
A PARALLEL PRIMAL-DUAL DECOMPOSITION

METHOD FOR MULTI-PART LINEAR PROGRAMS

by

Hyun Jin Park

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirernent for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo. Ontario, Canada, 2ûû1

O H p n Jin Park ZOO1

Acquisitions and Acquisitions et
Bibliographie Çenriœs sewices biMiographques

The author has granted a non-
exclusive licence allowbg the
National Library of Canada to
reproduce, loan, distribute or seIl
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or othenuise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

The University of Waterloo requires the signatures of dl penons using or photocopying this

thesis. Please sign below and give address and date.

ABSTRACT

In this thesis, we develop a new parallel primal-dud decomposition algorithm for multi-

part linear programming (LP) problems. We first present a parallel decomposition method for

two-part models, in which the two master-like subproblems are solved simultaneously in two

different processon and generate an upper bound and a lower bound on the original probiem at

each iteration. These two bounds are monotonically improved and converge to within the

prescribed toletance of the optimal value by exchanging primai and dual information.

Then we extend the basic principles of the two-part aigorithm to multi-part models by

applying a hierarchicd decomposition principle recursively. The original multi-part probiem is

divided into two aggregated subproblems of lower bound type and upper bound type. and the

aggregated subproblems are funher divided into two srnailer aggregated subproblems of upper

bound and lower bound. This bifurcation pmcess continues until there are no subpmblems left

for futher decomposition. The subproblems are solved in different processon simultaneously and

work together to reach an optimal point during the iterations by exchanging prima1 and dud

information in the hierarchicd way. Convergence and other usefui properties of the parallei two-

part and multi-part algorithms are proven.

We developed a parailel decomposition solver for problems of two. three or four parts,

called WATPAR (WATerloo PARalell), through the use of GAhlS, the Regex Library, CPLEX

6.0 and PVM (PYallel Virtuai Machine) 3.1 1 on one IBM R S b O workstation and a cluster of

four PCs running the Solaris operating system. Several mulu-part LP models are tested using

WATPAR, and in each of the tests, the new parallel decomposition algorithm converged to an

optimal value of the original problem in a finite number of iterations. For some large problems,

the new method showed some speedups.

1 would like to thank and glorify God for allowing me to finish this long joumey.

1 would like to deeply appreciate rny wonderful supervisor. Professor J. David Fuller. for his

academic guidance as well as his mentoring and financiai support provided throughout this study.

My sincere gratitude should p to Professors R. G. Vickson. J. K. Ho. H. Wolkowicz and R. P.

Sundarraj for their invduable feedback and careful review. 1 also thank Professor E. J. Fragniere

and his colleagues in Switzerland for ailowing me to use their facilities. Many thanks go to

Richard Kyuchul Cho for his friendship for the last couple of years.

1 am greatly indebted to my parents for their love. encouragement and pnyer. I am also indebted

to grandmother-in-law and my parents-in-law for their understanding and support. I should

express my *gratitude to rny sister. brocher-in-laws. sister-in-law. uncles and aunts for their help

and cxe.

rinally. rhe bgeatest debt of gratitude is owed to my wife Soyoung, whose constant love, patience

and suppon not only inspire me but dso allow me to indulge in academic and professional

endeavon of this ma-pitude. Needess to Say, without her, 1 could not have cornpleted this thesis.

To Soyoung and Katherine Eugene Park

vii

TABLE OF CONTENTS

CHAPTER 1 introduction

1.1 Brief History of Decomposition (1)

1.2 Motivation and Objectives of the Research .. (3)

1.3 Overview of the Thesis ... (5)

CH.4PTER 2 Literature Review .. (7)

1.1 An Overview of the Decomposition Methods .. (7)

Dantzig-Wolfe Decomposition Method .. (7)

The Nested Dual Decomposition Method for Multi-Stage Models (8)

Benden Decomposition Method ... (9)

The Nested Mmal Decomposition Method for Multi-Stage Models (9)

... Cross Decomposition Method by Van Roy (9)

Pnmai-Gud Decomposition Method by Lan and Fuller (10)

........ Primai-Dual Nested Decomposition Method for Multi-S tage Models (11)

2.2 An Overview of Parallei Computing .. (13)

SIMD vs MIMD ... (13)

S hared Memory vs Message Passing .. (13)

Performance Measurement in Paralle1 Computing (15)

... 2.3 PanIlel Decomposition (16)

2.4 S u m m q .. (18)

...................................... CH,- 3 PanIlel Decomposition of the Two-Part Roblern (19)

3.1 Mode1 Structure and Assumption .. (19)

3.2 Subproblem Structures ... (22)

3.3 The Decomposition Algori thm (27)

3.4 Properties of the Alprithm .. (30)

viii

... 3.5 Sumary and Observations on the Algorithm (43)

CHAPTER 4 ParaIlel Decomposition of the Multi-Pan Mode1 .. (45)

4.1 Definition of a Multi-Part Linear Program .. (45)

4.3 The Structure of Subproblems for the Fint Method .. (47)

3.2.1 The Bifurcation Process .. (47)

4.32 Precise Description of the Subproblems (53)

1.2.3 A Strategy to use more Information from Second Level Iteration (62)
4.3 The Parallel Decomposition Algorithm for the First Method (62)
4.4 Propenies of the Algonthm for the First Method ... (69)

4.5 A Heunstic Decomposition Algorithm - the Second Method (74)

1.5.1 The Structure of Subproblems for the Second Method (74)

4.5.2 The Heuristic Decomposition Algorithm for the Second Method (79)

4 5 . 3 Properties of the Algorithm for the Second Method (82)

C-R 5 Prelirninary hplementation and Results ... (87)

5.1 The hplementation Procedure .. (87)

.. 5.1.1 Decomposition Phase (89)

5.1.2 Solution Phase ... (94)

5.1 The Test Roblems and Results of the Expriment ... (95)

CHAPTER 6 Conclusions and Future Research ... (107)

6.1 Conclusions ,. ... (107)

6.2 Future Research .. (1 1 1)

Appendix A G A I S codes of the test models ... (1 13)

.\ . I Hydro-Electric Genention Planning Model 1 (HEPGL) (1 13)

A.2 Hydro-Electric Genention Planning Mode1 2 (HEEG?) (1 16)

A.3 Financial Planning Mode1 (FP) .. (120)

Appendix B C codes of WSET ... (123)

Appendix C C codes of WATPAR ... (131)
C.1 Rocessor 1: Lower-Lower Bound Subproblem ... (131)

C.2 Rocessor 2: Upper-Upper Bound Subproblem ... (140)

C.3 Professor 3: Lower-Upper Bound Subproblem ... (147)

C.4 Rocessor 4: Upper-Lower Bound Subproblem ... (151)

....... B IBLIOGRAPHY (157)

LIST OF TABLES

Table 4 . I

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 6.1

General structure of mult-part mode1 ... (47)

Statistics of the test problems ... (96)

The test statistics of direct methods on RSI6000 .. (98)

Stritistics of Simplex and Bmier methods on one PC using WSET (99)
The subproblem sizes .. (100)

Performance of Paralle1 Decomposition with Sirnplex solver (102)

.......................... Performance of Parailel Decomposition with Banier solver (103)

................. Time rneasurement of the parailel algorithm with Simplex solver (104)

.................. Time mesurement of the parallel aigorithm with Banier solver (104)

The distinction between Ln's algorithm and the new parallel decomposition

dporithm ... (108)
C

LIST OF FIGURES

Figure 1.1 Structures of multi-stage problem. h m Lm and Fuller [19951 (1)

Figure 1.2 General structure of the multi-part models ... (4)

Figure 2.1 information fiow of nested primal-dual decornposition (12)

Figure 3.1 Information Row for panllel two-part algorithm (26)

Figure 4.1 The bifurcation process for N=9 (9-parts) .. (48)

Figure 4.2 +part decornposition principle and information fiow (50)

Figure 4.3 Bstage decomposition principle in Lan-Fuller method (53)

Figure 1.4 Information flow of +stage decomposition in Lm's method (61)

Figure 1.5 Information flows for the heunsiic parallel decomposi tion algorithm (75)

... Figure 5.1 Network connectivity (88)

Figure 5.1 Exmple of GAMS mode1 fomulation .. (90)

Figure 5.3 Example of SET file ... (91)

Figure 5.4 Example of anonymous mauix generated by GAMS (92)

Figure 5.5 Example of multi-part structure generated by WSET (93)

Figure 5.6 A scenario m e for HEPGl .. (97)

Figure 5.7 Speedups for FP with Simplex and Banier .. (105)

.. Figure 5.8 Efficiencies for FP with Simplex and Barrier (106)

Chapter 1 Introduction

1.1 Brief History of Decomposition

Over the past several decades. linear programming (LP) has been a useful planning and

scheduling tool for economic and management applications. The real world LP problems are very

large and usuaily have some special structures, which could break into several distinct LPs except

for a few linking consuaints. These linking constmints represent relationships among different

periods. regions. stochastic scenarios. etc. The most cornmonly discussed structures are prima1

(or dual) block-anguim. sraircase and block-triangular as shown in Figure 1.1.

l a. bloc k-angular b. staircase c. block-nianmilar
- -

Figure 1.1 Structures of mulù-stage problem. from Lm and Fuller [1995]

Based on the ideas of utilizing the specid structures, many decomposition algorithms.

which drcompose a very large problem into several subproblems and solve them iteratively

through the exchanges of information, have been proposed since the early 1960's,

There have k e n several motivations to study decomposition: the prospect of reducing

computationd time: a rnethod to solve a huge mode1 within a cornputer's memory limits that do

not permit a straightfonvard solution of the whole mode1 (Fragniere et al. [1998]); and to ease

management of a huge mode1 (Murphy and Mudrageda [19991). by breaking it into its natural

constituent parü such as regions. divisions. etc. Following the famous decomposition methods

of Dantzig-Wolfe [1960] and Benders* [1962], cross decomposition by Van Roy [1983] and

Holmberg [1992]. and mean value cross decornposition (Aardal and Ari [1990] and Holmberg

[L992]) have k e n developed to solve large-scale LPs with prima1 (or dual) block-angular or

staircase structures. Another important development was reponed by Lan and Fuller [1995a, b]

based on Lan [1993] for multi-stage bloc k-triangular structures. in which al1 subproblems perform

like a master problem.

Recentl y. technological advances in massive1 y parallel processon (MPPs) and distnbuted

computing systems have encouraged development of decomposition algorithms to solve

subproblems si mu1 taneousl y using several di fferent processon. Several parallel computational

tests and algorithms for LPs are presented by Ho et al. [1988]. and Rosen and Maier [1990] for

models with block-angulu structure and by Dantzig and Glynn [1990], and Birge et al.[19%] for

decomposi tion of stoc hastic Us. Entri ken [1996] reponed experimentd results of solving

staircase LPs by using parallel Benden decomposition. in al1 of these previous studies,

subproblems were solved in pardlel. but the algorithms had a serial element in the alternation

between the master problem and the subproblems. In contrast, our decomposition principie can

be used to define an entirely parallel aigorithm.

1.2 Motivation and Objectives of the Researcb

This research is motivated by Lan [1993], in which he suggested an idea of computing the

subproblems simultaneously, in a bla'k-triangular problem. by sending proposais and cuts to

immediate neighbors in his funher research. but after some reflection. it is apparent that this

scheme would probably take too many iterations for the last subproblem to hear information of

the fint subproblem. Thus, this research stmed h m the ider that all the subproblems could be

solved at the s m e time using different processors in order to have benefits of parallelism. by

broadclisting dl information to ail other subprob lems for block-niangular stnicture.. It worked

well for the two-stage case. however. it failed to extend the idea of the nested decornposition to

the multi-stage case from the two-stage alsorithm due to complexity of nested algorithms.

inconsistency of weighting schemes and infeasiblilty of the solutions. The nested aigorithm didn't

fit well in paralle1 decomposition because the nested stnicture and the information aansfea lead

to m inherently seriai alprithm: it has to solve one subproblem at a time with further weighted

primal information of dl the previous subproblems on the forward ppass and with additional

weights on dual information of dl the following subproblems on the backward p a s

Redizing that the linking variables and constnints cause those serious problems. we next

attempted another bruadcasting scheme by inciuding al1 linking constraints in each subpmblem

and restricting primal and dual linking variables to convex combinations of hown solutions from

other subproblerns of emlier iterations. since the nurnber of the linking variables and constraints

îce relatively smail. This ides makes it possible to apply the parallel decomposition method to the

multi-pan structure problems shown in Fi-rn 1.2.

Figure 1.2 Genenl structure of the multi-part models

The panllel primaldual decomposition dgorithm for two part problems converged

consistently to the optimal solution in a small nurnber of iterations, however. in some tests of

multi-part problems the aigorithm (we cd1 this a heuristic parailel aigorithm - set section 4.5) did

not converge exactly to m optimal solution but repeated the same feasible solution thereafter.

After we found some erron in the convergence proof of this multi-part algorithm, we finaily

reached the ideas of applying the two-part decomposition principle recunively in a hierarchical

way since the two-part algorithm seemed to be working fine and no flaws could be found in the

convergence proof.

Hence. the objectives of this Ph.D. resev~h are as follows.

1. Develop a new paralle1 primai-dual decomposition method for NO-part and multi-part

linex proCpmming models which have the generai multi-part matrix structure shown above.

2. Pmve and dernonstrate the convergence of the parallel two-part and multi-pan

algorithms as well as other properties of the algorithm.

3. Design and implement a parailel primai-duai decomposition solver for the parallel

algorithm on several computen and investigate the computational efficiency of the algorithm.

13 Overview of the Thesis

This thesis is organized as follows. The next chapter presents a literature ~ v i e w on both

serial decomposition methods and parailel &composition methods with basic concepts of parallel

computing.

Chûpter 3 proposes the new decornposition method for NO-part linear prognms. which

divides the original problem into two master-like subproblems, a lower bound subproblem and

an upper bound subproblem. and coordinates them to converge to an optimal solution by

exchanging primal and dual information. Roofs of the convergence as well as other useful

properties of the algorithm are given.

Chapter 4 discusses the development of the parallel algorithm for multi-pan models. in

which the two-pm decomposition principle is recunively applied in a hierarchicd rnanner. It also

discusses the heuristic parailel aigorithm. a simple extension of the two-part decomposition

principle to multi-pan problerns without the hierarchical decomposition pnnciple.

Chapter 5 presents the design and implementation procedures of the parallel

decomposition solver and shows pteliminary computational results. In each of the tests, the

pardiel algorithm converged to within a small tolerance of the optimal solution in a reasonable

amount of time. The aigorithm was faster than the simplex or inte~or point methods in a single

machine in some very large scale problems. It could solve a huge problem. which could not be

solved in one machine due to memory limits. The final chapter indicates the expected

contributions md future research directions.

Appendix A presents the test modeis in GAMS files and Appendices B and C show the

core pans of the panllel decomposition solver codes wrinen in the C laquage.

Chapter 2 Literature Review

This chapter provides an overview of topics found in the literature which are related to

this thesis. in the next section, a bief ~ v i e w of decomposition methods for LPs is presentd The

second section discusses the basic parallel computing concepts and methods. In section 3. the

parailel computational tests and algorithm applied to decomposition methods are reviewed aiong

with the description of their characteristics. The summary is given in the final section.

2.1 An Oveniew of the Decomposition Methods

Many decomposition schemes, such as Dantzig-Wolfe decomposition. Benders

decomposition and cross decomposition by Van Roy, have ken developed to solve large-scde

mathematical proCgamming problems. A new decomposi tion algorithm. cdled primal-dual

decomposition. w u suggested by Lan and Fuller [1995aj. Ln this section. these aigonthms are

briefly reviewed with extensions to the nested alprithm for multi-stages.

Dantzig-Wolfe Decomposition Method

h the decomposition method of Dantzig-Wolfe, the master problem determines an

optimal combination of the proposds on hand subrnined by subproblems, by assigning values

to the weights. The optimal duai variables. known as prices, are used to adjust the objective

function in the subproblems which in tum may produce new proposais to improve the global

objective function in the naster problem. This mechanisrn is ofien called the dual decomposition

method.

Dantzig [1963] applied this method in a hiervchical way to a four stage staircase mode1

by dividing the original problem into a fmt level master problem of stage two and four and two

fint level subproblems of stage one and stage t h e . The fint level master problem is funher

divided into a second level master problem of stage four and a second level subpmblem of stage

two. The first level master problem sends price information to the fiat level subproblems when

the second level subproblem has no more proposal to the second level master problem.

The Nested Dud Decomposition Method for MultiStage Models

The Dantzig-Wolfe decornposition meihod is motivated by the block-angular structure

in which the choice of a master problem and subproblems is reiatively easy. But, under the system

of staircase or block-triangular wi th inulti-stages. the appropriate c hoice of master and

subproblems is not as simple as that of the block-angular structure. This problem c m be solved

by employing nested decomposition aigorithm.

Dual nested decomposition for staircase structure was first introduced by Dantzig [1963],

where h e Dantzig-Wolfe decomposition principle was applied to the dynamic model structure

in a recunive fashion. The algorithm of dual nested decomposition divides the original problem

into N penod subproblems and solves only one subproblem at a time by applying the Dantzig-

Wolfe decomposition principle recursively. This pnnciple rnakes the period t problem act both

as 3 restricted master pmblem with respect to periods 1 to r- 1 and as a subproblem with respect

to t+ 1 to 1V.

The price mechanism is used in dual nested decomposition for the coordination between

periods. The master problem receives proposais from subpmblems and sends a price information

to subproblems.

Benders komposition Method

In the Benders decomposition method, the master pmblem allocates shared resources to

the subproblems. The subproblems, then. react by utilizing the resources and report to the master

problem the prices which reflect how well the subproblems use the shared resources. Then. the

master problern adjusts and reallocates the resources according to the price information.

Benders decomposition is efficient for the cornplicated problem which cm be parritioned

into two parts: one major part containing linear variables and another part containing the

complicating variables such as integer or nonlinear vanables. Benden decomposition cm be

cdled the primai decomposition method.

The Nested Primai Decomposition Method for MulüStage Models

Dantzig [L980i applied a nested decomposition algorithm to the dual of stYrcase Linear

Pro_mrnming modeis. which cm be considered as a nested decomposition of Benders method.

In nested primal decomposition. the resource mechanism is used for the coordination between

periods. The master problem. which is the preceding subproblems, receives cuts from the

following subproblems and sen& a resource vector to the following subproblems.

Cross Decomposition Method by Van Roy

Cross decornpsi tion was first introduced by Van Roy [1983] for mixed integer pro*pms.

The cross decomposition method c m be described as simultaneously using Benden

decomposition (primai decomposition) and Dantzig-Wolfe decornposition (dud decomposition)

in an iterative manner. Cross decomposition divides the original pmblem into two decomposition

systems: the primal master problem (PM) and the prima1 subproblem (PS) in the primal

decomposition system; the dud master problem (DM) and the dud subproblem (DS) in the dual

decomposition system. The main idea behind this method is to make use of the very close

relationship between the PM P M) . and the DS (PS). This reiationship is exploited in such a way

that only the easy-to-solve subproblems are used as long as they produce a converging sequence

of prima1 and dual solutions. This method may increase computational efficiency. But

convergence cannot be guaranteed by the use of subproblems only, and therefore a primal or dud

master problem. with ail dual or primai solutions generated so far, has to be solved h m time to

time as the algorithm proceeds. 'The need for convergence tests and for involving a rnaster

problem often prevents a possible reduction in computer memory requirements since it causes

complete sets of primd and dud solutions to be stored even if a master problem is not solved at

each iteration" [Aardal and Ari, 19901.

Rimal-Dual Decomposition Methoà by Lan and Fuller

Another new method was developed by Lan and Fuller [1995a] based on Lan [1993] for

two-stage models. In this aigorithm. the decornposition structure is balanced and convergence is

generally npid. 'The aigorithm divides the original problem into a pair of restricted primai and

dual subproblems. each of which h a surnmary information on ail previous iterations of the othef

and Fuller. 199531. The solutions of the two subproblems are monotonically improved by

coordinating the information of the subproblems and converge to a prescribed tolerance of the

optimal value as the iterations go on.

in this algorithm, both subproblems are in equivalent positions and play the role of both

the master problem and the subproblem of the traditional method At each iteration, the stage one

subproblem gives the upper bound of the onginai pmblem by restncting the dual variables to

convex combinations of known dual solutions and the stage two subproblem gives a lower bound

by restricting primal vviables to convex combinations of known primal solutions. The algorithm

itemtes until the upper bound and Iower bound reach an equilibnum point.

Their tests for eleven problerns with the two stage, block-uiangular stmcnires showed bat

the new method is usually faster and more efficient than the iraditional rnethods.

Park [19%] extended this idea to convex. nonlinear protgmming rnodeis. He proved and

tested that the new algorithm for the two stage case converged to an optimal solution in a finite

number of i tentions.

Prirnal-Dual Nested Decornposition Method for Multi-Stage Models

Lm and Fuller [199Sb] also presented a nested primal-dual decomposition aigorithm for

the multi-stage LP problerns with block-trianplar matrix structure. In ihis aipnthrn. the originiil

multi-stage problem is divided into a sequence of a pair of subproblems for each stage. These

subproblems are coordinated by passing the proposals forward and cuts backwud; the previous

subprobIems pass the proposals to the following subproblerns fonvard in stage numben (which

designates time period in many models) time and the following subproblems provide cuts to the

previous subproblems backwud. This information fiow between subproblerns is shown in Figure

2.1. from h and Fuller [1995b]. The aigorithm can be perceived as the combination of the

primd and the dual nested decomposition algorithms. As in the two stage case, the fint

11

subproblem provides the upper bound to the original problem and the 1st subproblem provides

the lower bound to the original problem. These two bounds are monotonically improved and

converge to a prescribed tolerance as the iterations go on.

Park (19961 applied this nesting scheme to multi-stage convex nonlinear programs and

showed that the nested algorithm converged in a finite number of iterations. but without a

convergence proof.

Pmposais
4- t-1-

A v -
Ropos+s

Figure 2. l Information tlow of nested primal-dual decomposi tïon

2.2 An Overview of Paralle1 Computing

PanIlel computing is the use of paralle! computers utiliting more than one Central

Rocessing Unit (CPU) at the same time to solve a single large problem faster and more efficiently

[Baker and Smith. 19961. In this section. seved paralle1 computer systems are reviewed briefly

and two performance measurements of parailel computing are discussed.

SIMD vs MIMD

Panllel computers cm be classified into two groups by Fiynn [1966]: SiMD (Single

Instruction, Multiple Data) and MiMD (Multiple instruction, Multiple Data).

A SLMD machine consists of a number of identical processors doing the same things to

different data at any given point of time. Typical SIMD machines have large numbers of relatively

simple and affordable processors ~sulting in fine-gnined parallelism. which distributes the data

as widely as possible with each processor performing the simplest operations.

in MIMD machines, the most widely employed parallel machine architecture. each

processor enecutes a possibly different program on different data under the conuol of different

instruction asynchronously. The MIMD machines generally have fewer but mon powerful

processon than SIMD machines.

Shared Memory vs Message Passing

Another architecturai classification is whether the parallel computer is a shared memory

machine or a message passing machine according to how the processors cornrnunicate with each

other.

Shared memory computen have global memory that can be directly accessed by dl

processon. Shared memocy computen are not very scalrble. panicularly when the entire global

memory is equally accessible to dl of luge number of processors. They also impose an inherent

concem of s ynchronization. i .e. how different processors can read and write the data in the same

location of memory simultaneously without conflict. Currently, most shared memory computers

13

have a local memory distributed to each processor topther with a global memory accessible by

al1 processors. Shared memory MiMD computen are often called multiprocessor computen.

Message passing MIMD systems are often cailed multicomputers. In message passing

cornputers. each processor has its own local memory, but they do not have shared mernory, and

processors communicate only by sending and receiving messages over a communication network.

Each processor in message passing machines executes its own instruction streams and uses its

own local data, both stored in its local memory. Then. necessary data can be exchanged by

sending messages to each other over a network. Since the network determines the speed and

reliability of interpmcessor communication and the spatial distribution of the processoa. message

passins systems can be funher characterized into closely coupled systems and loosely coupled

systems (or distributed systems) by their communications networks.

Closely coupled systems. such as the architectures with mesh or hypercube networks.

have fast and reliable point-to-point links between processors which are physically close to one

another. Loosely coupled systems or distributed systems, such as workstations connected by local-

are3 network (LW) or wide-ares network (WAN), have relativeiy slow and unreliable

communication between processon that are physically dispersed. They have coarse-grained

parallelism. which distributes the data as large as possible with each processor spending most of

its time dotng computations and comrnunicating infrequently because of the expensive

communication cost.

The local-are? network 0 systems consist of several workstations connected by a

network. The locd area network allows communication beiween any two processors physically

14

apan. In mmy LAN's, communication is not very diable, for example, a message may be

damaged, arrive out of order, or not amive at its destination at dl, so communication requires a

lot of programming effort. ïherefore, some software protocols for message passing systems such

as Patallel Virtual Machine (PVM) and Message Passing Interface (MPT) are used to implement

diable communication and sirnpler programming.

PVM, which is more suitable for LAN based systems than MPI, provides an interface

which links separate hosts. possibly of varying types. to create a single logicai host. so-called

vinual machine. PVM allows a programmer to take virtually any network of M - b a s e d

computen and mat them as a single parallel computer. "PVM has a somewhat lirnited message-

passing subset, providing basic send and receive operations and some simple collective

communications. but not providing the nch set of features that more formal message passing

systems, like the MPI, provide. PVM does. however, provide a complete environment for p d l e l

computing, including the PVM console, and includes featms for dynamicaily adding and

deleting machines from your own virtuai-machine configuration." (frorn Baker and Smith, 1996)

A LAN limits the physical distance between processon to on the order of a few kilometen. To

interconnect processon that are farther apart, a wide-area network (WAN) can be use&

Performance Measurement in Parallel Computing

Generally. the performance of parallel computation can be measured in two ways.

speedup and efficiency. even thou* they depend on hardware, sohare and algorithms of solving

a problem.

The speedup S achieved by a paraIlel system is defined as the gain in computation speed

15

achieved by using N processors with respect to a single processor:

S = T I / T N

where Ti is defined as the time taken to solve a panicular problem by the fastest seriai algorithm

on one processor. and TV is the parallel runtime taken CO solve the same problem by a parallel

algorithm or computation on N different processors.

The efficiency E denotes the effective utilization of cornputing resources. It is the ratio

of the speedup to the number of processon used:

E = S / N .

2.3 Paraliel Decomposition

Recent advances in the developments of massively panllel processon (MPPs) and

distributed computing systems made ît possible to cwrdinare many smdl tasks to solve one large

problem. This modem technolog encourages development of decomposition algorithms to solve

subproblems simultaneously using several different processon for aigorithmic efficiency.

