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Abstract 

Narrow silicon nanowires host a rich set of physical phenomena. Understanding these phenomena 

will open new opportunities for applications of silicon nanowires in electronic and optical devices and 

importantly adds more functionality to silicon especially in those realms that bulk silicon may not 

operate remarkably. Compatibility of silicon nanowires with the mainstream fabrication technology is 

also advantageous. The main theme of this thesis is finding the possibility of using silicon nanowires 

in light sources; laser and light emitting diodes. Using 10 orbital (sp3d5s* ) Tight Binding (TB), 

Molecular Dynamic (MD) with classical many-body potential and ab-initio Density Functional 

Theory (DFT) methods it was shown that axial strain can induce significant changes in the effective 

mass, density of states and bandgap of silicon nanowires. Generality of the observed effects was 

proven by investigating nanowires of different crystallography, diameter and material (e.g. 

germanium nanowires). The observed direct to indirect bandgap conversion suggests that strain is 

able to modulate the light emission properties of silicon nanowires.  

To investigate this possibility, spontaneous emission time is formulated using the first and second 

order perturbation theory including Longitudinal Optical (LO) and Longitudinal Acoustic (LA) 

phonons. It was observed that corresponding to direct to indirect bandgap conversion, the 

spontaneous emission time can be modulated by more than one order of magnitude. This emanates 

from direct to indirect bandgap conversion and symmetry change of wave function in response to 

axial strain. Furthermore a mechanism for lasing and population inversion was proposed in the thesis 

which is based on the study of carrier statistics in direct and indirect conduction sub bands of a 

strained nanowire. By calculating all possible electron-phonon scattering mechanisms which may 

deplete the already populated indirect subband, it was shown that at different temperatures and under 

different electric fields there is a factor of 10 difference between the population of indirect and direct 

sub bands in a strained nanowire. This suggests that population inversion can be achieved by biasing 

an already strained nanowire in its indirect bandgap state. The light emission is possible then by 

releasing or inverting the strain direction. A few ideas of implementing this experiment were 

proposed as a patent application. 

The carrier population dynamic was studied with Ensemble Monte Carlo (EMC) simulator which uses 

the scattering data calculated in this thesis. All scattering events including intra- and inter-subband 

scatterings including LA and LO phonons were taken into account. The effects of strain on the 

symmetry of wave functions in nanowires promise strain-modulated photo absorption in silicon 

nanowires. Photo absorption of silicon nanowires was calculated using TB method and the role of 

diameter, optical anisotropy and strain were investigated on the band edge absorption. Modulation of 

absorption also suggests new applications for silicon nanowires. Furthermore the formulation and the 

codes developed in this thesis provide the basis for further investigation of non-radiative processes in 

silicon nanowires e.g. Auger Recombination as well as effects of strain on the nonlinear optics of 

silicon nanowires.  
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Chapter 1 

Introduction 

Interest in Silicon nanowires (SiNW) never stops growing. Potential advantages of SiNWs, 

such as quantum confinement, large surface-to-volume ratio, adjustable bandgap, sensitivity 

of electronic properties to surface ligands and mechanical excitation and compatibility with 

mainstream silicon technology have resulted in a flurry of experimental and theoretical 

investigations of these nano-structures. Over the years SiNWs have been also explored for 

use in transistors [1][2], logic circuits [3] and memory [4], spin-based quantum computing 

[5], chemical [6] and biological [7] sensors, piezo-resistive sensor [8], nano mechanical 

resonator [9] and thermoelectric converters [10][11]. We are also witnessing the utilization of 

SiNWs in optoelectronic applications, such as in solar cells [12][13], photo-transistors 

[14][15], and avalanche photodiodes [16][17].  

Efficient light emission from SiNWs makes the idea of single chip Silicon optoelectronics 

possible. Integrating silicon with photonics has been always favorable due to low cost and 

matured fabrication technology of silicon chips. Over the years researchers have been trying 

to observe the signature of quantum confinement induced light emission from SiNWs. 

Availability of new fabrication and characterization methods has made it possible to reduce 

the non-radiative and surface recombination and carrier trap effects on the radiation spectrum 

of a nanowire. However after excluding the non-idealities the efficient light emission in 

SiNWs requires direct bandgap and symmetry allowed optical transition between conduction 

and valence states. In other word to have a nonzero optical transition matrix element, which 

is defined as 

⟨Ψ    | |Ψ    ⟩  ∫ Ψ 
       Ψ           (1.1) 

 

the integrand should have an even symmetry. Ψc, Ψv and r represent conduction band state 

(wave function), valence band state and position operator, respectively. In bulk silicon and 

large diameter SiNWs the conduction band minimum and valence band maximum have 

different values of momentum within the Brillouin Zone (BZ) of the crystal (Figure 1.1a). 

Since electron-hole recombination should be momentum conserving process (and photon 

cannot provide the momentum difference), the indirect transition is possible via a second 

order process containing phonon absorption and emission. On the other hand narrow 

diameter SiNWs can have direct bandgap due to the folding of the off center energy states of 

bulk silicon into the BZ center (Figure 1.1b).  

For the aforesaid reasons, in the reported experiments that involve large SiNWs in a hybrid 

light emitting device, the photon emission process is efficiently occurring in the direct 
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bandgap nanowire which is made from III-V materials and SiNW plays the biasing and 

carrier injection role. For example nano-lasers and Light Emitting Diodes (LEDs) reported in 

[18][19] are based on the combination of top-down grown SiNWs and bottom-up III-VI and 

Cd-VI nanowires, respectively. Hayden et al [20] have also reported a core/shell p-Si/n-CdS 

nanowire working as a LED. 

 

 

Figure 1.1 (a) Band structure of bulk silicon showing an indirect bandgap. (b) Band structure of a 

2.2nm [100] SiNW shows a direct bandgap. 

 

The main theme of this thesis is computational study of strain effects on the electronic and 

optical properties of SiNWs i.e. photon emission and absorption. The results and underlying 

physics can build a foundation on which novel applications for SiNWs could be proposed. 

For this reason the introductory chapter primarily reviews the experimental studies of optical 

emission in SiNWs. After an introductory section devoted to nanowire fabrication methods, 

we present how the progress of technology made it possible to understand the light emission 

mechanism in SiNWs better. This is followed by a short review of how absorption in SiNW 

array makes them attractive for solar cell applications. Electronic, thermal and mechanical 

properties and applications of SiNWs and other nanowire materials have been extensively 

reviewed in [21][22][23][24].  

The organization of the thesis is introduced in the third section and the main problems of this 

thesis are stated there. Finally the methods of strain generation in SiNWs are summarized. 

These methods are promising the possibility of using strain as a degree of freedom to 

modulate the optical properties of SiNWs. 
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1.1 Silicon Nanowire Fabrication Methods  

Methods of SiNW growth and fabrication can be divided into two main groups: bottom-up, 

and top-down. As its name suggests, bottom-up method is based on the preferential 

deposition of reactants on silicon substrate to induce a chemical reaction which results in the 

crystallization and growth of Si nanowire in a specific direction. The top-down method is 

based on the standard lithography, oxidation and etching of a silicon layer in which the oxide 

removal helps in narrowing down the diameter. Although the bottom-up approach can result 

in narrow diameter nanowires however it lacks the controllability, reproducibility and 

compatibility with the main stream silicon technology. On the other hand, the minimum 

achievable size in top-down methods is limited by the resolution of standard lithography and 

etching processes. But in recent days both methods have demonstrated significant progress in 

circumventing their limitations. Nowadays generating narrow diameter (d~3nm) SiNWs is 

possible using either bottom up or top-down methods. 

1.1.1 Bottom-up Methods 

Generally there are three different kinds of bottom-up nanowire growth methods. They are 

(1) Vapor-Liquid Solid (VLS), (2) Laser-ablated VLS and (3) Oxide-assisted growth. Each of 

these methods is briefly explained in the following sections. 

1.1.1.1 Vapor-Liquid-Solid (VLS) Method 

Most of the bottom-up growth techniques of SiNWs are based on the VLS method. In this 

method a liquid droplet of a catalyst metal (Au, Pt) absorbs silicon atoms from the vapor 

precursor like silane (SiH4) or disilane (Si2H6) which is being carried by an inert gas e.g. Ar. 

Controlling the temperature (~440°C) and pressure (100mTorr), bring the Si-Au droplet into 

super-saturation [25]. Therefore silicon atoms nucleate on the silicon wafer epitaxially and a 

nanowire is formed on the substrate with a diameter which is determined by the metallic 

nano-particle size. The nano-particle remains in liquid form on the tip of the nanowire during 

the growth process (Figure 1.2). Nanowires with [110] and [111] orientation have been 

grown using this method. The diameters span between 6nm-20nm and the wires are covered 

by 1-3nm oxide. It was observed that diluting the SiH4 reactant with H2 inhibits the oxide 

formation on the SiNW surface hence SiNWs as thin as 3nm were grown without any oxide 

coverage [26]. The preferred crystallographic growth direction for nanowires with diameters 

of 3nm-10nm is [110], while for diameters between 10nm-20nm and above is [112] and 

[111]. This growth preference can be understood from solid nanowire-liquid catalyst 

interface and SiNW surface energy. Theoretical studies based on DFT (Density Functional 

Theory) confirmed the diameter-dependent growth preference [27].  
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Figure 1.2 VLS mechanism of silicon nanowire growth which starts from silicon and metal catalyst 

droplet. 

It was observed that diluting the SiH4 reactant with H2 inhibits the oxide formation on the 

SiNW surface hence SiNWs as thin as 3nm were grown without any oxide coverage [26]. 

The preferred crystallographic growth direction for nanowires with diameters of 3nm-10nm 

is [110], while for diameters between 10nm-20nm and above is [112] and [111]. This growth 

preference can be understood from solid nanowire-liquid catalyst interface and SiNW surface 

energy. Theoretical studies based on DFT (Density Functional Theory) confirmed the 

diameter-dependent growth preference [27].  

Review of all types of VLS method is beyond the scope of this introductory chapter. 

Interested readers can refer to recent extensive review articles for example [28] [29] which 

give details of different growth processes and corresponding pros and cons. 

1.1.1.2 Laser Ablated VLS Method 

Since the size of nanowire is limited by the size of liquid catalyst-Si droplet in equilibrium 

phase, growing the nanowire from non-equilibrium cluster will result in smaller diameters. 

This is achieved by a laser with the wavelength of λ= 532nm which ablates silicon and metal 

catalyst (Si0.9Fe0.1) targets in a quartz furnace [30]. This subsequently leads to the formation 

of dense and hot plasma (1200°C). Once the vapor condenses into liquid droplets, silicon 

atoms which are being cooled due to collision with Ar carrier atoms enter into the droplet and 

nucleation begins after the super-saturation. Figure 1.3 shows the Transmission Electron 

Microscopy (TEM) image of [111] SiNWs in 6nm-20nm diameter range. The oxide sheath 

on each nanowire is formed due to the reaction with residual oxygen in the growth chamber. 
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Figure 1.3 (a) TEM image of grown SiNW using laser ablation of SixFe1-x target (scale bar is 

100nm). (b) 10nm thick SiNW covered with amorphous oxide sheath. Reprinted with permission 

from [30]. Copyright 1998 AAAS.  

1.1.1.3 Oxide Assisted Catalyst Free Method 

The smallest SiNW reported ever (1.3-7nm) has been synthesized by this high yield and 

catalyst-free method [31]. This method is based on the decomposition of SiO into Si core and 

SiO2 sheath. The process starts with heating of SiO in an alumina furnace up to 1200°C. At 

900°C, SiNW starts to nucleate under a flow of H2 and Ar gas mixture. The observed growth 

directions are mainly [112] and [110]. The oxide sheath on the nanowires is removed by 

Hydro Fluoric (HF) acid and as a result the surface silicon atoms are terminated with 

hydrogen atoms. Scanning Tunneling Spectroscopy (STS) and Microscopy (STM) images 

confirm the formation of stable SiH2 and SiH3 groups on SiNW surfaces [31]. Importantly 

the relationship of bandgap value and diameter of the nanowire confirms the quantum 

confinement in this experiment [31]. Other alternative of catalyst free method is using laser 

ablation and powder mixture of pure Si and SiO2. It has been confirmed that SiO2 plays an 

important role in high yield catalysis of SiNW formation [32]. 

1.1.2 Top-down Methods 

There are many variants of top-down methods in the literature however they can be 

categorized according to their capability in creating a single nanowire or an array of 

nanowires. An example of each category is presented here. 

1.1.2.1 Single Nanowire 

Figure 1.4a-c shows three different process flows for SiNW Gate-All-Around (GAA) Field 

Effect Transistor (FET) fabrication. Starting from a highly piezoresistive, low doped p-type 

silicon wafer (10
15

 cm
-3

), three types of SiNW can be fabricated depending on the oxidation 

time and isotropic etching rate (Figure 1.4a-c). The first and the second steps of Figure 1.4a-c 

show the Low Pressure Chemical Vapor Deposition (LPCVD) of Si3N4 layer (etching mask), 
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isotropic etching (HF acid) and oxidation. The third step consists of Low Temperature 

Oxidation (LTO) followed by Chemical-Mechanical Polishing (CMP). Thinning the oxide 

(10-20nm) followed by LPCVD Polysilicon growth results in an oxide-surrounded SiNW 

gate in three different forms: (a) floating triangular SiNW, (b) floating pentagonal SiNW and 

(c) a body-tied omega shaped SiNW [33]. 

 

 

Figure 1.4 (a) Floating SiNW. (b) floating pentagonal. (c) Non-floating (body-tied) omega-shaped 

SiNW with diameters of 208nm, 197nm and 372 nm, respectively. (d) Top-view of GAA_FET of 

type (a) SiNW. Reprinted with permission from [33]. Copyright 2007 IEEE. 

Since silicon is etched from the bulk material, the minimum thickness of SiNW is limited by 

the resolution of lithography which is defined by the etch-stop layer (Si3N4 in this case). This 

limitation is circumvented by a more precise lithography techniques e.g. employing Phase-

Shift-Mask (PSM) [34][2]. Starting from a Silicon On Insulator (SOI) wafer as above, a 

30nm-40nm silicon fin can be defined by KrF PSM lithography. The subsequent etching and 

self-limited oxidations result in a floating SiNW as thin as 3nm (Figure 1.5).  

 

 

Figure 1.5 Oxide-assisted narrowing of a floating SiNW before (a) and after (b) gate metallization. (c) 

Cross section of oxide covered SiNW. Reprinted with permission from [34][2]. Copyright 2007 

IEEE. 
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Different SiNW-based GAA-FETs can be implemented by covering the SiNW with SiO2 or 

HfO2 (as gate dielectric) and Polysilicon or TaN (as gate contact) [34][2].  

1.1.2.2 Array of Silicon Nanowires 

Horizontal Array: Arrays of silicon nanowires are of interest in memory, crossbar switch, 

biosensors and logic circuit applications. Reproducibility and uniformity of an array is an 

important requisite which can be met by top-down method. However there is one example of 

mixing top-down and bottom-up approach reported in [35]. In [35] a long bottom-up grown 

(2mm) SiNW serves as a common channel of a FET array. Superlattice NAnowire Pattern 

transfer (SNAP) is a method which circumvents the resolution limit of optical lithography or 

low throughput Electron Beam Lithography (EBL) using high precision Molecular Beam 

Epitaxy (MBE) [36]. In SNAP method a GaAs/Al0.8Ga0.2As super lattice is grown on a [100] 

GaAs wafer. Selective etching dissolves the AlGaAs layers as deep as 30nm. Different 

metals like Pt, Al, Au and Cr are evaporated on to the etched edge of MBE grown layers 

while tilted at 36°. The pattern of metallic nanowires can be transferred on a 10nm thick 

epoxy film which is grown on the SOI wafer.  After curing the epoxy layer and etching the 

GaAs layers away the remaining patterns on epoxy layer form a metallic nanowire array. 

Interestingly the metallic nanowire array can be used as an etch stop mask to transfer the 

patterns of nanowires on the semiconductor substrate. The area between the metallic 

nanowires can be etched away using Reactive Ion Etching (RIE) and the remaining area 

under the metallic layers forms a SiNW array on the oxide layer. The diameters can be as 

small as 18-20nm with pitches of 30-60nm. The metallic or semiconductor nanowire array 

which is obtained in SNAP method can be transferred to a Poly(dimethylsiloxane) (PDMS) 

stamp or a soluble glue layer. As shown in Figure 1.6, the adhesive PDMS layer peels off the 

SNAP nanowire array from the SOI wafer. Bringing PDMS stamp into conformal contact 

with epoxy coated plastic (mylar) substrate, followed by UV curing and peeling off the 

PDMS, result in a SiNW array on plastic substrate [6].  

Transferring electronic circuits on plastic substrate is always interesting because it makes the 

implementation of low cost, light weight, flexible, implantable, wearable and bio-compatible 

sensors and circuits possible. Importantly it was observed that stretching and deforming the 

plastic substrate does not cause any breakage or bundling of SiNWs which is very useful in 

studying the strain induced changes in electronic and optical properties of nanowires.  

Vertical Array: While previous methods are useful to generate horizontal arrays, recent 

experiments are promising for highly repetitive uniform array of SiNWs. As an example in 

[37] a vertical array of 50nm thick SiNWs are formed by etching a crystalline <100> silicon 

wafer. An array of 30-50nm disks is patterned in a 75nm Poly-(methyl methacrylate) PMMA 

layer followed by direct current (DC) sputtering of 25nm Al2O3 layer. This layer serves as an 

etch mask for further fluorine etching with 60:1 aspect ratio. Finally thermal oxidizing the 
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nano pillars at 850-950°C reduces the diameter of silicon cores down to 2.5nm. The 

narrowing of diameter is due to the growth of oxide layer thickness. This growth is however 

self-limited due to the increase of strain energy at the Si/oxide core/shell interface [38]. 

 

 

Figure 1.6 (a), (b) and (c) peeling off the SNAP nanowires from the SOI substrate using PDMS glue. 

(d), (e) and (f) Pattern transfer on SU-8 epoxy coated plastic (mylar) substrate. Reprinted with 

permission from [6]. Copyright 2007 Macmillan Publishers Ltd. 

1.2  Optical Properties of SiNWs 

The review of the all experimental works related to SiNWs is not straightforward since in the 

literature the diameter of nanowire spans 3nm to 900nm. To discriminate between large and 

small diameter nanowires, the Bohr radius of free excitons in bulk Si (a=4.9nm) [39] is used 

as a criteria to define a one dimensionally confined nanowire. However there are reported 

experiments with large diameter nanowires (d>a) which reveal interesting physical effects 

and they help us in general understanding of surface, strain and local field effects. 

Additionally they reveal the trend of technology and experimental studies of light emission in 

SiNWs during the last decade.  

1.2.1 Studies of Optical Emission 

The first experiments that stimulated intensive study of SiNW as a potential light source were 

reported by [40][41]. It was suggested that quantum confinement in the silicon filaments is 

responsible for visible red peak in photoluminescence (PL) spectrum. The thickness of these 

filaments was less than 5nm and they were formed by anisotropic etching of porous silicon. 

Further theoretical ab-initio studies [42], Time Resolved (TR) PL spectroscopy [43] 

approved the confinement-based model. Also Lu et al [44] observed a visible PL from 

Si/SiO2 super lattice made by MBE. They showed that PL emission is detectable from 



 

 9 

samples in which the thickness of silicon layers is less than 3nm. Later on more theoretical 

works based on tight binding (TB) [45], empirical pseudo-potential (EPS) [46][47] and ab-

initio DFT methods [48][49] attempted to identify the source of visible PL spectra and blue 

shift by using idealized 1D silicon nanostructures.  

In addition to the above-mentioned studies alternative models have been proposed to explain 

the visible PL from porous silicon. Figure 1.7 represents six models to which the visible PL 

has been attributed [50]. The proposed models are: 

(a) Crystalline silicon (i.e. bulk or quantum confinement): In this model the bandgap 

enlargement due to 1D confinement results in visible luminescence.  

(b) Hydrogenated amorphous silicon: which attributes the PL emission to amorphous a-Si:H 

phase. TEM studies however rejected this idea by showing that in porous silicon there is no 

a-Si:H phase.  

(c) Surface Hydrides: In this model SiH2 surface Hydration are proposed as a source of PL 

emission. This is based on the observation of blue peak bleaching after surface treatment 

with HF. However the following observations rejected this model by showing that: 

(i) Reducing H coverage by high quality oxidation has increased the PL intensity rather 

than decreasing it.  

(ii) There are samples of porous silicon with high SiHx coverage which showed no PL 

emission.  

(iii) Loss of PL after removing SiHx from the surface in some experiments can be due to 

non-radiative recombination in oxide defects, not due to SiHx removal. 

(d) Defects: PL peaks which are diameter independent can be due to electron-hole 

recombination in these vacancies. Any diameter dependent peak in PL spectrum cannot be 

due to this model though. Change of diameter could be the result of changing oxidation 

process, temperature and etching conditions. 

(e) Molecules: Siloxane molecules (polymers of Si/O/H) which are formed during porous 

silicon formation can be the source of PL according to this model. Since PL peaks are not 

removed by increasing the temperature, this indicates that in porous silicon the Siloxane 

model could not be the source of the PL emission. This is because Siloxane molecules melt at 

elevated temperatures and PL peaks are expected to be wiped out.  

(f) Surface states: Depending on how deep the surface trap potential is, they can be 

categorized as follows:  

(i) Deep or strongly localized: In this case the wave function is highly localized on an 

atomic site hence the momentum conservation condition for indirect exciton 

recombination is relieved. Therefore many phonons with different momentum and energy 

are available to make the light emission possible. This will in turn lead to a broad PL 

emission spectrum.  
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(ii) Shallow or weakly localized: In this model the wave function is spread on a few 

atomic sites and it is weakly localized. Hence the recombination takes place with the help 

of one phonon with exact momentum difference which exists between initial and final 

electronic states. If the PL emission is attributed to this process then the PL spectrum 

width change with temperature is less than that of deep surface state. In the case of deep 

surface state the temperature effect is more pronounced on the broad skirts of the PL 

spectrum. 

As it can be seen in all the following works the common trend is an attempt to dissociate the 

quantum confinement and other effects from which PL features may have been induced.  

 

 

Figure 1.7 Six models proposed to explain the visible PL emission from porous silicon. Reprinted 

with permission from [50]. Copyright 1997 American Institute of Physics. 

 

In accordance with this trend we observe how the better surface quality and controlled 

diameter of SiNWs through advanced fabrication and characterization have reduced the role 

of (b)-(f) processes and let the remaining mechanism of (a) be the major source of visible 
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light emission in SiNWs. Cullis et al showed that their first observation of PL does not fit 

into any of (b)-(f) models and can be explained by model (a) in Figure 1.7 [50].  

1.2.1.1 Evidences in support of Models (b)-(f) 

Looking at the experiments using large diameter nanowires, reveals that defects, surface 

effects and surface Hydrides play an important role in determining the PL spectrum of these 

nanowires. Also they may obscure the visible PL which is arising from quantum confinement 

in silicon nano-crystallites within oxide layers (if there are any). Discriminating between the 

surface and confinement induced PL features is done by: first measuring the whole PL 

spectrum; then performing surface treatment by removing oxide/nitride from the surface of 

SiNW by suitable liquid or gaseous etchants and finally measuring the PL spectrum for the 

second time. If there is any feature in the PL spectrum after this stage, it can be due to pure 

confinement induced PL emission i.e. direct recombination of electron and holes within the 

core of SiNW.  

As an example the top-down process which starts with a low quality Separation by Implanted 

Oxygen (SIMOX) wafer resulted in a large number of non-radiative traps in Si–SiO2 

interface on a SiNW [51] similar to model (d) of Figure 1.7d. As the energy levels within 

these defects are insensitive to the diameter of nanowires, the PL spectrum in these 

nanowires should be diameter independent; otherwise the source must be something else 

rather than defects. After subtracting PL emission due to oxide as well as nitride layer in 

those samples that were passivated by amorphous a-SixNy:H, there is no PL peak which can 

be attributed to the SiNW core (quantum confinement). This suggests that top-down 

fabrication of narrow SiNWs requires precise control of the number of non-radiative centers 

on the surface of SiNW.  

The importance of surface effects is also observable in the bottom-up grown SiNWs. The PL 

spectrum of 15±3 nm <111> SiNWs surrounded by a 2 nm thick amorphous Si oxide layer 

[52] shows two blue peaks at 2.40 eV and 2.95 eV. Since the diameter of SiNWs is larger 

than the Bohr radius of free excitons (4.9 nm) [39], the peaks are attributed to the amorphous 

Si oxide coverage layer. Macro-PL measurements [52][53] reveals a similar blue peak and 

proves that it results from the recombination in oxide related defects. Although SiNWs in 

[53] are thinned to 4 nm using oxide assisted narrowing, still the PL is obscured by low 

quality oxide defects.  

Blue PL emission has also been observed in Si1−xGex oxide nanowires grown on epitaxial 

SiGe alloys using VLS method [54]. The PL spectrum of these nanowires have a peak at λ = 

415 nm which is shorter than the peak at wavelength of λ = 470 nm observed for SiNWs with 

oxide layer. The increased number of O3≡Si–Ge≡O3 and O3≡Ge–Ge≡O3 bonds is responsible 

for the increased emitted PL energy i.e. a shorter wavelength. On the contrary the Si–SiO2 

system has lower energy due to oxygen deficit O3≡Si–Si≡O3 bonds. This notion that radiative 
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centers in the cladding layer and interface states are responsible for luminescence features 

has been also confirmed by [55] and [56]. Through X-ray excited optical luminescence 

(XEOL) with X-ray emission spectroscopy (XES) [55] and Cathodoluminescence (CL) 

spectroscopy [56] it was observed that in SiNWs with diameters between 20 nm and 50 nm 

which have oxide cladding, the CL spectrum has blue and red line emissions. Since the blue 

CL line disappears after treating the surface with HF acid, this means that oxide layer defects 

are the source of the blue peak with PL decay of 1 msec. The red color wavelength peak with 

faster PL decay of 10 μsec is due to faster dynamics associated with Si–H and Si–H2 bonds 

that replace the Si–O bonds in the core-cladding interface [56] after HF treatment. This is the 

evidence of surface Hydride model which is shown in Figure 1.7c. 

It was demonstrated that thermal oxidation followed by precursor gas annealing can reduce 

the surface trap density of SiNWs by up to 5×10
9
 cm

-2
 [57] which is three orders of 

magnitude less than the previously reported values [58]. Using TRPL spectroscopy at T=10K 

and fitting the measured data to the surface recombination model shows that surface 

recombination velocity (SRV) of SiNWs can be reduced to the record value of 20cm/sec. 

Furthermore it is observed that gold nanoparticle has negligible role in the PL spectrum of 

Au-catalyzed Vapour Liquid Solid (VLS) grown SiNWs. This is proved by showing that the 

bulk recombination time of thick (d~200nm) SiNWs is close to the same value for bulk 

silicon and mainly arises from surface effects [57]. 

1.2.1.2 Quantum Confinement: Model (a) 

Study of quantum confinement and PL in SiNWs was revived again by observing the 

diameter dependent PL spectrum of SiNWs in [59] and [31]. Also with the availability of 

advanced methods of generating porosity like: (1) electro-less etching, (2) metal-assisted 

electrochemical etching, (3) wet etching, (4) porous silica template, and (5) oxide-assisted 

narrowing, it is now possible to observe more evidences in favor of the quantum confinement 

model [model (a) in Figure 1.7]. 

 

Electro-less etching: Crystalline porous SiNW arrays was fabricated using electro-less 

etching of p-type <100> silicon wafers [60]. The PL spectrum of p-type nanowires with 

average pore diameter of 9.7 nm shows a peak centered at 680 nm (visible orange red). 

Although the role of surface oxide/defect cannot be ruled out, this peak is attributed to 

quantum confinement within 3-4nm thick Si nano pillars which are formed around the 

electro-less etched pores [60].  

Metal-assisted electrochemical etching: Similarly a PL spectrum centered at 650 nm is 

observed for n-type SiNWs which formed in the pores of an n–type <100> silicon wafer. The 

pores are created by metal-assisted electrochemical etching [61]. Optical micrograph has 

shown that PL emission has a uniform intensity along the length of the SiNW [61]. The 
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visible red orange light emission (λ=600nm) also exists in the PL spectrum of 4nm thick 

SiNWs which are excited capacitively with a 3kHz ±70V pulse [62]. The nanowires were 

covered with HfO2 and the Electro Luminescence (EL) spectrum resembles those PL spectra 

which were observed in [60] and [61]. Although there is no peak due to surface defects 

(λ=800nm), however authors could not dissociate direct recombination and the 

recombination in deep centers due to Au impurities which results from VLS growth. 

  

Wet etching: Similar visible (red orange) PL spectrum was observed at room temperature for 

SiNWs fabricated by wet etching of both n-type and p-type <111> Si wafers [63]. According 

to the authors, HF-treatment of SiNWs removes SiOx surface states and causes a red shift in 

the PL spectrum. But this change is only significant at wavelengths corresponding to Si–O 

vibration frequencies. Therefore it is suggested that visible PL spectrum is partly due to 

surface state and mainly due to quantum confinement in periodically rough sidewall 

structures of SiNWs. While the diameter of nanowires is between 30nm and 200nm, the size 

of the side wall non uniformities is in the 2.5-3.5nm range in which quantum confinement 

effect is believed to occur. 

 

Porous silica template: Fabrication of 2D arrays of silicon [64] and germanium [65] 

nanowires have been reported using a hexagonal meso-porous silica (HMS) template. The 

SiNWs with diameters of 2.2nm, 4.5nm, 5nm and 7.3nm can be encased in this template 

using a method called supercritical fluid inclusion-phase [64]. The following observations 

were made in these works. Firstly the UV-absorption spectrum shows that all nanowires start 

to absorb at 3.5eV which is the direct bandgap value of bulk silicon. Secondly there is a 

strong and temperature independent PL signal for all nanowires within visible and ultraviolet 

(UV) range (2.5eV-4.5eV). Temperature independent peak and corresponding wavelength (at 

both T=300K and T=15K) shows that the recombination process is not of indirect phonon-

assisted type. Thirdly the blue shift with decreasing diameter is the signature of quantum 

confinement. And finally since the UV-PL peaks are diameter dependent they cannot be due 

to the electron-hole recombination at oxygen defect centers in SiNW/silica interface 

[according to the model (d) in Figure 1.7].  

Further crystallography studies proved that as the diameter of nanowires decrease the 

curvature between nanowire surface and surrounding template material (silica) causes radial 

lattice expansion. This was also confirmed from germanium nanowire studies [65].  

Oxide-assisted narrowing: Although this technique dates back to 1993 when Liu et al [38] 

reported sub-5nm silicon nanowire fabrication using self-limited oxidation-assisted 

narrowing, however it was not used to study the luminescence of SiNWs until recently. In 

[66] TiSi2-catalyzed SiNW arrays grown on n-type <100> silicon wafer are thermally 

oxidized to shrink to a diameter of 3.3±1.6nm. The PL spectrum of these nanowires is 
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centered at λ=800nm and it is attributed to confinement. The PL decay time (τd) at input 

power excitation of Iex < 0.1W/cm
2
 is 50μsec. By increasing the input excitation intensity, the 

PL decay time decreases and this is the signature of Auger recombination which will be 

discussed in the next sub section.  

Effect of radial strain on the PL spectrum was verified both experimentally and theoretically 

by Walavalkar et al [37] followed by a recent work from Demichel et al [67]. The importance 

of these two recent works is threefold. Firstly they show the feasibility of fabricating narrow 

(d≤ 3nm) Si nanowires in which the pure quantum confinement is observable. Secondly they 

show that strain can be a potential degree of freedom in modulating the optical properties of 

Si nanowires although in these works strain is an unwanted artifact of nanowire oxidation. 

