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ABSTRACT 

In this thesis, we develop a new parallel primal-dud decomposition algorithm for multi- 

part linear programming (LP) problems. We first present a parallel decomposition method for 

two-part models, in which the two master-like subproblems are solved simultaneously in two 

different processon and generate an upper bound and a lower bound on the original probiem at 

each iteration. These two bounds are monotonically improved and converge to within the 

prescribed toletance of the optimal value by exchanging primai and dual information. 

Then we extend the basic principles of the two-part aigorithm to multi-part models by 

applying a hierarchicd decomposition principle recursively. The original multi-part probiem is 

divided into two aggregated subproblems of lower bound type and upper bound type. and the 

aggregated subproblems are funher divided into two srnailer aggregated subproblems of upper 

bound and lower bound. This bifurcation pmcess continues until there are no subpmblems left 

for futher decomposition. The subproblems are solved in different processon simultaneously and 

work together to reach an optimal point during the iterations by exchanging prima1 and dud 

information in the hierarchicd way. Convergence and other usefui properties of the parallei two- 

part and multi-part algorithms are proven. 

We developed a parailel decomposition solver for problems of two. three or four parts, 

called WATPAR (WATerloo PARalell), through the use of GAhlS, the Regex Library, CPLEX 

6.0 and PVM (PYallel Virtuai Machine) 3.1 1 on one IBM R S b O  workstation and a cluster of 

four PCs running the Solaris operating system. Several mulu-part LP models are tested using 



WATPAR, and in each of the tests, the new parallel decomposition algorithm converged to an 

optimal value of the original problem in a finite number of iterations. For some large problems, 

the new method showed some speedups. 
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Chapter 1 Introduction 

1.1 Brief History of Decomposition 

Over the past several decades. linear programming (LP) has been a useful planning and 

scheduling tool for economic and management applications. The real world LP problems are very 

large and usuaily have some special structures, which could break into several distinct LPs except 

for a few linking consuaints. These linking constmints represent relationships among different 

periods. regions. stochastic scenarios. etc. The most cornmonly discussed structures are prima1 

(or dual) block-anguim. sraircase and block-triangular as shown in Figure 1.1. 

l a. bloc k-angular b. staircase c. block-nianmilar 
- - 

Figure 1.1 Structures of mulù-stage problem. from Lm and Fuller [1995] 

Based on the ideas of utilizing the specid structures, many decomposition algorithms. 

which drcompose a very large problem into several subproblems and solve them iteratively 

through the exchanges of information, have been proposed since the early 1960's, 

There have k e n  several motivations to study decomposition: the prospect of reducing 

computationd time: a rnethod to solve a huge mode1 within a cornputer's memory limits that do 

not permit a straightfonvard solution of the whole mode1 (Fragniere et al. [1998]); and to ease 



management of a huge mode1 (Murphy and Mudrageda [19991). by breaking it into its natural 

constituent parü such as regions. divisions. etc. Following the famous decomposition methods 

of Dantzig-Wolfe [1960] and Benders* [1962], cross decomposition by Van Roy [1983] and 

Holmberg [1992]. and mean value cross decornposition (Aardal and Ari [1990] and Holmberg 

[L992]) have k e n  developed to solve large-scale LPs with prima1 (or dual) block-angular or 

staircase structures. Another important development was reponed by Lan and Fuller [1995a, b] 

based on Lan [1993] for multi-stage bloc k-triangular structures. in which al1 subproblems perform 

like a master problem. 

Recentl y. technological advances in massive1 y parallel processon (MPPs) and distnbuted 

computing systems have encouraged development of decomposition algorithms to solve 

subproblems si mu1 taneousl y using several di fferent processon. Several parallel computational 

tests and algorithms for LPs are presented by Ho et al. [1988]. and Rosen and Maier [1990] for 

models with block-angulu structure and by Dantzig and Glynn [1990], and Birge et al.[19%] for 

decomposi tion of stoc hastic Us. Entri ken [1996] reponed experimentd results of solving 

staircase LPs by using parallel Benden decomposition. in al1 of these previous studies, 

subproblems were solved in pardlel. but the algorithms had a serial element in the alternation 

between the master problem and the subproblems. In contrast, our decomposition principie can 

be used to define an entirely parallel aigorithm. 



1.2 Motivation and Objectives of the Researcb 

This research is motivated by Lan [1993], in which he suggested an idea of computing the 

subproblems simultaneously, in a bla'k-triangular problem. by sending proposais and cuts to 

immediate neighbors in his funher research. but after some reflection. it is apparent that this 

scheme would probably take too many iterations for the last subproblem to hear information of 

the fint subproblem. Thus, this research stmed h m  the ider that all the subproblems could be 

solved at the s m e  time using different processors in order to have benefits of parallelism. by 

broadclisting dl information to ail other subprob lems for block-niangular stnicture.. It worked 

well for the two-stage case. however. it failed to extend the idea of the nested decornposition to 

the multi-stage case from the two-stage alsorithm due to complexity of nested algorithms. 

inconsistency of weighting schemes and infeasiblilty of the solutions. The nested aigorithm didn't 

fit well in paralle1 decomposition because the nested stnicture and the information aansfea lead 

to m inherently seriai alprithm: it has to solve one subproblem at a time with further weighted 

primal information of dl the previous subproblems on the forward ppass and with additional 

weights on dual information of dl the following subproblems on the backward p a s  

Redizing that the linking variables and constnints cause those serious problems. we next 

attempted another bruadcasting scheme by inciuding al1 linking constraints in each subpmblem 

and restricting primal and dual linking variables to convex combinations of hown solutions from 

other subproblerns of emlier iterations. since the nurnber of the linking variables and constraints 

îce relatively smail. This ides makes it possible to apply the parallel decomposition method to the 

multi-pan structure problems shown in Fi-rn 1.2. 



Figure 1.2 Genenl structure of the multi-part models 

The panllel primaldual decomposition dgorithm for two part problems converged 

consistently to the optimal solution in a small nurnber of iterations, however. in some tests of 

multi-part problems the aigorithm (we cd1 this a heuristic parailel aigorithm - set section 4.5) did 

not converge exactly to m optimal solution but repeated the same feasible solution thereafter. 

After we found some erron in the convergence proof of this multi-part algorithm, we finaily 

reached the ideas of applying the two-part decomposition principle recunively in a hierarchical 

way since the two-part algorithm seemed to be working fine and no flaws could be found in the 

convergence proof. 

Hence. the objectives of this Ph.D. resev~h are as follows. 

1. Develop a new paralle1 primai-dual decomposition method for NO-part and multi-part 

linex proCpmming models which have the generai multi-part matrix structure shown above. 



2. Pmve and dernonstrate the convergence of the parallel two-part and multi-pan 

algorithms as well as other properties of the algorithm. 

3. Design and implement a parailel primai-duai decomposition solver for the parallel 

algorithm on several computen and investigate the computational efficiency of the algorithm. 

13 Overview of the Thesis 

This thesis is organized as follows. The next chapter presents a literature ~ v i e w  on both 

serial decomposition methods and parailel &composition methods with basic concepts of parallel 

computing. 

Chûpter 3 proposes the new decornposition method for NO-part linear prognms. which 

divides the original problem into two master-like subproblems, a lower bound subproblem and 

an upper bound subproblem. and coordinates them to converge to an optimal solution by 

exchanging primal and dual information. Roofs of the convergence as well as other useful 

properties of the algorithm are given. 

Chapter 4 discusses the development of the parallel algorithm for multi-pan models. in 

which the two-pm decomposition principle is recunively applied in a hierarchicd rnanner. It also 

discusses the heuristic parailel aigorithm. a simple extension of the two-part decomposition 

principle to multi-pan problerns without the hierarchical decomposition pnnciple. 

Chapter 5 presents the design and implementation procedures of the parallel 

decomposition solver and shows pteliminary computational results. In each of the tests, the 

pardiel algorithm converged to within a small tolerance of the optimal solution in a reasonable 



amount of time. The aigorithm was faster than the simplex or inte~or point methods in a single 

machine in some very large scale problems. It could solve a huge problem. which could not be 

solved in one machine due to memory limits. The final chapter indicates the expected 

contributions md future research directions. 

Appendix A presents the test modeis in GAMS files and Appendices B and C show the 

core pans of the panllel decomposition solver codes wrinen in the C laquage. 



Chapter 2 Literature Review 

This chapter provides an overview of topics found in the literature which are related to 

this thesis. in the next section, a bief ~ v i e w  of decomposition methods for LPs is presentd The 

second section discusses the basic parallel computing concepts and methods. In section 3. the 

parailel computational tests and algorithm applied to decomposition methods are reviewed aiong 

with the description of their characteristics. The summary is given in the final section. 

2.1 An Oveniew of the Decomposition Methods 

Many decomposition schemes, such as Dantzig-Wolfe decomposition. Benders 

decomposition and cross decomposition by Van Roy, have ken developed to solve large-scde 

mathematical proCgamming problems. A new decomposi tion algorithm. cdled primal-dual 

decomposition. w u  suggested by Lan and Fuller [1995aj. Ln this section. these aigonthms are 

briefly reviewed with extensions to the nested alprithm for multi-stages. 

Dantzig-Wolfe Decomposition Method 

h the decomposition method of Dantzig-Wolfe, the master problem determines an 

optimal combination of the proposds on hand subrnined by subproblems, by assigning values 

to the weights. The optimal duai variables. known as prices, are used to adjust the objective 

function in the subproblems which in tum may produce new proposais to improve the global 

objective function in the naster problem. This mechanisrn is ofien called the dual decomposition 

method. 

Dantzig [1963] applied this method in a hiervchical way to a four stage staircase mode1 



by dividing the original problem into a fmt level master problem of stage two and four and two 

fint level subproblems of stage one and stage t h e .  The fint level master problem is funher 

divided into a second level master problem of stage four and a second level subpmblem of stage 

two. The first level master problem sends price information to the fiat level subproblems when 

the second level subproblem has no more proposal to the second level master problem. 

The Nested Dud Decomposition Method for MultiStage Models 

The Dantzig-Wolfe decornposition meihod is motivated by the block-angular structure 

in which the choice of a master problem and subproblems is reiatively easy. But, under the system 

of staircase or block-triangular wi th inulti-stages. the appropriate c hoice of master and 

subproblems is not as simple as that of the block-angular structure. This problem c m  be solved 

by employing nested decomposition aigorithm. 

Dual nested decomposition for staircase structure was first introduced by Dantzig [1963], 

where h e  Dantzig-Wolfe decomposition principle was applied to the dynamic model structure 

in a recunive fashion. The algorithm of dual nested decomposition divides the original problem 

into N penod subproblems and solves only one subproblem at a time by applying the Dantzig- 

Wolfe decomposition principle recursively. This pnnciple rnakes the period t problem act both 

as 3 restricted master pmblem with respect to periods 1 to r- 1 and as a subproblem with respect 

to t+ 1 to 1V. 

The price mechanism is used in dual nested decomposition for the coordination between 

periods. The master problem receives proposais from subpmblems and sends a price information 

to subproblems. 



Benders komposition Method 

In the Benders decomposition method, the master pmblem allocates shared resources to 

the subproblems. The subproblems, then. react by utilizing the resources and report to the master 

problem the prices which reflect how well the subproblems use the shared resources. Then. the 

master problern adjusts and reallocates the resources according to the price information. 

Benders decomposition is efficient for the cornplicated problem which cm be parritioned 

into two parts: one major part containing linear variables and another part containing the 

complicating variables such as integer or nonlinear vanables. Benden decomposition cm be 

cdled the primai decomposition method. 

The Nested Primai Decomposition Method for MulüStage Models 

Dantzig [L980i applied a nested decomposition algorithm to the dual of stYrcase Linear 

Pro_mrnming modeis. which cm be considered as a nested decomposition of Benders method. 

In nested primal decomposition. the resource mechanism is used for the coordination between 

periods. The master problem. which is the preceding subproblems, receives cuts from the 

following subproblems and sen& a resource vector to the following subproblems. 

Cross Decomposition Method by Van Roy 

Cross decornpsi tion was first introduced by Van Roy [1983] for mixed integer pro*pms. 

The cross decomposition method c m  be described as simultaneously using Benden 

decomposition (primai decomposition) and Dantzig-Wolfe decornposition (dud decomposition) 



in an iterative manner. Cross decomposition divides the original pmblem into two decomposition 

systems: the primal master problem (PM) and the prima1 subproblem (PS) in the primal 

decomposition system; the dud master problem (DM) and the dud subproblem (DS) in the dual 

decomposition system. The main idea behind this method is to make use of the very close 

relationship between the PM P M ) .  and the DS (PS). This reiationship is exploited in such a way 

that only the easy-to-solve subproblems are used as long as they produce a converging sequence 

of prima1 and dual solutions. This method may increase computational efficiency. But 

convergence cannot be guaranteed by the use of subproblems only, and therefore a primal or dud 

master problem. with ail dual or primai solutions generated so far, has to be solved h m  time to 

time as the algorithm proceeds. 'The need for convergence tests and for involving a rnaster 

problem often prevents a possible reduction in computer memory requirements since it causes 

complete sets of primd and dud solutions to be stored even if a master problem is not solved at 

each iteration" [Aardal and Ari, 19901. 

Rimal-Dual Decomposition Methoà by Lan and Fuller 

Another new method was developed by Lan and Fuller [1995a] based on Lan [1993] for 

two-stage models. In this aigorithm. the decornposition structure is balanced and convergence is 

generally npid. 'The aigorithm divides the original problem into a pair of restricted primai and 

dual subproblems. each of which h a  surnmary information on ail previous iterations of the othef 

and Fuller. 199531. The solutions of the two subproblems are monotonically improved by 

coordinating the information of the subproblems and converge to a prescribed tolerance of the 

optimal value as the iterations go on. 



in this algorithm, both subproblems are in equivalent positions and play the role of both 

the master problem and the subproblem of the traditional method At each iteration, the stage one 

subproblem gives the upper bound of the onginai pmblem by restncting the dual variables to 

convex combinations of known dual solutions and the stage two subproblem gives a lower bound 

by restricting primal vviables to convex combinations of known primal solutions. The algorithm 

itemtes until the upper bound and Iower bound reach an equilibnum point. 

Their tests for eleven problerns with the two stage, block-uiangular stmcnires showed bat 

the new method is usually faster and more efficient than the iraditional rnethods. 

Park [19%] extended this idea to convex. nonlinear protgmming rnodeis. He proved and 

tested that the new algorithm for the two stage case converged to an optimal solution in a finite 

number of i tentions. 

Prirnal-Dual Nested Decornposition Method for Multi-Stage Models 

Lm and Fuller [199Sb] also presented a nested primal-dual decomposition aigorithm for 

the multi-stage LP problerns with block-trianplar matrix structure. In ihis aipnthrn. the originiil 

multi-stage problem is divided into a sequence of a pair of subproblems for each stage. These 

subproblems are coordinated by passing the proposals forward and cuts backwud; the previous 

subprobIems pass the proposals to the following subproblerns fonvard in stage numben (which 

designates time period in many models) time and the following subproblems provide cuts to the 

previous subproblems backwud. This information fiow between subproblerns is shown in Figure 

2.1. from h and Fuller [1995b]. The aigorithm can be perceived as the combination of the 

primd and the dual nested decomposition algorithms. As in the two stage case, the fint 

11 



subproblem provides the upper bound to the original problem and the 1st  subproblem provides 

the lower bound to the original problem. These two bounds are monotonically improved and 

converge to a prescribed tolerance as the iterations go on. 

Park (19961 applied this nesting scheme to multi-stage convex nonlinear programs and 

showed that the nested algorithm converged in a finite number of iterations. but without a 

convergence proof. 

Pmposais 
4- t-1- 

A v - 
Ropos+s 

Figure 2. l Information tlow of nested primal-dual decomposi tïon 

2.2 An Overview of Paralle1 Computing 

PanIlel computing is the use of paralle! computers utiliting more than one Central 

Rocessing Unit (CPU) at the same time to solve a single large problem faster and more efficiently 

[Baker and Smith. 19961. In this section. seved paralle1 computer systems are reviewed briefly 

and two performance measurements of parailel computing are discussed. 



SIMD vs MIMD 

Panllel computers cm be classified into two groups by Fiynn [1966]: SiMD (Single 

Instruction, Multiple Data) and MiMD (Multiple instruction, Multiple Data). 

A SLMD machine consists of a number of identical processors doing the same things to 

different data at any given point of time. Typical SIMD machines have large numbers of relatively 

simple and affordable processors ~sulting in fine-gnined parallelism. which distributes the data 

as widely as possible with each processor performing the simplest operations. 

in MIMD machines, the most widely employed parallel machine architecture. each 

processor enecutes a possibly different program on different data under the conuol of different 

instruction asynchronously. The MIMD machines generally have fewer but mon powerful 

processon than SIMD machines. 

Shared Memory vs Message Passing 

Another architecturai classification is whether the parallel computer is a shared memory 

machine or a message passing machine according to how the processors cornrnunicate with each 

other. 

Shared memory computen have global memory that can be directly accessed by dl 

processon. Shared memocy computen are not very scalrble. panicularly when the entire global 

memory is equally accessible to dl of luge number of processors. They also impose an inherent 

concem of s ynchronization. i .e. how different processors can read and write the data in the same 

location of memory simultaneously without conflict. Currently, most shared memory computers 

13 



have a local memory distributed to each processor topther with a global memory accessible by 

al1 processors. Shared memory MiMD computen are often called multiprocessor computen. 

Message passing MIMD systems are often cailed multicomputers. In message passing 

cornputers. each processor has its own local memory, but they do not have shared mernory, and 

processors communicate only by sending and receiving messages over a communication network. 

Each processor in message passing machines executes its own instruction streams and uses its 

own local data, both stored in its local memory. Then. necessary data can be exchanged by 

sending messages to each other over a network. Since the network determines the speed and 

reliability of interpmcessor communication and the spatial distribution of the processoa. message 

passins systems can be funher characterized into closely coupled systems and loosely coupled 

systems (or distributed systems) by their communications networks. 

Closely coupled systems. such as the architectures with mesh or hypercube networks. 

have fast and reliable point-to-point links between processors which are physically close to one 

another. Loosely coupled systems or distributed systems, such as workstations connected by local- 

are3 network (LW) or wide-ares network (WAN), have relativeiy slow and unreliable 

communication between processon that are physically dispersed. They have coarse-grained 

parallelism. which distributes the data as large as possible with each processor spending most of 

its time dotng computations and comrnunicating infrequently because of the expensive 

communication cost. 

The local-are? network 0 systems consist of several workstations connected by a 

network. The locd area network allows communication beiween any two processors physically 

14 



apan. In mmy LAN's, communication is not very diable, for example, a message may be 

damaged, arrive out of order, or not amive at its destination at dl, so communication requires a 

lot of programming effort. ïherefore, some software protocols for message passing systems such 

as Patallel Virtual Machine (PVM) and Message Passing Interface (MPT) are used to implement 

diable communication and sirnpler programming. 

PVM, which is more suitable for LAN based systems than MPI, provides an interface 

which links separate hosts. possibly of varying types. to create a single logicai host. so-called 

vinual machine. PVM allows a programmer to take virtually any network of M - b a s e d  

computen and mat them as a single parallel computer. "PVM has a somewhat lirnited message- 

passing subset, providing basic send and receive operations and some simple collective 

communications. but not providing the nch set of features that more formal message passing 

systems, like the MPI, provide. PVM does. however, provide a complete environment for p d l e l  

computing, including the PVM console, and includes featms for dynamicaily adding and 

deleting machines from your own virtuai-machine configuration." (frorn Baker and Smith, 1996) 

A LAN limits the physical distance between processon to on the order of a few kilometen. To 

interconnect processon that are farther apart, a wide-area network (WAN) can be use& 

Performance Measurement in Parallel Computing 

Generally. the performance of parallel computation can be measured in two ways. 

speedup and efficiency. even thou* they depend on hardware, sohare  and algorithms of solving 

a problem. 

The speedup S achieved by a paraIlel system is defined as the gain in computation speed 
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achieved by using N processors with respect to a single processor: 

S = T I / T N  

where Ti is defined as the time taken to solve a panicular problem by the fastest seriai algorithm 

on one processor. and TV is the parallel runtime taken CO solve the same problem by a parallel 

algorithm or computation on N different processors. 

The efficiency E denotes the effective utilization of cornputing resources. It is the ratio 

of the speedup to the number of processon used: 

E = S / N .  

2.3 Paraliel Decomposition 

Recent advances in the developments of massively panllel processon (MPPs) and 

distributed computing systems made ît possible to cwrdinare many smdl tasks to solve one large 

problem. This modem technolog encourages development of decomposition algorithms to solve 

subproblems simultaneously using several different processon for aigorithmic efficiency. 

Several paraIlel computational tests and aigorithms for LPs with block-angular and 

staircase structures have been presented since block-angular and staircase structures lend 

themselves naturally to panllel computing. Ho. Lee, and Sundarraj [1988] implemented the 

Dantzig-Wolfe decomposition algorithm for block-anp1a.r linear programs using parallei 

processing of the subproblems in the CRYSTAL muiticomputer at the University of Wisconsin 

at Madison and showed that sipficant speedup could be obtained using paralle1 decomposition. 

Rosen and Maier [1990] presented another approach to parallel solution using the dual of block- 



angular linear programs by fixing the dual coupling variables. Gnanendran and Ho [1993] 

investigated strategies for improving efficiency in distributed Dantzig-Wolfe decomposition by 

better balancing the load between master and subproblem processors because the parallel 

efficiency of the distributed approach is critically dependent on the duration of the inherently 

serid master phase relative to that of the bottleneck subproblem. 

Enviken [1996] presented the experimental results of using parallel Benden 

decomposition to solve staircase multistage problems on a shared memory multiprocessor 

cornputer which has 6 processors. He showed that paralle1 decomposition can solve a large 

problem with staircase structure faster than the simplex method even when serial decomposition 

is slower than the sirnplex method. 

Another use of parailel processon for decomposition alprithms is for the area of 

stochastic p r o * m i n g  problems since the equivaient detenninistic problem of a stochastic 

model is typically very large. Dantzig and Glynn [1990] suggested the use of parallel processors 

to calculate the subproblems of Benden decomposition for stochastic models. Ruszczynski 

[1993] suggested parailelizing a variant of the nested decomposition algorithm by queuing 

subproblems for i d e  processors. and Birge, Donohue. Holmes and Svintsits ki [19%] tested and 

compared the parailel implementation of a nested decomposition algorithm for mupistage 

stochastic linev pro+nms over a serial implementation using PVM on a network of RS/6000 

model 32OH workstations connected by a local ethemet. Their computational experience on a 

large test set of pmcticai problems with up to 1.5 million constraïnts and almost 5 million 

variables showed that the paralle1 implementations worked very well but they require careful 
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attention to processor load balancing. Nielsen and Zenios [1997] implemented a version of 

Benders decomposition algorithm for two-stage staihastic LPs on the parallel CM-5 cornputer 

using the interior p i n  t me thod to solve scenaxio subproblerns in parallel. Another cornputational 

assessrnent for stochastic LP decomposition using intenor point method was reported by 

Vladimirou [1998] on an IBM S R  multipracessor system. 

Fragniere. Gondzio. Sarkissian and Vial [ 2 0 ]  proposed a new twl. called Structure 

Exploiting Tml [SET], for linking algebaic modelling languages and structure exploiting tools. 

such as decornposition rnethods. using the GAMS il0 Library [1996] and the Regex Library 

[1992]. Fragniere, Gondzio and Vial [ l998b] reporteci a successful p d l e l  implementation of 

Benders' decomposition on 10 Pentium cornputen under the Linux operating system for a 

stochastic financial planning mode1 with one million scenarios. using SET. 

Unlike Pnmal-Dud decomposition. most decomposition methods possess an unbduiced 

structure providing different mounts of information to the master and subpmblems and ailow 

only the master problem to converge monotonely. Lm and Fuiler [1995] suggest that these two 

factors moy be the main reason for the poor performance and slow convergence of the traditional 

decomposi tion rnethods. 

Since no one has developed a parallel algorithm for primal-dual decomposition of LPs. 

in this thesis. we develop and study such an algorithm. 



Chapter 3 Paralle1 Decomposition of the Two-Part Problem 

In this chapter. we develop a parallel decomposition aigorithm for NO part linear 

programrmng problems, Le. an LP problem which would break into two distinct LPs. except 

for a few linking constraints that connect the pans. The new method divides the original 

problem into two subproblerns (a lower bound subproblem and an upper bound subproblem). 

instead of the traditional master and subproblem. The subproblems are derived in a way that is 

similar to the two subproblems in Lm's il9931 scheme. but here we derive them for a two- 

pan structure for pyallel computations. whereas Lm's was for the two-stage structure. for a 

senal algorithm. Since the subproblems in each part give an upper bound and a lower bound 

to the original problem. the algorithm arbiuarily selects an upper bound subproblem from one 

part and a lower bound subproblern from the other part and solves them simultaneously in two 

dif fe~nt  processon. By exchanging prima1 and dual information st each itention. these two 

bounds are monotonically improved and converge to within the prescribed tolerance of the 

optimal value. 

3.1 Mode1 Structure and Assumption 

The variables and constnints are grouped into two parts. indicated by the subscnpt 

r=l. 2. The objective function is the sum of linem functions and each part's objective function 

depends only on that pan's variables. Each part contains three sets of variables; nonlinking 

variables. .r,. linhng variables. y,, and artificial variables. v~. Also. each part consists of three 

sets of consuaints: nonlinking constraints. linking consvaints and upper bound constraints on 



linking variables. The liaking constraints in each part may contain linking variables of either 

part to represent the influence of that part on the other. The general prima1 and dual structures 

of the two-pan linear program are as follows (superscript T denotes transpose). 

q1 are the vecton of variables for part t. The dual variable vectors 

for the consmaints of part t of P are denoted by row vectoa nt, or and p, where Rq , 

w R" and p g  R' . L, is a qr x r, matrix. Ar is a m, x nt mauix, Br is a qr x n, rnaaix, Dr is a mr 

x r, matrix. and c,, d ,  Mt >O. b,, f;. and ut >O are vectoaof suitable dimensions for r-1, 1. 

