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Abstract

This thesis is about “nano-cellular” polymer foams, i.e., to understand nano-bubble
nucleation and growth mechanisms, we used Self-Consistent Field Theory(SCFT) for the
research.

Classical Nucleation Theory (CNT) is often used to calculate nucleation rates, but
CNT has assumptions which break down for a nano-sized bubble: it assumes planar sharp
interfaces and bulk phases inside bubbles. Therefore, since the size of a nano-sized bubble
is comparable to the size of the polymer molecule, we assumed that a bubble surface is a
curved surface, and we ivestigated effects of curvature on the nucleation barrier. SCFT
results show that sharper curvatures of smaller s cause a higher polymer configurational
entropy and lower internal energy, and also the collapse of the bulk phase for smaller bub-
bles causes low internal energy. Consequently, the homogenous bubble nucleation barrier
for curved surfaces is much smaller than flat surface (CNT prediction).

We calculated direct predictions for maximum possible cell densities as a function of
bubble radius without calculation of nucleation barrier or nucleation rates in CNT. Our
results show higher cell densities at higher solvent densities and lower temperatures. More-
over, our cell density prediction reveals that rather than surface tension, the volume free
energy, often labelled as a pressure difference in CNT, is the dominant factor for both cell
densities and cell sizes. This is not predicted by CNT.

We also calculated direct predictions for the maximum possible cell densities as a func-
tion of system volume in compressible systems. With an assumption that system pressure
has an optimal pressure which gives the maximal density of good quality foams (bulk phase
inside bubble), we calculated the inhomogeneous system pressure, the homogeneous sys-
tem, and cell density as a function of system volume.
Maximal cell prediction in compressible system shows the incompressible system prediction
is the upperbound maximal cell density, and qualitatively consistent with the compressible
system results - higher cell densities at low temperatures and high solvent densities.
In addition, our results show a bigger expansion as well as a high cell density at low tem-
perature and high solvent density, but temperature is a more dominant factor than the
solvent density. From our results, we assume that a quick pressure dropping is required to
get a better quality foam of a higher cell density.
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Chapter 1

Introduction

Microcellular foam is a polymeric foam with a cell size less than 10 µm and a cell den-
sity greater than 109 cells/cm3. It was first developed at the Massachusetts Institute of
Technology [33] in the early 1980s to increase the toughness of materials and reduce the
materials consumption. Because of the small cell size, microcellular foams show increased
thermal and electrical insulation and superior mechanical properties. With these benefits,
microcellular foams also reduce the material cost.
Therefore, intensive efforts have been made to develop foams with a higher cell density and
with smaller bubble sizes such as nano-size. Nanocellular foam is a polymeric foam with
cell size less than 0.1µm and cell density greater than 1015 cells/cm3. In recent years, sev-
eral successful implementations of nanocellular foams have been reported [22, 11, 32, 69].
However, due to the high cost and slow production rates, commercial application has been
limited.
Thus, for the large -scale production of a high quality foam such as a nanocellular poly-
meric foam, it is required to understand the mechanism of bubble nucleation and growth
that is influenced by foaming processing parameters such as temperature, pressure, solvent
concentration, and depressurization rate, etc.

To have foams of a high cell density with small-sized bubbles, a high nucleation rate
is required. People often use classical nucleation theory (CNT) for simplicity of approach.
However, CNT has been shown to be insufficient in many cases [53, 42, 38, 44] , espe-
cially for small-size bubble nucleation. Since we investigate nanocellular foams, we used
self-consitent field theory (SCFT), which is a mean field equilibrium statistical mechani-
cal theory containing a microscopic model of polymer degrees of freedom. In addition, as
the cell size is comparable to the polymer molecular size, we assumed bubble surface as a
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curved surface in contrast to the flat surface assumption for a bubble surface in CNT. For
simplicity, we used an incompressible polymer + solvent system. We observed that the ho-
mogeneous nucleation barrier of the curved surface is much smaller than the corresponding
value of the flat surface. We investigated the microscopic origin of this by studying the
thermodynamic components of the free energy.

To calculate the bubble number density by using CNT, one needs to calculate an ex-
ponential prefactor and integrate over time of the nucleation rate. By using our model, we
directly calculated the maximal cell density without the calculation in CNT.
Based on our results, we investigated the cell density dependence on temperature and sol-
vent density. Our results were qualitatively consistent with experimental results, but there
was qualitative difference between the expectation of SCFT and CNT. It turns out that
surface tension is not a dominant factor for cell density and size.

To investigate a more realistic system,i.e., a compressible system, we used a hole-based
SCFT developed by Hong and Noolandi[17]. With an assumption that a system has an
optimal pressure which gives the best form,i.e., a foam which have the smallest bubbles
that reached the bulk phase at the center, we calculated system pressure, the maximal cell
density, expansion ratio, and void fraction as a function of system volume. Based on our
result, we investigated cell density, expansion ratio, cell morphology for different processing
conditions such as different temperatures and solvent densities.

In the first section, we briefly introduce polymer foam. In section 2, we present back-
ground literature of theory and experiment, and in section 3, we outline the thesis.

1.1 Introduction to Polymer Foam

The word ”foam” originates from the medieval German word veim which means ”froth”
[63]; however, the terminology ”foam” refers to bubbles dispersed in a dense continuum like
a solid. Polymer foams, which consist of polymer matrices with fluid bubble inclusions, are
used in furniture, automotive parts, construction materials, insulation board, and many
other areas [26].

Foaming is a temperature or pressure controlled phenomenon. Gas foaming can be
generated by dropping pressure or temperature. In this thesis we only investigate pres-
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Figure 1.1: Thermoplastic foaming process.

sure induced foaming. Fig.(1.1) explains the process of thermoplastic foaming induced by
pressure dropping. First, from state (A) to (B) by raising temperature and pressure, the
raw plastic materials is heated and pressurized and blowing agent (solvent) is dissolved at
this fluid-like melt to form a homogeneous melt solution. Then, from state (B) to (C),
suddenly by dropping pressure, the foaming processing occurs due to the instant supersat-
uration induced by the pressure drop. And, finally from state (C) to (D) by replacing the
gas to air the final foam product is made.

We regard foaming as a phenomenon of a phase transition from one phase to two phases.
Fig.(1.2) shows a schematic phase diagram of a compressible polymer solution at constant
temperature. In this diagram, variables are pressure p and solvent molar fraction x. We
can see the phase separation between the polymer and the molecular solvent is induced by
a pressure jump, and Fig.(1.2) shows that the system would be separated two phases, i.e.,
polymer with some dissolved solvent molecules and solvent (molar fraction x = 1) in the
vapor phase. In the diagram, it is assumed the pressure jump ends in unstable (spinodal)
region. However, if the pressure quench ends in the metastable (nucleation and growth)
region, the phase separation will occur by homogeneous nucleation.

3



Figure 1.2: Schematic phase diagram of polymer solution at constant temperature using
pressure p and solvent molar fraction x as variables. In this diagram, the pressure quench
ends in the unstable region,i.e., spinodal region. However, if the pressure quench ends in
metastable region, then phase separation will start by homogeneous nucleation.

On the other hand, there are fundamental relationships between foam structure and
its properties. The properties of polymeric foams are determined by the following struc-
tural parameters: cell density, cell size and its distribution, expansion ratio, and open cell
content,etc. The density and distribution of cells are critical parameters in determining
the final property of the polymeric foam. Also, the cell size is an important factor. It is
well known that insulation ability depends on the cell size. According to studies of mi-
crocellular foam with a cell size on the order of 10 microns, small cells provide a better
energy absorption capability. In addition, plastics with a high cell density and uniform
cell density show superior mechanical properties such as higher toughness as well as better
thermal and acoustic insulation properties. [2, 45].
And, the cells are divided into the open cell and closed cell. Open-cells are connected with
each other, and closed-cells are discrete, each surrounded by the polymer. Open-cell and
closed-cell each has advantages and disadvantages - open cell is desirable in gas exchange,
absorption and sound deadening, but has poor mechanical properties. Thus, open cell con-
tent is not desirable for closed-cell foams. In addition, the blowing agent(solvent)’s quality,
quantity and nature are also important factors for the production of a foamed structure
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with certain desired properties.

Therefore, there are enormous efforts to get an insight of mechanisms of bubble nucle-
ation and growth and proper foaming process conditions for a desired foam morphology.
In particular, the improvements of quality of foam are sought by reducing the cell size to
nanometer dimensions for nanocellular foams.

1.2 Background literature

1.2.1 Theory

Colton and Suh [5, 6] used CNT as the basis to develop a model of the nucleation of mi-
crocellular foam with additives. They used a polystyrene-zinc stearete system and used
nitrogen and carbon dioxide as additives. They reported that the theoretical and experi-
mental results reasonably agree. However, they considered that homogeneous nucleation
and heterogeneous nucleation occur together, and that heterogeneous nucleation dominates
because of a high homogeneous nucleation barrier. It is considered that their classical ho-
mogeneous nucleation is able to fully describe the nucleation activity.

Goel and Beckman [13] generated microcellular foam by a pressure quench in a CO2 -
swollen poly(methymethacrylate), PMMA, sample. They used CNT for their model, and
found that agreement between experimental data and model calculation is very good at
high pressure. But, they observed a limited nucleation at low pressure (∼10MPa), and
they explained that it could be due to a high heterogeneous nucleation at low pressure. In
addition, in their model, for the surface tension, they used the correlation for the surface
tension mixture given by Reid[?].

Shukla and Koelling [53] used a modified CNT which accounts for diffusional and vis-
cosity constraints to calculate the rate of homogeneous nucleation of microcellular foam
of a polystyrene - CO2 system. They found that the capillary approximation of CNT is
not valid for bubble nucleation. After a correction accounting for the curvature effect of
surface tension along the lines suggested by Tolman [59], they observed the theoretically
predicted rate is consistent with the experimental results.
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On the other hand, there are also Monte Carlo simulation studies of droplet nucleation
by using CNT. Neimark and Vishynyakov [42] studied nucleation barriers for droplets in
Lennard-Jones fluids. Based on their data by MC simulation, they investigated the limits
of applicability of the capillarity approximation of CNT and the Tolman equation. They
report that the Tolman equation can not be approximated for small droplets of a radius
less than four molecular diameters.

Merikanto and Vehkamaki [38] used CNT based on a liquid drop model. They showed
that CNT can be used to fit small cluster sizes, but there was error in modeling the smallest
of clusters. They show that the liquid model can be used to calculate the work related to
addition of monomer to cluster sizes between 8 to 50 molecules. But they pointed out that
the microscopic effect related to the formation of the smallest clusters, the total cluster
work given by CNT might introduce a large correction term.

Beyond CNT, Lee and Flumerfelt [24] used the integral overall energy balance and the
integral Clausius - Duhem inequality to analyze a bubble nucleation experiment. They
observed that for molten low-density polyethylene with dissolved nitrogen, surface tension
decreases as the cluster size becomes smaller, and they explained the reduction of surface
tension is due to the dissolved gas in molten polymer and small critical cluster size.

As a nonclassical theory for a homogeneous nucleation of gas to liquid, Oxtoby and
Evans [44] used a density functional method. They used a grand potential to be a func-
tional of the inhomogeneous density, and used the Yukawa potential. Thus, the gas-liquid
surface free energy for a planar interface is inversely proportional to λ. λ is a parameter
of Yukawa potential which is related to a range of attractive potential. Oxtoby and Evans
observed that the agreement of the nonclassical and classical expectation depends strongly
on the λ. For λ = 1,i.e., the range of attractive potential is equal to the hard sphere
diameter, the deviation between nonclassical and classical results for the bubble formation
from liquid is much bigger than the liquid formation from gas. Especially, the classical
theory predicts no transition to occur because the potential barrier is too high. They
also observed that in the density functional calculation, the potential barrier vanished at
the spinodal in contrast to the potential barrier which has a finite value at spinodal in CNT.

Ghosh and Ghosh[12] presented a theory for homogeneous nucleation using DFT with
a square gradient approximation for the free energy functional to get an analytical ex-
pression for the size-dependent free energy formation of a liquid drop. They applied the
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Figure 1.3: (a) Phase diagram at temperature kBT/ε = 0.75 ≈ 410C as a function of
pressure p and molar fraction x. Three constant nucleation barrier line are shown. We
can see pressure jump would induce bubble nucleation. From [39] (b) Nucleation behavior
of a hexadecane + carbon dioxide mixture at T = 400C. Full circles indicates the starting
and ending point at which the homogeneous nucleation is induced by pressure jump. Open
circles mark points at which no nucleation occur. From [50]

theory for droplet nucleation from supersaturated vapor of Lennard-Jones fluid, and found
the nucleation barrier calculated by the nonclassical theory is significantly lower than the
prediction of CNT.