Thirdly the authors demonstrated that their experimental results are reproducible using TB 

method [68] which is a strength point for tight binding method. In [37] the visible and near-

infrared (IR) PL spectrum of sub 10nm top-down fabricated SiNWs thinned by self-limited 

oxidation spans 600–800 nm wavelength range (1.5–1.9 eV). It is observed that after cooling 

of SiNW array in forming gas (5% H2, 95% N2), the 1.9 eV peak disappears. This proves 

that the peak was due to hole trapping of isolated oxygen atoms. Hence the observed blue 

shift by decreasing the diameter is the evidence of quantum confinement, direct bandgap in 

narrow (2–4nm) SiNWs as well as radial strain due to oxide cladding which changes the 

band structure. Figure 1.8a shows an array of 50nm SiNWs etched into a single crystal 

silicon. The TEM image shows that the diameter of nanowire has shrunk to 4nm after 

thermal oxidation. As shown in Figure 1.8b the reduction of diameter increases the energy of 

the PL peak and this was reproduced by TB method including the radial strain [37]. 

 

Figure 1.8 (a) An array of 50nm SiNWs. Inset shows the TEM image of a 4nm thick SiNW narrowed 

by thermal oxide. (b) Diameter dependence of the PL peak is compared with TB method with (solid 

line) and without (dashed line) radial strain. Reprinted with permission from [37]. Copyright 2010 

American Chemical Society. 
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In [67] a multi-step strain-induced self-limited oxidation is used to decrease the diameter of 

SiNWs to 5nm. Initially the nanowires are 100nm-200nm thick and their PL spectrum is 

centered on the bulk bandgap of 1.08eV. The peak corresponds to a phonon-assisted 

electron-hole liquid (EHL) radiative recombination process in bulk silicon. The low 

temperature (T=10K) ensures that carriers in the nanowires are in EHL many-body phase. 

The blue shift of the bandgap due to the diameter is successfully reproducible using TB 

method and the role of strain and confinement has been dissociated according to the model 

presented in Figure 1.9a. In this model the initial drop of quantum shift (σ) is due to radial 

strain after which the quantum confinement upshift of bandgap (EQC) becomes more 

dominant and the bandgap increases (Figure 1.9b). Table 1.1 summarizes the results of the 

most recent PL experiments in which the role of quantum confinement was proven to be 

dominant over other mechanisms. 

 

Reference Growth/Fabrication 

method 

Nanowire diameter 

(d)/direction 

PL peak 

wavelength (λmax) 

PL decay time 

(τd) 

[10] Electroless etching Pore diameters from 2nm 

to 20nm/ NA 

680nm NA 

[61] Metal assisted etching d>5nm /n-type (100) 

silicon wafer 

650nm NA 

[13] Wet etching Pore diameters from 

2.5nm to 3.5nm/n-type and 

p-type (111) silicon wafer 

850nm NA 

[65], [64] Porous template d= from 7.3nm to 2.2nm / 

<100>  

λmax= from 497nm to 

620nm 

20 nsec (bulk silicon 

= 4msec at T=23°C). 

[66] Oxide assisted 

narrowing 

d=3.3±1.6nm/on <100> 

silicon wafer 

800nm 50 μsec 

[37] Oxide assisted 

narrowing 

2.5nm<d< 8nm / on <100> 

silicon wafer 

600nm< λmax<800nm 200nsec< τd 

<250nsec 

[67] Oxide assisted 

narrowing 

d> 5nm / on (100) silicon 

wafer 

λmax > 1160 nm NA 

 

Table 1.1 Summary of the most recent PL experiments on SiNWs in which the role of quantum 

confinement is better dissociated from the other effects i.e. models (b) to (f) in Figure 1.7. 
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Figure 1.9 (a) A model for oxidation-assisted narrowing of SiNW. The bandgap energy initially 

decreases due to radial strain and then the role of QC gets stronger in narrower diameters. (b) 

Comparison of TB calculations with the measured values of the PL peak shift. Reprinted with 

permission from [67]. Copyright 2011 American Physical Society 

1.2.1.3 Auger Recombination (AR) 

Auger recombination is one of the non-radiative recombination processes in semiconductors 

which deteriorates the efficiency of LEDs, impedes the population inversion and decreases 

the gain in semiconductor lasers. This happens when the excess energy of electron-hole 

recombination (direct or phonon-assisted) is transferred to another carrier (electron or hole) 

rather than generating a photon. Figure 1.10 compares direct radiative recombination with 

electron-electron-hole (eeh) and hole-hole-electron (hhe) AR processes. Intuitively it is 

expected that higher density of free carriers (due to doping, high temperature or high power 

laser excitation) can increase the rate of AR process. Transfer of energy to the third carrier 

can also take place via absorption /emission of a phonon. In this case the AR process is of 

Phonon-Assisted (PA) type as shown in Figure 1.10d. 
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Figure 1.10 (a) Direct radiative recombination. Direct AR of (b) eeh type and (c) hhe type. (d) 

Indirect phonon assisted AR process. CB and VB stand for conduction band and valence band, 

respectively. 

The Auger recombination time is related to the density of carriers via the following 

equations: 
 

    
       

        
 

    
       

          (1.2) 

 

where n0 and p0 are electron and hole densities, respectively. Cn (Cp) is the Auger coefficient 

for n-type (p-type) semiconductor, respectively. Since the initial laser excitation in the PL 

experiments generates high density of carriers, the initial recombination of electron-holes is 

dominated by AR process according to equation (1.2). Therefore AR manifests itself as a fast 

drop of PL peak as time goes by. This can be modeled as a double exponential decay curve 

as shown in Figure 1.11a [57]. 

 

Figure 1.11 (a) PL decay curves versus optical pump intensity at T=10k for Au-catalyzed SiNWs. 

Reprinted with permission from [57]. Copyright 2009 American Chemical Society. (b) AR lifetime 

(τa) versus excitation intensity at three different temperatures for TiSi2-cataluzed SiNWs. Reprinted 

with permission from [66]. Copyright 2008 American Physical Society. 

 

Also as it is evident in Figure 1.11a that the initial decay of PL peak (right after excitation is 

turned off) is intensity dependent. The TRPL is performed at T=10K with a 50nsec long laser 

pulse of different energies ranging from 0.25μJ to 2μJ. After the laser pulse ends, slope of the 

decay is independent of laser intensity and the time constant is 85nsec. The nanowires of this 

study are large (d~100nm) and have the same PL signature of bulk Si at 1.08eV. Since at the 
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beginning of laser pulse ignition an electron-hole plasma (EHP) is formed in the nanowire 

the initial AR process is significant. Guichard et al [66] have used the same TRPL study for 

narrow SiNWs (d~3nm) which are thinned by oxide-assisted narrowing. It is stated in this 

work that the best fit to experimental data is possible if Auger recombination is modeled as 

two-level exciton-exciton recombination (rather than three particle models i.e. hhe or eeh). 

Therefore even in highest input laser pulse power of 60W/cm
2
, the AR recombination time in 

3nm SiNW can be 20μsec at room temperature. This is because in excitons-exciton model the 

Auger lifetime is linearly dependent on the carrier density i.e. 1/τa= Can0. Figure 1.11b shows 

the calculated AR lifetime for different temperatures versus the intensity of excitation laser. 

1.2.2 Studies of Optical Absorption 

Experimental studies of photo-absorption in SiNWs are mostly pivoting around the 

applications of SiNW arrays in solar cells, wave guides [69], color filters [70] and photonic 

crystals. Measurements of absorption, reflection, transmission and wave guiding 

characteristics of these structures reveals the electromagnetic wave scattering properties of 

the nanowire layers and it does not have any intimate relevancy to the quantum confinement 

and many-body effects within each SiNW. Furthermore the diameter of these SiNWs lies 

between 1μm to a few tens of nanometers which means that the direct bandgap of SiNW 

plays no role in these experiments. In this sub section a few of these experiments are 

reviewed. 

Spectrum Widening: What makes the SiNW array more attractive is its effectiveness in 

increasing the absorption in a wider spectrum. The optical properties of SiNWs arrays have 

been studied both experimentally and theoretically [71][72] in the context of solar cell 

application. Two types of SiNW arrays have been studied in [71]. The first type of array 

(type-A) is fabricated by galvanized wet etching of silicon on glass film. The thickness of 

SiNWs is in the range of 20–100 nm due to bundling to each other. The second type (type-B) 

is grown by a Au catalyst layer on the substrate using CVD process wherein a thicker Au 

layer increases the number of SiNWs per unit area. For type-A array, even though the 

incident light energies are below the bandgap energy of 1.1 eV, the sub-bandgap absorption 

is still higher due to IR trapping in the surface states. This was demonstrated by annealing the 

film in forming gas at T=400°C which reduces the surface states, leading to a decrease in 

sub-bandgap absorption. Type-B SiNW array shows a significant enhancement in optical 

absorption (below 800 nm) compared to solid Si film. This is due to the fact that increasing 

the Au layer thickness increases the array density and enhances the optical absorption. To 

enhance the light absorption in a broader spectrum (400–800 nm), Zhu et al [73] have grown 

arrays of hydrogenated amorphous SiNWs (a-Si:H) with 300 nm in diameter. Low 

reflectivity of a-Si:H nanowire and nano-cone (NC) array is attributed to the smooth change 

of refractive index in the boundary of air and a-Si:H layer, i.e. impedance matching. To 
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improve this boundary condition, an array of nano-cones has been grown (tip to base: 20 nm 

to 300 nm) which has higher absorbance because of the smoother change of refractive index 

in contrast to SiNW array.  

Further evidence of light trapping and enhanced absorption can be witnessed in the 

experiment reported by Adachi et al [74]. It is shown that 15–40nm Sn-catalyzed VLS grown 

crystalline/amorphous core/shell SiNWs can have 95% absorption at λ<550 nm. This is 

larger than 50% absorption of a-Si thin film layer. It is observed that by increasing the 

diameter to 150–180 nm, the absorption tail can grow for λ > 750 nm which is due to light 

trapping and confirms the previously reported observation in [71].  

Collimation and lensing: A photonic crystal composed of 125 nm thick and 700 nm long 

SiNWs grown on 3 μm thick SiO2 layer with 437 nm pitch has been demonstrated by Shih et 

al [75]. Here the nanowire periodic structure acts as a lens which collimates IR (λ=1500 nm) 

wavelengths to increase the absorption. Zhang et al [76] have reported fabrication of planar 

and vertical SiNW arrays showing high sensitivity to detect UV light at 390 nm. Strong wave 

guiding effect in 200 nm thick and 2.7 μm long vertical SiNWs produces large optical gain of 

35,000.  

There are examples of using a single large diameter SiNW as photodiode, solar cell and 

photo transistor. A detailed review of these experiments and the performance of devices can 

be found in [28]. 

1.3 Organization of the Thesis 

In the previous review we came across a few experiments in which the unwanted strain due 

to lattice mismatch of SiNW core with the surrounding material e.g. SiO2 changed the PL 

spectrum. Motivated by the aforementioned studies and aiming at finding an application for 

SiNWs in lasers and LEDs, the scope of this thesis is to find the answer for the following 

questions: 

(a) What is the amount of change of bandgap in SiNWs in response to intentionally applied 

axial strain? 

(b) How much the strain and the resultant change of band structure will cause change of 

effective mass, density of states; quantities which can modulate the mobility and/or 

conductance)? 

(c) How the strain-induced change depends on the crystallography of nanowire, and 

diameter? 

(d) Does the strain-induced change of band structure occur in other material systems like 

germanium nanowire?  

(e) Does the axial strain alter the light emission properties e.g. spontaneous emission time 

in SiNWs? If the answer is yes;  

(f) What are the mechanisms of change and how big are they?  
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(g) What are the implications of these changes in terms of realization of a useful SiNW-

based device? 

(h) How does temperature, diameter of nanowire, electric field, electron-phonon scattering 

affect on the strain induced changes of light emission? 

(i) How much is the effect of strain on the photo-absorption of a SiNW?  

Questions (a) to (c) are addressed in Chapter 2 using TB method. Chapter 3 is devoted to 

question (d) in which it is shown that effects of strain on germanium band structure follows 

the same physics of strain effect on the band structure of SiNW. Chapter 4 gives the details 

of the computational methods i.e. energy minimization with DFT, band structure calculation, 

momentum matrix element calculation in TB frame work using Slater orbitals. It also 

presents the mathematical derivation behind the spontaneous emission times in both direct 

and indirect bandgap nanowires. Method of generating matrices of electron-phonon 

scattering rates for Monte Carlo study of carrier evolution in indirect sub-bands is presented 

with the relevant algorithms. Questions (e) till (h) are addressed in Chapter 5. The results 

presented in this chapter are promising the possibility of population inversion in SiNWs. 

There is at least one order of magnitude change in spontaneous emission time in response to 

strain. This is further verified by Ensemble Monte Carlo (EMC) simulation by including 

multi-phonon scattering events under various temperatures and electric field along the 

nanowire length. Role of Longitudinal Acoustic (LA) and Optical (LO) phonons are 

investigated as well.  

Chapter 6 deals with the calculation of light absorption spectrum and dielectric function of 

SiNWs using TB method. Here the question (i) is answered by showing that there is indeed a 

few orders of magnitude change in the band edge photo-absorption in response to strain. In 

addition the optical anisotropy in the band edge absorption and the role of diameter is 

presented. Chapter 7 enlists the shortcomings of the study and future outlook. Here I have 

presented the detailed algorithmic steps with which the problem of strain effects on the 

physics of SiNW can be pushed to the next level of accommodating many-body effects, 

nonlinearity, surface effects, etc. 

1.4 Sources of Strain in SiNWs 

Since strain is promising as a degree of freedom to tailor the electronic and optical properties 

of SiNWs, it is instructive to review some of the methods of applying strain to a SiNW or 

generally a nanostructure e.g. Carbon Nano Tube (CNT). Our aim is to show the feasibility 

of the implementing the ideas or proposed experiments in this thesis. Strain can be generated 

via intrinsic or extrinsic sources. Examples of experiments which use either intrinsic or 

extrinsic sources of strain are tabulated in Table 1.2 at the end of this section. 
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1.4.1 Intrinsic sources of strain 

Effects of strain on the electronic properties of bulk materials (Si, Ge etc) have been 

extensively studied. The residual stress due to lattice mismatch between silicon and 

germanium can enhance the carrier mobility in Metal-Oxide-Semiconductor (MOS) 

transistors due to significant change of effective mass. Additionally it has been demonstrated 

that growing a germanium layer on silicon substrate can decrease the sub band splitting 

between indirect and direct bandgap in germanium [77][78]. This effect has shown to 

increase the light emission efficiency of optically [79] and electrically pumped [80] Ge-on-Si 

light source. Using TB method in Chapter 2 we will show that +2% strain can change the 

bandgap of bulk Ge from indirect to direct. This value of strain closely reproduces the +1.8% 

strain predicted in [78] as well as +2% value which is mentioned in the Ge-on-Si LED 

fabricated by Sun et al [79][80]. However these methods do not provide any option of 

changing the strain value or its direction because the strain is controlled by the alloy 

composition [81][82].  

Generating strain in SiNWs is possible using internal sources like the lattice mismatch 

induced by the shell material e.g. germanium [83], SiO2 [33][84][85][86][67], silica [65], 

metallization [2] or silicon nitride [87][88]. In the following subsection a few experiments 

are reviewed in which metallization, oxide and nitride are causes of residual strain. 

1.4.1.1 Strain induced from metallization 

As mentioned before a SiNW-base GAA-FET has been implemented using SiO2 or HfO2 as 

gate dielectric and Polysilicon or TaN as gate contact [2]. The residual tensile strain due to 

TaN coverage is as high as 3% which corresponds to a stress value of 4GPa. It has been 

observed that the amount of residual strain is controllable by the TaN sputtering power and 

its thickness and interestingly there is no randomness in the final bending of floating 

nanowires (Figure 1.12) within an array. 

 

Figure 1.12 (a) Residual strain vs. TaN film thickness and sputtering power. Two parallel floating 

HfO2/TaN covered SiNW (b) before and (c) after TaN deposition. Reprinted with permission from 

[2]. Copyright 2007 IEEE. 
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1.4.1.2 Strain induced from SiO2 

Also it has been reported that in floating SiNWs, oxide-induced residual tensile strain can be 

as high as +1% which corresponds to 200MPa to 2GPa depending on the nanowire 

diameters. This will increase the mobility of the SiNW-based FETs by 100% compared to the 

non-bended SiNWs. Interestingly this improvement has been verified using Raman 

spectroscopy of strained and relaxed SiNWs in this work. The residual 1% strain corresponds 

to 5.09cm
-1

 shift in Raman peak which is due to phonon deformation potential change [33]. 

Trans-conductance enhancement (by a factor of 1.5-3) due to strain is also reported by Seike 

et al [85] in which a 70nm thick [110] nanowire is under tensile stress arising from 

surrounding SiO2 layer. It was further verified from Raman studies that the oxide cladding 

layer induces a strain of 350MPa on the SiNW core [84]. Attaining large values of strain has 

been reported in [86] which shows that in a 5nm thick SiNW, strain can reach up to +8% due 

to the self-limited oxidation layer which covers the floating SiNW. 

1.4.1.3 Strain induced from Silicon Nitride 

In [87] and [88] the authors have shown that strain induced from the silicon nitride cladding 

of nanowire wave guide can generate a large second order nonlinear susceptibility because 

the residual transversal strain breaks the centro-symmteric nature of the crystal. 

1.4.2 Extrinsic sources of strain 

An alternative way of attaining large values of strain is using external means. Fortunately 

there are many reported methods of straining a CNT which could be reused or adapted for the 

purpose of straining a SiNW. A few extrinsic methods of generating strain in nanostructures 

are introduced in the following subsections. 

1.4.2.1 Atomic Force Microscopy (AFM) 

Strain induced bandgap conversion was first predicted theoretically by [89]. Later on the 

experimental measurements were performed by applying strain to a CNT using an AFM 

probe [90][91][92]. Similarly the first measurement of Young’s modulus of SiNWs was done 

by pushing an AFM probe on a cantilever SiNW [93]. It was shown that the Young's 

modulus (E) of single clamped (cantilever beam) and double clamped (bridge) SiNWs are 

about 207GPa.  

1.4.2.2 Piezoelectric Actuators 

Strain can also be applied to a CNT using a piezo-electrically controlled table as shown in 

[94]. Another example is a CNT-based FET which is mounted on an expandable 

piezoelectric stack. With this device up to 1.2% strain can be applied to the CNT [95].  
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1.4.2.3 Deformable substrates 

Embedding a biased CNT on a deflectable Alumina diaphragm can work as a pressure sensor 

[96]. The first evidence of piezo-resistivity in SiNWs was observed by R. He and P. Yang by 

fabricating a biased 50nm SiNW bridge embedded on a deformable steel plate [8]. They 

showed that application of both tensile and compressive strain to the SiNW is possible and 

this causes the change of resistivity; a proposal for a stress or pressure sensor. Ryu et al [97] 

showed that it is possible to fabricate long buckled SiNWs by embedding them in an already 

stretched elastomeric substrate. Releasing the substrate then makes the nanowires to buckle. 

In this way the bending of the substrate can apply ±3% strain on SiNWs. In [98] a vertical 

SiNW-based FET is fabricated which can lend itself to easier application of compressive 

strain. The possibility of fabricating an array of silicon nanowires on plastic deformable 

substrate is demonstrated in [6].  

Using a four point bending apparatus Jeong et al applied 90-110MPa strain to a 200nm long 

[110] silicon nanowire with variable diameter between 1nm - 20nm which is biased as a FET. 

It was proven that transversal as well as longitudinal strain can modulate the threshold 

voltage of a single electron transistor based on these SiNWs [99]. A simplified diagram of 

the apparatus and the amount of strain which can be attained as a function of the geometric 

parameters is shown in Figure 1.13. 

 

Figure 1.13 A four point bending apparatus to bend the wafer containing the SiNW-based FET. 

Reprinted with permission from [99]. Copyright 2009 American Institute of Physics.  

1.4.2.4 Miscellaneous Methods 

Additionally we are also witnessing sophisticated methods of attaining strain in nano-

structured materials. For example in [100] the effect of torsional strain on a free standing 

CNT was studied by attaching an imbalanced proof mass to the middle of it. Injecting electric 

charge to a bundle of CNTs can also induce contraction or expansion [101]. In [102] a device 

is made by patterning two piezoelectric nano-actuators on a 20nm thick silicon epilayer.  The 

strain field generated by the actuators is able to change the exchange interaction between the 

nuclear and electronic spins of dopant phosphorous atoms. In [103] the authors report a 

method of generating strain wave using an intense heat created by a laser pulse. The strain 
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has shown to change the electronic states of a quantum dot embedded in a Fabry-Perot 

resonator. 

1.4.3 Strain Measurement 

Raman study of SiNWs can reveal useful information about the intrinsic sources of strain in 

SiNWs. Fukata et al [84] have investigated the phonon confinement and self-limiting 

oxidation in SiNWs grown by laser ablation method. Using Raman spectroscopy they have 

shown that the self-limitation of oxidation is due to compressive stress which builds up at 

Si/SiO2 interface. Narrowing down the diameter of SiNWs from 20nm to 3nm reveals an 

asymmetric broadening feature in Raman spectrum which is due to phonon confinement 

effect. This asymmetric broadening is also observed in [104]. Before assigning any 

broadening effect to phonon confinement, the laser-induced heating problem should be 

resolved since it obscures the Raman response and causes more broadening. This is more 

pronounced for SiNWs due to their small cross section and low thermal conductivity as 

opposed to large area SOI and 2D structures [105]. The heating problem can be resolved 

using either metallic substrate [104] or soaking the nanowires under study into water [106]. 

There are other methods of measuring/visualizing strain in nano-scale devices. For example 

Moirè technique, off-axis electron holography and combination of both are introduced in 

[107]. However there is no report of using any of these methods in measuring the strain 

distribution in SiNW-based devices. This may be due to the planar nature of the method and 

requirements e.g. TEM sample preparation. 

In summary it can be said that with the advent of new technologies applying strain to 

SiNWs or other nanostructured-materials is within reach. Looking at the time evolution of 

the previously introduced methods proves that using strain as a degree of freedom in nano-

scaled electro-optical devices is getting closer to the realm of reality.  
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Category method Nanostructure 

type/size 

strain/stress amount Reference 

 

 

 

 

 

Extrinsic  

Elastomeric (PDMS) 

substrate 

Bottom-up [111] SiNW 

(d=20-85nm) 

± 3% [97] 

Deformable steel 

substrate 

Bottom-up <111> 

SiNW (d=50-70nm) 

±8x107 Pa = ± 0.08% * [8] 

Four point contact 

deflection 

Top-down [100] SiNW 

(d=1-20nm)  

90 MPa -110 Mpa [99] 

Piezoelectric Table CNT Max= +0.3% [94] 

Piezolectric Table CNT Min=+0.3% 

Max=+1.2% 

[95] 

Alumina** membrane CNT Max = 0.1% [96] 

Flexible PE***  

substrate 

CNT Min/Max =NA, Strain 

detection resolution= 

0.004%,  

[108] 

Pushing by AFM tip CNT 0% to +3% [92] 

Pushing by AFM tip CNT From 0 to +0.8% [91] 

Piezoelectric Actuator 20nm Si epilayer From 0 to 0.15% [102] 

In-situ stretching by 

SPM# tip during 

growth 

Bottom-up <100> 

SiNW (d~5nm) 

Tensile 0.3% [109] 

 

 

 

Intrinsic 

Ge/Si lattice 

mismatch 

Core/Shell Ge/SiNW 

bottom-up ( 19nm < 

dcore< 26nm) 

-1.03% < strain < -.87% [83] 

Oxide induced Top-down SiNW  (d~ 

5nm) 

From 0 to +8%  [86] 

TaN metallization Top-down SiNW (5nm 

< d < 7nm) 

From 3 to +4% 

stress> 4GPa 

[2] 

Nitride induced Top-down SiNW  

(d~100-200nm) 

Transversal, 

Min=-0.01%, 

Max=+0.03% 

[87] [88] 

 

Table 1.2 Summary of the methods with which strain can be generated in a 1D nanostructure e.g. 

SiNW or CNT.  (*) The Young modulus of bulk silicon (150GPa) is used here [119]. (**) Alumina= 

Al2O3. (***) PE= Poly Ester. (#) SPM= Scanning Probe Microscopy. 
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Chapter 2 

Strain Effects on the Electronic Properties 

of Silicon Nanowires 

 

In this chapter we investigated the effect of uniaxial strain on the band structure of 

SiNWs. Vital to realizing SiNW-based optoelectronic devices, we observed that the bandgap 

of nanowires can change from indirect to direct or vice versa in response to strain. By 

increasing the diameter of nanowires the value of the compressive strain which is required 

for this bandgap conversion becomes smaller. Also the change of bandgap in tensile strain 

regime appears to be indifferent to the diameter and is only dependent on the crystallographic 

direction of the nanowire. Direct to indirect bandgap conversion leads to the change of 

effective mass and density of states. The physical mechanism of change can be attributed to 

the crystallographic direction of nanowires and the nature of orbitals composing the valence 

and conduction bands. Furthermore we studied the strain effect on the bulk silicon crystal. 

Methods of tight binding calculation of band structure (nanowire and bulk silicon), strain 

application, structural relaxation of nanowire and calculation of density of states are all 

explained in detail in this chapter. The main results of this chapter were published in Shiri, 

D., Kong, Y., Buin, A. K., and Anantram, M. P. Strain induced change of bandgap and 

effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114, (2008). 

2.1 Tight Binding (TB) Calculation of the Band Structure 

The semi-empirical 10 orbital sp
3
d

5
s

*
 TB method which is well characterized for 

silicon is used with Jancu’s parameters [110] to construct the Hamiltonian of the nanowire. 

In addition to being less computationally intensive, the TB scheme gives comparable results 

with experimental bandgap measurements and DFT based calculations which take the 

diameter sensitive GW-correction into account [111][112][68]. 

 

The nanowires which are cut from bulk 3D crystal of silicon are assumed to be periodic in z 

direction with xy plane regarded as the cross sectional plane. Figure 2.1 shows an example 

nanowire which has three unit cells in longitudinal direction ([110]) and one hexagonal cell 

in cross sectional plane. The Bloch equation is used to find the total Hamiltonian of the 

nanowire at each given kz: 

          
      ̅      

      ̅    (2.1) 

 



 

 27 

where H22 is TB Hamiltonian of the central unit cell, H21 is the interaction TB Hamiltonian 

between the 2
nd

 and the 1
st
 unit cell and H23 is the TB interaction Hamiltonian between the 

2
nd

 and the 3
rd

 unit cell as shown in Figure 2.1b. The translation vector   is defined as [0 0 

a]. The unit cell length in periodic direction (z) is a=5.43Å for [100] and 

      √  ⁄ 3.83959Å for [110] nanowires, respectively. It is evident that the matrices 

are Hermitian i.e.         
 

. The size of the total Hamiltonian is               in which 

                 . NSi and NH represent the number of Si and H atoms, respectively. 

Please note that the number of atomic orbitals assigned to Si and H atoms are 10 and 1, 

respectively. As an example the unit cell of the nanowire in Figure 2.1 has 6 Si atoms and 8 

H atoms, hence the Hamiltonian size is a 68×68 matrix. 

 

Figure 2.1 (a) Cross section of a [110] SiNW in xy plane with 6 Si atoms and 8 H atoms. (b) Three 

unit cells of [110] SiNW along z direction [Sideview of (a)]. The unit cell length is 3.83959 Å. 

To find the band structure, at each kz value in the [
  

 
 
 

 
] interval, the total Hamiltonian is 

filled according to equation 2.1 and then the MATLAB Eigen-solver is used to solve this 

equation: 

 |   ⟩   |   ⟩   (2.2) 

 

The wave function or Eigen state of the nanowire i.e. |   ⟩ is a          column vector 

which can be expanded in terms of 10 orbital basis as: 

 

|   〉  ∑       |   〉      (2.3) 

 

The index   spans an s orbital, three p, five d and one extra s
*
 orbital for higher excitation. In 

another language in the Eigen state vector there are 10 numbers corresponding to each Si 

atom and 1 number for each H atom in the unit cell. Equation 2.2 is solved Nk times where 

Nk is the total number of grid points in 1D Brillouin Zone (BZ) of the nanowire.   is the 
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electron wave vector and it is a continuous parameter. For a nanowire i.e. a 1D nanostructure, 

it is      ̂, where  ̂ is the unit vector along the axis of the nanowire. The index n is the 

Eigen state index or quantum number and can change from 1 to Norbit. For larger diameter 

nanowires (d>3nm) filling the Hamiltonian in equation 2.1 as sparse matrix significantly 

reduces the time required to solve equation 2.2. Recent calculations have shown that spin-

orbit interaction does not change the general shape of the band structure and effective masses 

of [110] and [111] SiNWs [113]. Since the [110] is the main focus of this work (due its 

thermodynamic stability over other directions [31][26][27]) we have not included spin-orbit 

interaction in the calculations of this work. Including spin-orbit interaction within TB scheme 

is explained in [113]. Including excitonic effects (electron-hole coulomb interaction) 

increases the number of required TB coefficients for each Si atom from 10 to 100. This is 

because the basis for Hamiltonian needs to include all combinations of electron-hole orbitals. 

In this work excitonic effects are not included.  

Finding the contribution of each orbital in a given Eigen state is possible by adding the 

squared value of the coefficients of the specific orbital for all atoms within a unit cell. For 

example to find out if conduction band is composed of p orbitals, we calculate the following 

value: 

  ∑ ∑ |    |
        

                 (2.4) 

 

Where index i counts px, py and pz orbitals and j spans all atoms within a unit cell. 

2.2 Strain Effects on the Band Structure of [110] and [100] SiNWs 

Before application of uniaxial strain the nanowires are structurally relaxed using classical 

many body inter-atomic potential proposed in [114]. This potential which is implemented in 

GULP
®

 [115] has successfully predicted the bulk silicon properties like Young modulus and 

stress tensors [114] and gives comparable results with DFT for energy of nanowire [116]. 

Dangling bonds on nanowires are terminated with hydrogen atoms to avoid any surface states 

in the band structure calculations. The unstrained unit cell of nanowire first optimized using 

constant pressure criteria in GULP. The energy minimization uses Conjugate Gradient (CG) 

algorithm to minimize the energy and stops when the maximum inter-atomic force in the unit 

cell reaches to a value below the given threshold (in this case 0.05 eV/ Å). The Si-Si and Si-

H bond lengths are 2.35Å and 1.44 Å, respectively, before optimization. After this step, a 

uniform axial strain followed by energy minimization under constant unit-cell volume 

constraint is applied. In this setting atoms within the unit cell are free to move but the unit 

cell length is kept fixed at the new strained value. The unit cell length (a) is now modified by 

the desired amount of strain (ε) i.e. a = a0(1+ε). The cross sections and side views of a 1.7nm 

[110] and 2.2 nm [100] SiNW are shown in Figure 2.2a and b, respectively. 
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Figure 2.2 Cross sections (left) and side views (right) of three unit cells of (a) 1.7nm [110] and (b) 

2.2nm [100] SiNW terminated with hydrogen atoms. For [110] SiNW, the diameter is defined as the 

average value of large and small diameters. 

