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Abstract

Thermal conductivity measurements are made on a variety of systems in order to probe
low energy quasiparticle excitations. In particular, thermal conductivity measurements
were made on the iron based superconducting material LaFePO at temperatures from 60
mK to 1 K and in fields from 0 T to 5 T in order to shed light on the symmetry of the
superconducting order parameter. A substantial non-zero electronic contribution to the
thermal conductivity is observed and interpreted as sub-gap electronic quasiparticles which
is clear evidence for a nodal gap symmetry. A high scattering rate and non-T3 temperature
dependence of the conductivity is evidence against the d-wave scenario. However, the field
dependence does seem to suggest that the anisotropic s± picture is a likely candidate for
the order parameter, although more theoretical work is required to confirm this.

Thermal conductivity measurements were also made on the spin-ice system Ho2Ti2O7

between 50 mK and 1.4 K in applied magnetic fields from 0 T to 8 T in an attempt to
observe the much debated magnetic monopole-like quasiparticles. An applied magnetic
field of 8 T was applied along to [111] direction as to fully polarize the magnetic moments
in order to extract the phonon contribution of the thermal conductivity. The low field
thermal conductivity reveals evidence for an additional heat transfer mechanism that also
scatters phonons which is magnetic in nature. This is taken to be evidence for the existence
of monopole-like excitations out of the spin-ice ground state and is described by existing
Debye-Hückel theory.

Thermal transport was used in conjunction with charge conductivity to study the
unconventional quantum critical point (QCP) in the heavy-Fermion superconductor β-
YbAlB4 at temperatures down to 60 mK and in fields up to 2 T. The results show that the
Wiedemann-Franz law (WFL) is obeyed down to the lowest measured temperatures indi-
cating that the Landau quasiparticles remain intact near the QCP. A small suppression
of the Wiedemann-Franz ratio (L/L0 = κ/σTL0) is seen at finite temperatures (T < 1
K) with minimal dependence on magnetic field. Comparing with other similar quantum
critical systems, it becomes apparent that inelastic scattering events have little effect on
the transport and are mainly field independent in β-YbAlB4.

An overview of the design for a new thermal conductivity mount is also presented. The
design hinges around the idea of building the experiment mount into a small copper box
rather than on an open frame. Not only does this provide mechanical stability for safe
transportation, it also reduces the noise caused by electromagnetic interference (EMI) in
the sample thermometers by more than a factor of ten over the old wire frame design.

iii



Contributions

The LaFePO sample was grown in Ian Fisher’s lab at Stanford University. Many of
the thermal conductivity measurements of LaFePO were conducted by Mike Sutherland
and John Dunn. Mike also prepared the contacts on the sample and affixed gold wires to
them. I measured the electrical resistivity of the sample in applied magnetic fields. I also
performed all of the data analysis presented here and in our publication [1].

The Ho2Ti2O7 sample was grown in Bruce Gaulin’s lab at McMaster University. I then
prepared the sample to the correct size and affixed the silver wire contacts used to measure
the thermal conductivity. I conducted all of the thermal transport measurements of this
sample and performed the data analysis which are presented here.

The β-YbAlB4 samples were prepared by Eoin O’Farrell. Eoin also measured the ther-
mal conductivity of one of the samples presented here. I measured the thermal transport of
the other sample as well as the electrical resistivity of both samples in a variety of magnetic
fields. I also executed the data analysis seen in the appendix.

iv



Acknowledgements

First and foremost, I must thank my supervisor, Rob Hill. His guidance and patience
have provided the perfect environment for me to grow as a student and an experimentalist.
Whether it is answering late night phone calls when the fridge is misbehaving or the in
depth discussions on the latest results or even just chatting about football scores, Rob has
instilled the confidence and knowledge imperative in the completion of this graduate work.
Working with Rob has been a real joy and I am truly grateful for the opportunity.

Next I would like to thank my advisory committee members, Dr. David Hawthorn and
Dr. Elisabeth Nicol. Their input and suggestions really helped focus my research and
keep me on track. I would also like to thank Adrian Lupascu for serving on my defence
committee. Although not on my committee, Jan Kycia has always been available as a
seemingly limitless supply of experimental knowledge and he has certainly been a valuable
part of my education. The members of the Kycia group were persistent in keeping a
constant supply of liquid helium available at our beck and call - essential for cryogenics.

I also need to thank my collaborators and crystal growers, Mike Sutherland from the
University of Cambridge and Eoin O’Farrell from the University of Tokyo, who both worked
on the LaFePO and β-YbAlB4 projects. In particular, Mike conducted most of the thermal
conductivity measurements on LaFePO and Eoin measured the thermal conductivity in one
on the β-YbAlB4 samples. James Analytis and Ian Fisher from Stanford University grew
the LaFePO crystal. Kate Ross, Hannah Dabkowska and Bruce Gaulin from McMaster
University grew the Ho2Ti2O7 crystals.

Hiruy Haile, Andrew Dube and Harmen Vander Heide of the STS shop deserve recog-
nition for teaching me how to machine various items needed for my experiments as well as
constructing the main components of the redesigned thermal conductivity mount.

I would be daft if I said I could have done all this without the help and support from my
friends, lab mates and colleagues as they have been a source of motivation, encouragement
and laughter. The list of of notable accomplices includes John Dunn, Luke Yaraskavitch,
David Pomaranski and Halle Revell, Kier Vonkonigslow and Steffanie Freeman, however
this is by no means exhaustive. John Dunn also aided in many of the thermal conductivity
measurements of LaFePO. My lab partner, Kevin Liu, deserves my gratitude for all the
help with running the fridge, the late nights in the lab, and for the much needed comradery
and noodle soups.

Finally, I would like to thank my family. My parents and sisters have supported me
throughout my entire educational career. Most of all, I need to thank my wife, Jennifer,
for putting up with me through this whole process. I could not have done it alone.

v



Dedication

To my wife, Jennifer. ♥

vi



Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Theoretical Review 4

2 Thermal Conductivity Theory 5

2.1 Electronic Conduction in Metals . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Phonon Thermal Conduction . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Superconductivity 14

3.1 A Brief History of Superconductivity . . . . . . . . . . . . . . . . . . . . . 14

3.2 Introduction to BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Conventional Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Unconventional Superconductors . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Superconductors in a magnetic field . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Iron-based superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



4 Frustrated Magnetism 31

4.1 A Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Rare-earth Titanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Dipolar Spin Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Magnetic monopoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Experimental Details 54

5 Dilution Fridge 55

5.1 How a Fridge Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Dewar and vibration reduction . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Thermal Conductivity Measurement 60

6.1 Measurement Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Thermal Conductivity Device . . . . . . . . . . . . . . . . . . . . . . . . . 61

III Experimental Results 71

7 LaFePO 72

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Ho2Ti2O7 85

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



9 Conclusion 97

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDICES 100

A β-YbAlB4 100

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B Thermal Conductivity Mount Drawings 109

C Thermal Conductivity LabView Program 114

References 118

ix



List of Tables

2.1 Functional forms of phonon scattering mechanisms . . . . . . . . . . . . . 13

4.1 Electron configuration and ground-state term for select rare-earth ions . . 33

4.2 Low-order Stevens operator equivalents . . . . . . . . . . . . . . . . . . . . 34

8.1 Fitting parameters of the various scattering mechanisms for the 8 T phonon
conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Fitting parameters for the magnetic contribution to the thermal conductivity
and the monopole-phonon scattering rate . . . . . . . . . . . . . . . . . . . 95

A.1 β-YbAlB4 sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



List of Figures

2.1 Wiedeman-Franz ratio of Ag . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Two dimensional projections of the isotropic s-wave, anisotropic s-wave and
d-wave orderparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Density of states and specific heat for a conventional superconductor . . . 18

3.3 Thermal conductivity of Al vs. temperature by Satterthwaite et al. . . . . 20

3.4 Density of states for an unconventional d-wave superconductor by Sun et al. 21

3.5 Thermal conductivity of an unconventional d-wave superconductor vs. tem-
perature by Graf et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 General phase diagram for the high Tc cuprate superconductors by Taillefer
et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Magnetism vs applied field for both type-I and type-II superconductors . . 24

3.8 STM image of the Abrikosov flux lattice by Hess et al. . . . . . . . . . . . 25

3.9 The five structures that support superconductivity in the iron baesed super-
conductors by Paglione et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Fermi-surface of BaFe2As2 by Paglione et al. . . . . . . . . . . . . . . . . . 28

3.11 General phase diagram for the iron-based superconductors by Paglione et al. 29

4.1 Six-fold degeneracy of Ising spins on a triangular lattice with antiferromag-
netic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Pyrochlore and diamond lattice structures by Ryzhkin et al. . . . . . . . . 33

4.3 Comparing the structure of water ice and spin ice by Gingras et al. . . . . 36

4.4 Specific heat and entropy vs. temperature of Dy2Ti2O7 by Melko et al. . . 38

xi



4.5 Specific heat vs. temperature of Ho2Ti2O7 by Bramwell et al. . . . . . . . 39

4.6 T/Dnn vs. Jnn/Dnn phase diagram produced by den Hertog and Gingras . 40

4.7 Monte Carlo simulations of specific heat and enrtopy for a spin ice system
including a loop flip algorithm by Melko et al. . . . . . . . . . . . . . . . . 41

4.8 T/Dnn vs. Jnn/Dnn phase diagram with ordered ground state from loop flip
algorithm simulation by Melko et al. . . . . . . . . . . . . . . . . . . . . . 41

4.9 Magnetization vs. field of Dy2Ti2O7 for H ‖ 100, 111, and 110 by Petrenko
et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Field versus temperature phase diagram of Dy2Ti2O7 for H ‖ 110 by Hiroi
et al. and 111 by Higashinaka et al. . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Coulomb energy of magnetic monopoles separated by lattice spacing multi-
ples by Castelnovo et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 The dumbbell model illustrating the creation of a monopole anti-monopole
defect pair connected by a Dirac string via spin flips by Castelnovo et al. . 46

4.13 Relaxation times extracted from ac-susceptibility measurements of DTO in
comparison with Monte Carlo simulations by Jaubert et al. . . . . . . . . . 47

4.14 Relaxation times of Dy2Ti2O7 extracted from specific heat measurements
by Klemke et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.15 Thermal conductivity of Dy2Ti2O7 and the faster relaxation time extracted
from thermal conductivity by Klemke et al. . . . . . . . . . . . . . . . . . . 49

4.16 AC susceptibility of DTO by Yaraskavitch et al. . . . . . . . . . . . . . . . 50

4.17 µSR measurement used to determine the effective value of the magnetic
charge in Dy2Ti2O7 by Bramwell et al. . . . . . . . . . . . . . . . . . . . . 52

4.18 µSR measurement of Dy2Ti2O7 on a GaAs sample mount, a Ag sample
mount and an empty GaAs plate with no sample mounted by Dunsiger et al. 53

5.1 3He-4He temperature vs. 3He concentration phase diagram . . . . . . . . . 56

5.2 Schematic drawing of a Dilution fridge . . . . . . . . . . . . . . . . . . . . 58

6.1 Schematic drawing of a thermal conductivity measurement . . . . . . . . . 61

6.2 Calibration curves for the hot and cold thermometers for a thermal conduc-
tivity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



6.3 Digital image and a computer rendered image of a thermometer used in
thermal conductivity measurements . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Image of the RF shielded breakout box with built in low pass filters . . . . 65

6.5 Standard deviation of the sample thermometer temperatures and resistances
for both the old wire frame mount and the new box mount . . . . . . . . . 66

6.6 Digital image and a computer rendered image of an assembled thermal con-
ductivity mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Completed thermal conductivity box . . . . . . . . . . . . . . . . . . . . . 69

7.1 Digital image of the LaFePO sample . . . . . . . . . . . . . . . . . . . . . 73

7.2 Electronic thermal conductivity of the high-Tc cuprate superconductor YBa2Cu3O7

and of the filled-skutterudite superconductor PrOs4Sb12 by Hill et al. . . . 75

7.3 Thermal conductivity of LaFePO in fields ranging from 0 T to 5 T . . . . . 76

7.4 Zero field thermal conductivity of LaFePO and data taken by Yamashita et
al. in comparison with d-wave predictions . . . . . . . . . . . . . . . . . . 77

7.5 Two dimension projections of s-wave, anisotropic s-wave and d-wave gap
symmetries by Paglione et al. . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.6 Thermal conductivity temperatures dependence of the anisotropic s-wave
model as calculated by Mishra et al. . . . . . . . . . . . . . . . . . . . . . . 79

7.7 The critical temperature is plotted versus the normalized scattering rate for
a number of different 122 iron-based superconductors by Reid et al. . . . . 80

7.8 Field dependence of the thermal conductivity of LaFePO at T → 0 K and
T = 0.46 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.9 Normalized field dependence of the thermal conductivity for the nodal s±
symmetry as calculated by Mishra et al. . . . . . . . . . . . . . . . . . . . 83

8.1 Digital image of the Ho2Ti2O7 sample . . . . . . . . . . . . . . . . . . . . . 87

8.2 Magnetization versus field of Ho2Ti2O7 for H ‖ 111 measured by Krey et al. 88

8.3 Thermal conductivity of Ho2Ti2O7 in fields of 0 T and 8 T parallel to the
111 direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Difference between the zero field and low field conductivity from the 8 T data 92

xiii



8.5 Thermal conductivity in fields of 0 T and 8 T plotted versus temperature
along with best fit functions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.6 Monopole creation energy and monopole density as a function of tempera-
ture calculated via Debye-Hückel theory . . . . . . . . . . . . . . . . . . . 95

A.1 Magnetization of β-YbAlB4 measured by Nakastuji et al. . . . . . . . . . . 101

A.2 Specific heat of β-YbAlB4 measured by Matstumoto et al. . . . . . . . . . 102

A.3 Crysta structures of both α-YbAlB4 and β-YbAlB4 by Matsumoto et al. . 103

A.4 Wiedeman-Franz ratio normalized by the Lorenz number vs. Temperature
for β-YbAlB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.5 Temperature vs. field phase diagram and thermal and electrical resistivity
vs. temperature of β-YbAlB4 in fields of 0 T, 500 mT, 900 mT and 2T ‖ c 105

A.6 Wiedeman-Franz ratio normalized by the Lorenz number vs. Temperature
for β-YbAlB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.7 Wiedeman-Franz ratio normalized by the Lorenz number vs. Temperature
for β-YbAlB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



Chapter 1

Introduction

As temperature approaches absolute zero, a variety of exotic states of matter can arise.
Such emergent states include superconductivity, which has zero electrical resistance, de-
generate spin-ice states with a residual zero-point entropy, and quantum critical systems
that undergo phase changes at T = 0 K. To fully understand the essence of these phases it
is essential to measure the excitations out of the ground state. Thermal conductivity has
been proven to be an invaluable tool for measuring delocalized quasiparticle excitations.
Pairing thermal and charge transport measurements can reveal the nature of these exci-
tations via the Wiedemann-Franz law (WFL) which is satisfied in the electronic Landau
quasiparticle framework.

Superconductivity is supported in a wide variety of materials which can be divided
up into two main classes, conventional and unconventional superconductors. Conventional
superconductors have a phonon mediated electron pairing mechanism which is fairly well
understood and described by Eliashberg theory (an extension of Bardeen-Cooper-Schrieffer
(BCS) theory). However, their maximum attainable critical temperature (Tc) is predicted
(and measured) to be a measly 23 K [2] where thermal fluctuations will be large enough
to break Cooper pairs. Unconventional superconductors, on the other hand, do not fol-
low BCS theory and can have critical temperatures above 90 K, with optimally doped
YBa2Cu3O7−δ (a member of the high-Tc cuprate family) as an example with Tc ∼ 91 K
under ambient pressure [3]. The pairing mechanism in the cuprates is generally accepted
to be magnetic in nature although not fully understood. Most recently, however, a new
family of iron based superconductors have emerged which also appear to have a magnetic
pairing mechanism due to a weak electron-phonon interaction [4]. The symmetry of the
order parameter remains unknown. Thermal transport measurements of superconducting
materials at temperatures approaching absolute zero uncovers valuable information about
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the form of the order parameter. Hence, thermal conductivity measurements have been
made on the iron-based superconductor LaFePO.

The rare-earth titanates, Ho2Ti2O7 and Dy2Ti2O7, provide an excellent reference for
studying frustrated magnetism in three dimensions. The rare-earth ions (Ho3+, Dy3+) are
located on a pyrochlore structure (corner sharing tetrahedra) of cubic symmetry. Their
magnetic moments are nearly perfect Ising spins quantized along the local [111] direction
(into or out-of each tetrahedra) with a net nearest neighbour ferromagnetic exchange in-
teraction. A 6-fold degenerate ground state emerges such that two spins point into each
tetrahedra and two spins point out of each tetrahedra. This arrangement is analogous to
the locations of hydrogen ions with respect to the oxygen atoms in water ice, therefore the
“spin-ice” nomenclature is used. Excitations out of this ground state have been proposed
to behave like magnetic monopole like quasiparticles, with a coulomb interaction. This
arises from a single ice-rule breaking spin flip, which creates a monopole anti-monopole
pair. Subsequent spin flips do not further break the ice rules, and thus the monopoles are
free to move about the crystal. The existence of these monopoles remains a topic of debate.
Therefore, thermal conductivity measurements were made on Ho2Ti2O7 in an attempt to
directly, or indirectly observe the delocalized monopole excitations.

A quantum critical point (QCP) ensues when a phase transition occurs at T = 0 K.
These transitions are driven by quantum fluctuations rather than thermal fluctuations as
in conventional phase transitions away from absolute zero. These curious states of matter
may not follow Fermi-liquid behavior as in a normal metal. There is a debate as to whether
multiple types of QCPs exist which are distinguishable by their macroscopic properties.
Heavy-fermion metals provide an appropriate system for studying antiferromagnetic quan-
tum criticallity. Consequently, thermal and electrical transport measurements were made
on the heavy-fermion metal, βYbAlB4 at temperatures approaching absolute zero. The
results are compared to a collection of other similar quantum critical systems.

1.1 Outline

The goal of this thesis is to utilize the versatility of thermal conductivity measurements
as a tool for measuring fundamental properties of materials by applying it to a variety of
systems. This thesis is organized into three parts:

2



Part I - Theoretical Review

Part I focuses on the theoretical concepts used throughout this thesis. The theory behind
thermal conductivity in both metals and insulating materials is discussed. Superconductiv-
ity is introduced, including an overview of convention s-wave and unconventional d-wave
superconductors. The effect of an applied magnetic field is also considered. Frustrated
magnetic systems are examined beginning with a 2 dimensional toy model followed by a
real world 3 dimensional analogue. It is shown how excitations out of the spin ice ground
state can be thought of as magnetic monopoles.

Part II - Experimental Details

Part II discusses how the measurement is made in practice. The concepts behind how a
helium-3/helium-4 dilution fridge works and the many components involved are introduced.
A new compact and RF shielded thermal conductivity mount is also presented showing
the improvements over the old, wire-framed mount.

Part III - Experimental Results

Part III is where the results of my labor are presented. A detailed examination of the
thermal and electrical conductivity of the iron based superconductor, LaFePO, is presented.
Thermal conductivity measurements on the spin ice material Ho2Ti2O7 are presented in
the search for magnetic monopoles.

Thermal conductivity measurements of βYbAlB4 are located in the appendix. Technical
drawings for the thermal conductivity box and the printed circuit board can also be found
in the appendices. A labeled diagram of the LabView program used to acquire the data is
also included in this section.
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Theoretical Review

4



Chapter 2

Thermal Conductivity Theory

The propagation of heat through a material is characterized by the thermal conductivity
κ which is defined as the ratio of the heat flux density ~Q to the local temperature gradient
~∇T via Fourier’s Law of Heat Conduction [5]:

~Q = −κ~∇T (2.1)

Thermal conductivity is in general a two dimensional tensor due to directional anisotropies
in materials. However, in crystalline materials with a uniform heat current in one dimen-
sion, the thermal conductivity can be represented as a scalar. Under these circumstances,
we can re-write Fourier’s Law as

Q̇ = −κdT
dx

= −κ∆T
A

l
(2.2)

where Q̇ is the amount of heat transferred per unit time, A is the cross-sectional area of
the sample and l is the length.

The heat transfer is mediated by electronic excitations, lattice vibrations, magnetic
excitations etc. so that the total thermal conductivity is the sum of these components
acting in parallel:

κTotal = κe + κph + κmag + ... (2.3)

Thermal transport is a valuable tool in measuring delocalized, low energy, quasi-particle
excitations that are capable of carrying entropy. It can also be used in conjunction with
the electrical conductivity in determining the state of a system, for example, determining
whether a Fermi liquid state is established by verifying the Wiedemann-Franz law (WFL).
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In order to take advantage of the experimental power transport measurements can provide,
an understanding of some of the more basic concepts of electronic charge and thermal
transport and phonon thermal transport is essential. They will now be discussed under
the framework set up by Drude, Sommerfeld and Debye.

2.1 Electronic Conduction in Metals

In 1900, Paul Drude proposed a model describing electrical and thermal conduction by
applying the kinetic theory of gases to a gas of electrons. In order to do this, several
assumptions had to be made about this cloud of electrons that, barring large electron-
electron or electron-ion interactions, results in a satisfactory description of normal metals.
These assumptions are as follows: in the absence of an external electromagnetic field, the
conduction electrons travel in straight lines between collisions. This neglect of the electron-
electron and electron-ion interactions between collisions are known as the independent
electron approximation and the free electron approximation respectively [5]. Furthermore,
only collisions between electrons and ions will be considered and they will be treated as
instantaneous events as in the kinetic theory of gases. These collisions will occur with a
probability per unit time of 1/τ where τ is the relaxation time. Finally, Dude assumed that
the system will attain thermal equilibrium only through these collisions. These assumptions
can now be used to calculate the electrical resistivity.