Parra and Grana [49] analyzed the influence of attractive pair-potentials in density
functional models of homogeneous nucleation. They showed that if asymptotic decay at
infinity of attractive potential is strong enough, then the ratio of nucleation barrier of the
density functional and corresponding classical result weakly dependent on the form of the
pair-potential. However, if the asymptotic decay at infinity is not weak enough, then the
nucleation barrier ratio decreases significantly with interaction potential strength.

Binder et. al.[4] used SCFT as a nonclassical theory for homogeneous bubble nucleation
in polymer + solvent systems. They chose the mixture of hexadecane with carbon dioxide
as a polymer + solvent system. In the SCF calculation, they used the grand canonical
ensemble and observed only critical bubbles. As we can see Fig. 1.4, they could reproduce
qualitative features of experimental data from Rathke et al.[50], i.e., measured nucleation
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rate in hexadecane + CO2 mixture at 400C. They observed that in Fig. 1.4(a), as the
molar fraction increases at constant pressure the nucleation barrier decreases, and it van-
ishes at the spinodal, which is similar what we observe in our research - as pressure drops
at constant temperature the nucleation barrier approaches to the zero, i.e., approaches to
spinodal.

We used SCFT in this thesis. It is a mean field equilibrium statistical equilibrium the-
ory, but Oxtoby[43] pointed out that in the grand canonical ensemble in which the number
of molecules fluctuate, a dynamically unstable state like a critical radius is not stable, but
in the canonical ensemble in which the number of molecules is fixed, a system consisting
of a critical radius surrounded by original phase is thermodynamically stable.

In microcellular foams Goel and Beckman [13] reported that their results of microcellu-
lar foam can be fit with CNT for high pressure, but they observed a limited nucleation at
low pressure and explained that it is due to a high heterogeneous nucleation at low pres-
sure. For a homogeneous nucleation, Shukla and Kellings [53] were only able to fit with
CNT when they modified their surface tension using the Tolman approximation. However,
MC studies [42][38] showed that even the Tolman equation cannot be approximated for
small droplets of a radius less than four molecular diameters, and pointed that microscopic
effects related to the smallest cluster might introduce a large correction term to CNT ex-
pectations. Lee and Flumerfelt [24] showed that surface tension decreases as the cluster
size becomes smaller, and the surface tension reduction is the cause of the seriously under-
predicted nucleation rate of CNT. However, they couldn’t explain the microscopic origin
of the surface reduction at smaller cluster sizes. They assumed a perfectly sharp bubble
interface and didn’t use a model containing polymer degrees of freedom. In this thesis, we
used SCFT which is a coarse-grained microscopic model, and investigated the microscopic
origin of the failure of CNT.

1.2.2 Experiment

To make a desired foam morphology there have been enormous efforts to choose correct
combination of processing conditions such as temperature, solvent concentration, pressure
dropping rate, etc.

Goel and Beckman [13], Leung et. al. [29], Ito et. al. [19], Tsivintzelis et. al. [60], Han
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et. al. [14] investigated cell density dependence on solvent density by using a polymer with
CO2. Their results show higher cell density with increased solvent density. Thus, there
have been also intensive researches for the solubility. [31, 15, 52, 30]

Also, Goel and Beckman [13], Leung et. al. [29],Tsivintzelis et. al.[60], Matuana et.
al.[37], Wong et. al.[65] also investigated cell density dependence on temperature by using
a polymer with CO2. Higher cell density with lower temperature is observed

Surface tension is known to be a crucial factor in polymer foaming processes. Thus,
there is much research about the surface tension. [48, 57, 57, 64, 9, 8, 27] Park et al.
[48] investigated effect of temperature and pressure in surface tension of polystyrene in
supercritical CO2. Their results show that surface tension decreases for high temperature
and pressure.
However, we notice that Goel and Beckman[13] needed a low surface tension at low temper-
ature to fit to CNT and their increased cell density at low temperature. Experimentally,
Leung et. al.[28] observed high cell density at low temperature and found the surface
tension has a minimal effect. Amon and Deson [1] also found surface tension to be unim-
portant to the foaming process in their theoretical work. We observed that the driving
force to make the bubble,i.e., pressure difference in CNT, is a more dominant factor than
the surface tension.

Aside from cell density and cell size, foam properties are also determined by foam
volume expansion ratio or open-cell content. There are efforts to know the expansion
behavior. [40, 66, 47, 41] The experimental results showed the volume expansion ratio
increased with decreased temperature. Fig. 1.3(a) shows Park et. al.’s result [47]. As for
the processing condition, except temperature or solvent density mentioned above, there
are also works to see effects of pressure dropping rate on foam properties. [45, 29, 25].
Leung and Guo [29] investigated cell density by using polycarbonate foams blown with
supercritical CO2. Their results show high cell densities at higher pressure dropping rate.
Fig. 1.3(b) shows their result.

We compared qualitatively our theoretical results,i.e., foam morphology dependence on
processing conditions, with these experimental results.
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(a) 

T c = 170°C 

T c = 150°C 

T c = 120°C 

(b) 

(c) 

(a) (b)

Figure 1.4: (a) Processing temperature effect on foam structure. We can see small size
bubbles (high cell density) at low temperature. From [47] (b) Effects of (a)pressure drop
rate (-dP/dt), (b) solvent density, (c) temperature. From [29]
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1.3 Outline of Thesis

In chapter 2, we introduce basic theories used in this thesis.

In chapter 3, for nano-sized bubbles, since the curvature of the bubble surface is compa-
rable to the size of the polymer molecule, we represent bubble surface as a curved surface.
We investigate the effect of curvature on the nucleation energy of a bubble, and our re-
sults show that a nano-sized polymeric bubble has a much smaller nucleation energy than
CNT predicts. We also investigate the microscopic origins of the failure of CNT for nano-
polymeric foams.

In chapter 4, by using SCFT and our model, we calculate direct predictions for the
maximal possible cell densities as a function of radius of a bubble without calculating
the nucleation energy and nucleation rate, as is required for CNT. With the results of
cell density at different temperatures and solvent densities, we investigate the effects of
temperature and solvent density on cell density. We present result which contradict CNT
prediction, and it is found that for different temperatures, the volume free energy density
is a more dominant factor than surface tension for both cell density and cell size.

In chapter 5, we drop the incompressible limitation used in chapter 3 and chapter 4.
By using a hole-based SCFT developed by Hong and Noolandi, we calculate system pres-
sure as a function of system volume. For the calculations, we assume our system has an
optimal pressure of the best foam in which the bulk phase is reached inside the bubble.
Then, we calculate the maximal cell density and polymer density outside a bubble as well
as system pressure as a function of system volume. We investigate qualitatively the system
expansion ratio and open cell content for different processing conditions such as different
temperatures, solvent densities, and the pressure drop rate.

In chapter 6, conclusions and discussion are presented.
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Chapter 2

Basic Theory

2.1 Classical Nucleation Theory

According to the CNT [44], the nucleation of a bubble from a supersaturated liquid involves
two energy changes: one is negative energy change due to the inside bubble bulk phase
change which is a driving force of the nucleation of a bubble, and another is positive energy
change from the interface formation which is a required energy change to form interface
between old and new phase. If the radius of bubble is R, then the total energy change
after the nucleation of a bubble of radius R is written as

∆F (R) =
4π

3
R3∆p+ 4πR2γ, (2.1)

where ∆p is pressure difference between inside and outside bubble,i.e., free energy difference
per unit volume due to the new bulk phase nucleation inside the bubble, and γ is the surface
tension defined as the excess free energy per unit area required to form the interface inside
and outside bubble. Thus, the sign of ∆p is negative and the sign of γ is positive. Fig.(2.1)
shows a schematic diagram of the CNT. In Fig.(2.1), there is a radius at which the total
free energy change is maximum and which is defined as the critical radius. Bubble would
be shrinking or growing depending on whether the bubble radius is smaller or bigger than
this critical radius. This critical radius of a bubble is found out by taking the derivative

∂∆F

∂R
= 0. (2.2)
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Figure 2.1: Plot of the nucleation barrier ∆F ∗ and critical radius R∗

The critical radius is then found to be

R∗ = − 2γ

∆p
(2.3)

Then, the nucleation barrier is defined as the total free energy at the critical radius,
i.e., the bubble should overcome this nucleation barrier to grow. The nucleation barrier is
simply found by substituting the critical radius in eq.(2.1)

∆F ∗ =
16π

3

(
γ3

∆p2

)
. (2.4)
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According to CNT, the steady-state nucleation rate has the form

J = J0 exp

(
−∆F ∗

kT

)
, (2.5)

where J0 is a dynamical prefactor that is related to the characteristic time scale for motion
in the system, k is Bolzmann constant, and T is absolute temperature. Here we can see
that the nucleation barrier is a very important factor in determining the nucleation rate.
If nucleation barrier is small, then the nucleation rate is increased exponentially. However,
in CNT there are several limitations to calculate the nucleation barrier of nano-polymer
bubble.

First of all, CNT assumes both the inside and outside bubble phases are bulk phase no
matter how much small the bubble size is. If the bubble size is nano-size, then the bubble
might be all interface without a bulk phase in the interior of the bubble, i.e., bubble might
never reach the bulk phase at the center of a bubble. Secondly, CNT assumes the surface
is a sharp flat surface, but for small bubbles like nano-sized bubbles, the surface curvature
is significant, so it is not proper to assume there is no curvature. The curvature effect
on surface tension might be very significant. Thirdly, in CNT, they assume there is no
thickness in interface assuming the interface be like step function. Due to these above CNT
assumptions that are not suitable for nano-sized bubbles, CNT nucleation rate predictions
might deviate significantly from real nucleation rates in nano-sized bubbles.

2.2 Self - Consistent Field Theory

We use Self - Consistent Field Theory(SCFT) to calculate the total free energy change
before and after formation of a bubble. SCFT[35, 10] is an equilibrium statistical mechan-
ical mean field theory. Oxtoby[43] pointed out that bubbles are stable as opposed to the
grand canonical ensemble in canonical ensemble formalism where the free energies can be
correctly calculated. Thus, SCFT is suitable to calculate free energy of inhomogeneous
polymer system. We use constraint free, canonical ensemble in this thesis. The bubbles
we study are stable against growth above the critical radius.

2.2.1 Modeling

Our system is a homopolymer + solvent system. We use a standard coarse-grained Gaus-
sian string model for the polymer, so the polymer is described as a chain of segments whose
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orientation is random and the distribution of a segment length is Gaussian distribution[34].
We model the solvent as a particle which has an excluded volume. For the interaction of
molecules, we assume there are contact interactions between polymer segments, solvent
molecules,and polymer segment and solvent molecule. Then, the Hamiltonian of our sys-
tem is written as the polymer configuration energy which is like a segment stretching energy
to treat polymer configurational entropy plus the interaction energy between molecules.
Hamiltonian H is given by

H =

np∑
i=1

3

2Na2

∫ 1

0

ds

∣∣∣∣drα(s)

ds

∣∣∣∣2 + χ

∫
φ̂p(r)φ̂s(r)dr, (2.6)

where a is a statistical segment length, rα(s) is a space curve of a polymer, χ is the
Flory-Huggins parameter which is a segregation parameter defined by

χ = χ̃ps −
1

2
(χ̃pp + χ̃ss)

χ̃ij =
ρiρj
kBT

∫
Vij(|r|)dr. (2.7)

φ̂p(r),φ̂s(r) are the concentration operator of polymer and solvent molecule at a given point
r and are defined as

φ̂p(r) =
N

ρp

np∑
α=1

∫ 1

0

dsδ (r− rα(s)) (2.8)

φ̂s(r) =
1

ρs

ns∑
i=1

δ (r− ri) , (2.9)

where N is the degree of polymerization based on the polymer segment volume ρ−1p , and
np, ns are number of polymer molecules and solvent molecules respectively, and ρ−1p , ρ−1s
are the volumes of one segment of polymer molecule and a solvent molecule, respectively.
Then, with an incompressible system constraint, the partition function of our system is
written

Z =
1

np!ns!

∫ np∏
α=1

D̃rα

∫ ns∏
i=1

driδ
(

1− φ̂p(r)− φ̂s(r)
)

× exp

(
−χρp

∫
φ̂p(r)φ̂s(r)dr

)
, (2.10)

where

D̃rα ≡ Drα exp

(
−3

2Na2

∫ 1

0

da

∣∣∣∣drα(s)

ds

∣∣∣∣2
)

(2.11)
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, which is a functional integral of all possible configurations of a polymer.

