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Abstract

Tuned mass dampers (TMDs) are auxiliary damping devices installed within tall struc-

tures to reduce undesirable wind-induced vibrations and to enhance the overall system

damping and hence, the dissipative capacity. The design of TMDs involves the selection

of optimal auxiliary mass, frequency, and damping, based on the main structure’s mass,

natural frequency and damping properties. TMDs are inherently susceptible to detun-

ing, where the auxiliary parameters are no longer optimal due to deterioration or changes

within the system, resulting in a degradation in their performance. In order to correct

for this detuning, it is necessary to perform a condition assessment while the TMDs are

in service. The main goal of this thesis is to present a methodology to conduct condition

assessment while the TMDs are in service. The proposed methodology does not involve

either restraining the TMD or providing controlled external excitation to the structure,

and relies on ambient measurements only. The first phase in the condition assessment is to

estimate the bare structure’s modal properties using acceleration measurements obtained

from the structure while the TMDs are unrestrained. The present work accomplishes this

goal within the framework of parametric identification using Kalman filtering, where the

unknown parameters (bare modal properties) are appended to the state vector and esti-

mated. Unlike most of the literature on this subject, the noise statistics for the filter are

not assumed to be known a priori. They are estimated from the measurements and incor-

porated into the filter equations. This filter involves direct feedthrough of the process noise

in the measurement equation and the appropriate filter is derived and used following the

noise covariance estimation step. In the next phase, criteria to assess the condition of the

TMD are developed. They include optimal tuning parameters established using simulated

experiments and measured equivalent viscous damping. The research considered pendulum

tuned mass dampers (PTMDs), which presently account for a large fraction of full-scale ap-

plications. Results were demonstrated using numerical investigations, a bench-scale model

equipped with an adaptive mechanism for adjusting auxiliary damper parameters, and

a full-scale PTMD-equipped structure. The main contributions of this thesis are: (a) a

broader understanding of the coupled biaxial behaviour of PTMDs has been developed; (b)

a systematic procedure for estimating the underlying modal characteristics of the structure
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from ambient vibration measurements within the framework of Kalman filtering has been

achieved; (c) a comprehensive framework to undertake condition assessment of TMDs has

been presented, integrating parametric identification from measured response data and

performance prediction for design period wind events using boundary layer wind tunnel

studies. The work provided new insight into the design and behaviour of PTMDs and

presented a comprehensive approach to quantify their performance. The Kalman filter-

ing framework also provides an efficient platform to build adaptive passive tuned mass

dampers (APTMDs) that can be tuned in place and adjusted to correct for detuning and

accommodate various operating conditions.
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Chapter 1

Introduction

Wind-induced vibrations impose large demands on structural components and connections

for tall structures. Taller, lighter, and more slender modern construction is a consequence

of the advances in structural materials, design efficiencies and technologies. Tall structures

are susceptible to vibrations due to their flexibility, lack of sufficient inherent structural

damping, and the larger wind loads these structures are subjected to due to their height.

These demands in many cases lead to considerable discomfort to the occupants, particularly

at upper floors.

Since the designer has little control over the wind loads, aside from optimization the

shape of the structure, the available options to minimize the vibrations include reducing the

building’s flexibility or enhancing the vibrational dissipation capacity through increased

damping. The flexibility of a structure can be reduced by increasing its stiffness, using

larger or a greater number of structural components, resulting in structures with increased

weight. Heavier structures consume more materials, require increased construction effort

and time, necessitate larger foundations, and are generally more costly.

Methods to increase damping in structures are an active area of research. The basic

concept of damping is to dissipate vibrational energy through heat, thus reducing the

impact of the imposed forces on the structure. One method of mitigating the effects of

wind-induced vibrations is through the use of auxiliary damping devices, known as tuned
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mass dampers (TMDs). A TMD consists of a relatively small mass, spring, and viscous

damper, or a pendulum mass and viscous damper, attached to the main structure. The

schematic geometry of a TMD is shown in Fig. 1.1a. An alternative to the conventional

translational mass is a cable supported mass (Fig. 1.1b), where the suspended length

determines the auxiliary operating frequency; this is known as a pendulum tuned mass

damper (PTMD). When properly designed, that is, when the auxiliary parameters are

properly selected, the TMD is effective in reducing the structural response and enhancing

the intrinsic damping of the system.
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Figure 1.1: Schematic geometry of a (a) translational- and (b) pendulum-type TMD

The main parameters of a typical TMD at the discretion of the designer are: (i) the

mass, (ii) frequency, and (iii) damping. The mass is selected based on the main structure’s

mass, generally between a ratio of 0.1% and 5%. The selection of the TMD’s frequency and

damping parameters are based on the main structure’s natural frequencies. The optimal
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values of the parameters are typically obtained using a combination of numerical simu-

lations and wind tunnel experiments. Analytical expressions are possible for simplified

cases. When the actual versus optimal values drift apart, the TMD is said to be detuned.

Detuning can result from a variety of different factors, but primarily due to changes in

the operating environment such as structural deterioration or damage, inadvertent or in-

tentional structural changes, varying mass, or differing loading events. Other causes of

detuning include forecasting, where the designers tune the TMD to an estimated future

structural condition for the dominant frequency [42], or for a particular design event.

There are several configurations of TMDs based on a particular application. However,

they are also common in the sense that the three design parameters are of concern in all

of them. PTMDs are perhaps the most simple and commonly employed TMDs today and

also constitute the focus of this thesis. The three-dimensional behaviour of PTMDs and

their optimal design are studied in this research. Novel methods to identify when detuning

has occurred in a structure are developed, along with a framework to perform the condition

assessment while they are in service with little or no disruption to their operations. The

methodology can be directly extended to semi-active tuned mass dampers (STMDs) or

adaptive passive tuned mass dampers (APTMDs) with little or no modification to the

algorithms.

1.1 Damping in structures

Damping is a measure of energy dissipation in a vibrating system. In the context of

structural dynamics, kinetic energy is converted into another form of energy that can be

removed from the system. Generally, the energy is converted into heat, though the form

to which the energy is converted is dependant on the damping mechanism. Unlike stiffness

and mass, inherent damping in structures is difficult to quantify precisely, as it does not

relate to a single physical phenomenon. Damping in structures is a result of primarily three

different mechanisms: material damping, interfacial damping, and aerodynamic damping

[50].
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Material damping results from complex interactions within the material at the micro-

scopic scale. Material damping differs between materials, but also between samples of the

same materials. It also varies with stress states of the structural element. Interfacial damp-

ing is Coulomb friction damping between structural members and their connections, as well

as between structural components such as façades, exterior cladding, and partition walls.

For example, bolted connections have a larger contribution to interfacial damping than

their welded counterparts [50]. Structure-soil interactions are also a source of interfacial

damping. Aerodynamic damping is the effective damping experienced by a structure as it

is being buffeted by wind, introducing a restoring force that opposes the wind response,

and has a relatively low contribution to the overall inherent damping of a structure [50].

In design, structural damping is estimated based on data available from other structures

of similar size, material, and a comparable structural system. However, these estimates

are difficult to predict closer than accuracies of ±30% [51]. It is difficult to engineer

additional inherent damping in a structure; however, a known level of damping can be

added to a structure through auxiliary damping devices such as TMDs, thus providing a

more predictable, adaptable, and reliable method of damping [51].

1.2 Tuned mass dampers

The precursor to the TMD was the dynamic vibration absorber, first proposed in 1883 by

Watts [98], and further described in a patent submitted by Frahm in 1909 [22]. It was

in 1928 when Ormondroyd and den Hartog [72] first presented the theory of the dynamic

vibration absorber.

A TMD typically consists of an inertial mass—relatively small when compared to the

mass of the structure—attached to the structure near the location where the responses are

largest, generally at the top. The mass exerts an inertial force on the main system to reduce

its motion, through a stiffness and damping mechanism. For typical translational TMDs,

auxiliary stiffness is provided through springs, and damping using viscous or viscoelastic

dampers. The performance of the TMD is related to its dynamic characteristics, that is,
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the auxiliary stiffness and damping, ratio of the auxiliary mass to main mass, and the

stroke of the mass [51]. The TMD’s damping effect is based on the premise that the

TMD’s response is out of phase with the structure’s response. Thus, in order to develop

good performance of the TMDs, the stiffness parameter must be selected such that the

absorber’s natural frequency is tuned to a ratio of the main structure’s mode of vibration

that is to be controlled; the auxiliary damping device will operate at nearly the same

frequency of the structure but with a phase shift. This ratio is known as the frequency

ratio, and is generally related to the mass ratio (ratio of the auxiliary to main mass), and

the type of excitation. A schematic of a single-degree-of-freedom (SDOF) main structure

equipped with a typical translational TMD is shown in Fig. 1.1a. The performance of

TMDs can be expressed as the reduction in acceleration or dynamic deflection of the main

system at a particular location on the structure, or equivalently, the amount of additional

damping the TMD provides to the structure (as a ratio of the critical damping of the

structure). Typically this is in the range of 0.5-2.5% [80].

One of the earliest applications of the TMD for the mitigation of vibrations in tall

buildings can be found in the John Hancock Tower, a 60 storey, 241 m tall building in

Boston. Occupants of the upper floors were complaining of motion sickness, caused by

wind-induced torsional motion in the structure. To mitigate the effects, two 272 tonne

lead masses were installed at each end of the 58th floor, attached to the structure using

shock absorbers. The masses slide on oil-lubricated steel plates for motions exceeding 3

milli-g (g = 9.807 m/s2 is the acceleration due to gravity at the earth’s surface) [51]. A

second early application was a TMD design as part of the original structural design for

the Citigroup Center (formerly Citicorp Building), a 59 storey, 278 m tall building in New

York City. A 372 tonne concrete TMD was installed with spring and damping mechanisms

in both directions. It is activated by a computer, hydraulically raising the mass after the

3 milli-g threshold motion in the main structure is exceeded. The system reduced the

overall response of the structure by up to 40% [101], as evidenced by several events since

its installation.
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1.3 Pendulum tuned mass dampers

Perhaps the most simple TMD configuration is a suspended mass. When augmented with

viscous damping elements, they provide an effective means of suppressing structural vibra-

tions. Such TMDs are called pendulum-type TMDs, or PTMDs. The typical schematic

geometry is shown in Fig. 1.1b. PTMDs are generally suggested for tall structures with

large masses and low natural frequencies [80]. The frequency of the PTMD can be ad-

justed in the field by changing the pendulum suspended length. This is accomplished by

changing the pivot point of the suspended mass using a sliding clamp [55] or by changing

the height along the auxiliary mass where the cable connects. Fine frequency tuning can

also be performed by augmenting the mass with springs that can be adjusted along the

suspended length [26].

The Chifley Tower in Sydney is a 52 storey, 209 m tall office building constructed in 1992

and equipped with a 400 tonne PTMD, complete with a tuning frame hanging below the

upper suspension point of the mass. The tuning frame allows the pivot to be moved along

the length of the cable, thereby changing the effective pendulum length. The natural

frequency of the structure was determined through forced vibration tests, in which the

tower was excited by driving the damper mass using actuators. The structure was found

to have varying natural frequencies depending on the amplitude of the forced vibration;

therefore, the PTMD was tuned to the most frequently occurring mode of vibration. The

structural damping was increased from 1% to 2-4% depending on the level of vibration

[55]. Park Tower in Chicago is another example of a PTMD system where an upper tuning

frame was incorporated. The damper consists of a 272 tonne mass with pendulum length

up to 7.46 m (34.5 ft). The auxiliary system uses non-linear viscous dampers, where the

damping force is proportional to the velocity squared. The damper constants are also

adjustable and rotation about the vertical axis is prevented by an anti-yaw device [42].

The measured frequencies of the structure at the time of commissioning the PTMD were

in error by 10-20% [42], demonstrating the necessity of adjustable systems.

The most eminent PTMD installation is on the 509 m tall, 101 storey Taipei 101

in Taipei, Taiwan. A 660 tonne pendulum mass, currently the largest installation, is
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suspended from the 91st floor and occupies five storeys. During the strongest expected

wind for a six month return period, the PTMD reduces the acceleration response from 7.9

to 5.0 milli-g [29]. The PTMD was integrated as an architectural feature of the structure,

as seen in Fig. 1.2.

Figure 1.2: A 660 tonne PTMD installed in Taipei 101 as an architectural feature (Courtesy

Guillaume Paumier / Wikimedia Commons, CC-by-sa-3.0)

The Apron Control Tower at Toronto’s Pearson International Airport in Mississauga,

Ontario, Canada is a 68.5 m tall structure equipped with a pair of PTMDs to attenuate un-

desirable wind-induced vibrations, primarily because the structure is susceptible to vortex

induced vibrations in the across-wind direction due to its circular shape. This structure is

used in the current research as the testbed for condition assessment of in-service PTMDs.

The combined mass of the PTMDs is 50, 000 kg, representing a high mass ratio in compar-

ison to other applications of TMDs in flexible structures [79]. The CN Tower, a signature

structure in Toronto, Ontario, Canada, is a 553 m tall tower equipped with two PTMDs

to attenuate the antenna responses. The effectiveness of the PTMDs has been found to be

quite poor due to the issue of detuning [43], which provides one of the motivations for the

present work.
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1.4 Motivation

The issue of detuning, where the auxiliary system parameters (frequency and damping)

move away from their optimal values, is the motivation for condition assessment of TMDs.

Causes of detuning include structural deterioration or damage, changes to the structure’s

use or occupancy, or inaccurate design forecasting (where a future structural condition is

predicted and the TMD tuned to that condition). Detuning results in a loss of performance

of the TMD. Current methodologies to overcome this issue include routine maintenance,

where the motion of the TMD is arrested and the structure’s modal characteristics are

identified from either ambient measurements or force vibration tests. The frequency and

damping are adjusted to better conform to the main structure’s dynamic characteristics.

This demonstrates the need for TMD systems to have adjustable mechanisms for changing

their frequency and damping parameters [80]. For typical translational-type TMDs, fre-

quency adjustment is accomplished using a variety of adjustable stiffness materials, such as

adjustable stiffness springs [70]. For example, the aforementioned Citigroup Center TMD

was equipped with pneumatic springs for frequency adjustment on-site [101]. Suspended

mass applications usually employ a tuning frame to adjust the pendulum length, such as in

the aforementioned Chifley Tower in Sydney or the Toronto Pearson International Airport

Apron Tower.

Manual routine maintenance is costly, uses trained technicians, and requires arrest-

ing TMD motion, potentially sacrificing user comfort and safety. Therefore, the present

work seeks to develop a systematic methodology of identifying the main structure’s modal

characteristics without restraining the TMD. Once the underlying structure’s modal char-

acteristics are known, the response of the structure can be simulated using an updated

finite element model. Using optimal design equations or a numerical search algorithm, the

optimal damper parameters can be determined and compared with the current in-service

values. A comprehensive condition assessment includes benchmarking the performance of

the TMD against the uncontrolled structure, using realistic wind input excitations.

The algorithms developed for the purpose of condition assessment could be directly

integrated into adaptive mechanisms to adjust the damper parameters in response to their

8



operating environment. Therefore, an ideal identification approach would be easily adapt-

able to online implementation. These systems are known as STMDs or APTMDs.

1.5 Gap areas in the current understanding of PT-

MDs

TMDs are a relatively mature area of research; however, several important issues related to

their design and performance assessment remain unaddressed, or only partially addressed,

in the literature. These gap areas are first identified, followed by a brief description of the

procedure undertaken in present work to address them. The following gap areas present

the motivation for the current study.

• Despite many full-scale applications [35], few works have explicitly considered the

design and performance of pendulum-type devices for mitigating vibrations in tall

structures [79, 78, 26, 25, 29, 80]. Previous studies of PTMDs have considered linear

planar pendulum models coupled with a SDOF main system described using modal

coordinates to find the optimal auxiliary stiffness and damping, and to determine the

main structural response [26]. Such models are adequate, for example, in analyzing

the response of flexible structures where the dominant response is believed to be

primarily in one direction. When the responses in both along-wind and across-wind

directions are of concern, then it is important to quantify the effect of the PTMD in

both directions. There is a lack of understanding of the inherent bi-axial nature of

the PTMD and its effect on the design equations [26].

• Performing condition assessments for in-service TMDs has not been studied compre-

hensively. Specifically, algorithms to determine the bare structure’s modal charac-

teristics are scarce [59, 99]. A few studies have addressed this issue [30, 77] using

ad hoc, experiential, or approximate methods; however, a comprehensive method is

not available. These approaches require some knowledge of the degree of detuning
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present in the auxiliary system and rely on relatively smooth response spectra. Al-

ternatively, the motion of the auxiliary damping device can be arrested to prevent

it from contaminating the responses, and the structure’s modal characteristics can

be identified by conventional approaches [78]. Harnessing the auxiliary mass causes

it to be lumped with the main structure, underestimating the structure’s natural

frequency, particularly for high auxiliary masses. To the author’s knowledge, there

is no prior research where the bare structure properties have been identified using

measurements obtained from a structure with an in-service TMD, using ambient

vibration measurements.

• Parametric identification by Kalman filtering (and the related extended Kalman filter

(EKF) and unscented Kalman filter (UKF)), has been widely applied to structural

engineering applications, such as damage detection [62, 107, 106], system identifi-

cation [36, 63, 53, 27, 84, 95, 109, 102], and input estimation [39]. Many of these

studies involve parameter estimation in addition to state estimation [36, 63, 53, 27,

84, 62, 95, 109, 107, 106, 102]. Two issues regarding parameter identification remain

unaddressed, which are critical for wind engineering applications. First, for the case

where only acceleration response measurements are available–true for the majority

of full-scale measurements–there is feedthrough of the external disturbance in the

measurement equation. The majority of studies have assumed the availability of

displacement or velocity (direct state) measurements [109, 95, 61, 36] or have consid-

ered base-excited structures [102, 60, 86] where the feedthrough term is not present.

Direct feedthrough of the disturbance in the measurement equations has been con-

sidered in the context of input estimation [39, 38, 64], but these studies have focused

only on that one aspect and parameter estimation has not been attempted. Second, a

priori estimates for the process and measurement noise covariances are not available

in practical situations. Most studies have overlooked this issue and have assumed ar-

bitrary values. While possible in numerical studies, this poses a significant practical

hurdle in implementing online identification and for condition assessment. Studies

that have addressed input estimation have done so outside the context of parameter

estimation, assuming perfect knowledge of the model and any additive process or
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measurement noise covariances [39, 38, 64]. Finally, the issues of detuning, online

retuning, and bare structure system identification from TMD attenuated response

data using parametric identification approaches have not been reported thus far.

• The concept of effective or equivalent damping introduced by a TMD is routinely

quantified in the literature [66, 55, 88, 94, 25, 26]. It refers to an equivalent level of

viscous damping in a SDOF system that produces the same root mean squared (RMS)

displacement response of the combined main and auxiliary system, operating at the

same natural frequency as the controlled mode of vibration. Though theoretically

simple to calculate, it requires precise knowledge of the main structure’s natural

frequency and measured displacement responses. The former is difficult to determine

from TMD attenuated response measurements of full-scale structures, due to the

issues discussed earlier. The latter is generally not available, as structural responses

are often measured using accelerometers. Therefore, its use has been predominantly

in parametric studies involving numerical models; to the knowledge of the author,

quantifications from actual measurement data have not been reported.

• Finally, there lacks a comprehensive method to compare the response of a structure

equipped with TMDs subjected to a variety of return period wind events to the re-

sponse of the structure as if there were no TMD. Limited full-scale studies of TMDs

have demonstrated that their performance can only be approximately quantified over

a period of time through a number of wind events [51]. To compare to the uncon-

trolled structure, the TMD motion must be arrested, sacrificing occupant comfort

and possibly structural safety. Even so, it isn’t feasible to compare the responses

to the exact same event. Therefore, numerical models are predominantly studied in

the literature in order to evaluate TMD performance, excited using harmonic inputs

[75], white noise [3, 28], or synthetic wind time histories [77, 105]. Alternatively,

scale models of structures equipped with TMDs have been studied using a wind

tunnel [88, 104]. These analyses are performed in the design stage and lack precise

knowledge of the as-constructed modal characteristics. A limited number of studies

considering synthetic wind excitations have shown that white noise or harmonically
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excited models generally overstate TMD performance [77, 105], demonstrating a need

to accurately model excitations when assessing TMD effectiveness. The author is un-

aware of a comprehensive study that compares the TMD-equipped structure to its

uncontrolled counterpart using a numerical model based on identified modal charac-

teristics, and excited by reliability-based excitations from a wind tunnel study.

1.6 Objectives of the proposed research

Having outlined the gap areas, the main objectives of the proposed research are summarized

as follows:

• Develop a mathematical framework and conduct numerical studies to understand

and quantify the three-dimensional behavior of PTMDs.

• Develop an estimation procedure to enable the extraction of bare structural modes

from ambient acceleration responses attenuated by the TMD.

• Develop a comprehensive approach to perform condition assessment of in-service

TMDs.

1.7 General methodology

Given a structure equipped with a TMD and assuming the ability to collect attenuated

acceleration response measurements of the main and auxiliary system, the primary steps in

performing a condition assessment of a TMD as undertaken in this thesis are summarized

as follows:

• Develop equations of motion for the dynamic response of a multi-degree-of-freedom

(MDOF) flexible structure coupled with a PTMD from the principles of analytical

dynamics. Integrate the equations of motion with the finite element representation

of a structure and simulate the response to harmonic and white noise excitations.
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• Quantify the effect of detuning, where the auxiliary damper parameters move away

from their optimal values, using a numerical model that considers the biaxial motion

of the auxiliary mass. Evaluate the effect of considering the combined planar and

spherical motions of the PTMD on the optimal auxiliary damper parameters through

parametric studies and contrast these findings to those presented in the literature for

simple linear planar PTMD models.

• Develop a model framework using standard finite element models to establish an

initial estimate of the modal parameters to be identified in the identification step.

Study issues related to reduced-order models and computational burden.

• Collect acceleration response measurements of the PTMDs and main structure at a

sufficiently fast sampling rate. The selection of the measurement locations should be

informed by any a priori knowledge of the mode shapes for the modes of vibration

of interest.

• Establish the auxiliary damper parameters (auxiliary mass, frequency, and damping)

by field measurement.

• Using the measured response data, field measurement of the auxiliary parameters,

and the initial estimate of the model parameters from the finite element model,

identify the underlying structure’s natural frequency, modal damping ratios, and

mode shape vectors. The method should not require a priori knowledge of the wind

excitation statistics.

• Create an updated dynamic model of the system using the identified modal proper-

ties. The dynamic model of the combined main-auxiliary system can then be studied

using loading information established by boundary layer wind tunnel results for var-

ious return period wind events and compared to the uncontrolled system. The per-

formance improvement is quantified as a percent reduction in the RMS displacement

or acceleration response.

• Using a numerical search of the auxiliary parameters with the updated model and

realistic wind excitations, the optimal parameters can be established and compared
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with measured values. Alternatively, the identified underlying structure’s modal

characteristics can be used in established TMD design equations and compared with

the measured values; however, these are primarily based on simplifying assumptions

and do not necessarily account for the uniqueness of the particular structural system

or the input.

• Similar to the parametric identification step, identify the effective damping intro-

duced by the TMD using the measured responses.

• Validate the identification algorithm through experimentation on a bench-scale lab-

oratory model as well as using full-scale acceleration response measurement from a

PTMD-equipped structure.

1.8 Organization

The thesis is organized as follows:

• Chapter 2 presents a brief background of the historical development of TMDs,

including various adaptations to improve their performance and reduce their suscep-

tibility to detuning. The issues associated with detuning of the auxiliary system are

introduced.

• Motivated by the limitations of using simplified SDOF dynamic models for PTMD

parameter optimization and performance assessment, Chapter 3 presents the for-

mulation, using Lagrangian dynamics [68], of a system of equations for modelling

the response of a flexible MDOF structure coupled with the dynamics of a PTMD.

Establishing the auxiliary mass position using spherical (L, θ(t), and ϕ(t)) and Carte-

sian coordinates are both considered. The case of both nonlinear auxiliary damping

and equivalent linear viscous damping are presented. The model is extended to ac-

cept high frequency base balance (HFBB) measurements from wind tunnel studies

as inputs.
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• Using the developed model, a parametric study is undertaken in Chapter 4 in

order to establish the optimal damper parameters. These results are compared with

equations found using a simplified planar model presented in the literature. The

effects of detuning and increasing the auxiliary to main mass ratio of the damping

device are considered.

• Chapter 5 introduces the concept of parametric identification using the EKF. The

algorithm is presented and a simple example is first considered for the case of a known

base excitation. The method is demonstrated for both known and unknown main

mass excitations, the latter requiring the algorithm be adapted for the case where the

process noise appears in the measurement equations when using acceleration response

measurements. Finally, the case of unknown noise statistics is considered and the

complete procedure is demonstrated using a numerical example.

• The EKF modal identification is then proposed in the context of estimating the bare

structure’s modal properties in Chapter 6. The concept of equivalent or effective

damping introduced by a TMD is investigated. The algorithm for identifying the

structure’s modal properties is extended for the estimation of effective damping.

This overcomes the challenges associated with quantifying the performance of in-

service TMDs using this measure when only acceleration response measurements are

available and the bare structure’s controlled frequency is not known precisely. The

algorithms are demonstrated using a numerical model of a 5-degree-of-freedom (DOF)

structure.

• Chapter 7 demonstrates the effectiveness of the identification algorithm for iden-

tifying modal properties of the bare structure from PTMD attenuated acceleration

response measurements from a bench-scale laboratory model and a full-structure

structure, both equipped with PTMDs with known auxiliary parameters. The condi-

tion assessment of an actual in-service PTMD is presented subsequently. A numerical

search is performed using the updated model and realistic wind excitations to deter-

mine the optimal parameters. These are compared against typical design equations.

The effect of using simplified models of the main-auxiliary system is considered as
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well.

• Finally, a number of conclusions resulting from the present work are discussed in

Chapter 8. Several recommendations for extending the present work are also dis-

cussed. The significant contributions resulting from this work to the study of TMDs

and parametric identification are summarized.

16



Chapter 2

Background

A review of the background and evolution of tuned mass dampers (TMDs) is presented,

including relevant research in the area of design of TMDs and pendulum tuned mass

dampers (PTMDs) and previous work on adaptive mechanisms to enhance the performance

of TMDs. The concepts of detuning and assessing the performance of TMDs are introduced.

Finally, a brief background on full-scale studies of TMDs is presented.

2.1 Tuned mass damper theory

The basic formulation and design parameters of conventional translational-type TMDs are

presented. The historical development of the TMD is introduced, with a particular empha-

sis on the development of optimal TMD parameters together with the various adaptations

to improve performance.

The equations of motion for the single-degree-of-freedom (SDOF) system equipped with

a translational-type TMD and subjected to an external force, P (t) (Fig. 1.1a), are

mü(t) + cu̇(t) + ku(t) + ka [u(t)− ua(t)] + ca [u̇(t)− u̇a(t)] = P (t) (2.1a)

maüa(t) + ka [ua(t)− u(t)] + ca [u̇a(t)− u̇(t)] = 0 (2.1b)
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where m, c, and k are the mass, damping coefficient, and stiffness of the main system, re-

spectively; ma, ka, and ca are the mass, damping coefficient, and stiffness of the TMD. u(t)

and ua(t) are the displacement responses of the main system and the TMD, respectively;

u̇(t) and ü(t) denote the velocity and acceleration responses of the main system; u̇a(t) and

üa(t) are the velocity and acceleration responses of the TMD. The equations of motion can

be cast in matrix format as[
m 0

0 ma

]{
ü(t)

üa(t)

}
+

[
c+ ca −ca
−ca ca

]{
u̇(t)

u̇a(t)

}

+

[
k + ka −ka
−ka ka

]{
u(t)

ua(t)

}
=

{
P (t)

0

} (2.2)

Several important quantities related to the study of TMDs are introduced. The main

structure’s circular natural frequency, ωn, is defined as

ωn =

√
k

m
(2.3)

Similarly, the auxiliary system circular natural frequency, ωa, is given by

ωa =

√
ka
ma

(2.4)

The frequency ratio, fr, is defined as the auxiliary natural frequency to main structure’s

natural frequency.

fr =
ωa
ωn

(2.5)

The mass ratio, µ, is an important design parameter for the TMD, given by

µ =
ma

m
(2.6)

for a SDOF system or

µ =
ma

Mr,j

(2.7)
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for a multi-degree-of-freedom (MDOF), where Mr,j is the modal mass for the jth mode of

vibration to be controlled. Finally, the damping ratio of the main mass, ζ, is

ζ =
c

2ωnm
(2.8)

The damping ratio of the TMD, ζa, is

ζa =
ca

2ωama

(2.9)

In both instances, the denominator term is known as the critical damping, corresponding

to the primary and auxiliary system, respectively.

Gerges and Vickery [26] presented the equations of motion for a mixed translational

primary structure and PTMD (Fig. 1.1b) under both force and base acceleration excita-

tions. They modelled the primary structure as a SDOF system and assumed the mode

shapes of the structure were not significantly impacted by the addition of the auxiliary

damping device. The presentation also makes the assumption that the pendulum rota-

tions are small. Motion was only considered in the planar pendulum direction; that is, the

spherical motion was neglected. The equations of motion can be expanded to the following

form for the case of main mass excitation:

mü(t) + cu̇(t) + ku(t) +maü(t) +maLθ̈(t) = P (t) (2.10)

maL
2θ̈(t) + cah

2θ̇(t) +
(
magL+ kah

2
)
θ(t) +maLü(t) = 0 (2.11)

The auxiliary circular natural frequency is given by

ωn,a =

√
magL+ kah2

maL2
(2.12)

for the case of a point mass. When there is no auxiliary spring (ka = 0), this simplifies to

ωn,a =
√

g
L

.
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2.2 Optimal design parameters

The TMD is one of the earliest devices developed to control structural vibrations [75].

They are based on a concept first proposed in 1883 by Watts [98], and subsequently in a

patent filing in 1909 by Hermann Frahm [22], called a dynamic vibration absorber. Frahm’s

original damping device had several inherent limitations. It was only effective when the

natural frequency of the absorber was very close to the excitation frequency, deteriorating

rapidly when the excitation frequency moved outside this narrow band. Therefore, the

dynamic vibration absorber had to be designed to attenuate a known excitation frequency.

Ormondroyd and den Hartog enhanced Frahm’s absorber by incorporating auxiliary

damping [72]. They showed that the performance deterioration was less severe when the

excitation frequency moved away from the absorber’s natural frequency. They were the first

to formally present the theory of the damped vibration absorber, assuming no main mass

damping in order to simplify the derivation. Using this approach, closed-form expressions

for the optimal damper parameters were derived by den Hartog [18].

The optimal design parameters for a TMD consist of the optimal mass ratio, µopt,

frequency ratio, fr,opt, and auxiliary damping ratio ζa,opt. Research in this area began with

den Hartog’s [18] optimal damper parameters for the undamped main system (c = 0) using

harmonic main mass excitation.

fr,opt =
1

1 + µ
(2.13a)

ζa,opt =

√
3µ

8 (1 + µ)
(2.13b)

When the structure is excited using a harmonic base excitation, the optimal parameters
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are [75]

fr,opt =
1

1 + µ

(√
2− µ

2

)
(2.14a)

ζ2,opt =

√
3µ

8 (1 + µ)

(√
2

2− µ

)
(2.14b)

The optimal auxiliary stiffness and damping can then be calculated as

fr,opt =
ωa,opt
ωn

=

√
ka,opt
ma

ωn
(2.15)

which can be rearranged to find

ka,opt = f 2
r,optω

2
nma (2.16)

Similarly, the optimal auxiliary damping can be found by rearranging the following equa-

tion

ζa,opt =
ca,opt

2ωama

(2.17)

which gives

ca,opt = 2ζa,optfoptωnma (2.18)

Warburton [96] extended this work to derive closed-form optimal damping equations

for white-noise excitation as well. This work was extended in order to incorporate damping

in the main structure, where closed-form solutions are no longer available. Falcon et al [20]

optimized the absorber parameters for an idealized main structure with a restricted level

of damping. Using a light main mass damping assumption, Ioi and Ikeda [41] developed

empirical relationships for the optimal spring constant and damping factor that minimized

the structural response. Warburton and Ayorinde [97] minimized various response mea-

sures for a TMD attached to a damped main structure model using a numerical search

approach for various levels of main and auxiliary damping. McNamara [66] and Vickery
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et al [93] introduced the concept of effective damping added to the structure by a TMD.

Vickery et al developed design charts to quantify this value for various tuning ratios, fr,

and auxiliary damping ratio, ζa, for a fixed mass ratio. Lee et al [58] proposed a numerical

method which seeks to find the optimal damper parameters by minimizing the mean square

value of the structural responses in the frequency domain for a structure with no model

reduction, which allows for more extensive applications of the TMD.

Optimum tuning parameters for pendulum-type TMDs are presented by Gerges and

Vickery [26], similar to those developed by den Hartog [18], for the case of the undamped

primary system. An equivalent structural damping for the combined main and rotational

auxiliary system was also presented. The optimal frequency ratio for force excited main

mass is

fopt =
ω2opt

ω1

=

√
1 + µ

(
1− 3

2ra

)
1 + µ

(2.19)

where

ra =
Ia

maL2
(2.20)

and Ia is the moment of inertia of the mass about the suspension point. For a point mass,

Ia = maL
2 (ra = 1). The optimal auxiliary damping ratio is

ζa,opt =

√√√√ µ+ µ2
(

1− 1
4ra

)
4ra + 2µ (4ra − 1) + 2µ2 (2ra − 1)

(2.21)

Tabulated results for optimal tuning ratio and auxiliary damping ratio for various choices of

ra and µ for a damped primary system were determined numerically. They concluded that

negligible errors between the undamped and damped primary systems existed for optimal

damping, and slightly different optimal tuning ratios. Two main conclusions drawn from

this study were: PTMDs are more effective under wind loading than earthquake loading,

requiring larger frequency ratios; and increasing the auxiliary damping above its optimal

value is effective in reducing the PTMD motion if larger mass ratios are not possible. The

aforementioned models are adequate, for example, in analyzing the response of flexible
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structures where the dominant response is believed to be primarily in one direction. When

the responses in both along-wind and across-wind directions are of concern, then it is

important to quantify the effect of the PTMD in both directions.

Rana and Soong [75] performed a parametric study of a passive TMD in order to better

understand its important characteristics. Since no closed-form solutions for the optimal

damper parameters can be obtained for a system with main mass damping, a numerical

search was performed for a damped main mass system. An investigation into the effect of

detuning was also performed using a base excited steady-state harmonic analysis. It was

concluded that frequency detuning is more severe than auxiliary damping detuning, and

with increasing auxiliary damping or mass ratio, the effect of detuning was less severe.

The detuning effect was considered using a base excited time-history analysis; the optimal

damping and frequency ratios were found to be similar to the harmonic analysis results,

but the detuning effect was less severe. It was also established that increasing the inherent

damping of the main structure caused the optimal frequency and damping ratios to also

increase. The same was observed for large mass ratios.

The following key points are summarized based on the literature of TMDs:

• If the main mass inherent damping is considered, closed-form solutions for optimal

damper parameters cannot be obtained and numerical search methods must be used.

The approach relies on the presence of “fixed-point” frequencies, where the trans-

missibility of vibration is independent of the auxiliary damping; for structures that

exhibit main mass damping, these frequencies no longer exist [3], though close agree-

ment with numerical results for low to moderate main mass damping in structures

has been demonstrated by approximating the“fixed-point” frequencies [28].

• Optimal auxiliary damping and stiffness parameters are different depending on whether

the TMD is optimized for base excitation, such as earthquake loading, or main mass

excitation, as is the case for wind loading.

• Increasing the mass ratio increases the robustness of TMDs to detuning effects, and

improves their performance [75, 79]. However, practical considerations often limit
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and decide this parameter. Considering the mass ratio as a parameter to be opti-

mized has been considered by other researchers [65]. More recent studies into more

unconventional mass ratios up to 20% have been considered, such as using segmented

upper stories and sliding roof systems [16, 9, 10, 90, 111, 21]. However, in a majority

of applications, it is practical to target mass ratios as low as possible, which means

they are likely to be susceptible to detuning.

2.3 Multiple, active, semi-active, and adaptive tuned

mass dampers

Thus far, the discussion of TMDs has focussed on passive systems, whose damper param-

eters are generally fixed. While the passive mass damper is an effective and inexpensive

means to reduce structural vibrations, their limitations are well documented in the litera-

ture [75, 77]. Narrowband suppression frequency, sensitivity to detuning, and inability to

effectively reduce both wind- and earthquake-induced vibrations are inherent limitations

of passive TMDs [74]. Several enhancements to the passive TMD are described next.

2.3.1 Multiple tuned mass dampers

A number of researchers have investigated the effect of multiple tuned mass dampers (MT-

MDs) [103, 1, 52, 13, 75, 7, 33], with concentrated or distributed masses vibrating at

various frequencies corresponding to the modes of the primary structure or tuned about

the primary mode of vibration. Rana and Soon found that TMDs tuned to the higher

modes of vibration may deteriorate the performance of the first [75], generally dominant,

mode. Kareem and Kline investigated MTMDs tuned to various frequencies about a domi-

nant mode, and found that distributing the mass across the MTMDs resulting in improved

performance over a single TMD [52]. It was also concluded that the main parameter of

interest in the design of MTMDs for the purpose of attenuating the primary mode was

the range of frequencies of the TMDs, with a narrow range generally producing better
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results. Hoang and Warnitchai demonstrated an increased robustness of MTMDs to errors

in the main system parameters and an enhanced robustness when the frequency range of

the MTMD was increased [33].

2.3.2 Active tuned mass dampers

The active tuned mass damper (ATMD) is considered a superior alternative to the passive

TMD. ATMDs use a control system to monitor the response of the structure and then

introduce a control force operating on a auxiliary mass to counteract the motion of the

structure. The ATMD generally requires a smaller auxiliary mass, and in all reported cases

has superior performance than its passive counterpart [55, 51, 74].

ATMDs consist of a feedback control system, including [55]:

• Sensors that monitor external excitations or responses of the structure (accelerations,

velocities, or displacements)

• A computer which collects and processes the sensor information and determines the

necessary control force using classic control theory methods

• Actuators to generate the required control force on the auxiliary mass

ATMDs are reported to increase the structural damping to 10% critical and reduce the

acceleration response of the structure by up to two thirds [55], as compared to the 3-5%

damping ratio increase and 30-50% structural response reductions reported for conventional

TMDs [51].

Although ATMDs demonstrate better performance, they are more expensive to design,

implement, and operate, require careful maintenance, and are therefore less reliable. AT-

MDs also require a considerable amount of electrical energy to operate [55], which may not

be available during the storms they are designed to mitigate against [37].
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2.3.3 Semi-active tuned mass dampers

Recognizing the inherent limitations of both passive and active systems, and the added

benefit of active damping, the concept of a semi-active tuned mass damper (STMD), orig-

inally proposed by Hrovat et al in 1983 [37], has been studied extensively in the literature

[74, 77, 87]. STMDs are passive devices enhanced with mechanisms to adjust the auxiliary

damping in real-time, based on the response of the structure. Only a small amount of

active energy is required to change the auxiliary stiffness and damping, thus eliminating

the need for the large energy supply required by active mass damping systems [74].

The study of STMDs with adjustable damping mechanisms has been motivated in the

literature as follows. In practical applications of TMDs, the displacement necessary to

provide adequate performance of the TMD is quite large; therefore over-damped auxiliary

systems are selected to limit the stroke of the TMD, which results in a larger response

of the main system and a reduced efficiency of the device [77]. The larger displacements

are only likely to occur during extreme events; therefore, it is desirable to have adjustable

damping in order to improve the performance of the TMD during routine loading. There

is also a propensity for the structure’s frequency to vary over time; real-time adjustment

of the auxiliary frequency mitigates against such detuning effects.

Due to the uncertainties in the excitation and the structural parameters, the properties

of the STMD are only changed based on the measured response of the structure [77]. A

concept similar to the STMD, called an adaptive passive tuned mass damper (APTMD),

was developed by the author and his colleagues. While the basic idea of the adaptation is

the same between the APTMD and STMDs, the tuning algorithm is not real-time. This is

discussed in more detail in Chapter 7. There are several advantages of STMDs over passive

TMDs due to the following reasons:

• Structures are quite complex, and the use of simplified models to represent their

response may result in significant inaccuracies in their response predictions. In find-

ing the primary structure’s natural frequencies, the contribution of non-structural

elements to the stiffness of the structure is generally ignored; also, the mass is over-

estimated for the purpose of a conservative static design. The structural properties
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of a structure are only known with a limited degree of certainty. This results in

incorrect estimation of the optimal auxiliary damping parameters, and though this

can be rectified during the commissioning of the TMD, it still requires a considerable

accuracy during the design phase. STMDs can be made robust to such uncertainties.

