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Abstract

In recent years, the advance of information and communication technologies has allowed
the storage and transfer of massive amounts of data. The availability of this overwhelming
amount of data stimulates a growing need to develop fast and accurate algorithms to dis-
cover useful information hidden in the data. This need is even more acute for unsupervised
data, which lacks information about the categories of different instances.

This dissertation addresses a crucial problem in unsupervised data analysis, which is
the selection of representative instances and/or features from the data. This problem can
be generally defined as the selection of the most representative columns of a data matrix,
which is formally known as the Column Subset Selection (CSS) problem. Algorithms for
column subset selection can be directly used for data analysis or as a pre-processing step
to enhance other data mining algorithms, such as clustering. The contributions of this
dissertation can be summarized as outlined below.

First, a fast and accurate algorithm is proposed to greedily select a subset of columns
of a data matrix such that the reconstruction error of the matrix based on the subset of
selected columns is minimized. The algorithm is based on a novel recursive formula for
calculating the reconstruction error, which allows the development of time and memory-
efficient algorithms for greedy column subset selection. Experiments on real data sets
demonstrate the effectiveness and efficiency of the proposed algorithms in comparison to
the state-of-the-art methods for column subset selection.

Second, a kernel-based algorithm is presented for column subset selection. The al-
gorithm greedily selects representative columns using information about their pairwise
similarities. The algorithm can also calculate a Nyström approximation for a large ker-
nel matrix based on the subset of selected columns. In comparison to different Nyström
methods, the greedy Nyström method has been empirically shown to achieve significant
improvements in approximating kernel matrices, with minimum overhead in run time.

Third, two algorithms are proposed for fast approximate k-means and spectral cluster-
ing. These algorithms employ the greedy column subset selection method to embed all data
points in the subspace of a few representative points, where the clustering is performed.
The approximate algorithms run much faster than their exact counterparts while achieving
comparable clustering performance.

Fourth, a fast and accurate greedy algorithm for unsupervised feature selection is pro-
posed. The algorithm is an application of the greedy column subset selection method
presented in this dissertation. Similarly, the features are greedily selected such that the re-
construction error of the data matrix is minimized. Experiments on benchmark data sets
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show that the greedy algorithm outperforms state-of-the-art methods for unsupervised
feature selection in the clustering task.

Finally, the dissertation studies the connection between the column subset selection
problem and other related problems in statistical data analysis, and it presents a unified
framework which allows the use of the greedy algorithms presented in this dissertation to
solve different related problems.
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low-rank approximations ÃS for the Reuters-21578, Reviews and LA1 data
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 The relative accuracy measures and run times of different column-based low-
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Chapter 1

Introduction

This dissertation is principally concerned with the problem of selecting representative data
instances and features, and the use of such representatives to enhance various algorithms
for unsupervised data analysis. The selection of representative data instances and features
is a crucial task in unsupervised data mining, which can be used to learn about the insights
of the data, or to preprocess data for further analysis.

This chapter introduces the research problems addressed in the dissertation and sum-
marizes the contributions made toward the solution of these problems. The chapter is orga-
nized as follows: Section 1.1 introduces the representative selection problem and presents
the motivations behind this work. Section 1.2 summarizes the contributions of the disserta-
tion. Section 1.3 describes how the dissertation is organized. Lastly, Section 1.4 describes
the notations used throughout the dissertation.

1.1 Motivations

Today’s information systems are typically characterized by the transfer, storage and pro-
cessing of a massive amount of data. The acute need to analyze this data motivates the
development of fast and accurate algorithms to understand the insights of the data and
explore its hidden structures. One of the challenging tasks in unsupervised data analysis
is the selection of representative data instances and/or features. This problem is formally
known as the Column Subset Selection (CSS) problem. The CSS problem has many useful
applications in unsupervised data analysis which are summarized below.
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Enhanced data analysis. In information retrieval systems, when the data analyst sub-
mits a query to retrieve a subset of data instances (e.g., documents, images, records),
thousands of search results are retrieved. The retrieval engine usually ranks the returned
results according to their relevance to the query, as well as their centrality with respect
to other search results. However, many application domains lack information about the
relations between different instances. In this case, the selection of representative data
instances based solely on their contents is a potentially powerful tool to allow the data an-
alyst to browse the search results and gain insight into their meanings. In this application,
the analyst will be presented a few representative data instances, while being allowed to
display how other instances are related to the selected representatives. Moreover, this tool
can also be used to allow the browsing of a large collection of data instances, such that the
data analyst can navigate through different views of the data and show the representative
instances for each view.

Representative-based data embedding. Low-dimensional embedding of data instances
is a powerful tool in unsupervised data analysis, which allows the data analyst to visualize
the data instances in a space with very few dimensions, and apply different clustering and
classification techniques to the low-dimensional data. However, most of the existing tech-
niques for low-dimensional embedding produce dimensions whose meanings are difficult to
interpret. For instance, Latent Semantic Analysis (LSA) [1] is a well-known technique in
text mining which allows the learning of different hidden concepts from a text corpus. One
of the problems of LSA is that each learned concept is represented by a dense vector which
combines thousands of terms with positive and negative weights. This makes it difficult to
understand the meaning of these concepts. Another example is the Eigenfaces method for
face recognition [2] in which face images are represented in the space of the leading eigen-
vectors of the image-pixel matrix. Although this technique has been successfully used in
the face recognition task, the meaning of the resulting Eigenfaces is hard to interpret. The
selection of representative instances and features provides an effective solution to the latent
concepts problem. This solution depends on learning a low-dimensional embedding of data
instances whose basis vectors represent a set of representative instances or features. This
allows the data analyst to interpret the meaning of the learned concepts and understand
the performance of different data mining and machine learning algorithms.

Fast data clustering. Data clustering is a core algorithm in supervised data analysis
which is concerned with the organization of data instances into groups. Different algorithms
have been proposed for data clustering, such as the well-known k-means algorithm [3] and
the effective spectral clustering methods [4]. Most of the existing data clustering algorithms
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do not scale well to handle data sets with very large numbers of instances and/or features.
An effective way to reduce the complexity of clustering algorithms is to choose a small set of
representative data points (also known as landmarks) and use those landmarks to enhance
the efficiency of the clustering algorithms while maintaining their effectiveness. Although
different methods have been proposed to perform landmark-based clustering [5–7], the
development of more accurate algorithms for representative selection will definitely lead to
enhancing the effectiveness of different landmark-based clustering algorithms.

In attempting to tackle the above-mentioned problems, this dissertation presents differ-
ent algorithms for unsupervised data analysis whose core component is the greedy selection
of representative data instances or features. The contributions of this dissertation are sum-
marized in the following section.

1.2 Summary of Contributions

The contributions of the dissertation can be summarized as follows:

� A fast and accurate algorithm is proposed for column subset selection. The algorithm
depends on minimizing the reconstruction error of the data matrix based on the
subset of selected columns. Time and memory-efficient algorithms are presented to
greedily select columns which minimize this reconstruction error.

� A kernel-based algorithm for column subset selection is presented. The algorithm
can also be used to calculate the Nyström approximation of the kernel matrix based
on the subset of selected columns. A comparison to different methods for Nyström
approximation shows the superiority of the proposed algorithm.

� The greedy algorithm is used to enhance the efficiency of different clustering algo-
rithms. This is done by learning a low-dimensional embedding of data points in
the space of representative data instances, and then applying the data clustering
algorithm to data points in that low-dimensional space.

� A greedy algorithm is presented for unsupervised feature selection. The algorithm is
an instance of the greedy column subset selection presented in this dissertation. A
comparison to state-of-the-art methods of unsupervised feature selection shows the
superiority of the proposed feature selection algorithm.

� A framework for generalized column subset selection is presented, and an efficient
greedy algorithm is proposed to select columns from a source matrix such that the
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reconstruction error of a target matrix is minimized. The connection between the
generalized column subset selection problem and related problems in statistical data
analysis has been studied.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 reviews the necessary back-
ground of the proposed work. Chapter 3 studies the problem of Column Subset Selection
(CSS), and presents a fast and effective algorithm to greedily select a compact set of rep-
resentative columns such that the reconstruction error of the data matrix based on the
selected columns is minimized. Next, Chapter 4 presents a novel greedy algorithm for
Nyström approximation, which extends the greedy CSS algorithm to work on positive
semi-definite kernel matrices. In Chapter 5, different fast algorithms for approximate data
clustering are proposed. In these algorithms, a compact column-based representation is
first learned, and then data points are clustered in the new compact space. In Chapter 6,
the greedy CSS algorithms are applied to the problem of selecting representative features
for data clustering. Chapter 7 presents a framework that generalizes the CSS problem
and allows the use of the proposed greedy algorithms to solve different related problems.
Finally, Chapter 8 concludes the dissertation and discusses future work.

1.4 Notations

Throughout the dissertation, scalars are denoted by small letters (e.g., l, m, n), sets are
denoted in script letters (e.g., S, R), vectors are denoted by small bold italic letters (e.g.,
f , g), and matrices are denoted by capital letters (e.g., A, K). In addition, the following
notations are used:

For a set S:

|S| the cardinality of the set.

For a vector x ∈ Rp:

xi i-th element of x.
‖x‖ the Euclidean norm (`2-norm) of x.

For a matrix A ∈ Rp×q:
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Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.
AS: the sub-matrix of A which consists of the set S of rows.
A:S the sub-matrix of A which consists of the set S of columns.
AT the transpose of A.

Ã a low rank approximation of A.

Ãk the best rank-k approximation of A obtained using singular value decomposi-
tion.

ÃS a rank-l approximation of A based on the set S of columns, where |S| = l.

ÃS,k a rank-k approximation of A based on the set S of columns, where |S| = l and
k ≤ l.

‖A‖F the Frobenius norm of A: ‖A‖F =
√

Σi,jA2
ij =

√
Σiσ2

i , where σi is the i-th

leading singular value of A.

‖A‖2 the spectral norm of A: ‖A‖2 = max
‖x‖6=0

‖Ax‖
‖x‖ = σ1, where σ1 is the leading

singular value of A.

For a kernel matrix K ∈ Rp×p:

K̃ a low rank approximation of K.

K̃k the best rank-k approximation of K obtained using singular value decomposi-
tion.

K̃S rank-l Nyström approximation of K based on the set S of columns, where
|S| = l.

K̃S,k rank-k Nyström approximation of K based on the set S of columns, where
|S| = l and k ≤ l.
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Chapter 2

Background

This chapter presents a review of the necessary background for two basic topics that
are discussed throughout the dissertation: Low-rank Matrix Approximation and Data
Clustering.

2.1 Low-rank Matrix Approximation

Given an m × n matrix A, the rank of A is defined as the maximum number of linearly
independent rows or columns. The problem of finding a low-rank approximation of a matrix
is defined as:

Problem 2.1 (Low-rank Matrix Approximation) Given an m × n matrix A and a
positive integer k, find an m× n matrix Ã such that:

Ã = arg min
B, rank(B)≤k

‖A−B‖F ,

where ‖.‖F is the Frobenius norm of a matrix.

The objective function of Problem 2.1 quantifies the discrepancy between the data
matrix A and its low-rank approximation B. This discrepancy is referred to as the approx-
imation error or the reconstruction error of the data matrix. In this objective function,
the Frobenius norm of the discrepancy matrix is used to quantify the reconstruction error.
Other types of norms such as the spectral norm can also be used to quantify this error.
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Throughout this dissertation, the Frobenius norm will be used to quantify the discrepancy
between the data matrix and its low-rank approximation.

As the target rank k increases, the reconstruction error of the data matrix decreases. If
the target rank k is greater or equal to the rank of the original matrix A, the reconstruction
error will be zero.

The low-rank approximation matrix Ã can be decomposed as

Ã = CT,

where C is an m × k matrix whose columns represent a basis for the column space of Ã
and T is a k × n matrix whose elements represent the coefficients of the columns of Ã in
the basis C:

Ã:i = CT:i =
k∑
j=1

TjiC:j .

The problem of finding a low-rank approximation of a matrix has many useful appli-
cations in data mining and machine learning. Examples include the discovery of latent
concepts in a text corpus [1], the learning of basic components in images (e.g., Eigen-
faces [2]), reducing the dimensionality of data for visualization and fast analysis [8], and
the completion of matrices for recommendation systems [9].

Without additional constraints, the optimal solution of the low-rank approximation
problem can be obtained by calculating the truncated singular value decomposition [10]
of A as discussed in Section 2.1.1. In addition, different methods for incomplete matrix
decomposition can be used to obtain low-rank approximations that satisfy additional con-
straints. The following sections discuss different matrix decomposition methods that are
related to the algorithms presented in this dissertation. The reader is referred to [10] for
more details about different methods for matrix decomposition.

2.1.1 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is a factorization of a rectangular matrix into
its left and right singular vectors [10].

Definition 2.1 (Singular Value Decomposition) Given an m× n matrix A, the sin-
gular value decomposition of A is

A = UΣV T ,
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where U and V are m ×m and n × n orthonormal matrices whose columns represent the
left and right singular vectors of A respectively and Σ is an m × n rectangular diagonal
matrix whose diagonal elements represent the singular values of A.

For a non-negative singular value σ, the corresponding left and right singular vectors
u, v are non-zero vectors such that

Av = σu ,

ATu = σv .

The SVD is closely related to the eigendecomposition [10]. Given an n × n square
matrix B, the eigendecomposition of B is defined as

B = ΩΛΩT ,

where Ω is an n × n orthonormal matrix whose columns represent the eigenvectors of B
and Λ is an n×n diagonal matrix whose diagonal elements represent the eigenvalues of B.
For an eigenvalue λ, the corresponding eigenvector is a non-zero vector ω such that

Bω = λω .

It can be easily shown that the left and right singular vectors of a matrix A are also the
eigenvectors of AAT and ATA respectively, and the singular values of a matrix A are the
square roots of the eigenvalues of the matrices AAT and ATA.

The SVD is also related to Principal Component Analysis (PCA) [11] which is a well-
known method for unsupervised data analysis. The principal component of a data matrix
is the direction in the space of features with the maximum variance. Given an m× n data
matrix whose columns represent data points, the principal components of a matrix can be
obtained by calculating the leading eigenvectors of the covariance matrix, or equivalently
the leading left singular values of the column-centered data matrix.

The largest k singular values are referred to as the leading k singular values of A and
the corresponding singular vectors are referred to as the leading k singular vectors. Those
k leading singular values and vectors can be used to calculate a rank-k approximation of
A. This decomposition is referred to as the truncated SVD (also known as partial SVD).

Definition 2.2 (Truncated Singular Value Decomposition) Given an m×n matrix
A, the truncated singular value decomposition of A is

A ≈ UkΣkV
T
k ,
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where Uk and Vk are orthogonal matrices whose columns represent the leading k left and
right singular vectors of A respectively and Σk is a k × k diagonal matrix whose diagonal
elements represent the leading k singular values of A.

The matrix Ãk = UkΣkV
T
k is the best rank-k approximation of A in terms of minimizing

the Frobenius and spectral norms of the discrepancy matrix A− Ãk and it is accordingly
the optimal solution of Problem 2.1. In this case, the Frobenius and spectral norms of the
discrepancy matrix are

‖A− Ãk‖F =

√√√√r−k∑
i=1

σ2
k+i ,

‖A− Ãk‖2 = σk+1 ,

where σi is the i-th leading singular value of A and r is the rank of A.

2.1.2 Stochastic Singular Value Decomposition (SSVD)

The Stochastic Singular Value Decomposition (SSVD) [12, 13] is a fast algorithm for ap-
proximating the singular value decomposition of a data matrix. The SSVD is a randomized
algorithm which first calculates an approximate basis for the range of the data matrix, and
then calculates an approximate SVD decomposition of the matrix using this approximate
basis.

In order to calculate an approximate basis for the range of the data matrix, the SSVD
algorithm first generates an n× (k+p) random matrix Ω with Gaussian distribution where
n is the number of columns of the data matrix, k is the target rank and p is an oversampling
parameter. The algorithm then multiplies the random matrix Ω with the data matrix A:

Y = AΩ .

The columns of Y are then orthogonalized to obtain an approximate orthonormal basis Q
for the range of A.

After the approximate basis Q is calculated, the algorithm embeds the columns of the
data matrix into the subspace of the columns of Q:

B = QTA .

10



The leading k singular values and vectors of B are then calculated using an exact algorithm
for truncated SVD.

B ≈ U
(B)
k Σ

(B)
k V

(B)
k .

This step is very efficient as the size of the matrix B is (k + p) × n, which is very small
compared to the size of the original matrix A. The leading singular values and vectors of
A are then approximated using those of B as follows:

Ũ
(A)
k = QU

(B)
k , Σ̃

(A)
k = Σ

(B)
k , Ṽ

(A)
k = V

(B)
k . (2.1)

Although the SSVD algorithm in this simple form is very time and memory efficient,
it is not effective in approximating the singular values and vectors of a data matrix when
the singular spectrum of the data matrix decays slowly. In order to address this problem,
Halko et al. [12] suggested the use of a few steps of a power iteration. In this case, the
matrix Y is calculated iteratively as

Y =
(
AAT

)q
AΩ .

This multiplication enhances the accuracy of the SVD approximation but increases the
computational complexity of the algorithm and the number of passes over the data ma-
trix. When implementing the power iteration, the authors suggested orthogonalizing the
columns of Y after each power iteration in order to avoid the effect of rounding errors on
extinguishing the information associated with small singular values.

Halko et al. [12] showed that the SSVD algorithm achieves good approximation ac-
curacies when using a very small number of power iterations (q = 1 or 2) and a small
oversampling parameter (p = 5 to 10). Algorithm 1 shows the steps of the SSVD al-
gorithm [13, Algorithm 4.3]. The function orth orthogonalizes the columns of an input
matrix, and the function tsvd calculates the truncated singular value decomposition.

2.1.3 QR Decomposition

The QR decomposition is a factorization of a matrix into the product of an orthogonal
matrix Q and an upper-triangular matrix R.

Definition 2.3 (QR Decomposition) Given an m× n matrix A where m ≥ n, the QR
decomposition is

A = QR,

where Q is an m× n orthogonal matrix and R is an n× n upper-triangular matrix.
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Algorithm 1 Stochastic Singular Value Decomposition (SSVD) [13, Algorithm 4.3]

Input: Data matrix A, Target rank k, Number of iterations q, Oversampling parameter p
Output: Approximate truncated SVD of A
Steps:

1. Generate an n× (k + p) random matrix Ω with Gaussian distribution

2. Y = AΩ

3. Q = orth(Y )

4. Repeat q times

� Y = AATQ

� Q = orth(Y )

5. B = QTA

6.
[
U

(B)
k ,Σ

(B)
k , V

(B)
k

]
= tsvd (B, k)

7. Ũ
(A)
k = QU

(B)
k , Σ̃

(A)
k = Σ

(B)
k , Ṽ

(A)
k = V

(B)
k .
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Different methods have been proposed to calculate the QR decomposition of a ma-
trix. These methods include the use of the GramSchmidt process, Householder reflections,
and the Givens rotations [10, Chapter 5]. A column pivoting strategy [10] can also be
employed to improve the numerical stability, and to calculate the QR decomposition of
rank-deficient matrices. In this case, a column permutation matrix P is introduced and
the QR factorization is calculated as

PA = QR,

where P is an m×m matrix which permutes the columns of A.

Rank-revealing QR (RRQR) decomposition [14–17] is a category of QR decomposition
in which additional constraints are imposed on the sub-matrices of R. These constraints
separate the linearly-independent columns of the matrix from the dependent ones. This
separation reveals the rank of the matrix.

2.2 Data Clustering

Data clustering is an unsupervised learning task which aims at organizing data instances
into groups based on their similarity. Data instances are usually represented as points in
a multidimensional space of features, and the similarity between these data instances is
calculated based on their closeness in that space.

Data clustering is a crucial task in unsupervised data analysis, which has many useful
applications. One category of these applications is concerned with the organization of data
instances for end-user analysis. For instance, document clustering has been used to allow
users to browse large collections of documents [18], organize new stories [19], and group
related search results [20]. Another category of applications is concerned with the use
of clustering as a pro-processing step for other data mining and machine learning tasks.
An example of such application is the clustering of data instances prior to calculating a
low-rank approximation of their matrix [21].

Data clustering algorithms can be generally categorized into hierarchical and partitional
[3, 22]. Hierarchical clustering constructs a hierarchy of nested clusters, while partitional
clustering (also known as flat clustering) divides data points into non-overlapped clusters
such that a specific criterion function is optimized.

Besides centralized clustering algorithms, different algorithms have been proposed to
cluster data that are distributed across different computing nodes [23–25].
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The rest of this section reviews some of the basic data clustering algorithms. Some of
these algorithms have been used to evaluate the algorithms presented in this dissertation.

2.2.1 Hierarchical Clustering

Hierarchical algorithms for data clustering construct a hierarchy of nested clusters. The top
cluster in the hierarchy contains all data points while each cluster at the bottom contains
a single data point (also called singleton clusters). The data points of each intermediate
cluster are divided into a set of sub-clusters (usually two). The output of a hierarchical
clustering algorithm can be graphically represented as a tree (also called a dendogram)
with the root node representing the top cluster, and the leaf nodes representing singleton
clusters.

In contrast to partitional algorithms, hierarchical clustering does not require the number
of clusters to be specified. However, a flat partitioning of the data points can be obtained
by traversing the cluster hierarchy from the root node until a predefined number of clusters
is obtained. Another method to obtain a flat partitioning is by cutting off the hierarchy
based on a predefined threshold of the combination similarity between clusters.

Hierarchical algorithms are either agglomerative (bottom-up) or divisive (top-down).
Agglomerative algorithms start with singleton clusters, and then successively merge the
most similar pair of clusters until all data points are grouped in one cluster. Divisive
algorithms start with all data points in one cluster and then successively partition the
data points into two dissimilar groups until singleton clusters are obtained.

Agglomerative algorithms are more commonly used, especially in document clustering,
and they are usually referred to as hierarchical agglomerative clustering (HAC). Instances
of HAC algorithms differ in the way they calculate the similarity/distance between pair of
clusters. The most commonly used instances are single-link, complete-link, and average-
link clustering [26, Section 5.5], which measure the similarity between two clusters based
on the maximum, minimum, and average of the similarities between their data instances,
respectively.

2.2.2 k-Means

The k-means algorithm [22] is the most widely used algorithm for data clustering. The goal
of the algorithm is to group the data points into k clusters such that the Euclidean distances
between data points in each cluster and that cluster’s centroid is minimized. Given a set
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of n data points described by m features, let A be an m × n data matrix whose column
vectors A:i’s represent the data points in the feature space, the corresponding optimization
problem can be written as:

P? = arg min
P

k∑
j=1

∑
i∈Pj

∥∥A:i − µ(j)

∥∥2 (2.2)

where P = {P1,P2, ..Pk} is a possible partitioning of the data points, Pj is the set of data
points that belong to cluster j, and µ(j) is the column vector that represents the centroid
of cluster j.

The k-means clustering problem is NP-hard [27]. An iterative algorithm, namely
Lloyd’s algorithm [28], is usually used for the optimization of this criterion function. The
steps of the Lloyd’s algorithm are shown in Algorithm 2.

The Lloyd’s algorithm is guaranteed to converge to a local minimum of the criterion
function, and the quality of the obtained solution depends on the initial partitioning of the
data points P(0). One heuristic to obtain better solutions is to repeat the algorithm starting
from different initial solutions, and then take the final solution with the minimum value
of the criterion function. The output of another clustering algorithm (e.g. hierarchical
clustering) can also be used to obtain an initial partitioning of the data points.

