A PARALLEL PRIMAL-DUAL DECOMPOSITION

METHOD FOR MULTI-PART LINEAR PROGRAMS

by

Hyun Jin Park

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Management Sciences

Waterloo, Ontario, Canada, 2001

© Hyun Jin Park 2001

i~l

Nationai Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue W
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your s Votre rédérance
Our Se Notre rédieence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-65663-2

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below and give address and date.

i

ABSTRACT

In this thesis, we develop a new parallel primai-dual decomposition algorithm for multi-
part linear programming (LP) problems. We first present a parallel decomposition method for
two-part models, in which the two master-like subproblems are solved simultaneously in two
different processors and generate an upper bound and a lower bound on the original problem at
each iteration. These two bounds are monotonically improved and converge to within the
prescribed tolerance of the optimal value by exchanging primal and dual information.

Then we extend the basic principles of the two-part algorithm to multi-part models by
applying a hierarchical decomposition principle recursively. The original multi-part problem is
divided into two aggregated subproblems of lower bound type and upper bound type, and the
aggregated subproblems are further divided into two smaller aggregated subproblems of upper
bound and lower bound. This bifurcation process continues until there are no subproblems left
for further decomposition. The subproblems are solved in different processors simultaneously and
work together to reach an optimal point during the iterations by exchanging primal and dual
information in the hierarchical way. Convergence and other useful properties of the parallel two-
part and multi-part algorithms are proven.

We developed a parallel decomposition solver for problems of two, three or four parts,
called WATPAR (WATerloo PARalell), through the use of GAMS, the Regex Library, CPLEX
6.0 and PVM (Parallel Virtual Machine) 3.11 on one IBM RS/6000 workstation and a cluster of

four PCs running the Solaris operating system. Several multi-part LP models are tested using

iv

WATPAR, and in each of the tests, the new parallel decomposition algorithm converged to an
optimal value of the original problem in a finite number of iterations. For some large probiems,

the new method showed some speedups.

ACKNOWLEDGEMENTS

I would like to thank and glorify God for allowing me to finish this long journey.

I would like to deeply appreciate my wonderful supervisor, Professor J. David Fuller, for his
academic guidance as well as his mentoring and financial support provided throughout this study.
My sincere gratitude should go to Professors R. G. Vickson, J. K. Ho, H. Wolkowicz and R. P.
Sundarraj for their invaluable feedback and careful review. I also thank Professor E. J. Fragniere
and his colleagues in Switzerland for allowing me to use their facilities. Many thanks go to

Richard Kyuchul Cho for his friendship for the last couple of years.

[am greatly indebted to my parents for their love. encouragement and prayer. [am also indebted
to grandmother-in-law and my parents-in-law for their understanding and support. I should
express my gratitude to my sister, brother-in-laws, sister-in-law, uncles and aunts for their help

and care.

Finally. the greatest debt of gratitude is owed to my wife Soyoung, whose constant love, patience

and support not only inspire me but also allow me to indulge in academic and professional

endeavors of this magnitude. Needless to say, without her, I could not have completed this thesis.

vi

To Soyoung and Katherine Eugene Park

vii

TABLE OF CONTENTS

CHAPTER | Introduction

1.1 Brief History of DeCOMPOSItIONccoevevemrcrieireeeerteeceeereeeseeeeneneaens RS H
1.2 Motivation and Objectives of the Research...........cccooviivmvrieeecnnenrnnceccnnnen. (€))
[.3 OVerview Of The TRESIS.......coovvieveeeieeieereerrieeetreecesseeesseeessseesssssssns sesssasesssness (&)
CHAPTER 2 Literature REVIEWocoeeeieeeceeeeecieteceeecrteesreesnesressesnssersseseessssesnnesnns M
2.1 An Overview of the Decomposition Methods...........cccoeunvreeroeeruerccceccencrenenee @)
Dantzig-Wolfe Decomposition Methodccoovveeeenerevevrernncnccniieneenenee N

The Nested Dual Decomposition Method for Multi-Stage Models (8)
Benders Decomposition Methodcouoveieniermreeeercecreeeere e (9)

The Nested Primal Decomposition Method for Multi-Stage Models 9)

Cross Decomposition Method by Van Royco.eoocneiecicnecnccienininns 9)
Primal-Dual Decomposition Method by Lan and Fullerccccccooeveeeeeees (10)
Primal-Dual Nested Decomposition Method for Multi-Stage Models........ (11)

2.2 An Overview of Parallel COMPULINGc.cvueerirreeeiececrreteteeeecee e (12)
SIMD VS MIMDD ...ttt ccrivteeesssesesseessssmesssssseemesssssessssssasessasanns (13)
Shared Memory vs Message Passingcccoccevevvnemncnennnecncnscninscesenenes (13)
Performance Measurement in Parallel Computingcccvviiiiiinninnnnn. (15)

2.3 Parallel DeCOMPOSIIONcociriereeereieieeeerceetee s e v eersreen e saeesascensosnes (16)
2 SUMINIAIY oottt eeeesensseeessassseecosatssssenesssssnssnressnseseesssasesssnnsansnssnnseenen (18)
CHAPTER 3 Parallel Decomposition of the Two-Part Problemccccoominieennnennes (19)
3.1 Model Structure and ASSUMPLONccccericecirnrirrcennenrercneseareessenns (19)
3.2 Subproblem SHUCIUIESc.coiiiieeceeere e et s e e neneas (22)
3.3 The Decomposition AIZOMIRIMc.ooeriinrereeecceceeeeeeree e eseeeceeees 27N
3.4 Properties of the AIZOMAM ...t eeees (30)

3.5 Summary and Observations on the AlgOTithmcccccevivcecrnenenccecncrenenanees (43)

CHAPTER 4 Parallel Decomposition of the Multi-Part Model.............ccccoreneicecccennnnee. (45)
4.1 Definition of a Multi-Part Linear Programccccceeeueerereereereenereneerneeennes 49

4.2 The Structure of Subproblems for the First Methodccocveeienvnincnnene. 4N

4.2.1 The Bifurcation Process......c.oveiiiniiniiiiii i eeeeeeieeeennes 47)

4.2.2 Precise Description of the Subproblems................coeciieieiiiiin.. (53)

4.2.3 A Strategy to use more Information from Second Level Iteration (62)

4.3 The Parallel Decomposition Algorithm for the First Method (62)

4.4 Properties of the Algorithm for the First Method............ccconnnnnn. (69)

4.5 A Heuristic Decomposition Algorithm — the Second Methodccccoceeaee. (74)

4.5.1 The Structure of Subproblems for the Second Method..............c.c..ce... (74)

4.5.2 The Heuristic Decomposition Algorithm for the Second Method (79)

4.5.3 Properties of the Algorithm for the Second Methodccovvrvvecennnee. (82)

CHAPTER 5 Preliminary Implementation and Resultscccoeveeeeieeirerverenenvenieennne. (87)
5.1 The Implementation Procedureccccocoevmnmicnrnnicccccniiceececeseeeins (87)

5.1.1 Decomposition PRESEveverrieiiiirnieiet e (89)

5.1.2 Solution PRASE.c.o ettt e (94)

5.2 The Test Problems and Results of the Experimentc.ccccovvmiciimnnvnennen. (95)
CHAPTER 6 Conclusions and FUuture ReSEATCHc..uvveeeeveieeieineeeieeeereesessserersesssenens (107)
6.1 CONCIUSIONS ..ottt cee et e s s aemtesss b es e ssnse e e be s s nsbsssans (107

6.2 FUUTE RESCAITR ... eeeeeeceseteetseeeseese s ssssreresssssnsansassesssnsnnses (110
Appendix A GAMS codes of the test MOdels ..ot (113)
A.l Hydro-Electric Generation Planning Model 1 (HEPGL1)........ccoovcvcnncnnce.e. (113)

A.2 Hydro-Electric Generation Planning Model 2 (HEPG2)........c.corerrccecnn (116)

A.3 Financial Planning Model (FP) ..ot sice e sae e (120)

1x

Appendix B € codes Of WSET ...t essssesassssesnsasans (123)

Appendix C C codes of WATPAR................. ettt te et e et e sraeasn st sontene (131)
C.1 Processor 1: Lower-Lower Bound Subproblem..............c.cccoceuevruemereerennnnnne. (131)
C.2 Processor 2: Upper-Upper Bound Subproblemcccovvuereeerenerenrenrenne. (140)
C.3 Processor 3: Lower-Upper Bound Subproblem.............cccoocoeeeveceerennennee. (147)
C.4 Processor 4: Upper-Lower Bound Subproblem........cccooceureeeroernerencsnnnnens (151)
BIBLIOGRAPHY ... emetetecmr et ssssse s s sss s s nes st s b ss e s (157)

Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1

LIST OF TABLES

General structure of mult-part modelcccccooviircenicrieniicerenaene 47
Statistics of the test problemsccccoveiiiiiniiicr e (96)
The test statistics of direct methods on RS/6000oovrverriiriiiiviccininceenn. (98)
Statistics of Simplex and Barrier methods on one PC using WSET (99)
The SUDPrODIEM SIZESooooomiiiiiieieeecceec e s (100)
Performance of Parallel Decomposition with Simplex solver (102

Performance of Parallel Decomposition with Barrier solverc........... (103)
Time measurement of the parallel algorithm with Simplex solver (104)
Time measurement of the parallel algorithm with Barrier solver (104)

The distinction between Lan’s algorithm and the new parallel decomposition
BIGOTIRMN.....cocieeice e e e et e (108)

X1

Figure 1.1
Figure 1.2
Figure 2.1
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

LIST OF FIGURES

Structures of multi-stage problem, from Lan and Fuller [1995]........................ (1)
General structure of the multi-part modelsccccooievenrreneccirneeerrenene 4
Information flow of nested primal-dual decompositioncccoeeeveuceennnce. (12)
Information flow for parallel two-part algorithmccccoconiinininireeeeeencene (26)
The bifurcation process for N=9 (9-parts).........ccccveerervreereemrrieereeserercesraneeas (48)
4-part decomposition principle and information flowcccceevevrvrcevcnennnnenn. (50)
9-stage decomposition principle in Lan-Fuller methodccoooeeveeencnnncne. (33)
Information flow of 4-stage decomposition in Lan’s method.......................... 61)
Information flows for the heuristic parallel decomposition algorithm (79)
NEIWOTK CONMNECUVITYcuviimiceeirerreeseeteenressestessessesseesanssnssessaessasnersnessesse (88)
Example of GAMS model formulation...........ccc.ooveveeerieceinriceecrecreeeecenaeeenens (90)
Example of SET file......coo ettt ee e 91)
Example of anonymous matrix generated by GAMSccooivvrcrrecereeenne. (92)
Example of multi-part structure generated by WSETccoooeiiiiccincnncnens (93)
A scenanio tree fOr HEPGIH ...ttt eeeeeee s issesesesssssseerees 97
Speedups for FP with Simplex and Barmier.........coocooeeeceineninnvcrceecenienenee (105)
Efficiencies for FP with Simplex and Barrier.........ococeimececneiincininncnen. (106)

xii

Chapter 1 Introduction
1.1 Brief History of Decomposition

Over the past several decades, linear programming (LP) has been a useful planning and
scheduling tool for economic and management applications. The real world LP problems are very
large and usually have some special structures, which could break into several distinct LPs except
for a few linking constraints. These linking constraints represent relationships among different
periods, regions. stochastic scenarios, etc. The most commonly discussed structures are primal

(or dual) block-angular, staircase and block-triangular as shown in Figure 1.1.

"

a. block-angular b. staircase c. block-triangular

T T v e eies o —e

Figure 1.1 Structures of multi-stage problem, from Lan and Fuller [1995]

Based on the ideas of utilizing the special structures, many decomposition algorithms,
which decompose a very large problem into several subproblems and solve them iteratively
through the exchanges of information, have been proposed since the early l9§0’s,

There have been several motivations to study decomposition: the prospect of reducing
computational time: a method to solve a huge model within a computer’s memory limits that do

not permit a straightforward solution of the whole model (Fragniere et al. [1998]); and to ease

management of a huge model (Murphy and Mudrageda {1999]), by breaking it into its natural
constituent parts such as regions, divisions, etc. Following the famous decomposition methods
of Dantzig-Wolfe [1960] and Benders’ [1962], cross decomposition by Van Roy [1983] and
Holmberg [1992], and mean value cross decomposition (Aardal and Ari [1990] and Holmberg
[1992]) have been developed to solve large-scale LPs with primal (or dual) block-angular or
staircase structures. Another important development was reported by Lan and Fuller [1995a, b]
based on Lan [1993] for multi-stage block-triangular structures, in which all subproblems perform
like a master problem.

Recently, technological advances in massively parallel processors (MPPs) and distributed
computing systems have encouraged development of decomposition algorithms to solve
subproblems simultaneously using several different processors. Several parallel computational
tests and algorithms for LPs are presented by Ho et al. [1988], and Rosen and Maier [1990] for
models with block-angular structure and by Dantzig and Glynn [1990], and Birge et al.[1996] for

decomposition of stochastic LPs. Entriken [1996] reported experimental results of solving
staircase LPs by using parallel Benders decomposition. In all of these previous studies,
subproblems were solved in parallel, but the algorithms had a serial element in the alternation
between the master problem and the subprobiems. In contrast, our decomposition principle can

be used to define an entirely parallel algorithm.

29

1.2 Motivation and Objectives of the Research

This research is motivated by Lan [1993], in which he suggested an idea of computing the
subproblems simuitaneously, in a block-triangular problem, by sending proposals and cuts to
immediate neighbors in his further research, but after some reflection, it is apparent that this
scheme would probably take too many iterations for the last subproblem to hear information of
the first subproblem. Thus, this research started from the idea that all the subproblems could be
solved at the same time using different processors in order to have benefits of parallelism, by
broadcasting all information to all other subproblems for block-triangular structure. It worked
well for the two-stage case, however, it failed to extend the idea of the nested decomposition to
the multi-stage case from the two-stage algorithm due to complexity of nested algorithms.
inconsistency of weighting schemes and infeasiblilty of the solutions. The nested algorithm didn’t
fit well in parallel decomposition because the nested structure and the information transfers lead
to an inherently serial algorithm: it has to solve one subproblem at a time with further weighted
primal information of all the previous subproblems on the forward pass and with additional
weights on dual information of all the following subproblems on the backward pass.

Realizing that the linking variables and constraints cause those serious problems, we next
attempted another broadcasting scheme by including all linking constraints in each subproblem
and restricting primal and dual linking variables to convex comnbinations of known solutions from
other subproblems of earlier iterations, since the number of the linking variables and constraints
are relatively small. This idea makes it possible to apply the parallel decomposition method to the

multi-part structure problems shown in Figure 1.2.

Figure 1.2 General structure of the multi-part modeis

The parallel primal-dual decomposition algorithm for two part problems converged
consistently to the optimal solution in a small number of iterations, however, in some tests of
multi-part problems the algorithm (we call this a heuristic parallel algorithm - see section 4.5) did
not converge exactly to an optimal solution but repeated the same feasible solution thereafter.
After we found some errors in the convergence proof of this multi-part algorithm, we finally
reached the ideas of applying the two-part decomposition principle recursively in a hierarchical
way since the two-part algorithm seemed to be working fine and no flaws could be found in the

convergence proof.

Hence. the objectives of this Ph.D. research are as follows.
1. Develop a new parallel primal-dual decomposition method for two-part and multi-part

linear programming models which have the general multi-part matrix structure shown above.

2. Prove and demonstrate the convergence of the parallel two-part and multi-part
algorithms as well as other properties of the algorithm.
3. Design and implement a parallel primal-dual decomposition solver for the paraliel

algorithm on several computers and investigate the computational efficiency of the algorithm.

1.3 Overview of the Thesis

This thesis is organized as follows. The next chapter presents a literature review on both
serial decomposition methods and parallel decomposition methods with basic concepts of parallel
computing.

Chapter 3 proposes the new decomposition method for two-part linear programs, which
divides the original problem into two master-like subproblems, a lower bound subproblem and
an upper bound subproblem. and coordinates them to converge to an optimal solution by
exchanging primal and dual information. Proofs of the convergence as well as other useful
properties of the algorithm are given.

Chapter 4 discusses the development of the parallel algorithm for multi-part models, in
which the two-part decomposition principle is recursively applied in a hierarchical manner. It also
discusses the heuristic parallel algorithm, a simple extension of the two-part decomposition
principle to multi-part problems without the hierarchical decomposition principle.

Chapter 5 presents the design and implementation procedures of the parallel
decomposition solver and shows preliminary computational results. In each of the tests, the

parallel algorithm converged to within a small tolerance of the optimal solution in a reasonable

amount of time. The algorithm was faster than the simplex or interior point methods in a single
machine in some very large scale problems. It could solve a huge problem, which could not be
solved in one machine due to memory limits. The final chapter indicates the expected
contributions and future research directions.

Appendix A presents the test models in GAMS files and Appendices B and C show the

core parts of the parallel decomposition solver codes written in the C language.

Chapter 2 Literature Review

This chapter provides an overview of topics found in the literature which are related to
this thesis. In the next section, a brief review of decomposition methods for LPs is presented. The
second section discusses the basic parallel computing concepts and methods. In section 3, the
parallel computational tests and algorithms applied to decomposition methods are reviewed along

with the description of their characteristics. The summary is given in the final section.

2.1 An Overview of the Decomposition Methods

Many decomposition schemes, such as Dantzig-Wolfe decomposition, Benders
decomposition and cross decomposition by Van Roy, have been developed to solve large-scale
mathematical programming problems. A new decomposition algorithm, called primal-dual
decomposition. was suggested by Lan and Fuller [1995a]. In this section, these algorithms are

briefly reviewed with extensions to the nested algorithm for multi-stages.

Dantzig-Wolfe Decomposition Method

In the decomposition method of Dantzig-Wolfe, the master problem determines an
optimal combination of the proposals on hand, submitted by subproblems, by assigning values
to the weights. The optimal dual variables, known as prices, are used to adjust the objective
function in the subproblems which in tum may produce new proposals to improve the global
objective function in the master problem. This mechanism is often called the dual decomposition
method.

Dantzig [1963] applied this method in a hierarchical way to a four stage staircase model

by dividing the original problem into a first level master problem of stage two and four and two
first level subproblems of stage one and stage three. The first level master problem is further
divided into a second level master problem of stage four and a second level subproblem of stage
two. The first level master problem sends price information to the first level subprobiems when

the second level subproblem has no more proposal to the second level master problem.

The Nested Dual Decomposition Method for Multi-Stage Models

The Dantzig-Wolfe decomposition method is motivated by the block-angular structure
in which the choice of a master problem and subproblems is relatively easy. But, under the system
of staircase or block-triangular with inulti-stages, the appropriate choice of master and
subproblems is not as simple as that of the block-angular structure. This problem can be solved
by employing nested decomposition algorithm.

Dual nested decomposition for staircase structure was first introduced by Dantzig [1963],
where the Dantzig-Wolife decomposition principle was applied to the dynamic model structure
in a recursive fashion. The algorithm of dual nested decomposition divides the original problem
into N period subproblems and solves only one subproblem at a time by applying the Dantzig-
Wolfe decomposition principle recursively. This principle makes the period t problem act both
as a restricted master problem with respect to periods 1 to r-1 and as a subproblem with respect
tor+l to V.

The price mechanism is used in dual nested decomposition for the coordination between
periods. The master problem receives proposals from subproblems and sends a price information

to subproblems.

Benders Decomposition Method

In the Benders decompasition method, the master problem allocates shared resources to
the subproblems. The subproblems, then, react by utilizing the resources and report to the master
problem the prices which reflect how well the subproblems use the shared resources. Then, the
master problem adjusts and reallocates the resources according to the price information.

Benders decomposition is efficient for the complicated problem which can be partitioned
into two parts: one major part containing linear variables and another part containing the
complicating variables such as integer or nonlinear variables. Benders decomposition can be

called the primal decomposition method.

The Nested Primal Decomposition Method for Multi-Stage Models

Dantzig [1980] applied a nested decomposition algorithm to the dual of staircase Linear
Programming models, which can be considered as a nested decomposition of Benders method.
In nested primal decomposition, the resource mechanism is used for the coordination between
periods. The master problem. which is the preceding subproblems, receives cuts from the

following subproblems and sends a resource vector to the following subproblems.

Cross Decomposition Method by Van Roy
Cross decomposition was first introduced by Van Roy [1983] for mixed integer programs.
The cross decomposition method can be described as simultaneously using Benders

decomposition (primal decomposition) and Dantzig-Wolfe decomposition (dual decomposition)

in an iterative manner. Cross decomposition divides the original problem into two decomposition
systems: the primal master problem (PM) and the primal subproblem (PS) in the primal
decomposition system; the dual master problem (DM) and the dual subproblem (DS) in the dual
decomposition system. The main idea behind this method is to make use of the very close
relationship between the PM (DM), and the DS (PS). This relationship is exploited in such a way
that only the easy-to-solve subproblems are used as long as they produce a converging sequence
of primal and dual solutions. This method may increase computational efficiency. But
convergence cannot be guaranteed by the use of subproblems only, and therefore a primal or dual
master problem, with all dual or primai solutions generated so far, has to be solved from time to
time as the algorithm proceeds. “The need for convergence tests and for involving a master
problem often prevents a possible reduction in computer memory requirements since it causes
complete sets of primal and dual solutions to be stored even if a master problem is not solved at

each iteration” [Aardal and Ari, 1990].

Primal-Dual Decomposition Method by Lan and Fuller

Another new method was developed by Lan and Fuller [1995a] based on Lan [1993] for
two-stage models. In this algorithm, the decomposition structure is balanced and convergence is
generally rapid. “The algorithm divides the original problem into a pair of restricted primai and
dual subproblems, each of which has summary information on all previous iterations of the other”
[Lan and Fuller, 1995a]. The solutions of the two subproblems are monotonically improved by
coordinating the information of the subproblems and converge to a prescribed tolerance of the

optimal value as the iterations go on.

10

In this algorithm, both subproblems are in equivalent positions and play the role of both
the master problem and the subproblem of the traditional method. At each iteration, the stage one
subproblem gives the upper bound of the original problem by restricting the dual variables to
convex combinations of known dual solutions and the stage two subproblem gives a lower bound
by restricting primal variables to convex combinations of known primal solutions. The algorithm
iterates until the upper bound and lower bound reach an equilibrium point.

Their tests for eleven probiems with the two stage, block-triangular structures showed that
the new method is usually faster and more efficient than the traditional methods.

Park {1996] extended this idea to convex, nonlinear programming models. He proved and
tested that the new algorithm for the two stage case converged to an optimal solution in a finite

number of iterations.

Primal-Dual Nested Decomposition Method for Muiti-Stage Models

Lan and Fuller [1995b] also presented a nested primal-dual decomposition algorithm for
the multi-stage LP problems with block-triangular matrix structure. In this algorithm, the original
multi-stage problem is divided into a sequence of a pair of subproblems for each stage. These
subproblems are coordinated by passing the proposals forward and cuts backward: the previous
subproblems pass the proposals to the following subproblems forward in stage numbers (which
designates time period in many models) time and the following subproblems provide cuts to the
previous subproblems backward. This information flow between subproblems is shown in Figure
2.1. from Lan and Fuller {1995b]. The algorithm can be perceived as the combination of the

primal and the dual nested decomposition algorithms. As in the two stage case, the first

11

subproblem provides the upper bound to the original problem and the last subproblem provides
the lower bound to the original problem. These two bounds are monotonically improved and
converge to a prescribed tolerance as the iterations go on.

Park {1996] applied this nesting scheme to multi-stage convex nonlinear programs and
showed that the nested algorithm converged in a finite number of iterations, but without a

convergence proof.

Y
(-t-l:—Es
a X
: Proposals
Cas _ 0
A Y
Cuts ﬂ_> v
A X

Figure 2.1 Information flow of nested primal-dual decomposition

2.2 An Overview of Parallel Computing

Parallel computing is the use of paralle! computers utilizing more than one Central
Processing Unit (CPU) at the same time to solve a single large problem faster and more efficiently
[Baker and Smith, 1996]. In this section, several parallel computer systems are reviewed briefly

and two performance measurements of parallel computing are discussed.

SIMD vs MIMD

Parallel computers can be classified into two groups by Flynn [1966]: SIMD (Single
Instruction, Multiple Data) and MIMD (Multiple Instruction, Multiple Data).

A SIMD machine consists of 2 number of identical processors doing the same things to
different data at any given point of time. Typical SIMD machines have large numbers of relatively
simple and affordable processors resulting in fine-grained parallelism, which distributes the data
as widely as possible with each processor performing the simplest operations.

In MIMD machines, the most widely employed parallel machine architecture, each
processor executes a possibly different program on different data under the control of different
instruction asynchronously. The MIMD machines generally have fewer but more powerful

processors than SIMD machines.

Shared Memory vs Message Passing

Another architectural classification is whether the parallel computer is a shared memory
machine or a message passing machine according to how the processors communicate with each
other.

Shared memory computers have global memory that can be directly accessed by all
processors. Shared memory computers are not very scalable, particularly when the entire global
memory is equally accessible to all of large number of processors. They also impose an inherent
concern of synchronization. i.e. how different processors can read and write the data in the same

location of memory simultaneously without conflict. Currently, most shared memory computers

13

have a local memory distributed to each processor together with a global memory accessible by

all processors. Shared memory MIMD computers are often called multiprocessor computers.

Message passing MIMD systems are often called multicomputers. In message passing
computers, each processor has its own local memory, but they do not have shared memory, and
processors communicate only by sending and receiving messages over a communication network.
Each processor in message passing machines executes its own instruction streams and uses its
own local data, both stored in its local memory. Then, necessary data can be exchanged by
sending messages to each other over a network. Since the network determines the speed and
reliability of interprocessor communication and the spatial distribution of the processors, message
passing systems can be further characterized into closely coupled systems and loosely coupled
systems (or distributed systems) by their communications networks.

Closely coupled systems, such as the architectures with mesh or hypercube networks,
have fast and reliable point-to-point links between processors which are physically close to one
another. Loosely coupled systems or distributed systems, such as workstations connected by local-
area network (LAN) or wide-area network (WAN), have relatively slow and unreliable
communication between processors that are physically dispersed. They have coarse-grained
parallelism, which distributes the data as large as possible with each processor spending most of
its time doing computations and communicating infrequently because of the expensive
communication cost.

The local-area network (LAN) systems consist of several workstations connected by a

network. The local area network allows communication between any two processors physically

14

apart. In many LAN’s, communication is not very reliable, for example, a message may be
damaged, arrive out of order, or not arrive at its destination at all, so communication requires a
lot of programming effort. Therefore, some software protocols for message passing systems such
as Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) are used to implement
reliable communication and simpler programming.

PVM, which is more suitable for LAN based systems than MPI, provides an interface
which links separate hosts, possibly of varying types, to create a single logical host, so-called
virtual machine. PVM allows a programmer to take virtually any network of UNIX-based
computers and treat them as a single parallel computer. “PVM has a somewhat limited message-
passing subset, providing basic send and receive operations and some simple collective
communications, but not providing the rich set of features that more formal message passing
systems, like the MPI, provide. PVM does, however, provide a complete environment for parailel
computing, including the PVM console, and includes features for dynamically adding and
deleting machines from your own virtual-machine configuration.” (from Baker and Smith, 1996)
A LAN limits the physical distance between processors to on the order of a few kilometers. To

interconnect processors that are farther apart, a wide-area network (WAN) can be used.

Performance Measurement in Parallel Computing

Generally, the performance of parallel computation can be measured in two ways,
speedup and efficiency, even though they depend on hardware, software and algorithms of solving
a problem.

The speedup S achieved by a parallel system is defined as the gain in computation speed

15

achieved by using N processors with respect to a single processor:
S=T\/Ty
where T is defined as the time taken to solve a particular problem by the fastest seral algorithm
on one processor, and Ty is the parallel runtime taken to solve the same problem by a parallel
algorithm or computation on N different processors.
The efficiency E denotes the effective utilization of computing resources. It is the ratio
of the speedup to the number of processors used:

E=S/N.

2.3 Parallel Decomposition

Recent advances in the developments of massively parallel processors (MPPs) and
distributed computing systems made it possible to coordinate many small tasks to solve one large
problem. This modem technology encourages development of decomposition algorithms to solve
subproblems simultaneously using several different processors for algorithmic efficiency.

Several parallel computational tests and algorithms for LPs with block-angular and
staircase structures have been presented since block-angular and staircase structures lend
themselves naturally to parallel computing. Ho, Lee, and Sundarraj [1988] implemented the
Dantzig-Wolfe decomposition algorithm for block-angular linear programs using parallel
processing of the subproblems in the CRYSTAL multicomputer at the University of Wisconsin
at Madison and showed that significant speedup could be obtained using parallel decomposition.

Rosen and Maier [1990] presented another approach to parallel solution using the dual of block-

16

angular linear programs by fixing the dual coupling variables. Gnanendran and Ho [1993]
investigated strategies for improving efficiency in distributed Dantzig-Wolfe decomposition by
better balancing the load between master and subproblem processors because the parallel
efficiency of the distributed approach is critically dependent on the duration of the inherently
serial master phase relative to that of the bottleneck subproblem.

Entriken [1996] presented the experimental results of using parallel Benders
decomposition to solve staircase multistage problems on a shared memory multiprocessor
computer which has 6 processors. He showed that parallel decomposition can solve a large
problem with staircase structure faster than the simplex method even when serial decomposition

is slower than the simplex method.

Another use of parallel processors for decomposition algorithms is for the area of
stochastic programming problems since the equivalent deterministic problem of a stochastic
model is typically very large. Dantzig and Glynn [1990] suggested the use of parallel processors
to calculate the subproblems of Benders decomposition for stochastic models. Ruszczynski
[1993] suggested parallelizing a variant of the nested decomposition algorithm by queuing
subproblems for idle processors, and Birge, Donohue, Holmes and Svintsitski [1996] tested and
compared the parallel implementation of a nested decomposition algorithm for multistage
stochastic linear programs over a serial implementation using PVM on a network of RS/6000
model 320H workstations connected by a local ethemnet. Their computational experience on a
large test set of practical problems with up to 1.5 million constraints and almost 5 million

variables showed that the parallel implementations worked very well but they require careful

17

attention to processor load balancing. Nielsen and Zenios [1997] implemented a version of
Benders decomposition algorithm for two-stage stochastic LPs on the parallel CM-5 computer
using the interior point method to solve scenario subproblems in parallel. Another computational
assessment for stochastic LP decomposition using interior point method was reported by

Vladimirou [1998] on an IBM SP2 multiprocessor system.

Fragniere, Gondzio, Sarkissian and Vial [2000] proposed a new tool, called Structure
Exploiting Tool [SET], for linking algebraic modelling languages and structure exploiting tools,
such as decomposition methods, using the GAMS I/O Library [1996] and the Regex Library
[1992]. Fragniere, Gondzio and Vial [1998b] reported a successful parallel implementation of
Benders’ decomposition on 10 Pentium computers under the Linux operating system for a

stochastic financial planning mode! with one million scenarios, using SET.

2.4 Summary

Unlike Primal-Dual decomposition, most decomposition methods possess an unbalanced
structure providing different amounts of information to the master and subproblems and allow
only the master problem to converge monotonely. Lan and Fuller [1995] suggest that these two
factors may be the main reason for the poor performance and slow convergence of the traditional
decomposition methods.

Since no one has developed a parallel algorithm for primal-dual decomposition of LPs,

in this thesis, we develop and study such an algorithm.

18

Chapter 3 Parallel Decomposition of the Two-Part Problem

In this chapter, we develop a parallel decomposition algorithm for two part linear
programming problems, i.e. an LP problem which would break into two distinct LPs, except
for a few linking constraints that connect the parts. The new method divides the original
problem into two subproblems (a lower bound subproblem and an upper bound subproblem),
instead of the traditional master and subproblem. The subproblems are derived in a way that is
similar to the two subproblems in Lan’s [1993] scheme, but here we derive them for a two-
part structure for parallel computations. whereas Lan's was for the two-stage structure, for a
serial algorithm. Since the subproblems in each part give an upper bound and a lower bound
to the original problem, the algorithm arbitrarily selects an upper bound subproblem from one
part and a lower bound subproblem from the other part and solves them simultaneously in two
different processors. By exchanging primal and dual information at each iteration, these two
bounds are monotonically improved and converge to within the prescribed tolerance of the

optimal value.

3.1 Model Structure and Assumption

The variables and constraints are grouped into two parts, indicated by the subscript
r=1. 2. The objective function is the sum of linear functions and each part's objective function
depends only on that part's variables. Each part contains three sets of variables: nonlinking
variables. x,. linking variables, v, and artificial variables, v,. Also, each part consists of three

sets of constraints: nonlinking constraints. linking constraints and upper bound constrants on

19

linking variables. The linking constraints in each part may contain linking variables of either
part to represent the influence of that part on the other. The general primal and dual structures

of the two-part linear program are as follows (superscript T denotes transpose).

P: max I o= axi +diyy - Mivy + c2xa + dayr - Mavs
(" s.L. Aix; + Dy < b
(w) Bixy +Luwn - v + Li2ya < A
@D A7l <
(szr) Axxy + Dava < b
() Ly + Bixs +Lny: -v2a £ fo
(P2 " < w
Xy, V1. vy, X3, ¥, v2 20
D: wmpir‘:w: = b+ O fi+ P+ Mab: v+ fo+ prus
(I]T) s.t. A + OB 2 ¢
Gl mDy + il + p + iy 2 d
) w; <M
(.tzr) Ay + B> 2 o
) wliy + MDr+ w;ln+p: 2 4
(v2) w <M

Ty, @y, Py, 2, @, P2 20
where x€ R" , v& R" . vie R* are the vectors of variables for part 7. The dual variable vectors
for the constraints of part ¢ of P are denoted by row vectors &, @, and p, where e R™,
o< R*andpe R" . L is a g, x r, matrix. A,is a m,X n, matrix, B, is a g, x n, matrix, D, is am,
X r, matrix, and ¢, d,, M; >0. b,, f,, and u, >0 are vectors of suitable dimensions for r=1, 2.

