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Abstract

Current physiotherapy practice relies on visual observation of the patient for diagnosis
and assessment. The assessment process can potentially be automated to improve ac-
curacy and reliability. This thesis proposes a method to recover patient joint angles and
automatically extract movement profiles utilizing small and lightweight body-worn sensors.

Joint angles are estimated from sensor measurements via the extended Kalman filter
(EKF). Constant-acceleration kinematics is employed as the state evolution model. The
forward kinematics of the body is utilized as the measurement model. The state and mea-
surement models are used to estimate the position, velocity and acceleration of each joint,
updated based on the sensor inputs from inertial measurement units (IMUs). Additional
joint limit constraints are imposed to reduce drift, and an automated approach is developed
for estimating and adapting the process noise during on-line estimation.

Once joint angles are determined, the exercise data is segmented to identify each of
the repetitions. This process of identifying when a particular repetition begins and ends
allows the physiotherapist to obtain useful metrics such as the number of repetitions per-
formed, or the time required to complete each repetition. A feature-guided hidden Markov
model (HMM) based algorithm is developed for performing the segmentation. In a se-
quence of unlabelled data, motion segment candidates are found by scanning the data
for velocity-based features, such as velocity peaks and zero crossings, which match the
pre-determined motion templates. These segment potentials are passed into the HMM for
template matching. This two-tier approach combines the speed of a velocity feature based
approach, which only requires the data to be differentiated, with the accuracy of the more
computationally-heavy HMM, allowing for fast and accurate segmentation.

The proposed algorithms were verified experimentally on a dataset consisting of 20
healthy subjects performing rehabilitation exercises. The movement data was collected by
IMUs strapped onto the hip, thigh and calf. The joint angle estimation system achieves
an overall average RMS error of 4.27 cm, when compared against motion capture data.
The segmentation algorithm reports 78% accuracy when the template training data comes
from the same participant, and 74% for a generic template.
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Chapter 1

Introduction

Physiotherapy, a component of modern healthcare, is concerned with the development,
maintenance and restoration of body movement and functionalities after illness or injury.
Through a regimen of physiotherapist-prescribed exercises, strength, range of motion and
balance are restored, to the greatest possible extent.

Long wait-lines are a major concern in Canadian physiotherapy. A survey of 3000
Ontario family physicians in 2004 found that physicians identified long wait times as one
of the most common barriers to referring patients to rehabilitation [21].

Over the next decade, the Canadian demand for total joint replacements (TJR) is
predicted to grow annually by 8.7% [58]. TJR is a type of orthopedic operation where both
of the surfaces of the joint pair are removed and replaced by artificial ones. These surgeries
are usually performed on elderly patients who have suffered major falls and damaged
their joints, or experienced joint degradation due to osteoarthritis or rheumatoid arthritis
[16]. Post-TJR patients typically require 1-2 weeks of physiotherapy to recover from the
operation.

Given the expected increase in demand for services, wait-lines for physiotherapy con-
stitute an increasingly growing concern. Technological innovation and policy attention are
needed to address this field. One potential approach for improving services is through
improved measurement and assessment via the use of human motion measurement tools.

During the rehabilitation process, the therapist typically initiates each session by per-
forming an assessment of the patient’s current status, using visual observation of the pa-
tient’s movement as well as questionnaires, such as the Community Balance and Mobility
Scale [40] and the Falls Efficacy Scale [108]. Following assessment, movement exercises
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are prescribed by a physiotherapist to help improve or recover muscle strength, endurance
and range of motion. To ensure that such exercises are performed correctly and safely, the
physiotherapist typically observes the patients while they perform the exercises. However,
with the exception of goniometry, most of the exercise assessment tools available to the
physiotherapist tend to be subjective in nature. Goniometry [75] is a human joint an-
gle measurement technique that isolates a single body joint in order to assess a subject’s
range of motion. However, goniometrics cannot be employed accurately when the subject
is moving, thus reducing its usefulness during exercise or functional rehabilitation.

Research from kinesiology suggests that, when participants are requested to reproduce
a specific motion, they tend to focus on the motion of the end-point in Cartesian space
(the end-effector) and not on joint trajectory, potentially leading to improper form [29].
For example, hip replacement patients asked to perform hip abduction while standing may
focus only on their foot position and bend their torso sideways to achieve the requested
foot position, leading to improper form. These incorrect exercises, often too subtle to be
easily noticeable, can lead to additional injury. An electronic measurement system could
catch these joint angle errors and report them to the physiotherapists.

Thus, the development of a rehabilitation exercise monitoring and assessment system
can serve to improve the rehabilitation process and reduce wait-lines by freeing up physio-
therapists during exercise supervision, providing more detailed joint angle measurements
over a wider range of situations, and automatically tracking the patient’s progress over
each rehabilitation session.

1.1 Thesis Contributions

This thesis proposes a method to measure a patent’s joint angles and identify each exercise
repetition during a physiotherapy session via lightweight sensors. An overview of the
system components is shown in Figure 1.1.

On-line pose estimation from body-worn sensors. Joint angles are computed using
state estimation tools and articulated rigid body chain modeling. The proposed
method is an improvement compared to goniometrics as it allows joint angle estima-
tion throughout the patient’s exercise routine and not only during static postures.

On-line exercise segmentation and identification. Relevant motion segments are iso-
lated and identified via multi-tier pattern matching and data analysis algorithms.
Segmented motion sequences provide additional information, such as the number of
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Figure 1.1: Components of an automatic rehabilitation supervision system. This thesis
proposes algorithms for pose estimation and segmentation.

repetitions of a given exercise performed, and the time taken to complete these repe-
titions. This information allows physiotherapists to assess the patient’s performance
quantitatively, to assess the patient’s progress and the effectiveness of treatment.

Experimental validation. The proposed system was verified on rehabilitation exercise
data from 20 healthy subjects. Five rehabilitation exercises, typically assigned during
TRJ rehabilitation, were performed by each subject: leg extension while seated, sit-
to-stand, squats, knee/hip flexion while supine and straight leg raise while supine.
Both the pose estimation and segmentation and identification algorithms were verified
on the collected dataset.

1.2 Thesis Outline

Chapter 2 provides an overview of existing research into automated rehabilitation and
related techniques. First, an overall survey of automated rehabilitation and monitoring
systems is provided. Specific fields examined are robotics-based rehabilitation, telereha-
bilitation and wearable solutions. Secondly, various joint angle estimation algorithms that
employ inertial measurement units are examined. These algorithms include algorithms that
rely on accelerometers for incline, algorithms that utilize gyroscope for when a participant
is moving rapidly, and algorithms that employ magnetometers to determine orientation.
Lastly, existing work on motion segmentation and identification is considered. The pri-
mary algorithms examined are zero-velocity crossing, dynamic time warping and the hidden
Markov model.
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Chapter 3 provides conceptual and algorithmic background information on the math-
ematical tools employed in this thesis. A robotic modeling framework, the Denavit-
Hartenberg convention, is introduced. Using this convention, a sequence of articulated
rigid bodies can be modeled with forward kinematics. A general overview on data collec-
tion via inertial measurement units, as well as data processing via Kalman filter and the
extended Kalman filter, is given. Segmentation techniques such as zero-velocity crossings
and the hidden Markov model are also introduced.

Chapter 4 details the proposed joint angle estimation algorithm. The Denavit-Hartenberg
convention and forward kinematics are utilized in the extended Kalman filter as the ob-
servation equations. Noise covariance adaption and potential fields are applied to the
extended Kalman filter to increase the robustness of the joint estimation algorithm and
reduce drift, especially in the joints that do not experience large changes. Sample results
are provided as examples of the algorithm in action.

Chapter 5 details the proposed segmentation and identification algorithm. During the
training phase, the algorithm requires a series of exemplar motions, extracts key velocity
features and generates a hidden Markov model for each template. During the on-line
execution phase, a sliding window searches the observation data for velocity features that
match the template and identifies them as possible segment potentials. These segment
potentials are verified by the hidden Markov model for closeness of match. Sample results
are provided as examples of the algorithm in action.

Chapter 6 describes the verification experiments. A dataset consisting of 20 healthy
subjects performing 5 rehabilitation exercises was collected, using both inertial measure-
ment units and motion capture. A detailed analysis of the performance of both the pose
estimation and the segmentation algorithms is performed, together with a comparison to
competing algorithms.

Chapter 7 summarizes the findings and conclusions of this research and outlines direc-
tions for future work.
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Chapter 2

Related Work

Many groups have proposed physiotherapy assistive systems in an attempt to address
long wait-lines, as well as provide physiotherapists with additional patient data. This
chapter reviews common approaches to rehabilitation technology, including robotics, tele-
rehabilitation, home-based solutions and body-worn sensors. Research groups have pro-
posed a wide variety of grip-based and exoskeleton robotics for rehabilitation. Telepresence
solutions, which allow patients to consult physiotherapists and perform supervised reha-
bilitation at a distance, have also been proposed. Different wearable sensing solutions have
been devised, to determine patient posture and joint angles. Lastly, motion segmentation
and identification algorithms that crop and label observed data are reviewed.

2.1 Automated Rehabilitation

2.1.1 Rehabilitation Robotics

One approach for automating the rehabilitation process is the use of robotics [76]. Garcia et
al. [32] provides an overview of robotics used in rehabilitation. Rehabilitation robotics have
been used in a wide range of applications, such as artificial limbs, physiotherapist assistants,
or providing personal care for patients in hospitals and residential sites. However, many
assistive robotic systems tended to use industrial robot arms for economic and availability
reasons. Industrial robots, designed for speed, accuracy, rigidness and power, are not
suitable for human interactions. Within a factory setting, no human operators are allowed
near the robots while they are in operation. Rehabilitation robots must incorporate some
degree of compliance control to minimize the risk of injury to patients.
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Surveys [66] of physiotherapists and occupational therapists from Australia, Canada
and the United States (n = 233) revealed that, for a rehabilitation robot to be useful, it
must be able to facilitate a variety of movements, be usable while the subject is seated,
provide biofeedback to patients, be able to facilitate activities specific to daily living, be
useful inside the home, have adjustable resistances to meet clinical needs, and cost under
$6000 USD. A comprehensive robotic system that achieves all the stated criteria does not
appear to currently exist, or is not well known, as only 6% of the medical providers surveyed
have used robot-facilitated rehabilitation.

Despite the difficulties, many prototype systems have been developed. An early attempt
to develop rehabilitation robotics examined utilizing continuous passive motion (CPM),
where an actuated brace moves the injured joint through a single degree of freedom (DOF)
motion, similar to how a physiotherapist would manually stimulate leg motion [89]. How-
ever, because CPM devices only actuate in one DOF, they do not exercise certain muscle
groups, and do not account for patient motion, thus potentially causing injury [86].

The MIT-MANUS [56] are a series of modular planar haptic robotic arms that have
been applied to stroke rehabilitation with success. These robotic arms were designed
to address the safety issues posed by industrial robots by including backdrivability and
compliance, and target upper-body rehabilitation by guiding the participants in a series
of goal-directed tasks. If the user of the robot was not able to perform these tasks at the
expected speed, the robot applied an assistive force that is scaled according to how close
the user’s movements are to the desired trajectory [13]. Clinical trials show that patients
that received robot-facilitated rehabilitation performed comparably or better than control
groups when assessed by functional metrics.

Certain exercises, such as stroke recovery hand exercises, are difficult for a single phys-
iotherapist to perform, since the patients tend to clinch their hands in a fist-like posture.
Systems such as the Hand Exoskeleton Rehabilitation Robot (HEXORR) [91] can help the
patients perform hand exercises, leaving the physiotherapist free to perform other tasks.
Patients with weakness in lower limbs can utilize devices such as the ZeroG [37] to alle-
viate a portion of the patient’s body weight, by using elastic straps and actuators. This
safeguards them from falling. The goals of such devices are to assist the therapist so that
they may safely train patients in standing, walking, and performing balance activities early
after injuries. These tasks are difficult for therapists alone, but are facilitated with robotic
support. However, even with such systems already developed, clinician attendance for
conferences relating to rehabilitation robotics tends to be poor, suggesting poor exposure.
Clinicians cite the following reasons why robots are not currently being used: financial
cost, long set up time, and the system is too complicated for the patient or physiotherapist
to run without engineering help [38].
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Cyberdyne1 developed the Hybrid Assistive Limb (HAL) exoskeleton [90], designed to
physically support the user’s rehabilitation movements. The HAL detects muscle biosignals
to estimate the user’s intended torque, and supports the motions correspondingly. When
biosignals are not reaching the lower-body due to spinal injuries, the HAL can also check
joint angles, centre of gravity and ground reaction forces to predict the user’s conditions
and assist when possible. The HAL has been tested with a spinal cord injury patient and
has shown that the patient was able to walk at a normal pace.

Other rehabilitation or assistive exoskeletons have also been developed or are commer-
cially available [70]. Ekso Bionics2 developed the Ekso exoskeleton walker [94] for paraplegic
users. Farris et al. [26] developed the gait-assist Vanderbilt exoskeleton for spinal cord
injury patients. The University of Washington UL-EXO7 7 DOF exoskeleton arms [78]
have been developed and tested in a clinical trial on stroke rehabilitation [52] and showed
comparable results in joint angle range recovery to typical rehabilitation techniques.

However, there are still outstanding questions involving rehabilitation robotics and
exoskeletons. Although the desired patient range of motion can be achieved with the
robots, the motion performed tends to be passive and not active. With the robot exerting
the bulk of the energy required to perform the motion, the patients do not exert themselves
and thus are not benefiting from the rehabilitation process to the fullest extent. This is
because it is difficult to automatically determine the extent of assistance the robot should
provide during rehabilitation. It is also difficult to determine if the robot-facilitated motions
generalize to all functional movements required for daily living.

2.1.2 Telerehabilitation

Telerehabilitation is the process of delivering rehabilitation over the telephone or other
communicative channels, allowing rehabilitation to be delivered to patients who cannot
travel to a physiotherapy clinic for in-person sessions due to severity of disease or disability,
or due to distance and travel time.

Tousignant et al. [95] developed an Internet-based videoconferencing solution, where
patients perform rehabilitation exercises at home with physiotherapist supervision over
the Internet, reducing patient travel time and costs. Assessments showed that patient
improvements were observed. This proof-of-concept study noted several limitations. In
particular, the need for someone to be on-site to ensure that no falls occur. Also, the

1Cyberdyne Inc., www.cyberdyne.jp
2Ekso Bionics, www.eksobionics.com
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exercise activities chosen did not require any additional equipment. The study noted that
it can be difficult to assess certain conditions, such as functional autonomy, strength,
walking and balance, via cameras. Concerns about maintaining a high-speed streaming
videoconferencing connection for over an hour were also cited as some disconnections and
pixel loss were noted. A follow-up pilot study [96] with the same setup showed high
clinician and participant satisfaction with the system, suggesting that videoconferencing
rehabilitation is feasible for total knee replacement patients. However, in both the proof-
of-concept and the pilot study, no control groups were used, making it difficult to compare
telerehabilitation with in-person clinical visits. In addition, only a small sample population
was assessed: n = 4 for the proof-of-concept study, and n = 5 for the pilot.

A similar system, developed by Russell et al. [85], did include a control group (n =
34), along with the test group (n = 31), and is designed to be usable with low-bandwidth
or dial-up Internet connections. The study was carried out in the hospital, with the
control group in a physiotherapy clinic and the telerehabilitation group in rooms designed
to look like a typical home environment without special rehabilitation equipment. The
telerehabilitation group showed no significant difference in improvements using the Western
Ontario and McMaster Universities Osteoarthritis Index (WOMAC) when compared to
the control group (p = 0.08) after six weeks. Both groups showed significant improvement
from the baseline. Similar to other cited studies, high levels of satisfaction were reported
by the patients. Some complaints were made about the video quality, but it did not seem
to impact the rehabilitation effectiveness. A commentary on the article [35] suggests that
telerehabilitation will be well received by the orthopedic community and that it will reduce
the cost of physiotherapy, offer patients greater convenience, and reduce wait-lines.

Fook et al. [31], citing problems with contemporary usability of videoconferencing
rehabilitation packages, the necessity of expensive cameras, and automatic assessment
of exercise performed, developed a system based on existing videoconferencing tools and
additional body-worn sensors. For exercise assessment, they utilized accelerometers, and
examined features such as peak detection and root-mean-square (RMS) values. The motion
data was presented to the patient and/or physiotherapist in real-time via 3D Studio Max
model, allowing the patient to correct improperly performed exercises as soon as the system
detects them.

2.1.3 Home-based Rehabilitation

Home-based rehabilitation has also been examined. Baskett et al. [7] suggested that
patients may not take ownership of their own rehabilitation and may feel that rehabilitation
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only happens during official therapy sessions. In their study, home rehabilitation was used
in an effort to change patient attitudes. Stroke patients were randomly assigned to a
rehabilitation clinic as control (n = 50) or were given an information session and sent
home for home rehabilitation with physiotherapist checkups at regular intervals (n = 50).
Both methods showed similar recovery rates after three months.

Other groups tried to remove the need for physiotherapist supervision altogether by
employing systems that can analyze the various home rehabilitation situations that the
patients are in and provide an appropriate feedback. To achieve this aim, Cavallo et al.
[17] developed the Pervasive Intelligent System for Rehabilitation and Assistance (PISRA).
PISRA employed software packages, wearable wireless sensors and robotics to assist the
patients and their home-based caregivers. Although the system implemented features such
as fall detection and location tracking, it did not perform postural detection and thus
cannot be used for direct home rehabilitation exercise supervision.

2.1.4 Wearable Sensors for Rehabilitation

Lymberis [69], Bergmann and McGregor [9] examined the requirements of patients and
healthcare providers for wearable sensors by looking at collections of published work. Wear-
able sensors should be lightweight, compact, and simple to operate and maintain. They
should not affect daily behaviour but should provide reliable and constant monitoring of
the patient’s status, as well as provide feedback to the patient. They should be designed
to work along side, not replace, a healthcare professional.