We will define the electrical conductivity σ as the ratio of the electronic current density
~j to the electric field ~E at any given point in the metal such that

~j = σ ~E (2.4)

Similar to the thermal conductivity, the electrical conductivity is also in general a second
order tensor, but when the electric field is simplified to one-dimension σ reduces to a scalar
quantity. The electrical resistivity ρ is then defined as reciprocal of the conductivity so that
ρ = 1/σ. Suppose a current ~I is flowing through a wire of length L and cross-sectional area
A. This current can be described as n electrons with charge −e flowing through the area
A with velocity ~v parallel to ~I over a short time dt and can be written as ~I = −ne~vAdt.
Therefore, the resulting current density is given by

~j = −ne~v (2.5)

In the absence of an electric field the net current density and consequently the average
electron velocity equates to zero. This is due to the fact that the velocity of an electron
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immediately after a collision is completely random and thus averages to zero. So a non-zero
mean velocity is a direct result of an applied electric field. Hence, the mean velocity of the
electrons can be thought of as the effect of the electric field on a stationary electron over a
time t and is thus equal to −e ~Et/m. However, the average time between collisions is equal
to the relaxation time τ . The average electron velocity can thus be written as

~vavg = −e
~Eτ

m
(2.6)

Combining equations (2.4), (2.5) and (2.6) we arrive at the electrical conductivity as per
the Drude model.

~j =

(
ne2τ

m

)
~E; σ =

ne2τ

m
(2.7)

We are able to use the Drude model to find this explicit form of the electrical conductivity
because it does not depend on the energy distribution. Therefore, even though the Drude
model is strictly classical and would thus use the Maxwell-Boltzmann distribution the
conductivity is still valid. We can modify the Drude model by using Fermi-Dirac statistics
as in the Sommerfeld Theory of metals to derive the specific heat and thermal conductivity
of semi-classical metals.

To determine the electronic thermal conductivity κe we will calculate the electronic
contribution to the specific heat from Fermi-Dirac statistics and take advantage of the
following equation from kinetic theory which states:

κe =
1

3
cvv

2
F τ (2.8)

where cv is the electronic specific heat, vF is the Fermi velocity and τ is the electron mean
free path. Since we are using Fermi-Dirac statistics, we will use the Fermi function to
describe the electronic distribution which is defined as

f(ε) =
1

e(ε−µ)/kBT + 1
(2.9)

The Fermi function, f(ε), and the density of states, g(ε), can then be used to calculate the
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electronic specific heat by finding the total internal energy and recalling that cv =
(
∂u
∂T

)
n
.

cv =
∂

∂T

∞∫
−∞

dε g(ε)εf(ε)

=
3

2

(
kBT

εF

)
nkB

∞∫
−εF /kBT

x2ex

(ex + 1)2
dx

=
π2

2

(
kBT

εF

)
nkB (as T → 0)

(2.10)

Here, x ≡ (ε − εF )/kBT , and as x → εF/kBT , ex ≈ 0 thus the lower limit on the
integral can be replaced by −∞ so that the integral can be easily evaluated to be π2/3.

Noting that the Fermi velocity vF =
( ~
m

)
kF and the Fermi energy εF =

~2k2F
2m

, we can now
combine equations (2.8) and (2.10) to determine the electronic contribution to the thermal
conductivity κe.

κe =
π2

3

k2
Bnτ

m
T (2.11)

2.1.1 Wiedemann-Franz Law

The ratio of the thermal conductivity (equation 2.11) and the electrical conductivity (equa-
tion 2.7) thus give a constant value regardless of the material [6].

κe
σT

=
π2

3

(
kB
e

)2

= 2.44 · 10−8 WΩ/K2 (2.12)

This can be verified by measuring a well behaved metal to low enough temperatures where
the thermal conductivity is dominated by the electronic term and scattering is independent
of temperature. Thermal and electrical conductivity was measured in a silver wire to
demonstrate the Wiedemann-Franz law. The results are seen in figure 2.1.

2.2 Phonon Thermal Conduction

We shall calculate the phonon thermal conductivity in a similar manner to the electronic
thermal conductivity. However, since phonons are bosons, Bose-Einstein statistics will be
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Figure 2.1: A plot of L/L0 vs T for a silver wire where L = κ/σT . It is evident that the
Wiedemann-Franz law in satisfied to within 8% from 50 mK to 1 K. The slight deviation
at low temperature is due to poor thermometry. Inset: A plot of κ vs T of the silver wire
demonstrating that the conductivity is linear in temperature as expected for the electronic
contribution to thermal conductivity.

used in place of Fermi-Dirac statistics. Thus the distribution function of interest is:

f(ε) =
1

e(ε−µ)/kBT − 1
(2.13)

We shall follow the Debye model of lattice vibrations (phonons) at low temperatures, ie.
when ΘD/T � 1 where ΘD is the Debye temperature. The main assumption made in the
Debye model is that there is an upper limit to the linear phonon dispersion ω = vsk. That
is, no modes are allowed above the Debye wave vector, kD. Now, using the Bose-Einstein
function and the phonon dispersion, we are able to calculate the phonon energy:

u = 9NkBT

(
T

ΘD

)3
xD∫
0

x3

ex − 1
dx (2.14)
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where x ≡ ~ω/kBT , xD ≡ ΘD/T and N is the number of atoms in the the crystal. Since
we are concerned with the low temperature regime, then xD →∞ and the integral can be
evaluated to be π4/15. The phonon specific heat can now be easily obtained by taking the
derivative with respect to temperature so that

cph =
12

5
π4NkB

(
T

ΘD

)3

(2.15)

This is the famous T 3 law for the low temperature phonon specific heat. Once again, using
kinetic theory we can find the phonon thermal conductivity.

κph =
1

3
cphvsl ∝ T 3 (2.16)

This is a specific case of the phonon thermal conductivity where the phonon mean free path,
l, is temperature independent, for example in the boundary scattering limit. However, if
we write the specific heat in a more general way by taking the derivative of equation (2.14)
without evaluating the integral we are get

c(x)dx =
3kB

2π2v3

(
kB
~

)3

T 3 x4ex

(ex − 1)2
dx (2.17)

and thus the thermal conductivity is

κ =
1

3
v

∫
l(x)c(x)dx (2.18)

which allows the mean free path, l(x), to have a frequency dependence.

2.2.1 Phonon Scattering Mechanisms

Now that we have a general form of the phonon thermal conductivity allowing the mean
free path to have a frequency dependence, we can examine a variety of phonon scattering
mechanisms which lead to a range of temperature dependencies in the thermal conductivity.

1. Boundaries. As the temperature approaches absolute zero, the mean free path of the
phonons becomes large, and is eventually limited by the sample boundaries. Thus
the mean free path is frequency independent and is equal to a geometric average of
the sample width determined by l =

√
4A/π where A is the cross-sectional area of
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the sample. In light of this, equation (2.8) dictates that the thermal conductivity
due to sample boundary scattering will be given by

κb =
1

3
γvs

√
4A

π
T 3 (2.19)

where the phonon specific heat is cph = γT 3. A T 3 behaviour is seen in the conduc-
tivity for other frequency independent mean free path scattering modes, for example,
scattering off of grain boundaries.

The validity of the assumption that scattering off the sample boundaries affects all
phonons regardless of their frequency is in question when one considers the difference
between diffuse and specular scattering. In fact, due to specular scattering of phonons
off of the sample boundaries, the temperature dependence of the thermal conductivity
is sub T 3. This phenomena has been examined in depth in other insulating materials
[7, 8, 9].

2. Phonons: normal and Umklapp-processes. Consider the interaction of two phonons
with wave vectors ~q1 and ~q2 and frequencies ω1 and ω2 respectively such that they
combine to result in a third phonon with wave vector ~q3 and frequency ω3. Note that
in these kind of three-phonon processes, energy must be conserved (~ω1 +~ω2 = ~ω3)
and wave vector must also be conserved (~q1 + ~q2 = ~q3 + ~qo) where ~qo is a reciprocal
lattice vector. Now, if ~qo = ~0 then ~q3 lies in the first Brillouin zone and the phonon
momentum is conserved. This is known as a normal process (or N-process) and does
hinder the heat transport. If ~q3 falls outside of the first Brillouin zone then ~qo 6= ~0 and
thus changing the net direction of energy flow. This is known as Umklapp scattering
(or U-processes) and does give rise to thermal resistance. For a U-process to occur,
at least one of the phonons must have a frequency greater than half of the maximum
allowed frequency, ie. ω1 ≥ 1

2
ωD = 1

2
kBΘD/~ which occurs with a probability of

approximately e−ΘD/2T at low temperatures (T � ΘD). Similarly, the probability
that the second phonon has a large enough wave vector to make ~q3 fall outside of
the first Brillouin zone is usually assumed to proportional T−n. Thus the thermal
conductivity will have the following temperature dependence:

κu ∝ T neΘD/gT (2.20)

where n ≈ 3 and g ≈ 2. We also find that the mean free path is proportional to the
frequency ω.

3. Conduction electrons. When phonons interact with conduction electrons in metals at
low temperatures, the electrons will absorb or emit energy on the order of kBT as a
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result of small angle scattering. This is enough energy to promote/demote an electron
just above/below the Fermi-surface. That is, only electrons that lie within kBT of
the Fermi surface will be able to interact with the phonons. Hence, the number of
electrons available fore scattering at a given temperature will be proportional to T
and therefore the phonon mean free path, l, will be proportional to T−1. We have
also seen that the phonon specific heat cph is proportional to T 3 (see equation (2.15))
thus using kinetic theory (equation (2.8)) we find that the conductivity is given by:

ke−ph ∝ T 2 (2.21)

and the mean free path is proportional to ω.

4. Point defects and isotopes. Defect in crystals that are on the atomic scale such as
isotopes with different masses, impurities or a vacant lattice site will all appear as
point defects in the crystal to the long wavelength phonons at low temperature. These
defects will scatter phonons similar to Rayleigh scattering of photons such that they
have a scattering probability proportional to q4. The difference is that the phonon
mean free path is ultimately limited by the sample dimensions. The scattering rate is
thus proportional to T 4 which results in the thermal conductivity being proportional
to T−1 since the phonon specific heat goes as T 3. We also find that the mean free
path is proportional to ω−4.

5. Dislocations. A dislocation is a defect in a crystal that extends in one direction. For
example, when an atom does not lie directly on a lattice site, but is skewed from that
location. This leads to two main imperfections, the first is that the atom is not quite
at the lattice site, and the second is that it causes a strain field in the surrounding
crystal. The latter has a larger impact on the phonon scattering as the former is on a
much smaller length scale, on the order of a few atoms. This is analogous to Rayleigh
scattering off of a cylinder. The thermal conductivity can therefore be found to be
proportional to T 2 and the mean free path is proportional to ω−1.

It is worth noting that Umklapp processes only have a noticeable contribution on the
phonon scattering at higher temperatures (T ≈ ΘD) as the scattering rate decays expo-
nentially. This being said, as the temperature is decreased, the phonon mean free path
increases until comparable with the sample dimensions and therefore boundary scattering
dominates as T → 0 K. A brief reference table summarizing the various phonon scattering
mechanisms along with the frequency dependence of the mean free path and the conduc-
tivity temperature dependence is given in table 2.1. A more detailed discussion of phonon
scattering mechanisms in both metals and non-metals, see “Low Temperature Solid State
Physics” by H. M. Rosenberg [10].
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Scattering Mechanism l(ω) ∝ κ(T ) ∝
Sample boundaries const. T 3

Grain boundaries const. T 3

Umklapp processes ω T 3eΘD/2T

Conduction electrons ω T 2

Point defects ω−4 T−1

Dislocations ω−1 T 2

Table 2.1: Frequency dependence of the phonon mean free path and temperature depen-
dence of the thermal conductivity for various phonon scattering mechanisms.

2.2.2 Matthiessen’s Rule

It is often advantageous to use the language of thermal resistance, W ≡ 1/κ, rather than
thermal conductivity when considering scattering from multiple sources. The thermal
resistances resulting from the various phonon scattering mechanisms can then be added
analogous to electrical resistors in series. Thus, WTotal = Wb + Wu + Wpd + ... . Writing
this in terms of thermal conductivity, using equation (2.8) we get Matthiessen’s rule:

1

κTotal
=
∑
i

1

κi
=

3

cphvs

∑
i

1

li
(2.22)

where li are the phonon mean free paths associated with boundary scattering, Umklapp
processes etc. as discussed in section 2.2.1.
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Chapter 3

Superconductivity

A superconductor is a material that when cooled below some critical temperature, Tc,
undergoes a transition to a state which has zero resistivity and expels all magnetic fields
(the Meissner effect). There are many classes of superconducting materials, both conven-
tional and unconventional. One way to classify them is into two types, type I and type II.
A type I superconductor is a perfect diamagnet with a linear magnetization up to some
critical field, Hc and then reverts back to the normal, non-superconducting state. A type
II superconductor is a perfect diamagnet up to a lower critical field, Hc1 at which point
the magnetization decays as the superconductor allows flux vortices to form inside the
superconductor until superconductivity is killed at the upper critical field, Hc2.

The realization of room temperature superconductivity is the ultimate goal, it’s essen-
tially the holy grail. The discovery of a room temperature superconductor would have
implications with transportation (levitating superconducting trains), power storage and
transmission (zero resistance wires) and technology (smaller and more efficient electron-
ics). Upon attempting to increase the critical temperature, it is essential to understand the
origin of superconductivity in current materials through a collaboration of experimental
and theoretical studies. When looking to the future of superconductivity it is also im-
portant to know the history, thus a quick summary of some of the major discoveries in
superconductivity are discussed in the next section.

3.1 A Brief History of Superconductivity

The ability to measure materials at temperatures approaching absolute zero is of utmost
importance in fully understanding the behavior of electrons and other novel phenomena
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which would otherwise be clouded due to higher temperature lattice vibrations and other
thermal fluctuations. When Kamerlingh Onnes discovered how to liquefy helium at 4.2
K in 1908 [11], a whole new realm of physics became accessible. Upon measuring the
electrical resistivities of a variety of elements at these temperatures in 1911, he discovered
that there was a sudden drop to zero resistance in mercury at 4.19 K which won him
the Nobel prize two years later [12]. This behavior is now known as superconductivity.
Over the next 75 years, superconductivity was found to exist in many other elements
(lead [13], niobium [14]) and in the so called A15 compounds (V3Si, Nb3Sn) [15] with
the maximum transition temperature (Tc) occurring in Nb3Ge at 23.2 K [2]. This was the
highest known transition temperature until 1986, at which point Bednorz and Müller found
superconductivity in a copper based material, La2−xBaxCuO4, with Tc = 36 K [16]. This
won them the Nobel prize in 1987, the same year that Paul Chu found YBa2Cu3O7−δ to
have a transition temperature of 93 K (well above liquid nitrogen temperatures) [3]. The
cuprates remain the highest Tc materials to date, however in 2008 a new class of iron based
superconducting materials were discovered [17]. This discovery sparked a flurry of interest
due to its unconventional nature being that it is metallic in the normal state and also that
it is magnetic, a property originally thought to suppress superconductivity. Before we dive
into these unconventional superconductors, we will first look at the best theoretical model
describing some of the more conventional superconductors.

3.2 Introduction to BCS Theory

The phenomena of superconductivity has stumped theoretical physicists since its discov-
ery in the early 1900’s. It wasn’t until the 1950’s when Bardeen, Cooper and Schrieffer
formalized the first microscopic theory describing superconductivity (BCS theory) [18].
Cooper proposed that a weak attractive interaction between electrons would result in pairs
of electrons forming bound states called Cooper pairs. These overlapping Cooper pairs
then condense into the superconducting ground state which is at a lower energy than the
normal state Fermi sea. Thus, below some critical temperature, Tc, all the electrons form
Cooper pairs and bind together into a many body condensate ground state. The attrac-
tive potential between electrons can be mediated via a phonon interaction as in the case
of conventional superconductors or a magnetic fluctuation interaction as in some of the
unconventional superconductors. The idea of an attractive potential between electrons
may seem hard to comprehend from an intuitive stand point, however due to the retarded
phonon-electron (or magnon-electron) interaction the correlation length is in fact on the
order of 1000 Å, and thus does not violate the repulsive Coulomb interaction as one might
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expect. A brief overview of BCS theory will now be discussed.

BCS theory is based on the idea that a weak attractive interaction between electrons
will cause the formation of bound pairs of electrons known as Cooper pairs. Cooper pairs
are comprised of a pair of electrons of opposite spin and momentum (k ↑, −k ↓) and
form a spin singlet state which is verified by NMR Knight shift measurements [19, 20].
Since the paired electrons have opposite momentum, their net momentum is zero. The
superconducting ground state wave function is described by:

|Ψ〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉 (3.1)

where |vk|2 is the probability of the state (k ↑, −k ↓) being occupied and |uk|2 is the
probability unoccupation such that |uk|2 + |vk|2 = 1. The energy gap from the normal
state to the superconducting state is expressed via the superconducting gap equation.

∆k =
1

Ω

∑
k′

Vkk′uk′vk′ =
1

Ω

∑
k′

Vkk′
∆k′

2
√
ε̃2k′ + ∆2

k′

(3.2)

Here Ω is the volume, Vkk′ is the attractive interaction between electrons in states k and
k′ and ε̃k′ is the kinetic energy above the Fermi energy (ie. ε̃k′ = εk′ − εF ).

3.2.1 Symmetry of the superconducting gap

The superconducting gap function, ∆k, can take on many forms with a variety of symme-
tries (see figure 3.1). In general, the s-wave symmetry has an isotropic gap, that is, ∆k is
a constant function of the momentum, k, so it does not change sign or magnitude, thus
exhibiting a four-fold rotational symmetry. However, anisotropic s-wave symmetries can
exist either with deep minima or even accidental nodes, in which case the value of the gap
can change sign. This is allowed as long as ∆k maintains the four-fold rotational symme-
try. Another possible symmetry is the d-wave scenario. The sign of the order parameter
changes four times around the Fermi surface in the d-wave case which imposes mandatory
nodes. The four-fold rotational symmetry is violated in this case, differentiating itself from
the nodal s-wave scenario.

Discerning between the various gap symmetries can often be a formidable task, espe-
cially in some of the more exotic multiband materials materials such as the iron-based
superconductors which will be discussed later in this chapter (see section 3.6). A variety of
experiments can be used to probe the structure of the gap by measuring either the phase,
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or the amplitude of the gap. The phase can be determined using the Josephson effect (ie.
using a corner junction to detect a change in phase in the d-wave case). The amplitude
can be measured via NMR, ARPES, penetration depth and thermal conductivity measure-
ments (as reported in this thesis). Thermal conductivity is also adept at detecting the
presence of nodes in the gap.
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Figure 3.1: Possible order parameters projected onto the (kx,ky) plane. The supercon-
ducting gap (blue line) is superimposed on top of a circular Fermi surface (red line). The
s-wave scenario has a finite, isotropic gap which does not change sign (left). However, the
gap can become anisotropic with the appearance of deep minima or even accidental nodes
while maintaining the four-fold rotation symmetry (center). The sign changes sign four
times around the Fermi-surface in the d-wave case, which imposes mandatory nodes in the
gap (right). This breaks the four-fold rotational symmetry of the lattice.

3.3 Conventional Superconductors

For a conventional s-wave superconductor BCS theory assumes that the interaction is
constant in a narrow band above the Fermi surface and zero everywhere else such that

Vkk′ =

{
V if |ε̃k| and |ε̃k′ | ≤ ~ωD
0 otherwise

(3.3)

Upon converting the sum in equation 3.2 to an integral over energy and solving, it becomes
apparent that ∆ has no k dependence and can be written as ∆ = Φeiφ. This is known as
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an “s-wave” superconductor. In fact, the isotropic energy gap depends on the density of
states at the Fermi surface and the magnitude of the attractive interaction and is on the
order of a few meV. In the weak-coupling limit where N0V � 1, the gap can be written as
∆ = 2~ωDe−1/N0V and the transition temperature is Tc = 1.13~ωDe−1/N0V . Thus the value
of the gap at T = 0 is

∆0 = 1.764kBTc. (3.4)

This is a universal relation between the energy gap and Tc for all conventional supercon-
ductors in the weak-coupling limit. This finite gap over the entire Fermi surface leads to
an absence of any electronic states for energies less than this gap.

N(E) =

{
N0

E√
E2−∆2 (E > ∆)

0 (E < ∆)
(3.5)

Conventional superconductors are often metallic and thus above T = Tc, the specific heat
Cv(T ) = γT as expected in a normal metal. At T = Tc there is a jump in the specific heat,
∆C = |CN − CSC |, followed by a thermally activated behavior proportional to e−∆/(kBT ),
that is, it decays exponentially as the temperature is further lowered below Tc. This
behavior is illustrated in figure 3.2.
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Figure 3.2: Density for state (left) and specific heat (right) of a conventional superconduc-
tor.

BCS theory states that for a conventional superconductor in the weak-coupling limit
the jump in specific heat normalized by the normal state specific heat at Tc is a universal
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ratio given by:
∆C

γTc
=
|CN − CSC |

CN

∣∣∣∣
T=Tc

= 1.43 (3.6)

A similar universal ratio exists for the critical field such that

γT 2
c

H2
c (0)

= 1.68 (3.7)

The thermal conductivity will also decay exponentially because κ ∼
∫
dEN(E)τ(E).

Although the relaxation time, τ diverges as the temperature goes to zero, since there are
fewer states to scatter into, the density of states is zero and thus κ also tends to zero. Near
T = Tc the electronic contribution is dominant but as T → 0 κe → 0 because electrons
are forming cooper pairs which do not carry any entropy and thus the conductivity is
dominated by the phonon conductivity when T . 0.3Tc. The phonon conductivity will
then be limited by the sample boundaries. In these s-wave superconductors, it has been
shown that the conductivity is insensitive to non-magnetic impurities because they do
not effect superconducting gap and also do not break cooper pairs. Aluminum is a good
example of a BCS superconductor in the weak coupling limit. Low temperature thermal
conductivity of aluminum can be seen in figure 3.3. Despite a large difference in impurities
in the three samples, it has little effect on the conductivity since the presence of non-
magnetic impurities has no effect on the gap and thus the conductivity is still dominated
by phonons.

