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Abstract

A F uzzy Preference Framework for the Graph M odel for Conflict Resolution (FGM)

is developed so that real-world conflicts in which decision makers (DMs) have uncertain

preferences can be modeled and analyzed mathematically in order to gain strategic in-

sights. The graph model methodology constitutes both a formal representation of a mul-

tiple participant-multiple objective decision problem and a set of analysis procedures that

provide insights into them. Because crisp or definite preference is a special case of fuzzy

preference, the new framework of the graph model can include—and integrate into the

analysis—both certain and uncertain information about DMs’ preferences. In this sense,

the FGM is an important generalization of the existing graph model for conflict resolution.

One key contribution of this study is to extend the four basic graph model stability

definitions to models with fuzzy preferences. Together, fuzzy Nash stability, fuzzy general

metarationality, fuzzy symmetric metarationality, and fuzzy sequential stability provide a

realistic description of human behavior under conflict in the face of uncertainty. A state

is fuzzy stable for a DM if a move to any other state is not sufficiently likely to yield an

outcome the DM prefers, where sufficiency is measured according to a fuzzy satisficing

threshold that is characteristic of the DM. A fuzzy equilibrium, an outcome that is fuzzy

stable for all DMs, therefore represents a possible resolution of the conflict. To demon-

strate their applicability, the fuzzy stability definitions are applied to a generic two-DM

sustainable development conflict, in which a developer plans to build or operate a project

inspected by an environmental agency. This application identifies stable outcomes, and

thus clarifies the necessary conditions for sustainability. The methodology is then applied

to an actual dispute with more than two DMs concerning groundwater contamination that

took place in Elmira, Ontario, Canada, again uncovering valuable strategic insights.
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To investigate how DMs with fuzzy preferences can cooperate in a strategic conflict,

coalition fuzzy stability concepts are developed within FGM. In particular, coalition fuzzy

Nash stability, coalition fuzzy general metarationality, coalition fuzzy symmetric metara-

tionality, and coalition fuzzy sequential stability are defined, for both a coalition and a

single DM. These concepts constitute a natural generalization of the corresponding non-

cooperative fuzzy preference-based definitions for Nash stability, general metarationality,

symmetric metarationality, and sequential stability, respectively. As a follow-up analysis

of the non-cooperative fuzzy stability results and to demonstrate their applicability, the

coalition fuzzy stability definitions are applied to the aforementioned Elmira groundwater

contamination conflict. These new concepts can be conveniently utilized in the study of

practical problems in order to gain strategic insights and to compare conclusions derived

from both cooperative and non-cooperative stability notions.

A fuzzy option prioritization technique is developed within the FGM so that uncertain

preferences of DMs in strategic conflicts can be efficiently modeled as fuzzy preferences

by using the fuzzy truth values they assign to preference statements about feasible states.

The preference statements of a DM express desirable combinations of options or courses

of action, and are listed in order of importance. A fuzzy truth value is a truth degree,

expressed as a number between 0 and 1, capturing uncertainty in the truth of a preference

statement at a feasible state. It is established that the output of a fuzzy preference formula,

developed based on the fuzzy truth values of preference statements, is always a fuzzy

preference relation. The fuzzy option prioritization methodology can also be employed

when the truth values of preference statements at feasible states are formally based on

Boolean logic, thereby generating a crisp preference over feasible states that is the same

as would be found using the existing crisp option prioritization approach. Therefore, crisp
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option prioritization is a special case of fuzzy option prioritization. To demonstrate how

this methodology can be used to represent fuzzy preferences in real-world problems, the

new fuzzy option prioritization technique is applied to the Elmira aquifer contamination

conflict. It is observed that the fuzzy preferences obtained by employing this technique are

very close to those found using the rather complicated and tedious pairwise comparison

approach.
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Chapter 1

Introduction

Decision making, in the sense of choosing a course of action from available states or alter-

natives, is one of the most common activities in life. It ranges from simple everyday deci-

sions to strategic decisions in war. To make decisions easier, a number of methodologies

have been developed, including linear and non-linear optimization (Bartholomew-Biggs,

2008; Chang, 2010; Taha, 1971), multiple-criteria decision analysis (MCDA) (Chang, 2010;

Figueira et al., 2005; Hipel et al., 1993b), game theory (von Neumann and Morgenstern,

1944), fuzzy decision making (Nakamura, 1986; De Wilde, 2004), and the Graph Model for

Conflict Resolution (GMCR) (Fang et al., 1993; Kilgour et al., 1987). Depending on the

number of decision makers (DMs) and objectives, decision making techniques are divided

into four main categories: (i) single participant-single objective (such as most operations

research models), (ii) single participant-multiple objective (such as MCDA methods), (iii)

multiple participant-single objective (such as team theory), and (iv) multiple participant-

multiple objective (such as GMCR) decision making.

Strategic conflict is a common phenomenon in multiple participant-multiple objective

1



decision making situations, and is observed whenever humans interact through their deci-

sions (Hipel, 2002, 2009a,b; Kilgour and Eden, 2010). For example, two or more individuals

or groups may have (i) opposing objectives, as when a seller tries to get a high price while

the buyer aims for a low price, or (ii) differing strategies, as when one political party wants

to remove the current ruler through a peaceful protest while another would like a revolu-

tion. Other human activities that incorporate strategic conflict include bargaining settings,

meetings, military actions, and peace-keeping activities (Kilgour and Hipel, 2005).

A number of formal methodologies have been developed to facilitate the analysis of

strategic conflicts and to advise on possible resolutions. These methodologies, which in-

clude game theory (von Neumann and Morgenstern, 1944), metagame analysis (Howard,

1971), conflict analysis (Fraser and Hipel, 1984), drama theory (Howard, 1999), and GMCR

(Kilgour et al., 1987; Fang et al., 1993), share many characteristics. They all provide means

to represent and analyze conflict situations with at least two DMs, each of whom has multi-

ple options and multiple objectives, which imply distinctive preferences over the outcomes.

Among these methodologies, conflict resolution researchers and practitioners praise

GMCR because of its simplicity and flexibility (Kilgour and Hipel, 2005). Its advantages

include its ability to model both irreversible and common moves. It provides a flexible

framework for defining, comparing, and characterizing various stability concepts, and is

easy to apply to real-world disputes. The GMCR methodology has been used for resolving

conflicts, including many arising in engineering, such as water resources management,

sustainable development, and environmental engineering (Hipel et al., 2001, 2008a,b; Hipel

and Obeidi, 2005; Kilgour and Hipel, 2005). The methodology can also be applied to

disputes arising in other areas, such as in social and political sciences, economics and

business.
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A graph model is a structure describing systematically the main characteristics of a

conflict, which may be either current or historical. The major components of a graph

model are the DMs, the possible states of the conflict, the movements among states that

each DM controls, and each DM’s preferences over the available states. Often, a DM’s

choices are represented as options or courses of action, any combination of which can be

selected (Howard, 1971; Kilgour et al., 1987; Fang et al., 1993).

To apply the GMCR methodology, there are two steps: modeling and analysis. In

the modeling step, feasible states and moves among them are usually constructed using

options (Kilgour et al., 1987; Fang et al., 1993), although states can be defined in other

ways. A feasible state is a feasible combination of options, selected or not selected, and

a move is a change of options for a DM. In the analysis step, states are assessed for

stability employing a number of stability definitions developed to account for the diversity

of decision styles, including four basic stabilities: Nash stability or rationality (R) (Nash,

1950, 1951), general metarationality (GMR) (Howard, 1971), symmetric metarationality

(SMR) (Howard, 1971), and sequential stability (SEQ) (Fraser and Hipel, 1984). Note

that a state is stable for a DM if that DM would not choose to move away from it. A state

that is stable for all DMs is called an equilibrium of the model; if it forms, it is predicted

to persist.

To demonstrate how a real-world decision problem is formulated within the GMCR

framework, consider the environmental conflict in Elmira (a small town in Southern On-

tario, Canada) that began in late 1989 when the Ontario Ministry of the Environment

(M) found that an underground aquifer was contaminated by a carcinogen. The main

suspect was a chemical company in Elmira, Uniroyal Chemical Ltd. (U), which produced

the same carcinogen as a by-product. M issued a Control Order demanding that U take
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necessary measures to remedy the contamination. However, U appealed the control order.

The Local Government (L) was another DM of the dispute, as it attempted to represent

local interests. These DMs had differing objectives; for example, M wanted to require U

to rectify the contamination, while U wanted the control order lifted or at least modified.

The conflict is modeled as a graph model, in which each DM has one or more options

that it either selects or not. For instance, to attempt to reach a preferable outcome, U

could delay the appeal process, accept the original control order, or abandon its Elmira

operation. This interesting conflict will be examined at various locations in this thesis to

demonstrate, test and refine the new ideas put forward.

1.1 Research Motivation

Preference information is crucial to the identification of states that are stable for a particu-

lar DM. Existing stability definitions for the GMCR are based only on relative preferences,

expressed using the binary relations “is (strictly) preferred to” and “is indifferent to”; that

is, preference input is assumed to be crisp (Fang et al., 1993). A limitation of the existing

GMCR (here called the crisp GMCR) is that its associated stability definitions cannot ac-

commodate uncertainty or vagueness in DMs’ preferences, which is a major issue in many

real-world multiple participant-multiple objective decision problems. DMs may be unclear

or uncertain about the preferences between two states, perhaps reflecting cultural and ed-

ucational backgrounds, personal habits, lack of information, and the inherent vagueness of

human judgment. For example, in the Elmira conflict model, U may be in doubt about the

desirability of abandoning its Elmira operation. More specifically, the preference of U for a

state in which U delays the appeal process and L insists on the application of the original
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control order, relative to a state in which U abandons its operation, may be uncertain.

Among various formal approaches to modeling uncertainty, probability theory (Feller,

1968, 1971) and fuzzy logic (Zadeh, 1965, 1973) are two widely used platforms. These two

concepts are different in meaning, and have both strengths and limitations with respect to

their realms of applicability. Probability theory is a model of “randomness, and is effec-

tively used in areas in which probabilistic models can be calibrated using available data sets

for applications such as weather forecasting, simulating possible future events, trend anal-

ysis, quality control, and risk assessment. Fuzzy logic is based on “linguistic intelligence,

and is intended to describe a system, event, or entity, for which quantitative data may be

scarce or some of the information may be qualitative in nature. A key application area of

fuzzy logic is control systems, as in antilock braking mechanisms, automatic washers, air

conditioners, and subway trains. Note that certainty or uncertainty of preferences between

two states or scenarios is characterized by a DM’s choice and is not based on chance. A

DM’s choice is more likely to reflect linguistic intelligence, thereby making fuzzy logic a

potential tool to model uncertain preferences within the framework of the graph model.

A number of questions arise. Which types of preference uncertainties are encountered

in conflict models? Was there any attempt to use preference uncertainties in the stability

calculations within the GMCR framework? If there is a development of the GMCR to

handle preference uncertainties, how useful is it? Is there a suitable generalized preference

structure by which various uncertain preference information can be modeled? Is it possible

to develop the GMCR framework so that it can be used to calculate stability of states

incorporating various types of preference uncertainties that may be encountered in real-

world conflict models?

Only two attempts have been found to incorporate DMs’ uncertain preferences into the
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GMCR from different points of view. Li et al. (2004a) introduced a new preference structure

for the graph model that includes uncertain or unknown preference in the comparison of

two states. They considered the situation in which a DM, for the time being, might be

uncertain about the preference between two states, but knew that with full information

he or she would strictly prefer one state to the other, or be indifferent. The modified

stability definitions for R, GMR, SMR, and SEQ were also introduced to accommodate this

incomplete binary preference structure into the GMCR. Then, a partial stability analysis

could be carried out, with a plan to modify (sharpen) it if more complete preference

information became available later.

A fuzzy approach was developed in (Al-Mutairi et al., 2008) to model uncertainty in

the preferences of DMs involved in a conflict. The authors divided the fuzzy domain of

preferences into five regions with linguistic labels: much more preferred, more preferred,

indifferent, less preferred, and much less preferred. Based on these divisions, and adapting

the concepts of strong and weak stability proposed by Hamouda et al. (2004, 2006), they

introduced an analogous strong and weak stability, and hence strong and weak equilibrium,

to suggest possible resolutions of the conflict.

However, the above two approaches fail to accommodate uncertainty about preferences

between two states in any general sense. For example, a DM may wish to express his or her

preference as a degree or grade of the preference for one state over another. When a fuzzy

truth value is assumed in the option prioritization, a novel preference modeling technique

within the GMCR framework, as an assessment of the truth of a preference statement at

a feasible state in the case of uncertainty, a fuzzy score (which is a real number calculated

using fuzzy information, as demonstrated in Chapter 6 of this thesis) may be obtained for

each state as a measure of preference. Sometimes a DM may be able to provide a crisp
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cardinal utility for some states but not others, to which he or she assigns a fuzzy utility,

i.e., a utility in the form of a fuzzy number.

When information is lacking, a DM may wish to employ a fuzzy multi-criteria decision

making technique by using fuzzy weights for the criteria according to which the states

are being judged. A participating DM then finds a fuzzy weighted sum (which is a fuzzy

number) for each state as a measure of preference. For all of these cases preference between

two states is not crisp, but some fuzzy preference information is available. By pairwise

comparisons of the fuzzy numbers or scores it may be possible to obtain, for each pair

of states, a degree of preference for one state over another. The formal representation of

these degrees of preference for one state over another would constitute a fuzzy preference

relation.

In the representation of fuzzy preferences, the highest preference degree is 1.0, which

implies definite preference (or, in other words, crisp preference), and the lowest degree is 0,

which implies definite reverse preference. The degree 0.5 indicates that the states, which

are being compared, are likely to be indifferent. The interpretation of other degrees in the

unit interval, [0, 1], follows accordingly. Hence, a crisp or certain preference relation is a

special case of a fuzzy preference relation.

The objective of this research is to develop a new framework for the graph model

that considers fuzzy preference instead of crisp preference as a basic input. The GMCR

will then be applicable to decision problems having both certain and uncertain preference

information.
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1.2 Research Objectives

The main objective of this research is to develop a fuzzy preference methodology for the

GMCR to broaden its applicability in strategic conflicts. The proposed comprehensive

methodology aims to characterize, accommodate, and analyze potential human interactions

in strategic conflict within the paradigm of the GMCR, including fuzzy preferences. The

specific goals of this study are listed below.

1. To develop a Fuzzy Preference Framework for the GMCR (FGM) to incorporate

uncertain preferences in conflict resolution.

• Introduce the concept of fuzzy relative certainty of preference to make fuzzy pref-

erence useable in stability calculations carried out within the GMCR method-

ology.

• Propose the idea of fuzzy satisficing threshold to take into account various DMs’

satisficing behavior in strategic conflicts.

• Introduce the definition of fuzzy unilateral improvement to identify states to

which a DM wish to move, if such a move is permitted.

• Propose definitions of the four basic fuzzy stabilities, specifically, fuzzy Nash

stability or fuzzy rationality (FR), fuzzy general metarationality (FGMR), fuzzy

symmetric metarationality (FSMR), and fuzzy sequential stability (FSEQ), as

well as the definitions of the associated fuzzy equilibria, for two-DM graph

models.

• Extend the the same four fuzzy stability definitions as well as the definitions of

the associated fuzzy equilibria for a two-DM graph model to an n-DM (n > 2)
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case.

• Establish that the crisp graph model is a special case of the FGM.

2. To develop coalition fuzzy stability concepts as a follow-up analysis technique within

the FGM.

• Introduce the ideas of a coalition fuzzy improvement and a class coalitional

fuzzy improvement.

• Propose the definitions of coalition fuzzy stabilities, specifically the coalitional

fuzzy Nash stability or coalition fuzzy rationality (CFR), coalitional fuzzy gen-

eral metarationality (CFGMR), coalitional fuzzy symmetric metarationality (CF-

SMR), and coalition fuzzy sequential stability (CFSEQ), for a coalition.

• Put forward the definitions of the CFR, CFGMR, CFSMR, and CFSEQ, for a

DM, and then define the associated coalition fuzzy equilibria.

3. To develop the fuzzy option prioritization technique to model fuzzy preferences for

DMs within the GMCR framework.

• Assume fuzzy truth values of preference statements at feasible states to capture

preference uncertainty.

• Calculate a fuzzy score for each state as a measure of preference by using fuzzy

truth values of preference statements at feasible states.

• Propose a formula to compute a fuzzy preference degree for one state over

another, thereby establishing a fuzzy preference relation over the set of feasible

states.

4. To apply the fuzzy preference methodologies for the GMCR to real-world disputes.
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• Apply the two-DM case of the FGM to the sustainable development conflict.

• Apply the n-DM (n > 2) case of the FGM to the Elmira groundwater contami-

nation conflict.

• Carry out the coalition fuzzy stability analysis on the Elmira groundwater con-

tamination conflict.

• Apply the fuzzy option prioritization technique to the Elmira groundwater con-

tamination conflict for eliciting (crisp or fuzzy) preferences of the DMs.

1.3 Outline of the Thesis

The graph model fuzzy preference methodology is illustrated in Figure 1.1. As depicted

in the figure, the general steps to apply this methodology to a real-world dispute are: (i)

modeling, (ii) fuzzy stability analysis, and (iii) follow-up analysis (if needed). Each step

is accomplished by employing one or more techniques. For example, in the modeling step,

fuzzy option prioritization is employed to represent DMs crisp or fuzzy preferences.

The outline of the thesis is as follows. The present chapter mainly describes the moti-

vation and objectives of this research. The existing GMCR methodology is reviewed in the

first part of Chapter 2, briefly describing its modeling components and four basic stability

concepts, while in the second part, the concept of a fuzzy preference relation and its main

properties are discussed. The contributions of this PhD research are clustered into the rest

of the chapters.

In Chapter 3, a fuzzy preference framework for a two-DM graph model is developed

to introduce four basic fuzzy stability concepts and apply them to simple conflicts with
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two DMs exhibiting uncertain preferences. Addressing the necessity of fuzzy stability

definitions for a more general n-DM (n > 2) graph model, the fuzzy preference framework

is then extended in Chapter 4 to accommodate graph models with any number of DMs,

definitely generalizing the associated fuzzy stability definitions. To further analyze the

individual level fuzzy stabilities introduced in Chapters 3 and 4, the coalition fuzzy stability
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concepts are developed in Chapter 5.

A fuzzy option prioritization methodology is formalized in Chapter 6 to facilitate the

modeling of fuzzy preferences for DMs in strategic conflicts that feature uncertain prefer-

ences for DMs. The main contributions of this thesis are compiled in Section 7.1 while a

number of directions for potential future research is listed in Section 7.2. The outline of

the thesis is also summarized in Figure 1.2.
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Chapter 2

Background and Literature Review

2.1 Introduction

Among the four categories of decision making techniques mentioned in Chapter 1, multiple

participant-multiple objective decision making is the most complicated. This research is

intended to develop an appropriate solution methodology for it, especially for the case in

which the participants or DMs have uncertain preferences over the states or alternatives.

The GMCR, a variant of classical game theory, is a novel methodology for modeling and

analyzing disputes occurring in multiple participant-multiple objective decision problems.

The key difference between the GMCR and classical game theory is that the preference

structure of GMCR is binary, and not based on utility theory. Accordingly, the preference

inputs for GMCR do not need to be transitive. Furthermore, in a Graph Model, the order

in which DMs choose to move, or not to move, need not be specified in advance.

In this chapter, related literature on the crisp GMCR and fuzzy preferences are re-
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viewed. More specifically, the components as well as the structure of a crisp graph model

are described and the four basic crisp stability definitions are presented. Moreover, the

literatures on a number of approaches for modeling uncertain preferences, including fuzzy

preferences, are reviewed. Next, the notions of a fuzzy set, fuzzy number and fuzzy relation

are presented as bases of a fuzzy preference. Then the concept of a fuzzy preference and

its properties are introduced.

2.2 Literature Review of the Graph Model for

Conflict Resolution

The GMCR is a methodology for modelling, analyzing, and understanding strategic con-

flicts, which is common in multiple participant-multiple objective decision makings. The

main motivation for developing the GMCR was the demand for a comprehensive method to

understand conflict decision-making and conflict resolution as existing methods were cum-

bersome and often failed to provide the needed analysis and advice (Kilgour and Hipel,

2005). The graph model is designed to be simple and flexible, as well as to have minimal

information requirements. The original idea of the graph model was introduced by Kilgour,

Hipel, and Fang in (Kilgour et al., 1987), while the first comprehensive representation was

furnished by Fang, Hipel, and Kilgour as (Fang et al., 1993).