Another way to optimize the k-means criterion function is to use an iterative algorithm
that incrementally moves data points from one cluster to another such that a maximum
improvement in the criterion function is achieved [29,30]. This algorithm can be used in a
stand-alone manner to optimize the criterion function starting from a random partitioning,
or to refine the output of the Lloyd’s algorithm. The incremental optimization technique,
however simple, has been successively used to optimize many clustering criterion functions
[31–33].

There are many variants of the basic k-means algorithm. Some of these variants are
outlined below:

� k-medoids [34] uses the medoid of the data points in each cluster, instead of the
mean, as the cluster centroid.

� Bisecting k-means [30] starts with all data points in one cluster, and then succes-
sively apply the k-means algorithm to divide data points into two clusters (namely
bisections) until k clusters are obtained.
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Algorithm 2 The Lloyd’s Algorithm for k-Means Clustering

Inputs: Data matrix A, Number of clusters k, Maximum number of iterations tmax

Outputs: Data partitions P = {P1,P2, ..Pk}
Steps:

1. Partition the data points into k random clusters: P(0) = {P1,P2, ..Pk} , Initialize
t = 1

2. Compute the cluster centroids M =
[
µ(1),µ(2), ...µ(k)

]
:

µ(j) =
1

|Pj|
∑
i∈Pj

A:i

3. Assign each data point i to the cluster with the closest centroid:

yi = arg min
j

∥∥A:i − µ(j)

∥∥2
4. Obtain the new partitioning: P(t) = {P1, ...,Pk}:

Pj = {i : yi = j}

5. If (P(t) 6= P(t−1) and t < tmax), increment t and go to Step 2. Otherwise, return P(t)

16



� Kernel k-means [35, 36] is a kernel-based version of the k-means algorithm in which
the distance between a data point and a centroid is calculated in terms of the kernel
matrix K which encodes the inner-products between data points in the feature space:∥∥φ (A:i)− φ

(
µ(j)

)∥∥2 = Kii −
2

|Pj|
∑
a∈Pj

Kia +
1

|Pj|2
∑
a,b∈Pj

Kab ,

where φ (.) is the function that maps data vectors to the high-dimensional feature
space implicitly defined by the kernel.

� Weighted k-means [35] assigns weights to different data points according to their
importance. The new clustering criterion can be written as:

P? = arg min
P

k∑
j=1

∑
i∈Pj

λi
∥∥A:i − µ(j)

∥∥2 ,
where λi is the weight of data point A:i. The kernel k-means formula can be gener-
alized to include weights for different data points. It has been shown that weighted
kernel k-means with specific weights is equivalent to finding the normalized-cut of
the similarity graph of data points [35,36].

� Fuzzy c-means [37–39] allows overlap between clusters by assigning membership val-
ues to data points with respect to each cluster: U = [Uij]n×k such that 0 ≤ Uij ≤ 1
and

∑
j Uij = 1 . The new clustering criterion can be written as:

U? = arg min
U

k∑
j=1

n∑
i=1

Uγ
ij

∥∥A:i − µ(j)

∥∥2 ,
where γ is any real number greater than 1. As γ approaches 1, the clustering becomes
more crisp, and as it increases, the clustering becomes more fuzzy. A variant of the
Lloyd’s algorithm can be used to update the cluster centroids and membership values
as follows:

µ(j) =

∑n
i=1 U

γ
ijA:i∑n

i=1 U
γ
ij

, Uij =

 k∑
c=1

(∥∥A:i − µ(j)

∥∥∥∥A:i − µ(c)

∥∥
)2/(γ−1)

−1 .
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2.2.3 Spherical k-Means

Spherical k-means [40] is a variant of the basic k-means algorithm that uses cosine simi-
larity between data points instead of the Euclidean distance. The use of cosine similarities
with k-means has been proposed by Rasmussen [41] for the purpose of document cluster-
ing. However, the name spherical k-means was suggested by Dhillon et al [40, 42] as the
algorithm partitions the high-dimensional hypersphere on which data points lie using a
collection of great hyper-circles.

Spherical k-means was originally proposed for document clustering, but it can be gen-
erally used for other directional data instances (where the direction is relevant but not the
magnitude). The criterion function of spherical k-means is the sum of inner-products be-
tween vectors of data points that belong to each cluster and that cluster’s centroid vector.
The corresponding optimization problem can be written as:

P? = max
P

k∑
j=1

∑
i∈Pj

A:i
Tµ(j) . (2.3)

The criterion function of spherical k-means can be minimized using a variant of Lloyd’s
algorithm (Algorithm 2) in which Steps 2 and 3 are replaced with

µ(j) =

∑
i∈Pj

A:i∥∥∥∑i∈Pj
A:i

∥∥∥ , yi = arg max
j

A:i
Tµ(j) .

Dhillon et al. [43, 44] observed that the Lloyd’s algorithm tends to get stuck at a poor
local maximum when applied to document data sets. They suggested that the output
of spherical k-means could be refined by using the incremental optimization technique
described in Section 2.2.2.

2.2.4 Spectral Clustering

Spectral clustering is a family of clustering algorithms that are based on spectral parti-
tioning of a graph whose adjacency matrix encodes measures of similarity between data
points. A general framework for spectral clustering algorithms is shown in Algorithm 3.

Given an n×n matrix S whose elements represent measures of similarity between data
points, the algorithm starts by constructing an undirected similarity graph. The vertices
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Algorithm 3 Spectral Clustering

Inputs: Similarity matrix S, Number of clusters k
Outputs: Data partitions P = {P1,P2, ..Pk}
Steps:

1. Construct a similarity graph whose vertices V represent the data points and calculate
the adjacency matrix: W = H (S)

2. Compute the (normalized) graph Laplacian L = F (W )

3. Solve an eigendecomposition problem of L and compute the second k smallest eigen-
vectors: q(2), ..., q(k+1)

4. Represent data points in a k-dimensional space Rk using the eigenvectors
q(2), ..., q(k+1)

5. Cluster the data points in the new space into k clusters P = {P1,P2, ..Pk} using the
k-means algorithm

of the graph V represent the data points, and its adjacency matrix W (where Wij ≥ 0)
is constructed based on the pairwise-similarity matrix S. The algorithm then calculates
the graph Laplacian matrix L, and solves an eigenvalue decomposition problem of L. The
eigenvectors that correspond to the second k smallest eigenvectors are used to represent
data points in a k-dimensional space where a traditional clustering algorithm (like k-means)
is applied.

The graph Laplacian (un-normalized) is defined as: L = D −W where D is a n × n
diagonal matrix, also called the degree matrix, whose elements are the sum of weights at
each node of the similarity graph: Dii =

∑n
j=1Wij. In some spectral clustering algorithms,

normalized forms of graph Laplacian are used.

The clustering criterion function of spectral clustering can be interpreted as the mini-
mization of the cut between partitions of the graph vertices normalized by the weights of
these partitions. In the case of bi-partitions, this weighted cut between two vertex sets A,
B can be generally defined as [45]:

C (A,B) =
cut(A,B)

weight(A)
+

cut(A,B)

weight(B)
=
qTLq

qTPq
, (2.4)

where cut (A,B) =
∑

i∈A,j∈BWij defines the sum of edge weights between A and B, and
weight(A) defines the weight of a vertex set A. Two vertex sets A, B are balanced if
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weight(A) = weight(B). q is an n× 1 cluster (partition) indicator vector. qi = 1 if vertex
i belongs to A, and −1 if it belongs to B. L is the graph Laplacian and P is an n × n
matrix such that weight(A) =

∑
i,j∈A Pij.

The optimization problem that corresponds to minimizing the cut can be written as [45]:

min
q 6=0

qTLq

qTPq
, s.t. qTPe = 0 ,

where e is the all-ones vector. A relaxed solution to this problem is equal to the eigenvector
corresponding to the second smallest eigenvalue of the generalized eigendecomposition
problem:

Lq = λPq . (2.5)

Different definitions of the matrix P leads to different types of weighted cuts. Ratio cut
Rcut [46], normalized cut Ncut [47], and min-max cut MMcut [48] could be obtained from
Equation (2.4) by setting P to I, D, and W respectively:

Rcut(A,B) =
cut(A,B)

|A|
+

cut(A,B)

|B|
=
qTLq

qTq
,

Ncut(A,B) =
cut(A,B)

cut(A,A) + cut(A,B)
+

cut(A,B)

cut(B,B) + cut(A,B)
=
qTLq

qTDq
,

MMcut(A,B) =
cut(A,B)

cut(A,A)
+

cut(A,B)

cut(B,B)
=
qTLq

qTWq
.

In a similar way, a k-way partitioning of the graph can be obtained by computing
the eigenvectors with the second k smallest eigenvalues, and then applying the k-means
clustering as shown in Algorithm 3. Let Y be an k × n matrix whose rows are the k
eigenvectors of L corresponding to the second k smallest eigenvalues. The columns of
Y are usually used to represent the data points in a k-dimensional space Rk where the
k-means is applied.

Other well-known algorithms for spectral clustering are those proposed by Meila and
Shi [49] and Ng et al [4]. Meila and Shi [49] present a random-walk view of spectral
clustering. In this algorithm, the eigendecomposition problem Lq = λq is solved with a
form of normalized graph Laplacian:

L = I −D−1W .
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Ng et al [4] proposed the use of another form of normalized graph Laplacian:

L = I −D−1/2WD−1/2 . (2.6)

In this algorithm, the eigenvalue decomposition problem Lq = λq is solved, and the vectors
of data points are normalized to unit vector before applying the k-means algorithm.

In all spectral clustering algorithms, the adjacency matrix W can constructed from the
similarity measures in different ways. One way is to use a fully-connected graph in which
all data points are connected to each other (i.e., W = S). This graph is usually used if
the similarity matrix represents the local neighborhood of data points [50]. Example of
such a similarity is the Gaussian similarity function: W = exp

(
−E2

ij/2σ
2
)

where Eij is
the distance between data points i and j, σ is a parameter that controls the width of the
neighborhood area. The graph can also be constructed by connecting each data point to
its most similar k data points (k-nearest neighbor graph) or by connecting two data points
if their similarity is above a predefined threshold (ε-neighborhood graph).

The advantage of spectral clustering compared to other clustering algorithms, like k-
means, is that the solution is deterministic and corresponds to the global minimum of the
clustering criterion function. On the other hand, spectral clustering is computationally
expensive, as it is based on the eigenvalue decomposition of the graph Laplacian matrix.
This makes its application to large data sets infeasible.

2.2.5 Affinity Propagation

The Affinity Propagation (AF) [51] is a state-of-the-art clustering method which depends
on propagating real-valued messages between data points on their similarity graph. The
basic idea of the algorithm is to simultaneously consider all data points as potential cluster
centroids (also called exemplars) and keep propagating real-valued messages between data
points until a set of good exemplars emerge.

Two types of messages are propagated between data points: the availability messages
and the responsibility messages. The availability message a (i, k) is sent from a data point
i to a candidate exemplar k to reflect how well-suited k is to serve as the exemplar for i
based on the information collected from other potential exemplars. On the other hand,
the responsibility message r (k, i) is sent from a candidate exemplar k to a data point i
to reflect how appropriate it is for i to choose k as its exemplar based on the information
collected from other supporting data points.

The AF algorithm defines update rules for availability and responsibility scores. These
update rules are based on the similarity between data points as well as other availability
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and responsibility scores. The responsibility update rule makes the candidate exemplars
compete for the ownership of a data point while the availability update rule gathers infor-
mation about how good a candidate exemplar is going to be for each data point. The AF
algorithm keeps updating the responsibility and availability scores and propagating them
between data points until some stopping criterion is met. At this point, the availability
and responsibility scores are combined to identify the exemplar for each data point.

The affinity propagation algorithm achieves good clustering results on various data sets,
especially those with a large number of clusters. It also does not require the number of
clusters to be specified in advance, as it considers all data points as potential exemplars.
The AF algorithm, however, has some limitations. First, it requires the specification of
two parameters: a preference vector which reflects how likely each data point is to be
an exemplar, and a damping factor that is used in the update rules to avoid numerical
oscillations. It is usually difficult to determine the optimal values for these parameters.
Adaptive algorithms have been proposed to select values for these parameters to improve
clustering performance and avoid oscillations [52, 53]. In addition, the AF algorithm does
not scale well to handle large data sets [54]. Recent work has been proposed to speed
up the algorithm by reducing the number of messages to be propagated between data
points [54, 55].

2.2.6 Evaluating the Quality of Clusters

Different quality measures have been proposed to quantify the goodness of the clusters
obtained by different algorithms. These quality measures (also called quality indexes) are
either internal or external. Internal measures of clustering quality quantify the compactness
of data points inside clusters and the separation between different clusters without using
any external knowledge about the true partitioning of the data points. The internal quality
indexes are usually used in the absence of external knowledge about the labels of data
points. Examples of internal quality indexes include overall similarity, partition index, and
separation index [56–58] .

Let P = {P1, ..Pk} be a partitioning of data points obtained by a clustering algorithm,
n be the total number of data points, and |Pj| be the number of data points that belong
to cluster j.

The overall similarity SP measures the pairwise similarities between all points that
belong to the same cluster. The higher the overall similarity, the better is the clustering
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solution.

SP =
k∑
j=1

 1

|Pj|2
∑
a,b∈Pj

sim(a, b)

 .

The partition index SC is the sum of the ratios of compactness of data points inside
each cluster to the separation of this cluster from other clusters. The compactness of a
cluster is estimated as the sum of distances between data points in the cluster and its
centroid, while the separation is estimated as the distances between the centroid of the
cluster and the centroids of other clusters. The ratio for each cluster is weighted by the
size of that cluster:

SC =
k∑
j=1

1

|Pj|

(∑
i∈Pj

∥∥A:i − µ(j)

∥∥2∑k
l=1

∥∥µ(l) − µ(j)

∥∥2
)
.

The separation index SI is a variant of the partition index which uses the minimum
distance between the centroids of all clusters to estimate the separation between clusters:

SI =
1

n

∑k
j=1

∑
i∈Pj

∥∥A:i − µ(j)

∥∥2
min
a,b

∥∥µ(a) − µ(b)

∥∥2
 .

Lower values of SC and SI indicate better partitioning. The reader is referred to [56–58]
for more details about internal quality measures.

External measures, on the other hand, compare the partitioning obtained by the clus-
tering algorithm with a ground-truth partitioning created by human annotators. Examples
of external measures include F-measure [59], entropy [60], purity [60], and the Normalized
Mutual Information (NMI) [61].

Let C = {C1, ..Cc} be the ground-truth partitioning of the data points, and Cij be the
number of data points that belong to class i and cluster j. The external measures use the
contingency matrix C = [Cij]c×k to estimate the quality of P.

The F-measure is a well-known measure of quality in information retrieval which com-
bines precision and recall [59]. The higher the F-measure, the better is the clustering
solution. Given the contingency matrix C, the precision and recall matrices P and R can
be calculated as:

Pij =
Cij
|Ci|

, Rij =
Cij
|Pj|
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where |Ci| =
∑

j Cij is the number of data points in class i, and |Pj| =
∑

iCij is the number
of data points in cluster j. The F-measure matrix can be calculated as:

Fij =
2PijRij

Pij +Rij

To evaluate the quality of clusters, each class i is mapped to cluster j which has the
maximum Fij measure, and the F-measure of this class is set to this maximum value:
Fi = max

j
{Fij}. The overall F-measure of the partitioning is calculated as the weighted

sum of the F-measures of individual classes.

The entropy is another external quality index that measures the homogeneity of clusters
with respect to classes [60]. The lower the entropy, the more homogeneous are the clusters
and the better is the clustering algorithm. Let P (Pj|Ci) = Cij/|Ci| be the probability that
a member of cluster j belongs to class i, the entropy of a cluster j is calculated as

Ej = −
c∑
i=1

P (Pj|Ci) log (P (Pj|Ci)) .

The entropy of a partitioning P is then calculated as the sum of cluster entropy measures
weighted by the cluster sizes.

The third external quality index presented is the purity which measures the average
precision of clusters relative to their best matching classes [60]. The higher the purity, the
better is the clustering solution. The purity of a cluster j is calculated by first assigning
cluster j to the most dominant cluster j, and then dividing the number of data points that
belong to cluster j and class i by the total number of data points in cluster j:

Pj =
1

|Pj|
max
i
{Cij} .

The overall purity is then calculated as the weighted average of purity measures of clusters.

The Normalized Mutual Information (NMI) [61] is a well-known external quality index,
which measures the amount of information shared between the cluster and class labels.
Let X and Y be discrete random variables which represent the class and cluster labels
respectively. The Normalized Mutual Information (NMI) is calculated as

NMI (Y ;X) =
MI (Y ;X)√
H (Y )H (X)
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where MI (Y ;X) is the mutual information of random variables Y and X; and H (Y )
and H (X) are the entropies of the random variables Y and X respectively. The mutual
information MI (Y ;X) measures the amount of information that can be obtained from the
cluster labels by observing the class labels. MI (Y ;X) can be calculated as

MI (Y ;X) =
k∑
j=1

c∑
i=1

P (Pj, Ci) log
P (Pj, Ci)

P (Pj)P (Ci)

=
k∑
j=1

c∑
i=1

Cij
n

log
nCij
|Ci||Pj|

,

where P (Pj), P (Ci) and P (Pj, Ci) are the probabilities that a data point belongs to cluster
j, class i and their intersection respectively. The entropies H (Y ) and H (X) measure the
amount of information contained in the cluster and class labels respectively. The entropy
measures can be calculated as

H (Y ) = −
k∑
j=1

P (Pj) logP (Pj) = −
k∑
j=1

|Pj|
n

log
|Pj|
n

,

H (X) = −
c∑
i=1

P (Ci) logP (Ci) = −
c∑
i=1

|Ci|
n

log
|Ci|
n

.

The value of the NMI measure is between 0 and 1 and the higher the NMI measure, the
better is the clustering solution.

The NMI measure have been used to evaluate the clustering performance in much recent
work. It has also been observed that NMI obtains results that are strongly correlated with
other well-known measures such as the F-measure [62]. Therefore, the NMI measures will
be used to evaluate the quality of the clustering methods in the experiments conducted in
this dissertation.

25





Chapter 3

Greedy Column Subset Selection

This chapter presents a fast and accurate algorithm for Column Subset Selection (CSS).
The algorithm minimizes an objective function which measures the reconstruction error
of the data matrix based on the subset of selected columns. The chapter first presents
a novel recursive formula for calculating the reconstruction error of the data matrix, and
then proposes a fast and accurate algorithm which selects the most representative columns
in a greedy manner. The presented algorithm can be used to calculate a column-based
low-rank approximation of the data matrix, as well as a low-dimensional embedding of all
columns in the subspace of selected ones.

The chapter is organized as follows: Section 3.1 gives an overview of the Column Subset
Selection (CSS) problem. Section 3.2 presents a novel recursive formula for the selection
criterion. Section 3.3 proposes an effective greedy algorithm for column subset selection as
well as memory and time efficient variants of the algorithm. Section 3.4 reviews previous
work on the CSS problem. Section 3.5 presents an empirical evaluation of the proposed
method compared to other randomized and deterministic methods.

3.1 Column Subset Selection (CSS)

The Column Subset Selection (CSS) problem can be generally defined as the selection of
the most representative columns of a data matrix [63–65]. The CSS problem generalizes
the problem of selecting representative data instances as well as the unsupervised feature
selection problem. Both are crucial tasks, that can be directly used for data analysis or
as pre-processing steps for developing fast and accurate algorithms in data mining and
machine learning. The CSS problem can be formally defined as follows:
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Problem 3.1 (Column Subset Selection) Given an m× n matrix A and an integer l,
find a subset of columns L such that |L| = l and

L = arg min
S

F (S) ,

where F (S) is the column subset selection criterion, S is the set of the indices of the
candidate columns and L is the set of the indices of the selected columns.

Although different criteria for column subset selection can be defined, a common cri-
terion that has been used in much recent work measures the discrepancy between the
original matrix and the approximate matrix reconstructed from the subset of selected
columns [63–73]. Most of the recent work either develops CSS algorithms that directly
optimize this criterion or uses this criterion to assess the quality of the proposed CSS
algorithms. In the present work, the following criterion is optimized:

Definition 3.1 (Column Subset Selection Criterion) Let A be an m× n matrix and
S be the set of the indices of the candidate columns, the column subset selection criterion
is defined as:

F (S) = ‖A− P (S)A‖2F ,

where P (S) is an m ×m projection matrix which projects the columns of A onto the span
of the set S of columns.

The criterion F (S) represents the sum of squared errors between the original data
matrix A and its rank-l column-based approximation (where l = |S|),

ÃS = P (S)A . (3.1)

In other words, the criterion F (S) calculates the Frobenius norm of the residual matrix
E = A− ÃS . Other types of matrix norms can also be used to quantify the reconstruction
error. Some of the recent work on the CSS problem [63–65] derives theoretical bounds for
both the Frobenius and spectral norms of the residual matrix. The present work, however,
focuses on developing algorithms that minimize the Frobenius norm of the data matrix.

The projection matrix P (S) can be calculated as:

P (S) = A:S
(
AT:SA:S

)−1
AT:S , (3.2)

where A:S is the sub-matrix of A which consists of the columns corresponding to S.
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It should be noted that if the subset of columns S is known, the projection matrix P (S)

can be derived as follows. The columns of the data matrix A can be approximated as linear
combinations of the subset of columns S:

ÃS = A:ST ,

where T is an l × n matrix of coefficients which can be found by solving the following
optimization problem.

T ∗ = arg min
T

‖A− A:ST‖2F .

This is a least-squares problem whose closed-form solution is

T ∗ =
(
AT:SA:S

)−1
AT:SA .

Substituting with T ∗ in ÃS gives

ÃS = A:ST = A:S
(
AT:SA:S

)−1
AT:SA = P (S)A .

The set of selected columns (i.e., data instances or features) can be directly presented
to a data analyst to learn about the insights of the data, or they can be used to preprocess
the data for further analysis. For instance, the selected columns can be used to obtain
a low-dimensional representation of all columns into the subspace of selected ones. This
representation can be calculated as follows.

1. Calculate an orthonormal basis Q for the selected columns,

Q = orth (A:S) ,

where orth (.) is a function that orthogonalizes the columns of its input matrix and Q
is an m×l orthogonal matrix whose columns span the range of A:S . The matrix Q can
be obtained by applying an orthogonalization algorithm such as the Gram-Schmidt
algorithm to the columns of A:S , or by calculating the Singular Value Decomposition
(SVD) or the QR decomposition of A:S [10].

2. Embed all columns of A into the subspace of Q,

W = QTA , (3.3)

where W is an l × n matrix whose columns represent an embedding of all columns
into the subspace of selected ones.
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The selected columns can also be used to calculate a column-based low-rank approxi-
mation of A [69]. Given a subset S of columns with |S| = l, a rank-l approximation of the
data matrix A can be calculated as:

ÃS = P (S)A = A:S
(
AT:SA:S

)−1
AT:SA . (3.4)

In order to calculate a rank-k approximation of the data matrix A where k ≤ l, the
following procedure suggested by Boutsidis et al. [65] can be used.

1. Calculate an orthonormal basis Q for the columns of A:S and embed all columns of
A into the subspace of Q:

Q = orth (A:S) ,

W = QTA ,

where Q is an m × l orthogonal matrix whose columns span the range of A:S and
W is an l× n matrix whose columns represent an embedding of all columns into the
subspace of selected ones.

2. Calculate the best rank-k approximation of the embedded columns using Singular
Value Decomposition (SVD):

W̃k = U
(W )
k Σ

(W )
k V

(W )T
k ,

where U
(W )
k and V

(W )
k are l × k and n × k matrices whose columns represent the

leading k left and right singular vectors of W respectively, Σ
(W )
k is a k × k matrix

whose diagonal elements are the leading k singular values of W , and W̃k is the best
rank-k approximation of W .