Each part has a set of primal (or dual) nonlinking constraints containing A,, and a set of upper

20

bound constraints. The two parts are linked through the primal (or dual) linking constraints
containing the matnx L,. The primal (or dual) linking variables are y, (or ;) which appear in
linking constraints of both parts. Each linking primal constraint has a corresponding dual
linking variable and similarly, there is a linking dual constraint corresponding to each linking
primal vanable. Each primal artificial vanable induces a corresponding upper bound
constraint to a dual linking variable. Similarly, there is a dual artificial variable corresponding
to each upper bound constraint for a primal linking variable. These artificial variables can be
adjusted to sausfy the linking constraints, thus allowing each part to act independently.
However. because of the high cost of the artificial variables, it may be desirable, in the
optimal solution. for the parts to cooperate. Thus, the artificial variables (primal and dual) are
an important aspect of the notion of “parts™ of a linear program. The primal artificial variables
may in fact represent a real aspect of the situation such as unfillable demand or emergency
purchase in inventory constraints; whether real or artificial, these variables ensure the
feasibility of linking constraints.

The two-stage (or block-triangular) structure is a special case for which part one has
no linking constraints and v» does not exist, i.e. By, Ly, L2, D> and Ly are all zero. This
structure arises, e.g.. in a two period model, in which the linking constraints represent the
influence of decisions in the first period on those in the second.

An assumption is made in order to simplify the algorithm, and to guarantee
convergence.

Assumption: The set of nonlinking constraints in each part, together with the upper bound
constraints and nonnegativity constraints, define bounded feasible regions for the x;, y; vectors.

21

The assumption ensures the boundedness of the solutions to the subproblems defined
below, which simplifies the algorithm. The assumption is also used in the proof of
convergence of the algorithm. Note that the optimal values of the artificial variables are also
bounded because the costly nature of the artificial variables keep them as close as possible to
their lower bounds of zero during the whole optimization process. (This is shown formally in

the proof of Theorem 3.8 in section 3.5).

3.2 Subproblem Structures

The new decomposition method relies on the definition of a subproblem for each part:
the subproblem for one part gives an upper bound on the optimal value of the original
problem and the subproblem for the other part provides a lower bound for the original
problem. Because of the symmetry of the parts in the general problem statement, the choice of
subproblem type for a part appears to be arbitrary, but for a given instance of the two-part LP,
the modeller may have reasons to make a particular choice. In what follows, the subproblem

for part one is of the lower bound type. and part two provides an upper bound.

The lower bound subproblem from part one, denoted by §£{‘ at iteration k, can be

constructed by restricting the primal variable vectors x> and vy, to convex combinations of
known solutions of x> and v., obtained from the second subproblem at earlier iterations, thus

allowing us to drop out the sets of nonlinking constraints and upper bound constraints of part

two from the original primal problem. The subproblem §£f_ keeps both parts’ primal linking

constraints. The upper bound subproblem in dual form from part two, denoted by s—l-)_f , can be

constructed in the same way by restricting the dual variable vectors m; and @, to convex
combinations of known values of 7, and , from the first subproblem at earlier iterations, thus
allowing us to drop out the sets of dual nonlinking constraints and dual upper bound
constraints of part one from the original dual problem, but keeping both parts’ dual linking
constraints.

The primal and dual forms of the lower bound subproblem at iteration & are presented

below first.

SPi: max d=cntd v -Mn+(c: XV +d: A -Mev:

< Ed
L VLA e

(nl) S.z. AixtDy <h
(o) BixitLuy, - w + Lo YS! <f,
(p{) N Sw
(w?) Lvy, + B:XP'+LnoYI)A" - w2 £f,
®) G

k-1
.tl._Vl.Vx.V:';L 20

SD; :] u"m’:'nm . A= mht aof Pt mf.+ O

(x1) 5.6 mA + b 2 ¢

() D+ aly +P + anly 2 di

(vi) (0] S M

) e L: V't B XY+ LY + 0T 2 X +da Y
(vi) ar <M:

nl' (.lh,plp (0220

-l - . -] - . . a b -
where X-"! is a n2 x (k-1) matrix and Y;" lis a r» x (k-1) matrix, i.e. Xz“ = (le. X7y ey sz h
and Y- = (2%, v+, v2*1), come from the (k-1) previous primal solutions of SPy; A™' isa

(k-1)-dimensional column vector variable, i.e. A= KRS AdfHT o is an

3

unrestricted scalar variable; and "' is the (k-1)-dimensional row vector with all components
equal to 1. At the first iteration, k=1, there is no information from part two, so there is no A
variable, and the optimal value is not in general a lower bound (unless x2= 0, y»= 0 is feasible
in part two).

Because SP;* is a restriction of P and the restriction can be loosened at each iteration
by the inclusion of another x; in X>* "' and v, in ¥>*", it follows that the optimal values of the
subproblems form a nondecreasing sequence of numbers, all less than or equal to the optimal
valueof P,z <. <og o f s 2

The dual and primal forms of the upper bounding subproblem are as follows.

SDi: min S=p I e +QF f) P mt m bt £+ Paun

u'! PR wPs

(y) s WO D+QI L+ + wela 2 d,
(xD) T: A:+ @z B: 2¢:
(."I:-) Q' L + R:D:+w2ln +p, 2d:
(VT:-) w M-
(8) IJ.H e“'lr =1
Mk'l.ppnz-m:,p@o

S—P—E) ,."f.af. .. a=diy, texa*tdiy, - Miv: + 62

W) st (MFD + QL)Y + Q' Ly, +e7 0 SIFh + Q' f,

(pf) » S w

(ni) Azxx + D2y, < b

(w?) Lay + B:x: % Lay. - w2 < f:

(pg) Y. S w

where [T, and Q" are a (k-1)xm, matrix and a (k-1)xq; matrix, i.e. [T,*' = m'7, ;" ...,

517y and Q4 = (@'7, o0, ..., @°'7)T come from (k-1) previous dual solutions of SP;;
u¥! is a (k-1)-dimensional row vector variable, i.e. p¢'= (U, w*', ..., wet™!'); 8: is an

unrestricted scalar variable; and ¢! is again the (k-1)-dimensional row vector with all
components equal to 1. Because s_])’j is a restriction of D and the restriction can be loosened
at each iteration. by the inclusion of another 7, in 4" and o, in Q,%, it follows that z'< z,f
Sl gt

When k=1, there are no variables 0, or ¢;, and there are no cuts, nor are there A or u
variables, because the algorithm begins by solving both SP, and SP, simultaneously, so
there are no solutions yet available from both subproblems.

After both subproblems are solved concurrently, SP| sends dual information (called
proposals) to SP,, and receives primal information (proposals) from SP., while SP, sends
primal information to SP,, and receives dual proposals from SP,. This communication scheme
continues until the gap between their objective function values reduces to within a prescribed

tolerance. Figure 3.1 shows this communication scheme.

Subproblem 1 Subproblem 2
Iteration 1 o, X'yt
Iteration 2
[teration 3
[teraton k

Figure 3.1 I[nformation flow for parallel two-part algorithm

[f only one processor is available, then the decomposition principle can be
implemented in a serial fashion since any parallel algorithm can be implemented serially with
the disadvantages of slower speed, larger computer memory or disk requirement (on one
computer than on any one of a set of computers run in parailel), and the poor usage of
available information. For example, the scheme in Figure 3.1 could be implemented serially
by solving subproblem one, then subproblem two, then exchanging information, and
repeating, i.e. by moving left to right and down in Figure 3.1. However, it set;ms advantageous
to use proposal information as soon as it is available, so another serial implementation would

solve one subproblem, then pass a proposal to the other subproblem, which is then soived, and

26

a proposal is passed back to the first subproblem. The latter scheme has been implemented by
Lan and Fuller [1995a] for the two stage mode! structure, a special case of the two part model
structure, e.g. two period models. Lan and Fuller choose part one as the upper bound
subproblem. The serial algorithm first solves the stage one subproblem and sends a primal
proposal to the second stage subproblem, then it solves a new second stage subproblem with a
new column generated, and sends dual proposals to the stage one subproblem. The stage one
subproblem is then solved with a new cut. The stage one subproblem provides upper bounds
on the optimal value of the whole problem, and the stage two subprobiem provides lower
bounds. This sequential process continues until the objective values of both subproblems have

come within a predetermined tolerance.

3.3 The Decomposition Algorithm

In this section, the procedure of the parailel decomposition algorithm is formally
described. Various properties of this algorithm will be discussed in the next section. The
scalar € >0 is defined by the user to stop the algorithm when the upper bound 2" and the lower
bound z,* are less than € apart. Claims about feasibility and optimality are justified in the next
section. In the statement of the algorithm, the symbols X>2, Y22, I1,%? and Q;** appear, and
for the value k=2, they have special meanings: X', and Y- are null matrices having no
columns. while TT,® and Q, are null matrices having no rows. The send and receive

statements synchronize the two processors’ iteration counters.

DO IN PARALLEL
Processor 1
Step 0. Set k=1, €50, and determine whether P is infeasible or the Assumption is violated.

- solve §_pj; if it is infeasible or unbounded, send stop signal to SP> and stop, P is

infeasible or the Assumption is violated;
- if stop signal from SP; is received, stop, P is infeasible;
- otherwise, record optimal dual solution 7,', @'
Step 1. Set k=k+1, exchange information, modify SP, and solve it.
Cset I =T, ' 7T and @' =@, 0t T
-send (m*'Dy + w*'Ly1). @* 'Lz, and (0 'b) + @,*'f1) to SPy;
- receive (caxt ! + oy, L2yt and (Baxs®! + Laay-*") from SPs;
- solve SP} : record optimal 25 b vk s vt A and et of
- send z,* and receive 2"
Step 2. Test for convergence: if =>° - z,*<€, go to step 3; ctherwise, go to step 1.

Step 3. Send A*"' to and receive u*"' from SP,. Calculate the optimal primal and dual

k-1 k-1
solutions for part 1 as (x*, y},vf.v3) and (X pi'a', Y o) -
=

=1
Processor 2

Step 0. Set k=1, £>0, and determine whether P is infeasible or the Assumption is violated.

- solve §9_[; if it is infeasible or unbounded, send stop signal to SP; and stop, P is

infeasible or the Assumption is violated;
- if stop signal from SP, is received, stop, P is infeasible;
- otherwise, record optimal primal solution x.', y,'
Step 1. Set k=k+1, exchange information, modify SP, and solve it.
-set XoF! = (X257, xo5Y) and Va4 = (152, ,v:“);

- send (C:.rgk'l + dzyzk'[). L;;{_V:k-l and (Bg.t:k'l + ngyzbl) to Spl;

- receive (m*'Dy + @ *'Ly), @F'L1a, and (m 418y + @, F'f;) from SPy;

- solve SPp%; record optimal =5 b vfand o, @, ot pat, pet s
k : k
- send 2: and receive ;"
Step 2. Test for convergence: if of - 21 <€, go to step 3: otherwise, go to step 1.

Step 3. Send "' to and receive A" from SP,. Calculate the optimal primal and dual

k-l k-1
solutions for part 2as (Y ;A Y v/A5") and (py.m' . x.p3) s stop.

1=l =1

END

Note that x.*, v»* and m°, * would not actually be passed because there can be a more
efficient communication scheme by exchanging smaller size vectors such as Ly, o*'Li

and c26:"! + dava*!, etc. If there are some good feasible solutions available to the original

problem. they may be used as a warm start since they always satisfy the constraints of S_P{ and

SP: which don’t have A nor 6, nor cuts, thus saving efforts to find initial feasible solutions for

29

the subproblems at the first iteration. Also, the algorithm can jump to k=2 for SP, and SP:
with small duality gap if good primal and dual feasible solutions to the original problem are
available.

Each subproblem works as both the master problem and the subprobiem in the
traditional decomposition methods: each accumulates proposals from the other, so is like a
master problem yet each contains full details on only its own part, so is like a subproblem.
The paralle! algorithm approximates the optimal value of the original problem by calculating a
nonincreasing upper bound and a nondecreasing lower bound at each iteration. This procedure
terminates when the two bounds are considered to be close enough according to the prescribed
tolerance. The optimal primal (or dual) solution of SP; (or SD;) in Step 3 may be obtained in
an alternate method by adding optimal allocated resource constraints to the subproblem of an
extra, final iteration and solving the new subproblem rather than storing all the previous
solutions and weighting them (Ho and Loute [1996]).

It is assumed that the LP solver takes care of any degeneracy (e.g. CPLEX uses
perturbation methods). Therefore, a nondegeneracy assumption is not needed for the

convergence proof in the next section.

3.4 Properties of the Algorithm

In this section, the important properties of the algorithm are discussed. The central
result is the guarantee of convergence of the algorithm, Theorems 8 and 9.

Theorem 3.1a below shows that the part one subproblem cannot be unbounded for

30

k=1, and Theorem 3.1b rules out the possibility that the second subproblem can be unbounded
for k=1. Theorem 3.lc ensures that the unboundedness (violation of the Assumption) is

detected at i=1.

Theorem 3.1a For k=1, subproblem SP{ is either infeasible or has a bounded optimal
solution.

Proof: When k=1, _S_P_{‘ has no A variable. By the Assumption, and the negative objective
coefficients of the artificial variables, SP\ can't have an unbounded solution. Therefore, §£§

is either infeasible or has a finite optimal solution.

Theorem 3.1b For k=1, subproblem S_Pf. is either infeasible or has a bounded optimal
solution.

Proof: When k=1, the subproblem s—P’j has no cuts or 0 variable. The possibility of
unboundedness is ruled out by the Assumption. and the large negative objective coefficients
of the artificial variables. Therefore, s_p;. is either infeasible or has a bounded optimal

solution.

Suppose a modeller unintentionally submits a model that violates the Assumption and
has an unbounded optimal value. Then, the algorithm detects the violation of the Assumption

and stops.

31

Theorem 3.1¢ For k=1, if the algorithm returns a message of an unbounded optimal value,
then the Assumption is violated and the algorithm stops.

Proof: When k=1, there is no A or 0 variable. If the set defined by the nonlinking constraints

and upper bounds of SP; has an unbounded ray, SP; is unbounded, too, because the linking
constraints can be satisfied by the ray through a choice of the variables v, and v;. A similar
observation can be made for s_pT_ Therefore, at least one subproblem has unbounded optimal

value for k=1, then the Assumption is violated and the algorithm stops.

The following theorems show that subproblems s_p{‘ and §F have finite optimal

solutions, at each iteration for k>1. Recall that the algonthm proceeds for k >1 only if S_P: and

s—p-g have finite optimal solutions.

The following theorems show that subproblems S_P:‘_ and ﬁ have finite optimal

solutions, at each iteration for k&>1. Recall that the algorithm proceeds for k£ >1 only if S_P: and

SP: have finite optimal solutions.

Theorem 3.2a When k>1, subproblem SP; has a finite optimal solution.

Proof: For the same reasons as in the proof of Theorem la, together with the constraints

A =1L A 20, S_P_{‘ can’t be unbounded. Next, if §P_{‘ were infeasible, the set of

nonlinking constraints and upper bound constraints in sﬁ should be infeasible because the

artificial variables in the linking constraints guarantee that these constraints are always
satisfied.

However, for the algorithm to proceed to iteration &>1, the same set of nonlinking constraints

and upper bound constraints, which was present in §g} at step 0, must be feasible, a
contradiction. Thus, §P_{‘ is feasible for k>1. Therefore, §_p_f has a finite optimal solution at

each iteration k>1.

Theorem 3.2b For k>1. each subproblem SP has a finite optimal solution.

Proof: For i>1. the feasibility of 5 is discussed first and then the boundedness will be

shown. There exists a feasible solution (v, x/, v/, v/) which satisfies all constraints except
possibly the set of first constraints (or cuts) in S—P’j because if not, the algorithm would have

stopped at step 0. The first set of constraints is satisfied if 8, is chosen as

. f
6:= min mibi+wif,-(Di+iL) ¥ -@iLeY:-

Next, the boundedness can be shown by the following reasoning:

max {diV,*c:x:+d:¥.-M:v2+0:|

A I 2NN 1
(miDv+wiLn) y,*orLiz V- +0:<mib+n f,, for i=L2,.. k-l

_V[Sulv Al.r2+DZy:$b2v L:x)’;"’B:.t‘:*L:z}':'v:Sf;y _stu:»ypxz.}';,v:zo}

33

max {diy,tc:x+d:v.-Mava |

Ypx2.Yv1.6;
(R D+ L)y, toiLiay.+0:.<nib+a f,, fori=12,..k-1,
VNSu Arxa+ D2 VaSba Lu Vit Baxat L Y- vaS fo, ¥aSua, Viox2, Vo v2 20}

IN

max {6:] (mDi+@Lu)y+onliy.+0:Smub+w f,, fori=12,.. k-1,

Yiex: YyviB:

ViSunArxa+ D2 VaSha, Lu v+ Baxat L Vo -vaS fa, V.S us, ypax2, Vaov2 20}

max {div,*c:x:+d:y.-M:va| ¥ Sw. Asxa+ D2 y.$ba.

YL Vave

IN

Ly _V;+B:.l’:+L2.V;"V:Sf3» .V;Sup ,V;-I:'_V:vv'.'ao}

max max {mb+w fi- @D+ L) y-wiley. | v Su.
+ =L20 kel vgn vy
Arx:+ D2 V.Shy, Lu v, #Brxa¥ L Va-vaS o, v.Sus, ¥ox2, V2o v220}

The latter maxima are finite, by the Assumption. Therefore, SP-* has a bounded optimal

solution for k>1.

Theorem 3.3 shows that the original problem P is infeasible if and only if one of the
subproblems is determined to be infeasible at step 0.
Theorem 3.3 Problem P is infeasible iff the algorithm detects infeasibility during step 0.
Proof: (The “if" part) If the algorithm on processor 1 reports that P is infeasible at step 0,
then the set of nonlinking constraints and upper bound constraints of stage one is infeasible,
because the linking constraints can always be satisfied due to the artificial variables. This
implies that P is infeasible. Similarly, if the algorithm on processor 2 reports that P is
infeasible at step 0. then the set {(x2, y2)| Az 2+D2v2 < by, ya S w2, X2, y220 } is empty,
which means that P is infeasible.

34

(The “only if” part) If P is infeasible, then since the linking constraints can always be
satisfied due to the artificial variables, it follows that one or both of the following sets of
constraints are infeasible:

(a) the nonlinking constraints and the upper bound constraints of stage one,

Aixy+Dyvi<h, v <uor

(b) the nonlinking constraints and the upper bound constraints of stage two,

Asxs + Dava £ b, va<u;.

The infeasibility of (a) will be detected at step 0 on processor 1. The infeasibility of (b) will be

reported at step 0 on processor 2.

The next theorem shows that an optimal solution of SP; provides a primal feasible

solution for the original problem P and S—]-D-T provides a dual feasibie solution to D. Theorem

3.5 shows that the algorithm issues both monotonically improved lower bounds and upper

bounds as the iterations proceed.

Theorem 3.4 SP{ provides a primal feasible solution CIR TR Y0y Sl JRLY LRy §2)

—— k-1 k-l
P and SD: gives a dual feasible solution (Euf"m Z e, pf, Tt @t p2*) 10 D when
=1 =1
k>1.
k-l k-1
Proof: The expressions §t= 2 A tand §h = 2 v.As'are convex combinations of x; and y»
=1 =1

values respectively. each of which satisfies the constraints Ay x; + D2 y2 < ba, y2 <uz with

35

nonnegativity constraints. Because (x5, vif, v/, v2t, S.f, S,%) solves SP!, the part one

constraints and linking constraints of P are satisfied. Therefore, (x:%, yi5, v/, v, 5 8,9

satisfies all constraints of P. The proof for the dual is similar.
k-1

k-1
Note that Y ;A" and Y viA!' are not actually calculated on processor 1 at any

=1 =l

iteration: they are calculated on processor 2, when convergence is achieved, by passing A"

k-1 k-1
from processor | to processor 2. Similarly, Zuf" m and Y u' o are not actually calculated

=1 1=l

k

on processor 2 at any iteration: they are calculated on processor 1 by passing u*' from

processor 2 to processor [, when convergence is achieved.

Theorem 3.5 If the algorithm proceeds 1o iterations k> 1, then

2
<l <..

IA

st Sente Ml g
Proof: Since SP; for k>1 is a restriction of P and the feasible region of subproblem SP;
includes that of the previous subproblem (by restricting the newest variable, A= 0), it

follows that ;"< ... < 7*! < 2)* < 2. Similarly. S—Df is a restriction of the dual of P, that is

loosened at each iteration, which proves the remainder of the claim.

The following theorem verifies the calculation of the primal and dual optimal solutions

of P.

36

k-1 -

- 1 k-l k-1
Theorem 3.6 Suppose (%, vit, vt 2 AL, 2 yaAEt, vo) and (pr"m , Zp.,“m{, ot mok,

1=l =] =1 1=l

(o;". p;") are the optimal solutions of SP; and SD%, respectively at iteration k. They are

optimal primal and dual solutions of P and D if and only if =t

k-1

k

k-1
Proof: Basic duality theory, and the feasibility of (%, »1*, v Y xal', Y yial', vi) and

=1 1=l

k-l k-1
Qu'm. Y u o, o 1 o', p2) in P and D ensure the result.
=1

=l

Because the two subproblems are solved simultaneously, it takes two iterations of the
parallel method for one subproblem to respond to the information of the other subproblem.
Therefore, the subproblem of the next iteration can have the same solution as the current
iteration. Theorem 3.7 shows that if the feasible solution of current iteration is feasible in the
next two consecutive iterations of the parallel algorithm, then it is an optimal solution to the

original problem.

Theorem 3.7 For any k>1, if the primal optimal solution of SPY*, (»*!, 2", v, v.¥,8.5Y),

is feasible in ;p; and SP%™', then the optimum is reached.

Proof: For any k>1. suppose that the primal optimal solution of SP%*, (", x2", ¥, va', 820 is

feasible in SP% and SP:™'. Since SPA™ is a restriction of SP%, which is a restriction of Sp",

(', x2", v, v, 82)) is optimal in s—pf and Sp:™. Then, the unchanged proposal, (x:", v2"),

37

could be passed to SP, , SP*! and SP!**, which would all be the same problem. Therefore,

the optimal solution of SP; is also on optimum of SP!*! and SP{™*. The algorithm will be
repeated with the same solutions of both subprobiems thereafter.

Froms_l)i (for clear presentation we put subscripts with parentheses on the lower right side of

variables except nonlinking variables, which indicates the subproblem in which the value was

solved for)
k k-l k-l k 13 k-l k-l
0,2 cxxx tdaV.,-r Liz .V;,m gy (Brxa + Lz Vi)
and from SPY' 4'=d, Vi + crxd 42 Vi - Maviin +63 50 we have

¢
02 "* ‘dl (~)+M~V~_m 9* - u)levwm (!)l.(l)(B‘ \f’ +L22_V:,‘). 3.1

From Sp!™
04 <l b+ o £y -(m Dit vy L) _ka.:l:) - Lz ¥ :L, .
and fromSD; = = =ntbi+ara fi+Pr nran fs +0, .so we have
01 S o px s o 2 @1 -(nt D+ an.y L) V; m - ono Liz .V;l (3.2)

Subtracting (3.1) from (3.2) gives

&+l k
6:" <z 01 m " e fi- +d Vl (*) -Mavin 6 "+t L .v:.(‘) (3.3)

kol

+oim (Baxi'+Ln Vi m) (n D+ oxay L) V; m -t Liz ¥a
. k &
Since - M- < -@i,, and Dl+0)f.(l)[-ll+pl.(l) +i Ly 2d; fromSD;

k-1 R :
ﬂnd = u|$ - .\'1 o - f:S‘ L'v‘ Vl lq) B~ {* - L-n Vq & + V‘ (-v) from sp;l y (3-3) glVCS
N

38

kvl kel k k-1 k-1
-z +0

£kl £k
'+ (nf Ditota Lu) Vl (- *(lh wLiz Yy S1 Py Yo Wiy vie +

k-1

‘(.l)"(l)(l.’l Vl (~)+ B"X" T+ L= V" ")' vl(l))
k & k ki

+(mi Di+on Lll+pl.tl)+u}-’~‘“ La) ¥ o

k k-1 3 k-l k-l
+@un Liz ¥ o v @0 (Bax2 + L V3 o)
so it becomes

kel k

ko &1 k-1 k & kel & k-
8" + (! Di+ o L) V. e ,+(1)| mLia¥ss S22 460 +(m D+ ey L) Yy gt Liz Yo

- . -l & - - -
Since @4"'= @', ¥, = L, v, = »b', and by Theorem 3.5, it should be 2" = 5" and

the optimal value has been reached.

The convergence of the algorithm is proved using the following lemma and theorems.
Lemma Ler {z}.,. {21}, and {w/}.., be infinite sequences, where 2fe R e R'. and
wie WCR™ fori=12, ..., I where W, is closed and bounded. Suppose that there exists >0,

for all k and all j>k, such that
0sZ-2*<Q i"w{- wf"-
=l

Then. there exists at least one subsequence indexed by S = {(k,}_, &N such that

lim (5 - =0.

n-—eem

Proof: Recall that. for any infinite sequence of vectors chosen from a closed and bounded set.

there exists at least one convergent infinite subsequence. Therefore, there exists a convergent

infinite subsequence of {us };_, indexed by S; < N. Similarly, there exists a convergent infinite

39

subsequence of {w:}., . indexed by S: < Si. Proceeding in a similar fashion, we may

conclude that there exist subsequences indexed by S=§; such that{ w’}converges for every i=1,

2..... I, when keS. The inequalities in the assumption hold for any j>k, so they hold in
particular for adjacent elements of the subsequence S, labeled k., k..;. Because the difference

24~ - -f+ is bounded below by 0 and above by an expression which converges to 0 through the

subsequence S, the claim is proven.

Theorem 3.8 Consider the primal and dual sequences {(v/, x{. v{. v¢, 84)},<" and {(m)",
o, pif.ant 0" }iet” generated by S_P{ and SDy . with the objective values { =d, y/ + c2x{
+ dsyd -MavY + 684 and d=mtbh +offi + P+ 0.)1kf3 +0,°. There exists an infinite
subsequence S ={k, .., & N such that the objectives converge to equal values in the limit, i.e.
(=t~ =410 as n—oeo.
Proof: Consider any iteration j>&. From SD; . we have

d2aibtal firpmr et fit et d ol Le v -0t (B H Lo yy) (B4)
Froms_P{ . we have

dSdivitexitd: Vi-Movitnibtex fiom Duy)-an Lu Y -ox Lia V3 (3.5)

Subtracting (3.4) from (3.5) gives

! k J 4 W 3 7 L3 J k J
peasSdivitexitd:yi-Mavi-ti Doy -an La Yy -on Liz Y3 3.6)

& k k-l k-l 3 k-1 3 k-1 k k-l
Prw-wr famcixa ~da¥, *an LizV, v Bixz tanlny,

By multiplying ;" (20) of SD! to both sides of L ¥+ Byxi'+ Lzy: - vi'S f, from

SP%!, we have

@ Lu Y+t Baxt + i La Yy ~bvi' S f . (3.7
Substituting (3.7) into (3.6) yields

¢ : k &
d-aSdiyterxi+dayi-Mavi-mi DY -an Lo ylj'(‘mkl‘uyé (3.8)

- 9: w-c:x:'-d: _V:l +ax Liz ,V;’l ~wi Ly .V:-l +aavs!
By multiplying v/ (20) of §E_ to both sides of nf D+ L1 +p; + @t Ly 2d, from SD: . we
have

DY Fox Lu Vi +0; ¥+t L vi2d. . (3.9)
Combining (3.9) with (3.8) gives

: 3 g g 1 k k-l k-t
GruaScxitd:yi-Mavi-aw Lo Vi-piw-cax2 -d: Vs

(3.10)
+on Ly @b La Y taivit e vt La V]
FromsSD; . if wx* <€ Ms is multiplied by v2*'(20) of Z;}F , then it follows that
vl <Myt (3.11)
From E Jif ¥/ < is multiplied by p,* (20) of §D_f , then we have
o v <pifu . (3.12)
Combining (3.11) and (3.12) with (3.10) gives
e ASedrd Vi -Mavi-of L Vi-cr - da vy 3.13)

3 R 3 k-l k J k1
+un Liz¥s - lay tenlyyitM:av:

Rearranging (3.13), and using Theorem 3.5 gives

41

0<zi- Zf S(l.)g L ()’1J -)’:-l)*'C: (x1- x':‘") "’(d:'(!)lk Li2) ()’}’, -)':'l) -M:(vi- Vg'l) .

The expression on the right is a sum of products of two vectors, therefore

dd-2b <o Loy - #led ot - b+ e - f Lo ot - 55 ofpi-vt]. .14
Since o and @, have upper bounds of M, and M, we can let O, = max |d:- o L.
Q:= max | @ Lxand @ =max {Q,.Q
Then, since M- >0, it follows that 0 >0. Therefore,
os -0t ole-stl ehto bt 519

However. the artificial variables, v-* (20), are also drawn from a closed, bounded set by the
following reasoning. From P, we have v2 2 Ly, v; + B2 x3 + L1 y2 - fo; since va is very costly,
the optimization process forces equality at the optimum. An upper bound on v2* can be
obtained by maximizing each component by selection of y;, x2, y; from the bounded set
defined by A2 x2 + Da v2 £ b, i € uy, va < u; together with v;20, x>20, v»>0. Call the upper

bound vamax. Then, 0 € vo¥ € vapa,

Therefore, by the Lemma there exists a subsequence {k, } -

., such that (4= - zf*)—0 as n—ee.
Theorem 3.9 The objectives of the entire sequence of optimal solutions converge to equal
values, in the limit, i.e. (z4 - 2/)>0 as j—roo.

Proof: For any panticular value of j2k;, there is an earlier iteration number, from the

subsequence, {k,}_

=17

which is closest to j, i.e.k, =max {k,|k.< j, j€ N}. By Theorem 3.5,

zi- zi' < - zfoo, and by Theorem 3.8, the right side of the inequality converges to zero.
Therefore, (z7 - z/"')—0 as j—eo through je N.

Corollary If the parallel primal-dual decomposition algorithm proceeds to iteration k>1,
then with the given tolerance € > 0, it stops in a finite number of iterations.

Proof: The corollary follows directly from the stopping criterion €>0 and Theorem 3.9.

3.5 Summary and Observations on ‘e Algorithm
L. The original problem is divided into two types of subproblems in each part: a lower

bound type subproblem and an upper bound type subproblem.

9

The lower bound subproblem in primal form is constructed by restricting primal
variables, x and v, to convex combinations of known values, received from the upper
bound subproblem, thus dropping out redundant primal nonlinking constraints and
primal upper bound constraints. The upper bound subproblem in dual form is
constructed by restricting dual variables, ®; and ®,, to convex combinations of known
values. received from the first subproblem, then dropping out redundant dual
nonlinking constraints and dual upper bound constraints.

3. The parallel algorithm has a perfectly balanced structure by the two master-like
subproblems instead of the master and subproblem structure as in the traditional
decomposition methods.

4. Information on primal and dual solutions is sent and received between the two

subproblems at each iteration. The dual solution of the first subproblem is passed to

43

the second subproblem to make a cut and the primal solutions of the second
subproblem are passed to the first subproblem as the proposal information.

The new algorithm approximates the objective function value by issuing
monotonically improved lower bounds and upper bounds by the first subproblem and
second subproblem, respectively during the iterations.

This algorithm performs the convergence test by referring to both subproblems

simultaneously and converges to a given tolerance in a finite number of steps.

If, in the upper bounding subproblem, §>-" all cuts except the most recent are
eliminated, then the algorithm reduces to the familiar Dantzig-Wolfe decomposition
algorithm.

If, in the lower bounding subproblem, Si{‘ , the weight on the most recent proposal is
required to equal 1 (and the other weights are zero), then the algorithm reduces to the
familiar Benders decomposition algorithm.

The parallel decomposition algorithm can be extended to more than two part

problems. Chapter 4 discusses a parallel algorithm for the multi-part problems.

Chapter 4 Parallel Decompeosition of the Multi-Part Model

In this chapter, two parallel decomposition methods for multi-part linear programming
problems are presented. The first is developed by applying a hierarchical decomposition
principle recursively. We first divide the original multi-part problem into two aggregated
subproblems of lower bound type and upper bound type, by applying the basic algorithm of
the two-part method, which was discussed in the previous chapter. Then, the aggregated
subproblems are further divided into two smaller aggregated subproblems of upper bound and
lower bound. This resuits in some primai subproblems accumulating both proposals and cuts.
This bifurcation process continues until there are no subproblems left for further
decomposition. The subproblems are solved in different processors simultaneously and work
together to reach an optimal point during the iterations by exchanging information in the
hierarchical way. In Chapter 5, we report successful convergence on several test problems.

The second method is less complex than the first. It defines some subproblems to be of
the lower bound type from Chapter 3, i.e. utilizing primal proposals from other subproblems,
and the other subproblems are of the upper bound type. Unfortunately, this method fails to

converge in some tests. We include it because it may be useful as a heuristic.

4.1 Definition of a Multi-Part Linear Program

The definition of the two-part problems is now extended to that of multi-part

problems. Consider the following primal and dual forms of LP problem of N parts:

45

N
P: maXZ(c,.t,‘f'd,y,'M:V:)

1=l

(n]) s.t. Ax+Dy, <p, t=12,...N
N

(@) Box+YLsv,-v Sf,, t=L2..N
s=l

®) Y, <w, t=L2..N

X, Y, v 20 for t=12,...N

Al
D: min Y (mb+af,+pu)

e=1

) sI. mA+aB e, t=12,...N
N

) nD+YwLatp, 2d. r=L2..N
s={

/) @ <M, t=L2,...N
T.ox.p,20 for t=12...N

where the subscripts 7 and s indicate the part number, N is the total number of parts, x, v, and
v, are the vectors of n,, r,, and g, variables for part ¢, for r=1, 2, ..., N. The dual variable vectors
for the constraints of part 7 of P are denoted by row vectors 7, @ and p; which are the vectors
of m,, q,, and r, variables for parnt r. L is a g,xr; matrix, A, is an m,X n, matrix, B, is a g;x n,
matrix, D, is an m,xr, matnix, and ¢, d,, M>0, b, f, and u>0 are vectors of suitable
dimensions for r=1. 2, ..., N and s=1, 2, ..., N. The general structure of the multi-part model is
also shown in Table I.