The application of the GMCR begins with the representation of a real-world conflict

problem. By careful examination of the conflict, the DMs who have direct impact on the

conflict and interest in its outcomes are identified. Taking the available options or courses

of actions of these DMs into account, a set of feasible states are generated. Note that

a state is a combination of options chosen by the participating DMs; the set of feasible
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states is a subset of all possible states, and can be thought of as the set of all feasible

combinations of the options. A DM’s possible moves among states are determined by

allowable state transitions, and are identified by fixing all other DMs’ options. Investigating

historical data or information supplied directly by the DMs, the preference relation between

any two feasible states (pairwise preferences, or relative preferences) for each DM are

determined. After these steps have been completed, stability of each feasible state is

investigated for various stability definitions including R, GMR, SMR, and SEQ for each

DM. Using these stability results, states that are stable under a suitable stability definition

for every participating DM are identified and interpreted as equilibrium states or possible

resolutions of the conflict (Fang et al., 1993).

A stability concept prescribes what a DM can do when acting independently in a

conflict, based on his or her own interests. To further develop insights into the conflict, a

coalition analysis is carried out. A coalition consists of two or more DMs who may act as a

group if they can do better together than individually. A recent development in the graph

model is status quo analysis, which investigates equilibria that are more likely to occur in

a conflict situation, to help analysts identify likely resolutions.

2.2.1 The Structure of the Graph Model for Conflict Resolution

A graph model of a conflict is represented mathematically by a set of DMs, a set of states,

each DM’s directed graph indicating movements controlled by the DM, and each DM’s

preference relation over the states. The nodes in the DMs’ graphs are common, referred to

as the feasible states, whereas the (directed) arcs of a DM’s graph are the possible state-

to-state moves controlled by that DM. Note that moves may or may not be reversible. As

mentioned earlier, in a crisp graph model, DMs’ preferences are given by binary relations
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on the set of feasible states (Fang et al., 1993; Kilgour et al., 1987).

In a graph model, each state or scenario is often defined as a combination of a number

of options that reflect the participating DMs’ strategies to achieve their objectives. In a

model, available options are uniquely represented by O1, O2, .... In a state, a particular

option may or may not be selected by the DM controlling it; if the option is selected, it is

given by a “Y” or “1” and if the option is not chosen, it is represented by an “N” or “0”.

Hence, a state is an ordered tuple of Ys and Ns or of 1s and 0s, usually written as a column

in which the number of entries is the same as the total number of options in the model.

Accordingly, if the number of options in a model is λ, then there are 2λ mathematically

possible states; however, only a portion of them may be feasible in practice because of

various option constraints (Fang et al., 1993; Peng, 1999; Fang et al., 2003).

Note that in a graph model, there may be a group of formally “distinct” but practically

“indistinguishable” states. Such a group is represented as one state using “–”s against

appropriate options, indicating that it is the same whether Ys or Ns are chosen for those

options. A state of this type is called a composite state (Fang et al., 1993; Peng, 1999;

Fang et al., 2003).

Denote by N = {1, 2, ..., n}, the set of DMs, and by S = {s1, s2, ..., sm}, m > 1, the set

of feasible states. For k ∈ N , let Ak ⊆ S×S (Cartesian product of S with itself) represent

the moves controlled by DM k, so that for si, sj ∈ S, (si, sj) ∈ Ak if and only if DM k can

cause the conflict to move (directly) from state si to state sj. Then Dk = (S,Ak) is DM

k’s directed graph. Also, DM k’s preferences are recorded by a binary relation %k, with

the interpretation that, for si, sj ∈ S, si %k sj if and only if DM k prefers si to sj (si � sj),

or is indifferent between them (si ∼ sj). With the notations given above, a Graph Model
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can be represented as

〈N, S, {(Dk,%k) : k ∈ N}〉.

Note that the graph model methodology can handle both transitive and intransitive pref-

erences over the feasible states.

2.2.2 Reachable Lists

The GMCR methodology uses DMs’ unilateral improvement lists for its stability calcula-

tions. As a basis of the construction of a DM’s unilateral improvement list from a given

state, as well as to study the countermoves by the opponent(s), it is necessary to record all

the states to which a DM can cause the conflict to move unilaterally from an initial state

in one step.

2.2.2.1 Reachable List of a Decision Maker

A DM’s reachable list from a specified starting state is a record of all the states that the

DM can reach in one step. In a graph model, the states that are joined by an arc in Ak

beginning at state s form the DM k’s reachable list from state s. A formal definition is

given below.

Definition 2.2.1. (Reachable List for a DM): The reachable list from a state s ∈ S

for DM k is

Rk(s) = {si ∈ S : (s, si) ∈ Ak}.
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2.2.2.2 Reachable List of a Coalition

The reachable list provided by Definition 2.2.1 is the set of unilateral moves under the

control of DM k. However, the GMCR methodology takes into account moves and coun-

termoves in its stability calculations. When there are more than two DMs in a model,

the countermoves are performed by more than one DM. Hence, the definition of unilateral

moves by a group or coalition of DMs is needed.

Assume n > 2. Any set of DMs, H ⊆ N , is called a coalition. If |H| > 0, then the

coalition H is non-empty. Throughout the thesis, each coalition H ⊆ N is assumed to be

non-empty. If |H| ≥ 2, then the coalition H is non-trivial.

For s ∈ S, let RH(s) ⊆ S denote the set of all states reachable from s via a legal

sequence of moves by some or all of the DMs in H. Note that a sequence of moves for a

coalition H is called legal if no DM in H moves twice consecutively. For any s1 ∈ RH(s), let

ΩH(s, s1) denote the set of all last DMs in legal sequences from s to s1. The reachable list

by a coalition can now be defined formally. Note that the coalition H ⊆ N with |H| = 1 is

trivial in the sense that it is equivalent to a single DM, and is excluded from this definition.

In fact, if H = {k}, then RH(s) = Rk(s).

Definition 2.2.2. (Reachable List for a Coalition): Let s ∈ S and H ⊆ N , |H| ≥ 2.

Define the subset RH(s) ⊆ S inductively as follows:

(1) If k ∈ H and s1 ∈ Rk(s), then s1 ∈ RH(s) and k ∈ ΩH(s, s1);

(2) If s1 ∈ RH(s), k ∈ H, s2 ∈ Rk(s1), and ΩH(s, s1) 6= {k}, then s2 ∈ RH(s) and

k ∈ ΩH(s, s2).
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The set RH(s) is called the reachable list from s for the coalition H, and any member of

RH(s) is called a unilateral move from s by the coalition H.

Note that, in Definition 2.2.2, the induction stops as soon as no new state (s2) can be

added to RH(s) and |ΩH(s, s1)| cannot be increased for any s1 ∈ RH(s).

Below is an algorithm that implements this definition. The set RH(s, i) consists of the

states achievable by coalition H in at most i ≥ 0 legal moves, starting from state s. For

s1 ∈ RH(s, i),ΩH(s, s1, i) denotes the set of all last DMs in legal sequences from s to s1

with at most i moves.

(1) For i = 0, set RH(s, 0) = {s} and ΩH(s, s1, 0) = ∅ for all s1 ∈ S.

(2) Now find RH(s, i+1) ⊇ RH(s, i) and ΩH(s, s1, i+1) ⊇ ΩH(s, s1, i) for all s1 ∈ S. Select

any s2 ∈ S satisfying s2 ∈ Rk(s1) for some k ∈ H and some s1 ∈ RH(s, i). Then, if s2 6∈

RH(s, i) and ΩH(s, s1, i) 6= {k}, add s2 to RH(s, i+ 1) and k to ΩH(s, s2, i+ 1). Also,

if s2 ∈ RH(s, i) and ΩH(s, s1, i) 6= {k} but k 6∈ ΩH(s, s2, i), add k to ΩH(s, s2, i + 1).

Continue until RH(s, i+ 1) and ΩH(s, s2, i+ 1) cannot be further increased.

(3) If RH(s, i+ 1) = RH(s, i) and ΩH(s, s1, i+ 1) = ΩH(s, s1, i) for all s1 ∈ RH(s, i), stop.

Otherwise, increase i by 1 and repeat step (2).

Note that the algorithm stops as soon as RH(s, i+ 1) = RH(s, i) and, for all s1 ∈ RH(s, i),

ΩH(s, s1, i+ 1) = ΩH(s, s1, i). The corresponding value of i is the maximum length of any

legal path for H from s.
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2.2.3 Crisp Preferences

As mentioned earlier, each DM’s preference information over feasible states or alternatives

is an important input to the GMCR methodology. A crisp preference over feasible states,

mathematically a crisp binary relation, reflects the certainty of preference between any two

states. A crisp preference is often denoted by %, and for DM k, it is given by %k. For any

si, sj ∈ S, si %k sj means that DM k finds si at least as preferable as sj, and is stated as

“si is preferred or indifferent to sj.” Therefore, si %k sj implies that DM k likes si better

than sj, or doesn’t care whether si or sj is chosen. In fact, the symbol “�” stands for strict

preference and “∼” for indifference. In summary, si %k sj indicates that DM k strictly

prefers si to sj (si � sj), or is indifferent between them (si ∼ sj).

Given a strict crisp preference � on S, ≺ is defined as follows.

Definition 2.2.3. For si, sj ∈ S, si ≺ sj if and only if sj � si.

There are other representations of a crisp preference between two states si and sj. One

uses an index dij to distinguish three cases of preference or indifference (Garcia-Lapresta

and Montero, 2006):

dij =


1, if si is preferred to sj

0, if si is indifferent to sj

−1, if sj is preferred to si

.
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This index can be normalized to take values in the unit interval [0, 1] as follows:

rij =
dij + 1

2
=


1, if si is preferred to sj

0.5, if si is indifferent to sj

0, if sj is preferred to si

. (2.1)

2.2.4 Crisp Stabilities in a two-Decision Maker Graph Model

In the final part of the GMCR study, the main focus is on examination of the stability

of states for a DM. From a stable state, the focal DM has no incentive to deviate in a

sense determined by a particular stability definition. The crisp GMCR accounts for crisp

stabilities, which are based on crisp preferences described in Subsection 2.2.3. To identify

the states that are worthwhile for a DM to move to from a given state, the definition of

unilateral improvements by a DM is provided in the following subsection.

2.2.4.1 Unilateral Improvements by a Decision Maker

Note that the GMCR methodology considers moves and countermoves by the opponent(s)

in calculating various stabilities. In the case of a two-DM graph model, the focal DM, as

well as the opponent, is a single DM. Hence, the definition of a unilateral improvement

from a given state by a single DM is needed. A state is a unilateral improvement from an

initial state s ∈ S by a DM if the state is reachable from s by the DM in one step and is

preferred to s. A formal definition is given below.

Definition 2.2.4. (Unilateral Improvement by a DM): Recall that Rk(s) represents

the set of reachable states from a given initial state s ∈ S by DM k ∈ N . A state si ∈ S

is called a unilateral improvement (UI) from s by DM k if si ∈ Rk(s) and si �k s.
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Definition 2.2.5. (Unilateral Improvement List by a DM): The collection of all UIs

from a state s by DM k is called the unilateral improvement list (UIL) from s by DM k,

denoted R+
k (s). Mathematically,

R+
k (s) = {si ∈ Rk(s) : si �k s}.

2.2.4.2 Crisp Stability Definitions in a two-Decision Maker Graph Model

As a basis for identifying the states from which a DM does not like to move away, the

stability concepts within the GMCR framework are provided here. Note that different DMs

may show different behavior patterns in responding to a strategic conflict. For example,

they may have different levels of foresight for which some DMs look far ahead before

making a decision, while others consider only immediate consequences. Furthermore, DMs

may have different perspectives about the risks of moving. Some DMs may be ready to

accept temporary dis-improvements in the expectation of achieving a better outcome in the

end, while others may wish to avoid all dis-improvements. To capture these varied human

behavior and decision techniques formally, a number of stability definitions have been

introduced within the GMCR framework of which the four basic definitions are presented

below. Note that these definitions are for a two-DM graph model. The stability definitions

for a general n-DM (n > 2) graph model are provided in Susubsection 2.2.5.2.

Definition 2.2.6. (Nash Stability or Rationality): Let k ∈ N and s ∈ S. State s is

Nash stable or rational (R) for DM k ∈ N if and only if R+
k (s) = ∅.

As there are two DMs in the model, for the following definitions assume that N = {k, l}.

Definition 2.2.7. (General Metarationality): A state s ∈ S is general metarational
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(GMR) for DM k if and only if for every s1 ∈ R+
k (s) there exists an s2 ∈ Rl(s1) such that

s2 -k s.

Definition 2.2.8. (Symmetric Metarationality): A state s ∈ S is symmetric metara-

tional (SMR) for DM k if and only if for every s1 ∈ R+
k (s) there exists an s2 ∈ Rl(s1) such

that s2 -k s, and s3 -k s for all s3 ∈ Rk(s2).

Definition 2.2.9. (Sequential Stability): A state s ∈ S is sequentially stable (SEQ)

for DM k if and only if for every s1 ∈ R+
k (s) there exists an s2 ∈ R+

l (s1) such that s2 -k s.

2.2.5 Crisp Stabilities in a Graph Model with More than Two

Decision Makers

The stability definitions provided in Subsubsection 2.2.4.2 are specifically for a two-DM

graph model where the opponent of the focal DM is a single DM. However, in a graph

model with more than two DMs, the opponent of the focal DM is a group or coalition of

two or more DMs. Hence, the stability definitions given in Subsubsection 2.2.4.2 will not

work for a graph model that has more than two DMs. Accordingly, stability definitions for

a general n-DM (n > 2) graph model are needed.

2.2.5.1 Unilateral Improvements by a Coalition

The UIL for a DM, given by Definition 2.2.5, is sufficient for defining stabilities for a

two-DM graph model as represented in Subsubsection 2.2.4.2. However, to extend these

stability concepts for a general n-DM (n > 2) graph model, one needs the definition of a

UI by a coalition of DMs.
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Definition 2.2.10. (Unilateral Improvement by a Coalition): Let s ∈ S and H ⊆ N ,

|H| ≥ 2. Define R+
H(s) ⊆ S inductively as follows:

(1) If k ∈ H and s1 ∈ R+
k (s), then s1 ∈ R+

H(s) and k ∈ Ω+
H(s, s1), where Ω+

H(s, s1)

represents the set of all last DMs in legal sequences from s to s1;

(2) If s1 ∈ R+
H(s), k ∈ H, s2 ∈ R+

k (s1), and Ω+
H(s, s1) 6= {k}, then s2 ∈ R+

H(s) and

k ∈ Ω+
H(s, s2).

A unilateral improvement (UI) from s by the coalition H is any member of R+
H(s).

Note that the induction in Definition 2.2.10 stops as soon as no new state (s2) can be

added to R+
H(s), and |Ω+

H(s, s1)| cannot be increased for any s1 ∈ R+
H(s).

2.2.5.2 Crisp Stability Definitions in an n-Decision Maker (n > 2) Graph

Model

The definitions of GMR, SMR, and SEQ stabilities for an n-DM (n > 2) graph model are

provided here. Note that Nash stability does not depend on the responses of the opponents.

Therefore, the definition of Nash stability for an n-DM graph model is the same as for the

two-DM case. In the following definitions, N − k denotes the set of DMs other than k, or

in other words, k’s opponents.

Definition 2.2.11. (General Metarationality): A state s ∈ S is general metarational

(GMR) for DM k ∈ N if and only if for every s1 ∈ R+
k (s) there exists an s2 ∈ RN−k(s1)

such that s2 -k s.
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Definition 2.2.12. (Symmetric Metarationality): A state s ∈ S is symmetric meta-

rational (SMR) for DM k ∈ N if and only if for every s1 ∈ R+
k (s) there exists an

s2 ∈ RN−k(s1) such that s2 -k s, and s3 -k s for all s3 ∈ Rk(s2).

Definition 2.2.13. (Sequential Stability): A state s ∈ S is sequentially stable (SEQ)

for DM k ∈ N if and only if for every s1 ∈ R+
k (s) there exists an s2 ∈ R+

N−k(s1) such that

s2 -k s.

2.2.5.3 Crisp Equilibrium

The stability definitions, given in Subsubsections 2.2.4.2 and 2.2.5.2, characterize a single

DM’s unwillingness to deviate from a state. However, the GMCR methodology identifies

a state as a potential resolution, from which no DM would like to move away, referred to

as an equilibrium state. A formal definition is given below.

Definition 2.2.14. A state that is stable for all DMs under a specific stability definition

is called an equilibrium under that definition.

2.2.6 Coalition Stability Analysis

The old saying “Many hands make light work” means that working together may make

a task easier compared to working individually. In the same way, in decision making—

more specifically, in multiple participant-multiple objective decision making—it is logical

to raise the question whether there will be a better outcome when a group of DMs joins

together to make a decision, even when the DMs have individual objectives that may be

in conflict. Coalition formation is often found in various real-world multiple-participant

26



decision situations. For instance, in a debate of the United Nations general assembly on a

proposal to help nations affected by greenhouse gas emissions, like-minded countries may

work together in support of amendments they prefer, or on the choice to accept or reject

the proposal.

Kuhn et al. (1983) applied some simple concepts of coalition analysis to strategic con-

flicts within a crisp GMCR structure by introducing rules for formation of a coalition in a

conflict, assuming that a coalition would last throughout the dispute. Kilgour et al. (2001)

made the first general approach to developing coalition formation guidelines and formaliz-

ing the idea of coalition moves. They introduced coalition stability, parallel to the concept

of individual (crisp) Nash stability. Later, Inohara and Hipel (2008a,b) developed coalition

stability definitions parallel to individual (crisp) general metarationality, symmetric meta-

rationality, and sequential stability, and also characterized general relationships among

them. The coalition stability concepts reviewed in this subsection are due to (Kilgour et

al., 2001; Inohara and Hipel, 2008a,b).

Below, H ⊆ N represents a coalition of DMs in N , and P(N), the class of all coalitions

of DMs in N .

Definition 2.2.15. (Coalition Improvement): A state si ∈ S is a coalition improve-

ment from a state s ∈ S by a coalition H ⊆ N if si ∈ RH(s) and si �k s for all k ∈ H.

The coalition improvement list from s by the coalition H, denoted R++
H (s), is

R++
H (s) = {si ∈ S : si ∈ RH(s) and si �k s for all k ∈ H}.

Definition 2.2.16. (Coalition Nash Stability or Coalition Rationality for a Coali-

tion): Let H ∈ P(N) and s ∈ S. State s is coalition Nash stable or coalition rational
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(CR) for coalition H if and only if R++
H (s) = ∅.

Definition 2.2.17. (Coalition Nash Stability or coalition Rationality for a DM):

Let k ∈ N and s ∈ S. State s is coalition Nash stable or coalition rational (CR) for DM k

if and only if s is CR for all coalitions H ∈ P(N) such that k ∈ H.

To define the coalitional versions of GMR, SMR and SEQ, a class coalitional move and

class coalitional improvement by a class of coalitions of DM in N must first be defined.

Definition 2.2.18. (Class Coalitional Move): Let s ∈ S, and C be a class of coalitions

of DMs in N , i.e., C ⊆ P(N). The class reachable list or set of class coalitional moves

from state s by class C is defined inductively as the set RC(s) that satisfies the following

two conditions:

(1) If H ∈ C and s1 ∈ RH(s), then s1 ∈ RC(s);

(2) If s1 ∈ RC(s) and H ∈ C, and s2 ∈ RH(s1), then s2 ∈ RC(s).

A class coalitional move (CCM) from s by the class C is any member of RC(s). Note that,

because of the definition of a coalitional unilateral move (Definition 2.2.2), no DM in any

coalition in C may move twice consecutively in passing from s to any state in RC(s).

Definition 2.2.19. (Class Coalitional Improvement): Let s ∈ S and C ⊆ P(N). The

class improvement list or class coalitional improvement list from state s by class C, denoted

R++
C (s), is defined inductively as follows:

(1) If H ∈ C and s1 ∈ R++
H (s), then s1 ∈ R++

C (s);

(2) If s1 ∈ R++
C (s) and H ∈ C, and s2 ∈ R++

H (s1), then s2 ∈ R++
C (s).
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A class coalitional improvement (CCI) from s by the class C is any member of R++
C (s).