3.4 Unconventional Superconductors

Unconventional superconductors can be most generally defined as superconducting materi-
als that do not conform to BCS, or Eliashberg, theory. Unconventional superconductivity
often arises due to a non-phonon mediated pairing mechanism which may have a k depen-
dence that can be written in a separable form. That is, Vkk′ = ηkV ηk′ and ∆k = ∆0ηk
where 〈ηk′〉 = 0 and 〈η2

k′〉 = 1. The energy gap is then found to be

∆0 = 2~ωDe−1/N0V e−2α2l (3.8)

where α2l ≡ 〈η2
k′ ln |ηk′|〉. Many unconventional superconductors have a nodal, d-wave gap

symmetry. In two dimensions, d-wave symmetry is achieved when ηk =
√

2 cos(2θ) [22].

Nodes in the superconducting gap allow low energy electronic quasi-particles which
carry momentum even when E < ∆ which is forbidden in the s-wave case! These low en-
ergy quasi-particles impose many implications involving transport, specific heat and other
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Figure 3.3: Thermal conductivity of aluminum normalized by the normal state conductiv-
ity. Although the residual resistivity ratio (RRR) ranges from 26 to 3660, they all lie very
close to the curve predicted by BCS theory which predicts ∆ = 1.76kBTc [21].

physical properties as they dominate the low temperature electronic properties. These
important consequences involve power law temperature dependence in charge and thermal
transport, specific heat and penetration depth as opposed to the thermally activated be-
havior seen in the isotropic, s-wave gap symmetry. The exact behavior of these properties
depend on the type of node exists in the order parameter. If a line node exits in the gap (as
in the polar gap symmetry) then the density of states is linear in energy for E < ∆. Point
nodes can be linear in k (type I) and results in the density of states being quadratic in
energy so that N(E) ∝ E2 or quadratic in k (type II) leading a linear energy dependence
to the density of states such that N(E) ∝ E.

Unlike in the isotropic gap scenario, impurities have an effect on the low energy density
of states in a nodal superconducting gap since they alter the regime where E < ∆. We
will concern ourselves with a linear density of states as in the dx2−y2 symmetry (d-wave)
superconductors. We can define the impurity bandwidth, γ, as the point where the density
of states deviates from the expected linear behavior in a pure d-wave and remains approxi-
mately constant for T → 0. This non-vanishing density of states is due to impurities which
break the Cooper pairs. These low energy quasi-particles behave like a normal Fermi-sea
and thus produce a linear term in the thermal conductivity right down to T = 0 for the
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range in T over which N(ε) is constant.

Figure 3.4: Density of states of an unconventional d-wave superconductor with Γ/∆ = 0
(solid line), 0.01 (densly dotted line), 0.05 (dotted line), 0.1 (dash-dotted line), 0.2 (dashed
line) [23].

Before we discuss the implications of strong (unitary) and weak (Born) scattering on
the scattering rate, I will first make a quick note on the concept of “clean” and “dirty”
systems. A convenient definition of the clean limit is when γ < T � ∆ so that the density
of states is linear energy and we can safely ignore the impurities. Similarly, the dirty limit
is when T < γ which occurs when the pair breaking impurities lead to a constant, non-zero
density of states.

Now we can articulate the effect of Born and unitary scattering on the scattering rate
in both the clean and dirty limits, while sticking with the d-wave symmetry. We can define
τ as the quasi-particle relaxation time and δ is the scattering phase shift. In the weak
scattering limit (Born) then δ = 0 and it can be shown that:

1

τ
=

{
Γω clean
γ = 4∆0e

−π∆0/2Γ dirty
(3.9)

Here, the impurity bandwidth is very small in the dirty limit, indicating that the impurity
scattering does not affect the density of states until very low temperatures (T . γ). If we
look at the strong scattering limits (unitary) then δ = π/2, which is the maximum phase
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Figure 3.5: Thermal conductivity of an unconventional d-wave superconductor [24].

shift, and the inverse of the relaxation time is [25]:

1

τ
=

{
Γ/(ω ln2 ω) clean
γ = 0.63

√
∆0Γ dirty

(3.10)

In this case, the ‘dirty limit’ is realized over a larger temperature range. As stated
earlier, the density of states is linear in energy (N(E) ∼ E) in the clean limit. However,
we are concerned with the low temperature regime, where impurity scattering dominates
and the density of states is approximately constant. This finite density of states in the
dirty limit leads to a universal electronic component to the thermal conductivity such that:

κe
T

(T ) =

[
κ0

T
+

7π2

15

(
a2T

γ

)2
]

(3.11)

where a is a constant dependent on the scattering strength. The linear term is universal
in the sense that it does not depend on the scattering rate and is given by [26]:

κ0

T
=

(
4

π

~Γ

∆0

1

µ

)
κn
T

(3.12)

where µ is the slope of the gap at a node which is equal to 2 for a pure d-wave supercon-
ductor. Although there is a Γ in the expression for κ0(T ) in equation 3.12, the normal
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state conductivity, κn, is inversely proportional to the scattering rate, confirming the uni-
versality of the linear term in the electronic thermal conductivity. For a full derivation of
the d-wave thermal conductivity see Graf et al. 1996 [24].

We have now seen that impurities in the presence of a nodal superconducting gap lead to
a non-zero density of states at T = 0. This causes a finite residual linear electronic thermal
conductivity for T → 0. We have also seen that in the case of a d-wave superconductor
the value of the linear term is universal but the T 3 temperature dependence is strongly
dependent on scattering, in particular, the impurity bandwidth γ.

The high-Tc copper-oxide (cuprate) superconductors have been shown to have d-wave
pairing symmetry. What is interesting about these unconventional superconductors is
that the electron pairing is not mediated by an electron-phonon interaction as in the
conventional superconductors but rather by magnetic fluctuations. Classically, magnetism
was though to compete with superconductivity, which would have a detrimental effect on
the critical temperature. However, a balance of superconductivity and magnetism seems
to exist in the cuprates as can be seen in their temperature vs. doping phase diagram in
figure 3.6.

Figure 3.6: General phase diagram for the high Tc cuprate superconductors [27].
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3.5 Superconductors in a magnetic field

As we have seen earlier, one of the defining properties of a superconductor is the Meissner
effect, that is, in the superconducting state, the net magnetic field is zero (B = 0). There-
fore, superconductors are perfect diamagnets which means that the magnetism, M , is a
linear function of the applied field, H, such that B = H + 4πM = 0. The application of a
magnetic field on superconducting materials will have varying effects depending on the type
of superconductor. Type-I superconductors will behave perfectly diamagnetically until a
critical magnetic field, Hc, at which point superconductivity is suppressed and the system
becomes ‘normal’ with zero magnetization (figure 3.7). This behavior is often seen in con-
ventional, s-wave superconductors. Type-II superconductors, however, have two critical

H

−
4

π
M

Hc0

H

−
4

π
M

Hc1 Hc20

Figure 3.7: Magnetism vs applied field for type-I (left) and type-II (right) superconductors.

fields, a lower critical field, Hc1, and an upper critical field, Hc2. Below the lower critical
field, Hc1, The system behaves as a perfect diamagnet with a linear magnetization. For
Hc1 < H < Hc2, the magnetization does not jump to zero due to the suppression of super-
conductivity as it does in a type-I superconductor, in fact the magnetization decays to zero
exponentially with the full suppression of superconductivity occurring at the upper critical
field Hc2 (figure 3.7). In this state, tubes of magnetic flux, known as vortices, are allowed
to penetrate the superconductor which are screened by loops of current maintaining zero
magnetic field in the bulk of the superconductor.

The magnetic flux associated with each vortex is quantized to be Φ = hc/2e. This flux
quantization is taken as evidence for cooper pairs since the quantum mechanical magnetic
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flux quanta is hc/q∗ for a charge q∗, and in this case the charge is 2e because the flux comes
from a bound pair of electrons which form the screening current around each vortex. The
vortices arrange themselves into a triangular lattice known as the Abrikosov flux lattice
(figure 3.8).

Figure 3.8: Scanning-Tunneling-Microscope (STM) image of the Abrikosov flux lattice in
NbSe2 at 1.8 K in a field of 1 T observed by Hess et al. in 1989 [28].

The electronic quasiparticle states outside of the vortices are Doppler shifted due to the
superfluid flow around the vortices. This will lower the energy of some of the states, making
them accessible by the quasiparticle excitations, thus increasing the density of states at the
Fermi energy. It can be shown that the density of states at the Fermi energy is proportional
to
√
H [25]. Calculating the thermal conductivity is much more complicated as it also

involves the scattering rate. In conventional type-II superconductors the quasiparticle
mean free path is determined by the vortex density whereas impurity scattering dominates
in d-wave superconductors. The thermal conductivity due to the electronic quasiparticles in
conventional superconductors will initially decrease due to vortex scattering, then increase
rapidly to the normal state value at Hc2. In d-wave superconductors at low temperature
and field, the electronic contribution to the thermal conductivity increases with an applied

25



magnetic field with a field dependence qualitatively similar to
√
H [29, 30].

3.6 Iron-based superconductors

Due to the detrimental effect magnetism has on superconductivity, magnetic materials have
been avoided in the search for higher transition temperature superconductors. However, in
2008, Hosono et al. discovered superconductivity in the iron based material LaFeAsO with
a critical temperature 26 K when doped with fluorine [31]. The discovery of this new class
of iron-based superconductors sparked a flood of interest because of the magnetic nature
of the parent compound with the discovery of more than 50 iron based, superconducting
materials. These iron based materials share many similarities to other unconventional
superconducting materials (high-Tc cuprates, heavy fermion superconductors and many
organic superconductors) such as having a non-phonon mediated pairing mechanism and
the importance of chemical substitution in enabling superconductivity as in the case of
the cuprates. Unlike in the cuprates, chemical substitution in the active planes (the iron
planes as we shall soon see) of the iron based superconductors can enhance the critical
temperature. Examining the ground states of these systems is important to build an
accurate picture of this unconventional superconductivity. We will begin by looking at the
crystal structure of the iron-based superconductors.

3.6.1 Crystal Structure

To date, five distinct crystal structures have been observed to support superconductivity
in the iron based superconductors. All of these structures share a common plane consisting
of iron atoms arranged on a square lattice joined by a tetragonally situated pnictogen (P,
As) or a chalcogen (S, Se, Te) alternating above and below the Fe plane. This plane is
analogous to the copper-oxygen planes in the high Tc cuprate superconductors which is
believed to be where superconductivity originates [32]. The structure of the iron based
superconductors can be as simple as stacking these iron layers, as in FeSe. However there
is often an additional layer stacked in between the iron layers which is known as a blocking
layer since it imposes a somewhat two-dimensional quality to the crystal. The additional
spacing layer is comprised of one of the following: alkali (Li), alkaline-earth (Ba), rare-
earth oxide/fluoride (LaO or SrF) or a more complicated collection of atoms (such as the
perovskite Sr3Sc2O5). The five crystal structures that support superconductivity in iron
based materials are seen in figure 3.9.
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Figure 3.9: The five distinct tetragonal structures which support superconductivity in iron
based materials [32].

3.6.2 Electronic band structure

The electronic band structure has been calculated using the local density approximation
[33] which reveals several bands which cross the Fermi-energy (EF ) both electron-like and
hole-like. The Fermi-surface consists of two quasi-cylindrical hole pockets at the center
of the Brillouin zone where k = (0, 0) (the Γ point) and two electron pockets located at
k = (0,±π) and k = (±π, 0) [34, 35]. Since the location of the two pnictogens/chalcogens
are staggered above and below the Fe plane, the unit cell must contain two iron atoms,
so the Brillouin zone gets folded onto itself, and thus the electron pockets are located at
k = (±π,±π) (the M point). This is illustrated in figure 3.10 where the Fermi-surface of
BaFe2As2 with a 10% Co substitution is shown.
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Figure 3.10: The Fermi-surface of BaFe2As2 doped with Co. Two hole pockets are located
at Γ and two electron pockets are located at M [32].

This calculation qualitative agrees exceptional well with experiment. Angle-resolved
photoemission spectroscopy (ARPES) measurements on LaFePO [36] and quantum oscil-
lations measurements on NdFeAsO0.9F0.1 [37] and Ba0.6K0.4Fe2As2 [38] all show excellent
agreement with this multiband Fermi-surface, with two hole pockets at the center of the
Brillouin zone (Γ) and two electron pockets at the corners of the Brillouin zone (M).

3.6.3 Structure of the order parameter

The multiband nature of the Fermi-surface can lead to many possibilities for the symmetry
of the superconducting order parameter which can be quite exotic. The simplest possibility
is the isotropic s± symmetry which is similar to the s-wave (as described earlier) such that
the gap is constant for all momenta but with a sign change between the two bands. A
modification of this order parameter is the nodal s± or anisotropic s± such that one
band has a fairly isotropic gap and the other with either deep minima or accidental (not
symmetry induced) nodes. The other possible order parameter is the d-wave symmetry
which is nearly degenerate with the anisotropic s± gap [39].
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ARPES [38], penetration depth [40] and some thermal conductivity measurements [41]
have revealed fully gaped superconductivity in many compounds. This being said, low
temperature penetration depth measurements on LaFePO [42] and on BaFe2(As1−xPx)2

[43] show signs of low-energy quasi-particle excitations which are indicative of a line node
in the gap. This inconsistency may be due to intraorbital interactions [44] and the exact
details of the electron and hole nesting in the Fermi-surface [45] in determining different
gap topologies. The picture becomes even more complex because in the case of the isotropic
s± gap, disorder can create subgap excitations which appear as a low-energy density of
states giving the illusion of nodes in the gap. However, the residual linear contribution to
thermal conductivity resulting from the disorder induced density of states is usually on the
order of 1% of the normal state conductivity [46]. This is not the case since a substantial
linear term is observed in the thermal conductivity of BaFe2(As0.67P0.32)2 [43] indicating
the presence of nodes. Thus, the fully gapped isotropic s± scenario is generally ruled out
due to experimental evidence. None the less, due to the fact that the energies of these
gap symmetries are so close it is clear that extreme care must be taken to experimentally
resolve whether the low-energy states are intrinsic (caused by nodes) or extrinsic (caused
by disorder). NMR Knight shift measurements have also shown that the Cooper pairs are
singlet in nature [47, 48, 49, 50].

Figure 3.11: Temperature vs. chemical substitution for a variety of iron based supercon-
ductors [32].
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The phase diagram of the iron based superconductors also shares many similarities with
the cuprates as can be seen in figure 3.11. There is a delicate balance between magnetism
and superconductivity. In fact, although the pairing mechanism remains unknown in the
iron based superconductors, it is thought to be magnetic in nature rather than mediated
by phonons due to a weak phonon-electron interaction. The iron based superconductors
however are metallic in their normal state which differs from the cuprates that are magnetic
insulators.
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Chapter 4

Frustrated Magnetism

4.1 A Toy Model

To understand frustration in magnetic systems, it is advantageous to first look at a toy
model. We will consider an Ising spin system with antiferromagnetic exchange on a two
dimensional triangular lattice which was first investigated by Wannier and Houtappel [51,
52]. The Hamiltonian of such a system is

H = −Jex
∑
〈ij〉

Si · Sj (4.1)

where Jex is the exchange energy which is negative in the case of antiferromagnetism and
Si is the spin at site i taking the value of ±1 representing spin up or down. It is triv-
ial to find the ground state in the case of a ferromagnetic interaction (Jex > 0) since all
the nearest neighbor exchange interactions are satisfied when all the spins pointing up or
down. The situation becomes far more interesting when considering an antiferromagnetic
exchange coupling (Jex < 0) on a triangular lattice. Figure 4.1 shows how the antiferro-
magnetic interaction can be satisfied between any two spins, but attempting to satisfy the
second exchange will force a violation of the third exchange. Minimizing the energy in
the Hamiltonian thus results in a six-fold degenerate ground state with a residual entropy.
It is worth noting that this degeneracy does not exist on a square lattice since all the
antiferromagnetic interactions are able to be satisfied. This illustrates how the degeneracy
is imposed by the geometry of the system, hence the name ‘geometric frustration’.
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Figure 4.1: Six-fold degenerate ground state of Ising spins on a triangular lattice with an
antiferromagnetic nearest neighbor interaction.

4.2 Rare-earth Titanates

4.2.1 Definition

A three-dimension analogue of the triangular lattice is that of the corner sharing tetrahedral
lattice, which is often referred to as a pyrochlore lattice. The ‘pyrochlore’ nomenclature
stems from the fact that Na2Nb2O6F tends to burn green when ignited [53]. The name
is borrowed in this case because they share the same crystal structure (figure 4.2). This
three dimensional system was first studied in the context of a frustrated magnetic system
in 1956 by Anderson [54]. He noticed that an Ising spin system with a nearest-neighbor
exchange on the pyrochlore lattice also results in a residual entropy. In fact, he recognized
that this system shared many similarities to water ice. In water ice, hydrogen ions follow
the so-called Bernal-Fowler ice rules such that two ions are situated near (covalent bond)
each oxygen atom and two are situated far (hydrogen bond) with the oxygen atoms locaed
on the diamond lattice (dual lattice of the pyrochlore) [55]. Anderson mapped the ice rules
to the spins on the vertices on each tetrahedra so that two spins were pointing up and
two were pointing down along the global z-direction with six possible permutations. As
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in water ice, this degeneracy leads to a residual entropy which is very close to Pauling’s
zero-point entropy for water ice of S0 = (R/2) ln(3/2).

Figure 4.2: (a) Pyrochlore lattice. (b) Diamond lattice, dual lattice of the pyrochlore with
sites at the centers of each tetrahedron [56].

We will focus on materials with chemical formulas of the form A2B2O7 where A3+ is
a trivalent rare earth metal located on the tetrahedral lattice sites and B4+ is often a
tetravalent transition metal located on the diamond lattice. For this study, we focus on
materials where A3+ is a magnetic ion (Dy3+ or Ho3+ for example) and B4+ is nonmagnetic
Ti4+. We call this specific class of materials the rare-earth titanates. A few rare-earth ions
which are often found in these materials are listed in table 4.1 along with their electron
configuration, ground state term and measured p value [5].

Element Electron configuration Ground-state Measured p
Tb3+ 4f 8 7F6 9.5
Dy3+ 4f 9 6H15/2 10.6
Ho3+ 4f 10 5I8 10.4
Er3+ 4f 11 4I15/2 9.5
Yb3+ 4f 13 2F7/2 4.5

Table 4.1: Some rare-earth ions that are often found in the titanates of the form A2Ti2O7.
Their basic electron configuration, ground-state term and measured p values are also listed.

The p value is the effective Bohr magneton number used in Curie’s law for magnetic
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susceptibility which states:

χ =
1

3

N

V

µ2
Bp

2

kBT
(4.2)

Curie’s law provides a good description of insulating magnetic materials containing rare-
earth ions which behave paramagnetically. That is, the spins favor alignment with an
external magnetic field.

4.2.2 Hamiltonian

The Hamiltonian for the rare earth titanates is much more complicated than in the two
dimensional triangular lattice we looked at earlier. This is true in general for real systems.
The Hamiltonian is comprised of three main parts, a crystal field term, the Zeeman term
and the hyperfine term such that

H = HCF +HZee +Hhf (4.3)

with the largest coming from the electric crystal fields in zero applied magnetic field. The
most general form of the crystal field Hamiltonian can be written as:

HCF =
∑
i

∑
l,m

Bm
l O

m
l (Ji) (4.4)

Here, Bm
l are the crystal field parameters, Om

l are the Stevens operator equivalents and Ji
is the angular momentum operator [53]. The Stevens operator equivalents are a convenient
way to evaluate the matrix elements of the crystal field potential. A few common lower
order operators are given in table 4.2.

Om
l in |J,m〉 basis

O0
2 3J2

z − J(J + 1)
O2

2
1
2
(J2

+ − J2
−)

O0
4 35J4

z − 30J(J + 1)J2
z + 25J2

z

− 6J(J + 1) + 3J2(J + 1)2

O4
4

1
2
(J4

+ + J4
−)

O6
6

1
2
(J6

+ + J6
−)

Table 4.2: Select low-order Stevens operator equivalents.

The crystal field parameters, Bm
l , are determined through high resolution optical spec-

troscopy measurements. For more information on Stevens operator equivalents and the
crystal field Hamiltonian see references [57, 58].
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The Zeeman term will contribute mainly when an external magnetic field is present
and will lift the (2J+1) degeneracy of the ground state. The Hamiltonian associated with
the Zeeman contribution is written as

HZee = −gJµB ~J · ~H (4.5)

Here gJ is the g-factor (gJ = 5/4 for the J=8 ground state of the Ho3+ ions), µB is the

Bohr magneton and ~H is the magnetic field due to applied external fields and the internal
field in the ferromagnetic state. Similarly the hyperfine interaction splits the energy levels
further and can be written as

Hhf = Aj ~J · ~I (4.6)

where Aj is the strength of the hyperfine interaction and ~I is the nuclear angular mo-
mentum. These interactions are much smaller that the overall electric crystal fields and
only slightly lift the (2J+1) degeneracy of the ground state energy level, splitting it into
a collection of singlets and doublets. However, we are mainly concerned with the ground
state term since it is often the only accessible level at low temperatures and thus we will
not focus our attention on these additional interactions.

In order to determine whether the ground state is a singlet or a doublet, we can take
advantage of Kramer’s theorem. It states that the energy levels of rare-earth ions with an
odd number of valence electrons (Dy, Er, Yb) are split into doublets in zero field. Ions
of this type are called Kramers ions. However, rare-earth ions with an even number of
electrons (Tb, Ho) can split into a collection of doublets or singlets and are known as
non-Kramers ions. The electric crystal fields then determine which of the energy levels are
accessible.

