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Abstract

The cohomology ring of a finite cyclic group was explicitly computed by Cartan and Eilen-
berg in their 1956 book on Homological Algebra [8]. It is surprising that the cohomology
ring for the next simplest example, that of a finite abelian group, has still not been treated
in a systematic way. The results that we do have are combinatorial in nature and have
been obtained using “brute force” computations.

In this thesis we will give a systematic method for computing the cohomology ring of
a finite abelian group. A major ingredient in this treatment will be the Tate resolution of
a commutative ring R (with trivial group action) over the group ring RG, for some finite
abelian group G. Using the Tate resolution we will be able to compute the cohomology
ring for a finite cyclic group, and confirm that this computation agrees with what is known
from [8]. Then we will generalize this technique to compute the cohomology ring for a
finite abelian group. The presentation we will give is simpler than what is in the literature
to date.

We will then see that a straightforward generalization of the Tate resolution from a group
ring to an arbitrary ring defined by monic polynomials will yield a method for computing
the Hochschild cohomology algebra of that ring. In particular we will re-prove Theorem
3.2, Lemma 4.1, Lemma 5.1, Theorem 5.2 and Theorem 6.2 from [11], and Theorem 3.9
from [15] in a much more unified way than they were originally proved. We will also be
able to prove some new results.
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Chapter 1

Introduction

1.1 Overview

The cohomology ring of a finite cyclic group was explicitly computed by Cartan and Eilen-
berg in their 1956 book on Homological Algebra [8]. It is surprising that the cohomology
ring for the next simplest example, that of a finite abelian group, has still not been treated
in a systematic way. The results that we do have are combinatorial in nature and have
been obtained using “brute force” computations.

In this thesis we will give a systematic treatment for the cohomology ring of a finite abelian
group. A major ingredient in this treatment will be the Tate resolution of a commutative
ring R (with trivial group action) over the group ring RG, for some finite abelian group
G. Using the Tate resolution we will be able to compute the cohomology ring for a finite
cyclic group, and confirm that this computation agrees with what is known from [8]. Then
we will generalize this technique to compute the cohomology ring for a finite abelian group.

The Tate resolution was given in Theorem 4 of [16]. Immediately after proving this theo-
rem, Tate gave the following application.

Application 1: Let F be the free abelian group on generators u1, . . . , un and let

R = Z[u1, u
−1
1 , . . . un, u

−1
n ] be the group ring of F with integral coefficients. Let

ti = ui − 1, 1 ≤ i ≤ n, and let M = (t1, . . . , tn). Let ai = ueii − 1, 1 ≤ i ≤ r,
with positive integers e1|e2| · · · |er, and let A = (a1, . . . , ar). Then R = R

A

is the group ring of the abelian group F generated by elements ui with the
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relations ui
ei = 1, 1 ≤ i ≤ r, that is, of the direct product of cyclic groups

of order ei, 1 ≤ i ≤ r, and n − r infinite cyclic groups. Theorem 4 then
yields a free resolution of the F -module Z = R

M
= R

M
, a resolution which can be

used efficiently to compute the cohomology and homology groups of the finitely
generated abelian group F .

This thesis will give the answer for which Tate asked, for cohomology, when all the gener-
ators have finite order (i.e. when r = n).

Although we will use some complicated machinery during our analysis, it will turn out
that the dualized complex in which we compute our products is a Koszul complex. While
the Koszul complex carries a natural algebra structure, this is not the multiplicative struc-
ture that we seek. Rather, we will define the cup product of cochains, following the method
from [8]. Even though the Koszul complex is fairly simple, its cohomology can still be com-
plicated. This may explain why so much “brute force” has been required to obtain the
results that are known to date. In Chapter 6, we will describe an algorithm for computing
the cohomology ring for any finite abelian group, and we will explicitly compute the inte-
gral cohomology ring for a product of two cyclic groups, and a few more examples. The
presentations we will give for the examples in Chapter 6 are simpler than what is in the
literature to date. We will then demonstrate that our results verify and complete results
in [12], and agree with results in [9], [17] and [6].

In Chapter 7, we will see that a straightforward generalization of the Tate resolution from
a group ring to an arbitrary ring defined by monic polynomials will yield a method for
computing the Hochschild cohomology algebra of that ring. This will enable us to re-prove
some results from the literature in a much more unified way than they were originally
proved. In particular, our results will verify and complete results in [11], and agree with a
result in [15].

Throughout this thesis, we will see that the most difficult part of the analysis is choosing
a correct diagonal approximation for the given setup. Once a correct diagonal approxi-
mation has been chosen, the cup product structure is determined. Tate’s Theorem is a
powerful tool in allowing us to choose a correct diagonal approximation, because the diag-
onal approximation is determined on the whole resolution once we have defined our maps
in degrees zero, one and two. This is why we are able to avoid the combinatorial approach
that has been used so often to date.
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1.2 Chapter Summaries

Chapter 2 will recall all the foundational machinery that is required.

In Chapter 3 we will begin with a projective resolution of our ring (with trivial group
action) over the group algebra. Then we will define a diagonal approximation from the
resolution to the tensor product of two copies of the resolution. Next we will dualize our
resolution into a trivial representation. We will use our diagonal approximation to define
the cup product of cochains in the dual. Last, we will recall that the cup product is homo-
topic to the Yoneda product on the underlying chain complex, and thus induces the same
product in the cohomology ring of the group with coefficients in R, that is, in the Ext
algebra.

In Chapter 4 we will construct the Tate resolution for a finite cyclic group. Then we
will exhibit a diagonal approximation which will enable us to define the cup products.
Last, we will verify that the product we obtain agrees with the known results from [8].

In Chapter 5 we will generalize the setup from Chapter 4 to a product of cyclic groups, in
other words, to any finite abelian group.

In Chapter 6 we will give the structure of the cohomology ring of a finite abelian group as
a fibre product of quotients of polynomial rings. We will also verify that our results agree
with what is already known in the literature.

In Chapter 7 we will generalize the setup from Chapter 5 to a ring defined by monic
polynomials. This will allow us to obtain some results about Hochschild Cohomology for
a hypersurface ring defined by a monic polynomial.
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Chapter 2

Preliminaries

In this chapter we recall all the machinery that will be needed throughout the thesis.

2.1 Conventions

We establish the following conventions for use throughout the thesis.

1. Unless otherwise stated, G denotes a finite group and R denotes a commutative ring
with unity.

2. The map µ : R⊗R R→ R is the multiplication map.

3. In general, modules over a not necessarily commutative ring have their ring action
on the right.

4. If we are in the setting of a graded ring or module, then we use the absolute value
bars | · | to denote the degree of an element.

5. When applicable, the notation ⊗ denotes the graded tensor product of rings or alge-
bras, which is the usual tensor product, with the multiplication law:

(a⊗ b)(a′ ⊗ b′) = (−1)|b||a
′|(aa′)⊗ (bb′)

6. We use the following notation for complexes of R-modules:

4



(a) Every complex is indexed over the integers, potentially with lots of zero terms.

(b) With homological grading Ci
di // Ci−1 , the differential lowers the degree by

one.

(c) With cohomological grading Cj dj // Cj+1 , the differential increases the degree
by one.

(d) We can freely switch from one to the other by setting Cj = C−j.

(e) We denote by C[m] the complex such that C[m]j = Cj+m, i.e. C[m]i = Ci−m.
In either case, we shift against the direction of the differential.

(f) Shifting a complex by 1 degree in either direction reverses the sign of the differ-
ential.

7. Whenever we need to, we may view R as the complex 0 // R // 0 , with R in
(co)homological degree zero.

8. Many of our complexes, especially the ones we obtain by applying Tate’s Theorem,
will have a highly useful additional structure, that of a DG-algebra (See Definition
2.7.6).

Suppose that (A, ∂) is a DG R-algebra. Then since ∂2 = 0, (A, ∂) is a complex of
R-modules.

2.2 The Norm Map Isomorphism

In this section we establish an extremely useful isomorphism, which will be used throughout
the thesis. More sophisticated proofs of this result exist in the literature; we present a
“down-to-earth” proof here.

Definition 2.2.1. Let R be a ring and let M be a right R-module. Then the R-dual of M
is the left R-module:

M∗ = HomR(M,R)

Definition 2.2.2. Let R be a ring and let M,N be right R-modules. Define the norm map
as

ν : N ⊗RM∗ → HomR(M,N)
: n⊗ λ 7→ ϕn⊗λ : m 7→ n · λ(m)

5



Theorem 2.2.3. The norm map is an isomorphism for all N if and only if M is a finitely
generated projective R-module.

Proof. For the forward direction, assume that ν is an isomorphism for all N . We will prove
that M is a finitely generated projective R-module.

Proof that M is projective: We will prove that HomR(M,−) is an exact functor. Take any
short exact sequence of R-modules

0 // A i // B
p // C // 0 .

We will show that

0 // HomR(M,A)
i∗ // HomR(M,B)

p∗ // HomR(M,C) // 0

is exact. It suffices to prove that

HomR(M,B)
p∗ // HomR(M,C)

is surjective.

Since ν is an isomorphism for all N , we may construct the following diagram in which the
vertical maps are isomorphisms:

B ⊗RM∗ p⊗1M∗ //

∼= νB
��

C ⊗RM∗

∼= νC
��

HomR(M,B) p∗
// HomR(M,C).

I claim that this diagram commutes. Let b ⊗ λ ∈ B ⊗R M∗ be arbitrary. The clockwise
branch yields

νC(p⊗ 1M∗)(b⊗ λ) = νC(p(b)⊗ λ) = [m 7→ p(b) · λ(m)]

The counterclockwise branch yields

p∗νB(b⊗ λ) = p∗[m 7→ bλ(m)] = [m 7→ p(bλ(m)) =︸︷︷︸
p is R-linear

p(b) · λ(m)]

so the diagram commutes on a generating set of B⊗RM∗, and thus commutes as claimed.

6



Let α ∈ HomR(M,C) be arbitrary. Since νC is an isomorphism, there exists an element β ∈
C⊗RM∗ such that α = νC(β). Since (−⊗RM∗) is right exact, B ⊗RM∗ p⊗1M∗// C ⊗RM∗ is
surjective. Therefore there exists an element γ ∈ B⊗RM∗ such that β = (p⊗1M∗)(γ). The
clockwise branch then reads α = νC(β) = νC(p ⊗ 1M∗)(γ). Since the diagram commutes,
this implies that α = p∗νB(γ). Thus the element νB(γ) ∈ HomR(M,B) witnesses the fact
that α ∈ Im p∗, so that p∗ is surjective as required.

Since p∗ is surjective, HomR(M,−) is exact and therefore M is projective as required.

Proof that M is finitely generated:

Letting N = M gives us the isomorphism νM : M ⊗R M∗ → HomR(M,M). Since
1M ∈ HomR(M,M), there exists some element δ ∈ M ⊗R M∗ such that 1M = νM(δ).
Write δ as a finite sum

∑
jmj ⊗λj. I claim that M is generated by the mj. Let x ∈M be

arbitrary. Then

x = 1M(x)

= νM(δ)(x)

= νM

(∑
j

mj ⊗ λj

)
(x)

=
∑
j

νM(mj ⊗ λj)(x)

=
∑
j

ϕmj⊗λj(x)

=
∑
j

mj · λj(x)︸ ︷︷ ︸
∈R, ∀j

so since x ∈M was arbitrary, M is generated by the mj, and thus is finitely generated.

For the backwards direction, assume that M is a finitely generated projective R-module.
Let N be arbitrary. We must prove that ν as defined above is an isomorphism. We first
establish the result for finitely generated free modules, then we show how the result follows
for direct summands of these, i.e. for all finitely generated projective modules.

Since M is finitely generated and projective, by the proof of Proposition 7.56 in [14], M is
a direct summand of a finitely generated free module F . Let F have a finite R-basis {ej}.
Then F ∗ is free with R-basis {e∗j}.

7



It is routine to check that the following function is R-bilinear:

η′ : N × F ∗ → HomR(F,N)(
n,
∑

j rje
∗
j

)
7→ [ej 7→ n · rj],

and thus we obtain a homomorphism of abelian groups

η : N ⊗R F ∗ → HomR(F,N)
n⊗ (

∑
j rje

∗
j) 7→ [ej 7→ n · rj].

We will show that η is a bijection, and thus an isomorphism.

Now define
ζ : HomR(F,N) → N ⊗R F ∗

α 7→
∑

j α(ej)⊗ e∗j

Proof that ηζ = 1HomR(F,N): Let α ∈ HomR(F,N) be arbitrary, and take any basis element

ej. Then

ηζ(α) (ej) = η

(∑
k

α(ek)⊗ e∗k

)
(ej) = [ek 7→ α(ek)] (ej) = α(ej),

so that ηζ(α) and α agree on a basis of F , and therefore on all of F . In other words
ηζ(α) = α as functions. Since α was arbitrary, therefore ηζ = 1HomR(F,N) as claimed.

Proof that ζη = 1N⊗RF ∗ : Let n⊗
(∑

j rj · e∗j
)
∈ N ⊗R F ∗ be arbitrary. Then

ζη

(
n⊗

(∑
j

rj · e∗j

))
= ζ [ej 7→ n · rj] =

∑
j

n·rj⊗e∗j =︸︷︷︸
rj∈R

∑
j

n⊗rj·e∗j = n⊗

(∑
j

rj · e∗j

)
.

Thus ζη is the identity map on a generating set of N ⊗R F ∗, and is therefore the identity
on all of N ⊗R F ∗.

Now we must show that the result holds for direct summands of finitely generated free
modules, i.e. for finitely generated projective modules. Suppose that the norm map is an
isomorphism

ν : N ⊗R F ∗ → HomR(F,N)
: n⊗ λ 7→ ϕn⊗λ : f 7→ n · λ(f)

8



Further suppose that F is isomorphic to a direct sum F ∼= F1 ⊕ F2. Then we claim that ν
restricts to

ν1 : N ⊗R F ∗1 → HomR(F1, N)
n⊗ λ1 7→ ϕn⊗λ1 : f1 7→ n · λ1(f1)

which is an isomorphism.

By Corollary 7.34 in [14], we have

F ∗ = HomR(F,R)
∼= HomR(F1 ⊕ F2, R)
∼= HomR(F1, R)⊕HomR(F2, R)

= F ∗1 ⊕ F ∗2 , and

HomR(F,N) ∼= HomR(F1 ⊕ F2, N)
∼= HomR(F1, N)⊕HomR(F2, N),

so we have an isomorphism

ν : (N ⊗R F ∗1 )⊕ (N ⊗R F ∗2 ) → HomR(F1, N)⊕HomR(F2, N).

Let n ⊗ λ1 ∈ N ⊗R F ∗1 be arbitrary. Since F ∼= F1 ⊕ F2, any f ∈ F has a unique
decomposition f = f1 + f2, with f1 ∈ F1, f2 ∈ F2. Thus we may define

λ : F → N
f1 + f2 7→ λ1(f1).

Then λ extends λ1 to all of F .

Then by the definition of ν we have

ν(n⊗ λ) = [f 7→ n · λ(f)] , and

n · λ(f) = n · λ(f1 + f2) = n · λ1(f1) = ϕn⊗λ1(f1).

This shows that the projection of ϕn⊗λ onto HomR(F1, N) equals ϕn⊗λ1 ∈ HomR(F1, N),
so that ν restricts to ν1 as claimed.

Similarly, ν restricts to

ν2 : N ⊗R F ∗2 → HomR(F2, N)
n⊗ λ2 7→ ϕn⊗λ2 : f2 7→ n · λ2(f2)

9



Now ν1 is injective, because ν is. For surjectivity of ν1, let α ∈ HomR(F1, N) be arbitrary.
Then (α, 0) ∈ HomR(F1, N) ⊕HomR(F2, N) ∼= HomR(F,N). Since ν is surjective, there
exists some element (x, y) ∈ (N ⊗R F ∗1 )⊕ (N ⊗R F ∗2 ) such that

(α, 0) = ν(x, y) = (ν1(x), ν2(y)).

Therefore α = ν1(x), and thus ν1 is surjective, as required.

We have shown that ν restricts to ν1, which is an isomorphism. Therefore the norm map
is an isomorphism whenever M is a finitely generated projective module, and so we are
done.

2.3 The Koszul Complex

Throughout the thesis we will make frequent use of the Koszul complex.

Definition 2.3.1. If x ∈ R is central, we let K(x) denote the chain complex

1 0

0 // R
x // R // 0

concentrated in homological degrees 1 and 0. It is convenient to identify the generator of
the degree 1 part of K(x) as e, so that d(e) = x. With this convention, we re-draw the
above picture:

1 0

0 // R x // R // 0

0 // Re
d // R // 0

e � // x

We may view K(x) as the DG-algebra R[e]
e2

, with |e| = 1. Then d is the skew algebra
derivation x ∂

∂e
.

10



If x = (x1, . . . , xn) is a finite sequence of central elements in R, then we define the
Koszul complex K(x) to be the total tensor product complex.

K(x1)⊗R · · · ⊗R K(xn)

The degree p part of K(x) is a free R-module generated by the symbols

ei1 ∧ · · · ∧ eip(i1 < · · · < ip), where ek = 1⊗ · · · ⊗ 1⊗ ek︸︷︷︸
position k

⊗1⊗ · · · ⊗ 1.

In particular, Kp(x) is isomorphic to the pth exterior power
∧pRn of Rn and has rank(

n
p

)
. The differential is

d : Kp(x) → Kp−1(x)
ei1 ∧ · · · ∧ eip 7→

∑p
k=1(−1)k+1xikei1 ∧ · · · ∧ êik ∧ · · · ∧ eip

This is an algebra derivation, equal to
∑

k xk
∂
∂ek

.

2.4 Regular Sequences

Regular sequences are a key ingredient in the statement of Tate’s Theorem, and Tate’s
Theorem is the key ingredient in all our later constructions. Thus we establish the required
definitions, and the crucial examples which satisfy the definitions here.

Definition 2.4.1. Let R be a ring and let M be an R-module. A sequence of elements
x1, . . . , xn ∈ R is called a regular sequence on M (or an M-sequence) if

1. (x1, . . . , xn)M 6= M , and

2. For i = 1, . . . , n, xi is a non zero divisor on M
(x1,...,xi−1)M

.

In particular, for M = R, we have the notion of an R-sequence or regular sequence on R.
By contrast, we have

Definition 2.4.2. Any sequence x = (x1, . . . , xn) such that Hi(K(x)) = 0, for all i ≥ 1 is
called a Koszul regular sequence.
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Remarks:

1. AnR-sequence is Koszul regular (see [18], Corollary 4.5.5). A Koszul regular sequence
is not necessarily an R-sequence.

2. A Koszul regular sequence of length one is simply a non zero divisor.

Let x ∈ R be a non zero divisor. We then require the following sequence to be exact:

0 // R x // R ,

in other words, we require multiplication by x to be injective in R. But this is clear
because x is a non zero divisor in R, and therefore multiplication by x has a trivial
kernel.

By contrast, an R-sequence of length one is a non zero divisor which is not a unit.

Thus an example of a sequence which is Koszul regular but not an R-sequence is
simply {1}. As we know, 1 is a non zero divisor, which implies the sequence is
Koszul regular. However 1 is a unit, and thus {1} is not an R-sequence.

3. The definition of an R-sequence depends on the order in which we write down the
elements. For example, let k be a field, and let R = k[x, y, z]. Define a = x(y−1), b =
y and c = z(y − 1). Then (a, b, c)R = (x, y, z)R 6= R, and {a, b, c} is an R-sequence
while {a, c, b} is not an R-sequence. However if (R,m, k) is a local noetherian ring,
and if x1, . . . , xn ∈ m form an R-sequence, then any permutation of x1, . . . , xn again
form an R-sequence. See [10], Corollary 17.2.

4. Being Koszul regular does not depend on the order in which we write down the
elements.

Example 2.4.3. If R is any ring, and f(x) is any monic polynomial in R[x], then (f(x))
is a Koszul regular sequence in R[x].

This is a simple consequence of Remark 2 above, since f(x) is a non zero divisor if it is
monic.

Example 2.4.4. More generally, (f1(x1), . . . , , fr(xr)), where each fi is monic, is a Koszul
regular sequence in R[x1, . . . , xr].

12



Note that since each fi(xi) is monic, it is a non zero divisor in R[x1, . . . , xr].

The proof is by induction on r. For the rest of the proof, unadorned tensor products are
over R.

In the base case (r = 1), The result follows by Example 2.4.3 above.

For the induction step, assume that (f1(x1), . . . , , fk(xk)) is Koszul regular, for some 1 ≤
k < r. We have that

K(f1(x1), . . . , , fk(xk), fk+1(xk+1)) ∼= K(f1(x1), . . . , , fk(xk))⊗K(fk+1(xk+1))

Let (C, ∂) denote K(f1(x1), . . . , , fk(xk)). Then by the induction hypothesis, (C, ∂) is acylic
in all degrees ≥ 1.

Since K(fk+1(xk+1)) is concentrated in degrees 0 and 1, the total complex is

0

��

0

��

0

��
0 C0 ⊗R[xk+1]oo

1⊗(fk+1(xk+1))

��

C1 ⊗R[xk+1]
∂⊗1oo

−1⊗(fk+1(xk+1))

��

C2 ⊗R[xk+1]
∂⊗1oo

1⊗(fk+1(xk+1))

��

· · ·oo

Tot := 0 C0 ⊗R[xk+1]oo

��

C1 ⊗R[xk+1]
∂⊗1
oo

��

C2 ⊗R[xk+1]
∂⊗1
oo

��

· · ·oo

0 0 0

The rows are exact in degrees ≥ 1 because R[xk+1] is free, and therefore flat, over R.

The following diagram commutes

0

��

0

��

0

��
0 C0 ⊗R[xk+1]oo

1⊗(fk+1(xk+1))

��

C1 ⊗R[xk+1]
∂⊗1oo

1⊗(fk+1(xk+1))

��

C2 ⊗R[xk+1]
∂⊗1oo

1⊗(fk+1(xk+1))

��

· · ·oo

0 C0 ⊗R[xk+1]oo

��

C1 ⊗R[xk+1]
∂⊗1
oo

��

C2 ⊗R[xk+1]
∂⊗1
oo

��

· · ·oo

0 0 0

13



and thus the vertical maps assemble into a morphism of complexes. Denote this morphism
of complexes by f . We may then construct the complex cone(f), using Definition 1.5.1 of
[18].

I claim that cone(f) ∼= Tot as complexes of R-modules. Define

Ψ : cone(f) → Tot

(b, c) 7→
{

(−b, c) in odd degrees
(b, c) in even degrees

It is routine to verify that Ψ is an isomorphism of chain complexes of R-modules.

Therefore we will be finished if we can show that Hi(cone(f)) = 0, for all i ≥ 1.

By Lemma 1.5.3 in [18], we have the long exact sequence

H0(cone(f)) H0(C ⊗R[xk+1])oo H0(C ⊗R[xk+1])
1⊗(fk+1)oo H1(cone(f))oo

H1(C ⊗R[xk+1])

33

H1(C ⊗R[xk+1])
1⊗(fk+1)oo H2(cone(f))oo

33

...

Hi(C ⊗R[xk+1])

::

Hi(C ⊗R[xk+1])
1⊗(fk+1)oo Hi+1(cone(f))oo

Hi+1(C ⊗R[xk+1])

33

· · ·oo

and since the rows of the original diagram remain exact in all degrees ≥ 1, we can see that
Hi(cone(f)) = 0, for all i ≥ 2. We still need to prove that H1(cone(f)) = 0.

We have the following exact sequence remaining:

H0(cone(f)) H0(C ⊗R[xk+1])oo H0(C ⊗R[xk+1])
1⊗(fk+1)oo H1(cone(f))oo 0oo .

Because the terms of C are free and therefore flat over R, the Künneth Formula (Theorem
3.6.1 in [18]) implies that

H0(C ⊗R[xk+1]) ∼= H0(C)⊗R[xk+1].

14



Now observe that

H0(C) ∼=
R[x1]

(f1)
⊗ · · · ⊗ R[xk]

(fk)
∼=

R[x1, . . . , xk]

(f1(x1), . . . , fk(xk))

is free, and therefore flat, over R.

We claim that H0(C ⊗R[xk+1]) H0(C ⊗R[xk+1])
1⊗(fk+1)oo is injective. Since fk+1(xk+1) is

a non-zero divisor, multiplication by fk+1(xk+1) is injective on R[xk+1]. Therefore, since
H0(C) is flat over R, 1 ⊗ (fk+1) is injective on H0(C) ⊗R R[xk+1] ∼= H0(C ⊗ R[xk+1]), as
claimed.

Then the remaining long exact sequence becomes

H0(cone(f)) H0(C ⊗R[xk+1])oo H0(C ⊗R[xk+1])
1⊗(fk+1)oo H1(cone(f))0oo 0oo

and so it is clear that H1(cone(f)) = 0, as required.

2.5 The Hom Complex

By working in the Hom complex, some labourious computations can be streamlined.
Therefore we establish the needed framework here.

For this section, we work in the category of complexes of R-modules for some commu-
tative ring R. We could do the same construction in any abelian category.

Given two complexes

C• · · · // C1
dC1 //

  

C0
dC0 //

!!

C−1
// · · ·

D• · · · // D1 dD1

// D0 dD0

// D−1
// · · ·

our goal is to construct the Hom complex Hom•(C•, D•) such that

1. H0(Hom•(C•, D•)) = homotopy classes of morphisms of complexes C• → D•, and

2. H i(Hom•(C•, D•)) = homotopy classes of morphisms of complexes C• → D[i]•.
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Remarks:

1. A morphism of complexes C• → D• is a map of degree 0.

2. The dotted arrows above describe a map of degree 1.

3. We will assemble maps of all degrees here.

Definition 2.5.1. The ith term of the Hom complex Hom•(C•, D•) is

Homi(C•, D•) :=
∏
j

HomR(Cj, D[i]j)

C• · · · // Cj+1
//

��

Cj //

��

Cj−1
//

��

· · ·

D[i]• · · · // D[i]j+1
// D[i]j // D[i]j−1

// · · ·

Dj−i+1 Dj−i Dj−i−1

Denote an arbitrary element of Homi(C•, D•) by ϕ. Then we can write ϕ = {ϕj}j∈Z, where
each ϕj : Cj → D[i]j lies in HomR(Cj, D[i]j) = HomR(Cj, Dj−i). The differential is

d : Homi(C•, D•) → Homi+1(C•, D•)
ϕj 7→ dDϕj − (−1)iϕj+1dC

This is a differential, since, for any ϕj, we have

d2ϕj = d( dDϕj − (−1)iϕj+1dC︸ ︷︷ ︸
denote this by ψj+1∈HomR(Cj ,D[i+1]j)

)

= dDψj+1 − (−1)i+1ψj+2dC

= dD[dDϕj − (−1)iϕj+1dC ]− (−1)i+1[dDϕj+1 − (−1)i+1ϕj+2dC ]dC

= dDdD︸ ︷︷ ︸
=0

ϕj − (−1)idDϕj+1dC − (−1)i+1dDϕj+1dC + (−1)2i+2ϕj+2 dCdC︸ ︷︷ ︸
=0

= 0.