As in Definition 2.2.18, this definition ensures that no DM in any coalition in C may move

twice consecutively.

The definitions of the coalitional forms of GMR, SMR and SEQ given by Definitions 2.2.11,

2.2.12 and 2.2.13, respectively, are now provided below.

Definition 2.2.20. (Coalition General Metarationality for a Coalition): For H ∈

P(N), state s ∈ S is coalition general metarational (CGMR) for coalition H if and only if

for every s1 ∈ R++
H (s) there exists a CCM s2 ∈ RP(N−H)(s1) such that s2 -k s for some

k ∈ H.

Definition 2.2.21. (Coalition General Metarationality for a DM): For k ∈ N , state

s ∈ S is coalition general metarational (CGMR) for DM k if and only if s is CGMR for all

coalitions H ∈ P(N) such that k ∈ H.

Definition 2.2.22. (Coalition Symmetric Metarationality for a Coalition): For

H ∈ P(N), state s ∈ S is coalition symmetric metarational (CSMR) for coalition H if and

only if for every s1 ∈ R++
H (s) there exists a CCM s2 ∈ RP(N−H)(s1) such that s2 -k s for

some k ∈ H, and for every s3 ∈ RH(s2), s3 -l s for some l ∈ H.

Definition 2.2.23. (Coalition Symmetric Metarationality for a DM): For k ∈ N ,

state s ∈ S is coalition symmetric metarational (CSMR) for DM k if and only if s is CSMR

for all coalitions H ∈ P(N) such that k ∈ H.

Definition 2.2.24. (Coalition Sequential Stability for a Coalition): For H ∈ P(N),

state s ∈ S is coalition sequentially stable (CSEQ) for coalition H if and only if for every

s1 ∈ R++
H (s) there exists a CCI s2 ∈ R++

P(N−H)(s1) such that s2 -k s for some k ∈ H.
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Definition 2.2.25. (Coalition Sequential Stability for a DM): For k ∈ N , state

s ∈ S is coalition sequentially stable (CSEQ) for DM k if and only if s is CSEQ for all

coalitions H ∈ P(N) such that k ∈ H.

Definition 2.2.26. (Coalition Equilibrium): A state s ∈ S is a coalition equilibrium

under a specific coalition stability concept if and only if s is coalition stable for each DM

under that coalition stability notion. For instance, state s is coalition Nash equilibrium or

CR equilibrium if and only if it is CR stable for each DM in N .

2.2.7 Crisp Option Prioritization

Each DM’s preferences over feasible states, which are inputs to the analysis step of the

GMCR methodology and GMCR II (Peng, 1999; Fang et al., 2003), a decision support

software developed to implement the GMCR, are traditionally modeled by pairwise com-

parisons of states. However, it may be hard for a DM or an analyst to identify the preferred

state from a pair by comparing them, especially when the model has a large number of

options. Note that DMs’ options, whose feasible selection constitutes a state, characterize

a possible solution space of the problem under study. The greater the number of options

contained in a model, the larger is the number of criteria needed to compare one state

with another. Other techniques used to model preferences between two states include the

preference tree (Fraser, 1993, 1994; Fraser and Hipel, 1988; Hipel and Meister, 1994), op-

tion weighting (Fang et al., 2003; Kilgour, 1997), and option prioritization (Peng et al.,

1997; Peng, 1999; Fang et al., 2003) (now called, crisp option prioritization). Among these

methodologies, crisp option prioritization, which is a generalization of the preference tree,

is a very useful preference modeling technique in the GMCR. This technique overcomes

the limitations that other methods have, and has been implemented in GMCR II.
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In crisp option prioritization, each DM is asked to provide a priority ordered set of

preference statements. Each preference statement takes a truth value, either “True” (T )

or “False” (F ), at each state. A preference statement is composed of options by using logical

connectives. It can be non-conditional, conditional, or bi-conditional. A non-conditional

preference statement is simple and is given as a combination of options relevant to that

particular statement, joined by various connectives such as negation (“not”, “—”, or “¬”),

conjunction (“and”, “&”, or “∧”), and disjunction (“or”, “|”, or “∨”). The priority of

operations in a preference statement is often controlled by round parentheses “(” and

“)”. A conditional or bi-conditional preference statement consists of two non-conditional

preference statements joined by a connective implies (or, if-then) (“IF”) or if and only if

(“IFF”).

The truth value of a non-conditional preference statement at a state is straightforward.

For example, if O1 and O2 represent two options, then the statement O1 ∧ O2 is true at

a state if both O1 and O2 occur at that state, otherwise O1 ∧ O2 is false. However, the

truth value of a conditional or bi-conditional preference statement at a state depends on

the truth values of its component non-conditional statements. The truth values of these

preference statements are determined according to the conditional or bi-conditional truth

tables standardized in mathematical logic (Chiswell and Hodges, 2007).

For crisp option prioritization, each DM’s preference statements, say Ω1, Ω2, ..., Ωq, are

listed in order of priority, which are often represented vertically from the most important to

least. For s ∈ S, let Ωt(s) (1 ≤ t ≤ q) denote the truth value of the preference statement

Ωt at state s. A DM’s crisp preference between two states is determined based on the

truth values of the preference statements at those states in lexicographic ordering fashion.

A state with a truth value “T” of a more important preference statement is preferred to a
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state having a truth value “F” of the same preference statement, or to a state with a truth

value “T” or “F” of a less important preference statement. Specifically, a state s1 ∈ S is

preferred to a state s2 ∈ S (s1 6= s2) if and only if either Ω1(s1) = T and Ω1(s2) = F , or

there exists t, 1 < t ≤ q, such that

Ω1(s1) = Ω1(s2)

Ω2(s1) = Ω2(s2)
...

Ωt−1(s1) = Ωt−1(s2),

and Ωt(s1) = T and Ωt(s2) = F.

(2.2)

If there is no such t, then either s1 and s2 are indifferent or s2 is preferred to s1. Note that

it is a convention in GMCR II that the “–”s are considered as “N”s in determining the

truth of a preference statement at a composite state (Peng et al., 1997; Peng, 1999; Fang

et al., 2003).

An equivalent scheme that can result in the same ranking as in (2.2) is to assign a

“score” Ψ(s) to each feasible state s ∈ S according to its truth values when the preference

statements are applied. Assume that q is the total number of preference statements for

a DM. Denote by Ψt(s) the incremental score of state s for preference statement Ωt,

1 ≤ t ≤ q. Define

Ψt(s) =

 1
2t
, if Ωt(s) = T

0, if Ωt(s) = F

and

Ψ(s) =

q∑
t=1

Ψt(s). (2.3)

Then the states are ranked according to their scores; a state with a higher score is preferred
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to a state with a lower score. More specifically, for s1, s2 ∈ S, s1 � s2 if and only if

Ψ(s1) > Ψ(s2). Furthermore, s1 ∼ s2 if and only if Ψ(s1) = Ψ(s2). This results in exactly

the same ranking as that obtained from the lexicographic ordering. Note that, even though

a cardinal score is involved, it only plays a temporary role in determining the ranking; it

does not tell anything about the intensity of this ranking.

2.3 Fuzzy Preferences with Literature Review

Failing to order feasible states or alternatives with certainty is the main reason for studying

preference uncertainty. Preference uncertainty is modelled qualitatively or quantitatively.

Qualitatively, it is represented by linguistic labels, such as good, fair and poor (Herrera and

Herrera-Viedma, 2000; Xu, 2004a); while quantitatively, it is given by numbers, such as

degrees of preference (Orlovsky, 1978; Xu, 2007). Because of their importance in various

decision making techniques, uncertain preference relations have been an active area of

research and many variants have been developed over the last few decades.

Widely used uncertain preference relations include multiplicative preferences (Saaty,

1980; Herrera et al., 2001), incomplete multiplicative preferences (Harker, 1987; Nishizawa,

1997), interval multiplicative preferences (Islam et al., 1997; Xu, 2005a), incomplete interval

multiplicative preferences (Xu, 2006), triangular fuzzy multiplicative preferences (Chang,

1996; Mikhailov, 2003), incomplete triangular fuzzy multiplicative preferences (Xu, 2006),

the fuzzy preference relation (Orlovsky, 1978; Tanino, 1984, 1988; Chiclana et al., 2001; Xu,

2007), the incomplete fuzzy preference relation (Herrera-Viedma et al., 2007; Xu, 2005b),

interval fuzzy preferences (Jiang, 2007; Xu, 2004b), incomplete interval fuzzy preferences

(Xu, 2006), triangular fuzzy preferences (Xu, 2002), incomplete triangular fuzzy preferences
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(Xu, 2006), linguistic preferences (Herrera and Herrera-Viedma, 2000; Xu, 2004a), and

incomplete linguistic preferences (Alonso et al., 2009; Xu, 2005c). Among these preference

relations, fuzzy preference relations are a convenient way of representing both certain

and uncertain relative preferences between two states or alternatives. A fuzzy preference

between two states is represented by a preference degree, which is interpreted as the grade

of certainty of the preference for one state over the other.

2.3.1 Literature Review on Fuzzy Preferences

Zadeh (1965, 1973) developed the concepts of a fuzzy logic and fuzzy set as effective tools

for mathematically modelling uncertainty or vagueness. Based on Zadeh’s notion of fuzzy

logic, Orlovsky (1978) proposed a fuzzy preference relation to generalize crisp preference in

a decision making situation. He introduced and studied fuzzy preference and its properties,

and the fuzzy set of non-dominated alternatives. He established that if the fuzzy preference

relation in a fuzzy decision-making problem satisfies some topological properties, then the

problem has “un-fuzzy” (crisp) non-dominated solutions.

Keeping in mind that fuzzy utilities could be a flexible way of representing utilities of

states, Nakamura (1986) proposed a method to construct a fuzzy preference, given a set of

fuzzy utilities, to allow rational decision making. Tanino (1984) discussed the use of fuzzy

preference orderings in group decision making. He defined a fuzzy preference ordering

as a fuzzy binary relation satisfying reciprocity and max-min transitivity, and developed

group fuzzy preference orderings applicable when individual preferences are represented

by utility functions, developing a method for group decision processes analogous to the

extended contributive rule.
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Chiclana et al. (1998) introduced a general multipurpose decision model that is able

to handle problems with a range of preference information: preference orderings, utility

functions, or fuzzy preference relations. First, the preference information is made uniform

using fuzzy preference relations, and then selection processes are introduced based on the

concept of fuzzy majority (Kacprzyk, 1986) and on ordered weighted averaging operators

(Yager, 1988).

Chiclana et al. (2001) also carried out research on how to integrate multiplicative pref-

erence relations into fuzzy multipurpose decision models using preference orderings, utility

functions, or fuzzy preference relations. Together with the work in (Chiclana et al., 1998),

the authors provided a more flexible framework to manage different preference structures.

This constituted a decision model that approximated real decision situations involving ex-

perts from different knowledge areas very well. Also, a number of other fuzzy preference

structures and their connections in social choices were discussed in (Banerjee, 1994; Dutta,

1987; Richardson, 1998) and the references contained therein.

2.3.2 Fuzzy Sets, Fuzzy Numbers, and Fuzzy Relations

The concept of a fuzzy preference relation is derived from fuzzy sets, fuzzy numbers, and

fuzzy relations. These three notions are briefly described below.

2.3.2.1 Fuzzy Sets

The notion of a fuzzy set was introduced by Zadeh (1965) to generalize the classical idea

of a set, now called a crisp set. In classical set theory, membership of an element in a

set is binary: an element either belongs to the set, or not. In contrast, fuzzy set theory
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allows the membership of an element to be described by any number in the unit interval,

I = [0, 1] = {x : 0 ≤ x ≤ 1}, referred to as the degree or grade of membership. A formal

definition is given below.

Definition 2.3.1. Let X denote a nonempty collection of objects. A fuzzy set in X

is characterized by a membership function, δ : X −→ I, where, for an x ∈ X, δ(x) is

interpreted as the degree or grade of membership of x in the fuzzy set.

Example 2.3.2. The set of tall students in a class can be described as a fuzzy set. For

instance, if students 1, 2, . . . , 10 are numbered in increasing order of height, one might have

δ(x) = 0 for x = 1, . . . , 5, δ(6) = 0.4, δ(7) = 0.6, δ(8) = 0.9, and δ(9) = δ(10) = 1.

Note that the closer is the value of δ(x) to 1, the higher is the grade of membership

of x in the fuzzy set. A conventional, or crisp, set is a fuzzy set, in that the membership

function is a 0 − 1 function, assigning 1 to each element of the set and 0 to each element

not in the set.

2.3.2.2 Fuzzy Numbers

A fuzzy number is a fuzzy set of a particular form defined on the set of real numbers, R.

Recall that, if c, d ∈ R satisfy c ≤ d, then [c, d] = {x : c ≤ x ≤ d} is a (closed) interval

of real numbers. The definition of a fuzzy number follows (Goetschel and Voxman, 1986;

Klir and Yuan, 1995):

Definition 2.3.3. A fuzzy number is a fuzzy set in R defined by a membership function

δ : R −→ I with the following properties:

• δ is upper semi-continuous;
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• There is an interval [c, d] such that δ(x) = 0 for all x 6∈ [c, d];

• There are real numbers a and b satisfying c ≤ a ≤ b ≤ d such that

(i) δ(x) = 1 for all x ∈ [a, b];

(ii) If c ≤ x1 ≤ x2 ≤ a, then δ(x1) ≤ δ(x2);

(iii) If b ≤ x1 ≤ x2 ≤ d, then δ(x1) ≥ δ(x2).

Note that δ is upper semi-continuous if and only if {x ∈ R : δ(x) < α} is an open set in

R for every α ∈ (0, 1].

Example 2.3.4. The set of all real numbers close to 3 can be thought of as a fuzzy

number. For instance, one might choose c = 2, a = b = 3, and d = 4, with δ(x) linear on

each interval.

2.3.2.3 Fuzzy Relations

Traditionally, a preference or crisp preference is characterized using a binary relation. In

consequence, a fuzzy preference is defined using a fuzzy binary relation or simply a fuzzy

relation. A classical or crisp relation indicates that an object x ∈ X is either related to,

or not related to, an object y ∈ Y ; so, it is natural that a fuzzy relation assigns a degree

or grade to the relation of x to y. A formal definition is provided below (Klir and Yuan,

1995).

Definition 2.3.5. Let X and Y denote nonempty collections of objects. A fuzzy relation

from X to Y , denoted R, is a fuzzy set in X × Y with membership function:

µR : X × Y −→ [0, 1],
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where µR(x, y) represents the degree or grade of the relationship of x ∈ X to y ∈ Y .

Note that the sets X and Y may or may not be identical. If X = Y , R is said to be a

fuzzy relation on X. A fuzzy relation from X to Y is usually represented by a matrix in

which the members of X are the row labels and the members of Y are the column labels.

The entry in row x and column y represents the degree to which x is related to y.

Example 2.3.6. The relation “likes”, between two students in a class, can be thought of

as a fuzzy relation.

2.3.3 Fuzzy Preference and its Properties

A fuzzy preference is an important type of fuzzy binary relation. It represents preference

between two states or alternatives as a preference degree for the first state over the second,

and thus naturally includes both certain and uncertain preferences. A formal definition of

a fuzzy preference relation is presented below (Tanino, 1984, 1988; Chiclana et al., 2001;

Xu, 2007).

Definition 2.3.7. Let S = {s1, s2, . . . , sm}, m > 1, denote a set of states or alternatives.

A fuzzy preference over S is a fuzzy relation on S, represented by a matrix R = (rij)m×m,

with membership function µR : S × S −→ [0, 1], where µR(si, sj) = rij, the degree of

preference for si over sj, satisfies

rij + rji = 1 and rii = 0.5, for all i, j = 1, 2, ...,m.

The condition rij + rji = 1 is referred to as the additive reciprocity.

One often writes r = µR, so r(si, sj) = µR(si, sj) = rij. Interpretations of the values of

r(si, sj) follow:
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(1) r(si, sj) = 1 indicates that state si is definitely preferred to state sj;

(2) r(si, sj) > 0.5 implies that state si is likely to be preferred to state sj; the larger

r(si, sj), the more likely that si is preferred to sj;

(3) r(si, sj) = 0.5 means that state si is likely to be indifferent to state sj, or that each

state is equally likely to be preferred to the other;

(4) r(si, sj) < 0.5 indicates that state sj is likely to be preferred to state si; the smaller

r(si, sj), the more likely that sj is preferred to si;

(5) r(si, sj) = 0 implies that state sj is definitely preferred to state si.

Note that the amount of preference cannot be inferred from a degree of preference. The

degree of preference of one state relative to another is the level of certainty that a DM

prefers the first state to the second, and says nothing about how strong this preference

may be. Thus, if si is definitely preferred to sj, then it is certain that si is preferred to sj,

but there is no implication about how much more preferred is si than sj. For k ∈ N , DM

k’s fuzzy preference is often denoted by Rk.

Example 2.3.8. Tom has a cold and would like a hot drink. He prefers coffee from Tim

Hortons cafes and tea from Williams cafes, and is indifferent between them. This means

that Tom prefers coffee from Tim Hortons to coffee from Williams and tea from Williams

to tea from Tim Hortons. However, he is indifferent between coffee from Tim Hortons and

tea from Williams.

Tom’s new roommate Dave brings Tom a tea from Tim Hortons and a coffee from

Williams. Now Tom’s preference for “tea” or “coffee” is unclear; he does not definitely
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prefer one to the other. In this case, Tom’s preference can be described as a fuzzy preference

relation.

If Tom is more likely to take tea, then Tom’s preference can be represented as a fuzzy

preference with rTom(TT,CW) > 0.5, where rTom(CW,TT) is defined by rTom(CW,TT) =

1 − rTom(TT,CW), in which TT means tea from Tim Hortons and CW means coffee from

Williams. In particular, if rTom(TT,CW) = 0.7, then Tom’s preference over {CW,TT} can

be represented by the following matrix.

RTom =

CW TT

CW

TT

 0.5 0.3

0.7 0.5

 .

Example 2.3.9. Example 2.3.8 can be expanded to represent Tom’s preferences over “cof-

fee” or “tea” from “Tim Hortons” or “Williams” and can be represented by the following

matrix:

R =

CT CW TT TW

CT

CW

TT

TW



0.5 1.0 0.8 0.5

0 0.5 0.3 0.1

0.2 0.7 0.5 0

0.5 0.9 1.0 0.5


,

where CT, CW, TT, and TW denote alternatives: coffee from Tim Hortons, coffee from

Williams, tea from Tim Hortons, and tea from Williams, respectively.
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Chapter 3

Fuzzy Preferences in a Two-Decision

Maker Graph Model

3.1 Introduction

The first step in developing the FGM is to integrate fuzzy preferences into a two-DM graph

model. Note that the simplest genuine conflict has two DMs, each of whom has two choices

or strategies. To gain fundamental insights into what is actually occurring strategically and

what can be done to obtain favorable resolutions, one can investigate such basic, or generic

form, conflicts, including the Sustainable Development, Prisoner’s Dilemma, and Chicken.

For example, in sustainable development disputes, two major groups of agents involved are

usually environmental agencies and developers. Environmental agencies are committed

to monitoring development activities such that no component of a healthy environment

is significantly degraded or destroyed. On the other hand, developers are engaged in

activities intended to increase the quality of human life, and are often dominated by their
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business views of making profits. To study conflicts with two DMs, such as those mentioned

above, with uncertain preferences, a fuzzy preference model for two DMs within the GMCR

framework is proposed in the current chapter.

In addition to developing the concepts of fuzzy relative certainty of preference, fuzzy

satisficing threshold, and fuzzy unilateral improvement as tools for incorporating fuzzy

preferences in the GMCR, the four basic fuzzy stability definitions—fuzzy Nash stabil-

ity, fuzzy general metarationality, fuzzy symmetric metarationality, and fuzzy sequential

stability—are introduced here. These fuzzy stabilities are applied to an ongoing sustainable

development dispute to demonstrate their applicability. The contributions of this chapter

are partly due to the papers by Bashar et al. (2009a,b, 2010a, 2011).