Each part has 3 set of primal (or dual) noniinking constraints containing A,, and a set of upper 
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bound constraints. The two parts are linked through the pnmal (or dual) linking consaaints 

containing the matnx La. The primal (or dual) linking variables are yr (or y) which appear in 

linking constmints of both parts. Each linking pnmal consaint has a corresponding duai 

linking variable and similarly. there is 3 linking dual constra.int corresponding CO each linking 

primal variable. Each pnmal artificid variable induces a corresponding upper bound 

consmint to a dual linking variable. Similarly. there is a dual axtificial variable corresponding 

to each upper bound constraint for a pnmal linking variable. These mificial variables c m  be 

adjusted to satisfy the linking constraints. thus dlowing each part to act independently. 

However. because of the high cost of the artificial variables, it may k desirable. in the 

optimal solution. for the pans to coopente. Thus. the iutificial variables (primai and dual) are 

an important aspect of the notion of "pans" of a linear program. The pnmal mificial variables 

may in fact represent 3 red aspect of the situation such as unfillable demand or emergency 

purchase in inventory consuaints: wherher real or mificial. these variables ensure the 

feasibility of linhng constraints. 

The two-stage (or block-triangular) structure is a special case for which part one has 

no linking consminu and y2 does not exist. i.e. B I .  L I I ,  Li:. Dz and L2 are dl zero. This 

structure *ses. eg..  in a two period model, in which the linking consnaints represent the 

influence of decisions in the fint period on those in the second. 

An assumption is made in order to simplify the dgorïthm, and to guarantee 

convergence. 

Assum~tion: The set of nonlinliing constraints in each part. together with the upper bound 

consrnints and nonneptivity constraints. define bounded feasible regions for the x,, y, vectors. 
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The assumption ensures the boundedness of the solutions to the subproblems defined 

below, which simplifies the algorithm. The assumption is also used in the proof of 

convergence of the algorithm. Note that the optimal values of the artificial variables are dso 

bounded because the costly nature of the artificial variables keep hem as close as possible to 

their lower bounds of zero during the whole optimization process. (This is shown fonnally in 

the pmof of Theorem 3.8 in section 3.5). 

3.2 Subproblern Structures 

The new decomposition method relies on the definition of a subproblem for each part: 

the subproblem for one pan gives an upper bound on the optimal value of the original 

problem and the subproblem for the other part provides a lower bound for the original 

problem. Because of the symmetry of the pans in the generai problem statement. the choice of 

subproblem type for a pan appears to be arbitrary, but for a given instance of the two-part LP, 

the modeller r n q  have Rasons to make a panicular choice. in whai follows. the subproblem 

for part one is of rhe lower bound tm, and part two provides an upper bound. 

The lower bound subproblem from pan one, denoted by SP: at iteration k, c m  be - 

constructed by restricting the prima1 variable vecton XI and y? to convex combinations of 

known solutions of - 2  and y2, obtained from the second subproblem at earlier iterations, thus 

allowing us to drop out the sets of nonlinking constraints and upper bound consaaints of part 

two fmm the original prirnal problem. The subproblem SP: - keeps both parts' prima1 Linking 

- 
constraints. The upper bound subproblem in dual fom frorn part two. denoted by S D ~ .  cm be 



constnicted in the sarne way by restncting the dual variable vectors xi and ol to convex 

combinations of known values of x1 and oi from the fiat subproblem at earlier iterations. thus 

allowing us to drop out the sets of dual nonlinking constnints and dual upper bound 

constraints of part one from the original dual problem, but keeping both parts' dual linking 

constraints. 

The primai md dual foms of the lower bound subproblem at iteration k are presented 

(dl S. ! .  AI .ri + DI y, 5 bi 

(J) - 1  t-1 Bi~i+ Li1 Yi  - vt + Lir YI A I f  i 

(P:) Yi  5 ui 
7 k-1 - 

Lzi Y I  + ( B ~ X : ~ + L & ' ) A  v~ s f L  
(@J ek" A'.' = 1 

xl,Yi,vi.v:.hk" '0 

1 '  k- 1 and Y:"' = (Y? . y-. ... . y ), corne from the (k-1) previous primai solutions of SPz; kk-' is a 

k-1 T. (k-l)-dimensional column vector variable. i.e. ik-' = (A:-', À'*', ... . h-1 ) , is an 



unrestricted scalar variable; and e"' is the (k-1)-dimensionai row vector with ail components 

equal to 1. At the fint iteration. k=l, there is no information from part two. so there is no )c 

variable. and the optimal value is not in general a lower bound (unless .Q= O. y- O is feasible 

in part two). 

Because SP~'  is a restriction of P and the restriction can be lwsened at each iteration 

Ir -1 by the inclusion of another x 2  in X2 and y? in Y:-', it follows chat the optimal values of the 

subproblems fom a nondecreasing sequence of numbers, al1 less than or equal to the optimal 

7 k-l< 
value of P, : : :*- I ... I J - z ik  I :'. 

The dual and prima1 forms of the upper bounding subproblem are as follows. 

)r' ' P,. n:. W. P: 

k-1 - 1T "T where nlL1 and R~'-' are a (k- [)mi matrix and a (k-l)xql matrix. Le. ni - (x ,  , , .-- , 



1T 17 t-IT T nlk*'T )' and &'-' = (0, ,a1 ... * 0 1  ) corne from (k-1) previous dual solutions of SPI; 

k- 1 pk-"' is a (k-1)-dimensional row vector variable, i.e. #*'= (pib', p?-', ... , pk-~ ); is an 

unrestricted scalar variable; and ek-' is again the (k-1)-dimensional row vector with al1 

- 
components equal to 1. Because SD: is a restriction of D and the restriction can be loosened 

at each itention. by the inclusion of another nl in t?'"' and oi in R~'", it follows that z.5 2: 

- k-I< 
-2 - . .. 6 z2'. 

When k=l. there are no variables & or $,. and there are no cuts. nor are there )c or C( 

variables. because the algorithm begins by solving both SPI and SPr simultaneously, so 

ihere are no solutions yet avdable from both subproblems. 

After both subproblerns are solved concurrent1 y. SPI sen& dual information (called 

proposals) to SP2, and receives prima1 information (proposais) from SP2, while SP2 sends 

primal information to SPI, and receives dud proposais from SPI. This communication scheme 

continues until the gap between their objective function values reduces to within a prescribed 

tolennce. Figure 3.1 shows this communication scheme. 



Subproblem 1 Subproblem 2 

Iteration 1 

Iteration 2 

Ikration 3 

F i p r e  3.1 information flow for parailel two-part algorithm 

if only one processor is available, then the decomposition principle cm be 

implemented in a send fashion since rny parailel algorithm c m  be implemented senally with 

the disadvantages of slower speed. l q e r  computer memory or disk requirement (on one 

computer than on any one of 3 set OC cornputers run in panilel), and the poor usage of 

avilable information. For example, the scheme in Figure 3.1 could be implemented senally 

by soiving subproblem one, then subproblem two, then exchanging information. and 

repeating. Le. by moving left to right and down in Figure 3.1. However, it seems advantageous 

to use proposal information as soon as it is available. so another serial irnplementation would 

solve one subproblem. then pass a proposal to the other subpmblem. which is then solved, and 



a proposal is passed back to the fint subproblem. The latter scheme has k e n  implemented by 

Lan and Fuller [1995a] for the two stage mode1 structure. a special case of the two part mode1 

structure, e.g. two pend models. Lan and Fuller choose part one as the upper bound 

subproblem. The senal aigorithm first solves the stage one subproblem and sen& a prima1 

proposal to the second stage subproblern. then it solves a new second stage subproblem with a 

new column generated. and sen& duai proposais to the stage one subproblem. The stage one 

subproblem is then d v e d  with a new cut. The stage one subproblem provides upper bounds 

on the optimal value of the whole problem, and the stage two subproblem provides lower 

bounds. This sequential process continues until the objective values of both subproblerns have 

corne within a predetermined tolerance. 

3.3 The Decomposition Algorithm 

in this section. the procedure of the panllel decomposition algorithm is fomûlly 

described. Various propenies of this algorithm will be discussed in the next section. The 

scalar E >O is defined by the user to stop the algorithm when the upper bound $ and the lower 

bound :,' are less than E apart. Claims about feasibility and optimality are justified in the next 

section. In the statement of the algorithm. the symbols xf2, Y:', nik'' and R~"' appex, and 

for the value k=2, they have special meanings: x:, and Y? are nul1 manices having no 

columns. while I l l 0  a d  R,' are nul1 matrices having no rows. The send and receive 

statements synchronize the two processors' iteration counten. 



DO IN PARALLEL 

Step O. Set k=l, E>O. and determine whether P is infeasible or the Assumption is violated. 

- solve ; if it is infeasible or unbounded send stop signal to SP2 and stop. P is - 
infeasible or the Assumption is violated; 

- if stop signal from SP? is received. stop. P is infeasible; 

I 1 - othenvise. record optimal dual solution ni . o, 

- send (YI~'"D~ + o l k " ~ I l ) .  w ~ ~ - ~ L ~ ~ ,  and (xlb'bi + alk-%) to SPI; 

k- 1 k- 1 k- I k- 1 - receive (ct.rz + dg2 ), L and (B~.$'~ + LZv2 ) from SPz; 

k k k k  k - solve S P ~  : record optimal :i . xi . y, . vl , v:, hk-' and xi , aik; - 
k k - send and receive :t . 

k t Step 2. Test for convergence: if cz - :i 5 E, go to step 3; othenvise. go to step 1. 

Step 3. Send A'-' to and receive $' from SP2. Calculate the optimal prima1 and dual 

Processor 2 

Step O. Set k= 1. €9. and determine whether P is infeasible or the Assumption is violated. 



- solve ; if it is infeasible or unbounded, send stop signal to SPI and stop. P is - 
infeasible or the Assumption is violated; 

- if stop signal from SPI is received, stop, P is infeasible; 

1 1  - otherwise. record optimal primal solution x? . y? 

Step 1. Set k=k+l. exchange information. modify SP2 and solve it. 

k-1 - - set x:" = (xrk*'. xT1) and Y: - (y:-?, 
k- 1 k- t k- l - send (CR + drv2 ). LiLv2 and (B~.$' + L~v?"') to SPI; 

- receive (ni%, + W ~ ' - ' L ~ ~ ) ,  ol"'~~~, and (irik'lbi + mik-%) from SPI; 

- 
k k k  k k k k  - solve spi ; record optimal -2 . .rr . and irz , oz . pi , pz . pk-l ; 

k - send :: and receive :I . 

Step 1. Test for convergence: if r t  - z i k  5 E. go to step 3; othenuise. go to step 1. 

Step 3. Send pk-' to and nceive hk-' h m  SPI. Cdculate the optimal primal and dual 

END 

k k  Yote thût .p . y? and R:. would not actudly be passed because there cm be a more 

h- t efficient communication scheme by exchanging smailer size vectors such as Litvz , oi"'~12 

4- 1 k- l and c g :  + drvz . etc. if there are some sood feasible solutions available to the original 

problem. they may be used as a w u m  stan since they always satisfy the consuaints of spf - and 

- 
which don't have À nor 0, nor cuts, thus saving efforts to find initial feasible solutions for 



the subproblems at the first iteration. Also, the algorithm can jump to k=2 for Spi and SP? 

with small duality gap if good prima1 and dual feasible solutions to the original problem are 

available. 

Each subproblem works as both the master problem and the subproblem in the 

traditional decomposition meihods: each accumulaies proposais from the other, so is like a 

master problem yet each contains full details on only its own part, so is like a subproblem. 

The parallel algorithm approximates the optimal value of the original problem by calculating a 

nonincreasing upper bound and a nondecreasing lower bound at each iteration. This procedure 

terminates when the two bounds are considered to be close enough according to the prescribed 

tolerance. The optimal prima1 (or dual) solution of SP2 (or SDi) in Step 3 may be obtained in 

an altemate method by adding optimai allocated nsource constraints to the subproblem of an 

extra. final iteration and solving the new subproblem rather than storing dl the previous 

solutions and weighting them (Ho and Loute [1996]). 

It îs assumed that the LP solver takes c m  of any degenency (e.g. C P B  uses 

perturbation methods). Therefore, a nondegeneracy assumption is not needed for the 

convergence proof in the next section. 

3.4 Properties of the Algorithm 

In this section. the important properties of the aigorithm are discussed. The central 

result is the gumntee of convergence of the algorithm. Theorems 8 and 9. 

Theorem 3.h below shows that the part one subproblem cannot be unbounded for 



bl, and Theorem 3. lb  mles out the possibiiity that the second subproblem cm be unbounded 

for k=l. Theorem 3 . 1 ~  ensures that the unboundedness (violation of the Assumption) is 

detected at k=l. 

Theorem 3.la For k = l .  subproblem SP: - is either infeasible or hm a bounded optimal 

solution. 

Prool: When k=l ,  SP: - hûs no h variable. By the Assumptinn, and the negative objective 

coefficients of the artificial variables, spi - can't have an unbounded solution. Therefore, S P ~  - 

is either infeasible or has a finite optimai solution. 

- 
Theorem 3.1b For k = l .  subproblem is either infeasible or has a bounded optimal 

solrrriotl. 

Proof: When k=l. the subproblem SPI has no cuts or 0 variable. The possibility of 

unboundedness is ruled out by the Assumption. and the large negative objective coefficients 

of the utificid variables. Therefore, is either infeasible or has a bounded optimal 

solution. 

Suppose a modeller unintentionally submits a mode1 that violates the Assumption and 

has an unbounded optimd value. Then, the algorithm detects the violation of the Assumption 

and stops. 



Theorem 3.1~ For k=l .  ifthe algorithm r e m s  a message of an unbounded optimal value. 

then the Assumption is violated and the algorithm stops. 

Prool: When k=l.  there is no )c or 0 variable. If the set defined by the nonlinking consiraints 

and upper bounds of has an unbounded ray, SP; is unbounded too, kcause the linking - - 

constraints c m  be satisfied by the ray through a choice of the variables vl  and y. A similar 

observation can be made for S. Therefore, at least one subproblem has unbounded optimal 

value for k=L. then the Assumption is violated and the algorithm stops. 

The following theorerns show that subproblems SP: and 3 have finite optimal - 

solutions. at each iteration for bl. Recdl that the algorithm proceeds for k > L  only if SP[ - and 

have finite optimal solutions. 

The following theorerns show that subproblerns SPI - and have finite optimal 

solutions. at each iteration for b1. Recdl that the algorithm proceeds for k > 1 only if spf  - and 

G\ have finite optimal solutions. 

Theorem 3.242 Wlzen kr 1. subproblem SP: hm a finite oprimol solution. - 

PrwE For the s m e  revons as in the proof of Theorem la, together with the consuainu 

e'-l)c'-'= i. L''%O. sp: can't be unbounded. Next, if sp: were infeasible. the set of - - 



nonlinking constraints and upper bound constraints in S# should be infeasible because the - 
anificial variables in the linking constraints guarantee that these constraints are always 

satisfied. 

However. for the aigorithm to proceed to iteration k > l ,  the sarne set of nonlinking constraints 

and upper bound constraints. which was present in SPI at step O, must be feasible. a - 

c~n~dic t ion .  Thus, SP: is feasible for bl. Therefore, spf has a finite optimal solution at - - 

each iteration k>l . 

- 
Theorem 3.26 For k> 1. each subproblem spf has ajinite optimal solution. 

Proof: For bl. the feasibility of 3 is discussed fint and then the boundedness will be 

shown. There exists a feasible solution ~ v { ?  x i ,  yd v/) which satisfies dl constraints except 

possibly the set of first constraints (or cuts) in 3 because if not, the algorithm would have 

stopped ai step O. The first set of consuainu is satisfied if Bz is chosen as 

Next. the boundedness cm be shown by the following reasoning: 



The latter maxima are finite, by the Assumption. Therefore, SPI has a bounded optimal 

solution for b 1. 

Theorem 3.3 shows rhat the original problem P is infeasible if and only if one of the 

sobproblems is determined to be infeasible at step O. 

Theorem 3.3 Problern P is infeasible iff the algorithm detects infeasibility during step O. 

Prwk (The "if' part) [f the aigorithm on processor 1 reports that P is infeasible at step 0. 

then the set of nonlinking constraints and upper bound constraints of stage one is infeasible, 

because the linhng constr-ints can dways be satisfied due to the artificial variables. This 

implies that P is infeasible. Similarly. if the aigorithm on processor 2 reports that P is 

infeasible at sstep O. then the set { (  .Q, ~ ? ) 1  A? -p+D2 y < b2, y2 5 U?, .Q, y2 2 O } is empty. 

which mems that P is infeasible. 



(The "only if* part) If P is infeasible. then since the linking constraints can always be 

satisfied due to the utifciai variables, it foilows that one or both of the following sets of 

constraints are infeasible: 

(a) the nonlinking constraints and the upper bound constraints of stage one, 

A l x i + D l y < b l .  y l l u i . o r  

(b) the nonlinking consuaints and the upper bound consvaints of stage two. 

A2xI + DZy2 I b?, SU?. 

The infeaibiiity of (a) will be detected at step O on processor 1. The infeasibility of (b) will be 

reported at step O on processor 2. 

The next theorem shows that an optimal solution of SP: provides a primd feasible - 

- 
solution for the original problem P and SD; provides a duai feasible solution to D. Theorem 

3.5 shows that the algorithm issues both monotonicdly improved iower bounds and upper 

bounds as the iterations proceed 

values ~spectively. each of which satisfies the constraints Ai xt + & y2 I b2. y2 l u 2  with 



k t consvaints and linking constraints of P are satisfied. Therefore, (xl . y1 . vlk.  v t .  s,'. 0 
satisfies ail constraints of P. The proof for the dual is similar. 

L: -1 4-1 

Note that &',kt.' and 1 $Ji.' are not actually cdculated on pmcessor 1 at any 
i=1 i =1  

itention: they are calculated on processor 2. when convergence is achieved, by passing A'" 

k -1 t - i  

from processor 1 to processor 2. Similmly. p:-i rc; and &:-' 6 are not actually calculated 
i=i 1-1 

on processor 2 at my itention: they are calculated on processor 1 by passing from 

processor 2 to processor 1. when convergence is achieved. 

Theorem 3.5 [frlie algorithm proceeds so irerations k> 1. then 

&... z , k - ~ ~ : l k ~  :*s$s :?-ls.* 5 :?=. 

PmP: Since S P ~  - for b l  is a restriction of P and the feasible region of subproblem SP: - 

includes that of the previous subproblem (by resuicting the newest variable. Â~.~'''= O), it 

- - k-1 follows that ci% ... 5 , I  5 c i k  2 2'. Similady. SD: is a resmction of the dud of P. that is 

loosened at each iteration. which proves the remainder of the claim. 

The foilowing rheorem verifies the cdculation of the primai and dual bptimal solutions 



. - 

T h m m  3.6 Suppose (-ri. ) J i k ,  VI', & ~ ) c ~ ' ~ . ~  yi)Ci-l, v23 and (zp:-ld ,Epf-lo;, 
- 

ct$. p t )  are the optimal solutions of spf and SD;, respectively or ireration k They are - 

optimal prima1 and duo2 solutions of P and D if and only ifrik = z t .  
4 -1 k-1 

k & & hl: Basic duality theory. and the feasibility of . y . vl , xih,L-lv $h:-l, Y:) and 
r = l  i=1 

k-1  L -1 
k k  (x $'fi , pf*' O; ,  pi .I? . u)?~. p:) in P and D ensure the result. 

Because the two subproblems are solved simultaneously. it takes two itentions of the 

panllel method for one subproblem to respond to the information of the other subproblem. 

Therefore. the subproblem of the next iteration c m  have the sarne solution as the current 

iteration. Theorem 3.7 shows that if the feasible solution of current iteration is feasible in the 

next two consecutive iterations of the parallel aigorithm. then it is an optimal solution to the 

orignal problem. 

- 
- 1  k-1 k-1 k-1 Theorem 3.7 For k> 1. if the prima1 optimal solution of SPI.' , ( y 1 , x? . y2 , VI ,et1) .  

- 
RooE For any b1. suppose that the primai optimal solution of s p f " .  (yl: .d y2: utr, Oz') is 

- - 
(vif. x{, vt: is optimal in SP!_ and SP?*' . Then. the unchanged proposal. (xZr, yz'), 



could be passed to S P ~  . sp:+l and sp:". which would al1 k the same problem. Therefore, - - - 
the optimal solution of SP: is also on optimum of sP;"' and #''. The algorithm will be - - - 

repeated with the same solutions of both subproblems thereafter. 

Frorns~: (for clear presentation we put subscripts with parentheses on the lower nght side of - 

vanables except nonlinking variables. which indicates the subproblem in which the value was 

solved for) 

k - 1  k-1 k - l  k k -1 k-1 & 2 C: X: + d2 yLtl - ~ h . ( l )  L i 2  Y : ( ~ )  ( ~ - t l )  (Br .Q + LZ  ria) 

- 
k-1 t-1 k - l  and from S P ~ '  = dl y,.,, + CL .Q + dr yLi2, - M v!_':~, + 9;'' . so we have 

t-1 k I  k k-1 t 4-1 L -1 @; 2 ~ 1 . ' -  di y,.,-, +M. vt ! : )  - OZ. - U.~I ,  L i 2  - ~ r t i ,  (Bz ~1 + Ln - (3.1) 

- 
ir - i  L -1  L - I  _ t-t - from sp:' , (3.3) gives and -u I I -~ l . , , . -  f l s - L : l ~ 1 . 1 3 -  B111 LÏY; ( - ,+  ~ t z ~  



the optimal value has k e n  reached. 

The convergence of the aigorithm is proved using the following lemma and theorems. 

9 t -  t Lema Let {:: }Li . {:: ),=, and {lV, },=, be inmite sequences. where ZI'E RI. :? E RI. und 

W,'E W,C for i= 1.2. . . .. 1. where W, is closed and bounded. Suppose rhar there e-risn Q>O. 

for al1 k and al1 j> k. such rhat 

Pmok Recîil that. for any infinite sequence of vecton chosen h m  a closed and ôounded set. 

there exists at lest one convergent infinite subsequence. Therefore, there exists a convergent 

infinite subsequence of {wt }y', indexed by Si Ç N. Similarly. there exists a convergent infinite 



subsequence of {&},, . indexed by S2 ç; SI. Proceeding in a sirnikir fashion, we may 

conclude that there exist subsequences indexed by S=& such that (w:}converges for every i= l .  

7. ..., 1. when  ES. The inequalities in the assumption hold for any j>k. so they hold in 

particular for adjacent elements of the subsequence S. Iabeled ka. ka+ Because the difference 

-Lm*/ _ 
c 2 is bounded below by O and above by an expression which converges to O through the 

subsequence S. the daim is proven. 

subsequence S = {k,, }:, E N such thar the objectives converge ro equal values in rhe limit. i.e. 

Frorn~pi . we have 

Subtracting (3.4) from (3.5) gives 



spf l ,  we have 

have 

k . J <  k PI - 1  - Pi - 

Combining (3.1 1 )  and (3.12) with (3.10) gives 

Rearm9ng (3.13). and using Theorem 3.5 gives 



The expression on the right is a sum of products of two vecton. therefore 

Since ol and have upper bounds of MI and Mz, we can let QI = m a  Ildz - a l  f,lzll, 
OS<PISM I 

Then. since M2 >O, it follows that Q >O. Therefot-e. 

However. the artificial variables, v: (20). are also drawn from a closed, bounded set by the 

following reasoning. From P, we have vz 2 LLI y + BZx2 + Ln y2 -fi; since v2 is very costly. 

the optimization process forces equdity at the optimum. An upper bound on v: can be 

obtained by maxirnizing each component by selection of y,, X I ,  y2 from the bounded set 

Therefore. by the Lemma there exists a subsequence {k, }:, such that ( :?-l- Zfm )+O as n+=. 

Theorem 3.9 The objecrives of the entire sequence of optimal solutium converge tu equal 

val i~~s.  in the limit. i-e. (c i  - :t1>-t0 ar j+ . 

Rwfi For any panicular value of jX1, there is an earlier iteration number, from the 

subsequence. {k, },, . which is closest to j, i.e. k,, = max ( k ,  1 k,, I j. je N } . By Theorem 3.5. 



zi - $' 5 z+ - & J - [ ,  and by Theorem 3.8, the right side of the inequality converges to zero. 

Therefore, ( z /  - :)'')+O as j- through je N. 

Cordlary if the parallel primnl-dual decomposition algorithm proceeds to iterution k> 1, 

rhen with the given tolerance E > O. it stops in a finite number of iterations. 

RooE The corollary follows directly from the stopping criterion uO and Theorem 3.9. 

3.5 Summary and Observations on !Le Algorithm 

L. The onginai problem is divided into two types of subproblems in each part: a lower 

bound type subproblem and an upper bound type subproblem. 

2. The lower bound subproblem in primai form is consuucted by resaicting prima1 

variables. xz and y, to convex combinations of known values. received from the upper 

bound subproblern. thus dropping out redundani prima1 nonlinking conscraints and 

primai upper bound constraints. nie upper bound subproblem in dud form is 

consuucted by restncting dual variables. iri and al, to convex combinations of known 

values. received from the first subproblem. then dropping out redundant dud 

nonlinking constraints and dual upper bound constraints. 

3. The panIlel aigorithm ha a perfectly bdanced structure by the two master-like 

subproblems instead of the master and subproblem structure as in the aaditional 

decomposition methods. 

4 information on primai and duai solutions is sent and received between the two 

subproblems at each iteration. The duai solution of the fint subproblem is passed to 



the second subproblem to make a cut and the pnmal solutions of the second 

subproblem are passed to the fint subproblern as the proposal information. 

5. The new aigorithm approximates the objective function value by issuing 

monotonicaily improved lower bounds and upper bounds by the first subproblem and 

second subproblem. respectively during the iterations. 

6. This algorithm performs the convergence test by refemng to both subproblems 

simultaneously and converges to a given tolerance in a finite number of steps. 

- 
7. If, in the upper bounding subproblern. s p f .  al1 cuts except the most ment are 

eli minated, then the algori thm reduces to the familiar Dantzig- Wolfe decomposition 

algori thm. 

8. K. in the lower bounding subproblern. SP:, - the weight on the most recent proposd is 

required to equal 1 (and the other weights are zero). then the algorithm reduces to the 

fmi liv Benders decomposition algorithm. 

9. The panllel decomposition algorithm cm be extended to more than two part 

problems. Chapter 4 discusses a padlel algorithm for the multi-part problems. 



