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Abstract 

 

Despite advances in technology and understanding of biological systems in the past two 

decades, modern drug discovery is still a lengthy, expensive, difficult and inefficient 

process with low rate of new therapeutic discovery. The search for new effective drugs 

remains a somewhat empirical process. There is compelling need for a more fundamental, 

mechanistic understanding of human cancers and anticancer drugs to design more 

appropriate drugs. 

Radiotherapy is still the major therapy of cancer. It uses high-energy ionizing 

radiation such as x-rays and charged particle beams to destroy cancer cells. DNA is well 

known to be the principal biological target of radiotherapy, but the molecular mechanism 

of ionizing radiation induced DNA damage was elusive.  The conventional thought of the 

∙OH radical as the major origin for ionizing radiation induced DNA damage is 

questionable. Although various strategies and types of compounds have been designed 

and developed as potential radiosensitizers to enhance the radiosensitizing efficiency of 

radiotherapy, none of them have been approved for clinical use.  The general outcomes of 

clinical trials have been disappointing.  

This thesis presents an innovative molecular-mechanism-based drug discovery 

project to develop novel drugs for effective radiotherapy of cancer through the emerging 
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femtomedicine approach. Its ultimate goal is to develop more effective radiosensitizers, 

based on our unique molecular understandings of ionizing radiation induced DNA 

damage and halopyrimidines as a family of potential radiosensitizers.  

Direct, real-time observation of molecular reactions is of significant importance in 

diverse fields from chemistry and biology, environmental sciences to medicine.  

Femtosecond time-resolved laser spectroscopy (fs-TRLS) is a very powerful, direct 

technique for real-time observation of molecular reactions.  Its key strength lies in short 

duration laser flashes of a time scale at which reactions actually happen - femtoseconds 

(fs) (1fs = 1015
 second). Since the late 1980s, its application to study chemical and 

biological systems led to the births of new subfields of science, called femtochemistry 

and femtobiology.  Recently, femtomedicine has been proposed as a new transdisciplinary 

frontier to integrate ultrafast laser techniques with biomedical methods for advances in 

fundamental understandings and treatments of major human diseases. This the 

remarkable opportunity afforded through real-time observation of biochemical reactions 

at the molecular level.  Femtomedicine holds the promise of advances in the radiotherapy 

of cancer.   

Several important findings were made in this thesis.  First, our results of careful 

and high-quality fs-TRLS measurements have resolved the long existing controversies 

about the physical nature and lifetimes of a novel ultrashort-lived electron species (epre

) 

generated in radiolysis of water. These results have not only resolved the large 
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discrepancies existing in the literature but provided new insights into electron hydration 

dynamics in bulk water.  Such information is important for quantitative understanding 

and modeling of the role of non-equilibrium epre
 in electron-driven reactions in diverse 

environmental and biological systems, from radiation chemistry and radiation biology to 

atmospheric ozone depletion. 

 Second, our fs-TRLS results have unraveled how epre

 plays a crucial role in 

ionizing radiation induced DNA damage. We found that among DNA bases, only T and 

especially G are vulnerable to a dissociative electron transfer (DET) reaction with epre

 

leading to bond breaks, while the electron can be stably trapped at C and especially A to 

form stable anions.  The results not only challenge the conventional notion that damage 

to the genome by ionizing radiation is mainly induced by the oxidizing ·OH radical, but 

provide a deeper fundamental understanding of the molecular mechanism of the DNA 

damage caused by a reductive agent (epre

). Our findings have led to a new molecular 

mechanism of reductive DNA damage. 

 Third, halopyrimidines, especially BrdU and IdU, have passed Phase I to II 

clinical trials as potential hypoxic radiosensitizers, but the outcome of Phase III clinical 

trials was disappointing. Our results of fs-TRLS studies have provided a new molecular 

mechanism of action of halopyrimidines (XdUs, X=F, Cl, Br and I) in liquid water under 

ionizing radiation.  We found that it is the ultrashort-lived epre

, rather than the long-lived 

ehyd

, that is responsible for DET reactions of XdUs.  This reaction leads to the formation 
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of the reactive dU· radical, which then causes DNA strand breaks and cancer cell death. 

Our results have challenged a long accepted mechanism that long-lived ehyd

 would be 

responsible for the radical formation from halogenated molecules. Furthermore, we found 

that the DET reaction efficacy leading to the formation of the reactive dU· radical is in 

the order of FdU << CldU < BrdU < IdU. Thus, only BrdU and IdU could be explored as 

potential radiosensitizers, in agreement with the results of bioactivity tests and clinical 

trials. 

 Fourth, our fs-TRLS studies have provided a molecular mechanism for the DNA 

sequence selectivity of BrdU and IdU in radiosensitization. We found the DET reactions 

of BrdU/ IdU with dAMP*

 and dGMP*


 formed by attachment of epre


 generated by 

radiolysis of water in aqueous BrdU-dAMP/dGMP and IdU-dAMP/dGMP complexes 

under ionizing radiation. This new mechanistic insight into the interaction of BrdU and 

IdU with DNA provides clues to improve the halogen familty as potential radiosensitizers  

and to develop more effective radiosensitizers for clinical applications. 

 Fifth, based on our molecular mechanistic understandings of DNA damage 

induced by ionizing radiation and halopyrimidines as potential radiosensitizers, we 

develop more effective new radisensitizing drug candidates through the femtomedicine 

approach.  We have performed a fs-TRLS study of the DET reaction of a candidate 

compound (RS-1) with epre

, and found that the DET reaction of epre


 with RS-1 is much 

stronger than that of IdU (and certainly BrdU and CldU). Moreover, we have tested the 
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radiosensitizing effect of RS-1 against human cervical cancer (HeLa) cells exposed to 

various doses of x-ray irradiation through DNA damage measurements by gel 

electrophoresis and cell viability/death assays by MTT.  Our results have confirmed that 

RS-1 can largely enhance the radiosensitivity of treated human cervical cancer (HeLa) 

cells to x-ray (ionizing) radiation. It is clearly demonstrated that RS-1 has a much better 

radiosensitizing effect than IdU. Although these are just preliminary results, our results 

have shown promise of developing more effective radiosensitizers.   

 In summary, our studies have demonstrated the potential of femtomedicine as an 

exciting new frontier to bring breakthroughs in understanding fundamental biological 

processes and to provide an efficient and economical strategy for development of new 

anticancer drugs. 
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Chapter 1 

Introduction to Cancer Therapies  

 

This thesis is part of our project aiming to obtain new-molecular-level understanding of ionizing 

radiation induced DNA damage and of mechanisms of the action of existing anticancer drugs 

such as potential radiosensitizers bromodeoxyuridine (BrdU) and iododeoxyuridine (IdU) and so 

as to develop new anticancer drugs. In this chapter, I shall introduce some background 

information about this thesis.  

 

1.1. Cancer 

 

1.1.1. What is cancer? 

 

Among the most challenging diseases, cancer is very difficult to cure. Cancer might be thought 

to be a single disease, but as a matter of fact, it is a kind of diseases in which abnormal cells 

divide too quickly and out of control [1]. They result from the uncontrolled cell growth of 

abnormal cells in the body [1-4].  If the DNA in a cell is mutated and the mutations affect 

normal cell growth and division, cells may not die when they are supposed to. It is possible for 
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the extra cells to form a tumour, as shown in Fig. 1.1 [1]. But not all the cancers are tumours, 

such as leukemia. 

   

 

Figure 1.1. Cancer arises from a loss of normal growth control [1]. 

 

There are many different kinds of cancers.  They can be divided into mainly six categories, 

including carcinoma, sarcoma, leukemia, lymphoma, myeloma, and central nervous system 

cancers [5-7]: 

 carcinoma: they are malignancies of epithelial tissues, such as skin or tissues covering 

internal organs. Approximately 80~90 percent of all cancers fall into this category [5]. 

 sarcoma: cancers that initiate in connective or supportive tissues, such as bones, fat, and 

blood vessels.  
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 leukemia: they arise from blood-forming tissues such as the bone marrow. They are usually 

linked to overproduction of white-blood cells, which do not perform as well as they should. 

Moreover, the function of red blood cells is also affected by leukemia.  

 lymphoma: they originate in the lymphatic system.  

 myeloma: they start in the plasma cells of bone marrow.  

 central nervous system cancers: they initiate in the tissues of the brain or spinal cord. They 

are among the most devastating cancers [8].  

 

Also, cancer can develop in many different organs or tissues, such as the breast, ovary, lung, 

brain, kidney, cervix, liver, colon, skin, bones, nerve tissue, etc (almost every organ or tissue).  

Cancers can be caused by different origins, including genetic problems, toxic chemicals (e.g., 

benzene), over drinking of alcohol, over exposure of sunlight, exposure to ionizing radiation, 

environmental toxins (e.g., posionous mushrooms), viruses, obesity, etc [9].   Moreover, the 

causes of many cancers are still unknown [9].   

 

1.1.2. Microenvironment of cancer 

 

The surrounding normal cells, molecules, and blood vessels feed a tumor cell. A tumor can alter its 

microenvironment, and the microenvironment can affect how a tumor grows, spreads and 

responds to the treatment.  There are some characteristic features distinguishing a solid tumour 

from its corresponding normal tissue. These include high interstitial fluid pressure (IFP), low 

oxygen tension (hypoxia), and low extracellular PH (acidosis) [10-12]. All of them can 

contribute to the resistance of cancer therapy and affect the treatment outcomes [12]. Therefore, 
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some research efforts in cancer treatments have been focused on the tumor microenvironment as a 

therapeutic target.  Below, a brief discussion on the microenvironment of tumor is given.  

 A tumour has unique vasculature, which leads to the tumour specific conditions [10]. Tumor 

vasculature is drastically different from normal vascular networks. The latter are well-organized 

architecture with dichotomous branching and hierarchic order [13]. They consist of arterioles, 

capillaries, and venules [13-14]. Under normal conditions, blood flows from arterioles to 

capillaries, and then to venules in a regular manner. Also, there is a network of lymphatics to 

drain fluid and cellular by-products from interstitium [15-16]. In contrast, tumor vascular 

networks are highly disorder with a complete lack of lymphatics [15-16]; tumour vessels are 

dilated, saccular, and tortuous, and are more permeable than those in normal tissues [13-14]. 

 Interstitium refers to the space between the cells and the vascular compartment. It is 

important to transport molecules between the cells and blood vessels. Permeable tumor vessels 

with leak ends and a complete lack of lymphatics in a tumor cause an abnormal accumulation of 

fluid contents in the tumor tissue [12-16].  Because lymphatic fluid and waste products are not 

efficiently transported away from the tumor microenvironment, the interstitial fluid pressure (IFP) 

in the tumor tissue is higher than for normal tissues. The IFP in normal tissues is about equal to 

the atmospheric pressure (76 mmHg), while the IFP in a tumor tissue could be increased to up to 

100 mmHg [12]. The increased IFP can hinder transcapillary fluid flow and convective transport 

of therapeutic molecules into the tumor [17]. 

 Due to the poor tumor vasculature, the blood flow through tumor is impaired. The oxygen 

delivery in tumor is thus reduced. Oxygen cannot be diffused into the tumor areas distant from 

the blood vessels [18]. They develop temporary or chronically hypoxic regions. The pO2 of 
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normal tissues lies in the range between 10 and 80 mmHg, while it could be < 5 mmHg for 

certain areas of tumor [12, 19-20]. Moreover, the blood flow is temporally heterogeneous 

(unstable), which can lead to acute hypoxia in tumors [12-14].  

The metabolic environment of the tumor is also affected by the unique tumor vasculature 

and the resultant oxygen depletion. Acidic metabolites in the tumor cannot be adequately carried 

away. Hypoxia in the tumor microenvironment results in acidosis, because lactic acid builds up 

due to anaerobic glycolysis [21-22]. Therefore the PH value in tumor is lower than those in 

normal tissues.  

 

1.1.3. Typical cancer treatments 

 

There are a few typical cancer treatments, including surgery, radiotherapy, and chemotherapy [3]. 

The choice of treatment depends on the type of cancer and its stage. The latter refers to how 

much a cancer has grown and whether the cancer cells have spread from the original tumor 

location.  If a tumor is still localized and the cancer cells have not spread to other organs or 

tissues, the most common treatment to cure the cancer is surgery.  If the cancer cells have only 

spread to local lymph nodes, it is still possible to remove all of the cancer cells by surgery. In 

contrast, if the cancer cells have spread to other organs or tissues, it is difficult or impossible to 

remove all of the cancer cells by surgery and the patients may be treated by radiotherapy or 

chemotherapy, or the combination of both. In some cases, cancer patients may need a 

combination treatment of the three approaches (surgery, radiation, and chemotherapy). 
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 Surgery removes a solid tumour with some surrounding healthy tissue while keeping the 

surrounding normal tissues to a minimal injury [23]. Radiotherapy uses high-energy ionizing 

radiation, such as x-rays, γ-rays, or charged particles to cause irreparable DNA damage and kill 

the cancer cells [23]. It is used to target small areas and usually not used to treat cancers that 

have spread. Chemotherapy uses anti-tumour compounds to kill malignant tumour cells. It is 

used as the primary therapy for cancers in an advanced stage and often used in combination with 

other localized treatments such as surgery and radiotherapy [23]. In the case of solid tumours, the 

first treatment is usually the surgery to remove a tumour with a margin of normal tissues. Then 

radiotherapy is used to destroy any possible residuals of the tumour. In many cases, an 

anti-cancer drug is also used to kill residual cancer cells and any possible cancer cells spread to 

other areas in the body.  

Moreover, there are emerging, unconventional cancer treatments such as photodynamic 

therapy, photothermal therapy, gene therapy, hormone therapy, bone marrow transplantation and 

virus therapy [3, 23]. For example, photodynamic therapy (PDT) is a novel clinical method [24]. 

It uses the combination of photosensitizers and specific lasers to treat a number of tumours, such 

as skin cancer and non-small cell lung cancer. It is comparatively non-invasive, can be targeted 

accurately and has fewer side effects [24]. 

 

1.1.4. Effects of tumour microenvironment on conventional cancer therapies 

 

The microenvironment of tumor can have significant impacts on the outcomes of cancer 

treatments [12]. First, the poor vasculature in tumor places a physical constraint on the 
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microenvironment and can cause an ineffective drug delivery [25-26].  In the tumor, the acidosis 

(low pH values) of the microenvironment and the high interstitial pressure also make drug delivery 

difficult [25-26]. It has been shown that patients with lymphoma and melanoma had better 

response to chemotherapy if their IFP dropped during treatment [27]. An additional contributor to 

this hostile environment is the heterogeneous nature of the tumor and its local environment. 

Different areas of the tumor are unevenly hypoxic or acidic, since blood flow within the tumor is 

not constantly stable because of the abnormal vasculature. Also, the extracellular matrix is 

different from normal environmental conditions. Low extracellular PH also decreases the uptake 

of many chemotherapeutic drugs [28]. Many drugs, such as doxorubicin, are most efficiently 

passing through both plasma membranes and intracellular membranes in a neutral state [28]. 

However, they tend to become charged states when they exist in the acidic environment of the 

tumor [28]. This can cause a significant reduction of drug uptake.  

Hypoxic conditions also appear to promote tumor survival and growth in cancer therapies 

[29-30]. Hypoxia affects several types of chemotherapy drugs. Oxygen is required for some 

drugs, such as mephalan, bleomycin, and etoposide, to achieve a maximal efficiency [29]. 

Moreover, the low oxygen level could cause cell cycle arrest and thus reduce the therapeutic 

efficacy of the drugs that are more effective against proliferating cells [30]. For radiotherapy, 

hypoxia has been well known to inhibit effective radiation killing of cancer cells [31-34]. Indeed, 

oxygen itself is an effective radiosensitizer. It is a well-known fact that well-oxygenated cells 

required a radiation dose only about one third of that required for anoxic cells to achieve a given 

level of cell killing [35].  For photodynamic therapy (PDT), its therapeutic efficiency depends 

on the distribution of photosensitizers, the propagation of the photoactivating light and the 

amount of oxygen in the tumour [36]. In particular, the activation of PDT is to generate reactive 
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oxygen species that then causes biological effects such as cell apoptosis and necrosis [24]. 

Therefore, PDT efficiency is certainly dependent on the oxygen level in the tumor. Unfortunately, 

the poor tumour vasculature results in reduced photosensitizer and oxygen delivery in tumor 

tissues.  

However, the tumor microenvironment may be exploited as an advantage to develop 

anti-cancer drugs that targets at the tumor preferentially.  For example, “reductive” hypoxic 

radiosensitizers may kill hypoxic cancer cells effectively while have a less toxicity against oxic 

cells in healthy tissues, as will be discussed in Section 2.7 of Chapter 2.  

 

1.2. Drug discovery and development 

 

1.2.1. Drug discovery history 

 

Drug discovery history is a long, slow process. In the ancient times, people used an almost 

completely empirical method to treat diseases and recover from their illness. For instance, 

healing herbs were discovered by a process of trial and error. To the beginning of the 19th 

century, pharmacologically active compounds were extracted from plants by a method called 

solvent extraction [37-38].An example was theisolation of morphine from opium by Serturner in 

1805 [38]. This allowed people to study morphine without the interference of other constituents 

of the opium mixture. It was the infancy of pharmacology. Soon after, additional alkaloids were 
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isolated from opium. Their comparative biological evaluations marked the beginning of modern 

medicinal chemistry [38].  

Then, urea was synthesized by Wohler in 1828 [38]. The progress established the science 

of synthetic organic chemistry. William Perkin discovered mauveine in 1856 [37]. It represented 

that for the first time in history, the development of new drugs did not necessarily come from 

natural products. The subsequent successful synthesis of chloral hydrate in 1868 and sodium 

salicylate in 1875 represented the start of the industrial production of synthetic drugs [37-38].  

At about the turn of the 20th century, Nobel laureate Paul Ehrlich used the term 

chemotherapy to describe the application of chemicals with known composition to the treatment 

of parasites [38]. Till the 1960s, the discovery of new drugs depended mostly on the discovery of 

natural product analogs. By then, the activity of a compound was tested in the whole animal 

system [38]. Since the late 1960s, molecular biology started to develop rapidly. DNA helix 

structure was discovered and genes were found to express as proteins. It was also found that 

some proteins, when they were overexpressed or incorrectly expressed, cause many human 

diseases. Therefore, some drugs were designed to target these proteins for the treatment of 

related diseases [38].  

In the second half of the 20th century, medicinal chemists manipulated the chemical 

structures to control the transportations of drugs to their targets and to obtain optimal uptakes 

[37-38]. With the advances in biochemistry in the 1970s and breakthroughs in molecular biology 

in the 1980s, it became possible to identify leads by screening a large number of compounds for 

many new targets in human genome. A new age of drug discovery emerged in the early 1990s: 

high throughput screening (HTS) and combinatorial chemistry were born [37-38]. Since then, 
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people have learned how to control the production of proteins that were responsible for some 

diseases and have tested the efficacy of potential drugs. Screening a huge number of compounds 

through HTS has been one of the major methods in modern drug discovery [38].  

 

1.2.2. Limitations of modern drug discovery and development 

 

There has been a great progress in the drug discovery and development in the past two decades. 

The technology and understanding of biological systems have been increasingly advanced. 

However, modern drug discovery is still a lengthy, expensive, difficult and inefficient process 

with low rate of new therapeutic discovery [39]. On the average, it takes about 20 years to 

develop a single new medicine [40], and the research and development cost of a new drug is 

about US $1.8 billion [41].  

Here is an example given to show that modern drug discovery is an inefficient process. 

Cisplatin is an effective cancer chemotherapy drug. It is now the cornerstone agent in treating a 

variety of cancer, including ovarian cancer, testicular cancer, cervical cancer, bladder cancer, 

lung cancer, head and neck cancer, lymphomas cancer, brain tumors, malignant pleural 

mesothlioma and neuroblastoma [42-44]. However, its application is often limited by severe 

toxic side effects and resistance possessed by various cancers. Over three thousands of platinum 

analogues have been synthesized and screened for anticancer activity in an attempt to overcome 

the drawbacks of cisplatin and to broaden the range of treatable tumors in the past 40 years 

[42-44]. Among the compounds, only two have been approved by the FDA: oxilaplatin and 

carboplatin for the treatment of some cancers. This might imply the lack of a precise 
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understanding of the molecular mechanism of the cytotoxicity of cisplatin [45-46]. This example 

indicates that there is a pressing need for mechanistic understanding of action of existing 

anticancer drugs at the molecular level, which can, in turn, lead to mechanism-based design of 

new anticancer drugs. 

In this thesis, we present an innovative molecular-mechanism-based drug discovery 

project to develop novel drugs for effective radiotherapy of cancer through the emerging 

femtomedicine approach. This approach aims to integrate ultrafast laser techniques with 

biomedical methods aims for advances in fundamental understanding and treatment of major 

human diseases, notably cancer [47]. 
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Chapter 2 

Ionizing-Radiation-Induced DNA damage 

and Radiotherapy 

Radiotherapy is currently the major modality of cancer therapy. It uses high energy x-rays, or 

charged particles to destroy cancer cells. DNA is the major target of radiotherapy. In some 

applications, compounds (the so-called radiosensitizers) are used as drugs to make cancer cells 

more sensitive to radiotherapy. In this chapter, the physical and chemical basis of radiotherapy 

will be briefly introduced. The current status of the study of DNA damage induced ionzing 

radiation will then be reviewed, and finally the main types of potential radiosensitizers will be 

reviewed and discussed.  

The ultimate goal of this project is to develop more effective radiosensitizers, based on 

our unique molecular understanding of ionizing radiation induced DNA damage and 

halopyrimidines as a family of potential radiosensitizers. To achieve this ultimate goal, we need 

to understand how ionizing radiation causes DNA damage and how radiosensitizers enhance the 

therapeutic efficacy of radiotherapy.  
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2.1. Radiation energy deposition 

 

Ionizing radiation used in radiotherapy includes high energy photons and charged particles such 

as x-rays, γ-rays, electrons and ions. The energy deposition into the matter by ionizing radiation 

is a random process [48]. Generally, an ionizing particle will have a high energy that is far 

sufficient to remove an orbital electron from any atom with which it interacts. Therefore any 

atom may randomly lose an electron and is ionized. 

 If a complex system (one consisting of more than one kind of molecules) is irradiated with 

ionizing radiation, the ionization probability is proportional to the number (concentration/density) 

of molecules present in the system. When cells or tissues are irradiated, most of the radiation 

energy is absorbed by water, because cells are made up of more than 70% in mass of water [12]. 

Ionizing radiation results in not only ionization, but also excitation of water molecules. 

 

2.2. Target of radiotherapy 

 

DNA is the principal target of radiotherapy. It is critical for cell survival [49]. Other bioactive 

molecules, such as RNA, amino acids, peptides, proteins, lipids, and inorganic ions can also be 

damaged by ionizing radiation, because the way ionizing radiation deposits its energy is 

non-selective. But cells can still be alive even when these bioactive molecules lose most of their 

biological activity. For example, if most of the RNA is damaged, good RNA can still be 

transcribed from good DNA. In contrast, if DNA is damaged and not repaired, the transcribed 
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RNA and translated proteins will have problems. The cells will be mutated or killed finally. 

DNA as the principal target of ionizing radiation has been confirmed by some experimental 

results [50-53]. It was shown that if radiation was absorbed by the outer membrane and the 

cytoplasm of eukaryotic cells, little lethal damage to cells was observed [53]. But when the 

radiation reached the nucleus, lethal damage dramatically increased [50-53].  

In the living systems, ionizing radiation causes DNA damage through direct and indirect 

interactions [12, 49]. In the direct effect, ionizing radiation energy is directly deposited into 

DNA. DNA molecules will be directly ionized or excited, initiating a chain reaction that leads to 

biological effects. The direct effect is thought to be dominant under high LET (linear energy 

transfer) radiation, such as neutrons, α-particles, and high energy argon ion beam [12]. In the 

indirect action, ionizing radiation firstly reacts with cellular environment, mostly water, 

generating different types of reactive radicals. These radicals then react with the DNA, causing 

damage to the DNA. The indirect effect plays a major role in DNA damage caused by low LET 

radiation - such as β particles, x-rays, and γ-rays.  
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2.3. Direct effect of DNA damage 

 

2.3.1. Caused by high energy ionizing radiation 

 

The primary effect of direct ionizing radiation damage to duplex DNA is the formation of 

cationic and anionic radicals [54-61]. In DNA irradiated at low temperature, researchers have 

suggested that the hole (positive charge) migrates to and stabilizes on guanine [59, 61]. In 1991, 

Sevilla et al. [61] reported an ESR (electron spin resonance) study of the relative distribution of 

ion radicals formed in DNA equilibrated with D2O and irradiated by γ–rays at 77 K. Their result 

gave DNA ion radicals’ relative abundances as about 77% C·
—
, 23% T·

—
for anions and >90% 

G·
+
 for the cations; about equal amounts of anions and cations were present. In the next year, the 

same group reported the free-radical distribution in γ–irradiated frozen samples of single 

stranded DNA (ssDNA) and double stranded DNA (dsDNA) [62]. They suggested a more 

uniform distribution of the radical ions on the DNA bases for the ssDNA than that for the 

dsDNA: thymine anion T·
―
(30-35%), cytosine anion C·

―
(20-28%), guanine cation G·

+
 (26-28%), 

and adenine cation A·
+
 (8-17%), with small amounts of purine anions or pyrimidine cations. ESR 

studies of irradiated DNA at low temperatures indicated that the major radical species stabilized 

at 77K are localized predominantly on the DNA bases [54-62].  

There have been several studies of DNA constituents irradiated with ion beams [63-67]. 

A significant decrease in radical yields and new radical species were observed with increasing 

LET [63-66]. In 1994, Wang et al. [68] suggested the possible existence of sugar radicals in 

γ-irradiated hydrated DNA at elevated radiation doses. Free radicals located on the deoxyribose 
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moiety were the likely precursors to strand breaks. The C1’· might result in an abasic site [69], 

and the C1’·, C3’·, C4’· and C5’· radicals might result in strand breaks [70]. Razskazovskii et al. 

[71] reported the first clear ESR spectrum of the C1’· radical in a DNA double helix in 1998. In 

2004, Sevilla and coworkers [72] reported that photoexcitation of previously stabilized guanine 

cation radicals, G
+
· resulted in the formation of C1’· radicals in double–stranded DNA at 77K. In 

1996, Becker et al. [67] firstly identified the C3’· (or C4’·) radicals at 77K 
16

O
8+

 ion-irradiated 

hydrated DNA. Subsequently, the C3’· radicals were also reported by Weiland et al. [73], Debije 

et al. [74], and Becker et al. [75].  

