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Abstract 

 

Until recently, multiple SPME fibres could not be automatically evaluated in a single 

sequence without manual intervention. This drawback had been a critical issue until recently, 

particularly during the analysis of numerous on-site samples. Recently, GERSTEL® has 

developed and commercialized a Multi-Fibre Exchanger (MFX) system designed to overcome 

this drawback. In this research, a critical evaluation of the MFX performance in terms of storage 

stability and long term operation is presented. It was established in the course of our research 

that the MFX can operate continuously and precisely for over 200 extraction/injection cycles. 

However, when the effect of residence time of commercial fibres on the MFX tray was 

evaluated, the results have shown that amongst the evaluated fibre coatings, 

carboxen/polydimethylsiloxane (CAR/PDMS) was the only coating capable of efficient storage 

on the MFX tray for up to 24 hours after field sampling without suffering significant loss of 

analytes. Additionally, the MFX system capability for high-throughput analysis was 

demonstrated by the unattended desorption of multiple fibres after on-site sampling of two 

different systems, indoor air and biogenic emissions. Subsequently, a protocol based on a new, 

fast, reproducible, reusable and completely automated method that enables quick assessment of 

SPME coatings was developed. The protocol consists of an innovative in-vial standard generator 

containing vacuum pump oil doped with McReynolds probes and subsequently mixed with a 

polystyrene-divinylbenzene resin. According to our results, the protocol has proven to be a 

useful tool for the quick assessment of inter-fibre reproducibility prior to their application in on-

site analysis. The implications of such protocols include, but are not limited to: time-saving, 
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assurance of reliable and reproducible data, and a dependable guide for novice users of the 

technique.   

 Finally, an innovative, reusable and readily deployable pen-like diffusive sampler for needle 

traps (PDS-NT) is proposed. Results have shown that the new PDS-NT is effective for air 

analysis of benzene, toluene, and o-xylene (BTX). In addition, no statistically significant effects 

of pen geometry on the uptake of analytes were found. 
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Chapter 1 – Introduction 

1.1 The relevance of the sampling step 

The analytical process typically consists of several steps such as sampling, sample 

preparation, separation, quantitation, statistical evaluation, and decision making.1 The sampling 

step is critical in order to obtain correct and informative results; in this step, the analyst should 

choose a technique that acquires samples in accurate amounts, as well as decide optimal times 

and location to conduct sampling, so as to properly characterize the problem under study. 1 

Ideally, all samples should be analyzed on-site to avoid losing sample integrity. 1 However, in 

most cases only preliminary assessments are taken on-site, in order to determine the number of 

samples and the location needed for further analysis. In cases where on-site analysis is not 

possible, simple sampling/sample preparation techniques for field applications are required. 2,3,4,5  

1.2 On-site sampling  

 Sampler devices for field sampling should be simple and reliable, since sampling sites are 

generally located far from the laboratory. Consequently, the device requires easy method 

deployment, one which allows technicians or operators with limited knowledge of the particulars 

of the mechanism to easily operate the sampler. Moreover, the production of the device should 

be uncomplicated and inexpensive. Additionally, during its transportation and storage, 

contamination, decomposition, and/or loss of the analytes should be negligible.6,7 Finally, the 

device should be sensitive to the substances under study, insensitive to interfering matrix 

components, and not require in-laboratory sample pre-treatment. 8 

Several environmental and physicochemical parameters, such as humidity, temperature, and 

air velocity can affect the analytical results obtained using passive sampling devices; 6,8,9,10 
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therefore, exposure chambers are used to calibrate and test samplers under simulated field 

conditions in order to estimate the effect of these parameters on their performance. Furthermore, 

analytical recovery, storage stability, sampling capacity, uptake rate, reverse diffusion, accuracy, 

and precision of the field sampler device must be evaluated and validated against conventional 

methods. 11,12  Since most conventional methods require costly equipment, considerable sampling 

expertise, and complicated cleaning and extraction procedures, Solid Phase Microextraction 

(SPME) and Needle Trap (NT) devices have shown to be suitable techniques to address this 

concern. 4, 13  

1.3 SPME 

SPME is a green sampling/sample preparation technique comprehensively described in the 

literature. 1,13,14 SPME has been widely accepted in different fields of analytical chemistry, due to 

its easy handling, minimization of organic solvent consumption and short sample preparation. 15-

23 The achievements of SPME during the last decades are the result of its multiple advantages; 15 

first, the variety of fibres commercially available covers a comprehensive range of analytes 

(from VOCs to SVOCs). Secondly, the elimination of matrix interference by sampling directly 

from the liquid sample or from the headspace improves the results. Finally, but unquestionably 

the most important feature: SPME is easily automated. 

The SPME device consists of a fibre assembly that is sheltered in a fibre holder. Figure 1.1 

shows a representation of the internal view of a manual fibre assembly, as well as the recently 

commercialized fast fit fibre assembly (FFA). This assembly consists of a piercing needle with a 

solid support (core) inside that is coated with a thin layer of a suitable polymeric stationary 
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phase, which enables extraction and enrichment of the analytes by concentrating them during 

absorption and/or adsorption processes from the sample matrix.  

Since SPME can extract a wide variety of analytes, the selection of an appropriate coating is 

a critical step in method development.  In brief, the selection is based on four prominent criteria: 

1) analyte polarity; 2) analyte concentration and range; 3) molecular weight (MW), shape and 

size of analyte, and 4) complexity of the sample.1 Table 1.1 summarizes the main features of 

commercial coatings used in this research.  

1.3.1 SPME equilibrium based calibration approach 

Several calibration approaches have been developed for SPME; equilibrium extraction is the 

most frequently used method.  After a certain amount of extraction time, concentration 

equilibrium is established between the sample matrix and the extraction phase; consequently, 

exposing the fibre for longer periods does not result in the accumulation of more analytes. Under 

equilibrium conditions, the number of moles of analyte extracted (n) by the coating at 

equilibrium can be expressed by Equation 1.1  

 

where Ve is the fibre-coating volume, Vs the sample volume, Co the initial concentration of a 

given analyte in the sample and Kfs is the extracting phase/sample matrix distribution constant. 

Moreover, Equation 1 indicates that the amount of analyte extracted in the coating (n) is linearly 

proportional to the analyte concentration in the sample (Co), which is the analytical basis for 

quantification using SPME. Additionally, when the sample volume is very large, Vs >> KfsVe, 

Equation 1.1 can be simplified to  

Equation 1.1

Equation 1.2
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Therefore, the amount of analyte extracted will correspond directly to its concentration in 

the matrix, independently on the sample volume, which points the advantage of SPME for field 

applications.  

 

 

 

 

 

 

 

 

Figure 1.1 Schematic view of SPME manual fibre assembly and a fast fit fibre assembly (FFA)1,24 

 

Table 1.1 Commercial SPME fibre coatings used in this research.1,25 PDMS, polydimethylsiloxane; PDMS/DVB, 
polydimethylsiloxane/divinylbenzene; CAR/PDMS, carboxen/polydimethylsiloxane; DVB/CAR/PDMS, 
divinylbenzene/carboxen/polydimethylsiloxane. 

SPME fibre 
coating 

Coating 
thickness 

(μm) 

Desorption 
temperature 
 range (ºC) 

Conditioning 
procedure  

Polarity 
Mechanism of 

extraction 
MW 
range 

Analytical 
application 

PDMS 100 200-280 
30 min,  
250 ºC 

nonpolar absorption 60-275 
nonpolar 
analytes, 
volatiles 

PDMS/DVB 65 200-270 
30 min,  
250 ºC 

bi-polar adsorption 50-300 

polar volatiles, 
amines, 

nitroaromatic 
compounds 

CAR/PDMS 85 250-310 
60 min,  
300 ºC 

bi-polar adsorption 30-225 
gases and 
volatiles 

DVB/CAR/PDMS 50/30 230-270 
60 min, 
 270 ºC 

bi-polar adsorption 40-275 

volatiles and 
semivolatiles, 
broad range of 

polarities 
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 It is important to emphasize that this equation is strictly valid for partitioning equilibrium 

involving liquid polymeric phases. In the case of solid sorbents the method is analogous only for 

low analyte concentrations, since at high concentrations competitive interference can displace the 

target analyte from the surface of the sorbent.1              

1.3.2 SPME diffusion based calibration approach 

Significant research with SPME has focused on applications for air sampling and analysis. 

As aforementioned, the theory behind the equilibrium and non-equilibrium extractions for liquid 

coatings is well understood and described in the literature 1. Despite the sensitivity of solid 

coatings for the extraction of VOCs being higher when compared to PDMS, competitive 

adsorption and displacement effects make mass calibration and quantification particularly 

challenging. In order to solve this issue, Koziel et al. proposed an approach that relies on 

diffusion-controlled extraction 26. This method has two critical restrictions: short sampling times 

and non-equilibrium conditions. Following these rules, the effects of competitive adsorption are 

diminished, and the coating can be calibrated on the initial linear extraction region. If the 

concentration of the analyte is assumed to be constant for a very short sampling time, the 

concentration can be estimated from the following equation 

 

 
where n is the mass of extracted analyte in nanograms over sampling time t; Dg is the gas-phase 

molecular diffusion coefficient (cm2/s); b is the outside radius of the fibre coating (cm); L is the 

length of the coated rod (cm); δ is the thickness of the boundary layer surrounding the fibre 

coating (cm); t is the sampling time (s), and Cg is analyte concentration in the bulk air (ng/mL). L 

and b are constant for each type of fibre coating, and n can be estimated from the detector 

Equation 1.3
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response. The diffusion coefficients of the analytes can be estimated from physicochemical 

properties by the method proposed by Fuller, Schettler, and Giddings (FSG) 27 

 

 

where Dg is expressed in cm2/s, T is the absolute temperature (K), Mair and MVOC are molecular 

weights for air and the VOC of interest, p is the absolute pressure (atm), and Vair and VVOC are the 

molar volumes of air and the VOC of interest (cm3/mol). Additionally, based on Koziel and 

collaborators,26 the effective thickness of the boundary layer can be estimated using the 

following equation 

 

where Re is the Reynolds number, Re = 2ub/v, where u is the linear air velocity (cm/s), v is the 

kinematic viscosity for air (cm2/s), Sc is the Schmidt number, and Sc = v/Dg. Particular attention 

should be paid to control convection conditions during extraction in order to maintain a constant 

boundary layer, and hence avoid variations in the extracted amounts of analyte. In addition, by 

using forced air, the sensitivity of the solid coatings is enhanced. In order to facilitate control of 

convection conditions, Augusto et al. designed a Portable Dynamic Air Sampler (PDAS) for 

SPME.28 Figure 1.2 presents the schematic of the device built using a hair-dryer.28 This 

instrument was modified to revert the air flow direction and to disable the internal heating coil. 

When compared to standard methodologies, the authors demonstrated that a 30 s sampling time 

using PDAS-SPME allowed measurement of VOC concentrations that were not detected by the 

NIOSH standard method, even after several hours of extraction using expensive and non-

reusable materials. 28 

Equation 1.4

Equation 1.5



7 
 

It should be also emphasized that short sampling times are important so that the effect of 

relative humidity on the adsorption of VOCs on the solid coatings is minimized. Indeed, to 

obtain accurate and precise concentrations, the sampling time should be properly measured. One 

interesting advantage of this method is that external calibration is not needed since sampling 

conditions and constants are known.26,28 Also, since the method depends on the dimensional 

parameters of the fibres, its dimensions, and integrity should be checked prior to sampling. 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic of the portable dynamic air sampling device for SPME developed by Augusto et al. 1,28 

1.4 Needle trap (NT) 

A needle trap (NT) is an extraction trap that contains a sorbent inside of a needle. Indeed, a 

NT combines sampling, sample preparation, and sample introduction as SPME does. However, 

NT, as an active sampler, is an exhaustive technique that allows particle trapping. Hence, as 
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shown in Equation 1.6, total concentration of the analyte could be easily obtained by controlling 

the sampled volume (v) and determining the amount extracted (n) in an analytical instrument. 4,5  

                                                                         

Several factors, such as the pore size and shape, surface area, and particle size, can affect 

the ability of the analyte to access and interact with the surface of the adsorbent; therefore, these 

parameters must be contemplated and controlled.5 Moreover, because of the special shape of the 

needle, sorbents used for NT must have the appropriate physical characteristics in size, hardness, 

shape (spherical), and mechanical and thermal stability.  

The first practical and successful application of NT, suitable for automation and on-site 

application, was a 23 gauge stainless steel needle, 40 mm long, containing 5 mm of quartz wool 

packing.29,30 Since then, several groups have worked on the development of sorbent-packed 

needles or similar devices.4 Some of the sorbents that have been used for the analysis of VOCs 

are Porapak Q™ and Carbopack X™.4  

According to previous developments,5,29,31 the design of a NT must guarantee several 

factors: exhaustive extraction (active sampling), negligible breakthrough during sampling, and 

efficient desorption. Indeed, desorption assisted by inert gas flushing of the sorbent bed seems to 

be the most suitable method to achieve efficient desorption of the analytes. 4   

Figure 1.3 shows a schematic of a NT in which the sorbent was packed near the blunt tip of 

the needle. This NT was designed with a side-hole (I.D. 0.4064 cm) located 3 cm from the tip of 

the needle. This design allows the carrier gas to pass through the sorbent and aids the delivery of 

desorbed analytes into the GC column. Carry-over and memory effects were not detected using 

this design.5,31 The procedure used to prepare this type of NT is described elsewhere. 4,5,31 The 

Equation 1.6
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most engaging characteristic of a NTD, demonstrated by Koziel and co-workers,29 is that it is 

able to extract simultaneously both free and particle bound molecules.  

 

 

 

Figure 1.3 Schematic view of the side-hole NTD with inert spring to retain sorbent4 

1.5 Passive sampling with SPME and NT 
 

The basic principle of passive sampling is the free circulation of analyte molecules from the 

sampled medium to the sampling device, as a result of the difference in chemical potential 

between them. 6 Permeation through a membrane or diffusion through a barrier are the common 

mechanisms used by passive sampling devices. 7  

TWA sampling using SPME can be performed by withdrawing the fibre a defined distance Z 

inside the needle from the opening of fixed area A; thus, a diminutive tube-type diffusive 

sampler is created.  In the case of NT, if a strong sorbent is packed at a defined distance Z from 

the needle opening of fixed area A, the device could be recognized as a very simple array for 

passive sampling as well.4 

As shown in Figure 1.4, during the process of diffusion there exists a linear concentration 

gradient across Z. Therefore, by using Fick’s law of diffusion, it is possible to determine the 

amount of analyte loaded on the fibre coating, n, during the sampling time, t. 2,32-34 The equations 

that describe the TWA analyte uptake in SPME and NT are summarized in Table 1.2. 1,6,7,11,14 

 

Z 
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Wire 
coil 

Side hole

Teflon plug
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Three main conjectures should be achieved during the passive sampling with SPME and NT. 

First, the device should respond proportionally to changing analyte concentration at the face of 

the needle.2,33 Secondly, the concentration of the gas system must be equal to the analyte 

concentration at the face of the opening.2,33 And third, the sorbent should be a zero sink for the 

target analytes.2,33  

An important feature of any passive sampler is whether it has the ability to integrate high 

peak concentrations. This function is directly related to the response time of the sampler. As 

shown in Table 1.2, according to Fick’s law the response time is proportional to the square of the 

diffusion path length and inversely proportional to the diffusion coefficient. Using a Z of 0.5 cm 

for a compound such as hexane, a response time of 2 seconds can be achieved.2 This short 

response time of SPME and NT in passive mode enables the integration of fluctuating 

concentration profiles and assures that the sample acquired represents an accurate TWA 

concentration.1,2   

It has been proved by several authors that SPME and NT, different from tube type-

samplers,2,11 can be used for passive sampling without considering face velocity problems due to 

the extremely small inner diameter of the needle.1,35-39 The fact that air velocity does not affect 

the measured concentration implies that there is no external resistance to mass transfer, even at 

very low air velocities. 1 Consequently, all the resistance to analyte transport is contained within 

the stagnant air layer inside the small tubing, and the concentration at the face of the sorbent is 

equal to the bulk analyte concentration. 2  

Studies have shown that the amount of analyte loaded on the fibre or sorbent during passive 

sampling should be smaller than 10% of the equilibrium amount in order to avoid altering the 
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mass-rate uptake of the device.2,4,33 Also, the analyte concentration in the vicinity of the sorbent 

bed or coating comes close to zero (“zero” sink) only for high extraction phase/matrix 

distribution constants (Kes). Therefore, the best approach for volatile compounds is to use 

coatings/sorbents characterized by large Kes, such as Carboxen. 4   

In addition to the three pre-requisites of passive sampling with SPME and NT that were 

described before, passive sampler devices should be reliable under fluctuating environmental 

conditions such as humidity and temperature. Otherwise, corrections to the uptake rate of 

analytes must be applied.2,9,11  

Regarding humidity effects, Chen and Pawliszyn,2 using a CAR-PDMS 75 µm fibre (zero 

sink) to sample BTEX in passive sampling mode, found no remarkable effects on sampling rates 

when humidity was increased. This finding seems to be related to the hydrophobicity of 

Carboxen and the absence of competition between water and analyte molecules for active sites at 

their experimental conditions.2 Similar results were reported by Gong et al. using Carboxen as a 

packed sorbent in a NTD to sample BTEX in passive mode.5  

These findings are supported by other researchers that also concluded that humidity does not 

have a significant effect on the properties of the SPME/NT samplers.37-40 On the other hand, 

according to some other authors,35,36 it would appear that relative humidity changes coating 

properties as well as the occupied active adsorption sites, and consequently, fibre selectivity 

might be affected. 

Based on these observations, it can be explained that sampling rates of compounds such as 

PEG, perchloroethylene, furfural and halothane were reduced when compared to the 

corresponding theoretical values.35,41-43 
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Z – Diffusion path

A

SPME Coating /NTD Sorbent

C face

C sorbent
“zero‐sink”

Concentration gradient 
when C sorbent = 0Sample

Concentration gradient 
when C sorbent  0

Needle

Table 1.2 Equations that describe passive sampling analyte uptake in SPME and NTD. n: mass of analyte loaded on 
the fibre or NTD during the sampling time t; Dg: diffusion coefficient of the target analyte; A: area of the cross-
section of the diffusion barrier; Cs: gas-phase analyte concentration at the coating position (sorbent bed); CF: 
concentration of the analyte at the needle opening; SR: sampling rate; SR(Z): sampling rate at the position Z. SR(Z’): 
sampling rate at the position Z’; Dg: Diffusion coefficient at 298 K; DT: Diffusion coefficient at a different 
temperature, T (K); T: temperature 
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Figure 1.4 Concentration gradient of an analyte produced between the opening of the needle and position of the 
sorbent Z. Z: diffusion path; Csorbent: Concentration near the sorbent interface; Cface: time dependent concentration of 
the analyte at the needle opening; A: area of the cross-section of the diffusion barrier. 
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Thus, it would seem that this behavior is not similar for all analytes, and that the effect of 

relative humidity on sampling rate is dependent on the volatility and polarity of a given 

analyte.36,37  

The effect of temperature on passive sampling using SPME and NT has also been 

investigated. Chen et al. and Gong et al. found that there is an increase in the uptake of BTEX 

and n-alkanes that is proportional to temperature.2,11 This is expected since the diffusion 

coefficient is a function of temperature (T α Dg
1.75

, see Equation 1.4). However, for heavier 

alkanes (C >11), it was observed that the uptake rates at the beginning of the sampling are higher 

than theoretical values, as a consequence of adsorption on the needle walls. Similar results were 

found by Shih et al. in the analysis of poly(ethylene glycol) ethers and by Zare et al. in the 

analysis of perchloroethylene.36,39  

Several studies found that adsorption on the needle walls is not easily predictable, and seems 

to depend on the concentration at which the device is exposed.2,37 In addition, at long exposure 

times, amounts of analytes collected on the sorbent are considerably higher than amounts 

adsorbed on needle walls, and consequently, under these conditions, the needle adsorption effect 

on uptake rates can be neglected. It has also been observed that if the sampling temperature 

increases, the adsorption of the compound on the needle diminishes, and the experimental value 

of the sampling rates is closer to the theoretical value.  