• Structural properties vary over time, generally arising from either a deterioration

of the structure, inadvertent or deliberate modification of the structure, or through

the variation of mass related to the loads carried by the structure (occupants or

equipment, for example). STMDs can easily overcome such detuning effects.

• The excitation of the structure can be from a variety of sources, such as wind or

seismic loading. Also, it is neither harmonic nor white noise [77], so closed-form

solutions presented in the literature for the optimal selection of auxiliary damping

parameters [26, 74, 75] may not be applicable for all conditions. Also, wind and

seismic loading vary with time and direction, and may excite modes [77] other than

the single mode response the TMD is designed to control [75]. This is especially true

in lightweight structures such as pedestrian bridges where the live load magnitude

and pattern can excite different modes. STMDs can be tuned to counteract such

effects.

STMDs have been studied extensively in the literature. Several algorithms and config-

urations have been proposed and evaluated. Pinkaew and Fujino [74] demonstrated that

a STMD with variable damping was effective in reducing the displacement response of

the structure beyond the reduction a passive TMD provides. The study involved various

frequencies of harmonic excitations, and noted a particularly good improvement near the

resonant frequency of the structure. They demonstrated that the STMD requires sufficient

amplitude before effectively reducing the structural vibrations. The STMD with variable

damping provides adequate flexibility to handle the variation in the excitation. While the

STMD cannot provide a sufficient control force during the transient period, it provides the

equivalent effect of increasing the auxiliary mass by four times in the steady-state region

of the response.
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Ricciardelli et al [77] investigated STMDs for the control of wind-excited structures,

using a numerical model of a tall, slender structure equipped with a TMD. The comple-

ment of the ratio of the root mean squared (RMS) response between the controlled and

uncontrolled cases were used as a measure of the TMDs’s efficiency. For the ideal case

of white noise excitation, the efficiency parameter was 0.53. When a more realistic wind

load input excitation was used, the efficiency fell to 0.33. Finally, when a 21% error in

the estimation of the stiffness and mass of the main structure were used, subsequently

effecting the optimal tuning parameter selection, the efficiency of the TMD fell to 0.12 and

0.08, respectively. For the case of the error in stiffness, the peak displacement of the main

structure was only reduced by 3%, and no reduction in peak displacement occurred when

the mass was incorrectly estimated. A STMD was proposed, whose frequency and damping

can be varied with time to keep the performance close to optimal. This accommodates

three weaknesses in TMDs design: the uncertainties in the main structural parameters,

the variation of the structural parameters with time, and the variation in the excitation.

Ricciardelli et al proposed pneumatic springs and hydraulic dampers, which can be inte-

grated with control mechanism to automatically adjust stiffness and damping with time.

Since the RMS response of the structure doesn’t directly contain any information on the

performance of auxiliary damping devices, Riccardelli et al used a iterative trial-and-error

approach, where the frequency response of the structure was measured and the auxiliary

damper parameters were adjusted until the frequency response curve became similar to

optimal response curves found using numerical parameter studies. Explicit determination

of the primary structural frequencies was not performed. The optimization algorithm did

not result in a reduction in the main structural response, but instead reduced the stroke

of the TMD with the same effectiveness of the passive TMD.

Setareh [83] studied the ground hook TMD, where the auxiliary damping level is related

to the absolute velocity of the main mass. The application of a harmonic base excited

structure was considered, and the results of a numerical study concluded the following:

• The semi-active system achieved up to 12% better performance than the passive

counterpart
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• The system is more sensitive to frequency detuning than auxiliary damping detuning

• The system’s mass ratio should be selected as large as attainable, as a system with

higher mass ratios is less susceptible to detuning

• The auxiliary damping should be selected such that detuning does not result in

the parameters being less than optimal, as there is a more dramatic performance

reduction when auxiliary damping is suboptimal

A summary of various adaptive mechanisms for enhancing TMDs, including STMDs,

together with example applications has been provided by Kareem and Kijewski [51]. Several

variable stiffness and damping mechanisms, including full-scale applications, have been

summarized by Nagarajaiah [69].

The ensuing study will primarily investigate adaptive passive PTMDs, as they are com-

mon in the application of reducing the response of tall structures and offer a simple means

of stiffness adjustment by varying the effective pendulum length. Particular emphasis will

be on design aspect of three-dimensional PTMDs, an area that has so far been neglected

in the literature.

2.4 Pendulum-type tuned mass dampers

Much of this thesis is devoted to the study and condition assessment of PTMDs. The

parameters (stiffness, damping, and mass ratio) in translational TMDs have direct equiv-

alents in PTMDs; however, the fundamental dynamics of the PTMDs are considerably

different, are nonlinear, and require separate treatment. Sacks and Swallow [80] suggested

several design factors that must be considered in the design of a TMD.

• A TMD must allow for the natural frequency and damping to be easily adjustable,

primarily to allow for variations in the structural properties, particularly as they

differ from those forecasted during the design stage.
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• A TMD should function in all directions.

• A TMD should be operational at all times, but also incorporate a mechanism for

arresting their motion when it becomes necessary to do so.

When viewed with respect to the above list of specifications, PTMDs offer a naturally

simple design. For example, PTMDs are intrinsically three-dimensional in nature; that

is, they can respond in all directions (lateral and rotational). Furthermore, their natural

frequency is easily adjustable, as it depends only on the suspended length of the mass,

and not on other properties such as the magnitude of the mass or the properties of the

suspension material. Frequency adjustment in a PTMD can be accomplished by changing

the location of the pivot point, such as using an adjustable tuning frame below the upper

support, as in the Chifley Tower in Sydney [55] or Park Tower in Chicago [42]. Fine

frequency tuning can also be performed by augmenting the mass with springs that can be

adjusted along the height [26]. In contrast, adjustments in translational-type TMDs [70]

and introducing multi-directional behaviour [51] can sometimes be cumbersome to obtain.

The first aspect in the study of PTMDs is their mathematical models. Surprisingly, this

aspect has not been fully studied in the literature. Most studies on the subject have either

linearized the system of equations or considered motion in only in the planar direction,

or both [26]. Studies of pendulum motion have been considered in the context of its own

nonlinear motion [82].

The work is proposed in the context of improving occupant comfort in upper floors of

tall buildings using PTMDs, by reducing the peak or RMS acceleration response to within

acceptable levels for various return period events. Assessing occupant comfort in tall

buildings subjected to wind excitation is difficult, due to the subjectiveness of quantifying

perception of motion. A recent paper on this topic [56] reviewed an extensive database of

studies aimed at understanding and unifying comfort guidelines, and presented an excellent

overview of current standards in use today. It is generally accepted that within the lower

frequency range of less than 1 Hz, human perception threshold reduces with increasing

frequency [56]. For structures with well-separated lateral frequencies, a PTMD designed

to satisfy comfort performance requirements in one direction may have a significant impact
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in the other direction. As a consequence, it may not meet the overall performance objectives

in a given situation. Hence, it is critical that the response for structures equipped with

PTMDs be estimated with a good degree of accuracy in order to ascertain its overall

performance.

To the knowledge of the author, none have considered structures coupled with nonlinear

bi-axial pendulums in the framework of PTMDs. The closest study in this regard has been

in the context of tower cranes. The coupled equations of motion for structural dynamics

and pendulum motion involve complex nonlinear dynamical phenomena [11, 82], which have

not been adequately addressed. Acknowledging that many recent studies of the dynamics

and control of cranes have been based on simplified models [11], Ju et al [44] concluded that

when the dynamic response of the crane structure was of interest, more detailed models of

the main structure are required. Their study involved deriving the integrated finite element

formulations to analyze the coupled dynamics of the tower crane structure and pendulum

motion of the payload. Using Lagrange’s equation, including the dissipation function, the

governing equations for the dynamic response of the tower cranes coupled with pendulum

motion were derived. The tower crane itself was modelled using the finite element method.

The result is a set of coupled differential equations with nonlinear excitation loads, which

are difficult to solve analytically or numerically. The present work differs from the study

of tower cranes in that it considers the addition of an auxiliary spring for fine frequency

adjustment and auxiliary viscous and non-linear damping for energy dissipation. Also, the

aforementioned study considered three simplifications including rigid main structure, pure

planar motion, and pure spherical motion. The combined planar-spherical response was

not considered.

Considering the biaxial motion of the PTMD is important for several reasons. First,

the lateral coupling effect introduced by a three-dimensional pendulum has the potential

to transfer energy between lateral modes, potentially producing a increased response for

an uncontrolled mode orthogonal to the controlled lateral mode of vibration. Second, a

comparison of the optimal design equations for a three-dimensional and planar PTMD has

not been presented in the literature; the effect of increasing mass ratio on the coupling

effect has also been unexplored. Third, it is not clear from the literature whether the
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planar assumption and linearized model produces conservative response estimates when

compared to the three-dimensional PTMD model.

2.5 Detuning in tuned mass dampers

Generally, the research in the area of TMDs has focused on evaluating the performance of

TMDs [52, 50, 54, 55, 74], finding optimal damper parameters [58, 26, 33, 59, 83, 75, 1,

97, 96, 20], with little attention on determining if an in-service TMD is optimally tuned or

not[77, 30].

Current methods of detuning detection involve periodically arresting the motion of the

TMD and finding the natural modes of the structure [78] as part of the routine maintenance

of the TMD. The TMD parameters are manually adjusted, subsequently. This method is

labour intensive, time consuming, costly, and involves removing the TMD from service,

potentially sacrificing safety or comfort of the occupants of the structure. Furthermore,

this process cannot be integrated into adaptive control systems to incorporate automated

adjustments.

Identifying the main structural modes while a TMD is in-service is difficult, caused by

the effective change the TMD has on the structural parameters [75, 30, 99]. Estimating the

main structural modal parameters (natural frequency, modal damping ratios, and mode

shapes) is key to identify detuning. The main theoretical challenge in the estimation of

bare structure modal properties using TMD attenuated response measurements is that the

presence of a TMD alters the overall dynamics of the system [30], and hence contaminates

the measurements at all the degrees of freedom. This issue has been considered in a few

studies [77, 59, 99]. They employ traditional system identification algorithms such as the

random decrement and Ibrahim time-domain techniques [59], or a combination of heuristic

and design inference rules [47, 99, 30, 77]. However, these studies did not demonstrate

the effectiveness of their algorithms to address the issues of detuning and on-line adaptive

control of TMDs for wind engineering applications. Hazra et al [30] presented a non-

parametric identification method based on time frequency analysis to estimate the bare
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structure modal properties from TMD attenuated responses. However, significant user

judgment is required, which makes the method non-ideal for online control applications.

Weber and Feltrin performed a system identification of two pedestrian bridges equipped

with TMDs and documented the challenges associated with identifying the underlying

structure’s properties while the absorber was enabled [99]. To overcome this challenge,

several model parameter were fixed to their known values based on identification results

(while the absorber was disabled) and a priori knowledge of the auxiliary parameters, and

the remaining unknown parameters were identified. To the knowledge of the author, prior

to this study, a framework consisting of online identification of bare structural model prop-

erties from TMD attenuated response measurements, and their utilization in the condition

assessment and tuning in PTMDs, has not yet been addressed.

2.6 Full-scale condition assessment of tuned mass

dampers

Kareem and Kijewski [51], Kwok and Samali [55], and Irwin and Breukelman [42] pre-

sented several recent applications of TMDs, PTMDs, and STMDs. Kwok and Samali [55]

demonstrated the effectiveness of the auxiliary damping devices by presenting the results

from several extensive full-scale measurement studies on a number of tall buildings and

structures, reporting reductions of 40% to 50% in the RMS response of the structure dur-

ing wind loading and an increase in effective structural damping between 3% to 5%. Kwok

and Macdonald [54] presented the results of a full-sale study of the Sydney Tower before

and after the installation of a secondary TMD on the structure. Sydney Tower is a 250 m

tall structure, originally fitted with 180 tonne TMD to increase the damping level. Later, a

40 tonne damper was installed to reduce wind-induced vibrations, primarily in the second

mode. Kwok and Macdonald reported a “significant reduction in both peak along-wind

and peak cross-wind acceleration responses after the installation of the secondary TMD

[54].

Beyond the aforementioned full-scale studies, few results of full-scale studies are pre-
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sented in the literature. In order to more fully understand the applicability of STMDs in

practical applications, further investigation into the effects of detuning on full-scale struc-

tures is required. This lack of information is further exemplified for the case of PTMDs,

despite many full-scale applications in use today [35].
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Chapter 3

Dynamic response of a flexible

structure coupled with a PTMD

In the process of condition assessment, a key step is to develop a system of equations that

couples the dynamics of a flexible structure with the motion of the pendulum tuned mass

damper (PTMD). This model will eventually enable the development of design parameters

that can be checked with the as-built values and the PTMD can be retuned, if necessary,

in the subsequent steps. Most studies have developed the design parameters based on

simplified models of the coupled dynamic system. The following effort is to compare,

quantify, and understand the effects of such simplifications on the structural dynamics and

the resulting design equations.

A five-degree-of-freedom (DOF) system is considered, combining a pendulum mass

with a main structure capable of translation in three directions. The three dimensional

behaviour of the PTMD is modelled using two generalized coordinates representing the

planar rotation and the spherical motion. The system equations include auxiliary damping

and stiffness. The equations of motion are then extended to a PTMD attached to a multi-

degree-of-freedom (MDOF) flexible structure. The equations of motion are cast into state

space form to aid in the simulation of the structural response. An alternate formulation

is presented (in Appendix A), where the auxiliary system is described using a Cartesian
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coordinate system. Finally, the effect of using a non-linear auxiliary damper, such as a

velocity-squared proportional damper, is presented.

3.1 5DOF system modeling

A five-DOF system is considered first, as shown in Fig. 3.1a. The origin of the system

is set up to coincide with the suspension point of the pendulum mass. The vectors u(t),

v(t), and w(t) are the displacements of the suspension point in the x-, y-, and z-directions,

respectively. The angle θ(t) is the angle of swing away from the vertical line passing

through the origin, also known as the planar angle. The angle ϕ(t) is the angle of the

auxiliary mass rotating about the vertical line, also known as the spherical angle. All of

the aforementioned parameters vary with time. L is the length of the pendulum and ma

is the auxiliary pendulum mass.

ma

θ(t)

ϕ(t)

z

x

y
w(t)

u(t)

v(t)

L

(a)

u(t)

ma

z

x

cx

kx
hx L

L sin θ(t) cosϕ(t)

(b) x-direction

v(t)

ma

z

y

cy

ky

hy L

L sin θ(t) sinϕ(t)

L cos θ(t)

(c) y-direction

Figure 3.1: Schematic geometry of the PTMD mass with auxiliary damper and spring
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The position vector, in three-dimensional space, where the rows corresponds to the x-,

y-, and z-directions, respectively, of the auxiliary mass, ma is

r(t) =


u(t) + L sin θ(t) cosϕ(t)

v(t) + L sin θ(t) sinϕ(t)

w(t)− L cos θ(t)

 (3.1)

The velocity of the auxiliary mass is found by taking the first time derivative of the position.

v(t) =


u̇(t) + L cos θ(t) cosϕ(t)θ̇(t)− L sin θ(t) sinϕ(t)ϕ̇(t)

v̇(t) + L cos θ(t) sinϕ(t)θ̇(t) + L sin θ(t) cosϕ(t)ϕ̇(t)

ẇ(t) + L sin θ(t)θ̇(t)

 (3.2)

3.1.1 Kinetic energy, potential energy, and dissipation functions

The next step is to calculate the kinetic energy. The notion of time, (t), is implicit wherever

applicable in the ensuing equations. The kinetic energy is given by

Ta =
1

2
vmav

T

=
1

2
ma

[(
u̇+ L cos θ cosϕθ̇ − L sin θ sinϕϕ̇

)2

+
(
v̇ + L cos θ sinϕθ̇ + L sin θ cosϕϕ̇

)2

+
(
ẇ + L sin θθ̇

)2
]

=
1

2
ma

[
u̇2 + v̇2 + ẇ2 + L2θ̇2 + L2ϕ̇2 sin2 θ + 2u̇L cos θ cosϕθ̇

− 2u̇L sin θ sinϕϕ̇+ 2v̇L cos θ sinϕθ̇ + 2v̇L sin θ cosϕϕ̇

+ 2Lẇθ̇ sin θ
]

(3.3)
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The potential energy of the auxiliary mass, measured with respect to the arbitrarily selected

origin, is

Va = mag (w − L cos θ) (3.4)

where g is the acceleration due to gravity. The kinetic energy of the main structure is

Tm =
1

2
∆̇TM∆̇ =

1

2


u̇

v̇

ẇ


T  muu muv muw

mvu mvv mvw

mwu mwv mww




u̇

v̇

ẇ

 (3.5)

where M is the 3× 3 mass matrix corresponding to the pendulum suspension point, in the

x-, y-, and z-direction. The potential (strain) energy of the main mass is

Vm =
1

2
∆TK∆ =

1

2


u

v

w


T  kuu kuv kuw

kvu kvv kvw

kwu kwv kww




u

v

w

 (3.6)

where K is the 3× 3. The Raleigh dissipation function for the main mass is

Fm =
1

2
∆̇TC∆̇ =

1

2


u̇

v̇

ẇ


T  cuu cuv cuw

cvu cvv cvw

cwu cwv cww




u̇

v̇

ẇ

 (3.7)

where C is the 3× 3 damping matrix.

38



3.1.2 Lagrange’s Equation

The kinetic energy, potential energy, and dissipation factor for the combined main system

and PTMD are

T = Tm + Ta (3.8a)

V = Vm + Va (3.8b)

F = Fm (3.8c)

Lagrange’s equation for the case of free vibration is [68]

d

dt

∂T
∂q̇r
− ∂T
∂qr

+
∂V
∂qr

+
∂F
∂q̇r

= 0 (3.9)

where qr and q̇r are the generalized coordinates and velocities of the system. For the

combined main structure and PTMD system, the generalized coordinates are u, v, w, θ,

and ϕ and the generalized velocities are u̇, v̇, ẇ, θ̇, and ϕ̇.

3.1.3 Equations of motion

Substituting Eq. 3.8 into Eq. 3.9 produces the following system of equations for a 5-DOF

system, including the motion of a PTMD, for free vibration:M +

 ma 0 0

0 ma 0

0 0 ma





ü

v̈

ẅ

+ C


u̇

v̇

ẇ

+ K


u

v

w

 = maL

×


− cos θ cosϕθ̈ + sin θ cosϕθ̇2 + 2 cos θ sinϕθ̇ϕ̇+ sin θ sinϕϕ̈+ sin θ cosϕϕ̇2

− cos θ sinϕθ̈ + sin θ sinϕθ̇2 − 2 cos θ cosϕθ̇ϕ̇− sin θ cosϕϕ̈+ sin θ sinϕϕ̇2

− sin θθ̈ − cos θθ̇2 − g

L


(3.10)
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The equation of motion corresponding to planar pendulum motion (θ-DOF) is

Lθ̈ − L sin θ cos θϕ̇2 + cos θ cosϕü+ cos θ sinϕv̈ + sin θẅ + g sin θ = 0 (3.11)

The equation of motion corresponding to spherical pendulum motion (ϕ-DOF) is

L sin θϕ̈+ 2L cos θθ̇ϕ̇− sinϕü+ cosϕv̈ = 0 (3.12)

3.2 Auxiliary damping and stiffness

A linear auxiliary viscous damper and linear spring are introduced, as shown in Figs. 3.1b

and 3.1c. The viscous damper has a damping coefficient cx in the x-direction and cy in

the y-direction. The linear spring has a spring constant kx in the x-direction and ky in the

y-direction. The damper and spring are connected to the pendulum length at a distance

hx and hy from the suspension point, in the x- and y-directions, respectively. Assuming

the auxiliary damper and spring remain horizontal, the relative position of the attachment

point is

rp,x = hx sin θ cosϕ (3.13a)

rp,y = hy sin θ sinϕ (3.13b)

The velocity of the suspension point in the x- and y-directions can be found by taking the

first time derivative of the position.

vp,x = hx cos θ cosϕθ̇ − hx sin θ sinϕϕ̇ (3.14a)

vp,y = hy cos θ sinϕθ̇ + hy sin θ cosϕϕ̇ (3.14b)
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The kinetic energy of the auxiliary mass remains the same, as in Eq. 3.3. The potential

energy becomes

Va =
1

2
kxr

2
p,x +

1

2
kyr

2
p,y +mag (w − L cos θ)

=
1

2
kxh

2
x sin2 θ cos2 ϕ+

1

2
kyh

2
y sin2 θ sin2 ϕ+mag (w − L cos θ)

(3.15)

A Raleigh dissipation function for the auxiliary system is introduced. The auxiliary dissi-

pation factor is

Fa =
1

2
cxv

2
p,x +

1

2
cyv

2
p,y

=
1

2
cx

(
h2
x cos2 θ cos2 ϕθ̇2 − 2h2

x cos θ cosϕθ̇ sin θ sinϕϕ̇+ h2
x sin2 θ sin2 ϕϕ̇2

)
+

1

2
cy

(
h2
y cos2 θ sin2 ϕθ̇2 + 2h2

y cos θ cosϕθ̇ sin θ sinϕϕ̇+ h2
y sin2 θ cos2 ϕϕ̇2

) (3.16)

The kinetic energy, potential energy, and dissipation function for the main structure are

unchanged. The dissipation function for the combined main and auxiliary system is

F = Fm + Fa (3.17)

These results are then used in Lagrange’s equation (Eq. 3.9) and the system of equations

are found for the simple 5DOF system including a linear viscous damper and linear spring

connected to the auxiliary system. Eq. 3.10 corresponding to the translational DOF of

the suspension point remains unchanged.

The equation of motion corresponding to the planar (θ-DOF) motion of the pendulum
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(Eq. 3.11) becomes

Lθ̈ − L sin θ cos θϕ̇2 + cos θ cosϕü+ cos θ sinϕv̈ + sin θẅ + g sin θ

+
kxh

2
x

maL
sin θ cos θ cos2 ϕ+

kyh
2
y

maL
sin θ cos θ sin2 ϕ

+
cxh

2
x

maL

(
cos2 θ cos2 ϕθ̇ − cos θ cosϕ sin θ sinϕϕ̇

)
+
cyh

2
y

maL

(
cos2 θ sin2 ϕθ̇ + cos θ cosϕ sin θ sinϕϕ̇

)
= 0

(3.18)

The equation of motion corresponding to spherical (ϕ-DOF) motion of the pendulum

(Eq. 3.12) becomes

L sin θϕ̈+ 2L cos θθ̇ϕ̇− sinϕü+ cosϕv̈ − kxh
2
x − kyh2

y

maL
(sin θ sinϕ cosϕ)

+
cxh

2
x

maL

(
− cos θ cosϕ sinϕθ̇ + sin θ sin2 ϕϕ̇

)
+

cyh
2
y

maLa

(
cos θ cosϕ sinϕθ̇ + sin θ cos2 ϕϕ̇

)
= 0

(3.19)

3.3 Pendulum dynamics coupled with MDOF struc-

ture

Consider a flexible MDOF main structure with three translational degrees of freedom in

each orthogonal direction for each floor mass, as shown in Fig. 3.2. Mn×n is the global

mass matrix, Cn×n is the global damping matrix, and Kn×n is the global stiffness matrix,

where n is the number of degrees of freedom. The upper-left 3×3 matrix of the M, C, and

K matrices corresponds to the DOF from which the PTMD is suspended. This is typically

the top floor, though the equations can be modified to account for a PTMD suspended at

a different location.
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Figure 3.2: Schematic of a MDOF flexible main structure equipped with a PTMD

The kinetic energy of the main system is [44]

Tm =
1

2
∆̇TM∆̇ =

1

2


u̇

v̇

ẇ

∆̇r



T 
muu muv muw Mur

mvu mvv mvw Mvr

mwu mwv mww Mwr

Mru Mrv Mrw Mrr




u̇

v̇

ẇ

∆̇r

 (3.20)

Here ∆̇ =
{
u̇ v̇ ẇ ∆̇r

}T
is the velocity vector of the main system, where u̇, v̇, and ẇ

are the nodal velocities of the suspension point, and ∆̇r are the velocities of the remainder

of the DOFs for the main structure. Similarly, the subscript r in the global mass matrix

represents the remainder of the rows or columns of the mass matrix.
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The potential (strain) energy of the main system is [44]

Vm =
1

2
∆TK∆ =

1

2


u

v

w

∆r



T 
kuu kuv kuw Kur

kvu kvv kvw Kvr

kwu kwv kww Kwr

Kru Krv Krw Krr




u

v

w

∆r

 (3.21)

Here ∆ =
{
u v w ∆r

}T
is the displacement vector of the main system, where u, v,

and w are the nodal displacements of the suspension point, and ∆r are the displacements

of the remainder of the DOFs for the main structure. Similarly, the subscript r in the

global stiffness matrix represents the remainders of the rows or columns of the stiffness

matrix.

The Raleigh dissipation function for the main mass is

Fm =
1

2
∆̇TC∆̇ =

1

2


u̇

v̇

ẇ

∆̇r



T 
cuu cuv cuw Cur

cvu cvv cvw Cvr

cwu cwv cww Cwr

Cru Crv Crw Crr




u̇

v̇

ẇ

∆̇r

 (3.22)

Lagrange’s equation including the generalized forces [68] is given by

d

dt

∂T
∂q̇r
− ∂T
∂qr

+
∂V
∂qr

+
∂F
∂q̇r

= Qr (3.23)

where Qr is the generalized force. For the MDOF system, the generalized forces are

Q =
[
Pu Pv Pw Pr 0 0

]
, where Pu, Pv, and Pw are the arbitrary forces applied to

the main structure at the location of the suspended mass in the x−, y−, and z−directions,

respectively; Pr is the arbitrary force excitation for the remainder of the DOF of the main

structure.

This result is substituted into Eq. 3.23 where the generalized coordinates are u, v, w,

∆, θ, and ϕ and the generalized velocities are u̇, v̇, ẇ, ∆̇, θ̇, and ϕ̇. The equations of
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motion corresponding to the translational DOFs of the main MDOF structure for forced

vibration areM +


ma 0 0 0

0 ma 0 0

0 0 ma 0

0 0 0 0





ü

v̈

ẅ

∆̈r

+ C


u̇

v̇

ẇ

∆̇r

+ K


u

v

w

∆r

 = maLa

×


− cos θ cosϕθ̈ + sin θ cosϕθ̇2 + 2 cos θ sinϕθ̇ϕ̇+ sin θ sinϕϕ̈+ sin θ cosϕϕ̇2

− cos θ sinϕθ̈ + sin θ sinϕθ̇2 − 2 cos θ cosϕθ̇ϕ̇− sin θ cosϕϕ̈+ sin θ sinϕϕ̇2

− sin θθ̈ − cos θθ̇2 − g

L
0

+


Pu

Pv

Pw

Pr


(3.24)

where M, C, and K are described in Eqs. 3.20 through 3.22. The matrix 0 is a matrix with

all elements equal to zero. The equation of motion corresponding to planar (θ(t)-DOF)

and spherical (ϕ(t)-DOF) motion of the pendulum are the same as given in Eqs. 3.18 and

3.19. Eqs. 3.24, 3.18, and 3.19 are the integrated finite element representation of a MDOF

flexible structure with coupled dynamics of a PTMD for forced vibration.

3.3.1 Uniaxial response of the combined system

If the motion of the primary structure is restricted to the x-direction and the PTMD begins

from at-rest initial conditions, then ϕ = ϕ̇ = ϕ̈ = 0, v = v̇ = v̈ = 0, and w = ẇ = ẅ = 0.

For small angle displacements, sin θ and cos θ can be approximated by θ and 1, respectively.

Neglecting the nonlinear term θθ̇2, the equations of motion reduce to(
Mx +

[
ma 0

0 0

]){
ü

∆̈r,x

}
+ Cx

{
u̇

∆̇r,x

}
+ Kx

{
u

∆r,x

}
=

{
Pu −maLaθ̈

Pr,x

}
(3.25a)

maL
2
aθ̈ + cxh

2
xθ̇ +

(
magLa + kxh

2
x

)
θ +maLaü = 0 (3.25b)
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where Mx, Cx, and Kx, are the mass, damping, and stiffness matrices when all but the

terms corresponding to translation in the x-direction are removed.

3.4 State-space representation

The state-space representation provides an efficient framework to evaluate the responses

of a dynamic system. State-space relates the input, output, and state variables using

first-order differential equations. There are several advantages of using state space models.

First, the equations of motion are expressed as first-order differential equations. Second,

it provides a direct time-domain solution, which is of primary interest, and also accom-

modates general (non-proportional) damping. Third, the auxiliary system can easily be

expressed in terms of a control force or feedback loop. Finally, the system can easily be im-

plemented within the Kalman framework for state and parameter estimation. The general

form of the state-space model is

ẋ (t) = Acx (t) + Bcu (t) + Ecw (t) (3.26a)

z (t) = Ccx (t) + Dcu (t) + Fcw (t) (3.26b)

where Ac is the ñ×ñ state matrix, Bc is the ñ×s input matrix corresponding to the control

force, u (t), Ec is the ñ×q input matrix corresponding to the external excitation, w (t),

Cc is the output matrix, Dc is the p×s feedthrough matrix corresponding to the control

force, u (t), and Fc is the p×q direct feedthrough matrix corresponding to the unknown

external disturbance force vector, w (t). The vector x (t) is the state vector of dimension

ñ and z (t) is the output vector of dimension p. In order to express Eqs. 3.24, 3.18, and

3.19 in state-space form, Eq. 3.24 can be rewritten as in the following equation, with the

known disturbance P(t) replaced with the unknown external disturbance force, w (t).

M̂∆̈ (t) + C∆̇ (t) + K∆ (t) = u (t) + w (t) (3.27)
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where M̂ is an augmented mass matrix, determined by including the auxiliary mass at the

DOFs from which it is suspended.

M̂ = M +


ma 0 0 0

0 ma 0 0

0 0 ma 0

0 0 0 0

 (3.28)

and the control force vector is

u (t) = maLa


− cos θ cosϕθ̈ + sin θ cosϕθ̇2 + 2 cos θ sinϕθ̇ϕ̇+ sin θ sinϕϕ̈+ sin θ cosϕϕ̇2

− cos θ sinϕθ̈ + sin θ sinϕθ̇2 − 2 cos θ cosϕθ̇ϕ̇− sin θ cosϕϕ̈+ sin θ sinϕϕ̇2

− sin θθ̈ − cos θθ̇2 − g

La
0


(3.29)

The input vector is

w (t) =


Pu (t)

Pv (t)

Pw (t)

Pr (t)

 (3.30)

Eq. 3.27 can be rewritten as

∆̈ (t) = −M̂−1C∆̇ (t)− M̂−1K∆ (t) + M̂−1u (t) + M̂−1w (t) (3.31)

The displacements and velocities of the main structure are chosen as the states of the
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system, as follows:

x1 = u1 top floor displacement in the x-direction

x2 = v1 top floor displacement in the y-direction

x3 = w1 top floor displacement in the z-direction

x4 = u2 second from top floor displacement in the x-direction

x5 = v2 second from top floor displacement in the y-direction

x6 = w2 second from top floor displacement in the z-direction
...

xn−2 = un bottom floor displacement in the x-direction

xn−1 = vn bottom floor displacement in the y-direction

xn = wn bottom floor displacement in the z-direction

xn+1 = u̇1 = ẋ1 top floor velocity in the x-direction

xn+2 = v̇1 = ẋ2 top floor velocity in the y-direction

xn+3 = ẇ1 = ẋ3 top floor velocity in the z-direction

xn+4 = u̇2 = ẋ4 second from top floor velocity in the x-direction

xn+5 = v̇2 = ẋ5 second from top floor velocity in the y-direction

xn+6 = ẇ2 = ẋ6 second from top floor velocity in the z-direction
...

x2n−2 = u̇n = ẋn−2 bottom floor velocity in the x-direction

x2n−1 = v̇n = ẋn−1 bottom floor velocity in the y-direction

x2n = ẇn = ẋn bottom floor velocity in the z-direction

There are, therefore, ñ = 2n states, where n is the number of DOFs.

Eq. 3.31 can then be written in the state-space form, as in Eqs. 3.26a and 3.26, where

the state matrix is

Ac =

[
0n×n In×n

−M̂−1K −M̂−1C

]
2n×2n

(3.32)

where In×n is a n×n identity matrix.
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The input matrix corresponding to the control forces is

Bc =

[
0n×s

−M̂−1Γn×s

]
2n×s

(3.33)

The matrix Γn×s is a n×s matrix that contains ones at the DOF where the control forces

act and zeros elsewhere, where s is the number of control forces. For the PTMD system

located at the top of the structure,

Γn×3 =


1 0 0

0 1 0

0 0 1

0(n−3)×3


n×3

(3.34)

The input matrix corresponding to the external forces is

Ec =

[
0n×q

−M̂−1Πn×q

]
2n×q

(3.35)

The matrix Πn×q is a n×q matrix that contains ones at the DOFs where the external

forces act and zeros elsewhere, where q is the number of external forces. If an external

forces were applied to every DOF, the Πn×q matrix becomes the identity matrix and q=n.

The selection of the output matrix, Cc, and the direct feedthrough matrices, Dc and Fc,

are dependent on the desired outputs of the system. For the case where all the states are

measured, Cc=I, and Dc and Fc are empty matrices.

The system of equations for a PTMD coupled with the dynamics of a flexible structure

are modelled using a state-space realization so they can be conveniently implemented into

the MATLAB R© and the real-time Simulink R© environment. From Eqs. 3.32 to 3.35, only

the main structure properties are contained within the state matrices, with the exception

of the auxiliary mass, which is appended to the main mass of the structure in Eq. 3.28.

In essence, the effect of the PTMD is simulated as though it introduces a feedback force

into the main structure. The remainder of the auxiliary parameters are included in the
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input vector, u (t), corresponding to the control force produced by the PTMD (Eq. 3.29).

The system is modelled by assembling a Simulink R© [40] block diagram and numerically

integrating the equations of motion.

The primary shortcoming of the approach described above is that when the auxiliary

system is at rest, θ(t) = 0, Eq. 3.19 becomes singular. This also occurs at each zero

crossing of the auxiliary mass. It is straightforward to overcome these shortcoming in

the simulation of the numerical model by disabling the default behaviour of Simulink R© to

determine the zero crossings. In the event that θ(t) falls inside a user-defined threshold

near zero, a small perturbation is introduced to prevent Eq. 3.19 from becoming singular.

Alternatively, the position of the auxiliary mass can be described in Cartesian coordinates;

this formulation is presented in Appendix A. The resulting equations of motion are less

concise, but do not become singular for the case of θ(t) = 0.

3.5 Formulation for non-linear auxiliary damping

For the case where the auxiliary damper is non-linear, the governing equations are modified

where the effect of the auxiliary damping is considered as a non-conservative force, rather

than part of the Raleigh dissipation function. Consider velocity proportional auxiliary

damping, the degree to which is denoted by n̄. For example for linear viscous damping,

n̄ = 1. For velocity-squared proportional damping, n̄ = 2. The auxiliary damping force in

each horizontal direction is given as

Fd,x = cxvp,x |vp,x|n̄−1 (3.36a)

Fd,y = cyvp,y |vp,y|n̄−1 (3.36b)

where the damping coefficients are cx in the x-direction and cy in the y-direction; vp,x and

vp,y are the velocity of the connection point of the damper to the auxiliary mass relative

to the main mass, in the x- and y-directions, respectively. The velocity term outside the

absolute value operator determines the direction of the damping force, which is always

in the same direction as the relative velocity of the mass. The damper and spring are
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connected to the pendulum length at a distance hx and hy from the suspension point, in

the x- and y-directions, respectively, and are assumed to remain horizontal. The auxiliary

and main system kinetic and potential energies remain unchanged. Lagrange’s equation,

for the case of no Raleigh dissipation function, is given by

d

dt

∂T
∂q̇r
− ∂T
∂qr

+
∂V
∂qr

= Qr (3.37)

In order to determine the generalized forces acting on the system, it is necessary to first

calculate the work done by non-conservative forces.

δWnc = Puδu+ Pvδv + Pwδw + Prδ∆r

− cxvp,x |vp,x|n̄−1 δ (hx sin θ cosϕ)− cyvp,y |vp,y|n̄−1 δ (hy sin θ sinϕ)−C∆̇δ∆

= Puδu+ Pvδv + Pwδw + Prδ∆r

− cxvp,x |vp,x|n̄−1 (hx cos θ cosϕδθ − hx sin θ sinϕδϕ)

− cyvp,y |vp,y|n̄−1 (hy cos θ sinϕδθ + hy sin θ cosϕδϕ)−C∆̇δ∆

(3.38)

where C is the damping matrix given by

C =


cuu cuv cuw Cur

cvu cvv cvw Cvr

cwu cwv cww Cwr

Cru Crv Crw Crr

 (3.39)
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Therefore, the generalized forces are

Q1 = Pu − cuuu̇− cuvv̇ − cuwẇ −Cur∆̇r (3.40a)

Q2 = Pv − cvuu̇− cvvv̇ − cvwẇ −Cvr∆̇r (3.40b)

Q3 = Pw − cwuu̇− cwvv̇ − cwwẇ −Cwr∆̇r (3.40c)

Q4 = −cxvp,x |vp,x|n̄−1 hx cos θ cosϕ− cyvp,y |vp,y|n̄−1 hy cos θ sinϕ (3.40d)

Q5 = cxvp,x |vp,x|n̄−1 hx sin θ sinϕ− cyvp,y |vp,y|n̄−1 hy sin θ cosϕ (3.40e)

Qr = Pr −Cruu̇−Crvv̇ −Crwẇ −Crr∆̇r (3.40f)

where the relative velocities of the damper, vp,x and vp,y, are given in Eq. A.4.

3.5.1 Velocity-squared proportional auxiliary damping

For the case of velocity-squared proportional auxiliary damping n̄ = 2, the generalized

forces corresponding to θ(t) and ϕ(t) become

Q4 = −cxh3
x

(
cos2 θ cos2 ϕθ̇ − sin θ cos θ sinϕ cosϕϕ̇

) ∣∣∣cos θ cosϕθ̇ − sin θ sinϕϕ̇
∣∣∣

− cyh3
y

(
cos2 θ sin2 ϕθ̇ + sin θ cos θ sinϕ cosϕϕ̇

) ∣∣∣cos θ sinϕθ̇ + sin θ cosϕϕ̇
∣∣∣ (3.41a)

Q5 = −cxh3
x

(
− sin θ cos θ sinϕ cosϕθ̇ + sin2 θ sin2 ϕϕ̇

) ∣∣∣cos θ cosϕθ̇ − sin θ sinϕθ̇
∣∣∣ (3.41b)

− cyh3
y

(
sin θ cos θ sinϕ cosϕθ̇ + sin2 θ cos2 ϕϕ̇

) ∣∣∣cos θ sinϕθ̇ + sin θ cosϕϕ̇
∣∣∣ (3.41c)

Substituting Eqs. 3.8, 3.17, 3.40, and 3.41 into Eq. 3.23 produces the differential

equations of motion for the MDOF main structure coupled with the PTMD dynamics.

The equations of motion corresponding to the translational degrees of freedom of the main

MDOF structure remain unchanged (Eq. 3.24). The equation of motion corresponding to
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the planar (θ(t)-DOF) motion of the pendulum is

Laθ̈ − La sin θ cos θϕ̇2 + cos θ cosϕü+ cos θ sinϕv̈ + sin θẅ + g sin θ

+
kxh

2
x

maLa
sin θ cos θ cos2 ϕ+

kyh
2
y

maLa
sin θ cos θ sin2 ϕ

+
cxh

3
x

maLa

(
cos2 θ cos2 ϕθ̇ − cos θ cosϕ sin θ sinϕϕ̇

) ∣∣∣cos θ cosϕθ̇ − sin θ sinϕϕ̇
∣∣∣

+
cyh

3
y

maLa

(
cos2 θ sin2 ϕθ̇ + cos θ cosϕ sin θ sinϕϕ̇

) ∣∣∣cos θ sinϕθ̇ + sin θ cosϕϕ̇
∣∣∣ = 0

(3.42)

The equation of motion corresponding to spherical (ϕ(t)-DOF) motion of the pendulum

is

La sin θϕ̈+ 2La cos θθ̇ϕ̇− sinϕü+ cosϕv̈ − kxh
2
x − kyh2

y

maLa
(sin θ sinϕ cosϕ)

+
cxh

2
x

maLa

(
− cos θ cosϕ sinϕθ̇ + sin θ sin2 ϕϕ̇

) ∣∣∣cos θ cosϕθ̇ − sin θ sinϕθ̇
∣∣∣

+
cyh

2
y

maLa

(
cos θ cosϕ sinϕθ̇ + sin θ cos2 ϕϕ̇

) ∣∣∣cos θ sinϕθ̇ + sin θ cosϕϕ̇
∣∣∣ = 0

(3.43)

Eqs. 3.24 and 3.42 through 3.43 are the integrated finite element representation of

a MDOF flexible structure with coupled dynamics of a PTMD for forced vibration with

non-linear velocity-squared proportional auxiliary damping. For the case where damping

is velocity proportional (n̄ = 1), the equations of motion simplify to those presented in

Eqs. 3.24, 3.18, and 3.19.

