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Abstract 

The normal function of the thyroid hormone (TH) system is essential for growth, development and 

metabolism in humans as well as in other species. The action of TH is dependent on its binding to thyroid 

hormone receptors (THR) found in the cell nucleus.  In some situations, chemicals with structural 

similarities to TH can bind to these receptors and disrupt their normal function. It has been previously 

demonstrated that environmental contaminants including, carbamazapine, nonlyphenol (NP), bisphenol A 

(BPA), and several others are able to bind to the THR as either agonists or antagonists and modulate 

downstream biochemical responses. Municipal wastewater effluent (MWWE) is a major source of these 

contaminants entering aquatic environments.  Recently extracts of MWWE have been shown to contain 

chemicals that are capable of binding to THRs. However, MWWE is a complex mixture of chemicals and 

the specific chemicals have not been identified.  In this thesis, a proof of concept was developed for using 

an Effects Directed Assessment (EDA) approach to isolate thyroid receptor active compounds in MWWE. 

An EDA is a technique created to extract and identify chemicals from complex mixtures, using various 

fractionation methods. Once these chemicals have been identified, they are further reviewed for biological 

relevance.  A competitive binding assay for THR was developed and applied to determine the relative 

binding affinity of known environmental contaminants to THR. Nuclear thyroid hormone receptors were 

isolated from rainbow trout liver by differential centrifugation. This method involved liver tissue 

homogenization and subsequent centrifugations to separate the nuclear fraction containing the receptors.  

The binding characteristics of the isolated THR were evaluated using the thyroid hormones 

triiodothyronine (T3) and thyroxine (T4) in a competitive binding assay. Minimal binding affinity was 

present in this assay and future studies should validate the assay further and assure that it is comparable to 

literature values. Environmental contaminants, including BPA, NP were also tested to determine their 

relative binding affinity to the THRs compared to the endogenous hormones. High concentrations of both 

BPA and NP bound to the thyroid hormone receptor, displacing radiolabeled T3 from its binding site.  The 
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rainbow trout competitive binding assay was also used to test the binding affinities of extracts from two 

municipal wastewater effluents collected in the Grand River watershed in southern Ontario.  Effluents 

were extracted using a solid phase adsorbent (HLB Oasis cartridge), eluted with methanol, taken to 

dryness then reconstituted in ethanol for use in the assay.  Both effluent extracts displaced the binding of 

radiolabeled T3 to the thyroid receptors. The studies demonstrate that a competitive THR assay can be 

used to detect chemicals in complex mixtures with the potential to interact with THRs. The next step 

should be to apply the assay using an EDA approach to isolate and identify specific chemicals in effluents 

that are not yet known to bind to the THR. Interference with the normal function of the TH system has the 

potential to disrupt normal growth, development and metabolism in aquatic organisms in the receiving 

environments.   
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Chapter 1 
Introduction 

The thyroid hormones (TH), T4 and T3 are found throughout the body in animals where ; it plays 

they play a key role in maintaining normal physiological function through growth, development 

and behavior (Sholz & Mayer, 2008). The synthesis of TH is dependent on thyroglobulin, which 

is an important precursor protein produced by the endoplasmic reticulum of cells (Bently, 1998). 

Regulation of TH synthesis and release originates at the level of the brain, more specifically, the 

hypothalamic-pituitary-thyroid (HPT) axis (Blanton & Specker, 2007). Beginning at the 

hypothalamus, chemical signals trigger the release of hormones such as, thyrotropin releasing 

hormone (TRH) and thyroid stimulating hormone (TSH) from the pituitary. Both are linked to 

the release of predominantly L-thyroxine (T4) from the thyroid gland where it is synthesized as 

part of the precursor protein thyroglobulin. (Eales and Brown, 1993). The active thyroid 

hormone T3 is synthesized from T4 in the peripheral tissues by dieodination.   In most fish 

species, the thyroid gland demonstrates greater heterogeneity than in mammals, containing both 

follicles and cells of differing sizes as well as functional states (Eales, 1979). Mammalian thyroid 

glands are usually compact and located at the anterior aspect of the neck, whereas, fish thyroid 

glands are more variable in location and size. Follicles in fish are widely distributed throughout 

the connective tissue near the pharyngeal regions, they can be observed around the eye, ventral 

aorta, hepatic veins and anterior kidney (Moeller, 2007; Blanton and Specker, 2007). Thyroid 

gland variation can also occur between and within fish taxa.   As blood plasma levels of T3 and 

T4 rise, transport proteins facilitate the movement of THs across the liver, brain and peripheral 

tissues (Jugan et al., 2010; Blanton & Specker, 2007). Once elevated levels have been detected, a 
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negative feedback signal is sent back to the brain to prevent further hormone synthesis (Figure 2) 

(Boas et al. 2006; Pease & Braverman 2009; Blanton & Specker, 2007). In this way, the thyroid 

cascade is tightly regulated; however, disruption of TH availability, signaling or transport could 

negatively impact the system and hinder integral physiological processes (Moriyama et al., 

2002). Exogenous compounds responsible for this are commonly classified as endocrine 

disruptors. These compounds modify natural endocrine function by interacting at different levels 

of the thyroid system. This includes direct interaction with receptors, thyroid gland stimulation, 

TH synthesis, metabolism, and transport.  Endocrine disruption is not solely linked to receptor 

interference; other areas within a regulatory network can be linked to endocrine system 

disruption (Moriyama et al., 2002; Jugan et al., 2010). To test for disruption, a number of in vitro 

bioassays have been developed to determine the ability of chemicals to disrupt the HPT axis 

function. In vitro bioassays have been further applied to an Effects Directed Assessment (EDA) 

to isolate and identify chemicals in complex mixtures that can potentially impact this axis. 

Bioactive fractions from extracts are applied to bioassays (at higher levels of organization) to 

understand and verify the potential negative impacts caused by environmental contaminants 

(Hecker & Hollert, 2009). This approach can be beneficial in pin- pointing which fractions and 

compounds are responsible for causing endocrine disruption in animals, facilitating risk 

assessment. 

 

1.1 Physiology of the Thyroid System  

 The thyroid system is a fundamental component of all animals, and environmental 

contaminants may play a role in altering their function and potentially impacting overall health 
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of exposed organisms. This can occur by altering thyroid hormone homeostasis, which plays a 

key role in vertebrate metabolism, growth and development (Power et al., 2001; Kashiwagi et al., 

2009).  The main focus of this chapter is to understand pertinent physiological processes within 

in the thyroid hormone cascade, locate areas that have shown vulnerability to endocrine 

disruptors and to identify previous research using in vitro bioassays to determine mechanisms of 

action.  This chapter therefore supports the selection of endpoints and applications of an EDA for 

complex mixtures.    

 

1.2 Thyroid Gland  

Thyroid glands contain thyroid follicles, which are the site of thyroid hormone 

production (Boulton et al., 1986; Evans, 1988). Thyroid follicles are the functional unit of the 

thyroid gland in vertebrates and consist of epithelial cells known as, thyrocytes or follicular cells 

(Bently, 1998). Thyroglobulin is a glycoprotein synthesized in the endoplasmic reticulum of the 

follicular cells and is secreted into colloids which are enclosed extracellular spaces, forming the 

lumen. Thyroid follicles interact with inorganic iodide from the blood, which is integrated into 

tyrosine residues within thyroglobulin (Bently, 1998). Thyroglobulin is a precursor to thyroid 

hormones; when oxidized by the thyroid peroxidase (TPO) enzyme it forms L-thyroxine, or T4. 

TPO is localized in the apical cytoplasmic membrane of thyroid epithelial cells and its main role 

is T4 biosynthesis (Schmutlzler et al., 2007). Biosynthesis of T4 begins with adenosine 

triphosphate (ATP) driven Na/ I- symport (NIS, I- pump), which concentrates iodine (I-) in the 

blood and facilitates its diffusion into the follicle lumen. Thyroglublin is then secreted into the 

follicle where tyrosyl residues within TG are oxidized by TPO to form either a monoiodotyrosyl 
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(MIT) or diiodotyrosyl (DIT) residues. Paired DIT’s couple covalently through an ether bond to 

form tetraiodothyronly residues, also known as T4; this form is still coupled with TG and stored 

in the colloid. The apical cell membrane mediates endocytosis of the thyroglobulin T4 complex. 

Phagolysosomes contain hydrolytic enzymes responsible for inducing proteolysis, causing the 

separation of T4 from the TG and preparing it for transport into the blood (Brown et al., 2004). 

The prohormone T4 is required for the synthesis of 3,5,3’-triiodo-L-thyronine (T3), the active 

thyroid hormone. The conversion of T4 to T3 generally occurs in the peripheral tissues such as 

the liver (Eales & Brown, 1993).  

            

Figure 1 Structure of thyroid hormones T3, T4 (Kashiwagi et al., 2009) 

 

1.3 Hypothalamic-Pituitary Axis  

The HPT axis is primarily responsible for the regulation of TH synthesis and release. 

TRH is a tripeptide secreted by the hypothalamus and it functions to regulate the release of TSH 

from the anterior pituitary (Bently, 1998).  Control over thyroid hormone release is regulated by 

the negative feedback effect on TSH secretion by the pituitary (Yoshiura et al., 1999). 

Regulation of thyroid hormone helps manage the levels of T4 and T3 that are present in the 

tissues. TSH released from the pituitary then acts on thyroid follicle where it is responsible for T4 
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release and iodine uptake. Iodide availability is extremely important in thyroid system 

functioning because of its role in the production of thyroid hormones (Eales & Brown, 1993). 

This mechanism can be seen in  

(Figure 2).

 

 

Figure 2 Possible mechanisms by which environmental chemicals could affect the hypothalamic-

pituitary-thyroid axis: 1. Synthesis of thyroid hormones (TH), interference with sodium iodide 

symporter (NIS), thyroperixidase (TPO) or thyroid stimulating hormone TSH, 2. Transport 

proteins, 3. Cellular uptake mechanisms, 4. Thyroid receptor, 5. Iodothyroninedeiodinases, 6. 
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Metabolism of TH in the liver; TRH- thyrotropin releasing hormone, T4-thyroxine, T3-

triiodothyronine, I- - iodine, UDPGT - diphosphateglucuronyltransferase, TR - thyroid hormone 

receptor (adapted from Boas et al. 2006, and Pease and Braverman, 2009). 

 

1.4 Thyroid Hormone Activation and Deactivation  

Deactivation of thyroid hormone occurs when the iodine atom is removed from the inner 

ring, this is called inner ring deiodination (IRD). Conversion of T4-IRD produces reverse T3 (rT3 

3,3’5 triiodothyronine), T3 can then further be degraded by inner ring deiodination to inactive 

3,3’ triiodothyronine (T2) (Eales et al., 1999, Brown et al., 2004). Outer ring T4 deiodination (T4-

ORD) forms T3, a more active form of TH. Deiodinases are enzymes responsible for converting 

T4 to T3 (Brown et al., 2004). There are three deiodinases D1, D2, and D3 (5). D1 is expressed 

primarily in the liver and regulates systemic TH levels. It has the ability to activate and inactivate 

TH by mediating ORD and IRD of T4 and T3 (Qatanani et al., 2005). D2 is an enzyme that only 

catalyzes the ORD of TH and D3 is an inactivating enzyme that only catalyzes IRD of TH 

(Qatanani et al., 2005).   