Other authors, however, have suggested that the adsorption on the needle walls is not an 

issue only observed in relation to less volatile compounds. Chen and Hsiech reported that the 

experimental sampling rates of dichloromethane at very short sampling times were higher than 

rates obtained with long sampling exposures37. However, similarly to observations reported by 
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Chen and Pawliszyn, the values become constant as the sampling time increases.37 In summary, 

in order to eliminate the effect of needle adsorption, Chen et al. proposed the use of deactivated 

needles for TWA samplers, such as Silicosteel-coated needles.1,2,34 

SPME devices have been successfully used for TWA sampling of alkanes,2,38,44 VOCs,2 

toluene,3 volatile sulphur compounds (VSCs),38 hydrocarbons and other analytes in air.1 As an 

example, Martos and Pawliszyn (1999) have proven the usefulness of SPME-TWA sampling 

using on-fibre derivatization of formaldehyde.33 The results were in good agreement with those 

obtained using the NIOSH Method 2541.26,33  

Gong et al. have developed and validated a simple, easy to deploy and cost-effective NTD 

method for the TWA analysis of VOCs.5 The evaluation showed that NTD packed with 

Carboxen 1000 is not only effective for air analysis of BTEX, but also has good storage stability 

for these compounds. Good agreement was observed between theoretical and experimental 

sampling rates, and results obtained using NTD active sampling, SPME, NIOSH method 1501 

and NTD passive sampling compared well among them.5   

As mentioned earlier, when developing a passive sampling method several environmental 

parameters might affect the uptake of the analytes. Figure 1.5 presents a modified protocol for 

the development of time-weighted average air sampling method with SPME or NT.20,36 This 

procedure is an adaptation made by Zare et al. of the “protocol for solid-phase microextraction 

method development” established by Risticevic et al.20 Detailed steps for the development of 

diffusive sampling methods are described elsewhere.3,45  
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Figure 1.5 Typical parameters and steps that should be evaluated for development of a time-weighted average air 
sampling method with SPME or NT. 36 

 

Finally, it is important to highlight the flexibility SPME demonstrates in selecting different 

sampling times or concentrations ranges, since the fibre coating can be adjusted at different 

diffusion path lengths; this is an exceptional advantage that is not feasible with NTD or 

conventional methods.3   

1.6 High-throughput SPME analysis  

The automation of an analytical technique has several advantages, such as greater 

reproducibility, faster sample throughput, and reduced analyst time for both method development 

and routine analysis. Currently, when multiple analyses have to be conducted in a laboratory in a 

short period of time, traditional sample preparation methods are the bottleneck in the throughput 

of the analysis. In most cases, due to large sample sizes or high consumption of organic solvents, 

it is difficult to develop a method that integrates sample preparation with separation/detection for 

automation purposes.46,47 
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When the principles of SPME were originally developed, it was discovered that the fibre 

arrangement of SPME was suitable for automation with GC, due to its similarity to traditional 

GC syringes used for liquid injection.48 SPME automation eliminates the drawbacks of the 

traditional techniques and is an efficient approach toward integration of sample preparation with 

GC or LC.20,21 Indeed, method development with automated SPME has several advantages over 

manual SPME methodology. For instance, superior extraction time reproducibility allows the 

development of faster non-equilibrium extractions, which is otherwise unattainable when using a 

non-automated method47. Also, since the autosampler can run 24 h a day, a manual SPME 

method can be considered inconvenient when a considerable volume of samples needs to be 

processed.20  

An SPME autosampler is basically a device equipped with a robotic arm, which enables 

manoeuvring for sampling and injecting in the gas chromatograph to be performed 

mechanically.1,48 Several autosamplers with different features have been developed for SPME 

since 1992.20 Autosamplers introduced by Varian in 1993 provided analysts the first opportunity 

to explore the potential of automated methods with SPME.20,49,50 Six years later, with the release 

of the CTC autosampler, added functionality became available, which greatly expanded the 

variety of SPME sample preparation processes that were possible prior to its release.1,49,50 

Recently, GERSTEL® launched the MultiPurpose Sampler 2 (MPS2), with the remarkably 

simplified and user-friendly interface designed for method development.1 An image of the 

commercial autosampler MPS 2 can be found in Figure 1.6. As can be observed, the robotic arm 

is equipped with several components, such as a sample tray, agitator tray, sample 

preparation/injection arm, and fibre conditioning station. The agitator tray provides temperature 

control and agitation during the incubation and extraction processes. The autosampler arm is able 
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to transport the vials from the sample tray to the sample preparation station and expose/withdraw 

the fibre coating. The fibre conditioning station, in this case the front injection port, is designed 

to clean the fibre coating after each extraction/injection cycle in order to prevent carry over.20  

An interesting feature of the current commercialized autosamplers is the ability to start the 

sample preparation procedures for the sample sequence, while a different sample is still 

undergoing GC analysis,20 thus achieving high sample throughput. 

 

 

Figure 1.6 An image of the commercially available MPS2 autosampler for the performance of automated SPME 
processes. Shown in the image are: a) qMS; b) GC; c) MPS2; d) autosampler arm; e) MFX tray; f) agitator; g) 
Injection port; h) Workstation.  
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Despite significant advances made towards the automation of SPME-GC analysis, multiple 

fibre devices cannot be automatically injected in a single sequence. This is a critical issue, 

mainly because when running analysis of numerous on-site samples taken with various fibre 

assemblies, the operator has to stop the system and manually replace the fibre devices whenever 

needed. Thus, the development of a completely automated SPME sequence is limited by the 

number and type of fibres used by the analyst.24  

Consequently, the ability to automatically exchange fibre devices during the analysis 

sequence is a highly desirable feature for SPME users. The new SPME Fast Fit Fibre Assembly 

(FFA, developed by CHROMLINE® and SUPELCO®) together with the Multi-Fibre Exchanger 

(MFX) system (designed for the GERSTEL® MPS2 autosampler) made this feature plausible. 

This innovative system offers SPME users the possibility to run in a single sequence multiple 

fibre assemblies previously employed for sampling (e.g. multiple probes used in in-vivo 

analysis). In addition, this system allows the users to program extractions from the same vial 

using different fibres without any manual intervention between runs.24,51  

The original FFA invention24 is comprised of a commercial SPME fibre assembly attached, 

via a hub, to an adapter cap made of a ferromagnetic material (refer to Figure 1.1). Next, the 

needle is assembled in a flange, also made of ferromagnetic material, which is screwed internally 

and externally with a sleeve in the lower part of the fibre assembly body, while a tubular piece is 

assembled in the upper part of this device (Figure 1.1). The original concept of the device 

allowed interchange of different fibres through a radial discontinuity in the flange. However, 

existing commercial FFA devices are manufactured without this radial gap and sold only for the 

use of one type of coating.53,54  
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Since the MFX system and the Fast Fit Fibre Assemblies (FFA) were developed and 

commercialized recently, few applications using this system have been published.24,50 Indeed, all 

of them are mainly focused on the development of a specific application; however, to date no 

publications have focused on a critical evaluation of the system.24,42,51,52 For instance, Pacenti et 

al. developed a method for the Time Weighted Average (TWA) sampling and analysis of 2-

chloroacetophenone (CA), a tear gas broadly used by law enforcement agencies. The statistical 

evaluation of the method showed that neither air flow, relative humidity nor temperature affect 

the adsorption efficiency. According to the data, experimental sampling rates using a 

PDMS/DVB 65 µm fibre were in agreement with theoretical values.52 Similarly, Pacenti and 

collaborators developed a SPME/GC-MS method for the determination of airborne peracetic acid 

(PAA). This technique was used to determine rapid and TWA concentrations of PAA in a 

hospital; good relative standard deviations were found for both forms of sampling (among 8-

11%).51  

 

1.7 Objectives of the project 

The main objective of this research is to perform a critical evaluation of the MFX system 

and develop high-throughput SPME applications which are focused on on-site analysis. In order 

to achieve this objective, our study was developed in several steps that are briefly described 

below.  

In applications where large numbers of samples need to be analyzed, such as food, or on-site 

analysis, robust and reliable fibre assemblies are required. Thus, in cases where the fibre used for 

analysis is broken or partially damaged, in order to continue the throughput of the analysis, it 



20 
 

should be replaced by a new fibre assembly that exhibits the same performance characteristics as 

the old one.20,55 Consequently, an initial assessment of the fibres being used is required prior to 

their application. One of the aims of this research was to develop a protocol for the quick 

assessment of commercial SPME fibre reproducibility. The procedure consists of comparing the 

extraction efficiency of multiple probes towards a number of standards present in a vial head-

space. However, since methods frequently used to release standards in the vial head-space are 

not all equally suitable for all types of coatings due to limited reusability, in this study, a new and 

innovative standard generator vial was developed and used as the source of standards for 

multiple fibre evaluation. Once reliable fibres were found, the performance of the MFX system 

was evaluated in terms of storage stability and long term operation. Finally, two on-site 

applications were developed: determination of indoor air contaminants in a polymer synthesis 

laboratory, and biogenic emissions in Pine tree using in-vivo analysis. Another application of the 

new in-vial standard gas generator, the determination of experimental sampling rates in passive 

sampling mode, was also explored. 

An additional objective of this research was to design and evaluate a cost-effective passive 

sampler for NT. Based on the personal diffusive sampler developed by Gong et al.,5 a new pen-

like diffusive sampler (PDS), which guarantees the integrity of the sample, and in which NT is 

easily installed, was developed and evaluated. Unlike previous work, a sampling chamber was 

successfully designed and built for the evaluation of the sampler device under a controlled 

environment. 
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Chapter 2 – Development of a new in-vial standard gas system for calibration of SPME in 

high throughput applications 

2.1 Introduction 

At present, several calibration methods have been developed for both kinetic and equilibrium 

modes of SPME. Common calibration methods include pre-equilibrium extraction, diffusion-

controlled calibration, equilibrium extraction and kinetic calibration17. The last method, 

henceforth named “in-fibre calibration”, is based on the simultaneous desorption of an internal 

standard previously loaded on the coating and extraction of the target analyte from the sample 

matrix.55 Placing an internal standard on the fibre coating prior to exposing the fibre to the 

analyte is a powerful approach; it reduces uncertainty, improves precision, increases the analysis 

throughput and corrects for measurement response drift, matrix effects, and sample loss.21,56 

Theoretical considerations for in-fibre calibration have been extensively described in previous 

studies and are well-supported by experimental findings.55,57,58 The kinetic calibration approach 

is especially useful for on-site and in vivo investigations where there are difficulties adding the 

standard to the sample matrix or controlling environmental conditions.21,56,59  

A critical parameter that needs to be controlled is the amount of internal standard loaded 

onto the fibre: when using the kinetic calibration method, the amount of standard loaded onto the 

fibre coating should be at a level not as low as to cause detection problems, or as high as to 

overload the detector.55,60 It has been previously described that even for extremely short 

extraction times, large amounts of standard are loaded onto the fibre coating by headspace 

extraction of pure standards in a vial. On the other hand, if standards are diluted in water, loading 

by headspace extraction is reduced to a satisfactory level.19 However, since the mass of the 

standard withdrawn on each loading step makes for a significant percentage of its total, 
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reusability on automated applications is restricted.19,60 Similar procedures were also evaluated in 

previous studies: a vial containing either a PDMS membrane or Tenax particles, loaded with the 

standard; results showed that these approaches are not suitable due to the extensive amount of 

analyte loaded onto the fibre coating.60 A plausible solution was first proposed by Wang et al.60, 

an approach which consists of spiking a few milligrams of standard into a predetermined amount 

of pump oil placed in a sealed vial. It has been proved that this experimental set-up provides an 

excellent standard generator for over a 100 extraction/injection cycles using PDMS fibres, an 

essential feature when processing a large number of samples.19-21,60 Due to the low distribution 

coefficient that exists between headspace and the pump oil, a considerable decrease in headspace 

concentration of standards can be obtained.55 

Since SPME extraction efficiency is influenced by the type of coating used, the application 

of this method to fibre coatings like DVB-CAR-PDMS and CAR-PDMS, both which have 

higher extraction efficiencies towards volatile compounds than PDMS, might result in fast 

depletion of the concentration of the standards in the vial headspace. Consequently, vial 

reusability is limited.59 It has also been observed that when higher amounts of standards are 

spiked in pump oil, the masses of the standards extracted by the fibre coating can either go above 

the linear dynamic range, or overload the mass spectrometry detector. Conversely, spiking 

smaller amounts of analyte in the pump oil to reach lower concentrations in the headspace can be 

a challenging task, and oftentimes produces inaccurate results. Yet another important limitation 

of pump oil is its liquid consistency, which hinders its applicability for on-site implementation, 

since the fibre can be easily splashed.61 Recently, Lee et al.61 developed a simple, reusable vial 

consisting of granular PDMS spiked with standards that surpass the transportation issue. This 

solvent-less standard was developed for on-site calibration of retention time, mass and 
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concentration, all in a single injection using a portable GC-TMS. However, headspace 

concentration is highly dependent on three factors: amount of calibrant spiked on PDMS 

particles, sampling time, and temperature. Therefore, its applicability using solid coatings in 

mass spectrometry detectors with a small linear dynamic range might be constrained.  Due to its 

granular composition, as an added measure, a piece of glass wool should be used on top of the 

particles during transportation to avoid the spread of particles inside the vial.61  

In gas chromatography, columns are classified based on selectivity and polarity, where 

polarity denotes the characterization of the interaction between the stationary phase and the 

solute on the basis of its structure. Therefore, polarity can be described as the sum of 

intermolecular interactions.62 The dipole moment is often used as a symbol of polarity; however, 

chromatographic interactions are hardly described by a single measure.62 As a result, several 

empirical measures for polarity and/or selectivity parameters of the stationary phases have been 

proposed62. The well-known and widely used Rohrschneider-McReynolds constants were 

developed to characterize stationary phases based on several different interaction parameters; 

numerous studies have shown that McReynolds’ test molecules are adequate to characterize the 

polarity of GC columns.62,63 The most representative of these probes are benzene, 1-butanol, 2-

pentanone, nitropropane and pyridine; their ability to participate in various types of interactions 

with the stationary phases through inductive, donor-acceptor forces or H-bonding (H+ donor and 

acceptor) was used as the criterion to select these compounds for column characterization.63-68 

Listed on Table 2.1 are some of their physicochemical properties, as well as the analytical 

parameters used for the identification and quantification of the McReynolds probes used on our 

study. McReynolds standards were selected for this research based on the broad range of 

interactions aforementioned. 
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The term “adsorptive macroporous resin” is used to describe highly cross-linked, non-ionic 

(non-functionalized) resins with a large number of permanent pores, such as styrene-

divinylbenzene (SDVB) copolymers. The copolymerization of DVB with styrene was first 

reported to yield gel resins that would swell, but not dissolve in solvents.69 Due to its high DVB 

content, the resin has a stable and rigid structure that can tolerate rigorous conditions.69,70 Several 

reviews associated with the fundamental aspects of macroporous resins, and history of their 

development can be found in the literature.69-72 Amberlite® XAD, a type of SDVB resin, was 

specifically used in our study. XAD resins have been extensively used in the last decades for 

several applications such as removal and recovery of organic compounds in clinical and 

environmental analysis, separation and enrichment of pharmacologically-active natural products, 

and adsorption of gases. XAD-4, particularly, is a non-ionic and non-polar adsorbent and, as 

such, adsorbs compounds principally by Van der Waal’s forces.70,71,73 However, polar or ionic 

compounds having sufficiently large non-polar moieties can also be adsorbed.70 Key parameters 

that characterize XAD-4 particles such as pore diameter, internal surface area and surface 

polarity are listed on Table 2.2. 

In this chapter an innovative standard generator vial is introduced, consisting of vacuum-

pump oil spiked with pure standards and subsequently mixed with a SDVB resin. By using 

XAD-4 particles, headspace concentration of the analytes is diminished and the pump oil 

capacity towards the analyte is enhanced. Hence, the applicability of the in-vial standard to all 

commercial coatings is plausible. Also, due to the compacted granular appearance of the new 

calibration solution, it is easy to transport. The new in-vial standard system is an ideal calibration 

standard not only for bench and field instruments but also for green sample preparation 

techniques such as SPME and needle trap. 
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Table 2.1 Physicochemical properties of the McReynolds probes solutions used for this study. CAS, CAS registry numbers; MF, molecular formula; MW, 
molecular weight; BP, boiling point, Q. mass, quantitation mass; Log P, logarithm of the partition coefficient; μ, dipole moment; tR, retention time.63-68 

 

Table 2.2 Physical characteristics of XAD-4 resin. CAS, CAS registry numbers; MS, mesh size; PS, particle size; MPD, mean pore diameter, PV, pore volume; 
MOT, maximum operational temperature; SA, surface area; μ, dipole moment.70,73 

Analyte CAS MF 
MW 

(g/mol) 
BP 

(°C) 
Density 
(g/cm3) 

Q. mass 
(m/z) 

Log P 
μ  

(103 cm) 
tR 

(min) 
Structure 

Chemical group represented/ 
Interaction measured 

Benzene  71-43-2 C6H6 78.11 80 0.878 78 2.13 0.0 2.868 Aromatics/Primarily dispersion with some weak 
proton acceptor properties 

Octane  111-65-9 C8H18 114.23 125 0.703 43 4.78 0.0 5.118 

 

Alkanes/Weak induced dipole-induced dipole 
forces  

2-Pentanone  107-87-9 C5H10O 86.13 102 0.807 43 0.98 2.7 3.134 
Ketones, ethers, aldehydes, and esters, 

epoxides/Orientation properties with proton 
acceptor but not proton donor capabilities 

1-Nitropropane 108-03-2 C3H7NO2 89.09 117 0.998 43 0.94 13.0 3.969 
 

Nitro and Nitrile derivatives/Dipole orientation 
properties. Weak proton acceptor. 

Pyridine  110-86-1 C5H5N 79.10 115 0.978 79 0.84 7.9 4.030 
Bases and N-heterocyclic compounds/Weak dipole 
orientation with strong proton acceptor capabilities 

Proton donor properties are absent 

1-Pentanol  71-41-0 C5H12O 88.15 138 0.815 55 1.35 1.7 4.580 
 

Alcohols, phenols and acids/Orientation properties 
with both proton donor and acceptor capabilities 

Analyte CAS MS PS (mm) MPD  (Å) PV (cm3/g) MOT (ºC) SA (m2/g) μ (103 cm) Structure Description/Applications 

Amberlite® 
 XAD-4  

37380-30-2 20-60 0.49-0.69 78.11 0.98 150 750 0.3 

 

Styrene-divinyl benzene 
copolymer, non-polar, 

hydrophobic resin 

Removal/recovery of organic 
pollutants/compounds from 

water and polar solvents  
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2.2 Experimental section 

2.2.1 Materials and reagents 

HPLC grade methanol was obtained from Caledon laboratories Ltd (Georgetown, ON, 

Canada). Benzene, 2-pentanone, pyridine, nitropropane, 1-pentanol, n-octane, and styrene-

divinylbenzene particles (Amberlite® XAD-4) were purchased from Sigma-Aldrich 

(Mississauga, ON, Canada). The vacuum-pump oil, General Purpose (GP) mechanical pump oil, 

was supplied by Varian Vacuum Technologies (Lexington, MA). Vials, screw top, 20 mL size 

and caps with 20 mm polytetrafluoroethylene (PTFE)/silicone septa were purchased from 

Canada Life Sciences (Peterborough, ON, Canada). Vials, screw top, 40 mL size and caps with 

22 mm PTFE/silicone septa were purchased from Sigma-Aldrich (Mississauga, ON, Canada). 

Pure water was obtained using a Barnstead/Thermodyne NANO-pure ultrapure water system 

(Dubuque, IA, USA). Helium of ultra-high purity was supplied by Praxair (Kitchener, ON, 

Canada). Drierite (anhydrous desiccant), was purchased from W. A. Hammond DRIERITE Co. 

(Xenia, OH, USA). The desiccator and magnetic bars were supplied by Fisher Scientific 

(Ottawa, ON, Canada).  Temperature controller and thermocouples were obtained from Omega 

Engineering (Stamford, CT, USA). The hot plate stirrer (Catalog number 97042-642) was 

obtained from VWR Scientific (Mississauga, ON, Canada). The commercial SPME-Fast Fit 

Fibre Assembly (FFA) fibres polydimethylsiloxane (PDMS, 100 µm) and 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS, 50/30 µm) were also 

provided by Sigma-Aldrich. Fibres were conditioned according to the manufacturer’s 

recommendation prior to their use. All preparations were carried out in a ventilated fume hood. 
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2.2.2 Instrumentation 

 Both the GERSTEL® MPS 2 autosampler, endowed with a Multi-Fibre Exchanger (MFX) 

system  for 25 SPME-FFA devices (GERSTEL, Mülheim an der Ruhr, Germany), and the 

Agilent 6890 gas chromatograph coupled with 5973 MSD quadrupole mass spectrometer 

(Agilent Technologies, Mississauga, ON, Canada) were used in this study.  Chromatographic 

separations were performed using a SLBTM-5MB (30 m x 0.25 mm x 0.25 µm) fused silica 

column from Sigma–Aldrich with helium as the carrier gas, at a flow rate of 1 mL min−1. The 

oven temperature was initially held at 40 ºC for 1 min, gradually increased to 50 ºC at a rate of 5 

ºC min−1, then to 70 ºC at a rate of 6 ºC min−1, and finally held for 0.47 min. The injector 

temperature was held at 250 and 260 ºC for PDMS and DVB/CAR/PDMS fibres, respectively. 