3.5.2 Equivalent linear viscous damping

As a simplification, an equivalent linear damping coefficient is found using the equivalent

power consumption approach proposed by Pekcan et al [73] for the case of velocity-squared

proportional damping.
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For velocity-dependant systems, power is an appropriate measure to seek equivalent

linear damping properties. The method equates the power, or rate of energy dissipation,

of the two damping systems over one cycle of sinusoidal loading. The average power

consumption over one cycle for the non-linear damper (P̄α) is equated to the linear damper

(P̄eq) by

P̄α = P̄eq (3.44)

Eq. 3.44 seeks to equate the areas under the force-velocity curves, where

P̄α =
1

1 + α
cαu̇

α+1
0 (3.45)

cα is the non-linear damper coefficient in N s2/m2 (lbf s2/in2) and u̇0 is the maximum

damper velocity in m/s (in/s). Also,

P̄eq =
1

2
cequ̇

2
0 (3.46)

where ceq is the linear damper coefficient in N m/s. Note that Eq. 3.46 is the same as Eq.

3.45 with α = 1. Solving the above equations for ceq gives

ceq =
2

1 + α
cαẋ

α−1
0 (3.47)

This equivalent linear damping coefficient can be used within the system of equations for

linear auxiliary damping (cx and cy) in Sec. 3.3.

3.6 Wind-induced excitation from boundary layer wind

tunnel studies

Several types of excitations have been considered in the analysis of tuned mass dampers

(TMDs) using numerical models, for example, harmonic inputs [75, 74], earthquake time

histories [75, 58], or broadband, filtered, or band-limited white noise [3, 28]. It has been
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demonstrated that the performance of TMDs is generally overestimated when using the

aforementioned conventional approaches rather than realistic wind loads measured from a

wind tunnel study [104]. There is limited literature predicting the responses of structures

equipped with TMDs using synthetic wind time histories [105, 77], or directly measuring

the response of TMD-equipped structures through wind tunnel studies [88, 104]. The

aforementioned approach, where scale models of the structure and the TMD are constructed

and tested in a wind tunnel, suffers from inherent scale issues, particularly a limited ability

to accurately model the auxiliary damping. The strength of using wind tunnel studies

is the ability to accurately quantify the response characteristics for all wind directions

and perform a statistical analysis using several return period wind events. While Eqs.

3.24, 3.18, and 3.19 can easily be handle various deterministic and specified excitations

to systems, due to the nature of the application at hand, the aforementioned equations

need to be capable of accepting experimental inputs (from wind tunnel studies) into the

computational framework.

The high frequency base balance (HFBB) method is commonly adopted for predicting

the response of structures to wind excitations using wind tunnel experiments. It was first

developed in the early 1980s [91] and has been routinely applied for predicting wind-induced

forces on tall structures. The structure’s geometry is modelled using a lightweight, rigid

scale model. This is mounted on a highly sensitive force balance device, which is capable

of measuring the base overturning moments in each lateral direction as well as the torque.

The base moments are measured within a wind tunnel while a design wind event is being

simulated. The premise of the method is that the base overturning and torsional moments

measured on a lightweight rigid scale model in a wind tunnel can be used to estimate

the generalized forces exerted on the structure [91, 49]. Using classic modal analysis, the

generalized force for the jth mode of vibration is

wj =
n∑
i

(wxiφjx,i + wyiφjy,i + wθiφjθ,i) (3.48)

where i = 1, 2, . . . , n denotes the rigid floor diaphragm at level i, wxi, wyi, and wθi are

the generalize force components for the ith rigid diaphragm in the x-, y-, and θ-directions,
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respectively, and, and φjx,i, φjy,i, and φjθ,i are the corresponding mode shape coefficients

(i = 1 denotes the top of the structure). For linear lateral and constant torsional mode

shapes, this becomes

wj(t) = φjx,1
Myy(t)

hn
− φjy,1

Mxx(t)

hn
+ φjθ,1Mzz(t) (3.49)

Once the generalized wind forces are estimated from the measurements, the following

expression is used to calculate the standard deviation of the modal response (for the jth

mode) [92]:

σj =
1

Kj

[∫ ∞
0

|Hj(ω)|2Swj(ω) dω

] 1
2

(3.50)

where

|Hj(ω)|2 =
1[

1−
(

ω
ωn,j

)2
]2

+
(

2ωζj
ωn,j

)2
(3.51)

is the mechanical admittance function, ζj is the modal damping, Kj is the generalized

stiffness and Swj(ω) is the power spectral density of the generalized wind forces.

The accuracy of the HFBB method is primarily based on the level of contribution to the

overall response of the higher order modes. The underlying assumption is that the general-

ized forces are proportional to the measured base moments for structures with uncoupled

mode shapes that are approximately linear. The response of the structure to the wind

excitation is then determined by solving the generalized form of the equations of motion.

The main advantage of the HFBB method is that, under the simplifying assumptions of

mode shape linearity and broadband stationary excitation, the response of the structure

can be solved in closed form using random vibration theory. For nonlinear and coupled

mode shapes, correction factors can be applied [34, 108, 110, 8, 57, 92]. However, applying

the modes which uncouple the main system to the PTMD controlled system does not allow

the overall system of equations to be solved in the frequency domain. Hence, the solution

to the case of the structure equipped with a PTMD can be pursued in the time domain,

as explained next.
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The equations of motion for the flexible structure coupled with a planar-spherical

PTMD (Eqs. 3.24, 3.18, and 3.19) are cast in the generalized form to include rotation

about the vertical axis and translation in each horizontal direction. It is assumed that

the mode shapes of the primary structure are not affected by the addition of the PTMD,

and that the mode shapes for the primary translational modes remain linear. The modal

responses for the main structure are transformed back into the physical domain at each

time step and the control force is calculated, in order to account for the coupling between

the pendulum and the main structure in the physical domain. The control force is trans-

formed into modal coordinates and applied to the structure together with the generalized

force measured using the HFBB. The equations of motion in the modal domain for the jth

mode are

Mj ÿj(t) + Cj ẏj(t) + Kjyj(t) = uj(t) + wj(t) (3.52)

where

Mj = φTj

M +


ma 0 0 0

0 ma 0 0

0 0 0 0

0 0 0 0


φj (3.53)

Note that the first three degrees of freedom of the mass matrix correspond to the translation

in the x- and y-direction and rotation about the z-direction of the rigid diaphragm mass to

which the PTMD is fixed. Similarly, the generalized damping, Cj is given by Cj = φTj Cφj,

where C is the proportional damping matrix of the main system, and Kj = φTj Kφj, where K

is the stiffness matrix of the main structure. The mass moment of inertia of the pendulum

about its own axis is neglected.

The generalized wind force, wj(t), is measured directly from the HFBB model.

wj(t) = Xjxφj1
Myy(t)

hn
−Xjyφj2

Mxx(t)

hn
+Xjzzφj3Mzz(t) (3.54)

where Mxx, Myy, and Mzz are the base moments about the x-, y-, and z-axis, respectively,

and hn is the height of the structure. The coefficients φj1, φj2, and φj3 are the x-, y-, and

θz-components of the mode shape coefficients at the top of the building for the jth mode.
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The commonly used mode shape correction factors of Xjx = Xjy = 1 and Xjzz = 0.7 [92]

are introduced to account for non-ideal mode shapes.

The modal domain control force, uj (t) exerted on the structure by the PTMD is trans-

formed into the modal domain using

uj(t) =

{
φ1j

φ2j

}T

maLa

{
− cosϕθ̈ + θ cosϕθ̇2 + 2 sinϕθ̇ϕ̇+ θ sinϕϕ̈+ θ cosϕϕ̇2

− sinϕθ̈ + θ sinϕθ̇2 − 2 cosϕθ̇ϕ̇− θ cosϕϕ̈+ θ sinϕϕ̇2

}
(3.55)

θ(t) and ϕ(t) and their first and second time derivatives are found by solving the corre-

sponding equations of motion with ẅ = 0; ü and v̈ are found by transforming the modal

responses back into physical coordinates at each time step by the following transformation:

ü =
N∑
j=1

φj1ÿ (3.56a)

v̈ =
N∑
j=1

φj2ÿ (3.56b)

These transformations are necessary since the calculation of the control forces, according to

Eq. 3.55, depend on the physical coordinates. At each time step, the following operations

are carried out. First, the main structure dynamic analysis is carried out in the modal

domain, since the generalized force is directly measurable from the HFBB model. Second,

the directional coupling of the PTMD is captured in physical domain, by first transforming

the acceleration responses for the suspension point into the physical coordinates (ü(t) and

v̈(t)) at each time step. Third, the control force exerted by the PTMD on the main

structure is transformed back into modal coordinates. In doing so, the HFBB method can

be adapted to solve the nonlinear PTMD equations in the time domain.

Having provided the necessary background information on the equations of motion and

the HFBB method, the estimation of optimal PTMD parameters is pursued next.
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Chapter 4

Parametric studies of a PTMD

The primary focus of many studies on the subject of tuned mass dampers (TMDs) has

been to estimate the optimal design parameters [18, 41, 89, 1, 75, 58, 3, 28]. The majority

of studies have considered translational-type TMDs, with relatively little attention given

to pendulum tuned mass dampers (PTMDs) [26, 78, 79]. This is despite many PTMD

applications in full-scale structures today.

Previous studies of PTMDs have considered linearized planar pendulum models coupled

with structural models in the modal domain to find the optimal auxiliary stiffness and

damping, and to determine the structural responses [26]. Such models are adequate, for

example, in analyzing the response of flexible structures where the dominant response is

believed to be primarily in one direction. When the responses in both along-wind and

across-wind directions are of concern, then it is important to realistically model the effect

of the PTMD by including its three-dimensional behaviour.

The main objectives of this chapter within the context of the proposed work on condi-

tion assessment are two-fold:

(i) Develop numerical estimates for the optimal design parameters that will be subse-

quently used in the condition assessment step.

(ii) Compare the design estimates obtained with existing values in the literature.
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Both these objectives will be met using extensive numerical simulations. The nonlinear

nature of the governing equations does not lend itself to closed-form equations. It will

be shown that the optimal design parameters depend on the modal characteristics of the

bare structure, and hence in order to perform condition assessment, it will be necessary

to estimate the bare modal properties, in addition to other measures such as equivalent

damping (Chapter 6).

This chapter is organized in two main sections. First, various means to assess the

performance of TMDs are reviewed and the effects of frequency and damping detuning

are demonstrated. Additionally, the effect of increasing the auxiliary to main mass ratio

of the damping device is also investigated. Second, a parametric study of the numerical

model of a PTMD developed in Chapter 3 is performed, where the biaxial motion of the

mass is considered in order to establish the optimal damper parameters. These results are

compared with the simplified planar models presented in the literature. Design equations

are developed using curve fitting techniques to predict optimal damper parameter when the

bare structure’s modal properties are known. These can then be compared to as-measured

PTMD parameters in the condition assessment stage.

4.1 Parametric studies

The optimal design parameters consists of the optimal mass ratio, µ, frequency ratio, fr,opt,

and auxiliary damping ratio, ζa,opt. The mass ratio, µ, is a ratio of the auxiliary mass, ma,

to the modal mass, Mr,j, for the mode to be controlled (typically, the fundamental mode

of vibration). The frequency ratio is the ratio of the frequency of the PTMD to the

natural frequency of the main system and is directly related to the pendulum length, L.

The damping ratio, the ratio of the auxiliary damping coefficient to the critical auxiliary

damping, is directly related to the auxiliary damping coefficients, cx and cy.
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4.1.1 Assessing the performance of PTMDs

There are two primary approaches for quantifying TMD performance. The first is a concept

known as effective damping or equivalent damping. The term refers to a single-degree-of-

freedom (SDOF) system with damping parameter, ζe with the same performance of the

combined main and auxiliary system. This is accomplished by equating the root mean

squared (RMS) displacement response of the combined main-TMD structure with that

of a SDOF oscillator with the same natural frequency, and solving for the damping in

the SDOF system. Equations which relate the effective damping introduced by the TMD

are available for the case of main mass-excited structures [66] and base excited structures

[26], for both conventional translational TMDs and PTMDs [26]. Maximizing the effective

damping introduced by the TMD has been used as a cost function for selecting optimal

damper parameters by various researchers [55, 88, 94].

The approach for calculating the effective damping introduced by a TMD is quite sim-

ple and is easily theoretically demonstrated. However, it requires knowledge of the RMS

displacement response of the primary system, which is not directly available from acceler-

ation response measurements and must be inferred. This issue is of particular importance

when the performance of an in-service TMD must be demonstrated to verify that a pre-

scribed level of effective damping has been achieved. This issue is explored more closely in

Chapter 6.

The second and more common means of quantifying performance of TMDs is to measure

their ability to reduce the responses of the main structure. Generally, the RMS displace-

ment or acceleration responses for the combined system are determined and compared with

the uncontrolled structural responses. The result is normalized with respect to the uncon-

trolled structure, and the reduction is reported. In the conventional design of TMDs, the

displacement response has largely been considered.

From a designer’s perspective, the desire is to reduce the peak or RMS acceleration

response at the top floors to within acceptable levels for various return period events [104].

Therefore, in assessing the performance of TMDs and determining optimal parameters, the

acceleration response should be used. Xu and Kwok found that normalized performance
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improvement, expressed as a percent reduction in the response, was comparable regardless

of whether displacement or acceleration responses were considered, but that the optimal

damper parameter varied depending on the selection of the cost function [104].

The present work is proposed in the context of improving occupant comfort in tall

structures; therefore, the ensuing study will measure performance based on the TMD’s

ability to reduce the acceleration response of the structure and optimal damper parameters

will be found using the acceleration response cost function. It must also be stated that,

particularly for longer return period events, the reduction in the displacement response of

the structure must be investigated, as excessive displacement may result in damage to the

structure’s finishes.

4.1.2 Effect of detuning

Detuning of a TMD is said to occur if there is a substantial difference between the as-built

and theoretical optimal values of the auxiliary parameters. Causes of detuning include

structural deterioration, inadvertent changes to the structure, design forecasting, or varying

mass due to occupancy. To demonstrate the effect of detuning, a single main mass system

is used, free to translate in each direction, coupled with a three-dimensional PTMD.

The effect of inaccurately predicting the current or future structural condition, causing

the absorber to move outside the frequency range, is investigated. The optimal PTMD pa-

rameters were determined from from a numerical search approach, where the main system

acceleration response was minimized. From Eq. 2.12, the optimal length is inversely pro-

portional to the natural frequency, ωa, and subsequently directly proportional to the main

mass and inversely proportional to the stiffness. In predicting the structural condition, the

designer’s tendency is to employ a conservative design approach, overestimating the mass

and underestimating the stiffness. For example, if the mass were overestimated by 10%,

and the stiffness underestimated by 10%, then the resulting calculated optimal pendulum

length, L, would be 22% greater than the actual optimal pendulum length.

To demonstrate the effect of frequency detuning, the auxiliary damping was set to its

optimal value, and the pendulum length was varied. Pendulum length was selected to be
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optimal based on the design equations presented in Eq. 2.19 after introducing the errors

in the mass and stiffness design forecasts. The system was excited by a series of harmonic

excitations. The peak acceleration response at each frequency was plotted in Fig. 4.1 for

the various cases. A 1% mass ratio is considered.
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Figure 4.1: Effect of frequency detuning resulting from design forecasting for optimal
auxiliary damping

Even small variations in the design forecast of the structure’s mass and stiffness can

result in TMD performance issues; for this particular example, peak acceleration response

increases of 30% are reported for the case of harmonic excitations. A similar analysis was

undertaken to investigate the effect of damping detuning for the case of optimal pendulum
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length selection, with auxiliary damping coefficients ranging from 0.5copt to 2copt. The

selection of damping is inherently more robust and less susceptible to the effects of detuning.

The results are presented in Fig. 4.2 and are normalized with respect to the optimal case.
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Figure 4.2: Effect of damping detuning for optimal pendulum length

The performance degradation for suboptimal damping coefficients is more pronounced

than for super-optimal damping coefficients. Therefore, in selecting optimal auxiliary

damping, the design should ensure it is at least optimal [83]. Other reasons for select-

ing damping coefficients above optimal are to reduce the motion of the TMD, where space

constraints are a concern, or to guarantee more uniform performance to varying excitations

at the expense of a reduction in optimal performance.
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4.1.3 Effect of mass ratio

For practical applications, it is important to understand under what conditions the effect of

detuning will become important. In this study, this issue is specifically addressed from the

standpoint of detuning versus the auxiliary to main mass ratio of the PTMD. To evaluate

the effect of the mass ratio on the optimal auxiliary parameters fr,opt and ζa,opt, a mass,

free to translate in each direction, coupled with a planar-spherical PTMD is considered.

Main mass damping is fixed at 2% for illustration purposes, and mass ratios of µ = 0.01,

0.02, 0.03, 0.05, 0.07, and 0.09 are considered. The system is excited in both horizontal

directions by Gaussian white noise. The auxiliary damping coefficient and pendulum length

are varied, and the RMS of the acceleration response in the horizontal plane is used as the

performance indicator. The results are averaged over many realizations of the input. Fig.

4.4 shows the variation in the optimal auxiliary damping coefficient at various mass ratios

for a fixed pendulum length, and Fig. 4.3 shows the change in optimal pendulum length at

various mass ratios for a fixed level of auxiliary damping. Both axes are normalized with

respect to the optimal values for the µ = 1% mass.

Several observations can be made regarding the optimal parameters as the mass ratio

is increased. First, the optimal pendulum length decreases slightly with increasing mass

ratio. Second, the sensitivity to frequency detuning reduces as the mass ratio increases,

indicated by the flattening of the curves in Figs. 4.3 and 4.4. This implies that selection

of optimal damper parameters for higher mass ratios is less critical, and reasonable perfor-

mance can be expected even when the auxiliary parameters are away from their optimal

values. The optimal pendulum length curves (Figure 4.3) become flatter in both directions

with increasing mass ratio, implying similar performance is expected for a PTMD that has

a pendulum length away from the optimal length, regardless of whether it is shorter or

longer than optimal.

The optimal auxiliary damping coefficient is also less susceptible to detuning as the

mass ratio increases, but only for damping greater than the optimal level, as seen in Fig.

4.4. Therefore, in selecting the level of auxiliary damping for higher mass ratios, it is critical

that the damping coefficient is at least optimal. The optimal damping coefficients increase
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Figure 4.3: Sensitivity of frequency parameter (pendulum length L) to auxiliary to main
mass ratio, µ, for optimal auxiliary damping.

with mass ratio, indicating that the structure must be designed to withstand a larger

control force. Frequently the selection of the damping coefficient is to reduce the stroke of

the TMD, and subsequently the space requirements. As Fig. 4.4 indicates, this comes at

the cost of a substantial performance sacrifice for lower mass ratios. Therefore, the designer

may want to consider the impact of a larger or more dense mass, above-optimal damping,

and larger mass ratios when the amount of space available for an auxiliary damping device

is the primary design concern.

There are a few important considerations when selecting the auxiliary to main mass
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Figure 4.4: Sensitivity of auxiliary damping parameter (ca) to auxiliary to main mass ratio,
µ, for optimal pendulum length.

ratio. It is desirable to reduce the auxiliary to main mass ratio as this reduces the overall

weight of the materials and the size of the dampers; however, as has been demonstrated,

higher mass ratios offer better performance. Even though it is well known that the perfor-

mance of a TMD increases with increasing mass ratio, often the mass ratio is determined

by other design considerations and project constraints. Hence, the ensuing study assumes

the designer has the ability to select an auxiliary mass based on such constraints and fo-

cuses on determining the optimal auxiliary damping and pendulum length for a range of

mass ratios.
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Mass ratios greater than 1%− 2% are difficult to practically attain for the application

of tall buildings, so the issues associated with detuning remain a concern. A recent trend

is emerging where researchers are considering the effects of using segmented upper stories

or sliding roof systems as mass damping systems, where much higher mass ratios can be

achieved economically and without the typical space limitations [16, 9, 10, 90, 111, 21].

4.2 PTMD design equations

Values for the optimal frequency ratio and auxiliary system damping ratio under random

main mass excitation are calculated using two main approaches. The first seeks to minimize

the RMS displacement response of the primary system using closed-form solutions that

are documented in the literature [26]. The approach relies on the presence of “fixed-

point” frequencies, where the transmissibility of vibration is independent of the auxiliary

damping; for structures that exhibit main mass damping, these frequencies no longer exist.

Therefore, closed-form solutions are only possible for the special case of an undamped

primary structure [26, 75, 3]. However, close agreement with numerical results for low to

moderate main mass damping in structures has been demonstrated by approximating the

fixed-point frequencies [28].

The second approach, which is necessary for structures with a damped primary system,

involves a numerical search. The optimal values for the parameters are determined using

simulations of the coupled response of the primary and auxiliary systems. Results have been

demonstrated by several researchers for conventional translational TMDs [41, 97, 89, 3]

and PTMDs [26]. Even in numerical approaches, many researchers have used linearized

equations. Hence, the issues in accurately predicting the responses still remain.

4.2.1 Closed-form solution

Consider a multi-degree-of-freedom (MDOF) system with a PTMD (Figure 3.1b). The

equations of motion given in Eqs. 3.25a and 3.25b are simplified for a mixed 2-degree-of-
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freedom (DOF) system, one translational (primary) in the modal domain and one rotational

(auxiliary).

Mr,j ÿj(t) + Cr,j ẏj(t) +Kr,jyj(t) +maÿj(t) +maLθ̈(t) = Fr,j(t) (4.1)

and

maL
2θ̈(t) + cah

2θ̇(t) +
(
magL+ kah

2
)
θ(t) +maLÿj(t) = 0 (4.2)

where Mr,j, Cr,j, Kr,j, and Fr,j(t) are the modal mass, damping, stiffness, and force of the

primary system for the jth mode, which is to be controlled. Here the primary system is

modelled as a SDOF system with a translational modal coordinate y(t). The auxiliary

system has a rotational DOF θ(t), auxiliary mass, ma, pendulum length L, and distance

between the suspension point and the spring/damper attachment point, h. The auxiliary

stiffness is comprised of the inherent stiffness of the pendulum, magL, and the auxiliary

spring with stiffness ka; ca is the damping of the auxiliary damper.

The damping ratio, ζa, for a PTMD is defined as

ζa =
cah

2

2maL2
aωa

(4.3)

where the circular natural frequency of the auxiliary system, ωa, is given by

ωa =

√
magLa + kash2

maL2
(4.4)

which simplifies to ωa =
√
g/La for the case where there is no auxiliary spring. Optimum

tuning parameters for PTMDs have been presented in the literature that minimize the

RMS displacement response of the primary system, for the case of the undamped primary

system [26]. The optimal frequency ratio for force excited main mass with a PTMD, where
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the mass is assumed to be lumped at the free end of the pendulum length, is

fopt =
ω2opt

ω1

=

√
1 + µ

(
1− 3

2ra

)
1 + µ

(4.5)

The optimal auxiliary damping ratio is

ζa,opt =

√√√√ µ+ µ2
(

1− 1
4ra

)
4ra + 2µ (4ra − 1) + 2µ2 (2ra − 1)

(4.6)

where

ra =
Ia

maL2
(4.7)

and Ia is the moment of inertia of the mass about the suspension point. For a point mass,

Ia = maL
2 (ra = 1), and the optimal auxiliary parameters simplify to

fr,opt =
ωaopt
ωn

=

√
1 + µ

2

1 + µ
(4.8)

where ωn,j =
√
Kr,j/Mr,j is the undamped circular natural frequency of the primary system,

The optimal auxiliary damping ratio is

ζa,opt =

√
µ+ 3µ2

4

4 + 6µ+ 2µ2
(4.9)

4.2.2 Planar PTMD with main mass damping

Since main mass damping is considered and the designer is generally interested in reducing

the acceleration response of the structure, a numerical search approach is employed to

determine the optimal damper parameters. Various numerical simulations were performed

and averaged for main mass damping ratios of ζp = 1% to 5% and auxiliary to main

mass ratios varying from µ = 0.01 to 0.15. The equations of motion were implemented in

Simulink [40] using state-space representation and the numerical integration was performed
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using Runge-Kutta method. The RMS acceleration response (rather than displacement) of

the main mass was used as the performance index, since the PTMD is usually designed to

reduce this response to within acceptable serviceability criteria limits [104]. Using standard

curve fitting techniques, the following relationships were found for the optimal frequency

and auxiliary damping ratios:

fr,opt = −0.64µ− 0.23ζp + 0.99 (4.10a)

ζa,opt = −4.89µ2 + 1.89µ+ 0.018 (4.10b)

The proposed design equations for the planar PTMD are plotted in Figs. 4.5 and 4.6

for 1%, 3%, and 5% main mass damping together with the closed-form solutions for no

main mass damping (Eqs. 4.8 and 4.9).

4.2.3 Planar-spherical PTMD with main mass damping

In order to determine the optimal damper parameters from the combined planar-spherical

PTMD model, a numerical search method is employed using a 5-DOF model with x-, y-,

and z-translational degrees of freedom as well as θ and ϕ. Several simulation trials are

performed using a broadband white noise main mass excitation, and a cost function is

evaluated each time based on the RMS acceleration response in both horizontal directions.

The optimal frequency and damping ratios are determined for various main structure

damping ratios and auxiliary to main mass ratios. Damping ratios from 1% to 5% critical

in the primary structure were considered. Auxiliary to main mass ratios ranged from 0.005

to 0.125. To simplify the analysis, the auxiliary damping in the x- and y-directions are

assumed to be equal (cx = cy). Also, the damper attachment point coincides with the

pendulum length (hx = hy = L). Finally, no additional auxiliary stiffness was introduced

in the form of auxiliary springs (kx = ky = 0). The optimal frequency ratio found using

the numerical search method is shown in Fig. 4.7 together with the closed-form solution

for no main mass damping (Eqs. 4.8).

The optimal frequency ratio results demonstrate less sensitivity to mass ratio than
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Figure 4.5: Optimal frequency ratio for a planar PTMD found using a numerical search
algorithm for ζ = 1%, 3%, and 5%.

what is predicted by the closed-form solutions and the numerical search of the planar

PTMD model. Furthermore, varying the main mass damping has the effect of changing

the sensitivity of the frequency ratio to the mass ratio. For the main mass damping ratios

considered, the sensitivity of the results indicate that the primary system damping and

auxiliary to main mass ratio do not play a significant role in the selection of the optimal

frequency ratio. For large mass ratio, a disparity in the optimal frequency ratio presents

itself. However, it has already been demonstrated that the increasing mass ratio reduces

the sensitivity to errors in the auxiliary damper parameter selection. Therefore, it is not

expected that selecting the optimal damper parameters based on the closed-form solutions

will have a significant impact on the performance of the TMD, even for higher mass ratios.

The optimal damping ratio found using the numerical search method is shown in Fig.
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Figure 4.6: Optimal auxiliary damping ratio for a planar PTMD found using a numerical
search algorithm for ζ = 1%, 3%, and 5%.

4.8 together with the closed-form solution for no main mass damping (Eq. 4.9). The

numerical search of the planar-spherical system resulted in slightly greater damping ratios

than the closed-form optimal auxiliary damping equations. For mass ratios of less than

approximately 3%, optimal auxiliary damping ratios decreased with increasing main mass

damping ratios, and increased with increasing mass ratios for mass ratio greater than

approximately 3%. As the mass ratios moves into the upper range of the values considered,

the disparity between the closed-form optimal auxiliary damping and the planar-spherical

prediction grows, with the latter producing greater optimal auxiliary damping.

Using standard curve fitting techniques, the following relationships were found for the
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Figure 4.7: Optimal frequency ratio for a planar-spherical PTMD found using a numerical
search algorithm for ζ = 1%, 3%, and 5%.

optimal frequency and auxiliary damping ratios:

fr,opt = (4.2ζp − 0.15)µ+ 0.15ζp + 0.99 (4.11a)

ζa,opt = (−45ζp − 2.4)µ2 + (9.7ζp + 1.5)µ− 0.22ζp + 0.05 (4.11b)

Once the frequency and damping ratios are calculated, they can be converted into the

appropriate physical parameters. When no auxiliary springs are included (kx = ky = 0),

the optimal pendulum length is related to the frequency ratio by the following relationship:

Lopt =
g

f 2
r,optω

2
n,j

(4.12)
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Figure 4.8: Optimal auxiliary damping ratio for a planar-spherical PTMD found using a
numerical search algorithm for ζ = 1%, 3%, and 5%.

The optimal auxiliary damping is related to the damping ratio by the following relationship:

ca,opt = 2ζa,optmafr,optωn,j (4.13)

The different approaches differed in their prediction of the optimal damper parameter,

particularly at higher mass ratios. However, it is not expected that the variation in the

optimal parameter predicted by each approach will have a significant impact in the overall

performance of the structure. For low mass ratios, the optimal frequency and damping

ratios are similar. For higher ratios, it is expected that the reduced sensitivity to detun-

ing will overcome the error in the incorrect optimal parameter estimates. This will be

investigated further in Chapter 7.
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In order to predict the optimal auxiliary parameters, the underlying structure’s natural

frequencies, and to a lesser extent, damping ratios and mode shape vectors need to be

determined. For the purpose of condition assessment, these bare structure parameters

must be identified from response data of the combined main-auxiliary system. Therefore,

determining the underlying modal properties from TMD attenuated acceleration response

measurements is considered next.
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Chapter 5

Extended Kalman filter as a

parameter estimation tool

The fundamental question that needs to be answered for the condition assessment of tuned

mass dampers (TMDs) is how well the design estimates for the optimal TMD parameters

(in Eqs. 4.11a and 4.11b) represent the actual as-built condition. In other words, this is a

check to assess and quantify detuning. The answer to this question lies in the estimation of

the mass ratio (µ), the natural frequency (ωn,j), and modal damping (ζj) for the controlled

mode. Assuming that the mass of the structure is known with a good degree of confidence,

then the design parameters can be obtained by estimating the corresponding mode shape

(mode to which the TMD is tuned to), natural frequency, and modal damping ratio. In

some applications, several TMDs can be tuned to multiple modes, or a single adaptive TMD

can be tuned to several modes depending on the dominant mode that is being excited (for

example, in pedestrian bridges). In all these cases, the fundamental task is one of estimating

the bare modal characteristics based on measurements. Due to practical limitations in

imparting controlled force excitations, the process of estimating these parameters has to

rely on ambient vibration measurements only.

Only a handful of studies have considered this issue in the literature [30, 99, 59]. While

some of them utilize heuristic or experience-based approaches using approximations (only
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for the frequency and damping) [99], others employ nonparametric data-driven modal iden-

tification approaches [30, 59], where the modal characteristics for the combined system are

identified. To the author’s knowledge, no previous studies have sought to directly identify

the underlying structure’s modal properties from the attenuated response measurements.

The aforementioned methods do not provide a convenient means to deploy these estimation

algorithms for online estimation to be used in control devices. Practitioners have overcome

this difficulty by restraining the TMD motion and performing condition assessment [78].

While restraining the TMD and undertaking modal identification may suffice for condition

assessment, this course of action is not suitable for online control. Furthermore, the process

of restraining the TMD is both labour intensive and time consuming.

In this chapter, a methodology to identify the modal properties of the bare structure

using ambient vibration measurements obtained from the structure while the TMD is

in operation, is proposed. The main advantages of this method are that the estimation

process can be implemented online using measurement data only and can be used equally

effectively for both condition assessment and online control. Additionally, the proposed

approach makes no assumption about the present performance of the TMD; that is, whether

the TMD’s parameters are near or far from their optimal values.

5.1 Kalman filter as an estimation tool

The concept of state estimation is extended for the purpose of parametric identification

within the present work. State estimation is performed by modelling a process in order to

provide an estimate of an internal (generally unobserved) state given measurements of the

output of the actual system. The Kalman filter is first introduced, as it is classically used

for state estimation problems. In its most limited form, state estimation is performed using

a mathematical model of a known physical system, relating the known inputs, measured

outputs, and unknown internal states to be determined.
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5.1.1 Kalman filter for state estimation

The Kalman filter, first published by R. E. Kalman [45], addresses the problem of esti-

mating the state vector xk based on knowledge of the linear discrete-time process given

by

xk = Ak−1xk−1 + Gk−1uk−1 + wk−1 (5.1)

with noisy measurement zk given by

zk = Ckxk + vk (5.2)

where Ak, Gk, and Ck are the discrete time system equations, which may vary with each

time step. The vectors xk and uk are the state and input vector at the kth time step. The

process or disturbance noise wk and measurement noise vk are assumed to be zero mean,

white, uncorrelated, and have known covariances Qk and Rk, respectively. That is,

wk ∼ (0,Qk) (5.3a)

vk ∼ (0,Rk) (5.3b)

E
[
wkw

T
j

]
= Qkδk, j (5.3c)

E
[
vkv

T
j

]
= Rkδk, j (5.3d)

E
[
wkv

T
j

]
= 0 (5.3e)

where δk,j is the Kronecker delta function; δk,j = 1 for k = j and δk,j = 0 for k 6= j. Define

two estimates of the quantity xk. The first is known as the a posteriori estimate x̂k|k,

which is the estimate of xk when all the measurements up to and including k are available.

If all the measurements before (but not including time k) are available, then the a priori

estimate x̂k|k−1 can be formed.

x̂k|k−1 = E [xk|z1, z2, . . . , zk−1] (5.4)

x̂k|k = E [xk|z1, z2, . . . , zk−1, zk] (5.5)
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Define the a priori and a posteriori estimate errors, εk|k−1 and εk|k, respectively, as

εk|k−1 = xk − x̂k|k−1 (5.6)

εk|k = xk − x̂k|k (5.7)

It follows that the covariance of the estimation errors, Pk|k−1 and Pk|k, are given by

Pk|k−1 =E
[
εk|k−1ε

T
k|k−1

]
= E

[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T]
(5.8)

Pk|k =E
[
εk|kε

T
k|k
]

= E
[(

xk − x̂k|k
) (

xk − x̂k|k
)T]

(5.9)

The a priori state estimated propagates with time by

x̂k|k−1 = Ak−1x̂k−1|k−1 + Gk−1uk−1 (5.10)

which is known as the time update equation. To determine how the covariance of the

state estimate propagates with time, compute the a priori state estimation error using the

transition equation 5.1 together with the estimate x̂k|k−1 (Eq. 5.10).

εk|k−1 = xk − x̂k|k−1

= Ak−1xk−1 + Gk−1uk−1 + wk−1 −Ak−1x̂k−1|k−1 −Gk−1uk−1

= Ak−1εk−1|k−1 + wk−1

(5.11)

The expectation given in Eq. 5.8 is

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1 (5.12)

In developing the Kalman filter, the following equation is used to relate the a posteriori

state estimate as a linear combination of the a priori state estimate and a weighted residual,

which is the difference between the actual measurement zk and the measurement predicted
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by the a priori state estimate, Ckx̂k|k−1.

x̂k|k = x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1

)
(5.13)

The weighting or gain matrix Kk is chosen to minimize the a posteriori error covariance

in Eq. 5.9. This is performed by substituting Eq. 5.13 into Eq. 5.9 and performing the

expectation. Taking the partial derivative of the trace of Pk|k with respect to Kk, setting

it equal to zero, and then solving for the gain gives

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + Rk

)−1
(5.14)

The a posteriori state estimate error covariance is then found by substituting this result

together with the measurement update given in Eq. 5.13 into Eq. 5.9 and performing the

expectation.

Pk|k = (I−KkCk) Pk|k−1 (I−KkCk)
T + KkRkK

T
k

= (I−KkCk) Pk|k−1

(5.15)

where the a posteriori state estimate error in Eq. 5.9 is found using the measurement

update equation (Eq. 5.13).

εk|k = xk − x̂k|k

= xk − x̂k|k−1 −Kk

(
zk −Ckx̂k|k−1

)
= εk|k−1 −Kk

(
Ckεk|k−1 + vk

) (5.16)

The Kalman filter algorithm is summarized below [100, 85].
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1. The dynamic system is given by the following process and measurement equations:

xk = Ak−1xk−1 + Gk−1uk−1 + wk−1 (5.17a)

zk = Ckxk + vk (5.17b)

wk ∼ (0,Qk) (5.17c)

vk ∼ (0,Rk) (5.17d)

E
[
wkw

T
j

]
= Qkδk,j (5.17e)

E
[
vkv

T
j

]
= Rkδk,j (5.17f)

E
[
wkv

T
j

]
= 0 (5.17g)

2. The filter is initialized as follows:

x̂0|0 = E [x0] (5.18)

P0|0 = E
[(

x0 − x̂0|0
) (

x0 − x̂0|0
)T]

(5.19)

3. At each time step, k = 1, 2, . . . , N , the following filter equations are computed:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1 (5.20)

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + Rk

)−1
(5.21)

x̂k|k−1 = Ak−1x̂k−1|k−1 + Gk−1uk−1 (5.22)

x̂k|k = x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1

)
(5.23)

Pk|k = (I−KkCk) Pk|k−1 (5.24)

The key point to note here is that Eq. 5.21 does not depend on either the measurements

or the states. Therefore, the Kalman gain can be computed and stored prior to the start

of the estimation task, which is greater advantage for online implementation.

If there is direct feedthrough of the known input uk, true for the case where the acceler-

ation response is measured from a main mass excited structure, the measurement equation
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becomes

zk = Ckxk + Dkuk + vk (5.25)

where Dk is a direct feedthrough matrix corresponding to the known deterministic external

excitation or input, uk. For the direct feedthrough case, a posteriori state estimation error

is given by

εk|k = xk − x̂k|k

= xk − x̂k|k−1 −Kk

(
zk −Ckx̂k|k−1 −Dkuk

)
= xk − x̂k|k−1 −Kk

(
Ckxk + Dkuk + vk −Ckx̂k|k−1 −Dkuk

)
= εk|k−1 −Kk

(
Ckεk|k−1 + vk

) (5.26)

which is the same result as Eq. 5.16; therefore, the Kalman filter equations are unchanged,

with the exception of the measurement prediction within the measurement update equa-

tion. Eq. 5.13 becomes

x̂k|k = x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1 −Dkuk

)
(5.27)

5.1.2 Extended Kalman filter for combined state and parameter

estimation

For state estimation in the traditional Kalman approach, it is generally assumed that the

model parameters are known. When the model parameters are unknown, the conventional

approach is to treat the unknown parameters as states, with constant transitions, and

append them to the state vector [85, 2]. The resulting system of equations can conceptually

be treated as being amenable to traditional state estimation, but for the extended state

vector. However, the system becomes nonlinear, even though the underlying physical

system can still be linear. This is due to the presence of states (appended parameters) in

the system matrix Ak and measurement matrix Ck, that, when multiplied by the state

vector, produce a product of states within the transition and measurement equations.

Hence, the Kalman filter cannot be applied directly to this case.
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The extended Kalman filter (EKF) is essentially an extension of the Kalman filter for

nonlinear systems. Stated simply, the EKF is a Kalman filter that linearizes about the

current mean and covariance. This is accomplished by finding the partial derivative of the

nonlinear transition and measurement equations with respect to the state and input vectors

(Jacobian matrices of partial derivatives), and evaluating them at the current estimate of

the states. With the estimation error covariance matrices described using linearized system

and measurement matrices, the same basic operation of the Kalman filter proceeds.

The EKF is used to estimate the states of the process which is governed by the following

non-linear difference equation, for the case of deterministic input uk and additive process

noise wk [100]:

xk = f (xk−1,uk−1) + wk−1 (5.28)

with noisy measurement

zk = h (xk,uk) + vk (5.29)

where wk and vk are the additive disturbance and measurement noises, respectively, which

are both assumed to be zero mean Gaussian noise with covariance Qk and Rk.

The a priori state estimate, x̂k|k−1, is determined using the transition equation.

xk|k−1 = f (xk−1,uk−1) (5.30)

Similarly, the estimate of the output is found using the nonlinear measurement equation

and the a priori state estimate, x̂k|k−1.

ẑk = h
(
x̂k|k−1,uk

)
(5.31)

The state estimate error covariance is projected forward by

Pk|k−1 = Āk−1Pk−1|k−1Ā
T
k−1 + Qk−1 (5.32)

where Āk−1 is the Jacobian matrix of partial derivatives of f (xk−1,uk−1) with respect to
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x, evaluated at the previous a posteriori state estimate, x̂k−1|k−1.

Āk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1

(5.33)

The Kalman gain, Kk, is given by

Kk = Pk|k−1C̄
T
k

(
C̄kPk|k−1C̄

T
k + Rk

)−1
(5.34)

where C̄k is the Jacobian matrix of partial derivatives of h (xk,uk) with respect to xk,

evaluated at the current a priori state estimate, x̂k|k−1.