So we do indeed have a complex.
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Remarks:

1. For any i, we have
Hom•(C•, D•[i]) ∼= Hom•(C•, D•)[i].

2. In general for a complex E•, H i(E•) ∼= H0(E[i]•). So we only need to compute
H0(Hom•(C•, D•)), and all other degrees are then understood via shifts.

Recall that

H0(Hom•(C•, D•)) =
ker d0

im d−1

Let ϕ ∈ ker d0 be arbitrary, i.e. ϕ ∈ Hom0(C•, D•) with dϕ = 0. Then we have, for any j
that

0 = dϕj

= dDϕj − (−1)0ϕj+1dC

= dDϕj − ϕj+1dC

ϕj+1dC = dDϕj

which holds if and only if ϕ is a morphism of complexes.

Now suppose that ϕ − ψ ∈ im d−1 is arbitrary. Then ϕ − ψ = d−1s, for some map s of
degree −1.

· · · // Cn+1
dC //

(ϕ−ψ)n+1

��

Cn
dC //

(ϕ−ψ)n

��
sn||

Cn−1
//

(ϕ−ψ)n−1

��
sn−1||

· · ·

· · · // Dn+1 dD
// Dn dD

// Dn−1
// · · ·

Then

ϕ− ψ = d−1s

= dDs− (−1)−1sdC

= dDs+ sdC ,

i.e. ϕ and ψ are homotopic.

We have constructed Hom•(C•, D•) such that H0(Hom•(C•, D•)) = homotopy classes of
morphisms of complexes C• → D•, as desired.
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2.6 Divided Powers

Divided powers are another key ingredient in the statement of Tate’s Theorem. Thus we
establish their important properties before we proceed.

Here we follow the original treatment in [7], as well as [3] and [10].

Definition 2.6.1. A Z-graded ring A = ⊕i∈ZAi is graded commutative, if

xy = (−1)|x||y|yx for x ∈ A|x|; y ∈ A|y|. (2.1)

It is strictly graded commutative if further

x2 = 0 for x ∈ A2i+1.

Remark As line (2.1) already implies 2x2 = 0 for any odd element x ∈ A− = ⊕iA2i+1, an
algebra is graded commutative, but not strictly so, exactly when annA+(2)∩A2

− 6= 0. This
point becomes particularly relevant when 2 = 0 in A+ = ⊕iA2i.

If 2 = 0 in a graded commutative algebra A, then the re-graded algebra A′i = A2i is
strictly graded commutative, equivalently, it is just commutative in the usual sense. Be-
cause of this, some authors allow in the following definition divided powers in any degree
when 2 = 0 in A. However, we rather stick to the classical definition with divided powers
only in even degrees, re-grading, if we wish to capture the additional freedom in case of
characteristic 2.

Definition 2.6.2. Let A = ⊕i≥0Ai be a positively graded algebra that is strictly graded
commutative. A system of divided powers on A assigns to each element x ∈ A of even
degree at least 2 a sequence of elements (γk(x))k≥0 from A such that

1. γ0(x) = 1, γ1(x) = x, |γk(x)| = k|x|.

2. γk(x)γh(x) =

(
k + h
k

)
γk+h(x).

3. (The Binomial or Leibniz Formula)

γk(x+ y) =
∑
i+j=k

γi(x)γj(y).
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4. For k ≥ 2,

γk(xy) =

{
0 if |x|, |y| are odd,
xkγk(y) if |x|, |y| are even and |y| ≥ 2.

The element γk(x) is called the kth divided power of x.

Remark: It is often typographically more pleasing to write x(k) = γk(x). This may as

well remind the reader that γk(x) should be thought of as xk

k!
, even though in the given

algebra one may not be able to divide by k!. We use both conventions interchangeably.

In terms of examples, we first give the obligatory trivial one.

Example 2.6.3. If R is any commutative ring, placing it into degree zero turns it into a
strictly graded commutative algebra over itself. As there are no elements of degree greater
than 0, it carries the vacuous system of divided powers.

We next review the two key examples of algebras with divided powers.

Example 2.6.4. The polynomial ring Q[x] = Q[x1, . . . , xs] over the rational numbers Q
on s variables xi, placed in even degrees, carries a system of divided powers given by the
functional equation

exp(p(x)t) =
∑
k≥0

γk(p(x))tk, that is,

γk(p(x)) =
1

k!
pk(x).

Its subalgebra

ΓZ(x1, . . . , xs) = Z
[
xki
k!

; i = 1, . . . , s; k ≥ 0

]
⊆ Q[x1, . . . , xs]

is closed under these divided powers.

If R is any commutative ring, then γk(r ⊗ xi) = rk ⊗ γk(xi) gives rise to a unique system
of divided powers on

ΓR(x1, . . . , xs) = R⊗Z ΓZ(x1, . . . , xs).
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The second key example is provided by exterior algebras. Here, the system of divided
powers seems to appear out of “thin air”:

Example 2.6.5. The exterior algebra
∧
R(y1, . . . , yt) over any commutative ring R, with

the variables yj in odd degrees, is strictly graded commutative and carries a system of
divided powers uniquely determined by the requirements (1) through (4) above. While con-
dition (4) implies that γk(yj1 · · · yj2m) = 0, for any k ≥ 2 and m ≥ 1, condition (3) makes
the structure nontrivial.

For example, if one identifies the exterior 2-form ω =
∑

1≤i<j≤t yiyjrij with the alternating
(t× t)-matrix whose entries from R above the diagonal are the rij, and with entries rii = 0
on the diagonal, and rji = −rij below the diagonal, then the coefficient of yj1 · · · yj2k in
γk(ω) is the Pfaffian (see [5], §5.2) of the submatrix cut out by rows and columns 1 ≤ j1 <
· · · < j2k ≤ t, a nontrivial polynomial, homogeneous of degree k in the coefficients rij. For
a concrete example, the reader may readily verify

γ2

( ∑
1≤i<j≤4

yiyjrij

)
= y1y2y3y4(r12r34 − r13r24 + r14r23).

The following crucial functorial property was also already established in [7], Theorem 2.

Theorem 2.6.6. If A, B are strictly graded commutative R-algebras, each endowed with
a system of divided powers, then A⊗RB, the graded tensor product algebra over R, carries
a unique system of divided powers that extends those on A and B respectively.

In view of (3) and (4), for k ≥ 2 it necessarily satisfies

γk(x⊗ y) =


0 if |x|, |y| are odd,
xk ⊗ γk(y) if |x|, |y| are even, and |y| ≥ 2,
γk(x)⊗ yk if |x|, |y| are even, and |x| ≥ 2.

The last two cases coincide when both |x|, |y| ≥ 2, and then, more symmetrically,

γk(x⊗ y) = k!γk(x)⊗ γk(y).

Definition 2.6.7. A ring homomorphism ϕ : A→ B between algebras with divided powers
is compatible with the systems of divided powers, or is a homomorphism of algebras with
divided powers, if further, γk(ϕ(a)) = ϕ(γk(a)), for all a ∈ A in even degrees.
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Example: One has isomorphisms of algebras with (systems of) divided powers

ΓR(x1, . . . , xs) ∼= R⊗Z ΓZ(x1)⊗Z · · · ⊗Z ΓZ(xs) and∧
R

(y1, . . . , yt) ∼= R⊗Z
∧
Z

(y1)⊗Z · · · ⊗Z
∧
Z

(yt),

where R is viewed as concentrated in degree 0, thus, trivially strictly graded commutative
and carrying the vacuous system of divided powers, as pointed out in example 2.6.3 above.

In light of this result, one could have started in examples 2.6.4 and 2.6.5 with the case of
just a single variable, then inducing up the structure using the tensor product.

Finally, we note the following.

Theorem 2.6.8. Let A be a strictly graded commutative R-algebra with a system of divided
powers. For any sequence (a1, . . . , as) of elements of A of even degree at least 2 and any
sequence (b1, . . . , bt) of elements of A of odd degree, the assignment xi 7→ ai, yj 7→ bj extends
to a unique homomorphism of strictly graded commutative R-algebras with divided powers

ΓR(x1, . . . , xs)⊗R
∧
R

(y1, . . . , yt)→ A.

Thus, ΓR(x1, . . . , xs) ⊗R
∧
R(y1, . . . , yt) is free within the category of strictly graded com-

mutative R-algebras with divided powers.

Remark 2.6.9. If f(x) ∈ R[x] is a polynomial, then we can expand it around any c ∈ R
as

f(x) =
∑
i≥0

f (i)(c)(x− c)i,

for suitable f (i)(c) ∈ R. Now note that i!f (i)(c) = ∂if
∂xi

(c), so provided division by i! is
possible in R, we get the usual Taylor expansion. Thus the divided derivatives are anal-
ogous to divided powers in that they always exist, regardless of whether all their desired
denominators are invertible in R.

2.7 Tate’s Theorem

We will use Tate’s Theorem to make all of our later constructions. Hence we give a careful
statement and proof of the theorem, with a slightly weaker hypothesis (Koszul regularity)
than Tate originally used.

John Tate proved the following result in his paper [16].
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Theorem 2.7.1. Let f1, . . . , fn and g1, . . . , gm be Koszul regular sequences such that the
ideal J = (g1, . . . , gm) generated by the gj is contained in the ideal I = (f1, . . . , fn) generated
by the fi. Write gj =

∑n
i=1 ajifi, 1 ≤ j ≤ m, with aji ∈ R. Let R = R

J
and I = I

J
, and let

aji and f i denote the J-residues of aji and fi. Then the DG-algebra (see definition 2.7.6)

R〈τ1, . . . , τn ; σ1, . . . , σm〉
with exterior variables τi of degree 1 and divided power variables σj of degree 2, and with
algebra differential d defined through

dτi = f i

dσj =
n∑
i=1

ajiτi

is acyclic, and therefore yields a free resolution of the R-module R
I

.

Remarks:

1. In his original paper, Tate made the stronger assumption that the ideals were gener-
ated by R-sequences.

2. It has been known since the publication of [2] that the result is true with the weaker
hypothesis of Koszul regularity.

3. We present a “down-to-earth” proof of this improved version of the theorem here.

2.7.1 Preliminaries

Proposition 2.7.2. Let B
g // // A be a surjective ring homomorphism. Let M be a left

A-module. Then the functors (−⊗B M) and (−⊗AM) (from right A-modules to abelian
groups) are naturally isomorphic.

Proof. This is a consequence of [3], §3.3, Corollary to Proposition 2.

Proposition 2.7.3. Let R be a commutative ring and let I ⊂ R be an ideal. Denote R
I

by R. Let ψ : M → N be an R-module homomorphism, where I annihilates N . Then ψ
factors uniquely through R⊗RM :

m_

��

M
ψ

$$
����

(1 + I)⊗m R⊗RM
ψ

// N
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Proof. This is a consequence of the final remark in [3], §1.3, as follows.

There is a well-defined homomorphism of R-modules

α : R⊗RM → M
IM

(r + I)⊗m 7→ rm+ IM

with inverse
β : M

IM
→ R⊗RM

m+ IM 7→ (1 + I)⊗m

and therefore R⊗RM ∼= M
IM

.

Now the remark applies to the diagram

M
ψ

  ����
M
IM ψ

// N

where for any i ∈ I and m ∈M , we have

ψ(im) = i ψ(m)︸ ︷︷ ︸
∈N

= 0

so that IM ⊆ kerψ.

2.7.2 Derivations and the Tate Construction

We recall general terminology on derivations.

Definition 2.7.4. Let A = ⊕iAi be a graded algebra, not necessarily associative or graded
commutative for now.

A graded derivation ∂ of degree a on A with values in a graded A-bimodule M = ⊕i∈ZMi

is an additive map from A to M such that ∂(Ai) ⊆Ma+i and the graded Leibniz rule

∂(xy) = ∂(x)y + (−1)a|x|x∂(y)

holds for x ∈ A|x| homogeneous and y ∈ A.
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The kernel of a graded derivation is a graded subalgebra of A and the derivation is then
linear over that kernel.

Definition 2.7.5. If M = A then ∂ is called an algebra derivation, and further if ∂2 =
∂ ◦ ∂ = 0, then it is called an algebra differential. In the latter case, one often assumes
that ∂ is of degree ±1.

Definition 2.7.6. A differential graded R-algebra, or DG R-algebra, is a graded R-algebra
A, together with an algebra differential ∂.

Definition 2.7.7. If A is a strictly graded commutative algebra with divided powers, and
∂ is a derivation into an A-bimodule M , then the derivation is
compatible with the system of divided powers if ∂(γk(x)) = ∂(x)γk−1(x) in M for k ≥ 1
and any element x of even degree.

Definition 2.7.8. Suppose that (A, ∂) is a DG R-algebra, and that A is a strictly graded
commutative algebra with divided powers. If ∂ is compatible with the system of divided
powers, then we say that (A, ∂) is a DG R-algebra with divided powers.

We now introduce a useful construction which allows us to efficiently perform computations
involving differentials in a Hom complex.

Definition 2.7.9. Consider the Hom complex Hom•(C•, C•). For any homogeneous ele-
ments f, g of Hom•(C•, C•), define the graded bracket, or graded commutator

[f, g] := fg − (−1)|f ||g|gf.

Remark: This bracket satisfies (graded) skew-commutativity

[f, g] = −(−1)|f ||g|[g, f ],

and the (signed) Jacobi identity

(−1)|f ||h|[f, [g, h]] + (−1)|g||f |[g, [h, f ]] + (−1)|h||g|[h, [f, g]] = 0,

and in this way, the graded bracket defines a graded Lie algebra structure.

Now consider complexes C•, D• and E• and the composition map

Hom•(D•, E•)×Hom•(C•, D•) → Hom•(C•, E•)
(f, g) 7→ fg

of the indicated Hom complexes. One can view these three Hom complexes as direct
summands in

Hom•(C• ⊕D• ⊕ E•, C• ⊕D• ⊕ E•)
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Lemma 2.7.10. Denoting by d the differential in any of these, this graded bracket obeys
the Leibniz rule:

[d, fg] = [d, f ]g + (−1)|f |f [d, g]

Proof. Routine.

Definition 2.7.11. The free strictly graded commutative R-algebra with divided powers
A = ΓR(x1, . . . , xs)⊗R

∧
R(y1, . . . , yt) is smooth over R in the following sense.

First, any R-linear derivation into a graded module over this algebra that is compatible
with the system of divided powers is clearly uniquely determined by the values ∂(xi), ∂(yj).

Conversely, given an integer a and an assignment xi 7→ ui, yj 7→ vj with ui, vj homo-
geneous elements of that module such that a = |ui| − |xi| = |vj| − |yj| for all i, j, this
assignment extends uniquely to a graded derivation ∂ of degree a that is compatible with
the system of divided powers. This derivation is denoted

∂ =
s∑
i=1

ui
∂

∂xi
+

t∑
j=1

vj
∂

∂yj

Put differently, denote by DerΓ
R(A,M), for any graded module M over this algebra, the

graded R-module whose component in degree a consists of those graded derivations of this
degree that are compatible with divided powers. One then has

DerΓ
R(A,M) =

s⊕
i=1

M
∂

∂xi
⊕

t⊕
j=1

M
∂

∂yj

Example: If we take M = A and consider a derivation ∂ : A → A of odd degree, then
∂2 = ∂ ◦ ∂ is again a derivation of twice the degree of ∂, given by

∂2 =
s∑
i=1

∂(ui)
∂

∂xi
+

t∑
j=1

∂(vj)
∂

∂yj
.

In particular, ∂ is an algebra differential, that is ∂2 = 0, if and only if, each coefficient
ui, vj is a cycle for ∂, that is ∂(ui) = 0 = ∂(vj) for all i, j.

A crucial case of this last example occurs when the xi are situated in degree 2, the yj
in degree 1 and ∂ is of degree −1. In this situation, A is necessarily positively graded.

25



Moreover, ui = ∂(xi) =
∑

j yjaji and vj = ∂(yj) = bj, with aji, bj ∈ A0 = R. Therefore the

vj are automatically cycles and requiring ∂2 = 0 forces the condition ∂(ui) = 0 to become

∂(ui) =
∑
j

∂(yj)aji =
∑
j

bjaji = 0

Viewing (aji) as the matrix of an R-linear map ϕ : ⊕iRxi → ⊕jRyj and (bj) as the matrix
of an R-linear form λ : ⊕jRyj → R, we also write in a co-ordinate free way ∂ = ∂ϕ + ∂λ
for that derivation as it is independent of a choice of bases. The condition that ∂ is an
algebra derivation then simply becomes λ ◦ ϕ = 0.

As this situation is crucial, we single it out by a definition.

Definition 2.7.12. Let R be a commutative ring, ϕ : F → G an R-linear map between
free modules of finite rank, and λ : G→ R an R-linear form.

If λ◦ϕ = 0, then the free divided power algebra ΓRF ⊗R
∧
RG with differential ∂ = ∂ϕ+∂λ

is the Tate Construction T(ϕ, λ) on the pair (ϕ, λ).

We call T(ϕ, λ) a Tate resolution if its homology is concentrated in degree zero. In this
case, the complex of R-modules underlying T(ϕ, λ) resolves R

Im(λ)
by finite free R-modules.

Examples:

1. If F = 0, then T(0, λ) is nothing but the Koszul complex on the linear form λ. It is a
(Tate) resolution, by definition, if (λ(y1), . . . , λ(yt)) is a Koszul regular sequence on
R for some (any) basis {yj} of G. (C. f. Definition 2.4.2).

2. If G = 0, then necessarily ϕ = λ = 0, and we are reduced to a free divided power
algebra on F .

3. In the tautological example, ϕ = id is the identity map on a free module, and this
forces, of course, λ = 0. It is this example which prompted H. Cartan to introduce
systems of divided powers into the mathematical toolbox, as it provides for the
minimal graded resolution of the augmentation module of an exterior algebra.

Theorem (Cartan) 2.7.13. The Tate construction over the identity map on a free R-
module F of rank t returns the minimal graded resolution of R, viewed as the graded
augmentation module:

ε :
∧
R

F ∼=
∧
R

(y1, . . . , yt)→ R, yj 7→ 0
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over the exterior algebra
∧
R F . In other words, the differential graded algebra

(T(idF , 0), ∂) ∼=

(
ΓR(x1, . . . , xt)⊗R

∧
R

(y1, . . . , yt),
t∑

j=1

yj
∂

∂xj

)

has R as its sole homology, concentrated in degree zero.

Proof: See Example 2.5 in [1]. �

A word on gradings: If one wants to consider T(id, 0) as a resolution of the augmentation
over the exterior algebra in the classical sense, then the divided power degree becomes the
homological degree, that is ΓnR(F )⊗R

∧
R(F ) is the finite free

∧
R(F )-module in homological

degree n. The differential is then linear with respect to the (internal) grading on the exterior
algebra.

Often, however, it is advantageous to consider T(id, 0) instead as a differential graded∧
R(F )-module, thus using the total degree, as we did above, where the divided power

variables sit in degree two, the exterior variables in degree one.

2.7.3 Why Koszul Regularity is Enough to Apply Tate’s Theo-
rem

Now denote (x1, . . . , xs) by x and (y1, . . . , yt) by y. The notation
∧•
R(x[1]) denotes the

exterior algebra over R with basis x = (x1, . . . , xs), with |xi| = 1 for all i. Similarly denote
by
∧•
R(F [1]) the exterior algebra over R of F , with the elements of F in degree 1.

Lemma 2.7.14. If λ ◦ ϕ = 0 as in Definition 2.7.12, then the map induced by ϕ : F → G

(
∧•
R(x[1]), d = 0)

∧• ϕ // (∧•R(y[1]), ∂λ)

is a DG-algebra homomorphism, i.e. the following diagram commutes:

∧•
R(x[1])

∧• ϕ //
d=0
��

∧•
R(y[1])

∂λ
��∧•

R(x[1]) ∧• ϕ //
∧•
R(y[1]).
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Proof. Let ω ∈
∧•
R(x[1]) be an arbitrary basis element. Write ω = xi1 ∧ · · · ∧ xik for some

k. Because the first map in the counterclockwise branch is d = 0, the diagram commutes
if and only if the clockwise branch is also the zero map. The output from the clockwise
branch is

∂λ(∧kϕ(ω)) = ∂λ(ϕ(xi1) ∧ · · · ∧ ϕ(xik))

=
k∑
ν=1

±ϕ(xi1) ∧ · · · ∧ λϕ(xiν )︸ ︷︷ ︸
=0

∧ · · · ∧ ϕ(xik)

= 0.

Since every basis element maps to zero via the clockwise branch, therefore the clockwise
branch kills every element. So the diagram commutes as required.

Remark: The induced map of Lemma 2.7.14 makes
∧•
R(y[1]) into a module over

∧•
R(x[1]).

Define R = R
Im(λ)

. Recall (for example by Exercise 4.5.1 in [18]), that H•(
∧•
R(y[1]), ∂λ)

is a strictly graded commutative DG R-algebra. We now show that it is necessarily an
R-algebra also. Let

R
ψ // H•(

∧•
R(y[1]), ∂λ)

witness the fact that H•(
∧•
R(y[1]), ∂λ) is an R-algebra. Then since Im(λ) annihilates the

target, by Proposition 2.7.3, ψ factors uniquely:

R

��

ψ

**
R R⊗R R

ψ

// H•(
∧•
R(y[1]), ∂λ)

and thus

R
ψ // H•(

∧•
R(y[1]), ∂λ)

witnesses the fact that H•(
∧•
R(y[1]), ∂λ) is an R-algebra.

We see that ϕ induces an R-linear map

F =
⊕s

i=1Rxi →
∧1
R(y[1]) ⊂

∧•
R(y[1])

xi 7→ ϕ(xi)
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Note that ϕ(F ) consists of cycles, because λϕ = 0. Thus, since there is a surjection from
the cycles in degree 1 onto H1(

∧•
R(y[1]), ∂λ), we get a homomorphism of R-modules

F =
s⊕
i=1

Rxi → H1

(
•∧
R

(y[1]), ∂λ

)
.

This gives rise to a homomorphism of strictly graded commutative R-algebras

(
∧•
R(x[1]), 0) // H• (

∧•
R(y[1]), ∂λ)

Since Im(λ) annihilates the target, by Proposition 2.7.3, this map factors uniquely through
R ⊗R (

∧•
R(x[1]), 0), and thus we get a homomorphism of strictly graded commutative R-

algebras

R⊗R (
∧•
R(x[1]), 0)

ϕ // H•(
∧•
R(y[1]), ∂λ)

which can be re-written

(
∧•
R(x[1]), 0)

ϕ // H•(
∧•
R(y[1]), ∂λ)

This map ϕ will be the key ingredient in the statement of Theorem 2.7.16.

The following map defined on basis elements in degree 2 extends linearly to a well-defined
derivation on Γ•R(x[2])⊗R

∧•
R(y[1]):

∂ϕ : Γ•R(x[2]) →
∧•
R(y[1])

xi 7→ ϕ(xi)

Denote by ∂can the canonical differential of Theorem 2.7.13, which, when using the same
symbols for the basis elements in degrees 2 and 1, reads as:

∂can : Γ•R(x[2]) →
∧•
R(x[1])

xi 7→ xi
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Lemma 2.7.15. The following is a chain of DG-algebra isomorphisms:(
TR(idF , 0)⊗∧•

R(F [1])

•∧
R

(y[1]), ∂can + ∂λ

)
(2.2)

∼=


(

Γ•R(x[2])⊗R
•∧
R

(x[1])

)
︸ ︷︷ ︸

TR(idF ,0)

⊗∧•
R(x[1])

•∧
R

(y[1]), ∂ϕ + 0 + ∂λ

 (2.3)

∼=

(
Γ•R(x[2])⊗R

•∧
R

(y[1]), ∂ϕ + ∂λ

)
(2.4)

∼= TR(ϕ, λ) (2.5)

Proof. We can form the tensor product on line (2.2) because

• the algebra
∧•
R(F [1]) is a subalgebra of TR(idF , 0) and thus acts on it in the obvious

way, and

• the induced map of Lemma 2.7.14 makes
∧•
R(y[1]) into a module over

∧•
R(F [1]).

The terms on lines (2.2) and (2.3) agree because we have simply applied the definition
of the Tate construction in the tautological example, and because

∧•
R(F [1]) is simply a

basis-free version of
∧•
R(x[1]).

The differentials on lines (2.2) and (2.3) agree because, by the action of
∧•
R(x[1]) on the

third factor of the tensor product on line (2.3), we have

1⊗R xi ⊗∧•
R(x[1]) 1 = 1⊗R 1⊗∧•

R(x[1]) ϕ(xi)

and hence

∂can(xi ⊗R 1⊗∧•
R(x[1]) 1) = 1⊗R xi ⊗∧•

R(x[1]) 1

= 1⊗R 1⊗∧•
R(x[1]) ϕ(xi)

= ∂ϕ(xi ⊗R 1⊗∧•
R(x[1]) 1)

so ∂can and ∂ϕ agree on arguments in the first factor.

The terms on lines (2.3) and (2.4) agree since
(∧•

R(x[1]))⊗∧•
R(x[1]) −

)
collapses.
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The differentials on lines (2.3) and (2.4) agree since, on line (2.4), we have simply collapsed
the middle factor, whose differential was already zero.

From line (2.4) to line (2.5) we are simply applying the definition of the Tate construction.

Theorem 2.7.16. If the homomorphism ϕ of strictly graded commutative R-algebras is
an isomorphism, then TR(ϕ, λ) is a Tate resolution of R as an R-module.

