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Abstract

In this thesis, we provide a summary of fully homomorphic encryption, and in particular,
look at the BGV encryption scheme by Brakerski, Gentry, and Vaikuntanathan; as well the
DGHYV encryption scheme by van Dijk, Gentry, Halevi, and Vaikuntanathan. We explain
the mechanisms developed by Gentry in his breakthrough work, and show examples of how
they are used.

While looking at the BGV encryption scheme, we make improvements to the underlying
lemmas dealing with modulus switching and noise management, and show that the lemmas
as currently stated are false. We then examine a lower bound on the hardness of the
Learning With Errors lattice problem, and use this to develop specific parameters for the
BGYV encryption scheme at a variety of security levels.

We then study the DGHV encryption scheme, and show how the somewhat homo-
morphic encryption scheme can be implemented as both a fully homomorphic encryption
scheme with bootstrapping, as well as a leveled fully homomorphic encryption scheme
using the techniques from the BGV encryption scheme. We then extend the parameters
from the optimized version of this scheme to higher security levels, and describe a more
straightforward way of arriving at these parameters.
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Chapter 1

Introduction

Homomorphisms in Encryption Schemes

A group homomorphism is a function f from a group (G, -) to another group (H, -) that is
structure preserving. That is, for g1, go € G such that f(g;) = hy € H and f(g2) = hs € H,
we have f(g1-92) = f(g1) - f(g2). We say that an encryption scheme is homomorphic if its
encryption scheme is a homomorphism. There are a number of homomorphic encryption
schemes, including ElGamal, RSA, and the Paillier cryptosystem. Given two RSA cipher-
texts ¢; = m{ mod n and c; = m§ mod n, we are able to compute ¢ = ¢y - cg = m§ - m§ =
(mq - m2)® mod n, which is the value of my - my encrypted. Similarly for the ElGamal
cryptosystem, given two ciphertexts ¢; = (g™, my - (¢°)™) and ¢o = (¢",mso - (¢°)™), we
can compute ¢y - ¢ = (g™ - ¢, my - (¢°)" -y - (9°)72) = (97, (my - my) - (g7) 7)),
which is the ciphertext corresponding to m; -my. These schemes are called multiplicatively
homomorphic because we can compute the product of two ciphertexts, and this gives us
the encrypted value of the product of the original messages.

Just as there are multiplicatively homomorphic encryption schemes, there are also ad-
ditively homomorphic encryption schemes, such as the Paillier cryptosystem [5]. An addi-
tively homomorphic cryptosystem is able to compute the sum of two ciphertexts, and have
this correspond to the encrypted value of the sum of the original plaintexts. For instance,
given two Paillier ciphertexts ¢; = g™ - ¥ mod N? and ¢, = g™ - 7} mod N2, one can
compute ¢ = ¢y - ¢y = g™ - - g™ . ) mod N? = gtmFm2) . (p) . 1y)N mod N2, which is
the encrypted value of mq + ms.



Fully Homomorphic Encryption Schemes

An encryption scheme that is both multiplicatively homomorphic and additively homomor-
phic is called fully homomorphic. Such an encryption scheme can be very useful because
this would allow us to compute arbitrary polynomials on encrypted data without ever hav-
ing to decrypt it first. This could be used to allow a party with sensitive data to enlist the
help of an external company to help process its data without divulging its secrets to this
external company. Concretely, the military may want to set up some supply depots that are
placed in an optimal position given the current locations of their armed forces. They could
then enlist the help of an optimization company, and give them the encrypted locations
of their forces. The optimization company could process this information to provide an
optimal solution for the military, without ever knowing the sensitive military information,
nor the results that they provided. This would allow organizations with highly classified
information to outsource, instead of requiring people with specialized knowledge bases to
have the proper security clearance.

The idea of a fully homomorphic encryption scheme was originally introduced by Rivest,
Adleman, and Dertouzos in their 1978 paper entitled “On Data Banks and Privacy Homo-
morphisms” [19], where they initially referred to fully homomorphic encryption functions
as privacy homomorphisms.

Their paper proposes a situation where a loan company enlists the services of a third
party time-sharing company to store and process the accumulated loan data. However,
due to the sensitivity of the loan company’s data, everything must be encrypted in their
data banks provided by the time-sharing company. If the loan company wanted to know
how much the average loan was, or how many loans over a certain value had been granted,
they would have to do some computations on their data. However, to do any computations
on their data, the loan company would have to either decrypt the data on their end, and
process the data themselves, or allow the third party company to have some decrypted
data. If the loan company doesn’t have the resources to perform these operations on their
end, they would have to compute these statistics on the side of the data storage company.

If the loan company was using a fully homomorphic encryption scheme however, they
could compute all of the information they need on the encrypted data, and then output
the needed information in encrypted form. This would prevent the data storage company
from seeing any secret information, but would still allow the loan company to make full
use of the data storage company’s resources.



Gentry’s Breakthrough

Before 2009, no one was able to come up with a workable suggestion for a fully homomorphic
encryption scheme. However, that year, Gentry published his PhD thesis that described the
first fully homomorphic encryption scheme [%]. His scheme used similar ideas as that of the
Goldreich, Goldwasser, and Halevi (GGH) cryptosystem [11], [5], except using ideal lattices.
Every encrypted message contains some sort of error term, and when these encrypted
messages are added or multiplied, the error term grows. After the error terms get too big,
the encryption scheme is no longer able to correctly decrypt the messages. The idea of the
scheme was to create a “somewhat” homomorphic encryption scheme that could handle a
certain number of homomorphic operations, and then shrink the error terms.

To accomplish this, the somewhat homomorphic encryption scheme needed to be able
to evaluate its own decryption circuit (plus another operation) so that a message that was
encrypted twice could have its initial encryption that has high error value removed while
still being encrypted with the second encryption. This would leave the ciphertext just with
the error associated with the second encryption. This technique was called bootstrapping.

Unfortunately, the decryption circuit required too many operations to perform homo-
morphically. To solve this issue, Gentry proposed “squashing” the decryption circuit. To
do this, some extra information is given to the ciphertexts about the private key, so the
decryption circuit doesn’t have to do as much homomorphically.

Since 2009, there have been a number of other fully homomorphic schemes created
using the same techniques. The main cryptosystems we will be focusing on are the BGV
encryption scheme which uses modular lattices and the Learning with Errors Problem to
create a leveled fully homomorphic encryption scheme, and the DGHV encryption scheme
which is a fully homomorphic cryptosystem based on integers.

Outline of Thesis

In the Preliminaries chapter, we first define the notation that we will be using throughout
this thesis. We then provide an overview of lattices, their bases, and the ways that the
orthogonality of these bases can be measured. We then look at some of the more well known
lattice-based hard problems, as well as some other hard problems used in the cryptosystems
covered. A discussion on lattice reduction techniques is also included.

Chapter 3 is an overview of what it means for a cryptosystem to be fully homomorphic.
We provide a number of definitions of various properties needed for an encryption scheme
to be fully homomorphic. A look at leveled fully homomorphic encryption is provided,



as well as the requirements and implementation of bootstrapping needed to create a fully
homomorphic encryption scheme from a somewhat homomorphic encryption scheme.

In Chapter 4 we take a closer look at the lattice-based encryption scheme BGV. We
describe the somewhat fully homomorphic scheme, and then extend this to a leveled fully
homomorphic encryption scheme that does not incorporate bootstrapping. We then look
into the correctness of the scheme, and determine properties that the error function needs
to satisfy in order for decryption to work correctly. We then examine the proofs described
in the BGV paper related to the modulus switching function, and correct the statements
of these proofs. To conclude this chapter, we study an experimental lower bound for the
running time needed to solve the underlying lattice problem. Using this, we compute
parameters for each security level.

In Chapter 5 we move from a lattice-based cryptosystem to DGHV, which is an integer-
based cryptosystem. Here we look at the original somewhat homomorphic cryptosystem
and, as in the previous chapter, we extend this to a leveled fully homomorphic encryption
scheme. However, we also study a bootstrappable variant of the scheme, and an optimized
version of this variant. Then, considering the attacks used by Coron, Mandal, Naccache,
and Tibouchi [5], we extend the parameters needed for high security levels.

Finally, in Chapter 6, we take a brief look at a few other encryption schemes, including
the first homomorphic encryption scheme created by Craig Gentry.

New Contributions

In this thesis, we make corrections to Lemmas 1 and 4 from the paper introducing the
BGV encryption scheme (4.3) [2]. These lemmas are used to show that the modulus
switching technique keeps the noise of the encrypted data at a reasonable size. However,
the inequalities were incorrectly stated. We found counter examples to the original proofs,
and were able to correct the statements of the lemmas and provide proofs of the corrected
statements.

Also, we use the analysis by Gentry, Halevi, and Smart [13] to determine parameters
that are needed for different security levels in the BGV encryption scheme (4.4). However,
we generalize their calculations to cases where the standard deviation on the error distri-
bution is not 1. In these parameters, we also include the maximum size the error term can
take.

We also extend the parameters for the optimized version of the DGHV scheme by
Coron, Mandal, Naccache, and Tibouchi [5] to higher security levels (5.4.5). While doing



this, we provide a more direct method to compute these parameters for arbitrary security
levels.



Chapter 2

Preliminaries

This chapter presents the notation and underlying mathematical concepts that will be
used throughout this thesis. The presentation includes lattices and the hard problems that
underlie the security of fully homomorphic encryption schemes.

2.1 Notation

Throughout this paper, we follow similar notation as defined in the paper by Brakerski,
Gentry, and Vaikuntanathan [2].

Define R to be the ring Z[z]/(z?+1). For any element r € R, we will use r; to represent
the coefficient of 27 of r (i.e. 7 =19+ 12 +r9z? + -+ +1q_12%71). We will denote vectors
as lowercase letters in bold, where v[i] denotes the i’th component of vector v. Thus,
if v.€ R", then v[i]; is the coefficient of 27 in the ring element v[i], which is the i’th
component of v. All vectors are column vectors unless otherwise specified. For a matrix
A, let A; be the i’th column vector of A.

n

For two vectors u, v € R", define the dot product u-v = Z ulk]-v[k] where u-v € R.
k=1

For r € R, we define ||r|| to be the Euclidean norm of the coefficient vector for r, that is

>, We also define the /I norm of a vector v € R" to be ||v| = ZHV[Z]H,
i=1

which is just the standard /; norm when d = 1.



For any ¢ € Z such that ¢ > 2, define R, to be R/qR. For any r € R, we define [r], to be
r mod ¢ such that the coefficients r; of r are reduced to within the range (—q/2, ¢/2|. Also,
for x € Z, define [z], 2], 2] to be x rounded up to the nearest integer, x rounded down
to the nearest integer, and x rounded to the nearest integer respectively. Let [z] = z — |z]
be the fractional part of x.

Define the function = : R* — R("3") to be the tensor product of a vector in a ring R
such that any repeated terms are excluded. For convention, we will always exclude the
second like term in the standard tensor product. For example, Z((1,2,3)7) = (1-1,1-2,1-
3,2-2,2-3,3-3)T = (1,2,3,4,6,9)7. Also, define ® to be the standard tensor product
binary operator.

We define vz = max{||a - b||/(]|a|/||0]|) : a,b € R} to be the expansion factor g of the
ring R.

Lemma 2.1.1. The expansion factor g satisfies 0 < vr < Vd.

Proof. Let a, b € R where R = Z[z]/(z¢ +1). Say a = ap + a1 + -+ + ag_12% ! and
b="by+bix+ - +bg_12% 1. We first need to compute a - b over R.

d—1 d—1
a-b = a;bjx' ™
=0 7=0
-1 [/ k 2d-2 [/ d-1
= Z Zak_]b] F 4+ ( ak_jbj> "
k=0 \j=0 k=d \j=k—d+1
-1 [/ k 2d-2 [/ d-1
= Z Zak_ij k= < ak_jbj> zh=d
k=0 \j=0 k=d \j=k—d+1
d-1 [ k d—2 [ d-1
= Z Zak_ij [Ek — ( Z ak+d_]b]> T
k=0 \j=0 k=0 \j=k+1
d—1 [ k d—1
= Z G,k_ij — Z ak+d_]b]) T
k=0 \7=0 j=k+1
Now, let a’ be the coefficient vector of @ in absolute values, that is a’ = (|ag|, |a1], - . ., |as-1|),
and likewise, b’ = (|bo], |b1], - - ., |bs_1]). Also, let
at . = { Ak —j 20 S j S k
kg Ak+d—j - k+1§j§d—1

7



and define a; = ([ajo|, [ay 1], -- - |a; 4_1]). Notice that the map from a; to aj ; is a per-
mutation of the terms in the coefficient vector of a, so we get that ||a’|| = ||aj| for all
ke{0,...,d—1}. Then, we get

-1 / k d—1 2
la-b]* = b — Y ak+d—jbj>

k=0 \j=0 j=k+1

d—1

(]

k d—1 2
> lawsbil + ’akerjbj’)
=0

k=0 j=k+1
d—1 /d—1 2
-y zwaz,jbj|)
k=0 \j=0
d—1
= D (ai-bY
k=0
d—1
< Z (HaZHZHb'HQ) (by Cauchy-Schwarz)
k=0
d—1
= > (Il')17)1?)
k=0
= dl|al||]*

Thus, v > [la-]/((lal[[]) for all a, b € R, so max{]|a-b]/(lal[[5]) : a,b € R} = 1z < vd.
O

For ¢ € Ry, we define the linear function L¢(x) over the coefficients of x to be L¢(x)
c-x. We also define L, ,(Z(x)) to be the linear function over the coefficients of Z(x) to
be Le, ¢, (E(x)) = Le, (X) - Le,(x). We treat the entries of x as variables, so Le, (x) - Le, (x
is a linear expression in the elements of Z(x), and this is therefore well defined.

For a set of hash functions H from X to Y, where both X and Y are finite sets, we say
that H is 2-universal if for all z, 2" € X where x # 2/, Prpy[h(z) = h(2')] = 1/|Y].
For two distributions D; and D5 over a finite domain X, we say that the statistical

difference between D; and D, is %Z |D1(z) — Do(z)|. We say that a distribution is

rzeX
e-uniform if its statistical difference from the uniform distribution is at most e.

8



We say that a function f(z) is O(z) if f(z) is O(z - (log(x))*) for some integer k.

We say that an integer is a-rough if it has no prime factors smaller than a.

2.2 Lattices

Let {vy,...,v} be a set of linearly independent vectors in R". The lattice L generated
by this set of vectors is the set of all integer combinations of this set of vectors. That is,
L={avi+- - +apvy | a; € Zforall 1 <i<k}.

We call any linearly independent set of vectors that generates L a basis for L, and
there are an infinite number of such sets [7]. Any two bases for L have the same number
of elements. The dimension of L (or the rank of L) is the number of vectors in a basis for
L. Lattice L C R™ has full rank if its dimension is n.