C̄k =
∂h

∂x

∣∣∣∣
x̂k|k−1

(5.35)

The measurement update equation for the state estimate is

x̂k|k = x̂k|k−1 + Kk (z− ẑk)

= x̂k|k−1 + Kk

[
z− h

(
x̂k|k−1,uk

)] (5.36)

The updated state estimate error covariance matrix, Pk|k, is

Pk|k =
(
I−KkC̄k

)
Pk|k−1 (5.37)

The EKF for nonlinear estimation is no longer an optimal state estimator. Also, the

introduction of the linearization of the transition and measurement equations for the pur-

pose of projecting the state estimation error covariances tends to underestimate the error

covariance, and may lead to filter divergence [85]. However, the EKF has been successfully

implemented in numerous nonlinear state estimation problems, including combined state

and parameter estimation for structural systems [36, 63, 53, 27, 84, 95, 109, 102].

The EKF algorithm is summarized as follows:
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1. The dynamic system is given by the following process and measurement equations:

xk = f (xk−1,uk−1) + wk−1 (5.38a)

zk = h (xk,uk) + vk (5.38b)

wk ∼ (0,Qk) (5.38c)

vk ∼ (0,Rk) (5.38d)

E
[
wkw

T
j

]
= Qkδk,j (5.38e)

E
[
vkv

T
j

]
= Rkδk,j (5.38f)

E
[
wkv

T
j

]
= 0 (5.38g)

2. The filter is initialized as follows:

x̂0|0 = E [x0] (5.39)

P0|0 = E
[(

x0 − x̂0|0
) (

x0 − x̂0|0
)T]

(5.40)

3. At each time step, k = 1, 2, . . . , N , the following filter equations are computed:

Pk|k−1 = Āk−1Pk−1|k−1Ā
T
k−1 + Qk−1 (5.41)

Kk = Pk|k−1C̄
T
k

(
C̄kPk|k−1C̄

T
k + Rk

)−1
(5.42)

xk|k−1 = f (xk−1,uk−1) (5.43)

x̂k|k = x̂k|k−1 + Kk

[
z− h

(
x̂k|k−1,uk

)]
(5.44)

Pk|k =
(
I−KkC̄k

)
Pk|k−1 (5.45)

where

Āk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1

(5.46)

C̄k =
∂h

∂x

∣∣∣∣
x̂k|k−1

(5.47)
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5.1.3 Discretization

For software implementation, the continuous time linear differential equations must be

converted to discrete time difference equations. The zero-order hold method assumes that

the input to the system is fixed between time steps. The resulting discretized system

equations are [17]

Ad = eAcT (5.48)

Gd =

(∫ T

τ=0

eAcτ dτ

)
Gc (5.49)

Cd = Cc (5.50)

Dd = Dc (5.51)

where T is the uniform sample time. It is difficult to track variables through the matrix

exponential and integrals; therefore, the following approximate discretization approach is

used. Using the relationship t = kT , where t is the continuous time, and k is the integer

time index, the continuous system can be converted to a discrete-time system using the

definition of the derivative.

ẋ(t) = lim
T→0

x(t+ T )− x(t)

T
(5.52)

The limit can be ignored since a discrete system is being considered, where the interval

between samples is positive and non-negligible. Therefore,

ẋ(t+ T ) = x(t) + Acx(t)T + Gcu(t)T

= (I + AcT ) x(t) + GcTu(t)
(5.53)
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The equivalent discrete time state matrices are

Ad = I + AcT (5.54)

Gd = GcT (5.55)

Cd = Cc (5.56)

Dd = Dc (5.57)

where the subscript d denotes the discrete time system matrices; subsequently this subscript

is replaced with the time step indices, k and k − 1. A sufficiently small sample time must

be selected for this approximation to be valid. The state space equations in discrete time

form are

xk = Ak−1xk−1 + Gk−1uk−1 (5.58)

zk = Cdxk + Dduk (5.59)

where the subscript denotes the time step. It was found that a relatively fast sampling rate

was required to provide adequate results for the parameter estimation by extended Kalman

filtering; this finding has been corroborated by other researchers [27] when compared to

other system identification approaches.

5.2 Direct feedthrough of unknown external distur-

bance

The EKF has been used for structural engineering applications such as damage detection

[62, 107, 106], system identification [36, 63, 53, 27, 84, 95, 109, 102], and input estima-

tion [39]. Most of these previous studies have not considered the case of feedthrough of

the process noise in the measurement equation. This issue arises when (i) the system is

excited by a main mass forcing function, such as a wind excitation, and (ii) acceleration

response measurements are used. Previous parameter estimation work has often considered
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base excited structures using known earthquake time histories [102], or have assumed the

availability of displacement or velocity (direct state) measurements [109, 95, 61, 36]. The

concept of feedthrough process noise has been considered for the purpose of input estima-

tion [39, 38, 64]; however, these studies only considered that one aspect and parameter

estimation was not attempted.

5.2.1 Kalman filter for feedthrough disturbance noise

The traditional form of the Kalman filter described in Sec. 5.1.1 is not suitable for the

state estimation where the system is excited by unknown main mass forcing such as a

wind excitation, and acceleration response measurements are used. For a known external

disturbance, feedthrough of the input (for the case of acceleration response measurements)

can be overcome by adapting the Kalman filter residual calculation to include the direct

feedthrough of the input, uk. This procedure has been presented briefly by Einicke and

White [19]. The ensuing discussion lists all the intermediate steps in the derivation.

The linear, discrete-time process equation is given by

xk = Ak−1xk−1 + Ek−1dk−1 + wk−1 (5.60)

where Ek is the discrete time input matrix corresponding to the unknown external dis-

turbance dk with covariance Sk, and wk is the process noise with covariance Qk, which

accounts for any additional disturbance noise and model uncertainty. The measurement

equation is given by

zk = Ckxk + Fkdk + vk (5.61)

where Fk is the discrete time direct feedthrough matrix corresponding to dk and vk is the

additive measurement noise with covariance Rk. The presence of the unknown disturbance

noise in Eq. 5.61 requires an alternate formulation of the discrete time Kalman filter.

Using the concept of correlated process and measurement noise [2, 85, 19], the Kalman

filter is adapted for the case of direct feedthrough of the disturbance noise. It is assumed
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that the unknown external excitation dk, the process noise wk, and the additive measure-

ment noise vk are all zero mean, white, uncorrelated, and have known covariances Sk, Qk,

and Rk, respectively. By considering the noise terms in the transition and measurement

equations as effective additive noise terms, given by

w′k = Ekdk + wk (5.62)

v′k = Fkdk + vk (5.63)

it becomes clear that the effective process noise in the transition equation and the effective

measurement noise in the measurement equation are correlated, with cross covariance

EkSkF
T
k δk,j, where δk,j is the Kronecker delta function. A two-step Kalman filter is designed

where the correlation between the process and measurement equation is removed in the

time-update step; this allows the subsequent formulation of the Kalman filter equations to

proceed as usual.

Begin by defining the following a priori and a posteriori estimation errors:

εk|k−1 = xk − x̂k|k−1 (5.64)

εk|k = xk − x̂k|k (5.65)

where

x̂k|k−1 = Ak−1x̂k−1|k−1 + Jk−1

(
zk−1 −Ck−1x̂k−1|k−1

)
(5.66)

x̂k|k = x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1

)
(5.67)

The gain Jk is the one-step predictor gain selected to eliminate the correlation between the

process and measurement equations. The gain Kk is the Kalman gain to be determined,
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rather than that defined in Eq. 5.14. Eq. 5.64 can be expanded as

εk|k−1 = xk − x̂k|k−1

= Ak−1xk−1 + Ek−1dk−1 + wk−1 −Ak−1x̂k−1|k−1

− Jk−1

(
zk−1 −Ck−1x̂k−1|k−1

)
= Ak−1xk−1 + Ek−1dk−1 + wk−1 −Ak−1x̂k−1|k−1

− Jk−1Ck−1xk−1 − Jk−1Fk−1dk−1 − Jvk−1 + Jk−1Ck−1x̂k−1|k−1

= (Ak−1 − Jk−1Ck−1)
(
xk − x̂k−1|k−1

)
+ (Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1

= (Ak−1 − Jk−1Ck−1) εk|k−1 + (Ek−1 − Jk−1Fk−1) dk−1

+ wk−1 − Jk−1vk−1

(5.68)

The a priori estimation error covariance is given by

Pk|k−1 = E
[
εk|k−1ε

T
k|k−1

]
= E

{[
(Ak−1 − Jk−1Ck−1) εk|k−1 + (Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1

]
[
(Ak−1 − Jk−1Ck−1) εk|k−1 + (Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1

]T}
= (Ak−1 − Jk−1Ck−1) Pk−1|k−1 (Ak−1 − Jk−1Ck−1)T

+ (Ek−1 − Jk−1Fk−1) Sk−1 (Ek−1 − Jk−1Fk−1)T

+ Qk−1 + Jk−1Rk−1J
T
k−1

(5.69)

Presently, it has been assumed that

E
{

[(Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1] εTk−1|k−1

}
= 0 (5.70)

in Eq. 5.69, which will be shown later to be true.

The matrix Jk is a one-step predictor gain matrix selected to eliminate the correlation

between the process and measurement noises. Add the “zero term” Jk (zk −Ckxk − Fkdk − vk)
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to the right-hand side of Eq. 5.60.

xk = Ak−1xk−1 + Ek−1dk−1 + wk−1 + Jk (zk −Ckxk − Fkdk − vk)

= (Ak−1 − Jk−1Ck−1) xk−1 + (Ek−1 − Jk−1Fk−1) dk−1

+ wk−1 − Jk−1vk−1 + Jk−1zk−1

= A′k−1xk−1 + Jk−1zk−1 + w′k−1

(5.71)

where

A′k = Ak − JkCk (5.72)

w′k = (Ek − JkFk) dk + wk − Jkvk (5.73)

Evaluating the expectation

E
[
w′k (Fkdk + vk)

T
]

= E
[
(Ekdk − JkFkdk + wk − Jkvk) (Fkdk + vk)

T
]

= EkSkF
T
k − JkFkSkF

T
k − JkRk

= EkSkF
T
k − Jk

(
FkSkF

T
k + Rk

) (5.74)

which equals zero when

Jk = EkSkF
T
k

(
FkSkF

T
k + Rk

)−1
(5.75)
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Eq. 5.69 can be simplified using this result.

Pk|k−1 = (Ak−1 − Jk−1Ck−1) Pk−1|k−1 (Ak−1 − Jk−1Ck−1)T

+ Ek−1Sk−1E
T
k−1 − Jk−1Fk−1Sk−1E

T
k−1 − Ek−1Sk−1F

T
k−1J

T
k−1

+ Jk−1Fk−1Sk−1F
T
k−1J

T
k−1 + Qk−1 + Jk−1Rk−1J

T
k−1

= (Ak−1 − Jk−1Ck−1) Pk−1|k−1 (Ak−1 − Jk−1Ck−1)T

+ Ek−1Sk−1E
T
k−1 − Jk−1Fk−1Sk−1E

T
k−1 − Ek−1Sk−1F

T
k−1J

T
k−1

+ Jk−1

(
Fk−1Sk−1F

T
k−1 + Rk−1

)
JTk−1 + Qk−1

= (Ak−1 − Jk−1Ck−1) Pk−1|k−1 (Ak−1 − Jk−1Ck−1)T

+ Ek−1Sk−1E
T
k−1 − Jk−1Fk−1Sk−1E

T
k−1 + Qk−1

(5.76)

Eq. 5.65 can be expanded as

εk|k = xk −
[
x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1

)]
= εk|k−1 −Kk

(
Ckxk + Fkdk + vk −Ckx̂k|k−1

)
= (I−KkCk) εk|k−1 −KkFkdk −Kkvk

(5.77)

The a posteriori estimation error covariance is

Pk|k = E
[
εk|kε

T
k|k
]

= E
{[

(I−KkCk) εk|k−1 −KkFkdk −Kkvk
]

[
(I−KkCk) εk|k−1 −KkFkdk −Kkvk

]T}
= (I−KkCk) Pk|k−1 (I−KkCk)

T + KkFkSkF
T
kKT

k + KkRkK
T
k

(5.78)

In order to determine the gain Kk, find the gain that minimizes the trace of the a

posteriori state estimate error. This is accomplished by finding the gain in order to make
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the following partial derivative equal to zero:

∂ Tr
(
Pk|k

)
∂Kk

= −2 (I−KkCk) Pk|k−1C
T
k + 2KkFkSkF

T
k + 2KkRk

= −2Pk|k−1C
T
k + 2KkCkPk|k−1C

T
k + 2KkFkSkF

T
k + 2KkRk

= 2
[
Kk

(
CkPk|k−1C

T
k + FkSkF

T
k + Rk

)
−Pk|k−1C

T
k

] (5.79)

The gain which makes this partial derivative equal to zero is

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + FkSkF

T
k + Rk

)−1
(5.80)

The a posteriori estimation error covariance can be further simplified.

Pk|k = Pk|k−1 −KkCkPk|k−1 −Pk|k−1C
T
kKT

k + KkCkPk|k−1C
T
kKT

k

KkFkSkF
T
kKT

k + KkRkK
T
k

= Pk|k−1 −KkCkPk|k−1 −Pk|k−1C
T
kKT

k

+ Kk

(
CkPk|k−1C

T
k + FkSkF

T
k + Rk

)
KT
k

= Pk|k−1 −KkCkPk|k−1 −Pk|k−1C
T
kKT

k

+ Pk|k−1C
T
kKT

k

= (I−KkCk) Pk|k−1

(5.81)
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Consider the expectation in Eq. 5.70.

E
[
w′kε

T
k−1|k−1

]
= E {[(Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1]

εTk−1|k−1

}
= E {[(Ek−1 − Jk−1Fk−1) dk−1 + wk−1 − Jk−1vk−1][

(I−KkCk) εk|k−1 −KkFkdk −Kkvk
]}

= − (Ek−1 − Jk−1Fk−1) Sk−1F
T
k−1K

T
k−1 + Jk−1Rk−1K

T
k−1

= −Ek−1Sk−1F
T
k−1K

T
k−1

+ Jk−1

(
Fk−1Sk−1F

T
k−1 + Rk−1

)
KT
k−1

= −Ek−1Sk−1F
T
k−1K

T
k−1 + Ek−1Sk−1F

T
k−1K

T
k−1

= 0

(5.82)

This result validates the assumption made earlier. An updated measurement estimate is

given by [19]

ẑk = Ckx̂k|k + FkSkF
T
k

(
FkSkF

T
k + Rk

)−1 (
zk −Ckx̂k|k

)
(5.83)

The general discrete time Kalman filter where measurements contain direct feedthrough of

an unknown external disturbance, which is treated as process noise, is summarized below.
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1. The dynamic system is given by the following process and measurement equations:

xk = Ak−1xk−1 + Ek−1dk−1 + wk−1 (5.84a)

zk = Ckxk + Fkdk + vk (5.84b)

wk ∼ (0,Qk) (5.84c)

dk ∼ (0,Sk) (5.84d)

vk ∼ (0,Rk) (5.84e)

E
[
wkw

T
j

]
= Qkδk,j (5.84f)

E
[
dkd

T
j

]
= Skδk,j (5.84g)

E
[
vkv

T
j

]
= Rkδk,j (5.84h)

E
[
wkd

T
j

]
= E

[
dkw

T
j

]
= 0 (5.84i)

E
[
wkv

T
j

]
= E

[
vkw

T
j

]
= 0 (5.84j)

E
[
dkv

T
j

]
= E

[
vkd

T
j

]
= 0 (5.84k)

2. The initialization of the filter is as follows:

x̂0|0 = E [x0] (5.85)

P0|0 = E
[(

x0 − x̂0|0
) (

x0 − x̂0|0
)T]

(5.86)
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3. For each time step, k = 1, 2, . . . , N , the filter equations are

Jk = EkSkF
T
k

(
FkSkF

T
k + Rk

)−1
(5.87)

x̂k|k−1 = Ak−1x̂k−1|k−1 + Jk−1

(
zk−1 −Ck−1x̂k−1|k−1

)
(5.88)

Pk|k−1 = (Ak−1 − Jk−1Ck−1) Pk−1|k−1 (Ak−1 − Jk−1Ck−1)T

+ Ek−1Sk−1E
T
k−1 − Jk−1Fk−1Sk−1E

T
k−1 + Qk−1 (5.89)

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + FkSkF

T
k + Rk

)−1
(5.90)

x̂k|k = x̂k|k−1 + Kk

(
zk −Ckx̂k|k−1

)
(5.91)

Pk|k = (I−KkCk) Pk|k−1 (5.92)

ẑk = Ckx̂k|k + FkSkF
T
k

(
FkSkF

T
k + Rk

)−1 (
yk −Ckx̂k|k

)
(5.93)

5.2.2 EKF for feedthrough disturbance noise

The combined state and parameter estimation filter is inherently nonlinear; therefore, the

algorithm presented for pure state estimation in Sec. 5.2.1 is extended similarly to the

EKF. For the case of unknown feedthrough stochastic disturbance noise, dk, the transition

of the states is governed by the following non-linear difference equation:

xk = f (xk−1,dk−1) + wk−1 (5.94)

with noisy measurements given by

zk = h (xk,dk) + vk (5.95)

The predicted state or a priori state estimate, from the a posteriori state estimate for

the k − 1th time step, can be found by

x̂k|k−1 = f
(
x̂k−1|k−1,0

)
+ Jk−1

[
yk−1 − h

(
x̂k−1|k−1,0

)]
(5.96)
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where the one-step predictor gain matrix is

Jk = ĒkSkF̄
T
k

(
F̄kSkF̄

T
k + Rk

)−1
(5.97)

The predicted estimate covariance is given by

Pk|k−1 =
(
Āk−1 − Jk−1C̄k−1

)
Pk−1|k−1

(
Āk−1 − Jk−1C̄k−1

)T
+ Ēk−1Sk−1Ē

T
k−1 + Qk−1 − Jk−1F̄k−1Sk−1Ē

T
k−1

(5.98)

where Āk−1 is the Jacobian matrix of partial derivatives of f (x,0) with respect to x

evaluated at the previous a posterior state estimate, xk−1|k−1; that is

Āk−1 =
∂f (x,0)

∂x

∣∣∣∣
x̂k−1|k−1

(5.99)

and Ēk−1 is the Jacobian matrix of partial derivatives of f (x,d) with respect to d evaluated

at the previous a posterior state estimate; that is

Ēk−1 =
∂f (x,d)

∂d

∣∣∣∣
x̂k−1|k−1

(5.100)

Similarly, C̄k−1 is the Jacobian matrix of partial derivatives of h (x,0) with respect to x

evaluated at the previous a priori state estimate, xk−1|k−2; that is

C̄k−1 =
∂h (x,0)

∂x

∣∣∣∣
x̂k−1|k−2

(5.101)

and F̄k−1 is the Jacobian matrix of partial derivatives of h (x,d) with respect to d evaluated

at the previous a priori state estimate; that is

F̄k−1 =
∂h (x,d)

∂d

∣∣∣∣
x̂k−1|k−2

(5.102)
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The measurement residual or innovation, νk, is

νk = zk − h
(
x̂k|k−1,0

)
(5.103)

The residual covariance is

R̃k = C̄kPk|k−1C̄
T
k + F̄kSkF̄

T
k + Rk (5.104)

where C̄k is the Jacobian matrix of partial derivatives of h (x,0) with respect to x evaluated

at the current a priori state estimate, x̂k|k−1; that is

C̄k =
∂h (x,0)

∂x

∣∣∣∣
x̂k|k−1

(5.105)

and F̄k is the Jacobian matrix of partial derivatives of h (x,d) with respect to d evaluated

at the current a priori state estimate; that is

F̄k =
∂h (x,d)

∂d

∣∣∣∣
x̂k|k−1

(5.106)

The Kalman gain is then

Kk = Pk|k−1C̄
T
k R̃−1

k

= Pk|k−1C̄
T
k

(
C̄kPk|k−1C̄

T
k + F̄kSkF̄

T
k + Rk

)−1 (5.107)

The updated state estimate with measurement zk is

x̂k|k = x̂k|k−1 + Kkνk

= x̂k|k−1 + Kk

[
zk − h

(
x̂k|k−1,0

)] (5.108)

and the updated error covariance is

Pk|k =
(
I−KkC̄k

)
Pk|k−1 (5.109)
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The updated measurement is given by

ẑk = h
(
x̂k|k

)
+ F̄kSkF̄

T
k

(
F̄kSkF̄

T
k + Rk

)−1 [
yk − h

(
x̂k|k,0

)]
(5.110)

The EKF algorithm is summarized below for the case where the measurement contains

process noise.

1. The dynamic system is given by the following process and measurement equations:

xk = f (xk−1,dk−1) + wk−1 (5.111a)

zk = h (xk,dk) + vk (5.111b)

wk ∼ (0,Qk) (5.111c)

dk ∼ (0,Sk) (5.111d)

vk ∼ (0,Rk) (5.111e)

E
[
wkw

T
j

]
= Qkδk, j (5.111f)

E
[
dkd

T
j

]
= Skδk, j (5.111g)

E
[
vkv

T
j

]
= Rkδk, j (5.111h)

E
[
wkd

T
j

]
= E

[
dkw

T
j

]
= 0 (5.111i)

E
[
wkv

T
j

]
= E

[
vkw

T
j

]
= 0 (5.111j)

E
[
dkv

T
j

]
= E

[
vkd

T
j

]
= 0 (5.111k)

2. The initialization of the filter is as follows:

x̂0|0 = E [x0] (5.112)

P0|0 = E
[(

x0 − x̂0|0
) (

x0 − x̂0|0
)T]

(5.113)
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3. For each time step, k = 1, 2, . . . , N , the time update filter equations are

Jk = ĒkSkF̄
T
k

(
F̄kSkF̄

T
k + Rk

)−1
(5.114)

x̂k|k−1 = f
(
x̂k−1|k−1,0

)
+ Jk−1

[
zk−1 − h

(
x̂k−1|k−1,0

)]
(5.115)

Pk|k−1 =
(
Āk−1 − Jk−1C̄k−1

)
Pk−1|k−1

(
Āk−1 − Jk−1C̄k−1

)T
+ Ēk−1Sk−1Ē

T
k−1 + Qk−1 − Jk−1F̄k−1Sk−1Ē

T
k−1 (5.116)

where

Āk−1 =
∂f (x,0)

∂x

∣∣∣∣
x̂k−1|k−1

(5.117)

Ēk−1 =
∂f (x,d)

∂d

∣∣∣∣
x̂k−1|k−1

(5.118)

C̄k−1 =
∂h (x,0)

∂x

∣∣∣∣
x̂k−1|k−2

(5.119)

F̄k−1 =
∂h (x,d)

∂d

∣∣∣∣
x̂k−1|k−2

(5.120)

The measurement update equations are

Kk = Pk|k−1C̄
T
k

(
C̄kPk|k−1C̄

T
k + F̄kSkF̄

T
k + Rk

)−1
(5.121)

x̂k|k = x̂k|k−1 + Kk

[
zk − h

(
x̂k|k−1,0

)]
(5.122)

Pk|k = (I−KkCk) Pk|k−1 (5.123)

where

C̄k =
∂h (x,0)

∂x

∣∣∣∣
x̂k|k−1

(5.124)

F̄k =
∂h (x,d)

∂d

∣∣∣∣
x̂k|k−1

(5.125)
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An updated measurement estimate is given by

ẑk = h
(
x̂k|k

)
+ F̄kSkF̄

T
k

(
F̄kSkF̄

T
k + Rk

)−1 [
zk − h

(
x̂k|k,0

)]
(5.126)

The previous adaptation addresses the issue of the presence of the unknown process

noise in the measurement equation. It remains to find a means of estimating the covariance

of this process noise, as well as the covariance of the additive measurement noise. This is

considered next.

5.3 Unknown noise statistics

Optimum Kalman filtering requires exact knowledge of the process noise covariances ma-

trices Qk, unknown feedthrough input noise covariance Sk, and the measurement noise

covariance Rk. However, these noise statistics are generally unknown for ambient mea-

surement cases involving wind excitation, and have to be estimated from measurements.

For the application of state estimation for the flexible structure coupled with a pendulum

tuned mass damper (PTMD), the process noises capture the effect of the unknown wind

excitation as well as modelling uncertainties and the measurements are corrupted with

noise; therefore, both noise statistics are unknown. The problem of Kalman filtering with

unknown noise covariances is more commonly referred to adaptive filtering.

Previous studies involving parameter estimation of structural systems [36, 63, 53, 27,

84, 62, 95, 109, 107, 106, 102] have not addressed situations where a priori knowledge of the

process and noise covariances are not available. A prior knowledge of both the disturbance

and measurement noise covariances are difficult to obtain at the start of the experiment.

In the present work, these statistics are estimated first, prior to the parameter estimation

step, using the initial estimate of the model.

Mehra identified the following four main approaches to adaptive filtering [67]; Bayesian

estimation, maximum likelihood estimation, covariance-matching techniques, and correla-

tion methods, which are considered more closely in the present work. The basic premise
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of the autocorrelation methods is as follows. A set of equations are derived relating the

system parameters to observed autocorrelation functions, either the autocorrelation of the

output zk or the innovation term, νk = zk−Ckx̂k|k−1. Using output correlation is generally

considered more restrictive [6]; therefore, residual correlation is considered further.

5.3.1 Evaluating filter performance

It is well established that the optimum Kalman filter residual sequence is a white stochastic

process with a known covariance, CkPk|k−1C
T
k +Rk [85] when the noise covariance matrices

are known. The same will be demonstrated for the case when a feedthrough process noise,

dk, is introduced, as in Sec. 5.2.1.

Recall the linear discrete transition and measurement equations for the state estimation

problem described earlier.

xk = Ak−1xk−1 + Ek−1dk−1 + wk−1 (5.127)

zk = Ck−1xk + Fk−1dk + vk (5.128)

The innovation sequence is

νk = zk −Ckx̂k|k−1

= Ckxk + Fkdk + vk −Ckx̂k|k−1

= Ckεk|k−1 + Fkdk + vk

(5.129)

where

εk|k−1 = xk − x̂k|k−1 (5.130)

For an optimal filter, the innovation sequence is zero mean Gaussian white noise (zero

autocorrelation for non-zero lag). However, for a suboptimal filter, the autocorrelation

of the innovation sequence does not satisfy this property. Therefore, one must determine

an expression for the autocorrelation of the innovation sequence for suboptimal gain. For
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k > j, the covariance of the residuals is given by

E
[
νkν

T
j

]
= E

[(
Ckεk|k−1 + Fkdk + vk

) (
Cjεj|j−1 + Fjdj + vj

)T]
= CkE

[
εk|k−1ε

T
j|j−1

]
CT
j + CkE

[
εk|k−1d

T
j

]
FT
j + CkE

[
εk|k−1v

T
j

]
FkE

[
dkε

T
j|j−1

]
CT
j + FkE

[
dkd

T
j

]
FT
j + FkE

[
dkv

T
j

]
E
[
vkε

T
j|j−1

]
CT
j + E

[
vkd

T
j

]
FT
j + E

[
vkv

T
j

]
= CkE

[
εk|k−1ε

T
j|j−1

]
CT
j + CkE

[
εk|k−1d

T
j

]
FT
j + CkE

[
εk|k−1v

T
j

]
(5.131)

For k = j, the covariance of the residuals is given by

E
[
νjν

T
j

]
= CjPj|j−1C

T
j + FjSjF

T
j + Rj

= Γ0

(5.132)

A recursive relationship for the a priori state estimate error can be developed as follows:

εk+1|k = xk+1 − x̂k+1|k

= Akxk + Ekdk + wk −Akx̂k|k − Jk
(
xk −Ckx̂k|k

)
= Akxk + Ekdk + wk −Akx̂k|k −AkKkCkxk

−AkFkdk −AkKkvk + AkKkCkx̂k|k−1

+ JkCkx̂k|k−1 + JkCkKkCkxk + JkCkKkFkdk

+ JkCkKkvk − JkCkKkCkx̂k|k−1 − JkCkxk

− JkFkdk − Jkvk

= (Ak −AkKkCk + JkCkKkCk − JkCk) εk|k−1

+ (Ek + AkKkFk + JkCkKkFk − JkFk) dk + wk

− (AkKk − JkCkKk + Jk) vk

= φ̃′kεk|k−1 + v′k

(5.133)
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where

φ̃′k = Ak −AkKkCk + JkCkKkCk − JkCk (5.134)

v′k = (Ek + AkKkFk + JkCkKkFk − JkFk) dk + wk (5.135)

− (AkKk − JkCkKk + Jk) vk (5.136)

(5.137)

Note that the gain Kk is not the Kalman gain, since the covariance of the residuals for a

suboptimal filter are to be determined. Proceed by defining

φ̃′k,j =

{
φ̃′k−1φ̃

′
k−2 . . . φ̃

′
j k > j

I k = j
(5.138)

Then εk|k−1 can be written as

εk|k−1 = φ̃′k,jεj|j−1 +
k−1∑
i=j

φ̃′k,i+1v
′
i (5.139)

Evaluating the expectations in Eq. 5.131 gives

E
[
εk|k−1ε

T
j|j−1

]
= φ̃′k,jE

[
εj|j−1ε

T
j|j−1

]
= φ̃′k,j+1φ̃

′
jPj|j−1

(5.140)

E
[
εk|k−1d

T
j

]
= φ̃′k,j+1 (Ej + AjKjFj + JjCjKjFj − JjFj)E

[
djd

T
j

]
= φ̃′k,j+1 (Ej + AjKjFj + JjCjKjFj − JjFj) Sj

(5.141)

E
[
εk|k−1v

T
j

]
= −φ̃′k,j+1 (AkKk − JkCkKk + Jk)E

[
vjv

T
j

]
= −φ̃′k,j+1 (AkKk − JkCkKk + Jk) Rj

(5.142)

By taking advantage the result φ̃′j = Aj−AjKjCj +JjCjKjCj−JjCj Eq. 5.131 becomes
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(for k > j)

E
[
νkν

T
j

]
= Ckφ̃

′
k,j+1φ̃

′
jPj|j−1C

T
j

+ Ckφ̃
′
k,j+1 (Ej + AjKjFj + JjCjKjFj − JjFj) SjF

T
j

−Ckφ̃
′
k,j+1 (AkKk − JkCkKk + Jk) Rj

= Ckφ̃
′
k,j+1

[
AjPj|j−1C

T
j + EjSjF

T
j

− (AjKj − JjCjKj + Jj)
(
CjPj|j−1C

T
j + FjSjF

T
j + Rj

)]
(5.143)

Substituting in the result for the one-step predictor gain matrix in Eq. 5.75 gives

E
[
νkν

T
j

]
= Ckφ̃

′
k,j+1

[
AjPj|j−1C

T
j + EjSjF

T
j

− (AjKj − JjCjKj)
(
CjPj|j−1C

T
j + FjSjF

T
j + Rj

)
−JjCjPj|j−1C

T
j − Jj

(
FjSjF

T
j + Rj

)]
= Ckφ̃

′
k,j+1 (Aj − JjCj)[

Pj|j−1C
T
j −Kj

(
CjPj|j−1C

T
j + FjSjF

T
j + Rj

)]
= Ckφ̃

′
k,j+1 (Aj − JjCj)

(
Pj|j−1C

T
j −KjΓ0

)
(5.144)

Note that substitution of the optimal Kalman gain given in Eq. 5.80 makes E
[
νkν

T
j

]
vanish

for all k 6= j. The performance of the filter can be evaluated based on this knowledge. The

residual sequence of the filter can be measured and its statistics computed, namely the

mean and covariance. These are compared with the known mean and covariance for the

optimal filter. Incorrect selection of the noise covariance matrices can cause the residual

sequence statistics to deviate from the theoretical values. This feature is exploited for the

purpose of noise estimation by correlation methods.

5.3.2 Noise estimation by correlation methods

The basic approach used here is one that was initially proposed by Bélanger [4]. However,

the author did not consider the direct feedthrough term, dk, in the measurement equation.

Hence, the relevant expressions are rederived. A set of equations are derived relating the
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system matrices, filter gain, and noise covariance matrices to observed autocorrelation of

the innovation term, νk = zk − Ckx̂k|k−1. By setting the covariance matrices as a linear

combination of a set of parameters, it was shown that the correlation function of the

filter’s residuals is also a linear function of the same set of parameters [4]. By measuring

the actual correlation of the residual sequence, a weighted least-squares fit can then be

used to estimate these parameters, and subsequently, the noise covariance matrices. In

the ensuing discussion, it will be shown that such a linear relationship also exists in the

presence of the direct feedthrough term, and hence the method can be used for the case at

hand.

Note that a one-step Kalman filter is first developed for the case of feedthrough process

noise, where the time and measurement update steps are performed simultaneously, and

there is no longer a need for the one-step predictor gain matrix, Jk. Given the following

linear system:

xk = Ak−1xk−1 + Ek−1dk−1 + wk−1 (5.145)

zk = Ckxk + Fkdk + vk (5.146)

wk ∼ (0,Qk) (5.147)

dk ∼ (0,Sk) (5.148)

vk ∼ (0,Rk) (5.149)

E
[
wkw

T
j

]
= Qkδk, j (5.150)

E
[
dkd

T
j

]
= Skδk, j (5.151)

E
[
vkv

T
j

]
= Rkδk, j (5.152)

E
[
wkd

T
j

]
= E

[
dkw

T
j

]
= 0 (5.153)

E
[
wkv

T
j

]
= E

[
vkw

T
j

]
= 0 (5.154)

E
[
dkv

T
j

]
= E

[
vkd

T
j

]
= 0 (5.155)

it is assumed that the noise covariance matrices Qk, Sk, and Rk are linear functions of N̂
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components of a vector α. That it

Qk =
N̂∑
l=1

αlQl (5.156)

Sk =
N̂∑
l=1

αlSl (5.157)

Rk =
N̂∑
l=1

αlRl (5.158)

with Ql, Sl, and Rl are known constant matrices, each containing one element of the

assumed initial noise covariance matrices.

Assume a one-step filter of the form [85]

x̂k|k−1 = Ak−1x̂k−1|k−2 + Kk−1νk−1 (5.159)

where the residual is given by

νk = zk −Ckx̂k|k−1 (5.160)

The a priori state estimate error is

εk|k−1 = xk − x̂

= xk −Ak−1x̂k−1|k−2 −Kk−1zk−1 + Kk−1Ck−1x̂k|k−1

= xk − (Ak−1 −Kk−1Ck−1) x̂k−1|k−2 −Kk−1zk−1

= Ak−1xk−1 − (Ak−1 −Kk−1Ck−1) x̂k−1|k−2 + Ek−1dk−1 + wk−1

−Kk−1 (Ck−1xk−1 + Fk−1dk−1 −Kk−1vk−1)

= (Ak−1 −Kk−1Ck−1)
(
xk−1 − x̂k−1|k−2

)
+ (Ek−1 −Kk−1Fk−1) dk−1 + wk−1 −Kk−1vk−1

= (Ak−1 −Kk−1Ck−1) εk−1|k−2 + (Ek−1 −Kk−1Fk−1) dk−1

+ wk−1 −Kk−1vk−1

(5.161)
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The error covariance is given by

Pk|k−1 = E
[
εk|k−1ε

T
k|k−1

]
= E

{[
(Ak−1 −Kk−1Ck−1) εk−1|k−2 + (Ek−1 −Kk−1Fk−1) dk−1

+wk−1 −Kk−1vk−1]
[
(Ak−1 −Kk−1Ck−1) εk−1|k−2

+ (Ek−1 −Kk−1Fk−1) dk−1 + wk−1 −Kk−1vk−1]T
}

= (Ak−1 −Kk−1Ck−1) Pk−1|k−2 (Ak−1 −Kk−1Ck−1)T

+ (Ek−1 −Kk−1Fk−1) Sk−1 (Ek−1 −Kk−1Fk−1)T

+ Qk−1 + Kk−1Rk−1K
T
k−1

(5.162)

Note that

E
{
εk−1|k−2 [(Ek−1 −Kk−1Fk−1) dk−1 + wk−1 −Kk−1vk−1]T

}
= 0 (5.163)

since the error at the previous time step is uncorrelated with the present unknown stochastic

input, process noise, and measurement noise.

The optimal gain is one that minimizes Tr
(
Pk|k−1

)
.

∂ Tr
(
Pk|k−1

)
∂Kk−1

= −2 (Ak−1 −Kk−1Ck−1) Pk−1|k−2C
T
k−1

− 2 (Ek−1 −Kk−1Fk−1) Sk−1F
T
k−1 + 2Kk−1Rk−1

= 2Kk−1

(
CPk−1|k−2C

T
k−1 + Fk−1Sk−1F

T
k−1 + Rk−1

)
− 2Ak−1Pk−1|k−2C

T
k−1 − 2Ek−1Sk−1F

T
k−1

= 0

(5.164)

Therefore,

Kk =
(
AkPk|k−1C

T
k + EkSkF

T
k

) (
CkPk|k−1C

T
k + FkSkF

T
k + Rk

)−1
(5.165)
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The state error covariance can be rewritten as

Pk|k−1 = (Ak−1 −Kk−1Ck−1) Pk−1|k−2A
T
k−1

+ (Ek−1 −Kk−1Fk−1) Sk−1E
T
k−1 + Qk−1

(5.166)

Using

εk|k−1 = xk − x̂k|k−1 (5.167)

the innovation sequence can be rewritten as

νk = zk −Ckx̂k|k−1

= Ckxk + Fkdk + vk −Ckx̂k|k−1

= Ckεk|k−1 + Fkdk + vk

(5.168)

The covariance of the innovation is given by (for k > j)

E
[
νkν

T
j

]
= E

[(
Ckεk|k−1 + Fkdk + vk

) (
Cjεj|j−1 + Fjdj + vj

)T]
= CkE

[
εk|k−1ε

T
j|j−1

]
CT
j + CkE

[
εk|k−1d

T
j

]
FT
j + CkE

[
εk|k−1v

T
j

]
FkE

[
dkε

T
j|j−1

]
CT
j + FkE

[
dkd

T
j

]
FT
j + FkE

[
dkv

T
j

]
E
[
vkε

T
j|j−1

]
CT
j + E

[
vkd

T
j

]
FT
j + E

[
vkv

T
j

]
= CkE

[
εk|k−1ε

T
j|j−1

]
CT
j + CkE

[
εk|k−1d

T
j

]
FT
j + CkE

[
εk|k−1v

T
j

]
(5.169)

For k = j, the covariance of the residuals is given by

E
[
νkν

T
k

]
= CkPk|k−1C

T
k + FkSkF

T
k + Rk (5.170)

The recursive form of the state estimate error in Eq. 5.161 can be rewritten as

εk|k−1 = φ′k−1εk−1|k−2 + v′k−1 (5.171)
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where

φ′k = Ak −KkCk (5.172)

v′k = (Ek −KkFk) dk + wk −Kkvk (5.173)

Define

φ̃′k,j =

{
φ′k−1φ

′
k−2 . . . φ

′
j k > j

I k = j
(5.174)

Then

εk|k−1 = φ̃′k,jεj|j−1 +
k−1∑
i=j

φ̃′k,i+1v
′
i (5.175)

or

εk|k−1 = φ̃′k,0ε0 +
k−1∑
i=0

φ̃′k,i+1v
′
i (5.176)

Now, there exists real numbers a, b > 0 such that [46]∣∣∣∣∣∣φ̃′k,0∣∣∣∣∣∣ ≤ ae−bk (5.177)

Therefore, by waiting for some time to pass before beginning to process the measurements,

the term φ̃′k,0ε0 can be dropped. It follows that

εk|k−1 =
k−1∑
i=0

φ̃′k,i+1v
′
i (5.178)
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Evaluating the expectations in Eq. 5.169 gives

E
[
εk|k−1ε

T
j|j−1

]
= E

(k−1∑
i=0

φ̃′k,i+1v
′
i

)(
j−1∑
i=0

φ̃′j,i+1v
′
i

)T


= E

{[
k−1∑
i=0

φ̃′k,i+1 ((Ei −KikFi) di + wi −Kivi)

]
[
j−1∑
i=0

φ̃′j,i+1 ((Ei −KiFi) di + wi −Kivi)

]T
=

j−1∑
i=0

{
φ̃k,i+1

[
(Ei −KiFi) Si (Ei −KiFi)

T + Qi

+KiRiK
T
i

]
φ̃′Tj,i+1

}

(5.179)

E
[
εk|k−1d

T
j

]
= E

[(
k−1∑
i=0

φ̃′k,i+1v
′
i

)
dTj

]

= E

{[
k−1∑
i=0

φ̃′k,i+1 ((Ei −KikFi) di + wi −Kivi)

]
dTj

}
= φ̃′k,j+1 (Ej −KjFj) Sj

(5.180)

E
[
εk|k−1v

T
j

]
= E

[(
k−1∑
i=0

φ̃′k,i+1v
′
i

)
vTj

]

= E

{[
k−1∑
i=0

φ̃′k,i+1 ((Ei −KikFi) di + wi −Kivi)

]
vTj

}
= −φ̃′k,j+1KjRj

(5.181)
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The correlation of the residual sequence is then

E
[
νkν

T
j

]
= Ck

{
j−1∑
i=0

φ̃k,i+1

[
(Ei −KiFi) Si (Ei −KiFi)

T + Qi

+KiRiK
T
i

]
φ̃′Tj,i+1

}
CT
j + Ckφ̃

′
k,j+1 (Ej −KjFj) SjF

T
j

−Ckφ̃
′
k,j+1KjRj

(5.182)

for k > j.