Conjugation involves the glucoronidation and sulfation of the phenolic hydroxyl group. 

This is important because it increases water solubility and allows for urinary and biliary 

clearance (Burchell & Coughtrie, 1989; de Herder et al., 1988).  Inactivation of TH specifically 

T3, is facilitated by sulfation because IRD of sulfated T4 and T3 is enhanced 40-200 fold by D1 

and the ORD of sulfated T4 is blocked (Visser, 1994).  The nuclear hormone receptor 

constitutive androstane receptor (CAR) mediates the induction of hepatic drug metabolism in 

response to xenobiotics and endocrine disruptors. Drug transporters and metabolizing enzymes 

are UDP-gluuronosyltransferases (UGTs) and sulfotransferases (SULTs). Hepatic UGT and 
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SULT are also responsible for eliminating THs. CAR was shown to mediate several isoforms of 

UGTs and SULTs involved in glucuronidation and sulfation of THs (Maglich et al., 2004). 

Therefore it has been shown that activation by xenobiotics or endocrine disruptors can result in 

disruption of TR activity (Qatanani et al., 2005).  

 

  

Figure 3 Deiodination pathways L-Thyroxine (T4) demonstrating where deiodination occurs. ORD 

refers to the outer ring deiodination, IRD is inner ring deiodination (adapted from Brown et al., 

2004).  

 

1.5 Thyroid Hormone Transport   

Once the TH is released from the thyroid follicle it needs to be transported to the blood. 

At physiological pH (approximately 7.0, (Wang et al., 2011)); both T3 and T4 are poorly soluble 
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in blood and are bound to plasma proteins such as thyroid binding globulin (TBG), transthyretin 

(TTR) and albumin. The binding proteins ensure a constant supply of TH to cells and tissues 

while preventing loss to the environment, protect the organisms from rapid changes in the TH 

production and degradation and prevent iodine deficiency (Rasmussen & Rasmussen, 2007). 

These three proteins are synthesized in the liver and also released into the blood where they are 

able to bind the THs and distribute them to different cells and tissues throughout the body. With 

respect to TH affinity, TBG has the highest followed by TTR and lastly albumin (Robbins & 

Edelhoch, 1986). TTR has been identified as the only TH binding protein from the three 

mentioned to also be synthesized in the brain (Schreiber, 2002) where it is a major thyroid 

hormone binding protein in cerebrospinal fluid responsible for moving TH from the blood across 

the blood-brain barrier into the brain (Schreiber, 2002). Therefore although it has lower affinity 

than TBG it is still critical for several thyroid related functions. Albumin is a large liver protein 

that binds to a variety of important hormones, fatty acids and other hydrophobic compounds 

(Peters, 1985).  Albumin only consists of few sites where T4 and T3 can bind with high affinity; 

as a result, only 5% of all serum T3 and T4 can be transported by albumin, making it a lower 

affinity thyroid hormone binding protein (Refetoff et al., 1972; Hollander et al., 1968). 

  

1.6 Thyroid Hormone Receptors  

Thyroid hormone receptors have several different isoforms; these gene transcripts are 

expressed ubiquitously throughout the body, with the α and β isoforms having distinct tissue 

specificity (Yamano & Miwa, 1998). The similarity between isoforms allows for the binding of 

both to T3 and T4. However, the expression pattern of each isoform varies in a tissue specific TH 
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response (Furlow et al., 2004). TRα1 is predominantly found in the brain, heart and immune 

system, whereas, TRβ1 is expressed in the brain, liver and kidney (Jugan et al., 2010). Receptors 

are required for the activation or deactivation of several molecular processes. Nuclear receptors 

are transcription factors that distinguish between specific sequences in target genes by way of the 

DNA binding domain (Evans, 1988). Receptors can bind to DNA as monomers, homodimers or 

heterodimers. Dimerization is the physical interaction between related proteins and it is often 

required for the activation of the cell signal. Dimerization and binding to receptors, allow for the 

transfer of cell signals from the cell surface to the nucleus (Klemm et al., 1998). The mechanism 

of action varies depending on the type of receptor activation that takes place. Dimerization can 

either occur in the cytosol or in the nucleus. In each case, the ligand binds to the dimer and 

causes the recruitment of several proteins leading to receptor activation and upregulation of 

target gene expression and ultimately changes in cell function. Type one receptors require the 

ligand to bind to the dimerized receptor complex in the cytosol and then diffuse into the nucleus, 

while type two receptors require the ligand to diffuse into the nucleus prior to binding to the 

dimer (Olefsky, 2001). Nuclear receptors are modular in structure they contain the DNA binding 

domain (DBD), ligand binding domain (LBD) and the amino terminal domain (NTD) (Evans, 

1988). The DBD is responsible for binding to specific sequences on the DNA, known as the 

response element. The LBD is responsible for dimerization of the nuclear receptors (Shao & 

Lazar, 1999). The amino terminal domain (NTD) contains the activation function 1 (AF1) which 

is activated independent of a ligand. Activation function 2 (AF2) is found in the LBD, and it 

works in synergy with AF1 to promote transcription of the DNA (Olefsky, 2001). 
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Figure 4 Regulation of thyroid hormone receptor (TR) binding. 1)  In the absence of a ligand, a 

corepressor is bound to the thyroid hormone receptor and prevents transcription of the 

downstream genes. 2) However, once a ligand binds to the thyroid hormone receptor the 

corepressor dissociates resulting in the recruitment of the coactivator protein along with several 

other proteins such as, RNA polymerase. 3) This allows for transcription of DNA into mRNA 

which is subsequently transcribed to a protein and a change in cellular function. RXR is not 

explained, nor is TRE, TR etc.  (Based on Zoeller, 2005). 

 

Figure 4 demonstrates the current theory of TH binding to the TR. From this it can be 

determined where the potential sites of environmental contaminants can interfere with the TR. 

Contaminants may bind to the TR and activate or inhibit the action of endogenous T3 1). This 

could occur by causing the interaction of TRs with various co-factors such as N-CoR or SRC-1 

2). Furthermore, environmental chemicals may cause the TR to experience a different affinity for 

the TRE preventing the appropriate binding of the TR to TRE 3).   
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TH, retinoids and vitamin D directly bind their nuclear receptor and forming 

heterodimers with retinoic acid receptors. These receptors are already located within the nucleus 

and are bound to the hormone response element on the DNA (Boulton et al., 1985). In the 

absence of a ligand, TRs will recruit corepressors such as silencing mediator of the retinoid and 

thyroid hormone receptor (SMRT) and the nuclear receptor corepressor (N-CoR). Repression in 

this way is known as silencing. In the presence of a ligand such as TH, binding induces 

conformational changes causing corepressor release and coactivator recruitment (Figure 4). 

Coactivators such as p160/SRC (steroid receptor coactivators) induce a molecular cascade that 

causes gene activation resulting in transcription of DNA into protein and change in cellular 

function (Jugan et al., 2010).  If chemicals interfere with TH action by either activating or 

inhibiting the action of endogenous T3, normal gene activation could be altered. Environmental 

chemicals may also cause a change in affinity of TR to the TRE affecting protein translation as 

depicted in Figure 5 (Zoeller, 2005; Mangelsdorf et al., 1995). 

 
 

1.7 Thyroid Disrupting Chemicals 

Environmental chemicals may target several levels of TH-related transcriptional 

processes. Studies have shown that chemical contaminants found in the environment that impact 

the thyroid system are identified as endocrine disruptors. They interrupt the thyroid system at 

various points along the HPT axis. Some methods include direct interaction with TH receptors, 

thyroid gland stimulation, as well as, TH synthesis, metabolism and transport. Depending on the 

endocrine system in question, other areas within a regulatory network could also be of concern. 
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Change in binding of the thyroid receptor to the natural ligand can be affected by environmental 

contaminants that compete with the binding site of T3 (Leatherland, 1993). If environmental 

contaminants compete with the binding of the TH to TR by either activating or blocking the 

receptor problems in growth, metabolism and reproduction could exist. Receptors such as 

thyroid, estrogen, androgen and several others can be targets for some environmental 

contaminants. Bisphenol A (BPA), a monomer of polycarbonate plastics, has shown estrogenic 

properties and the ability to bind estrogen receptors (Soverchia et al., 2005; Arukwe et al., 2001; 

Huang et al., 2010). In other studies, BPA also binds TR but not as strongly as the estrogen 

receptors (Yamauchi et al., 2002). These contaminants are prevalent in the environment, since 

they can be found in the wastewater from pulp mill effluents and industrial effluents. If a 

chemical has a structure similar to that of the natural ligand, there is a greater potential that it 

will bind the receptor and either behave like an agonist, activating a biological response as a 

result of binding, or antagonist which can block or dampen the biological response by blocking 

the receptor.  This could be problematic because, if activation of the receptors as a result of 

chemical binding takes place, molecular responses that otherwise do not need to be activated are 

turned on. Contrary to this, if the compound is an inhibitor it could prevent the receptor from 

producing a response because it blocks the binding of the natural ligand (Figure 5) Estrogenic 

receptors have been well studied a wide variety of contaminants, commonly referred to as 

endocrine disruptors, have the ability to bind to the receptors and either activate (agonist) or 

block (antagonist) their activity. Chemicals such as BPA and 17-α ethinylestradiol (birth control 

pill) have been extensively studied due to their ability to interact with estrogen receptors (Thorpe 

et al., 2003; Shyu et al., 2011; Jobling et al., 1998). Some examples of example of this can be 
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seen in studies looking at reproductive alterations in fish that leads to changes in sexual 

differentiation (Baroiller et al., 1999), gonadal development (Gimeno et al., 1998) and 

reproductive disturbances (Munkittrick et al., 1998; Desbrow et al., 1998a, Kidd et al. 2007). 

Many studies have demonstrated reproductive effects in fish populations as a result of 

contaminants found in the environment (Tyler et al., 1998). Similarly, binding of environmental 

contaminants to the thyroid receptor could impact gene expression leading to adverse effects on 

organisms by altering growth, metabolism and neuronal development. Several reports have 

shown a wide range of chemicals such as BPA, nonyphenol (NP) and polychlorinated biphenyls 

(PCBs) can bind TRs and affect TH signaling (Zoeller, 2005). NP is formed by the metabolism 

or environmental degradation of nonylphenol ethoxylates which were widely used in industrial 

applications as surfactants. NP exposure was studied in adult male shubunkins (single tailed 

fancy goldfish) by Zaccaroni et al., (2009) using TH levels as a biomarker. The study identified 

that not only does NP exert an estrogenic effect, but it also disrupts TH balance. Endocrine 

disruptors can alter transcriptional processes at many levels (Figure 4) and numerous studies 

have been performed to test these mechanisms of endocrine disruption (Leusch et al., 2012). 

With the extensive use of chemicals globally it is imperative that experimental studies are 

performed to identify the associated environmental risks. If these chemicals responsible for 

biological responses (including endocrine disruption) can be identified then appropriate 

management steps are taken to manage their release and reduce their risk to the environment.  
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Figure 5 TH related transcriptional processes and possible target areas for environmental 

chemicals to impact thyroid hormone receptor regulation. 1) Expression of  thyroid receptor (TR) 

2) TR/retinoid X receptor (RXR) heterodimerization 3) Interaction of  thyroid response element 

(TRE) binding with RXR and TR 4) Recruitment/release of corepressors  5) T3 binding to TR 6) 

Recruitment of coactivators/transcriptional activation  (based on Zoeller, 2005 and Jugan et al., 

2010). 