The same assumption as in the two-part case is made in order to simplify the algorithm

and to guarantee convergence:

Assumption: For each part, r=1, 2, ..., N, the set of nonlinking constraints, together with

46

upper bound constraints and nonnegativity constraints, define a bounded feasible region for

the x, y; vectors.

Table 4.1 General structure of multi-part model

Dual 5::::: n o woow x 2 w XN YN ow
Vector Dimension m n q m n ¢ oo gN RHS
4 m A D h
w q B Lu -l Li Lw h
o]} n { u
&l m A D b
¢ Lxn 8 Ln -l Lo £
p2 r 7]
N my Ay Dw bw
Wy qy Lw Lw B Lw -l I
ps rv 1 iy
Objective a d -M a d M . oy dv -Mw

4.2 The Structure of Subproblems for the First Method

4.2.1 The Bifurcation Process

We first divide the original multi-part problem into an aggregated lower bound

subproblem, denoted by P, and an aggregated upper bound subproblem, denoted by Py, by

applying the basic idea of parallel decomposition of two-part models to multi-part models.

Again, we divide the aggregated lower bound subproblem into its aggregated lower bound

47

subproblem, denoted by P, and its aggregated upper bound subproblem, denoted by Py,
and the aggregated upper bound subproblem into its aggregated lower bound subproblem,
denoted by Py, and its aggregated upper bound subproblem, denoted by Pyy. This bifurcation
process continues until there are no subproblems left for further decomposition. Figure 4.1
shows this bifurcation process for N=9 with the number of parts at each level. Since the total
number of parts is not a power of two in this example, the choice of the parts number at each
level is arbitrary. However, to keep the number of bifurcation levels as small as possible, each
bifurcation can be done such that the number of parts in the two subproblems are equal or

different by one, depending on whether the total number of parts is even or odd.

| 4
/\
Py P
P Pie Pu Pee
L Puu PLeL Puet Pu LLe vt Peru
1 \
PLLLL Pu_u_

Figure 4.1 The bifurcation process for N=9 (9-parts)

At each level, a new linking primal variable (A vector) is included in the lower bound

type subproblem and a new linking dual variable (u vector) is included in the upper bound
48

type subproblem. The lower bound subproblem with all new linking primal variables, called
the lowest bound subproblem (P), consists of that part’s variables, plus fractional
weighting variables for proposals from other parts, and artificial variables, and it includes
linking constraints for all parts. The upper bound subproblem with all new linking dual
variables, called the uppermost subproblem (Pyy._y), has that part’s variables, all parts’
linking variables, and extra constraints (cuts) constructed with dual variable proposals from
all other parts. Other subproblems except the two subproblems mentioned above include that
part's variables, some fractional weighting vanables for primal proposals from some other
parts and artificial variables, and they also include some linking variables in some linking
constraints for some other parts, and extra constraints (cuts) constructed with dual variable
proposals from some other parts.

Each subproblem is solved simultaneously in each processor and exchanges primal
and dual information with the immediate neighbor subproblem, which is bifurcated from the
same aggregated subproblem, until each pair of subproblems reach an optimal solution of
each aggregated subproblem. Then, the algorithm checks the pairs of aggregated subproblems
at the previous level in the bifurcation tree. If they converge to the same value, the algorithm
checks again the optimality of the pairs of the next level and if not, the algorithm performs
information exchange, updates and simultaneously solves all subproblems descended from
that bifurcation. This hierarchical process iterates until the root level subproblems, P and Py,
converge to an optimal solution of P, i.e. the optimal value of the lowest bound subproblem
(P 1) gets close enough to the optimai value of the uppermost subproblem (Pyy._u) to
satisfy a prescribed tolerance. It turns out that it is possible to stop short of optimality for all

pairs beyond the root bifurcation. yet still have convergence of the whole process to the
49

optimal value of P. This is explained further below.

Since it is very difficult and long to state the general N part decomposition method in
algebraic terms in detail, we will focus on a 4-part case as shown in Figure 4.2. The extension
to any number of parts N can be straightforward from the demonstration of this 4-part case.

Pyu gives an upper bound to the original problem because Py in the first level gives an
upper bound to the original problem, and the upper bound subproblem of Py, which is Pyy,
provides an upper bound to Py. With the same reasoning, Py provides a lower bound to the
original problem. The upper bounds provided by Pyy are nonincreasing, as the iterations
proceed, and the lower bounds from Py are nondecreasing. The algorithm proceeds through
iterations of parallel solution of Py and Py, by exchanges of primal and dual proposals,
converging towards the optimal solution of P_. Simultaneously, Py and Pyy are solved

iteratively, in parallel, converging towards the optimal solution of Py

— Dual Proposal
“¢--- Primal Proposal

If 2Pey) = 2P > Tol
—>
PL < - - PU (Level 1)

If 2(Pyy) < 2(Py) If 2(Py) < 2(Pry)
and z(Py) - Z(P) > Tol and z(Pyy) - 2(Py) > Tol

Pu o

Y et L T

Figure 4.2 4-part decomposition principle and information flow.
(*Tol™ is the predetermined small tolerance for judging convergence)

50

An algorithm could be defined to exchange primal and dual proposals at the first level,
i.e. between P. and Py, only when both level I pairs of subproblems have converged to the
optimal values of P and Py It should be clear, based on the convergence of the two-part case,
that convergence could be proved for such an algorithm. However, we have implemented a
different scheme which requires fewer iterations at the second level before information
exchange at the first level. A careful examination of the convergence proof for two part
models reveals that convergence is assured if the two parts pass feasible (not necessarily
optimal) solutions such that z;* < z,*. Applying this observation to P_ and Py in the
implemented algorithm, we get a dual feasible solution to P_ from Py, a primal feasible
solution from Py, and we wait until z(PLy) < z2(Pyr) before exchanging proposals between P
and Py. Figure 4.2 shows the criteria for the iterations to continue with primal and dual
exchanges. at each level: second level exchanges between a pair of subproblems continue if
2(PeL) < z(PL) and the pair has not converged to within a predetermined tolerance of the
optimal value of its first level problem: first level exchanges continue as long as the upper

bound. z(Pyy). has not converged to the lower bound, z(Pyy).

The parailel decomposition method would be balanced among the processors if the
number of parts in the original problem is a power of 2. In other cases. a tree like in Figure 4.1
would have some end nodes at different levels than other end nodes. This could lead to much
idle time for the processors that solve the subproblems at higher level end. nodes. However,
one can consider a balancing strategy that assigns a large or difficult subproblem to a higher
end level node in order to decrease idle time of the processors. Another balancing scheme

could have two or more subproblems of higher level end nodes assigned to one processor, to

51

be solved senially.

In contrast, in the Lan-Fuller method, for the 9-stage case as shown in Figure 4.3. , the
original problem (P) is first divided into a subproblem of stage 1 (P,) and an aggregated
subproblem of stage 2 to 9 (P..¢), then the aggregated subproblem is further divided into a
subproblem of stage 2 (P,) and an aggregated subproblem of stage 3 to 9 (P3.). This nested
partitioning process continues until the aggregated subproblem of stage 8 and 9 (Pgy) is
divided into a subproblem of stage 8 (Pg) and a subproblem of stage 9 (Pg). The nested
partitioning process of Lan-Fuller has depth of 8, generalized as (N-1) depth, while the
hierarchical partitioning process of the new decomposition algorithm has depth of 4,
generalized as floor(log,N) or L+floor(log,N) (where floor(e) is the function that returns the
largest integer less than or equal to the argument), assuming that each bifurcation produces

subproblems whose numbers of parts are equal or different by one.

P Pag
1 V
P, P}-o
7\
PS P&o
N\
P, Pss
AN
PS P(,_g
N
Pg Psg
N
P, Pas
N\
Ps Py

Figure 4.3 9-stage decomposition principle in Lan-Fuller method.

4.2.2 Precise Description of the Subproblems

A precise statement of the subproblems is given below (new notation is defined after
the statements of the subproblems). Note that there are 3 different iteration counters invoived
for 4-part decomposition. one for the first level counter, k, and two for the second level
counters. { and . because the pairs of subproblems can have different numbers of iterations to

converge towards the optimal solutions of Py and P respectively.
SP;; (also called SP;* because it is assigned to processor number 1) is constructed by

restricting the primal variables of the aggregated upper bound subproblem (parts 3 and 4) into
53

convex combinations of known solutions of the previous k-1 iterations and by further

restricting the primal variables of part 2 into convex combinations of known solutions of the

previous i-1 iterations.

SP% (SP):
4 4
1 ay - il 1 £y 4 kL
max ax+tdiv,-Miwn+(c: X5 +d:Y':)A.‘1.n+2(c,Xf +d.Y:)A.u'ZM:V:
. yally,. =3 =2
;.:.;‘141'.3} ' '
st AxtDy Sh
da il 1 kly 4 k1
Bu+Louyv,-w + LoVS Al + (LY + LaYSOA <fi
.Vz <w

Luy, + (B:X3+LaYA + LoV +LaYEONT - w2 S,
Lny, + LoV +BsXP'+Layi'+ L YOM - v <f,
La ¥, + LaVSAu+ (Lo + B XU+ LuYEOA - w Sf,

dawl
e‘ A;.u =1

. ~-l k-1
Xt ¥y vLhvn vV AL Alr 2 0

SplL(SD1" .

min mbh+w fi+ pt wf.t wfit @ f,t Ot O

a4l @,
P Oy Sy p

st mAtwbB 2
tDitonlut Ot Lyt mlat wsla 2d
0L .Y+ (B XS+ LY+ onLanV +aala¥s +€7 0, 2aXT'+dayy
@ (LoYi' + LV + (Lo Vi + L Vi) + s (B X537 + L V3™ + LY
4
Lo+ B X LuViN v e, 2 X Ha

r=3

@ <M, forr=1234

. P . e @i we20
SDj; (or SD%* because it is assigned to processor 2) is constructed by restricting the

primal variables of the aggregated upper bound subproblem (parts 3 and 4) into convex

54

combinations of known solutions of the previous k-1 iterations and by converting it into the
dual problem and further restricting the dual variables of part 1 into convex combinations of
known solutions of the previous i-1 iterations.

§Diz (SD'):

min B0+ Q7 f) 4 Maba+ @ fo+Pur vy f,+ 0 f +Pui+0,,

“’:.‘,Jl:.m:-p
unh.we.p.9, ,

st WO D+Q7 Ly + Ly +

WiLly+w,Ls+P 24,
n.4:+w:8: 2¢:
[,l,-‘l'Q'-le + n.D:+®, L:;-i-O: + Wil + @yl 2d,

Ky ,,Q,"(L,}Y: + LV + 0 (LY + LV i) +0i(By X3+ LVt + LYY

O LVt + BuXit+ LuYi+eTo,, 2 Yc,. Fted ¥y

W, <M, forr=234
“‘:T;:erlzl

l-lz:,.ﬁ:,(ﬂ:.(ﬂ:..(l)l 'pl-p: ->. 0
SPLi (SPE):

max d,\ terxatd:¥.oM: v~+2(c,x,“+d,y,“)x -Msvi-Mavi+ 02y

12 Vv
nue ‘A ,

‘- ‘- I i- . Ay~ k- il
S-I-(nxlDl'*QliLn)}'l"'Qlel:.": + QLY+ LaYSDAY + €7 By

Ch+Qif
Y <ul
Arx:+ Dy, <bh:
Lawy+B:xatLaay,-v: + (L3 + Lo YSDAY <f,
Vs <u
Luy, + Ly, + (B:iXPV'+LuYi'+LuViMAll - v <f,
Lay + Loy, + (LaVi'+BXO'+LaYNAY - w <f,

e'atr = 1

Y Xsovavs \r.x.l_[-o

SP;;/ (or SP%’) is constructed by restricting the dual variables of the aggregated

lower bound subproblem (parts 1 and 2) into convex combinations of known solutions of the
55

previous k-1 iterations and by converting it to primal form, and further restricting the primal

variables of part 4 into convex combinations of known solutions of previous j-1 iterations.
SP% (SPY):

-1 J- N A gl
max divtd:v.toixntdiyi-Mavit(caXi tdsy, YA -Miva+ 0y,
LS LTR 41 ¥y

Vi Ve, ;.«i',} By,
s D+ Q' L+ Q3" Ly vt (Qi'Li: + n;‘l D:+Q%"' Lx) v.t Q' L+ Q%' L) ¥

QU L+ QY LY AL +e o S Y I b QL
=1

LSl S
¥, Su:
Asxit Dy, <p;
La vyt La:V.+Bsxs+tLis¥; - vs + LY AL <f,
AP =Uus3
La¥i+Lays + Lay, + (BXi'+La¥Yi'Ain - w <f,
6'47\{1‘1 =1
Yoo XYoo x5 ¥oovsova, Asy 20
SD{y (SDy):
min ST+ QT)+ b0y Punt @i f + S0+ 0,
W man,. =l r=l
@ Ps 9,0,
5.1 WD +Q T L+ QT Ly ras Lyt oLy + P >4,
u‘—vl QL+ M D+ Q' L Y+ wsLsnvw L+ P, 2d,
T:A:+ W B; 2cy
#;;‘(Q:_!L13+Q§_1L:3)+IT;D3+(0;L;3+P:,+CD.L;5 2d;
WU L+ Q7 L) VI + @y L VT + 0 (Bu X i+ Lu¥i™) +e77 0, 20 X7 +d. YT
ulett =1

-

-i
‘Ll;..' 'ﬂ%wS.p;.pl.p:.ﬂhZO

SPi¢ tor SPi{) is constructed by restricting the dual variables of the aggregated

56

lower bound subproblem (parts 1 and 2) into convex combinations of known solutions of the
previous k-1 iterations and by further restricting the dual variables of part 3 into convex

combinations of known solutions of the previous j-1 iterations, and expressing the result in

primal form.
SDei (SD”):

M 4
. -l g - - o=t - ol
min WX (M0, + QI f) + 0 (M70+ Q7 f)+ b+, f,+ Xp,u,
RSN s=l v=l
wy.ailp,

st WD+ Ly + QT L)+ RITQT Ly + 0 La+P, 24,
F‘:j (Qf"[,u+['I§"D1+Q§"Ln)+pi;:§2{"Ln + 0L + P 2d,
B QU Lo+ QT L) + R (D, + Q4 L) + @ula + 0, 2d;

T, d.tw, B, 2c,
QT L+ Q8 L)+ 0 QT Ly ¢ M D+ L + P, 24,
[(V <M.

Mot =1
Met =1
=i E=1
Hin-Be, m.0,.P,.0.P,.0,20

SP (SPY)

max dMtd:V.vdyy, teaxatda Vi -Mavi+ 05 +0us
ali v, tave

all e‘ i

s D+ Q! Lu+Q%! L) v+ (Qfl Li:+ l'I§" D:+ Qg'l La)y.+ (Qf'l Li;+ Qé.l L)y,

QI L+ Q' Loy, +e' 0y <SYOb+Q f,
r=l
QL QU Ly v+ (T D+ Q47 L3s) ¥, + Q4 L v, +e' 0y ST by + Q4 f;
Asxst+ Dy y, <bhs
La¥ + Lay:+La¥;, +BaxatLuy, -~ vs <f,
¥ Su
fort=1,2,3,4

Vo ¥ Vi xs Veovs 20

Note that when k=1. /=1 and j=I. there are no corresponding A or ¢ variables, and there are
57

no corresponding cuts, nor are there corresponding u or 8 variables, because the algorithm
begins by solving all the subproblems simultaneously, so there are no solutions yet available
from other subproblems. Also, when i and j are reset to i=1 and j=1 at the start of each
iteration &>1, no information is made available from second level iterations because the new
proposals exchanged at the first level create different subproblems at the second level (but see
the next subsection about partial use of old second level proposals).

The definitions of various symbols are given below.

€“Visa 1 x (k-1) row vector with all entries equal to 1.

e'and e areal x (i-1) row vector and a 1 x (j-1) row vector, with all entries equal to 1,
respectively.

0., and @, , are scalar vaniables derived from level / and level /I respectively in the
subproblem of partz,r=2, 3, 4.

0,, and ¢, , are scalar variables derived from level / and level /I respectively in the
subproblem of partr,r =1, 2. 3.

A7 isa (k-1) x1 column vector variable whose components weight primal proposals from
the aggregated upper bound (level /) subproblem in the subproblem of partz, t= 1, 2.

Al and Al} area (i -1) x1 column vector variable and a (j -1) x1 column vector variable,

whose components weight primal proposals from the corresponding upper bound

subproblem at level /I in the subproblem of part 1 and 3, respectively.

u) isa 1 x (k-1) row vector variable whose components weight dual proposals from the

aggregated lower bound subproblem (level /) in the subproblem of partz,7 =3, 4.

58

W, and ul} area 1 x (i -1) row vector variable and a 1 x (j -1) row vector variable, whose

components weight dual proposals from the corresponding lower bound subproblem at level

11 in the subproblem of part 2 and 4, respectively.

X5 is an n, x(k-1) matrix andy*" is a r, x (k-1) matrix, i.e. X'= (o, &7, ..., ') and
Yit=(y', v}, ..., ¥."), coming from the first (k-1) primal solutions of subproblem ¢, =3, 4.

X4'is a na x(i-1) matrix and y%' is a r» X (i-1) matnix, i.e. X5'=(x:, x3, ..., x5') and
ys'=(¥, ¥, ..., ¥:), coming from the first (i-1) primal solutions of subproblem 2. At the
start of each iteration &, i is reset to i=1 and. %' and y%' are reset to nuill matrices.

X1 is ang x(j-1) matrix and y4" is a ry x (j-1) matrix, i.e. X' = (., x7) and

f=(y,, Vi o v/}, coming from the first (j-1) primal solutions of subproblem 4. At the

start of each iteration %, j is reset to j=1 and, X" and y!" are reset to null matrices.

¢ is a (k-1) xm, matrix and Q" isa (k-1) x g, matrix, i.e. [T = (. ¥, V)

and Q= (! ") . coming from the first (k-1) dual solutions of subproblem ¢,
r=1,2

" is a (i-1) xm, matrix and Q" is a (i-1) x ¢, matnix, i.e.[I'=(nd .2 o ... ®¥)°
and Q'=(w '), coming from the first (i-1) dual solutions of subproblem 1.

At the start of each iteration &, i is reset to i=1 and, [1}* and Q;" are reset to null matrices.
[1¢" is a (j-1) xm; matrix and Q" is a (j-1) X g5 matrix, i.e.[1'= (.15, ")
and Q{*=(w}.wi wi") . coming from the first (j-1) dual solutions of subproblem 3.

At the start of each iteration k. j is reset to j=1 and. [1{" and Q4" are reset to null matrices.
59

SP;* has the same structure as the part one subproblem in the parallel two part

decomposition method in Chapter 3, except for two more parts, thus having one more

proposal from the aggregated upper bound subproblem (parts 3 and 4) at each first level
iteration. Also, SPi’ has the same structure as the part two subproblem in the parallel two
part decomposition except for two more parts, thus having one more cut from the aggregated

lower bound subproblem (parts 1 and 2) at each first level iteration. The subproblems Sp%

and SP;~ utilize both proposals and cuts.

For first level iterations, the coordination is made through broadcasting proposals and
cuts. The proposals, which have the primal information of the previous subproblems, are
broadcasted to the other two subproblems and the cuts, which have dual information, are
broadcasted to the other two subproblems. During the second level iterations, the coordination
is made through exchanging primal and dual proposals only between the two subproblems
bifurcated from the same aggregated subproblem.

At the first iteration of the parallel method, there is no information flow among the
subproblems since no information is available, while in contrast Lan’s serial method begins
with the first subproblem having no information from other subprobiems, but ail other
subproblems are solved with proposals or cuts from other subproblems, even in the first
iteration.

From the second iteration of the parallel method, information is exchanged between
the aggregated subproblems of level /, then level /I subproblems are formed and solved with

new proposals or cuts exchanged between the immediate neighbor subproblems bifurcated

60

from the same aggregated subproblem as shown in figure 4.2 in the previous section. Lan’s
serial method solves the first subproblem and sends primal information to the second
subproblem, then it solves the second subproblem and sends primal information to the third
subproblem. By doing the same procedure to the third subproblem, Lan’s method solves the
last subproblem and sends back dual information to the third subproblem and continues to

solve and send dual information as in the following figure, thus shows its nature of serial

computation.
At iteration & [
.
™3
_______ p Primal Proposal TSl

44— Dual Proposal

\

Figure 4.4 Information flow of 4-stage decomposition in Lan’s method.

When the iteration counter &>1, SP%/°, in which j denotes the second level iteration

counter satisfying the stopping criteria of level II, i.e. :%/--5/<¢€or 24<:5/, gives upper

- T~

bounds to the original problem and Spf*", in which i* denotes the second level iteration

counter satisfving the stopping criteria of level II, i.e. -4*--f*<€or -3* <}/, provides lower

-~

61

bounds for the original problem. The two subproblems perform the convergence test at each
iteration k.

In contrast with the new algorithm, Dantzig’s hierarchical decomposition method can
be applied only to staircase structures and has traditional master and subproblems. Also, it is
very difficult to apply parallel decomposition since it has to solve lower level master

problems and subproblems serially as well as upper level master problem and subproblems.

4.2.3. A Strategy to use more Information from Second Level Iteration

Another strategy in utilizing more information can be defined in order to speed up the
convergence of the algorithm. §pi* and §p;’ can keep adding proposals and cuts coming
from all the previous first and second level iterations because they are still feasible in the

nonlinking constraints of S§p%* and Sp}’ respectively, no matter what cuts and proposals are

included in Sp%* and Sp%’ respectively. Thus, they can produce nondecreasing lower bounds

and nonincreasing upper bounds at every iteration of &, i and j (this is proven in section 4.4).

However, when we tried to keep all available information from the first and second level
iterations in SP4* and §pi’ . there were problems in tests.

In the next section, we define the algorithm for the case that all second level
information is “forgotten” every time that the first level proceeds to another iteration;

however the algorithm that is implemented in code uses the modified strategy defined above.

4.3 The Parallel Decompeosition Algorithm for the First Method

In this section, the procedure of the parallel decomposition algorithm for muiti-part
62

problems is discussed. Various properties of this algorithm will be discussed in the next
section.

The first step determines that the whole problem is feasible or not by detecting the
infeasibility of subproblems, as proven in the next section. If any subproblem is infeasible,
then the algorithm stops because the original problem is determined to be infeasible, and if
each subproblem has its own feasible solutions, then the algonithm proceeds to the next steps
because the original problem is feasible.

In Steps 1 and 2, the scalar €>0 is defined by the user, and the algorithm solves each
subproblem, exchanges the information between each pair of subproblems in the hierarchical
manner and tries to reach the prescribed tolerance between the upper bound and the lower
bound. z;*' and z,*' represent the objective values of SP,** and SP,"' respectively, at first level
iteration k and second level iteration i. ;% and z,% represent the objective values of SP;* and
SP,¥ respectively, at first level iteration k and second level iteration j. Up_Opt and Low_Opt

are set to 1 if Py and Py reach optimality; otherwise 0, respectively.

DO IN PARALLEL
Processor 1
Step 0. Set level I counter k=1, level /I counter i=1, £>0, and determine whether P is
infeasible.
- solve Sp}': if it is infeasible, send a stop signal to all other subproblems and stop, P
is infeastble;

- if a stop signal from any other subproblem is received, stop, P is infeasible;

63

- otherwise, record optimal dual solution 7t;", '
Step 1. Set k=k+1, i=0 and Up_Opt=0.
- set I-[llt-l =(nlk.2T, nlk-l T) T and Qlk-l =(Qlk-2 T‘ mlk-lT) T;
-send ("' D+ 'Ly, 05 Lya, 0 Lis, @yt Ly and (' b+, F) to SP; and
SP,:
- receive (co ' +dyY), Loyt and (Bt '+Lay " ") from SP, for r=3, 4 and s=1, ..., 4,
s2L
Step 1.1. Set i=i+1.
-send (m"' Di+@,"' L), 0" 'L12, " and (m "By +an ") to SP;
- receive (cax2” + daya™"), Leaya™! and (Baxs"' + Laay,"") from SPs for s=1, 3, 4;
- update and solve SP'; record optimal 2%, x,. v/, v/, A{7'. A1 and ', @
- send z;*' 1o SP- and receive z.*' from SPs;
- if Up_Opt = 0, receive Up_Opt and z;* from SP;;
Step 1.2. Test for level Il convergence or exit.
-if 2 oM <e orif o< then set 7%= o5 xf=x), vif=y), sy, mit=y
w;*=w," and go to Step 2; otherwise, go to Step 1.1.
Step 2. Test for level [convergence.
- Send ;" to all other subproblems and receive =" from SP;;
-if 2% " <e, go to step 3: otherwise, go to step 1.

Step 3. Send A{;' to SP; and SP,. and A} to SP», and receive uf" from SP,. Calculate
Jd

the optimal primal and dual solutions for part 1 as (!, ¥, ,v{.vs.vi.v) and

(T3) R TR o B
Processor 2
Step 0. Set level [counter k=1, level /I counter i=1, >0, and determine whether P is
infeasible.
- solve SPY'; if it is infeasible, send a stop signal to all other subproblems and stop,
P is infeasible;
- if a stop signal from any other subproblem is received, stop, P is infeasible:
- otherwise, record optimal dual solution 1", @'
Step 1. Set k=k+1, i=0, Up_Opt=0 and Low_Opt=0..
- set nzk-l =(nzk-2 T' nzk-l T) T and sz-l =(gzk-2 T' mzk-lT) T;
- send (71" Doy Lya), 02" Loy, 01 Las, 02 Lo and ("' br+an'f2) 10 SP; and
SP;;
- receive (e +dyt ™), Ly and (Bux ' +Lay ") from SP, for =3, 4 and s=1, 4,
SEL
Step 1.1. Set i=i+|.
- send (cax2” + daya™"), Laay2! and (Baxy"™! + Lypy2"") from SP; for s=1, 3, 4;
- receive (M Dy+an'Liy), "' L2, "' and (m,"'by+@,"'f1) from SP;;
- update and solve SP%*: record optimal 2, xy, y2', and 7', en’s
-set X2 =(X2",) and Yo =(1 v

- send =2*' to SP, and receive z,** from SP;;

-if 23 2* <&, then set Low_Opt = 1; send Low_Opt and z,** to SP5;
65

-if Up_Opt =0, receive Up_Opt and z;* from SPs;
Step 1.2. Test for level Il convergence or exit.
-if 225 oM < e orif ¥, then set mof=nty', wx*=wn' and go to Step 2; otherwise,
go to Step 1.1.
Step 2. Test for level I convergence.
- receive z;*'" from SP, and receive 2, from SP;;
-if 2%° - 5% <€, go to step 3: otherwise, go to step 1.

Step 3. Receive A;7} from SP,, and receive u:f,‘ from SP;. Calculate the optimal primal

and dual solutions for part 2 as (% X' AL yi)and (ui A" ui Q™).

Processor 3

Step 0. Set level [counter k=1, level Il counter j=1, €0, and determine whether P is

infeasible.

- solve SPy'; if it is infeasible, send a stop signal to all other subproblems and stop,

P is infeasible;

- if a stop signal from any other subproblem is received, stop, P is infeasible:
- otherwise. record optimal dual solution .t;l, y3'
Step 1. Set k=k+1, j=0, Up_Opt=0 and Low_Opt=0;
- set X5 =G5 Y and Y =V, yol);
-send (3655 + davs®Y), LaviS ! and (Byxt' + Lyzys™') for s=1, 2, 4, to SP; and SP;;
- receive (Tt,""D,+w,""L,,), m,k"L,, and (n,"'lb,-i-cJ,"'lf,) from SP, for =i, 2, s=1,..., 4, s#1;
Step 1.1. Set j=j+1.

66

- send (nty"' Dy+07 "' L33), 07 L, and ("' bs+wy'f3) for s=1, 2, 4, to SPy;
- receive (coxd ' +dsyd™), Layd ™" and (Boxd ' +Lyyd™) from SP, for s=1, 2, 3;
- update and solve SP’; record optimal 3%, x¢, y¢, and n7, wy;
- set ¢ =427, 17" Y and Q7' =(Q427, 0N ;
- send 23 to SP, and receive =% from SP;;
- if 2¥- 234 < €, then set Up_Opt = 1; send Up_Opt and 23~ to SP»;
- if Low_Opt =0, receive Low_Opt and 2" from SP5;
Step 1.2. Test for level II convergence or exit.
-if 2M- N < e orif 2t<oy", then set x3*=x7. v3*=v7 and go to Step 2: otherwise,
go to Step 1.1.
Step 2. Test for level I convergence.
- receive 2" from SP, and 2" from SP;;
kie

-if M7 - 7% <€, go to step 3; otherwise, go to step 1.

Step 3. Receive ;' from SP|, and receive W, from SP,. Calculate the optimal primal

and dual solutions for part 3 as (A5 x4, Ak ysDand (i, I uiy Q7).

Processor 4
Step 0. Set level I counter k=1, level /I counter j=1, £0, and determine whether P is
infeasible.
- solve SP;'; if it is infeasible, send a stop signal to all other subproblems and stop,
P is infeasible;

- if a stop signal from any other subproblem is received, stop, P is infeasible;
67

- otherwise, record optimal dual solution x;', y,'
Step 1. Set k=k+1, j=0 and Low_Opt=0;
- set X =X, ek and Vit =(Y.E2, yk:
- send (coxs ! + daystY), Lays®! and (Boct '+ Layst!) for s=1, 2, 3, to SP, and SP;;
- receive (' D+ Ly), 0 Ly and (' b+ 'f) from SP, for r=1, 2, s=1...., 4, s21;
Step 1.1. Set j=j+1.
- send (coxd" +duvd ™). Lagyd™, vd " and (Bexd" +Luyd™) to SPy;
- receive ("' Dy+w7 ' L33), 0 Lss and (7' bs+wd'f3) for s=1, 2, 4, from SPs;
- update and solve SP%’: record optimal %, x/, v/, and i/, wd, p/ fore=l,..., ;
-send ¥ 10 SP; and receive :3"" from SP;;
- if Low_Opt = 0. receive Low_Opt and :3"‘" from SP»;
Step 1.2. Test for level Il convergence or exit.
-if M- N < e orif 2oV, then set 2V =2 xf=xd, yf:y.(=, =y, p,‘k
=p/ forz=L1...., 4 and go to Step 2: otherwise, go to Step 1.1.
Step 2. Test for level [convergence.
- send =" to all other subproblems and receive :1'“' from SPy;
-if 2¥7 - 2% < g, go to step 3; otherwise, go to step |.
Step 3. Receive A;;' from SP,. Calculate the optimal primal and dual solutions for part 4
as (W XS AN YD and (g o4, pf) for e =1, 4.

END

The steps 1 to 3 of each processor solve the subproblems simultaneously and search

68

for the optimum by exchanging the primal and dual solutions in the hierarchical manner.
Since the feasibility of the original problem and subproblems are ensured by the step 0, each
subproblem after step 0 always has a feasible solution, (this will be discussed in the next
section). The algorithm terminates when the difference between z,%" and 7;**" gets less than
the predetermined convergence tolerance £>0.

Note that when the algorithm converges within the given tolerance and stops, it may
not give a basic feasible solution to the onginal problem, but slightly interior, due to the
nature of convex combinations. However, the basic feasibie solution could be recovered by
developing a similar scheme used in punfication [Kortanek and Zhu, 1988] or crossover
facility of CPLEX barrier method, i.e.. the optimal solution of the algorithm is adjusted by
moving some primal variables to upper or lower bounds (to become nonbasic variables) and if
necessary, the simplex method finds a basic optimal solution of the original problem in a
small number of iterations since the solution fed into the simplex method is already feasible

and close to an optimal solution of the original problem.

4.4 Properties of the Algorithm for the First Method

Several properties of the parallel decomposition algorithm are discussed in this
section. The arguments are similar to those of the serial case of Lan and Fuller [1995b].
The first theorem verifies that the algorithm rules out the possibility of unboundedness

of the problem P and of any of the primal subproblems SP,*, SP-*', SP;* and SP,~.

Theorem 4.1 Problem P and all subproblems SP**, SP,*, SP;¥ and SP,~ are bounded.

69

Proof : The Assumption guarantees that the optimal value of P is bounded. Then, the
boundedness of each subproblem is proven as follows: by the Assumption, the non-artificial
vaniables x, and y, are bounded, and the artificial variables, v,, cannot cause unboundedness
because the artificial variables are nonnegative and have large negative objective coefficients.
Also, the A variables are bounded because of nonnegativity and the sum to one constraint. The
6 varniables are also bounded by an argument to similar to that in the proof of Theorem 3.2b in

the previous chapter. Therefore, the optimal value of each subproblem is bounded.

Theorem 4.2 states that Step O of the algorithm in each processor accurately detects

the feasibility of the whole problem P.

Theorem 4.2 Problem P is infeasible if and only if the first step of the algorithm in each
processor reports infeasibiliry of P.

Proof : (The "if" part) If a subproblem is found to be infeasible at step 1 in any processor,
then the nonlinking constraints and upper bounds for the subprobiem are infeasible because
the linking constraints can always be satisfied for some choice of the artificial variables.
Infeasibility of the nonlinking constraint and upper bound constraint implies that P is
infeasible.

(The “only if” part) If problem P is infeasible, then at least one part’s set of nonlinking
constraints and upper bound constraints is infeasible because the linking co;lstmints can't be

violated. This infeasibility will be detected at step 0.

70

The next result guarantees that in Step 1 of the algorithm, all subproblems have

feasible solutions.

Theorem 4.3 Once step O reports that P is feasible, all subsequent subproblems are feasible.
Proof : In subproblems SP,, SP; and SP, the cuts are added to the subproblems of previous
iterations and this addition of cuts can’t affect the feasibility of subproblems because the cuts
can always be satisfied by adjusting the value of the free variable 0.