3. Calculate the column-based rank-k approximation of A as:

ÃS,k = QW̃k ,

where ÃS,k is a rank-k approximation of A based on the set S of columns.

This procedure results in a rank-k approximation of A within the column space of A:S that
achieves the minimum reconstruction error in terms of Frobenius norm [65]:

T ∗ = arg min
T, rank(T )=k

‖A− A:ST‖2F .
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Moreover, the leading singular values and vectors of the low-dimensional embedding W
can be used to approximate those of the data matrix as follows:

Ũ
(A)
k = QU

(W )
k , Σ̃

(A)
k = Σ

(W )
k , Ṽ

(A)
k = V

(W )
k (3.5)

where Ũ
(A)
k and Ṽ

(A)
k are l×k and n×k matrices whose columns approximate the leading k

left and right singular vectors of A respectively, and Σ̃
(A)
k is a k× k matrix whose diagonal

elements approximate the leading k singular values of A.

In Section 3.2, a recursive formula for the selection criterion is presented. This formula
allows the development of an efficient algorithm to greedily minimize F (S). The greedy
algorithm is presented in Section 3.3.

3.2 Recursive Selection Criterion

The column subset selection criterion presented in Section 3.1 measures the reconstruction
error of a data matrix based on the subset of selected columns. The minimization of this
criterion is a combinatorial optimization problem whose optimal solution is very difficult
to obtain. In this section, a recursive formula for the CSS criterion is presented. This
formula allows the development of an efficient greedy algorithm that approximates the
optimal solution of the column subset selection problem. The recursive formula of the
CSS criterion is based on a recursive formula for the projection matrix P (S) which can be
derived as follows.

Lemma 3.1 Given a set of columns S. For any P ⊂ S,

P (S) = P (P) +R(R) ,

where R(R) is a projection matrix which projects the columns of E = A − P (P)A onto the
span of the subset R = S \ P of columns,

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R .

Proof Define a matrix B = AT:SA:S which represents the inner-product over the columns
of the sub-matrix A:S . The projection matrix P (S) can be written as:

P (S) = A:SB
−1AT:S . (3.6)
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Without loss of generality, the columns and rows of A:S and B in Equation (3.6) can
be rearranged such that the first sets of rows and columns correspond to P :

A:S =
[
A:P A:R

]
, B =

[
BPP BPR
BT
PR BRR

]
,

where BPP = AT:PA:P , BPR = AT:PA:R and BRR = AT:RA:R.

Let S = BRR − BT
PRB

−1
PPBPR be the Schur complement [74] of BPP in B. Using the

block-wise inversion formula [74], B−1 can be calculated as:

B−1 =

[
B−1PP +B−1PPBPRS

−1BT
PRB

−1
PP −B

−1
PPBPRS

−1

−S−1BT
PRB

−1
PP S−1

]

Substitute with A:S and B−1 in Equation (3.6):

P (S) =
[
A:P A:R

] [ B−1PP +B−1PPBPRS
−1BT

PRB
−1
PP −B

−1
PPBPRS

−1

−S−1BT
PRB

−1
PP S−1

] AT:P

AT:R


=A:PB

−1
PPA

T
:P + A:PB

−1
PPBPRS

−1BT
PRB

−1
PPA

T
:P − A:PB

−1
PPBPRS

−1AT:R

− A:RS
−1BT

PRB
−1
PPA

T
:P + A:RS

−1AT:R .

Take out A:PB
−1
PPBPRS

−1 as a common factor from the 2nd and 3rd terms, and A:RS
−1

from the 4th and 5th terms:

P (S) =A:PB
−1
PPA

T
:P − A:PB

−1
PPBPRS

−1 (AT:R −BT
PRB

−1
PPA

T
:P
)

+ A:RS
−1 (AT:R −BT

PRB
−1
PPA

T
:P
)
.

Take out S−1
(
AT:R −BT

PRB
−1
PPA

T
:P
)

as a common factor from the 2nd and 3rd terms:

P (S) = A:PB
−1
PPA

T
:P +

(
A:R − A:PB

−1
PPBPR

)
S−1

(
AT:R −BT

PRB
−1
PPA

T
:P
)
. (3.7)

The first term of Equation (3.7) is the projection matrix which projects the columns

of A onto the span of the subset P of columns: P (P) = A:P
(
AT:PA:P

)−1
AT:P = A:PB

−1
PPA

T
:P .

The second term can be simplified as follows. Let E be an m× n residual matrix which is
calculated as: E = A− P (P)A. The sub-matrix E:R can be expressed as:

E:R = A:R − P (P)A:R = A:R − A:P
(
AT:PA:P

)−1
AT:PA:R = A:R − A:PB

−1
PPBPR .
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Since projection matrices are idempotent, then P (P)P (P) = P (P) and the inner-product
ET

:RE:R can be expressed as:

ET
:RE:R =

(
A:R − P (P)A:R

)T (
A:R − P (P)A:R

)
=AT:RA:R − AT:RP (P)A:R − AT:RP (P)A:R + AT:RP

(P)P (P)A:R

=AT:RA:R − AT:RP (P)A:R .

Substituting with P (P) = A:P
(
AT:PA:P

)−1
AT:P gives

ET
:RE:R = AT:RA:R − AT:RA:P

(
AT:PA:P

)−1
AT:PA:R = BRR −BT

PRB
−1
PPBPR = S .

Substituting
(
A:PB

−1
PPA

T
:P
)
,
(
A:R − A:PB

−1
PPBPR

)
and S with P (P), E:R and ET

:RE:R re-
spectively, Equation (3.7) can be expressed as:

P (S) = P (P) + E:R
(
ET

:RE:R
)−1

ET
:R .

The second term is the projection matrix which projects the columns of E onto the
span of the subset R of columns:

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R . (3.8)

This proves that P (S) can be written in terms of P (P) and R as: P (S) = P (P) +R(R)

This means that projection matrix P (S) can be constructed in a recursive manner by
first calculating the projection matrix which projects the columns of A onto the span of
the subset P of columns, and then calculating the projection matrix which projects the
columns of the residual matrix onto the span of the remaining columns. Based on this
lemma, a recursive formula can be developed for ÃS .

Corollary 3.2 Given a matrix A and a subset of columns S. For any P ⊂ S,

ÃS = ÃP + ẼR ,

where E = A − P (P)A, and ẼR is the low-rank approximation of E based on the subset
R = S \ P of columns.

Proof Using Lemma (3.1), and substituting with P (S) in Equation (3.1) gives:

ÃS = P (P)A+ E:R
(
ET

:RE:R
)−1

ET
:RA . (3.9)
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The first term is the low-rank approximation of A based on P : ÃP = P (P)A. The second
term is equal to ẼR as ET

:RA = ET
:RE. To prove that, multiplying ET

:R by E = A− P (P)A
gives:

ET
:RE = ET

:RA− ET
:RP

(P)A .

Using E:R = A:R − P (P)A:R, the expression ET
:RP

(P) can be written as:

ET
:RP

(P) = AT:RP
(P) − AT:RP (P)P (P) .

This is equal to 0 as P (P)P (P) = P (P) (an idempotent matrix). This means that ET
:RA =

ET
:RE. Substituting ET

:RA with ET
:RE in Equation (3.9) proves the corollary.

This means that the column-based low-rank approximation of A based on the subset S
of columns can be calculated in a recursive manner by first calculating the low-rank approx-
imation of A based on the subset P ⊂ S, and then calculating the low-rank approximation
of the residual matrix E based on the remaining columns.

Based on Corollary (3.2), a recursive formula for the column subset selection criterion
can be developed as follows.

Theorem 3.3 Given a set of columns S. For any P ⊂ S,

F (S) = F (P)− ‖ẼR‖2F ,

where E = A − P (P)A, and ẼR is the low-rank approximation of E based on the subset
R = S \ P of columns.

Proof Using Corollary (3.2), the CSS criterion can be expressed as:

F (S) =
∥∥∥A− ÃS∥∥∥2

F
=
∥∥∥A− ÃP − ẼR∥∥∥2

F

=
∥∥∥E − ẼR∥∥∥2

F
=
∥∥E −R(R)E

∥∥2
F
.

Using the relation between the Frobenius norm and the trace function,1 the right-hand
side can be expressed as:∥∥E −R(R)E

∥∥2
F

= trace
((
E −R(R)E

)T (
E −R(R)E

))
= trace

(
ETE − 2ETR(R)E + ETR(R)R(R)E

)
.

1‖A‖2F = trace
(
ATA

)
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As R(R)R(R) = R(R) (an idempotent matrix), F (S) can be expressed as:

F (S) = trace
(
ETE − ETR(R)R(R)E

)
= trace

(
ETE − ẼRẼR

)
= ‖E‖2F − ‖ẼR‖2F .

Replacing ‖E‖2F with F (P) proves the theorem.

The term ‖ẼR‖2F represents the decrease in reconstruction error achieved by adding the
subset R of columns to P . In the following section, a novel greedy heuristic is presented
to optimize the column subset selection criterion based on this recursive formula.

3.3 Greedy Selection Algorithm

This section presents an efficient greedy algorithm to optimize the column subset selection
criterion presented in Section 3.1. The algorithm selects at each iteration one column such
that the reconstruction error for the new set of columns is minimized. This problem can
be formulated as follows:

Problem 3.2 At iteration t, find column p such that,

p = arg min
i

F (S ∪ {i}) (3.10)

where S is the set of columns selected during the first t− 1 iterations.

A näıve implementation of the greedy algorithm is to calculate the reconstruction error
for each candidate column, and then select the column with the smallest error. This
implementation is, however, computationally very complex, as it requires O(m2n2) floating-
point operations per iteration. A more efficient approach is to use the recursive formula
for calculating the reconstruction error. Using Theorem 3.3,

F (S ∪ {i}) = F (S)− ‖Ẽ{i}‖2F ,

where E = A − ÃS and Ẽ{i} is the rank-1 approximation of E based on the candidate
column i. Since F (S) is a constant for all candidate columns, an equivalent criterion is:

p = arg max
i

‖Ẽ{i}‖2F (3.11)

This formulation selects the column p which achieves the maximum decrease in recon-
struction error. Using the properties that: trace (AB) = trace (BA) and trace (aA) =
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a trace (A) where a is a scalar, the new objective function
∥∥∥Ẽ{i}∥∥∥2

F
can be simplified as

follows: ∥∥∥Ẽ{i}∥∥∥2
F

= trace
(
ẼT
{i}Ẽ{i}

)
= trace

(
ETR({i})E

)
= trace

(
ETE:i

(
ET

:iE:i

)−1
ET

:iE
)

=
1

ET
:iE:i

trace
(
ETE:iE

T
:iE
)

=

∥∥ETE:i

∥∥2
ET

:iE:i

.

This defines the following equivalent problem.

Problem 3.3 (Greedy Column Subset Selection) At iteration t, find column p such
that,

p = arg max
i

∥∥ETE:i

∥∥2
ET

:iE:i

(3.12)

where E = A− ÃS , and S is the set of columns selected during the first t− 1 iterations.

The computational complexity of this selection criterion is O (n2m) per iteration, and it
requires O (nm) memory to store the residual of the whole matrix, E, after each iteration.
In the rest of this section, two novel techniques are proposed to reduce the memory and
time requirements of this selection criterion.

3.3.1 Memory-Efficient Criterion

This section proposes a memory-efficient algorithm to calculate the column subset selection
criterion without explicitly calculating and storing the residual matrix E at each iteration.
The algorithm is based on a recursive formula for calculating the residual matrix E.

Let S(t) denote the set of columns selected during the first t− 1 iterations, E(t) denote
the residual matrix at the start of the t-th iteration (i.e., E(t) = A− ÃS(t)), and p(t) be the
column selected at iteration t. The following lemma gives a recursive formula for residual
matrix at the start of iteration t+ 1, E(t+1).

Lemma 3.4 E(t+1) can be calculated recursively as:

E(t+1) =

(
E −

E:pE
T
:p

ET
:pE:p

E

)(t)

. (3.13)
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Proof Using Corollary 3.2, ÃS∪{p} = ÃS + Ẽ{p}. Subtracting both sides from A, and

substituting A− ÃS∪{p} and A− ÃS with E(t+1) and E(t) respectively gives:

E(t+1) =
(
E − Ẽ{p}

)(t)
Using Equations (3.1) and (3.2), Ẽ{p} can be expressed as

(
E:p(E

T
:pE:p)

−1ET
:p

)
E. Substi-

tuting Ẽ{p} with this formula in the above equation proves the lemma.

Let G be an n× n matrix which represents the inner-products over the columns of the
residual matrix E: G = ETE. The following corollary is a direct result of Lemma 3.4.

Corollary 3.5 G(t+1) can be calculated recursively as:

G(t+1) =

(
G−

G:pG
T
:p

Gpp

)(t)

.

Proof This corollary can be proved by substituting with E(t+1)T (Lemma 3.4) in G(t+1) =
E(t+1)TE(t+1), and using the fact that R({p})R({p}) = R({p}) (an idempotent matrix).

To simplify the derivation of the memory-efficient algorithm, at iteration t, define δ =
G:p and ω = G:p/

√
Gpp = δ/

√
δp. This means that G(t+1) can be calculated in terms of

G(t) and ω(t) as follows:
G(t+1) =

(
G− ωωT

)(t)
, (3.14)

or in terms of A and previous ω’s as:

G(t+1) = ATA−
t∑

r=1

(
ωωT

)(r)
. (3.15)

δ(t) and ω(t) can be calculated in terms of A and previous ω’s as follows:

δ(t) = ATA:p −
t−1∑
r=1

ω(r)
p ω

(r),

ω(t) = δ(t)/
√
δ(t)p .

(3.16)

The column subset selection criterion can be expressed in terms of G as:

p = arg max
i

‖G:i‖2

Gii
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The following theorem gives recursive formulas for calculating the column subset selec-
tion criterion without explicitly calculating E or G.

Theorem 3.6 Let f i = ‖G:i‖2 and gi = Gii be the numerator and denominator of the
criterion function for column i respectively, f = [f i]i=1..n, and g = [gi]i=1..n. Then,

f (t) =
(
f − 2

(
ω ◦

(
ATAω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.

where ◦ represents the Hadamard product operator.

Proof Based on Equation (3.14), f
(t)
i can be calculated as:

f
(t)
i =

(
‖G:i‖2

)(t)
=
(
‖G:i − ωiω‖2

)(t−1)
=
(
(G:i − ωiω)T (G:i − ωiω)

)(t−1)
=
(
GT

:iG:i − 2ωiG
T
:iω + ω2

i ‖ω‖2
)(t−1)

=
(
f i − 2ωiG

T
:iω + ω2

i ‖ω‖2
)(t−1)

.

(3.17)

Similarly, g
(t)
i can be calculated as:

g
(t)
i = G

(t)
ii =

(
Gii − ω2

i

)(t−1)
=
(
gi − ω2

i

)(t−1)
.

(3.18)

Let f = [f i]i=1..nand g = [gi]i=1..n, f (t) and g(t) can be expressed as:

f (t) =
(
f − 2 (ω ◦Gω) + ‖ω‖2 (ω ◦ ω)

)(t−1)
,

g(t) = (g − (ω ◦ ω))(t−1) ,
(3.19)

where ◦ represents the Hadamard product operator, and ‖.‖ is the `2 norm.

Based on the recursive formula of G (Eq. 3.15), the term Gω at iteration (t − 1) can
be expressed as:

Gω =
(
ATA− Σt−2

r=1

(
ωωT

)(r))
ω

= ATAω − Σt−2
r=1

(
ω(r)Tω

)
ω

(r)
(3.20)
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Substitute with Gω in Equation (3.19) gives the update formulas for f and g.

This means that the greedy criterion can be memory-efficient by only maintaining two
score variables for each column, f i and gi, and updating them at each iteration based on
their previous values and the columns selected so far.

In addition to the selection of representative columns, the memory-efficient procedure
directly learns an l-dimensional embedding of all columns into the subspace of selected
ones. This can be illustrated as follows. As Equation (3.13) projects the columns of the
residual matrix at iteration t onto the subspace orthogonal to E:p, the column selected at
iteration t+ 1 will be orthogonal to the column selected at iteration t and accordingly the
columns selected during the first t− 1 iterations. This means that the proposed procedure
implicitly performs the Gram-Schmidt orthogonalization process. Accordingly, the matrix
Q whose columns represent an orthonormal basis for the subspace of selected columns can
be expressed as:

Q =

[ (
1
‖E:p‖E:p

)(1) (
1
‖E:p‖E:p

)(2)
...

(
1
‖E:p‖E:p

)(l) ]
.

Using Equation (3.3), the embedding of columns into the subspace of Q is given by

W = QTA =

[ (
1
‖E:p‖E

T
:pA
)(1) (

1
‖E:p‖E

T
:pA
)(2)

...
(

1
‖E:p‖E

T
:pA
)(l) ]T

.

Since at iteration t, ET
:pA = ET

:pE (see the proof of Corollary 3.2) and ET
:pE/‖E:p‖ =

G:p/Gpp = ω, then

W = QTA =

[ (
1
‖E:p‖E

T
:pE
)(1) (

1
‖E:p‖E

T
:pE
)(2)

...
(

1
‖E:p‖E

T
:pE
)(l) ]T

=
[
ω(1) ω(2) ... ω(l)

]T
.

Although the proposed procedure does not directly calculate the orthogonal matrix
Q, the calculated ω’s can be used to construct the embedding matrix W with no extra
computational cost. Given W , the singular values and right singular vectors of A can be
approximated using those of W (Eq. 3.5). However, if the goal is to calculate a low-rank
approximation of A or approximate its left singular vectors, additional steps will be required
to calculate Q. Algorithm 4 shows the complete memory-efficient greedy algorithm.
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Algorithm 4 Greedy Column Subset Selection

Input: Data matrix A, Number of columns l
Output: Selected columns S, Low-dimensional embedding W
Steps:

1. Initialize S = { }

2. Initialize f
(0)
i = ‖ATA:i‖2, and g

(0)
i = AT:iA:i for i = 1, 2, ... n

3. Repeat t = 1→ l:

(a) p = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {p}

(b) δ(t) = ATA:p −
∑t−1

r=1ω
(r)
p ω(r)

(c) ω(t) = δ(t)/
√
δ(t)p

(d) Update f i’s, gi’s

f (t) =
(
f − 2

(
ω ◦

(
ATAω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

4. W =
[
ω(1) ... ω(l)

]T
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3.3.2 Partition-Based Criterion

The column subset selection criterion calculates, at each iteration, the inner-products be-
tween each candidate column E:i and other columns E. The computational complexity of
these inner-products is O(nm) per candidate column (or O(n2m) per iteration). When the
memory-efficient update formulas are used, the computational complexity is reduced to
O(nm) per iteration (that of calculating ATAω). However, the computational complexity
of calculating the initial value of f is still O(n2m).

In order to reduce this computational complexity, a novel partition-based criterion is
proposed, which reduces the number of inner-products to be calculated at each iteration.
The criterion partitions columns into c� n random groups, and selects the column which
best represents the centroids of these groups. Let Pj be the set of column that belong to
the j-th partition, P = {P1,P2, ...Pc} be a random partitioning of columns into c groups,
and B be an m × c matrix whose element j-th column is the sum of column vectors that
belong to the j-th group: B:j =

∑
r∈Pj

A:r. The use of the sum function (instead of mean)
weights each column of B with the size of the corresponding group. This avoids any bias
towards larger groups when calculating the sum of inner-products.

The selection criterion can be written as:

Problem 3.4 (Partition-Based Greedy Column Selection) At iteration t, find col-
umn p such that,

p = arg max
i

∥∥F TE:i

∥∥2
ET

:iE:i

(3.21)

where E = A − ÃS , S is the set of columns selected during the first t − 1 iterations,
F:j =

∑
r∈Pj

E:r, and P = {P1,P2, ...Pc} is a random partitioning of columns into c
groups.

Similar to E (Lemma 3.4), F can be calculated in a recursive manner as follows:

F (t+1) = (F −
E:pE

T
:p

ET
:pE:p

F )(t).

This means that random partitioning can be done once at the start of the algorithm. After
that, F is initialized to B and then updated recursively using the above formula. The
computational complexity of calculating B is O(nm) if the data matrix is full. However,
this complexity can be considerably reduced if the data matrix is very sparse.
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Further, a memory-efficient variant of the partition-based algorithm can be developed
as follows. Let H be an c×n matrix whose element Hji is the inner-product of the centroid
of the j-th group and the i-th column, weighted with the size of the j-th group: H = F TE.
Similarly, H can be calculated recursively as follows:

H(t+1) = (H −
H:pG

T
:p

Gpp

)(t).

Define γ = H:p and υ = H:p/
√
Gpp = γ/

√
δp. H

(t+1) can be calculated in terms of H(t),

υ(t) and ω(t) as follows:
H(t+1) = (H − υωT )(t), (3.22)

or in terms of A and previous ω’s and υ’s as:

H(t+1) = BTA−
t∑

r=1

(υωT )(r). (3.23)

γ(t) and υ(t) can be calculated in terms of A, B and previous ω’s and υ’s as follows:

γ(t) = BTA:p −
t−1∑
r=1

ω(r)
p υ

(r),

υ(t) = γ(t)/
√
δ(t)p .

The partition-based selection criterion can be expressed in terms of H and G as:

p = arg max
i

‖H:i‖2

Gii

Similar to Theorem 3.6, the following theorem derives recursive formulas for the partition-
based criterion function.

Theorem 3.7 Let f i = ‖H:i‖2 and gi = Gii be the numerator and denominator of the
partition-based criterion function for column i respectively, f = [f i]i=1..n, and g = [gi]i=1..n.
Then,

f (t) =
(
f − 2

(
ω ◦

(
ATBυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.
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Proof The proof is similar to that of Theorem 3.6. It can be easily derived by using the
recursive formula for H:i instead of that for G:i.

In these update formulas, ATB can be calculated once and then used in different it-
erations. This makes the computational complexity of the new update formulas is O(nc)
per iteration. Algorithm 5 shows the complete partition-based greedy algorithm. The
computational complexity of the algorithm is dominated by that of calculating ATA:p in
Step (b) which is of O(mn) per iteration. The other complex step is that of calculating
the initial f , which is O(mnc). However, these steps can be implemented in an efficient
way if the data matrix is sparse. The total computational complexity of the algorithm
is O(max(mnl,mnc)), where l is the number of columns and c is the number of random
partitions.

3.4 Related Work

Different approaches have been proposed for selecting a subset of representative columns
from a data matrix. These approaches can be categorized into randomized, deterministic
and hybrid.

3.4.1 Randomized Methods

The randomized methods sample a subset of columns from the original matrix using care-
fully chosen sampling probabilities. The main focus of this category of methods is to
develop fast algorithms for column subset selection and then derive a bound for the re-
construction error of the data matrix based on the selected columns relative to the best
possible reconstruction error obtained using Singular Value Decomposition (SVD).