 

1.8  Mechanisms of Thyroid Disruption  

There are different levels at which environmental contaminants interact with the thyroid 

system. Some include binding to the TR on target genes, others involve interruption via transport 

of thyroid hormone through the blood to tissues, and mechanism that either activates of 

deactivates the thyroid hormones. Table 1 shows examples of environmental chemicals that 

affect the thyroid system at these levels along the pathway. 
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1.8.1 Thyroid Receptor Binding  

Regulation of transcription via the TR can be impacted in many ways along the 

transcriptional process. Figure 4 demonstrates all of the areas that can be impacted by endocrine 

disrupting chemicals. BPA was tested for endocrine disruptive properties in a study using 

Xenopus tadpoles (Yamauchi et al., 2003). Varying concentrations of BPA were used to 

determine the effects on the expression of TR α and β in Xenopus tail tissue cultures. It was 

determined that BPA exerted antagonistic effects  on the receptor mRNA expression levels and 

reduced  levels relative to the control in a dose dependent manner (Iwamuro et al., 2006). Figure 

5, corresponds to TH related transcriptional processes and possible target areas for environmental 

chemicals to impact thyroid hormone receptor regulation.  Areas of disruption include the expression 

of TR by chemicals (1). Contaminants may have the potential to affecting TR/RXR 

heterodimerization, however none have been identified yet (2) (Yu & Reddy, 2007). Some PCBs 

have been shown to impact the interaction of TRE with RXR/TR (3) (Miyazaki et al., 2004; 

Amano et al., 2009). The TR/retinoid X receptor heterodimer complex was partially dissociated 

from TRE in the presence of PCBs (Miyazaki et al., 2004). PCB’s have also been shown to 

impact the recruitment and release of corepressors, as in a study by Iwaski et al., (2003) (4). The 

results from the study suggest that very low dose of PCBs have the ability to interfere with TR-

mediated transactivation by impacting the TR/coactivator complex. This can eventually result in 

disturbed growth and development of TH target organs (Iwaski et al., 2003).  Studies suggest that 

PCBs can also cause an affect by acting on serum T3 and T4 levels (Kato et al., 2004). The 

structures of PCBs are similar to THs and can also act as TH agonist or antagonist by binding to 

receptors on the TR or TTR (Chauhan et al., 2000; Kashiwagi et al., 2009). Brominated flame 
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retardants that have been studied for effects on TR include tetrabromobisphenol A (TBBPA) and 

tetrachlorobisphenol A (TCBPA). These studies were performed in rat pituitary cell lines that 

grow and secrete growth hormone in response to thyroid hormone. Both BFRs did not inhibit 

hormonal activity of T3 and therefore were identified as thyroid hormone agonists (Kitamura et 

al., 2002). However, in subsequent studies Chinese CHO-K1 cells transfected with TRα1 or 

TRβ1, and TRE, demonstrated anti-thyroid hormonal action of TBBPA and TCBPA, suggesting 

antagonistic activity (Kitamura, 2005). Depending on the cell line TBBPA and TCBPA can act 

as either agonist or antagonist. More recent studies by Hwang et al., (2011) looked at 

methylsulfonylnitrobensoates (MSNB) as an inhibitor of steroid receptor coactivator 2 (SRC2). 

Analysis has suggested that MSNB inhibitors bind irreversibly to the cysteine residue (Cys 298) 

which is one of the four residues found within AF-2 of the TRβ. Binding causes disruption by 

displacing SRC2 (Hwang et al., 2011). 

 

1.8.2 Thyroid Hormone Transport  

   Transport of TH through the blood to different tissues, is another area that can be affected 

by endocrine disruptors. Examples of these chemicals include, but are not limited to BPA, NP 

and diethylstilbestrol DES. DES is a synthetic form of estrogen that was previously administered 

during preganancy and food production. It was banned for use once it was tagged as being 

harmful to humans (Mattson and Batsu, 2010). These chemicals have been previously 

determined to interfere with the thyroid system and disrupt the organism’s endocrine 

homeostasis (Kashiwagi et al., 2009; Murata & Yamauchi, 2008; Ishihara et al., 2003, Yamauchi 

et al., 2002). Binding of T4 to TTR can be effected by flavanoids (Yamauchi et al., 2003) 
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halogenated PCBs (Lans et al., 1995), PBDEs (Meerts et al., 2000) and perfluorinated 

compounds (Weiss et al., 2009). Previous studies have suggested that several compounds found 

in municipal wastewater effluents (MWWEs) are able to bind to the TR (either as agonists or 

antagonists) and induce or inhibit downstream biochemical responses (Zoeller, 2005). A study by 

Yamauchi et al., (2002) looked at the binding affinities of 25 different medical, industrial and 

agricultural chemicals using the TR and transthyretin (TTR) assays. Both assays are used to 

detect competitive binding of T3 and other test chemicals to TR or TTR (Yamauchi et al., 2002; 

Murata et al., 2008). They discovered that for each chemical the binding affinities were different 

between TR and TTR assays. Other studies have demonstrated the thyroid system disrupting 

activity of effluents from domestic sewage treatment plants in Japan. The results indicated that 

contaminants in the effluent inhibited [125I] T3 binding to TR and TTR to a greater degree than 

the river water samples. It was also noted that there was greater sensitivity of the TR assay to the 

contaminants than the TTR assay. The molecular method used by Murata & Yamauchi, (2008) 

included three in vitro assays, TR, TTR and Luciferase (LUC), with different endpoints in order 

to establish the potential impact of effluent on various thyroid related mechanisms. Recombinant 

DNA from Xenopus cell lines were used in order to isolate the gene of interest and test for the 

specific endpoints of interest such as binding of TH to TTR and TR. The expression and 

purification method of recombinant proteins was carried out using cDNA encoding X. laevis 

TTR, (xTTR) and (xTR). Restriction enzymes isolated genes for both TTR and TR. Once 

isolated, polymerase chain reaction (PCR) amplified the cDNA. The T3 – responsive reporter 

gene assay Luciferase (LUC assay) was then used to detect for binding of chemical 

contaminants.  The basic mechanism of the LUC assay involves thyroid disruptive compounds 
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entering the cell and binding to cytosolic nuclear receptors, such as TR. The bound complex then 

translocates into the cell nucleus where it binds to TRE’s. Normally mRNA is transcribed and 

protein production occurs. However, in this situation the binding of TR-ligand to TRE results in 

transcription of the luciferase gene which is a reporter protein and this causes bioluminescence 

which can be quantified using a luminometer (Schriks, 2012). More specifically this process 

used recombinant X. Laevis XL58-TRE-Luc cells created by using a permanent cell line that 

express a reporter gene in a T3 dependent fashion (Sugiyama, et al. 2005a,b). A vector was 

introduced containing T3 response elements (TREs) and a LUC gene downstream from the TREs 

to produce the XL58-TRE-Luc cells. The cells were cultured in a medium in the presence and 

absence of T3 and environmental contaminants for 24 h. This assay was tested for firefly LUC 

activity and for cell viability in the presence or absence of environmental contaminants. When 

using the assay to detect impacts of sewage effluent fractions binding to the receptor they 

discovered that the dichloromethane/methanol fraction contained thyroid disrupting activity in 

TR, TTR and LUC in vitro assays however, there was no effect on cell viability at the highest 

concentration in all the assays. From these studies, it was evident that the LUC and TR assays 

were more suitable for screening of thyroid system-disrupting activity in effluents from sewage 

treatment plants. The LUC assay, however, was better at differentiating between agonist and 

antagonist activity of samples. Because of the simplicity, speed and precision the TR assay was 

determined to be more effective than the LUC assay (Murata & Yamauchi, 2008).    
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1.8.3 Iodine Transport  

Iodine transport occurs in the thyroid gland via the sodium iodine symport (NIS) and this 

is another component of TH functioning that can potentially be impacted by endocrine disrupting 

chemicals. Chemicals that have been tested previously to act on these areas include perchlorates, 

(Wolff, 1998) chlorates, and bromates (Van Sande et al., 2003).  Perchlorates, chlorates and 

bromates are competitive inhibitors of iodine transport into thyroid follicular cells and have been 

known to inhibit TH synthesis (Clewell et al., 2004). They exert their affects by competing or 

blocking the active inward movement of iodine across the basolateral membrane (Wolff, 1998). 

Studies have been conducted using FRTL-5 cells from NIS- expressing Xenopus oocytes as well 

as from non-transformed rat hepatocytes (Van sande et al., 2003; Weiss et al., 1984).  The 

Xenopus cell line was used to test the transport of different chemicals such as perchlorate, 

chlorate and bromate. It was found that they decreased thyroidal synthesis of T3 and T4 by 

competing with or blocking the NIS transport system (Wolff, 1998; Van Sande et al., 2003). 

When looking at rat FRTL-5 cells results Schmutzler et al., (2006) showed that soy isoflavone 

genistein and 4-nonylphenol inhibited iodine accumulation. Many compounds have been 

identified to inhibit or block NIS, preventing TH synthesis (Table 1).  

 

1.8.4 Thyroid Hormone Synthesis  

Thyroid peroxidase (TPO) found in the thyroid gland is enzyme oxidizes tyrosyl residues 

in thyroglobulin to produce T4 and limited amounts of T3. TPO may be affected by endocrine 

disruptors and studies have shown that several chemicals, such as molecules known as 

thionamides, primarily inhibit TH synthesis by interfering with TPO mediated iodination of 
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tyrosine residues in thyroglobulin (Copper, 2005; Capen, 1997). Chemicals shown to have this 

effect are listed in Table 1. Endocrine disrupting chemicals were studied using an in vitro assay 

based on human recombinant TPO (hrTPO). FTC-238 thyroid carcinoma cell line transfected 

with hTPO were used. It was determined that BPA, bezophenone 2 along with several other 

chemicals inhibited hrTPO, decreasing thyroidal synthesis (Schmutzler et al., 2007). 

 

1.8.5 Deiodinase Activity  

  Deiodinases are responsible for the activation or deactivation of THs. Inhibition and 

upregulation of deiodinases is another area where disruption can occur.  Xenobiotics such as 

propylthiouracil not only inhibits TPO but was found to inhibit 5’deiodination (Cavalieri & Pitt-

Rivers, 1981). Short term exposure to octyl-methoxycinnamate (UV inhibitor) also causes a 

decrease in serum T3, T4 and TSH and type I 5’-deiodinase (Klammer et al., 2007). PCBs such as 

Aroclor 1254 were used in studies with fetal and neonatal rats. There was an increase in whole 

brain type II 5’deiodinase detected in both, suggesting that in order to maintain tissue T3 levels, 

type II 5’deiodinase upregulation took place to compensate for the decline in circulating brain 

concentrations of T4 (Morse et al.,1993). Another study looked at the effects of erythrosine (Red 

dye #3), an organoiodine compound primarily used in food colouring, and determined that 

exposure of erythrosine in rats caused a decline in serum T3 and an increase in rT3, T4, TSH and 

inhibited 5’deiodinase activity (Capen, 1997).  
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1.8.6 Sulfotransferase Activity  

Sulfation is an important inactivating pathway for THs. Sulfation of the phenolic 

hydroxyl group blocks outer ring deiodination of T4 to T3. Several studies have looked at the 

impact of chemicals interfering with this process. In the study done by Schuur et al., (1998) the 

possible inhibitory effects of hydroxylated metabolites of polyhalogenated aromatic 

hydrocarbons (PHAHs) on iodothyronine sulfotransferase activity was tested in the cytosol of rat 

liver using a source of sulfotranferases enzyme in an in vitro assay with 125I-labeled 3, 3’-

diiodothyronine (T2) as a substrate. It was determined that hydroxylated metabolites such as, 

PCBs, dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) inhibited T2 sulfotranferase 

activity. The most potent inhibitor was found to be PCB metabolite (Schuur et al., 1998). 