In the subproblems SP;, SP. and SP;, the primal proposals are added to the
subproblems of previous iteration and this addition of primal proposals does not change the
feasibility of subproblems because the A variables appear with nonzero coefficients only in

the linking constraints and these linking constraints are always satisfied by artificial variables.

The next theorem shows that the algorithm provides primal and dual feasible solutions
for the original problem P when it proceeds to Step | and it justifies the calculations of primal

and dual solutions.

Theorem 4.4 For any k>1, i>1 and j> 1, with A weights from SP the algorithm gives the
following primal feasible solution to the original problem and with the dual u weights of
SP,N. if provides the following dual feasible solution for P:

=S o = e =0t mE SR, @ = p MR g =0t

LTI | AT I‘lu/-leMv py =ps, m'= nt, = af, ps'= p-tk'

71

Proof : Forr=2, ... 4, eachx’ andy, isaconvex combination of known solutions of x; and
y: in the previous iterations, which satisfies the nonlinking constraints A;x; + D, y, < b, and
upper bound constraints v, < i, of part 1. Since x,” and y; " together with x,” and y, solves SP,,
all linking constraints in P are also satisfied. So, SP, gives a feasible solution to the original

problem P. The proof of the dual part is similar. [

The following theorem states that, at each iteration k>1, the optimal values of SP.&"
and SP,*" give nonincreasing upper bounds and nondecreasing lower bounds to the original

problem P.

Theorem 4.5 In the processor | and 4 with k>1, the optimal values of SP~" form a
nondecreasing series of lower bounds on the optimal value of P and the optimal values of
SP.N form a nonincreasing series of upper bounds on the optimal value of P, i.e. ;™" 2;7*°<
LsMe e N < Ve
Proof : Since SP,* is a restriction of the whole problem P and the feasible regions of
successive subproblems SP,*”" include that of previous subproblems at each iteration by
inclusion of another positive A variable, it gives ;'< < ... <2*'< 2",

Similarly, SDs"" is a restriction of the dual of the whole problem P and it is loosened
at each iteration by inclusion of another positive u variable, so the feasible region of SD%"
W' <2<, so proves the theorem. [

gets bigger at each iteration. It provides that z'<z,

Corollary 4.1 [n the processor 1 and 4 with k>1 and i>1, j>1, the optimal values of SP

72

form a nondecreasing series of lower bounds on the optimal value of P if all proposals are
accumulated and the optimal values of SPN form a nonincreasing series of upper bounds on
the optimal value of P if all cuts are included,

i.e. :!lzs : :.js . S:I:J.S :IJ,ZS 13.3s‘" ~73.l7.s . S :lk-l‘s

~!

(&

jo 34 33 _3 2
<M< . << <0<y

—

2% 23,2
SV Sy

‘.l

Proof : Since SP,** is a restriction of SP,*" and the feasible regions of successive

subproblems SP,* include that of previous subproblems at each iteration of k and i, by

39 23

. . . . - . . . kL i 1]
inclusion of another positive A variables, it gives 2,7 "< z,7°S ... €71 < << S

- -

L<Me

Similarly. SD,* is a restriction of the dual of SP,*" and it is loosened at each iteration of &
and j. by inclusion of another positive | variables. so the feasible region of SD,™ gets bigger
2g .22

. 31, - e
at each iteration. It provides that 'S =¥ < .. < 2, V'< . s oM 2P Vs L < gy

73

4.5 A Heuristic Decomposition Algorithm - the Second Method

In this section, a heuristic parallel decomposition algorithm for multi-part linear
programming problems is presented. The heuristic parallel algorithm divides the original multi-
part problem into several small subproblems of either lower bound type or upper bound type from
each part, by extending the basic algorithm of the two-part method without the hierarchical
decomposition principle. The subproblems communicate with each other by sending and
receiving primal and dual solutions, and work together to reach an optimal point during the
iterations. The present approach gives simple subproblem structures and algorithm, however it
does not give any guarantee for convergence: in tests, mentioned briefly in Chapter 3, this

heuristic sometimes fails to converge.

4.5.1 The Structure of Subproblems for the Second Method

The heunstic algorithm divides the original multi-part problem into small lower bound
subproblems and upper bound subproblems by extending the basic algorithm of parallel
decomposition of two-part models to muiti-part models; thus it has only one iteration counter.
Each part has a primal form of either a lower bound subproblem or an upper bound subproblem.
Each lower bound subproblem consists of that part’s variables, plus fractional weighting variables
for proposals from other parts and artificial variables, and it includes linking constraints for all
parts. Each upper bound subproblem has that part’s variables, all parts’s linking variables, and
extra constraints (cuts) constructed with dual variable proposals from all other parts. Note that

to proceed with the algorithm, it should include at least one lower bound subproblem and at least

74

one upper bound subproblem.

The algorithm proceeds to solve all the subproblems simultaneously and broadcasts
primal information (proposals) to the lower bound subproblems and dual information (cuts) to
the upper bound subproblems. After all the lower bound subproblems receive primal information
and all the upper bound subproblems receive dual information from other subproblems, the
algorithm solves all the subproblems simultaneously again. This procedure continues until the
algorithm satisfies some stopping criteria. Figure 4.3 shows the communication scheme between
subproblems mentioned above. for the case of a five part LP having three lower bounding
subproblems and two upper bounding subproblems. Note that there could be various assignments
of subproblem type (lower. upper) to part number are possible. Figure 4.3 illustrates one

possibility.

—> Proposals
- -» Cuts

Figure 4.5 Information flows for the heuristic parallel decomposition algorithm
75

A precise statement of the heuristic algorithm for the general N-part case is given as

follows. The primal and dual forms of the lower bound subproblem for part ¢, denoted by Sﬁ

and SD; . are defined as (new notation is defined after the statements of the subproblems)

N

SP!: max I Taxtdy-Mow+ T (@ X+d YA -Movl

P TN CALNNT | St =laws
() st Ax+D Y, < b
() Bx+Lay, ~v: + .i[“‘ yit s <f,
(@) Loy, + B XM A+ lilLuYf" AL -y Sf. for all i#t
®;) V. Su,
(0,) ALY =1, forall iz

X Vv ARt v 20, fori= L2, N, i#1

N
SD:: min @z =mbh+tiaf +tpuwt I O

Rowe D@0, 1T =l i=last
(x1) s.t. A+ B >0
(¥) . D +ilmx La+ P, 2 d.
(AD) w B: Xf“+gm, La YE'40, 2¢. X5 +d Y, for all i#t
A 0 <M., for all i

120, P20, @20 fori=L2,..N

and the primai and dual forms of the upper bound subproblems are

76

— — N N
k . £ o
SP:: max I = c,x,+2d,y,+ Z 6. -Mw
K- ¥eevi ¥, 8,08 =1 i=lamt

() s.t. Ax + Dy, < b
N
(@) B«x‘+zlu_v, -w s/
s=1
N
[(Thul) Dy, + QN Ly, +6, SIE b+ Q' f,, for all i#t
s=l
) v, <u,. foralli

xov.y, 20, i=L. N

— — N
SDi: min s=mbtaf. e+ T {u, (IT 6 +Q f)+p}

Ree - P PR L 1mE =laet

(x]) s.L. T A+ B 2¢
N
() nD+al+o+ ui QL 24,
s=]. 1m¢
) ol +W'TIED+ 3 ' QY Lu+p 2d., for allizt
s=l. 5=

(V;r) (V3 <M:
(6.) TP = 1, for all i#t

>0, @20, P20, Uy 2 0 for i=1,....N, i#t

Note that when k=1, there are no 6 or ¢ variables, and there are no cuts, nor are there A or u

variables. The definitions of new symbols are given below.

8. and ¢, are scalar variables.

A81 is a (k -1)x1 column vector variable whose components weight primal proposals from part

i in the lower bounding subproblem of part .

ut' is a Ix(k -1) row vector variable whose components weight dual proposals from part i in the

77

upper bounding subproblem of part ¢.
x5 is an x (k-1) matrix and y*' is a r x (k-1) matrix, i.e. X*'=(x}, x7, .-, x)and

yit=(y. ¥, "), coming from the first (k-1) primal solutions of SP; .

1" is a (k-1) x m, matrix and Q¢ 'is a (k-1)x q, matrix, ie. [1*'= (. a2 &7)

and Q"'=(a . ¥, @), coming from the first (k-1) dual solutions of SP; .

The lower bound subproblems have the same structures as the part one subproblem (lower
bound subproblem) in the parallel two part decomposition method in Chapter 3, except for more
parts, thus having (N-2) more proposals from other subproblems at each iteration. The upper
bound subproblems aiso have the same structures as the part two subproblem (upper bound
subproblem) in the parallel two part decomposition except for more parts, thus having (¥-2) more
cuts from other subproblems at each iteration.

The heuristic parallel decomposition structure exhibits an equivalent position of
subproblems, and all subproblems have access to information on all other subproblems and work
together to optimize the whole problem.

The coordination is made through broadcasting proposals and cuts during the iteration.
The proposals, which have the primal information of the previous subproblems, are broadcasted
to all other lower bound subproblems and the cuts, which have dual information, are broadcasted
to upper bound subproblems.

At the first iteration of the heuristic method, there is no information flow among the
subproblems since no information is available, while Lan’s serial method begins with the first

subproblem having no information from other subproblems, but all other subproblems are solved

78

with proposals or cuts from other subproblems, even in the first iteration.

When the iteration counter k>1, since all upper bound subproblems give upper bounds to
the original problem and all lower bound subproblems provide lower bounds for the original
problem, the best upper bound and lower bound can be chosen for the convergence test from the
subproblems at each iteration. Although the subproblems generate the nonincreasing upper
bounds and nondecreasing lower bounds, the algorithm can not be guaranteed to converge within
a prescribed tolerance. The heuristic algorithm can get stuck and repeat the same solution without
improvement after some number of iterations, so it is terminated with a feasible solution of the
original problem when all the lower bound subprolems and all the upper bound subproblems have

the same objective values respectively in three consecutive iterations.

4.5.2 The Heuristic Decomposition Algorithm for the Second Method

In this section, the procedure of the heuristic decomposition algorithm for multi-part
problems is discussed. Various properties of this algorithm will be discussed in the next
subsection.

Step 0 determines that the whole problem is feasible or not by detecting the infeasibility
of subproblems, as proven in the next subsection. If any subproblem is infeasible, then the
algorithm stops because the original probiem is determined to be infeasible, and if each
subproblem has its own feasible solutions, then the algorithm proceeds to Step | because the
original problem is feasible.

In Step 1. the scalar €30 is defined by the user, and the algorithm solves each

79

subproblem, exchanges the information among the subproblems and tries to reach the prescribed

tolerance between the best upper bound issued by SP: and the best lower bound issued by SP; .

Before the algorithm starts, the user selects either the lower bound subproblem, or the upper
bound subproblem, from each part r=1. .., N, while ensuring that at least one subproblem is the

lower bound type, and at least one is the upper bound type.

DO IN PARALLEL
Processor t for t=1, ... N

Step 0. Set k=1, >0, and determine whether P is infeasible.
- solve SP}; if it is infeasible, send a stop signal to SP; for all s#r and stop, P is
infeasible;
- if a stop signal from SP, for all s#t is received, stop, P is infeasible;
- otherwise. record optimal primal and dual solutions . v'and ' o'

Step 1. Set k=k+1, exchange information, modify SP; and solve it.
-set XX = (XX Y and Y = (Vv
Cset A =427, ')T and Q4 =(QF2T, b7
- send (c*" + dE"), Lyt for all £, and By*! to all lower bound subproblems;
- send X' D, o' L, for all 7, and (%6, + 0 "'f) to all upper bound subproblems:;
- if r is a lower bound subproblem, receive (c,¢.*" + dyy,*"), Ly, and Bx,*" from SP,

for all i and s#r:

80

- if ¢ is an upper bound subproblem, receive 1,*'D;, "Ly, and (1,*'b; + ©,*'f;) from

SP; for all i and s#t;

- solve SP’; record optimal 2 xt y,", and %, @/; record optimal v At ifrisa
lower bound subproblem, and p*, ;" if ¢ is an upper bound subprobiem for all s

and i#t;

- broadcast the optimal = to SP; for all s#1; receive the optimal =X from SP, for all s#1.

Step 2. Test for convergence: select the best upper bound, -* from SP%, and the best lower

bound, :_‘ froms_Pz.

-if(§~ ;_f)SS.then go to step 3;

-if (- zZ)>€ and ;= forall lower bound subproblems and Zt=4F for all upper

bound subproblems in three consecutive iterations, go to step 3:

- otherwise, go to step 1.
Step 3. Calculate the optimal (or feasible) primal and dual solutions, and terminate the
algorithm.

- If =1, broadcast A" to SP, for all s=r: if t=u, broadcast p,,*" to SP, for all s#r;

- receive A,S"' from SP, for r#l and p,"" from SP, for r#l;

- I =1, calculate the optimal (or feasible) primal and dual solutions for part ¢

as(x*, v',vf) forall sand (&' ph' QY
- If r=u, calculate the optimal (or feasible) primal and dual solutions for part ¢

as(XFAS PEASY) and(rt. o)) for all s;

81

- otherwise, calculate the optimal (or feasible) primal and dual solutions for part ¢ as
(XA p') and (' T W, Q™) 5 Stop.

END

The heuristic algorithm solves the subproblems simultaneously and searches for the
optimum by broadcasting the primal and dual solutions for k >1. Since the feasibility of the
original problem and subproblems are ensured by the step 1, each subproblem always has a
feasible solution for P, (which will be discussed in the next subsection). The algorithm terminates
with an optimal solution of the original problem when the difference between the best upper
bound z,% and the best lower bound = of the whole problem gets less than the predetermined
convergence tolerance €>0. However, in the cases of the same repeated objective values three
times in a row in all upper bound and all lower bound subproblems respectively, the heuristic

algorithm terminates with a feasible but not optimal solution of the original problem.

4.5.3 Properties of the Algorithm for the Second Method
Several properties of the parallel decomposition algorithm are discussed in this section.
The arguments are similar to those in section 4.4.
Theorem 4.7 verifies that the algorithm rules out the possibility of unboundedness of the

problem P and of any of the primal subproblems SPX.

Theorem 4.7 Problem P and all subproblems SP are bounded.

Proof : The Assumption guarantees that the optimal value of P is bounded. Then, the
boundedness of each subproblem is proven as follows: by the Assumption, the non-artificial
variables x; and y, are bounded, and the artificial variables, v,, cannot cause unboundedness
because the artificial variables have nonnegativity and large negative objective coefficients. Also,
the A~ variables are bounded because of nonnegativity and the constraint e'A,*' =1. The 6,
variables in upper bound subproblems are also bounded by the similar argument to the proof of
Theorem 3.2b in the previous chapter. Therefore, the optimal value of each subproblem is

bounded.

Theorem 4.8 states that Step 0 of the algorithm accurately detects the feasibility of the

whole problem P.

Theorem 4.8 Problem P is infeasible if and only if Step 0 of the algorithm reports infeasibility
of P.
Proof : (The “if" part) If a subproblem is found to be infeasible at step O, then at least one
nonlinking constraint and upper bound constraint for a subproblem is infeasible because the
linking constraints can always be satisfied for some choice of the artificial variables. Then,
infeasibility of the nonlinking constraint and upper bound constraint implies that P is infeasible.
(The “only if” part) If problem P is infeasible, then at least one part’s set of nonlinking
constraints and upper bound constraints is infeasible because the linking constraints can’t be

violated. This infeasibility will be detected at step 0.

83

The next result guarantees that in Step 1 of the algorithm, all subproblems have feasible

solutions.

Theorem 4.9 Once the first step reports that P is feasible, all subsequent subproblems are
feasible.
Proof : In the upper bound subproblems, the cuts are added to the subproblems of previous
iteration and this addition of cuts can't affect the feasibility of subproblems because the cuts can
always be satisfied by adjusting the value of ,, which is a free vanable.

In the lower bound subproblems, the primal proposals are added to the subproblems of
previous iteration and this addition of primal proposals does not change the feasibility of
subproblems because the A variables appear with nonzero coefficients only in the linking

constraints and these linking constraints are always satisfied by artificial variables.

The next theorem shows that the algorithm provides a primal feasible solution for the
original problem P when it proceeds to step 1 and it justifies the calculations of primal and dual

solutions in step 3.

Theorem 4.10 For any t and k> 1, the lower bound subproblem g gives the folloing primal

feasible solution to the original problem and the dual form of the upper bound subproblem :S'Ff

provides the following dual feasible solution for P:

84

. d1 ke . 1y k . el g ki . 1y ke

= XA wTE PP mTE XGNTALSL wT= pRRT AL
L[] k - k

X =X y M=V

. kI k1 . k-1 kel vkl Kkl * _vkiq ©l
N = Xna ANete s YN SV ANy s XN =XN AN . N =YNT A

. k-1 k-1 . k-1 k-1 . k-i k-1 . k-1 k-1
m= M I, o=y 7, M= py I ,om = py Qo

. k . k
nf=nlv vmfzwl

. k-1 k-1 . k-1 k-l . Kl oy kel k-1
e = Mneg [Inee o, Ona =Ny QN v = Mne TN, o = pag

Q.
Proof : Fori=l.2,...Nand iz eachx, and v, is a convex combination of known solutions of
X, and y, in the preveious iterations. which satisfies the nonlinking constraints 4, x; + D; v, < b; and

upper bound constraints v, <, of part i. Since x,_ and v, together with x;” and v; solves SP , all
linking constraints in P are also satisfied. So, SPf gives a feasible solution to the original

problem P. The proof of dual part is similar.

The following theorem states that, at each iteration k&>1, the optimal value of an upper
bound subproblem and a lower bound subproblem give nonincreasing upper bounds and

nondecreasing lower bounds to the original problem P.

Theorem 4.11 [n Step I for any lower bound subproblem (indexed by t#s), the optimal

values of P} . z; .form a nondecreasing series of lower bounds on the optimal value of P and for

any upper bound subproblem (indexed by s), the optimal values of SP: , -} . form a nonincreasing

85

series of upper bounds on the optimal value of P,

] ¢ P 3
1 S..8z S S LSS58z

- 2
ie. 7;<-=

Proof : Since g is a restriction of the whole problem P and the feasible regions of successive

subproblems s;pi“ include that of previous subproblems at each iteration by inclusion of another

Ledg <l
zSys..Sys:.

positive variables, A", it gives

Similarly,s_of is a restriction of the dual of the whole problem P and it is loosened at

each iteration by inclusion of another positive variable, u,*", so the feasible region of Sp* gets

<-.'£...£-
s ==

- o

bigger at each iteration. It provides that -’

86

Chapter S Preliminary Implementation and Results

This chapter reports on some implementation procedures and preliminary computational
results of the parallel primal-dual decomposition algorithm for the multi-part problems through
the use of GAMS [1992], the Regex Library [1992], PVM (Parallel Virtual Machine) 3.11 [1994]
and CPLEX 6.0 [1997] on an IBM RS/6000 workstation and a cluster of four PCs (Personal
Computers) running the Solaris operating system. Several multi-part LP models are impiemented
and in each of the tests, the new parallel decomposition algorithm (by the first method) converges
to within a small tolerance of the optimal value in a finite number of iterations. The algorithm of
the second method sometimes fails to converge. Therefore, we discuss only the first method in
this chapter, except for a brief mention of the results for the second method, at the end of the

chapter.

5.1 The Implementation Procedure

In order to demonstrate the convergence and report the computational results of the new
parallel decomposition algorithm, we coded the multi-part decomposition algorithm into C
programs using GAMS, the Regex Library, the CPLEX Callable Library and PVM which are
executable in one IBM RS/6000 with 128MB RAM and a cluster of four Pentium PCs, each with
300MHz processor and 128MB RAM. We chose the C language for coding because it can utilize
both the CPLEX Callable Library and PVM. thus allowing implementation of the parallel
decomposition algorithm without worrying about the details of coding a linear programming

solver and parallel computing software. The network connectivity is shown in Figure 5.1. The

87

RS/6000 and the 4 PCs communicate with each other via the University of Waterloo LAN but

the PCs use their own LAN connected by Ethemnet cards with the speed of LOMB.

UW AN

RS/6000

PCl PC2 PC3 PC4

N g

Connector

Figure 5.1 Network connectivity

The implementation procedure has two phases: a decomposition phase on the RS/6000
and a solution phase on the PCs. The decomposition phase includes formulating a model,
decomposing the model into subproblems and distributing the subproblems to each computer. The
solution phase includes receiving, generating and solving the subproblems simuitaneously in each
computer with the exchanges of primal and dual proposals at each iteration until an upper bound

and a lower bound of the original problem have come within a prescribed tolerance.

88

5.1.1 Decomposition Phase

In the decomposition phase on the RS/6000, the model is formulated into GAMS and all
data of the model, such as objective coefficients, constraint coefficients and right hand sides etc.,
are stored in a GAMS dictionary with the names of generic constraints or variables and the
elements of their attached sets. Then, WSET (Waterloo Structure Exploiting Tool), which
adopted and modified the basic feature of SPI (Structure Passing Interface) of the original SET
(Structure Exploiting Tool) (Fragniere et al. [2000]), reads all the data from the GAMS dictionary
using the GAMS /O Library (GAMS [1996]) and partitions the whole problem into subproblems
according to pre-defined rules in a file, called the SET file, provided by the user. These rules
employ a public domain Regex library [1992] with the notion of regular expression (or pattern
matcher). The partitioned data of the subproblems are sent to each computer over a local network,
using PVM.

For a clear presentation of the decomposition phase, we will illustrate with the following
four-region energy planning model with 10 periods (“chrisjin4.gms”) is used. In the GAMS model
description, the names of linking variables and linking constraints start with the capital letter “L”
and the names of nonlinking variables and nonlinking constraints start with the capital letters
“NL" in order to correctly identify linking elements and nonlinking elements in the later stage of
partition (These particular letters are not required by our software - WSET could recognize other
character strings to distinguish linking from nonlinking entities). The solver is changed to our

parallel decomposition solver, called WATPAR (WATerloo PARallel) instead of CPLEX.

89

R region /A,B,C,D/
T time per:ods /1,2,3,4,5,6,7.8.9,10/
ALIAS (R,RR);
PARAMETERS
COAL (R} zotal coal reserves
/A 140, 3 105, c 130, o] 184 /
WATER(R) annual water availab:lity
/A 29, 3 72, [of 97, D 105 /;
TABLE

DEMELEC(R,T) demand for electricity
b 2 3 4 3 6 7 8 9 0
23 25 28 31 3s 36 40 £ 38 39

21 23 27 28 30 37

23

31

A

-]

C 0 12 13 j8 8 24 21 23 28
D }

25 22 26 29 27 33 311 £ 28 39
TABLE
JEMWATER(R.T) demand for water
L 2 3 4 5 8 7 8 9 0
A 60 62 85 70 72 70 71 73 5 74
3 45 24 a2 34 46 29 47 45 48 <9
[of 22 25 30 37 38 35 3 40 3l i3
o} 33 3 37 45 4 36 Si 55 30 32;
PARAMETERS
COALCCST(R) A 6, 3 4 c 8, jo BB /
HYELCOST (R) AT 3 9, c 8, 2 8 /
TABLE
TRANSCOST (R, RR)
A 3 [ng 2
A 100 e P DA
3 s 100 2 1.8
c 1.3 2 00 1.8
o] P .9 00

SCALAR DJISFACT L8
VARIABLES CosT discounted cost
POSITIVE VARIABLES

LFLOWS(R.RR.T). NLPRCCAL(R,T), NLPRWATER(R,T), NLPRHYEC(R,T)., NLIMP(R,T). NLEXP(R,T),

SQUATIONS
QBJECTIVE define discounted cost, LTRADE(R.T) eleczricity trade
NLRESERVE (R) ¢oal reserve l:mit, NLWATAVAIL(R.T) upper limit on water

NLSUPWATER R, T} supply & demand for water,
NLSUPELEC(R,T) supply & demand Zor electricity:
JBJECTIVE. . COST =E= -:{SUM(T, (DISFACT**ORD(T))"*
SUM(R,CCALCOST (R) *NLPRCOAL (R, T) ~HYELCOST (R) *NLPRHYEC (R, T)
~SUM(RRS (ORD(RINE ORD(RR)), TRANSCOST(R,.RR)*LFLOWS(R,.RR,.T))i))

LTRADEZ(R,T) .. - (SUM(RR, LFLOWS (RR,R. T} -LFLOWS (R, AR, 7)) -NLIMP(R, T) -NLEXP (R, T}) =L= 0;
NLRESERVE(R) .. SUM(T,NLPRCOAL(R,T})) =L= COAL(R):;

NLWATAVAIL(R.T).. NLPRWATERI(R.T} =L= WATER(R):

NLSUPWATER(R.T) .. - iNLPRWATER(R.T)-NLPREYEC(R,T)) =L= -DEMWATER(R,T);

NLSUPELEC(R.T).. -(NLPRCOAL(R,T)+NLPRHMYEC(R,T)-NLIMP(R,T)-NLEXP(R.T)) =L=-DEMELEC(R.T);
LFLOWS.UP(A" .R.T) = .0.00: LFLOWS.TP('3'.R,T) = 7.00;

LTLOWS.TP(CTLR.T) = 12.00: FLOWS.UP('D' R, T} = 9.00;

OPTION LP =WATPAR ; MODEL CHRISCSIN ALL/; SOLVE CHRISJIN USING LP Maximizing COST;

Figure 5.2 Example of GAMS model formulation

Once “chrisjind.gms” is executed, all information of the model is stored in the GAMS dictionary.
WSET reads the data using the GAMS VO Library and partitions the whole model into

subproblems according to the user defined rules in the following SET file.

NB_SUB_PB 8

Selecting the rows

ROWSPB \ (L\w®* (A, \w*)\)

ROWSPB \ (NL\w® (A, \w*)\ [NLA\wW* [A}\])

ROWSPB \(L\w* (B, \w*}\}
ROWSPS \ (NL\W*{B, Ww*)\|[NL\w* (83)\)

ROWSPB \(L\w* (C,\w*)\}
ROWSP3 \ (NL\w* (C, \w*]}V INLAwW® (C}\}

ROWSPB \(L\w*{D,w*)\}
ROWSP3 \(NL\w®* (D, \w"!\ |NL\w* (D) \}

¢ Selecting the columns

COLSP3 \(L\wW* (A, \w*, \w"]\)
COLSPB \ (NL\w* (A, \w"]\)

COLSPB M {L\w* ({8, \w*,\w*1})
COLSPB ‘(NL\w*(3,\w*}\)

COLSPB \(L\W*I(C, \w”,\w*i\)
COLSPEB \ (NLAwW* {C,\w*}\)

COLSPE (L \W* (3, 'w*, ‘W)
COLSPB \ (NLA\w* (D, \w®1\)

OBJROW OBJECTIVE
OBJCOL COST
ROWMASTER NOTREQUIRED
COLMASTER NOTREQUIRED
WITHGNUPLOT

PD

Figure 5.3 Example of SET file

(1]

The pattern to be matched is defined as “\(...\)". “\w*" means “any character string” and “{"
means “or”. The first line (N3_sus_23 8) shows that the original model is partitioned into 4
subproblems, each with 2 sub-parts (linking and nonlinking variables and constraints). The first
subproblem for region "A" has a set of linking constraints whose names start with the character
‘L’ and whose first index set value is "A’ and anything for the second index. The first subproblem
for region *A’ also has nonlinking constraints defined as follows: they either start with the
character "NL' and have region *A’ for the first index: or they start with ‘NL’ and have ‘A’ as the
only index. The linking variables for the region "A’ subproblem start with ‘L’ and have A’ as the

first index. while the nonlinking variables start with *NL’ and have ‘A’ as the first index. The

91

other three subproblems for region B, C, and D have the linking (or nonlinking) constraints and
variables defined by similar pattern matching rules. Since the primal-dual decomposition
algorithm doesn’t need any master problem, row master and column master are stated as
“notrequired”. “Withgnuplot” shows the following pictures: Figure 5.3 for the original problem
with no structure extracted; and Figure 5.4 for the original problem with multi-part structure using

WSET. The dark spots indicate the locations of the nonzero elements of the matrix.

Jrginal Matns If "Te Prodiem

Figure 5.4 Example of anonymous matrix generated by GAMS

Matrx 3f ine Decsmaasec Prosiem

\\ AN N N -]
<D\ \\\\ \ \
AN \ \\\\\
\ \ \ \\\\

Figure 5.5 Example of multi-part structure generated by WSET

When the “PD" (Parallel Decomposition) subroutine is called, it spawns the executable
files in the four PCs by the pvm_spawn() routine from the PVM library, asking them to start their
own processes, and then sends each subproblem’s data, partitioned by the above schemes, to each
machine by the pvm_send() routine. The constraint matrix is represented by three nonzero
vectors: one vector stores nonzero constraint coefficients by column, another vector has row
location numbers of those coefficients and the other vector indicates the row number of the first
nonzero element in each column. However the CPLEX callable library needs an additional vector
indicating the number of nonzero elements in each column, so the last vector of CPLEX format
should be retrieved from the three vectors of the subproblem in each PC. The data are in the

format of column wise vectors, so the columns which include that part’s nonlinking constraints

93

are first sent and necessary columns for other parts’ linking constraints are sent afterwards.

5.1.2 Solution phase

In the solution phase on PCs, each machine starts with its own process and receives the
subproblem’s data from the RS/6000 by the routine pvm_receive(). Using the CPLEX Callable
Library, each LP subproblem is ioaded in each computer. For instance in SP;, the columns having
that part’s nonlinking constraints (the columns in L3, D3, Ls3 and Bj, A3) are loaded first, then
necessary columns for other parts’ linking constraints (the columns in L3, Ly; and L3, Ly3) are
loaded and finally the unnecessary linking constraints of other parts (parts 1 and 2) are deleted
since column wise vectors include all linking constraints’ data. Each subproblem is solved
simultaneously without any information exchange at the first iteration and exchanges necessary
primal or dual information with other machines and solves each new subprobiem again until the
gap between the objective function values of the upper-upper bound subproblem and the lower-
lower bound subproblem reaches a prescribed tolerance. Note that if any of the subproblems is
unbounded,. the whole process stops at the first iteration by checking the optimal status generated
by CPXSolution().

Since CPLEX provides the dual values cortesponding to the primal constraints by calling
the CPXsolution() routine in the CPLEX Callable Library, we don’t have to solve for the dual
variables separately, so the implementation efforts are greatly simplified. The subproblems can
be solved by the simplex method or the barrier method. For the barrier method, the dual and basis
information can be obtained by crossover at the last step using CPXhybbaropt().

The new primal and dual proposals are multiplied by corresponding matrices and vectors

94

in each computer as discussed in Chapter 3. Thus, only small sized vectors are exchanged in order
to minimize communication load. When the algorithm is executed to the end of the cycle and the
difference between the upper bound and the lower bound of the original problem is still larger
than a predetermined small tolerance, then the algorithm will start another cycle with a new cut
using the CPXaddrows() routine and a new proposal using the CPXaddcols() routine from the
CPLEX Callable Library.

Since the size of the whole C codes of WSET and WATPAR are very large, only the core

parts of the codes are presented with detailed explanation in appendix A.

5.2 The Test Problems and Results of the Experiment

In order to make sure that our algorithm converges to an optimal solution in a finite
number of iterations. we have tested several models such as the small “Toy Energy Planning™
model (TEP) explained in the previous section (Figure 5.1), a North American Energy Planning
model (NAEP) (Fuller. 1992], a Hydro-Electric Power Generation model (HEPG1) [Birge et al.,
1999] and a huge Financial Planning model (FP) [Fragniere et al., 1998b]. Because TEP and
NAEP are multi-regional energy planning models, they can be naturally partitioned into regions.
HEPG1 and FP are stochastic linear programming models, so they can be divided into scenarios.
HEPG! is rewritten with different formulation and data, in the format of a scenario formulation
with the nonanticipativity constraints as linking constraints: this is called HEPG2. The full details
of models except NAEP (whose description is very lengthy and complex) are available in

Appendix B.

95

Table 5.1 presents the statistics of the five test problems. The linking rows and columns
are those constraints and variables which have nonzero entries in the matrices L; when the
original problems are decomposed into four parts. The parenthesis in “Linking Cols (or “Linking

Rows™) shows the ratio of the number of linking columns (or rows) to the number of columns

(or rows).
Table 5.1 Statistics of the test problems
Problems #,Of Columns | Rows Linking Linking Nonzeroes
/srceegn]::iz] Cols. Rows
TEP 4 321 165 120 (37%) 40 (24%) 841
NAEP 7 3949 2425 | 234(5.9%) | 234 (9.6%) 12033

HEPGI 45 153721 | 34471 | 858 (0.5%) | 858 (2.4%) 572015
HEPG2 16 273281 | 62555 | 130(0.04%) | 130 (0.2%) 1015893

FP 117649 333346 | 137258 | 5(0.001%) | 5 (0.003%) 1254924

The linking variables in TEP are ‘LFLOWS (R,RR.T)’ representing the amount of
electricity that flows from region R to region RR at time T, and the linking constraints are the
electricity demand constraints in each region R at time T, ‘LTRADE(R,T)’. NAEP has 7 regions
of Western Canada (WC), Eastern Canada (EC), Western U.S. (WU), Northern U.S. (NU),
Eastern U.S. (EU), Southem U.S. (SU) and the Rest of the World (RW). The 7 regions were
grouped into 4 parts: WC, EC and RW, WU and NU, and EU and SU. The linking variables and
constraints of NAEP are those representing energy flows among the 4 parts. HEPG1 is formulated

using time index and scenario index as shown in Figure 5.5, so it can be divided into the

96

following 4 parts: scenarios 1 to 12, scenarios 13 to 24, scenarios 25 to 36 and scenarios 37 to 45.
HEPG?2 has 16 scenarios formulated with nonanticipativity constraints, thus each part having 4
scenarios. FP has 6 periods, each period with 7 scenarios and divided by the first period’s
scenarios, so the linking variables are the asset variables, ‘LX0(A)’, and cash variable, ‘LCO0’, of
period O since those 5 variables appear in all the first period’s constraints. The linking constraints
are the balance constraints of financial flows in period 1, ‘LBALF_L1(MS)’, which include the

linking vanables.

