the high cellular uptake and cytoplasmic localization of siRNA delivered by C6. This 

study demonstrated the potential of C6 as an efficient carrier for siRNA delivery. 

Sequence modification of C6 and its effect on solubility, secondary structure, cytotoxicity 
and cellular internalization 

By sequence modification of C6 peptide, C6M1 was designed and introduced as a safer and more 

efficient carrier for siRNA delivery. The impact of the replacement of three leucine with 

tryptophan residues in peptide sequence on its solubility, secondary structure, cytotoxicity, and 

uptake efficiency was reported. The sequence modification significantly enhanced the solubility 

of the peptide in aqueous solutions, confirmed by ANS fluorescence assay and surface tension 

experiments. C6M1 also demonstrated more helical contents in its secondary structure compared 

with C6. The modification significantly enhanced the efficiency of peptide in intracellular 

delivery of Cy3-labeled siRNA in CHO-K1 cells and reduced the cytotoxity of the peptide.     

Effect of ionic strength of the solution and interaction with siRNA on size and charge of the 
complex, and secondary structure of C6M1 

In this study, solvents with different ionic strength, i.e, water, HEPES, and PBS were used to 

study the media effect on physicochemical properties of C6M1 and its complex with siRNA. 

C6M1 formed small complexes with siRNA in water and HEPES (<200 nm), but aggregated to 

larger particles in PBS. DLS and fluorescence spectroscopy revealed that the aggregation was 

saturated after 1 h. C6M1 in water showed a combination of helical and random coil structures; 

while, it adapted mainly an α-helical structure in the presence of anions or upon binding to 

siRNA.  

Serum stability and knockdown efficiency of C6M1-siRNA complexes in CHO-K1 cells 

The stability of C6M1-siRNA complexes at different molar ratios in the presence of serum 
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nuclease or heparin, an anionic competitor, was investigated in this study. Agarose gel 

experiments showed that C6M1 was able to completely encapsulate siRNA molecules at molar 

ratio of 15:1; however, higher molar ratios were required to achieve stable complexes. Naked 

siRNA was completely degraded in 4 h in the presence of 50% active serum; while, C6M1 

protected siRNA against serum nuclease degradation over the period of 24 h. Western blotting 

experiment showed ~75% decrease in GAPDH protein content of the cells treated with C6M1-

siRNA complexes. Considering these results, C6M1 showed high potential as a safe, protective 

and efficient carrier for siRNA delivery. 

Cellular internalization mechanism and kinetics of C6M1-siRNA complexes 

 The cellular attachment and uptake of C6M1-siRNA complexes in CHO-K1 cells were 

investigated in this study. The important role of cell surface proteoglycans in the attachment and 

uptake of the complex was confirmed by heparin and sodium chlorate treatment. The effect of 

the size of the complex in its internalization mechanism was studied using physical and chemical 

endocytic inhibitors. It was found that small complexes (mean ~155 nm) internalized the cells 

via energy-independent non-endocytic mechanism, most likely involving direct translocation; 

however, larger complexes (mean ~460 nm) mainly utilized endocytosis for cellular uptake. A 

detailed study using the inhibitors of different pathways identified cholesterol-dependent 

macropinocytosis as the main pathway of the complex uptake. The poor specificity of some 

inhibitors in exclusively blocking a specific pathway was revealed using endocytic markers. The 

internalization kinetics of small complexes showed a quick uptake with a half-time of 25 min; 

while, that of large complexes followed a typical endocytosis pattern with an uptake half-time of 

70 min. 

 

 



 

 110 

 

7.2 Recommendations 

Based on the studies carried out in this research, the following recommendations for future 

studies are proposed: 

1. The chemical and sequence modification of C6M1 in order to limit the complex size 

distribution to the size ranges suitable for in vivo studies.  

2. Co-assembly of C6M1 with fusogenic peptides or sequence modification of C6M1 by 

introducing histidine residues to enhance the endosomal escape and cytoplasmic 

release of the complex. 

3. Applying confocal microscopy to support the finding in internalization mechanism 

experiments using the co-localization of the complex and endocytic markers. 

4. Evaluating the therapeutic efficiency of C6M1-siRNA complexes in vivo. 

5. Incorporating cell targeting peptides (CTPs) motifs in the sequence of C6M1 or its 

modified versions, or decorating the complex with CTPs through amino acid pairing 

technology developed in our lab, and testing the targeting efficiency of the complex 

in vitro and in vivo.      

. 
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Appendix A1 
BCA Protein Assay Kit 

The BCA Protein Assay (Thermo Scientific Pierce) was used to determine total protein 

concentration before western blot experiment.  This assay is a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for the colorimetric detection and 

quantitation of total protein. This method combines the well-known reduction of Cu+2 to Cu+1 

by protein in an alkaline medium (the biuret reaction) with the highly sensitive and selective 

colorimetric detection of the cuprous cation (Cu+1) using a unique reagent containing 

bicinchoninic acid. The purple-colored reaction product of this assay is formed by the 

chelation of two molecules of BCA with one cuprous ion. This water-soluble complex 

exhibits a strong absorbance at 562 nm that is nearly linear with increasing protein 

concentrations over a broad working range (20-2000 μg/mL). The BCA method is not a true 

end-point method; that is, the final color continues to develop. However, following 

incubation, the rate of continued color development is sufficiently slow to allow large 

numbers of samples to be assayed together.  

The macromolecular structure of protein, the number of peptide bonds and the presence of 

four particular amino acids (cysteine, cystine, tryptophan and tyrosine) are reported to be 

responsible for color formation with BCA. Studies with di-, tri- and tetrapeptides suggest that 

the extent of color formation caused by more than the mere sum of individual color-

producing functional groups. Accordingly, protein concentrations generally are determined 

and reported with reference to standards of a common protein such as bovine serum albumin 

(BSA). A series of dilutions of known concentration are prepared from the protein and 

assayed alongside the unknown(s) before the concentration of each unknown is determined 

based on the standard curve.  

                                                                                                 

1 Adapted from http://www.piercenet.com/browse.cfm?fldID=02020101 
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Appendix B 
HPLC and NMR of C6 
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NMR (C6 peptide) 
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