Chapter 4 Paraiiel Decomposition of the Multi-Part Mode1 

In this chapter, two parallel decomposition methods for multi-part iinear programrning 

problems are presented. The fint is developed by applying a hierarchical decomposition 

principle recunively. We first divide the original multi-part problem into two aggregated 

subproblems of lower bound type and upper bound type, by applying the basic algorithm of 

the two-part method. which was discussed in the previous chapter. Then. the aggregated 

subproblems are further divided into two smaller aggregated subproblems of upper bound and 

lower bound. This results in some primai subproblems accumulating both proposais and cuts. 

This bifurcation process continues until there are no subproblerns left for funher 

decomposition. The subproblems are solved in different processon simuItaneously and work 

together to reach an optimal point during the iterations by exchanging information in the 

hierarchicd way. In Chapter 5, we repon successhl convergence on several test problems. 

The second method is less complen than the first. It defines some subproblems to be of 

the lower bound type from Chapter 3, Le. utilizing primal proposais from other subproblems, 

and the other subproblems are of the upper bound type. Unfortunately, this method fails to 

converge in some tests. We include it because it may be useful as a heuristic. 

4.1 Definition of a Multi-Part Linear Program 

The definition of the two-part problems is now extended to that of multi-part 

problems. Consider the following prima1 and dual forms of LP problem of N parts: 



F I  

( L?: wi SM,. r=1.1 ..... N 
~ ~ . o , * P , > O  for t = 1.2. ... , N 

where the subscripts r and s indicate the part number, N is the total number of parts, x,, y, and 

v, are the vecton of nt, r,, and q, variables for part t. for t=l. 2, .... N. The dual variable vecton 

for the constraints of part r of P are denoted by row vecton n,, co, and p, which are the vectors 

of nt,. q,, and r, variables for pm t. L, is a qtxr, matrix, A, is an m,x n, matrix, Br is a qtx n, 

mütrix. DI is an m,xrs matrix, and cr, d,, M I S .  b,, f,, and ut>O are vectors of suitable 

dimensions for r=l. 2. .... iV and s=l, 2, ..., N. The general structure of the multi-part mode! is 

dso shown in Table 1. 

The s m e  assumption as in the two-part case is made in order to simplify the algorithm 

and to gumntee convergence: 

Assum~tion: For each pan. r=l. 2. ..., N. the set of nonlinking constraints. together with 
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upper bound constraints and nonnegativity constraints, define a bounded feasible region for 

the x,, y, vecton. 

Table 4.1 General structure of multi-part mode1 

ouai 1 Riml 
Vector 

Vecior 1 Dimension 

Ph' 1 N 

1 Objective 

ni n qt n2 fi q? . . . .  n m q~ RHS 

4.2 The Structure of Subproblems for the F i  Method 

4.2.1 The Bifurcation Process 

We fint divide the original multi-part probiem into an aggregated lower bound 

subproblem. denoted by PL, and an aggregated upper bound subproblem, denoted by Pu, by 

applyng the basic idea of paralle1 decomposition of two-part models to multi-part models. 

Agin. we divide the ag-gegated lower bound subproblem into its aggregated lower bound 



subproblem, denoted by PL, and its aggregated upper bound subproblern. denoted by PLU, 

and the aggregated upper bound subproblem into its aggregated lower bound subproblem, 

denoted by Pur, and its aggregated upper bound subproblem, denoted by Puu This bifurcation 

process continues until there are no subproblems left for funher decomposition. Figure 4.1 

shows this bifurcation process for N=9 with the number of parts at each level. Since the total 

number of parts is not a power of two in this exmple. the choice of the parts number at each 

level is ;ubitmy. However, to keep the number of bifurcation levels as small as possible. each 

bifurcation c m  be done such that the number of parts in the two subproblems are equd or 

different by one, depending on whether the total number of parts is even or odd. 

Fipre  1.1 The bifurcation process for N=9 (9-parts) 

At each level. a new linking prima1 variable (A vector) is included in the lower bound 

t y e  subproblem and a new linking dual variable (p vector) is included in the upper bound 
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type subproblem. The lower bound subproblem with al1 new linking prima1 variables, called 

the lowest bound subproblem (PLL..J. consists of that pan's variables. plus fractional 

weighting variables for proposals from other pans, and anificial variables. and it includes 

linking constnints for al1 parts. The upper bound subproblem with al1 new linking dual 

variables. called the uppermost subproblem (Pcu...v). has that part's variables, ail parts' 

linking variables. and extra constraints (cuts) constructed with dual variable proposals from 

al1 other parts. Other subproblems except the rwo subproblerns mentioned above include that 

part's variables. some fractionai weighting variables for pnmd proposals from some other 

pans and artificial variables, and they also include some linking variables in some linking 

constraints for some other parts. and extra constnints (cuts) consuucted with dual variable 

proposals from some other pans. 

Each subproblern is solved simultaneously in each processor and exchanges pnrnal 

and dual information with the imrnediate neighbor subproblem. which is bifurcated from the 

same aggegated subproblem. until each pair of subproblems reach an optimal solution of 

each aggregated subproblem. Then. the algorithm checks the pain of aggregated subproblems 

at the previous level in the bifurcation tree. If they converge to the s m e  value. the algorithm 

checks again the optimdity of the pain of the next level and if not, the algorithm perfoms 

information exchange. updates and simuItaneously solves al1 subproblems descended fmm 

chat bifurcation. This hiemhical process itentes until the mot level subproblems. PL and PU, 

converge to an optimal solution of P. Le. the optimal value of the lowest bound subpmblem 

(PL L) sets close enough to the optimal value of the uppermost subproblem (Puv...u) to 

satisfy r prescribed tolennce. It tums out that it is possible to stop short of optimdity for al1 

pain beyond the mot bifurcation. yet still have convergence of the whole process to the 

49 



optimal value of P. This is explained further below. 

Since it is very diffxcult and long to state the general N part decomposition method in 

algebraic terms in detail. we will focus on a Cpart case as shown in Figure 4.2. The extension 

to any number of parts Ncan be straightfoward from the demonstration of this Cpart case. 

PUU gives an upper bound to the original problem because Pu in the fint level gives an 

upper bound to the original problem. and the upper bound subproblem of Pu, which is Puv. 

provides an upper bound to Pu. With the same reasoning, Pu. provides a lower bound to the 

original problem. The upper bounds provided by Pvv are nonincreasing. as the iterations 

proceed. and the lower bounds from PLL are nondecreasing. The algorithm proceeds through 

iterations of parailel solution of PLL and PLU, by exchanges of primd and dual proposals. 

converging towards the optimal solution of PL. Simultaneously, PLI and Puu are solved 

iteratively. in parallel, converging towards the optimal solution of Pu. 

Figure 4.2 lpart  decomposition principle and information flow. 
('Tol" is the predetermined srnall tolemce for judging convergence) 



An algorithm could be defined to exchange prima1 and dual proposals at the first level. 

i.e. between PL and Pu. only when both level II pairs of subproblems have converged to the 

optimal values of PL and Pu It should be clear. based on the convergence of the two-part case. 

that convergence could be proved for such an algorithm. However. we have implemented a 

different scheme which requires fewer iterations at the second level before information 

exchange at the fint level. A careful examination of the convergence proof for two part 

models reveds that convergence is assured if the two parts pass feasible (not necessarily 

t optimal) solutions such that cik 5 r. . Applying this observation to PL and Pu in the 

implemented aigonthm. we get a dual feasible solution to PL from PLU. a primai feasible 

solution from PuL, and we wait until :(PLU) 5 :(PUù before exchanging proposals between PL 

and Pu. Figure 4.7 shows the criteria for the iterations to conrinue with primai and dual 

exchmges. at each level: second level exchanges between a pair of subproblems continue if 

:(Pc3 c :(PLU) and the pair has not converged to within 3 predetermined tolerance of the 

optimal value of its first Ievel problem: fint level exchmges continue as long as the upper 

bound. :(Pvc). has not converged to the lower bound. :(PU). 

The parailel decomposition rnethod would be bdanced arnong the processon if the 

number of pans in the original problem is a power of 2. In other cases. a m e  like in Figure 4.1 

wouId have some end nodes at different levels than other end nodes. This could lead to much 

idle time for rhe processon that solve the subproblems at higher level end nodes. However. 

one cm consider a balmcing strategy that ~ s i p s  a large or difficult subproblem to a higher 

end level node in order to decrease idle time of the processon. Another balancing scheme 

could have two or more subproblems of higher level end nodes assigned to one pracessor, to 



be solved serially. 

In contrast. in the Lan-Fuller method, for the Bstage case as show in Figure 4.3. , the 

original pmblem (P) is fint divided into a subproblem of stage 1 (PI) and an aggregated 

subproblem of stage 2 to 9 (P2& then the aggregated subproblem is funher divided into a 

subproblem of stage 2 (Pz) and an aggregated subproblem of stage 3 to 9 (Pi.9). This nested 

partitioning process continues until the aggregated subpmblem of stage 8 and 9 (Ps.9) is 

divided into a subproblem of stage 8 (P8) and a subproblem of stage 9 (Pg). The nested 

panitioning process of Lm-Fuller has depth of 8. generalized as (N-1) depth. while the 

hierarchicai partitioning process of the new decomposition algorithm has depth of 1. 

generalized as floor(10g2~ or L+floor(logzN) (where t'iwr(.) is the function that rrtux-ns the 

largest integer less than or equal to the argument). assuming that each bifurcation produces 

subproblerns whose numben of parts are equal or different b y one. 



Figure 43 9-stage decomposition principle in Lan-Fuller method. 

4.2.2 Recise Description of the Subproblems 

A precise statement of the subproblems is given below (new notation is defined after 

the statements of the subproblems). Note that there are 3 different iteration counten involved 

for *part decomposition. one for the first level counter, k, and wo for the second level 

counten. i and J. because the pairs of subproblems c m  have different numben of iterations to 

converge towards the optimal solutions of Pu and Pr respectively. 

SP: (dso called SP;" because it is assigned to processor number 1) is constructed by 

restricting the prima1 variables of the aggregated upper bound subproblem (parts 3 and 4) into 
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convex combinations of h o w n  solutions of the previous k-1 iterations and by m e r  

restricting the primai variables of part 2 into convex combinations of known solutions of the 

previous i- 1 iterations. 

SD;; (or sDli because it is assigned to processor 2) is constnicted by restxicting the 

primai wxiables of the aggregated upper bound subproblem (parts 3 and 1) into convex 



combinations of known solutions of the previous k-1 iterations and by converting it into the 

dual problem and further resuicting the dual variables of part 1 into convex combinations of 

known solutions of the previous i-1 iterations. 

SP:; (or SP:.~ ) is consmicted by resuicting the dual variables of the agpgated 

lower bound subproblem (parts I and 1) into conver combinations of known solutions of the 
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previous k-l iterations and by converting it to primal fonn, and furiher restricting the primai 

variables of part 4 into convex combinations of known solutions of previous j-l iterations. 

spi:;. (or spi-; is consmicted by resmcting the dual variables of the aggresated 



lower bound subproblem (parts 1 and 2) into convex combinations of known solutions of the 

previous k-1 iterations and by M e r  resuicting the dual variables of part 3 into convex 

combinations of known solutions of the previous j-1 iterations. and expressing the result in 

Note that when L=l. i=l a d j i l .  there are no comsponding h or @ variables, and there are 
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no comsponding cuts, nor are there comsponding ji or 8 variables. because the algorithm 

begins by solving al1 the subproblems simultaneously, so there are no solutions yet available 

from other subproblems. Also. when i and j are reset to i=l and j=l at the start of each 

iteration b l .  no information is made available from second level iterations because the new 

proposals exchanged at the fint level mate  different subproblems at the second level (but see 

the next subsection about partial use of old second level proposals). 

The definitions of various syrnbols are given below. 

ek" is o 1 x (k-1) row vector with ail entnes equal to 1. 

e'-' and e"' are a 1 x (i- 1) row vector and a 1 x (j- 1) row vector. with dl entries equal to 1. 

respective1 y. 

O,, and O , ,  are scalar variables derived from level 1 and level II respectively in the 

subproblern of part r, r = 2, 3.4. 

tpr,, and %,[, are scalar variables derived from level 1 and level II respectively in the 

subproblem of part r. r = 1. 2. 3. 

g,;' is a (k - 1) x 1 column vector variable whose componenu weight prima1 proposais h m  

the sggregated upper bound (level 0 subproblem in the subproblern of part t. r = 1.2. 

i;-;[ md i ! - 1  
1 11 are r ( i  -1) x l  column vector variable and a (j -1) x l  column vector variable. 

whose components weight primal proposals from the comsponding upper bound 

subpmblem at level II in the subpmblem of part 1 and 3, respectively. 

p:;' is r 1 x (k -1) row vector variable whose components weight duaI proposais from the 

aggegated lower bound subproblem (level 2) in the subproblem of part t, t = 3.4. 



&.',* and CI::;, are a 1 x (i - 1) row vector variable and a 1 x (j -1) row vector variable, whose 

components weight duai proposais from the corresponding lower bound subproblem at level 

II in the subprablem of part 2 and 4. respectively. 

x:" is an n, x(k-1) mauix andyf-' is a r, x (k-1) mauix. i.e. x:-'= (x!. .r,'. ... . .$') and 

y:-'= . .. , y:-'), coming from the fint (k-1) primal solutions of subproblem r. ~ 3 . 4 .  

xi1 is a n2 x(i-1) matrix and y:' is a rz x (i-1) mauix. i.e. x;' = (2:. xi. . . . . .&') and 

Y;' = ($. $. . . . . - YI'), _ coming from the first (i-1) prima1 solutions of subproblem 2. At the 

start of each iteration k. i is reset to i=l and. x!' and y;' are met to nul1 matrices. 

Y:-' = (4:. Yi. . . . . y:-') . coming from the fint (i-1) prima1 solutions of subproblem 4. At the 

stvt of each itention k. j is reset ro j= 1 and. xi" and y:.' are reset to nul1 matrices. 

n:-' is a (k-I) xm, rnatrix and&' is a (k-1) x q, matrix. Le. n:-'= (dr . +r. . . . . d'Ir )' 

and ak-' = (di, &', . . . . d-lr )r . coming from the fint (k-1) dual solutions of subproblem r. 

r=l. 2. 

ni-' is a (i- 1) xmi matrix  and^;.' is a (i- L) x 41 mûtrix, i.e. ni-' = (dr . $r. . . . . d-'' I r  

and = (dr  .&. . . . . d-lr )' . corning from the fint (i-1) dual solutions of subproblem 1. 

At the start of each itention k, i is reset to i=l and. ni" and QI-' are met to nuIl matrices. 

and ~ j - '  = (dr . . . . . &-lr )T . coming from the fint (i-1) dual solutions of subproblern 3. 

At the stm of each iteration k. j is reset t o k l  and ni" lurd ni'' are m e t  to nul1 matrices. 
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SP~'  has the same structure as the part one subproblem in the parallel two pari 

decomposition method in Chapter 3, except for two more parts. thus having one more 

proposal from the aggregated upper bound subproblem (parts 3 and 4) at each fint level 

iteration. Also. SP:.J has the same structure as the part two subproblem in the panllel two 

part decomposition except for two more pans, thus having one more cut from the aggregated 

lower bound subproblem (parts 1 and 1) at each first ievel iteration. The subproblems spi" 

and SP:+' utilize both proposals and cuts. 

For fint level i tentions, the coordination is made through broadcasting proposals and 

cuts. The proposais. which have the prima1 information of the previous subproblems. are 

broadcasted to the other two subproblems and the cuts, which have dual information, are 

broadcasted to the other two subproblems. During the second level iterations, the coordination 

is made through exchanging prima1 and duai proposals only between the two subproblems 

bi furcated from the same aggregated subpro blem. 

At the fint itention of the paralle1 method, there is no information flow among the 

subproblerns since no information is available. whiIe in concrast Lan's senal meihod begins 

with the fint subproblem having no information from other subproblems. but al1 other 

subproblems are solved with proposals or cuts from other subproblems, even in the first 

itention. 

From the second iteration of the parallel methoci, information is exchmged between 

the aggregated subproblems of level 1. then level II subproblems are formed and solved with 

new proposals or cuts exchanged between the immediate neighbor subproblerns bifurcated 
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from the same aggregated subproblem as shown in figure 4.2 in the previous section. Lads 

serial method solves the firsr subproblem and sends prima1 information to the second 

subproblem. then it solves the second subproblem and sen& prima1 information to the third 

subproblem. By doing the same procedure to the third subproblem. Lm's method solves the 

lut subproblem and sen& back dual information to the third subproblem and continues to 

solve and send dud information as in the following figure. thus shows its nature of senal 

computation. 

Figure 4.4 Information flow of 4-stage decomposition in Lads method. 

When the iteration counter b l ,  s&~' , in which j* denotes the second level iteration 

counter satisfying the stopping critena of level Il. Le. - 5 E or =iJ I , gives upper 

bounds ro the original problem and s&'. in which i' denotes the second level iteration 

counter satisfying the stopping criteria of level II, i.e. - L:J < E or 5 ;:.I , provides lower 
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bounds for the original problem. The two subproblems perform the convergence test at each 

iteration k. 

In contrast with the new algorithrn, Dantzig's hienrchical decornposition method c m  

be appiied only to staircase structures and has traditional master and subproblems. Also. it is 

very difficult to apply parallel decornposition since it has to solve lower level master 

probiems and subproblems serially as well as upper level master problem and subproblems. 

42.3. A Strategy to use more Information from Second Level Iteration 

Another strategy in utilizing more information can be defined iri order to speed up the 

convergence of the algorithm. spf-' and S&J cm keep adding proposals and cuts coming 

from al1 the previous first and second level iterations because they are still feasible in the 

noniinking consvaints of s&' and S&.J respective1 y, no matter what cuts and proposals are 

included in S@ and s P ' , v J  respectiveiy. Thus. they cm produce nondecreasing lower bounds 

and nonincreasing upper bounds at every itention of k, i and j (this is proven in section 4.4). 

However. when we tned to keep al1 availabie information from the fint and second level 

itentions in s&" and sP',*] . there were problems in tests. 

In the next section, we define the algonthm for the case that al1 second level 

information is "forgotten" every time that the fint level proceeds to another iteration; 

however the algorithm that is implemented in code uses the modified strategy defined above. 

4.3 The Parallel Decomposition Algorithm for the First Method 

In this section. the procedure of the parallel decomposition algorithm for muiti-part 
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problems is discussed. Various propcrties of this algorithm will be discussed in the next 

section. 

The first step determines that the whole problem is feasible or not by detecting the 

infeasibility of subproblems, as proven in the next section. If any subproblem is infeasible, 

then the algorithm stops because the original problem is determined to be infeasible. and if 

each subproblem has its own feasible solutions, then the algorithm proceeds to the next steps 

because the original pmblem is feasible. 

in Steps 1 and 2. the scalar E>O is defined by the user. and the aigorithm solves each 

subproblem. exchanges the information between each pair of subproblems in the hierarchical 

manner and tries to reach the prescribed tolerance between the upper bound and the lower 

bound. :," and c"' represent the objective values of SP~" and SP"' respectively, at first level 

iteration k and second level iteration i. :14 and represent the objective values of S P ~ ~  and 

spJ4, respectively, at fint level iteration k and second level iteration j. Up-Opt and Low-Opt 

are set to 1 if Pu and Pr reach optimaiity; othenvise 0. respectively. 

DO IN PARALLEC 

frocessor 1 

Step O. Set level I counter k= 1. level II counter i= l ,  DO. and determine whether P is 

infeasible. 

- solve spi.' : if it is infeasible. send a stop signai to al1 other subproblems and stop, P 

is infeasible; 

- if a stop signai frorn any other subproblem is received stop, P is infeasible; 



1 1  - otherwise, record optimal dual solution ni . Q 

Step 1. Set k k + L .  i=û and Up-Opta. 

- set nl"' =(nlk-' T, lk-' T) T ,d Q~'" =(Q~"", O,'-") T ;  

- send ( n l k ~ l ~ l + o l k ~ l ~ l l ) ,  o ik-l~iz,  ~ 1 ~ - ~ ~ ~ 3 .  and ( ~ ' ~ ~ " ~ b ~ + o l " % )  to SP3 and 

SP4; 

k-1 k-1 - receive (c,xt +d,v, ), ~ ~ v : "  and ( ~ ~ r f ' + ~ , ~ : * ' )  from SP, for r=3,4 and s= 1. ..., 4, 

s f t ;  

Step 1.I. Set i=i+l. 

- send ( n l l ' l ~ i + o i l ' l ~ i l ) .  oir"~12, al"' and (xll"bl+wi"'fi) to SP2; 

1-1 r -  1 1-1 - receive (c* + drvz ). &yi and (B~.$' + L~A-I) from SP2 for s i .  3,J: 

t l  t t - update and solve sp:' ; record optimal ,-I . xi . y , v:. A&' , A;:, and niL. o i t :  

- send zIL1 CO SPr and receive crkl from SPr; 

- if Up-Opt = O. receive ü'p-Opt and f r o m  SP3; 

Step 1.2. Test f o r  level II convergence or exit. 

k L kt' kt i k i k  k - if ,-2 - :Ikl <E or if &$'. then set -1 = :l . xlk=.rl , y1 =yi , v, =d, RI =IT~'. 

olk=ol' and go to Step 2; othenuise. go to Step 1.1. 

Step 2. Test for level I convergence. 

- Send rikL' to dl other subproblems and receive îb' from SP4; 

- kt* - if J ,I SE. go to step 3: othenvise. go to step 1. 

Step 3. Send A;;' to SPj and SP4. and hi;! to SP-, and receive p:,' from SPI. Calculate 



Processor 2 

Step O. Set level I counter k=l. level II counter i=l, €>O, and determine whether P is 

infeasible. 

- solve spiL ; if it is infeasible. send a stop signal to al1 other subproblems and stop. 

P is infeasible; 

- if a stop signal from any other subproblem is received. stop. P is infeasible; 

s f z :  

Step I .  I .  Set i=i+l. 

1- 1 i- 1 r -  1 - send ( ~ 2 . r ~  + dLv2 ). SLv2 and ( B ~ : - ' +  LZv2>-') from SP2 for s=l ,3 .4;  

- receive (x l" '~ l+o l ' '~ i i ) ,  w ~ ' ' ' L ~ ~ ,  mli-' and (xl"lbl+oii'%) from SPI; 

- set .ri-') and Y;-' = ( ~ 2 > - ' ,  

- send r"' to Spi and receive :,'' from SPI; 



- if Up-Opt = O. receive Up-Opt and from SP3; 

Step 1.2. Test for level II convergence or exit. 

- if :$'- :141 1 E or if :+i<=34, then set I$=K?~. &=CI$ and go to Step 2; othewise. 

go to Step 1.1. 

Step 2. Test for level I convergence. 

tiw - receive :l from Spi and receive ab' from SP4; 

kl9 - if sQ' - ci I E. go to step 3; othenvise. p to step 1. 

Step 3. Receive À;;: from SPI, and receive p:,' from SP+ Calculate the optimal ptimal 

and dual solutions 

Processor 3 

Sîep O. Set level I counter A=l. level II counterj=l. €9. and detemiine whether P is 

infeasible. 

- solve SP:' ; if it is infeasible. send a stop signal to al1 other subproblems and stop. 

P 1s infeasible: 

- if a stop signal from any other subproblem is received stop, P is infeasible; 

1 I - otherwise. record optimd dual solution x 3  , y3 

Step 1. Set h=k+ l.l=û, Up-Opta and Low-Opta; 

k- 1 - set Xj =(x;-', x jX-' ) and Y:-' =(Y:*', At-'); 

- send (C>Q~-' + d33'-'). ~j$- '  and (B~V?' + L&-') for ~ 1 , 2 . 4 .  to SPI and SPr; 

- receive ($-'D,+o.$"L,), cqk-' L, and (~$'b,+o$*%) from SP, for t=i, 2, s=l, ..., 4. s+t; 

Step L I .  Setj+j+l. 



- update and solve spi ; record optimal r3', ni, y j ,  and nj. 4; 

- set ni*' =(n{", Ri-' and QJ' =(Qz' U>.I-'~)' ; 

- send :34 to SP4 and receive from Spa; 

- if a"J- :34 5 E. then set Up-Opt = 1 ; send Up-Opt and zJQ to SP?; 

- if Low-Opt = O. receive Low-Opt and 3'' from SPr; 

Step 1.2. Test for level II convergence or exit. 

- if ab- r3% E or if : 2 k i ~ 3 b .  then set ~ ~ ~ = . r { .  and go to Step 2; othewise. 

go to Step 1.1. 

Step 2. Test for Ievel i convergence. 

t I - receive ,-1 from SPI and ab* from SP4; 

- if - :i"'d E. go to step 3; otherwise, go to step 1. 

Step 3. Receive A:;' from Spi, and receive from SP4. Calculate the optimal primai 

Processot 4 

Step O. Set level I counter k= 1. level II counterh 1, E>O, and determine whether P is 

infeasible. 

- solve spi' ; if it is infeasible, send a stop signal to al1 other subpmblems and stop, 

P is infeasible; 

- if a stop signal from any other subproblem is received stop, P is infeasible; 
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- update and solve SP: j : record optimal ab. .ri. yd, and &. 4, PC for t = 1 ,.... 4; 

- send ab to SP3 and receive :34 from SP3; 

- if Low-Opt = O. receive Low-Opt and c t '  from SP?; 

Step 1.2. Test for level II convergence or exit. 

- if jiu- 3% E or if ::'<=j4. then set ab'=sb&r~, y&yJ, ak&, rnk+., p: 

=pi for r =l .  .... 4 and go to Step 2: othenvise. go to Step 1.1. 

Step 2. Test for level I convergence. 

- send ab' to al1 other subproblems and receive clk" from SPI; 

- if z4' - cik" 5 E. go to step 3; othenvise, go to step 1.  

Step 3. Receive h&' from SPI. Calculate the optimal primai and dual solutions for part 4 

The steps 1 to 3 of each processor solve the subproblems simultaneously and search 
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for the optimum by exchanging the prima1 and dual solutions in the hierarchicai manner. 

Since the feasibility of the original problem and subprobiems are ensund by the step O. each 

subproblem after step O always has a feasible solution. (this will be discussed in the next 

kl* section). The algorithm terminates when the difference between ab' and ci gets less than 

the predetermined convergence tolerance d. 