3.2 Fuzzy Relative Certainty of Preference

A fuzzy preference captures preference uncertainty using numbers between 0 and 1, in-

dicating pairwise preference degree to which one state is preferred over the other. Fuzzy

preference can be thought of as an increasing function of preference degrees for which

larger preference degree means more likely preferred. The maximum preference degree,

1.0, implies definite preference. When a preference degree is less than 1.0 (but greater

than 0) for a DM, he or she perceives that either state of the pair may be preferable to the

other, even if he “leans” toward one of the states. In particular, if r(si, sj) < 1, then the

DM does not definitely prefer state si to state sj. Due to additive reciprocity, the number

r(sj, si) = 1 − r(si, sj) can be interpreted as the degree to which state si is not preferred

over state sj. Hence, the following definition describes the intensity of preference for a

state (relative to another), which will be called the fuzzy relative certainty of preference of

42



a DM. Recall that N represents the set of DMs and S = {s1, s2, ..., sm}, m > 1, represents

the set of feasible states.

Definition 3.2.1. Let k ∈ N , and for si, sj ∈ S, let rk(si, sj) denote the preference degree

of state si over sj for DM k. Then the k-th DM’s fuzzy relative certainty of preference

(FRCP) for state si over sj, denoted αk(si, sj), is αk(si, sj) = rk(si, sj)− rk(sj, si).

The number αk(si, sj) measures the relative certainty of DM k’s preference for state si

over state sj. It is clear from Definitions 2.3.7 and 3.2.1 that for any k ∈ N and for all

i, j = 1, 2, ...,m, −1 ≤ αk(si, sj) ≤ 1. In particular,

(1) αk(si, sj) = 1 indicates that DM k definitely prefers state si to state sj;

(2) αk(si, sj) = 0 means that DM k is equally likely to favor state si over state sj, or to

favor state sj over state si;

(3) αk(si, sj) = −1 indicates that DM k definitely prefers state sj to state si.

Denoting αkij = αk(si, sj) for any i, j = 1, 2, ...,m, the k-th DM’s FRCP over S can be

represented by matrix (αkij)m×m.

Example 3.2.2. Let the matrix

Rp =

s1 s2 s3 s4

s1

s2

s3

s4



0.5 1.0 0.8 0.5

0 0.5 0.3 0.1

0.2 0.7 0.5 0

0.5 0.9 1.0 0.5


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represent the (fuzzy) preference of a DM, p, over the set of states S = {s1, s2, s3, s4}. Then

by employing Definition 3.2.1, p’s FRCP over S can be represented by the matrix:

(αp
ij) =

s1 s2 s3 s4

s1

s2

s3

s4



0 1.0 0.6 0

−1.0 0 −0.4 −0.8

−0.6 0.4 0 −1.0

0 0.8 1.0 0


.

Remark 3.2.3. The matrix representing FRCP is skew-symmetric in that, for all k ∈ N

and all i, j = 1, 2, ...,m, αk(sj, si) = −αk(si, sj) and αk(si, si) = 0.

3.3 Fuzzy Satisficing Threshold

In analyzing a graph model, one important task is to determine whether a DM is better

off to stay at a focal state or to move to some other states. A DM may wish to achieve a

certain amount of confidence in identifying a better state. The fuzzy satisficing threshold

of a DM describes his or her criterion to identify a state that is worthwhile. Note that

different DMs may have different criteria in choosing states that benefit them. The fuzzy

satisficing threshold of a DM is a number that characterizes the level of FRCP required

for the DM to find an advantageous state. A formal definition is given below.

Definition 3.3.1. For k ∈ N , DM k would be willing to move from state s ∈ S to state

si ∈ S if and only if αk(si, s) ≥ γk, where γk is called the fuzzy satisficing threshold (FST)

of DM k.
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The FST is a behavioral parameter that represents the DM’s criterion for deciding whether

to take advantage of some possible moves. Because of Definition 3.2.1, it is reasonable to

assume that an FST is positive and does not exceed 1, i.e., for all k ∈ N , 0 < γk ≤ 1.

If for a DM k ∈ N , γk = 1, it means that DM k finds a state worthy only if his or

her preference for the state over an initial state is crisp, since αk(si, s) ≥ γk = 1 implies

rk(si, s)− rk(s, si) = 1 indicating rk(si, s) = 1 and rk(s, si) = 0. The FST of a DM may be

supplied by the DM himself or herself, determined by an analyst by interviewing the DM,

or by other means such as reading background information about the DM.

3.4 Fuzzy Unilateral Improvements by a Decision

Maker

Stability analysis within the GMCR depends fundamentally on which states a DM would

move to, given that he or she could do so, starting at some given initial state. In a graph

model with fuzzy preference, this choice must depend on the DM’s FST as it characterizes

the level of FRCP to be required to identify states that are worthy for the DM. A fuzzy

unilateral improvement signals a DM’s attractiveness to move. More specifically, a fuzzy

unilateral improvement for a DM is a state that the DM could and would move to, in other

words, a state in the DM’s reachable list for which the FRCP over the initial state is not

less than the DM’s FST. Recall that Rk(s) is the set of states reachable from a given state

s ∈ S for DM k ∈ N and γk is the FST of DM k.

Definition 3.4.1. Let s ∈ S and k ∈ N . A state si ∈ Rk(s) is called a fuzzy unilateral

improvement (FUI) from s by DM k if and only if αk(si, s) ≥ γk.
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Definition 3.4.2. The set of all FUIs from a state s ∈ S for DM k is called the fuzzy

unilateral improvement list (FUIL) from s by DM k, and is denoted R̃+
k, γk

(s).

To summarize Definition 3.4.2, R̃+
k, γk

(s) = {si ∈ Rk(s) : αk(si, s) ≥ γk}. For simplicity,

one writes R̃+
k (s) = R̃+

k, γk
(s).

Example 3.4.3. Suppose that the matrix Rp in Example 3.2.2 represents the (fuzzy)

preference of a DM, p, over the set of states S = {s1, s2, s3, s4} in a conflict model and

that p’s reachable list from state s3 is Rp(s3) = {s1, s2, s4}. Also suppose that γp = 0.5,

that is, the FST of p is 0.5. Then s1 is an FUI from s3 for p, since s1 ∈ Rp(s3) and

αp(s1, s3) = 0.6 ≥ 0.5, the FST of p. Hence, one can find that the FUIL from s3 for p is

R̃+
p, 0.5(s3) = {s1, s4}.

Likewise, if p had FST 0.7, then his or her FUIL from s3 would be R̃+
p, 0.7(s3) = {s4}.

Remark 3.4.4. When the FST of a DM is 1.0, the definitions of a DM’s FUI and FUIL

coincide with the definitions of a DM’s (crisp) UI and (crisp) UIL, respectively.

3.5 Fuzzy Stabilities for a Two-Decision Maker Graph

Model

The concept of fuzzy stability is incorporated into the GMCR to accommodate fuzzy

preference, which is an effective tool in representing both certain and uncertain preference

information. Note that in a graph model with two DMs, the opponent of a focal DM

is always a single DM. In a strategic conflict, a DM never moves to a state that is not
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advantageous according to his or her FUIL. If there is an FUI from the current state, a

DM may consider the opponent’s countermove and also subsequent move before deciding

on whether to take advantage of the immediate FUI. Like the crisp GMCR, the FGM

takes into account these human behavior in identifying states that represent potential

resolutions of a dispute. More specifically, four basic fuzzy stability definitions—fuzzy

Nash stability, fuzzy general metarationality, fuzzy symmetric metarationality, and fuzzy

sequential stability—are introduced to integrate various kinds of human behavior into

graph model fuzzy stability calculations. As there are two DMs in the model, assume that

N = {k, l}; accordingly, the FSTs will be denoted γk and γl.

Definition 3.5.1. (Fuzzy Nash Stability or Fuzzy Rationality): A state s ∈ S is

fuzzy Nash stable, or fuzzy rational (FR) for DM k if and only if

R̃+
k (s) = ∅.

Under FR stability, the focal DM is considered to take into account only of his or her

FUIs when deciding whether to move from a given initial state, and ignores any possible

responses by the opponent. Thus, state s is FR stable for DM k if and only if DM k has

no FUIs from s.

Definition 3.5.2. (Fuzzy General Metarationality): A state s ∈ S is fuzzy general

metarational (FGMR) for DM k if and only if for every s1 ∈ R̃+
k (s) there exists an s2 ∈

Rl(s1) such that αk(s2, s) < γk.

For FGMR, the focal DM asks whether each of his or her FUIs could subsequently be

sanctioned by the opponent, using one of the opponent’s unilateral moves. Note that the
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DM does not consider whether the opponent would be better off making this sanctioning

move. If the focal DM has no FUIs from state s, then s is automatically FGMR stable

in the sense that there is no FUI from s that cannot subsequently be sanctioned by the

opponent using a unilateral move. In particular, FR stability implies FGMR stability.

Definition 3.5.3. (Fuzzy Symmetric Metarationality): A state s ∈ S is fuzzy sym-

metric metarational (FSMR) for DM k if and only if for every s1 ∈ R̃+
k (s) there exists an

s2 ∈ Rl(s1) such that αk(s2, s) < γk, and αk(s3, s) < γk for all s3 ∈ Rk(s2).

In FSMR stability, the focal DM looks one more step ahead (in comparison to FGMR

stability) when deciding whether to take advantage of an FUI. If there is a sanction by the

opponent, the focal DM asks if he or she has a unilateral move that escapes the sanction.

If the focal DM cannot escape the sanction, then the original state is FSMR stable. If the

focal DM has no FUIs from the current state, then it is FSMR stable in the sense that

there is no FUI from the initial state for which a sanction by the opponent can be escaped

by the focal DM. In particular, FR stability implies FSMR stability.

Definition 3.5.4. (Fuzzy Sequential Stability): A state s ∈ S is fuzzy sequentially

stable (FSEQ) for DM k if and only if for every s1 ∈ R̃+
k (s) there exists an s2 ∈ R̃+

l (s1)

such that αk(s2, s) < γk.

FSEQ stability is the same as FGMR stability except that the focal DM considers only

sanctions of his or her FUIs that are “credible” in the sense that they are FUIs for the

opponent. Note that the definition of FSEQ depends not only on the focal DM’s FST,

γk, but also on the opponent’s FST, γl. If the focal DM has no FUIs from the initial

state, then it is FSEQ stable in the sense that there is no FUI from the current state
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that cannot subsequently be sanctioned by the opponent using an FUI. In particular, FR

stability implies FSEQ stability.

Definition 3.5.5. (Fuzzy Equilibrium): A state s ∈ S that is fuzzy stable for both

DMs k and l under a specific fuzzy stability definition is called a fuzzy equilibrium (FE )

under that definition.

Note that DMs k and l may have different FSTs in identifying their own fuzzy stable

states. Therefore, FE corresponding to all the fuzzy stability definitions above, even fuzzy

Nash equilibrium, depend on both DMs’ FSTs.

3.6 Application of Fuzzy Stabilities to the Sustainable

Development Conflict

3.6.1 Sustainable Development and Related Issues

Development is crucial to the advancement of civilization. More specifically, economic

development increases standards of living, and sustainable development, as described in

(Brundtland Report, 1987), meets the needs of the present without compromising the

ability of future generations to meet their own requirements. Although development is

essential to fulfil human needs and to improve the quality of life, it must be based on

the efficient and responsible use of human, economic and natural resources. Theoretically,

development that does not cause significant damage to the planet is possible, but conflicting

motivations make it difficult to achieve. One instance is the temptation to improve an
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economy at the cost of environmental protection, for example, by not treating industrial

wastes nor enhancing industrial processes (Gore, 2006a,b; Hipel and Obeidi, 2005).

A wide variety of environmental disputes is taking place around the globe on an ongoing

basis, including the continuing controversies surrounding the reduction of greenhouse gasses

and the preservation of ecosystems (Hipel and Bernath Walker, 2010). The great sparrow

campaign (also known as kill a sparrow campaign, and officially, the four pests campaign)

between 1958 and 1960 in China is an example of an environmental disaster. Under this

campaign, sparrows were killed by peasants to save their grain seeds. However, this action

caused populations of harmful insects to balloon, leading to a major ecological imbalance

(Shapiro, 2001). An example of a recent environmental disaster is the Gulf of Mexico Oil

Spill caused by an explosion on a drilling rig off the coast of southeast Louisiana, USA on

April 20, 2010 (The New York Times, 2010; Center for Biological Diversity, 2011). More

than 200 million gallons of oil fouled the ocean and Gulf coastlines, spreading along more

than 1,000 miles of shoreline, and causing the death or harm of more than 82,000 birds,

about 6,000 sea turtles, nearly 26,000 marine mammals including dolphins, as well as an

unknown but enormous number of fish and invertebrates (Center for Biological Diversity,

2011).

3.6.2 Application of Fuzzy Stabilities for a Two-Decision Maker

Graph Model to the Sustainable Development Conflict

The Sustainable Development conflict (Hipel, 2002) is a 2 × 2 game having two DMs or

players each of whom has two options or strategies (Kilgour and Fraser, 1988; Fraser and

Kilgour, 1986; Rapoport et al., 1976). One DM represents the environmental agencies
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(ENV) and the other potential developers (DEV). ENV consists of government officials,

environmentalists, and/or community groups. The main task of ENV is to oversee develop-

ment activities to ensure that they remain sustainable. This means that the development

projects will not only be economically beneficial but also environmentally viable. DEV, on

the other hand, is composed of individuals or business enterprises, whose aim is to initiate

development projects that will be economically feasible. Generally speaking, DEV’s major

goal is to make profit. However, DEV often feels some sort of environmental responsibility;

some of them may place environmental priorities higher than others.

Table 3.1: States in the Sustainable Development Conflict

DEV
S U

ENV

P s1 s2

R s3 s4

In summary, in monitoring development activities and their effects on the environment,

ENV can be proactive (P) or reactive (R). On the other hand, based on the level of

responsibility to the environment and society, DEV may practice sustainable development

(S) or unsustainable development (U). The model is presented in Table 3.1 in which each

cell represents one of the four possible states. For example, state s1 indicates the situation

in which ENV is proactive and DEV practices sustainable development. Figures 3.1 and

3.2 show how ENV and DEV can cause the conflict to move from one state to another. For

example, ENV can move from state s1 to state s3 by changing its strategy from proactive

to reactive, but cannot move from s1 to s2.
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Figure 3.1: Possible Moves by Environmental Agencies (ENV)

Figure 3.2: Possible Moves by Developers (DEV)

The Graph Model of the Sustainable Development conflict studied here is similar to

the one investigated in (Hipel, 2002) and (Hipel and Bernath Walker, 2010), except that

in this study, preference uncertainties between some states are considered for both ENV

and DEV. For example, when DEV practices sustainable development, ENV may not

have enough reason to definitely prefer state s1 over state s3, even though, by nature,

ENV may want to be proactive rather than reactive. For DEV, when ENV is proactive,

it may be unsure which of states s1 and s2 is better (even though it may want to choose

unsustainable development instead of sustainable development) because it is unaware about

ENV’s plans in administering relevant environmental regulations. Taking these and other
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Table 3.2: Fuzzy Preferences of Environmental Agencies (ENV) and Developers (DEV)

RENV =

s1 s2 s3 s4

s1

s2

s3

s4


0.5 1.0 0.75 1.0

0 0.5 0 1.0

0.25 1.0 0.5 1.0

0 0 0 0.5



RDEV =

s1 s2 s3 s4

s1

s2

s3

s4


0.5 0.25 0 0

0.75 0.5 0.7 0

1.0 0.3 0.5 0

1.0 1.0 1.0 0.5



preference uncertainties into account, a typical fuzzy preference model for ENV and DEV is

constructed, and is represented in Table 3.2 by matricesRENV andRDEV. In particular, the

number 0.75 in RENV represents ENV’s preference degree of being proactive over reactive

when DEV practices sustainable development. Using Definition 3.2.1, the FRCPs for ENV

and DEV are calculated, and are represented by matrices αENV and αDEV in Table 3.3.

A fuzzy stability analysis is carried out by applying the FR, FGMR, FSMR, and FSEQ

stability definitions introduced in Section 3.5 to the sustainable development model. The

results are presented in Table 3.4 in which ENV or DEV in a cell indicates that the state

in the corresponding row is fuzzy stable for the indicated DM but not for the opponent

while FE indicates that the state is a fuzzy equilibrium, under the indicated fuzzy stability

definition. In this analysis, four sets of FSTs for ENV and DEV—(i) γENV = 0.4, γDEV =

0.3; (ii) γENV = 0.6, γDEV = 0.3; (iii) γENV = 0.4, γDEV = 0.6; and (iv) γENV = 0.6,
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Table 3.3: Fuzzy Relative Certainty of Preferences of Environmental Agencies (ENV) and
Developers (DEV)

αENV =

s1 s2 s3 s4

s1

s2

s3

s4


0 1.0 0.5 1.0

−1.0 0 −1.0 1.0

−0.5 1.0 0 1.0

−1.0 −1.0 −1.0 0



αDEV =

s1 s2 s3 s4

s1

s2

s3

s4


0 −0.5 −1.0 −1.0

0.5 0 0.4 −1.0

1.0 −0.4 0 −1.0

1.0 1.0 1.0 0



γDEV = 0.6—are considered.

It can be seen from Table 3.4 that when satisficing criteria of both ENV and DEV

are weak, that is, for smaller FSTs, state s2 is the only FE under all four fuzzy stability

definitions. This result is similar to the one found in (Hipel, 2002) for the case of typical

developers who are not concerned about environmental impacts of their activities. State

s2, in which environmental agencies are proactive and developers practice unsustainable

development, represents a reasonable resolution for these developers. An increase in the

FST of ENV does not significantly change the fuzzy stability results. However, when the

FST of DEV is increased from 0.3 to 0.6, state s1 also becomes a FE under all four fuzzy

stability definitions. Recall that state s1 represents a circumstance in which environmental

agencies are proactive and developers practice sustainable development. Note that s1 is

the outcome predicted in (Hipel, 2002) for the case of more environmentally responsible

54



Table 3.4: Fuzzy Stability Results of the Sustainable Development Conflict

FSTs States FR FGMR FSMR FSEQ

γENV = 0.4
γDEV = 0.3

s1 ENV ENV ENV ENV

s2 FE FE FE FE

s3 ENV ENV ENV

s4 DEV DEV DEV DEV

γENV = 0.6
γDEV = 0.3

s1 ENV ENV ENV ENV

s2 FE FE FE FE

s3 ENV ENV ENV ENV

s4 DEV DEV DEV DEV

γENV = 0.4
γDEV = 0.6

s1 FE FE FE FE

s2 FE FE FE FE

s3 FE FE DEV

s4 DEV DEV DEV DEV

γENV = 0.6
γDEV = 0.6

s1 FE FE FE FE

s2 FE FE FE FE

s3 ENV FE FE FE

s4 DEV DEV DEV DEV

developers.

When the DEV’s FST increases, that is, when developers do not see moves as improve-

ments unless they are relatively certain to be better off, they may end up choosing to stay

either at state s1 or s2. This indicates that when environmental agencies are proactive,

developers do not have enough incentive to move away from either of these two states even

though s2 is likely to be preferred to state s1. A move from s1 is not sufficiently likely to

satisfy developers’ desire for improvement. This represents developers’ “stickiness” in mov-

ing to a reachable state implying the likely indifference between states s1 and s2. In this

case, state s3, being an FGMR, FSMR and FSEQ equilibrium, is also a potential resolution
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if both ENV and DEV are farsighted in identifying the benefits of possible moves.

3.7 Summary

A new framework for the GMCR, the FGM, is developed to handle strategic conflicts in

which DMs have fuzzy preferences over the feasible states. This makes it possible to use

all forms of DMs’ preference information—certain or uncertain—in a graph model. Within

FGM, the four basic crisp graph model stability definitions, R, GMR, SMR, and SEQ

for a two-DM graph model are redefined as FR, FGMR, FSMR, and FSEQ, respectively,

and called fuzzy stabilities. The FST, a parameter, is introduced to take into account the

interacting DMs’ satisficing behavior and is incorporated into the fuzzy stability definitions.

When the fuzzy stability definitions developed in this chapter are applied to the well-

known sustainable development conflict, the analysis provides new insights into the dispute.