 

Figure 2.3a shows the bandgap (Eg) versus strain for 1.7nm [110] SiNW. The following 

linear relationship is fitted to the bandgap value in the tensile region where the slope is 

approximately 100 meV/percent: 

Eg = -0.1α + 1.725 (eV)   (2.5) 

 

More importantly, for a compressive strain larger than -4%, the nanowire bandgap becomes 

indirect i.e. a direct-to-indirect bandgap transition occurs at -4% compressive strain. The 

band structure is plotted at strain values of +1% and -5% in Figure 2.3b. Although the 

bandgap values at these strains are comparable, it is clearly seen that the conduction band 

labeled L (light or low effective mass band) determines the bandgap at +1% strain while the 

conduction band labeled H (heavy of high effective mass band) determines the bandgap at -

5%. In the chapter 5 and 6 we investigate the consequence of this direct-to-indirect bandgap 

transition in optical properties of silicon nanowires. We will see that by increasing the 

diameter, the -4% transition point shifts to values which are closer to 0% strain and this 

makes the application of compressive strain more easier and practical. The universality of the 

bandgap vs. strain features is ensured by showing that the direct-to-indirect transition also 

exists in a 2.2nm [100] SiNW [Figure 2.4]. In this nanowire the direct-to-indirect transition 
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occurs at a relatively small compressive strain of -1%. The bandgap versus strain in this case 

is fitted to the following equation in the tensile region:  

 

Eg = -0.06α + 1.85 (eV)   (2.6) 

 

 
Figure 2.3 (a) Bandgap vs. strain for 1.7nm [110] SiNW and (b) the band structure at +1% and -5% 

strains. Blue (dark) curves show that the band structure is indirect at -5% and heavy bands (H) 

determine the bandgap and effective mass of electrons. Red (light) curves show that at +1% strain, the 

band structure becomes direct and light band (L) determines the effective mass. Reprinted with 

permission from [117]. Copyright 2008 American Institute of Physics. 

 

While the bandgap change with strain (≈ 60 meV) is smaller than that of [110], the direct-to-

indirect transition and linearity of bandgap change are preserved. The smaller rate of bandgap 
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decrease with strain is attributed to the geometry of the bonds and orbital composition of 

conduction band minimum (CBM) and valence band maximum (VBM) states. Interestingly it 

can be seen in Figure 2.4 that by increasing the diameter the slope of bandgap change with 

strain in tensile regime remains the same. This shows that the change of bandgap depends 

only on the crystallographic direction of nanowire. However increasing diameter reduces the 

amount of compressive strain which is needed to observe the bandgap conversion. 

  

 

Figure 2.4 Bandgap versus strain for 2.2nm [100] SiNW (square ■). Direct-to-indirect transition 

occurs at -1% strain. Circles (●) show the same data for the 2.6 nm [100] SiNW with bandgap 

transition point now at 0% strain. Reprinted with permission from [117]. Copyright 2008 American 

Institute of Physics. 

 

The generality of these features is further established by comparing the bandgap vs. strain 

curves for 1.7, 2.3 and 3.1nm diameter [110] SiNWs as plotted in Figure 2.5. Consistent with 

quantum confinement scheme and prior Scanning Tunneling Spectroscopy (STS) [31] and 

Photoluminescence (PL) [59] measurements, the bandgap value increases by narrowing the 

diameter. The physical reason for the right shift of direct-to-indirect bandgap transition point 

is that the energy difference between the L and H bands decreases by increasing the diameter 

of nanowire. Quantitatively, this energy difference [ΔE of Figure 2.3a] is 419 meV, 231 meV 

and 146 meV for [110] nanowire with diameters of 1.7, 2.3 and 3.1 nm, respectively. The 

conduction band minimum is determined by the L and H band when the bandgap is direct 

and indirect, respectively. More compressive strain means less energy difference between the 

minimum of the L and H bands. This difference becomes zero at direct-to-indirect transition 
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point and becomes negative afterwards. Hence for larger nanowires (less ΔE), less 

compressive strain is required to achieve this transition. 

 

Figure 2.5 The square (■), circle (●) and diamond (♦) show bandgap versus strain for 1.7, 2.3 and 3.1 

nm [110] SiNWs, respectively. Arrows indicate the strain value at which the bandgap becomes 

indirect. Reprinted with permission from [117]. Copyright 2008 American Institute of Physics. 

 

 

In [110] SiNWs, the minimum of L (CBM1) and H (CBM2) bands are made of folded 

unprimed states in Γ (Δ4) and bonding 3d orbitals in X (Δ2), respectively [118]. Figure 2.6a 

shows the energies of CBM1, CBM2 and VBM1 versus strain in 1.7nm [110] SiNW. Since 

the CBM2 is a bonding state, its energy is decreased by applying the compressive strain 

[Figure 2.6b]. On the other hand the nanowire expands in the radial direction due to non-zero 

Poisson ratio. Therefore energy of the CBM1 increases since it is also a bonding state. As a 

result a conduction band flip occurs at compressive strain regime close to -5%.  
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Figure 2.6 (a) Energy of heavy (CBM2) and light (CBM1) conduction band minima and valence band 

maximum (VBM1) versus strain in a 1.7nm [110] SiNW. (b) Δ2 and Δ4 correspond to the bonding 

states of CBM2 and CBM1, respectively. Panel b was adapted with permission from [118]. Copyright 

2008 American Chemical Society. 

 

Looking at CBM1, CBM2 and VBM1,2 energies versus strain reveals a different physics 

for [100] nanowires [Figure 2.7a]. In contrast to [110] nanowires, for [100] direction, the 

bandgap transition is due to valence band flip which occurs before the CBM1, CBM2 flip 

e.g. -1% for 2.2nm [100] SiNW. The VBM2 and VBM1 of Figure 2.7b are made of anti-

bonding p and sp
3
 orbitals as shown in Figure 2.7c and 7d, respectively [118]. Since the 

VBM2 orbitals has a nodal plane in the axial direction, applying compressive strain increases 

the VBM2 energy [Figure 2.7c]. On the other hand, VBM1 energy decreases by compressive 

strain because its negative and positive lobes are orthogonal to the axial direction [Figure 

2.7d]. Therefore axial compression causes radial expansion which means energy reduction as 

can be seen in VBM1 of Figure 2.7a. This explains the less compressive transition points for 

[100] nanowires compared to [110] nanowires of the same size. 
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Figure 2.7 (a) Energy of heavy (CBM2) and light (CBM1) conduction band minima and direct 

(VBM1) and indirect (VBM2) valence band maxima vs. strain in a 2.2nm [100] SiNW. (b) Band 

structure of the unstrained nanowire as (a). (c) Anti-bonding p orbitals corresponding to VBM2. (d) 

Anti-bonding sp3 orbitals corresponding to VBM1. Panels (c) and (d) were adapted with permission 

from [118]. Copyright 2008 American Chemical Society. 

 

2.2.1 Effective mass and Density of States 

The movement of the L and H bands with strain causes an abrupt change in the effective 

mass of electrons within conduction band [Figure 2.8a] which occurs at the direct-to-indirect 

bandgap transition. The reason for the abrupt change is the larger initial mass of the H band, 

which determines the lowest lying conduction band once the nanowire becomes indirect. The 

change in the mass of the L and H bands with strain is small compared to this abrupt change 

[Figure 2.8a]. Interestingly, by increasing the diameter, the transition point in effective mass 

shifts toward the less compressive strain points. This change can be verified experimentally 

by measuring the change of density of states with STS [31] and electron mobility 

measurements [25][1].  
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Figure 2.8 (a) The normalized effective mass (m*/m0) vs. strain (m0 is the free mass of electron) for 

1.7, 2.3 and 3.1nm [110] SiNW. (b) Effective density of states (Nc) in versus strain. Reprinted with 

permission from [117]. Copyright 2008 American Institute of Physics. 

 

To computationally investigate the strain effects on the density of states (DOS), two 

methods have been tried, first of which is the calculation of DOS using the surface Green 

Function. The iterative algorithm which finds the surface Green function is explained in 

Appendix A. Due to computationally intensive nature of the Green Function method for 

larger nanowires, a simpler and intuitive way is used based on the effective density of states 

(Nc). Nc is expressed as the number of carriers per unit length (m
-1

) of the nanowire. In the 

derivation of the Nc we assume that the conduction bands which are not higher than 3kT from 

Ecmin, have parabolic shape. Starting from the 1D density of state,       √
   

 

    

 

√    
, the 

total carrier density in the sub-band i is found using     ∫    
 

 
        . Therefore: 
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Using ∫
  

√ 

 

 
     √ , the    reduces to: 
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   √
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    (2.9) 

 

Since the total density of carriers is    ∑   
 
     , we may write: 

 

   
  

  
⁄   √

   

       ∑   
   

   ⁄
√  

  
     (2.10) 

 

Skipping the rest of the manipulation and using           results in     
     

  
⁄     

where Nc is: 

 

    √
   

       ∑   
     

   ⁄
√  

  
      (2.11) 

 

m
*

i is the effective mass of sub band i. Ei and Ecmin are energies at the bottom of sub band i 

and the bottom of the lowest conduction sub band, respectively. kT and N are thermal energy 

(kT=26meV at T=300K) and  the number of subbands, respectively, in the 3kT window 

starting from Ecmin. Figure 2.8b shows the strain dependent effective density of states (Nc) for 

[110] SiNWs based on equation 2.11. The main physics behind the changes in Figure 2.8b 

are: 

 

1) Tensile strain: In tensile strain region, the light conduction bands (at kz = 0) primarily 

contribute to Nc. Hence the value of Nc is smaller in the tensile strain region (Figure 

2.9a). 

2) Diameter dependence: The number of Eigen states in the 3kT energy window from 

Ecmin increases with increasing the nanowire diameter because the energy level 

separation associated with quantum confinement decreases. As a result, the magnitude 

of Nc increases with increase in diameter. 

3) The direct-to-indirect bandgap transition corresponds to a peak in Nc. There is a peak 

in Nc here because both the heavy (at kz = 0, direct) and light (away from kz=0, 

indirect) conduction bands contribute to Nc in the 3kT window starting from Ecmin 

(Figure 2.9b). 

4) At larger compressive strains, Nc shows a dip. The physics of this follows by noting 

that at compressive strains beyond the direct-to-indirect transition, the heavy 
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conduction bands (indirect bands) determine Nc. The light conduction bands have a 

much higher energy. Hence their contribution to Nc is less pronounced (Figure 2.9c). 

 

Figure 2.9 (a), (b) and (c) shows the strain induced band structure change in tensile strain regime, 

bandgap transition point and compressive strain regime, respectively. 

Whether the aforementioned strain effects on the effective mass and density of state have a 

direct application in improving the mobility of a nanowire based transistor will depend on the 

details of its impact on electron-phonon scattering rates. 

2.2.2 Strain Effects on the Bulk Silicon  

To understand the difference between electromechanical responses of SiNWs and 3D bulk 

silicon crystal, we study the strain effect on the band structure of bulk silicon in this section. 

The band structure of bulk silicon (and similarly bulk germanium) is calculated with the 

same TB scheme used for nanowires. More details are explained in Appendix B. Calculation 

of bulk silicon band structure serves another purpose which is the calculation of photo 

absorption in bulk silicon. This proves useful in understanding the differences between 

photo-absorption spectra obtained with TB and DFT methods. Figure 2.10a shows 20 

Eigenvalues calculated at each (kx, ky, kz) point along [111] and [100] directions in 3D BZ of 

bulk silicon.  

The constant energy surface corresponding to conduction band minimum is shown in Figure 

2.10b which consists of 6 valleys. Using these valleys and finding out the way that they fold 

into the BZ center, we can predict which type of nanowire i.e. growth direction has direct or 

indirect bandgap. For example in [100] nanowire, the four unprimed (low effective mass) 

valleys fold into the BZ center (Г) and two other primed valleys (with higher effective mass 

along the transport direction i.e. kz) morph into two indirect sub bands. Therefore the SiNW 

in [100] direction shows a direct bandgap. In contrast to [100], cutting a nanowire in [111] 

direction does not cause any folding into BZ center and results in an indirect bandgap.  
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Figure 2.10 (a) Band structure of bulk silicon showing indirect bandgap (1.17eV) at off-Г point 

0.85π/a. Γ corresponds to k=[000] i.e. BZ center. (b) Constant energy surface corresponding to 6 

conduction valleys. 

 

We have simulated the application of biaxial [110] and uniaxial [100] strain on bulk silicon 

by: (1) changing the crystal size (unit cell length) along the direction of applied strain, (2) 

Using Poisson ratios of the material [119] to update the crystal geometry in directions which 

are perpendicular to strain direction and (3) updating the displacement vectors i.e. d13, d14, d15 

which are defined in Bloch equation (equation B1 of Appendix B). Figure 2.11 shows the 

strain effects on the energy of the three points (Γ, Χ and L) within BZ of bulk silicon. As can 

be seen the energy of conduction band minimum which sits at Γ (highest curve in Figure 

2.11), never gets smaller than the energies of Χ and L conduction sub bands. This means that 

indirect to direct bandgap is not achievable in bulk silicon under any amount of strain within 

the given range. On the other hand we have seen how strain causes indirect to direct bandgap 

conversion in 1D system like SiNW. This is of immense importance in implementing light 

sources using direct bandgap SiNWs. 
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Figure 2.11 Biaxial [110] (lines) and uniaxial [100] (dots) strain effects on the energy of conduction 

sub bands at three different points in the BZ of the bulk silicon.  
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Chapter 3 

Strain Effects on the Electronic Properties 

of Germanium Nanowires 

Germanium nanowires (GeNW) have gained interest because of better mobility, smaller 

bandgap and a larger exciton Bohr radius which makes the quantum confinement effects 

more pronounced [122]. Using materials which are compatible with front-end CMOS 

fabrication i.e. In and Sb, it is now possible to catalyze the growth of narrow 10-20nm thick 

GeNWs [122][123]. There are recent examples of core/shell Ge/Si nanowires to implement 

high performance FET [1] and quantum bit (qubit) based on hole spin [5]. There is a recent 

theoretical work which proposes a genetic algorithm based adjustment of Ge content in 

core/shell Si/Ge nanowire to achieve direct bandgap [124]. Additionally germanium because 

of its small bandgap can potentially emit the wavelengths which are suitable for optical fiber 

communication. 

In this chapter we report the effects of strain on the band structure and effective mass of 

narrow GeNWs using ab-initio DFT based methods. Similar to the case of SiNWs the 

indirect to direct bandgap conversion occurs in GeNWs which is also due to the nature of 

orbitals which compose the sub bands. Main results of this chapter were published in Y. 

Kong, D. Shiri, A. Buin, First-principle investigation of strain effects on the electronic 

properties of germanium nanowires, Physica Status Solidi: RRL, 3, No. 9, 281– 283 (2009). 

 

3.1 Energy Minimization in DFT 

Since the classical force field available in GULP does not provide the inter-atomic 

potential for germanium atoms and their compounds like Ge-H, both energy minimization 

and band structure calculations were obtained with DFT method in CASTEP
®

 [125]. 

Exchange correlation of General Gradient Approximation (GGA) type with Perdew-Wang's 

functional (PW91) [126] is used to minimize the structural energy of hydrogen terminated 

[110] and [100] GeNWs. Energy cut-off and self-consistent field (SCF) tolerance are 180eV 

and 1×10
-6

, respectively. The maximum residual force between atoms is set to 0.05eV/Å and 

maximum displacement is chosen to be 0.002Å. The BFGS algorithm [127] is chosen to 

reduce the energy on each atom below 2×10
-5

eV/atom under a constant pressure constraint. 

Application of strain and further energy minimization steps are similar to those steps which 

were explained in previous chapter for SiNWs. Figure 3.1a and b show the xy cross section 

and side view of 1.97nm [110] GeNWs, respectively. As can be seen in Figure 3.1b, energy 

minimization causes the symmetric dihydride groups (GeH2) on the (100) plane of the [110] 
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nanowire cant from the plane parallel to the nanowire cross section. Canting GeH2 groups 

toward z direction or rearrangement of surface atoms for narrow Ge and Si nanowires results 

in lower energies for directions such as [110] over the [100] direction. This would suggest 

higher stability of [110] nanowire compared to [100] [27].  

 

Figure 3.1 (a) Cross section of a 1.9nm [110] GeNW and (b) its side view showing three unit cells 

with canted GeH2 groups. 

3.2 Band Structure of [110] and [100] GeNWs 

The band structure of a relaxed and unstrained 1.97nm [110] nanowire is shown in Figurer 

3.2 which has a direct bandgap of Eg= 0.979eV. In contrast to bulk germanium with indirect 

bandgap (Eg = 0.664eV), this direct bandgap of [110] nanowire is due to folding of four 

unprimed valleys of [100] and [111] directions into the Г point as shown in Figure 3.3a.This 

results in a direct bandgap structure for [110] GeNW which has low electron effective mass 

of m
*
=0.1065 in transport direction (z). On the other hand cutting the bulk crystal in [111] 

and [100] direction results in indirect bandgap with high effective mass, because the primed 

valleys determine the conduction band minimum (CBM) which sits out of Г point (kz = 

0.57π/a). Indirect bandgap of [100] and [111] GeNW confirms this explanation [128][129]. 

The detailed procedure of band structure calculation for bulk silicon based on the sp
3
d

5
s

*
 

scheme is discussed in Appendix B and can be applied for bulk germanium as well. 
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Figure 3.2 Band structure of a 1.97nm [110] GeNW shows direct bandgap. Reprinted with permission 

from [130]. Copyright 2009 Wiley-VCH.  

 

 

Figure 3.3 (a) Constant energy surface corresponding to conduction band minimum of bulk 

germanium at L point in BZ. (b) Band structure of bulk germanium showing indirect (0.66eV) and 

direct (0.8eV) bandgap values at L and Г (BZ center) respectively 
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Figure 3.4 shows the band structure of an unstrained 2.5nm [100] GeNW with indirect 

bandgap of Eg = 1.15 eV. As it is evident in Figure 3.3a, cutting the bulk crystal in the [100] 

direction results in an indirect bandgap with a high effective mass. Folding six L valleys into 

a point which sits out of Γ point (kz = 0.57π/a), yields indirect bandgap (see CBM2 in 

Figure 3.4). Surface reconstruction effect is observed more significantly on the corners of 

narrow [100] GeNW (Inset of Figure 3.4).  

 

Figure 3.4 Band structure of a 2.5nm unstrained [100] GeNW with indirect bandgap. Inset: Cross 

section of the nanowire in xy plane. Reprinted with permission from [130]. Copyright 2009 Wiley-

VCH. 

3.3 Strain Effects 

Effect of strain on the value of bandgap is shown in Figure 3.5a for a 1.97 nm [110] GeNW. 

The value of bandgap change at 3% compressive and tensile strain is +17.6meV/% and 

42.8meV/%, respectively. Once the tensile strain reaches to +3%, the bandgap becomes 

indirect. This direct-to-indirect transition happens at -3% too. Looking at the band structure 

in 3 different strain points of +5%, 0% and -5% elucidates the physics behind this transition 

(Figure 3.5b).  
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Figure 3.5 Bandgap values vs. strain for a 1.97nm [110] GeNW. Symbols ○ and * denote indirect and 

direct bandgap. (b) Symbols (■), (─) and (▲) represent the band structure at +5%, 0 and -5% strains, 

respectively. Reprinted with permission from [130]. Copyright 2009 Wiley-VCH. 

 

Within the compressive strain regime, the direct to indirect transition happens due to 

interchange of CBM1 and CBM2 (Inset of Figure 3.5a left). Also the VBM1 and VBM2 

flipping causes direct to indirect transition at +3%. In another word the valence band 

maximum (VBM), which was previously at kz=0, now shifts to the off-center point of kz = 

4π/25. Since the conduction band minimum (CBM) decreases, the whole effect is a reduction  
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Figure 3.6 (a) Bandgap vs. strain for a 2.5nm [100] GeNW. Symbols of (■), (─), (▲) correspond to 

band structure at +5%, 0 and -5% strain values, respectively. Symbols ○ and * denote indirect and 

direct bandgap. Reprinted with permission from [130]. Copyright 2009 Wiley-VCH. 

of indirect bandgap in the tensile region. Increasing the diameter of the GeNW results in a 

decrease in the conduction (valence) band minimum (maximum) offset (E in Figure 3.2). 

This effect reduces the compressive (tensile) strain which is required for bandgap transition. 

Therefore the direct bandgap window of the nanowire shrinks ( of Figure 3.5a) which 

suggest applications of large diameter GeNWs in optoelectronic devices based on strain.  
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Figure 3.6a depicts the bandgap of a 2.5nm [100] GeNW in response to strain. Within 

compressive strain, VBM1, CBM1 and CBM2 rise in energy. The CBM1 and CBM2 have 

different rates of change when subjected to compressive strain. Therefore, at a certain point 

(here -4%), both CBM1 and CBM2 have higher energy than the heavy band (CBM3) at k = 

8π/25 (Figure 3.6b). In the case of tensile strain, there is another indirect to direct bandgap 

conversion at +4%. In response to strain, CBM1 begins to decrease and eventually gaining a 

lower energy than that of the unstrained CBM2 at k = 23π/25. (see Figure 3.6b). 

3.3.1 Effective Mass 

For a 1.97nm [110] GeNW, effective masses for electrons and holes are 0.1065 and 0.1623, 

respectively. Figure 3.7 shows that corresponding to each direct-to-indirect transition, there 

are two jumps (3~4 times increase) in the effective mass of electrons and holes. For 

electrons, this change is attributed to CBM1 (light band) and CBM2 (heavy band) 

interchange. Under tensile strain, the hole mass increases and reaches to 0.66 during the 

direct to indirect transition. This is because the VBM shifts from light hole (LH) band at k = 

0 to a heavy hole (HH) band at k = 4π/25. On the other hand for 2.5nm [100] GeNW, VBM1 

determines the valence band. Since the curvature of the VBM1 does not change with strain, 

the hole effective mass remains unchanged. Under highly compressive strain (-5%), the 

electron effective mass is much higher than its bulk value of 0.9525. Once the bandgap 

becomes direct in the highly tensile regime, the electron effective masses drops to me
*
 = 

0.1602. 

 

Figure 3.7 Effective mass of electrons and holes vs. strain in a 1.97nm [110] GeNW. Values are 

normalized to the rest mass of the electron (m0). Reprinted with permission from [130]. Copyright 

2009 Wiley-VCH. 
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3.3.2 DFT and the Value of Bandgap 

It is well known that standard DFT methodology with Local Density Approximation (LDA) 

underestimates the value of the band gap. The issue is crudely solved by adding a shift 

(which is called scissor operator) to the conduction bands relative to the valence band. The 

value of scissor operator for Ge is calculated to be 0.5eV [131], with which the value of bulk 

germanium bandgap in LDA (0.3eV) can be adjusted to be close to experimental value of 

0.79eV [132]. The value of bandgap can be modified using GGA exchange correlation with 

PW91 functional. In contrast to LDA, GGA causes the valence orbitals of the atom (e.g. 3s 

and 3p for Si) to be substantially pushed away from the nucleus [132]. This causes weaker 

interaction between the valence charge (nv) and pseudo-core charge (nc) (which is a 

combination of ion and core electrons). The weaker interaction between the core and valence 

charge causes a softer solid, i.e. the larger equilibrium lattice constant after relaxation. This 

in turn will affect the exchange potential and therefore the bandgap of the material. Table 3.1 

summarizes the values of bandgap and lattice constant calculated for bulk silicon and 

germanium which is adapted from [132].  

 Si Ge 

Bulk parameters a0 (Å) Eg (eV) a0 (Å) Eg (eV) 

LDA 5.38 (-0.9%) 0.49 5.57 (-1.9%) 0.30 

PW91+Pseudopotential 5.59 (+2.9%) 0.65 5.92 (+4.7%) 0.43 

PW91+ core correction 5.45 (+0.4%) 5.73 (+1.2%) 

PW91+LAPW 5.50 (+1.3%) 5.75 (+1.6%) 

(experimental) 5.43 0.65 vs. 1.17 5.66 0.69 vs. 0.79 

Table 3.1 Summary of bandgap calculations for bulk Si and Ge. Reprinted with permission from 

Table I & II of [132]. Copyright 1995 American Physical Society. 

This lattice expansion effect on the bandgap can be understood by looking at the nonlinear 

term which exists in the GGA functional [133]:  

  
|     | 

       
             (3.1) 

In contrast to the charge density, which can be separated as n=nc+nv, the exchange potential 

cannot be separated due to the nonlinear term S. Therefore in the regions where the core and 

valence charge densities have large overlap, the amount of nonlinearity is more pronounced 

than the ends of the density distributions. We believe since Ge has 4s and 4p orbitals in its 

valence band, the greater spread of valence electrons (in contrast to 3s and 3p orbitals of Si) 

will explain the larger amount of lattice expansion and bandgap change compared to that of 
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Si (see Table 3.1). Although in Table 3.1 a bandgap change of 0.26eV (32.9% over 

experimental) is reported for a 1.2% change in lattice constants, we shall note that in our 

calculations the bandgap change with strain can nearly be of an order lower (20% change 

over 5% of strain range). This suggests that for our calculations, such large sensitivities in 

bandgap to lattice constants are reduced compared to that of bulk, thus decreasing 

imprecision arising from the variations in DFT method. This means GGA is a somewhat 

smoother approximation when applied to these nanowires rather than bulk crystals.  

We should emphasize that although the quantitative values of strains and bandgap may 

depend on the methods or functional types, the qualitative feature of bandgap conversion and 

bandgap versus strain curve (which has always a maximum around zero percent strain) 

always remains independent of methods. The main physics of bandgap conversion lies in the 

nature of the orbitals along the bonds and their corresponding response to strain. Theoretical 

studies in [117][111][118][134] shows that regardless of the methods used in calculations, at 

some amount of strain direct to indirect bandgap conversion occurs. 

3.4 Effect of strain on the band structure of bulk germanium 

The standard CMOS technology is benefitting from germanium as a stressor material with 

which the mobility of electrons in transistors can be improved. As a quest for direct bandgap, 

different epitaxial layers of SiGe, SiSnGe have been demonstrated in which the bandgap of 

Ge can change from indirect to direct under tensile strain which arises from lattice mismatch 

[82][81][78]. Using tight binding method as explained in Chapter 2 we applied biaxial [110] 

and uniaxial [100] strain on bulk germanium crystal. As can be seen in Figure 3.A1 at +2% 

uniaxial strain, the conduction band minimum in BZ center (Γ point) crosses the L band 

energy. Therefore in contrast to bulk silicon, a bandgap conversion occurs for germanium at 

+2%. In [78] the value of tensile strain of bandgap conversion is calculated to be +1.8% in 

germanium. It is noteworthy that bandgap conversion due to +2% strain which is induced 

from lattice mismatch is also observed experimentally in Ge-on-Si LEDs [79][80]. This is 

also a strength point for TB method which shows the capability of reproducing as well as 

predicting experimental results.  
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Figure 3.8 Biaxial [110] (line) and uniaxial [100] (dots) strain effects on the energy of conduction sub 

bands at three different points in BZ of bulk germanium. 

A recent theoretical study using genetic algorithm also shows that alloying bulk silicon with 

germanium generates a direct bandgap with large optical dipole matrix element associated 

with that [135]. However in the epitaxial and alloy based systems the nature of bandgap 

conversion is not reversible since the value of strain is fixed after the fabrication. On the 

other hand GeNWs or alloyed SiGe nanowires provide the possibility of reversible change of 

bandgap using extrinsic strain application methods presented in Chapter 1. 
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Chapter 4 

Spontaneous Emission Time in Silicon 

Nanowires: Computational Methods 

 

As observed in the previous chapters the application of uniaxial strain to SiNWs led 

to the change of bandgap nature i.e. direct to indirect conversion depending on the amount 

and direction of applied the strain. Investigating the possibility of modulating the 

spontaneous light emission in SiNWs in response to uniaxial strain mandates the calculation 

of photon emission rates for both direct and indirect bandgap nanowires. Before moving to 

main results in chapter 5, this chapter focuses on the computational methods, mathematical 

derivations and the logic of the numerical codes used to calculate the spontaneous emission 

rates within tight binding scheme. Energy minimization, calculation of electron-photon 

interaction Hamiltonian matrix elements, first order emission rates and first order electron-

phonon scattering rates are among the topics covered in this chapter. Thereafter the 

calculation of spontaneous emission rate in the indirect bandgap nanowires is discussed. The 

role of both Longitudinal Acoustic (LA) and Optical (LO) phonons are included using the 

second order perturbation theory. The evolution of carrier population in indirect bandgap 

nanowires is further studied under the influence of electric field and different temperatures 

by Ensemble Monte Carlo (EMC) simulation. Discussing the details of generating initial 

electron-phonon scattering rate matrices for this simulation concludes this chapter. 

4.1 Energy Minimization 

Energy minimization of nanowires is performed by Density Functional Theory (DFT) 

method within SIESTA
®

 [136] (version 3.1) using Local Density Approximation (LDA) 

functional with Perdew-Wang (PW91) exchange correlation potential [126]. Spin polarized 

Kohn-Sham orbitals of double-zeta type with polarization (DZP) have been used. The 

Brillion Zone (BZ) has been sampled by a set of 1140 k points along the axis of the 

nanowire (z axis). The minimum center to center distance of SiNWs is assumed to be at least 

2nm to avoid any interaction between nanowires. Energy cut-off, split norm, maximum force 

tolerance and maximum stress tolerance are 680 eV (50 Ry), 0.15, and 0.01eV/Ǻ and 1GPa, 

respectively. The relaxation stops if the maximum absolute value of inter-atomic forces is 

smaller than force tolerance and the maximum stress component is smaller than the stress 

tolerance. The energy of unstrained unit cell of nanowire is minimized using Conjugate 
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Gradient (CG) algorithm during which the variable unit cell option is selected. This means 

that the unit cell length of nanowire can relax to a new value according to the given force 

tolerance as above. Afterwards, for each percent of strain (ε) the unit cell is relaxed using the 

constant volume chosen by fixed unit cell option. With this option atoms are only free to 

move within the fixed unit cell volume. The result of each minimization step is fed to the 

next step of minimization. The unit cell length (Uc) is then updated according to the value of 

applied strain (ε) i.e. Uc-new= Uc-old(1+ε). Following the aforementioned procedure the band 

structure of nanowire is calculated with tight binding method as already explained in Chapter 

2. 

4.2 Position and Momentum Matrix Element 

As will be seen in the next section the calculation of electron-photon interaction Hamiltonian 

entails momentum or position operator matrix element calculation. In this section the method 

of finding the position matrix element within sp
3
d

5
s

*
 TB scheme is explained assuming the 

atomic orbitals to be of Slater type. Calculation of matrix element in sp
3
s

*
 TB with Vogl's 

parameters was done for bulk and super-lattices of group III-V semiconductors [137][138]. 

Also the same calculation in sp
3
d

2
 basis has been reported for surface effect study in GaAs 

[139] and dielectric response of molecules [140]. We start with an electronic Eigen-state 

given at a point along 1D BZ of SiNW which is expanded using 10 orbital basis. 

  

|   〉  ∑       |   〉    (4.1) 

 

The index α spans 10 orbitals i.e. one s, three p, five d and one excited s
*
 orbital. |   〉 is the 

Hamiltonian eigenstate which satisfies  |   〉      |   〉. The wave vector of electron is 

     ̂, where  ̂ is the unit vector along the axis of the nanowire. The index n is the Eigen 

state index and can change from 1 to Norbit in which Norbit is the total number of orbitals for 

one unit cell of nanowire i.e.                 . The state |   〉  is written in terms of 

planar waves weighted by local shape of each orbital:  

 

|   〉  
 

√ 
∑      |   〉     (4.2) 

 

|   〉 is the orbital belonging to the atom which sits at position of R i.e. |   〉         

and as mentioned before it spans 10 different kind of orbitals. N is the number of unit cells 

per unit volume. The ortho-normality of states shown in equation 4.2 can be easily checked 

using two states with different orbitals (  and  ) at two different points inside BZ (e.g. k and 

k’ ):  
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〈    |   〉  
 

√ 
∑        〈   | 

 

√ 
∑      |   〉  

 

  ∑   (    )  
 〈   |   〉         (4.3) 

Applying the ortho-normality property of orbitals on each atom i.e. 〈   |   〉        and 

the identity, ∑   (    )            the equation 4.3 results in 〈    |   〉             

where all δs are of Krönecker type. Now the momentum matrix element between a 

conduction band state at k and a valence band at k’ within BZ can be written as 

⟨   | |    ⟩.  