2.2.2 Meanfield Theory and Density Functional Method

To transform the operators φ̂p and φ̂s to the field functions Φp and Φs one uses the δ
functional integral representation,∫

DΦpδ[Φp(r)− φ̂p(r)]F (Φp(r)) = F (φ̂p(r)) (2.12)∫
DΦsδ[Φs(r)− φ̂s(r)]F (Φs(r)) = F (φ̂s(r)) (2.13)

δ[Φp(r)− φ̂p(r)] =

∫ +i∞

−i∞
DWp exp

[
ρp
N

∫
drWp(r)(Φp(r)− φ̂p(r))

]
(2.14)

δ[Φsr)− φ̂s(r)] =

∫ +i∞

−i∞
DWs exp

[
ρs

∫
drWs(r)(Φs(r)− φ̂s(r))

]
(2.15)

By using above expressions, partition function Z is written

Z =
1

np!ns!

∫ np∏
α=1

D̃rα

∫ ns∏
i=1

dri

∫
DΦpDΦsDWpDWsDΞ

× exp

[
ρp
N

∫
drWp(r)(Φp(r)− φ̂p(r)) + ρs

∫
drWs(r)(Φs(r)− φ̂s(r))

+
ρp
N

∫
dr (Ξ(r)(1− Φp(r)− Φs(r))− χNΦp(r)Φs(r))

]
(2.16)

Here, by using the definition of φ̂p(r) and φ̂s(r),

ρp
N

∫
drWp(r)φ̂p(r)− ρs

∫
drWs(r)φ̂s(r) = −

np∑
α=1

∫
dsWp(rα(s))−

ns∑
i=1

Ws(ri) (2.17)

Now, the partition function is written with field functions

Z =
1

np!ns!

∫
DΦpDΦsDWpDWsDΞQnp

p Q
ns
s

× exp

[
ρp
N

∫
dr
(
Wp(r)Φp(r) +Ws(r)Φs(r)

+Ξ(r)(1− Φp(r)− Φs(r))− χNΦp(r)Φs(r)
)]
, (2.18)
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where

Qp ≡
∫
D̃rαe

−
∫ 1
0 dsWp(rα(s)) (2.19)

Qs ≡
∫
dre−αWs(r) (2.20)

which are the partition functions of a polymer and solvent molecule respectively based
on subject to the fields ωp and ωs. α is the ratio of the volume of a solvent molecule to
polymer molecule (α = ρp/(Nρs)). Finally, we obtain the partition function

Z =
1

np!ns!

∫
DΦpDΦsDWpDWsDΞ exp

(
− F

kBT

)
, (2.21)

where

F

kBT
= np lnQp − ns lnQs

−ρp
N

∫
dr
[
Ξ(r)(1− Φp(~r)− Φs(r))− χNΦp(r)Φs(r)

+Wp(r)Φp(r) +Ws(r)Φs(r)
]
. (2.22)

Now, though we got the partition function expression of our system, we can not calculate
the functional integrals. Thus, in SCFT one approximates this integral by the extremum
of the integrand. By the Saddle -Point method[7], we take the minimum Helmholtz free
energy F = −kBT lnZ as our inhomogeneous system free energy. Thus, our inhomogeneous
free energy is given by F [ϕp, ϕs, ωp, ωs, ξ], where ϕp, ϕs, ωp, ωs, ξ are the functions for which
F has the minimum. From the minimum condition - the functional derivative of each
variable is zero - we get following self consistent equations.

ωp(r) = χNϕs(r) + ξ(r) (2.23)

ωs(r) = χNϕp(r) + ξ(r) (2.24)

ϕp(r) + ϕs(r) = 1 (2.25)

ϕp(r) = −φpV
Qp

δQp

δωp(r)
(2.26)

ϕs(r) =
φsV

Qs

e−αωs(r) (2.27)
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By solving these equations self-consistently, the inhomogeneous free energy is obtained.
At this point, we can use an alternative expression of the partition function of a polymer
molecule, i.e.,

Qp =

∫
drq(r, 1), (2.28)

where the end-segment distribution function q(~r, 1) is given by

q(r, 1) =

∫
DrαP [rα; 0, 1]δ(r− rα(1)) exp[−

∫ 1

0

ωp(rα(s))ds] (2.29)

which is the functional integral over all configuration with the functionals

P [rα; 0, 1] ∝ exp

{
− 3

2Na2

∫ 1

0

ds| d
ds

rα(s)|2
}

(2.30)

Then,with the identity [16],(
3

2πNa2∆s

) 3
2

exp

[
− 3

2Na2∆s
|r− s|2

]
= exp

(
−1

6
Na2∆s∇2

r

)
δ(r− s), (2.31)

this end-segment distribution function satisfies the modified diffusion equation.

∂q(r, s)

∂s
=

1

6
Na2∇2q(r, s)− ωp(r)q(r, s) (2.32)

By solving this modified diffusion equation,the ϕp(r) is given by

ϕp(r) =
φpV

Qp

∫ 1

0

q(r, s)ds (2.33)

From those self-consistent equations, once we obtain ϕp(r), ϕs(r), ωp(r), ωs(r), ξ(r), the
dimensionless inhomogeneous system free energy is given by

NF

ρpkBTV
= −φp ln

(
Qp

V φp

)
− φs
α

ln

(
Qs

V φs

)
− 1

V

∫
dr
[
ξ(r)(1− ϕp(r)− ϕs(r))− χNϕp(r)ϕs(r)

+ωp(r)ϕp(r) + ωs(r)ϕs(r)
]
, (2.34)

where

Qp =

∫
drq(r, 1) (2.35)
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Qs ≡
∫
dre−αωs(r), (2.36)

φs and φp are the overall volume fractions of solvent and polymer, and ϕs(r) and ϕp(r) are
the local volume fractions of solvent and polymer, respectively. ωp(r) and ωs(r) are the
mean fields felt by polymer and solvent at position r.

This inhomogeneous free energy expression becomes to the Flory-Huggins homogeneous
free energy if ωp(r) and ωs(r) are constant, i.e.,

NF

ρpkBTV
= φp lnφp +

φs
α

lnφs + χNϕp(r)ϕs(r) (2.37)

2.2.3 Numerical Method

Equations (2.23) - (2.27) are self- consistently solved numerically in real space.
First, we guess the fields ωp(r) and ωs(r), and with these we solve the modified diffusion
equation (2.32). Then we compute the local volume fraction ϕp(r) from eq.(2.33) and ϕs(r)
from eq.(2.25). Also from eq.(2.23) and eq.(2.24) we get

ξ(r) =
1

2
(ωp(r) + ωs(r)) + χN (2.38)

With the volume fraction values ϕp(r), ϕs(r), and pressure field ξ(r), we get new fields
ωp(r) and ωs(r). We iterate this process until the new fields and old fields differ 10−8 .
Figure (2.2) shows the procedure.
To solve the modified diffusion eq. we used a Crank-Nicolson algorithm with reflecting
boundary conditions.

2.3 Theory for a Compressible System

2.3.1 Compressible Lattice Liquid Theory

To deal with a compressible system, we used a compressible field theory that Hong and
Noolandi developed to take into account free volume effects[18]. Hong and Noolandi mod-
ified their formalism for an incompressible multicomponent system simply by taking one
of the small-molecule components to be vacancies. Thus, we used exactly same formula
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Figure 2.2: numerical method of solving self -consistent eqs. in real space
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of the inhomogeneous free energy of the incompressible system for the inhomogeneous free
energy of the compressible system, but our compressible system is homopolymer + solvent
+ holes.
With constraint of φp + φs + φh = 1 instead of φp + φs = 1 of the incompressible system,
the dimensionless inhomogeneous free energy density functional of our compressible system
is given by

NF

ρpkBTV
= −φp ln

(
Qp

V φp

)
− φs
αs

ln

(
Qs

V φs

)
− φh
αh

ln

(
Qh

V φh

)
+

1

V

∫
dr

{
χpsNϕp(r)ϕs(r) +

1

2
χppNϕp(r)ϕp(r)

+
1

2
χssNϕs(r)ϕs(r)− ωp(r)ϕp(r)− ωs(r)ϕs(r)

−ωh(r)ϕh(r)− ξ(r)[1− ϕp(r)− ϕs(r)− ϕh(r)]

}
(2.39)

with

Qp ≡
∫
d~rq(r, 1) (2.40)

Qs ≡
∫
dre−αsωs(r) (2.41)

Qh ≡
∫
dre−αhωh(r), (2.42)

where the all parameters meanings are the same as in the previous section except the
subscription h means hole. From the minimum condition of the Saddle - Point method,
the variation of the above eq.(2.36) with respect to the functions φs(~r), φp(r), φh(r),
ωs(r),ωpr),ωh(r),and ξ(r) results in a set of equations which are solved self-consistently.
The equations are

ωs(r) = χpsNϕp(r) + χssNϕs(r) + ξ(r) (2.43)

ωp(r) = χpsNϕp(r) + χppNϕp(r) + ξ(r) (2.44)

ωh(r) = ξh(r) (2.45)

ϕs(r) + ϕp(r) + ϕh(r) = 1 (2.46)

ϕs(r) =
φsV

Qs

e−αsωs(r) (2.47)

ϕh(r) =
φhV

Qh

e−αhωh(r) (2.48)
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ϕp(r) =
φpV

Qp

∫ 1

0

dsq(r, s)q(r, 1− s) (2.49)

We solved these eqs. by using the numerical method described in section 2.2.3.

2.3.2 Equation of State

For a homogeneous system, the dimensionless free energy density of our compressible sys-
tem is given by

NF

ρpkBTV
= φp lnφp +

φs
αs

lnφs +
φh
αh

lnφh

+χpsφpφs +
1

2
χppNφpφp +

1

2
χssNφsφs (2.50)

To make contact with the equation of state theory of Sanchez and Lacombe [51, 23],we
define

χpp = −
2ε∗pp
kBT

(2.51)

χss = − 2ε∗ss
kBT

(2.52)

χps = −
2ε∗ps
kBT

(2.53)

φp =
V ∗p
V

(2.54)

φs =
V ∗s
V

(2.55)

φh = 1−
(
V ∗p + V ∗s )

V

)
= 1− V ∗

V
, (2.56)

where V ∗p and V ∗s are close-packed volumes of polymer and solvent molecules in the system,
respectively.
Then, the Helmholtz free energy is written

F = v∗p
−1
{
kBTV

∗
p

N
ln

(
V ∗p
V

)
+

1

αs

kBTV
∗
s

N
ln

(
V ∗s
V

)
+

1

αh

kBT (V − V ∗)
N

ln

(
1− V ∗

V

)
−ε∗pp

V ∗p V
∗
p

V
− ε∗ss

V ∗s V
∗
s

V
− 2ε∗ps

V ∗p V
∗
s

V

}
, (2.57)
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and the pressure of the homogeneous system is

P = −
(
∂F

∂V

)
T,Np,Ns

= −v∗p
−1
{
− kBT

(
V ∗p
NV

+
V ∗s

αsNV

)
+
kBT

αhN
ln

(
1− V ∗

V

)
+
kBT

αhN

(
V ∗

V

)
+ε∗pp

V ∗p
2

V 2
− ε∗ss

V ∗s
2

V 2
− 2ε∗ps

V ∗p
2

V 2

}
(2.58)

with

αsN =
v∗s
v∗p

= 1 (2.59)

αhN =
v∗h
v∗p

= 1, (2.60)

where v∗p, v
∗
s , and v∗h are the close- packed volumes of one segment of polymer, one solvent

molecule, and the volume of a hole, respectively.
If we set αsN = αhN = 1, then

P = −v∗p
−1
{
kBT

[
−
( V ∗p
NV

+
V ∗s
V

)
+ ln

(
1− V ∗

V

)
+
V ∗

V

]
+ε∗pp

V ∗p
2

V 2
− ε∗ss

V ∗s
2

V 2
− 2ε∗ps

V ∗p V
∗
s

V 2

}
, (2.61)

which is identical with the equation of state obtained by Lacombe and Sanchez.
We set αsN = αhN = 1 in our compressible system.
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Chapter 3

Microscopic Origin of the Failure of
Classical Nucleation Theory

Classical Nucleation Theory(CNT)[62, 70, 3] is often used to predict bubble nucleation
rates in polymer foaming [28, 13], but due to several assumptions of CNT - sharp flat sur-
face and bulk phase inside a bubble - CNT has limitations when calculating the nucleation
rate of nano-cellular polymer foams. Since the size of the nano-cellular bubble is compara-
ble with the polymer size, the polymer must “see” the interface curvature and the interface
curvature must have effects on the nucleation of the nano-cellular bubble. Moreover, the
nano bubble might not be in the bulk phase inside at all due to its small size.
To investigate the effect of curvature on bubble nucleation, we used both flat and curved
bubble surfaces, and to compare the two cases, we used the same model for both. To esti-
mate the nucleation rate based on CNT, we calculated the nucleation barrier by calculating
the free energy of the inhomogeneous system with Self-Consistent Field Theory (SCFT).
One example calculation presented in this chapter shows that a curved surface has several
orders of magnitude smaller homogenous nucleation rate than that of a flat surface case
predicted by CNT. We observed that surface tension and volume free energy density, which
corresponds to the pressure difference between the inside and outside of a bubble in CNT,
are functions of the radius of a bubble in contrast to the constant surface tension and
volume free energy density of the flat surface.
Accordingly, we see that the origin of the significant deviation of nucleation rate from the
prediction of CNT is the decreasing surface tension and the increasing (negative) volume
free energy density for smaller bubbles. We investigated the microscopic origin of the
failure of the CNT by calculating thermodynamic components of the surface tension and
the volume free energy density. It turns out that the main cause of the deviation is the
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sharper curvature at smaller bubble radius which allows more available polymer configu-
rations with lower internal energy. The collapse of the bulk region inside bubble for small
bubbles near the critical radius leading to lower internal energy is a secondary cause of the
decreasing surface tension for smaller bubbles. In addition, the same mechanisms, namely
the increasing internal energy causing increasing entropy for smaller bubbles is also the
microscopic origin of the increase of the (negative) volume free energy density.