Developing Sensing Packages and Communication Protocols

Various inertial measurement unit (IMU) and wireless sensing packages have been pro-
posed. Van Acht et al. [100] introduced the Philips3 wireless inertial sensor node (PI-node),
an IMU magnetic, angular rate and gravitational (MARG) sensor array, which consists of
an accelerometer, a gyroscope and a magnetometer. It transmits data wirelessly via IEEE
802.15.4, a wireless protocol designed for a wireless personal area network (PAN).

Burns et al. [14] developed the Shimmer4 wireless sensory system, which transmits
accelerometer data over IEEE 802.15.4 and Bluetooth, with options to extend the system
to accommodate for a gyroscope, magnetometer or electromyograph (EMG).

3Royal Philips Electronics, www.research.philips.com
4Shimmer Research, www.shimmer-research.com
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Afonso et al. [1] concluded that the IEEE 802.15.4 was insufficient for real time applica-
tions and suffered from too many packet losses. They developed their own wireless protocol,
and implemented it onto CrossBow5 MICAz [22] transmitters. The system tracked heart
rate, respiratory rate, and posture. The paper focused on verifying that their setup was
feasible from a power usage and data transmission rate point of view, and was not used to
measure patient status. No comparisons were made to existing systems, making it difficult
to assess the merits of the system.

Hadjidji et al. [36] created a new communication protocol to optimize battery use,
also based on the IEEE 802.15.4. They tested their system with 3 Shimmer sensors and
showed that it could run for 10 hours per charge. They have also shown that, with 5 nodes
transmitting at 400 Hz, they achieved less than 5% of packet loss.

Fergus et al. [27] proposed a more immersive solution. In a home setting, patients
were given wireless sensors to wear as a PAN. In the home, a larger network was also
installed, which the PAN could interface with, and included existing networked devices
such as computers. This allowed patients to interact with a wide variety of tools in their
own home without having to purchase additional equipment. Exercise motions can then
be monitored by the physiotherapist and played back later for the patient.

Using Sensor Packages for Rehabilitation

Salarian et al. [88] used IMUs to record the Timed Up and Go (TUG) test, a standard
assessment of balance of mobility. The TUG requires a subject to stand up from a chair,
walk 3 meters, turn around, and return to the chair. The IMU signals were used to
determine how long it takes for the motions to occur, and reported a TUG assessment
based on time of walking.

Varkey et al. [101] emphasized the distinction between activity recognition, which only
determines the type of activity a given subject is performing, against movement recogni-
tion, which involves breaking down the motions and analyzing them. They used support
vector machines (SVMs) and feature extraction on accelerometers and gyroscopes in order
to identify motions. The features examined were mean, standard deviation, maximum,
peak-to-peak, RMS, and correlation between accelerometer and gyroscope values. They
employed a two-level windowing, where the larger window identified the general activity,
and the small window, moving only within the larger window, identifies the motion in-
tervals. For this, they employed Shimmer motes, and achieved over 80% accuracy with
exercise motions such as walking, standing and writing.

5Crossbow Technology, www.xbow.com
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The above works use wireless sensing for gross movements or activity recognition. Pre-
vious work focusing on pose recovery and joint angle estimation are reviewed in detail in
Section 2.2.

A survey [107] on wireless sensing for clinical use concluded that wearable sensing
must be made as simple as possible in order to be utilized by clinicians. This survey
identified three major barriers to the widespread acceptance of wearable sensing in the
clinic: financial challenges, lack of technical standards and usability guidelines, and lack of
education for end-users. The latter two were cited to be especially significant. The lack of
standards leads to increased implementation costs for the clinicians. Clinicians sometimes
feel overloaded with information, so collected data should automatically be inserted into
electronic healthcare records for later review. Many of the current barriers are not related
to technology, but to the question of whether patients and clinicians will find the developed
systems convenient and easy to use. The development of standards and a tighter integration
with existing systems would help with this problem.

Also, measurements generated by current sensors are not part of traditional measures
of health. The assessment of angular velocity and force exertion is not currently used in
physiotherapy practice and thus technology developed to assess these is not easily applied
in current practice. Some efforts need to be diverted into making these measures relevant
to the healthcare professional [107].

2.2 Pose Estimation

This section focuses on joint angle recovery methods utilizing lightweight IMU packages
that can be mounted non-invasively onto the patient via Velcro straps. Source-less IMUs
are favored over camera, acoustic or mechanical based motion detection due to size, cost
and environment concerns [110]. The use of ambulatory sensors also enables applications
in outdoor settings, such as for sports training. However, using IMUs to obtain an accurate
estimate of the joint angles is a challenging problem. Gravity contamination, sensor noise
and integrational drift degrade the accuracy of the joint angle estimation, and must be
accounted for in any joint angle estimation solution.

2.2.1 Inclinometers

Many of the existing works in joint angle determination utilize accelerometers as incli-
nometers to measure knee angles. Often, the operational space is simplified, and motions
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are only examined in a 2D sagittal plane. For slow motions, the acceleration contributed
by the subject’s motion is assumed to be negligible compared to gravity. Trigonometry is
applied to the acceleration signal to obtain the incline of the accelerometer.

Bergmann et al. [8] used accelerometers in this manner to obtain the incline of the knee
and ankle. The ankle incline angle was subtracted from the knee incline angle to obtain
the knee joint angle for healthy subjects performing a stair climbing task, and produced
comparable accuracy to joint angles determined by a motion capture system. However,
there are numerous applications where the slow motion assumption does not hold. When
the motion is fast, it is difficult to determine which component of the acceleration is caused
by motion, and which is caused by gravity.

Dong et al. [23] considered the leg sagittal acceleration in gait movement. They utilized
two accelerometers per link segment and combined them into a virtual accelerometer at a
common location in order to use the difference in the accelerometers’ readings to mathe-
matically remove the link velocity. The incline angle was obtained from the accelerometers,
and inter-frame subtraction was applied to determine joint angles. This approach requires
two sensors per joint, making it cumbersome to use.

Low et al. [65] developed an accelerometer sensing suite, calculated orientation by
trigonometry, and showed that going through a 180◦ motion at 160◦/sec results in less
than 1◦ error when compared to a rotary encoder. In a later work [60], they showed that
their system performs well for sagittal arm motion, but have not demonstrated that the
system can be generalized to 3D motion.

In general, using accelerometers alone to estimate joint angles is a limited solution, since
this approach can only determine the link incline for joints moving in a plane perpendicular
to gravity.

2.2.2 IMU Systems

Gyroscopes can be added to accelerometers to improve accuracy and handle fast and non-
sagittal motions. However, gyroscopes can also introduce additional difficulties. The most
well-known issue is the gyroscopic drift. Gyroscope calibration is often imperfect, and a
non-zero DC bias is introduced into the sensor reading, producing a non-zero angular ve-
locity measurement when no motion is actually occurring. When integrated, the estimated
position diverges.
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Complementary filter

Boonstra et al. [11] determined the incline of the thorax, thigh and calf by taking the arct-
angent of the accelerometer, integrating the gyroscope data and combining the two results.
The acceleration signal was low-pass filtered to reduce sensor noise, while the gyroscope
signal was high-pass filtered to reduce the impact of the DC offset. This arrangement,
also known as the complementary filter [39], is common in mobile robotics, vehicular and
aviation navigation applications due to its computational and mathematical simplicity.
Boonstra’s implementation does not recover joint angles, but sagittal incline. Although
the above approaches showed good accuracy in 2D motion analysis in the sagittal plane, it
is not trivial to generalize these algorithms to handle 3D motion, as all of these algorithms
rely on the assumption that the motion is constrained in the gravity-acting plane, so that
the accelerometer can be used as an inclinometer.

Ayoade et al. [3] used pre-built SparkFun MARG arrays, attached to each major limb
segment to determine the orientation. The data was processed by a complementary filter.
Since they employed a large number of sensors, they were not able to run the system at
a speed higher than 50 Hz, which may have contributed to drift issues. Their system
included an automatic drift correction mechanism, which required an initial time period
before the motions started. The paper noted that data with drift was discarded, but did
not state the effectiveness of the drift correction mechanism.

Strapdown integration

Williamson and Andrews [106] employed accelerometers during stationary or slow-moving
situations to obtain the knee joint angle after applying inter-frame incline angle subtraction
to the accelerometer signals. When the variance of the accelerometers reached a threshold,
the angle was calculated by the integration of the gyroscope instead. This allows the
gyroscope to be employed in fast-moving situations, and also resets the drift error by
switching to the accelerometer signal on a regular basis. This process of directly integrating
the gyroscope signal is commonly known as strapdown integration [53]. Williamson’s system
was used to recover sagittal knee angle in a sit-to-stand task, and showed improvements
over accelerometer-only setups. However, this approach would only work with rhythmic
motions, where stops are frequent. For a long motion, the integrator would not have a
chance to reset, increasing the impact of drift on the joint estimates.

Luinge and Veltink [67] utilized strapdown integration in a Kalman filter framework.
A set of IMUs were placed on the pelvis, trunk and forearm. Gyroscope data was used
to generate the rotational matrices for the motions of each body segment, and allowed
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the direction of gravity in the sensor frame to be identified. This allowed the acceleration
contributed by the motion to be disambiguated from the acceleration due to gravity, to
obtain the inclination of the link. A gyroscope DC bias term was also included as a state
in the Kalman filter, to control the gyroscopic drift. Although Luinge’s implementation is
capable of generating estimates of the full 3D rotation of each body segment with respect
to the world frame, only the body segment incline and heading were evaluated in the
paper. Luinge’s algorithm treats each body segment as an independent rigid body, without
considering any kinematic relationships or mobility constraints between body segments.
This means that position and orientation estimates for adjacent body segments may drift
and move with respect to each other in ways that are not physically realizable.

Zhou et al. [110] also utilized strapdown integration to obtain the joint rotation of each
link, to develop a home-based stroke rehabilitation system. Unlike previous works, they
subtracted out the gravity vector, as opposed to relying on it to obtain the link incline.
They obtained joint end-effector location by double-integrating the gravity-subtracted ac-
celeration signal to estimate the position. To reduce the impact of integration drift on the
end-effector calculation, Lagrangian optimization was applied with kinematic constraints.
Although this algorithm has a mechanism for dealing with accelerometer integrational drift,
it does not have an explicit method for handling gyroscopic integrational drift.

Zhu and Zhou [111] removed inertial acceleration by strapdown integration, then com-
bined the gravity vector from the accelerometer with the magnetometer to obtain incline
and orientation. Inter-frame subtraction was used to obtain joint angles. This was fa-
cilitated within a Kalman filter framework. It was shown that this produced a more
accurate joint angle recovery than using only strapdown integration or only accelerometer
and magnetometer. This arrangement was verified with two planar elbow flexion/extension
motions. One drawback of using magnetometers is that the magnetometer is sensitive to
local fluctuations of the Earth’s magnetic field that occur when ferromagnetic materials
are nearby.

Roentenberg, Baten and Veltink [82] attempted to counter this issue by mounting a
set of magnetic coils on the subject. At regular intervals, the magnetic coils generated a
magnetic field which was detected by the magnetometers, providing relative distance and
orientation information to supplement the existing IMU signals. Strapdown integration
was applied to obtain the joint angle and remove the gravity vector. Dead reckoning was
applied to obtain position. The magnetometer sampling rate was lower than that of the
IMU, so the magnetometer information was only used to correct for drift. These sensors
were combined via Kalman filter. This system was verified on several upper body motions,
arm motions and walking. It is possible that ambient ferromagnetic materials or magnetic
fields could still interfere with this system. This system also requires additional equipment
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to be mounted on the patient, which is undesirable.

2.2.3 Commercial Packages

In a follow-up work, Roentenberg, Luinge and Slycke [83] created the Xsens MVN suit6

for kinematic measurements. The MVN suit consists of 17 MARG modules integrated into
a wearable suit. Orientation of the sensors is obtained by a series of calibration motions.
Link lengths are measured manually and inserted into the kinematic model for accuracy.
The Kalman filter is applied to combine the sensor data to determine segment positions.

Similar commercial packages, such as the Animazoo IGS series7, or the Biosyn FAB8,
are widely used in academic research. However, these commercial solutions may not be well
suited for physiotherapy applications. These solutions tend to be expensive, and require
a long calibration routine, which may not be possible for patients who have difficulty
moving. Suit size and fit is also a concern, especially as obesity is a risk factor for many
musculoskeletal injuries. Furthermore, equipment upkeep, such as cleaning, is nontrivial,
especially for the suit-based products.

2.2.4 Summary

Most of the existing works implement body segment orientation estimation without the
use of kinematic constraints (e.g. [11], [67]). This allows these algorithms to be applied
on any arbitrary object and determine its orientation with respect to the world frame.
However, human kinematics constrains the possible movements that can be physically
realized. These constraints should be considered to improve joint angle estimates, such as
the knee joint’s inability to perform abduction motion. Without a kinematic model, the
knee joint would be modeled as a 3 DOF joint, which it is not, allowing drift to occur
in this direction. By utilizing a kinematic model in the proposed algorithm, the space of
possible motions is realistically constrained, providing a more accurate estimate of joint
angles.

Without a kinematic model, these algorithms also cannot provide joint angle estimates.
Instead, they provide orientation estimates relative to the world frame, such as incline an-
gle from ground or heading angle from the vertical. To produce more clinically relevant

6Xsens Technologies, www.xsens.com
7Animazoo Ltd., www.animazoo.com
8Biosyn Systems, www.biosynsystems.net
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information, the estimated orientations must be converted to joint angles by incorporating
kinematic information in a post-processing step. By incorporating the kinematic informa-
tion directly into the estimation process, the proposed algorithm produces the joint angle
data of interest directly and improves robustness against drift.

In this thesis, an algorithm (Chapter 4) to estimate arbitrary 3D human motion is
proposed. Small and light-weight IMU sensor packages attached to the thigh and calf are
used to wirelessly transmit the patient’s acceleration and gyroscope profile during motion.
A minimal number of sensors are employed to minimize the encumbrance on the patients.
IMU sensors are unaffected by environment factors, which gives them an advantage over
magnetometer-based methods. Using a kinematic model, the sensor information is fused
with an extended Kalman filter. Kinematic constraints and filter noise adaptation are
employed to reconstruct the joint angles of the subject. The proposed system is capable
of recovering the leg pose in terms of joint angles during arbitrary 3D motion. This is a
significant improvement over existing works based on incline angles in the sagittal plane,
which are incapable of providing 3D angle recovery.

2.3 Segmentation and Identification

Technology to measure and analyze human motion has the potential to provide physio-
therapists with more accurate tools for assessment and progress measurement, as well as
to provide patients with real-time feedback.

To enable automated measurement and analysis, the system must measure the human
movement and identify exercise movement segments from the time-series data. Human
movement can be measured via either motion capture systems [43, 68] or ambulatory
sensors such as IMUs [64, 84, 109]. Given the measured time-series data, segmentation is
the process of identifying the starting and ending locations of each movement of interest,
breaking a continuous sequence of motion data into smaller components, termed motion
primitives. If the patient is performing more than one type of exercise in a given recording
session, identification (i.e., labeling) of each segment with the appropriate exercise type is
also required.

One major application field of segmentation is imitation learning for robotics applica-
tions. The most intuitive way for humans to teach any given action is by demonstration,
which would make robotics more accessible to non-specialists [10, 15, 42, 44]. This is par-
ticularly useful in potentially dangerous environments where robots can replace humans,
such as in manufacturing plants or search and rescue [32].
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Another major application field is gesture recognition. Gesture recognition allows users
to interact with computer systems in a more intuitive fashion, such as through handwriting
and touchpads [41, 105], or camera-based systems [71]. It is also useful for sifting through
large libraries of motions, such as in cinematography [5, 59], or to ensure a given motion
is correct, in fields such as signature verification [47] or sports training and other medical
applications [25, 99].

The large number of DOFs in the movement data makes scalability an important issue.
Simple models like singular limb studies contain 4-6 DOFs, while full body human models
can have 20-30 DOFs [77]. Some algorithms scale poorly to higher dimensions, and cannot
be used in an on-line setting. For rehabilitation, on-line processing is essential to allow the
system to inform the patient if a motion is being performed incorrectly.

Both segmentation and identification are also made more difficult due to the variability
observed in human movement. Motion can vary between individuals due to differing kine-
matic or dynamic characteristics, and also within a single individual over time, due to short
term factors such as fatigue, or long term factors such as recovery or disease progression.
Moreover, these factors can introduce both spatial and temporal variability, which a good
segmentation algorithm must be able to handle.

2.3.1 Template-free Approaches

Zero-velocity Crossings

If the motions to be observed are not known a priori, then non-template based methods are
required. Pomplun and Matarić [79] employed zero-velocity crossings (ZVCs) to identify
points where the velocity value changes sign, denoting when a joint segment direction
change, as segment points. If multiple joints are examined simultaneously, segment points
can be declared by thresholding the sum of squares of the velocities. A minimum threshold
for segments was included, to prevent spurious ZVCs from creating large numbers of false
positives. Although a fast algorithm, ZVC tends to over-segment, particularly with noisy
data or with increasing number of DOFs. Since ZVC does not consider motion templates,
it is difficult to determine which crossing points can be safely ignored. In addition, the
ZVC algorithm does not provide a method for motion identification. Pomplun suggests
that a distance metric can be used, but these metrics are sensitive to spatial and temporal
variations, and may not provide reliable movement labels. The algorithm was used to assess
a 11-subject study on human imitation learning, where video clips of arm motions were
shown to the participants. The participants were either instructed to practice the observed
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motion before data collection, or not. The collected data was segmented and compared
against the demonstrator’s motions. Since the study was on the impact of rehearsing on
the ability to accurately reproduce a motion, segmentation accuracy of the algorithm was
not explicitly reported.

Fod et al. [30] expanded on the basic ZVC approach, considering both Pomplun’s
velocity thresholds, as well as declaring a segment point when multiple DOFs exhibit
ZVCs within a short timespan. This method works only with certain types of movements,
since not all motions would be characterized by multiple ZVCs. For example, a circular
motion would not cause ZVCs in joint-based DOFs. Slow movement at the start or end of
segments would also prevent a ZVC declaration at the correct location, even though the
movement has effectively ceased.