Proof. Guided by line (2.2) in the statement of Lemma 2.7.15, we may construct a first
quadrant bicomplex M with ∂can as the horizontal differentials and ∂λ as the vertical
differentials. Then we compute the spectral sequence {IEr} arising from the first filtration.
By Theorem 11.18 in [13], we have

IE2
i,j = H ′iH

′′
i,j(M)⇒ Hn(Tot(M)) = Hn(TR(ϕ, λ))

We analyze IE2
i,j = H ′iH

′′
i,j(M). In our notation, it becomes

IE2
p,q = Hi

(
TR(idF , 0)⊗∧•

R(F [1]) Hj

(
•∧
R

(y[1]), ∂λ

))

We claim that we have the following chain of isomorphisms of DG-algebras:

TR(idF , 0)⊗∧•
R(F [1]) H•

(
•∧
R

(y[1]), ∂λ

)
(2.6)

∼= TR(idF , 0)⊗∧•
R(F [1]) R⊗R H•

(
•∧
R

(y[1]), ∂λ

)
(2.7)

∼= TR(idF , 0)⊗∧•
R

(F [1]) H•

(
•∧
R

(y[1]), ∂λ

)
(2.8)

As above, H•(
∧•
R(y[1]), ∂λ) is an R-algebra. Also, the composition of the augmentation

with the natural map ∧•
R(F [1]) ε // R // R

makes R into a module over
∧•
R(F [1]). So we can form the tensor products on line (2.7).

The terms on lines (2.6) and (2.7) agree, since R⊗R − collapses.
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The differentials on lines (2.6) and (2.7) agree by the properties of the tensor product.

For the isomorphism between lines (2.7) and (2.8), we apply Proposition 2.7.2 with the
natural map ∧•

R(F [1]) //
∧•
R(F [1])

which is a surjective ring homomorphism, and the natural map

R // R

which is also a surjective ring homomorphism. Last, observe that (R⊗R−) has the effect of
taking the quotient of everything modulo Im(λ). Since Im(λ) annihilatesHj (

∧•
R(y[1]), ∂λ),

we have that

Hj

(
•∧
R

(y[1]), ∂λ

)
∼= Hj

 •∧
R

y[1], ∂λ


as DG-algebras.

Now, by Theorem 2.7.13, TR(idF , 0) resolves R over
∧•
R(F [1]). Therefore we have

Hi

(
TR(idF , 0)⊗(

∧•
R

(F [1]) H•

(
•∧
R

(y[1]), ∂λ

))
(2.9)

= Tor
∧•
R

(F [1])

i

(
R,H•

(
•∧
R

(y[1]), ∂λ

))
(2.10)

So if ∧•
R(F [1])

ϕ // H• (
∧•
R(y[1]), ∂λ)

is an isomorphism, then H•(
∧•
R(y[1]), ∂λ) is a free module over

∧•
R(F [1]). Therefore we

have that

Tor
∧•
R

(F [1])

i

(
R,H•

(
•∧
R

(y[1]), ∂λ

))
=

{
0 if i ≥ 1
R if i = 0

So the spectral sequence collapses, and we have that TR(ϕ, λ) has homology R concentrated
in degree 0. In other words, T(ϕ, λ) resolves R over R as claimed.

Tate pointed out the following particular example.
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Theorem 2.7.17. Let R̃ be a commutative ring and Φ : F̃ → G̃ an R̃-linear map between
free modules of finite rank, Λ : G̃→ R̃ an R̃-linear form.

If the Koszul complexes over Λ, respectively over ΛΦ, have homology only in (homological)

degree zero, then the Tate construction over R = R̃
Im(ΛΦ)

on ϕ = Φ⊗R̃ R : F = F̃ ⊗R̃ R→
G = G̃⊗R̃ R and λ = Λ⊗R̃ R : G→ R̃ has its only homology in degree zero.

In other words, T(ϕ, λ) is a Tate resolution of the cyclic R-module R = R
Im(λ)

.

Proof. Indeed, with the notation as above, one shows that ϕ is an isomorphism. This is a
consequence of calculating TorR̃(R,R) through the given projective resolutions by Koszul
complexes in each argument. With

εF̃ :
∧
R̃(F̃ ) → H0

(∧
R̃(F̃ ), ∂ΛΦ

)
∼= R̃

Im(ΛΦ)
= R

εG̃ :
∧
R̃(G̃) → H0

(∧
R̃(G̃), ∂Λ

)
∼= R̃

Im(Λ)
= R

the respective augmentations, one has the following diagram of quasi-isomorphisms of DG-
algebras, ∧

R̃(G̃)⊗R̃
∧
R̃(F̃ )

∧
R̃(−idG̃)⊗εF̃

'

}}

εG̃⊗
∧
R̃(idF̃ )

'

!!∧
R̃(G̃)⊗R̃ R̃

Im(ΛΦ)

∼=
��

R̃
Im(Λ)

⊗R̃
∧
R̃(F̃ )

∼=
��∧

R(G) R⊗R
∧
R(F )

Each of these five algebras has TorR̃(R,R) as its homology, and the morphisms induce
algebra isomorphisms in that homology.

With unadorned tensor products taken over R̃, for x̃ ∈ F̃ , the element 1⊗ x̃−Φ(x̃)⊗ 1 in
the top term is a cycle, as

(∂Λ ⊗ 1 + 1⊗ ∂ΛΦ)(1⊗ x̃− Φ(x̃)⊗ 1) = 1⊗ ΛΦ(x̃) + Λ(−Φ(x̃))⊗ 1

= 0
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in
∧0
R̃(G̃)⊗R̃

∧0
R̃(F̃ ) ∼= R̃⊗R̃ R̃ ∼= R̃.

Because εF̃ (x̃) = 0, the image in the bottom left term is∧
R̃

(−idG̃)⊗ εF̃

 (1⊗ x̃− Φ(x̃)⊗ 1) = Φ(x̃)⊗R̃ (1 mod Im(ΛΦ))

= ϕ(x) ∈
∧
R

(G)

where x is the image of x̃ in G ∼= R̃
Im(ΛΦ)

⊗R̃G̃. This says that ϕ(x) is a cycle for (
∧
R(G), ∂λ).

In the R-module H (
∧
R(G), ∂λ) , ϕ(x) represents ϕ(x), where x is the class of x in F̃

F̃ Im(Λ)
∼=

R⊗R F = F .

Mapping to the bottom right, because εG̃Φ(x̃) = 0 one finds

(εG̃ ⊗ idF̃ )(1⊗ x̃− Φ(x̃)⊗ 1) = (1 mod Im(Λ))⊗ x̃
= x.

This establishes that passing to homology the diagram of algebra homomorphisms

TorR̃( R̃
Im(ΛΦ)

, R̃
Im(Λ))

∼=

uu

∼=

((

H (
∧
R(G), ∂λ) R⊗R

∧
R(F )

ϕoo

commutes on the generating set, isomorphic to R ⊗R F , and so in general. In particular,
ϕ is an isomorphism, as claimed.
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2.8 Applications of Tate’s Theorem

2.8.1 The General Setup

Let P be a (polynomial) ring and let J = (g1, . . . , gm) ⊆ I = (f1, . . . , fn) ⊆ P be ideals of
P generated by Koszul regular sequences. Let

gj =
n∑
i=1

ajifi

A = (aji), aji ∈ P
σ = (σ1, . . . , σm)

τ = (τ1, . . . , τn).

Then Tate’s Theorem 2.7.1 provides a projective resolution of P
I

over P
J

:Γ•P
J

(σ)⊗P
J

•∧
P
J

(τ), ∂ =
∑
i

fi
∂

∂τi
+
∑
i,j

ajiτi
∂

∂σj


where

|R| = 0

|τi| = 1, exterior variables

|σj| = 2, divided power variables.

2.8.2 Examples

Example 2.8.1. Let K be a field. Let P = K[x1, . . . , xn]. Define I = (x1, . . . , xn) ⊆ P ,
so that P

I
∼= K.

Let J = (g1, . . . , gm) ⊆ I2 be generated by a Koszul regular sequence. We claim that with
this setup, we have

Ext•P
J

(K, K) ∼= S•K(s)⊗K
•∧
K

(t)
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as graded K-modules, where

s = (s1, . . . , sm), and |sj| = 2,

t = (t1, . . . , tn), and |ti| = 1.

Since J ⊆ I2, necessarily J ⊆ I, so the hypotheses of Tate’s Theorem are satisfied. Observe
that each gj is a polynomial in K[x1, . . . , xn] in which each monomial has degree ≥ 2.
Therefore the entries aji of the coefficient matrix A from Tate’s Theorem all lie in I.

Applying Tate’s Theorem 2.7.1 gives a projective resolution of P
I
∼= K over P

J
:

F =

Γ•P
J

(σ)⊗P
J

•∧
P
J

(τ), ∂ =
n∑
i

xi
∂

∂τi
+
∑
i,j

ajiτi
∂

∂σj

 .

where

σ = (σ1, . . . , σm)

τ = (τ1, . . . , τn).

It is now easy to see that when we apply HomP
J

(−, K) = HomP
J

(
−, P

I

)
to this resolution,

the dualized differential ∂∗ will be zero. Therefore the homology of the dualized complex
will simply be the individual terms in each degree. By Proposition A2.7 in [10], we know
that dualizing turns divided powers into symmetric powers, and that the exterior algebra
is self-dual.

Putting it all together, and defining

sj = (σj)
∗,

ti = (τi)
∗,

the desired result is now established.

Example 2.8.2. Here we use Tate’s Theorem 2.7.1 to compute the cohomology groups of a
finite cyclic group.

Let G = 〈x | xh = 1〉 be the cyclic group of order h. Let R be a commutative ring. Let A
be a G-module.

By Exercise 6.1.2 in [18], we know that

H•(G,A) ∼= Ext•RG(R,A),
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so we can get what we want by computing these Exts.

We use Tate’s Theorem to obtain the required projective resolution of R over RG. Let N
denote the norm element of RG, i.e. N =

∑h−1
i=0 x

i. Then define

P = R[x]

I = (x− 1) ⊂ P

J = (xh − 1) ⊂ P

Then since xh − 1 = (x − 1)N in P , we have that J ⊂ I as required. Since x − 1 and
xh−1 are monic, they are non zero divisors. Thus I and J are generated by Koszul regular
sequences. Moreover, the above definitions give us that

P

I
=

R[x]

(x− 1)
∼= R,

P

J
=

R[x]

(xh − 1)
∼= RG.

Also note that the matrix of coefficients which Tate’s Theorem requires is simply A = (N).

Applying Tate’s Theorem 2.7.1 gives a canonical projective resolution of P
I
∼= R over

P
J
∼= RG:

F =

Γ•R
J

(σ)⊗R
J

•∧
R
J

(τ), ∂ = (x− 1)
∂

∂τ
+Nτ

∂

∂σ


where

|R| = 0

|τ | = 1, an exterior variable

|σ| = 2, a divided power variable.

The free resolution that we get from applying Tate’s Theorem is therefore the 2-periodic
complex:

0 RGoo RGτ
x−1oo RGσ

Noo RGτσ
x−1oo RGσ(2)Noo · · ·oo (2.11)
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Remarks:

1. In detail, our augmentation is:

ε : F → R
r 7→ r, r ∈ R
x 7→ 1
τ 7→ 0
σ 7→ 0

2. The resolution F carries an algebra structure with a system of divided powers coming
from the Tate construction.

3. The map ∂ is an algebra differential, per Definition 2.7.7, and therefore F is a DG
R-algebra with a system of divided powers.

Now apply HomRG(−, A) to the resolution on line (2.11) to get

0 // A
x−1 // Aτ ∗ N // Aσ∗

x−1 // Aσ∗τ ∗ N // A(σ∗)(2) // · · · (2.12)

Computing homology of this complex proves the well-known results (for example see [14],
Theorem 10.112 and Corollary 10.113):

Proposition 2.8.3. The cohomology groups H•(G,A) of the finite cyclic group G =
〈x | xh = 1〉 with coefficients in a G-module A are given by

H0(G,A) = AG,

H i(G,A) =
kerN

(x− 1)A
, for i ≥ 1 odd,

H i(G,A) =
AG

NA
, for i ≥ 2 even.

Corollary 2.8.4. The cohomology groups H∗(G,A) of the finite cyclic group G = 〈x | xh =
1〉 with coefficients in a trivial G-module A are given by

H0(G,A) = A,

H i(G,A) = A[h], the h-torsion elements of A, for i ≥ 1 odd,

H i(G,A) =
A

hA
, for i ≥ 2 even.
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Corollary 2.8.5. The cohomology groups H∗(G,A) of the finite cyclic group G = 〈x | xh =
1〉 with coefficients in the trivial G-module Z are given by

H0(G,Z) = Z,
H i(G,Z) = 0, for i ≥ 1 odd,

H i(G,Z) =
Z
hZ

, for i ≥ 2 even.
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Chapter 3

The Cup Product

3.1 Introduction

In this chapter, we will start with a finite group G and a projective resolution F of the
ring R as a trivial G-module. We will then define a diagonal approximation from F to
F⊗R F. Then we will define the cup product of cochains in the dual of F, and show that
the cup product of cochains is homotopic to the Yoneda product, which implies that the
cup product and the Yoneda product coincide once we pass to cohomology.

3.2 Supplemented Algebras

The most general setting in which we can make our constructions is that of a supplemented
algebra. We shall begin with the special case of a group algebra. In Chapter 7 we will
again use the more general setting of a supplemented algebra.

Definition 3.2.1. An R-algebra η : R → Λ together with an R-algebra homomorphism
ε : Λ → R such that εη = idR is called a supplemented algebra, and ε is called the
augmentation.

Λ
ε

��
R

η
??

R
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Let R be a commutative ring. Let G be a finite group. Then the group ring RG is a
supplemented algebra, with

η : R → RG
r 7→ r · 1

ε : RG → R∑
x∈G axx 7→

∑
x∈G ax.

We make the following definitions in the special case of a group ring. We will later use the
definitions in the more general setting of a supplemented algebra.

3.3 Definition of a Diagonal Approximation

Let R be a commutative ring. Let G be a finite group. Form the group ring RG.

We will shortly apply Tate’s Theorem 2.7.1 as explained earlier to obtain a projective
resolution F of R over RG, where G is abelian.

Then we can make F⊗R F into a resolution of R over RG, provided we can turn F⊗R F, a
complex of RG⊗R RG-modules, into a complex of free, therefore projective RG-modules.
The needed ingredient to do this is an R-algebra homomorphism

Φ0 : RG→ RG⊗R RG

such that the following diagram commutes:

RG R⊗R RG
∼=oo

RG
Φ0// RG⊗R RG

ε⊗1

77

1⊗ε

''
RG RG⊗R R.∼=

oo

Define Φ0 to be the diagonal map:

Φ0 : RG → RG⊗R RG ∼= R(G×G)∑
x∈G axx 7→

∑
x∈G axx⊗ x ∼=

∑
x∈G ax(x, x).
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Then it is clear that Φ0 is an R-algebra homomorphism which makes the diagram commute.

Remarks:

1. Observe that F⊗R F is again a DG-algebra over R.

2. We have initially defined our augmentation ε : RG→ R. We abuse notation and also
write ε : F→ R for the map which comes from extending the original ε to all of F.

3. The R-algebra homomorphism Φ0 turns F⊗R F into a complex of RG-modules, and
makes 1⊗ ε and ε⊗ 1 into morphisms of complexes of RG-modules.

4. The augmentation ε : RG → R gives rise to two homomorphisms of DG-algebras,
which we name ε1 and ε2, defined by the following compositions:

F⊗R F ε⊗1 //

ε1

::R⊗R F
∼= // F

F⊗R F 1⊗ε //

ε2

::F⊗R R
∼= // F

5. By construction, ε⊗ 1 is RG-linear in the first factor of RG⊗RRG and 1⊗ ε is RG-
linear in the second factor. The map Φ0 as defined above makes ε1 and ε2 RG-linear
over the same single copy of RG.

Definition 3.3.1. Let R be a commutative ring and let G be a finite group. Given a

projective resolution F ε // R // 0 over the group ring RG, a diagonal approximation
is a map of complexes of RG-modules

Φ : F→ F⊗R F,

(where F⊗R F is considered as a complex of RG-modules via Φ0) which is compatible with
the augmentation ε, in that the following diagram of complexes of RG-modules commutes:

F R⊗R F
∼=oo

F Φ // F⊗R F
ε⊗1

88

1⊗ε

&&

ε1

OO

ε2
��
F F⊗R R.∼=
oo
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In other words, identifying F with R⊗R F and F⊗RR via the canonical isomorphisms, we
have

(ε⊗ 1)Φ = idF = (1⊗ ε)Φ , or equivalently,
ε1Φ = idF = ε2Φ.

3.4 Definition of the Cup Product

We will use the resolution F and a suitable diagonal approximation Φ : F → F ⊗R F to
determine the products in cohomology, taking coefficients in some trivial representation A.

Definition 3.4.1. Take A = R. With the above Φ in hand, we define the cup product of
cochains f ∈ HomRG(Fp, R) and g ∈ HomRG(Fq, R) as

f ∪ g := µ ◦ (f ⊗ g) ◦ Φ.

This product is R-bilinear in f and g, and thus can be viewed as a product

− ∪− : HomRG(Fp, R)⊗HomRG(Fq, R)→ HomRG(Fp+q, R).

Lemma 3.4.2. With the above notation, and denoting by d the differential in the Hom
complex Hom•(F, R), we have the Leibniz rule:

[d, f ∪ g] = [d, f ] ∪ g + (−1)|f |f ∪ [d, g]

Proof.

[d, f ∪ g]

= [d, µ(f ⊗ g)Φ]

=︸︷︷︸
Lemma 2.7.10

[d, µ]︸ ︷︷ ︸
=0

(f ⊗ g)Φ + (−1)|µ|µ

[d, (f ⊗ g)]Φ + (−1)|f⊗g|µ(f ⊗ g) [d,Φ]︸ ︷︷ ︸
=0


= µ

(
[d, f ]⊗ g + (−1)|f |f ⊗ [d, g]

)
Φ

= [d, f ] ∪ g + (−1)|f |f ∪ [d, g].
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Remarks:

1. Lemma 3.4.2 shows that the cup product induces a well-defined product in cohomol-
ogy.

2. It is desirable that the cup product be associative. However, we are not guaranteed
that the cup product will be associative without an additional assumption. Applying
the definition of the cup product gives

f ∪ (g ∪ h) = µ(µ⊗ 1)(f ⊗ g ⊗ h)(1⊗ Φ)Φ, and

(f ∪ g) ∪ h = µ(1⊗ µ)(f ⊗ g ⊗ h)(Φ⊗ 1)Φ.

These two expressions will be equal if µ is associative and Φ is co-associative. Since
µ is simply multiplication in the ring R, µ is always associative. However, Φ need
not be co-associative. Indeed the particular Φs which we will construct will fail to be
co-associative unless we take our coefficients to have trivial G-action. With trivial
G-action, we will have that Φ is co-associative and therefore the cup product will be
associative.

3. Observe that F→ R is an RG-resolution, and an R-homotopy equivalence, as F and
R itself are R-projective resolutions of R. This implies that

F⊗R F ∼homotopy equivalence over R R⊗R R ∼= R

and therefore F ⊗R F → R is also an RG-resolution of R, where the RG-module
structure on F⊗R F is determined by Φ0.

We will now recall a key fact about the cup product.

Theorem 3.4.3. The cup product is homotopic to the Yoneda product.

Proof. For this proof, all tensor products are over R. Write

F = · · · // Pp+2
// Pp+1

// Pp // Pp−1
// Pp−2

// · · ·

Let f ∈ HomRG(Pp, R) and g ∈ HomRG(Pq, R) be arbitrary.

Since Pp is projective, and P0
ε // R is surjective, we can obtain a map f̃p which makes

the following diagram commute:

Pp

f

��

f̃p

~~
· · · // P1

// P0 ε
// R // 0
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Then using the Comparison Theorem (Theorem 10.46 in [14]), we may lift f to a map
f̃ : F→ F of complexes (of degree p) by filling in the following diagram.

· · · // Pp+2
//

f̃p+2

��

Pp+1
//

f̃p+1

��

Pp //

f̃p
��

f

��

Pp−1
//

��

Pp−2
//

��

· · ·

· · · // P2
// P1

��

// P0

ε
��

// 0 // 0 // · · ·

0 // R // 0

Similarly, lift g to a map g̃ : F→ F of complexes (of degree q).

Recall that the Yoneda product is defined as f ◦ g̃. Also note that f ◦ g̃ and f̃ ◦ g̃ induce
the same product in cohomology.

We will show that the left and right portions of the following diagram commute, where h
denotes a homotopy from ε⊗ 1 to 1⊗ ε:

F Φ // F⊗ F 1⊗g̃ //

ε⊗1
��

ε1

��

F⊗ F f̃⊗1 //

ε⊗1

yy

1⊗ε

%%

ε1

}}

ε2

!!

F⊗ F ε⊗ε //

1⊗ε
��

ε2

��

R⊗R

µ ∼=

��

R⊗ F
∼=
��

R⊗ F
∼=
��

F⊗R
∼=
��

F⊗R
∼=
��

F
g̃

// F
∼
h

:: F
f̃

//

f

99F ε
// R

.

This implies the desired result, as follows.

Lemma 2.7.10 implies that, for any differential d and homotopy h, and morphisms of
complexes a and b, we have

[d, ahb] = [d, a]︸︷︷︸
=0

hb+ (−1)|a|a[d, h]b± ah [d, b]︸︷︷︸
=0

= (−1)|a|a[d, h]b (3.1)

and this shows that composing a homotopy with morphisms of complexes always returns
a new homotopy.
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So, letting d denote the differential in the appropriate complex, we now have

f ∪ g = µ(f ⊗ g)Φ

= µ(εf̃ ⊗ εg̃)Φ

= µ(ε⊗ ε)(f̃ ⊗ 1)(1⊗ g̃)Φ

= µ(εf̃ ⊗ 1)︸ ︷︷ ︸
=f

(1⊗ ε)︸ ︷︷ ︸
=(ε⊗1+[d,h])

(1⊗ g̃)Φ

= f(ε⊗ 1 + [d, h])(1⊗ g̃)Φ

= f (ε⊗ 1)(1⊗ g̃)Φ︸ ︷︷ ︸
=g̃

+f [d, h](1⊗ g̃)Φ

=︸︷︷︸
by line (3.1)

fg̃ + (−1)p[d, fh(1⊗ g̃)Φ]

= fg̃ + (−1)p[d,H], letting H = fh(1⊗ g̃)Φ

⇒ f ∪ g ∼ fg̃.

So now it remains to prove what he have claimed about the above diagram.

The commuting diagram

F⊗ F ε⊗ε //

1⊗ε
��

R⊗R //

µ ∼=
��

0

F⊗R ∼= F ε
// R // 0

shows that 1⊗ ε lifts µ.

The commuting diagram

F⊗ F ε⊗ε //

ε⊗1
��

R⊗R //

µ ∼=
��

0

R⊗ F ∼= F ε
// R // 0

shows that ε⊗ 1 lifts µ.

Therefore again by the Comparison Theorem, 1 ⊗ ε ∼ ε ⊗ 1. There exists a homotopy h
such that [d, h] = dh+ hd = 1⊗ ε− ε⊗ 1, writing d for the differential in both complexes.

Each piece of the diagram commutes as follows.

• The left hand triangle commutes by the construction of Φ.
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• The left hand trapezoid commutes as follows. Let x⊗ y be an arbitrary elementary
tensor in the top left copy of F⊗ F. Then the clockwise branch yields

x⊗ y 7→ (−1)|g̃||x|x⊗ g̃(y) 7→ (−1)|g̃||x|ε(x)g̃(y) =︸︷︷︸
ε(x)=0 if |x|>0

ε(x)g̃(y)

and the counter-clockwise branch yields

x⊗ y 7→ ε(x)⊗ y 7→ ε(x)y 7→ g̃(ε(x)y) =︸︷︷︸
g̃ is RG−linear

ε(x)g̃(y).

• The right hand trapezoid commutes as follows. Let z⊗w be an arbitrary elementary
tensor in the top central copy of F⊗ F. Then the clockwise branch yields

z ⊗ w 7→ f̃(z)⊗ w 7→ f̃(z)⊗ ε(w) 7→ f̃(z)ε(w)

and the counter-clockwise branch yields

z ⊗ w 7→ z ⊗ ε(w) 7→ zε(w) 7→ f̃(zε(w)) =︸︷︷︸
f̃ is RG−linear

f̃(z)ε(w).

• The right hand square commutes as follows. Let a ⊗ b be an arbitrary elementary
tensor in the top right copy of F⊗ F. Then the clockwise branch yields

a⊗ b 7→ ε(a)⊗ ε(b) 7→ ε(a)ε(b)

and the counter-clockwise branch yields

a⊗ b 7→ a⊗ ε(b) 7→ aε(b) 7→ ε(aε(b)) =︸︷︷︸
ε is RG−linear

ε(a)ε(b).

The diagram behaves as claimed, and so we are done.
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Chapter 4

The Tate Resolution for a Finite
Cyclic Group

4.1 Introduction

In this chapter, we will apply Tate’s Theorem to compute the cohomology ring of a finite
cyclic group. We begin with a finite cyclic group G, and recall the Tate resolution F for
the trivial G-module R over RG which we computed earlier. We then construct a diagonal
approximation Φ : F → F ⊗R F. We finish by computing the dualized differential ∂∗ on
HomRG(F, R), and the products of cochains in HomRG(F, R). We confirm that our results
agree with the known results from [8].

4.2 The Tate Resolution for a Finite Cyclic Group

Theorem 4.2.1. Let G = 〈x | xh = 1〉, the cyclic group of order h, and let R be a
commutative ring. Form the group ring RG and view R as an RG-module with the trivial
G-action. Let N =

∑h−1
i=0 x

i be the norm element of RG. Then the Tate resolution of R
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over RG is given by:
0

R

OO

0 RG · 1
x 7→1

OO

1 RG · τ
(x−1)

OO

2 RG · σ
N

OO

3 RG · τσ
(x−1)

OO

...

N

OO

2i RG · σ(i)

OO

2i+ 1 RG · τσ(i)

(x−1)

OO

2i+ 2 RG · σ(i+1)

N

OO

...

OO

F
with the (compact) differential coming from Tate:

∂ = (x− 1)
∂

∂τ
+Nτ

∂

∂σ
.

Proof. This is precisely the resolution obtained on line (2.11) in Example 2.8.2.
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Remarks:

1. Recall that ∂
∂σ

is compatible with divided powers per Definition 2.7.7, so that

∂σ(i)

∂σ
= σ(i−1).

2. As in Example 2.8.2,

(a) F is a resolution of R over RG.

(b) F is a DG R-algebra with divided powers.