In the first section of this chapter, we summarize how we calculate the nucleation
barrier,i.e., how surface tension and volume free energy density are defined and calculated
in our model. In section 2, we present an example calculation comparing the flat surface
case and the curved surface case. In section 3, we discuss the microscopic origins of the
CNT failure, and conclusions and discussions are presented in the final section.

3.1 Theory

In Classical Nucleation Theory, the homogeneous nucleation rate is given by

J = J0 exp(−∆F ∗/kBT ), (3.1)

where J0 is a prefactor associated with the characteristic time scales of motion of the
system, and ∆F ∗ is the free energy necessary to form a critical radius bubble R∗ smaller
than which the bubble shrinks and disappears and larger than which the bubble grows [43].
According to CNT, the free energy ∆F necessary to form a typical bubble of an arbitrary
radius R is

∆F (R) =
4π

3
R3∆FV + 4πR2γ, (3.2)

where γ is surface tension defined as the excess free energy per unit area required to form
interface, and ∆FV is free energy change per bubble volume due to the new bulk phase
formation of a bubble. In this chapter we call it the volume free energy density which
corresponds to ∆p in the CNT expression, and the sign of ∆FV is minus.

Fig. 3.1 shows the structures we used to calculate the surface tension and volume free
energy density. Fig. 3.1 (a) is the profile of the initial homogeneous system, (b) is the
profile of the bulk phase separated homogeneous system, which would be formed if there is
no interface - the system consists of two bulk homogeneous systems with volume fraction
values on either side of the interface of the final inhomogeneous system, and (c) is the
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profile of final inhomogeneous system with the interface. One can notice that (a) and (c)
are real systems, while (b) is a virtual system which would be formed if there is no interface.

To calculate the excess free energy density of the interface, we subtract the free energy
density of panel (b) from the free energy density of panel (c), i.e., we subtract the free
energy density of the bulk phase separated system F̃s from the inhomogeneous free energy
density F̃ , i.e.,

F̃ex = F̃ − F̃s, (3.3)

where tildes mean dimensionless quantities.

The dimensionless inhomogeneous system free energy F̃ is given by

F̃ ≡ NF

ρ0kBTV

= (1− φs) ln

(
Qp

V (1− φs)

)
− φs
α

ln

(
Qsα

V φs

)
− 1

V

∫
dr

{
χNϕp(r)ϕs(r)− ωp(r)ϕp(r)− ωs(r)ϕs(r)

}
, (3.4)

where ϕp(r) and ϕs(r) are the local volume fractions of polymer and solvent, and φs
and φp are the global volume fraction values, i.e., volume fraction values of the initial
homogeneous system. Qp and Qs are single molecule partition functions of polymer and
solvent, respectively. The ratio of volume of a solvent molecule to a polymer molecule
is denoted by alpha with the volume of one polymer segment being ρ−10 and the degree
of polymerization beingN . The Flory-Huggins parameter χ is the segregation parameter
between polymer and solvent, and ωp(r) and ωs(r) are the mean fields on polymer and
solvent at position r by surrounding molecules.

The free energy density of the bulk phase separated system, F̃s is given by

F̃s = F̃ (1)
h

V1
V

+ F̃ (2)
h

V2
V
, (3.5)

where F̃ (1)
h and F̃ (2)

h are the bulk homogeneous free energy densities on either side of the
interface. To calculate the energy density of the bulk homogeneous system we used the
dimensionless homogeneous free energy density eq. (3.6) which is derived from Flory-
Huggins theory.

F̃ (i)
h = (1− φ(i)

s ) ln(1− φ(i)
s ) +

φ
(i)
s

α
ln

(
φ
(i)
s

α

)
+ χN(1− φ(i)

s )φ(i)
s , (3.6)
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Figure 3.1: (a) Profile of the initial homogeneous system which has initial global volume
fraction values. (b) Profile of the bulk phase separated homogenous system which would
be formed if there was no interface. Each bulk system has volume fraction values on either
side of interface of the inhomogeneous system. Each bulk system volume V1 and V2 are
determined by conservation of molecules. (c) Profile of the final inhomogeneous system
after formation of a bubble, i.e., after formation of interface
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where φ
(i)
s , i = 1, 2, are solvent volume fraction values on either side of interface that would

be used to get F̃
(1)
h and F̃

(2)
h respectively. V1 and V2 are the volumes of the homogeneous

phase separated regions given by
V1 + V2 = V (3.7)

V1
V

=
φ
(2)
s − φs

φ
(2)
s − φ(1)

s

, (3.8)

which is derived by the conservation of total volume of solvent. Dividing the excess free
energy by interfacial area A,the dimensionless surface tension γ is

γ̃ ≡ F̃ex
A

= F̃ex

(
R2
g

4πR2

)
, (3.9)

where R is the bubble radius and Rg is the radius of gyration of a polymer. Rg is the unit
of length used in this thesis.

To calculate the ∆F (R) in eq.(3.2), we need to know the volume free energy density
∆FV which corresponds to ∆p in CNT. ∆p in CNT is defined as the energy change due to
the phase transition of bulk inside the bubble divided by the bubble volume, which has a
negative sign, i.e., the driving force of the bubble formation. Similarly, our ∆FV in eq.(3.2)
is found by subtracting the homogeneous system energy from the bulk phase separated
homogeneous system energy and dividing by the bubble volume. The dimensionless volume
free energy density ∆FV is given by

∆̃F V ≡
V

V1
(F̃s − F̃h), (3.10)

where F̃s is the free energy density of Fig.(3.1) panel(b) and F̃h is the free energy density of
Fig.(3.1) panel(a), V and V1 are the volumes of the system and the bubble respectively. We
define volume V1 as the bubble volume[21], because this definition gives the same definition
of the bubble radius as CNT. The prefactor V

V 1
is given by eq.(3.8).

The dimensionless free energy ∆̃F (R) necessary to form a bubble of an arbitrary radius
R is given by

∆̃F (R) = 4π

(
R

Rg

)2

γ̃(R) +
4π

3

(
R

Rg

)3

˜∆FV (R), (3.11)

where R is radius of the bubble, i.e., radius of volume V1.
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Alternatively, for the curved surface, we can calculate the ∆̃F (R) directly from SCFT.
It is given by

∆̃F (R) =

(
V (R)

R3
g

)
(F̃ (R)− F̃h(R)) (3.12)

We are now ready to calculate the free energy change as a function of the bubble radius
R. One should notice that the box volume is increasing as the bubble is growing, but we
fix the global volume fraction values of the box. The global volume fraction values of all
boxes of the bubbles need to be the same as the global volume fraction values of the initial
homogeneous system, because the bubbles we make have the same initial homogeneous
system. Consequently our bubble is a representative bubble of our macroscopic system - in
our macroscopic system, there must be many sizes of bubbles growing and shrinking, but
we can imagine one size of bubble as a representative bubble which fills in our macroscopic
system, because the global solvent density of the system is the same as the global solvent
density of the macroscopic system.

3.2 Surface Tension, Volume Free Energy Density and

Nucleation Barrier in a Curved Surface and a Flat

Suface

We examined systems with α = 0.01, χN ranging from 120 to 160 and φs ranging from 0.2
to 0.33 which is the nucleation and growth region. In this chapter, we present results of one
example case of χN = 140 and φs = 0.23. Fig.(3.2) shows the homogeneous free energy as
a function of solvent density. One can see that our system would be phase separated into
φs = 1(inside bubble) and φs = 0.16465 (outside bubble) in equilibrium.

Fig.(3.3) and Fig.(3.4) show local volume fractions of three different sizes of bubble with
flat and curved surfaces, respectively. In the flat surface case, as we expected, Fig.(3.3)
shows all the solvent volume fraction values outside the bubble are the same with the
expected value in Fig. (3.2) irrespective of bubble size. On the contrary, Fig.(3.4) shows
the solvent volume fraction values outside the bubble are changing depending on bubble
size, and we observe that for a smaller bubble, the solvent volume fraction value is more
deviated from the equilibrium solvent volume fraction value. Therefore, we can expect
that there must be a curvature effect in the formation of a curved surface bubble.

By using eqs.(3.8) (3.9) (3.10), we calculated the surface tension γ̃ and the volume free

energy ∆̃FV of flat and curved surface cases. For the flat surface case, we get a constant
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Figure 3.2: Homogeneous free energy versus global solvent volume fraction at χN = 140
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Figure 3.3: (a) Profiles of local volume fractions of three different sizes of bubble in the
flat surface case. (b) In this blow up graph, we can see that at the outside of a bubble,
three different sizes of bubble have the same solvent volume fraction value, which is the
equilibrium value.
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Figure 3.4: (a) Profiles of local volume fractions of three different sizes of bubble in the
curved surface case and one profile of a flat surface. (b) In this blow up graph, we can see
that in curved surface, three different sizes of bubble have different solvent volume fraction
values at the outside of a bubble. Compared to the flat surface, in curved surface, smaller
bubbles have more deviated volume fraction values from the equilibrium solvent volume
fraction value. 32
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Figure 3.5: (a) Surface tension values versus radius of a bubble. For curved surfaces,
surface tension is decreasing for the smaller bubble in contrast to the constant value of

surface tension for the flat surface. (b) The negative of volume free energy density(−∆̃FV )

versus radius of a bubble. As the sign of ∆̃FV is minus, the sign of −∆̃FV is positive.
The negative volume free energy density is increasing for smaller bubbles in contrast to
the constant value of volume free energy density for the flat surface.
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34



value, ∆̃FV = 7.1 and γ̃ = 3.3 irrespective of bubble size, which is the expectation of CNT.
However, for the curved surface case, we observe that the surface tension γ̃ and the volume

free energy density ∆̃FV are functions of bubble radius - for smaller bubbles, surface tension
is decreasing and negative volume free energy density is increasing. Fig.(3.5) shows the
results.

To calculate the dimensionless free energy ∆̃F (R) necessary to form a bubble of radius
R, for the flat surface case we used eq.(3.11) and used the constant values ˜∆FV = 7.1
and γ̃ = 3.3. The solid line of Fig. (3.6) is the result of the flat surface case. For

curved surface case, we directly calculated the ∆̃F (R) using eq.(3.12). We made the box
volume smaller until we could not find a solution which converged stably, i.e., which defined
the critical radius. We observed that below the critical radius, intermediate accuracy
calculation showed the bubble is shrinking during the course of calculation. The open
circles in Fig.(3.6) is the result of the curved surface case.

From Fig. (3.6), we see that the flat surface (CNT expectation) has more than 1.5
times bigger critical radius and more than 6 times bigger nucleation barrier than the
curved surface. Accordingly, our result indicates CNT predicts a much lower homogeneous
nucleation rate than our results. Thus, due to the low nucleation rate expected by CNT,
it has been thought that heterogeneous nucleation dominates bubble nucleation; however,
our results indicate that there might be much more homogeneous nucleation possible than
previously thought.