Frieze et al. [66] was the first to suggest the idea of randomly sampling l columns
from a matrix and using these columns to calculate a rank-k approximation of the matrix
(where l ≥ k). The authors derived an additive bound for the reconstruction error of
the data matrix. This work of Frieze et al. was followed by different papers [67, 68]
that enhanced the algorithm by proposing different sampling probabilities and deriving
better error bounds for the reconstruction error. Drineas et al. [69] proposed a subspace
sampling method which samples columns using probabilities proportional to the norms of
the rows of the top k right singular vectors of A. The subspace sampling method allows
the development of a relative-error bound (i.e., a multiplicative error bound relative to
the best rank-k approximation). However, the subspace sampling depends on calculating
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Algorithm 5 Partition-based Greedy Column Selection

Input: Data matrix A, Number of columns l
Output: Selected columns S, Low-dimensional embedding W
Steps:

1. Initialize S = { }, Generate a random partitioning P, Calculate B: B:j =
∑

r∈Pj
A:r

2. Initialize f
(0)
i = ‖BTA:i‖2, and g

(0)
i = AT:iA:i for i = 1, 2, ... n

3. Repeat t = 1→ l:

(a) p = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {p}

(b) δ(t) = ATA:p −
∑t−1

r=1ω
(r)
p ω(r)

(c) γ(t) = BTA:p −
∑t−1

r=1ω
(r)
p υ(r)

(d) ω(t) = δ(t)/
√
δ(t)p , υ(t) = γ(t)/

√
δ(t)p

(e) Update f i’s, gi’s

f (t) =
(
f − 2

(
ω ◦

(
ATBυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

4. W =
[
ω(1) ... ω(l)

]T
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the leading singular vectors of a matrix which is computationally very complex for large
matrices.

Deshpande et al. [70, 71] proposed an adaptive sampling method which updates the
sampling probabilities based on the columns selected so far. This method is computa-
tionally very complex, as it depends on calculating the residual of the data matrix after
each iteration. In the same paper, Deshpande et al. also proved the existence of a volume
sampling algorithm (i.e., sampling a subset of columns based on the volume enclosed by
their vectors) which achieves a multiplicative (l+ 1)-approximation. However, the authors
did not present a polynomial time algorithm for this volume sampling algorithm.

3.4.2 Deterministic Methods

The deterministic methods employ a deterministic algorithm for selecting columns which
minimizes some criterion function. This criterion function usually quantifies the reconstruc-
tion error of the data matrix based on the subset of selected columns. The deterministic
methods are slower, but more accurate, than the randomized ones.

In the area of numerical linear algebra, the column pivoting method exploited by the QR
decomposition [10] permutes the columns of the matrix based on their norms to enhance
the numerical stability of the QR decomposition algorithm. The first l columns of the
permuted matrix can be directly selected as representative columns. The Rank-Revealing
QR (RRQR) decomposition [14–17] is a category of QR decomposition methods which
permute columns of the data matrix while imposing additional constraints on the singular
values of the two sub-matrices of the upper-triangular matrix R corresponding to the
selected and non-selected columns. It has been shown that the constrains on the singular
values can be used to derive an theoretical guarantee for the column-based reconstruction
error according to spectral norm [63].

Besides methods based on QR decomposition, different recent methods have been pro-
posed for directly selecting a subset of columns from the data matrix. Boutsidis et al. [63]
proposed a deterministic column subset selection method which first groups columns into
clusters and then selects a subset of columns from each cluster. The authors proposed
a general framework in which different clustering and subset selection algorithms can be
employed to select a subset of representative columns. Çivril and Magdon-Ismail [72, 73]
presented a deterministic algorithm which greedily selects columns from the data matrix
that best represent the right leading singular values of the matrix. This algorithm, however
accurate, depends on the calculation of the leading singular vectors of a matrix, which is
computationally very complex for large matrices.
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Recently, Boutsidis et al. [65] presented a column subset selection algorithm which
first calculates the top-k right singular values of the data matrix (where k is the target
rank) and then uses deterministic sparsification methods to select l ≥ k columns from the
data matrix. The authors derived a theoretically near-optimal error bound for the rank-k
column-based approximation. Deshpande and Rademacher [75] presented a polynomial-
time deterministic algorithm for volume sampling with a theoretical guarantee for l =
k. Quite recently, Guruswami and Sinop [76] presented a deterministic algorithm for
volume sampling with theoretical guarantee for l > k. The deterministic volume sampling
algorithms are, however, more complex than the algorithms presented in this chapter, and
they are infeasible for large data sets.

3.4.3 Hybrid Methods

A third category of CSS techniques is the hybrid methods which combine the benefits
of both the randomized and deterministic methods. In these methods, a large subset of
columns is randomly sampled from the columns of the data matrix and then a deterministic
step is employed to reduce the number of selected columns to the desired rank.

For instance, Boutsidis et al. [64] proposed a two-stage hybrid algorithm for column
subset selection which runs in O (min (n2m,nm2)). In the first stage, the algorithm samples
c = O (l log l) columns based on probabilities calculated using the l-leading right singular
vectors. In the second phase, a Rank-revealing QR (RRQR) algorithm is employed to select
exactly l columns from the columns sampled in the first stage. The authors suggested
repeating the selection process 40 times in order to provably reduce the failure probability.
The authors proved a good theoretical guarantee for the algorithm in terms of spectral
and Frobenius term. However, the algorithm depends on calculating the leading l right
singular vectors which is computationally complex for large data sets.

3.4.4 Comparison to Related Work

The greedy column subset selection algorithm presented in Section 3.3.1 belongs to the
category of deterministic algorithms. In comparison to QR-based methods, the greedy
CSS algorithm can be implicitly used to calculate a Q-less incomplete QR factorization of
the data matrix A:

A = QW, AΠ = QWΠ = QR

where Π is a permutation matrix which sorts the first l columns according to their selection
order. The permutation of the columns of the embedding matrix W produces an upper
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Table 3.1: The properties of the data sets used to evaluate different CSS methods.
Data set Type # Instances # Features

Reuters-21578 Documents 5946 18933
Reviews Documents 4069 36746

LA1 Documents 3204 29714
MNIST-4K Digit Images 4000 784

PIE-20 Face Images 3400 1024
YaleB-38 Face Images 2414 1024

triangular matrix.

The greedy CSS algorithm differs from the greedy algorithm proposed by Çivril and
Magdon-Ismail [72, 73] in that the latter depends on first calculating the Singular Value
Decomposition of the data matrix, which is computationally complex, especially for large
matrices. The proposed algorithm is also more efficient than the recently proposed volume
sampling algorithms [75,76].

On the other hand, the partition-based greedy algorithm presented in Section 3.3.2
belongs to the category of hybrid algorithms in the sense that it combines a randomized
step with a deterministic selection. However, the randomized step in the partition-based
algorithm depends on grouping columns into random partitions rather than selecting a set
random samples; this random partitioning speeds up the algorithm without losing much
information about the span of the columns.

3.5 Experiments and Results

Experiments have been conducted on six benchmark data sets, whose properties are sum-
marized in Table 3.1.2 The Reuters-21578 is the training set of the Reuters-21578 col-
lection [77]. The Reviews and LA1 are document data sets from TREC collections.3

The pre-processed versions of Reviews and LA1 that are distributed with the CLUTO
Toolkit [78] were used. The MNIST-4K is a subset of the MNIST data set of handwritten

2 The data sets Reuters-21578, MNIST-4K, PIE-20 and YaleB-38 are available in MAT format at:
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. PIE-20 is a subset of PIE-32x32 with
the images of the first 20 persons.

3http://trec.nist.gov
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digits.4 The PIE-20 and YaleB-38 are pre-processed subsets of the CMU PIE [79] and
Extended Yale Face [80] data sets respectively. The PIE-20 and YaleB-38 data sets have
been used by He et al. [81] to evaluate different face recognition algorithms.

The following CSS methods are compared5.

� UniNoRep: is uniform sampling of columns without replacement.

� qr: is the QR decomposition with column pivoting [10] implemented by the MATLAB
qr function.6

� SRRQR: is the strong rank-revealing QR decomposition [15]. Algorithm 4 of [15]
was implemented in MATLAB. In this implementation, the MATLAB qr function
is first used to calculate the QR decomposition with column pivoting and then the
columns are swapped using the criterion specified by Gu and Eisenstat [15].7

� ApproxSVD: is the sparse approximation of Singular Value Decomposition (SVD)
[72, 73]. The algorithm was implemented in MATLAB. The generalized CSS algo-
rithm presented in Chapter 7 is used to select columns that best approximates the
leading singular vectors. The use of the generalized CSS algorithm is equivalent to,
but more efficient than, the algorithm proposed by Çivril and Magdon-Ismail [72,73].
Since the calculation of exact SVD is computationally complex, the Stochastic SVD
algorithm [12] is used to approximate the leading singular values and vectors of the
data matrix. This significantly reduces the run time of the original algorithm pro-
posed by Çivril and Magdon-Ismail while achieving comparable accuracy.

� HybridCSS: is the hybrid column subset selection algorithm proposed by Bousidis
et al. [64]. The number of selected columns in the randomized phase is set to l log (l).
The algorithm was implemented in MATLAB. In the randomized phase, the Stochas-
tic SVD is first used to calculate the leading singular vectors, and the approximated
singular vectors are then used to calculate the sampling probabilities. In the deter-
ministic phase, the MATLAB qr function is used to select columns.8

4http://yann.lecun.com/exdb/mnist
5The CSS algorithm of Boutsidis et al. [65] was not included in the comparison as its implementation

is not available.
6Revision: 5.13.4.7
7In the implemented code, the efficient recursive formulas in Section 4 of [15] are used to implement

the update of QR decomposition and the swapping criterion.
8In [82] (a newer version of [64]), Boutsidis et al. suggested the use of the SRRQR algorithm [15, Algo-

rithm 4] for the deterministic phase. Although the SRRQR algorithm achieves the theoretical guarantee
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� GreedyCSS: is the greedy column subset selection method described in Algorithm
4.

� PartGreedyCSS: is the partition-based greedy column subset selection method
described in Algorithm 5. For all experiments, the number of partitions is set to 100.

The different CSS methods are evaluated according to their ability to minimize the
reconstruction error of the data matrix based on the subset of selected columns (Definition
3.1). In order to quantify the reconstruction error across different data sets, a relative
accuracy measure is defined as

Relative Accuracy =
‖A− Ãl‖F
‖A− ÃS‖F

, (3.24)

where ÃS is the rank-l approximation of the data matrix calculated based on the subset
S of columns and Ãl is the best rank-l approximation of the data matrix calculated using
the Singular Value Decomposition (SVD). Since ‖A− Ãl‖F is the minimum possible recon-
struction error for a rank-l approximation, the relative accuracy is between 0 and 1 with
higher values indicating better CSS methods.

For all the data sets, the percentage of selected columns l/n is changed from 1% to
25% with increments of 2% and the relative accuracies and run times are measured.9

Experiments with randomness were repeated ten times, and the average and standard
deviation of measures were calculated.

Figures 3.1 and 3.2 show the relative accuracy measures and run times for different
CSS methods on the six benchmark data sets.10 In addition, Tables 3.2 and 3.3 show
the relative accuracy measures for the best performing CSS methods (ApproxSVD, Hy-
bridCSS, GreedyCSS, and PartGreedyCSS). Each sub-table represents a data set and
each column represents a percentage of selected columns. The relative accuracy measures
in each sub-column are divided into groups according to their statistical significance. The
best group of methods is highlighted in bold, and the second best group is underlined.

presented in [64], the MATLAB qr function is used in the conducted experiments as it is much faster and
it achieves comparable accuracy for the experimented data sets.

9For the MNIST4K data set, the range of l/n values is smaller since the rank of the matrix is very low
(i.e., less than the number of pixels).

10The qr and SRRQR methods both depend on the MATLAB qr function. For the document data
sets, the MATLAB qr function takes very long times compared to other methods and accordingly they are
not reported in the shown figures.
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The tests of statistical significance were performed as follows: the methods in each sub-
column are first sorted in a descending order according to their average accuracy measures,
then a one-tailed t-test is used to assess the significance of each method with respect to
its successor. The t-test uses the null-hypothesis that two methods are equivalent, and
the alternative hypothesis that the method is superior to its successor. For each pair of
methods, the t-statistic is calculated as:

t =
q1 − q2√
s21
r1

+
s22
r2

,

where q1 and q2 are the average accuracy measures for the two methods, s1 and s2 are
the standard deviations of the accuracy measures, and r1 and r2 are the number of runs
used to estimate q1 and q2 respectively. The value of t-statistic is then compared to the
critical value tcritical obtained from the t-distribution table for a 95% confidence interval.
If t > tcritical, the null-hypothesis is rejected and the method is considered superior to its
successor.

It can be observed from the figures and tables that for all data sets, the GreedyCSS
method significantly outperforms the UniNoRep, qr, SRRQR, and HybridCSS meth-
ods in terms of relative accuracy, and it shows comparable accuracy to the ApproxSVD
method. In terms of run times, for most of the data sets, the GreedyCSS scales better
than the HybridCSS and ApproxSVD methods.

On the other hand, the PartGreedyCSS outperforms the UniNoRep, qr, and SR-
RQR methods in terms of relative accuracy, and shows comparable accuracy to the Hy-
bridCSS method. In terms of run times, the PartGreedyCSS is much more efficient than
the HybridCSS method and other methods for all data sets. It should also be noted that
the SRRQR method achieves comparable accuracy to the qr method and both methods
demonstrate lower approximation accuracies than other deterministic and hybrid methods.
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Figure 3.1: The relative accuracy measures and run times of different column-based low-
rank approximations ÃS for the Reuters-21578, Reviews and LA1 data sets.
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Figure 3.2: The relative accuracy measures and run times of different column-based low-
rank approximations ÃS for the MNIST-4K, PIE-20 and YaleB-38 data sets.
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Table 3.2: The relative accuracy measures of the best performing CSS methods for the
Reuters-21578, Reviews, and LA1 data sets. In each sub-column, the best group of
methods (according to t-test) is highlighted in bold, and the second best group is under-
lined.

Reuters-21578
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%

ApproxSVD 0.9064±0.0000 0.8913±0.0000 0.8830±0.0000 0.8759±0.0000
HybridCSS 0.8935±0.0013 0.8748±0.0011 0.8619±0.0007 0.8540±0.0014
GreedyCSS 0.9069±0.0000 0.8920±0.0000 0.8834±0.0000 0.8762±0.0000

PartGreedyCSS 0.8861±0.0015 0.8736±0.0009 0.8669±0.0011 0.8604±0.0007
Reviews

Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
ApproxSVD 0.9596±0.0000 0.9463±0.0000 0.9333±0.0000 0.9207±0.0000
HybridCSS 0.9526±0.0006 0.9411±0.0005 0.9307±0.0004 0.9165±0.0002
GreedyCSS 0.9608±0.0000 0.9474±0.0000 0.9343±0.0000 0.9217±0.0000

PartGreedyCSS 0.9526±0.0004 0.9405±0.0003 0.9280±0.0004 0.9156±0.0004
LA1

Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
ApproxSVD 0.9599±0.0000 0.9464±0.0000 0.9344±0.0000 0.9223±0.0000
HybridCSS 0.9524±0.0007 0.9411±0.0006 0.9311±0.0003 0.9184±0.0003
GreedyCSS 0.9614±0.0000 0.9478±0.0000 0.9352±0.0000 0.9233±0.0000

PartGreedyCSS 0.9551±0.0003 0.9421±0.0004 0.9298±0.0005 0.9178±0.0004
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Table 3.3: The relative accuracy measures of the best performing CSS methods for the
MNIST-4K, PIE-20, and YaleB-38 data sets. In each sub-column, the best group of
methods (according to t-test) is highlighted in bold, and the second best group is under-
lined.

MNIST-4K
Method l/n = 1% l/n = 5% l/n = 9% l/n = 13%

ApproxSVD 0.8112±0.0000 0.7111±0.0000 0.6768±0.0000 0.7206±0.0000
HybridCSS 0.7723±0.0059 0.6887±0.0027 0.6283±0.0039 0.3986±0.0058
GreedyCSS 0.8099±0.0000 0.7112±0.0000 0.6799±0.0000 0.7203±0.0000

PartGreedyCSS 0.7821±0.0039 0.6827±0.0033 0.6233±0.0041 0.6258±0.0196
PIE-20

Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
ApproxSVD 0.7385±0.0000 0.7021±0.0000 0.6646±0.0000 0.6334±0.0000
HybridCSS 0.7285±0.0019 0.6908±0.0013 0.6463±0.0013 0.5989±0.0013
GreedyCSS 0.7391±0.0000 0.7025±0.0000 0.6636±0.0000 0.6333±0.0000

PartGreedyCSS 0.7153±0.0023 0.6797±0.0021 0.6416±0.0013 0.6052±0.0015
YaleB-38

Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
ApproxSVD 0.7638±0.0000 0.7285±0.0000 0.6981±0.0000 0.6672±0.0000
HybridCSS 0.7481±0.0029 0.7210±0.0016 0.6861±0.0026 0.6458±0.0016
GreedyCSS 0.7634±0.0000 0.7278±0.0000 0.6980±0.0000 0.6665±0.0000

PartGreedyCSS 0.7423±0.0031 0.7103±0.0029 0.6802±0.0013 0.6461±0.0025
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Chapter 4

Greedy Nyström Approximation

This chapter addresses the problem of selecting a set of representative data instances when
only information about their pairwise similarities is available. The algorithms presented
in this chapter extend the greedy Column Subset Selection (CSS) methods presented in
Chapter 3 to work on a kernel matrix that represents the inner-products over the data
instances in a high-dimensional feature space. The objective of the kernel CSS algorithms
is to select a subset of data instances that minimizes the reconstruction error of the data
vectors in the high-dimensional space implicitly defined by the kernel function. The chapter
also explores the connection between the low-rank approximations obtained using the CSS
methods and a well-known low-rank approximation of kernel matrices, namely the Nyström
approximation. The chapter presents a novel recursive formula for calculating the Nyström
approximation and uses this formula to derive an effective greedy criterion for kernel CSS.

The chapter is organized as follows: Section 4.1 reviews the basic Nyström method.
Section 4.2 defines a criterion for kernel column subset selection and shows the connection
between the Nyström approximation and the column-based approximations presented in
Chapter 3. Section 4.3 proposes a recursive algorithm for calculating the Nyström approx-
imation. Section 4.4 presents the greedy selection criteria. Related work is then discussed
in Section 4.5. Section 4.6 presents an empirical evaluation of the proposed algorithms.

4.1 Nyström Approximation

Kernel methods [83] are widely-used algorithms that work on matrices whose elements
represent the inner-products between data points in some vector space. These matrices
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are referred to as the kernel matrices. Examples of kernel methods include Support Vector
Machines (SVM) [84], Gaussian Processes (GP) [85], and kernel k-means [35,36]. The use
of kernels allows the application of different machine learning algorithms to complex data
structures for which it is difficult to represent data instances in a feature space. Examples
include strings, trees and graphs [83]. In addition, kernel methods can be used to explore
non-linear relationships between data points in the feature space.

The Nyström method [86] is an efficient technique for obtaining a low-rank approxi-
mation of a large kernel matrix, using only a subset of its columns. It can also be used
to efficiently approximate the singular values and vectors of a kernel matrix [86, 87]. The
Nyström method has been successfully used in many large-scale applications including ef-
ficient learning of kernel-based models such as Gaussian processes [86] and support vector
machines [88], fast multi-dimensional scaling [89], approximate spectral clustering [5], and
large-scale manifold learning [90].

The quality of the Nyström approximation is highly dependent on the subset of selected
columns. Although uniform sampling has been the most common technique for column
selection [86], a considerable amount of research work has been conducted to theoretically
and empirically study other sampling techniques. These techniques include: non-uniform
sampling, using probabilities calculated based on the kernel matrix [68, 91, 92]; adaptive
sampling, in which probabilities are updated based on intermediate approximations of the
kernel matrix [87, 93]; and deterministic sampling, where columns are selected such that
some criterion function is optimized [21,94].

4.1.1 The Basic Nyström Method

The Nyström method obtains a low-rank approximation of a kernel matrix using a subset
of its columns. Let K be an n× n symmetric positive semi-definite (SPSD) kernel matrix
defined over n data instances. The Nyström method starts by selecting a subset of l � n
columns of K (usually by random sampling). These columns represent the similarities
between the subset of l data instances and all data instances. Let S be the set of the
indices of selected columns, and R be the set of the indices of remaining columns. Without
loss of generality, the columns and rows of K can be arranged as follows:

K =

[
KSS KSR
KT
SR KRR

]
, (4.1)

where KSS , KSR and KRR are sub-matrices of K whose elements are {Kij : i, j ∈ S},
{Kij : i ∈ S, j ∈ R} , and {Kij : i, j ∈ R} respectively, and Kij denotes the element of K
at row i and column j.

56



The Nyström method calculates a rank-l approximation of K as [86]:

K̃S = K:SK
−1
SSK

T
:S , (4.2)

where K:S =
[
KSS KSR

]T
is an n× l matrix which consists of the selected columns of

K.

The Nyström method can also be used to approximate the leading singular values and
vectors of K using those of KSS [86], which is sometimes referred to as the approximate
spectral decomposition [87].The k leading singular values and vectors of K can be approx-
imated as:

Σ̃k =
n

l
Λk, Ũk =

√
l

n
K:SVkΛ

−1
k . (4.3)

where k ≤ l� n. Vk and Uk are l× k and n× k matrices whose columns are the k leading
singular vectors of KSS and K respectively. Λk and Σk are k × k matrices whose diagonal
elements are the k leading singular values of KSS and K respectively.

The approximate singular values and vectors of K can be used to map data points to
a k-dimensional space:

Y = Σ̃
1/2
k ŨT

k = Λ
−1/2
k V T

k K
T
:S , (4.4)

where Y is a k × n matrix whose columns represent data instances in the k-dimensional
space. The kernel matrix over data points in the k-dimensional space represents a rank-k
approximation of K which can be calculated as:

K̃S,k = Y TY = K:SVkΛ
−1
k V T

k K
T
:S . (4.5)

Throughout the rest of the chapter, “Nyström approximation” and “rank-l Nyström ap-
proximation” are used interchangeably to refer to K̃S , while “rank-k Nyström approxima-
tion” refers to K̃S,k.

The computational complexity of calculating K−1SS is O (l3), and those of calculating Y
and K̃S,k are O (l3 + nlk) and O (l3 + nlk + n2k), respectively. It should be noted that the
approximate singular vectors, as well as the basis of the k-dimensional space are, however,
non-orthonormal [87]. In some applications, additional steps might be required to obtain
orthonormal vectors. This, however, increases the computational complexity.

4.1.2 Applications of the Nyström Method

The Nyström method has been successfully used in many large-scale applications in ma-
chine learning and data mining. As the Nyström method obtains an approximate spectral
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decomposition of a large kernel matrix, it has been used to speed up the training of kernel-
based learning models, such as Support Vector Machines (SVM) [84] and Gaussian Pro-
cesses (GP) [85]. These models are computationally very complex, as their training phase
scales up to O(n3), where n is the number of instances. Williams and Seeger [86] sug-
gested that the low-rank factorization obtained by the Nyström method can be efficiently
used to calculate the inverse of the regularized kernel matrix (e.g., (K + αI)−1) using the
Woodbury formula [10]. This formula significantly reduces the computational complexity
of learning Gaussian processes to O(nk2), where k is the rank of the approximated kernel.
The same observation has been made by Fine and Scheinberg [95], who suggested that
using a low-rank approximation of the kernel matrix reduces the training time of support
vector machines. The authors, however, used a method based on incomplete Cholesky
Decomposition to obtain the low-rank approximation.

The Nyström method has also been used for fast dimension reduction, where approx-
imate singular values and vectors are used to map instances to a low-dimensional space
(Eq. 4.4). In particular, Platt [89] showed that different large-scale algorithms for multi-
dimensional scaling are in essence Nyström approximation. Similarly, Talwalkar et al. [90]
used the Nyström method for large-scale manifold learning. Efficient techniques for di-
mension reduction have many practical applications, such as latent semantic analysis [1],
which is useful in analyzing documents based on their semantics; the analysis of DNA mi-
croarray data [96]; and face recognition based on eigenfaces [2]. The Nyström method has
also been used to speed up spectral clustering by approximating the leading eigenvectors
of the graph Laplacian matrix [5].