ESR studies also identified sugar-phosphate radicals [67, 75, 76]. Beck et. al identified a 

phosphate radical of the type ROPO2
―
· in hydrated DNA irradiated by 

16
O

8+
 ion [67], argon–ion 

[75], and γ-ray [75]. They suggested that this result from P-O bond cleavage [75, 76]. The same 

group also identified a sugar moiety radical resulting from rupture of the C3’-O bond in hydrated 

DNA irradiated by argon–ion [75], and γ-ray [75]. These radicals are the direct products of 

strand breaks.   

 

2.3.2. Caused by low energy free (kinetic) electrons (LEFEs) 

 

An isolated molecule may dissociate and/or form a negative ion by interaction with a low energy 

free (kinetic) electron (LEFE). There are basically two mechanisms [77]: dipolar dissociation 

and dissociative attachment. For a diatomic molecule AB, these processes could be represented 

by following equations, respectively: 
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                      e + AB  AB* + e  A
+
 + B


 + e……………………….. 2.1 

                      e + AB  AB*

  A + B


 ………………………………. 2.2  

 

The first reaction (Eq. 2.1) proceeds via an excited state AB* and is called dipolar dissociation 

(DD); the second reaction (Eq. 2.2) proceeds via a transient vibrationally-excited anion AB*
— 

and is a resonance process called dissociative electron attachment (DEA). Depending on electron 

energy, electron can cause DNA damage through ionization, dipolar dissociation (DD), and 

dissociative electron attachment (DEA) processes. DEA occurs for free electrons at low kinetic 

energies of 0-20 eV [78-79]. 

 Low energy secondary free (kinetic) electrons are produced in abundance in nearly all types 

of radiation tracks [12]. In the 1980s and 1990s, theoretical calculations suggested that energy 

deposition of > ~100 eV correlated with double strand break (DSB) yields [80-81] and such 

energy depositions in low LET irradiation arises mostly from low energy secondary electrons 

[81-83]. In 1997, by computational modelling and calculations, Nikjoo et. al [84] concluded that 

90% of total energy depositions were due to events less than 60 eV, but the largest DSB yield 

was due to energy depositions in the range 60-150 eV for all three electron energies (300 eV, 1.5 

keV, and 4.5 keV). They suggested that the DNA damage is due to the low energy secondary 

electrons. The same year, Botchway et. al. [85] used characteristic aluminum K (AlK) (energy of 

1.5 keV) and copper (CuL) (energy of ~0.96 keV) x-ray to study the effect of the numerous low 

energy secondary electrons produced by low LET ionizing radiation on DNA. They suggested 

that clustered damage such as DSBs was produced predominantly by low energy electron “track 

ends”. It should be noted that in these theoretical and experimental studies, the electron solvation 

dynamics were not taken into account.  
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In 2000, Boudaiffa et al. [78] showed DNA strand breaks by low energy (3-20 eV) free 

(kinetic) electrons. They irradiated plasmid DNA under dry, ultrahigh vacuum (UHV) conditions 

with a low energy free (kinetic) electron (LEFE) gun, and found that dissociative electron 

attachment (DEA) of low energy (3-20 eV) free (kinetic) electrons can cause SSBs and DSBs of 

the dry DNA. It was found that under 15 eV, kinetic electrons with energies around 10 eV had 

the resonance in causing SSBs and DSBs. LEFEs with energies 3-5 eV, caused some SSBs, but 

no DSBs. In 2004, the same group studied DNA strand breaks induced by 0-4 eV free electrons 

[86]. They showed a higher yield of DNA SSBs at ~1 eV but no yields of DSBs induced by (0-4 

eV) free electrons. In 2005-2006, Illenberger et al [87-88] reported experimental results for 

DEAs of near 0 eV electrons to gaseous DNA bases and the phosphate group. It was found that 

the compound undergoes DEA reaction within a low energy resonance feature at 1 eV and a 

further resonance peaking at 8 eV. They suggested that the direct effect of SSBs caused by 

LEFEs is due to DEA directly to the phosphate group.  

On the theoretical point of view, Simons and co-workers [89] in 2002 reported the first 

theoretical studies of the effect of the DNA solvation in an aqueous environment on 

DEA-induced SSBs, proposing that SSBs can effectively occur via forming a (π*) shape anion 

resonance at the DNA base after attachment of an access electron of ~1 eV if the DNA is 

solvated in water. In 2004-2006, the same group [90-91] suggested that it is highly unlikely that 

electrons having kinetic energies near 0 eV can attach directly to DNA’s phosphate group’s P=O 

π* orbital, while electron kinetic energies in the 2-3 eV range attach directly to phosphate 

group’s P=O π* orbital. In 2006-2008, a number of groups [92-96] reported theoretical studies of 

DEAs of near 0 eV electrons to nucleotides in both the gas phase and aqueous solution.  

Generally, these theoretical studies were focused on the energetic stability of nucleotide anions 
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and gave rather controversial results [91-96]. For example, Simons and co-workers [91] 

suggested that DNA bases can attach electrons having kinetic energies even below 1 eV range 

and subsequently undergo phosphate-sugar O-C bond cleavage. They also suggested that 

electrons with kinetic energies in the 2-3 eV attach directly to the phosphate group, while 

electrons with energies near 0 eV are highly unlikely to attach to the phosphate group’s P=O π* 

orbital. Bao et. al [92] investigated LEFE attachment induced C5’-O5’ σ bond breaking of 

pyrimidine nucleotides (5’-dCMPH and 5’-dTMPH). Their calculated results indicated that the 

pyrimidine nucleotides are able to capture electrons around ~0 eV to form electronically stable 

anions in both the gas phase and aqueous solution. Sevilla and co-workers [95] calculated that 

the barrier height for adiabatic C5’-O5’ bond dissociation of 5’-dTMP anion radical in aqueous 

environment is substantially higher than in the gas phase such that it would not contribute to 

DNA strand cleavage in the aqueous system.  

However, none of the above-mentioned experimental studies with (0-20 eV) free (kinetic) 

electrons were performed in aqueous solutions. These gas phase experimental results could not 

be applied to real biological systems, in which water constitutes a major component. The water 

environment is unlikely to enhance DEAs of molecules at free electron energies >1.0 eV. Indeed , 

Lu and Sanche [97-99] have observed that DEAs of molecules to free electrons with energies ≥ 

1.0 eV, effective in the gas phase, are completely quenched when they are adsorbed on H2O ice, 

while the DEA cross section at ~0 eV electrons are significantly enhanced by H2O ice. The latter 

is due to a dissociative electron transfer (DET) mechanism, which will be discussed in later 

Chapters. 
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2.4. Indirect effect of DNA damage 

 

As mentioned in Section .2.1, most of the ionizing radiation energy is absorbed by water. In the 

indirect effect, DNA is damaged by the radicals generated from the radiolysis of water.  

 

2.4.1. Radiolysis of water 

 

In radiation chemistry, G-values are defined as the number of molecules formed or lost per 100 

electron volts of energy absorbed [49, 100].  

 

G= (number of altered molecules) /100 eV. 

 

G may also be expressed as ‘molar concentration of altered entities per unit dose’: 

           
 

  
 

 

where C is the molar concentration in M, D is the dose in Gy (J / kg), and ρ is the density of the 

medium in g/cm
3
.  

H2O molecules can either be ionized or excited by ionizing radiation (Eqs. 2.3 and 2.4). 

In the ionization process, a water radical cation (H2O
+
) and an electron are generated (Eq. 2.3).  

 

H2O  H2O
+
 + e

―
 ……………………………… 2.3 

H2O  H2O* …………………………………… 2.4 
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The water radical cation (H2O
+
) is a strong acid. It reacts with another water molecule, 

forming an H3O
+
 and a OH∙ radical (Eq. 2.5). The electron reacts with surrounding water 

molecules, and becomes the solvated electron (Eq. 2.6) 

 

H2O
+
 + H2O  H3O

+
 + OH∙ …………………………. 2.5 

e
—
 + n H2O  esolv

—
   ……………………………… 2.6 

 

The excited water molecule can dissociate into either an H-atom and a ∙OH radical or a 

water radical cation (H2O
+
) and an electron (Eq. 2.7): 

 

H2O*  H· + OH· or H2O
+
 + e

—
 …………………… 2.7 

 

The free radicals(OH·, esolv
—
 and H·) either react with one another or diffuse into the 

bulk of the solution, reacting with anything that they encounter, producing H2O, H2O2, molecular 

hydrogen and some other free radicals such as ·HO2 (hydrogen peroxide) [12, 49, 100-101]. 

Since ionizing radiation deposits its energy non-selectively, essentially all the radiation 

energy is absorbed by water in ≤ 0.1 M aqueous solution [101]. In the conventional context of 

radiobiology, the free radicals of radiolysis of water are long known to be esolv
—
, ∙OH, H∙, H2O2 

and H2 [100-102]. Their quantum yields (G values) per 100 eV energy deposited were measured 

to be 2.8, 2.4, 0.6, 0.8, and 0.4 at 10
－6

 s after irradiation, respectively [100-102]. 
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2.4.2. Reactions of free radicals with DNA 

 

Free radicals (·OH, esolv
―

, H·) can react with biological molecules and change them. The ·OH 

radical is a strongly oxidizing species [102-106], while esolv
―
 and H· radicals are reducing agents 

[61]. 

The highly reactive ·OH radical often abstracts carbon-bound hydrogen atoms more or 

less non-selectively [102, 106]. ·OH radicals can directly abstract H atoms from biomolecules, 

especially DNA. Moreover, ·OH radicals add to the unsaturated bonds of biomolecules 

[108-110], or further react with other radicals to form new reactive active radicals such as: O
―
, 

O2
―
, HO2· etc [106]. These reactions then result in molecular degradation or initiate damaging 

chain reaction processes.  

esolv
―
 reacts with DNA bases to form electron adducts [110-113]. The formed electron 

adducts undergo protonation reactions [110-113]. H· radicals react with DNA to form H· adduct 

radicals [110 and references therein].  

 

2.5. Types of DNA damage induced by ionizing radiation 

 

Ionizing radiation induces several types of DNA damage, including base damage, abasic sites, 

single-strand breaks (SSBs), double-strand breaks (DSBs), DNA-protein cross-links, DNA intra-/ 

inter- cross links, and multiply damage sites (MDS).  
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For base damage, at least thirteen modified bases were detected in calf thymus DNA 

irradiated by γ-rays [110]. Thymine glycol, cytosine glycol, 5-hydroxy-5-methyl-hydantoin, and 

5,6-dihydrothymine are the major products for pyrimidines [114-116]. 8-oxo-guanine 

(8-oxo-Gua) and 8-oxo-adenine, and ring-ruptured species such as 

2,6-diamino-4-hydroxyl-5-formamidopyrimidne (FAPyGua) and 4,6-diamino 

-5-formamidopyrimidine (FAPyAde) are the major products for purines [116-120]. Thymine 

glycol blocks DNA replication [110 and references therein]. 8-oxo-Gua directs misincorporation 

of adenine by DNA polymerase [121], and ring-ruptured DNA base blocks DNA synthesis [122].  

When deoxyribose is damaged, abasic sites (as shown in Fig. 2.1) and deoxyribose 

fragments are formed [110]. The oxidized AP (apurinic / apyrimidinic site) lesions 

2-deoxyribolactone (deoxyribonic acid) and 2-deoxypentose-4-ulose are produced in DNA by 

x-rays [102].  

 

 

Figure 2.1 Reaction mechanism of base loss [110]. 
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Damage to the deoxyribose-phosphate backbones may cause scission of the backbone 

and result in the breakage of DNA strands. Breakage of the bond between C3’-C4’ or between 

C4’-C5’ can produce a single strand break [110]. Single strand breaks can be easily and quickly 

repaired by intracellular enzymes [12, 49]. If the strand breaks occurred in two opposite DNA 

strands and are separated by only a few base pairs, this may lead to a DSB [123]. DSBs are 

believed to be the most important lesions produced in chromosomes by radiation [12, 49, 123]. 

The interaction of two DSBs may result in cell death, carcinogenesis, or mutation [12, 49, 123].  

The DNA, protein free radicals generated by ionizing radiation can also react with each 

other to form DNA-protein cross links, DNA intra- / inter- cross links, as shown in Fig 2.2 [110]. 

DNA-protein cross-link can also be formed by adding a DNA radical to an aromatic amino acid 

of a protein, or by adding a protein radical to a DNA base [110]. 

 

Figure 2.2. Formation of DNA-protein crosslink [65] 
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Numbers of early physical and biochemical changes for mammalian cells irradiated with 

1Gy of low LET radiation are shown in Table 2.1 [12].  

Table 2.1. DNA damage produced in one cell by 1Gy x-ray [12]. 

Damage No. per cell 

Damaged bases 

Damaged sugars 

SSBs 

DSBs 

Abasic sites 

Cross-links 

1000-2000 

1200 

1000 

40 

250 

200-400 

 

2.6. ∙OH radical – mainly responsible for ionizing radiation induced DNA 

damage? 

 

Cellular endpoints and strand breakage in cellular DNA can be manipulated by compounds that 

are known to be ·OH scavengers, such as isopropanol [124], t-butanol [125-126], and DMSO 

[127-128].Thus it was believed that ·OH radicals are predominantly responsible for the indirect 

effect of ionizing radiation induced DNA damage.   

In 1967, Block et al. [129] firstly attributed inactivation of single-strand DNA of the 

bacteriophage ϕX174 to ·OH radicals. They observed the large increase of the 37% survival dose, 
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when ·OH radical scavenger --- iodide ions were added. From then on, different experiments 

were conducted and the results suggested that ·OH radicals were the major culprit for indirect 

effect of DNA damage. N2O converts esolv

 into ·OH radicals. It was found that DNA sample 

bubbled with N2O increased the yield of DNA damage by a factor of 2 [129].The addition of 

alcohols (methanol, ethanol, t-butanol) protected DNA molecules of mammalian cells from 

radiation-induced single-strand breaks [125].  

Since the above mentioned experiments showed that ·OH radical scavengers significantly 

decreased the amount of DNA damage [124-129], ·OH radicals were long thought to be mainly 

responsible for the indirect effect of DNA damage induced by ionizing radiation. However, it has 

also been observed that even very high concentrations of ·OH scavengers cannot completely 

quench the DNA damage, especially DSBs [124-131]. That ‘nonscavengable’ DNA damage 

(~30% SSB, and ~30-65% DSB) was therefore attributed to direct action of radiation in the DNA 

[124-131]. This assignment, however, conflicts with another important observation made by Ito 

et al. [132]. The experiments conducted by Ito et al. [132] were to gain knowledge of the 

dependence of the yield of DNA strand breaks induced by γ-rays on water content. Ito et al. [132] 

compared DNA damage induced by 
60
Co γ-rays under three irradiation conditions, the DNA in a 

dry, humid and aqueous states. They found that water content plays a very critical role in the 

yields of DNA strand breaks induced by γ rays. The presence of water molecules enhances the 

yields of SSBs and DSBs by more than 10 fold in the humid state, and by over 1000 fold in the 

aqueous state. That is: DNA stand breaks in aqueous state = 100 fold DNA damage in humid 

state = 1000 fold DNA damage in dry state. In this experiment, only ~1% of DNA strand breaks 

were caused by the direct effect (DNA with hydrated water as an integral). Indirect effect 

contributes to ~99% of DNA strand breaks. If ·OH radicals play a dominant role in the indirect 
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effect, then, high concentration of ·OH scavenger should be able to scavenge ~99% of DNA 

strand breaks in aqueous solution, which is obviously contradictory to the fact that there is still 

30-65% ‘nonscavengable’ DSBs, even when very high concentrations of ·OH scavengers up to 

2M were used [12].  

Moreover, it is worthwhile to note that the damage produced by ·OH radicals is similar to 

that produced during oxidative metabolism [133-135]. At the mean lethal dose of ionizing 

radiation for mammalian cells, the number of ∙OH-induced DNA-damaged sites is low compared 

to the spontaneous background of about 10,000-150,000 oxidative DNA damaged sites per 

human cell per day [136-137]. In repair proficient cells, all DNA damage produced by ∙OH 

radicals is removed [12, 49]. H2O2 is known to produce ∙OH radicals by a Fenton-type reaction 

and it induces lesions in cells similar to those from ionizing radiation [12, 138]. It was found that 

SSBs introduced into the DNA of mammalian cells by the treatment of H2O2 at 0  C cause no cell 

killing [138].  

The above observed facts imply that there may be some important processes missing in 

the conventional understanding of radiation-induced DNA damage. 

 With the birth of femtosecond (fs) time-resolved laser spectroscopy, the solvation dynamics 

of free electrons in water has been studied at an unprecedented level. It has become clear that the 

electron is solvated through two major steps: before it becomes fully solvated electron (esolv
－

), 

the electron is located in a weakly bound pre-existing trap, and is called presolvated electron (epre

－
) with a finite lifetime < 1 ps [139-142]. The processes can be expressed as: 

 

e + nH2O  epre
－

  esolv
－
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Here, epre
－
 is a novel species, which was first experimentally observed in 1987 [139]. The G 

value of epre
－
 is nearly double that of its ending product esolv

－
 [142]. The DNA damage caused by 

epre
－

 was not taken into account in current radiobiology. It is very likely that epre
－

 plays an 

important role in DNA damage induced by ionizing radiation, as will be addressed in later 

Chapters of this thesis.  

 

2.7. Radiosensitizers 

 

Radiotherapy is currently utilised in ~50% of patients with solid tumours at some stage of their 

treatment [143]. The most common ionizing radiation sources used in radiotherapy are low LET 

ionizing radiation (IR) sources such as x-rays and γ-rays, whose cytotoxicity results from their 

ability to induce  DNA damage, particularly DNA double-strand-breaks (DSBs)due to the 

formation of free radicals within the cells [12, 49, 143]. Although refinements in IR fractionation 

have optimised dose delivery and new technology developments such as intensity-modulated and 

image-guided radiotherapy (IMRT and IGRT) have increased the precision of irradiation to the 

target tumour, there are still limitations in doses and effectiveness that cause failure in treatments 

[143]. This is linked to the fact that many tumours exhibit intrinsic or acquired resistance to 

ionizing radiation as part of the carcinogenic process or during the course of radiotherapy [144]. 

Therefore the use of radiosensitizers may overcome radioresistance and enhance the 

radiosensitivity of tumour cells. This has long been explored to enhance tumour control and 
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minimise the radiation toxicity toward healthy tissues through using lower radiation doses [144]. 

However, current radiosensitizers are still largely unsatisfactory, since existing radiosensitizing 

agents often cause a high rate of unacceptable treatment-related morbidity [144-145]. Therefore, 

continuing efforts in experimental and translational oncology research have been to identify 

more effective radiosensitizing agents [146-147]. 

A number of radiosensitizing agents with various modes of action have been developed. 

Table 2.2 [144] listed the traditional anticancer agents that are currently used in clinical trials. 

However, owing to their inherent cytotoxocity, these agents can cause normal tissue damage and 

ionizing radiation-related side effects when combined with radiotherapy. The derivatives of those 

compounds listed in Table 2.2 have been designed and developed [145-146], with the hope to 

improve their therapeutic effects and to avoid the side effects. However, few of those compounds 

have been used in clinical treatments [145-146].  
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Table 2.2. Mechanisms of cytotoxicity and radiosensitization of anticancer drugs as 

radiosensitizers [144]. 

Compound Cytotoxicity Radiosensitization 

 

5-Fluorouracil 

Inhibition of thymidylate synthase, 

incorporation into DNA and inhibition 

of RNA maturation [147] 

Inhibition of the repair of IR-induced 

DSBs and impairment of cell cycle 

checkpoints. 

IdU 

BrdU 

Inhibition of ribonucleotide reductase 

and incorporation into DNA [147] 

Augmentation of IR-induced DSBs 

and inhibition of their reapir 

TAS-106  

Inhibition of thymidylate synthase and 

RNA synthesis [148] 

Abrogation of G2/M checkpoint, 

enhancement of IR-induced tumor cell 

apoptosis associated with an inhibition 

of the expression of HIF-1α and of the 

antiapoptotic protein, surviving. 

Gemcitabine Depletion of deoxynucleoside 

triphosphates resulting in DNA 

polymerase and ribonucleotide 

reductase inhibition [147]. 

Induction of nucleotide 

misincorporation during DNA 

replication that augments cell death 

following IR. Enhanced by mismatch 

repair deficiency. 

Clofarabine  Inhibition of DNA polymerases  and 

ribonucleotide reductase and 

incorporation into DNA  [149] 

Inhibition of the repair of IR-induced 

DSBs at low doses and induction of 

DSBs at high doses. 

3-AP 

(Triapine) 

Inhibition of ribonucleotide reductase 

in blockade of DNA synthesis and 

repair [147, 150] 

Inhibition of the repair of IR-induced 

DSBs 

Temozolomide Methylation of guanine at O6 position 

resulting in DNA mismatch pairing, 

DNA strand breakage and cell death  

[151] 

Inhibition of the repair of IR-induced 

DSBs leading to increased mitotic 

catastrophe 

Platinum 

analogues 

Covalent binding to purine DNA bases 

causing interstrand and intrastrand 

crosslink [152] 

Inhibition of the repair of IR-induced 

DNA damage, induction of apoptosis 

and formation of IR-induced toxic 

platinum intermediates 

Camptothecin 

analoguues 

Inhibition of topoisomarase I, 

resulting in irreversible DNA DSBs 

[153] 

Worsening of IR-induced DNA 

lesions and inhibition of their repair. 

Taxanes, 

epothilones 

Stabilisation of microtubules through 

tubulin binding resulting in cell cycle 

arrest in G2-M and cell death [144, 

154] 

Synchronisation of tumour cells in 

G2-M at a point of maximum 

radiosensitivity 
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As mentioned in Chapter 1 (Section 1.1.4), the hypoxia of tumor microenvironment can 

seriously affect the outcome of radiotherapy.  Hypoxic cells are 2~3 times more resistant to 

killing by ionizing radiation than normal oxic cells, largely due to the lower yield of 

DNA-damaging oxygen radicals [155-161]. Overall, similar to case in photodynamic therapy, the 

hypoxia of solid tumours represents a major cause of treatment failure in radiotherapy [155-156]. 

Over the past decades, several strategies have been explored to overcome the problem of 

radioresistance associated with tumour hypoxia [146, 155-156, 162]. These include strategies to 

improve tumour oxygenation during radiotherapy [145-146, 162], to target hypoxia-inducible 

factor (HIF)-1, a transcription factor that promotes the survival of hypoxic tumour cells 

[163-166], and to target hypoxic tumor cells. The latter strategy involves the development of 

hypoxic radiosensitizers [146, 155, 162, 167], which consist mainly of two types: 

oxygen-mimicking hypoxic sensitizers and hypoxic cytotoxins (bioreductive radiosensitizers) 

[12, 123]. 

 For hypoxic sensitizers, the strategy is to develop drugs that have similar properties to 

oxygen as a radiosensitizer [12]. This strategy is based on the idea that oxygen shows the 

radiosensitization because of its electron affinity and that other molecules with large electron 

affinities might show similar radiosensitizing properties. Some molecules from the classes of 

halopyrimidines [168-177] and nitromidazoles [178-180] have been observed to show some 

radiosensitization to hypoxic cancer cells in both cell line and animal experiments.  

Halopyrimidines, expecially bromodeoxyuridine (BrdU) and iododeoxyuridine (IdU), have 

passed phase I to Phase II clinical trials, but a very limited radiosensitivity enhancement was 

observed in phase III clinical trials [181-183] and no clinical uses of halopyrimidines as 
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radiosensitizers have been approved.  For nitromidazole compounds, misonidazole has been 

tested in many studies, which showed a preferential killing of hypoxic cells in vitro in a 

dose-dependent manner [12, 184].  The in vivo results of misonidazole showed a good 

correlation with the in vitro results at high acute radiation doses [184], whereas the 

radiosensitivity enhancement was decreased when misonidazole was used in combination with 

fractionated radiation doses [185]. Many nitromidazoles have also been studied, and 9 such 

compounds have been tested in clinical trials [146, 186]. However, the overall results from the 

clinical trials have not been as good as expected [123], and the trials with less toxic drugs such as 

etanidazole [187-188] and nimorazole [189-190] showed some inconsistent results. So far, only 

5-nitroimidazole has been used with some success for radiotherapy of head and neck cancers in 

Denmark [162]. 

For hypoxic cytotoxins, the strategy is to develop bioreductive drugs that utilize tumor 

hypoxia as a therapeutic advantage and target hypoxic cancer cells specifically [12, 123].  

Among bioreductive drugs of current clinical interest, the leading agent is tirapazamine (TPZ) 

[123, 191]. Under hypoxia, TPZ is preferentially cytotoxic to hypoxic cells in the tumor because 

its one-electron reduction leads to the formation of a radical which can cause DNA strand breaks 

and kill the hypoxic cells.  For oxygenated cells, in contrast, the reactive radical can be oxidized 

back. TPZ has also been tested in combination with cisplatin (an effective but toxic 

chemotherapeutic drug) to enhance its treatment efficiency [123, 192].  TPZ was evaluated in 

clinical trials and showed some effectiveness, for example, in treating non-small-cell lung 

carcinoma and advanced head and neck cancers by combination with radiotherapy and cisplatin 

[12, 193-194]. However, the in vivo test of TPZ in mouse tumor models also showed a 

significant increase in toxicity to normal tissues [165, 195].  Efforts have been made to improve 
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therapeutic properties of TPZ by making its analogues [196]. Another type of bioreductive drugs 

is represented by nitrobenzindoles [197]. But the radiosensitizing activity of these compounds in 

tumors was not reported. Currently, for bioreductive drugs targeting at tumor hypoxia, PR-104 

[198-199], AQ4N [167], and EO9 [145] are still under clinical trials. 

Although various strategies and types of compounds have been designed and developed as 

potential radiosensitizers, none of them have been approved for clinical use, except for 

5-nitroimidazole, which is used for radiotherapy of head and neck cancers in Denmark  [162]. 

In spite of great efforts and resources invested in developing effective radiosensitizers in the 

world wide, clinical results have been unsatisfactory. The radiosensitizing effects of these 

compounds either were found accidentally, such as cisplatin and BrdU, or were designed based 

on some biological results. What chemicals reaction do those compounds undergo and what 

triggers the chemical reactions under ionizing radiation remains essentially unknown. For 

example, many radiosensitizers, whether hypoxic sensitizers or hypoxic cytotoxins, were 

designed on the basis of the intrinsic effect of oxygen in radiotherapy, while the widely accepted 

mechanism for the function of oxygen is the oxygen-fixation hypothesis (OFH) that was 

proposed in the early 1950s. At that time little was known about the basis of molecular biology. 

The OFH explains that the function of oxygen is to stabilize DNA damage induced by free 

radicals generated during ionizing radiation. However, the OFH is not a totally successful 

explanation of O2 as a radiosensitizer [12, 123]. As a matter of fact, the molecular mechanisms 

of action of most radiosensitizers including cisplatin in clinical trials or use are unknown or not 

well understood. This is probably a typical problem in modern drug discovery and development. 