Let V.= {vy,...,vi} and W = {wy,...,wy} be two bases for a lattice L C R". Since
we can generate L with integer combinations of V', we can write w; = w; vy + -+ 4+ u; Vi,
for each w;, where each u; ; € Z.

We can construct the matrix

Ul,l tte UI’]{; Vi W,
U= : : such that U - : —

Uk1 - Ukk Vi Wi

where the v;’s and w;’s are written as row vectors. Since W is also a basis for L, we can
write each v; as an integer combination of the vectors in W. Thus, the matrix U~ is also an
integer matrix. Since both U and U~! are integer, we know that det(U), det(U~!) € Z. But
since 1 = det(I) = det(UU 1) = det(U)det(U '), this gives us that det(U) = det(U ') =
41, so U is a unimodular matrix.

Let L be a lattice with basis {vy,...,vx}. Then the fundamental domain (also called
the fundamental parallelopiped) for L for this basis is
Fvi,ooo,vi) ={tivi+ -+ tpvi | 0 < t; < 1}

We call the k-dimensional volume of F the determinant of L, denoted by det(L). It is also
called the covolume of L, as this is the volume of the quotient group R"/L. If L C R™ is of
dimension n, then we can write the basis vectors as rows of a square matrix F'. Concretely,



lf V; = (fi,b ey fi»”)’ then

fix o i
F= ST
fn,l e fn,n

Then the volume of the fundamental domain F is Vol(F) = |det(F")|. But since we can
multiply F' by a unimodular matrix to get a matrix representing another basis for L, the

determinant of this new matrix is either det(F'), or —det(F'). Thus, the value of det(L)
does not depend on the basis chosen.

If L is a lattice of rank k, for 0 < i < k we define its i th successive minimum to be
Ai(L) = min{max{||x4||,..., ||x:||} | X1,...,%; € L are linearly independent}. Then, if L
has dimension n, for any 1 < r <n we have [7]:

OiM@OTg¢E®umL (2.1)

The constant h,, is called Hermite’s constant of dimension n, and the values of h,, are only
known for 1 < n < 8 and n = 24. However, when n is large, Hermite’s constant satisfies
o < hy < 22 [14],

2.2.1 Orthogonality

We want to deal with bases whose elements are orthogonal as possible when trying to solve
lattice based hard problems, as we will discuss later. Therefore, we need to have a way to
determine the quality of a basis. Given a highly non-orthogonal lattice, we also want to
be able to find a basis that is more orthogonal.

Let L C R™ be a lattice with dimension n. We define the Hadamard Ratio of the basis
B ={vy,...,v,} to be

1/n
H(B) = | S
H||Vz‘||

The Hadamard Ratio satisfies 0 < H(B) < 1, where the basis B has elements that are
more orthogonal to each other when H(B) is closer to 1. We call the reciprocal of H(B)

10



the orthogonality defect of a basis. Notice that det(L) is fixed for all bases of a lattice L, so
when the basis has shorter elements, the basis vectors are also pairwise more orthogonal.

Say we order our basis B so that ||vi|| < ||va] < -+ < ||v,||. Then we call ||vy]|/A1(L)
the approzimation factor. However, given a lattice L, we do not know the value of \;(L),
and computing it is difficult, so we can replace A;(L) with det(L)"™ [15]. This is due to
the relation between these values shown in (2.1). This value ||v1||/det(L)/™ is called the
Hermite factor, and we call (||vy]|/det(L)Y™)'/™ the root-Hermite factor.

2.2.2 Other Types of Lattices

Since a lattice L C R"™ with basis B = {vy,...,vi} is defined as the set of all integer
combinations of B, we can write L as L = {Ax | x € Z*} where A € R™™ is the matrix
where column A; is v;. We can define the dual lattice of L to be L+ = {x € R" | Vv €
B,v-x € Z}. We say that L is an integer lattice if L C Z".

A modular lattice with modulus ¢ (also known as a g-ary lattice) is an integer lattice
that has the form L = {Ax mod ¢ | x € Z"}, where A € Z?** is the matrix whose columns
are the basis vectors of L. These types of lattices also have a corresponding dual lattice of
the form L+ = {x € Z" | Vv € L,v-x =0 mod ¢}.

We can also create lattices based on ideals. If we are given a ring R = Z[z]/(f(x)),
for some polynomial f(z) of degree d (in practice we will use f(z) = ¢ + 1), then R is
a polynomial ring where every element has degree less than d. We can think of R as Z¢,
where each element of R is represented by its coefficient vector. Let I be an ideal of R,
which is a non-empty set of points in R that is closed under addition and multiplication
by any element in R. Since a subset of R” is a lattice if and only if it is a discrete additive
subgroup [11], the elements of I can be used as the points in our lattice. Such a lattice
is called an ideal lattice due to its dual nature of being both a lattice and an ideal. If
we take I to be a principal ideal generated by r € R, then the ideal lattice corresponding
to I is generated by the vectors {r-z' : 0 < i < d}, where multiplication is done over
R. Let K = Q|x]/(f(x)) be a field containing I. Then the inverse of I C R is given by
I'"'={weK|Yvel,w-ve R}

2.3 Underlying Hard Problems

This section defines a number of the underlying hard problems that are used in fully
homomorphic encryption schemes and other lattice based encryption schemes. Since many

11



of the fully homomorphic encryption schemes are based on lattices, the problems in these
schemes can be reduced to some of the more well studied lattice based problems. Although
many of these problems are not referred to explicitly in any of the schemes talked about
in this thesis, we present them give an overview of the relation between the problems we
make use of and other common problems. We first define the Subset-Sum Problem, and
then will define problems related to lattices. Most of the lattice problem definitions are
taken from Laarhoven, van de Pol, and de Weger [15].

Subset-Sum Problem

If we are given a set of integers S = {x1,...,x,}, the Subset-Sum Problem is to find a
subset T" of S whose elements sum to a given integer k, given that there exists at least one
subset that satisfies this [I1]. The Sparse Subset-Sum Problem (SSSP) is the same as the
Subset-Sum Problem, except that a very small set T can be used to satisfy the sum.

2.3.1 Problems Related to Finding Short Vectors

This section reviews a few common hard problems that are used as the foundation of a
number of lattice based cryptographic schemes. These problems deal with finding short
vectors in a lattice.

First recall that the first successive minimum of a lattice L is A\;(L) = min{||x|| | x €
L,x # 0}, the smallest distance between two lattice points. Throughout, let L be a lattice
of full rank in Z".

Shortest Vector Problem (SVP)

The Shortest Vector Problem is to find a lattice point y € L such that ||y| = A\ (L) given
a basis in L.

The Shortest Vector Problem is known to be NP-Hard if we extend the class of polynomial-

time algorithms to include non-derterministic, probabilistic algorithms that terminate, with
high probability, in polynomial time with the correct result [11].
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Approximate Shortest Vector Problem (SVP,)

The Approximate Shortest Vector Problem is to find a lattice point y € L such that
0 < |lyl] <~vA1(L) given a basis in L and an approximation factor v > 1.

For the previous two problems, the value of A;(L) is not initially known. The next problem

is similar to the Approximate Shortest Vector Problem, but uses a known value instead of
the length of the shortest vector in the lattice.

Hermite Shortest Vector Problem (HSVP.)

The Hermite Shortest Vector Problem is to find a lattice point y € L such that 0 < ||y|| <
yvol(L)Y/™ given a basis in L and an approximation factor v > 0.

Decision Shortest Vector Problem (DSVP)

The Decision Shortest Vector Problem is to determine whether a lattice point y € L exists
such that 0 < ||y|| < r given a basis in L and a radius r > 0.

Approximate Shortest Length Problem (SLP,)

The Approximate Shortest Length Problem is to find a A such that A\;(L) < A < v\ (L)
given a basis in L and an approximation factor v > 1.

Unique Shortest Vector Problem (USVP,)

The Unique Shortest Vector Problem is to find a lattice point y € L such that any v € L
with ||v]| < ~v]ly]|| is an integral multiple of y, given a basis in L and a gap factor v > 1.

Gap Shortest Vector Problem (GapSVP,)
The Gap Shortest Vector Problem is if we are given a basis in L, an approximation factor

v > 1, and a radius r > 0, to return YES if A\;(L) < r, NO if A{(L) > vr, and either YES
or NO otherwise.
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2.3.2 Problems Related to Finding Closest Vectors

These problems deal with finding close vectors in a lattice to a given point. Let d(t, L) be
the distance from t € R" to the closest lattice point in L. Again, let L be a lattice of full
rank in Z".

Closest Vector Problem (CVP)

The Closest Vector Problem is to determine a lattice point y € L such that ||y — t|| =
d(t, L), given a basis in L and a target vector t € R".

The Closest Vector Problem is known to be NP-hard. We can reduce the SVP to the
CVP problem, so if we can solve the CVP, then we can also solve the SVP [15], [11].

Approximate Closest Vector Problem (CVP,)

The Approximate Closest Vector Problem is to determine a lattice point y € L such that
ly —t|| < ~d(t, L), given a basis in L, a target vector t € R™, and an approximation factor
v= L

Decision Closest Vector Problem (DCVP)

The Decision Closest Vector Problem is to determine whether there exists a lattice point
y € L such that ||y —t|| < r, given a basis in L, a target vector t € R", and a radius r > 0.

Bounded Distance Decoding Problem (BDD,)

The Bounded Distance Decoding Problem is to determine a lattice point y € L such that
ly — t|| = d(t, L), given a basis in L, a distance parameter a > 0, and a target vector
t € R” such that d(t, L) < aA(L).

2.3.3 Problems Dealing with Sets of Short Vectors
These problems deal with finding sets of vectors in a lattice that are as small as possible. Re-

call that the ¢’th successive minimum \;(L) is defined as \;(L) = min{max{||xi||, ..., [|x:||}| x1,...,x; €
L where x1,...,x; are linearly independent}. Again, let L be a lattice of full rank in Z".
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Successive Minima Problem (SMP)

Given a basis of L, the Successive Minima Problem is to find a linearly independent set of
lattice points {y1,...,yn} € L such that ||y;|| = \i(L) fori =1,...,n.

Approximate Shortest Basis Problem (SBP.)

The Approximate Shortest Basis Problem is to find a basis {by,...,b,} of L such that
max;||b;|| < v - min{max;||a;|| | {a;,...,a,} is a basis for L}, given a basis for L and an
approximation factor v > 1.

Shortest Independent Vector Problem (SIVP.)

Given a basis of L and an approximation factor v > 1, the Shortest Independent Vector
Problem is to find a linearly independent set of lattice points {yi,...,y,} € L such that
max; |y < yAn(L).

2.3.4 Learning with Errors (LWE) and Modular Lattice Prob-
lems

Before we define the Learning with Errors Problem, we will first define another modular
lattice problem.

Small Integer Solutions Problem (SIS, . )

If we are given a modulus ¢, a matrix A € Z;*™ and a v € R such that 1 < v < g,
the Small Integer Solutions Problem is to find a nonzero y € Z™ such that ||y|| < v and
Ay =0 (mod q).

We will define the Learning with Errors Problem in two different formats below. For
the next problems, let n > 1,m > 1,and ¢ > 2 be integers, and let f(z) = 2% + 1, where d
is a power of 2. Let R = Z[z]|/(f(x)), and let x be some distribution over R. We will always
choose x to be a discrete Gaussian distribution with standard deviation o = agq/+/27 for
some parameter «, although these problems can be posed with any general distribution y.
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The Search General Learning with Errors (search-GLWE,, ,, ,,) Problem

The Search General Learning with Errors (search-GLWE) Problem is to determine s € R}
given the set consisting of the pairs (a;,b;) € Ry x R, where a; is sampled uniformly
from Ry, e; is sampled from x, and b; = a; -s +¢; for ¢ = 1,...,m. The search-GLWE
Assumption is that the search-GLWE Problem is computationally infeasible.

We can also define the Search Learning with Errors (search-LWE) Problem and As-
sumption to be the search-GLWE Problem and Assumption where d = 1, and the Search
Ring Learning with Errors (search-RLWE) Problem and Assumption to be the search-
GLWE Problem and Assumption where n = 1.

The Search Learning with Errors (search-LWE,, ,, ,,) Problem

The Search Learning with Errors (search-LWE) Problem is to determine s € Z given the
set consisting of the pairs (a;,b;) € Z x Z, where a; is sampled uniformly from Z, e; is
sampled from x, and b; =a;-s+e; fori=1,...,m.

The Search Ring Learning with Errors (search-RLWE,, ,,) Problem

The Search Ring Learning with Errors (search-RLWE) Problem is to determine s € R,
given the set consisting of the pairs (a;,b;) € R, x R, where g; is sampled uniformly from
R,, e; is sampled from x, and b; = a; - s+e¢; fori=1,...,m.

The Decision General Learning with Errors (decision-GLWE, ,, ,.) Problem

The Decision General Learning with Errors (decision-GLWE) Problem is to distinguish
the following two sets. The first set consists of the pairs (a;, b;) sampled uniformly from
Ry x Ry for @ = 1,...,m. Before constructing the second set, we must first draw s
uniformly from Ry. Then the second set consists of the pairs (a;, b;) € Ry x R, where a;
is sampled uniformly from R, e; is sampled from x, and b; = a;-s +e¢; fori =1,...,m.
The decision-GLWE Assumption is that the decision-GLWE Problem is computationally
infeasible.

We can also define the Decision Learning with Errors (decision-LWE) Problem and
Assumption to be the decision-GLWE Problem and Assumption where d = 1, and the
Decision Ring Learning with Errors (decision-RLWE) Problem and Assumption to be the
decision-GLWE Problem and Assumption where n = 1.
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The Decision Learning with Errors (decision-LWE,, ,,, , ,) Problem

The Decision Learning with Errors (decision-LWE) Problem is to distinguish the following
two sets. The first set consists of the pairs (a;,b;) sampled uniformly from Z7 x Z, for
i=1,...,m. Before constructing the second set, we must first draw s uniformly from Zj.
Then the second set consists of the pairs (a;, b;) € Ly x ZLq where a; is sampled uniformly
from Zj, e; is sampled from x, and b; = a;-s+e¢; fori=1,...,m.

The Decision Ring Learning with Errors (decision-RLWE,, ,,) Problem

The Decision Ring Learning with Errors (decision-RLWE) Problem is to distinguish the
following two sets. The first set consists of the pairs (a;, b;) sampled uniformly from R, x R,
for : = 1,...,m. Before constructing the second set, we must first draw s uniformly from
R,. Then the second set consists of the pairs (a;,b;) € R, x R, where q; is sampled
uniformly from R, e; is sampled from x, and b; =a;-s+e; forie =1,...,m.