Period |

/\ /\

Period3 3§ 6

Penod 4

516171819 2021 22 23242526 2728 293031323334 3536373839404142434445

Figure 5.6 A Scenario tree for HEPG1

97

We first solve them directly using the simplex method and the barrier method of CPLEX
6.0 on the RS/6000 in order to compare the solution of the direct method with that of our
decomposition algorithm. We measure the solution time on the RS/6000 as elapsed time, which
includes the model generation time by GAMS and the solver time by CPLEX, in order to give an
idea of how long the whole process takes. Note that HEPG2 cannot be solved by the barrier
method, due to insufficient memory, and FP is aiso too large to be solved, due to the memory

limit, for both the simplex method and the barrier method.

Table 5.2 The test statistics of direct methods on RS/6000 (Time is measured in seconds).

Simplex Method Barrier Method
Problems | Sol. Time [ter. No. Obj.Values | Sol. Time Iter. No. Obj.Values
TEP 0.46 226 -4154.840 0.45 12 -4154.840
NAEP 102.52 2837 -3016.200 104.45 37 -3016.200
HEPGI 435 33245 -144008.474 958 22 -144008.474
HEPG?2 873 55387 -30307.573 N/A N/A N/A
FP N/A N/A N/A N/A N/A N/A

We also solved the original problems in one PC by transferring all data, using WSET, in
order to compare the solution time with that of parallel decomposition in the same environment.
Since the artificial variables are added in the linking constraints in this method, the iteration
numbers could be different from those in Table 5.2. In Table 5.3, “Simp. Iter.” or “Bar. Iter”

shows the number of iterations using the simplex method or the barrier method of CPLEX and

98

“WSET" is the time taken on the RS/6000 for partitioning the original problem into subproblems

after model generation by GAMS: in this case, there is no partitioning, but WSET is used to pass

the problem to CPLEX on the PC. “Setup” in Table 5.3 is the time for receiving subproblem data

and loading the problem for the first iteration, and “Sol” represents the whole time to solve the

problem in one PC, after setup is complete.

Table 5.3 Statistics of Simplex and Barrier methods on one PC using WSET

Simplex Solver Barrier Solver

Simp. Time Ob;. Bar. Time Ob;.

Iter. |WSET| Setup | Sol. Value Irer. |WSET| Setup | Sol. Value
TEP 220 | 0.83 | 0.06 | 0.19 | 4154.840 14 0.82 | 0.06 | 0.21 | 4154.840
NAEP | 2727 | 8.23 | 0.68 | 1.56 | -3016.200 51 8.13 | 0.68 | 4.14 | -3016.200
HEPGI1 | 32418 {380.87| 21.46 | 59.37 (-144008.474| 38 |[381.77 21.37 |175.56|-144008.474
HEPG2 | 55387 |596.65| 65.70 |155.11| -30307.573 | 23 }593.61| 67.30 1820.07| -30307.573
FP |459177|627.76| 84.3 | 37692 |7803892.41 | 33 [622.62| 85.8 [936.02! 7803892.41

Note that there are slight differences between the two methods in “WSET’ and ‘Setup’

since the WSET time is dependent on the computer and communication network loads, and the

Setup is different for the two methods.

The following table gives the sizes of the subproblems that are actually solved at the first

iteration of the decomposition algorithm.

99

Table 5.4 The subproblem sizes

Rows Columns

LL | LU | UL | UU | LL Lu | UL { UU

TEP 7 61 51 41 120 | 140 | 160 | 180

NAEP | 1032 | 822 | 1230 | 1584 | 625 | 466 | 708 | 883

HEPG1 | 10050 | 9756 | 9426 | 6894 | 41850 | 42084 | 42084 | 31836

HEPG2 | 15736 | 15736 | 15684 | 15658 | 68450 | 68502 | 68476 | 68502

FP | 3922139219 | 39217 | 19609 { 95245 | 95243 | 95241 | 47625

The lower-lower bound subproblem keeps adding proposals coming from all the previous
upper and lower level iterations and the upper-upper bound subproblem accumulates the cuts
coming from all the previous upper and lower level iterations. However, the lower-upper bound
and upper-lower bound subproblems don’t keep all the information; they forget the lower level
information when they have upper level information exchange due to the problems mentioned in
the previous chapter. The lower-lower bound and lower-upper bound subproblems used primal
simplex method and the upper-lower bound and upper-upper bound subproblems utilized dual
simplex method.

The stopping criterion used by the decomposition algorithm is that the relative duality gap
(i.e. the gap as a fraction of the average of the upper and lower bounds) is smaller than or equal
to 1.0x10®, which is a very rigorous condition. By this stopping criterion, all tested problems
using the parallel decomposition algorithm converged to optimal solutions and they are exactly

the same as those obtained by the direct methods by CPLEX 6.0. Tables 5.5 and 5.6 show the

100

results of the parallel decomposition method using the simplex and barrier methods for solving
subproblems, respectively. Note that different choices of subproblem type may give slightly
different solution time and decomposition iteration number. The results shown here are one
instance of what we have tried. Our experiences indicate that correctly identifying the parts, in
order to reduce the number of linking variables and constraints is very important since the poor
performance we had at an earlier stage turned out to be due to a poor definition of the parts. For
example, the performance of NAEP was improved by 3 minutes with a different grouping of
regions, which gave a smaller number of linking variables and constraints. Also, HEPG1 was
solved 10 minutes faster by redefining the linking variables and constraints. In our first attempt,
we defined all the water level variables, Llevel (hydro_u, K), as the linking variables and all the
water balance constraints, LwatBal(hydro_u,K, K), as the linking constraints. However, it tumed
out that the water level variables of scenarios | to 3 and nodes 37 to 45 are not truly linking
variables since they don’t appear in other parts and the water balance constraints in nodes 1 to 12
are not truly linking constraints because they don’t include other parts’ linking variables.

In "PD Steps” of Tables 5.5 and 5.6, P #" means the number of information exchanges
between P and Py, and P, #” and “Py #” represent the number of information exchanges in the
second level between Py; and Pry and between Py and Pyy, respectively. Each subproblem’s
simplex iteration number is presented as the sum of all iterations, and “PD Time” is the longest
elapsed time taken, including setup time and idle time, among the 4 subproblems by the parallel
decomposition in 4 PCs even though all processors finish almost at the same time. The speedup

is measured as the ratio of the elapsed time taken by one processor over that of four processors

101

using just “PD time” since WSET could be implemented with a more advanced coding scheme
or different strategies such as storing data in each local database. All the following reports are
based on the primal simplex method and the barrier method with primal crossover, however other
methods such as the dual simplex method or dual crossover can be used to solve the subproblems.
The simplex method was faster than the barrier method in all test problems except FP in which

the barrier method was much faster.

Table 5.5 Performance of Parallel Decomposition with Simplex solver

PD Steps Simplex Iteration Time (sec) |Speedup | Dual Gap

P# |P.#|P.#| LL LU UL | UU |WSET| PD (%)

TEP 6 6 6 191 168 | 149 | 123 | 101 | 0.36 0.53 0.000000

NAEP | 35 | 67 | 47 | 1360 | 1841 | 1494 | 1972 | 18.08 | 5.70 0.27 0.000000

HEPG1 8350 | 8607 | 8542 | 6483 [649.78| 36.94 1.61 0.000000

"~
W
(]

HEPG2| 4 4 4 | 13305)| 12803 | 13736 | 12801 [997.45| 94.53 1.64 0.000000

FP 3 3 3 |267063]279306{276563| 71452 | 1159.1} 3708 | 10.16 | 0.000000

Table 5.6 Performance of Parailel Decomposition with Barrier solver

PD Steps Barrier Iteration Total Time |Speedup | Dual Gap

P# |PL#|Py#| LL LU UL | UU |WSET| PD (%)

TEP 6 6 6 80 56 109 [102 | 1.0l | 041 0.5 0.000000

NAEP | 33 | 93 | 43 | 2174 | 1628 | 1597 | 1218 | 18.58 { 69.60 | 0.06 0.000000

HEPG!

(8]
(98]
1~
1~
—

84 54 44 [647.18|146.48] 1.20 0.000000

HEPG2 | 4 4 4 79 1171 | 105 88 1995.23(34145| 2.40 0.000000

FP 3 3 3 87 84 76 107 [1167.71270.02(3.40 0.000000

Note that the relatively large number of linking variables and columns of NAEP seem to
be the cause of its poor performance. Since the new algorithm converged to an optimal solution
in a small number of PD steps (with the possible exception of NAEP), there was no chance for
error propagation (Ho [1984]) and the test problems showed very good accuracy without dual
gaps.

The statistics of detailed solution time and idle time for each subproblem are presented
in Table 5.7 and 5.8. “Simplex solution time” or “Barrier solution time” shows the sum of the
time taken only to solve the subproblems each iteration with Simplex or Barrier method and “Idle
Time™ presents the sum of waiting time for one processor to receive necessary information of
other(s) at each iteration. Since PVM doesn’t provide facility to measure pure communication
time. this idle time includes pure communication time and pure waiting time (i.e. waiting for
another processor to finish a subproblem that takes longer). “Setup time™ gives the longest time

taken among the four processors in receiving initial data and loading it into CPLEX.

103

Table 5.7 Time measurement of the parallel algorithm with Simplex solver

Setup Simplex solution time Idle time
time

LL LU UL | UU | LL LU UL uu

TEP | 0.174 |0.031 | 0.032 | 0.025 | 0.019 | 0.091 | 0.045 | 0.05 | 0.038

NAEP | IL.11 1.21 | 1.60 | 1.17 | 1.43 | 3.61 | 3.18 | 2.59 | 0.86

[
9
(e <)
—
(]
w

HEPGI| 2540 | 7.35 | 6.45 | 7.30 | 4.15 | 0.25 6.93

HEPG2| 41.80 [24.51 | 15.76 | 14.87 | 11.75 | 23.93 | 11.29 | 12.55 | 18.38

FP 73.89 | 3441 | 3442 | 3347 | 322 | 254 | 264 | 359 | 3383

Table 5.8 Time measurement of the parallel algorithm with Barrier solver

Setup Barrier solution time Idle time
time

LL LU UL | UU LL LU UL | UU

TEP | 0.174 | 0.15 | 0.13 | 0.19 | 0.17 | 0.09 | 0.04 | 0.03 | 0.04

NAEP| 061 |67.56|45.69 | 13.92 | 22.11 | 1.21 | 14.14 | 54.45 | 45.69

HEPG1| 27.55 | 34.39 |109.63] 69.44 | 3401 | 76.12 | 0.02 | 39.83 | 80.62

HEPG2| 69.17 |161.44|264.75|254.78|167.80(128.79| 1.55 | 7.14 | 99.58

FP 78.01 |i81.41(195.53|174.81|108.03| 2049 | 1.82 | 20.31 | 115.5

Since FP has a lot of idle time. especially in the UU processor, due to its unbalanced structure,
if it is run on a daily basis in practice, it can be implemented with a better load balancing strategy
such as assigning more scenarios to the UU processor.

104

We also analyzed the speed-ups and efficiencies for FP obtained from 1 to 4 processors
as shown in Figures 5.6 and 5.7 respectively. Figure 5.6 shows that the parallel decomposition
algorithm can speed up the solution time for utilizing both simplex and barrier methods in a larger
FP model. With the two processors, Py had the first period’s scenarios 1 to 3 and P had 4 t0 7.
With the three processors, FP was divided into 3 parts: Py (scenarios 1 to 3), Pry (scenarios 4 and
5) and Py (scenarios 6 and 7). Note that WATPAR can also handle another altemnative of 3 parts,
Pyu . PuL and Py, by indicating the subproblem type in each processor. Figure 5.6 shows that the
parallel decomposition algorithm can speed up the solution time for utilizing both simplex and
barrier methods in a larger FP model. Figure 5.7 indicates that the parallel decomposition
algorithm for FP can have efficiencies greater than 1 by using the simplex method but not for the

barrier method.

Speedups for FP

12

10 /
8 /
== Simplex

=& Bamer

Speedup
»

1 2 3 4
Number of Processors

Figure 5.7 Speedups for FP with Simplex and Barrier
105

Efficiencies for FP

25 Py
2
/ =€®—Simplex

1.8

Efficiency

0.5

1 2 3 4
Number of Processors

Figure 5.8 Efficiencies for FP with Simplex and Barrier

In some large problems. the parallel primal-dual decomposition showed some

encouraging test results, however much more testing and development as well as efficient coding

schemes are needed.

For the heuristic method, experiments were done at the very early stage of this research.
and we have only the records of TEP and NAEP test results. The tests were done with several
different data sets and they showed that the heuristic algorithm did not always converge to an
optimal solution of the original problem. When it did not converge, it repeated the same upper
bounds and lower bounds of the original problem for three consecutive iterations and the duality

gap was between 0.5 % and 9 % in those test problems.

106

Chapter 6 Conclusions and Future Research

6.1 Conclusions

In this thesis, the main objective is to develop a new parallel decomposition method for
multi-part linear programming models. We focus on the proofs and demonstration of the
convergence of the two-part and multi-part algorithms. We report in some test results that the
algorithms converge to an optimal solution of the original problems in a finite number of
decomposition iterations.

The idea of this thesis originally came from Lan [1993] for multi-stage nested decomposition,
however due to some infeasibility problems on applying the nested decomposition in parallel, we
developed another paralle! decomposition scheme for muiti-part structured modeis.

The parallel decomposition algorithm for two-part models consistently converged to an
optimal solution (and a convergence proof was formed), but our first algorithm for multi-part
models did not always converge (we call this algorithm a heunistic). Finally, we came up with a
convergent parallel primal-dual decomposition algorithm for multi-part LPs, which converged
in all tests, by applving the two-part decomposition principle recursively in a hierarchical way.

The distinctions between Lan’s algorithm and the new parallel decomposition algorithm

are summarized in Table 6.1.

107

Table 6.1 The distinction between Lan’s algorithm and the new parallel decomposition algorithm

Lan’s algorithm New Parallel algonthm
Applied structure Block-triangular Multi-pant
Construction of subproblems | One small and everything else Half and half
Depth of subproblems More depth (N-1) Less depth (floor(log.N)
or 1+floor(logaN))
Information exchange Sending nearest neighbor Broadcasting to others
Weighting scheme Weights carried over No carryover of weights

Subproblem computation

Serial computation (forward
and backward)

Parallel computation

Decomposition algorithm

Nested

Hierarchical

In this thesis. we have completed several theoretical and implementation tasks, namely,

we

1. developed the parallel decomposition algorithm for two-part models,

[

proved the convergence of the two-part method as well as other useful properties,

3. developed the parallel multi-part decomposition algorithm,

4. proved several useful properties of the multi-part method,

5. developed a variant (heuristic) decomposition algorithm for multi-part models,

6. modified SET in order to extract the multi-part structure from GAMS,

7. developed a software for a parallel primal-dual decomposition solver using PVM and

CPLEX.

108

8. tested several models for convergence and speedups of the multi-part decomposition

algorithm.

The parallel decomposition algorithm for two-part LPs soives two master-like
subproblems, an upper bound subproblem and a lower bound subproblem, simultaneously. Each
subproblem works as both the master problem and the subproblem in the traditional
decomposition methods: each accumulates proposals from the other, so is like a master problem
yet each contains full details on only its own part. so is like a subproblem. Each subproblem has
a balanced structure by having the same amount of primal and dual information and has an
equivalent position by conducting the convergence test at the same time. The parallel algorithm
approximates the optimal value of the original problem by calculating a nonincreasing upper
bound and a nondecreasing lower bound at each iteration. This procedure terminates when the
two bounds are considered to be close enough according to the prescribed tolerance.

The two-part decomposition principle can be extended to more than two parts by
applying the decomposition principle recursively in a hierarchical way. First, the original problem
is divided into an aggregated lower bound subproblem and an aggregated upper bound
subproblem. Then, each aggregated subproblem can be again divided into its aggregated lower
bound subproblem and its aggregated upper bound subproblem respectively, and this hierarchical
decomposing process is repeated until there are no more subproblems to decompose. In the case
of four parts. the original problem can have two aggregated subproblems in the first level, an
aggregated lower bound subproblem (P) and an aggregated upper bound subproblem (Py), and

in the second level. the P, can be further decomposed into its lower bound subproblem and its

109

upper bound subproblem, referred to as the lower-lower bound subproblem (Py;) and the lower-
upper bound subproblem (Pyy), while Py can be further decomposed into, the upper-lower bound
subproblem (Py.) and upper-upper bound subproblem (Pyu).

The subproblem Pyy gives nonincreasing upper bounds to the original problem and P
provides nondecreasing lower bounds to the original problem as the iterations proceed, and the
values of Pyy and Py converge to an optimal solution of P. The algorithm proceeds through
iterations of parallel solution of Py and Pry. by exchanges of primal and dual proposais,
converging towards the optimal solution of P_. Simuitaneously, PyL and Pyy are solved
iteratively. in parallel, converging towards the optimal solution of Py The algorithm exchanges
primal and dual proposals at the first level. i.e. between P and Py, either when both level II pairs
of subproblems have converged to the optimal values of P and Py, or when the optimal value of

P, 2(Puy). is greater than or equal to the optimal value of Py, 2(Py). i.e.. 2(Pud) 2 2(Pry).

We developed a parallel decomposition solver for four-part problems, called WATPAR
(WATerloo PARallel). It can extract multi-part structure from an original GAMS problem and
divides it into four subproblems on an RS/6000. Then it sends the subproblems to four PCs using
PVM and solves them simultaneously using CPLEX. The solver is designed to utilize any number
of processors from one to four.

In the preliminary tests. the algorithm converges to an optimal solution in a finite number
of iterations and shows faster convergence than direct methods such as the simplex and interior
point methods for some large test problems.

There are several benefits of the new decomposition method. It can improve

110

computational speed for some real world large problems by exploiting several parallel processors.
The parallel decomposition algorithm can give a solution to a model, so huge that it cannot be
solved in one machine as the whole model due to a computer’s memory limits. It can also provide
a convenient modeling approach and easy model management with less effort, in which
submodels may be developed and managed by different teams or different computers, and linked
by the algorithm when a global optimum is desired (i.e. without having to merge the databases

into one big, hard-to-manage model).

6.2 Future Research

The studies carried out in this thesis have suggested several possibilities for future study
both in theories and implementation.

From the theoretical point of view, the parallel primal-dual decomposition method can
be generalized to a broader class of mathematical programs such as mixed integer programming
and nonlinear programs. which could have more benefits from parallel decomposition. The
heuristic algorithm could be developed further as a warm start for the decomposition method
since the heuristic algorithm seems to have better improvements in the beginning due to more
proposals and cuts, and it gives feasible solutions to the original problem. Different weighting
schemes could be developed by splitting the first level A (or p) variable into two separate A (or
u) variables to choose different proposals coming from SP; and SP; (or SP, and SP,) respectively.
Also, there should be more study on load balancing strategies among the processors to reduce idle

times, which can be a main success factor of parallel computing.

111

Due to some difficulties in coding and time limits, we could not develop the parallel
decomposition solver for more than 4 parts. However, it should be extended to handle any number
of parts. This could be done with more advanced coding techniques such as the object oriented
programming paradigm. In its current form, the parallel decomposition solver does not calculate
optimal primal and dual vectors. To be of practical use to modellers, these should be calculated
and sent back to GAMS to allow generation of a solution report. [mplementing the parallel
algorithm among physically distributed computers with local databases for locally developed
subproblems and communicating with one another by emails or web browsers would be another
interesting subject from a practical point of view.

Needless to say, more testing and implementations are required to assess the efficiency

of the parallel decomposition algorithm for various sized and structured problems.

APPENDIX A GAMS codes of the test models

We present the full details of GAMS models such as HEPG1, HEPG2 and FP. The data of
HEPG1 and HEPG? are generated randomly. A part of data is given here to present the data

format.

A.1 Hydro-Electric Generation Planning Model 1 (HEGP1)

* Written by J.R. Birge and C. Supatgiat, U. Michigan, 1998*
v tast modified H. Jin Park

Ssinclude "columbiaB.dat"
sinclude “columbiaB.prn”

VARIABLES
COST:

POSITIVE variables

Ntherm_gen(therm_u,modes,K) therm production in each mede in each month (MWh)
Ngen_£flow(hydro_u,modes.X}) hydrc water release for generation in each mode in each
month (m3)

vlevel (hydro_u,K) water level at the end of period (Mm3)
NspillFlcw(hydre_u,medes,X) water spill over the period due to aver capacity (m3)
Nexchange {areas, areas,medes,X) amcunt power transfer from (1lst) to (2nd} in each
mode, each node (MWh)

Nrat_flowihydro_u.modes,X) slack in minimum £low constraints. It gets penalty in
the cbjective function.

EQUATICNS
OBJECTIVE
NexpCapa (areas, modes, K)
Nimp_capa lareas,mcdes, X)
Nmeet_.oad(areas,modes,K)
LwatBal (hydro_u.X.X)
NhydroMinC (hydro_u,medes, K}

QBJECTIVE ..CCST=E=- (SUM(K S(crd(K) ST 1),probi(K) *SUM(modes, SUM{therm_u,
SUM(pe:iods.durationtmcdes.K.periods))'uni:Cos:(:herm_u)'Ntherm_gen(th
erm_u.modes.X))))~ (SUM(K S(cxd(X) GT 1),
orob(K) *SUM(medes, SUM(hydre_u, Nrat_£low(hydro_u,.modes.K))}1))/3.8};

NexgCaratareas,medes,.K) S(ord(K) GT 1)..SUM(areaslS(ord(areasl) NE ord(areas)),
Nexchangeiareas,areasl,modes,K)} =L= expgort(areas) * num_hour(K)
« stM{pericds Sduraticnimecdes,X,periods), duration{modes,K,periods}};
Nimgp_cara(areas,mcdes,X) S(ord(X} GT i) .. SUM(areaslS(ord(areasl) NE
crd(areas)),Nexchange(areasl,areas.modes,X)) =L= import(areas) *
zum_hour (K) * SUM(pericds,duration(modes.K,periods));

Xmeet_lcad(areas,modes,X) S(ord(K) GT 1 .
-(StM(hvdro_u. hvdro_isA(hydrs_u,areas) * conversion(hydro_u) ~

113

Ngen_flow(hydro_u,modes,K) / 3600.0)
+ SUM(therm_u, therm_isA(therm_u,areas) * Ntherm_gen{therm_u,modes, X)) +
SUM(areaslS (ord(areasl) NE ord(areas)),Nexchange(areasl,bareas,modes,K)) -
StUM(areasls(ord(areasl) NE ord(areas)),Nexchange(areas,areasl,modes,K)))
=L=-{SUM(periods,demand (modes,K,periods)) *1000.0*fracArea (modes, areas)) ;

LwatBal (hydro_u,K,predlevel) $(ord(K) GT 1 and pred(K) EQ predl (predlevel))
-(initial (hydro_u)$ (pred(K) EQ 0)+Llevel (hydro_u,predlevel)s{pred(K) GT Q)
+(SUM{hydro_ul, links (hydro_ul, hydro_u) "
SUM(modes, (Ngen_£flow(hydro_ul,modes.XK
)
+NspillFlow(hydro_ul,modes,K))) / 1000000.0)) + inflow(hydro_u,K) *
(num_hour (K} * 3600.0 / 1000000.0} - SUM(modes, (Ngen_£flow(hydro_u,modes,K)
+ NspillFlow(hydro_u,modes,K)) / 1000000.0)) =L= -Llevel (hydro_u,K);

NhydroMinC (hydro_u,modes,K) $(ord(K} GT 1) .. - (Ngen_flow(hydro_u,mocdes,K) +
NspillFlow(hydro_u,modes,K) + Nrac_flow(hydro_u,modes,K)) =L=
- (Fmin (hydro_u) *SUM(periods,duration(modes,K, periods)) *3600.0 num_hour(K});

Llevel.UP (hydro_u,K}${ord(K) GT 1) = Vmax(hydro_u):
tlevel.LO(hydro_u,K)S{ord(K) GT 1) = Vmin(hydro_u};

Ntherm_gen.UP(therm_u,modes, k) =
{1.0-cherm_eff{therm_u) *0.01) *capacity(therm_u) *num_hour (K)
'SUM(periods,duracion(modes,K,periods)):
Ngen_flow.UP(hydro_u,modes,K)S(ORD(K) GT 1} =
{1.0 - hydro_eff(hydro_u) * 0.01) * Fmax(hydro_u)
*SUM(periads, duration(modes,K,periods)) * 3600.0 * num_hour(K);

OPTION LP =WATPAR:

MODEL MFT /ALL/:
SOLVE MFT USING LP MAXIMIZE COST;

*ColumbiaBl.dat

SETS therm_u /stherA,, therU/
hydro_u /hydrA,, hydrZ /
K / 0%45 7/
periods / 1, 2, 3, 4 /
predlevel (K) /0*14/
modes / 1*10 /
areas / regl*'regls /
ALIAS (hydro_u, hydrc_ul)
ALIAS {areas, areasl) H
parameters num_hour (K)
Prob(K)
parameter unitCaost(therm_u)
; therA 0.8,, therU 0.8 /;
parameter capacity(therm_u)
theraA 9500,, therU 21 !
parameter initial(hydro_u)
/ hydrA 650,, hydrx 580 /;
garameter conversion(hydro_u)
hydrA &,, hydrZ S5 /:
parameter Vmax{hydro_u)
/ hydra 2100,, hydrZ 2750 /:
parameter Vmin(hydro_u)
/ hydra 230,, hydr2 210 /:
parameter hydro_eff (hydro_u)

114

/ hydrA 25, ..., hydrZ 1S /;
parameter Fmax(hydro_u)
/ hydrA 21,, hydrZ 25 /3
parameter Fmin(hydro_u)
/ hydrA 5,, hydrz S 7
table links(hydro_u, hydrao_ul}
hydrA hydrL
hydrA 0.5 0.2
hydez 0.3 0.1 ;
parameter prob(K) / 1 1,
2

parameter pred(K) /

34735 11, 36+39 12, 4042 13, 43-45 14 /;

parameter predl (K) /0 0,1 1, 2 2, 3 3, 4 4, 5
g, 9 1

Loop (K,
num_hour (K) = ROUND(UNIFORM(3,8)})
)

table demand(modes, X, pericds)
1.1 2*4.2 5°143.3 15+45.4
1 9 19 28 ig

ié.. 7 lé'-‘ 27 34

table duracion(modes., K, pericds)
1.1 2+4.2 5+*14.3 15+45.4%

1 0.3 .2 0.25 0.3
10 Q.2 0.3 0.23 0.24

table fracArea(modes, areas)
regl reg2 1zreglS reglé
1 0.05 0.08 0. 0.1

10 2.09 0.01 0.Q02 0.18

parameter import(areas) / regl 25000,, reglé 277CO
table hydro_isA(hydro_u, areas)

regl reg2 regl regll regld reglS5S reglé

hydra 1

hydrB 1

nydrC 1

hydrX R
aydryY 1
hydrZ
table therm_isA(therm_u, areas)
regl regl regl regld reglS reglé
cherA b4
chers 1
therC 1

[

[

thers

115

5'
11, 12 12 ,13

13, 14

/

6 8§,

7
14/

7

therT 1

therU 1;
parameter export(areas) / regl 22500,, reglé 27700 !/
*ColumbiaB.prn
Table inflow(hydro_u,K)
1 2 3 43 44 4S5
hydrA 52 66 81 57 66 85
hydrZz 37 6% B85 58 70 81 ;

A.2 Hydro-Eletric Generation Planning Model 2 (HEGP2)

» written by J.R. Birge and C. Supatgiat, U. Michigan, 1998+
» rast modified H. Jin Park

$include "columbia.dat”

VARIABLES
COST:

POSITIVE VARIABLES

Ntherm_gen (therm_u.modes,periods, senarios)

~ therm production in each mode in each month (Mwh}
Ngen_flow(hydro_u,modes,periocds, senarios)

* hydro water release for generation in each mode in each menth (m3)
Llevel (hydro_u,periods, senarios)

= water level at the end of period (Mm3)
NspillFlow(hydro_u,modes,periods, senarios)

* water spill over the period due to over capacity (m3)

Nexchange (areas, areas,modes, periods, senarios)

» amount power transfer from (lst) to (2nd) in each mode , each node (MWh)
Nrat_flowihydro_u,modes,periods,senarics) :

e slack in minimum flow constraints. It gets penalty in the objective function.

EQUATIONS
OBJECTIVE
NexpCapa (areas,.mcdes, periods, senarios)
Nimp_capa (areas,modes,periods, senarios)
Nmeet_load(areas,modes,periods, senarios)
NwatBal (hydro_u,pericds, senarios)

Nhydxoninc(hyd:o_u,modes.periods,senarios)
LnonAnt (hydro_u, periods, senarios)
LoonaAnt2l (hydro_u,periods, senarios)
LnonAnt22 (hydre_u, periods, senarios)

Lnonantll (hydro_u,periods, senarios), LnonAnt32(hydro_u,periods,senarios)
LnonAnt33 (hydro_u, periods, senarios), Lnonrant34(hydro_u,periods,senarios)

sacnant4l (hydro_u, pericds,senarios), LnonAnt42 (hydro_u,periods,senarios)
Lnenanta3 (hydro_u, pericds, senarics), LnonAnt44(hydro_u,periods,senarios}
tnonant4s (hydro_u,pericds, senarios} ., LacnAnt46 (hydro_u,periods, senarios)
Lnonantd7 (hydro_u,periods, senarios), LnonAnt48(hydro_u,periods,senarios)

OBJECTIVE .. COST =E= - (SUM(senarios, prob(senarios)*SUM(periods,
SUM{modes, duraticn(modes, periods)* SUM(therm_u. unitCest(therm_u) *
Ntherm_gen (therm_u,modes, periads, senarios)))))

116

+ SUM(senarios, prob(senarios) * SUM(periods, SUM(modes,SUM(hydro_u,
Nrat_flow(hydro_u,modes, pericds, senarios)))))/3.6);

NexpCapa (areas,modes, periods, senarios) .. SUM(areasl$({ord(areasl) NE
ord(areas)),Nexchange(areas, areasl,modes, periods,senarios)) =L= export(areas) *
num_hour (periods, senarios) * duration (modes,periods);

Nimp_capa (areas,modes,periods,senarios) .. SUM(areaslS(ord(areasl}) NE
ord(areas)) ,Nexchange(areasl, areas,modes, periods, senarios)) =L=
import(areas) * num_hour (periods,senarios) * duration(modes,periods);

Nmeet_load(areas,modes, periods, senarios) ..
-{SUM{hydro_u, hydro_isA(hydro_u,areas) * conversion{hydro_u) *
Ngen_flow(hydro_u,modes, periods, senarios) / 3600.0)
+ SUM(therm_u, therm_isA(therm_u.areas) *

Ntcherm_gen (therm_u,modes, periods, senariocs)) + (SUM(areasl$(ord(areasl) NE
ord(areas)),Nexchange (areasl,areas,modes, pericds, senarios)))
- SUM(areaslS(ord(areasl) NE

ord(areas)) ,Nexchange (areas, areasl, modes,periods, senarios)))

=L= -{demand(modes,periods) * 1000.0 * fracArea(modes,areas)};

NwatBal (hydro_u,pericds, senarios)

-(initial(hydro_u)S$(ord(periods) EQ 1) + Llevel (hydro_u,periods-1,
senarios)$({ord(periods) GT 1) + (SUM(hydro_ul, links(hydro_ul,hydro_u) *
SUM(modes, (Ngen_£flow(hydro_ul,modes,periods, senarios)

+ NspillFlow(hydro_ul,mcdes, periods, senarios))) / 1000000.0})
+ inflow(hydro_u,periods, senarics) * (num_hour(periods,senarios) * 3600.0
/ 1000000.0) - SUM(modes, (Ngen_flow(hydro_u,modes, periods, senarios)
+ NspillFlow(hydro_u,modes,periods, senarios)) / 1000000.0)) =L=
- Llevel (hydro_u,periods, senarios);

NhydroMinC {hydre_u,modes, periods, senarios)..
- Ngen_flow(hydro_u,modes,pericds,senarios) «
NspillFlow(hydro_u,modes,periods, senarios) +
Nrat_flow(hydro_u,mcdes, periods, senarios))
=L= -(Fmin(hydro_u} *duracion{modes,periods) * 3600.0 *
num_hour (periods, senarios)}:

Lnonant (hydro_u,perii,senarios).. Llievel (hydro_u,peril, senarios) =l=
Llevel (hydro_u,peril, senarios++1);

Lnonantll(hydro_u.peri2,senl).. Llevel(hydro_u.peri2,senl) =1=
Llevel (hydro_u,peril,senl++1);
Lncnant22 (hydro_u,peri2,sen2).. Llevel(hydro_u,.peri2,sen2) =l=

Llevel (hydro_u,peril,sen2++l);

Lnonant3l (hydro_u,peril,sen3).. Llevel(hydro_u,peril,sen3} =1=

Llevel (hydro_u,peril,sen3d++1l);
LnonAnt32 (hydro_u,peri3,send).. Llevel(hydro_u,peri3,send}) =1=

Llevel (hydro_u,peril, send++1l);
Lnonantl3d(hydro_u,peri3,senS).. Llevel(hydro_u,peril3,sen5) =1=

Llevel (hydro_u,peril,sen5++1);
LacnAntl4(hydro_u,peril,sené).. Llevel(hydrc_u,peril,sené) =1=

Llevel (hydrc_u,peril3,sen6++1);

Znonant4l (hydro_u.perid,sen7).. Llevel(hydro_u,peri4d,sen7) =1=

Llevel (hydro_u, peri4d,sen7++l);
inonAnt42 (hydro_u.perid,senf) .. Llevel (hydro_u,perid,senB8) =l=

Llevel (hydro_u,peri4d.sen8++1);
Lnenant4l (hydro_u,perid,sen9) .. Llevel (hydro_u.peri4d,sen$) =l=

Llevel (hydro_u,peri4,senS++1});

117

LnonAnt4é4 (hydro_u,perid,senl0).. Llevel(hydro_u,perid,senl0) =1=
Llevel (hydro_u,peri4,senlQO++1);

LnonAntd5 (hydro_u,perid4,senll) .. Llevel (hydro_u,perid,senll} =l=
Llevel (hydro_u,perid,senll++l);
LnonAnt4é (hydro_u,peri4.senl2) .. Llevel (hydro_u,perid,senl2) =1l=
Lievel thydro_u,perid,senl2+«+l);
LnonAnt47 (hydro_u,perid,senl3) .. Llevel (hydrc_u,perid,senl3) =1=
Llevel (hydro_u,perid,senll3++l);
LnonAnt48 (hydro_u,perid,senld) .. Llevel (hydro_u,perid4.senld) =l=

Llevel {hydro_u,peri4,senld++1);

Llevel.UP (hydro_u,periods, senarios) = Vmax(hydro_u);
Llevel .LO(hydro_u,pericds, senarics) = Vmin(hydro_u):

Ntherm_gen.UP(therm_u,modes,periods, senarics) =(1.0 - cherm_eff(therm_u) * 0.01)
* capacity(ctherm_u) * num_hour(periods, senarios)* duration(modes,periaods):;

Ngen_flow.UP(hydro_u,modes,periods,senarios) = (1.0 - hydro_eff(hydro_u) * 0.01)
*Ffmax (hydro_u) *duration(modes, periods)*3600.0"num_hour(periods, senarios);

CPTION LP =WATPAR:;
MODEL MFT /ALL/:
SOLVE MFT USING LP MAXIMIZE COST:

*Columbia.dat
SET therm_u /therA, ther3,, therU/
hydro_u /hydrA, hydrB, , hydrZ /

periods / T1*T8 /
senarios /S1°*S16/

rll(periods) /T1l/, per‘”(pe:icds: /727
ril(pericds) /T3/, erid(periods) /T4/7

senl (senarios) /S1*S8/, senl (senarios) /S9+S16/
sen3 (senarios) /S1+S4/, send (senarios) /S5*S8/
sen5(senarios) /S9*Si2/, sené (senarios) /813+*S16/
sen7 (senarios) /S1*S2/. sen8(senarios) /S3*S4/
sen%(senarios) /S5"S6/, senlQ(senarios) /S7°S8/
senll({senarios) /89+*510/, senll (senarios) /S11°S12/
senll(senarios) /S13*Sldi/, senld4 (senarios) /S15°*Sl6/
medes ; 1*10 7/
areas /! reglvreglé /
ALIAS {hydro_u, hydro_ul)
ALIAS (areas, areasl) H

parameter unitCost(therm_u)

thera 0.8, , thexU 0.8 /;
rarameter cagacity(therm_u)
chera 950C, therd 9800, , therU 73900 /:

paramezer therm_eff(therm_u)
thera 21, thexrB 1

-3

parameter initial (hydro_u)

hydra 500, hydrB 700, , hydrZ €90 /;
parameter conversion(hydro_u)
hydrA 4, hydesB €6, , hydeZ 35 /;

parameter Vmax(hydro_u)

118

/ hydrA 1100, hydrB 1200, , hydr2 1250 /:
parameter Vmin(hydro_u)

/ hydrA 530, hydrB 540, , hydrz 630 /3
parameter hydro_eff (hydro_u)

/ hydrA 25, hydrB 26, , hydr2 25 /:
parameter Fmin(hydro_u)

/ hydrA S, hydrB 4, hydrz S !/ ;

cable links(hydro_u, hydro_ul)
hydrA hydrB hydrcC

hydrA 0.5 0.2 0.25
hydrz 0.1 RN
parameter prob(senarios) / Sl

S13 0.07, s14

. hydrJ hydrK hydrL

0.3 0.45 ;

0.02, s2 0.02, s3 (0.0l6, sS4 0.024

0.089, sS15 0.126, s16 0.124

table num_hour(periods, senarios)

sl s2 s3 e S§15 S16
Tl 3 3 3 e 3 3
TS 3.7 2.7 5.2 RN 3.5 1.9 ;
table inflow(hydro_u, periods, senarios)
T1.81*S16é T2.S1-*s8 TS5.816
hydra 33 17 cene 29
hydr2 65 22 e 30 ;
table demand(modes, periods)
Tl T2 T3 T4 TS
1 6.3 6.3 6.2 6.8 7.3
10 3.7 4.9 5.7 7.4 7.9
table duration(modes, periods)
T2 T2 T3 T4 TS
1 0.3 0.2 0.25% .3 0.1
i0 2.2 0.3 0.23 0.24 3.08
tablie fracArea(modes, areas)
regl reg2 regls reglé
1 0.05 a.¢08 ... Q.1 0.1
10 0.0¢9 g.01 Q.02 2.18 ;
parameter import{areas)
/ regl 25000, , reglé 27700 /:
table hydro_isA(hydro_u, areas)
regl reg2 reglS reglé
hydra 1
hydrs 1
hydrz B ;
table therm_isA(therm_u, areas)
regl regl reglS reglé
thera 1
cher 1
chezU 1 ;
parameter exgport(areas)
S regl 22500,, regls 27700 s ;

119

A.3 Financial Planning model (FP)

* A GAMS financial planning model inspired by J. Birge and G. Infanger.