Several paraIlel computational tests and aigorithms for LPs with block-angular and

staircase structures have been presented since block-angular and staircase structures lend

themselves naturally to panllel computing. Ho. Lee, and Sundarraj [1988] implemented the

Dantzig-Wolfe decomposition algorithm for block-anp1a.r linear programs using parallei

processing of the subproblems in the CRYSTAL muiticomputer at the University of Wisconsin

at Madison and showed that sipficant speedup could be obtained using paralle1 decomposition.

Rosen and Maier [1990] presented another approach to parallel solution using the dual of block-

angular linear programs by fixing the dual coupling variables. Gnanendran and Ho [1993]

investigated strategies for improving efficiency in distributed Dantzig-Wolfe decomposition by

better balancing the load between master and subproblem processors because the parallel

efficiency of the distributed approach is critically dependent on the duration of the inherently

serid master phase relative to that of the bottleneck subproblem.

Enviken [1996] presented the experimental results of using parallel Benden

decomposition to solve staircase multistage problems on a shared memory multiprocessor

cornputer which has 6 processors. He showed that paralle1 decomposition can solve a large

problem with staircase structure faster than the simplex method even when serial decomposition

is slower than the sirnplex method.

Another use of parailel processon for decomposition alprithms is for the area of

stochastic p r o * m i n g problems since the equivaient detenninistic problem of a stochastic

model is typically very large. Dantzig and Glynn [1990] suggested the use of parallel processors

to calculate the subproblems of Benden decomposition for stochastic models. Ruszczynski

[1993] suggested parailelizing a variant of the nested decomposition algorithm by queuing

subproblems for i d e processors. and Birge, Donohue. Holmes and Svintsits ki [19%] tested and

compared the parailel implementation of a nested decomposition algorithm for mupistage

stochastic linev pro+nms over a serial implementation using PVM on a network of RS/6000

model 32OH workstations connected by a local ethemet. Their computational experience on a

large test set of pmcticai problems with up to 1.5 million constraïnts and almost 5 million

variables showed that the paralle1 implementations worked very well but they require careful

17

attention to processor load balancing. Nielsen and Zenios [1997] implemented a version of

Benders decomposition algorithm for two-stage staihastic LPs on the parallel CM-5 cornputer

using the interior p i n t me thod to solve scenaxio subproblerns in parallel. Another cornputational

assessrnent for stochastic LP decomposition using intenor point method was reported by

Vladimirou [1998] on an IBM S R multipracessor system.

Fragniere. Gondzio. Sarkissian and Vial [2 0] proposed a new twl. called Structure

Exploiting Tml [SET], for linking algebaic modelling languages and structure exploiting tools.

such as decornposition rnethods. using the GAMS il0 Library [1996] and the Regex Library

[1992]. Fragniere, Gondzio and Vial [l998b] reporteci a successful p d l e l implementation of

Benders' decomposition on 10 Pentium cornputen under the Linux operating system for a

stochastic financial planning mode1 with one million scenarios. using SET.

Unlike Pnmal-Dud decomposition. most decomposition methods possess an unbduiced

structure providing different mounts of information to the master and subpmblems and ailow

only the master problem to converge monotonely. Lm and Fuiler [1995] suggest that these two

factors moy be the main reason for the poor performance and slow convergence of the traditional

decomposi tion rnethods.

Since no one has developed a parallel algorithm for primal-dual decomposition of LPs.

in this thesis. we develop and study such an algorithm.

Chapter 3 Paralle1 Decomposition of the Two-Part Problem

In this chapter. we develop a parallel decomposition aigorithm for NO part linear

programrmng problems, Le. an LP problem which would break into two distinct LPs. except

for a few linking constraints that connect the pans. The new method divides the original

problem into two subproblerns (a lower bound subproblem and an upper bound subproblem).

instead of the traditional master and subproblem. The subproblems are derived in a way that is

similar to the two subproblems in Lm's il9931 scheme. but here we derive them for a two-

pan structure for pyallel computations. whereas Lm's was for the two-stage structure. for a

senal algorithm. Since the subproblems in each part give an upper bound and a lower bound

to the original problem. the algorithm arbiuarily selects an upper bound subproblem from one

part and a lower bound subproblern from the other part and solves them simultaneously in two

dif fe~nt processon. By exchanging prima1 and dual information st each itention. these two

bounds are monotonically improved and converge to within the prescribed tolerance of the

optimal value.

3.1 Mode1 Structure and Assumption

The variables and constnints are grouped into two parts. indicated by the subscnpt

r=l. 2. The objective function is the sum of linem functions and each part's objective function

depends only on that pan's variables. Each part contains three sets of variables; nonlinking

variables. .r,. linhng variables. y,, and artificial variables. v~. Also. each part consists of three

sets of consuaints: nonlinking constraints. linking consvaints and upper bound constraints on

linking variables. The liaking constraints in each part may contain linking variables of either

part to represent the influence of that part on the other. The general prima1 and dual structures

of the two-pan linear program are as follows (superscript T denotes transpose).

q1 are the vecton of variables for part t. The dual variable vectors

for the consmaints of part t of P are denoted by row vectoa nt, or and p, where Rq ,

w R" and p g R' . L, is a qr x r, matrix. Ar is a m, x nt mauix, Br is a qr x n, rnaaix, Dr is a mr

x r, matrix. and c,, d , Mt >O. b,, f;. and ut >O are vectoaof suitable dimensions for r-1, 1.

Each part has 3 set of primal (or dual) noniinking constraints containing A,, and a set of upper

20

bound constraints. The two parts are linked through the pnmal (or dual) linking consaaints

containing the matnx La. The primal (or dual) linking variables are yr (or y) which appear in

linking constmints of both parts. Each linking pnmal consaint has a corresponding duai

linking variable and similarly. there is 3 linking dual constra.int corresponding CO each linking

primal variable. Each pnmal artificid variable induces a corresponding upper bound

consmint to a dual linking variable. Similarly. there is a dual axtificial variable corresponding

to each upper bound constraint for a pnmal linking variable. These mificial variables c m be

adjusted to satisfy the linking constraints. thus dlowing each part to act independently.

However. because of the high cost of the artificial variables, it may k desirable. in the

optimal solution. for the pans to coopente. Thus. the iutificial variables (primai and dual) are

an important aspect of the notion of "pans" of a linear program. The pnmal mificial variables

may in fact represent 3 red aspect of the situation such as unfillable demand or emergency

purchase in inventory consuaints: wherher real or mificial. these variables ensure the

feasibility of linhng constraints.

The two-stage (or block-triangular) structure is a special case for which part one has

no linking consminu and y2 does not exist. i.e. B I . L I I , Li:. Dz and L2 are dl zero. This

structure *ses. eg.. in a two period model, in which the linking consnaints represent the

influence of decisions in the fint period on those in the second.

An assumption is made in order to simplify the dgorïthm, and to guarantee

convergence.

Assum~tion: The set of nonlinliing constraints in each part. together with the upper bound

consrnints and nonneptivity constraints. define bounded feasible regions for the x,, y, vectors.

21

The assumption ensures the boundedness of the solutions to the subproblems defined

below, which simplifies the algorithm. The assumption is also used in the proof of

convergence of the algorithm. Note that the optimal values of the artificial variables are dso

bounded because the costly nature of the artificial variables keep hem as close as possible to

their lower bounds of zero during the whole optimization process. (This is shown fonnally in

the pmof of Theorem 3.8 in section 3.5).

3.2 Subproblern Structures

The new decomposition method relies on the definition of a subproblem for each part:

the subproblem for one pan gives an upper bound on the optimal value of the original

problem and the subproblem for the other part provides a lower bound for the original

problem. Because of the symmetry of the pans in the generai problem statement. the choice of

subproblem type for a pan appears to be arbitrary, but for a given instance of the two-part LP,

the modeller r n q have Rasons to make a panicular choice. in whai follows. the subproblem

for part one is of rhe lower bound tm, and part two provides an upper bound.

The lower bound subproblem from pan one, denoted by SP: at iteration k, c m be -

constructed by restricting the prima1 variable vecton XI and y? to convex combinations of

known solutions of - 2 and y2, obtained from the second subproblem at earlier iterations, thus

allowing us to drop out the sets of nonlinking constraints and upper bound consaaints of part

two fmm the original prirnal problem. The subproblem SP: - keeps both parts' prima1 Linking

-
constraints. The upper bound subproblem in dual fom frorn part two. denoted by S D ~ . cm be

constnicted in the sarne way by restncting the dual variable vectors xi and ol to convex

combinations of known values of x1 and oi from the fiat subproblem at earlier iterations. thus

allowing us to drop out the sets of dual nonlinking constnints and dual upper bound

constraints of part one from the original dual problem, but keeping both parts' dual linking

constraints.

The primai md dual foms of the lower bound subproblem at iteration k are presented

(dl S. ! . AI .ri + DI y, 5 bi

(J) - 1 t-1 Bi~i+ Li1 Yi - vt + Lir YI A I f i

(P:) Yi 5 ui
7 k-1 -

Lzi Y I + (B ~ X : ~ + L & ') A v~ s f L
(@J ek" A'.' = 1

xl,Yi,vi.v:.hk" '0

1 ' k- 1 and Y:"' = (Y? . y-. y), corne from the (k-1) previous primai solutions of SPz; kk-' is a

k-1 T. (k-l)-dimensional column vector variable. i.e. ik-' = (A:-', À'*', h-1) , is an

unrestricted scalar variable; and e"' is the (k-1)-dimensionai row vector with ail components

equal to 1. At the fint iteration. k=l, there is no information from part two. so there is no)c

variable. and the optimal value is not in general a lower bound (unless .Q= O. y- O is feasible

in part two).

Because SP~' is a restriction of P and the restriction can be lwsened at each iteration

Ir -1 by the inclusion of another x 2 in X2 and y? in Y:-', it follows chat the optimal values of the

subproblems fom a nondecreasing sequence of numbers, al1 less than or equal to the optimal

7 k-l<
value of P, : : :*- I ... I J - z ik I :'.

The dual and prima1 forms of the upper bounding subproblem are as follows.

)r' ' P,. n:. W. P:

k-1 - 1T "T where nlL1 and R~'-' are a (k- [)mi matrix and a (k-l)xql matrix. Le. ni - (x , , , .-- ,

1T 17 t-IT T nlk*'T)' and &'-' = (0, ,a1 ... * 0 1) corne from (k-1) previous dual solutions of SPI;

k- 1 pk-"' is a (k-1)-dimensional row vector variable, i.e. #*'= (pib', p?-', ... , pk-~); is an

unrestricted scalar variable; and ek-' is again the (k-1)-dimensional row vector with al1

-
components equal to 1. Because SD: is a restriction of D and the restriction can be loosened

at each itention. by the inclusion of another nl in t?'"' and oi in R~'", it follows that z.5 2:

- k-I<
-2 - . .. 6 z2'.

When k=l. there are no variables & or $,. and there are no cuts. nor are there)c or C(

variables. because the algorithm begins by solving both SPI and SPr simultaneously, so

ihere are no solutions yet avdable from both subproblems.

After both subproblerns are solved concurrent1 y. SPI sen& dual information (called

proposals) to SP2, and receives prima1 information (proposais) from SP2, while SP2 sends

primal information to SPI, and receives dud proposais from SPI. This communication scheme

continues until the gap between their objective function values reduces to within a prescribed

tolennce. Figure 3.1 shows this communication scheme.

Subproblem 1 Subproblem 2

Iteration 1

Iteration 2

Ikration 3

F i p r e 3.1 information flow for parailel two-part algorithm

if only one processor is available, then the decomposition principle cm be

implemented in a send fashion since rny parailel algorithm c m be implemented senally with

the disadvantages of slower speed. l q e r computer memory or disk requirement (on one

computer than on any one of 3 set OC cornputers run in panilel), and the poor usage of

avilable information. For example, the scheme in Figure 3.1 could be implemented senally

by soiving subproblem one, then subproblem two, then exchanging information. and

repeating. Le. by moving left to right and down in Figure 3.1. However, it seems advantageous

to use proposal information as soon as it is available. so another serial irnplementation would

solve one subproblem. then pass a proposal to the other subpmblem. which is then solved, and

a proposal is passed back to the fint subproblem. The latter scheme has k e n implemented by

Lan and Fuller [1995a] for the two stage mode1 structure. a special case of the two part mode1

structure, e.g. two pend models. Lan and Fuller choose part one as the upper bound

subproblem. The senal aigorithm first solves the stage one subproblem and sen& a prima1

proposal to the second stage subproblern. then it solves a new second stage subproblem with a

new column generated. and sen& duai proposais to the stage one subproblem. The stage one

subproblem is then d v e d with a new cut. The stage one subproblem provides upper bounds

on the optimal value of the whole problem, and the stage two subproblem provides lower

bounds. This sequential process continues until the objective values of both subproblerns have

corne within a predetermined tolerance.

3.3 The Decomposition Algorithm

in this section. the procedure of the panllel decomposition algorithm is fomûlly

described. Various propenies of this algorithm will be discussed in the next section. The

scalar E >O is defined by the user to stop the algorithm when the upper bound $ and the lower

bound :,' are less than E apart. Claims about feasibility and optimality are justified in the next

section. In the statement of the algorithm. the symbols xf2, Y:', nik'' and R~"' appex, and

for the value k=2, they have special meanings: x:, and Y? are nul1 manices having no

columns. while I l l 0 a d R,' are nul1 matrices having no rows. The send and receive

statements synchronize the two processors' iteration counten.

DO IN PARALLEL

Step O. Set k=l, E>O. and determine whether P is infeasible or the Assumption is violated.

- solve ; if it is infeasible or unbounded send stop signal to SP2 and stop. P is -
infeasible or the Assumption is violated;

- if stop signal from SP? is received. stop. P is infeasible;

I 1 - othenvise. record optimal dual solution ni . o,

- send (YI~'"D~ + o l k " ~ I l) . w ~ ~ - ~ L ~ ~ , and (xlb'bi + alk-%) to SPI;

k- 1 k- 1 k- I k- 1 - receive (ct.rz + dg2), L and (B~.$'~ + LZv2) from SPz;

k k k k k - solve S P ~ : record optimal :i . xi . y, . vl , v:, hk-' and xi , aik; -
k k - send and receive :t .

k t Step 2. Test for convergence: if cz - :i 5 E, go to step 3; othenvise. go to step 1.

Step 3. Send A'-' to and receive $' from SP2. Calculate the optimal prima1 and dual

Processor 2

Step O. Set k= 1. €9. and determine whether P is infeasible or the Assumption is violated.

- solve ; if it is infeasible or unbounded, send stop signal to SPI and stop. P is -
infeasible or the Assumption is violated;

- if stop signal from SPI is received, stop, P is infeasible;

1 1 - otherwise. record optimal primal solution x? . y?

Step 1. Set k=k+l. exchange information. modify SP2 and solve it.

k-1 - - set x:" = (xrk*'. xT1) and Y: - (y:-?,
k- 1 k- t k- l - send (CR + drv2). LiLv2 and (B~.$' + L~v?"') to SPI;

- receive (ni%, + W ~ ' - ' L ~ ~) , ol"'~~~, and (irik'lbi + mik-%) from SPI;

-
k k k k k k k - solve spi ; record optimal -2 . .rr . and irz , oz . pi , pz . pk-l ;

k - send :: and receive :I .

Step 1. Test for convergence: if r t - z i k 5 E. go to step 3; othenuise. go to step 1.

Step 3. Send pk-' to and nceive hk-' h m SPI. Cdculate the optimal primal and dual

END

k k Yote thût .p . y? and R:. would not actudly be passed because there cm be a more

h- t efficient communication scheme by exchanging smailer size vectors such as Litvz , oi"'~12

4- 1 k- l and c g : + drvz . etc. if there are some sood feasible solutions available to the original

problem. they may be used as a w u m stan since they always satisfy the consuaints of spf - and

-
which don't have À nor 0, nor cuts, thus saving efforts to find initial feasible solutions for

the subproblems at the first iteration. Also, the algorithm can jump to k=2 for Spi and SP?

with small duality gap if good prima1 and dual feasible solutions to the original problem are

available.

Each subproblem works as both the master problem and the subproblem in the

traditional decomposition meihods: each accumulaies proposais from the other, so is like a

master problem yet each contains full details on only its own part, so is like a subproblem.

The parallel algorithm approximates the optimal value of the original problem by calculating a

nonincreasing upper bound and a nondecreasing lower bound at each iteration. This procedure

terminates when the two bounds are considered to be close enough according to the prescribed

tolerance. The optimal prima1 (or dual) solution of SP2 (or SDi) in Step 3 may be obtained in

an altemate method by adding optimai allocated nsource constraints to the subproblem of an

extra. final iteration and solving the new subproblem rather than storing dl the previous

solutions and weighting them (Ho and Loute [1996]).

It îs assumed that the LP solver takes c m of any degenency (e.g. C P B uses

perturbation methods). Therefore, a nondegeneracy assumption is not needed for the

convergence proof in the next section.

3.4 Properties of the Algorithm

In this section. the important properties of the aigorithm are discussed. The central

result is the gumntee of convergence of the algorithm. Theorems 8 and 9.

Theorem 3.h below shows that the part one subproblem cannot be unbounded for

bl, and Theorem 3. lb mles out the possibiiity that the second subproblem cm be unbounded

for k=l. Theorem 3 . 1 ~ ensures that the unboundedness (violation of the Assumption) is

detected at k=l.

Theorem 3.la For k = l . subproblem SP: - is either infeasible or hm a bounded optimal

solution.

Prool: When k=l , SP: - hûs no h variable. By the Assumptinn, and the negative objective

coefficients of the artificial variables, spi - can't have an unbounded solution. Therefore, S P ~ -

is either infeasible or has a finite optimai solution.

-
Theorem 3.1b For k = l . subproblem is either infeasible or has a bounded optimal

solrrriotl.

Proof: When k=l. the subproblem SPI has no cuts or 0 variable. The possibility of

unboundedness is ruled out by the Assumption. and the large negative objective coefficients

of the utificid variables. Therefore, is either infeasible or has a bounded optimal

solution.

Suppose a modeller unintentionally submits a mode1 that violates the Assumption and

has an unbounded optimd value. Then, the algorithm detects the violation of the Assumption

and stops.

Theorem 3.1~ For k=l . ifthe algorithm r e m s a message of an unbounded optimal value.

then the Assumption is violated and the algorithm stops.

Prool: When k=l. there is no)c or 0 variable. If the set defined by the nonlinking consiraints

and upper bounds of has an unbounded ray, SP; is unbounded too, kcause the linking - -

constraints c m be satisfied by the ray through a choice of the variables vl and y. A similar

observation can be made for S. Therefore, at least one subproblem has unbounded optimal

value for k=L. then the Assumption is violated and the algorithm stops.

The following theorerns show that subproblems SP: and 3 have finite optimal -

solutions. at each iteration for bl. Recdl that the algorithm proceeds for k > L only if SP[- and

have finite optimal solutions.

The following theorerns show that subproblerns SPI - and have finite optimal

solutions. at each iteration for b1. Recdl that the algorithm proceeds for k > 1 only if spf - and

G\ have finite optimal solutions.

Theorem 3.242 Wlzen kr 1. subproblem SP: hm a finite oprimol solution. -

PrwE For the s m e revons as in the proof of Theorem la, together with the consuainu

e'-l)c'-'= i. L''%O. sp: can't be unbounded. Next, if sp: were infeasible. the set of - -

nonlinking constraints and upper bound constraints in S# should be infeasible because the -
anificial variables in the linking constraints guarantee that these constraints are always

satisfied.

However. for the aigorithm to proceed to iteration k > l , the sarne set of nonlinking constraints

and upper bound constraints. which was present in SPI at step O, must be feasible. a -

c~n~dic t ion . Thus, SP: is feasible for bl. Therefore, spf has a finite optimal solution at - -

each iteration k>l .

-
Theorem 3.26 For k> 1. each subproblem spf has ajinite optimal solution.

Proof: For bl. the feasibility of 3 is discussed fint and then the boundedness will be

shown. There exists a feasible solution ~ v { ? x i , yd v/) which satisfies dl constraints except

possibly the set of first constraints (or cuts) in 3 because if not, the algorithm would have

stopped ai step O. The first set of consuainu is satisfied if Bz is chosen as

Next. the boundedness cm be shown by the following reasoning:

The latter maxima are finite, by the Assumption. Therefore, SPI has a bounded optimal

solution for b 1.

Theorem 3.3 shows rhat the original problem P is infeasible if and only if one of the

sobproblems is determined to be infeasible at step O.

Theorem 3.3 Problern P is infeasible iff the algorithm detects infeasibility during step O.

Prwk (The "if' part) [f the aigorithm on processor 1 reports that P is infeasible at step 0.

then the set of nonlinking constraints and upper bound constraints of stage one is infeasible,

because the linhng constr-ints can dways be satisfied due to the artificial variables. This

implies that P is infeasible. Similarly. if the aigorithm on processor 2 reports that P is

infeasible at sstep O. then the set { (.Q, ~ ?) 1 A? -p+D2 y < b2, y2 5 U?, .Q, y2 2 O } is empty.

which mems that P is infeasible.

(The "only if* part) If P is infeasible. then since the linking constraints can always be

satisfied due to the utifciai variables, it foilows that one or both of the following sets of

constraints are infeasible:

(a) the nonlinking constraints and the upper bound constraints of stage one,

A l x i + D l y < b l . y l l u i . o r

(b) the nonlinking consuaints and the upper bound consvaints of stage two.

A2xI + DZy2 I b?, SU?.

The infeaibiiity of (a) will be detected at step O on processor 1. The infeasibility of (b) will be

reported at step O on processor 2.

The next theorem shows that an optimal solution of SP: provides a primd feasible -

-
solution for the original problem P and SD; provides a duai feasible solution to D. Theorem

3.5 shows that the algorithm issues both monotonicdly improved iower bounds and upper

bounds as the iterations proceed

values ~spectively. each of which satisfies the constraints Ai xt + & y2 I b2. y2 l u 2 with

k t consvaints and linking constraints of P are satisfied. Therefore, (xl . y1 . vlk. v t . s,'. 0
satisfies ail constraints of P. The proof for the dual is similar.

L: -1 4-1

Note that &',kt.' and 1 $Ji.' are not actually cdculated on pmcessor 1 at any
i=1 i =1

itention: they are calculated on processor 2. when convergence is achieved, by passing A'"

k -1 t - i

from processor 1 to processor 2. Similmly. p:-i rc; and &:-' 6 are not actually calculated
i=i 1-1

on processor 2 at my itention: they are calculated on processor 1 by passing from

processor 2 to processor 1. when convergence is achieved.

Theorem 3.5 [frlie algorithm proceeds so irerations k> 1. then

&... z , k - ~ ~ : l k ~ :*s$s :?-ls.* 5 :?=.

PmP: Since S P ~ - for b l is a restriction of P and the feasible region of subproblem SP: -

includes that of the previous subproblem (by resuicting the newest variable. Â~.~'''= O), it

- - k-1 follows that ci% ... 5 , I 5 c i k 2 2'. Similady. SD: is a resmction of the dud of P. that is

loosened at each iteration. which proves the remainder of the claim.

The foilowing rheorem verifies the cdculation of the primai and dual bptimal solutions

. -

T h m m 3.6 Suppose (-ri.) J i k , VI', & ~) c ~ ' ~ . ~ yi)Ci-l, v23 and (zp:-ld ,Epf-lo;,
-

ct$. p t) are the optimal solutions of spf and SD;, respectively or ireration k They are -

optimal prima1 and duo2 solutions of P and D if and only ifrik = z t .
4 -1 k-1

k & & hl: Basic duality theory. and the feasibility of . y . vl , xih,L-lv $h:-l, Y:) and
r = l i=1

k-1 L -1
k k (x $'fi , pf*' O; , pi .I? . u)?~. p:) in P and D ensure the result.

Because the two subproblems are solved simultaneously. it takes two itentions of the

panllel method for one subproblem to respond to the information of the other subproblem.

Therefore. the subproblem of the next iteration c m have the sarne solution as the current

iteration. Theorem 3.7 shows that if the feasible solution of current iteration is feasible in the

next two consecutive iterations of the parallel aigorithm. then it is an optimal solution to the

orignal problem.

-
- 1 k-1 k-1 k-1 Theorem 3.7 For k> 1. if the prima1 optimal solution of SPI.' , (y 1 , x? . y2 , VI ,et1) .

-
RooE For any b1. suppose that the primai optimal solution of s p f " . (yl: .d y2: utr, Oz') is

- -
(vif. x{, vt: is optimal in SP!_ and SP?*' . Then. the unchanged proposal. (xZr, yz'),

could be passed to S P ~ . sp:+l and sp:". which would al1 k the same problem. Therefore, - - -
the optimal solution of SP: is also on optimum of sP;"' and #''. The algorithm will be - - -

repeated with the same solutions of both subproblems thereafter.

Frorns~: (for clear presentation we put subscripts with parentheses on the lower nght side of -

vanables except nonlinking variables. which indicates the subproblem in which the value was

solved for)

k - 1 k-1 k - l k k -1 k-1 & 2 C: X: + d2 yLtl - ~ h . (l) L i 2 Y : (~) (~ - t l) (Br .Q + LZ ria)

-
k-1 t-1 k - l and from S P ~ ' = dl y,.,, + CL .Q + dr yLi2, - M v!_':~, + 9;'' . so we have

t-1 k I k k-1 t 4-1 L -1 @; 2 ~ 1 . ' - di y,.,-, +M. vt ! :) - OZ. - U.~I , L i 2 - ~ r t i , (Bz ~1 + Ln - (3.1)

-
ir - i L -1 L - I _ t-t - from sp:' , (3.3) gives and -u I I -~ l . , , . - f l s - L : l ~ 1 . 1 3 - B111 LÏY; (- ,+ ~ t z ~

the optimal value has k e n reached.

The convergence of the aigorithm is proved using the following lemma and theorems.

9 t - t Lema Let {:: }Li . {::),=, and {lV, },=, be inmite sequences. where ZI'E RI. :? E RI. und

W,'E W,C for i= 1.2. 1. where W, is closed and bounded. Suppose rhar there e-risn Q>O.

for al1 k and al1 j> k. such rhat

Pmok Recîil that. for any infinite sequence of vecton chosen h m a closed and ôounded set.

there exists at lest one convergent infinite subsequence. Therefore, there exists a convergent

infinite subsequence of {wt }y', indexed by Si Ç N. Similarly. there exists a convergent infinite

subsequence of {&},, . indexed by S2 ç; SI. Proceeding in a sirnikir fashion, we may

conclude that there exist subsequences indexed by S=& such that (w:}converges for every i= l .