Note that when the algorithm converges within the given tolerance and stops. it may 

not give a basic feasible solution to the original problem. but slightly interior, due to the 

nature of convex combinations. However. the basic feasible solution could be recovered by 

developing a sirnilar scheme used in purification (Konanek and Zhu, 19881 or crossover 

facility of CPLEX barrier method, i.e.. the optimai solution of the algorithm is adjusted by 

moving some prima1 variables to upper or Iower bounds (to become nonbasic variables) and if 

necessuy. the simplex method fin& a basic optimal solution of the original problem in a 

small number of itentions since the solution fed into the simplex method is already feasible 

and close to an optimal solution of the original problem. 

4.4 Properties of the Algorithm for the Fint Method 

Sevenl properties of the parailel decomposition algorithm are discussed in this 

section. The arguments are sirnilar to those of the serial case of Lan and Fuller [1995b]. 

The fint theorem verifies that the algorithm mies out the possibility of unboundedness 

of the problem P and of any of the prima1 subproblems spit', SP?', sPjb and SPI? 

Theorem 4.1 Prublern P and al2 subprublem SP~''. SP?'. SP;' and SP~' are bounded 



Roof : The Assumption guarantees that the optimal vaiue of P is bounded. Then, the 

boundedness of each subproblem is proven as follows: by the Assumption, the non-artificial 

variables x, and y, are bounded. and the artificial variables, v,, cannot cause unboundedness 

because the artificial variables are nonnegative aid have large negative objective coefficients. 

Also. the A variables are bounded because of nonnegativity and the sum to one constraint. The 

8 variables are also bounded by an argument to similar to chat in the proof of Theomm 3.2b in 

the previous chapter. Therefore. the optimai vaiue of each subproblem is bounded. 

Theorem 4.2 States that Step O of the algorithm in each processor accurately detects 

the feasibility of the whole problem P. 

Theorem 4.2 Problern P is infeasible if and on- if the firsr step of the algorirlun in each 

processor reports in feasibiliy 4 P. 

Proof : (The "if' pan) If a subproblem is found to be infeasible m step 1 in any processor, 

then the nonlinking constraints and upper bounds for the subproblem are infeasible because 

the linking constnints can aiways be satisfied for some choice of the artificiai variables. 

Infeasibility of the nonlinking conscraint and upper bound constraint implies that P is 

infeasi ble. 

(The "only if' part) If pmblem P is infeasible, then at least one piut's set of noniinking 

consmints and upper bound constmints is infeasible because the Iinking constraints can't be 

violated. This infeîsibility will be detected at step O. 



The next result guarantees that in Step 1 of the algorithm. al1 subproblems have 

feasible solutions. 

Thmrem 1.3 Once step O reports that P is feasible. ail subsequenr subproblem are feaFble. 

Roof : In subproblems SPr, SP3 and SP4. the cuts are added to the subproblems of previous 

iterations and this addition of cuts can't affect the feasibility of subproblems because the cuts 

cm always be satisfied by adjusting the value of the free variable 0. 

In the subproblems SPI, SPt and SP3, the primal proposais are added to the 

subproblems of previous iteration and this addition of primal proposais does not change the 

feasibility of subproblerns because the h variables appear with nonzero coefficients only in 

the linking constraints and these linking constrainü are always satisfied by artificid variables. 

The next theorem shows that the algorithm provides primal and dual feasible solutions 

for the original problem P when it proceeds to Step 1 and it justifies the calculabons of pnmal 

and dud solutions. 

Theorem 4.4 For any k> l .  i> l and j> 1. wirh À weights fron SP:', the algorithm gives the 

following primal feusible solunon tu the original problem and with the duol p weights of 

S P ~ ~ ,  ifprovides the foilowing dual feasible soiurion for Pr 

k r  k ntw = p ' k l  ' = 4 ' k * 1 ,  pl = ? ~2 = lir:-lfIz"', Y' = p$l~:-l, = 

k ' k  nj0= pJIIj-i. mm = p,d*'~{-l,  p3' = p t ,  a'= Q ~ ,  u'= . p4 = pr - 



Roof : For t= 2. ... .4, each x,' and y; is a convex combination of known solutions ofx, and 

y, in the previous iterations. which saiisfies the nonlinking constraints A, x, + 4 yi I b, and 

upper bound constraints y, 5 ut of part t. Since xlS and together with x; and y,' solves SPI. 

al1 linking constraints in P are also satisfied. So. SPI gives a feasible solution to the original 

problem P. The proof of the duai part is sirnilar. 1 

The following theorem States that. at each iteration b l .  the optimal values of SP?" 

and SP~"' give nonincreasing upper bounds and nondecreasing lower bounds to the original 

problem P. 

Theorem 1.5 In the processor I and 4 with k > l .  the optimal values of SP,"' fonn a 

nondecreasing series of iower boundr on the optimal value of P and the oprimal values of 

S P J ~  fonn a nonincreasing series of upper boundr on the optimal value of P. i.e. zI"'*< cl'% 

* * ' <  < 3 ~ ~ ~ 2 ~ '  ... Cl  - .. 4 -*. - 3 

Proof : Since spiL' is a restriction of the whoie problem P and the feasible regions of 

successive subpro blems SP include that of previous subproblems at each iteration by 

inclusion of another positive A variable. it gives ci'% zi3.'k ... ~ ~ ~ ' ' 5  cm. 

Similarly. SD:J' is a restriction of the dud of the whole problem P and it is loosened 

at each itention by inclusion of another positive p variable, so the feasible region of S D ~ J '  

gels bigger a[ each iteration. It provides that ,-*c-."'~.. S S3~'S& so proves the theorem. 

C o r o U q  11  In the processor I and 1 with k>l and i>l ,  j>I. the optimal values of SP~" 



fonn a nondecreasing senes of lower bowidr on the optimal vahe of P if al1 proposais ore 

accumulared and the optimal values of S P ~ ~  f o m  a nonincreasing series of upper bounds on 

the optimal value of P if al1 culs are included. 

1 7  < C12.io< - 3.2< 3 . 3 ~  - 3.le< 
i.e. : 1 * - ~  : 1 2 s 3 ~  ... - - ..l - :l -.. - ... < rrklo< :' 

3 3 ' 9 i < 9' 1.. 5 33~-s 5 5 - 3 - S-J < .*- < a2*3< a-*- 

Proof : Since is a restriction of S P ~ ~ . "  and the feasible regions of successive 

subproblems splk.' include that of previous subproblems at each iteration of k and i. by 

1 7  

inclusion of another positive À variables, it gives :lomoS :I'.3S ... S :, 2.1. 3.2< 3,3< 3.t0< I :I - Zl - ..- Z ]  - 

kt0< ; 
S.. 5 :1 - * . 

Similarly. SD:~ is a restriction of the dual of SP:~' and it is loosened at each iteration of k 

and j. by inclusion of mother positive p variables. so the feasible region of S D ~ ~  geü bigger 

7 - 3-3, 3.2< J * ~  7 7 
at each iteration. It provides that :'< ab' I ... I 2-j 5 ... 5 3 - - ... pS a--m IJ 



4.5 A Heuristic Decomposition Algorithm - the Second Method 

In this section. a heuristic parallel decomposition algorithm for multi-part linear 

propmming problems is presented. The heuristic parallel algorithm divides the original multi- 

part problem into several small subproblerns of either lower bound type or upper bound type h m  

each part. by extending the basic aiprithm of the two-pan method without the hierarehical 

decomposition principle. The subproblems communicate with each other by sending and 

receiving primal and dual solutions. and work together to mach an optimal point during the 

itentions. The present approach gives simple subproblem structures and algorithm. however it 

does not give any guarantee for convergence; in tests. mentioned briefly in Chapter 5. this 

heuristic sometimes fails to converge. 

4.5.1 The Structure of Subproblems for the Second Method 

The heunstic algorithm divides the original multi-part problem into small lower bound 

sul'problems and upper bound subprobIems by extending the basic alprithm of p d l e l  

decomposition of two-pan models to multi-part models; thus ir has only one iteration counter. 

Each pan has a primal form of either a lower bound subproblem or an upper bound subproblern. 

Each lower bound subproblern consists of bat part's variables. plus fractiond weighting variables 

for proposals from other parts and artificid variables. and it includes linking consmaints for al1 

parts. Each upper bound subproblem has that part's variables. al1 parts's linking variables, and 

extra constiiiints (cuts) constructed with dual variable proposals h m  al1 other parts. Note that 

to proceed with the aigorithm. it should include at least one lower bound subproblem and at least 



one upper bound subproblem. 

The algorithm proceeds to solve ail the subproblems simultaneously and broadcasts 

prima1 information (proposais) to the lower bound subproblems and duai information (cuts) 10 

the upper bound subproblems. After ail the lower bound subproblems receive pnmal information 

and ail the upper bound subproblems receive duai information from other subproblems. the 

algorithm solves ail the subproblems simultaneousl y again. This procedm continues until the 

algorithm satisfies some stopping criteria. Figure 1.3 shows the communication scheme between 

subproblems mentioned sbove. for the case of a five part LP having t h e  lower bounding 

subproblems and two upper bounding subproblems. Note that there could be various assignments 

of subproblem type (lower. upper) to pan number are possible. Figure 4.3 illustrates one 

possibility. 

Figure 4.3 Information Bows for the heuristic parailel decomposition algondun 
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A precise statement of the heuristic algorithm for the general N-part case is given as 

follows. The primai and dual forms of the lower bound subproblem for part t ,  denoted by sp: - 

and SD: - . are defined as (new notation is defined after the statements of the subproblems) 

.v t-t k - t  LU y, + B, x:-' A:-' + L Y S  As, - v, 5 f , .  for dl i * f  
s=I. 1st 

and the pnmd and dual forms of the upper bound subproblems are 



s u ,  , for al1 i 

Note that when k= 1. there are no 0 or 0 variables. and there are no cuts, nor are there )c or p 

variables. The definitions of new synbols are given below. 

0 .  and Q: are scaiar variables. 

A:'' is a (k - 1)x 1 colurnn vector variable whose cornponents weight primd proposais from pan 

i in the lower bounding subproblem of part t. 

p:" is a Ix(R -1) row vector variable whose components weight duai proposais from part i in the 



upper bounding subproblem of part t .  

x:-' is a nt x (k-1) rnatrix and y:-' is a rt x (k- 1) mauix, i.e. x:" = ( ~ f .  .T:. . . . , .$') and 

Y:-' = (y:, y'. . . . , y:.'). coming From the fint (k-1) prima1 solutions of SP, . 

n:-' is a (k-1) x m, rnatrix and&' is a (k - l )x  qt matrix, i.e. &'= ( x f r  . $ r .  ... . &lr)' 

and a'-' = (dl. &r , . . . , f .  coming from the first (k-1) dual solutions of SP, . 

The lower bound subproblerns have the s m e  structures as the part one subpmblem (lower 

bound subproblem) in the parallel two pan decomposition method in Chapter 3. except for more 

parts. thus having (N-2) more proposals from other subproblerns at each iteration. The upper 

bound subproblems also have the same structures as the part two subproblem (upper bound 

subproblem) in the p d l e l  two part decomposition except for more parts, thus having (N-2) more 

cuts from other subproblems at each ireration. 

The heuristic parallel decomposition structure exhibits an equivalent position of 

subproblems. and al1 subproblems have access to information on dl other subproblems and work 

together to optimize the whole problem. 

The coordination is made through broadcasting proposds and cuts during the iteration. 

The proposais. which have the prima1 information of the previous subproblems, are broadcasted 

to ai1 other lower bound subproblems and the cuts, which have dual information, are broadcasted 

to upper bound subproblems. 

At the fint itention of the heuristic method. there is no information flow among the 

subproblems since no informarion is available. while L m ' s  serial method begins with the fint 

subproblem having no information from other subproblems. but all other subproblerns are solved 



with proposals or cuts from other subproblems. even in the first iteration. 

When the iteration counter kl, since al1 upper bound subproblems give upper bounds to 

the original problem and al1 lower bound subpmblems provide lower bounds for the original 

problem. the best upper bound and lower bound can be chosen for the convergence test from the 

subproblems at each iteration. Although the subproblems generate the nonincreasing upper 

bounds and nondecreasing lower bounds. the algorithm can not be guaranteed to converge within 

a presaibed toleruice. The heuristic algorithm cm get snick and repeat the same solution without 

improvement after some number of itentions, so it is temiinated with a feasible solution of the 

onginai problern when dl the lower bound subprolems and d1 the upper bound subproblems have 

the same objective values respective1 y in three consecutive iterations. 

45.2 The Heuristic Decomposition Algorithm for the Second Method 

In this section, the procedure of the heuristic decomposition algorithm for multi-piut 

problems is discussed. Various propenies of this dgorithm will be discussed in the next 

subsection. 

Step O determines that the whole problem is feasible or not by detecting the infeasibility 

of subproblems. as proven in the next subsection. if any subproblem is infeasible. then the 

algorithm stops because the original problem is determined to be infeasible, and if each 

subproblem h s  its own femible solutions. then the algorithm pmceeds to Step 1 because the 

original problem is feasible. 

In Step 1. the s c d u  d is defined by the user, and the aigorithm solves each 



subproblem. exchanges the information among the subproblems and tries to reach the prescribed 

tolerance between the best upper bound issued by sp: and the best lower bound issued by sp:. - 

Before the algonthm starts. the user selects either the lower bound subproblem, or the upper 

bound subproblem, from each pan p l .  ... N, while ensuring chat at least one subproblem is the 

lower bound type. and at Ieast one is the upper bound type. 

DO IN PARALLEL 

frocessor t for t= 1, ..., N 

Step O. Set k= 1, E*. and determine whether P is infeasible. 

- solve spi ; if it is infeasible. send a stop signal to SP, for al1 s+t and stop. P is 

infesi ble; 

- if a stop signai from SP, for ail s#t is received, stop, P is infeasible; 

I I  - othenvise. record optimal prima1 and dual solutions x, . y, and nt'. wll. 

Step 1. Set h=k+L. exchange information, modify SP, and solve it. 

- set x:" = (x:". x r l )  and Y:-' = (Y:*'. y:'): 

k-17 T ,  - set n:-' =(n,';-' ', rr:" ') ' and Q:-' =(RF ' , 

- send (c,r:" + dry:-'), L ~ ~ ~ F '  for dl i. and ~,r:'l to al1 lower bound subproblems; 

- send K;*'D,, O:*'L~ for al1 i ,  and (n:-'b, + o:'~$) to dl upper bound subproblems; 

k- I - if t is a lower bound subproblem. receive (c,r/' + dsys ), L,~:' and from SP, 

for dl i and ~ t :  



- if t is an upper bound subproblem. receive ir,"'~,. u: 'L~~~ and (n;-lb, + u:-%) from 

SP, for dl i and ~ t ;  

k k k  - solve SP: : record optimal z, , xt . yt , and n:, o:; record optimal v:, A:'' if t is a 

lower bound subproblem, and p:, pi"' if r is an upper bound subproblem for d l  s 

and i#t; 

- broadcast the optimd :: to SP, for al1 ntt;  receive the optimal ;k from SP, for ail s+t. 

- - 
Step 7. Test for convergence: select the best upper bound. 5 from S P ~  , and the best lower 

bound. - 3 from SP:. - 

- if ( :y  - cf) I E , then go to step 3: - 
- - - 

i - if (; - - 2)  > E and - :,S = - ,-t for dl lower bound subproblems and ci = r: for al1 upper 

bound subproblems in three consecutive itentions, go CO step 3; 

- othenvise. go to step 1. 

Step 3. Calculate the optimal (or feasible) primal and dud solutions, and terminate the 

algori thm. 

- If FI, broadcast A,:-' to SP, for al1 sr: if t=u. broadcast to SP, for al1 *t; 

- receive A,:-' from SPI for wl and p,"' from SP, for td; 

- if r=I. cdculate the optimal (or feasible) primal and dud solutions for part t 

- if e u .  calculate the optimal (or feasible) primai and dual solutions for part t 



- othenvise. calculate the optimal (or feasible) primai and dual solutions for part t as 

k-1 k 1 k-1 k-1 ( X : - ' A , : - ~ , Y ~ - ' A ~ ~ - ' )  and II*- 1; Stop- 

END 

The heuristic algorithm soives the subproblems simultaneously and searches for the 

optimum by broadcasting the primal and dual solutions for k >l.  Since the feasibility of the 

original problem and subpmblems are ensured by the step 1. each subproblem dways has a 

feasible solution for P, (which wiU be discwed in the next subsection). The algorithm terminates 

with an optimal solution of the original problem when the difference between the best upper 

bound ,' and the best lower bound :: of the whole problern gets less than the predetermined 

convergence tolerance ES. However. in the cases of the sarne repeated objective values three 

times in a row in dl upper bound and al1 Iower bound subproblems respectively. the heuristic 

aigorithm terminates with a feasible but not optimal solution of the original problem. 

4S3 Properties of the Algorithm for the Second Method 

Several properties of the parailel decomposition algorithm are discussed in this sechon. 

The arguments are sirniiar to those in section 4.4. 

Theorem 4.7 verifies chat the algorithm d e s  out the possibility of unboundedness of the 

problem P and of any of the primal subproblems SP:. 

Theorem 4.7 Problem P and al1 subproblem SP: are bounded. 



Proof : The Assumption guarantees that the optimal value of P is bounded. Then. the 

boundedness of each subproblem is proven as follows: by the Assumption. the non-artificial 

variables x, and y, are bounded, and the artificial variables. vr, cannot cause unboundedness 

because the artificial variables have nonnegativity and large negahve objective coefficients. Also. 

- 1  k-1 -  the A,:-' variables are bounded because of nonnegativity and the constra.int e Ait -1. The 8, 

variables in upper bound subproblerns are also bounded by the similar argument to the proof of 

Theorem 3.2b in the previous chapter. Therefore. the optimal value of each subproblem is 

bounded. 

Theorem 4.8 states chat Step O of the algorithm accurately detects the feasibility of the 

whole problem P. 

Theorem 48 Problern P is infeasibie ifand onfy if Step O of tlze algonthm reports infeasibility 

of P. 

Prwf : (The "iF' pan) if a subproblern is found to be infeasible at step O. then at least one 

nonlinhng constraint and upper bound consvaint for a subproblem is infeasible because the 

linking consuaints cm aiways be satisfied for some choice of the mificial variables. Then, 

infeasibility of the nonlinking constraint and upper bound constra.int implies that P is infeasible. 

(The "only if' put) if problem P is infesible, then at leut one part's set of nonlinking 

constnints and upper bound constraints is infeasible because the linking consvaints cm'? be 

viohted. This infesibility will be detected at step O. 



The next result guanntees that in Step 1 of the algorithm. al1 subproblems have feasible 

solutions. 

Theorem 4.9 Once the Prst step reporrs that P is feasible. al1 subsequent subproblems are 

feasible. 

Proof : In the upper bound subproblems, the cuts are added to the subproblems of previous 

itention and this addition of cuts can't affect the feasibiiity of subproblems because the cuts cm 

always be satisfied by adjusting the value of €4. which is a free variable. 

In the lower bound subproblems. the primal proposais are added to the subproblems of 

previous itention and ihis addition of primal proposais does not change the feasibility of 

subproblems because the A variables appear with nonzero coefficients only in the Iinking 

constraints and these linking constraints are dways satisfied by ani ficial variables. 

The next throrem shows that the algorithm provides a primal feasible solution for the 

original problem P when it pmceeds to step 1 and it justifies the calculations of primal and dual 

solutions in step 3. 

Theorem 4.10 For any t and k> l .  the huer bound subproblem - S& gives rhr folloing p h a l  

- 
feasiblc soiurion ro rlte original problem and the duai form of the upper bound subproblem SP! 

provides the folioicing duai feasible solurion for P: 



nNk-'. 

Proof : For i= 1.2. ... . N and i#t. each .r,' and y' is a convex combination of known solutions of 

.Y, and y in the preveious itentions. which satisfies the nonlinking constraints Ai .r, + Di y, S bi and 

upper bound constraints y, I ici of part i Since .rra and together with xi* and solves S& , d l  - 

linking constnints in P are dso satisfied. So. & gives a feasible solution to the original - 

problem P. The proof of dud part is similu. 

The following theorem States that, at each iteration bl. the optimal value of an upper 

bound subproblern and a lower bound subproblem give nonincreasing upper bounds and 

nondecreasing lower bounds to the original problem P. 

Theorem 4.11 In Step I for any lower boicnd subprobiem (indexed 6y ta). +e oprimai 

rdites ofS& .C  . form a nondecrearing series of Zower bounds on the optimal value of P und for - -  
--  

an! icpper bound sicbproblem (inde-red by s), the optimal values of se . -: . fonn a nonincreacing 



series of upper bounak on the optimal value of P. 

Roof : Since & is a restriction of the whole problem P and the feasible ~gions  of successive - 

subproblems S& include that of previous subproblems at each iteration by inclusion of another - 
k- 1 k 0  positive variables. À, . it gives - l - 5 .  .. < - :, < . 

- 
Similady. SD: is a restriction of the dual of the whole problem P and it is lwsened ût 

- 
each itention by inclusion of another positive variable, pi:-'. so the feasible region of SD: gets 

- - - 
f ' bigger at each iteration. It provides that :' 5 ;: S . .  . 5 ; a :; . so proves the theorem. 



Chapter 5 Preliminary Implementation and Results 

This chapter repons on some implementation procedures and prelirninary cornputational 

results of the parallel primal-dual decomposition algorithm for the multi-part problcms through 

the use of GAMS [ 19921. the Regex Libmy [ 19921, PVM (Pdle l  Virnial Machine) 3.1 1 [ 19941 

and C P E X  6.0 [1997] on an iBM RS/60ûû workstation and a cluster of four PCs (Personal 

Cornputers) running the Solaris operating system. Severai multi-part LP models are implernented 

and in each of the tests. the new panllel decornposition algorithm (by the first method) converges 

to within a smail tolennce of the optimal \due in 3 finite number of iterations. The algorithm of 

the second method somr~mes fails to converge. Therefore. we discuss oniy the first method in 

this chapter. except for a brief mention of the results for the second method. î t  the end of the 

chapter. 

5.1 The Implementation Procedure 

In order to demonsuate the convergence and repon rhe computationd resuits of the new 

panilel decomposition algorithm. we coded the multi-part decomposition algorithm into C 

pro_gnms using GAMS. the Regex iibrary. the CPLEX Callable Library and PVM w hich are 

exetutable in one IBM RS/6ûûû with 128MB RA!! and a ciuster of four Pentiurn PCs, each with 

300MI-b processot and 118MB RAM. We chose the C language for coding because it cm utiiize 

bodi the CPLEX Cdlable Libnry and P m .  thus allowing implementation of the parailel 

decomposition aigorithm without worrying about the derails of coding a linear programming 

solver and paralle1 computing sofiwue. The network connectivity is shown in Fiam 5.1. The 



RS/60ûû and the 4 PCs communicate with each other via the University of Waterloo LAN but 

the PCs use their own LAN connected by Ethemet car& with the speed of IOMB. 

Connector c 
Figure 5.1 Network connectivity 

The implementation procedure has two phases: a decomposition phase on the RS/6000 

and a solution phase on the PCs. The decomposition phase includes formulating a model. 

decomposing the model into subproblems and distributing the subproblems to each cornputer. The 

solution phase includes receiving, generating and solving the subproblems simultaneous1y in each 

compurer with the exchanges of pnmal and dual proposais at each iteration until an upper bound 

and a Iower bound of the original problem have corne within a prescribed tolerance. 



5.1.1 Decomposition Phase 

In the decompositiun phase on the RSI6ûûû. the model is f o d a t e d  into GAMS and al1 

data of the model, such as objective cwficients, consnaint coefficients and nght hand sides etc.. 

are stored in a GAMS dictionary with the narnes of genenc constraints or variables and the 

elements of their anached sets. Then. WSET (Waterloo Structure Exploiting Tool), which 

adopted and modified the basic feature of SPI (Scnicture Passing interface) of the original SET 

(Structure Exploiting Tool) (Fragniere et ai. [Zûûû]), ~ a d s  al1 the data from the GAMS dicaonuy 

using the GAMS i/0 Ltbrary (GAIS [1996]) and partitions the whole problem into subproblems 

according to pre-defined rules in a file. cailed the SET file. provided by the user. These mles 

employ a public domain Regex libnry [1992] with the notion of regular expression (or pattern 

matcher). The pytitioned data of the subproblerns are sent to each computer over r local nework, 

using PVM. 

For s clex presentation of the decomposition phase, we will illustrate with the following 

four-region energy planning mode! with 10 periods ("chrisjin4._@"' is use& In the GAMS mode1 

description. the nmes of linking variables and linking constraints start with the capital letter "L" 

and the names of nonlinking variables and nonlinking consnaints stm with the capital letten 

'*X" in order to comtly identify linking elements and nonlinking elemenü in the later stage of 

partition (These particular letteen are not required by our sofovare - WSET could recognize other 

chvacter strings to distinguish linking from nonlinking entities). The solver is changed to our 

p d l e l  decomposition solver. called WATPAR (WATerloo PARdlel) instead of CPLEX. 



SETS 
R regron / A . 9 . C , 3 /  
T :=e per:o& /5,2,3,4,5,6 ,?. 8 . 9 .  r0/ 

I 2 3 4 5 6  
A 23 25 29 3 1  35 36 
9 21 1 3  2' 28  30 37 
C i 0  1 2  13 IS 18 23 
D 2 5  2: 2 6  29 27 3t 

'7i19iE 
3LIWATE3iR.T) den&.n,d f o r  water  

I Z j S O  
A 60 62 6 5  70  - 2  f O  
ï 45 44  42 4 4  46  49 
C 22 25 3 0  3 7  38 4 5  
9 3 31 37 4 5  48 4 6  

? W ? T C , S S  
COAICCST i R A 6, ... - 
E f-SCOST ( 3 1 A - ,  

TASLE 
TXC!SCOST ! R, 9 3  I 

A 3 C 3 
X LOO L - 6  a.- ' -.  
9 1 L O O  Z :.6 
c r . 5  2 :O0 1.9 
3 . l . 6  1.9 L O O  ; 

S C U T  3 Z S F A C  - 9 . ;  
5W?ZÀBLES COS- d - s c o u . ~ t e d c o s t  
?OS:TzVE ';A~:ÀJLEs 

LFLOWS(R.KX.7). SLPF!CGXL(R.7),  

Figure 5 2  Exarnple of GAMS model formulation 

Once "chnsjid.~m*' is executed. dl information of the model is stored in the GAMS dictionq. 

WSET reîds the &ta using the GAMS y 0  Library and panitions the whole mode1 into 

subpmblems according to the user defined rules in the following SET file. 