3. What is F⊗R F?

Recalling the notation for F, we now write a single prime to denote an element
of the first factor of F⊗R F, and a double prime to denote an element of the second
factor, e.g.

x′ = x⊗ 1

x′′ = 1⊗ x,

and similarly for τ and σ.

Generally, Aev = Aop ⊗R A, where R // A is an R-algebra. Here, A = RG
is commutative, thus Aop = A. Therefore we may interpret RG ⊗R RG as RGev,
equally well as

R(G×G) =
R[x′, x′′]

((x′)h − 1, (x′′)h − 1)

∼=
R[x′]

((x′)h − 1)
⊗R

R[x′′]

((x′′)h − 1)

4. The differentials in F⊗R F can be computed from the differentials in F, using

(a) the compact form of the differential in F,

(b) the fact that ∂ is a derivation and thus satisfies the Leibniz rule,
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(c) the fact that (τ ′)2 = 0 = (τ ′′)2.

5. F⊗R F is a DG R-algebra with divided powers.

Theorem 4.2.2. The tensor product

F⊗R F ∼= (RGev〈τ ′, τ ′′;σ′, σ′′〉, ∂)→ R

is an RG-resolution of R.

Proof. The fact that F ⊗R F → R is an RG-resolution of R has been explained in earlier
comments. We just need to establish the above isomorphism. We have

F⊗R F
= (RG〈τ ′, σ′〉, ∂′)⊗R (RG〈τ ′′, σ′′〉, ∂′′)

=

(
R[x′]

((x′)h − 1)
〈τ ′, σ′〉, ∂′

)
⊗R
(

R[x′′]

((x′′)h − 1)
〈τ ′′, σ′′〉, ∂′′

)

∼=


(

R[x′]

((x′)h − 1)
⊗R

R[x′′]

((x′′)h − 1)

)
︸ ︷︷ ︸

R(G×G)=:RGev , as above

〈τ ′, σ′; τ ′′, σ′′〉, ∂


∼= (RGev〈τ ′, τ ′′;σ′, σ′′〉, ∂)

Remark: Up to this point we have been essentially recalling known results; from here
onwards we will present new results.

4.3 A Diagonal Approximation

Now we re-draw the earlier diagram, to show a diagonal approximation Φ. Viewing both
resolutions as DG-algebras, we want Φ to be a homomorphism of DG-algebras. Then it
will be enough to specify how Φ acts on the algebra generators.
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First define augmentation maps

ε : RG → R
x 7→ 1

ε̃ = ε⊗ ε : RGev → R⊗R
x′ 7→ 1
x′′ 7→ 1

Next define the diagonal map

Φ0 : RG → RGev

x 7→ x′x′′

and note that this is well-defined because

Φ0(xh − 1) = (x′x′′)h − 1

≡ 0 mod ((x′)h − 1, (x′′)h − 1).

Then this diagram commutes

R
∼= // R⊗R R

RG

ε

OO

Φ0 // RGev

ε⊗ε

OO

as we have
1 1

x
_

OO

� // x′x′′
_

OO

To streamline the notation in the following theorem, we make this definition (recalling that
N(x) =

∑h−1
j=0 x

j).

Definition 4.3.1. Define

∇N(x′, x′′) :=
N(x′x′′)−N(x′′)

x′ − 1

Note that substituting x′ = 1 kills the numerator, and thus (x′ − 1) divides the numerator.
Therefore ∇N(x′, x′′) is a polynomial in R[x′, x′′], and then also in RGev.
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The following identity will be useful later.

Lemma 4.3.2.

∇N(x′, x′′) :=
N(x′x′′)−N(x′′)

x′ − 1
(4.1)

=
∑

0≤m<n≤h−1

(x′)m(x′′)n (4.2)

=
∑

0≤m<n≤h−1

xm ⊗ xn, in the notation from [8] (4.3)

Proof. We have

∇N(x′, x′′)

:=
N(x′x′′)−N(x′′)

x′ − 1

=
(1 + x′x′′ + (x′)2(x′′)2 + · · ·+ (x′)h−1(x′′)h−1)− (1 + x′′ + · · ·+ (x′′)h−1)

x′ − 1

=
(1− 1) + (x′x′′ − x′′) + · · ·+ (x′)h−1(x′′)h−1 − (x′′)h−1)

x′ − 1

=
(x′ − 1)x′′ + ((x′)2 − 1)(x′′)2 + · · ·+ ((x′)h−1 − 1)(x′′)h−1

x′ − 1

=
(x′ − 1)x′′ + (x′ − 1)(1 + x′)(x′′)2 + · · ·+ (x′ − 1)((1 + x′ + · · ·+ (x′)h−2)(x′′)h−1

x′ − 1

= x′′ + (1 + x′)(x′′)2 + · · ·+ (1 + x′ + · · ·+ (x′)h−2)(x′′)h−1

=
∑

0≤m<n≤h−1

(x′)m(x′′)n,

as required.

Remark: Lemma 4.3.2 implies that augmentation sends ∇N(x′, x′′) to

(
h
2

)
.

Theorem 4.3.3. A diagonal approximation Φ is given by the following diagram, where the
maps in higher degrees are determined by the maps in degrees zero, one and two.
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0 0

R

OO

R⊗R

OO

0 RG · 1
ε:x 7→1

OO

Φ0

x 7→x′x′′
// RGev

ε̃ = ε⊗ ε : x′ 7→ 1
x′′ 7→ 1

OO

1 RG · τ

(x−1)

OO

Φ1

τ 7→x′′τ ′+τ ′′
// RGev · (τ ′

⊕
τ ′′)

τ ′ 7→ x′ − 1
τ ′′ 7→ x′′ − 1

OO

2 RG · σ

N

OO

Φ2

σ 7→σ′+σ′′+∇N (x′,x′′)τ ′τ ′′
// RGev · (σ′

⊕
τ ′τ ′′

⊕
σ′′)

σ′ 7→ N(x′)τ ′

σ′′ 7→ N(x′′)τ ′′

τ ′τ ′′ 7→ (x′ − 1)τ ′′ − τ ′(x′′ − 1)

OO

3 RG · τσ

(x−1)

OO

Φ3 // RGev · (τ ′σ′
⊕

τ ′′σ′
⊕

τ ′σ′′
⊕

τ ′′σ′′)

OO

...

N

OO

...

OO

2i RG · σ(i)

OO

Φ2i // RGev ·
(
(
⊕

k+l=i(σ
′)(k)(σ′)(l))

⊕
(
⊕

k+l=i−1 τ
′τ ′′(σ′)(k)(σ′)(l))

)
OO

2i+ 1 RG · τσ(i)

(x−1)

OO

Φ2i+1 // RGev ·
(⊕

k+l=i(τ
′(σ′)(k)(σ′)(l)

⊕
τ ′′(σ′)(k)(σ′)(l))

)
OO

2i+ 2 RG · σ(i+1)

N

OO

Φ2i+2 // RGev ·
(
(
⊕

k+l=i+1(σ′)(k)(σ′)(l))
⊕

(
⊕

k+l=i τ
′τ ′′(σ′)(k)(σ′)(l))

)
OO

...

OO

...

OO

F Φ // F⊗R F

54



The rest of this section will give the proof of this Theorem.

How do we choose Φ1(τ)? The following square must commute.

(x− 1) � Φ0 // x′x′′ − 1

τ
_

OO

�
Φ1

// ?
_

OO

where the unknown is unique up to any boundary. By writing (x′x′′−1) in terms of (x′−1)
and (x′′ − 1), we obtain

(x′ − 1)(x′′ − 1) = x′x′′ − x′ − x′′ + 1

= (x′x′′ − 1)− (x′ − 1)− (x′′ − 1)

Therefore

x′x′′ − 1 = (x′ − 1)(x′′ − 1) + (x′ − 1) + (x′′ − 1)

= (x′ − 1)[(x′′ − 1) + 1] + (x′′ − 1)

= (x′ − 1)︸ ︷︷ ︸
∂(τ ′)

x′′ + (x′′ − 1)︸ ︷︷ ︸
∂(τ ′′)

so that one choice which works is Φ1(τ) = x′′τ ′ + τ ′′.

This choice for Φ1(τ) implies

Φ1(N(x)τ) = N(x′x′′)(x′′τ ′ + τ ′′)

How do we choose Φ2(σ)?

The context for the following explanation comes from Definition 3.3.1. A general element
of F ⊗R F of degree 2 has the form aσ′ + bτ ′τ ′′ + cσ′′, for some a, b, c,∈ RGev. So letting
Φ2(σ) = aσ′ + bτ ′τ ′′ + cσ′′, then following the expression through both branches of the
given diagram gives

cσ′′ � // cσ

σ � Φ // aσ′ + bτ ′τ ′′ + cσ′′
.

77

�

''
aσ′ � // aσ
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so we want a = c = 1. It remains to determine the coefficient b.

The following square must commute:

N(x)τ � Φ1 // N(x′x′′)(x′′τ ′ + τ ′′)

σ
_

OO

�
Φ2

// σ′ + σ′′ + g(x′, x′′)τ ′τ ′′
_
∂

OO

for some b = g(x′, x′′).

The following Lemma will show that the choice of Φ2 in Theorem 4.3.3 is correct. After
that, it still remains to show that everything in higher degrees is determined by the choices
we have made in degrees zero, one and two.

Lemma 4.3.4. g(x′, x′′) = ∇N(x′, x′′) := N(x′x′′)−N(x′′)
x′−1

∈ R [x′,x′′]
((x′′)h−1)

makes the required
square commute. Thus the diagram still commutes when we pass to

RGev ∼=
R[x′, x′′]

((x′)h − 1, (x′′)h − 1)
.

Proof. We work in the ring R[x′,x′′]
((x′′)h−1)

, as there (x′− 1) is still a non zero divisor, so that we

can “divide” a class p(x′, x′′) by this element, as long as p(1, x′′) = 0.

We must prove that

∂

(
N(x′x′′)−N(x′′)

x′ − 1
(τ ′τ ′′) + σ′ + σ′′

)
= N(x′x′′)(x′′τ ′ + τ ′′)

As it will come up later in the computation, we claim that

(x′′ − 1)[N(x′x′′)−N(x′′)]

x′ − 1
= N(x′)− x′′N(x′x′′)
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We have the following chain of equalities:

(x′′ − 1)[N(x′x′′)−N(x′′)]

x′ − 1

=
(x′′ − 1)N(x′x′′)−

=0︷ ︸︸ ︷
(x′′ − 1)N(x′′)

x′ − 1

=
(x′′ − 1)N(x′x′′)

x′ − 1

=
1

x′ − 1

[
x′′ + x′(x′′)2 + (x′)2(x′′)3 + · · ·+ (x′)h−2(x′′)h−1 + (x′)h−1

−(1 + x′x′′ + (x′)2(x′′)2 + · · ·+ (x′)h−1(x′′)h−1)

]

=
1

x′ − 1

 (1− x′)x′′
+(x′ − (x′)2)(x′′)2 + · · ·+ ((x′)h−2 − (x′)h−1)(x′′)h−1

+((x′)h−1 − 1)


=

1

x′ − 1

 −(x′ − 1)x′′

−((x′)2 − x′)(x′′)2 − · · · − ((x′)h−1 − (x′)h−2)(x′′)h−1

+((x′)− 1)(N(x′)− (x′)h−1)


= (−x′′ − x′(x′′)2 − · · · − (x′)h−2(x′′)h−1) +N(x′)− (x′)h−1

= −(x′′N(x′x′′)− (x′)h−1) +N(x′)− (x′)h−1

= N(x′)− x′′N(x′x′′)

as claimed.

Now for our main result we have

∂

(
N(x′x′′)−N(x′′)

x′ − 1
(τ ′τ ′′) + σ′ + σ′′

)
=

N(x′x′′)−N(x′′)

x′ − 1
((x′ − 1)τ ′′ − τ ′(x′′ − 1)) +N(x′)τ ′ +N(x′′)τ ′′

= (N(x′x′′)−N(x′′))τ ′′ − τ ′ (x
′′ − 1)[N(x′x′′)−N(x′′)]

x′ − 1
+N(x′)τ ′ +N(x′′)τ ′′

= N(x′x′′)τ ′′ −N(x′′)τ ′′ − τ ′ [N(x′)− x′′N(x′x′′)] +N(x′)τ ′ +N(x′′)τ ′′

= N(x′x′′)(x′′τ ′ + τ ′′)

as required.

We now show that everything in higher degrees is determined by the choices in degrees
zero, one and two. We want an algebra homomorphism, compatible with divided powers
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(c.f. Definition 2.6.7), so this forces

Φ
(
τ jσ(i)

)
= Φ(τ)jΦ (σ)(i) .

We know Φ(τ), and we determine Φ
(
σ(i)
)

as follows. Start with our earlier definition
Φ(σ) = σ′ + σ′′ +∇N(x′, x′′)τ ′τ ′′, so that, by the definition of the divided powers on F, we
have

Φ
(
σ(i)
)

= (Φ(σ))(i)

= ((σ′ + σ′′) +∇N(x′, x′′)τ ′τ ′′)(i)

=
i∑

j=0

(σ′ + σ′′)(i−j)∇N(x′, x′′)j(τ ′τ ′′)(j)

=︸︷︷︸
(τ ′τ ′′)(j)=0 for j≥2

(σ′ + σ′′)(i) + (σ′ + σ′′)(i−1)∇N(x′, x′′)τ ′τ ′′. (4.4)

So we see that, in higher degrees, everything is already determined by the choices we have
made in degrees 1 and 2. This completes the proof of Theorem 4.3.3.

We now record two identities which will be useful later. The computation ending on
line (4.4) gives us that

Φ(τσ(i)) = Φ(τ)Φ (σ)(i)

= (x′′τ ′ + τ ′′)((σ′ + σ′′)(i) + (σ′ + σ′′)(i−1)∇N(x′, x′′)τ ′τ ′′)

=︸︷︷︸
τ ′τ ′=τ ′′τ ′′=0

(x′′τ ′ + τ ′′)(σ′ + σ′′)(i), in particular (4.5)

Φ(τσ) = (x′′τ ′ + τ ′′)(σ′ + σ′′) (4.6)

Theorem 4.3.3 has exhibited one correct diagonal approximation. The following Corollary
describing all possible choices for correct diagonal approximations is now clear.

Corollary 4.3.5. All choices for Φ are defined by

Φ : F → F⊗R F
Φ0 : x 7→ x′x′′

Φ1 : τ 7→ x′′τ ′ + τ ′′ + ∂(ω)
Φ2 : σ 7→ σ′ + σ′′ +∇N(x′, x′′)τ ′τ ′′ +N(x′x′′)ω + ∂(η)
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where ω ∈ (F ⊗R F)2, the degree 2 part of F ⊗R F, satisfies ε1(ω) = 0 = ε2(ω), and
η ∈ (F ⊗R F)3 satisfies ε1(η) = 0 = ε2(η), both conditions being imposed to preserve the
diagram in Definition 3.3.1. All of these choices for Φ induce the same product when we
pass to cohomology.

4.4 The Dual of the Tate Resolution

We now dualize and analyze the resulting cohomology.

We have the resolution F // R over RG and a diagonal approximation Φ : F→ F⊗R F:

F = RG〈τ ; σ〉, |τ | = 1; |σ| = 2

∂ = (x− 1)
∂

∂τ
+N(x)τ

∂

∂σ
, where N(x) =

xh − 1

x− 1
=

h−1∑
j=0

xj

Φ(x) = x′x′′

Φ(τ) = x′′τ ′ + τ ′′ + ∂(ω)

Φ(σ) = σ′ + σ′′ +∇N(x′, x′′)τ ′τ ′′ +N(x′x′′)ω + ∂(η)

where ω ∈ (F ⊗R F)2 satisfies ε1(ω) = 0 = ε2(ω), and η ∈ (F ⊗R F)3 satisfies ε1(η) =
0 = ε2(η). These assignments determine a unique homomorphism of algebras with divided
powers.

Remark: The flexibility of modifying Φ by a boundary will be very useful later.

Because we are interested in cohomology with trivial coefficients, we choose Φ so that
it becomes particularly simple when evaluating modulo

I = (x′ − 1, x′′ − 1) ⊂ RG⊗R RG.

We want to compute the cohomology products, so we start by analyzing HomRG(F, R).
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Dualizing F into R via HomRG(−, R) (and denoting HomRG(F, RG) by F∗) gives

HomRG(F, R) (4.7)
∼=︸︷︷︸

by 2.2.3

R⊗RG F∗ (4.8)

∼= R⊗RG RG[S]⊗RG
∧
RG

〈T 〉 (4.9)

∼=︸︷︷︸
G acts trivially on R

R[S]⊗R
∧
R

〈T 〉 (4.10)

where S is a polynomial variable dual to σ, and T is dual to τ .

Warning: Although line (4.10) above carries an algebra structure, it is not the alge-
bra structure that we are seeking. We must use the definition of the cup product (which
uses our chosen Φ) to work out the products.

We now determine the dualized differential ∂∗.

4.5 The Action of ∂∗

Note that F∗ = HomRG(F, R) is a Hom complex as in Definition 2.5.1.

Let ω = τ kσ(n) ∈ F be an arbitrary monomial, for n ≥ 0, k ∈ {0, 1}. Since the τ kσ(n) form
an RG-basis for F, we define the dual R-basis elements for HomRG(F, R) to be SLTM , for
L,M ≥ 0. In detail, SLTM evaluates to 1 on τMσ(L), and evaluates to 0 on all other basis
elements of F.

Now to determine the effect of ∂∗ on an arbitrary SLTM , we evaluate

∂∗(SLTM)(ω) = dR︸︷︷︸
=0

(SLTM)(τ kσ(n))− (−1)|S
LTM |SLTMdF(τ kσ(n)) (4.11)

= −(−1)MSLTM(hτ k+1σ(n−1)), (4.12)

as ∂F(τ kσ(n)) = ((x − 1) ∂
∂τ

+ N(x)τ ∂
∂σ

)(τ kσ(n)) ≡ hτ ∂
∂σ

(τ kσ(n)) mod (x − 1). By the
definition of SLTM , line (4.12) evaluates to zero unless

• n = L+ 1, and
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• k = 0 and M = 1 (we know that k ∈ {0, 1} and if k = 1 then τ k+1 = 0),

in which case it evaluates to h.

Thus, formally

∂∗(SLTM)(ω) = SL+1∂TM
∂T

(ω),

or for short,

∂∗(SLTM) = hSL+1∂TM
∂T

=

{
hSL+1 if M = 1

0 if M = 0.

So, in compact form,

∂∗ = hS
∂

∂T
,

when evaluated on monomials SLTM .

We have shown that (temporarily, using the algebra structure of the Koszul complex)
the dualized complex becomes(

R[S]⊗R
∧
R

(T ), ∂ = hS
∂

∂T

)

This is just the Koszul complex
K(hS; R[S])

in the linear sense, i.e. as a complex of R-modules.

4.6 Cochain Products

For this section, unadorned tensor products are over R.

Theorem 4.6.1. The choice of Φ in Theorem 4.3.3 defines the following cup product
structure on HomRG(F, R), which makes it into a DG-algebra. With t for T and s for S,
we have

t ∪ t = −
(
h
2

)
s (4.13)

t ∪ s = s ∪ t (4.14)
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and the elements t and s generate HomRG(F, R) with respect to the cup product, subject
only to these relations.

Proof. 1. t ∪ t = −
(
h
2

)
s: We have t ∪ t = µ(t⊗ t)Φ1,1, and Φ1,1 : F2 → F1 ⊗ F1. In

degree 2, it suffices to examine the effect of µ(t⊗ t)Φ1,1 on σ. Recall that

Φ(σ) = σ′ + σ′′ +∇N(x′, x′′)τ ′τ ′′

⇒ Φ1,1(σ) = ∇N(x′, x′′)τ ′τ ′′

= ∇N(x′, x′′)τ ⊗ τ.
Applying µ(t⊗ t) gives

µ(t⊗ t)(∇N(x′, x′′)τ ⊗ τ)

=︸︷︷︸
by Lemma 4.3.2

(
h
2

)
µ(t⊗ t)(τ ⊗ τ)

=

(
h
2

)
µ(−1)(t(τ)⊗ t(τ))

= −
(
h
2

)
µ(1⊗ 1)

= −
(
h
2

)
So since t ∪ t evaluates to 0 on all basis elements except σ, on which it evaluates to

−
(
h
2

)
, we can express this compactly as t ∪ t = −

(
h
2

)
s, as required.

2. t ∪ s = s ∪ t: We have s ∪ t = µ(s ⊗ t)Φ2,1 and Φ2,1 : F3 → F2 ⊗ F1. Also, t ∪ s =
µ(t ⊗ s)Φ1,2 and Φ1,2 : F3 → F1 ⊗ F2. The element τσ is a basis of (F ⊗R F)3. We
therefore use the example on line (4.6):

Φ(τσ) = (x′′τ ′ + τ ′′)(σ′ + σ′′).

As (t⊗ s) vanishes on all occurring monomials except τ ′σ′′, applying µ(t⊗ s) gives

µ(t⊗ s)(x′′τ ′σ′′)
= µ(t⊗ s)(x′′τ ⊗ σ)

= µ(t(τ)⊗ s(σ))

= µ(1⊗ 1)

= 1
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Similarly, applying µ(s⊗ t) gives

µ(s⊗ t)(τ ′′σ′)
= µ(s⊗ t)(σ ⊗ τ)

= µ(s(σ)⊗ (τ))

= µ(1⊗ 1)

= 1

Thus the relation t ∪ s = s ∪ t is proved.

We now know how the generators in degrees one and two interact with each other. We
still need to argue that this is enough to determine the algebra structure.

Let SLTM ∈ HomRG(F, R) be an arbitrary dual basis element as in our earlier notation.
It suffices to construct a product of copies of s and t which has the same effect as SLTM
on an arbitrary monomial ω = τ kσ(n) ∈ F.

We denote the cup product of L copies of s by s∪L := s ∪ · · · ∪ s︸ ︷︷ ︸
L copies

, and similarly for the cup

product of M copies of t, t∪M := t ∪ · · · ∪ t︸ ︷︷ ︸
M copies

. We claim that s∪Lt∪M has the same effect as

SLTM on ω = τ kσ(n). We need to prove a Lemma before we can proceed.

Lemma 4.6.2. With the above notation,

s∪L(τ kσ(n)) = SL(τ kσ(n)) =

{
1 if k = 0 and n = L
0 otherwise

for all L ≥ 1.

Proof. The proof is by induction on L.

In the base case (L = 1), the result is clear from the definitions.

Now assume the result holds for L = a, for some 1 ≤ a. Then since k ∈ {0, 1}, the following
two cases are exhaustive.

1. If k = 0, then

s∪a+1(σ(n)) = (s ∪ s∪a)(σ(n))

= µ(s⊗ (s∪a))Φ(σ(n))

= µ(s⊗ (s∪a))((σ′ + σ′′)(n) + (σ′ + σ′′)(n−1)∇N(x′, x′′)τ ′τ ′′)

=

{
1 if i = a+ 1
0 otherwise
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using the induction hypothesis in the second factor, as (s⊗ (s∪a)) evaluates to 1 on
σ′(σ′′)(a), and to 0 on all other monomials.

2. If k = 1, then

s∪a+1(σ(n)) = (s ∪ s∪a)(τσ(n))

= µ(s⊗ (s∪a))Φ(τσ(n))

= µ(s⊗ (s∪a))(x′′τ ′ + τ ′′)((σ′ + σ′′)(n) + (σ′ + σ′′)(n−1)∇N(x′, x′′)τ ′τ ′′)

= 0

using the induction hypothesis in the second factor, as (s⊗ (s∪a)) evaluates to 0 on
any term involving τ ′ or τ ′′.

This completes the induction, and the proof of the Lemma.

Now by definition we have that

SLTM
(
τ kσ(n)

)
=

{
1 if M = k and L = n
0 otherwise

Again, since k ∈ {0, 1}, the following cases are exhaustive.

1. If k = 0:

(s∪L ∪ t∪M)(σ(n))

= µ((s∪L)⊗ (t∪M))Φ(σ(n))

=︸︷︷︸
line (4.4)

µ((s∪L)⊗ (t∪M))((σ′ + σ′′)(n) + (σ′ + σ′′)(n−1)∇N(x′, x′′)τ ′τ ′′)

=︸︷︷︸
Lemma 4.6.2

{
1 if M = 0 and L = n
0 otherwise

2. If k = 1:

(s∪L ∪ t∪M)(σ(n))

= µ((s∪L)⊗ (t∪M))Φ(τσ(n))

=︸︷︷︸
line (4.5)

µ((s∪L)⊗ (t∪M))((x′′τ ′ + τ ′′)(σ′ + σ′′)(n))

=︸︷︷︸
Lemma 4.6.2

{
1 if M = 1 and L = n
0 otherwise
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We have shown that

sLtM
(
τ kσ(n)

)
=

{
1 if M = j and L = i
0 otherwise

The monomials have the same effect, as claimed.

Therefore HomRG(F, R) admits the monomials s∪Lt∪M as an R-basis, and on those basis
elements, the multiplication is uniquely determined by the relations. Conversely, given the
relations, any word in s and t can be recorded uniquely as a scalar times s∪Lt∪M , for some
L, M . The dualized differential ∂∗ obeys the Leibniz rule by Lemma 2.7.10, so we do have
a DG R-algebra.

Remarks: Using our graded bracket notation, we have

[∂∗, s∪L ∪ t∪M ] = ∂∗(s∪L ∪ t∪M) =

{
hs∪L+1 if M = 1

0 if M = 0.

and therefore

[∂∗, t ∪ t] = [∂∗, t] ∪ t− t ∪ [∂∗, t]

= (hs) ∪ t− t ∪ (hs)

=︸︷︷︸
s∪t=t∪s

h(s ∪ t− s ∪ t)

= 0. (4.15)

Similarly,

[∂∗, s] = 0. (4.16)
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The above identities give us that [
∂∗, t ∪ t+

(
h
2

)
s

]
= [∂∗, t ∪ t]︸ ︷︷ ︸

=0 by (4.15)

+

(
h
2

)
[∂∗, s]︸ ︷︷ ︸

=0 by (4.16)

= 0, and (4.17)

[∂∗, s ∪ t− t ∪ s]
=︸︷︷︸

t∪s=s∪t

[∂∗, s ∪ t]− [∂∗, s ∪ t]

= 0. (4.18)

We can analyze the product on line (4.13) further, as the authors do in [8]. Notice that

−
(
h
2

)
= −h(h− 1)

2
.