Lieberman and Breazeal [61] also expanded on the ZVC, demonstrating that the velocity
threshold method can be complemented by other signal types, such as tactile contact. The
segmenting velocity threshold was also modified so that it is dynamically determined as a
function of the velocity as opposed to being a static value. This allows the threshold to
account for speed changes in the motion. However, using a single velocity threshold means
that DOFs that have large velocity valleys and peaks would dominate the auto-threshold
determinations, thus hiding the segmentation points that would be best characterized by
DOFs with small valleys and peaks. Also, at high dimensionality, the algorithm would
likely report weaker performance since most of the DOFs are likely to be stationary, thus
underreporting the velocity value and leading to false positives. Lieberman applied this
algorithm to a human demonstrator in a motion capture suit, to generate and segment
motions for imitation learning purposes, so explicit segmentation metrics were not provided.

Techniques that rely purely on ZVC tend to be difficult to use, as spurious crossings
can often occur. Noises and vibrations can cause excess ZVCs, leading to oversegmenta-
tion. Smooth transition sequences of motions can also lead to the velocities to approach
ZVC, but not actually cross zero. Although it may be possible to combine oversegmented
components, it is difficult to determine which segment points may be ignored without ad-
ditional algorithmic guidance. In addition, ZVC performs segmentation only and does not
identify the underlying motion. It is possible to use distance metrics and thresholding,
such as mean-square-error, to label the movements, but this approach does not provide
any mechanism to account for temporal variations. For complex motions, multiple DOFs
may exhibit ZVCs simultaneously, but slightly offset from each other. In these cases, it
may be difficult to determine which ZVC marks the actual segment point. Although ZVC
provides a fast and intuitive segmentation method, its various shortfalls make it difficult
to use.

18



Variance

Koenig and Matarić [54] proposed considering changes in signal variance as segmentation
points. A moving window is used to examine the input data. When the windowed variance
is high for several DOFs, it implies that the current windowed data is in the progress of
changing into another primitive, and thus is an appropriate location to segment. This al-
lows for a quick and systematic method for segment point declaration. However, examining
only variance may not provide sufficient information. A participant may perform a motion
that inherently has a large variance value, or perform several different motions that involve
the same DOFs but is a different motion. For example, an arm flexion and extension mo-
tion may be considered as two different motions, but since variance calculations ignore the
direction of the movement, the variance may not have changed significantly between the
flexion and the extension. Keonig applied this method to navigational robotic imitation
learning, but it may not be as suitable for movement segmentation.

A similar work from Kohlmorgen and Lemm [55] applied the same principles, using
the observational probability distribution as the segmentation cost function. The data is
windowed and the probability density function (PDF) of the windowed data is calculated,
for each adjacent window, over the length of the observation. The PDFs are used to train a
hidden Markov model (HMM), which is traversed by the Viterbi algorithm [80] to generate
the most likely state sequences from the PDFs. These state transitions mark the segment
points. Janus and Nakamura [46] applied Kohlmorgen’s algorithm [55] to human movement
data. HMM state changes occurred when the signal’s distribution function is sufficiently
different from the previous state, suggesting possible segmentation points at these state
changes.

2.3.2 Deterministic Template Approaches

If the motions to be observed are known, motion templates can be used to assist in the
identification of motions. However, temporal and spatial variability of motion makes direct
comparison of the template with the observation data difficult. Any segmentation and
identification should provide some mechanism to account for these variabilities.

Dynamic time warping (DTW) is one example of a template-based method. Originally
a popular technique in the field of speech recognition [74], DTW found application in mo-
tion segmentation as well. DTW [87, 49] identifies the temporal variations between the
observed motion and the motion template by selectively warping the time scale of the ob-
served sequence to the template. The warping is done by employing dynamic programming
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(DP). Specifically, DTW calculates the distance from each data point of the template to
each data point of the observation, creating a distance matrix. The warping path that
leads to the minimum distance is selected, creating a mapping between the template and
the observation. The distance metric utilized is typically the Euclidean distance, but al-
ternative distance metrics, such as the autocorrelation [49] have been proposed. Therefore,
segments can be accurately segmented and identified even with significant spatial and
temporal variations between the observation and the template. However, DP-based algo-
rithms become very computationally expensive at higher dimensionality, preventing them
from being utilized on-line.

Poor warping can also lead to singularity issues, where large portions of one motion are
warped to small portions of the other. The severity of the singularity issue can be mitigated
by constraining the warping path. However, generating an appropriate constraining band
requires the algorithm to be tuned, so a fixed band is typically used [87]. Ratanamahatana
and Keogh [81] proposed an algorithm that calculates an optimal band dynamically. This
algorithm starts by performing DTW between two data series with a constraint band
width of zero, and increases the band width until the distance between the two data series
is minimized, or a threshold is reached. The algorithm then bisects the data, and performs
the same iteration individually, on each half of the data series. The algorithm continues
to iterate with smaller data lengths, until a minimum length of

√
m/2 is reached, where

m is the length of the data series, as anything smaller increases the risk of overfitting.
This creates a band that varies in width as a function of time. The algorithm was verified
on human arm motion performing gun-draws, synthetic data simulating nuclear power
plant instrumentation failure and a handwritting dataset; it was found that the dynamic
band method reported better identification rates then the existing fixed-band method.
Although this algorithm produces a more customized warping band, it suffers from several
drawbacks. This iterative search adds more computation time to an algorithm that is
already known to be computationally expensive. A new constraint band needs to be
generated for different situations, since a constraint band optimized for the mapping of a
given participant performing a specific motion may not be optimal for another participant
performing the same motion. Although this method addresses the singularity issue, it does
so by increasing the calculation time.

Keogh and Pazzani [50] noted that classic DTW considers only the position data and
does not account for higher level features. They proposed the Derivative DTW (DDTW),
and examined the derivative of the data streams instead by using the square of the difference
of the derivatives of the two signals instead of the Euclidean distance. This allows the
algorithm to negate global effects such as signal bias. The derivative also allows more
of the latent features to be emphasized. Using only the Euclidean distance, DTW will
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map two points of identical value together, even if one point is part of a falling trend and
the other is part of a rising trend. Using the derivate will allow the larger pattern to be
captured. This algorithm was verified on a set of space shuttle sensor readings, the currency
exchange rate between the German Deutschmark and five other European currencies over
the span of six months, as well as a set of electroencephlograph (EEG) measurements.
All sets of data show similar trends but are non-identical. Comparison between DTW and
DDTW shows that DTW tends to be overaggressive in the warping, while DDTW provides
a more accurate mapping. Although the DDTW algorithm outperforms standard DTW,
they have similar runtime, meaning that it does not scale well to higher dimensions.

Ilg et al. [43] employed DTW in a multi-tier fashion. The observation signal is dimen-
sionally reduced by removing all data points that are not at a velocity zero, as velocity
zeros denote turning points in the motion, and thus can be considered as key features of the
motion. DTW is performed on this reduced dataset to align these key features. A tolerance
is included to allow for missed key features, as the template and the observation may not
have the same velocity zeros, to reduce the number of mapping singularities. Each window
in these high-level segments is resampled to have the same number of data points. A finer
alignment is performed in each of these windows. Assuming that the observed motion can
be warped to the template with the proper temporal and spatial warping, the algorithm
uses DTW to calculate an optimal temporal mapping path between the template and the
observation, and applies some interpolated shifting around the suggested mapping path to
minimize the temporal difference between the two signals. Once the optimal time warping
is found, the spatial distance offset can be calculated. The temporal and spatial warping
variables are also constrained to minimize the amount of warping required to obtain the
best fit [33]. The algorithm was implemented as part of a motion generation algorithm,
and not specifically for segmentation, so segmentation and identification accuracy were
not reported. Similar to previous DTW algorithms, this algorithm does not address the
computational costs of using DP, and thus may not scale well to higher dimensions.

2.3.3 Probabilistic Template Approaches

An alternative method is to employ non-deterministic algorithms, such as HMMs. Tem-
plates encoded as HMMs can be used as to assess the similarity between a template and
an observation sequence.

Bashir et al. [6] crops observation data based on zero-crossing occurrences in the
curvature data. The Cartesian curvature was used as it is a function of the observation data
and its first and second derivative, and therefore incorporates high-level features inherently.
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The cropped data is reduced using principal component analysis (PCA). Motions that have
similar PCA coefficients are clustered together via k-means spectral clustering, and are used
to train HMMs. Observation segmentation was performed by reducing the observation
data to PCA coefficient vectors, and comparing them to the HMMs to calculate likelihood.
However, utilizing PCA coefficients instead of the original data can be difficult, as similar
motions may have similar PCA profiles, making them difficult to differentiate. Using
curvature to segment may also lead to oversegmentation issues such as those found in the
ZVC algorithms.

Other researchers used HMM to both segment and identify. Lv and Nevatia [68] used
HMM templates as classifiers in an AdaBoost algorithm. Features such as joint angles
and joint Cartesian coordinates were used. HMM templates are generated for M action
types and N features, resulting in M ×N number of classifiers. Multi-class AdaBoost was
employed to weigh the discriminative powers of each of the HMM classifiers. Segmentation
was determined by dynamic programming. The observation data is split into two, with the
first window starting at some minimum length lmin, and increased per iteration. Both ends
of the data are ran through the AdaBoost classifiers, and the window configuration that
resulted in the highest likelihood was selected. The algorithm is run multiple times, with
the starting point of the first window advancing at each run. The algorithm was verified
on various upper-body motions, and was shown to be robust even when a large number of
features are examined. However, this method requires a large computational cost for both
training and segmenting, due to the usage of dynamic programming, and thus cannot be
used on-line.

An alternative approach is to assume that the observed data evolves according to an
underlying deterministic model, but has been contaminated with time warping and addi-
tive noise. Probabilistic methods can be used to approximate both the parameters of the
underlying model and find the segmentation locations. For example, Chiappa and Peters
[20] derived the underlying signal using the Bayesian likelihood that a sequence of observa-
tion data is from some underlying action model, as well as the warping needed to transform
the observation sequence to the action. This is estimated by an expectation-maximization
routine. They showed that a routine that provided maximum a posteriori estimates for the
template provided the best segmentation match. This algorithm was tested on table tennis
motions, and was found to be in strong agreement with manual visual segmentation. How-
ever, this approach requires that the entire sequence is available for action fitting, making
it unsuitable for on-line applications.

Keogh et al. [48] proposed a 2-tier on-line segmentation algorithm. They employ a slid-
ing window and mean square error (MSE) for coarse segment estimation. Following coarse
segmentation, a second window and additional distance metrics were used to determine the
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actual segment. Amft et al. [2] extended this to a 3-tier system, by adding HMMs as an
identification tool for 4 DOF arm motion identification. They report an average accuracy
of 72% (94%, ignoring false positives and negatives) for 4 motion primitives.

2.3.4 On-line Template Generation

On-line template construction has also been proposed. Kulić et al. [57] extended Kohlmor-
gen’s algorithm [55] by clustering together previously segmented sequences to generate new
templates in real-time. Once a segment window has been identified, the segment is mod-
eled as a HMM. The Kullback-Leibler distance between the observed HMM and existing
models is calculated. If the distance is small, then the observation HMM is merged into
the corresponding existing HMM. If not, it is added to the template collection, and used to
improve the segmentation. The algorithm was verified on an 18-minute full-body motion
sequence, and shows good segmentation accuracy, but also suffers from false positives due
to the algorithm oversegmenting motion sequences into smaller subsequences that were
considered to be a single segment by the manual segmentation.

Baby and Krüger [4] proposed a similar learning technique. To generate a primitive
template, a HMM is generated from the observations. When new observation data becomes
available, the probability of generating this new observation data, given existing HMMs,
is calculated. If this value is low, implying that the newly observed motion is not similar
to existing models, a new HMM is generated. The Viterbi algorithm is used to determine
the underlying states from the HMMs.

2.3.5 Summary

Numerous algorithms have been proposed to date to address the problem of segmentation
and identification. Focusing on techniques which can be employed on line, as required
by the rehabilitation application, ZVC provides an intuitive template-free segmentation
method with low runtime, but tends to oversegment. DTW accounts for both spatial and
temporal variations between motions, but is also prohibitively expensive to perform on-
line. HMM serves as a computationally lighter alternative to DTW, but can also become
computationally expensive if the likelihood function is utilized repeatedly.

Chapter 5 proposes a template-based on-line technique based on both velocity features
and probabilistic templates. The system consists of a training phase, where exemplar data
are used to create feature and HMM motion templates, and a segmentation phase, where
the observed data is swept for characteristic features that match the feature templates.
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When a segment candidate is found, the HMM templates are used to identify the motion
and confirm the exact segment point locations.

Unlike many of the existing approaches to temporal segmentation, the proposed algo-
rithm is capable of running on-line during motion execution and provides accurate seg-
ments that reject false positives, with the assistance of template information. It is suitable
for high dimensionality signals from full body motion, and explicitly models both spatial
and temporal variability to provide accurate segmentation results without the use of data
warping or the need for a subject-specific template.
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Chapter 3

Background

This chapter overviews the existing concepts, algorithms and techniques employed in this
thesis. It provides an overview of several robotic modeling concepts employed in subse-
quent chapters, such as the Denavit-Hartenberg frame assignment convention and forward
kinematics for chains of articulated rigid bodies. General operating principles of iner-
tial measurement units are reviewed. The Kalman filter, a sensor fusion algorithm for
linear systems, is presented, along with its non-linear extension, the extended Kalman fil-
ter. Lastly, the mathematical framework for modeling time-series human-motion data, the
hidden Markov model, is overviewed.

3.1 Robotic Modeling

3.1.1 Denavit-Hartenberg Convention

The Denavit-Hartenberg (DH) frame convention [98] is commonly utilized to model ar-
ticulated chains of rigid body links by modeling the system mobility as a series of single
DOF joints. The DH convention attaches a frame to each rigid body link, and defines
the transformation from one link frame to the next as a set of 4 transformations: link
length, link twist, link offset and joint angle. The definitions of these variables can be
found in Table 3.1. To fully represent the 6 DOF transformation between two frames in
four variables, the DH convention constrains the frames assignment by two rules: The axis
xi is perpendicular to the axis zi−1, and the axis xi intersects to the axis zi−1. Since the
equations for the DH formulation are defined recursively, joint i is always rigidly attached
to frame i− 1, and actuates frame i. See Figure 3.1 for an illustration.
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(a) 2D model of the DH convention. Image adapted from [93].

(b) 3D model of the DH convention. Image adapted from [34].

Figure 3.1: Coordinate frames satisfying the DH convention.

Table 3.1: DH convention parameter definitions.

Joint angle θi angle between the xi−1 and the xi axes, about the zi−1 axis
Link offset di distance from frame origin i− 1 to the xi axis, along the zi−1 axis
Link length ai distance between the zi−1 and the zi axes, along the xi axis
Link twist αi angle from zi−1 to the zi axis, about the xi axis
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These four variables generate an overall transformation matrix from the i− 1th frame
to the ith frame:

Ti−1,i =









cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1









(3.1)

The transformation matrix from base frame to the ith frame can be found by:

T0,i = T01T12T23 . . . Ti−1,i (3.2)

R0,i = T0,i(1 : 3, 1 : 3) (3.3)

x0

i = T0,i(4, 1 : 3) (3.4)

where R0,i is the rotation matrix from the base frame to frame i, and x0

i is the end-effector
position. R0,i is generated from the first three columns and rows of T0,i. x0

i is generated
from the first three rows of the last column of T0,i.

If a tool is offset from the end effector frame, and additional tool transform can be
added to find the position of the tool:

T0,t = T0,iTtt (3.5)

where Ttt is a tool transform matrix that relates the end effector frame to the tool frame.

3.1.2 Forward Velocity and Acceleration Kinematics

The following section derives the forward velocity and acceleration equations for revolute
joints only, but the concepts presented can be easily extended to prismatic joints as well.
Several scalar variables introduced here, such as the joint velocity q̇i, are vectorized so
that the matrix multiplications and cross products can be performed properly, as per the
following: q̇i = [0; 0; q̇i]. This convention holds for all of Section 3.1.2.

Given the total angular velocity of the preceding frame ωi−1

i−1
and the joint velocity q̇i,

generated by revolute joint i, the total angular velocity ωi
i of the next frame is:

ωi
i = RT

i−1,iω
i−1

i−1
+RT

i−1,iq̇i (3.6)
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This formulation allows the angular velocity of each segment to be determined recur-
sively based on the motion of the current link (the ith frame) and the link immediately
previous to it (the i− 1th frame). The angular velocity q̇i, describing the velocity between
frames i− 1 and i, is included by rotating q̇i into the current frame with a rotation matrix
Ri−1,i. Ri−1,i is obtained directly from the DH frame definition.

The angular velocity is differentiated to obtain the angular acceleration αi
i:

αi
i = RT

i−1,iα
i−1

i−1
+RT

i−1,iq̈i + ωi × (RT
i−1,iq̇i) (3.7)

The linear velocity of the current frame ẋi is obtained by computing the cross-product
of the angular velocity and the displacement vector from the origin of the current frame
to the origin of the previous frame, ri:

ẋi = RT
i−1,iẋi−1 + ωi

i × ri (3.8)

Differentiation is carried out again to obtain the linear acceleration, ẍi:

ẍi,i = RT
i−1,iẍe,i−1 +αi

i × ri + ωi
i × ωi

i × ri (3.9)

ẍe,i = RT
i−1,iẍe,i−1 +αi

i × ri + ωi
i × ωi

i × ri +R0,ig (3.10)

In Equation 3.9, the first term represents the acceleration transmitted from the previous
frame, while the second and third terms represent the tangential and radial acceleration,
respectively. An extra term, R0,ig, is added to Equation 3.10 (describing the end effector
acceleration) in order to model the gravity term g = [9.81; 0; 0], and to rotate it into the
local frame.

3.2 Sensor Fusion

3.2.1 Inertial Measurement Units

IMUs refer to electronic devices that measure an object’s motion. They typically consist
of some or all of the following components:

accelerometer measures linear acceleration
gyroscope measures angular velocity
magnetometer measures heading via Earth’s magnetic field
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These systems were initially developed for vehicular navigation. Until the development
of micro-electro-mechanical systems (MEMS), these sensing packages tended to be large
and thus unsuitable for human tracking. Advancements in semiconductor fabrication have
allowed for the miniaturization of these systems and made them very cost-effective, allowing
for their widespread usage.