4.2 Kernel Column Subset Selection

This section defines a criterion for selecting representative data instances when only infor-
mation about their pairwise similarities is available. These pairwise similarities are encoded
by a kernel matrix whose elements represent the inner-products over the data points in a
high-dimensional feature space. The selection criterion is defined in terms of the Nyström
approximation of the kernel matrix based on the columns corresponding to the selected
representatives.

It should be noted that the greedy Column Subset Selection (CSS) methods presented
in Chapter 3 can be directly applied to the columns of the kernel matrix. In this case, the
greedy CSS methods will minimize the reconstruction error of the kernel matrix based on
the selected columns. This is different from the objective of the algorithms presented in this
chapter which minimize the reconstruction error of the data vectors in the high-dimensional
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feature space implicitly defined by the kernel function. The decision of whether to select
columns from a kernel matrix using the CSS methods presented in Chapter 3 or the kernel
methods presented in this chapter depends on the definition of good representatives in the
application domain and the aspects of similarity captured by the kernel function.

Let k (i, j) be a kernel function that calculates the inner-product between data points
i and j. Let φ (.) be a function that maps a data point to a vector in the high-dimensional
feature space implicitly defined by the kernel function. k (i, j) can be expressed as

k (i, j) = φ (i)T φ (j) .

Given a set of n data points, let K be an n × n matrix whose (i, j)-th element is
k (i, j). Let Φ be a matrix whose columns represent the vectors of the data points in the
high-dimensional feature space implicitly defined by the kernel.

Φ = [φ (1) , φ (2) , ..., φ (n)] .

The kernel matrix K can be expressed as:

K = ΦTΦ .

The objective of the CSS algorithm is to select a subset S of columns of Φ such that
the reconstruction error of Φ based on the selected columns is minimized. Since Φ is
implicitly defined by K, the greedy CSS algorithms presented in Chapter 3 cannot be
directly applied to Φ. To implicitly select representative columns of Φ, a selection criterion
needs to be defined in terms of the kernel matrix K. In order to define this criterion,
the following theorem shows the connection between the Nyström approximation and the
low-rank approximation of Φ based on the selected representatives.

Theorem 4.1 Let K be an n × n kernel matrix, Φ be a matrix whose columns represent
the vectors of the data points in the high-dimensional space implicitly defined by the kernel.
For any subset of columns S,

K̃S = Φ̃T
S Φ̃S

where K̃S is the Nyström approximation of K based on the subset S of columns and Φ̃S is
the rank-l approximation of Φ calculated by projecting all columns of Φ onto the subspace
of Φ:S .
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Proof Given a set S of columns, the column-based low-rank approximation of Φ based on
S is defined as:

Φ̃S = P (S)Φ,

where P (S) is a projection matrix which projects the columns of Φ onto the span of Φ:S.

The inner-products over the columns of Φ̃S define the following kernel matrix:

Φ̃T
S Φ̃S = ΦTP (S)P (S)Φ = ΦTP (S)Φ,

as P (S)P (S) = P (S) (an idempotent matrix). Substituting with P (S) = Φ:S
(
ΦT

:SΦ:S
)−1

ΦT
:S

in Φ̃T
S Φ̃S :

Φ̃T
S Φ̃S = ΦTΦ:S

(
ΦT

:SΦ:S
)−1

ΦT
:SΦ.

Using K:S = ΦTΦ:S , KSS = ΦT
:SΦ:S :

Φ̃T
S Φ̃S = K:SK

−1
SSK

T
:S .

The right-hand side is the Nyström approximation of K based on the set S of columns.

Based on this theorem, the CSS criterion of Definition 3.1 on page 28 can be expressed
in terms of the kernel matrix and its Nyström approximation as follows:

F (S) = ‖Φ− P (S)Φ‖2F
= trace

((
Φ− P (S)Φ

)T (
Φ− P (S)Φ

))
= trace

(
ΦTΦ− 2ΦTP (S)Φ + ΦTP (S)P (S)Φ

)
= trace

(
ΦTΦ− ΦTP (S)Φ

)
= trace

(
K − K̃S

)
,

as P (S)P (S) = P (S) and ‖Φ‖2F = trace
(
ΦTΦ

)
.

This defines the following kernel-based criterion and the corresponding kernel column
subset selection problem.

Definition 4.1 (Kernel Column Subset Selection Criterion) Let K be an n × n
kernel matrix and S be the set of the indices of the candidate columns, the kernel column
subset selection criterion is defined as:

F (S) = trace
(
K − K̃S

)
(4.6)

where K̃S is the Nyström approximation of K based on the subset S of columns.

60



Problem 4.1 (Kernel Column Subset Selection) Given an n × n kernel matrix K
and an integer l, find a subset of columns L such that |L| = l and

L = arg min
S

F (S) ,

where F (S) is the kernel column subset selection criterion, S is the set of the indices of
the candidate columns, and L is the set of the indices of the selected columns.

The following sections define recursive formulas for calculating the Nyström approxi-
mation as well as the kernel CSS criterion. In addition, a greedy algorithm is presented to
efficiently select columns for Nyström approximation.

4.3 Recursive Nyström Approximation

The Nyström approximation of a kernel matrix can be calculated in a recursive manner as
shown by the following theorem.

Theorem 4.2 Given a set of columns S. For any P ⊂ S,

K̃S = K̃P + G̃R

where K̃S , K̃P are the Nyström approximations of K based on the subsets S and P re-
spectively, G = K − K̃P is the residual matrix of K after subtracting K̃P , and G̃R is the
Nyström approximation of G based on the subset R = S \ P of columns.

Proof Using Theorem 4.1, K̃S = Φ̃T
S Φ̃S . Let E = Φ− P (P)Φ = Φ− Φ̃P . Using Corollary

3.2 on page 33 and substituting in K̃S = Φ̃T
S Φ̃S gives:

K̃S =
(

Φ̃P + ẼR

)T (
Φ̃P + ẼR

)
= Φ̃T

PΦ̃P + Φ̃T
PẼR + ẼT

RΦ̃P + ẼT
RẼR

(4.7)

The first term of the right-hand side is the Nyström approximation of K based on
the subset P of columns: K̃P = Φ̃T

PΦ̃P (Theorem 4.1). The second term Φ̃T
PẼR =

ΦTP (P)R(R)E. Using Lemma 3.1 on page 31, the product P (P)R(R) = P (P) (P (S) − P (P)) =

P (P)P (S) − P (P). Since P ⊂ S, then P (P)P (S) = P (P) and accordingly P (P)R(R) = 0 and
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Φ̃T
PẼR = 0. Similarly, the third term ẼT

RΦ̃P = 0. The fourth term can be simplified as
follows: the inner-product ETE can be expressed as:

ETE =
(
Φ− P (P)Φ

)T (
Φ− P (P)Φ

)
=ΦTΦ− ΦTP (P)Φ− ΦTP (P)Φ + ΦTP (P)P (P)Φ

=ΦTΦ− ΦTP (P)Φ = K − K̃P = G ,

since P (P)P (P) = P (P) (an idempotent matrix). Using Theorem 4.1, ẼT
RẼR = G̃R.

In Equation (4.7), removing the terms Φ̃T
PẼR, ẼT

RΦ̃P and substituting Φ̃T
PΦ̃P and ẼT

RẼR
with K̃P and G̃R respectively proves the theorem.

Theorem 4.2 indicates that the Nyström approximation of K based on S can be con-
structed by first calculating the Nyström approximation based on any subset P ⊂ S, and
then recursively applying the Nyström method to the residual matrix K − K̃P based on
S \ P . If P consists of a single element: P = {p}, the following corollary directly follows
from Theorem 4.2.

Corollary 4.3 Given a set of columns S. For any p ∈ S,

K̃S = K̃{p} + G̃R

where K̃S is the Nyström approximations of K based on the subset S of columns, K̃{p} is
the rank-1 Nyström approximation of K based on the p-th columns:

K̃{p} =
1

Kpp

K:pK
T
:p,

G = K − K̃{p} is the residual matrix of K after subtracting K̃{p}, and G̃R is the Nyström
approximation of G based on the subset R = S \ {p} of columns.

Proof Using Theorem 4.2 and replacing P with {p} gives the rank-1 recursive formula.
Using Equation (4.2) when Kpp is a scalar and K:p is a column vector gives the rank-1
formula for Nyström approximation.

This means that rank-l Nyström approximation of K (where l = |S|) can be constructed
in a recursive manner by first calculating a rank-1 Nyström approximation of K based on
the column corresponding to p, and then calculating the rank-(l− 1) Nyström approxima-
tion of the residual matrix based on the columns corresponding to the remaining elements
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of S. Based on this recursion, the rank-l Nyström approximation of K can be expressed
as a summation of rank-1 approximations calculated at different iterations of the recursive
formula.

Let G(t) be the residual matrix of K at the start of iteration t (where G(1) = K), p(t) be

the index of the column sampled at iteration t, δ(t) = (G:p)
(t) be the column sampled from

G and α(t) = (Gpp)
(t) be the corresponding diagonal element. Define ω(t) = δ(t)/

√
α(t).

The rank-1 Nyström approximation of the residual matrices at different iterations can be
expressed as:

K̃{p(1)} = G̃
(1)

{p(1)} = ω(1)ω(1)T ,

G̃
(2)

{p(2)} = ω(2)ω(2)T ,

...

G̃
(l)

{p(l)} = ω(l)ω(l)T .

The rank-l Nyström approximation can be expressed as:

K̃S = ω(1)ω(1)T + G̃
(2)

S\{p(1)}

= ω(1)ω(1)T + ω(2)ω(2)T + G̃
(3)

S\{p(1), p(2)}

=
l∑

t=1

ω(t)ω(t)T

(4.8)

Similar to Equation (3.16) on page 37, δ(t) and α(t) can be efficiently calculated as:

δ(t) = K:p −
t−1∑
r=1

ω(r)
p ω

(r),

α(t) = δ(t)p ,

(4.9)

where K:p denotes the p-th column of K, and δp denotes the p-th element of δ.

Let W be an l × n matrix whose t-th row is ω(t)T :

W =
[
ω(1) ... ω(l)

]T
.

The rank-l Nyström approximation K̃S can be expressed in a matrix form as:

K = W TW. (4.10)
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The columns of W can be directly used to represent the data instances in an l-
dimensional space. This space is implicitly defined by an orthonormal basis that spans
the subspace of selected columns in the high-dimensional feature space defined by the
kernel: Q = orth (Φ:S).

In order to calculate a rank-k Nyström approximation where k ≤ l, the proposed
algorithm first calculates the k leading left singular vectors of W (or equivalently, the
eigenvectors of WW T ), and then uses these vectors to represent the columns of W in a
k-dimensional space as follows:

Y = ΩT
kW, (4.11)

where Y is a k × n matrix whose columns represent data instances in the k-dimensional
space, and Ωk is a k × k matrix whose columns are the k leading left singular vectors of
W .

The corresponding rank-k Nyström approximation of K is:

K̃S,k = Y TY = W TΩkΩ
T
kW. (4.12)

Although the recursive Nyström algorithm calculates the same rank-l Nyström approxima-
tion K̃S as the traditional Nyström formula (Eq. 4.2), it calculates different estimates of
Y and K̃S,k. The advantage of the recursive algorithm is that the basis of low-dimensional
representation is orthogonal, and that K̃S,k is the best rank-k approximation of K̃S .

The computational complexity of calculating δ(t) (Eq. 4.9) in terms of previous ω’s is
O (nt), and that of W is O (nl2). The computational complexity of orthogonalization steps
is O (l3 + nl2). Thus, the computational complexity of calculating Y is O (l3 + nlk + nl2)
and that of K̃S,k is O (l3 + nlk + n2k + nl2). This is the same complexity as the traditional
Nyström method with orthogonalization.

In addition to calculating the Nyström approximation in a recursive manner, Theorem
4.2 can be directly used to derive a recursive formula for the kernel column subset selection
criterion.

Theorem 4.4 Given a set of columns S. For any P ⊂ S,

F (S) = F (P)− trace
(
G̃R

)
where G = K − K̃P , and G̃R is the Nyström approximation of G based on the subset
R = S \ P of columns.
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Proof Substituting with K̃S = K̃P + G̃R (Theorem 4.2) in Equation (4.6) gives:

F (S) = trace
(
K − K̃P − G̃R

)
= trace

(
K − K̃P

)
− trace

(
G̃R

)
Substituting trace

(
K − K̃P

)
with F (P) proves the theorem.

The recursive formula of Theorem 4.4 allows the development of the efficient greedy
algorithm presented in the following section.

4.4 Greedy Sampling Criterion

The recursive nature of the Nyström method can be used to develop an efficient greedy
algorithm for sampling columns while calculating the low-rank approximation of the kernel
matrix. The basic idea here is to select, at each iteration, the column that minimizes the
column subset selection criterion. Let S be the subset of columns selected at the first t− 1
iterations. The greedy sampling can be formally defined as:

Problem 4.2 At iteration t, find column p such that,

p = arg min
i

F (S ∪ {i}) (4.13)

where S is the set of columns selected during the first t− 1 iterations.

Using Theorem 4.4, F (S ∪ {i}) can be calculated in a recursive manner as:

F (S ∪ {i}) = F (S)− trace
(
G̃{i}

)
,

where G = K−K̃S is the residual matrix after subtracting the Nyström approximation of K
based on S. Using the properties that: trace (aA) = a trace (A), trace (AB) = trace (BA)
and trace (a) = a, where a is a scalar, the second term can be simplified as follows.

trace
(
G̃{i}

)
= trace

(
1

Gii

G:iG
T
:i

)
=

1

Gii

trace
(
GT

:iG:i

)
=

1

Gii

GT
:iG:i =

‖G:i‖2

Gii

,

The greedy selection criterion can be formally defined as:
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Problem 4.3 (Greedy Kernel Column Subset Selection) At iteration t, find column
p such that,

p = arg max
i

‖G:i‖2

Gii

(4.14)

where G = K − K̃S , and S is the set of columns selected during the first t− 1 iterations.

To evaluate this selection criterion, at each iteration, the term ‖G:i‖2/Gii has to be
evaluated for all the columns of the current residual matrix G, and the column with the
maximum criterion function is selected.

The computational complexity of the selection criterion is O (n2 + n) per iteration,
and it requires O (n2) memory to store the residual of the whole kernel matrix after each
iteration. In the rest of this section, two novel techniques are proposed to reduce the
memory and time requirements of the greedy selection criterion.

4.4.1 Memory-Efficient Criterion

To reduce the memory requirements of the greedy algorithm, the sampling criterion for
each data instance can be calculated in a recursive manner as follows. Let f i = ‖G:i‖2
and gi = Gii be the numerator and denominator of the criterion function for data point i
respectively, f = [f i]i=1..n, and g = [gi]i=1..n. Similar to Theorem 3.6 on page 38, it can
be shown that f and g can be calculated recursively as follows:

f (t) =
(
f − 2

(
ω ◦

(
Kω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.

(4.15)

where ◦ represents the Hadamard product operator, ‖.‖ is the `2 norm, f
(0)
i = ‖K:i‖2, and

g
(0)
i = Kii for i = 1, 2, ... n. This means that the greedy criterion can be memory-efficient

by only maintaining two score variables for each data point, f i and gi, and updating them
at each iteration based on their previous values and the selected columns so far.

4.4.2 Partition-Based Criterion

The memory-efficient selection criterion eliminates the complexity of calculating and stor-
ing a new residual matrix at each iteration. This reduces the computational complexity
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Algorithm 6 Greedy Nyström Approximation

Inputs: Kernel matrix K, Number of columns l, Target rank k
Outputs: Selected columns S, Rank-l Nyström approximation K̃S , Rank-k Nyström ap-
proximation, K̃S,k, l-dimensional embedding W , k-dimensional embedding Y
Steps:

1. Initialize S = { }

2. Initialize f
(0)
i = ‖K:i‖2, and g

(0)
i = Kii for i = 1, 2, ... n

3. Repeat t = 1→ l:

(a) q = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {q}

(b) δ(t) = K:q −
∑t−1

r=1ω
(r)
q ω(r), α(t) = δ(r)q

(c) ω(t) = δ(t)/
√
α(t)

(d) Update f i’s, gi’s

f (t) =
(
f − 2

(
ω ◦

(
Kω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

4. W =
[
ω(1) ... ω(l)

]T
, K̃S = W TW

5. Ω = eigvec(WW T ), Y = ΩT
kW , K̃S,k = Y TY
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of the greedy selection algorithm to O (n2) per iteration (that of calculating Kω). In ad-
dition, the computational complexity of calculating the initial value of f given the kernel
matrix K is still O (n2).

In order to reduce this computational complexity, a partition-based criterion is pro-
posed. The criterion partitions data points into c � n random groups, and selects the
columns of K which best represent the centroids of these groups in the high-dimensional
feature space defined by the kernel function. Let Pj be the set of data points that belong
to the j-th partition, P = {P1,P2, ...Pc} be a random partitioning of data points into c
groups, and M be an c× n matrix whose element Mji is the inner-product of the centroid
of the j-th group and the i-th data point. Mji can be calculated as follows.

Mij = φ (i)T

 1

|Pj|
∑
r∈Pj

φ (r)


=

1

|Pj|
∑
r∈Pj

(
φ (i)T φ (r)

)
=

1

|Pj|
∑
r∈Pj

Kir

where φ (.) is a function that maps a data point to a vector in the high-dimensional feature
space implicitly defined by the kernel function. In the proposed partition-based algorithm,
the j-th column of the matrix M is weighted by the size of the j-th partition. The use of
weighted columns avoids any bias towards larger groups.

Let L be an c× n matrix whose element Mji is

Lji = |Pj|Mij =
∑
r∈Pj

Kir .

Let H(t) be the residual of L at iteration t, and γ(t) be the column of H corresponding to
the selected column at iteration t, which can be calculated as: γ(t) = L:q −

∑t−1
r=1ω

(r)
q υ(r).

Similar to Theorem 3.7 on page 42, it can be shown that for partition-based sampling, f
and g can be calculated as:

f (t) =
(
f − 2

(
ω ◦

(
LTυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.

(4.16)

where υ(t) = γ(t)/
√
α(t), f

(0)
i = ‖L:i‖2, and g

(0)
i = Kii for i = 1, 2, ...n. The computational

complexity of the new update formulas is O (ncl + nl2) (or O (nc+ nt) per iteration). In
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general, it requires O (n2) to calculate L given K. However, L needs to be calculated only
once during the calculation of K. In the case of a linear kernel, this complexity can be
significantly reduced by calculating the centroids of each group in the feature space, and
then the inner-products between each centroid and all data points. This computational
complexity can be reduced further if the data matrix is very sparse. In addition, there is
no need to calculate and store the whole kernel matrix in order to calculate L. Algorithm
7 shows the complete greedy Nyström algorithm.

4.5 Related Work

4.5.1 Random Sampling

Different sampling schemes have been used with the Nyström method. Williams and
Seeger [86], who first proposed the use of Nyström approximation for kernel methods,
used uniform sampling without replacement to select columns. This has been the most
commonly used sampling scheme for Nyström methods. Non-uniform sampling has also
been used with Nyström methods. This includes non-uniformly sampling columns based on
the corresponding diagonal elements of the kernel matrix [91], or the norms of its columns
[68]. Recently, Kumar et al. [92] showed that uniform sampling without replacement
outperforms other random sampling techniques on real data sets.

Adaptive sampling has also been used with Nyström methods. These techniques up-
date sampling probabilities based on intermediate approximations of the kernel matrix.
Deshpande et al. [93] suggested an adaptive sampling algorithm which iteratively samples
subsets of columns using probabilities calculated based on the low-rank approximation er-
ror so far. This adaptive mechanism is more effective than fixed sampling. However, it is
computationally more complex, as it requires the calculation of the Nyström approximation
at each iteration of the algorithm. A more efficient algorithm for adaptive sampling [87]
calculates sampling probabilities based on the approximation error of a small part of the
kernel matrix. A more recent work [97] uses an ensemble of Nyström approximations to
obtain a better low-rank approximation of the kernel matrix.

4.5.2 Deterministic Sampling

Besides random sampling, deterministic sampling has also been used with Nyström meth-
ods. Sparse greedy matrix approximation (SGMA) [94] is a related algorithm, which selects
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Algorithm 7 Partition-based Greedy Nyström Approximation

Inputs: Kernel matrix K, Number of columns l, Target rank k
Outputs: Selected columns S, Rank-l Nyström approximation K̃S , Rank-k Nyström ap-
proximation, K̃S,k, l-dimensional embedding W , k-dimensional embedding Y
Steps:

1. Initialize S = { }, Generate a random partitioning P, Calculate L: Lji =
∑

r∈Pj
Kir

2. Initialize f
(0)
i = ‖L:i‖2, and g

(0)
i = Kii for i = 1, 2, ... n

3. Repeat t = 1→ l:

(a) q = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {q}

(b) δ(t) = K:q −
∑t−1

r=1ω
(r)
q ω(r), α(t) = δ(r)q

(c) γ(t) = L:q −
∑t−1

r=1ω
(r)
q υ(r)

(d) ω(t) = δ(t)/
√
α(t), υ(t) = γ(t)/

√
α(t)

(e) Update f i’s, gi’s

f (t) =
(
f − 2

(
ω ◦

(
LTυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

4. W =
[
ω(1) ... ω(l)

]T
, K̃S = W TW

5. Ω = eigvec(WW T ), Y = ΩT
kW , K̃S,k = Y TY
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a set of basis kernel functions, and represents other kernel functions as a linear combination
of these basis functions: K̃ = K:ST , where K:S denotes the subset of selected columns,
and T is a matrix of coefficients. The authors showed that low-rank approximation which
optimizes the approximation error in the reproducing kernel Hilbert space (RKHS) is equal
to Nyström approximation [98, Chapter 10]. They also proposed a greedy algorithm to
select columns of the kernel matrix and recursively update T based on the newly selected
columns. The selection criterion used by SGMA is based on maximizing the improvement
of the low-rank approximation error in RKHS. To reduce the complexity of this algorithm,
a probabilistic speedup was suggested by the authors to evaluate the criterion function for
only a random subset of columns. This makes the complexity of the selection criterion
O(Nnl2) (or O(Nnt) per iteration), where N is the size of the random subset.

Ouimet and Bengio [99] proposed another greedy sampling algorithm which recursively
selects samples that are far (using some threshold) from the subspace spanned by previously
selected samples. Incomplete Cholesky decomposition [95] can also be used to greedily
select columns for the Nyström method. Zhang et al. [21] recently proposed an algorithm
which first applies the k-means algorithm to cluster data points, and then uses the centroids
of clusters for calculating the Nyström approximation. As the k-means algorithm scales
as O(nmlt), where m is the number of features and t is the number of iterations, this
algorithm is computationally infeasible for data sets with large numbers of features.

4.5.3 Comparison to Related Work

Like adaptive sampling, the greedy algorithm presented in this chapter selects columns
based on intermediate approximations of the kernel matrix. However, at each iteration, the
greedy algorithm deterministically selects one column, while adaptive methods randomly
sample a subset of columns. In term of computational complexity, the complexity of
adaptive sampling based on the full kernel [93] is O(n2v+ nv2 + v3) per iteration, where v
is the number of samples selected so far. The greedy selection criterion without partitioning
(O(n2l)) is therefore less complex than the last iteration of the adaptive algorithm with the
full kernel (when v = l). On the other hand, the greedy criterion without partitioning is
more complex than adaptive sampling based on part of the kernel [87], which is O(nv2+v3)
per iteration.