NB,~,PEI 8 
# Selectmg the rows 
ROWSPB \ ( f \ ~ ' ( A , \ w ' ) ' \ l  
ROWSPB \ ( , ~ \ v m i A , \ w w ) \ / N L \ w V A ) \ i  

tOLSP3 +i ( L \ w 0  ( A .  \W., \W.)  \ 1 
COLSTS \ INL\we ( A ,  \wmI \ l 

Figure 53 Example of SET file 

The pattern to be matched is defined as "\( ..A)". "'\w*" means "any character string" and "y 

means "or". The fint line (m-sva-2s 8 )  shows that the original mode1 is partitioned into 1 

subproblems. each with 2 sub-parts (linking and nonlinking variables and consnaints). The fint 

subproblem for region 'A' has a set of linking constraints whose names start with the character 

'L' and whose first index set value is 'A' and anything for the second index. The fvst subproblem 

for region 'A' also has nonlinking consûaints defined as follows: they either start with the 

character 'NL' ruid have region 'A' for the first index: or they start with 'NL' and have 'A' as the 

only index. The linking variables for the region 'A' subpmblem start with 'L' and have 'A' as the 

fint index. while the nonlinking variables start with *XL' and have 'A' as the first index. The 
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other thret subproblems for region B, C, and D have the linking (or nonlinking) constrainu and 

variables defined by similar panem matching rules. Since the primal-dual detomposition 

algorithm doesn't need any master problem, row master and colurnn master are stated as 

"notrequired". bbWithgnuplot" shows the following pictures: Figure 5.3 for the original problem 

with no srnicm extracteci; and Figure 5.1 for the original problem with multi-part structure using 

WSET. The dark spots indicate the locations of the nonzero elements of the matrîx. 

Figure 5.1 Example of anonymous matrix generated by GAMS 



Figure 53 Example of multi-part structure generated by WSET 

When the "PD" (PanIlel Decornposition) sobroutine is called, it spawns the executable 

files in the four PCs by the pvm-spawni) routine from the PVM libnry, asking them to stut their 

own processes. and then sends each subproblem's data, partitioned by the above schemes, to each 

machine by the pvm-sendo routine. The consuaint matrix is represented by thRe nonzero 

vecton: one vector stores nonzero consuaint coefficients by coiumn, another vector has row 

location numbers of those coefficients and the other vector indicates the row number of the first 

nonzero element in e x h  coiumn. However the CPLEX cailabie librvy needs an addibonal vector 

indicating the number of nonzero elements in each coiumn. so the last vector of CPLEX format 

should be retrieved from the three vecton of the subproblem in each PC. The data are in the 

format of column wise vectors. so the colurnns which include that part's nonlinking constraints 



are first sent and necessary columns for other parts' linking consaaints are sent afterwards. 

5.1.2 Solution phase 

in the solution phase on PCs. each machine starts with its own process and receives the 

subproblem's data from the RS/6000 by the routine pvrn-receive(). Using the CPLEX Callable 

Library. each LP subproblem is loaded in each cornputer. For instance in SP3. the columns having 

that part's nonlinking consuainu (the columns in L33, &, L3 and B3, A3) are loaded fini. then 

necessxy columns for other parts' linking consuainü (the columns in L3 Li and L3?, Li2) are 

loaded and finally the unnecessary linking constraints of other parts (parts 1 and 3) are delered 

since column wise vecton include d l  linking constraints' data. Each subproblem is solved 

sirnultaneously without any information exchange aat the fint iteration and exchanges necessary 

primai or dud information with other machines and solves each new subproblem again until the 

gap between the objective function values of the upper-upper bound subproblem and the lower- 

lower bound subproblem reaches 3 prescribed tolerance. Note that if any of the subproblems is 

unbounded. the whole pmcess stops at the fint itemtion by checking the optimal statu  generated 

by CPXSolution(). 

Since C P W  provides the dud values corresponding to the primai constraints by calling 

the CPXsolutionO routine in the CPLEX Callable Library, we don't have to solve for the dual 

variables sepmtely, so the implementation efforts are bgreatly simplified The subproblems can 

be solved by the simplex method or the barrier methd  For the b h e r  method the dud and bais 

information cm be obtained by crossover at the last step using CPXhybbaropt(). 

The new primal and duai proposais are multiplied by corresponding matrices and vecton 
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in each computer as discussed in Chaprer 3. Thus, only small sized vectors are exchanged in order 

to rninimize communication load When the algorithm is executed to the end of the cycle and the 

ciifference between the upper bound and the lower bound of the original problem is still larger 

than a predetetmined small tolerance. then the algorithm will start another cycle with a new cut 

using the CPXaddrows() routine and a new proposal using the CPXaddcols() routine from the 

CPLEX Callable Libnry. 

Since the size of the whole C codes of WSET and WATPAR are very large. only the core 

parts of the codes are presented with detailed explmation in appendix A. 

5.2 The Test Problems and Results of the Experiment 

In order CO make sure that our dilgoxithm converges to an optimal solution in a finite 

number of itentions. we have tested seved rnodels such as the small 'Toy Energy Planning" 

model (TEP) enplained in the previous section (Figure 5.1). a North Amencan Energy Planning 

modei (NEP) [Fuller. 19921, a Hydro-Electric Power Generaion model (HEPG 1) pirge et ai., 

19991 and a huge Financial Planning mode1 (FP) [Fragniere et al., 1998b1. Because TEP and 

N X P  are multi-regional energy planning models. they can be natunlly phtioned into re@ons. 

HEPGL and FP ye stochastic linear p m m n g  models. so they can be divided into scenarios. 

HEFW is rewrinen with different formulation and data, in the format of a scenario formulation 

with the nonuiticipativity constnints as linking constraînts: this is called HEPGî. The NI details 

of models except N A 3  (whose description is very len-@y and complex) are available in 

Appendix B. 



Table S. 1 presents the statistics of the five test problems. The Linking rows and columns 

are those constraints and variables which have nonzero enaies in the matrices L, when the 

original problerns are decomposed into four parts. The parenthesis in "Linking Cols (or "Linking 

Rows") shows the ratio of the number of linking columns (or rows) to the number of columns 

(or rows). 

Table 5.1 Statistics of the test problems 

The linking variables in TEP are 'LFLOWS (R.RR.T)' representing the arnount of 

electricity that flows from region R to region RR at time T, and the Iinking consaaints are the 

elecuicity demand consuaints in each region R at time T, 'LTRADE(R,T)'. NAEP has 7 regions 

of Westem Canada (WC), Eastern Canada (EC), Westem US. 0, Northern U.S. (NU), 

Eastern U.S. (EU). Southem U.S. (SU) and the Rest of the World (RW). The 7 regions were 

muped into 4 pans: WC, EC and RW. WU and NU, and EU and SU. The linking variables and 
C 

consmints of NAEP are those representing energy flows arnong the 4 parts. HEPGl is fomiulated 

using rime index and scenario index as shown in Figure 5.5, so it cm be divided into the 

Problems 

TEP 

NAEP 

#of 
regions 

Iscenarios 

4 

7 

~olumns 

321 

3949 

~ o w s  

165 

2325 

~iakiag  
Cols. 

120 (37%) 

234 (5.9%) 

Linking 
Rows 

Nonzeroes 

40 (24%) 841 

234 (9.6%) 12033 



followiag 4 parts: scenarios 1 to 12. scenarios 13 to 24. scenarios 25 to 36 and scenarios 37 to 45. 

HEPGZ has 16 scenarios formulated with nonanticipativity constraints, thus each part having 4 

scenarios. FP has 6 periods, each period with 7 scenarios and divided by the first period's 

scenarios. so the linking variables are the asset variables. 'LXO(A)'. and cash variable, 'LCO*, of 

pend O since those 5 variables appear in al1 the first period's consnaints. The linking consaaints 

are the balance consuainü of financial flows in period 1, 'LBALF_L(MS)'. which include the 

linking vuiables. 

Figure 5.6 A Scenario me  for HEPGI 
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We first solve them directly using the sirnplex method and the barrier method of CPLEX 

6.0 on the RSl6ûûû in order to compare the solution of the direct method with that of our 

decomposition algorithm. We mesure the solution time on the RSf6000 as elapsed time, which 

includes the mode1 genention time by GAMS and the solver time by CPLEX, in order to give an 

idea of how long the whole process talces. Note that HEPG2 cannot be solved by the barrier 

method. due to insufficient memory. and FP is also too large to be solved. due to the memory 

limit. for both the simplex method and the barrier method. 

Table 5.2 The test statistics of direct methods on RS/6000 (Time is  rneasured in seconds). 

I Simplex Method Banier Method 

f roblems 

TEP 

NAEP 

We dso solved the original problems in one PC by transfemng al1 data, using WSET, in 

order to compare the solution time with that of parailel decomposition in the sarne environment. 

Since the mificial variables are added in the linking consuiiints in this method, the iteration 

numbers could be different from those in Table 5.2. In Table 5.3, "Simp. Iter." or "Bar. Itef 

shows the number of itentions using the simplex method or the barrier method of CPLEX and 

I 

C 

FP 

Sol. Time 

0.46 

33245 

55387 

HEPG L 

HEPG2 

Iter. No. 

226 

I 

435 

873 

102.52 1 2837 

L 

Obj.Values 

3 154.840 

-30 16.200 

0bj.Vdues 

4154.840 

-30 16.200 
I 

NIA NIA 

33 

N/A 

-144008.473 

-30307.573 

N/A 

Sol. Time 

0.45 

lOJ.45 

- 144008.374 

N/A 

958 

N/A 

NIA 

Iter. No. 

12 

37 

NIA NIA 



"WSET' is the time taken on the RSI60O for patitioning the original problem into subpmblems 

after mode1 generation by GAMS; in this case, the= is no partitioning, but WSET is used to pass 

the problem to CPLEX on the PC. "Setup" in Table 5.3 is the time for receiving subproblem data 

and loading the problem for the fiat iteration, and "Sol" represents the whole time to solve the 

problem in one PC, after setup is cornpiete. 

Table 5.3 Statistics of Simplex and Barrier methods on one PC using WSET 

TEP 

NAEP 

HEPG i 

HEPG2 

FP 

Simp. 

Iter. 

230 

Simplex Solver 
- - 

Time 

Barrier SoIver 

Obj. Bar. 

Value Iter. 

Time 

Note that there are slight differences between the two methods in 'WSET' and 'Setup' 

since the WSET time is dependent on the computer and communication network loads, and the 

Setup is different for the two methods. 

The following table gives ihe sizes of the subproblems that are actually solved at the first 

itention of the decornposition algorithm. 



Table 5.4 The subproblem sires 

The lower-lower bound subproblem keeps adding proposais corning from d l  the previous 

upper and lower level itentions and the upper-upper bound subproblem accumulates the cuts 

corning from al1 the previous upper and lower level itentions. However. the lower-upper bound 

and upper-lower bound subproblems don't keep ail the information; they forget the lower level 

information when they have upper level information exchmge due to die problems mentioned in 

the previous chiipter. The lower-lower bound and lower-upper bound subproblems used prima1 

simplex method and the upper-lower bound and upper-upper bound subproblems utilized dual 

simplex method. 

The stopping criterion used by the decomposition algorithm is that the relative duality gap 

(Le. the gap as a fraction of the avenge of the upper and lower bounds) is smaller than or equal 

to 1 . 0 ~ 1 0 ~ .  which is a very rigomus condition. By this stopping criterion, ail tested pmblerns 

using the puailel decornposition algorithm converged to optimal solutions and they are exactly 

the siune as those obtained by the direct methods by CPLEX 6.0. Tables 5.5 and 5.6 show the 



results of the parallel decomposition method using the simpiex and banier methods for solving 

subproblems, respectively. Note that diffennt choices of subproblem type may give slightly 

different solution time and decomposition iteration number. The results shown here are one 

instance of what we have tried. Our experiences indicate that comctly identifying the parts, in 

order to reduce the number of linking variables and constraints is vely important since the poor 

performance we had at an earlier stage tumed out to be due to a poor definition of the parts. For 

example. the performance of NAEP was improved by 3 minutes with a different grouping of 

regions, which gave a smaller number of linking variables and constraints. Also. HEPGl was 

solved 10 minutes faster by redefining the linking variables and consuoints. In our first attempt, 

we defined al1 the water level variables. Uevel (hy-u, K), as the linking variables and dl the 

water balance consaaints. LwûtBal(hydro-u.K. K), as the linking consaints However, it tumed 

out that the water level variables of scenarios 1 to 3 and nodes 37 to 45 are not tmly linking 

variables since they don't appear in other parts and the water balance constnints in nodes 1 to 12 

are not trul y linking constraints because they don't include other parts' linking variables. 

in "PD Steps" of Tables 5.5 and 5.6, "P W* means the number of information exchanges 

between PL and Pu, and "Pr W' and "Pu #" represent the number of information exchanges in the 

second level between Pu and PLU and between PUL and Pvu, respectively. Each subproblem's 

simplex itention number is presented as the sum of al1 itentions. and "PD Time" is the longest 

elqsed time taken. including setup time and idle time, arnong the 4 subproblerns by the parailel 

decomposition in 4 PCs even though al1 processors finish almost at the same time. The speedup 

is mesured as the ratio of the elapsed time taken by one processor over that of four processors 



using just "PD time" since WSET could be implemented with a more advanced coding scheme 

or different suategies such as storing data in each local database. AI1 the following reports are 

based on the prima1 simplex method and the banier method with prima1 crossover. however other 

methods such as the dual simplex method or dual crossover c m  be used to solve the subproblems. 

The simplex methoâ was faster than the barrier method in al1 test problems except FP in which 

the barrïer method was much faster. 

Table 5.5 Performance of Paralle1 Decomposition with Simplex solver 

1 1 PD Steps 1 Sirnplex Iteration 1 Tirne (sec) 1 Specdup 1 Dual Gap 

TEP 

NAEP 

HEPGl 

HEPG? 

FP 

P #  

6 

35 

2 

3 

P t #  

6 

67 

3 

4 

Pu# 

6 

47 

2 

4 

LL 

191 

3 

LU 

168 

UL 

149 

WSET 

1.01 

3 

0.53 

UU 

133 

, 

PD 

0.36 

3 

(%) 

0.000000 

0.27 

1.61 

1.64 

10.16 

1360 

8350 

13305 

267063 

0.000000 

0.000000 

0.000000 

0.000000 

1841 

8607 

12803 

279306 

1494 

8542 

13736 

276563 

5.70 

36.94 

94.53 

,1708 

1972 

6483 

12801 

71452 

18.08 

649.78 

997.45 

1 159.1 



Table 5.6 Performance of Parailel Decornposition with Bamier solver 

Note thi t  the relatively large number of linking variables and columns of NAEP seem to 

be the cause of its poor performance. Since the new algorithm converged to an optimal solution 

in a small number of PD steps (with the possible exception of NAEP). there was no chance for 

error propagation (Ho [198J]) and the test problems showed very good accuracy without dual 

gaps. 

- -  - 

.. 
TEP 

NAEP 

HEPG1 

HEPG:! 

FP 

The statistics of deiailed solution time and idle tirne for each subproblem are presented 

in Table 5.7 and 5.8. .*Simplex solution time" or "Bmier solution time" shows the sum of the 

rime taken only to solve the subproblems each iteration with Simplex or Bmier method and "Ide 

Time" presents the sum of waiting time for one processor to receive necessary information of 

other(s) at each iteration. Since P W  doesn't provide facility to mevure pure communicallon 

time. this idle time inciudes pure communication time and pure waiting time (Le. waiting for 

mother processor to finish a subproblem that ttakes tonser). "Setup tirne" gives the longest time 

taken among the four processors in receiving initial data and loading it into CPLEX. 

Speedup 

0.5 

0.06 

1-20 

2.40 

3-40 

- - 

Dual Gap 

(W 

0.000000 

0.000000 

0.000000 

0.000000 

0.000000 

- -- - 

PD Steps Total Time Bmier Iteration 

WSET 

1.01 

18.58 

Pu# 

6 

43 

, 

PD 

0.41 

69.60 

.. 
P #  

6 

33 

2 

1 

3 

LL 

80 

2174 

Pt# 

6 

93 

3 

1 

3 

UL 

109 

1597 

LU 

56 

1628 

21 

79 

87 

3 

4 

3 

UU 

102 

1218 

54 

105 

76 

84 

1171 

84 

146.48 

341.45 

270.02 

44 

88 

107 

637.18 

995.23 

1167.7 



Table 5.7 Time measurement of the parallel aigorithm with Simplex solver 

Table 5.8 Time measurement of the parallel algorithm with Banier solver 

1 S e t u p - r  Barrier solution Urne 1 Idle time 
time 

LL LU UL UU LL LU 

Since FP hris a lot of idle time. especially in the UU processor, due to its unbaianced structure, 

if it is run on a d d y  basis in practice. it cm be implemnted with a better load balancing snategy 

such as assigning more scenaIios to the üü processor. 
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We dso anaiyzed the speed-ups and efficiencies for FP obtained from 1 to 4 processon 

as show in Figures 5.6 and 5.7 respectively. Figure 5.6 shows that the parallel decomposition 

algorithm can speed up the solution time for utilizing both simplex and barrier methods in a larger 

FP model. With the two processors, Pu had the first pend's scenarios 1 to 3 and PL had 4 to 7. 

With the three processors. FP was divided into 3 pans: Pu (scenarios 1 to 3). Pw (scenarios 4 and 

5) and Pu (scenarios 6 and 7). Note that WrZTPAR c m  also handle another aitemative of 3 parts. 

PUL' . PuL and PL, by indicating the subpmblem type in each processor. Figure 5.6 shows that the 

parallel decomposition algorithm c m  speed up the solution time for utilizing both simplex and 

bmier methods in a larger FP model. Figure 5.7 indicates that the parailel decomposition 

algorithm for FP c m  have efficiencies pater  than 1 by using the simplex method but not for the 

banier method. 

Speedups for FP 
12 - 

Figure 5.7 Speedups for FP with Simplex and Barrier 
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Effichcius for FP 

Figure 5.8 Efficiencies for FP with Simplex and Barrier 

In some large problems. the parallel primai-dual decomposition showed some 

encouragng test results. however much more testing and development as well as efficient coding 

schemes are needed. 

For the heuristic metho& experiments were done at the very early stage of this research. 

and we have only the records of TEP and NAEP test ~sul t s .  The tests were done with seved 

different data sets and they showed that the heuristic algorithm did not always converge to an 

optimal solution of the original pmblem. When it did not converge, it repeated the sarne upper 

bounds and lower bounds of the orignal problem for three consecutive iteraaons and the ddi ty  

cap =as between 0.5 5% and 9 % in those test problems. 
C 



Chapter 6 Conclusions and Future Research 

6.1 Conclusions 

In this thesis, the main objective is to develop a new parallel decomposition method for 

rnulti-part linear prograrnmjng models. We focus on the proofs and demonsuation of the 

convergence of the two-part and multi-part dgorithms. We repori in some test results that the 

algonthms converge to an optimal solution of the original problems in a finite number of 

decomposition i terations. 

The idea of this thesis originally came frorn Lan [1993] for multi-stage nested decomposition. 

however due to some infesibility problems on applying the nested decomposition in parallel, we 

developed another parallel decomposition scheme for multi-part stxuctured models. 

The parallel decomposition algorithm for two-part models consistently converged to an 

optimal solution (and a convergence proof was formed). but our fint aigorithm for multi-pan 

models did not always converge (we cal1 this algrithm a heuristic). Finally, we came up with a 

convergent pûrallel primal-dual decomposi tion aleorithm for multi-part LPs. w hich convergeci 

in al1 tests. by applying the two-part decomposition principle ~cursively in a hiemhical way. 

The distinctions between Lads algorithm and the new parallel decomposition aigorithm 

;ire summarized in Table 6.1. 



Table 6.1 The distinction between Lan's aigorithm and the new parallel decomposition aigorithm 

I Applied structure 

1 

Lads algorithm 

/ Construction of subproblems 1 One srnall and everything elw / Half and half 1 

New Parallel algorithm 

1 Decornposition algorithm 1 Nested 

Less depth (floor(10gzN) 
or l+floor(logzhr)) 

Broadcasting to othen 

.- . - - 

Depth of subproblems 

Information exchange 

Weighting scheme 

Subproblem computation 

In this thesis. we have completed several theoreticai and implementation tasks. namely. 

More depth (N- 1 ) 

Sending nearest neighbor 

1. developed the parailel decomposition algorithm for two-part models, 

2. proved the convergence of the rwo-part method as well as other useful properties. 

3. developed the parallel multi-part decomposition algorithm, 

4. proved several usefui properties of the multi-part method. 

5. developed a variant (heuristic) decomposition algorithm for multi-part models. 

6. modified SET in order to extnct the multi-pan structure h m  GAMS. 

7. developed a software for a p d l e l  primal-duai decomposition soiver using PVM and 

CPLEX. 

Weights camied over 

Serial computation (fonvard 
md backward) 

No carryover of weights 

Parailel computation 



8. tested several models for convergence and speedups of the multi-part decomposition 

aigorithm. 

The parallel decomposition aigorithm for two-part LPs solves two master-like 

subproblems. an upper bound subproblem and a lower bound subproblem, simultaneously. Each 

subproblem works as both the master problem and the subproblem in the naditional 

decomposition methods: each ûccurnuiates proposais from the other. so is like a master problem 

yet each contains full details on only its own part. so is like a subproblem. Each subproblem has 

a balanced structure by having the same amount of primai and dual information and has an 

equivalent position by conducting the convergence test at the same time. The parailel aiprithm 

approximates the optimal value of the original problem by calculating a nonincreving upper 

bound and a nondecreasing lower bound 3t each iteration. This pracedure terminates when the 

two bounds are considered to be close enough according to the prescribed tolerance. 

The two-part decomposition principle cm in eetended to more than two parts by 

applying the decomposition principle recursively in a hienrchical way. Fint, the original problem 

is divided into an aggregated lower bound subproblem and an aggregated upper bound 

subproblem. Then. each aggregated subproblem can be again divided into its aggregated lower 

bound subproblem and its aggregated upper bound subproblem respectively. and this hieranihical 

decomposing process is repeated until there are no more subproblerns to decompose. in the case 

of four p m .  the original prublem cm have two aggregated subpmblems in the fint level. an 

aggregated lower bound subproblem (PL) and an aggregated upper bound subproblern (Pu), and 

in the second level. the PL cm be fiuther decomposed into its lower bound subproblem and its 

IO9 



upper bound subpmblem, refemd to as the lower-lower bound subproblem (Pd and the lower- 

upper bound subproblem (Pw), while Pu cm be further decornposed into. the upper-lower bound 

subproblem (Pv3 and upper-upper bound subproblem (Puu). 

The subproblem Puu gives nonincreasing upper bounds to the original problem and PL 

provides nondecreving lower bounds to the original problem as the itentions proceed and the 

values of Puu and PL converge to an optimal solution of P. The algorithm proceeds through 

itentions of parailei solution of Pu and PLU. by exchanges of primal and dud proposais. 

converging towûrds the optimal solution of PL. Simuitmeously. PuL and Pvu are solved 

itentively. in p d l e l .  converpng towxds the optimal solution of Pu The algorithm exchanges 

primal and dual propos& rt the first level. i.e. between PL and Pu, either when both level II pain 

of subproblems have converged to the optimd values of PL and Pu, or when the optimal value of 

PCL, :(PC3. is p a t e r  than or equal to the optimal value of PLU. :(PLU). Le.. :(Pu3 2 :(PLU). 

We developed a paralle1 decomposition solver for four-part problems, called WrZTPAR 

(WATerloo PARallel). It c m  extnct multi-pan structure from an original G A I S  problem and 

divides it into four subproblems on an RSi6000. Then it sends the subproblems to four PCs using 

P W  and solves hem simuitmeously using CPLEX. The solver is designed to utilize any number 

of processon from one to four. 

In the preliminq tests. the algorithm converges to an optimal solution in a finite number 

of itentions and shows faster convergence than direct methods such as the simplex and interior 

point methods for some large test problems. 

There are seved  benefits of the new decomposiuon method. It cm impmve 



computational speed for some real world large problems by exploiting several parallel pmessors. 

The parailel decomposition algorithm can give a solution to a model, so huge that it cannot be 

d v e d  in one machine as the w hole model due to a computer's memory limits. It c m  also provide 

a convenient modeling approach and easy model management with less effort. in which 

submodels may be developed and managed by different teams or different cornputen, and linked 

by the algorithm when a global optimum is desired (i.e. without having to merge the databases 

inio one big, hard-to-manage model). 

6.2 Future Research 

The studies c h e d  out in this thesis have suggested severai possibilities for future study 

both in theories and implernentation. 

From the theoretical point of view. the paraIlel primaldual decomposition method c m  

be genenlized to a broader class of mathematical pro-grams such as mixed integer programming 

and nonlinear pro+ms. which could have more benefiü from parallel decomposition. The 

heunstic dgorithm could be developed further as a warm start for the decomposition method 

since the heuristic aigorithm seems to have berter irnprovements in the beginning due to more 

proposals and cuts. and it gives feasible solutions to the original problem. Different weighring 

schemes could be developed by splitting the first level À (or p) variable into two separate À (or 

p) variables to choose differenr proposals coming h m  SP3 and SP4 (or SPI and SP2) respectively. 

Also. there should be more study on load balancinp smtegies among the processors to reduce ide 

Urnes. which cm be a main success factor of parailel computing. 



Due to some difficulties in coding and time limits. we could not develop the parallel 

decomposition solver for more than 4 parts. However. it should be extended to handle any number 

of parts. This could be done with more advanced coding techniques such as the object oriented 

programming pandigrn. ui its current fonn, the parallel decomposition solver does not calculate 

optimal prima1 and dual vectors. To be of practicai use to modellen, these should be calculated 

and sent back to GAMS to allow genention of a solution report. Implementing the parallel 

algorithm among physically disvibuted computen with local databases for locally developed 

subproblerns and cornmunicatirtg with one another by emails or web bmwsea would be another 

interesting subject from a practicai point of view. 

Needless to say, more testing and implernentations are required to assess the efficiency 

of the panllel decomposition algorithm for various sized and structured problems. 



APPENDIX A GAMS codes of the test models 

We present the full details of GAMS models such as HEPG1. HEPG2 and FP. The data of 

HEPGl and HEPG? are genented nndornly. A part of data is aven here to present the data 

format. 