Accelerometer

An accelerometer determines linear acceleration with test masses. It can be conceptualized
as a known test mass suspended in a chamber by three springs mounted perpendicularly to
each other. When acceleration is applied to the test mass, the length of spring displacement
can be measured, and thus force acting on the test mass can be determined.

A MEMS accelerometer follows this principle. A suspended mass (seismic mass) is
allowed to move according to accelerations it experiences. The seismic mass has fingers
that extend into sets of parallel plates, forming a differential capacitor. When the fingers
move due to acceleration on the seismic mass, the capacitance changes proportionally to
the acceleration felt.

Gyroscope

A gyroscope determines angular velocity with a heavy spinning disk (flywheel) mounted
within a series of free-rotating rings (gimbals). External torques to the flywheel changes the
flywheel’s angular momentum. In order to conserve the angular momentum’s direction, the
flywheel rotates towards the direction of the torque. The angular velocity of this rotation,
known as the precession, can be used to determine the external velocity.

A MEMS gyroscope operates under a similar principle, but does not rely on gimbals.
Also known as the vibrating structure gyroscope, the common MEMS gyroscope relies on
two vibrating masses that oscillate in opposite directions, as a differential capacitor. When
an angular velocity is applied to the gyroscope, the Coriolis forces on the vibrating masses
push them apart, resulting in a capacitance change. When a linear acceleration is applied,
the two masses move in the same direction, so no capacitance change is experienced.

Magnetometer

A magnetometer, which operates similarly to a magnetic compass, utilizes a suspended
object sensitive to magnetic fields that aligns its orientation to the field to provide an
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orientation reading.

A MEMS magnetometer can use a variety of different physical phenomena for sensing.
The most common is the Hall effect sensor. Electric current running through a conductor
is deflected transversely to the current direction due to the Lorentz force effect. The
current deflection results in a voltage potential difference across the wire in proportion to
an external magnetic field.

3.2.2 Kalman Filter

The Kalman filter [104] is a sensor fusion technique that estimates system state from noisy
observations, assuming that the linear state and observation model are known, and that
both of the process and measurement noise are zero-mean Gaussian functions. For the
standard Kalman filter, the state estimate st and observation update zt are defined as:

st = Ast−1 +wt−1 (3.11)

zt = Cst + vt (3.12)

Equation 3.11 is the process update equation that relates the previous state of the
system st−1 to the current state st. The process noise wt−1 is assumed to be zero-mean
and Gaussian, with a covariance of Qt. Equation 3.12 is the measurement update equation,
relating the current state st to the measurement vector zt. vt is the measurement noise,
and is also assumed to be zero-mean and white, with a covariance of Rt.

At each time step, an a priori state estimate ŝ−t can be made using Equation 3.11.
Then, this state estimate can be updated with the current observation information by:

ŝt = ŝ−t +Kt(zt − Cŝ−t ) (3.13)

The residual, zt −Cŝ−t , indicates the discrepancy between the predicted measurement
Cŝ−t and the actual measurement zt. If the residual term is zero, it implies that the
prediction and the measurement are equal. The Kalman gain Kt is derived by minimizing
the error covariance P−

t for the a posteriori state estimate ŝ. Given a linear system and
white noise, a closed solution can be determined and is given by:

Kt = P−

t CT (CP−

t CT +Rt)
−1 (3.14)

The Kalman equations can be separated into two sections. At each time step, the state
prediction equations are performed, then updated upon with the measurement update
equations. These equations are summarized in Figure 3.2.
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state prediction equations

ŝ−t = Aŝt−1

P−

t = APt−1A
T +Qt

measurement update equations

Kt = P−

t CT (CP−

t CT +Rt)
−1

ŝt = ŝ−t +Kt(zt − Cŝ−t )

Pt = (I −KtC)P−

t

Figure 3.2: Kalman filter prediction and update equations.

3.2.3 Extended Kalman Filter

The Kalman filter is applicable only to systems with linear models. The extended Kalman
filter (EKF) [104] extends the Kalman filter to non-linear systems by linearizing the state
and observation equations with a first-order Taylor series expansion, then utilizing the
results in the Kalman filter.

The state and measurement equations can be written in a general form: st = f(st−1,wt−1),
where f is the non-linear state evolution function and zt = h(st,vt), where h is the non-
linear measurement equation. These equations are linearized as follows:

st ≈ s̃t + At(st−1 − ŝt−1) +Wtwt−1 (3.15)

zt ≈ z̃t + Ct(st − s̃t) + Vtvt (3.16)

where At = ∂f/∂st is the Jacobian matrix of the partial derivatives of the state equation
f with respect to the state st, s̃t = f(st−1,w = 0) is the noise-less state estimate, and
Wt = ∂f/∂wt−1 is the Jacobian matrix of partial derivatives of f with respect to the
process noise wt−1. zt = h(st,v = 0) is the measurement vector, whereas z̃t is the noise-
less estimate of the measurement. Ct = ∂h/∂st is the Jacobian matrix of the partial
derivatives of the measurement equations h with respect to the state st, and Vt = ∂h/∂vt

is the Jacobian matrix of partial derivatives of h with respect to the measurement noise
vt.

The Kalman gain Kt is then computed as follows:

Py = CtP
−

t CT
t + VtRtV

T
t (3.17)

Kt = P−

t CT (Py)
−1 (3.18)

where Py is an intermediate noise covariance matrix. The formulation of the extended
Kalman filter is shown in Figure 3.3 [104].
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state prediction equations

ŝ−t = f(st−1,w = 0)

P−

t = APt−1A
T +WtQt−1W

T
t

measurement update equations

Py = CtP
−

t CT
t + VtRtV

T
t

Kt = P−

t CT (Py)
−1

ŝt = ŝ−t +Kt(zt − h(ŝ−t ,v = 0))

Pt = (I −KtCt)P
−

t

Figure 3.3: Extended Kalman filter prediction and update equations.

These equations can be separated into a priori and a posteriori equations, indicating
operations before and after the incorporation of the measurement update step. The a
priori state ŝ−t and error covariance P−

t are estimated by the state prediction equations,
and are based on the state of the previous timestep st−1. The current measurement zt

is incorporated into the Kalman gain Kt calculation, allowing for the calculation of the a
posteriori state ŝt and error covariance Pt in the measurement update equations [104].

3.3 Motion Modeling

3.3.1 Hidden Markov Model

The HMM [80] is a stochastic model where the process or signal being modeled is repre-
sented by an evolving unobservable state. The HMM can be conceptualized as a set of
interconnected nodes. At each timestep, the system undergoes a state transition, which
may lead the system to remain in the current state or transition to another state. The
state has the Markov property, i.e., the next state depends only on the current state. The
transitions are represented by the state transition matrix, denoting the probabilities that
the system would shift into another state, given its current state. In an HMM, the state
itself is not directly observable, so the underlying state is inferred by the probabilistic rela-
tionship between the hidden state and its corresponding observable output. This contrasts
with the Markov chain, where the state is directly observable. The HMM is commonly
used to model human motion [103], as the model can capture both spatial and temporal
variability inherent in human motion.

The HMM stores its model information as a set of three variables, commonly referred
to as λ = (AH , BH ,πH):
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• The state transition probability matrix, AH , represents the probability that a given
state will transition into another state, or remain in the current state. If the proba-
bility that the state ai,i will remain in itself is high, this implies that the motion is
slow-moving. In an ergodic (fully connected) HMM, where a given state can tran-
sition into any other state, AH will not have any zero values. In a HMM that is
non-ergodic, such as a left-right model, where a given state can transition only to
itself, or advance to the next state, AH will have zeros in some of its entries to denote
impossible state transitions.

• The observation probability matrix, BH , contains data on the observation model
for each state. This variable denotes the possible observable outputs for each state.
For discrete variables, BH contains the possible output alphabet. For continuous
variables, Gaussian or mixture of Gaussian distribution models are typically used.
The mean µH and covariance ΣH of each state are stored. For human motion,
this represents key pose positions and the range of variability for each pose over all
the motion exemplars, respectively. BH is also commonly known as the emission
probability.

• The initial state distribution, πH , represents the probability that an observation se-
quence begins in a given state. Since the HMM only considers the previous state
to calculate the next state, the initial state is influential in determining the tran-
sition sequences. This parameter is important in a fully connected HMM, but in
a left-right HMM, this variable is less significant, as for the left-right HMM, it is
typically assumed that each observation sequence begins in the initial state. πH is
also commonly known as the prior.

Thus, at each timestep, the current state can be determined by examining the previous
state and AH , and the emitted observation can be determined by examining BH .

Forward Algorithm

To assess the similarity between the trained model and an observation sequence, the for-
ward algorithm [80] is utilized. The forward algorithm calculates the likelihood that the
observation data O could have been generated by the model.

P(Q|λ) = π1a1,2a2,3 · · · aT−1,T (3.19)

P(O|Q, λ) = b1(O1)b2(O2) · · · bT (OT ) (3.20)

P(O|λ) = P(O|Q, λ)P(Q|λ) (3.21)
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where Q is a given state sequence, and a and b are the probability of Q and O occurring,
given λ, respectively. Thus, the forward algorithm determines the probability of a given
state sequence given an HMM P(Q|λ) and the probability of this state sequence emitting
a given observation sequence P(O|Q, λ) to determine the probability of that a given ob-
servation sequence could have been generated by a given HMM P(O|λ). Typically, the
logarithm of P(O|λ) is reported, as the log-likelihood (LL) value is easier to work with
than extremely small values that could be generated by P(O|λ), i.e. LL = logP(O|λ). As
an application of dynamic programming, the forward algorithm can become computation-
ally heavy. It requires O(N2T ) calculations, where N is the number of states and T is the
observation length [80].

Baum-Welch Algorithm

The Baum-Welch algorithm [80] is an expectation-maximization algorithm utilized to train
the model in a two-step iterative fashion. The expected value E is calculated by taking
the expectation of the log-likelihood of the observation O and state sequence Q given the
current model estimate λn, logP(O,Q|λn):

E(λn|λn−1) = E [logP(O,Q|λn)|O, λn−1] (3.22)

The maximization step computes:

∂ logP(O|λ)
∂λ

= 0 (3.23)

and solves for λ for the updated model parameters. These two steps are repeated until
convergence. The Baum-Welch algorithm only finds a local maximum, so the training
initialization λ1 is important.

Bayesian Information Criterion

A HMM’s ability to represent, identify and reproduce a motion primitive is dependent on
its model initialization and the number of states used. Although hidden, the state often
represents some physical significance to the model, such as key poses for motion capture,
or phonemes for speech analysis. A model with a small number of states may not carry
enough resolution to fully model the primitive. A model with a large number of states
has heavy computational costs and may cause the HMM to become overfitted [80]. The
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Bayesian Information Criterion (BIC) can be used to balance between model accuracy and
high state cost:

BIC = −2LL+Nslog(Tobs) (3.24)

where Ns is the number of states used for this model, and Tobs is the number of observa-
tions used. Plotting the BIC against Ns shows that the LL improvement per state added
decreases exponentially, so a large number of states will add a large computational cost,
but may yield only marginal improvement in the HMM’s ability to model the template
data.
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Chapter 4

Pose Estimation

This chapter develops an algorithm for on-line joint estimation from on-body IMU sensors.
The joint angle estimation is achieved by estimating joint angles from linear acceleration
and angular velocity measurements via EKF and a kinematic model of the human body.
In order to minimize drift, angle constraints are applied to the EKF state estimate. An
automated approach is also developed for estimating and adapting the process noise during
on-line estimation1.

4.1 Kinematic Modeling

To derive a kinematic model of the lower body, the human leg is modeled as an articulated
chain of rigid bodies, where each rigid body corresponds to a leg limb. The rigid bodies are
connected through a set of joints (i.e., the hip, knee and ankle). To construct the kinematic
model, a reference frame (denoted as the ith frame) is attached to each DOF (denoted as
the i− 1th joint) following the DH convention (Section 3.1.1). The DH parameters utilized
are outlined in Table 4.1.

Using the DH convention shown in Figure 4.1, Frames 0, 1 and 2 are located at the hip,
forming a 3 DOF spherical joint, and describe the motions of the thigh. This allows for hip
flexion/extension, internal/external rotation, as well as abduction/adduction. q1,2,3, q̇1,2,3
and q̈1,2,3 describe the joint angles, angular velocities and angular accelerations of the 3
DOFs in the hip joint. The base frame is assumed to be stationary, ẍe,0 = α0

0
= ω0

0
= 0,

and thus ω1

1
= RT

01
q̇1 and α1

1
= RT

01
q̈1. ẍe,3 describes the linear acceleration of the knee,

1This work has been published in Physiological Measurement [62].
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Table 4.1: DH parameters for the EKF kinematic model

Link θ d r α

1 q1 + π/2 0 0 π/2
2 q2 + π/2 0 0 −π/2
3 q3 − π/2 0 lupper −π/2
4 q4 + π/2 0 0 π/2
5 q5 llower 0 0

(a) The individual DH frames, with the subject
in the standing position facing into the page.

(b) The DH frames on the leg, with the subject
in the standing position facing right.

Figure 4.1: The DH frame assignment utilized in the EKF. The orange boxes represent the
sensor packages. The hip is modeled as a 3 DOF joint, and the knee is modeled as a 2 DOF
joint. Frame 0, 3 and 5 refer to the hip, knee and ankle starting frames, respectively. Frame
1, 2 and 4 correspond to intermediate hip and knee DOF frames.
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and is measured by the knee accelerometer. ω3

3
describes the angular velocity of the thigh,

and is measured by the knee gyroscope. Frames 0 and 1 share the same origin, and thus
have no link offset, ẍ1 = ẍ2 = 0.

Offset from the first 3 frames by the length of the thigh, Frames 3 and 4 form a 2 DOF
joint at the knee, allowing for knee flexion/extension, as well as internal/external rotation.
q4,5, q̇4,5 and q̈4,5 describe the joint angles, angular velocities and accelerations of the 2
DOFs in the knee joint. ω5

5
and α5

5
describe the total angular velocities/accelerations of

the calf, including motion generated at the hip and knee joints. ẍe,5 describes the linear
acceleration of the ankle, measured by the ankle accelerometer, whereas ω5

5
describes the

angular velocity of the calf, and is measured by ankle gyroscope.

Frame 5 is offset from Frames 3 and 4 by the length of the calf, and is the last frame of
the kinematic chain. Homogeneous transformations are utilized to rotate between the DH
frames and the local sensor frames.

The full set of equations are as follows:

ω1

1
= RT

01
q̇1 (4.1)

α1

1
= RT

01
q̈1 + ω1

1
× (RT

01
q̇1) (4.2)

ẍ1 = 0 (due to no length between segment 1 and 2) (4.3)

ω2

2
= RT

12
ω1

1
+RT

12
q̇2 (4.4)

α2

2
= RT

12
α1

1
+RT

12
q̈2 + ω2

2
× (RT

12
q̇2) (4.5)

ẍ2 = 0 (4.6)

ω3

3
= RT

23
ω2

2
+RT

23
q̇3 (4.7)

α3

3
= RT

23
α2

2
+RT

23
q̈3 + ω × (RT

23
q̇3) (4.8)

ẍ3 = α3

3
× ruLen + ω3

3
× ω3

3
× ruLen (4.9)

ẍ3s = α3

3
× ruShim + ω3

3
× ω3

3
× ruShim (4.10)

ω4

4
= RT

34
ω3

3
+RT

34
q̇4 (4.11)

α4

4
= RT

34
α3

3
+RT

34
q̈4 + ω4

4
× (RT

34
q̇4) (4.12)

ẍ4 = RT
34
ẍ3 (4.13)
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ω5

5
= RT

45
ω4

4
+RT

45
q̇5 (4.14)

α5

5
= RT

45
α4

4
+RT

45
q̈5 + ω5

5
× (RT

45
q̇5) (4.15)

ẍ5s = RT
45
ẍ4 +α5

5
× rlShim + ω5

5
× ω5

5
× rlShim (4.16)

R03e = R01R12R23Rtt1 (4.17)

R05e = R01R12R23R34R45Rtt2 (4.18)

ω3s = RT
tt1ω

3

3
(4.19)

ẍ3g = RT
tt1ẍ3s +RT

03eg (4.20)

ω5s = RT
tt2ω

5

5
(4.21)

ẍ5g = RT
tt2ẍ5s +RT

05eg (4.22)

x0

e,upper = R03eruShim (4.23)

x0

e,lower = R03ruLen +R05erlShim (4.24)

where ẍ3g, ẍ5g, ω3s and ω5s denote the accelerometer and gyroscope values for the thigh
and calf IMU sensors. x0

e,upper and x0

e,lower are the Cartesian coordinates of the knee and
ankle respectively. ruShim is the vector from the hip origin to the location of the sensor
on the thigh. ruLen is the vector from the hip to the knee. rlShim is the vector from the
knee to the sensor on the calf.

For simplicity, Frame 0 is assumed to be stationary. For motions where the foot is not
moving, such as sit-to-stand, the kinematic chain is reversed, such that the ankle is the 3
DOF joint, and the knee remains as the 2 DOF joint. Although the current formulation
requires a stationary base frame, the proposed algorithm can be extended to motions that
do not have a fixed base, by accounting for the base frame motion in the state vector.
This is a common technique in the robotics field, and has been applied to the analysis of
mobile manipulators. The motion of the base can be estimated within the same Kalman
filter framework by incorporating data from a sensor that experiences only the base frame
movement, such as a sensor located at the waist.

Modeling internal/external rotation at both joints, particularly since the knee does not
have significant range of motion in this direction, allows for increased flexibility for sensor
placements. It is expected that the sensors would be mounted on the front of the subject,
but poorly placed sensors can be modeled by including a non-zero initial internal/external
rotation (q2, q5).
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4.2 Extended Kalman Filtering

The goal of the proposed approach is to estimate the joint angles q based on the mea-
surements obtained from the accelerometers and gyroscopes, ẍ3g, ẍ5g, ω3s and ω5s using
the EKF. As described in Section 3.2.2, the EKF formulation assumes that process and
measurement noise is Gaussian distributed with zero mean. It should be noted that hu-
man motion variability may not be Gaussian, particularly at higher velocities. However,
for motions performed at slow to normal velocities, such as rehabilitation exercises, noise
characteristics can be approximated by the Gaussian distribution.