In comparison to SGMA [94], it can be shown that maximizing the improvement in
approximation error is equivalent to minimizing the squared reconstruction error in the
feature space (as shown in Problem 4.3). However, the basic selection criterion presented
here (O (n2l)) is more efficient than that of SGMA with probabilistic speedup (O(nNl2))
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when l/n ≥ 1/N . In addition, the approximation of K as K:ST does not allow SGMA to
be directly applied to approximate spectral decomposition and dimension reduction. In
this case, the Nyström method has to be applied to columns selected by SGMA, which
requires extra computational cost. In comparison to k-means [21], which is O(nmlt), the
greedy selection criterion is computationally less complex for data sets with large numbers
of features (when mt > n). On the other hand, the partition-based selection criterion
(O(ncl+nl2)) is much less complex than the two adaptive sampling methods, SGMA, and
sampling based on k-means centroids.

The greedy Nyström algorithm is also different from the greedy algorithm proposed by
Çivril and Magdon-Ismail [72], as the latter depends on calculating the leading singular
vectors to select columns.

4.6 Experiments and Results

Experiments have been conducted on six benchmark data sets whose properties are de-
scribed in Table 3.1 and Section 3.5.

Similar to previous work [92], the low-rank approximations obtained by greedy Nyström
algorithm are compared to those obtained by other Nyström methods relative to the best
low-rank approximation obtained by singular value decomposition. In particular, the fol-
lowing quality measure is used:

Relative Accuracy =
‖K − K̃r‖F
‖K − K̃Nys‖F

, (4.17)

where K is the kernel matrix, K̃r is the best rank-r approximation obtained using singular
value decomposition, K̃Nys is the rank-r Nyström approximation (i.e., K̃S , or K̃S,k), and
‖.‖F is the Frobenius norm. The relative accuracy is between 0 and 1 with higher values
indicating a better low-rank approximation. The run times of different algorithms are also
compared.

The basic greedy Nyström algorithm (GreedyNyström) and its partition-based vari-
ant (PartGreedyNys) are compared to six well-known Nyström methods:

� UniNoRep: is the uniform sampling method without replacement, which has been
shown to outperform other random sampling methods [92].
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� AdaptFull: is the adaptive sampling method based on the full kernel matrix [93].
Similar to Kumar et al. [87], 10 iterations were used (i.e., l/10 columns were sampled
in each iteration).

� AdaptPart: is the adaptive sampling method based on a part of the kernel matrix
[87] with the same number of iterations as AdaptFull.

� k-means: is the Nyström method based on k-means centroids [21]. The implemen-
tation of the k-means algorithm by Zhang et al. [21] was used, with the same number
of iterations.

� SGMA: is the SGMA algorithm with probabilistic speedup [94]. A random subset
size of 59 was used, as suggested by Smola and Schölkopf [94]

� ICD: is the incomplete Cholesky decomposition with symmetric pivoting [95]

Experiments with randomness were repeated ten times, and the average and standard
deviation of measures were calculated. Linear kernels were used for document data sets,
and Gaussian kernels with σ = 10 for image data sets.

Two sets of experiments were conducted to evaluate the quality of rank-l and rank-
k Nyström approximations (K̃S and K̃S,k) for different sampling methods. For K̃S,k, as
SGMA and ICD do not directly allow the calculation rank-k approximation from K̃, SGMA
and ICD were used for selecting columns and then a traditional Nyström formula was
applied.

Figures 4.1-4.4 show the relative accuracies and run times for the two experiments.
In addition, Tables 4.1 and 4.2 show the relative accuracy measures for the best per-
forming methods in obtaining rank-l Nyström approximation (k-means, SGMA, Gree-
dyNyström, and PartGreedyNys (with c = 100). Each sub-table represents a data set
and each column represents a percentage of selected columns. The relative accuracy mea-
sures in each sub-column are divided into groups according to their statistical significance.
The best group of methods is highlighted in bold, and the second best group is underlined.
The statistical significance tests were performed as explained in Section 3.5 on page 50.

It can be observed from results that the greedy Nyström method (GreedyNyström)
achieves significant improvement in estimating low-rank approximations of a kernel matrix,
compared to other sampling-based methods. It also achieves better accuracy than SGMA
and k-means for most data sets. Although the k-means achieves better accuracy for
some data sets, it obtains much worse accuracy for others. This inconsistency could be
due to the nature of the k-means algorithm, which might obtain a poor local minimum. It
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Figure 4.1: The relative accuracy measures and run times of different rank-l Nyström
approximations (K̃S) for the Reuters-21578, Reviews and LA1 data sets.

74



5 10 15 20 25

0.2

0.3

0.4

0.5

0.6

MNIST-4K, k=l

l/n (%)

R
el

at
iv

e 
ac

cu
ra

cy

5 10 15 20 25

0.2

0.3

0.4

0.5

PIE-20, k=l

l/n (%)

R
el

at
iv

e 
ac

cu
ra

cy

5 10 15 20 25

0.3

0.4

0.5

0.6

YaleB-38, k=l

l/n (%)

R
el

at
iv

e 
ac

cu
ra

cy

 

 

UniNoRep AdaptFull AdaptPar kMeans SGMA ICD GreedyNyström

 

 

PartGreedyNys-c=100 PartGreedyNys-c=50 PartGreedyNys-c=10

5 10 15 20 25
0

50

100

150

MNIST-4K, k=l

l/n (%)

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

5 10 15 20 25
0

20

40

60

80

100

PIE-20, k=l

l/n (%)

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

5 10 15 20 25
0

10

20

30

YaleB-38, k=l

l/n (%)

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

Figure 4.2: The relative accuracy measures and run times of different rank-l Nyström
approximations (K̃S) for the MNIST-4K, PIE-20 and YaleB-38 data sets.
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Figure 4.3: The relative accuracy measures and run times of different rank-k Nyström
approximations (K̃S,k) for the Reuters-21578, Reviews and LA1 data sets.
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Figure 4.4: The relative accuracy measures and run times of different rank-k Nyström
approximations (K̃S,k) for the MNIST-4K, PIE-20 and YaleB-38 data sets.
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can also be seen that GreedyNyström is more efficient than SGMA and AdaptFull,
but is computationally more complex than UniNoRep and AdaptPart. The latter two
methods, however, achieve inferior accuracies. GreedyNyström is also computationally
less complex than k-means for data sets with large numbers of features. On the other
hand, the partition-based algorithm (PartGreedyNys) outperforms the two adaptive
sampling methods in obtaining low-rank approximations, and it requires small overhead
in run time compared to UniNoRep. PartGreedyNys obtains slightly lower accuracies
than GreedyNyström and SGMA when calculating K̃S , but in much less time, and it
outperforms all other deterministic methods when calculating K̃S,k. PartGreedyNys is
also not sensitive to the number of random partitions used. It can also be noted that ICD
obtains inferior approximation accuracies compared to other methods.1

The proposed greedy Nyström methods (GreedyNyström and PartGreedyNys)
have also been compared to the ensemble Nytröm algorithm (Ensemble) proposed by
Kumar et al. [97]. As suggested by Kumar et al. [97], the ridge regression algorithm can
be used to learn the mixture weights of different approximations using a validation set
of columns sampled from the original kernel matrix. In this experiment, an ensemble of
p = 10 Nyström approximations is used, and l columns are sampled to calculate each low-
rank approximation. A validation set of s = 20 columns is used for estimating the mixture
weights of the ensemble, and a hold-out set of s′ = 20 columns is used to estimate the
ridge parameter. Tables 4.3 and 4.4 show the relative accuracies and run time of different
methods. Two values are used for l: l = 3%n and l = 5%n, with k = 1%n. It can be
observed that both PartGreedyNys and GreedyNyström outperforms the ensemble
method (Ensemble) in term of approximation accuracy for most data sets.

1This was also observed by Zhang et al. [21] and Talwalkar [100]
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Table 4.1: The relative accuracy measures of the best performing Nyström methods (rank-
l approximations) for the Reuters-21578, Reviews, and LA1 data sets. In each sub-
column, the best group of methods (according to t-test) is highlighted in bold, and the
second best group is underlined.

Reuters-21578
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.5580±0.0072 0.4527±0.0100 0.3894±0.0062 0.3368±0.0069
SGMA 0.6255±0.0038 0.6106±0.0035 0.6090±0.0041 0.6042±0.0016

GreedyNyström 0.6701±0.0000 0.6446±0.0000 0.6296±0.0000 0.6210±0.0000
PartGreedyNys 0.6367±0.0034 0.6146±0.0023 0.6065±0.0020 0.5987±0.0009

Reviews
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.8655±0.0093 0.8422±0.0035 0.8192±0.0039 0.8000±0.0026
SGMA 0.8302±0.0019 0.8199±0.0010 0.8018±0.0007 0.7807±0.0006

GreedyNyström 0.8405±0.0000 0.8276±0.0000 0.8081±0.0000 0.7865±0.0000
PartGreedyNys 0.8239±0.0015 0.8094±0.0009 0.7901±0.0012 0.7692±0.0009

LA1
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.8866±0.0047 0.8495±0.0043 0.8237±0.0032 0.8052±0.0030
SGMA 0.8399±0.0011 0.8214±0.0011 0.8030±0.0007 0.7856±0.0006

GreedyNyström 0.8523±0.0000 0.8294±0.0000 0.8101±0.0000 0.7914±0.0000
PartGreedyNys 0.8378±0.0013 0.8169±0.0013 0.7958±0.0009 0.7760±0.0014
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Table 4.2: The relative accuracy measures of the best performing Nyström methods (rank-l
approximations) for the MNIST-4K, PIE-20, and YaleB-38 data sets. In each sub-
column, the best group of methods (according to t-test) is highlighted in bold, and the
second best group is underlined.

MNIST-4K
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.5522±0.0050 0.5369±0.0040 0.5228±0.0036 0.5092±0.0021
SGMA 0.4182±0.0020 0.4338±0.0014 0.4365±0.0009 0.4357±0.0006

GreedyNyström 0.4323±0.0000 0.4431±0.0000 0.4441±0.0000 0.4414±0.0000
PartGreedyNys 0.4067±0.0019 0.4197±0.0019 0.4220±0.0015 0.4217±0.0007

PIE-20
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.4277±0.0158 0.3821±0.0087 0.3431±0.0106 0.3266±0.0083
SGMA 0.4387±0.0024 0.4274±0.0020 0.4174±0.0029 0.4091±0.0015

GreedyNyström 0.4640±0.0000 0.4523±0.0000 0.4340±0.0000 0.4241±0.0000
PartGreedyNys 0.4299±0.0038 0.4249±0.0030 0.4151±0.0031 0.4060±0.0030

YaleB-38
Method l/n = 5% l/n = 9% l/n = 13% l/n = 17%
kMeans 0.5273±0.0135 0.4837±0.0086 0.4488±0.0065 0.4223±0.0093
SGMA 0.4702±0.0055 0.4538±0.0024 0.4453±0.0032 0.4373±0.0021

GreedyNyström 0.4962±0.0000 0.4748±0.0000 0.4650±0.0000 0.4516±0.0000
PartGreedyNys 0.4670±0.0041 0.4469±0.0034 0.4376±0.0038 0.4298±0.0026
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Table 4.3: The relative accuracy measures of the proposed greedy Nyström methods com-
pared to the ensemble Nyström method and Nyström method with uniform sampling
(rank-k approximations K̃S,k, k = 1%n). In each sub-column, the best group of meth-
ods (according to t-test) is highlighted in bold, and the second best group is underlined.

Data sets UniNoRep EnsembleNys GreedyNyström PartGreedyNys

l/n= 3%

Reuters-21578 0.5306 0.5965 0.9074 0.8897

Reviews 0.7329 0.8383 0.9096 0.9135

LA1 0.8194 0.9320 0.9302 0.9294

MNIST-4K 0.5749 0.7199 0.8476 0.8174

PIE-20 0.5382 0.6918 0.9102 0.8848

YaleB-38 0.5676 0.7119 0.8820 0.8655

l/n= 5%

Reuters-21578 0.6076 0.6593 0.9603 0.9548

Reviews 0.7998 0.8774 0.9446 0.9454

LA1 0.8546 0.9445 0.9534 0.9523

MNIST-4K 0.7131 0.8669 0.9433 0.9314

PIE-20 0.6797 0.8492 0.9792 0.9735

YaleB-38 0.6937 0.8435 0.9637 0.9562
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Table 4.4: The run times (in seconds) of the proposed greedy Nyström methods compared
to the ensemble Nyström method and Nyström method with uniform sampling (rank-k
approximations K̃S,k, k = 1%n).

Data sets UniNoRep EnsembleNys GreedyNyström PartGreedyNys

l/n= 3%

Reuters-21578 1.63 33.29 17.24 4.82

Reviews 0.86 26.02 12.61 2.31

LA1 0.57 18.54 6.41 1.21

MNIST-4K 0.79 23.93 11.98 2.13

PIE-20 0.59 19.72 7.58 1.40

YaleB-38 0.29 11.64 2.89 0.65

l/n= 5%

Reuters-21578 1.73 35.86 28.53 6.79

Reviews 0.87 27.04 21.38 4.08

LA1 0.63 19.52 10.84 1.95

MNIST-4K 0.88 24.83 21.19 3.87

PIE-20 0.57 20.28 12.77 2.35

YaleB-38 0.28 11.98 4.69 0.82
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Chapter 5

Fast Approximate Data Clustering

This chapter presents two algorithms for fast approximate data clustering. The algorithms
use the Column Subset Selection (CSS) methods presented in Chapters 3 and 4 to first
select a set of representative data points, and then embed all data points in the subspace of
selected points. The clustering algorithm is then applied to data points in the new space.
The algorithms have been shown to achieve clustering performance comparable to their
exact counterparts in much less run time.

The chapter is organized as follows: Sections 5.1 and 5.2 present the fast approximate
algorithms for k-means and spectral clustering respectively. Section 5.3 gives an overview
of related work for developing fast approximate clustering algorithms. Section 5.4 shows
different experiments that have been conducted to evaluate the proposed algorithms.

5.1 Fast Approximate k-Means Clustering

The k-means algorithm [22] is the most widely used algorithm for data clustering, whose
goal is to minimize the sum of distances between the data points in each class and their
centroids. In this section, a fast approximate algorithm is proposed to perform k-means
clustering. The algorithm uses the greedy column subset selection algorithm presented in
Chapter 3 to select a compact set of representative data points, and then represents all
points in the subspace of selected points. The k-means clustering is then conducted in that
low-dimensional space. Algorithm 8 shows the steps of the fast approximate k-means.

The following theorem shows that applying the k-means algorithm on the column-
based low-dimensional embedding of data points W is equivalent to applying the k-means
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Algorithm 8 Fast Approximate k-Means

Input: Data matrix A, Number of clusters k, Number of representative points l
Output: Data partitions: P = {P1,P2, ..Pk}
Steps:

1. Greedily select l data points (i.e., columns) from A, and calculate W whose columns
represent the embedding of data points into the subspace of selected points:

[S,W ] = GreedyCSS(A, l)

2. Run the k-means algorithm on the columns of W

P = k-Means(W,k)

algorithm on the column-based low-rank approximation of A. It should be noted that this
theorem is general for any representation of data points in an orthonormal basis.

Theorem 5.1 Given a data matrix A ∈ Rm×n whose columns represent data points. Let
Ã = QW be a rank-l approximation of A where Q ∈ Rm×l is a matrix with orthonormal
columns and W ∈ Rm×l is the embedding of data points into the basis formed by Q’s
columns, then applying the Lloyd’s algorithm for k-means clustering on the columns of Ã
is equivalent to applying it on the columns of W .

Proof The Lloyd’s algorithm has two steps: (1) the calculation of the new centroids of
clusters and, (2) the assignment of data points to the new clusters based on the distances
between all data points and each centroid.

In the first step, applying the Lloyd’s algorithm to Ã, the centroid of the i-th cluster
will be:

µ(i) =
1

|Pi|
∑
j∈Pi

(
Ã
)
:j

=
1

|Pi|
∑
j∈Pi

QW:j

where Pi is the set of data points that belong to the i-th class. Let σ(i) be the centroid of
the i-the cluster if the algorithm is applied to W :

σ(i) =
1

|Pi|
∑
j∈Pi

W:j
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It can be easily shown that µ(i) = Qσ(i).

In the second step, applying the Lloyd’s algorithm to Ã, the distance between the j-th
point and the i-th cluster will be:

D2
ij =

∥∥∥∥µ(i) −
(
ÃS

)
:j

∥∥∥∥2
This can be simplified to:

D2
ij =

∥∥∥∥µ(i) −
(
ÃS

)
:j

∥∥∥∥2 =
∥∥Qσ(i) −QW:j

∥∥2
= trace

((
Qσ(i) −QW:j

)T (
Qσ(i) −QW:j

))
= trace

((
σ(i) −W:j

)T
QTQ

(
σ(i) −W:j

))
= trace

((
σ(i) −W:j

)T (
σ(i) −W:j

))
=
∥∥σ(i) −W:j

∥∥2
The right-hand side is equal to the distance between the j-th point and the i-th cluster
if the algorithm is applied to W . This means that at each iteration both algorithms will
make the same assignment of data points to clusters, and accordingly they are equivalent.

The computational complexity of the original Lloyd’s algorithm is O(nmkt) where n, m,
k, and t are the number of data instances, features, clusters and iterations, respectively.
Reducing the dimensions of the data vectors to c columns reduces the computational
complexity of the Lloyd’s algorithm to O(nckt). Since c � m, the fast approximate k-
means algorithm achieves a considerable reduction in the run time.

5.2 Fast Approximate Spectral Clustering

Spectral clustering [4, 47] is a state-of-the-art algorithm for data clustering that builds a
graph over the data points and finds the minimum cut between graph partitions. In this
section, a fast approximate algorithm is proposed for spectral clustering. The algorithm
uses the greedy Nyström method presented in Chapter 4 to approximate the leading eigen-
vectors of the graph Laplacian matrix. The k-means clustering algorithm is then applied
to the leading eigenvectors to obtain the final clusters.

Algorithm 9 shows the steps of the algorithm. First, the algorithm uses the greedy
Nyström method to greedily select l columns from the graph similarity matrix K. The
greedy Nyström also calculates W whose columns represent a low-dimensional embedding
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Algorithm 9 Fast Approximate Spectral Clustering

Input: Graph similarity matrix K, Number of clusters k, Number of representatives l
Output: Data partitions: P = {P1,P2, ..Pk}
Steps:

1. Greedily select l data points (i.e., columns) from K, and calculate W whose columns
represent the embedding of data points into the subspace of selected points in the
high-dimensional space implicitly defined by the kernel:

[S,W ] = GreedyNyström(K, l)

2. D̃ = diag
(
W T (We)

)
3. W̄ = WD̃−1/2

4. [Uk, Σk, Vk] = svd
(
W̄ , k

)
5. Run the k-means algorithm on the columns of V T

k

P = k-Means(V T
k , k)
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of data points in the subspace of selected points in the high-dimensional space implicitly
defined by the kernel. The low-rank approximation of the graph similarity matrix K can
be expressed as:

K̃S = W TW.

In order to calculate the Laplacian matrix, the algorithm first approximates the node
degree matrix D as:

D̃ = diag
(
K̃Se

)
= diag

(
W T (We)

)
where e is an n× 1 all-ones vector, and diag is a function which takes an n× 1 vector and
transform it to an n× n diagonal matrix.

While calculating D̃, there is no need to explicitly calculate K̃S . The matrix vector
multiplications u = We, W Tu can be calculated instead.

The algorithm then calculates W̄ as:

W̄ = WD̃−1/2

Accordingly, the approximate graph Laplacian can be expressed in terms of W̄ as:

L̃ = D̃−1/2K̃SD̃
−1/2 = D̃−1/2W TWD̃−1/2 = W̄ T W̄

As the eigenvectors of L̃ are equal to the right singular values of W̄ , the algorithm calculates
the leading k right singular of W̄ and then apply the k-means clustering on the columns
of those singular vectors to obtain the final clustering.

5.3 Related Work

This section gives an overview of different techniques that have been proposed to speed up
the k-means and spectral clustering algorithms.

5.3.1 k-Means Clustering

The Lloyd’s algorithm [28] is the most commonly used algorithm to optimize the k-means
clustering criterion. It is an iterative algorithm whose computational complexity is O(nmk)
per iteration where n, m and k are the numbers of data instances, features, and clusters,
respectively. This computational complexity is mainly due to the cluster assignment step
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in which the distances between all data points and centroids are calculated, and then each
data point is assigned to the cluster of the nearest centroid. For large or high-dimensional
data sets (i.e., large n or m), the calculation of these distances becomes computationally
complex.

Different methods have been proposed to reduce the computational complexity of the
assignment step. One category of methods depends on reducing the number of distances
that need to be calculated at each iteration. Some of these methods are fast but exact
implementations of the Lloyd’s algorithm. For instance, Kanungo et al. [101] present
an algorithm which first builds a k-d tree for the data points, and then maintains for
each node of the tree a set of candidate centers. The use of these candidate centers
reduces the number of distances to be calculated at each iteration. This implementation,
however, works well when both the dimension of the data and the number of clusters are
small. Elkan [102] proposes the use of the triangle inequality to avoid the calculations
of unnecessary distances. This method is only suitable for low-dimensional data and it
requires O(k3) extra storage, where k is the number of clusters.

Other methods for fast k-means clustering depend on sub-sampling the data points
to reduce the number of distances to be calculated. For instance, Har-Peled and Kushal
[103, 104] propose an algorithm which clusters a small portion of the data points, namely
a coreset, to obtain a constant factor approximation to the optimal clustering criterion.
Frahling and Sohler [105] extends this work by iteratively running the Lloyd’s algorithm
on coresets while increasing their size. Quite recently, Wang et al. [106] proposes a fast
approximate k-means algorithm that depends on identifying a set of active points that
change their cluster assignment at each iteration. These active points are identified by
grouping neighboring data points using multiple random partition trees [107].

Another category of methods depends on first reducing the dimensionality of the data
and then applying the k-means algorithm in the reduced space. Both feature selection
and extraction methods can be used for reducing the dimension of the data vectors. This
review focuses on feature extraction methods as they are related to the proposed method.
A survey of related feature selection methods is a topic of Section 6.3.

Traditional feature extraction techniques, such as Singular Value Decomposition (SVD)
[10] and Principal Component Analysis (PCA) [11] have been used to reduce the dimen-
sionality of the data as a preprocessing step for the k-means algorithm [108,109]. The use
of SVD and PCA, however, increases the computational complexity of the clustering algo-
rithm, especially for large or high-dimensional data. The use of fast dimension reduction
techniques has also been explored. For instance, Boutsidis et al. [110] propose the use of
random projections to reduce the dimensionality of the data before applying the k-means
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algorithm. The authors present a theoretical analysis for the approximation error of the
k-means objective function. Quite recently, Cardoso and Wichert [111] proposed the idea
of applying the k-means algorithm on random projections many times, while increasing
the dimensionality of the data points after each convergence of the k-means algorithm.

5.3.2 Spectral Clustering

The spectral clustering algorithm mainly depends on calculating the eigenvalue decompo-
sition of the graph Laplacian matrix. The computational complexity of this eigenvalue
decomposition is O(n3) where n is the number of data points to be clustered.