Triclosan, an antibacterial agent used in household products was studied by Wang et al., (2004).  

Triclosan was used as a substrate and inhibitor of 3’-phosphoadenosine 5’-phosphosulfate-

sulfotransferases in human liver cytosol.  Increasing concentrations of triclosan were found to 

inhibit hepatic cystosolic sulfation of 3-hydroxybenzo(a)pyrene (3-OH-BaP ) in human liver 

causing a decrease in sulfation of thyroid hormones (Wang et al., 2004).  

 

1.8.7 Chemicals Responsible for Disruption  

The thyroid system can be affected through a wide variety of mechanisms including those 

described above. Several studies (examples shown in Table 1) have been effective at targeting 

specific endocrine disruptors responsible for causing changes within the HPT axis.  However, 

there are still many unknown chemicals found in effluents and the environment that may also 

cause disruption of the thyroid system (Subhash, 2011). The emerging approach of Effects-
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Directed Assessment (EDA; described below) holds considerable promise to help isolate and 

identify these biologically active chemicals in the environment (Hecker & Hollert, 2009). 
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Table 1 Effects and mechanisms of endocrine disruptors on thyroid hormone homeostasis (adapted from 

Jugan et al., 2010; Crofton, 2008; Leusch et al., 2012). 

Class Site of action  Mechanism  Effect Compound(s) Reference(s) 

TR agonist/ 
antagonist  

Hypothalmus/ 
Pituitary  

1)TH receptor 
action to TSH 
mRNA  
2) Deiodinase 2 

Altered 
activation of TH 
gene expression  
 

PBDE 
TBBPA  
PCB’s 
BPA 

Kojima et al. 
2009 
Kitamura et al., 
2005 
Moriyama et 
al., 2002 

Transport 
Disruption  

Blood  Thyroid hormone 
binding proteins  
Alter binding to 
serum transport 
proteins  

1)Competitive 
binding with T4 
binding to TTR 
2) Competitive 
binding of  T3 for 
thyroid hormone 
binding protein 
(THBP) 
 

PHAH 
(hydroxylated 
PCB’S) BFR BPA  
Perfluorenated 
compounds  
Pentachlorophenol, 
pesticides, 
phthalates, sewage 
treatment effluent, 
DES 

Lans, 1995, 
Meerts, 2001, 
Yamauchi et 
al., 2003, 
Moriyama et 
al., 2002; 
Ishihara et al., 
2003 

Iodine transport  Thyroid Gland  Competition or 
block of Na iodine 
symport  

Decreased 
thyroidal 
synthesis of T3 
and T4 

Perchlorate, 
chlorate,  
bromated,  

 (Wolff, 1998; 
Van Sande et 
al., 2003) 

Synthesis 
Inhibitor 

Thyroid Gland  Inhibition of 
thyroperoxidase 
(TPO) 

Decreased 
thyroidal 
synthesis of T3 
and T4  

Methimazole, 
propylthiourea, 
amitrole, 
mancozeb, soy, 
isoflavones, 
benzophenone 2, 
1-methyl-3-propyl-
imidazole-2-thione  

Biegel et al., 
1995, 
Capen, 1997, 
Hurley, 1998; 
Doerge & 
Sheehan, 2002; 
Schmutzler et 
al., 2007, 
Copper, 2005 
 

Deiodinases Liver  
HPT axis  
Brain and 
peripheral 
tissues  

Inhibition or 
upregulation of 
deiodinases  

Decreased 
peripheral 
synthesis of T3  

Propylthiouracil, 
PCB’s, octyl-
methoxycinnamate 

(Morse et al., 
1993; Capen, 
1998; Klammer 
et al., 2007) 

Sulfotransferases Liver  Inhibition of 
sulfotransferases 
(SULTs) 

Reduced 
sulfation of THs  

Hydroxylated PCBs, 
triclosan, 
pentachlorophenol  

Schuur et al., 
1998; Wang et 
al., 2004; 
Wang & 
James., 2006 
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1.9 Effects-Directed Assessment (EDA) of Complex Mixtures   

Complex mixtures, such as municipal effluents, contain many diverse chemicals that can 

have a variety of effects on aquatic biota. Much research is focused on the isolation and 

identification of these compounds so that appropriate remedial actions can be implemented to 

minimize damage to the ecosystem (Grote et al., 2005). An EDA allows for a rigorous approach 

to isolating and identifying unknown chemicals of concern in complex mixtures (Brack, 2003).  

EDA has become an increasingly popular technique to isolate bioactive compounds in pesticide 

formulations (Hewitt et al., 1998), pulp mill effluent (Hewitt et al., 2000), oil sands process 

waters (Thomas et al., 2009), sewage (Desbrow et al., 1998b; Snyder et al., 2001), manure 

(Burnison et al., 2003), and contaminated sediments (Schlenk et al., 2005).   

 

The EDA approach helps to characterize the bioactive compounds and assists in the 

identification and quantification of chemicals. Each EDA procedure varies depending on the 

chemical composition of the mixture in question and the endpoint of interest.  Extracts of 

mixtures (e.g. effluents) can be fractionated using a variety of physical or chemical techniques 

and then tested for specific biological endpoints (Grote et al., 2005).  Following extraction and 

separation, each fraction is analyzed to determine the presence of biologically active compounds 

using a bioassay (Snyder et al., 2001). This will help to determine the relationship between 

chemicals and their effects or relevance to specific biological systems (i.e. thyroid system). The 

bioactive fractions can be examined for suspected contamininats or scanned for identification of 

unknowns, (although very difficult). The final step includes verification that the chemicals (pure 

standards) to see if isolated can produce the response of concern. Once a compound is found to 
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respond in the assay (e.g. bind to a receptor), further testing needs to be done in order to see if 

receptor binding affects endpoints at higher biological organization such as, system, organism, 

population and community. Although bioassays, such as receptor binding assays indicate the 

potential for a response, there are many unknown biological interactions that may occur at 

increasingly complex higher levels of biological organization (Routeledge et al., 1998).  The 

bioassay response in the EDA could also be influenced by the extraction or fractionation 

procedures, and a change in matrix/chemical composition may alter bioavailability in the test 

system (Routledge et al., 1998).  It is therefore difficult to predict whether a toxicant identified in 

the EDA will cause a response at a higher level of organization unless the mechanisms are well 

understood and responses are tested in whole organisms. Selection of the endpoint and bioassay 

is therefore critical for the predictive ability of the EDA.  

 

In a recent study, Simon et al., (2011) used an EDA approach to isolate compounds with 

thyroid hormone-disrupting activity in plasma samples from polar bears. They used solid phase 

extraction and liquid phase extraction techniques to isolate a broad range of known and unknown 

thyroid disrupting chemicals. A T4-TTR assay was then applied to measure the competitive 

binding activity of the various chemicals and compare them to that detected in polar bear plasma. 

Validations for this method required spiked cow plasma from which several Persistent Organic 

Pollutants (POP’s) were recovered. The EDA demonstrated TTR-binding capabilities in the polar 

bear plasma extracts where 60-80% was a result of the presence of hydroxylated PCB’s (OH-

PCB’s). Hydroxylated PCB’s are PCB metabolites and are considered to be more potent 

endocrine disruptors than their parent compounds (Sandau, 2000). The measured activities in 
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polar bear plasma extracts were higher than the expected activities based on those calculated 

using the OH-PCB reference values, which suggested that there may be other unknown TH 

disrupting compounds present. Overall the EDA was successful in combining biological and 

analytical methods using chemical analysis to compounds that demonstrate biological activity 

(Brack, 2003). 

 

As mentioned previously, Yamauchi et al., (2002) studied the effects of several chemicals 

on the binding of [125I] T3 to purified recombinant xTTR and to the ligand binding domain (LBD) 

of xTR. Results showed that there were significantly greater effects on chemical interactions 

with xTTR in comparison to xTR LBD. Murata & Yamauchi, (2008) examined thyroid system 

disrupting activity in effluents from domestic sewage treatment plants. They fractionated extracts 

from six different sewage treatment plants spanning agricultural, industrial and domestic sources. 

The TR, TTR and Luciferase assay (LUC) bioassays were all able to identify fractions of the 

sewage effluent possessing thyroid system-disrupting potential. Using the TTR and TR assays 

they were able to detect contaminants in the original water samples at 0.8 times the concentration 

without extraction. The assays were then applied to surface water samples in the rivers upstream 

and downstream of the outfall of the sewage treatment plant, from small streams in Shizuoka 

City, agricultural fields and effluents from industrial plants. Significant activity was detected in 

effluents from the sewage treatment plants and the industrial plants only (Yamauchi et al., 2003). 

Contaminants in the effluents were extracted using solid phase extraction (SPE) and eluted with 

different organic solvents however, the effluent extracts were not tested for specific chemicals. 

From these results they concluded that contaminants found in some wastewater effluents can 
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compete with T3 binding to TTR and TR. It is difficult to determine if contaminants in effluents 

will cause an effect in vivo or compromise the health of the organisms when in vitro assay are 

being used in these experiments (Murata & Yamauchi, 2008). The potential for contaminants in 

Canadian wastewaters to bind to thyroid receptors from fish has not been studied and is currently 

unknown. From the vast amount of information uncovered through research it is evident that 

contaminants found in the wastewater and the environment could have an impact on the biology 

of organisms, potentially hindering their quality of life and survival. An EDA approach can be 

useful in combing the chemical and the biological data and using it to better understand the 

impacts associated with environmental contaminants on biological systems, thereby, bridging the 

gap between chemical exposure and biological effects.  

 

Table 2 Examples of extraction and fractionation techniques used in various EDAs. 