The system state consists of the joint angles, velocities and accelerations, q, q̇ and q̈.
The following kinematic motion equations are used as the process (state) model:

qt = qt−1 + q̇∆t+ q̈∆t2/2 (4.25)

q̇t = q̇t−1 + q̈∆t (4.26)

q̈t = q̈t−1 (4.27)

This system model includes the evolution of position and velocity, while acceleration
is modeled to remain constant. The unmodeled higher order terms (i.e., changes in accel-
eration) are accounted for through the process noise. Note that this modeling approach
requires that the process noise be modified proportional to the motion speed, as the impact
of the unmodeled higher order values would become more significant at higher speeds, and
thus Qt would need to be increased accordingly during the state estimation. The initial Qt

matrix is obtained by hand-tuning, as described in Section 6.2. Additional tuning of Qt

is performed automatically during the EKF estimation, to adjust the EKF to the motion
that is being estimated. The automatic tuning is described in Section 4.3.

Since all the equations are linear, the A matrix is:

At =





1 ∆t ∆t2/2
0 1 ∆t
0 0 1



 (4.28)

The process noise Jacobian Wt is a diagonal matrix, with 0 for q, and 1 for q̇ and q̈.
This effectively models the kinematic system as a constant-velocity model, as noise is being
injected in both q̇ and q̈. The constant-velocity model was adopted after experimentation
with a constant-acceleration model, where noise is only injected into q̈, yielded poor results.

Wt =





0 0 0
0 1 0
0 0 1



 (4.29)
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Equations 4.19, 4.20, 4.21 and 4.22 are used as the measurement equations, which are
non-linear. They are linearized as described in Section 3.2.3 and utilized in the extended
Kalman filter, as the Ct matrix.

The measurement noise Jacobian Vt is a diagonal matrix, as all sensors contribute noise:

Vt =

[

1 0
0 1

]

(4.30)

4.3 Adapation of the Noise Parameters

Poor selection of the process noise wt can significantly impact the performance of the
filter. If it is too small, the higher order terms that are not modeled in the A matrix
cause improper state estimation. If it is too high, too much noise is injected into the
state estimate. Both of these situations could affect the state and state variance estimates,
causing the EKF intermediate matrices to become poorly conditioned. In particular, the
calculation of the Kalman gain in Equation 3.18 requires the inversion of the intermediate
noise covariance matrix Py (Equation 3.17). The measurement equation Ct is a function of
the state. Thus, if a poor wt selection leads to poor state recovery, Py can become poorly
conditioned. The matrix inversion of a poorly conditioned matrix causes numerical errors,
and can cause the EKF algorithm to diverge.

Since the goal is to develop an on-line estimation algorithm, an approach to automat-
ically detect poor conditioning in the covariance matrix and prevent EKF divergence is
needed. When Py is approaching a singularity, the filter state is reset to the initial values,
since a near-singular Py matrix can introduce erroneous results into the states. After the
filter has been reset, the process covariance is increased to reduce the chances of future sin-
gularities. The initial process noise parameters can be selected to be low, and be increased
gradually by this tuning process until the proper process noise is found.

It is, however, difficult to set a threshold ǫdivThres for the poorly conditioned matrix.
The condition number of the Py matrix fluctuates based on the state estimates, and can
naturally become high and low. Since it is undesirable to accidentally reset the filter or
change the noise profile while the filter is working as expected, a high value for ǫdivThres

was set, so that the auto-tuning code would only be triggered right before Py becomes
singular. As a result, by the time the condition number of Py exceeds the threshold, the
recovered angles are likely to have been inaccurately estimated for several timesteps. A
timestep rewind is applied so that the updated filter will overwrite these poorly estimated
states.
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1: if cond(Py) ≥ ǫdivThres ‖ q ≫ 3qc then
2: Rewind timesteps
3: Reset filter state
4: Increase process noise w
5: end if

Figure 4.2: Process noise auto-tune algorithm.

It may also be possible that the joint angles become exceedingly large before the con-
dition numbers are overtly impacted. Therefore, if a given joint exceeds its corresponding
joint limit, qc,i, by a factor, the filter is also reset. The factor is arbitrary set to 3 such that
this filter reset will not activate prematurely. This process is summarized in Figure 4.2.

Poor selection of measurement noise vt can also impact filter performance. If vt is too
small, the measurement equations cannot adequately account for the amount of noise that
is in the sensor data, causing integrational drift. If vt is too high, motion data may be lost
as it is being discarded by the EKF as noise. However, unlike the process noise, where poor
selection could cause singularities, it is difficult to determine if the signal is drifting or if
the movement is natural. However, natural motion is constrained by the human joint angle
ranges, and cannot exceed them, whereas a drifting signal would grow without bound.

4.4 Kinematic Constraints

To incorporate knowledge of the range of motion constraints to reduce drift, the estimated
state angles are checked at each timestep to ensure that they are within realistic bounds,
as illustrated in Figure 4.3. A potential field [51] is applied to push q away from joint
bounds. The potential field generates a virtual acceleration pushing the joint away from
the joint boundary whenever the joint is close to the joint limit. Given

ρ
i
= qi − q

c,i
(4.31)

ρi = qc,i − qi (4.32)

the potential field acceleration γi is calculated by

γi =



















η

(

1

ρ
i

− 1

ρ
0,i

)

1

ρ2
i

if ρ
i
≤ ρ

0,i

−η
(

1

ρi
− 1

ρ0,i

)

1

ρ2
if ρi ≤ ρ

0,i

0 otherwise
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Figure 4.3: Subject moving within joint angle constraints qc. When the joint angle estima-
tion approaches the constraint bounds, an artificial acceleration is applied against the joint
angle to push the joint angle estimate back into expected ranges.

where q
c,i

and qc,i are the lower and upper bound on the joint qi, ρ
0,i

and ρ
0,i are the

distance limits of the potential field influence, and η is the potential field coefficient. As
qi approaches the joint constraint qc,i, γi applies an increasingly large acceleration in the
opposite direction to push the joint back within the acceptable range. The pseudocode for
this process is described in Figure 4.4.

The proposed joint limit algorithm can be used to constrain the joint angle estimates
to anthropometrically feasible values in the case of arbitrary 3D motion. If additional
information is available about the motion to be performed, the joint limits can be modified
to include this additional information. For example, for the case of motion in the sagittal
plane only, joint angle limits for out of plane joints can be decreased to incorporate this
additional information into the filter and further reduce drift error. Since the potential
field runs on top of the EKF, it introduces additional calculations at each timestep. This
increased complexity is not significant, as this implementation of the potential field does
not involve computationally heavy components.

4.5 Examples

Section 6.2 describes the experimental validation of the proposed algorithm on a motion
capture dataset. Figure 4.5 shows an example of knee extensions while seated. Figure 4.6
shows an example of knee-hip flexions while supine. The thick lines in the figures denote
the end-effector position ground truth from motion capture, whereas the thin lines denote
the estimated end-effector position from the EKF algorithm.
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1: for i = 1→ 5 do
2: ρi ← qc,i − qi
3: ρ

i
← qi − q

c,i

4: if ρi ≤ ρ
0,i then

5: q̈t,i ← −η(1/ρi − 1ρ
0,i)/ρ

2

i

6: else if ρ ≤ ρ
0
then

7: q̈t,i ← −η(1/ρi − 1ρ
0,i
)/ρ2

i

8: else
9: q̈t,i ← Aq̈t−1,i

10: end if
11: end for

Figure 4.4: Kinematic constraining algorithm.
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Figure 4.5: Linear acceleration, angular velocity and joint angle as measured from sensors
(thick) and from joint estimation (thin) of leg extension motion.

45



10 15 20

−10

−5

0

5

10

Li
n.

 A
cc

el
. [

m
/s

2 ]

Time [s]

(a) Thigh accel

10 15 20

−10

−5

0

5

10

Li
n.

 A
cc

el
. [

m
/s

2 ]

Time [s]

(b) Calf accel

10 15 20
−3

−2

−1

0

1

2

3

A
ng

. V
el

o.
 [r

ad
/s

]

Time [s]

(c) Thigh gyro

10 15 20
−3

−2

−1

0

1

2

3
A

ng
. V

el
o.

 [r
ad

/s
]

Time [s]

(d) Calf gyro

10 15 20
−0.5

0

0.5

1

1.5

2

2.5

3

A
ng

le
 [r

ad
]

Time [s]

(e) Hip joint

10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

A
ng

le
 [r

ad
]

Time [s]

(f) Knee joint

Figure 4.6: Linear acceleration, angular velocity and joint angle as measured from sensors
(thick) and from joint estimation (thin) of knee-hip flexion motion.
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Chapter 5

Segmentation and Identification

In this chapter, a template-based on-line segmentation technique based on both velocity
features and probabilistic templates is proposed. The system consists of a training phase,
where exemplar data are used to create feature and HMM motion templates, and a seg-
mentation phase, where the observed data is swept for characteristic features that match
the feature templates. When a segment candidate is found, the HMM templates are used
to identify the motion and confirm the exact segment point locations1.

5.1 Modeling Motion Segments

A left-right HMM is used for each motion template, since it is expected that in a given
template, the motion will progress in a sequential pattern. Therefore πH = [1; 0; 0; ...].
The observation data corresponds to joint angles, while the hidden states represent key
poses in the primitive. AH represents the stochastic first order dynamic model governing
the transition between key poses. Since the state data is continuous, BH is represented
by a set of multivariate Gaussians, where each Gaussian mean represents the pose of the
associated hidden state, and the covariance matrix represents the variance and covariance.

The Baum-Welch algorithm [80] (Section 3.3.1) is utilized to train the template model.
Testing with the collected dataset (Section 6.1) has shown that 6 to 10 state HMMs result
in similar levels of segmentation accuracy, similar to previous findings for human motion

1This work has been submitted for publication in IEEE Transactions on Neural Systems and Rehabil-

itation Engineering [63].
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primitive modeling [10]. An 8-state system was selected as the optimal compromise between
the time needed to perform template training and segmentation accuracy.

To assess the similarity between a trained model and a new observation sequence, the
forward algorithm [80] (see Section 3.3.1) is applied. The forward algorithm calculates the
likelihood that the observation data could have been generated by the model. In order to
compare the continuous time series data against the template, a candidate section must
be selected. A simple sliding window of fixed length W is not optimal, since intra- and
interpersonal differences may result in a different time taken to complete each motion. A
second alternative is to test a set of windows of variable size, W + nWext, where n is a
multiplier on the fixed-window series, and Wext is the length of addition to the observation
window added. Both windowing methods are computationally expensive as they require
the forward algorithm to be applied T −W times for a single fixed window, or (T −W )×n
for multiple fixed-windows for each HMM template.

The forward algorithm also implicitly penalizes longer observations. Since the forward
algorithm calculates the likelihood via dynamic programming, and the values examined
are probability values (hence a value between 0 and 1), the longer the state sequence, the
smaller the probability becomes [80]. To account for this, the likelihood measure can be
normalized by the length of observation data, or the observation data can be resampled so
that all data passed into the forward algorithm are of the same length. The latter approach
is adopted herein.

5.2 Feature Extraction and Template Training

Instead of using fixed window sizing, this thesis proposes a feature searching method, to
provide an initial estimate of possible windowing edges. The exemplar motions are scanned
for key features, such as velocity peaks or ZVCs, as a way to approximate a potential
interest region in the observed data. The forward algorithm can then be performed to
assess the likelihood that this region was generated by one of the known motion templates,
thus significantly reducing the number of times the forward algorithm needs to be executed.

It is assumed that ZVCs start and terminate any given primitive [79]. In this algorithm,
a ZVC is defined as one of the following: 1) the velocity crosses from positive to negative,
2) the velocity crosses from negative into positive, or 3) the absolute mean value of the
velocity over a small window is below a threshold [30]. Using velocity features allows
the algorithm to locate the general shape of the motion of interest more robustly then
algorithms that rely on distance measures [48].
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Significant DOFs

multiplied together to form

an aggregated velocity

ZVC and peak position,

magnitude and sequence

noted from AV

FEATURE EXTRACTION

Non-significant DOFs

Significant DOFs

FEATURE EXTRACTION

Position differentiated 

to velocity

Figure 5.1: Feature component of the segmentation training procedure. The training al-
gorithm extracts significant DOFs from velocity variances from the provided exemplars, and
multiplies these velocities together to form an aggregated velocity. Velocity features (ZVC,
velocity peaks) are extracted from the aggregated velocity.

Human motions, particularly typical rehabilitation exercises, are characterized by pe-
riodic velocity patterns, such as flexion and extension, making velocity peaks and zero
crossings a salient indicating feature. A typical feature template of a rehabilitation motion
would consists of a ZVC, then a positive or negative peak, then another ZVC, the opposite
peak, and a final ZVC. The feature extraction and matching is based on the assumption
that such a velocity profile sequence can be extracted and used in the template exemplars
and observations. The template training procedure is summarized in graphical form in
Figure 5.1 and 5.2; pseudocode is provided in Figure 5.3.

HMM template training (Figure 5.3.5-6)

The exemplars are used to train HMMs with the Baum-Welch algorithm [80], creating an
HMM for each primitive. An 8-state left-right model is used. The Gaussian observation
functions are initialized by k -means clustering. LL threshold values LLthres, used to rec-
ognize template motions in the observation data, are derived by taking the average of the
LL values of the training exemplars evaluated on the HMM, shifted by a scaling factor.
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Joint angles examined

Exemplar motion divided

up into different states

HMM TRAINING PREPARATION

BAUM-WELCH LL THRESHOLD CALC

Figure 5.2: HMM component of the segmentation training procedure. The training algo-
rithm uses means (cross) and variances (oval) of equally spaced windows as the initial values
for the Baum-Welch HMM training algorithm. The exemplar motions are not actually nor-
malized to the same length, but the window width used is adjusted for each exemplar, and
thus achieves similar effects. Normalized exemplars are shown here for ease of view. The LL
threshold is calculated from running the exemplars through the trained HMM.
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1: for all Motion templates do
2: for all Exemplar data do
3: Filter data via Butterworth filter
4: end for
5: Train HMM via Baum-Welch with exemplar data
6: Calculate LL threshold with exemplar data
7: Calculate significant DOFs via k -means with exemplar velocities
8: Compute AV from significant DOFs
9: for all Exemplar data AV sequences do

10: Locate all ZVCs in AV sequence
11: Check peak values between ZVCs
12: Discard small peaks
13: Note all peak signs, magnitudes and times
14: Peak signs sequence stored for feature matching
15: end for
16: Select majority peak signs sequence
17: end for

Figure 5.3: Template training algorithm pseudocode.

Significant DOFs (Figure 5.3.7)

In order to improve the proposed algorithm’s robustness in the presence of high dimension-
ality data, a DOF feature selection routine is implemented. Rehabilitation motion tends
to be focused on improving the range of motion of the injured joints, thus it can be as-
sumed that the joints undergoing the largest range of motion are the significant ones. The
significant DOFs of a given template are selected by calculating the standard deviations of
the template joint velocities and grouping them via k -means clustering, with k = 2. The
DOFs that are in the cluster with the highest centroid are assumed to be significant for
that particular template.

Velocity aggregation (Figure 5.3.8)

The velocities of the significant DOFs for a given template are multiplied together, to create
a scalar estimate of the overall velocity and estimate the ZVCs and velocity peaks. With
this approach, the subsequent algorithm steps are the same regardless of the dimensionality
of the original motion sequence, allowing the algorithm to handle both multi-DOF and
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single-DOF motions in the same way. It is also simpler to threshold on a single aggregated
velocity (AV) signal instead of on several independent DOFs.

Velocity feature extraction (Figure 5.3.9-16)

Although typical rehabilitation movements exhibit a two-peak feature, the proposed al-
gorithm does not automatically assume that all motions are two-peaked. Rather, the
template training sequence searches for ZVCs in the AV of each exemplar, and examines
the peak magnitude between each pair of ZVCs. If the velocity peaks between any two
ZVCs are small, defined as a percentage of the maximum or minimum peak over the whole
exemplar, that peak is rejected as a feature. Otherwise, the velocity peak sign, magnitude
vp and the time point when it occurred is noted. The sequence of ZVCs and velocity peak
signs are utilized for feature matching. The peak time is used to calculate peak-to-peak
lengths tpp. vp and tpp are used to reject significantly smaller motions from triggering a
feature match in the template matching section.

Each of the exemplar motions will have its features extracted in this manner. The
template characteristics, that is, its sequence of ZVCs and velocity peak signs over each
of the exemplars, are examined. If the majority of the exemplars have identical template
characteristics, then that characteristic sequence is used. If an agreement cannot be made, a
template training failure is reported, as this suggests that the exemplars consist of differing
motions, and that the exemplars should be reviewed for consistency.

5.3 Segmentation and Recognition

Once the templates are prepared, the algorithm can be used to segment observation
data. This process is outlined in graphical form in Figure 5.4; pseudocode is provided in
Figure 5.5.

Segmentation preparation (Figure 5.5.2-3)

During the on-line segmentation phase, a small sliding window is passed over the observa-
tion data, noting the local peak values and ZVCs of each of the DOFs. An AV stream is
computed for each template, based on the template’s significant DOFs.
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FEATURE SEARCHING

ZVC and peak profile

matches template

Small peaks and short intervals between ZVCs ignored. 

Unmatched peaks attenuated over time

Identified segment

SEGMENT POINTS

AV streams examined

TEMPLATE MATCHING LL THRESHOLDING

LENGTH RESAMPLING

Figure 5.4: Segmentation algorithm. The observation velocity streams are converted into
AV streams based on each template’s significant DOFs. Velocity features are accepted or
rejected based on the peak size or peak-to-peak interval data collected from the exemplars.
Some subjects gradually slow to a stop, so low velocity for a period of time is also considered
as a ZVC. Several ZVCs are collected to form windows. The windows are resampled to be
equal length. Forward algorithm is used to assess the LL, which is used to determine which
window is a segment.