4.3 Dipolar Spin Ice

As mentioned earlier, the ground-state of an Ising spin system with a nearest-neighbor
interaction on a pyrochlore lattice has many similarities to water ice. Before we study
these similarities further, we will first examine some properties of water ice. Recall that
the locations of the hydrogen ions in water ice is governed by the Bernal-Fowler ice rules
such that two hydrogen atoms are located close (hydrogen bonded) to each oxygen atom
and two hydrogen atoms are located farther (hydrogen bonded) from each oxygen atom (see
figure 4.3). The ice-rules lead to six possible orientation per oxygen atom and thus results
in a highly degenerate ground state. This degeneracy in turn causes a residual entropy
which is well described by Pauling’s zero-point entropy such that S0 = (R/2) ln(3/2).
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Figure 4.3: (A) A schematic view of the local proton arrangement in water ice. The oxygen
ions (large open circles) are situated on the diamond lattice sites, that is, each oxygen ion
is coordinated tetrahedrally with four other oxygen ions. Two protons (small black circles)
are located near (covalent bonded) and two protons are located far (hydrogen bonded) from
each oxygen ion. This is the so called Bernal-Fowler ‘ice rules’. (B) A single tetrahedron
from the pyrochlore lattice (centered on the diamond lattice) seen in HTO or DTO with
magnetic moments (the arrows) located on the vertices which are aligned parallel to the
local 〈111〉 direction. The direction which the spins point is analogous to the locations of
the protons in water ice such that two spins are pointing in and two spins are pointing out
of each tetrahedron. This illustrates the analogy between water ice and spin ice, hence the
name ‘spin-ice’ [59].

We will focus our attention on Dy2Ti2O7 (DTO) and Ho2Ti2O7 (HTO). Note that Dy3+

is a Kramers ion with J = 15/2 and thus the ground state is a doublet. Conversely, Ho3+

is a non-Kramers ion with J = 8 so the ground state could be either a spin singlet or a
doublet. However, due to the local crystal field, the ground state in Ho2Ti2O7 is in fact
a spin doublet. Early susceptibility measurements have revealed that both of these ions
have very large magnetic moments at low temperatures of approximately µ = 10µB with
an antiferromagnetic exchange interaction. Now, unlike Anderson’s model where the spins
were aligned along the global z-axis, in DTO and HTO, the spins are quantized along the
local 〈111〉. That is, the spins are either pointing directly into or out-of each tetrahedron.
The ground state maintains the same six-fold degeneracy which Anderson described except
in this case two spins point into and two spins point out-of each tetrahedron.

To be certain of the 〈111〉 quantization of the spins in HTO, Jana and Ghosh calculated
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the crystal field parameters and found that the splitting between the ground state doublet
and the next excited state is ∼215 K [60]. The susceptibility can be calculated using
these values to be χ‖/χ⊥ ∼ 180 at 10 K. This ratio describes the anisotropy of the spins
which align parallel to the local 〈111〉 direction rather than perpendicular. The splitting
was measured by Rosenkranz to be 236 K using neutron spectroscopy [61]. Similarly
susceptibility measurements show that χz/χ⊥ ∼ 350. Therefore, even though Ho3+ is a
non-Kramers ion, the ground state is still a well isolated doublet with |J,mj〉 = |8,±8〉
quantized along the local 〈111〉 direction. We know from Kramers theorem that the ground
state of DTO is a doublet with |J,mj〉 = |15/2,±15/2〉. This is verified since the separation
from the ground state doublet and the next excited state is ∼348 K and χz/χ⊥ ∼ 300
[60, 61].

Specific heat measurements of DTO have shown that the magnetic contribution displays
a broad peak centered at about 1.2 K seen in figure 4.4. This is in good agreement with
Monte Carlo simulations in zero field. Recall that the entropy can be calculated from the
specific heat via:

Smag(T ) =

T∫
0

Cmag(T
∗)

T ∗
dT ∗ (4.7)

Also note that the entropy of a system of Ising spins in the paramagnetic state is S =
R ln(2) and will be achieved when T & 10 K. As it turns out, the broad peak observed in
the specific heat measurement of DTO does not account for all of the expected entropy.
In fact, the residual entropy is very close to Pauling’s entropy! Hence, these rare-earth
titanates have been termed ‘spin ices’ because of the analogy to water ice.

The magnetic specific heat is much more convoluted in HTO since the Ho3+ ions carry
a large nuclear heat capacity. This reveals itself as a large peak in the specific heat just
below 500 mK in addition to the broad peak at 2 K similar to the one seen in DTO. This
is illustrated in figure 4.5. The large nuclear contribution can be fitted to a Schottky peak
in order to extract the magnetic contribution which shows a broad peak at 2 K, indicating
the development of the spin ice correlations. The magnetic contribution is also in good
agreement with Monte Carlo simulations that leads to a residual entropy close to Pauling’s
entropy.

One other curiosity is that the specific heat in both DTO and HTO shows no sign of
ordering right down to the lowest temperatures measured (∼50 mK). The ordering of the
spins would reveal itself as a peak in the specific heat akin to a phase transition.

The spins not only have an anti-ferromagnetic nearest neighbor exchange coupling but
also a large dipole-dipole interaction which is ferromagnetic. The large dipole term is a
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Figure 4.4: Experimental and Monte Carlo simulations of the specific heat (top) and
entropy (bottom) of Dy2Ti2O7 [62, 63].

result of the large magnetic moment exhibited in these materials. Thus these materials are
often referred to as dipolar spin ice. A theoretical model describing the dipolar spin ice
model has been developed by den Hertog an Gingras. The Hamiltonian has an exchange
interaction, J , and a long range dipole coupling term, D:

H = −J
∑
(ij)

S ẑii · S
ẑj
j +Dr3

nn

∑
i>j

S ẑii · S
ẑj
j

|rij|3
−

3(S ẑii · rij)(S
ẑj
j · rij)

|rij|5
(4.8)

Due to the local 〈111〉 quantization of the spins, the nearest neighbor exchange energy is
defined as Jnn = J/3. The dipole-dipole interaction can be written as D = (µo/4π)g2µ2/r3

nn
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Figure 4.5: Specific heat of Ho2Ti2O7 [64]. The data agrees with Monte Carlo simulations
after subtracting off the Schottky peak.

and at nearest neighbor distance, Dnn = 5D/3. This Hamiltonian can be simplified to an
effective nearest neighbor exchange defined as Jeff ≡ Jnn + Dnn which retains the nearest
neighbor spin ice physics. The Hamiltonian can then be written as:

H = −Jeff

∑
(ij)

S ẑii · S
ẑj
j (4.9)

Figure 4.6 shows a phase diagram of T/Dnn vs Jnn/Dnn was mapped out via Monte
Carlo simulations using a standard single Ising spin flip Metropolis algorithm. We see
that for ratios above Jnn/Dnn ≥ −0.91 a spin ice ground state is realized. A four-in-four-
out anti-ferromagnetic state exists below this ratio. It is important to note that the long
range dipolar term was correctly accounted for using an Ewald summation rather than
truncating the sum at the fifth nearest neighbour as in Refs. [66, 67] which can lead to
frivolous results. Properly accounting for all long range dipole-dipole interactions via an
Ewald summation successfully recovers the spin ice ground state in both DTO and HTO.
The nearest neighbor exchange coupling is Jnn ∼ −1.24 K for DTO and Jnn ∼ −0.52 K
for HTO. The nearest neighbor dipole-dipole coupling is Dnn ∼ 2.35 K for both DTO and
HTO. Therefore the effective exchange coupling is net ferromagnetic in both cases with
Jeff ∼ 1.1 K for DTO and Jeff ∼ 1.8 K for HTO.

Melko and Gingras introduced non-local dynamics into the simulation to impede the
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Figure 4.6: T/Dnn vs. Jnn/Dnn phase diagram produced by den Hertog and Gingras [65].

freezing of the spins by developing a loop algorithm which provides a method to release the
trapped entropy in the spin ice state. This essentially speeds up the slow, low temperature
dynamics and promotes the creation of a long range ordered state. Simulations reveal a long
range ordered ground state described by q = (0, 0, 2π/a) (and the other two symmetrically
equivalent wave-vectors) which satisfies the ice rules but recovers all of Pauling’s entropy.
Specific heat and consequently the entropy is obtained from these simulations and is seen
in figure 4.7. The specific heat displays a broad peak similar to experiments but there is a
large peak indicative of a first order transition at about 180 mK. This causes the entropy to
have a plateau at Pauling’s entropy followed by a rapid drop to zero, indicating the recovery
of all the R ln(2) entropy. The resulting phase diagram of of T/Dnn vs Jnn/Dnn is seen
in figure 4.8 which shows the ordered state occurring at 180 mK regardless of the values
of Jnn and Dnn as long as Jnn/Dnn ≥ −0.91. Although each loop of spin flips may cause
minimal change in the overall energy, there is an initial large energy barrier to overcome
in order to access the other nearly degenerate ground states. That is, upon cooling the
crystal, the spins freeze into a two-in-two-out state and spin flips become unfavorable, this
leads to large energy barriers that separate the nearly degenerate ground states. It may
not be feasible to overcome this energy barrier experimentally. Thus this ordered ground
state has not been officially realized to date.

Before going any further, I will first quickly mention that in addition to the absence of
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Figure 4.7: Monte Carlo simulations of specific heat (left) and entropy (right) for a spin
ice system including a loop flip algorithm, illustrating the onset of an ordered state below
0.5 K [63].

Figure 4.8: T/Dnn vs. Jnn/Dnn phase diagram with ordered ground state from loop flip
algorithm simulation [63].

an ordered ground state, a slowing of the spin dynamics is observed via ac-susceptibility
measurements. Matsuhira et al. [68] first discovered this unconventional freezing in poly-
crystalline samples of Ho2Ti2O7 and Ho2Sn2O7 in 2000 when he noticed that the relaxation
time was well described by a thermally activated Arrhenius behaviour with energy barriers
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of 27.5 K and 19.6 K respectively. Shortly after this discovery, both Matsuhira et al. [69]
and Snyder et al. [70] separately performed similar measurements on the relaxation times
in both temperature and frequency space in DTO. Matsuhira found that above 10 K, DTO
displays a thermally activated behaviour with an activation energy of 220 K. Below 10 K,
the temperature dependence of the relaxation time flattens into a plateau until about 2
K. At which point there is a crossover to a second thermally activated behaviour is seen
below 2 K with an energy barrier of approximately 10 K associated with a single relaxation
mode. Snyder went a step further and included the application of an externally applied
magnetic field. The applied magnetic field enhanced the freezing temperature which is
inconsistent with the freezing seen in spin glasses, where an applied field suppresses the
freezing temperature.

4.3.1 Spin ices in a magnetic field

The effects of the application of a magnetic field to a spin ice material is greatly anisotropic.
The effect of an external field applied along three main cubic symmetries ([100], [110], [111])
of the pyrochlore lattice are examined via magnetization measurements which is used in
conjunction with specific heat measurements to create a B vs. T phase diagram.

H ‖ [100]

A magnetic field applied along [100] will effect all spins equally. Thus, the application of
a magnetic field will induce long range order.

H ‖ [110]

Applying a field in the [110] direction will decouple the spins into isolated, perpendicular
chains. The α chain is parallel to [110] and the β chain is along [110] and is thus not
affected by the magnetic field. The α spins are thus free to align with the magnetic field
whilst not violating the two-in-two-out ice rules.

H ‖ [111]

The pyrochlore lattice can be thought of as alternating stacked layers of kagome planes
and triangular planes in the [111] direction. Now recall that the spins are quantized in
the local 〈111〉 which points directly into or out-of each tetrahedron. So, the spins on the
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Figure 4.9: magnetization curves of DTO with the field along (a) [100], (b) [111] and (c)
[110] [71].

triangular planes are perpendicular to the plane (parallel to the [111] direction) and the
spins on the kagome planes will have components both in the plane and perpendicular to
the plane. Applying a magnetic field along a global [111] direction will thus be parallel to
one spin in each tetrahedron and it will effect the other three spins equally with a lesser
magnitude. So, at low temperatures (in the spin ice state) a single spin in each tetrahedron
will align with the magnetic field leaving the other three spins free to satisfy the ice rules.
This special case of the 3-D spin ice state is referred to as the “kagome ice” state since
the spins in the triangular lattice are ordered (aligned with the field) leaving a degenerate
number of ground states for the spins in the kagome planes to satisfy the ice rules. Note
that excitations out of this state are confined to the 2-D kagome planes, perpendicular to
the field. When the field is raised further, the spins in the kagome planes will attempt to
align with the field which violates the ice rules (3-in-1-out) and leads to a fully polarized
state.
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Figure 4.10: H ‖ [110] [72] and [111] [73] phase diagrams for Dy2Ti2O7.

4.4 Magnetic monopoles

4.4.1 Introduction to Monopoles

Phenomena occurring in nature is often follows a symmetrical pattern. Thus one might ex-
pect a magnetic monopole charge as a counterpart to the electron from Maxwell’s equations.
If you have ever played with bar magnets you know that obtaining a monopole is not as
simple as breaking that magnet in half, instead you end up with two smaller magnets, each
with their own north and south poles. The search for a magnetic monopole started long
ago in 1931 when Dirac established that they were allowed under the quantum mechanical
formalism such that their quantized magnetic charge was equal to q = m~c/e where m is
an integer or half integer. These monopoles were termed ‘non-Abelian’ monopoles whose
gauge theory predicted huge masses on the order of tens of TeV. This is way outside of the
range of current particle accelerators (LHC is presently operating at about 4 TeV [74]).
Thus the direct search for free monopoles is currently futile.

Fortunately for us the story does not end here. In 2008, Castelnovo et al. proposed a
fractionalized magnetic monopole quasi-particle as an excitation out of the spin ice ground
state. A monopole anti-monopole defect pair is created upon a single spin flip resulting in a
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Figure 4.11: Coulomb energy versus distance in units of lattice spacing, a [75].

tetrahedron with 3 spins in, 1 spin out (monopole) and a tetrahedron with 1 spin in, and 3
spins out (anti-monopole). Figure 4.12 a-d illustrates a way to think about each individual
spin as a dipole with a north (red ball) and a south pole (blue ball). So the 2-in-2-out state
will have two positive charges and two negative charges in each tetrahedron. Now, when
one of these dipoles flips one tetrahedron will have three positive charges and one negative
charge resulting in a net positive charge and similarly a corresponding tetrahedron will
have a net negative charge. This charge is quantified as qm = ±2µ/ad where ad is the
diamond lattice constant (distance between the center of neighboring tetrahedra). What is
interesting is that subsequent spin flips separating the the monopole anti-monopole defect
pair does not further violate the ice rules, rather they behave as free particles interacting
with a coulomb potential. The coulomb interaction energy is described by −µoq2

m/(4πr).
It is important to note that the coulomb energy at nearest neighbor distance is equal to
3.06 K [75]. The separation of the monopole anti-monopole pair does however leave a trail
of flipped spins which is known as a Dirac string, this is seen in figure 4.12 e).

It turns out that Ryzhkin had proposed the existence of monopoles as defects in the
spin ice ground state in 2005, three years earlier! He likened them to ionic defects in water
ice, that is when an oxygen atom has three hydrogen ions near and one far, and another
oxygen atom only has one hydrogen ion near and three far. Ryzhkin went on to derive an
expression for the frequency dependence of the susceptibility:

χ(ω) =
q2/Φ

1− iωτ
(4.10)

such that ω is the frequency of the applied magnetic field, q is the magnetic charge, and
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Figure 4.12: The dumbbell model illustrating the creation of a monopole anti-monopole
pair. (a) Spin-ice ground state configuration with two spins pointing in and two spins
pointing out of each tetrahedron. (b) A single spin flip causes one tetrahedron to have
three spins in, one spin out and a neighbouring tetrahedron with one spin in, three spins
out. (c,d) The arrows are replaced with dumbbells. (e) Subsequent spin flips separate the
monopole anti-monopole pair which are connected by a Dirac string [75].

τ−1 = (µ1n1 + µ2n2)Φ is the relaxation time with Φ = 8/
√

3akBT and where µi is the
mobility and ni is the defect density. This theoretical work assumes that the magnetic
point defects (monopoles) are non-interacting.

4.4.2 Observation

After Castelnovo proposed the idea of magnetic monopoles in spin ice materials, a flurry
of experiments searching for signatures of monopoles were conducted in a short amount
of time. Experiments attempting to probe monopole dynamics include neutron scattering,
muon spin resonance (µSR), specific heat and thermal conductivity measurements. There
has also been several attempts to theoretically describe the monopole behaviour using
Monte Carlo simulations, Debye-Hückel theory and Onsager’s theory of weak electrolytes.
A brief overview of these methods will now be discussed.

Jaubert and Holdsworth started by imposing a Coulomb gas of monopoles constrained
to the diamond lattice (centers of the tetrahedra) in a spin ice [76]. Monte Carlo simula-
tions were used to obtain characteristic relaxation timescales of the Dirac strings connecting
monopole anti-monopole pairs. These time scales were then compared to the times scales

46



extracted from the ac-susceptibility measurements of DTO by Snyder et al. [77]. Similar
characteristics were seen in the simulations that were observed experimentally such as the
unconventional crossover regime between the plateau state to the low temperature Arrhe-
nius behaviour at around 2 K. Although the agreement is not perfect, the development of
the low temperature freezing into the spin ice state is well described to 1 K as can be seen
in figure 4.13. This provides additional experimental evidence supporting the monopole
picture.

Figure 4.13: Relaxation times extracted from ac-susceptibility measurements of DTO in
comparison with Monte Carlo simulations [76].

Neutron scattering measurements were made on HTO and DTO by Fennell et al. and
Morris et al. respectively. Fennell used polarized neutron scattering measurements to
separate spin flip and non-spin flip correlations by analyzing the polarization. This method
is the only way to observe pinch points in in the neutron scattering. These pinch points are
interpreted as reciprocal space evidence for a long range Coulomb force which is dipolar in
nature. This result was corroborated with good agreement from Monte Carlo simulations.
Confirmation of a low temperature Coulomb phase in HTO strengthens the monopole
picture in spin ice materials.

Morris focused on using neutron scattering measurements to observe Dirac strings in
DTO. This was achieved by applying a magnetic field in the [001] (symmetrically equiv-
alent to [100]) which arranges the spins into the two-in-two-out spin ice state. Monopole
quasiparticles are then thermally excited out of this ground state and are free to separate
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creating Dirac strings. This results in a cone of scattering seen in the neutron scattering
experiment and is reproduced in simulations. He also measured the specific heat in DTO
and found reasonable agreement with the Debye-Hückel theory of a dilute Coulomb gas
below 1 K. This increases the evidence for monopole-like excitations out of the spin ice
ground state.

Klemke used a thermodynamic field theory in conjunction with thermal relaxation and
transport measurements to extract the time constants corresponding to different compo-
nents of the magnetic excitations in the spin ice phase. Specific heat is used to extract
two times scales below 1.1 K, τRα (∼ 1 to 100 s) and τRβ (∼ 0.1 to 10 s). τRα is associated
with the spins along the α chain (along the [110] direction) which behave paramagnetically,
since a field along [110] can easily align these spins. τRβ is associated with the spins along
the β chain which is perpendicular to the α chain and the spins are thus effectively isolated
from the α spins. The β spins are therefore treated as an Ising spin system with nearest
neighbour interactions. An activated behaviour is seen below 1 K down to ∼ 500 mK

Figure 4.14: α and β relaxation times extracted from specific heat measurements of DTO
[78].

at which point a plateau is reached in the relaxation time. This change in behaviour is
explained as a transition from a regime with strong magnetic charge screening to a regime
with weak screening of the charges [78].

A third, and much faster time scale, τRγ (∼ 10−8 s), is extracted from thermal conduc-
tivity using kinetic theory and Matthiessen’s rule.
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Figure 4.15: Thermal conductivity of Dy2Ti2O7 with heat flow and applied magnetic fields
parallel to [110] (left). The much faster τγ time constant extracted from thermal conduc-
tivity measurements (right) [78].

These relaxation times were fitted to the spin-lattice relaxation for a rare-earth salt
(Kramer’s salt in the case of DTO) described by Orbach. This is done under the assump-
tions that the magnetic excitations are localized and affect thermal transport only through
their interaction with phonons. Orbach states that the spin-lattice relaxation time in a
Kramers salt is determined by Raman and thermally activated processes given by:

τRν = aνT
9
R + bν exp

(
− Eν
kBTR

)
(4.11)

where ν = α, β, γ and Eν is to activation energy and TR is the thermal bath temperature.
This gave good agreement with experiment above 1.3 K, including specific heat measure-
ments by Snyder et al.. However, in the spin ice phase, TR < 1.1 K, an attempt frequency
is needed to describe the data which takes the form:

bν(TR) = bν + dνTR exp

(
Eν + εν
kBTR

)
(4.12)

where bν is the attempt frequency for strong screening and the exponential term takes into
account the weakening of the screening with potential εν . Fitting the low temperature
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specific heat data yields Eα/kB = Eβ/kB = 8.3 K, and εα/kB = εβ/kB ∼ 1 K. A fit to the
low temperature thermal conductivity gives Eγ/kB = 5.3 K, and εγ/kB = 0.1 K. These
results were taken to be experimental proof of thermally activated monopole anti-monopole
defect pairs out of the spin ice ground state.

Low temperature AC susceptibility measurements on DTO by Yaraskavitch et al. [79]
revealed an Arrhenius behaviour with an activation energy of 9.79 K (∼ 9Jeff) down to
the lowest temperatures measured (See figure 4.16). This is in contrast with the deviation
from the activated behaviour seen in the inset of figure 4.16. Yaraskacitch’s explanation of
the discrepancy is that Klemke’s data below 500 mK has in fact fallen out of spin-lattice
equilibrium, leading to a much shorter relaxation time than the freezing seen in the AC
susceptibility measurements. This result suggest that current monopole theories fail to
capture the entire picture surrounding the creation and dynamics of monopole excitations
in DTO.

Figure 4.16: AC susceptibility of DTO by Yaraskavitch et al. showing the freezing be-
haviour in the spin-ice state. Inset: A comparison of a variety of measured relaxation
times [77, 80, 78, 79] revealing the deviation of Ref. [78] data from the activated behaviour
seen in AC susceptibility.