7. ..., 1. when ES. The inequalities in the assumption hold for any j>k. so they hold in

particular for adjacent elements of the subsequence S. Iabeled ka. ka+ Because the difference

-Lm*/ _
c 2 is bounded below by O and above by an expression which converges to O through the

subsequence S. the daim is proven.

subsequence S = {k,, }:, E N such thar the objectives converge ro equal values in rhe limit. i.e.

Frorn~pi . we have

Subtracting (3.4) from (3.5) gives

spf l , we have

have

k . J < k PI - 1 - Pi -

Combining (3.1 1) and (3.12) with (3.10) gives

Rearm9ng (3.13). and using Theorem 3.5 gives

The expression on the right is a sum of products of two vecton. therefore

Since ol and have upper bounds of MI and Mz, we can let QI = m a Ildz - a l f,lzll,
OS<PISM I

Then. since M2 >O, it follows that Q >O. Therefot-e.

However. the artificial variables, v: (20). are also drawn from a closed, bounded set by the

following reasoning. From P, we have vz 2 LLI y + BZx2 + Ln y2 -fi; since v2 is very costly.

the optimization process forces equdity at the optimum. An upper bound on v: can be

obtained by maxirnizing each component by selection of y,, X I , y2 from the bounded set

Therefore. by the Lemma there exists a subsequence {k, }:, such that (:?-l- Zfm)+O as n+=.

Theorem 3.9 The objecrives of the entire sequence of optimal solutium converge tu equal

val i~~s. in the limit. i-e. (c i - :t1>-t0 ar j+ .

Rwfi For any panicular value of jX1, there is an earlier iteration number, from the

subsequence. {k, },, . which is closest to j, i.e. k,, = max (k , 1 k,, I j. je N } . By Theorem 3.5.

zi - $' 5 z+ - & J - [, and by Theorem 3.8, the right side of the inequality converges to zero.

Therefore, (z / - :)'')+O as j- through je N.

Cordlary if the parallel primnl-dual decomposition algorithm proceeds to iterution k> 1,

rhen with the given tolerance E > O. it stops in a finite number of iterations.

RooE The corollary follows directly from the stopping criterion uO and Theorem 3.9.

3.5 Summary and Observations on !Le Algorithm

L. The onginai problem is divided into two types of subproblems in each part: a lower

bound type subproblem and an upper bound type subproblem.

2. The lower bound subproblem in primai form is consuucted by resaicting prima1

variables. xz and y, to convex combinations of known values. received from the upper

bound subproblern. thus dropping out redundani prima1 nonlinking conscraints and

primai upper bound constraints. nie upper bound subproblem in dud form is

consuucted by restncting dual variables. iri and al, to convex combinations of known

values. received from the first subproblem. then dropping out redundant dud

nonlinking constraints and dual upper bound constraints.

3. The panIlel aigorithm ha a perfectly bdanced structure by the two master-like

subproblems instead of the master and subproblem structure as in the aaditional

decomposition methods.

4 information on primai and duai solutions is sent and received between the two

subproblems at each iteration. The duai solution of the fint subproblem is passed to

the second subproblem to make a cut and the pnmal solutions of the second

subproblem are passed to the fint subproblern as the proposal information.

5. The new aigorithm approximates the objective function value by issuing

monotonicaily improved lower bounds and upper bounds by the first subproblem and

second subproblem. respectively during the iterations.

6. This algorithm performs the convergence test by refemng to both subproblems

simultaneously and converges to a given tolerance in a finite number of steps.

-
7. If, in the upper bounding subproblern. s p f . al1 cuts except the most ment are

eli minated, then the algori thm reduces to the familiar Dantzig- Wolfe decomposition

algori thm.

8. K. in the lower bounding subproblern. SP:, - the weight on the most recent proposd is

required to equal 1 (and the other weights are zero). then the algorithm reduces to the

fmi liv Benders decomposition algorithm.

9. The panllel decomposition algorithm cm be extended to more than two part

problems. Chapter 4 discusses a padlel algorithm for the multi-part problems.

Chapter 4 Paraiiel Decomposition of the Multi-Part Mode1

In this chapter, two parallel decomposition methods for multi-part iinear programrning

problems are presented. The fint is developed by applying a hierarchical decomposition

principle recunively. We first divide the original multi-part problem into two aggregated

subproblems of lower bound type and upper bound type, by applying the basic algorithm of

the two-part method. which was discussed in the previous chapter. Then. the aggregated

subproblems are further divided into two smaller aggregated subproblems of upper bound and

lower bound. This results in some primai subproblems accumulating both proposais and cuts.

This bifurcation process continues until there are no subproblerns left for funher

decomposition. The subproblems are solved in different processon simuItaneously and work

together to reach an optimal point during the iterations by exchanging information in the

hierarchicd way. In Chapter 5, we repon successhl convergence on several test problems.

The second method is less complen than the first. It defines some subproblems to be of

the lower bound type from Chapter 3, Le. utilizing primal proposais from other subproblems,

and the other subproblems are of the upper bound type. Unfortunately, this method fails to

converge in some tests. We include it because it may be useful as a heuristic.

4.1 Definition of a Multi-Part Linear Program

The definition of the two-part problems is now extended to that of multi-part

problems. Consider the following prima1 and dual forms of LP problem of N parts:

F I

(L?: wi SM,. r=1.1 N
~ ~ . o , * P , > O for t = 1.2. ... , N

where the subscripts r and s indicate the part number, N is the total number of parts, x,, y, and

v, are the vecton of nt, r,, and q, variables for part t. for t=l. 2, N. The dual variable vecton

for the constraints of part r of P are denoted by row vecton n,, co, and p, which are the vectors

of nt,. q,, and r, variables for pm t. L, is a qtxr, matrix, A, is an m,x n, matrix, Br is a qtx n,

mütrix. DI is an m,xrs matrix, and cr, d,, M I S . b,, f,, and ut>O are vectors of suitable

dimensions for r=l. 2. iV and s=l, 2, ..., N. The general structure of the multi-part mode! is

dso shown in Table 1.

The s m e assumption as in the two-part case is made in order to simplify the algorithm

and to gumntee convergence:

Assum~tion: For each pan. r=l. 2. ..., N. the set of nonlinking constraints. together with

46

upper bound constraints and nonnegativity constraints, define a bounded feasible region for

the x,, y, vecton.

Table 4.1 General structure of multi-part mode1

ouai 1 Riml
Vector

Vecior 1 Dimension

Ph' 1 N

1 Objective

ni n qt n2 fi q? n m q~ RHS

4.2 The Structure of Subproblems for the F i Method

4.2.1 The Bifurcation Process

We fint divide the original multi-part probiem into an aggregated lower bound

subproblem. denoted by PL, and an aggregated upper bound subproblem, denoted by Pu, by

applyng the basic idea of paralle1 decomposition of two-part models to multi-part models.

Agin. we divide the ag-gegated lower bound subproblem into its aggregated lower bound

subproblem, denoted by PL, and its aggregated upper bound subproblern. denoted by PLU,

and the aggregated upper bound subproblem into its aggregated lower bound subproblem,

denoted by Pur, and its aggregated upper bound subproblem, denoted by Puu This bifurcation

process continues until there are no subproblems left for funher decomposition. Figure 4.1

shows this bifurcation process for N=9 with the number of parts at each level. Since the total

number of parts is not a power of two in this exmple. the choice of the parts number at each

level is ;ubitmy. However, to keep the number of bifurcation levels as small as possible. each

bifurcation c m be done such that the number of parts in the two subproblems are equd or

different by one, depending on whether the total number of parts is even or odd.

Fipre 1.1 The bifurcation process for N=9 (9-parts)

At each level. a new linking prima1 variable (A vector) is included in the lower bound

t y e subproblem and a new linking dual variable (p vector) is included in the upper bound
48

type subproblem. The lower bound subproblem with al1 new linking prima1 variables, called

the lowest bound subproblem (PLL..J. consists of that pan's variables. plus fractional

weighting variables for proposals from other pans, and anificial variables. and it includes

linking constnints for al1 parts. The upper bound subproblem with al1 new linking dual

variables. called the uppermost subproblem (Pcu...v). has that part's variables, ail parts'

linking variables. and extra constraints (cuts) constructed with dual variable proposals from

al1 other parts. Other subproblems except the rwo subproblerns mentioned above include that

part's variables. some fractionai weighting variables for pnmd proposals from some other

pans and artificial variables, and they also include some linking variables in some linking

constraints for some other parts. and extra constnints (cuts) consuucted with dual variable

proposals from some other pans.

Each subproblern is solved simultaneously in each processor and exchanges pnrnal

and dual information with the imrnediate neighbor subproblem. which is bifurcated from the

same aggegated subproblem. until each pair of subproblems reach an optimal solution of

each aggregated subproblem. Then. the algorithm checks the pain of aggregated subproblems

at the previous level in the bifurcation tree. If they converge to the s m e value. the algorithm

checks again the optimdity of the pain of the next level and if not, the algorithm perfoms

information exchange. updates and simuItaneously solves al1 subproblems descended fmm

chat bifurcation. This hiemhical process itentes until the mot level subproblems. PL and PU,

converge to an optimal solution of P. Le. the optimal value of the lowest bound subpmblem

(PL L) sets close enough to the optimal value of the uppermost subproblem (Puv...u) to

satisfy r prescribed tolennce. It tums out that it is possible to stop short of optimdity for al1

pain beyond the mot bifurcation. yet still have convergence of the whole process to the

49

optimal value of P. This is explained further below.

Since it is very diffxcult and long to state the general N part decomposition method in

algebraic terms in detail. we will focus on a Cpart case as shown in Figure 4.2. The extension

to any number of parts Ncan be straightfoward from the demonstration of this Cpart case.

PUU gives an upper bound to the original problem because Pu in the fint level gives an

upper bound to the original problem. and the upper bound subproblem of Pu, which is Puv.

provides an upper bound to Pu. With the same reasoning, Pu. provides a lower bound to the

original problem. The upper bounds provided by Pvv are nonincreasing. as the iterations

proceed. and the lower bounds from PLL are nondecreasing. The algorithm proceeds through

iterations of parailel solution of PLL and PLU, by exchanges of primd and dual proposals.

converging towards the optimal solution of PL. Simultaneously, PLI and Puu are solved

iteratively. in parallel, converging towards the optimal solution of Pu.

Figure 4.2 lpart decomposition principle and information flow.
('Tol" is the predetermined srnall tolemce for judging convergence)

An algorithm could be defined to exchange prima1 and dual proposals at the first level.

i.e. between PL and Pu. only when both level II pairs of subproblems have converged to the

optimal values of PL and Pu It should be clear. based on the convergence of the two-part case.

that convergence could be proved for such an algorithm. However. we have implemented a

different scheme which requires fewer iterations at the second level before information

exchange at the fint level. A careful examination of the convergence proof for two part

models reveds that convergence is assured if the two parts pass feasible (not necessarily

t optimal) solutions such that cik 5 r. . Applying this observation to PL and Pu in the

implemented aigonthm. we get a dual feasible solution to PL from PLU. a primai feasible

solution from PuL, and we wait until :(PLU) 5 :(PUù before exchanging proposals between PL

and Pu. Figure 4.7 shows the criteria for the iterations to conrinue with primai and dual

exchmges. at each level: second level exchanges between a pair of subproblems continue if

:(Pc3 c :(PLU) and the pair has not converged to within 3 predetermined tolerance of the

optimal value of its first Ievel problem: fint level exchmges continue as long as the upper

bound. :(Pvc). has not converged to the lower bound. :(PU).

The parailel decomposition rnethod would be bdanced arnong the processon if the

number of pans in the original problem is a power of 2. In other cases. a m e like in Figure 4.1

wouId have some end nodes at different levels than other end nodes. This could lead to much

idle time for rhe processon that solve the subproblems at higher level end nodes. However.

one cm consider a balmcing strategy that ~ s i p s a large or difficult subproblem to a higher

end level node in order to decrease idle time of the processon. Another balancing scheme

could have two or more subproblems of higher level end nodes assigned to one pracessor, to

be solved serially.

In contrast. in the Lan-Fuller method, for the Bstage case as show in Figure 4.3. , the

original pmblem (P) is fint divided into a subproblem of stage 1 (PI) and an aggregated

subproblem of stage 2 to 9 (P2& then the aggregated subproblem is funher divided into a

subproblem of stage 2 (Pz) and an aggregated subproblem of stage 3 to 9 (Pi.9). This nested

partitioning process continues until the aggregated subpmblem of stage 8 and 9 (Ps.9) is

divided into a subproblem of stage 8 (P8) and a subproblem of stage 9 (Pg). The nested

panitioning process of Lm-Fuller has depth of 8. generalized as (N-1) depth. while the

hierarchicai partitioning process of the new decomposition algorithm has depth of 1.

generalized as floor(10g2~ or L+floor(logzN) (where t'iwr(.) is the function that rrtux-ns the

largest integer less than or equal to the argument). assuming that each bifurcation produces

subproblerns whose numben of parts are equal or different b y one.

Figure 43 9-stage decomposition principle in Lan-Fuller method.

4.2.2 Recise Description of the Subproblems

A precise statement of the subproblems is given below (new notation is defined after

the statements of the subproblems). Note that there are 3 different iteration counten involved

for *part decomposition. one for the first level counter, k, and wo for the second level

counten. i and J. because the pairs of subproblems c m have different numben of iterations to

converge towards the optimal solutions of Pu and Pr respectively.

SP: (dso called SP;" because it is assigned to processor number 1) is constructed by

restricting the prima1 variables of the aggregated upper bound subproblem (parts 3 and 4) into
53

convex combinations of h o w n solutions of the previous k-1 iterations and by m e r

restricting the primai variables of part 2 into convex combinations of known solutions of the

previous i- 1 iterations.

SD;; (or sDli because it is assigned to processor 2) is constnicted by restxicting the

primai wxiables of the aggregated upper bound subproblem (parts 3 and 1) into convex

combinations of known solutions of the previous k-1 iterations and by converting it into the

dual problem and further resuicting the dual variables of part 1 into convex combinations of

known solutions of the previous i-1 iterations.

SP:; (or SP:.~) is consmicted by resuicting the dual variables of the agpgated

lower bound subproblem (parts I and 1) into conver combinations of known solutions of the

55

previous k-l iterations and by converting it to primal fonn, and furiher restricting the primai

variables of part 4 into convex combinations of known solutions of previous j-l iterations.

spi:;. (or spi-; is consmicted by resmcting the dual variables of the aggresated

lower bound subproblem (parts 1 and 2) into convex combinations of known solutions of the

previous k-1 iterations and by M e r resuicting the dual variables of part 3 into convex

combinations of known solutions of the previous j-1 iterations. and expressing the result in

Note that when L=l. i=l a d j i l . there are no comsponding h or @ variables, and there are

57

no comsponding cuts, nor are there comsponding ji or 8 variables. because the algorithm

begins by solving al1 the subproblems simultaneously, so there are no solutions yet available

from other subproblems. Also. when i and j are reset to i=l and j=l at the start of each

iteration b l . no information is made available from second level iterations because the new

proposals exchanged at the fint level mate different subproblems at the second level (but see

the next subsection about partial use of old second level proposals).

The definitions of various syrnbols are given below.

ek" is o 1 x (k-1) row vector with ail entnes equal to 1.

e'-' and e"' are a 1 x (i- 1) row vector and a 1 x (j- 1) row vector. with dl entries equal to 1.

respective1 y.

O,, and O , , are scalar variables derived from level 1 and level II respectively in the

subproblern of part r, r = 2, 3.4.

tpr,, and %,[, are scalar variables derived from level 1 and level II respectively in the

subproblem of part r. r = 1. 2. 3.

g,;' is a (k - 1) x 1 column vector variable whose componenu weight prima1 proposais h m

the sggregated upper bound (level 0 subproblem in the subproblern of part t. r = 1.2.

i;-;[md i ! - 1
1 11 are r (i -1) x l column vector variable and a (j -1) x l column vector variable.

whose components weight primal proposals from the comsponding upper bound

subpmblem at level II in the subpmblem of part 1 and 3, respectively.

p:;' is r 1 x (k -1) row vector variable whose components weight duaI proposais from the

aggegated lower bound subproblem (level 2) in the subproblem of part t, t = 3.4.

&.',* and CI::;, are a 1 x (i - 1) row vector variable and a 1 x (j -1) row vector variable, whose

components weight duai proposais from the corresponding lower bound subproblem at level

II in the subprablem of part 2 and 4. respectively.

x:" is an n, x(k-1) mauix andyf-' is a r, x (k-1) mauix. i.e. x:-'= (x!. .r,'.$') and

y:-'= . .. , y:-'), coming from the fint (k-1) primal solutions of subproblem r. ~ 3 . 4 .

xi1 is a n2 x(i-1) matrix and y:' is a rz x (i-1) mauix. i.e. x;' = (2:. xi.&') and

Y;' = ($. $. - YI'), _ coming from the first (i-1) prima1 solutions of subproblem 2. At the

start of each iteration k. i is reset to i=l and. x!' and y;' are met to nul1 matrices.

Y:-' = (4:. Yi. y:-') . coming from the fint (i-1) prima1 solutions of subproblem 4. At the

stvt of each itention k. j is reset ro j= 1 and. xi" and y:.' are reset to nul1 matrices.

n:-' is a (k-I) xm, rnatrix and&' is a (k-1) x q, matrix. Le. n:-'= (dr . +r. d'Ir)'

and ak-' = (di, &', d-lr)r . coming from the fint (k-1) dual solutions of subproblem r.

r=l. 2.

ni-' is a (i- 1) xmi matrix and^;.' is a (i- L) x 41 mûtrix, i.e. ni-' = (dr . $r. d-'' I r

and = (dr .&. d-lr)' . corning from the fint (i-1) dual solutions of subproblem 1.

At the start of each itention k, i is reset to i=l and. ni" and QI-' are met to nuIl matrices.

and ~ j - ' = (dr &-lr)T . coming from the fint (i-1) dual solutions of subproblern 3.

At the stm of each iteration k. j is reset t o k l and ni" lurd ni'' are m e t to nul1 matrices.
59

SP~' has the same structure as the part one subproblem in the parallel two pari

decomposition method in Chapter 3, except for two more parts. thus having one more

proposal from the aggregated upper bound subproblem (parts 3 and 4) at each fint level

iteration. Also. SP:.J has the same structure as the part two subproblem in the panllel two

part decomposition except for two more pans, thus having one more cut from the aggregated

lower bound subproblem (parts 1 and 1) at each first ievel iteration. The subproblems spi"

and SP:+' utilize both proposals and cuts.

For fint level i tentions, the coordination is made through broadcasting proposals and

cuts. The proposais. which have the prima1 information of the previous subproblems. are

broadcasted to the other two subproblems and the cuts, which have dual information, are

broadcasted to the other two subproblems. During the second level iterations, the coordination

is made through exchanging prima1 and duai proposals only between the two subproblems

bi furcated from the same aggregated subpro blem.

At the fint itention of the paralle1 method, there is no information flow among the

subproblerns since no information is available. whiIe in concrast Lan's senal meihod begins

with the fint subproblem having no information from other subproblems. but al1 other

subproblems are solved with proposals or cuts from other subproblems, even in the first

itention.

From the second iteration of the parallel methoci, information is exchmged between

the aggregated subproblems of level 1. then level II subproblems are formed and solved with

new proposals or cuts exchanged between the immediate neighbor subproblerns bifurcated

60

from the same aggregated subproblem as shown in figure 4.2 in the previous section. Lads

serial method solves the firsr subproblem and sends prima1 information to the second

subproblem. then it solves the second subproblem and sen& prima1 information to the third

subproblem. By doing the same procedure to the third subproblem. Lm's method solves the

lut subproblem and sen& back dual information to the third subproblem and continues to

solve and send dud information as in the following figure. thus shows its nature of senal

computation.

Figure 4.4 Information flow of 4-stage decomposition in Lads method.

When the iteration counter b l , s&~' , in which j* denotes the second level iteration

counter satisfying the stopping critena of level Il. Le. - 5 E or =iJ I , gives upper

bounds ro the original problem and s&'. in which i' denotes the second level iteration

counter satisfying the stopping criteria of level II, i.e. - L:J < E or 5 ;:.I , provides lower

61

bounds for the original problem. The two subproblems perform the convergence test at each

iteration k.

In contrast with the new algorithrn, Dantzig's hienrchical decornposition method c m

be appiied only to staircase structures and has traditional master and subproblems. Also. it is

very difficult to apply parallel decornposition since it has to solve lower level master

probiems and subproblems serially as well as upper level master problem and subproblems.

42.3. A Strategy to use more Information from Second Level Iteration

Another strategy in utilizing more information can be defined iri order to speed up the

convergence of the algorithm. spf-' and S&J cm keep adding proposals and cuts coming

from al1 the previous first and second level iterations because they are still feasible in the

noniinking consvaints of s&' and S&.J respective1 y, no matter what cuts and proposals are

included in S@ and s P ' , v J respectiveiy. Thus. they cm produce nondecreasing lower bounds

and nonincreasing upper bounds at every itention of k, i and j (this is proven in section 4.4).

However. when we tned to keep al1 availabie information from the fint and second level

itentions in s&" and sP',*] . there were problems in tests.

In the next section, we define the algonthm for the case that al1 second level

information is "forgotten" every time that the fint level proceeds to another iteration;

however the algorithm that is implemented in code uses the modified strategy defined above.

4.3 The Parallel Decomposition Algorithm for the First Method

In this section. the procedure of the parallel decomposition algorithm for muiti-part

62

problems is discussed. Various propcrties of this algorithm will be discussed in the next

section.

The first step determines that the whole problem is feasible or not by detecting the

infeasibility of subproblems, as proven in the next section. If any subproblem is infeasible,

then the algorithm stops because the original problem is determined to be infeasible. and if

each subproblem has its own feasible solutions, then the algorithm proceeds to the next steps

because the original pmblem is feasible.

in Steps 1 and 2. the scalar E>O is defined by the user. and the aigorithm solves each

subproblem. exchanges the information between each pair of subproblems in the hierarchical

manner and tries to reach the prescribed tolerance between the upper bound and the lower

bound. :," and c"' represent the objective values of SP~" and SP"' respectively, at first level

iteration k and second level iteration i. :14 and represent the objective values of S P ~ ~ and

spJ4, respectively, at fint level iteration k and second level iteration j. Up-Opt and Low-Opt

are set to 1 if Pu and Pr reach optimaiity; othenvise 0. respectively.

DO IN PARALLEC

frocessor 1

Step O. Set level I counter k= 1. level II counter i= l , DO. and determine whether P is

infeasible.

- solve spi.' : if it is infeasible. send a stop signai to al1 other subproblems and stop, P

is infeasible;

- if a stop signai frorn any other subproblem is received stop, P is infeasible;

1 1 - otherwise, record optimal dual solution ni . Q

Step 1. Set k k + L . i=û and Up-Opta.

- set nl"' =(nlk-' T, lk-' T) T ,d Q~'" =(Q~"", O,'-") T ;

- send (n l k ~ l ~ l + o l k ~ l ~ l l) , o ik-l~iz, ~ 1 ~ - ~ ~ ~ 3 . and (~ ' ~ ~ " ~ b ~ + o l " %) to SP3 and

SP4;

k-1 k-1 - receive (c,xt +d,v,), ~ ~ v : " and (~ ~ r f ' + ~ , ~ : * ') from SP, for r=3,4 and s= 1. ..., 4,

s f t ;

Step 1.I. Set i=i+l.

- send (n l l ' l ~ i + o i l ' l ~ i l) . oir"~12, al"' and (xll"bl+wi"'fi) to SP2;

1-1 r - 1 1-1 - receive (c* + drvz). &yi and (B~.$' + L~A-I) from SP2 for s i . 3,J:

t l t t - update and solve sp:' ; record optimal ,-I . xi . y , v:. A&' , A;:, and niL. o i t :

- send zIL1 CO SPr and receive crkl from SPr;

- if Up-Opt = O. receive ü'p-Opt and f r o m SP3;

Step 1.2. Test f o r level II convergence or exit.

k L kt' kt i k i k k - if ,-2 - :Ikl <E or if &$'. then set -1 = :l . xlk=.rl , y1 =yi , v, =d, RI =IT~'.

olk=ol' and go to Step 2; othenuise. go to Step 1.1.

Step 2. Test for level I convergence.

- Send rikL' to dl other subproblems and receive îb' from SP4;

- kt* - if J ,I SE. go to step 3: othenvise. go to step 1.

Step 3. Send A;;' to SPj and SP4. and hi;! to SP-, and receive p:,' from SPI. Calculate

Processor 2

Step O. Set level I counter k=l. level II counter i=l, €>O, and determine whether P is

infeasible.

- solve spiL ; if it is infeasible. send a stop signal to al1 other subproblems and stop.

P is infeasible;

- if a stop signal from any other subproblem is received. stop. P is infeasible;

s f z :

Step I . I . Set i=i+l.

1- 1 i- 1 r - 1 - send (~ 2 . r ~ + dLv2). SLv2 and (B ~ : - ' + LZv2>-') from SP2 for s=l ,3 .4;

- receive (x l" '~ l+o l ' '~ i i) , w ~ ' ' ' L ~ ~ , mli-' and (xl"lbl+oii'%) from SPI;

- set .ri-') and Y;-' = (~ 2 > - ' ,

- send r"' to Spi and receive :,'' from SPI;

- if Up-Opt = O. receive Up-Opt and from SP3;

Step 1.2. Test for level II convergence or exit.

- if :$'- :141 1 E or if :+i<=34, then set I$=K?~. &=CI$ and go to Step 2; othewise.

go to Step 1.1.

Step 2. Test for level I convergence.

tiw - receive :l from Spi and receive ab' from SP4;

kl9 - if sQ' - ci I E. go to step 3; othenvise. p to step 1.

Step 3. Receive À;;: from SPI, and receive p:,' from SP+ Calculate the optimal ptimal

and dual solutions

Processor 3

Sîep O. Set level I counter A=l. level II counterj=l. €9. and detemiine whether P is

infeasible.

- solve SP:' ; if it is infeasible. send a stop signal to al1 other subproblems and stop.

P 1s infeasible:

- if a stop signal from any other subproblem is received stop, P is infeasible;

1 I - otherwise. record optimd dual solution x 3 , y3

Step 1. Set h=k+ l.l=û, Up-Opta and Low-Opta;

k- 1 - set Xj =(x;-', x jX-') and Y:-' =(Y:*', At-');

- send (C>Q~-' + d33'-'). ~j$- ' and (B~V?' + L&-') for ~ 1 , 2 . 4 . to SPI and SPr;

- receive ($-'D,+o.$"L,), cqk-' L, and (~$'b,+o$*%) from SP, for t=i, 2, s=l, ..., 4. s+t;

Step L I . Setj+j+l.