Recall that
⌈
h−1

2

⌉
is defined to be the least integer which is ≥ h−1

2
, whence⌈

h− 1

2

⌉
h− h(h− 1)

2
=

{
h
2

if h is even
0 if h is odd.

This implies that

−
(
h
2

)
≡ mod h

{
h
2

if h is even
0 if h is odd

(4.19)

so that we can simplify using the following result.

Proposition 4.6.3. We may choose a new Φ which is homotopic to the original choice,
by adding a suitable boundary to the original Φ2(σ). Having made this new choice, we can
rewrite line (4.13) above as

t ∪ t =

{
h
2
· s if h is even
0 if h is odd

(4.20)
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Proof. From the above analysis, it is clear that we will get what we want if we take

Φ(σ) = σ′ + σ′′ +

[
∇N(x′x′′) +

⌈
h− 1

2

⌉
h

]
τ ′τ ′′

Thus we will be finished if we can express the correction term,
⌈
h−1

2

⌉
hτ ′τ ′′ as ∂(η) for some

η ∈ (F⊗R F)3, satisfying ε1(η) = 0 = ε2(η).

A general element of (F⊗R F)3 looks like

aτ ′σ′ + bτ ′′σ′ + cτ ′σ′′ + dτ ′′σ′′

for some coefficients a, b, c, d. It suffices to look at the monomials. Recall that

I = (x′ − 1, x′′ − 1) ⊂ RG⊗R RG.

Thus we may compute

∂

(⌈
h− 1

2

⌉
τ ′′σ′

)
=

⌈
h− 1

2

⌉
(∂(τ ′′)σ′ + (−1)|τ

′′|τ ′′∂(σ′))

=

⌈
h− 1

2

⌉
((x′′ − 1)σ′ − τ ′′N(x′)τ ′)

=

⌈
h− 1

2

⌉
((x′′ − 1)σ′ +N(x′)τ ′τ ′′)

≡
⌈
h− 1

2

⌉
hτ ′τ ′′ mod I. (4.21)

So line (4.21) shows that we may choose η =
⌈
h−1

2

⌉
τ ′′σ′.

We now verify that ε1(η) = 0 = ε2(η). We have

ε1

(⌈
h− 1

2

⌉
τ ′′σ′

)
=

⌈
h− 1

2

⌉
ε1 (τ ′′σ′)

= 0,

since ε1 evaluates to 0 on all elements in the first factor in degree higher than 0 (in partic-
ular, on σ).
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Similarly,

ε2

(⌈
h− 1

2

⌉
τ ′′σ′

)
=

⌈
h− 1

2

⌉
ε2 (τ ′′σ′)

= 0,

since ε2 evaluates to 0 on all elements in the second factor in degree higher than 0 (in
particular, on τ).

So we have our required correction term, and we are done.

Remark: These multiplication rules agree with the known results from [8].
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Chapter 5

The Tate Resolution for a Finite
Abelian Group

5.1 Introduction

In this chapter, we will apply the results of the previous chapter to compute the cup
products for any finite abelian group.

5.2 The Tate Resolution for a Finite Abelian Group

We can handle any finite abelian group by building on the case of a finite cyclic group. As
is known (for example by Corollary 9.13 in [14]), we may write any finite abelian group as
G = µh1 × · · · × µhr , where µhi denotes a multiplicatively written cyclic group of order hi.
Then

RG ∼=
R[x1, . . . , xr]

(xhii − 1 ; 1 ≤ i ≤ r)
∼= Rµh1 ⊗R · · · ⊗R Rµhr .

Analogously to Definition 4.3.1, we make this definition (recalling that Ni(xi) =
∑hi−1

j=0 xji ).

Definition 5.2.1. Define

∇Ni(x
′
i, x
′′
i ) :=

Ni(x
′
ix
′′
i )−Ni(x

′′
i )

x′i − 1
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Note that substituting x′i = 1 kills the numerator, and thus (x′i − 1) divides the numerator.
Therefore ∇Ni(x

′
i, x
′′
i ) is a polynomial in R[x′i, x

′′
i ], and then also in RGev.

5.3 A Diagonal Approximation

Analogously to Chapter 4, we get the resolution F // R over RG and a diagonal ap-
proximation Φ : F→ F⊗R F:

F = RG〈τ1, . . . , τr ; σ1, . . . , σr〉, |τi| = 1; |σi| = 2

∂ =
r∑
i=1

[
(xi − 1)

∂

∂τi
+Ni(xi)τi

∂

∂σi

]
, where Ni(xi) =

xhii − 1

xi − 1
=

hi−1∑
j=0

xji

Φ(xi) = x′ix
′′
i

Φ(τi) = x′′i τ
′
i + τ ′′i + ∂ωi

Φ(σi) = σ′i + σ′′i +∇Ni(x
′
i, x
′′
i )τ
′
iτ
′′
i +Ni(x

′
ix
′′
i )ωi + ∂ηi

where ωi ∈ (F ⊗R F)2 satisfies ε1(ω) = 0 = ε2(ω), and ηi ∈ (F ⊗R F)3 satisfies ε1(η) =
0 = ε2(η). These assignments determine a unique homomorphism of algebras with divided
powers.

Remark: The flexibility of modifying Φ by a boundary will be very useful later.

Because we are interested in cohomology with trivial coefficients, we choose the most
convenient Φ when evaluating these formulas modulo the ideal

I = (x′i − 1, x′′i − 1 : i = 1, . . . , r) ⊂ RG⊗R RG.

We want to compute the cohomology products, so we start by analyzing HomRG(F, R).
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5.4 The Dual of the Tate Resolution

Dualizing F into any R via HomRG(−, R) (and denoting HomRG(F, RG) by F∗) gives

HomRG(F, R) (5.1)
∼=︸︷︷︸

by 2.2.3

R⊗RG F∗ (5.2)

∼= R⊗RG RG[s1, . . . , sr]⊗RG
∧
RG

〈t1, . . . , tr〉 (5.3)

∼=︸︷︷︸
G acts trivially on R

R[s1, . . . , sr]⊗R
∧
R

〈t1, . . . , tr〉 (5.4)

where si is a polynomial variable dual to σi, and tj is dual to τj.

Warning: Although line (5.4) above carries an algebra structure, it is not the algebra
structure that we are seeking. We must use the definition of the cup product (which uses
our chosen Φ) to work out the products.

5.5 The Action of ∂∗

As in the previous chapter, F∗ = HomRG(F, R) is a Hom complex. Therefore its differen-
tial is determined by Definition 2.5.1, and obeys the Leibniz rule.

An RG-basis for F is given by monomials ω = τKσ(N), where

• K = (K1, . . . , Kr) records the exterior powers of the τs which are present, i.e. τK =
τK1

1 · · · τKrr . Note that Kn ∈ {0, 1} for all n.

• N = (N1, . . . , Nr) ∈ Nr records the divided powers of the σs which are present, i.e.

σ(N) = σ
(N1)
1 · · ·σ(Nr)

r .

Analogously to Chapter 4, we define the R-dual basis elements for HomRG(F, R) to be
SLTM , where

L = (L1, . . . , Lr),

M = (M1, . . . ,Mr),
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and SLTM evaluates to 1 on τMσ(L), and evaluates to 0 on all other basis elements of F.
Note that each Mn ∈ {0, 1} for all n, since these are the only occurring exponents for the
corresponding τs.

Now to determine the effect of ∂∗ on an arbitrary SLTM , we evaluate

∂∗(SLTM)(τKσ(N))

= dR︸︷︷︸
=0

(SLTM)(τKσ(N))− (−1)|S
LTM |SLTMdF(τKσ(N)) (5.5)

= −(−1)|TM |SLTM

(
r∑
i=1

(xi − 1)
∂τK

∂τi
σ(N) +Ni(xi)τiτ

K ∂σ
(N)

∂σi

)
(5.6)

= −(−1)|TM |SLTM

(
r∑
i=1

(xi − 1)
∂τK

∂τi
σ(N) + (−1)

∑
ν<iKνNi(xi)τ

K′i
∂σ(N)

∂σi

)
(5.7)

where we define
K ′i = K + (0, . . . , 0, 1︸︷︷︸

position i

, 0, . . . , 0)

The expression on line (5.7) is congruent, modulo I, to

−(−1)|TM |SLTM

(
r∑
i=1

(−1)
∑
ν<iKνhiτ

K′i
∂σ(N)

∂σi

)
(5.8)

By the definition of SLTM , the ith term of the sum in (5.8) evaluates to 0 unless

• K ′i = K + (0, . . . , 0, 1︸︷︷︸
position k

, 0, . . . , 0) = M , and

• N ′ = N − (0, . . . , 0, 1︸︷︷︸
position k

, 0, . . . , 0) = L,

in which case it evaluates to −(−1)|TM |(−1)
∑
ν<iKνhi.

Therefore we have

∂∗(SLTM)

= −(−1)|TM |

 r∑
i=1

(−1)
∑
ν<iKνhiS

L+(0,...,0, 1︸︷︷︸
i

,0,...,0)

TM−(0,...,0, 1︸︷︷︸
i

,0,...,0)

 (5.9)

72



We may, temporarily using the algebra structure of the Koszul complex, rewrite the dif-
ferential from line (5.9) in compact form as

∂∗(SLTM)

= −(−1)|TM |SL
r∑
i=1

hiSi
∂TM
∂Ti

(5.10)

The next Theorem says that we can replace the above differential with a simpler one, and
preserve the original cohomology groups.

Theorem 5.5.1. If we change the differential to

∂′(SLTM)

= SL
r∑
i=1

hiSi
∂TM
∂Ti

(5.11)

then we will still have the same cohomology groups.

Proof. Consider the following diagram.

0 R[s]oo R[s]
∧1(t)∂∗oo R[s]

∧2(t)∂∗oo R[s]
∧3(t)∂∗oo · · ·oo

0 R[s]oo R[s]
∧1(t)

∂′=−∂∗
oo

(−1)1

OO

R[s]
∧2(t)

∂′=(−1)2∂∗
oo

(−1)1+2

OO

R[s]
∧3(t)

∂′=(−1)3∂∗
oo

(−1)1+2+3

OO

· · ·oo

It is clear from the construction that the vertical maps assemble into an isomorphism of
complexes. Therefore the rows have equal cohomology groups, and we are done.

5.6 Cochain Products

For this section, unadorned tensor products are over R.

Theorem 5.6.1. The above choice of Φ defines the following cup product structure on
HomRG(F, R), which makes it into a DG-algebra, where si is a polynomial variable dual
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to σi, and tj is dual to τi:

ti ∪ ti = −
(
hi
2

)
si (5.12)

ti ∪ tj + tj ∪ ti = 0, when i 6= j (5.13)

tj ∪ si = si ∪ tj (5.14)

sj ∪ si = si ∪ sj (5.15)

and the elements tj and si generate HomRG(F, R) with respect to the cup product, subject
only to these relations.

Proof. 1. ti ∪ ti = −
(
hi
2

)
si: We have ti∪ ti = µ(ti⊗ ti)Φ1,1, and Φ1,1 : F2 → F1⊗F1.

We only need to look at index i, since applying ti⊗ ti will kill all other indices. So in
degree 2, the only basis element in the domain that we need to look at is σi. Recall
that

Φ(σi) = σ′i + σ′′i +∇Ni(x
′
i, x
′′
i )τ
′
iτ
′′
i

⇒ Φ1,1(σi) = ∇Ni(x
′
i, x
′′
i )τ
′
iτ
′′
i

Applying µ(ti ⊗ ti) gives

µ(ti ⊗ ti)(∇Ni(x
′
i, x
′′
i )τi ⊗ τi)

=

(
hi
2

)
µ(−1)(ti(τi)⊗ ti(τi))

= −
(
hi
2

)
µ(1⊗ 1)

= −
(
hi
2

)
So since ti ∪ ti evaluates to 0 on all basis elements except σi, on which it evaluates

to −
(
hi
2

)
, we can express this compactly as ti ∪ ti = −

(
hi
2

)
si, as required.

2. ti ∪ tj + tj ∪ ti = 0: We have ti ∪ tj = µ(ti ⊗ tj)Φ1,1, tj ∪ ti = µ(tj ⊗ ti)Φ1,1 and
Φ1,1 : F2 → F1⊗F1. The only basis elements for which this can evaluate to something
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non-zero are τiτj and τjτi. Since τiτj = −τjτi, it suffices to determine the effect of
µ(ti ⊗ tj) and µ(tj ⊗ ti) on Φ(τiτj). So we compute:

Φ1,1(τiτj)

= Φ1,1(τi)Φ1,1(τj)

= (x′′i τ
′
i + τ ′′i )(x′′j τ

′
j + τ ′′j )

= x′′i x
′′
j τ
′
iτ
′
j + x′′i τ

′
iτ
′′
j + x′′j τ

′′
i τ
′
j + τ ′′i τ

′′
j

As (ti⊗ tj) vanishes on all occurring monomials except τ ′iτ
′′
j , applying µ(ti⊗ tj) gives

µ(ti ⊗ tj)(x′′i τi ⊗ τj)
= µ(−1)(ti(τi)⊗ tj(τj))
= −1

Similarly, applying µ(tj ⊗ ti) gives

µ(tj ⊗ ti)(−x′′j τ ′jτ ′′i )

= −µ(−1)(tj(τj)⊗ ti(τi))
= 1

Thus the relation ti ∪ tj + tj ∪ ti = 0 is proved.

3. tj ∪ si = si ∪ tj: We have si ∪ tj = µ(si ⊗ tj)Φ2,1 and Φ2,1 : F3 → F2 ⊗ F1. Also,

tj ∪ si = µ(tj ⊗ si)Φ1,2 and Φ1,2 : F3 → F1 ⊗ F2. The elements τjσi form a basis for
F3. Therefore it suffices to determine the effect of µ(tj⊗si) and µ(si⊗ tj) on Φ(τjσi).

First we compute:

Φ(τjσi)

= Φ(τj)Φ(σi)

= (x′′j τ
′
j + τ ′′j ) (σ′i + σ′′i +∇Ni(x

′
i, x
′′
i )τ
′
iτ
′′
i )

= x′′j τ
′
jσ
′
i + x′′j τ

′
jσ
′′
i + x′′j∇Ni(x

′
i, x
′′
i )τ
′
jτ
′
iτ
′′
i

+τ ′′j σ
′
i + τ ′′j σ

′′
i +∇Ni(x

′
i, x
′′
i )τ
′′
j τ
′
iτ
′′
i

As (tj⊗si) vanishes on all occurring monomials except τ ′jσ
′′
i , applying µ(tj⊗si) gives

µ(tj ⊗ si)(x′′j τj ⊗ σi)
= µ(tj(τj)⊗ si(σi))
= µ(1⊗ 1)

= 1
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Similarly, applying µ(si ⊗ tj) gives

µ(si ⊗ tj)(σi ⊗ τj)
= µ(si(σi)⊗ tj(τj))
= µ(1⊗ 1)

= 1

Thus the relation tj ∪ si = si ∪ tj is proved.

4. sj ∪ si = si ∪ sj: We have si ∪ sj = µ(si ⊗ sj)Φ2,2 and Φ2,2 : F4 → F2 ⊗ F2. Also

sj ∪ si = µ(sj ⊗ si)Φ2,2. The elements σjσi and τjτkσi form a basis for F4. We do not
need to consider elements of the form τjτkσi, since Φ(τjτk) = Φ(τj)Φ(τk), and each of
these factors will involve τ ′j, τ

′′
j , τ

′
k or τ ′′k . As we will apply si or sj, we may consider

the following computation modulo the ideal

T = (τ ′k, τ
′′
k : 1 ≤ k ≤ r) ⊂ F⊗ F.

We begin by computing:

Φ(σjσi)

= Φ(σj)Φ(σi)

≡
(
σ′j + σ′′j

)
(σ′i + σ′′i ) mod T

= σ′jσ
′
i + σ′jσ

′′
i + σ′′j σ

′
i + σ′′j σ

′′
i

As (sj ⊗ si) vanishes on all occurring monomials except σ′jσ
′′
i , applying µ(sj ⊗ si)

gives

µ(sj ⊗ si)(σj ⊗ σi)
= µ(sj(σj)⊗ si(σi))
= µ(1⊗ 1)

= 1

Similarly, applying µ(si ⊗ sj) gives

µ(si ⊗ sj)(σi ⊗ σj)
= µ(si(σi)⊗ sj(σj))
= µ(1⊗ 1)

= 1
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Thus the relation sj ∪ si = si ∪ sj is proved.

We now know how the generators in degrees one and two interact with each other. We
still need to argue that this is enough to determine the algebra structure.

Let SLTM ∈ HomRG(F, R) be an arbitrary dual basis element as in our earlier notation.
It suffices to construct a product of copies of si and tj which has the same effect as SLTM
on an arbitrary monomial ω = τKσ(N) ∈ F.

Analogously to Chapter 4, we denote the cup product of Li copies of si by s∪Lii :=

si ∪ · · · ∪ si︸ ︷︷ ︸
Li copies

, and similarly for the cup product of Mj copies of tj, t
∪Mj

j := tj ∪ · · · ∪ tj︸ ︷︷ ︸
Mj copies

.

We claim that (s∪Lrr ∪ · · · ∪ s∪L1
1 ) ∪ (t∪Mr

r ∪ · · · ∪ t∪M1
1 ) has the same effect as SLTM on

ω = τKσ(N). We need two Lemmas before we can proceed.

Lemma 5.6.2. With the above notation,

(s∪Lrr ∪ · · · ∪ s∪L1
1 )(σ(N)) =

{
1 if N = L
0 otherwise

for all L ∈ Nr.

Proof. This is proved in a way which is completely analogous to the proof of Lemma
4.6.2.

Lemma 5.6.3. With the above notation,

(t∪Mr
r ∪ · · · ∪ t∪M1

1 )(τK) =

{
1 if K = M
0 otherwise

for all L ∈ Nr.

Proof. This is proved in a way which is completely analogous to the proof of Lemma
4.6.2.

Now by the definition of SLTM , we have that

SLTM
(
τKσ(N)

)
=

{
1 if M = K and L = N
0 otherwise
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We can now evaluate

((s∪Lrr ∪ · · · ∪ s∪L1
1 ) ∪ (t∪Mr

r ∪ · · · ∪ t∪M1
1 ))(τKσ(N))

= µ((s∪Lrr ∪ · · · ∪ s∪L1
1 )⊗ (t∪Mr

r ∪ · · · ∪ t∪M1
1 ))Φ(τKσ(N))

= µ((s∪Lrr ∪ · · · ∪ s∪L1
1 )⊗ (t∪Mr

r ∪ · · · ∪ t∪M1
1 ))Φ(τK)Φ(σ(N))

=︸︷︷︸
(Line 4.4)

µ((s∪L)⊗ (t∪M))
r∏
i=1

(x′′i τ
′
i + τ ′′i )Ki

r∏
j=1

[
(σ′ + σ′′)(Nj) + (σ′ + σ′′)(Nj−1)∇Nj(x

′
j, x
′′
j )τ
′
jτ
′′
j

]
This expression evaluates to 1 if and only if L1 = N1, . . . , Lr = Nr,M1 = K1, . . . ,Mr = Kr,
in other words, if and only if N = L and K = M .

The monomials have the same effect, as claimed.

Therefore HomRG(F, R) admits the monomials s∪Lt∪M as an R-basis, and on those basis
elements, the multiplication is uniquely determined by the relations. Conversely, given the
relations, any word in si and tj can be reordered uniquely as a scalar times s∪Lt∪M , for
some L,M .

The dualized differential ∂∗ obeys the Leibniz rule by Lemma 2.7.10, so we do have a DG
R-algebra.

Now ∂′ from line (5.11) is an algebra differential, and satisfies

(∂′)2 = 0

∂′(ti ∪ ti) = ∂′(ti) ∪ ti − ti ∪ ∂′(ti)
= 0

∂′
((

hi
2

)
si

)
= 0

In exact analogy to Proposition 4.6.3 in Chapter 4, we can analyze the product on line
(5.12) further. We can simplify using the following result.

Proposition 5.6.4. We may choose a new Φ which is homotopic to the original choice,
by adding a suitable boundary to the original Φ2(σ). Having made this new choice, we can
rewrite line (5.12) above as

ti ∪ ti =

{
hi
2
· si if hi is even

0 if hi is odd
(5.16)
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Proof. This proof is completely analogous to the proof of Proposition 4.6.3.

Remark: These results agree with [8], in the special case when r = 1.
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Chapter 6

The Cohomology Ring for a Finite
Abelian Group

6.1 Introduction

In this chapter, we will describe the cohomology ring of a finite abelian group as a fibre
product of quotients of polynomial rings. This will lead us to cleaner presentations than
those that exist in the literature to date.

6.2 The Structure of the Cohomology Ring

6.2.1 Introduction

For this chapter, all products of cochains are understood to be the cup products of Chapter
5.

We start from the following result already established:

Theorem 6.2.1. Let G = µn1 × · · · × µnr be a finite abelian group, written as the product
of r > 1 cyclic groups of orders n1 through nr. Whenever it is convenient, we may assume
that the ni are the elementary divisors of G, so that 2 ≤ n1|n2| · · · |nr. The cohomology
of G with coefficients in a commutative ring R, on which G acts trivially, is then the
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cohomology of the DG R-algebra

K = SymR

(
r⊕
i=1

Rsi

)
⊗R
∧
R

(
r⊕
i=1

Rti

)

with each ti in (cohomological) degree 1, each si in degree 2, and with its differential the
algebra derivation

∂ =
r∑
i=1

nisi
∂

∂ti
.

However, the multiplicative structure is not the “obvious” one, it is rather deformed in
that the polynomial ring SymR(

⊕r
i=1Rsi), concentrated in even degrees, is contained in

the centre, while the ti satisfy

t2j =

{ nj
2
· sj if nj is even

0 if nj is odd

titj + tjti = 0, when i 6= j

tjsi = sitj

Proof. Refer to Theorem 5.6.1, Proposition 5.6.4 and Theorem 5.5.1.

The aim of this chapter is to determine the structure of the cohomology of this DG-algebra.
Not to overlook the trivial cases, we state right away the following.

Corollary 6.2.2. Assume that each ni is zero in the ring R. Then the differential in
the above DG R-algebra is identically zero and the algebra H•(G,R) is isomorphic to the
Clifford algebra over the polynomial ring P = R[s1, . . . , sr] on the quadratic form

q : P r → P, q(p1, . . . , pr) =
∑
nieven

ni
2
sip

2
i

that takes its values in the 2-torsion of P .

If for each even ni we also have ni
2

is zero in R, then the algebra structure is the ordinary,
strictly graded commutative one on the Koszul complex.

Proof. It is clear that we get the polynomial ring R[s], from the copy of SymR (
⊕r

i=1Rsi)
in the DG-algebra.
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The multiplication of the tjs comes from the known rules. All that survives is for the even
nj. Treat {t1, . . . , tr} as a basis of P r, then we must have

q : P r → P∑r
j=1 pjtj 7→

∑
nj even p

2
j
nj
2
si.

Since nj ≥ 0 and njsj = 0,∀j, it is clear that this sum lies in the 2-torsion of P .

Example 6.2.3. The corollary applies in particular to the case when R = F is a field of
characteristic p and G is a p-group. If n1|n2| · · · |nr are the elementary divisors, then

H•(G,F) ∼=

{
F[s1, . . . , sr]⊗F

∧
F (⊗ri=1Fti) if p is odd

F[t1,...,tr,sa,...,sr]
(t2a,...,t

2
r)

if p = 2 and 2 = na−1 < na.

Proof. Since G is a p-group, then p|ni, ∀i. Thus each ni equals 0 in F, so Corollary 6.2.2
applies.

If p is odd, then 2 is invertible in F, and ni
2

is still zero in F.

If p is even, then suppose 2 = na−1 < na. For i < a, we have that ni
2

= 1 in F, implying
t2i = si for those i < a. So s1, . . . , sa−1 can be obtained from t1, . . . , ta−1 and can be omitted
from the list of variables. Also, 22 divides na, . . . , nr, implying na

2
= · · · = nr

2
= 0 in F.

Thus t2a = · · · = t2r = 0.

Remark: This result agrees with Proposition 4.5.4 in [6].

6.2.2 Preliminaries

Symmetric Powers of Direct Sums of Cyclic Modules

The following result can easily be deduced, say from Proposition A2.2 in [10].

Lemma 6.2.4. Let R be a commutative ring and I1, . . . , Ir ⊆ R ideals. The symmetric
algebra on ⊕ri=1

R
Ii

over R has then the following structure.

SymR

(
r⊕
i=1

R

Ii

)
∼= SymR

(
R

I1

)
⊗R · · · ⊗R SymR

(
R

Ir

)
(6.1)

∼=
R[x1]

x1I1R[x1]
⊗R · · · ⊗R

R[xr]

xrIrR[xr]
(6.2)

∼=
R[x1, . . . , xr]

(
∑r

i=1 xiIi)
, (6.3)
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where x1, . . . , xr are independent variables.

Assigning xi the multi degree ei ∈ ⊕ri=1Zei = Zr, this symmetric algebra becomes Nr-
graded and its homogeneous component of multi degree N = (N(1), . . . , N(r)) ∈ Nr is the
R-module

SymN
R

(
r⊕
i=1

R

Ii

)
∼=

R∑
N(i)6=0 Ii

xN . (6.4)

Alternatively,

SymR

(
r⊕
i=1

R

Ii

)
∼=

⊕
S⊆{1,...,r}

R∑
i∈S Ii

[xi | i ∈ S]xS (6.5)

as an R[x1, . . . , xr]-module, where we have abbreviated xS =
∏

i∈S xi.

Proof. The equality on line (6.1) is clear from the fact that SymR(M⊕N) ∼= SymR(M)⊗R
SymR(N).

Consider Ii ⊂ R. R is a rank 1 free R-module. Let xi be a basis element. Then we have a
short exact sequence

0 // xiIi // xiR // xiR
xiIi

// 0

Now, passing to Sym, we obtain a new short exact sequence

0 // (xiIi)⊗R SymR(xiR) // SymR(xiR) // SymR

(
xiR
xiIi

)
// 0

which gives us that

SymR

(
R

Ii

)
∼=

SymR(xiR)

(xiIi)⊗R SymR(xiR)
∼=

R[xi]

xiIiR[xi]

which establishes the equality on line (6.2).

Line (6.3) is clear from line (6.2).