Using the identity of  
 

  
  

 

 
      [141], the momentum matrix element can be written in 

terms of position operator as follows. The Hamiltonian operator acts on each state according 

to  |   〉      |   〉 therefore: 

 

⟨   | |    ⟩  ⟨   |  
 

  
 |    ⟩  

   

 
⟨   |     |    ⟩  

   

 
⟨   |            |    ⟩  

   

 
            ⟨   | |    ⟩    (4.4) 

 

The position matrix element is then found by using the expansions given in equation 4.2 for 

|   〉 and |    〉: 

 

⟨   | |    ⟩  ∑    
    ∑        ⟨   | |    ⟩   

∑    
             ⟨   | |    ⟩  ∑    

             
 

 
∑   (    )  ⟨   | |   ⟩      

(4.5) 

 

which results in:  

 

⟨   | |    ⟩  ∑    
           ⟨      | |      ⟩          (4.6) 

 

The Krönecker delta ensures the momentum conservation i.e. a direct transition of electron 

from conduction to valence state or vice versa. By changing the variables as r-R = u, the 

right hand side of equation 4.6 is further simplified: 

 

⟨   | |    ⟩  ∑    
           ⟨    |   |    ⟩         

∑    
                {⟨    | |    ⟩   〈    |    〉}                  (4.7) 

 

Using ortho-normality of atomic orbitals, the second term can be reduced to a summation 

running over orbitals:  
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∑   
                {⟨    | |    ⟩      }  

  

 

∑    
                ⟨    | |    ⟩  ∑    

                          (4.8) 

 

The second term in the right hand side of equation 4.8 is element by element multiplication 

of valence and conduction eigenvectors which are weighted by coordinate of the atoms 

within one unit cell. The first term in the right hand side contains the overlapping integral 

between different orbitals of the same atom i.e. ⟨    | |    ⟩  and it is called intra-atomic 

contribution. Since many of the overlapping integrals vanish due to symmetry, there is no 

need to calculate all 100 combinations and only 15 non-zero terms will remain. Here we 

explain in detail how to arrange the coefficients corresponding to each of these fifteen non-

zero overlapping integrals.  

Table 4.1 shows 10 coefficients (as defined in equation 4.1) corresponding to an Eigen state 

of a silicon atom within a unit cell. The second and the third columns correspond to valence 

and conduction states at a given k in the BZ. Before introducing 15 nonzero terms for 

equation 4.8, it is instructive to look at a simple example of computing the first and the 

second terms of equation 4.8. We assume that there is only one silicon atom in a unit cell 

which has two orbitals only (e.g. s and pz). The valence and conduction eigenvector are 

written as [α1 α4] and [β1 β4], respectively. Here the index 4 means that pz orbital is the fourth 

orbital among 10 orbitals. The summations over β and α are expanded consecutively: 

 

∑    
                ⟨    | |     ⟩   ∑    

    {    ⟨ | | ⟩      ⟨ | |  ⟩}  

     
    {    ⟨ | | ⟩      ⟨ | |  ⟩}      

    {    ⟨  | | ⟩      ⟨  | |  ⟩}  (4.9) 

 

For clarity purpose the coefficients Cmβi and Cnαi are called βi and αi, respectively in which i 

spans 1 to 10. Due to even symmetry of s and odd symmetry of pz orbital, the first and the 

last terms in equation 4.9 vanish i.e. <s|z|s> and <pz|z|pz> are zero.  

Therefore the first term in equation 4.9 is reduced to two terms which depend on overlapping 

between s and pz orbitals: 

 

∑   
                ⟨    | |     ⟩

  

   
   ⟨ | |  ⟩    

   ⟨  | | ⟩ 

    
      

    ⟨ | |  ⟩                          (4.10) 

 

For the second term of equation 4.8, the corresponding coefficients of the same orbital type 

but with different state indices (n and m) must be multiplied by the coordinate of the atom. 

This is equivalent to the dot product of eigenvectors of states n and m. Rewriting coordinate 
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vector of the atom as   ( 
 
) and using the following multiplication generates the second 

term in the right hand side of equation 4.8: 

 

    
       

   [
   

 

   
 

]    
      

 
   

      
     (4.11) 

 

With the same token as mentioned in the previous example, all 15 non-zero (symmetry 

allowed) overlapping terms and their corresponding coefficients can be written down as 

given in Table 4.2. These are the terms with which the first part in the right hand side of 

equation 4.8 can be generated. The left column shows the non-zero overlapping terms and the 

right column contains the corresponding coefficient of each term.  

 

 

  

Cnα(k) 

 

 

Cmβ(k’) 

 

Orbital type 

s 1  1 s 

p 2  2 x 

3  3 y 

4  4 z 

d 5  5 xy 

6  6 yz 

7  7 zx 

8  8 x2-y2 

9  9 3z2-r2 

s* 10  10 s* 

 

Table 4.1 Components of eigenvectors (basis coefficients) for conduction and valence states of a Si 

atom within a unit cell. 
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Overlapping integrals 

 

 

Weights 

<s|z|pz>    
      

     

<s*|z|pz>     
      

      

<pz|z|d3z
2
-r

2>    
      

     

<px|z|dzx>    
      

     

<py|z|dyz>    
      

     

<s|x|px>    
      

     

<s*|x|px>     
      

      

<px|x|dx
2
-y

2>    
      

     

<py|x|dxy>    
      

     

<pz|x|dzx>    
      

     

<s|y|py>    
      

     

<s*|y|py>     
      

      

<py|y|dx
2

-y
2>    

      
     

<px|y|dxy>    
      

     

<py|z|dyz>    
      

     

 

Table 4.2 Nonzero overlapping integrals and their corresponding weights in terms of eigenvector 

entries i.e. [α1…α10] and [β1…β10]. These are used to build the first term in the right hand side of 

equation 4.8. 

4.2.1 Slater Orbitals 

So far no assumption was made about the type of the atomic orbitals in calculating the 

overlapping integrals. In this work we have calculated these integrals using Slater type 

orbitals [142]. In Slater method the radial part of a single electron wave function can be 

defined similar to a Hydrogen-like wave function: 

 

              
   

   
  (4.12) 

 

Where Z is the actual charge of the nucleus, s is a screening constant and n
*
 is effective 

quantum number. N is the normalization factor which is calculated by normalizing the whole 

orbital (angular and radial parts). Following Slater rules, s and p orbitals for Si have been 

calculated and they match with the orbitals reported in [143] for sp
3
s

*
 TB method. Here we 

include 3d and 4s* orbitals following the procedure in [144] wherein the authors have used 

d* for III-V semiconductors. Table 4.3 lists the values of n*, Z – s, radial and angular parts of 

orbitals calculated for a silicon atom.  
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Orbital 

index 

 

 

Orbital type 

 

 

n* 

 

Z-s 

 

Radial and angular part 

1 s 3 4.15 0.37032 r2e-1.383r 

2 px 3 4.15 0.37032 r2e-1.383rsinθcosφ 

3 py 3 4.15 0.37032 r2e-1.383rsinθsinφ 

4 pz 3 4.15 0.37032 r2e-1.383rcosθ 

5 dxy 3 1 0.0049 r2e-0.3333rsin2θsin2φ 

6 dyz 3 1 0.0098 r2e-0.3333rsinθcosθsinφ 

7 dzx 3 1 0.0098 r2e-0.3333rsinθcosθcosφ 

8 dx
2

-y
2 3 1 0.0049 r2e-0.3333rsin2θcos2φ 

9 d3z
2

-r
2 3 1 0.0028 r2e-0.3333r(3cos2θ-1) 

10 s* 3.7 1.45 0.49×10-4 r2.7e-0.3919r 

 

Table 4.3 Slater type orbitals of Si atom. 

 

Values of non-zero overlapping integrals for Si are given in Table 4.4. Integration over radial 

part is found by numerical integration. For the angular part exact integration of spherical 

harmonics is found analytically using Wolfram Mathematica
®

 online integrator in 

http://integrals.wolfram.com/index.jsp. The angular part of the orbitals or Ylm can be found in 

literature for example [145]. 

 

 

Non-zero overlapping integrals 

 

 

value (Å) 

 

<s|z|pz> = <s|x|px> = <s|y|py> 1.4636 

<s
*
|z|pz> = <s*|x|px> = <s*|y|py> 0.3697 

<pz|z|d3z
2

-r
2
> 0.4029 

<px|z|dzx> = <py|z|dyz> 0.3525 

<px|x|dx
2

-y
2
> = <py|x|dxy> = <pz|x|dzx>  0.3525 

<py|y|dx
2

-y
2
> = <px|y|dxy> = <pz|y|dyz> 0.3525 

Table 4.4 Non-zero overlapping integrals for Salter type orbitals in Si. 

4.2.2 Visualization of Wave functions and Matrix Elements 

To visualize a the wave function corresponding to a given quantum number and k point in 

BZ, the eigenvector of that specific state is required. But in the next chapter we are mostly 

interested in conduction/valence band minimum/maximum states at BZ center (Γ point). 

Each given state is a Norbit×1 vector in which Norbit is the total number of orbitals within a unit 

http://integrals.wolfram.com/index.jsp
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cell of nanowire. The contents of the Eigen vector (state) are coefficients corresponding to 

each orbital of atoms in the unit cell. What is more needed is the spatial distribution of 

atomic orbitals which are already assumed to be of Salter type as found in previous section. 

Generally it is possible to plot every slice of probability density |Ψ(x,y,z)|
2
. But mainly the 

variation of this quantity on xy plane (cross section) of the nanowire at a constant value of z 

i.e. z = zp (As shown in Figure 4.1) is of interest. The z=zp plane is converted to a Ngrid= Nx × 

Ny grid. The value of Ψ(x,y,z) is then evaluated at each grid point (e.g. P) by adding the 

contributions of all atomic orbitals within the given unit cell. 

 

Figure 4.1The contributions of atomic orbitals in the value of Ψ(x,y,z) are added at point P which is 

inside the cross sectional plane of (z=zp). 

 

For simplicity it is assumed that each atom has two orbitals (s and p) only. Hence the 

Eigenvector corresponding to the state of interest in Figure 4.1 is given as: 

 

                                      (4.13) 

 

Now at the given point P, the total value of probability amplitude, Ψ(x,y,z), can be written as: 

 

 (        )   

      (                    )        (                    )  

      (                    )        (                    )    

      (                    )        (                    )    (4.14) 
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Where A1, A2 and AN stand for the first, second and N’th atom in the unit cell. Writing 

equation 4.14 in a more closed form gives: 

 

 (        )  ∑          
       

       
       

          
     

       (4.15) 

 

The above summation is calculated in the innermost loop of a code and it is repeated 

Ngrid×Natom×Norbital times in which Norbital can be 10 or 1 depending on if the selected atom is 

a Si or H. Recall that the total number of orbitals in each unit cell is Norbit= NSi × 10 + NH × 

1. The complex conjugate of equation 4.15 is calculated to find out the value of |Ψ(xp,yp,zp)|
2
 

at grid point P. The aforementioned procedure is repeated Ngrid times to fill an Nx×Ny vector 

which stores the values of |Ψ(x,y,zp)|
2
 on z=zp plane. After normalization of this vector and 

converting it to a matrix in MATLAB
®

 the visualization becomes straightforward. Please 

note that merely adding the squared absolute values of coefficients in equation 4.15 wipes 

out all quantum mechanical interference effects and results in a wrong plot. The same 

procedure as shown in Figure 4.1 can be modified to other cross sectional planes i.e. xz and 

zy. To find out which orbital has the most contribution in each state, the corresponding 

coefficients of other orbitals can be set to zero before the main Ψ(x,y,z) evaluation loop 

starts. In the following example it is shown how visualizing the wave functions will help to 

determine the symmetry allowed optical transitions in a SiNW. Figure 4.2 shows the cross 

section of a 2.2nm [100] SiNW in xy plane. The energy of the nanowire is minimized using 

SIESTA.  

 

 

Figure 4.2  An energy minimized 2.2nm [100] SiNW. 

 

The wave function corresponding to valence/conduction band minimum/maximum (at BZ 

center) is plotted in xy cross sectional plane of the nanowire in Figure 4.3. As can be seen the 

conduction and valence bands have even and odd symmetry with respect to the center of 
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rotation, respectively. Looking at the definition of position operator matrix element i.e. 

⟨  | |  ⟩  ∫  
              , reveals that the integrand must have an even parity in 

order to obtain nonzero matrix element. Since x and y are have odd parity they both make the 

integrand to be of even symmetry and as a result x and y polarized matrix elements are 

nonzero as opposed to z-polarized matrix element. 

 

Figure 4.3 (a) Conduction band (CB) and (b) valence band (VB) states at BZ center. CB and VB have 

even and odd symmetry, respectively. 

Figure 4.4 shows the normalized momentum matrix element along BZ of the nanowire in 

which x and y components are more dominant than z-polarized case and they are very close 

in value (ideally equal).  

 

Figure 4.4 Normalized momentum matrix element (P2
cv/2m in terms of eV) along the BZ [-π, π] of a 

2.2nm [110] SiNW for z, y and x polarizations, respectively 
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4.3 First Order Spontaneous Emission Process 

The life time of an electron which is excited from a state in the valence band to its 

corresponding state in the conduction band is determined using the first order perturbation 

theory [141][146]. The conduction and valence states are at the same value of k (crystal 

momentum) along 1D BZ of SiNW and are called initial (i) and final (f) states, respectively. 

Then the radiative decay rate (1/τif ) is written according to Fermi’s golden rule as: 

 

 
 

 
     

  

 
∑ |⟨ |   | ⟩|               (4.16) 

 

where the summation runs over photon wave vectors (k) and polarizations (σ). Ef and Ei are 

energy of the final and initial mixed (electron and photon) states. The electron-photon 

(radiation) interaction Hamiltonian, HeR, is written as follows which is based on 

decomposing of the field operator, A, as a linear combination of planar modes Ak,σ in a space 

of volume V=L
3
  

 

     
 

 
∑ √

 

      
      ̂   ̂    ( ̂             ̂ 

            )     (4.17) 

 

e is the value of electronic charge (1.602×10
-19

 C), m is the free mass of electron (9.109×10
-31

 

Kg). σ
'
, k

'
 and     are photon wave vector, polarization and angular frequency of the photon 

field, respectively.  ̂ is the momentum operator,   ̂     is the unit vector along polarization 

direction (σ
'
).   ̂      and  ̂ 

      are photon annihilation and creation operators, respectively. 

The quantity   represents the dielectric constant of the medium. To find the matrix element 

of electron-photon Hamiltonian, the initial and final states are written as a mixed electronic 

(fermions) and photonic (bosons) state. Therefore |      〉 shows the conduction band state 

including     photons. The final state has       photons after electron transits from the 

conduction to the valence band i.e. |         . The matrix element is then found by 

applying creation and annihilation operators on photon number states as follows: 

 

⟨ |   | ⟩  

 
 

 
⟨         | ∑ √

 

    
  

      ̂   ̂    ( ̂             ̂ 
            )|      ⟩   
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{√   ⟨        | ̂   ̂       |        ⟩     

√     ⟨        | ̂   ̂        |        ⟩}        (4.18) 
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Using ortho-normality of photon number states, equation 4.18 is reduced to: 

 

⟨ |   | ⟩   
 

 
 √

 

     
√      ⟨  | ̂   ̂        |  ⟩   (4.19) 

 

Since initial to final state transition results in an extra photon in the final state, the energy 

conserving term in Dirac’s delta function is modified as: 

 

         
        

    
    

         (4.20) 

 

where Eai and Eaf are initial and final energy of electronic states, respectively. Then according 

to equation 4.16, the total photon emission rate is given as: 
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)∑
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  (   

    
    )       (4.21) 

 

As can be seen the total emission rate is composed of a spontaneous term (where nkσ =0) and 

the stimulated emission which is proportional to nkσ. Stimulated emission term is used in 

calculation of optical gain or loss (absorption) which is the topic of Chapter 6. Here we 

continue with nkσ =0 to find the spontaneous emission rate (time) in SiNWs. When the 

dimensions of the system under study are much smaller than the wavelength of the light e.g. 

molecules and quantum dots, the factor of e
-ik.r

 in equation 4.21 can be simplified using 

dipole approximation: 

 

             
 

 
                   

   

 
     (4.22) 

 

However if the size of the system is comparable with the photon wavelength (e.g. for the case 

of bulk Si crystal or when the propagation of light is along the axis of the nanowire), then the 

approximation used in equation 4.22 is not valid anymore. In this case the procedure of 

Appendix C in used to calculate the matrix element. Summation over photon wave vectors 

(k) can be converted to integration using:  

 

∑     
 

     
∫         (4.23) 

 

Summation over photon polarization (σ) can be calculated using Figure 4.5 in which two 

polarization vectors are chosen to be normal to the photon wave vector (k) [141].  
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Figure 4.5 Photon polarization vectors are in a plane which is normal to the photon wave vector (k). 

Without loss of generality the momentum of electron is assumed to have an angle (θ) with 

the photon propagation direction (k). The sum over polarizations is then reduced to two 

terms: 

∑ |⟨  | ̂   ̂  |  ⟩|
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            (4.24) 

 

where ui and uf are Bloch parts of the total electronic states (ai and af) and they are discussed 

in Appendix C. Writing the volume element as                 , the summation in 

equation 4.20 is reduced to: 
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(4.25) 

 

The velocity of light in the material is υ=c/nr , where nr is the low frequency refractive index 

of bulk Silicon. Writing ωk=υk, and using the sifting property of Dirac’s delta function, the 

integration of equation 4.25 is continued as follows: 
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    (4.26) 

 

In which we have used ∫        
 

 
∫   

  

 
     . Finally the spontaneous emission rate in 

equation 4.21 is given as:  
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                (4.27) 

 

The momentum (p) matrix element can be transferred to position (r) representation using: 

 

|⟨  | ̂|  ⟩|
 

      
 |⟨  | ̂|  ⟩|

 
  (4.28) 

 

in which     is    
    

 ⁄ . Further simplification can be made if we write        

  
    and        : 

 

(
 

 
)
   

 
   

 

       
   

 |⟨  | ̂|  ⟩|
 
    (4.29) 

 

The position matrix element is found using the procedure explained in the previous section.  

This equation gives three values corresponding to three different photon polarization i.e. x, y 

or z. 

4.4 Second Order Spontaneous Emission Process 

To find the spontaneous emission life time of an excited electron in the indirect conduction 

band minimum first we need to observe the energy difference between the conduction band 

states i.e. ΔΩ as shown in Figure 4.6. When ΔΩ is less than the Debye energy of LA phonons 

(EDebye= 54 meV) many secondary states in direct conduction sub band are available to which 

an electron can scatter from indirect sub band by absorbing a LA phonon. Alternatively, 

when ΔΩ is less than the maximum energy of LO phonons, ELO = 63 meV, a few secondary 

states in direct conduction sub band can be found to which an electron can scatter from 

indirect sub band by absorbing a LO phonon. This implies that if the secondary state within 

the direct conduction sub band is not at the BZ center, the only possible first order transition 

is due to LA phonon absorption. Otherwise both LA and LO phonon absorption processes 

will contribute in the first order inter-sub band scattering event. The process of finding 

secondary states can be understood by recalling that LO and LA phonons are modeled as 

dispersion-less and a linear dispersion around BZ center, respectively [147]. On the other 

hand if the energy difference between conduction band minima is larger than the maximum 

available energy of phonons i.e. ΔΩ > Edebye, the transition is possible only through virtual 

momentum states and this mandates using second order perturbation theory. Qualitatively we 

might expect that indirect bandgap hinders light emission from a SiNW because the emission 
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of a photon is now a slow second order phonon-mediated process. In this section we 

formulate the spontaneous emission time using the second order perturbation theory by 

including Longitudinal Acoustic (LA) and Longitudinal Optical (LO) phonons, respectively.  

 

Figure 4.6 Schematic of an indirect bandgap SiNW band structure. Difference between direct and 

indirect conduction sub band minima is shown as ∆Ω. This quantity determines the order of light 

emission process in an indirect bandgap nanowire. There are two possible transitions from indirect 

conduction minimum (i) to the valence band maximum (f): (1) via intermediate states (m) 

within the valence band (ADC) or (2) via intermediate states (m) within the conduction band 

(ABC). 

4.4.1 LA Phonons 

The spontaneous emission lifetime of an electron in indirect conduction sub band (state i) is 

determined by the following equation. The recombination of this electron with a hole 

residing at BZ center is possible through virtual transitions to intermediate states (states m) in 

the first conduction band (via phonon emission and absorption) or the last valence band. The 

transition rate or 1/τif is written as:  

   
    

  

 
 ∑ ∑ |⟨ | ̃| ⟩  ∑

⟨ | ̃| ⟩⟨ | ̃| ⟩

     
  

|
 

  ̅       (     )  (4.30) 

 

where       are photon wave vector and polarization, respectively.  ̅ and l are the phonon 

wave vector and branch index, respectively. The perturbation Hamiltonian,  ̃  is expressed as 

 ̃           in which     and     are electron-phonon and electron-radiation (photon) 

interaction Hamiltonians, respectively. Summation over km stands for summation over all 

intermediate (virtual) states within the first conduction band or the last valence band. 

∆Eim=Ei-Em is the energy difference between the initial (Ecmin) and intermediate state(s). The 

first order term in equation 4.30 can be written as ⟨ | ̃| ⟩  ⟨ |   | ⟩  ⟨ |   | ⟩    due 

to the following reasons. Firstly the initial and final states have different momentum 
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therefore ⟨ |   | ⟩   . Secondly the energy difference of initial and final states are much 

larger than the phonon energy, therefore the energy cannot be conserved i.e. ⟨ |   | ⟩   . 

The second order term can be expanded as: 

 

 ⟨ | ̃| ⟩⟨ | ̃| ⟩  ⟨ |   | ⟩⟨ |   | ⟩  ⟨ |   | ⟩⟨ |   | ⟩  ⟨ |   | ⟩⟨ |   | ⟩  

⟨ |   | ⟩⟨ |   | ⟩      (4.31) 

 

The first and the fourth term on the right hand side of equation 4.31 are zero with the same 

logic which was explained for the first order perturbation terms. Therefore: 

 

⟨ | ̃| ⟩⟨ | ̃| ⟩  ⟨ |   | ⟩⟨ |   | ⟩  ⟨ |   | ⟩⟨ |   | ⟩    (4.32) 

 

The first term in the right hand side of equation 4.32 corresponds to a direct optical transition 

from initial state (i) to an intermediate state (m) in the valence band (AD in Figure 4.6) 

followed by an indirect phonon assisted transition form (m) to the final state in valence band 

(f) (DC in Figure 4.6). Similarly the second term in the right hand side of equation 4.32 

represents an indirect transition to an intermediate state (m) in the conduction band (AB in 

Figure 4.6) followed by a direct optical transition from (m) to the same final state in valence 

band (BC in Figure 4.6).  

 Since there is a large number of intermediate states, the interference effects in the 

summation over km can be neglected and the summation is performed over the squared 

values of individual terms in equation 4.30 i.e. |∑    |  ∑ |  |   and β stands for an m-

dependent term. Thus: 
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 ∑ {
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|⟨ |   | ⟩| |⟨ |   | ⟩| 

            
}  
   (4.33) 

 

Ei:A, Em:D and Em:B correspond to total energies of initial states, intermediate state on valence 

band (D in Figure 4.6) and intermediate state on conduction band (B in Figure 4.6) , 

respectively. Since the energy difference between conduction and valence band is at least one 

order of magnitude larger than the energy difference within the conduction band i.e. Ei:A - 

Em:D >> Ei:A - Em:D  , the first term in equation 4.33 can be neglected. To find the average 

lifetime of an electron residing in the indirect Ecmin, all possible transitions from this state to 

all states in the valence band must be considered, provided that they are weighted by the 

Fermi factor or availability of empty states in the valence band throughout the BZ of SiNW. 

Hence spontaneous emission life time of an electron in the indirect conduction band 

minimum 1/τi is defined as: 
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   ∑
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| | | | 

           ̅  (     )       
 (  )     (4.34) 

 

F(kf) is the Fermi factor at each valence state (kf). |O|
2
 and |P|

2
 represent |⟨ |   | ⟩|  and 

|⟨ |   | ⟩| , respectively. Ei, Em and Ef correspond to the energy of the mixed (Fermions 

and Bosons) initial (i), intermediate (m) and final (f) states, respectively. They are found by 

assuming that there is already nk,σ photons and nq,l phonons in the system. For the initial and 

intermediate states in the conduction band, the energies can be written as: 

 

                                              (    
  )           (4.35) 

 

Where e(a) represents emission (absorption) of a phonon. Similarly the final energy in the 

valence band (after emission of a photon) can be written as: 

 

        (      )      (    
  )         (4.36) 

 

Hence  ∆Eim  is: 

 

                     
              (4.37) 

 

And the argument of Dirac’s delta function may be written as: 

 

 (     )    (     )                    
              (4.39) 

 

The electron-LA phonon Hamiltonian matrix element, |P|
2
, is found using the procedure 

which is shown in equations (10-12) of [148]. The electron-photon interaction Hamiltonian 

matrix element is found using the same method which was discussed is section 4.3. Here |O|
2
 

is rewritten as:  
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)
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       )
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          (4.40) 

 

To keep the spontaneous emission term we choose         . Inserting these matrix 

elements into equation 4.34 yields: 
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Where   | ̃|   is the overlap factor or matrix element of       terms which is defined in 

equation (13) of [148]. The summation over photon (radiation) wave vectors and 

polarizations follows the same procedure as discussed in section 4.3. Assuming a linear 

dispersion for LA phonons means that      | ̅| , in which υs is the velocity of sound in 

Silicon (υs=9.0110
5
 cm/sec) and ω is the angular frequency of phonon. D and ρ represent 

electron deformation potential (D= 9.5 eV) and mass density ( = 2329 Kg/m
3
). Now we 

have: 
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Using sifting properties of Dirac's delta function,         (v is velocity of light in silicon 

and it is         and converting the momentum matrix element to position representation 

yields: 
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(4.43) 

 

Ecm, Eci and Evf have been replaced by Ec(km), Ec(ki) and Ev(kf), respectively to recall that 

they are conduction and minimum state energies at the corresponding k values. To perform 

summation over all phonon wave vectors, we use the linearity of phonon dispersion i.e. 

     | ̃|     √  
    

 . At each final state (kf), the longitudinal component of phonon 

momentum is given by qz = km - ki = kf - ki, because m and f indices are moving together (due 

to momentum conservation imposed by direct transitions between | 〉 and | 〉). 

Corresponding to this qz , the maximum allowable transversal component of phonon 

momentum,  ̃      , is found by: 

 ̃      √|
      

   
|
 
   

     (4.44) 

Therefore there are many phonon wave vectors which have a common longitudinal 

component (qz) and their transversal (radial) component starts from  ̃         to  ̃      as 
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shown in Figure 4.7. If |
      

   
|     , then a phonon is available otherwise its contribution to 

equation 4.43 is zero.  

 

Figure 4.7 Available LA phonons with a common qz and transversal vectors which span  ̃         

to  ̃      . 

 

Therefore the summation over phonon wave vectors reduces to integration over area of the 

circle shown in Figure 4.7. Since the element of area is   ̃   ̃    then: 
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  | ̅|  is the only term which depends on  , therefore: 
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  (4.46) 

 

where    ̃       ∫ |  | ̃| |   
  

 
 is a dimensionless form factor.    | ̃|  is the Bose-

Einstein factor of phonons and it is    
   

     ⁄   for absorption and    
 

  

   
      

 for 

emission of a phonon. The result of integration over   ̃  cannot be simplified analytically and 

for the rest of the derivation it is shown by PhLA(kf,ki) which depends on km=ki . Further 

simplification of equation 4.46 results in: 
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Converting the summation over kf into integration yields: 
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After factoring out all physical constants and using          
   , the life time of electron 

in indirect conduction band minimum is given by the following equations which is 

implemented numerically.  

 

  
   

      

        

 

    
∑   

 |⟨  | ̂|  ⟩|
 
 (  )                 (4.49) 

 

As it is discussed in Chapter 5, by making a few simplifying assumptions, the numerical 

equation 4.49 is reduced to a much simpler semi-analytic equation. 

4.4.2 LO Phonons 

For LO-phonon mediated light emission, the second order perturbation is used if ∆Ω > 

ELO=63meV. Otherwise two cases should be considered separately. If ∆Ω = ELO then there 

exists an intermediate state at kz=0 to which the electron can scatter in via a first order 

process. If ∆Ω < ELO then there will be no optical phonon for the first order scattering 

between indirect and direct conduction band minima. In return electron can scatter to 

somewhere within the direct sub band and after that it can scatter to the direct sub band 

bottom through a series of electron-LA phonon scattering events. However the stronger role 

of LO phonons may return the electron back to its original position within the indirect sub 

band bottom. Calculation of the first order electron-phonon scattering events is discussed in 

the next section. 

Derivation of indirect spontaneous emission life time including optical phonons 

proceeds with the same logic as discussed in the previous section, but extra modifications are 

needed due to the different nature of optical phonons. Firstly the electron-phonon interaction 

Hamiltonian matrix element, |P|
2
, should be replaced with: 
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Where it is assumed that LO phonon is dispersion-less i.e. all phonons have constant energy 

of       = 63 meV regardless of their momentum (wave vector). Dop is the electron 

deformation potential for LO phonon (Dop=1110
8
 eV/cm). Krönecker delta imposes 

momentum conservation i.e.   
       . Secondly ∆Eim in equation 4.34 and Dirac's delta 

function in equation 4.39 are modified accordingly i.e. 

 

                  ,    (     )                             (4.51) 

 

Including the aforementioned changes and using the electron-photon interaction Hamiltonian 

matrix element, |O|
2
, as given in equation 4.40, the life time calculation starts from equation 

4.34 to give: 
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The summation over photon wave vectors and polarizations can be performed similar to the 

case of LA phonons (section 4.4.1). With the help of Dirac's delta function equation 4.52 is 

reduced to:  
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(4.53) 

 

Summations over kf and  ̃ can be converted to integrations. Recalling that kf and km step 

together i.e. km=kf and    is independent of  ̃, further simplifications result in: 
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where {...} returns a quantity which depends on kf since qz = kf - ki. This quantity and Bose-

Einstein factor,   , are merged together and called PhLO(kf) for the sake of brevity. The 

spontaneous emission life time is then given as: 
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For the sake of one to one correspondence with equation 4.49 which gives the same quantity 

by including LA phonons, the integration over kf is converted to a numerical summation as 

shown below. Also using          
    simplifies the pre-factors. 

 

  
   

  |   |
 
  

        
 

 

    
∑   

 |⟨  | ̂|  ⟩|
 
     

         (  )    

(  (  )           )
     (  )        (4.56) 

 

In the next chapter we discuss how further assumptions can reduce this numerical equation 

into a semi-analytic equation. Comparing the roles of LA and LO phonons in the 

spontaneous emission time and scattering rates will be discussed in the next chapter as well. 

4.5 First Order Electron-Phonon Scattering Rates 

Calculation of the first order electron-phonon scattering rate serves two purposes. As it was 

mentioned in section 4.4 when ∆Ω < ELO/LA, the light emission process can be modelled as 

two consecutive first order processes, the first of which is electron-phonon scattering. In the 

model the emission rate is determined by the slowest process. As will be seen in the next 

chapter, the electron-phonon scattering events are faster than direct photon emission 

processes which are in the range of (10μsec - 0.1μsec).  

Also to study the carrier population statistics of indirect sub bands under the influence of 

electric field, temperature and multi electron-phonon scattering events, we use standard 

Ensemble Monte Carlo (EMC) methodology. In order to use the EMC simulator, calculation 

of electron-phonon scattering rates is necessary. EMC simulations were done by Professor 

Amit Verma [149]. The author calculated all scattering rates as a part of his thesis work. For 

each initial state starting from indirect conduction sub band minimum (in an indirect bandgap 

nanowire), all possible final states within the same subband and higher sub bands with 

corresponding scattering rates for both phonon types (LA/LO) should be utilized. Both inter- 

and intra-sub band electron-phonon scattering events are calculated and special matrices are 

filled in a specific order which is required for EMC code. 