During analysis, the transfer line, MS Quad and MS source were set at 280 ºC, 150 ºC and 230 

ºC, respectively, with MS being operated in electron ionization mode. Full scan mode (40–250 

m/z) was used for all the compounds and quantitation was done using extracted ion 

chromatograms. The ions used for the quantitative analysis of compounds are listed in Table 2.1. 

2.2.3 Conditioning of styrene-divinylbenzene (SDVB) particles 

The adequate removal of impurities from the resin such as naphthalene, styrene, 

hydrocarbons, and phthalates is a critical step to be untaken; their presence was previously 

described in the literature as the main drawbacks of XAD resins.70 In order to achieve this, 

approximately 50 grams of Amberlite® XAD-4 particles were placed in a 400 mL beaker and 

manually agitated with 250 mL of Nano-pure water for 10 minutes. Immediately after, particles 

were filtrated, and then washed twice more following the same procedure. Following this, the 

SDVB particles were transferred to another 400 mL beaker and washed with 150 mL of 

methanol, using constant manual agitation for 5 min. Next, the particles were decanted and the 
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methanol was removed. This procedure was repeated once more with another 150 ml of 

methanol.  After these cleaning steps, the XAD-4 particles were filtrated and placed on four petri 

dishes previously covered with aluminum foil, and then dried under a constant nitrogen flow of 

10 ml min−1 in a desiccator, for minimum 24 h. To ensure the elimination of any remaining 

impurities from the particles, the petri dishes were then placed in a vacuum/nitrogen oven at 60 

ºC for 24 h. It should be noted that extreme heating should be avoided in order to prevent bead 

rupture and release of resin impurities.70 Finally, XAD-4 particles were removed from the oven 

and kept in a desiccator with a continuous nitrogen flow, so as to avoid cross contamination 

before mixing them with pump oil. 

2.2.4 Preparation of the vial standard solution 

Approximately 200 grams of vacuum pump oil were weighted and placed in a 400 mL 

beaker. In order to remove possible impurities the pump oil was heated at 120 °C under constant 

agitation (120 rpm) and maintained under nitrogen flow (10 ml min−1) for 24 hours21. Then, with 

the pump oil at room temperature, ca. 32 grams were placed in a 40 mL screw-top vial. To 

minimize evaporation, approximately 2 to 10 µL of pure standards were spiked in the vial below 

the level of the solution.60 Once all the standards were added, the vial was capped and kept under 

continuous agitation at 1500 rpm for at least 48 hours using a 0.25 inch stir bar. Then, 

approximately 1.5 g of previously cleaned SDVB particles were weighted in a 20 mL screw top 

vial and mixed with approximately 3 g of the prepared pump oil. Immediately after, the vial was 

capped and sealed with Parafilm®, then kept for a couple of days to equilibrate before analysis on 

the autosampler. Figure 2.1 shows the overall schematic diagram for manual and automated 

extraction of the new standard gas system. 
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Figure 2.1 Schematic diagram of the new standard generator vial for automated and manual standard loading. On the 
left, automated extraction using the SPME-FFA device from a screw-top 20 mL vial. On the right, manual extraction 
using a conventional SPME fibre from a vial with a Miniert Valve® used to reduce contact between sample and 
atmosphere. B) Picture of an actual vial up-side down. 

 

2.3 Results and discussion 

2.3.1 Evaluation of vial reusability 

The development of a calibration solution that can be re-used several times is critical, 

especially for high-throughput applications such as determination of food authenticity or SPME 

fibre aging evaluation, in which over 100 analyses must be carried out. Consequently, in order to 

determine standard gas generator reusability, 160 cycles of 1 min headspace extraction were 

performed using a 50/30 μm FFA-DVB/CAR/PDMS stableflex fibre. Automated SPME 

incubation/extraction/desorption/fibre bake-out cycles, together with the programmed GC-MS 

analysis, did not exceed 13 minutes, with GC separation of analytes completed within 7 minutes. 

Additionally, in order to ensure that variations observed in the amount extracted were unrelated 
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to fluctuations in the detector response and/or fibre aging, control tests for both factors were run 

in parallel to one another at 5 and 10 injections, respectively.  

As can be seen in Figure 2.2, our findings showed that relative standard deviations for all 

compounds were smaller than 4%, up to 160 extraction/injection cycles. Although a decrease in 

the amount extracted for octane and 1-pentanol was observed, this decrease can be accounted by 

modeling the relationship between the amount spiked and the amount extracted. In order to 

evaluate if a relationship among the amount of analyte spiked in the solution and the amount 

extracted by the fibre exists, three solutions with different concentrations of McReynolds probes 

were evaluated (Figure 2.3).  

 

 

 

 

 

 

 

 

Figure 2.2 Durability of the new standard generator vial; amount extracted of McReynolds probes using a FFA-
DVB/CAR/PDMS 50/30 μm stableflex fibre with 1 minute of extraction from the vial headspace. No agitation was 
used and vial temperature was kept constant at 35ºC. Analyses were performed automatically by a MPS-2 
GERSTEL autosampler endowed with a MFX system. 
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Figure 2.3 Evaluation of effect of analyte amount spiked on pump oil-XAD-4 mixture versus amount extracted by a 
50/30 μm DVB/CAR/PDMS fibre (n=8), using an of 1 minute extraction time without agitation at 35 ºC.  
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As can be seen in Figure 2.3, the results showed a linear relationship among the mass of 

analyte spiked on the calibration vial and the amount extracted by the fibre for all McReynolds 

probes. Thus, it can be established that the concentration in the headspace is proportional to the 

total amount of analyte in the calibration vial. Accordingly, corrections can be applied if a 

decrease in fibre extraction is observed as a result of analyte reduction in the vial after several 

extractions; thus, vial reusability is limited to the total amount of standard initially spiked.    

Similarly, as mentioned in previous studies,60 the amount of standard loaded onto the fibre 

can also be adjusted by manipulating the extraction time (before equilibrium is reached). 

Therefore, as the extraction time is shortened, a larger number of extraction/injection cycles can 

be accomplished. Since this methodology was evaluated for a coating with high affinity towards 

volatile compounds, it can be determined that acceptable and reproducible loading on different 

fibre coating types can be achieved. 

 

2.3.2 Evaluation of inter-vial repeatability 

As mentioned before, calibration solution reusability is limited to a number of 

extraction/injection cycles which are in turn depending on the coating, final analyte 

concentration, and extraction time used before removal of 1% of the vial content.
23 In addition to 

the use of standards dissolved in pump oil solutions for loading onto fibre coating, they can also 

be used in the evaluation of new fibre assemblies, estimation of coating aging, and intra- and 

inter-fibre reproducibility measurements.19-21 Having a replaceable standard gas generator vial 

results certainly helpful in applications where multiple loadings are necessary and periodical 

evaluation of performance of the fibre of interest is required to guarantee reliable results over 
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time. To determine the feasibility of using several vials indistinctly, the inter-vial repeatability 

was also evaluated. For this purpose, a randomized block design was carried out where injection 

order and position of vials in the agitator tray were blocked. As a result, effects related to 

instrumental signal drifts as well as variability in heating homogeneity were eliminated.74 Results 

of the evaluation of inter-vial repeatability are presented in Table 2.3 and Figure 2.4.  

 ANOVA analysis of the data showed no significant effect for randomized injection, with 

random error probabilities between 28 and 91 % for all the compounds studied. Additionally, as 

can be seen in Table 2.3, at a 95 % level of confidence, the vials are statistically identical, with 

only a slight exception for pyridine. Based on these findings, it can be concluded that different 

vials prepared from the same pump oil are repeatable among themselves, and as a result, can 

replace one another after a specific number of extractions (which is dependent on the coating and 

extraction time used).     

 

 

 

Figure 2.4 Evaluation of inter-vial repeatability of four vials using a randomized block design. Error bars represent 
the standard deviation of the mean (n = 5). Analyses were performed automatically by the MFX system using a 
single SPME-FFA 50/30 μm DVB/CAR/PDMS fibre. 
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Table 2.3 Statistical evaluation of intra-vial repeatability using a randomized block design. Finjection is the F-ratio 
for randomization of injections. Fvial is the F-ratio for different treatments evaluated (different vials) and Fcrit is the 
critical value of F for twenty experiments at a 95% level of confidence. RSD is the relative standard deviation for 
inter-vial repeatability of four vials (n=5). 

Compound Benzene 2-Pentanone Nitropropane Pyridine 1-Pentanol Octane 
Finjection 0.38 0.64 1.14 0.96 1.31 1.01 

Fvial 0.25 2.30 1.71 4.07 0.43 1.17 
Fcrit 3.36 
RSD 1.16 1.67 1.15 0.99 1.12 1.15 

 

 

2.4 Conclusions 

A new in-vial standard gas system for calibration of SPME in high-throughput applications 

was presented in this study. The loading technique is fast and reproducible, and the same 

standard generation vial can be used for more than a hundred analyses, which is essential when 

processing a large number of samples. Both intra- and inter-vial repeatability were evaluated and 

results showed no statistical differences for the compounds used as internal standard models. The 

analyses performed were fully automated by a MPS-2 GERSTEL autosampler endowed with a 

MFX system, which offers SPME users the ability to use several fibres to extract from the same 

or different samples without manual intervention. In addition, due to the compacted granular 

appearance of the new calibration solution, previous issues related to spills or fibre 

contaminations with pump oil are not a concern. Similarly, the vial can be easily transported and 

it is an ideal calibration standard for both bench and field instruments and devices. Application 

of the in-vial standard gas system to the evaluation of commercial SPME coatings, as well as 

determination of experimental sampling rates for TWA-SPME are presented in the next chapter. 

Loading of derivatization reagents for the analyses of different compounds such as aldehydes or 

steroids in environmental and biological complex matrices, will be further evaluated in our 

group. 
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Chapter 3 – Applications of the in-vial standard gas system 

3.1 Protocol for quick evaluation of commercial coatings  

3.1.1 Introduction  

While SPME has matured as a solvent-free sample preparation technique, there is still 

debate in the literature regarding the variations in reproducibility encountered between fibres. 

Indeed, several publications have described dissimilarities in the response of commercial 

coatings. For instance, both Natera et al. and Castro et al., 75,76 conducted validation studies of a 

method developed to analyse aromatic compounds of vinegar by HS-SPME, and found 

considerable differences between the amounts extracted by three different Carboxen-PDMS 

(CAR/PDMS) fibres. Similarly, Paschke et al. reported questionable fibre-to-fibre 

reproducibility for determined mass uptake rates when implementing diffusion-based calibration 

for extraction of BTEX and chlorobenzenes from aqueous samples using DVB/PDMS fibres.40  

As a result, two intrinsic and indispensable conditions must be satisfied when using SPME 

in laboratory and field applications: the repeatability of a fibre over time, and the reproducibility 

of fibres within or between lots. It is found in the literature that some authors, subsequently to 

fibre selection, reported the evaluation of multiple fibres with the same type of coating with the 

aims to account for inter-fibre reproducibility.39 To the best of our knowledge, it is the first time 

that a standardized protocol for the initial assessment of inter-fibre reproducibility is reported.  

In this body of research, a fast, reproducible, reusable and completely automated new 

method that allows rapid assessment of multiple SPME coatings is presented. In this protocol, a 

single standard generator vial, containing vacuum pump oil doped with McReynolds probes and 

subsequently mixed with XAD-4 particles (previously described in chapter 2), was used as the 
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source of standards for the evaluation of fibres. Because several extractions/injection cycles with 

multiple fibres were performed employing the same vial, the effect of the injection order had to 

be considered. Hence, a randomized block design was used for this experimental evaluation. 

Additionally, since multiple treatments and variables were evaluated, the results were graphically 

represented using PCA plots. The proposed protocol was used to evaluate four commercial 

coatings namely: PDMS, DVB/PDMS, CAR/PDMS and DVB/CAR/PDMS. The complete 

analysis of each coating is presented in the results and discussion section.  

3.1.1.1 Advantages of randomized block designs and Latin square designs  

In measurements made over a period of time, variations in uncontrolled factors such as 

temperature, pressure, and instrument response may affect the obtained results;77 if the 

experiments are not properly randomized, known hazards and biases can randomly occur. 

Nevertheless, bare randomization is not sensitive enough. A randomized block design, on the 

other hand, is a design in which the experimental runs are arranged in groups (called blocks), 

which are similar to one another.74 Generally, blocking factors are sources of variability that are 

not of primary interest to the analyst. Indeed, research shows that in comparisons between 

blocked and unblocked experiments with the same measurements, blocked designs are proven to 

be more sensitive and yield more information.77 In fact, at times, more than one source of 

disturbance can be eliminated by blocking. In cases when there are equal numbers of treatments 

and blocks, it is possible to use an experimental design that allows the separation of an additional 

factor.77 This powerful block design, in which each treatment is present once in each column and 

once in each row, is known as a Latin square. The Latin square design separates several 

variations that may be present: between-treatment, between-blocks, and random experimental 
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error components.77 In the following chapters, randomized and Latin square designs were used to 

evaluate the intra-fibre and inter-fibre reproducibility.   

3.1.1.2 Fundamentals of principal component analysis 

In the last decades, the application of principal component analysis (PCA) in analytical 

chemistry has become widespread due to its ability to provide information otherwise barely 

accessible.78 PCA is especially useful for dimension reduction, cluster identification, and pattern 

recognition.79 Additionally, PCA can disclose numerous critical components that generally 

explain the vast majority of variance found in data.74 The aim of this tool is to characterize each 

case, not by analyzing every variable, but by projecting the data in a smaller subset of new 

variables or principal components.78 The principal components, also called factors, are linear 

combinations of the initial variables; factors remove variable redundancy and highlight variances 

within the dataset.74 The coefficients between old and new variables are named variable 

contributions or loadings; they explain how new factors are composed from the original 

variables.77 Usually, only relevant portions of information are supported by few principal 

components.72 Furthermore, the standardization of variables in PCA is necessary if variables are 

measured on different scales. An additional reason for standardizing would be when one variable 

has a much larger variance than the others, and as a result dominates the first principal 

component; standardizing avoids this issue by making all variables carry equal weight.77 Thus, 

due to its specific qualities, PCA was applied in this study to assist in better graphical 

representation of the results, and the identification of trends otherwise not observable. In order 

for data to be standardized, it was processed based on correlations rather than covariances.  
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3.1.2 Experimental section 

3.1.2.1 Materials and reagents 

All standards and solvents were obtained in the same way as in the previous chapter. The 

commercial SPME-FFA fibres used in this study: PDMS (100 µm), DVB/PDMS (65 µm), 

DVB/CAR/PDMS (50/30 µm), and CAR/PDMS (85 µm), were provided by Sigma-Aldrich. All 

fibres were conditioned according to the manufacturer’s recommendation prior to their use. 

Parameters used for qualitative and quantitative analysis of each compound are listed in Table 

2.1. 

3.1.2.2 Instrumentation 

Both the GERSTEL® MPS 2 autosampler, equipped with a GERSTEL Cooled Injection 

System (CIS4), and a Multi-Fibre Exchanger (MFX) system for 25 SPME-FFA devices 

(GERSTEL, Mülheim an der Ruhr, Germany), as well as the Agilent 6890 gas chromatograph 

coupled to a 5973 MSD quadrupole mass spectrometer (Agilent Technologies, Mississauga, ON, 

Canada) were used in this study. The GC/MS parameters were the same as in Section 2.2.2. The 

parameters selected on the Maestro software for the evaluation of different coatings being 

analyzed were the following: A) injection temperature (ºC) with extraction times (min): 260/1, 

260/1, 250/2 and 300/0.5 for DVB/CAR/PDMS, DVB/PDMS, PDMS and CAR/PDMS, 

respectively; B) agitator temperature: 35ºC; C) vial penetration: 30 mm; D) injector penetration 

(CIS4): 54 mm E) desorption time: 180 s; F) fibre bake-out time: 1.5 min and bake-out 

penetration (front injector): 45 mm. An Olympus SZX10 microscope coupled with an Olympus 

SC30 camera (Olympus, Tokyo, Japan) was used for physical inspection of the fibres. The 

software analySIS getIT (Olympus, version 5.1) was used to process the resulting images.    
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3.1.3 Results and discussion 

3.1.3.1 Randomized block design  

 In this study, different randomized block designs were performed according to the number 

of fibres available for each coating type. Table 3.1 illustrates an example of the randomized 

design used to evaluate seven PDMS fibres. As mentioned previously, the treatments (fibres) 

were not only randomized on each experimental set, but also blocked for extraction/injection 

order. As a result, each fibre extracted from the standard vial in a specific order position once 

only. Consequently, both fibre effect and standard vial effect (after multiple extractions) can be 

evaluated.  

Table 3.1 Randomized block design used for the evaluation of seven 100 μm PDMS fibres. The nomenclature Fi 
represents the fibre evaluated on each experimental block. 

 

 

 

 

 

3.1.3.2 Evaluation of seven commercial 100 μm PDMS fibres 

 Seven FFA 100 μm PDMS fibres from three different lots were evaluated using a 

randomized block design, as shown in Table 3.1. Fibres 1 to 3 belong to lot A, fibres 4 to 6 

belong to lot B, and fibre 7 belongs to lot C. As can be seen from Table 3.2, the non-statistical 

effect of the randomized extractions from the vial, using multiple PDMS fibres, was observed 

for all of the McReynolds probes. Moreover, as shown in Table 3.3, intra-fibre reproducibilities, 

expressed as RSDs (%, n=7), were far below 5%, in most cases.   

Experiment 
block 

Extraction/Injection order 

1 2 3 4 5 6 7 
1 F1 F2 F3 F4 F5 F6 F7 
2 F6 F5 F4 F1 F2 F7 F3 
3 F5 F4 F2 F3 F7 F1 F6 
4 F7 F6 F1 F5 F3 F4 F2 
5 F3 F1 F5 F7 F6 F2 F4 
6 F4 F7 F6 F2 F1 F3 F5 
7 F2 F3 F7 F6 F4 F5 F1 
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Figure 3.1 Evaluation of intra- and inter-fibre repeatability of seven 100 μm PDMS fibres using a randomized block 
design. Error bars represent the standard deviation of the mean (n = 7).   

Table 3.2 Statistical evaluation of the inter-fibre repeatability of 7 PDMS fibres using a randomized block design. 
Finjection is the F-ratio for the randomization of the injection. Ffibre is the F-ratio for the different treatments 
evaluated (different fibres) and Fcrit is the critical value of F for 49 experiments at a 95% level of confidence. RSD 
is the relative standard deviation for the inter-fibre repeatability of seven fibres (n=7). 

Compounds Benzene 2-Pentanone Nitropropane Pyridine 1-Pentanol Octane 
Finjection 1.62 1.10 1.32 0.38 0.95 0.47 

Ffibre 1.41 24.61 18.39 74.45 90.94 1.86 
Fcrit 2.36 
RSD 2.4 5.7 2.7 5.7 5.1 1.6 

 

Table 3.3 Intra-fibre and inter-fibre repeatability of seven 100 μm PDMS fibres evaluated using a randomized block 
design. RSD is the relative standard deviation for the inter-fibre repeatability of seven fibres (n=7). 

 

Compounds 
Intra-fibre repeatability (RSD) 

RSD 
1 2 3 4 5 6 7 

Benzene 2.6 2.2 1.9 2.1 2.7 2.3 2.3 2.4 
2-Pentanone 3.2 2.4 2.1 2.9 4.0 3.1 2.4 5.7 
Nitropropane 1.5 2.0 2.0 1.4 1.0 1.3 1.4 2.7 

Pyridine 1.6 1.3 1.3 1.6 1.8 2.3 1.9 5.7 
1-Pentanol 1.0 1.0 1.6 1.7 2.0 1.9 0.9 5.1 

Octane 1.3 1.1 1.3 1.3 1.6 1.8 1.9 1.6 
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Figure 3.2 Principal component analysis of the average amount extracted by seven 100 μm PDMS fibres using a 
randomized block design. 

Despite the inter-fibre reproducibility for all the compounds being lower than 5.8%, the F 

test showed statistically significant differences for all compounds, with the exception of benzene 

and octane (Table 3.2). The same trend can also be observed in Figure 3.1.  In order to guarantee 

that data was normalized prior to PCA, the relative amount extracted for all the McReynolds 

probes was calculated. Therefore, the fibre that performed best for the majority of the analytes 

was set at 100% (fibre number 7).  