Debye-Hückel theory describes the interaction of a dilute Coulomb gas. It considers
that an electrolyte consists of a discrete central reference ion surrounded by an atmosphere
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of charge made up of the other ions. Debye Hückel theory also assumes that the distri-
bution of ions making up the charge atmosphere is not random, but rather ions nearest
to the reference ion are of opposite charge to that of the reference ion. Castelnovo et al.
applied this theory to that of a dilute sea of monopoles in the Coulomb phase, likening the
‘magnetolyte’, a term originally coined by Giblin et al., to that of a weak electrolyte. He
was able to utilize this theory to calculate the monopole defect density per tetrahedron,
ρ(T ), given by:

ρ(T ) =
2e−∆d/T

1 + 2e−∆d/T
(4.13)

where ∆d is the dressed creation cost of a single isolated monopole which can be calculated
via:

∆d = ∆− 1

2

Enn
ξDebye

ad

(4.14)

Here, ∆ is the unscreened value of the energy required to create an isolated monopole (∆
= 4.35 K for DTO, and 5.79 K for HTO). Enn = 3.06 K is the magnitude of the Coulomb
energy between a monopole pair at nearest neighbouring sites and ad =

√
3/2 a = 4.34

Åis the diamond lattice constant, which is the distance between the center of neighbouring
tetraherda. The screening length, ξDebye, is a function of monopole density, ρ(T ) and
temperature, T and is written as:

ξDebye
ad

=

√
2

3
√

3πEnn

√
T

ρ(T )
(4.15)

No analytic solution exists for this system of equations and therefore they must be solved
self-consistently (see figure 8.6). Castelnovo attempted to describe specific heat and suscep-
tibility with some success, however, it provided no improvement over the work of Jaubert
and Holdsworth. Castelnovo mentions several methods which could improve this theory,
such as including interactions between monopole pairs. He also states that Debye-Hückel
theory is only applicable in the low monopole density limit which limits the usefulness of
this theory to low temperatures.

Bramwell et al. used transverse field µSR measurements on DTO to extract the mag-
netic charge of a monopole and the associated magnetic current [81]. Transverse Field µSR
measures the spin fluctuation rate. The rate at which this precession decayed yielded an
effective elementary magnetic charge of Q ∼ 5µBÅ

−1.

Although this method was only accurate below 300 mK (where the effective charge is
temperature independent and where there is a low density of Dirac strings), it provided
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Figure 4.17: µSR measurement used to determine the effective value of the magnetic charge
[81].

excellent agreement with Onsager’s theory of a three-dimensional Coulombic liquid. This is
because the sea of magnetic monopoles, with a coulomb interaction, is mapped onto a weak
electrolyte. He uses the example of autoionization of water where 2H2O = [H3O+OH−] =
H3O+ + OH−. That is, the quasiparticle vacuum is equivalent to a bound pair of charges
which is then equivalent to free charges. In the case of spin ice, the bound charges are
monopole antimonopole pairs which are connected by a Dirac string. A result of Onsager’s
theory is the dissociation constant as a function of field:

K(B) = K(0)

(
1 + b+

b2

3
+ ...

)
(4.16)

where b is a dimensionless renormalized field defined by:

b =
µoQ

3B

8πk2
BT

2
(4.17)

This shows that Onsager’s theory provides a good description of both electric and magnetic
systems.
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Bramwell’s µSR work [81] was refuted by Dunsiger et al. [82] on account that transverse
field µSR is unable to resolve the monopole excitations. Monte Carlo simulations showed
that the local field at the muon sites is on the order of 300 mT, which is much larger than
the monopole signature, on the order of 1 mT. This shows that transverse field µSR is not
an ideal candidate for detecting an Onsager effect in spin ice materials as it is not have
the sensitivity. Dunsiger claimed that the exponential decay in the spin precession was
actually an artifact of the GaAs sample mount. µSR measurements were made on DTO
on a GaAs mount, a Ag mount and of a GaAs mount with no sample present (figure 4.18).
This produced clear evidence that the muon precession seen in Ref. [81] was largely due
to the GaAs sample mount. However, careful µSR measurements in various configuration
revealed persistent spin dynamics below 5 K, evidence for a low temperature thermally
activated behaviour.

Figure 4.18: Muon spin precession of Dy2Ti2O7 on a Ag mount and a GaAs mount as well
a GaAs plate with no sample mounted measured by Dunsiger et al. [82]. This was used
as evidence that the µSR measurements of DTO in Ref. [81] were not sensitive enough to
detect monopole signatures, and they were merely measuring the sample holder.

This on going debate about the existence and dynamics of monopole excitations from
the spin-ice ground state demands further investigation, both theoretically and experimen-
tally.
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Part II

Experimental Details
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Chapter 5

Dilution Fridge

The ability to perform measurements at temperatures approaching absolute zero is key
in understanding many phenomena in nature. Achieving this extreme environment is a
non-trivial task. There are many cryostats available to get to varying base temperatures
each with their advantages and draw-backs. For example, a helium-4 pump probe has a
large temperature range from room temp to 1 K and is relatively easy to use. However
this thesis focuses on a temperature range up to two orders of magnitude lower. Thus, a
3He-4He dilution fridge is needed to attain these temperatures.

5.1 How a Fridge Works

In principle, a dilution refrigerator is quite simple - mechanically driving a first order phase
transition which draws a latent heat out of the surrounding system. What makes a 3He-
4He dilution refrigerator unique, however, is the fact that this latent heat exists down to
absolute zero! 3He-4He mixtures with a 3He concentration of 6.6% or more will eventually
phase separate into a 3He rich phase and a 3He dilute phase (4He rich phase) when cooled
below 0.87 K. A 3He-4He phase diagram is seen in figure 5.1. As the temperature approaches
absolute zero the 3He rich phase becomes pure but the 4He rich phase will retain a constant
3He concentration of 6.6%. Taking advantage of this residual 3He concentration in the 4He
rich phase is the key to achieving such low temperatures. If we maintain the 3He dilute
phase at a temperature of 0.7 K then the 3He vapor pressure is about 1000 times larger
than that of the 4He. Thus, pumping on this phase will draw 3He atoms out of the dilute
phase leaving it out of equilibrium. 3He atoms from the rich phase will then cross the phase
boundary into the dilute phase to maintain the 6.6% concentration. The act of crossing
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this phase boundary results in a positive entropy change, that is, it requires energy which
it gains from its environment - cooling the system. The 3He vapor that is pumped away is
then circulated and re-condensed into the 3He rich phase.

Figure 5.1: 3He-4He temperature vs. 3He concentration phase diagram [83].

5.2 Components

Now that we know the theory of how a dilution fridge works, I will briefly discuss how it
works in practice by introducing the various components involved and the procedure to
run a fridge. The six main components in a dilution fridge are the mixing chamber, the
still, the pumps, the cold traps, the 1K pot and the heat exchangers. A schematic drawing
of a dilution fridge is featured in figure 5.2.

1. Mixing chamber. The mixing chamber is where the phase separation and thus all
the cooling takes place. That being said, this is where your experiment must be
thermally anchored.
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2. Still. Once the 3He-4He mixture has phase separated, the 3He rich phase will float
on top of the 3He dilute phase since the 3He atoms are lighter than the 4He atoms.
A tube then connects the bottom of the mixing chamber to the still where the dilute
phase is then warmed to about 0.7 K using a small heater, this is to promote the
circulation of the 3He by increasing its vapor pressure.

3. Pumps. The effectiveness of the dilution fridge is in essence a result of how quickly the
3He can be circulated through the system, since the cooling power is a consequence
of crossing the 3He rich phase to the 3He dilute phase. Thus, a powerful turbo pump,
the roots pump, backed by a sealed rotary pump is needed to circulate the 3He atoms.
The 1K pot also requires a rotary pump to cool to 1K and will be discussed more
later.

4. Cold traps. The tubes throughout the fridge can be quite small, including one with a
built in impedance to increase the incoming helium pressure which aids in condensa-
tion process. If any other gas (most likely nitrogen or oxygen from the atmosphere)
were to contaminate the 3He-4He mix it would freeze to the walls of these tiny pipes,
eventually blocking the flow completely. In order to prevent this, two levels of ‘filters’
are used to clean the mix. The first defense is a liquid nitrogen cold trap at 77 K
which condenses out any nitrogen or oxygen that might have leaked into the system.
This will remove most of the contaminates but a second level of filtering is done using
a liquid 4He cold trap which is at 4.2 K. This will guarantee that only a pure 3He-4He
mixture will enter the fridge.

5. 1K pot. The purpose of the 1K pot is to cool the returning 3He to about 1 K (as the
name might suggest). This is done via pumping on 4He, driving a liquid-vapor phase
transition which cools the surroundings.

6. Heat exchangers. Even though the returning 3He is cooled to about 1 K from the
1K pot, this is still often an order of magnitude hotter than the mix in the mixing
chamber. Thus it must be cooled further before re-entering the mixing chamber. An
efficient method to do this is by transferring its heat to the 3He dilute phase on its
way to the still to be pumped away. All this takes place throughout several heat
exchangers, both continuous and step heat exchangers.
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Figure 5.2: Schematic drawing of a Dilution fridge [83].
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5.3 Dewar and vibration reduction

The fridge is covered by a radiation shield which is then sealed inside of a vacuum chamber.
This whole assembly is then submerged in a liquid 4He bath, the inner chamber in the
dewar. The dewar also contains a nitrogen jacket which surrounds the inner helium bath,
separated by a vacuum. The helium bath is the 4He source for the 1K pot and it is also
where the superconducting magnet is located. The nitrogen jacket provides a layer of
insulation for the helium bath from ambient room temperature, which minimizes liquid
helium boil off.

Low temperature experiments are often extremely sensitive to vibrations, especially
thermal conductivity. Therefore, many precautions must be taken to reduce the vibrations
felt by the experiment. This is achieved by suspending the dewar from large wooden beams,
made from Canadian maple, which is supported on either side by 8000 lbs of concrete. The
concrete pillars extend out of a larger slab of concrete containing a 6’ deep pit. This entire
structure is isolated from the buildings foundation which separates it from the vibrations
in the building. Space was left between the top of the pillars and the wooden beam for
the addition of an air spring if so desired in the future as an additional vibration damping
mechanism.
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Chapter 6

Thermal Conductivity Measurement

6.1 Measurement Technique

As we have seen in chapter 2 the thermal conductivity, κ, is defined as the ratio of the
applied heat to the temperature gradient across a sample. In practice this is done by
attaching one end of the sample to the fridge and the other to a resistive heater. The
applied heat is known because a known current is passed through the resistive heater.
Two thermometers then measure the temperature at two points on the sample at a known
distance apart, d. The thermal conductivity can then be calculated via:

κ = − Q

Tcold − Thot
· geom (6.1)

where geom = d/A is the geometric factor.

Figure 6.1 shows a schematic of the one-heater-two-thermometer method used to mea-
sure thermal conductivity. The resistive thermometers are uncalibrated and are calibrated
in situ against the fridge temperature every temperature sweep. This is done while the
heat is off so the thermometers are in thermal equilibrium with the fridge. The sample
heater is then turned on to initialize a temperature gradient across the sample. A typical
calibration curve for both the cold and hot thermometers is seen in figure 6.2. The heat
off points are fitted with a polynomial (usually 3rd order) over a floating window of points
(of about 20 points). Figure 6.2 also shows the error in this fit by plotting the residual of
the data and the curve. The resistance values of the heat on points are then compared to
the calibrated curve to extract the corresponding temperatures.
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Figure 6.1: Schematic drawing of a thermal conductivity measurement.

6.2 Thermal Conductivity Device

The steady state, one-heater-two-thermometer method for measuring thermal conductivity
is quite simple in theory - a known amount of heat is applied at one end of the sample and
two thermometers measure the subsequent temperature gradient. The thermal conductiv-
ity is then obtained via Fourier’s law of heat conduction,

Q̇ = κ∆T
A

l
(6.2)

where Q̇ is the supplied heat, κ is the thermal conductivity, ∆T is the temperature gradient,
A is the cross sectional area and l is the sample length. However, in practice complications
arise due to the extreme low temperatures at which these measurements are made and size
constraints set by the bore of the superconducting magnet in which the experiment sits.
Three of the main obstacles that must be overcome are as follows.

1. Thermally isolating the heater and two thermometers from the mount and the rest of
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Figure 6.2: Calibration curves for both the cold and hot thermometers for a thermal
conductivity measurement. The heat off points are fitted with a polynomial with the
residual plotted below. The heat on resistance values are interpolated to the calibrated
curve to extract their corresponding temperatures.

the cryostat yet remaining in good thermal contact with the sample, hence insuring
all the heat flows through the sample.

2. Minimizing the noise which in the measurement which can be caused by either electro-
magnetic interference (EMI) in the measurement circuit or from temperature fluctu-
ations in the resistive thermometers or in the fridge temperature.

3. Finally, handling the many wires needed to perform these measurements in a way
that minimizes noise and is mechanically robust.
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In the following sections, we discuss how to address these issues and provide a quantitative
assessment of performance.

6.2.1 Constructing the Heater and Thermometers

The thermometers are fabricated in such a way as to maximize the thermal link between
each thermometer and the sample, and to thermally isolate the thermometers from the
rest of the mount yet remaining electrically connected.

The concern about thermal isolation of the thermometers is approached by comparing
the various thermal resistances in the system. Each thermometer is suspended from a
single filament from a strand of dental floss (nylon) or Kevlar with a width of about 10µm
spanning about 1cm to either end of the thermal conductivity mount, resulting in a thermal
resistance of wnylon = l

A
1

κnylon
= 1cm

π(10µm)2
1

0.25W/Km
= 1.27 ·1010K/W. Platinum tungsten (Pt

92% / W 8%) wires with electrical resistivity ρPtW = 62µΩcm are used as the electrical
connections for the resistance measurement of each thermometer. The thermal resistance
of these wires is related to the electrical resistance through the Wiedemann-Franz Law
(WFL) using the Sommerfeld value of the Lorenz number L0.

κ

σT
= L0 = 2.44 · 10−8WΩ/K (6.3)

Thus, 7.8cm of 25µm thick wire is tightly wound into coils in order to satisfy the size
constraints imposed by the dimensions of the thermal conductivity mount. This results
in a resistance of RPtW = 99.1Ω and a thermal resistance of wPtW (300K) = RPtW

L0T
=

1.37·107K/W. Therefore, the total thermal resistance to the cold bath is wtotal = (2 1
wnylon

+

3 1
wPtW

)−1 = 4.56 · 106K/W since the nylon extends out both ways from the thermometer
and there is one coil coming from each of the thermometer leads and an additional coil
from the sample resistance voltage lead. The thermal resistance between the sample and
the thermometer is limited to a short length of silver wire and the contact resistance to the
sample which is used as both the thermal link between the sample and the thermometer
and also as the V+ (V-) voltage lead for the sample resistivity measurement. The silver
wire is about 8mm long and 50µm in diameter with a resistivity of ρAg = 1.6µΩcm and
thus has a resistance of RAg(300K) = 65mΩ. The contact to the sample is comprised of
silver paste and contributes a resistance on the order of a few milli-Ohms. Whence, the
thermal resistance to the sample is wtotal ≈ 9.6 · 103K/W which is 0.2% of the thermal
resistance to the cold bath. In fact, it is much better than this at low temperatures. Silver
has a residual resistivity ratio of about 100, thus at 4 K the resistivity decreases by a factor
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of 100. So the resistance of the silver wire at 4 K is only RAg = 0.65mΩ. The resistance
imparted by the sample contacts at low temperature, will often be the limiting factor of
the thermal resistance from the to the sample as it will remain a few milli-Ohms. Thus
extreme precautions are taken to ensure minimal contact resistance to the sample. As for
the thermal resistance to the cold bath at low temperature, the resistance of the PtW wire
will reduce as temperature is decreased, lowering its thermal resistance. However, since
PtW is an alloy, its RRR will be much lower than for pure metals like Ag, so the resistance
does not decrease as much as for Ag. That is, even though the thermal resistance to the
cold bath decreases with temperature, it remains much higher than the thermal resistance
to the sample. Therefore the heat loss to the sample mount is minimal, especially at low
temperatures.

Figure 6.3: A digital image (left) of a thermometer prior to affixing PtW wires to the end
of the Ag wires coiled around the Ag rod. A computer rendered image (right) of a sample
thermometer and he heater mounted on a nylon filament.

In order to ensure a good thermal link from the thermometer to the sample the substrate
on which the RuO2 resistive thermometer is mounted is thinned from 800µm to about
300µm. A 300µm silver wire rod is wrapped in a layer of 7µm Kapton film (from DuPont)
and subsequently a 25µm silver wire is coiled onto the rod. This rod is affixed to the back
of the thermometer and the coiled wires are connected to the resistor contacts using silver
epoxy since this will provide the best thermal connection to the thermometer. the PtW
wire coils are attached to the opposite ends of the silver wire coils. The 25µm silver wire
which connects to the sample is also affixed to the back of the thermometer using silver
epoxy. An image of a completed thermometer is seen on the left in FIG. 6.3.

A similar approach is taken when addressing the thermal isolation of the sample heater.
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It is imperative that all the heat produced by the resistive heater travel through the sample
to the cold bath since it is crucial to know the the amount of heat put into the system
when measuring the thermal conductivity. In this case a 50µm silver wire is affixed to the
back of a 10 kΩ metallic resistor which is used as both the thermal link to the sample and
the I+ current lead used in the 4 wire sample resistivity measurement.

6.2.2 RF Shielding and Noise Reduction

When operating in the tens of milli-Kelvin regime, even small amounts of heating will have
a large effect. For example, to induce a temperature gradient of ∆T/T = 10% at 50mK,
the heat required from the sample heater is on the order of 0.1nW . Hence, extreme care
must be taken in minimizing unwanted sources of heat, in particular, RF pickup in the
electrical circuits.

Figure 6.4: Shielded breakout box at the top of the dilution fridge routing the 24 wire
cable through several low pass filters then on to three 5 pin bayonet connectors and 2 BNC
connectors.

The two routes to minimizing RF noise are (a) proper shielding and filtering of the
room temperature wires at the top of the cryostat and (b) shielding of the experiment
mounted on the fridge. A low voltage Fischer connector is used at the top of the fridge.
The cable directly enters a RF shielded box (figure 6.4) where the signal is filtered using
multiple low pass filters which removes any high frequency noise. This box is also used to
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separate each of the signals from each thermometer and the sample resistance to a 5-pin
bayonet connector used by the LR-700 resistance bridge multiplexer. The current leads for
the sample heater is also located on this box as a pair of BNC connectors. The shielded
box is then grounded to the fridge. This provides excellent shielding from RF noise outside
the cryostat. To effectively shield the experiment from EMI locally on the cryostat, the
entire thermal conductivity measurement is built inside of a copper box (FIG. 6.6).
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Figure 6.5: (a) Standard deviation of the measured resistances normalized by the resistance
for sample thermometers mounted on a wire frame (red circles) and in a copper box (blue
triangles). (b) Standard deviation of the temperatures corresponding to the resistances
from sample thermometers.

FIG. 6.5 (a) shows the normalized standard deviation of the resistance values from
thermometers mounted on both an open wire frame and in a copper box. It is clear that
the standard deviation is up to 2 orders of magnitude lower for the thermometer in the
box than on the wire frame. This is clear evidence that the noise due to electromagnetic
interference (EMI) is much lower in the copper box. FIG. 6.5 (b) shows the standard
deviation of the resistances of the thermometers converted to temperatures which further
confirms that the noise in the thermometer in the box is much lower than on the wire
frame.

Proper treatment of the grounded sheath surrounding the wires is essential. The entire
system must be grounded through a single point and branch out from there to ensure that
every grounded sheath and grounded box are at the same potential as the ground. This is
done to eliminate ground loops, which arise when two or more points in the system that
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should be at the same potential, are not, often because they are grounded through two
different paths (ie. through a water pipe and through the grounding spike in the pit). This
causes a small current to run through the grounded sheath which is a major cause of noise
and interference in the circuit. Improper grounding can be a serious problem when trying
to achieve the lowest base temperature possible and thus should be addressed accordingly.

Computers are inherently electrically noisy machines. However, they are needed to run
the experiment and acquire data. Thus it is important to electrically isolate the computer
from the rest of the scientific equipment such as the resistance bridge used in measuring
the sample thermometers. This is done via optical isolation. The electrical signal from
resistance bridge is converted to an optical signal, which is transmitted through a fiber optic
cable and is then converted back to an electrical signal to be acquired by the computer.
Essentially, optically isolating the computer from the measurement equipment will only
allow the transmission of the desired signal between the two, isolating the noise associated
with the computer.

Johnson-Nyquist Noise

It is worth noting that even with all these noise reducing precautions, there is a minimum
limit to the electrical noise in a resistance measurement regardless of the applied voltage.
This noise is due to the thermal agitation of the electrons and is called the “Johnson-
Nyquist noise” as it was first measured by J. B. Johnson in 1926 and described by H.
Nyquist. We are able to measure the Johnson-Nyquist noise in our sample thermometers
because of the high quality resistance bridge used (Linear Research LR-700), and thus it
provides a good test to see if all other sources of noise have successfully been removed from
the system. The minimum variance in the voltage, v, per Hertz of bandwidth is given by:

v2 = 4kBTR (6.4)

where kB is Boltzmann’s constant, T is the temperature and R is the resistance. It is often
more useful to talk about the root-mean-square (RMS) of the voltage which can be written
as:

vRMS =
√

4kBTR∆f (6.5)

where ∆f is the frequency bandwidth. For example, the voltage RMS of a 1 kΩ resistor
at 300 K will be equal to 4.07 nV/

√
Hz. Applying this to our system, a 3 second digital

filter is used on the LR-700 resistance bridge, which equates to a bandwidth of 0.053 Hz.
We are also able to set the excitation voltage, V , used to measure the resistance. So, the
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RMS of the resistance value at 300 K is:

RRMS = 0.03
R3/2

V
nΩ (6.6)

Now, because we are assuming that the noise takes on a Gaussian probability density
function, we know that 98.7% of the noise will be within 5 standard deviations and thus
the peak-to-peak noise amplitude is equal to 5 times the RMS value. Thus, a 1 kΩ resistor
with an excitation voltage of 300 µV will have a peak-to-peak Johnson-Nyquist noise of
about 3 mΩ.