* Modified and tested by E. Fragniere , J. Gondzio and J.-P. Vial,

* Maximum size: 9 periods (10 stages), 10 scenarios (more can easily be added)
* Default size: 6 pericds (7 stages), scenarios 1*7

* This is a nice big model: for the default of 6 periods and 7 scenarios

* Last Modified by H. Jin Park

OPTION RESLIM = 21600; QFTION ITERLIM = 500000;
OPTION LIMROW = 100; QPTICN LIMCOL = 100; OPTION SOLPRINT = OFF:
SCALARS

RC Cash rate of return /1.08/,

Wl Inicial capital /507,

WF Goal 175/,

MAXPER 'max #% of periods’ P VAN

NPER '# of periods used’ ;8 sy

* don't change MAXPER unless you know what you are doing!
* changing NPER is the intent, but do that in your own copy of this model

abortsS (MAXPER gt 9) ‘You should not have changed this!';
abearts (NPER gt MAXPER) 'Maximum # of periods allowed exceeded':;
abortS (NPER 1t 1) 'Must run model for at least ocne period';
SETS
A ‘Assets’ / USAB, FORS, CCRP, GQVE /,
MS ‘master set of scenarios’ / sl = sl0, id 7/,
id(MS) ‘identity: replicares previous pericd'’ Soid o/,
Pl (MS) 'scenarios used in period 1° / sl * s7 /.,
P2 (MS) 'scenarios used in period 2°
P (MS) 'scenarios used in period 3'
P4 (MS) 'scenarios used in period 4'
PS (MS) 'scenarics used in period 3
P& (MS) 'scenarios used in periad 6
« PT(MS) ‘scenarios used in peried 7°
* PA(MS) ‘scenarios used in pericd 8°'
« P9 (MS) 'scenarios used in period §°

* In order to make the number of periods flexible,
* we allcw only the identity scenario for periods
* after the cnes we wish to consider.

P2 (MS) = Pl (MS)S(NPER ge 2) + id(MS)S(NPER 1t 2};
BI(MS) = Bl (MS)S(NPER ge 3) + id(MS)S(NPER lt 3};
P4(MS) = PL(MS)S(NPER ge 4) + id(MS)S(NPER lt i)
PS{MS) = PL{MS)S(NPER ge 5) + id(MS)S{(NPER lt 5});
P5(MS) = Pl (MS)$(NPER ge §) « id(MS)S(NPER 1t &); .

*27(MS) = PL{MS)S(NBER ge 7) -~ 1id(MS)S(NBER 1lt 7);
*B8(MS) = Pl (MS)}S(NPER ge 8) + id(MS)S(NPER 1t 8);
*PG (MS) = PL(MS)IS(NPER ge %) » id(MS)S(NPER lt 9);
TABLE RR(MS,A) 'Asset rates aof return’

USAB FORS CORP GOVE

sl 1.27 1.18 0.8¢9 1.02
2 1.20 1.41 1.04 1.05
s3 1.06 Q.91 1.11 1.1¢
s4 1.23 Q.83 1.05 1.02

120

s5 1.09 1.10 0.95 0.98
s6 1.15 1.28 1.25 1.18
s7 0.83 0.97 1.02 1.07
s8 0.83 0.77 0.91 0.98
s9 1.09 1.18 1.18 1.16
s10 1.20 1.18 1.18 1.186
id 1 1 1 1 H
VARIABLES

EU
POSITLIVE VARIABLES

LCO

Cl{Ms)

C2 (MS, MS)

C3 (MS,MS,MS)

C4 (MS,MS,MS, MS)

C5 (MS,MS,MS, MS,MS)
* C6(MS,MS,MS,MS,MS, MS)
* C7(MS,MS,MS,MS, M5, MS, MS)
* C8(MS,MS,MS,MS, MS, M5, MS, MS)

LXO(A)

X1(Ms,A)

X2 (MS,MS.,A)

X3 (MS,MS,MS,A)

X4 (MS,MS,MS,MS,4A)

X5 (MS,MS,MS,MS,MS,A)
* X6(MS,MS,MS,MS,MS,MS,A)
* X7(MS,MS,MS.MS,MS,)
* X8(MS,MS,MS,MS,M

U (MS,MS,MS,MS.M
* V (MS,MS,MS,MS.M

MS,MS,A)

S,MS,MS,MS,A)
S,MS,MS, M5, MS)
S, MS,MS,MS,MS)

L]

’

CART (MS)
U (MS,MS,MS,MS,M5,MS)
vV (MS,MS,MS,MS,MS,MS)

'surplus,
‘deficict,

EQUATIONS
OBJECTIVE
BALF_Q
LBALF_1(MS)
BALF_2 (MS,MS)
BALF_3 (MS,MS,MS)
BALF_4 (MS,MS,MS,MS)
BALF_S (MS,MS, MS,MS,MS)

OBJECTIVE..

EU =E= SUM ((P1,22,P3.P4.P3,P6),

'Expectation of the utilicy function':;

'cash period 0°',
'cash peried 1°',
‘cash peried 2°',
‘cash perieod 3°',
‘cash period 4°,
'cash period S°,

‘cash pericd 6',

‘cash period 7°,

'cash period 8’,

'assets period 0°,
‘assets period 1°',
'assets period 2°,
‘assets periocd 3',
‘assets perioed 4°',
'assets period §5°,

‘assets period 6',

'assets period 7',

‘assets period 8°',

'surplus, final period’',

'deficit, £final periodl’;

nal period’',

£i
final pericd’;

'computes EU (expected utility)’,

'Balance of Financial Flows period 0',

'Balance of Financial Flows pericd 1°,
'Balance of Financial Flows period 2°,
‘Balance of Financial Flows period 3°',
‘Balance of Financial Flows periocd 4'.
'Balance of Financial Flows periecd S°',
'Balance of Financial Flows pericd 6°',
'Balance of Financial Flows period 7',
‘Balance of Financial Flows period 8°',
*surplus and deficit, final period’;

S5eU(P1,P2,P3,P4,P5,P6)-20*V(PL1,P2,P3,P4.P5,P6)) ;

*OBJECTIVE..

. EU =E= SUM ((Pl,P2,P3,P4,P5,26,P7.88,P9),

M S*U(P1,P2,23,P4,P5,P6,27,P8,P9)

. -20*v(P1,P2,P3,P4,P5,P6,27,P8,P9) }:
BALF_J0.. SUM (A, LX0(A)) + LCO =1= WI:

121

LBALF_1(P1)S(NPER gt 1)..
-(SUM (A, LXO(A)*RR(P1,A)) + LCO*RC) =1l= -(SUM (A, X1(PL,A))}+ Cl({Pl))
BALF_2(P1,P2)S(NPER gt 2)..
-(SUM (A, X1{P1,A)*RR(P2,A)) + Cl(Pl}*RC) =l=
-(SUM (A, X2(Pl,P2,A)} + C2(P1,P2});

BALF_3(P1,P2,P3)S(NPER gt 3)..

-(SUM (A, X2(P1,P2,A)*RR(P3,A)) + C2(Pl,P2)*RC) =l=

-(SUM (A, X3(Pl,P2,P3,A}) + C3(P1,P2,P3}};
BALF_4(P1,P2,P3,P4)S(NPER gt 4)..

-(SUM (A, X3(P1,P2,P3,A)"RR(P4,A)} + C3(P1,P2,P3)*RC) =1=

-{SUM (A, X4(P1,P2,P3,P4.A}) + C4(P1,P2,P3,P4)):
BALF_S(P1,P2,P3,P4,P5)S(NFER gt 5)..

-(SUM (A, X4(P1,P2,P3,P4,A)*RR(PS,A)) + C4(P1,P2,P3,P4)"RC) =L=

-(SUM (A, XS(Pi,bP2,P3,P4,PS5.A)) + C5(P1,P2,P3,P4,PS))
COMPUV (P1,P2,P3,P4,PS,P6) ..

WF + U(P1,P2,P3,P4,PS,P6)

- V{P1,P2,P3,P4,P5,P6} =L=

{sum (A. LXO0(A)*RR(P1l,A))

(sum (A, X1(P1l,A)*RR(P2,A))

(sum (A, X2(P1,P2,A)*RR(P3,A))

(sum (A, X3(P1,P2,P3,A)"RR(P4,A))

LCO*RC) S(NPER eq 1) +
Cl(P1l)*RC) S(NPER eq 2) +
C2(P1,P2)*RC) S(NPER eq 3) +
C3(P1l,P2,P3)*RC) S(NPER eq 4)

+ + t ¢

(sum (A, X4(P1,P2,P3,P4,A)°"RR(P5.A)}
+ C4(P1,P2,P3,P4) *RC) S$(NPER eq S)

(sum (A, XS(P1,P2,P3,P4,P5,A)"RR(P6,A))
+ CS(P1,P2,P3,P4,P5)"RC) S(NPER eq 6)

'+

o [sum ({A, X6(Pl,P2,P3,P4,P5,P6,A)"RR(P7,A}}

. + C6(P1,P2,P3,P4,P5,P6)"RC] S(NPER eq 7)
LX0.UP(A) = WI; LCO.UP = WI:

OPTION LP = WATPAR;
MODEL PORT / ALL /;
SOLVE PORT USING LP MAXIMIZING EU;

APPENDIX B The C codes of WSET

We present a simplified code of a core part for WSET (Waterloo Structure Exploiting Tool),
which describes how the multi-part structure can be extracted from GAMS and how each
subproblem's data can be sent to the parallel machines. This code is a modification of the
original SET, which has much more complicated coding scheme with several files. Assuming
that all files and libraries are linked properly and all variables are defined correctly, we give
only the modification of the original set.

LpSubProb* short SplitData_PD (LpGams® LpG. 3leockSt® Decomp, LpSubProb*s LpSub)

..... DEFINE VARIABLES ANC ALLOCATE APPOPRIATE MEMORY

/* Retrieve data from nb_blccks Decompesition structure cf original SET. */
int nb_blocks Decomp->nb_blocks:

int objective_row Decomp->cbjective_row;

int objective_column Decomp->cbjective_column;

int* rowinfo
int* row_perm
inc* inv_rw_p

Decomp->rowinfo;
Decomp->row_permutaticn;
Deccmp->inverse_rowperm;

nonwn

* colinfo
* col_perm
*« iav_zl_p

2
a

Deccmp->colinfo;
Decomp->col_permucation;
Deccmp->inverse_colperm;

Voo g po
13

(AN B a)
n uwn

/* Determine the dimensions of SubPrcblems:; number of variables,constraints,
* and nconzerces of nb_subs part f£cr WSET.

* Remove column corresponding to objective variable frem Sub_0.

* Retrieve the index of the objective row in a permuted matrix. ¥/

nb_subs = nb_blocks/2;

for (i = 0; i <= nb_subs; i~++} {
1£(1==0)
{
SPb_n{i] = Deccmp->lastCol([i] - Decomp->FirstCol(il;
Spb_m[i] = Decomp->LastRow{i] - Deccmp->FirstRow(i]
}
else

Decomp->LastCol{2*i] - Decomp~>FirstCol(2-i]

SPb_mi2 Decomp->LastRow{2*i] - Decomp->FirstRow{2*i] ;
SPb_n([2*i-1] = Deccmp->LastCel[2*i-1] - Decemp->FirstCol(2<-i-1]
SPb_m[2*i-1] = Decomp->LastRow(2*i-1] - Decomp->FirstRow(2*i-1]
SPb_n(il] SPb_n[2*i-1]-SPb_n[2°i]:

SPb_m{i} SPb_m([2*i];

for(i=1;

i

<= nb_subs; j++)}

123

{
SPb_m([i} = SPb_m[i]+Decomp->LastRow{2*j-1]~-Decomp->FirstRow{2*j-1] ;
}
}
SPb_nz[i] = 0:
}
SPb_n(0]--:
obj_row = row_perm{objective_row]:
princf(“cbhbj_row = %d\n*, obj_row):
for (i = 0; i < Decomp->n; i++) {
j = colinfolil:
SPb_nz(j] += LpG->3coll[i+l] - LpG->jcol(i]:

j = objective_column;
SPb_nz (0} -= LpG->jcol[j~1l] - LpG->jecol{j]:
for (i = 1; i <= nb_blocks; i+«} {

SPb_m{i] <= SPb_m(0];

for(i = 0; I <= nb_subs; is«)
L
LOWSPb_m([i} = 0:
i€(i ==)
SPb_nz{0l= 0J;
else
SPb_nz{i] = SPb_nz(2*i-1] « SPb_nz(2*i);

* Find the number of linking variables and ccnstraints £or each part*’
for(i=1 ; i <=nb_subs ; i+-+)

LSPb_n(i] = Deccmp->LastCol{2*i-1l] - Decomp->FirstColl2+i-l};
LSPb_m(i] = Decomp->LastRow{2*i-1] - Decomp->FirstRow{2*i-i];

* Find the zctal number of linking variables and constraints f£or upper
parcs*’

foxr(i=1;i<=nbkb_subs;ie~)
¢

HISPb_m(i-1]+LSFb_m{
HISPb_n{i-1)+LSPb_al

-}
-

1

* Tinéd the zcotal number of linking censtraints for lcwer parts */
k=1; k <= nb_subs; k+=}

LOwWSFb_mik] = HISPb_minb_subs] - HISPb_m(k]:

* First main loop. Split Data of GAMS LP problem into SubProblems.

* Set up all column related data in SubPrcoblem LP matrices.

* Nctat:wcn:

« 3 and 3 dencte rew ané column indices in the GAMS LP matrix;

* irw and jecl dencte row and calum indices in rhe permuted matrix;
isp and Isp dencte row and c¢clumn indices in the SubProblem;

124

* k denotes an index of SubProblem to which column j belongs.

* Starting from the first column, decide the row part number of the nonzero
coefficient: nonlinking constraint's coefficient belongs to the same part
number which the column belongs to:; linking constraint's coefficient
should have a column part number and row part number.

Note that there are 2*nb_subs subproblems in original SET but should be
converted to nb_subs subproblems. iii and ppp accumulates the number of
rows above each part, so can find correct row number.

L]

- 8

*/

j inv_cl_pl(jecll:

bt
k colinfo{jl;

for (jecl = 0; jecl < Decomp->n; jcle++) {
if (j '= objective_column) {
phd = (k+1l}/2; k = phd ;

for (ipos = LpG->3jcolijl; ipos < LpG->jcol([j+l}:; ipos++) {
i = LpG->irow(ipas]:
rw = row_perm(i];

[

if({rowinfe(i] <= 2+*phd)
{
i€ (rowinfo(i] <= Q0 }
isp = irw;
else if (rowinfc[i] < 2*phd-1)
{
ppp=0;
for(iii=0; iii < (rowinfo{il-1)/2 ; iiie++)
{ppP= pPpp + Decomp->LastRow(2*iiirl]- Decomp->FirstRow[2<*iiiel];}
isp = irw + Decomp->LastRow{0] - Decomp->FirstRow(rowinfoli]]+ppp:
}
else
{
ppp=0;
for(iii=0; iii < phd-1 ; iiie+}

PPpP= ppp + Decomp->LastRow([2*iii+l]- Decomp-FirstRow([2<iii~1]:

isp = irw + Decomp->LastRow([0] - Decemp->FirstRow([2*k-1]+ppp;

Fpp=0:
for(iii=s 1; iii < (rowinfofil+l)/2; iii++)
PPP = FPP + Decomp->LastRow{2"iii-1]- Decomp->FirstRew(2+*iii-1];

isp = Decomp->LastRecw(2*phd] - Decemp->FirstRow(2*phd] - irw
Decomp->LastRow (0] - Decomp->FirstRow(rowinfo{i]l+ ppp
}

ssp = SPb_n(k]:

isp;
LpG->aalipaos];

LpSubkik] ->rwnmbs (SPb_nz [k]]
LpSubl(k!->coeffs(SPb_nz(k]]

([}

SPh_nz[k]--:

LpG->1b([3l;
LpG->ub(il;

125

LgSublk]->lo_bnds{jsp]
LpSub[k]->up_bndsijsp!

}

/
A

fo

PRy

[TI

"

LpSubl[k]->clpnts{jsp + 1] = SPb_nz(kl;
SPb_nlk]++;

Check the consistency of daca. */

r (k = 0; k <= nb_blocks; k++) {
if (SPb_n[k] '= LpSubfk]->n) {
printf("Error: SubPb %d has incorrect number of columns ¥d.\n",
k., SpPb_nlk}};
}

[ad

= 0; j < LpSublk]->n; j++) (
{ LpSublk]->lo_bnds([jl > LpSub(k]->up_bnds{j]) {
printf("Error: SubPb %3, column %¥d: LO_bnd exceeds UP_bnd.\n*, k,

cr (2
if

}
}
if (SPb_nz([k] '= LpSub(kj->nz)} {
printf{"Error: SubPb %d has incorrect number cf entries %d.\n",
k., SPb_ncz(k!);

(Demp_ZrrDim > 3) ¢
rintf("Srrer in SplitData_DW: Wrong SubProblems dimensions.\n");
return Q:

{ Semp_ErrBnd > 0) {
printf("Error in Splirbata_DW: LpSub is infeasible (LO_bnd exceeds
UP_bnd) .\n");

Secend main loop for constraints. Split Data of GAMS LP probklem inte
SubProblems.

Set up all row related dara in SubProblem LP matrices.

Nctat:icn:

denotes row index in the GAMS LP matrix;

irw denotes row index in the permuted matrix;

isp denotes row index in the SubProblem;

k denotes an index of SubProblem to which row i belongs.

(28

i)

Starting from the £irst row, decide the row part number of rhs and sign

of constraints
Noce that linking constraints should be included in all nb_subs parts.

K=1; R<=nb_subs; k++)
ar (irw = 0; irw < Deccmp->m-1; Iirwe++)

1= inv_rwe_plirw];
Lf (zowinfe[i] <= 0)

LSp = irw:
LpSub(k] ->roew_cypel(isp] = LpG->isign(il:
if { 1 == cbjective_row)
LpSub(k]->rew_typelisp] = 3
LpSub({k]~->rhs([isp] = LpG->rhs{i];

126

LpSub(k]}->ranges[isp] = 1.0e+30;

SPb_m(k]l++;
}
else
{
if (rowinfoli] < 2*k-1)
{
for (phd=1; phd <= nb_subs; phd++)
{
if(rowinfo[i] == 2+*phd-1)
{
ppp = 0;

for(iii=0; iii < phd-1 : iii++)
PPP= ppp + Decomp->LastRow([2*iii+l]- Decomp->FirstRow{2*iii+l];

isp = irw » Decomp->LastRow([0] - Decomp->FirstRow({rowinfo(il]]+ppp:

ppp = 0:

LpSub(k]l->row_typel[isp] = LpG->isign{il];
LpSub(k!->rhs(isp] = LpG->rhs(i];
LpSub(k]->ranges[ispl] = 1.0e+30;

SPb_m(k]++;

}
}
else
{
for(phd=1l; phd <= nk_subs: phde+)
(
if{rowinfofi] == 2+phd-1)
{
ppp =0;
for(iii=0; iii < phd-1 ; iiis++)
ppp= ppp « Decomp->LastRow([2*iii+l]~- Decomp~->FirstRow({2=iii+l];

if(phd == k)
{
isp = irw + Decomp->LastRow([0] - Decomp->FirstRow(rowinfoli]]
+ PPP/
}
else
{
isp = irw + Decomp->LastRow[0] - Decomp->FirstRow{rowinfo(i]]
- (Decomp->LastRow[2*k] - Decomp->FirstRow({2*k]) + ppp;
}
pep = Q:

LpSub(k] ->row_type{isp]
LpSub{kl->rhs[isp]
LpSub{k]->ranges{ispl]

LpG->isign(i];
LpG->rhs([i];
1.0e+30;

W nn

SPb_mik]+~+;

for(iii=0; iii < (rowinfo(i]+1)}/2 - 1 ; iii+s)
FPP= pPpp + Decomp->LastRow(2*iii+l]- Decomp->FirstRow([2*iii+l];

isp = irw + Decomp->LastRow([0] - Decomp->FirstRow[rowinfo[il-1]+ppp:

ppp = 0:

LpSub{k]->row_type[isp] = LpG->isignfi];
LpSublk]->rhs[isp] = LpG->rhs(i};
LpSublk] ->ranges[isp] = 1.0e+30;

SPb_m(k]++;

el

}
;v Store linking variable information in different vector */

for(k=1l; k<=nb_subs:k++)
(fcr(j=0: j<LSPb_n(k]:j++)
: if (LpSub(k] ->rwnmbs (LpSub(k]->cipnts(j]] == 0)
LpSublk]->Lobjcoef[j]l= -LpSubl(k]->coeffs[LpSub{kj->clpnes(jl]:
eIESSub{k]->Lobjcoef[j1=0.00:

LpSub(k]->Lup_bnds(j] = LpSub(kl->up_bnds(jl;
LpSublk]->Llo_bnds[j] = LpSub(kl->lo_bnds(j]:
}
}

/* Define distributed machines and executable files in each machine*’s

where{l] = "pardistl.uwaterlooc.ca";
where{2] = "pardistl.uwaterlooc.ca";
where{3] = "pardist3.uwaterloo.ca’;
where{d] = "pardist4d.uwaterloo.ca":

:£(nb_subs ==
exefile(l] =
else

exefile(l] = "/u/hjpark/phdthesis/chrisjin”;

1) /* If only cne processor is used */
* us/hjpark/phdthesis;/chrisjinl";

-

exefile{2]
exefile{l]
exef:le(4d]

"u/hjpark/phdthesis/chrisjin®;
"/usnjpark/phdchesis/chrisjin”;
" 'u/hjpark/phdthesis/chrisjin®;

n w n

;* Ask each machine to start each process */
for(k=1; k<=nkb_subs:k+~+)

z£{" ERRCOR in spawning executables ZRROR code : %d !!! \n®",cch;

for{k=0;: k<=nb_subs:;k+-)
aaaik] = tid[k]:

/¥ Pack inirtial data and send v/
for(k=1; k <= nb_subs; k++)
{
pvm_initsend(PvmDataDefaulr) ;
info = pvm_pkint{&nb_subs, 1, 1):
info = pvm_pkint(subtype, nb_subs+1, 1);
}

for(k=1l; k <= nb_subs; ke++)
info = pvm_send(tid(k], 111);

for(k=1; x<=nb_subs;k+~)
{
pvm_initsend{PvmbataDefaulc);

info = pvm_pkint (aaa,nb_subs+l,1);

info = pvm_pklong (SPb_m, nb_subs+i, 1);

info = pvm_pklong (SPb_n., nb_subs+l, 1):

info = pvm_pklong (SPb_nz, nb_subs+l, 1);

info = pvm_pklong (LSPb_m, nb_subs+l, 1);

info = pvm_pklong (LSPb_n., nb_subs+l, 1);

info = pvm_pklong (LpSub(k]->rwnmbs., SPb_nz[k], 1);
info = pvm_pkdouble (LpSub(k]->coeffs, SPb_nz(k], 1l}:
info = pvm_pklcong (LpSublk]->clpnts, SPb_nlkl-l, 1)
info = pvm_pkdouble (LpSub({k]->lo_bnds, SPb_nlk], 1l):
infc = pvm_pkdouble (LpSub{k]->up_bnds, SPb_n(k], 1l);
info = pvm_pklong (LpSub(k]->row_type, SPb_m(k],1):
info = pvm_pkdoubkle (LpSub{k]->rhs,SPb_m{k],1);

infc = pvm_pkdouble (LpSub{k]->ranges, SPt_m(k],1l):
1 (infe)

printf (" ERROR in packing data to define the subprcblem ''' na"):

fer(k=1; kK <= nb_subs; ke++)
pwr_send(tidik].1l);

" ERRCR in sending data to define the subproblem !'!'\n"}:

; kK <=nb_subs; k+-+)

4]

0
n

pvm_pkdouble(LpSublk]->Lcbhbjccef, LSPb_n(kl.1l)
pvm_pkdouble (LpSub{k]->Lup_bnds, LSPb_nik].1l)
pvm_pkdcuble (LpSub{ki->Llo_bnds. LSPb_n(k],1)

bo
4}
v s

13]
Photh thoIh
0 0

pe
monoan

It
+

4 pa

info pvm_pklong (LpSubik]->clpnts, LSPb_nl{k]+1l, 1)

infs = pvm_pkleng(LpSubklk]->rwnmbs, LpSub{k]->clpnes{LSPb_n(k]].1):
info = pvm_pkdouble(LpSublk]->coeffs, LpSublkl->clpnts[LSPb_n(k}].1):
fzr(k=1; k<=nb_subks ; k+-)

ik = 1)

infz = pvmm_senditidlx],1d);

ovm_initsend(PvmbDataDefault) ;
farik=i; k <=nb_subs; k+-)

129

{
info
info
info

}

pvim_pklong(LpSub(k]->clpnts, LSPb_nlk]+l, 1);
pvm_pklong (LpSub(k] ->rwnmbs, LpSub(k]->clpnts(LSPb_n(k]],1);
pvm_pkdouble (LpSub(k]->coceffs, LpSub(k]->clpnts(LSPb_n(k]].1l});

for(k=1; k<=nb_subs ; k++)
{
if(k == 1)
info = pvm_send{tid(k],10);
}

retyrn 1 ;

130

Appendix C C codes of WATPAR

We present the simplified C source codes for the parallel decomposition solver WATPAR for
each subproblem of 4 part cases. The first subproblem gives more detailed explanation than
the other 3 subproblems since the others are very similar except handling primal or dual
information and updating the subproblems. Processors 1 to 4 solves lower-lower bound
subproblem, upper-upper bound subproblem, lower-upper bound subproblem, and upper-

lower bound subproblem respectively.