Comments about LWE

The search-LWE Problem is at least as hard as the decision-LWE Problem [20], and in
fact, the problems are equivalent after a polynomial time reduction when ¢ is prime and
polynomial in size to n [18],[17]. It also holds that the search-RLWE and decision-RLWE
are equivalent via a probabilistic polynomial time reduction when ¢ is prime and polynomial
in size to n [17]. Throughout this thesis, we will be dealing with either the LWE Problem
or the RLWE Problem (and not the general case), as the cases where neither the ring
dimension d nor the vector length n equals 1 have not been explored [2].

2.3.5 Solving Lattice Based Hard Problems

If someone is able to break the SIS, , . 5 57/, Problem, then they can break decision-
LWE, ;n.g.a [20]. Thus, when looking for a way to solve the LWE Problem, we can focus
on solving the SIS Problem. However, each of SBP., SIVP,, HSVP,, USVP,, GapSVP,,
SISy m,qw, BDDy/y, and Search-LWE,, ,, ;o can be reduced to SVP, [15]. Since we can
reduce SVP,, to CVP,, if we can solve CVP,,, we can solve all of these hard lattice problems.

If we have a lattice L C R™ of full rank, with a basis {vy,...,v,}, then Babai’s Closest
Vertex Algorithm solves CVP if the basis vectors are sufficiently orthogonal [14]. Babai’s
algorithm is stated next.
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Babai’s Closest Vertex Algorithm

Let w € R"™ be the target vector that we are trying to find the nearest lattice point to.
Since we have n basis vectors, we can write w = t;vy + -+ + t,v, where t; € R for
all i € {1,...,n}. Let a; = [t;| for all i € {1,...,n}. Then return the lattice point
V=aVy+- -+ a,Vy,.

If the basis vectors are somewhat orthogonal to each other, this algorithm solves CVP,, for
some 7, depending on how orthogonal the basis is. However, if the basis is very nonorthog-
onal, then the outputted lattice point is typically far away from the actual closest lattice
point [14].

To solve lattice based problems, we therefore need to be able to determine a basis that
is orthogonal enough given any basis for the lattice we are dealing with. We call such
a basis reduced. A common algorithm used to get a reduced basis is the LLL algorithm
by Lenstra, Lenstra and Lovasz. The LLL algorithm is a polynomial time algorithm that
returns a basis (said to be LLL-reduced) with a Hermite factor less than (4/3)"~Y/4 and
an approximation factor less than (4/3)("~1/2 where n is the lattice dimension [7]. If we
apply the LLL algorithm to some basis, and then use Babai’s algorithm, this solves CVP,
to within a factor of C™ for some C' [11].

Another algorithm to find a fairly orthogonal basis is a variant on the LLL method,
called the deep insertion method (DEEP). This algorithm may improve the Hermite factor
and approximation factor (and does so in practice quite quickly for most lattices [11]), but
may in the worst case have a superexponential complexity [7]. This algorithm uses a block
size parameter, which we can increase to improve the basis, but doing this also increases
the runtime.

A third variant of the LLL algorithm is the block Korkin-Zolotarev (BKZ) algorithm.
This algorithm uses the idea of a KZ-reduced basis. A KZ-reduced basis is typically better
than an LLL-reduced basis, and in fact has its shortest vector as the solution to the SVP
[14]. As such, any method to solve for a KZ-reduced basis runs in exponential time with
respect to the lattice dimension.

The distinguishing feature of the BKZ algorithm is that it takes a block of basis vectors
that generate the lattice and replaces them with a KZ-reduced lattice that is a basis for
the same sublattice[l1]. As in DEEP, increasing the block size increases the runtime, but
returns a better reduced basis. Taking the block size to be the size of the lattice dimension
solves the SVP exactly, but is exponential in the dimension. If BKZ terminates, then it
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returns a basis with Hermite factor less than \/h_51+(n_1)/(ﬂ_1)

less than h(ﬂn_l)/(ﬁ_l) < (ﬁ)(niw(ﬁfl) where [ is the blocksize [7].

e

and an approximation factor

2.3.6 The Approximate GCD Problem

We define the Approximate GCD Problem, and some of its variations. These problems are
used for the fully homomorphic encryption schemes over the integers discussed in Chapter
5.

The Approximate GCD Problem

Let D, ,(p) = { choose ¢ € Z from [0,27/p), and r € Z from (—2°,2?), and output
x = pq+r} be a probability distribution for some variables v € Z, p € Z, and p € Z where
p is an odd number that has bit length n € Z . The (p,n,7) Approximate GCD Problem
is to determine p given a polynomial number of samples from D, ,(p). The Approximate
GCD assumption, is that the Approximate GCD Problem is computationally infeasible

[23].

The Decisional Approximate GCD Problem

Let D., ,(p) be the same distribution as defined in the Approximate GCD Problem. Say we
are given polynomially many samples from D, ,(p). Then, if we are given a random integer
j € [0,n] and an integer z = x+b-|27-p/2"+1] | where z is sampled from D, ,(p), the (p, n, v)-
Decisional Approximate GCD Problem is to determine the value of b, where b € {0,1}.
The Decisional Approximate GCD assumption, is that the Decisional Approximate GCD
Problem is computationally infeasible [6].

The Error-free Approximate GCD Problem

Let D)(p,q) = { choose ¢ € Z from [0,q), and r € Z from (—2°,2?), and output
x = pq + r} be a probability distribution for some variables p € Z, and ¢y € Z. The
(p,m,v)-Error-free Approximate GCD Problem is: For a random prime integer p whose
bit-length is 7, if we are given g = qo - p where ¢ is a random square-free 2*-rough inte-
ger in [0,27/p), and polynomially many samples from D/ (p, qo), we need to determine p.
The Error-free Approximate GCD assumption, is that the Error-free Approximate GCD
Problem is computationally infeasible [5].
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Chapter 3

Fully Homomorphic Encryption

This chapter gives an overview of what it means for an encryption scheme to be fully
homomorphic.

We will use the definitions related to homomorphic encryption from van Dijk, Gentry,
Halevi, and Vaikuntanathan [23], and originally stated by Gentry [9], [3]. For all these
definitions, we will deal with boolean circuits that have gates that compute addition and
multiplication mod 2. More explicitly, this means that a circuit C' takes in a number of
inputs (mq, ma, ...,m;) € Z5, and then performs a number of addition and multiplication
operations on these inputs, and outputs the resulting number in Z,. We will denote the
security parameter by .

3.1 Basic Properties

For a homomorphic public key cryptosystem &, there are four primary functions. As in
other public key cryptosystems, there is a key generation function, an encryption func-
tion and a decryption function. However, in homomorphic encryption systems, there is
another function Fwaluate that takes a public key, a circuit, and a set of ciphertexts
c = (c1,¢a,...,¢), where t is the number of inputs for the circuit, and outputs the circuit
applied to the set of ciphertexts.

Definition 3.1.1. (Correct Homomorphic Decryption). We say that an encryption
scheme €& = (KeyGen, Encrypt, Decrypt, Evaluate) is correct, for some given circuit C' with
t inputs, if for any pair of secret and public keys (sk, pk) that are output by KeyGen(\), and
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any t plaintext bits my, ..., m; and ciphertexts ¢ = (¢y, . .., ¢;) such that ¢; = Encrypt(pk, m;),
we get that Decrypt(sk, Evaluate(pk, C, ¢)) = C(mq,...,my).

In other words, a correct homomorphic encryption scheme for a circuit C' allows us to
perform the addition and multiplication operations of C' on a set of encrypted data, and
not have to decrypt first in order to get a legitimate ciphertext. This ability would allow
someone to perform the operation described by C' on a set of data without knowing what
the data is.

Definition 3.1.2. (Homomorphic Encryption). We say that an encryption scheme
& = (KeyGen, Encrypt, Decrypt, Evaluate) is homomorphic for a class of circuits C if it
is correct for all circuits C' € C. We say that & is fully homomorphic if it is correct for all
boolean circuits.

We can create a simple encryption scheme that is fully homomorphic very easily based
on any encryption scheme. If the ciphertext that is output by the Evaluate function
contains all of the original ciphertexts, and a complete description of the circuit that is being
evaluated, we can make the Decrypt function simply decrypt the original ciphertexts first
and then pass these plaintext bits through the circuit. However, we want our encryption
scheme to not reveal any information about the circuit that is being evaluated, so this
solution becomes impractical.

We say that an encryption scheme maintains circuit-privacy if no information about
the circuit is revealed by the Evaluate function except for the output value of the circuit
given a set of input ciphertexts. This property must hold even if the secret key is known.
To achieve this, it is sufficient for a fully homomorphic scheme to have the compactness
property, that is, the size of the ciphertext output by Evaluate does not depend on the
input circuit.

Definition 3.1.3. (Compact Homomorphic Encryption). We say that a homomor-
phic encryption scheme £ = (KeyGen, Encrypt, Decrypt, Evaluate) is compact if there is
a fixed polynomial bound b(\) such that for any secret key and private key pair (sk, pk)
output by KeyGen(\), any circuit C' and any set of input ciphertexts ¢ = (¢, ¢o,...,¢)
generated using the public key pk, the bit length of Evaluate(pk, C, c) is less than or equal
to b(N).

The difficulty with creating a homomorphic encryption scheme that is correct is that
when we encrypt data, we have to scramble the original data in some way. To do this

we must apply some noise to the original data. Our decryption scheme can handle the
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noise that is introduced when we encrypt the data, but as we add and multiply ciphertexts
together, the noise terms are also added and multiplied. As such, the resulting ciphertexts
have larger noise than the ciphertexts created by directly encrypting a given plaintext.
Eventually, the noise will become too much for the decryption function to handle, and this
can cause the decryption function to decrypt ciphertexts incorrectly.

3.2 Leveled Homomorphic Decryption

Even if we are unable to create a fully homomorphic scheme, we might be able to create
something called a leveled fully homomorphic encryption scheme.

Definition 3.2.1. (Leveled Fully Homomorphic Encryption). We say that a set of
encryption schemes {£@ : d € Z} is a set of leveled fully homomorphic encryption schemes
if (i) they all use the same Decrypt function; (ii) £ is homomorphic for all circuits of
depth d or less; (iii) the computational complexity of the functions in £ is polynomial in
A, and d; and (iv) Evaluate has polynomial computational complexity with respect to the
evaluated circuit C.

A leveled fully homomorphic encryption scheme allows us to perform a certain number
of operations on input ciphertexts without making the noise in the resulting ciphertext
too large so that decryption fails. As long as we can create leveled fully homomorphic
encryption schemes that are homomorphic for circuits of arbitrary depth, we can apply
any function to encrypted data and still get a meaningful result. Thus, if we know what
operations we want applied to data beforehand, we can encrypt the data with a leveled
fully homomorphic encryption scheme that can handle large enough circuits, and then pass
the data off to be operated on in encrypted form. The BGV encryption scheme [2] is such
a scheme, and will be discussed further in Chapter 4.

3.3 Bootstrapping

Bootstrapping is a process that can be applied to a ciphertext to reduce the noise in the
ciphertext. Since every addition and multiplication increases the noise in the ciphertext, we
need a way to shrink the noise back to a size that is more manageable. We know that if we
decrypt the ciphertext, and then re-encrypt it, the noise introduced is back to the original
size, and as such, we can do this whenever the noise starts to get too large. However, we
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want the entity that is evaluating the circuit to have this ability to shrink the noise. To
do this, we need to be able to evaluate the decryption circuit homomorphically. To get
anything useful though, we need to have an encryption scheme that can evaluate a little
deeper than its own decryption scheme so that we can evaluate addition and multiplication
operations after we decrypt the ciphertexts homomorphically.

Definition 3.3.1. (Augmented Decryption Circuits). Let £ be an encryption scheme
&€ = (KeyGen, Encrypt, Decrypt, Evaluate), where the running time of Decrypt depends
only on the security parameter A. For a given A, let Dg(A) be the set of augmented
decryption circuits. This set consists of two circuits that take as input two secret keys and
two corresponding ciphertexts. The first circuit decrypts the two ciphertexts, and then
outputs the sum of the resulting plaintexts mod 2. The second circuit decrypts the two
ciphertexts, and then outputs the product of the resulting plaintexts mod 2.

Definition 3.3.2. (Bootstrappable Encryption). Given a homomorphic encryption
scheme £ = (KeyGen, Encrypt, Decrypt, Evaluate) and a security parameter \, let Cg(\)
be the set of circuits for which £ is correct. &€ is said to be bootstrappable if Dg(X) C Ce(N)
for all \.

Definition 3.3.2 says that if we can decrypt the ciphertexts homomorphically, and can
then apply an addition or multiplication operation on the plaintexts, then the scheme
is bootstrappable. If we have a bootstrappable scheme, we can compute any circuit ho-
momorphically. All we would need to do is replace any addition gates in the circuit by
the augmented addition circuit, and similarly replace all multiplication gates by the aug-
mented multiplication circuit. Then, after every addition or multiplication, we would have
a refreshed ciphertext and the noise would be shrunk back to its original level.

For instance, say we want to take two encrypted plaintexts m; and msy and apply
some binary operation ® to them (where ® is either addition or multiplication). Let
¢; = Encrypt(pky, my) with corresponding secret key sk; and ¢y = Encrypt(pks, ma) with
corresponding secret key sky. Let sk; = Encrypt(pks, sk1), &1 = Encrypt(pks, c1), sky =
Encrypt(pks, sko), and & = Encrypt(pks, c2) with corresponding secret key sks. Also, let
Dy be the augmented decryption circuit that decrypts two ciphertexts and performs the

operation ® on them, and say the encryption scheme is correct for this circuit. Then if we
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set c3 to be Evaluate(pks, Dy, (sky, C1, ske, G3)) we get

cs = BEvaluate(pks, Dy, (sk1,c1, sk, G))
= Dg(Encrypt(pks, sky), Encrypt(pks, ¢1), Encrypt(pks, ska), Encrypt(pks, ska))
= Encrypt(pks, Do (sk1, c1, sk, 2))
Encrypt(pks, Decrypt(ski, ¢1) ® Decrypt(sks, cs))
Encrypt(pks, m; ® mg).

This gives us that Decrypt(sks, c3) = my ® mg, which is what we wanted. We get that
Dg (Encrypt(pks, sk1),Encrypt(pks, ¢1),Encrypt(pks, sko),Encrypt(pks, ske)) = Encrypt(pks,
Dg (sk1, c1, ska, ¢2)) because the Evaluate function is able to homomorphically evaluate the
circuit Dg. Also, in this process we can see that the original ciphertexts were decrypted
homomorphically, which removes the original noise applied to the plaintexts so that the
noise doesn’t become too high.

To perform these operations, we have to give the party evaluating the circuits some
information, namely the sk’s. Since each sk is encrypted with the same encryption function
that is being used in the rest of the scheme, we can assume that this does not give away
any information about the secret key, otherwise we would have the problem of a lack
of semantic security with the encryption scheme even encrypting ordinary messages, as
information would be able to be gathered about any encrypted message. However, using
the same public key to encrypt multiple times in a row may not guarantee semantic security.