For (6.4), observe that, on line (6.2), we reduce the polynomial ring involving xi by the
ideal xiIi. Extending this, we reduce the coefficients of every monomial by the sum of the
ideals corresponding to the variables involved in that monomial.

Line (6.5) is clear from line (6.4).
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Next we specialize to the case that the ideals in the preceding Lemma form a chain.

Proposition 6.2.5. Assume we are given R ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Ir ⊇ Ir+1 = (0), a
descending chain of ideals in the commutative ring R. The final description in Lemma
(6.2.4) can then be simplified to

SymR

(
r⊕
i=1

R

Ii

)
∼= R⊕

r⊕
i=1

R

Ii
[xi, xi+1, . . . , xr]xi. (6.6)

As a ring, even as an R[x1, . . . , xr]-algebra, it is the fibre product

SymR

(
r⊕
i=1

R

Ii

)
∼= R1 × R1

(x1)
R2 × R2

(x2)
· · · × Rr

(xr)
Rr+1, (6.7)

where we have set

Ri =

(
R

Ii

)
[xi, . . . , xr] ∼=

R[x1, . . . , xr]

(Ii) + (x1, . . . , xi−1)
(6.8)

for i = 1, . . . , r + 1, so that, in particular, Rr+1
∼= R.

Note that the ring homomorphisms used in the formation of the fibre product are the natural
epimorphisms from

Ri =

(
R

Ii

)
[xi, . . . , xr],

respectively from Ri+1, onto

Ri

(xi)
∼=
(
R

Ii

)
[xi+1, . . . , xr],

for i = 1, . . . , r.

Proof. Since the ideals form a chain, the only choices for S that we need to consider are
S = ∅, {1}, {2}, . . . , {r}. These choices yield the form on line (6.6).

Rewrite line (6.6) as

R

I1

[x1, . . . , xr]x1 ⊕
R

I2

[x2, . . . , xr]x2 ⊕ · · · ⊕
R

Ir−1

[xr−1, xr]xr−1 ⊕
R

Ir
[xr]xr ⊕R
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Rewrite line (6.7) as

R

I1

[x1, . . . , xr]× R
I1

[x2,...,xr]

R

I2

[x2, . . . , xr]× R
I2

[x3,...,xr]
· · · × R

Ir−1
[xr]

R

Ir
[xr]× R

Ir
R

So we can see that there is an obvious map (f1, . . . , fr+1) 7→ (f1, . . . , fr+1) from the first
set of (r + 1)-tuples to the second set of (r + 1)-tuples. It is clear that this map will be
a morphism of R[x1, . . . , xr]-algebras provided it is a well-defined function. To see that
this map takes values in the fibre product, let i ∈ {1, . . . , r− 1} be arbitrary, and consider
(fi, fi+1). For (fi, fi+1) to lie in the fibre product, we require

fi+1 = fi|xi=0

By our setup, xi|fi ⇒ fi|xi=0 = 0, so that fi+1 = 0 i.e. all coefficients of fi+1 lie in Ii. But
since Ii ⊇ Ii+1, we already have this condition satisfied. We have shown that the map does
take values in the fibre product for any (r + 1)-tuple.

We still need to argue why this map is a bijection. We will exhibit an inverse. Consider
any fi in a tuple in the fibre product. To show that fi lies in R

Ii
[xi, . . . , xr]xi, we need to

show that xi|fi. Since fi is in a tuple in the fibre product, there is some fi+1 such that

fi+1 = fi|xi=0

Since Ii ⊇ Ii+1, therefore fi+1 = 0. Therefore fi|xi=0 = 0, so that xi|fi, as required.

Geometrically, Spec SymR

(⊕r
i=1

R
Ii

)
is thus the union of the affine spaces

Ar+1−i
R
Ii

= Spec
R

Ii
[xi, . . . , xr]

of (relative) dimension r + 1 − i over the rings R
Ii

that in turn become larger as i in-
creases. This linear arrangement of sorts can be viewed as a closed subscheme of Ar

R =
SpecR[x1, . . . , xr].

Remark: If the chain of ideals is not proper, then the indicated fibre product contains
redundant factors. Namely, if Ii = Ii+1, for some i = 1, . . . , r, then the natural surjection
Ri+1 → Ri

(xi)
is an isomorphism and Ri+1

(xi+1)
∼= Ri

(xi,xi+1)
.

Thus, the part × Ri
(xi)

Ri+1× Ri+1
(xi+1)

in the fibre product can be replaced with × Ri
(xi,xi+1)

, and

similarly when more of the ideals are equal.
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For example, if all ideals are zero, then all factors but the first can be dropped and
we regain the fact that the symmetric algebra on a free module is the polynomial ring,
SymR(⊕ri=1R) ∼= Rr = R[x1, . . . , xr].

As a slightly less extreme case that will concern us below, if I1 = · · · = Ir = I, then all
factors but the first and last can be dropped and one finds

SymR

(
r⊕
i=1

R

I

)
∼=
(
R

I

)
[x1, . . . , xr]×R

I
R.

Now we apply this investigation of symmetric algebras to the determination of the coho-
mology of the finite abelian group G from above.

Ignoring the degrees of the elements si in K, this complex can be viewed as the Koszul
complex on the sequence (n1s1, . . . , nrsr) ⊆ R[s1, . . . , sr]. We denote byHj(K) the resulting
Koszul homology, where the index j refers to the degree in the ti. These homology groups
are naturally R[s1, . . . , sr]-modules.

Lemma 6.2.6. Assume, as we may, that the ni are the elementary divisors of the finite
abelian group G in that 2 ≤ n1|n2| · · · |nr. One then has

H0(K) ∼= SymR

(
r⊕
i=1

R

(ni)

)
∼= R⊕

r⊕
i=1

R

(ni)
[si, si+1, . . . , sr]si as an R[s1, . . . , sr]-module

∼= R1 × R1
(x1)

R2 × R2
(x2)
· · · × Rr

(xr)
Rr+1 as an R[s1, . . . , sr]-algebra,

where now Ri = R
(ni)

[si, . . . , sr], for i = 1, . . . , r, still with the convention that Rr+1 = R.

Proof. Just note that H0(K) ∼= R[s1,...,sr]
(n1s1,...,nrsr)

can be identified as the indicated symmetric

algebra by Lemma 6.2.4 and that the ideals (n1) ⊇ · · · ⊇ (nr) form a descending chain in
R, so Proposition 6.2.5 applies.

As always for a Koszul complex, the homology groups Hj(K) are modules over the ring
H0(K) that we just described. To give a concise presentation of the homology, we next
identify the cycles in that Koszul complex in two cases.
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The Cycles in the DG-Algebra

For a multi index N ∈ Nr and a subset S ⊆ {1, . . . , r}, we let N + S denote the multi
index given by the r-vector N +

∑
i∈S ei ∈ ⊕ri=1Nei. In particular, N + ∅ = N . In this way

we also view S as the multi index whose component at i is 1, if i ∈ S, and 0 otherwise.

We set `(N +S) = min{i = 1, . . . , r | (N +S)(i) 6= 0}, and think of it as the leading index
of the multi index N + S.

Proposition 6.2.7. Let G be a finite abelian group as before, with elementary divisors
n1|n2| · · · |nr.

1. If R is any commutative ring, then for I = {i1 < · · · < ia} a non-empty subset of
{1, . . . , r}, the element

∂′(tI) :=
1

n`(I)
∂(tI)

:=
a∑
ν=1

(−1)ν−1 niν
n`(I)

siν ti1 ∧ · · · ∧ t̂iν ∧ · · · ∧ tia

is well defined in K. It is a cycle of degree |I| − 1 in the ti, and of cohomological
degree |I|+ 1. Its class in H|I|−1(K) is annihilated by n`(I).

2. If m ∈ R is a non-zero-divisor in R that is a multiple of the largest elementary divisor
nr (equal to the exponent of the group), then in the Koszul complex with coefficients
in R = R

(m)
the elements

t′J :=
m

n`(J)

tJ

are cycles as well, for any subset J ⊆ {1, . . . , r}.
If J = ∅, then interpret t∅ = 1 and n`(∅) = m to regain t′∅ = 1 as a cycle.

3. With assumptions as in 2, in the long exact homology sequence that results from
applying K⊗R − to the short exact sequence

0 // R m // R // R // 0

the connecting homomorphism Hj(K ⊗R R) → Hj−1(K) sends the class of the cycle
t′J , with |J | = j > 0, to ∂′(tJ).
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Proof.

1. For assertion 1, note that the differential on K yields

∂(tI) =
a∑
ν=1

(−1)ν−1niνsiν ti1 ∧ · · · ∧ t̂iν ∧ · · · ∧ tia ,

whence
1

nmin I

∂(tI) :=
a∑
ν=1

(−1)ν−1 niν
n`(I)

siν ti1 ∧ · · · ∧ t̂iν ∧ · · · ∧ tia

is an element of that algebra as the integer n`(I) divides each of the ni for i ∈ I. It
follows further immediately that this element is a cycle, as ∂2 = 0, and that n`(I)
annihilates this cycle in cohomology - after all, ∂(tI) is a true boundary.

2. Assertion 2 follows immediately from the explicit form of the differential on the
Koszul complex as just recalled.

3. Finally, assertion 3 is a simple consequence of the snake lemma, in that t′J , viewed as
an element in K lifts that same element from K⊗RR and is then sent by the differential
to ∂(t′J) = m

n`(J)
∂(tJ), which in turn is the image of ∂′(tJ) under multiplication by

m.

Remark 6.2.8. Note that in case I = {i} is a singleton, then ∂′(ti) = si.

With these preparations, we can now formulate our main result.

6.2.3 The Structure of the Cohomology of Finite Abelian Groups

Theorem 6.2.9. We keep the notation from Proposition 6.2.7. The cohomology of the
group G with coefficients in a commutative ring R, in which the order of G, equivalently,
its exponent nr, is a non-zero-divisor, is given by

H•(G,R) ∼= R⊕
⊕

∅6=I⊂{1,...,r}

⊕
N∈Nr

R

(n`(N+I))
sN∂′(tI)

where we denote the cohomology classes of the cycles si and ∂′(tI) by the same symbols.
The cohomology class sN∂′(tI) sits in H2

∑r
i=1N(i)+|I|+1(G,R), by Proposition 6.2.7 (1) .
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In particular, we regain classical results for the low-dimensional cohomology groups,

H0(G,R) ∼= R,

H1(G,R) ∼= 0,

H2(G,R) ∼=
r⊕
i=1

R

(ni)
si.

Proof. Use induction on the number of elementary divisors. If r = 1, so that G ∼= µn is
cyclic of order n1 = n, then the claimed description simplifies, with s, t for s1, t1, to

H•(µn, R) ∼= R⊕
⊕
N∈N

R

(n)
sN∂′(t) ∼= R⊕

⊕
N∈N

R

(n)
sN+1,

as ∂′(t) = s, and this is the correct result as one sees immediately from the (periodic)

resolution of R over RG ∼= R[x]
(xn−1)

. Note also that as a ring,

H•(µn, R) ∼=
R

(n)
[s]× R

(n)
R.

Now assume by induction that the result has been established for abelian groups with
r − 1 ≥ 1 elementary divisors. If G is then a group with r elementary divisors, write
G ∼= G′ × µnr with nr the largest elementary divisor.

Write temporarily Kr−1 for the Koszul complex for G′ and note that the Koszul complex
K for G over R can be realized as a tensor product of complexes

K ∼= Kr−1 ⊗R ( 0 // R[sr]tr
nrsr // R[sr] // 0 ).

with R[sr] in complex degree 0. This gives rise to a short exact sequence of complexes of
R-modules

0 // Kr−1[sr]
i // K p // Kr−1[sr]tr[1] // 0

where we abbreviate Kr−1[sr] = Kr−1 ⊗R R[sr] and the translation [1] refers to the homo-
logical degree (in the ti) of the Koszul complexes.

The map i is the natural inclusion of Kr−1[sr] as a sub complex of K, in that a typical
element ω in K can be written uniquely as

ω = ω1 + ω2tr
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with ω1 = i(ω1) and ω2 elements from Kr−1[sr]. In these terms, p(ω) = ω2tr.

If we now pass to the long exact homology sequence,

Hj(Kr−1[sr]) // Hj(Kr) // Hj−1(Kr−1[sr]tr)
nrsr // Hj−1(Kr−1[sr])

then the rightmost map is zero except for j − 1 = 0, when the sequence ends in

H1(Kr) // H0(Kr−1[sr]tr)
nrsr // H0(Kr−1[sr]) // H0(Kr) // 0 .

As taking the tensor product with R[sr] over R is exact (R[sr] being free and thus flat over
R), Lemma 6.2.6 shows that

H0(Kr−1[sr]) ∼= H0(Kr−1)[sr]

∼= R[sr]⊕
r−1⊕
i=1

R

(ni)
[si, si+1, . . . , sr]si.

Now multiplication with nrsr is injective on the first summand R[sr], but annihilates the
remaining summands, as nr is the largest elementary divisor. If we therefore set

H̃0 =
r−1⊕
i=1

R

(ni)
[si, si+1, . . . , sr]si

∼=
⊕

I⊆{1,...,r−1},|I|=1

⊕
N∈Nr

R

(n`(N+I))
sN∂′(tI)

and write H̃j = Hj(Kr−1[sr]) ∼= Hj(Kr−1)[sr] for j > 0, then the long exact homology
sequence breaks into the short exact sequences

0 // H̃j
i // Hj(K)

p // H̃j−1tr // 0 (6.9)

of R-modules for j ≥ 1. Now by induction we already know that for j ≥ 1 we have

H̃j
∼=

⊕
I⊆{1,...,r−1},|I|=j+1

⊕
N∈Nr

R

(n`(N+I))
sN∂′(tI)

as a direct summand of the homology of Kr−1[sr], and as we just showed, this description
is valid as well for j = 0.
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On the other hand, we deduce from Proposition 6.2.7 that for j > 1 the direct sum

H̃j ⊕ H̃j−1tr ∼=
⊕

∅6=I⊆{1,...,r−1},|I|=j+1

⊕
N∈Nr

R

(n`(N+I))
sN∂′(tI)

⊕
⊕

∅6=I⊆{1,...,r−1},|I|=j

⊕
N∈Nr

R

(n`(N+I))
sN∂′(tI)tr

maps to Hj(K), equivalently, p : Hj(K)→ H̃j−1tr admits a section s, given by s(∂′(tI)tr) =
∂′(tI∪{r}) as indeed ∂′(tI)tr = p(∂′(tI∪{r})) for I 6= ∅ and we saw in Proposition 6.2.7 (1)
that each monomial sN∂′(tJ), with J ⊆ {1, . . . , r} is a cycle in K whose class in homology
is annihilated by n`(N+J). Therefore, each short exact sequence (6.9) splits and the middle
terms is identified as the direct sum just displayed. Summing up over all j yields the
result.

Remark: The cohomology ring is a finitely generated module over the ring

H0(K) ∼= SymR

(
r⊕
i=1

R

(ni)

)
discussed above, generated by the classes ∂′(tI) with |I| ≥ 2. While this symmetric algebra
is naturally Nr-graded, that is not so for the cohomology ring, as the elements ∂′(tI) are
only homogeneous for the total, cohomological, degree.

However, a closer inspection of the result gives some more information on the module
structure, in that

Hj(K) ∼=
⊕
|I|=j

H0(K)⊗R
R

(n`(I))
∂′(tI)

is a direct sum of cyclic H0(K)-modules as indicated for any j ≥ 1.

Remark: As concerns the algebra structure, we know already that H0(K) is central
in H•(G,R), whence, by the previous remark, it suffices to understand the products
∂′(tI)∂

′(tI′) for subsets I, I ′ ⊆ {1, . . . , r}.
As ∂ is an algebra differential and ∂′(tI′) is a cycle, we have

∂′(tI)∂
′(tI′) =

1

n`(I)
∂(tI∂

′(tI′))

and from there one can work out the product explicitly.

Using now the preceding theorem together with Proposition 6.2.7 (2), the same arguments
prove the following result.
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Theorem 6.2.10. With the assumptions and notation of Proposition 6.2.7 (2), the group
cohomology of G with values in R has the following form,

H•(G,R) ∼= H•(G,R)⊗R R⊕H•+1(G,R),

with H•(G,R)⊗R R a sub algebra, and in the second summand the cycles t′I as defined in
Proposition 6.2.7 (2) replacing the ∂′(tI). Note that H i(G,R)⊗RR ∼= H i(G,R), for i > 0.
In other words, only the direct summand R in H•(G,R) gets changed to R, the remaining
direct summands stay unchanged under the tensor product with R over R.

The H•(G,R)⊗R R-linear map that sends

t′I ∈ H |I|(G,R) 7→ ∂′(tI) ∈ H |I|+1(G,R) ⊆ H |I|+1(G,R)

defines the Böckstein derivation on H•(G,R) with kernel H•(G,R)⊗R R.

Remark: Note that, despite appearances, the above direct sum decomposition ofH•(G,R)
is not one of H•(G,R)⊗RR-modules. If we call the latter ring S, and denote by S+(1) its
irrelevant ideal generated by the elements of strictly positive degree and shifted in degree
by 1, so that S+(1)i = (S+)i+1, then there is rather a short exact sequence of graded
S-modules,

0 // S // H•(G,R) // S+(1) // 0 ,

the direct sum over the short exact sequences of R-modules

0 // H i(G,R)⊗R R // H i(G,R) // H i+1(G,R)⊗R R // 0 .

However, this sequence is not split in general. For example, if G = V is the Kleinian
four-group and R = Z, R = F2, then

S =
F2[a, b, c]

(c2 − ab(a+ b))
,

with a, b of degree 2 and c of degree 3. The embedding of S as a sub algebra of

H•(V,F2) ∼= F2[t1, t2],

with t1, t2 in degree 1, sends
a 7→ t21
b 7→ t22
c 7→ t1t2(t1 + t2).
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In particular, S is a domain as a subring of the polynomial ring, whence its depth is at least
1. It follows that S+(1) has depth exactly 1, as, up to degree shift, it is the first syzygy
module of F2

∼= S
S+ as an S-module, and that quotient has depth 0, being annihilated by

S+. As a module of given depth cannot occur as a direct summand of a module of larger
depth, S+(1) is not a direct S-summand of F2[t1, t2] as that module has depth 2.

The same argument shows that for an elementary abelian 2-group G of rank r ≥ 2 the ring

S = H•(G,Z)⊗Z F2

has depth exactly 2, as
H•(G,F2) ∼= F2[t1, . . . , tr]

has depth r, but the quotient S+(1) still has only depth 1, being the first syzygy module
of F2(1).

Remark: While theR-module structure ofH i(G,R), for i > 0, is independent of the choice
of the non-zero-divisor m that defines R, this is not true in general for the multiplicative
structure when even elementary divisors are present. Indeed, this is already in evidence
for cyclic 2-groups.

Example 6.2.11. Fix a prime number p and consider the elementary abelian p-group of
rank r, that is, G = µrp, isomorphic to the additive group underlying the r-dimensional
vector space over the field Fp with p elements. If R = Fp, or more generally, if R is a field
of characteristic p, then the cohomology ring H•(G,R) was described in Corollary 6.2.2.

Example 6.2.12. Now let us consider the integral cohomology for G = µrp. Additively it
is given by

H•(G,Z) ∼= Z×Fp (Fp[s1, . . . , sr]〈∂′(tI)〉) ,

where I runs over those subsets of {1, . . . , r} with at least 2 elements.

If p is odd, this is indeed an isomorphism of strictly graded algebras, where the ∂′(tI) are
multiplied among themselves as elements of the corresponding Koszul complex K.

For p = 2, one has

H•(G,Z) ∼= Z×F2 F2

[
t21, . . . , t

2
r ; tI

∑
i∈I

ti

]
, where tI =

∏
i∈I

ti

and the second factor is considered as a sub algebra of the polynomial ring F2[t1, . . . , tr]. In-
deed, that polynomial ring is isomorphic to H•(G,F2) by Corollary 6.2.2, and the Böckstein
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homomorphism sends t′I = tI to

∂′(tI) =
∑
ν

(−1)ν−1sνti1 · · · t̂ν · · · tia

=
∑
ν

t2νti1 · · · t̂ν · · · tia

= tI
∑
i∈I

ti,

as the signs disappear because we are in characteristic 2, and si = t2i .

In compact form, the Böckstein derivation is
∑

i t
2
i
∂
∂ti

.

6.3 Examples and Earlier Results

6.3.1 The Integral Cohomology Ring for a Product of Two Cyclic
Groups

Theorem 6.3.1. Suppose that we have a finite abelian group G with elementary divisors
n1|n2. Write n2 = mn1. Then we have

H•(G,Z) ∼=
Z[a, b, c]

(n1a, n2b, n1c, c2)
where |a| = |b| = 2; |c| = 3

in all cases except when n1 and n2 are both even with m odd, in which case we get

H•(G,Z) ∼=
Z[a, b, c](

n1a, n2b, n1c, c2 −
(
n1

2

)
ab (a+mb)

) where |a| = |b| = 2; |c| = 3.

Proof. Since we have taken our coefficients in Z, Theorem 6.2.9 applies. The legal choices
for I are {1}, {2} and {1, 2}. These choices for I give us the following generators:

1. I = {1}: ∂′(t1) = s1, by Remark 6.2.8.

2. I = {2}: ∂′(t2) = s2, by Remark 6.2.8.
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3. I = {1, 2}:

∂′(tI) =
1

n`(I)
∂(tI)

=
1

n1

∂(t1t2)

=
1

n1

(∂(t1)t2 − t1∂(t2))

=
1

n1

(n1s1t2 − t1n2s2)

= s1t2 −ms2t1

So setting a = s1, b = s2 and c = s1t2 −ms2t1, we have that |a| = |b| = 2; |c| = 3, and

n1a = n1s1

= 0

n2b = n2s2

= 0

n1c = n1(s1t2 −ms2t1)

= n1s1︸︷︷︸
=0

t2 − n2s2︸︷︷︸
=0

t1

= 0

We also see that

c2 = (s1t2 −ms2t1) (s1t2 −ms2t1)

= s2
1t

2
2 −ms1s2t2t1 −ms1s2t1t2 +m2s2

2t
2
1

= s2
1t

2
2 +ms1s2t1t2 −ms1s2t1t2 +m2s2

2t
2
1

= s2
1t

2
2 +m2s2

2t
2
1

Now we have the following cases.
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1. n1 is even ⇒ n2 is also even: Then t21 = n1

2
s1 and t22 = n2

2
s2, and so we have

c2 =
n2

2
s2

1s2 +m2
(n1

2

)
s1s

2
2

=
n2

2
s2

1s2 +

(
m2n1

2

)
s1s

2
2

=
n2

2
s2

1s2 +
(mn2

2

)
s1s

2
2

=
(n2

2

)
ab (a+mb)

=
(mn1

2

)
ab (a+mb)

(a) If m is even, then m
2
∈ Z, and since n1a = 0, we get c2 = 0 in this case.

Therefore

H•(G,Z) ∼=
Z[a, b, c]

(n1a, n2b, n1c, c2)
where |a| = |b| = 2; |c| = 3.

(b) If m is odd, then writing m = 2k + 1, we have

mn1

2
a =

(2k + 1)n1

2
a

= k n1a︸︷︷︸
=0

+
n1

2
a

=
n1

2
a

so the above equation simplifies to c2 =
(
n1

2

)
ab (a+mb), and therefore

H•(G,Z) ∼=
Z[a, b, c](

n1a, n2b, n1c, c2 −
(
n1

2

)
ab (a+mb)

) where |a| = |b| = 2; |c| = 3.

2. n1 is odd and n2 is even: Then m is even, t21 = 0 and t22 = n2

2
s2, and so we have

c2 =
n2

2
s2

1s2

=
mn1

2
a2b

=
m

2︸︷︷︸
∈Z

n1a
2︸︷︷︸

=0

b

= 0
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Therefore we have that

H•(G,Z) ∼=
Z[a, b, c]

(n1a, n2b, n1c, c2)
where |a| = |b| = 2; |c| = 3.

3. n1 and n2 are odd: Then t21 = 0 = t22. Thus c2 = 0, and we have

H•(G,Z) ∼=
Z[a, b, c]

(n1a, n2b, n1c, c2)
where |a| = |b| = 2; |c| = 3.

We can now apply this result to compare with the known results from [9], [17] and [12].

Example 6.3.2. Let p be an odd prime. Let ν1 ≤ ν2 be positive integers. Let G =
Zpν1 ⊕ Zpν2 . Then pν2−ν1 is odd, so applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(pν1a, pν2b, pν1c, c2)
where |a| = |b| = 2; |c| = 3.

This agrees with Corollary 1 from [9], with our relation c2 coming from the author’s (2c).

Example 6.3.3. Let ν1 ≤ ν2 be positive integers. Let G = Z2ν1 ⊕Z2ν2 . Then we have two
cases:

1. If ν1 < ν2, then applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(2ν1a, 2ν2b, 2ν1c, c2)
where |a| = |b| = 2; |c| = 3.

This agrees with Corollary 7.4 from [17], with our relation c2 coming from the author’s
(2c1).

2. If ν1 = ν2, then applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(2ν1a, 2ν1b, 2ν1c, c2 − 2ν1−1ab(a+ b))
where |a| = |b| = 2; |c| = 3.

This agrees with Corollary 7.4 from [17], with our relation c2−2ν1−1ab(a+ b) coming
from the author’s (2c1).
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Example 6.3.4. Let G = Z2 ⊕ Z4. Then applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(2a, 4b, 2c, c2)
where |a| = |b| = 2; |c| = 3.

This agrees with Proposition 3.7 in [12], except that the author omits the relation 2c.

Example 6.3.5. Let p be a prime. Let G = Zp ⊕ Zp.

1. If p is odd, then applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(pa, pb, pc, c2)
where |a| = |b| = 2; |c| = 3.

This agrees with Proposition 4.1 in [12], except that the author omits the annihilator
relations.

2. If p = 2, then applying Theorem 6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(2a, 2b, 2c, c2 − ab(a+ b))
where |a| = |b| = 2; |c| = 3.

This agrees with Proposition 4.1 in [12], except that the author omits the annihilator
relations.

Example 6.3.6. Let p be a prime and let G = Zp ⊕ Zp2. We may assume that p is odd,
since the p = 2 case has been handled above in Proposition 3.7. Then applying Theorem
6.3.1 gives

H•(G,Z) ∼=
Z[a, b, c]

(pa, p2b, pc, c2)
where |a| = |b| = 2; |c| = 3.

This agrees with Proposition 4.3 in [12].