The predicted equilibria in two different cases of a previous study (developers being less or

more environmentally responsible) are obtained from the same fuzzy preference model. The

analysis also finds that developers’ satisficing behavior has more impact on the solutions

than the satisficing behavior of environmental agencies.
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Chapter 4

Fuzzy Preferences in an n-Decision

Maker (n > 2) Graph Model

4.1 Introduction

The fuzzy preference framework for the GMCR developed in Chapter 3 is specifically

applicable to a conflict with only two DMs. However, the number of DMs in a real-world

dispute is not limited to two; for example, the Elmira groundwater contamination dispute

has three DMs. To study strategic conflicts with more than two DMs, at least one of whom

has uncertain preferences over feasible states, a general fuzzy preference framework within

the structure of the GMCR is developed in this chapter. More specifically, the concept

of a fuzzy unilateral improvement (FUI) by a coalition of DMs is introduced and the four

basic fuzzy stability definitions—FR, FGMR, FSMR, and FSEQ—for a two-DM case are

extended to an n-DM (n > 2) graph model.
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The fuzzy stability definitions given in Section 3.5 apply only to two-DM graph models.

In such a model, the opponent of a focal DM is an individual. But in a graph model with

more than two DMs, the “opponent” of a focal DM may not be an individual DM but

could be a coalition of two or more DMs. Except for fuzzy Nash stability, the vital issue in

fuzzy stability determination is whether any possible response by the opponent(s) would

constitute a sanction. The fuzzy stability definitions in Section 3.5 apply the criteria

provided by Definition 3.4.1 to identify FUIs from a given state by an individual DM.

Note that the FSEQ stability is defined based on countermoves by the opponent(s) that

are credible in the sense that the opponent(s)’ moves are taken into account only if they

benefit the opponent(s). To facilitate the definition of FSEQ stability for a graph model

with more than two DMs, the definition of an FUI by a coalition of DMs is given in the next

section. Subsequently, fuzzy stability definitions are generalized in the context of an n-DM

(n > 2) graph model, and are presented in Section 4.3. The fuzzy stabilities developed in

Section 4.3 are then applied to the Elmira groundwater contamination dispute—a three-

DM conflict—to demonstrate the applicability of the generalized FGM. Part of the research

in this chapter is based upon the papers by Bashar et al. (2010b,c, 2012b); Hipel et al.

(2011).

4.2 Fuzzy Unilateral Improvements by a Coalition

Definition 3.4.1 provides criteria to identify states that benefit a single DM who is willing

to move to an advantageous state or to make a credible sanctioning move. This case is

clear and straightforward. However, the identification of states that benefit a coalition

of DMs is complicated and depend not only on the FUIs of the coalition members but

58



also on their joint unilateral moves and countermoves. The next definition integrates the

idea of a coalitional unilateral move, given by Definition 2.2.2, with the individual FUIs of

Definition 3.4.1.

Definition 4.2.1. (Fuzzy Unilateral Improvements by a Coalition): Let s ∈ S and

H ⊆ N , |H| ≥ 2. Let H = {1, 2, ..., p} and define γH = (γ1, γ2, ..., γp). Now, define the

subset R̃+
H,γH

(s) ⊆ S inductively by the following:

(1) If k ∈ H and s1 ∈ R̃+
k (s), then s1 ∈ R̃+

H,γH
(s) and k ∈ Ω̃+

H, γH
(s, s1), where Ω̃+

H,γH
(s, s1)

denotes the set of all last DMs in legal sequences from s to s1;

(2) If s1 ∈ R̃+
H,γH

(s), k ∈ H, s2 ∈ R̃+
k (s1), and Ω̃+

H,γH
(s, s1) 6= {k}, then s2 ∈ R̃+

H,γH
(s) and

k ∈ Ω̃+
H,γH

(s, s2).

A fuzzy unilateral improvement (FUI) from s by the coalition H is any member of R̃+
H,γH

(s).

Note that the induction stops in Definition 4.2.1 as soon as (i) R̃+
H,γH

(s) cannot be

augmented by any new state, s2, and (ii) |Ω̃+
H,γH

(s, s1)| cannot be increased beyond 1 for

any s1 ∈ R̃+
H,γH

(s). As in Definition 2.2.2, Definition 4.2.1 imposes the requirement that all

sequences of moves be legal in the sense that no DM ever moves twice consecutively. Also

note that Definition 4.2.1 depends essentially on the FSTs of all DMs in H, since a new

state s2 is added to R̃+
H,γH

(s) only if it belongs to R̃+
k (s1) = R̃+

k,γk
(s1) for a suitable s1 and

k. For simplicity, one writes R̃+
H(s) = R̃+

H,γH
(s). It is important to note that if |H| = 1,

such as H = {k}, then R̃+
H(s) = R̃+

k (s).

Remark 4.2.2. When γk = 1.0 for all k ∈ H, that is, when the FST of each DM in the

coalition is 1, the definition of a coalition’s FUI coincides with the definition of a coalition’s

(crisp) UI.
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4.3 Fuzzy Stabilities for an n-Decision Maker (n > 2)

Graph Model

Now that the definition of FUIs from a given initial state by a coalition of DMs in a

graph model with fuzzy preferences is introduced, appropriate fuzzy stabilities for an n-

DM (n > 2) graph model can be defined. Note that fuzzy Nash stability does not depend

on the responses of the opponents, so the definition of fuzzy Nash stability for an n-DM

graph model is unchanged from the two-DM case.

The definitions of the remaining three basic fuzzy stabilities for models with n > 2

DMs and fuzzy preference, namely fuzzy general metarationality, fuzzy symmetric meta-

rationality, and fuzzy sequential stability, are now put forward. In these definitions, N − k

represents the coalition of all DMs other than k or, in other words, k’s opponents. Thus,

RN−k(s) and R̃+
N−k(s) represent the unilateral moves and FUIs, respectively, from s by

DM k’s opponents.

Definition 4.3.1. (Fuzzy General Metarationality): A state s ∈ S is fuzzy general

metarational (FGMR) for DM k ∈ N if and only if for every s1 ∈ R̃+
k (s) there exists an

s2 ∈ RN−k(s1) such that αk(s2, s) < γk.

In FGMR stability, the focal DM inquires whether each of his or her potential FUIs is

sanctioned by the opponents using a coalitional unilateral move, even if this move hurts

any of the opponents. If the focal DM has no FUI from the current state, the state is

automatically FGMR stable in the sense that there is no FUI that cannot be sanctioned

by the opponents using a coalitional unilateral move.
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Definition 4.3.2. (Fuzzy Symmetric Metarationality): A state s ∈ S is fuzzy sym-

metric metarational (FSMR) for DM k ∈ N if and only if for every s1 ∈ R̃+
k (s) there exists

an s2 ∈ RN−k(s1) such that αk(s2, s) < γk, and αk(s3, s) < γk for all s3 ∈ Rk(s2).

For FSMR stability, if any of the FUIs of the focal DM is sanctioned by a coalitional

unilateral move of the opponents, the focal DM asks whether he or she can escape the

sanction using a unilateral move. If the focal DM cannot escape the sanction, the current

state is FSMR stable for the DM. For the situation where the focal DM has no FUI from

the current state, the state is FSMR stable in the sense that there is no FUI from the

initial state for which a sanction by the opponents (as a coalition) can be escaped by the

focal DM.

Definition 4.3.3. (Fuzzy Sequential Stability): A state s ∈ S is fuzzy sequentially

stable (FSEQ) for DM k ∈ N if and only if for every s1 ∈ R̃+
k (s) there exists an s2 ∈

R̃+
N−k(s1) such that αk(s2, s) < γk.

FSEQ stability is the same as FGMR stability except that while considering the sanc-

tion of each of his or her potential FUIs, the focal DM takes into account only credible

sanctions (i.e., FUIs) by the opponents (as a coalition). If the focal DM has no FUI from

the current state, the state is FSEQ stable in the sense that there is no FUI from the

initial state that cannot be sanctioned by the opponents using a coalitional FUI. Note that

FSEQ stability depends on all DMs’ FSTs because R̃+
N−k(s1) appears in this definition.

From above, one can summarize that if there is no FUI from an initial state, the state

is automatically FGMR, FSMR, and FSEQ stable. But by definition, if there is no FUI

from a given state, the state is FR stable. Therefore, it can be concluded that FR stability

implies FGMR, FSMR, and FSEQ stability.
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Definition 4.3.4. (Fuzzy Unstable): A state is fuzzy unstable for a DM under a specific

fuzzy stability definition if the state is not fuzzy stable for that DM under that definition.

Definition 4.3.5. (Fuzzy Equilibrium): A state s ∈ S that is fuzzy stable for all DMs

under a specific fuzzy stability definition is called a fuzzy equilibrium (FE ) under that

definition. In particular, state s is fuzzy Nash equilibrium if s is FR stable for all DMs in

N . Note that the FE corresponding to all the fuzzy stability definitions above, even fuzzy

Nash equilibrium, depend on all DMs’ FSTs.

When the FST of each DM in a graph model is 1.0, the definitions of FR, FGMR,

FSMR, FSEQ, and FE coincide with the definitions of R, GMR, SMR, SEQ, and crisp

equilibrium, respectively. This follows the following theorem.

Theorem 4.3.6. The crisp GMCR is a special case of the FGM.

4.4 Application of Fuzzy Stabilities to the Elmira

Groundwater Contamination Conflict

In this section, the fuzzy stability concept is applied to a real-world environmental conflict

that took place in Elmira, a small town in Ontario, Canada. First, a brief background of

the dispute is presented. Next, the dispute is modelled within the structure of the FGM

followed by a fuzzy stability analysis.
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4.4.1 Background of the Elmira Groundwater Contamination

Conflict

Elmira, a town with about 10,000 residents renowned for its annual maple syrup festi-

val, is located in an agricultural region of southwestern Ontario, Canada, roughly equally

distant from three Great Lakes: Lake Ontario, Lake Erie, and Lake Huron. Domestic

water supplies for the town are sourced mainly from an underground aquifer. In late 1989,

the Ontario Ministry of the Environment (now the Ministry of Environment and Energy),

labeled “M”, found that the aquifer was contaminated by a carcinogen, N-nitroso demethy-

lamine (NDMA), causing a major environmental crisis (Hipel et al., 1993a; Sanderson et

al., 1995; Conestoga-Rovers and Associates, 1999).

NDMA is formed by the combination of nitrates and amines and belongs to the ni-

trosamine group of chemicals. It is highly water soluble and a potent carcinogen. NDMA

was found in two well fields in Elmira at concentrations of 40 ppb and 1.5 ppb (parts per

billion). Although at that time there were no official NDMA drinking water guidelines,

the Ontario Environmental Appeal Board stated in 1992 that concentrations of NDMA

in drinking water should not exceed 0.009 ppb. Suspicion fell on Uniroyal Chemical Ltd.,

called “U”, which since 1942 had been operating a pesticide and rubber products plant in

Elmira that had a history of environmental problems, and was associated with NDMA-

producing processes (Sanderson et al., 1995; Conestoga-Rovers and Associates, 1999).

M issued a control order under the Environmental Protection Act of Ontario, requiring

that U take immediate and expensive measures to rectify the contamination. In reply, U

appealed the control order. The Local Government, labeled “L”, consisting of the Regional

Municipality of Waterloo and the Township of Woolwich, felt that it should take a position
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as the authority responsible for protecting local interests, and sought legal and technical

advice from independent consultants.

4.4.2 A Graph Model of the Elmira Groundwater Contamination

Conflict

The graph model of the Elmira conflict considered here is based on the situation in mid-

1991 (Hipel et al., 1993a). At that time, the control order was still under appeal, and the

situation had not changed for more than one year. The main DMs in the dispute, M, U

and L, each had distinctive objectives. M aimed to carry out what it saw as its mandate

as efficiently as possible, U wanted the control order lifted or at least modified, while L

wanted to protect both its citizens and industrial base.

Table 4.1: Decision Makers, Options, and Feasible States for the Elmira Conflict

M

O1: Modify N Y N Y N Y N Y –

U

O2: Delay Y Y N N Y Y N N –

O3: Accept N N Y Y N N Y Y –

O4: Abandon N N N N N N N N Y

L

O5: Insist N N N N Y Y Y Y –

States s1 s2 s3 s4 s5 s6 s7 s8 s9

To secure a desirable outcome, each DM had one or more options or courses of action.

The DMs, their main options, and feasible states are represented in Table 4.1. The “mod-

ify” option for M means that M could modify the original control order to make it more

favorable to U. As are also listed in the first column of Table 4.1, U could delay the appeal
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process, accept the original control order as is, or simply abandon its operations in Elmira;

and L could insist on the application of the original control order. In Table 4.1, states

are defined by indicating options selected by the controlling DM with “Y” and options

not selected with “N”; the symbol “–” means that the state is the same whether “Y” or

“N” is chosen. Although there are 32 mathematically possible states, only 9 states were

considered feasible due to various option constraints (Fang et al., 1993; Hipel et al., 1993a,

1999; Kilgour et al., 2001). For example, U can select only one option at a time out of the

available three—delay, accept, and abandon.

L

M M

M M

L L L

U U

U U

U UU UUU

U U

Figure 4.1: Unilateral Moves in Elmira Conflict

Figure 4.1, the integrated graph for the model of the Elmira conflict in Table 4.1, shows

all unilateral moves. The nodes of the graph represent feasible states and the labels on

the arcs indicate the controlling DM. The arrowhead(s) of an arc indicate the allowable

move directions. Note that the model includes both reversible and irreversible moves; for
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Table 4.2: Preference of the Ontario Ministry of the Environment (M) in the Elmira
Conflict: Most to Least Preferred

s7 s3 s4 s8 s5 s1 s2 s6 s9

example, the move between states s1 and s5 by L is reversible while the move from s1 to

s3 by U is irreversible.

Note that M, a provincial authority that is responsible for environmental issues in the

entire Province of Ontario, might not be as closely connected to the Elmira dispute as

the more local DMs, U and L, and may therefore have more precisely defined preferences.

Hence, the preference of M over the feasible states is assumed to be crisp and shown in

Table 4.2, listed as the most preferred state on the left to the least preferred on the right,

which is identical to (Hipel et al., 1993a, 1999; Kilgour et al., 2001).

But in the present study, possible preference uncertainty of U and L over some states is

taken into account and its effects are assessed. For example, U may be in doubt about the

desirability of abandoning its Elmira operation. More specifically, the preference of U for

state s5, where U delays the appeal process and L insists on the application of the original

control order, over state s9, where U abandons its operation, may be uncertain. Although

L would like to insist on the application of the original control order, it may be uncertain

about its preference when a control order (original or modified) is accepted by U. Thus,

when M modifies the original control order and U accepts it, L may be unsure whether

state s8 (insist) or s4 (not) is better. L may not find enough reason to definitely prefer

state s8 over s4 as assumed in (Hipel et al., 1993a, 1999; Kilgour et al., 2001); rather, it

may lean toward s4 over s8.

Taking these and other possible preference uncertainties of U and L into account, a
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Table 4.3: Fuzzy Preferences of Uniroyal Chemical Ltd. (U) and Local Government (L)
in the Elmira Conflict

RU =

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1

s2

s3

s4

s5

s6

s7

s8

s9



0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0 0.5 0.85 0 0.4 0.7 0.9 0 0.2

0 0.15 0.5 0 0 0 0.8 0 0.1

0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.9

0 0.6 1.0 0 0.5 0.7 1.0 0.1 0.3

0 0.3 1.0 0 0.3 0.5 1.0 0 0.2

0 0.1 0.2 0 0 0 0.5 0 0.05

0 1.0 1.0 0 0.9 1.0 1.0 0.5 0.7

0 0.8 0.9 0.1 0.7 0.8 0.95 0.3 0.5



RL =

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1

s2

s3

s4

s5

s6

s7

s8

s9



0.5 1.0 0 0.8 0 1.0 0 0.7 1.0

0 0.5 0 0 0 0 0 0 1.0

1.0 1.0 0.5 1.0 1.0 1.0 0.65 1.0 1.0

0.2 1.0 0 0.5 0.25 1.0 0 0.6 1.0

1.0 1.0 0 0.75 0.5 1.0 0 0.7 1.0

0 1.0 0 0 0 0.5 0 0 1.0

1.0 1.0 0.35 1.0 1.0 1.0 0.5 1.0 1.0

0.3 1.0 0 0.4 0.3 1.0 0 0.5 1.0

0 0 0 0 0 0 0 0 0.5



fuzzy preference model for U and L has been developed, as represented by matrices RU

and RL in Table 6.6. For example, the number 0.7 in the 9-th row and 5-th column of RU

represents the degree of preference of state s9 over state s5 for U, while the number 0.6

in the 4-th row and 8-th column of RL represents L’s preference degree for state s4 over
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state s8. To demonstrate how the satisficing behavior of DMs within an FGM influences

fuzzy stabilities, four sets of FSTs of the DMs are considered. The FSTs used in the

analysis are: (i) γM = 1.0, γU = 0.4, γL = 0.2; (ii) γM = 1.0, γU = 0.4, γL = 0.3; (iii)

γM = 1.0, γU = 0.6, γL = 0.2; and (iv) γM = 1.0, γU = 0.6, γL = 0.3. Note that in each case

γM = 1.0, since the preference of M is crisp.

4.4.3 Fuzzy Stability Analysis of the Elmira Groundwater

Contamination Conflict

To carry out a fuzzy stability analysis of the Elmira conflict model described above means

to apply the fuzzy stability definitions in order to identify states with high degrees of

stability. The results are presented in Table 4.4, where a
√

in a cell indicates that the

state in the corresponding row is fuzzy stable for the indicated DM, or a fuzzy equilibrium,

under the indicated fuzzy stability definition. Note that the fuzzy stabilities are calculated

for each of the four sets of FSTs mentioned in Subsection 4.4.2.

As can be seen from Table 4.4, when weaker satisficing criteria for U and L, such as

γU = 0.4 and γL = 0.2, are considered, the two predicted equilibria (states s5 and s8)

of the analysis in (Hipel et al., 1993a, 1999; Kilgour et al., 2001) disappear for FR and

FSEQ stability types. However, there is a new fuzzy equilibrium at state s4. For stronger

satisficing criteria for U and L, that is, for increased FSTs, states s5 and s8 join the fuzzy

equilibrium list. For FSEQ, when moves and countermoves determined using DMs’ FUIs

become relevant, state s1 is no longer fuzzy stable for L when the FST of U is increased.

That is, increasing γU from 0.4 to 0.6 unblocks L’s FUI from s1 to s5, causing state s1 to

be FSEQ unstable for L.
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Table 4.4: Fuzzy Stability Results of the Elmira Groundwater Contamination Conflict

FSTs States
FR FGMR FSMR FSEQ

M U L FE M U L FE M U L FE M U L FE

γM = 1.0
γU = 0.4
γL = 0.2

s1
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

γM = 1.0
γU = 0.4
γL = 0.3

s1
√ √ √ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.2

s1
√ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.3

s1
√ √ √ √ √ √ √ √ √ √ √ √

s2
√ √ √ √ √ √ √

s3
√ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s6
√ √ √ √ √ √ √ √

s7
√ √ √ √ √ √ √

s8
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
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As is clear from Table 4.4, states s4 and s9 have a high degree of stability—they are

FE (fuzzy stable for all DMs) under all four fuzzy stability definitions for each of the four

sets of FSTs. The addition of state s5 to the FE list results from the increase of U’s FST

from 0.4 to 0.6, while the inclusion of state s8 as a FE results from the increase of L’s FST

from 0.2 to 0.3. It should be noted that state s9, where U closes its operation in Elmira, is

the least preferred for both M and L as can be seen from their preference representations.

Moreover, as depicted in Figure 4.1, U alone controls the movement of the dispute to state

s9, which is not its most preferred state, and seems relatively unlikely to happen.

In state s5, U delays the appeal process while L insists on application of the original

control order. In this circumstance, the DMs are working to reach a reasonable (win-win)

resolution, so it seems that, like the original analysis (Hipel et al., 1993a), state s5 cannot

be a likely outcome. State s1, which is similar to state s5 except that L does not insist on

application of the original control order, also cannot be likely. Thus, the alternatives are

state s8, where M modifies the original control order and U accepts it as modified, despite

the objection of L, and state s4, which is the same as state s8 except that L does not raise

any objection.