6.2.3 Mechanical Stability

The usefulness of a device is often closely related to its longevity. The two areas that
must be addressed are the treatment of the 14 wires (4 wires for the hot thermometer, 4
wires for the cold thermometer, 2 wires for the heater and 4 wires for the sample resistance)
needed to perform a thermal conductivity measurement and the protection of the delicately
balanced thermometers, heater and sample.

Figure 6.6: A digital image (left) and a computer rendered image (right) of the printed
circuit board with both thermometers and heater mounted and soldered to the PCB.

The coils from the thermometers and the heater are soldered directly to a printed
circuit board (PCB) which collects all the leads together at one end of the mount. A PCB
is used because it is the most efficient and orderly method of handling the leads from the
thermometers and heater while preventing any damage of the wires and conforming to the
strict size constraints.
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A ribbon cable (product code: A8-311 from Oxford Instruments) comprised of 12
twisted pairs is soldered to the PCB. Twisted pairs are used because they minimize noise
caused by electromagnetic interference, and cross-talk from neighbouring wires. The rib-
bon cable is also affixed to the mount with a small about of epoxy resulting in a sturdy
joint between the two. The ribbon cable is a prime candidate for handling many small
wires while maintaining mechanical stability since any strain on the cable is managed by
the cotton ribbon and the wires are left unharmed. The other end of the ribbon cable is
soldered into a micro-D connector (part number: MDM-25 SSB from ITT Cannon). A
block of epoxy (STYCAST 2850FT Black from Emerson & Cumings) is then cast on the
back of the micro-D connector to minimize the chance of breaking wires and to maximize
the overall strength of the cable-connector junction. An image of the completed box and
cable assembly is seen in FIG. 6.7.

!"##$%&'"(&)*+,&&
-*.&/0%$)$.&"1&

2*''"1&03'-$&

4*0%"56&0"11$0+"%&
#"7$.&*1&$#"(8&

Figure 6.7: Completed thermal conductivity box with the lid screwed on and the 12 twisted
pair ribbon cable stemming out the bottom terminating at the epoxied micro-D connector.

It is also very important and practical to protect the thermometers, heater and sample
from damage due to external circumstances (for example, getting bumped while putting
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the radiation shield on the fridge). In order to attain this protection, the sample mount
is built directly into a small copper box which is made to house the entire PCB assembly.
This box also acts as a local electromagnetic interference (EMI) shield as previously stated.

6.2.4 Mounting the device on the fridge

A copper plate is secured to the bottom of the mixing chamber, so they will be at the
same temperature. This plate has a number of tapped holes for the purpose of mounting
experiments and thermometers. Since this plate is directly attached to the mixing chamber,
it is well outside of the superconducting coils, where the high magnetic fields are generated.
Thus, if we wish to subject our sample to an external applied magnetic field, the experiment
must be mounted to the end of a silver extension known as the ‘tail’. Silver is used because
it has a low thermal resistance at low temperatures, and does not have a large nuclear
component to the specific heat in field like copper does. The tail itself is about 30 cm
long, with several mounting positions at the lower end to ensure that the sample is located
directly in the magnetic field.
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Part III

Experimental Results
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Chapter 7

LaFePO

7.1 Introduction

In conventional superconductors the pairing mechanism is phonon mediated and the super-
conducting gap function is known to have a fully gapped, s-wave symmetry. The high-Tc

cuprate superconductors, although not fully understood are known to have a d-wave super-
conducting gap and are thought to have a pairing mechanism which is magnetic in origin.
However, in the iron based superconductors the superconducting gap function is still un-
known and is the center of much debate. It is worth noting that the d-wave symmetry
is seen in all of the cuprates, whereas the symmetry of the order parameter may not be
the same in all of the iron based superconductors, although they may share a common
pairing mechanism. Knowledge of the superconducting gap is extremely useful due to its
connection with the pairing mechanism. It doesn’t appear that the electrons are paired
via a phonon interaction due to a weak electron-phonon interaction [4]. In addition to
potentially having a pairing mechanism which is magnetic in nature [84], it has also been
shown that LaFePO has a multiband Fermi-surface. This leads to the possibility of a wide
variety of superconducting gaps symmetries across the multiple Fermi surfaces. Many of
these gaps have also been shown to lay very close in energy [39], and thus we must make
very careful measurements to distinguish between them.

Previous thermal conductivity measurements of LaFePO have been conducted by Ya-
mashita et al. at temperatures down to 460 mK in fields parallel to both the c direction
and the ab planar direction [85]. However, this study does not go to low enough tem-
peratures to accurately extract the linear electronic term of the thermal conductivity by
extrapolating to T = 0 K. Therefore, our study provides a much more rigorous examina-
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tion of the residual electronic contribution to the thermal conductivity as we go an order
of magnitude lower in temperature, reaching 40 mK.

7.2 Experimental details

This study focuses on the iron based superconductor LaFePO with Tc ∼ 7.5 K and a
reported Hc2 ∼ 900 mT from previous transport measurements [85]. The LaFePO sample
we measured was a small, single-crystal platelet of dimensions 200 µm x 50 µm x 20 µm
grown using the Sn flux method [86]. Electrical resistivity measurements verified the high
quality of the sample which revealed a residual resistivity ratio (RRR) of ρ300K/ρ0K = 65
with ρ0 = 2.4µΩcm. This was measured by suppressing superconductivity with H = 2 T
applied along the c-axis.

400	  μm	  

Figure 7.1: Digital image of the LaFePO sample.

It is essential that the sample contacts have a very low thermal (and electrical) resistance
when measuring thermal conductivity for T < 1 K, as the electric and phonon degrees of
freedom can decouple, potentially leading to an underestimation of κe [87]. Low resistance
thermal contacts were prepared on the sample by initially etching the crystal surface with
Ar and then sputtering Pt contacts. Gold wires were then bonded to these pads with silver
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epoxy. The electrical resistance of the contacts is less than 1 Ωm at low temperatures, and
thus also have a low thermal resistance.

Thermal conductivity measurements were made using the one-heater-two thermometer
method as described in chapter 6 at temperatures down to 40 mK in the ab-plane and in
applied magnetic fields up to 5 T parallel to the c-axis. The application of a magnetic
field allows us to accurately separate the electronic (κe) and lattice (κph) contributions.
Field-cooling the samples is done to ensure homogeneous flux penetration. This entails
cycling to temperatures greater than Tc before changing the field. The absolute error
in the conductivity is approximately 10% due to uncertainties in the geometric factor
(length/area) of the sample. However, the relative error between the various temperature
sweeps is lower, on the order of 3%.

7.3 Results and discussion

Recall that the specific heat can be written in general as cv/T = γ + βT 2 where γ is the
electronic contribution and βT 2 is the phonon contribution and thus the total thermal
conductivity can be written as κ/T = A + BT 2 since κ = cvvl/3 from kinetic theory.
So, the intercept of a plot of κ/T versus T will directly give us the electronic term of
the thermal conductivity, A, by extrapolating to T = 0 K, and the phonon term, B,
by fitting the temperature dependence to a quadratic. So, thermal conductivity divided
by temperature is plotted versus temperature in figure 7.3. The zero field temperature
dependence of κ/T is much stronger than in the in field data. This large zero field temper-
ature dependence is quickly suppressed in an applied field of 20 mT (figure 7.3). Similar
behaviour is also seen in the cuprate [29] and the filled skutterudite [88] superconduc-
tors (figure 7.2). Above this field, the temperature dependence reduces in magnitude
and become equivalent between field strengths. Thus the temperature dependence in the
20 mT data is likely to be entirely due to phonons which are assumed to be field in-
dependent. We can then fit the observed phonon conductivity with a quadratic, which
results in κph/T = κ(20mT)/T − κo(20mT)/T = 1.2T 2 mW/K4cm. The phonon con-
ductivity can also be calculated using kinetic theory which states κph = 1

3
βT 3vslph where

β = 0.16 mJ/K4mole is the coefficient of the phonon specific heat [89], vs = 6263 m/s
is the speed of sound which is estimated from the Debye temperature, ΘD = 371 K and
lph =

√
4ab/π = 2.7 · 10−5 is the average sample dimensions. Thus the phonon conduc-

tivity divided by temperature is calculated to be 1T 2 which is very close to the observed
conductivity, and can be seen in figure 7.4.

Now the electronic component of the 0 T conductivity can be easily separated from
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Figure 7.2: Electronic thermal conductivity of the high-Tc cuprate superconductor
YBa2Cu3O7 [29] (left) and of the filled-skutterudite superconductor PrOs4Sb12 [88] (right).
Both materials show a rapid suppression of the temperature dependence with the applica-
tions of a magnetic field.

the phonon conductivity via κe(0T)/T = κ(0T)/T − κph/T . Figure 7.4 shows κe(0T)/T
is plotted versus T as well as the calculated and measured phonon contribution. The
linear term in the electronic thermal conductivity is found by extrapolating κe/T to T =
0, resulting in a residual conductivity of κ0/T = 3.0 ± 0.3 mW/K2cm. This can be
interpreted as a non-zero electronic density of states as T → 0 K. Superconductivity can be
effectively suppressed in an applied magnetic field of 700 mT which will give us the normal
state residual thermal conductivity κo(700mT)/T = 9.6 ± 0.3 mW/K2cm. Therefore,
the zero field residual thermal conductivity is a substantial fraction (0.31) of the normal
state residual conductivity. This provides compelling evidence that the non-zero electronic
conductivity is imposed by a nodal superconducting symmetry rather than by disorder.
The inset of figure 7.3 shows the thermal conductivity and electrical resistivity in thermal
units in an applied field of 2 T. The fact that they are co-linear illustrates the verification
of the Wiedemann-Franz law, confirming that superconductivity is fully suppressed and
the sample is int he normal state.

We are now able to compare the magnitude and temperature dependence of κe(0T) to
several current theoretical models of the superconducting gap, namely, fully gapped s±,
nodal s± and d-wave symmetries [46, 90].
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Figure 7.3: Thermal conductivity of LaFePO in applied magnetic fields between 0 T and
5 T. Inset: 2 T thermal conductivity divided by temperature lies directly on top of the
electrical resistivity in thermal units (L0/ρ) indicating that the WFL is obeyed. This shows
that superconductivity is fully suppressed in a field of 2 T.

7.3.1 Fully gapped s± symmetry

In a single band, isotropic s-wave superconducting gap, one expects the linear electronic
term to tend to zero as the temperature approaches absolute zero because the electronic
quasi-particle excitations are exponentially suppressed as T → 0. However, in the multi-
band s± model, where the isotropic gaps on each band can lead to interband scattering
resulting in a small finite density of states at low temperatures [46]. The ratio of the resid-
ual conductivity to the normal state residual conductivity is usually on the order of 1%
which is much lower than the 31% we observed in our data. Therefore, the fully gapped
s± model is inconsistent with our data.
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Figure 7.4: Zero field thermal conductivity divided by temperature vs. temperature of
LaFePO along with data taken by Yamashita et al. [85] in comparison with the d-wave
predictions in the Born and unitary limits. Both the measured and calculated phonon
contribution are plotted as well.

7.3.2 Nodal s± symmetry

We have already stated that the pairing mechanism is not phonon mediated due to a weak
phonon-electron interaction which leaves the possibility of a magnetic pairing mechanism.
Depending on the exact details of the magnetic fluctuations, the superconducting gap can
become anisotropic, with the appearance of deep minima or even a sign changing node
on one of the Fermi-surfaces. Many transport models which have been reported treat the
Fermi-surface as a two band model with an isotropic electron pocket at the Gamma point
with the anisotropy appearing on the hole pocket at the M point.

As in the case of a d-wave superconductor, s± has a nodal superconducting gap which
in the presence of impurity pair breaking leads to quasiparticle excitations which result in
a residual linear electronic term to the thermal conductivity in the superconducting state.
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Figure 7.5: Possible order parameters projected onto the (kx,ky) plane [32]. Accidental
nodes can appear in the anisotropic s-wave case given that it does not break the four-fold
rotational symmetry. However, in the d-wave scenario, the nodes are imposed by a change
in sign of the superconducting gap. A rotation of the d-wave by π/2 does not return itself,
that is, it violates the four-fold rotational symmetry [91].

However, one of the main differences between d-wave and nodal s± symmetries is that
the magnitude of κe/T is universal in the d-wave case with respect to the normal state
scattering rate whereas κe/T is extremely dependent on scattering rate for the s± case as
seen in calculations from Mishra et al. [92].

In order to observe the effect of the scattering rate on the electronic thermal conductiv-
ity, we must first calculate the normal state scattering rate. We can estimate the scattering
rate two different ways, directly from the measured normal state conductivity via kinetic
theory and from de Haas-van Alphen measurements of the electron mean free path l0. The
first method uses kinetic theory which states κe(N)/T = γv2

F τ/3 where the scattering rate
is defined as Γ = 1/2τ . The electronic specific heat has been measured by two groups and
found that cv/T = γ = 11.5 mJ/K2mole [89, 93]. The Fermi velocity has also been mea-
sured via ARPES measurements resulting in vF ≈ 1.5 · 105 m/s [36]. Thus the scattering
rate is Γ = 1.1 ·1012 s−1, or in reduced units with respect to Tc gives ~Γ/kBTc = 1.1. Using
the second method, we see that de Haas-van Alphen measurements give an electron mean
free path of l0 = 1000Å [86]. Thus the relaxation time is τ = l0/vF ≈ 10−13 s resulting
in a reduced scattering rate on the order of ~Γ/kBTc ∼ 0.8, which is consistent with the
first method. Other iron based superconductors have been observed to have similar large
scattering rates with ~Γ/kBTc ∼ 1→ 2 [41, 94, 95].

A scattering rate of this magnitude is expected to substantially suppress Tc for a d-
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Figure 7.6: Normalized thermal conductivity versus temperature of the anisotropic s-wave
model for varying interband scattering rates, Γ [92].

wave superconductor. This is not the case in LaFePO. It has been shown that even raising
ρ0 by a factor of 5 does not noticeably effect Tc [96]. This is consistent with current
theoretical models describing nodal s± symmetry which suggest that the nodes can be
lifted by disorder leading to a disorder induced suppression of Tc. This suppression is much
more gradual than described in Abrikosov-Gorkov theory for d-wave superconductivity
[46]. Figure 7.7 shows the evolution of the critical temperature with the scattering rate,
both normalized by critical temperature in the clean limit, for a number of iron-pnictide
superconductors [91]. It shows that superconductivity will be suppressed in these iron-
based superconductors when Γ = 45kBTc0. This is approximately 50 times larger than
the scattering rate needed to suppress super conductivity is the d-wave superconductors,
where the maximum scattering rate is given by ~Γ = 0.88kBTc0 [23].

Comparing the deep minima scenario to that of the sign changing nodal s± scenario we
find that such a large scattering rate can lead to the magnitude of the residual electronic
conductivity being a sizable fraction of the normal state conductivity. The temperature
dependence of κe/T is however expected to be proportional to T up to about T = 0.2Tc in
the nodal s± scenario which is clearly observable in our data, whereas we would expect a
constant temperature dependence for for deep minima case [92].
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Figure 7.7: The critical temperature normalized by the clean limit, Tc/Tc0, is plotted
versus the normalized scattering rate, ~Γ/kBTc0, for a number of different 122 iron-based
superconductors [91]. The dashed line shows that superconductivity will be suppressed
in these iron-pnictide superconductors when ~Γ = 45kBTc0. This is in contrast with the
d-wave case where superconductivity is suppressed when ~Γ = 0.88kBTc0 [23] (seen in the
inset).

7.3.3 d-wave symmetry

We have seen in section 3.4 that the d-wave symmetry predicts a universal temperature
dependence of the electronic thermal conductivity. The second order term depends on the
scattering rate, namely the impurity bandwidth γ, and a constant a which is dependent
on the scattering strength and is given by [24]

κe
T

(T ) =

[
κ0

T
+

7π2

15

(
a2T

γ

)2
]

(7.1)

We are also able to estimate the first order, residual conductivity via:

κ0

T
=

(
4

π

~Γ

∆0

1

µ

)
κn
T

(7.2)
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where Γ is the scattering rate, ∆0 is the magnitude of the gap and µ is the slope of the
gap at a node. We can now compare our results to the d-wave model. If we assume
that gap is purely d-wave then we are able to approximate the magnitude of the gap using
∆0 = 2.14kBTc and µ = 2 (for a single band d-wave superconductor). Thus d-wave predicts
that the universal linear conductivity is κ0/T = 2.7 mW/K2cm which is in excellent with
our measured value. We can look at the temperature dependence on top of the residual
conductivity in both the weak (Born) scattering limit and in the strong (unitary) scattering
limit in the case of d-wave symmetry. In the Born limit we use a = (πv2τ0)/2 and γ =
4∆0e

−π∆0/2Γ = 0.1 K. For the unitary limit, γ = 0.63
√

∆0Γ = 8.5 K and a = 1/2 [24].
The results from each of these limits can be seen in figure 7.4. Quantitatively, our data
lies between both of these limits which suggests that the scattering phase shift is between
0 and 2π which indicates that the acceptable impurity bandwidth is between 0.1 and 8.
However, from a qualitative stand point, our data displays a T 2 temperature dependence
which is different from the T 3 behavior that d-wave predicts.

We can also look at the sensitivity of κe/T to the scattering rate. As we have seen
in a d-wave superconductor, the electronic thermal conductivity in the superconducting
state should be universal regardless of the scattering rate. This is not the case in s±,
which is theorized to be extremely dependent on scattering rate. Previously reported
thermal conductivity measurements on LaFePO stated a normal state conductivity of 6.0
mW/K2cm [85] as opposed to our normal state conductivity of 9.6 mW/K2cm. This
suggests that the previously measured sample has a scattering rate 1.6 times larger than
our sample. However, both samples displayed a residual electronic conductivity of about
3.0 mW/K2cm. Thus the concept of a universal conductivity as in a d-wave scenario is not
ruled out assuming a small error in the absolute magnitude of the measured conductivities
and due to a 10% error in the measurement of the geometric factor.

7.3.4 Magnetic field dependence

As we have seen in the theoretical review section, a magnetic field can be used to suppress
superconductivity. In addition to this a magnetic field can also provide valuable informa-
tion about the gap topology by observing the field-induced quasi-particles effect on thermal
transport. The inset of figure 7.5 shows the normal state conductivity divided by tempera-
ture where superconductivity is fully suppressed with a field of H = 2T ‖ c. The electrical
transport is also represented in the inset, plotted in thermal units (L0/ρ). The overlap of
the two data sets verifies that the Wiedemann-Franz law holds, confirming that the system
is in the normal metallic state. The field dependence of the conductivity at intermediate
fields (H < Hc2) provides information on the structure of the gap. Figure 7.8 shows the
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conductivity as a function of field for the T → 0 extrapolated values. The T = 0.46 K
values are also seen in figure 7.8 as a direct comparison to the data of Yamashita et al.
All three curves are quantitatively consistent such that they all display a rapid increase
in conductivity at low fields, at which point the conductivity plateaus before continuing
up to the normal state conductivity at Hc2 = 700 mT. This is slightly less than the upper
critical field reported by Yamashita et al. which stated that Hc2 = 900 mT. The features
in the field dependence are most apparent in the T = 0 K limit. An applied field of H = 20
mT doubles κ0/T from the H = 0 T value. The conductivity continues to increase at a
slower rate until Hc2 = 700 mT. The 460 mK data also includes a phonon component and
it is clear that at a slightly higher temperature (T ≥ 0.5 K) the field dependence would
be qualitatively different since the initial increase would be no longer present. Thus the
T → 0 K extrapolation of the conductivity yields the most reliable field dependence of the
electronic thermal conductivity.

Figure 7.8: Field dependence of the thermal conductivity of LaFePO at T → 0 K and
T = 0.46 K in comparison with data taken by Yamashita et al. [85]. Inset: zoom in on the
low field portion of the curve to show the rapid increase in residual conductivity in field.
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Unfortunately in multiband theory, there is little difference in the thermal conductivity
between d-wave and nodal s± symmetries. The low field limit, the low-energy quasi-
particles couple to the superfluid flow around the vortecies which Doppler-shifts the energy
states so that the conductivity goes at

√
H [97]. As the field continues to increase to Hc2,

the fully gapped band becomes suppressed which opens a new channel for conductivity, this
is observed as the increase in conductivity out of the plateau. The initial

√
H behaviour is

seen in the this Tc, cuprate superconductors [30], however the second upturn in conductivity
as H → Hc2 is difficult to check for experimentally as the upper critical field can be quite
large, on the order of ∼ 100 T [98].

Figure 7.9: Normalized field dependence of the thermal conductivity for the nodal s±
symmetry as calculated by Mishra et al. [92].

We are able to qualitatively compare our normalized conductivity as a function of field
to the nodal s± gap symmetry because of the theoretical modeling of Mishra et al. [92] (see
figure 7.9). Our data shows clear qualitative similarities to theory however the exact values
of the normalized conductivity do not agree quantitatively. Further theoretical studies are
needed to provide a better quantitative comparison by adjusting the tuning parameters to
be material specific.

The field dependence of the conductivity does not provide compelling evidence to dis-
tinguish between either the multiband d-wave, or nodal s± symmetries as it stands. This
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being said, further experimental and theoretical efforts may help rectify the situation.