One problem that is encountered with trying to create a bootstrappable encryption
scheme is that sometimes the decryption circuit is too large to evaluate it homomorphically.
In this case, we can squash the decryption circuit. This means that we can preprocess the
ciphertext, and partially decrypt it before trying to evaluate anything homomorphically.
By adding some extra information into the ciphertext, we can decrease the number of
steps needed for decryption, and hence get a decryption circuit small enough to evaluate
homomorphically.

Also, if we have a bootstrappable scheme, we can create a leveled fully homomorphic
encryption scheme as mentioned in the following theorem. However, the requirement of
bootstrappability is not necessary to get a leveled fully homomorphic encryption scheme.
The BGV Encryption scheme [2] for instance is a scheme that is leveled fully homomor-
phic, but does not require the scheme to be bootstrappable to get this result. This isn’t
to say however that this scheme is fully homomorphic, just that it doesn’t require the
bootstrappable property to be leveled fully homomorphic.
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Theorem 3.3.1 ([23]). Given an encryption scheme £ that is bootstrappable, and a param-
eter d dependent on the security parameter, there is an efficient and explicit transformation
that outputs a leveled fully homomorphic encryption scheme 9 that is compact and has
the same Decrypt function as €. Also, if £ is semantically secure, then so is £@. It is
also true that for any attack that has advantage € against £@, this attack can be changed

into an attack on € with similar complexity, that has advantage at least €/(ld), where | is
the length of the secret key in &.
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Chapter 4

Lattice Based Fully Homomorphic
Encryption

This chapter focuses on the fully homomorphic encryption scheme by Brakerski, Gentry,
and Vaikuntanathan. It details the encryption scheme, provides concrete parameter choices
to make basic decryption work, corrects some errors in the assumptions about the noise,
and provides concrete security parameters based on experimental data from Lindner and
Peikert.

4.1 The BGV Encryption Scheme

The BGV (Brakerski, Gentry, Vaikuntanathan) encryption scheme is a lattice based en-
cryption scheme that relies on the assumption that the Learning with Errors Problem is
computationally infeasible. This is a leveled fully homomorphic scheme, which means that
it can evaluate all circuits homomorphically up to a predefined depth. It also doesn’t
require bootstrappability to achieve this property.

4.1.1 The Basic Encryption Scheme
The basic BGV encryption scheme describes the functions used in the encryption scheme

that do not deal with any of the homomorphic properties. It outlines how to generate
secret and public keys, and how to encrypt and decrypt.
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Setup(\ € Z,u € Z,b € {0,1}):

The following encryption scheme is due to Brakerski, Gentry, and Vaikuntanathan in their
paper “Fully Homomorphic Encryption without Bootstrapping” [2]. We use similar nota-
tion as that paper, with influences from Gentry, Halevi, and Smart[!1].

To set up the basic encryption scheme, we first need to determine whether we are
working with the Learning with Errors (LWE) based scheme, or the Ring Learning with
Errors (RLWE) based scheme. Let n + 1 be the dimension of the secret key. In the first
case when b = 0, we set the d = 1, and as such define R to be R = Z[x]/(z? + 1) = Z. In
the second case when b = 1, we set n = 1. The cases where neither d nor n are 1 may not
have been studied by anyone [2] and as such there are no statements about the hardness
of these problems, so we will not cover these cases.

We choose our values for n € Z and d € Z depending on whether we are using the LWE
or RLWE instance as above and so that the scheme achieves a 2* security level against
current attacks, and then set N = [(2n + 1)log,(q)]; here ¢ is an odd integer with bit
length ;1. We also set x to be some probability distribution over R,. We typically use
a discrete Gaussian-like distribution over R, centred about 0 (e.g. each coeflicient of r
sampled from x is sampled from a Guassian distribution over Z, centred at 0). That is, we
will assign a probability proportional to e~"II"ll/ o* to each r € R,, where ¢? is the variance
of the distribution y.

For each of the following functions, we will use these parameters, which we will denote
as params = (q,d,n, N, x).

SecretKeyGen(q € Z,d € Z,n € Z, x a distibution over R,):
Sample s’ € R from x", and then set the secret key to be sk =s = (1,8/[1],...,8'[n])" €
R

q
PublicKeyGen(q € Z,d € Z,n € Z,N € Z,x a distibution over Ry, sk = (1,8') €
RnJrl):

q

Generate A’ uniformly from R)*", and generate e € R from xV, and let b = A’s'+2e €
Ry. Let the public key be pk = A= [ b ‘ —A } € Ré\’x("ﬂ)'

27



Encrypt(q € Z,d€ Z,n € Z,N € Z,pk = A € Révx(nﬂ),m € Ry):

To encrypt a message m, set m = (m,0,...,0)" € R!*!, sample r from R}, and output
the ciphertext ¢ = m 4+ A'r € R

Decrypt(sk =s € Rj™',c € RI*M):
Output the original message m = [c - s]y € Ry.

Correctness of the decryption procedure is established in Section 4.2.

4.1.2 Some Other Necessary Functions

The following functions will be used in the fully homomorphic version of the BGV encryp-
tion scheme.

BitDecomp(x € R}, q € Z):

This function changes x into a binary representation of itself. Let ¢ be an odd integer.

[logs q]

Write x as Z 2Fu;, where vy, € Ry, and output u = (ul,u?’,... Woe o) € Rryflos241.
k=0

Powersof2(x € R}, q € Z):

This function outputs a vector that contains a number of the inputted vectors multiplied
by various powers of 2, and in some sense is the reverse of the BitDecomp function. In
fact, BitDecomp(c, q) - Powersof2(s, q) = ¢ -s (mod ¢). Let ¢ be an odd integer.

Output u = (x7,2x7, ... 2lee2alxTT ¢ Rgﬂogz al

SwitchKeyGen(s, € R;',sy = (1,83) € Ry?,q € Z,d € Z,ny € Z,ny € Z,Xx a
distibution over R,):

This function creates a matrix that is used to change a ciphertext encrypted under s; to
be encrypted under ss.
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Let N = nq[logy(q)], u = Powersof2(s;) € Rév, and set A = PublicKeyGen(q, d, ny, N, X, S2)
€ RéVX"Q. Output the key switching matrix 75, 5, = [ u-+ A ‘ Ag ‘ ‘ Ayt } € Rf]VX”Q.

SwitchKey (7, s, € Ry" *2@™ ¢, € RM ¢ € 7):

This function uses the key switching matrix 75, 5, to change the vector ¢; from being en-
crypted under s; to being encrypted under s,.

Since BitDecomp(cy, ) is in R;” ﬂog?(qﬂ, we can interpret this vector as a vector in Ry [og>(4)]
where all of the entries are polynomials with 0 or 1 coefficients. Thus, we can multiply this
vector by 7y, s,. Output the new ciphertext ¢, = (BitDecomp(cy, q)” - 75,,)" € R that
is encrypted under ss.

Scale(c € R",q € Z,p € Z,r € 7):

This function changes the moduli that a ciphertext c is being represented with from ¢ to
p.

For an R-vector ¢, and integers ¢ > p > r, we output ¢’ such that ¢’ is the closest R-
vector to (p/q)c satisfying ¢’ = ¢ (mod r).

4.1.3 The Leveled Fully Homomorphic Encryption Scheme with-
out Bootstrapping

This section describes the functions in the leveled fully homomorphic encryption scheme.
As in the standard scheme, it details how to create the public and secret keys. However,
since a different key is required for each level, the FHEKeyGen function computes a secret
and public key for however many levels are specified. Encrypt and Decrypt are described
here as before. There are also the functions FHEAdd and FHEMult which describe how
to add and multiply encrypted messages, which is the added benefit of having a fully
homomorphic encryption scheme.
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FHESetup(\ € Z,L € Z,b € {0,1}):

To set up the basic encryption scheme, we first need to determine whether we are working
with the Learning with Errors based scheme, or the Ring Learning with Errors based
scheme. In the first case when b = 0, we set the d = 1, and as such define R to be
R =Z[z]/(x% 4+ 1) = Z. In the second case when b = 1, we set n = 1.

For the fully homomorphic version of this encryption scheme, we will construct a number
of levels L that we can encrypt with. For each level, this provides us with the ability to
perform one addition or multiplication.

Let p € Z be the length of the smallest moduli to achieve the necessary security
level. For j € {0,...,L}, run Setup(X, (j + 1)u, b), to get the parameters params; =
(gj,dj,nj, Nj, x;). This creates a ladder of decreasing moduli from ¢y, that is (L + 1) bits
long to qo that is p bits long. However, for all j, we can let d; = d, and x; = x, as these
parameters do not depend on the circuit level.

FHEKeyGen:

For j from L to 0 do the following.

Set s; =SecretKeyGen(g;, d, nj, Nj, x) € joH, and A; = PublicKeyGen(g;,d,n;, Nj, x,s;) €

) -~ n;+2 n;+2 lo y
Ré\:]x( 7 Let s, = Z(sj) € jo]Q ), and let s7 = BitDecomp(s}, q;) € Rg 2! sala)l,

When j # L, let the key switching matrix be TS s = SwitchKeyGen(s’, ,s;,q;) €

("33 7%) Noga (g5+1)1 Moga (g;)] % (m+1)
q; :

We set the secret key sk to be the set of all s;, and the public key pk to be the set of
all A; and the set of all T s

FHEEncrypt(pk, m € Rs):

For a message m, output the ciphertext ¢ = Encrypt(qr,d,nr, Np, x, AL, m) € RZLLL“.

FHEDecrypt(sk,c € Ry’"):

If ¢ is encrypted under s; for some s; € Ry’ "1 in the secret key sk, output the message
m = Decrypt(s;, ¢) € Rs.
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njt2 ERARIE 1o i n;_1+1
FHERefresh(c c R(ngQ )’ngl7sj_1 c RtngQ )( 82(q;)1Mloga(g;-1)1x (nj—1+ )7Qj c Z,q]‘—l c Z):
' . ' ' (nj+2) (n]-+2)
This function takes in a ciphertext ¢ € Ry, * 7 encrypted under s} € Ry, *
ERRTIT ;
Let w; = Powersof2(c,q;) € jojQ ) gQ(qm, and let wy = Scale(wy,q;,qj-1,2) €
n;+2 1 . s
jo E )[ng(q’ﬂ. Then output wz = SWitChKey(Ts;!’S]._l,Wg,(]j_l) € qu__fﬂ, which is a
nj,1+1

ciphertext encrypted under s;_; € R,/ with modulus ¢;_;.

FHEAdd(pk,c, € Ry’ co € Ry ™):

This function requires that ¢; and cy are encrypted under the same secret key s; € Rffj I

they are not, we can apply the FHERefresh step to the ciphertext encrypted with the larger
modulus. Say c; € R;‘j“ is encrypted under s; € RZ;“, and ¢y € RZ:“ is encrypted under

n;+2
Sk € R;‘:“, where ¢ > k, then we can append zeros to the end of ¢; to get ¢ € Rgi 2 ),
n;+2
so that ¢ is the same length as s, € R,Si : ), and as such c; -s; = ¢} -s,. We then use

FHERefresh on ¢ (i.e. FHERefresh(c|, 7575, ,, ¢, ¢i-1)) to get a ciphertext encrypted

n;_1+1 . . .
under s; 1 € R;/'"", and we can continue this process until ¢; and ¢, are encrypted under

the same s;.

Let c¢3 = ¢; 4¢3 (mod ¢;), and then append zeros to the end of ¢z until it has the same
n]-+2 nj+2
length as s’ € jo 2 ) to get ¢ € R(g]. 2 ) We can interpret ¢z as a ciphertext under s’.

Then output ¢, = FHERefresh(c}, 7rs, 1,05, 5-1) € RZ;:;H

FHEMult(pk,c, € Ry ¢, € R H):

This function requires that ¢; and ¢, are encrypted under the same secret key s; € Rf}j I

they are not, we can apply the FHERefresh step to the ciphertext encrypted with the larger
modulus. Say ¢; € Rpit!is encrypted under s; € R*', and ¢, € RI**! is encrypted under

n;+2
s, € Rprt!, where ¢ > k, then we can append zeros to the end of ¢; to get ¢ € Rgi : ),
n;+2
so that ¢ is the same length as s, € R(gi : ), and as such c; -s; = ¢} -s,. We then use

FHERefresh on ¢} (i.e. FHERefresh(c|, 7575, ,, ¢, ¢i-1)) to get a ciphertext encrypted

1+1 . . :
under s;_; € Ry~ ", and we can continue this process until ¢; and c, are encrypted under

the same s;.
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nj+2
Let c3 € jo ) be the coeflicient vector of L, ¢,(2(x)), such that the entries of c3 are

nj+2
ordered in the same way as the entries of S; € jo 2 ) We can interpret c3 as a ciphertext

under s. Then output ¢, = FHERefresh(cs, Tsl ;10 Qi ¢j—1) € RZ;:IIH.

4.2 Correctness of the Encryption Scheme

This section gives a proof that encryption and decryption work properly. It also provides
a bound on the error terms that are required for proper decryption.

To check that the encryption scheme works, we need to check that m = [(c,s)]s. We
have:

c-s = (m+A'r)-s
= m's+r’4s
1 1
= (m 0 0) 5[1] +r’ [ b|-4"] [1]
s'[n] s'[n]

Since all of our operations are being computed over Z,, where we take values in the
range (—q/2,q/2], to ensure that m + 2r’e will have the same parity as m, we can impose
the restriction that |m+ 2r'e|| < ¢/2. Let B, be the bound on the magnitude of elements
sampled from x, i.e. B, = sup{||al| : a is sampled from x}. We have:

lc-sl| = [Im+2r"e]
< m+2|r-e|
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m+ 2vg ZH 11lleli]|| (by Cauchy-Schwarz)
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J

Il
=)

QL

-1

> (1)lle[d]|| (since r € RY)
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i=1
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m + QVRVENBX
m +2VdVdN B,

IA A

Since we want ||c-s|| to be bounded by /2, we achieve this result when m-+2vpVdN B, <
q/2. Since N = [(2n + 1) log,(q)], we get that B, < (¢/2 —1)/(2d[(2n + 1)log,(q)]).

Notice that since ||e[i]|| < B, for alli € {1,..., N}, if d = 1 as with the standard-LWE
version of this cryptosystem, then we need

°c {_ {2[(27561121)_1018);2(61” bf(%iqfl)_lolg)z(QﬂJ }N

in order to have decryption work properly.

However, in the general-LWE instance, where we do not have the restriction that d = 1,
d—1

Z|e[i] i|* < B,. This inequality holds
=0

if dle[i];|* < B2 for all j € {0,...,d — 1}, so if we impose the restriction that |e[i];]| <
then certainly ||e[ || < By. Thus for decryption to work in the general-LWE instance, We
need

we see that |le[i]|| < B, for alli e {1,..., N}, so

ec{ag+ar+--+agx2a; €S Vie{0,...,d—1}}".

s={-|ammron s vemn] - o s vl
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4.3 Modulus Switching and Noise Management

In the paper describing the BGV encryption scheme [2], the authors used a couple of
lemmas for modulus switching. The following proofs correct the lemmas used, and adjust
the statements of those lemmas. These lemmas are used to show that after performing a
modulus switching operation, the noise |[c - s],| in the ciphertext ¢ under the secret key s
is less than ¢/2, which preserves the ability for decryption to work properly.