 Pulp mill 
effluent  

Runoff Pesticides Sewage 
Effluents 

Other effluents 

Extraction 
Technique 

XAD , acid 
partitioning 
with aqueous 
base   

C18 
Column 

C18 SPE column  C18 SPE 
cartridges  

C18 SPE Cartridges , 
aeration  
XAD resin coupled with 
DCM 

Fractionation  Silica gel 
and/or 
preparative 
TLC  

HPLC RP- HPLC HPLC  HPLC  

 
Source of 
toxicity  

 
Resin acids, 
unsaturated 
fatty acids, 
chlorinated 
phenolics  

 
Equol  
E2 
E1 

  
3-trifluoromethyl-
4-nitrophenol 
(TFM ) 

 
Estrogenicity  
17β-estradiol  
17β- 
Ethynylestradiol 

 
Phenolics, phthalates, 
aliphatic carboxylic 
acids, aromatic 
carboxylic acids, amines, 
alkanes and linear 
aliphatic alcohol, 4-
hydroxy-2-  
methylthiobenzothiazole 

 
Reference  

 
Marvin et al., 
1995 

 
Burnison 
et al., 
2003 

 
Hewitt et al., 1998 

 
Routledge et al., 
1998 

 
 Jacobs et al., 1992 ;  
Mazidji et al. 1990 
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Chapter 2 
Evaluation of thyroid active contaminants in municipal wastewaters 

 

This chapter explores the interactions of environmental contaminants with TRs isolated 

from fish to evaluate a proof-of-concept for application to an Effects-Directed Assessment 

(EDA). A competitive binding assay, based on the method of  Bres et al., (1994), was developed 

and validated using hepatic tissue collected from rainbow trout (Oncorhynchus mykiss). The 

competitive binding assay was applied  to determine if chemicals of concern that are frequently 

found in the environment, including BPA, nonylphenol (NP) and diethylstilbestrol (DES) were 

able to displace TH triiodothyronine (T3) from trout THR. Subsequently, extracts from two 

municipal treatment plants, (Doon and Waterloo) were tested in the assay to determine if they 

contain contaminants that will interact with the TR. It was determined that BPA was the only 

chemical that showed binding to TR, but it bound with a very low affinity for the receptor. 

Because of this, it was difficult to conclude whether the issue was the sensitivity of the assay, or 

the binding efficacy of BPA. A stronger binding affinity was seen from the municipal treatment 

extracts compared to the pure chemical samples, suggesting that a combination of the chemicals 

could be responsible for the increased affinity. Although a proof-of-concept is presented, there 

remain limitations for the application of the current assay within an EDA for the isolation and 

identification of thyroid active chemicals in municipal wastewater.   
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Competitive Binding Assay  

 Competitive binding techniques have been used widely to determine the binding affinity 

of different chemical compounds to a particular receptor. Studies on estrogen, retinoid, and 

androgen and TRs have been conducted in this fashion (Yamauchi et al., 2002; Hewitt et al., 

1998; Alsop et al., 2001; Wells & Van Der Kraak, 2000). This technique is capable of addressing 

questions related to receptor affinity, saturation and specificity of the receptor for the ligand. 

Numerous studies have compared the binding affinities of endocrine disrupting chemicals to that 

of the natural ligands. A competitive binding assay involves the competition of labeled and 

unlabeled ligand for a receptor (Boulton et al., 1985). Two important features associated with 

this method involve saturability and specificity, which are important in validating the technique. 

Saturability refers to the availability of a receptor to bind a ligand (Boulton et al., 1985). If the 

receptors are all bound to a ligand then they are considered saturated and thus unavailable for 

further binding. Specificity refers to the how precisely the ligand binds to a physiologically 

relevant receptor. It depends on the binding affinity of the ligand to the binding site on the 

receptor (Boulton et al., 1985).  This means that the receptor can only bind a ligand with the 

specific conformation and orientation.  Its specificity can be studied by evaluating how effective 

other similar ligands are at binding that receptor.  If several unrelated ligands bind the same 

receptor it is considered to be non-specific. Binding affinity and capacity can be determined 

using Scatchard analysis. The Scatchard plot is used to linearize binding data for estimating the 

Kd.  The specific binding curve represents the concentration of receptor binding sites and is 

referred to as the binding maximum (Bmax). The Kd represents the equilibrium dissociation 

constant such that it is a measure of the strength of interaction of a ligand to its receptor. Kd is 
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the concentration of the ligand that will occupy 50% of the receptors at equilibrium. A low Kd 

means the receptors have a high affinity for the ligand whereas the a high Kd means the receptors 

have a lower affinity (Bylund & Toews, 1993; Motulsky & Christopoulos, 2003). 

 

Saturation binding experiments measure the binding affinity of the ligand to its receptor 

when at equilibrium. For example, when a chemical constituent binds to a receptor it attains a 

degree of attraction to that receptor. If it is not the natural ligand, it will bind with varying 

degrees of affinity and will produce a saturation curve that will differ from that of the natural 

ligand. Non-specific binding uses the same method; however, it measures the binding of the 

molecules that are not specific to the receptor. Therefore, total binding is the sum of non-specific 

and specific binding (Boulton et al., 1985).  Receptor affinity can be determined by varying the 

concentration of the ligand in question. If low concentrations of the compound of interest 

displace the labeled natural ligand, then the compound has a high affinity for that receptor. This 

can be tested using fixed amounts of receptors and labeled natural ligand, and incubating them in 

the presence of increasing amount of ligand. The measure of the dissociation constant (Kd) is 

important in detecting the strength of binding of the ligand to the receptor. After establishing the 

receptor ligand affinity, a more restricted range of ligand concentration can be used for saturation 

analysis.  When testing for non-specific binding the ligand is examined for attachment to 

alternative sites from the one in question (Boulton et al., 1985; Motulsky & Christopoulos, 

2003). Non-specific binding (NSB) is important since the compound of interest could be binding 

to other non-relevant sites. NSB can be determined by saturating all the receptors of interest with 

unlabeled ligand and then adding radiolabeled ligand to detect other sites where the ligand may 
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bind (Motulsky & Christopoulos, 2003). Total binding (TB) is used to determine the total 

number of bound sites (Figure 6). This can be done by saturating the receptors with the 

radiolabeled ligand. Once this is established specific binding of the ligand can be calculated by 

subtracting NSB from TB. NSB should ideally be far less than 50% of the total binding, because 

this will ensure less ligand binding to non-relevant sites (Figure 6). Lower non-specific binding 

will allow detection of specific binding which will be important in studying affinities of other 

compounds. There should be no positive or negative binding cooperativity meaning that the 

binding of one ligand to the receptor does not increase the binding affinity of subsequent ligands 

to their receptors. Binding must be reversible therefore, the ligand can bind and unbind the 

receptor i.e., binding is not permanent (Motulsky & Christopoulos, 2003). 

 

Figure 6 Example of radioligand binding data for a competitive binding assay (based on Motulsky and 

Neubig 2010). 

 

 

Saturation binding is not enough to explain the biological relevance of the ligand/receptor 

interaction. Therefore, specificity is another component that is important in competitive binding 
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experiments.  In some instances, there can be other ligands that bind to the same receptor in 

which case, the receptor is considered non-specific and conformational changes may result with 

the binding of various ligands. A receptor that is specific for a particular ligand will not bind 

another ligand, since it does not possess the same conformational characteristics as its natural 

ligand (Boulton et al., 1985). Receptor agonists mimic the action of a naturally occurring ligand, 

allowing it to activate the receptor, whereas antagonists block the normal function of the receptor 

and in some cases depress its function (Ferkany, 1987).  

 

 

Figure 7 Competitive Binding Curve of different chemical ligands can be measured using this format 

(based on Motulsky & Neubig, 2010). 

 

Overall, competitive binding experiments measure the ability of various ligands to 

compete with the radioligand for receptor binding sites. Competition curves are developed by 

creating a plot that measures the amount of radioligand bound in the presence of increasing 

concentration of unlabeled ligand (Figure 6). The measure of the affinity of the unlabeled ligand 
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is the concentration at which the amount of radioligand bound is reduced by 50% (IC50) (Figure 

7) (Fillenz, 1990).  

 

2.1 Objectives 

The objective of this work is to provide a proof of concept for applying an EDA to 

municipal wastewater effluents using thyroid receptor binding as the endpoint of concern. To 

accomplish this objective a thyroid hormone receptor binding assay using rainbow trout 

(Oncorhynchus mykiss) nuclear receptors based on the approach of Bres et al., (1994) was 

developed and validated using T3. The assay was then tested using representative environmental 

contaminants diethylstilbestrol (DES), bisphenol A (BPA), and nonylphenol (NP). The assay was 

applied to extracts of final effluents from two municipal wastewater treatment plants in the 

Grand River watershed to determine if thyroid active chemicals could be detected.  
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2.2 Methods and Materials 

2.2.1 Animal Preparation  

Rainbow trout (Length: 26.64 ± SE 2.3 cm, mass: 167 ± SE 45.2 g) were obtained from 

Silvercreek Aquaculture in Erin Ontario. Fish were held at the University of Waterloo Wet Lab 

in well water at approximately 14°C and a photoperiod of 12 h dark 12 h light. The rainbow trout 

were fed 4P trout grower pellets (Martin Feed Mills, Tillsonburg, Ontario) every other day. After 

the rainbow trout were anesthetized in tricaine methanesulfonate MS 222, their spinal cords were 

severed and the liver was removed, being careful to separate the gall bladder. Animals were 

handled according to an approved University of Waterloo Animal Care protocol (AUPP 08-08). 

 

2.2.2 Liver nuclear fraction  

The liver was dissected from the fish and immediately placed on ice and washed with 

small volumes of  Buffer 1(0.32 M Sucrose, 3 mM of MgCl2, 10 mM Tris HCl, 0.1 mM PMSF, 

1mM dithiothreitol, 1 mM spermidine at 7.6 pH) and Kim wipes used to absorb excess blood 

surrounding the liver. Liver was kept on ice until homogenized (using a Teflon glass tissue 

homogenizer), for approximately 5 min. The liver was homogenized using 4 volumes (w/v) of 

Buffer 1 per gram of liver then diluted in 4 more volumes (w/v). The homogenate was filtered 

through several layers of cheese cloth to remove large particles then divided into equal volumes 

and centrifuged at 1800 g for 10 min in order to form a crude nuclear pellet. 

 

The supernatant was decanted and the pellet was resuspended in 30 mL of Buffer 2 (2.3 

M sucrose, 3 mM MgCl2, 10 mM Tris HCl, 1 mM dithiothreitol, at pH 7.6). The re-suspended 



 

 35 

pellet solution was then layered over 5 ml of Buffer 3 (0.32 M sucrose, 3 mM MgCl2, 10 mM 

dithiothreitol, 25 mM KCl, 2 mM EDTA, 0.5 mM spermidine, 10 mM Tris HCl, 5% glycerol, at 

pH 7.6).  The sample was then centrifuged at 109,000 g for 45 min using a swinging bucket rotor 

(Beckman SW 28).  The supernatant was decanted and the pellet re-suspended in 1 volume of 

Buffer 3. The nuclei were then separated into 1.5 mL aliquots and stored in -80°C freezer until 

later processing. Further processing required the sample to be thawed and the addition of one 

volume of a 0.25% solution Triton-X 100 (Sigma-Aldrich), in Buffer 3 and the receptor sample 

centrifuged at 1800 g for 10 min. The pellet was reconstituted using one volume of Buffer 4 (30 

mM Tris HCl, 2 mM EDTA, 5 mM mercaptoethanol, 5 mM MgCl2, 10% glycerol 0.4 M NaCl, 

at pH 8, 25°C) and votexed  repeatedly every 5 min for 45 min then again centrifuged for 20000 

g for 20 min.  

 

After centrifugation, a pellet is formed at the bottom of the tube and the supernatant was 

collected. Equal volumes of Buffer 4 (without NaCl) were added to the sample to form a 0.2 M 

NaCl buffer solution. For example, in 1 mL of supernatant 1 mL of Buffer 4 is added to create an 

overall concentration of 0.2 M NaCl solution which contains the receptor.  