Assuming that the noise covariance matrices as given by the linear relationship in Eqs.

5.156 through 5.158, the correlation of the residual sequence can be written as

E
[
νkν

T
j

]
=

N̂∑
l=1

Ψl,k,jαl (5.183)

where

Ψl,k,j = Ck

{
j−1∑
i=0

φ̃′k,i+1

[
(Ei −KiFi) Sl (Ei −KiFi)

T + Ql

+KiRlK
T
i

]
φ̃′Tj,i+1

}
CT
j + Ckφ̃

′
k,j+1 (Ej −KjFj) Sl,jF

T
j

−Ckφ̃
′
k,j+1KjRl,j

(5.184)

In order to reduce the computational effort required to calculate 5.184, a recursive

algorithm can be developed. Define

Γl,k =
k−1∑
i=0

φ̃′k,i+1

[
(Ei −KiFi) Sl (Ei −KiFi)

T + Ql + KiRlK
T
k

]
φ̃′Tk,i+1 (5.185)

This can be written in an incremental form,

Γl,k+1 = φ′kΓl,kφ
′T
k + (Ek −KkFk) Sl (Ek −KkFk)

T + Ql + KkRlK
T
k (5.186)
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Note in passing that the state estimation error covariance is also linear in the parameter

α, by comparing Eq. 5.186 and Eq. 5.166.

Pk|k−1 =
N̂∑
l=1

αlΓl,k (5.187)

Since

φ̃′k,i+1 = φ̃′k,jφ̃
′
j,i+1

= φ′k−1φ
′
k−2 . . . φ

′
jφ
′
j−1φ

′
j−2 . . . φ

′
i+1

(5.188)

Then Eq. 5.184 becomes

Ψl,k,j = Ckφ̃
′
k,jΓl,jC

T
j + Ckφ̃

′
k,j+1 (Ej −KjFj) SlF

T
j

−Ckφ̃
′
k,j+1KjRl

(5.189)

where

φ̃′k,jΓl,j =

j−1∑
i=0

φ̃′k,i+1

[
(Ei −KiFi) Sl (Ei −KiFi)

T + Ql + KiRlK
T
i

]
φ̃′Tj,i+1 (5.190)

and

Γl,j =

j−1∑
i=0

φ̃′j,i+1

[
(Ei −KiFi) Sl (Ei −KiFi)

T + Ql + KiRlK
T
i

]
φ̃′Tj,i+1 (5.191)

Further simplification is accomplished by defining the following:

Πl,k,k = Γl,kC
T
k (5.192)

Πl,k,j = φ̃′k,jΓl,jC
T
j + φ̃′k,j+1

[
(Ej −KjFj) SlF

T
j −KjRl

]
k > j (5.193)
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Then, the subsequent recursive relationship can be developed:

Πl,k,k−1 = φ̃′k,k−1Γl,k−1C
T
k−1 + φ̃′k,k

[
(Ek−1 −Kk−1Fk−1) SlF

T
k−1 −Kk−1Rl

]
= φ̃′k,k−1Γl,k−1C

T
k−1 + (Ek−1 −Kk−1Fk−1) SlF

T
k−1 −Kk−1Rl

= φ′k−1Πl,k−1,k−1 + (Ek−1 −Kk−1Fk−1) Sl,k−1F
T
k−1 −Kk−1Rl,k−1

(5.194)

Πl,k,k−2 = φ̃′k,k−2Γl,k−2C
T
k−2 + φ̃′k,k−1

[
(Ek−2 −Kk−2Fk−2) SlF

T
k−2 −Kk−2Rl

]
= φ′k−1φ

′
k−2Πl,k−2,k−2 + φ′k−1

[
(Ek−2 −Kk−2Fk−2) SlF

T
k−2 −Kk−2Rl

]
= φ′k−1Πl,k−1,k−2

(5.195)

Πl,k,k−3 = φ̃′k,k−3Γl,k−3C
T
k−3 + φ̃′k,k−2

[
(Ek−3 −Kk−3Fk−3) SlF

T
k−3 −Kk−3Rl

]
= φ′k−1φ

′
k−2φ

′
k−3Πl,k−3,k−3 + φ′k−1φ

′
k−2

[
(Ek−3 −Kk−3Fk−3) SlF

T
k−3 −Kk−3Rl

]
= φ′k−1Πl,k−1,k−3

(5.196)

...

Πl,k,j = φ′k−1Πl,k−1,j (5.197)

Also, note that

Πl,k,j = 0 (5.198)

when j < 0.

Therefore, Eq. 5.189 becomes

Ψl,k,j = CkΠl,k,j (5.199)

For the case where k = j, the covariance of the residual calculation given in Eq. 5.170
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can be written as

E
[
νkν

T
k

]
=

N̂∑
l=1

(
CkΓl,kC

T
k + FkSlF

T
k + Rl

)
αl

=
N̂∑
l=1

Ψl,k,kαl

(5.200)

where Ψl,k,k is given by

Ψl,k,k = CkΓl,kC
T
k + FkSlF

T
k + Rl

= CkΠl,k,k + FkSlF
T
k + Rl

(5.201)

It has been shown that the correlation of the residual sequence, given in Eqs. 5.183 and

5.200, is linear in αl. This makes the problem amenable to a least-squares formulation.

5.3.3 Recast problem for least-squares solution

In order to implement a conventional least-squares solution, it is necessary to vectorize the

correlation of the residual sequence and the matrices Ψl,k,j, thereby converting the matrix

into a column vector. Introducing the vec function, where the columns of a matrix are

stacked to produce a column vector.

vecA = vec
[

a1 a2 . . . an

]
=


a1

a2

...

an

 (5.202)

Defining a vector containing the product of the residual sequence with its own transpose

as

σk,j = vec
[
νkν

T
j

]
k ≥ j (5.203)
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which can be directly observed from the filter residual sequence. Additionally, let

βk,j =
[

vecΨ1,k,j vecΨ2,k,j . . . vecΨN̂,k,j

]
(5.204)

for k ≥ j. It follows that

σk,j = βk,jα + ηk,j (5.205)

where ηk,j is a zero-mean noise term. Beginning at time step k, a number of observations

would be as follows:

σk−ln,k−ln = βk−ln,k−lnα + ηk−ln,k−ln

σk−ln,k−ln−1 = βk−ln,k−ln−1α + ηk−ln,k−ln−1

...

σk−ln,j−ln = βk−ln,j−lnα + ηk−ln,j−ln
...

σk−1,k−1 = βk−1,k−1α + ηk−1,k−1

σk−1,k−2 = βk+1,kα + ηk+1,k

...

σk−1,j−1 = βk−1,j−1α + ηk−1,j−1

σk,k = βk,kα + ηk,k

σk,k−1 = βk,k−1α + ηk,k−1

...

σk,j = βk,jα + ηk,j

(5.206)

The variable ln denotes the number of time steps that are stored, or k− ln is the time step

in the past at which the recursive least-squares estimation began. Note that σk,k is a p2×1

vector, βk,k is a p2× N̂ matrix, α is a N̂ × 1 vector, and η is a p2× 1 vector, where p is the

number of measurements for the original filter. A new counter variable, t, is introduced to
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increment between each row of Eq. 5.206. With this new definition, Eq. 5.204 becomes

σt = βtα + ηt (5.207)

The problem is now cast in a such a way that the vector α can be solved using a least-

squares approach.

5.3.4 Recursive least squares algorithm

For online implementation, it is convenient to recast Eq. 5.207 in a recursive least-squares

form as follows [76]:

α̂t = α̂t−1 + Kt (σt − βtα̂t−1) (5.208)

Kt = Θt−1βt
(
Wt + βtΘt−1β

T
t

)
(5.209)

Θt = Θt−1 −KtβtΘt−1 (5.210)

where Kt is the N̂ × 1 gain vector, Θt is the N̂ × N̂ covariance matrix of the estimate

given by E
[
(α̂− α) (α̂− α)T

]
, and Wt is the variance of the noise, ηt.

The initial α0 is arbitrarily chosen, and the corresponding state estimate covariance Θt

is selected to be large to assign a low confidence in the initial state estimate. It remains to

select the matrix Wt. The variance of the noise ηt is E
[
ηtη

T
t

]
. From Eq. 5.207, it follows

that

ηtη
T
t = {σt − E [σt]} {σt − E [σt]}T (5.211)

If the residual sequence is a sequence of independent random values, then the sequence

is white. This is known to be true for the case where the main Kalman filter process

noise, unknown stochastic disturbance, and measurement noise are Gaussian white and

the estimator is optimal. Also, the elements of σ are να,kνβ,j, where α = 1, 2, . . . , p and

β = 1, 2, . . . , p denote to which output the residual observation corresponds. Assuming the

innovations process is white, the following pairwise product rule for the expected value of
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a product of Gaussian variables can be applied:

E
[
ηηT

]
= E {[να,kνβ,j − E [να,kνβ,j]] [να,kνβ,j − E [να,kνβ,j]]}
= E [να,kνα,k]E [νβ,jνβ,j] + E [να,kνβ,k]E [νβ,kνα,k] δk,j

(5.212)

where δk,j is the Kronecker delta function. If the initial estimate of α0 were exact, then

the noise covariances Sk, Qk, and Rk would be precisely known, and the Kalman gain for

the original filterKk, would be optimal. The residual sequence of the filter would be white

for the case of Gaussian process and measurement noises. In order to apply Eq. 5.212, it

is necessary to assume that the initial estimate of the α0 is exact; the following equation

is used to evaluate the expectations in Eq. 5.212:

E
[
ννT

]
=

N̂∑
l=1

(α0)i Ψl,k,k (5.213)

Simulation results indicate that the above approach produces a reasonable estimate of

the noise covariance matrices, notwithstanding the incorrect assumption that the initial

estimate of the parameter α0 is exact. The procedure introduced above allows the least

squares estimation of the parameter vector α, which can be used in Eqs. 5.156 through

5.158 to give estimates of the noise covariance matrices.

5.4 Simple investigative example

A simple 2-degree-of-freedom (DOF) system, presented by Wu and Smyth [102], is consid-

ered here. The results for a base excited structure represented in the physical domain are

presented first to benchmark the method. Subsequently, several extensions are considered.

First, the system’s modal characteristics are identified from acceleration response measure-

ments to a known base excitation. Second, a known main mass excitation is considered

and parameter estimation is performed using ambient vibration measurements; the initial

states are no longer known precisely since it is not known to begin from rest. Third, the

case of an unknown excitation with known noise covariances is considered. Finally, the
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case of unknown excitation and unknown noise covariances is presented.

5.4.1 Base-excited 2DOF example

Wu and Smyth [102] presented the following simple 2-DOF linear system subjected to

Chi-Chi earthquake base excitation:

m1ü1(t) + c1u̇1(t) + c2 [u̇1(t)− u̇2(t)] + k1u̇1(t) + k2 [u1(t)− u2(t)] = −m1üg(t) (5.214a)

m2ü2(t) + c2 [u̇2(t)− u̇1(t)] + k2 [u2(t)− u1(t)] = −m2üg(t) (5.214b)

which can be written in matrix form as

Mü(t) + Cu̇(t) + Ku(t) = −MΓüg(t) (5.215)

where Γ =
[

1 1
]T

is the influence vector and the mass (M), damping (C), and stiffness

(K) matrices are

M =

[
m1 0

0 m2

]
C =

[
c1 + c2 −c2

−c2 c2

]
K =

[
k1 + k2 −k2

−k2 k2

]
(5.216)

The displacement and velocity response and both DOFs are selected as the states of the

system; that is, x(t) =
[
u1(t) u2(t) u̇1(t) u̇2(t)

]T
. The continuous time state transi-

tion matrices are

Ac =

[
0 I

−M−1K −M−1C

]
(5.217)

Gc = −
[

0

Γ

]
(5.218)
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where Gc is the continuous time ñ×r input matrix corresponding to the known input, u (t),

where u(t) = üg(t) (r = 1). The total acceleration at each DOF is measured. Therefore,

z(t) =

{
z1(t)

z2(t)

}
=

{
ü1(t) + üg(t)

ü2(t) + üg(t)

}
(5.219)

The measurement matrices are

Cc =
[
−M−1K −M−1C

]
(5.220)

Dc = 0 (5.221)

Note that with the measurement of the total acceleration for a base-excited system, the

feedthrough matrix Dc is empty. The state transition matrices are discretized, accord-

ing to Sec. 5.1.3, converting the continuous time state matrices into their discrete time

counterparts. For the present example, the stiffnesses k1 and k2 as well as the damping

coefficient c1 and c2 are unknown parameters to be identified. They are appended to the

state vector, which becomes

xk =
[
u1 u2 u̇1 u̇2 k1 k2 c1 c2

]T
(5.222)

A constant transition within the state matrix is assumed for the appended parameters;

that is xi(t) = 0 (continuous time) or xi [k] = xi [k − 1] (discrete time). The nonlinear
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state transition equations are

x1[k + 1] = x1[k] + x3[k]T + w1[k] (5.223a)

x2[k + 1] = x2[k] + x4[k]T + w2[k] (5.223b)

x3[k + 1] = −x5[k] + x6[k]

m1

Tx1[k] +
x6[k]

m2

Tx2[k]

+

(
1− x7[k] + x8[k]

m1

T

)
x3[k] +

x8[k]

m2

Tx4[k]− Tu[k] + w3[k]

(5.223c)

x4[k + 1] =
x6[k]

m2

Tx1[k]− x6[k]

m2

Tx2[k]

+
x8[k]

m2

Tx3[k] +

(
1− x8[k]

m2

T

)
x4[k]− Tu[k] + w4[k]

(5.223d)

x5[k + 1] = x5[k] + w5[k] (5.223e)

x6[k + 1] = x6[k] + w6[k] (5.223f)

x7[k + 1] = x7[k] + w7[k] (5.223g)

x8[k + 1] = x8[k] + w8[k] (5.223h)

where T is the sample time. The nonlinear measurement equations are

z1[k] = −x5[k] + x6[k]

m1

x1[k] +
x6[k]

m2

x2[k]− x7[k] + x8[k]

m1

x3[k] +
x8[k]

m2

x4[k] + v1[k]

(5.224a)

z2[k] =
x6[k]

m2

x1[k]− x6[k]

m2

x2[k] +
x8[k]

m2

x3[k]− x8[k]

m2

x4[k] + v2[k] (5.224b)

The Jacobian matrices of partial deviates of the transition (Āk−1) and measurement (C̄k)

equations, with respect to x, are given in Table 5.1. Note that the [k] notation is dropped

for convenience.

The acceleration response for the Chi-Chi earthquake excitation is recorded with a

sampling frequency of 400 Hz, for m1 = m2 = 1 kg, c1 = 0.6 N s/m, c2 = 0.5 N s/m,

k1 = 12 N/m, and k2 = 10 N/m. Additive white measurement noise vk is introduced at

signal-to-noise ratios (SNRs) of 20, 10, and 5. Structural system identification is performed
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using the EKF algorithm described in Sec. 5.1.2, using initial estimates of the damping

coefficients and stiffnesses ĉ1,0 = ĉ2,0 = 0.2 N s/m and k̂1 = k̂2 = 2 N/m. The initial

states (displacements and velocities) were chosen to be zero. The initial state estimate

error covariance was zero for the states (since the system is known to begin from rest) and

P0 = 5 for the stiffness parameter estimates and P0 = 0.5 for the damping estimates in

order to establish a level of confidence in the initial parameter estimates. The process noise

covariance is Qk = 0 and the measurement noise covariance matrix, Rk is based on the

known noise covariance of additive measurement noise. The masses are fixed to the actual

values for the duration of the filter. The final identified values after 60 s for one realization

of the filter for each level of measurement noise are presented in Table 5.2, compared with

the results presented by Wu and Smyth [102]. The analysis results for the four parameter

estimates are plotted in Fig. 5.2 for each level of measurement noise.
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Table 5.2: Identification results using EKF for a 2-DOF linear base excited system

Identified Parameter

c1 c2 k1 k2

N s/m N s/m N/m N/m

Actual 0.6 0.6 12 10
Initial 0.2 0.2 2 2

SNR Error (%) 66.7 66.7 83.3 80.0

20 Estimate 0.619 0.527 11.979 9.9997
Error (%) 3.18 5.38 0.171 0.003
Estimate [102] 0.587 0.525 12.012 9.902
Error (%) 2.25 5.02 0.102 0.978

10 Estimate 0.624 0.529 11.996 9.9638
Error (%) 3.97 5.75 0.030 0.362
Estimate [102] 0.581 0.542 12.028 9.895
Error (%) 3.13 8.46 0.229 1.05

5 Estimate 0.626 0.529 12.034 9.9422
Error (%) 4.32 5.86 0.282 0.578
Estimate [102] 0.572 0.556 11.996 9.959
Error (%) 4.70 11.2 0.032 0.413
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Figure 5.1: Parameter estimates for (a) c1, (b) c2, (c) k1, and (d) k2, for SNRs of 20,
10, and 5 using EKF combined state and parameter identification of a base-excited 2DOF
linear structure.
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There is close correspondence between these results and those presented by Wu and

Smyth [102]. Generally, there is a slight decline in identification performance with de-

creasing SNR. The identification of the stiffness is considerably better than the damping

estimates, though the damping estimates are still acceptable. Reasonable performance of

the filter for the combined state and parameter estimation problem described is expected.

The underlying system is linear, and the problem is amenable to classic EKF theory; that

is, a known input excitation and no feedthrough of the input in the measurement equation.

The primary challenge in the approach is the lack of availability of direct state measure-

ments, in that no displacements or velocities are directly measured. This may lead to a

drift in the identified parameters due to accelerometer bias caused by integrating the noise

contaminated accelerations [60, 86].

5.4.2 EKF for modal identification of structures

The present work is interested in identifying the modal parameters of the structure, namely

the natural frequencies, damping ratios, and mode shape vectors. The example 2-DOF

structure presented prescribed as a shear-beam model; using a modal identification ap-

proach allows is to be applied more generally for the purpose of structural system iden-

tification. The base-excited system is discussed first, followed by the situation where the

structure is excited by a known main mass excitation, such as wind.

The equation of motion for a general multi-degree-of-freedom (MDOF) system was given

in Eq. 5.215. The following transformation converts the physical response coordinates into

the modal domain:

y(t) = Φu(t) (5.225)

where Φ is the modal matrix and y(t) is the modal displacement response. Similar re-

lationships exist for the modal velocity, ẏ(t), and modal acceleration, ÿ(t). Substituting

these relationships in Eq. 5.215 and premultiply by ΦT , the equations are recast in modal
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coordinates. For the case of proportional damping,

ΦTMΦü(t) + ΦTCΦu̇(t) + ΦTKΦu(t) = −ΦTΓüg(t)

ÿ(t) + Ĉẏ(t) + Λy(t) = −M−1
r ΦTΓüg(t)

(5.226)

where Mr is the modal mass matrix. Ĉ is the classical modal damping matrix, given by

Ĉ =


2ζ1ωn,1 0 . . . 0

0 2ζ2ωn,2 . . . 0
...

...
. . .

...

0 0 . . . 2ζnωn,n

 (5.227)

where ζj and ωn,j are the the modal damping ratios and circular natural frequencies,

respectively, for the jth mode. Λ is the spectral matrix, defined as

Λ =


ω2
n,1 0 . . . 0

0 ω2
n,2 . . . 0

...
...

. . .
...

0 0 . . . ω2
n,n

 (5.228)

Selecting as states of the system for the 2-DOF example, x(t) =
[
y1(t) y2(t) ẏ1(t) ẏ2(t)

]T
,

and input u(t) = üg(t), the state transition matrices are

Ac =

[
0 I

−Λ −Ĉ

]
(5.229)

Gc = −
[

0

M−1
r ΦTMΓ

]
(5.230)

For the case where the overall acceleration of each DOF is measured,

z(t) =

{
z1(t)

z2(t)

}
=

{
φ11ÿ1(t) + φ12ÿ2(t)

φ21ÿ1(t) + φ22ÿ2(t)

}
(5.231)
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where φij is the mode shape coefficient at the ith DOF for the jth mode of vibration. The

measurement matrices are

Cc =
[
−ΦΛ −ΦĈ

]
(5.232)

Dc = 0 (5.233)

The system matrices are converted into their discrete-time counterpars. The natural

frequencies, modal damping ratios, and mode shape vectors are selected as the parameters

to be identified. The mode shape vectors are normalized with respect to the first DOF.

The mass is assumed to be known. The appended state vector becomes

xk =
[
u1 u2 u̇1 u̇2 ωn,1 ωn,2 ζ1 ζ2 φ21 φ22

]T
(5.234)

Therefore, the modal identification seeks to identify additional unknown parameters, since

the system model is no longer prescribed to be a shear-beam model, as in the previous

example.

The state transition equations are

x1[k + 1] = x1[k] + x3[k]T + w1[k] (5.235a)

x2[k + 1] = x2[k] + x4[k]T + w2[k] (5.235b)

x3[k + 1] = −x5[k]2Tx1[k] + (1− 2x7[k]x5[k]T )x3[k] +
φ12 − x10[k]

φ11x10[k]− φ12x9[k]
Tu+ w3[k]

(5.235c)

x4[k + 1] = −x6[k]2Tx1[k] + (1− 2x8[k]x6[k]T )x4[k] +
φ11 − x9[k]

φ11x10[k]− φ12x9[k]
Tu+ w4[k]

(5.235d)

x5[k + 1] = x5[k] + w4[k] (5.235e)

...

x10[k + 1] = x10[k] + w10[k] (5.235f)
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where T is the sample time. The measurement equations are

z1[k] = −φ11x5[k]2x1[k]− φ12x6[k]2x2[k]

− 2φ11x7[k]x5[k]x3[k]− 2φ12x8[k]x6[k]x4[k] + v1[k]
(5.236a)

z2[k] = −x9[k]x5[k]2x1[k]− x10[k]x6[k]2x2[k]

− 2x9[k]x7[k]x5[k]x3[k]− 2x10[k]x8[k]x6[k]x4[k] + v2[k]
(5.236b)

The Jacobian matrices of partial derivatives of f (x, u) and h (x, u) with respect to x are

given in Table 5.3.

5.4.3 EKF modal identification using ambient vibration mea-

surements

Attention is now turned to considering the case of main mass excitation, or identification of

the structural parameters using ambient vibration measurements. There are two primary

distinctions from the previous example. First, the system is no longer likely to begin from

an at-rest position (u = u̇ = 0); therefore, there is less confidence in the initial state

estimates (displacements and velocities). Secondly, when only acceleration responses are

measured, the main mass excitation is present in the measurement equation as a direct

feedthrough; for the case of known input, this is easily accommodated by the EKF.

Consider the equation of motion for a main mass excited system.

Mü(t) + Cu̇(t) + Ku(t) = P(t) (5.237)

where P(t) is an arbitrary main mass time-varying force applied to each DOF. Using the

modal transformation in Eq. 5.225 and premultiplying by ΦT , the equation of motion

becomes

ΦTMΦü(t) + ΦTCΦu̇(t) + ΦTKΦu(t) = ΦTP(t)

ÿ(t) + Ĉẏ(t) + Λy(t) = M−1
r ΦTP(t)

(5.238)
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Selecting the same states and measurements of the system for the 2-DOF example, and

the input vector as u(t) = P(t), the system matrix Ac and measurement matrix Cc are

unchanged; the input matrix Gc and direct feedthrough matrix Dc are

Gc =

[
0

M−1
r ΦT

]
(5.239)

Dc = ΦM−1
r ΦT (5.240)

For the special case where the number of measurements is equal to the number of modes

of vibration considered (Φ is square), the direct feedthrough matrix becomes Dc = M−1.

Once again, selecting the appended state vector as in Eq. 5.234, the state transition

equations are

x1[k + 1] = x1[k] + x3[k]T + w1[k] (5.241a)

x2[k + 1] = x2[k] + x4[k]T + w2[k] (5.241b)

x3[k + 1] = −x5[k]2Tx1[k] + (1− 2x7[k]x5[k]T )x3[k]

+
x10[k]

m1φ11x10[k]−m1φ12x9[k]
Tu1[k]− φ12

m2φ11x10[k]−m2φ12x9[k]
Tu2[k] + w3[k]

(5.241c)

x4[k + 1] = −x6[k]2Tx1[k] + (1− 2x8[k]x6[k]T )x4[k]

− x9[k]

m1φ11x10[k]−m1φ12x9[k]
Tu1 +

φ11

m2φ11x10[k]−m2φ12x9[k]
Tu2 + w4[k]

(5.241d)

x5[k + 1] = x5[k] + w9[k] (5.241e)

...

x10[k + 1] = x10[k] + w10[k] (5.241f)
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The measurement equations are

z1[k] = −φ11x5[k]2x1[k]− φ12x6[k]2x2[k]

− 2φ11x7[k]x5[k]x3[k]− 2φ12x8[k]x6[k]x4[k] +
1

m1

u1[k] + v1[k]
(5.242a)

z2[k] = −x9[k]x5[k]2x1[k]− x10[k]x6[k]2x2[k]

− 2x9[k]x7[k]x5[k]x3[k]− 2x10[k]x8[k]x6[k]x4[k] +
1

m2

u2[k] + v2[k]
(5.242b)

The Jacobian matrices of partial derivatives of f (x,u) and h (x,u) with respect to x are

given in Table 5.6.

The results for base-excitation and main mass-excitation are considered for modal pa-

rameter identification using the 2-DOF system presented in Sec. 5.4.1. The actual system

and the initial estimates in the physical domain are converted to modal coordinates by the

following transformations:

Mr = ΦTMΦ (5.243)

Ĉ = M−1
r ΦTCΦ (5.244)

Λ = M−1
r ΦTKΦ (5.245)

since the shear-beam model is a form of proportional damping. The actual parameter values

and the initial estimates are presented in Table 5.5. EKF modal identification is performed

for the case where the structure is excited by the Chi-Chi earthquake ground motion time

history, as well as a Gaussian white noise main mass-excitation process. The mass of the

systems are assumed known. For the base-excited system, the original state estimates (dis-

placements and velocities) are zero with zero initial state estimation error covariance (P0 =

0) since the system is known to begin from rest. For the main mass excited structure, the

initial state estimates are also set equal to zero, but a lower level of confidence in the initial

estimates was assigned by setting P0 = diag
[

5× 10−4 1× 10−4 5× 10−3 1× 10−3
]
.

A period of time passes before data is collected for the main mass excited structure to

ensure the system does not begin from rest. For both systems, the initial error covariance
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is P0 = diag
[

2.5 5
]

corresponding to the circular natural frequency parameter and

P0 = diag
[

2.5× 10−2 5× 10−2
]

for damping ratio and P0 = 1 × 10−2 for the mode

shape coefficient estimates. The process noise covariance is Qk = 0 and the measurement

noise covariance matrix, Rk is based on the noise level of additive measurement noise. The

results are compared for both cases in Table 5.5 for SNRs of 20, 10, and 5. The introduc-

tion of the additive measurement noise for the main mass excited system was based on the

acceleration response of the structure with the feedthrough input removed, in order to pro-

vide a useful comparison to the base-excited system. The convergence of each parameter

estimate is shown in Figs. 5.2 (base-excited) and 5.3 (main mass excited). There is little

difference in the final parameter estimates and convergence of the identified parameters

when comparing the main mass excited 2-DOF system and the base-excited system. The

at-rest initial conditions assumption is no longer valid; this is the primary reason for the

increase in the complexity of the identification.
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Table 5.5: Modal identification results using EKF for a 2DOF linear base-excited and main
mass excited system

Identified Parameter

ωn,1 ωn,2 ζ1 ζ2 φ21 φ22

rad/s rad/s

Actual 2.08 5.26 0.0521 0.132 1.77 -0.57
Initial 0.874 2.29 0.0437 0.114 1.62 -0.62

SNR Error (%) 58.0 56.5 16.1 13.0 8.39 9.16

Base-excited by Chi-Chi earthquake time history

20 Estimate 2.08 5.25 0.0547 0.137 1.76 -0.567
Error (%) 0.026 0.188 5.07 4.33 0.227 0.106

10 Estimate 2.08 5.25 0.0544 0.138 1.76 -0.565
Error (%) 0.050 0.160 4.44 5.02 0.166 0.241

5 Estimate 2.08 5.25 0.0546 0.137 1.77 -0.569
Error (%) 0.004 0.155 4.82 4.48 0.028 0.563

White noise main mass excited

20 Estimate 2.08 5.25 0.0542 0.138 1.75 -0.563
Error (%) 0.064 0.163 4.16 4.83 0.801 0.496

10 Estimate 2.08 5.25 0.0551 0.138 1.77 -0.568
Error (%) 0.153 0.115 5.83 4.77 0.004 0.364

5 Estimate 2.08 5.25 0.0542 0.137 1.75 -0.564
Error (%) 0.206 0.103 4.05 4.41 1.13 0.377
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Figure 5.2: Modal parameter estimates for (a) ωn,1 and (b) ωn,2, (c) ζ1 and (d) ζ2, and (e)
φ21 and (f) φ22 for SNRs of 20, 10, and 5 using EKF combined state and modal parameter
identification of a base-excited 2DOF linear structure.
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Figure 5.3: Modal parameter estimates for (a) ωn,1 and (b) ωn,2, (c) ζ1 and (d) ζ2, and (e)
φ21 and (f) φ22 for SNRs of 20, 10, and 5 using EKF combined state and modal parameter
identification of a main mass excited 2DOF linear structure.
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5.4.4 Main mass excited 2-DOF example with unknown excita-

tion

Combined state and parameter estimation for an unknown main mass excitation is demon-

strated by means of the 2-DOF example presented earlier. The nonlinear transition equa-

tions are

x1[k + 1] = x1[k] + x3[k]T + w1[k] (5.246a)

x2[k + 1] = x2[k] + x4[k]T + w2[k] (5.246b)

x3[k + 1] = −x5[k]2Tx1[k] + (1− 2x7[k]x5[k]T )x3[k]

+
x10[k]

m1φ11x10[k]−m1φ12x9[k]
Td1 −

φ12

m2φ11x10[k]−m2φ12x9[k]
Td2 + w3[k]

(5.246c)

x4[k + 1] = −x6[k]2Tx1[k] + (1− 2x8[k]x6[k]T )x4[k]

− x9[k]

m1φ11x10[k]−m1φ12x9[k]
Td1 +

φ11

m2φ11x10[k]−m2φ12x9[k]
Td2 + w4[k]

(5.246d)

x5[k + 1] = x5[k] + w9[k] (5.246e)

...

x10[k + 1] = x10[k] + w10[k] (5.246f)

The nonlinear measurement equations are

z1[k] = −φ11x5[k]2x1[k]− φ12x6[k]2x2[k]

− 2φ11x7[k]x5[k]x3[k]− 2φ12x8[k]x6[k]x4[k] +
1

m1

d1[k] + v1[k]
(5.247a)

z2[k] = −x9[k]x5[k]2x1[k]− x10[k]x6[k]2x2[k]

− 2x9[k]x7[k]x5[k]x3[k]− 2x10[k]x8[k]x6[k]x4[k] +
1

m2

d2[k] + v2[k]
(5.247b)
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The Jacobian matrices of partial derivatives of f (x,0) and h (x,0) with respect to x as

well as f (x,d) and h (x,d) with respect to d are given in Table 5.6.

The results of the filter with SNRs of 20, 10, and 5 are presented in Fig. 5.4 for data

lengths of 120 s. The figure shows the mean convergence for 100 realizations of the filter

at each SNR. The final estimates, coefficient of variation (ĉv), and percent error are given

in Table 5.7. The initial state estimate error covariance is

P0 = diag
[

0.5 2 1× 10−3 1× 10−3 5× 10−2 5× 10−2
]

(5.248)

corresponding to the appended parameter vector. The measurement noise covariance, Rk

is based on the known level of measurement noise introduced; the additive process noise

is Qk = 0. An additional level of error was introduced for the initial modal damping

coefficient estimates, as compared to the examples presented earlier.
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Table 5.7: Modal identification results using EKF for a 2DOF linear system with unknown
main mass excitation

Identified Parameter

ωn,1 ωn,2 ζ1 ζ2 φ21 φ22

rad/s rad/s

Actual 2.08 5.26 0.0521 0.132 1.77 -0.57
Initial 0.874 2.29 0.02 0.09 1.62 -0.62

SNR Error (%) 58.0 56.5 61.6 31.6 8.39 9.16

20 Estimate 2.08 5.2 0.054 0.133 1.73 -0.601
Error (%) 0.0401 1.04 3.77 1.13 1.77 6.09
ĉv (%) 1.47 1.70 20.0 9.04 3.70 -18.3

10 Estimate 2.08 5.21 0.0542 0.133 1.74 -0.595
Error (%) 0.0742 0.947 4.07 1.19 1.24 5.04
ĉv (%) 1.55 1.87 20.7 8.8 3.32 -19.6

5 Estimate 2.08 5.21 0.0549 0.133 1.75 -0.604
Error (%) 0.0371 0.899 5.35 1.21 0.782 6.74
ĉv (%) 1.44 1.78 20.4 9.10 2.80 -19.3
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Figure 5.4: Modal parameter estimates for (a) ωn,1 and (b) ωn,2, (c) ζ1 and (d) ζ2, and (e)
φ21 and (f) φ22 for SNRs of 20, 10, and 5 using EKF combined state and modal parameter
identification of a 2DOF linear structure with unknown main mass excitation.
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The uncertainty introduced to the system by the unknown external disturbance has gen-

erally degraded the performance of the parameter estimation. Performance of the modal

damping ratios (Figs. 5.4c and 5.4d) is respectable, but a considerably longer data set

is required before convergence near the actual values. This is due to the stochastic noise

process driving the system dynamics and competing with the damping ratio parameter

estimate as a means of attenuating or amplifying the responses. While the mode shape

vectors converge more quickly, there is more error in the final estimate. Of primary im-

portance is the circular natural frequencies, (Figs. 5.4a and 5.4b), which are still precisely

identified, though convergence is delayed with respect to the known inputs case.

5.4.5 Main mass excited 2-DOF example with unknown excita-

tion and unknown noise covariances

The noise covariance estimation is considered using the same example. The noise covariance

estimation algorithm assumes prefect knowledge of the model of the system; therefore, two

cases are considered. The first case uses the actual model to estimate the noise covariances.

The second uses the initial estimate of the model for estimating the noise covariances, which

is a more realistic scenario. The two cases are considered to demonstrate the effectiveness of

the algorithm and to show that error in the model has a nominal impact on the parameter

estimation step.

The term, dk, models the wind excitation imposed on the main structure. The quality

of noise estimation depends on the relative contributions of the unknown feedthrough dis-

turbance, process, and measurement noises. Since the contribution of the process noise wk

to the transition of the state vector and of the measurements noise wk to the measurement

is small relative to the level of unknown feedthrough disturbance dk, the estimation of dk

is expected to be reasonably good, which as will be shown is the case.

By separating dk and wk, the relative contribution of external disturbance from other

sources driving the system dynamics (such as model uncertainty) are distinguished. Unlike

Qk, Sk has a large impact on the result, and Qk is used to prescribe the level of confidence
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Table 5.8: Noise covariance parameter α estimates using the actual model and initial model
parameter estimate for a main mass excited 2-DOF system

Index
Actual model Initial estimate

Actual Estimate Error ĉv Estimate Error ĉv

% % % %

Sk

1 0.22 0.22 0.102 0.845 0.22 0.074 0.846
2 0.15 0.15 0.188 0.542 0.15 0.216 0.544

Rk

3 2.58 2.03 21.1 39.7 3.27 26.8 24.7
4 2.58 2.12 17.8 22.2 2.94 14.2 16.0

on the measurements versus the model. This simplifies the problem to the identification

of Sk and Rk, and Qk can be at the user’s discretion.

Table 5.8 gives the initial estimate of the noise covariances matrices, and the final

mean estimates for the known and initial estimate model cases, together with the percent

error and coefficient of variation. The performance of the known model case is very good,

with small performance degradation for the unknown model case. However, the results

are quite satisfactory considering the initial estimate of the noise covariance matrices are

arbitrary the initial model estimate is considerably in error. It will be shown that this does

not significantly impact the parameter estimation step. For both cases, there is a more

accurate estimate of the process noise covariance when compared to the measurement noise

covariance estimate. The covariance estimate parameter, α is normalized with respect to

its actual value and plotted in Fig. 5.5.
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Figure 5.5: Normalized (a) feedthrough disturbance noise covariance Ŝ and (b) measure-
ment noise covariance R̂ parameter estimates averaged over 100 filter realizations.
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Table 5.9: Modal identification results using EKF for a 2DOF linear system with unknown
main mass excitation and unknown process and measurement noise covariances

Identified Parameter

ωn,1 ωn,2 ζ1 ζ2 φ21 φ22

rad/s rad/s

Actual 2.08 5.26 0.02 0.05 1.77 -0.57
Initial 1.75 4.57 0.05 0.09 1.61 -0.62
Error (%) 16.0 13.0 150 80.0 8.39 9.16

Known Sk and Rk

Estimate 2.08 5.25 0.025 0.057 1.76 -0.57
Error (%) 0.025 0.19 26.3 14.3 0.104 1.78
ĉv (%) 0.582 0.619 23.7 9.94 0.736 -6.26

Unknown Sk and Rk

Estimate 2.08 5.25 0.025 0.057 1.77 -0.59
Error (%) 0.0034 0.23 25.7 13.3 0.147 3.89
ĉv (%) 0.583 0.591 23.5 9.82 0.727 -4.95

The parameter identification step is performed next. The results are compared with

the known noise covariance case (similar to that presented in Sec. 5.4.4). The final mean

parameter estimates after 100 realizations of the filter, together with the percent error and

coefficient of variation are summarized in Table 5.9. The performance of the parameter

estimation using the estimated noise covariances is comparable to the case where the noise

covariances are known a priori.

The concept of parameter estimation by EKF is extended for the purposes of modal

identification of a structure equipped with a PTMD next. The main conceptual difference is

that the underlying structure’s modal characteristics are identified from PTMD-attenuated

response measurements. The underlying structure’s modal properties are necessary to

determine the optimal damper parameters, and compare those values with the measured

in-service parameters in order to perform the condition assessment.
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Chapter 6

Numerical study on online parameter

estimation for PTMD equipped

structures

A key aspect to ensure good performance of tuned mass dampers (TMDs) is to tune the

auxiliary parameters to their optimal values. When the bare structural modal characteris-

tics are known, design formulae for selecting the optimal parameters are available and have

been presented in Chapter 4, including the case where the coupling effect of biaxial motion

of a pendulum tuned mass damper (PTMD) is considered. This has been the subject of a

vast amount of research in the area of TMDs [58, 26, 33, 59, 83, 75, 1, 97, 96, 20]. However,

little attention has been focused on identifying the underlying structure’s modal proper-

ties; extracting these modal properties is crucial, as the optimal auxiliary parameters are

functions of the bare structure’s modal characteristics.

A few researches have sought to identify the modal characteristics of a coupled main

and auxiliary system with a TMD [30, 59]. A well-tuned TMD produces two closely-

spaced modes with a relatively high level of damping, introducing a level of difficulty into

the identification process. Even after identifying these natural frequencies, extracting the

underlying structure’s modal characteristics remains a challenge. Hazra et al presented a
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heuristic approach, where the natural frequency of the main structure is approximated as

the arithmetic mean of the bimodal frequencies introduced by the TMD [30]. Similarly,

Ricciardelli et al used an experienced-based approach and subsequently updated this in

an iterative framework for the adjustment of a semi-active tuned mass damper (STMD),

though no explicit identification of the underlying structural modes is performed [77]. A

shortcoming of these approaches is that they rely on a TMD that is tuned near the mode to

be controlled, producing the bimodal frequency response, and the availability of a relatively

smooth response spectra.

In this work, the problem of modal identification is cast within the framework of pa-

rameter estimation using extended Kalman filter (EKF). EKF is used because it allows for

relatively straightforward online implementation and addresses the inherent nonlinearity in

the system of equations for the combined state and parameter estimation. The approach

adopted is as follows. First, the equations of motion for the structure and PTMD are

transformed to the modal domain. Second, the main system is described using unknown

modal properties, namely the circular natural frequencies, mode shape vectors, and modal

damping ratios. The PTMD is treated as known, since its properties can generally be mea-

sured precisely. Third, the unknown model parameters are appended to the state vector,

and state estimation proceeds. Appending the unknown model parameters to the state

vector results in a non-linear system; therefore, it is necessary to linearize the system and

measurement matrices (for the purpose of estimate covariance propagation) and perform

the estimation. Only acceleration measurements are assumed to be available in this study.