Thus, if L would move to a reachable state that is relatively less favorable, that is, if

its satisficing criterion is weak, the most reasonable resolution is state s4. However, as L

becomes stricter about making only more favorable moves, that is, if L’s satisficing criterion

is high, the outcome is either state s4 or s8. Note that L controls the movement between

states s4 and s8. Therefore, which of these two equilibria is more likely depends greatly on

how sensitive L is toward U’s interests. Recall that the objective of L was not only to care

for its citizens but also to safeguard its financial base. Furthermore, U controls threats

from states s4 and s8 to abandon its Elmira operation. Thus, L has good reasons to be
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Table 4.5: Comparison of the Stability Results between the Crisp GMCR and FGM
Analyses of the Elmira Groundwater Contamination Conflict

States Stability Results in the Previous Anal-
ysis (using the Crisp GMCR (Hipel et
al., 1993a, 1999; Kilgour et al., 2001))

Stability Findings in the Present Anal-
ysis (using the FGM)

s1 GMR and SMR equilibrium. FGMR, FSMR and FSEQ equilibrium for
each of the four sets of FSTs except that for
larger FST of U, the state becomes FSEQ un-
stable for L.

s4 GMR and SMR equilibrium. FE under all four fuzzy stability definitions
for each of the four sets of FSTs—one of the
recommended resolutions.

s5 Equilibrium under all four stability defini-
tions.

FE under all four fuzzy stability definitions
for only larger FST of U.

s8 Equilibrium under all four stability
definitions—recommended resolution.

FE under all four fuzzy stability definitions for
only larger FST of L. For smaller FST of L,
it is only an FGMR and FSMR equilibrium—
one of the recommended resolutions.

s9 Equilibrium under all four stability defini-
tions.

FE under all four fuzzy stability definitions
for each of the four sets of FSTs—relatively
unlikely to happen.

conciliatory to U. If this is the case, then the most likely resolution is state s4; otherwise,

state s8 would be most likely. The role of L in this model is definitely a new insight into

the conflict; earlier analyses (e.g., (Hipel et al., 1993a)) concluded that, despite its efforts,

L had essentially no effect on the outcome. A comparison of these results with the findings

from the previous crisp graph model analysis of the Elmira groundwater contamination

conflict (Hipel et al., 1993a, 1999; Kilgour et al., 2001) is presented in Table 4.5.
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4.5 Summary

A FGM is developed for the general situation of the n-DM (n > 2) graph model to

incorporate preference uncertainty into conflict decision making. Within this framework,

three basic fuzzy stability definitions—FGMR, FSMR, and FSEQ—are introduced. Since

FR stability does not depend on the responses by the opponents, the FR stability definition

for an n-DM model is the same as for the two-DM case. Moreover, when there are two

DMs in a model (|N | = 2), the fuzzy stabilities given by Definitions 4.3.1, 4.3.2 and 4.3.3

coincide with the Definitions 3.5.2, 3.5.3 and 3.5.4, respectively, since in this case the

coalition H = N − k ⊂ N of the opponents of the focal DM k is trivial. In particular, if

H = N − k = {l}, then RN−k(s) = Rl(s) and R̃+
N−k(s) = R̃+

l (s). Hence, it follows that the

fuzzy stability definitions provided in Section 4.3 constitute a set of fuzzy stability criteria

that can be applied to a graph model with any number of DMs.

When applied to the Elmira groundwater contamination conflict, the fuzzy stability

analysis leads to some different predictions from the original analysis and provides new

insights. The outcomes can be interpreted not only as predictions, but also as answers

to “What-If?” questions. In particular, the final outcome depends on how much L cares

about U’s interests. If L is strict in pursuing its own objectives, the final outcome may be

s8, which does not add any value compared to the other possible outcome, s4, but creates a

gap between these two DMs. On the other hand, if L is more sympathetic to U’s interests,

the outcome may be s4.
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Chapter 5

Coalition Fuzzy Stability Analysis

5.1 Introduction

The fuzzy stability definitions introduced in Sections 3.5 and 4.3 are based solely on the

non-cooperative behavior of DMs; that is, each DM identifies his or her favorable states

based only on his or her own interests. However, in reality, people may cooperate with each

other to see if they can do even better compared to what they can achieve individually.

As mentioned in the Subsection 2.2.6, a coalitional form of stability definitions for

Nash, GMR, SMR, and SEQ within the (crisp) graph model structure are developed in

(Kilgour et al., 2001; Inohara and Hipel, 2008a,b). In this chapter, necessary tools, such

as coalition fuzzy improvements and class coalitional fuzzy improvements, are introduced

to facilitate the coalitional form of fuzzy stability analysis. Next, the four basic coalitional

fuzzy stability definitions, such as coalition fuzzy Nash stability, coalition fuzzy general

metarationality, coalition fuzzy symmetric metarationality, and coalition fuzzy sequential
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stability are developed.

The coalition fuzzy stability definitions introduced in this chapter are applied to a model

of the groundwater contamination dispute in Elmira, described in Section 4.4, demonstrat-

ing how these new concepts can be conveniently applied to practical problems in order to

identify a likely outcome. This application also reveals a comparison between cooperative

and non-cooperative form of fuzzy stabilities, and provides valuable strategic insights. The

research in this chapter was initiated in the paper by Bashar et al. (2012a).

5.2 Fuzzy Improvements by Coalitions

In the fuzzy stability definitions given in Sections 3.5 and 4.3, the focal DM is a single

DM; therefore, to determine states that are advantageous for the DM to move to, one

needs to find the FUI list for each individual DM. However, the coalition fuzzy stabilities

are primarily defined for a coalition of DMs. Note that the concept of a coalition fuzzy

stability is an extension of the notion of a fuzzy stability for an individual DM. Thus, the

coalition fuzzy stabilities will be characterized based on whether a coalition is better off

to stay at the current state or to move to a reachable state. Hence, one needs to identify

states that benefit the members of the coalition.

Recall that H ⊆ N represents a coalition of DMs in N , and P(N), the class of all

coalitions of DMs in N . Also, recall that if H = {1, 2, ..., p} then γH = (γ1, γ2, ..., γp).

Definition 5.2.1. (Coalition Fuzzy Improvement): A state si ∈ S is a coalition

fuzzy improvement (CFI) from a state s ∈ S by a coalition H ⊆ N if si ∈ RH(s) and

αk(si, s) ≥ γk for all k ∈ H.
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Definition 5.2.2. (Coalition Fuzzy Improvement List): The coalition fuzzy improve-

ment list (CFIL) from state s by coalition H is the collection of all CFIs from s by the

coalition H, denoted R̃++
H,γH

(s).

In summary,

si ∈ R̃++
H,γH

(s) if and only if si ∈ RH(s) and αk(si, s) ≥ γk for all k ∈ H.

For simplicity, one writes R̃++
H (s) = R̃++

H,γH
(s).

For coalitional form of FR stability, one needs to identify states from which a coalition

does not have an incentive to move to another state. The criteria given by Definitions 5.2.1

and 5.2.2 are sufficient to find these states. However, to define coalitional forms of FGMR,

FSMR and FSEQ stabilities, one needs to consider possible sanctions by the coalitions

of the opponent DMs. Accordingly, the concept of class coalitional fuzzy improvements

is provided below. Note that the notion of class coalitional moves is given by Definition

2.2.18.

Definition 5.2.3. (Class Coalitional Fuzzy Improvement): Let s ∈ S and C ⊆ P(N).

Let
⋃
H∈C H = {1, 2, ..., η} and define γC = (γ1, γ2, ..., γη). The class fuzzy improvement

list or class coalitional fuzzy improvement list (CCFIL) from state s by class C, denoted

R̃++
C,γC(s), is defined inductively as follows:

(1) If H ∈ C and s1 ∈ R̃++
H (s), then s1 ∈ R̃++

C,γC(s).

(2) If s1 ∈ R̃++
C,γC(s) and H ∈ C, and s2 ∈ R̃++

H (s1), then s2 ∈ R̃++
C,γC(s).

A class coalitional fuzzy improvement (CCFI) from s by the class C is any member of
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R̃++
C,γC(s). As in Definition 2.2.18, this definition ensures that no DM in any coalition in C

may move twice consecutively. For simplicity, one writes R̃++
C (s) = R̃++

C,γC(s).

5.3 Coalition Fuzzy Stabilities

Definition 5.3.1. (Coalition Fuzzy Nash Stability or Coalition Fuzzy Rationality

for a Coalition): Let H be a coalition of DMs in N and s ∈ S. State s is coalition fuzzy

Nash stable or coalition fuzzy rational (CFR) for coalition H if and only if R̃++
H (s) = ∅.

It is clear from this definition that state s is a CFR for a coalition if and only if there

is no state that is a CFI from s by the coalition. Note that CFR stability is a natural

generalization of the FR stability given in Definition 3.5.1.

Definition 5.3.2. (Coalition Fuzzy Nash Stability or Coalition Fuzzy Rationality

for a DM): Let k ∈ N and s ∈ S. State s is coalition fuzzy Nash stable or coalition fuzzy

rational (CFR) for DM k if and only if s is CFR for all coalitions H ∈ P(N) such that

k ∈ H.

In the following definitions, P(N −H) represents the class of coalitions of DMs in N

other than those in H.

Definition 5.3.3. (Coalition Fuzzy General Metarationality for a Coalition): Let

H ∈ P(N) and s ∈ S. State s is coalition fuzzy general metarational (CFGMR) for

coalition H if and only if for every s1 ∈ R̃++
H (s) there exists a CCM s2 ∈ RP(N−H)(s1) such

that αk(s2, s) < γk for some k ∈ H.
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Under CFGMR, each of the initial coalition H’s CFIs is sanctioned by a subsequent

coalitional move by some or all of the sanctioning coalitions such that no DM in any

sanctioning coalition may move twice consecutively. Keep in mind that, as in the case of

CFR stability, CFGMR stability generalizes the concept of FGMR stability provided in

Definition 4.3.1.

Definition 5.3.4. (Coalition Fuzzy General Metarationality for a DM): Let k ∈ N

and s ∈ S. State s is coalition fuzzy general metarational (CFGMR) for DM k if and only

if s is CFGMR for all coalitions H ∈ P(N) such that k ∈ H.

Definition 5.3.5. (Coalition Fuzzy Symmetric Metarationality for a Coalition):

Let H ∈ P(N) and s ∈ S. State s is coalition fuzzy symmetric metarational (CFSMR)

for coalition H if and only if for every s1 ∈ R̃++
H (s) there exists a CCM s2 ∈ RP(N−H)(s1)

such that αk(s2, s) < γk for some k ∈ H, and for every s3 ∈ RH(s2), αl(s3, s) < γl for some

l ∈ H.

CFSMR describes the stability of states by looking one more step ahead compared to the

CFGMR by checking whether the initial coalition H can escape sanctions, if any, caused by

the subsequent coalitional moves against each of H’s CFIs. If H cannot escape the sanction

using a coalitional move, the state is CFSMR stable. As before, the CFSMR stability

constitutes an intuitive extension of the FSMR stability furnished in Definition 4.3.2.

Definition 5.3.6. (Coalition Fuzzy Symmetric Metarationality for a DM): Let

k ∈ N and s ∈ S. State s is coalition fuzzy symmetric metarational (CFSMR) for DM k

if and only if s is CFSMR for all coalitions H ∈ P(N) such that k ∈ H.

Definition 5.3.7. (Coalition Fuzzy Sequential Stability for a Coalition): Let H ∈

P(N) and s ∈ S. State s is coalition fuzzy sequentially stable (CFSEQ) for coalition H
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if and only if for every s1 ∈ R̃++
H (s) there exists a CCFI s2 ∈ R̃++

P(N−H)(s1) such that

αk(s2, s) < γk for some k ∈ H.

CFSEQ is the same as CFGMR except that while considering sanctions of the initial

coalition H’s CFIs, H takes into account only subsequent coalitional fuzzy improvements

rather than coalitional moves. Like other coalition fuzzy stabilities, CFSEQ stability is a

natural generalization of the FSEQ stability given in Definition 4.3.3.

Definition 5.3.8. (Coalition Fuzzy Sequential Stability for a DM): Let k ∈ N and

s ∈ S. State s is coalition fuzzy sequentially stable (CFSEQ) for DM k if and only if s is

CFSEQ for all coalitions H ∈ P(N) such that k ∈ H.

Definition 5.3.9. (Coalition Fuzzy Equilibrium): A state s ∈ S is a coalition fuzzy

equilibrium (CFE ) under a specific coalition fuzzy stability concept if and only if s is

coalition fuzzy stable for all DMs under that coalition fuzzy stability notion. For instance,

state s is coalition fuzzy Nash equilibrium or CFR equilibrium if and only if it is CFR

stable for all DMs in N .

Remark 5.3.10. If the FST of each DM in N is 1.0, the definitions of coalition fuzzy

stabilities and associated coalition fuzzy equilibrium developed in this section coincide with

the definitions of the corresponding coalition stabilities and associated coalition equilibrium

provided in Subsection 2.2.6.

The following theorem is due to Remark 5.3.10.

Theorem 5.3.11. Coalition fuzzy stability concepts of the FGM are generalizations of

(crisp) coalition stability notions of the GMCR.

78



5.4 Application of Coalition Fuzzy Stabilities to the

Elmira Groundwater Contamination Conflict

To clearly understand the coalition fuzzy stability concepts as well as the associated def-

initions, and to demonstrate how they can be applied to practical decision problems, the

methodology is applied to an actual dispute over the contamination of the groundwater

aquifer supplying the town of Elmira, Canada, which is described in detail in Section 4.4.

Note that a crisp graph model coalition analysis of the Elmira conflict was initiated by

Kilgour et al. (2001) while an extensive coalition analysis was done by Inohara and Hipel

(2008a).

To study the impacts of DMs’ satisficing behavior in the coalition fuzzy stability analysis

of the Elmira dispute, four sets of FSTs—(i) γM = 1.0, γU = 0.4, γL = 0.2; (ii) γM =

1.0, γU = 0.4, γL = 0.3; (iii) γM = 1.0, γU = 0.6, γL = 0.2; and (iv) γM = 1.0, γU = 0.6, γL =

0.3—are considered, which are the same as in Section 4.4. The reason for choosing the

same set of FSTs as in Section 4.4 is to compare the outcomes of the present analysis with

the results obtained in Section 4.4 using non-cooperative fuzzy stabilities.

Recall that the set of DMs in the conflict is N = {M, U, L} and the set of feasible

states, S = {s1, s2, ..., s9}. Hence, all possible coalitions of DMs are {M}, {U}, {L}, {M,

U}, {M, L}, {U, L}, and {M, U, L}. For simplicity, these coalitions are written as M, U, L,

MU, ML, UL, and MUL, respectively; hence P(N) = {M, U, L, MU, ML, UL, MUL}. The

reachable lists for all coalitions of DMs are calculated by using Definition 2.2.2, and are

presented in Table 5.1. Next, for each coalition H ∈ P(N), Definitions 5.2.2 and 5.2.3 are

employed to calculate CFILs R̃++
H (s) and CCFILs R̃++

P(N−H)(s), respectively, from each state

s for each of the four sets of FSTs. To save space in the thesis, R̃++
H (s) and R̃++

P(N−H)(s) are
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Table 5.1: Reachable Lists of Coalitions

States
(s)

Reachable Lists RH(s) by Coalitions H ⊆ N
M U L MU ML UL MUL

s1 s2 s3, s9 s5 s2, s3, s4, s9 s2, s5, s6 s3, s5, s7, s9 s2, s3, s4, s5, s6, s7, s8, s9

s2 s4, s9 s6 s4, s9 s6 s4, s6, s8, s9 s4, s6, s8, s9

s3 s4 s9 s7 s4, s9 s4, s7, s8 s7, s9 s4, s7, s8, s9

s4 s9 s8 s9 s8 s8, s9 s8, s9

s5 s6 s7, s9 s1 s6, s7, s8, s9 s1, s2, s6 s1, s3, s7, s9 s1, s2, s3, s4, s6, s7, s8, s9

s6 s8, s9 s2 s8, s9 s2 s2, s4, s8, s9 s2, s4, s8, s9

s7 s8 s9 s3 s8, s9 s3, s4, s8 s3, s9 s3, s4, s8, s9

s8 s9 s4 s9 s4 s4, s9 s4, s9

s9

presented in Tables 5.2 and 5.3, respectively, for only the FSTs γM = 1.0, γU = 0.4, and

γL = 0.2. In particular, one can see from Table 5.2 that state s8 is a CFI of coalition MU

from state s5, since s8 ∈ RMU(s5), and αM(s8, s5) = 1.0 − 0 = 1.0 = γM and αU(s8, s5) =

0.9− 0.1 = 0.8 > 0.4 = γU. From Table 5.3, state s9 is a CCFI from state s1 by the class

of coalitions of the opponents of M (that is, of the class of coalitions {U, L, UL}), since s9

is a CFI from state s5 by U and s5 is a CFI from state s1 by L.

Although four different coalition fuzzy stability definitions are introduced to include

varied human behavior under conflict within the FGM, it is reasonable to assume that

CFR and CFSEQ stability represent a majority of the DMs’ behavioral patterns, since DMs

levying sanctions will not hurt themselves when sanctioning by moving to a less preferred

state. Hence, a coalition fuzzy stability analysis for CFR and CFSEQ are presented here

for the dispute over the groundwater contamination in Elmira. Note from Definitions 5.3.2,

5.3.4, 5.3.6, and 5.3.8 that the coalition fuzzy stability for an individual DM depends on

the coalition fuzzy stability results for all possible coalitions in which that DM is a member.
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Table 5.2: Coalition Fuzzy Improvement Lists for Fuzzy Satisficing Thresholds (FSTs):
γM = 1.0, γU = 0.4, γL = 0.2

States
(s)

Coalition Fuzzy Improvement Lists R̃++
H (s) for Coalitions H ⊆ N

M U L MU ML UL MUL

s1 s5 s5

s2 s4, s9 s6 s4 s4, s8 s4, s8

s3 s9

s4

s5 s9 s8

s6 s8, s9 s8 s4, s8 s4, s8

s7 s9 s3 s3

s8 s4 s4 s4 s4

s9

Table 5.3: Class Coalitional Fuzzy Improvement Lists for Fuzzy Satisficing Thresholds
(FSTs): γM = 1.0, γU = 0.4, γL = 0.2

States
(s)

Class Coalitional Fuzzy Improvement Lists R̃++
P(N−H)(s) for Coalitions H ⊆ N

M U L MU ML UL MUL

s1 s5, s9 s5 s5

s2 s4, s6, s8, s9 s6 s4, s9 s6 s4, s9

s3 s9 s9 s9

s4

s5 s9 s8, s9 s9

s6 s4, s8, s9 s8, s9 s8, s9

s7 s3, s9 s3 s9 s3 s9

s8 s4 s4 s4

s9

In particular, in the Elmira conflict, a state is CFR stable for DM M if it is CFR stable

for coalitions M, MU, ML, and MUL. The CFR and CFSEQ stability results for DM M

for FSTs γM = 1.0, γU = 0.4, andγL = 0.2 are presented in Table 5.4. One can notice from

Table 5.4 that state s4 is CFR for DM M since it is CFR for each of the four coalitions
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M, MU, ML and MUL, while state s5 is not CFR for DM M because it is not CFR for

coalition MU, although it is for the other three coalitions M, ML and MUL.

Table 5.4: Coalition Fuzzy Nash (CFR) and Sequential (CFSEQ) Stability Results for
the Ontario Ministry of the Environment (M) for Fuzzy Satisficing Thresholds (FSTs):

γM = 1.0, γU = 0.4, γL = 0.2

States
(s)

CFR for Coalition H ⊆ N CFR for
DM M

CFSEQ for Coalition H ⊆ N CFSEQ
for DM MM MU ML MUL M MU ML MUL

s1
√ √ √ √ √ √ √ √

s2
√ √ √ √

s3
√ √ √ √ √ √ √ √ √ √

s4
√ √ √ √ √ √ √ √ √ √

s5
√ √ √ √ √ √

s6
√ √ √ √

s7
√ √ √ √ √ √ √ √ √ √

s8
√ √ √ √

s9
√ √ √ √ √ √ √ √ √ √

The overall stability results, that is, the CFR and CFSEQ stability findings for M,

U and L as well as the corresponding CFE for all four sets of FSTs, are presented in

Table 5.5. It can be seen from Table 5.5 that the most consistent CFE are states s4 and

s9, as they appear to be CFE under both CFR and CFSEQ stability concepts for all four

sets of FSTs. If L requires more certainty of improvements, that is, if L wants to gain

more in identifying its FUIs, then state s8 joins the CFE list. Notice that for smaller FST

of U, state s1 is not CFE under CFR but it is under CFSEQ. The reason for this is that

there is a CFI s5 from state s1 by each of the coalitions L and ML that is sanctioned by

the subsequent CCFI(s) of the class of coalitions of the opponents of each of L and ML.