- update and solve spi ; record optimal r3', ni, y j , and nj. 4;

- set ni*' =(n{", Ri-' and QJ' =(Qz' U>.I-'~)' ;

- send :34 to SP4 and receive from Spa;

- if a"J- :34 5 E. then set Up-Opt = 1 ; send Up-Opt and zJQ to SP?;

- if Low-Opt = O. receive Low-Opt and 3'' from SPr;

Step 1.2. Test for level II convergence or exit.

- if ab- r3% E or if : 2 k i ~ 3 b . then set ~ ~ ~ = . r { . and go to Step 2; othewise.

go to Step 1.1.

Step 2. Test for Ievel i convergence.

t I - receive ,-1 from SPI and ab* from SP4;

- if - :i"'d E. go to step 3; otherwise, go to step 1.

Step 3. Receive A:;' from Spi, and receive from SP4. Calculate the optimal primai

Processot 4

Step O. Set level I counter k= 1. level II counterh 1, E>O, and determine whether P is

infeasible.

- solve spi' ; if it is infeasible, send a stop signal to al1 other subpmblems and stop,

P is infeasible;

- if a stop signal from any other subproblem is received stop, P is infeasible;
67

- update and solve SP: j : record optimal ab. .ri. yd, and &. 4, PC for t = 1 ,.... 4;

- send ab to SP3 and receive :34 from SP3;

- if Low-Opt = O. receive Low-Opt and c t ' from SP?;

Step 1.2. Test for level II convergence or exit.

- if jiu- 3% E or if ::'<=j4. then set ab'=sb&r~, y&yJ, ak&, rnk+., p:

=pi for r =l 4 and go to Step 2: othenvise. go to Step 1.1.

Step 2. Test for level I convergence.

- send ab' to al1 other subproblems and receive clk" from SPI;

- if z4' - cik" 5 E. go to step 3; othenvise, go to step 1.

Step 3. Receive h&' from SPI. Calculate the optimal primai and dual solutions for part 4

The steps 1 to 3 of each processor solve the subproblems simultaneously and search

68

for the optimum by exchanging the prima1 and dual solutions in the hierarchicai manner.

Since the feasibility of the original problem and subprobiems are ensund by the step O. each

subproblem after step O always has a feasible solution. (this will be discussed in the next

kl* section). The algorithm terminates when the difference between ab' and ci gets less than

the predetermined convergence tolerance d.

Note that when the algorithm converges within the given tolerance and stops. it may

not give a basic feasible solution to the original problem. but slightly interior, due to the

nature of convex combinations. However. the basic feasible solution could be recovered by

developing a sirnilar scheme used in purification (Konanek and Zhu, 19881 or crossover

facility of CPLEX barrier method, i.e.. the optimai solution of the algorithm is adjusted by

moving some prima1 variables to upper or Iower bounds (to become nonbasic variables) and if

necessuy. the simplex method fin& a basic optimal solution of the original problem in a

small number of itentions since the solution fed into the simplex method is already feasible

and close to an optimal solution of the original problem.

4.4 Properties of the Algorithm for the Fint Method

Sevenl properties of the parailel decomposition algorithm are discussed in this

section. The arguments are sirnilar to those of the serial case of Lan and Fuller [1995b].

The fint theorem verifies that the algorithm mies out the possibility of unboundedness

of the problem P and of any of the prima1 subproblems spit', SP?', sPjb and SPI?

Theorem 4.1 Prublern P and al2 subprublem SP~''. SP?'. SP;' and SP~' are bounded

Roof : The Assumption guarantees that the optimal vaiue of P is bounded. Then, the

boundedness of each subproblem is proven as follows: by the Assumption, the non-artificial

variables x, and y, are bounded. and the artificial variables, v,, cannot cause unboundedness

because the artificial variables are nonnegative aid have large negative objective coefficients.

Also. the A variables are bounded because of nonnegativity and the sum to one constraint. The

8 variables are also bounded by an argument to similar to chat in the proof of Theomm 3.2b in

the previous chapter. Therefore. the optimai vaiue of each subproblem is bounded.

Theorem 4.2 States that Step O of the algorithm in each processor accurately detects

the feasibility of the whole problem P.

Theorem 4.2 Problern P is infeasible if and on- if the firsr step of the algorirlun in each

processor reports in feasibiliy 4 P.

Proof : (The "if' pan) If a subproblem is found to be infeasible m step 1 in any processor,

then the nonlinking constraints and upper bounds for the subproblem are infeasible because

the linking constnints can aiways be satisfied for some choice of the artificiai variables.

Infeasibility of the nonlinking conscraint and upper bound constraint implies that P is

infeasi ble.

(The "only if' part) If pmblem P is infeasible, then at least one piut's set of noniinking

consmints and upper bound constmints is infeasible because the Iinking constraints can't be

violated. This infeîsibility will be detected at step O.

The next result guarantees that in Step 1 of the algorithm. al1 subproblems have

feasible solutions.

Thmrem 1.3 Once step O reports that P is feasible. ail subsequenr subproblem are feaFble.

Roof : In subproblems SPr, SP3 and SP4. the cuts are added to the subproblems of previous

iterations and this addition of cuts can't affect the feasibility of subproblems because the cuts

cm always be satisfied by adjusting the value of the free variable 0.

In the subproblems SPI, SPt and SP3, the primal proposais are added to the

subproblems of previous iteration and this addition of primal proposais does not change the

feasibility of subproblerns because the h variables appear with nonzero coefficients only in

the linking constraints and these linking constrainü are always satisfied by artificid variables.

The next theorem shows that the algorithm provides primal and dual feasible solutions

for the original problem P when it proceeds to Step 1 and it justifies the calculabons of pnmal

and dud solutions.

Theorem 4.4 For any k> l . i> l and j> 1. wirh À weights fron SP:', the algorithm gives the

following primal feusible solunon tu the original problem and with the duol p weights of

S P ~ ~ , ifprovides the foilowing dual feasible soiurion for Pr

k r k ntw = p ' k l ' = 4 ' k * 1 , pl = ? ~2 = lir:-lfIz"', Y' = p$l~:-l, =

k ' k nj0= pJIIj-i. mm = p,d*'~{-l, p3' = p t , a'= Q ~ , u'= . p4 = pr -

Roof : For t= 2.4, each x,' and y; is a convex combination of known solutions ofx, and

y, in the previous iterations. which saiisfies the nonlinking constraints A, x, + 4 yi I b, and

upper bound constraints y, 5 ut of part t. Since xlS and together with x; and y,' solves SPI.

al1 linking constraints in P are also satisfied. So. SPI gives a feasible solution to the original

problem P. The proof of the duai part is sirnilar. 1

The following theorem States that. at each iteration b l . the optimal values of SP?"

and SP~"' give nonincreasing upper bounds and nondecreasing lower bounds to the original

problem P.

Theorem 1.5 In the processor I and 4 with k > l . the optimal values of SP,"' fonn a

nondecreasing series of iower boundr on the optimal value of P and the oprimal values of

S P J ~ fonn a nonincreasing series of upper boundr on the optimal value of P. i.e. zI"'*< cl'%

* * ' < < 3 ~ ~ ~ 2 ~ ' ... Cl - .. 4 -*. - 3

Proof : Since spiL' is a restriction of the whoie problem P and the feasible regions of

successive subpro blems SP include that of previous subproblems at each iteration by

inclusion of another positive A variable. it gives ci'% zi3.'k ... ~ ~ ~ ' ' 5 cm.

Similarly. SD:J' is a restriction of the dud of the whole problem P and it is loosened

at each itention by inclusion of another positive p variable, so the feasible region of S D ~ J '

gels bigger a[each iteration. It provides that ,-*c-."'~.. S S3~'S& so proves the theorem.

C o r o U q 11 In the processor I and 1 with k>l and i>l , j>I. the optimal values of SP~"

fonn a nondecreasing senes of lower bowidr on the optimal vahe of P if al1 proposais ore

accumulared and the optimal values of S P ~ ~ f o m a nonincreasing series of upper bounds on

the optimal value of P if al1 culs are included.

1 7 < C12.io< - 3.2< 3 . 3 ~ - 3.le<
i.e. : 1 * - ~ : 1 2 s 3 ~ ... - - ..l - :l -.. - ... < rrklo< :'

3 3 ' 9 i < 9' 1.. 5 33~-s 5 5 - 3 - S-J < .*- < a2*3< a-*-

Proof : Since is a restriction of S P ~ ~ . " and the feasible regions of successive

subproblems splk.' include that of previous subproblems at each iteration of k and i. by

1 7

inclusion of another positive À variables, it gives :lomoS :I'.3S ... S :, 2.1. 3.2< 3,3< 3.t0< I :I - Zl - ..- Z] -

kt0< ;
S.. 5 :1 - * .

Similarly. SD:~ is a restriction of the dual of SP:~' and it is loosened at each iteration of k

and j. by inclusion of mother positive p variables. so the feasible region of S D ~ ~ geü bigger

7 - 3-3, 3.2< J * ~ 7 7
at each iteration. It provides that :'< ab' I ... I 2-j 5 ... 5 3 - - ... pS a--m IJ

4.5 A Heuristic Decomposition Algorithm - the Second Method

In this section. a heuristic parallel decomposition algorithm for multi-part linear

propmming problems is presented. The heuristic parallel algorithm divides the original multi-

part problem into several small subproblerns of either lower bound type or upper bound type h m

each part. by extending the basic aiprithm of the two-pan method without the hierarehical

decomposition principle. The subproblems communicate with each other by sending and

receiving primal and dual solutions. and work together to mach an optimal point during the

itentions. The present approach gives simple subproblem structures and algorithm. however it

does not give any guarantee for convergence; in tests. mentioned briefly in Chapter 5. this

heuristic sometimes fails to converge.

4.5.1 The Structure of Subproblems for the Second Method

The heunstic algorithm divides the original multi-part problem into small lower bound

sul'problems and upper bound subprobIems by extending the basic alprithm of p d l e l

decomposition of two-pan models to multi-part models; thus ir has only one iteration counter.

Each pan has a primal form of either a lower bound subproblem or an upper bound subproblern.

Each lower bound subproblern consists of bat part's variables. plus fractiond weighting variables

for proposals from other parts and artificid variables. and it includes linking consmaints for al1

parts. Each upper bound subproblem has that part's variables. al1 parts's linking variables, and

extra constiiiints (cuts) constructed with dual variable proposals h m al1 other parts. Note that

to proceed with the aigorithm. it should include at least one lower bound subproblem and at least

one upper bound subproblem.

The algorithm proceeds to solve ail the subproblems simultaneously and broadcasts

prima1 information (proposais) to the lower bound subproblems and duai information (cuts) 10

the upper bound subproblems. After ail the lower bound subproblems receive pnmal information

and ail the upper bound subproblems receive duai information from other subproblems. the

algorithm solves ail the subproblems simultaneousl y again. This procedm continues until the

algorithm satisfies some stopping criteria. Figure 1.3 shows the communication scheme between

subproblems mentioned sbove. for the case of a five part LP having t h e lower bounding

subproblems and two upper bounding subproblems. Note that there could be various assignments

of subproblem type (lower. upper) to pan number are possible. Figure 4.3 illustrates one

possibility.

Figure 4.3 Information Bows for the heuristic parailel decomposition algondun

75

A precise statement of the heuristic algorithm for the general N-part case is given as

follows. The primai and dual forms of the lower bound subproblem for part t , denoted by sp: -

and SD: - . are defined as (new notation is defined after the statements of the subproblems)

.v t-t k - t LU y, + B, x:-' A:-' + L Y S As, - v, 5 f , . for dl i * f
s=I. 1st

and the pnmd and dual forms of the upper bound subproblems are

s u , , for al1 i

Note that when k= 1. there are no 0 or 0 variables. and there are no cuts, nor are there)c or p

variables. The definitions of new synbols are given below.

0 . and Q: are scaiar variables.

A:'' is a (k - 1)x 1 colurnn vector variable whose cornponents weight primd proposais from pan

i in the lower bounding subproblem of part t.

p:" is a Ix(R -1) row vector variable whose components weight duai proposais from part i in the

upper bounding subproblem of part t .

x:-' is a nt x (k-1) rnatrix and y:-' is a rt x (k- 1) mauix, i.e. x:" = (~ f . .T:. . . . , .$') and

Y:-' = (y:, y'. . . . , y:.'). coming From the fint (k-1) prima1 solutions of SP, .

n:-' is a (k-1) x m, rnatrix and&' is a (k - l)x qt matrix, i.e. &'= (x f r . $ r &lr)'

and a'-' = (dl. &r , . . . , f . coming from the first (k-1) dual solutions of SP, .

The lower bound subproblerns have the s m e structures as the part one subpmblem (lower

bound subproblem) in the parallel two pan decomposition method in Chapter 3. except for more

parts. thus having (N-2) more proposals from other subproblerns at each iteration. The upper

bound subproblems also have the same structures as the part two subproblem (upper bound

subproblem) in the p d l e l two part decomposition except for more parts, thus having (N-2) more

cuts from other subproblems at each ireration.

The heuristic parallel decomposition structure exhibits an equivalent position of

subproblems. and al1 subproblems have access to information on dl other subproblems and work

together to optimize the whole problem.

The coordination is made through broadcasting proposds and cuts during the iteration.

The proposais. which have the prima1 information of the previous subproblems, are broadcasted

to ai1 other lower bound subproblems and the cuts, which have dual information, are broadcasted

to upper bound subproblems.

At the fint itention of the heuristic method. there is no information flow among the

subproblems since no informarion is available. while L m ' s serial method begins with the fint

subproblem having no information from other subproblems. but all other subproblerns are solved

with proposals or cuts from other subproblems. even in the first iteration.

When the iteration counter kl, since al1 upper bound subproblems give upper bounds to

the original problem and al1 lower bound subpmblems provide lower bounds for the original

problem. the best upper bound and lower bound can be chosen for the convergence test from the

subproblems at each iteration. Although the subproblems generate the nonincreasing upper

bounds and nondecreasing lower bounds. the algorithm can not be guaranteed to converge within

a presaibed toleruice. The heuristic algorithm cm get snick and repeat the same solution without

improvement after some number of itentions, so it is temiinated with a feasible solution of the

onginai problern when dl the lower bound subprolems and d1 the upper bound subproblems have

the same objective values respective1 y in three consecutive iterations.

45.2 The Heuristic Decomposition Algorithm for the Second Method

In this section, the procedure of the heuristic decomposition algorithm for multi-piut

problems is discussed. Various propenies of this dgorithm will be discussed in the next

subsection.

Step O determines that the whole problem is feasible or not by detecting the infeasibility

of subproblems. as proven in the next subsection. if any subproblem is infeasible. then the

algorithm stops because the original problem is determined to be infeasible, and if each

subproblem h s its own femible solutions. then the algorithm pmceeds to Step 1 because the

original problem is feasible.

In Step 1. the s c d u d is defined by the user, and the aigorithm solves each

subproblem. exchanges the information among the subproblems and tries to reach the prescribed

tolerance between the best upper bound issued by sp: and the best lower bound issued by sp:. -

Before the algonthm starts. the user selects either the lower bound subproblem, or the upper

bound subproblem, from each pan p l N, while ensuring chat at least one subproblem is the

lower bound type. and at Ieast one is the upper bound type.

DO IN PARALLEL

frocessor t for t= 1, ..., N

Step O. Set k= 1, E*. and determine whether P is infeasible.

- solve spi ; if it is infeasible. send a stop signal to SP, for al1 s+t and stop. P is

infesi ble;

- if a stop signai from SP, for ail s#t is received, stop, P is infeasible;

I I - othenvise. record optimal prima1 and dual solutions x, . y, and nt'. wll.

Step 1. Set h=k+L. exchange information, modify SP, and solve it.

- set x:" = (x:". x r l) and Y:-' = (Y:*'. y:'):

k-17 T , - set n:-' =(n,';-' ', rr:" ') ' and Q:-' =(RF ' ,

- send (c,r:" + dry:-'), L ~ ~ ~ F ' for dl i. and ~,r:'l to al1 lower bound subproblems;

- send K;*'D,, O:*'L~ for al1 i , and (n:-'b, + o:'~$) to dl upper bound subproblems;

k- I - if t is a lower bound subproblem. receive (c,r/' + dsys), L,~:' and from SP,

for dl i and ~ t :

- if t is an upper bound subproblem. receive ir,"'~,. u: 'L~~~ and (n;-lb, + u:-%) from

SP, for dl i and ~ t ;

k k k - solve SP: : record optimal z, , xt . yt , and n:, o:; record optimal v:, A:'' if t is a

lower bound subproblem, and p:, pi"' if r is an upper bound subproblem for d l s

and i#t;

- broadcast the optimd :: to SP, for al1 ntt; receive the optimal ;k from SP, for ail s+t.

- -
Step 7. Test for convergence: select the best upper bound. 5 from S P ~ , and the best lower

bound. - 3 from SP:. -

- if (:y - cf) I E , then go to step 3: -
- - -

i - if (; - - 2) > E and - :,S = - ,-t for dl lower bound subproblems and ci = r: for al1 upper

bound subproblems in three consecutive itentions, go CO step 3;

- othenvise. go to step 1.

Step 3. Calculate the optimal (or feasible) primal and dud solutions, and terminate the

algori thm.

- If FI, broadcast A,:-' to SP, for al1 sr: if t=u. broadcast to SP, for al1 *t;

- receive A,:-' from SPI for wl and p,"' from SP, for td;

- if r=I. cdculate the optimal (or feasible) primal and dud solutions for part t

- if e u . calculate the optimal (or feasible) primai and dual solutions for part t

- othenvise. calculate the optimal (or feasible) primai and dual solutions for part t as

k-1 k 1 k-1 k-1 (X : - ' A , : - ~ , Y ~ - ' A ~ ~ - ') and II*- 1; Stop-

END

The heuristic algorithm soives the subproblems simultaneously and searches for the

optimum by broadcasting the primal and dual solutions for k >l. Since the feasibility of the

original problem and subpmblems are ensured by the step 1. each subproblem dways has a

feasible solution for P, (which wiU be discwed in the next subsection). The algorithm terminates

with an optimal solution of the original problem when the difference between the best upper

bound ,' and the best lower bound :: of the whole problern gets less than the predetermined

convergence tolerance ES. However. in the cases of the sarne repeated objective values three

times in a row in dl upper bound and al1 Iower bound subproblems respectively. the heuristic

aigorithm terminates with a feasible but not optimal solution of the original problem.

4S3 Properties of the Algorithm for the Second Method

Several properties of the parailel decomposition algorithm are discussed in this sechon.

The arguments are sirniiar to those in section 4.4.

Theorem 4.7 verifies chat the algorithm d e s out the possibility of unboundedness of the

problem P and of any of the primal subproblems SP:.

Theorem 4.7 Problem P and al1 subproblem SP: are bounded.

Proof : The Assumption guarantees that the optimal value of P is bounded. Then. the

boundedness of each subproblem is proven as follows: by the Assumption. the non-artificial

variables x, and y, are bounded, and the artificial variables. vr, cannot cause unboundedness

because the artificial variables have nonnegativity and large negahve objective coefficients. Also.

- 1 k-1 - the A,:-' variables are bounded because of nonnegativity and the constra.int e Ait -1. The 8,

variables in upper bound subproblerns are also bounded by the similar argument to the proof of

Theorem 3.2b in the previous chapter. Therefore. the optimal value of each subproblem is

bounded.

Theorem 4.8 states chat Step O of the algorithm accurately detects the feasibility of the

whole problem P.

Theorem 48 Problern P is infeasibie ifand onfy if Step O of tlze algonthm reports infeasibility

of P.

Prwf : (The "iF' pan) if a subproblern is found to be infeasible at step O. then at least one

nonlinhng constraint and upper bound consvaint for a subproblem is infeasible because the

linking consuaints cm aiways be satisfied for some choice of the mificial variables. Then,

infeasibility of the nonlinking constraint and upper bound constra.int implies that P is infeasible.

(The "only if' put) if problem P is infesible, then at leut one part's set of nonlinking

constnints and upper bound constraints is infeasible because the linking consvaints cm'? be

viohted. This infesibility will be detected at step O.

The next result guanntees that in Step 1 of the algorithm. al1 subproblems have feasible

solutions.

Theorem 4.9 Once the Prst step reporrs that P is feasible. al1 subsequent subproblems are

feasible.

Proof : In the upper bound subproblems, the cuts are added to the subproblems of previous

itention and this addition of cuts can't affect the feasibiiity of subproblems because the cuts cm

always be satisfied by adjusting the value of €4. which is a free variable.

In the lower bound subproblems. the primal proposais are added to the subproblems of

previous itention and ihis addition of primal proposais does not change the feasibility of

subproblems because the A variables appear with nonzero coefficients only in the Iinking

constraints and these linking constraints are dways satisfied by ani ficial variables.

The next throrem shows that the algorithm provides a primal feasible solution for the

original problem P when it pmceeds to step 1 and it justifies the calculations of primal and dual

solutions in step 3.

Theorem 4.10 For any t and k> l . the huer bound subproblem - S& gives rhr folloing p h a l

-
feasiblc soiurion ro rlte original problem and the duai form of the upper bound subproblem SP!

provides the folioicing duai feasible solurion for P:

nNk-'.

Proof : For i= 1.2. N and i#t. each .r,' and y' is a convex combination of known solutions of

.Y, and y in the preveious itentions. which satisfies the nonlinking constraints Ai .r, + Di y, S bi and

upper bound constraints y, I ici of part i Since .rra and together with xi* and solves S& , d l -

linking constnints in P are dso satisfied. So. & gives a feasible solution to the original -

problem P. The proof of dud part is similu.

The following theorem States that, at each iteration bl. the optimal value of an upper

bound subproblern and a lower bound subproblem give nonincreasing upper bounds and

nondecreasing lower bounds to the original problem P.

Theorem 4.11 In Step I for any lower boicnd subprobiem (indexed 6y ta). +e oprimai

rdites ofS& .C . form a nondecrearing series of Zower bounds on the optimal value of P und for - -
--

an! icpper bound sicbproblem (inde-red by s), the optimal values of se . -: . fonn a nonincreacing

series of upper bounak on the optimal value of P.

Roof : Since & is a restriction of the whole problem P and the feasible ~gions of successive -

subproblems S& include that of previous subproblems at each iteration by inclusion of another -
k- 1 k 0 positive variables. À, . it gives - l - 5 . .. < - :, < .

-
Similady. SD: is a restriction of the dual of the whole problem P and it is lwsened ût

-
each itention by inclusion of another positive variable, pi:-'. so the feasible region of SD: gets

- - -
f ' bigger at each iteration. It provides that :' 5 ;: S . . . 5 ; a :; . so proves the theorem.

Chapter 5 Preliminary Implementation and Results

This chapter repons on some implementation procedures and prelirninary cornputational

results of the parallel primal-dual decomposition algorithm for the multi-part problcms through

the use of GAMS [19921. the Regex Libmy [19921, PVM (Pdle l Virnial Machine) 3.1 1 [19941

and C P E X 6.0 [1997] on an iBM RS/60ûû workstation and a cluster of four PCs (Personal

Cornputers) running the Solaris operating system. Severai multi-part LP models are implernented

and in each of the tests. the new panllel decornposition algorithm (by the first method) converges

to within a smail tolennce of the optimal \due in 3 finite number of iterations. The algorithm of

the second method somr~mes fails to converge. Therefore. we discuss oniy the first method in

this chapter. except for a brief mention of the results for the second method. î t the end of the

chapter.

5.1 The Implementation Procedure

In order to demonsuate the convergence and repon rhe computationd resuits of the new

panilel decomposition algorithm. we coded the multi-part decomposition algorithm into C

pro_gnms using GAMS. the Regex iibrary. the CPLEX Callable Library and PVM w hich are

exetutable in one IBM RS/6ûûû with 128MB RA!! and a ciuster of four Pentiurn PCs, each with

300MI-b processot and 118MB RAM. We chose the C language for coding because it cm utiiize

bodi the CPLEX Cdlable Libnry and P m . thus allowing implementation of the parailel

decomposition aigorithm without worrying about the derails of coding a linear programming

solver and paralle1 computing sofiwue. The network connectivity is shown in Fiam 5.1. The

RS/60ûû and the 4 PCs communicate with each other via the University of Waterloo LAN but

the PCs use their own LAN connected by Ethemet car& with the speed of IOMB.

Connector c
Figure 5.1 Network connectivity

The implementation procedure has two phases: a decomposition phase on the RS/6000

and a solution phase on the PCs. The decomposition phase includes formulating a model.

decomposing the model into subproblems and distributing the subproblems to each cornputer. The

solution phase includes receiving, generating and solving the subproblems simultaneous1y in each

compurer with the exchanges of pnmal and dual proposais at each iteration until an upper bound

and a Iower bound of the original problem have corne within a prescribed tolerance.

5.1.1 Decomposition Phase

In the decompositiun phase on the RSI6ûûû. the model is f o d a t e d into GAMS and al1

data of the model, such as objective cwficients, consnaint coefficients and nght hand sides etc..

are stored in a GAMS dictionary with the narnes of genenc constraints or variables and the

elements of their anached sets. Then. WSET (Waterloo Structure Exploiting Tool), which

adopted and modified the basic feature of SPI (Scnicture Passing interface) of the original SET

(Structure Exploiting Tool) (Fragniere et ai. [Zûûû]), ~ a d s al1 the data from the GAMS dicaonuy

using the GAMS i/0 Ltbrary (GAIS [1996]) and partitions the whole problem into subproblems

according to pre-defined rules in a file. cailed the SET file. provided by the user. These mles

employ a public domain Regex libnry [1992] with the notion of regular expression (or pattern

matcher). The pytitioned data of the subproblerns are sent to each computer over r local nework,

using PVM.

For s clex presentation of the decomposition phase, we will illustrate with the following

four-region energy planning mode! with 10 periods ("chrisjin4._@"' is use& In the GAMS mode1

description. the nmes of linking variables and linking constraints start with the capital letter "L"

and the names of nonlinking variables and nonlinking consnaints stm with the capital letten

'*X" in order to comtly identify linking elements and nonlinking elemenü in the later stage of

partition (These particular letteen are not required by our sofovare - WSET could recognize other

chvacter strings to distinguish linking from nonlinking entities). The solver is changed to our

p d l e l decomposition solver. called WATPAR (WATerloo PARdlel) instead of CPLEX.