Following the procedure described by Heberger and coworkers,78 it was determined that 2 

principal components explained more than 95% of the total variance in the data; this means the 

data can be represented in only 2 dimensions. The PCA analysis, as represented in Figure 3.2, 

showed that fibres can be gathered according to fabrication lot. The first principal component 

was well correlated to 2-pentanone, nitropropane, pyridine, 1-pentanol, and octane, in order of 

contribution respectively.  
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The loadings of all the compounds to factor one were approximately the same. Comparing 

Figure 3.1 and Figure 3.2, it can be observed that as the extracted amounts increase (Figure 3.1), 

the further the treatment will be located on the left of the graph on Figure 3.2. Additionally, it 

was determined that the second component was only significantly correlated with benzene. 

Therefore, the differences observed for lot B in the y-axis (factor two) are due to dissimilar 

amounts of benzene extracted for each fibre, which skews the graph upwards. These results are 

consistent with the one-way ANOVA test performed for lot B fibres: fibres 4 to 6 are statically 

identical, with slight variations observed for benzene. At a 95% level of confidence, it was 

found that there is a 4.7% probability that differences observed in the amounts of benzene 

extracted for fibres of lot B are not due to random errors. Conversely, a one-way ANOVA 

evaluation of lot A showed statistically significant differences among fibres 1 to 3, while 

Student’s t test of fibres 2 and 3 demonstrated that these fibres are statically identical.  Analysis 

between Figure 3.1 and Figure 3.2 shows that differences between fibres 1, 2 and 3 are due to 

amounts extracted of the compounds that characterize the first principal component.  

 Table 3.4 summarizes the intra-lot reproducibility, as well as the one-way ANOVA 

evaluation for lots A and B. Despite the statistical results obtained by one-way ANOVA for lot 

A presenting apparent differences, the intra-lot reproducibility for all compounds was below 

3%. Also, as shown in Table 3.3, the intra-fibre reproducibility of fibres from lot A is lower than 

4% for all the McReynolds probes. Since the intra-fibre and the intra-lot reproducibility for lot 

A and B are significantly lower than their corresponding inter-fibre repeatability (all the fibres), 

it can be established that variations found using the randomized block design are related to 

variations on the coating manufacturing from lot to lot. It was also observed that the differences 

between fibres are larger for polar compounds such as 1-pentanol.  
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Table 3.4 Intra-lot repeatability lots A and B. RSD is the relative standard deviation for the intra-lot repeatability of 
three fibres (n=7). One-way ANOVA; Fcal is the F-ratio for the different treatments evaluated (different fibres) and 
Fcrit is the critical value of F for 21 experiments at a 95% level of confidence. 

Compounds 
LOT A LOT B 

Fcrit RSD Fcal RSD Fcal 
Benzene 0.3 0.13 1.7 3.63 

3.55 

2-Pentanone 2.2 4.90 0.9 0.48 
Nitropropane 0.7 0.91 0.7 2.03 

Pyridine 1.4 7.28 1.0 1.74 
1-Pentanol 1.0 4.87 1.2 3.01 

Octane 0.2 0.37 0.1 0.02 
 

In addition, smaller variations were observed for non-polar compounds as well. Since PDMS is 

the most common non-polar absorbent in SPME, it has affinity towards non-polar compounds. 

Hence, small variations on polymer coatings from lot to lot would have a larger impact on the 

amounts extracted from compounds with high polarity. However, it is important to note that 

results described in this study are only valid for these specific lots; it cannot be generalized that 

the same effects would be observed from any lot to lot. Thus, it was established that although 

randomized block designs and ANOVA are very powerful tools to detect small variations on the 

results, careful observation of results must follow before rejecting any fibre.  

 For instance, most EPA methods consider that the maximum acceptable level for RSD falls 

within 15-25%;1 selecting the fibres with smaller inter-fibre repeatability is desirable in order to 

guarantee that scattering observed is mostly due to variations on the sample, and not to the 

sampling device22.   

 

3.1.3.3 Evaluation of six commercial 50/30μm DVB/CAR/PDMS fibres 

Six 50/30 μm DVB/CAR/PDMS fibres from the same lot were evaluated using a 

randomized block design (refer to Figure 3.3). Although all 6 fibres were from the same batch, 

they were acquired in two different boxes and labeled: 1 to 3 for box 1, and 4 to 6 for box 2. 
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Figure 3.3 Evaluation of the intra- and inter-fibre repeatability of six 50/60 μm DVB/CAR/PDMS fibres using a 
randomized block design. Error bars represent the standard deviation of the mean (n = 6).   

 

Table 3.5 Statistical evaluation of the inter-fibre repeatability of 6 DVB/CAR/PDMS fibres using a randomized 
block design. Finjection is the F-ratio for the randomization of the injection. Ffibre is the F-ratio for the different 
treatments evaluated (different fibres) and Fcrit is the critical value of F for 36 experiments at a 95% level of 
confidence. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=6). 

Compounds Benzene 2-Pentanone Nitropropane Pyridine 1-Pentanol Octane 
Finjection 0.11 1.36 0.17 0.62 1.35 0.68 

Ffibre 62.81 80.55 57.32 50.75 28.85 58.15 
Fcrit 2.60 
RSD 5.2 4.3 3.6 3.4 2.2 2.7 

 

Table 3.6 Intra-fibre and inter-fibre repeatability of six 50/60 μm DVB/CAR/PDMS fibres evaluated using a 
randomized block design. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=6). 

Compounds 
Intra-fibre repeatability (RSD) 

RSD 
1 2 3 4 5 6 

Benzene 2.1 2.1 2.0 0.8 0.6 1.0 5.2 
2-Pentanone 1.8 1.2 1.1 1.8 0.8 1.0 4.3 
Nitropropane 1.8 1.2 0.8 1.1 0.7 0.7 3.6 

Pyridine 2.2 0.9 0.9 0.7 0.9 1.0 3.4 
1-Pentanol 1.6 1.0 1.0 1.0 0.5 0.6 2.2 

Octane 1.1 1.0 0.9 0.7 1.0 0.7 2.7 
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Figure 3.4 Principal component analysis of the average amount extracted by six 50/60 μm DVB/CAR/PDMS fibres 
using a randomized block design. 

 

As can be seen from Table 3.5, statistical evaluation of the data showed no effect for the 

randomized extractions from the vial. Moreover, as shown in Table 3.6, the intra-fibre 

reproducibilities, expressed as RSDs (%, n=6), were below 2.2% in all cases. Similarly, the 

inter-fibre RSD was lower than 5.2%.  Nevertheless, statistical differences were found in 

amounts extracted for each probe (for each fibre) using a randomized block design (refer to 

Table 3.5). Likewise, in the analysis of data obtained for PDMS fibres, the randomized design 

distinguished that fibres were statistically different due to the low intra-fibre RSD.  

 

 It was determined that two principal components explained more than 96% of the total 

variance in the data78. Factor one is well correlated to benzene, 2-pentanone and nitropropane. 

The loading of benzene to factor one is approximately double of that of nitropropane, while 
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slightly larger than 2-pentanone. By comparing Figure 3.3 and Figure 3.4, it can be observed 

that as the extracted amount increases, the treatment is located further towards the left on Figure 

3.4. Factor two, on the other hand, is well correlated to octane and pyridine, which has the major 

loading to factor two. Therefore, differences observed in the y-axis of the PCA plot are 

primarily due to different pyridine amounts extracted by each fibre. This trend increases 

downwards in the graph (Figure 3.4). According to our results, 1-pentanol and octane do not 

explain variability among fibres. Looking at Figure 3.3, it can be seen that smaller differences 

among fibres occur for 1-pentanol and octane. This agrees with the observations found by PCA; 

the low inter-fibre reproducibility for these compounds can be seen on Table 3.6.  

 

 Although fibres 4, 5 and 6 seemed to be similar, a one-way ANOVA evaluation showed 

that statistically, these fibres do not extract the same amount of analytes, with the exception of 

nitropropane and 2-pentanone. Student’s t test demonstrated that fibres 4 and 5 are statistically 

similar, with slight variations for pyridine and octane. On the other hand, Student’s t test of 

Fibres 4 and 6 only showed similarity in amounts of nitropropane and 2-pentanone. Other 

arrangements among fibres from both boxes did not yield any agreement from a statistical point 

of view.  

 

Moreover, intra-fibre reproducibilities in the range of 1.2 to 2.6% can be achieved by 

eliminating fibre one from the set of fibres (refer to Table 3.7). Despite the fact that statistical 

tools showed “significant” differences for the remaining 5 fibres, the intra-fibre reproducibility 

is acceptable. As shown in Table 3.7, fibres from the second box are more reproducible. Indeed, 

a contrast of fibre 1 and fibre 2 provided intra-fibres reproducibilities up to 10.4% for benzene. 
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Table 3.7 Intra-box repeatability for boxes 1 and 2. RSD is the relative standard deviation for the intra-box 
repeatability of three fibres (n=6). RSD2-6 is the intra-fibre reproducibility for all the fibres but fibre 1 (n=6). RSD1-2 

is the intra-fibre reproducibility for fibres 1 and 2. 

 

 

 

 

In summary, major dissimilarities were observed in more volatile compounds. This trend 

may be associated with differences in the manufacturing process of the fibres evaluated. Since 

the affinity of carboxen towards volatile compounds is higher than DVB, the differences 

observed might be related to variations in the layer ratio of the fibres. However, a clear 

correlation between the irregularities found on the physical inspection of the fibres (mainly non-

uniform coating) and the data obtained in this study was not found. Nevertheless, it should be 

noted that physical inspection allows the user to identify common manufacturing problems on 

fibres such as fibre cracks and improperly attached fibres. 

 

3.1.3.4 Evaluation of seven commercial 65 μm DVB/PDMS fibres 

A randomized block design was used to compare seven 65 μm DVB/PDMS fibres from three 

different lots (refer to Figure 3.5). Table 3.8 presents the statistical evaluation of the data. 

Although an effect (variance) for randomized extraction from the vial was not found, significant 

differences among fibres were observed as inter-fibre reproducibility varied between 5.2 and 9.6 

% (refer to Table 3.9). As can be seen from Table 3.10, these results are in agreement with the 

low intra-lot reproducibility observed for lot A. Moreover, as shown in Table 3.9, intra-fibre 

reproducibilities, expressed as RSDs (%, n=5) in this case, were below 3.5% in nearly all the 

cases.  

Compounds RSD1 RSD2 RSD2-6 RSD1-2 

Benzene 7.5 2.5 2.6 10.4 
2-Pentanone 6.5 0.3 1.3 8.8 
Nitropropane 5.6 0.4 1.2 7.5 

Pyridine 5.3 1.4 2.6 3.6 
1-Pentanol 3.2 0.9 1.2 4.2 

Octane 3.9 1.0 2.3 5.2 
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Figure 3.5 Evaluation of the intra- and inter-fibre repeatability of seven 65 μm DVB/PDMS fibres using a 
randomized block design. Error bars represent the standard deviation of the mean (n = 5).   

Table 3.8 Statistical evaluation of the inter-fibre repeatability of 7 DVB/PDMS fibres using a randomized block 
design. Finjection is the F-ratio for the randomization of the injection. Ffibre is the F-ratio for the different 
treatments evaluated (different fibres) and Fcrit is the critical value of F for 35 experiments at a 95% level of 
confidence. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=5). 

 

Table 3.9 Intra-fibre and inter-fibre repeatability of seven 65 μm DVB/PDMS fibres evaluated using a randomized 
block design. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=5). 

Compounds 
Intra-fibre repeatability (RSD) 

RSD 
1 2 3 4 5 6 7 

Benzene 3.4 2.4 1.3 2.4 3.1 1.7 1.9 9.6 
2-Pentanone 2.0 2.7 2.3 1.2 3.2 2.9 2.4 6.1 
Nitropropane 1.4 2.6 2.9 0.5 2.9 3.0 3.0 5.6 

Pyridine 1.7 3.2 2.5 0.8 2.6 2.4 2.4 6.5 
1-Pentanol 2.3 3.6 3.5 1.0 3.3 3.7 2.8 5.2 

Octane 2.4 3.1 3.0 1.0 3.0 3.6 2.9 6.0 
 

 

Compounds Benzene 2-Pentanone Nitropropane Pyridine 1-Pentanol Octane 
Finjection 2.06 2.71 2.67 2.24 2.01 0.29 

Ffibre 76.94 28.05 22.28 28.70 13.07 27.50 
Fcrit 2.74 
RSD 9.6 6.1 5.6 6.5 5.2 6.00 
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Figure 3.6 Principal component analysis of the average amount extracted by seven 65 μm DVB/PDMS fibres using 
a randomized block design. 

 

The PCA analysis, presented in Figure 3.6, showed that only fibres from lot B could be 

grouped. Following the procedure described by Heberger et al.,78 it was determined that 2 

principal components explained more than 98% of the total variance in the data. The first factor 

is well correlated to 2-pentanone, nitropropane, 1-pentanol and pyridine. The loadings of all the 

compounds to factor one were approximately the same. By comparing Figure 3.5 and Figure 3.6, 

it can be observed that as extracted compound amounts  increase,  the further the treatment will 

be located at the right on the PCA plot. Furthermore, the second principal component is well 

correlated to the amount extracted of octane and benzene. Therefore, the differences observed on 

the y-axis of the PCA plot are mainly due to different amounts of non-polar compounds 

extracted by each fibre. As can be seen, this trend increases upwards in the graph; as previously 

mentioned, a PCA plot allows us to easy perceive differences on lot A.  
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Table 3.10 Intra-lot repeatability of lots A and B. RSD is the relative standard deviation for the intra-lot repeatability 
of three fibres (n=5). One-way ANOVA; Fcal is the F-ratio for the different treatments evaluated (different fibres) 
and Fcrit is the critical value of F for 15 experiments at a 95% level of confidence. RSD-2 is the relative standard 
deviation of fibres 1 and 3. RSD-4 is the relative standard deviation of fibres 5 and 6; tcal is the Student’s t calculated 
for two fibres assuming equal variance (n=5); tcrit is the two tail t critical value for 8 degrees of freedom at a 95% 
level of confidence. 

Compounds 
LOT A   LOT B 

Fcrit tcrit RSD RSD-2 Fcal tcal RSD RSD-4 Fcal tcal 
Benzene 15.8 0.1 192.28 0.11 3.2 0.8 8.39 0.66 

3.89 2.31 

2-Pentanone 8.0 1.2 57.68 1.29 2.4 2.0 4.43 1.50 
Nitropropane 6.3 1.4 36.20 1.36 3.0 3.0 7.91 2.34 

Pyridine 5.8 1.6 25.32 1.70 2.2 2.8 5.68 2.47 
1-Pentanol 5.1 1.2 12.77 0.87 1.8 2.1 1.93 1.32 

Octane 5.9 0.7 21.23 1.50 3.4 2.5 7.81 1.71 
 

A thorough assessment of the data is presented on Table 3.10. As can be observed, a one-

way ANOVA analysis and the Student’s t test analysis both established that the major source of 

variation on lot A is fibre number 2. By excluding fibre two, it was found that fibres 1 and 3 

perform statistically alike. Likewise, an ANOVA analysis performed on lot B also exposed 

statistical differences among fibres, although these differences were less significant than the ones 

observed in lot A. When comparing fibres 5 and 6, the calculated t value is s higher for 

nitropropane and pyridine when compared to the critical value (tcrit). Since no statistically 

significant differences were observed for the remaining compounds, it can be suggested that 

these fibres are statistically similar. In summary, DVB/PDMS fibres gave the worst inter-fibre 

reproducibility when compared to other coatings evaluated in this study. Additionally, significant 

differences in non-polar compounds were observed among lots.  

 

3.1.3.5 Evaluation of six commercial 85 μm CAR/PDMS fibres 

Six FFA 85 μm CAR/PDMS fibres from three different lots were evaluated using a randomized 

block design. Fibres 1 to 3 belong to lot A, fibre 4 belongs to lot C, and fibres 5 and 6 belong to 

lot B.  
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Figure 3.7 Evaluation of the intra- and inter-fibre repeatability of seven 65 μm DVB/PDMS fibres using a 
randomized block design. Error bars represent the standard deviation of the mean (n = 5).   

 

Table 3.11 Statistical evaluation of the inter-fibre repeatability of 85 μm CAR/PDMS fibres using a randomized 
block design. Finjection is the F-ratio for the randomization of the injection. Ffibre is the F-ratio for the different 
treatments evaluated (different fibres) and Fcrit is the critical value of F for 30 experiments at a 95% level of 
confidence. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=5). 

Compounds Benzene 2-Pentanone Nitropropane Pyridine 1-Pentanol Octane 
Finjection 1.58 1.38 0.74 1.25 2.80 1.15 

Ffibre 20.05 10.14 5.13 6.27 31.63 13.94 
Fcrit 2.84 
RSD 5.7 4.8 3.7 3.9 5.2 3.9 

 

Table 3.12 Intra-fibre and inter-fibre repeatability of six 85 μm CAR/PDMS fibres evaluated using a randomized 
block design. RSD is the relative standard deviation for the inter-fibre repeatability of six fibres (n=5). 

Compounds 
Intra-fibre repeatability (RSD) 

RSD 
1 2 3 4 5 6 

Benzene 4.0 2.7 2.9 2.2 2.9 0.9 5.7 
2-Pentanone 4.6 3.6 3.5 1.9 2.8 0.7 4.8 
Nitropropane 3.1 4.0 3.6 1.8 2.4 2.4 3.7 

Pyridine 4.6 3.3 3.1 3.2 1.1 1.7 3.9 
1-Pentanol 2.9 2.5 2.2 1.6 1.7 1.5 5.2 

Octane 2.8 2.9 2.8 1.1 2.3 1.1 3.9 
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Figure 3.8 Principal component analysis of the average amount extracted by six 85 μm CAR/PDMS fibres using a 
randomized block design. 

 
 As can be seen from Table 3.11, no significant variations of the vial headspace 

concentration were found during evaluation of the fibres for all the McReynolds probes. Also, as 

shown in Table 3.12, intra-fibre reproducibilities, expressed as RSDs (%, n=5), were 

significantly below 5% for most cases. In addition, inter-fibre reproducibilities lower than 5.7% 

were obtained. In this experiment, fibres 4 and 6 were found to be the major source of 

variability; by rejecting these fibres from the set, inter-fibres reproducibilities lower than 2.7% 

can be achieved. These findings are well supported by the one-way ANOVA of the data 

presented on Table 3.13.  

 

The PCA analysis led to the computation of two principal components having the initial 

eigenvalues >1, which contributed to 96.18% of the total variance of the data set (refer to Figure 

3.8). The first principal component, identified as a linear combination of all the compounds, with 

the exception of octane, accounted for 77.44 % of the variance. 
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Table 3.13 Intra-lot repeatability of lots A and B. RSD is the relative standard deviation for the intra-lot repeatability 
of three fibres for lot A and 2 fibres for lot B (n=5). One-way ANOVA; Fcal is the F-ratio for different treatments 
evaluated (different fibres) and FcritA is the critical value of F for 15 experiments at a 95% level of confidence. tcal 

is the Student’s t calculated for two fibres assuming equal variance (n=5); tcritB is the two tail t critical value for 8 
degrees of freedom at a 95% level of confidence; RSDg is the relative standard deviation for inter-fibre repeatability 
after rejecting fibres 4 and 6. Fcalg is the F-ratio for the different treatments evaluated (4 different fibres, lot A plus 
fibre 5) and Fcritg is the critical value of F for 20 experiments at a 95% level of confidence. 

Compounds LOT A LOT B RSDg Fcalg Fcritg RSD Fcal FcritA RSD tcal tcritB

Benzene 0.1 0.01 0.01 7.1 7.10

2.31 

2.0 2.00 

3.24 

2-Pentanone 0.2 0.02 0.02 5.6 5.86 1.4 0.70 
Nitropropane 0.4 0.06 0.06 4.7 -6.58 1.6 1.15 

Pyridine 0.8 0.23 0.23 4.3 6.66 2.7 3.42 
1-Pentanol 0.5 0.22 0.22 3.9 5.46 1.5 2.17 

Octane 0.6 0.23 0.23 4.0 -5.06 1.5 1.48 
 

The loadings of all the compounds to factor one were approximately the same. By 

comparing Figure 3.7 and Figure 3.8, it can be observed that as compound amounts increase, the 

treatment is located further to the left on the PCA plot. Conversely, the second principal 

component explained 18.8% of the variance and, was mainly represented by octane. 