7.4 Conclusion

Our measurements of thermal and electrical conductivity at temperatures from 60 mK to 1
K on LaFePO show unambiguous evidence for low-energy, electronic quasiparticle excita-
tions, ruling out a fully gapped order parameter. Attempting to describe the temperature
dependence of the thermal conductivity with a d-wave symmetry proved fruitless in both
the Born and unitary limits, building the case against the d-wave scenario for LaFePO.
Comparing the field dependence of the conductivity to current theoretical models shows
good qualitative agreement with the nodal s± gap symmetry. Therefore, we conclude that
the multiband, nodal s± symmetry is a likely candidate for the symmetry of the order
parameter for LaFePO, however, a careful study of universality in LaFePO will help to
further distinguish between the two scenarios.
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Chapter 8

Ho2Ti2O7

8.1 Introduction

The rare-earth titanate Ho2Ti2O7 (HTO) crystallises in the pyrochlore structure. That is,
the magnetic Ho3+ ions are arranged on a lattice of corner sharing tetrahedra. The ground
state of the large magnetic moments (µ = 10µB) form an almost perfect Ising system such
that |J,MJ〉 = |8,±8〉 with the quantization parallel to the local 〈111〉 direction (into or
out of each tetrahedra) [59]. We have seen that in HTO, the ground state doublet is not
imposed by Kramers’ rule since Ho3+ is a non-Kramers ion, rather it is a result of the local
crystal fields. This being said, the ground state remains well isolated from the next excited
state at 20.4 meV [61]. The nearest-neighbour exchange coupling between the spins is
antiferromagnetic, however a dominant long-range ferromagnetic dipolar term results in a
net ferromagnetic effective exchange coupling with Jeff = 3 K. This ferromagnetic effective
exchange between the spins which are arranged on the pyrochlore lattice sites leads to an
intriguing six-fold macroscopically degenerate magnetic ground state such that two spins
are pointed into each tetrahedron and two spins are pointed out of each tetrahedron [59]. As
it turns out, this arrangement of spins is analogous to the locations of the hydrogen ions in
proximity with each oxygen ion in water ice. This is because each oxygen has two hydrogen
atoms positioned near (covalent bonds) and two hydrogen atoms positioned far (hydrogen
bonds) tetragonally [63] with the oxygen ions situated on the diamond lattice (centers of the
tetrahedra in the pyrochlore lattice). The rules that describes the arrangement of protons
in water ice are known as the Bernal-Fowler ice rules and therefore, the ground state spin
configuration in HTO and in isostructural Dy2Ti2O7 (DTO) also obey the Bernal-Fowler
ice rules. Hence these materials have adopted the ‘spin-ice’ nomenclature [99, 63]. To
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further validate the notion of a ‘spin-ice’, it has been shown that the degeneracy of the
ground state gives rise to a residual entropy of S = (1/2) log(3/2) per spin, calculated
by integrating the specific heat [64, 99, 100, 72]. This yields a good approximation of
Pauling’s entropy for water ice. Many challenges arise when measuring the specific heat
at low temperatures (T . 500 mK) in HTO due to extremely long time constants and a
large nuclear contribution [64] which clouds the true magnetic contribution.

Excitations out of the degenerate, spin-ice ground state are the focus of much debate
as they have been proposed to be analogous to ‘magnetic monopole’-like quasi-particles. A
monopole anti-monopole pair is created when an ice-rule breaking, spin flip occurs, creating
a tetraherdon with 3 spins in and 1 spin out (monopole) and a neighbouring tetrahedron
with 1 spin in and 3 spins out (anti-monopole). Now, what is interesting about these
excitations is that once this initial energy barrier has been overcome, subsequent spins
flips driving the pair apart do not further violate the ice rules. Instead, they move like
delocalized particles following a Coulomb interaction [75]. The fundamental magnetic
charge associated with a monopole is qm = 2µ/ad, and the coulomb interaction is described
by −µoq2

m/(4πr), where r is the distance between two quasiparticles.

Sustained magnetic currents, coined ‘magnetricity’, have not been verified. However,
attempts have been made to observe such behaviour. Somewhat controversial µSR mea-
surements of DTO were made [81] which claimed to provide proof of monopoles, although
this was disputed by another group [82] who state that the results seen in Ref. [81] were
merely an artifact of the sample mount! Measurements of the electromotive force induced
in a solenoid from a relaxing magnetic current were also made [101]. The results were in-
terpreted as evidence of the magnetic Wien effect, that is, the sea of monopoles is mapped
to Onsager’s theory of electrolytes. The controversy surrounding the excitations out of the
spin-ice ground state demands for further investigation.

Thermal conductivity measurements were made of HTO at a range of temperatures
(50 mK to 1.5 K) and fields (0 T to 8 T) parallel to the [111] crystallographic direction
in both the spin-ice state and the kagome-ice state. This is done to examine the mag-
netic excitations out of the degenerate ground state and to see how well the results can
be described by current theoretical models. Thermal conductivity is an excellent tool for
measuring delocalized quasi-particle excitations in materials. Thermal conductivity ex-
periments have been conducted in DTO [78, 102], however, the magnetic excitations were
assumed to either be localized and only effect the thermal conductivity through their in-
teraction with the lattice conductivity [78], or that they are delocalized and conduct heat
themselves with little effect on the phonon conductivity [102]. Either way, no thermal con-
ductivity measurements have been made on HTO to date and thus it will add an additional
perspective.
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8.2 Experimental Details

The HTO sample was grown using the floating-zone image method [103]. The crystal was
then prepared into a thin rectangular prism with sample dimensions 0.34 x 0.35 x 2.0
mm3 such that the [111] crystallographic direction was parallel to the long axis. Thermal
conductivity was measured via the one-heater-two-thermometer method in the spin-ice
material HTO with the heat current and applied magnetic field parallel to the [111] crys-
tallographic direction for temperatures from T = 50 mK to 1.4 K. The leads consisted of
50 µm silver wires which were affixed to the sample using silver epoxy in order to assure
good thermal contact. Mounting the sample on the thermal conductivity device required
a small copper “L” bracket, which provided a much more robust base for the sample to
affix to as can be seen in figure 8.1. This also aided in aligning the crystal with the silver
tail which is mounted on the fridge and is parallel with the applied field. A 10 kΩ metallic
resistive heater was used and a pair of RuO2 resistive thermometers were calibrated in-situ
against the dilution fridge temperature.

!"##"

Figure 8.1: Digital image of the HTO sample with the long axis parallel to [111]. A copper
“L” bracket is used to align the field with the [111] axis.

Figure 8.2 shows the magnetization curves for H ‖ [111] at temperatures between 42
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mK and 900 mK measured by Krey et al. [104]. For all reported temperatures, by the
time a field of 500 mT is applied, a plateau in the magnetization is reached, indicating
the onset of the “kagome-ice” state. When H & 2 T (depending on the temperature)
the magnetization increases to its final value, conveying that the spins are fully polarized.
Thus, quasistatic temperature sweeps were conducted in a variety of applied magnetic fields
between the spin-ice state at 0T and the plateau (kagome-ice) state at about 0.5 T and in
the fully polarized state (the three-in-one-out/ one-in-three-out state) at 8 T in order to
access the lattice contribution of the thermal conductivity.

Figure 8.2: Magnetization versus field of Ho2Ti2O7 for H ‖ [111] at temperatures between
42 mK and 900 mK measured by Krey et al. [104].

Due to long time constants observed in the spin ice materials [78, 79], extended settling
times, up to 1.5× 104 seconds at the lowest temperatures, were allotted to ensure thermal
equilibrium between the sample and the fridge. The absolute error in the value of the ther-
mal conductivity is dominated by about a 10% uncertainty in the sample geometric factor.
The relative uncertainty between temperature sweeps is less than 1%. The conductivity
is also shown to be reproducible from run to run. The magnetic field was properly zeroed
above 1.5 K by oscillating the polarity of the field, lowing the magnitude to zero. The
sample was zero-field-cooled (ZFC) between field runs.
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8.3 Results and Analysis

Thermal conductivity divided by temperature versus temperature is plotted in figure 8.3
in applied magnetic fields of 0 T and 8 T parallel to the [111] direction. The 0 T data
initially shows an increase in conductivity over the 8 T data for T < 0.65 K. However,
above T = 0.65 K, the zero field conductivity is suppressed below the 8 T data, indicating
the presence of an additional phonon scattering mechanism.

There are two main components to the thermal conductivity in insulating, magnetic
materials: phonons and magnetic excitations. It can often be a challenge to separate these
components. The phonon conductivity must first be established in the absence of any
magnetic excitations in order to observe the effect of magnetic excitations on the thermal
conductivity. This can be achieved a number of different ways, often by measuring a
non-magnetic isostructural material or by polarizing the spins with a large magnetic field,
suppressing any magnetic excitations [105]. The method of polarizing the spins was used in
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this case. Magnetization measurements of HTO show that full polarization is achieved at
2.5 T for a field along the [111] direction [106]. Thus, a large 8 T field was applied parallel
to the [111] direction at which point any magnetic excitations will be suppressed by this
large polarizing field. Therefore, the 8 T thermal conductivity is attributed entirely to
phonons. Conversely, the zero field conductivity will include contributions from magnetic
excitations.

The phonon contribution to the thermal conductivity is done by examining the phonon
mean free path, l. This can be extracted from the phonon conductivity via kinetic theory:

l = 3
κph
cphvs

(8.1)

where cph = 4.8 T 3 × 10−4 J K−1mol−1 [72] is the phonon specific heat, vs = 3.2 × 103

ms−1 [107] is the speed of sound and κph = κ8T
Total. The mean free path, l, normalized by a

geometric average of the sample width, d =
√

4A
π

= 0.41 mm, is plotted verses temperature

in the inset of Fig. 8.3. As T → 0 K, the phonon mean free path approaches a value close
to the sample boundary dimensions (Casimir limit), indicating that the phonon scattering
is dominated by boundary scattering which is temperature independent.

As the temperature is increased, the deviation of the phonon mean free path from
the boundary limited value indicates the presence of additional temperature dependent
scattering mechanisms. This is described using kinetic theory and Matthiessen’s rule

κph = κ8T
Total =

1

3

cphv
2
s∑

i

Γi
(8.2)

where cph is the phonon specific heat, vs is the speed of sound and Γi are the scattering
rates from different non-magnetic mechanisms. These may include the sample boundaries
(vs/d), dislocations (T ) and point defects (T 4) [10, 108]. Scattering off of point defects,
dislocations and the ample boundaries are needed in order to successfully fit the phonon
conductivity. The functional forms of the dislocation and point defect scattering terms
are essentially exact and their coefficients are the fitting parameters, whose values can be
found in table 8.1. The coefficient of the boundary scattering term, however, is entirely
determined by the phonon specific heat, the sound velocity and the sample dimensions
through equation 8.1. Recall that the phonon mean free path is temperature independent
for boundary scattering, thus the conductivity is expected to be proportional to T 3 since
the temperature dependence comes entirely from the phonon specific heat. A more realistic
functional form has a power law temperature dependence whose exponent is slightly less
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than 3 due to the varying effects of specular and diffuse phonon boundary scattering. This
has been examined in depth in other insulating materials [7, 8, 9, 109]. The temperature
dependence is thus found to to be T 2.85 from fitting the data. The complete fit of the phonon
conductivity is seen in the inset of figure 8.5. The fact that point defect and dislocations
play an important role in fitting the 8 T data may be a result of aspects of the crystalline
structure that are not well understood, for example inter-site ion substitution or a non-
stoichiometric oxygen concentration. Recent diffraction measurements on stoichiometric
Yb2Ti2O7 have revealed evidence for an excess of Yb3+ ions at the 2% level on the Ti4+

sublattice [110]. This type of weak disorder may be common in this family of pyrochlores.
Further experiments are required to explore the origin of this observation in HTO.

Scattering type Symbol Coefficient
Boundaries ΓB 7.8× 105 s−1

Dislocations ΓD 1.1× 107T s−1

Point defects ΓPD 1.3× 106T 4 s−1

Table 8.1: Fitting parameters of the various scattering mechanisms for the 8 T phonon
conductivity.

Under the assumption that the 8 T data only consists of a phonon contribution in
the absence of magnetic excitations, we now see that the 0 T data has two features that
require explanation. First, there is an initial increase in conductivity over the 8 T data
which indicates an additional channel for conductivity that is magnetic in origin. Second,
there is a suppression of the conductivity for T & 650 mK, indicating the presence of an
additional scattering mechanism. Figure 8.4 shows the difference between the 8 T data
and the zero field and low field data sets. This exemplifies the low temperature increase
of conductivity over the 8 T data which is followed by a large decrease as the temperature
is raised above 650 mK. This also illustrates how the initial increase in conductivity is
suppressed with the application of a magnetic field. We can interpret this additional
magnetic conductivity at low temperature as a result of delocalized magnetic monopole
excitations. At the lowest temperatures the monopole density is sufficiently low that they
do not significantly scatter phonons. As the temperature is increased, the density increases
and thus become a source of scattering for themselves and of the phonons which results in
the suppression of the thermal conductivity over the phonon conductivity in the absence
of magnetic scattering. A qualitative explanation of the field dependence requires an
examination of the pyrochlore crystal structure. From the perspective of the [111] direction,
the pyrochlore lattice on which the Ho3+ reside, can be viewed as a stack of alternating
kagome and triangular planes. The application of an external magnetic field in the [111]
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Figure 8.4: Difference between fully polarized 8 T conductivity and the low field conduc-
tivity with B = 0, 0.1, 0.2, 0.5 T. The magnetic contribution to the conductivity obtained
from fitting is also included. Inset: Expanded view of the field dependence of the increase
in conductivity plotted against temperature.

direction will polarize the spins in the triangular lattice first, as they are aligned parallel
to the field. This effectively decouples the the triangular planes from the kagome planes
while maintaining the two-in-two-out ground state. Full polarization of the spins in the
triangular lattice occurs at a field around 0.5 T, at which point the system enters the
‘kagome-ice’ state [104]. In this state, the magnetic excitations are confined to the kagome
planes which are perpendicular to the direction of heat flow and thus do not contribute to
the conductivity. The excitations in this state will, however, continue to scatter phonons
and thus the suppression of the conductivity above 650 mK remains. The small bump seen
in the 500 mT data may be due to a slight misalignment of the crystal in the magnetic
field. So, a small increase in conductivity is still observed in the kagome-ice state because
of the transverse component.

The low field thermal conductivity clearly shows that the magnetic excitations conduct
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heat and provide a scattering mechanism. Therefore, our fit of the the 0 T data must
include an additional magnetic contribution to the conductivity, κmag, and also a magnetic
contribution to the phonon scattering, Γmag. Thus the total zero field conductivity can be
written as:

κ0T
Total = κmag +

1

3

cphv
2
s

Γmag +
∑
i

Γi

= κmag +

(
3

cphv2
s

Γmag +
1

κ8T
Total

)−1
(8.3)

The functional form of the magnetic contribution to the conductivity, κmag, is unknown.
We will assume that the main scattering mechanism at low temperatures is due to point
defects and therefore temperature independent, we will use the form expected for massive
excitations in three dimensions which states that κmag ∼ T 2 [111]. As the temperature
increases, the monopoles, which are mobile, begin to noticeably scatter each other. A
simple form for the scattering rate is assumed to be proportional to the monopole density,
ρ(T ). The total magnetic contribution to the thermal conductivity can thus be written
as κmag = T 2(a + bρ(T ))−1 where a and b are fitting parameters. The result of this
fit can be seen in figure 8.4, which shows that this simple model provides an excellent
fit of the data at low temperatures. The monopole density is low is the temperature
regime, so the phonon scattering is small and the direct subtraction of the 8 T data
form the 0 T data accurately reflects the magnetic contribution. However, after the peak
in the conductivity, the monopole density rapidly increases and the increased scattering
affects both the magnetic and phonon conductivity thus the subtracted data includes the
suppression of both phonons as well as the monopole current.

Turning our attention now to the magnetic-phonon scattering, a first approximation is
that it will also be proportional to the monopole density. That is, Γmag ∝ ρ(T ) where ρ(T )
is derived from Debye-Hückel theory [112], such that:

ρ(T ) ∝ 2e−∆d/T

1 + 2e−∆d/T
∼ e−∆d/T (T → 0K) (8.4)

∆d is the dressed energy required to create an isolated monopole. Equation 8.5 shows
how the surrounding monopoles cause a screening effect that reduces the Coulomb energy
needed to separate a monopole-antimonopole pair until they are free. This results in
a reduction of the energy required to create an isolated monopole from the unscreened
value of ∆ = 5.8K [112] (a reduction of about 5% at T=0.5 K). Figure, 8.6 shows the
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Figure 8.5: Full zero field thermal conductivity fitted to equation 8.3 such that κmag =
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of 8 T fitted using kinetic theory described in equation 8.2.

creation energy versus temperature in both the screened and unscreened cases as well as
the monopole density as a function of temperature.

∆d = ∆− 1

2

Enn
ξDebye

ad

(8.5)

ξDebye
ad

=

√
2

3
√

3πEnn

√
T

ρ(T )
(8.6)

The screening length, ξDebye, is calculated in equation 8.6. The diamond lattice constant,

ad =
√

3/2 a = 4.34Å, is the distance between the centers of neighbouring tetrahedra
and therefore the nearest neighbour distance between monopoles. The Coulomb energy of
two monopoles on neighbouring sites is Enn = 3.06K. There is no analytical solution to
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equations 8.4 to 8.6 which must be solved self-consistently. The bisection method was used
to solve for the monopole density and the creation energy, which are plotted in figure 8.6.
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Figure 8.6: (a) Screened and unscreened isolated monopole energy cost. (b) Screened
and unscreened monopole densities per tetrahedron determined by numerical solution to
equations 8.4 to 8.6.

To access the monopole-phonon scattering, we fit the full zero field data to equations
8.3 - 8.6. The coefficients from the fit are listed in table 8.2. The best fit can be seen in
figure 8.5 [?] along with the individual components to the conductivity, κmag and κph.

Term Symbol Functional form
MP conductivity κmag T 2(7.2 + 1.4× 105ρ(T ))−1

MP-PH scattering Γmag 1.2× 108ρ(T )

Table 8.2: Fitting parameters for the magnetic contribution to the thermal conductivity
(MP conductivity) and the monopole-phonon scattering rate (MP-PH scattering).

This description of the temperature dependence is qualitatively excellent. This in-
dicates that the additional transport is not only provided by the magnetic excitations
well-described by our model, but also the monopole-phonon scattering that is proportional
to the temperature dependence of the monopole density. From a quantitative stand point,
the only fitting parameters are the two coefficients in κmag and the coefficient in front of
ρ(T ) in Γmag. The monopole-phonon scattering rate obtained from our fit at T = 500 mK
is approximately 108 s−1 which the same order of magnitude reported for the magnetic
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scattering of phonons (τγ) in DTO [78]. Further theoretical work will be required to see if
the other values obtained are reasonable.

We don’t expect a contribution from collective magnetic excitations such as loop flips
described by Melko et al. [63] as they are not experimentally accessible at these tempera-
tures due to a large energy barrier.

8.4 Conclusion

The zero field thermal conductivity measurements have shown an additional channel for
heat conduction at low temperatures and evidence for an additional phonon scattering
mechanism for T & 0.65 K which is magnetic in nature. This is interpreted as magnetic
quasiparticle excitations which carry heat and are able to scatter each other as well as
phonons. The additional magnetic contribution to thermal conductivity, κmag is a result
of the monopole like excitations scattering off of each other and off of massive excitations.
The magnetic-phonon scattering rate, Γmag is taken to be proportional to the monopole
density, ρ(T ) which is determined by Debye-Hückel theory. This simple fit provides ex-
cellent qualitative agreement with the data. However, further theoretical work is needed
to quantitatively investigate the validity of the fit parameter values. This provides com-
pelling evidence that the delocalized magnetic excitations can be thought of as magnetic
monopole-like quasiparticles.
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Chapter 9

Conclusion

Thermal conductivity measurements were made on a variety of different systems in order to
probe the behaviour of their ground states. This is because thermal conductivity provides
information on low energy, delocalized quasiparticles either through the presence of an
additional channel for conductivity, or an additional scattering mechanism. Hence, thermal
conductivity is an extremely versatile measurement of the bulk and can be applied to many
different materials. In this thesis we have seen how to improve the quality of thermal
conductivity measurements by minimizing the noise caused by electromagnetic interference.
We have then applied this technique to an iron-based superconducting material, LaFePO,
and a spin-ice material, Ho2Ti2O7, in an attempt to uncover details about their ground
state and the excitations out of the ground state. A brief summary of the results follows.

9.1 Summary

A new design for an improved thermal conductivity mount is discussed. The design is
in essence to build the mount directly into a copper box. This is done to provide an
efficient RF shield of the sample thermometers, which also adds a layer of protection for
the delicately balanced components and sample from foreign objects. The improvement is
quantified by looking at the relative noise on the sample thermometers between the old
wire frame design and the new box design which shows an order of magnitude reduction
in noise.

The symmetry of the order parameter was probed in the iron-based superconductor,
LaFePO using thermal transport measurements. A non-zero electrical component to the
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thermal conductivity that is a substantial fraction of the normal state conductivity (31%)
is observed. This is taken as unambiguous evidence for low-energy, electronic quasiparticle
excitations, ruling out a fully gapped order parameter. Although the d-wave scenario accu-
rately predicted the residual electronic thermal conductivity, it failed to describe the tem-
perature dependence in both the Born and unitary limits. The field dependence, however,
is consistent with current theoretical models of the nodal s± gap symmetry. Therefore,
the multiband, anisotropic s± symmetry is the best candidate for the order parameter of
LaFePO. This being said, further theoretical work is required to confirm one picture over
the other.

Thermal conductivity measurements of the spin-ice Ho2Ti2O7 in applied magnetic fields
up to 8 T with both the heat current and field parallel to the [111] direction. Applying a
field of 8 T fully polarizes the magnetic moments, allowing us to extract the phonon con-
tribution which can be described using conventional, non-magnetic scattering mechanisms
such as the sample boundaries, dislocations and point defects. The low field data shows
that the excitations out of the spin-ice ground state give rise to an additional channel for
heat conduction which also effectively scatters phonons. The magnetic contribution to the
thermal conductivity is a result of the magnetic excitations scattering off of both massive
excitations and off each other. The magnetic-phonon scattering rate is proportional to the
monopole density as determined by Debye-Hückel theory. We interpret this as evidence
for magnetic monopole-like excitations.
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Appendix A

β-YbAlB4

A.1 Introduction

A quantum critical point (QCP) arises when a continuous phase transition occurs between
two competing phases at zero temperature. In this case, strong quantum fluctuations
drive the the transition rather than thermal fluctuations as in classical critical points. The
quantum fluctuations can lead to the formation of a new phase of matter [113, 114] which
may not follow normal Fermi-liquid behaviour in metals [115]. Heavy-Fermion materials
are often in focus when studying antiferromagnetic quantum criticallity since there is a
debate as to whether many types of QCPs exist and are differentiated by their macroscopic
properties.