A.1 Hydro-Electric Goneration Planning Mode1 1 (HEGP1) 

Witten by J.R. 9irge and C. Supacgiat, U. Michigan, 1998' 
tasc rnodified H. S i n  Park 

Sinclude 'columbiaB.dat" 
Sinclude 'col~iaB.prn" 

VMIABLSS 
COST; 

2OSITIVE variables 

Nthe--sen (the,--u, nodes, Ki =he,m production in each mode in each month (MWh) 
Ngen,flow(hy~o,u,modes.R) hydrc water release for generaïion in each mode Ln each 
moncn im3 1 
Xevel(hydro,u,Kl water Level a t  ~ h e  end o f  perzod ( M d )  
Nspi~lF~cw(hydro,u,nades,X) wacer s p i l l  over the period due CO over capacity (m3) 
Nexchange(areas.areas,modes.Ki m o u n t  power transfer from (1st) to (2nd) in each 
mode, each node (M'Wh) 
Nrat-f~ow~hydrro,u,modes,K) slack ic niziznum flow cmstraints. It sets penalty in 
:he 3biec:ive functron. 

Xe-xpCa~a (areas, scdes , K i  S (ûrd (K)  ÛT L)  . . SUM(areaslS (ord (areas1 1 NE ord (areas 1 , 
Nexc~azgeiareas,areas1,aodes,R)i =L= eqmrt(arensi nm-hour(K1 

~LX(F~Z=C~S Sdru'a=io~(modes,K,periods~, durationimodes,K,periods) 1 ;  



LwatBal(hydro,u,K,predlevel) S(ord(K) GT I and pred(K) EQ predl(predlevel1) .. 
-(initial(hydro-u)S(pred(K) EQ O)+Llevel(hydro-u,predieveI)S(pred(~) GT O )  
+(SUM(hydro-ul, links(hydroOul,hydroOu) * 

SUM (modes, (Ngen-f low (hydre-ul , modes. K 
1 

+NspillFlow(hydro~ul,modes,KI)) ! 1000000.0)) + inflow(hydro,u,K) 
(num,hour(K) * 3600-0 / 1000000.0~ - SIJM(modes,(Ngen,flow~hydro,u,rnodes,~l 
+ NspillF~ow(hydro,u,modes,K) 1 / L000000.01) =L= -Llevel(hydro-u,K); 

OPTION LP =WATPAR: 

MODEL MFT iALL/;  
S O L E  MFT USTNG LP W I M T Z E  COST; 

SETS them-u /therA, ...., theru/ 
hydro-u ihydrA, ...., hydrZ / 

'C / 0'45 / 

periods / 1, 2, 3, 4 ! 

predlevel (KI /0*14/ 
mûdes i l g l O /  
areas / regleregla / 
ALIAS ( hydro-u , hydro-ul 
ALIAS (areas, areasl) , 

parame ters n a - h o u r  (KI 
Prab(K1 ; 

parameter unitCost(cherm,u) 
; therA 0.8, . . . . , theru 0.8 1 ;  

Faramecer capacity(t5ezm-U) 
therA 9500, ,,,,. theru 21 i: 

parameter initiai(hydro-G) 
h y d r A  650, , , , , , h y d r ~  580 / ;  

p ramete r  conversion(hydro-u) 
, k,yà=A 4, . . . . , hydxZ 5 /; 

parameter Vnaxthyiro-u) 
/ hy*A 2100, . . . . , hy&Z 2750 /; 

parameter Vmin ( h*o,u 1 
/ hyàrA 230, . . . ., hydrZ 210 /; 

parameter hydro,ef f (hydre-u) 



/ hydrA 2 5 ,  ...., hydrZ 1s / ;  
parameter Fmax (hydre-u) 

/ hydrA 21 ,  ...., hydrZ 25 /; 
paramecer Fmin(hydro,u) 

/ hydrA 5, . . . . , hydrZ 5 / ; 

table links(hy&o-u, hydro-ul) 
hy&A . . . . hydrL 

hydrA 0 . 5  .... 0.2 
. . . . S . . .  

hydrZ 0.3 .... 0.1 ; 
parameter prob(K) / 1 1, 

2 0-4, 
. . . *  

33 0.005, 
paramecer pred(K1 ! L O, 

2'4  1, 

paramecer predl (KI : O O ,  I 
8 8 ,  9 

table demand(modes, K,  pericas) 
1.1 2'4.2 5'14.3 1 5 ' 4 5 . 4  

? 
4 9 19 28 39 
. . - -  .a.. 

1 O 7 12 27 34 

table duracion(nodes, R, periods) 
1 - 1  2'4.2 5'14.3 LS'45.3 

1 0.3 3.2 3 - 2 5  0.3 
* .  . * . . . .  
10 0.2 0.3 3.23 0.24 

table fracaea(modes, areas) 
reg l  reg2 .... reg15 reg16 

1 0.05 0.38 .... 0.: 0 . 1  

parameter impor=(areas) / reg1 25000, ...., reg16 S ? 7 C O  / 

cable hydre-içA (hydre-u, areas l 
regl reg2 reg3 . -. . reg13 reg14 reg15 regL6 

h y d r A  1 
hy&3 I 
ilyckc 



*Columbirb. prn 
Table inflow(hydro-u,K) 

1 2 3 . * * .  43 44 4 s  
h y d r A  5 2  6 6  81 . . . . 57 66 85 

A.2 Hydro-Eletric Generation Planning Mode1 2 (HEGP2) 

written by J.R. Birge and C. Supatgiat, O. Michigan, 1998, 
Lasc modified H. Jin Park 

Sinclude "columbia.datN 

VARIABLES 
COST ; 

POSITIVE VARIABLES 
~therm~en(therm,u,modes,periodç,senarios) 
therm production in each mode in each month (MWh1 

Ngen~flow(hydro,u,rnodes,periodç,çenarios~ 
hydro water release for generation in each mode in each month (m3) 

Llevel(hydro,u,periods,senarios) 
water level ac the end of period (Mm31 

Nspil~Flow(hydro,u,modes,periods,senarios~ 
* water spi11 over the period due to over  capacity (m3) 
Nexchange(areas,areas,modes,periods,senarios~ 
amount power transfer from (1st) to (2nd) in each mode , each node (Mhlh) 

Nrat~~low(hydro,u,rnodes,perioas,senarios1: 
slack in minimum flow constraints. Ic gets penalty in the objective function 

EQUÀTIONS 
OBJECTIVE 
NexpCapa(areas,mcdes,periods,senarios) 
Nimp~capa(areas,modes,periods,senarios1 
~lmeet,load(areas,nodes,periods,ser,arias) 
Nwat9al(hydro~u,perFoas,senariost 

NhydraMinC(hy~o~u,modes.petlods,senarios) 
Lnon&zt(hydro,u,periods,senario~l 
Lno~ttl(hydro,u,periods,senarios1 
Lnomt22 i hltdro-u, periods , senarias 1 

LnoxAnt3 1 (hydre-u, periods , senarias t , LnonAnt32 (hydre-u, periods , senarias 1 
LanIInc33 ihydro-u, periods , senarios 1 , Lnor~t34 (hydre-u, periods, senarios 1 

OP-CTXVE .. COST =E= - (SUM(senarios, probtsenarios)*~~~(periods, 
ST;TMtmodes,duration(mdes,periods)* çUM(therm,u, unitCost(themrmu) 

Nthermgen(theni~u,des,periods,send2:iosl~~ 1 )  
116 



NwatBal(hydro,u,pericds,senarios1 .. 
-(initial(hydro,u)S(ord(periods) EQ 1) + Llevel(hydro,u,periods-1, 

senarios) S (ord (periods 1 GT 11 + (~(hydro,ul, links (hydro-ul hydre-u) ' 
SUM(modes, (Ngen,f1ow(hydro~u~,modes,periads,senarios) 
+ Nspillflow(hydro,u~,mc~es,periods,ssnarios1 / 1000000.01) 
+ inflow(hydro,u,periods,senarios) (num,hour(periods,senarios) 3600.0 

/ 1000000.0) - SüM(modes, (~gen,flow(hybro,u,modes,periods,senarios~ 
t NspillFlow(hydro,u,modes,periods,.senarios) 1 / 1000000.0) =L= 

- Llevel(hydro,u,periods,senarios); 

Llevel(hydro,u,peri3,sen3) =1= 
Lievel (hydre-u, peri3, sen3++ll ; 

Llevel(hydro_u,peri3,sen4) =1= 
Llevel(hydro,u,peri3,sen4++1); 

Llevel(hydro,u,peri3,sen5) =1= 
Llevel(hydro-u,peri3,sen5++1); 

L~eve~(hydrc~u,peri3,sen6) =1= 
LlevelIhydro-~,peri3,sen6++11 ; 



LnonAntUQ(hydro,u,peri4,seniO) .. LLevel(hydro-~,peri4,senlO) =1= 
Llevel(hyàro-u,peri4,senlO++l); 

LnonAnc4S(hydro-~,peri4,senll) .. Llevel(hydro,u,peri4,sen11) =1= 
Llevel (hydre-u, peri4, sen11++L) ; 

Lno~t46(hydro-~,peri4,senl2) .. Llevel(hydro,u,peri4,senl2) =1= 
Llevel (hydre-u, peri4, senl2++1) ; 

1 ; n o ~ t 4 7  (hyüro-u, peri4, sen13 1 . . 5level(hyàrc-u,pexi4,senl31 =1= 
Llevel (bydro-u, peri4, senl3++1) ; 

LnonAnt48(hydro-~,peri4,senU) .. Llevel(hydro-~,peri4,senl4) =1= 
Llevel (hydre-u, peri4, senl4++1) ; 

O P T I O N  52  =WATPA.R; 
MODEL MtT / X L / ;  
SOLVE MFT X I N G  LP MAXXMIZE COST; 

*Colunibir.drt 
SETS the,?n-u /therA, ther9,  . . . . , cherU/ 

hyàrro-LI :hydrA, hydrB, . . . . , hyck5 / 

periads / TL8T5 i 
senarlos /S1°S16/ 

senIlsenarios) /SiWS8/, sen2(senarios) /S9*516/ 
sen3(senarios) ;SlWS4/, sen4 (senarios 1 /S5*S8/ 
sen5 ( s e n a r i o s )  /S9'S12/, sen6(senarios) !S13*S16/ 

ncaes : leIo / 
areas ! regLwregL6 / 
ALIAS !hydro,~. t-,ydzrl-aLl 
ALIAS t areas, areasl) , 

paramecer initial(hydra,ul 
, hydrA 500, hye3 700 ,  ,... , hydrZ 690 i ;  

parameter convers ion l hydro-u) 
, hydzA 4, hy&S 6, . . . - , h y ü r Z  5 1 ;  

Farameter Vmax (hydro-u) 



parameter 

parameter 

parameter 

. . . . .  / hydrEI 1100 ,  hydrB 1200 ,  hydrZ 1250 /; 
Vmin (hydre-u 1 

. . . . .  / hydrA 5 3 0 , h y d r B  S C O .  hydrZ 630 / ;  
hydro-e f f ( hydro-u ) 
/ hyàrA 25, hydrB 6 . y 25 / ;  
Fmin ( hydro-u 1 

. . . . .  / hydrA S .  hydrB 4, hydrZ S 1 ;  

t a b l e  links(hydro-u, hydro-ul )  
hydrA hydr9 hydrC .... IlydrJ hydrK hydrL 

hydrA 0 . 5  0 . 2  0.25 .... 

parameter prob(senarios) / S1 0.03, S2 0 . 0 2 ,  S3 0 - 0 1 6 .  54 0 . 0 2 4  

cable inflow(hyciro-u. periods, senarios) 
.... Tl .S l 'S16  T2,Sl'Sa T S . S l 6  

hydrA 33 17 .... 29 
- * . *  .... m . . .  * . S .  . . * .  
hy&Z O5 22 .... 30 
table demand(modes, periods) 

T l  TS T3 T4 TS 
1 6.3 6.3 6 . 2  6.9 7 . 3  
. . . . . . . . . . . . . . - . . . . .  . . m .  

LO 3 .7  4.9 5 . 7  7.4 7.9 ; 

table duracion(modes, periodsl 
T1 T2 T3 T4 TS 

L 0.3 0 .2  0 . 2 5  0.3 0.L  

t a b i e  f racArea (nodes, areaç ) 
.... reg1 reg2 reg15 reg16 

1 0.05 a - U 8  .... 0.1 0.1 

parameter ixport(areas1 
/ reg1 25000 ,  

table hydro,isA(hydro-u, areasl 
.... reg1 reg2 reg15  reg16  

fiydrll 1 
hydr9 . 

A 



A 3  Financial Planning model (FP) 

* A G S  financial planning model inspired by J. Birge and G. Infanger. 
* Modified and tested by E. Fragniere , 3. Gondzio and J.-P. Vial, 
Maximum size: 9 periods (10 stages), 10 scenarios (more can easily be addedl 
Default size: 6 periods ( 7 stages), scenarios 1.7 

* This is a nice B i g  nodel: for che default of 6 periods and 7 scenarios 
* Lasc Modified by H. Jin Park 

OPTION RESLIM = 21600; OFTION I T Z U I M  = 500000; 
OPTION LIMROW = 100; OPTION SIMCOL = 100; OPTION SOLPRINT = OFF; 

RC Cash rate of return /L.OS/, 
WI Inicial capital ! 5 0 / ,  
'W Godl / 7 5 / ,  
KCYPER 'na% t of periods' , 9 ;, 
NP= ' # ûf perioas used' ,. 6 1; 

don'= change unless you know whac yoc are doing! 
changiag NP"& is the incent, but do thac in your own copy of this model 

abortS(KLYlE3 gt 91 'You should noc have changed this!'; 
aborcS(NPER gt W P E R )  'Maximum 8 of periods allowed exceeded'; 
aborcS (NPF? 1: 1) 'Xust run mode1 for at leasc one periode; 

'Assets ' ; USAB, FORS, COR?, COVE ! , 
'master set of scenarios' / sl * sl0, id  / ,  

'identity: replicates previous period' ,* =d / ,  
'scenarios used in period 1' ; s l 9 s 7  / ,  
'scenarios used in aeriod 2' 
'scenarios used in period 3' 
'scenarios used in period 4' 
'scenarics used in period 5 '  
'scenarios used in period 6 '  
'scenarios used in period 7' 
'scenarios used in gericd 8' 
'scenarios used Lz period 9 '  

7;ISLE XR(MS,À)  'Asset rates of returri* 
USA3 FORS C3RP GûVE 

sr  ~ . t t  L-16 0.99 1.02 
SC 1-20 L.4L 1.04 1.05 
s3 6 û-91 1.lL L-l0 
s4 1.23 0.83 1-05 1.04 



VARIABLES 
En 'Expectation of the utility function'; 

POSITIVE VARIABLES 
' cash period O ' , 
' cash period 1 ' , 
'cash period 2 ' ,  
'cash period 3 ' , 
'cash period 4', 
'cash period S ' ,  
'cash period 6'. 
' cash period 7 ' , 
'cash period 8 ' ,  
'assecs period O * ,  
'assets period 1' , 
'assecs period 2 ' , 
'assets period 3 ' ,  
'assets period 4 ' ,  
'assets period 5 ' , 
'assets period 6'. 
'assets period 7', 
'assets period 8 ' ,  
'surplus, final period', 
' d e f i c i t ,  final periodl ' ; 

CART(MS) 
U (MS,MS,MS,MS,MS,LISl ' su,rplus, final period ' , 
V (MS,MS,HS,?!S,MS,MS) 'deficit, final period'; 

SQUATIONS 
OBZECT I'uT 'ccmpuces (expected utilityl ' . 
a;lLF-O 'Balance of Financial Flows period 0', 
LBALF-1 (MS 'Balance of Financial Flows period 1'. 
BAL?-2 (MS,MS) 'Balance of Financial Flows period 2 ' ,  
3X.F-3 (KS,MS,MS) 'Balance of Financial Flows period 3 ' ,  
W?,4(MS,MS,MS,MSl 'Elalance of Financial Flows period 4'. 
9ÀLF,S(K,MS,MS,MS,MS) 'Elalance of Financial Flows period 5 ' ,  
=F-6 (MS,MS,Mç,MS,MS,MS) 'aalance of Financial Flows period 6'. 

* EXF-7(MS,.MS,MS,KS,MS,MS,MS) 'Balance of Financial Flows pesiod 7', 
* 3;liF-8(MS,MS,MS,MSl.*LS,MS,MS.MS) 'Balance of Financial Flows period 9 ' .  

compti  (MS , MS , MS, MS, MS, Ms, ?S, MS) ' surplus and def ici t , final period ' ; 
COMPW(MS,~S,.?lS,MS,MS,MS) 



OPTION LP = WATPAR; 
NDEL PORT / ALL ,'; 
SOLVE PORT USING 52 M M I M I Z I N G  SU; 



APPENDIX B The C codes of WSET 

We present a simplified code of a core part for WSET (Waterloo Structure Exploiting Tool), 

which describes how the mulù-part smicture can be extracted from GAMS and how eûch 

subproblem's data c m  be sent to the p d l e l  machines. This code is a modification of the 

original SET, which has much more complicated coding scheme with several files. Assuming 

that dl files and libraries are linked properiy and dl variables are defined comctly, we give 

only the modification of the original set. 

! Retrieve data from nb-blocks Decomposition st-ructure of original SET. * /  
int nb-blocks = aecomp->nb-blocks; 
int objeccive,row = Decomp->objective,row; 
inc objective-zolux?? = Decomp->objective,column; 

int* rowinfo = 
icc* rowjerm = 
in:* inv-rwq = 

into colinfo = 

/ *  Detennine the dimensions of SubPrcblems; number of variables,cons~raints, 
* and nonteroes of nb-subs parc for WSET. 
* Rm,ove column corresponding to objective varLable fraxrt Sub-O. 
* Retrieve Che index of the objective r o w  in a pe-rnuted matrzx. *: 



i 
SPb-mti] = S P b ~ ~ [ i ] ~ D e c o m p - ~ L a s t R 0 ~ f 2 * j - l I - D e c ~ o w ~ 2 * ~ - l ]  ; 

1 
1 
SPb-nz[i] = 0; 

1 
SPb,n[O] --; 

obj-row = rowgerm(objective,row]; 
princf('cbj-row = %d\n9,  obj-row); 
for ( i  = O; i < Decomp->n; i++) I 

j = colinfû[il: 
SPb-nz[j] += LpG->jco l [ i+ l ]  - QG->jcol[i]; 

* Find the nunbez of linking variables and ccastraints for each part': 

LLnd the =ctal xunber sf lizkizg variables and constraints for upper 
par ts* :  

* Nccat:~~: . - anc : à=c=e r c w  azc colum indices in the G A E  LP aatrix; 
* F r &  =d j c l  c a o c e  ruw ana c=lmn indices in che permuted mat r i%;  

isp =6 I s p  denote  row a& c c l m .  i n d i c e s  in t5e SubProblem; 



k denoces an index of SubProblern to which column j belongs. 
Starting fram the first col-, decide che row part number of the nonzero 
coefficient: nonlinking constraint's coefficient belongs to the same part 
number which the colirmn belongs to; linking constraint's coefficient 
should have a column part nuber and row part number. 
Note chat chere are 2*nb,subs subproblems in original SET but should be 
converted CO nb-subs subproblems. iii and ppp accumulates the nuber of 
rows above each part, so can find correct row number. 

for (jcl = O; jcl < Deconrp->n; jci+-1 { 
j = inv-clg[jcl]; 
k = colinfo[jl; 

if ( j ! =  objeccive,column 1 E 
phd = (k+l)/2; k = phd ; 

for iipos = LpG->3collj]; ipos < LpG->jcol[j+L]; ipos++) ( 
F = LpG->irow[ipos]; 
i-v = row_pem[i] ; 

Ffirowinfo[i] <= Z'phdl 
f 
if ( rowinfoli] c= O 1 

isp = i-TW; 
else if (rowinfc[ij < 2*phd-1 1 
C 
ppp=O ; 
for(iii=O; i i i  < (rowicfo[i!-LI12 ; i i F + + l  
{ppp= ppp + Decamp->LastRow[2*iiitIl- ~ecamp->~irstRow[Z~ii~~I 1 : 1 
i s p  = irw 9 Decoq->Las~qowiO] - Decomp->FirstRow [rowinfo [ il 1 *ppp; 

1 
else 
C 
ppp=o ; 

isp = iiv + 3ecox~->LdstR0~[0 1 - 3e~cmp->FirsfRow[2~k-l1 +ppp; 
1 

- Deccmp->Firs~qow[2*phdI - irw t 
Derom-~FirstRow[r~winfo fi] 1 + ppp ; 

zsp ; 
LpG->aa l ipos 1 ; 



Check t h e  cons i s tency  of ch t a .  * /  

f o r  ( k  = O ;  k <= nb-5locks; k++) ( 
i f  ( SPb,n[kl !=  LpSubtki->n ) C 

p r i n t f ( * E r r o r :  SubPb %d has i nco r r ec t  number of coluxms % d . \ n n ,  
k, SPb-n[kl) ; 

1 

fsr [j = O; j < LpSubIkl ->n; j - 1  C 
if ( LpSub[k] ->Io-bn& [ j 1 > ~ p ~ u b  [k] ->up-bnds [ j 1 1 C 

p r i n t f ( ' = r o r :  S a P b  bd, c o l m  4d: LO-bnd exceeds UP,nnd.\n', k, j); 

1 C 
i n co r r ec t  number cf e n t r i e s  %d.\nS, 

Wrong SubProblens d in , ens ions . \ nn ) ;  

LpSub is Lnfeasible  (LO-bnd exceeds 
ÜP-nnd) . in*  ; 

=et=-., 5 :  

Seccnd lnaia ioop f o r  c o n s t r a i ~ t s .  S p l i t  Data of W S  52 problem into 
Si;bProblens. 
Sec up al: row related daca i z  ScbProblen LP n a t r i c e s .  
N c t a t ~ o n :  
r denotes row inâex i n  t h e  G;IMS LP n a t r i x ;  
rriu denotes  row index i n  t h e  permuted nac r i x ;  
isp denotes  r = w  inaex i n  t h e  SubProblem; 
k denotes  an index of SubProblern co t~hich  row i b e l m g s .  
S t a r i i n g  from t h e  f i r s t  row, dec ide  che row part n u b e r  o f  r h s  ana sign 
sf c m s t r a i n t s  

Noce tha: l i nk ing  c o n s t r a i n t s  snculd be included i n  a l l  zb-strbs p a r t s .  

Lsp = ird:  



S P b ~ [ k l - + ;  
1 
else 
( 
if (rowinfoIi] c 2*k-1 1 

C 
for(phd=l; phd <= nb-subs; phd++) 

( 
if(rowinfo[i] == S'phd-l) 

( 
ppp = O; 
for(iii=U; iii < phd-L ; iii-1 
ppp= ppp + Decomp->LastRow[Z=iiitl]- ~ecomp->FirstRow[2'iii+ll; 

isp = i-rw * 3ecomp->LastRow[O] - Decomp-~FirstRow[rowinfo[iI]+ppp; 

ppp = O ; 

C 
for(phd=l; phd c= nb-subs; phd++) 

if(phd == k) 
C 
isp = i,rw t Decomp->LastRow [O 1 - Decomp->Firs*JZow [rowinf O [ i 1 1 

+ PPPi 
1 
else 
i 
isp = i,?r + Decomp-~LastRow [O] - Decamp->FirstRaw[rowinf O i i l  1 

* (Decontp->LastlIcw[2*k] - Decamp->FirstRow[2*kj) + ppp; 

ppp = O; 



for(iii=O; iii < (rowinfo[iI+l)/t - 1 ; iii++) 
ppp= ppp t Decomp->LastRow[2*iii+1] - ~ e c o m p - ~ ~ i r s ~ o w f 2 * i i i t ~ ~  ; 

isp = irw + Decomp->LascRow [O] - ~ecomp->~irstRow[rowinfo [il -11 +ppp; 

I *  Store linking variable infornacion in different vector * /  

, + Define distribuced machines and executable files in each nachine*! 
where[l] = ~pardist~.uwaterloo.ca"; 
where[2] = "parc!ist2.uwaterloo.ca8; 
nheref31 = 'gardist3.uwaterloo.ca'; 
wherel31 = "pardist4.uwaterlootCa': 

if(nb,subs == 1) / *  If only one processor is used * /  
exefile [ L i  = ,u/kjpark/pkdthesis;cbisj inl* : 

else 
exef ile[l] = " /u/hjpark/phdthesis/c!xisjinm ; 

exefiLe[2] = '.'u,hfpark/phdtkesis/c~isjin0; 
exef ilel3 1 = " i'u;hjpark/phdthesi~/ckisjinm; 
exef~le[4] = " l~/hjpark!phd~esis/chrisjino; 

* Ask each machine to star= each process *! 
for(k=l; k<=&-subs;k++i 
i 
cc=pc?n,spawn(exeEiIefkI , O ,  1, where[kl, L,&ti6[k] 1 ; 

- - 
"(CC ' =  1) 
-y.--& \ " =CR in spamicg exetvtables S M O R  code : 5d ! ! ! \nw , cc) ; 



/ *  Pack initial &ta and send '/ 

for(k=l; k <= nb-subs; k++) 
f 
pwi_initsend(PwiDataOefou1t); 
inf O = pv-kint i ab-subs , 1, 1) ; 
info = pvmgkint (subtype, nb_s&s+l, Il : 

1 

far(k=l; k <= nb-sas; kt+) 
info = pvm_send(tid[kl, 111) ; 

info = pm-pkint (aaa. nb-subs+l, 11 : 

i z f o  = pvn-pklong (SPb-3, nb-substl, II ; 
i c f o  = pvn~klong (S?b,n, nb-subs-1, 1): 
info = pvngklong (SPb-2:. nb-subs+T, 1); 
info = pvmqklonq (LSPb-m. nb-subs+l, 1) ; 
lnfo = pw-pklong (LSPb-n, zb-substl, 1); 
info = pvmgklong : LpSub[kf ->mmmhs, SPb-nz [k] , 1) ; 
xfo = pm_pkdouble (LpSubLkI-xoeffs, SPb-nz[kl, 1); 
info = gcm~klong ( LpSub [ k] -xlpnts, SPb-n [kj +l, 1) ; 
info = pvm~kdouble (LpSublkI->lo-bnds, SFb-n[k], L I ;  
info = ptm~kdouble ( LpSub f k] ->up,bnds, SPb-n [k) , Il ; 
snfo = ptm-pklong ( LpSub [k] ->row,type, SPb,m(k] , 1) ; 
rcfo = pvn~kdouble (LpSubfkj ->rhs,SPb-rnfkl, l); 
izfo = pwm~kdouble (LpSubik] ->r&?ges, SPb-n[k: , 1) ; 
r f  ~ i ~ f a )  
p r i n c f  ( ' 3-OR in packing data :O define the subproblem l l l 'in' 1 ; 

, 



E 
info = pvmgklong (LpSub [k] ->clpntç, LSPb-n [k] +l, 1) ; 
info = pvmgklong(LpSub[kl-xwnmbs, LpSub[kl->clpnts[LSPb-n[kl],l); 
info = pvmgkdouble(LpSub[kl ->coeffs, LpSub[kl ->clpnts [LSPb-n[k] 1 , 11 ; 

1 

for(k=l; k<=nb-subs r kt+) 
C 
i f  (k == 1) 
info = pvm-send(tid[k],lO); 

1 

re turn  1 : 
1 



Appendiv C C codes of WATPAR 

We present the simplified C source codes for the parallel decomposition solver WATPAR for 

each subproblem of 4 part cases. The fint subproblem gives more detailed explanaiion than 

the other 3 subproblems since the othen are very sirnilar except handling prima1 or dud 

information and updating the subproblems. Rocessors 1 to 4 solves lower-lower bound 

subproblem. upper-upper bound subproblem. lower-upper bound subproblem, and upper- 

lower bound subproblem respectively. 