3.3 Microscopic Origins of the Failure of CNT

In the previous section, our result shows much smaller nucleation barrier ∆̃F ∗ for curved

surfaces compared to the ∆̃F ∗ for flat surfaces(CNT). We noticed that for curved surfaces,

the value of surface tension γ̃ and volume free energy density ∆̃FV is a function of bubble

radius in contrast to the constant γ̃ and ∆̃FV for the flat surface. Therefore, we saw that

the variation of γ̃ and ∆̃FV as a function of bubble radius for small radius of bubbles (nano-

sized bubbles) was the reason for the significant devivation of ∆̃F ∗ for curved surfaces from

the ∆̃F ∗ of flat surfaces. We investigate the microscopic origin of the failure of CNT by

breaking down the free energy (i.e., γ̃ and ∆̃FV ) into the thermodynamic components, i.e.,
internal free energy, polymer configurational entropy, polymer translational entropy, and
solvent translational entropy[36].

The below equations are used to calculate the components.

35



0.5 1 1.5 2 2.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

R/R
g

d
im

e
n

s
io

n
le

s
s

 s
u

rf
a

c
e

 t
e

n
s

io
n

 
c

o
n

tr
ib

u
ti

o
n

 

 

surface tension

polymer configurational entropy

polymer translational entropy

solvent translational entropy

internal energy

Figure 3.7: Thermodynamic components of surface tension versus bubble radius R. In-
creasing polymer configurational entropy is the main cause, and the decreasing internal
energy is a secondary cause of decreasing surface tension for smaller bubbles. Below 0.9
Rg, the internal energy shows a sharper decreasing.

U

ρpkBTV
=
χN

V

∫
φp(~r)φs(r)dr (3.13)

Scp
ρpkBV

=
1

V

∫
ρp ln q(r, 1)dr +

1

V

∫
ωp(r)φp(r)dr (3.14)

Stp
ρpkBV

=
1

V

∫
ρp ln ρpdr, ρp = −φpV q(r, 1)

Qp

(3.15)

Sts
ρpkBV

=
φs
α

ln

(
Qs

φsV

)
+

1

V

∫
ωs(r)φs(r)dr. (3.16)

If we look at the surface tension result first, Fig. (3.7), we can see that the main
cause of decreasing surface tension at smaller radii of bubbles is the increasing polymer
configurational entropy at smaller radii. Fig.(3.8) explains why the polymer configurational
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Figure 3.8: In (a) and (b) the polymer has same configuration. However, for the flat
surface (a), since the surface is flat, the polymer has more contact with solvent causing
higher internal energy. (b) In the curved surface, since the surface has curvature, the
polymer has less contact with solvent causing lower internal energy.

entropy is decreasing at the smaller radii. In Fig.(3.8) (a) and (b), one can see two polymers
which have the same configuration. However, the polymer near curved surface has less
interaction energy, because the polymer near curved surface has less interaction with solvent
molecule due to the curvature of the surface - the solvent and polymer molecules are
immiscible.

Therefore, for bubbles with smaller radii, due to the sharper curvature of surface, the
polymer has more available configurations which have lower internal energy. Consequently,
the increasing conformational entropy at higher curvatures makes the free energy decrease
more at smaller radii. And this causes the decreasing surface tension for smaller bubbles.

In addition, Fig.(3.7) shows that decreasing internal energy at higher curvatures is a sec-
ondary contributor causing decreased surface tension for smaller radii bubbles. Decreasing
internal energy can be explained by the same mechanism as the increasing configurational
entropy - as explained in Fig.(3.8). Due to the higher curvature, more conformations which
have less interaction energy are available for smaller bubble radii; accordingly the internal
energy is decreased and the surface tension decreases at smaller bubble radii.

From Fig.(3.7), we can also notice that the internal energy of surface tension decreases
more sharply at bubbles smaller than 0.9 Rg. This is due to the disappearance of the
bulk phase inside the bubble - See Fig.(3.10). Due to the collapse of the bulk phase inside
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Figure 3.9: Thermodynamic components of volume free energy density versus bubble ra-
dius R. By same mechanism of surface tension, together with increasing internal energy,
increasing entropy is the cause of increasing volume free energy density for smaller bubbles.

bubble, internal energy increases, i.e., there is more mixing of polymer and solvent. But,
it turns out that the collapse of bulk phase inside a bubble causes a decrease of internal
energy. Since surface tension is found by subtracting the free energy of the bulk phase
separated system from the free energy of the inhomogeneous system, and the internal
energy of the bulk phase separated system is increasing more quickly than internal energy
of the inhomogeneous system, there is a sharp decrease of the internal energy at bubbles
smaller than 0.9 Rg. Consequently, the collapse of the bulk phase inside the bubble appears
as a secondary cause of decreasing surface tension for smaller bubbles.

The changing volume free energy density ∆̃FV is also another cause of the small nucle-

ation barrier in curved surfaces. We broke down ∆̃FV into its thermodynamic components.
Fig.(3.9) shows the result. We see the increasing entropy for smaller bubbles is a cause of

the increasing of ∆̃FV at small radii. This can be explained by the same mechanism with
which we explained the decreasing surface tension for the small radii bubbles.

Due to the higher curvature of the surface and the collapse of the bulk phase inside the
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Figure 3.10: (a) Profile of a critical radius of a bubble in which inside the bubble does not
reach the perfect bulk phase in case of χN = 120, φs = 0.23. (b) Profile of a bubble with
a perfect bulk phase inside a bubble in the case of χN = 120, φs = 0.23. (c) Profile of a
critical radius of χN = 160, φs = 0.26 case. We can see a clear collapse of the bulk phase
inside the bubble. (d) To compare with (c), one profile of a bubble with perfect bulk phase
inside the bubble for the χN = 160, φs = 0.26 case.
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Figure 3.11: Thermodynamic components of surface tension versus bubble radius R for
the case of χN = 160, φs = 0.26. Near the critical radius, at a small radius of bubble, the
decreasing internal energy becomes a main cause of decreasing surface tension for smaller
bubbles.

40



bubble, there is more mixing of polymer and solvent molecules and consequently, there is
increasing internal energy for the smaller bubbles. Consequently, because of the balance
of internal energy and entropy, the entropy increases for smaller bubbles. The increasing

entropy results in increasing ∆̃FV for smaller bubbles and causes the small nucleation
barrier for curved surfaces.

In our example case, the increasing conformational entropy due to higher curvature was
the main origin for the increasing surface tension, but for another case, χN = 160,φs = 0.26
showed that the increasing internal energy due to the collapse of the bulk inside the bubble
dominates the conformational entropy effect near the critical radius. Fig. (3.10)(c) shows
the volume fractions profile of the critical radius, and Fig.(3.11) shows the thermodynamic
components of the χN = 160, φs = 0.26 case. Thus, in the higher segregation case, the
internal energy effect might become a dominant factor though our example case in this
chapter shows it as a minor origin.

3.4 Discussion and Conclusion

Considering that the flat interface assumption of CNT is not appropriate for nano-polymeric
bubbles, and since nano-polymeric bubbles are comparable to polymers in size, we mod-
elled the surface of nano-polymeric bubbles as curved surfaces. To investigate the effect of
the curvature on the nucleation of bubbles, we studied flat and curved surfaces by using
the same model for both. We also compared the nucleation barrier calculated in both
cases. For the calculation of the free energy of inhomogeneous system, we used SCFT.
For our example case, χN = 140, φs = 0.23 and α = 0.01, the results show that the
flat surface(CNT expectation) has more than 1.5 times bigger critical radius, more than 6
times bigger nucleation barrier and more than five orders smaller nucleation rate than the
corresponding values of curved surfaces.

Investigation of the microscopic origins of the failure of CNT revealed that higher curva-
tures and the disappearance of the bulk phase inside bubbles causes the decreasing surface
tension and the increasing negative volume free energy density for smaller bubble. Conse-
quently, there was a smaller nucleation barrier for the curved surface case. In our example
case, the increasing conformational entropy due to higher curvature was the main origin
for the increasing surface tension, but for a higher segregation case, our results showed the
internal energy effect is a dominant factor.

In conclusion, our calculation of nucleation rate for nano-polymeric bubbles using SCFT
with the assumption of curved surfaces shows much smaller nucleation barriers with the
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smaller critical radii than predicted by CNT(flat surfaces). It turns out that the origins of
the failure of the CNT are the assumptions of CNT which are not appropriate for nano-
sized bubbles - sharp flat surfaces and bulk phases inside bubbles. Curved surface results
show that the high curvature and the collapse of the bulk phase inside a small bubble makes
for much smaller nucleation barriers, i.e., much bigger homogeneous nucleation rates than
CNT predicts. Thus, our results indicate that there is a much higher possibility of homo-
geneous nucleation than previously thought based on CNT.

In this chapter we used an incompressible system for simplicity, but to deal with more
realistic systems, we will need to use a compressible model by using an equation of state,
i.e., by incooperating pressure.
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Chapter 4

Maximal Cell Density and
Temperature Effect on Cell Density

Generally, “Good quality foam” means a foam which has a high cell density with closely
spaced and uniformly distributed small bubbles. CNT is often used to calculate cell density,
but in CNT, calculation of the nucleation barrier or nucleation rates are needed to calculate
the cell density. However, as we showed in the previous chapter, CNT is not appropriate
for predicting nucleation rates for nano-cellular foams, as CNT makes assumptions that are
not applicable to nano-sized bubbles. In this chapter, we calculated the maximum possible
bubble number density directly by using SCFT without calculation of nucleation barrier
or nucleation rates.

In contrast to CNT, which can only calculate nucleation rates at the critical radius,
we calculated cell density as a function of bubble radius. Interestingly, our results show
that the radius of the maximal bubble surface area is different from the critical radius -
it is slightly bigger than the critical radius. Also, we noticed that the bulk condition at
the center of the bubble is reached at yet another radius, which is slightly bigger than the
radius of maximal surface area per unit volume. Thus, unlike CNT, we can find the upper
bound maximal cell density corresponding to the critical radius, the radius of maximal
bubble surface area, and the radius of the bubble with bulk condition at the center of the
bubble. Thus, one can choose the “best foam” depending on the application.

On the other hand, our maximal cell density in this chapter is an upper bound on the
cell density, i.e., experimentalists would get lower cell densities. However, our results can
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qualitatively show at which experimental conditions - temperature, solvent density, ratio
of solvent and polymer molecular weight, etc - experimentalists can get better foams. We
examined maximal density in different solvent density cases at two different temperatures.
Our results show that foams generally have higher maximal cell densities at lower temper-
atures despite the higher surface tension at lower temperatures - contradicts with CNT
prediction, since CNT predicts a higher cells density at higher temperatures because sur-
face tension is lower at higher temperature. Our SCFT results also reveal that in polymeric
foaming at different temperatures, the volume free energy density is a more important fac-
tor than surface tension.

In the first section, we describe how we calculate bubble number density as a function
of bubble radius. In section 2, we show example results for χN = 160 - bubble number
density of three “best foams” in view of maximal cell density, maximal bubble surface area
per unit volume, and bulk condition at the center of a bubble at different solvent density
cases. Then, we discuss the conditions for the better foam which SCFT and CNT provide
at one temperature. In section 4, we compare the results of two different temperature
cases, χN = 160 and χN = 120, and discuss the prediction of SCFT that CNT can’t
provide. In the final section, the conclusion and discussion are written.

4.1 Calculation of Bubble Number Density

In CNT,the nucleation rate is written

J = J0 exp

(
−∆F ∗

kBT

)
(4.1)

, where the nucleation barrier ∆F ∗ is given by

∆F ∗ =
16π

3

(
γ3

∆F2
V

)
(4.2)

Therefore, to calculate the cell density in CNT one needs to integrate the nucleation
rate over time based on the nucleation barrier and also derive the prefactor J0 through
other means. We showed in the previous chapter that for high curvature surfaces, the
nucleation barrier deviates from the nucleation barrier expected in CNT. Also, CNT can
only predict cell densities at the critical radius.
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Using SCFT, we calculate the bubble number density as a function of the radius of
a bubble directly. In this chapter, we use the same inhomogeneous free energy formula
and the same model as the previous chapter. Therefore, as we described in the previous
chapter, in our model, we change the size of a bubble by changing the size of the system
while the global volume fraction φs is held constant. In the previous chapter, since we
examined the free energy necessary to form a typical size of bubble, we had to subtract
the initial homogeneous system energy from the inhomogeneous system energy, i.e., the
system after formation of the bubble. Since the number of molecules is conserved, we put
the global volume fraction value of the initial homogeneous system as our system global
volume fraction value. Thus, our system global volume fraction values are the same as the
macroscopic system global volume fraction values.

Therefore, our bubbles are representative bubbles of our macroscopic system,i.e., we
can think as if the macroscopic system is filled with the one representative bubble though
in reality the macroscopic system would be filled with various sizes of bubbles. Thus, we
can calculate the bubble number density simply as the inverse of the system(box) volume.
However, in this chapter, we use the cell density definition for polymer foaming, i.e., the
number of bubbles per unit volume of polymer. Therefore, we calculate the cell density as
the inverse of the box volume times polymer volume fraction.