Consequently, differences observed on the y-axis of the PCA plot can be mainly attributed to 

different amounts of octane extracted by each fibre. This observation clarifies why fibres 1 to 5 

are statistically identical in regards to octane amounts extracted.   

Although lot A demonstrated excellent intra-lot repeatability, inter-lot and intra-lot 

variability were also observed for the six CAR/PDMS fibres evaluated on this study. These 

findings are in agreement with those reported by Paschke et al. and Setkova et al. 19,40 It is well 

known that fibres containing carboxen have a higher affinity towards volatile compounds as 

compared to other coatings, and that affinity decreases as the analyte boiling point increases. 1,59 

Besides, absorbent coatings, such as PDMS, display better behaviour towards heavier 

compounds.1,79-81 A plausible explanation for the differences observed in the extracted amount of 

heavier compounds could be due to a different ratio of PDMS-CAR particles in fibre 6 as 
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compared to the others fibres studied. However, the differences presented in the present study are 

significantly less pronounced when compared to previous studies.1,82 

 

3.1.3.6 Protocol for quick assessment of commercial SPME coatings 

Based on the results obtained in this chapter, a protocol for the quick assessment of 

commercial SPME coatings was developed. Figure 3.9 summarizes the five steps that should be 

taken whenever the need to assess SPME coatings is present: a) physical inspection of the fibre 

coating and mechanical inspection of the FFA device; b) Fibre conditioning and stabilization; c) 

Fibre evaluation; d) Statistical evaluation, and e) Decision. 

 

 

 

Figure 3.9 Scheme of the protocol for quick assessment of commercial coatings 

 

A. Physical Inspection of the fibre coating and mechanical inspection of the FFA device  

Prior to conditioning the fibres, it is important to check the mechanical quality of the 

FFA devices (see Figure 1.1). Use a magnetic plunger as shown in Figure 3.12 to move 

up and down the fibre-attachment needle. If any resistance is observed, avoid using this 

device and contact the manufacturer. 
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i) Place the FFA device under the microscope and observe if any anomalies are present on 

the surface of the fibre coating. Since diverse types of irregularities might be found on 

DVB/CAR/PDMS fibres, this type of coating was chosen as a model. Typically, 

anomalies can be defined as: a) fibre cracking; b) non-uniform coating (including 

surfaces irregularities due to over coating or lack of coating), and c) fibre misalignment. 

Note that other irregularities may also present themselves on the fibre coating after fibre 

analysis starts, even if such was not observed at first. Thus, it is important to highlight 

that fibre coating should be observed under a microscope regularly throughout analysis 

to ensure it is still viable.  Figure 3.10 shows an ideal DVB/CAR/PDMS coating 

schematic, while Figure 3.11 demonstrates typical coating inspection procedure being 

observed. Coating examination procedure should follow these steps: a) inspect the entire 

fibre coating surface by rotating the FFA body 360º (inset A and B from Figure 3.11); b) 

observe the fibre tip (inset C from Figure 3.11); and c) observe the fibre bottom (inset D 

and E from Figure 3.11). The first step allows the analyst to discover frequent anomalies 

such as non-uniform coating (inset A and D) as well as coating cracks. Second and third 

stages are useful to find tip scratches (inset C) and fibre misalignment (inset E), 

respectively.  

 However, although the anomalies described might be correlated to bad inter-fibre 

reproducibility, it is important to emphasize that physical inspection can only identify possible 

trends in the results. Thus, fibres should not be excluded at this point. Consequently, fibre 

evaluation using the in-vial standard is needed prior to making any decision regarding its 

usability. 
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Figure 3.10 Schematic of an ideal 50/30 μm DVB/CAR/PDMS SPME fibre 

 

 

 

 

 

 

 

 

Figure 3.11 Physical inspection of a 50/30 μm DVB/CAR/PDMS. A. Entire fibre; B. Entire fibre (rotated 180º); C. 
Tip of the fibre; D. Bottom of the fibre; E. Bottom of the fibre (rotated 90º).  

 

B. Fibre conditioning and stabilization 

i) Condition the fibres according to manufacturer specifications. Table 1.1 lists the 

temperatures recommended for each coating. 
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It is recommended that at least ten extraction/injection cycles are performed from an 

alternative standard vial prior to fibre evaluation; it has been reported that fibre stability, 

in terms of amount extracted, is reached after 5-10 SPME cycles.19  

 

C. Fibre evaluation 

i) Place the in-vial standard generator on the autosampler agitator and adjust the 

temperature to 35 ºC.  

ii) Together with the in-vial standard generator, place an additional in-vial standard 

generator in a different position in the agitator, and use this for the evaluation of the 

instrument performance evaluation. This vial should be labeled as the QC vial (quality 

control vial). This step must be completed in conjunction with the previous stage, and at 

least 2 hours prior to the next step. 

iii) Write your method in the Maestro software of the GERSTEL MPS2 autosampler. Follow 

the parameters listed on section 3.1.2.2.  

iv) Create the GC-MS sequence in the Maestro software of the GERSTEL MPS2 

autosampler. When creating the sequence, 5 QC tests (extractions from the QC vial of 30 

seconds using a 100 μm PDMS fibre) must be included at the beginning and at the end of 

the sequence, in order to account for instrument response drifts. To assure that 

differences observed among fibres are not due to variations in the in-vial standard gas 

system, a randomized block design must be used. Additionally, a QC test should be run 

between experimental blocks. 

v) Randomize fibres on the MFX-25 tray and verify that positions created on the sequence 

are correlated with those on the tray.  
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vi) Confirm that the GC/MS and the autosampler are ready. Then start the sequence. 

vii) Once the sequence is finished, review the results and verify if instrument drifts occurred. 

If so, use a QC test between experimental blocks and use this data to correct for the 

results of each fibre.  

viii) Proceed to the statistical analysis of the results. 

 

D. Statistical analysis 

i) Calculate amounts extracted of each analyte for each fibre on every experimental run. 

Determine the average amounts extracted for each fibre, and calculate the standard 

deviation and relative standard deviation for each fibre.  

ii) Compute the intra-fibre and inter-fibre reproducibility. 

iii) Evaluate the intra-lot and inter-lot reproducibility. 

iv) Plot the relative amounts extracted from every probe for each coating on a single graph.  

v) Use the randomized block design data to perform an ANOVA and determine with a 95% 

level of confidence whether differences observed among fibres are statistically 

significant. 

vi) Use PCA to determine possible clusters and result trends. Compare the results obtained 

by PCA with those obtained on step number three. 

 

E. Decision 

i) Select fibres that were found to be statistically similar on the previous step. Proceed to 

develop your application.  
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ii) If any fibre was found to have initial serious surface abnormalities (as described on 

physical evaluation), and the statistical evaluation shows significant differences, contact 

the manufacturer. 

  

3.1.4 Conclusions 

It must be emphasized that inter-fibre variability is a serious limitation in the future development 

and application of SPME in areas where multiple fibres are required, such as food, 

environmental, forensic analysis, metabolomics and in vivo applications.80,83-86 Thus, a 

standardized protocol consisting of a new standard vial gas generator for quick assessment of 

commercial SPME fibre reproducibility is presented. This approach allows the user to determine 

whether a number of fibres can assure the acquisition of reliable and reproducible results for 

applications where analysis of compounds with different physicochemical properties is required. 

Since fibre-to-fibre variability was observed for almost all the coatings, use of this methodology 

by SPME users prior to the development of an application is imperative. Otherwise, each fibre 

needs to be considered a particular sampling device, and be characterised individually depending 

on the required accuracy. Additionally, it is highly recommended that, as a standard, 

manufacturers perform this evaluation preceding shipments. Thus, the inclusion of a certification 

test for fibres emitted by the manufacturer, similar to the procedure adopted by manufacturers of 

chromatographic columns, should be considered.  
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3.2 Determination of the experimental sampling rates of SPME for passive sampling using 

the in-vial standard gas generator 

3.2.1 Introduction 

Due to the growing number of SPME applications being developed for air sampling, a 

new gas standard generation system needs to be considered. In order to satisfy current market 

needs, it should be easy to manufacture, inexpensive, and contain a reliable calibration method 

for the sampling device at different temperatures.87,88 There has been prior exploration on the use 

of viscous liquids, such as pump oil or silicone oil doped with chemical substances, being used 

as a mechanism to load standards on a SPME fibre. 19,20,60,89,90 Recently, Sheehan et al. used 

silicone oil for the passive release of chlorinated volatile organics (cVOCs); the aim of this study 

was determining the experimental sampling rates of these compounds using a CAR/PDMS 

fibre.89 However, the method developed has limitations; for instance, silicone oil is a non-polar 

solvent. Consequently, a low concentration of polar compounds cannot be easily achieved in the 

headspace. In addition to the limited capacity of silicone oil, splashing of oil onto the fibre may 

occur if the vial containing pump oil is not handled carefully. In this study, a new in-vial 

standard gas generator, consisting of vacuum pump oil doped with standards and subsequently 

mixed with SDVB particles, is presented for the determination of experimental sampling rates. 

By using XAD-4 particles, not only a decrease in the headspace analyte concentration can be 

achieved, but the total analyte capacity of the pump oil is enhanced as well. As a general rule, the 

in-vial standard gas generator buffers the analyte concentration in the headspace. For this study, 

BTEX were used as model compounds in this proof-of-concept evaluation since, as shown in 

Chapters 2 and 3, in-vial applicability to analytes with a wide range of functionalities, such as 

McReynolds probes, is plausible.  
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3.2.2 Experimental section 

3.2.2.1 Materials and reagents 

HPLC grade methanol was obtained from Caledon laboratories LTD (Georgetown, ON, 

Canada). Benzene, ethylbenzene, toluene, o-xylene and the styrene-divinylbenzene particles 

(Amberlite® XAD4) were purchased from Sigma-Aldrich (Mississauga, ON, Canada). The 

vacuum-pump oil, General Purpose (GP) mechanical pump oil, was supplied by Varian Vacuum 

Technologies (Lexington, MA). Vials, screw top, 40 mL size and caps with 22 mm 

PTFE/silicone septa were purchased from Sigma-Aldrich (Mississauga, ON, Canada). Mininert® 

Valve and screw thread, for use with 18/400 mm thread, and 15 mL clear glass vials with screw 

top were also obtained from Sigma-Aldrich. Pure water was obtained using a 

Barnstead/Thermodyne NANO-pure ultrapure water system (Dubuque, IA, USA). Helium of 

ultra-high purity was supplied by Praxair (Kitchener, ON, Canada). The desiccator and magnetic 

bars were supplied by Fisher Scientific (Ottawa, ON, Canada).  A temperature controller and 

thermocouples were obtained from Omega Engineering (Stamford, CT, USA). A hot plate stirrer 

was obtained from VWR Scientific (Mississauga, ON, Canada). Commercial SPME-Fast Fit 

Fibre Assembly (FFA) fibres used in this study polydimethylsiloxane (PDMS, 100 µm) and 

carboxen/polydimethylsiloxane (CAR/PDMS, 85 µm) were also provided by Sigma-Aldrich. 

Both types of fibres were conditioned according to manufacturer’s recommendation prior to their 

use. All preparations were carried out in a ventilated fume hood. A magnetic plunger was built at 

the University of Waterloo machine shop in order to control the diffusion path of the FFA fibre. 

Rare-earth magnets employed in the manufacturing of the plunger were acquired at Lee Valley 

(Waterloo, Ontario, Canada). Gas tight syringes (1 and 5 mL) were purchased from Hamilton 

Company (Reno, NE, USA) 
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3.2.2.2 Instrumentation 

An Acme 6100 series gas chromatograph (Young Lin Instruments, Anyang, Korea) equipped 

with a flame ionization detector (FID), and a capillary column (RTX-5, 30 m × 0.25 mm I.D., 

0.25 μm film thickness) was used for the separation and detection of the BTEX. The oven 

temperature was initially held at 40 ºC for 1 min, gradually increased to 180 ºC at a rate of 25 ºC 

min−1, then held again for 2 min. An ATAS GL Optic 3 injection port (ATAS GL, Eindhoven, 

Netherlands) was used for liquid and SPME injections. The injector temperature was held at 250 

and 300 ºC for PDMS and CAR/PDMS fibres, respectively. A custom-made heater block was 

manufactured by the University of Waterloo electronic shop in order to guarantee homogenous 

heating of the vial headspace (refer to Figure 3.12).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Schematic diagram of the set-up used for the determination of experimental sampling rates with the new 
in vial standard gas generator (left). Experimental set-up to determine the concentration on the vial headspace (right) 
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3.2.2.3 Preparation of the in-vial standard gas generator  

A quantity of approximately 150 grams of vacuum pump oil was weighted into a 400 mL 

beaker. To remove possible impurities, the pump oil was heated at 120 °C under constant 

agitation (120 rpm), and maintained under nitrogen flow (10 ml min−1) during 24 hours21. Then, 

with the pump oil at room temperature, ca. 32 grams were placed into a 40 mL screw top vial. To 

minimize evaporation, 2 µL of pure BTEX were spiked below the level of the solution present in 

the vial60. Once all the standards were added, the vial was capped, and then kept under 

continuous agitation at 1500 rpm for 48 hours, using a 0.25 inch long stir bar. Next, 

approximately 1.5 g of cleaned DVB/STY particles were weighted on a 15 mL screw top vial 

and mixed with approximately 3 g of the previously prepared pump oil containing the standards. 

Immediately, the Mininert® valve was capped, sealed with Parafilm® and then kept for a couple 

of days to equilibrate before its analysis. Four vials containing BTEX were developed for the 

current study. Finally, the prepared vials were placed in the heating block for a minimum of 3 

hours before the start of the experiments.   

3.2.2.4 Determination of experimental sampling rates 

An 85 μm CAR/PDMS FFA-SPME fibre with a diffusion length adjusted at 0.147 cm was 

manually exposed to BTEX in the in-vial standard gas generator. Four diffusive sampling times, 

ranging from 15 to 60 min, were used to examine the effect of sampling duration on mass 

loading rates of BTEX. For these experiments, the heating block temperature was adjusted to 

35ºC. 
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3.2.2.5 Determination of  standard gas generator concentration 

A multi-bed NTD, without side-hole and packed with 1 cm of carboxen 1000 (60/80 mesh) 

and 1 cm of DVB Haysep Q (100/120 mesh), was used to determine the headspace concentration 

of the in-vial standard gas generator. One mL of the headspace was withdrawn using a gas-tight 

syringe, and subsequently injected on the GC/FID. Figure 3.12 presents a schematic of the 

devices used for this purpose. As for SPME, the temperature of the heating block was maintained 

at 35 ºC.  

3.2.3 Results and discussion 

3.2.3.1 Determination of the headspace concentration in the in-vial standard gas generator 

As previously mentioned in Chapter one, analytes in air samples can be collected by 

drawing air across a NT. The mass loading of the compounds can be controlled by adjusting the 

volume of air pulled through the NT. However, if the sample volume is small, for instance, the 

headspace of a 15 mL vial, using an exhaustive technique to determine the headspace 

concentration might result in significant depletion of the standards present in the vial. As a result, 

vial reusability becomes limited for methods such as the in-vial standard gas generator. 

Previously however, in Section 2.3.2 it was established that vials prepared from the same pump 

oil are reproducible among each other, therefore they can be exchanged without affecting results. 

Subsequently, in order to determine the concentration of the headspace, two vials containing the 

same amount of BTEX were prepared. Then, for the purpose of demonstrating that 

concentrations in both vials were equivalent, a CAR/PDMS fibre, with a diffusion path of 

approximately 0.147 cm, was exposed for 30 min to the headspace of both vials. The results are 

presented in Tables 3.14 and 3.15.  As can be seen from Table 3.16, the statistical evaluation of 
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the results showed that, at a 95% level of confidence, the prepared vials were identical.  Based on 

these results, three extractions of 1 mL using a gas-tight syringe were performed from the second 

vial to determine the headspace concentration. Table 3.17 displays the headspace concentrations 

of each BTEX.  

Table 3.14 Amount collected in ng of BTEX from the in-vial standard gas generator # 1 using an 85 μm 
CAR/PDMS fibre. SD, standard deviation; Intra-vial reproducibility, expressed as RSDs (%, n=5). 

 

 

Table 3.15 Amount collected in ng of BTEX from the in-vial standard gas generator # 2 using an 85 μm 
CAR/PDMS fibre. SD, standard deviation; Intra-vial reproducibility, expressed as RSDs (%, n=4). 

Compounds 1 2 3 4 Average SD RSD 
Benzene 47.1 51.1 49.9 46.7 48.7 2.1 4.3 
Toluene 10.4 11.3 11.2 11.1 11.0 0.4 3.8 

Ethylbenzene 5.8 6.3 6.3 6.0 6.1 0.3 4.2 
Xylene 4.7 5.4 5.4 5.2 5.2 0.3 5.9 

 

 

Table 3.16 Comparison of the passive sampling extraction from two different in-vial standard gas generators 
containing BTEX. tstat  is the Student’s t calculated for two vials assuming equal variance; tcrit  is the two tail t critical 
value for 8 degrees of freedom at a 95% level of confidence.  

 

 

 

 

Table 3.17 Concentrations in nanograms per millilitre (ng/mL) of the in vial standard gas generator doped with 
BTEX and used for the determination of the sampling rates (n=3).  

 

 

 

Compounds 1 2 3 4 5 Average SD RSD  

Benzene 48.3 50.8 48.9 49.2 48.3 49.1 1.1 2.1 
Toluene 10.6 11.6 11.1 11.0 10.9 11.0 0.3 3.1 

Ethylbenzene 6.0 6.7 6.2 6.0 6.1 6.2 0.3 4.6 
Xylene 5.2 5.6 5.1 5.2 5.3 5.3 0.2 3.8 

Compounds t stat p-value tcrit 
Benzene 0.37 0.71 

2.36 
Toluene 0.03 0.98 

Ethylbenzene 0.49 0.64 
Xylene 0.74 0.48 

Compounds [ ] (ng/mL) SD RSD (%) 
Benzene 28.5 1.0 3.4 
Toluene 7.3 0.2 2.1 

Ethylbenzene 4.3 0.2 5.5 
Xylene 4.2 0.1 1.8 
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3.2.3.2 Evaluation of experimental sampling rates versus sampling duration 

In order to use the in-vial standard gas generator for the determination of experimental 

sampling rates of VOC, it is important to guarantee that the vial can be used as a continuous 

source of standards. The results, shown in Figure 3.13, illustrate that the adsorbed mass of BTEX 

on the CAR/PDMS fibre increased linearly (R2 ranged from 0.992 to 0.999) within a sampling 

duration of 15-60 min. These results indicate that the CAR/PDMS fibre acts as zero sink for 

BTEX during this sampling duration, as well as demonstrates that a single in-vial standard gas 

generator can release the analytes of interest continuously. However, a slight decrease in the 

collected amounts of benzene over the time was found. This singularity may be related to coating 

saturation at the tip of the fibre, and will be discussed in the following section.      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Mass of  BTEX collected on a 85 μm CAR/PDMS FFA-SPME fibre with a diffusion path of 0.147 cm 
during sampling duration from 15 to 60 min (n=4).  
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Figure 3.14 Sampling rate of BTEX (ml/min) versus sampling time (min) using the in-vial standard gas generator.  

 

Table 3.18 Comparison of the theoretical sampling rates versus the experimental sampling rates at different 
sampling times using a diffusion path of 0.147 cm and an 85 μm CAR/PDMS FFA-SPME fibre.  