C.1 Processor 1 : Lower-Lower Bound Subproblem 

tinclude <stdio.h> 
rinclude cstdlib.h> 
*include <sczing.h> 

izt ab-subs, cur-block = 1; 
i ~ s  irez-count = 1, lev2,ccunc=O; 
double :al = 0.0001; 

..... DEF1.W G L C W  VARIABLES AND ALLOCATE MFMORIZS ..... 
double mysecands(doub1e acrtlit) , *  T h e  measuremenc fnction *! 
< 
double Idt; 
gettimeofday(~itv2. (sc,ruct tbezone*)O); 
Idt=idoubie) (tv7.t~-sec - c v ~ . t v ~ s e c ) ~ ~ 0 0 0 0 0 0 + t ~ 2 ~ t ~ ~ u s e c  - tv1.t~-usec; 
actzm = acumc + ldt ; 
retu,-n (acumt) ; 

double CcmpuPiS(LpSubProb "LpSub) / *  Compute P i B  CO secd ' 1  

E 
int i, j ; 
I p S u b [ ~ r ~ b l o c k l - > P i  = 0.050; 



if(LpSub[cur-blockl->lo-bnds[j] ! =  0.0 && dj[j] ! =  0.0) 
LpSub [CU-block] ->PiB=LpSub [curubblock] ->FiB+ 

LpSub [cur-block] - ~ l ~ ~ b n d s  f j 1 
Cdj [ j l )  ; 

eise if(cstat[jl == 2) 

double *CompuPiD(LpSubProb "LpSub) / *  Compute P i D  to send * /  
I 
i n t  j , p ;  

for (j=O; j<LSPb,n [cur-block] ; j ++) 

{ 
LpSub[cur-blockl->PiD[jI=O.O; 
for (p=LpSub [cur-blockl ->clpnts ( j 1 ; p~LpSub[cur,block] ->clpncs [ j +l 1; p++ 1 
if(pi[LpSub~curblock]-~rwnmbs[p]-l-HISPbbm[cur~b~ock-1]] ! =  0.0 && 
LpSub[cur-block] ->rwnmbs [pl >HISPb-m[curUTb1ock-l 1 && 
LpSub l cur-block] ->rwnnibs [pl < SPb-rnlcur-block] -LOWSPb-m[curU1:blockl 

LpSub[cur,block] ->PiD [ j 1 += pi [LpSub[cur-block] ->rWMLbs [pl -1- 
HISPb-m[cur,block-11 1~LpSub[cur~bl0~kl-~coeffs[pl; 

1 
return ( LpSub [cur-black] ->PiD) ; 

1 

double *CompuOMeL(LpSubProb "LpSubi / *  Compute OmegaL * /  
E 
i n t  f .  k, p; 
for(j=O; j < HISPb-n[nb,subsl; j++) 
LpSub [cur,block] ->OMeL[l i  = 0.0 ; 

fcr(k=l; k <= nb-subs ; k++) 
i 
if(k < cur-block) 
E 
for ( j =O ; j <LSPb-r, [k] ; j ++) 

( 
for (p=LgSub[k] ->clpnts [ j ] :pcLpSub[k] ->clpncs [ j+lI ;p++) 
if (LpSub [k] - > d s  [pl >= SPb-m[kl -LOWSPb,m[cur,block-11 && 

LpSub lkl ->rllrnmbs [pl c SPb-rnikl hh pi [LpSub[k] -mmmbs [pl -SPbbm[k3 + 

LOWSPb~m[cur,block-l]+LSPbbm[~CUfblock-L 1 ! =  0.0) 
LpS~&[c=,block:->OMeL[j+HISPb,n[k-111 += pi[LpSub[k]->rwnmbs[p]- 
S?b~m[k~+LOWSPb~m[curElock-~]+LS?b~m[cur~blo~k-l]]~LpSub[kI-~coeffs[p]; 

1 

t 

for (p=~p~ub[kl ->clpnt.s [ j I ;p<LpSub[k] ->clpnts [ j+l] ;p++) 



if (LpSub [k] ->rwnmbs [pl > HISPb-m [cur-block-11 && 
LpSub[k] ->rwnmbs [pl <= HISP~J[CU,~~OC~~ && 
pi [LpSub [k] ->rwnmbs [pl -HI:SPbbm[curCUTblock-1 - 1  ! = 0.0 1 
LpSub [c*t,block] ->OMeL [ j +HISPbbn [k-Il 1 += pi [LpSub [kl ->rwnmbs tg] - 

HfSPb,m[cur,block-11-11 *LpSub [kl- 
xoe f fs [p 1 ; 

1 
1 

1 
return ( LpSub [cur-block] ->OMeL) ; 

1 

/ *  ûptimite, obtain solutions and nrite them to output file * /  
i n t  SolveProb (CPXENVptr env, CP.XLPptr lp) 
i 
int i, j, k, info, bufid, status, sitcnt, solstat; double dtl; 

gettimeofday(&tvl, (strict timezanew)O); 
status = CPXprimopt(env,lpi; 
Ff t status 1 { 

chaz errmsg[l0241; 
CPXgeterrorscring (env, status, errmsgi; 
fprintf (stderr, "%sm, errmsg); 
fprintf (stderr, "Failed to optimize LP.\na); 
return (scatus l ; 

1 
gectimeofday[&tv2, (struct cimezone*)O); 

fprintftfp, "Real solution t h e  : $8f\nm, dt1/1000000); 
acl = atl + dti; 
fprintf(fp, "TOTAL solution cime : 48f\na, at1/1000000); 

scatus=CPXsolution (env, lp, &solstac, &objval [cur,block] , x, pi. slack, a j  ; 
if ( status 1 { 

fprintf (stderr, "Failed to obtain solution l . \nm) :  
return(status) ; 

stacus = CPXgetbase (env, Ip,  cstac, rstat) ; 
if ( status 1 I 

fprintf (stderr, 'Failed t o  obtain basis.\nn); 
retu-rn (status ; 

1 

siccnt = CPXgeticcrit(env,lp); 
fprincf (fpl, '\n"*" Iteration Number : ad, $d \nn , iter-count, lev2-councl ; 
fprintf (fp, " \nSolution scacus = %d\nn, solscat) ; 
fprintf tfp,"Objeccioe value = % f \ n \ n m ,  aSjval[cur,bluckl); 
fprintf(fp1, * Sktplex Iteration Comt : %a \nm, sitcnt); 

for  ( F  = O; i < cur-numrowç; F-1 i 
fprFncf (fp,"Row ad: Slack = 4f ?i = $f rstat =%d\nn, i, slack[i], 

pi[il,rstat[ij) ; 

for (j = O; j < cur-numcoïs; j++) E 
fprintf (fp,'Column $d: Value = $f  Reduced cost = %f cscat = $&\cm. 



short 
LowerSound (LpSubProb **LpSub) 
{ 

.... Declare and allocate space for the variables and arrays .... 

/ *  Receive initial data for linking variables of other parts * /  
gercirneofday(&tvl, (strucc cixnezone*)O); 
bufid = pta_recv(ptid, 10) ; 
rdtl = myseconds(rdtl); 
fp = fopen(m/u/hjpark/phdthesis/c~isjin.outm,ma'~; 
fprincfIfp, ' Receiving Set up Data Time : 38f\nm, rdt1/1000000); 

t 
info = pvm-upklong(LpSub[k]->clpnts, LSPb-n[kl+l, L I ;  
inf O = pvn-upklong (~psub [k] ->rmmbs, ~ p ~ u b  [kl ->clpnts [LSPb-n [kl 1.1) ; 
info = pm-upkdoïble(LpSub[kl-~coeffs, LpSub[kl->clpncs[SSPb-n[klI.l); 

. ' *  Ir. order CO load the subproblea to CILEX, conver: data (sense) CPLEY 
fornac and recrieve che vector which indicates the number of  nonzero 
elements (rnatcnt) in each column and objective function coefficients 
(objcoeffs)*/ 

far(i=O; i < LpSub[cur,blockl->m ;i+-1 

fsr(j=O: j<~pSub[cur-blockl->n:j++li 
natcnt [ j 1 = (in:) i~p~ub[cur,blockl ->cIpnts [ j + l l  

-LpSub [cur-block] ->clpnts [ j ll; 
if ( LpSub [cur-block] ->rvMbs [LpSuh[cur-block] ->clpnts [ j 1 1 == 0 )  
objcoeif s [ j 1 = -LpSub [cur-blockl ->coeffs [LpSub [cur-blockl ->clpnts [ j 1 1 ; 

. * I~icialize the CPLZK envirament * i  

env = CPXopenCPLEYdevelop (hscatusl; 
i f  ( e x -  == NtZL 1 ( 

char err;nsg[l024l; 
Syzintf  tstderr, 'Could not open CILLK enviromenr.\nm); 
Z?X~eterrorstrFzg (env, status, e - n g )  r 
f p r i n t f  Istdezr, '%su, ernilsgi ; 



/ *  Use advanced basis at each iteration * /  
status = CPXsetintparam(env, CPX-PARAM-ADVIND, 1); 
if ( status 1 { 

fprintf (stderr, "Failed to scale.\nm); 
goto TERMINATE; 

/ *  For barrier method, use option 1 to solve subproblems * /  
status = CPXsetintparam (env, CPX-PARAM-BARALG, Il ; 
if ( scatus { 

fprintf (scderr, "Failed to scale. \nm 1 ; 
goto TERMINATE; 

1 

/ *  Create the problern- * /  
Ip = CPXcreateprob (env, &scatus, "3-regionmi ; 

if ( lp == NULL i I 
fprintf (stderr, 'Failed co create LP. \na 1 ; 
goto TERMINATE; 

1 

/ *  Now cûpy the probiem data into CPLEX * /  
status=CPXcopylp (env,Ip, ( inc) LpSub [cur-block] ->n, ( int 1 LpSub [CU-blockl ->m, 

-l,objcoeffs, LpSub[cur-blockl->rhs,sençe,(int*) (LpSub[=ur-blockl-clpnts), 
maccnt, (inc*) LpSublcur~blockl-~rInnmbs,LpSub~cur~block]-~coeffs, 
LpSub[cur,blockj->la-bndç. LpSub[cur,block]->up-bnds, NaL) ; 

if ( status ) E 
fprintf (stderr, "Failed co copy problem data.\nm); 
goto TERMINATE; 

1 

/ *  Delete the first row because the original vector has always the objective 
function coefficients in row zero ' /  

status = CPXdelrows (env, Ip, O, 0); 
if ( status i I 

fprintf (stderr, "Failed CO delete row O\nW) ; 
goto TERMINATE; 

I 

Add an artificial variable to each linking constraints * /  

for (k=L; k<=nb-subs; k++ 
{ 
if(LSPb,mikI > 0) 
status = CPX.newcols(env, lp ,  (înt) LSPbmlkl, LpSubfkl->arti,obj, NWLL. 

NUU, NULL, 
NtJtLl: 

i 

for ( F=O; i<LSPS,m[c~rblockl ; i+-1 
status = CPXcbgcoef (env, l p ,  (int) i, (int) (~pSa[cur,block] - m l  +I,arti-coef); 

for(i=lpSuj[curblock]->m-LOWSPb-m[cur,blockW; i<LpSub[cur,blockl->m-l;i++) 
stacus=CPXchgccef ( e w ,  lp, (int) i, (=nt) (LpSub[cu,Slock] ->n) + 
L S P b ~ m I ~ ~ 5 l o c k l + i - L p S ~ ~ ~ ~ r ~ ' o l o c k ~ - ~ ~ + L O W S P b ~ m [ ~ ~ b l o c k ] l  , arti-coef); 



/ *  ûptimize the problem and obtain solution. * /  
status = SolveProb(env, Ip) ; 
if (scatus) { 
goto TERMI-WE; 

1 

/ *  Add the su-CO-one constraints for Lamda variables * /  
for(k=l; k <= nb-subs; k+*) 
I 
if (subtype[k] == 1 1 
status = CPXaewrows (env, lp, 1, &Lam,rhs ,  &Lam_sense, NDLL, NULL) ; 

1 

objval[îl = objval[l] t 10; 
while(iter-count<l50 && (objval[2]-objval[l]>tol)) / '  Upper level iteration * /  

C 
iter-count = iter-count + 1; 
totlev2C = totlev2C + lev2,counc; / *  Find the total number of proposals * /  

/ *  Compute the dual proposals and send them CO aggregated upper bound 
subproblem (processors 2 and 4 )  / 

LpSub[cur,block~->PiB = CornpuPiB(LpSub); 
LpSublcur-blockl->PiD = CompuPiD{LpSub); 
LpSubIcur-blockj->OMeL = CompuGMeL(LpSub) ; 

pm-inirsend ( PvmDataRaw 1 ; 
info = pvm~kdouble (&LpSub[cur-block] ->? lB ,  1, 1) ; 
info = pvm-pkdoubie (LpSub[cur-blockl->?iD, LSPb,n[cur,blockI, 11; 
info = pvmgkdouble (LpSub[cur,block]->OMeL, HISPb,n[nb,subsl,~); 
if(info < 01 
fprintflfp,"E3ROR in packing data\nu); 

for(k=l; k c= ab-subs; k-1 
C 
if(subtype[kj == 2) 
bufid = ptm_send(tid[k],5): 

1 

;* Receive prima1 proposals from aggregated upper bound subproblem * /  
f 3r ( k = l ;  k<=nb-subs ; k++ 1 
{ 
if(subtype[k] == 2 1 
E 
gectimeofday (LEVI, (struct cimezoner) 0) ; 
bufid = pvm-rem( tid[k] , 2 )  ; 
rdtl = myseconds(rdtl1; 
fprintf(fp, ' Seceiving Set up Data T h e  : $8E\nw, rdcl/1000000): 

ififo = ptai,upkdouble (&LpSublk]->CX, L, 11; 
Fnf 3 = pt-n_upkdcuble t LpSub [k] -wLY, Hf SFb-m [nb-subs j , l l ; 

i 

* Aad the sum of prknal proposals and add one col- to the subproblem *! 
LpSub[tl->CX += LpSub[4]->CX ; 



status = CPXnewcols (env,lp, 1, &LpSub[2]->CX, &Lam-10, &L=up, NULL, m); 
if (status) 

fprintf ( fp ,  ' =OR in defining a new column! ! ! \nu 1 ; 

for(i=HISPb,m[O]; i cHISPb,m[cur-block] ; i++) 
i 
status = CPXchgcoef (env, lp, i, LpS~(cur,blockj->n + HISPb-m[nb-subs]+ 

+iter,count-2+totlev2C. LpSubfZj->LY[ij); 
1 

for(i=LpSub[ll ->m - LOWSPb-m[ij -1; i<lpSub[l] - > m l ;  i++) 
I 
status = ~PXchgcoef(env, I p ,  i, LpSublcur-blockl->n+HISPbs[nb-subs] 

+ iter-count-2 - totlev2C , 
LpSubt21 ->LY[~-LpSub[ll ->m - LOWSPb-m[l]+l+HISPb~[cu~:~block~ 1 )  ; 

1 

status = CPXchgcoef (env, lp, ( int (LpSub[cur-block] ->m-1) , 
LpSub[l~-~n+XISPb~[1]+LOWSPb~m(I~+iter~co~t-2+totlev2C, Lam,coef) ; 

/ *  Lower level iteration. 'exitlev2' Fs a signal coming from lower-uppex 
bound subproblem asking CO exit lower level iteration * /  

while(lev2-count < 150 && (objval[3] - objval[l] > 0.0001 1 1  lev2,count cl) 
&& (lev2,counc c 1 I I  exitlev2 c= O 1 1  

LpSub[cur-blockl->Pi3 = CompuPiB(LpSub); 
LpSub [ cur,block] - >OMeL = CompuOMet ( LpSub ; 
LpSub (-,block] - > P i D  = CompuPiD (LpSubl ; 

1 

pvm-initsend(FvmDataRaw1; 
info = pvm-pkdouble (&LpSublcur-biockl-,PiS, i, 1); 
inf O = pvm_pkdouble (LpSub [cur-block] ->Pi& LSPb-n [cur-blockl , Il ; 
info = pvmgkdouble (LpSub [cur,block] ->OMeL, HISPb-n [nb-subs 1 , 1) ; 
Lnfo = pvmgkdouble (LpSub leur-blockl ->Ornega, LSPb,m[cur,blockj , 11 ; 
if(info < 0 )  
fprintf ( fp, 'ERROR in packing data\nn ; 

gettimeofday(&tvl, (struct tbezone*) 0 1 ; 
bufid = ptm_retv(tid[31, 2 )  ; 
rdtl = myseconds(rdtl); 
fgrincfifp, * Receiving Set up Data Time : S 8 f \ n n ,  rdt~/~000000); 

, * M d  a primai proposal from subproblem 3 (louer-upper b o n d  s9roblem) * /  
status = C?Xnewcols(env,~p, 1, tLpSub[3]->a, &Lam,lo, &Lam,up, N U U ,  N U I L ) ;  
if tstatus) 

fprincf ( fp,  ' ERROR in defining a new  col^ ! ! ! \na ) ; 



for ( i=HISPb-m[O] ; i <HISPb-m[cur,block] ; i++) 
sta tus  = CPXchgcoef (env, lp, i, LpSub[cur,block] ->n + 

HISPb,mfnb,subs]+iter~count-2+toclev2C+lev2cot, LpSub[3]->LY[i]); 

for(i=LpSub[l)->m - LOWSPb,m[ll-1; icLpSub[L]->m-1; i++) 
( 
stacus = CPXchgcoef(env, Ip, i, LpSub[cur,blockl-~n+HISPbbrn[nbbsubs1 

+ iter-count-2 + rotlevZC+lev2-counc , 
LpSub[31->LY[i-LpSub[I]->m + LOWSPb~n[l)+l+HfSPb~[cur,block] 1 ) ;  

1 

status = CPXchgcoef (env, Ip, (int) (LpSub[cur-blockl->m-W, 
LpSub[11-~n+H1SPb~[1]*L0WSPb~mII1titer~count-2+totlev2C+~ev2~co~t8 
Lam-coef 1 : 

status = SolveFrob(env, lp); 

pwt-inicsendlhrniDataRaw) ; 
info = pvmqkdouble (&objval[tur,block] , 1 , Il ; 
bufid = p-send (tid[3],7); 

gettimeofday(&tvl, (s:,lrct thezoneT)O); 
bufid = pvm-recv (tid[31,71; 
rdt l = myseconds ( rdt 1) ; 
fprintf(fp, ' Receiving Set up Daca Time : %8f\ne, rdt1/10000001; 

info = pvm-upkdouble (&objval[3],1,1); 
info = pvm-upkint (hexitlev:, 1,l) ; 
if(info < 0) 
fprintf (fp, * =OR in unpacking objval[3l \nn , 4 )  ; 

pvm_Lnitsend(PvmDataRaw); 
info = pvmqkdouble ihobjval [cur,blockl , 1 , I l  ; 
forIk=l; k <=nb,subs; k+*) 

C 
if(k f =  cur,blockl 
bufid = pvm-send ttid[kl, 81 ; 
ifibufid C O )  

fprincf(fp, "IRROR in sending objval[%d]\nn,k); 
1 

for (k=l; k c=nb-subs ; k++ 
f 
if(k ' =  cur-block l 
i 
gectimeafday(&tvl, (struct rimezoneT)Ol; 
bufid = pwi-rem (tid[k],8); 
r6:l = nysecoads (rdtll ; 
fprincf(fp, * Receiving Sec ap Data T h e  : 48f\nm, rdtl/L000000); 



TERMINATE : 
..,. Free up the problem as allocaced by CPXcreateprob .... 

return ; 
1 

/ *  Record program start time ' /  

getcimeofdayi&tvl, (struct tirnezone*) 0) ; 
idt = (double) (tvl-tisec) ~OCOOOO - tvl.tv,usec; 
ptid = pvmjarent ( ; 

Record the idle time to receive the initial data ' /  
gettimeofday(&tvl, [struct cimezone')O) ; 

bufid = pvm-recv iptid, lil) : 1 '  Aeceive data * /  
rdtl = myseconds (rdtl) ; 
fp = fopen(w/u:hjpark/phdthesFs~chrisjinn~utw,mwa~; 
fprintf(fp, l Xeceiving Set up Data 'lime : 08f\nn. rdtlil000000): 
fclose( fp) ; 

buf id = pv-upkinc (&nb-subs, i, I )  ; :* Unpack data ' /  

if (bufid < 0) 

fp = f~pen!~~u/hjpark/phdtkesis,chrisjin.out", *aw) ; 
fprintf(fp, 'ERROR in unpacking nb-subs\nml ; 
fclose(fp1 ; 

1 

C 
fp = fopen~";u/hjpark/phdthesis/ctuisjin~out*,"a"l; 
fprintf(fp, 'ERSOR in unpacking subtype\nm); 
fclose ( fp) ; 

1 

gettineofday(&tvi, (struct cinezone* 1 0 )  ; 
Sufid = ptm-rem (pcid, 1) ; ;* Receive initial problem data 'I' 
rc=l = myseconds(rdtl) ; 
f p  = :cpen('. u/hjpark:phdthesis, chrisjin.outm, "am) ; 
fprincftfp, ' Receivfng Set ~p Data Time : %BÉ\n''. rdtli10000001; 
fclase(fp) ; 



fp = fopen('/u/hjpark/phdthesis/c~isjin.out~,'a*~; 
fprintf(fp,' ERROR in unpacking data to define the subproblem !!!\na); 

/ *  Find the number of accumulated linking variables and constraints * /  
HISPb-m = (long ' 1  malloc((nb,subs + l)*siteof(long)); 
HISPb-n = (long * )  malloc((nb,subs + I)*sizeof(longl); 

info = pvm-upklong ( LpSub[cur-Slockl->mmbs, SPb-nt[cur,block], 1) ; 
info = pt-upkdouble ( LpSi;b[cur-blockj-~oeffç, SPb-nz[cur,block], Il; 
info = pvm-upklong ( LpSub[cur,blockl->crpnts, SPb,n[cur-blockl+l, 1); 
info = pvm-upkdouble ( LpSub[cur-blockl->lo-bnds, SPb-n[cur-block], 11; 
inf O = pvm-upkdouble ( LpSub Icur-block] ->up,bnds, SPb-n [cur-blockl , 1) ; 
info = pvm-upklong ( LpÇub[cur,Slockl->row-tme, SPb,m[--block],l); 
info = pvm-upkdouble (LpSub[~ur~blockl-~rhs,SPb~m[c~~~b1ockj,1~; 
info = pvm-upkdouble (LpSub[cur,blockl->ranges, SPb-m[cur,blockJ,1); 
if (info c 0) 

fp = £open( '/u/hjpark/phdtfiesis/c~isjin.outW , 'a* 1 ; 
fprintf(fp,' ERROR in unpacking data t o  define the subproblem ! ! ! \ c m ) ;  

!* Take the program end t h e  and measuxe ~otal program t h e  * /  
gettimeofdayt&tvl, (stnct timezone*)O); 

edt = (double) (tv1.t~-sec) - 1300C00 t cvL.cv-usec; 
f p  = fopen( * ,  u/ hjpark/phdthesis/ chrisjinnoutm, " a * )  ; 
fprintf(fp, 'Total program rime : %8f\n9, (edt-idt)/1000000); 

fcloset fpl ; 

t t t t r t * ~ t ~ t 8 t ~ t t t t ~ t t ~ ~ ~ ~ * t t 8 e ~ ~ ~ r ~ e * r t ~ ~ ~ ~ ~ ~ e r t ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ 8 ~ ~ ~ ~ e * r ~ t ~ ~ ~ t t ~ t  

C.2 Processor 2 : Upper-Uppr Bound Subproblem 

FILES. VARIABLES 

* Cornute the prima1 info,.r=nation ( L Y  and 3 X )  :O send * /  

F n t  i, j, p; 



short SolveProb(C3XEWptr env, CP.XL?ptr I p )  
L 

.... S O L E  WU SUEIPROBLEM AND WRITF ESDLTS TO OUTPU? FILE .... 