SETS
R regron / A . 9 . C , 3 /
T :=e per:o& /5,2,3,4,5,6 ,?. 8 . 9 . r0/

I 2 3 4 5 6
A 23 25 29 3 1 35 36
9 21 1 3 2' 28 30 37
C i 0 1 2 13 IS 18 23
D 2 5 2: 2 6 29 27 3t

'7i19iE
3LIWATE3iR.T) den&.n,d f o r water

I Z j S O
A 60 62 6 5 70 - 2 f O
ï 45 44 42 4 4 46 49
C 22 25 3 0 3 7 38 4 5
9 3 31 37 4 5 48 4 6

? W ? T C , S S
COAICCST i R A 6, ... -
E f-SCOST (3 1 A - ,

TASLE
TXC!SCOST ! R, 9 3 I

A 3 C 3
X LOO L - 6 a.- ' -.
9 1 L O O Z :.6
c r . 5 2 :O0 1.9
3 . l . 6 1.9 L O O ;

S C U T 3 Z S F A C - 9 . ;
5W?ZÀBLES COS- d - s c o u . ~ t e d c o s t
?OS:TzVE ';A~:ÀJLEs

LFLOWS(R.KX.7). SLPF!CGXL(R.7),

Figure 5 2 Exarnple of GAMS model formulation

Once "chnsjid.~m*' is executed. dl information of the model is stored in the GAMS dictionq.

WSET reîds the &ta using the GAMS y 0 Library and panitions the whole mode1 into

subpmblems according to the user defined rules in the following SET file.

NB,~,PEI 8
Selectmg the rows
ROWSPB \ (f \ ~ ' (A , \ w ') ' \ l
ROWSPB \ (, ~ \ v m i A , \ w w) \ / N L \ w V A) \ i

tOLSP3 +i (L \ w 0 (A . \W., \W.) \ 1
COLSTS \ INL\we (A , \wmI \ l

Figure 53 Example of SET file

The pattern to be matched is defined as "\(..A)". "'\w*" means "any character string" and "y

means "or". The fint line (m-sva-2s 8) shows that the original mode1 is partitioned into 1

subproblems. each with 2 sub-parts (linking and nonlinking variables and consnaints). The fint

subproblem for region 'A' has a set of linking constraints whose names start with the character

'L' and whose first index set value is 'A' and anything for the second index. The fvst subproblem

for region 'A' also has nonlinking consûaints defined as follows: they either start with the

character 'NL' ruid have region 'A' for the first index: or they start with 'NL' and have 'A' as the

only index. The linking variables for the region 'A' subpmblem start with 'L' and have 'A' as the

fint index. while the nonlinking variables start with *XL' and have 'A' as the first index. The

91

other thret subproblems for region B, C, and D have the linking (or nonlinking) constrainu and

variables defined by similar panem matching rules. Since the primal-dual detomposition

algorithm doesn't need any master problem, row master and colurnn master are stated as

"notrequired". bbWithgnuplot" shows the following pictures: Figure 5.3 for the original problem

with no srnicm extracteci; and Figure 5.1 for the original problem with multi-part structure using

WSET. The dark spots indicate the locations of the nonzero elements of the matrîx.

Figure 5.1 Example of anonymous matrix generated by GAMS

Figure 53 Example of multi-part structure generated by WSET

When the "PD" (PanIlel Decornposition) sobroutine is called, it spawns the executable

files in the four PCs by the pvm-spawni) routine from the PVM libnry, asking them to stut their

own processes. and then sends each subproblem's data, partitioned by the above schemes, to each

machine by the pvm-sendo routine. The consuaint matrix is represented by thRe nonzero

vecton: one vector stores nonzero consuaint coefficients by coiumn, another vector has row

location numbers of those coefficients and the other vector indicates the row number of the first

nonzero element in e x h coiumn. However the CPLEX cailabie librvy needs an addibonal vector

indicating the number of nonzero elements in each coiumn. so the last vector of CPLEX format

should be retrieved from the three vecton of the subproblem in each PC. The data are in the

format of column wise vectors. so the colurnns which include that part's nonlinking constraints

are first sent and necessary columns for other parts' linking consaaints are sent afterwards.

5.1.2 Solution phase

in the solution phase on PCs. each machine starts with its own process and receives the

subproblem's data from the RS/6000 by the routine pvrn-receive(). Using the CPLEX Callable

Library. each LP subproblem is loaded in each cornputer. For instance in SP3. the columns having

that part's nonlinking consuainu (the columns in L33, &, L3 and B3, A3) are loaded fini. then

necessxy columns for other parts' linking consuainü (the columns in L3 Li and L3?, Li2) are

loaded and finally the unnecessary linking constraints of other parts (parts 1 and 3) are delered

since column wise vecton include d l linking constraints' data. Each subproblem is solved

sirnultaneously without any information exchange aat the fint iteration and exchanges necessary

primai or dud information with other machines and solves each new subproblem again until the

gap between the objective function values of the upper-upper bound subproblem and the lower-

lower bound subproblem reaches 3 prescribed tolerance. Note that if any of the subproblems is

unbounded. the whole pmcess stops at the fint itemtion by checking the optimal statu generated

by CPXSolution().

Since C P W provides the dud values corresponding to the primai constraints by calling

the CPXsolutionO routine in the CPLEX Callable Library, we don't have to solve for the dual

variables sepmtely, so the implementation efforts are bgreatly simplified The subproblems can

be solved by the simplex method or the barrier methd For the b h e r method the dud and bais

information cm be obtained by crossover at the last step using CPXhybbaropt().

The new primal and duai proposais are multiplied by corresponding matrices and vecton

93

in each computer as discussed in Chaprer 3. Thus, only small sized vectors are exchanged in order

to rninimize communication load When the algorithm is executed to the end of the cycle and the

ciifference between the upper bound and the lower bound of the original problem is still larger

than a predetetmined small tolerance. then the algorithm will start another cycle with a new cut

using the CPXaddrows() routine and a new proposal using the CPXaddcols() routine from the

CPLEX Callable Libnry.

Since the size of the whole C codes of WSET and WATPAR are very large. only the core

parts of the codes are presented with detailed explmation in appendix A.

5.2 The Test Problems and Results of the Experiment

In order CO make sure that our dilgoxithm converges to an optimal solution in a finite

number of itentions. we have tested seved rnodels such as the small 'Toy Energy Planning"

model (TEP) enplained in the previous section (Figure 5.1). a North Amencan Energy Planning

modei (NEP) [Fuller. 19921, a Hydro-Electric Power Generaion model (HEPG 1) pirge et ai.,

19991 and a huge Financial Planning mode1 (FP) [Fragniere et al., 1998b1. Because TEP and

N X P are multi-regional energy planning models. they can be natunlly phtioned into re@ons.

HEPGL and FP ye stochastic linear p m m n g models. so they can be divided into scenarios.

HEFW is rewrinen with different formulation and data, in the format of a scenario formulation

with the nonuiticipativity constnints as linking constraînts: this is called HEPGî. The NI details

of models except N A 3 (whose description is very len-@y and complex) are available in

Appendix B.

Table S. 1 presents the statistics of the five test problems. The Linking rows and columns

are those constraints and variables which have nonzero enaies in the matrices L, when the

original problerns are decomposed into four parts. The parenthesis in "Linking Cols (or "Linking

Rows") shows the ratio of the number of linking columns (or rows) to the number of columns

(or rows).

Table 5.1 Statistics of the test problems

The linking variables in TEP are 'LFLOWS (R.RR.T)' representing the arnount of

electricity that flows from region R to region RR at time T, and the Iinking consaaints are the

elecuicity demand consuaints in each region R at time T, 'LTRADE(R,T)'. NAEP has 7 regions

of Westem Canada (WC), Eastern Canada (EC), Westem US. 0, Northern U.S. (NU),

Eastern U.S. (EU). Southem U.S. (SU) and the Rest of the World (RW). The 7 regions were

muped into 4 pans: WC, EC and RW. WU and NU, and EU and SU. The linking variables and
C

consmints of NAEP are those representing energy flows arnong the 4 parts. HEPGl is fomiulated

using rime index and scenario index as shown in Figure 5.5, so it cm be divided into the

Problems

TEP

NAEP

#of
regions

Iscenarios

4

7

~olumns

321

3949

~ o w s

165

2325

~iakiag
Cols.

120 (37%)

234 (5.9%)

Linking
Rows

Nonzeroes

40 (24%) 841

234 (9.6%) 12033

followiag 4 parts: scenarios 1 to 12. scenarios 13 to 24. scenarios 25 to 36 and scenarios 37 to 45.

HEPGZ has 16 scenarios formulated with nonanticipativity constraints, thus each part having 4

scenarios. FP has 6 periods, each period with 7 scenarios and divided by the first period's

scenarios. so the linking variables are the asset variables. 'LXO(A)'. and cash variable, 'LCO*, of

pend O since those 5 variables appear in al1 the first period's consnaints. The linking consaaints

are the balance consuainü of financial flows in period 1, 'LBALF_L(MS)'. which include the

linking vuiables.

Figure 5.6 A Scenario me for HEPGI

97

We first solve them directly using the sirnplex method and the barrier method of CPLEX

6.0 on the RSl6ûûû in order to compare the solution of the direct method with that of our

decomposition algorithm. We mesure the solution time on the RSf6000 as elapsed time, which

includes the mode1 genention time by GAMS and the solver time by CPLEX, in order to give an

idea of how long the whole process talces. Note that HEPG2 cannot be solved by the barrier

method. due to insufficient memory. and FP is also too large to be solved. due to the memory

limit. for both the simplex method and the barrier method.

Table 5.2 The test statistics of direct methods on RS/6000 (Time is rneasured in seconds).

I Simplex Method Banier Method

f roblems

TEP

NAEP

We dso solved the original problems in one PC by transfemng al1 data, using WSET, in

order to compare the solution time with that of parailel decomposition in the sarne environment.

Since the mificial variables are added in the linking consuiiints in this method, the iteration

numbers could be different from those in Table 5.2. In Table 5.3, "Simp. Iter." or "Bar. Itef

shows the number of itentions using the simplex method or the barrier method of CPLEX and

I

C

FP

Sol. Time

0.46

33245

55387

HEPG L

HEPG2

Iter. No.

226

I

435

873

102.52 1 2837

L

Obj.Values

3 154.840

-30 16.200

0bj.Vdues

4154.840

-30 16.200
I

NIA NIA

33

N/A

-144008.473

-30307.573

N/A

Sol. Time

0.45

lOJ.45

- 144008.374

N/A

958

N/A

NIA

Iter. No.

12

37

NIA NIA

"WSET' is the time taken on the RSI60O for patitioning the original problem into subpmblems

after mode1 generation by GAMS; in this case, the= is no partitioning, but WSET is used to pass

the problem to CPLEX on the PC. "Setup" in Table 5.3 is the time for receiving subproblem data

and loading the problem for the fiat iteration, and "Sol" represents the whole time to solve the

problem in one PC, after setup is cornpiete.

Table 5.3 Statistics of Simplex and Barrier methods on one PC using WSET

TEP

NAEP

HEPG i

HEPG2

FP

Simp.

Iter.

230

Simplex Solver
- -

Time

Barrier SoIver

Obj. Bar.

Value Iter.

Time

Note that there are slight differences between the two methods in 'WSET' and 'Setup'

since the WSET time is dependent on the computer and communication network loads, and the

Setup is different for the two methods.

The following table gives ihe sizes of the subproblems that are actually solved at the first

itention of the decornposition algorithm.

Table 5.4 The subproblem sires

The lower-lower bound subproblem keeps adding proposais corning from d l the previous

upper and lower level itentions and the upper-upper bound subproblem accumulates the cuts

corning from al1 the previous upper and lower level itentions. However. the lower-upper bound

and upper-lower bound subproblems don't keep ail the information; they forget the lower level

information when they have upper level information exchmge due to die problems mentioned in

the previous chiipter. The lower-lower bound and lower-upper bound subproblems used prima1

simplex method and the upper-lower bound and upper-upper bound subproblems utilized dual

simplex method.

The stopping criterion used by the decomposition algorithm is that the relative duality gap

(Le. the gap as a fraction of the avenge of the upper and lower bounds) is smaller than or equal

to 1 . 0 ~ 1 0 ~ . which is a very rigomus condition. By this stopping criterion, ail tested pmblerns

using the puailel decornposition algorithm converged to optimal solutions and they are exactly

the siune as those obtained by the direct methods by CPLEX 6.0. Tables 5.5 and 5.6 show the

results of the parallel decomposition method using the simpiex and banier methods for solving

subproblems, respectively. Note that diffennt choices of subproblem type may give slightly

different solution time and decomposition iteration number. The results shown here are one

instance of what we have tried. Our experiences indicate that comctly identifying the parts, in

order to reduce the number of linking variables and constraints is vely important since the poor

performance we had at an earlier stage tumed out to be due to a poor definition of the parts. For

example. the performance of NAEP was improved by 3 minutes with a different grouping of

regions, which gave a smaller number of linking variables and constraints. Also. HEPGl was

solved 10 minutes faster by redefining the linking variables and consuoints. In our first attempt,

we defined al1 the water level variables. Uevel (hy-u, K), as the linking variables and dl the

water balance consaaints. LwûtBal(hydro-u.K. K), as the linking consaints However, it tumed

out that the water level variables of scenarios 1 to 3 and nodes 37 to 45 are not tmly linking

variables since they don't appear in other parts and the water balance constnints in nodes 1 to 12

are not trul y linking constraints because they don't include other parts' linking variables.

in "PD Steps" of Tables 5.5 and 5.6, "P W* means the number of information exchanges

between PL and Pu, and "Pr W' and "Pu #" represent the number of information exchanges in the

second level between Pu and PLU and between PUL and Pvu, respectively. Each subproblem's

simplex itention number is presented as the sum of al1 itentions. and "PD Time" is the longest

elqsed time taken. including setup time and idle time, arnong the 4 subproblerns by the parailel

decomposition in 4 PCs even though al1 processors finish almost at the same time. The speedup

is mesured as the ratio of the elapsed time taken by one processor over that of four processors

using just "PD time" since WSET could be implemented with a more advanced coding scheme

or different suategies such as storing data in each local database. AI1 the following reports are

based on the prima1 simplex method and the banier method with prima1 crossover. however other

methods such as the dual simplex method or dual crossover c m be used to solve the subproblems.

The simplex methoâ was faster than the barrier method in al1 test problems except FP in which

the barrïer method was much faster.

Table 5.5 Performance of Paralle1 Decomposition with Simplex solver

1 1 PD Steps 1 Sirnplex Iteration 1 Tirne (sec) 1 Specdup 1 Dual Gap

TEP

NAEP

HEPGl

HEPG?

FP

P #

6

35

2

3

P t #

6

67

3

4

Pu#

6

47

2

4

LL

191

3

LU

168

UL

149

WSET

1.01

3

0.53

UU

133

,

PD

0.36

3

(%)

0.000000

0.27

1.61

1.64

10.16

1360

8350

13305

267063

0.000000

0.000000

0.000000

0.000000

1841

8607

12803

279306

1494

8542

13736

276563

5.70

36.94

94.53

,1708

1972

6483

12801

71452

18.08

649.78

997.45

1 159.1

Table 5.6 Performance of Parailel Decornposition with Bamier solver

Note thi t the relatively large number of linking variables and columns of NAEP seem to

be the cause of its poor performance. Since the new algorithm converged to an optimal solution

in a small number of PD steps (with the possible exception of NAEP). there was no chance for

error propagation (Ho [198J]) and the test problems showed very good accuracy without dual

gaps.

- - -

..
TEP

NAEP

HEPG1

HEPG:!

FP

The statistics of deiailed solution time and idle tirne for each subproblem are presented

in Table 5.7 and 5.8. .*Simplex solution time" or "Bmier solution time" shows the sum of the

rime taken only to solve the subproblems each iteration with Simplex or Bmier method and "Ide

Time" presents the sum of waiting time for one processor to receive necessary information of

other(s) at each iteration. Since P W doesn't provide facility to mevure pure communicallon

time. this idle time inciudes pure communication time and pure waiting time (Le. waiting for

mother processor to finish a subproblem that ttakes tonser). "Setup tirne" gives the longest time

taken among the four processors in receiving initial data and loading it into CPLEX.

Speedup

0.5

0.06

1-20

2.40

3-40

- -

Dual Gap

(W

0.000000

0.000000

0.000000

0.000000

0.000000

- -- -

PD Steps Total Time Bmier Iteration

WSET

1.01

18.58

Pu#

6

43

,

PD

0.41

69.60

..
P #

6

33

2

1

3

LL

80

2174

Pt#

6

93

3

1

3

UL

109

1597

LU

56

1628

21

79

87

3

4

3

UU

102

1218

54

105

76

84

1171

84

146.48

341.45

270.02

44

88

107

637.18

995.23

1167.7

Table 5.7 Time measurement of the parallel aigorithm with Simplex solver

Table 5.8 Time measurement of the parallel algorithm with Banier solver

1 S e t u p - r Barrier solution Urne 1 Idle time
time

LL LU UL UU LL LU

Since FP hris a lot of idle time. especially in the UU processor, due to its unbaianced structure,

if it is run on a d d y basis in practice. it cm be implemnted with a better load balancing snategy

such as assigning more scenaIios to the üü processor.

104

We dso anaiyzed the speed-ups and efficiencies for FP obtained from 1 to 4 processon

as show in Figures 5.6 and 5.7 respectively. Figure 5.6 shows that the parallel decomposition

algorithm can speed up the solution time for utilizing both simplex and barrier methods in a larger

FP model. With the two processors, Pu had the first pend's scenarios 1 to 3 and PL had 4 to 7.

With the three processors. FP was divided into 3 pans: Pu (scenarios 1 to 3). Pw (scenarios 4 and

5) and Pu (scenarios 6 and 7). Note that WrZTPAR c m also handle another aitemative of 3 parts.

PUL' . PuL and PL, by indicating the subpmblem type in each processor. Figure 5.6 shows that the

parallel decomposition algorithm c m speed up the solution time for utilizing both simplex and

bmier methods in a larger FP model. Figure 5.7 indicates that the parailel decomposition

algorithm for FP c m have efficiencies pater than 1 by using the simplex method but not for the

banier method.

Speedups for FP
12 -

Figure 5.7 Speedups for FP with Simplex and Barrier
105

Effichcius for FP

Figure 5.8 Efficiencies for FP with Simplex and Barrier

In some large problems. the parallel primai-dual decomposition showed some

encouragng test results. however much more testing and development as well as efficient coding

schemes are needed.

For the heuristic metho& experiments were done at the very early stage of this research.

and we have only the records of TEP and NAEP test ~sul t s . The tests were done with seved

different data sets and they showed that the heuristic algorithm did not always converge to an

optimal solution of the original pmblem. When it did not converge, it repeated the sarne upper

bounds and lower bounds of the orignal problem for three consecutive iteraaons and the ddi ty

cap =as between 0.5 5% and 9 % in those test problems.
C

Chapter 6 Conclusions and Future Research

6.1 Conclusions

In this thesis, the main objective is to develop a new parallel decomposition method for

rnulti-part linear prograrnmjng models. We focus on the proofs and demonsuation of the

convergence of the two-part and multi-part dgorithms. We repori in some test results that the

algonthms converge to an optimal solution of the original problems in a finite number of

decomposition i terations.

The idea of this thesis originally came frorn Lan [1993] for multi-stage nested decomposition.

however due to some infesibility problems on applying the nested decomposition in parallel, we

developed another parallel decomposition scheme for multi-part stxuctured models.

The parallel decomposition algorithm for two-part models consistently converged to an

optimal solution (and a convergence proof was formed). but our fint aigorithm for multi-pan

models did not always converge (we cal1 this algrithm a heuristic). Finally, we came up with a

convergent pûrallel primal-dual decomposi tion aleorithm for multi-part LPs. w hich convergeci

in al1 tests. by applying the two-part decomposition principle ~cursively in a hiemhical way.

The distinctions between Lads algorithm and the new parallel decomposition aigorithm

;ire summarized in Table 6.1.

Table 6.1 The distinction between Lan's aigorithm and the new parallel decomposition aigorithm

I Applied structure

1

Lads algorithm

/ Construction of subproblems 1 One srnall and everything elw / Half and half 1

New Parallel algorithm

1 Decornposition algorithm 1 Nested

Less depth (floor(10gzN)
or l+floor(logzhr))

Broadcasting to othen

.- . - -

Depth of subproblems

Information exchange

Weighting scheme

Subproblem computation

In this thesis. we have completed several theoreticai and implementation tasks. namely.

More depth (N- 1)

Sending nearest neighbor

1. developed the parailel decomposition algorithm for two-part models,

2. proved the convergence of the rwo-part method as well as other useful properties.

3. developed the parallel multi-part decomposition algorithm,

4. proved several usefui properties of the multi-part method.

5. developed a variant (heuristic) decomposition algorithm for multi-part models.

6. modified SET in order to extnct the multi-pan structure h m GAMS.

7. developed a software for a p d l e l primal-duai decomposition soiver using PVM and

CPLEX.

Weights camied over

Serial computation (fonvard
md backward)

No carryover of weights

Parailel computation

8. tested several models for convergence and speedups of the multi-part decomposition

aigorithm.

The parallel decomposition aigorithm for two-part LPs solves two master-like

subproblems. an upper bound subproblem and a lower bound subproblem, simultaneously. Each

subproblem works as both the master problem and the subproblem in the naditional

decomposition methods: each ûccurnuiates proposais from the other. so is like a master problem

yet each contains full details on only its own part. so is like a subproblem. Each subproblem has

a balanced structure by having the same amount of primai and dual information and has an

equivalent position by conducting the convergence test at the same time. The parailel aiprithm

approximates the optimal value of the original problem by calculating a nonincreving upper

bound and a nondecreasing lower bound 3t each iteration. This pracedure terminates when the

two bounds are considered to be close enough according to the prescribed tolerance.

The two-part decomposition principle cm in eetended to more than two parts by

applying the decomposition principle recursively in a hienrchical way. Fint, the original problem

is divided into an aggregated lower bound subproblem and an aggregated upper bound

subproblem. Then. each aggregated subproblem can be again divided into its aggregated lower

bound subproblem and its aggregated upper bound subproblem respectively. and this hieranihical

decomposing process is repeated until there are no more subproblerns to decompose. in the case

of four p m . the original prublem cm have two aggregated subpmblems in the fint level. an

aggregated lower bound subproblem (PL) and an aggregated upper bound subproblern (Pu), and

in the second level. the PL cm be fiuther decomposed into its lower bound subproblem and its

IO9

upper bound subpmblem, refemd to as the lower-lower bound subproblem (Pd and the lower-

upper bound subproblem (Pw), while Pu cm be further decornposed into. the upper-lower bound

subproblem (Pv3 and upper-upper bound subproblem (Puu).

The subproblem Puu gives nonincreasing upper bounds to the original problem and PL

provides nondecreving lower bounds to the original problem as the itentions proceed and the

values of Puu and PL converge to an optimal solution of P. The algorithm proceeds through

itentions of parailei solution of Pu and PLU. by exchanges of primal and dud proposais.

converging towûrds the optimal solution of PL. Simuitmeously. PuL and Pvu are solved

itentively. in p d l e l . converpng towxds the optimal solution of Pu The algorithm exchanges

primal and dual propos& rt the first level. i.e. between PL and Pu, either when both level II pain

of subproblems have converged to the optimd values of PL and Pu, or when the optimal value of

PCL, :(PC3. is p a t e r than or equal to the optimal value of PLU. :(PLU). Le.. :(Pu3 2 :(PLU).

We developed a paralle1 decomposition solver for four-part problems, called WrZTPAR

(WATerloo PARallel). It c m extnct multi-pan structure from an original G A I S problem and

divides it into four subproblems on an RSi6000. Then it sends the subproblems to four PCs using

P W and solves hem simuitmeously using CPLEX. The solver is designed to utilize any number

of processon from one to four.

In the preliminq tests. the algorithm converges to an optimal solution in a finite number

of itentions and shows faster convergence than direct methods such as the simplex and interior

point methods for some large test problems.

There are seved benefits of the new decomposiuon method. It cm impmve

computational speed for some real world large problems by exploiting several parallel pmessors.

The parailel decomposition algorithm can give a solution to a model, so huge that it cannot be

d v e d in one machine as the w hole model due to a computer's memory limits. It c m also provide

a convenient modeling approach and easy model management with less effort. in which

submodels may be developed and managed by different teams or different cornputen, and linked

by the algorithm when a global optimum is desired (i.e. without having to merge the databases

inio one big, hard-to-manage model).

6.2 Future Research

The studies c h e d out in this thesis have suggested severai possibilities for future study

both in theories and implernentation.

From the theoretical point of view. the paraIlel primaldual decomposition method c m

be genenlized to a broader class of mathematical pro-grams such as mixed integer programming

and nonlinear pro+ms. which could have more benefiü from parallel decomposition. The

heunstic dgorithm could be developed further as a warm start for the decomposition method

since the heuristic aigorithm seems to have berter irnprovements in the beginning due to more

proposals and cuts. and it gives feasible solutions to the original problem. Different weighring

schemes could be developed by splitting the first level À (or p) variable into two separate À (or

p) variables to choose differenr proposals coming h m SP3 and SP4 (or SPI and SP2) respectively.

Also. there should be more study on load balancinp smtegies among the processors to reduce ide

Urnes. which cm be a main success factor of parailel computing.

Due to some difficulties in coding and time limits. we could not develop the parallel

decomposition solver for more than 4 parts. However. it should be extended to handle any number

of parts. This could be done with more advanced coding techniques such as the object oriented

programming pandigrn. ui its current fonn, the parallel decomposition solver does not calculate

optimal prima1 and dual vectors. To be of practicai use to modellen, these should be calculated

and sent back to GAMS to allow genention of a solution report. Implementing the parallel

algorithm among physically disvibuted computen with local databases for locally developed

subproblerns and cornmunicatirtg with one another by emails or web bmwsea would be another

interesting subject from a practicai point of view.

Needless to say, more testing and implernentations are required to assess the efficiency

of the panllel decomposition algorithm for various sized and structured problems.

APPENDIX A GAMS codes of the test models

We present the full details of GAMS models such as HEPG1. HEPG2 and FP. The data of

HEPGl and HEPG? are genented nndornly. A part of data is aven here to present the data

format.

A.1 Hydro-Electric Goneration Planning Mode1 1 (HEGP1)

Witten by J.R. 9irge and C. Supacgiat, U. Michigan, 1998'
tasc rnodified H. S i n Park

Sinclude 'columbiaB.dat"
Sinclude 'col~iaB.prn"

VMIABLSS
COST;

2OSITIVE variables

Nthe--sen (the,--u, nodes, Ki =he,m production in each mode in each month (MWh)
Ngen,flow(hy~o,u,modes.R) hydrc water release for generaïion in each mode Ln each
moncn im3 1
Xevel(hydro,u,Kl water Level a t ~ h e end o f perzod (M d)
Nspi~lF~cw(hydro,u,nades,X) wacer s p i l l over the period due CO over capacity (m3)
Nexchange(areas.areas,modes.Ki m o u n t power transfer from (1st) to (2nd) in each
mode, each node (M'Wh)
Nrat-f~ow~hydrro,u,modes,K) slack ic niziznum flow cmstraints. It sets penalty in
:he 3biec:ive functron.