The identification of successful anticancer agents remains a somewhat empirical process [200]. 

Without a specific mechanistic understanding, it is difficult to learn from the success and failure 
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of the therapies and existing anticancer drugs [200]. The compelling need is for a more 

fundamental, mechanistic understanding of human cancers and anticancer drugs to design more 

appropriate drugs. 

 

2.8. Major objectives of this thesis 

 

(1) In this chapter, DNA damage caused by ionizing radiation has been reviewed. The role of 

∙OH as the major culprit for ionizing radiation induced DNA damage is questionable. We 

speculate that the prehydrated electron (epre
－
) may play an important role in causing DNA 

damage. The first goal of this thesis is to investigate the possible effect of epre
－

 on 

ionizing-radiation induced DNA damage.  

(2) Halopyrimidines, especially bromodeoxyuridine (BrdU) and iododeoxyuridine (IdU), have 

been explored as important hypoxic radiosensitizers in Phase I to III clinical trials, but their 

precise molecular mechanism of action is unknown. In particular, an important characteristic 

of BrdU and IdU as photo- or radio-sensitizers is that their radio-/photo-sensitivity depend on 

the DNA sequence [125-126]. They will cause the most significant DNA damage when they 

are adjacent to the adenine base (i.e. 5’-dABrdU). Currently proposed mechanisms in the 

literature could not explain this phenomenon well. I have studied the reaction mechanism of 

BrdU/IdU with epre
－
 produced by 2 UV photon excitation of water in my M.Sc study [201], 

which will be outlined in Chapter 4. The second goal of this thesis is to continue my study in 

revealing the precise molecular mechanisms of BrdU and IdU as potential hypoxic 
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radiosensitizers and particularly of the DNA sequence selectivity in their radiosensitivity, 

using our state-of-the-art femtosecond time-resolved (pump-probe) laser spectroscopy. 

(3) Modern drug discovery and development prove to be an inefficient and expensive process. 

We present an innovative molecular-mechanism based drug discovery project to develop 

novel drugs for effective radiotherapy of cancer. Based on our unique understanding of the 

molecular mechanisms of the role of epre
―
 in ionizing-radiation induced DNA damage and of 

halopyrimidines as hypoxic radiosensitizers, the third goal of this thesis is to develop new 

radiosensitizers that could have better radiosensitivity enhancement than BrdU and IdU.  
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Chapter 3 

Experimental Methodology  

 

3.1. Femtochemistry, Femtobiology and Femtomedicine 

 

3.1.1. Elementary chemical reaction and transition state 

 

A chemical reaction is a process that results in the transformation of one set of chemical 

substances to another. Classically, a chemical reaction involves changes associated with the 

motion of electrons in forming and breaking of chemical bonds between atoms, and can often be 

described by a chemical equation. A chemical reaction is often composed of a sequence of 

multiple sub-steps, the so-called elementary reactions. An elementary reaction is the smallest 

step in a chemical reaction and has no intermediate products. In theories describing elementary 

reactions, it is usually assumed that there is a transition state through which an assembly of 

atoms in the reactants must pass on going from reactants to products [202].  As shown in Fig. 

3.1, the transition state of a chemical reaction is a particular configuration along the reaction 

coordinate, and is defined as the state corresponding to the highest energy along this reaction 

coordinate. A molecular reaction mechanism is the step by step sequence of elementary reactions 

[202-204].  
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 By definition, the species in the transition state is neither a reactant nor a product. It has 

more free energy than the reactants or products, and therefore is the least stable state. The 

transition states determine how the chemical reaction happens, that is, how the chemical bonds 

are broken or formed during the reaction. 

 

Figure 3.1. Reaction coordinate of an elementary chemical reaction 

 

The transition state theory (TST) was developed slowly through various approaches.  

The earliest one is the thermodynamic treatment. In 1884, Jacobus van’t Hoff (the first Nobel 

laureate in Chemistry, 1901) proposed the Van’t Hoff equation describing the temperature 

dependence of the equilibrium constant for a reversible reaction (A B) [205]: 

,
ln

2RT

U

dT

Kd 
  
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where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the 

universal gas constant, and T is the thermodynamic temperature. Then in 1889, based on 

experimental work, Svante Arrhenius (Nobel laureate in Chemistry 1903) proposed a similar 

expression for the reaction rate constant, integration of which leads to the well-known Arrhenius 

equation [206]:  

reaction rate constant ,RT

Ea

Aek



  

where A is the pre-exponential coefficient and Ea is the activation energy.  

By the early 20th century, many researchers had accepted the Arrhenius equation, which 

was widely used to determine energies for the reaction barriers. But the Arrhenius equation was 

derived from empirical observations and ignored any mechanistic considerations, such as 

whether one or more reactive intermediates are involved in the reaction converting a reactant into 

a product [205]. Therefore, further development was obviously required to understand the two 

parameters associated with this law, the pre-exponential factor (A) and the activation energy (Ea). 

This led to different theories of how chemical reactions occur, including kinetic theory treating 

reacting molecules as hard spheres colliding with one another and neglecting entropy changes 

and statistical-mechanical treatment [205].  The latter played a significant role in the 

development of TST, concluding that the activation energy of a reaction is equal to the average 

energy of all molecules undergoing reaction minus the average energy of all reactant molecules 

[205]. 

However, the concept of potential energy surface played a very important role in the 

development of TST. The foundation of this concept was laid by Marcelin, who proposed that 

the progress of a chemical reaction could be described as a point in a potential energy surface 
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with coordinates in atomic momenta and distances [207]. Then, the most important contributions 

were made by Henry Eyring and by Meredith Gwynne Evans and Michael Polanyi 

simultaneously in 1935 [208]. These led to the Eyring equation, successfully addressing the two 

parameters (A and Ea) [208].  The now called TST was therefore developed, which is also 

referred to as ‘activated-complex theory’, or ‘theory of absolute reaction rates’. The theory 

essentially assumed that the transition state was crossed very rapidly, on the time scale that applies 

to molecular vibrations (on the time scales of 10
-15

 seconds) [208].  No one ever dreamed of 

possible experimental observations of the transition state in such short time scales [209]. 

 

3.1.2. First direct observation of the transition state ―the Birth of Femtochemistry 

 

But that was what exactly made by Dr. Ahmed Zewail at Caltechin in his pioneering 

experiments using femtosecond (1fs=10
15

 s) laser spectroscopy [210-211]. At the end of the 

1980s, Dr. Zewail performed a series of experiments using flashes of laser light that last for 

femtoseconds, which led to the birth of the research field now called femtochemistry.  

Femtochemistry is the branch of physical chemistry that involves the study of chemical reactions 

on extremely short timescales, approximately 10
–15

 seconds. The steps in chemical reactions 

typically occur in the timescales of femtoseconds to picoseconds and sometimes form 

intermediate products. These intermediate products cannot always be deduced from observing 

the reactants and the products. With time-resolved (pump-probe) femtosecond spectroscopic 

techniques, it was the first time to observe in real time (by analogy to 'slow motion' in TV shows) 

what happens as the reaction barrier is crossed over by reactants during a chemical reaction and 
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therefore to obtain a mechanistic understanding of Arrhenius' formula for the temperature 

dependence of the reaction rate constant.  Overall, femtochemistry allows real-time studies of the 

molecular mechanisms of chemical reactions in an unprecedented level. Dr. Zewail was therefore 

awarded the Nobel Prize in Chemistry in 1999 ‘for his studies of the transition states of chemical 

reactions using femtosecond spectroscopy’ [211]. 

 

3.1.3. From femtochemistry and femtobiology to femtomedicine 

 

Parallel with the development of femtochemistry, femtobiology was initially developed to study 

ultrafast elementary processes often occurring on the picosecond (ps) timescale (from a few to 

tens or hundreds of ps) in biological systems [212]. Both fields of femtochemistry and 

femtobiology have been well developed in the past 25 years. Recently, Dr. Lu further proposed a 

new approach which aims to integrate ultrafast spectroscopy and imaging techniques with 

biomedical methods for the study of initial biological processes occurring on the timescale of 

femtoseconds that are closely linked to diseases and their treatments. This new strategy may lead 

to the opening of a new frontier called femtomedicine [213]. It is generally believed that many 

biological processes such as DNA damage and cell death are rather slow processes that could 

occur in the time scales of microseconds or longer.  As mentioned in the above, however, 

chemical reactions (e.g., for production of reactive radicals) that initiate these biological effects 

often occur in the time scales from femtoseconds to picoseconds [210]. Thus, biological events 

occurring at slow processes may be regulated by initial processes occurring in ultra-short time 

scales.  It is therefore of significance to use ultrafast physical techniques to study initial 
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biochemical reactions so that one may obtain a complete picture of relevant biological processes. 

For instance, femtomedicine may be able to provide a new-level understanding of slower 

biological effects such as DNA damage, cancer initiation and cancer cell death, and may 

therefore lead to major advances in the therapy of cancer [213].   

Through a series of successful studies [214-221], Dr. Lu’s team has demonstrated the 

high potential of femtomedicine to bring breakthroughs in understanding the fundamental 

processes regulating biological function and in improving the therapeutic efficacy of diseases 

such as cancer.  For example, the femtomedicine studies has led to the findings of the molecular 

mechanisms of action of cisplatin as the most widely-used anticancer drug for combination with 

radiotherapy [214] and for (mono) chemotherapy [215] and halopyrimidines as potential 

sensitizers for radiotherapy of cancer [216-218, see also Chapters 4 and 7], a new molecular 

mechanism of reductive DNA damage [219, 220, see also Chapter 6]
 
and the development of 

more effective therapies of various types of human cancers including ovarian, cervical and lung 

cancers [221]. This is the exciting opportunity afforded through real-time femtosecond 

spectroscopic observation of biochemical reactions at the molecular level.   
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3.2. Pump-probe femtosecond laser spectroscopy 

 

3.2.1. Basic principle 

 

Femtosecond (fs) time-resolved (pump-probe) laser absorption spectroscopy (fs-TRLS) is a very 

powerful technique to study molecular reactions. The basic principle of the femtosecond laser 

spectroscopy appears to be simple and straightforward. A schematic diagram to illustrate the 

principle of a time-resolved fs laser spectroscopy is shown in Fig. 3.2. First, a pump pulse is used 

to initiate the reaction; at a certain time delay after the pump pulse, a probe pulse is used to 

detect the reaction transition state, intermediate, or reaction generated radicals. It is like an 

ultrafast camera taking a picture of the system at a time. By successively delaying the probe 

pulse with respect to the pump pulse, a ‘film’ is obtained of the course of the reaction. The 

reacting molecules or new species are observed by measuring certain characteristic properties, 

e.g., an optical transmission. The transition species detected at chosen wavelengths have specific 

spectra that serve as fingerprints, and they can therefore be identified and characterized. Under 

this condition, the molecular reaction pathway leading to the formation of the radical R∙ is 

directly observed in real time. For example, if we probe at the absorption wavelength of the 

excited state ICG*, the formation and decay of ICG* is real-time observed, as shown in Fig. 3.3. 

Therefore, the reaction of the transition species ICG* with another molecule (e.g., oxygen) can 

be observed and the reaction efficiency can be determined.  
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Figure 3.2. Basic principle of pump-probe fs laser spectroscopy 
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Figure 3.3. High-sensitivity femtosecond time-resolved laser transient absorption kinetic trace of 

an excited state of a photosensitizer, where the pump and probe pulse energies are only 12 and 

0.2 nanojoule (nJ), respectively. 
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3.2.2. Experimental Setup 

 

Dr. Lu has successfully home built a high-sensitivity time-resolved fs laser spectroscopy 

laboratory in the Department of Physics of the University of Waterloo. As shown in Fig. 3.4, in 

this technique, an ultrafast laser is used to generate a femtosecond width 800 nm laser pulse. This 

laser pulse is split out into two pulses, one as a pump pulse and the other as a probe pulse. Both 

laser pulses are sent to nonlinear optical devices, such as optical parametric amplifiers (OPA) to 

obtain the desired wavelengths. In our lab, the time-resolved fs laser spectroscopy used a Ti: 

sapphire laser system producing 100~120 fs, 1 mJ laser pulses centered at λ=800 nm at a 

repetition rate of 1 kHz. The two optical parametric amplifiers (OPAs) offer a wide wavelength 

extension from ultraviolet (UV) (≥266 nm) to near infrared (NIR) for pump and probe pulses. 

The polarization of pump and probe pulses was set at the magic angle (54.7°) to avoid 

contribution from polarization anisotropy due to orientation motions of molecules.  

 

 

Figure 3.4. Schematic diagram of pump-probe absorption spectroscopy 

 



Chapter 3 

45 

 The time delay between the pump and the probe pulses is controlled by a precise 

microstepping motor stage, and time resolution in fs can therefore be achieved with the use of fs 

laser pulses. Changing the microstepping motor stage by 1 μm, the time delay between the probe 

and pump pulses will be changed by 6.67 fs. 

 

   
  

 
  
        

         
                          

 

The detectors recording the spectrum and the motion controller are integrated into a 

computer program that directly gives rise to a transient absorption or fluorescence spectrum (as a 

function of delay time or wavelength) to show the real-time evolution of a particular transition 

state.  Once intermediate species are identified, the reaction pathway can be determined.  

In femtosecond pump-probe laser spectroscopy experiments, to obtain an extremely high 

signal to noise ratio is not only required but a challenging task for biological studies. This is 

because that even a moderate-energy 100 fs laser pulse at 5 µJ/pulse, its peak power is very high 

(~5×10
7
 W).  This will inevitably cause instant damage to the sample and generate non-linear 

artificial effects, disabling the capability of the spectroscopy to observe the true reaction of the 

intact biological molecule.  Typically, pump pulse energies smaller than 0.1 µJ/pulse (≤100 

nJ/pulse) are required for reliable biological experiments. Under this condition, to observe a 

sufficient intensity of the detected transient signal will require extremely high detection 

efficiency with a very high signal to noise ratio. For instance, it should be able to detect a 

transient absorbance signal as low as 1×10
4

 (a.u.), in comparison with the typical absorbance 
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of 1.0-2.0 measured with a commercial spectrophotometer.  As shown in Fig. 3.3, fortunately, 

this capability has been typically achievable in Dr. Lu’s home-built fs-TRLS. 

To determine the precise formation and decay lifetimes of a transition-state species, the 

instrument response function must be taken into account to fit the obtained transient absorption 

kinetic trace. The time-dependent transient absorption signal is given by a number of exponential 

functions [222]. These exponential terms are convoluted with the instrument response function 

repressed by a Gaussian function )2/exp()2/1()( 22  ttG  , where  is the standard 

deviation for the Gaussian and is related to the FWHM (Full Width at Half Maximum) of the 

pump-probe cross-correlation function by 2ln22/FWHM [222]. The resulting 

time-dependent signal S(t) is given by 

 

')
'

exp()'()(
1

2 dt
tt

tGctS
i

tn

i 


 



   ………………………………...  3.1 [222] 

 

where negative (positive) ci is the amplitude of the component i with rising (decay) time i.  Eq. 

(3.1) can be solved analytically to give the following equation: 
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where erf is the error function. The best fits to the experimental data were obtained by using a 

least-square fitting program. 
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3.3. DNA gel electrophoresis 

 

DNA gel electrophoresis is an important analytical tool in biology. It can easily separate DNA 

fragments by their sizes and visualize them. It is a commonly used diagnostic tool in molecular 

biology labs. The typical setup of DNA gel electrophoresis is shown in Fig. 3.5 [223]. 

 

 

Figure 3.5. Typical setup of DNA gel electrophoresis [223]. 

  

At neutral PH, DNA is negatively charged due to its phosphate backbone. When an 

electrical potential is applied onto DNA molecules, they will move toward the positive electrodes, 

as shown in Fig. 3.6.  



Chapter 3 

48 

 

Figure 3.6. A diagram showing the movement of DNA under electrical potential  

In this thesis, the agarose gel is made by adding 1% agarose into 1×TAE 

(Tris-acetate-EDTA) buffer. The agarose forms a porous lattice in the buffer solution. DNA 

molecules must pass through the holes to move toward the positive electrode. In a same agarose 

gel, the moving rate of DNA is determined by its electric charge, conformation, and size. The 

migration rate of DNA fragments V could be quantified by the following equations [224]: 

V = Ez/f     ………………………………...  3.3 

f = 6πηr …..……………………………….....  3.4 

where V is the migration rate, E is the electric field strength, f is the friction force, η is the viscosity 

of the gel, and r is the radius of DNA molecule.  

For the same conformation, smaller DNA molecules move faster than larger ones. 

Therefore, a mixture of different sizes of DNA molecules of same conformation can be separated 

by their sizes.  
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If supercoiled circular DNA is SSB damaged, its conformation changes to nicked circular. 

The mass is still the same, but the volume becomes larger, thus the moving rate of SSB DNA is 

slower than that of its undamaged supercoiled form. If supercoiled circular DNA is DSB damaged, 

its conformation changes to linear. Typically, the rate of linear DNA migration is slower than that 

of its supercoiled form, but faster than its circular form. The moving rate of different 

conformations of the same DNA is in the order of: supersoiled (undamaged) > Linear (DSB) > 

circular (SSB). 

DNA fragments are visualized by staining with ethidium bromide when they migrate 

enough. Ethidium bromide intercalates between DNA bases and emits fluorescence under the 

exposure of UV light.  

In this PhD project, we use the plasmid DNA (Pgem 3Zf(-), 3197kbp) extracted from 

Escherichia coli JM109 to test the radiosensitizing effects of some compounds. The undamaged 

DNA is supercoiled circular DNA. Our treatments to the DNA cause single strand breaks (SSBs) 

and double strand breaks (DSBs), which are nicked circle and linearized form respectively. The 

images we will get will be similar to the one shown in Fig. 3.7. The undamaged supercoiled 

circular DNA moves the fastest and moves farthest from the loading well, followed by DSBs and 

SSBs.  
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Figure 3.7. DNA gel images of SSB, DSB and SC from the same DNA. 
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3.4. MTT assay 

 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is usually used to 

assess the viability and the proliferation of cells. This method can be used to test the cytotxicity 

of potential medicinal agents since these agents influence cell viability and proliferation.  

The full name of MTT is 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 

It is a yellow tetrazole. It is reduced to purple formazon in living cells by mitochondrial 

reductase, as shown in Fig. 3.8 [225]. The insoluble purple formazon is dissolved by a 

solubilization solution, such as DMSO or a solution of the detergent sodium dodecyl sulfate 

(SDS) in diluted hydrochloric acid, to form a colored solution. The absorbance of this colored 

solution is measured at a certain wavelength (usually in the range of 500 to 600 nm) by a 

spectrophotometer, as shown in Fig. 3.9 (picture taken in our lab). If DMSO is used as a solvent, 

absorbance wavelength 540 nm will be used, while 570 nm will be used if SDS is the solvent.  

For the same cell type, the absorbance shows a linear relationship on the survived cell 

numbers. As shown in Fig. 3.10, the absorbance is linear dependent on the number of HeLa cells 

grown in our lab. In the MTT experimental results, higher absorbance means that there are more 

survived cells. 
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Figure 3.8. MTT is reduced by mitochondrial reductase [225]. 

 

 

Figure 3.9. Use of microplate reader (@PHYS337, University of Waterloo) to measure the 

absorbance of cells treated with MTT.  

http://upload.wikimedia.org/wikipedia/commons/0/04/Mttscheme.png
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Figure 3.10. Absorbance measured in MTT assay shows a linear dependence on HeLa cell 

numbers. 
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Chapter 4 

Prehydrated Electrons and Molecular 

Reaction Mechanism of Halopyrimidines as 

Potential Radiosensitizers 

 

Replacement of thymidine in DNA by halopyrimidines such as bromodeoxyuridine (BrdU) and 

iododeoxyuridine (IdU) has been known to enhance DNA damage and cell death induced by 

ionizing radiolysis [168-169, 171, 174, 226-228] and UV photolysis [229-235] since the 1960s. 

Identified as potential sensitizers for radiotherapy of cancer, BrdU and IdU have been tested in 

several Phase I - Phase III clinical trials [181-183].  Generally, however, the clinical results 

have been unsatisfactory and therefore neither BrdU nor IdU have been approved for clinical use.  

This is probably related to the fact that the precise molecular mechanism of BrdU and IdU as 

potential hypoxic radiosensitizers is not well understood. In this Chapter, our state-of-the-art fs 

time-resolved laser spectroscopic studies will unravel the molecular mechanism of action of 

BrdU and IdU in liquid water under ionizing radiation.  A dissociative electron-transfer (DET) 

reaction mechanism of BrdU/IdU with the prehydrated electron (epre

) is discovered.  

Furthermore, we show that the epre

 states are electronically excited states and have lifetimes of 

~180 and 540 fs.  Our results demonstrate that epre

, a novel species of electrons produced in 

radiolysis of water, is a fascinating species due to its fundamental importance in chemistry, 

biology and environment.   
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4.1. Electron solvation (hydration) dynamics 

 

There has been long and continued interest in studying the solvation dynamics and reactivity of 

excess electrons in liquid water [107, 139-142, 236-245].  First discovered in the 1960s [236], 

the hydrated electron (ehyd

) is a well-known species produced by radiolysis of water under 

ionizing radiation and its reactivity with various molecules has been well determined [107]. 

Since the advent of femtosecond (fs) (1fs=10
15

 s) time-resolved laser spectroscopy (fs-TRLS), 

the precursor to ehyd

 (denoted epre


) has been directly observed [139-142, 240]. Below is a brief 

introduction to electron hydration dynamics. 

 

4.1.1. The solvated (hydrated) electron 

 

4.1.1.1. What is solvation? 

 

Interactions of molecular entities with surroundings in the liquid or solid state are generally 

regarded as solvation phenomena. ‘Solvation’ represents the phenomenon of interaction of a 

solute particle with the host solvent. Solvation results in stabilization of the solute species in the 

solution [237]. 

 Polar solvents like water are those with molecular structures that contain dipoles. They can 

solvate ions because they orient the appropriate partially –charged portion of the molecule 

towards the ion due to electrostatic attraction. This stabilizes the system and creates a solvation 
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shell. Water is the most common and well-studied polar solvent, but others exist, such as 

ammonia and ethanol [237]. 

 

4.1.1.2. Differences between free electron e
－

 and solvated electron esol
－
 

 

A free electron diffusing through matter undergoes elastic and inelastic scattering processes. 

Finally it will be trapped by one of the following two processes. It may be incorporated into the 

orbital of an atom or molecule which has a positive electron affinity, and forming a negative ion. 

Or, as it migrates through condensed matter, and be trapped in a potential energy ‘trap’ induced 

by its own polarization field. The ‘trapped’ electron cannot migrate. freely any more. But it can 

be released from the trap by absorbing energy [107].  

 The electron trapped in a solvent distinguishes from a free electron by being less mobile and 

more localized. Trapped electrons have negative free energy of formation and they are 

thermodynamically more stable [238]. The solvated electron in water is called a hydrated 

electron, denoted as ehyd
－

.  ehyd
－
 is trapped in a deep potential well at 3.2―3.5 eV in water 

[238]. 
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4.1.1.3. Properties of esolv
－
  

 

In bulk water, the absorption spectrum of ehyd
－
 is in the range from 220 to 1000 nm, peaking at 

720 nm [107]. It has a molar extinction coefficient of 1.85×10
4
 M

-1
cm

-1 
at 720 nm [107]. In 

bulk water, esolv
－
 is believed to be confined in a small cavity and to occupy an s-like ground 

state at 3.2－3.5 eV from the vacuum level [238]. The hydrated electron esolv
―
 is a stronger 

reducing agent than the H radical by a different reducing potential of 0.67 eV [107]. 

 ehyd
―

 was discovered in the 1960s [236]. Many of its properties and reactivities have been 

well studied. It is a well-bound electron donor. It reacts with both inorganic and organic 

compounds, such as N2O, MnO4
－
, NO3

－
, carbonyl group and iodoaliphatic compounds, with 

typical reaction rate constants in the range of 10
9
-10

10
 M

-1
s

-1
 [238]. However, esolv

－
 is believed 

to be ineffective at inducing biological damage due to its large binding energy of 3.23.5 eV [12, 

102]. 

 

4.1.2. The Pre-solvated electron epre
－
 

 

 With the advent of pump-probe femtosecond (fs) (1fs=10
15

 s) laser spectroscopy in late 1980s, 

electron solvation dynamics in bulk water has been studied on an unprecedented level. Following 

the first direct observation of the prehydrated electron (epre

) by Migus et al. [139], researchers 

have intensely studied this ultrashort-lived species [139, 239-245, 247-255].  It is now well 

known that the solvation of an excess electron (e.g., produced via two-UV-photon excitation) in 
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water proceeds essentially through two major stages: the electron is first localized in a 

weakly-bound preexisting trap and is called a precursor to the hydrated electron, denoted as epre

, 

with a lifetime <1 ps [139, 239-245]. However, these studies reported quite diverse lifetimes and 

physical properties of epre

 over the past two decades; the reported lifetimes ranged from 10fs, 50 

fs, 110 fs, ~200 fs, ~300 fs, 540 fs to ~1 ps [139, 239-245].  The quantum yield of epre

 is nearly 

double that of its end product (ehyd

) [31] or the ∙OH radical.  Thus, there has been significant 

interest in studying the reactivities of epre

 with various molecules [97-99, 245, 256-258]. In 

particular, there is evidence that epre

 can be effectively attached to amino acids and nucleotides 

[256-258]. More significantly, Lu and co-workers [97-99] have proposed  that epre

 causes the 

large enhancements in electron-induced bond breaking of halogenated molecules such as 

chlorofluorocarbons (major ozone-depleting substances) adsorbed on water ice via a dissociative 

electron transfer (DET) mechanism, which can be relevant to the formation of the ozone hole in 

earth’s atmosphere.  However, the role of epre

 in electron-driven processes in aqueous 

environments is generally poorly understood and is relevant to several critical issues facing 

environmental scientists and radiation biologists [246]. Direct observation of electron transfer 

(ET) reactions between epre

 and molecules is thus of great interest. Such reactions have been 

difficult to study because of the ultrashort lifetimes of epre

, on the fs time scale.   
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4.2. BrdU / IdU as potential radiosensitizers 

 

As mentioned in Chapter 2, halopyrimidines, especially BrdU and IdU, are an important family 

of potential hypoxic radiosensitizers [168-169, 171, 174, 226-228]. They are halogenated 

thymidine analogues. Their molecular structures are shown in Fig. 4.1. Cells undergoing DNA 

synthesis cannot distinguish efficiently between thymidine and BrdU / IdU. If cells are treated 

with BrdU or IdU for a sufficiently long period before irradiation, significant incorporation into 

DNA occurs. Under ionizing radiation, replacement of thymidine in DNA by BrdU/IdU causes 

large enhancement of DNA damage and cell death. The DNA damage caused by BrdU/IdU 

includes, single-strand breaks (SSBs), double strand breaks (DSBs), interstrand cross-links [232], 

and chromatid aberrations, especially sister chromatid exchange (SCE) [259-260]. 