Add lower level cï: ÿsiag 5ual proposal of upper-lower bond subproblem 
(processcr 4 ) .  A new cx t  is always added at the end of the constraints, SC 
6; r . . 
,,..di?.g =k,e t c t a l  z&er of canstraints r s  rmpoxtmt* /  

AddlevfCucs(LpSub2~3b **LpS&, C?.EXVpïr  env, C?XL?p t r  l p )  



for i j=SPb-n [ 2  1 +LSPb3[2 1 +HISPb,n[I] ; 

j~SPb~n[21+LSPb~m~ZI+HISPb~n[nbnbsub~l-~SPb-n[2] ; j++) 

lstatus = CPXchgcoef (env, l p ,  (int) (SPb-m[21-LOWSPb,m[2] 
-HIS?b,m[ll -1-totlev2C+levS,count + (iter-count-2) l ,  j, 

LpS~[nb~subs1-~0MeL[j+H1SPbbnI21-SPb~nf21-~S~bbm[2~-~1~?b~n(1]]~ : 
1 

I 
lstatus = CPXchgcoef(env,lp, (=nt) (S?b-m[2]-LOWSPb-m[2] 

-HISPb-m[i] -l+cctlev2Ctlev2,count * titer-counc-2)1, j, 
LpSub[nb-subsl->OMeLIj+HfSPb-n[I!l); 

t 
Iscatus = CPXchgcoef (env. Ip,  ( int) (SPb-m[2] -LOWSPb,m[S] 

-HISPb-n[l]-l~totlevZC+lev2,co~t + iter-counc-21, j, 
LpSub[nb,subs]-~PiD[j-S?b~n[2]-LSPbbm[2]-HISPb,n[~,s~s-l]+LSPb~n~2l 1 )  ; 

1 

lstatus = CPXchgcoef (env, Ip, ( int 1 (SPb-m [ 2 I -LOWSPb,m[2 ] -HISPbbm[ 11 
-l+totlev2C+lev2,co~~t + iter-count-21, 

LpSub[Z]-~n+LSPb,m[2l+HISPbbn[nb_subs]-LSbn[2]+l, Theta-coef); 

short 
UpperBound (LpSubProb "LpSub) 
C 
..., I3EFfNF I O C A L  VARIiSLES AND X S K A T E  MPLFORIES ..... 

1 '  Xeceive infonnacion of linking variables and constraints of other parts * I  

for(k=l; k<= nb,subs;k++) 
{ 
info = pvn-upkcouÉle~LpSubfk1->Labjcoef, LSPb,n[k],T): 
info = pvm_rpkdauble (lpSub[k] ->LEP-bnds, LS?b,n [kl , 1) ; 
info = pvn_upkdouble(5pSub[k]-~L~o-bnds, LSPb,n[k],L); 
info = pvm-upklong(5pÇubikl -xLpfrcs,  LSPb-n[k]rl, 1) ; 
Lnfo = pvn-upklong (LpSubik] ->mmmbs, LpSub[k] ->clpnts [LSPb,r?[kll, 1) ; 
info = pm-upkdo~le(lpSub[kl->coeffs, LpSub[k!->clpnts[SS?b,n[kII ,l); 

... CO-T ORIGINAL DATA sense, objcoeffs and m a t c n t  TO CONFORM CPLEX ..-. 

* Ncw copy the probkm data into the Lp ' /  

status=C?Xc3pylp (=v, l p ,  ( k t )  t~Sub[2] n ,  i n  5pSub[21 ->m. 
-I,cbjcoeffs, LpSub[2]->rbs,sense, tint*) (LpSub[2]->clpntsl, matcnt, 
( i n t * )  LpSub[2]-~rwnmbs, LpS~[2i->c0eff~,LpSubI2]->I0~brrds, 

LpSub[2l->up,bnds, mu) ; 

l *  Make the upper-~pper bomd sÿbproblem fo,?nat of the f i z s t  iceration by 
deleting row zero and ocher partsr lickiog constraints. M d  artificial 



variables and add other part's linking variablese/ 
status = CPXdelrows lenv, lp, O, 0) ; 
if ( status ) { 

fprintf fstderr, "Failed to delete row O\nn); 
goto TERMINATE; 

1 

if (HISPb-mf 11 >= 11 
status = CPXdelrows (env, lp, O, HISPb,m[ll-1) ; 

if (nb-subs > 2 )  
status = CPXdelrows Lenv, lp, ( int) (SPb-m[2 1 -HISPb,m[l] -LOWSPb-m[2] -1) , 

(int) (SPb-n[2] -EISPb-m[L j-tl 1 ; 

status=CP.Ynewcols (env, lp, (int) LSPb-n[21, arti-obj , NULL, NULL, NULL, NEJLL) ; 

for (i=0: i<LSPb-m[21; i-1 
status = CPXchgcoef (env, l p ,  i, (int) (LpSub[S] ->n) ri, arti-coef ; 

f o r  ( k = l ;  k<=nb,subs; k++) 
f 
if(k l =  2 )  
E 
if(LÇPb,n[k] > 0) 
scatus = CP.uewcols cenv, l p ,  (int 1 LSPb-n[kl, LpSub[kJ ->Lobjcoef, 

LpSub [k] ->Llo,bnds, LpSub [k] ->Lup,bnds, NULL, N ü U I  ; 

ifiLpSub[kI -xwmbs[p] > SISPb-m[l] 
&& LpSubIkI->rwnnbs[pj <= HISTb-m[cur,block] 1 
stacas = CPXchgcoef (env, Ip, LpSub [k] -xw~unbs [pl -HISPb-n[ 1j -1. 

SPb~n~2l+LS?~~ni21-HiSPb~n[k-l]-LSPb~n[2I-j,LpSub[k]-~coeffs[p~ ) ; 



/ *  Add theta variable * /  
for(k=l; k <= nb-subs; k++) 
if (subtype[kJ == 2 i 
stacus = CPXnewcols (env,lp, 1, &Theta-coef, &Theta-la, NULL,NULL, NmL); 

while ((iter,counccl50) && (objvalI21 - objval[l] > col 1 1 

iter-ccunt = iter-caunc + 1; 

fprincf ( f p ,  '!n Iteration N&er : $d --* \nm, iter-count) ; 

:' Campute CX CO send aggregated lcwer bond subproblem * /  

LpSubI2I-wCX=0.00; 
for(j=0: j c SPb-n[Z]; j++)  
if(xlj1 ! =  0.0 && objcoeffs!jl I =  S . 0 )  
LpSubiZI-wCX -= objcoeffs[jjex[jl; 

status = CompuSY(LpSub); 

p\=,initsend(hrmDateaw): 
info = p~lqkdouble (&LpSub[Zl->CX, I, 1): 
info = pvmgkdouble (LpSub[2 1 ->LY, XISPb,nfnb,subs 1 ,  l) : 

for(k=l; k <= ab-subs: k++) 
ii(subtype[k] == 1) 
Fnfo = pvm,send(tid[k] , 2 )  ; 

. l XJd the d:al prcpasals ccmizg frm the aggregated lower b o n d  subproblern 
(przcesscrs 1 -.ci 3 )  =a make one upper l eve l  c ï t  * /  

f s r  (k= l : kc=rh-subs ; k++ 1 



i *  Add a cut for upper level iteration * /  
status = CPXnewrows (env, Ip, 1, &LpSub[L]->PiB, hcut-sense, NULL, NUUI; 

forij=SPb,n[2l+LSPb-m[2]+HISPbbn[ll; 
j<SPb-n [ 2  l +LSPb-m [2 1 tHISPb-n [nb-subs ] -LSPb-n [2 1 ; j ++ 1 

status = CPXchgcoef (env, Ip, (incl (SPb-m[2l-LOWSPb,mt2] 
-HISPb,m[l] -I+titer,count-2~+cot1ev2C), j, 

LpSub [ i 1 ->QMeL [ j +HISPb-n [ 2  ] -SPbbn [ 2 I -LSPbbm [ 2  1 -HISPb-n [ 11 1 1 ; 

for(j=O; j<LSPb,n[tl;j*+i 
status = CPXchgcoef(env,lp, Lincl (SPb-m[21-LOWSPb,m[2] 

-HISPb,m[l] -l+fiter,count-2)+totlev2C), j, 
LpSub [ 1 1 ->OMeL [ j +HISPb,n f 11 1 )  ; 

f0r(j=SPb,n[2I+LSPb~ni[2I; 
j<S?b-n [2 1 +LSPb-m[2] +HISPb-n[l] ; j -1 

status = CPXchgcoef (env, l p ,  (int) (SPb-m[2]-LOWSPb>[2]- HISPb,rn[ll- 
i+i~er,count-2+totlev2Cl, j ,i,psub[lI - > I l 2 1  1 1  ; 

if(nb,subs > 2 && subtype[31 == 1) 
E 
fcri j=SPb,n[21+LSPb-n[2]+LS?bbnfll ; 

j<S?b,n[2]+LS?b-m[21+LSPbbn[11+5SPbbnf31; 1-1 
f 
status = CPXchgcoef(env,lp, (int) (S?b-m[2I-LOWSPb>[2]-IiTS?bbm[l]-l+ 

iter-co~nt-2+totlevX), j ,LpSub[31->PiD[j-S?b-z[2]-LSPb-m[2]- 
LSPb,n[llj) ; 

for(j=3; j<LS?b,n[4l ;j+*) 
status = CPXchgcoef ierw, l p ,  tint) !SPb-mf 21 -LOWSZb,m[2I 

-XISPb,n[l] -L+(icer,count-2)+totIev2C), 
j+SPb,n[2]-LSPb-mf21:+LSPbbn[l]+LSPb,n[31, 
LpSub [ 1 1 ->OMeL [ j +HISPb-n [ 3 I 1 1 ; 

status = CPXchgcaeE (env, lp, l int) ( SPb-ml 2 1 -LOWSPb-m [ 2  1 -HISPbbn[ 11 - 
i+(i:er_coun~-2)+tot1ev2C), 
i i n t  1 (LpSub [ 2  1 ->n+LS2b,m[Z] tHLSPb-n [nb-subsl -LS?b-n [ 2  1 1 , 

Theta-coef 1 ; 

~Cjval[2] = objval [lev2,blockl + 5; 
abf val [levZblock] = objval [ c ~ s u b l  - 3 ; 



stacus = CompuLY (LpSub) ; 

info = pvmqkdouble (&LpSub[2] - X X ,  1,:) ; 

info = pvm~kdouble (LpSubi21->LY, ~ I S P b ~ n f ~ b ~ s u b s ] , ~ ~ ;  
if (subtype [nb-subs] == 2 1 
info = pvni~kdouble (alcy, HISPb-n[nb,subs] , 1) : 
info = pvm,senà(tid[lev2,bIockI ,SI; 

status = SolveProb 
if ( status 1 { 
goto TEFUYINATE; 

1 

env, Ip)  ; 

(env. lp); 

pvm-iaitsena(RmDataRdwI ; 
inf O = pvn_~;kdo&le ( &ob jval [cur-block] , L , I l  ; 
bufici = pi;m_sezd (cia[Levf-blockj,7); 

r d c l  = myseccndsi=dtll; 
fprintf(fp, ' Receiving Sec up Data T h e  : i 8 f \ n n ,  rdt1;lûOOOOO); 

.,.. Free up the prcblem as allccated by CPXcreaceprob, if necessary . - - . 



C3 Proecssor 3 : Lower-Upper Bound SubproMem 

double *CompuLY(LpSubProb **LpSub, double *>oc) 

..., COMPUTE BX AND LY .... 
return ( LpSub [cur-block] ->LY 1 ; 

1 

double CompuPiB(LpSubProb "LpSub, int *cscat, double 'pi, double *dj) 
C 
.... COMPUTE PIB .... 
return ( LpSub [cur,blockl - > P i B )  ; 

1 

double *CompuPiD(LpSubProb **LpSub, double 'ppil 
t 
.... COMPüTE PID .... 
r e t ~ n  (LpSublcur,blockI ->PiD) ; 

1 

double *CompuOMeL(ipSubProb "LpSub, double *?pi) 
i 
. . . .  COMPUTE O K E L  .... 
return(LpSub[cur-blockl->OMeL); 

1 

/ *  Add initial columns of the linking variables of lower-loner bound subproblem 
of the first Fteration * /  

int LSecaddcok(LpSubProb "SpSub, CP.YENVptr env, CPXL?ptr l p )  
i 

i n t  f ,  p, k.  status=l; 

iftLSPb-nIll > 0) 
status = ClL~ewcûls (env, lp, LSPb-n [l 1 , LpSub [l ! ->Lob jcoef , 

tpSub[lj->llo-bnds, LpSub[l]->Lup,bnds,h'UU, 2RLL) ; 

? 
r e c u 3  t status 1 ; 

i 

: Add a l a d a  colun fûr primai icfaraacion coming £rom aggregated upper bound 
subproblem *! 

izt  Ad&arncols(LpSub?rob "LpSub, CXEWpcr eov, CPXLPptr  Ip, int icer-count) 



t 
int il status; 

for(i=HISPb~Ill; i diISPb,m[cur,block] ; i++) 
ï 
status = CPXchgcoef (env. lp, i-HISPb,m[i J , LpSub [CU=-blockl ->n 

+ HISPb~m[nb~subsl-LSPb~m[1~~LSPbbn[l~+iter~~~unt-ll LpSub[2]->LY[i]); 
1 

for(l=HISPb,m[cur,blockI; i<HISPb-m[nb-subs]; i++) 

status = CPXchgcoef lenv, Ip, i-LSPb-ml11 +SPb,m[3 1 -H5SPbbm[nb-subs] -1, 
L p S u b [ c u r ~ b l o c k I - ~ n t ~ I ~ ~ b ~ m [ n b ~ s u b s ] - ~ ~ ~ b ~ m ~ l ] + ~ ~ ~ b ~ n [ ~ ] + i t e r , c o m ~ - l ,  

LpSub[2] ->LY[i] ) ; 
1 

status = CPXchgcoef(env,lp, SPb-mlcur-blockl-HISeb,m[l]-1, SPb-n[cur,block] - HISPb~m[nb~suDsl-LSPb,mtll~HISPbbn~1]+iter,cot-l, Lam,coef); 
re turn  i s tatus 1 ; 

1 

/ *  Add a cut of iower level Fteration with dual information coming from 
lower-lower bound subproblem * /  

int Xddcuts(LpSubPr0b "LpSub, C P - W p c r  env, CPXLPptr Lp, double "KOniega, double 
"KLY, double **OMeLY) 
{ 
:nt stacus, i, j, k; 

stacus = C?.Xnewrows (env, lp, I, &LpSub (11 ->PiS, &cut,sense, ?SULL. NULL) ; 

fortj=O; j < LSPb,n[lj ;j++) 
I: 
status = CPXchgcoef (env,lp,(int) (SPb-m[cur,bTock]-H1:SPb-m[l +lev2,count-11, 

j+SPb,nlcurblockI- HISPb-m[nb-subs]-LSPb-m~1~,LpSub[lI-~PiD[j]) ; 
* 

for ( j =O ; j <LSPb-n [cur-blockl ; j ++ J 

s tatus  = C?Xchgcoef(env,lp. SPb,rn[cur,blockl-HfSPb~m[~]+Ie~2~count-l, 
LpSub [cur,blockl -~n+HIS2b,m[nbnbsUIsI - L S P  1 S b  [ 1 , Theta-coef) ; 



t 
for(k=l; k c icer-count; k+-1 
status = CPXchgcoef(env, Ip,  (ictl i~lpSub~cur,blockl->m-HISPb-m[lj-l, 

5 p S c b [ c u r ~ b l o c k ~ - ~ n + H I S P 5 5 ~ [ r ? b b s u b s ~ - ~ [ l ] + H S ? b n [ l ] k ,  OMeLY[il [k)); 
1 

.... RECEIVE DATA OF LZNKING VARIAELES AND C O N S m i N T S  OF OTHER PARTS .... 

. . . . CONt'ERT ORIGINAL DATA TO CONFOM C?LE,Y DATA ST3UCTURE ÇUCH AS SENSE, 
OBÜCOEPFS AND MATCNT .... 

stacus = LSetaddcols(LpSub, tcv, Ip)  ; 

. . . .  OPTIMIZE TE PRCBLLi, OETAIN SOLCTION AND WRITE TIiE ilESüLT ?O OUTPUT 
a z x . .  . 

s:a:ÿs = Ad&amccls(fpSub, ecv, IF, i=er,ccunt); 



.... SEND PRIMAL PROPOSEILS TO LOWER-LOWER BOUND SUBPROBLEM .... 

/ *  If processors 2 and 4 has aoc reached optimal, send objective value and 
'lev20pcLot CO processor 4 and receive objective value and 'lev20ptUpw/ 

if (lev2optUp <= 0) 
I 
pvm-ini tsend ( PmiDaraRaw 1 ; 
info = pvmgkdouble (&objval [cur-block] , 1 , 1) ; 
pvmqkint (&iev2optlo, 1, L) ; 
bufid = pm-send (tid[can-sub],7); 

gettimeofday(&tv1, (struct timezonew)O); 
buf id = p m r e c v  (tid[co~~sub] ,7) ; 
rdtl = myseconds(rdc1); 
fprintf(fp, " Receiving Set up Data Time : $8f\nm, rdt1/1000000); 

info = pvm-upkdouble i&objval[com,sub],l ,LI; 
info = ptxupkint (&lev2optUp. 1, 1) ; 

I r  If objective value of this subproblem is less than chat of upper-lower 
stbproblem, then set the signal exitlev2 1 and send it to lower-lower 
subproblem*! 

if(objval[cur,block] <= oDjval[com,sub]) 
exitlev2 = 1; 
else 
exitlev2 = 0; 

pvm-initsend(macaRaw) ; 
info = pwiqkdouble (hobjval [cur-blockl ,i ,Il ; 
info = pvmgkint (hexitLev2,L , I l ;  
bufid = pvm-send (tid[L],71; 

1 

info = pvmgkdouble (&objval [cur-biock] ,1 , 1 1 ; 
fcr(k=L; k c=nb-subs; k+-) 

f 
i f ( k  ! =  cur-block) 
~ u f i d  = pvm-send (tid[kl,8) ; 



{ 
gectimeofday(&tvl, (struct cimezone*) O) ; 
buf id = pvm-recv (tid[k] , 8  1 ; 
rdcl = myseconds(rdtll; 
fprintf(fp, " Receiving Set  up Data Time : %8f\nn, rdtl/L000000); 

info = pvm-upkdouble (&objval[k] , l , l l ;  
1 

1 
1 

TERMI-WTE : 

/ *  Free up the problem as allocated by CPXcreateprob. 

main(void1 
f 
.... DEFINE VARIABLES ;CND XLOCATE HEMORIES .... 

i f  necessa-y 

.... RECEIVE ORIGINAL DATA AND ?fND THE NUMBER OF ACCUMUWTED LINKING VARIABLZS 
kW CONSTRAXNTS .... 
. . . . MESZWRE P R O C W  TfME . . . . 

C.4 Processor 4 : Upper-Lower Bound Subproblem 

double *CompuLP ( LpSubProb *LpSub, double ">oc) 

t 
. . . . COMPtTF 9X AND LY . . . . 
retum. (5pSub [cur-block] ->LY 1 ; 

1 

double *CompuPiD(tpSubPrab "SpSub, double 'ppi) 
f 
. , . . ccmwrm P I D  . . . . 
retu,~(LpSub[cur,bIockI->?iD); 

1 

double *CompuOMeL (LpSuhProb **IpSub, dotrble *ppi 1 
t 

. . . . C~K,rrUTF OHEL . . . . 
r e r ~ , r ,  ( L p S G  [CU-bLock] ->OMeL) ; 



C 
if(LpSub[l]-~rwMibs[pl >= SPb-mIlj-LOWSPb-m[ll && LpSub[ll-~rwnmbs[pl c 

SPb-m [ il -LOwSPbs [ 2  1 1 
status = CPXchgcoef (env, lp, LpSubll] -~rwMlbs [pl -SPbbm[l] +LOWSPbj[lI , 
SPb-n[cur,blockl+LSPb-mIcu1-block1+LSPb~m21+j, LpSubEll->coeffs[pl); 

i 
ifiLpSub[3l->rwnmbsfpl > XISPb,rn[ll && LpSubI31-~rwnmbs[pl <= HISPb,m[Zl) 
status = CPXchgcoef (env, lp, LpSub[3 1 -xwnrnbs [pl -HIsPb~n[1] -1, 
SPb-n [cur-blockl +tSPb,mlcur,blockl +LsPb~n[2] + j+LSPb-n[l] , LpSub[3 1 - 

>coef fs [pl 1 ; 

short AddLamcals(LpSubProb "LpSub, CPXENVptr env, CPXLPptr lp, int iter-count, Int 
lev2-counc, double "KOMeL, double "Kalty, double 'a l ty)  
I 
long i ,  j; int k, scacus; 

status=CPXnewcols (env,lp, 1, &LpSub[21->CX, &Lam-10, &Lam,cp, NULL, m L ) ;  

for l i=H~~~b,m[lj ; i cHISPb,n[Z] ; i++) 

for(i=HISPb-mI3I; i<HfSPb-m[41; i++) 
{ 
scacus = CPXchgcoef (env, lp ,  i-LSPb-m[ll-~SPb-m[3l, 
LpSub [cur-blockl ->n+~spb-m[4 1 +LS~b-m[2 I +~S?b-n [ 11 +LSP~-~ [3 ] +1ev2-count, 

LpSub[2] ->LY[i] I ; 
1 

status = CFXchgcoef (env, l p ,  S ~ b m  [m-biock] -~SPb-m[l] -L~~b_m[3 1-1, 
SPS-nicur-blockl - LSPb-mf 4 1 +LSPb,m[2 1 +LS3bbn[ 11 +LSPbbn [ 3  1+, Lam-coef) ; 



i 
status = CPXchgcoef(env, lp, (inti i+LpSub[ctir-blockl->m-LSPb-m[ll-LSPb-m[31- 

1, (incl (LpSublcur-blockl ->n+LSPbbm[cur,Slock)+L(2] +LSPb-n(l1 -LSPbdn[3 1 * j 1 , 
OMeLY[ij [jl) ; 

1 
1 

int Àddcuts(LpSubProb "LpSub, CPXEWpcr  env, CP.YtPptr Ip,  Fnt lev2-count. int 
iter-count J 
i 
inc  status, k; long i, j; 
starus = CPXnewrcws (env, Ip,  1, &LpSub [l] - >Pia.  &cut,sense, hELL, NULL) ; 

{ 
status = CPXchgcaef (env, Ip, iintl (SPb,m[cur-blockl 

-LSPb,m[ll-LSPb-mf31 -iter-counc-2), j+SPb-n[cur,blockl 
+ 5SPb-n[t l +LSPb-m[cur-block] , LpSub[L] - > P i D [  J 1 1 ; 

i 

t 

status = CPXchgcoef (env, Lp, (incl (SPb-m[cur,blockl 
-LSPb-rn[l]-LSPb-m[3i diter-count-Si, j+SPb,n[cur-blockl 
+ LSPb-m[2 1 -tSPb,m[cur,block] tLSPb-n [lj , LpSub[3 1 - > P i D I  j 1 1 ; 

i 
status = CPXchgcoef (env, l p ,  SPb,m[lj-LSPb,n[l]-LSPbbm(31+iter-count-, j .  
LpSub [Il ->OMeL [ j +Hf SPb-n [cur-bIock-Ill) ; 

1 



short 
UpperBound (LpSubProb "LpSub) 

.... RECEIVE NECESSARY OTHZR LINKING VARIABLES' DATA ..... 

.... DELETE UNNECESSARY ROWS FOR THIS Sü1BPROBLEM AND ADD COLUMNS FOR ARTIFICIAL 
VARIXBES. U S O ,  ADD NECESSARY COLüMNS FOR OTHER PART'S LINKING VARIABLES . . - .  

status = USetaddcols (LpSub, env. lp) ; 

.... OPTIMIZE THE PROBLEM OF THE FIRST ITEIMTION, OBTAIN SOLUTIONS AND WRITE THEM 
TO OUTPUT FILE .... 

status = CP-Ynewrows (env, Lp, 1, &Lam_rhs, &Lam_sense, WLL, NULL); 

while ((iter-counccl50) && (objval[2] - objvai[ll > toi 1 )  
( 
iter-count = Lter-counc - 1; 
..., COMPUTE CX .... 

.... S m  PRIMAL INFORKATION ?O ;WD RECEIVE DUAL INFORMATION FROM THE AûGEGATED 
LOWER BOUND SUSPROBLEM (PROCESSOR I AND 3 1 . . . . 

l *  find proper dual information adding each information coming frcrn 
aggregated lower bound subprobLi (processors 1 and 3 )  * /  

LpSub[lj->?iS = Lpsub[I]->Pi3 + LpSub[3]->~ia ; 

' *  Lelste coiumtls for priinai informition of previouç lower level iteration * /  
scatus = CPXdelcols (env, Ip, 

SCb-z[c~r-SiockI~LSPbbn[2]+f,SPbbn[J]+LS?bn[I]LS?bn[3+l, cur-nucols-LI; 

scatus = Acidcxts (SpSub, env, Ip,  lev2,covmt, Fter,countl ; 



status = AddLamcols ( LpSub, env, Ip, iter,comt, 1ev2,count, KOMeL, ~alty, 
altyi ; 

scacus CPXpr imopt 

..., RECEIVE OBJECTIVE VALUE FROM PROCESSOR 2 ..... 
if (objval[21 - objval [cur_block] < 0 .O001 
lev2aptUp = 1; 
else 
lev2optUp = 0; 

/ *  If processors 1 and 3 has noc reached optimal, send objective value and 
'levSoptUp* to processor 3 and receive objective value and 'levSopcLo*/ 

if(lev2optlo <= 0) 
I 
pvm_initsend(PvnrDataRaw) ; 
info = pvmqkdouble (&objval[cur-block1,l ,1i; 
pvm~kint (&levSoptup, 1, Il ; 
bufid = pvm-send (tid[com-subj,7); 

getcimeofday(&tvl, (scruct timezoneW1u); 
bufid = pvm-rem (tidtcom-subi,?); 
rdtl = myseconds(rdt1); 
fprintf(fp, * Receiving Set up Data T h e  : 48f\nn, rdt1/100G000); 

inf O = pvm-upkdouble (&objval [com,subl, l , l) ; 
info = pvm-upkint (&lev20ptLo, L, 1) ; 
iflinfa < 01 
fprintf(fp, "-OR in receiving cbjvaltOdl\nn, cm-sub); 

:* If objective value of this subproblein is greater than chac of Lower-upper 
bound subproblem, then set che signal exitlev2 I and send it to upper- 
upper b a u d  subproblem* : 

if tobjval [cur-block] >= objval [corn-subj 1 
( exiclev2 = 1; ) 

else 
! exitlev2 = S; ) 

pvm_initsend(PMiDataRaw) ; 
info = pvmqkdouble (habjval [cur,block], 1 ,1) ; 
info = pvmqkint (hexitlev2,L ,il; 
bufid = pvm-send (tid[2],7); 

1 

:*  ?ree up the CPLFY environment, if necessary * /  



main (void) 

.... DEFXNE AND DO THE SIMILIlR OPERATIONS AS PREVIOUS ÇWPROBLEMS .... 
UpperBound ( LpSub) ; 

1 
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