The following lemma is a strengthening of Lemma 1 from the paper describing the
BGYV encryption scheme. This lemma deals with the instances when the ring that we are
using is just the integers. It removes the restriction that |[c - s],| must be strictly less than
q/2 — (q/p) - ||s||1- This lets a greater range of noise to be allowed, while still preserving
the correctness of decryption.

Lemma 4.3.1. Let p and q be odd moduli, and let ¢ and s be length-n vectors with integer
entries. Let ¢ be the integer vector closest to (p/q) - ¢ such that ¢ = ¢ mod 2. Then for
any s such that |[c- sl,| < q/2 — (q/p) - ||s|l1, we get that

(¢ s8], =[c 8], mod 2 and |[¢ - s, < S e slgl + 1] s

Proof. We know that [c - s], = ¢ -s — kq for some k € Z by definition. Let e =c’-s — kp,
for the same value of k. Notice that

e = ¢ -s—kpmod 2
= c¢-s—kqmod 2 (since ¢ = c mod 2 and p = ¢ mod 2 )

= |[c-s], mod 2.

Thus, to show that [¢’ - s], = [c - s], mod 2, we only need to show that e = [¢’ - s],. But
since e = ¢’ -s — kp, and [¢’ - s], = ¢ - s — mp for some m € Z such that |[c’ - s],| < p/2,
we just need to show that |e| < p/2.

First notice that |c'[j] — (p/q)c[j]] < 1 for all j € {1,...,n}. This is because ¢’ is the
closest integer vector to (p/q)c such that ¢/ = ¢ mod 2, so |c'[j] — (p/q)clj]| < 1. However,
Ic'[j] = (p/q)clj]| # 1, because otherwise (p/q)c[j] € Z. Since p and ¢ are both odd, this
would mean that (p/q)c[j] must have the same parity as c[j], so (p/q)c[j] = c[j] mod 2.
Thus, c'[j] = (p/q)clj], and |c'[j] — (p/q)clj]| = 0. This also shows that ¢’ is well defined.
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Finally,

IN

|’ s — kp|
c'-s—kp+§[c.s]q—§[c sl
Jlerslot e s = (kg [c-s])
g[c S]q+c'~s—§c s

g[c S]q+(c'—§c) s

e slol+ <c:—§c> s

e slol+ jzz;(c’m - gcm)sm‘
o+l + 3 |l - Zelisl

D
“lle-slgl + Y 1(V)]Islj]]
q —

J
P |[c - 8]y + [Is]l1 (giving the second desired result)
q
plq 4 .
P(a_4a. b ¢
(4= sl ) + Il (b assumption
p
5

]

The next lemma is a strengthening of Lemma 4 from the paper describing the BGV
encryption scheme in the case where we are working mod 2. This lemma expands upon
Lemma 4.3.1 to the case where the ring we are using is a polynomial ring over the integers.
It removes the restriction that ||[c-s],|| must be strictly less than ¢/2—(q/p)-Vd-vr-||s|l1.z-
This lets a greater range of noise to be allowed, while still preserving the correctness of

decryption.
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Lemma 4.3.2. Let d be the degree of the ring R, and let ¢ > p > 2 be positive integers
such that ¢ = p = 1 mod 2. Let ¢ € R" and let ¢ = Scale(c,q,p,2), the closest vector
to (p/q)c with entries in R such that ¢ = ¢ mod 2. Then for all s € R"™ such that
Ife- sloll < a/2 = (a/p) - Vd- g - ||8]l1.r, we get that

(- 8]y = [c- 8]y, mod 2 and [|[¢- ], || < g lle- slall + Vd-vr - ||sll,-

Proof. We know that [c - s], = ¢ -s — kq for some k € R by definition. Let e = ¢’ -s — kp,
for the same value of k. Notice that

e = c-s—kpmod 2
= c-s—kqmod 2 (since ¢’ = ¢ mod 2 and p = ¢ mod 2)

= [c-s], mod 2.

Thus, to show that [¢’ - s], = [c - s], mod 2, we just need to show that e = [¢’ - s],. But
since e = ¢’-s — kp, and [¢’ - s], = ¢’ - s — mp for some m € R such that each coefficient of
[c’ - 8], is less than p/2, we just need to show that |le|]| < p/2. This is because if |le|| < p/2,
then all of the coefficients of e must be less than p/2, since the Euclidean norm of a vector
is always greater than the largest coefficient of that vector.

First notice that |c'[j]x — (p/q)c[j]x| < 1 for all j € {1,...,n}, and all k € {0,...,d —
1}. This is because ¢’ is the closest integer vector to (p/q)c such that ¢/ = ¢ mod 2,

so |l — (p/a)elil] < (2/2) = 1. However, |c'[j]x — (p/q)c[jlx|] # 1, because c/[jl,
c[jlk, p, and ¢ are all integers, so this would mean that (p/q)c[j]x € Z. Since p and ¢
are both odd, this would mean that (p/q)c[j]r must have the same parity as c[jg, so

(p/a)eljli = cljli mod 2. Thus, ¢/[jlx = (p/q)cljlk, and |¢'[j]x — (p/g)eljlk| = 0. This also
shows that ¢’ is well defined. Finally,
lell = l[c"-s— kpl|

[c-s],

c’-s—kp—irg[c-s]q—]—?
q q
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The next lemma is a restatement of Lemma 4 from the paper describing the BGV
encryption scheme in the case where we are working mod r, where r # 2. The original
proof purported to show that

P T
lfe™ shpll < -llfe-slall + 5 - V- - [lslln

given the same set of assumptions. However, this is not true, as will be shown after the
proof of the corrected statement.

Since this statement is not true, it cannot be guaranteed that the noise ||[c’-s],|| satisfies
Ile” - shll < B,

where B = £ - |[c - s]y[| + 5 - Vd - yg - ||s||.r. Since decryption only works when the noise
is strictly less than p/2, and adding and multiplying ciphertexts increases the noise of the
resulting ciphertexts, fewer operations can be done to ensure proper decryption. Since the
basic encryption scheme works with a decreasing ladder of moduli congruent to 1 mod
2, this lemma does not affect this scheme. However, the batching optimization that is
mentioned by Brakerski et al. [2] is dependent on this lemma.

Lemma 4.3.3. Let d be the degree of the ring R, and let ¢ > p > r be positive integers
such that ¢ = p = 1 mod r. Let ¢ € R™ and let ¢ = Scale(e,q,p,r), a closest vector
to (p/q)c with entries in R such that ¢ = ¢ mod r. Then for all s € R"™ such that

e~ slgll < a/2 = (a/p) - (+/2) - Vd g - ||sll.r, we get that

D r
[ slp = [e- sl mod v and [[["- slyl| < - le- sloll + 5 - V- g - |[s]h.x.

Proof. We know that [c-s], = ¢ -s — kq for some k € R by definition. Let e = ¢’ -s — kp,
for the same value of k. Notice that

e = c-s—kpmodr
= c¢-s—kqmod r (since ¢ = ¢ mod r and p = ¢ mod r)

= [c-s], mod r.

Thus, to show that [¢’ - s], = [c - s], mod r, we just need to show that e = [c¢’ - s],. But
since e = ¢’ - s — kp, and [c - s], = ¢’ - s — mp for some m € R such that each coefficient of
[c’ - s], is less than p/2, we just need to show that |le|| < p/2. This is because if ||e|| < p/2,
then all of the coefficients of e must be less than p/2, since the Euclidean norm of a vector
is always greater than the largest coefficient of that vector.
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First notice that |c’ [ k—(p/q)clilk] < (r/2) forallj € {1,...,n},andallk € {0,...,d—
1}. This is because ¢’ is the closest integer vector to (p/q)c such that ¢’ = ¢ mod r, so

'k = (p/@)elilkl < (r/2).

As shown in the proof of Lemma 4.3.2,

&
._\

lefl <= ||[C sl +'7RZ Jlk = SC[j]k)Z’ s[5

Thus, we get the following inequalities.

lell < gu[c Hwz\Z<c'mk—gcwusmu

n d—1
p "N el
< Plle-slll+am Y| (5) lstill
q j=1 \ k=0
p I\
= Zllfe-slal + - Va5 Il
j=1
= g l[c - 8]yl + vr - Vd- g Isll; z (giving the second desired result)
D q r
— — C-S +—"YR'\/C_Z'—S >
2 (1t syl + £ " sl
< P (g) (by assumption)
q \2
_ P
5

[]

The above proof shows that the reworded lemma is true; however, it remains to be
shown that the original statement is in fact false. The original statement of this lemma
said that ||[c’ - s],|| < (/q) - |l[c- syl + (/2) - Vd - & - ||s]|1.r- However, in some cases, the
adjusted inequality ||[¢’ s, < (p/q) - ||[c-sly]l + (/2) - Vd-7r - [|s]l1,z holds with equality.
For instance, if welet d =1, ¢ =10, p=7,r=3,n =1, c = 15, and s = 2 we get that
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vg = 1 and

5 10 10 3 g g T
Ifc - s]qll = 113010/l = 0 < ;Z?—75'\/1'1'H2||1,R=§—];‘§'\/E’VR' Is]l1,r

which satisfies the assumption in the lemma.

Since ¢’ is the closest integer to (p/q)c = 10.5 such that ¢’ = ¢ (mod r), either ¢’ = 12
or ¢’ = 9 satisfies this. This also means that the function Scale(c, ¢, p, r) is not well defined
over all values of r. Despite this, if we pick ¢/ = 12, then we get that

7 3 P r
le - slpll = l24]7] =3 = =(0) + 5 - VI-1-2=~|[[c s8]y + 5 - Vd- - - [Is]1z
10 2 q 2
The equation [|[¢" - s],[| = E[[[c - s]q[| + 5 - Vd g - ||s||1.z also holds if we pick ¢/ = 9. Since

this statement is true with equality, the original statement of the lemma is false.

4.4 Security Parameters for the Fully Homomorphic
Encryption Scheme

This section provides a table that gives concrete parameters that can be used to satisfy
a number of different security levels for the BGV encryption scheme. It is based on an
analysis of the runtime of the BKZ lattice reduction algorithm, as well as information on
the optimal lattice dimension needed to get a reduced basis in this algorithm, and hence
break the BGV encryption scheme.

The BGV encryption scheme makes use of the Learning with Errors assumption when
generating the public key. Recall that the public key A is a R(]]V “ ) matrix of the form
pk = A = [ b ‘ —A } where b = A’s’+2e € Ry, A’ is generated uniformly from Rév xn.
and e € Rév is generated from Y.

We can see that trying to determine the unknown part s’ of the secret key is equivalent
to the Search Learning with Errors Problem. We are trying to determine s’ € Ry given
the set of pairs (((A’)");, bli]) € R} x Ry, where ((A")"); is sampled uniformly from R, e;
is sampled from y, and b[i| = ((A")T);-s' +¢; fori=1,...,N.

This, however, is just an instance of the Closest Vector Problem. We can think of the

n
columns of A" as a set of vectors in a lattice. Then A’'s’ = Z A’ - 8'[j] is just an integer
j=1
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combination of the columns of A’, and is therefore a point in the lattice generated by the
columns of A’. We can write this lattice as

A(A") ={z € R) : 3§’ € R such that z = A’s'}.

Thus, if we can find which lattice point is closest to b, and hence solve the Closest Vector
Problem, we can determine the value of A’s’. Since we are given the value of A" in the
public key, we can then use simple row reduction to determine the entries in s’.

However, in order to solve the Closest Vector Problem using the best method known,
we need to reduce the basis of the lattice, and then use this reduced basis to determine the
closest vector point in the lattice. If the reduced basis is short enough, we can determine
the closest vector.

Lindner and Peikert [16] use the BKZ algorithm to compute a reduced basis. The BKZ
algorithm includes a blocksize parameter k that ranges from 2 to the dimension of the
lattice that is to be reduced. By increasing this parameter, the quality of the reduced basis
increases, but the time the algorithm takes to compute a basis becomes much greater. In
fact, when k > 30, this algorithm becomes practically infeasible.

Gama and Nguyen [7] observed that the most relevant parameter that determines the
quality of a reduced basis, as well as the time taken to run the basis reduction algorithm
is the Hermite factor. For an m-dimensional lattice A with basis B = {by,...,b,,}, where
the basis vectors are ordered in increasing length, the Hermite factor of A is

det(A)1/m

We will say that o, the mth root of 0™, is the root-Hermite factor.

Since we are trying to determine s’ given b = A's’ + 2e € R}, where A’ € Rév *n - and
N > n, the extra rows of A’ give us redundant information to solve the problem. Since we
can ignore some of the rows of A’, we can just use the amount of information that gives us
the most effective lattice attack, and thus the best ability to attack the scheme. It turns
out that for any desired root-Hermite factor 9, the best subdimension is

Nopr = \/nlogy(q)/ log,(0)

for attacking the LWE Problem. If the subdimension N happens to be less than the
optimum value, then we can just use the original subdimension in our attack. This doesn’t

affect the analysis of the security levels though as we are finding a lower bound on the time
needed to solve the LWE Problem.
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Lindner and Peikert used this optimal value of N in experiments to compute a lower
bound on the computational time needed to solve the LWE Problem over random g-ary
lattices. They also used the result by Gama and Nguyen [7] that on random lattices of large
dimensions (above 200), the run-time of the BKZ algorithm required to get a particular §
is primarily dependent on 4 alone, as the dimension of the lattice and its determinant only
contribute second order terms. In these experiments, they used a single 2.3 GHz AMD
Opteron machine, and used the single-precision floating-point BKZ implementation from
the Number Theory Library (NTL) 5.5.2 for C++ [10]. Any attack on an LWE instance
that could be used in practice would have to have a higher precision, which would increase
the running time of the algorithm, so this analysis is once again an underestimate of the
actual time needed to solve the LWE Problem.

Let Tgxz(d) be the time required to run the BKZ algorithm for a given §. Using a
least-squares regression, Lindner and Peikert found that log,(Tsxz(d)) = 1.806/ log,(d) —
91. They then adjusted this equation to deal with improvements to the basis reduction
techniques to get that log,(Trxz(9)) = 1.8/logy(d) — 110 [16].

However, we can generalize this equation to take into account any computer being
used, by expressing this equation as the number of operations required by the computer.
Since the aforementioned experiments used a 2.3 GHz processor, we get that the number
of operations 2* is T () /(2.3 x 10%). Thus, our security parameter A = T z(0) — 31.1,
and so

A(J) = 1.8/ log,(d) — 78.9.