6.3.2 Comparison With a Result from [12] for G = Zp ⊕ Zp ⊕ Zp

Here we compare Example 6.2.12 with the case of Proposition 4.2 in [12] in which p is odd.
The p = 2 case is analogous, but requires some more work since we no longer have the
relations t2j = 0.
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Example 6.3.7. Let p be an odd prime. Let G = Zp ⊕ Zp ⊕ Zp. Then we obtain the
following generators for H•(G,Z) over Z.

α := ∂′(t1)

= s1

β := ∂′(t2)

= s2

γ := ∂′(t3)

= s3

µ := ∂′(t{12})

=
1

p
∂(t1t2)

=
1

p
(ps1t2 − pt1s2)

= s1t2 − t1s2

χ := ∂′(t{31})

=
1

p
∂(t3t1)

=
1

p
(ps3t1 − pt3s1)

= s3t1 − t3s1

ν := ∂′(t{23})

=
1

p
∂(t2t3)

=
1

p
(ps2t3 − pt2s3)

= s2t3 − t2s3

ξ := ∂′(t{123})

=
1

p
∂(t1t2t3)

=
1

p
(ps1t2t3 − pt1s2t3 + pt1t2s3)

= s1t2t3 − t1s2t3 + t1t2s3
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We verify one of each type of relation. the verifications of the other relations of the same
type are completely analogous.

µ2 = (s1t2 − t1s2)(s1t2 − t1s2)

= s2
1t

2
2 − s1s2t2t1 − s1s2t1t2 + t21s

2
2

= 0, since t21 = t22 = 0 and t2t1 = −t1t2
ξ2 = (s1t2t3 − t1s2t3 + t1t2s3)(s1t2t3 − t1s2t3 + t1t2s3)

= 0, since t21 = t22 = t23 = 0

νχ = (s2t3 − t2s3)(s3t1 − t3s1)

= s2s3t3t1 − s1s2t
2
3 − s2

3t2t1 + s1s3t2t3

= s3(s1t2t3 − t1s2t3 + t1t2s3), since t23 = 0

= γξ

µξ = (s1t2 − t1s2)(s1t2t3 − t1s2t3 + t1t2s3)

= s2
1t

2
2t3 + s1s2t1t2t3 − s1s3t1t

2
2 − s1s2t1t2t3 + s2

2t
2
1t3 − s2s3t

2
1t2

= 0, since t21 = t22 = t23 = 0

αν + βχ+ γµ = s1(s2t3 − t2s3) + s2(s3t1 − t3s1) + s3(s1t2 − t1s2)

= s1s2t3 − s1s3t2 + s2s3t1 − s1s2t3 + s1s3t2 − s2s3t1

= 0

So putting it all together, we have

H•(G,Z) ∼=
Z[α, β, γ, µ, χ, ν, ξ](

pα, pβ, pγ, pµ, pχ, pν, pξ, µ2, ν2, χ2, ξ2,
νµ− αξ, νχ− γξ, µν − βξ, µξ, χξ, νξ, αν + βχ+ γµ

)
where |α| = |β| = |γ| = 2, |µ| = |χ| = |ν| = 3, |ξ| = 4.

The author again omits the annihilation relations.
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Chapter 7

The Tate Resolution and Hochschild
Cohomology for Monic Polynomials

7.1 Introduction

In this chapter, we will generalize the setup from Chapter 5. This will enable us to obtain
some results on Hochschild Cohomology. In particular we will improve on a result from
[11] on the multiplicative structure of the Hochschild cohomology ring of a hypersurface

ring R[x]
(f(x))

, where f(x) is monic.

7.2 Preliminaries

In our earlier setup we have
RG

ε

!!
R

η
==

R

with
η : R → RG

r 7→ r · 1
ε : RG → R∑

x∈G axx 7→
∑

x∈G ax
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More generally, for a supplemented algebra A over K (see Definition 3.2.1), we have

A
ε

  
K

η=include
>>

K

where A is projective over K. With this setup, we have

ExtA(K,K) ∼= HH(A/K,K) ∼= ExtAev(A,K)

Remarks:

1. The augmentation ε makes K into an A-module, so that it makes sense to write down
the expression ExtA(K,K).

2. The outer terms in the above line are isomorphic by Theorem 2.8a on p167 of [8],
with Λ = Aop,Γ = A,Σ = K,B = K,C = K.

7.3 One Monic Polynomial

7.3.1 Preliminaries

In this chapter we will put the preceding work into a more general framework, which easily
specializes to the desired case of the group ring for a finite abelian group. This more
general framework will allow us to obtain some new results on Hochschild cohomology.

Let f(x) ∈ R[x] be monic. Define

Ra :=
R[x]

(f(x))

Rb := Ra ⊗R Ra

∼=
R[x′, x′′]

(f(x′), f(x′′))

Rc := Rb ⊗Ra Rb

= (Ra ⊗R Ra)⊗Ra (Ra ⊗R Ra)
∼= Ra ⊗R Ra ⊗R Ra =: R⊗3

a

∼=
R[x′, x, x′′]

(f(x′), f(x), f(x′′))

where our notation means
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1. in Rb:

x′ = x⊗ 1

x′′ = 1⊗ x

2. in Rc:

x′ = x⊗ 1⊗ 1

x = 1⊗ x⊗ 1

x′′ = 1⊗ 1⊗ x

i.e. we identify x′ with the leftmost copy of Ra, x
′′ with the rightmost copy of Ra,

and x with both of the middle copies of Ra.

We will need to turn Rb into a bimodule over Ra. It will agree best with the above notation
if we make the following definitions:

As a right Ra-module: Write Rb
∼= R[x′,x]

(f(x′),f(x))
. Then define the R-algebra homomorphism

α : R[x]
(f(x))

→ R[x′,x]
(f(x′),f(x))

x 7→ x.

In this way, Rb
∼= Ra[x′]

(f(x′))
becomes a free Ra-module.

As a left Ra-module: Write Rb
∼= R[x,x′′]

(f(x),f(x′′))
. Then define the R-algebra homomorphism

β : R[x]
(f(x))

→ R[x,x′′]
(f(x),f(x′′))

x 7→ x.

In this way, Rb
∼= Ra[x′′]

(f(x′′))
becomes a free Ra-module.

Specializing to the defining polynomial f(x) = xh − 1 for the group ring of a finite cyclic
group of order h gives

Ra = RG,

Rb = RGev,

Rc = RG⊗
3

,

∼=
R[x′, x, x′′]

(f(x′), f(x), f(x′′))
,

∼= R[G×G×G].
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In §7.5.1, we will show that our more general setup does indeed specialize to our earlier
setup.

7.3.2 Difference Quotients

To streamline what follows, we introduce the following notation:

∆x := x′′ − x′ ∈ R[x′′, x′];

∆f := f(x′′)− f(x′) ∈ R[x′′, x′].

Observe that ∆x = x′′ − x′ is monic, and therefore it is a non zero divisor.

Now let us consider the polynomial ∆f = f(x′′) − f(x′). If we set x′′ = x′, then the
polynomial ∆f evaluates to zero. Therefore ∆x = x′′ − x′ divides ∆f , and we can write

∆f = (∆x)(∆(x′′, x′)), for some ∆(x′′, x′) ∈ R[x′′, x′].

We may think of the expression ∆(x′′, x′) as the quotient

∆(x′′, x′) =
f(x′′)− f(x′)

x′′ − x′
.

This leads us to the following definition.

Definition 7.3.1. For independent variables z and y, define the difference quotient

∆(z, y) :=
f(z)− f(y)

z − y
.

Remark: Whenever we write such a quotient of polynomials, we of course mean the
polynomial which multiplies with the denominator to yield the numerator. For this to be
well-defined, the denominator must be a non zero divisor which divides the numerator.
We have explained why this holds for the particular difference quotient ∆(x′′, x′). Similar
observations hold for all the difference quotients throughout this chapter.

We record some key properties of these difference quotients for later use.

First, it is easy to see that ∆ is symmetric, i.e. that ∆(z, y) = ∆(y, z) for any vari-
ables y and z.

Second, we record a form for ∆(z, y) which we will need later.
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Lemma 7.3.2. For independent variables y and z, we have

∆(z, y) =
∑
i≥1

f (i)(y)(z − y)i−1.

Proof. By definition, we have

∆(z, y) =
f(z)− f(y)

z − y

Define g(z) = f(z) − f(y) ∈ (R[y])[z]. We view g as a polynomial in the variable z with
coefficients from the ring R[y]. Writing the Taylor expansion for g(z) about z = y (using
the divided derivatives as in Remark 2.6.9) gives

g(z) =
g(y)

0!
+
g′(y)

1!
(z − y) +

g′′(y)

2!
(z − y)2 +

g′′′(y)

3!
(z − y)3 + · · ·

= f (1)(y)(z − y) + f (2)(y)(z − y)2 + f (3)(y)(z − y)3 + · · ·

⇒ ∆(z, y) =
g(z)

z − y
= f (1)(y) + f (2)(y)(z − y) + f (3)(y)(z − y)2 + · · ·

=
∑
i≥1

f (i)(y)(z − y)i−1.

7.3.3 The Tate Resolution

We are now able to give the Tate resolution on which we will base the rest of the results
of this chapter.
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Theorem 7.3.3. With the above setup, the Tate resolution for Ra over Rb is given by

0

Ra

OO

0 Rb · 1

ε:
x′ 7→ x
x′′ 7→ x

OO

1 Rb · τ
∆x

OO

2 Rb · σ

∆(x′′,x′)

OO

3 Rb · τσ
∆x

OO

...

∆(x′′,x′)

OO

2i Rb · σ(i)

∆(x′′,x′)

OO

2i+ 1 Rb · τσ(i)

∆x

OO

2i+ 2 Rb · σ(i+1)

∆(x′′,x′)

OO

...

OO

F
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Proof. Take

P =
Ra[x

′, x′′]

(f(x′))
∼= Rb[x

′′]

I = (x′′ − x′) ⊂ P

J = (f(x′′)− f(x′)) ⊂ P

As above, (x′′ − x′) is a non zero divisor which divides f(x′′) − f(x′). Therefore f(x′′) −
f(x′) ∈ (x′′ − x′), so that J ⊆ I as required.

Since f is monic, f(x′′)− f(x′) is a monic non zero divisor. So as per our second example
of a Koszul regular sequence, I and J are generated by Koszul regular sequences.

Then we have:

P

J
=

Ra[x′, x′′]
(f(x′))

(f(x′′)− f(x′))

∼=
Ra[x

′, x′′]

(f(x′′), f(x′))
∼= Rb

P

I
=

Ra[x′, x′′]
(f(x′))

(x′′ − x′)

∼=
Ra[x

′]

(f(x′))
∼= Ra

What is A = (aij)?

f(x′′)− f(x′) = ∆f

= (∆(x′′, x′))(∆x)

So that A = (aii) = (∆(x′′, x′)).

The hypotheses of Tate’s Theorem are satisfied, and so we get a resolution of P
I
∼= Ra over

P
J
∼= Rb:

F = Rb〈τ, σ〉
∂(τ) = ∆x

∂(σ) = (∆(x′′, x′))τ.
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We will define the cup product using a diagonal approximation here just as we did earlier.
We will also take advantage of the fact that, just as before, the cup product is homotopic
to the Yoneda product.

7.3.4 A Diagonal Approximation

As F is a DG Rb-algebra, we may use the maps α and β to form the tensor product F⊗RaF.
By construction, this will be a complex of free Rc-modules, as Rb ⊗Ra Rb

∼= Rc.

However, we wish to turn F⊗Ra F into a resolution of Ra over Rb. The needed ingredient
to do this is an R-algebra homomorphism Φ0 : Rb → Rb ⊗Ra Rb such that the following
diagram commutes:

Rb Ra ⊗Ra Rb

∼=oo

Rb
Φ0// Rb ⊗Ra Rb

ε⊗1

77

1⊗ε

''
Rb Rb ⊗Ra Ra.∼=
oo

Define
Φ0 : Rb → Rb ⊗Ra Rb = Rc

x′ 7→ x′

x′′ 7→ x′′

Proposition 7.3.4. The map Φ0 is an R-algebra homomorphism that makes the diagram
commute, and makes Rc into a finite free Rb-module. In this way, F⊗Ra F becomes a DG
Rb-algebra with divided powers whose terms are free Rb-modules and whose sole homology
is Ra in degree 0.

Proof. It is clear from construction that Φ0 is an R-algebra homomorphism, which makes
the diagram commute, and which endows Rc with an Rb-module structure. It is also clear
that Rc

∼= Rb⊗RaRb is a finite free Rb-module, based on {1, x, . . . , xd−1}, where d = deg(f)
is the degree of the polynomial f .
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Now observe that F→ Ra is an Rb-resolution, and an Ra-homotopy equivalence, as F (via
either α or β) and Ra itself are Ra-projective resolutions of Ra. This implies that

F⊗Ra F ∼homotopy equivalence over Ra Ra ⊗Ra Ra
∼= Ra

and therefore F⊗Ra F→ Ra is also an Rb-resolution of Ra, where the Rb-module structure
on F⊗Ra F is induced by Φ0.

With this setup, we require this modified definition.

Definition 7.3.5. Given a projective resolution F ε // Ra
// 0 over the ring Rb, a

diagonal approximation is a map of complexes of Rb-modules

Φ : F→ F⊗Ra F,

(where F⊗Ra F is considered as a complex of Rb-modules via Φ0) that induces an isomor-
phism in homology, and which is compatible with the augmentation ε, in that the following
diagram of complexes of Rb-modules commutes:

F Ra ⊗Ra F
∼=oo

F Φ // F⊗Ra F
ε⊗1

88

1⊗ε

&&

ε1

OO

ε2
��
F F⊗Ra Ra.∼=
oo

In other words, identifying F with Ra⊗Ra F and F⊗Ra Ra via the canonical isomorphisms,
we have

(ε⊗ 1)Φ = idF = (1⊗ ε)Φ , or equivalently,
ε1Φ = idF = ε2Φ.

Now in complete analogy with Chapter 4, we make the following remarks.

1. The Tate resolution F is a DG Ra-algebra with divided powers.

2. The resolution F⊗Ra F is also a DG Ra-algebra with divided powers.

Define the ideal
I = (x− x′, x′′ − x) ⊂ Rc.
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Theorem 7.3.6. The following diagram defines a DG-algebra homomorphism Φ : F →
F⊗RaF which is a diagonal approximation, where the maps in higher degrees are determined
by the maps in degrees zero, one and two.
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0 0

Ra

OO

Ra

OO

0 Rb · 1

ε:
x′ 7→ x
x′′ 7→ x

OO

Φ0

x′ 7→x′;x′′ 7→x′′
// Rc

ε̃:

x′ 7→ x
x 7→ x
x′′ 7→ x

OO

1 Rb · τ

∆x

OO

Φ1

τ 7→τ ′+τ ′′
// Rc(τ

′⊕ τ ′′)

∂:
τ ′ 7→ x− x′
τ ′′ 7→ x′′ − x

OO

2 Rb · σ

∆(x′′,x′)

OO

Φ2

σ 7→ σ′ + σ′′ − (f (2)(x) + y)τ ′τ ′′,
where y ∈ I

// Rc(σ
′⊕ τ ′τ ′′

⊕
σ′′)

∂:
σ′ 7→ f(x)−f(x′)

x−x′ τ ′

σ′′ 7→ f(x′′)−f(x)
x′′−x τ ′′

OO

3 Rb · τσ

∆x

OO

Φ3 // Rc(τ
′σ′
⊕

τ ′′σ′
⊕

τ ′σ′′
⊕

τ ′′σ′′)

∂

OO

...

∆(x′′,x′)

OO

...

OO

2i Rb · σ(i)

∆(x′′,x′)

OO

Φ2i // Rc

(
(
⊕

k+l=i(σ
′)(k)(σ′′)(l))

⊕
(
⊕

k+l=i−1 τ
′τ ′′(σ′)(k)(σ′′)(l))

)
OO

2i+ 1 Rb · τσ(i)

∆x

OO

Φ2i+1 // Rc

(⊕
k+l=i(τ

′(σ′)(k)(σ′′)(l))
⊕

(τ ′′(σ′)(k)(σ′′)(l))
)∂

OO

2i+ 2 Rb · σ(i+1)

∆(x′′,x′)

OO

Φ2i+2 // Rc

(
(
⊕

k+l=i+1(σ′)(k)(σ′′)(l))
⊕

(
⊕

k+l=i τ
′τ ′′(σ′)(k)(σ′′)(l))

)∂

OO

...

OO

...

OO

F Φ // F⊗Ra F
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Remark: We intend to dualize into a trivial representation in order to compute the cup
products on HomRb(F, A), for some Ra-algebra A. Therefore it is enough to know Φ
modulo I · F, because our augmentation sends x′ 7→ x;x′′ 7→ x, whence everything in I · F
is killed.

The remainder of this section will complete the proof of this Theorem. While it is fairly
easy to obtain the maps Φ0 and Φ1, the real work lies in making a correct choice for Φ2.

Define
Φ0 : Rb → Rc

x′ 7→ x′

x′′ 7→ x′′

As before, Φ0 is a ring homomorphism which allows us to restrict scalars from Rc to Rb.

How do we choose Φ1(τ)? The following square must commute:

∆x � Φ0 // ∆x

τ �
Φ1

//_

OO

?.
_
∂F⊗F

OO

We check explicitly that Φ1(τ) = τ ′ + τ ′′ works.

∂ : τ ′ + τ ′′ 7→ (x− x′) + (x′′ − x) = x′′ − x′ = ∆x

How do we choose Φ2(σ)? The square

0

∆(x′′, x′)τ � // ∆(x′′, x′)(τ ′ + τ ′′)

∂F⊗F

OO

σ
_

OO

� // ?
_
∂F⊗F

OO

must commute.
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We first show that some choice of Φ2(σ) exists which makes the required square commute.
Because ∂F⊗F is exact, it is enough to prove that ∂F⊗F(∆(x′′, x′)(τ ′ + τ ′′)) = 0. We have

∂F⊗F(∆(x′′, x′)(τ ′ + τ ′′))

= ∆(x′′, x′)∂F⊗F(τ ′ + τ ′′)

= ∆(x′′, x′)((x− x′) + (x′′ − x)

= ∆(x′′, x′)(x′′ − x′)
= f(x′′)− f(x′)

= 0 in Rc.

We have proved that some choice of Φ2(σ) exists which makes the square commute. Next,
we prove that we can choose Φ2(σ) of a certain convenient form.

Lemma 7.3.7. There exists a choice for Φ2(σ) of the form

Φ2(σ) = σ′ + σ′′ + a(x′, x, x′′)τ ′τ ′′

for some a(x′, x, x′′) ∈ Rc.

Proof. The element Φ2(σ) lies in (F⊗Ra F)2, and {σ′, σ′′, τ ′τ ′′} is an Rc-basis of (F⊗Ra F)2.
So we may write Φ2(σ) = uσ′ + vσ′′ + wτ ′τ ′′, for some u, v, w ∈ Rc. Applying ∂F⊗RaF to
this expression gives

∂F⊗RaF(uσ′ + vσ′′ + wτ ′τ ′′)

= u∆(x, x′)τ ′ + v∆(x′′, x)τ ′′ + w(x− x′)τ ′′ − w(x′′ − x)τ ′

and since the square commutes, we must have

u∆(x, x′)τ ′ + v∆(x′′, x)τ ′′ + w(x− x′)τ ′′ − w(x′′ − x)τ ′ = ∆(x′′, x′)(τ ′ + τ ′′). (7.1)

Now, equating coefficients of τ ′ and τ ′′ in equation (7.1) yields the two equations

u∆(x, x′)− w(x′′ − x) = ∆(x′′, x′) (7.2)

v∆(x′′, x) + w(x− x′) = ∆(x′′, x′) (7.3)

Considering equation (7.2) modulo (x′′ − x), and equation (7.3) modulo (x− x′) yields

(1− u)∆(x, x′) ≡ 0 mod (x′′ − x) (7.4)

(1− v)∆(x′′, x) ≡ 0 mod (x− x′) (7.5)
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Equation (7.4) is an equation in Rc
((x′′−x))

∼= Rb. The Tate resolution of Ra over Rb shows

that annRb∆(x, x′) is (x − x′), which implies that 1 − u ∈ (x − x′, x′′ − x)Rc. So we can
write u = 1 + ũ, for some ũ ∈ (x − x′, x′′ − x)Rc. Write ũ = u1(x − x′) + u2(x′′ − x), for
some u1, u2 ∈ Rc. Then

∂(u1τ
′σ′ + u2τ

′′σ′)

= u1[(x− x′)σ′ − τ ′∆(x, x′)τ ′] + u2[(x′′ − x)σ′ − τ ′′∆(x, x′)τ ′]

= [u1(x− x′) + u2(x′′ − x)]σ′ + u2∆(x, x′)τ ′τ ′′

= ũσ′ + u2∆(x, x′)τ ′τ ′′

which implies that

ũσ′ = ∂(u1τ
′σ′ + u2τ

′′σ′)− u2∆(x, x′)τ ′τ ′′. (7.6)

From our earlier setup, we have

uσ′ = (1 + ũ)σ′

= σ′ + ũσ′

=︸︷︷︸
equation 7.6

σ′ + (∂(u1τ
′σ′ + u2τ

′′σ′)− u2∆(x, x′)τ ′τ ′′)

so we can replace uσ′ with σ′ at the cost of adding a boundary and modifying the coefficient
of τ ′τ ′′.

Similarly by analyzing equation (7.5) we can replace vσ′′ with σ′′ at the cost of adding
another boundary and further modifying the coefficient of τ ′τ ′′.

We have shown that we may choose Φ2(σ) in the desired form, and we are finished.

The determination of the coefficient of τ ′τ ′′ is achieved by the following Lemma.

Lemma 7.3.8. The diagram

∆(x′′, x′)τ � // ∆(x′′, x′)(τ ′ + τ ′′)

σ
_

OO

� // σ′ + σ′′ + a(x′, x, x′′)τ ′τ ′′
_
∂F⊗F

OO

commutes modulo I2 · F if and only if a ≡ −f (2)(x) mod I.
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Proof. All congruences in this proof are modulo I2 · F unless otherwise stated.

First, assume that a + f (2)(x) ∈ I. Then (a + f (2)(x))I ⊆ I2. To prove that the diagram
commutes modulo I2 · F, we must show that

∆(x′′, x′)(τ ′ + τ ′′)

≡ ∂F⊗F(σ′ + σ′′ − f (2)(x)τ ′τ ′′)

= ∆(x, x′)τ ′ + ∆(x′′, x)τ ′′ − f (2)(x)[(x− x′)τ ′′ − τ ′(x′′ − x)] (7.7)

so, equating coefficients of τ ′ and τ ′′ in equation (7.7), we are finished if we can prove both
of

∆(x′′, x′) ≡ ∆(x, x′) + f (2)(x)(x′′ − x) (7.8)

∆(x′′, x′) ≡ ∆(x′′, x)− f (2)(x)(x− x′) (7.9)

Proof of (7.8): Applying Lemma 7.3.2 gives

∆(x′′, x′) = f (1)(x′) + f (2)(x′)(x′′ − x′) + terms in I2

∆(x, x′) = f (1)(x′) + f (2)(x′)(x− x′) + terms in · F
f (2)(x)(x′′ − x) = f (2)(x′ + (x− x′))(x′′ − x)

= [f (2)(x′) + terms in (x− x′)](x′′ − x)

≡ f (2)(x′)(x′′ − x)

so the RHS of (7.8) is congruent to

= f (1)(x′) + f (2)(x′)(x− x′) + f (2)(x′)(x′′ − x)

= f (1)(x′) + f (2)(x′)(x′′ − x′)
≡ ∆(x′′, x′)

as required.

Proof of (7.9): Applying Lemma 7.3.2 gives

∆(x′′, x′) = ∆(x′, x′′)

= f (1)(x′′) + f (2)(x′′)(x′ − x′′) + terms in I2

∆(x′′, x) = ∆(x, x′′)

= f (1)(x′′) + f (2)(x′′)(x− x′′) + terms in I2

f (2)(x)(x− x′) = f (2)(x′′ + (x− x′′))(x− x′)
= [f (2)(x′′) + terms in (x− x′′)](x− x′)
≡ f (2)(x′′)(x− x′)
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so the RHS of (7.9) is congruent to

= f (1)(x′′) + f (2)(x′′)(x− x′′)− f (2)(x′′)(x− x′)
= f (1)(x′′) + f (2)(x′′)(x′ − x′′)
≡ ∆(x′′, x′)

as required.

We have shown that the diagram commutes modulo I2 · F, as required.

Now assume that we have made a choice for the coefficient a which makes the diagram
commute modulo I2 · F. We will show that this requires a ≡ −f (2)(x) mod I.

Applying the Leibniz rule gives

∂(τ ′τ ′′) = (x− x′)τ ′′ − τ ′(x′′ − x) (7.10)

Then by all the earlier definitions, for the diagram to commute modulo I2 · F we require

∆(x′′, x′)(τ ′ + τ ′′) ≡ ∂(σ′ + σ′′ + a(x′, x, x′′)τ ′τ ′′)

= ∆(x, x′)τ ′ + ∆(x′′, x)τ ′′ + a(x− x′)τ ′′ − aτ ′(x′′ − x) (7.11)

Equating the coefficients of τ ′ and τ ′′ in equation (7.11) gives the two equations

∆(x, x′)−∆(x′′, x′) ≡ a(x′′ − x) (7.12)

∆(x′′, x′)−∆(x′′, x) ≡ a(x− x′) (7.13)

In equation (7.12), setting x′′ = x kills the left hand side, thus we can find an a to sat-
isfy the equation. In equation (7.13), setting x′ = x kills the left hand side, thus we can
find an a to satisfy the equation. But these two choices of a might not agree with each other.