 

2.2.3 Characterizing the Thyroid Hormone Receptor  

Radiolabeled [125I], 3,3’5- triiodo-L-thyronine - (T3) was obtained from Perkin Elmer at a 

specific activity of 40.-48.8MBq/µg. Unlabeled 3,3’5 -triiodo-L-thyronine (T3) was obtained 

from Sigma-Aldrich. Seven mL test tubes were prepared for total binding tests with 200 µL of 

receptor and 25 µL of iodinated T3 of varying concentrations from 10 x10-10 M to 6.25x10-11 M.  



 

 36 

In Buffer 4, 200 µL of receptor were prepared.  For non-specific binding tubes containing 200 

µL of receptor, 25 µL of iodinated T3 and 200 µL of unlabelled T3 (at 5x10-5  M) were added. All 

tubes were prepared in duplicate. The tubes were covered and incubated for 24 h with gentle 

shaking at 4°C. After the 24 hour incubation period, 100 µL of Dextran coated charcoal 

suspension (Sigma –Aldrich) was added to each test tube and vortexed every 5 min for 20 min. 

Once the 20 min of vortexing was completed, the samples were centrifuged for 10 min at 1800 g.  

After centrifugation, 100 µL of the supernatant was pipetted into test tubes and counted (5 

min/tube) using a Perkin-Elmer Wizard gamma counter.  

 

2.2.4 Determination of Assay Conditions   

After preparing the TR assay the concentration of labeled T3 that provided the best 

binding affinity with low NSB was selected. This was done by further validating the assay, by 

maintaining an unchanged concentration of labeled T3 while varying the receptor volumes. A 

volume of 25 µL of 0.625 x10-10 M T3 was added in duplicate tubes containing increasing 

volumes of receptor solution (50 µL, 100 µL, 150 µL and 200 µL). The concentration was 

adjusted using Buffer 4 to a total volume of 300 µL. Unlabelled T3  at a concentration of 5 x10-7 

M was added to a second set of tubes to saturate the receptors in or to  determine non-specific 

binding. Once completed the samples were incubated at 4°C for 24 h. After the incubation 

period, the receptor samples were treated with Dextran coated charcoal suspension and vortexed 

for 20 min every 5 min. Once the samples were vortexed, they were centrifuged at 1800 g for 10 

min at 4°C.  Being careful not to disrupt the soft pellet, 100 µL of the supernatant was placed 
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into new test tubes for counting in the gamma counter. The binding was described using 

GraphPad Prism 5 (Motulsky, 2003) 

 

2.2.5 Testing chemical standards and environmental contaminants 

L-Thyroxine (T4), Diethylstilbestrol (DES) a synthetic estrogen, bisphenol A (BPA), an 

industrial chemical used in plastics and 4-nonylphenol (NP) a product of industrial surfactants 

were obtained from Sigma Aldrich. Previous experiments have shown that above chemicals have 

thyroid disruptive properties and were therefore used in the competitive binding assay.L-

thyroxine (T4) was diluted in ethanol to a concentration of 10-4 M T4, as an intermediate stock. 

From this a series of dilutions from 10-4M to 10-12M were carried out in Buffer 4 (0.2M NaCl). In 

order to avoid large concentrations of ethanol that could interfere with the assay, the dilutions 

were carried out in Buffer 4.   

  

A solution 10-3 M of T4 was prepared in 97% ethanol.  A serial dilution was prepared in 

Buffer 4 (0.2M NaCl) solution (pH 8-9). In a test tube, 20 µL of each dilution was added to 180 

µL of Buffer 4 (0.2M NaCl). In 3 separate test tubes, 20 µL of T4 dilution and 180 µL of buffer 

were added. The same process applied to T4 was used to test the representative environmental 

contaminants: DES, BPA and NP (Figure 8). The chemicals were prepared by dissolving them in 

97% ethanol to achieve 10-4 M solution. In order to avoid damage to the sample from high 

ethanol concentration, an intermediate dilution was made from the concentrated stock, for each 

chemical.   From the intermediate solution 3 µL aliquots with [125] I T3 and buffer were added to 
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each sample test tube. Once prepared, the samples were incubated and tested as previously 

mentioned under characterization of the receptors.   

 

 

Figure 8 Structure of environmental contaminants used in the study. 

 

2.2.6 Testing Effluent Samples 

Final effluent was collected from two secondary treated municipal wastewater treatment 

plants in southern Ontario: Waterloo and Kitchener (Doon) between July 2009 and August 2011. 

 Final effluent was collected in 1 L amber bottles, transported in coolers on ice and stored at 4oC 

for less than 48 hours. Four 1 L bottles of effluent samples were filtered through 0.45 µm 

Whatmann glass fibre filter paper and extracted using Oasis®HLB 60 µm, 6 cc/500 mg 

cartridges. The extract was filtered through a Acrodise syringe filter (0.2 µM supor [MS1]  

membrane, PN4602;) and rinsed twice with  200 µL of methanol. A subsample of the extract was 

taken to dryness under a gentle flow of N2 and reconstituted it in 100 µL of 97% ethanol. Using 
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the stock solution, a serial dilution was performed in ethanol at concentration ranging from 10-2 

M to 10-6 M of effluent. From this, 3 µL of each serial dilution was added to sample tubes and 

assayed as described under characterization of receptors section. 

 

2.3 Results 

TRs were successfully isolated from the liver of rainbow trout.  The isolated receptors 

were characterized to determine binding affinity and non-specific binding of [125I] T3. A dose 

response relationship can be seen from the binding of [125I ]T3 to the receptors that was 

distinguishable from the non-specific binding (Figure 9). Due to the difficulty of obtaining and 

isolating receptors, the smallest amount of receptor sample that was reliable for use in 

subsequent studies was determined from several tests shown in (Appendix B).  It was confirmed 

that 36 µg were in 200 µL of receptor extract and this was sufficient to produce binding with a 

limited increase in NSB. 
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Figure 9  Introduced [125I] T3 at varying concentrations to determine binding characteristics of 

the T3 hormone to the THRs receptors. The R2 values for total binding and non-specific binding 

were 0.9957 and 0.9866 respectively.  
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Figure 10 Specific binding curve at increasing concentrations of [125I ]T3. Bmax and Kd values 

can be determined with this model. The equation used to model this graph is determined from 

GraphPad Prism 5. The R2 value is 0.9743.                                                                                  
 

 

The relationship depicted in Figure 10 shows the change in binding capacity of the 

receptors with increasing radioligand concentration.  As the concentration of the labeled ligand 

increases there is less binding to the receptors (indicated by the gradual plateau at higher 

concentrations) suggesting that the receptors are approaching a point of saturation. The Bmax 

and Kd values for specific binding were calculated as 0.046 fmol/mg and 2.24 nM respectively 

(Table 3). The Scatchard analysis (Figure 11) represents the ligand/receptor binding interactions. 

The negative reciprocal of the slope represents the Kd value and the point at which the line 
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intersects the x axis represents Bmax. Information was used for subsequent studies with 

environmental chemicals as well as effluent extracts to determine the presence of competitive 

binding. Keeping NSB to a minimum was crucial in producing the best possible binding data. 

NSB in this study remained the same with increasing receptor volume. At the lowest [125I] T3 

concentration (6.25x10-11M), NSB was 10% of total binding. Specific binding however was 

greater than non-specific binding, making the assay a good tool for producing competitive 

binding results. 

 

Table 3 Summary of binding affinity (Kd) and capacity (Bmax)   

*Literature values obtained from Bres and Eales. (1986) 

 

 

 

 

 

 

Hormone Bmax (fmol/mg) Bmax 
(fmol/mg) 

Literature* 

Kd (nM) Kd (nM) 
Literature*  

 
T3   0.046 62 2.24 0.14  
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Figure 11 Representative Scatchard plot of saturable [125I ]T3 binding to purified liver nuclear 

fraction. Each point represents the mean of the duplicate determinations. R2 =0.9212. 

 

Figure 12 demonstrates the binding relationship of [125I ]T3 to the thyroid hormone 

receptor at varying receptor volumes. NSB does not increase drastically and begins to form a 

plateau as receptor concentration increases. Therefore, the higher the concentration of the 

receptor used in the assay the greater the specific binding with minimal changes NSB. This test 

determined that the lowest concentration of receptor giving sufficient binding is 6.25 x10-11M. 

Appendix B contains additional data on the validation of this assay. 
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Figure 12 Nonlinear regression describing the relationship between the increase in receptor 

volume and the binding of [125I ]T3. Protein concentration is .18µg/µL. Displayed here is the 

total, non-specific and specific binding of [125I ]T3 at varying receptor volumes (protein 

concentration). Each point on the graph represents the mean of two duplicate determinations. 
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Figure 13 Competitive binding of T4 in the presence of T3. Each value represents the mean of 

two duplicate determinations.  

 

Figure 14 indicates the competitive binding of BPA for the thyroid hormone receptor with 

respect to the natural ligand T3. The equation used to model the relationship was:  

Y=Bottom + (Top-Bottom)/(1+10^(X-LogIC50))   [Equation #1] 

The top and bottom is representative of the plateaus from units of the y axis.  In this experiment 

T3 is used as a control to determine the relative potency of each chemical (Table 6). T4 displays a 

lower affinity (1.83x10-3 T4 to 1 T3) for the thyroid hormone receptor. BPA was one of the least 
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potent with an IC50 of 6.26x10-5 nM and a relative affinity of 3.43x10-6.  Chemicals such as BPA 

and NP were very insoluble and as a result, higher concentrations could not be determined. The 

experiments conducted for DES and NP did not show any binding to the receptor during the first 

trial and therefore further experiments were no longer continued using these samples. 
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 Figure 14 Competitive binding of BPA, with Thyroxine (T4) each value represents the mean of 

two duplicate determinants.  
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Figure 15 Competitive binding data showing the binding affinity of T3, Waterloo and Doon 

wastewater effluent extracts. 

 

Both of the wastewater effluent extracts showed considerably lower affinity relative to T3 

(Figure 15). The relative affinity of the Kitchener (Doon) extract was less than that of the 

Waterloo effluent extract. Table 6 shows that the relative affinity for Doon and Waterloo is 2.08 

x10-6 and 1.97 x10-4 respectively.  
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Table 4 Relative affinity of chemicals or municipal wastewater effluent (MWWE) extract tested 

to thyroid hormone receptor.    

 

 

 

  

 

 

 

2.4 Discussion  

In the present study a competitive binding assay using TRs isolated from rainbow trout 

was developed and applied. Initially, the endogenous hormones T3 and T4 were used in the assay 

to test for competitive binding. It was found that T3 bound with a higher affinity to the receptor 

than its precursor T4. This was expected as T3 is the active form of the TH that normally binds to 

the receptor causing biological responses (Bres & Eales, 1986). The environmental contaminant 

BPA showed binding at orders of magnitude lower than T3. The TH assay was applied to effluent 

extracts from the Kitchener (Doon) and Waterloo municipal wastewater treatment plants. 

Wastewater extracts bound to the TR with relatively the same affinity as BPA. These studies 

suggest that there are compounds in municipal waste waters that can bind to thyroid receptors 

and potentially cause biological effects in fish exposed to effluents entering the environment. 

The specific chemicals that are binding from these effluents remain unknown and are at 

concentrations higher than biological relevance.  