Using the analysis of Lindner and Peikert [16], Gentry, Halevi, and Smart [13] were
able to derive security parameters for any given security level. To do this, they had to
make a number of assumptions.

The first assumption is that the security level is dependent on the ratio ¢/o, where
o? is the variance of the distribution y from which error vectors are sampled, and not
on ¢ and ¢ independently. The second assumption for their analysis is that the optimal
runtime/advantage ratio happens when we maximize the advantage. This means that we
have to assume that the best option for an attack is to spend a large amount of time
finding a high quality reduced basis for the lattice. The third assumption is that to get an
advantage of close to 1/2, we need to reduce the basis enough so that the smallest vector
in the basis (i.e. by) has size less than ¢/o.

Gentry, Halevi, and Smart considered the case where o = 1, but we will generalize this
for any o. To do this, we need to make use of the second and third assumptions.

Say we want a cryptosystem that has a certain security parameter A\. Then, we will
need to find a lattice that requires a basis with root-Hermite factor § to solve the LWE
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Problem, where § is determined by A = 1.8/log,(8) — 78.9. Since 6" = det%’\l)um, we need

to find a reduced lattice basis such that ||b;|| must satisfy ||b|| = 6Vdet(A)Y/Y.

Also, since we are working over g-ary lattices of rank n, we get that det(A) = ¢™ with
high probability. Therefore, we need to find a reduced basis with ||by|| = 6V¥¢"/VN. But
since we need to reduce the basis so that the shortest vector is of size less than ¢/o, we
need that q/o < §Ng™/V.

However, an LWE attacker will be able to choose the dimension of the matrix we are
dealing with. As such, the attacker will pick the optimal dimension for an attack, which is
N = y/nlog,(q)/log,(d), so our choice of parameters needs to take that into consideration.
Thus, we get

logy(q/0) < logy(6™g™™N)
n
= N10g2(5) + N 10%2(‘1)

nlogy(q)
D2O82) 160, (5) 4+ —
log,(0) o82(9) nlogy(q)

= /nlogy(q) -log,(8) + /nlogy(q) - log,(4).
= 2y/nlogy(q) - log,(0),

which can be rewritten as
log, (¢0)"
~ 4logy(q) logy(d)
But we know that A = 1.8/1og,(d) — 78.9 so this inequality becomes

log,(q/0)?

n> —————— - (A+78.9).
7.2log,(q) ( )

This gives us the following table, where n is the smallest possible lattice rank, and
B, is the bound on the magnitude of any error vector, which we calculated before in the

standard-LWE case to be By, = (¢/2 —1)/(2[(2n + 1) log,(q)])-

43



Table 4.1 provides minimum necessary parameters to satisfy each security level A of the
BGV encryption scheme. These values are based on the runtime of the BKZ algorithm to
provide a basis that is reduced enough to solve the LWE Problem. These values consider
the case where 02 = 1 for simplicity. If we increase the variance, this makes the error term
more noisy, so we can use a smaller dimension n to achieve the same amount of security.
This in turn increases the bound B, on the elements of the error vector, as the error vector
has less elements due to the smaller dimension, so we can allow larger elements in the error
vector without making the magnitude of the error vector too large. The problem with
doing this is that even though B, increases, we will have less probability of choosing an
error vector bounded by B,, because the variance of our error distribution increases. This
makes it less likely that the error vector we choose will be small enough for decryption to
work properly.

[ X [logy(q) | n [ By Jlogy(q) [ n [ By Jlogy(e) | n [ By ]
2 15 | 252 20 [336] 19| 30 | 504 | 8868
52 | 16 | 201 20 | 364 17 || 30 | 546 | 8186
62 | 16 | 314 20 392 16 | 30 | 588 | 7602
72 | 16 | 336 20 | 420 15| 30 | 629 | 7107
80 | 16 | 354 20 | 442 | 14 || 30 | 663 | 6742
112 16 | 425 20 | 531 12 || 30 | 796 | 5616
128 16 | 460 20 | 575 11 || 30 | 863 | 5181
102 17 | 640 20 | 753 ] 8 || 30 | 1129 | 3960
%6 | 17 | 791 20 | 931] 7 || 30 | 1396 | 3203

= = = =] = =] = = =

Table 4.1: Some security parameters when y has variance o2 = 1.
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Chapter 5

Fully Homomorphic Encryption over
the Integers

This chapter discusses another type of fully homomorphic encryption scheme based on
integers rather than lattices. It overviews the initial scheme, an optimized version of
the scheme, as well as a modified scheme that makes use of the techniques to remove
bootstrapping to create another leveled fully homomorphic scheme.

The DGHV scheme discussed in this chapter provides an example of a truly fully
homomorphic encryption scheme, rather than the leveled variety discussed in the previous
chapter. It makes use of the bootstrappability definitions as defined in Section 3.3, and
includes a technique called squashing that allows the scheme to be bootstrappable.

5.1 The Leftover Hash Lemma

In both the DGHV encryption scheme [23], and the optimized version proposed by Coron,
Mandal, Naccache, and Tibouchi [5], the Leftover Hash Lemma is needed to ensure that
the encryption scheme can be reduced to an underlying computationally hard problem.
Due to the necessity of using this lemma, there are certain restrictions to choosing the
parameters.

Lemma 5.1.1. (Simplified Leftover Hash Lemma) Let H be a family of hash functions
from X toY that is 2-universal. Let h € H and x € X be chosen uniformly and randomly.

Then (h, h(z)) is $1/|Y]/|X|-uniform over H x Y.
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5.2 DGHYV Encryption Scheme

The following encryption scheme is a somewhat homomorphic encryption scheme by van
Dijk, Gentry, Halevi, and Vaikuntanathan [23].

5.2.1 Parameters

Let X be the security parameter, £ be the bit-length of the integers in the public key, and
let n be the number of integers in the public key. Let n be the bit-length of the secret key
(where the secret key is the approximate-ged of the public key integers), and let p be the
bit-length of the noise (that is the maximum bit-length of the distance between the public
key elements and their closest multiple of the secret key). We also need a parameter p’
that is the bit-length of another noise variable.

Given a security level A, we require that p = w(log,(A)) to protect against brute force
attacks on the noise. The bit-length of the secret key 7 needs to satisfy n > p-©(A(logy()))?)
so that the squashed decryption circuit can be evaluated homomorphically. The bit-length
of the public key integers & needs to be w(n?logy()\)) to prevent lattice attacks on the
underlying Approximate-GCD Problem. The number of integers in the public key n must
be larger than £ + w(log,(\)) so that we can use the leftover hash lemma in the reduction
to the Approximate-GCD Problem. Also, we need p’ = p + w(logy(N)).

The paper by van Dijk, Gentry, Halevi, and Vaikuntanathan [23] suggests the parame-
ters p= X, p) =2\, n = O(N?), £ = O(N°) and n = £ + \. This results in a scheme with
public key of size O(A\!?).

Let D¢ ,(p) = {choose ¢ € Z uniformly from [0,2%/p), and r € Z uniformly from
(—27,2¢r), and output & = pg + r} be a probability distibution.
5.2.2 The Somewhat Homomorphic Encryption Scheme
KeyGen(\ € Z):

Select an odd integer p with bit-length 1 to be the secret key sk.

For n € Z, sample z; for i = 0,...,n from D ,(p). Relabel the indices of the z; so that
xo is largest. If g is even, or if [z], is odd, then reselect the x;’s until this is not the case.
Set the public key to be pk = (zg, z1,...,1,) € Z".
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Encrypt(pk € Z"™',m € {0,1}):
Select a random set S C {1,...,n} and a random integer r € (—2¢,27"), and output the

ciphertext ¢ = |m + 2r + 2 Z x; € 7.

ies 1y,

Evaluate(pk € Z",C, (c1, ..., c;) € ZY):

If we are given a binary circuit C' with ¢ inputs, and ¢ ciphertexts cy, ..., ¢, apply the
integer addition and multiplication gates of C' on the ciphertexts, and output the resulting
integer.

Decrypt(sk € Z,c € Z):

We have sk = p. Output the message m = [c], mod 2. Since ¢ mod p =c—p- |¢/p], and
p is odd, we can equivalently compute m = [c|s @ [|¢/p]]2-

5.2.3 Security and Correctness of Circuit Evaluation

With use of the Leftover Hash Lemma, we can reduce the security of this decryption scheme
to the Approximate GCD assumption. The following theorem is due to van Dijk, Gentry,
Halevi, and Vaikuntanathan.

Theorem 5.2.1 ([23]). Fix the parameters (p, p',n,&,n) as defined in the previous encryp-
tion scheme, which are all polynomial in X\. Then, any attack A with advantage € on the
encryption scheme can be made into an algorithm B for solving the (p,n,n)-Approzimate
GCD Problem with probability of success at least €/2. The running time of B is polynomial
in A, 1/€, and the running time of A.

In order to bootstrap this scheme, we need to have some sufficient condition on the
input circuits for correct decryption. We get the following lemma.

Lemma 5.2.2 ([23]). Let C be a boolean circuit with t inputs, and let C* be the correspond-
ing integer circuit where the boolean gates are replaced by gates that perform operations over
the integers. If f(x1,...,x;) is the polynomial evaluated by C*, such that f has degree d,
then C is correct for our encryption scheme if || f||1 - (2°F2)% < 2774, where |||, is the Iy
norm of the coefficient vector of f.
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Thus, the DGHV encryption scheme can evaluate a polynomial f homomorphically if

Lo 1= A= log(f])

We will refer to any polynomial f that satisfies this inequality as a permitted polynomial,
and we will denote the set of all such polynomials by Pg, where £ is the encryption scheme.
We will denote the set of circuits that evaluate such polynomials by C(Ps).

5.3 Bootstrapping the Scheme

In order for the DGHV to be fully homomorphic, we require that the scheme be correct
for the set of augmented circuits Dg. However, if we represent the Decrypt function by
some circuit, then the decryption circuit is too deep to evaluate homomorphically. Thus,
we need to make use of a technique called squashing, which was proposed by Gentry [9],
to squash the decryption circuit.

Squashing the decryption circuit means that we shrink the depth of the decryption cir-
cuit so that it can be evaluated homomorphically by the encryption scheme. To accomplish
this, we need to modify the encryption scheme so that it provides some extra information
in the public key about the corresponding secret key. Then, we can use this information to
modify the ciphertext before evaluating it in the decryption circuit so that the decryption
circuit doesn’t have to do as much work, thereby making the decryption circuit smaller, or
“squashed”.

The following scheme is a modification of the original DGHV encryption scheme that
adds extra information to the public key to make decryption easier. We also require that
the added information provided in the public key does not give an attacker any advantage
in breaking the cryptosystem. In this case, the added assumption is that the Sparse Subset
Sum Problem (SSSP) is computationally infeasible.

In the original scheme, we were able to decrypt the ciphertext by computing m =
[c]2 @ [|c/p]]2- However, computing the value of [|¢/p]]2 takes too many computations to
evaluate this homomorphically, so this is the part of the decryption scheme that we want
to squash. The issue arises because of the multiplication operations involved, so we want
to replace it with additions.

To do this, we can compute ¢/p ahead of time. But in order for the secret key p to

remain hidden, we can find some rational numbers y; such that [Z yj] = %, for some
jes g
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set S. In actuality, there is another term here, but it is so small that it becomes negligible.

Thus, [¢/pls = [Zc Y

j€S
would not know which ones were used in the sum, which relies on the assumption that the
SSSP is computationally hard.

. However, if we publish a large number of y; terms, an attacker

5.3.1 The Modified Scheme

In the following section, we require three additional parameters x, 6, and ©. We will use
k=£E&n/p, 0 =X and © = w(k - log, A).

BootKeyGen(\ € Z):

Run the KeyGen(\) function from the somewhat homomorphic scheme to get a secret key
sk* = p and public key pk* = (2o, 1, ..., 7,). Let z; = [27/p], and let s = (s1,...,50) be
a random vector with s; € Zs, Vi € {1,...,0} such that the Hamming weight of s is 6.
Let S ={i:s;, =1}

Select integers u; € Z N [0,2%™) uniformly at random for ¢ € {1,...,0} such that

Zuj = x, (mod 2t Let y = (y1,...,%e) Where y; = u;/2%. So each y; is a random
jes
number less than 2 with x bits of precision after the binary point. We also get that

[Z yj] = 1—17 — A, for some |A,| < 27"
jes 1,

Output the secret key sk = s and the public key pk = (pk*,y).
BootEncrypt(pk,m € {0,1}):
We can write pk = (pk*,y). Run Encrypt(pk*,m) to get a ciphertext ¢* € Z as before.

Let z = (21, ..., 20) where z; = [¢* - y;]2, keeping [log, 0] + 3 bits after the binary point for
each z;.

Output ¢ = (¢*,z) as the ciphertext.
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BootEvaluate(pk, C, (c1,...,¢;) € Z'):
We can write pk = (pk*,y). Run Evaluate(pk,C, (c1,...,¢)) to get a ciphertext ¢* as

before. Let z = (z1,...,20) where z; = [¢* - y;]2, keeping [log, 0] + 3 bits after the binary
point for each z;.

Output ¢ = (¢*,z) as the ciphertext.

BootDecrypt(sk € Z9,c € Z x R®):

We can write ¢ = (c*, z), where ¢* € Z and z € R®.

e
Output the message m = [c* — \‘Z sizzw] .
2

i=1

5.3.2 Bootstrappability

Since we originally would compute m in the Decrypt function by m = [¢*]s @ [[¢*/p]]2,
we get that the m computed by BootDecrypt is the same if and only if [|¢*/p]les =

®
{Z szzlw] ; this result was proven by van Dijk et al. [23]. They also showed that
=1 2

the modified scheme is actually correct for C'(Pg). We also get the following theorem.

Theorem 5.3.1. If £ is the modified encryption scheme above, and Dg is the set of aug-
mented squashed decryption circuits, then Dg C C(Pg).

Thus, the modified encryption scheme is bootstrappable, which gives us a fully homo-
morphic encryption scheme.

5.4 An Optimization of the Bootstrappable Scheme

This section gives a variant of the DGHV encryption scheme, proposed by Coron, Mandal,
Naccache, and Tibouchi [5]. The variant optimizes the original scheme by decreasing the
size of the public key from O(X'?) to O(A7). This is accomplished by replacing the z;’s in
the public key with z}; = z;0z;; mod o for 1 < 4,5 < 8 where 8 is a new parameter.
Thus, only 23 + 1 integers need to be stored in the public key to get n = 52 integers used
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for encryption. The public key is thereby reduced from né bits to about 2/né bits. The
key size is also reduced by taking linear combinations of the z; ; with coefficients in [0, 2%)
instead of bits.

Similarly to the original scheme, we get the following constraints on the parameters.
We require that p = w(logy A), n > (2p + @) - O(A(logy A)?), € = w(n®logy \), a - 5% >
€+ w(logy, \), and o = 2p + o + w(log, A). Concretely, we can set p = A, n = O(\2),
E=0(N),a=\ B=0()\?), and o/ = 4.