Xe-xpCa~a (areas, scdes , K i S (ûrd (K) ÛT L) . . SUM(areaslS (ord (areas1 1 NE ord (areas 1 ,
Nexc~azgeiareas,areas1,aodes,R)i =L= eqmrt(arensi nm-hour(K1

~LX(F~Z=C~S Sdru'a=io~(modes,K,periods~, durationimodes,K,periods) 1 ;

LwatBal(hydro,u,K,predlevel) S(ord(K) GT I and pred(K) EQ predl(predlevel1) ..
-(initial(hydro-u)S(pred(K) EQ O)+Llevel(hydro-u,predieveI)S(pred(~) GT O)
+(SUM(hydro-ul, links(hydroOul,hydroOu) *

SUM (modes, (Ngen-f low (hydre-ul , modes. K
1

+NspillFlow(hydro~ul,modes,KI)) ! 1000000.0)) + inflow(hydro,u,K)
(num,hour(K) * 3600-0 / 1000000.0~ - SIJM(modes,(Ngen,flow~hydro,u,rnodes,~l
+ NspillF~ow(hydro,u,modes,K) 1 / L000000.01) =L= -Llevel(hydro-u,K);

OPTION LP =WATPAR:

MODEL MFT iALL/;
S O L E MFT USTNG LP W I M T Z E COST;

SETS them-u /therA,, theru/
hydro-u ihydrA,, hydrZ /

'C / 0'45 /

periods / 1, 2, 3, 4 !

predlevel (KI /0*14/
mûdes i l g l O /
areas / regleregla /
ALIAS (hydro-u , hydro-ul
ALIAS (areas, areasl) ,

parame ters n a - h o u r (KI
Prab(K1 ;

parameter unitCost(cherm,u)
; therA 0.8, , theru 0.8 1 ;

Faramecer capacity(t5ezm-U)
therA 9500, ,,,,. theru 21 i:

parameter initiai(hydro-G)
h y d r A 650, , , , , , h y d r ~ 580 / ;

p ramete r conversion(hydro-u)
, k,yà=A 4, , hydxZ 5 /;

parameter Vnaxthyiro-u)
/ hy*A 2100, , hy&Z 2750 /;

parameter Vmin (h*o,u 1
/ hyàrA 230,, hydrZ 210 /;

parameter hydro,ef f (hydre-u)

/ hydrA 2 5 , , hydrZ 1s / ;
parameter Fmax (hydre-u)

/ hydrA 21 , , hydrZ 25 /;
paramecer Fmin(hydro,u)

/ hydrA 5, , hydrZ 5 / ;

table links(hy&o-u, hydro-ul)
hy&A hydrL

hydrA 0 . 5 0.2
. . . . S . . .

hydrZ 0.3 0.1 ;
parameter prob(K) / 1 1,

2 0-4,
. . . *

33 0.005,
paramecer pred(K1 ! L O,

2'4 1,

paramecer predl (KI : O O , I
8 8 , 9

table demand(modes, K, pericas)
1.1 2'4.2 5'14.3 1 5 ' 4 5 . 4

?
4 9 19 28 39
. . - - .a..

1 O 7 12 27 34

table duracion(nodes, R, periods)
1 - 1 2'4.2 5'14.3 LS'45.3

1 0.3 3.2 3 - 2 5 0.3
* . . *
10 0.2 0.3 3.23 0.24

table fracaea(modes, areas)
reg l reg2 reg15 reg16

1 0.05 0.38 0.: 0 . 1

parameter impor=(areas) / reg1 25000,, reg16 S ? 7 C O /

cable hydre-içA (hydre-u, areas l
regl reg2 reg3 . -. . reg13 reg14 reg15 regL6

h y d r A 1
hy&3 I
ilyckc

*Columbirb. prn
Table inflow(hydro-u,K)

1 2 3 . * * . 43 44 4 s
h y d r A 5 2 6 6 81 57 66 85

A.2 Hydro-Eletric Generation Planning Mode1 2 (HEGP2)

written by J.R. Birge and C. Supatgiat, O. Michigan, 1998,
Lasc modified H. Jin Park

Sinclude "columbia.datN

VARIABLES
COST ;

POSITIVE VARIABLES
~therm~en(therm,u,modes,periodç,senarios)
therm production in each mode in each month (MWh1

Ngen~flow(hydro,u,rnodes,periodç,çenarios~
hydro water release for generation in each mode in each month (m3)

Llevel(hydro,u,periods,senarios)
water level ac the end of period (Mm31

Nspil~Flow(hydro,u,modes,periods,senarios~
* water spi11 over the period due to over capacity (m3)
Nexchange(areas,areas,modes,periods,senarios~
amount power transfer from (1st) to (2nd) in each mode , each node (Mhlh)

Nrat~~low(hydro,u,rnodes,perioas,senarios1:
slack in minimum flow constraints. Ic gets penalty in the objective function

EQUÀTIONS
OBJECTIVE
NexpCapa(areas,mcdes,periods,senarios)
Nimp~capa(areas,modes,periods,senarios1
~lmeet,load(areas,nodes,periods,ser,arias)
Nwat9al(hydro~u,perFoas,senariost

NhydraMinC(hy~o~u,modes.petlods,senarios)
Lnon&zt(hydro,u,periods,senario~l
Lno~ttl(hydro,u,periods,senarios1
Lnomt22 i hltdro-u, periods , senarias 1

LnoxAnt3 1 (hydre-u, periods , senarias t , LnonAnt32 (hydre-u, periods , senarias 1
LanIInc33 ihydro-u, periods , senarios 1 , Lnor~t34 (hydre-u, periods, senarios 1

OP-CTXVE .. COST =E= - (SUM(senarios, probtsenarios)*~~~(periods,
ST;TMtmodes,duration(mdes,periods)* çUM(therm,u, unitCost(themrmu)

Nthermgen(theni~u,des,periods,send2:iosl~~ 1)
116

NwatBal(hydro,u,pericds,senarios1 ..
-(initial(hydro,u)S(ord(periods) EQ 1) + Llevel(hydro,u,periods-1,

senarios) S (ord (periods 1 GT 11 + (~(hydro,ul, links (hydro-ul hydre-u) '
SUM(modes, (Ngen,f1ow(hydro~u~,modes,periads,senarios)
+ Nspillflow(hydro,u~,mc~es,periods,ssnarios1 / 1000000.01)
+ inflow(hydro,u,periods,senarios) (num,hour(periods,senarios) 3600.0

/ 1000000.0) - SüM(modes, (~gen,flow(hybro,u,modes,periods,senarios~
t NspillFlow(hydro,u,modes,periods,.senarios) 1 / 1000000.0) =L=

- Llevel(hydro,u,periods,senarios);

Llevel(hydro,u,peri3,sen3) =1=
Lievel (hydre-u, peri3, sen3++ll ;

Llevel(hydro_u,peri3,sen4) =1=
Llevel(hydro,u,peri3,sen4++1);

Llevel(hydro,u,peri3,sen5) =1=
Llevel(hydro-u,peri3,sen5++1);

L~eve~(hydrc~u,peri3,sen6) =1=
LlevelIhydro-~,peri3,sen6++11 ;

LnonAntUQ(hydro,u,peri4,seniO) .. LLevel(hydro-~,peri4,senlO) =1=
Llevel(hyàro-u,peri4,senlO++l);

LnonAnc4S(hydro-~,peri4,senll) .. Llevel(hydro,u,peri4,sen11) =1=
Llevel (hydre-u, peri4, sen11++L) ;

Lno~t46(hydro-~,peri4,senl2) .. Llevel(hydro,u,peri4,senl2) =1=
Llevel (hydre-u, peri4, senl2++1) ;

1 ; n o ~ t 4 7 (hyüro-u, peri4, sen13 1 . . 5level(hyàrc-u,pexi4,senl31 =1=
Llevel (bydro-u, peri4, senl3++1) ;

LnonAnt48(hydro-~,peri4,senU) .. Llevel(hydro-~,peri4,senl4) =1=
Llevel (hydre-u, peri4, senl4++1) ;

O P T I O N 52 =WATPA.R;
MODEL MtT / X L / ;
SOLVE MFT X I N G LP MAXXMIZE COST;

*Colunibir.drt
SETS the,?n-u /therA, ther9, , cherU/

hyàrro-LI :hydrA, hydrB, , hyck5 /

periads / TL8T5 i
senarlos /S1°S16/

senIlsenarios) /SiWS8/, sen2(senarios) /S9*516/
sen3(senarios) ;SlWS4/, sen4 (senarios 1 /S5*S8/
sen5 (s e n a r i o s) /S9'S12/, sen6(senarios) !S13*S16/

ncaes : leIo /
areas ! regLwregL6 /
ALIAS !hydro,~. t-,ydzrl-aLl
ALIAS t areas, areasl) ,

paramecer initial(hydra,ul
, hydrA 500, hye3 700 , ,... , hydrZ 690 i ;

parameter convers ion l hydro-u)
, hydzA 4, hy&S 6, . . . - , h y ü r Z 5 1 ;

Farameter Vmax (hydro-u)

parameter

parameter

parameter

. / hydrEI 1100 , hydrB 1200 , hydrZ 1250 /;
Vmin (hydre-u 1

. / hydrA 5 3 0 , h y d r B S C O . hydrZ 630 / ;
hydro-e f f (hydro-u)
/ hyàrA 25, hydrB 6 . y 25 / ;
Fmin (hydro-u 1

. / hydrA S . hydrB 4, hydrZ S 1 ;

t a b l e links(hydro-u, hydro-ul)
hydrA hydr9 hydrC IlydrJ hydrK hydrL

hydrA 0 . 5 0 . 2 0.25

parameter prob(senarios) / S1 0.03, S2 0 . 0 2 , S3 0 - 0 1 6 . 54 0 . 0 2 4

cable inflow(hyciro-u. periods, senarios)
.... Tl .S l 'S16 T2,Sl'Sa T S . S l 6

hydrA 33 17 29
- * . * m . . . * . S . . . * .
hy&Z O5 22 30
table demand(modes, periods)

T l TS T3 T4 TS
1 6.3 6.3 6 . 2 6.9 7 . 3
. - m .

LO 3 .7 4.9 5 . 7 7.4 7.9 ;

table duracion(modes, periodsl
T1 T2 T3 T4 TS

L 0.3 0 .2 0 . 2 5 0.3 0.L

t a b i e f racArea (nodes, areaç)
.... reg1 reg2 reg15 reg16

1 0.05 a - U 8 0.1 0.1

parameter ixport(areas1
/ reg1 25000 ,

table hydro,isA(hydro-u, areasl
.... reg1 reg2 reg15 reg16

fiydrll 1
hydr9 .

A

A 3 Financial Planning model (FP)

* A G S financial planning model inspired by J. Birge and G. Infanger.
* Modified and tested by E. Fragniere , 3. Gondzio and J.-P. Vial,
Maximum size: 9 periods (10 stages), 10 scenarios (more can easily be addedl
Default size: 6 periods (7 stages), scenarios 1.7

* This is a nice B i g nodel: for che default of 6 periods and 7 scenarios
* Lasc Modified by H. Jin Park

OPTION RESLIM = 21600; OFTION I T Z U I M = 500000;
OPTION LIMROW = 100; OPTION SIMCOL = 100; OPTION SOLPRINT = OFF;

RC Cash rate of return /L.OS/,
WI Inicial capital ! 5 0 / ,
'W Godl / 7 5 / ,
KCYPER 'na% t of periods' , 9 ;,
NP= ' # ûf perioas used' ,. 6 1;

don'= change unless you know whac yoc are doing!
changiag NP"& is the incent, but do thac in your own copy of this model

abortS(KLYlE3 gt 91 'You should noc have changed this!';
aborcS(NPER gt W P E R) 'Maximum 8 of periods allowed exceeded';
aborcS (NPF? 1: 1) 'Xust run mode1 for at leasc one periode;

'Assets ' ; USAB, FORS, COR?, COVE ! ,
'master set of scenarios' / sl * sl0, id / ,

'identity: replicates previous period' ,* =d / ,
'scenarios used in period 1' ; s l 9 s 7 / ,
'scenarios used in aeriod 2'
'scenarios used in period 3'
'scenarios used in period 4'
'scenarics used in period 5 '
'scenarios used in period 6 '
'scenarios used in period 7'
'scenarios used in gericd 8'
'scenarios used Lz period 9 '

7;ISLE XR(MS,À) 'Asset rates of returri*
USA3 FORS C3RP GûVE

sr ~ . t t L-16 0.99 1.02
SC 1-20 L.4L 1.04 1.05
s3 6 û-91 1.lL L-l0
s4 1.23 0.83 1-05 1.04

VARIABLES
En 'Expectation of the utility function';

POSITIVE VARIABLES
' cash period O ' ,
' cash period 1 ' ,
'cash period 2 ' ,
'cash period 3 ' ,
'cash period 4',
'cash period S ' ,
'cash period 6'.
' cash period 7 ' ,
'cash period 8 ' ,
'assecs period O * ,
'assets period 1' ,
'assecs period 2 ' ,
'assets period 3 ' ,
'assets period 4 ' ,
'assets period 5 ' ,
'assets period 6'.
'assets period 7',
'assets period 8 ' ,
'surplus, final period',
' d e f i c i t , final periodl ' ;

CART(MS)
U (MS,MS,MS,MS,MS,LISl ' su,rplus, final period ' ,
V (MS,MS,HS,?!S,MS,MS) 'deficit, final period';

SQUATIONS
OBZECT I'uT 'ccmpuces (expected utilityl ' .
a;lLF-O 'Balance of Financial Flows period 0',
LBALF-1 (MS 'Balance of Financial Flows period 1'.
BAL?-2 (MS,MS) 'Balance of Financial Flows period 2 ' ,
3X.F-3 (KS,MS,MS) 'Balance of Financial Flows period 3 ' ,
W?,4(MS,MS,MS,MSl 'Elalance of Financial Flows period 4'.
9ÀLF,S(K,MS,MS,MS,MS) 'Elalance of Financial Flows period 5 ' ,
=F-6 (MS,MS,Mç,MS,MS,MS) 'aalance of Financial Flows period 6'.

* EXF-7(MS,.MS,MS,KS,MS,MS,MS) 'Balance of Financial Flows pesiod 7',
* 3;liF-8(MS,MS,MS,MSl.*LS,MS,MS.MS) 'Balance of Financial Flows period 9 ' .

compti (MS , MS , MS, MS, MS, Ms, ?S, MS) ' surplus and def ici t , final period ' ;
COMPW(MS,~S,.?lS,MS,MS,MS)

OPTION LP = WATPAR;
NDEL PORT / ALL ,';
SOLVE PORT USING 52 M M I M I Z I N G SU;

APPENDIX B The C codes of WSET

We present a simplified code of a core part for WSET (Waterloo Structure Exploiting Tool),

which describes how the mulù-part smicture can be extracted from GAMS and how eûch

subproblem's data c m be sent to the p d l e l machines. This code is a modification of the

original SET, which has much more complicated coding scheme with several files. Assuming

that dl files and libraries are linked properiy and dl variables are defined comctly, we give

only the modification of the original set.

! Retrieve data from nb-blocks Decomposition st-ructure of original SET. * /
int nb-blocks = aecomp->nb-blocks;
int objeccive,row = Decomp->objective,row;
inc objective-zolux?? = Decomp->objective,column;

int* rowinfo =
icc* rowjerm =
in:* inv-rwq =

into colinfo =

/ * Detennine the dimensions of SubPrcblems; number of variables,cons~raints,
* and nonteroes of nb-subs parc for WSET.
* Rm,ove column corresponding to objective varLable fraxrt Sub-O.
* Retrieve Che index of the objective r o w in a pe-rnuted matrzx. *:

i
SPb-mti] = S P b ~ ~ [i] ~ D e c o m p - ~ L a s t R 0 ~ f 2 * j - l I - D e c ~ o w ~ 2 * ~ - l] ;

1
1
SPb-nz[i] = 0;

1
SPb,n[O] --;

obj-row = rowgerm(objective,row];
princf('cbj-row = %d\n9, obj-row);
for (i = O; i < Decomp->n; i++) I

j = colinfû[il:
SPb-nz[j] += LpG->jco l [i+ l] - QG->jcol[i];

* Find the nunbez of linking variables and ccastraints for each part':

LLnd the =ctal xunber sf lizkizg variables and constraints for upper
par ts* :

* Nccat:~~: . - anc : à=c=e r c w azc colum indices in the G A E LP aatrix;
* F r & =d j c l c a o c e ruw ana c=lmn indices in che permuted mat r i%;

isp =6 I s p denote row a& c c l m . i n d i c e s in t5e SubProblem;

k denoces an index of SubProblern to which column j belongs.
Starting fram the first col-, decide che row part number of the nonzero
coefficient: nonlinking constraint's coefficient belongs to the same part
number which the colirmn belongs to; linking constraint's coefficient
should have a column part nuber and row part number.
Note chat chere are 2*nb,subs subproblems in original SET but should be
converted CO nb-subs subproblems. iii and ppp accumulates the nuber of
rows above each part, so can find correct row number.

for (jcl = O; jcl < Deconrp->n; jci+-1 {
j = inv-clg[jcl];
k = colinfo[jl;

if (j ! = objeccive,column 1 E
phd = (k+l)/2; k = phd ;

for iipos = LpG->3collj]; ipos < LpG->jcol[j+L]; ipos++) (
F = LpG->irow[ipos];
i-v = row_pem[i] ;

Ffirowinfo[i] <= Z'phdl
f
if (rowinfoli] c= O 1

isp = i-TW;
else if (rowinfc[ij < 2*phd-1 1
C
ppp=O ;
for(iii=O; i i i < (rowicfo[i!-LI12 ; i i F + + l
{ppp= ppp + Decamp->LastRow[2*iiitIl- ~ecamp->~irstRow[Z~ii~~I 1 : 1
i s p = irw 9 Decoq->Las~qowiO] - Decomp->FirstRow [rowinfo [il 1 *ppp;

1
else
C
ppp=o ;

isp = iiv + 3ecox~->LdstR0~[0 1 - 3e~cmp->FirsfRow[2~k-l1 +ppp;
1

- Deccmp->Firs~qow[2*phdI - irw t
Derom-~FirstRow[r~winfo fi] 1 + ppp ;

zsp ;
LpG->aa l ipos 1 ;

Check t h e cons i s tency of ch t a . * /

f o r (k = O ; k <= nb-5locks; k++) (
i f (SPb,n[kl != LpSubtki->n) C

p r i n t f (* E r r o r : SubPb %d has i nco r r ec t number of coluxms % d . \ n n ,
k, SPb-n[kl) ;

1

fsr [j = O; j < LpSubIkl ->n; j - 1 C
if (LpSub[k] ->Io-bn& [j 1 > ~ p ~ u b [k] ->up-bnds [j 1 1 C

p r i n t f (' = r o r : S a P b bd, c o l m 4d: LO-bnd exceeds UP,nnd.\n', k, j);

1 C
i n co r r ec t number cf e n t r i e s %d.\nS,

Wrong SubProblens d in , ens ions . \ nn) ;

LpSub is Lnfeasible (LO-bnd exceeds
ÜP-nnd) . in* ;

=et=-., 5 :

Seccnd lnaia ioop f o r c o n s t r a i ~ t s . S p l i t Data of W S 52 problem into
Si;bProblens.
Sec up al: row related daca i z ScbProblen LP n a t r i c e s .
N c t a t ~ o n :
r denotes row inâex i n t h e G;IMS LP n a t r i x ;
rriu denotes row index i n t h e permuted nac r i x ;
isp denotes r = w inaex i n t h e SubProblem;
k denotes an index of SubProblern co t~hich row i b e l m g s .
S t a r i i n g from t h e f i r s t row, dec ide che row part n u b e r o f r h s ana sign
sf c m s t r a i n t s

Noce tha: l i nk ing c o n s t r a i n t s snculd be included i n a l l zb-strbs p a r t s .

Lsp = ird:

S P b ~ [k l - + ;
1
else
(
if (rowinfoIi] c 2*k-1 1

C
for(phd=l; phd <= nb-subs; phd++)

(
if(rowinfo[i] == S'phd-l)

(
ppp = O;
for(iii=U; iii < phd-L ; iii-1
ppp= ppp + Decomp->LastRow[Z=iiitl]- ~ecomp->FirstRow[2'iii+ll;

isp = i-rw * 3ecomp->LastRow[O] - Decomp-~FirstRow[rowinfo[iI]+ppp;

ppp = O ;

C
for(phd=l; phd c= nb-subs; phd++)

if(phd == k)
C
isp = i,rw t Decomp->LastRow [O 1 - Decomp->Firs*JZow [rowinf O [i 1 1

+ PPPi
1
else
i
isp = i,?r + Decomp-~LastRow [O] - Decamp->FirstRaw[rowinf O i i l 1

* (Decontp->LastlIcw[2*k] - Decamp->FirstRow[2*kj) + ppp;

ppp = O;

for(iii=O; iii < (rowinfo[iI+l)/t - 1 ; iii++)
ppp= ppp t Decomp->LastRow[2*iii+1] - ~ e c o m p - ~ ~ i r s ~ o w f 2 * i i i t ~ ~ ;

isp = irw + Decomp->LascRow [O] - ~ecomp->~irstRow[rowinfo [il -11 +ppp;

I * Store linking variable infornacion in different vector * /

, + Define distribuced machines and executable files in each nachine*!
where[l] = ~pardist~.uwaterloo.ca";
where[2] = "parc!ist2.uwaterloo.ca8;
nheref31 = 'gardist3.uwaterloo.ca';
wherel31 = "pardist4.uwaterlootCa':

if(nb,subs == 1) / * If only one processor is used * /
exefile [L i = ,u/kjpark/pkdthesis;cbisj inl* :

else
exef ile[l] = " /u/hjpark/phdthesis/c!xisjinm ;

exefiLe[2] = '.'u,hfpark/phdtkesis/c~isjin0;
exef ilel3 1 = " i'u;hjpark/phdthesi~/ckisjinm;
exef~le[4] = " l~/hjpark!phd~esis/chrisjino;

* Ask each machine to star= each process *!
for(k=l; k<=&-subs;k++i
i
cc=pc?n,spawn(exeEiIefkI , O , 1, where[kl, L,&ti6[k] 1 ;

- -
"(CC ' = 1)
-y.--& \ " =CR in spamicg exetvtables S M O R code : 5d ! ! ! \nw , cc) ;

/ * Pack initial &ta and send '/

for(k=l; k <= nb-subs; k++)
f
pwi_initsend(PwiDataOefou1t);
inf O = pv-kint i ab-subs , 1, 1) ;
info = pvmgkint (subtype, nb_s&s+l, Il :

1

far(k=l; k <= nb-sas; kt+)
info = pvm_send(tid[kl, 111) ;

info = pm-pkint (aaa. nb-subs+l, 11 :

i z f o = pvn-pklong (SPb-3, nb-substl, II ;
i c f o = pvn~klong (S?b,n, nb-subs-1, 1):
info = pvngklong (SPb-2:. nb-subs+T, 1);
info = pvmqklonq (LSPb-m. nb-subs+l, 1) ;
lnfo = pw-pklong (LSPb-n, zb-substl, 1);
info = pvmgklong : LpSub[kf ->mmmhs, SPb-nz [k] , 1) ;
xfo = pm_pkdouble (LpSubLkI-xoeffs, SPb-nz[kl, 1);
info = gcm~klong (LpSub [k] -xlpnts, SPb-n [kj +l, 1) ;
info = pvm~kdouble (LpSublkI->lo-bnds, SFb-n[k], L I ;
info = ptm~kdouble (LpSub f k] ->up,bnds, SPb-n [k) , Il ;
snfo = ptm-pklong (LpSub [k] ->row,type, SPb,m(k] , 1) ;
rcfo = pvn~kdouble (LpSubfkj ->rhs,SPb-rnfkl, l);
izfo = pwm~kdouble (LpSubik] ->r&?ges, SPb-n[k: , 1) ;
r f ~ i ~ f a)
p r i n c f (' 3-OR in packing data :O define the subproblem l l l 'in' 1 ;

,

E
info = pvmgklong (LpSub [k] ->clpntç, LSPb-n [k] +l, 1) ;
info = pvmgklong(LpSub[kl-xwnmbs, LpSub[kl->clpnts[LSPb-n[kl],l);
info = pvmgkdouble(LpSub[kl ->coeffs, LpSub[kl ->clpnts [LSPb-n[k] 1 , 11 ;

1

for(k=l; k<=nb-subs r kt+)
C
i f (k == 1)
info = pvm-send(tid[k],lO);

1

re turn 1 :
1

Appendiv C C codes of WATPAR

We present the simplified C source codes for the parallel decomposition solver WATPAR for

each subproblem of 4 part cases. The fint subproblem gives more detailed explanaiion than

the other 3 subproblems since the othen are very sirnilar except handling prima1 or dud

information and updating the subproblems. Rocessors 1 to 4 solves lower-lower bound

subproblem. upper-upper bound subproblem. lower-upper bound subproblem, and upper-

lower bound subproblem respectively.