 

 

Figure 4.1. Molecular structures of thymidine, XdU, and dU

 radical. 
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As potential radiosensitizers, BrdU/IdU have passed phase I to phase II clinical trials, but 

showed small efficiency in phase III trials [181-183]. This is probably related to the poor 

understanding of the molecular reaction mechanism of BrdU/IdU. 

Since the phenomenon was first noted by Zamenhof, De Giovanni and Greer [261], a 

large number of experiments have confirmed that cells containing DNA in which thymidine has 

been partially replaced by BrdU are more sensitive to killing by UV light and ionizing radiation 

than their un-substituted counterparts. However, the sensitization mechanism remained unknown. 

In 1967 [262], Adams suggested that the presence in substituted DNA of the highly 

electro-negative bromine moiety on BrdU would greatly increase the cross section for 

radiation-produced electron trapping over un-substituted DNA and result in hydrated electron 

(ehyd
－
 ) migration to the 5 position of the BrdU nucleotides. The BrdU

－ 
anions thus formed 

were hypothesized as undergoing dissociation to bromide ion and uracil-type radicals, which 

cause permanent damage to the DNA. The reaction is represented as:   

 

BrdU + ehyd
－

  BrdU

  Br


 + dU


 ……………………………….4.1 

 

The uracil-type radicals have been detected by different methods [263-264]. In the presence of a 

source of abstractable hydrogen, the uracil-5-yl (U

) radical is expected to react to produce uracil 

(HU). Indeed, the production of uracil had been detected by spectrophotometric techniques and 

conductometric pulse radiolysis [265-266]. 

For a very long time, ehyd
－
 was believed to play a critical role in the generation of the 

uracil radical in the molecular mechanism of action of halopyrimidines. At that time when this 
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mechanism was proposed, nothing was known about epre
－
. Previous nanosecond (ns)-resolved 

pulse radiolysis experiments on BrU showed a transient absorption peak at ~330 nm, which was 

attributed to the transition state BrU*

 [267]. But without a fs resolution it was impossible to 

observe the formation of the real transition state and therefore to determine which species, epre

 

or ehyd

, leads to the reaction and the formation of the reactive radical.  

 Real-time observation of the transition state in a chemical reaction is of great interest. It is 

important to know the properties of the transition state if one is to predict, understand and 

modify the course of a reaction [209-210]. The application of time-resolved femtosecond (fs) 

laser spectroscopy to the studies of transition states has led to the birth of new fields called 

femtochemistry and femtobiology [210]. In this chapter, we report the first real-time observation 

of the transition state of the ultrafast ET reaction of epre

 with halopyrimidines. 

 

4.3. Experiments 

 

The methodology for pump-probe femtosecond transient absorption measurements has been 

described in Chapter 3. We used a Ti:sapphire laser system producing 100-120 fs, 1mJ laser 

pulses centered at =800 nm at a repetition rate of 1 kHz, two optical parametric amplifiers 

producing pump and probe pulses with wavelengths from UV to infrared. A pump wavelength of 

318-322 nm was used to generate excess electrons in water and a probe wavelength at 330-340 

nm was used to probe the intermediate state XdU*
―
 of the reaction of epre


 with a XdU (X=F, Cl, 
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Br, and I). The polarization of pump and probe pulses was set at the magic angle (54.7) to avoid 

contribution from polarization anisotropy due to orientational motions of molecules. A small 

pump pulse energy (0.3 J) was used to make the solvated electron signal negligible when 

detected at (probe) wavelengths around 330 nm and to avoid any nonlinear effects.  The sample 

was held in a 5 mm cell with a stirring bar to avoid any photoproduct accumulation.  Ultrapure 

water with a resistivity of > 18 M/cm was used and halopyrimidines (FdU, BrdU, CldU, and 

IdU) from Sigma-Aldrich were used as supplied. 

4.4. Results and Discussion 

 

The production of the precursor electron and the solvated electron via two-UV-photon excitation 

in water is shown in Fig. 4.2. The absorption spectrum of BrdU is shown in Fig. 4.3. It has 

absorption peaks at 210 nm and 279 nm and a tail extending up to 315 nm.  To avoid the 

possible absorption of the pump pulse by BrdU, we used 318 nm as the pump wavelength to 

generate epre

. A probe pulse 330 nm was used to observe the transition state of the ultrafast 

electron reaction of BrdU with the epre
‒
. The fs-TRLS transient absorption kinetic traces for the 

formation and decay of the dissociative transient anion of BrdU
*－

 with different concentrations 

are shown in Fig. 4.4.  
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Figure 4.2. Schematic diagram for the production of the precursor electron and the solvated 

electron via two-UV-photon excitation in water. 
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Figure 4.3. Static absorption spectrum of BrdU 
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Our fs-resolved results reveal novel features of the formation and decay kinetics of 

BrdU*

. The result in Fig. 4.4a shows that there is a clear rise in the signal that peaks at ~0.55 ps.  

The transient absorption kinetic traces simply exhibit a linear dependence on BrdU concentration 

in the measured range of 10 to 31 mM.  This indicates that the transient species must result 

from a single BrdU molecule.  By subtracting the transient absorption kinetic trace for the pure 

water from that of BrdU, the ‘spike’ can be removed nearly completely (Fig. 4.4b).  This makes 

it possible to make a theoretical fit to the experimental kinetic trace, and hence the formation and 

decay times of the transient species can be quantitatively obtained.  From the fitting, we obtain 

a formation (rising) time of ~15040 fs and two decay times: one is of ~1.50.3 ps and the other 

on the scale of ns.  The ns decay component seems consistent with the result observed in 

previous ns radiolysis experiments [267].
 
 Moreover, the yield of the transient absorption at 330 

nm now shows a quadratic dependence on the pump pulse energy, as shown Fig. 4.5.  The 

possibility to attribute this transient absorption to the BrdU** state produced via 2-photon 

excitation of BrdU can be ruled out by the observation that no transient absorption signal was 

detected as the pump wavelength was 400 nm, while the 2-photon excitation cross section of 

BrdU has maxima at 534 nm and 558 nm.  Also, electron production from 2-photon excitation 

or ionization of BrdU molecules is negligible since the molecular density of BrdU (10-31 mM) is 

at least 3 orders of magnitude less than that of H2O (~50 M).  Even a small yield of BrdU
+
 ions 

is created by 2-photon ionization of BrdU, they cannot contribute to the transient signal observed 

in Fig. 4.4. because, like the BrdU* signal, BrdU
+ 

signal would not show a clear rising time. 

These results indicate that the detected transient species must originate from the transfer of 

electrons generated via 2-photon excitation of H2O molecules.  
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Figure 4.4. Femtosecond transient absorption kinetic traces of BrdU in water, pumped at 318 nm 

and probed at 330 nm: (a) original data, where the sharp peak at time zero is the coherence 

“spike” observed when λpump and λprobe are close to each other; (b) after the subtraction of the 

kinetic for the pure water. The solid lines in (b) are the best fit to the experimental data, giving a 

rise time 1=0.15 ps and two decay times 2=1.5 ps and 3=7 ns. 
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Figure 4.5. Femtosecond transient absorption kinetic trace of 10 mM BrdU in water, pumped at 

318 nm with various pulse energies and probed at 330 nm, after the subtraction of the kinetic 

trace for the pure water. The inset is the square root (SQR) of the absorbance peak intensity at 

0.55 ps versus pump pulse energy. 
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The above results show that the electron transfer reaction is complete within 0.2 ps after 

the electronic excitation by 318 nm, leading to the formation of a transition state BrdU*
－
 that 

has a lifetime of ~1.5 ps. The lifetime of a transition state usually lies in the range of 10
-15

 s (fs) 

up to a few 10
-12

 s (ps) [209-210]. Beyond this, the transition state of the molecule either has 

dissociated into fragments or has relaxed into a nondissociative, vibrationally-relaxed anionic 

state that has a lifetime in the ns range.  Indeed, the lifetimes of transient (AB* )̄ states of many 

halogenated molecules (ABs) are measured to be in the range of 0.1 to a few ps [268]. Thus, it is 

reasonable to assign the faster decay of 1.50.3 ps to the dissociation of BrdU*

 into Br


 and dU


.  

The reaction can be presented as:  

 

BrdU + epre
‒
  BrdU*

－
  Br

－
 + dU


 …………………………… 4.2 

 

Our observation of the rapid formation of BrdU*

 on a time scale of 0.2 ps is of 

particular significance, which clearly demonstrates that this transition species does not result 

from the fully solvated, well-bound electron (esolv

), which would be generated in later stages 

1.0 ps.  Only the precursor electron, epre

, can be responsible for the formation of the transient 

species in such a short period of time following the electronic excitation.  If esolv
‒
 led to the 

formation of the transition state BrdU*
－
, the formation of BrdU*

－
 would correspond to its 

lifetime, which is in the μs timescale and we would not be able to observe its decay in the ps time 

scale. In contrast, our results show that the formation of BrdU*
－
starts almost immediately after 

the electrons were generated by two UV (318nm) photon excitation, and is complete within 0.2 

ps. Thus it is concluded that it is epre
‒
, rather than ehyd

‒
 that leads to the formation of the 
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dissociative BrdU*
－
transition anion. This is the first real-time observation of the transition state 

of the ultrafast electron transfer reaction of epre
‒
 with a biologically important halogenated 

molecule, BrdU [216].  

After studying the molecular reaction mechanism of BrdU as a radiosensitizer, we 

extended the study to all four halopyrimidines (FdU, CldU, BrdU, and IdU). Femtosecond 

transient absorption kinetic traces of XdUs probed with probe=330 nm are shown in Fig. 4.6, 

together with the absorption for the pure water. The transient absorption signal intensities 

detected at the peaks in Fig. 4.6 as a function of probe wavelength with the same pump 

wavelength are shown in Fig. 4.7.  Moreover, the linear dependence of the transient absorption 

signal for XdU*

 on XdU concentration is confirmed for other XdUs, as shown in Fig. 4.8 for 

IdU. Thus, higher XdU (X=Br, Cl and F) concentrations were used to obtain the signal 

intensities comparable with that for IdU in Fig. 4. 6. 

The results in Fig. 4.7 show that the absorption spectra of XdU*

 transition states indeed 

exhibit a peak around 330 nm for all XdUs, consistent with the observation by nanosecond 

radiolysis experiments [267]. This indicates that the transient species observed in ns resolved 

experiments actually evolves from the short-lived species revealed in current fs experiments. The 

ps-lived dissociative vibrationally-excited XdU*

 states have electronic UV absorption nearly 

identical to their relaxed, nondissociative XdU

 states.  It turns out that the ns-resolved 

radiolysis experiments [267] correctly showed the relevance of the reactive radical formation to 

the reactions of XUs with electrons generated in radiolysis and the absorption of anionic states 

peaking around 330 nm. But they actually showed the transient absorption spectra of ns-lived, 

vibrationally-relaxed XU

, rather than the ultrashort (ps)-lived dissociative vibrationally-excited 
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XU*

 that is the true transition state of the ultrafast electron transfer reaction. Without a 

fs-resolved technique, it was impossible to observe the real ultrafast molecular reaction involving 

an electron species that has a lifetime less than 1 ps.  

In Fig. 4.6, we observe that the transient absorption trace for FdU exhibits no 

considerable peak in the first ps after the pump excitation, indicating that essentially no DET of 

any weakly bound epre

 to FdU could occur.  Instead only an extremely weak, flat (long-lived) 

signal was observed for FdU, which can be attributed to the nondissociative anion FdU
－
 [216, 

269]. In contrast, CldU shows transient absorption kinetics similar to that for BrdU: it exhibits a 

single signal peak at the delay time of  ~0.55 ps with one fast decay time of 1-2 ps superposed 

on a long-lived (ns), slow decay tail; the transient absorption intensity for CldU is significantly 

weaker than that for BrdU.  The fitted transient absorption kinetic traces, also give a rise time of 

1~150 fs, a fast decay time of 1.5 ps and a slow decay time in ns range for both BrdU and CldU, 

respectively.  Since the absorptions of XdU*

 states are identical to their relaxed XdU


 states, 

the decay kinetics of the transient absorption can be solely attributed to the dissociation of 

XdU*

. This is also confirmed by the above-described results with FdU (no DET leads to no 

decay in the signal).  Thus, the rise time, the ps decay and the ns decay times of the transient 

absorption are due to the formation and the dissociation of BrdU*
－
 (CldU*

－
) and the lifetime of 

the nondissociative BrdU
 ―

(CldU
－
), respectively [216]. These results indicate that the same 

excited-state precursor contributes to the formation of both BrdU*
－
and CldU*

－
. Most strikingly, 

the transient absorption signal for IdU is much stronger than for BrdU and CldU even when the 

concentration of IdU is about one order of magnitude lower. For IdU, the transient absorption 

spectrum exhibits a second bump just visible at ~1.0 ps, beside the first peak at ~0.55 ps.  This 
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indicates that there are two precursor (epre

) states contributing to the formation of IdU*

－
. 

Assuming two consecutive epre

 states in water [139, 142, 239, 241, 243], the best fit to the 

transient absorption kinetic trace of IdU, shown in Fig. 4.6, gives two rise times, a fast decay 

time in ps and a long-lived tail in ns. They are 1=170 40 fs, 2=54040 fs, 3=1.80 0.20 ps 

and 4 fixed at 10 ns, respectively. Similar to the case for BrdU [216] and CldU, the 1 rise time, 

the 3 and 4 decay times correspond to the lifetime of a precursor epre

, the dissociative lifetime 

of IdU*
－
 and the lifetime of the long-lived molecular anion IdU

－
, respectively. Interestingly, the 

fact that IdU*
― 

has two rise times provides clear evidence of two epre

 states contributing to its 

formation. Thus, IdU*
－
 results from not only the first precursor epre


 of a ~170 fs lifetime but a 

second precursor epre

 that has a lifetime of ~540 fs. Indeed, fs laser spectroscopic studies have 

previously reported several consecutive epre

 states, having lifetimes of ~200 fs and 540-1000 fs, 

following two-photon excitation of H2O by a UV (266-320 nm) pump pulse [139, 239-245, 

247-255].  
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Figure 4.6. Femtosecond time-resolved transient absorption kinetic traces in the delay time 

ranges of (a): 1 to 4 ps and (b): 2 to 12 ps, of the pure water (solid line), 3.6 mM IdU, 25 mM 

BrdU, 25 mM CldU and 25 mM FdU with the pump and probe wavelengths indicated.  The 

sharp peak at time zero is the coherence “spike”. The solid lines in red are the best fits to the 

experimental data. 
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Figure 4.7. Transient absorption spectra of IdU, BrdU, CldU and FdU detected at the peaks in 

Fig. 4.6 versus probe wavelength in the 325400 nm range with the pump wavelength fixed at 

318 nm. The absorption intensities are normalized to those at the probe wavelength of 330 nm. 

The solid line in red is an aid to eye. 
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Figure 4.8. (a) Femtosecond time-resolved transient absorption kinetic trace of IdU with various 

concentrations, probed at 330 nm; the dashed line is the kinetic trace for the pure water; (b) 

Transient absorption intensities at 1.0 ps and 10.0 ps versus IdU concentration.  
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The excess energy E for zero eV–electron-induced C-X (X=I, Br, Cl and F) bond breaks 

in XUs in the gas phase is given by EEA(X)-EBD  E
0
, where EA(X) is the electron affinity of 

the halogen atom X and EBD the C-X bond dissociation energy.  In the condensed phase, the 

excess energy of reaction is increased by the polarization energy (EP) of the medium: E= E
0
 + 

EP.  With the gaseous E
0
 values (0.9 to 1, 0.01, 0.24 and 0.42 eV for FU, ClU, BrU and IU, 

respectively) [270] and Ep1.0 eV for water [271], zero eV-electron-induced C-X bond breaks 

for CldU, BrdU and IdU in water are exothermic by 1.01, 1.24 and 1.42 eV, respectively, while 

the C-F bond break for FdU in water is nearly thermoneutral (E 0 eV). This means that the 

lowest-energy limits of the anion resonance states CldU*
－
, BrdU*

－
 and IdU*

－
 lie at 1.01, 

1.24 and 1.42 eV, respectively, while the lowest FdU*
－
 state lies around the vacuum level (0 

eV). DET resonances are therefore expected to occur for CldU and BrdU with the first 

weakly-bound epre

 state that has the energy slightly higher than the p-like excited state of the 

hydrated electron. In bulk water, the absorption of ehyd

 peaks at 1.7 eV (~720 nm) is believed to 

be a transition from the s-like ground state at ~3.2 eV to a p-like excited state at ~－1.5 eV 

below the vacuum level [238, 272]. Thus, a second DET channel can additionally occur for IdU 

with the p-like excited state which is very close to the lowest-energy IdU*
－
 state at ~1.42 eV 

when energy-level broadening is taken into account. In contrast, no precursor states are available 

for DET to FdU.  Thus, ultrafast electron transfer from excited-state epre

 to XdUs is expected to 

occur efficiently, leading to DET to IdU, BrdU and CldU with the expected efficiency: 

IdU>BrdU>CldU, but no DET to FdU. This is schematically shown in Fig. 4.9. This prediction 

is in good agreement with the observed results.   
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Figure 4.9. Schematic diagram for the production of the precursor electron (epre
－
) and the 

hydrated electron (ehyd
－

) through two-UV photon excitation in water and the dissociative 

electron transfer (DET) reaction of epre
－
 with halopyrimidines (XdUs), whose structures are also 

shown. 

 

4.5. Conclusion 

 

Our results described in this Chapter have multiple-fold significance.  First, our results prove 

that it is the epre

 states, rather than ehyd


, that are responsible for DET reactions to XdUs.  This 

reaction leads to the formation of the reactive radical, which is a key step in the mechanism of 

action of these pro-drugs in radiotherapy of cancer. Our results have challenged a long accepted 

mechanism that long-lived ehyd

 would be responsible for the radical formation from halogenated 

molecules [246, 267, 273], which would predict a formation time of XdU*
－
 in the time scale 

beyond ns corresponding to the ehyd

 lifetime. Second, we have clearly revealed that the DET 

reaction efficiency is IdU>BrdU>CldU, whereas no DET of epre

 to FdU occurs.  This is due to 
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the availability of two epre

 states for DET to IdU, of one epre


 state for DETs to BrdU and CldU, 

and no epre

 for DET to FdU.  Thus, IdU should be explored as the most effective 

radiosensitizer. As a more general conclusion, our results demonstrate that despite their 

ultrashort lifetimes in subpicoseconds, nonequilibrium epre

 can play a crucial role in many ET 

reactions occurring in aqueous environments, especially for chlorine-, bromine- and 

iodine-containing molecules.   

 

Special statement: As stated in Section 2.8 (the major objectives of this thesis) of Chapter 2, the 

results in this chapter have been presented in my MSc thesis [71]. The purpose to outline / 

represent these results here is for a better understanding of the whole PhD project that 

continued from my MSc work and for a better, smooth reading of this thesis.  
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Chapter 5  

Resolution of the Controversies about the 

Lifetimes and Physical Nature of 

Prehydrated Electron ( epre
―

) 

 

5.1. Introduction 

 

As mentioned in Chapter 4, despite intense studies over decades, the lifetimes and physical 

properties of the prehydrated electron (epre

) remains very controversial. From the experimental 

point of view, studies by femtosecond (fs) time-resolved laser spectroscopy (fs-TRLS) have 

reported quite diverse lifetimes and properties of the prehydrated electron (denoted as epre

) in 

bulk water.  The reported lifetimes have covered 50 fs, 110 fs, ~200 fs, ~300 fs, 540 fs and ~1 

ps [139-142, 239-245].  The first fs laser spectroscopic measurement by Migus et. al [139] gave 

a lifetime of 240 fs for the precursor of the fully solvated state in water. Subsequently, Eisenthal 

et al. [239-240] proposed that the epre

 has a 180 fs or 300 fs rise time and a 54050 fs decay 

time, inferred from their measurements of the appearance dynamics of ehyd

 probed at 620 nm, is 

the wet electron that is the lowest electronically excited p-like state, consistent with the 

nonadiabatic process theoretically predicted by Rossky and Schnitker [247].  Eisenthal et al. 

[239] also observed an ultrafast component (<50 fs), which was attributed to the formation and 

decay of the photoionization product H2O
+
. A non-adiabatic decay lifetime of ~300 fs for the p 
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state, followed by a ~1 ps relaxation in the s ground state, was subsequently proposed by Barbara 

et al. [241-242]. Later, both observed epre

 states with 200 fs and 540 fs lifetimes which were 

attributed to the s ground-state electron embedded in hot solvation shells [140-142], while a 

45-fs ultrafast rise in the kinetic trace of epre

, after ~800 nm excitation of the equilibrium ehyd


, 

was attributed to the decay lifetime of the p-state [243]. The latter was also reported to be ~50 fs 

in a similar 3-pulse experiment by Wiersma et al [244].  Lu, Baskin and Zewail [245] also 

reported a rise time of ~210 fs and a decay time of ~720 fs for epre

 with water held in a 5-mm 

sample cell, while at a photon flux density 2 to 3 times higher, a rise time of 9010 fs and a 

decay lifetime of 370 30 fs was observed for a ~300 m jet of water.  This difference was 

attributed to a pulse-transient-time mismatch tg induced by a group-velocity dispersion of 

pulses transmitted in the cell [245].  As described in Chapter 4, we have obtained more direct 

evidence of electronically excited epre

 states that have lifetimes of ~150 fs and ~540 fs, 

respectively, by real-time fs-TRLS measurements of the DET reactions of halopyrimidines XdUs 

(X=Cl, Br and I) with epre

 [216-217].  

Equally, from the theoretical point of view, the simulated results on electron hydration 

dynamics have also covered a very wide range from 10 to ~1000 fs.  The lifetime of the p 

excited state was first reported to be ~1.0 ps or ~730 fs by Rossky et al. [247-248], ~220 fs by 

Neria et al. [249] and ~300 fs by Staib and Borgis [250]. Jay-Gerin and co-workers [251-252] 

proposed that epre

 is an electron localized at a preexisting trap related to the Urbach tail 

extending below the water conduction band.  Using different mixed quantum/classical 

simulation algorithms, Larsen, Bedard-Hearn and Schwartz [253] predicted a range of 400-700 fs 

for the average lifetime of the excited hydrated electron.  In 2006, Zharikov and Fischer [254] 
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reported a lifetime of 50 fs for the p state, consistent with some of the experimentally reported 

values [243-244], while Borgis, Rossky and Turi [255] predicted an extremely short lifetime of 

~10 fs for a hypothetical equilibrium excited state based on the golden rule model.  The latter 

authors, however, pointed out that the calculated lifetime is very sensitive to the equilibrium 

energy gap used in the simulations.  Most recently, these authors have re-examined the issue 

and obtained an effective excited-state lifetime of ~330 fs, by using the same golden rule 

approach but setting up a realistic, gap dependent kinetic rate equation [274]. The latter value is 

generally consistent with some earlier experimental reports of 300 fs by Barbara et al. [243] or 

370 fs by Lu et al. [245] and is also close to the value of 540 fs observed by Eisenthal et al. 

[239-240] and us [216-217]. These new experimental and theoretical values are, however, clearly 

inconsistent with the excited-state lifetime of ~50 fs. 

The experimental and theoretical results reviewed above indicate that there exist large 

discrepancies about the lifetimes and physical nature of non-equilibrium epre

 states, despite the 

fact that epre

 has been intensely studied over the past two decades. Therefore, it is important to 

closely examine why there exist large discrepancies in experimental data for electron hydration 

dynamics in bulk water and to remove the discrepancies. This will be essential to obtaining true 

and reliable conclusions about the physical properties, reactivity and role of epre

 in biological, 

chemical and environmental systems. Our work described in this Chapter will resolve the 

long-standing discrepancies about the electron hydration dynamics (the lifetimes and physical 

nature of non-equilibrium epre

 states).     
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5.2. Experiments 

 

The standard methodology for pump-probe femtosecond transient absorption measurements has 

been described in chapter 3. We used a Ti:sapphire laser system producing 100―120 fs, 1 mJ 

laser pulses centered at =800 nm at a repetition rate of 0.5 kHz, two optical parametric 

amplifiers producing pump and probe pulses with wavelengths from visible to IR. The 

polarizations of pump and probe pulses were set at the magic angle (54.7) to avoid contribution 

from polarization anisotropy due to orientational motions of molecules.  For studies of electron 

hydration dynamics in pure water, pump wavelengths from 266 to 320 nm were used to generate 

excess electrons in water. Probe wavelengths at visible (600-720 nm) and at IR (1200-1300 nm) 

were used to probe the signals of ehyd

 and epre


, respectively.  For the experiments with 

iododeoxyuridine (IdU), a pump wavelength at 320 nm was used in order to avoid the direct 

absorption of the pump pulse by IdU. Probe wavelengths around 330 nm were selected to search 

the transition state IdU*
―

 of the reaction of epre
―
 with IdU. In latter experiments, a relatively 

low pump power was chosen so that the ehyd
―
 signal was barely detectable at probe wavelengths 

around 330 nm and any nonlinear effects were avoided.  The best fits to the experimental data 

were obtained by using a least-squares fitting program. The time-dependent transient absorption 

signal is described by a number of exponential functions.  These exponential terms are 

convoluted with the instrument response function represented by a Gaussian function.  In our 

fits, the time zero and the FWHM (=300 fs) of the pump-probe cross-correlation function were 

not adjustable fitting parameters, but were fixed at the values determined in-situ by the 

coherence spike appearing in the kinetic trace for pure water.  This procedure should give rise 
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to more reliable fitted results.  All measurements were conducted at room temperature.  The 

sample was held in a 5 mm cell with a stirring bar to avoid any photoproduct accumulation.  

Ultrapure water with a resistivity of > 18 M/cm was obtained from an ultrapure water system 

(Barnstead’s Nanopure). IdU from Sigma-Aldrich was used as supplied and its concentrations 

were calibrated by taking static absorption spectra from a UV/visible spectrophotometer 

(Beckman, Life Science).  