The following rationale is presented demonstrating why this approach is advantageous:

• For the purpose of selecting optimal auxiliary damper parameters, the main struc-

ture’s natural frequency is of primary interest. It has been demonstrated that the

performance of EKF identification of the bare structure’s natural frequencies is ex-

tremely precise, even for the case of unknown input excitation.

• It has been shown previously that the EKF identification algorithm adequately iden-

tifies the modal damping ratios; however, there is a greater level of uncertainty in

the final converged values. As was shown in Chapter 4, and confirmed by various
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researchers [79, 3, 26, 75], the optimal auxiliary frequency and damping ratios are

not particularly sensitive to the main mass damping ratio, so this shortcoming is not

expected to dramatically affect the selection of optimal damper parameters. Addi-

tionally, the selection of the auxiliary damping coefficient is often governed by other

design constraints, such as reducing the stroke of the TMD [77].

• It is proposed that the auxiliary damper parameters are measured and included as

part of the model governing the dynamics of the filter (part of the system matrix,

Ak). Therefore, the identification approach is expected to be independent of the level

of detuning present in the auxiliary system. Attention is not focused on identifying

the auxiliary damper parameters (namely, ca, ka, ma, L and h) as these can be read-

ily measured or based on manufacturer’s specifications, which are closely controlled

during the construction of the TMD.

• Since the proposed identification is being performed in the modal domain, it doesn’t

artificially impose constraints on the model, aside from the proportional damping

assumption (that is, ΦTCΦ is a diagonal matrix), a necessary condition in order to

decouple the modes of vibration when transforming from physical to modal coordi-

nates.

• The EKF combined state and parameter identification can readily be applied on-line,

for the purpose of real-time adjustment of the damper parameters, with limited user

intervention.

The equations of motion for a planar PTMD coupled with a uniaxial multi-degree-of-

freedom (MDOF) main structure are presented. The system is cast into a form amenable

to the EKF combined state and parameter estimation. A simple numerical example is

presented for the case of unknown inputs, but with known measurement, stochastic dis-

turbance, and process noise covariances. The issue of unknown noise covariances is then

addressed, followed by a numerical example demonstrating noise covariance, state, and

parameter estimation for bare structural system identification.
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6.1 Equations of motion for a MDOF structure equipped

with a planar PTMD

Consider a MDOF with a planar PTMD attached to the top floor, as shown in Figure

6.1. The main structure consists of ndegree-of-freedom (DOF); therefore, the total system

has n+1 degrees-of-freedom when the auxiliary rotational mass is included. Assume the

structure is of the shear-beam type with classical (proportional) damping. The equations

of motion are
m1 0 . . . 0

0 m2 . . . 0
...

...
. . .

...

0 0 . . . mn




ü1

ü2

...

ün

+


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn




u̇1

u̇2

...

u̇n

+


k1 −k1 . . . 0

−k1 k1 + k2 . . . 0
...

...
. . .

...

0 0 . . . kn−1 + kn




u1

u2

...

un

 =


P1(t)

P2(t)
...

P3(t)

−


ma

(
Lθ̈ + ü1

)
0
...

0


(6.1a)

maL
2θ̈ + cah

2θ̇ +
(
magL+ kah

2
)
θ = −maLü1 (6.1b)

Eqs. 6.1a can be rewritten as

Mü + Cu̇ + Ku = P(t)− Γma

(
Lθ̈ + ü1

)
(6.2)

where the influence vector Γ is given by Γ =
[

1 0 . . . 0
]T

. Note that the ensuing

development of the equations of motion assumes the PTMD is suspended from the top floor;

a similar system of equations can be developed for the case where a PTMD is coupled with

a different DOF by revising the selection of the influence vector. Using the mode shape
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Figure 6.1: MDOF main structure with point mass planar PTMD

matrix, Φ, given by

Φ =
[
φ1 φ2 . . . φn

]
=


φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

. . .
...

φn1 φn2 . . . φnn

 (6.3)

the main structure can be transformed into the modal domain by letting ü = Φÿ, u̇ = Φẏ,

and u = Φy in Eq. 6.2, and premultiplying by ΦT . Eq. 6.2 becomes

ΦTMΦÿ + ΦTCΦẏ + ΦTKΦy = ΦT
[
P(t)− Γma

(
Lθ̈ + ü1

)]
(6.4)

This transformation assumes that the auxiliary system has no effect on the mode shapes of

the main structure, which is a reasonable assumption for relatively light auxiliary mass sys-

tems [26]. For mass normalized modes and proportional damping, the uncoupled equations
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of motion in the modal domain can be written as

ÿ1 + 2ζ1ωn,1ẏ1 + ω2
n,1y1 = φT1

[
P(t)− Γma

(
Lθ̈ + ü1

)]
(6.5)

ÿ2 + 2ζ2ωn,2ẏ2 + ω2
n,2y2 = φT2

[
P(t)− Γma

(
Lθ̈ + ü1

)]
(6.6)

...

ÿn + 2ζnωn,nẏn + ω2
n,nyn = φTn

[
P(t)− Γma

(
Lθ̈ + ü1

)]
(6.7)

Substitute Eq. 6.1b into Eqs. 6.6 through 6.7 to eliminate ü1. Eqs. 6.6 through 6.7 become

ÿj = −ω2
n,jyj−2ζjωn,j ẏj +φ1j

magL+ kah
2

L
θ+φ1j

cah
2

L
θ̇+φTj P(t); j = 1, 2, . . . , n (6.8)

This can be written more concisely in matrix form as

ÿ(t) = −Ĉẏ(t)−Λy(t) + M−1
r ΦTΓ

[
cah

2

L
θ̇(t) +

magL+ kah
2

L
θ(t)

]
+ M−1

r ΦTP(t) (6.9)

where Ĉ (Eq. 5.227) is the classical modal damping matrix, Λ (Eq. 5.228) is the spectral

matrix, and Mr is the modal mass. Substituting ü1 = φ11ÿ1 + φ12ÿ2 + . . .+ φ1nÿn into Eq.

6.1b and rearranging to solve for θ̈ produces

θ̈(t) =
1

L
ΓTΦ

[
Ĉẏ(t) + Λy(t)

]
− 1

L
ΓTΦM−1

r ΦTP(t)

−
(
1 +maΓ

TΦM−1
r ΦT

) [ cah2

maL2
θ̇(t) +

magL+ kah
2

maL2
θ(t)

] (6.10)

The modal displacements and velocities as well as the auxiliary mass rotation and angular

velocity are selected as the states of the system. Therefore,

x(t) =
[
y1(t) y2(t) . . . yn(t) θ(t) ẏ1(t) ẏ2(t) . . . ẏn(t) θ̇(t)

]T
(6.11)
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The continuous time state transition equation is given by

ẋ(t) = Acx(t) + Ecd(t) + w(t) (6.12)

where Ac is the system matrix and Ec is the input matrix. The state transition and

measurement matrices are given in Table 6.1.

For the case of wind excitation, the input force is not easily measured and is generally

considered unknown. To accommodate this, the external excitation, d(t), is treated as

an unknown stochastic input (previously denoted by P(t)). The additive process noise is

denoted by w(t). For structural monitoring applications, it is most convenient to measure

the acceleration responses. Specifically, the acceleration responses of the main DOF ü1(t),

ü2(t), . . ., ün(t) are measured, as well as the horizontal acceleration of the auxiliary mass.

Since the states of the main system correspond to the modal responses, they need to be

combined using the modal matrix to determine the physical responses and the output

vector z(t).

z(t) =



z1(t)

z2(t)
...

zn̄(t)

zn̄+1(t)


=



ü1(t)

ü2(t)
...

ün̄(t)

Lθ̈(t) + ü1(t)



=



φ11ÿ1(t) + φ12ÿ2(t) + . . .+ φ1n̂ÿn̂(t)

φ21ÿ1(t) + φ22ÿ2(t) + . . .+ φ2n̂ÿn̂(t)
...

φn̄1ÿ1(t) + φn̄2ÿ2(t) + . . .+ φn̄n̂ÿn̂(t)

Lθ̈(t) + φ11ÿ1(t) + φ12ÿ2(t) + . . .+ φ1n̂ÿn̂(t)



(6.13)

The continuous time measurement equation is given by

z(t) = Ccx(t) + Fcd(t) + v(t) (6.14)
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where Cc is the measurement matrix and Fc is the direct feed-through matrix. The additive

measurement noise is denoted by v(t). The corresponding output and direct feed-through

matrices are given in Table 6.1.

6.1.1 Combined state and parameter estimation example with

known noise covariances

An idealized shear-frame 5-DOF structure is considered for a numerical example to demon-

strate the performance of the algorithm described for combined state and parameter es-

timation (of the underlying structure’s modal properties). The characteristic properties

of the structure, namely the mass, damping, and stiffness matrices as well as the natural

frequencies and modal damping ratios are provided in Table 6.2. The damping ratios for

the first two modes were selected to be 1% and 5%, respectively; the modal damping ratios

for the remaining modes were selected assuming Raleigh (stiffness and mass) proportional

damping. The parameters to be identified are the natural frequencies, modal damping ra-

tios, and mode shapes. A normalization procedure for the mode shapes is selected, wherein

the mode shape coefficients corresponding to the DOF to which the PTMD is connected

are set to unity; the remaining coefficients are parameters to be identified.

The auxiliary system parameters are measured by field investigation, or set based on

engineering design drawings and manufacturers specifications. For example, the pendulum

length L and the spring or damper attachment point, h can be field measured in the as-

constructed state. It’s generally impractical to measure the auxiliary mass, ma, but unlike

the main structure mass, this measurement is precisely quantified in the design stage and

closely controlled during the construction and installation. The auxiliary damping, ca, and

stiffness, ka, are generally specified by the product manufacturer and based on measured

data. The auxiliary system parameters are assumed to be known perfectly throughout the

filtering process. For the present example, the selection of the auxiliary damper parameters

are based on Eqs. 4.8 and 4.9, based on a mass ratio of µ = 0.005 (ma = 70.2 kg). The

pendulum length is coincident with the attachment point for the auxiliary damping, and

equal to L = h = 1.22 m. The auxiliary damping coefficient is ca = 14.0 N s/m and there
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is no auxiliary spring (ka = 0).

Aside from the introduction of the auxiliary system, the subsequent example differs

from those presented previously in that a mass matrix with some error with respect to

the actual model is used in the identification process. Therefore, a reasonable initial

estimate of the system mass is beneficial. To explore the effect of greater error in the mass

estimate, three cases are considered. Each element of the shear-beam model for the initial

estimate model is selected from a normal distribution with standard deviation of 5% of

the actual stiffness and a mean 15% below the actual stiffness, as finite element models

generally underestimate the stiffness of a tall structure by only modelling the primary

structural members and neglecting the additional stiffness introduced by features such as

the cladding and interior finishes. Three different cases of mass matrix are selected; each

element of the mass matrix is selected from a normal distribution with standard deviation

of 1% of the actual value about a mean of 5%, 10%, and 15% above the actual mass.

Selecting about a mean above the actual mass is because a conservative designer will

generally overestimate the mass when performing a static analysis. The resulting percent

errors in circular natural frequencies vary between 8.9% − 15.4% (Table 6.3). The initial

damping ratio estimates were chosen from a normal distribution with standard deviation

of 0.0125 about an arbitrarily selected mean value of 0.05. The mode shape vectors are

not sensitive to the initial errors as introduced above in the stiffness and mass matrix. In

order to demonstrate the effectiveness of the EKF algorithm, an additional perturbation

is introduced to the mode shape coefficients, selected randomly from a normal distribution

with a standard deviation of 15% of the initial estimate about the initial estimate; the

mode shapes are subsequently normalized such that the coefficient at the DOF to which

to PTMD is connected is unity.
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Table 6.2: Properties of a 5DOF PTMD-equipped structure

M =


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

× 103 kg

K =


0.5 −0.5 0 0 0
−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0
0 0 −0.5 1 −0.5
0 0 0 −0.5 1

× 106 N/m

ζ =
[

0.0200 0.0500 0.122 0.156 0.178
]

fn =
[

0.453 1.32 2.08 2.68 3.05
]

Hz

The structure was excited with a externally applied force at each DOF. The variance

of the applied force was

Sk = diag
[

3.11 5.99 5.70 5.30 4.61
]
× 105 (6.15)

The acceleration response at each DOF was measured as well as the horizontal acceleration

of the PTMD. Additive measurement noise was introduced at each measurement based on

a signal-to-noise ratio (SNR) of 20 with respect to the auxiliary response. A total of 100

realizations of the filter were performed with a length of 300 s. The sampling frequency

is 400 Hz. The initial state estimates (displacements and velocities) were assumed to

be zero (at rest conditions), though 150 s of data was discarded from the beginning of

the simulations to ensure the system did not begin from rest and transient effects had

decayed. The initial parameter estimates were based on the corresponding finite element

models. The initial state estimate error covariance was selected based on reasonable modal

responses variances from the initial model estimates subjected to a similar external input.
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The selection of the state estimation error covariance corresponding to the parameters

(appended states) was based on 10% variance for the circular natural frequencies, 2.5% for

the modal damping ratios, and 1% for the mode shape coefficients.

For the present application, the additive process noise wk is treated as a tuneable

parameter used to assign confidence in the model. If the process noise is assumed larger

than actual, than the effect on the state estimation is to put greater emphasis on the

measurements, and reduce the confidence in the model [85]. If the filter has too little

process noise, it may become susceptible to modelling errors. On the other hand, too

much process noise would prevent the filter from estimating the state accurately. For the

problem at hand, it is generally obvious when too much process noise is used, as the state

estimates become noisy. This is especially true for the case of constant states when the

parameters are appended to the state vector. A small level of process noise covariance,

Qk, is introduced at the displacement and velocity state positions, equal to 1× 10−6 times

the initial state estimate error covariance. The primary purpose of this is to prevent the

state estimates from drifting due to accelerometer bias, resulting from the integration of

noisy acceleration measurements to determine velocities and displacements.

The results of the final converged values, percent error, and coefficient of variation

(ĉv) are given in Tables 6.3 (circular natural frequency) and 6.4 (damping ratios). The

parameter estimates averaged over the 100 realizations are shown in Figs. 6.2 (circular

natural frequency) and 6.3 (damping ratios). The final mode shape vectors are normalized

with respect to their maximum displacements and plotted in Fig. 6.4 for the case where

the mass matrix has a mean error of 5%.
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Table 6.3: Comparison of natural frequency identification results for 5DOF system
equipped with a PTMD for various levels of error in the main mass matrix

Error in M
Identified Parameter

fn,1 fn,2 fn,3 fn,4 fn,5

% Hz Hz Hz Hz Hz

Actual 0.453 1.32 2.08 2.68 3.05

5 Initial 0.409 1.21 1.87 2.41 2.77
Error (%) 9.70 8.87 10.2 9.88 9.40
Estimate 0.453 1.32 2.08 2.68 3.06
Error (%) 0.0782 0.0336 0.177 0.246 0.0515
ĉv (%) 0.661 0.52 0.734 0.669 0.639

10 Initial 0.396 1.17 1.86 2.34 2.69
Error (%) 12.5 11.2 10.9 12.8 11.9
Estimate 0.453 1.32 2.09 2.68 3.06
Error (%) 0.0896 0.111 0.0491 0.133 0.188
ĉv (%) 0.669 0.521 0.730 0.677 0.644

15 Initial 0.387 1.12 1.77 2.29 2.58
Error (%) 14.7 15.0 14.9 14.5 15.4
Estimate 0.453 1.32 2.09 2.7 3.05
Error (%) 0.109 0.146 0.163 0.818 0.0196
ĉv (%) 0.673 0.520 0.738 0.678 0.625

161



Table 6.4: Comparison of modal damping ratio identification results for 5DOF system
equipped with a PTMD for various levels of error in the main mass matrix

Error in M
Identified Parameter

ζ1 ζ2 ζ3 ζ4 ζ5

%

Actual 0.02 0.05 0.122 0.156 0.178

5 Initial 0.0483 0.0572 0.0406 0.0311 0.0516
Error (%) 141 14.3 66.6 80.1 71.0
Estimate 0.0276 0.0592 0.136 0.174 0.200
Error (%) 37.8 18.3 11.5 11.5 12.4
ĉv (%) 23.5 7.43 4.40 3.15 3.03

10 Initial 0.0452 0.0474 0.0678 0.0479 0.065
Error (%) 126 5.11 44.3 69.3 63.5
Estimate 0.0278 0.0587 0.136 0.177 0.202
Error (%) 39.2 17.4 12.2 13.5 13.6
ĉv (%) 22.9 7.47 4.48 3.23 3.08

15 Initial 0.0485 0.0198 0.0453 0.0367 0.0502
Error (%) 143 60.4 62.8 76.5 71.8
Estimate 0.0281 0.0574 0.137 0.177 0.202
Error (%) 40.3 14.8 12.2 13.4 13.5
ĉv (%) 22.6 7.37 4.48 3.27 3.05
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Figure 6.2: Parameter estimates for (a) ωn,1, (b) ωn,2, (c) ωn,3, (d) ωn,4, and (e) ωn,5 with
initial errors in the mass matrix, M of 5%, 10%, and 15%.
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Figure 6.3: Parameter estimates for (a) ζ1, (b) ζ2, (c) ζ3, (d) ζ4, and (e) ζ5 with initial
errors in the mass matrix, M of 5%, 10%, and 15%.
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Figure 6.4: Final mode shape vector estimates for (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, and (e)
5th mode for a 5% error in the initial mass matrix
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There is no trend for decreased performance in the final converged natural frequency

estimates for greater levels of error in the main mass. The estimation of the bare structure

natural frequencies is extremely precise, despite initial estimates being incorrect by up to

15.4%. While there is generally considerable improvement in the estimate of the damping

ratios (over the initial arbitrary estimates), the errors in the final converged estimates

varies from 11.5% to 18.3% for the higher order modes, and up to 40.3% for the first mode

of vibration. The results are similar to those presented for the 2-DOF example presented

earlier in Sec. 6.3, where the lower levels of modal damping are more difficult to accurately

estimate. It is noted that the absolute error in each of the estimates is similar; the level

of error is therefore overemphasized when the relative error is considered. There is also

an additional performance degradation with greater error in the main mass estimate. The

mode shape vector identification for the main mass system with 5% errors are given in Fig.

6.4 and demonstrate good estimation results, particularly for the lower modes. The results

for the 5% case are representative of the other cases considered.

6.1.2 Example of noise covariance estimation for a 5DOF PTMD-

equipped structure

It is important to note that the noise covariance estimation step is performed prior and

separately from the combined state and parameter filter. Accurate knowledge of the sys-

tem model is likely not available; therefore, several cases are considered for this example.

For the first case, the actual model is used to demonstrate the effectiveness of the noise co-

variance estimation algorithm presented in Secs. 5.3.2 through 5.3.4. For the second case,

a model based on the initial finite element representation, where the stiffness elements are

underestimated by a mean of 15% with a standard deviation of ±5% of the actual values;

the mass is overestimated by a mean of 5% with a standard deviation of ±1% of the actual

values. The auxiliary system parameters are known and optimally tuned to the actual

structure (provided in Sec. 6.1.1). A third case is considered, to understand the effect

that a detuned PTMD has on the noise covariance estimation step. In this situation, the

auxiliary parameters are chosen such that they would be optimally tuned to the initial
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estimate of the main structure; however, since this auxiliary system is connected to the

actual structure, it is effectively detuned (by 12.5% frequency ratio) with respect to the

actual structure. This condition seeks to emulate the scenario where the designer has fore-

casted the bare structural properties and designed the PTMD accordingly. The pendulum

length is L = h = 1.50 m and auxiliary damping coefficient is ca = 12.4 N s/m. There

is no auxiliary spring (ka = 0) and the auxiliary mass is as in the tuned case. As in the

example presented in Sec. 5.4.5, only the feedthrough process noise covariances Sk and

measurement noise covariance Rk are estimated; the additive process noise covariance Qk

is a tunable parameter selected by the designer to assign a level of confidence in the model.

The actual unknown stochastic input process noise covariance, Sk, is given in Eqs.

6.15. The additive measurement noise was assigned to each measurement (acceleration

response) based on a SNR of 20 at the auxiliary DOF. The initial unknown disturbance

and measurement noise covariance estimates are S = diag
[

1 1 1 1 1
]
× 107 and

R = diag
[

3 3 3 3 3
]
× 10−3, respectively. Each are assembled into matrices Sl and

Rl, where l = 1, 2, . . . , N̂ . When multiplied by the true value of α,

α =
[

0.0311 0.0599 0.0570 0.0530 0.0461 0.391 0.391 0.389 0.389 0.390 0.391
]

as in Eqs. 5.157 and 5.158, the actual state covariance matrices are returned. The model

parameters are set to the actual parameters or the initial estimates, depending on which

case is being considered. The components of α are initially set to unity. The parameter

vector α is then estimated according to the algorithm described in Eqs. 5.183 through

5.213. The normalized estimates for the values of mean α̂ (normalized with respect to true

values), for the case where the model is set to the actual parameters, are shown in Fig. 6.5.

Fig. 6.5a corresponds to the estimation of Sk while Fig. 6.5b corresponds to Rk. Details

on the actual parameter values, initial estimates, mean values of the final estimates, and

the coefficients of variation (ĉv) are detailed in Table 6.5.
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Figure 6.5: Normalized (a) feedthrough disturbance noise covariance Ŝ and (b) measure-
ment noise covariance R̂ parameter estimates averaged over 100 filter realizations.
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Table 6.5: Noise covariance parameter α estimates using the actual model parameters,
initial model parameter estimate with tuned PTMD, and initial model parameter estimate
with detuned PTMD

Index
Actual model Initial estimate of model

Tuned Detuned

Actual Estimate Error Estimate Error Estimate Error

% % %

Sk

1 0.0311 0.0312 0.506 0.0335 7.81 0.0337 8.31
2 0.0599 0.0600 0.0677 0.0664 10.8 0.0662 10.5
3 0.0570 0.0571 0.0701 0.0657 15.1 0.0657 15.3
4 0.0530 0.0527 0.506 0.0580 9.46 0.0585 10.4
5 0.0461 0.0462 0.325 0.0528 14.6 0.0526 14.3

Rk

6 0.391 0.391 0.0174 0.470 20.3 0.454 17.5
7 0.391 0.384 1.58 0.310 20.6 0.297 22.7
8 0.389 0.392 0.998 0.343 11.8 0.332 14.3
9 0.389 0.383 1.44 0.321 17.5 0.310 20.1
10 0.390 0.376 3.52 0.361 7.25 0.359 6.95
11 0.391 0.391 0.0398 0.391 0.0214 0.387 0.547

The noise covariance estimation for the case of known model parameters is precise.

Initial estimates of the noise covariance were arbitrary and considerably in error, and

convergence close to the actual noise covariances was realized. The residual correlation

approach used here is deemed a suitable approach for the problem at hand. For practical

applications, however, the model parameters will not be known precisely. Therefore, two

examples were considered using the initial parameter estimates, which were assumed known

for the purpose of noise covariance estimation. The improvement over the initial noise

covariance estimate is dramatic, with errors in the final converged values of up to 15.3%

and 22.7% for the process noise, Sk, and measurement noise, Rk, respectively. It will

be demonstrated that this level of error has no noticeable effect on the final parameter
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estimates in the following section.

6.2 Combined state, parameter, and noise covariance

estimation for a PTMD equipped structure

The noise covariance estimates obtained from the previous step are then used in the com-

bined state and parameter estimation. The initial state vector was selected as x̂0 =[
0 ω̂n,j,0 ζ̂j,0 φ̂ij,0

]T
, where ω̂n,j, ζ̂j, and φ̂ij are vectors that contain the initial es-

timates of the appended parameter, and are based on a modal analysis using the crude

finite element model. Two cases are considered, as described in the Sec. 6.1.2. The first

is for the case where the auxiliary system is properly tuned to the actual structure. The

second is where the auxiliary system is tuned to the initial estimate of the unknown model;

therefore, detuned with respect to the actual model.

The initial state covariance P0 for the actual state estimates is established based on

knowledge of the state variance from the noise estimation procedure. The initial state

estimation error covariance for the appended parameters is established using a 10% variance

in the initial estimate for the natural frequencies, 2.5% variance for the damping ratio

estimates, and 1% for the normalized mode shape vector estimates. The selection of the

process noise covariance Qk is to compensate for any modelling errors and to improve the

constant state (appended parameter) estimates; a small amount of process noise covariance

equal to 1×10−6 times the initial state estimation error covariance was introduced at each

of the displacement and velocity states, primarily to compensate for accelerometer bias.

The combined state and parameter estimate was performed using 100 data sets, each 300

s long. The system was excited for 150 s before recording data in order to ensure transient

effects had decayed and the data sets were not based on at rest initial conditions.
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Table 6.6: Natural frequency identification results for 5-DOF system equipped with a
PTMD for unknown external excitation and unknown noise statistics

Identified Parameter

fn,1 fn,2 fn,3 fn,4 fn,5

Hz Hz Hz Hz Hz

Actual 0.453 1.32 2.08 2.68 3.05
Initial 0.409 1.21 1.87 2.41 2.77
Error (%) 9.7 8.87 10.2 9.88 9.4

Tuned

Estimate 0.453 1.32 2.08 2.68 3.05
Error (%) 0.028 0.0403 0.371 0.00919 0.164
ĉv (%) 0.668 0.496 0.584 0.696 0.643

Detuned

Estimate 0.453 1.32 2.08 2.67 3.05
Error (%) 0.0291 0.00206 0.307 0.14 0.272
ĉv (%) 0.442 0.364 0.711 0.6 0.793

Table 6.6 provides the actual structure’s natural frequencies, fn,j (Hz), together with the

mean of the final estimated value, f̂n,j and coefficient of variation (ĉv). The percent error

is reported with respect to the actual values for the final converged and initial parameter

estimates. The final estimate for the natural frequencies for all cases converged close

to the actual values. The results demonstrate that without any knowledge of the input

excitation, including the statistics, the combined state-noise covariance estimation followed

by the state-parameter estimation provides an accurate and reliable estimate of the natural

frequencies. The convergence of the natural frequency estimates is fast, as illustrated in

Fig. 6.6. The tuned and detuned auxiliary system cases’s performance is comparable; for

the purpose of frequency identification, the performance is relatively insensitive to the level

of tuning of the auxiliary damping device.
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Table 6.7: Modal damping ratio identification results for 5-DOF system equipped with a
PTMD for unknown external excitation and unknown noise statistics

Identified Parameter

ζ1 ζ2 ζ3 ζ4 ζ5

Actual 0.02 0.05 0.122 0.156 0.178
Initial 0.0483 0.0572 0.0406 0.0311 0.0516
Error (%) 141 14.3 66.6 80.1 71

Tuned

Estimate 0.0287 0.0592 0.135 0.173 0.199
Error (%) 43.4 18.4 10.9 10.8 11.9
ĉv (%) 22.9 7.1 3.96 2.75 3.09

Detuned

Estimate 0.0242 0.0591 0.135 0.172 0.199
Error (%) 21.1 18.1 10.9 10.5 11.7
ĉv (%) 22.4 8.1 4.2 2.74 3.13

Damping ratio identification results are provided in Table 6.7, and generally demon-

strate reasonable performance over the initial estimate of the modal damping ratio. For the

mode to which the PTMD is tuned, the error is more pronounced. The cause of this error

is two-fold. First, treating the unknown excitation as a stochastic process noise allows the

filter itself to be able to compensate for the attenuation introduced by the damping ratios.

Second, it can be observed that the absolute error in the estimates is generally consistent,

always slightly overestimating the damping ratio. Numerical errors introduced as a result

of the approximate discretization approach (Sec. 5.1.3) contribute to this effect. Using a

faster sampling rate improves the estimate, but there is a significant trade-off related to the

computational effort required. From the detuned case, the damping ratio estimate for the

first mode is vastly improved when compared to the tuned case. The introduction of the

auxiliary damping device makes modal damping identification markedly more challenging.

Fig. 6.7 plots the convergence of the damping estimates for both the tuned and detuned

auxiliary systems. The results demonstrate that a considerable length of data must be
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processed by the filter before convergence occurs.
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Figure 6.6: Parameter estimates for (a) ωn,1, (b) ωn,2, (c) ωn,3, (d) ωn,4, and (e) ωn,5 for a
tuned and detuned auxiliary mass where the process and measurement noise covariances
are unknown.
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For the purpose of tuning TMDs, researches have noted that the main mass damping

ratio has little effect on the optimal parameters [75, 26, 3, 79]; therefore, accurate iden-

tification of the modal damping ratios is not as crucial as frequency identification for the

purpose of retuning TMDs. Also, the optimal auxiliary to main mass damping ratio that

minimizes the root mean squared (RMS) response of the main structure or maximizes the

effective damping introduced generally results in substantial motion of the auxiliary mass,

particularly for small mass ratios. Space constraints within the structure may require lim-

iting the motion, or stroke, of the TMD; therefore, a damping ratio greater than optimal

may be selected at a sacrifice of TMD efficiency [77, 55, 101].

The initial estimates of the mode shape vectors, assembled using the estimated mass and

stiffness matrix, are not sensitive to the error introduced and are not substantially different

from the actual mode shapes. To demonstrate the effectiveness of the identification method

presented, an additional random perturbation is introduced to each element of the mode

shape vectors. These values were then normalized with respect to the DOF to which to

PTMD is coupled, and used as the initial estimates in the state-noise covariances-parameter

estimation filter. A mean and coefficient of variation of the mode shape coefficient estimates

for 100 filter realizations are summarized in Table 6.8. The mode shape vectors are also

plotted in Fig. 6.8 together with the initial estimate, normalized with respect to the

maximum displacement coordinate, for the tuned auxiliary mass condition.

The results demonstrate good performance in the identification of the mode shape

vectors, particularly in the lower-order modes, which are of greater interest as they con-

tribute to the majority of the structural response. Most importantly, there is excellent

identification of the mode shape vector for the mode to which the PTMD is tuned.

There is no noticeable decline in performance of the combined state and parameter

estimation using the estimated noise covariance matrices, despite errors of up to 15.3%

and 22.7% in the process noise covariance, Sk, and measurement noise covariance, Rk,

respectively. This validates the noise covariance estimation approach.

The approach presented in this section overcomes several issues not previously ex-

plored in time domain parametric identification. First, an unknown main mass excitation
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ĉ v
φ

4
j

φ̂
4
j
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was considered; this was treated as a unknown stochastic process noise. Second, since only

acceleration responses were assumed to be available, the traditional form of the EKF had

to be adapted for the case of feedthrough of the unknown disturbance noise. Third, in ad-

dition to the process noise being unknown, it’s statistics, namely, the covariance matrix Sk,

as well as the covariance of the additive measurement noise, Rk, were also treated as un-

known. A process noise estimation step was invoked to determine these noise covariances.

A recursive least squares estimator was used to estimate the noise covariance parameters

that produced a residual sequence with a measured correlation that fit its theoretical value.

These estimated noise statistics are used to drive the combined state and parameter esti-

mation filter. The development of the method was systematically benchmarked against an

existing EKF identification example presented in the literature. A numerical example was

presented, where precise estimation of the natural frequencies was demonstrated, which is

of primary concern for the purpose of tuning TMDs. Estimation of the modal damping

ratios was deemed adequate, though poorer performance was documented for modal damp-

ing ratio estimation of the controlled mode. Effective or equivalent damping introduced by

a TMD is another parameter of interest in assessing the performance of in-service TMDs;

estimating this quantity using the EKF is considered next.

6.3 Estimating effective viscous damping in TMD-

equipped structures

The concept of “effective damping” or “equivalent damping”, first proposed by Vickery [94]

and McNamara [66], is commonly referenced when quantifying TMD performance. The

term refers to equating the performance of the combined main and auxiliary system to

that of a single-degree-of-freedom (SDOF) system with modal damping parameter, ζe, and

operating at the same natural frequency for the controlled mode of vibration. Equations

which relate the effective damping introduced by the TMD are available for the case of

main mass excited [66] and base excited structures [26], for both conventional translational

TMDs and PTMDs [26]. Maximizing the effective damping introduced by the TMD has
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been used as a cost function for selecting optimal damper parameters by various researchers

[55, 48, 88, 94].

Despite its simplicity, effective damping has experienced relatively little use in describ-

ing the performance of TMDs in actual applications. This is because its theoretical calcu-

lation is based on the RMS displacement response of the TMD-equipped structure, which

is seldom measured; instead, acceleration response measurements are taken from which dis-

placements need to be inferred. Accelerometer bias results from direct integration of the

noisy acceleration responses, and assumptions of at-rest initial and final displacements is

generally not appropriate from wind excitation. This issue is of particular significance when

the performance of an in-service TMD must be demonstrated to verify that a prescribed

level of effective damping has been achieved.

It is proposed to apply the same identification approach presented earlier, namely EKF

modal identification, for the purpose of estimating effective damping. This is accomplished

by fitting the measurement data to a SDOF model of the structure described in the modal

domain with known frequency characteristics and unknown damping. The damping pa-

rameter is appended to the state vector and estimated as the effective damping introduced

by the TMD. A simple example is demonstrated first. Subsequently, the method is ex-

tended for the case of unknown underlying structure modal properties by running two

simultaneous filters. The first estimates the underlying modal characteristics (as described

in Chapter 5) and the second uses the current estimate of the natural frequency for the

controlled mode to estimate the effective damping. These results are demonstrated using

a numerical example and compared to the theoretical calculation, which is derived next.

6.3.1 Theoretical calculation of effective damping introduced by

a PTMD

In order to determine a closed form expression for the effective damping, ζe, the equations

of motion for a SDOF main structure equipped with a PTMD, described in Eqs. 2.10 and
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2.11, must be first transformed into the modal domain.

Mr,j ÿj(t) + Cr,j ẏj(t) +Kr,jyj(t) +maθ̈L = Fr,j(t) (6.16a)

maL
2θ̈(t) + cah

2θ̇(t) +
(
magL+ kah

2
)
θ(t) +maLÿj(t) = 0 (6.16b)

where Mr,j, Cr,j, Kr,j, Fr,j(t) are the modal mass, damping, stiffness, and force and yj(t)

is the modal coordinate. θ(t) is the rotation of the auxiliary system, with auxiliary mass,

damping, and stiffness given by ma, ca, and ka, respectively. The pendulum length is L

and g is the acceleration due to gravity. Selecting an input of the form F (t) = eiωt in order

to calculate the complex frequency response functions Hy (iω) and Hθ (iω). The responses

are then

yj(t) = Hy (iω)
Fr,j(t)

Kr,j

(6.17a)

θ(t) = Hθ (iω)
Fr,j(t)

Kr,jL
(6.17b)

Eqs. 6.17a and 6.17b are substituted into Eqs. 6.16a and 6.16b and are rewritten in matrix

form as[
−ω2 (Mr,j +ma) + iωCr,j +Kr,j −ω2maL

−ω2maL −ω2maL
2 + iωcah

2 + kah
2

]{
Hy/Kr,j

Hθ/Kr,jL

}

=

{
1

0

} (6.18)

A forcing frequency ratio, φ, is introduced, given by

φ =
ω

ωn
(6.19)

where ω is the forcing frequency and ωn is the circular natural frequency of the oscillator.

Eq. 6.18 is solved simultaneously for the complex frequency response functions Hy (iω) and

Hθ (iω) in terms of the non-dimensional auxiliary to main frequency ratio fr, auxiliary to

main mass ratio µ, and the main and auxiliary damping ratios ζ and ζa, first introduced in
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Chapter 2. The results are given in Table 6.9. The mean square response of the processes,

yj(t) and θ(t), are given by [26]

E
[
yj(t)

2
]

=
ωnS0

K2
r,j

∫ ∞
0

|Hy (iφ)|2 dφ (6.20a)

E
[
θ(t)2

]
=

ωnS0

(Kr,jL)2

∫ ∞
0

|Hθ (iφ)|2 dφ (6.20b)

for the case of white noise excitation with constant spectral density, S0. For a SDOF

oscillator operating at the same frequency with damping ratio ζe, the mean square response

is given by [15]

E
[
yj(t)

2
]

=
ω2
nS0

2K2
r,jζe

(6.21)

Substituting Eq. 6.20a into Eq. 6.21, rearranging to solve for ζe, and performing the

integrations results in the effective damping provided in Table 6.9. A similar process can

be performed for a translational-type TMD; the effective damping result in terms of the

non-dimensional parameters fr, ζ, ζa, µ, and φ is the same.

6.3.2 Estimating effective damping using extended Kalman filter

The approach for calculating the effective damping introduced by a TMD is quite simple,

and is easily theoretically demonstrated in Eq. 6.21. However, it requires knowledge of the

RMS displacement responses of the primary system, which are not directly available from

acceleration response measurements. EKF modal identification is proposed to overcome

this challenge. The measured TMD-attenuated response data is fit to a model of a SDOF

system using the concept of EKF presented in Sec. 5.1.2. In the simplest case, the natural

frequency of the main structure is known and is a fixed model parameter; the only unknown

parameter is the damping ratio, which is appended to the state vector and estimated.

This estimated parameter is essentially the effective damping, ζe, of the combined main

and TMD system. For the present study, only PTMDs are considered. However, the

concept can easily be extended for conventional TMDs. A simple case is demonstrated

first, for a SDOF system with a PTMD with known underlying structural frequency. Next,
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the effective damping added by the PTMD for the system first presented in Sec. 6.2 is

considered.

6.3.3 Effective damping for a known PTMD-equipped SDOF sys-

tem

A simple SDOF is considered first, where the structural properties of the main system

and the auxiliary damper parameters are known. The equations of motion for a PTMD

equipped SDOF oscillator (Eq. 2.10 and 2.11) are recast in the state-space form. The main

structure displacement and velocity, as well as the auxiliary system rotation and angular

velocity, are the states.

x(t) =
[
u(t) θ(t) u̇(t) θ̇(t)

]T
(6.22)

Selecting the acceleration response of the main system and the horizontal acceleration of

the auxiliary mass as the measurements, the state matrices are given in Table 6.10. These

system matrices are used to generate synthetic data for the estimation of the effective

damping.

Since the identification of the effective damping is in the modal domain, the measure-

ments are fit to a SDOF model expressed in modal coordinates. The states of the system

are the modal displacement and velocity, x(t) =
[
y(t) ẏ(t)

]
. The unknown modal

damping ratio or effective damping is appended to the state vector (x3(t) = ζe) and a

constant transition is assumed. After discretization, the nonlinear transition equations are

x1[k + 1] = x1[k] + x2[k]T + w1[k] (6.23a)

x2[k + 1] = − k
m
Tx1[k] +

(
1− 2

√
k

m
x3[k]T

)
x2[k] +

1

m
Td[k] + w2[k] (6.23b)

x3[k + 1] = x3[k] + w3[k] (6.23c)

where wk =
[
w1[k] w2[k] w3[k]

]T
are the additive process noise terms with covariance
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Qk and d[k] is the discrete time unknown input, which is treated as a stochastic noise

process with covariance Sk. The nonlinear measurement equation is

z1[k] = − k
m
x1[k]− 2

√
k

m
x3[k]x2[k] +

1

m
d[k] + v[k] (6.24)

where v[k] is the additive measurement noise with covariance Rk.

Table 6.10: Continuous time state matrices for uniaxial SDOF system with planar PTMD

Ac =


0 0 1 0
0 0 0 1

− k
m

magL+kah2

mL
− c
m

cah2

mL

k
mL

− (m+ma)(magL+kah2)
mmaL2 − c

mL
− (m+ma)cah2

mmaL2



Ec =


0
0
1
m

− 1
mL



Cc =

[
− k
m

magL+kah2

mL
− c
m

cah2

mL

k
mL

− (m+ma)(magL+kah2)
mmaL2 − c

mL
− (m+ma)cah2

mmaL2

]

Fc =

[
1
m

− 1
mL

]

A simple numerical example is considered to demonstrate the ability to estimate the

effective damping introduced by the PTMD using the EKF. The main and auxiliary masses

are m = 100 kg and ma = 1 kg, respectively. The main system stiffness is k = 1000

N/m, resulting in a natural frequency of fn = 0.50 Hz (ωn = 3.16 rad/s). The damping

coefficient was selected based on a modal damping ratio of ζ = 0.01. The frequency

ratio is fr = 0.9926, resulting in a pendulum length of L = 0.995 m for the case of no

auxiliary spring (ka = 0). The auxiliary damping ratio was ζa = 0.0498. The theoretical

effective damping was found to be ζe = 0.0328 using the equation given in Table 6.9. The
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acceleration response of the main system was measured and additive noise with a SNR of

20 was introduced.

A total of 100 realizations of the filter were run. The initial estimate of the appended

parameter ζ̂e,0 = 0.01. The initial state estimate error covariance was selected as 1% of

the initial parameter estimate. The averaged parameter results are plotted in Fig. 6.9.