C.1 Processor 1 : Lower-Lower Bound Subproblem

tinclude <stdio.h>
rinclude cstdlib.h>
*include <sczing.h>

izt ab-subs, cur-block = 1;
i ~ s irez-count = 1, lev2,ccunc=O;
double :al = 0.0001;

..... DEF1.W G L C W VARIABLES AND ALLOCATE MFMORIZS
double mysecands(doub1e acrtlit) , * T h e measuremenc fnction *!
<
double Idt;
gettimeofday(~itv2. (sc,ruct tbezone*)O);
Idt=idoubie) (tv7.t~-sec - c v ~ . t v ~ s e c) ~ ~ 0 0 0 0 0 0 + t ~ 2 ~ t ~ ~ u s e c - tv1.t~-usec;
actzm = acumc + ldt ;
retu,-n (acumt) ;

double CcmpuPiS(LpSubProb "LpSub) / * Compute P i B CO secd ' 1

E
int i, j ;
I p S u b [~ r ~ b l o c k l - > P i = 0.050;

if(LpSub[cur-blockl->lo-bnds[j] ! = 0.0 && dj[j] ! = 0.0)
LpSub [CU-block] ->PiB=LpSub [curubblock] ->FiB+

LpSub [cur-block] - ~ l ~ ~ b n d s f j 1
Cdj [j l) ;

eise if(cstat[jl == 2)

double *CompuPiD(LpSubProb "LpSub) / * Compute P i D to send * /
I
i n t j , p ;

for (j=O; j<LSPb,n [cur-block] ; j ++)

{
LpSub[cur-blockl->PiD[jI=O.O;
for (p=LpSub [cur-blockl ->clpnts (j 1 ; p~LpSub[cur,block] ->clpncs [j +l 1; p++ 1
if(pi[LpSub~curblock]-~rwnmbs[p]-l-HISPbbm[cur~b~ock-1]] ! = 0.0 &&
LpSub[cur-block] ->rwnmbs [pl >HISPb-m[curUTb1ock-l 1 &&
LpSub l cur-block] ->rwnnibs [pl < SPb-rnlcur-block] -LOWSPb-m[curU1:blockl

LpSub[cur,block] ->PiD [j 1 += pi [LpSub[cur-block] ->rWMLbs [pl -1-
HISPb-m[cur,block-11 1~LpSub[cur~bl0~kl-~coeffs[pl;

1
return (LpSub [cur-black] ->PiD) ;

1

double *CompuOMeL(LpSubProb "LpSubi / * Compute OmegaL * /
E
i n t f . k, p;
for(j=O; j < HISPb-n[nb,subsl; j++)
LpSub [cur,block] ->OMeL[l i = 0.0 ;

fcr(k=l; k <= nb-subs ; k++)
i
if(k < cur-block)
E
for (j =O ; j <LSPb-r, [k] ; j ++)

(
for (p=LgSub[k] ->clpnts [j] :pcLpSub[k] ->clpncs [j+lI ;p++)
if (LpSub [k] - > d s [pl >= SPb-m[kl -LOWSPb,m[cur,block-11 &&

LpSub lkl ->rllrnmbs [pl c SPb-rnikl hh pi [LpSub[k] -mmmbs [pl -SPbbm[k3 +

LOWSPb~m[cur,block-l]+LSPbbm[~CUfblock-L 1 ! = 0.0)
LpS~&[c=,block:->OMeL[j+HISPb,n[k-111 += pi[LpSub[k]->rwnmbs[p]-
S?b~m[k~+LOWSPb~m[curElock-~]+LS?b~m[cur~blo~k-l]]~LpSub[kI-~coeffs[p];

1

t

for (p=~p~ub[kl ->clpnt.s [j I ;p<LpSub[k] ->clpnts [j+l] ;p++)

if (LpSub [k] ->rwnmbs [pl > HISPb-m [cur-block-11 &&
LpSub[k] ->rwnmbs [pl <= HISP~J[CU,~~OC~~ &&
pi [LpSub [k] ->rwnmbs [pl -HI:SPbbm[curCUTblock-1 - 1 ! = 0.0 1
LpSub [c*t,block] ->OMeL [j +HISPbbn [k-Il 1 += pi [LpSub [kl ->rwnmbs tg] -

HfSPb,m[cur,block-11-11 *LpSub [kl-
xoe f fs [p 1 ;

1
1

1
return (LpSub [cur-block] ->OMeL) ;

1

/ * ûptimite, obtain solutions and nrite them to output file * /
i n t SolveProb (CPXENVptr env, CP.XLPptr lp)
i
int i, j, k, info, bufid, status, sitcnt, solstat; double dtl;

gettimeofday(&tvl, (strict timezanew)O);
status = CPXprimopt(env,lpi;
Ff t status 1 {

chaz errmsg[l0241;
CPXgeterrorscring (env, status, errmsgi;
fprintf (stderr, "%sm, errmsg);
fprintf (stderr, "Failed to optimize LP.\na);
return (scatus l ;

1
gectimeofday[&tv2, (struct cimezone*)O);

fprintftfp, "Real solution t h e : $8f\nm, dt1/1000000);
acl = atl + dti;
fprintf(fp, "TOTAL solution cime : 48f\na, at1/1000000);

scatus=CPXsolution (env, lp, &solstac, &objval [cur,block] , x, pi. slack, a j ;
if (status 1 {

fprintf (stderr, "Failed to obtain solution l . \nm) :
return(status) ;

stacus = CPXgetbase (env, Ip, cstac, rstat) ;
if (status 1 I

fprintf (stderr, 'Failed t o obtain basis.\nn);
retu-rn (status ;

1

siccnt = CPXgeticcrit(env,lp);
fprincf (fpl, '\n"*" Iteration Number : ad, $d \nn , iter-count, lev2-councl ;
fprintf (fp, " \nSolution scacus = %d\nn, solscat) ;
fprintf tfp,"Objeccioe value = % f \ n \ n m , aSjval[cur,bluckl);
fprintf(fp1, * Sktplex Iteration Comt : %a \nm, sitcnt);

for (F = O; i < cur-numrowç; F-1 i
fprFncf (fp,"Row ad: Slack = 4f ?i = $f rstat =%d\nn, i, slack[i],

pi[il,rstat[ij) ;

for (j = O; j < cur-numcoïs; j++) E
fprintf (fp,'Column $d: Value = $f Reduced cost = %f cscat = $&\cm.

short
LowerSound (LpSubProb **LpSub)
{

.... Declare and allocate space for the variables and arrays

/ * Receive initial data for linking variables of other parts * /
gercirneofday(&tvl, (strucc cixnezone*)O);
bufid = pta_recv(ptid, 10) ;
rdtl = myseconds(rdtl);
fp = fopen(m/u/hjpark/phdthesis/c~isjin.outm,ma'~;
fprincfIfp, ' Receiving Set up Data Time : 38f\nm, rdt1/1000000);

t
info = pvm-upklong(LpSub[k]->clpnts, LSPb-n[kl+l, L I ;
inf O = pvn-upklong (~psub [k] ->rmmbs, ~ p ~ u b [kl ->clpnts [LSPb-n [kl 1.1) ;
info = pm-upkdoïble(LpSub[kl-~coeffs, LpSub[kl->clpncs[SSPb-n[klI.l);

. ' * Ir. order CO load the subproblea to CILEX, conver: data (sense) CPLEY
fornac and recrieve che vector which indicates the number of nonzero
elements (rnatcnt) in each column and objective function coefficients
(objcoeffs)*/

far(i=O; i < LpSub[cur,blockl->m ;i+-1

fsr(j=O: j<~pSub[cur-blockl->n:j++li
natcnt [j 1 = (in:) i~p~ub[cur,blockl ->cIpnts [j + l l

-LpSub [cur-block] ->clpnts [j ll;
if (LpSub [cur-block] ->rvMbs [LpSuh[cur-block] ->clpnts [j 1 1 == 0)
objcoeif s [j 1 = -LpSub [cur-blockl ->coeffs [LpSub [cur-blockl ->clpnts [j 1 1 ;

. * I~icialize the CPLZK envirament * i

env = CPXopenCPLEYdevelop (hscatusl;
i f (e x - == NtZL 1 (

char err;nsg[l024l;
Syzintf tstderr, 'Could not open CILLK enviromenr.\nm);
Z?X~eterrorstrFzg (env, status, e - n g) r
f p r i n t f Istdezr, '%su, ernilsgi ;

/ * Use advanced basis at each iteration * /
status = CPXsetintparam(env, CPX-PARAM-ADVIND, 1);
if (status 1 {

fprintf (stderr, "Failed to scale.\nm);
goto TERMINATE;

/ * For barrier method, use option 1 to solve subproblems * /
status = CPXsetintparam (env, CPX-PARAM-BARALG, Il ;
if (scatus {

fprintf (scderr, "Failed to scale. \nm 1 ;
goto TERMINATE;

1

/ * Create the problern- * /
Ip = CPXcreateprob (env, &scatus, "3-regionmi ;

if (lp == NULL i I
fprintf (stderr, 'Failed co create LP. \na 1 ;
goto TERMINATE;

1

/ * Now cûpy the probiem data into CPLEX * /
status=CPXcopylp (env,Ip, (inc) LpSub [cur-block] ->n, (int 1 LpSub [CU-blockl ->m,

-l,objcoeffs, LpSub[cur-blockl->rhs,sençe,(int*) (LpSub[=ur-blockl-clpnts),
maccnt, (inc*) LpSublcur~blockl-~rInnmbs,LpSub~cur~block]-~coeffs,
LpSub[cur,blockj->la-bndç. LpSub[cur,block]->up-bnds, NaL) ;

if (status) E
fprintf (stderr, "Failed co copy problem data.\nm);
goto TERMINATE;

1

/ * Delete the first row because the original vector has always the objective
function coefficients in row zero ' /

status = CPXdelrows (env, Ip, O, 0);
if (status i I

fprintf (stderr, "Failed CO delete row O\nW) ;
goto TERMINATE;

I

Add an artificial variable to each linking constraints * /

for (k=L; k<=nb-subs; k++
{
if(LSPb,mikI > 0)
status = CPX.newcols(env, lp , (înt) LSPbmlkl, LpSubfkl->arti,obj, NWLL.

NUU, NULL,
NtJtLl:

i

for (F=O; i<LSPS,m[c~rblockl ; i+-1
status = CPXcbgcoef (env, l p , (int) i, (int) (~pSa[cur,block] - m l +I,arti-coef);

for(i=lpSuj[curblock]->m-LOWSPb-m[cur,blockW; i<LpSub[cur,blockl->m-l;i++)
stacus=CPXchgccef (e w , lp, (int) i, (=nt) (LpSub[cu,Slock] ->n) +
L S P b ~ m I ~ ~ 5 l o c k l + i - L p S ~ ~ ~ ~ r ~ ' o l o c k ~ - ~ ~ + L O W S P b ~ m [~ ~ b l o c k] l , arti-coef);

/ * ûptimize the problem and obtain solution. * /
status = SolveProb(env, Ip) ;
if (scatus) {
goto TERMI-WE;

1

/ * Add the su-CO-one constraints for Lamda variables * /
for(k=l; k <= nb-subs; k+*)
I
if (subtype[k] == 1 1
status = CPXaewrows (env, lp, 1, &Lam,rhs , &Lam_sense, NDLL, NULL) ;

1

objval[îl = objval[l] t 10;
while(iter-count<l50 && (objval[2]-objval[l]>tol)) / ' Upper level iteration * /

C
iter-count = iter-count + 1;
totlev2C = totlev2C + lev2,counc; / * Find the total number of proposals * /

/ * Compute the dual proposals and send them CO aggregated upper bound
subproblem (processors 2 and 4) /

LpSub[cur,block~->PiB = CornpuPiB(LpSub);
LpSublcur-blockl->PiD = CompuPiD{LpSub);
LpSubIcur-blockj->OMeL = CompuGMeL(LpSub) ;

pm-inirsend (PvmDataRaw 1 ;
info = pvm~kdouble (&LpSub[cur-block] ->? lB , 1, 1) ;
info = pvm-pkdoubie (LpSub[cur-blockl->?iD, LSPb,n[cur,blockI, 11;
info = pvmgkdouble (LpSub[cur,block]->OMeL, HISPb,n[nb,subsl,~);
if(info < 01
fprintflfp,"E3ROR in packing data\nu);

for(k=l; k c= ab-subs; k-1
C
if(subtype[kj == 2)
bufid = ptm_send(tid[k],5):

1

;* Receive prima1 proposals from aggregated upper bound subproblem * /
f 3r (k = l ; k<=nb-subs ; k++ 1
{
if(subtype[k] == 2 1
E
gectimeofday (LEVI, (struct cimezoner) 0) ;
bufid = pvm-rem(tid[k] , 2) ;
rdtl = myseconds(rdtl1;
fprintf(fp, ' Seceiving Set up Data T h e : $8E\nw, rdcl/1000000):

ififo = ptai,upkdouble (&LpSublk]->CX, L, 11;
Fnf 3 = pt-n_upkdcuble t LpSub [k] -wLY, Hf SFb-m [nb-subs j , l l ;

i

* Aad the sum of prknal proposals and add one col- to the subproblem *!
LpSub[tl->CX += LpSub[4]->CX ;

status = CPXnewcols (env,lp, 1, &LpSub[2]->CX, &Lam-10, &L=up, NULL, m);
if (status)

fprintf (fp , ' =OR in defining a new column! ! ! \nu 1 ;

for(i=HISPb,m[O]; i cHISPb,m[cur-block] ; i++)
i
status = CPXchgcoef (env, lp, i, LpS~(cur,blockj->n + HISPb-m[nb-subs]+

+iter,count-2+totlev2C. LpSubfZj->LY[ij);
1

for(i=LpSub[ll ->m - LOWSPb-m[ij -1; i<lpSub[l] - > m l ; i++)
I
status = ~PXchgcoef(env, I p , i, LpSublcur-blockl->n+HISPbs[nb-subs]

+ iter-count-2 - totlev2C ,
LpSubt21 ->LY[~-LpSub[ll ->m - LOWSPb-m[l]+l+HISPb~[cu~:~block~ 1) ;

1

status = CPXchgcoef (env, lp, (int (LpSub[cur-block] ->m-1) ,
LpSub[l~-~n+XISPb~[1]+LOWSPb~m(I~+iter~co~t-2+totlev2C, Lam,coef) ;

/ * Lower level iteration. 'exitlev2' Fs a signal coming from lower-uppex
bound subproblem asking CO exit lower level iteration * /

while(lev2-count < 150 && (objval[3] - objval[l] > 0.0001 1 1 lev2,count cl)
&& (lev2,counc c 1 I I exitlev2 c= O 1 1

LpSub[cur-blockl->Pi3 = CompuPiB(LpSub);
LpSub [cur,block] - >OMeL = CompuOMet (LpSub ;
LpSub (-,block] - > P i D = CompuPiD (LpSubl ;

1

pvm-initsend(FvmDataRaw1;
info = pvm-pkdouble (&LpSublcur-biockl-,PiS, i, 1);
inf O = pvm_pkdouble (LpSub [cur-block] ->Pi& LSPb-n [cur-blockl , Il ;
info = pvmgkdouble (LpSub [cur,block] ->OMeL, HISPb-n [nb-subs 1 , 1) ;
Lnfo = pvmgkdouble (LpSub leur-blockl ->Ornega, LSPb,m[cur,blockj , 11 ;
if(info < 0)
fprintf (fp, 'ERROR in packing data\nn ;

gettimeofday(&tvl, (struct tbezone*) 0 1 ;
bufid = ptm_retv(tid[31, 2) ;
rdtl = myseconds(rdtl);
fgrincfifp, * Receiving Set up Data Time : S 8 f \ n n , rdt~/~000000);

, * M d a primai proposal from subproblem 3 (louer-upper b o n d s9roblem) * /
status = C?Xnewcols(env,~p, 1, tLpSub[3]->a, &Lam,lo, &Lam,up, N U U , N U I L) ;
if tstatus)

fprincf (fp, ' ERROR in defining a new col^ ! ! ! \na) ;

for (i=HISPb-m[O] ; i <HISPb-m[cur,block] ; i++)
sta tus = CPXchgcoef (env, lp, i, LpSub[cur,block] ->n +

HISPb,mfnb,subs]+iter~count-2+toclev2C+lev2cot, LpSub[3]->LY[i]);

for(i=LpSub[l)->m - LOWSPb,m[ll-1; icLpSub[L]->m-1; i++)
(
stacus = CPXchgcoef(env, Ip, i, LpSub[cur,blockl-~n+HISPbbrn[nbbsubs1

+ iter-count-2 + rotlevZC+lev2-counc ,
LpSub[31->LY[i-LpSub[I]->m + LOWSPb~n[l)+l+HfSPb~[cur,block] 1) ;

1

status = CPXchgcoef (env, Ip, (int) (LpSub[cur-blockl->m-W,
LpSub[11-~n+H1SPb~[1]*L0WSPb~mII1titer~count-2+totlev2C+~ev2~co~t8
Lam-coef 1 :

status = SolveFrob(env, lp);

pwt-inicsendlhrniDataRaw) ;
info = pvmqkdouble (&objval[tur,block] , 1 , Il ;
bufid = p-send (tid[3],7);

gettimeofday(&tvl, (s:,lrct thezoneT)O);
bufid = pvm-recv (tid[31,71;
rdt l = myseconds (rdt 1) ;
fprintf(fp, ' Receiving Set up Daca Time : %8f\ne, rdt1/10000001;

info = pvm-upkdouble (&objval[3],1,1);
info = pvm-upkint (hexitlev:, 1,l) ;
if(info < 0)
fprintf (fp, * =OR in unpacking objval[3l \nn , 4) ;

pvm_Lnitsend(PvmDataRaw);
info = pvmqkdouble ihobjval [cur,blockl , 1 , I l ;
forIk=l; k <=nb,subs; k+*)

C
if(k f = cur,blockl
bufid = pvm-send ttid[kl, 81 ;
ifibufid C O)

fprincf(fp, "IRROR in sending objval[%d]\nn,k);
1

for (k=l; k c=nb-subs ; k++
f
if(k ' = cur-block l
i
gectimeafday(&tvl, (struct rimezoneT)Ol;
bufid = pwi-rem (tid[k],8);
r6:l = nysecoads (rdtll ;
fprincf(fp, * Receiving Sec ap Data T h e : 48f\nm, rdtl/L000000);

TERMINATE :
..,. Free up the problem as allocaced by CPXcreateprob

return ;
1

/ * Record program start time ' /

getcimeofdayi&tvl, (struct tirnezone*) 0) ;
idt = (double) (tvl-tisec) ~OCOOOO - tvl.tv,usec;
ptid = pvmjarent (;

Record the idle time to receive the initial data ' /
gettimeofday(&tvl, [struct cimezone')O) ;

bufid = pvm-recv iptid, lil) : 1 ' Aeceive data * /
rdtl = myseconds (rdtl) ;
fp = fopen(w/u:hjpark/phdthesFs~chrisjinn~utw,mwa~;
fprintf(fp, l Xeceiving Set up Data 'lime : 08f\nn. rdtlil000000):
fclose(fp) ;

buf id = pv-upkinc (&nb-subs, i, I) ; :* Unpack data ' /

if (bufid < 0)

fp = f~pen!~~u/hjpark/phdtkesis,chrisjin.out", *aw) ;
fprintf(fp, 'ERROR in unpacking nb-subs\nml ;
fclose(fp1 ;

1

C
fp = fopen~";u/hjpark/phdthesis/ctuisjin~out*,"a"l;
fprintf(fp, 'ERSOR in unpacking subtype\nm);
fclose (fp) ;

1

gettineofday(&tvi, (struct cinezone* 1 0) ;
Sufid = ptm-rem (pcid, 1) ; ;* Receive initial problem data 'I'
rc=l = myseconds(rdtl) ;
f p = :cpen('. u/hjpark:phdthesis, chrisjin.outm, "am) ;
fprincftfp, ' Receivfng Set ~p Data Time : %BÉ\n''. rdtli10000001;
fclase(fp) ;

fp = fopen('/u/hjpark/phdthesis/c~isjin.out~,'a*~;
fprintf(fp,' ERROR in unpacking data to define the subproblem !!!\na);

/ * Find the number of accumulated linking variables and constraints * /
HISPb-m = (long ' 1 malloc((nb,subs + l)*siteof(long));
HISPb-n = (long *) malloc((nb,subs + I)*sizeof(longl);

info = pvm-upklong (LpSub[cur-Slockl->mmbs, SPb-nt[cur,block], 1) ;
info = pt-upkdouble (LpSi;b[cur-blockj-~oeffç, SPb-nz[cur,block], Il;
info = pvm-upklong (LpSub[cur,blockl->crpnts, SPb,n[cur-blockl+l, 1);
info = pvm-upkdouble (LpSub[cur-blockl->lo-bnds, SPb-n[cur-block], 11;
inf O = pvm-upkdouble (LpSub Icur-block] ->up,bnds, SPb-n [cur-blockl , 1) ;
info = pvm-upklong (LpÇub[cur,Slockl->row-tme, SPb,m[--block],l);
info = pvm-upkdouble (LpSub[~ur~blockl-~rhs,SPb~m[c~~~b1ockj,1~;
info = pvm-upkdouble (LpSub[cur,blockl->ranges, SPb-m[cur,blockJ,1);
if (info c 0)

fp = £open('/u/hjpark/phdtfiesis/c~isjin.outW , 'a* 1 ;
fprintf(fp,' ERROR in unpacking data t o define the subproblem ! ! ! \ c m) ;

!* Take the program end t h e and measuxe ~otal program t h e * /
gettimeofdayt&tvl, (stnct timezone*)O);

edt = (double) (tv1.t~-sec) - 1300C00 t cvL.cv-usec;
f p = fopen(* , u/ hjpark/phdthesis/ chrisjinnoutm, " a *) ;
fprintf(fp, 'Total program rime : %8f\n9, (edt-idt)/1000000);

fcloset fpl ;

t t t t r t * ~ t ~ t 8 t ~ t t t t ~ t t ~ ~ ~ ~ * t t 8 e ~ ~ ~ r ~ e * r t ~ ~ ~ ~ ~ ~ e r t ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ 8 ~ ~ ~ ~ e * r ~ t ~ ~ ~ t t ~ t

C.2 Processor 2 : Upper-Uppr Bound Subproblem

FILES. VARIABLES

* Cornute the prima1 info,.r=nation (L Y and 3 X) :O send * /

F n t i, j, p;

short SolveProb(C3XEWptr env, CP.XL?ptr I p)
L

.... S O L E WU SUEIPROBLEM AND WRITF ESDLTS TO OUTPU? FILE

Add lower level cï: ÿsiag 5ual proposal of upper-lower bond subproblem
(processcr 4) . A new cx t is always added at the end of the constraints, SC
6; r . .
,,..di?.g =k,e t c t a l z&er of canstraints r s rmpoxtmt* /

AddlevfCucs(LpSub2~3b **LpS&, C?.EXVpïr env, C?XL?p t r l p)

for i j=SPb-n [2 1 +LSPb3[2 1 +HISPb,n[I] ;

j~SPb~n[21+LSPb~m~ZI+HISPb~n[nbnbsub~l-~SPb-n[2] ; j++)

lstatus = CPXchgcoef (env, l p , (int) (SPb-m[21-LOWSPb,m[2]
-HIS?b,m[ll -1-totlev2C+levS,count + (iter-count-2) l , j,

LpS~[nb~subs1-~0MeL[j+H1SPbbnI21-SPb~nf21-~S~bbm[2~-~1~?b~n(1]]~ :
1

I
lstatus = CPXchgcoef(env,lp, (=nt) (S?b-m[2]-LOWSPb-m[2]

-HISPb-m[i] -l+cctlev2Ctlev2,count * titer-counc-2)1, j,
LpSub[nb-subsl->OMeLIj+HfSPb-n[I!l);

t
Iscatus = CPXchgcoef (env. Ip, (int) (SPb-m[2] -LOWSPb,m[S]

-HISPb-n[l]-l~totlevZC+lev2,co~t + iter-counc-21, j,
LpSub[nb,subs]-~PiD[j-S?b~n[2]-LSPbbm[2]-HISPb,n[~,s~s-l]+LSPb~n~2l 1) ;

1

lstatus = CPXchgcoef (env, Ip, (int 1 (SPb-m [2 I -LOWSPb,m[2] -HISPbbm[11
-l+totlev2C+lev2,co~~t + iter-count-21,

LpSub[Z]-~n+LSPb,m[2l+HISPbbn[nb_subs]-LSbn[2]+l, Theta-coef);

short
UpperBound (LpSubProb "LpSub)
C
..., I3EFfNF I O C A L VARIiSLES AND X S K A T E MPLFORIES

1 ' Xeceive infonnacion of linking variables and constraints of other parts * I

for(k=l; k<= nb,subs;k++)
{
info = pvn-upkcouÉle~LpSubfk1->Labjcoef, LSPb,n[k],T):
info = pvm_rpkdauble (lpSub[k] ->LEP-bnds, LS?b,n [kl , 1) ;
info = pvn_upkdouble(5pSub[k]-~L~o-bnds, LSPb,n[k],L);
info = pvm-upklong(5pÇubikl -xLpfrcs, LSPb-n[k]rl, 1) ;
Lnfo = pvn-upklong (LpSubik] ->mmmbs, LpSub[k] ->clpnts [LSPb,r?[kll, 1) ;
info = pm-upkdo~le(lpSub[kl->coeffs, LpSub[k!->clpnts[SS?b,n[kII ,l);

... CO-T ORIGINAL DATA sense, objcoeffs and m a t c n t TO CONFORM CPLEX ..-.

* Ncw copy the probkm data into the Lp ' /

status=C?Xc3pylp (=v, l p , (k t) t~Sub[2] n , i n 5pSub[21 ->m.
-I,cbjcoeffs, LpSub[2]->rbs,sense, tint*) (LpSub[2]->clpntsl, matcnt,
(i n t *) LpSub[2]-~rwnmbs, LpS~[2i->c0eff~,LpSubI2]->I0~brrds,

LpSub[2l->up,bnds, mu) ;

l * Make the upper-~pper bomd sÿbproblem fo,?nat of the f i z s t iceration by
deleting row zero and ocher partsr lickiog constraints. M d artificial

variables and add other part's linking variablese/
status = CPXdelrows lenv, lp, O, 0) ;
if (status) {

fprintf fstderr, "Failed to delete row O\nn);
goto TERMINATE;

1

if (HISPb-mf 11 >= 11
status = CPXdelrows (env, lp, O, HISPb,m[ll-1) ;

if (nb-subs > 2)
status = CPXdelrows Lenv, lp, (int) (SPb-m[2 1 -HISPb,m[l] -LOWSPb-m[2] -1) ,

(int) (SPb-n[2] -EISPb-m[L j-tl 1 ;

status=CP.Ynewcols (env, lp, (int) LSPb-n[21, arti-obj , NULL, NULL, NULL, NEJLL) ;

for (i=0: i<LSPb-m[21; i-1
status = CPXchgcoef (env, l p , i, (int) (LpSub[S] ->n) ri, arti-coef ;

f o r (k = l ; k<=nb,subs; k++)
f
if(k l = 2)
E
if(LÇPb,n[k] > 0)
scatus = CP.uewcols cenv, l p , (int 1 LSPb-n[kl, LpSub[kJ ->Lobjcoef,

LpSub [k] ->Llo,bnds, LpSub [k] ->Lup,bnds, NULL, N ü U I ;

ifiLpSub[kI -xwmbs[p] > SISPb-m[l]
&& LpSubIkI->rwnnbs[pj <= HISTb-m[cur,block] 1
stacas = CPXchgcoef (env, Ip, LpSub [k] -xw~unbs [pl -HISPb-n[1j -1.