 

5.3. Results and Discussion 

 

As illustrated in Fig. 4.2, the absorption of two UV photons at wavelengths 266 nm by water 

leads to the generation of electrons lying in energy below the conduction band and the initiation 

of the electron hydration sequence [274-275]. We used a pump wavelength of 318 (320) nm with 

a pulse width of 100~120 fs to produce the excess electron in water. Under these conditions, no 

electrons are excited into the conduction band and thus any relatively slow electron solvation 

process is avoided. Fig. 5.1 shows typical fs transient absorption kinetic traces of the precursor 

electron and the fully hydrated electron in pure water pumped at 318 nm with a power of 0.55 

J/pulse, probed at 1200 nm and 600 nm respectively. The kinetic trace for epre

 (Fig. 5.1a) is 

very similar to those reported by Laubereau et al [142] with pump=273 nm and probe=990 or 

1600 nm and by Barbara et al. [243] with pump=266 nm and probe=1000 nm.  The fit to our 

data with an instrument response function of 300 fs gives a rise time of 182 fs and a decay time 

of 570 fs, which are close to the reported values of 200 fs [142, 243] and 540 fs [241] for epre

, 

respectively.  These values are longer than those (110 fs rise and 240 fs decay) obtained by 



Chapter 5 

82 

 

Migus et al. [139] and those (90 fs rise and 370 fs decay) obtained at a high photon flux density 

by Lu et al. [245], though the probe wavelength used in those experiments is exactly or nearly 

identical to that used in the present experiments.  The kinetic trace for ehyd

 (Fig 5.1b) is nearly 

identical to those obtained by Eisenthal et al. [239] with probe=625 nm and by Barbara et al. [243] 

with probe=720 nm. However, caution should be exercised in the fitting of the ehyd

 kinetic trace.  

The fit by the latter [243] gave a single rise time of 276 fs for the ehyd

 signal, while the former 

[239] assumed two rise components in their fit and obtained a 180 fs and a 540 fs rise time. Here, 

we find that equal quality fits to the present data can be obtained with either a single rise time or 

two rise times, giving a single rise time of ~300 fs or two rise times of 180-200 fs and 540 fs.  If 

one takes a single rise time, however, it would be difficult to understand why the time scale for 

the electron solvation to form the fully hydrated ehyd

, which is supposed to be the appearance 

kinetics of ehyd

, is much shorter than the sum of the formation and decay times of the precursor 

electron epre

.  In view of the fact that the kinetic trace of epre


  clearly shows a rise and a decay 

time of the epre

 signal (Fig. 5.1a), it has clearer physical meaning to fit the ehyd


 signal with two 

rise times. Our fitted results are nearly identical to those obtained by Eisenthal et al. [239] and 

Laubereau et al. [142], though those two groups gave different pictures about the physical nature 

of these two epre

 states, as mentioned above.  Before resolving this discrepancy, we first 

present our results to show how a hidden effect in pump-probe experiments could give rise to an 

extremely short lifetime for the p-like excited-state epre

. 
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Figure 5.1 Femtosecond transient absorption kinetic traces for (a) epre

 and (b) ehyd


, at the probe 

wavelengths indicated, for two-photon excitation of pure water at 318 nm; the pump-probe pulse 

spatial overlap point in water is at ~500 m from the front surface of a 5-mm cell. The 

theoretical fits are also shown with the fitted rise and decay times indicated 

 

Interesting results are shown in Fig. 5.2 and Fig. 5.3, which were obtained with nearly the 

same experimental conditions as in Fig. 5.1 but with a photon flux density of 3~4 times higher.  

An interesting effect now shows up: the kinetic trace shapes of epre

 and ehyd


 show strong 

dependence on the pump power.  For the kinetic trace of epre

 at both low and high pump power 

(Figs. 5.2a-5.2f), there is clearly no rise time with the instrument response function taken into 

account. At higher pump power, there are two decay times for epre

: the fits to the data give a 

dominant ultrashort decay of 20~30 fs and a slower decay of 520~550 fs, measured at various 

pump-probe spatial overlap positions (300 or 500 m in water measured from the front surface 

of the sample cell).  At low pump power, most strikingly, the slower decay completely 

disappears and only a symmetric narrow peak now exhibits at delay (time) zero (Fig. 5.2c and 
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5.2f). One could thus deduce a nearly zero fs rise and zero fs decay time if this sharp peak is 

taken as the kinetic trace for epre

.  It is most interesting to note that the intensity of the 

symmetric sharp peak shows excellent linear pump-power dependence (see inset in Fig. 5.2f).  

For the kinetic trace of ehyd

 shown in Fig. 5.3, similar results are observed.  At high pump 

power, there is an ultrafast “rise” or a sharp peak at delay zero and a slower rise that is similar to 

the one shown in Fig. 5.1b.  In contrast, at low pump power, the slower rise completely 

disappears, leaving only a narrow peak at delay zero (Fig. 5.3c) or just an extremely sharp onset 

(Fig. 5.3f and Fig. 5.3i), at various pump-probe spatial overlap positions (150, 500 and 800 m 

from the front cell surface).  It is also most interesting to observe that the addition into water of 

1 M KNO3, which (NO3
－

) is a well-known strong scavenger for precursor electrons [276], does 

not affect the narrow peak at delay zero for the trace of epre

 or ehyd


, as shown in Fig. 5.2i, Fig. 

5.3h and Fig.5.3i. 

One might argue that the above-observed pump-power dependence of the decay 

dynamics of epre

 or the rise dynamics of ehyd


 could be attributed to the effect of 

conduction-band electrons, which would be trapped and would relax at a site remote from the 

initial excitation site.  This possibility must be ruled out by the following two facts. (1) At high 

pump power, the fitted slower decay time (520~540 fs) in Fig. 5.2 is no larger than the 570 fs 

decay observed in Fig. 5.1a and the 540 fs rise in Fig. 5.1b obtained with a low photon flux 

density. (2) At low pump power, the slower decay component becomes zero and the intensity of 

the symmetric sharp peak at delay time zero shows excellent linear pump-power dependence 

(see inset in Fig. 5.2f).  This latter observation rules out not only the possibility of the sharp 

peak at delay zero being the electron signal (as no electrons could be generated by single-photon 
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excitation of water at 318 nm) but also the assignment of this peak to the absorption of H2O
+
 

produced by two-photon excitation of H2O (proposed in ref. 239, as the H2O
+
 intensity would 

have a quadratic pump-power dependence). In fact, as the pump power was so low that no 

efficient two-photon excitation of water occurs, no significant number of epre

 (ehyd


) electrons 

were produced and thus no H2O
+
 ions are detectable. 
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Figure 5.2. 
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Figure 5.2. Femtosecond transient absorption kinetic traces of the precursor electron epre

, 

generated by 318 nm two-photon excitation of pure water with a pump photon flux density 3~4 

times higher than that used to obtain Fig. 5.1, probed at 1224 nm.  Left column (a－c):  the 

data were collected with various pump power (360－100 nJ/pulse), at the pump-probe pulse 

spatial overlap position in water of ~500 m from the front surface of a 5-mm cell; at this 

position, the electron signal was optimized.  Center column (d－f): the data were collected with 

various pump power (360－60 nJ/pulse), at the pump-probe overlap position moved from ~500 

m to 300 m without re-optimization of the electron signal; an excellent linear dependence of 

the sharp peak intensity at delay zero on pump power under 140 nJ/pulse is shown in the inset of 

f.  Right column (g－i): g and h show the corrected kinetic traces from the traces d and e (center 

column), after the artificial spike was linearly extrapolated from the lowest pump power to the 

corresponding pump power and was subtracted from the traces d and e, respectively.  In g and h, 

the fitted curves and results are also given.  i shows the measured kinetic traces for the presence 

of an effective precursor-electron scavenger: 1M KNO3, in water with pump power at 360 

nJ/pulse, and the extrapolated spike by multiplication of the pure spike obtained at 140 nJ/pulse 

(see f) with a factor 360/140. The results in i indicate that the strong electron scavenger does not 

affect the sharp peak at delay time zero, which is identified as the artificial coherence spike. 
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Figure 5.3. Femtosecond transient absorption kinetic traces of the hydrated electron ehyd

, 

measured with experimental conditions similar to those for Fig. 5.2, but probed at 612 nm.  Left 

column (a-c): the data were collected at the pump-probe overlap position moved from ~500 m 

to 150 m from the cell front surface without re-optimization of the electron signal, with various 

pump power (240-40 nJ/pulse); a linear dependence of the sharp peak intensity at delay zero on 

pump power under 80 nJ/pulse can be seen in c.  In a and b, the corrected kinetic traces, after 

the artificial spike was linearly extrapolated from the lowest pump power (40 nJ/pulse) to the 

corresponding pump power and was subtracted from the original traces, are also shown, together 

with the best fits (solid lines) with the fitted rise times indicated.  Center column (d-f):  the 

data were collected with various pump power (160-40 nJ/pulse), at the pump-probe pulse spatial 

overlap position in water of ~500 m from the cell front surface where the electron signal was 

optimized.  Right column (g-i): the data were collected with various pump power (120-60 

nJ/pulse), at the pump-probe overlap position moved from ~500 m to 800 m without 

re-optimization of the electron signal; the measured kinetic traces for the presence of 1 M KNO3 

in water with pump power at 80 and 60 nJ/pulse are also shown in h and i, respectively. 
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As a matter of fact, the narrow peak at delay time zero is not the electron signal but simply 

the coherence spike, which has previously been studied by Eisenthal et al. [277], Fleming et al. 

[278] and Kovalenko
 
et al. [279]. This non-resonant coherence spike manifests itself especially 

in a high photon flux density and is especially well-known in fs pump-probe experiments using a 

supercontinuum probe [141, 279]. The spike has been explained as mainly due to conventional 

stimulated Raman scattering (SRS) or impulsive stimulated Raman scattering (ISRS) [141, 279].  

SRS gives a sharp peak in the transient signal of the solvent if the difference between pump and 

probe frequencies matches a vibrational mode in the electronic ground state.  In ISRS, in 

contrast, an ultrafast pump pulse excites low-frequency modes in the electronic ground state of 

the solvent, which lead to scattering of the probe light and thus give rise to a signal at any probe 

wavelength.  It was first predicted by Nelson et al. [280] that ISRS should occur, without laser 

intensity threshold, when a sufficiently short laser pulse passes through many types of matter 

such as molecules and various solids.  Scherer et al. [281] have shown that ISRS is actually the 

mechanism which induces coherent vibrational motion of molecules observed in either the 

transient grating geometry (TG-ISRS) or geometries employing only a single excitation beam, 

which can provide valuable information about the nature of molecular dynamics in neat liquids.  

It should be noted that the spike effect is dependent on relative polarizations of pump and probe 

pulses, but it can be significant even at perpendicular polarizations in pump-probe transient 

absorption kinetic traces, especially for ultrashort pulses [277].  

In our experiments, three major observations give clear evidence of the narrow peak at 

delay zero being the coherence spike. First, a symmetric sharp peak, whose intensity has an 

excellent linear dependence on pump power, is observed at low pump power (Fig. 5.2f and Fig. 

5.3c), at which the produced electron signal is negligible.  Because of the quadratic 
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pump-power dependence of the signal of electrons generated by two-photon UV excitation, the 

coherence spike becomes less visible at high pump power, where the electron signal becomes 

dominant.  The poorer linearity of the pump-power dependence of the spike intensity as the 

pump-probe spatial overlap point goes deeper into the water bulk (e.g., at 500-800 m) can be 

well explained by the non-linear energy loss of the pump pulse during its penetration in the bulk.  

Second, the assignment of the narrow peak at delay time zero to the coherence spike is further 

confirmed by the experiments with addition of a strong precursor electron scavenger, KNO3.  It 

is clearly shown in Fig. 5.2i, Fig. 5.3h and Fig. 5.3i that at the concentration ~1 M of KNO3, the 

electron signal is almost completely depleted, while the narrow peak intensity is almost 

unchanged.  Third, as shown in Fig. 5.2i, the amplitude of the spike revealed by addition of 1 M 

KNO3 electron scavenger into water at the pump power of 360 nJ/pulse is nearly the same as that 

linearly extrapolated from the naked spike measured at 140 nJ, i.e., as the spike at 140 nJ times 

360/140.  These facts give clear evidence that the narrow peak at delay zero is not the electron 

signal but solely the coherence spike.  Although its presence complicates the extraction of 

electron hydration time scales from the kinetic traces, the coherence spike can be used as a 

means for direct, in-situ determinations of not only the delay time zero but the instrument 

temporal response, which are otherwise difficult to obtain in pump-probe experiments [245].  

This can be achieved by measuring the position and the FWHM of the peak [279], since the 

coherence spike corresponds to the optimum temporal overlap between pump and probe pulses.  

A constant FWHM (~300 fs) of the spike is observed for a large penetration range (150-800 m) 

of pump and probe pulses in water prior to their spatial overlap.  This indicates that the 

group-velocity mismatch, as discussed by Lu et al. [245], has a minimal effect in the present 

experiments though a 5mm sample cell was used. This is because the pump-probe overlap point 
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never goes too deep (<1000 m) in the bulk in order for a sufficient electron signal to be 

detected (limited by the energy loss of the pump-pulse penetration in water). Thus, the 

experimental results with water held in a 5mm sample cell should be the same as those obtained 

with a water jet of a few hundred m diameter.  Extrapolating the linear pump-power 

dependence of the spike intensity from the lowest pump power to high pump power, we can 

nearly completely remove the spike from the kinetic traces of epre

 and ehyd


 measured at high 

pump power, as shown in the corrected kinetic traces of epre

 and ehyd


 in Fig. 5.2g, Fig. 5.2h, Fig. 

5.3a and Fig. 5.3b.  The best fits to the corrected traces give a rise time of 150-182 fs and a 

decay time of 520-550 fs for epre

 (Fig. 5.2g and Fig. 5.2h).  Similarly, we obtained two rise 

times of 180 fs and 530-540 fs for the corrected kinetic trace of ehyd

 (Fig. 5.3a and Fig. 5.3b).  

After the removal of the spike, the kinetic traces of epre

 and ehyd


 become independent of the 

pump power.  Generally, these corrected kinetic traces are very close to those obtained with a 

low photon flux density shown in Fig. 5.1a and Fig. 5.1b.  These results provide clear evidence 

that the spike is indeed responsible for the ultrashort rise or decay in the kinetic traces of epre

 

and ehyd

 observed here and it can be removed with careful measurements of the pure spike at 

low pump power.  After the removal of the spike, the intrinsic lifetimes of two epre

 states are 

measured to be 18030 fs and 54530 fs in bulk water with a greater accuracy.  These results 

agree well with some of the time scales reported in previous experiments where the sharp peak 

(spike) at delay zero was removed [141, 239], and are consistent with MD simulation results 

[216, 247-248]. 

After determining the intrinsic lifetimes of the two epre

 states, we now show an approach 

to reveal their physical nature.  In chapter 4, we have shown that the nature, lifetimes and 
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reactivity of non-equilibrium epre

 states can be directly determined by real-time measurements 

of the transition states of their resonant electron transfer reactions with some 

quantum-state-specific probe molecules, namely, halopyrimidines (XdUs, X=Cl, Br and I). XdUs 

are an ideal probe for epre

 because their resonance energies for dissociative electron attachment 

in water are exactly around the binding energies of electronically excited epre

 states.  Thus, any 

electronically excited epre

 states, if they exist, will be directly observed by real-time 

measurement of the transition state XdU*

 of the dissociative-electron-transfer (DET) resonant 

reaction: epre

 + XdU  XdU*


  X


 + dU


.  Just like the appearance kinetics of the hydrated 

electron, the rise kinetics of the XdU*

 signal corresponds to the decay kinetics of epre


.  The 

lowest-energy limits of DET of XdUs in water, leading to the formation of CldU*
－
, BrdU*

－
 and 

IdU*
－
, were estimated to lie at 1.01, 1.24 and 1.42 eV, respectively, below the vacuum level 

[217]. The p-like excite state of ehyd

 lies at ~1.5 eV below the vacuum level, inferred from the 

absorption peak of ehyd

 at 1.7 eV (~720 nm), which is believed as a transition from the s ground 

state at ~3.2 eV to the p excited state in bulk water [238, 272]. DET is therefore expected to 

occur for all XdUs, CldU, BrdU and IdU, with the first weakly-bound epre

 state that has the 

energy slightly higher than the lowest p-like excited state of ehyd

.  More specifically, a second 

DET channel can only occur for IdU with the p-like excited state when the energy-level 

broadening in the liquid is taken into account. Consequently, DET from electronically excited 

epre

 states to XdUs can occur with the expected efficiency: IdU>BrdU>CldU.  This prediction 

is in good agreement with direct measurements of the reaction transition states XdU*
－
 which 

have an absorption peak at ~330 nm. Indeed, we have observed that the kinetic traces of CldU*
－
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and BrdU*
－
 show a single peak at ~0.55 ps and the fits to the data give a rise time of ~150 fs 

[See Chapter 4]. 

Transient absorption kinetic traces of IdU*
－

 formed by DET of epre

 generated by 

two-320 nm photon excitation of water, measured with probe wavelengths around 330 nm (in the 

range of 325-335), are shown in Fig. 5.4. Indeed, two visible bumps are observed in the 

corrected kinetic traces of IdU*
－
 after the spike was removed: the first peak appears at ~0.55 ps 

and the second is visible at ~1.0 ps.  This observation immediately provides qualitative 

evidence of the existence of two epre

 states leading to the formation of IdU*

－
.  Furthermore, 

the quantitative fits to the data give two rise times and two decay times for each kinetic trace of 

IdU*
―
 probed at wavelengths around 330 nm.  Note that this fitting using a least-squares 

program is to achieve a minimum deviation between the experimental and fitted data for the 

whole time delay range from 2 ps to 12 ps, rather than to achieve the best fit just in the time 

delay range around the small bumps at 0.5-1.0 ps. Thus, the experimental data, though they have 

a reasonably good signal to noisy ratio, do not allow the fits to reproduce the tiny bumps.  As 

shown in Fig. 5.4b, nevertheless, the best fits reproduce the whole kinetic trace curves fairly well.  

The two fitted rise times and two fitted decay times are respectively 1=161 30 fs, 2=54530 fs, 

3=1.81 0.20 ps and 4 fixed at 10 ns.  Similar to the kinetic trace for BrdU*
－
 [216-217], the 

3 and 4 decay times correspond to the dissociative lifetime of IdU*
－
 and the lifetime of the 

relaxed anion IdU
－

, respectively.  Here, the most interesting result is the two rise times 

(formation) of the transition state IdU*
－
, resulting from two corresponding epre


 states.  As 

mentioned above, the lowest-energy limit for DET with IdU lies at 1.42 eV, while the s ground 
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state of the hydrated electron is located at ~3.2 eV.  Thus, no ‘hot’ or ‘cold’ s-like  ground 

epre

 states could lead to DET to IdU.  As a result, it is now clearly revealed that both the first 

epre

 with a lifetime of ~180 fs and the second epre


 with a lifetime of ~545 fs must be 

electronically excited states of ehyd

.  As shown in Fig. 5.4b, the extremely strong spike at delay 

zero slightly affects the rise of the electron signal even after the correction and unavoidably leads 

to a slight shortening in the fitted rise of the 180 fs component.  But this effect should be 

negligible on the fitting leading to the 545 fs component, as the second bump at ~1.0 ps is far 

from the sharp spike.  The results thus give a direct answer to a long-standing question of 

whether the “wet electron” of a ~540 fs lifetime is a p-like excited state or an s-like ground state 

of ehyd

.  In other words, the present results provide the first direct evidence that the 545 fs 

process is the decay lifetime of the p-state that has a binding energy of ~1.5 eV.  This 

conclusion disagrees with some reports in experiments [243-244] and simulations [254], but 

agrees with the mixed quantum-classical non-adiabatic dynamics simulations of the excited-state 

hydrated electron [244-245, 278] and with the excited-state model of the wet electron proposed 

in earlier experimental studies [141, 239]. 
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Figure 5.4. a: Femtosecond transient absorption kinetic traces of 3.6 mM IdU, pumped at 320 nm 

and probed at various wavelengths (326-340 nm), where the kinetic traces for the pure water, 

exhibiting a strong coherence spike at time zero, are also shown (fine dash lines).  b: Corrected 

kinetic traces of IdU after the subtraction of the kinetic trace for the pure water from the traces 

shown in left column to remove the artificial coherence spike; the solid lines are the best fits to 

the corrected kinetic data (open circles) with a model of four-exponential functions which are 

convoluted with the instrument response function represented by a Gaussian function.  The two 

rise times and one decay time for the corrected IdU*
－
 signal given by the best fits are also 

indicated. 
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5.4. Conclusion 

 

We have shown that the existence of the coherence spike can significantly affect the measured 

dynamics of a transient species in ultrafast pump-probe spectroscopic measurements.  This 

effect is most likely responsible for the long-standing significant discrepancies and controversies 

about electron hydration dynamics and about the nature of non-equilibrium epre

.  We have also 

shown that to obtain reliable and precise information on electron hydration dynamics from 

pump-probe measurements, special cautions must be taken to account for the coherence spike at 

delay zero.  This hidden spike effect can result in a shortening of measured epre

 lifetimes from 

~1 ps to almost zero fs, especially for a highly focused pump pulse. The spike is not the electron 

signal in nature and could thus be removed from the collected kinetic-trace data of epre

 and ehyd


.  

After this treatment, we have clearly shown that there are two intrinsic epre

 states that have 

lifetimes of 18030 fs and 54530 fs, respectively.  Moreover, our direct, real-time 

measurements of the reaction transition state of epre

 with a probe molecule (IdU) have revealed 

that both the 180 fs and the 545 fs epre

 state are electronically excited states of ehyd


.  More 

specifically, the latter (545 fs) is proved to be the decay lifetime of the p-state of ehyd

, the 

long-sought wet electron. These results not only resolve the outstanding discrepancies existing in 

the literature but provide new insights into electron hydration dynamics in bulk water.  Such 

information is important for quantitative understanding and modeling of the role of 

non-equilibrium epre

 in electron-driven reactions in diverse systems from radiation chemistry 

and radical chemistry [246, 257-258, 276, 282-283], radiation biology [47], atmospheric ozone 

depletion [284], to the activation of radiosensitizers in cancer therapy [216-217].  It has clearly 
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been demonstrated that the reaction with non-equilibrium epre

, rather than with the equilibrium 

ehyd

, is the major channel leading to breakups of environmentally and biologically important 

halogen-containing molecules under ionizing radiation [216-217, 285].  
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Chapter 6 

Bond Breaks of Nucleotides by Dissociative 

Electron Transfer of Non-Equilibrium 

Prehydrated Electrons: A New Molecular 

Mechanism for Reductive DNA Damage 

 

6.1. Introduction 

 

A much deeper understanding of fundamental mechanisms of cancer biology and therapies can 

lead to improved clinical outcomes. Understanding the fundamental mechanisms and molecular 

pathways that induce DNA damage and cell death should lead to a clearer picture of the cause of 

cancers and benefit the development of improved strategies for cancer treatment. In fact, DNA 

damage is a central mechanism in the pathogenesis and treatment of human diseases notably 

cancer. In chapter 2, DNA damage induced by ionizing radiation has been reviewed. In the 

conventional context of radiobiology, it has long been believed that ∙OH radical is the major 

culprit in causing DNA damage under ionizing radiation. However, there is still 30-65% ‘non 

scavengable’ double strand breaks (DSBs) [12, 124-131, 286], even when very high 

concentrations of ∙OH scavengers up to 2M were used. The ‘non scavengable’ DNA damage has 

conventionally been attributed to direct action of radiation in the DNA [12, 124-131, 286]. 

However, this attribution is inconsistent with the observed enhancement by orders of magnitude 

of ionizing-radiation-induced damage of DNA in the presence of water solution, compared with 
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dry DNA [132]. From a general description in biology and medicine, little is known about 

reductive DNA damage both in causing genetic mutations during oncogenesis and killing cancer 

cells during radiotherapy.   

 With the advent of femtosecond (fs) laser spectroscopy, it has been found that there exist 

precursors to the fully hydrated electron, denoted as epre
－
. epre

－
 is a novel electron species 

produced in radiolysis of water, which was first experimentally observed in 1987 [139]. 

Although experimental and theoretical studies once gave very diverse lifetimes and physical 

natures of epre
―
, we have shown that they are electronically excited states and have lifetimes of 

~180 and 540 fs after our finding and removal of the artifitial effect caused by the coherent spike, 

as discussed in Chapter 5. epre
－
 is  a weakly bound electron at (1.5 to 1.0 eV) [217, 287] and 

has the highest quantum yield, which is nearly double that of its ending product (ehyd
－
) [142] or the 

∙OH radical.  There is evidence that epre

 can be attached to amino acids and nucleotides: Hunt 

and co-workers [256] obtained indirect evidence by monitoring the initial yield of ehyd
－
 at 30 ps 

in picosecond radiolysis, while Gauduel et al. [257-258] observed ultrafast one-electron reduction 

of oxidized pyridine nucleotides and cystamine by epre

. In general, however, the potential role of 

epre
－
 in inducing DNA damage is unknown, as evidenced by the fact that the potential DNA 

damage caused by epre
－
 is not even mentioned in current radiobiology [12, 100, 102, 123]. 

 As shown and discussed in Chapter 4, we have applied our powerful fs time-resolved laser 

spectroscopy (fs-TRLS) to directly observe the dissociative electron transfer (DET) reaction of 

epre
－
 with halopyrimidines (XdUs) as potential radiosensitizers: epre

－
+ XdU  XdU*

―
  dU


 + 

X
－
. The resultant dU


 radical can then cause DNA damage. Similarly, to reveal the role of epre

－
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in inducing DNA damage, the reactions of epre
－
 with nucleotides (dXMP, X=A, G, C, and T), 

which are the basic units of DNA, can be directly observed in real time by using our fs-TRLS. 

The molecular structures of nucleotides are as shown in Fig. 6.1. 

 

 

Figure 6.1. Molecular structure of nucleotides dXMP (X=A, G, C, and T) in free acid format. 

 

6.2. Experiments 

 

In this experiment, ultra pure water with a resistivity of > 18 MΏ/cm was used and guanine base, 

deoxyguanine, and nucleotides dXMP, X=A, G, C, and T obtained from Sigma- Aldrich were 

used as supplied. All the nucleotides were provided as sodium salts.  

In transient absorbance experiments, certain sample concentrations were required. Since 

G and dG do not have good solubility in water and thier solubility can be enhanced by increased 
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solvent PH. a NaOH solution was used to obtain G and dG sample concentrations required in our 

experiments.  