 

 

Chemical/extract IC50 (nM) Relative 
Affinity (IC50) 

T3 2.15x10-10 1 
T4  1.17x10-7 1.83 x10-3 
BPA 6.26x10-5 3.43x10-6 
Waterloo MWWE   1.09x10-6 1.97 x 10-4 
Doon MWWE 1.035x10-4 2.08x10-6  
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After optimizing the assay with T3, various environmental chemicals were tested using the 

competitive binding techniques. The endogenous hormone T3, bound to the receptor with the 

highest affinity. This was compared to T4, which is predominant in circulation and has 1000 

times less affinity for the receptors than T3 (Table 4). In previous papers, the binding affinity of 

T4 in comparison to T3 was 10 to 12 times lower in both rat and salmon liver samples (Darling et 

al., 1982).  The variation in affinity could be due to different TR subtypes and isoforms. The 

binding affinity of T3 to the receptor was also fairly low suggesting an overall low sensitivity of 

the receptor reducing the amount of bound T4 Binding to the thyroid receptor could not be 

detected for either NP or DES using this assay; however another study did demonstrate binding 

of both NP and DES to thyroid receptors (Yamauchi et al., 2002; Kitagawa et al., 2003). In the 

current study BPA was capable of binding to the TRs, but only at very high concentrations (10-4 

M). The reasons for low binding of environmental contaminants contrary to other studies could 

include a low sensitivity of receptor binding in the assay; or the inability to create high enough 

concentration of the chemical to produce detectable binding, i.e. the low solubility of NP 

prevented it from dissolving at high concentrations. Moriyama et al., (2002) demonstrated low 

affinity of BPA for the receptor as well. The affinity was approximately a hundred thousand 

times less when compared to T3, which is similar to the binding affinity of BPA determined in 

this study. Other compounds have also been shown to bind to the TRs for example, phenols, 

parabens, BPA derivatives, benzenes and more (Kitagawa et al., 2003). As previously discussed, 

Table 1 and Appendix A, a number of studies have shown other chemicals that potentially bind 

to thyroid TRs.   Literature Bmax values of T3 and T4 showed significant variations in 

comparison to the current study. The study performed by Bres and Eales., (1986) demonstrated a 
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higher binding capacity. The sample that was used for the purposes of the experiment did not 

account for changes in size, age, sex and seasonal variation of the rainbow trout. Previous studies 

by Bres et al., (1990) demonstrated a considerable decline in the maximum binding capacity in 

larger and older fish. Smaller and younger fish therefore displayed a larger maximum binding 

capacity.  Since, the experiment did not account for changes this could be one factor that may 

explain the difference in the binding ability of the receptors. Although male and female fish 

generally express the same receptor subtypes seasonal variation does exist before or during 

reproductive seasons. Variation of subtypes can have a great impact on the binding capacity of 

the TH to the TR, because some subtypes are not able to effectively bind T3 and others have a 

lower affinity. For example, TR α and TR β are both the predominant receptor substypes, within 

these subtypes are several isoforms which each have a different affinity for binding TH’s. TRα-1 

has been identified as the fully functional nuclear receptor, whereas others have limited to no 

effect on binding to TR (Nelson and Habibi, 2006). Fish samples were also obtained from 

different locations, environmental impacts could play a role in the expression of the various 

subtype of TR’s and in those situations if less of the functional receptor is present than a lower 

binding capacity may occur. Proteins are extremely temperature sensitive. Some of the proteins 

may have been denatured causing a decline in receptors that effectively cause binding. Specific 

temporal changes were shown to have minimal affects on the binding capacity of the receptors 

however; starvation was a big factor influencing binding capacity. In the lab, the fish were not fed for 

approximately 3 days prior to being sampled in order to avoid feces accumulation. This may have also 

impacted the TR receptors binding since a decrease of maximum binding capacity was reported during 

starvation (Bres et al., 1990).  
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Wastewater effluents were tested from two large treatment facilities in the Grand River 

watershed. Waterloo wastewater effluent extracts showed binding affinity to the TR. Effluent 

extracts from the Doon (Kitchener) wastewater effluent demonstrated less binding than the 

Waterloo effluent. Although the binding is low it is still detectable in the assay and suggests that 

the wastewater effluents contain thyroid active compounds that can bind to the thyroid hormone 

receptors. It is known from other studies that wastewater effluent can contain a variety of 

chemicals capable of binding to the thyroid receptor and possessing anti-TH activity (Yamauchi 

et al., 2002; Sandau, 2000; Murata & Yamauchi, 2008).  Both effluents used in the current study 

are secondary treated municipal wastewater treatment plants that do not nitrify and therefore 

contain high levels of ammonia and other contaminants. The effluents are likely to differ because 

of changes in the temporal influent composition and treatment processes. In addition, the 

variation in the effluent quality (matrix) may have altered the extraction efficiency and therefore 

composition of the final extracts (Tang & Kebarle, 1993; Taylor, 2005). Unidentified chemicals 

extracted from these complex effluents could have also impacted the thyroid hormone receptors 

in the bioassay by displacement of T3 during the competitive binding assay. Municipal 

wastewater effluent contains a diversity of chemicals, from industrial and domestic sources, such 

as pharmaceuticals, personal care products, and pesticides (Ishihara et al., 2009) Additive or 

even synergistic effects may occur in these complex mixtures. The receptor binding observed in 

effluent extracts could be a result of single or multiple chemicals.  Since the assay can only test 

for binding and not agonistic or antagonistic effects, other components of the effluent could also 

be blocking or interfering with the site of action.    
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There are numerous chemicals that can affect the performance of fish exposed to 

municipal wastewater effluents. This includes nutrients that cause euthrophication, toxic 

chemical such as, ammonia and alkyphenols and wide variety of contaminants of emerging 

concern which include endocrine disruptors (Chambers et al., 1997; Tyler et al., 1998).  Fish 

show intersex and reproductive impairment at sites downstream of municipal effluent outfalls 

(i.e., Waterloo, Doon) in the Grand River (Tetreault et al., 2011).  The thyroid system is very 

important for growth and reproduction of fish and may also be contributing to the effects 

observed. Ings et al., (2011) saw changes in the expression of the thyroid receptor in rainbow 

trout exposed to tertiary-treated municipal wastewater effluents in Guelph, Ontario, Canada (a 

tributary of the Grand River).  Wastewater contamination in the ecosystem can cause changes 

and impact the aquatic environment through the continuous release of hazardous chemicals into 

surface waters. The detection of thyroid receptor activity in two wastewater treatment plants in 

the Grand River watershed suggests that there is a potential for effects on fish in the receiving 

environment. A number of environmental contaminants have been detected in the municipal 

wastewater (Metcalfe et al., 2003).  The specific chemicals responsible for the effects have not 

been established. Several problems can exist as a result of exposure to a variety of chemicals. 

Polychlorinated biphenyls (PCBs) are an example of one of the many environmental 

contaminants that have altered the HPT axis. Exposure to PCBs has shown increased liver 

weight and liver lipid content in rainbow trout. An increase in the metabolism and excretion of 

TH and a decreased T4 circulation can also be seen from experiments using PCBs (Brown et al., 

2004). Seals exposed to a mixture of environmental PCBs displayed hypothyroidism and lower 

circulating levels of TH. The biological changes that correspond to exposure from environmental 
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contaminants are detrimental to the overall thyroid status. More specifically the primary action of 

TH on target tissues is to regulate the synthesis of specific proteins through binding of T3 to TR, 

allowing for RNA transcription and translation. This action can be impeded by the presence of 

chemical analogs causing disruption in the process of protein synthesis which could alter the 

normal response of the organism. The biological importance of TH has been understood to have 

an impact on the regulation of early fish development. Thyroid and reproductive status have 

shown a positive correlation when comparing the rise in THs with gonadal maturation and 

reproduction suggesting that the presence of THs can affect reproduction (Cyr and Eales, 1996). 

Thyroid receptor binding effects have been studied in zebrafish on TRα. TRα is expressed 

heavily in the ovary during embryogenesis during blastula and gastrula stages. This suggests that 

THs and there receptors could have an impact on early development in fish. In addition to 

reproduction TH also affects morphogenesis, skin pigmentation, osmoregulatory properties and 

general behaviour in fish. This can be seen in parr-smolt phases of coho salmon life cycle 

(Dickhoff et al., 1978). From this it is inferred that THs may have a role in maturation of 

developing fish. Furthermore, change of morphology in Japanese flounder was discovered during 

gametamorphosis the dorsal fin ray lengthens in the presence of exogenous TH and accelerates 

metamorphosis. Alterations in the natural cycle of metamorphosis in fish could have overall 

detrimental impacts to their survival (Miwa, 1985) (Appendix A, Table 5). In general, any 

alteration of either development or sustenance of a species can be changed by interferences in its 

natural habitat. Some alterations can result in adaptations to the surrounding while others can 

cause harmful impacts that could disrupt the regular life cycle of the species. More specifically 

looking at the thyroid system, there is still more work to be done on the physiological outcomes 
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resulting from exposure to environmental contaminants. However, from the many studies that 

have been performed it is apparent that TH plays a major role in growth, development and 

overall status of fish as well as several other species. 

 

2.4.1 Implications 

EDAs have become a popular approach to isolate and identify bioactive chemicals in 

complex mixtures (Hacker & Hollert, 2009). Researchers around the world have recently applied 

EDA using a variety of endpoints (e.g., hormone receptors, AhR, toxicity), that are 

mechanistically linked to environmental concerns, to isolate bioactive compounds in a wide 

variety of complex mixtures including pesticide formulations (Hewitt, et al. 1998), pulp mill 

effluent (Hewitt et al., 2000), oil sands process waters (Thomas et al., 2009), sewage (Desbrow 

et al., 1998), and contaminated sediments (Matthias et al., 2005; Schlenk et al., 2005).  In the 

United Kingdom Desbrow et al., (1998) isolated natural and synthetic estrogens (EE2) from 

sewage effluents. These compounds had been shown to cause estrogenic effects in fish including 

intersex (Jobling et al., 1998). Considerable attention was later given to this approach to isolate 

bioactive contaminants. Using an EDA approach, a variety of hormones and the industrial 

contaminants including BPA, NP and ocytylphenol have been detected in Canadian sewage 

effluents (Burnison et al., 2002). Overall, the results in this thesis have explored the possibility of 

the application of an EDA approach using thyroid receptors in municipal wastewaters.  The next 

step should be to use these techniques to isolate specific fractions (e.g. reverse-phase HPLC), to 

compare and contrast different effluent samples from various sources and ultimately identify the 

key contaminants in the effluents that have the potential to bind to the thyroid receptor. This will 
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help to further develop an understanding of the type of contaminants that could potentially cause 

an effect on TH receptor binding. With this knowledge, further studies can be performed that 

may help to determine the impact of contaminants on the thyroid function in aquatic species at a 

physiological level. More detailed and replicated studies need to be conducted on a wider range 

of wastewater effluents such as, from primary and tertiary treatment plants. It would also be 

beneficial to test effluent from other communities with different characteristic (population, 

treatment, etc.).  In addition, there are several other assays that have been tested for TH activity 

such as, TTR and LUC assay.  It would be beneficial to use more than one bioassay to determine 

the effects of endocrine disruption caused by receptor binding. Other mechanisms that are 

responsible for thyroid functioning within the thyroid system may be important. Binding to the 

thyroid receptors in the current study was only seen at very high concentrations. In contrast, 

other studies have seen receptor binding at very low concentrations with similar compounds such 

as BPA and NP (Nishiara et al., 2000). Further studies still need to be conducted in order to 

optimize the binding assay and to make any direct conclusions regarding the physiological 

effects of specific contaminants or mixtures on organisms acting through the HPT axis.  