C.1 Processor 1 : Lower-Lower Bound Subproblem

sinclude <stdio.h>
¢include <stdlib.h>
sinclude <string.h>

tinclude "' .softwaresarch/pvm-3/distribution/include/pvm3.h"
ginclude "/.scftwaresarchscplex-5.0.1l/distribution/cplex.h”
#include “LpSub.h"

int nb_subs, cur_block = 1;
in iter_count = 1, levl_ccunt=0;
double ol = 0.0001:

..... DEFINE GLCBAL VARIABLES AND ALLOCATE MEMORIES

double mysecsnds{double acumt} ,* Time measurement function */

<
.

double ldt;

gettimecfday(&tvl, (struct timezone*)();

ide=(double) (tv2.tv_sec -~ tvl.tv_sec)*1000000+tv2.tv_usec - tvli.tv_usec;
acumt = acumt + ldt ;

return (acumt);

}

double CoempuPiB(LpSubProb **LpSub) /* Compute PiB to send */
(

int i, 3 :

LpSub{cur_block]->PiB = (0.0Q0;

£ar(i=0; i<SPb_m[cur_block]-LOWSPb_m{cur_block]-HISPb_m({cur_block-1]-1; i++}
LE(pili] '= 0.0 && LpSubicur_block]->rhs{i+HISPb_m([cur_blecck-1]+1} = 0.0)
LpSub{cur_block]->PiB+=pi(i]*LpSub({cur_block]->rhs[i+~HISPb_m[cur_block-1]+1];
3

for(i=LSPk_n[cur_block]; j < SPb_n{cur_block]; j=+)
{

1€(estat{i] == Q)
{

13t

if(LpSublcur_block]->lo_bnds(j] ‘= 0.0 && dj[j] '= 0.0)
LpSublcur_block] ->PiB=LpSub[cur_block]->PiB+

LpSub{cur_block]->lo_bnds{j]*
}

(dilil):

else if(cstat{j]

== 2)
(

if(LpSubfcur_block]->up_bnds (3]

'= 0.0 && dj[(j] '=s 0.0Q)
LpSub(cur_block] ->PiB=LpSub(cur_block]->PiB+LpSub(cur_block]->

up_bnds(3]1*dj(il;
}
}

recurn (LpSub{cur_block] ->PiB) ;
}

double *CompuPiD(LpSubProb **LpSub) /* Compute PiD to send */
{
int j.ps
for(j=0; j<LSPb_n{cur_block] ; j++)
{
LpSub(cur_block]}->PiD(j]1=0.0;
for (p=LpSub(cur_block] ->clpnts{j] : p<LpSub(cur_block]->clpnts(j+l]; p++)
if(pi[LpSub{cur_block]->rwnmbs[p]-1-HISPb_m(cur_block-1]] '= 0.0 &&
LpSublcur_block] ->rwnmbs (p] >HISPb_m{cur_block-1] &&
LpSub{cur_block] ->rwnmbs (p] < SPb_m{cur_block]-LOWSPb_m[cur_blaock]}
LpSub(cur_block]->PiD[j] += pil[LpSublcur_block]->rwnmbs(p]-1-

HISPb_m(cur_block-1]]*LpSub(cur_block]->coeffs(p]:
}

return (LpSub(cur_bleck] ->PiD} ;
}

double *CompulMel (LpSubProb **LpSub) /* Compute Omegal */

{

int 3, k., p:

for(j=0:; j < HISPb_n(nb_subs]; j++)
LpSub(cur_block)->0OMeL[3i] = 0.0:

for(k=l; k <= nb_subs ; k++)

{

if(k < cur_block)
{

for(j=0; i<LSPb_n(k]: j++)
{
for (p=LpSub(k]->clpnts(j] :p<LpSub(k]->clpnts{j+l] ;p++)
i€(LpSub{k]->rwnmbs [p] >= SPb_m(k]-LOWSPb_m([cur_block-1l] &&
LpSub{k]->rwnmbs (p] < SPb_m{k] && pi(LpSub(k]->rwnmbs(p]-SPb_m(k] «+

LOWSPb_m(cur_block-1]+LSPb_micur_block-1]] != 0.0}
LpSub(cur_block!->0MeL[j+HISPb_n{k-1}] += pi(LpSubl(k]->rwnmbs(p]-

SPb_m(k] +LOWSPb_m[cur_block-1]+LSPb_m[cur_block-1]]*LpSubl(k]->coeffs(p]:
}

i1f£(k »= cur_block)
{

for(3=0;

j<LSPb_nlk]: j++)

for(p=LpSub{k]->clpnts(j! ;p<LpSub(k]->clpnts(j+l]

132

;p++)

if(LpSub(k]->rwnmbs[p] > HISPb_m[cur_block-1] &&
LpSub(k]->rwnmbs (p] <= HISPb_m([cur_block] &&
pi{LpStb(k]->rwnmbs (p] -HISPb_m{cur_block-1]-1] != 0.0)
LpSub[cur_block]->OMeL[j+HISPb_nfk-1]]1 += pi{LpSub(k]->rwnmbs(p]-
HISPb_m({cur_block-1]-1]*LpSublk]-
>coeffsipl;
}
}
}
return (LpSub(cur_block] ->0Mel) ;
}

/* Optimize, obtain solutions and write them to output file */
int SolveProb(CPXENVptr env, CPXLPptr lp)
(

int i, j, k, info, bufid, status, sitcnt, solstat; double dtl:

gettimeofday(&tvl, (struct timezone*}Qd);
status = CPXprimopt(env,lp);
if (status) {
char errmsg(l1024];
CPXgeterrorstring (env, status, errmsg):
fprintf (stderr, *%s", errmsg);
fprintf (stderr, "Failed to optimize LP.\n");
recurn(scacus);
}
gettimeofday(&tv2, (struct timezone*}{);

dri={double) (tv2.tv_sec - tvl.tv_sec) * 1000000 + tv2.cv_usec - tvl.tv_usec;
fprintf(fp, "Real solution time : %8f\n", dtl/1000000);
acl = atl + dti;

fprintf(fp, "TOTAL scolution time : %8£f\n", acl/1000000);

Cur_numrows
cur_numcols

CPXgetnumrows (env, lp);
CPXgetnumcols (env, lp);

status=CPXsolurion (env, lp, &solstat, &objval{cur_block], x, pi. slack, &j):
if (status) (

fprincf (stderr, "Failed to obtain solution l.\n"}:

recurn(status);
}

status = CPXgetbase (env, lp, cstat, rstat);

if (status) {
fprintf (stderr, °"Failed to obtain basis.\n");
recurn(status);

}

sitent = CPXgetitent(env, 1lp);

fprincf(fpl,"\n***** Ireration Number : %d. %d \n", iter_count, lev2 count):
fprintf (fp."\nSolution stacus = ¥d\n®, solstat);

fprintf (fp. "Objective value = %£\n\n", cbjval(cur_blockl):

fprinctf(fpl, * Simplex Iteration Count : %d \n", sitent);

for (i = 0; 1 < cur_numrows; i++} {
fprincf (fp,"Row #d: Slack = 3£ Pi = %¥f rstac =%d\n", i, slack[i],
pilil,zrstat(i]);

for (3 = 0; j < cur_numcols; j++) (
fprintf (fp.*Column #d: Value = %f Reduced cost = %f cstat = %d\n",

133

j. x[31. di(jl.cstac(jl):

return(stcatus) ;
}
short
LowerBound (LpSubProb **LpSub)

{
.. Declare and allocate space for the variables and arrays

/* Receive initial data for linking variables of other parts °*/
gettimeofday(&tvl, (struct timezonev)0):
bufid = pvm_recvi(ptid, 10);
rdtl = myseconds(rdecl);
fp = fopen("/u/hjpark/phdthesis/chrisjin.out","a");
fprintf(fp, " Receiving Set up Data Time : ¥8f\n", rdels/1000000);
fclose(fp);

for(k=1; k<= nb_subs;k++)
(

info = pvm_upklong(LpSub[k]->clpnts, LSPb_n(k]+l, 1):
info = pvm_upklong(LpSub({k]->rwnmbs, LpSubfk]->clpncs(LSPb_n(k]],1):
info = pvm_upkdouble(LpSub(k]->coeffs, LpSub(k]->clpnts(LSPb_n(k]],1);

}

/* In order to load the subproblem te CPLEX, convert data (sense} to CPLEX
format and retrieve the vector which indicates the number of nonzero
elements (matcnt) in each column and cbjective function coefficients
(cbjcoeffs)*/

for(i=0; i < LpSub(cur_block]->m ;is++)
(
if£(LpSublcur_block]->row_cype(i] == 0)
sense(i]="'E';
else if(LpSub{cur_block]->row_typeli] == 1)
sense(i]="'G';
else if(LpSublcur_block]->row_type(i] == 2)
sense{i]="L";
else sense([i}l='R"’;
}

£2r(j=0; j<LpSub(cur_bleck]->n;j+~){
matent[jl=(inc) (LpSublcur_block]->clpnts(j+l]
-LpSub(cur_bleck]->clpnts(j]):
i£(LpSub([cur_block]->rwnmbs [LpSub[cur_block]->clpnts{jl] == 0}
objcoeffs(3]= -LpSub(cur_block]->coeffs[LpSub[cur_bleck]->clpnts(jli:
else
objcoeffs(j]i=0.000;

* Initialize the CPLEX environment */

env = CPXopenCPLEXdevelop (&status);
i€ (env == NULL) {
char errmsg(i®2i];
fprintf (stderr, *Could not cpen CPLEX environment.\n");
CPXgeterrcrstring (env, sStatus, errmsg):;
fprintf (stdexrr, "%s", errmsg):
goto TERMINATE:;

134

/* Use advanced basis at each iteration */
status = CPXsetintparam(env, CPX_PARAM ADVIND, 1l);
if (status) {
fprintf (stderr, "Failed to scale.\n");
goto TERMINATE;
}

/* For barrier method, use option 1 to solve subproblems */
status = CPXsetintparam{env, CPX_PARAM BARALG, 1l)}:
if (status }
fprintf (stderr, "Failed to scale.\n"):
goto TERMINATE;
}

/* Create the problem. */
lp = CPXcreateprob (env, &status, "3-region");
if (lp == NULL) {
fprintf (stderr, "Failed to create LP.\n"};
goto TERMINATE;
}

/* Now ccpy the problem data into CPLEX */
status=CPXcopylp(env, 1lp, (int) LpSub(cur_block]->n, (int)LpSub(cur_block]->m,
-1,0bjcoeffs, LpSub(cur_block]->rhs,sense, (int*} (LpSub(cur_block]-clpnts),
matent, (intvY) LpSublcur_block]->rwnmbs, LpSubfcur_block] ->coeffs,
LpSub(cur_block]->lo_bnds, LpSub{cur_block]->up_bnds, NULL):
if { status)
fprintf (stderr, *Failed to copy problem data.\n"};
goto TERMINATE:
}

/* Delete the first row because the original vector has always the objective
function coefficients in row zero */

status = CPXdelrows (env, lp, 0, 0}

if (status) (
fprintf (stderr, "Failed to delete row 0\n");
goto TERMINATE;

}

:* Add an artificial variable to each linking constraints */
for{k=1; k<=nb_subs; k++}
({
for(i=0; i < LSPb_m(k]; i+-)
LpSub{k] ->arti_obj(i] = -arti ;
}

for(k=1; k<=nb_subs; ke+)
{
1£(LSPb_m{k] > 0)
status = CPXnewcols(env, lp. (int) LSPb_m(k], LpSub{k]->arti_obj, NULL,
NULL, NULL,
NULL)
1

for(i=0; i<LSPb_m([cur_block]; ie-)
status = CPXchgcoef (env, 1p. (int) 1, (int) (LpSub{cur_block]->n)+i,arti_coef);

for (i=LpSub[cur_block] ->m-LOWSPb_m[cur_blockl-1; i<LpSub(cur_block]->m-1;i++}
status=CPXchgceef (env, 1lp, (int) i, (int) (LpSubl{cur_blaeck]->n)+
LSPb_m(cur_block]+i-LpSub(cur_block]->m+LOWSPb_m{cur_block]+l , arti_coef);

135

/* Optimize the prcoblem and obtain sclution. */
status = SolveProblenv, 1lp);
if(status) {
goto TERMINATE;
}

/* Add the sum-to-one constraints for Lamda variables */
for{k=1: k <= nb_subs; k++)
{
if (subtypel[k] == 1)
status = CPXnewrows (env, lp, 1, &Lam_rhs, &Lam_sense, NULL, NULL);

objval(2] = objval(l] + 10;
while(iter_count<150 && (obival{2]-objval(l]l>tol)) /* Upper level iteration */
(

iter_count = iter_count + 1;

totlev2C = totlev2C + lev2_count; /* Find the total number of proposals </

fprincf(fp,"\n ***** Iteration Number : %d =****=" \n", iter_count}:

/* Compute the dual proposals and send them to aggregated upper bound
subproblem (processors 2 and 4) */

LpSub(cur_block}->PiB = CompuPiB(LpSub);

LpSubi{cur_block]->PiD = CompuPiD{(LpSub);

LpSub{cur_blockj->OMeL = CompuCMeL (LpSub);

pvm_initsend (PvmDataRaw]) ;

info = pvm_pkdouble (&LpSub(cur_block]->PiB, 1, 1);
info = pvm_pkdouble (LpSub(cur_block]->PiD, LSPb_n[cur_bleck], 1);
info = pvm_pkdouble (LpSub{cur_block]->OMeL, HISPb_ninb_subs].,l);

if{info < 0)
fprintf(£fp, "ERROR in packing data\n");

for{k=1l; k <= nb_subs; k++)
{

1 £ (subtypei{k] == 2)
bufid = pvm_send(tid(k].5}:
}

/*+ Receive primal proposals from aggregated upper bcund subproblem */
far(k=1; k<=nb_subs ; k+=+)
{

if (subtype(k] == 2)

{

gettimeofday (&tvl, (struct timezone*)0);

bufid = pvm_recv(cid(k]., 2);

rdtl = myseconds(rdtl):

fprintf (fp, * Receiving Set up Data Time : %8f\n", rdcl/1000000):

info = pvm_upkdouble (&LpSub(k]->CX, 1, 1); :
infa = pvm_upkdouble (LpSub(k]->LY, HISPb_m(nb_subs],1l);

'+ Add the sum of primal proposals and add one cclumn to the subproblem */
LpSub(2]->CX += LpSub(4]->CX

(2]

or(i=0; i < HISPb_m{nb_subs] ; i++)
LpSub[2]->LY(i] += LpSubl(k]->LY[i];

136

status = CPXnewcols (env,lp, 1, &LpSub[2]->CX, &Lam_lo, &Lam_up, NULL, NULL);

if(status)
fprintf(£fp, * ERROR in defining a new column!'t!'\n");

for(i=HISPb_m([0]: i <HISPb_m[cur_block] ; i++)

{

status = CPXchgcoef (env, lp, i, LpSub{cur_block]->n + HISPb_m{nb_subs]+
+iter_count-2+totlev2C, LpSub{2}->LY{i]);

}

for(i=LpSub[l]->m - LOWSPb_m[1]-1; i<LpSub(l]->m-1; i++)
{
status = CPXchgcoef(env, lp, i, LpSub{cur_block]->n+HISPb_mi{nb_subs]
+ iter_count-2 + totlev2C ,
LpSub(2]->LY([i-LpSub{l}->m + LOWSPb_m(1]+1+HISPb_m([cur_blockl]l):
}

status = CPXchgcoef (env, 1lp, (int) {(LpSublcur_bleock]->m-1),

LpSub(l}->n+HISPb_m([1]+LOWSPb_m{l]+iter_count-2+totlev2C, Lam_coef) :

/* Lower level iteration. ‘exitlev2’ is a signal coming from lower-upper
bound subproblem asking to exit lower level iteration */
while(lev2_count < 150 && (objval{3] - objval(l] > 0.0001 || lev2_count <1}
&& (lev2_count < 1 || exitlev2 <= 0))
{
lev2_count = lev2_count + 1;

if(lev2_ccunt > 1)

(

LpSub(cur_block]->PiB = CompuPiB (LpSub});
LpSub({cur_block]->CMelL = CompuOMeL {LpSub);
LpSub(cur_block] ->PiD = CompuPiD(LpSub);

}

for{(i = 0 ; i < LSPb_m(cur_block]; is+}
LpSub(cur_block]->Cmega{i] = pil[i]:

pvm_initsend{PvmDataRaw) ;

info = pvm_pkdouble (&LpSub{cur_blockl]l->PiB, 1, 1},

info = pvm_pkdouble (LpSub{cur_block]->PiD, LSPb_a[cur_block], 1):
infa = pvm_pkdouble (LpSub{cur_block]->0MelL, HISPb_n(nb_subs],l}):
info = pvm_pkdouble (LpSub(cur_block]->Omega, LSPb_m[cur_block], 1}:

if(info < Q)
fprincf(£fp, "ERROR in packing datain”):

bufid = pvm_send(tid(3],.5):

gettimeofday(&tvl, (struct timezonev*)Q);
bufid = pvm_recv{tid(3], 2);

rdtl = mysecconds{rdtl);

fporintf(£p, " Receiving Set up Data Time : %8f\n", rdtl/1000000);
info = pvm_upkdouble (&LpSub{3!->CX, 1, 1}:

:nfo = pvm_upkdouble (LpSub{3]->LY, HISPb_m(nb_subs],l):

.+ Add a primal proposal from subproblem 3 (lower-upper bcund subproblem)

*/

status = CPXnewcols(env,lp, 1. &LpSub(3]->CX, &Lam_lo, &Lam_up, NULL, NULL);

if({status)
fprintf(fp," ERROR in defining a new column!!:\n"};

137

for (i=HISPb_m(0); i <HISPb_m{cur_block] ; i++)
status = CPXchgcoef (env, lp, i, LpSub[cur_block]->n +
HISPb_m[nb_subs]+iter_count-2+totlev2C+lev2_count, LpSub(3]->LY{i]};

for(i=LpSubl[l]->m - LOWSPb_m[1]-1l; i<LpSub(i]->m-1; i++)
{
status = CPXchgccef(env, lp, i, LpSub{cur_block]->n+HISPb_m(nb_subs]
+ iter_count-2 + totlev2C+lev2_count ,
LpSub(3] ->LY(i-LpSub{l]}->m + LOWSPb_m(1)+1+KISPb_m[cur_block]]):
}

status = CPXchgcocef (env, lp., {(int) (LpSub{cur_block]->m-1+1},
LpSub{l]->n+HISPb_m{1]+LOWSPb_m{l]+iter_count-2+totlev2C+lev2_count,
Lam_coef)

status = SolveProb(env, lp);

pvm_initcsend (PvmDataRaw) ;
info = pvm_pkdouble (&objval{cur_bleock],l ,1):
bufid = pvm_send (tid(3}].7);

gettimeofday(&tvl, {(struct timezonev*}0);

bufid = pvm_recv (tid(3].7):

rdtl = myseconds (rdcl);

fprintf(fp, ° Receiving Set up Data Time : %8f\n", rdtl/1000000);

info = pvm_upkdouble (&objvall(3],1.,1l);
info = pvm_upkint (&exitlev2, 1,1):
if(info < 0)

fprintf(fp, " ERROR in unpacking objval[3]l\n", 4);

pvm_initsend (PvmbDataRaw) ;

info = pvm_pkdouble (&objval(cur_block],l ,1}:
for(k=1; k <=nb_subs; k+=-)

{

if(k '= cur_block)

bufid = pvm_send (tid(k].8):

if(bufid <0Q)

fprintf(fp., "ERROR in sending cbjval(%d]\n".k):;

}

for(k=1l; k <=nb_subs; k++}
{
if(k '= cur_block)
{
imeofday (&tvl, (struct timezcne*)}0):
d = pvm_recv (tid(k].8):
= myseconds (rdtl):
printf(fp, " Receiving Set up Data Time : %8£\n", rdtl/1000000);

e

pvm_initsend (PvmbDatabDefault) ;
info = pvm_pkdouble (&objvallcur_block], 1,1):

138

bufid = pvm_send(ptid, 7);

TERMINATE:
... Free up the problem as allocated by CPXcreateprob

recurn ;

}
main(void)

..... DEFINE ALL THE NECESSARY VARIABLES AND ALLOCATE NECESSARY MEMORIES
/* Record program start time "/

gettimeofday(&tvl, (struct timezone*)0);

idt = (double) (tvl.tv_sec) * 1000000 - tvl.tv_usec;

ptid = pvm_parent():

‘* Record the idle time to receive the initial data */
gettimeofday(&tvl, (struct timezone*)q);
bufid = pvm_recv (ptid, 1lil): /* Receive data */
rdtl = myseconds (rdtl);
fp = fopen(~/ushjpark/phdthesisschrisjin.out”, "w"};

fprintf (fp, " Receiving Set up Data Time : %8f\n", rdtl,/1000000):
fclose(fp);

bufid = pvm_upkint (&nb_subs, 1, 1l); /* Unpack data */
if(bufid < 0)
{

fp = fopen(" u/hjpark:phdcthesis/chrisjin.cut","a");
¢printf(£fp, "ERROR in unpacking nb_subs\n"):
fclose(fp);

}

bufid = pvm_upkinz (subtype, nb_subs+l,1):
if(bufid < Q)
(
fp = fopen("/ushjpark/phdthesis/chrisjin.out”®,"a");
fprinctf(fp. "ERROR in unpacking subtype\n”);
fclose(fp);

gettimecfday(&tvl, (struct timezone*)0):
bufid = pvm_recv (ptid, 1l); /* Receive initial prcblem data */
rdtl = myseconds(rdtl);
sp = fcpen(” ushjpark/phdthesis,chrisjin.cut","a”);
fprintf(fp, " Receiving Set up Data Time : §8f\n", rdtl/1000000):
£close(£fp):

info = pvm_upkint (aaa, ab_subs-l,1);
fortk=i; k<=nbk_subs ;ke=)
=id(x] = aaalkl]:

h

| S 54
2]

th th th
0

pvm_upklong (LSPb_m, nb_subs+l,
pvm_upklong (LSPb_n, nk_subs+l, 1l};
(info)

info = pvm_upkleong (SPb_m, nb_subs+l, 1);
info = pvm_upkliong (SPb_n, nb_subs+l, 1};
infs = gvm_upklong (SPb_nz., nb_subs+l, 1)
; 1)
1

]
([}

~—

fp = fopen("/u/hjpark/phdthesis/chrisjin.out”,"a");

fprintf(fp, " ERROR in unpacking data to define the subproblem !!!\n”);
fclose(fp);

}

/* Find the number of accumulated linking variables and constraints */
HISPb_m = (long *) malloc{(nb_subs + 1l)*sizeof(long)):
HISPb_n = (long *) malloc((nb_subs + 1l)*sizecf(long)):

HISPb_m(0] = 0;

HISPb_n(0] = 0:

for(k=1; k<=nb_subs; k++)

{
HISPb_m(k] = HISPb_m(k-1]+LSPb_m(k];
HISPb_n(k] = HISPb_n([k-1]+LSPb_nf{k]:

}

for(k=1; k <= nb_subs; ke+)
LOWSPb_m(k] = HISPb_m(nb_subs] - HISPb_m{k]:

info = pvm_upklong (LpSubl{cur_block]->rwnmbs, SPb_nz(cur_block], 1):
info = pvm_upkdouble (LpSub(cur_block]->coeffs, SPb_nz[cur_bleck], 1};
info = pvm_upklong (LpSublcur_block]->clpnts, SPb_n(cur_blockl+1l, 1);
info = pvm_upkdouble (LpSub(cur_block]->lo_bnds, SPb_n[cur_block], 1l}:
info = pvm_upkdouble (LpSublcur_block}->up_bnds, SPb_n[cur_block], 1l}:
info = pvm_upklong (LpSubl(cur_block]->row_type, SPb_m[cur_block],l);
info = pvm_upkdouble (LpSub[cur_bklock]->rhs, SPb_m(cur_bleock}].1l);
info = pvm_upkdouble (LpSub[cur_block]->ranges, SPb_m[cur_block},l};
if (info < Q)

{

fp = fopen("/u/hjpark/phdthesis/chrisjin.ocut*,"a");

fprintf(£fp, " ERROR in unpacking data to define the subproblem !!!'\n"):

fclose(fp):

}
LewerBound (LpSub);

/* Take the program end time and measure total pregram time */
gectimeofday(&tvl, (struct timezone*)0):

edt = (double) (tvl.tv_sec) * 1Q00C0C - tvl.tv_usec;
fp = fopen(',/u/hjpark/phdthesis/chrisjin.cut","a");

fprincf({fp, "Total program time : %8£\n", (edt-idt)/1000000});
fclose(fp)

P T T e I T P N I T R P T R R T F E R R P R N E R R N R P R T PN R R R I N N T T R T P T I N P P PR AN RN T TR T RN TRTTROENIY

C.2 Processor 2 : Upper-Upper Bound Subproblem

. LINK LIBRARIES AND HEADER FILES. DEFINE VARIABLES AND ALLOCATE MEMORIES ...

* Compute the primal information (LY and BX) to send */
short CompulY (LpSubProb **LpSub) {

int 1,3, pr

for(i=0; i < HISPb _m[nb_subs]; i++)
140

LpSub{2]->LY[i]=0.0;

for(j=0: j < LSPb_nf[2]; j++)

{
if(x(3] '= 0.0)
{
for(p = LpSub(2]->clpnts(j]l; p < LpSub{2]->clpnts(j+1];:p++)
{
1€(LpSub{2]->rwnmbs [p] > 0 && LpSub(2]->rwnmbs([p] <= HISPb_m[2])
LpSub(2]->LY(LpSub[2]->rwnmbs (pl-1] += LpSub[(2]->coeffs(p] * x[jl]:
else if(LpSub[2]->rwnmbs([p]l>=SPb_m(2]-LOWSPb_m{2}
&& LpSub{Z]->rwnmbs{p] < SPb_m[2}])
Sub{li->LY{LpSub(2]->rwnmbs (p]-1-SPb_m (2] +LOWSPb_m{2] +1+HISPb_m([2]] +=
LpSub(2]->coeffs[p] * x{jl:
}
}

}

fer(3=LSPb_n(2]; 3 < SPb_n(2]: j+=)
{
LE(x[3] '= C.0}
for{p = LpSub{2]->clpnts{jl: p < LpSub[2]->clpnts[j+l];p+~)
if(LpSubk{2] ->rwnmbs (p]> HISPb_m(l] && LpSub{l]->rwnmbs(p] <= HISPb_m(2])
LpSub(2]->LY{LpSub{2]->rwnmbs [p}-1]! += LpSub(2]->coeffs(p] " x(jl:

short SolveProb(CPXENVptr env, CPXLPptr lp)
{
SOLVE THE SUBPROBLEM AND WRITE RESULTS TO CUTPUT FILE
return(lstatus);
Py,

® Adé lower level cut using dual proposal of upper-lower bound subprcblem
(processcr 4). A new cut is always added at the end of the constraints, sc
f£inding the tctal number of cconstraints is important*/

hore Addlev2Cuts(LpSubProb **LpSub, CPXENVptr env, CPXLPptr lp)

-

-

int i, I, k, -bufid, linfo, cempld, Istatus:

gecrimeofday (&tvl, (struct timezcne*)(}:
ibufié = pvm_recv(tid[nb_suks].5);

rdzl = myseconds (rdtl):;
fprints(fp, * Receiving Set up Data Time : %8f\n", rdtl:/1000000});
linfo = pvm_upkdouble (&LpSub{nb_subs]->PiB, 1 , 1);
linfo = pvm_upkdcuble (LpSubinb_subs]->PiD, LSPb_n([nb_subs], 1):
linfec = pvm_upkdouble (LpSub(nb_subs]->OMelL, HISPb_n(nb_subs}.l
i€(iinfc < O -
fprintf{fp.” ERRCR in unpacking LpSub->PiD ‘n"):

lstatus=CPXnewrcws (env, lp, 1, &LpSub(nb_subs]->PiB, &cut_sense,NULL,NULL);
for(3=93: 3 < HISPb_n{l] ;3j==)
{

lstatus = CPXchgcoef (env, 1p, (int) (SPb_m([2]-LOWSPb_m{2]

-HISPb_m[l] -l-totlev2C+lev2_count + iter_count-2}, (int) (j+SPb_nl2]
«LSPb_m([2]).LpSubinb_subs] ->OMeL[j]) :

141

}

for(j=SPb_n[2]+LSPb_m(2]+HISPb_n[1l]:
j<SPb_n(2)+LSPb_m{2]+HISPb_n{nb_subs]-LSPb_n[2];j++)
{
lstatus = CPXchgcoef (env, 1lp, (int} (SPb_m([2]-LOWSPb_m[2]
-HISPb_m{1l] -letotlev2C+lev2_count + (iter_count-2)), j,
LpSub(nb_subs]->0MeL (j+HISPb_n(2]-SPb_n{2]-LSPb_m[2]-KISPb_n(l)]) :
}

for(j=0; j<LSPb_n(2];j++)
(

lstatus = CPXchgcoef(env,lp, (int) (SPb_m[2]-LOWSPb_m(2]
-HISPb_m(1] -letctlev2C+lev2_count + (iter_count-2)}), 3,
LpSub(nb_subs] ->OMeL [j+HISPb_n[l}]);

}

for(j=SPb_n{2]+LSPb_m!{2]+HISPb_n{nb_subs-1]-LSFb_n(2};
3<SPb_n{2])+LSPb_m([2]-HISPb_n{nb_subs]-LSPb_n(2]: j++)
{
lstatus = CPXchgcoef {env. lp, (int) (SPb_m[2]-LOWSPb_m({2]
-HISPb_m[l]-letotlev2C+lev2_count + iter_counc-2), j,
LpSub(nb_subs]->PiD{j-SPb_n{2]-LSPb_m({2]-HISPb_n(nb_subs-1]+LSPb_n(2]]) :
}

lstatus = CPXchgcoef (env, lp, (int) (SPb_m[2]-LOWSPb_m([2]-HISPb_m([1l]
-l+totlev2C+levl_count + iter_count-2),
LpSub(2]->n+LSPb_m(2] +HISPb_n(nb_subs]-LSPb_n{2]+1, Theta_coef):

return;

}

short
UpperBound (LpSubProb **LpSub)
{
. DEFINE LOCAL VARIABLES AND ALLOCATE MEMECRIES

+* Receive information of linking variables and constraints of other parts */
for(k=1; k<= nb_subs:k++}
{

info = pvm_upkdoukle(LpSub{k]->Lobjcoef, LSPb_n{k].1l):

info = pvm_upkdouble(LpSub{k]->Lup_bnds, LSPb_nl[k].1l):

info = pvm_upkdouble(LpSub(k]->Llo_bnds, LSPb_n{k].1);:

infoc = pvm_upklong(LpSub{k]->clpnts, LSPb_n(k]+l., 1)

info = pvimm_upklong(LpSub{k]->rwnmbs, LpSub(k]->clpnts(LSPb_n(kl],1l):
infc = pvm_upkdoukle(LpSub(k]->coeffs, LpSub(k!->clpnts({LSPb_nlkii.,1);

. CONVERT ORIGINAL DATA sense, objcoeffs and matcnt TO CONFORM CPLEX
INITIALIZE THE CPLEX ENVIRONMENT
* Ncw copy the problem data inteo the lp */
status=CPXcopylp(env, ip, (int)LpSub(2]->n, (int} LpSub[2]->m,
-l.cbicoeffs, LpSubl(2]->rhs,sense. (int*) (LpSub[2]->clpats), matcnt,
(int*) LpSub(l]->rwnmbs, LpSub(l]->coeffs,lLpSub{2]->lo_bnds,
LpSub(2]->up_bnds, NULL):

i* Make the upper-upper bound subprcblem format cf the first iteration by
deleting row zero and other parts’ lirnking constraints. Add artificial

142

variables and add other part’'s linking variables®*/
status = CPXdelrows (env, 1lp, 0, 0);
if (status) {

fprintf {stderr, "Failed to delete row 0\n"};

goto TERMINATE;
}

if(HISPb_m{l] >= 1)
status = CPXdelrows (env, lp, 0, HISPb_m([1l]-1):

if(nb_subs > 2)
status = CPXdelrows (env, lp, (int) (SPb_m(2]-HISPb_m([1]-LOWSPb_m(2]-1),
{int) (SPb_m[2]-HISPb_m{1l]-2)});

status=CPXnewcols (env, lp, (int) LSPb_m{2], arti_obj, NULL, NULL, NULL, NULL);

for(i=0; i<LSPb_m(2]; i=+)
status = CPXchgcoefl(env, lp, i, (int) (LpSub(2]->n)+i, arci_coef);

for(k=1:k<=nb_subs;k++)

i£(LSPb_n(k] > 0)
status = CPXnewcols ienv,lp, (int) LSPb_n(k]. LpSub{k]->Lobjcoef,
LpSub(kl->Lle_bnds, LpSub(k]->Lup_bnds, NULL, NULL):

<
for(j=0; j < LSPb_n{k] ; j++)

1£(LSPb_n{k] > 0)
fcrtp=LpSuk(kj->clpnts(j]l; p < LpSub(k]->clpats(j+l]; p+~+)
{
i£(LpSub(k]->rwnmbs [p] >= SPb_m(k}-LOWSPb_mik]! &&
LpSub(k]->rwnmbs[p] < SPb_m[k]-LOWSPb_m([2])
status = CPXchgcoef (env, l1p, LpSub(k]->rwnmbs(p]-SPb_m(k]+LOWSPb_m(k].
SPb_n{2]+LSPb_m(2]+HISPb_n(k-1]+j,LpSub(k]->coeffs(pl):

1f(k > 2)
for(j=0: j < LSBb_n(k] : je«+)

for(p=LpSublk]->clpnts(ji; p < LpSub(k]->clpnts(j+l]; p++)

iE£(LpSub(k]->rwnmbs(p] > HISPb_m[l]
&& LpSubl{k]l->rwnmbs([p] <= HISPb_m{cur_block})
status = CPXchgcoef(env, lp, LpSubl[k]->rwnmbs(p]-HISPb_m{1l]-1,
SPb_n{2]+LSPe_m{2]-HISPb_n(k-1]-LSPb_n([2]+3,LpSub(k]->coeffsipl}:

. * Jptimize the prcblem and obtain solution. */
status = ScivePropl(env, lp):
tE(status) (

gote TERMINATE;

143

/* Add theta variable */
for(k=1; k <= nb_subs; k++)
if (subtypelk] == 2)
status = CPXnewcols (env,lp, 1, &Theta_cocef, &Theta_lo, NULL,NULL, NULL);

ocbjval(l]l= objval[2]-10;:

while ((iter_count<150) && (objval{2] - cbjval{l] > tel))
(
iter_count = iter_count + 1;

cctlevdC = totlev2C + levl_count;
fprincf(fp,"\n ***** Iteration Number : %3 ~<***** \n", iter_count);

/* Compute CX tc send aggregated lcwer bound subproblem *:
LpSub[2]->CX=0.00;
for(j=0; 3 < SPb_nl[2]; j++)

if€(x[j] '= 0.0 && objcoeffs[j] '= 0.0)

LpSub{2]->CX += objcoeffs{j]*x(j]:

status = CompulY(LpSub);

pvm_initsend (PvmDataRaw) ;
info = pvm_pkdouble (&LpSub[2]->CX, i1, 1l}:
info = pvm_pkdouble (LpSub(2]->L¥Y, XISPb_m{nb_subs],1};

for(k=1; k <= ab_subs; ke++)
if(subtype(k] == 1)
info = pvm_send(tid(k],2);

£ortk=1; k<=nb_subs; x+-)
{
£ {subtypelk] == 1)

. b

gettimecfday(&tvl, (szruct timezone*)0);

befid = pvm_recv(zid!lki,3}):

rdtl = myseccnds(rdtl);

fprinci(fp., " Receiving Set up Data Time : %8£\n”, rdti,/1000000):

info = pvm_upkdouble (&LpSublk]->PiB, 1, 1);
info = pvm_upkdouble (LpSub({k]->PiD, LSPb_n(k], 1};
infe = pvm_upkdouble (LpSub(k]->0MeL, HISPb_ninb_subs}.l});

-* Add the dual proposals ceming £rom the aggregated lower bound subproblem
(processers 1 and 3} o make cne upper level cut */

for(k=1; k<=nb_subs ; k+=+)

if(kx > 2 && subtype{k] == 1)

LpSuc(l]->PiB = LpSub(lj->PiB « LpSub[3]->PiB ;

for(i=EISPb_nlil; i <« HISPh_a[l] ; ies)
ZpSub{l]->CMel{i] = LpSubk([l]->0OMeL[i]~+ LpSub(3]->OMeL[i]:

fcr(i=HISPb_n[3l; i < HISPb_n(nb_subs] : ie+}
ZpSub{l]->CMel[i: gSub(1]->0MeL[i]+ LpSub[3]->CMeL{i];

for(3=0; j<LSPb_n[l]l; i+=}

144

LpSub[l]->PiD(j] = LpSub{l]->PiD[j]+LpSub(3]->OMeL(]j]:

for({3j=0; j<LSPb_n[3]; j++}
LpSub(3]->PiD{j] = LpSub(3]->PiD[j]+LpSub(l]->OMeL[j+HISPb_n(2]};
}
}

/* Add a cut for upper level iteration */
status = CPXnewrows (env, lp, 1, &LpSub[l]->PiB, &cut_sense, NULL, NULL);

for(j=SPh_n([2]+LSPb_m[2]+HISPb_n(l]:
j<SPb_n[2]+LSPb_m(2] +HISPb_n[nb_subs]-LSPb_n[2];j++)
tatus = CPXchgcoef (env, lp, (int) (SPb_m(2]-LOWSPb_m(2]
-HISPb_m{1l] -1+(iter_countc-2}+totlev2C), jJ,
LpSub{1l]->OMeL [j+HISPb_n[2]}-SPb_n(2]-LSPb_m{2]-RISPb_n(1]]) :
for(j=0; j<LSPb_n{2];j=+)
status = CPXchgcoef(env,lp, (int) (SPb_m[2]-LOWSPb_m(2]
-HISPb_m{l] -l+(iter_count-2)+totlev2C}, j.
LpSub(1l]->0OMeL [j+HISPb_n{1]]);

for(j=SPb_n([2]+LSPb_m{2];
j<SPb_n(2}+LSPb_m(2]+HISPb_n{l]; 3j=+=+)
status = CPXchgcoef (env, lp, (int) (SPb_m{2]-LOWSPb_m(2]- HISPb_m(l]-
l+izer_count-2+totlev2C), j.LpSub{l]->PiD{j-SPb_n{2}-LSPb_m(2]])

if(nb_subs > 2 && subtype(3] == 1)
{

fcr{j=SPb_n{2]1+LSPb_m(2]+LSPb_ni{ll:

j<SPb_n(2]+LSPb_m[2]+LSPb_n{l]+LSPb_n(3]; j*+)
{
status = CPXchgcoef (env, lp, (int) (SPb_m(2]-LOWSPb_m([2]-HISPb_m(1]~1+
iter_count-2+totlevlC),j.LpSub[3]->PiD(j-SPb_n(2]-LSPb_m(2]-
LSPb_n(1]l])

for(3=0; j<LSPb_n(4]l:3i++}
status = CPXchgcoefienv,lp, (int) (SPb_m{2]-LOWSFb_m(2]
-HISPb_m(1] -l+{icer_count-2)+totlev2C),
j+SPb_n(2]+LSPb_m{2]+LSPb_n([1]+LSPb_n(3].
LpSub(1l]->OMeL[j+HISPb _n(311):

}
status = CPXchgccef (env, 1lp, (int) (SPb_m{2]-LOWSPb_m[2]-HISPb_m[1l]-
l+(izer_count-2}+totleviC),

(int) (LpSub(2]->n+LSPb_m([2]+HISPb_n[nb_subs]-LSPb_n(2]),
Theta_ccef) ;

nbufid = 0; levl_count = 0:; com_sub = 3; exitlev2=0; lev2_block = 4

sejval[l] = objval(lev2_block] + 5;
sbival(lev2_bleck] = objvallcom_sub] - 3;

while(lev2_count < 150 && (objval(2]-objvalllev2_block] > 0.0901 ||
lev2_count < 1) && (lev2_count < 1 || exitlev2 <=0))

levi_count = levl_count - i:

pSuk(2]->CX=0.00;
for{j=0: j < SPb_n{2]: J++)

145

LpSub[2]->CX += objcoeffs[jl*x{jl:
status = CompulY(LpSub);

for(j=0; j < LSPb_n(2]: j++)
aley(j+HISPb_n(lj] = x[3]:

pvm_initsend(PvmDataRaw) ;

13

info pvin_pkdouble (&LpSub(2]->CX,1.1):
info = pvm_pkdouble (LpSubi2]->LY, HISPb_m{nb_subs].l):
1 £ (subtype(nb_subs] == 2}
info = pvm_pkdouble (alty., HISPb_n(nb_subs],l):
info = pvm_send(tid[lev2_block].,2}:

Addlev2Cuts (LpSub, env, 1lp):

status = SolveProb (env, 1lp):
if (status)} {
goto TERMINATE;
}

pvm_initsend (PvmDataRaw) ;
info = pvm_pkdouble (&objval{cur_block].i .1};
bufid = pvm_send (tid[lev2_block].7});

gettimecfday(&tvl, (struct timezone*)0):
bufid = pvm_recv (tid(lev2_blaock!.7):

rdrl = myseccnds(zxdtl);
fprintf(fp, " Receiving Set up Data Time : %¥8f\n~", rdel,/1000000);

infc = pvm_upkdouble (&objval(levl_block],1l,1);
info = pvm_upkint (&exitlevl, 1,1);

SEND AND RECEIVE OBJECTIVE VALUES

.... Free up the prcblem as allccated by CPXcreateprcbk, if necessary

main(veid)
{

CFEINE VARIABLES AND ALLOCATE MEMECRIES
SETUP TIME MESEASUREMENT -
.. RECEIVE INITIAL DATA AND FIND THE NUMBER OF ACCUMULATED LINKING VARIABLES AND
CONSTRAINT.. ...