The standard methodology for pump-probe fs-TRLS transient absorption measurements 

has been described in Chapter 3.  Similar to the observation of XdU*
－
 (X=Cl, Br and I) described 

in Chapter 4, a pump wavelength of 318 nm was used to generate excess electrons in water, and a 

probe wavelength at 330 nm was used to probe the intermediate state (dXMP*
－
) of reaction of epre


 

with a dXMP (X=A, G, C and T).  As shown in Fig. 6.2, this is a key step in inducing DNA strand 

breaks.  The fs-TRLS allows us to observe the DET reaction in real time.  The formation and 

decay of the dXMP*
－
 can be expressed in the following reaction: 

e


pre (<0 eV) + dXMP  dXMP*
－
 dissociation ..................6.1 

or   dXMP
－
 

where X denotes the DNA bases (A, T, G and C), and dXMP*
－

 is a vibrationally-excited 

intermediate anion state. It is well-known that the electronic absorption spectrum of dXMP arises 

solely from the excitation of the π-electron system of the DNA base X, i.e., there is no UV 

absorption in the phosphate group and the sugar moiety. According to the results for 

halo-deoxyuridine anions (CldU*
－

, BrdU*
－

, and IdU*
－

) [217], the electronic absorption of 

dXMP*
－
 or its vibrationally-relaxed anion dXMP

－
 is expected to have an UV absorption band in 

300350 nm, slightly red-shifting from the neutral counterpart.  It is also known that the 

autodetachment of a molecular anion resonance occurs on timescales of 10
16

 to 10
14

 s and the 

vibrational relaxation times of molecules range from 0.1 to 1.0 picosecond (ps) [288], being 

0.5-1.0 ps for nucleotides [289-290]. Here the detected real-time signal is the intensity of the 

electronic absorption, which is identical for both dissociative dXMP*
－

 and non-dissociative 
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dXMP
－
, independent of the vibrational states [216-217, 285]. Thus, the signal decay 1.0 ps 

simply reflects the dissociation of transient anion (dXMP*
－
), that is, a flat signal indicates no 

dissociation but formation of a stable anion (dXMP
－

) only [216-217, 285]. 

 

 

Figure 6.2. Two UV photon excitation of water leads to the formation of an electron localized at 

the p-like excited precursor states (epre
－
), which then solvates to the equilibrated s-like hydrated 

state (ehyd
－
) . When DNA is around the epre

－
, dissociative electron transfer (DET) can occur to 

form a transient molecular anion resonance that then leads to molecular bond breaks in DNA 

bases, followed by strand breaks of the DNA.  
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6.3. Results 

 

The absorption spectrum of dXMPs is as shown in Fig. 6.3. All the four nucleotides have almost 

zero absorbance at wavelength ≧ 315 nm. To avoid possible absorption by any dXMP, a pump 

wavelength 318nm (~3.95 eV) was used to two-UV photon excite water molecules and generate 

epre

. If we used pump wavelngth ≦ 315 nm, it would be difficult to tell whether the transient 

signal is from the excited dXMP* or from the reactions of dXMP with epre
―
. The probe pulse 

with 330nm wavelength was used to observe the dXMP*
―
 / dXMP

―
 resulting from the reaction. 
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Figure 6.3. Static absorption spectrum of dXMP (X=A, G, C, and T) in pure water at room 

temperature. 
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The original transient absorbance kinetic traces of the nucleotide samples and the solvent 

H2O are shown in Fig. 6.4. As mentioned in chapter 4, the absorption band of ehyd
－
 peaks at 720 

nm while it has a tail extending to  the UV range   even below 300 nm. The ehyd
－
 signal was 

observable at probe wavelength 330 nm, as shown in Fig. 6.4. As a reult, the transient 

absorbance signal detected at 330 nm of the four nucleotide aqueous samples is composed  of 

the dXMP*
―
 / dXMP

―
 signal and the ehyd

―
 signal generated by radiolysis of water. To observe 

the real kinetic traces of dXMP*
―
 / dXMP

―
, the transient absorbance signal of the ehyd


 signal 

has to be removed.  This can easily be done by subtracting the signal of the pure water from 

those of nucleotide samples. The thus obtained real transient absorption kinetic traces of 

dXMP*
―
/dXMP

―
 are shown in Fig. 6.5. 
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Figure 6.4. Femtosecond transient absorption kinetic traces of dXMP*
―
 resulting from the DET 

reactions of epre
―
 with 50mM dAMP, dGMP, dCMP and dTMP in water, pumped at 318 nm and 

probed at 330 nm. Here, the sharp peak at time zero is the coherence “spike” of the pump and 

probe pulse.  
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Figure 6.5. Corrected femtosecond transient absorption kinetic traces of dXMP*

 resulting from 

the DET reactions of e


pre with (a) 50mM dAMP and dCMP; (b) dGMP and dTMP in water. All 

spectra were corrected after the subtraction of the spectrum for the solvent (H2O), and the 

differences in absorption coefficients of dXMPs*

 were corrected by those of neutral 

counterparts, which are 15.3 × 10
3
, 9.3×10

3
, 10.2×10

3
 and 13.7×10

3
 cm

-1
M

-1
 for dAMP, 

dCMP, dTMP and dGMP respectively. Solid lines are the best fits to the experimental data, 

obtained by using a least-squares fitting program. 
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The fs transient absorption kinetic traces of dXMP*
―
 resulting from the dissociative 

electron transfer (DET) reactions of dXMP with epre
―

 shown in Fig. 6.5 are quite interesting and 

surprising. First, it is interesting to observe that the formation of dXMP*
―
 is complete within the 

lifetime (~500 fs) of epre
―

. Our result shows that the electron transfer from water to nucleotides is 

ultrafast. Second, it is surprising to observe that purines dGMP and dAMP are more efficient in 

capturing epre
―
 than pyrimidines dTMP and dCMP. Interestingly, in previous experiments using 

ESR that does not have a capacity of real-time observation in the fs timescale [58, 61, 63-68, 

291-306], it was shown that dCMP and dTMP would be efficient at capturing electrons, while 

dGMP and dAMP would tend to donate an electron and to form cations. Third, the results clearly 

indicate that epre
―
 can be attached to dAMP and dCMP to form stable anions dAMP

―
 and 

dCMP
―
 only, that is, no decay (dissociation) of dAMP*

―
 and dCMP*

―
 occurs. In contrast, 

DET of epre
―
 to dGMP is most efficient, forming a dGMP*

―
 that dissociates rapidly within ~1.8 

ps: about 60% of dGMP*
－
 becomes dissociated and ~40% becomes a stable dGMP

－
. Similarly, 

DET of epre
－
 to dTMP also occurs to form a dTMP*

－
 that dissociates rapidly within two 

picoseconds, but only about 35% of dTMP*
－
 becomes dissociated and 65% becomes a stable 

dTMP
－
. 

 As shown in Fig. 6.1, each nucleotide consists of a phosphate group, a sugar moiety and a 

DNA base. However, there is no UV absorption in the phosphate group and the sugar moiety; the 

electron in dXMP must be captured by the DNA base.  Fig. 6.5 shows that among the four 

nucleotides, dGMP is the most efficient at capturing epre
－
 and more than half of the transition 

state dGMP*
－
 decays within 1.8 ps. Here, one might  raise  the question: Whether the decay 
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is due to the electron transfer from the base to the phosphate group or the sugar moiety or due to 

the direct dissociation of dGMP*
－
? To address this possible question, we also studied the 

reactions of epre
―
 with base guanine (G), nucleoside deoxyguanine (dG) to compare them with 

that of dGMP. The molecular structures of G, dG, and dGMP are shown in Fig. 6.6. Unlike 

dGMP, G and dG have poor solubilities in water, so they were dissolved in 90 mM NaOH 

solutions. The absorbance spectra of G, dG, and dGMP are shown in Fig. 6.7, whereas the 

original and corrected transient absorption kinetic traces of G*
－
, dG*

－
 and dGMP*

－
 resulting 

from the reactions of G, dG and dGMP with epre
－

 are plotted in Figs. 6.8 and 6.9, respectively 

 

 

Figure 6.6. Molecular structure of G, dG, and dGMP  
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Figure 6.7. Static absorption spectra of G, dG, and dGMP 
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Figure 6.8. Femtosecond transient absorption kinetic traces of G, dG and dGMP*

 resulting from 

the DET reactions of epre
－

 with 45.5 mM G dG and dGMP in 90 mM NaOH , pumped at 318 nm 

and probed at 330 nm. The sharp peak at time zero is the coherence “spike” observed due to a 

coherent pump-probe artifact. 

 

 

0 5 10 15 20 25

0.0

0.9

1.8

2.7

Probe-Pump Delay Time (ps)

T
ra

n
s
ie

n
t 

A
b

s
o
rb

a
n
c
e
 (

x
 1

0
-3

)

 G diff

 dG diff

 dGMP diff



Chapter 6 

112 

 

 

 

Figure 6.9. Corrected femtosecond transient absorption kinetic traces of G*

, dG*


 and dGMP*


 

resulting from the DET reactions of epre
－
  with 45.5 mM G and dG and dGMP in 90 mM NaOH, 

pumped at 318 nm and probed at 330 nm. Here, the sharp peak at time zero is the coherence 

“spike” of the pump and probe pulse. All spectra were corrected after the subtraction of the 

spectrum for the solvent, and the differences in absorption coefficients of dGMP*

, dG*


 and 

G*

 were corrected by those of neutral counterparts, which are 13.7×10

3
, 17.1×10

3
 and 30.4×10

3
 

cm
-1

M
-1

 for dGMP, dG and G respectively. Solid lines are the best fits to the experimental data, 

obtained by using a least-squares fitting program. 
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In the original kinetic traces shown in Fig. 6.8, G*
－
 has the highest transient absorbance 

signal; the intensities of the transient absorbance are in the order of: G*
－

 > dG*
－
 > dGMP*

－
 

with the same sample concentration.  But this must be corrected by different absorption 

coefficients of G*
－

, dG*
－

, and dGMP*
－

 at the probe wavelength of 330 nm, which are 

unknown.  Thus, the transient absorbance signals of G*
－

, dG*
－

, and dGMP*
－

 were 

approximately corrected by the absorbance coefficients of their neutral counterparts, which are 

30.4, 17.1 and 13.7  10
3
 M 

_1 
cm

_1
 for G, dG, and dGMP, respectively.  Moreover, the 

contribution of the solvent to the absorption signal has to be removed.  Thus, the transient 

kinetic traces of G*
－
, dG*

－
, and dGMP*

－
 were also corrected by subtracting the transient 

absorbance signal of the solvent from those of G, dG, and dGMP samples. After the two 

corrections, the real transient absorbance kinetic traces of G*
－
, dG*

－
, and dGMP*

－
 are shown 

in Fig. 6.9.  

The data in Fig. 6.9 show the following interesting observations: (1) It is clearly seen that 

the formation of G*
－
, dG*

－
, and dGMP*

－
 is complete within the lifetime (~500 fs) of epre

―
; (2) 

a clear decay of G*
―
 for the G base is seen, indicating that the direct dissociation of G*

―
 does 

occur; and (3) the lifetime of G*
―
 decreases in the order: G > dG > dGMP. This lifetime 

decrease is most likely due to the different environments around the G base in G, dG and dGMP 

molecules.  

Finally, to study the possible influence of PH values on the transient absorption signal, 

we also detected the transient kinetic traces of dGMP and dAMP in different PH buffer solutions. 

The results are plotted in Figs 6.10 and 6.11, which show that the transient kinetic traces of 
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dGMP*
―
 are independent of the PH values in the range from 4 to 9, and those of dAMP*

―
 are 

independent of the PH values in the range from 6 to 9. dGMP and dAMP were directly 

purchased from Sigma. dGMP has better solubility than dAMP. At PH value lower than 6, 

dAMP compound cannot be completely dissolved to obtain the required concentration for 

transient absorption experiments. We did not measured the transient kinetic traces of dAMP*
―
 

at PH value lower than 6. Our results show that different PH values change neither the intensity 

nor lifetime of dGMP*
―
 or dAMP*

―
. 
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Figure 6.10. Corrected femtosecond transient absorption kinetic traces of dGMP*

 resulting from 

the DET reactions of epre
－
 with 50mM dGMP in different PH buffer solutions, obtained with 

pump wavelength 318 nm, and probe wavelength 330 nm. Here, the sharp peak at time zero is 

the coherence “spike” of the pump and probe pulse. All traces were corrected by the subtraction 

of the trace for the solvent.  
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Figure 6.11. Corrected femtosecond transient absorption kinetic traces of dAMP*

 resulting from 

the DET reactions of epre
－
 with 50mM dAMP in different PH buffer solutions, obtained with 

pump wavelength 318 nm, and probe wavelength 330 nm. Here, the sharp peak at time zero is 

the coherence “spike” of the pump and probe pulse. All traces were corrected by the subtraction 

of the trace for the solvent. 
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6.4. Discussion 

 

As shown and discussed in Chapter 5, excess electrons produced by two-UV photon excitation of 

water molecules will rapidly be located in pre-existing traps within a few fs  to form the epre

 

states that have ultrashort lifetimes of less than 1.0 ps ( ~500 fs). The lifetimes of epre

 are much 

longer than those of free electrons in fs.  The epre

 then becomes the well-bound ehyd

－ 
with a 

lifetime in µs. If the ehyd
－

 had a significant contribution to the formation of dXMP*
－
, the rising 

kinetics of the dXMP*
－
 signal would not be complete within the first ps but would be observed 

in the timescale of μs corresponding to the lifetime of ehyd
－
. This is not the case, as revealed in 

the data shown in Figs 6.4, 6.5, 6.8, and 6.9. Instead, it is clearly seen that the formation of the 

dXMPs*
－

 as well as G
*―

 and dG
*―

 is complete well within the ps timescale. Thus, it is 

obviously the ultrashort-lived epre

, rather than the ehyd

－
, that reacts with dXMP and leads to the 

formation of dXMP*
－
. 

 Once epre
－
 are captured by the DNA base in a nucleotide, what happens next? Our results in 

Fig. 6.5 show that dGMP*
－
 and dTMP*

－
 decay after they were formed, while dAMP and 

dCMP form stable anions. To obtained reliable information from the decay of dGMP*
－
 and 

dTMP*
－
, we have to clarify a few processes. First, it was previously reported that electron 

adducts of adenine nucleosides and nucleotides were protonated in water on the nitrogens 

(reaction rate k≈1.4×10
8
 s

-1
) [307-308] and on carbon 8 of the ring (reaction rate k=3.6×10

6
 

s
-1

) [309-310]. From the reaction rate of protonation, however, one can deduce that the 

protonation occurs on the timescales (τ=1/k) of nanosecond (ns) to µs. Thus the decay of G*
―
, 
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dG*
―
, dGMP*

―
 and dTMP*

―
 within a few ps could not be due to the protonation reactions. In 

fact, no decay of the dAMP
－
 signal was observed on the timescales of tens of ps. Moreover, the 

independence of the dGMP*
―
 and dAMP*

―
 signals of PH values, as shown in Figs. 4.10 and 

4.11, also confirms that no protonation reactions were observed in our present fs transient 

absorption experiments. 

 Second, the electron transfer from the base to the sugar-phosphate backbone has been 

suggested in the literature, [91, 96, 310-312]. Thus one might suggest that the decay of dGMP*
―

 

be due to the electron transfer from the G*
―
 to the sugar or phosphate group in dGMP. However, 

if effective intramolecular electron transfer from G*
―
 to the sugar or phosphate group occurs, 

then similar ET would also occur for other base anions, especially A*
―
 in dAMP*

―
. This was 

not observed (Fig. 6.5).  Moreover, Using BrdU / IdU as an electron acceptor, we have also 

observed that adenine is the most effective electron transporter among the four DNA bases after 

capture of an epre
―
 (see next Chapter), while no intramolecular ET from A*

―
 to the sugar or 

phosphate group in dAMP*
―
 was observed (Fig. 6.5).  

Third, the transient absorption kinetic trace of G*

 from the DET reaction of the pure G 

base with epre
－
 in Fig. 6.9 shows a decay of G*


, giving clear evidence of the direct dissociation 

of G*

. The decreasing lifetimes of G*


 in the order of G>dG>dGMP can well be explained by 

the different environments around the G base in G, dG and dGMP molecules. Indeed, the 

absorption intensities of G*

, dG*


 and dGMP*


 decrease in the same order as those of their 

neutral counterparts: G>dG>dGMP, leading to a nearly identical peak intensity after the 

correction as shown in Fig. 6.9.   
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All the above facts indicate that the suggestion of the intramolecular ET is not supported 

by our observed data. Instead, our observed data show that only T and especially G are 

vulnerable to DETs of epre
－
 leading to bond breaks, while the electron can be stably trapped at C 

and especially A to form stable anions.  These results provide a molecular mechanism for epre

－
― induced DNA strand breakage.  

Our results are consistent with the experimental result by Ray et al. [313], showing that 

the capturing probability of ~1.0 eV free electrons by dry single-strand DNA oligomers increases 

with the increasing number of G bases included.  Our results are also partially consistent with 

the recent observation of stable anionic states A

, C


 and T


 (except G


) in the gas phase by 

Bowen et al [314-315].  Our present results provide the first real-time observation of the 

DET-induced dissociations of G and T and the formation of all four stable anions (A

, G


, C


 

and T

) in aqueous solution. 

Our results are also consistent with the theoretical results by Schaefer et al. [316], who 

studied the radicals generated by homolytic cleavage of an X-H bond from the guanine·cytosine 

(G·C) base pair. They found that the lowest-energy base pair radical had the hydrogen atom 

removed from the guanine nitrogen atom that is used for the sugar phosphate linkage in DNA. In 

the biological system, the dissociation products of guanine (G) base further reacts with DNA 

molecules, either the sugar moiety, or other bases, causing DNA strand breaks and finally cell 

death. 

It is interesting to compare our results about indirect DNA damage induced by DETs of 

weakly-bound epre
－
 produced by radiolysis of water with those for direct DNA damage by 

dissociative electron attachments (DEAs) of low-energy (0-20 eV) free kinetic electrons 
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generated by high-energy incident ionizing particles. There are essential differences between the 

DET process in water and the DEA with low energy free kinetic electron (0-20 eV) in the gas 

phase.  For the latter process, when a free electron is resonant in kinetic energy with an anion 

molecule state, DEA can take place to form molecular fragments carrying the excess energy 

from the balance between the electron kinetic energy and the dissociation energy of the molecule 

anion. In 2000, Boudaϊffa et al. [78] reported the first experimental result that DEAs of 3-20 eV 

free electrons cause strand breaks (SSBs and DSBs) of dry DNA in vacuum.  Subsequently, 

Martin et al. [86] showed a higher yield of DNA SSBs at ~1 eV electrons but no yield of DSBs 

induced via DEA shape resonances of 0-4 eV free electrons.  In 2005-2006, Illenberger et al. 

[87-88] reported experimental results for DEAs of near 0 eV electrons to gaseous DNA bases 

and the phosphate group. The experimental findings of Mark, Illenberger and co-workers 

[317-318] for the decomposition of D-ribose and thymidine by low-energy free kinetic electrons 

showed that migration of the excess electron from the anion of the nucleobase to DNA backbone 

is inhibited.  But none of those experimental studies were performed in aqueous solutions.  

 Recent theoretical studies have searched for the possible effects of the aqueous environment 

on DEA-induced SSBs of DNA but reported very controversial results. Simons et al. [89] 

proposed that SSBs can effectively occur via formation of a π* anion resonance at the DNA base 

after attachment of an excess electron of <1 eV if the DNA is stabilized by water solvation; the 

subsequent ET to the phosphodiester C-O bond results in the bond dissociation and a SSB. In 

contrast, Illenberger [317-318] and Sevilla [95] concluded that it is difficult for such an ET 

pathway to occur and will not cause DNA strand breaks in aqueous systems, while Schyman and 

Laaksonen [96] recently made an opposite conclusion for aqueous dGMP.  Gu et al. [93-94] 

concluded that anions of pyrimidine nucleotides (dCMP and dTMP) would be more 
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electronically stable and thus more likely to cause DNA strand breaks. However, it is the bond 

break of dissociative transient anions that have ultrashort lifetimes of only a few ps that plays a 

crucial role in causing strand breaks of DNA. In fact, not a single theoretical model has predicted 

all essential features in our observed data: DETs only occur with dGMP and dTMP to cause 

DNA strand breaks, whereas each of dAMP and dCMP can only attach an electron to form a 

stable anion; the efficiency to form a stable anion is in the order of A>G>C~T. Thus, our 

experimental results have provided new challenges to the theoretical models. 

 The observed facts have indicated that water plays a dominant role in causing SSBs and 

DSBs of aqueous DNA under ionizing radiation [132]. But the water environment is unlikely to 

enhance DEAs of molecules at electron energies higher than 1.0 eV [91, 312]. In fact, Lu and 

Sanche [97-99] have observed that DEAs of many molecules to low-energy free electrons with 

energies above 1.0 eV, effective in the gas phase, are completely quenched when they are 

absorbed on H2O ice due to the polar environment. As mentioned in Chapters 2 and 5, free 

electrons in water are rapidly trapped by surrounding H2O molecules to form a weakly bound 

epre
―

 at around 1.5 eV. It is most likely that water has a protective effect on the DNA 

potentially damaged by DEA resonances at free electron energies above 1.0 eV. Instead, the 

DEA cross sections of the molecules to ~ 0 eV electrons were observed to be significantly 

enhanced by the presence of H2O ice, which is due to the DET mechanism: the ~0 eV electron is 

first trapped to become an  epre
－
 in the polar media, which is subsequently transferred to a 

molecule followed by its dissociation. As we have recently demonstrated for halopyrimidines 

[139, 216-217] and CCl4 [285], the DEA resonances at near 0 eV electron energies in the gas 

phase shift to ~ 1.0 － 1.5 eV in water due to the polarization effect, in resonance with epre
－
 

in energy, so that effective DETs of epre
－
 to these molecules were observed. 



Chapter 6 

122 

 DSBs can be induced by the DET process of G or T. The bond dissociation induced by DET 

can result in SSBs on one strand of the DNA, and the dissociation products can then react further 

to break the other strand of the DNA. One epre
―
 can in this way produce multiply damaged sites, 

thus amplifying the complexity of DNA lesions as a single radiation track. Indeed, both SSBs 

and DSBs induced by epre
－
 of aqueous DNA under ionizing radiation were recently found by our 

group [220]. In that study, our fs-TRLS studies showed surprising but direct evidence that the 

so-called ·OH scavengers (iso-propanol and DMSO) widely used to study the effect of ·OH 

radicals in causing DNA damage can also scavenger epre
－
 as well. The observed decrease of 

DNA damage with the addition of iso-proponol and DMSO is not simply due to the scavenging 

of ·OH radicals only but is complicated  by the scavenging of epre
－
 as well [220]. After taking 

this factor into account, we strikingly found that the yield of reductive DNA strand breaks 

induced by each epre

 is approximately twice the yield of oxidative DNA strand breaks induced 

by each ·OH radical [220].   

 

6.5. Conclusion 

 

In summary, we present the first real-time observation of dissociative electron transfer reactions 

of epre
－
 with DNA nucleotides in aqueous solutions. Our results show that purines (A and G) are 

more efficient at capturing  epre
―
 than pyrimidines (C and T). Our data show that only T and 

especially G are vulnerable to DETs of epre
―
 leading to bond breaks, while the electron can be 

stably trapped at C and especially A to form stable anions. The results not only challenge the 
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conventional notion that damage to the genome by ionizing radiation is mainly induced by the 

oxidizing ·OH radical , but provide a deeper fundamental understanding of the molecular 

mechanism of the DNA damage caused by a reductive agent (epre
－
). These findings can be 

applied to develop new strategies for more effective radiotherapies of disease such as cancer. 

The DET reaction pathway involving epre
－
 can be feasibly used to design drugs to cause DNA 

damage and kill tumour cells effectively. Furthermore, the direct observation of DNA base 

specific damage by DET of weakly bound electrons has a broad significance, as there are lots of 

weakly-bound electrons in biological systems. The resultant DNA strand breaks, if not repaired 

quickly, could cause genetic mutation and even serious diseases such as cancer. The oxidative 

damage at the guanine (G) base and its relation to human cancers have been well exploited. The 

present findings of the most fragile point at the G base and a new molecular mechanism of 

reductive DNA damage could also play a vital role in various diseases such as cancer and stroke. 

This work may therefore have general significance for a deep understanding of DNA damage 

and repair processes in biological systems and for developing effective therapies for various 

diseases such as cancer and stroke. 
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Chapter 7 

Molecular Mechanisms of the DNA 

Sequence Selectivity of BrdU/IdU as 

Potential Radiosensitizers  

 

7.1. Introduction 

 

Direct, real-time observation of molecular reactions is of significant importance in diverse fields 

from chemistry and biology, environmental sciences to medicine.  As introduced in Chapter 3, 

femtosecond time-resolved laser spectroscopy (fs-TRLS) is the most powerful, direct technique 

for real-time observation of molecular reactions.  Its key strength lies in short duration laser 

flashes on a time scale at which reactions actually happen - femtoseconds (fs) (1fs = 10
15

 

second). Following the pioneering contribution of Zewail [210], its application to study chemical 

and biological systems led to the births of new subfields of science, called femtochemistry and 

femtobiology.  Recently, Dr. Lu further proposed that integrating ultrafast laser techniques with 

biomedical methods to advance fundamental understandings and treatments of major human 

diseases might lead to the opening of a new transdisciplinary frontier called femtomedicine [47]. 