 

2.5 Future Considerations 

The method selected in this study presented numerous challenges and limitations. 

Receptor preparation from liver tissue involved several homogenization and centrifugation steps 

in order to isolate and separate the nuclear fraction (Bres & Eales, 1986; Bylund & Toews, 

1993). The purpose of carrying out multiple centrifugation steps was to eliminate any soluble 

interfering substance that could potentially hinder the assay, by either preventing binding of the 
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ligands to the receptors or by making them unavailable for binding (Bylund & Toews, 1993). 

Other disadvantages associated with this method include the large sample size that was required 

to achieve a sufficient amount of protein per preparation. Many rainbow trout were needed in 

order to produce enough protein to run each sample, making it difficult to produce and test a 

large numbers of samples.  

 

Great care needs to be taken to ensure that the receptor was not denatured during 

isolation and preparation for use in the bioassays. Sample tubes were required to be held at 4°C 

and a relative pH of 7 or 8. Fluctuations in the temperature during centrifugation steps can cause 

some protein denaturation, disrupting the receptor and affecting the bioassay. Ensuring that the 

temperature stays within the required range is important when working with protein samples.  

Avoiding multiple transfers of sample as well as, multiple freeze thaw cycle could help minimize 

denaturation of the protein, making it more responsive in the assay (Boulton et al., 1986). The 

assay condition could have been affected by these factors compromising the sensitivity and 

specificity of the assay. 

 

The use of [125I] T3 was another limitation as iodinated compounds have short half-life 

and assays must be applied within a short time frame for each batch. Iodinated compounds may 

change conformation and alter the binding affinity causing discrepancies when validating the 

assay (Motulsky & Christopoulos, 2003). Advantages to iodinated compounds are that they have 

a higher specificity, making them beneficial when receptor density is low or there is less tissue 



 

 57 

(Bylund & Toews, 1993). However, iodinated compounds are more difficult and hazardous to 

handle and work with.  

 

The binding resin (Dowex) that was used in the paper by Bres et al., (1986) produced 

very high NSB in this study. After numerous experiments, the resin was eventually isolated as a 

possible cause of the excessive NSB. Once the Dowex resin was replaced with Dextran charcoal 

suspension the NSB decreased significantly with the increased concentration of the labeled 

ligand.  

 

 When analyzing the data several assumptions have to be made, such as the affinity of the 

labeled and unlabelled ligands is identical, but it is possible that there may be some differences 

in the affinity due to the radioactivity of the radioligand (125I). Iodinated compounds can change 

the conformation and binding affinity of the ligand (Motulsky & Christopoulos, 2003).  Another 

assumption is that cooperativity does not occur, meaning that the binding affinity of one site does 

not increase with the binding of another.  It is assumed that there is no ligand depletion, 

suggesting that free concentration of radioactive and non-radioactive ligand equals the added 

concentration. Lastly, a proportion of radioactive ligand binds non-specifically, despite the 

concentration of the unlabelled ligand present (Motulsky & Christopoulos, 2003). The labeled 

ligand also binds to other proteins besides the receptors that are located in each sample (referred 

to as NSB) and can interfere with the performance of the assay. The assumptions made are 

important because if they do not hold they will affect the interpretations of the results. 
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 Overall, the competitive binding assay method applied, similar to that of Bres et al., 

(1994), was challenging, yet effective and once the procedure was optimized, the assay was 

simple to apply.  The thyroid hormone receptor extraction method had several advantages once it 

was functioning optimally. Such as, running multiple experiments simultaneously was simple 

and quick and preparing the samples for incubation was done fairly rapidly allowing large 

amounts of data to be collected at one time. Although the assay was relatively simple and quick, 

the method was not very sensitive, limiting its potential application in future studies.  Despite 

successfully demonstrating the application of this technique, alternative methods that are more 

sensitive should be considered alongside the TR binding assay in the future. Use of TTR and 

LUC assay can help provide thorough results pertaining to binding characteristics of 

contaminants to TR. In addition, questions regarding the binding capabilities of certain chemical 

compounds as well as effluents can be confidently answered with the use of multiple or more 

sensitive assays. This assay would not be a viable technique for a risk assessment because the 

method was not effective at detecting chemicals at environmentally relevant concentrations.  It 

could be used as a screen to provide an indication of binding however an accurate determination 

of risk would require validation of effects at higher levels of organization. 
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Appendix A 

Table 5 below represents a list of environmental contaminants that impact thyroid system 

functioning. Several studies have been performed to determine the site of action of the following 

chemicals and in what ways they are capable of impacting the thyroid system. These are a few of 

the many environmental contaminants that have been studied that impair thyroid system 

functioning in various organisms.  

 

Table 5 Different classes of chemicals associated with thyroid hormone disruption. 

Environmental  
Contaminants  

Source  Mechanism     Effects  Chemicals References 
Polychlorinated 
Biphenyl Mixtures  

Dielectric fluid, 
Hydraulic fluid, 
Printing inks, 
adhesives and paint 

Mode of action 
not well 
understood  

-Lowered plasma T3 
levels of salmon 
-smolting coho 
salmon increased 
plasma T3 delayed 
onset of Na+-
K+ATPase 

____________ 
 
 
 
 
 
 
 
 
 
 
 

 

(Leatherland 
& Sonstegard, 
1978) 
 
(Leatherland 
& Sonstegard, 
1980) 

Planar halogenated 
aromatic 
hydrocarbons 
(PHAH) 

By products of 
chlorinated phenols  
Chlorinated phenol 
derived products  
Commercial PCBs- 
Aroclor, Clophen, 
Kanechlor 
Arise from diverse 
combustion sources 

Bind to aryl 
hydrocarbon 
(ah) receptor 
and induce 
cytochrome 1A 
gene 
transcription 
(CYP1A) 

European Flounder- 
depressed plasma 
total T4 (TT4 )levels 
and  
-inhibits 
metamorphosis 
juvenile rainbow 
trout- PCB treatments 
lowered T4 and T3 
levels in muscle  

2,3,7,8-TCDD 
2,3,4,7,8-PCDF 
3,3’,4,4’-
tetrachlorobiphenyl 
3,3’4,4’,5-
pentachlorobiphenyl 
Naphthalene  
Phenanthrene 
Pyrene 
3-methylcolanthrene 

(Besselink et 
al. 1997) 
 
(Schreiber & 
Specker, 
1998) 
 
(Brown, et al., 
2002) 
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Organochlorine  
Pesticides  

Mirex- Fire 
retardants in plastics  
Paint  
Electrical goods  
Endrin- wood 
preservatives and 
insecticide/ 
acaricide on food 
crops  

Endrin – 
interferes with 
GABA 
receptors  
 

Rainbow trout or 
coho salmon (mirex)- 
both reduced T3 T4 
levels and altered 
thyroid histological 
appearance 
Endrin- blocks TH 
synthesis by direct 
action on thyroid or 
by compromising  
pituitary TSH 
production and 
release 

Mirex 
Endrin  
DDT 
Endosulfan 
Lindane  

(Leatherland 
& Sonstegard, 
1979) 
 
(Shukla & 
Pandey, 1986) 
 
(Pandey et al. 
1995) 
 

Environmental 
Steroids  

Sewage effluents 
and runoff from 
livestock operations  

Effects TH 
receptors in 
target tissues   

E2 enhances thyroid 
function in Indian 
teleost and suppresses 
function in other 
species in immature 
rainbow trout E2 
caused depressed 
plasma T4 and altered 
T4 plasma kinetics 
causing decreased T4 
conversion to T3  
Estrogenic 
compounds induce 
hypothyroid condition 
in fish  
 

Estrogens  
Progesterone  
Androgens and their 
metabolites  
Alkyphenols 4-
nonylphenol 

(Sage & 
Bromage, 
1970) 
 
(Cyr et al. 
1988) 
 
 
(Flett & 
Leatherland, 
1989) 

Brominated Flame 
Retardents 

Building materials, 
synthetic textiles, 
plastic products, 
electronic equipment  

Thyroid gland 
function and 
regulation, 
Thyroid hormone 
metabolism, 
Thyroid hormone 
transport 
mechanism 

Potent binding 
competitors  
 

Tetrabromobisphenol A 
Tetrachlorobisphenol A 

(Kitamura, et 
al. 2002) 
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Appendix B 

Validating the Assay 

 Binding of thyroid hormone at increasing receptor volumes  

The thyroid hormone receptor tested to determine the lowest possible volume that could 

be used to produce optimal results for this assay. It was determined that 200 µL would be most 

acceptable volume to optimize the assay and use of isolated receptors. The protocol described by 

Bres and Eales, (1986) used 400 µL.

T3 Receptor Binding

Receptor Volume (µL)

B
ou

nd
 (C
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)

0 200 400 600 800 1000
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30000

40000

 

Figure 16 Relationship between receptor volume and receptor binding. At these volumes the 

non-specific binding remains relatively constant. The R2 = 0.9991.  
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2.5.1 Protein analysis  

A protein analysis of the receptor sample was performed to determine the concentration 

of the protein in the receptor extract. This was carried out to verify that indeed there was a 

sufficient protein content in order for binding studies to be conducted. This shows a linear 

relationship between protein concentration and the absorbance. Figure 17 represents protein 

absorbance curve the receptor samples were tested against the standards and were found to fit on 

the line.  Triplicate sample of receptor were used without a dilution. The three receptor samples 

are indicated by this shape ∆.   

  

Figure 17  Bovine serum albumin was used to create a standard curve. Based on the standard 

curve the concentration of the protein in the liver nuclear fraction was .18µg/µL this was 

established using the Bicinchoninic acid method.  The R2 =0.9921 and the equation for this line 

is y= 2.911x + 0.309.  Based on the standard curve the concentration of the protein the liver 

nuclear fraction is .18µg/µL using the Bicinchoninic acid method.  
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2.5.2   The counts per concentration of [125I] T3 

There is a linear relationship between total count and concentration of the radioligand. 

The linear relationship was determined to validate, that with increasing concentration of 125I 

there was also an increase in CPM, ensuring that the radioactive compound was good for use in 

further experiments. The radioactive iodine was applied to evaluate the percent binding against 

counts added. Each point represents the average of triplicate determinations.  
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Figure 18 Determination of the total amount of radioactivity present at each concentration of 

[125I] T3. Total count tubes containing [125I] T3 at concentrations ranging from 0.625 nM to 10 

nM. R2 = 0.9754 and the equation for the line is y=561x+1186.  
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 Lactate Dehydrogenase Assay (LDH) 

Lactate dehydrogenase (LDH) is a soluble enzyme normally found in the cytosol of cells. 

 Damage or lysis to the cell causes a loss of membrane integrity, when this occurs; LDH enzyme 

appears in the nuclear fraction as a means of showing that the preparation is contaminated.  

The lactate dehydrogenase assay was used to determine if the nuclear fraction was contaminated 

with cytosol. The results indicate that there was little cytosolic contamination with the receptor 

sample during intermediate and final steps of the purification procedure of the receptor extract. 

The assay was performed exactly as described previously (Ings et al., 2012).  
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