Jpper8cund (LpSub);

P P N T P T T T P R T P TN P T R T R N R E P T N T N R P P E R R E R AP R P S T R P PO T RN AT IR AN TN AN TATARNSTETEERENRIRTETS

146

C.3 Processor 3 : Lower-Upper Bound Subproblem

double *CompuLY(LpSubProb **LpSub, double *xx)
{
.. COMPUTE BX AND LY
recurn (LpSub([cur_block] ->LY) ;
}

double CompuPiB(LpSubPrcb **LpSub, int *cstat, double *pi, double *dj)
{
. COMPUTE PIB
recurn (LpSub(cur_block] ->PiB) ;
}

double *CompuPiD(LpSubProb **LpSub, double *ppi)
{
. COMPUTE PID
return(LpSubfcur_block] ->PiD} ;
}

double *CompuOMel (LpSubProb *+*LpSub, double °*ppi)
{
. COMPUTE OMEL
return(LpSub{cur_block] ->0OMeL) ;
}

/* Add inicial columns of the linking variables cf lower-lower bound subproblem
of the first iteration */

int LSetaddcols (LpSubProb **LpSub, CBEXENVptr env, CPXLPptr lp)

{
int 3, p, kX, status=l;

i£(LSPb_nil] > Q)
status = CPXnewccls (env,lp, LSPb_n(l], LpSub(l]!->Lobjcoef,
LpSub(l}->Llo_bnds, LpSub(l]->Lup_bnds,NULL, NULL):

for(j=0; j < LSPb_n{l] ; J++)
{
for(p=LpSub{l]}->clpncs{j]: p < LpSub(l]->clpnts(j+1]; pr+)
{
if(LpSub(l]->rwnmbs{p] >= SPb_m[l]-LOWSPb_m[1]
&& LpSub(l]->rwnmbs{p] < SPb_m(1]-LOWSPb_m(3])
status = CPXchgcoef(env, ip, LpSub[l]->rwnmbs[p]l-SPb_m([1]+LOWSPb_m[1l],
SPb_n{cur_bleck]+HISPb_m(nb_subs]-LSPb_m([1]+j,LpSub(l]->cceffs(p]):

eise :if
(LpSub[l]->rwnmbs (p] >= SPh_m{1l]-LOWSPb_m(3] &&
LpSub(l]->rwnmbs[p] < SPb_m(1l])
status = CPXchgcoef{env, ip, LpSub{l]->rwnmbs(p]-
SPb_m(1]+LOWSPb_m(3]+SPb_m([3]-LOWSPb_m{3]-LSPb_m([1]-1,
SPb_n{cur_block] +HISPb_m({nb_subs]-LSPb_m{l]+j.LpSub(l]->cceffs(p]);
}

1
return{stacus};

v Add a lamda celumn for primal information coming from aggregated upper bound
subproblem */

int AddLamccls(LpSubProb **LpSub, CPXENVptr env, CPXLPptr lp. int icer_count)
147

{

}
/
i

-

{

int i, status:

LpSub(2]->CX = LpSub[2]->CX+ LpSubl[4]->CX;
for(i=0; i<HISPb_m{nb_subs] ; i++)
LpSub(2]->LY(i] = LpSub(2]->LY(i]+ LpSub[4]->LY¥([i];

status=CPXnewcols (env,lp, 1, &LpSub[2]->CX, &Lam_lc, &Lam_up, NULL, NULL);

for(i=HISPb_mfl]; i <HISPb_m(cur_block] ; i++)
{
status = CPXchgcoef (env, lp, i-HISPb_m(1l], LpSub([cur_block]->n
+ HISPb_m(nb_subs]-LSPb_m(1]~LSPb_n(l]l+iter_count-1, LpSub(2]->LY[i]):
}

for(i=HISPb_m(cur_block]:; i<HISPb_m{nb_subs]; i++)
{
status = CPXchgcoef {env, 1p, i-LSPb_m(l]+SPb_m(3]-HISPb_m(nb_subs]-1,
LpSub(cur_block]->n+HISPb_m[nb_subs] -LSPb_m([1]+LSPb_n(l]+iter_counc-1,
LpSub[2]->LY([i]):
}

status = CPXchgcoef(env,lp, SPb_m[cur_bleck]-HISPb_m{l]-1, SPb_n([cur_block]
« HISPb_m(nb_subs]-LSPb_m(1l]+HISPb_n{l}+iter_counc-1, Lam_coef);

return(stacus);

* Add a cut of lower level iteration with dual informatiocn coming from
lower-lower bound subproblem ¢/

nt Addcuts(LpSubProb **LpSub, CPXENVptr env, CPXLPptr lp, double **KOmega, dcuble
*KLY, double **OMelY)

int status,i, j, k;
status = CPXnewrows (env, lp, 1, &LpSub{l]->PiB, &cut_sense, NULL., NULL);

for(3j=0; j < LSPb_n(l] :j++)
{
status = CPXchgcoef (enwv,lp, (int) (SPb_m(cur_block]-HISPb_m([l] +lev2_count-1),
j+SPb_n{cur_block]+ HISPb_m(nb_subs]-LSPb_m{1l},LpSub{1l]->PiD(3J]) :

forij=0; j<LSPb_n([cur_bleckl; j++)
{

status = CPXchgccef (env, lp, SPb_m{cur_block]-HISPb_m[1l]+lev2_counc-1l, 3,
LpSub{l]->OMeL [j+*HISPb_n{cur_block-111}:

status = CPXchgcoef (env, lp., SPb_m([cur_block]-HISPb_m(1l]+lev2_count-1,
LpSub(cur_block]->n+HISPb_m([nb_subs]-LSPb_m{1]+LSPb_n[(l], Theta_coef):;

for(i=0; i<HISPb_m(ll; i++)

1f(levl_count == 1}
KLY[i] [iter_count-1] = LpSub{2]->LY¥Y{i]:
KOmega{lev2_ccunt][i] = LpSubll]->Omegali]:
}

for(i=1; i1 < levl_countel; i++)

148

{
for{k=1; k< iter_count; k++)
{
OMeLY(i] (k] = 0.0;
for(j=0; j < HISPb_m(l]; j++)
if(KOmega(i][j] '= 0.0 && KLY[3i][(k] !'= 0.Q)
OMeLY[i] {k] += KOmega({i] [jI1*XLY(j](k]:

}

for(i=1l; i < lev2_countc+l ;i++)
{
fortk=1l; k < icer_count; k++)
status = CPXchgcoef(env, lp, (int) i+LpSublcur_block]->m-HISPb_m(1l]-1,
LpSub(cur_block]->n+HISPb_minb_subs]-LSPb_m[1] +HISPb_n(l]+k, OMeLY(i][k}):
}

short
LowerBound (LpSubPrcb +*LpSub)
{
DEFINE VARIABLES AND ALLOCATE MEMORIES
RECEIVE DATA OF LINKING VARIABLES AND CONSTRAINTS OF OTHER PARTS

CONVERT ORIGINAL DATA TO CONFORM CPLEX DATA STRUCTURE SUCH AS SENSE,
OBJCOEFFS AND MATCNT

INITIALIZE THE CPLEX ENVIRONMENT AND COPY SUBPROBLEM DATA TO CPLEX

.... MAKE LOWER-UPPER BOUND SUBPROBLEM OF THE FIRST ITERATION BY ADDING AND
DELETING ROWS AND CCLUMNS

stacus = LSetaddcols(LpSub, env, lp):

PRCELEM, OBTAIN SOLUTION AND WRITE THE RESULT TO QUTPUT

0.0: levloptUP =0.0:
cbjval(l] « 10:

objval(l]
obivall(Z]

while (iter_count<l50 && (cbivalill - objvalll] > zol})
{
iter_countsiter_count-l:;

etlev2C = taotlevlC - lev2_count;

o

LpSub{cur_bleck|->PiB = CempuPiB(LpSub, cstat, pi, d3j):;
LpSub{cur_kleck]->0Mel = CcmpulMel (LpSub, pi);
LpSub(cur_bleck]->PiD = CompuPiD(LpSub, pi);

SEND AND RECEIVE PROPCSALS

[a)
~—

status = Addlamccls(LpSub, env, 1p, iter_coun

nbufid = §; lewi_count = J; levieoptUp = Jrexitlevl = 0; com_sub = 4;
cbivall3] = objvalil{l] - 3;
wnile(ievi_count < 150 && (objval{3] - okjwval({l] > 0.0001 || lev2_count <i)
%% i(lev2_count < 1 || exitlievi <= J))

1

levl_ccunt = lev2_count - 1

149

.... COMPUTE CX
LpSub[cur_block]->LY = CompuLY(LpSub, x);

. SEND PRIMAL PROPOSALS TO LOWER-LOWER BOUND SUBPROBLEM
status = Addcuts(LpSub, env, lp, KOmega, KLY, OMeLY}:;

if(objval(cur_block] - objval[l] < 0.0001 }
lev2optlo = 1;

else

lev2optLlo = 0;

/* If processors 2 and 4 has not reached optimal, send objective value and
‘lev2optlo’ to processor 4 and receive chjective value and ‘'lev2optUp*/

if(lev2optUp <= Q)

{

pvin_initsend(PvmbDataRaw) ;

info = pvm_pkdouble (&objval{cur_biock],l .1);

pvm_pkint (&levZoptle, 1, 1);

bufid = pvm_send (tid[com_sub],7);

gettimecfday(&tvl, (struct timezone*)0);

bufid = pvm_recv (tid[com_sub],7};

rdel = myseconds(rdcl);

fprintf(fp. " Receiving Set up Data Time : %8f\n", rdel,/1000000);

info = pvm_upkdouble (&objval(com_sub]l.l ,1);
info = pvm_upkint(&lev2optUp, 1, 1);:
nbufid = 1;

}
}

/* If objective value of this subproblem is less than that of upper-lower
subproblem, then set the signal exitlev2 ! and send it to lcwer-lower
subproblem®

if (objval(cur_block] <= objval[com_sub]}
exitlevZ = 1;

else

exitlev2 = 0;

pvm_initsend (PvmDataRaw) ;

info = pvm_pkdouble (&objval(cur_block],l ,1):
info = pvm_pkint (&exitliev2,l ,1);

bufid = pvm_send (tid(1].,7):

pvm_initsend(PvmbDataRaw) ;
info = pvm_pkdouble (&objval|[cur_block].,l ,1):

for(k=1; k <=nb_subs; x++)
{

1f£(k '= cur_black)
bufid = pvm_send (tid(k}].8};
}
for(k=1; k <=nb_subs; k++}
{
1f€(k !s cur_block)

150

gettimecfday(&tvl, (struct timezone*)0):

bufid = pvm_recv (tid(k],.8);

rdel = myseconds(rdtl);

fprintf(fp, " Receiving Set up Data Time : %8f\n", rdtl/1000000);

infe = pvm_upkdouble {(&objval(k],l.1l):
}

}

}

TERMINATE:

/* Free up the problem as allocated by CPXcreateprcb, if necessary =/

main(void)
{
DEFINE VARIABLES AND ALLOCATE MEMORIES

... RECEIVE ORIGINAL DATA AND FIND THE NUMBER OF ACCUMULATED LINKING VARIABLES
AND CONSTRAINTS

. MESEAURE PROGRAM TIME

LowerBcund (LpSub):
}

N ey ey e R R R R A R R R R A R A R A A A A SR R A AR A AR AR REE:!

C.4 Processor 4 : Upper-Lower Bound Subprobiem

double *CompulY(LpSubProb **LpSub, double *xx)
{
.... COMBUTE BX AND LY
return(LpSub{cur_tlock]->LY};
}

double CcmpuPiS{LpSubProb **LpSub, int *cstat, double *pi, double *dj)
{
. COMPUTE PIB .
return(LpSub{cur_bleck]->PiB);
}

double *CompuPiD(LpSubProb **LpSub, double *ppi)
{
.... CCMPUTER PID
return(LpSub{cur_block]->PiD);
}

double *CompuOMel (LpSubProb **LpSub, double *ppi)

'
LS

CCMPUTE COMEL ..
return (LpSub(cur_block] ->OMel) ;

v
13

int USetaddcols (LpSubPrcb **LpSub, CEXENVptr env, CPXLPptr 1p)
{
leng j, P, k. status:

fer(i=0:; 3 < LSPb_afll ; j++)

for(p=LpSub(ll~->clpnts(j]; p < LpSub(l]->clpnts(j+l]; p++)
151

{
if(LpSub(l]->rwnmbs(p] >= SPb_m(1]-LOWSPb_m[1] && LpSub(l]->rwnmbs(pl <
SPb_m(1]-LOWSPb_m[2])
status = CPXchgcoef(env, lp, LpSub[l]->rwnmbs(p]-SPb_m[1]+LOWSPb_m(1],
SPb_n[cur_block] +LSPb_m{cur_block]+LSPb_m[2]+j, LpSub(l]->coeffs[p]):

if(LpSubll]->rwnmbs{p] >= SPb_m([1]-LOWSPb_m{3] && LpSub[l]->rwnmbs(p] <
SPb_m{1l])
status=CPXchgcoef (env, 1p, LpSub(l] ->rwnmbs [p] -SPb_m[1] +LOWSPb_m(3]} +LSPb_m(2],
SPb_n(cur_block] +LSPb_m([cur_block]+LSPb_m([2]+j, LpSubl(l]->coeffs(p]);
}
}

for(3j=0; j < LSPb_n(3] ; j++)
{
for(p=LpSub(3]->clpnts(j]l; p < LpSub(3]->clpnts([j+1]; p++}
(
if(LpSub(3]->rwnmbs({p}] > HISPb_m(1l} &% LpSub{3]->rwnmbs([p] <= HISPb_m(2])
status = CPXchgcoefl{env, lp, LpSub(3}]->rwnmbs(p]-HISPb_m[1]-1,
SPb_n(cur_block]+LSPb_m{cur_block]+LSPb_m([2]+j+LSPb_n{l],LpSub(3]-
>coeffs(p]):

if(LpSub[3] ->rwnmbs (p] >= SPb_m([3]-LCWSPb_m[{3] && LpSub(3]->rwnmbs{p] < SPb_m(31})
status=CPXchgcoef (env, 1p,LpSub(3] ->rwnmbs (p] -SPb_m (3] +LCWSPb_m(3) +LSPb_m(2],
SPb_n(cur_block]+LSPb_m(cur_block]+LSPb_m{2]+j+LSPb_n[1l],LpSub(3]->coeffs|

return(status) ;
}

short AddLamcols (LpSubProb **LpSub, CPXENVptr env, CPXLPptr lp, int iter_count, int
lev2_count, double **KOMeL, double **Kalty, double *alty)
{

long i, j:; int k, status;

status=CPXnewcols (env,lp, 1., &LpSub[2]->CX, &Lam_lo, &Lam_up, NULL, NULL):

for(i=HISPb_m(1l]; i <HISPb_m{2] ; i++}
(
status = CPXchgcoef {(env, lp, i1-HISPb_m(l], LpSub(cur_block]->n
« LSPb_m[4]+LSPb_m(2]+LSPb_n(l1]+LSPb_n{3]+lev2_count, LpSub(2]l->LY¥{i]):
}

for{i=HISPb_m{3]:; i<HISPb_m(4];: i++)
{
status = CPXchgcoef (env, lp, i-LSPb_m{l]-LSPb_m(3],
LpSub(cur_block]->n+LSPb_m(4]+LSPb_m(2]+LSPb_n{l]j+LSPb_n{3]+lev2_count,
LpSub(2]->LY(1]);
}

status = CPXchgcoef(env,lp, SPb_m{cur_block]-LSPb_m[l]-LSPb_m(3]-1,
SPb_n{cur_blockl}
+ LSPb_m{4]+LSPb_m{2]+LSPb_n{i]+LSPb_n([3]+lev2_count, Lam_coef);

for(j=HISPb_n([l]; j<HISPb_n{2]: j++)

{
KOMeL[iter_count-1][j] = LpSub(l]->OMeL(]j]:
Kalty[jl[lev2_count] = aley(jl:

}

152

for(k=1; k < iter_count; k++)
{
for(i=1; i< lev2_count+l; i++)
{
OMeLY(k] (i} = 0.0;
for(j=HISPb_n[l]; j < HISPb_n{2]; je++)
{
if(KOMeL(k][j] != 0.0 && Kalty([jl{i] '= 0.0)
OMeLY[k][i] = OMeLY(k][i]+KOMeL[k][j]*Kalty{j}(il:
}
}
}

for(i=1l; i < iter_count ;i++)
{
for(j=l; j < levi_count+l; j++)
{
status = CPXchgcoef(env, lp, (int) i+LpSublcur_block]->m-LSPb_m(1l]-LSPb_m{3]-
1, (int) (LpSubicur_block]->n+LSPb_m[cur_block]+LSPb_m{2]+LSPb_n(l1]+LSPb_n{3]~+3).
OMeLY({i]{j]);
}
}

return({status) ;
}

int Addcuts(LpSubProbk **LpSub, CPXENVptr env, CPXLPptr lp., int lev2_count, int
iter_count)

(

int status, k; long i, j3:

status = CPXnewrcws (env, lp, 1, &LpSub(l]->PiB, &cut_sense, NULL, NULL):

for(j=0; j < LSPb_n(l] :j++)

{

status = CPXchgcoef (env, 1lp, (int) (SPb_m([cur_block]
-LSPb_m(1]-LSPb_m{3] -iter_count-2), j+SPb_n(cur_block]
+ LSPb_m{2]+LSPb_m[cur_block].,LpSub(l]->PiD(j])

}

for(i=G; j < LSPhb_n{3] :je+)
{
status = CPXchgcoef (env, 1lp, (int) (SPb_m(cur_block]
-LSPb_m{1l]-LSPb_m(3] +iter_count-2), j+SPb_n(cur_block]
+ LSPb_m{2]+LSPb_m[cur_block]+LSPb_n[1l], LpSub(3]->PiD{jl) :
}

for(3j=0; j<LSPk_n(cur_block]l; j=+)

{
status = CPXchgcoef (env, lp, SPb_m(4]-LSPb_m([l]-LSPb_m({3]+iter_count-2, j.
LpSub{l]->CMeL ({j+HISPb_n{cur_block-1}1):

}

status = CPXchgcoef (env, lp, SPb_m{cur_block]-LSPb_m(1l]-LSPb_m[3]+icer_count-2,
SPh_n[cur_bleck]+LSPb_m{2] +LSPb_m{cur_block]+LSPb_n({1l]1+LSPb_n(3].
Theta_coef}:

return(status) ;

e

153

short
UpperBound (LpSubProb **LpSub)

{
RECEIVE NECESSARY OTHER LINKING VARIABLES’' DATA
DELETE UNNECESSARY ROWS FOR THIS SUBPROBLEM AND ADD CCLUMNS FOR ARTIFICIAL
VARIALBES. ALSO, ADD NECESSARY COLUMNS FOR OTHER PART'S LINKING VARIABLES
status = USetaddcols(LpSub, env, lp):

.... OPTIMIZE THE PROBLEM OF THE FIRST ITERATION, OBTAIN SOLUTIONS AND WRITE THEM
TO QUTPUT FILE

status = CPXnewrows {env, lp, 1, &Lam_rhs, &Lam_sense, NULL, NULL);
status = CPXnewcols (env,lp, 1., &Theta_coef, &Theta_lo, NULL,NULL, NULL};

objval{l]
obival(2]

0.0; objval(2]= Q0.0;
objval{l] « 10:

while ((iter_count<l150) && (objval(2] - objval(l] > tol))
{
iter_count = iter_count = 1l;

. COMPUTE CX
LpSub({cur_block]->LY = CompulY(LpSub, x);

.. SEND PRIMAL INFORMATION TO AND RECEIVE DUAL INFORMATION FROM THE AGGEGATED
LOWER BOUND SUBPROBLEM (PROCESSCR 1 AND 3)

.+ Find proper dual information by adding each information coming frem
aggregated lower bound subproblm (processors 1 and 3) */
LpSub[1]i->PiB = LpSub(l]->Pi3 + LpSub{3]->PiB ;

for(j=0; j<LSPh_na(l]: j++)
LpSub(l]->PiD(j] = LpSub{1]->PiD(j]+LpSub(3]->OMeL(]j];

for(i=0: j<LSPb_n(3]: j++)
LpSub{3]->PiD(j] = LpSub(3]->PiD{j]+LpSub(l]->OMeL[j+HISPb_n[2]]
fer(i=0; 1 < HISPb_n(d] :; i++)
LpSub(l}->CMeL[i] = LpSub(l]->OMeL{i]+ LpSub(3]->OMeL(i];
'+ Delete columns for primal infcrmation of previous lower level iteration */
status = CPXdelcols (env, lp,
SPb_n[cu:_blcckIvLSPb_m[Z]oLSPb_m[4IoLSPb_n[l]*LSPb_n[Blcl, cur_numccls-1);

status = Addcuts(LpSub, env, 1p. lev2_cocunt, iter_count);

nbufid = 0; levloptlo = Q; exitlev2 = 0; lev2_count = 07
cbivali{a]l = cbjvalil] - 3:
while(levl_csunt < 130 && lobjvall2] - objval{4] > 0.0001 || lev2_count <1)
&& (levl_count <1 || exitlev2 <=0))
{

levl_count = lev2_count « 1:

SEND DUAL INFORMATION TC AND RECEIVE PRIMAL INFCRMATION UPPER-UPPER BOUND
SUBPRCSLEM (PROCESSCR 2)

154

status = AddLamcols{LpSub, env, lp, iter_count, lev2_count, KOMelL, Kalty,
alty);

status = CPXprimopt (env, lp):

... RECEIVE OBJECTIVE VALUE FROM PRCCESSCR 2
if(objval(2] - objval(cur_block] < 0.0001 }
lev2optUp = 1;
else
lev2optUp = 0;

/* If processors 1 and 3 has not reached optimal, send objective value and
‘lev2optUp’ to processor 3 and receive cbjective value and ‘levioptLo*/

if(lev2optlo <= 0)

{

pvm_initsend (PvmDataRaw) ;

info = pvm_pkdouble (&objval(cur_block],l ,1l);
pvmm_pkint(&levZoptUp, 1, 1):

bufid = pvm_send (tid(com_sub],7):

gecttimeofday(&tvl, (struct timezone*})d);

bufid = pvin_recv (tid(com_subl],7);

rdel = myseconds (rdtl);

fprintf(£p, " Receiving Set up Data Time : %¥8f\n", rdel/1000600Q);

info = pvm_upkdouble (&cbjval[com_sub],l ,1};
info = pvm_upkint(&lev2optlo, i, 1l}:
if(info < 0)
fprintf(fp, "ERROR in receiving cbjvall[%d)\n*, com_sub}:

p—

/* If objective value of this subproblem is greater than that of Lower-upper
bound subproblem, then set the signal exiclev2 1 and send it to upper-
upper bound subproblem®*/

if{objval(cur_block] »>= objval[com_sub])
{ exitlev2 = 1; }

else
{ exitlev2 = 0: }

pvm_initsend (PvmDataRaw) ;
info = pvm_pkdouble (&objval[cur_block],l ,1l):
info = pvm_pkint (&exitlev2,l ,1);
bufid = pvm_send (tid(2],7):
}
pvm_initsend(PvmDataRaw) ;

info = pvm_pkdouble (&objval(cur_bleock],1 ,1):
fer(k=1; k <=nb_subs; k++)
{

ik '= cur_black)
= pvm_send (vid[k],8);

% Free up the CPLEX envircnment, if necessary */

155

return
}

main(void)
{

.... DEFINE AND DO THE SIMILAR OPERATIONS AS PREVIOUS SUBPROBLEMS

UpperBound (LpSub) ;

156

BIBLIOGRAPHY

Aardal, K. And A. Ari. “On the Resemblance Between the Kornai-Liptak and Cross
Decomposition Techniques for Block-Angular Linear Programs”, European Journal
of Operational Research. 46(1990), 393-398.

Baker, L and B.J. Smith, 1996, “Parallel Programming”, McGraw-Hill.

Barr, R.S. and B. Hickman. 1993, “Reporting Computational Experiments with Parallel
Algorithms: Issues, Measures, and Experts’ Opinions”, ORSA Journal on Computing,
Vol. §, No. 1, Winter (1993), pp.2-18.

Benders, J.F., 1962, “Partitioning Procedures for Solving Mixed-variable Programming
Problems”, Numerische Mathematik 4 (1962), pp. 238-252.

Birge. J.R., C.J. Donohue. D.F. Holmes and O.G. Svintsitski, “A Parallel Implementation
of the Nested Decomposition Algorithm for Multistage Stochastic Linear Programs™.
Mathematical Programming 75 (1996), pp. 327-352.

Brooke. A.. D. Kendrick and A. Meeraus. GAMS: A User’s Guide, The Scientific Press,
Redwood City, California, 1992.

CPLEX Division. Using the CPLEX Callable Librarv. ILOG Inc. Incline Village, NV. 1997.

Danuzig, G. B.. and P. Wolfe, “The Decomposition Principle for Linear Programming”,
Operations Research 8 (1960), pp. 101-111.

Dantzig, G.B. 1963. Linear programming & Extensions. Princeton University Press.

Dantzig, G.B. 1980. “Time-staged Linear programs™. Technical Report SOL 80-28, System

157

Optimization Laboratory, Department of Operations Research, Stanford University.
Stanford. California, USA.

Dantzig, G.B. and P.W. Glynn, “Parallel Processors for Planning Under
Uncertainty”, Annals of Operation Research 22 (1990), pp. 1-21.

Duncan, R. ""A Survey of Parallel Computer Architectures”, IEEE Trans. Computers (1990).

Entriken, R. “Parailel Decomposition: Results for Staircase Linear Programs™, SIAM Jand

of Optimization, 4 (1996), pp. 961-977, November.

Flynn, M.J. “Very High Speed Computing Systems”, Proc. [EEE. 54 (1966), pp. 1901-1909.

Fragniere, E., J. Gondzio, R. Sarkissian. and J. P. Vial, “Structure Exploiting Tool in Algebraic
Modeling Languages”, Management Science 46, No. 8 (2000), pp. 1 145-1158.

Fragniere, E., J. Gondzio, and J. P. Vial. “A Planning Mode! with one Million Scenarios Solved
on an Affordable Parallel Machine”. Logilab Technical Report (1998b), Section of
Management Studies, University of Geneva, Geneva, Switzerland.

GAMS Development Corporation, The GAMS I/O Library, 1996

Geist. A.. A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam. 1994. A PVM:
Parallel Virtual Machine - “Users’ Guide and Tutorial for Networked Parallel
Computing”, The MIT Press, Cambridge, MA, USA.

Gnanendran, S.K. and J.K. Ho. “Load Balancing in the Parallel Opimization of Block-
Angualar Linear Programs”, Mathematical Programming 62 (1993), pp.41-67.

Ho. J K.. “Convergence Behavior of Decomposition Algorithms for Linear Programs”,
Operations Research Lerters 3 (1984), pp. 91-94.

Ho. J K., T.C. Lee and R.P. Sundarraj, 1988, “Decomposition of Linear Programs Using Parallel

158

Computation”, Mathematical Programming 42 (1988), pp. 391-405.

Ho, J.K. and E. Loute, 1996, “On the degree of Decentralization in Linear Programming”,
Informatica 7, pp. 337-348.

Holmberg, K. “On the Convergence of Cross Decomposition”. Mathematical Programming, 47
(1990). pp. 269-296.

Holmberg, K. “Linear Mean Value Cross Decomposition: A Generalization of the Kornai-Liptak
Method”, European Journal of Operational Research, 62 (1992), pp. 55-73.

Kortanek, K. O. and Ji Shan Zhu, 1988, “New purification algorithms for linear
programming”, Naval Research. Logistics. 35, No. 4, pp. 571—583.

Lan. B. 1993, A Primal-Dual Decomposition Method for Muiti-Stage Linear Programs”,
Ph.D dissertation, Department of Management Sciences,University of Waterloo,
Waterloo, ON. CANADA.

Lan. B. and J.D. Fuller, 1995a, “A Primal-Dual Decomposition Method for Two-Stage Linear
Programs”, working paper. Department of Management Sciences. University of waterloo.
Waterloo, ON. CANADA.

Lan. B. and J.D. Fuller. 1995b. A Primal-Dual Nested Decomposition Algorithm for Mult-
Stage Linear Programs”, working paper, Department of Management Sciences,
University of Waterloo. Waterloo, ON. CANADA.

Murphy. F. H.. and M. V. Mudrageda. “A Decomposition Approach for a Class of Economic
Equilibrium Models ", Operarions Research, 46. No. 3 (1998), pp. 368-377.

Nielsen. S. S.. and S. A. Zenios. “Scalable parallel Benders decomposition for stochastic linear

programming”. Parallel Compuiing, 23 (1997), pp. 1069-1088.

159

Park, H.J. 1996, “A Primal-Dual Decomposition Method for Multi-stage, Convex Nonlinear
Programs”, master’s thesis, Department of Management Sciences, University of
Waterloo, Waterloo, ON. CANADA.

Rosen, J.B. and R.S. Maier, “Parallel Solution of Large-scale, Block-angular Linear
Programs”, Annals of Operations Research 22 (1990), pp. 23-41.

Ruszczynski, A. ““Parallel Decomposition of Multistage Stochastic Programming
Problems”, Mathematical Programming 58 (1993), pp201-228.

Van Roy, T.J. “Cross Decomposition For Mixed Integer Programming ", Mathematical
Programming 25 (1983), pp. 46-63.

Vladimirou, H. “Computational assessment of distributed decomposition methods for stochastic
linear programs”, European Journal of Operational Research 108 (1998), pp. 653-670.

Zenios, S.A. 1989, “Parallel Numerical Optimization: Current Status and an Annotated

Bibliography”, ORSA Journal on Computing, Vol.1, No.1. pp20-pp43.

160