This is the remarkable opportunity afforded through real-time observation of biochemical 

reactions at the molecular level. 
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As mentioned in Chapter 4, replacement of thymidine in DNA by 5-bromouracil (BrU) or 

5-iodouracil (IU) has long been observed to enhance DNA damage and cell death induced by 

ionizing radiolysis [168-169, 171, 174-177, 226-227] and UV photolysis [229-235], 

5-Halo-2’-deoxyuridines, especially bromo-deoxyuridine (BrdU) and iododeoxyuridine (IdU), 

have been explored as potential sensitizers for radiotherapy of cancer. In addition, BrdU and IdU 

can be used as photosensitizers to induce DNA/RNA-protein crosslinking and be utilized to 

probe protein-nucleic acid interactions [319-320]. Because of their biological importance, BrdU 

(BrU) and IdU (IU) have been intensely studied. Despite their long research history for over 50 

years, bromodeoxyuridine (BrdU) and iododeoxyuridine (IdU) have been tested in several Phase 

I - III clinical trials for radiotherapy of cancer but proven disappointing [181-183]. The failure of 

BrdU and IdU in clinicial trials is probably due to the fact that the reaction mechanism of 

BrdU/IdU on the molecular level was not well understood. For a long time, it has been 

speculated that BrdU reacted with the hydrated electron, leading to the formation of the 

transition state, BrdU*
―
, which would then quickly dissociate into Br

―
 anion and a reactive d U

•
 

radical, represented as: BrdU + ehyd
―
  BrdU*

―
  Br

―
 + d U

•
. The reactive d U

•
 radicals then 

attack DNA by hydrogen abstraction and finally cause DNA strand breaks and cell death. This 

mechanism was first proposed by Adams in 1967 [262].  As described in Chapter 4, we have 

recently observed by using femtosecond time-resolved laser spectroscopy (fs-TRLS) that the U
•
 

radical results from the UET reaction of CldU/BrdU/IdU with a precursor electron (epre

) 

weakly-bound at about 1.5 eV, rather than with a long-lived ehyd

 well-bound at 3.2 eV, in the 

aqueous phase [216-217, 287]. The reactions could be represented by the following two 

equations:  

BrdU + epre
―

  BrdU*
―

  Br
―
 + dU

•
   ..................................... 7.1 
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IdU + epre
―
  IdU*

―
  I 

―
 + dU

•
   ........................................... 7.2 

One of the most important properties of BrdU / IdU in photo-/radio-sensitization is the 

dependence of their photosensitivity on the DNA sequence while its mechanism is unclear. In 

1990, Saito, Sugiyama, and coworkers [267] reported that UV-induced strand damage in duplex 

DNA containing BrdU was highly dependent on the identity of the nucleotide bound to the 

5’-phosphate of BrdU. They observed that duplex DNA containing the sequence 5’-dABrdU 

exhibits a significantly larger amount of UV (302nm)-induced strand damage than analogous 

duplexes containing either dG, dT, or dC in the place of dA. And they postulated a mechanism 

involving photoinduced single electron transfer (PSET) from neutral dA at the 5’-side to an 

adjacent BrdU in a specifically oriented complex formed in the duplex DNA. This proposed 

mechanism could be represented as: 

 dA + BrdU / IdU + h  dA
+
 + BrdU*

— / IdU*
— ....................................... 7.3 

This mechanism was surprising, given that electron transfer from dG is more thermodynamically 

favourable [219, 323-328]. To account for this, Greenberg and coworkers [233] proposed that the 

contrathermodynamic sequence selectivity results from the confluence of at least three factors: 

photoinduced forward electron transfer, charge recombination, and electron migration within the 

DNA duplex. More recently, Sugiyama and co-workers [234-235] further showed efficient 

enhancements in photoinduced damage of BrU-substituted DNA at 5’-(G/C)AA
Br

U
Br

U-3’ and 

5’-(G/C)A
Br

U
Br

U-3’ sequences under UV irradiation at 302 nm, and they proposed that the initial 

electron transfer would occur from G to the electron-deficient stacked 
Br

U
Br

U to produce the 

radical. The intervening A between G and 
Br

U
Br

U was considered to act as a bridge between the 

donor and acceptor and the intervening A may prevent rapid back electron transfer.  
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 However, there is a significant difficulty in understanding the photo-induced forward 

single-electron transfer (PSET) mechanism. As shown in Fig. 6.3, all the four nucleotides have 

little absorbance at 302 nm. All the nucleotides were actually not excited under the irradiation of 

302 nm. Ground state nucleotides cannot transfer electrons to BrdU, otherwise BrdU would have 

caused DNA damage without ionizing radiation. In fact, BrdU causes no damage to DNA 

without ionizing radiation or photon irradiation. However, the sequence selective phenomenon 

was observed when the DNA containing BrdU was irradiated at 302 nm [229, 233-235]. In those 

sequence selectivity experiments, the role of epre
―

, which is a general product in ionizing 

radiation, was not taken into account. It was not clear whether epre
―

 were produced from 

two-photon ionization of water, which might occur with the UV light power of several mW used 

in those experiments [229-235], and subsequently captured by DNA bases.   

As described in Chapter 6, we have demonstrated by femtosecond (fs) pump-probe 

(time-resolved) laser spectroscopy that nucleotides, especially dGMP and dAMP, are highly 

efficient at capturing pre-solvated electrons (epre
―
). We have directly observed the dissociative 

electron transfer (DET) reactions leading to bond dissociations of G and T and the formation of all 

four stable anions (A

, G


, C


 and T


) in aqueous nucleotides under UV irradiation [219]. We 

found that among four DNA bases, the weakly-bound epre


 (<0 eV) can be most effectively trapped 

at adenine to form a stable anion A

, while G is most vulnerable to dissociative capture of epre


 

leading to bond breakage. These results have provided a molecular mechanism for 

radiation-induced damage to DNA in an aqueous environment [329].  Since epre


 is a major 

species produced by ionizing radiation of biological systems [47], it is important to know if the 
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UET reaction involving epre

 will lead to a radiosensitivity dependence of BrdU/IdU on DNA 

sequence. 

In the experiments presented in this Chapter, we employed fs-TRLS to demonstrate the 

likely DNA sequence dependence of the radiosensitivity of BrdU and IdU.  We show a direct 

observation of the UET from nucleotide anions dAMP*

 / dGMP*


 to BrdU/IdU, leading to the 

formation of transient anion BrdU*

/IdU*


 that dissociates to produce the reactive uracilyl radical. 

As shown in Fig. 7.1, this UET mechanism can well explain the sequence selectivity. 
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Figure 7.1. Ultrafast electron transfer (UET) to BrdU/IdU from a long-lived anion A

 formed by 

capture of a prehydrated electron due to radiolysis of water. The resultant transient anion 

BrdU*

/IdU*


 dissociates to produce the uracilyl radical that causes DNA damage 
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7.2. Experiments 

 

In this experiment, ultra pure water with a resistivity of >18 MΏ/cm was used.  

Halopyrimidines and nucleotides(BrdU, IdU, dAMP, and dGMP) were obtained from Sigma- 

Aldrich and used as supplied. 

The pump-probe fs laser spectroscopy methodology has been described in chapter 3. In 

the present experiments, weakly-bound prehydrated electrons (epre

) were produced by 

two-photon excitation of water at 322 nm, and we monitored the formation of BrdU*

/IdU*


 

from ultrafast electron transfer (UET) of an epre

 in BrdU/IdU only or a nucleotide anion 

dXMP*

 (X denotes the DNA base A or G) in BrdU/IdU+dXMP complexes. Here, a pump beam 

(120 fs, 40 µW) at 322 nm was focused into a diameter of ~0.5 mm to produce prehydrated 

electrons in water, while a probe beam at 333 nm detected the formation and dissociation of 

BrdU*

/IdU*


 directly [216-217, 287].  There may exist free BrdU/IdU molecules in 

BrdU/IdU+dXMP mixtures, depending on the molecular ratio of dXMP to BrdU/IdU, but only 

UET in formed BrdU/IdU+dXMP hetero-dimers can be measured in fs-ps dynamics since ET 

reactions from diffusive free-molecule encounters would need much longer time scales (in µs).   

Since the bases A and G are much more efficient at capturing epre

 than C and T [219], and A and 

G are frequently considered for the sequence selectivity of BrdU/IdU, only the results about the 

effect of dAMP and dGMP are shown to demonstrate the UET mechanism. 
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7.3. Results and Discussion 

 

The absorption spectra of BrdU and IdU are shown in Fig. 7.2. Both BrdU and IdU have almost 

zero absorption at wavelengths longer than 320 nm. Thus, all the BrdU/IdU, dXMP molecules 

would not be excited by the pump laser pulse. As mentioned in Chapters 2 and 4, essentially all 

the irradiation energy is absorbed by the water to yield the well-known primary radicals (epre

, 

ehyd

 and OH∙) in moderately dilute ( 0.1 M) aqueous solutions [101]. 

 

Figure 7.2. Absorbance spectra of BrdU and IdU in water at room temperature.   
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The results for the kinetic traces of BrdU*

 formed for both BrdU only and BrdU+dXMP 

complexes are shown in Figs. 7.3 and 7.4.  Here, the probe wavelength 333 nm was used to 

detect the transition state of BrdU*
―
. At this wavelength, however, smaller yields of hydrated 

electrons and dAMP*
—/ dGMP*

—
 were also detected [see Chapter 6]. To better compare the 

yields of BrdU
*―

 in the BrdU only sample and BrdU+dAMP/dGMP mixtures, ehyd
―
 and/or 

dAMP*
―
/ dGMP*

―
 signal was substracted from those of corresponding samples. The kinetic 

trace for BrdU*
―
 was obtained by substracting the kinetic trace of the solvent (H2O) for the 

BrdU sample or the kinetic trace of dAMP/dGMP alone for the BrdU+dAMP/dGMP mixture. 

The kinetic trace after this substraction is for the pure BrdU*
— signal.  In this processing, a 

simplified assumption was made : the presence of BrdU / IdU would not cause any decrease in 

the yield of dAMP*
―
/ dGMP*

―
.  Certainly, the real situation is that the presence of BrdU/IdU 

should somewhat reduce the yield of dAMP*
―

/ dGMP*
― relative to the case for pure 

dAMP/dGMP only because of the competition between dAMP/dGMP and BrdU/IdU in 

capturing epre

 and the UET from dAMP*

―
/ dGMP*

―
 to BrdU/IdU.  The BrdU*

— kinetic trace 

after the substraction is shown in Fig. 7.4. 
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Figure 7.3. Femtosecond transient absorption kinetics trace of water only, 25 mM dAMP, 25 mM 

dGMP, 21 mM BrdU, 21 mM BrdU+25 mM dAMP mixture, and  21 mM BrdU+25 mM dGMP 

mixture. The pump and probe wavelengths were 322 nm and 333 nm respectively. The sharp 

peak at time zero is the coherence ‘spike’ of the pump and probe pulses. 
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Figure 7.4. Femtosecond transient absorption kinetic traces of BrdU*
—

 generated by UET to 

BrdU from dAMP*
— 

and dGMP*
—
 formed by capture of epre


 : (BrdU+dXMP) represents 21 mM 

BrdU + 25 mM dAMP / dGMP mixture. The pump and probe wavelenths were 322 nm and 333 

nm, respectively. The sharp peak at time zero is the coherence ‘spike’ of the pump and probe 

pulses. The kinetic trace for BrdU was subtracted from that for the solvent (H2O), while the 

kinetic trace for the BrdU + dAMP / dGMP mixture was subtracted from that of pure 

dAMP/dGMP alone.  
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 To explain the result shown in Fig. 7.4, we need to consider the following processes.  In the 

present experiments, the first step was to produce weakly-bound epre

 in aqueous 

BrdU+dAMP/dGMP complexes (Eq. 7.4a). As described in Chapter 4, we have previously 

demonstrated the direct UET between BrdU and epre

, leading to the formation of BrdU*


 (Eq. 

7.4b) [216-217, 287]. And in Chapter 6, we have shown that epre

 can also be effectively 

transferred to dAMP or dGMP to form dAMP*

or dGMP*


 (Eq. 7.4c) [219]. But most of the 

formed dGMP*

 quickly dissociates within the first five ps after its formation while dAMP*


 

does not dissociate but forms only a long-lived anion dAMP

 (exhibits a flat kinetic trace line) 

[see Chapter 6] [219]. Thus, the ET between dGMP*

 and BrdU can only occur effectively 

within the shorter lifetime of dGMP*

, as is observed in Fig. 7.4.  For the BrdU+dAMP 

complex, the effective ET from dAMP*

 occurs on much longer time scales (up to ~30 ps), 

leading to a stronger enhancement in the total yield of BrdU*

 (Eq. 7.4d).  The processes, take 

BrdU as an example, can be expressed as: 

 

H2O + 2h (UV)  H2O*  H2O
+
 + epre


  ..................................7.4a 

BrdU + epre

 BrdU*


 ..................................................................7.4b 

dAMP/dGMP + epre

 dAMP*


/dGMP*


  ..................................7.4c 

dAMP*

/dGMP*


+BrdUdAMP/dGMP+BrdU*


  ...................7.4d 

BrdU*

  Br


 + dU


  ………………………………………… 7.4e 

BrdU*

  BrdU


  …………………………………………… 7.4f 
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The enhancement of the yield (integration of the signal over time) of BrdU*

 will lead to 

the increased yield of the dU

 radical (Eq. 7.4e), which will ultimately cause more DNA strand 

breakage.  A small percentage of BrdU*

 becomes stable BrdU


 and exhibits the long-lived 

tails in Fig. 7.4 (Eq. 7.4f) [216]. 

In deducing the UET mechanism expressed in Eq. 7.4, we have also considered a very 

unlikely argument that instead of electron transfer (ET) from dAMP*
―

/dGMP*
―

 to BrdU, 

forming BrdU*
―, the ET from BrdU*

―
 to dXMP (X=A, G) might occur and give rise to a larger 

dXMP*
―
 yield for BrdU-dXMP mixtures than for pure dXMP. However, this argement can not 

stand for many well-known reasons. First, BrdU and IdU are well-known to be strong electron 

capturers (much stronger than any dXMP), which is why the replacment of dXMP by BrdU / IdU 

has been tested as a potential source of radiosensitizers and photosensitizers. Second, it has been 

well-observed that the lifetimes of BrdU*
―
 / IdU*

―
 are less than 2 ps [216-217, 287], thus any 

enhancement of the dXMP*
―
 yield must be observed within 2 ps. Moreover, the kinetic trace of 

dAMP*
―

 once formed would exhibit only a flat line [219, Chapter 6]. Those expectations 

drastically differ from the observed results in Figs. 7.3 and 7.4. Thus the kinetic traces shown in 

Fig. 7.4 are actually the lower limit to the real yields of the formed BrdU*
―

 from the BrdU-dXMP 

mixtures. That is, the true enhancement of the BrdU*

 yield due to the UET from dXMP*


 should 

be slightly higher than that shown in Fig. 7.4.  Nevertheless, the results in Fig. 7.4 have clearly 

(visibly) demonstrated that the UET from dXMP*

 to BrdU in BrdU+dXMP complexes leads to a 

significant enhancement in the yield of BrdU*

, compared with the yield for the pure BrdU, and 

that the enhancement is stronger for BrdU+dAMP than for BrdU+dGMP complex. 
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Free BrdU / IdU molecules may exist in BrdU / IdU + dXMP mixtures, depending on the 

molecular ratio of dXMP to BrdU / IdU. Here, it should be noted that only electron transfer 

(UET) in formed BrdU/IdUdXMP heterodimers can be measured in fs-ps dynamics because ET 

reactions from diffusive free-molecule encounters would need much longer time scales (μs). The 

BrdU*

/IdU*


 yield enhancement is expected to rise as the part of BrdU/IdU in 

BrdU/IdUdXMP dimers increases and to reach a maximum when all BrdU/IdU form dimers 

with dXMP. The latter can be made for the mixtures with dXMP in large excess.  To examine 

this possibility, the kinetic traces of BrdU*

 for BrdU+dXMP mixtures with various 

dXMPBrdU molecular ratios (up to 10:1) were measured.  Note that to satisfy the radiolysis 

condition that the majority of the radiation energy is adsorbed by the solvent (water), the highest 

concentration of dXMP must be kept below 100 mM (≤ 0.1 M). This is also necessary to avoid 

forming clusters of dXMP and other measurement difficulties (e.g., a sudden large noise) if 

higher concentrations of dXMP are used. The kinetic traces of BrdU*
―
 at different molecular 

ratios of dXMP to BrdU are shown in Fig. 7.5, which qualitatively shows that the higher the 

molecular ratio of dXMP to BrdU, the more significant enhancement of the BrdU*
—

yield. 
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Figure 7.5. Femtosecond transient absorption kinetic traces of BrdU*
—

 generated by UET to 

BrdU from dAMP*
— 

and dGMP*
—
 formed by capture of epre


 : (a) pure water, 21 mM BrdU, 21 

mM BrdU + 25 mM dAMP/ dGMP mixture (dXMP/BrdU molecular ratio = 1.2:1); (b) pure 

water, 18.7 mM BrdU, 18.7 mM BrdU + 100 mM dAMP/ dGMP mixture (dXMP/BrdU 

molecular ratio = 5.3:1); (c) pure water, 10 mM BrdU, 10 mM BrdU + 100 mM dAMP/ dGMP 

mixture (dXMP/BrdU molecular ratio = 10:1). The pump and probe wavelenths were 322 nm 

and 333 nm, respectively. The sharp peak at time zero is the coherence ‘spike’ of the pump and 

probe pulses. The kinetic trace for BrdU was subtracted from that for the solvent (H2O), while 

the kinetic traces for the BrdU + dAMP / dGMP mixtures were subtracted from that of pure 

dAMP/dGMP alone. Note that in obtaining various concentration ratios of BrdU/dXMP, the 

concentrations of the solute (dXMP or BrdU) must be kept ≤100 mM (0.1 M) ; otherwise the 

condition that the majority of the radiation energy is adsorbed by the solvent (water) would no 

longer be true. 
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To obtain a quantitative analysis, we define R as BrdU*
―
 yield enhancement factor by: 

R = (yield of BrdU*
－

 in BrdU-dXMP mixture) ／ yield of BrdU*
－
 in BrdU solution 

 

It follows that the higher the molecular ratio of dXMP to BrdU, the higher the R value 

until R reaches a saturated value.  In calculating the R values at various molecular ratios of 

dXMP to BrdU, the total yields (Y) of formed BrdU*
―
 is obtained by integrating all the yield 

over the time window from 0.5 to 30 ps for the BrdU and BrdU+dXMP mixtures. The result is 

shown in Table 7.1 and Fig. 7.6. 

 

Table 7.1 Yield of BrdU*
－
 over time window from 0.5 ps to 30 ps and BrdU*

－
 enhancement 

factor by dXMP (X=A, G). 

 

Molecular Ratio of 

dXMP to BrdU 

Total yield of BrdU*
—

 over time 

window from 0.5 ps to 30 ps (a.u.) 

Enhancement 

factor by 

dAMP  

RdAMP 

Enhancement 

factor by 

dGMP  

RdGMP 

BrdU only 

sample 

BrdU+dAMP  

mixture 

BrdU+dGMP  

mixture 

0    1 1 

1.2 (25 mM / 21 mM) 0.01089 0.02368 0.01577 2.17 1.45 

5.3 (100 mM/18.7 mM) 0.01318 0.03625 0.02418 2.75 1.83 

10 (100 mM/10 mM) 0.00766 0.02225 0.01527 2.90 2.00 
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Figure 7.6. Enhancement factor of the BrdU*
―
 yield for BrdU+dXMP mixtures as a function of 

the dXMP/BrdU molecular ratio (X=A, G). 

 

Fig. 7.6 clearly shows that as dXMP/BrdU molecular ratio increased, both BrdU*
―
 

enhancement factors by dAMP and dGMP increased, confirming that ultrafast electron transfer 

only occurs between BrdU-dXMP heterodimers. The higher the molecular ratio of dXMP to 

BrdU, the higher percent of BrdU would become BrdU-dXMP heterodimers. When we made a 

slightly different definition of R in terms of the total yields (Y) of dissociated BrdU*

 by 

integrating the decaying signal only over the time window of 0.5 to 30 ps for the samples of 

BrdU and BrdU+dXMP, even larger enhancement factors R were obtained [101].  As also 

shown in Fig. 7.6, with an identical molecular ratio of dXMP to BrdU, dAMP has significantly 

higher electron transfer efficiency than dGMP. This is reasonable, as most of the formed 
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dGMP*

 quickly dissociates within the first five ps after its formation while dAMP*


 does not 

dissociate but forms only a long-lived anion dAMP

. Thus, the base A is a more effective 

promoter for the electron transfer reaction.   

The integrated IdU*
―
 yields in Fig. 7.7 over time window from 0.5 ps to 30 ps are shown 

in Table 7.2. Fig. 7.7 and Table 7.2 show that dAMP and dGMP have a similar enhancement 

effect on the yield of IdU*
―
. dAMP enhances the IdU*

―
 yield by 1.6 times, while dGMP by 1.5 

times, for 2.8 mM IdU+46.5 mM dXMP mixtures. The enhancement factors for IdU*
―
 are much 

lower than those of BrU*
―
. This is reasonable because the direct UET reaction of IdU with epre

―
 

is much stronger than that of BrdU. Our results are also consistant with the observation that 

much smaller sequence selectivity of photosensitivity was observed for similar duplex DNA 

containing IdU than for DNA containing BrdU [232-233].  
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Figure 7.7. Femtosecond transient absorption kinetic traces of IdU*
―
 generated by UET to IdU 

from dAMP*
― 

and dGMP*
―
 formed by capture of epre

―
 : (IdU+dXMP) represents 2.8 mM IdU 

+ 46.5 mM dAMP / dGMP mixture. The pump and probe wavelenths were 322 nm and 333 nm, 

respectively. The sharp peak at time zero is the coherence ‘spike’ of the pump and probe pulses. 

It is not completely removed after the substraction. The kinetic trace for IdU was subtracted from 

that for the solvent (H2O), while the kinetic traces for the IdU + dAMP / dGMP mixtures were 

subtracted from that of pure dAMP/dGMP alone.  
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Table 7.2. Yield of IdU*
―
 over time window from 0.5 ps to 30 ps and IdU*

―
 enhancement 

factor by dXMP (X=A, G). 

Total yield of IdU*
―

 over time 

window from 0.5 ps to 30 ps (a.u.) 

Enhancement 

factor by 

dAMP  

RdAMP 

Enhancement 

factor by 

dGMP  

RdGMP 

IdU only 

sample 

IdU+dAMP  

mixture 

IdU+dGMP  

mixture 

0.02773 0.04437 0.04164 1.6 1.5 

 

Finally, it is also interesting to compare the present results with those of previous 

radiolysis studies by Nase et al. [321] using submicrosecond electron pulses of aqueous BrdU 

and nucleobase complexes. In those studies, the dU

 yield was attributed to ET from nucleobase 

electron adducts to BrU under irradiation, and it was proposed that ET from T and A electron 

adducts and their protonated forms to BrU occurs but that no ET to BrU occurs from the electron 

adduct of G, which was thought to serve as an ultimate electron sink in irradiated DNA. In 

contrast, our present real-time, direct observations by fs-TRLS [see Chapters 4 and 6] and the 

present results provide direct evidence that (1) the weakly bound epre
―
 can first be trapped at 

both A and G and then transferred to BrdU/IdU and (2) the base A is not only the main electron 

sink but also an efficient promoter for ET reactions, while G is the major site for DNA damage 

induced by ionizing radiation. 

 



Chapter 7 

144 

7.4. Conclusion 

 

In summary, our results present the first real-time observation of UET from the anions of dAMP 

and dGMP to BrdU/ IdU in aqueous BrdU-dAMP/dGMP and IdU-dAMP/dGMP complexes 

under ionizing radiation. The results provide a molecular mechanism for the sequence selectivity 

of BrdU and IdU in radiosensitization. The capability of IdU for dissociative electron transfer of 

weakly bound epre
―

 is stronger than that of BrdU. Correspondingly, BrdU shows a more 

significant DNA sequence selectivity through UET from dXMP*
― formed by attachment of epre

―
 

generated by radiolysis of water. This new mechanistic insight into the mechanism of action of 

BrdU and IdU may provide clues to improve the halogen family as potential radiosensitizers  

and to develop more effective radiosensitizers for clinical applications. 
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Chapter 8 

Development of New Radiosensitizers 

Based on Unique Molecular Mechanistic 

Understanding 

 

8.1. Introduction 

 

The modern drug discovery and development process has been proven to be an expensive and 

inefficient process. It generally takes about 20 years and approximately US $1.8 billion to 

develop a single new drug [40-41]. The identification of successful anticancer agents remains a 

somewhat empirical process [200]. There is a compelling need for a more fundamental and 

deeper understanding of the molecular mechanisms of action of anticancer drugs to design more 

appropriate drugs. In this Chapter, we will show the potential of utilizing our unique molecular 

understandings of the biological effect of ionizing radiation and the action of halopyrimidines to 

develop more effective radiosensitizers.  

Applying the versatile femtosecond time-resolved laser spectroscopy (fs-TRLS), a 

powerful technique for real-time observation of molecular reactions, we have resolved the long 

existing controversies about the physical nature and lifetimes of a novel ultrashort-lived electron 

species (epre
―
) generated in radiolysis of water (Chapter 5) and unraveled how it plays crucial 

roles in ionizing radiation induced DNA damage (Chapter 6) and in activating halopyrimidines 
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(BrdU and IdU) as hypoxic radiosensitizers (Chapters 4 and 7).  Our group has also recently 

found a new molecular mechanism of cisplatin used in combination with radiotherapy, which 

involves the extremely effective dissociative electron transfer (DET) reaction of cisplatin with 

epre
―
 [45].  Our results show that compared with cisplatin, DET reactions of BrdU and IdU with 

epre
―
 are not strong enough so that they are not effective radiosensitizers.  Thus, there is little 

chance for BrdU and IdU to be effective radiosensitizers for the clinical use. 

Based on our mechanistic understandings at the molecular level of DNA damage induced 

by ionizing radiation and halopyrimidines as potential radiosensitizers, we are now identifying 

/designing and synthesizing new radiosensitizing drug candidates, one of which is labeled as 

Compound RS-1. In this chapter, through the femtomedicine approach integrating fs-TRLS with 

biomedical methods (DNA damage and cell death measurements), we studied the 

radiosensitizing efficacy of Compound RS-1 in comparison with existing halopyrimidines (BrdU 

and IdU) for the treatment of cancer cells. We tested the radiosensitizing effect of RS-1 by using 

some biomedical methods including DNA damage measurements by gel electrophoresis and cell 

viability/death assays with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT).  
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8.2. Experiments 

 

8.2.1. fs-TRLS measurements 

 

The methodology and details for femtosecond pump-probe transient absorption spectroscopic 

measurements have been given in Chapters 3, 4 and 7. Briefly, a pump wavelength of 322 nm 

was used to generate epre

 in the aqueous sample solutions, while a probe wavelength of 333 nm 

was used to detect the transition state [RS-1]*

 of the DET reaction of Compound RS-1 with epre


: 

epre

 + RS-1[RS-1]*


 Br


 + radical. 

 

8.2.2. DNA damage and cell death measurements 

 

DNA sample: Plasmid DNA [pGEM 3zf(-), 3197 kbp] was extracted from Escherichia Coli 

JM109 and purified using QIAprep Kit (Qiagen) 

Cell lines and culture condition. The HeLa (ATCC#: CCL-2) cell line was obtained from the 

American Type Culture Collection (ATCC); fetal bovine serum (FBS) was obtained from 

Hyclone Laboratories (UT, USA).  HeLa cells were cultivated with MEM (Hyclone) 

supplemented with 10% FBS, 100 units/mL penicillin G and 100 μg/mL streptomycin (Hyclone).  

Agarose gel electrophoresis. The pump beam 318 nm, was used to produce radicals via 

two-photon excitation of water in DNA solutions. The laser beam was focused into a quartz 
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cuvette containing 3 µg of DNA in 200ul of water or drug solution in water. The solutions were 

stirred during radiation to produce uniform DNA damage throughout the samples. Aliquots 

equivalent to 100 ng DNA were removed from the cuvette in different irradiation time intervals. 

All aliquots were analyzed with a standard agarose gel electrophoresis method, namely, on 1% 

neutral TAE agarose gel in TAE running buffer. The gel was prestained with 0.5 µg/ml ethidium 

bromide. The image of the gel was taken on a FluorChem imaging station (Alpha Innotech) and 

exhibits various DNA topological forms, including supercoiled DNA (undamaged DNA), open 

circular DNA (single strand break, SSB), and linear form DNA (double strand break, DSB).  

Cell viability assay by MTT. The radiosensitizing effect of Compound RS-01 on cell viability 

was determined by the MTT assay, one of the most commonly used cell viability assays [330]. 