4.5.1 Electron-LA phonon scattering 

Figure 4.8 shows how an electron at the bottom of the indirect conduction band can scatter 

into many available secondary states within EDebye window. If the rate of each scattering 

event is called        
   ̃ , then the total scattering rate of the electron at kz is found by 

summation over all available secondary states (k
’
z) and phonon wave vectors ( ̃ ) i.e.:  



 

 72 

 

   
 ∑        
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    (4.57) 

 

Figure 4.8 Inter-sub band electron-LA phonon scattering events starting from kz. 

 

Total momentum relaxation rate is found by the same equation in which individual rates, W, 

are weighted by a factor of (1 - kz/k
’
z). Derivations of momentum relaxation rates have been 

explained in detail in [147][148]. Here we explain how the total scattering rate (Wkz) as well 

as each individual scattering rate [       
   ] can be saved for the purpose of spontaneous 

emission calculation and EMC simulation. Using Fermi's golden rule, the rate of a single 

scattering event can be written as follows where both momentum and energy are conserved 

and ψ corresponds to the mixed (electron and phonon) states. 

 

       
   ̃   
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             ̃            
    

            (4.58) 

 

The electron-phonon interaction Hamiltonian for phonons of LA type is given as: 

 

     ∑  | ̅| ̅ √
 

      ̅ 
(   

       
       )     (4.59) 

 

where    and   
 
 are annihilation and creation operators. Since the z component of the 

phonon wave vector (qz) is determined by conservation of momentum i.e.       
    , the 

summation over phonon wave vectors spans all transversal components of phonon wave 

vectors. It is converted to integration according to: 

 

∑    
   

  

  
∫     
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   ∬           ̃       (4.60) 
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where A denotes area of the nanowire. The area element for integration in equation 4.60 can 

be written in terms of radial (transversal) components of phonon momentum by converting 

the Cartesian coordinate to the polar one:  

 

                 (4.61) 

 

The angle, φ, changes from 0 to 2π. Using the same procedure as discussed in [148] the 

electron-LA phonon interaction Hamiltonian matrix element is reduced to equation 4.62 in 

which U stands for Bloch part of the electronic states.  

 

|⟨   
|   |   

 ⟩|
 

  
   

   

| ̃| 

  
|  | ̃| |    | ̃|    (4.62) 

 

   | ̃|  is the Bose-Einstein factor of phonons and it is    
   

     ⁄   for absorption and  

  
 

  

   
      

 for emission of a phonon. With transversal (radial) and longitudinal components 

of phonon wave vectors (qt and qz), the absolute value of phonon wave vector can be written 

as | ̃|  √  
    

 . The structure factor   | ̃|  is defined as follows where m and m’ are 

index of atoms in one unit cell. k1 and k2 denote the electron wave vector (momentum) of two 

different states and rm is the coordinate of m’th atom.  

 

  | ̃|  ∑|       |
 |       |

 

 

 

 ∑                    
         

              
   ̃   

        (4.63) 

 

It is assumed that there is no overlap between the atomic orbitals of two neighboring unit 

cells i.e. the orbitals which belong to the same atom can have nonzero overlapping 

(interaction). The coefficients, C1m, are the elements of the nanowire Eigen state (Norbit × 1 

vector) at k1 and as explained before they contain 10 numbers corresponding to orbitals of Si 

atom with index (m). In this work a different method tis used to implement   | ̃|  which is 

simpler than equation 4.61 (which is used in [148]). In Appendix D it is shown that both 

methods return the same value regardless of apparent differences. 

Inserting equation 4.63 in equation 4.62 and using the result in equation 4.57 yields: 
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                      (4.64) 
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Using the linear dispersion of LA phonon we may write:  

   
 

   

    
∭
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(4.65) 

 

Further simplification of equation 4.65 results: 
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Since |          |  is the only term which depends on  , therefore the integration over   

can be replaced by          which is          ∫ |          |   
  

 
.  
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(4.67) 

 

The precise calculation of scattering rate mandates large number of points in [0,2π] interval 

(Nkz>1000). Now the Dirac delta function can be manipulated as: 

 

 (    
             ̃ )        

            | ̃|  

  (    
 (  

 )      

   
 | ̃| )  

 

   
 (

 (  
 )      

   
 | ̃|)     (4.68) 

 

where we have used δ(ax)=δ(x)/a. Replacing | ̃| with √  
    

  and using Krönecker's delta 

which imposes       
     i.e., 

 

    
                                  (4.69) 

we get, 

 

   
 

  

      

 

   
∬  √  

    
     | ̃|             (
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The integration over    can be simplified more using         
 

|      |
     , where xo is 

the single  root of the function f(x) found by f(x)=0.  

 

| ̃|  √  
    

   
  

   

   
       √ 

     

   
     

         (Since qt > 0)         (4.71) 

 

Equation 4.70 can be simplified further: 
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Recalling that    | ̃|  is only a function of | ̃|. Using equation 4.71 a relation between     

and  | ̃| can be found as follows: 
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Replacing       according to equation 4.74 and using the sifting property of Dirac's delta 

function, equation 4.72 can be reduced to:  
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If we write the integration as a discrete summation over grid points along the 1D BZ, then 

rewriting equation 4.74 reveals how it is possible to single out individual rate (       
  ) 

between a pair of given states. Recalling that          
  we can write: 
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   (4.75) 

 

4.5.2 Electron-LO phonon scattering 

Similar to equation 4.57, the total electron-LO phonon scattering rate can be written as: 
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 ∑        

   ̃   
   ̃      (4.76) 

 

The only difference is that individual scattering rate between    (at indirect conduction sub-

band) and    
  (at direct conduction sub-band), includes LO phonon with wave vector  ̃ and it 

is given by Fermi's golden rule similar to equation 4.58: 
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       (4.77) 

 

The electron-LO optical phonon interaction Hamiltonian matrix element is given as: 
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      (4.78) 

 

Similar to the case of LA phonons,   | ̃| ,    and    are structure factor, Bose-Einstein 

factor and frequency of dispersion-less LO phonon, respectively. Following the same 

procedure given for acoustic phonons, the summations in equation 4.76 can be simplified as 

follows: 
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      (4.79) 

 

The maximum allowable value of phonon transversal component within the BZ of bulk 

silicon which is qc is equal to 1.9π/a [148]. For each value of    which is determined by the 

momentum difference of two consecutive states (i.e.      
    ), there are infinite allowed 

values for transversal component of q within [0, qc] interval. F(k
’
z) is the energy difference of 

initial and final states which is expressed as a function of   
 
 i.e.     

       
   

       
    . To further simplify the integration over     in equation 4.79 the following 

property of Dirac's delta function is used: 
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where  
     

  

   
  

     
  

   
  

     
  

   
  and    are solutions of F(k

’
z) =0 or in another word those 

final states (k
’
z) which satisfy the energy conservation of   (  )         

    . Inserting 

right hand side of equation 4.80 into equation 4.79 yields: 
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where          ∫ |          |   
  

 
. To single out the individual scattering rate i.e. 

       
  , the integration over qz is written in its discrete form and noting that          

  

we have: 
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By interchanging summation over k
’
z and qp we have: 
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  (4.83) 

 

kp are those values of secondary state wave vectors (k
’
z) which satisfy the F(k

’
z) =0. Hence 

corresponding to each kz (initial state) there are a few secondary states (kp) to which electron 

can scatter by absorbing or emitting a LO phonon. And the total rate is simply found by 

adding each individual term according to equation 4.83. Albeit the derivative of     
   can be 

calculated numerically, two methods are introduced in Appendix E may result in semi-

analytic simpler versions of equation 4.83 in case the effective mass approximation is 

applicable.  

4.5.3 Post processing of scattering data for EMC simulation 

The electron-LA phonon and LO phonon scattering rates (both inter- and intra-sub band) are 

implemented in MATLAB according to equation 4.75 and equation 4.83, respectively.  
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For the purpose of EMC study of carrier population’s within indirect sub band, we consider a 

few conduction sub bands starting from the first one. The number of required sub bands is 

determined by the energy distance between them. For example if the N’th conduction sub 

band is more than 3kT (78 meV at T=300K) above the previous N closely packed sub bands, 

it can be discarded and the calculation is focused on the first N sub bands. The same 

procedure is applied to valence sub bands as well when hole-phonon scattering events are of 

interest. Figure 4.9 shows the algorithm or pseudo code of saving individual electron-LA 

phonon scattering rates for initial states within the first sub band (band1). The same method 

can be applied to the case when initial states are in second sub band (band2). 

 

Figure 4.9 Flowchart of saving individual rates for e-LA phonon scattering events. 
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The function “inidv_absorb_emit_sorter” is grouping the individual emission/absorption 

rates and adds them together. Decision is made based on the number of kj (secondary state 

indices) which determines if the secondary state belongs to band1(intra-sub band) or band2 

(inter sub band).  Figure 4.10 shows the concept of the grouping of individual absorption and 

emission rates and sorting them according to inter- or intra-sub band scattering. The 

algorithm behind “inidv_absorb_emit_sorter” is shown in Figure 4.11. The same algorithm 

of Figure 4.9 is applicable to the case of electron-LO phonon scattering (using equation 4.83) 

but special care is required when secondary states are saved in the first loop of Figure 4.9.  

In contrast to LA phonons which have a continuum of energies from 0 to EDebye, the LO 

phonons have all a constant energy of ELO=63 meV. Thus if the criteria to choose the 

secondary state is set to be Ei - 63meV ≤ Ei ≤ Ei + 63meV, there may be cases with no 

phonon due to coarse grid of kz axis. On the other hand by choosing these criteria of Ei - 

63meV±Tol ≤ Ei ≤ Ei + 63meV±Tol, it is possible to find many secondary states close to 

each other within the tolerance window. The function “single k-selector” takes care of this 

problem by selecting a unique index among many closely spaced indices. For example if the 

indices of available secondary states which are sorted in a vector are something like Kindex = 

[17 18 19 25 33 34 35 90 171 172 173 174 175 233], then the output must be Kselect = [18 25 

34 173 233]. 

In differentiating the energy band with respect to kz extra care is necessary to avoid the 

asymmetry problem since numerical differentiation of a N×1 vector is a (N-1)×1 vector. The 

scattering data were calculated at both room temperature and T=77K for an indirect bandgap 

nanowire. Results of EMC simulation and effects of temperature on the population of carriers 

will be discussed in the next chapter. 
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Figure 4.10 Grouping and sorting individual LA phonon absorption (a) and emission (e) rates 

according to intra- or inter-sub band nature of the event. ABS and EM represent absorption and 

emission of phonons, respectively. A subscript like 12 means scattering from band1 to band2. 

 

 

Figure 4.11 Algorithm of grouping and sorting individual LA/LO phonon absorption and emission 

rates. 
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Chapter 5 

Spontaneous Emission Time in Silicon 

Nanowires: Results 

In Chapter 4 the computational methods and algorithms for investigating the strain effects on 

the spontaneous emission in SiNWs were presented. The main results were published in 

Scientific Reports as “ Shiri, D., Verma, A., Selvakumar, C.R. & Anantram, M.P. Reversible 

Modulation of Spontaneous Emission by Strain in Silicon Nanowires. Sci. Rep. 2, 461; 

DOI:10.1038/srep00461 (2012)”. In this chapter the main results are reprinted with 

permission from the aforementioned article followed by more discussions regarding the role 

of Local Field Effects (LFE) on spontaneous emission time, strain induced sub band 

exchange, semi-analytic approximation of 2
nd

 order spontaneous emission time, justification 

of using TB in the band structure calculation and many-body (exciton) effects.  

5.1 Outline 

Our main finding is that a one to two orders of magnitude change in spontaneous emission time 

occurs due to two distinct mechanisms:  (A) Change in wave function symmetry, where within the 

direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large 

change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the 

spontaneous photon emission to be of a slow second order process mediated by phonons. This feature 

uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties 

under any reasonable amount of strain. These results promise new applications of silicon nanowires 

as optoelectronic devices e.g. strain-modulated light emitters or absorbers. Our results are verifiable 

using existing experimental techniques of applying strain to nanowires.  

5.2 Introduction 

Potential advantages of silicon nanowires (SiNWs), such as quantum confinement, large 

surface-to-volume ratio, adjustable bandgap, sensitivity of electronic properties to surface 

ligands and mechanical excitation and compatibility with mainstream silicon technology 

have resulted in a flurry of experimental and theoretical investigations of these nano-

structures. Over the years SiNWs have been explored for use in transistors [1][2], logic 

circuits [3] and memory [4], quantum computing [5], chemical [6]  and biological [7] 

sensors, piezo-resistive sensor [8], nano mechanical resonator [9] and thermoelectric 

converters [10][11]. We are also witnessing the utilization of SiNWs in optoelectronic 

applications, such as in solar cells [12][13], photodetectors [15][14], and avalanche 
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photodiodes [16][17]. The basic properties and applications of Si nanowires are discussed 

further in references [23][24]. Efficient light emission in SiNWs requires direct bandgap and 

symmetry allowed optical transition between conduction and valence states. In other word to 

have a nonzero optical transition matrix element which is defined as  

⟨  | |  ⟩  ∫  
                      (5.1) 

the integrand should have an even symmetry. Ψc, Ψv and r represent conduction band state 

(wave function), valence band state and position operator, respectively. In bulk silicon and 

large diameter SiNWs the conduction band minimum and valence band maximum have 

different values of momentum within the Brillouin Zone (BZ) of the crystal. Spontaneous 

emission of a photon which arises from electron-hole recombination is a momentum 

conserving process. As photons cannot provide the momentum difference in these materials, 

a phonon absorption/emission is necessary, making it a weaker second order process. Vital to 

realizing SiNW-based light emitting devices, narrow diameter [110] and [100] SiNWs are 

direct bandgap. This arises from folding of four degenerate indirect X conduction valleys of 

bulk silicon into the BZ center (Γ point) due to confinement in transverse directions [150]. In 

addition to direct bandgap, the possibility of adjusting the bandgap with mechanical strain 

provides a new degree of freedom for SiNWs. Computational studies using both tight binding 

[151][117][152] and Density Functional Theory (DFT) [153][118][111][134] have shown 

that axial strain changes the bandgap of narrow SiNWs. Additionally it causes direct to 

indirect bandgap conversion.  

On the experimental side, recent research points to promising directions for applications 

involving strain in nano-structures. For example, strain that is generated by an acoustic wave 

can modulate the energy levels of an artificial atom (quantum dot) and initiate lasing inside a 

Fabry-Perot device [103]. Similarly, the energy levels of a phosphorous atom embedded in a 

SiGe super lattice can be modulated by acoustic waves travelling back and forth in the super 

lattice [154]. There is evidence of modulation of threshold voltage in a transistor by 

transverse as well as longitudinal strains applied to the SiNW-based channel [99]. Carrier 

mobility enhancement due to residual tensile strain from the oxide layer in Gate-All-Around 

(GAA) 5nm thick SiNWs have been reported [2]. He and Yang [8] have reported a large 

diameter (d) SiNW (d>50nm) bridge in which the piezo-resistivity is varied by deformation 

of the substrate. Deforming an elastomeric substrate can apply ±3% strain to the buckled 

SiNWs grown on the substrate [97]. Strain induced by the cladding of SiNWs causes a blue 

shift in the UV Photoluminescence (PL) spectrum [59]. Similarly the observed red shift in 

the PL spectrum of 2-9nm thick SiNWs is also attributed to the radial strain induced by oxide 

cladding [37]. [More examples were presented in the first chapter of the thesis]. 

Motivated by the aforementioned experiments, the scope of our work is to address this 

question: Is it possible to modulate the spontaneous emission time of electrons in SiNWs 

using axial strain? We demonstrate for the first time that applying strain can change the 



 

 83 

spontaneous emission time by more than one order of magnitude. The underlying reasons are 

a change in the symmetry of electronic wave functions and a change in the nature of the 

bandgap (direct or indirect), with strain. Qualitatively we might expect that converting direct 

bandgap to indirect bandgap hinders light emission from a SiNW because the emission of a 

photon is now a slow second order phonon-mediated process. We use DFT and TB methods 

to quantify the change of spontaneous emission time (see Methods section or Chapter 4 of 

the thesis). 

5.3 Results 

The cross section and electronic structure of an unstrained 1.7nm [110] SiNW are shown in 

Figure 5.1a-b. All SiNWs in this work have direct bandgap at 0% strain (Figure 5.1b), where 

the bandgap is observed to be inversely proportional to the SiNW diameter (d). For example 

the bandgap of 1.26nm, 1.7nm, 2.3nm and 3.1nm diameter SiNWs are 2.24eV, 1.74eV, 

1.58eV and 1.477eV, respectively. The bandgap values are calculated using the tight binding 

framework after the atomic structure of the nanowires is relaxed by DFT. This effect of 

SiNW diameter on the bandgap agrees with experimental results using scanning tunneling 

spectroscopy (STS) [31] and the observed blue shift in PL spectrum of small SiNWs [59]. It 

is also observed that by increasing the diameter of SiNWs the difference between direct and 

indirect conduction band minima (band offset or ΔEcmin in Figure 5.1b) decreases. This 

aspect is important for this work, since it implies a corresponding decrease in the value of 

compressive strain (threshold strain) required to change the bandgap from direct to indirect 

[151][117]. The values of the threshold strain for 1.7nm, 2.3nm and 3.1nm [110] SiNWs are -

5%, -4% and -3%, respectively.  

5.3.1 Direct bandgap regime 

If the conduction and valence states in the center of the 1
st
 BZ are called initial (i) and final 

(f) states, respectively, the spontaneous emission rate or 1/      can be written as 

 

     
 

     

        
   |⟨  | ̂  |  ⟩|

 
                        (5.2)  

where m, e, εo, c, ħ are free mass of electron, magnitude of electronic charge, free space 

dielectric permittivity, speed of light in vacuum, and Planck’s constant, respectively.  nr is 

the refractive index of SiNW, which is assumed to have the same value as of bulk silicon 

(nr=3.44) within the optical spectrum of interest. For all nanowires in this work, the bandgap 

lies in the 1-2eV range, and the maximum change of bandgap due to strain can be as large as 

500 meV (in a strain window of ±5%). Therefore assuming a constant value for the refractive 

index causes up to a 14% change in our calculated results (which is a small effect as we are 

discussing more than an order of magnitude change in τspon). The quantity of ωif is the 

frequency of the emitted photon, which is defined as ΔEif/ħ. Here ΔEif  is the energy 
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difference between initial (i) and final (f) states at the BZ center,  which is the bandgap Eg. 

P
2

if = |<Ψi|ê.P|Ψf>|
2

 is the matrix element of the momentum operator P, between initial 

(conduction) and final (valence) states. Ψi and Ψf are the wave functions of the initial 

(conduction) and final (valence) states. ê is the direction of polarization. The value of 

momentum matrix element normalized to electronic mass, P
2

cv/2m, between conduction (Ψi) 

and valence (Ψf) bands along the BZ is plotted for an unstrained 1.7nm diameter [110] SiNW 

(Figure 5.1c). 

 
Figure 5.1 (a: left) Cross section of a [110] SiNW with the diameter (d) of 1.7nm in xy plane. 

Diameter (d) is defined as average of large (D1) and small (D2) diameters. Right panel shows the side 

view of two unit cells along the length of nanowire (z) with unit cell length of Uc. Dark and bright 

atoms represent Si and H atoms, respectively. (b) Electronic structure of the 1.7nm diameter [110] 

SiNW, which shows direct bandgap i.e. conduction/valence band minimum/maximum reside on the 

BZ center (K=0). Band offset, ∆Ecmin, is smaller for larger diameter nanowires. (c) Normalized 

momentum matrix element, P2
cv/2m (in eV) between conduction and valence band along BZ. Red, 

Blue and green correspond to Z, Y and X polarizations of emitted photon. 
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Corresponding to each direction of photon polarization (x, y and z), there are 3 different 

values for P
2

cv, which in turn leads to three different values for τspon according to equation 

(5.2). As Figure 5.1c suggests, the momentum matrix element corresponding to z-polarized 

photons is significantly larger than the corresponding amounts for x- and y- polarized cases 

at BZ center. This difference manifests itself as a large spontaneous emission rate for z-

polarized photons. This implies that the emitted light from the SiNW is mostly polarized 

along the length of the nanowire. In other words, if the average rate of spontaneous emission 

is defined as τ
-1

avg = τ
-1

x + τ
-1

y + τ
-1

z, then the degree of anisotropy or τavg/τz  has a value close 

to unity. Our approach of neglecting dielectric mismatch is justified because local field 

effects do not cause a significant change in the dielectric function of nanowire for z-polarized 

light [155][156]. This issue is further discussed in sub section 5.6.1. The squared momentum 

matrix element in equation (5.2) is inversely proportional to the area of the nanowire or d
2
, 

which can be explained using the particle in a box model [45][46]. Combination of this effect 

and the bandgap change with diameter results in the direct proportionality of spontaneous 

emission time to the cross sectional area. For 1.7nm, 2.3nm and 3.1nm diameter [110] 

SiNWs, the value of τavg is calculated to be 1.47×10
-7

s, 2.3×10
-7

s, and 4×10
-7

s,  respectively. 

For the SiNWs investigated in this work, the bandgap remains direct for most of the strain 

values in the ±5% range. For 1.7nm, 2.3nm and 3.1nm [110] SiNWs the bandgap becomes 

indirect once the compressive strain reaches -5%, -4% and -3%, respectively [151][117].  

As long as the bandgap is direct, photon emission is a first order process and its rate is 

governed by equation (5.2). The average spontaneous emission times for [110] axially 

aligned SiNWs in this study are tabulated in Table 5.1. As can be seen in Table 5.1, 

compressive strain leads to an increase of spontaneous emission time by one to two orders of 

magnitude. This is due to the movement of sub bands in the compressive strain regime. As 

pictured in the graphics of Figure 5.2a, the rise of the second valence sub band (V2) due to 

its anti-bonding nature is more dominant than the rate with which the first valence sub band 

(V1) rises or the conduction sub band (C1) falls. As a result, V2 determines the new highest 

valence band. The aforementioned mechanism can be further understood by looking at 

Figure 5.2b that shows the normalized probability density (|Ψ|
2
) of conduction and valence 

states at BZ center. Comparing the valence/conduction bands (VB/CB) at 0% and -2% strain 

values shows that the dominant change is due to the valence band symmetry change induced 

by compressive strain (e.g. -2% ). Left panel of Figure 5.2b shows that the newly raised 

valence sub band (V2) has different wave function symmetry as opposed to the centro-

symmetric nature of valence band V1 at 0% and +2% strains. Therefore the matrix element, 

<Ψc|r|Ψv>, changes accordingly and modulates the spontaneous emission time (rate) through 

equation (2). Comparing wave function symmetries of valence and conduction bands at strain 

values of 0% and +2%, as in Figure 5.2b (center and right panel), further illustrates why the 

spontaneous emission time is almost unchanged within this tensile strain regime. Further 
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evidence of strain effect on the wave function symmetry (and momentum matrix element) is 

shown in sub section 5.6.2 where it is explained how the sub band exchange will alter the 

value of matrix element and hence the spontaneous emission time through equation (5.2). 

 
Figure 5.2 (a) Effect of compressive strain on second valence sub band (V2) which results in the 

change of wave function symmetry. From left to right, it can be seen that compressive strain raises 

the energy of V2 faster than it lowers the energy of C2. (b) Normal ized squared value of wave 

function (|Ψ|2) in the cross sectional plane of a 1.7nm [110] SiNW. From left to right strain values are 

-2%, 0% and +2%, respectively. Valence and conduction band states (VB and CB) are at BZ center. 

As can be seen in the left panel (for -2% strain) the change of symmetry is more pronounced for 

valence sub band. 
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Average spontaneous emission time, τavg (s) 

Strain (%) 1.7 nm 2.3 nm 3.1 nm 

+2% 1.49  10-7 s 2.50  10-7 s 3.77  10-7 s 

0% 1.47  10-7 s 2.30  10-7 s 4.00  10-7 s 

-2% 2.32  10-6 s 3.12  10-6 s 6.32  10-5 s 

Table 5.1 Average spontaneous emission time, τavg (s) vs. diameter (nm) of [110] SiNWs.  Although 

all nanowires in these strain values have direct bandgap, the change of τavg with compressive strain 

is mainly due to valence sub band exchange. 

5.3.2 Direct to indirect bandgap conversion 

The second kind of strain induced change of spontaneous emission arises from a direct to an 

indirect bandgap conversion. Figure 5.3a elucidates this mechanism, in which, a compressive 

strain lowers the indirect conduction sub band C2, resulting in an indirect bandgap. Figure 

5.3b-c shows the band structure of a 3.1nm SiNW at 0% and -5% strains, respectively. As 

can be seen in Figure 5.3c the heavy (H) or high effective mass sub-band (C2) has a lower 

energy than the light (L) or low effective mass direct conduction sub band (C1). The energy 

difference between two conduction band minima or band offset (ΔΩ) [Figure 5.3a (right 

panel)] matters in determining the order of phonon-mediated spontaneous emission process. 

As mentioned before, ΔEcmin (Figure 5.1b) is inversely proportional to the nanowire 

diameter. As a result, a large diameter SiNW has a larger value of ΔΩ. For 1.7nm, 2.3nm and 

3.1nm diameter [110] SiNWs, ΔΩ is 21meV, 56meV and 80meV, respectively at -5% strain. 

When ΔΩ is less than the Debye energy of LA phonons (EDebye= 54 meV) many secondary 

states in direct conduction sub band are available to which an electron can scatter from 

indirect sub band by absorbing a LA phonon. Alternatively, when ΔΩ is less than the 

maximum energy of LO phonons, ELO = 63 meV, a few secondary states in direct conduction 

sub band can be found to which an electron can scatter from indirect sub band by absorbing a 

LO phonon. This implies that if the secondary state within the direct conduction sub band C1 

is not at the BZ center, the only possible 1
st
 order transition is due to LA phonon absorption. 

Otherwise both LA and LO phonon absorption processes will contribute in the 1
st
 order inter-

sub band scattering event. The process of finding secondary states can be understood by 

recalling that LO and LA phonons are modelled as dispersion-less and a linear dispersion 

around BZ center, respectively [147].  
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Figure 5.3 (a) Mechanism of bandgap conversion in response to compressive strain is due to lowering 

of C2 sub band. Electronic structure of (b) unstrained and (c) -5% strained 3.1nm [110] SiNW. The 

indirect conduction band minimum of strained case (c) is lower than the direct conduction band 

minimum by ∆Ω=80 meV. This quantity determines the order of phonon mediated process for light 

emission. 

5.3.2.1 First order transition 

Within the regime of small ΔΩ, the spontaneous emission is modeled as two consecutive 1
st
 

order processes as shown in Figure 5.4a (top panel), the first of which is an electron-phonon 

scattering event from indirect sub band minimum to the direct sub band minimum (via 

emission or absorption of a phonon), while the second is a direct transition from conduction 
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band to valence sub band maximum via emission of a photon. With this model, the total 

spontaneous emission rate is limited by the slower of the two processes, which is the optical 

transition. Figure 5.4b shows the inter-sub band electron-phonon scattering rates for electrons 

making transition between the indirect sub band minimum at Kz = 0.8π/Uc  to the direct sub 

band minimum at Kz = 0, where Uc is the nanowire unit cell length. One can observe that the 

scattering rate due to LO phonons is 2 orders of magnitude higher than the scattering due to 

LA phonons. Therefore when the nanowire bandgap is indirect with ΔΩ < EDebye= 54 meV or 

ΔΩ < ELO=63meV, τspon is determined by the slower (optical transition) process. Recalling 

Figure 5.4a (top panel) and the rates given in Figure 5.4b, τspon is calculated by equation 

(5.2). This results in spontaneous emission times that are comparable with that of direct 

bandgap nanowires i.e. in the 10
-5

-10
-7

 second range, depending on the value of P
2

cv. 
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Figure 5.4 (a) Top: Two serial 1st order processes which model the light emission calculation in 

indirect bandgap nanowires with ∆Ω< ELO/LA. Bottom: A model based on a 2nd order process 

presented for calculation of light emission in indirect nanowires with ∆Ω> ELO/LA . (b) Inter-sub band 

(direct to indirect) electron-phonon scattering rate (s-1) versus the energy starting from the bottom of 

direct conduction band (E-Ecmin). As can be seen scattering times for electron-LO phonon and 

electron-LA phonon scattering events are in the order of 1ps and 100ps, respectively. (c) Possible 

second order transitions from indirect conduction sub band to the valence band maximum. As it is 

discussed in the Results section the A→D→C event is less probable than A→B→C. Initial, 

intermediate and final states are represented by i, m and f, respectively. 

 

5.3.2.2 Second order transition 

For indirect bandgap SiNWs in which ΔΩ > EDebye/ELO (e.g. 3.1nm diameter [110] SiNW at -

5% strain), the spontaneous emission is possible through two second order processes that 

correspond to LA and LO phonons [Figure 5.4a (bottom panel)]. The rate of both processes 

is given by second order perturbation theory. Equation (5.3) shows the spontaneous emission 

lifetime of an electron in indirect conduction sub band. The recombination of this electron 

with a hole residing at BZ center is possible through virtual transitions to intermediate states 

Ψm in the first conduction band (via phonon emission and absorption)  
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Here, He-R and He-P are electron-photon (radiation) and electron-phonon interaction 

Hamiltonians, respectively. The innermost summation is over all intermediate states. Indices 

i, m and f correspond to initial (indirect conduction band minimum), intermediate (within the 

1
st
 conduction band) and final (within the last valence band) states. Ψi , Ψm and Ψf are Bloch 

states of initial (i), intermediate (m) and final (f) states, respectively. As shown in Figure 

5.4c, this transition is possible through two processes of A→B→C and A→D→C. The 

process of A→D→C is not included in equation (3) since for D→C transition, the 

denominator of the inner most terms i.e. Ei-Em is large (>3eV). Hence the contribution of 

A→D→C processes is negligible. Two outer summations are performed over phonon wave 

vector and branches (q, λ) and photon wave-vector and polarizations (k’, σ), respectively. 

The outermost summation is over all final states within the valence band, which are weighted 

by Fermi-Dirac occupancy written as F(Ef). Dirac and Krönecker delta functions impose 

energy and momentum conservation, respectively. After converting summations to 

integration and calculating the interaction Hamiltonian matrix elements [148][157], the 

following equation results for spontaneous emission time including LA phonon 
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D, ρ and vs represent electron deformation potential (D= 9.5 eV), mass density ( = 2329 

Kg/m
3
) and velocity of sound in silicon (9.0110

5
 cm/sec), respectively [148][157]. ωfm = 

ΔEfm/ħ, where ΔEfm is energy difference between final and intermediate state. PhLA(kf, ki) 

contains integration over all possible transverse phonon wave vectors (qt), Bose-Einstein 

occupancy factors and matrix element of terms like e
iq.r

 i.e. <Ψm|e
iq.r

|Ψi> [see equation 4.49 

in section 4.4 of Chapter 4 for more information]. The electron wave vectors at initial (final) 

states are represented by ki (kf). ∆kf is kz-space grid element (resolution) along the BZ of the 

nanowire. This equation is evaluated numerically. The corresponding equation for 

spontaneous emission time by including LO phonon is given by 
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where a dispersion-less optical phonon energy of ħω0=63 meV has been assumed. PhLO(kf) 

contains integration over all possible LO phonon wave vectors (qt), Bose-Einstein occupancy 

factors and matrix element of terms like e
iq.r

 i.e. <Ψm|e
iq.r

|Ψi> [see Chapter 4, section 4.4 and 

equation 4.56 for more information]. Dop is the electron deformation potential for LO phonon 

(Dop=1110
8
 eV/cm) [148][157]. Ec and Ev represent the energy of conduction and valence 

states at a given wave vector (ki or kf), respectively. 