Some methods have been proposed to directly reduce the computational complexity
of the eigenvalue decomposition of the graph Laplacian matrix. For instance, Fowlkes et
al. [5] propose the use of the Nyström method to speed up the spectral clustering algorithm.
The basic idea is to randomly select a subset of data points and then use the Nyström
approximation method to estimate the leading eigenvectors of the graph Laplacian matrix
using the eigenvalues of a small similarity matrix defined over the subset of sampled points.
The Nyström method has also been used to implement the spectral clustering algorithm
on distributed systems [112].

Another category of methods for fast approximate spectral clustering depends on re-
ducing the size of data points. For instance, Shinnou and Sasaki [113] present an algorithm
which reduces the size of the similarity matrix by constructing committees of data points.
In this algorithm, the k-means algorithm is first applied to the data points and then the
data points that are closed to each cluster centroid form a committee. The committees
along with the remaining data points are clustered using the traditional spectral cluster-
ing algorithms and the members of each committee are assigned to the cluster of its new
centroid. Yan et al. [6] present a fast algorithm for spectral clustering which first selects
a small number of representative points (or pseudo-points), and then clusters these points
using the traditional spectral clustering algorithm. The cluster labels are then propagated
to the original points. The authors present two methods for selecting the representative
points: the k-means clustering algorithm and the random projection trees. Recently, Chen
and Cai [7] presented a Landmark-based Spectral Clustering (LSC) algorithm which first
selects a set of representative data points (through random sampling or using the centroids
of the k-means algorithm) and then represents other data points as a sparse combination
of these representatives. The spectral embedding of data points are then calculated based
on the landmark-based representation.
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Table 5.1: The properties of the data sets used to evaluate the fast approximate clustering
algorithms.

Data set Type # Instances # Features # Classes

TDT2-30 Documents 9394 19677 30
20NG Documents 18774 29360 20

MNIST-70K Digit Images 70000 784 10
PIE-68 Face Images 11554 4096 68

5.4 Experiments and Results

Experiments have been conducted on four benchmark data sets, whose properties are
summarized in Table 5.1.1 The data sets have been used in previous work to evaluate
different clustering and classification tasks. The TDT2-35 data set is a subset of the NIST
Topic Detection and Tracking corpus [114] which consists of the top 30 categories. The
20NG data set is the 20 newsgroups data.2 The MNIST-70K is the MNIST data set of
handwritten digits.3 The PIE-68 is a pre-processed subset of the of the CMU PIE [79]
data set.

The data sets were preprocessed as follows. For document data sets (TDT2-35 and
20NG), the terms that appear in less than five documents were removed and the normalized
term frequency - inverse document frequency (tf -idf) weighting scheme was used to encode
the importance of terms inside documents. For image data sets (MNIST-70K and PIE-68 ),
the intensity values of each image were scaled to lie in the range [0, 1].

Two sets of experiments were conducted to evaluate the fast approximate k-means
and spectral clustering algorithms. For all experiments, after the clustering is performed
using different methods, the cluster labels are compared to ground-truth labels provided by
human annotators and the Normalized Mutual Information (NMI) [61] between clustering
labels and the class labels is calculated. In addition to clustering performance, the run
times of different clustering algorithms are compared. The rest of this section describes
the details of different experiments.

1Data sets are available in MATLAB format at:
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://yann.lecun.com/exdb/mnist
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5.4.1 Fast Approximate k-Means Clustering

In this set of experiments, the fast approximate k-means algorithm presented in Section
5.1 is evaluated. The focus of this empirical validation is on algorithms that use feature
extraction to reduce the dimension of the data before applying the traditional Lloyd’s
algorithm. The following representations of the data points are compared.

� Data: is the original data matrix.

� SSVD: is the low-dimensional embedding obtained by applying the Stochastic SVD
[115] algorithm to the data matrix to obtain the leading l singular vectors. The
SSVD algorithm is the state-of-the-art algorithm in approximating singular values
and vectors. In all the conducted experiments, the number of iterations and the
oversampling parameter are set to 2 and 10 respectively.

� RandCSS: is the low-dimensional embedding obtained by applying the CSS method
to select l random columns (Eq. 3.3 on page 29). This method has been chosen to
study how the proposed greedy CSS compares to random selection of columns.

� PGreedyCSS: is the low-dimensional embedding obtained by applying the partition-
based greedy CSS algorithm to select l columns.

� PGreedyCSS-Hybrid-r=5: is the low-dimensional embedding obtained by ap-
plying a hybrid variant of the partition-based greedy algorithm in which rl log (l)
columns are first selected from the data matrix using uniform sampling, and then
the partition-based greedy algorithm is applied to the reduced matrix to select l
columns. For this method, r is set to 5.

� PGreedyCSS-Hybrid-r=1: is the same as the previous method with r = 1.

For the partition-based greedy CSS algorithms, the number of partitions used in all exper-
iments is 10.

In each experiment, the Lloyd’s algorithm is repeated five times with different initial
centroids and the solution with the minimum objective function is selected. All experiments
are repeated ten times and the average performance measures are calculated.

Figure 5.1 shows the average NMI measures and run times of the fast approximate
k-means algorithm with different feature extraction methods. Table 5.2 also shows the
average NMI measures for the best performing methods (SSVD, PGreedyCSS, and
PGreedyCSS-Hybrid-r=5). Each sub-table represents a data set and each column
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represents a percentage of selected columns. The NMI measures in each sub-column are
divided into groups according to their statistical significance. The best group of methods
is highlighted in bold, and the second best group is underlined. The statistical significance
tests were performed as explained in Section 3.5 on page 50.

It can be observed from the figure that the PGreedyCSS and PGreedyCSS-Hybrid
embedding achieves better clustering performance than the RandCSS for the data sets
with large numbers of features (TDT2-30 and 20NG), and comparable clustering per-
formance for the data sets with small numbers of features (MNIST-70K and PIE-68 ).
The SSVD method achieves better clustering performance than all other methods, and
it approaches the clustering performance of the k-means algorithm on the original data
matrix. However, the run times of the SSVD method are much longer than other meth-
ods, especially as the number of selected columns increases. On the other hand, the run
times of the PGreedyCSS-Hybrid methods are comparable to that of the RandCSS
method. It can also be observed that increasing the parameter r of the PGreedyCSS-
Hybrid method increases the clustering performance, but also increases the run time of
the method. This parameter can be effectively used to control the trade-off between the
clustering performance of the PGreedyCSS-Hybrid method and its run time. It should
also be noted that although the SSVD method achieves good clustering performance using
very few dimensions, it is hard for the data analysts to understand the meaning of these
dimensions. On the other hand, the dimensions obtained by the CSS methods directly
represent data instances, which can be easily presented to the analyst. The representation
of cluster centroids in the space of few data instances is more appealing for data analysts,
and it allows them to learn about the contents of each data cluster.

5.4.2 Fast Approximate Spectral Clustering

In this set of experiments, the proposed fast approximate spectral clustering algorithm
presented in Section 5.2 is evaluated. The following algorithms for approximate spectral
clustering are compared:4

� NyströmSC: is the spectral clustering algorithm using the Nyström extension pro-
posed by Fowlkes et al. [5]. The MATLAB implementation by Chen et al. [112] is
used.5

4The fast SC method by Yan et al. [6] was not included in the comparison as applying the k-means
algorithm to the data matrices requires very long run times compared to the run times of other fast SC
algorithms (as shown in Figure 5.1).

5http://alumni.cs.ucsb.edu/~wychen/download/spectralclustering-1.1.zip

92

http://alumni.cs.ucsb.edu/~wychen/download/spectralclustering-1.1.zip


20 40 60 80 100 120 140

50

60

70

TDT2-30

l

N
M

I(
%

)

20 40 60 80 100 120 140

20

30

40

20NG

l

N
M

I(
%

)

20 40 60 80 100 120 140

35

40

45

50

MNIST-70K

l

N
M

I(
%

)

20 40 60 80 100 120 140
17

18

19

20

21

PIE-68

l

N
M

I(
%

)

20 40 60 80 100 120 140

2

4

6

TDT2-30

l

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

20 40 60 80 100 120 140

2

4

6

8

10

12

14

20NG

l

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

20 40 60 80 100 120 140

5

10

15

MNIST-70K

l

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

20 40 60 80 100 120 140

5

10

15

20

25

PIE-68

l

R
u
n
 t

im
e 

(s
ec

o
n
d
s)

 

 

Data SSVD RandCSS PGreedyCSS PGreedyCSS-Hybrid-r=5 PGreedyCSS-Hybrid-r=1

Figure 5.1: The clustering performance measures and run times of the fast k-means algo-
rithms.
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� LSC: is the Landmark-based Spectral Clustering (LSC) method proposed by Chen
and Cai [7] with the landmarks selected using random sampling. The MATLAB
implementation provided by the authors is used.6

� PGreedyNysSC: is the fast approximate spectral clustering method of Algorithm 9
in which the partition-based greedy Nyström algorithm is used to select the columns.

� PGreedyNysSC-Hybrid-r=5: is the fast approximate spectral clustering method
with a hybrid variant of the partition-based greedy Nyström algorithm in which
rl log (l) columns are first selected from the kernel matrix using uniform sampling,
and then the partition-based greedy algorithm is applied to the reduced matrix to
select l columns. For this method, r is set to 5.

� PGreedyNysSC-Hybrid-r=1: is the same as the previous method with r = 1.

For the partition-based greedy Nyström algorithms, the number of partitions used in all
experiments is 10.

Two sets of experiments are conducted on linear and Gaussian kernels. For Gaussian
kernels, the σ parameter is estimated for each pair of data points as:

σ2
ij =

(∑
k

Dik

)(∑
k

Djk

)
,

where D is an n×n matrix of Euclidean distances between data instances. This is a variant
of the Gaussian kernel used with self-tuning spectral clustering [116] which has been shown
to achieve better clustering performance than manually tuned kernel parameters. This
variant was used by Chen et al. [112] in their work on parallel spectral clustering.

Figures 5.2 and 5.3 show the NMI measures and run times of different fast approximate
spectral clustering algorithms. Table 5.2 also shows the average NMI measures for the best
performing methods (NyströmSC, PGreedyNysSC, and PGreedyNysSC-Hybrid-
r=5). Each sub-table represents a data set and each column represents a percentage of
selected columns. The NMI measures in each sub-column are divided into groups according
to their statistical significance. The best group of methods is highlighted in bold, and
the second best group is underlined. The statistical significance tests were performed as
explained in Section 3.5 on page 50.

It can be observed from the figure that the proposed PGreedyNysSC methods achieve
better clustering performance than the NyströmSC methods for the for the data sets with

6http://www.cad.zju.edu.cn/home/dengcai/Data/code/LSC.m
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Table 5.2: The clustering performance measures of the best performing fast k-means algo-
rithms. In each sub-column, the best group of methods (according to t-test) is highlighted
in bold, and the second best group is underlined.

TDT2-30
Method l = 30 l = 70 l = 110 l = 150
SVD 73.38±01.32 71.84±02.35 71.94±02.02 71.19±01.63

PGreedyCSS 63.92±01.23 70.01±01.58 71.88±01.60 72.09±02.10
PGrCSS-Hybrid-r=5 60.59±01.24 69.62±00.99 70.15±01.41 70.83±01.93

20NG
Method l = 30 l = 70 l = 110 l = 150
SVD 41.36±01.74 41.51±02.19 41.20±02.61 41.06±02.22

PGreedyCSS 28.07±01.09 34.08±01.23 36.02±01.79 37.36±01.26
PGrCSS-Hybrid-r=5 24.55±02.00 30.28±01.11 33.91±01.99 35.35±01.46

MNIST-70K
Method l = 30 l = 70 l = 110 l = 150
SVD 48.38±00.73 48.77±00.95 48.08±01.33 48.73±00.83

PGreedyCSS 46.44±01.89 48.41±01.36 47.91±01.47 48.03±00.61
PGrCSS-Hybrid-r=5 45.29±01.39 48.95±01.26 48.52±01.10 48.73±01.54

PIE-68
Method l = 30 l = 70 l = 110 l = 150
SVD 20.26±00.54 20.59±00.33 20.63±00.30 20.72±00.27

PGreedyCSS 18.44±00.23 19.55±00.34 20.17±00.41 20.26±00.22
PGrCSS-Hybrid-r=5 18.38±00.30 19.57±00.32 19.85±00.20 20.33±00.15

large numbers of features (TDT2-30 and 20NG), and comparable clustering performance
for the data sets with small numbers of features (MNIST-70K and PIE-68 ). The run
times of the PGreedyCSS-Hybrid methods are comparable to that of the NyströmSC
method and the r parameter can be used to control the trade-off between the clustering
performance and the run time. On the other hand, the clustering performance of the
LSC method is worse than other methods, except for the MNIST-70K data set with large
numbers of selected columns. The run times of the LSC method are also longer than that
of the Nyström-based methods.
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Figure 5.2: The clustering performance measures and run times of the fast spectral clus-
tering algorithms using linear kernels.
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Figure 5.3: The clustering performance measures and run times of the fast spectral clus-
tering algorithms using Gaussian kernels.
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Table 5.3: The clustering performance measures of the best performing fast spectral clus-
tering algorithms. In each sub-column, the best group of methods (according to t-test) is
highlighted in bold, and the second best group is underlined.

TDT2-30
Method l = 30 l = 70 l = 110 l = 150

NyströmSC 48.25±03.69 61.99±04.18 67.93±02.39 71.03±02.35
PGreedyNysSC 57.70±00.59 70.49±01.21 73.95±01.03 74.60±01.50

PGrNysSC-Hybrid-r=5 52.46±01.89 69.29±01.57 73.35±01.06 74.32±01.24
20NG

Method l = 30 l = 70 l = 110 l = 150
NyströmSC 18.58±02.72 25.67±02.37 29.89±01.99 33.61±01.13

PGreedyNysSC 30.19±00.41 39.44±00.79 43.38±00.78 44.89±01.21
PGrNysSC-Hybrid-r=5 25.24±01.55 34.94±01.18 39.19±01.05 41.65±01.51

MNIST-70K
Method l = 30 l = 70 l = 110 l = 150

NyströmSC 43.97±01.54 46.82±00.93 46.69±00.55 46.66±00.50
PGreedyNysSC 43.38±01.66 46.10±00.94 46.57±00.23 46.90±00.81

PGrNysSC-Hybrid-r=5 45.91±00.70 46.25±00.33 46.42±00.37 46.81±00.78
PIE-68

Method l = 30 l = 70 l = 110 l = 150
NyströmSC 43.70±00.89 49.20±00.85 49.92±00.57 50.59±00.95

PGreedyNysSC 44.87±00.90 50.30±01.19 51.01±01.22 51.57±00.75
PGrNysSC-Hybrid-r=5 44.57±00.86 50.52±00.96 50.86±00.91 51.54±00.94
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Chapter 6

Greedy Unsupervised Feature
Selection

This chapter presents an effective filter method for unsupervised feature selection. The
method is an application of the greedy column subset selection method presented in Chap-
ter 3. The proposed method has been applied to different benchmark data sets and com-
pared to different state-of-the-art algorithms for unsupervised feature selection.

The chapter is organized as follows: Section 6.1 introduces the unsupervised feature
selection problem. Section 6.2 presents the greedy feature selection approach. Section 6.3
discusses previous work on filter methods for unsupervised feature selection. Section 6.4
presents an empirical evaluation of the proposed method.

6.1 Unsupervised Feature Selection

Data instances are typically described by a huge number of features. Most of these features
are either redundant, or irrelevant to the data mining task at hand. Having a large number
of redundant and irrelevant features negatively affects the performance of the underlying
learning algorithms, and makes them more computationally demanding. Therefore, reduc-
ing the dimensionality of the data is a fundamental task for machine learning and data
mining applications.

Throughout past years, two approaches have been proposed for dimension reduction;
feature selection, and feature extraction. Feature selection (also known as variable selection
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or subset selection) searches for a relevant subset of existing features, while feature extrac-
tion (also known as feature transformation) learns a new set of features which combines
existing features. These methods have been employed with both supervised and unsuper-
vised learning, where in the case of supervised learning class labels are used to guide the
selection or extraction of features.

Feature extraction methods produce a set of continuous vectors which represent data
instances in the space of the extracted features. Accordingly, most of these methods ob-
tain unique solutions in polynomial time, which make these methods more attractive in
terms of computational complexity. On the other hand, feature selection is a combinato-
rial optimization problem which is too difficult to be solved optimally, and most feature
selection methods depend on heuristics to obtain a subset of relevant features in a man-
ageable time. Nevertheless, feature extraction methods usually produce features which are
difficult to interpret, and accordingly feature selection is more appealing in applications
where understanding the meaning of features is crucial for data analysis.

Feature selection methods can be categorized into wrapper and filter methods. Wrapper
methods wrap feature selection around the learning process and search for features which
enhance the performance of the learning task. Filter methods, on the other hand, analyze
the intrinsic properties of the data, and select highly-ranked features according to some
criterion before doing the learning task. Wrapper methods are computationally more
complex than filter methods as they depend on deploying the learning models many times
until a subset of relevant features are found.

This chapter presents an effective filter method for unsupervised feature selection. The
method is an application of the greedy Column Subset Selection (CSS) method presented
in Chapter 3. The criterion used for feature selection measures the reconstruction error of
the data matrix based on the subset of selected features. This criterion can be calculated
in a recursive manner which allows the development of an efficient greedy algorithm for
feature selection. The greedy algorithm selects at each iteration the most representative
feature among the remaining features, and then eliminates the effect of the selected features
from the data matrix. This step makes it less likely for the algorithm to select features
that are similar to previously selected features, which accordingly reduces the redundancy
between the selected features. In addition, the use of the recursive criterion makes the
algorithm computationally feasible and memory efficient compared to the state of the art
methods for unsupervised feature selection.
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6.2 Greedy Feature Selection

In this section, the unsupervised feature selection problem is formulated as a column subset
selection problem and the algorithms presented in Chapter 3 are used to select features.

Definition 6.1 (Unsupervised Feature Selection Criterion) Let A be an m×n data
matrix whose rows represent the set of data instances and whose columns represent the set
of features. The feature selection criterion is defined as:

F (S) = ‖A− P (S)A‖2F

where S is the set of the indices of selected features, and P (S) is an m×m projection matrix
which projects the columns of A onto the span of the set S of columns.

The criterion F (S) represents the sum of squared errors between the original data
matrix A and its rank-l approximation based on the selected set of features (where l = |S|):

ÃS = P (S)A.

The goal of the feature selection algorithm presented in this chapter is to select a subset
S of features such that F (S) is minimized.

Problem 6.1 (Unsupervised Feature Selection) Find a subset of features L such that,

L = arg min
S

F (S) .

This problem is an instance of the Column Subset Selection (CSS) problem presented
in Chapter 3. In order to select representative features, Algorithms 4 and 5 can be applied
to data matrices whose columns represent features.

6.3 Related Work

6.3.1 PCA-based Methods

Many filter methods for unsupervised feature selection depend on the Principal Component
Analysis (PCA) method [11] to search for the most representative features. PCA is the best-
known method for unsupervised feature extraction which finds directions with maximum
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variance in the feature space (namely principal components). The principal components
are also those directions that achieve the minimum reconstruction error for the data matrix.

Jolliffe [11] suggests different algorithms to use PCA for unsupervised feature selection.
In these algorithms, features are first associated with principal components based on the
absolute value of their coefficients, and then features corresponding to the first (or last)
principal components are selected (or deleted). This can be done once or recursively (i.e.,
by first selecting or deleting some features and then recomputing the principal components
based on the remaining features).

Similarly, sparse PCA [117], a variant of PCA which produces sparse principal com-
ponents, can also be used for feature selection. This can be done by selecting for each
principal component the subset of features with non-zero coefficients. However, Masaeli et
al. [118] showed that these sparse coefficients may be distributed across different features
and accordingly are not always useful for feature selection.

Another iterative approach is suggested by Cui and Dy [119], in which the feature that
is most correlated with the first principal component is selected, and then other features
are projected onto the direction orthogonal to that feature. These steps are repeated until
the required number of features are selected. Lu et al. [120] suggests a different PCA-based
approach which applies k-means clustering to the principal components, and then selects
the features that are close to clusters’ centroids.

Boutsidis et al. [121, 122] propose a feature selection method that randomly samples
features based on probabilities calculated using the k-leading singular values of the data
matrix. In [121], random sampling is used to reduce the number of candidate features, and
then the required number of features is selected by applying a complex subset selection
algorithm on the reduced matrix. In [122], the authors derive a theoretical guarantee for
the error of the k-means clustering when features are selected using random sampling.
However, theoretical guarantees for other clustering algorithms were not explored in this
work.

Recently, Masaeli et al. [118] propose an algorithm called Convex Principal Feature
Selection (CPFS). CPFS formulates feature selection as a convex continuous optimization
problem which minimizes the mean-squared-reconstruction error of the data matrix (a
PCA-like criterion) with sparsity constraints. This is a quadratic programming problem
with linear constraints, which was solved using a projected quasi-Newton method.
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6.3.2 Methods Preserving Data Similarity

Another category of unsupervised feature selection methods are based on selecting features
that preserve similarities between data instances. Most of these methods first construct a k
nearest neighbor graph between data instances, and then select features that preserve the
structure of that graph. Examples of these methods include the Laplacian score (LS) [123]
and the spectral feature selection method (a.k.a., SPEC) [124].

The Laplacian score (LS) [123] calculates a score for each feature based on the graph
Laplacian and degree matrices. This score quantifies how each feature preserves similarity
between data instances and their neighbors in the graph. Spectral feature selection [124]
extends this idea and presents a general framework for ranking features on a k nearest
neighbor graph.

6.3.3 Methods Preserving Data Cluster Structure

Some methods directly select features which preserve the cluster structure of the data. The
Q−α algorithm [125] measures the goodness of a subset of features based on the clustering
quality (namely cluster coherence) when data is represented using only those features. The
authors define a feature weight vector, and propose an iterative algorithm that alternates
between calculating the cluster coherence based on current weight vector and estimating
a new weight vector that maximizes that coherence. This algorithm converges to a local
minimum of the cluster coherence and produces a sparse weight vector that indicates which
features should be selected.

Recently, Cai et al. [126] propose an algorithm called Multi-Cluster Feature Selection
(MCFS) which selects a subset of features such that the multi-cluster structure of the
data is preserved. To achieve that, the authors employ a method similar to spectral
clustering [4], which first constructs a k nearest neighbor graph over the data instances,
and then solves a generalized eigenproblem over the graph Laplacian and degree matrices.
After that, for each eigenvector, an L1-regularized regression problem is solved to represent
each eigenvector using a sparse combination of features. Features are then assigned scores
based on these coefficients, and highly scored features are selected. The authors show
experimentally that the MCFS algorithm outperforms Laplacian score (SC) and the Q−α
algorithm.
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6.3.4 Feature Selection using Feature Similarity

Another well-known approach for unsupervised feature selection is the Feature Selection
using Feature Similarity (FSFS) method suggested by Mitra et al. [127]. The FSFS method
groups features into clusters and then selects a representative feature for each cluster. To
group features, the algorithm starts by calculating pairwise similarities between features,
and then it constructs a k nearest neighbor graph over the features. The algorithm then
selects the feature with the most compact neighborhood and removes all its neighbors.
This process is repeated on the remaining features until all features are either selected or
removed. The authors also suggested a new feature similarity measure, namely maximal
information compression, which quantifies the minimum amount of information loss when
one feature is represented by the other.

6.3.5 Comparison to Previous Work

The greedy feature selection method proposed in this chapter uses a PCA-like criterion
which minimizes the reconstruction error of the data matrix based on the selected subset
of features. In contrast to traditional PCA-based methods, the proposed algorithm does
not calculate the principal components, which is computationally demanding.