 

3.2.3.3 Comparison of experimental sampling rates versus theoretical sampling rates 

A comparison between the theoretical and the experimental sampling rates at different times 

is shown in Table 3.18. A statistical comparison of the experimental mean value with the true 

value (theoretical value), calculated using the equations presented on Table 1.2, showed no 

differences for toluene and ethylbenzene at any sampling time (Figure 3.14). Similarly, using 

Parameter 
Sampling time (min)/Sampling rate (mL/min) 

15 30 45 60 
Theoretical Benzene 0.056 0.056 0.056 0.056 
Theoretical Toluene 0.051 0.051 0.051 0.051 
Theoretical Ethylbenzene 0.046 0.046 0.046 0.046 
Theoretical  Xylene 0.046 0.046 0.046 0.046 
Experimental  Benzene 0.060 0.057 0.055 0.053 
Experimental  Toluene 0.050 0.050 0.051 0.052 
Experimental Ethylbenzene 0.047 0.045 0.045 0.046 
Experimental Xylene 0.039 0.039 0.039 0.040 
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sampling times of 30 and 45 minutes, no statistical differences between the theoretical and 

experimental sampling rates for benzene were observed. Conversely, differences in sampling rate 

using sampling times longer than 45 minutes were found. Observed differences on the sampling 

rate of benzene may be related to several factors: for instance, since the initial sampling rate 

(0.060 mL/min) was slightly higher than the theoretical value (0.056 mL/min), it is then possible 

that a few nanograms of benzene were adsorbed on the needle walls. As a result, amounts 

collected and the resulting sampling rates marginally exceeded theoretical values. When  

sampling duration was longer than 15 minutes, the mass of benzene adsorbed on the needle walls 

was not significant compared to the amount collected on the CAR/PDMS fibre. Consequently, 

the amount of analyte adsorbed on the fibre is statistically similar to the value predicted by the 

theoretical model. Despite the same amount of standards being spiked in the pumping oil-SDVB 

mixture (approximately 170 μg), benzene has a higher Henry’s law constant and, accordingly, its 

concentration in the headspace was also higher. As shown in Figure 3.13, benzene amounts 

collected were about 4-times greater than amounts of toluene, which exhibited good agreement 

with the theoretical model. Furthermore, for sampling times larger than 45 minutes, the collected 

amount of benzene (approximately 91 ng) may be out of the linear uptake range of the 

CAR/PDMS fibre for this analyte, thus, the collected amount is below the predicted value. In 

other words, the fibre is not fulfilling the ‘zero-sink’ requirement.57 Further evaluations at longer 

extraction times from the in-vial standard gas system are required in order to further understand 

this behaviour.  

Additionally, it is worth emphasizing that amounts of benzene extracted after the first 8 

experimental runs (approximately 300 nanograms, using sampling durations of 15 and 30 

minutes) correspond to less than 0.2 percent of the total concentration in the vial. Therefore, 
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depletion of standard concentration in the vial may not be the reason for the observed variations 

on the sampling rate of benzene.19,60 Generally, good agreement between experimental and 

theoretical sampling rates was observed. Deviations from the theoretical values, such in xylene, 

could be explained in terms of short equilibration times between extractions, errors in the 

diffusion length measurement, or inaccurate estimation of the diffusion coefficients.  

 

3.3 Conclusions 

In this study, a simple and inexpensive in-vial standard gas system for the initial evaluation 

of experimental sampling rates by SPME was presented. BTEX were used as model VOCs in 

this proof-of-concept evaluation, and it has been proved that the in-vial standard gas system can 

be used as a continuous source of standards. Good agreement was observed between the 

theoretical and experimental sampling rates using the method proposed. Intra-vial and inter-vial 

repeatability were also evaluated, and results showed no statistically significant differences for 

any of the compounds used as models. These results agree with results presented in Chapter two.  

A common criticism of SPME is a lack of published experimental sampling rates values. 82,91 

In this sense, since most of the variables involved in SPME passive sampling can be controlled 

or calculated (such as sampling time, diffusion path, cross sectional area, and vial concentration), 

the vial approach could be further pursued with the aim to build a comprehensive database of 

experimental diffusion coefficients of VOCs. 

 

 



70 
 

Chapter 4 – Evaluation and application of the Multi Fibre Exchanger (MFX) system for 

on-site and in vivo sampling 

4.1 Introduction 

4.1.1 On-site sampling of indoor air  

Indoor air quality is a vital issue in occupational health. Factors such as ventilation system 

deficiencies, microbiological contamination, and off-gassing from building materials can cause 

poor indoor air quality.92 Since an average person in a developed country spends up to 90% of 

their time indoors, there has been growing concern over the past decades in regards to indoor 

pollutants, and methods used in their analysis.93 SPME has become an attractive technique for 

indoor air sampling due to its accuracy, cost, simplicity and speed.38 In addition, SPME can be 

indistinctively used for either active or passive sampling.  

In passive sampling mode, the fibre is retracted a known distance into its needle housing. 

Because of the flexibility of selecting a wide range of sampling times in passive mode (from less 

than 1 min to days), several SPME-TWA applications designed to test a broad range of analytes 

have been developed to date, such as propylene glycol esters,39 chlorinated organic volatiles, 

36,37,89 volatile sulfur compounds,32 alkanes,1 pesticides,94 inhalation anaesthetics,35,41,42 BTEX,95 

and aldehydes.43  

Conversely, in active mode, the fibre is only exposed for spot measurements. For instance, 

SPME dynamic air samplers (PDAS) were designed for rapid field-air sampling under non-

equilibrium and dynamic conditions.28 When compared to conventional SPME extraction in 

static air, a greater VOC mass is adsorbed and an increase in the number of detected compounds 

is achieved. Augusto et al. proved that the PDAS-SPME is a powerful tool for both qualitative 
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and quantitative analysis of occupational air.28 Using a similar approach, Tollback and 

collaborators96 found detection limits below 1 ng/m3 when analyzing triphenyl phosphate. In this 

work, multiple CAR/PDMS fibres were used in both modes to evaluate the indoor air quality of a 

polymer chemistry laboratory. A diffusive fibre holder (DFH), recently commercialized by 

Supelco, and PDAS-SPME were used for passive and active sampling, respectively. 

Subsequently, samples collected were analyzed using a multi-fibre exchange (MFX) instrument; 

the results were compared to active sampling using a multi-bed needle trap. To the best of our 

knowledge, few methods for indoor air have been developed using multiple fibres,35,36,41 and 

only one method involving MFX has been reported to date.51 Thus, a critical evaluation of MFX 

performance was performed prior to the development of the applications included in this chapter.  

4.1.2 On-site and in vivo sampling of plants  

Volatile and semi-volatile compounds produced by plants are collectively known as 

biogenic volatile organic compounds (BVOC).96 They comprise a wide variety of organic 

substances, such as alcohols, terpenes, alkanes and esters. These compounds are usually present 

in the atmosphere at concentrations in the parts-per-trillion (ppt) to the parts-per-billion (ppb) 

range. Since BVOCs are responsible for multiple interactions between plants and other 

organisms, and also play a key role in atmospheric chemistry, their identification, 

characterization and quantification are of great relevance.97,98  

Generally, in vivo research is best suited to observe overall effects when compared to in vitro 

research.97,99 Since the experimental system is a complex biological system, a better indication of 

what is happening in the real world can be observed.100,101 An ideal in vivo sampling technique 

should be solvent-free, portable, and offer integration of the sampling, sample preparation and 
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analysis steps. With SPME, both in vivo sampling and sample preparation are accomplished by 

placing the fibre in the area surrounding the system under study.98,100 Consequently, the plant 

tissue being analyzed does not have to be destroyed. In vivo analysis using SPME is gaining 

ground in metabolomics studies59,80,86 because of its unique characteristics: on-site sampling, 

easy extraction, and analysis of whole extracted amounts.102 Until now, numerous applications 

for the analysis of BVOCs have been developed with SPME.98 For instance, circadian BVOC 

emission profiles and phytoremediation properties of plants were explored by Zini et al. and 

Sheehan et al., respectively.89,97 However, just as observed in air quality studies, only a handful 

of these studies have included the use of multiple devices.98,99  

In real applications, numerous fibres are required in order to obtain a better spectrum of the 

emissions being studied.97 For that reason, the application of multiple SPME-FFA DVB/PDMS 

fibres used in the identification and quantification of BVOCs emitted by a Pine tree is also 

presented in this chapter. The selection of DVB/PDMS fibres was based on previous studies 

conducted in BVOCs analysis.96,97,103,104 

 

4.2 Experimental 

4.2.1 Materials and reagents 

HPLC grade methanol was obtained from Caledon laboratories LTD (Georgetown, ON, 

Canada). BTEX, limonene and decane were purchased from Sigma-Aldrich (Mississauga, ON, 

Canada). Pure water was obtained using a Barnstead/Thermodyne NANO-pure ultrapure water 

system (Dubuque, IA, USA). Helium of ultra-high purity was supplied by Praxair (Kitchener, 

ON, Canada). Commercial SPME-Fast Fit Fibre Assembly (FFA) fibres used in this study, 
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namely divinylbenzene/polydimethylsiloxane (DVB/PDMS, 65 µm) and 

carboxen/polydimethylsiloxane (CAR/PDMS) were also provided by Sigma-Aldrich. Fibres 

were conditioned prior to their use according to the manufacturer recommendation. Gas tight 

syringes (1 and 5 mL) were purchased from Hamilton Company (Reno, NE, USA). All 

preparations were carried out in a ventilated fume hood. CAR particles (surface area: 1200 m2/g) 

of 60/80 mesh were purchased from Sigma-Aldrich (Bellefonte, PA, USA). DVB particles 

(surface area: 582 m2/g) of 100/120 mesh were purchased from Ohio Valley (Marietta, OH, 

USA). The purchase of 3.5 inch long 22-gauge blunt needles (I.D. 0.41 mm, O.D. 0.71 mm) was 

made from Dyna Medical Corporation (London, ON, Canada). Stainless steel wires (O.D. 100 

µm) were purchased from Small Parts (Lexington, KY, US). A 5-min epoxy glue was purchased 

from Henkel Canada (Mississauga, Ontario, Canada). An ADM 1000 flow-meter was purchased 

from Agilent Technologies (Mississauga, ON, Canada) 

 

4.2.2 Preparation of the needle traps 

In the preparation of NTs, first, a stainless wire was pressed by two steel guides and fixed 

into the desired position as a spring plug. Then, sorbent particles were aspirated into the needle 

by a tap-water aspirator and held by the spring plug. After packing the desired length of sorbent 

bed, a small amount of epoxy glue was used to immobilize the sorbent in the opening end. 

During the packing process, the aspirator was kept running until the epoxy glue was cured so as 

to avoid the blockage of the NT by the epoxy glue. The sorbent beds packed inside the needles 

for this work were 1 cm 100/120 mesh DVB plus 1 cm 60/80 mesh CAR. After packing, the NTs 

were conditioned in a GC injector for 3 hours with helium gas continuously flowing through the 
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needle. The conditioning temperature was 260 °C. This process was similar to previous works105-

108. 

 

4.2.3 Instrumentation 

Both the GERSTEL® MPS 2 autosampler, equipped with a GERSTEL Cooled Injection System 

(CIS4), and a Multi-Fibre Exchanger (MFX) system  for 25 SPME-FFA devices (GERSTEL, 

Mülheim an der Ruhr, Germany), as well as the Agilent 6890 gas chromatograph coupled to a 

5973 MSD quadrupole mass spectrometer (Agilent Technologies, Mississauga, ON, Canada) 

were used in this study. For the analysis of biogenic emissions, the chromatographic separations 

were performed using a SLBTM-5MB (30 m x 0.25 mm x 0.25 µm) fused silica column from 

Sigma–Aldrich with helium as the carrier gas at a flow rate of 1.5 mL min−1. The oven 

temperature was initially held at 50 ºC, gradually increased to 60 ºC at a rate of 1 ºC min−1, then 

increased to 280 ºC at a rate of 30 ºC min−1 and finally held for 0.67 min. The chromatographic 

separations for indoor air analysis were performed using an Rxi®-624Sil MS (30 m x 0.32 mm x 

1.80 µm) column from Restek with helium as the carrier gas at a flow rate of 1.5 mL min−1. The 

oven temperature was initially held at 40 ºC for 2 min, gradually increased to 55 ºC at a rate of 3 

ºC min−1, then increased to 250 ºC at a rate of 20 ºC min−1, and finally held for 3.25 min. During 

the analysis, the transfer line, MS Quad and MS source were set at 280 ºC, 150 ºC and 230 ºC, 

respectively, with the MS operated in electron ionization mode. Full scan mode (40–250 m/z) 

was used for all compounds, and quantitation was done using extracted ion chromatograms. The 

ion m/z 93 was used for quantitative analysis of α-pinene, β-pinene and limonene, while the ion 

m/z 91 was used for quantitative analysis of toluene. The following parameters were selected on 
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the Maestro software for both analyses: A) injection temperature (ºC), 260 and 300 for 

DVB/PDMS, and CAR/PDMS, respectively. B) injector penetration (CIS4): 54 mm C) 

desorption time: 180 s; D) fibre bake-out time: 1.5 min and bake-out penetration (front injector): 

45 mm. Chromatographic peak identification was made by library matching using the 2002 NIST 

MS Library (V.2.0 NIST MS Search software). Sampling with the NTDs was made using a bi-

directional syringe pump purchased from Kloehn (Las Vegas, NE, USA). 

 

4.2.4 Standard Gas Mixture and permeation tubes 

Permeation tubes for BTEX, limonene and decane were made by encapsulating pure 

analyte inside a 100 mm long (1/4 in.) Teflon™ tubing capped with 20 mm long solid Teflon™ 

plugs and (1/4) in. Swagelok caps. Emission rates for each permeation tube were verified by 

periodic monitoring of weight loss of individual analyte tubes. A standard gas generator (model 

491 MB, Kin-Tech Laboratories, LaMarque, TX, USA) was used to generate the standard gases 

with desired concentrations. The permeation tubes made in our lab were placed inside a glass 

chamber held in a temperature-controlled oven, and swept with a controllable, constant flow of 

compressed air. Different concentrations of the analytes were obtained by adjusting both the 

permeation chamber temperature and air flow rate. 

  

4.2.5 Sampling chambers 

For the extraction of BVOCs emitted by live pine trees, a glass chamber design by Zini et al. 

was used.97 It consisted of a Pyrex glass cylinder (120 mm wide, Ø = 60 mm), where pine 

needles from a pine tree can be inserted through a hole in one of its ends (Figure 4.15). After the 
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introduction of the small branch, this hole can be sealed using Teflon tape. A round glass lid 

secured by clamps closes the other end of the chamber. This lid has several 5-mm holes sealed 

by Thermogreen LB-2 predrilled septa (Supelco), into which a SPME fibre can be introduced to 

sample the air inside. To maintain a constant convection during the SPME sampling of biogenic 

compounds, a mini-fan connected to a 12 V battery set was used throughout the experiment. 

When powered, this fan produces a constant air stream directed towards the front of the sampling 

holes. The velocity of the stream, measured using a HHF51 digital wire anemometer (Omega 

Engineering, Stanford, CT), is approximately 61 cm/s. All glass parts of the container were 

silanized prior to their use. In order to prevent the presence of artifacts and contamination from 

previous analyses, the container was cleaned with methanol and dried with a constant nitrogen 

flow in a fume hood between samplings. For the analysis of VOCs and semi-VOCs, a sampling 

chamber, designed by Koziel et al.,88 was installed downstream from the standard gas generators. 

A schematic of the sampling chamber is provided in Figure 4.6.88 This sampling chamber 

facilitated a steady-state mass flow of all the standards. The sampling chamber consisted of a 

custom made 1.5 L glass bulb with several sampling ports that were plugged with Thermogreen 

LB-2 predrilled septa. Omega 120 W heating tape was wrapped around the glass bulb to control 

temperature inside the bulb. An Omega K-type thermocouple was attached to the outside surface 

of the glass bulb in order to control its internal temperature. Both heating tape and thermocouple 

were connected to an electronic heat control device constructed by the Electronic Science Shop 

at the University of Waterloo (UW). Air temperatures in the vicinity of the SPME fibres were 

maintained within ±1.2% of the adjusted temperature. Standard glass flow rates ranged from 50 

to 3000 mL/min, resulting in mean air velocities similar to those encountered in indoor air 
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environments. Standard gas generators and sampling chambers were validated using a multi-bed 

needle trap.  

 

4.2.6 On-site and in vivo sampling of Pine trees 

A pine tree branch was sealed in the glass sampling chamber, and air inside the chamber was 

extracted for 30s using a 65 μm SPME-FFA DVB/PDMS fibre. This procedure was performed 

every 3 hours between 8 am and 8 pm. The micro-fan was powered during the extractions. For 

each sampling period, four replicates using independent fibres were run. The fibres were selected 

following the protocol described in Section 3.1.3.6. Blank analyses of the fibres and glass 

chamber were run before the start of each sampling. After sampling, fibres were sealed with 

Teflon caps and kept under dry ice while transported to the laboratory.3 Time elapsed between 

sampling and analysis never exceeded two hours; under these conditions the loss of extracted 

analytes is expected to be insignificant, as proved by Chen et al.3 The concentration of the target 

analytes was calculated using the diffusion-based SPME quantitative model defined by Equation 

1.3 in Section 1.3.2. A complete description of the parameters used in these calculations is listed 

in Table 4.5.  

4.2.7 Indoors time-weighted average sampling  

A diffusive fibre holder (DFH) recently commercialized by Supelco, as well as bare 85 μm FFA 

CAR/PDMS fibres were used for passive sampling. A magnetic plunger was built at the machine 

shop of the University of Waterloo to control the diffusion path of the bare FFA fibre. Rare-earth 

magnets employed to manufacture this plunger were acquired at Lee Valley (Waterloo, Ontario, 

Canada). Fibres were selected following the procedure described in Section 4.3.3. Samplings 
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were performed over a period of 8 hours, between 9 am and 5 pm, during three different days in 

the same week. For DFH evaluation, as described in Section 4.3.4, one of the fibres was installed 

on the diffusive fibre holder while another two were used as controls. 

4.2.8 Indoors air sampling in active mode 

A portable dynamic air sampling device (PDAS) for SPME, previously described in Section 

1.3.2, was employed in the quantification of indoor contaminants present in the air of a polymer 

synthesis laboratory at University of Waterloo. A magnetic plunger was used to expose the fibre 

coating; measurements exposing a SPME-FFA CAR/PDMS fibre for 30 s were performed four 

times during a day, using independent fibres. The fibres were selected following the protocol 

described in Section 3.1.3.6. Concentrations of the analytes were calculated using Equation 1.3 

in Section 1.3.2.  

 

4.2.9 Sampling and desorption of needle traps 

For indoor air sampling and verification of concentrations in the exposure chamber, the 

NTD was connected to the sampling pump while a volume of the gaseous sample was pumped 

from the gas standard generator through the needle, at a flow rate of 5 mL/min. After sampling, 

the NTD was connected to a 1 mL gas-tight syringe filled with helium, and then introduced into 

a GC injector for desorption. Helium was consistently pushed out to assist desorption throughout 

the whole desorption period. For NTDs packed with DVB/CAR, the needle was injected into the 

hot GC injector at a temperature of 260 °C for 1 min, assisted by 0.3 mL of helium.   
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4.3 Results and Discussion 

4.3.1 Initial assessment of the multi-fibre exchange system (MFX) 

To the best of our knowledge, few publications exist in the literature related to the use of a 

multi-fibre exchange system. To date, research in this area seems to mainly focus on 

development of a specific application, rather than a critical evaluation of the system.24,42,50,51 In 

the initial experiments that were performed with the MFX system, two main issues were 

observed. First, it was found that the holder adapter was not able to remain attached to the 

autosampler arm after several extractions. This is a critical issue; if the holder were to fall while 

the fibre is being transported, the piercing needle may bend, consequently damaging the FFA 

device. This problem was solved by installing a small screw at the back of the holder adapter. As 

shown in Chapter two, after adding the screw, no further issues were observed for up to 240 

continuous extraction/injection cycles. 

Secondly, Bisphenol A was found accumulated on fibres while these were in storage for 

times typical of a standard analysis.  We determined that Bisphenol A originated from the plastic 

body of the sealing caps (refer to Figure 4.5). A procedure to clean the caps of the MFX tray was 

developed to eliminate the possibility of fibre contamination. This procedure consists in 

sonicating the Teflon piece of the cap with three different solvents (methanol, acetone and 

hexane). Next, the caps were dried in a fume hood by applying a flow of nitrogen. Finally, to 

eliminate residues of any volatile compounds remaining in the caps, they were placed in an oven 

at 200°C for 30 minutes. We have found it suitable to store the cleaned fibre caps in a beaker 

with a cover on the top (aluminum foil or Parafilm) to avoid any back-contamination. Based on 

our experience, it is recommended to run a blank of a fibre that has been stored on the tray for at 

least 1 hour to verify that new contaminants were not adsorbed on the cap.  
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4.3.2 Evaluation of the multi-fibre exchange system storage stability 

An important ability of the MFX system is the unattended desorption/analysis of multiple 

FFA fibres after field sampling (active or passive). Up to date, the integrity of the samples on the 

MFX tray after several hours of residence has not been reported by the manufacturer in an 

application note. The integrity of a sample depends on two main factors: the sealing efficiency of 

the cap and the sorption efficiency of the sorbent. It has been established that the CAR/PDMS 

fibre is the best option for volatiles analysis,1 and consequently is the recommended coating in 

the manufacturer’s brochure for VOCs analysis.54 However, SPME users may also wish to select 

the DVB/CAR/PDMS fibre if their sample contains semi-volatiles. Thus, 3 different fibre 

coatings (PDMS, CAR/PDMS and DVB/CAR/PDMS) were used to evaluate the integrity of 

samples/fibres while they were left in storage at the workstation. Since 1 hour is a relatively 

common GC runtime, and the tray can store up to 25 fibres, the sealing efficiency was evaluated 

for a period up to 24 hours, assuming that the tray was full. Figures 4.1, 4.2 and 4.3 present the 

results for CAR/PDMS, DVB/CAR/PDMS and PDMS, respectively.  