5.4.1 The Somewhat Homomorphic Encryption Scheme
OptKeyGen(\ € Z):

Generate a random prime p € [2771,2") (i.e. with bit-length 1) to be the secret key sk.

Let gy be a random square-free 2*-rough integer in [0,2¢/p). Let 2y = ¢ - p. For
ie{l,...,B} and b € {0,1}, let ¢; be random integers in [0, gy) and let 7, be random
integers in (—27,2°). Let x;p =p-qip +1ip € Z for all i € {1,...,5},b0 € {0, 1}.

Let the secret key be sk = p € Z and the public key be pk = (z¢, 1,0, 21,1, - .., Tg,0,Tp1) €
728+

OptEncrypt(pk € Z2°t1,m € {0,1}):

Select a random vector b = (b; ;)1<;j<p of size n = ? with components in [0,2%), and
select a random integer r € (—2”/, 2p/), and output the ciphertext

c=|m+2r+2 Z bi,j'xi,o’xj,l ero~

1<i,j<B 20

OptEvaluate(pk € Z**1 O, (cy,...,¢;) € ZY):
If we are given a binary circuit C' with ¢ inputs, and t ciphertexts ci,..., ¢, apply the

integer addition and multiplication gates of C' on the ciphertexts, and output the resulting
integer modulo xg.
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OptDecrypt(sk € Z,c € Z):

We have sk = p. Output the message m = [c], mod 2.

5.4.2 Security and Correctness of Circuit Evaluation

With use of the Leftover Hash Lemma, we can reduce the security of this decryption scheme
to the Error-Free GCD assumption. The following theorem is due to Coron, Mandal,
Naccache, and Tibouchi [5].

Theorem 5.4.1. Fix the parameters (p, p',n,&,n = %) as defined in the previous encryp-
tion scheme, which are all polynomial in X\. Then, any attack A with advantage € on the
encryption scheme can be made into an algorithm B for solving the (p,n,n)-Error-Free
GCD Problem with probability of success at least €/2. The running time of B is polynomial
in A, 1/e, and the running time of A[27].

In order to bootstrap this scheme, we need to have some sufficient condition on the
input circuits for correct decryption. As in the original scheme, we make use of the idea
of permitted polynomials. For this particular scheme, the permitted polynomials are the
polynomials that satisfy

=3 n—log(|/])

P+ 24 2log, B
and these polynomials can be correctly evaluated homomorphically by the encryption
scheme.

)

We will denote the set of such polynomials by Pg, where £ is this encryption scheme.
We will denote the set of circuits that evaluate such polynomials by C(Ps).

5.4.3 Bootstrapping the Scheme

As in the original DGHYV scheme, it is necessary to squash the decryption circuit in order
to homomorphically evaluate the augmented decryption circuits. The following scheme
is a modification of the optimized DGHV encryption scheme that adds extra information
to the public key and squashes the decryption function to make decryption easier. This
incorporates the same ideas as the bootstrappable version of the original DGHV scheme
by adding the y; values to the public key. However, this is optimized by only storing a seed
to a pseudo-random number generator rather than all of the y; values, and regenerating
them as needed.
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OptBootKeyGen(\ € Z):

Run the OptKeyGen(A) function from the somewhat homomorphic scheme to get a secret
key sk* = p € Z and public key pk* = (20,210,211, .., %0, %1) € Z*PT. Let x =
|2%/p], and let s = (s1,...,5¢) be a random vector with s; = 1, and s; € Z,, Vi €
{1,...,0} such that the Hamming weight of s is §. Let S = {i : s; = 1}.

Let f be a pseudo-random number generator, and let se be a random seed for f. Then
use f(se) to generate integers u; € Z N [0,2°t1), for i € {2,...,0}. Then set u; such
that Zuj = x5 (mod 2°™). Let y = (y1,...,yo) where y; = u;/2%. So cach y; is a

jes
random number less than 2 with s bits of precision after the binary point. We also get

that [Z yj] = i — A, for some |A,| < 27"
jes 1,

Output the secret key sk = s and the public key pk = (pk*, se, y;).

OptBootEncrypt(pk,m € {0,1}):

We can write pk = (pk*, se,y1). Run Encrypt(pk*, m) to get a ciphertext ¢* as before. Let
z = (21,...,20) where z; = [¢* - y;]2 keeping [log,(6 + 1)] bits after the binary point for
each z;.

Output ¢ = (c*,z) as the ciphertext.

OptBootEvaluate(pk, C, (c1,...,¢) € Z'):

We can write pk = (pk*, se,y1). Run Evaluate(pk, C, (c1,...,¢)) to get a ciphertext ¢* as
before. Let z = (21, ..., 20) where z; = [¢* - y;]2 keeping [log, (6 + 1)] bits after the binary
point for each z;.

Output ¢ = (¢*, z) as the ciphertext.

OptBootDecrypt(sk € ZS,c € Z x R®):

We can write ¢ = (c*, z), where ¢* € Z and z € R®.

o
Output the message m = [c* — \‘Z sizzw] .
2

i=1
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5.4.4 Bootstrappability

Similarly to van Dijk et al., Coron et al. showed that the modified scheme is correct for
C(Pe¢), as well as the following theorem [5].

Theorem 5.4.2. If £ is the optimized encryption scheme above, and Dg is the set of
augmented squashed decryption circuits, then Dg C C(Pg).

Thus, the modified optimized encryption scheme is bootstrappable, which gives us a
fully homomorphic encryption scheme.

5.4.5 Security Parameters of the Optimized Scheme

Coron, Mandal, Naccache, and Tibouchi [5] gave some explicit parameter for a few small
values of the security parameter. Their results are given in Table 5.1.

[ 0 € [F] O [pksw(m)]
42 1116 | 1088 | 1.6 -10° | 12 | 144 0.95
52 | 24 11632 | 8.6-10° | 23 | 533 9.6
62 || 32 | 2176 | 4.2-10° | 44 | 1972 89
72 139 |2652 | 1.9-107 | 88 | 7897 802

Table 5.1: Parameters for different security levels provided by Coron, Mandal, Naccache,
and Tibouchi[5].

Coron et al. [5] provide a number of restrictions on the parameters so that security
levels are met.

A brute force attack on the noise can be mounted, taking time 27 - O(¢), where the
O(f ) term is the time needed to multiply two £-bit numbers together. For a security level
A, we require that 2 < 27 . 0(5) We are given the following table of experimental data
for the time taken to compute a single modular multiplication of two &-bit numbers.
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’ 5 H 221 ‘ 222 ‘ 223 ‘ 224 ‘ 225 H
time (s) 05| 1.2 | 28 | 6.7 | 154
log, (clock cycles) || 30.0 | 31.3 | 32.5 | 33.7 | 34.9

Table 5.2: Time to multiply two £-bit integers in Sage [7].

Since the multiplication operation takes time in O~(§), we can estimate a lower bound
with a linear function. Say that when £ doubles, then the number of clock cycles also
doubles. However, with the given data, we see that an increase by 1 in the log,(&) term
corresponds to an increase of about 1.2 in the log,(clock cycles) parameter, so our function
that only adds 1 to log,(clock cycles) should be a good lower bound. Concretely, say that
¢ = 2% (number of clock cycles) for £ > 22!, Thus, we need the equation A < p+log,(£)+9
to be satisfied.

To deal with an Approximate-GCD attack on the public key, we need the parameters

to satisfy
b (1 V12 — 4log,y(c)é ! S 92 51
' 2log,(c) &2 (5.1)

where a, b, ¢ are determined by the LLL and BKZ algorithms used in the attack. Specif-
ically, (a,b,c) = (5.0,0.06,1.021) for LLL, and (a,b,c) = (5.2,0.36, 1.013) for BKZ, where
c is the average computed root-Hermite factor. The parameters of the encryption scheme
have to satisfy inequality (5.1) for both sets of parameters a, b, c. However, since the LLL
parameters will make the left hand side of (5.1) smaller than the BKZ parameters, the
LLL parameters are the ones we should focus on.

When trying to determine what values of ¢ and n work, it was suggested that if we are
given 7, we can then fix £ so that (5.1) is satisfied [5]. However, this is impossible to do
in some cases. We need to have A = 7% — 4log,(c)€ > 0 so that the left hand side of (5.1)
remains a real number, but we may need to increase £ too much in order for this inequality
to be satisfied, making A negative. Since we want the expression inside the brackets to be
as large as possible, we want to minimize A, while keeping A greater than 0. So setting
¢ = |n?*/(4logy(c))] accomplishes that goal. We can then increase n until this inequality
is satisfied, which will simultaneously increase &.

To prevent a lattice attack on the Sparse Subset-Sum Problem, we can take [7]

o1~ V2 — 4logy(c)€
- 2log,(c) '
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Also, for recryption to work, we need that d-p < n, where d is the degree of the decryption
polynomial. For all of the security levels, we can take d = 15, but then with degree-
2 compression of the secret key bits, this doubles the decryption polynomial degree to
d = 30. To allow for an additional multiplication, the augmented decryption circuit has
degree d = 60 [5]. So we take p = n/(d + 8) to allow for some room as in the original
paper [5]. Furthermore, to counter knapsack sum attacks in the encryption, we can set

B=v0 [
Finally, the public key has size roughly equal to 2(3 4+ v/© + 1)¢ bits, and this fully
determines our variables.

Thus, to determine our variables for a given security level \, we first set £ = [n?/(41og,(c))],
and then find the smallest 7 satisfying (5.1) for both LLL and BKZ parameters. We then
set © as in (5.2), and let 8 = v/O, p = n/(d+8), giving a public key of size 2(3+vO +1)¢&
bits.

Our discussion yields the following parameters for the various security levels.

’ A H P ‘ n ‘ 1S ‘ I6] ‘ S ‘ pk size (MiB) H

42 0 23 4410 20 379 4.3-1072

52 1 71 4.2-10 35 1181 7.1-1071

62 3 223 4.1-10° 61 3717 12

72 10 705 4.1-10° 108 11751 215

80 26 1775 2.6-107 172 29595 2167

112 1059 7.2-10* | 4.3-10% 1096 1.2-10° 3.6-10°

128 6765 4.6-10° | 1.8-10" 2770 7.7-10° 3.7- 107

192 | 1.1-107 | 7.4-10% | 4.6-10"® | 1.1-10° | 1.2- 10" 3.9-10%
256 || 1.9-10' [ 1.3-10" | 1.4-10% | 4.7-10° | 2.2-10"3 5.0-10%

Table 5.3: Parameters for different security levels ignoring a brute force attack on the

noise.

Notice that these parameter choices don’t incorporate the inequality A < p+log,(€)+9
to counter the brute force attack on the noise. This inequality is satisfied for A > 112,
as the corresponding p values are all larger than A, but is not satisfied for any of the
other values. To deal with this, we just need to increase p until the inequality holds, and
change the other values accordingly. Notice that as p increases, so does n as we can set
n = (d + 8)p, which in turn increases the value of ¢ = |1?/(4log,(c))|. Since (5.1) holds
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for our original 1 and ¢ values, increasing them will not cause any problems. Changing
the values of 8, ©, and the public key size will also not cause problems because these are
determined directly by the other variables.

We thus obtain the following parameters for each security level. Notice that each of
these new & parameters are larger than 22!, so we are allowed to use our approximation of
the runtime to multiply integers of bit-length &.

’ A H P ‘ n ‘ 19 ‘ I6] ‘ S} ‘ pk size (MiB) H
42 11 748 4.7 -10° 111 12468 249
52 20 1360 1.5- 10" 150 22676 1113
62 29 1972 3.2-107 181 32883 2817
72 38 2584 5.6 - 107 207 43088 5529
80 45 3060 7.8-107 225 51025 8430
112 1059 7.2-10* | 4.3-10% 1096 1.2-10° 3.6 - 107
128 6765 4.6-10° | 1.8-10% 2770 7.7-10° 3.7-10°
192 | 1.1-107 | 7.4-10% | 4.6-10"® | 1.1-10° | 1.2- 10" 3.9-10
256 | 1.9-10" | 1.3-10" | 1.4-10% | 4.7-10° | 2.2 - 10" 5.0-10%

Table 5.4: Parameters for different security levels when considering a brute force attack on
the noise.

We can see from Table 5.4 that the public key size is extremely large for the security
levels that are computationally infeasible, so the encryption scheme is impractical at these
security levels. However, these parameters minimize the value of p, so we can increase p
(and then increase 1 along with it), so we may be able to decrease the value of £. However,
as mentioned before, we can’t increase 1 by too much as this actually decreases the security
level, so decreasing & as well would just make it worse.

5.5 The DGHYV Encryption Scheme without Boot-
strapping

The following encryption scheme is due to Coron, Naccache, and Tibouchi (CNT) [6], and
is a hybrid of the DGHV encryption scheme over the integers and the BGV encryption
scheme. It provides a leveled fully homomorphic encryption scheme that uses integers, but
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uses the machinery discussed in the BGV encryption scheme to eliminate the need to use
bootstrapping for any circuit of some predefined depth.

The CNT cryptosystem is semantically secure under the Decisional Approximate GCD
assumption and under the subset sum assumption [6].

5.5.1 Some Important Functions

As in the BGV cryptosystem, the CNT cryptosystem needs to be able to homomorphically
evaluate circuits of ciphertexts encrypted under different public keys, depending on what
level the ciphertexts were last encrypted on. In order to deal with this, the scheme utilizes
a key switching matrix (although is this case it is a vector). This section provides the
functions needed to implement that.

BitDecomp(x € [0,21)® k € Z):

This function changes x into a binary representation of itself.

k
Write x as Z 2u; where u; € Z9, and output u = (ul, u?, ... ul)’ e ZF*°.

j=0

Powersof2(x € [0,2"™1)° k € Z):

This function outputs a vector that contains a number of the inputted vectors multiplied
by various powers of 2, and in some sense is the reverse of the BitDecomp function. In
fact, BitDecomp(c, q) - Powersof2(s,q) = ¢ - s.

Output u = (x7,2x7, ... 2"xT)T € 7.

SwitchKeyGen(pk € Z"t!, sk € Z,pk! € Z"*!, sk’ € Z):

Let p = sk, and p’ = sk’ be two DGHV secret-keys of bit-length 1 and 7’ respectively. Let
Kk = 2¢ + n, where ¢ is the bit-length of the z;’s in the public key pk = (xq, ..., z,).

For some © € Z where © > 0, generate a vector y of © random numbers modulo 27 *!
such that each number in y has s bit of precision after the binary point, and a vector
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s of © random bits that satisfies 27 /p = s -y + € mod 27! where |¢| < 27*. Compute
s’ = Powersof2(s, ).