1: for all = 1→ T do
2: Filter observation data via Butterworth filter
3: Create AV streams for each template
4: Search for ZVC and peaks in each AV stream
5: Discard small velocity peaks
6: Attenuate old peaks
7: if Detected features == exemplar features then
8: Resample windowed data
9: Determine LL via forward algorithm

10: Highest LL above LL threshold is segment
11: end if
12: end for

Figure 5.5: Segmentation algorithm pseudocode.
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Feature searching (Figure 5.5.2-3)

A ZVC is declared if the AV makes a zero-crossing, or if is very low for several timesteps
[30]. Local peak values are tracked by an internal buffer. If the current window has a peak
value higher than the stored peak value, the peak value in the buffer is updated accordingly.
To avoid noise spikes in the velocity data from affecting the template matching, the peak
buffer value is attenuated if it does not contribute to a match after several seconds, to
prevent a large spike in the velocity from preventing feature matches.

If a given AV observes a sequence of ZVCs and peaks that matches its corresponding
template, then the algorithm has located a potential segment point. Using features to esti-
mate the start and end time of a segment candidate also accounts for temporal variations.
This way, the general shape is always matched, regardless of the time it took the subject
to perform the motion. The velocity magnitudes and peak-to-peak distance must exceed
vp and tpp respectively in order for a potential segment point to be declared. This prevents
noise, such as when the subject is stationary, from triggering the feature match.

Several ZVCs before and after the located feature peaks are marked as possible segmen-
tation bounds, and all possible candidate windows are compared to the HMM templates
via the forward algorithm. ZVCs that are very close together and are close to small feature
peaks are likely caused by noise or tremors, thus only ZVCs that are near significantly
sized peaks are kept.

HMM matching (Figure 5.5.8-10)

The template and window edge combination that results in the highest likelihood value over
the threshold LLthres is declared a segment. All window edge combinations are resampled so
they are of equal length, to prevent the forward algorithm from favouring shorter sequences.
Following HMM template matching, the recorded peak magnitude and ZVCs are reset, and
the feature search resumes at the next time step.
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5.4 Examples

Segmentation Example

Figure 5.6: Illustration of on-line algorithm. The data shown from [57].

Figure 5.6 shows a step-through of the segmentation procedure. Horizontal bars indicate
manual segmentation markers. All data shown are aggregate velocity data streams, for
180◦ right arm raise and lower, consisting of a right shoulder DOF (red signal, plot F,
‘RAR180’), 90◦ left arm raise and lower, consisting of a left shoulder DOF (green signal,
plot G, ‘LAR90’) and 90◦ both arm raise and lower, consisting of an aggregate velocity
of a right and a left shoulder DOF (black signal, plot H, ‘BAR90’). When the template
features (plot F, G and H) are found in the observation data; that is, when the template
pattern and the colour match a segment in the observation, then a potential segment is
found. The procedure is as follows:

1. Red vertical bar marks the start of feature searching. The observation window is
expanded until a potential template match (green signal, plot A) is found. Two end
points are identified (black arrows, plot A).
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2. Forward algorithm is ran on the two identified windows. The forward algorithm
reports that the red line to first black arrow has a higher LL, as a right arm raise
(RAR180), so a segment is declared (green box, plot B). The feature cache is cleared,
and the start of the feature search is set to the end of the latest segment (red bar, plot
B). The algorithm restarts. The first black arrow shows a similar RAR peak pattern
as before, but the negative peak is below threshold, so the match was correctly
deemed unsuccessful. The feature search continues to the second black arrow. At
this point, large peaks were detected in the LAR90 (red signal, plot B) and BAR90
(black signal, plot B) signals, so their respective HMMs are tested.

3. However, no match was made (the motion was BAR180, which was not one of the
templates). The feature search start point is updated again (plot C), and the feature
searching continues.

4. Two more successful segments are matched. At this point, once again, large peaks
are found (BAR90, plot D), so relevant HMMs are tested.

5. A match is found for both arm raise (BAR, plot E). All four segments in this set
have been successfully identified.

Segmentation Results

A detailed verification of the proposed algorithm is described in Section 6.3. Figure 5.7
shows an example of a segmentation result for data of a participant performing of knee
extensions while seated. Figure 5.8 shows an example of knee-hip flexions while supine.
The circles in the figures denote the manual segment points, whereas the boxes denote the
algorithmic segments.
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Figure 5.7: Joint angles and angular velocity of a subject performing knee extensions. The
algorithm segments properly when there are no pauses between each repetition.
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Figure 5.8: Joint angles and angular velocity of a subject performing knee-hip flexion.
Although the participant’s motions introduced spurious ZVCs in the middle of the motion,
the algorithm was able to properly segment and identify the motion being performed.
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Chapter 6

Experiments

The algorithms proposed in this thesis were verified on rehabilitation movements of healthy
subjects. IMU data was collected and converted to joint angles using the pose recovery
algorithm described in Chapter 4. The joint angle data was segmented and identified
using the segmentation algorithm described in Chapter 5. This chapter describes the data
collection process, as well as results from the joint angle estimation and the segmentation
algorithms. All signal processing, algorithmic implementation and error calculations were
programmed in MATLAB 7.12.

6.1 Data Collection

6.1.1 Inertial Measurement Units

The data was collected using the Shimmer IMU [14] sensor suite1. Shimmer sensors are
small and lightweight, with a physical footprint of 53 mm by 32 mm by 15 mm, and weigh-
ing 22 grams. This sensor suite collects linear acceleration and angular velocity data, and
transmits wirelessly via Bluetooth at 128 Hz. Each sensor package contains a Freescale
MMA7361L 3D accelerometer, two InvenSense 2D IDG-500 gyroscopes mounted perpen-
dicularly to each other to obtain 3D sensing, and a Roving Networks RN-42 Bluetooth
radio. Figure 6.1 shows a detailed breakdown of the Shimmer components.

IMU sensors were favoured over line-of-sight systems such as cameras as IMUs do not
suffer from occlusion, and can be deployed in a wide variety of different environments.

1Shimmer Research, www.shimmer-research.com
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This is important as physiotherapy clinics tend to have cluttered environments obstructed
by exercise equipment and patients can move around from station to station. A camera
system would require a large number of cameras or be mobile to follow the patients, but
these conditions are impractical.

IMU straps may interfere with free movement. During the data collection process, the
subjects generally noted that the straps were tight, but do not seem to interfere with range
and velocity of motion. Although the IMU straps did not interfere with the movements of
healthy subjects, they may hamper movement for rehabilitation subjects.

Three Shimmer devices were used, placed on 1) the hip, along the height of the anterior
superior iliac spine (ASIS, a major bony landmark on the hip), at the mid-sagittal region
of the subject, 2) on the thigh near the knee, and 3) on the calf, near the ankle. Figure
6.2 shows the placement of the Shimmer sensors.

A calibration application based on Ferraris et al. [28] was provided by Shimmer Re-
search, and was used to calibrate the accelerometer and gyroscope sensors. Ferraris’
method was chosen as it is easy to apply, and does not require specialized equipment
such as a turntable. The accelerometer alignment Ra, sensitivity Ka and bias ba are cal-
culated by placing the sensor on a level surface in the six different possible orientations
and applying a linear regression to find the scaling parameters. The calibration equation is
acal = (Ra)

−1(Ka)
−1(ua−ba), where acal is acceleration in [m/s2] and ua is the measured

acceleration, in [ADC].

The gyroscope alignment Rω, sensitivity Kω and bias bω are obtained by holding the
gyroscope still and then rotating the sensor 360◦ around its three axes. The calibration
equation is ωcal = (Rω)

−1(Kω)
−1(uω − bω), where ωcal is angular velocity in [rad/s] and

uω is the measured angular velocity, in [ADC].

6.1.2 Motion Capture

Data was also simultaneously collected on a Motion Analysis motion capture system2 to
obtain ground truth data. Eight Eagle cameras were used, with a sampling frequency of
60 Hz, and the Motion Analysis Cortex software was used for data collection. Markers
were placed on the Shimmer sensors, the subject’s shoulders, ASIS, right knee and ankle
on both medial and lateral side, as well as the toe and heel. These markers were used to
estimate the location of the Shimmer sensors and joint centers for joint angle verification.
The position of the knee and ankle were obtained by taking the average of their respective

2Motion Analysis Corporation, www.motionanalysis.com

59



Figure 6.1: Labeled image of the Shimmer sensor. Battery and gyroscope modules not
shown for brevity. Image used with permission from Shimmer Research.

medial and lateral positions. Spline interpolation was applied to fill in occluded markers
and the data was swept for switched markers. The data streams produced by Shimmer
and the Motion Analysis system were timestamped and time-aligned in post-processing.
Figure 6.3 shows the marker placements.

6.1.3 Demographics and Data Collection Procedure

The algorithm was tested on healthy subjects performing typical knee and hip rehabilita-
tion movements. The movement data of 20 participants (12 M, 8 F) were collected, with
the average participant being 23 ± 4.5 years old. No participant had any lower back or
leg injuries in the past six months. The experiment was approved by the University of
Waterloo Research Ethics Board, and signed consent was obtained from all participants.
Participant anthropometric data are summarized in Table 6.1, and are derived from motion
capture data.

The subjects performed a series of exercises, as described in Table 6.2, designed to
model physiotherapy exercises. Each participant performed two sets of ten motions for
each motion type.
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Figure 6.2: The hip and knee are modeled as a 3 and 2 DOF joint, respectively. Shimmer
sensors, containing the accelerometers and gyroscopes, were positioned on the hip, knee and
ankle of the participant. (Left) An image of the sensors on a participant’s hip, knee and
ankle. Motion capture markers placements are also shown. (Right) A profile image of the
torso, upper and lower leg, rotated 90◦ from the left image. The boxes on the leg represent
the sensor packages.

Table 6.1: Participant anthropometric data. All lengths in [cm], all weights in [kg]. ru is
the hip-to-knee length. rusl is the length along the thigh to the knee sensor. rusr is the radius
of the thigh at the knee sensor. rl is the knee-to-ankle length. rlsl is the length along the calf
to the ankle sensor. rlsr is the radius of the calf at the ankle sensor.

Height Weight Age ru rusl rusr rl rlsl rlsr
Mean 168.7 65.2 23.3 44.8 34.9 7.2 38.2 23.4 6.5
SD 9.2 10.1 3.5 4.3 6.1 1.5 2.5 4.7 0.6
Max 183.0 90.0 31.0 57.3 47.0 12.0 43.4 32.1 8.2
Min 150.0 47.7 19.0 37.4 22.7 5.2 33.9 14.4 5.3
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Figure 6.3: Motion capture markers used. Red boxes indicate markers that were collected,
but were not directly used. Blue boxes indicate markers that were collected, and were used
in calculations. Image is from the Motion Analysis Cortex manual [72], and is used with
permission from Motion Analysis Corporation.
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Table 6.2: Exercise descriptions for rehabilitation exercises.

Name Initial Pose Description
Knee flexion
(KF)

Seated Knee extension/flexion.

Sit to stand (SS) Seated Stand up from a seated posture.
Squats (SQ) Standing While keeping upper body upright, bend knees to

lower torso vertical position.
Hip-knee flexion
(HF)

Lying down Starting with the leg straight, bend at the knee
and hip to slide the heel towards the buttocks.

Straight leg raise
(SL)

Lying down Keeping the leg straight, bend at the hip and lift
the entire leg up from the ground.

However, due to the nature of the rehabilitation motions examined, the motions tested
in Table 6.2 were all sagittal plane motions. A second set of out-of-plane motions was
collected with 1 male participant in order to verify the algorithm’s capability to recover
out-of-plane movement. The tested motions for this second set can be found in Table 6.3.

Table 6.3: Exercise descriptions for out-of-plane motions.

Name Initial Pose Description
Circle trace
(CTS)

Standing Trace out a circle in the transverse plane with leg
while in a standing position, rotating only at hip.

Front-side leg
raise (FSS)

Standing Alternating between leg raises to the front (sagit-
tal) and side (coronal).

Circle trace
(CTL)

Lying down Tracing out a circle in the transverse plane, with
minimum knee bending.

Straight-diagonal
leg raise (SDR)

Lying down Alternating between front leg extension (sagittal)
and side leg extension (away from sagittal).

6.2 Pose Estimation

The algorithm described in Chapter 4 was applied to the Shimmer data and tested against
motion capture data. The EKF functions were implemented with the ReBEL MATLAB
Toolbox [102]. The initial angles for the EKF were determined numerically by applying
inverse kinematics to the Cortex data.
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The initial EKF noise profiles (Qt, Rt) for the rehabilitation motion dataset were tuned
to a single participant. That is, the 5 exercise motions of the reference patient were
examined, and a single Qt and Rt matrix was derived across all 5 exercises. The tuning
was done by minimizing RMS between the EKF-derived end-effector position and the end-
effector position from the motion capture system. This noise profile was applied uniformly
to all the exercises of the other 19 participants. For motions that were performed by other
participants that may differ in speed, the auto-tuning mechanism described in Section 4.3
was used to adapt the noise model. The kinematic constraint limits qc were aggregated
from several anthropometric joint limit tables [75, 12]. The kinematic link lengths were
obtained from the motion capture marker information. The potential field coefficient η
and the influence distance ρ0 were set to 1 and 75% of the joint limits, respectively.

6.2.1 State Estimation for Rehabilitation Motions

Prior to the accuracy analysis, two outlier motions were removed from the total set of
200 motion sets, due to a sensor error during data collection. To compare the results
obtained from the EKF with the motion capture data, following estimation of the joint
angles using the proposed algorithm, Equations 4.23 and 4.24 were used to compute the
Cartesian location of the IMU markers. The estimated locations of the knee and ankle
sensors were compared to the motion capture measured sensor locations, and the RMS
computed. Table 6.4 presents the RMS for each Cartesian direction, as well as the average
error for the thigh (upper) link, the calf (lower) link, and the total average error. The
data were grouped together by motion type, with only the anthropometric joint limits as
the kinematic constraints. The RMS data were converted to joint angles by applying the
cosine rule to the link lengths and the RMS values. Table 6.4 also presents the joint angle
errors for the thigh and the calf link.

Considering these results, it is evident that the largest errors exist in the z-axis (i.e.,
the motion out of the sagittal plane, c.f. Figure 6.2), where there is little actual motion.
Without strong motion in that direction, the estimation suffers from drift, causing a large
reported RMS. As can be seen from Figure 6.4, errors are also introduced by poor initial
angle estimates, which can persist over the duration of the state recovery process.

In general, larger RMS were reported in the calf than the thigh. This is expected, as
the end-effector distance errors from the thigh are also implicitly included in the calf. Once
again, the impact of drift can be observed strongly in the calf z-axis. With only general
anthropometric constraints, Table 6.4 shows a total mean RMS of 4.27 cm, with 3.46 cm
for the thigh and 5.08 cm for the calf.
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Table 6.4: EKF RMS results, by motion type, for the rehabilitation dataset, without any
out-of-plane angle constraints. Cortex link length used. Results shown for each of the Carte-
sian dimensionality, as well as thigh (U), calf (L) and total (T) errors. The degree error for
the hip (U) and knee (L) joint is also shown. The motions performed were knee flexion (KF),
sit to stand (SS), squats (SQ), hip-knee flexion (HF) and straight leg raise (SL).

RMS [cm] RMS [deg]
X1 Y1 Z1 X2 Y2 Z2 U L T U L

KF 3.98 1.58 5.53 4.39 3.45 8.49 3.70 5.44 4.57 6.01 4.12
SS 1.59 2.28 2.44 2.19 4.16 2.78 2.10 3.04 2.57 7.60 4.90
SQ 1.59 2.29 4.84 2.81 4.34 5.78 2.91 4.31 3.61 10.82 8.45
HF 5.01 3.18 5.00 5.88 4.35 8.52 4.40 6.25 5.32 6.28 4.86
SL 5.72 2.96 3.93 6.21 3.53 9.44 4.20 6.39 5.30 5.91 5.53

AVG 3.56 2.46 4.35 4.28 3.98 6.97 3.46 5.08 4.27 7.35 5.59
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Figure 6.4: Pose estimation of leg extension motion, showing joint angle estimation and
calculated end-effector position compared to the motion capture end-effector position. Drift
can be seen in the z-axis (red), while initial angle error may sometimes persist in the state
recovery.
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Table 6.5: EKF RMS results, by motion type, for the out-of-plane dataset. Results shown
for each of the Cartesian dimensionality, as well as thigh (U), calf (L) and total (T) errors.
The degree error for the hip (U) and knee (L) joint is also shown. The motions performed
were circle trace (CTS), front-side leg raise (FSS), circle trace (CTL) and straight-diagonal
leg raise (SDR).

RMS [cm] RMS [deg]
X1 Y1 Z1 X2 Y2 Z2 U L T U L

CTS 2.09 7.49 6.99 2.82 12.22 9.71 5.77 8.25 7.01 8.89 6.08
FSS 2.16 5.44 4.44 2.59 10.67 8.55 4.16 7.27 5.71 6.32 7.42
CTL 2.30 1.57 3.58 5.22 3.30 7.56 3.45 5.36 4.41 5.21 6.49
SDR 3.44 1.91 4.90 4.00 2.47 5.88 3.60 4.12 3.86 5.39 1.59

AVG 2.50 4.10 4.98 3.66 7.17 7.93 4.25 6.25 5.25 6.45 5.40

In addition to the errors from the EKF estimates, errors are also introduced from
the motion capture itself. Markers were only placed on the front of the hip and not the
back. The hip rotational centre was assumed to be at the hip marker position, which is
incorrect. This also applies to the location of the IMU sensors as well. This problem is less
significant for the knee and ankle joint as the position of these two joints were estimated
by considering multiple markers. Due to the nature of human joints, joint centres also shift
during movement, contributing to additional error.

6.2.2 State Estimation for Out-of-plane Motions

The RMS for the out-of-plane motions were calculated in the same manner as the rehabil-
itation motions. Table 6.5 presents the Cartesian and degree error by motion type. With
an total Cartesian RMS of 5.25 cm and an hip and knee joint error of 6.45◦ and 5.40◦

respectively, the algorithm is shown to work with similar effectiveness with out-of-plane
motions when compared to the in-plane rehabilitation motions.