In particular, the CFI s5 of coalition ML from s1 is sanctioned by the subsequent CCFI

s9 of the class {U} of coalitions of the opponent(s) of ML, making state s1 to be CFSEQ
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stable for ML. However, for increased FST of U, CFI s5 from s1 by coalition ML becomes

unsanctioned, so that s1 can no longer be CFE under CFSEQ.

Now, these findings can be compared with the non-cooperative form of fuzzy stability

results of the Elmira conflict found in Section 4.4 (given in Table 4.4). For this purpose,

Table 5.6 is reproduced from Table 4.4, representing only FR and FSEQ stability results.

From Tables 5.5 and 5.6, one can find that, the non-cooperative form of FE state s5 is no

longer a FE when DMs coordinate their moves. This is because the coalition MU has a

CFI s8 from s5 that cannot be sanctioned by any subsequent CCFI of the class of coalitions

of the opponents of MU. Hence, state s5 is not CFR or CFSEQ stable for any of the DMs

M and U. This means that M and U can find a better outcome than s5 if they form a

coalition; accordingly, s5 is not a good choice as a resolution. Thus, the coalition fuzzy

stability analysis can help narrow down the list of possible resolution(s).

Although there are no other differences between the FE and CFE results, there is a

substantial amount of difference in individual level fuzzy stability findings between the

non-cooperative and coalitional fuzzy stability concepts. For example, when considering

the non-cooperative form, M does not envision an FUI from any of the states, thereby

making each feasible state FR as well as FSEQ stable. However, if it decides to cooperate

with others, some states become fuzzy stable, but not all. For instance, for FSTs γM =

1.0, γU = 0.4, and γL = 0.2, states s1, s3, s4, s7, ands9 are CFSEQ stable for M. This means

that M can join in some coalitions for each of which there are some CFIs that cannot

be sanctioned by any subsequent CCFIs of the class of coalitions of the opponents of the

initial coalition. Hence, M now has a shorter list of states from which it cannot do any

better. This fact is very important to come up with a suitable resolution. Even if this does

not change the equilibrium list at this time, the DM may reconsider its preferences to see
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Table 5.5: Coalition Fuzzy Stability Results of the Elmira Conflict

FSTs
States

(s)

CFR CFSEQ

M U L CFE M U L CFE

γM = 1.0
γU = 0.4
γL = 0.2

s1
√ √ √ √ √

s2

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √

s6

s7
√ √

s8

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.4
γL = 0.3

s1
√ √ √ √ √

s2

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √

s6

s7
√ √

s8
√ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.2

s1
√ √

s2

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √

s6

s7
√ √

s8

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.3

s1
√ √

s2

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √

s6

s7
√ √

s8
√ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √

84



Table 5.6: Non-cooperative Form of Fuzzy Nash (FR) and Sequential (FSEQ) Stability
Results of the Elmira Conflict (reproduced from Table 4.4)

FSTs
States

(s)

FR FSEQ

M U L FE M U L FE

γM = 1.0
γU = 0.4
γL = 0.2

s1
√ √ √ √ √ √

s2
√ √ √

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √ √ √

s6
√ √ √ √

s7
√ √ √

s8
√ √ √ √

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.4
γL = 0.3

s1
√ √ √ √ √ √

s2
√ √ √

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √ √ √

s6
√ √ √ √

s7
√ √ √

s8
√ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.2

s1
√ √ √ √

s2
√ √ √

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √

s6
√ √ √ √

s7
√ √ √

s8
√ √ √ √

s9
√ √ √ √ √ √ √ √

γM = 1.0
γU = 0.6
γL = 0.3

s1
√ √ √ √

s2
√ √ √

s3
√ √ √ √

s4
√ √ √ √ √ √ √ √

s5
√ √ √ √ √ √ √ √

s6
√ √ √ √

s7
√ √ √

s8
√ √ √ √ √ √ √ √

s9
√ √ √ √ √ √ √ √
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how outcomes are influenced.

Table 5.7: Evolution from the Status Quo State to the Coalition Fuzzy Equilibrium
(CFE ), s4, in the Elmira Conflict (when γL = 0.2)

Status Quo Intermediate Cooperative Moves CFE

M

1. Modify N N −→ Y Y

U

2. Delay Y Y −→ N N

3. Accept N N −→ Y Y

4. Abandon N N N N

L

5. Insist N −→ Y Y −→ N

States s1 s5 s8 s4

Table 5.8: Evolution from the Status Quo State to the Coalition Fuzzy Equilibrium
(CFE ), s8, in the Elmira Conflict (when γL = 0.3)

Status Quo Intermediate Cooperative Moves CFE

M

1. Modify N N −→ Y

U

2. Delay Y Y −→ N

3. Accept N N −→ Y

4. Abandon N N N

L

5. Insist N −→ Y Y

States s1 s5 s8

From Table 5.5, one can see that any of states s4, s8 and s9 can be a final resolution.

From Table 5.2, states s4 and s8 can only be CFIs if all three DMs join in a coalition.

Because the final outcome should to be a state that is favorable to all DMs, state s9

cannot be a suitable choice. If the status quo state is considered to be s1, L can take the

conflict from s1 to s5, which is an FUI for L. Then, the coalition MU can take the conflict
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from state s5 to s8, which is a coalitional fuzzy improvement. If the FST of L is small such

that a move is not highly restricted, it can join the coalition MU to make the final move

from state s8 to s4, which is a CFI for the coalition MUL, and hence, the final outcome

will be s4. If L is too strict to make a move, then s8 will remain as the final outcome. The

possible evolutions of this conflict from the status quo state s1 to the CFE states s4 and

s8 are exhibited in Tables 5.7 and 5.8, respectively.

5.5 Summary

The coalition fuzzy stability definitions for Nash, general metarational, symmetric metara-

tional, and sequential stability concepts of the GMCR are developed so that they constitute

a natural generalization of the individual level FR, FGMR, FSMR and FSEQ stabilities.

By employing these definitions, each state can be investigated for not only how preferable

it is for an individual DM, but also how desirable it is for the DM as a potential coalition

member. Specifically, coalition fuzzy stability for a DM identifies states from which neither

the DM himself or herself, nor any of the coalitions that he or she can join, would like to

move away. A DM can first assess how well he or she can do by acting on his own and then

ascertain whether he can fare even better by cooperating within a coalition in the face of

high uncertainty.

When applied to the Elmira groundwater contamination conflict, the methodology iden-

tifies some states that were fuzzy stable for M with respect to the non-cooperative fuzzy

stability definitions developed in Chapters 3 and 4, but fail to be coalition fuzzy stable for

DM M. Hence, the coalition fuzzy stability analysis may narrow down the list of individual-

level fuzzy stabilities, thereby providing the analyst with valuable strategic insights into
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the conflict under study. Furthermore, the possible evolution of a conflict from a status

quo state to a final outcome can be conveniently explained using CFILs. Therefore, as an

analysis tool to augment non-cooperative fuzzy stabilities, coalition fuzzy stability analysis

constitutes an important addition to the FGM.
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Chapter 6

Fuzzy Option Prioritization

6.1 Introduction

In any decision making technique, DMs’ preference information, expressed implicitly or

explicitly, is an essential component. Preference information may be given in various forms,

for instance as utilities (as in classical game theory (von Neumann and Morgenstern, 1944)),

as fuzzy utilities (as in fuzzy decision making (Nakamura, 1986; De Wilde, 2004)), via crisp

option prioritization (as in the crisp GMCR (Hipel et al., 1997; Peng et al., 1997; Peng,

1999; Hipel et al., 2001; Fang et al., 2003)), or simply as pairwise relative preferences over

the feasible states or scenarios (as in the GMCR (Kilgour et al., 1987; Fang et al., 1993)).

In whatever form a DM’s preference information is provided, the objective is always to

represent a preference relation over the feasible states or alternatives.

Crisp option prioritization is a methodology to model a DM’s preference over feasible

states within a graph model structure using his or her priority list of combinations of
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courses of action, referred to as preference statements (Peng et al., 1997; Peng, 1999; Fang

et al., 2003). To be more specific, a DM’s preference statements are composed of options

using logical connectives such as “and”, “or”, and “if–then”, and listed from the most

important to least. The option prioritization methodology takes into account the truth

value (“true” or “false”) of each preference statement at each feasible state. Note that in

calculating a DM’s preferences, a more important preference statement dominates a less

important one, and the truthfulness of a preference statement dominates its falsity. For

example, in the Elmira model, the most important preference statement of L is “U does not

close its operations in Elmira”; so any state or scenario in which U continues its operations

in Elmira is preferred by L to any state in which U closes its operations.

Note that the FGM developed in Chapters 3 and 4, extending the crisp GMCR, as well

as the coalition fuzzy stabilities introduced in Chapter 5, take into account a DM’s fuzzy

preferences. But, like crisp preferences, modeling fuzzy preferences by pairwise comparison

of states is difficult, and even impractical, for larger problems. Until now, there is no

single procedure to model a DM’s fuzzy preference within a graph model framework. In

this chapter, a fuzzy version of the crisp graph model option prioritization methodology,

called fuzzy option prioritization, is developed by assuming fuzzy truth values of preference

statements at feasible states to model DMs’ fuzzy preferences for use in the analysis step

of the FGM. The original research carried out in this chapter is the extension of the paper

by Bashar et al. (2012c).
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6.2 Fuzzy Truth Values and Fuzzy Scores

Preference uncertainty is an important issue in modeling and analyzing a real-world deci-

sion problem. When preference uncertainty is incurred in a multiple participant-multiple

objective decision problem, preference statements, as modeled for the crisp option prior-

itization technique, developed in (Peng et al., 1997; Peng, 1999; Fang et al., 2003) and

described in Subsection 2.2.7, may not be assessed to be precisely “true” or “false” at

some feasible states. Note that an earlier version of crisp option prioritization was first

introduced by Fraser and Hipel (1988), discussed by Fraser (1993, 1994), and then gener-

alized for use within GMCR by Peng et al. (1997); Peng (1999); Hipel et al. (1997); Fang

et al. (2003).

A limitation of preference modeling by crisp option prioritization technique is that it

assesses a preference statement based only on whether it occurs (i.e., “true”) or not (i.e.,

“false”) at a state, and does not consider other courses of action that are present in that

state but not included in that particular preference statement. These courses of action may

influence the truth value of the preference statement at that state. For example, in the

Elmira dispute, L may consider the preference statement “insisting on the application of

the original control order” in modeling its preferences. It may be reasonable to restrict the

truth value of this preference statement to either “true” or “false” at states in which U is

delaying the appeal process. However, at a state in which U accepts a control order (original

or modified), the truth value of this preference statement may not be precisely “true” or

“false”. Accordingly, to make the crisp option prioritization a more useful preference

elicitation technique, a more flexible and realistic truth value of a preference statement is

needed.
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In the circumstances described above, it may be reasonable to represent the truth value

of a preference statement at a state by a numerical value taken from the closed unit interval

[0, 1], referred to as a truth degree or degree of truth, called a fuzzy truth value. A truth

degree of 1 for a preference statement at a state indicates that the preference statement

is true, while a truth degree of 0 implies that the preference statement is false. Note that

fuzzy truth value is the main concept behind fuzzy logic and fuzzy set, introduced by Zadeh

(1965), that has a wide variety of applications in engineering, decision sciences, and other

areas (Bellman and Zadeh, 1970; Bojadziev and Bojadziev, 2007; Ross, 2010).

A lower truth degree of a preference statement at a particular state indicates less

suitability, while a higher truth degree implies more suitability of the statement in the

circumstances of the state. If σt(s) = σ(Ωt, s) denotes the fuzzy truth value of a preference

statement Ωt at a given state s ∈ S, then σt(s) = 0 (that is, the truth degree of the

preference statement Ωt at state s is 0) means that the statement Ωt does not make any

sense at s, which is equivalent to the fact that Ωt is “false” at s, that is, Ωt(s) = F .

Likewise, σt(s) = 1 is equivalent to Ωt(s) = T .

Recall from Subsection 2.2.7 that Ω1,Ω2, ...,Ωq represent a DM’s preference statements

listed in order of importance from most to least. For 1 ≤ t ≤ q, let Ψ̃t(s) denote the fuzzy

incremental score of a state s ∈ S for preference statement Ωt, defined by

Ψ̃t(s) =
1

2t
σt(s). (6.1)

Now, let Ψ̃(s) denote the fuzzy score of a state s ∈ S. Then define

Ψ̃(s) =

q∑
t=1

Ψ̃t(s). (6.2)
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In (6.2), the fuzzy truth values of preference statements at the feasible states, as assumed

for preference uncertainty, are taken into account to calculate fuzzy scores for the states.

The fuzzy scores of the feasible states will be used in a formula, developed in the following

section, to calculate a preference degree for each pair of states.

6.3 Fuzzy Preference Elicitation

The crisp option prioritization, representing a crisp preference ordering of feasible states

for a DM lexicographically or by using the scores calculated by employing the Equation

2.3, is a standard ranking methodology if there is no preference uncertainty and the states

are assessed according to the preference statements of the DM using Boolean or classical

logic. However, because preference uncertainty is the main justification for the assumption

of fuzzy truth values in the assessment of preference statements at feasible states, the crisp

preference ordering of states using the fuzzy scores as given by (6.2) is not enough to capture

the vagueness in preferences. Rather, the cardinal values of the fuzzy scores should be used

to identify the preference intensity between two states. A function r : S × S −→ [0, 1] is

defined below to express this preference information.

r(si, sj) =


1
2

+ 1
2

Ψ̃(si)−Ψ̃(sj)

max{|Ψ(si)−Ψ(sj)|,|Ψ̃(si)−Ψ̃(sj)|}
, if Ψ̃(si) 6= Ψ̃(sj)

0.5, otherwise,
(6.3)

where for an s ∈ S, Ψ(s) and Ψ̃(s) are defined by (2.3) and (6.2), respectively. The following

theorem establishes that the function defined by (6.3) represents a fuzzy preference relation

over the set of feasible states, S.
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Theorem 6.3.1. The fuzzy relation R = (rij)m×m on S, with membership function

µR : S × S −→ [0, 1]

defined by µR(si, sj) = rij = r(si, sj), where r(si, sj) is given by (6.3), is a fuzzy preference

relation on S.

Proof: First we show that for any si, sj ∈ S, µR(si, sj) = rij = r(si, sj) ∈ [0, 1].

Let si, sj ∈ S. If Ψ̃(si) = Ψ̃(sj), then by (6.3), r(si, sj) = 0.5. If Ψ̃(si) 6= Ψ̃(sj), then from

the fact that

| Ψ̃(si)− Ψ̃(sj) | ≤ max{| Ψ(si)−Ψ(sj) |, | Ψ̃(si)− Ψ̃(sj) |},

we obtain

−1 ≤ Ψ̃(si)− Ψ̃(sj)

max{| Ψ(si)−Ψ(sj) |, | Ψ̃(si)− Ψ̃(sj) |}
≤ 1,

and hence,

0 ≤ 1

2
+

1

2

Ψ̃(si)− Ψ̃(sj)

max{| Ψ(si)−Ψ(sj) |, | Ψ̃(si)− Ψ̃(sj) |}
≤ 1,

that is, 0 ≤ r(si, sj) ≤ 1. Accordingly, µR(si, sj) = rij = r(si, sj) ∈ [0, 1], for all si, sj ∈ S.

Next we show that µR(si, sj)+µR(sj, si) = 1, for any si, sj ∈ S. For si, sj ∈ S for which

Ψ̃(si) = Ψ̃(sj), the above identity is obvious, since in this case r(si, sj) = r(sj, si) = 0.5,

and hence, µR(si, sj) = µR(sj, si) = 0.5. For si, sj ∈ S satisfying Ψ̃(si) 6= Ψ̃(sj), we obtain
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that

µR(si, sj) + µR(sj, si) = r(si, sj) + r(sj, si)

= 1
2

+ 1
2

Ψ̃(si)−Ψ̃(sj)

max{|Ψ(si)−Ψ(sj)|,|Ψ̃(si)−Ψ̃(sj)|}
+

1
2

+ 1
2

Ψ̃(sj)−Ψ̃(si)

max{|Ψ(sj)−Ψ(si)|,|Ψ̃(sj)−Ψ̃(si)|}

= 1.

Finally, µR(si, si) = rii = r(si, si) = 0.5, from (6.3). Hence, R = (rij)m×m is a fuzzy

preference relation on S.

Theorem 6.3.2. Crisp option prioritization is a special case of fuzzy option prioritiza-

tion. Specifically, if the truth value of each preference statement at each feasible state is

based on Boolean logic, then preferences over feasible states obtained by employing fuzzy

option prioritization are crisp and are the same as would be found by using crisp option

prioritization.

Proof: Assume that the truth value of each preference statement Ωt, t = 1, 2, ..., q, at

each state in S is based on Boolean logic. Then for any s ∈ S,

σt(s) =

 1, if Ωt(s) = T

0, if Ωt(s) = F
.

Hence, Ψ̃t(s) = 1
2t
σt(s) = Ψt(s). Accordingly,

Ψ̃(s) =

q∑
t=1

Ψ̃t(s) =

q∑
t=1

Ψt(s) = Ψ(s).

For si, sj ∈ S, by crisp option prioritization, si � sj, or si ∼ sj, or si ≺ sj if and only

if Ψ(si) > Ψ(sj), or Ψ(si) = Ψ(sj), or Ψ(si) < Ψ(sj), respectively. Now, if Ψ(si) > Ψ(sj),
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then since Ψ̃(si) = Ψ(si) and Ψ̃(sj) = Ψ(sj), we can find from (6.3) that

r(si, sj) = 1
2

+ 1
2

Ψ̃(si)−Ψ̃(sj)

max{|Ψ(si)−Ψ(sj)|,|Ψ̃(si)−Ψ̃(sj)|}

= 1
2

+ 1
2

Ψ(si)−Ψ(sj)

max{|Ψ(si)−Ψ(sj)|,|Ψ(si)−Ψ(sj)|}

= 1
2

+ 1
2

= 1,

which is equivalent to si � sj.

If Ψ(si) = Ψ(sj), then by (6.3), r(si, sj) = 0.5, which is equivalent to si ∼ sj. Finally,

if Ψ(si) < Ψ(sj), then by (6.3),

r(si, sj) = 1
2

+ 1
2

Ψ(si)−Ψ(sj)

max{|Ψ(si)−Ψ(sj)|,|Ψ(si)−Ψ(sj)|}

= 1
2
− 1

2
= 0,

which is equivalent to si ≺ sj. This completes the proof.

6.4 Application of Fuzzy Option Prioritization to the

Elmira Groundwater Contamination Conflict

To demonstrate how the fuzzy option prioritization methodology can be employed to model

fuzzy preferences in a real-world multiple participant-multiple objective decision problem,

it is applied to the Elmira groundwater contamination conflict described in Section 4.4.

Recall from Section 4.4 that in Elmira dispute, the uncertain preferences of U and L were

modeled as fuzzy preferences by complicated and time consuming pairwise comparison of

states, represented in Table 6.6 by matrices RU and RL, respectively. In this section, the

uncertain preferences of U and L are modeled as fuzzy preferences by using the systematic
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Table 6.1: Lexicographic Preference Statements and Interpretations for the Ontario
Ministry of the Environment (M) in the Elmira Conflict

Preference Statement Interpretation

−O4 Concerned about the provincial economy, M does not want U to abandon
its operations in Elmira.

O3 M wants U to accept a control order, original or modified.

−O2 M does not want the procedure delayed.

−O1 M prefers that the original control order not be modified.

O5 IFF −O1 M would like L to support the original control order if and only if it does
not modify the order.

fuzzy option prioritization technique developed in this chapter. The methodology also

generates a crisp preference for M as expected.

Peng (1999) developed a set of preference statements for each of the DMs, M, U and

L, of the Elmira dispute to apply the crisp option prioritization for eliciting preferences.

In this study, the preference statements of M, U and L are considered to be the same as in

(Peng, 1999), which are presented in Tables 6.1, 6.2 and 6.3, respectively. In these tables,

preference statements are listed vertically from most to least important. Recall that crisp

option prioritization (Fang et al., 2003; Peng et al., 1997; Peng, 1999) is a methodology that

is used to order feasible states lexicographically based on truth values, “true” or “false”,

of preference statements at each state.

Unlike Peng’s assumption in (Peng, 1999), the truth values of some of the preference

statements of U and L at some states may not be concluded as exactly “true” or “false”

because of the presence of some specific combinations of courses of actions in those states.