SPb~n~2l+LS?~~ni21-HiSPb~n[k-l]-LSPb~n[2I-j,LpSub[k]-~coeffs[p~) ;

/ * Add theta variable * /
for(k=l; k <= nb-subs; k++)
if (subtype[kJ == 2 i
stacus = CPXnewcols (env,lp, 1, &Theta-coef, &Theta-la, NULL,NULL, NmL);

while ((iter,counccl50) && (objvalI21 - objval[l] > col 1 1

iter-ccunt = iter-caunc + 1;

fprincf (f p , '!n Iteration N&er : $d --* \nm, iter-count) ;

:' Campute CX CO send aggregated lcwer bond subproblem * /

LpSubI2I-wCX=0.00;
for(j=0: j c SPb-n[Z]; j++)
if(xlj1 ! = 0.0 && objcoeffs!jl I = S . 0)
LpSubiZI-wCX -= objcoeffs[jjex[jl;

status = CompuSY(LpSub);

p\=,initsend(hrmDateaw):
info = p~lqkdouble (&LpSub[Zl->CX, I, 1):
info = pvmgkdouble (LpSub[2 1 ->LY, XISPb,nfnb,subs 1 , l) :

for(k=l; k <= ab-subs: k++)
ii(subtype[k] == 1)
Fnfo = pvm,send(tid[k] , 2) ;

. l XJd the d:al prcpasals ccmizg frm the aggregated lower b o n d subproblern
(przcesscrs 1 -.ci 3) =a make one upper l eve l c ï t * /

f s r (k= l : kc=rh-subs ; k++ 1

i * Add a cut for upper level iteration * /
status = CPXnewrows (env, Ip, 1, &LpSub[L]->PiB, hcut-sense, NULL, NUUI;

forij=SPb,n[2l+LSPb-m[2]+HISPbbn[ll;
j<SPb-n [2 l +LSPb-m [2 1 tHISPb-n [nb-subs] -LSPb-n [2 1 ; j ++ 1

status = CPXchgcoef (env, Ip, (incl (SPb-m[2l-LOWSPb,mt2]
-HISPb,m[l] -I+titer,count-2~+cot1ev2C), j,

LpSub [i 1 ->QMeL [j +HISPb-n [2] -SPbbn [2 I -LSPbbm [2 1 -HISPb-n [11 1 1 ;

for(j=O; j<LSPb,n[tl;j*+i
status = CPXchgcoef(env,lp, Lincl (SPb-m[21-LOWSPb,m[2]

-HISPb,m[l] -l+fiter,count-2)+totlev2C), j,
LpSub [1 1 ->OMeL [j +HISPb,n f 11 1) ;

f0r(j=SPb,n[2I+LSPb~ni[2I;
j<S?b-n [2 1 +LSPb-m[2] +HISPb-n[l] ; j -1

status = CPXchgcoef (env, l p , (int) (SPb-m[2]-LOWSPb>[2]- HISPb,rn[ll-
i+i~er,count-2+totlev2Cl, j ,i,psub[lI - > I l 2 1 1 1 ;

if(nb,subs > 2 && subtype[31 == 1)
E
fcri j=SPb,n[21+LSPb-n[2]+LS?bbnfll ;

j<S?b,n[2]+LS?b-m[21+LSPbbn[11+5SPbbnf31; 1-1
f
status = CPXchgcoef(env,lp, (int) (S?b-m[2I-LOWSPb>[2]-IiTS?bbm[l]-l+

iter-co~nt-2+totlevX), j ,LpSub[31->PiD[j-S?b-z[2]-LSPb-m[2]-
LSPb,n[llj) ;

for(j=3; j<LS?b,n[4l ;j+*)
status = CPXchgcoef ierw, l p , tint) !SPb-mf 21 -LOWSZb,m[2I

-XISPb,n[l] -L+(icer,count-2)+totIev2C),
j+SPb,n[2]-LSPb-mf21:+LSPbbn[l]+LSPb,n[31,
LpSub [1 1 ->OMeL [j +HISPb-n [3 I 1 1 ;

status = CPXchgcaeE (env, lp, l int) (SPb-ml 2 1 -LOWSPb-m [2 1 -HISPbbn[11 -
i+(i:er_coun~-2)+tot1ev2C),
i i n t 1 (LpSub [2 1 ->n+LS2b,m[Z] tHLSPb-n [nb-subsl -LS?b-n [2 1 1 ,

Theta-coef 1 ;

~Cjval[2] = objval [lev2,blockl + 5;
abf val [levZblock] = objval [c ~ s u b l - 3 ;

stacus = CompuLY (LpSub) ;

info = pvmqkdouble (&LpSub[2] - X X , 1,:) ;

info = pvm~kdouble (LpSubi21->LY, ~ I S P b ~ n f ~ b ~ s u b s] , ~ ~ ;
if (subtype [nb-subs] == 2 1
info = pvni~kdouble (alcy, HISPb-n[nb,subs] , 1) :
info = pvm,senà(tid[lev2,bIockI ,SI;

status = SolveProb
if (status 1 {
goto TEFUYINATE;

1

env, Ip) ;

(env. lp);

pvm-iaitsena(RmDataRdwI ;
inf O = pvn_~;kdo&le (&ob jval [cur-block] , L , I l ;
bufici = pi;m_sezd (cia[Levf-blockj,7);

r d c l = myseccndsi=dtll;
fprintf(fp, ' Receiving Sec up Data T h e : i 8 f \ n n , rdt1;lûOOOOO);

.,.. Free up the prcblem as allccated by CPXcreaceprob, if necessary . - - .

C3 Proecssor 3 : Lower-Upper Bound SubproMem

double *CompuLY(LpSubProb **LpSub, double *>oc)

..., COMPUTE BX AND LY
return (LpSub [cur-block] ->LY 1 ;

1

double CompuPiB(LpSubProb "LpSub, int *cscat, double 'pi, double *dj)
C
.... COMPUTE PIB
return (LpSub [cur,blockl - > P i B) ;

1

double *CompuPiD(LpSubProb **LpSub, double 'ppil
t
.... COMPüTE PID
r e t ~ n (LpSublcur,blockI ->PiD) ;

1

double *CompuOMeL(ipSubProb "LpSub, double *?pi)
i
. . . . COMPUTE O K E L
return(LpSub[cur-blockl->OMeL);

1

/ * Add initial columns of the linking variables of lower-loner bound subproblem
of the first Fteration * /

int LSecaddcok(LpSubProb "SpSub, CP.YENVptr env, CPXL?ptr l p)
i

i n t f , p, k. status=l;

iftLSPb-nIll > 0)
status = ClL~ewcûls (env, lp, LSPb-n [l 1 , LpSub [l ! ->Lob jcoef ,

tpSub[lj->llo-bnds, LpSub[l]->Lup,bnds,h'UU, 2RLL) ;

?
r e c u 3 t status 1 ;

i

: Add a l a d a colun fûr primai icfaraacion coming £rom aggregated upper bound
subproblem *!

izt Ad&arncols(LpSub?rob "LpSub, CXEWpcr eov, CPXLPptr Ip, int icer-count)

t
int il status;

for(i=HISPb~Ill; i diISPb,m[cur,block] ; i++)
ï
status = CPXchgcoef (env. lp, i-HISPb,m[i J , LpSub [CU=-blockl ->n

+ HISPb~m[nb~subsl-LSPb~m[1~~LSPbbn[l~+iter~~~unt-ll LpSub[2]->LY[i]);
1

for(l=HISPb,m[cur,blockI; i<HISPb-m[nb-subs]; i++)

status = CPXchgcoef lenv, Ip, i-LSPb-ml11 +SPb,m[3 1 -H5SPbbm[nb-subs] -1,
L p S u b [c u r ~ b l o c k I - ~ n t ~ I ~ ~ b ~ m [n b ~ s u b s] - ~ ~ ~ b ~ m ~ l] + ~ ~ ~ b ~ n [~] + i t e r , c o m ~ - l ,

LpSub[2] ->LY[i]) ;
1

status = CPXchgcoef(env,lp, SPb-mlcur-blockl-HISeb,m[l]-1, SPb-n[cur,block] - HISPb~m[nb~suDsl-LSPb,mtll~HISPbbn~1]+iter,cot-l, Lam,coef);
re turn i s tatus 1 ;

1

/ * Add a cut of iower level Fteration with dual information coming from
lower-lower bound subproblem * /

int Xddcuts(LpSubPr0b "LpSub, C P - W p c r env, CPXLPptr Lp, double "KOniega, double
"KLY, double **OMeLY)
{
:nt stacus, i, j, k;

stacus = C?.Xnewrows (env, lp, I, &LpSub (11 ->PiS, &cut,sense, ?SULL. NULL) ;

fortj=O; j < LSPb,n[lj ;j++)
I:
status = CPXchgcoef (env,lp,(int) (SPb-m[cur,bTock]-H1:SPb-m[l +lev2,count-11,

j+SPb,nlcurblockI- HISPb-m[nb-subs]-LSPb-m~1~,LpSub[lI-~PiD[j]) ;
*

for (j =O ; j <LSPb-n [cur-blockl ; j ++ J

s tatus = C?Xchgcoef(env,lp. SPb,rn[cur,blockl-HfSPb~m[~]+Ie~2~count-l,
LpSub [cur,blockl -~n+HIS2b,m[nbnbsUIsI - L S P 1 S b [1 , Theta-coef) ;

t
for(k=l; k c icer-count; k+-1
status = CPXchgcoef(env, Ip, (ictl i~lpSub~cur,blockl->m-HISPb-m[lj-l,

5 p S c b [c u r ~ b l o c k ~ - ~ n + H I S P 5 5 ~ [r ? b b s u b s ~ - ~ [l] + H S ? b n [l] k , OMeLY[il [k));
1

.... RECEIVE DATA OF LZNKING VARIAELES AND C O N S m i N T S OF OTHER PARTS

. . . . CONt'ERT ORIGINAL DATA TO CONFOM C?LE,Y DATA ST3UCTURE ÇUCH AS SENSE,
OBÜCOEPFS AND MATCNT

stacus = LSetaddcols(LpSub, tcv, Ip) ;

. . . . OPTIMIZE TE PRCBLLi, OETAIN SOLCTION AND WRITE TIiE ilESüLT ?O OUTPUT
a z x . . .

s:a:ÿs = Ad&amccls(fpSub, ecv, IF, i=er,ccunt);

.... SEND PRIMAL PROPOSEILS TO LOWER-LOWER BOUND SUBPROBLEM

/ * If processors 2 and 4 has aoc reached optimal, send objective value and
'lev20pcLot CO processor 4 and receive objective value and 'lev20ptUpw/

if (lev2optUp <= 0)
I
pvm-ini tsend (PmiDaraRaw 1 ;
info = pvmgkdouble (&objval [cur-block] , 1 , 1) ;
pvmqkint (&iev2optlo, 1, L) ;
bufid = pm-send (tid[can-sub],7);

gettimeofday(&tv1, (struct timezonew)O);
buf id = p m r e c v (tid[co~~sub] ,7) ;
rdtl = myseconds(rdc1);
fprintf(fp, " Receiving Set up Data Time : $8f\nm, rdt1/1000000);

info = pvm-upkdouble i&objval[com,sub],l ,LI;
info = ptxupkint (&lev2optUp. 1, 1) ;

I r If objective value of this subproblem is less than chat of upper-lower
stbproblem, then set the signal exitlev2 1 and send it to lower-lower
subproblem*!

if(objval[cur,block] <= oDjval[com,sub])
exitlev2 = 1;
else
exitlev2 = 0;

pvm-initsend(macaRaw) ;
info = pwiqkdouble (hobjval [cur-blockl ,i ,Il ;
info = pvmgkint (hexitLev2,L , I l ;
bufid = pvm-send (tid[L],71;

1

info = pvmgkdouble (&objval [cur-biock] ,1 , 1 1 ;
fcr(k=L; k c=nb-subs; k+-)

f
i f (k ! = cur-block)
~ u f i d = pvm-send (tid[kl,8) ;

{
gectimeofday(&tvl, (struct cimezone*) O) ;
buf id = pvm-recv (tid[k] , 8 1 ;
rdcl = myseconds(rdtll;
fprintf(fp, " Receiving Set up Data Time : %8f\nn, rdtl/L000000);

info = pvm-upkdouble (&objval[k] , l , l l ;
1

1
1

TERMI-WTE :

/ * Free up the problem as allocated by CPXcreateprob.

main(void1
f
.... DEFINE VARIABLES ;CND XLOCATE HEMORIES

i f necessa-y

.... RECEIVE ORIGINAL DATA AND ?fND THE NUMBER OF ACCUMUWTED LINKING VARIABLZS
kW CONSTRAXNTS
. . . . MESZWRE P R O C W TfME

C.4 Processor 4 : Upper-Lower Bound Subproblem

double *CompuLP (LpSubProb *LpSub, double ">oc)

t
. . . . COMPtTF 9X AND LY
retum. (5pSub [cur-block] ->LY 1 ;

1

double *CompuPiD(tpSubPrab "SpSub, double 'ppi)
f
. , . . ccmwrm P I D
retu,~(LpSub[cur,bIockI->?iD);

1

double *CompuOMeL (LpSuhProb **IpSub, dotrble *ppi 1
t

. . . . C~K,rrUTF OHEL
r e r ~ , r , (L p S G [CU-bLock] ->OMeL) ;

C
if(LpSub[l]-~rwMibs[pl >= SPb-mIlj-LOWSPb-m[ll && LpSub[ll-~rwnmbs[pl c

SPb-m [il -LOwSPbs [2 1 1
status = CPXchgcoef (env, lp, LpSubll] -~rwMlbs [pl -SPbbm[l] +LOWSPbj[lI ,
SPb-n[cur,blockl+LSPb-mIcu1-block1+LSPb~m21+j, LpSubEll->coeffs[pl);

i
ifiLpSub[3l->rwnmbsfpl > XISPb,rn[ll && LpSubI31-~rwnmbs[pl <= HISPb,m[Zl)
status = CPXchgcoef (env, lp, LpSub[3 1 -xwnrnbs [pl -HIsPb~n[1] -1,
SPb-n [cur-blockl +tSPb,mlcur,blockl +LsPb~n[2] + j+LSPb-n[l] , LpSub[3 1 -

>coef fs [pl 1 ;

short AddLamcals(LpSubProb "LpSub, CPXENVptr env, CPXLPptr lp, int iter-count, Int
lev2-counc, double "KOMeL, double "Kalty, double 'a l ty)
I
long i , j; int k, scacus;

status=CPXnewcols (env,lp, 1, &LpSub[21->CX, &Lam-10, &Lam,cp, NULL, m L) ;

for l i=H~~~b,m[lj ; i cHISPb,n[Z] ; i++)

for(i=HISPb-mI3I; i<HfSPb-m[41; i++)
{
scacus = CPXchgcoef (env, lp , i-LSPb-m[ll-~SPb-m[3l,
LpSub [cur-blockl ->n+~spb-m[4 1 +LS~b-m[2 I +~S?b-n [11 +LSP~-~ [3] +1ev2-count,

LpSub[2] ->LY[i] I ;
1

status = CFXchgcoef (env, l p , S ~ b m [m-biock] -~SPb-m[l] -L~~b_m[3 1-1,
SPS-nicur-blockl - LSPb-mf 4 1 +LSPb,m[2 1 +LS3bbn[11 +LSPbbn [3 1+, Lam-coef) ;

i
status = CPXchgcoef(env, lp, (inti i+LpSub[ctir-blockl->m-LSPb-m[ll-LSPb-m[31-

1, (incl (LpSublcur-blockl ->n+LSPbbm[cur,Slock)+L(2] +LSPb-n(l1 -LSPbdn[3 1 * j 1 ,
OMeLY[ij [jl) ;

1
1

int Àddcuts(LpSubProb "LpSub, CPXEWpcr env, CP.YtPptr Ip, Fnt lev2-count. int
iter-count J
i
inc status, k; long i, j;
starus = CPXnewrcws (env, Ip, 1, &LpSub [l] - >Pia. &cut,sense, hELL, NULL) ;

{
status = CPXchgcaef (env, Ip, iintl (SPb,m[cur-blockl

-LSPb,m[ll-LSPb-mf31 -iter-counc-2), j+SPb-n[cur,blockl
+ 5SPb-n[t l +LSPb-m[cur-block] , LpSub[L] - > P i D [J 1 1 ;

i

t

status = CPXchgcoef (env, Lp, (incl (SPb-m[cur,blockl
-LSPb-rn[l]-LSPb-m[3i diter-count-Si, j+SPb,n[cur-blockl
+ LSPb-m[2 1 -tSPb,m[cur,block] tLSPb-n [lj , LpSub[3 1 - > P i D I j 1 1 ;

i
status = CPXchgcoef (env, l p , SPb,m[lj-LSPb,n[l]-LSPbbm(31+iter-count-, j .
LpSub [Il ->OMeL [j +Hf SPb-n [cur-bIock-Ill) ;

1

short
UpperBound (LpSubProb "LpSub)

.... RECEIVE NECESSARY OTHZR LINKING VARIABLES' DATA

.... DELETE UNNECESSARY ROWS FOR THIS Sü1BPROBLEM AND ADD COLUMNS FOR ARTIFICIAL
VARIXBES. U S O , ADD NECESSARY COLüMNS FOR OTHER PART'S LINKING VARIABLES . . - .

status = USetaddcols (LpSub, env. lp) ;

.... OPTIMIZE THE PROBLEM OF THE FIRST ITEIMTION, OBTAIN SOLUTIONS AND WRITE THEM
TO OUTPUT FILE

status = CP-Ynewrows (env, Lp, 1, &Lam_rhs, &Lam_sense, WLL, NULL);

while ((iter-counccl50) && (objval[2] - objvai[ll > toi 1)
(
iter-count = Lter-counc - 1;
..., COMPUTE CX

.... S m PRIMAL INFORKATION ?O ;WD RECEIVE DUAL INFORMATION FROM THE AûGEGATED
LOWER BOUND SUSPROBLEM (PROCESSOR I AND 3 1

l * find proper dual information adding each information coming frcrn
aggregated lower bound subprobLi (processors 1 and 3) * /

LpSub[lj->?iS = Lpsub[I]->Pi3 + LpSub[3]->~ia ;

' * Lelste coiumtls for priinai informition of previouç lower level iteration * /
scatus = CPXdelcols (env, Ip,

SCb-z[c~r-SiockI~LSPbbn[2]+f,SPbbn[J]+LS?bn[I]LS?bn[3+l, cur-nucols-LI;

scatus = Acidcxts (SpSub, env, Ip, lev2,covmt, Fter,countl ;

status = AddLamcols (LpSub, env, Ip, iter,comt, 1ev2,count, KOMeL, ~alty,
altyi ;

scacus CPXpr imopt

..., RECEIVE OBJECTIVE VALUE FROM PROCESSOR 2
if (objval[21 - objval [cur_block] < 0 .O001
lev2aptUp = 1;
else
lev2optUp = 0;

/ * If processors 1 and 3 has noc reached optimal, send objective value and
'levSoptUp* to processor 3 and receive objective value and 'levSopcLo*/

if(lev2optlo <= 0)
I
pvm_initsend(PvnrDataRaw) ;
info = pvmqkdouble (&objval[cur-block1,l ,1i;
pvm~kint (&levSoptup, 1, Il ;
bufid = pvm-send (tid[com-subj,7);

getcimeofday(&tvl, (scruct timezoneW1u);
bufid = pvm-rem (tidtcom-subi,?);
rdtl = myseconds(rdt1);
fprintf(fp, * Receiving Set up Data T h e : 48f\nn, rdt1/100G000);

inf O = pvm-upkdouble (&objval [com,subl, l , l) ;
info = pvm-upkint (&lev20ptLo, L, 1) ;
iflinfa < 01
fprintf(fp, "-OR in receiving cbjvaltOdl\nn, cm-sub);

:* If objective value of this subproblein is greater than chac of Lower-upper
bound subproblem, then set che signal exitlev2 I and send it to upper-
upper b a u d subproblem* :

if tobjval [cur-block] >= objval [corn-subj 1
(exiclev2 = 1;)

else
! exitlev2 = S;)

pvm_initsend(PMiDataRaw) ;
info = pvmqkdouble (habjval [cur,block], 1 ,1) ;
info = pvmqkint (hexitlev2,L ,il;
bufid = pvm-send (tid[2],7);

1

:* ?ree up the CPLFY environment, if necessary * /

main (void)

.... DEFXNE AND DO THE SIMILIlR OPERATIONS AS PREVIOUS ÇWPROBLEMS
UpperBound (LpSub) ;

1

BIBLIOGRAPHY

Aardal. K. And A. An. "On the Resemblance Between the Kornai-Liptak and Cross

Decomposition Techniques for Block-Angular Lineu Programs". Europeun Journal

of Operurional Research. MD(1990). 393-398.

Baker. L and B.J. Smith. 1996. "Pmllel Rogramming", McGraw-Hill.

Barr. R.S. and B. Hickrnan. 1993. "Reporting Computational Experimenü with Parallel

Algocithms: Issues. Measures. and Experts' Opinions". ORSA Journal on Compusing.

Vol. 5. No. 1. Winter (1993). pp.2-18.

Benden. J.F.. 1962. "Partitioning Procedures for Solving Mxed-variable Prognmming

Problems". Numerische Marhemank 1 (1962). pp. 238-252.

Birge. J.R.. C.J. Donohue. D.F. Holmes and O.G. Svintsitski. "A Panllel Implementation

of the Nested Decomposition Algorithm for Muhistage Stochastic Linear Prognms".

Matliematical Programming 75 (1 W6), pp. 327-357.

Brooke. A.. D. Kendrick and A. Meenus. GAMS: A User's Guide. The Scientific h s s .

Redwood City. Caiifomia 1992.

CPLEX Division. Using the CPLEX C'llable Library. ILOG Inc. Incline Village. W . 1997.

Dantzig, G. B.. and P. Wolfe. 'The Decomposition Principle for Linear P r o C I d n g " ,

Operotions Research 8 (l96O), pp. 10 1 - l 1 1.

Dantzig, G.B. 1963. LMear prograrnming dt Ertensionr. Princeton University Press.

Dantzig. G.B. 1980. 'Time-staged Linev prognms". Technical Report SOL 80-28. System

Optimization Laboratory. Department of Operations Research. Stanford University.

Stanford. California. USA-

Dantzig, G.B. and P.W. Glynn. "Parallel Processon for Planning Under

Uncertainty", Annals of Operation Research 22 (1990). pp. 1-2 1.

Duncan. R. "A Survey of Parallel Computer Archi tecms". IEEE Trans. Cornputen (1990).

Entnken. R. "Parallei Decomposition: Results for Staircase Linear Rograms". SIAM hnd

of Optirniration, 1 (1996). pp. 96 1-977. November.

Flynn. M.J. "Very High Speed Computing Systems". Proc. IEEE. 54 (1966), pp. 1901-1909.

Fragniere. E.. J. Gondzio. R. Sarkissim. and J. P. Vial. "Structure Exploiting Tool in Algebnic

Modeiing Lan pages". Management Science 16, No. 8 (2000). pp. 1 145- 1 1 58.

Fngniere. E.. J. Gondzio. and J. P. Vid. "A Planning Mode! with one Million Scenvios Solved

on an Affordable Panllel Machine". Logilab Technical Report (1998b), Section of

Management Studies. University of Geneva. Geneva. Switzerland.

GAMS Development Corporation. The G M S VO Library. 1996

Geist. A.. A. Beguelin. I. Dongam. W. Jiang. R. Manchek and V. Sunderam. 1994. A PVM:

Panllel Vinual Machine - "Users' Guide and Tutorial for Networked Parailel

Computing", The MIT Ress, Cambridge. MA. USA.

Gnanendnn. S.K. and J.K. Ho. "Load Balancing in the Parallel Opirnization of Block-

Angualu Linear Pro+ms". Mathematical Programrning 62 (1993), pp.4L-67.

Ho. J.K.. "Conversence Behavior of Decomposition Algorithrns for Linear Rograms".

Operations Research Leners 3 (1984). pp. 9 1-94.

Ho. 3.K.. TC. Lee and R.P. Sundainj, 1988. "Decomposition of Linear Programs Using Parallel

Computation". Mathematical Programming 42 (1988). pp. 391-405.

Ho. J.K. and E. Loute. 1996, "'On the de-gee of Decentralization in Linear Rogramming".

Infownatica 7. pp. 337-348.

Holmberg. K. "On the Convergence of Cross Decomposition". Mathemarical P r o g r m i n g . 17

(IWO). pp. 269-196.

Holmberg. K. "'Linear Mem Value Cross Decomposition: A Generaiization of the Kornai-Liptak

Method". Eu ropean Journal of Operarionol Research. 62 (1992). pp. 55-73.

Konanek. K. 0. and Ji Shan Zhu. 1988. "New purification algorithms for linear

pro_mamrning9*. Naval Research. Logistics. 35, No. 1. pp. 57 1-5 83.

Lm. B. 1993. "A Prirnal-Dual Decomposition Method for Multi-Stage Linev Programs".

Ph.D dissertation, Department of Management Sciences.Univenity of Waterloo.

Waterloo. ON. CANADA.

Lan. B. and J.D. Fuller. 1995a. "A hmal-Dual Decomposition Method for Two-Stage Lineu

R o _ ~ s " . working paper. Depment of Management Sciences. University of waterloo.

Waterloo. ON. CANADA.

Lm. B. and J.D. Fuller. 1995b. "A Pnmal-Duai Nested Decomposi tion Algorithm for Multi-

Stage Lmear Pro_prns". worhng paper. Depment of Management Sciences.

University of Waterloo. Waterloo. ON. CANADA.

Murphy. F. K.. and M. V. Mudngeda. "A Decomposition Appmach for a Class of Economic

Equilibrium Models ". Operations Research. M. No. 3 (1998). pp. 368-377.

Sielsen. S. S .. and S. A. Zenios. "Scdable p d l e l Benden decomposition for sta'hastic linear

pro-orunming". ParaIIel Compu~ing, 23 (1997), pp. 1069- 1088.

159

Park, H.J. 1996. "A Primal-Dual Decomposition Method for Multi-stage. Convex Nonlinear

Rograms", master's thesis, Department of Management Sciences. University of

Waterloo, WaterIoo. ON. CANADA.

Rosen, J.B. and R.S. Maier, "Paralle1 Solution of Large-scale, Block-angular Linear

Rograrns". Annuls of Ope rations Research 22 (1 WO), pp. 23-4 1.

Ruszczynski, A. "Parailel Decomposition of Multistage Stochastic Programming

Roblems". Mathematical Programming 58 (1993). pp201-128.

Van Roy. TJ. "Cross Decomposition For Mixed Intepr Rogramming ". Mathematical

Programming 25 (1983). pp. 46-63.

Vladimirou. H. "bComputational assessrnent of distributed decomposition methods for stochastic

linear programs", European Journal of Operationui Research 108 (1998). pp. 653-670.

Zenios. S.A. 1989, "Parailel Numerical Optirniration: Cumnt Status and an Annotated

Bibliognphy". ORSA Journal on Computing, Vol. 1, No. 1. ppl0-pp43.