Although only healthy participants were examined, the proposed algorithm is well
suited to use on the rehabilitation population. The proposed algorithm does not assume
any a priori knowledge of the movement that is being performed and functions identically
for the sagittal-plane dataset and the out-of-plane dataset. No parameter modifications
were made to apply the algorithm to each of the healthy participants, covering a range of
movement speed and pattern. It is possible that, with the rehabilitation population, state
noise covariance would need to be modified, but the mechanics of the algorithm would
remain identical.
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6.2.3 Comparison to Existing Approaches

Pose Estimation

Two alternative algorithms were also implemented to serve as comparison benchmarks:
Boonstra et al.’s implementation of the complementary filter [11] and Luinge and Veltink’s
implementation of the strapdown integrator [67]. Similar to the proposed algorithm, the
two comparison algorithms rely on accelerometers and gyroscopes to produce orientation
estimates. Both the accelerometer and the gyroscope are important, since the accelerom-
eter returns accurate incline angles due to gravity, but is not reliable when the subject’s
motion acceleration is not negligible compared to gravity. The gyroscope can be integrated
to obtain joint angles during faster movements, but suffers from integrational drift. Boon-
stra’s algorithm considers only sagittal motion, so comparisons to the proposed algorithm
are made to the sagittal-only results, where out-of-plane angles were locked to the initial
joint values. The Cartesian RMS results can be found in Table 6.6a, and Table 6.6b for
joint angle error.

Several minor modifications were made to Boonstra’s algorithm for this comparison.
Rather than using the filter parameters recommended by Boonstra, which may be opti-
mized for their sensor suite, the filter parameters were optimized on the Shimmer devices
in order to obtain the best possible performance. The sagittal incline angle was used to
rotate the link lengths so that Cartesian RMS can be calculated for comparison against
the proposed algorithm. Lastly, it was unclear how Boonstra combined the accelerometer-
derived joint angle to the gyroscope-derived joint angle, so the average of the two was
used.

From Table 6.6, it can be noted that Boonstra’s algorithm does not perform as well as
the proposed algorithm. The high-pass filter used in Boonstra does not perfectly eliminate
the gyroscopic drift, which can be very significant. Without the accelerometer angle to
average with, the reconstructed angles derived from the gyroscope would be very poor.
This is the cause of numerous high-error entries for Boonstra in Table 6.6, emphasizing
that the high-pass filter is not sufficient. Boonstra also notes that the high-pass filter
may be removing movement information from the sensors, which would also hurt the angle
estimates. Lastly, Boonstra’s algorithm does not provide a methodical way to combine
the measurement sources, whereas the EKF calculates a weighing factor, the Kalman gain
(Equation 3.18), to combine all the measured data appropriately.

The second comparison algorithm considered was Luinge’s implementation of the strap-
down integration approach, where the movement and orientation of an object are estimated
by rigidly attached IMUs, using a Kalman filter framework. The angles are determined by
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Table 6.6: EKF RMS results by motion type, for the rehabilitation dataset, with out-of-
plane angle constraints, comparing two other algorithms with the proposed. Results are given
for the thigh link (U), calf link (L) and total error (T). The motions performed were knee
flexion (KF), sit to stand (SS), squats (SQ), hip-knee flexion (HF) and straight leg raise (SL).

(a) RMS Cartestian error, reported in [cm].

Boonstra Luinge, no bias Luinge, bias Proposed
U L T U L T U L T U L T

KF 3.13 6.83 4.98 2.78 4.53 3.66 2.51 3.82 3.16 2.51 3.48 2.99
SS 2.02 3.58 2.80 1.22 2.36 1.79 1.99 3.36 2.67 1.72 2.74 2.23
SQ 1.70 4.04 2.87 1.52 2.88 2.20 1.95 3.58 2.76 1.91 3.26 2.69
HF 6.18 8.24 7.21 4.12 4.86 4.49 4.06 4.79 4.43 3.90 4.50 4.20
SL 8.05 10.62 9.33 4.16 5.83 5.00 4.18 5.59 4.88 4.37 4.56 4.47

AVG 4.20 6.65 5.42 2.76 4.09 3.42 2.93 4.22 3.58 2.87 3.70 3.31

(b) RMS degree error, reported in [deg].

Boonstra Luinge, no bias Luinge, bias Proposed
U L U L U L U L

KF 5.02 8.48 4.59 4.23 4.11 3.15 4.13 1.67
SS 7.26 9.48 4.45 5.72 7.25 6.94 6.00 3.74
SQ 6.36 13.07 5.60 7.60 7.08 8.86 7.08 5.39
HF 8.83 5.01 5.88 2.08 5.75 1.96 5.55 1.53
SL 11.20 6.00 5.88 4.89 5.90 4.06 6.17 1.12

AVG 7.70 8.45 5.29 4.90 6.04 5.01 5.81 2.73
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gyroscopic integration, which is then used to rotate and isolate the gravity vector from the
inertial acceleration. The Kalman filter combines the sagittal incline angle derived from
the acceleration signal with the integrated angles derived from the gyroscope signal. The
sensor noise is explicitly modeled by the Kalman filter. The state noise covariance matrix
used was obtained by tuning, but the measurement noise covariance matrix was identical
as the one used in the proposed algorithm, since the state model used was different, but
the sensors and data were the same as the proposed.

Luinge’s algorithm also includes the gyroscope sensor DC bias as a Kalman state vari-
able to address drift. Two implementations of Luinge’s algorithm were constructed for
the results shown in Table 6.6, one with and one without gyroscope bias correction. The
two implementations allow the analysis of the contribution of the kinematic model and
the contribution of bias correction to the system performance separately. For the reha-
bilitation dataset, the gyroscope bias does not affect performance, since out-of-gravitation
plane motion, which is most susceptible to drift, is restricted. Without a gyroscope bias
model, EKF may not be able to properly estimate the gyroscope noise, causing a poorer
estimation.

A full 3D DOF version of Luinge’s algorithm was also implemented, to compare between
Luinge’s algorithm and the proposed algorithm in an unconstrained situation, using the
out-of-plane motion dataset. Table 6.7 outlines the results from Luinge’s algorithm in terms
of Cartesian and joint angle error. Comparing the results for the proposed algorithm in
Table 6.5 and Luinge’s algorithm in Table 6.7, it can be seen that the performance in
the sagittal plane is comparable, but the overall z-axis off-sagittal drift is much larger
with Luinge’s algorithm, resulting in a larger overall error reported for Luinge’s algorithm.
The inclusion of a kinematic model allows the proposed algorithm to constrain unfeasible
motions that Luinge’s algorithm does not, such as abduction motion in the knee. This
allows the proposed algorithm to reduce drift.

Table 6.8 shows Luinge’s algorithm with and without gyroscope bias, as well as the
proposed algorithm in full 3D angle recovery without any sagittal constraints. Unlike
the sagittal case, the inclusion of the gyroscope bias in Luinge’s algorithm significantly
improves performance in the case of unconstrained motion, particularly in the off-sagittal
axis direction.

The performance of Luinge’s algorithm is comparable to the proposed approach, show-
ing the advantage of the principled integration of both sensor sources via the Kalman filter
framework. However, with both comparison algorithms, only incline angles to the hori-
zontal and heading angle to the vertical are estimated, while the proposed algorithm can
estimate pose and report the results in the more clinically-relevant joint angle. Due to the
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Table 6.7: EKF RMS results, by motion type, for the out-of-plane dataset, using Luinge’s
algorithm without gyroscope bias. Results shown for each of the Cartesian dimensionality,
as well as thigh (U), calf (L) and total (T) errors. The degree error for the hip (U) and knee
(L) joint is also shown. The motions performed were circle trace (CTS), front-side leg raise
(FSS), circle trace (CTL) and straight-diagonal leg raise (SDR).

RMS [cm] RMS [deg]
X1 Y1 Z1 X2 Y2 Z2 U L T U L

CTS 21.85 17.05 23.32 48.55 29.51 41.68 20.74 39.91 30.33 32.38 43.89
FSS 1.49 2.63 2.23 3.16 6.59 4.42 2.12 4.72 3.42 3.21 5.95
CTL 4.46 2.21 3.31 5.69 2.76 5.56 3.32 4.67 4.00 5.04 3.02
SDR 4.72 2.06 2.42 11.66 5.12 5.83 3.06 7.54 5.30 4.60 10.17

AVG 8.13 5.99 7.82 17.26 11.00 14.37 7.31 14.21 10.76 11.31 15.76

Table 6.8: EKF RMS results by motion type, for the out-of-plane dataset, comparing
Luinge’s algorithm with the proposed. Results are given for the thigh link (U), calf link
(L) and total error (T). The motions performed were circle trace (CTS), front-side leg raise
(FSS), circle trace (CTL) and straight-diagonal leg raise (SDR).

(a) RMS Cartesian error, reported in [cm].

Luinge, no bias Luinge, bias Proposed
U L T U L T U L T

CTS 20.74 39.91 30.33 5.61 11.34 8.47 5.77 8.25 7.01
FSS 2.12 4.72 3.42 3.26 8.15 5.71 4.16 7.27 5.71
CTL 3.32 4.67 4.00 4.10 8.47 6.29 3.45 5.36 4.41
SDR 3.06 7.54 5.30 3.92 7.79 5.86 3.60 4.12 3.86

AVG 7.31 14.21 10.76 4.22 8.94 6.58 4.25 6.25 5.25

(b) RMS degree error, reported in [deg].

Luinge, no bias Luinge, bias Proposed
U L U L U L

CTS 32.38 43.89 8.65 12.81 8.89 6.08
FSS 3.21 5.95 4.94 11.17 6.32 7.42
CTL 5.04 3.02 6.20 9.86 5.22 6.49
SDR 4.60 10.17 5.89 8.77 5.40 1.59

AVG 11.31 15.76 6.42 10.65 6.46 5.40
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lack of kinematic constraints, the comparison algorithms also allow drift in DOFs that are
not physically feasible, which degrades the quality of the angle estimates.

Comparison to Goniometry

The error magnitudes obtained by the proposed algorithm are comparable to errors re-
ported using goniometric systems. Chao [19] reported a sagittal mean error of 1.4◦, when
comparing an electrogoniometer with x-ray data. Jagodzinski et al. [45] examined hip
and knee goniometeric measurement accuracies against radiology images of the leg, and
noted a mean degree error of 3.92◦ with a standard goniometer and 1.22◦ with a long-arm
goniometer, with 3.3◦ of inter-rater variance between the two examiners. Edwards et al.
[24] reports that mean error of goniometer measurement of knee angle ranged from 0◦ at
90◦ knee flexion, to 3◦ error at 120◦ flexion. The average error rose to an average of 5◦ error
with unaided visual assessments. The corresponding joint error for the proposed algorithm
reports a sagittal error of 2.73◦, which makes it better than an unaided joint assessment,
and comparable to existing goniometric methods. This makes the proposed algorithm a
viable alternative to the existing goniometer methods as the sensors are lightweight and
do not require a brace such as those required by an electrogoniometer. It also provides
joint angle estimates in both static and dynamic situations, providing exercise velocity and
timing information that a goniometeric system would not be able to supply.

6.3 Segmentation and Identification

The joint angles obtained from Section 6.2 were pre-processed with a low-pass filter to
reduce state reconstruction noise caused by any filter resets. The HMM functions were
implemented with Murphy’s HMM MATLAB Toolbox [73].

An 8-state left-right HMMs were used, trained using the Baum-Welch algorithm. πH

was initialized with [1; 0; 0; ...], as typical for left-right HMMs. The initial µH was calcu-
lated by separating the templates into 8 sequential equally sized segments, and calculating
the mean for each DOF within each segment. The initial ΣH for each state was set to a
diagonal matrix of 10, and allowed to converge after several iterations, as some ΣH values
suggested by separating the data into 8 segments and calculating the variance resulted
in numerical issues with the training algorithm. Ground truth manual segmentation was
determined by a human observer using video playback of the motion capture data.

An algorithmic segmentation point was declared correct if it falls within ±terror of
a manual segment point. A false positive error was declared if an algorithmic segment
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point was identified when there is not a corresponding manual segmentation point. A false
negative error was declared if a segment point was not found algorithmically for a manually
identified segment point. Each segment’s two segment points are awarded points separately.
That is, a completely correct segment could receive +2 correct, whereas a partially correct
segment could receive +1 correct and +1 false negative. All motion sequences contain only
a single motion type, so if the algorithm labels a given segment incorrectly, it is reported
independently from the segmentation results.

6.3.1 Segmentation Results

The data streams used for the feature selection were the 5 joint angles from the EKF
(Section 6.2). For each subject, the first of the two collected motion sets was used for the
template training, then both motion sets were used separately for testing the proposed
algorithm. In the first set of experiments, the templates used were subject specific, so
the templates generated from one subject’s motions was used to segment only their own
motion.

Figures 6.5 (sit-to-stand), 6.6 (squats), and 6.7 (hip flexions while supine) show various
motions segmented by the algorithm. The boxes indicate the algorithmic segmentation
points, while the circles indicate manual segmentation points. The top plot shows an-
gle data; the bottom plot shows angular velocity. The dark lines are DOFs denoted as
significant across all the templates, whereas the lighter lines are not significant.

The segmentation results for the feature-guided HMM with terror = 0.2 s can be found in
Table 6.10. This table shows the segmentation results on both the training and the testing
set. The algorithm correctly determines 76% of the segments for data not used during
training. If terror = 0.3 s, shown in Table 6.11, the accuracy increases to 84%, implying that
a number of the algorithmic segments are just outside of the manual segment error bounds.
Several different factors contribute to this result. Since there are no standardized guidelines
on how a motion sequence should be segmented, manual segmentation is typically left up
to the perception of the human observer. Although manual segment points are typically
used as ground truth, there may be inconsistencies between observers or even between
exemplars for the same observer. It can be difficult to visually determine when a segment
has started or ended, due to stray motion or tremors at segment ends, or due to poor
camera angle during video replay, causing manual segments to be declared before or after
the actual end of motion. The observer may also be segmenting on DOFs that are not the
most significant. At times, the algorithm overestimates the bounds of the segments, as
the motion may have been perceived to have ended due to slow velocity before the actual
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Figure 6.5: Joint angles and angular velocity of a subject performing sit-to-stand. The cir-
cles denote the manual segments, whereas the rectangles denote the algorithmic segments. In
this figure, only one of the six segment points is declared a correct segment under terror = 0.2s,
even though the algorithm located all the motions. Reaction speed of the human observer
is a common source of the mismatch between the automatic and the manual segmentation,
as the manual segments sometimes lag behind the time when the participant ceases motion.
This can be seen most strongly between the second and third segment. Examining the space
between the first and second segment, it can be noted that the participant does not actually
stop moving between repetitions, making the location of the true segment point ambiguous,
especially if the viewing angle is not optimal.
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Figure 6.6: Joint angles and angular velocity of a subject performing squats. The circles
denote the manual segments, whereas the rectangles denote the algorithmic segments.
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Figure 6.7: Joint angles and angular velocity of a subject performing hip flexions. The
circles denote the manual segments, whereas the rectangles denote the algorithmic segments.
Despite significant motion in the other DOFs, the algorithm successfully segments the motion
under examination.
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ZVC. If segmentation accuracy is ignored and only identification accuracy is examined, as
reported in Table 6.9, the algorithm reports 95% accuracy.

Utilizing only angle data in the HMM states sometimes leads the identification process
to confuse two similar actions. For example, squats and the sit-to-stand both involve a
large change in the knee sagittal angle and a small change in the ankle sagittal angle. Using
joint data only, the squat position is sometimes confused with the seated position, causing
misidentification. Adding the acceleration signal introduces strong additional orientation-
based data into the HMM vectors, reducing this misidentification. These results can be
found in Tables 6.10 and 6.11. These results show that the false positives, which include
template misidentification, decrease with the addition of the accelerometer terms. Includ-
ing these accelerometer terms raises the segmentation accuracy, particularly for the squat
and sit-to-stand motions. These results also demonstrate the capability of the proposed
algorithm to handle a variety of input time series data, including both joint angle and
Cartesian acceleration measurements. Table 6.9 shows that the identification accuracy
also increases to 100%.

Examining these results shows that the sit-to-stand motion performs particularly poorly
in terms of segmentation accuracy. A detailed examination of the sit-to-stand results shows
that the segmentation routine produces results comparable to the other motions, but a
mismatch between the locations of the manual and algorithmic segmentations causes the
algorithm to report a lower accuracy (see Figure 6.5). We believe this is due to issues
with the viewing angle during manual segmentation, especially if the participant does not
perform a complete stop between repetitions. Comparing terror = 0.2 s to terror = 0.3 s,
the sit-to-stand accuracy reported for sit-to-stand for both datasets in Tables 6.10 and 6.11
rises to from 49% and 52% to 65% and 77% respectively. If sit-to-stand is not included, the
total accuracy for these two tables rises from 76% and 77% to 82% and 83%, respectively.

6.3.2 Inter-personal Template Segmentation Results

In a clinical setting, it is impractical to have templates from each patient. The physical
condition, hence movement patterns, of a rehabilitation patient will change as the pa-
tient’s condition improves from post-surgery recovery to discharged, so any template and
algorithm used for segmentation must be able to handle large intra- and inter-personal
variations. A second set of experiments was carried out to assess the algorithm’s ability to
segment if a single common template was used for all observed data.

The participant data were randomly separated into groups of three or five, and tem-
plates were generated from these groups. The accelerometer data were rotated before
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Table 6.9: Identification results of the proposed algorithm, comparison when using joint
angles only (JA) or joint angles and accelerometer data (JA+A). The motions performed
were knee flexion (KF), sit to stand (SS), squats (SQ), hip-knee flexion (HF) and straight leg
raise (SL). Separate results are reported for trained and untrained data.

Trained data Untrained data
Total JA JA+A Total JA JA+A

KF 406 404 (100%) 406 (100%) 410 384 (94%) 410 (100%)
SS 398 388 (97%) 398 (100%) 398 364 (91%) 398 (100%)
SQ 416 410 (99%) 416 (100%) 412 376 (91%) 412 (100%)
HF 418 400 (96%) 418 (100%) 408 396 (97%) 408 (100%)
SL 406 406 (100%) 406 (100%) 410 410 (100%) 410 (100%)

Total w/o
SS

1646 1620 (98%) 1646 (100%) 1640 1566 (95%) 1640 (100%)

Total 2044 2008 (98%) 2044 (100%) 2038 1930 (95%) 2038 (100%)

HMM training to align the mounting orientation of the sensors between participants. All
other parameters were identical to the ones used in Section 6.3.1.