For Example, according to Boolean logic, the truth value of U’s preference statement Ω2

(−O4, meaning that U prefers not to abandon its operations in Elmira) is “true” at state
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Table 6.2: Lexicographic Preference Statements and Interpretations for Uniroyal
Chemical Ltd. (U) in the Elmira Conflict

Preference Statement Interpretation

O3 IFF O1 U would accept the control order if and only if it is modified.

−O4 U does not want to abandon its operations in Elmira.

−O5 U does not want L to insist on the application of the original control
order.

O2 IFF −O5 U would like to delay the procedure if and only if L’s attitude is softened.

Table 6.3: Lexicographic Preference Statements and Interpretations for Local
Government (L) in the Elmira Conflict

Preference Statement Interpretation

−O4 Concerned about the negative impacts on local economy, L does not
want U to abandon its operations in Elmira.

−O1 L prefers that the original control order not be modified.

O3 IF −O1 L wants U to accept the control order if it is not modified.

O5 IF O1 L would insistently ask for the original control order if M plans to modify
it.

−O2 L does not want the procedure delayed.

O5 L insists on the application of the original control order.

s3 in which U accepts the original control order. However, when U has to accept the

original control order, it may not prefer to choose “not abandon” with 100% truth (that is,

a degree of truth 1), even if it would rather not abandon; instead, it may prefer to choose

“not abandon” with some degree of truth between 0 and 1. A similar argument may be

given for L when judging truthfulness of the preference statement Ω6 (O5, meaning that L

tends to insist on the application of the original control order in any circumstances) at state

s4, where a modified control order is accepted by U without pressure from L. Specifically,
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if M modifies the original control order and U accepts it, as described by state s4, L may

take into account U’s possible threat of abandoning its operations in Elmira, and prefer to

assign a non-zero truth degree to Ω6 at s4, rather than a truth value of “false” (equivalent

to a truth degree of 0) in accordance with Boolean logic.

The above circumstances necessitate the consideration of fuzzy truth values of some

preference statements at some states to calibrate preferences of U and L in the Elmira

conflict. By taking these and similar situations into account, fuzzy truth values are assigned

to the preference statements of U and L at each feasible state, which are presented in Table

6.4. Recall that a truth degree of 1 indicates the absolute truth of a preference statement

(which is equivalent to the truth value “true”), while a truth degree of 0 means the absolute

falsity (equivalent to the truth value “false”). As is also explained in Section 4.4, M is a

provincial authority that looks after the environmental issues of the entire Province of

Ontario. Its interest regarding the Elmira conflict may not be as closely connected to the

dispute as the more local DMs, U and L, and may therefore be considered to have precisely

defined preferences. Hence, by examining the preference statements listed in Table 6.1,

one can ascertain that the truth value of each of these statements at each feasible state is

Boolean logic-based, “true” or “false”, which is also presented in Table 6.4.

In Tables 6.1, 6.2 and 6.3, there are a total of 5, 4 and 6 preference statements for M,

U and L, respectively. Since there is exactly one truth degree for one preference statement

at a given state, M, U and L have 5, 4 and 6 truth degrees, respectively, at each state. The

first, second and third columns of Table 6.4 list these truth degrees as 5-tuples, 4-tuples

and 6-tuples, respectively, in which the truth degrees appear in the decreasing order of

importance of the preference statements. That is, the first entry of a 4-tuple represents

the truth degree of the most important preference statement of U at a state, while the last
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entry is the truth degree of the least important preference statement. For example, in the

4-tuple (0, 0.7, 1, 0) in the third row and third column of Table 6.4, the first entry 0 is the

truth degree of the most important preference statement “O3 IFF O1” of U at state s3, the

second entry 0.7 is the truth degree of the second most important preference statement

“−O4”, and so on.

Table 6.4: Fuzzy Truth Values of the Preference Statements of the Ontario Ministry of
the Environment (M), Uniroyal Chemical Ltd. (U), and Local Government (L) in the

Elmira Conflict

State
(s)

Fuzzy Truth Values of Preference Statements (Most Important to Least) at State s

M U L

s1 (1, 0, 0, 1, 0) (1, 1, 1, 1) (1, 1, 0, 1, 0, 0)

s2 (1, 0, 0, 0, 1) (0.25, 1, 1, 1) (1, 0, 1, 0, 0, 0)

s3 (1, 1, 1, 1, 0) (0, 0.7, 1, 0) (1, 1, 1, 1, 1, 0.5)

s4 (1, 1, 1, 0, 1) (1, 1, 1, 0) (1, 0.2, 1, 0.7, 1, 0.7)

s5 (1, 0, 0, 1, 1) (1, 0.65, 0, 0) (1, 1, 0, 1, 0, 1)

s6 (1, 0, 0, 0, 0) (0.25, 1, 0.4, 0.5) (1, 0, 1, 1, 0, 1)

s7 (1, 1, 1, 1, 1) (0, 0.7, 0, 1) (1, 1, 1, 0.9, 1, 0.5)

s8 (1, 1, 1, 0, 0) (1, 1, 0, 1) (1, 0.2, 1, 0.5, 1, 0.5)

s9 (0, 0, 1, 1, 0) (1, 0.35, 1, 0) (0, 1, 0, 1, 1, 0)

Now one employs Equation 6.2 to calculate a fuzzy score for each state in S for M, U

and L. Next, these fuzzy scores are used in (6.3) to find the fuzzy preference degrees for M,

U and L. From the results, it is clear that the preferences of M are crisp, represented by

Table 6.5 from most preferred on the left to least preferred on the right, and are the same

as found in (Peng, 1999), because the truth values of the preference statements of M at

feasible states are assumed to be Boolean. This same preferences of M are also considered

in the fuzzy stability analysis of the Elmira dispute in Section 4.4 as well as in the coalition

fuzzy stability analysis in Section 5.4. However, the application of Equation 6.3 generates
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Table 6.5: Preferences of the Ontario Ministry of the Environment (M) in the Elmira
Conflict: Most to Least Preferred

s7 s3 s4 s8 s5 s1 s2 s6 s9

Table 6.6: Fuzzy Preferences of Uniroyal Chemical Ltd. (U) and Local Government (L)
in the Elmira Conflict

RU =

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1

s2

s3

s4

s5

s6

s7

s8

s9



0.5 0.875 1.0 1.0 1.0 0.85 1.0 1.0 0.86

0.125 0.5 1.0 0.1429 0.34 0.7833 1.0 0.1667 0.1

0 0 0.5 0 0.0167 0 1.0 0 0

0 0.8571 1.0 0.5 1.0 0.835 1.0 1.0 0.825

0 0.66 0.9833 0 0.5 0.7063 0.9857 0 0.3

0.15 0.2167 1.0 0.165 0.2938 0.5 1.0 0.1833 0.1583

0 0 0 0 0.0143 0 0.5 0 0

0 0.8333 1.0 0 1.0 0.8167 1.0 0.5 0.7667

0.14 0.9 1.0 0.175 0.7 0.8417 1.0 0.2333 0.5



RL =

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1

s2

s3

s4

s5

s6

s7

s8

s9



0.5 1.0 0 0.665 0 1.0 0.0409 0.93 1.0

0 0.5 0 0 0 0 0.0196 0 1.0

1.0 1.0 0.5 0.845 1.0 1.0 0.7 0.9933 1.0

0.335 1.0 0.155 0.5 0.3045 1.0 0.181 0.6 1.0

1.0 1.0 0 0.6955 0.5 1.0 0.045 0.9417 1.0

0 1.0 0 0 0 0.5 0.025 0 1.0

0.9591 0.9804 0.3 0.819 0.955 0.975 0.5 0.95 0.989

0.07 1.0 0.0067 0.4 0.0583 1.0 0.05 0.5 1.0

0 0 0 0 0 0 0.011 0 0.5


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fuzzy preferences for U and L as preference degrees for one state over another, which are

represented by matrices RU and RL in Table 6.6.

As is also mentioned earlier, fuzzy preferences of U and L are modeled in Section 4.4 as

matrices RU and RL by pairwise comparison of feasible states for use in the fuzzy stability

analysis of the Elmira dispute. One can verify that the fuzzy preferences RU and RL, as

obtained here, are very close to RU and RL, respectively. In particular, with the same

sets of FSTs, as considered in Section 4.4, fuzzy stability results are also the same. As the

objective of this chapter is to develop an efficient technique to model fuzzy preferences of

DMs involved in a dispute and not to make an analysis, the details of the fuzzy stability

results are not shown here.

It may be mentioned that it was hard to model the fuzzy preferences of U and L in

Section 4.4 by comparing the states pairwise. However, the fuzzy option prioritization

methodology developed in this chapter can do this job without difficulty, and the fuzzy

preference outputs are very close to those obtained by a pairwise comparison of states. It

follows that the new methodology can utilize human judgements on preference statements

at feasible states efficiently and generate a fuzzy preference that is reasonably close to the

one obtained by systematic but tedious pairwise comparison of states. Since the truth

values of preference statements of M at feasible states are all based on Boolean logic, the

methodology provides a crisp preference ordering of states for M, exactly the same as in

Peng (1999) from crisp option prioritization.
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6.5 Summary

The fuzzy option prioritization methodology is developed to aid the modeling of uncertain

preferences as fuzzy preferences within the framework of the GMCR. Equation 6.1 is intro-

duced to represent fuzzy incremental score of a state for a preference statement while (6.2)

gives the overall fuzzy score of a state for a DM, both capturing preference uncertainty

via fuzzy truth values of the DM’s preference statements at feasible states. The fuzzy

scores of states are then utilized to define a fuzzy relation in (6.3), which is established

later as a fuzzy preference relation. It is also proved that the fuzzy option prioritization

methodology generalizes the existing crisp option prioritization technique in the sense that

the crisp option prioritization is a special case of the fuzzy option prioritization.

When applied to the Elmira groundwater contamination conflict, the methodology not

only models fuzzy preferences for the DMs efficiently so that they are close to those that

were obtained by detailed human pairwise comparison of states, but also accomplishes it

without difficulty. Of course, fuzzy preferences may be modeled by pairwise comparison of

states for small problems. But, for larger conflicts, modeling fuzzy preferences by pairwise

comparison of states is unrealistic and may be impossible. However, fuzzy option priori-

tization can be applied to a conflict model of any size to model DMs’ fuzzy preferences.

The methodology is based on simple calculations and can be easily implemented using a

small computer program.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The key to the applicability of the GMCR is that it contains both modeling and analysis

components. Many real-world conflict decision problems exhibit preference uncertainty,

but until now there was no suitable methodology to model and analyze them. This thesis

has remedied this problem.

Together with the non-cooperative form of fuzzy stabilities, the concepts of coalitional

form of fuzzy stabilities are put forward to provide follow-up analysis of a dispute. Address-

ing the difficulties of modeling fuzzy preferences from uncertain preference information, the

fuzzy option prioritization methodology is developed within the framework of the GMCR

to efficiently model fuzzy preferences of DMs for use in the graph model fuzzy stability

analysis. The main contributions of this study are summarized below:

1. A fuzzy preference framework for a two-DM graph model is developed to introduce
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fuzzy stability concepts and apply them to simple conflicts with two DMs who have

uncertain preferences over feasible states. Specifically,

• The concept of an FRCP is introduced to characterize preference intensity be-

tween two feasible states in the presence of preference uncertainty (Section 3.2).

• A parameter called “FST” is introduced to take into account the interacting

DMs’ satisficing behavior in strategic conflicts, and is incorporated into the

graph model fuzzy stability definitions (Section 3.3).

• To identify states to which a DM would be willing to move to, the concept of

an FUI for a DM is put forward (Section 3.4).

• The four basic crisp stability definitions for a two-DM graph model—R, GMR,

SMR, and SEQ—are generalized as FR, FGMR, FSMR, and FSEQ to facilitate

the (fuzzy) stability analysis of a two-DM graph model with uncertain preference

information (Section 3.5).

• The fuzzy stability definitions for a two-DM graph model are illustrated using

the sustainable development conflict. It is found that the developers’ satisficing

behavior greatly influences the fuzzy stability results, which is quite reasonable

because developers’ decisions in development activities are volatile and mostly

context-dependent. Environmental agencies’ roles in choosing how strictly to

enforce environmental regulations may guide developers’ satisficing behavior. If

developers want to grab every last penny, environmental security will remain un-

der threat and environmental disasters can never be completely avoided (Section

3.6).

2. The fuzzy preference framework for the two-DM graph model is extended to ac-
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commodate graph models with any number of DMs, generalizing the fuzzy stability

definitions. More specifically,

• The concept of an FUI by a group or coalition of DMs is introduced for use in

the fuzzy stabilities (Section 4.2).

• FGMR, FSMR, and FSEQ stability definitions for a two-DM graph model are

extended for a general n-DM (n ≥ 2) graph model. In these definitions, fuzzy

stabilities for a DM depend on the responses (credible or not) of the coalition of

the remaining DMs, rather than the single opponent DM of the two-DM case.

Since FR stability does not depend on the responses by the opponent(s), the

FR stability definition for a general n-DM graph model remains the same as in

the two-DM case (Section 4.3).

• A fuzzy stability analysis is carried out on the Elmira groundwater contami-

nation conflict by employing the fuzzy stability definitions for an n-DM graph

model. This analysis predicts a new strong equilibrium (state s4), indicated in

Table 4.5, that is a possible resolution under all four fuzzy stability definitions.

The fuzzy stability results tableau provided in Table 4.4 demonstrates how a

DM’s satisficing criteria can affect the final outcome (Section 4.4).

• The FGM is shown to be a more general approach to decision making under

conflict compared to the crisp graph model, as it can handle both certain and

uncertain (fuzzy) preferences. Hence, the FGM constitutes an extension of the

crisp graph model that permits the modeling and analysis of more realistic mul-

tiple participant-multiple objective decision problems. In particular, by setting

the FST of each DM to 1.0, FGM becomes the crisp GMCR (Remarks 3.4.4,

4.2.2, and Theorem 4.3.6).
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• Like the crisp GMCR in which the associated preferences can be transitive or

nontransitive, the FGM is developed such that any transitive or nontransitive

fuzzy preferences can be utilized in the fuzzy stability calculations (Chapters 3

and 4).

3. The coalition fuzzy stability concept is developed as a follow-up analysis technique

within the FGM, intending to further analyze the individual level fuzzy stabilities of

a conflict model with uncertain preference information. In particular,

• The concepts of CFI and CCFI are introduced as tools for facilitating the coali-

tion fuzzy stability definitions (Section 5.2).

• The coalition fuzzy stability definitions for R, GMR, SMR, and SEQ stability

concepts of the GMCR are developed so that they constitute a natural general-

ization of the individual level FR, FGMR, FSMR and FSEQ stabilities (Section

5.3).

• Coalition fuzzy stability definitions can be applied to a crisp graph model by

assigning an FST of 1.0 to each DM, thereby making them more general coali-

tion analysis tools within the graph model structure. Accordingly, the four

coalition fuzzy stability definitions—CFR, CFGMR, CFSMR, and CFSEQ—

form a strong solution methodology for strategic conflicts with both certain and

uncertain preference information. Although the implementation of these stabil-

ities is not straightforward, a suitable decision support system could bring this

capability to the fingertips of the DM and the analyst (Section 5.3).

• A coalition fuzzy stability definition for a DM identifies states from which nei-

ther the DM himself or herself, nor any of the coalitions that he or she can
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join, would like to move away. These characteristics are justified regarding a

particular DM, M, when the coalition fuzzy stability definitions are applied to

the Elmira groundwater contamination conflict. Specifically, some states fail

to be coalition fuzzy stable for M that were fuzzy stable with respect to non-

cooperative fuzzy stability definitions. Accordingly, the coalition fuzzy stability

analysis may narrow down the list of individual-level fuzzy stabilities, thereby

providing the analyst with valuable strategic insights into the conflict under

study (Section 5.4).

• It can also be concluded from the application that the possible evolution of a

conflict from a status quo state to a final outcome can be conveniently explained

using CFILs. Therefore, as an analysis tool to augment individual-level fuzzy

stabilities, coalition fuzzy stability analysis constitutes an important addition

to the FGM (Section 5.4).

4. The fuzzy option prioritization methodology is developed within the FGM structure

to facilitate the modeling of fuzzy preferences for DMs involved in a strategic conflict

with uncertain preference information. Specifically,

• Fuzzy option prioritization is the first formal methodology to model a fuzzy

preference within the GMCR framework in order to deal with uncertain prefer-

ences. This technique offers flexibility to DMs or analysts who can assume the

intensity of truth of a preference statement at a feasible state to be any number

between 0 and 1, referred to as a fuzzy truth value (Chapter 6).

• A fuzzy preference relation over the set of feasible states is constructed by taking

into account the fuzzy truth values of preference statements at feasible states
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(Sections 6.2 and 6.3).

• The fuzzy option prioritization methodology generalizes the existing crisp option

prioritization technique in the sense that crisp option prioritization is a special

case of fuzzy option prioritization (Theorem 6.3.2).

• When applied to the Elmira groundwater contamination conflict, the method-

ology models fuzzy preferences for the DMs efficiently so that they are close to

those obtained by a complicated human assessment based on pairwise compar-

ison of states (Section 6.4).

• For larger problems, modeling fuzzy preferences by pairwise comparison of states

is unrealistic and may be impossible. However, the fuzzy option prioritization

methodology can be applied to a dispute of any size without difficulty (Chapter

6).

• Since the FGM is developed in this research to study multiple participant-

multiple objective decision problems by carrying out fuzzy stability analysis

and coalition fuzzy stability analysis based on DMs’ fuzzy preferences, the in-

troduction of the fuzzy option prioritization methodology, an efficient tool to

model fuzzy preferences, will make the FGM more useful (Chapters 3, 4, 5, and

6).

7.2 Future Work

The FGM methodology developed in this PhD thesis is a complete fuzzy preference ap-

proach for both modeling and analyzing real-world multiple participant-multiple objective

decision problems with certain or uncertain preference information for DMs. However,
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fuzzy stability, introduced in this thesis, is a new concept and may therefore be integrated

with recent developments and initiatives within the framework of the GMCR. A number

of directions for potential future research is listed below.

• Matrix Representations of the Fuzzy Stability Definitions : A recent addition to the

GMCR is a matrix representation of the graph model solution concepts for easy

computer coding and manipulation (Xu et al., 2009a,b, 2011). This idea may be

adapted to FGM to represent fuzzy stability definitions.

• Fuzzy Stabilities with Transitive Fuzzy Preferences : The fuzzy stability definitions

proposed in this thesis are based on fuzzy preferences that are not restricted by any

transitivity property. However, various transitivity properties may be imposed on

fuzzy preferences to study their implications for fuzzy stability.

• Fuzzy Status Quo Analysis : Status quo analysis technique (Li et al., 2004b, 2005a,b)

was developed within the crisp GMCR to inspect whether a potential resolution (i.e.,

an equilibrium state) is attainable from the status quo state, and to analyze how

DMs may act and interact to direct a conflict to that attainable resolution. A fuzzy

version of the status quo analysis technique may be developed within the FGM to

keep track of the evolution of a conflict from the status quo state to a FE.

• Fuzzy Stability Definitions for Other Stability Types : The fuzzy stability definitions

introduced in this study are FR, FGMR, FSMR, and FSEQ. However, fuzzy stability

definitions for other graph model stability concepts, such as limited move and non-

myopic stabilities, may be defined by imposing appropriate transitivity property on

DMs’ fuzzy preferences.
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• Use of Other Techniques to Model Fuzzy Preferences : Fuzzy option prioritization,

developed in this thesis, is the only methodology to formally model fuzzy preferences

for DMs with uncertain preference information in a graph model, based on fuzzy

truth values of preference statements at feasible states. Other techniques may be

developed to represent DMs’ fuzzy preferences by taking into account other uncertain

information about preferences, such as fuzzy utilities, fuzzy option weighting, and

fuzzy multi-criteria decision making.

• Use of Other Types of Fuzzy Preferences : There may be a fuzzy preference relation

in which the additive reciprocity condition is not met; that is, there may be a certain

degree for a pair of states to which a DM does not prefer one state of the pair over

the other. Techniques may be developed within the GMCR framework to handle this

type of fuzzy preference relation.

• Decision Support System for FGM: Calculating various graph model fuzzy stabilities

by hand is tedious even for a small model. Therefore, the design of a suitable decision

support system for the FGM may be an important future project.

• Applications to Challenging Real-World Conflicts : FGM can be applied to many

challenging real-world disputes to gain strategic insights.
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