Equations (5.4) and (5.5) can further be reduced to semi-analytic equations by making a few 

simplifying assumptions. First the momentum matrix element between conduction and 

valence bands can be assumed to be constant around the BZ center (Figure 5.1c). Even if this 

value varies around BZ center, a corresponding drop of off center values of Fermi-Dirac 

factor, F(Ef), makes this approximation plausible. More simplifications are also possible if 

the energy of phonon (e.g. ħω0 in equation (5.5)) is neglected in comparison with Ec(ki)-

Ev(kf)=Egindir and Ec(kf)-Ec(ki)=∆Ω. As a result, equations (5.4) and (5.5) can be reduced to a 

semi-analytic equation as follows 
 

     
            

    
         ∫          

     
(  )    

        

        
                 (5.6) 

where the constant value, Rcv, is the position matrix element between conduction and valence 

state at BZ center. Egdir and Egindir represent the direct and indirect bandgap values, 

respectively.  LO/LA is a proportionality factor that contains all relevant constants as given in 

equations (5.4) and (5.5). The term S
LA/LO

 represents PhLA in equation (5.4) or PhLO of 

equation (5.5) which is multiplied by simplified energy quotient [see equations 4.49 and 4.56 

in Chapter 4, section 4.4]. The results of the semi-analytic method are less than 30% off 

from the numerical method. Details of finding the semi-analytic approximation (equation 

5.6) are presented in sub section 5.6.3.  
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At room temperature (T= 300 K) and EFermi= Evmax, the average spontaneous emission time 

due to LA phonons is τavg=3.4×10
3
 s. Including LO phonons results in τavg=16 s, which 

reveals the strong role of LO phonons in the second order light emission process as well. It is 

noteworthy that increasing the Fermi level or decreasing the temperature will lead to less 

available empty states in the valence band; hence larger spontaneous emission time than 

above is expected. Table 5.2 lists the spontaneous emission time for an indirect bandgap 

3.1nm [110] SiNW at -5% strain for both LA and LO mediated cases. The stronger LO 

mediated scattering governs the indirect light emission process according to Figure 5.4a 

(bottom panel).  Furthermore, the strong optical anisotropy along z direction is evident in 

Table 5.2. 

Spontaneous emission time (s) for indirect bandgap nanowire 

Polarization 
LA phonons 

included 

LO phonons
* 

included 

τx 7.5  10+5 s 3.5  10+3 s 

τy 5.4  10+5 s 1.9  10+3 s 

τx 3.4  10+3 s 16.1 s 

τavg 3.5  10+3 s 16.1 s 

Table 5.2 Spontaneous emission time (s) in a 3.1nm [110] SiNW (at -5% strain with indirect 

bandgap). (*) Role of LO phonons is more significant than LA phonons (100 times more) in 

determining the emission times. 

5.4 Discussions 

Based on the aforementioned results we anticipate that preparing an inverted population of 

electrons in the indirect sub band and the subsequent application of strain may cause efficient 

light emission due to the indirect to direct bandgap conversion. To ensure that there are 

sufficient carriers in the indirect sub band under realistic conditions of multiple sequential 

electron-phonon scattering events and an applied electric field, we have calculated the 

relative occupancy of direct and indirect sub bands using Ensemble Monte Carlo (EMC) 

simulations [158] (for details refer to Methods section or Chapter 4 of the thesis). Figure 

5.5a includes the contributions from the first two sub bands which are less than 4meV apart 

(C1 and C2 are taken together; see the Inset of Figure 5.5a). As can be seen, the occupancy 

shows only a relatively small variation across the electric field range considered. The 

occupancy of the indirect sub bands decreases from approximately 95% at low electric fields, 

to approximately 92% at 25kV/cm. The factor of ~10 difference between occupancies of 

indirect and direct sub bands (Figure 5.5a) suggests that periodically straining a biased SiNW 

can induce population inversion and lasing corresponding to indirect to direct bandgap 
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conversion cycle. The observed increase in the occupancy of electrons in the direct sub band 

at higher electric fields is attributed to the transition of electrons away from the negative kz 

sub bands within BZ as they respond to the electric field. This can be observed in Figure 

5.5b, which depicts the time evolution of the electron distribution function under different 

electric fields. The lack of a significant change in the distribution with electric field is 

primarily attributed to the high electron-phonon scattering rate due to LO phonon emission, 

and is a feature consistent with other small diameter nanomaterials such as single-wall 

carbon nanotubes (CNT) [159], and unstrained SiNWs [160]. This can be understood by 

comparing Figure 5.5b with Figure 5.5c that depicts the total electron-phonon (LA and LO) 

scattering rates for conduction sub bands C1 and C2. Under an applied electric field, 

electrons initially near the bottom of the sub bands gain crystal momentum until they reach 

the peaks associated with the onset of LO phonon emission. This inelastic-scattering event 

prevents electrons from gaining further momentum, and induces the observed behavior in 

Figure 5.5b. 
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Figure 5.5 (a) Occupancy of indirect and direct sub bands vs. electric field for a 3.1nm [110] SiNW at 

-5% strain (indirect bandgap). Inset shows the positive half of the BZ (i.e. k spans [0,π]) with two 

conduction sub bands used in the EMC simulation. (b) Time evolution of the electron distribution 

function under different electric fields. (c) The total LA and LO electron-phonon scattering rates. In 

the legend, C1 and C2 show the initial sub band from which the electron starts to be scattered by 

emission/absorption of LA and LO phonons. 
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To investigate the role of temperature in the aforementioned carrier population analysis we 

have also conducted simulations for occupancy of the sub bands at 77K. It is observed that 

the occupancy of the direct part of the sub bands (near BZ center) at 77K (as shown in Figure 

5.6) is negligible compared to 300K (Figure 5.5b).  The emission of LO phonons for inter 

and intra-sub band scattering events are indeed very strong, and are the dominant players. As 

soon as an electron gains 63 meV of energy, it emits a phonon and makes a transition to 

either the same indirect sub band bottom with a very high scattering rate, or the opposite 

indirect sub band bottom. Because of this very high scattering rate, electrons do not gain 

enough energy to make a transition to the direct sub band bottom.  

 

Figure 5.6 Time evolution of electron distribution function under different electric fields at low 

temperature (T=77K). The distribution function is calculated by Professor Amit Verma [149] using 

the scattering data calculated by the author. 

Also there is another mechanism at work which depletes the direct subband from carriers at 

T=77K. As it is shown in figure 5.7, the transition from direct subband to indirect occurs 

through two LO emission events (AB and AC in Figure 5.7). This is because the rate of 

electron-LO scattering is at least two orders of magnitude larger than electron-LA phonon 

scattering. At T=300K, the direct to indirect transition (AB and AC) or vice versa (BA and 

CA) are almost symmetric since the emission (direct to indirect sub band) and absorption 

(indirect to direct sub band) have almost the same transition time (10
-11

 s) according to Table 

5.3. Although electrons at B and C can thermalize by LA emission and reach to the indirect 
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sub band bottom, however LO absorption processes are still stronger than e-LA emission 

event (at T=300K). 

 

Figure 5.7 Direct to indirect transition through LO phonon emission (AB and AC transitions) 

followed by LA emission to reach to the indirect sub band bottom. 

 

On the other hand at 77K the LO absorption rates drop by 3 orders of magnitude (1/rate=10
-8

 

s) while emission rates have still the same order as 300K case i.e. 1/rate=10
-11 

s. This 

asymmetry means that electrons have more chance to escape from direct sub band and reach 

indirect subband (through B and C and LA emission) rather than the reverse. The asymmetry 

between LO absorption (BC, BA) and LO emission (AB and AC) transition rates is evident 

in Table 5.3.  

Another non-radiative effect which matters in studying the carrier population is the Auger 

recombination which can deplete the indirect sub bands. However photoluminescence study 

of SiNWs with a diameter of 3.3nm±1.6nm, as a function of temperature and optical pump 

intensity has shown [66] that the fastest Auger recombination time can be 19 μs. Since this 

time is much more than the electron-phonon scattering times that we deal with, we have 

neglected the Auger recombination effect in our work.  

 

Direct to indirect sub band transition rates 

Temperature A B A C B A C A 

T=300 K  9.7  1010 sec-1 1.5  1011 sec-1 6  1010 sec-1 6  1010 sec-1 

T= 77 K  8.8  1011 sec-1 1.4  1011 sec-1 4.6  108 sec-1 4.9  108 sec-1 

Table 5.3 Electron-LO phonon scattering rates for direct to indirect sub band transitions at two 

different temperatures. A, B and C states are introduced in Figure 5.7. Note that the transitions 

through LO phonon emission (AB and A C) are almost unchanged at both temperatures. 
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Finally we speculate on how the idea of strain-modulated spontaneous emission time can be 

developed for SiNWs. There are many examples of recently implemented platforms and 

methods to apply strain to a single CNT. Piezoelectrically driven table [94], pressure driven 

deformable substrate [96] and applying force by an atomic force microscope probe [91] are 

among the methods of generating mechanical strain in CNTs. Additionally there are 

examples of using a deformable substrate to modulate the energy band diagram of 

piezoelectric zinc oxide nanowires via strain [161]. Embedding SiNWs on plastic [6], 

elastomeric [97] and metallic deformable substrates [8] all show that our results are verifiable 

using existing methods. It is also advantageous that the direct to indirect conversion and the 

resulting modulation of spontaneous emission time is a reversible process. However the 

strain value which results from embedding SiNWs in silicon dioxide
 
or nitride shell is 

unchangeable. The observed population difference in Figure 5.5a and 5.6 leads us propose an 

experiment to observe population inversion and lasing in SiNWs (Figure 5.8). If we assume 

that an indirect bandgap SiNW (under compressive strain) is biased under a moderate electric 

field, there will be a larger population of electrons in indirect sub band (Figure 5.8a). After 

releasing the strain (or applying tensile strain) to make the nanowire direct bandgap (Figure 

5.8b), the population which is still significant can scatter to the direct sub band (within 

picosecond time scales) and stimulated emission takes place, provided that suitable feedback 

and gain mechanisms have already been designed for such SiNW. It is noteworthy that 

although strain may cause changes in optical properties of silicon quantum dots, electrical 

injection and reversible application of strain are practical issues which render the usability of 

silicon quantum dots difficult.  
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Figure 5.8 (a) Injecting current in a compressively strained nanowire (top) which has an indirect 

bandgap (bottom) can generate an initial population in SiNW. Although non-radiative processes may 

deplete this sub band of most of those injected carriers, there will still be a factor of 10 difference in 

the electron occupancy between the indirect and direct sub bands. (b) During strain release or when 

applying tensile strain (top), the initial population can scatter into the direct sub band via electron-

phonon scattering processes within picosecond time scale. Thereafter (bottom) the inverted 

population can initiate lasing (coherent stimulated emission) if the nanowire is already embedded in a 

suitable mode enhancing cavity. In the case of incoherent (spontaneous) emission the light has a 

broader spectrum suitable for light emitting diode (LED) applications. Similar set up can be devised 

for light absorption (i.e. photocurrent) modulation using strain. 

In summary, we found that the spontaneous emission time can be modulated by more than 

one to two orders of magnitude due to strain via two distinct physical mechanisms, a feature 

that is not observable in bulk silicon crystal. To more accurately take into account the 

excitation of carriers from the indirect to direct conduction bands via multiple phonon 

scattering, we have simulated the nanowire via Ensemble Monte Carlo simulations at room 

temperature. We found that non-radiative scattering events deplete the initial population of 

carriers from the indirect sub band. However under moderate electric fields there is still a 

factor of 10 difference between indirect and direct sub band occupancies. This is of 

significance when we consider a nanowire device in which lasing and population inversion 

can be inhibited or initiated by periodic application of axial strain. A similar scheme can also 
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be proposed to modulate the photo-absorption of narrow SiNWs, either due to wave function 

symmetry change or direct to indirect band gap conversion. Change of wave function 

symmetry can potentially induce large nonlinear optical effects in nanowires in response to 

strain [87][88] which merits a deeper study. While the calculations are performed for silicon 

nanowires, similar phenomena should exist in nanowires made out of other material systems. 

5.5 Methods 

This section can be skipped if you have already studied Chapter 4. The nanowires in this 

work are cut from bulk silicon crystal in [110] direction and dangling silicon bonds on the 

surface are terminated with hydrogen atoms (Figure 5.1a). The diameters of the nanowires 

range from 1.7nm to 3.1nm. The cross section of nanowires lies in the x-y plane, and z is the 

axial direction of each nanowire. The relative stability of [110] direction compared to [100], 

which is quantified as free energy of formation [27], is experimentally verified [31][26]. 

Energy minimization of nanowires is performed by Density Functional Theory (DFT) 

method within SIESTA
®

 [136] (version 3.1) using Local Density Approximation (LDA) 

functional with Perdew-Wang (PW91) exchange correlation potential [126]. Spin polarized 

Kohn-Sham orbitals of double-zeta type with polarization (DZP) have been used. The 

Brillion Zone (BZ) has been sampled by a set of 1140 k points along the axis of the 

nanowire (z axis). The minimum center to center distance of SiNWs is assumed to be at least 

2nm to avoid any interaction between nanowires. Energy cut-off, split norm, maximum force 

tolerance and maximum stress tolerance are 680 eV (50 Ry), 0.15, and 0.01eV/Ǻ and 1GPa, 

respectively. The relaxation stops if the maximum absolute value of inter-atomic forces is 

smaller than force tolerance and the maximum stress component is smaller than the stress 

tolerance. The energy of the unstrained unit cell of the nanowire is minimized using 

Conjugate Gradient (CG) algorithm during which variable unit cell option is selected. 

Afterwards, for each percent of strain (ε) the unit cell is relaxed using the constant volume 

chosen by fixed unit cell option. With this option atoms are only free to move within the 

fixed unit cell volume. The result of each minimization step is fed to the next step of 

minimization. The unit cell length (Uc) as defined in Figure 5.1a (right) is updated according 

to the applied strain value ε, i.e. Uc-new= Uc-old(1+ε). The electronic structure is calculated 

within 10 orbital semi-empirical sp
3
d

5
s

*
 tight binding scheme [110]. This is to avoid bandgap 

underestimation due to DFT and diameter sensitive many–body GW corrections. More 

discussions are made in sub section 5.6.4 regarding the justification of using TB instead of 

DFT in the calculation of band structure. 

The orbitals of silicon atoms (i.e. s, p, d and s*) are assumed to be of Slater [142] type in 

which the radial part of each orbital is given by the following equation 

               
 

   

   
        (5.7) 
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where N is the normalization factor and Z is the atomic number. The shielding constant (s) 

and effective quantum number (n
*
) are found using the rules given by Slater [142]. 

To calculate the spontaneous emission life times in direct bandgap nanowires [equation (5.2) 

in the main section], Fermi’s golden rule with first order perturbation theory [146] is used. 

The matrix element of electron-photon interaction Hamiltonian (He-R) can be simplified to 

momentum matrix element, <Ψi|ê.P|Ψf>. This is further reduced to its position representation 

and integrals of type <α(r-Ro)|r|β(r-Ro)>. Here r is the position operator, α and β are atomic 

orbitals of which Ψi and Ψf are composed. These integrals have two parts i.e. Roδαβ + 

<α(u)|u|β(u)> where Ro is the position of the atom. The second part consists of radial and 

angular integration of Slater type orbitals which are both found analytically using Wolfram 

Mathematica
®

 online integrator (http://integrals.wolfram.com/index.jsp). Among 100 

combinations of 10 orbitals, 15 of them have symmetry-allowed nonzero value.  

The first order electron-phonon scattering rates are also calculated using Fermi’s golden rule 

within the first order perturbation scheme [146]. The electron-phonon interaction 

Hamiltonian (HeP) is of deformation potential type for bulk LA and LO phonons. As it is 

stated by M. Nawaz et al [162], taking confined LO phonons into account will reduce the 

scattering rate. Thus phonon confinement does not have an adverse effect on the spontaneous 

emission times calculated for indirect nanowires. Also it is shown that there is only a 10% 

difference in calculated mobility between the cases where bulk and confined phonons are 

used [163]. Details of calculating the electron-phonon interaction Hamiltonian matrix 

elements and scattering rate have been skipped and the interested reader can refer to 

[148][157]. For indirect bandgap nanowires with larger energy offset (i.e. ∆Ω >ELO/ELA), 

second order perturbation method is used in which all interaction Hamiltonian matrix 

elements are calculated likewise. The expressions for spontaneous emission time are 

explained in the main section.  

To further investigate the carrier population statistics of indirect sub bands under the 

influence of electric field and multi electron-phonon scattering events, we use standard 

Ensemble Monte Carlo (EMC) methodology [158]. In setting up our EMC simulation, we 

consider an infinitely long, defect free SiNW with a uniform temperature. The electric field is 

also uniform and directed along the axis of the SiNW. In performing the simulation, 

tabulated values of two lowest conduction sub bands of 3.1nm diameter [110] SiNW with 

indirect bandgap (due to -5% strain) (C1 and C2 in the Inset of Figure 5.5a) are used. For 

each initial state starting from indirect conduction sub band minimum, all possible final states 

within C1 and C2 with corresponding scattering rates for both phonon types (LA/LO) were 

utilized. Both inter- and intra-sub band electron-phonon scattering events have been 

calculated. The rest of the conduction sub bands are not included in the simulation since the 

third conduction sub band is at least 100meV above the first two sub bands (C1 and C2 in 

Figure 5.5a). Electron transport is confined to the first BZ, which is divided into 8001 k grid 

http://integrals.wolfram.com/index.jsp
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points (4000 positive k and 4000 negative k values) and for which the tabulated energy 

values and electron-phonon scattering rates are computed and stored. Electrons are initially 

injected into the SiNW at the bottom of an indirect sub band and the simulation is initially 

executed for 500,000 scattering cycles at 0 kV/cm electric field so as to allow the electrons to 

approach as close to an equilibrium distribution as possible. 

5.6 Addendum 

5.6.1 Local Field Effects (LFE) on the spontaneous emission time 

In the calculation of spontaneous emission time for [110] Si nanowires it was observed that 

there is a strong anisotropy which is induced from the symmetry of wave functions and 

matrix elements. In another language the transition matrix elements of x,y polarized light 

(<Ψc|x|Ψv> and <Ψc|y|Ψv>) are negligible when they are compared to z-polarized case (i.e. 

<Ψc|z|Ψv>). This in turn means that optical transition is stronger when the electric field is 

polarized along the nanowire axis (z).  

Another kind of optical anisotropy is induced from the Local Field Effect (LFE). This is due 

to the change of internal electric field in 1D nanostructure which arises from the form of 

polarization vector, P. As it is shown in Figure 5.9 when the external electric field (Eext) is 

parallel with the axis of the nanowire, depolarization field (Edep) is negligible since it is 

proportional to P/L
2
 where L is the length of the nanowire. In case of perpendicular electric 

field, the induced polarization reduces the local electric field via Edep= -2πP since 

E=Eext+Edep. In both cases the polarization vector is proportional to the external electric field.  

 

Figure 5.9 Effect of external field on the local (internal) electric field when it is parallel (a) and 

perpendicular (b) to the nanowire. 
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To see how LFE will effect on the spontaneous emission times reported in Table 5.1, we 

recall equation (5.1) which shows that the spontaneous emission rate is proportional to 

refractive index and momentum matrix element squared i.e. 
 

 
  |   |

      
 

 
 √ |   |

      (5.8) 

When LFE is taken into account it causes strong anisotropy of dielectric function of nanowire 

which is different from the symmetry induced anisotropy (as mentioned above or as 

discussed in [164]). As it is reported in [155] and [156] dielectric function for parallel 

polarized electric field has no significant change after including LFE. On the other hand 

when the electric field is perpendicular to the nanowire, the absorption edge shifts to higher 

energies (> 4eV) and dielectric permittivity drops significantly. This means that the 

anisotropy due to LFE is stronger than the symmetry induced one (our calculated anisotropy). 

As can be seen in Figure 5.10 since   ||    is almost the same with and without LFE for a 

[110] Si nanowire, it can be said that including LFE for z polarized case does not change the 

spontaneous emission time. 

 

Figure 5.10 Imaginary part of dielectric function for a 2.2nm [110] SiNW. Reprinted with permission 

from [155]. Copyright 2005 American Physical Society.  

On the other hand for perpendicular polarization (x and y), the significant decrease of 

       after LFE inclusion, reduces the x,y-polarized spontaneous emission time. This in 

turn enhances the difference between z-polarized and xy-polarized spontaneous emission 

times only and does not affect the average spontaneous emission times in our results (e.g. 

Table 5.1). This is because the average spontaneous emission times in [110] SiNWs are 

mainly determined by the z-polarized term. 

However in the case of [100] SiNWs the band structure (symmetry) induced anisotropy 

makes the x and y polarized component of the spontaneous emission more dominant. 

Therefore including LFE will enhance the z-polarized component (due to LFE induced 

anisotropy which favors parallel polarization). However the amount of enhancement depends 

on the value of <Ψc|z|Ψv> too. On the other hand the x,y polarized components are reduced 



 

 103 

by the LFE-induced reduction of        as well as internal electric field modification 

according to equation 5.9 which is discussed in [165]. 

     
   

    
      (5.9) 

5.6.2 Sub band exchange due to strain 

As we observed in sub section 5.3.1, the symmetry of the wave function changes because 

different subbands within the valence band are shifted by different energies when strain is 

applied. We now provide further evidence of this by plotting the energy bands of a SiNW at 

two different strain values of -2% and -3%. Figure 5.11 shows the highest two valence 

subbands at -2% strain.  

 

Figure 5.11 Valence subbands of a 1.7nm [110] SiNW at -2% (right) and -3% (left) strains. 

When the strain is increased, these two subbands shift by different amounts. As a result at -

3% they have flipped in order. As can be seen the energy of V2 sub band (for -2% strained 

nanowire) increases and it becomes a new sub band (V1 for -3% strained nanowire). For the 

case of -2% strain the values of momentum matrix element (for both C1-V1 and C1-V2 

transitions) as well as normalized squared value of wave functions for both V1 and V2 are 

plotted in Figure 5.12. As can be seen in the right panel the C1-V1 transition has stronger 

matrix element hence smaller spontaneous emission time. On the other hand C1-V2 

transition is a slower process (left panel of Figure 5.12). 
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Figure 5.12  Right panel: Normalized probability density plot of (V1) and optical matrix element of 

C1-V1 transition for z, y and x polarizations. Left panel:  Normalized probability density plot of (V2) 

and optical matrix element of C1-V2 transition. 

Now we look at -3% strained nanowire in which a flip of V1 and V2 has taken place. As 

shown in Figure 5.13 the role of V1 and V2 has now interchanged i.e. the former V2 (for -

2% strained nanowire) is now determining the strength of C1-V1 transition (after suffering 

from a little change and 180 degree rotation) because it is now working as V1 for -3% 

strained nanowire. Therefore the smaller value of <Ψc|r|Ψv> or optical dipole matrix element 

has resulted. This in turn leads to slower lifetime for C1-V1 in contrast to C1-V2 in which 

V2 is the former V1 (for -2% strained nanowire) which had larger value for z-polarized 

optical dipole matrix element. The difference in the matrix element for states V1 and V2 lead 

to the difference in spontaneous emission times. Note that the conduction band does not 

change in this range of strain values. 
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Figure 5.13  Right panel: Normalized probability density plot of (V1) and optical matrix element of 

C1-V1 transition for z, y and x polarizations. Left panel:  Normalized probability density plot of (V2) 

and optical matrix element of C1-V2 transition. 

5.6.3 Semi-analytic equation for 2nd order spontaneous emission 

Performing the summation over all final states as required in equation (4.49) and (4.56) are 

the most time consuming parts of the spontaneous emission rate calculation. Therefore 

having a semi-analytic expression to reduce the time proves useful. Additionally being able 

to separate the terms corresponding to electron-photon and electron-phonon interaction is 

instructive because these two processes and their roles in the optical quantities of interest can 

be studied separately. It is shown here that how a few simplifying assumptions can yield a 

semi-analytic equation for spontaneous emission time.  

Since the Fermi factor in valence band drops significantly at energies far from the valence 

band maximum (Evmax at kf = 0). Therefore in equations 4.49 and 4.56, the frequency 

term,    , can be approximated by its value at kf=0 which is        ⁄ . The reason of this 
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approximation is that the difference between      and        ⁄  is already masked by very 

small value of Fermi factor far from the BZ center (i.e. at kf > 0 or kf < 0 ) thus      

       ⁄ . For the same reason as above and by looking at the value of matrix element versus 

kz (Figure 5.1c), it is possible to use a constant position matrix element for all kf values 

around the BZ center. Therefore the position matrix element can be calculated at kf = 0 and 

its value through all BZ points can be assumed to be equal to this constant amount i.e. 

|⟨  | ̂|  ⟩|
 

    
  which contains three constant numbers corresponding to x, y and z 

polarizations. Albeit the electron-phonon structure factor,    ̃       is an oscillating function 

of qt, its value remains in the same range for all values of kf i.e. ∫ |  | ̅| |   
  

 
    where 

   is the maximum of structure factor within the range of kf. So this approximation will give 

the worst spontaneous rate i.e. higher rate than the exact numerical one given by equations 

4.49 and 4.56. Additionally the energy of acoustic phonon,      can be ignored as being 

compared with indirect bandgap i.e.          (  )  
             in which         is 

indirect bandgap of nanowire and it is                          . The quantity in the 

denominator of equation 4.46,   (     )        , can be approximated as ΔEcmin. Here 

it can be assumed that the only contribution comes from the phonon which has the minimum 

transversal wave vector i.e.           and          . Starting from equation 4.46, the 

simplification proceeds as follows: 

 

  
           

    
        ∫    (  )    (     )     (5.10) 

 

Where     (     ) is what remains after factoring out         
  from     (     ) in 

equation 4.46.     contains the rest of the constant factors of equation 4.46 and it is: 

    
      

 

            
              (5.11) 

 After expanding     (     ) and  (  ) we have a new equation for indirect spontaneous 

emission time due to LA phonons which is: 

  
           

    
         

 ∫
 

 

        

     

∫
       | ̅|   | ̅| 

              
 

       √  
    

 

        
     (5.12) 
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Figure 5.14 (a) Summation over transversal phonon wave vector, Sqt. Blue and red curves correspond 

to analytic and numerical calculation of form factor at each iteration of kf. Summation is confined to 

[-0.5,05] interval for the sake of visibility. (b) Multiplying by Fermi factor confines the previous 

summation in the region close to kz=0. This calculation is for a 3.1nm [110] SiNW in -5% strain. 

 

Figure 5.14 shows the difference between      and      around the BZ center. As can be 

seen in Figure 5.14b, the difference is reduced once      is shaped by the Fermi factor. 

Although the integration over transversal phonon wave vectors in equation 4.49 and 5.12 are 

different along the BZ (Sqt in Figure 5.14a), however the small Fermi factor for kf>0 and kf<0 

clears the difference. Hence the main contribution comes from the values centered on kf=0 

which are very close in both methods. Further simplification of equation 5.12 is possible if it 

is assumed that phonon energy is negligible compared to ΔEcmin. This results the following 

equation which gives the same order of magnitude for spontaneous emission rate. However a 

factor of 3 or 4 difference is observed due to neglecting       in denominator which was 

            . 

 

  
   

        
    

         
 

      
 ∫

 

 

        

     

∫        | ̅|   | ̅| 
       √  

    
 

        
         (5.13) 

 

For a 3.1nm [110] SiNW which has indirect bandgap in -5% strain, ΔEcmin= 80meV and 

             , therefore the factor of 3 difference can be expected due to neglecting the 

phonon energy. The indirect spontaneous emission rate including optical phonons can also be 

simplified with the same procedure as motioned above. Firstly the position operator matrix 

element and optical frequency can be approximated to be constant and equal to their value at 

BZ center (kf=0) i.e.  
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 |⟨  | ̂|  ⟩|

 
 

     
 

     
      (5.14) 

 

Secondly the energy of LO/TO phonon can be ignored compared to the indirect bandgap 

value i.e.          (  )               (  )         . As a result the nominator 

in equation 4.56 as well as matrix element and frequency can be factored out to yield: 

 

  
           

    
        ∑     

    (  )   

(  (    )           )
     (5.15) 

Where     contains other constant factors in equation 4.56 which is 

    
     

   
 

        
 

 

         (5.16) 

5.6.4 DFT vs. TB (band structure calculation) 

The change of bandgap value with diameter for [110] SiNWs is calculated using TB method 

(Figure 5.15a).  As can be seen by increasing the diameter the value of bandgap decreases 

and shows the same trend as discussed in DFT-based calculations by [166][164]. More 

importantly it follows the same experimental observation using Scanning Tunneling 

Spectroscopy (STS) of [110] nanowires reported in [31].  

 

Figure 5.15 (a) Diameter dependence of bandgap value for [110] SiNWs. (b) Band structure of a 

13nm [110] SiNW (first conduction band and the last valence band are shown only). 

 

It is also expected that by increasing the diameter, the nanowire bandgap approaches to that 

of bulk silicon. This is verified this by calculating that bandgap of a large (13nm diameter) 

[110] SiNW using a sparse tight binding Hamiltonian matrix. Figure 5.15b shows that the 

value of bandgap is 1.17 eV which is very close to that of bulk Si. This further verifies that 
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TB method gives comparable bandgap values and trend as with other many-body calculations 

(expect LDA-based method which suffers from the inherent bandgap underestimation). It 

must be added that many-body GW corrections which are used to shift the bandgap value are 

sensitive to the nanowire radius [164]. Due to these reasons we chose TB method to calculate 

the band structure. With this method we could concentrate on the physics of emission and the 

order of magnitude change that is being looked for due to direct to indirect bandgap 

conversion.  

In addition the tight binding method has been successful in regenerating the bulk band 

structure as well as correctly simulating the boundary conditions i.e. surface passivation. 

Trends of bandgap change with diameter of Si nano-crystals is also agrees with DFT based 

calculations [167]. Justification of using TB in calculating the band structure was further 

made showing that it can successfully reproduce radial strain effect on the PL spectrum of 

SiNWs [37][67].  

5.6.5 Many-body (exciton) effects 

Within sp
3
d

3
s

*
 tight binding scheme and by including the excitons effects Sanders and Chang 

[45] have shown that the emission life time for direct bandgap ideal square cross section 

[100] nanowires changes from 10
-5

 sec to 10
-4

 sec (depending on diameter). Although we 

have not included the exciton effects in our calculations, for [100] Si nanowires with 

comparable diameter, our method yields lifetime values in the same ballpark of 10
-4

sec. It is 

shown in [168] that the excitons decay time for a D=3.3nm [110] Si nanowire is 20 μsec. Our 

single particle tight binding calculations performed for a 3.1nm [110] Si nanowire (without 

DFT-based energy minimization) shows that the emission life time is in the order of 10μsec. 

Furthermore we have observed that there is a significant difference between the momentum 

matrix elements of an idealized nanowire and the one whose energy is minimized using DFT 

method. To find out how does including excitons affect spontaneous emission times we need 

to do comparison for the same set of structurally relaxed (energy minimized) nanowires. 

Works which address exciton effects e.g. [45][168] perform their calculation for idealized Si 

nanowires i.e. those without energy minimization. Therefore it cannot be said precisely if the 

observed difference in the results (e.g. radiative lifetimes) is due to excitons or energy 

minimization. 
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Chapter 6 

Photo absorption in Silicon Nanowires 

Effect of strain on the electronic band structure and light emission of SiNWs were 

discussed in the previous chapters. As mentioned before, the change of wave function 

symmetry and direct to indirect bandgap conversion are two main mechanisms which lead to 

the change of spontaneous emission time in response to strain. The possibility of achieving 

population inversion in silicon nanowires as discussed in Chapter 5 is promising the 

implementation of silicon nanowire-based lasers. Comparing with bulk (3D) and quantum 

well (2D) semiconductors, 1D nanostructures i.e. SiNWs are advantageous due to [169]: 

(a) Less threshold current 

(b) Less sensitivity of threshold current to the temperature 

(c) Less amount of wavelength (color) change with the injected current (lower chirp) 

(d) Narrower gain spectrum due to sharp 1D density of states (DOS) 

(e) Easier tuning of the wavelength by changing the diameter or applying strain 

 

On the other hand interaction of electronic states in quantum dots with the 

surrounding environment poses different problems. For example the emitted photon from a 

quantum dot wanders randomly in frequency [170]. This causes spectral broadening as well 

as random on-off (blinking) of the mitted light in the time domain [171]. Motivated by the 

aforementioned studies, the main goal of this chapter is the computational study of photo 

absorption in SiNWs and its dependence on parameters like diameter, crystallography and 

strain. Due to the equivalence of the stimulated emission rate and absorption rate i.e. 