Generally, quantum criticallity in metallic systems is described by the Hertz-Moriya-
Millis framework [116, 117, 118, 119]. Here, antiferromagnetic order stems from spin density
wave (SDW) order. When this magnetic order is suppressed, a paramagnetic state mate-
rializes with heavy electronic quasiparticles due to the Kondo screening of the f -electron
moments by the conduction electrons. This framework provides an excellent description of
many materials, however, the presence of localized moments and Fermi surface reconstruc-
tion can lead to a more exotic type of quantum criticallity [120]. Theories attempting to
describe this exotic behaviour by introducing an effective Kondo temperature collapses at
the QCP leading to a breakdown of the heavy-Fermion metallic state [121, 122]. At the
Kondo-breakdown QCP, the Kondo effect no longer occurs and the f electrons decouple
from the conduction band [123, 124]. Distinguishing between these two scenarios can be
difficult because the fermi-surface reconstruction and the breakdown of the Kondo effect
are not easy to observe. Thus, attempting to detect the breakdown of the Landau quasi-
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particles using thermal and electrical transport measurements is a promising alternative
route to observing a more exotic type of QCP. For example, spinons are known to exist in
the Kondo-breakdown picture, which are additional entropy carriers [125]. This means that
the thermal conductivity will surpass the electrical conductivity resulting in a violation of
the Wiedemann-Franz law (WFL) as T → 0 K. A violation of the WFL is not expected
to exist near more conventional QCPs since the quasiparticles are expected to stay intact.
Therefore, thermal and electrical transport measurements are extremely useful tools for
investigating quantum critical systems through the WFL.

Figure A.1: Magnetization of β-YbAlB4 measured by Nakastuji et al. [126] for B ‖ c and
B ‖ ab. The B ‖ c magnetization diverges as T → 0 K.

The focus of this chapter is on the heavy Fermion superconductor β-YbAlB4 - the first
Yb based, heavy Fermion metal which displays superconductivity. The superconducting
transition temperature is ∼ 80 mK which can be fully suppressed with a field of 50 mT.
What is interesting about this material is that the QCP occurs almost exactly at ambient
conditions, that is, it does not require an external tuning parameter such as pressure or
magnetic field to generate the critical behaviour. Magnetic susceptibility measurements
have shown an unusual T/B scaling (figure A.1) and an effective mass that diverges as
B−1/2. Specific heat measurements confirm a divergent effective mass as T → 0 K (see
figure A.2) [127]. Strong valance fluctuations have also been observed which suggests an
unconventional QCP [128].
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Figure A.2: Specific heat of β-YbAlB4 diverging as T → 0 K for B = 0 T. Inset: Spe-
cific heat of CeCu5.9Au0.1 and YbRh2(Si1−xGex)2 for x = 0, 0.05. The Ge substitution
in YbRh2Si2 drives the peak in specific heat to T = 0 K, tuning the system to become
quantum critical [127].

A.2 Experimental Details

Thermal conductivity and electrical resistivity measurements were made on high quality
single crystals of β-YbAlB4 using the one-heater-two-thermometer method described in
section (Experimental Details). Thin platelets were grown using the flux method [129]
with typical sample dimensions of approximately 2mm × 200µm × 15 µm with the b-
axis perpendicular to the platelet. The residual resistivity ratio (RRR = ρ300 K/ρ0) and
geometric factor (geom = length/area) of the two samples presented here are found in
table A.1. The magnitude of the RRR values ensure the high quality of these samples. The
relative error between thermal and electrical measurement is estimated to be about 3%, due
mainly to slightly different effective contact separations for heat and charge measurements.

Contacts with very low electrical resistance (<5 mΩ) were prepared by first ion milling
the surface of the crystal to guarantee excellent thermal and electrical contact. Pt contacts
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Sample RRR geom (cm−1)
1 (k9-5) 300 8547
2 (S5) 240 8757

Table A.1: Residual resistivity ratio (RRR) and geometric factor (geom) of the two β-
YbAlB4 samples presented in this chapter.

were then deposited onto the sample so that Au wires could be connected either by spot
welding to the contacts or by using Dupont 6838 Ag epoxy.

Figure A.3: The two structural forms that YbAlB4 crystallizes into. α forms a zig-zag
structure whereas β forms a straight structure [127].

Figure A.3 shows how Yb, Al and B can crystallize into two main forms, α-YbAlB4 and
β-YbAlB4. Both comprised of repeating layers stacked in the c direction. The α structure
forms a herringbone pattern whereas the β structure is more of a compressed honeycomb
lattice. The focus of this section is on β-YbAlB4 since is supports superconductivity and
has unconventional quantum critical behaviour.

A.3 Results and Discussion

Thermal resistivity (w = L0T/κ) and electrical resistivity (ρ) are plotted vs. temperature
in figure A.4 for sample 2 (RRR ∼ 240) in zero field and in figure A.5 b)-e) for sample
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1 (RRR ∼ 300) in a range of fields from 0 T to 2 T. The onset of superconductivity
is clearly seen in figure A.4 as a rapid drop in the electrical resistivity with Tc ≈ 75
mK which is easily suppressed with a field of 50 mT applied along the c direction. The
critical temperature in sample 1 is slightly higher with Tc ≈ 80 mK as it is cleaner.
However, there is no corresponding feature in the thermal conductivity right down to 60
mK (the lowest measured temperature) in either sample. This might be an indication that
superconductivity only exists on the surface or small sections of the sample, or that it only
exists in the bulk at lower temperatures because thermal conductivity is a measurement
of the bulk whereas electrical resistivity can be surface sensitive.
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0.0

0.5

1.0

w (0T)

ρ (0T)

ρ (50mT)

RRR~240

B(T) || c

T [K]

w
, 

ρ
 [

µ
Ω

c
m

]

Figure A.4: Thermal (open triangles) and electrical resistivity are plotted vs. temperature.
A field of 50 mT (red dashed line) is enough to suppress superconductivity seen in the zero
field (blue solid line) data.

A schematic of the field vs. temperature phase diagram for β-YbAlB4 based on the
transport data in reference [126] is seen in figure A.5 a). It shows that in zero field, β-
YbAlB4 is in a non-Fermi-liquid (nFL) state at low temperatures which is characterized by
an electrical resistivity ρ(T ) ∼ T 1.5, a magnetic susceptibility χc ∼ T 1/3 and an electronic
specific heat γ ∼ ln(T ∗/T ) (see figure A.2) with T ∗ = 200 K [126]. The superconducting
phase has been omitted from this diagram.
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Figure A.5: (a) Schematic of a temperature vs. field phase diagram of the Fermi-liquid (FL)
and non-Fermi-liquid (nFL) behaviour based on Nakastiji’s transport data [126]. Thermal
(open symbols) and electrical (lines) resistivity of β-YbAlB4 (sample 1 with RRR ∼ 300)
in fields of (b) 0 T, (c) 500 mT, (d) 900 mT and (e) 2 T with B ‖ c. The arrows show
where the WFL is recovered.

Fitting the 0 T resistivity in figure A.5 a) to ρ(T ) = ρ0 + T n yields ρ0 ∼ 0.4µΩcm and
n ∼ 1.5 which demonstrates the non-Fermi-liquid like behaviour of the system. As the
field is increased, ρ0 increases as can be seen in figure A.5 c)-e). Also, ρ(T ) ∼ T 2 by B = 2
T indicating the return to the normal Fermi-liquid behaviour.

In general, in a paramagnetic metal, heat conduction is caused by both electrons (κel)
and phonons(κph). However in the low T limit, the conductivity in samples with low
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residual resistivities (ρ0 . 1µΩcm) will be dominated by the electronic contribution. That
is κel � κph and thus we can ignore the phonon conductivity for T < 1 K. This is the
case in other metallic samples with similar residual resistivities, such as YbRh2Si2 [130],
CeCoIn5 [131], CeRhIn5 [132] and ZrZn2 [133].

A comparison of the thermal (w) and electrical (ρ) resistivities leads to a direct test
of the WFL. The convergence of w and ρ in figures A.4 and A.5 provides clear evidence
that the WFL is satisfied for T < 200 mK in both zero field and in applied magnetic fields
for both reported samples to within the 3% experimental error. This becomes even more
evident by looking at the Wiedemann-Franz ratio (L = κ/σT ) normalized by the Lorenz
number (L0 = 2.44 · 10−8 W Ω / K2) as seen in figure A.6.
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Figure A.6: Wiedeman-Franz ratio (L = κ/σT ) normalized by the Lorenz number (L0 =
2.44 · 10−8 W Ω / K2) vs. temperature. Inset: Deviation from the WFL.

Comparing these results to other similar quantum critical systems reveals some inter-
esting differences. A recent study of YbRh2Si2 shows a 10% violation of the WFL at the
Kondo-breakdown QCP [130]. They report L/L0 ∼ 0.9 as T → 0 K indicating a higher
conductivity of charge than heat. At the field tuned QCP in CeCoIn5, the WLF is satisfied
in one direction but violated in another [131]. It is thought that in these two materials
that Landau quasiparticles no longer provide an accurate description of the excitations
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out of the ground state. However, even though β-YbAlB4 shows unconventional behaviour
in transport and magnetic properties, the quasiparticles remain intact near the QCP and
continue to carry heat and charge. Although some work has been done to describe the
behavior seen in YbRh2Si2 [134], this theory has not yet been applied to β-YbAlB4.

Looking at the temperature dependence of L/L0 in figure A.6, it is evident that L/L0

dips below unity for T > 200 mK. This is indicative of how inelastic scattering effects
charge and heat carriers differently. This is because in a scattering event, both the charge
and heat current can degrade due to the deflection of the electron. In an inelastic scattering
event, the heat current is reduced even further because of the loss of kinetic energy but
charge remains conserved. Thus elastic scattering events will effect both charge and heat
conducting equally because kinetic energy is conserved, and therefore elastic scattering will
not violate the WFL.

A possible explanation for the slight WFL violation is a fractionalized Fermi-liquid
ground state, which is a suggested model for heavy-Fermion systems near unconventional
QCP’s [135, 136]. However, this model predicts a larger violation of the WFL than is
observed, resulting in a poor description of the system. Another possibility is that the
ground state forms a spin liquid with Fermion excitations known as spinons which carry
heat but not charge [134]. The problem with this scenario is that it results in an excess of
heat conductivity which would make L/L0 > 1 which is not the case for our data.

Figure A.7: Wiedeman-Franz ratio (L = κ/σT ) normalized by the Lorenz number (L0 =
2.44 · 10−8 W Ω / K2) vs. temperature. Inset: Deviation from the WFL.

Figure A.7 shows the difference between thermal and electrical resistivities (δ(T ) =
w−ρ) vs. temperature for β-YbAlB4, CeCoIn5 and YbRh2Si2 for a variety of fields around
their QCPs. δ(T ) provides a good measure of the inelastic scattering caused by quantum
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fluctuations [132, 137, 138]. One might expect δ(T ) ∼ T 2 because of electron-electron scat-
tering, or δ(T ) ∼ T 3 + T 5 because of electron-phonon scattering [139], however this is not
the case here where δ(T ) ∼ T up to about 500 mK followed by a slight sublinear behaviour
for T > 500 mK. Another curiosity about the β-YbAlB4 data is that δ(T ) seems rather
constant in field for T < 500 mK indicating a field independent scattering mechanism.
This is in contrast to the field driven quantum critical systems such as YbRh2Si2 (Hc = 60
mT [130]) and CeCoIn5 (Hc = 5.2 T [140]) which show substantial field dependence in
δ(T ). A final note worth pointing out is the relative magnitudes of δ(T ) between the three
samples. δ(T ) in β-YbAlB4 is about an order of magnitude lower than in YbRh2Si2 or
CeCoIn5. This shows that the inelastic scattering is much smaller in β-YbAlB4 than in
the other materials. That being said, it is not merely due to relative differences in the
impurity scattering levels since it lies between the two: ie. ρ0 = 0.1µΩcm for CeCoIn5,
ρ0 = 0.4µΩcm for β-YbAlB4 and ρ0 = 1.6µΩcm forYbRh2Si2. These three questions
still require more theoretical work in order to develop an accurate description of quantum
criticallity in β-YbAlB4.

A.4 Conclusion

A complex picture of quantum criticallity has been revealed in β-YbAlB4. It has shown
non-Fermi-liquid like behaviour in electrical resistivity, susceptibility and specific heat, all
characteristics of an unconventional QCP. However, agreement with the Wiedemann-Franz
law indicates that the Landau quasiparticles remain intact at or near the QCP, which is
conventional QCP behaviour. Theoretical work is needed to devise a model which is able
to describe the nFL behaviour yet agrees with the Landau quasiparticle picture. This
theory also needs to address the issue of a linear δ(T ) which is field independent and much
smaller in magnitude than other comparable quantum critical systems.
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Appendix B

Thermal Conductivity Mount
Drawings
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Appendix C

Thermal Conductivity LabView
Program
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A - Chose which signal from the multiplexer is assigned to each channel. Also sets the
resistance range and excitation voltage for each channel. You can choose which
channels to measure by turning them on using the toggle switch.

B - File save locations for log and averaged data.

C - Set the wait time between measurements for a channel change. Also monitor many
items: the time remaining in each step, the total time, the set temperature, the
current LakeShore and Oxford temperatures, the average counter and if the heat is
on.

D - Toggles for whether you want to monitor the magnetic field strength, or the temper-
ature on the mixing chamber from a calibrated Cernox thermometer. Also indicates
if the program has completed all temperature steps.

E - Read (write) temperature step times from (to) a specified external file. Manual entry
is also possible. The PID values for each temperature range is hidden but accessible
in the other loaded text file. Current PID values have been found for temperatures
between 40 mK and ∼ 1.5 K.

F - Enter the approximate value of the thermal conductivity by setting the coefficients of
a third order polynomial. Also indicate the geometric factor of the sample in units
of cm−1 (length/area). Finally enter the desired temperature gradient across the
sample as a percentage of the fridge temperature (usually ∼10%).

G - Input the values of the standard resistors which are used to convert a voltage from
the DAQ to a current. Also input the values of the heater resistors for each sample.
There is also an option to indicate if the DAQ has a small voltage output offset.

H - This gives you the option to write notes about the current experiment. It logs a time
stamp which may come in handy when troubleshooting log files.

I - GPIB address of the VISA sessions for the LS370, LR700 and the IPS120.

J - A small command line which can query any of the instruments. Useful when trou-
bleshooting the system.
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A - H - Resistance versus time plots for each of the 8 channels.

I - Multi-plot containing: LakeShore temperature versus time, Oxford temperature versus
time, Cernox temperature versus time all on the left y-axis and the magnetic field
versus time on the right y-axis.
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[25] C. Kübert and P. J. Hirschfeld, Solid State Communications 105, 459 (1998).

[26] A. C. Durst and P. A. Lee, Phys. Rev. B 62, 2 (2000).

[27] L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).

[28] H. F. Hess, R. B. Robinson, R. C. Dynes, J. J. M. Valles, and J. V. Waszczak, Phys.
Rev. Lett. 62, 214 (1989).

[29] R. W. Hill, C. Lupien, M. Sutherland, E. Boaknin, D. G. Hawthorn, C. Proust,
F. Ronning, L. Taillefer, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett.
92, 027001 (2004).

[30] M. Chiao, R. W. Hill, C. Lupien, B. Popic, R. Gagnon, and L. Taillefer, Phys. Rev.
Lett. 82, 2943 (1999).

[31] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130,
3296 (2008).

[32] J. Paglione and R. L. Greene, Nature Physics 6, 645 (2010).

[33] D. J. Singh, Physica C 469, 418 (2009).

119



[34] A. I. Coldea, J. D. Fletcher, A. Carrington, J. G. Analytis, A. F. Bangura, J.-H.
Chu, A. S. Erickson, I. R. Fisher, N. E. Hussey, and R. D. McDonald, Phys. Rev.
Lett. 101, 216402 (2008).

[35] D. C. Johnson, Adv. Phys. 59, 803 (2010).

[36] D. H. Lu, M. Yi, S.-K. Mo, A. S. Erickson, J. Analytis, J.-H. Chu, D. J. Singh,
Z. Hussain, T. H. Geballe, I. R. Fisher3, and Z.-X. Shen, Nature 455, 81 (2008).

[37] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman, E. D. Mun,
J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski, Phys.
Rev. Lett. 101, 147003 (2008).

[38] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba,
A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F.
Chen, J. L. Luo, and N. L. Wang, Europhys. Lett. 83, 47001 (2008).

[39] S. Graser, P. H. T. Maier, and D. Scalapino, New J. Phys. 11, 025016 (2009).

[40] K. Hashimoto, T. Shibauchi, S. Kasahara, K. Ikada, S. Tonegawa, T. Kato,
R. Okazaki, C. J. van der Beek, M. Konczykowski, H. Takeya, K. Hirata,
T. Terashima, and Y. Matsuda, Phys. Rev. Lett. 102, 207001 (2009).

[41] M. A. Tanatar, J.-P. Reid, H. Shakeripour, X. G. Luo, N. Doiron-Leyraud, N. Ni,
S. L. Bud’ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. Lett. 104,
067002 (2010).

[42] J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytin, J.-H. Chu, A. S. Erickson, I. R.
Fisher, and A. Carrington, Phys. Rev. Lett. 102, 147001 (2009).

[43] K. Hashimoto, A. Serafin, S. Tonegawa, R. Katsumata, R. Okazaki, T. Saito,
H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, H. Ikeda, Y. Mat-
suda, A. Carrington, and T. Shibauchi, Phys. Rev. B 81, 220501(R) (2010).

[44] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov, Phys. Rev. B 80, 140515
(2009).

[45] A. F. Kemper, T. A. Maier, S. Graser, H.-P. Cheng, P. J. Hirschfeld, and
D. Scalapino, New J. Phys. 12, 073020 (2010).

[46] V. Mishra, A. Vorontsov, P. J. Hirshfeld, and I. Vekhter, Phys. Rev. B 80, 224525
(2009).

120



[47] N. Terasaki, H. Mukuda, M. Yashima, Y. Kitaoka, K. Miyazawa, P. Shirage, H. Kito,
H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 78, 013701 (2009).

[48] H.-J. Grafe, D. Paar, G. Lang, N. J. Curro, G. Behr, J. Werner, J. Hamann-Borrero,
C. Hess, N. Leps, R. Klingeler, and B. Bchner, Phys. Rev. Lett. 101, 047003 (2008).

[49] K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G. qing Zheng,
Europhys. Lett. 83, 57001 (2008).

[50] M. Yashima, H. Nishimura, H. Mukuda, Y. Kitaoka, K. Miyazawa, P. Shirage, K. Ki-
hou, H. Kito, H. Eisaka, and A. Iyo, J. Phys. Soc. Jpn. 78, 103702 (2009).

[51] G. H. Wannier, Physical Review 79, 357 (1950).

[52] R. M. F. Houtappel, Physica 26, 425 (1950).

[53] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Physical Review 82, 53 (2010).

[54] P. W. Anderson, Physical Review 102, 4 (1956).

[55] J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

[56] I. A. Ryzhkin, Journal of Experimental and Theoretical Physics 101, 481 (2005).

[57] N. Majlis, The Quantum Theory of Magnetism - 2nd ed. (World Scientific Publishing
Company, 2007).

[58] J. Mulak and Z. Gajek, The Effective Crystal Field Potential (Elsevier Science, 2000).

[59] S. T. Bramwell and M. Gingras, Science 294, 1495 (2001).

[60] Y. M. Jana and D. Ghosh, Phys. Rev. B 61, 9657 (2000).

[61] S. Rosenkranz, A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S.
Shastry, Journal of Applied Physics 87, 9 (2000).

[62] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature
399, 333 (1999).

[63] R. Melko and M. Gingras, J. Phys. Cond. Mat. 16, R1277 (2004).

[64] S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner,
D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko,
and T. Fennell, Phys. Rev. Lett. 87, 4 (2001).

121



[65] B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett. 84, 3430 (2000).

[66] R. Siddharthan, B. S. Shastry, A. P. Ramirez, A. Hayashi, R. J. Cava, and
S. Rosenkranz, Phys. Rev. Lett. 83, 1854 (1999).

[67] R. Siddharthan, B. S. Shastry, and A. P. Ramirez, Phys. Rev. B 63, 184412 (2001).

[68] K. Matsuhira, Y. Hinatsu, K. Tenya, and T. Sakakibara, J. Phys.: Condens. Matter
12, L649 (2000).

[69] K. Matsuhira, Y. Hinatsu, and T. Sakakibara, J. Phys.: Condens. Matter 13, L737
(2001).

[70] J. Snyder, J. S. Slusky, R. J. Cava, and P. Schiffer, Nature 413, 48 (2001).

[71] O. A. Petrenko, M. R. Lees, and G. Balakrishnan, Phys. Rev. B 68, 012406 (2003).

[72] Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, and T. Sakakibara, J. Phys. Soc.
Japan 72, 2 (2003).

[73] R. Higashinaka, H. Fukazawa, K. Deguchi, and Y. Maeno, J. Phys. Soc. Japan 73,
10 (2004).

[74] C. P. Office, LHC to run at 4 TeV per beam in 2012, 2012, http://press.web.

cern.ch/press/PressReleases/Releases2012/PR01.12E.html.

[75] C. Castelnovo, R. Moessner, and S. Sondhi, Nature 451, 06433 (2008).

[76] L. D. C. Jaubert and P. C. W. Holdsworth, Nature Phys. 5, 258 (2009).

[77] J. Snyder, B. G. Ueland, J. S. Slusky, H. Karunadasa, R. J. Cava, and P. Schiffer,
Phys. Rev. B 69, 064414 (2004).

[78] B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S. A. Grigera, and D. A. Tennant,
J. Low Temp. Phys. 163, 345 (2011).

[79] L. R. Yaraskavitch, H. M. Revell, S. Meng, K. A. Ross, H. M. L. Noad, H. A.
Dabkowska, B. D. Gaulin, and J. B. Kycia, Phys. Rev. B 85, 020410(R) (2012).
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