In summary, the results show that sealing efficiency of commercial caps is insufficient to 

prevent the loss of volatile compounds (<C10) for both PDMS (~90% loss) and 

DVB/CAR/PMDS (~20% loss) fibres. As expected, only CAR/PDMS fibres prevent excessive 

loss of volatiles during 24 hours of storage. Thus, it was identified that for field sampling of 

samples containing both high- and low-boiling compounds, where the use of a 

DVB/CAR/PDMS fibre is preferred, modifications to the sealing process need to be 

implemented if sample integrity is to be preserved. In order to address this issue, a new cap with 

a more efficient sealing mechanism was designed and tested at the University of Waterloo (UW).  

The proposed cap is presented on Figure 4.5.  
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Figure 4.1 Evaluation of residence time effect on the MFX tray using CAR/PDMS fibres after 0, 100, 720 and 1440 
minutes (n=3).  

 

 

 

 

Figure 4.2 Evaluation of residence time effect on the MFX tray using 50/30 μm DVB/CAR/PDMS fibres after 0, 
100, 720 and 1440 minutes (n=3).  
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Figure 4.3 Evaluation of residence time effect on the MFX tray using 100 μm PDMS fibres after 0, 100, 720 and 
1440 minutes (n=3).  

 

 

 

 

 

Figure 4.4 Comparison of the effectiveness of the commercial cap for a residence time of 60 minutes on the MFX 
tray using 100 μm PDMS fibres (n=3). PTFE, house made Teflon cap; MFX, commercial cap. 
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Figure 4.5 Comparison of the commercial cap versus the proposed cap developed in this study. A. MFX commercial 
cap; B. Teflon cap manufactured at the University of Waterloo machine shop. 

 

Compared to the commercial version of the cap, the new Teflon-only cap has a tighter and 

deeper hole (refer to Figure 4.5). Automatic system operation using this custom-made cap would 

require modifications of both tray and software. However, since the Maestro software being used 

cannot be customized, evaluation of the UW-caps could not be performed with complete system 

automation; due to the new design of the caps, the system was unable to automatically lift the 

fibre from the tray. Therefore, in order to prove the advantages of the new design, fibres were 

manually uncapped by the analyst prior to the injection.  

The sealing efficiency of commercial and custom-made caps was evaluated by exposing the 

fibre to the standard gas generator, followed by immediate storage using both devices. PDMS 

was the chosen fibre in this study since it is not a very efficient fibre in the retention of VOCs, 

and in this case, we were interested in studying a worst case scenario. Results were compared to 

a fibre injected right after the extraction. As can be seen in Figure 4.4, it was demonstrated that a 

tighter hole prevents considerable loss of most volatile compounds. When the PDMS fibre is 

stored on the MFX tray, desorption of the standards from the fibre occurs until an equilibrium is 

reached between standards in the fibre and the ambient air inside the needle. However, if the 
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sealing around the needle is not tight enough, analytes in the ambient air inside the needle 

escape, causing further desorption of analytes from the fibre. In summary, the currently used 

configuration of MFX caps allows only for high-throughput and unattended analysis of on-site 

samples taken with CAR/PDMS fibres based on the strong adsorption capability exhibited by 

this coating. 

 

4.3.3 Evaluation of MFX suitability in the analysis of multiple fibres 

As shown in Figure 4.1, when analyzing a single CAR/PDMS fibre, no noteworthy losses 

were found up to approximately 24 hours of residence on the tray. However, the effect of the 

spatial position on the tray was not evaluated. Since the tray is located a few centimeters above 

the GC oven, areas hotter than the one assessed in the previous study may exist on the tray. As a 

result, considerable loss of analytes may occur when fibres are stored in a specific position. In 

order to evaluate the suitability of the MFX system for the analysis of multiple fibres, a Latin-

square design was proposed. The two factors that can affect the measurement of the amount 

collected by the SPME fibre were blocked, namely the position on the sampling chamber (see 

Figure 4.6) and the position on the MFX tray. Table 4.1 presents the design used for this 

evaluation.  

Table 4.1 Latin-square design used for the evaluation of 5 different 85 μm CAR/PDMS fibres. The position on the 
MFX tray and the sampling chamber were both randomized. F#Xx, where # is the number of the fibre, X is the 
position on the chamber, and x is the position on the MFX tray. a, position 1; b, position 5; c, position 21; d, 
position, 25, and e, position 13. 

 

 

Replicate Fibre Position (F#Xx) 

1 F1Aa F5Bd F4Cd F3De F2Ec 

2 F2Ab F1Be F5Cc F4Da F3Ed 

3 F3Ac F2Ba F1Cd F5Db F4Ee 

3 F4Ad F3Bd F2Ce F1Dc F5Ea 

5 F5Ae F4Bc F3Ca F2Dd F1Eb 
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Figure 4.6 Schematic of the sampling chamber for SPME extractions  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Amount extracted of BTX in nanograms using passive sampling with 5 different CAR/PDMS fibres 
(n=5). Samples were taken from a standard gas generator using SPME in passive sampling mode (Z=0.2 cm, t = 15 
minutes).  

 



86 
 

Table 4.2 Statistical evaluation of the inter-fibre repeatability of five 85 μm CAR/PDMS fibres using a Latin-square 
design. Ftray is the F-ratio for the randomization of position on the MFX tray; Fchamber is the F-ratio for the 
randomization of position on the sampling chamber; Ffibre is the F-ratio for the different treatments evaluated 
(different fibres) and Fcrit is the critical value of F for 25 experiments at a 95% level of confidence. RSD is the 
relative standard deviation for the inter-fibre repeatability of five fibres (n=5). 

Compound Benzene Toluene Xylene 

Ftray 1.2 1.5 1.3 

Fchamber 1.6 2.0 1.5 

Ffibre 7.6 45.8 54.6 
Fcrit 3.3 

RSD 4.0 8.6 15.0 

 

  

 

 

 

 

 

 

 

Figure 4.8 Principal component analyses of 5 CAR/PDMS SPME-FFA fibres. Samples were taken from a standard 
gas generator using SPME in passive sampling mode (Z=0.2 cm, t = 15 minutes). 

 

  In order to assess the contamination of a given pollutant with on-site sampling, a 

significant number of sampling points are required to get a better understanding of the problem. 

SPME has been extensively used to determine TWA concentrations of a broad range of analytes. 

Although inter-fibre reproducibilities of multiple fibres have already been evaluated preceding 

their application on real samples in a few studies,35 complementary to the evaluation of the 
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storage stability of the MFX tray, in this study the intra and inter-fibre reproducibilities of five 

CAR/PDMS fibres were also evaluated using passive sampling. As aforementioned, 

CAR/PDMS have been shown to be the most suitable coating towards volatile compounds. 

Therefore, BTX were selected as the target compound for this evaluation. 

 

 As can be seen in Figure 4.7, statistical differences among fibres were found. Statistical 

evaluation of the data (refer to Table 4.2), using the Latin-square design, showed no effects for 

the position on the sampling chamber; this means that the experiments reported here were 

conducted under ideal conditions for air circulation in the exposure chamber.10,12 Furthermore, 

as shown in Table 4.2, at a 95% level of confidence, it was proven that the MFX tray does not 

have an effect on the amount of analytes measured by multiple fibres. This is a clear advantage 

of this system, particularly when numerous probes are required, such as in environmental on-site 

analysis.  

 Although the factors blocked do not appear to have any effect, it is important to note that 

relative standard deviations up to 15 percent were obtained. The PCA analysis, shown in Figure 

4.8, allows us to easily observe which fibres are performing similarly to one another. By 

selecting only the fibres enclosed on the ellipse in Figure 4.8, relative standard deviations lower 

than 2 percent were obtained for all analytes. As shown in Table 4.2, the largest differences 

were observed for xylene. This might be related to its smaller diffusion coefficient. Thus, 

differences on the diffusion distance (Z) are more significant for xylene than benzene or toluene. 

Such dissimilarities might be associated with measurement inaccuracy of the diffusion distance, 

or irregularities on the tip of the fibre.  For further studies, only fibres that yielded an inter-fibre 

RSD lower than 5 percent for all analytes were selected.  
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4.3.4 Evaluation of the Diffusive Fibre Holder (DFH) 

To determine TWA concentrations, a diffusive sampling fibre holder (DFH), developed by 

CHROMLINE and commercialized by SUPELCO, was combined with an FFA. According to its 

design (sees Figure 4.9), the DFH seems to achieve the three requirements of a field sampler:  

adequate needle sealing and protection, as well as a user-friendly interface. Additionally, this 

device allows adjusting Z distances from 0 to 35 mm with intervals of 1 mm, using a magnetic 

plunger. As well, the sealing cap of the DFH is a PTFE cup inserted into a spring loaded 

mechanism that seals and protects the needle tip once it is installed. To the best of our 

knowledge, this device has not been evaluated to date, and publications reporting its use in 

determining TWA concentrations, with the exception of the company brochures available, were 

not found.  

 

 

 

 

 

 

 

 

Figure 4.9 Schematic drawing of the Diffusive Sampling Fibre Holder (DFH)53 
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Two critical parameters of the DFH were evaluated: its storage stability for up to 12 hours at 

room temperature, and the effect of the sampler device on the uptake rate of the analytes. Since a 

special exposure chamber to evaluate the DFH was not available at the laboratory, the uptake 

rate of the analytes was studied by carrying out 8-hour samplings in passive mode at a polymer 

synthesis laboratory in the University of Waterloo.109 Three 85 μm CAR/PDMS fibres, 

previously assessed on section 4.3.3, were used for this purpose. Since only one DFH was 

available for this study, one of the fibres was placed inside the holder and the other two were 

used as controls.  These experiments were performed on three different days in order to 

demonstrate that the sampler does not have an effect on the rate of analyte collection. As shown 

in Figure 4.10, No differences in toluene concentration were found among the bare FFA devices 

and the FFA device inside the DFH.  The RSDs for multiple devices agreed with those reported 

by Zare et al. 35,41 However, it would seem that turbulent currents in the workplace lead to much 

higher variation in the results compared to those obtained under controlled conditions. 36,109 

 

 

 

 

 

 

Figure 4.10 Evaluation of the diffusive fibre holder (DFH) versus conventional FFA-SPME devices using 85μm 
CAR/PDMS (Z=0.147 cm, t = 8 hours). AVG-TWA is the mean value obtained with two fibres without holder. DFH 
is the value obtained using a single FFA device placed on the DFH. 
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Figure 4.11 Evaluation of the storage stability up to 12 hours of the diffusive fibre holder (DFH) using 85 μm 
CAR/PDMS (Z=0.147 cm, t = 8 hours, n=5).  

 

Preservation of sample integrity can be achieved in different ways, such as using a system 

that perfectly seals the fibres, as well as storing fibres at sub-ambient temperatures. The last was 

proven to be an efficient solution to enhance preservation of sample integrity by Chen et al., and 

it is commonly used after on-site sampling.3  

In order to evaluate the sealing capacity of the PTFE cup used on the DFH, two fibres of 85 

μm CAR/PMDS were exposed to a gas generator in passive sampling mode (Z=0.147 cm, t=15 

min) followed by either immediate desorption, or storage at room temperature for a period of 12 

hours. As shown in Figure 4.11, no statistical differences were found between the fibres that 

were sealed at room temperature for 12 hours and those injected immediately. These results 

agree with previous studies where PTFE was used as the sealing material.3 Therefore, since the 

caps accomplished the minimum requirements for a field sampler, this device was used for the 

studies presented on the following section.  
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4.3.5 Evaluation of indoor air contaminants 

Indoor air was analyzed at a polymer synthesis laboratory at the University of Waterloo.  

Several samples were collected in the span of a workday (8 h) to determine variations in the air 

contamination profile within this time limit.92 Active sampling through a multi-bed NTD was 

carried out every hour to observe the intra-day variations. Spot sampling, using the diffusion 

based calibration approach with an 85 μm CAR/PDMS fibre, was performed four times during 

the day to corroborate the results obtained with the NTD. Passive sampling over a period of 8 

hours, using three 85 μm CAR/PDMS fibres, was used to determine the average concentration of 

toluene that workers were exposed to. Table 4.3 summarizes the parameters used to calculate the 

concentrations of toluene with spot sampling.  As can be seen in Figure 4.12, good agreement 

was observed between passive and active techniques.   

Figure 4.12 Evaluation of the concentration of toluene at different hours in a polymer chemistry laboratory at 
University of Waterloo.  TWA sampling using three 85μm CAR/PDMS (Z=0.147 cm, t = 8 hours); SPME active 
sampling using four 85μm CAR/PDMS (t=30 s, Avg. T=22.4ºC); NTD sampling using a multi-bed DVB/CAR (100 
mL at 2mL/min). 
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Table 4.3 Experimental parameters used to determine the concentration of toluene in indoors air at a polymer 
synthesis laboratory using the SPME diffusion based calibration 

 

The increase in the concentration of toluene, observed at two different times during the day, 

at 9:30 am and 12:25 pm, was directly correlated to the use of a rotary evaporator by the 

workers. It is important to highlight that the sampling devices were located at approximately 2.5 

meters from the rotavap. This means that average concentrations of toluene closer to the rotavap 

may be even higher than the ones reported here.  

The NTD concentration can be considered as a time-weighted average sample over a short 

sampling period (approximately 20 min). In contrast, the PDAS-SPME concentrations can be 

associated with spot 30-s sampling. However, both techniques only allow the analyst to see a 

specific fragment of the day rather than the entire day variation. This explains why the average 

of the concentrations calculated using NTD and spot SPME (0.37 and 0.26 ng/mL, respectively) 

Parameters/Day time (h) 10:30 11:45 15:30 16:35 Units 

Concentration 1.62 0.21 0.14 0.10 ng/mL 

Amount extracted 37 5 3 2 ng 

Temperature 295.6 295.6 295.3 295.2 K 

Diffusion coefficient (Dg) 0.0793 0.0793 0.0791 0.0791 cm2/s 

Boundary layer thickness 0.0135 0.0135 0.0135 0.0135 cm 

Reynolds number 28.339 28.339 28.391 28.407 - 

Air kinematic viscosity (v) 0.1535 0.1535 0.1532 0.1531 cm2/s 

Schmidt number 1.937 1.937 1.937 1.937 - 

Fibre radio (b) 0.0145 cm 

Fibre length (L) 1 cm 

Sampling time (t) 30 s 

Pressure (P) 1 atm 

Mass air 28.97 g/mol 

Volume air 20.1 cm3/mol 

Mr 0.045 mol/g 

Mass toluene 92.14 g/mol 

Volume toluene 111.14 cm3/mol 

Linear velocity of the air (u) 150 cm/s 
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were lower than the one obtained with SPME in passive sampling mode (0.80 ± 0.17 ng/mL, 

n=3). Other contaminants, such as tetrahydrofuran, chloroform and cyclohexane were also 

quantified using the techniques mentioned above (data not shown). Similarly to toluene, by 

means of NTD and the PDAS-SPME, intra-day variations in the concentrations of these solvents 

were tracked. All contaminants mentioned above were not found to be present in higher 

concentrations than the regulatory quantities established by the National Institute for 

Occupational Safety and Health (NIOSH) at all times. For instance, the highest concentration of 

toluene found during the sampling was 1.8 ng/mL, whereas the established 10 hour Threshold 

Limit Value (TLV) and the short-time exposure limit (STEL) of toluene are 377 and 565 ng/mL, 

respectively. The results presented in this study highlight the applicability of these techniques in 

the monitoring of more toxic compounds such benzene, which have lower thresholds (0.32 ng/L 

TLV and 8 ng/L STEL).38,92   

 

4.3.6 Determination of Biogenic emissions in pine trees using in vivo SPME  

The BVOCs emission profiles of a pine tree branch were evaluated in a time span of 12 

hours during the third week of July 2012. The typical chromatographic profile after in vivo 

sampling and the peak identity are presented in Figure 4.13 and Table 4.4. Three major 

compounds found at any time of the day were selected for quantitation: limonene, α-pinene and 

β-pinene.110 Figure 4.14 presents the concentrations determined for each compound every 3 

hours from 8 am to 8 pm. Error bars represent the standard deviation of the mean calculated with 

four independent SPME-FFA 65 μm DVB/PDMS. The experimental parameters used to 

determine the concentration of these compounds are presented in Table 4.5. 
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Figure 4.13 Typical GC-qMS profile of Pine tree BVOC after 30-s in vivo sampling with a SPME-FFA 65 μm 
PDMS/DVB. Peak identity was included on Table 4.4. 

 
Table 4.4 Experimental parameters used to determine the concentration α-pinene, β-pinene and limonene at different 
hours in pine trees. tR, retention time (min); I(calc), retention index calculated; I(lit), retention index reported on the 
literature; CAS, CAS registry numbers. 

Peak tR I (calc) I (lit) Compound CAS 

1 8.045 933 936 ɑ-pinene 7785-26-4 
2 8.820 950 947 Camphene 79-92-5 

3 10.130 978 978 Sabinene 3387-41-5 

4 10.327 983 981 β-pinene 127-91-3 
5 10.827 993 992 β-Myrcene 123-35-3 

6 11.230 1007 1005 3-Hexen-1-ol, acetate, (E)- 3681-71-8 

7 11.389 1017 1011 n-Hexyl acetate 142-92-7 

8 11.694 1036 1032 Limonene 138-86-3 
9 11.735 1039 1035 Eucalyptol 470-82-6 

10 11.988 1055 1047 β-(E)-ocimene 3779-61-1 

11 12.159 1066 1062 γ-terpinene 99-85-4 

12 12.524 1090 1086 Terpinolene 586-62-9 

13 12.683 1100 1098 Linalool 78-70-6 

14 13.570 1200 1190 α-terpineol 98-55-5 

15 14.503 1356 1351 α-terpineol acetate 80-26-2 

16 14.753 1405 1405 Methyleugenol 93-15-2 

17 14.947 1447 1419 Caryophyllene-E 87-44-5 

18 15.227 1508 1480 Germacrene D 23986-74-5 
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Figure 4.14 Evaluation of the concentration of α-pinene, β-pinene and limonene emitted at different hours by a pine 
tree at University of Waterloo. Spot sampling using four 65 μm DVB/PDMS (t=30 s, Avg. T=26.1ºC, n=4). 
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Figure 4.15 Glass container for live plants BVOC extraction: 1, silanized glass cylindrical body (120 mm x 60 mm); 
2, silanized glass lid; 3, sampling holes topped with Thermogreen LB-2 septa; 4, thermocouple; 5, SPME-FFA 
65μm DVB/PDMS; 6, microfan (40 mm x 40 mm x 6 mm); and 7, Teflon tape seal.  

 
 
Table 4.5 Experimental parameters used to determine the concentration α-pinene, β-pinene and limonene at different 
hours in pine trees at University of Waterloo using the SPME diffusion based calibration approach. 