(Rstim=Rabs), this study will automatically lead to the calculation of gain spectrum in SiNWs 

as well. It is noteworthy that the study of photo absorption in SiNWs is the first step to move 

to the next level of including nonlinearities (e.g. multi-photon absorption) and investigating 

the possibility of enhancing the nonlinear susceptibilities in SiNWs by strain (see future work 

in Chapter 7).  

In this chapter we start from the quantum mechanical formulation of the dielectric 

function of semiconductors and reformulate it for a nanowire by including 1D Joint Density 

of States (JDOS) and using tight binding wave functions for conduction and valence states of 

SiNWs. The reasons of choosing TB method in our studies have been already discussed in 

sub section 5.6.4 of Chapter 5. It is noteworthy again that bandgap underestimation in DFT 

makes direct comparison of absorption of SiNWs with that of bulk silicon less 

straightforward. On the other hand TB has already shown success in reproducing the band 

structure of bulk silicon as well as the experimental shift of PL spectrum due to strain 

[37][67]. 
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The absorption spectrum can then be found using both real and imaginary parts of the 

dielectric functions. The real part of the dielectric function is calculable from the imaginary 

part using Kramers-Krönig integrals. Also using the effective mass approximation (EMA) 

significantly increases the calculation speed in contrast to the fully numerical approach. After 

it is shown that both methods have agreeable results, the effect of diameter, photon 

polarization, crystallography, and axial strain on the photo absorption of SiNWs are 

investigated.  

In this work we have not calculated the phonon-assisted absorption spectrum in 

indirect bandgap nanowires. Hence the effect of strain on the absorption arises due to the 

change of wave function symmetry only and not due to direct to indirect bandgap conversion. 

Calculating the absorption in indirect bandgap semiconductors has been already discussed in 

the literature for example in [146][172][173][174]. Also a recent DFT study reports the 

calculation of absorption spectrum (phonon assisted part) in bulk silicon using the second 

order perturbation theory [175]. In this chapter the DFT method implemented in SIESTA 

package is used to calculate the direct part of the absorption spectrum of bulk silicon. A 

comparison is then made with the TB result as well as experimental data. Next it is shown 

how to adapt the photo absorption formulations to calculate the optical gain in SiNWs. This 

proves useful in obtaining the first estimation of lasing parameters for a SiNW-based laser.  

This chapter is organized by starting from the review of methods, reformulating the 

numerical and semi-analytic absorption for SiNWs and calculation of bulk silicon absorption. 

The second part contains the results and discussions. The third part is devoted to the 

formulation of optical gain for a 1D nanostructure. The fourth part introduces the 

experimental methods of measuring the absorption in nanowires. 

6.1 Methods 

Calculation of the absorption is closely related to the calculation of dielectric function of the 

material. In macroscopic point of view this quantity is generally a tensor which relates the 

displacement vector (D) and the applied electric field (E) through: 

 

                            (6.1) 

 

For anisotropic solids (non-cubic crystals) the non-diagonal elements of εαβ are nonzero. ω 

and q are frequency and wave vector of the AC electromagnetic field. In addition to the 

above constitutive equation, the electric field can induce a current density (J) in the material 

through the following equation: 

 

         
  

  
                                     (6.2) 
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δαβ represents a diagonal unit matrix (tensor). The above macroscopic equation is used in 

conjunction with the perturbation theory to find the dielectric function of the material 

microscopically. Therefore knowing the band structure of the material and all electronic 

states are necessary. Quantum mechanical treatment of dielectric function of solid was first 

demonstrated in [176][177] and [178]. Later this method was used for calculation of optical 

properties in bulk copper [179] and silicon nano crystals [180]. Here the procedure presented 

in [178] is introduced briefly because of its instructive value. In this method the single 

particle Hamiltonian of the periodic solid is perturbed by time dependent magnetic and 

electric potentials i.e. A(r,t) and V(r,t), respectively.  

 

   
 

  
   (

       

 
)                     (6.3) 

 

The unperturbed periodic potential of the atoms in crystal is shown by U(r). Since the typical 

laser powers used in the PL studies (see Chapter 1) is in the kW/cm
2
 range it is possible to 

ignore the nonlinear perturbation terms i.e. A
2 

, and retain the linear terms only. The response 

of the electrons in the solid to the perturbations manifests itself as the change of charge and 

current density i.e. ρ(r,t) and J(r,t), respectively. It is noteworthy that since the charge and 

current density are related through the continuity equation, div.J+∂ρ/∂t=0, calculation of both 

quantities is not necessary i.e. finding ρ(r,t) is sufficient. 

The next step is using the Liouville equation which describes the time evolution of the single 

particle density matrix ( ) according to:  

 

    
  

⁄         (6.4) 

Density matrix formalism is explained in section 1.7 of [169]. In this formalism the 

expectation value of a given operator (observable), A, can be calculated simply using 

<A>=Trace (  ). Equation 6.4 can be linearized with respect to A and V by writing the 

density matrix as         where the first and the second term correspond to the 

unperturbed and perturbed density matrix, respectively. The unperturbed part is already 

known from the following equation: 

 

  |  ⟩         |  ⟩    (6.5) 

 

The Fermi-Dirac factor is shown as f0. k and l represent the electron wave vector and 

quantum number (band index) of the unperturbed electronic state i.e. |  ⟩ which is given as: 

|  ⟩  
 

√ 
             (6.6) 
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V is the volume of the crystal and     shows the cell-periodic part (Bloch part) of the 

electronic state.  Having the first order perturbed part of density matrix (  ), the induced 

charge density can be found using: 

 

                      
        (6.7) 

 

   
     is quantum mechanical charge density operator given as    

              where 

e and re represent charge of electron and its position in the crystal, respectively. Inserting   

into equation (6.4) and multiplying it from right (left) by  |  ⟩  (⟨      |) make it possible 

to find    and          , subsequently. The quantum number of the new state is shown by l’ 

and the wave vector change of electron is due to the photon which has the wave vector of q. 

Using           and continuity equation the value of           is known at this stage. Finally 

ε(q,ω) can be calculated using constitutive equation of (6.2) by knowing          .  

If it is assumed that the wavelength of the incoming light is larger than the unit cell length 

(Uc) of the solid (λ>>Uc), then it can be said that q=2π/λ is zero and the dielectric tensor is 

given as: 

 

         
     

     
    

     
∑

|⟨  | |   ⟩|
 
  ( 

   
)        

                                  (6.8) 

 

N is the number of unit cells in the crystal and η is the broadening factor.  

In the process of obtaining equation (6.8) the local field effect was ignored i.e. it was 

assumed that there is no distinction between macroscopic and microscopic potentials and 

electric fields. Otherwise a microscopic potential, V
ind

(r, t), is induced from the macroscopic 

excitation which is V(r, t). Hence before starting the previous procedure (e.g. equation 6.7), 

V
ind

(r, t) must be first calculated from V(r, t) using perturbation theory. Later on V
ind

(r, t) 

enters the main procedure as a new perturbation (as if LFE was not included). In addition to 

ignoring LFE and assuming a linear response, the following assumptions are made before we 

proceed to the next stage. 

 

(a) Nanowire is assumed to be an isotropic media i.e. D is always parallel with E. 

This is because for cubic crystals like silicon the dielectric tensor is isotropic. 

(b) Although equation (6.8) is general and it includes both intra and inter sub band 

transitions, however inter subband transitions are considered only for SiNWs. 

This is because the bandgap of SiNWs is large and at room temperature the 

conduction band is empty. Hence l and l’ span valence and conduction sub bands, 

respectively. On the other hand for materials like Bismuth the bandgap of 
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nanowire is 123meV which means the conduction band has significant number of 

electrons and transitions like C1 to C2 and C1 to C3 etc. are possible.  

(c) Due to (b)           and            which means that the conduction band is 

empty and the valence band is full. This is equivalent of assuming T=0 K for 

SiNW too. The absorption which is calculated by this assumption is called 

intrinsic absorption.  

Finding the imaginary part of ε(0,ω) (equation 6.8) is straightforward. Converting CGS to SI 

unit (multiplying to 1/4πε0) and using the Lorentzian approximation of Dirac’s delta function 

(equation 6.9), results in equation (6.10) which is also used in [45][181]. 

 

               
 

 

 

                    (6.9) 

          (      )  
   

       
∑ |⟨   | ̂  |    ⟩|

 
                    (6.10) 

 

 ̂ is a unit vector parallel with the photon polarization and ϵ0 is dielectric permittivity of 

vacuum. As already discussed in Chapter 4, the momentum matrix element can be converted 

to its position representation. 

6.1.1 Numerical Method 

The one dimensional band structure of SiNW allows more simplification of the equation 6.10 

for numerical calculation. In case of nanowire, k is a 1D vector along the axis of the SiNWs 

(z axis) i.e.     ̂ and summation over k is reduced to: 

 

∑      
   

   ∫    
     

   (6.11) 

 

Where Lnw is the length of the nanowire and extra factor of 2 takes the spin degeneracy into 

account. Let Ecv(k) = Ec(k) – Ev(k) (note that l and l’ are now replaced by v and c). Now 

Dirac’s delta function can be expanded using the roots of the following equation:   

 

                 (6.12) 

As a result we have: 

             ∑
        

|
       

  
|

     (6.13) 

 

Using equation 6.13, the dielectric function (equation 6.10) can be written as:  

 



 

 115 

      
  

    
      

∑ ∫ |⟨  | ̂  ̅|  ⟩|
 ∑

        

|
       

  
|

     
       (6.14) 

 

By interchanging the integration and the last summation and using the sifting property of 

Dirac's delta we may write: 

 

      
   

    
      

∑ ∑
|⟨  | ̂  ̅|  ⟩| 

|
       

  
|
      

              (6.15) 

 

Where Anw is the cross sectional area of the nanowire. Corresponding to each polarization 

direction (ê = x, y, z) there are three values for dielectric function. After calculation of the 

band structure and Eigen states with sp
3
d

5
s

*
 tight binding method (see Chapters 2 and 4), all 

possible combinations of valence to conduction transitions (i.e. Ecv and corresponding matrix 

elements ⟨  | ̂  ̅|  ⟩ are found for all given k values along the BZ. The method of 

implementing equation 6.15 is depicted in Figure 6.1 for an example of a band structure 

having 2 and 3 valence and conduction bands, respectively. If the nanowire has 2 valence 

bands and 3 conduction bands with 100 points along the BZ (0 to π), then it is required to 

store 600 different values for Ecv and optical matrix element. Now at each value of frequency 

(ω) we search for the number of k points at which Ecv(k) = ħω. According to Figure 6.1 this 

is equivalent to finding how many times the modified band structure i.e. Ecv(k) crosses the 

horizontal ħω line.   

 

 

Figure 6.1 Method of finding the number of available transitions (c and v combinations) 

corresponding to each given photon energy ħω. 

 

In order to calculate the absorption, α(ω), firstly it is required to calculate the extinction ratio, 

κ(ω). The extinction ratio can be expressed in terms of real part and imaginary part of 
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dielectric function i.e. ϵ1(ω) and ϵ2(ω), respectively. Since the imaginary part of dielectric 

function has been already calculated, it is possible to find the real part by applying the 

Kramers-Krönig theorem [169]. We first show how this results in a formulation for ϵ1(ω) 

which is then evaluated numerically. To show this, equation 6.10 is directly inserted into the 

Kramers-Krönig integral as follows:  
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(6.16) 

 

Further simplification is possible using sifting property of Dirac’s delta and converting the 

summation over k vectors to an integration. 

 

    
     

     

     
    

∑ ∫ |⟨  | ̂  ̅|  ⟩|
   

                        

   

          (6.17) 

 

Evaluating equation 6.17 requires three summation loops. The first loop runs over the 

incoming light frequencies (ω’). The second loop runs over all combinations of valence to 

conduction band transitions (cv) and the third loop runs over all discrete k points along the 

BZ (0 to π). After this step both real and imaginary parts of the dielectric function are used to 

find the extinction ratio (κ) and refractive index (n) of SiNW according to: 

 

  √√  
    

    

 
    &    √√  

    
    

 
    (6.18) 

 

The relation between the absorption coefficient and the extinction ration is given as follows 

[169]: 
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   (6.19) 

6.1.2 Semi-analytic Method to Calculate Absorption 

As discussed in the previous section implementing equations 6.15 and 6.17 requires storing 

all combinations of valence to conduction transitions (i.e. storing the corresponding energy 

differences and matrix elements) which renders the fully numerical method very slow. In this 

section a simpler semi-analytic formulation is presented with which a good approximation of 

absorption can be found in a shorter amount of time. The simplifying assumptions are as 

follows: 

Firstly it is assumed that the band structure is of hyperbolic shape with an assigned effective 

mass for each band. Therefore energy of each band can be written in effective mass theory 

formalism as: 
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where μcv is the reduced effective mass of conduction and valence band pair i.e.     
  

   
 

  
    

  

Secondly it is assumed that the optical matrix element around BZ center is almost constant  

i.e. its value does not depend on the electron wave vector (k). As a result for a given 

combination of bands (e.g. ci and vj ), matrix element of transitions at each k value is equal to 

the matrix element value given at k=0 i.e.: 
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With these assumptions, equation 6.15 is reduced to: 
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The summation over kzp is not required here since the horizontal line of ħω always intersects 

each Ecv(k) at one point. The next crossing due to the next Ecv(k) is already taken into account 

in the summation over cv in equation 6.22. This equation can be simplified by replacing k 

with the following value: 
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Where Eg,cv  represents the minimum of Ecv(k) [i.e. Ecv(kz=0)] for the corresponding cv index.  

For example in Figure 6.1, Eg,cv spans six values hence equation 6.23 is reduced more to the 

following equation in which the summation adds the six terms sequentially.  
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Implementation of the above equation requires two nested loops. The first runs over photon 

energy values, ħω, and the second runs over all different combinations of conduction and 

valence band (cv) with their corresponding energy difference and optical matrix element 

given at kz=0 only. Therefore this method is more advantageous over the fully numerical 

method (equation 6.15) if we prove that both methods give reasonably similar results. To 

obviate the singularities at ħω = Eg,cv ,we can use the following approximation by introducing 

a broadening factor of η [45]: 
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   (6.25) 

 

Similar to the method presented in section 6.1.1, the real part of the dielectric function is 

found by inserting equation 6.24 into Kramers-Krönig integral. 
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The right hand side of equation 6.26 can be simplified further using Wolfram Mathematica
®

 

online integrator available in (http://integrals.wolfram.com/index.jsp). However in this work 

we have used the code which is available from [182]. This code receives ϵ2(ω) as an input 

vector and directly applies Kramers-Krönig integral to return ϵ1(ω) as the output vector. 

Calculating extinction ratio and absorption are then completed using equations 6.18 and 6.19. 

6.1.3 Direct Absorption in Bulk Silicon 

Comparing the absorption spectra calculated by tight binding and DFT methods, reveals the 

differences between these methods and their degree of success in reproducing the 

experimental data. Although the absorption in the band edge of bulk silicon is of indirect 

nature, here we focus on generating the absorption for those portions of spectrum in which 

direct transition is possible. The indirect (phonon-assisted) part of the absorption spectrum in 

bulk silicon was already calculated by J. Noffsinger et al in [175].  

Since the integration over the 3D BZ of bulk silicon is time consuming, the calculation of 

Eigen states and absorption can be confined to an irreducible wedge as shown in Figure 6.2. 

Since this wedge is 1/48'th of the whole BZ, the calculated quantities within this wedge must 

http://integrals.wolfram.com/index.jsp
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be weighted correctly. The precision of calculation increases by increasing the number of 

points (samples) taken from the wedge. 

 

Figure 6.2 The first BZ of the reciprocal lattice with emphasis on the first octant (solid line) which 

carries: (b) the first irreducible wedge (dashed line). 

 

Calculation of direct absorption in bulk silicon starts with the calculation of Eigen states and 

Eigen energies. In this step a discrete 3D k-space is built by dividing the 3D space of 

(0,2π/a) (0,2π/a) (0,2π/a) into Nx Ny Nz points. The unit cell of bulk silicon is a=5.43 Å. 

Then a search routine is used to find those (kx, ky, kz) from this space which are surrounded 

by the five faces of the wedge given by the following equations [183]: 
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  and          (6.27) 

 

Then Nw triplets of (kx,ky,kz) are found within the wedge which are saved for the next step of 

Eigen state/energy calculation. Forming the 20 20 tight binding Hamiltonian matrix for bulk 

silicon was previously explained in Appendix B. Therefore for each triplet of (kx,ky,kz) 

within the wedge, the total Hamiltonian (equation B1 of Appendix B) is filled and the Eigen 

problem of (Hψ=Eψ) is solved. It is noteworthy that corresponding to each triplet, 20 Eigen 

states and Eigen-energies are found and saved in the structures depicted in Figure 6.3. For 

bulk silicon, the first 4 Eigen-states and energies belong to the valance band and the rest (16 

states) compose the conduction band. Hence there are 64 possible valence to conduction band 

transitions at each given 3D k point within the irreducible wedge.  
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Figure 6.3 Format of saving the states and energies found for Nw triplets of (kx,ky,kz) within the 

irreducible wedge. 

 

Afterwards the equation 6.10 is used to find the imaginary part of dielectric function. After 

replacing the summation over k with 3D integration and using the Lorentzian broadening 

function to approximate the Dirac delta function, we have: 
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where γ is the broadening with the value of 10-20 meV and the element of volume is 

d
3
k=dkzdkydkz. 
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Implementing equation 6.29 requires three loops corresponding to the photon energy (ω), 64 

combinations of sub bands (cv) and Nw values of k triplets within the wedge. The Kramers-

Krönig code given in [182] is used to find the real part of the dielectric function from 

equation (6.29). The total absorption is found by adding three values corresponding to three 

different polarizations (x, y, z). The calculation of ϵ2(ω) with DFT method was implemented 

in SIESTA code. The result were post processed using available Fortran codes (optical.f and 

output.f) to find ϵ1(ω) as well as α(ω). Details of the methods to calculate the absorption 

spectrum can be found in SIESTA manual [136]. 
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6.2 Results & Discussions 

6.2.1 Absorption in bulk Silicon 

Absorption spectrum of bulk silicon is calculated by TB and it is compared with 

experimental data [184] in Figure 6.4. Firstly it is observed that the TB-based absorption 

spectrum starts at 3.42 eV which is consistent with the value of direct bandgap in bulk 

silicon. However DFT-based spectrum starts at a lower value and this is due to the well-

known problem of underestimating the bandgap due to the LDA functional used in this 

method. Secondly the close match between the experimental data and TB and DFT results 

supports the application of tight binding method for studying the light absorption in SiNWs.  

 

Figure 6.4 The absorption spectrum of bulk silicon was calculated by DFT and TB. A comparison 

was made with experimental data provided in [184]. Inset: Imaginary part of dielectric function of 

bulk silicon, (ε2(ω)), calculated by TB and DFT methods 

The low energy tail (E < 3.24eV) of the absorption spectrum which was calculated by TB 

method is the numerical artifact and it has no physical meaning. This arises because the low 
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energy skirts of many Lorentzian functions (last term of equation 6.29) were being added 

together and resulted in a non-zero value. Inset of Figure 6.4 shows the imaginary part of 

dielectric function, ε2(ω), calculated by TB and DFT methods. The results are in close 

agreement. The static dielectric constant for bulk silicon with TB is 10.1055 which is close to 

the experimental value of 11.9 at room temperature [185] and the values reported in [180] for 

different TB methods. 

6.2.2 Comparison of Fully Numerical and Semi-analytic Methods 

Figure 6.5 compares the absorption spectra calculated in the full numerical method (section 

6.1.1) with those in the semi-analytic approach (section 6.1.2) for two different nanowires. 

Using the semi analytic method significantly reduces the calculation time. It is less than 1/10 

of the time compared to the fully numerical method, which takes 1 hour and 8 hours to 

compute 0.5nm and 1.1nm [110] SiNWs, respectively. Since the values of sub-bandgap 

absorption is zero it cannot be shown in logarithmic plots. Also it is evident that smaller 

diameter nanowire (d=0.5nm) has a larger bandgap value than the thicker one (d=1.1 nm). 

 

Figure 6.5 Comparison of the absorption spectra for 0.5nm and 1.1nm [110] SiNWs, calculated by 

fully numerical and semi-analytic methods. 
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In terms of accuracy it is apparent from Figure 6.5 that the semi-analytic approach can 

produce comparable results especially for energy values below 4.5eV. This is because the 

Ecv(k) fit to Effective Mass Approximation (EMA) for this energy range and beyond that the 

curves tend to have different or even negative curvature. However many of the peak 

positions still match even though the magnitudes do not. Overall, the semi-analytic method 

proves useful in quick calculation of absorption spectrum within energy ranges which are 

close to the band edge. Unless specified the absorptions calculated for SiNWs in this chapter 

(within tight binding scheme) are based on the semi-analytic method.  

6.2.3 Anisotropy, Diameter and Strain 

As it was observed in Chapter 5, [110] SiNWs have strong optical anisotropy. This means 

that the optical transition matrix element is stronger when the incident or emitted photon 

polarization is parallel with the nanowire axis. The same effect is observed in the band edge 

absorption spectrum of SiNWs. As Figure 6.6 shows the absorption for z polarized incoming 

photon is 6 orders of magnitude higher than the same quantity for x and y polarizations in a 

1.7nm [110] SiNW. In photodetectors made from SiNWs this effect could make the induced 

photocurrent to be polarization dependent. This can have applications in the detection of 

polarized photons. 
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Figure 6.6 The absorption spectrum of a 1.7nm [110] SiNW for three different polarizations of the 

incoming photon. 

 As it was observed in Chapter 5 the z-polarized matrix elements had stronger role in 

determining the value of spontaneous emission time in 2.3nm and 3.1nm [110] SiNWs. This 

means that the value of absorption for z-polarized photon is also larger for these SiNWs. It is 

also noticed that the absorption is inversely proportional to the diameter of the nanowire, due 

to the decrease of optical dipole matrix element. Change of matrix element with diameter 

(confinement) has been explained using the particle in a box model and it was previously 

observed in the context of spontaneous emission time in Chapter 5. Figure 6.7 depict the 

absorption spectra of 1.7nm, 2.3nm and 3.1nm [110] SiNWs for z-polarized photon, showing 

that the band edge absorption is enhanced by narrowing down the diameter.    

 

Figure 6.7 The absorption spectra of three SiNWs with different diameters (photon polarization is 

along the z axis). 

For the sake of clarity the absorption spectrum in Figure 6.7 is magnified around the band 

edge in order to show the exact difference of 1.7nm, 2.3nm and 3.1nm [110] SiNWs 

absorption. As can be seen in Figure 6.8 the first absorption peak belongs to a 3.1nm [110] 
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SiNW. It has the smallest band edge absorption compared to the rest of the nanowires, 

because of its small matrix element value. Recall from Chapter 5 that one of the main strain 

effects on the spontaneous emission was through the change of optical transition matrix 

element which was in turn due to the change of wave function symmetry. As it was observed 

before, the symmetry of wave functions was almost intact in the tensile strain regime which 

resulted in very close values of spontaneous emission time for this regime. On the other hand 

by entering into compressive strain regime, the spontaneous emission time decreased a few 

orders of magnitude. This is due to the valance band flip which changed the wave function 

symmetry. 

  

Figure 6.8 The magnified section of the absorption spectra around the bandgap energy which was 

shown in Figure 6.7. (Incoming photons are z polarized). 

 

In the context of absorption we surmise that this mechanism can also cause a large amount of 

change in the absorption by entering into the compressive strain regime. Figure 6.9 shows the 

absorption spectrum of a 1.7nm [110] SiNW at -2%, 0% and +2% strain values. As it is 

evident the values of absorption for 0% and +2% strained nanowires are fairly close to each 

other, however for the compressively strained nanowire (-2%) we observe one order of 
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magnitude drop of absorption. This is due to the valence band interchange that was already 

discussed in Chapter 5. The normalized momentum matrix element value for 0% and +2% 

strained nanowires is 15meV while for -2% strained nanowire it is 1.5meV.  This can explain 

one order of magnitude difference between absorption values at 0% and -2% strains.  

 

Figure 6.9 Absorption spectra for -2%, 0% and +2% strained 1.7nm [110] SiNW. (Incoming photons 

are z polarized). 

6.2.4 Bulk silicon vs. SiNW 

Figure 6.10 compares the value of experimental absorption measured by [184] and the 

calculated value of absorption for a 2.3nm [110] SiNW under +5% strain. Since the 

unstrained bandgap of [110] nanowires in this work are more than that of bulk silicon, a 

strained nanowire is chosen for comparison purpose. The nanowire under study has a direct 

bandgap at 1.1eV hence it is expected to observe higher amount of absorption for this 

nanowire as opposed to bulk silicon which has an indirect bandgap at 1.1eV. For this 

nanowire it is assumed that the input light is polarized along the z axis. As it is expected in 

the energy range of 1-2 eV, the nanowire has greater amount of absorption than bulk silicon. 

Within this range the absorption process in bulk silicon is a second order and slow process 

mediated by phonons. Additionally by looking at Figure 6.8 it is evident that at for 1.7nm 
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SiNW at Eg=2eV the value of absorption is 140000 cm
-1

 which is 3~4 times larger than that 

of bulk silicon at the same value energy. 

 

Figure 6.10 Comparison of the bulk silicon absorption spectrum (experimental) with that of a 2.3nm 

[110] SiNW at +5% strain (tight binding calculation) 

6.2.5 [100] SiNW 

Comparing the absorption spectrum of [110] and [100] SiNWs is also instructive since it 

reveals the role wave function symmetry has in determining the anisotropy. As it was 

discussed in subsection 4.2.2 of Chapter 4, due to the even parity of the integrand in position 

matrix element formulation, both x and y polarizations have equal values of matrix element 

in contrast to the z polarized case which has a zero value. This can be observed in the 

absorption spectrum of this nanowire near the band edge. Figure 6.11 shows the absorption 

spectrum of a 2.2nm [100] unstrained SiNW in a wide energy range including the magnified 

portion of band edge area (Inset). As it can be seen on the bandgap value the absorption is 

dominantly determined by x and y polarizations and for the z polarized case the matrix 

element (hence the absorption) value is zero.  
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The same kind of anisotropy was observed by DFT+LDA calculations performed for 

(d~1nm) narrow [100] SiNWs [49] although the bandgap values and diameters of nanowires 

are different. In contrast to the previously observed optical anisotropy for [100] SiNWs, 

another DFT study using GGA functional of PBE type has shown that for a 1.9nm [100] 

SiNW the band edge absorption for x and y polarizations are zero [181]. The nonzero band 

edge absorption for the z polarized light is attributed to the symmetry group of valence and 

conduction states which is of course different from the one presented in [49]. However the 

different anisotropy observed in Yoshioka’s work could be due to inclusion of LFE in DFT. 

As it was discussed in Chapter 5, LFE obscures the anisotropy due to wave function for [100] 

SiNWs. 

 

Figure 6.11 The absorption spectrum of a 2.2nm [100] SiNW. Inset shows that the band edge 

absorption is nonzero for x and y polarized photons while it is zero for z polarized photons. 

6.3 Conditions for optical gain 

So far the focus has been on the intrinsic absorption spectrum calculation in which the 

valence and conduction band are assumed to be full and empty, respectively. However, if the 

nanowire is doped then it is probable to find free electrons in the first conduction band and 
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empty states (holes) at the top of the valence band. The inclusion of the band occupancy in 

the absorption spectrum is possible by modifying equation 6.10 as discussed in [173][169]. 

Here we use the same assumptions that we made in the derivation of semi-analytic formula 

for absorption and continue as follows: 
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where fv(kz) and fc(kz) are the values of Fermi-Dirac factors for valence band and conduction 

band evaluated at kz:  
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Where Efc and Efv are quasi-Fermi levels of n and p doped nanowires in the non-equilibrium 

state. This picture is suitable for a device in which nanowire is of core/shell n/p type or a 

tandem like np doped nanowire. Using equation 6.31 and rewriting Ec(kz) and Ev(kz), we can 

write: 
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The frequency of incoming photon (ωcv) is equal to Ecv/ħ. The position matrix element in 

equation 6.30 is found from |⟨  | ̂  ̅|  ⟩|
  as follows: 
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By expanding the Dirac Delta function using its roots and noticing that the effective mass 

approximation yields only one root corresponding to each hyperbola (i.e. ωk= ωcv), we may 

write: 
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Using equation 6.23 we have: 
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Where Fermi factors in equations 6.32 and 6.33 must be updated by replacing Ec,v(kz) with 

ħωk. The singularity at Ec,v(kz) = ħωk can be avoided in the same manner as explained in 

section 6.1.2. It is also evident that in equation 6.35, the summation over c,v contains all 

combinations of valence to conduction transitions at BZ centre (kz=0).  

The importance of equation 6.36 is in the study of conditions where the optical gain can be 

achieved in SiNWs. As long as                             the absorption is 

positive i.e. the medium is still dissipative. In order to obtain optical gain (or negative 

absorption) in a medium we must have                            . This 

condition implies that                 . The carrier density for transparency 

condition (ntransp) is the minimum density at which the absorption vanishes i.e. α(ħω) = 0 (i.e. 

fv=fc). After this point the absorption becomes negative (amplifying medium) and the 

maximum of the gain increases linearly with injected current density.  

6.4 Measurement of the Absorption 

It is instructive to look at a few methods of measuring the photo-absorption in nanowires 

since they show how successfully the theoretical results match with experiments and 

secondly how they will enable us to extract more useful information about the nanowire 

properties i.e. bandgap value, its temperature dependence, phonon frequencies, plasma 

frequency and carrier densities.  

In the calculation of absorption in this work it is assumed that nanowires have infinite length 

and each nanowire is ideally isolated from other nanowires. It is as if the nanowires are 

closely packed together like an array and there are infinite potential barriers between them 

which hinder the wave function overlapping i.e. tunneling. In reality however the nanowires 

are more separated and the space in between is filled by air, template material in which the 

nanowires are molded or even the oxide layer which have covered the nanowires. In this case 

since the wavelength of the incoming light is larger than the thickness of each individual 

nanowire, it is not possible to linearly subtract the absorption value of the air, oxide or 

template material from the total absorption. Black et al [186] have shown that using the 

inverse of Effective Medium Theory (EMT) makes it possible to extract the absorption of 

Bismuth nanowires molded in an alumina template. Interestingly the calculations based on 

effective mass approximation can reproduce the experimental data. Maxwell-Garnett  (MG) 

EMT states that if the components of a composite system are smaller than the wavelength of 

electromagnetic wave, then the relationship between dielectric functions of guest (nanowire), 

host (template) and composite (nanowire array) can be written as: 
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    (6.37) 

 

Volume fraction or fill factor (FF) is defined as f and K is the screening parameter. To find 

the absorption (or dielectric function) of guest material (nanowire), the absorption of the 

composite (nanowire array) as well as the host (empty template, bare substrate) are measured 

separately. This is performed by measuring the room temperature frequency dependent 

transmission (T) and reflectance (R) using the apparatus explained in [186]. The dielectric 

constant can be found by recalling that refractive index (n) and extinction coefficient (κ) are 

related to the measured R and T according to equation 6.18 and the following equations:  

  
         

               
         

                 (6.38) 

 

Having found εhost and εcomposite and solving equation 6.37 for the unknown value of εguest 

results in: 
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Thereafter the absorption spectrum of the guest material (nanowires) is found. If the 

transmission (T) is very small then the MG EMT method does not work properly. In this case 

the value of T should be extracted from the measured value of R using Kramers-Krönig 

integration. Using MG EMT method it is shown that the bandgap of 40nm thick bismuth 

nanowires is 123meV in contrast to its bulk value of 36meV.  