4.2 The ”Best” Foam

We investigated a case of χN = 160 and different global volume fraction values ranging from
0.17 to 0.29, which is in the nucleation and growth region. As mentioned, we calculated
bubble number density, bubble surface area per polymer volume, and the solvent volume
fraction at the center of a bubble as a function of bubble radius at each different solvent
volume fraction case. Fig. 4.1 (a) shows the result of the bubble number density as a
function of radius of a bubble. It is not surprising that at the smallest radius, i.e., at
the critical radius, the foam has the maximal bubble number density. Thus, if we choose
a foam which has the maximal bubble number density as the best foam, the best foam
is formed at the critical radius, and we can simply get a result of Fig.4.1(b). Fig.4.1(b)
shows the maximal bubble number density at different solvent volume fractions, and we see
a higher cell density with increased blowing agent, which is consistent with observations.
[13],[28],[19],[60],[14].

Fig. 4.2(a) shows the bubble surface area per bubble box volume as a function of bubble
radius at different solvent volume fractions. As mentioned above, surprisingly the maximal
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Figure 4.1: At χN = 160 (a) Dimensionless bubble number density versus radius of a
bubble. (b) Dimensionless bubble number density at the critical radius of a bubble at
different solvent volume fraction systems.

46



0.4 0.8 1.2 1.6 2.0 2.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 
S
 = 0.17

 
S
 = 0.20

 
S

 = 0.23

 
S
 = 0.26

 
S
 = 0.29

 

 

A
bu

bb
le
 / 

V bo
x

R/Rg

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s = 0.17s = 0.20

s = 0.23

s = 0.26

s = 0.29
 

 

bu
bb

le
 n

um
be

r 
de

ns
ity

R/Rg

(b)

Figure 4.2: At χN = 160 (a)Dimensionless bubble surface area per bubble box volume (φs
× Vbox) versus radius of bubble. (b) Dimensionless bubble number density at the radius of
the maximum of A/V .
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surface area doesn’t occur at the critical radius - it occurs at a slightly bigger radius than
the critical radius. Interestingly, this means that a foam which has the maximal number
density does not have the maximal bubble surface area. It seems that before the radius
of maximal surface area, bubble nucleation dominates the bubble growing, and after the
radius of maximal surface area, the bubble growing dominates the bubble nucleation. Fig.
4.2(a) shows the cell density as a function of bubble radius at different solvent volume
fraction. We can see that at higher volume fraction of blowing agent, the radius of the
maximal surface area is reached more quickly, so it seems that more active nucleation oc-
curs with increased blowing agent. Fig. 4.2(b) shows the cell density at the radius of the
maximal bubble surface area at different solvent volume fraction cases. It also shows the
higher cell density with increased solvent.

On the other hand, we examined the solvent volume fraction at the center of a bubble.
Fig.(4.3)(a) is the plot of solvent volume fraction at the center of a bubble as a function
of bubble radius at different solvent volume fraction. It shows that at the critical radius
and the radius of the maximal bubble surface area, the bulk condition at the center of
a bubble was not reached. Thus, from the perspective of the quality of a bubble, at the
critical radius and the maximal surface area, the bubble quality is poor.

From the point of view of the quality of a bubble, the best foam can be defined as a
foam filled with bubbles which reach the bulk condition at the center. Fig. 4.3(a) shows all
points fall on top of each other irrespective of the global solvent density. That means the
solvent volume fraction at the center of a bubble is a function of bubble radius. We can
see that at the bubble radius R = 0.7Rg, the bulk condition is reached inside the bubble
irrespective of the global solvent density. Fig. 4.3(b) shows the bubble number density at
R = 0.7Rg at different solvent volume fraction, and again this result shows a higher cell
density with increased solvent volume fraction.

For all three cases - critical radius, maximal surface area, and bulk condition at the
center of a bubble - results show that the greater the solvent volume fraction, the higher
the cell density. However, at the critical radius case or at the maximal surface area case,
the cell density was quickly increased with increased solvent volume fraction compared to
the bulk condition inside the bubble case. Also for the bubble size, at the critical radius
or at the maximal surface area cases, the bubble size is smaller with the increased blowing
agent volume fraction whereas for the bulk condition at the center case, the bubble size
was same.

Accordingly, SCFT shows several interesting results CNT can’t provide - 1) the radius
of the maximal surface area is different with the critical radius, i.e., a little bigger than the
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Figure 4.3: At χN = 160 (a) Solvent volume fraction value at the center of bubble
versus radius of the bubble (b) Dimensionless bubble number density at the bubble radius
R = 0.7Rg at different solvent volume fraction systems
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Figure 4.5: At χN = 160,(a) Dimensionless surface tension γ versus radius of bubble. (b)
- ∆FV at R = 0.7Rg at different solvent volume fraction systems.
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critical radius. 2) at the critical radius, and the maximal surface radius, the bulk condition
at the center of a bubble is not reached - interestingly, the solvent volume fraction is a
function of the radius of a bubble, and consequently, the radius of the bulk condition inside
the bubble is the same irrespective of the global solvent volume fraction.

Thus, if one is more interested in small bubble sizes and high bubble number densities
rather than bubble quality, then high solvent volume fraction would be effective. But, if
one is more interested in bubble quality and the bubble size, then at the same temperature,
the high solvent volume fraction would not be effective in that purpose. Even though the
cell density would be still better at high solvent volume fraction, but the difference is not
significant like at the critical radius and the maximal surface area as we can see in Fig. (4.4).

4.3 Temperature Effect on the Bubble Number Den-

sity

At mentioned above, qualitatively our SCFT results provide conditions under which a
better foam could be formed. Now, we investigate whether predictions of SCFT are qual-
itatively consistent with CNT predictions. In the previous chapter, we showed that for
nano-polymeric bubbles, surface tension γ and the volume free energy density ∆FV are
functions of bubble radius whereas in CNT, γ and ∆FV are constant. Therefore, it is
appropriate to compare the predictions of SCFT and CNT for cell density. First, at a
given temperature, i.e., χN = 160, we calculated surface tension γ and the volume free
energy density ∆FV at different solvent volume fraction cases. Fig. 4.5 shows the results.
Interestingly, like the solvent volume fraction at the center, all the points fall on top of each
other. This means surface tension γ is also a function of the radius of a bubble irrespective
of the solvent volume fraction.
Therefore, if we choose the good quality foam as the ”best” foam rather than the maximal
cell density or maximal surface area, surface tension γ is same at different solvent vol-
ume fraction. Thus, as far as γ is concerned the prediction of SCFT and CNT are same.
However, for the ∆FV , our results show ∆FV increases with increasing solvent volume
fraction.

Since our results show bigger ∆FV at higher solvent volume fraction,in CNT, according
to eq. 4.2 the nucleation barrier is smaller at higher solvent volume fraction. That means
higher nucleation and higher cell density at the higher solvent density, which is consistent
with SCFT predictions. Therefore, at a given temperature, both SCFT and CNT predic-
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Figure 4.6: Solvent volume fraction value at the center of a bubble versus radius of the
bubble at different solvent volume fraction systems at χN= 160. (b) Surface tension versus
radius of a bubble at different solvent volume fraction systems at χN = 120 and at χN =
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Figure 4.7: At χN = 120, (a) Negative volume free energy density ∆FV and (b) dimen-
sionless bubble number density at different solvent volume fraction systems
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tions are the same - higher cell density at a higher solvent volume fraction.

However, at different temperatures, we observe that SCFT reveals information which
CNT can not provide. We investigate a different temperature case, χN = 120, which is
a higher temperature than χN = 160, with φs varying from 0.28 to 0.39, which is the
nucleation and growth region. Like the case of χN = 160, the solvent volume fraction at
the center and surface tension are functions of bubble radius as can be seen from Fig. 4.6
(a). Like the case of χN = 160, ∆FV and cell density are increasing with increased solvent
volume fraction at χN = 120. Therefore, we can confirm that at a given temperature,
SCFT and CNT give same information - higher cell density at a higher solvent volume
fraction. However, unexpectedly at χN = 120, the bubble size at which bulk conditions
are reached at the center is R = 0.96Rg, which is bigger than the R = 0.7Rg at χN =
160. We might expect at χN = 120, that the bubble size would be smaller, because as we
can see from Fig. 4.6 (b) at higher temperature, i.e., smaller χN = 120, surface tension is
smaller. According to CNT, as critical radius is written as

R∗ =
γ3

∆FV
2 (4.3)

if γ is small, we can expect the critical radius to be small, and the radius of bulk condition
at the center of bubble to be smaller.
However, we find the opposite result - a bigger bubble radius at a higher temperature.

Thus, we investigated the volume free energy density ∆FV , which is another parameter
in CNT. To investigate the temperature effect, we chose the same solvent volume fraction
case for the two temperatures - φs = 0.29 at χN = 120 and χN = 160. From Fig. 4.8, we see
the bubble number density is bigger at χN = 160, low temperature, as is the bubble size.
However, in Fig. 4.8(b) we see that ∆FV is bigger at the lower temperature case, χN = 160.
Therefore, we can conclude that the volume free energy density ∆FV is a more dominant
factor than surface tension γ on cell density. From CNT eq.(4.2) we can predict this : if
surface tension is smaller and volume free energy density is bigger, then the nucleation
barrier would be smaller, i.e., the cell density would be higher. But, CNT doesn’t predict
which parameter is a more dominate factor on cell density. Fig. 4.9 (a) and (b) show bubble
number density and ∆FV at χN = 120 and 160 at different solvent densities. Despite of
the bigger surface tension at χN = 160, foamshaveahighercelldensityatχN = 160 except
much smaller solvent density cases. Thus, our SCFT results reveal that the volume free
energy density ∆FV is the dominant factor to make good quality, high cell density foams.
Consequently, SCFT predicts that low temperature is more important than high solvent
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density for producing a good quality foam of high bubble density. These properties are not
predicted by CNT.

4.4 Discussion and Conclusion

By using a SCFT model, we directly calculated cell density as a function of bubble radius
without calculation of nucleation barrier and nucleation rates in CNT. Therefore, we in-
vestigated the cell density in view of maximal cell density(critical radius), maximal bubble
surface area, and bulk conditions at the center of a bubble. Our examples show that the
maximal cell density and maximal bubble surface area cases do not form good quality bub-
bles - at the center of a bubble, bulk condition are not met - thus, we choose the best foam
as the foam that has bubbles with bulk conditions at the center. By using the cell density
of the best foam at different solvent volume fractions, at a given temperature, SCFT and
CNT predictions show the same trend - higher solvent volume fraction gives higher cell
density. However, at different temperatures, SCFT results reveal that at lower tempera-
tures [13, 56, 55], a higher cell density is formed, despite the fact that surface tension is
bigger at low temperatures. It turns out that the negative volume free energy, which is
higher at lower temperatures, contributes to the higher cell density at lower temperatures.
Therefore, our SCFT results show that the volume free energy density is a more important
factor than surface tension determining cell density of polymer foams.

In this chapter, we demonstrated that SCFT calculations show the optimal conditions
such as temperature, chemistry, or amount of blowing agent for the formation of the best
foams. At a given temperature, we see that CNT and SCFT prediction is same - higher cell
density at higher solvent density. However, we observed that SCFT results reveal higher
cell densities at lower temperatures and that volume free energy density ∆FV is a more
important factor than surface tensionγ for determining nucleation barriers. This is not
predicted by CNT.

Like the previous chapter, we used the incompressible system in this chapter for sim-
plicity. For future work, we will need to use a compressible system which is a more realistic
system, and confirm if the results of this chapter are qualitatively consistent with results
of the compressible system.
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Chapter 5

Maximal Cell Density in
Compressible Systems

In this chapter, we drop the incompressible limitation we have in the previous chapters.
We use a hole -based self-consistent field theory [17] to deal with a compressible system.
Thus, by adding holes, our system volume expands, and our system volume is described as
a function of hole volume fraction. According to our model, the representative bubble is
filled in the system, the system pressure should be the same as the representative bubble
pressure. In view of a good quality foam, as a representative bubble we chose the smallest
bubble of ϕs(0) ≈ 1. ϕs(0) ≈ 1 means that at the center of a bubble, the solvent volume
fraction value is near 1.0, i.e., the bulk condition is reached at the center.

We calculated the inhomogeneous system pressure,homogeneous system pressure, and
cell density as a function of the system volume. Inhomogeneous system is a system in
which the representative bubbles are filled in, and homogeneous system is a system in
which there is no bubble. Using the results we investigated not only the cell density but
also the correlation between the pressure drop rate and cell density. We also qualitatively
compared results of compressible system with the results of the incompressible system.