Unlike Laplacian score (LS) [123] and its extension [124], the greedy feature selection
method does not depend on calculating pairwise similarity between instances. It also does
not calculate eigenvalue decomposition over the similarity matrix as the Q− α algorithm
[125] and Multi-Cluster Feature Selection (MCFS) [126] do.

The feature selection criterion presented in this chapter is similar to that of Convex
Principal Feature Selection (CPFS) [118] as both minimize the reconstruction error of
the data matrix. While the method presented here uses a greedy algorithm to minimize
a discrete optimization problem, CPFS solves a quadratic programming problem with
sparsity constraints. In addition, the number of features selected by the CPFS depends on
a regularization parameter λ which is difficult to tune.

Similar to the method proposed by Cui and Dy [119], the method presented in this
chapter removes the effect of each selected feature by projecting other features to the
direction orthogonal to that selected feature. However, the method proposed by Cui and
Dy is computationally very complex, as it requires the calculation of the first principal
component for the whole matrix after each iteration.

The Feature Selection using Feature Similarity (FSFS) [127] method employs a similar
greedy approach which selects the most representative feature, and then eliminates its
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neighbors in the feature similarity graph. The FSFS method, however, depends on a
computationally complex measure for calculating similarity between features.

As shown in Section 6.4, experiments on real data sets show that the proposed algorithm
outperforms the Feature Selection using Feature Similarity (FSFS) method [127], Laplacian
score (SC) [123], and Multi-Cluster Feature Selection (MCFS) [126] when applied with
different clustering algorithms.

6.4 Experiments and Results

Experiments have been conducted on six benchmark data sets, whose properties are sum-
marized in Table 6.1.1 The ORL data set consists of 400 face images, and has been used in
the face identification task. The COIL’20 is the Columbia University Image Library which
consists of images of different objects. The ISOLET is a set of spoken letters, and the
USPS consists of handwritten digits. The first four data sets were recently used by Cai et
al. [126] to evaluate different feature selection methods in comparison to the Multi-Cluster
Feature Selection (MCFS) method. The TDT2-35 data set is a subset of the NIST Topic
Detection and Tracking corpus [114] which consists of top 30 categories. The 20NG data
set is the 20 newsgroups data.2 The TDT2-35 and 20NG data sets have been used in
previous work to evaluate different clustering and classification tasks.

The data sets were preprocessed as follows. For image data sets (ORL, COIL20 and
USPS ), the intensity values of each image were scaled to lie in the range [0, 1]. For docu-
ment data sets (TDT2-35 and 20NG), the terms that appear in less than five documents
were removed and the normalized term frequency - inverse document frequency (tf -idf)
weighting scheme was used to encode the importance of terms inside documents.

In the conducted experiments, seven methods for unsupervised feature selection are
compared:3

1Data sets are available in MATLAB format at:
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3The following implementations were used:

FSFS: http://www.facweb.iitkgp.ernet.in/~pabitra/paper/fsfs.tar.gz
LS: http://www.cad.zju.edu.cn/home/dengcai/Data/code/LaplacianScore.m
SPEC: http://featureselection.asu.edu/algorithms/fs_uns_spec.zip
MCFS: http://www.cad.zju.edu.cn/home/dengcai/Data/code/MCFS_p.m
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Table 6.1: The properties of the data sets used to evaluate different feature selection
methods.

Data set # Instances # Features # Classes Data Types Feature Types

ORL 400 1024 40 Face images Pixels
COIL20 1440 1024 20 Object images Pixels
ISOLET 1560 617 26 Speech signals Different properties [128]

USPS 9298 256 10 Digit images Pixels
TDT2-30 9394 19677 30 Documents Terms

20NG 18774 29360 20 Documents Terms

� PCA-LRG: is a PCA-based method that selects features associated with the first l
principal components [11]. It has been shown that by Masaeli et al. [118] that this
method achieves a low reconstruction error of the data matrix compared to other
PCA-based methods.4

� FSFS: is the Feature Selection using Feature Similarity [127] method with the max-
imal information compression as the feature similarity measure.

� LS: is the Laplacian score (LS) [123] method.

� SPEC: is the spectral feature selection method [124] using all the eigenvectors of the
graph Laplacian.

� MCFS: is the Multi-Cluster Feature Selection [126] method which has been shown
to outperform other methods that preserve the cluster structure of the data.

� GreedyFS: is the basic greedy algorithm presented in this chapter (Algorithm 4).

� PartGreedyFS: is the partition-based greedy algorithm (Algorithm 5). In the con-
ducted experiments, the number of partitions was set to 1% of the number of features.

For methods that depend on constructing a k-nearest neighbor graph over the data
instances (i.e., LS, SPEC, and MCFS), a five-nearest neighbor graph is constructed for

4The CPFA method was not included in the comparison as its implementation details were not com-
pletely specified in [118].
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each data set, and the weights of the graph are calculated as follows:

Wij = exp

(
−

D2
ij

2 (
∑

kDik) (
∑

kDjk)

)
,

where D is an n × n matrix of Euclidean distances between data instances, and Wij is
the weight between nodes i and j of the graph. This weighting function is a variant of
the Gaussian kernel used with self-tuning spectral clustering [116] which has been shown
to achieve better clustering performance than manually tuned kernel parameters. This
variant was used by Chen et al. [112] in their work on parallel spectral clustering.

Similar to previous work [123] [126], the feature selection methods were compared based
on their performance in clustering tasks. Two clustering algorithms were used to compare
different methods:

� The well-known k-means algorithm [129]: For each feature selection method, the
k-means algorithm is applied to the rows of the data matrix whose columns are
the subset of the selected features. For document data sets, the spherical k-mean
algorithm [40] is applied, where the cosine similarity between data points is used
instead of the Euclidean distance. Each run of the k-means algorithm is repeated ten
times with different initial centroids and the clustering with the minimum objective
function is selected.

� The state-of-the-art affinity propagation (AP) algorithm [51]: The distance matrix
between data instances is first calculated based on the selected subset of features,
and then the AP algorithm is applied to the negative of this distance matrix. The
preference vector, which controls the number of clusters, is set to the median of each
column of the similarity matrix, as suggested by Frey and Dueck [51].

After the clustering is performed using the subset of selected features, the cluster labels
are compared to ground-truth labels provided by human annotators and the Normalized
Mutual Information (NMI) [61] between clustering labels and the class labels is calculated.
The clustering performance with all features is also calculated and used as a baseline. In
addition to clustering performance, the run times of different feature selection methods
are compared. This run time includes the time for selecting features only, and not the run
time of the clustering algorithm. For all data sets, the number of selected features were
changed from 1% to 10% of the total number of features.
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Figures 6.1 and 6.2 show the clustering performance for the k-means and affinity prop-
agation (AP) algorithms respectively.5 Tables 6.2 and 6.3 show the k-means clustering
performance for the best performing feature selection methods (LS, MCFS, GreedyFS,
and GreedyFSPart). Each sub-table represents a data set and each column represents
a percentage of selected features. The NMI measures in each sub-column are divided into
groups according to their statistical significance. The best group of methods is highlighted
in bold, and the second best group is underlined. The statistical significance tests were
performed as explained in Section 3.5 on page 50.

It can be observed from Figures 6.1-6.2 and Tables 6.2-6.3 that the greedy feature
selection methods (GreedyFS and PartGreedyFS) outperform the PCA-LRG, FSFS,
LS, and SPEC methods for almost all data sets. The GreedyFS method outperforms
MCFS for the COIL20 data set as well as the three large data sets (USPS, TDT2-30 and
20NG), while its partition-based variant, PartGreedyFS, outperforms MCFS for the
two document data sets (TDT2-30 and 20NG) and gives comparable performance for the
COIL20 and USPS data sets. The MCFS method mostly outperforms the two greedy
algorithms for the ORL and ISOLET data sets.

Figures 6.3 show the run times of different feature selection methods. It can be ob-
served that FSFS is computationally more expensive than other methods as it depends
on calculating complex similarities between features. The FSFS method does not even
scale to run on the document data sets. The MCFS method, however efficient, is more
computationally complex than Laplacian score (LS) and the proposed greedy methods.
It can be also observed that for data sets with large numbers of instances (like USPS,
TDT2-30 and 20NG), the MCFS method becomes very computationally demanding as
it depends on solving a generalized eigenproblem over a data similarity matrix, and then
solving an L1-regularized regression problem for each eigenvector.

Figure 6.4 shows the run times of the PCA-LRG and Laplacian score (LS) methods
in comparison to the proposed greedy methods. It can be observed that the PCA-LRG
method is computationally more demanding than the proposed greedy methods for the
first four data sets, and it does not scale to run on data sets with large numbers of features
as it depends on the calculation of the principal components of the data matrix. On the
other hand, the LS method is computationally efficient relative to greedy methods when
the number of data instances is comparable to the number of features. However, the LS
method becomes very computationally demanding for data sets with very large number of

5The implementations of AP and SPEC algorithms do not scale to run on the USPS data set, and
those of AP, PCA-LRG, FSFS, and SPEC do not scale to run on the TDT2-30 and 20NG data sets on
the used simulation machines.
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data instances (like the USPS data set). It can also be observed that the partition-based
greedy feature selection (PartGreedyFS) is more efficient than the basic greedy feature
selection (GreedyFS).
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Figure 6.1: The k-means clustering performance of different feature selection methods.
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Figure 6.2: The affinity propagation (AP) clustering performance of different feature se-
lection methods for the data sets ORL, COIL20 and ISOLET.
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Figure 6.3: The run times of different feature selection methods.
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Figure 6.4: The run times of the PCA-LRG and LS methods in comparison to the
proposed greedy algorithms.
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Table 6.2: The clustering performance of the k-means algorithm for the top performing
methods for the ORL, COIL20, and ISOLET data sets. In each sub-column, the best
group of methods (according to t-test) is highlighted in bold, and the second best group is
underlined.

ORL
Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 70.61±01.51 70.61±01.51 70.61±01.51 70.61±01.51
LS 58.52±00.85 62.83±00.69 66.39±01.21 67.87±01.28

MCFS 65.17±01.09 69.59±01.10 70.15±01.45 69.93±01.63
GreedyFS 65.22±00.74 68.78±01.42 70.43±01.64 68.96±01.60

PartGreedyFS 63.05±00.98 67.43±00.84 68.74±00.61 69.42±00.64
COIL20

Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 73.80±02.20 73.80±02.20 73.80±02.20 73.80±02.20
LS 59.44±01.36 64.81±01.57 67.57±01.48 67.90±01.28

MCFS 63.22±01.42 70.94±01.32 71.00±01.48 72.98±01.29
GreedyFS 65.18±01.91 74.30±01.49 73.34±02.20 74.66±01.43

PartGreedyFS 61.84±01.98 71.65±00.74 73.41±00.75 73.73±00.66
ISOLET

Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 75.40±01.82 75.40±01.82 75.40±01.82 75.40±01.82
LS 50.13±00.63 61.03±00.68 65.51±00.91 66.75±01.13

MCFS 48.32±00.92 73.77±01.19 74.20±00.88 73.68±00.89
GreedyFS 57.62±00.81 62.59±01.43 67.09±01.94 69.24±01.49

PartGreedyFS 45.66±01.75 60.39±03.55 66.64±02.73 68.77±01.84
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Table 6.3: The clustering performance of the k-means algorithm for the top performing
methods for the USPS, TDT2-30, and 20NG data sets. In each sub-column, the best
group of methods (according to t-test) is highlighted in bold, and the second best group is
underlined.

USPS
Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 65.73±00.58 65.73±00.58 65.73±00.58 65.73±00.58
LS 27.43±00.14 39.12±00.73 46.47±00.87 48.51±00.74

MCFS 29.41±00.67 46.31±01.80 56.91±01.02 63.08±01.27
GreedyFS 27.44±00.59 54.81±01.04 62.15±01.28 65.17±00.88

PartGreedyFS 21.01±01.12 47.02±01.75 56.30±02.35 61.54±01.61
TDT2-30

Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 81.10±01.65 81.10±01.65 81.10±01.65 81.10±01.65
LS 69.33±01.53 76.63±02.51 79.79±01.08 79.26±00.95

MCFS 40.74±00.95 45.07±00.97 55.22±00.88 62.65±01.09
GreedyFS 74.48±01.34 77.73±02.07 80.21±01.88 80.55±01.48

PartGreedyFS 74.10±00.62 78.79±01.15 79.47±00.54 80.09±00.90
20NG

Method l/n = 1% l/n = 4% l/n = 7% l/n = 10%

All Features 55.08±01.75 55.08±01.75 55.08±01.75 55.08±01.75
LS 07.95±00.45 12.08±00.48 21.85±01.00 32.97±00.81

MCFS 21.50±00.68 33.03±00.87 39.64±01.12 40.33±01.03
GreedyFS 34.54±02.45 43.74±01.43 46.58±02.25 48.11±01.09

PartGreedyFS 33.78±00.49 40.62±02.45 39.48±04.92 41.60±05.76
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Chapter 7

Generalized Greedy CSS

This chapter presents a formulation for a generalized Column Subset Selection (CSS) prob-
lem in which a subset of columns of a source matrix is selected, such that the reconstruction
error of a target matrix based on the selected columns is minimized. The chapter then
presents a greedy algorithm for solving the generalized CSS problem, and describes different
problems that can be solved using the proposed algorithm.

The chapter is organized as follows: Section 7.1 defines the generalized column subset
selection problem and presents the generalized greedy CSS algorithm, while Section 7.2
describes different problems that can be solved using the proposed algorithm.

7.1 Generalized Column Subset Selection (CSS)

The column subset selection problem is concerned with the selection of a subset of columns
from a data matrix which best represent other columns of the same matrix. This problem
can be generalized to select a subset of columns from a source matrix which best represent
the columns of a different target matrix. The generalized column subset selection problem
can be formally defined as follows.

Problem 7.1 (Generalized Column Subset Selection) Given an m×n source matrix
A, an m × q target matrix B, and an integer l, find a subset of columns L from A such
that |L| = l and

L = arg min
S

∥∥∥B − A:S
(
AT:SA:S

)−1
AT:SB

∥∥∥
F
,

where S is the set of the indices of the candidate columns.
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Algorithm 10 Generalized Greedy Column Subset Selection

Input: Source matrix A, Target matrix B, Number of columns l
Output: Selected columns S
Steps:

1. Initialize f
(0)
i = ‖BTA:i‖2, and g

(0)
i = AT:iA:i for i = 1, 2, ... n

2. Repeat t = 1→ l:

(a) p = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {p}

(b) δ(t) = ATA:p −
∑t−1

r=1ω
(r)
p ω(r)

(c) γ(t) = BTA:p −
∑t−1

r=1ω
(r)
p υ(r)

(d) ω(t) = δ(t)/
√
δ(t)p , υ(t) = γ(t)/

√
δ(t)p

(e) Update f i’s, gi’s:

f (t) =
(
f − 2

(
ω ◦

(
ATBυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

The objective function of Problem 7.1 represents the reconstruction error of the tar-
get matrix B based on the selected columns from the source matrix. and the term

A:S
(
AT:SA:S

)−1
AT:S is the projection matrix which projects the columns of B onto the

subspace of the columns selected from A.

The generalized CSS problem can be solved using a variant of the greedy algorithm
presented in Chapter 3. Algorithm 10 shows the steps of the method. The generalized
greedy CSS algorithm is a direct extension of the partition-based greedy algorithm. The
reader is referred to Section 3.3.2 for the derivations of different steps of the algorithm.
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7.2 Generalized CSS Problems

This section describes some of the problems that can be formulated as a generalized column
subset selection. It starts by presenting the problems already addressed in this dissertation,
and then describes some related problems in the literature. It should be noted that for
some of these problems, the use of greedy algorithms has been explored in the literature.
However, identifying the connection between these problems and the problems presented
in this dissertation gives more insight about those problems, and allows the efficient algo-
rithms presented here to be explored in other interesting domains. The rest of this section
draws the connection between the generalized CSS problem and these related problems.
The application of the proposed generalized greedy CSS algorithm to these problems is a
subject of a future work.

Column Subset Selection. The basic column subset selection is clearly an instance of
the generalized CSS problem. In this instance, the target matrix is the same as the source
matrix and the goal is to select a subset of columns from a data matrix that best represent
other columns. The greedy CSS algorithm presented in Chapter 3 (Algorithm 4) is an
instance of Algorithm 10 with B = A.

Partition-based Column Subset Selection. The partition-based column subset se-
lection depends on first partitioning the columns of the data matrix into random groups
and then selecting a subset of columns from the data matrix that best represent the cen-
troids of these random partitions. The partition-based CSS problem is an instance of the
generalized CSS problem in which the columns of the target matrix represent the centroids
of random partitions weighted by their sizes. The partition-based greedy CSS algorithm
presented in Chapter 3 (Algorithm 5) is an instance of Algorithm 10 with B:j =

∑
r∈Pj

A:r.

SVD-based Column Subset Selection. Çivril and Magdon-Ismail [72,73] proposed a
column subset selection which first calculates the Singular Value Decomposition (SVD) of
the data matrix, and then selects the subset of columns which best approximates the leading
singular values of the data matrix. The formulation of this CSS method is an instance of the
generalized CSS problem, in which the columns of the target matrix are the embedding of
data points in the subspace of the leading singular vectors. The greedy algorithm presented
by Çivril and Magdon-Ismail can be implemented using Algorithm 10 by setting B = UkΣk

where Uk is a matrix whose columns represent the leading left singular vectors of the data
matrix, and Σk is a matrix whose diagonal elements represent the corresponding singular
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Table 7.1: The connection between the generalized column subset selection and related
problems.

Method Source Target

Generalized CSS A B

Column subset selection (CSS) Data matrix A Data matrix B = A

Partition-based CSS Data matrix A Random partitions B =
∑

r∈Pj
A:r

SVD-based CSS Data matrix A SVD-based embedding B = UkΣk

Sparse Approximation Atoms D Target vector B = y

values. This implementation is more efficient than the implementation proposed by Çivril
and Magdon-Ismail.

Sparse Approximation. Given a target vector and a set of basis vectors, also called
atoms, the goal of sparse approximation is to represent the target vector as a linear com-
bination of a few atoms [130]. Different instances of this problem have been studied in the
literature under different names, such as variable selection for linear regression [131], sparse
coding [132, 133], and dictionary selection [134, 135]. If the goal is to minimize the error
between the target vector and its projection onto the subspace of selected atoms, the sparse
approximation can be considered an instance of the generalized CSS problem in which the
target matrix is a vector and the columns of the source matrix are the atoms. Several
greedy algorithms have been proposed for sparse approximation, such as basic matching
pursuit [136], orthogonal matching pursuit [137], orthogonal least square [138], and their
kernelized variants [139, 140]. Besides greedy selection, other algorithms for sparse cod-
ing include the well-known Lasso method [141]. The generalized greedy CSS algorithm
presented in this chapter is closely related to the orthogonal matching pursuit and the
orthogonal least square algorithms. Algorithm 10 can be used for sparse approximation by
setting B = y, where y is the target vector.

Simultaneous Sparse Approximation. A more general problem is the selection of
atoms which represent a group of target vectors. This problem is referred to as simul-
taneous sparse approximation [142]. Different greedy algorithms have been proposed for
simultaneous sparse approximation with different constraints [134, 142]. If the goal is to
select a subset of atoms to represent different target vectors without imposing sparsity con-
straints on each representation, simultaneous sparse approximation will be an instance of
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the greedy CSS problem, where the source columns are the atoms and the target columns
are the input signals.

Table 7.1 summarizes the connection between the generalized column subset selection
problem and the related problems described in this section.
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Chapter 8

Conclusions and Future Work

This chapter concludes the dissertation and discusses future work.

The chapter is organized as follows: Section 8.1 summarizes the work studied in this dis-
sertation and presents the conclusions of the study. Section 8.2 discusses future extensions
of the proposed algorithms.

8.1 Conclusions

This dissertation explores the problem of selecting a subset of representative data instances
and/or features from a data matrix. This problem is formally known as Column Subset
Selection (CSS).

The dissertation first presented a novel algorithm which greedily selects a subset of
columns from a data matrix such that reconstruction error of the data matrix is minimized.
The algorithm depends on a novel recursive formula for the reconstruction error of the
data matrix, which allows a greedy selection criterion to be calculated efficiently at each
iteration. The dissertation then presented a kernelized algorithm to select representative
instances/features when only information about their inner-products is available.

The dissertation also presented two interesting applications of the proposed column
subset selection algorithms. It first presented two fast approximate algorithms for data
clustering, in which column-based embedding of data instances is used to speed up the
k-means and spectral clustering respectively. The dissertation then presented a novel
algorithm for unsupervised feature selection which depends on the greedy selection of
relevant features.
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The dissertation finally presented a generalized framework for column subset selection
which allows the proposed algorithms to be explored in different domains.

From what has been presented in this dissertation, it can be concluded that the column
subset selection is a challenging problem which has many useful applications in data mining
and machine learning. These applications include data analysis, low-rank approximation
of data matrices, fast approximate data clustering and unsupervised feature selection. The
CSS problem can be tackled by developing fast and accurate greedy algorithms. These
algorithms can work on data matrices that represent data points in some space, as well
as on kernel matrices that represent similarity over data points or features. The greedy
algorithms allow the development of fast approximate clustering algorithms as well as fast
and accurate unsupervised feature selection algorithms, and they can also be extended
to solve a generalized column subset problem in which columns from a source matrix are
selected to accurately represent the columns of a target matrix.

Much of the work presented in this dissertation has appeared in peer-reviewed pub-
lications. The greedy column subset selection method presented in Chapter 3 and its
application to unsupervised feature selection of Chapter 6 are based on the work published
in [143, 144]. Also, the greedy Nyström approximation method of Chapter 4 has been
published in [145,146].

8.2 Future Work

The algorithms presented in this dissertation can be extended in different directions and
employed in many useful applications. Some of the possible extensions of the current work
are:

Column Subset Selection from Big Data. Recent years have witnessed the develop-
ment of new architectures and programming models to handle big data. In these models,
data storage and processing are typically distributed across clusters of computers. The
MapReduce framework [147] is an example of such a programming model, which allows
the developments of efficient algorithms that work on big data. One of the promising future
directions is to develop efficient MapReduce algorithms for selecting representative data
instances and/or features from big data. The greedy algorithms presented in this disserta-
tion can be extended to handle big data distributed across thousands of computers. This
extension, however, requires the development of an efficient mechanism to simultaneously
select groups of columns from different sub-matrices, and then combine the selected groups
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in an effective manner to reduce the redundancy between different groups and maximize
the coverage of the whole data matrix.

Data Summarization. One of the interesting applications for representative selection
is data summarization. The greedy algorithms proposed in this dissertation can be applied
to different data summarization problems. For instance, the greedy Nyström can be used
to identify the representative keywords in a document corpus by applying it to a kernel
matrix over these keywords. The greedy CSS can also be used to extract representative
sentences by applying it to a matrix whose columns represent sentences in the space of
documents. Moreover, the proposed methods can be used to summarize other types of
data based on their contents such as images, speech signals, and biological sequences. The
success of the greedy algorithms in data summarization is subject to the design of effective
data representations and kernel functions.

Mining Useful Patterns. Extracting useful patterns from big data is one of the inter-
esting problems in data mining. These patterns consist of a set of attribute value pairs.
Exploring all possible combinations of pairs is a combinatorial problem. One of the com-
mon solutions is to construct patterns in a greedy manner such that the coverage of the
data records is maximized. The greedy algorithms presented in this dissertation can be
used to extract patterns in a fast and efficient way. The basic idea is to define a kernel
function over the patterns and data records and then use the greedy Nyström method to
extract patterns that best approximates the data records. The existing methods, however,
need to be modified to work on patterns on varying lengths.
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