Table 6.13 shows the mean and standard deviation of the accuracy percentages over
all the template groups. The data used for template training were not used for the seg-
mentation testing. The algorithm demonstrates good robustness when using participant-
independent rather than participant-specific templates, dropping approximately 5% for
overall accuracy for terror = 0.2 s and 6% for overall accuracy for terror = 0.3 s compared
to the single-template results from Section 6.3.1. Identification accuracy drops by 1%,
as per Table 6.12. Similar to the results in Section 6.3.1, the sit-to-stand results were
noticeably worse. With exception of the sit-to-stand, the 5-template set outperformed
the 3-template sets in all the motions. This was to be expected, since the 5-template
set includes a wider variety of exemplar motions, and thus was more able to account for
inter-participant variability.

6.3.3 Comparison to Other Segmentation Algorithms

In order to compare the proposed approach to existing work, a ZVC method, described
in Fod et al. [30] was implemented. Segmentation points are declared when the velocity
crosses zero, thus a segment window is formed with two consecutive ZVCs. Segment
windows that are too small are rejected. To reduce the amount of spurious ZVCs, only
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Table 6.10: Segmentation results of the proposed algorithm, comparison when using joint
angles only (JA) or joint angles and accelerometer data (JA+A). The motions performed
were knee flexion (KF), sit to stand (SS), squats (SQ), hip-knee flexion (HF) and straight leg
raise (SL). Results shown is the algorithm’s performance for terror = 0.2 s, and the number
of segment point estimates that are correct, false positive (FP) and negative (FN). Separate
results are reported for trained and untrained data.

(a) Trained data

JA JA+A
Motion Total Correct FP FN Correct FP FN
KF 406 382 (94%) 2 22 382 (94%) 0 22
SS 398 211 (53%) 42 187 264 (66%) 26 134
SQ 416 337 (81%) 8 79 343 (83%) 2 73
HF 418 330 (79%) 20 88 342 (82%) 2 76
SL 406 353 (87%) 6 53 353 (87%) 4 53

Total w/o SS 1646 1402 (85%) 36 242 1420 (86%) 8 224
Total 2044 1613 (79%) 78 429 1684 (82%) 34 358

(b) Untrained data

JA JA+A
Motion Total Correct FP FN Correct FP FN
KF 410 371 (91%) 26 39 389 (95%) 0 21
SS 398 193 (49%) 72 205 207 (52%) 62 191
SQ 412 294 (71%) 36 118 328 (80%) 0 84
HF 408 331 (81%) 14 77 320 (78%) 2 88
SL 410 349 (85%) 12 61 324 (79%) 12 86

Total w/o SS 1640 1345 (82%) 88 295 1361 (83%) 14 279
Total 2038 1538 (76%) 160 500 1568 (77%) 76 470
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Table 6.11: Segmentation results of the proposed algorithm, comparison when using joint
angles only (JA) or joint angles and accelerometer data (JA+A). The motions performed
were knee flexion (KF), sit to stand (SS), squats (SQ), hip-knee flexion (HF) and straight leg
raise (SL). Results shown is the algorithm’s performance for terror = 0.3 s, and the number
of segment point estimates that are correct, false positive (FP) and negative (FN). Separate
results are reported for trained and untrained data.

(a) Trained data

JA JA+A
Motion Total Correct FP FN Correct FP FN
KF 406 389 (96%) 2 15 389 (96%) 0 15
SS 398 276 (69%) 20 122 325 (82%) 8 73
SQ 416 376 (90%) 8 40 382 (92%) 2 34
HF 418 363 (87%) 18 55 380 (91%) 0 38
SL 406 379 (93%) 2 27 378 (93%) 2 28
Total w/o SS 1646 1507 (92%) 30 137 1529 (93%) 4 115
Total 2044 1783 (87%) 50 259 1854 (91%) 12 188

(b) Untrained data

JA JA+A
Motion Total Correct FP FN Correct FP FN
KF 410 375 (92%) 26 35 393 (96%) 0 17
SS 398 257 (65%) 54 141 308 (77%) 20 90
SQ 412 328 (80%) 36 84 362 (88%) 0 50
HF 408 364 (89%) 12 44 351 (86%) 0 57
SL 410 381 (93%) 2 29 354 (86%) 2 56

Total w/o SS 1640 1448 (88%) 76 192 1460 (89%) 2 180
Total 2038 1705 (84%) 130 333 1768 (87%) 22 270
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Table 6.12: Identification results presented as accuracy percentage with inter-subject tem-
plates. The motions performed were knee flexion (KF), sit to stand (SS), squats (SQ),
hip-knee flexion (HF) and straight leg raise (SL).

3-template set 5-template set
Mean SD Mean SD

KF 99.1% 1.9% 99.4% 0.9%
SS 99.4% 1.2% 98.3% 1.9%
SQ 99.7% 0.2% 98.8% 0.9%
HF 99.2% 1.2% 99.0% 1.2%
SL 100.0% 0.1% 100.0% 0.0%

Total w/o SS 99.5% 0.5% 99.3% 0.5%
Total 99.5% 0.4% 99.1% 0.8%

Table 6.13: Segmentation results under different terror values, with inter-subject templates.
The motions performed were knee flexion (KF), sit to stand (SS), squats (SQ), hip-knee
flexion (HF) and straight leg raise (SL).

terror = 0.2 s terror = 0.3 s
3-template set 5-template set 3-template set 5-template set
Mean SD Mean SD Mean SD Mean SD

KF 85.3% 2.0% 86.6% 1.6% 86.7% 2.1% 88.0% 1.8%
SS 53.1% 4.1% 53.2% 8.8% 70.7% 6.5% 69.8% 11.3%
SQ 73.6% 2.4% 74.6% 3.4% 81.2% 2.8% 82.6% 3.2%
HF 74.3% 8.8% 74.4% 11.9% 82.4% 7.6% 82.4% 12.4%
SL 79.5% 2.1% 83.8% 1.1% 85.7% 2.7% 90.6% 1.1%

Total w/o SS 78.9% 1.2% 81.0% 1.5% 84.3% 1.7% 86.6% 2.2%
Total 73.1% 1.5% 74.6% 3.0% 81.2% 2.0% 82.8% 3.5%
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ZVCs that occurred on the significant DOFs were considered. Since ZVC produces segment
points at both the end of flexion and the end of extension, every two consecutive ZVC
segment windows were combined.

A fixed-sliding window HMM [80] was also implemented. HMM construction for the
fixed sliding window was identical to the feature guided HMM. The fixed window length was
computed from the lengths of the exemplar templates. Segmentation points were declared
on local maximas of the likelihood, as long as it is above some likelihood threshold.

Lastly, a DTW algorithm [87] was also implemented. An arbitrary exemplar is selected
to be the template motion. A mapping matrix, used to time-align two time series signals,
is constructed by taking the Euclidean distance between each time step. An unconstrained
path was used, since motion data often contains pauses, which is less suited for a greedy
algorithm [97]. The warping path width was constrained to 8 timestamps to prevent
singularities. A segment candidate is considered a primitive candidate as long as the
Euclidean distance between a given template and the observation data was maintained
below some empirically-derived threshold. The threshold is determined by taking the
distance between all the exemplar motions against the template exemplar, and taking
the average distance. If the observation data is of a different length then that of the
template, a penalty distance is added, proportional to the difference in length. Initial
tests with a bottom-up DTW [49] resulted in 50% accuracy, with average runtime of 700
seconds, indicating that basic DTW is not suitable for this application. To reduce the DTW
computation time and improve accuracy, a modified version of DTW was implemented.
The feature-searching component (Figure 5.5.2-6) from the proposed algorithm was used
to determine the potential segment points, and the HMM component in the proposed
algorithm was replaced with DTW. That is, potential segment points were located by
considering the sequence of velocity peaks and zeros in the observation data, while rejecting
short ZVC intervals or small velocity peaks. When a sequence of velocity features matches
that of a given template, a segment potential is declared and assessed by the DTW. This
also allows the HMM and the DTW to be compared in a more straight forward fashion.

The 5 joint angles from the EKF and the accelerometer signal were used for template
training and observation input for the fixed-window HMM and the DTW. Only the joint
angle data were used for the ZVC algorithm as the accelerometer data would introduce
noisy ZVCs and degrade the segmentation quality.

The feature-guided HMM outperforms all the comparison algorithms. Table 6.14 shows
the feature-guided HMM’s error metrics compared against ZVC , fixed-window HMM and
feature-guided DTW, at different terror levels. The ZVC algorithm does not have a identi-
fication component, but the data are presented together for ease of comparison.
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Table 6.14: Identification and segmentation results comparing the proposed to other algo-
rithms, with identification accuracy and percentage, as well as the algorithm’s performance
within a given error bound terror, and the number of segment point estimates that are correct,
false positive (FP) and negative (FN). Separate results are reported for trained and untrained
data.

(a) Trained data. Total = 2044.

Ident. terror = 0.2 s terror = 0.3 s
Correct Correct FP FN Correct FP FN

ZVC - 1256 (61%) 526 786 1414 (69%) 432 628
Fixed HMM 2038 (99.7%) 483 (24%) 948 1559 710 (35%) 644 1332

Feature DTW 2044 (100%) 1658 (81%) 42 384 1822 (89%) 14 220
Feature HMM 2044 (100%) 1684 (82%) 34 358 1854 (91%) 12 188

(b) Untrained data. Total = 2038.

Ident. terror = 0.2 s terror = 0.3 s
ZVC - 1345 (66%) 424 691 1513 (74%) 344 523

Fixed HMM 2028 (99.5%) 397 (20%) 958 1639 572 (28%) 742 1464
Feature DTW 2036 (99.6%) 1556 (76%) 96 482 1736 (85%) 42 302
Feature HMM 2038 (100%) 1568 (77%) 76 470 1768 (87%) 22 270
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Although feature-guided HMM segments along ZVC points, its ability to reject spurious
crossings compared to the ZVC algorithm greatly improves the segmentation accuracy and
reduces the number of false positives. The ZVC algorithm often groups a long sequence of
slow moving motions with the first half of the motion of interest, causing the rest of the
observation sequence to be segmented improperly. If a segment was redefined to separate
the flexion from the extension motion, the ZVC algorithm would report better performance.
A single threshold to reject short sequences is also difficult to use, as each participant moves
at a different speed. No identification results are reported for the ZVC algorithm as it does
not provide any motion labels.

Fixed-window HMM also performed poorly. Its inability to change its window size,
which is the average length of the templates, means that even though it is good at iden-
tifying the underlying motion, it is not able to produce accurate segmentation bounds. It
does provide accurate labels, and emphasizing the need for a windowing technique.

It does not appear that DTW warping irregularities is a significant problem for this
data set, as feature-guided DTW performs comparably to the feature-guided HMM in both
segmentation and identification. Having a multi-tier segmentation algorithm and a way
to reduce the search space for potential segment points greatly increases the accuracy of
the segmentation algorithm. Due to variations in human motion, it is critical that the
algorithm employed can handle spatial and temporal intra- and interpersonal variances
between the motion template and observations. HMMs model spatial variations explicitly
as state variance, and temporal variations within the state transition matrix, allowing it to
identify the observation motion, even if it is carried out faster or slower than the exemplar
template. ZVC does not account for these variabilities at all.

6.3.4 Timing Results

Table 6.15 shows the timing results for each of the examined algorithms, averaged over the
198 motion sequences examined. The exemplar length is the average length of each obser-
vation sequence. The template construction time is the average time taken to construct
all relevant template data for a given subject. The segmentation time is the average time
required to segment one set of observation data.

Due to its simplicity, the ZVC algorithm requires no template training time and very
little segmentation time. However, as noted in the previous section, this algorithm is inac-
curate. Fixed-window HMM uses the Baum-Welch algorithm to train the HMMs based on
exemplar data, and requires a significant amount of training time. Its segmentation time
is also very long, as it needs to run the forward algorithm numerous times at each time
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Table 6.15: Timing results compared to other algorithms, in [s]. Average exemplar length
is 37.14 s ± 11.03 s.

Template construction Segmentation time
Mean SD Mean SD

ZVC - - 0.13 0.04
Fixed HMM 37.92 8.51 54.27 33.53
Feature DTW 70.33 30.76 76.58 69.02
Feature HMM 38.25 9.59 6.72 2.56

step, once for each template available. The feature-guided HMM requires the most training
time, though the feature extraction component takes very little time additional time. With
the feature-guiding, the proposed algorithm is able to more intelligently determine when
to apply the forward algorithm, and decrease the segmentation runtime significantly, when
compared to the fixed-window HMM. Even with added feature matching, DTW still re-
quires considerably longer to execute when compared to HMM and typically requires more
time than the duration of the temporal sequence. Although the segmentation accuracy of
the DTW is comparable to that of the HMM, the high computational cost of the DTW
makes it impractical for any real-time applications.

It should be noted that these results were collected from algorithms implemented in
MATLAB, which consists of a large overhead due to its high-level structure. These timing
results should be examined relative to each other, as opposed to being an absolute assess-
ment. As such, Table 6.15 shows that the feature-guided HMM significantly decreased the
cost of utilizing an HMM algorithm as it performed better than the fixed-window HMM.
When all other factors were held equal, HMM is seen to outperform DTW, as can be seen
by the feature-guided version of both algorithms.

6.4 Summary

The joint angle estimation algorithm proposed in Chapter 4 was verified on a set of
movement data from healthy subjects. When compared to motion capture, the approach
achieves an average RMS error of 4.27 cm for unconstrained motion, with an average joint
error of 6.5◦. The average RMS error is 3.31 cm for sagittal planar motion, with an average
joint error of 4.3◦.

The segmentation and identification algorithm proposed in Chapter 5 was also verified,
on the joint angle estimates produced by the pose recovery algorithm proposed in Chapter
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4. The segmentation algorithm reports 78% accuracy when the template training data
comes from the same participant, and 74% for a generic template.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Findings

This thesis proposes a rehabilitation exercise monitoring system that provides detailed joint
angle measurements and automatically identifies the exercises performed by the patient
over each rehabilitation session. The proposed system was tested on 20 healthy subjects,
performing 5 rehabilitation exercises.

On-line pose estimation from body-worn sensors. This thesis proposed an algorithm
for estimating lower body pose based on the extended Kalman filter. Inertial mea-
surement units are employed as sensory input, with constant-acceleration and forward
kinematics as the state and measurement models, respectively. These sensor units
are well suited for rehabilitation as they are small and lightweight, and do not ob-
struct the rehabilitation process. Kinematic constraints, based on anthropometric
joint angle ranges, are applied to mitigate the effects of gyroscopic drift. This is
introduced to the state estimates via a potential field, which exerts a virtual accel-
eration that varies in strength proportional to the distance between the estimated
joint angles and the joint limits. The noise covariances are adjusted on-line to adapt
the Kalman filter to each participant and movement profile. The proposed system
achieves an overall average RMS error of 4.27 cm, and is capable of estimating joint
angles accurately for arbitrary 3D motion of the leg.

On-line exercise segmentation and identification. This thesis proposed a feature-
guided HMM motion segmentation algorithm to segment human motion data during
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on-line measurement. The proposed approach reduces the comparison space of the
observation data by identifying significant DOFs, velocity peaks and ZVCs to esti-
mate locations of potential segment points. When such potential segment points are
located, the sequence under examination is checked against HMM templates to find
the most accurate segmentation and identify the motion. The algorithm is shown
to be able to segment data with high accuracy with subject-specific templates. It
was also shown to be robust when inter-person templates are utilized, demonstrating
its ability to handle both spatial and temporal variability introduced by intra and
inter-personal differences. The algorithm is capable of handling any time series input
stream, including joint angles or Cartesian linear acceleration data. The ability to
segment on-line enables immediate feedback to the physiotherapist and rehabilitation
participant, allowing the participant to correct incorrect motions to maximize reha-
bilitation efficacy. The algorithm reports 78% accuracy when the template training
data comes from the same participant, and 74% for a generic template.

7.2 Future Work

7.2.1 Data Collection on Rehabilitation Patients

For future work, motion data will be collected from joint replacement physiotherapy pa-
tients, in order to assess the system’s accuracy against a test population whose motions
may have different noise characteristics from a healthy population. Patients undergoing
physiotherapy may exhibit significantly different movement profiles, including increased
variability and tremor, which may increase the difficulty of joint angle recovery and seg-
mentation.

7.2.2 Pose Estimation

For the pose estimation, improvements to the noise covariance estimation are required to
improve the robustness of the algorithm. Increasing the noise covariance when the Kalman
filter performs poorly allows the filter to continue to operate instead of diverging, but
implies that the filter was running with subpar parameters. A more targeted auto-tuning
system would also improve the gyroscopic drift issue. Although the Kalman filter was
shown to perform with less reported error when compared to previous work, drift issues
still remain. A better noise covariance estimation would allow the Kalman filter to account
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for the inaccuracies in the sensor calibration, produce more accurate joint angle estimates,
and potentially eliminate the need for the joint constraint potential field.

Currently, the Kalman filter utilizes link lengths derived from motion capture. A substi-
tute for motion capture values is to use anthropometric tables, but anthropometric tables
are constructed for a specific population and may not be applicable to all populations.
A method for link length parameter estimation would remove the dependency on motion
capture or anthropometric tables, and provide a better estimation routine than using a
fixed link length.

7.2.3 Motion Segmentation and Identification

For the motion segmentation and identification, a method to dynamically update the tem-
plate could improve segmentation results. Motion templates generated from healthy par-
ticipants or physiotherapist may not correspond well to the motions produced by patients
undergoing physiotherapy. Template adaptation would allow the templates to be modified
by incorporating information from the observation itself, enabling the segmentation and
identification of a wider range of motions.

The application of this thesis is to exercise motions, and exercise motions tend to be
cyclic in the joint velocity, allowing for velocity crossings and velocity peaks to be used.
However, more powerful or sophisticated features may need to be proposed for general
motions sets. Currently, only relative positions of peaks are used, and timing data use was
minimal. Improved feature identification would further decrease the number of forward
algorithm calls, and thus improve runtime as well.
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