In the first section, we explain how the inhomogeneous system pressure is calculated.
In the second section, we investigate the maximal cell density for three different processing
conditions ; different temperatures with the same initial high pressure; different solvent
volume fractions at the same temperature; and different temperatures with the same solvent
volume fraction. Conclusions and discussion are written in the last section.
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5.1 Theory

5.1.1 Optimal Pressure

In compressible systems, one needs to determine the system pressure at different system
volume. At an initial high pressure, one can determine the system pressure experimentally
because the system is in equilibrium with the outside pressure, and since the system is ho-
mogeneous, one can calculate the initial pressure by using an equation of state. However,
when system pressure is dropping, the system is inhomogeneous. Therefore, the system
pressure is unknown, because we cannot use an equation of state to calculate the inhomo-
geneous system pressure.

However, in this chapter with an assumption the system has an optimal pressure, we
calculate system pressure as a function of system volume by using our model. In our
incompressible system model in the previous chapters, the observed bubbles were the rep-
resentative bubbles of the incompressible system. Since we use the same model used in the
compressible system, if we find out a representative bubble of a compressible system, then
the representative bubble pressure should be same with the compressible system pressure.

The following is the method used to determine the optimal pressure of the inhomoge-
neous system as a function of the system volume when the system volume expands with
dropping pressure.

First, when the system volume expands, the system volume is described as a function
of the global hole volume fraction - by increasing the global hole volume fraction, we make
the system volume bigger. Since we assume the polymer and solvent closed packed volumes
are not changed, the global polymer and solvent volume fraction values are described as a
function of the expanding system volume. As a result, the global hole volume fraction is
also a function of the expanding system volume by the constraint of the incompressibility.

If V ∗p ,V ∗s are the initial total polymer and solvent molecule closed packed volumes,
V ∗p ,V ∗s are written

V ∗p = npNv
∗
p (5.1)

V ∗s = nsvs∗ (5.2)

, where np and ns are total number of polymer and solvent molecules respectively, N is the
degree of polymerization, and v∗p and v∗s are the closed packed polymer segment volume

60



and solvent molecule volume respectively. Therefore, V ∗p and V ∗s don’t change when the
system volume expands. If V0 is the initial system volume, then the initial global polymer
volume fraction φ0

p and initial global solvent volume fraction φ0
s are written

φ0
p =

V ∗p
V0

(5.3)

φ0
s =

V ∗s
V0

(5.4)

V ∗p + V ∗s = V0 (5.5)

Then, at one specific expanded system volume Vsys,

Vsys = cV0, (c > 1) (5.6)

the global polymer, solvent, and hole volume fractions at one system volume Vsys are
written

φp =
V ∗p
Vsys

=
V ∗p
cV0

=
1

c
φ0
p (5.7)

φs =
V ∗s
Vsys

=
V ∗s
cV0

=
1

c
φ0
s (5.8)

φh =
Vh
Vsys

= 1− φp − φs (5.9)

The last eq. (5.9) obeys the relation

φp + φs + φh = 1 (5.10)
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Therefore, the global polymer, solvent, and hole volume fraction values are functions
of system volume Vsys ( = cV0).

Second, we fix the system volume, i.e., at one constant c, we can change the cell size by
changing the bubble box volume until we get the critical cell in that fixed system volume
as we did in the incompressible system. Third, we determine a representative bubble for
a specific system. As we did in the previous chapter, we choose three bubbles which give
the highest cell density, maximum bubble surface area per unit volume, and the smallest
bubble with ϕs(0) ≈ 1. Then, we have three optimal pressures of the system correspond-
ing to the highest cell density, the maximum bubble surface area per unit volume, and the
smallest bubble with ϕs(0) ≈ 1.

To calculate the bubble(box) pressure we use the thermodynamic pressure definition

P = −
(
∂F

∂V

)
np,ns,T

, (5.11)

and calculate numerically.

For the numerical calculation of the pressure, we use the below equations for the value
of global volume fractions. To conserve the polymer and solvent molecules in the bubble
box, the global polymer, solvent, and hole volume fraction values at bubble box V + ∆V
are written

φp(V + ∆V ) =

(
V

V + ∆V

)
φp(V ) (5.12)

φs(V + ∆V ) =

(
V

V + ∆V

)
φs(V ) (5.13)

φh(V + ∆V ) = 1− φp(V + ∆V )− φs(V + ∆V ) (5.14)

Fig 5.1(a) shows one example plot of pressure at each system volume. Because of the
scale of the plot, the pressure values looks the same in plot (a), but in plot (b), which is
a blow-up figure of V = 1.1V0, we can see seven different pressure values corresponding
to different sizes of bubble at V = 1.1V0. Plot (c) shows which bubble corresponds to a
representative bubble of the highest cell density, the maximum bubble surface area per
unit volume, and the smallest bubble with ϕs(0) ≈ 1.

Fig. 5.2 (a), (b) and Fig 5.3 (a) show plots of bubble density, bubble surface area
per unit volume, and solvent volume fraction at the center of a bubble respectively as a
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Figure 5.1: (a) Plot of several bubble pressures at different system volumes. (b) Blow up
of several bubble pressures at Vsys = 1.1V0. (c) Three representative bubble pressures at
Vsys = 1.1V0.
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Figure 5.2: (a) Cell density versus bubble radius at different system volumes. (b)
Abubble/Vbox versus bubble radius at different system volume.
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Figure 5.3: (a) Solvent volume fraction value at the center of bubble versus bubble radius
at different system volumes. (b) Plot of three optimal pressuress of smallest cell, maximum
Abubble/Vbox,and ϕs(0) ≈ 1 at the center of bubble.
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function of bubble radius. We defined the radius at which the solvent and polymer volume
fraction values are cross as the bubble radius. We can see from Fig. 5.2 (a) that at the
critical radius, the foam has the highest cell density. Also we can see from Fig. 5.2(b) that
at a little bigger radius than critical radius, a maximum Abubble/Vbox exists for a system
volume just like the incompressible system. With data of Fig. 5.2 (a), (b) and Fig 5.3 (a)
we plot the three optimal pressures corresponding to the highest cell density, a maximum
Abubble/V and the smallest bubble with ϕs(0) ≈ 1. Fig. 5.3(b) shows one example result.

Like in the previous chapters, the cell density is calculated as the number of bubbles
per unit volume of polymer, i.e., the inverse of the product of the bubble box volume times
the global polymer volume fraction.

5.2 Maximal Cell Density

5.2.1 Different Temperature Cases with the Same Initial High
Pressure

First, we examine a case of different dimensionless temperatures T = 1.5 and T = 2.0 with
the same initial high pressure. We assume a dimensionless temperature dependence for
each Flory-Huggins parameters χppN , χssN , and χpsN of

χN =
A

T
+B, (5.15)

where we choose App = -12, Ass = 0, Aps = 270, and all B’s as zero. We assume a weak
attractive interaction between polymer molecules and a strong repulsive interaction be-
tween polymer and solvent molecules. We think of the phase of the solvent as a gas phase.
Therefore, for T = 1.5, the χ values are χppN = - 8, χss = 0, and χpsN = 180, and for
T = 2.0, χppN = - 6, χss = 0, and χpsN = 135. For the same initial pressure, we choose
the initial solvent volume fraction φ0

s = 0.26 for T = 1.5, and φ0
s = 0.31 for T = 2.0. From

the data, we observe that with our χN values, the solubility is higher at higher tempera-
ture. This means our solvent is a nitrogen N2 like solvent not a carbon dioxide CO2 like,
because N2 has higher solubility at higher temperature and CO2 has higher solubility at
lower temperature. We will discuss this more later in the discussion and conclusions section.

Fig. 5.4 (a) shows the three optimal pressures as a function of the system volume at
T = 1.5. Due to the scale of the plot, the three optimal pressure values seem the same, but
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Figure 5.4: At T = 1.5 (a) Three optimal pressures versus system volume. (b) Blow up
plot of optimal pressure values at Vsys = 1.1V0.
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Figure 5.5: Three maximal cell densities corresponding to three optimal pressures versus
system volume at T = 1.5.
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if we blow up the pressure values at 1.01 V0, in the blow-up Fig. 5.4 (b) one can see that
the pressure of the smallest bubble is the highest and the pressure of ϕs(0) ≈ 1.0 bubble
is much lower than the smallest bubble pressure. From this, we can say that for the better
quality bubble formation, the system pressure needs to be dropped more.

Fig. 5.5 shows cell density as a function of system volume corresponding to the three
optimal pressures. From this plot, we can easily see that at the smallest system volume,
V = 1.01V0, the foam has the highest cell density for all three optimal pressures. There-
fore, the incompressible system cell density must be the upper bound of the maximal cell
density for all three optimal pressures.

Also, unlike the incompressible system, Fig. 5.5 gives information on how much the
system expand before the system is in the spinodal region. We notice that for systems
bigger than V = 1.8V0, i.e., 80% expansion, our code does not form a bubble, and the
nucleation barrier approaches zero. We assume the system approaches to the spinodal
region as the nucleation barrier approaches zero.

We examine another temperature case T = 2.0 which has the same initial high pressure
as the T = 1.5 case. As mentioned above, with our χN values the solubility is higher at
high temperature. For T = 2.0, φ0

s = 0.31, which is bigger than the solubility of T = 1.5
case, φ0

s = 0.26.

Fig. 5.6 (a) shows the three optimal pressures for T = 2.0. If we blow up the pressures
at V = 1.01V0, Fig. 5.6 (b) shows that compared to T = 1.5 the pressure difference between
the smallest bubble and the ϕs(0) ≈ 1 bubble is smaller than T = 1.5 case. And, we also
notice that the cell density difference between the smallest and the ϕs(0) ≈ 1 bubble is
smaller than T = 1.5 case. In addition, like the T = 1.5case, thepressureoftheϕs(0) ≈ 1
bubble is lower than the pressure of the critical radius. This means for a better quality
foam it needs to drop more pressure, i.e. a higher pressure drop.

Fig. 5.7 shows the cell density of three optimal pressures for T = 2.0 as a function
of system volume. We also notice that at the smallest system volume the foam has the
highest cell density; thus, we conclude that the incompressible system has the upper bound
maximal cell density.

Now, to compare the two temperature cases, we choose the optimal pressure of the
ϕs(0) ≈ 1 bubble as the optimal pressure of a good quality foam as we did in the previous
chapter. From this point, in this chapter, the optimal pressure means the optimal pressure

69



0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

100

200

300

400

500

600

System volume (V0)

D
im

es
io

nl
es

s 
pr

es
su

re  smallest cell
 maximum A/V 
 s,inside ~ 1.0

 

 
(a)

0.8 1.0 1.2
390

395

400

405

System volume (V0)

D
im

es
io

nl
es

s 
pr

es
su

re  smallest cell
 maximum A/V 
 s,inside ~ 1.0

 

 
(b)

Figure 5.6: At T = 2.0 (a) Three optimal pressures versus system volume. (b) Blow up
plot of optimal pressure values at Vsys = 1.1V0.
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Figure 5.7: Three maximal cell densities corresponding to the three optimal pressures
versus system volume at T = 2.0.
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of the smallest bubble with ϕs(0) ≈ 1.

Fig. 5.8 (a) shows an inhomogeneous system pressure and a homogeneous system pres-
sure as a function of system volume at T = 1.5 and T = 2.0. Inhomogeneous system means
a system in which representative bubbles are filled in, and homogeneous system means a
system in which there is no bubble.
In the blow up figures Fig. 5.8 (b) and (c) we can see that the pressure difference be-
tween the inhomogeneous system and the homogeneous system is bigger for the lower
temperature T = 1.5 . Also, from Fig. 5.9 (a) which shows the cell density as a func-
tion of system volume for each temperature T = 1.5 and T = 2.0, we observe that the
cell density is higher for lower temperature T = 1.5 despite a lower solubility than T = 2.0.

Therefore, we assume that the bigger pressure difference between the inhomogeneous
system and the homogeneous system for T = 1.5 causes the cell density higher for for
T = 1.5 despite the lower solvent density. Also, from this result, we assume that the
temperature is a more dominant factor than solubility.

In addition, the blow up figure Fig. 5.8 (c) shows the pressure difference between the
homogeneous system and the inhomogeneous system at V = 1.05V0 is bigger than the pres-
sure difference at V = 1.3V0 for each temperature T = 1.5 and T = 2.0 . Fig. 5.9 (a) shows
cell density at V = 1.05V0 is higher than cell density at V = 1.3V0 for each temperature
T = 1.5 and T = 2.0. We can conclude that higher cell density at smaller system volume
is also from the bigger pressure difference between between the homogeneous system and
the inhomogeneous system at smaller system volume.