If pk’ = (xo,...,z,), then we can write xf, = ¢ - p' + 1’ where 0 < 7’ < p/. Then,
sample q from (Z N [0,¢,)) 1 and sample r from (Z N (—27,2°))"+D® Then let

p/

Then output 7w = (y7,07)7 € R® x Z0'+19,

SwitchKey (Tpr 1 € R® x Zr+8 ¢ e L)t

We can write T as (y?,07)T where y is a vector of © numbers and o € Z("+D®. Let
c=(cy,...,co) where ¢; = |c-y;] mod 2"+ Vi € {1,...,0}. Let ¢’ = BitDecomp(c, 7).
Output ¢’ = 20 - ¢’ + [c]s.

5.5.2 The Leveled Fully Homomorphic Scheme
In this variant of the DGHV encryption scheme, we define initially the depth of the circuits

that we want to evaluate. The scheme allows us to compute arbitrarily large circuits,
without needing the ability to be bootstrappable.

FHESetup(A € Z,L € Z):

The key generation function takes as its input the security parameter A\ and the number of
levels L that we wish to encrypt on (i.e. the number of addition or multiplication operations
we are able to perform on encrypted data).

Let u € Z be the length of the smallest secret key needed for the encryption scheme
to be secure. Then, for j € {1,..., L}, define n; to be n; = (j + 1)pu. We take p,{, and n
defined as in the basic DGHV encryption scheme.

FHEKeyGen(\ € Z,L € Z):

For j from L to 1 do the following.
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Run KeyGen(\) using the bit-length of the secret key parameter n;. Let pk; € Z"™!
be the public key generated, and sk; = p; € Z be the secret key generated. When
j # L, let the key switching vector be 7, pr; = SwitchKeyGen(pk;1, skji1, pkj, sk;) €
R® x 7mi+1)6e.

We then set the public key pk to be pkr along with the set of all Tt , &, and the
secret key sk to be sk = (p1,...,p1) € Z.

FHEEncrypt(pk,m € {0,1}):

For a message m, output the ciphertext ¢ = Encrypt(pkr, m) € Z.

FHEDecrypt(sk,c):

For a ciphertext ¢, if ¢ is encrypted under some pk; in pk, output the message m = [c],,
mod 2, where p; = sk;.

FHERefresh (7, ,, pr, € R® x Z€ ¢ € Z):

+1,P
This function takes as its input a ciphertext c that is encrypted under pk;;; in the public
key, and the key switching vector Tp,,, pr,- Output ¢’ = SwitchKey(7px,,, pt;, ¢), the new
ciphertext encrypted under pk;.

FHEAdd(pk,c1 € Z,co € Z):

This function requires that ¢; and ¢y are encrypted under the same pk; in the public key. If
they are not, we can apply the FHERefresh step to the ciphertext encrypted with the pk;
further up the ladder of decreasing moduli. Say ¢y is encrypted with pk;, and ¢, is encrypted
with pky, where ¢ > k. We then use FHERefresh on ¢; (i.e. FHERefresh(7pk, pk; ., ¢1)) to
get a ciphertext encrypted with pk;_;, and we can continue this process until ¢; and ¢, are
encrypted with the same pk;.

Let c3 = ¢; + ¢. If j # 1, output ¢y = FHERefresh(7y, pr,_,, c3), otherwise output cs.
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FHEMult(pk,c, € Z,cy € Z):

This function requires that ¢; and ¢, are encrypted under the same pk; in the public key. If
they are not, we can apply the FHERefresh step to the ciphertext encrypted with the pk;
further up the ladder of decreasing moduli. Say ¢; is encrypted with pk;, and ¢, is encrypted
with pky, where ¢ > k. We then use FHERefresh on ¢; (i.e. FHERefresh(7,, pk; > ¢1)) to
get a ciphertext encrypted with pk;_ 1, and we can continue this process until ¢; and ¢, are
encrypted with the same pk;.

Let c3 = ¢ - co. If j # 1, output ¢y = FHERefresh(7yx; pi,_,, c3), otherwise output cs.
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Chapter 6

Other Cryptosystems and Results

This chapter overviews a few other homomorphic encryption schemes. Gentry’s original
scheme is mentioned, as well as others based on more recent work.

6.1 Gentry’s Scheme

The first fully homomorphic encryption scheme was created by Gentry, and uses ideal lat-
tices. Gentry’s scheme is similar to the GGH encryption scheme, except it is implemented
over ideal lattices to make use of the multiplication ability. In this encryption scheme, we
work over some ring R = Z[x]/(z" 4+ 1), and take two ideals of R, J and I. For the public
key of this scheme, we use a bad (highly nonorthogonal basis) for J. The second ideal [
needs to have a small basis, such as the principal ideal I = (2).

In Gentry’s scheme, we use ciphertexts that are close to a lattice point in J, where the
message is in the distance of the ciphertext to a specific lattice point. Specifically, if the
plaintext space is {0,1}, then we can embed this into R/I (when I = (2) we can do this
by encoding 0 as the vector 0", and 1 as the vector 10" 1), and set the error term to be
e =1i-r+m where m € R/I is the encoded bit, r € R is a random small vector, and i € T
is a small vector in the basis of I (for I = (2), ¢ = 2). Multiplication is defined over R,
and not some form of vector multiplication. Then we get that the ciphertext isc=e+j
for some j € J.

To decrypt a ciphertext, we use a short vector w € J~1 as the private key, and compute
[w - ¢], the fractional part of w-¢. Since c=e+j, w-c=w-e+w- j, and since w - j
is an integer vector (as w € J71), we get that [w-c] = [w-¢|. Aslong as w and e are
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small enough, [w - €] will have magnitude less than 1/2, which would mean [w - e] = w - e.
So this gives us that w - ¢ = w - e, which allows us to compute e by multiplying by the
inverse of w. Then m = e mod I. However, in the actual scheme, w is adjusted so that
m = [w - c] mod I.

As mentioned in the description of the DGHV scheme, Gentry’s scheme was the first
to suggest the process of squashing the decryption circuit by adding information about
the secret key to the ciphertexts so the decryption circuit does not have to do as much
work. Similarly to the DGHV scheme, Gentry’s scheme uses a large set of ring elements
S ={x;|i=1,...,m}, where a hidden sparse subset T" adds up to w, and the new secret
key becomes the characteristic vector (o1, ..., 0,,) of the sparse subset T

Then, by computing the products y; = x; - ¢ for each element x; € S, all one needs to

m
do is compute ¢ — [Z o;-y;| mod I, which is equivalent to m = ¢ — [w - ¢] mod I [10].
j=1

6.1.1 Optimizations of Gentry’s Scheme

Since Gentry’s initial creation of a fully homomorphic encryption scheme, others have
attempted to implement Gentry’s scheme and optimize it. The first attempt to do so was
by Smart and Vercauteren in 2010 [21]. In the Smart-Vercauteren variant, principal-ideal
lattices of prime determinant are used. The benefit of these types of lattices is that they
can be determined using just two integers, so this decreases the key sizes, as entire bases
do not need to be listed.

Smart and Vercauteren work over the ring R = Z[z|/(f(z)) where f(z) = 2*" + 1, and
use the principal ideal J = (v), the ideal generated by v € R, such that the determinant of
this ideal p is prime. They also use I = (2). They also need to know a root r of f(x) mod p.
They are then able to output a ciphertext ¢ of the message m by ¢ = [2-u(r) + m],, where
u(z) is a small random polynomial, and decrypt by computing m = ¢ — |cw/p| mod 2,
where the secret key w is a single integer determined in such a way to make this work.

The following table shows some of the parameters for the Smart-Vercauteren encryption
scheme. The two sets of A\, s5, and d arise from other parameter choices in the implemen-

tation of the scheme. The value of s; is chosen so that 4/ (b§—§p> > 22 and d is the depth

of circuits that can be evaluated given the other parameters. and d is the required circuit
depth of circuits that can be evaluated homomorphically to allow for bootstrapping. As
always, we use \ to represent the security level of the scheme.
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[ n [ logop [ A [ss] d ] A [sa] d]

8 | 4096 25 15103 36 | 8 0.0
9 | 11585 || 31 | 6 |08 40 | 7 | 0.3
10| 32768 || 41 | 7 | 12| 48 | 8 | 0.8
111 92681 || 54 | 8 | 1.7} 61 | 9 | 1.2
12 1262144 || 73 | 10| 21| 8 | 11| 1.6
13 | 741455 || 100 | 12 | 2.5 || 107 | 13 | 2.1

Table 6.1: Smart and Vercauteren’s encryption scheme parameters [21].

The following table gives the required depth d of circuits needed to perform bootstrap-
ping, for given values of ss.

So (|67 1819]10 111213
d|7|7]|7{8]8]8] 8|8

Table 6.2: Required circuit depth for bootstrapping [21].

Unfortunately, none of the d-values in Table 6.1 match the d values needed for fully
homomorphic encryption. However, Smart and Vercauteren showed that for n > 27, it
is possible to obtain a fully homomorphic encryption scheme. However, considering the
public key contains p, and p is 90.5 KB long when n = 13, increasing n to 27 will make the
key sizes much too large in practice. Furthermore, they were unable to create keys when
n = 12 because the public key creation would take too much time.

6.2 Other Results

6.2.1 Ideal Lattices in the BGV Encryption Scheme

In the BGV encryption scheme, an optimization was made to increase the size of the
message space when R, was replaced with R,. However, if we want to have a plaintext
space that is exponential in p, we want to use ideal lattices. Since the noise is proportional
to p after the modulus switching step [2], the original method doesn’t work.

Instead of having a ladder of decreasing moduli in the leveled fully homomorphic
scheme, we replace this by a ladder of principal ideals that are congruent to 1 mod I,

64



where [ is a ideal lattice with a short basis, and whose norm is a large prime. However,
having a ladder of ideals instead of integers requires a generalization of the modulus switch-
ing technique, and a bound on the noise after modulus switching. The proof given that
deals with a bound on the error after modulus switching has the same issues as the other
lemmas that were fixed earlier in this paper [2].

6.2.2 Encryption Schemes with Constant Degree Decryption Func-
tions Cannot Be Homomorphic

In the paper “When Homomorphism Becomes a Liability” [!], Brakerski was able to show
that encryption schemes with certain properties cannot be homomorphic. Namely, any
encryption scheme that uses a decryption function that can be represented as a polynomial
of fixed degree with respect to the elements in the secret key and ciphertext cannot be fully
homomorphic, if the probability of an incorrect decryption is less than 1/2 — 1/poly(n).
Thus, if the decryption function of an encryption scheme is too simple, then the scheme
can not be fully homomorphic without first changing the decryption function.

This conclusion comes from the result that if we have a decryption function of the form
s - c, where s € " is the secret key and c is the ciphertext, and where [F is some field,
then the encryption scheme cannot compute the majority function of O(logn/e?) elements
homomorphically if the decryption scheme incorrectly decrypts with probability less than
(1/2 —e).

Since an encryption scheme that has a decryption function of the form s- ¢ is unable to
evaluate the majority function, it is not able to evaluate all circuits homomorphically, and
as such cannot be fully homomorphic. Also, we can represent any polynomial function of
fixed degree in the form s - c, as any polynomial in the elements of s and ¢ can be written
as a sum of monomials, where each monomial is the product of terms in s and terms in c.
If we take all of the s terms as a single element for each monomial, and likewise for ¢, this
gives us an inner product that has length equal to the number of monomials.

6.2.3 Homomorphic Evaluation of AES

Recently, there have been implementations of fully homomorphic encryption schemes.
Smart and Vercauteren were able to use Gentry’s original scheme [3][10], and their spe-
cialization of the scheme [21], to adapt the parameter choices to allow the use of SIMD
(Single-Instruction Multiple-Data) operations in homomorphic encryption schemes [22].
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This allows each ciphertext to represent a number of independent plaintexts, and as such,
decrease the amount of space needed to store data.

The Smart-Vercauteren modifications give a scheme that is able to perform homomor-
phic operations on large finite fields of characteristic 2, and can perform SIMD operations.
Smart and Vercauteren discuss how these SIMD operations can be used to do parallel
computations in the bootstrapping operations, as well as how these operations can be used
to evaluate the AES circuit homomorphically.

Using this work, as well as some prior optimizations [12], Gentry, Halevi and Smart
were able to implement a fully homomorphic encryption scheme that is able to evaluate
an AES-128 circuit [13]. The encryption scheme that they used is a variant of the Ring
Learning with Errors BGV encryption scheme discussed in Section 4.1.3.

When evaluating the AES circuit, Gentry et al. used the NTL C++ Library, and ran
their implementation on a machine with a 2.0 GHz processor with 18MB of cache, and
that contained 256 GB of RAM. Even with this large amount of memory, they needed
to choose an implementation that minimized the amount of memory used, as memory
was still the limiting factor. The machine was able to compute a single block of AES
encryption in about eight days, which is two orders of magnitude faster than if they had
used an optimized version of Gentry’s scheme. However, since each ciphertext can hold
1512 plaintext slots of Fqs, 94 AES blocks can be processed in this time period in parallel,
giving an average of about two hours per AES block [13].
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Chapter 7

Conclusion

Since Craig Gentry’s breakthrough three years ago, there has been significant progress in
the area of fully homomorphic encryption. There have been a few different types of en-
cryption schemes proposed since then, from Gentry’s original scheme using ideal lattices,
to the DGHYV fully homomorphic encryption scheme over the integers, to the BGV encryp-
tion scheme using the Learning With Errors Problem that is an example of a leveled fully
homomorphic encryption scheme. There has also been a lot of work on optimizations to
preexisting work, in both computation time as well as in decreasing memory requirements.

Currently, the amount of memory required for any of the fully homomorphic or leveled
fully homomorphic encryption schemes is too large to be useful in practice; however, the
optimizations that have been proposed have allowed for the creation of an implementation
of fully homomorphic encryption for evaluating an AES-128 circuit. This implementation
may require a huge amount of memory and take days to evaluate, but at least exists when
only a few years ago this was considered unlikely.

As new results are found to decrease the key size and decrease the running time, new
attacks are being found on the lattice problems. This helps give a better bound on what
the security level of these fully homomorphic encryption schemes actually is for different
sets of parameters. However, new and improved results in this area also shrink the security
levels of previous encryption schemes, requiring larger keys to achieve the same level of
security.

Ever since Rivest et al. proposed the idea of fully homomorphic encryption back in 1978
and explained its potential applications, the importance of fully homomorphic encryption
has been widely appreciated. In fact, a fully homomorphic public key encryption scheme
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has been referred to as a “holy grail” of cryptography by some [21]. As such, it is important
to continue efforts in this area to try and find a truly practical encryption scheme.

In the CRYPTO 2011 talk given by Mehdi Tibouchi [5], it is mentioned that attacks
by Chen and Nguyen [3] and by Cohn and Heninger [/] can be mounted on the DGHV
encryption scheme. These new attacks require that larger parameters be chosen to achieve
the same level of security. Calculating the new parameters to take into account these two
attacks remains to be done.
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