UV-visible transmission as well as IR reflectance measurement of nanowires can also 

provide more information about the frequency of optical phonons, plasma frequency, free 

carrier density and temperature dependence of the bandgap value. Within the IR range the 

dielectric function can be written as the sum of contributions from optical phonons and free 

carriers [187]: 

ϵ          ϵ    
  

 

      
 

  
    

 

  
        

     (6.40) 

 

Plasma frequency due to free carriers with density of nf  is given as          
    ϵ      

where m* is the effective mass of electrons. ϵ  is the high frequency dielectric constant. Γ 

and γ are phonon and plasmonic broadening (damping) factors, respectively.  

After measuring the reflectance spectrum and looking for maxima and its boundaries it is 

possible to find the longitudinal and transversal optical phonon frequencies i.e. ωL and ωT. 

The band at which the reflectance value is ideally 100% corresponds to restsrathlen (German: 
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“residual radiation”) band and its boundaries are determined by the optical phonon 

frequencies. 

The minimum of reflectivity (equation 6.39) occurs when ε=1. Using equation (6.41) and 

measuring two minima of the reflectance data makes it possible to find ωp and then nf. On the 

other hand nf can be used to calculate the concentration of donors or if it is already known, it 

can return the value of donor ionization energy.  

Figure 6.12 shows the reflectance spectrum measured for a layer of 10nm-50nm thick GaN 

nanowires grown on Si substrate [187]. Measuring the temperature dependence of the band 

edge in UV-visible transmission spectrum and comparing it with the corresponding data for 

bulk material reveals how weak or strong the temperature effect on the nanowire bandgap 

can be.  

 
Figure 6.12  Measured reflectance of GaN nanowires (Inset). The boundaries of the maximum 

reflectance portion of the spectrum correspond to LO and TO phonon energies. The minima are used 

to extract the information regarding plasma frequency. Reprinted with permission from [187]. 

Copyright 2001 American Institute of Physics.  
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Chapter 7 

Conclusions 

7.1 Summary 

In this thesis the electronic and optical properties of SiNWs were studied computationally. 

In Chapter 1 the experimental works related to the light emission from SiNWs were 

reviewed to sketch a bigger picture of the current research trends in this area. This was 

followed by enlisting the main questions of the thesis and the agenda. Then a summary of the 

experiments was presented in order to to show the possibility of implementing a proof of 

concept strain modulated SiNW light emitter.  

In Chapter 2 it was shown that uniaxial strain can change the value and the nature of the 

bandgap in SiNWs. Using TB method it was observed that each 1% tensile strain can cause 

100meV and 80meV change of bandgap value for [110] and [100] SiNWs, respectively. 

Evaluating this for SiNWs of different diameter showed that the value of the bandgap change 

solely depends on the crystallographic direction. This proves the advantage of silicon 

nanowires in contrast to carbon nanotubes (CNT) wherein the bandgap change rate is 

strongly dependent on the chirality and diameter.  

The next observation was that strain can cause direct-to-indirect bandgap conversion by 

raising or lowering the valence and conduction sub bands. Corresponding to this conversion 

there is a 3-4 times change in effective mass of electrons and density of states. This effect can 

be exploited in pressure, force and stress sensors made of a single or an array of SiNWs on a 

deformable substrate. The amount of required strain for such bandgap conversion moves 

toward lower compressive strain values as the diameter increases. This is of practical value 

because for nanowires fabricated by either top-down or bottom-up methods, the diameter can 

be around 5nm or more. Hence it is easier to achieve the bandgap conversion without using 

higher amount of compressive strain which may cause buckling problem. The results of this 

chapter were published in [151] and later in [117]. Later DFT-based studies showed the same 

bandgap conversion for SiNWs [111][118][134]. The quantitative differences in the values of 

strains or bandgap changes with strain can be attributed to the inherent difference between 

TB and DFT methods, but regardless of this, the physics of strain-induced change of bandgap 

is qualitatively the same and method-independent.  

In Chapter 3 a DFT study was performed for germanium nanowires [130] showing that they 

can undergo direct-to-indirect bandgap conversion is achievable in this material as well. It is 

observed that there are two direct-to-indirect conversion points in [110] GeNWs; one in the 

tensile and the other at the compressive strain points. Similar to the trends observed in 

SiNWs, the window of strain values becomes narrower as the diameter increases. The 
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advantage of using GeNWs or alloy Si/Ge nanowires is the possibility of achieving lower 

bandgap values. These values correspond to longer wavelengths (IR) which are suitable for 

application in optical fiber communication systems.  

In Chapter 4 a detailed account of the computational methods, derivations and algorithms 

were presented. Firstly it was shown how to calculate the electron-photon interaction 

Hamiltonian matrix element in the TB framework. Using the first and second order 

perturbation theory, the formulation of spontaneous emission time in direct and indirect 

nanowires was derived, respectively. The method and algorithm to calculate and generate 

matrices containing all possible electron-phonon scattering rates were presented. This chapter 

forms the basis of investigating the strain effect on the spontaneous emission time of SiNWs 

which is the content of Chapter 5. The possibility of changing the spontaneous emission 

time with strain is questioned here based on the observed direct-to-indirect bandgap 

conversion in SiNWs. Since the photon emission in indirect bandgap nanowire is mediated 

by phonons, it is a second order and slow process. It is found that spontaneous emission time 

of direct bandgap Si nanowires (in the order of μsec) can be increased by more than two 

orders of magnitude when the bandgap becomes indirect. The role of both LA and LO 

phonons was studied and it was observed that the role of the optical phonons is 100 times 

stronger than acoustic phonons. 

Another mechanism which changes the spontaneous emission time even in the direct 

bandgap nanowires is change of the symmetry of valence and conduction state wave 

functions which in turn leads to the change of optical matrix element. In order to investigate 

the possibility of using the direct to indirect bandgap conversion in generating a population 

inversion, we performed an Ensemble Monte Carlo (EMC) simulation in collaboration with 

Professor Amit Verma from Texas A&M University-Kingsville [149]. As part of my thesis I 

calculated the electron-phonon scattering rates for intra- and inter-subband scattering events 

by including both acoustic and optical phonons. The EMC calculations were performed by 

Professor Verma. Here we investigated the evolution of electron population under an electric 

field and various temperatures. It is shown that there is a factor of 10 difference between the 

population of electrons in direct and indirect sub bands even though fast electron-phonon 

scattering events scatter the carriers out of the indirect band. The role of temperature in the 

population evolution was investigated as well. Interestingly the dominance of carrier 

population in indirect sub band for an indirect bandgap nanowire is valid at both T=300 and 

T=77K. This proves that a population inversion can be generated in a nanowire under 

compressive strain. Releasing this strain (returning the bandgap to direct) can induce efficient 

direct emission of a photon. Finally an experiment is proposed to generate population 

inversion based upon the aforementioned idea and results [188]. Also a few device ideas to 

performing this experiment were filed as a patent application [189]. This study however is 

not limited to SiNWs. The codes, derivations and methodology which are developed in this 
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thesis can be generalized to other material systems e.g. core/shell nanowires made from Si 

and Ge as well as group III-V material nano systems.  

In Chapter 6 the absorption spectra of SiNWs were calculated using TB method. The effect 

of diameter, optical anisotropy (wave function symmetry), strain and crystallographic 

direction on the absorption of SiNWs was investigated. It was observed that strain can 

change the band edge absorption by at least one order of magnitude due to the change of 

symmetry of wave functions and optical matrix element. The optical anisotropy also 

manifests itself in the different values of band edge absorption corresponding to different 

polarizations of incoming photons. Vital for the application of SiNWs in solar cells we found 

that SiNW can have 100 times larger absorption compared to bulk Si in the same range of IR 

energy (Eg=1.1 eV). This can be of practical importance if we think of matrix of SiNWs 

embedded on a deformable stretched substrate used as a solar panel. 

It is believed that these contributions promise new applications of SiNWs in the realm of 

photonics. It also provides a basis for further theoretical investigation of strain effects on 

photocurrent, nonlinear optical properties, many-body interactions as well as non-radiative 

processes like Auger recombination in nanowires. Strain as a degree of freedom can tailor the 

band structure and Eigen states of a nanowire and provide new insight about the mechanisms 

with which the Auger recombination can be suppressed; the nonlinearity can be enhanced, 

among others. On the other hand it helps experimenters to devise new SiNW-based devices 

or enable them to explain the experimental observations using developed theoretical models 

involving strain effects on optical/electronic properties. 

7.2 Future Work 

This thesis work naturally raises a few questions which merit further theoretical study. In the 

context of population inversion generated by compressive strain, the role of other scattering 

events like surface scattering and non-radiative recombination’s i.e. Auger recombination 

should be evaluated. These effects, if not mitigated, can deplete the indirect sub band of 

electrons before reversing the strain could cause direct light emission. Since the main results 

of the thesis are pivoting around the spontaneous emission time and light absorption in 

SiNWs, I would like to speculate on how Auger Recombination (AR) and higher order 

(nonlinear) absorption e.g. Two Photon Absorption (TPA) can be quantified based on the 

methodology, codes and formulations presented in the thesis and comment on the potential 

hurdles that need to be overcome. 

7.2.1 Auger Recombination 

Auger recombination is a non-radiative mechanism which limits the efficiency of nano-lasers 

and Light Emitting Diodes (LED). Hence understanding of the AR process in nanowires can 

help to come up with ideas of suppressing it and improving the performance of SiNWs-based 
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light emitters. Previous theoretical studies of Auger recombination were only devoted to bulk 

3D semiconductors [190]. There are two recent works which calculate AR time in bulk 

semiconductors using DFT-based method. First Heinemann et al used DFT-LDA scheme to 

calculate the direct inter-band AR of electron-electron-hole (eeh) type in ZnMgO alloys 

[191]. In the second work Govoni et al addressed eeh and hole-hole-electron (hhe) AR 

processes in bulk silicon and GaAs [192]. Using DFT-LDA with quasi-particle (GW) 

corrections to the bandgap value they showed that direct Purely Collisional (PC) AR times in 

n-type silicon and p-type GaAs match with the experimental values. The large discrepancy of 

theory and experiment in the case of p-type silicon and n-type GaAs was attributed to other 

kinds of AR processes i.e. Phonon Assisted (PA) AR which was taken into account in their 

work. PAAR type of recombination was already investigated by Takeshima et al in III-V 

bulk semiconductors using effective mass approximation [193]. Before this, PAAR processes 

in bulk silicon, germanium and GaP were studied using pseudo-potential method [194].  

The close agreement of experimental and theoretical values of AR times for bulk 

semiconductors proves the reliability of DFT-based calculations as well as the validity of 

recombination models assigned to the AR process i.e. eeh and hhe. Such theoretical studies 

have not yet been done for SiNWs. However there are two samples of experiments 

performed to measure the Auger recombination time in III-Nitride [195] and silicon 

nanowires [66]. The measurements are based on excitation-dependent Photoluminescence 

(PL) and time resolved PL spectroscopies. By extrapolation and fitting the experimental data 

to the rate equations, estimated value of Auger recombination coefficient (Ca) was extracted. 

In the case of [195] with large diameter (20 nm<d<50 nm) nanowires, the fitting to bulk 

semiconductors rate equations works well and AR time scales with carrier density (N) 

according to 1/N
2
. On the other hand for narrow diameter (d=3.3±1.6nm) SiNWs of [66], it 

was shown that the best fit is possible only if a two level model is assumed for a nanowire in 

which two excitons recombine. Hence in contrast to eeh and hhe models, the AR time scales 

with 1/N. Computational study of AR process including eeh, hhe and bimolecular (exciton-

exciton) recombination models and comparison with existing experimental data reveals 

which model and under what condition (e.g. temperature, diameter, doping value) is 

dominant in nanowires.  

Evaluating the effect of strain on AR time is also useful in simulating the realistic 

experimental conditions in which SiNWs are fabricated e.g. residual radial and axial strain 

due to cladding material, temperature gradients among others. This will also determine 

whether applying strain (by any of the aforementioned methods discussed in this thesis) can 

be used to inhibit or reduce the AR rate. Figure 7.1 summarizes the strategy of 

computationally investigating the Auger recombination process in SiNWs or any nanowire of 

different material within tight binding and DFT frameworks. Although every exploration 
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may face other unprecedented hurdles and challenges, here a few of the known challenges 

and questions which may arise during this computational study are listed as follows: 

 

 

Figure 7.1 The flowchart of computational study of AR in SiNWs using tight binding and DFT 

methods. 

1- What representation [position (r) or momentum (k)] should be chosen to start with? 
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2- How to resolve the bandgap underestimation issue (selection between scissor operator 

and diameter sensitive many-body GW correction)? 

3- How to perform 4D integrations in k space? (Parallel computing of nested 

summations over k or using a Monte Carlo based integration?) 

4- How to include Local Field Effects (LFE) and how much are they important? 

5- How much is the effect of Coulomb screening on the dielectric function of the 

material? 

6- How much error using bulk phonons will induce in case if confined phonons are 

ignored to avoid complexity? 

7- How much error is introduced if the Umklapp process is ignored? 

8- How to include the effect of dopant atoms on the band structure? 

9- How to include the enhanced coulomb interaction in low doping density regime? 

10- What kind of phonon is dominant in the phonon assisted AR processes?  

Block D of the flowchart (Figure 7.1) contains the aforementioned challenges and questions. 

 

7.2.2 Two Photon Absorption 

Two Photon Absorption (TPA) is a nonlinear second order process involving two photons 

which has already been studied in bulk semiconductors [196][197], SiGe super lattice [198] 

as well as quantum dots [199][200]. The motivation behind this study is twofold. Firstly it is 

known that Si-based Avalanche Photo Diodes (APD) provide higher efficiency (>70%) and 

lower dark current [201]. However the large bandgap in Si hinders using this material for 

photo detection in optical fiber communication systems which are based on long wavelength 

IR (λ = 1300-1600nm). Therefore it is proposed that exploiting TPA process in silicon might 

be a solution to introduce Si-based photodetectors in optical fiber communication systems. 

Secondly enhancing the TPA rate in silicon is useful for solar cell applications. Converting 

the long wavelength portion of the solar spectrum (λ>1000nm) to electron-hole pair is not 

efficient in crystalline silicon solar cells. The photon up converters are mixture of lanthanide 

ion couples (Yb
3+

-Er
3+

) which are added to the solar cells tin order to convert two low energy 

IR photons into a visible (e.g. 530nm) photon [202]. However the efficiency of up 

conversion process is still low (1%) and sophisticated techniques like light focusing (using 

lens or collimator), broadening the lanthanide absorption by sensitization (adding quantum 

dots) and plasmonic effects (using metallic nanostructures) are required which are not cost 

effective. If the TPA process in SiNW shows promising efficiencies it can provide a low cost 

solution for solar cell improvement rather than expensive Lanthanide materials. It can be 

surmised that in the context of two photon absorption, SiNW with its direct bandgap and 

optical anisotropy can show interesting physical effects depending on the polarization of two 

photons and the wave function symmetry.  
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The methods of calculating TPA coefficient can be divided into two main categories: (a) 

Perturbation-based methods and (b) non-perturbative methods. 

7.2.2.1 Perturbation-based methods 

In the first category the TPA can be calculated directly from the second order perturbation 

theory based upon the definition of TPA [197][199]. Here the tight binding method can be 

used to find the Eigen states of SiNW followed by calculation of optical matrix elements 

based on the methods presented in Chapter 4. The second approach in the category of (a) is 

based on the relationship between TPA and the third order nonlinear susceptibility, χ
3
, which 

is defined as follows [203]: 

 

      
 

       
                         (7.1) 

 

where β2, ε0, ω and n are TPA coefficient, dielectric permittivity of the vacuum, frequency of 

the incoming photon and the refractive index of material in the given frequency, respectively. 

This method has been used to calculate TPA in SiGe super lattice [198], silicon cubic 

quantum dots [200] and bulk silicon and ZnSe [204]. With this method, the problem of 

finding TPA is reduced to the calculation of      
   

            and      
   

            

    for degenerate and non degenerate TPA, respectively. Here ω1 and ω2 are signal and 

pump frequency, respectively. Calculation of χ
3 

can be performed based on (i) direct 

definition of χ
3 

and (ii) using DFT method. In the former case (i) the tight binding method is 

used to calculate all matrix elements and summations over the intermediate virtual states, 

frequencies and k values within the BZ (similar to the methods presented in Chapter 4 and 6). 

However it should be noted that the third order nature of the formulation makes the 

calculations very time consuming and provision must be made to speed up the nested 

summation loops over intermediate states. 

DFT-based methods are computationally more advantageous than the perturbation-based 

methods since there is no need to perform time consuming summations over all intermediate 

excited states. On the other hand it is well known that Time Independent DFT (TIDFT) 

method is reliable only at giving the correct ground state of a nano-system. This problem is 

circumvented however by using Time Dependent DFT (TDDFT) method [205]. Calculation 

of nonlinear susceptibilities with DFT is based on the calculation of polarization, P, in 

response to the applied electric field, E. In this method the dipole induced by electric field is 

added as a perturbation,         ⃑⃑   ⃑  to the unperturbed Hamiltonian of the system. 

Therefore this method is not applicable to periodic systems i.e. a nanowire which has at least 

one infinitely long dimension (e.g. z). However if the electric field direction is parallel with 

the smallest non-periodic dimension of the nano-system, some elements of susceptibility 
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tensor can be extracted. For example for a nanowire which is periodic along z direction, the 

polarization, P, can be calculated in response to electric field in x and y (cross section of the 

nanowire) directions [206].   

In TDDFT method after calculation of the ground state at t=0 using Kohn-Sham equations, 

the next sample of time-dependent electric field, E(t), is inserted into the perturbation 

Hamiltonian as             ⃑⃑       ⃑ . Thereafter the electron density is updated self-

consistently at this time step (similar to the time-independent case) and the new P(t) is found 

accordingly: 

 

     ∫                            (7.2) 

 

Here the polarization, P(t), includes all orders of nonlinearity in response to E(t). Using 

Fourier transform, the susceptibilities can be extracted from P(t) as it is explained in detail in 

[205] for  two organic molecules. In TIDFT however the polarization is calculated in each 

DFT step as a function of static electric field. The final result is compared with the Taylor 

expansion of P vs. E to extract the tensor elements of χ
(2)

  or χ
(3)

  with appropriate 

assumptions about the values of x, y and z component of the electric field. Therefore in the 

first DFT step the ground state of nano-system (i.e. an energy minimized nanowire) is 

calculated. In the next steps the structure is clamped to avoid ionic (nucleus) movement. It is 

also assumed that the frequency of interest and its second and third harmonics are smaller 

than the bandgap (Eg) value, so there in no electronic excitation. On the other hand these 

frequencies must be higher than the ionic frequencies to avoid ionic oscillations and quench 

their contribution [207]. Therefore with this method, it is not possible to find the frequency 

dependent value of susceptibilities and what is obtained at the end is a constant number 

which may prove useful since it gives an approximation of the susceptibility value for the 

nanowire under study. 

7.2.2.2 Non-perturbative methods 

This method is based on the Volkov's approach. In contrast to perturbation-based methods in 

which all electronic states are assumed to be of stationary type, in Volkov’s method the 

electron and hole states are dressed by a time dependent electromagnetic potential, A(r,t). 

This method was successfully applied to bulk III-V semiconductors [196][208][209] as well 

as indirect bulk silicon by including electron-phonon interaction Hamiltonian [201].  Using 

effective mass approximation makes this method faster than the perturbation-based methods 

and it can address the degenerate and non-degenerate TPA as well as Raman processes. After 

calculating the TPA coefficient it can also return the values of third order susceptibilities 

using the equation 7.1. 
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7.2.3 Surface Effects 

Effect of the non-passivated surfaces e.g. oxide or nitride termination on the electronic and 

optical properties of SiNWs also matters in determining the performance of SiNW-based 

devices under more realistic conditions. The following methods can be starting steps for 

modeling such effects in SiNWs:  

(a) Generating a unit cell of the nanowire covered by oxide or nitride of a specific 

crystallography. The cladding material should completely terminate all dangling 

silicon bonds on the nanowire surface. 

(b) Performing a DFT-based energy minimization of the unit cell.  

(c) Repeating this relaxed unit cell periodically to generate a nanowire model with oxide 

or nitride surface termination.  

(d) Using tight binding method to calculate the band structure and Eigen states of the 

resultant core/shell nanowire.  

The same methodology as above can be generalized to study the strain effects on the band 

structure of a core/shell Ge/Si nanowire. These nanowires have recently gained interest due 

to their potential application in quantum computing based on the hole-spin qubit [5] as well 

as bandgap tunability due to the added Ge content [124]. 
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Appendices 

Appendix A: Density of States (DOS) Calculation using Surface Green 

Function 

To apply the surface Green function method to a nanowire, three unit cells of the nanowire 

are considered (Figure A1). The first and the third unit cells can be regarded as the left and 

right leads respectively. H21, H22 and H23 are the minimum sub-matrixes that are needed to 

solve the problem. H21 is the TB interaction Hamiltonian between 2nd unit cell and the left 

lead, H22 is the Hamiltonian of the 2nd unit cell, H23 is the interaction of 2nd unit cell and the 

right lead (Figure A1).  
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1 2 3
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Figure A1 (a) Front view and (b) side view of a 0.6nm [110] SiNW terminated with hydrogen. The 

1st and the 2nd unit cell are taken as the left and right leads, respectively. 

 

Using the aforementioned TB interaction Hamiltonians, the total Green function can be 

constructed as shown in equation A1. Definitions and derivations of this equation can be 

found in great detail in [120]. To calculate the Green function, the surface Green functions 

g11 and g33 are found by iteratively solving equation A1.  

 

                                 
      (A1) 

 

Then the density of states (DOS) is given using: 
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Figure A2 (a) Band structure and (b) DOS of the SiNW as shown in Figure A1. 

 

Figure A2 shows the band structure and density of states of 0.6nm [110] SiNW. As can be 

seen the DOS has very large values for those parts of the band structure which have higher 

effective mass (e.g. flat bands). For each energy point along energy axis, g11 and g33 solver is 

called iteratively. The iteration starts using an initial guess e.g. random number matrix and 

convergence achieved when the different between left and right hand side of equation A1 is 

less than a threshold (e.g. 0.01). 
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Appendix B: TB calculation of banstrcture of bulk silicon 

Following the procedure which is given in [121] we can build the tight binding Hamiltonian 

of bulk silicon and germanium by finding the unit cell and suitable translation vectors 

between a unit cell and its neighboring cells. Figure B1 shows the unit cell of Si (a = 5.43Å). 

Four atoms in a tetrahedral section of the crystal are numbered as 1 to 4. If the unit cell 

contains atoms 1 and 2, it has six neighbors as numbered by representative nearest atoms (3 

to 8). Translation vectors d14, d13, d15 are those which connect the Atom1 to its corresponding 

neighbors in three unit cells (i.e. 3, 4 and 5). Therefore the coordinates of other three 

neighbors (6,7 and 8) can be found by applying -d24, -d23 and -d25 to the Atom1.  

 
 

Figure B1 (Right) Crystal structure of bulk silicon (diamond). Atoms 1 and 2 construct a unit cell, 

surrounded by six neighbors. The atoms (3,4 and 5) and (6,7 and 8) are nearest neighbors of the atoms 

2 and 1 respectively (left). Coordinates of atoms 1 to 8 are given in Figure 2.B2. 

 

Figure B2 Coordinate of the eight atoms specified in Figure B1. 
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Based on Figure B1 and B2, the translation vectors connecting each unit cell to its neighbors 

are given as: d13 = (1/2 1/2 0), d14= (1/2 0 1/2) and d15= (0 1/2 1/2). The total tight-banding 

Hamiltonian,    which is a 20×20 matrix can be written as: 

 

          
           

           
           

            
        

    
        (B1) 

 

where    is: 

   (
      

      
)   (B2) 

 

in which 10×10 sub-matrixes are filled using sp
3
d

5
s* Jancu's parameters [110]. For the rest of 

matrixes we have: 

 

     (
  

     )           (
     

  
)                       (B3) 

 

 Equation B1 is solved using the eigenvalue solver in MTALAB


 giving 20 

Eigenvalues and eigenvectors for each point in 3D BZ of bulk silicon or germanium i.e. k = 

[kx, ky, kz].  
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Appendix C: Simplification of the momentum matrix element 

For the general case of crystalline bulk solid or nanowires with a few dimensions comparable 

with the wavelength of light, the momentum matrix element in equation 4.21 of section 4.3 

can be calculated as follows. At each point in the BZ e.g. Ki of Kf, the electronic states can 

be written as: 

|    〉  
 

√ 
                                      (C1) 

 

Where i and f stand for initial and final states respectively, and      represents the wave 

vector of electron in initial and final states and N is the number of unit cells per unit volume. 

The envelope (Bloch function) is periodic with periodicity of am, where m stands for the m
th

 

unit cell in the lattice as shown in Figure C1. 

 

                                           (C2) 

 

Inserting equation C1 into ⟨  | ̂   ̂       |  ⟩ and using the definition of momentum 

operator results: 
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Figure C1 A periodic nanostructure showing two unit cells in am direction and 2 atoms in 

each unit cell (unit cell length = am). 

 

Now the integration in equation C3 is decomposed as a summation over all unit cells (m’s) in 

the crystal and an integration within a unit cell as:  

 

∫        ∑ ∫    
                               (C4) 

 

Now the variables can be changed so that integration is performed on the local coordinate of 

atoms in each unit cell (see Figure C1). Having        ,        and         

      
            

  , equation C3 can be written as: 

 

⟨  | ̂   ̂       |  ⟩  
   

 
∑ ∫   

                       
       ̂  {     

      
      

           
     }                      (C5) 

 

which gives: 

 

⟨  | ̂   ̂       |  ⟩  
 

 
∑                

   

{∫               
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Right hand side of equation C6 can be further simplified because the photon wave vector (k) 

is small compared to electron wave vectors, hence               . Now the 

summation over unit cells (m) can be further reduced to Krönecker’s delta as follows: 

 

 

 
∑                

  
 

 
∑             

  
 

 
         

       
 {

       

              
     (C7) 

 

Hence Ki=Kf which allows for direct transition only (momentum conserving) and the term 

              
 
 is equal to 1. The second term in equation C6 is zero due to orthogonality of 

      and      . Therefore matrix element is given only by the first term in the right hand 

side of equation C6 which is: 

 

⟨  | ̂   ̂       |  ⟩  ∫   
       ̂   ̂     

      
     

 ⟨  | ̂   ̂ |  ⟩   (C8) 
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Appendix D: Matrix element of eiq.r 

The simplification of electron-phonon interaction Hamiltonian matrix element is reduced to 

calculation of terms like  ⟨  | 
    |   ⟩, where ui and uf represent the Bloch part of initial and 

final electronic states, respectively. From now on i and f represent these sates for shorter 

notation. In this work we chose a direct numerical method to calculate the matrix element 

which seems different from the method used in [148] in the appearance. However the 

momentum relaxation rates calculated with our numerical method perfectly matches with the 

momentum relaxation rates given in [148] for the same set of SiNWs. This proves equality of 

the matrix elements calculated with either method.  

To explain the direct numerical method in a simple manner, without loss of generality we use 

a quantum dot with three atoms as the nano-system of choice. Each atom is assumed to have 

two orbitals (s and p) in a simplified exemplar tight binding scheme (Figure D1). 

 

 
Figure D1 Arrangement of atoms and orbitals in a three atomic quantum dot 

 

In this tight binding scheme the initial and final states can be represented by the following 

vectors which results directly from the band structure calculation (or Eigen solver): 

 

| ⟩                                                             (D1) 

| ⟩                                                               (D2) 

 

Now these states can be written in closed form after which we use them in the direct 

definition of matrix element and process analytically. 
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| ⟩  ∑     
 

       
     

                         | ⟩  ∑     
 

       
     

            (D3) 

 

where m and n count the number of atoms and number of orbitals on each atom, respectively.  

The orbital type is represented by   (s and p for n=1 and 2, respectively). rm is the position 

of the m’th atom within the quantum dot. Using equation D3 the matrix element can be 

expanded as:  

 

 ⟨ |     | ⟩  ∑     
  ⟨        |        | ∑  

     
 

          ⟩      

 ∑ ∑     
  

      
     
 

   ⟨        |     |          ⟩                             (D4) 

 

The Krönecker delta is added to enforce this assumption that orbitals of different atoms have 

no overlapping and their contribution to matrix element has to be zero. Therefore equation 

D4 is further simplified as follows. Also it is assumed that different orbitals on the same 

atom have no interaction. 

 

⟨ |     | ⟩  ∑ ∑     
  

  
    
 

    ⟨        |     |         ⟩       

∑ ∑     
  

     
 

 ⟨        |     |        ⟩                            (D5)  

 

The variable of      can be replaced with u which results: 

 

⟨ |     | ⟩  

∑ ∑     
  

           
 

     ⟨     |          |     ⟩ =
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           ⟨     |     |     ⟩                    (D6) 

 

Temporarily we call the last term of equation D6 to be a constant as F(q). Now the second 

summation (summation over m) is expanded.  
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Expanding the summation over n yields: 
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Since the order of q is 2π/a (a is the unit cell length which is much larger than the span of the 

atomic orbitals, u), therefore F(q) can be reasonably approximated as follows: 

 

     ⟨     |     |     ⟩  ⟨     |       |     ⟩  〈     |     〉     (D9) 

 

Rearranging the terms in equation D8 gives the following picture which shows how exactly 

the matrix element can be evaluated numerically without using the method given in [148]. 
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The final result (as shown in Figure D2) can be multiplied to its own complex conjugate to 

give the desired quantity of |⟨ |     | ⟩|  . 

 
Figure D2 Arrangement of tight binding based eigenvectors to calculate the matrix element 

 

The semi-analytic method used in [148] starts from equation D6. Assuming F(q)=1 it can be 

written:  

 

⟨ |     | ⟩  ∑ ∑     
      

 
                           (D11) 

 

Now the quantity of |⟨ |     | ⟩|  is evaluated directly using equation D11: 
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Separating out the terms with m=m’ and n=n’ yields: 

 

|⟨ |     | ⟩|  ∑ |    
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     (D13) 

 

Further simplification of equation D13 results in a quantity as given in equation (15) of 

[148]. Again it is emphasized that using the numerical scheme of Figure D2 or using the 

method of equation D13 results in the same values of electron-phonon scattering rates and 

momentum relaxation rates for the same kind of nanowires. 
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Appendix E: Electron-LO phonon scattering rate in Effective Mass 

Approximation 

In the calculation of electron-LO phonon scattering rate in section 4.5.2 we encountered a 

derivative of sub band energy with respect to kz
'
 (or qz) (for example equation 4.83). Two 

following methods are suggested in case we can use effective mass approximation i.e. when 

the conduction band can be approximated as a parabolic band with the effective mass of    
 : 
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Now the density of state term in equation 4.83 can be replaced with equation E1 to get:  
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In the second method,   
 
 in equation E2 can be written in terms of energy using equation E1: 
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Therefore the derivative with respect to   
 
 is reduced to:  
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Inserting equation E5 into equation 4.83 gives the second formulation for electron-LO 

phonon scattering rate which is: 
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       (E6) 

 

This formulation has two advantages: Firstly it can be easily generalized to the case of 

scattering from indirect conduction sub-band to higher direct conduction sub-bands in which 

effective mass and minimum energies of the former sub-bands must be known. Secondly the 

issue of zero slope in BZ center (Г) which leads to a singularity, can be avoided by 

introducing a broadening as: 
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The broadening γ
2
 can be assumed to be 5meV which is far less than the broadening due to 

LO phonons i.e. ELO= 63meV.  
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Figure 1.8, 1.11a, 2.6b, 2.7b, Source: American Chemical Society (ACS) 
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Adapted reprint of my paper in Chapter 5 Source: Scientific Reports by Nature Publishing Group. 
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Figure 1.3, Source: American Association for the Advancement of Science (AAAS) 
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