Consequently, we assume that to make foams of a high cell density of a good quality, a
big pressure drop is required before the system expands, i.e., a high pressure drop rate.

With our reasoning, from Fig. 5.8 (c), we can see that if the two systems have the same
pressure at V = 1.3V0, then higher temperature T = 2.0 would have a higher cell density,
because if the two systems have the same pressure at V = 1.3V0, the pressure difference
between the homogeneous system and the inhomogeneous system of higher temperature
T = 2.0 would be bigger than the corresponding value of T = 1.5 . Thus, we need to em-
phasize that we deal with the possible maximal cell density under a condition that systems
have the optimal pressure.
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Figure 5.8: At T = 1.5 and T = 2.0 (a) Pressure of the inhomogeneous system and the
homogeneous system versus system volume (b) Blow up plot of the pressure at V = 1.05V0.
(c) Blow up plot of the pressure at V = 1.3V0.
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Figure 5.9: Cell density versus system volume at T = 1.5 and T = 2.0
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On the other hand, we also see that at lower temperature, the system expands more.
We assume that the initial higher cell density at lower temperature causes the system vol-
ume expand more.

5.2.2 Different Solvent Density Cases at the Same Temperature

In the previous chapter, we examined different solubility cases (different solvent volume
fraction cases) at the same temperature. To check in the compressible system if we get
the same result as the incompressible system, we examined different solubility cases at the
same temperature in this section. We used the same parameter values as the incompress-
ible system, χN = 120 ( χppN = - 6, χssN = 0, χpsN = 117 ) with φs ranging from 0.32 to
0.39.

Fig. 5.10 shows the optimal pressure of ϕs(0) ≈ 1 bubble as we mentioned above, as we
can expect, despite of the scale of the plot we see that the highest solubility φs = 0.39 has
the highest initial high pressure. The blow up Fig. 5.10 (b) and (c) show that the pressure
difference from the homogeneous system is bigger for higher solvent density. Therefore, we
expect a higher solvent case would have a higher cell density.

Fig. 5.11 shows the results of the cell density of the three solubility cases as a function
of system volume. As we expect, a higher solvent case has a higher cell density, and also
expands more in a higher solvent case.

Thus, we can conclude that for the different solvent density cases at the same temper-
ature, the compressible system result is the same as the incompressible result - a higher
cell density at a higher solubility.

In addition, from Fig. 5.10 (a),(b) and Fig. 5.11, we can see

5.2.3 Different Temperature Cases with the Same Solvent Vol-
ume Fraction

As we did in the previous chapter, to investigate the effect of temperature on cell density,
we examine different χN value cases, i.e., χN = 120 (χppN = - 6, χssN = 0, χpsN = 117)
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Figure 5.10: At different solvent volume fractions (solubilities) for χN = 120 (a) Pressure
of the inhomogeneous system and the homogeneous system versus system volume (b) Blow
up plot of the pressure V = 1.05V0. (c) Blow up plot of the pressure at V = 1.1V0
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and χN = 160 (χppN = - 8, χssN = 0, χpsN = 156) with the same solvent volume fraction
φs = 0.32. Fig. 5.12 (a) shows the optimal pressure of the two cases and the corresponding
homogeneous system pressure as a function of system pressure. We see at χN = 160, the
low temperature case needs higher pressure to have the same solubility as the χN = 120,
high temperature, as we expect. In figure Fig. 5.12 (b) we see a much bigger pressure
difference between the inhomogeneous system pressure and the homogeneous system pres-
sure at χN = 160. Thus, we can expect a much bigger higher cell density at χN = 160
which we can see in Fig. 5.13 (a). Also, though we didn’t calculate a bigger system case
than 1.3V0 for χN = 160, we see more expansion at χN = 160.

Consequently, for the different temperature cases with the same solvent volume fraction,
we also get the same result as the incompressible system - low temperature has a higher cell
density. In addition, we see also a bigger volume expansion at χN = 160, low temperature.
We assume that this is from the higher cell density due to the bigger pressure difference
between the inhomogeneous system pressure and homogeneous system pressure at the
smallest system volume for χN = 160.

5.3 Discussion and Conclusion

In this chapter, we chose the optimal pressure of φs(0) ≈ 1 bubble as the system pressure,
and calculated pressure of inhomogeneous system and the homogeneous system, cell den-
sity as a function of system volume.

Our compressible system prediction of cell density shows that the incompressible sys-
tem cell density is the upperbound of the maximal cell density. Thus, in view of cell
density the compressible system predictions are consistent with the incompressible system
predictions - Low temperature and high solvent volume fraction have a higher maximal
cell density[47, 41].

We noticed that when the system expands, the nucleation barrier approaches zero,
and our code doesn’t form a bubble as the nucleation barrier approaches to zero . (around
∼ 10−3) We assume the system approaches the spinodal region when the nucleation barrier
approaches zero.

We investigated three cases - different temperatures with the same initial high pressure;
different solvent volume fraction at the same temperature; and different temperatures with
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Figure 5.12: At χN = 120, φs = 0.32 and χN = 160, φs = 0.32 (a) Pressure of the
inhomogeneous system and the homogeneous system versus system volume (b) Blow up
plot of pressure at V = 1.05V0. (c) Blow up plot of pressure at V = 1.1V0
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Figure 5.13: Cell density versus system volume at χN = 120, φs = 0.32 and χN = 160,
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the same solvent volume fraction.

Commonly for all cases, our results show that the highest cell density occurs at the
smallest system. And, bigger pressure difference between the homogeneous system and the
inhomogeneous system makes higher cell density. Therefore, to make foams of the high cell
density with good quality bubbles, high pressure dropping rate is required. [45, 67, 46].
And, also our result - high cell density at low temperature and high cell density for a high
pressure drop rate - is similar with carbon dioxide case. Thus, since usually in experiments
of nitrogen solvent the solubility is very small, by using a higher χps and lower solubility,
we can compare the results with the experimental results of nitrogen case - there is little
effect of temperature and pressure drop rate on cell density.

On the other hand, by raising the pressure we can increase solubility with the same
temperature or lower temperature with same solubility. Our results show lowering temper-
ature is a more efficient way to get a better quality foam than increasing solubility, which
is consistent with the result of the previous chapter - temperature is a dominant factor.

As for the solubility, according to our investigation, with magnitude of χps smaller
than half the magnitude of χpp or if χps has minus sign, the solubility has higher at lower
temperature which is a character of the solubility of CO2 [52]. However, our code does not
make a cell if we use above parameter values. Thus, to investigate the CO2 case, we might
need to use the Simha -Chomkynsky eq. in which a van der Waals interaction potential
used. Or a modified Sanchez -Lacombe eq. can be used by setting polymer segment volume
and hole volume differently, i.e., v∗p 6= v∗h.
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Chapter 6

Conclusions

We studied cell nucleation and growth in nano polymer foams in this thesis. For the calcu-
lation of the inhomogeneous polymer system free energy we used self-consistent field theory
(SCFT).

As our research is about nano-sized bubbles, which are comparable in size to polymer
molecules, we represented a bubble surface as a curved surface, and investigated the cur-
vature effect on cell nucleation. Unlike classical nucleation theory (CNT), in which values
of surface tension γ and volume free energy density ∆FV are constant, our results show
that surface tension γ is decreasing and (negative) volume free energy density, −∆FV , is
increasing for smaller bubbles (higher curvature). We investigated the microscopic origins
of the decreasing surface tension γ and increasing (negative) volume free energy density
−∆FV at smaller bubbles by breaking down the components of free energy. It turns out
that the higher curvature of small bubbles gives polymer molecules more available config-
urations leading to the lower internal energy, and also the bulk phase breakdown inside
smaller bubbles decreases the internal energy. Consequently, our SCFT results show that
nano-polymeric bubbles have a much smaller nucleation energy, i.e., a much larger nucle-
ation rate than predicted by CNT ; therefore, we can expect a much higher possibility of
homogeneous nucleation than previously calculated by CNT.

In our model, each bubble we make is a representative bubble of each corresponding
sample system. With our model, we directly calculated the maximal cell density as a
function of bubble radius without calculation of nucleation barrier and nucleation rates
in CNT. We investigated under what conditions of parameters such as temperature and
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solvent density better foams might be formed in view of cell density and cell size. Our
results show that at one given temperature, CNT and SCFT predictions are the same -
better foam at higher solvent density. However, for different temperatures, SCFT predic-
tions show that a better foam (higher cell density and smaller cell size) is formed at lower
temperatures despite lower solvent density, and it turns out that the free volume energy
density,∆FV , is a more dominant factor than surface tension γ for cell density and critical
cell size predictions. This is not revealed by CNT.

We calculated the maximal density in compressible systems as well as the incompress-
ible system. We used hole-based SCFT for compressible system calculations. With an
assumption that our system has an optimal pressure at which the system has the maximal
cell density with a good quality bubble, i.e., bulk condition inside a bubble, we calculated
inhomogeneous system pressure, homogeneous system pressure, maximal cell density, ex-
pansion ratio, and void fraction as functions of system volume.
We observed that when system volume expands nucleation barrier approaches to zero, and
we couldn’t make a bubble when the nucleation barrier is very small. Thus, we assumed
that when the nucleation barrier approaches to zero, system approaches to spinodal re-
gion, and we assumed the biggest system volume which we could make is the final system
volume.

Therefore, with data of cell density, pressure, expansion ratio, and void fraction we
could investigate maximal density, expansion ratio and cell morphology of the final sys-
tem depending on different processing conditions - different temperatures with same initial
high pressure, different solvent density cases at the same temperature, and different tem-
peratures with same solvent volume fraction. First of all, our results showed that the
incompressible maximal cell density is the upper bound of the maximal cell density, and
qualitatively consistent with the compressible prediction; higher cell densities at lower tem-
peratures and higher solvent densities.
Our compressible systems also showed higher expansion ratio at low temperature and high
solvent densities. Since we noticed that the pressure difference between homogeneous sys-
tem and inhomogeneous system is bigger at low temperature and high solvent cases, we
concluded that the bigger pressure difference between homogeneous system and inhomo-
geneous system must cause the higher cell density, and the initial higher cell density must
cause the bigger final system volume. We also observed that for all our results, the smallest
volume has the highest cell density, thus; big pressure drop rate is required for high cell
density of good quality foams.

In addition, though higher solubility and low temperature make a higher cell density,
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our results showed temperature is a more dominant factor for a higher cell density. From
one system if we can raise solubility or lower temperature by raising a same amount of the
initial pressure, it turns out that raising temperature is more efficient to make a higher cell
density of good quality foam, but a bigger pressure drop rate was required.

On the other hand, overall our void fraction values were high since our system has
a high solubility. And, though our solvent type is nitrogen since with our χ values, our
compressible system has higher solvent density at higher temperature[52], our results were
similar with the carbon dioxide results - significant effect of temperature and pressure drop
rate on cell density. In experiments using nitrogen, usually the solubility is very small, and
results show little effect of temperature and pressure drop rate on cell density[25].

Therefore, for future work, we can use bigger χps and smaller solubility, and compare
the results with the experimental results, i.e., the extent of the effect of processing condi-
tion on cell density.
In addition, we observed that if the magnitude of repulsive force between polymer and
solvent,χps, was approximately smaller than half the magnitude of attractive force be-
tween polymer molecules χpp or if repulsive force between polymer and solvent, χps, was
negative, then the solubility is higher at lower temperatures, which is a character of the
solubility of carbon dioxide. If we use the range of above χps values, our code didn’t make
a bubble. We assume the pair wise contact potential of the molecules interaction of our
model might cause the incapability for the carbon dioxide case. According to our investi-
gation of χps values, the repulsive force of carbon dioxide and polymer molecules must be
much smaller than the repulsive force of nitrogen and polymer molecules. thus; interaction
range between carbon dioxide and polymer molecules must be bigger. Therefore, for the
investigation of the solvent carbon dioxide case, we might need to use the Simha - Som-
cynsky equation[54, 20], because in Simha - Somcynsky equation, van der Waals potential
which has a longer attractive interaction range than our model is used.

On the other hand, in our model, by setting the closed packed polymer segment volume
is equal to hole volume, our code was based on Sanchez -Lacombe equation, but we might
use a modified Sanchez -Lacombe equation [51, 23] by setting the closed packed polymer
segment volume and hole volume differently,i.e., v∗p 6= v∗h.

Furthermore, we noticed that our results showed different homogeneous system pressure
for different χ values, thus; we might investigate effects of different χ or α values on foams
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quality. And, our calculation was qualitative calculation, but quantitative calculation and
comparison with experiment would give more insight about bubble nucleation and growth
mechanisms.
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