The final estimate after a 600 s filter length was ζ̂e = 0.0332 with a coefficient of variation

(COV) of ĉv = 9.55%; this represents a 1.31% error based on the theoretical value of

ζe = 0.0328. These results demonstrate that the EKF is capable of accurately estimating

the effective damping introduced by a TMD, by fitting the measurement data to a SDOF

oscillator with known natural frequency. The methodology is now extended to a MDOF

uniaxial system with a PTMD.
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Figure 6.9: Effective damping estimate for a PTMD-equipped SDOF system by EKF
identification
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6.3.4 Effective damping for an unknown PTMD-equipped MDOF

system

The uniaxial MDOF system equipped with a PTMD, presented in Sec. 6.2, is considered

next to demonstrate the potential of using EKF identification to estimate the effective

damping for the system. The case of unknown main mass excitation with unknown noise

covariances is considered. The added complication of this model is a greater number of

DOFs, and subsequently, high order modes of vibration. In addition to this, the natural

frequency for the controlled mode is not known a priori. There are approaches that can be

used. Firstly, the underlying structural modal properties can be estimated in advance; then,

using the final estimate of the underlying structure’s natural frequency for the controlled

mode, the effective damping can be estimated using the approach described in the previous

section. Alternatively, since the natural frequency is known to converge relatively quickly,

the filters can be run simultaneously, with the effective damping estimation filter using the

updated estimate of the underlying structure’s natural frequency. The latter approach is

considered here.

The initialization of the noise covariance matrices for the filter was based on the re-

sults of the noise covariance estimation filter, demonstrated in Sec. 6.1.2. The parameter

estimation filter proceeds exactly as described in Sec. 6.2. Simultaneously, a second filter

is run using the same measurement data and fitting it to the SDOF system with effective

damping ratio ζe. At each time step k, the modal parameters, namely the circular natu-

ral frequency ωn,j and mode shape vector for the controlled mode φj, are updated within

the system matrices. The only unknown parameter in the second model is the effective

damping ratio. The noise covariances matrices, Sk, Qk, and Rk are the same as the param-

eter filter. The transition equation for the effective damping estimation filter are modified
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slightly to account for the inputs at all measured DOFs.

x1[k + 1] = x1[k] + x2[k]T + w1[k] (6.25a)

x2[k + 1] = −ω2
n,jTx1[k] + (1− 2ωn,jx3[k]T )x2[k] +

1

Mr,j

φTj dkT + w2[k] (6.25b)

x3[k + 1] = x3[k] + w3[k] (6.25c)

Since the responses at all measured DOFs are available, the measurement equation is the

transformation of the controlled mode back into the physical coordinates using the mode

shape vector, as follows:

zk = φj
(
−ω2

n,jx1[k]− 2ωn,jx3[k]x2[k]
)

+ φj
1

Mr,j

φTj dk + vk (6.26)

The tuned and detuned auxiliary system are both considered. The effective damping

estimation filter is run alongside the 100 realizations of the filter presented in Sec. 6.2,

using the estimated Sk and Rk from the noise covariance estimation step. The initial

estimate of the effective damping is ζ̂e,0 = 0.01 in both instances; the initial state estimation

error covariance corresponding to the appended parameter is 2.5% and 1% of the initial

parameter estimate, for the tuned and detuned systems, respectively. The theoretical values

(from Table 6.9) are compared with the initial estimate and the final converged estimates

in Table 6.11. The averaged effective damping estimates for the tuned and detuned cases

are plotted in Fig. 6.10.
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Table 6.11: Comparison of effective damping ratio identification results between a tuned
and detuned auxiliary system for 5-DOF system equipped with a PTMD for unknown
external excitation and unknown noise statistics

Tuned Detuned

Actual 0.0333 0.0244

Initial 0.01 0.01
Error (%) 70.0 59.9

Estimate 0.0356 0.0276
Error (%) 6.78 13.3
ĉv (%) 12.2 15.7

As expected, the detuned auxiliary system produces a lower effective damping for the

combined main-auxiliary system. There is close identification of the effective modal damp-

ing, particularly for the tuned auxiliary system. The reduced performance over the SDOF

example presented in the previous section is caused by the increased dimensionality of

the model and a lack of availability of precise knowledge of the natural frequency of the

controlled mode. Recall that this parameter is being simultaneously estimated.

Having demonstrated the application of the EKF for estimating effective damping, the

EKF modal identification algorithm is subsequently verified based on lab-scale experiments

of a simple structure with and adaptive PTMD mechanism. The method is also applied

on full-scale measurement data from a PTMD-equipped structure with measured auxiliary

parameters.
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Figure 6.10: Effective damping estimate for a (a) tuned and (b) detuned PTMD-equipped
5DOF system by EKF identification for the case where the underlying structural modal
properties are simultaneously estimated
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Chapter 7

Experimental studies for condition

assessment and key results

Having demonstrated that the combined state and noise covariance filter followed by the

state and parameters estimation filter identifies the modal properties of the structure, at-

tention is focused on demonstrating the effectiveness of the algorithm using experimentally

generated data. A bench-scale laboratory model with a pendulum-type adaptive passive

tuned mass damper (APTMD) is considered first, where an external broadband excitation

is exerted on a two storey structure and the main structural acceleration and auxiliary

horizontal displacement responses are measured. Second, the Apron Tower structure at

Toronto Pearson International Airport, which is a structure equipped with a pendulum

tuned mass damper (PTMD), is considered. A limited number of measurements are avail-

able, and only the first few modes of vibration are of interest; therefore, a reduced order

model of the system is presented. In both instances, a precise measurement of the pendu-

lum length is measured and assumed known throughout the filter operation. An equivalent

linear damping coefficient is used to model the energy dissipation of the auxiliary system.

Subsequently, an updated numerical model of the structure is used to predict the response

using inputs generated from wind tunnel studies. Finally, the effective damping introduced

by the PTMD is estimated using the method presented in Sec. 6.3.
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7.1 EKF modal identification of a bench-scale labora-

tory model with PTMD

A bench-scale laboratory model is considered (Fig. 7.1), which consists of two rigid floor

masses, each weighing 13.7 kg. Flexural stiffness is provided by four 12.7 mm (0.5 in)

aluminum equal angles, 137.5 cm tall and 1.6 mm ( 1
16

in) thick. The columns are continuous

from the base to the top of the structure; the connection at the base creates a near-fixed

condition. A neoprene mat inserted between the base and the floor is used to dampen

undesirable vibrations which may be transmitted to the structure. The inter-storey height

is 68.5 cm. The structure is equipped with a pendulum-type APTMD, capable of both

auxiliary frequency and damping adjustment. Frequency adjustment is accomplished by

a tuning frame positioned by a stepper motor; damping adjustment is provided in each

lateral direction using two air dampers with valve adjustment. The details of the adaptive

mechanisms are documented elsewhere [78]. The auxiliary mass is ma = 1.47 kg, and for

the purpose of verifying the identification algorithm presented, the pendulum length and

auxiliary damping are fixed at L = 56.6 mm (ka = 0) and ca = 5.56 N s/m, respectively.

Note that the actual damping is frequency dependant [78], so a value corresponding to the

estimated natural frequency of the main structure was assumed and fixed for the duration

of the identification.

In order to establish an initial estimate of the modal properties, an uniaxial finite

element model of the structure was constructed, assuming rigid diaphragm action at the

floor masses. The lateral natural frequencies were estimated as 2.45 Hz and 6.44 Hz.

The finite element model did not accommodate the considerable mass introduced by the

APTMD apparatus, and is therefore considered to be a crude estimate of the actual natural

frequencies.
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(a)

(b)

Figure 7.1: (a) Bench scale laboratory model for experimental verification (b) APTMD
apparatus with pendulum mass, tuning frame, and adjustable dampers
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The acceleration responses are measured at each floor using two low-frequency ac-

celerometers. The horizontal projection of the auxiliary mass rotation (relative horizontal

displacement) is measured using a displacement (laser) transducer. The measurement

matrices in Table 6.1 are modified slightly to replace the auxiliary acceleration response

measurement with a displacement response measurement. The system is excited by broad-

band main mass forcing using an APS 113-AB shaker, with a frequency range of 0 Hz to

200 Hz, at the lower floor location only. The shaker is connected to the floor mass with

a stinger to limit the coupled dynamics between the shaker and structure. The response

measurements were collected using a dSpace DS1104 R&D Controller Board with a sam-

pling rate of 400 Hz. A total of 100 data sets were collected, each with a duration of 90

s.

7.1.1 Noise covariance estimation

The state and noise covariance estimation filter is initialized as follows. The system ma-

trices are assumed known and are based on the output of the finite element model. The

damping ratios for the first and second mode are assumed to be 1% and 3%, respectively.

The initial unknown disturbance noise and measurement noise covariance are selected as

Ŝ0 = diag
[

0 0.15
]

and R̂0 = diag
[

1× 10−5 1× 10−5 1× 10−7
]
, respectively. The

noise covariances are assembled as in Eqs. 5.157 and 5.158. Since the structure is known

to only be excited at the lower floor, a total of three measurement noise covariance param-

eters and one external feedthrough process noise parameter is sought. The mean estimates

of the noise covariance estimation algorithm described in Eqs. 5.156 through 5.158 are

summarized in Table 7.1, including the coefficient of variation (COV).

Despite low confidence in the final noise covariances estimates, particularly for the

feedthrough process noise covariance, the combined state and parameter estimation is pur-

sued next using the assembled identified noise covariance matrices as Ŝ = diag
[

0 13.27
]

and R̂ = diag
[

1.99× 10−3 11.0× 10−3 0.180× 10−6
]
.
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Table 7.1: Noise covariance parameter αi estimates for Sk and Rk bench-scale laboratory
model

Index Estimate

α̂i ĉv

%

Sk

1 36.76 614

Rk

2 203.5 120
3 1086 45.7
4 1.802 33.9

7.1.2 Combined state and parameter estimation

The combined state and parameter estimation was initialized as follows. The initial state

estimates were set to zero, and the initial appended parameters (model properties to be

estimated) were based on the finite element model, summarized in Table 7.2. The initial

state estimation error covariance, P0, was approximately selected based on the measured

variance of the state estimates in the state-noise covariance estimation filter; for the ap-

pended parameters, the initial state estimate error covariance was based on a 15% standard

deviation of the initial estimates for the natural frequencies, 0.5% standard deviation for

the damping ratios, and 2.5% standard deviation of the initial estimates for the mode shape

coefficients. The unknown external disturbance noise covariance Sk and measurement noise

covariance Rk are based on the output of the noise covariance estimation step. A small

level or process noise covariance was introduced at the appended states, on the order of

0.01% of the initial estimate, to account for model uncertainty. The mean results of the

parameter estimation are summarized in Table 7.2, together with their COVs (ĉv). These

results are compared with identification results of the bare model (PTMD removed) us-

ing Blind Source Separation (BSS); the details of the aforementioned system identification

approach are beyond the scope of the present work and the reader is referred elsewhere
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[31, 81].

Table 7.2: Experimental investigation parameter estimate results

Mode Natural frequencies Modal damping ratios Mode shapes

fn f̂n ĉv ζ0 ζ̂ ĉv φ2j φ̂2j ĉv

Hz Hz % % %

1 1.73 1.68 6.75 0.022 0.020 68.5 0.60 0.62 3.22
2 4.78 4.77 1.11 0.056 0.054 3.95 -1.89 -1.76 -3.16

The results demonstrate good performance of the identification when compared with

the results obtained by BSS. The first mode natural frequencies is slightly underestimated

(2.9% error). Several possible sources of error in the experiment were identified. First,

in addition to the rotation of the PTMD about the suspension point, a rocking motion

about its own centroid was observed, which would not be modelled in a point-mass PTMD

assumption. This cannot easily be accommodated by increasing the level measurement

noise due the non-white nature of this additional vibration mode. Second, the auxiliary

dashpot dampers were assumed to have a constant level of linear viscous damping, when

in reality their damping is depending on the frequency of the damping force. Third, a

small amount of rotation of the mass about the vertical contributed to the level of error in

the auxiliary mass position measurement. The averaged parameter identification results

as they vary with time are illustrated in Figs. 7.2 (natural frequency) and 7.3 (damping

ratio).
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Figure 7.2: Natural frequency estimates from EKF estimation of the PTMD attenuated
response data compared with results from BSS identification of the bare structure for the
(a) first and (b) second modes
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Figure 7.3: Modal damping ratio estimates from EKF estimation of the PTMD attenuated
response data compared with results from BSS identification of the bare structure for the
(a) first and (b) second modes
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Despite the aforementioned sources of error in the experiment, the performance of

the natural frequency damping ratio estimation is comparable to the results of the bare

structure BSS identification. The initial estimate and mean final estimates of the mode

shape vectors are plotted in Fig. 7.4. Note that the mode shapes are normalized with

respect to the top floor.
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Figure 7.4: Initial estimate and final estimate of the mode shape vectors from experimental
verification

The mode shape vector estimation performed well, with fairly consistent convergence.
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The final coefficients of variation for the first and second mode were ĉv,1 = 3.22% and

ĉv,2 = −3.16%, respectively.

7.2 Full-scale modal identification from attenuated re-

sponse data

For most full-scale applications of the extended Kalman filter (EKF) modal identification

algorithm presented in Chapters 5 and 6, it is not reasonable to assume that all measure-

ments are available. Also, for structures with many degrees-of-freedom (DOFs), estimating

all the modal characteristics is generally unnecessary and can become computationally ex-

pensive. Particularly for the application of identifying underlying modes for the purpose

of retuning tuned mass dampers (TMDs), generally, the controlled mode of vibration is of

interest. Therefore, the case where only a subset of the DOFs are measured and only a

few modes of vibration are of interest is considered here.

If acceleration response measurements at all DOFs are available, then a reduced order

model can be developed that truncates the modes no longer of interest but retains all

DOFs, recognizing that most of the response is contributed by a few lower order modes.

This has the effect of dramatically reducing the computational effort with no loss of input

information. The more general case is subsequently considered, where a fewer number of

measurements are available and a limited number of modes are considered in the response.

Note there must be at least as many measurements as there are modes considered in the

response.

7.2.1 Reduced-order model

There are two motivations in the proposed research for implementing dynamic model re-

duction methods.

• A considerable amount of computation time is required to perform the state and noise

covariance estimation filter followed by the combined state and parameter estimation
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filter when all DOFs and modes are retained, particularly for large systems. Since it

is well known that only a few of the lower order modes contribute to the majority of

the response, reducing the number of modes results in substantially fewer states and

parameters that need to be estimated.

• It is difficult and costly to simultaneously measure every location on a structure;

therefore, only a small number of DOFs are actually measured. It is desirable to

reduce the number of DOFs of the analytical model so that valid comparisons between

analytical and actual values can be made.

Several model reduction techniques exist, including Guyan or static reduction, dynamic

reduction [12], Improved Reduction System (IRS) [23], Iterated IRS [24], and the System

Equivalent Reduction Expansion Process (SEREP) [71]. The latter is explored more closely

for the present study, as it retains the dynamic characteristics of the system for the modes

of interest and does not require repeated iterations before convergence to the reduced order

system matrices.

Consider the equations of motion for the uniaxial multi-degree-of-freedom (MDOF)

system equipped with a planar PTMD, by substituting

Lθ̈(t) + ü1(t) = −magL+ kah
2

maL
θ(t)− cah

2

maL
θ̇(t) (7.1)

into Eq. 6.2.

Mü(t) + Cu̇(t) + Ku(t) = P(t) + Γ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

]
(7.2)

Partition the coordinate vector into retained and truncated DOFs

u(t) =

{
ur(t)

ut(t)

}
(7.3)

where ur (t) are the retained displacement responses (with corresponding velocities, u̇r (t),

and accelerations, ür (t)) and ut (t) are the truncated displacement responses (with corre-
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sponding velocities, u̇t (t), and accelerations, üt (t)). The auxiliary system must be located

at a retained DOF. Eq. 7.1 can be rewritten using partitioned mass, damping, and stiffness

matrices and assuming that no external force is applied to the truncated DOFs.[
Mrr Mrt

Mtr Mtt

]{
ür(t)

üt(t)

}
+

[
Crr Crt

Ctr Ctt

]{
u̇r(t)

u̇t(t)

}
+

[
Krr Krt

Ktr Ktt

]{
ur(t)

ut(t)

}

=

{
Pr(t)

0

}
+ Γ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

] (7.4)

Using the modal matrix, which is now described in terms of retained and truncated modal

responses, yr (t) and yt (t), respectively,

u(t) = Φy(t) =

{
ur(t)

ut(t)

}
=

[
Φrr Φrt

Φtr Φtt

]{
yr(t)

yt(t)

}
(7.5)

and premultiplying by ΦT gives[
Mr,r 0

0 Mr,t

]{
ÿr(t)

ÿt(t)

}
+

[
Mr,r 0

0 Mr,t

][
Ĉr,r 0

0 Ĉr,t

]{
ẏr(t)

ẏt(t)

}

+

[
Mr,r 0

0 Mr,t

][
Λr,r 0

0 Λr,t

]{
yr(t)

yt(t)

}
[

Φrr Φrt

Φtr Φtt

]T {
Pr(t)

0

}
+

[
Φrr Φrt

Φtr Φtt

]
Γ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

]
(7.6)

where Mr, Ĉ, and Λ are the modal mass matrix, classical modal damping matrix, and

spectral matrix, respectively. The subscripts r and t of Φrr, Φrt, Φtr, and Φtt correspond

to the retained and truncated DOFs and modes, respectively. Truncate the modal vector
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by assuming yt(t) = 0. Eq. 7.6 becomes

Mr,rÿr(t) + Mr,rĈrẏr(t) + Mr,rΛryr(t)

=

{
Φrr

Φrt

}T {
Pr(t)

0

}
+

{
Φrr

Φrt

}T

Γ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

] (7.7)

From Eq. 7.5, ur(t) = Φrryr(t); therefore, yr(t) = Φ+
rrur(t) where Φ+

rr is the pseudoin-

verse of Φrr given by

Φ+
rr =

(
ΦT
rrΦrr

)−1
ΦT
rr (7.8)

Transforming from modal coordinates using yr(t) = Φ+
rrur(t) and premultiplying Eq. 7.6

by Φ+T
rr gives

Φ+T
rr

{
Φrr

Φtr

}T

M

{
Φrr

Φtr

}
Φ+
rrür(t) + Φ+T

rr

{
Φrr

Φtr

}T

C

{
Φrr

Φtr

}
Φ+
rru̇r(t)

+ Φ+T
rr

{
Φrr

Φtr

}T

K

{
Φrr

Φtr

}
Φ+
rrur(t) = Φ+T

rr

{
Φrr

Φtr

}T {
Pr(t)

0

}

+ Φ+T
rr

{
Φrr

Φtr

}T

Γ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

]
(7.9)

Defining the following transformation

T =

{
Φrr

Φtr

}
Φ+
rr (7.10)

Eq. 7.9 can be rewritten in physical coordinates as

M̃ür(t)+C̃u̇r(t)+K̃ur(t) = TT

{
Pr(t)

0

}
+TTΓ

[
magL+ kah

2

L
θ(t) +

cah
2

L
θ̇(t)

]
(7.11)
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where

M̃ = TTMT (7.12a)

C̃ = TTCT (7.12b)

K̃ = TTKT (7.12c)

are the non-diagonal reduced order mass, damping, and stiffness matrices in the physical

coordinates. Using the modal transformation ur(t) = Φrryr(t) and premultiplying by ΦT
rr,

Eq. 7.11 can be transformed back into modal coordinates, producing the same modal

masses, damping ratios, and natural frequencies as the full structure, but only for the

modes of interest. Since a single transformation matrix is used, the operation is reversible

and can also form the basis for modal expansion. Friswell showed that the transformation

matrix found using the Iterated IRS method will converge to the transformation matrix

found using SEREP [24].

For the identification algorithm, the reduced order natural frequencies, damping ratios,

and mode shapes are appended to the state vector and estimated. Specifically, the mode

shape coefficients corresponding to the modes of interest and the measured or retained

DOFs are identified. However, the transformation between the full order model to the

reduced order model requires knowledge of the mode shape coefficients corresponding to

the truncated DOF as well as the full mass matrix in order to produce the same modal

masses as the full order model. As before, the mass matrix from the finite element model

is assumed to be exact and used to calculate the modal mass for the purpose of parameter

estimation. In addition to this, the mode shape coefficients at the truncated DOFs for the

retained modes, Φtr, from the initial estimate model are used throughout the operation

of the filter in order to determine the modal mass, Mr. The mode shape coefficients

corresponding to the retained modes and DOFs are appended to the state vector and

estimated, subsequently used at each time step of the filter to revise the modal mass
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estimate. The modal mass is found by

Mr,r = ΦT
rrT

TMTΦrr

= ΦT
rrΦrr

(
ΦT
rrΦrr

)−1

{
Φrr

Φtr

}T

M

{
Φrr

Φtr

}(
ΦT
rrΦrr

)−1
ΦT
rrΦrr

=

{
Φrr

Φtr

}T

M

{
Φrr

Φtr

} (7.13)

It is apparent from Eq. 7.13 that the mode shape vectors Φtr are required to determine the

modal mass matrix for the reduced order model. The equations of motion are transformed

into the modal domain, where n̂ modes of vibration are retained, and n̄ DOFs are measured.

The total number of states in the reduced order model system are ñ = 2n̂ + 2 and the

number of outputs is p = n̄ + 1. The continuous time system matrices are given in Table

7.3. Note that

ΦrrT
T

{
Pr(t)

0

}
= ΦT

rrPr(t) (7.14)

and

ΦrrT
TΓ = ΦrrΓr (7.15)

where Γr is an influence vector that assigns the control force from the PTMD to the DOF

where the the damper is located, but only contains the locations for the retained DOFs.

7.2.2 Full-scale application of EKF modal identification

To validate the algorithm presented for the identification of the underlying structure’s

modal properties from TMD attenuated response data, the Apron Control Tower at Greater

Toronto Airports Authority (GTAA) Toronto Pearson International Airport in Mississauga,

Ontario, is considered as the testbed. The tower, shown in Fig. 7.5, is a 49 m tall structure

rising above the fourth level of Terminal 1. The total height of the structure above grade

is 68.5 m.
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Figure 7.5: Toronto Pearson International Airport Terminal 1 Apron Tower

The tower is a steel structure with composite steel deck and concrete floors providing

a rigid diaphragm at each level. The tower has 10 core levels, consisting mainly of a

scissor stairwell, elevator and service shafts. Above the core levels are five service levels,

used for apron control operators, mechanical, electrical and communications services, and

administrative office space. The structure is supported by six main steel columns resting on

large transfer girders at the terminal roof level. Lateral loads are resisted by a combination

of braced and moment frames.

7.2.3 Description of the pendulum tuned mass dampers

Due to the structure’s inherent flexibility and susceptibility to wind loads, and in order

to reduce the user discomfort during high wind events, the structure is equipped with two

passive PTMDs located within the truss roof structure. Each mass is 25, 000 kg, comprised
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of 24 50 mm thick stacked steel plates, for a total auxiliary mass of 50 tonnes. The auxiliary

mass represents a mass ratio of µ = 12.4%. The arrangement of the PTMDs are shown in

Fig. 7.6.

Figure 7.6: Isometric view of pendulum tuned mass damper installed in the roof structure
of GTAA Toronto Pearson International Airport Apron Tower

Each mass is supported by three cables suspended from the structural steel above (not

shown in Fig. 7.6). The cables are connected to the bottom of an adjustable tuning frame

housing affixed to the outside of the mass blocks. Along the side of the tuning frame

housing are a series of holes which will accept an adjustable tuning plate. The tuning

plate does not support the gravity load of the mass; instead, it simply changes the location

along the length of the cables that the mass pivots, effectively adjusting the pendulum

length and the tuning frequency of the auxiliary damping device. The adjustable tuning

frame housing based has a maximum tuning frequency of 0.659 Hz and a minimum tuning

208



frequency of 0.491 Hz.

It is generally difficult to predict the actual frequencies of the primary structure to the

degree of accuracy necessary to tune a TMD. Therefore, the aforementioned adjustment

frame is necessary to allow for fine frequency adjustment during the commissioning of the

PTMDs after the primary structure’s frequencies have been identified. Also, it facilitates

simple retuning of the structure during maintenance when it is determined that the primary

structural frequencies have changed. Since the cables are perfectly vertical, a rocking

response of the PTMD is not present, and the mass behaves as a simple point mass, where

the frequency length is measured from the suspension point to the location of the pivot

block within the adjustable tuning frame housing. The measured pendulum length was

L = 0.572 m; this measure is fixed for the duration of the filters.

Each mass is also equipped with four (two in each horizontal direction) double-acting

fluid viscous dampers with a peak damping force of 31.1 kN (7000 lbf) and a maximum

stroke of 178 mm (7 in). The damping force is velocity-squared proportional. The vis-

cous dampers are the primary energy dissipation devices in the auxiliary damping system,

converting mechanical energy into heat. For each viscous damper in the Apron Tower,

cα = 895× 103 N s2 m−2 (129.81 lbf s2 in−2) and ẋ0 = 0.1865 m/s (7.343 in/s). For α = 2,

the equivalent linear viscous damping coefficient for each damper on the auxiliary damping

device is ceq = 111.3× 103 N m/s according to the equivalent linear viscous damping Eq.

3.47 in Sec. 3.5.2. This level of damping is fixed for the duration of the filters.

7.2.4 Instrumentation

From August to December, 2009, an extensive measurement program was conducted at

the GTAA Toronto Pearson International Airport Apron Tower, where the structure was

instrumented with 12 seismic accelerometers along the height. Structural vibration mea-

surements were obtained under wind loading and ambient excitations, including several

significant wind events during which high-fidelity measurements were obtained containing

energies in several dominant modes.
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The structure was instrumented using PCB Piezotronics high sensitivity seismic ce-

ramic flexural ICP accelerometers. The accelerometers have a frequency range 0.07 to 300

Hz, sensitivity of 10.0 V/g, a measurement range of 0.5g (4.9 m/s2), and a resolution of

1 µ-g (g = 9.807m/s2) root mean squared (RMS). These sensors are ideal for low-level,

low-frequency vibrations typical in building vibration monitoring and provide strong out-

put signals with lower noise due to their size. The sensor’s signal output was continuously

recorded at a sampling rate of 200 Hz. Data was collected using a 12 channel data acqui-

sition system with a 16-bit resolution.

Figure 7.7: Location of siesmic accelerometers on the Toronto Pearson Internation Airport
Apron Tower
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A total of 9 sensors were installed horizontally on the third and first uppermost floors

of the Apron Tower as well as in the top chord of the roof truss structure (Fig. 7.7). Two

sensors were installed in the north-south (y-) direction on each floor. A third sensor was

installed in the east-west (x-) direction. Data collected in the east-west direction on the

third uppermost floor was corrupted and was not used in the subsequent analysis. Two

sensors were installed measuring the lateral acceleration responses of one of the PTMD

masses. Approximately 3 hours and 20 minutes of data was collected in this configuration

on December 11, 2009 beginning at 12:24 pm.

The responses for three DOFs were considered at each level. In the east-west direction

(x-DOF), one sensor was sufficient to provide this information at it was installed along

the selected reference line corresponding to the centre of mass in north-south direction. In

order to capture both the north-south direction (y-DOF) and torsion (θ-DOF), two sensors

were mounted on each floor along the selected reference line away from the centre of mass

in the east-west direction. The y-DOF signal was found by averaging the response of the

two sensors.

ÿ(t) =
ÿE(t) + ÿW (t)

2
(7.16)

ÿE(t) and ÿW (t) are the acceleration response signals measured in the y-direction (north-

south) on the east and west side of the structure, respectively. The θ-DOF signal was

calculated by finding the difference between the signals and dividing it by the perpendicular

distance between the mounting locations.

θ̈ =
ÿE(t) + ÿW (t)

rxE − rxW
(7.17)

rxE and rxW are the perpendicular distances to the centre of mass (coordinate locations)

of the structure from the sensors located on the east and west side of the structure, re-

spectively. In several instances physical constraints at the sensor locations necessitated

installing the accelerometers backwards; the signals are simply transformed by multiplying

them by −1.

The data was collected during a significant wind event while the auxiliary damping
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system was online. The results of the subsequent analysis are compared with the iden-

tification results on data collected during a similar wind event where the motion of the

PTMD was restrained. The response of the structure while the PTMD motion is restrained

is of particular interest, as the structural modes of the main system are more readily avail-

able without the effect of the auxiliary system. That study used a non-parametric modal

identification method known as the modified cross-correlation method; however, the find-

ings of that study are beyond the scope of the present work and are simply used here for

comparison [32, 31].

7.2.5 Finite element model

In order to establish an initial estimate for the model parameters to initialize the EKF

modal identification filter, a finite element model was developed using using a commercially

available finite element software package, SAP2000 [14] (Fig. 7.8), excluding the auxiliary

damping system. A portion of the supporting terminal substructure was modelled to

limit the effects of the selection of boundary conditions, though this remained a source of

uncertainty for the model. Transfer girders are used to transfer the loads from the tower

into the lower terminal structure. The liner roof was modelled and the joints translations

and rotations were restrained (fixed support condition). The geometry, materials, and

sections were determined using as-recorded drawings. The model contains 1208 joints,

2387 frame elements, and 2387 stiffness DOFs. A rigid diaphragm assumption was made

for the floor levels, and the x-, y- and θ-DOF were retained at each level. The result was

a 42-DOF finite element representation of the structure. A modal analysis was performed

in order to find the frequencies and mode shapes of the structure.
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Figure 7.8: GTAA Toronto Pearson International Airport Apron Tower finite element
model created in SAP2000

The results from the modal analysis are plotted in Fig. 7.9 for the first three modes

of vibration. The first three natural frequencies are 0.656 Hz, 0.919 Hz, and 1.40 Hz, and

correspond to a y-direction lateral mode, x-direction lateral mode, and torsional mode,

respectively. For filter implementation, each direction is considered independently. For the

rotation of the floor masses (θz-DOF), it is assumed that there is no coupling between the

auxiliary mass and the main structure in order to simplify the EKF modal identification,

despite the expectation that the PTMDs will also attenuate the torsional response of the

structure.
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Figure 7.9: Apron tower finite element model natural frequencies and mode shapes for the
(a) first, (b) second, and (c) third mode of vibration.

7.2.6 Lateral mode identification results

The EKF modal identification for each lateral mode was performed by considering the

response data for each direction, after transformation, separately. The y-direction (north-

south) response is considered first. The first two lateral modes in the y-direction are

included as parameters to be estimated (corresponding to the first and fifth mode of the

overall system); however, convergence of the higher order modes was not consistent and the

results are not presented. The noise covariance estimation was performed first, using the

numerical model as an initial estimate of the natural frequencies and mode shapes. The
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initial estimate of the damping ratio for the first mode was ζ̂1,0 = 0.025 and ζ̂5,0 = 0.05.

The initial external disturbance and measurement noise covariances were selected as

Ŝ0 = diag
[

5× 106 5× 107 5× 107
]

(7.18)

and

R̂0 = diag
[

1× 10−3 1× 10−3 1× 10−3 1× 10−2
]

(7.19)

There are a total of p = n̄+ 1 = 4 measurements, where the horizontal acceleration of the

auxiliary mass is measured as well as the acceleration of the roof, uppermost and third

uppermost floors are included. The data is split into 20 non-overlapping windows with

a total data length of 10 minutes. Each data set was resampled at 400 Hz in order to

limit the effect of the approximation introduced by the discretization procedure described

in Sec. 5.1.3. Following the noise covariance estimation step, the updated process and

measurement noise covariance matrices were found to be

Ŝk = diag
[

2.67× 106 2.00× 107 3.90× 107
]

(7.20)

and

R̂k = diag
[

2.15× 10−5 7.15× 10−5 3.07× 10−5 1.65× 10−4
]

(7.21)

after averaging the results for the 20 realizations of the filter. The noise covariance param-

eter α is given in Table 7.4, together with the COV of the parameter estimate (ĉv).
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Table 7.4: Apron tower y-lateral mode noise covariance parameter α mean estimate and
coefficient of variation.

Index α̂i ĉv

%

Sk

1 0.533 58.7
2 0.401 71.3
3 0.779 79.6

Rk

1 0.0215 70.1
2 0.0715 24.3
3 0.0307 42.7
4 0.0165 46.2

The noise covariance estimates were then used for parameter estimation step. The

initial estimate of the parameters were based on the finite element model, with the damping

ratios as selected for noise covariance estimation. The initial state estimate error covariance

for the states (displacement and velocities of the main and auxiliary systems) was based

on the state estimation results for the noise covariance estimation filter; for the appended

states (parameters), a variance of 20%, 2.5%, and 1% of the initial estimate of the natural

frequencies, damping ratios, and mode shape coefficients, respectively, were selected to

initialize the filter. A small amount of additive process noise covariance, equal to 1 ×
10−6 times the initial state estimate error covariance for the states (displacement and

velocities) was introduced to adjust the level of confidence in the model. The first mode

natural frequency and damping ratio estimates as they varied with time, averaged over 20

realizations of the filter, are given in Fig. 7.10.
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Figure 7.10: (a) Natural frequency and (b) modal damping ratio for the Apron Tower
equipped with a PTMD for the first y-direction lateral mode (first mode)

The final estimate of the natural frequency is 0.676 Hz with a high level of confidence

in the final estimate (ĉv = 0.98%) and reasonably fast convergence. Convergence for the

damping estimate was considerably slower than the natural frequency and with a lower

level of confidence (ĉv = 26.7%), as was the case for the numerical examples presented in

Chapter 6.
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The x-direction response measurements were used to determine the second mode, which

corresponds to the first lateral mode in the east-west direction, following the same ap-

proach. Only two measurements of the main response of the structure were available

(n̄ = 2), since the measurement at the third uppermost floor was corrupted. Therefore,

p = n̄+ 1 = 3. The first two lateral modes in the x-direction (modes two and six, overall)

were sought together with their modal damping ratios and mode shapes. The initial esti-

mate of the natural frequencies and mode shapes were based on the finite element model

and the initial modal damping ratios were selected as ζ̂2,0 = 0.05 and ζ̂6,0 = 0.1. The initial

external disturbance and measurement noise covariances were selected as

Ŝ0 = diag
[

5× 107 1× 108
]

(7.22)

and

R̂0 = diag
[

5× 10−4 5× 10−4 5× 10−6
]

(7.23)

The noise covariance estimation filter was run on each set of data. The final noise covariance

matrix estimates were

Ŝk = diag
[

1.36× 107 5.10× 107
]

(7.24)

and

R̂k = diag
[

2.68× 10−4 3.67× 10−4 2.39× 10−6
]

(7.25)

The mean noise covariance parameter estimates and coefficients of variation (ĉv) are given

in Table 7.5.
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Table 7.5: Apron tower x-lateral mode noise covariance parameter α mean estimate and
coefficient of variation.

Index α̂i ĉv

%

Sk

1 0.255 90.9
2 0.472 66.0

Rk

3 0.460 98.2
4 0.061 92.5
5 0.459 32.2

Subsequently, the noise covariance estimates are used to estimate the modal parameters

for the x-direction lateral mode. The natural frequency and modal damping ratio results

are illustrated in Fig. 7.11 averaged over the 20 realizations of the filters. The convergence

of the natural frequency is quite fast, similar to the result for the first y-direction lateral

mode, with a high level of confidence in the final estimate (ĉv = 1.01%). Once again, the

damping estimate converges much more slowly, with less confidence in the final estimate

(ĉv = 33.8%).
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Figure 7.11: (a) Natural frequency and (b) modal damping ratio for the Apron Tower
equipped with a PTMD for the first x-direction lateral mode (second mode)

7.2.7 Torsional mode identification results

For the identification of the first two torsional modes of vibration (third and fourth overall

modes), the PTMDs are assumed not to impact the torsional response of the structure.

Therefore, the system matrices need to be modified to no longer include the PTMD. The
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displacements and velocities of the main structure are selected as states, and the modal

parameters to be identified are appended. The continuous time system matrices for the

reduced order system without the PTMD are

Ac =

[
0 I

−Λr −Ĉr

]
(7.26a)

Ec =

[
0

M−1
r,rΦ

T
rr

]
(7.26b)

Cc =
[
−ΦrrΛr −ΦrrĈr

]
(7.26c)

Fc =
[

ΦrrM
−1
r,rΦ

T
rr

]
(7.26d)

The roof, first and third uppermost floors are measured, according to the transformation

in Eq. 7.17 (p = n̄ = 3). First, the noise covariance estimation filter is run, using the

following initial estimates of the process and measurement noise covariances:

Ŝ0 = diag
[

5× 107 5× 108 5× 108
]

(7.27)

and

R̂0 = diag
[

1 1 1
]
× 10−5 (7.28)

The results of the noise covariance estimation are averaged over the 20 realizations of

the filter and used as the noise covariances matrices for the combined state and parameter

estimation filter. The final estimate of the feedthrough process noise covariance matrix is

Ŝk = diag
[

6.91× 107 4.00× 108 5.29× 108
]

(7.29)

The final estimate for the measurement noise covariance matrix is

R̂k = diag
[

9.75× 10−7 7.04× 10−6 4.09× 10−6
]

(7.30)

The noise covariance parameter α mean estimate and COV are given in Table 7.6.
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Table 7.6: Apron tower θz-torsional mode noise covariance parameter α mean estimate and
coefficient of variation.

Index α̂i ĉv

%

Sk

1 1.383 44.7
2 0.800 29.9
3 1.058 26.5

Rk

4 0.098 64.4
5 0.704 5.46
6 0.409 15.2

The initial estimates for the modal damping ratios for the torsional modes are ζ̂3,0 =

0.05 and ζ̂4,0 = 0.1. The initial estimate of the state estimation error covariance, Pk|k,

and the additive process noise covariance, Qk, are selected similar to the lateral mode

identification described earlier. The results for the natural frequency and modal damping

ratio for the third mode (first torsional mode) are shown in Fig. 7.12.
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Figure 7.12: (a) Natural frequency and (b) modal damping ratio for the Apron Tower
equipped with a PTMD for the first θz-direction torsional mode (third mode)

The convergence of the first torsional natural frequency is slower than the lateral modes,

but still well before the end of the 10 minute segments; there is less confidence in the final

estimate, with a COV of ĉv = 9.85%. The modal damping is significantly higher than

the lateral modes, but the convergence is much quicker with a considerably higher level of

confidence (ĉv = 9.87%).
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7.3 Performance of EKF modal identification with full-

scale measurement data

The final mean converged value for the natural frequency and modal damping ratio es-

timates as well the COV are given in Table 7.7. These results are compared with those

presented by Hazra et al for the same structure using the modified cross-correlation method

for modal identification while the PTMDs were restrained [32].

Table 7.7: Mean and coefficient of variation of the natural frequency and modal damping
ratio estimates for the EKF modal identification compared with nonparameteric identifi-
cation of the Apron Tower structure with the PTMDs restrained.

Mode Natural Frequency Modal Damping Ratio

Initial Unrestrained Restrained [32] Initial Unrestrained Restrained [32]

f̂n,j,0 f̂n,j ĉv f̂n,j ĉv ζ̂j,0 ζ̂j ĉv ζ̂j ĉv

Hz Hz % Hz % % %

1 0.656 0.676 0.979 0.68 1.30 0.025 0.0118 26.7 0.0084 23.0
2 0.919 0.818 1.01 0.86 3.50 0.050 0.0392 33.8 0.0198 19.0
3 1.40 1.26 9.85 1.50 1.90 0.050 0.163 9.87 0.0291 21.0

The natural frequency estimates are closely similar to those presented by Hazra et

al for the lateral modes, for the same structure with the PTMDs restrained. The finite

element model closely predicted the first mode (2.96% error); the error in the prediction

of the second and third modes was 12.3% and 11.1%, respectively. There is a high level

of confidence in the natural frequency estimates for the lateral modes, characterized by

the small COV. There is a greater level of uncertainty in the frequency identification

performance of the torsional mode (ĉv = 9.85%). The modal damping ratios for the lateral

modes are reasonably similar to those presented for the unrestrained PTMDs case, with a

similar level of confidence in the final converged estimates. The EKF modal identification

approach found a considerably higher level of damping in the torsional mode. The final

mode shape coefficient estimates are plotted in Fig. 7.13 for the three modes of vibration
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considered, together with the initial estimate of the mode shapes based on the finite element

model output.
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Figure 7.13: Apron tower final mean estimates of the natural frequencies and mode shapes
for the (a) first, (b) second, and (c) third mode of vibration using EKF modal identification.

There are a variety of sources of error in the identification of the underlying structural

modal properties for the PTMD attenuated response data from the Apron Tower.