Applying Lemma 7.3.2 to the LHS of equation (7.12) gives

∆(x, x′) = f (1)(x′) + f (2)(x′)(x− x′) + terms in I2

∆(x′′, x′) = f (1)(x′) + f (2)(x′)(x′′ − x′) + terms in I2

⇒ ∆(x, x′)−∆(x′′, x′) ≡ f (2)(x′)(x− x′′)
= f (2)(x+ (x′ − x))(x− x′′)
= [f (2)(x) + terms in (x′ − x)](x− x′′)
≡ f (2)(x)(x− x′′)
≡ −f (2)(x)(x′′ − x) mod I2 (7.14)
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Applying Lemma 7.3.2 to the LHS of equation (7.13) gives

∆(x′′, x′) = ∆(x′, x′′)

= f (1)(x′′) + f (2)(x′′)(x′ − x′′) + terms in I2

∆(x′′, x) = ∆(x, x′′)

= f (1)(x′′) + f (2)(x′′)(x− x′′) + terms in I2

⇒ ∆(x′′, x′)−∆(x′′, x) ≡ f (2)(x′′)(x′ − x)

= f (2)(x+ (x′′ − x))(x′ − x)

= [f (2)(x) + terms in (x′′ − x)](x′ − x)

≡ f (2)(x)(x′ − x)

≡ −f (2)(x)(x− x′) mod I2 (7.15)

Now comparing lines (7.12), (7.13) (7.14) and (7.15), we have the identities:

(a+ f (2)(x))(x− x′) ≡ 0 mod I2 (7.16)

(a+ f (2)(x))(x′′ − x) ≡ 0 mod I2 (7.17)

Define
y := a+ f (2)(x)

We are finished if we can prove that y ∈ I. We want to determine all the possible choices
for y modulo I which simultaneously satisfy

y(x− x′) ≡ 0 mod I2 (7.18)

y(x′′ − x) ≡ 0 mod I2 (7.19)

We claim that any such y is of the form

y = u(x)(x− x′) + v(x)(x′′ − x) mod I2 (7.20)

for some u(x), v(x). Using the two-variable Taylor expansion in variables (x′, x′′) centered
at (x, x), we obtain

y = y0(x) + y1(x)(x− x′) + y2(x)(x′′ − x) + terms in I2

With this notation, we must have that

y0(x) = 0 (7.21)
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If not, then notice that augmentation sends x′ 7→ x;x′′ 7→ x;x 7→ x, so if y0(x) was not
zero before augmentation, it will remain non-zero after augmentation. But then equations
(7.18) and (7.19) would not hold. Thus y0(x) = 0 must be true. Therefore the claim on
line (7.20) also holds. But this says that

y ∈ I (7.22)

⇒ a ≡ −f (2)(x) mod I (7.23)

as required.

Theorem 7.3.6 has exhibited one correct diagonal approximation. It is clear that the
following corollary gives all the correct choices.

Corollary 7.3.9. All choices for Φ are defined by:

Φ0 : x′ 7→ x′

Φ0 : x′′ 7→ x′′

Φ1 : τ 7→ τ ′ + τ ′′ + ∆(x′′, x′)∂(ω)
Φ2 : σ 7→ σ′ + σ′′ − (f (2)(x) + y)τ ′τ ′′ + ∆(x′′, x′)ω + ∂(η)

where ω ∈ (F⊗Ra F)2 satisfies ε1(ω) = 0 = ε2(ω), η ∈ (F⊗Ra F)3 satisfies ε1(η) = 0 = ε2(η)
(to ensure the diagram in Definition 7.3.5 will still commute in degrees 1 and 2), and y ∈ I.

Now we have established a diagonal approximation and can use it as before to determine
the multiplication in the Ext algebra.

7.4 Several Monic Polynomials

We now generalize the setup from the previous section to several monic polynomials. We
will later specialize to the case of the group ring for a finite abelian groupG = µh1×· · ·×µhr .
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7.4.1 A Diagonal Approximation

To generalize the definitions of Ra, Rb and Rc from one variable to r-many variables, we
now define

Sa =
R[x1, . . . , xr]

(fi(xi); 1 ≤ i ≤ r)
, where each fi(xi) is monic

Sb = Sa ⊗R Sa
∼=

R[x′1, x
′′
1, . . . , x

′
r, x
′′
r ]

(f1(x′1), f1(x′′1), . . . , fr(x′r), fr(x
′′
r))

Sc = Sb ⊗Sa Sb
∼=

R[x′1, x1, x
′′
1, . . . , x

′
r, xr, x

′′
r ]

(f1(x′1), f1(x1), f1(x′′1), . . . , fr(x′r), fr(xr), fr(x
′′
r))

Now for 1 ≤ i ≤ r, define the ideals

Ii = (xi − x′i, x′′i − xi) ⊂ Sc.

In generalization of the results from the previous section we will obtain a Tate resolu-
tion F // Sa over Sb, and a diagonal approximation Φ : F→ F⊗Sa F. (In exact analogy
to the previous section, we can form the tensor product F⊗Sa F.) That diagonal approx-
imation will be a DG-algebra homomorphism, so that we get an analogous commutative
diagram of complexes of Sb-modules to that in Theorem 7.3.6.

F = Sb〈τ1, . . . , τr ; σ1, . . . , σr〉, |τi| = 1; |σi| = 2

∂ =
r∑
i=1

[
(x′′i − x′i)

∂

∂τi
+ ∆i(x

′′
i , x

′
i)τi

∂

∂σi

]
, where ∆i(x

′′
i , x

′
i) =

fi(x
′′
i )− fi(x′i)
x′′i − x′i

Φ0(x′i) = x′i
Φ0(x′′i ) = x′′i
Φ1(τi) = τ ′′i + τ ′i

Φ2(σi) = σ′i + σ′′i − (f
(2)
i (xi) + yi)τ

′
iτ
′′
i where yi ∈ Ii

and these assignments determine a unique homomorphism of algebras with divided powers.
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7.4.2 The Dual of the Tate Resolution

Let A be an Sb-module on which every (x′′i − x′i) acts as 0, equivalently, A is a symmetric
Sb-module, equivalently, A is an Sa-module. Then dualizing F into A via HomSb(−, A)
(and denoting HomSb(F, Sb) by F∗) gives

HomSb(F, A) (7.24)
∼=︸︷︷︸

by 2.2.3

A⊗Sb F∗ (7.25)

∼=

(
A⊗Sb Sb[s1, . . . , sr]⊗Sb

∧
Sb

〈t1, . . . , tr〉, ∂ =
r∑
i=1

f ′i(xi)si
∂

∂ti

)
(7.26)

∼=︸︷︷︸
A is an Sa-module

(
A⊗Sa Sa[s1, . . . , sr]⊗Sa

∧
Sa

〈t1, . . . , tr〉, ∂ =
r∑
i=1

f ′i(xi)si
∂

∂ti

)
(7.27)

where si is a polynomial variable dual to σi, and ti is dual to τi.

The dualized differential is correct because, under HomSb(−, A),

• (x′′i − x′i) 7→ 0, and

• ∆i(x
′′
i , x

′
i) 7→ f ′i(xi).

The actual action of ∂∗ is determined in exactly the same way as in the case of group
algebras. As there, we may, temporarily, think of A ⊗Sa Sa(s) ⊗Sa

∧
Sa

(t) as a Koszul
complex, so that the differential can be written in this compact form.

7.4.3 The Action of ∂∗

As in Chapter 5, F∗ = HomSb(F, Sa) is a Hom complex. Therefore its differential is
determined by Definition 2.5.1, and obeys the Leibniz rule.

An Sb-basis for F is given by monomials ω = τKσ(N), where

• K = (K1, . . . , Kr) records the exterior powers of the τs which are present, i.e. τK =
τK1

1 · · · τKrr . Note that Kn ∈ {0, 1} for all n.

• N = (N1, . . . , Nr) ∈ Nr records the divided powers of the σs which are present, i.e.

σ(N) = σ
(N1)
1 · · ·σ(Nr)

r .
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Analogously to Chapter 5, we define the Sa-dual basis elements for HomSb(F, A) to be
SLTM , where

L = (L1, . . . , Lr),

M = (M1, . . . ,Mr),

and SLTM evaluates to 1 on τMσ(L), and evaluates to 0 on all other basis elements of
F. Note that each Mn ∈ {0, 1} for all n, since there are no other possibilities for the
corresponding τs.

Now to determine the effect of ∂∗ on an arbitrary SLTM , we evaluate

∂∗(SLTM)(τKσ(N))

= dR︸︷︷︸
=0

(SLTM)(τKσ(N))− (−1)|S
LTM |SLTMdF(τKσ(N)) (7.28)

= −(−1)|TM |SLTM

(
r∑
i=1

(x′′i − x′i)
∂τK

∂τi
σ(N) + ∆i(x

′′
i , x

′
i)τiτ

K ∂σ
(N)

∂σi

)
(7.29)

= −(−1)
∑r
n=1MnSLTM

(
r∑
i=1

(x′′i − x′i)
∂τK

∂τi
σ(N) + (−1)

∑
ν<iKν∆i(x

′′
i , x

′
i)τ

K′i
∂σ(N)

∂σi

)
(7.30)

where we define
K ′i = K + (0, . . . , 0, 1︸︷︷︸

position i

, 0, . . . , 0)

The expression on line (7.30) is congruent, modulo I · F, to

−(−1)
∑r
n=1MnSLTM

(
r∑
i=1

(−1)
∑
ν<iKνf ′i(xi)τ

K′i
∂σ(N)

∂σi

)
(7.31)

By the definition of SLTM , The ith term of expression (7.31) evaluates to 0 unless

• K ′i = K + (0, . . . , 0, 1︸︷︷︸
position i

, 0, . . . , 0) = M , and

• N ′ = N − (0, . . . , 0, 1︸︷︷︸
position i

, 0, . . . , 0) = L,
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in which case it evaluates to −(−1)
∑r
n=1Mn(−1)

∑
ν<iKνf ′i(xi).

Therefore we have

∂∗(SLTM)

= −(−1)
∑r
n=1Mn

 r∑
i=1

(−1)
∑
ν<iKνf ′i(xi)S

L+(0,...,0, 1︸︷︷︸
i

,0,...,0)

TM−(0,...,0, 1︸︷︷︸
i

,0,...,0)

(7.32)

We may, temporarily using the algebra structure of the Koszul complex, rewrite the dif-
ferential from line (7.32) in compact form as

∂∗(SLTM)

= −(−1)
∑r
n=1MnSL

r∑
i=1

f ′i(xi)Si
∂TM
∂Ti

(7.33)

The next Theorem says that we can replace the above differential with a simpler one, and
preserve the original cohomology groups.

Theorem 7.4.1. If we change the differential to

∂′(SLTM)

= SL
r∑
i=1

f ′i(xi)Si
∂TM
∂Ti

(7.34)

then we will still have the same cohomology groups.

Proof. This is proved in a way which is exactly analogous to the proof of Theorem 5.5.1.

7.4.4 Cochain Products

Theorem 7.4.2. Now let A be an Sa-algebra. The above choice of Φ defines the following
multiplicative structure on HomSb(F, A), which makes it into a DG-algebra, where si is a
polynomial variable dual to σi, and tj is dual to τj:

ti ∪ ti = f
(2)
i (xi)si (7.35)

ti ∪ tj + tj ∪ ti = 0, when i 6= j (7.36)

tj ∪ si = si ∪ tj (7.37)

sj ∪ si = si ∪ sj (7.38)
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(where f
(2)
i (xi) represents now the image of that element from Sa in A) and the elements tj

and si generate HomSb(F, A) with respect to the cup product, subject only to these relations.

Proof. For this section, unadorned tensor products are over Sa.

In complete analogy to Chapter 5, HomSb(F, A) is a DG-algebra.

1. ti ∪ ti = f
(2)
i (xi)si: We have ti ∪ ti = µ(ti⊗ ti)Φ1,1, and Φ1,1 : F2 → F1⊗F1. We only

need to look at index i here, since applying (ti ⊗ ti) will kill all other indices. So in
degree 2, the only basis element in the domain that we need to look at is σi. Recall
that

Φ(σi) = σ′i + σ′′i − f
(2)
i (xi)τ

′
iτ
′′
i

⇒ Φ1,1(σi) = −f (2)
i (xi)(τi ⊗ τi).

Applying µ(ti ⊗ ti) gives

µ(ti ⊗ ti)(−f (2)
i (xi)(τi ⊗ τi))

= −f (2)
i (xi)µ(ti ⊗ ti)(τi ⊗ τi)

= −f (2)
i (xi)(−1)µ(ti(τi)⊗ ti(τi))

= f
(2)
i (xi)µ(1⊗ 1)

= f
(2)
i (xi)

Thus ti ∪ ti evaluates to 0 on every basis element except σi, on which it evaluates to
f

(2)
i (xi). Therefore ti ∪ ti = f

(2)
i (xi)si, as required.

2. ti ∪ tj + tj ∪ ti = 0, when i 6= j: We have ti∪tj = µ(ti⊗tj)Φ1,1, tj∪ti = µ(tj⊗ti)Φ1,1

and Φ1,1 : F2 → F1 ⊗ F1. The only basis elements for which this can evaluate to
something non-zero are τiτj and τjτi. Since τiτj = −τjτi, it suffices to examine the
effect of µ(ti ⊗ tj) and µ(tj ⊗ ti) on Φ(τiτj). So we compute:

Φ1,1(τiτj)

= Φ1,1(τi)Φ1,1(τj)

= (τ ′i + τ ′′i )(τ ′j + τ ′′j )

= τ ′iτ
′
j + τ ′iτ

′′
j + τ ′′i τ

′
j + τ ′′i τ

′′
j
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As (ti⊗ tj) vanishes on all occurring monomials except τ ′iτ
′′
j , applying µ(ti⊗ tj) gives

µ(ti ⊗ tj)(τ ′iτ ′′j )

= µ(−1)(ti(τi)⊗ tj(τj))
= −µ(1⊗ 1)

= −1

Similarly, applying µ(tj ⊗ ti) gives

µ(tj ⊗ ti)(−τ ′jτ ′′i )

= −µ(−1)(tj(τj)⊗ ti(τi))
= 1

Thus the relation ti ∪ tj + tj ∪ ti = 0 is proved.

3. tj ∪ si = si ∪ tj: We have si ∪ tj = µ(si ⊗ tj)Φ2,1 and Φ2,1 : F3 → F2 ⊗ F1. Also,

tj ∪ si = µ(tj ⊗ si)Φ1,2 and Φ1,2 : F3 → F1 ⊗ F2. The only basis elements for which
this can evaluate to something non-zero are τ ′jσ

′′
i and σ′iτ

′′
j . Since σiτj = τjσi, it

suffices to examine the effect of µ(tj ⊗ si) and µ(si⊗ tj) on Φ(τjσi). So we compute:

Φ(τjσi)

= Φ(τj)Φ(σi)

= (τ ′j + τ ′′j )
(
σ′i + σ′′i − f

(2)
i (xi)τ

′
iτ
′′
i

)
= τ ′jσ

′
i + τ ′jσ

′′
i − f

(2)
i (xi)τ

′
jτ
′
iτ
′′
i + τ ′′j σ

′
i + τ ′′j σ

′′
i − f

(2)
i (xi)τ

′′
j τ
′
iτ
′′
i

As (tj⊗si) vanishes on all occurring monomials except τ ′jσ
′′
i , applying µ(tj⊗si) gives

µ(tj ⊗ si)(τj ⊗ σi)
= µ(tj(τj)⊗ si(σi))
= µ(1⊗ 1)

= 1

Similarly, applying µ(si ⊗ tj) gives

µ(si ⊗ tj)(σi ⊗ τj)
= µ(si(σi)⊗ tj(τj))
= µ(1⊗ 1)

= 1

Thus the relation tj ∪ si = si ∪ tj is proved.
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4. sj ∪ si = si ∪ sj: We have si ∪ sj = µ(si ⊗ sj)Φ2,2 and Φ2,2 : F4 → F2 ⊗ F2. Also

sj ∪ si = µ(sj ⊗ si)Φ2,2. The only basis elements for which this can evaluate to
something non-zero are σ′jσ

′′
i and σ′iσ

′′
j . Since σjσi = σiσj, it suffices to examine the

effect of (sj ⊗ si) and (si ⊗ sj) on Φ(σjσi). So we compute:

Φ(σjσi)

= Φ(σj)Φ(σi)

=
(
σ′j + σ′′j − f

(2)
j (xj)τ

′
jτ
′′
j

)(
σ′i + σ′′i − f

(2)
i (xi)τ

′
iτ
′′
i

)
= σ′jσ

′
i + σ′jσ

′′
i − f

(2)
i (xi)σ

′
jτ
′
iτ
′′
i

+σ′′j σ
′
i + σ′′j σ

′′
i − f

(2)
i (xi)σ

′′
j τ
′
iτ
′′
i

−f (2)
j (xj)τ

′
jτ
′′
j σ
′
i − f

(2)
j (xj)τ

′
jτ
′′
j σ
′′
i +

(
f

(2)
j (xj)

)(
f

(2)
i (xi)

)
τ ′jτ
′′
j τ
′
iτ
′′
i

As (sj ⊗ si) vanishes on all occurring monomials except σ′jσ
′′
i , applying µ(sj ⊗ si)

gives

µ(sj ⊗ si)(σj ⊗ σi)
= µ(sj(σj)⊗ si(σi))
= µ(1⊗ 1)

= 1

Similarly, applying µ(si ⊗ sj) gives

µ(si ⊗ sj)(σi ⊗ σj)
= µ(si(σi)⊗ sj(σj))
= µ(1⊗ 1)

= 1

Thus the relation sj ∪ si = si ∪ sj is proved.

The proof that these relations completely determine the algebra structure is analogous to
the proof of this fact given for Theorem 5.6.1.

Remark: Theorem 7.4.2 shows in particular that

HomSb(F, A) ∼= HomSb(F, Sa)⊗Sa A ,as DG-algebras.

We make one further observation about this setup.
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The Algebra Structure Is The Tensor Product of Individual Algebra Structures

Define

Ri =
R[xi]

(fi(xi))
, 1 ≤ i ≤ r

Fi = Rev
i 〈τi, σi〉, 1 ≤ i ≤ r

Then we have

F = F1 ⊗R · · · ⊗R Fr

Sa =
R[x1, . . . , xr]

(fi(xi); 1 ≤ i ≤ r)
, where each fi(xi) is monic

∼= R1 ⊗R · · · ⊗R Rr

Φ = Φ1 ⊗ · · · ⊗ Φr

where Φi denotes the part of Φ that lives in factor i.

Theorem 7.4.3. As algebras, we have

HomSb(F, R) ∼= HomRev1
(F1, R)⊗R · · · ⊗R HomRevr (Fr, R)

Proof. The proof is by induction on r. All tensor products are over R.

Base (r = 1): There is nothing to prove.

Induction: Assume, for some 1 ≤ k < r, that we have, as algebras:

HomSbk
(F1 ⊗ · · · ⊗ Fk, R) ∼= HomRev1

(F1, R)⊗ · · · ⊗HomRevk
(Fk, R)

and we want to prove that

HomSbk+1
(F1 ⊗ · · · ⊗ Fk+1, R) ∼= HomRev1

(F1, R)⊗ · · · ⊗HomRevk+1
(Fk+1, R)

Define

HomSbk
(F1 ⊗ · · · ⊗ Fk, R)×HomRevk+1

(Fk+1, R) Ψ // HomSbk+1
(F1 ⊗ · · · ⊗ Fk+1, R)

(f, g) � // µ ◦ (f ⊗ g)
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Then Ψ is R-bilinear, so we get a map

HomSbk
(F1 ⊗ · · · ⊗ Fk, R)⊗HomRevk+1

(Fk+1, R) Ψ̃ // HomSbk+1
(F1 ⊗ · · · ⊗ Fk+1, R)

f ⊗ g � // µ ◦ (f ⊗ g)

From the setup, Ψ̃ is a bijection, so we have the isomorphism of modules.

Now because the algebra structure is defined by Φ, which decomposes by index as above,
we can see that Ψ̃ is also an isomorphism of algebras, as required.

7.5 Applications

7.5.1 Comparison With Chapter 5

We now show that Theorem 7.4.2 is a generalization of Theorem 5.6.1 with the refinement
given in Proposition 5.6.4. Let G = µh1 × · · · × µhr be a product of cyclic groups of orders
h1, . . . , hr. Then define the corresponding monic polynomials

fi(xi) = xhii − 1, 1 ≤ i ≤ r.

With these defining polynomials, we have that Sa ∼= RG and Sb ∼= RGev. Recall that the
resolution F of Theorem 7.4.2 resolves Sa ∼= RG over Sb ∼= RGev. Let A = R. We may
regard R as a module over Sa, where each xi acts as 1. Thus Theorem 7.4.2 applies and
gives the multiplicative structure on HomRGev(F, R).

Now recall that:

1. We may regard R as an RG-module with trivial G-action.

2. Similarly, we may regard R as an RGev-module with trivial G-action from each copy
of RG.

3. The ring homomorphism defined by

ϕ : RGev → RG
x′i 7→ xi, 1 ≤ i ≤ r
x′′i 7→ xi, 1 ≤ i ≤ r

turns RG into an RGev-module.
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4. Using the above ring homomorphism, we see that the terms of the complexRG⊗RGevF
are free RG-modules, and thus this complex resolves R over RG.

By the Adjoint Isomorphism (e.g. Theorem 8.99 in [14]), we have

HomRGev(F, HomRG(RG,R)) ∼= HomRG(RG⊗RGev F, R), which can be re-written

HomRGev(F, R) ∼= HomRG(RG⊗RGev F, R)

Since the RHS computes Ext•RG(R,R), then so does the LHS. In this way we can interpret
the multiplicative structure given by Theorem 7.4.2 in Ext•RG(R,R).

Now apply Theorem 5.6.1 to obtain the multiplicative structure of Ext•RG(R,R) directly.
It is already clear that the multiplicative structures coming from the two theorems agree,
except possibly in the rule for ti ∪ ti.

From the polynomials defined above, we have

f
(2)
i (xi) =

(
hi
2

)
xhi−2
i , 1 ≤ i ≤ r.

So by Theorem 7.4.2, we have the cup product ti ∪ ti =

(
hi
2

)
in HomRGev(F, R) ∼=

HomRG(RG ⊗RGev F, R), since our Sa-module structure for R comes from letting each xi
act as 1.

Now, analogously to Proposition 4.6.3, we may apply the correction term −
⌊
hi−1

2

⌋
τ ′iτ
′′
i

to Φ2(σi). By doing this, we obtain the modified multiplication rule

ti ∪ ti =

{
hi
2
· si if hi is even

0 if hi is odd,

and we see that the two multiplicative structures coincide.

So we recover Theorem 5.6.1 with the refinement given in Proposition 5.6.4, as claimed.

7.5.2 Extending Results of Holm

We are now able to extend some results of Holm from [11].
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Theorem 7.5.1. Let R be a commutative ring. Let f(x) ∈ R[x] be monic. Define d(x) =
gcd(f(x), f ′(x)), computed in R[x]. Let q(x) ∈ R[x] satisfy f = qd.

Then

HH•
(
R[x]

(f(x))

)
∼=

R[x, λ, s]

(f(x), d(x)λ, f ′(x)s, λ2 − q(x)2f (2)(x)s)
, where |x| = 0, |λ| = 1, |s| = 2.

Proof. In the special case where r = 1, we recall our original notation:

Ra :=
R[x]

(f(x))

Rb := Ra ⊗R Ra,

and we get the additive structure

HomRb(F, Ra)
∼=︸︷︷︸

by 2.2.3

Ra ⊗Rb F∗

∼=

(
Ra ⊗Rb Rb[s]⊗Rb

∧
Rb

〈t〉, ∂∗ = f ′(x)s
∂

∂t

)

∼=︸︷︷︸
Rb is an Ra-module

(
Ra[s]⊗Ra

∧
Ra

〈t〉, ∂∗ = f ′(x)s
∂

∂t

)
.

We compute the kernel of ∂∗ in degree 1. We write square brackets to denote a class in
R[x]

(f(x))
. Let [h]t be a cycle in degree 1, for some [h] ∈ Ra = R[x]

(f(x))
. Then, modulo (f), we

have

0 ≡ ∂∗([h]t)

= [h]f ′s,

therefore, f must divide hf ′, and since d = gcd(f, f ′), therefore q must divide h. Thus the

cycles in degree 1 are generated by [q] ∈ R[x]
(f(x))

. So we may choose λ = [q]t as our generator

in degree 1. Then it is clear that [d] generates the annihilator of λ in Ra. We have the
cochain product defined by t2 = f (2)s. With the above choice for λ, this becomes

λ2 = q2t2

= q2f (2)s

129



whence the relation λ2 − q(x)2f (2)(x)s is established.

In degree 2, the kernel of ∂∗ is everything since the differential is zero. So we may choose
s as our generator in degree 2. We have the relation f ′(x)s because ∂∗(t) = f ′(x)s.

Thus the desired structure is established.

Remarks:

1. Theorem 7.5.1 implies Theorem 3.2, Lemma 4.1, Lemma 5.1, Theorem 5.2 and The-
orem 6.2 from [11].

2. Theorem 7.5.1 also completes the characteristic 2 case which Holm did not handle.

3. Theorem 7.5.1 implies Theorem 3.9 from [15].

4. Often it will happen that 2 is a non zero divisor in R[x]
(f(x))

. When this happens the
presentation above can be simplified, as the next Lemma and Corollary show.

Lemma 7.5.2. With the above notation, 2q(x)2f (2)(x) ≡ 0 mod (f(x)), in other words

q(x)2f (2)(x) lies in the 2-torsion of R[x]
(f(x))

.

Proof. Recall that f = qd, so that

qf ′ = f

(
f ′

d

)
. (7.39)

Also, we have that 2f (2) = f ′′, so that

2q2f (2) = q2f ′′

= q(qf ′′)

= q((qf ′)′ − q′f ′), by the product rule

= q

((
f

(
f ′

d

))′
− q′f ′

)
, by 7.39

= q

(
f ′
(
f ′

d

)
+ f

(
f ′

d

)′
− q′f ′

)
= f

(
f ′

d

(
f ′

d

)
+ q

(
f ′

d

)′
− q′f

′

d

)
, again by 7.39

≡ 0 mod (f)
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Remark: Lemma 7.5.2 implies that the sign of the q(x)2f (2)(x) term in the statement of
Theorem 7.5.1 does not matter.

Corollary 7.5.3. If 2 is a non zero divisor in R[x]
(f(x))

, then

HH•
(
R[x]

(f(x))

)
∼=

R[x, λ, s]

(f(x), d(x)λ, f ′(x)s, λ2)
, where |x| = 0, |λ| = 1, |s| = 2.

Proof. Start with the result of Theorem 7.5.1. By Lemma 7.5.2, 2q(x)2f (2)(x) = 0 in R[x]
(f(x))

.

Since 2 is a non zero divisor in R[x]
(f(x))

, therefore q(x)2f (2)(x) = 0 in R[x]
(f(x))

. Thus the relation

λ2 − q(x)2f (2)(x) simplifies to λ2 and we are done.
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