Parameter 
Time (h) 

Units 
8 11 14 17 20 

Concentration α-pinene 1.77 3.18 3.96 3.00 1.63 ng/mL 

Concentration β-pinene 0.50 0.69 0.73 0.81 0.54 ng/mL 

Concentration limonene 0.38 0.53 1.01 0.60 0.34 ng/mL 

Temperature 296.3 297.6 300.6 301.6 299.3 K 

Diffusion coefficient (Dg) 0.0595 0.0599 0.0610 0.0613 0.0605 cm2/s 

Boundary layer thickness 0.0197 0.0198 0.0200 0.0201 0.0199 cm 

Reynolds number 9.492 9.418 9.252 9.198 9.323 - 

Air kinematic viscosity (v) 0.1541 0.1553 0.1581 0.1591 0.1569 cm2/s 

Schmidt number 2.592 2.593 2.593 2.593 2.593 - 

Fibre radios (Outside) (b) 0.0120 cm 

Fibre length (L) 1 cm 

Sampling time (t) 30 s 

Pressure (P) 1 atm 

Mass air 28.97 g/mol 

Volume air 20.1 cm3/mol 

Mass analyte 136.23 g/mol 

Volume analyte 196.68 cm3/mol 

Linear velocity of the air (u) 60.96 cm/s 
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In summary, 18 compounds were completely identified by their linear retention indices and 

comparison of mass spectra with those found in the NIST database and literature.111 The 

concentration of the target analytes showed a similar trend over the duration of the experiment: 

the highest concentration for the target compounds was obtained at 2 pm with 0.73, 1.01 and 

3.96 ng/mL for β-pinene, limonene and α-pinene, respectively. All the concentrations were in the 

range of hundreds of nanograms per liter, which are within the typical range for forest 

atmospheric environments. Good inter-fibre repeatability for 4 FFA-SPME fibres was found and 

the RSD values were within the range of 4 to 8 percent in all the cases. Circadian variations 

observed in the concentrations of the target analytes can be a reflex to the variations of 

temperature and illumination conditions during the sampling cycle. Similar trends have been 

previously reported for isoprene in the analysis of Eucalyptus citriodora, and eucalyptol in the 

analysis of Brugmansia suaveolens flowers.97,100  

4.4 Conclusions 

A critical evaluation of the MFX system performance was accomplished. Storage stability as 

well as continuous operation over 200 extraction/injection cycles was studied. It was found that 

the CAR/PDMS fibre is the only coating that can be stored in the tray for up to 24 hours after 

field sampling without significant losses. With the current set up of the MFX system, other 

coatings may present significant losses (˃10%) depending on the volatility of the analyte and its 

affinity for the fibre coating. This should be emphasized by the manufacturer in order to avoid 

potential customer disappointment. In order to solve this problem a new cap was designed and 

built at the University of Waterloo machine shop. The results here reported demonstrated that 

this cap is an effective solution to prevent analyte losses during the storage. However, some 

modifications in the software and the tray are required to properly implement the use of the 
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modified cap. Suitable modifications of the tray and software were proposed to the manufacturer 

for their evaluation and implementation. It is expected in the near future that with these 

modifications, a broader range of compounds can be analyzed after field sampling without 

concerns in regards to storage time on the tray.  

The capabilities of the MFX system for high-throughput analysis were demonstrated by 

doing active and passive sampling applications. Indoor air was analyzed at a polymer synthesis 

laboratory at University of Waterloo using a total of seven CAR/PDMS fibres. Both, TWA and 

short-term exposure concentrations of toluene were found to be below threshold limits. The 

results obtained by SPME were in good agreement with those obtained using active sampling 

with NTDs.  Also, a BVOCs emission profile of a pine tree was evaluated over a period of 12 

hours. Outstanding inter-fibre repeatability (≤8%) was found using 4 FFA-DVB/PDMS fibres. 

Thus, it can be predicted that SPME, in conjunction with FFA devices, will have a significant 

contribution as a sampling technique for living plants or similar biological systems where 

multiple fibres are required. In summary, this study proved the feasibility of the MFX system to 

analyze multiple fibres after on-site sampling without manual intervention.   

A new diffusive fibre holder (DFH) was also evaluated. No effects from the holder case on 

the uptake rate of analytes were observed. Moreover, good storage stability of the sealing system 

was found. Despite the DFH ability to achieve the basic requirements of a field sampler, it has 

been observed that special care must be taken when adjusting the diffusion path distance (Z); as 

reported by several authors,36,37,43 small variations or erroneous measurement of Z can 

considerably affect results. A plausible solution is to install an electronic digital display, similar 

to a low-cost digital caliper, on which the accurate retracted distance of the fibre is shown.  
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Chapter 5 – Development and preliminary evaluation of a new Pen-like Diffusive Sampler 

(PDS) for NT-TWA sampling 

5.1 Introduction 

Several SPME field samplers have been developed, such as the SPME field sampler with a 

two-leaf closure, the gastight valve syringe modified for SPME field applications, the disposable 

field sampler with a Teflon cap, and the Supelco field sampler.1,3,112-114 Nevertheless, the 

majority of these devices do not integrate these important factors: preservation of samples, ease 

of deployment, storage, and transportation.  

The field sampler developed by Chen and Pawliszyn3 was designed to use and interchange 

commercial fibre assemblies, making this sampler more universal. Moreover, this device 

achieved three of the four design requirements of an SPME field sampler, namely proper sealing 

of the needle, needle protection, and a user-friendly interface. However, despite its small size and 

simple movements required to operate this sampler, this fibre assembly is not suitable for use in 

a multiple device exchanger, such as one presented in chapter 4 of this thesis.51  

Recently, Zare and et al. developed a SPME pen-shaped holder for passive sampling of 

anaesthetics in operating rooms.35 According to the authors, it is 11 cm in length and weighs 

approximately 25 g. Depending on the concentration of the analyte being studied, the sampler 

sensitivity can also be modified by adjusting the diffusion path, via the screw-like end of the 

holder.35 However, a serious drawback of this device is that storage features, such as a Teflon 

cap, were not included in its design. 

The Pawliszyn group found that Teflon is an appropriate sealing material with negligible 

memory effects, and that it appropriately isolates the fibre coating from the ambient 
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environment, thus avoiding contamination and protecting sample integrity.3,114 This group also 

demonstrated the effectiveness of the Teflon cap when it was used with a high efficient sorbent 

like Carboxen, since it can retain VOCs for up to two weeks without significant losses.3 Cross 

contamination may only be an issue when Teflon caps are used repeatedly. Nonetheless, simple 

solutions, such as Teflon cap conditioning at high temperatures, can diminish the potential for 

cross contamination.3  

Up to date, only two portable personal diffusive samplers have been developed for NT; the 

badge-like sampler (Figure 5.1, inset A) consists of two components, a sampler holder and a NT.  

The sampler holder is a metal plate with four Teflon chips. A hole in the centre of each chip 

allows sealing of the side hole and tip of the needle, so as to preserve sample integrity. An 

advantage of this device is that it could be fixed either to the front pocket of the operator or 

under a shirt collar during the sampling process.95  

 

 

 

 

 

 

 

Figure 5.1 Schematic drawing of field samplers developed for NTD in passive mode. A, badge like sampler; B, pen-
like sampler.  
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Conversely, the pen-like device (Figure 5.1, inset B) is lighter and more user-friendly than the 

former.95 However, because of its design, it is complicated not only to load the NTD into the 

holder, but also in the tray of the autosampler. This device operates in two positions, the sealing 

position and the sampling position. When the button at the end of the pen is pressed, the tip of 

the needle is sealed by a Teflon cap found in the tip of the pen. Alternatively, when the needle is 

retracted by pressing the button, the tip of the needle is exposed to air that moves in and out 

through the elliptical windows on each side of the pen. In this study, a new diffusive sampler is 

presented. It has a similar manoeuvre mechanism to the one described by Gong et al.95 However, 

in contrast to the previous design, the loading of the NT on the holder is simpler and can be 

accomplished in few seconds. Also, a clever clicking exposure system placed the NT 

automatically in the sampling position when it was fixed in a pocket.  Unlike previous works, a 

sampling chamber was successfully designed and built for the evaluation of the sampler device 

under a controlled environment. Moreover, the new PDS-NT can be used for either manual 

desorption with the holder, or automated unattended NT desorption using the Concept 

autosampler commercialized by PAS Technologies.4  

 

5.2 Experimental 

5.2.1 Materials and reagent  

HPLC grade methanol was obtained from Caledon laboratories LTD (Georgetown, ON, 

Canada). BTX was purchased from Sigma-Aldrich (Mississauga, ON, Canada). Helium of ultra-

high purity was supplied by Praxair (Kitchener, ON, Canada). Gas tight syringes (1 and 5 mL) 

were purchased from Hamilton Company (Reno, NE, USA). All the preparations were carried 

out in a ventilated fume hood. CAR particles (surface area: 1200 m2/g) of 60/80 mesh were 
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purchased from Sigma-Aldrich (Bellefonte, PA, USA). DVB particles (surface area: 582 m2/g) 

of 100/120 mesh were purchased from Ohio Valley (Marietta, OH, USA). The 3.5 inch long 22-

gauge blunt needles (I.D. 0.41 mm, O.D. 0.71 mm) were purchased from Dyna Medical 

Corporation (London, ON, Canada). Stainless steel wires (O.D. 100 µm) were purchased from 

Small Parts (Lexington, KY, US). The 5-min epoxy glue was purchased from Henkel Canada 

(Mississauga, Ontario, Canada). The ADM 1000 flow-meter was purchased from Agilent 

Technologies (Mississauga, ON, Canada) 

 

5.2.2 Instrumentation 

An Acme 6100 series gas chromatograph (Young Lin Instruments, Anyang, Korea) 

equipped with a flame ionization detector (FID), and a capillary column (RTX-5, 30 m × 0.25 

mm I.D., 0.25 μm film thickness) was used for the separation and detection of BTX. The oven 

temperature was initially held at 40 ºC for 1 min, gradually increased to 180 ºC at a rate of 25 ºC 

per min, and then held for 2 min. An ATAS GL Optic 3 injection port (ATAS GL, Eindhoven, 

Netherlands) was used for liquid, needle trap and SPME injections. 

 

5.2.3 Preparation of the needle traps 

The packing process for each needle was the same as the procedure described in Section 

4.2.2. The sorbent beds used were 1 NT packed with 1 cm 100/120 mesh DVB plus 1 cm 60/80 

mesh CAR, and several NT packed with 1 cm 60/80 mesh CAR. After packing, the NTDs were 

conditioned in a GC injector for 3 hours with helium gas continuously flowing through the 

needle. The conditioning temperature was 260 °C for DVB/CAR NT and 300 ºC for CAR NT. 

This process was similar to previous works.105-108 
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5.2.4 Standard Gas Mixture and permeation tubes 

Permeation tubes for BTX were made by encapsulating pure analyte inside a 100 mm 

long (1/4 in.) Teflon™ tubing capped with 20 mm long solid Teflon™ plugs and (1/4) in. 

Swagelok caps. Emission rates for each permeation tube were verified by periodic monitoring of 

weight loss of individual analyte tubes. A standard gas generator (model 491 MB, Kin-Tech 

Laboratories, LaMarque, TX, USA) was used to generate standard gases with desired 

concentrations. The permeation tubes made in our laboratory were placed inside a glass chamber, 

held in a temperature-controlled oven and swept with a controllable constant flow of compressed 

air. Different concentrations of the analytes were obtained by adjusting both the permeation 

chamber temperature and the air flow rate. 

 

5.2.5 Desorption of needle traps 

 After sampling, the NTD was connected to a 1 mL gas-tight syringe filled with a certain 

volume of helium, and then introduced into a GC injector for desorption. The helium was 

consistently pushed out to assist the desorption during the whole desorption period. NTDs 

packed with CAR were injected into the hot GC injector at 300 °C for 1 min, with the assistance 

of 0.3 mL helium.   

 

5.2.6 Sampling Chamber for the evaluation of the new pen-like device 

For the evaluation of the new pen-like device with BTX, a new sampling chamber was built 

at the glass blowing shop of the University of Waterloo, based on a previous system designed by 
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Koziel et al.88. A schematic of the sampling chamber is provided in Figure 5.2. This sampling 

chamber facilitated a steady-state mass flow of all the standards; it consisted of a custom made 

1.5 L glass bulb with 4 sampling ports that were plugged with Thermogreen LB-2 predrilled 

septa. As shown in Figure 5.2, for sampling of the pen-like device, a special sampling port was 

built; this sampling port has a clever system that circumvents the release of contaminants in the 

laboratory atmosphere. It consists of two Teflon O-rings embedded within a predrilled Teflon 

stopper that presses the pen-device and seals the system. When the pen is not sampling, a Teflon 

plug of the same outside diameter was used to seal the system. Custom-made glass restrictions, 

as well as a special Thermogreen washer were built to hold the Teflon stopper in position, by 

tightening its cap. In order to evaluate multiple devices, 4 ports were constructed following the 

same design. Standard gas generators and sampling chambers were validated using a multi-bed 

needle trap.  

 

 

 

 

 

 

 

 

Figure 5.2 Schematic of the sampling chamber used for the evaluation of the pen-like NT diffusive sampler. 1, GL 
thread; 2, chamber cap; 3, Thermogreen washer; 4, Teflon O-ring; 5, Pre-drilled Teflon stopper; 6, glass restriction; 
7, glass tubing; 8, Teflon plug that seals the chamber when the pen is not sampling.  
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5.3 Results and Discussion 

5.3.1 Design of the new pen-like diffusive sampler 

Figure 5.3 and 5.4 summarize the main features of the new PDS. One of the most important 

characteristic of the new device is its versatility; most commercial needle traps can be installed.  

Because of the plug-screw system designed for the top of the needle, it can be easily fitted to the 

upper part of the holder. This feature allows the analyst to do a manual injection whenever a 

needle trap with a side-hole is used106-108. Another remarkable characteristic is the automatic 

exposure system. By placing the PDS on a shirt pocket (Figure 5.4) the needle is moved 

automatically to the sampling position. Finally, the screw-type Teflon tip not only guarantees 

sample preservation during its transportation/storage but can also be easily disassembled for 

cleaning purposes3.  

 

 

 

 

 

 

 

 

Figure 5.3 Schematic drawing of the new pen-like diffusive sampler for needle trap. 
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Figure 5.4 Schematic of the sampling and sealed positions of the PDS-NT. 

 

5.3.2 Effect of the holder on the uptake rate  

Two critical parameters of the pen-like diffusive sampler (PDS) were evaluated, specifically  

storage stability for up to 24 hours at room temperature, and possible effects of the sampler 

device on the uptake rate of the analytes. The former was evaluated by comparing the amount of 

BTX collected by a needle trap with and without the sampling holder. These compounds were 

selected based on data provided by Gong et al.,5 who demonstrated that a NTD packed with 

Carboxen1000 is a successful diffusive sampler for monitoring TWA concentrations of BTEX 

under low relative humidity.5 Figure 5.5 presents the comparison of two independent needle 

traps versus the same needle trap installed in the holder. No statistical differences were found for 

any of the needle traps. Thus, based on these experimental findings, it is possible to use the PDS 

with no concerns regarding possible holder effects on analyte uptake rates.  
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Figure 5.5 Evaluation of the effect of the pen-like diffusive sampler (PDS) on the uptake rate of two different NT 
pack with 1 cm of CAR (Z=0.25 cm, t = 30 min, T= 25ºC). Error bars represent the standard deviation of the mean 
(n = 4). 

5.3.3 Evaluation of storage stability  

Storage stability is critical for field TWA sampling. If storage is unstable, analytes adsorbed 

inside the sampler may be lost, introducing experimental error. The storage stability of the PDS 

containing a NTD packed with Carboxen1000 was evaluated. First, the PDS-NTD was used to 

passively sample BTX from the standard gas system, and then instantaneously injected into the 

GC/FID.  Second, the same device was used to sample passively, and immediately after, the 

button on top of the PDS was pressed to seal the needle with the pen’s tip (made of Teflon). 

Subsequently, the pen was wrapped with aluminum foil to prevent cross contamination, and 

stored for 24 h at 23.5°C; after a 24 hour period, the NT was injected into the GC/FID. The 

results from the analysis, presented on Figure 5.6, showed no significant losses after 24 hours of 

storage at room temperature. These results agreed with those reported by Gong et al.5  However, 

in the future, storage duration of up to 2 weeks should be evaluated.5,115  
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Figure 5.6 Storage stability of the pen-like diffusive sampler (PDS) containing a NT packed with 1 cm of CAR 
(Z=0.25 cm, t = 30 min, T= 25ºC). Error bars represent the standard deviation of the mean (n = 3). Storage 
temperature = 23.5 ºC (room temperature).  

 

5.3.4 Comparison of two PDS-NT holders 

Two PDS-NT were built at the University of Waterloo machine shop. Two needle traps 

found to be statistically similar, in terms of the amount of BTX collected, were selected for the 

evaluation of these PDS devices. As shown in Figure 5.7, statistical differences were not found 

when comparing two independent PDS devices (n=5). Inter-PDS repeatability was below 9 

percent for all compounds. Therefore, it can be concluded that two independent PDS-NT devices 

have the same performance under the controlled conditions here described. In order to have a 

complete acceptance of the PDS-NT, other environmental conditions that critically affect 

diffusive passive samplers, such as temperature and humidity, should be studied.36,115 Several 

studies have shown that these environmental parameters might affect the uptake rate of the 

analyte, depending on its molecular weight and polarity.42 Consequently, a broader range of 

VOCs should be evaluated using the PDS-NT.  
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Figure 5.7 Evaluation of two pen-like diffusive samplers (PDS) using NT packed with 1 cm of CAR (Z=0.25 cm, t = 
30 min, T= 25ºC). Error bars represent the standard deviation of the mean (n = 5). 

 

5.4 Conclusions 

In this work a new, easy to deploy, and reusable needle trap pen-like diffusive sampler 

(PDS-NT) was presented. Unlike previous designs, a clever clicking exposure system positioned 

the NT automatically in the sampling position when placed in a fixed position; in this case, a 

pocket was used. In addition, the loading of the NT on the pen is simpler, and the device can be 

used for both manual or automated unattended NT desorption. The design PDS-NT allows the 

installation of any of the commercial available needles such as Dynamedical, SGE and 

Shinwa.116-120  

 

This study demonstrated that the new PDS-NT is effective for air analysis of benzene, 

toluene, and o-xylene (BTX). No effects based on pen geometry were observed in regards to the 
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uptake of analytes. Good storage stability of the target analytes was observed for up to 24 hours. 

Finally, the comparison of two independent PDS-NT devices showed no statistical differences.  

Further efforts have to be made to conduct a series of experiments under different 

environmental conditions to monitor a greater range of VOCs. It can be predicted that the PDS-

NT will be useful and convenient for monitoring both personal exposure in the occupational 

environment and ambient air quality. 
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Chapter 6 – Summary 

The MFX system showed accurate performance over more than 200 extraction/injection 

cycles (2 days running nonstop) using multiple fibres, a result greatly desired for high-

throughput applications. However, in terms of storage stability, it was found that CAR/PDMS 

fibres are the only coating type that can be stored in the MFX tray up to 24 hours after field 

sampling without incurring significant losses. Studies showed that commercial caps do not have 

tight enough sealing and, as a result, other coatings with weaker sorbents are prone to loss of 

analytes, depending on their volatility. However, if the sealing efficiency of the current caps is 

enhanced, a broader range of compounds could be analyzed after field sampling without 

concerns over storage time on the tray.  

The capabilities of the MFX system for high-throughput analysis were demonstrated by the 

unattended desorption of samples taken on-site in two different systems where multiple fibres are 

required, named indoor air in a polymer synthesis laboratory and biogenic emission profile of a 

pine tree. 

The evaluation of the diffusive fibre holder (DFH) for SPME showed no holder case effect 

on the uptake rate of the analytes, as well as good storage stability. Despite the ability of the 

DFH to achieve the basic requirements of a field sampler, special care must be taken when 

adjusting the diffusion path (Z). Small variations on Z can significantly affect the uptake of the 

analytes.  

A new in-vial standard gas system for calibration of SPME in high-throughput applications 

was presented in this study. The loading technique is fast and reproducible, and the same 

standard generation vial can be used for more than a hundred analyses (RSD < 3%). It was found 
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that vials from the same batch are reproducible and interchangeable. Additionally, due to the 

physical characteristics of the new in-vial calibration solution, they can be easily transported, 

thus an ideal calibration standard for both bench and field instruments and devices.  

Thus, a new in-vial gas generator was used in the development of a standardized protocol for 

a quick assessment of the reproducibility of commercial SPME fibres. This approach allows the 

user to determine whether a number of fibres can assure the acquisition of reliable and 

reproducible data prior to their application. The application of this protocol using the MFX 

system allows the complete evaluation of 7 fibres in less than 14 hours.  

The in-vial standard gas system was also used for the determination of experimental 

sampling rates with SPME in passive mode. BTEX were selected as model compounds in this 

proof-of-concept evaluation. It was proven that the new in-vial standard gas system can be used 

as a continuous source of standards. Good agreement was observed among the theoretical and 

experimental sampling rates using the method here proposed for most of the compounds. Intra-

vial and inter-vial repeatability were evaluated in passive mode, and results showed no statistical 

differences for any of the compounds used as a model. It should be emphasized that the 

application of the new in-vial standard gas generator in the determination of experimental 

sampling rates of common air contaminants should be done in the very first stages of method 

development, since other environmental factors such as humidity and air velocity might affect 

the results, depending on the polarity of the analyte.   

Finally, an easily deployed and reusable needle trap pen-like diffusive sampler (PDS-NT) 

was presented. The loading of the NT on the pen is simpler, and allows the installation of 

different commercial NTs. Preliminary studies presented here have shown that the PDS-NT is 



113 
 

effective for air analysis of BTX.  Additionally, no pen geometry effects were found on the 

uptake of the analytes. However, further experiments under different environmental conditions 

and for a broader range of analytes are recommended prior to its application in the monitoring of 

the occupational environment and ambient air quality. 
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