The Vybrant MTT Cell Proliferation/viability Assay Kit purchased from Invitrogen was used per 

the manufacturer’s protocol. Briefly, 5 mg MTT powder was dissolved in 1X phosphate buffer 

saline (PBS). 1 gram sodium dodecyl sulfate (SDS) was dissolved in 10 ml 0.01 M HCl solution 

to make stock SDS solution. Hela cells were seeded at a density of 5000 cells/well on 96-well 

plates (BD falcon, ON, Canada), and cultured in a humidified atmosphere (5% CO2 + 95% room 

air) at 37 ºC. One day after seeding, the culture medium was changed to medium with different 

concentrations of drugs. The cells were incubated with different concentration of drugs for 24 

hours, and then the plates were irradiated by different doses of X-ray, generated from the linear 

electron accelerator in the Grand River Regional Cancer Centre. After waiting a certain time 

after ionizing radiation, medium was changed to 90% MEM medium without phenol red +10% 

FBS. 10 μl 5mg/ml MTT solution was added to each well. The plates were kept in the 37 ºC 

incubator for 4 hours. Then 100 μl stock SDS solution was added to each well to dissolve the 

formazan.  Again the plates were kept in the 37ºC incubator for 4 – 18 hours. Then the 
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absorbance was read at 570 nm by a micro-plate reader. The radiosensitizing effect of 

Compound RS-1 on growth inhibition was assessed as percent cell viability where cells in 

control (with no irradiation and drug) were taken as 100% viable. 

 

8.3. Results and Discussion 

 

8.3.1. Static absorbance spectrum of compound RS-1 

 

The absorption spectrum of compound RS-1 is shown in Fig. 8.1, which exhibits three 

absorption peaks at 210, 239 and 299nm. The absorption coefficient at 299 nm is determined to 

be 3.97×10
5
 M

-1
m

-1
, derived from the measured linear dependence of the absorbance as a 

function of RS-1 concentration.  

 

 



Chapter 8 

150 

200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O
D

 (
a

.u
.)

Wavelength (nm)

 1/48 mM

 1/32 mM

 1/24 mM

 1/16 mM

 1/12 mM

 1/8 mM

 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 RS-1 Conc. (uM)

O
D

 a
t 
2
9
9
n
m

 (
a
.u

.)

 

Figure 8.1. Absorbance of compound RS-1 in H2O. Absorption spectrum of different 

concentrations and linear dependence of the absorbance at 299 nm. 
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8.3.2. fs-TRLS measurements 

 

The transient kinetic trace of the RS-1 solution pumped at 322 nm and probed at 333 nm is 

shown in Fig. 8.2.  A strong signal is instantaneously observed at near time zero with almost 

zero rising time. The decay of this dominant signal is quite rapid on a sub-picosecond time scale 

superposes on a slow component. The best fit to the data gives two decay lifetimes: the rapid 

decay with τ1=~0.48 ps and the slower decay withτ2=~6.0 ps. The strong signal at ~time zero is 

clearly due to the electronically excited state of RS-1. As shown in the static absorption spectrum 

(Fig. 8.1), Compound RS-1 has a small but visible absorption at 322 nm. When the pump 

wavelength was 266nm, the transient absorbance kinetic trace of BrdU probed at 330 nm had a 

similar sharp peak at near time zero, which had been attributed to the BrdU* state [216]. Thus 

the fast component can reasonably be explained as due to an excited state [RS-1]* resulting from 

the direct absorption at 322 nm by compound RS-1. 
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Figure 8.2. Femtosecond transient absorption kinetic traces of the excited state [RS-1]* and the 

transient state [RS-1]*

 for RS-1 pumped at 322 nm and probed at 333 nm. The black squares are 

experimental data, while the red dots are the best fit to the experimental data. The data were 

corrected by the subtraction of the kinetic trace for the pure solvent. 
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The slower decay with τ2=~6.0 ps is assigned to the transient state [RS-1]*

 signal, 

because: 1) the halogenated molecule RS-1 is expected to be a strong electron scavenger; 2) the 

[RS-1]*

 is expected to have a strong UV absorption in the wavelengths around 330 nm, a 

characteristic of the local C-Cl

 bond. This has been observed for several halogenated molecules 

[216-218, 267]. The UV electronic absorption of a vibrationally excited AB*

 state for the DET 

reaction of epre

 with a halogenated molecule AB should be identical to that of its 

vibrationally-relaxed anion AB

 [217]. That is, the vibrational relaxation of a small molecule 

AB*

, which occurs usually at time from 0.1 μs to 1 ps, is not reflected in the decay kinetics 

beyond 1 ps. Thus, the observed decay in transient absorption of AB*

 reflects solely its 

dissociation lifetime. Similar to the BrdU*

 and IdU*


, the slower decay with τ2=~6.0 ps is 

therefore assigned to be the dissociative lifetime of the transition state [RS-1]*

, which 

dissociates into a Br

 anion and a reactive neutral radical. We have also observed that the 

transient absorbance signal shows an excellent linear relationship on RS-1 concentration, 

indicating that it is a single molecule reaction. 

It is worthwhile to compare RS-1 as a radiosensitizer candidate with IdU as the strongest 

radiosensitizer in the family of halopyrimidines in their DET reaction efficiencies with epre

 to 

produce reactive radical for inducing DNA damage and killing cancer cells. The fs-TRLS results 

of both RS-1 and IdU with an identical concentration are plotted together in Fig. 8.3. 

Interestingly, it is seen that the [RS-1]*

 yield is much higher than that of IdU*


.  This indicates 

that the DET reaction of RS-1 with epre

 is much stronger than that of the strongest 

halopyrimidine IdU.  This result shows the promise of RS-1 as an effective radiosensitizer. 

 



Chapter 8 

154 

 

 

 

 

-2 0 2 4 6 8

0.000

0.005

0.010

0.015

0.020

 3mM IdU

 3mM RS-1

T
ra

n
s
ie

n
t 

A
b

s
o

rb
a

n
c
e

 (
a

.u
.)

Probe-Pump Delay Time (ps)
 

Figure 8.3. Femtosecond transient absorption kinetic traces of 3 mM IdU and 3 mM RS-1, 

pumped at 322 nm and probed at 333 nm.  The data were corrected by the subtraction of the 

kinetic trace for the pure solvent. 
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8.3.3. DNA gel electrophoresis measurements 

 

Although BrdU and IdU are potential hypoxic radiosensitizers, their incorporation into DNA is a 

prerequisite for radiosensitization of human tumors by the halogenated thymidine analogues, and 

the extent of radiosensitization correlates directly with the percentage of thymidine substitution 

in DNA [175, 331]. However, the incorporation of BrdU / IdU into DNA strands is actually 

mutation of the DNA. The treatment itself actually causes problems. Free BrdU and IdU (not 

incorporated into DNA) molecules show no radiosensitizing effects. To compare the 

radiosensitizing effect of compound RS-1 with halopyrimidines, we first tested the capabilities of 

IdU and RS-1 at inducing damage to plasmid DNA. The results are shown in Figs. 8.4, 8.5 and 

8.6, as well as Tables 8.1 and 8.2. 

Different DNA samples with /without the addition of 500 µM IdU were irradiated at 0, 3, 

6, 9, 12, 15, 20, and 30 minute time intervals by UV laser pulses (185 µW, 318 nm). Fig. 8.4 

shows that both the yields of SSB and DSB increased with UV irradiation time, while the 

amount of undamaged (SC) DNA decreased. If we compare the two lanes with 30-min UV 

irradiation time in Fig. 8.4 (a) and (b), it can even be seen that the percent of undamaged (SC) 

DNA was actually larger for the DNA mixed with 500 µM IdU than the DNA in pure water, that 

is, IdU somewhat protects DNA from UV irradiation.  
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Figure 8.4. DNA gel electrophoretic results of plasmid DNA at different time intervals by fs UV 

laser pulses (185 µW, 318 nm). There was 100 ng DNA per lane. (a) DNA in water only; (b) 

DNA was incubated with 500 µM IdU. 

 

Table 8.1. Percents of DNA strand breaks of DNA incubated without/with IdU,  under 30-min 

UV laser irradiation (185 µW, 318 nm) 

 H2O only 500uM IdU 

SSB 77.2 % 56.2% 

DSB 4.0 % 4.7% 

Undamaged DNA 

SC 

18.8% 39.1% 
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 Table 8.1 gives a quantitative analysis of the lanes with 30-min UV irradation shown in Fig. 

8.4. Under UV irradiation (185 µW, 318 nm) for 30 min,  the addition of 500 µM IdU into the 

DNA sample decreased the percentage of SSBs from 77.2% to 56.2%, while the percentage of 

DSBs remains almost the same. It appears puzzling since IdU is a well-known potential 

radiosensitizer. This could be due to two reasons: (1) IdU has a small but non-zero absorbance at 

318 nm, as shown in Fig. 7.1 (Chapter 7).  Some 318 nm UV photons were actually absorbed 

by IdU, causing the decreases of the yield of radicals arising from the radiolysis of water 

generated by the UV pulse. (2) Some of the epre
―

 generated by the UV pulse were scavenged by 

free IdU molecules in the solution. We have recently demonstrated that epre

 are effective in 

causing DNA strand breaks [219-220, Chapter 6]. When IdU is not incorporated into DNA, the 

dU

 radicals generated by the DET reaction of IdU with epre


 is not close enough to damage the 

DNA. The dU

 radicals interact with surrounding water molecules rather than the DNA, thus 

reducing the probability to cause DNA strand breaks when 500 µM IdU was added to the DNA 

solution. 

 DNA samples with/without compound RS-1 were irradiated by UV laser pulses (115 µW, 

318 nm) at time intervals 0, 3, 6, 9, 12, 15, 20, and 30 min. The gel electrophoresis images are 

shown in Fig. 8.5, while their quantitative analysis results are given in Table 8.2. The values 

given in Table 8.2 are also shown in Fig. 8.6.  For the DNA sample in pure water, the 

percentage of both SSBs and DSBs increase with UV irradiation time. Relatively significant 

amount of DSBs started to appear at the irradiation time of ~9 min. After the DNA sample was 

irradiated for 30 min, there were still ~30% of DNA remaining undamaged. With the presence of 
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250 µM RS-1, both SSBs and DSBs were significantly enhanced under the same UV irradiation 

time. For the latter case, Relatively significant amount of DSBs start to appear after the DNA 

sample was irradiated for 5 min only and all the plasmid DNA (supercoiled circular) were 

damaged after ~15 min irradiation. The DSB percentage increased by a factor of about 2.6 at 30 

min irradiation, compared with the DNA sample in pure water. Thus, the presence of compound 

RS-1 significantly enhances DNA strand breaks under 2-photon ionizing irradiation. These 

results clearly show that compound RS-1 has a better efficiency than BrdU and IdU in inducing 

DNA damage. 

 

 

Figure 8.5. DNA gel electrophoresis results of plasmid DNA at different time intervals by UV 

laser pulses (185 µW, 318 nm). There was 100 ng DNA/lane. (a) DNA in water only; (b) DNA 

incubated with 250 µM compound RS-1. 
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Table 8.2. Percentage of strand breaks of the DNA without/with the addition of compound RS-1,  

for different time intervals of UV laser pulses (185 µW, 318 nm) 

irradiation 

time (min) 

SSB (%) DSB (%) SC (%) 

H2O 250 µM RS-1 H2O 250 µM RS-1 H2O 250 µM RS-1 

0 6.1 6.7 0 0 93.9 93.3 

1  38.8  0  61.2 

2  57.5  0  42.5 

3 22.2 70.1 0 0 77.8 29.9 

4  79  0  21 

5  82  3.1  14.9 

6 37.8 86.1 0 3.3 62.2 10.6 

9 44.4  2.5  53.1  

10  92.1  5.5  2.5 

15 54.5 87.9 3.3 12.1 42.2 0 

20 60.6 86.6 4.2 13.4 35.1 0 

30 65.3 82.6 6.6 17.4 28.1 0 
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Figure 8.6. Comparison of SSB, DSB, and SC for DNA samples without / with compound RS-1. 

The black curves represent DNA in water only. The red curves represent DNA in 250 μM RS-1 

solution. 
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8.3.4. Cell viability test 

 

We used the MTT assay to test whether compound RS-1 is more efficient than halopyrimidines 

in enhancing the radiosensitivity of cancer cells under ionizing radiation. The MTT-based assay 

relies upon the cellular reduction of tetrazolium salts to their intensely colored formazans. In the 

MTT results, higher absorbance indicates higher viable cell numbers. 

 The cytotoxicity (MTT-assay) results for HeLa cells incubated with IdU at various 

concentrations (0-500 µM) for 24 hr and then exposed to various x-ray doses (0, 20, 40 Gy) are 

shown in Fig. 8.7. First, without x-ray irradiation (for the zero Gy group), the cell viability 

(survival rate) showed a IdU dose dependence: about 40% of the treated cells were killed at very 

high IdU concentrations up to 500 µM. Second, without IdU treatment (at zero IdU 

concentration), the initial x-ray irradiation up to 20 Gy killed the cells effectively: approximately 

70% of the cells were killed, but higher radiation doses up to 40 Gy did not increase the cell 

killing. The latter indicates that the cells have some degree of resistance to ionizing radiation. 

Third, the irradiation of the IdU-treated cells with a given x-ray dose (either 20 or 40 Gy) did not 

show a dependence of the cell survival/viability on IdU concentration in 0-500 µM; the treatment 

of IdU even increased the cell viability by about 30%.  This result seems surprising, but is 

actually consistant with our DNA gel electrophoresis results in Fig. 8.4 and Table 8.1. IdU 

decreased DNA strand breaks when it is not incorporated into the DNA.  This can be explained 

by the fact that IdU is a strong electron scavenger. When not incorporated into DNA, it 

scavenged the epre
―
, which are critical in causing DNA damage [219-220]. The dU


 radicals 

generated are too far away to abstract a H atom from the DNA (to cause DNA damage). Our test 



Chapter 8 

162 

result in Fig. 8.7 confirms the ineffectiveness of IdU as a radiosensitizer, consistent with the 

result in recent clinical trials [183]. 
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(a) 

 

 

(b) 

 

Figure 8.7. Cytotoxicity of IdU at different concentrations and different doses of X-ray 

irradiation, determined using the MTT assay on Hela cells: (a) Original MTT data. (b) 

Absorbances of MTT results were converted into percentages of cell viability. The three sets 

with 0 µM IdU (irradiated by 0, 20, and 40 Gy X-ray) were all normalized to 100% cell viability. 
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Fig. 8.8 shows the radiosensitizing effect of compound RS-1 for HeLa cells incubated 

with RS-1 at various concentrations (0-100 µM) for 24 hr and then exposed to various x-ray 

doses (0, 10, 20 Gy). RS-1 shows some cytotoxic effect on HeLa cells even without ionizing 

radiation: the percentage of cell viability exhibited a dependence on RS-1 concentration and was 

reduced from 100% to 45% when RS-1 concentrations were increased from zero to 100 µM. 

When RS-1 concentration was zero, 10 Gy X-ray decreased cell viability from 100% to 73%, 

while 20 Gy X-ray decreased cell viability from 100% to 70%. The latter is consistent with the 

result shown in Fig. 8.7.  Interestingly, at a given x-ray dose (either 10 or 20 Gy), the treatment 

of RS-1 largely reduced the cell viability, which showed a dependence on RS-1 concentration. At 

the high RS-1 concentration of 100 µM, the x-ray induced cell killing was enhanced by a factor 

of approximately 5 (100% : 20%). This result is consistent with our gel electrophoresis results 

shown in Figs. 8.5 and 8.6 and Table 8.2.  All of these results show that compound RS-1 has 

significant radiosensitizing effects, which are much stronger than IdU.  
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(a) 

 

 

(b) 

 

Figure 8.8. Cytotoxicity of compound RS-1 at different concentrations and after different doses 

of X-ray irradiation, determined using the MTT assay on HeLa cells: (a) Original MTT data. (b) 

Absorbances of MTT results were converted into percentages of cell viability. The three sets 

with 0 µM RS-1 (irradiated by 0, 10, and 20 Gy X-ray) were normalized to 100% cell viability. 
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8.4. Conclusion 

 

The DET reaction of epre
－
with compound RS-1 has been directly observed by our fs-TRLS 

measurements. RS-1 shows a much higher DET reaction efficacy than IdU (and certainly BrdU 

and CldU). It was therefore expected that RS-1 will have a much better radiosensitizing effect 

than halopyrimidines. Indeed our measurements of DNA damage by gel electrophoresis and cell 

viability by the MTT assay have confirmed that RS-1 can largely enhance the radiosensitivity of 

the treated human cervical cancer (HeLa) cells to x-ray (ionizing) radiation. It is clearly 

demonstrated that RS-1 has a much better radiosensitizing effect than IdU.  
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Chapter 9 

Conclusions and Future Work 

 

Direct, real-time observation of molecular reactions is of significant importance in various fields 

from chemistry, biology, environmental sciences to medicine.  Femtosecond time-resolved 

laser spectroscopy (fs-TRLS) has been demonstrated to be a very powerful, direct technique for 

real-time observation of molecular reactions.  It has the capability of observing reactions that 

actually happenon the ultrashort time scale - femtoseconds. Since the late 1980s, its application 

to study chemical and biological systems led to the births of new subfields of science, called 

femtochemistry and femtobiology.  Recently, femtomedicine has been proposed as a new 

transdisciplinary frontier to integrate ultrafast laser techniques with biomedical methods for 

advances in fundamental understandings and treatments of major human diseases. These studies 

enabled through real-time observation of biochemical reactions at the molecular level may open 

many opportunities in biomedical fundamental research and clinical applications. For example, 

the femtomedicine approach is promising to advance  the radiotherapy of cancer by obtaining 

new understandings of radiation-induced DNA damage and the mechanisms of action of existing 

radiosensitizers. This thesis presents a molecular-mechanism-based drug discovery project to 

develop novel drugs for effective radiotherapy of cancer through the emerging femtomedicine 

approach. Its ultimate goal is to develop more effective radiosensitizers, based on our unique 

molecular understandings of ionizing radiation induced DNA damage and halopyrimidines as a 

family of potential radiosensitizers. 
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The conclusions of this thesis include the following:   

(1) Our careful, high-quality femtosecond time-resolved laser spectroscopic measurements have 

revealed the universal existence of the coherence spike hidden in ultrafast pump-probe 

transient absorption spectroscopic results. Our results have resolved the long-standing 

controversies about the physical nature and lifetimes of ultrashort-lived prehydrated electron 

(epre
), a novel electron species produced in radiolysis of water.  We show that the spike 

effect could result in a shortening of measured epre
 lifetimes from ~1 ps to almost zero fs.  

Furthermore, after removal of this spike effect, we found that there are two intrinsic epre
 

states that have lifetimes of 18030 fs and 54530 fs, respectively.  Moreover, our direct, 

real-time measurements of the transition state of the dissociative electron transfer (DET) 

reaction epre
 with a probe molecule (IdU) have revealed that both the 180 fs and the 545 fs 

epre
 state are electronically excited states of the hydrated electron (ehyd

).  The latter is 

proved to be the decay lifetime of the p-state of ehyd
, the long-sought wet electron.  These 

results have not only resolved the large discrepancies existing in the literature but provided 

new insights into electron hydration dynamics in bulk water.  Such information is important 

for quantitative understanding and modeling of the role of non-equilibrium epre
 in 

electron-driven reactions in diverse environmental and biological systems, from radiation 

chemistry and radiation biology to atmospheric ozone depletion. 

(2) We obtained the first real-time observation of dissociative electron transfer (DET) reactions 

of epre

 with DNA nucleotides in aqueous solutions. Our results show that purines (A and G) 

are more efficient at capturing epre

 than pyrimidines (C and T). More interestingly, our 

observed data show that only T and especially G are vulnerable to DETs of epre

 leading to 
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bond breaks, while the electron can be stably trapped at C and especially A to form stable 

anions.  The results not only challenge the conventional notion that damage to the genome 

by ionizing radiation is mainly induced by the oxidizing ·OH radical, but provide a deeper 

fundamental understanding of the molecular mechanism of the DNA damage caused by a 

reductive agent (epre

). These findings can be applied to develop new strategies for more 

effective radiotherapies of disease such as cancer. Furthermore, the direct observation of 

DNA base specific damage by DET of weakly bound electrons has a broad significance, as 

there are sources of weakly-bound electrons in biological systems. The resultant DNA strand 

breaks, if not repaired quickly, could cause genetic mutation and even serious diseases such 

as cancer. The oxidative damage at the guanine (G) base and its relation to human cancers 

have been well exploited. The present findings of the most fragile point at the G base and a 

new molecular mechanism of reductive DNA damage could also play a vital role in various 

disease such as cancer and stroke. 

(3) Our results of femtosecond time-resolved laser spectroscopic studies of the molecular 

mechanism of action of halopyrimidines (XdUs, X=F, Cl, Br and I) as potential hypoxic 

radiosensitizers have clearly shown that it is the ultrashort-lived epre

, rather than the 

long-lived ehyd

, that is responsible for DET reactions to XdUs.  This reaction leads to the 

formation of the reactive dU· radical, which can attack DNA by hydrogen abstraction and 

finally cause DNA strand breaks and cancer cell death. The DET reaction is therefore a key 

step in the mechanism of action of these pro-drugs in radiotherapy of cancer. Our results 

have challenged a long accepted mechanism that long-lived ehyd

 would be responsible for 

the radical formation from halogenated molecules. Furthermore, we found that the DET 

reaction efficacy leading to the formation of the reactive dU· radical is in the order of FdU 
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<< CldU < BrdU < IdU. Thus, only BrdU and IdU could be explored as potential 

radiosensitizers, in agreement with the results of bioactivity tests and clinical trials.  

Moreover, as a more general conclusion, our results demonstrate that despite their ultrashort 

lifetimes in femtoseconds, nonequilibrium epre

 can play a crucial role in many ET reactions 

occurring in aqueous environments, especially for chlorine-, bromine- and iodine-containing 

molecules, which also have important impacts on the Earth’s environment. 

(4) Our fs-TRLS studies have demonstrated the DET reactions of BrdU/ IdU with dAMP*

 and 

dGMP*

 formed by attachment of epre


 generated by radiolysis of water in aqueous 

BrdU-dAMP/dGMP and IdU-dAMP/dGMP complexes under ionizing radiation. The results 

have provided a molecular mechanism for the DNA sequence selectivity of BrdU and IdU in 

radiosensitization. This new mechanistic insight into the interaction of BrdU and IdU with 

DNA provides clues to improve the halogen family as potential radiosensitizers  and to 

develop more effective radiosensitizers for clinical applications. 

(5) Comparing with our observed results of the DET reaction of cisplatin with epre

 generated in 

radiotherapy, we found that the DET reactions of BrdU and IdU with epre

 are much weaker 

so that they are hardly effective radiosensitizers.  Thus, there is little chance for BrdU and 

IdU to be effective radiosensitizers for clinical use. Instead, development of other compounds 

to enhance the radiosensitivity of cancer cells is suggested. 

(6) Based on our molecular mechanistic understandings of DNA damage induced by ionizing 

radiation and halopyrimidines as potential radiosensitizers, we are now developing more 

effective new radiosensitizing drug candidates through the femtomedicine approach 

integrating fs-TRLS with biomedical methods.  We have performed a fs-TRLS study of the 
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DET reaction of a candidate compound (RS-1) with epre

, and found that the DET reaction of 

epre

 with RS-1 is much stronger than that of IdU (and certainly BrdU and CldU). Moreover, 

we have tested the radiosensitizing effect of RS-1 against human cervical cancer (HeLa) cells 

exposed to various doses of x-ray irradiation through DNA damage measurements by gel 

electrophoresis and cell viability/death assays by MTT.  Our results have confirmed that 

RS-1 can largely enhance the radiosensitivity of treated human cervical cancer (HeLa) cells 

to x-ray (ionizing) radiation. It is clearly demonstrated that RS-1 has a much better 

radiosensitizing effect than IdU. Although these are just preliminary results, our results have 

shown the high potential of utilizing our unique molecular understandings of the biological 

effect of ionizing radiation and the action of halopyrimidines to develop more effective 

radiosensitizers.   

In summary, our studies have demonstrated the potential of femtomedicine as an exciting 

new frontier to bring breakthroughs in understanding fundamental biological processes and to 

provide an efficient and economical strategy for development of new anticancer drugs. Further 

tests of RS-1 and other compounds in cancer cell lines and animal cancer models will be needed 

in the future. 
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Appendices: 

Appendix A: List of Symbols and Abbreviations 

Symbols: 

A        adenine (one of the DNA bases) 

C        cytosine (one of the DNA bases) 

C        carbon 

C        molecular concentration 

D        dose 

epre
－      precursors to the fully solvated electron 

esolv
－      fully solvated electron 

eV        electron volt (a unit of energy, 1 eV = 1.6 ×1019 J) 

fs         femtosecond (1 fs = 10
15

 second) 

G         guanine (one of the DNA bases) 

Gy        Gray (a radiation dose unit, 1 Gy = 1 J/kg) 

J          joule (an energy unit) 

kg         kilogram 

KI         potassium iodide 

L          liter 

M         molar (a molar concentration unit, 1M = 1 mol/L) 

ms         millisecond (1 ms = 10
3

 s) 
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ns          nanosecond (1 ns = 10
9

 s) 

MTT       3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

O          oxygen 

          density 

ps          picoseconds (1 ps = 10
12

 s) 

γ           gamma 

t           tert 

T          thymine (one of the DNA bases) 

μs         microsecond (1 μs = 10
6

 s) 

 

Abbreviations: 

AP                apurinic / apyrimidinic site 

BrdU              bromodeoxyuridine 

DD                dipolar dissociation 

DEA               dissociative electron attachment 

DET               dissociative electron transfer 

DMSO             dmethyl sulfoxide 

DNA               deoxyribonucleic acid 

DSB               double strand break 

dsDNA             double strand DNA 
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5’-dCMPH          2’ -deoxycytidine-5’ -monophosphate 

5’-dTMPH          2’ -deoxythymidine-5’ –monophosphate 

ESR               electron spin resonance 

FDA               food and drug administration 

HIF                hypoxia-inducible factor 

H2O2               hydrogen peroxide 

IdU                iododeoxyuridine 

IFP                interstitial fluid pressure 

IGRT              image-guided radiotherapy 

IMRT              intensity-modulated radiotherapy 

IR                 infrared 

LEFE              low energy free (kinetic) electron 

LET               linear energy transfer 

MDS              multiply damaged site 

N2O               nitrous oxide 

PDT               photodynamic therapy 

SC                supercoil 

SCE               sister chromatid exchange 

SDS               sodium dodecyl sulfate 

SSB               single strand break 
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ssDNA             single strand DNA 

TAE               Tris-acetate-EDTA 

UHV               ultrahigh vacuum
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