• The presence of an auxiliary mass that does not significantly impact the mode shapes

is a fundamental assumption in the development of the system of equations for the

combined main and auxiliary system (Sec. 6.1). This is a reasonable assumption for

relatively lightweight auxiliary masses, which are typical of TMD installations in tall
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structures [26]. The Apron Tower is equipped with a large (µ = 12.4%) tuned mass

in comparison to most TMDs (generally less than 2%). The response time histories

for the DOFs measured were investigated and compared with the case where the

PTMDs were restrained, and anecdotal evidence supports the conclusion that the

large auxiliary mass has significantly impacted the mode shapes.

• The analysis has assumed that only one PTMD is present on the structure, and has

lumped the mass and damping properties from the two PTMDs. Additionally, since

the PTMDs on the tower are located away from the centre of rotation, it is expected

that they would also attenuate the torsion response of the structure. This effect has

been neglected in the analysis.

• A total of 3 hours and 20 minutes of data were collected; since approximately 10

minutes of data is required for convergence of the damping ratio estimates, this only

allowed for 20 data sets to be analysed. A more meaningful analysis could have been

performed with a larger data set.

• The lack of measurement data near the DOFs proximate to the maximum deflection

of the second lateral modes prevented the EKF modal identification from adequately

identifying the second lateral mode properties (fifth and sixth overall modes).

Despite these shortcomings, there is good performance of the identification for the first

three modes. For the purpose of retuning TMDs, only the controlled mode is of inter-

est. In the subsequent chapter, a method is presented which combines the identification

results of the underlying structure’s modal properties with high frequency base balance

(HFBB) measurements from a boundary layer wind tunnel analysis to perform a condition

assessment of the TMD. Only the first mode lateral mode in each horizontal direction as

well as the first torsional mode are necessary for the HFBB method; therefore, sufficient

information has been extracted using EKF modal identification to complete the condition

assessment.

226



7.4 Condition assessment of an in-service PTMD

Little work has been published in the area of assessing the performance of full-scale in-

service PTMDs [51]. The inability to accurately quantify the performance improvement

for the same excitation time history is an inherent shortcoming of full-scale measurement

studies of structures equipped with TMDs. It is also improbable that measurements are

available for the design event with the TMD motion restrained, as gathering this data

would come at the expense of occupant comfort and possibly structural damage. Gener-

ally full-scale performance of TMDs is quantified over longer periods and across various

events. Therefore, much of the work in studying the ability of TMDs to attenuate wind-

induced vibrations have been on numerical models excited by harmonic inputs [75] or

white noise [3, 28]. Studies using synthetic wind excitation are limited [77, 105] and have

demonstrated modelling wind excitation by the aforementioned conventional approaches

generally overstates their performance. Therefore, there is a need to accurately compare

the response of the TMD-equipped structure to the same design event. A couple studies

have equipped wind tunnels models with TMDs and assessed their performance [88, 104],

but there are inherent scale issues associated with that approach.

This section discusses a hybrid approach, where the bare structural properties of the

actual full-scale structure identified through ambient vibration measurements (Chapters 5

and 6) are used to update the numerical model of the structure equipped with the PTMD

(Chapter 3). The numerical model is excited using HFBB measurements gathered from

boundary layer wind tunnel studies for a specific design event. The auxiliary damper

parameters (damping coefficient and pendulum length) are readily available from field

measurements, and therefore do not need to be estimated from the response data. Using

equations for optimal auxiliary parameters or by a numerical search approach (Chapter

4), the optimal damper parameters for the specific application can be determined and the

performance improvement can be directly quantified.

The Apron Tower at the Toronto Pearson International Airport is considered for this

study. It is equipped with a pair of PTMDs and has been extensively monitored. The

corresponding mass ratios in the first two lateral modes are 12.4% and 11.1% for the
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auxiliary mass of 50, 000 kg. In addition to the actual mass ratio, one hypothetical case

of a 4, 022 kg tuned mass is also selected in order to better understand the performance

of lower mass ratios, corresponding to a 1.00% and 0.89% mass ratio in the two lateral

modes.

7.5 Boundary layer wind tunnel study

In order to estimate the generalized forces, a scale model of the Apron Tower was built

and tested in the Rowan Williams Davies and Irwin Inc. boundary layer wind tunnel

facility in Guelph, Ontario, Canada. The experimental setup is shown in Fig. 7.14. The

generalized forces calculated are used subsequently in the numerical simulations described

in Sec. 3.6. The results of the EKF modal identification presented in Sec. 7.3 are used

to update the finite element model of the Apron Tower structure. The identified natural

frequencies, modal damping ratios, and mode shapes were used as inputs to the HFBB

method, subsequently. The three lowest frequencies identified were 0.676 Hz, 0.818 Hz,

and 1.26 Hz, and the corresponding damping ratios are 1.18%, 3.92%, and 16.3% critical

(Table 7.7). The mode shapes obtained from the finite element model of the tower are fit

to those coefficients identified and are used for the analysis.

Only the one-year return period event was provided to be considered for the present

study. The reference wind velocity corresponding to each direction is given in Table 7.9.

The 0◦ (also 360◦) degree wind direction corresponds to a wind coming from the north.

The direction proceeds clockwise, so a 90◦ heading is a east wind.

7.6 Comparison of the optimal PTMD parameters

between various methods

To investigate which approach best predicts the optimal auxiliary parameters, fr,opt and

ζa,opt are evaluated using the three approaches described in Chapter 4: the closed-form
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Figure 7.14: High frequency base balance wind tunnel study model of Pearson International
Airport Apron Tower (Courtesy Rowan Williams Davies and Irwin Inc.)

equations in Eq. 4.8 and 4.9 (closed-form) [26], the design equations in Eqs. 4.10a and

4.10b which were found using a numerical search approach of a planar PTMD excited using

Gaussian white noise (planar), and the design equations in Eqs. 4.11a and 4.11b found

by numerical search of the planar-spherical PTMD model, also excited using Gaussian

white noise (planar-spherical). Table 7.8 shows the predicted optimal frequency ratio fr,opt

and damping ratio ζa,opt as well as the optimal pendulum length and auxiliary damping

coefficient found using Eqs. 4.12 and 4.13 for both the current in-service mass ratio of

12.4%, and the theoretical 1% mass ratio.
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Table 7.8: Optimal frequency ratio, damping ratio, pendulum length, and auxiliary damp-
ing coefficient for Apron Tower from design equations for 1% and 12.4% tuned mass

Optimal Parameter Closed-form Planar Planar-spherical Measured

Parameter Units Eqs. 4.8/4.9 Eqs. 4.10a/4.10b Eqs. 4.11a/4.11b

µ = 1%

fr,opt 0.993 0.985 0.989 -
ζa,opt 0.0498 0.0364 0.0609 -
Lopt m 0.551 0.560 0.555 -
cd,opt N s/m 1.69× 103 1.23× 103 2.06× 103 -

µ = 12.4%

fr,opt 0.917 0.913 0.977 0.975
ζa,opt 0.169 0.178 0.204 1.075
Lopt m 0.646 0.652 0.569 0.572
cd,opt N s/m 65.7× 103 69.0× 103 84.9× 103 445.2× 103

Each method predicts slightly varying pendulum lengths when a full-scale structure

equipped with a PTMD is considered. For the 1% mass ratio, the variation is a nominal

0.9 cm. For the 12.4% mass ratio, the difference is 8.3 cm; however, this is expected to have

a limited effect on the actual response since it has been demonstrated that the sensitivity to

detuning is less pronounced for higher mass ratios. Due to the varying nature of the wind

excitation, the performance of the PTMD will change depending on the wind direction.

A numerical search was performed for each wind direction to find the optimal auxiliary

parameters. The optimal pendulum length and auxiliary damping coefficient for each wind

direction are presented in Table 7.9; the results are averaged and the COVs are provided.

For the sake of brevity, only the critical wind direction results are considered.
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Table 7.9: Apron tower optimal damper parameters found by numerical search of a model
excited using HFBB

Wind
direction

Reference
Wind
Velocity

Optimal Damper Parameters

µ = 1.00% µ = 12.4%

La ca La ca

km/hr m ×103 N s/m m ×103 N s/m

260◦ 129 0.539 1.96 0.530 76.0
270◦ 129 0.536 2.02 0.522 73.6
280◦ 126 0.530 1.84 0.518 77.5
290◦ 122 0.540 2.05 0.520 83.7
300◦ 116 0.551 1.27 0.527 80.9

Mean 0.539 1.83 0.523 78.4
COV (%) 1.39 17.6 0.926 5.1

From Table 7.9, a greater variation in the damper parameters for the lower mass ratio is

observed. The optimal pendulum length varies by approximately 2.1 cm for the 1% mass

ratio and 1.2 cm for the 12.4% mass ratio. There is a relatively insignificant difference

in the average optimal pendulum lengths between the two mass ratios (1.6 cm), which

verifies the results for the optimal frequency ratio given in Fig. 4.7. The planar-spherical

prediction approach best captured the negligible difference in optimal pendulum length

for the two mass ratios. The actual optimal pendulum length (by numerical search using

HFBB excited model) is 3% and 9% less than than the best prediction in Table 7.8, for

µ = 1% and 12.4% respectively. This is likely due to the higher damping ratio in the x-

direction lateral mode; from Fig. 4.7, a higher damping ratio results in greater frequency

ratio and subsequently, shorter suspended length. The parametric study assumed equal

damping in each horizontal direction.

The optimal auxiliary damping coefficient varied considerably for both mass ratios, for

the comparative excitation cases in Tables 7.8 and 7.9. The auxiliary damping coefficient

must be selected in order to provide the best statistical performance over a variety of ex-

citations due to the variation in performance for different events. The planar-spherical
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prediction approach best predicted the optimal auxiliary damping compared to the nu-

merical search results using the HFBB method; the optimal damping coefficient was 12%

greater than the best prediction for the 1% mass ratio and 15% less for the 12.4% mass

ratio. It is hypothesized that the assumption of equal lateral natural frequencies in the

orthogonal directions results in an uncertain estimate of the auxiliary damping coefficients.

The effect of lateral frequency ratio on the optimal parameter estimates needs to be inves-

tigated further.

To evaluate the performance of the parameter prediction methods, the responses are

calculated using the HFBB approach for all three auxiliary parameter settings for each wind

direction. The wind time histories for each angle are scaled to a one-year mean recurrence

interval. The RMS response for each wind direction, together with the corresponding

reduction when compared to the bare structural system lacking the TMD are provided.

The results for the responses in the north-south (y) direction for a 1% tuned mass are

provided in Table 7.10; the responses in the east-west (x) direction are provided in Table

7.11. Note that only the data for the critical wind directions (260◦ to 300◦) are shown for

the sake of brevity. The numerical search to find the optimal auxiliary parameters seeks

to minimize the RMS response in both the x- and y-directions simultaneously; therefore,

occasionally it may not always results in the smallest RMS response when the directions

are considered separately.
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Table 7.10: Roof RMS acceleration response in the y-direction and corresponding reduction
for the Apron Tower equipped with a PTMD tuned to µ = 1% for the critical wind
directions

Wind
direction

RMS Acceleration Response in y-direction

Without
PTMD

With PTMD tuned using method
Optimally Tuned

Closed-form Planar Planar-spherical

milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 9.80 6.23 36.4 6.43 34.4 6.25 36.2 6.19 36.8
270◦ 9.35 6.23 33.3 6.44 31.1 6.22 33.5 6.17 34.0
280◦ 9.54 6.10 36.0 6.30 33.9 6.13 35.7 6.04 36.7
290◦ 8.38 5.30 36.8 5.47 34.7 5.30 36.7 5.26 37.2
300◦ 9.24 4.72 48.9 4.67 49.5 4.82 47.8 4.66 49.5

Table 7.11: Roof RMS acceleration response in the x-direction and corresponding reduction
for the Apron Tower equipped with a PTMD tuned to µ = 1% for the critical wind
directions

Wind
direction

RMS Acceleration Response in x-direction

Without
PTMD

With PTMD tuned using method
Optimally Tuned

Closed-form Planar Planar-spherical

milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 4.97 4.76 4.19 4.80 3.50 4.75 4.46 4.74 4.72
270◦ 5.11 4.87 4.71 4.90 4.03 4.85 4.95 4.83 5.42
280◦ 5.08 4.89 3.75 4.93 3.04 4.87 4.07 4.85 4.45
290◦ 4.51 4.38 3.00 4.41 2.33 4.36 3.31 4.35 3.59
300◦ 4.31 4.25 1.26 4.29 0.362 4.23 1.77 4.29 0.538

From Tables 7.10 and 7.11, the 260◦ wind direction produces the critical response in

the y-direction for the uncontrolled system. The 270◦ wind direction produces the critical

response of the x-direction motion. The various design formulae for predicting optimal

parameters produce negligible difference in the response values; this result is expected as the
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optimal frequency and damping ratios do not vary considerably between the methodologies

for low mass ratios. Also, the performance of each design equation is close to optimal (as

determined by numerical search using the HFBB excitation).

In general, the optimal parameters obtained by the planar-spherical prediction model

resulted in marginally better results for the x-direction response, when tuned to the y-

direction lateral mode. Therefore, the reduced effect of the PTMD on the x-direction

responses shown in Table 7.11 is expected. The performance improvement for the lateral

mode orthogonal to the controlled mode is small for the 1% tuned mass; the potential for a

performance degradation is possible and the RMS attenuated responses in the x-direction

are approaching the same level as the attenuated y-direction. This highlights a critical

weakness in a PTMD with a low auxiliary to main mass ratio when the orthogonal lateral

frequencies of the primary structure are well-separated. The auxiliary damper parameters,

particularly the pendulum length, are tuned to the fundamental mode and provide little

improvement, and in some cases, have the potential to degrade the performance, in the

other lateral direction. It is important to note that there is a potential for the critical

response to switch from one direction in the uncontrolled system to the other direction

in the controlled structure. Note that the optimally tuned results are found by numerical

search based on a cost function of reducing the combined x- and y-direction RMS response;

therefore, a greater x-direction response occurs in the 300◦ direction when the lateral

responses are considered separately.

A means of overcoming this inherent weakness in PTMD design is to increase the mass

ratio, µ. As discussed earlier, an increased mass ratio decreases the overall RMS response of

the main system. Also, from Figs. 4.3 and 4.4, the sensitivity to detuning for higher mass

ratios is reduced. Therefore, it is expected that the x-direction response will experience

an improved RMS response when equipped with the as-constructed 12.4% tuned mass due

to the reduced sensitivity to detuning, despite being PTMD is tuned to the first lateral

mode in the y-direction. The north-south (y) direction roof RMS acceleration responses

for the structure without the PTMD are compared with the structure equipped with a

12.4% tuned mass. Additionally, various parameters prediction approaches together with

the optimal auxiliary parameters are presented in Tables 7.12. The results for the east-west
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(x-) direction responses are given in Table 7.13.

Table 7.12: Roof RMS acceleration response in the y-direction and corresponding reduction
for the Apron Tower equipped with a PTMD tuned to µ = 12.4% for the critical wind
directions

Wind
direction

RMS Acceleration Response in y-direction

Without
PTMD

With PTMD tuned using method
Optimally Tuned

Closed-form Planar Planar-spherical

milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 9.80 3.81 61.1 3.81 61.1 3.66 62.6 3.64 62.9
270◦ 9.35 3.84 58.9 3.85 58.8 3.69 60.6 3.66 60.9
280◦ 9.54 3.78 60.3 3.79 60.3 3.61 62.1 3.58 62.5
290◦ 8.38 3.29 60.7 3.29 60.7 3.16 62.3 3.14 62.6
300◦ 9.24 2.99 67.7 2.99 67.7 2.88 68.8 2.87 68.9

Table 7.13: Roof RMS acceleration response in the x-direction and corresponding reduction
for the Apron Tower equipped with a PTMD tuned to µ = 12.4% for the critical wind
directions

Wind
direction

RMS Acceleration Response in x-direction

Without
PTMD

With PTMD tuned using method
Optimally Tuned

Closed-form Planar Planar-spherical

milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 4.97 3.86 22.4 3.84 22.8 3.62 27.2 3.60 27.6
270◦ 5.11 3.88 24.1 3.86 24.4 3.65 28.6 3.63 28.9
280◦ 5.08 3.89 23.3 3.87 23.7 3.63 28.5 3.57 29.8
290◦ 4.51 3.44 23.8 3.42 24.2 3.20 29.0 3.12 30.8
300◦ 4.31 3.03 29.6 3.03 29.8 2.84 34.1 2.78 35.5

For all wind directions, an increased reduction in the roof RMS acceleration response

was experienced for y-direction motion when compared with the 1% tuned mass. On

average this reduction was 28% in the vicinity of the critical wind directions.
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There is a significant performance improvement for the 12.4% tuned mass in the x-

direction when compared with the 1% tuned mass (40% reduction) in the vicinity of the

critical wind directions. The performance improvement is twofold. First, PTMD perfor-

mance increases with larger mass ratios. Second, the increased mass ratio results in a

reduced sensitivity to detuning; therefore, a significant improvement was realized in the

x-direction response despite the PTMDs being tuned to the first lateral mode in the y-

direction.

As was observed for the 1% tuned mass, the evaluation of the various parameter predic-

tion approaches finds nominal performance improvement of the planar-spherical over the

closed-form prediction or planar prediction model for the y-direction response. This is of

particular interest, as the different methods predict relatively different auxiliary frequency

ratios (fr,opt = 0.917 to 0.977). This underscores that increasing the mass ratio dramati-

cally reduces the sensitivity of the system to detuning. For the x-direction responses, the

planar-spherical model better predicts the optimal auxiliary parameters when compared

with the 1% mass ratio, demonstrating an increasing lateral coupling effect for higher mass

ratios. In conclusion, using the planar-spherical design equations offer little benefit for low

mass ratio and when considering the situation of closely-spaced lateral modes or only the

controlled mode for higher mass ratios. However, if a high mass ratio is being considered

for the purpose of improving the performance of the structure in both horizontal directions

with well separated modes, the planar-spherical design equations (Eqs. 4.11a & 4.11b) can

be relied on to consistently produce better performance in the direction orthogonal to the

controlled lateral mode.

7.7 Condition assessment

The performance of the combined main and auxiliary system for the in-service Apron

Tower structure is of interest. Once the bare modal properties have been extracted, the

numerical model is updated. The auxiliary system parameters are measured (in the case of

the suspended length) or based on manufacturer’s specification (for the auxiliary dampers).
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The pendulum length was measured to be 0.572 m. The PTMDs each are equipped with

two velocity-squared proportional damping auxiliary viscous dampers in each direction

with an equivalent linear viscous damping coefficient of ca = 111.3 × 103 N s/m. The

in-service measured auxiliary parameters are also given in Table 7.8. The frequency and

damping ratios are calculated based on the identified modal properties by rearranging Eqs.

4.12 and 4.13 and using the identified circular natural frequency for the controlled mode

of ωn = 4.247 rad/s.

The roof RMS acceleration responses are found by simulating the updated numerical

model using the HFBB measurements for the one year return period event. The results

are presented in Table 7.14 and compared the response using optimal auxiliary parameters

(repeated from Tables 7.10 and 7.11). A more comprehensive condition assessment could

be performed for various return period events using the same approach; however, only the

one year recurrence interval data was available for the present study.

Table 7.14: Comparison with as-measured and optimal auxiliary damper parameters of the
roof RMS acceleration response for the Apron Tower equipped with a µ = 12.4% tuned
mass

Wind
direction

Without PTMD As-measured Optimal

x y x y x y

milli-g milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 4.97 9.80 3.74 24.8 5.22 46.7 3.60 27.6 3.64 62.9
270◦ 5.11 9.35 3.83 25.1 5.14 45.1 3.63 28.9 3.66 60.9
280◦ 5.08 9.54 3.80 25.2 5.12 46.4 3.57 29.8 3.58 62.5
290◦ 4.51 8.38 3.38 25.1 4.44 47.1 3.12 30.8 3.14 62.6
300◦ 4.31 9.24 3.12 27.6 4.35 53.0 2.78 35.5 2.87 68.9

The results in Table 7.14 demonstrate that considerable improvement is possible by

selecting more optimal auxiliary parameters; specifically, a mode reduction in the pendulum

length and considerably smaller auxiliary damping coefficients. A further reduction in the

RMS acceleration response of 11% and 34%, for the x- and y-directions, respectively, could
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have been realized. There are three reasons why a greater than optimal auxiliary damping

coefficient may have been selected.

• The auxiliary damping coefficients used for the model are based on linearized equiv-

alent viscous dampers; for shorter return period events, the damper motion is con-

siderably less and the as-measured value in Table 7.8 is likely overstated. A more

robust analysis could be performed by modelling the velocity-squared proportional

damping (see Sec. 3.5); this is beyond the scope of the present work.

• Reducing the stroke of the PTMDs is likely why a greater than optimal damping

coefficient was selected. The are space constraints within the roof truss structure for

locating the PTMDs, and it is often desirable to reduce the auxiliary damper motion.

• As was shown in Fig. 4.4, selecting an auxiliary damping coefficient greater than

optimal has less impact on the performance than an equivalent level of suboptimal

damping, particularly for high mass ratios. If there is a level of uncertainty in the

main structure’s modal properties, increasing the auxiliary damping coefficient will

still guarantee adequate performance for the case where there are uncertain estimates

of the main structure’s modal properties.

7.7.1 Effective viscous damping using full-scale measurements

The effective damping introduced by the PTMD, ζe, is another means of quantifying TMD

performance. The measure can be readily ascertained by fitting the acceleration response

measurements to a single-degree-of-freedom (SDOF) system operating at the same natural

frequency as the underlying structure using EKF. The advantage over the approach de-

scribed in the previous step is that the result is a direct output of the filter, and further

simulation of the structural response is not required.

The effective damping introduced by the PTMD is averaged over the 20 realizations

and plotted in Fig. 7.15. The mean estimate is ζe = 0.0306 with a COV of ĉv = 18.1%.

The identified damping ratio for the underlying structure was ζ1 = 0.0118; therefore, the
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PTMDs increased the damping in the structure by ∆ζ1 = 0.0188. The results are within

the range of expected performance cited in the literature [80].

t (s)

ζ e
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Figure 7.15: Effective viscous damping for the controlled mode of vibration for the Apron
Tower

The effective damping is not an instantaneous measure; final estimation convergence

occurred after approximately 150 s. There is some variation in the final converged es-

timate, likely due to damping widely believed to be dependent on the level and nature

of the excitation. Though linear viscous damping is independent of amplitude [50], it is

simply being used in this case to model an inherently more complex phenomena due to its

simplicity. Therefore, this measure is only useful for quantifying the performance of the

PTMDs for the particular event experienced while the data was being collected, and can

be expected to vary for different return period wind events. A comprehensive condition

assessment would included quantifying the effective damping as well as the response re-

duction when compared with the uncontrolled structure, described earlier, for a series of

increasing return periods.

239



7.8 Comparison of planar and planar-spherical model

RMS acceleration responses

The effect of using the more simplified linearize planar PTMD model for predicting optimal

parameters has already been explored. Next, the ability to predict the structural responses

using the model described in Chapter 3, where the coupled planar and spherical PTMD

motion is included, is considered.

Table 7.15 outlines the RMS acceleration of the roof for the critical wind directions,

evaluated by combining the planar PTMD (with 1.00% tuned mass) model coupled with

the effective modal mass, stiffness, and damping for the main system for each mode of

vibration. The input excitation is the generalized force for each mode, directly measured

from the HFBB model. The RMS response of the planar model is compared with the

planar-spherical HFBB model described earlier. The auxiliary damper parameters are set

to their optimal values, given previously in Table 7.9.

Table 7.15: Comparison of roof RMS acceleration response predictions and corresponding
reduction for the Apron Tower equipped with a PTMD tuned to µ = 1% using a planar-
spherical model and planar model for the critical wind directions

Wind
direction

Without PTMD Planar-spherical PTMD Planar PTMD

x y x y x y

milli-g milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 4.97 9.80 4.73 4.73 6.19 36.8 4.67 6.10 6.11 37.6
270◦ 5.11 9.35 4.83 5.42 6.17 34 4.79 6.25 6.09 34.8
280◦ 5.08 9.54 4.85 4.45 6.04 36.7 4.8 5.57 5.98 37.3
290◦ 4.51 8.38 4.35 3.59 5.26 37.2 4.27 5.33 5.19 38.0
300◦ 4.31 9.24 4.29 0.537 4.66 49.5 4.21 2.22 4.65 49.7

There is little discrepancy (less than 2%) in the roof RMS responses between the two

methods, with the more simplistic model predicting greater reductions in RMS responses.
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The results for a 12.4% mass ratio are presented in Table 7.16 for the critical wind direc-

tions.

Table 7.16: Comparison of roof RMS acceleration response predictions and corresponding
reduction for the Apron Tower equipped with a PTMD tuned to µ = 12.4% using a planar-
spherical model and planar model for the critical wind directions

Wind
direction

Without PTMD Planar-spherical PTMD Planar PTMD

x y x y x y

milli-g milli-g milli-g % milli-g % milli-g % milli-g %

260◦ 4.97 9.80 3.60 27.6 3.64 62.9 3.40 31.7 3.86 60.6
270◦ 5.11 9.35 3.63 28.9 3.66 60.9 3.45 32.5 3.86 58.7
280◦ 5.08 9.54 3.57 29.8 3.58 62.5 3.39 33.2 3.74 60.8
290◦ 4.51 8.38 3.12 30.8 3.14 62.6 2.99 33.8 3.26 61.1
300◦ 4.31 9.24 2.78 35.5 2.87 68.9 2.69 37.6 2.90 68.6

The performance of the planar model for predicting the RMS response of the struc-

ture equipped with a 12.4% tuned mass is poorer than for the 1% tuned mass, with up

to 6.1% difference in RMS response predictions (5.1% unconservatively). For the larger

auxiliary mass, the coupling effect of the PTMD on the main structural response is more

pronounced. Though the performance for this particular example is relatively insignificant,

this is an important conclusion that has implications with respect to the design of PTMDs.

Specifically, for the higher modes, the acceptance threshold for occupant comfort decreases

with increasing frequency within the 0-1 Hz range (ISO 6897) [56]. Hence, it is important

to quantify the effect of TMD tuned to the dominant mode on higher modes, as they may

not meet the performance requirements. For the case of well separated first lateral modes

within the 0-1 Hz range, there may be substantial attenuation in the controlled mode (first

mode) response, resulting in the first lateral mode in the orthogonal direction (second

mode) dominating the response and potentially exceeding acceptable limits.
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Chapter 8

Conclusions and recommendations

A comprehensive approach to performing condition assessment of in-service pendulum

tuned mass dampers (PTMDs) has been undertaken in this dissertation. A general frame-

work including online estimation algorithms and measures to perform condition assessment

have been developed. Both numerical and full-scale experiments have been conducted and

used to demonstrate the procedures to be employed for condition assessment of in-service

PTMD equipped structures. This chapter highlights the significant contributions, key

conclusions, and recommendations for future work.

8.1 Significant contributions

The present work has led to several important contributions, summarized below:

1. A broader understanding of the coupled biaxial behaviour of pendulum-type tuned

mass dampers (TMDs) now exists. Specifically, increasing the mass ratio has a less

significant impact on the optimal frequency ratio than what is predicted by closed-

form or numerical search solutions using a linearized planar PTMD. For higher mass

ratio systems, a greater optimal auxiliary damping ratio is predicted as well. This

is due to the increased coupling effect for higher auxiliary masses. However, it has
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been demonstrated that due to the reduced sensitivity to detuning for high auxiliary

masses, selecting optimal parameters based on conventional approaches has a minor

negative impact on the performance of the PTMD.

2. A time-domain parametric identification algorithm using extended Kalman filter

(EKF) has been demonstrated as an effective approach for estimating the under-

lying structure’s natural frequencies, modal damping ratios, and mode shapes while

the TMD is still in service. This is a difficult undertaking, as the presence of the

TMD changes the dynamic characteristics of the response. The methodology over-

comes traditional manual approaches, where the TMD motion is arrested in order

to perform the identification. Unlike other approaches attempted in the literature,

it requires no a priori knowledge of the degree of detuning present in the system;

the auxiliary parameters are simply measured and used within the system model.

The proposed algorithm is also readily amenable to online implementation within

feedback control systems.

3. Despite relatively wide use of parametric identification using Kalman filtering ap-

proaches, two issues have generally been overlooked thus far. The first issue is the

presence of feedthrough of the disturbance input for the case of a main mass excited

system with only acceleration response measurements available (no direct measure-

ments of the states). The present work has accounted for this by treating the noise

processes present in the measurement equations as correlated to those present in

the transition equations, and adapted the Kalman filter equations to eliminate this

correlation using a one-step predictor gain matrix. This was subsequently extended

for the application of combined state and parameter estimation, an inherently non-

linear problem addressed by EKF. The second issue is that most applications of

Kalman filtering for structural system identification have assumed knowledge of the

noise covariance matrices and known inputs. In the current research, this issue has

been systematically addressed by introducing a noise covariance estimation step; by

setting the covariance matrices as a linear combination of a set of parameters, the

covariance of the residual sequence is linear in the same set of parameters. This has
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been exploited by measuring the actual correlation of the residual sequence and using

a weighted least-squares fit to estimate these parameters, and subsequently the noise

covariance matrices.

4. The concept of effective damping due to the presence of a TMD has not received

widespread application to condition assessment of in-service TMDs, since its theo-

retical calculation requires a priori knowledge of the structure’s natural frequency

(without the TMD) and the ability to measure or accurately estimate the root mean

squared (RMS) displacement response. Applying a similar approach to fit the ac-

celeration response measurements to a single-degree-of-freedom (SDOF) system op-

erating at the same frequency of the main bare structure (estimated using EKF

modal identification), the effective damping parameter is appended to the state vec-

tor and estimated. This method was demonstrated to produce reliable results based

on numerical simulations and verified using PTMD attenuated acceleration ambient

response measurements.

5. A comprehensive framework to undertake condition assessment has been presented.

The methodology integrates the modal parameter data obtained from measurements

into an assessment framework that enables one to arrive at conclusions regarding the

condition of the in-service PTMD.

8.2 Conclusions

Having highlighted the significant findings of the present work, the primary conclusions

are summarized below.

1. Key conclusions from the parametric study of the three-dimensional model are as

follows. The effect of detuning was considered for various levels of frequency and

damping detuning. It was found that errors of 15% in the initial mass and stiffness

estimates of the bare structure could result in nearly 30% reduced frequency re-

sponse performance of the system. For auxiliary damping detuning, using a greater
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than optimal auxiliary damping was less detrimental to the performance than a cor-

responding level of suboptimal damping. Studies into the effect of the mass ratio

confirmed the findings of other researchers that a heavier auxiliary mass not only

improved the TMD performance, but also reduced the sensitivity of the system to

detuning.

2. The design formulae generally corresponded to the ones available in the literatures

for low mass ratios. For optimal frequency ratio, a reduced sensitivity to increasing

mass ratio was observed; conventional closed-form solutions or those designs based on

numerical search (necessary for the case of main-mass damping) of linearized planar

models predicted considerably lower optimal frequency ratios for higher mass ratios.

The optimal auxiliary damping predicted by the proposed model was higher than the

closed-form case, with greater disparity as the mass ratio increased.

3. The effect of predicting the responses using the simplified planar PTMD model were

considered. It was found that there was little prediction error in the responses for low

mass ratios. For the higher mass ratio considered, the coupling effect of the PTMD

became more substantial. In some cases, the planar model unconservatively predicted

better performance than the more accurate planar-spherical auxiliary system model.

For higher mass ratios, there is a potential that the lateral response orthogonal to the

controlled response becomes the dominant response; therefore, it has been concluded

that it is important to quantify the effect the PTMD may have on higher-order

modes, particularly in ensuring comfort criteria are met.

4. The EKF proved to be an effective means of identifying the underlying structure’s

modal properties from PTMD attenuated acceleration response measurements. The

presence of feedthrough of the disturbance noise in the measurement equation was

accounted for by modifying the Kalman filter equations to first eliminate the cor-

relation between the process and measurement equations. For the application of

wind excitation, the input is modelled as an unknown disturbance noise with un-

known noise covariance matrix. The natural frequency estimates were precise and

converged quickly. It was noted that these are of primary interest for the purpose
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of retuning TMDs, particularly for the controlled mode. The damping estimation

was deemed adequate for the application of selecting TMD parameters and condition

assessment. Convergence of damping estimates was considerably slower, and estimat-

ing the damping ratio for the controlled mode proved to be more difficult. For the

case where the PTMD was detuned, the damping estimate for the controlled mode

was improved. The mode shape estimation also demonstrated good performance,

particularly for lower order modes.

5. The correlation method presented for estimating the noise covariance matrices demon-

strated outstanding performance for the case where the model parameters were

known. For the more practical case of unknown model parameters, an initial es-

timate of the model parameter was used instead. This lead to an increase in the

error for the noise covariance estimation step, but resulted in no noticeable perfor-

mance degradation in the final parameter estimates.

6. The EKF can readily be applied to the problem of estimating the effective damping of

the PTMD, unencumbered by the lack of availability of displacement response mea-

surements. The natural frequency of the controlled mode is simultaneously estimated

using EKF modal identification. The investigation on the numerical model produced

results similar to the theoretical values. The methodology was confirmed to produce

realistic results for the measured data from the full-scale structure considered.

7. The online estimation algorithm demonstrated excellent performance in terms of the

parameter estimates from the PTMD contaminated response measurements for the

bench-scale laboratory model, when compared to estimating the modal parameters

using Blind Source Separation (BSS) with the adaptive passive tuned mass damper

(APTMD) apparatus removed.

8. The EKF modal identification approach was demonstrated using full-scale response

measurements from the Apron Tower at Toronto Pearson International Airport. The

results were similar to other published findings for the same structure; in that case,

the motion of the PTMD had to be restrained for the identification to proceed.

247



8.3 Recommendations for future work

There are several possible extensions of the present work to enhance the understanding

and assessing the performance of PTMDs.

1. The numerical aspect of this work can be extended through more parameteric studies.

For example, design equations for a wider range of orthogonal lateral frequency ratios

can be developed.

2. The EKF has been considered for the present work, due to its classic application

to nonlinear Kalman estimation and numerous successful implementations, includ-

ing structural system identification. A key step in applying EKF is determining the

Jacobian matrices of partial derivatives of the nonlinear transition and measurement

equations, with respect to the state or stochastic input variable, evaluated at the

current state estimate. This proved to be an onerous task and prone to human error.

The unscented Kalman filter (UKF) is an improvement over the EKF, where the

unscented transform is used to select a minimum number of sample points about the

mean, which are subsequently propagated through the nonlinear transition equation,

from which the statistics are measured [85]. This circumvents the need to linearize

the equations for the sake of propagating the covariance matrices to the next time

step, and eliminates the error introduced by the linearization process. It has been

demonstrated that the UKF results in an improved performance for structural sys-

tem identification [102], though not substantially, since nonlinearities introduced by

appending the parameters are not considerable. It is worth noting that the primary

contribution of the present work was not in applying the EKF, but rather in de-

veloping an approach to estimate the underlying structural properties, addressing

the issues of feedthrough process noise in the measurement equation, and estimating

the statistics of the unknown input and measurement noises. Aside from the afore-

mentioned difference between the filtering methods, the remaining equations proceed

similarly, and the issues of unknown noise statistics and feedthrough disturbance

remain.
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3. It was established that the EKF modal identification approach was fundamentally

based on the assumption that the mode shape vectors were not significantly impacted

by the presence of the auxiliary mass. This is true for low auxiliary mass systems;

however, reasonable performance was demonstrated for the full-scale structure with

a 12.4% tuned mass. Further analysis considering large mass ratios would shed more

light on this issue.

4. The identification algorithms can be used to develop a prototype APTMD or semi-

active tuned mass damper (STMD). This can be achieved through little or no mod-

ification to the estimation algorithm developed in this thesis and through the choice

of proper control hardware.
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Appendix A

Auxiliary system described in

Cartesian coordinates

Selecting the suspension point of the auxiliary mass as the origin of the system (as before),

and defining three new quantities, ua(t), va(t), and wa(t) as the distance of the auxiliary

mass away from its at-rest position in the x-, y-, and z-directions. The position of the

auxiliary mass is then

r(t) =


u(t) + ua(t)

v(t) + va(t)

w(t)− L+ wa(t)

 (A.1)

The velocity of the auxiliary mass is

v(t) =


u̇(t) + u̇a(t)

v̇(t) + v̇a(t)

ẇ(t) + ẇa(t)

 (A.2)

The relative motion of the attachment point, a distance hx or hy along the pendulum
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length L is given by (assuming the auxiliary damper and spring remain horizontal)

rp,x =
hx
L
ua(t) (A.3a)

rp,y =
hy
L
va(t) (A.3b)

The relative velocity of the attachment point is

vp,x =
hx
L
u̇a(t) (A.4a)

vp,y =
hy
L
v̇a(t) (A.4b)

The kinetic energy of the auxiliary mass, dropping the (t) notation for convenience, is

Ta =
1

2
vmav

T =
1

2
ma (u̇+ u̇a)

2 + (v̇ + v̇a)
2 + (ẇ + ẇa)

2

=
1

2
ma

(
u̇2 + 2u̇u̇a + u̇2

a + v̇2 + 2v̇v̇a + v̇2
a + ẇ2 + 2ẇẇa + ẇ2

a

) (A.5)

The potential energy of the auxiliary mass is

Va = mag (w − L+ wa) +
1

2
kxr

2
p,x +

1

2
kyr

2
p,y

= mag (w − L+ wa) +
1

2

kxh
2
x

L2
u2
a +

1

2

kyhy
2

L2
v2
a

(A.6)

The Raleigh dissipation function for the auxiliary mass is

Fa =
1

2
cxv

2
p,x +

1

2
cyv

2
p,y

=
1

2

cxh
2
x

L2
u̇2
a +

1

2

cyh
2
y

L2
v̇2
a

(A.7)

The kinetic energy, potential (strain) energy, and Raleigh dissipation function for the main

structure are given in Eqs. 3.20, 3.21, and 3.22.
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To reduce the dimensionality of the problem, a relationship is developed to relate wa

in terms of ua, va, and the pendulum length L.

L2 = u2
a + v2

a + (L− wa)2

= u2
a + v2

a + L2 − 2Lwa + w2
a

(A.8)

Solving the quadratic in terms of wa,

wa = L−
√
L2 − u2

a − v2
a (A.9)

It follows that

w2
a = 2L2 − 2L

√
L2 − u2

a − v2
a − u2

a − v2
a (A.10)

The first derivative of wa with respect to time is

ẇa =
uau̇a + vav̇a√
L2 − u2

a − v2
a

(A.11)

and

ẇ2
a =

u2
au̇

2
a + 2uau̇avav̇a + v2

av̇
2
a

L2 − u2
a − v2

a

(A.12)

The second time derivative is

ẅa =
uaüa√

L2 − u2
a − v2

a

+
vav̈a√

L2 − u2
a − v2

a

+
u̇2
a√

L2 − u2
a − v2

a

+
v̇2
a√

L2 − u2
a − v2

a

+
u2
au̇

2
a

(L2 − u2
a − v2

a)
3
2

+
2uau̇avav̇a

(L2 − u2
a − v2

a)
3
2

+
v2
av̇

2
a

(L2 − u2
a − v2

a)
3
2

(A.13)

The kinetic energy of the auxiliary mass (Eq. A.5) becomes

Ta =
1

2
ma

(
u̇2 + 2u̇u̇a + u̇2

a + v̇2 + 2v̇v̇a + v̇2
a + ẇ2 + 2ẇ

uau̇a + vav̇a√
L2 − u2

a − v2
a

+
u2
au̇

2
a + 2uau̇avav̇a + v2

av̇
2
a

L2 − u2
a − v2

a

) (A.14)
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The potential energy of the auxiliary mass (Eq. A.6) becomes

Va = mag
(
w −

√
L2 − u2

a − v2
a

)
+

1

2

kxh
2
x

L2
u2
a +

1

2

kyhy
2

L2
v2
a (A.15)

The kinetic energy, potential energy, and dissipation function for the combined system

are given in Eqs. 3.8 and 3.17. Lagrange’s equation is given by Eq. 3.23. The generalized

displacements of the system are selected as u, v, w, ∆, ua, and va and the generalized veloc-

ities are u̇, v̇, ẇ, ∆̇, u̇a, and v̇a. The generalized forces are Q =
[
Pu Pv Pw Pr 0 0

]
.

The equations of motion areM +


ma 0 0 0

0 ma 0 0

0 0 ma 0

0 0 0 0





ü

v̈

ẅ

∆̈r

+ C


u̇

v̇

ẇ

∆̇r

+ K


u

v

w

∆r


=


−maüa

−mav̈a

−ma (ẅa + g)

0

+


Pu

Pv

Pw

Pr



(A.16)

where ẅa is given in Eq. A.13. The remaining equations of motion corresponding to the

auxiliary degree-of-freedom (DOF) are

0 = ma (ü+ üa) +mauaΛa + kx
h2
x

L2
ua + cx

h2
x

L2
u̇a (A.17a)

0 = ma (v̈ + v̈a) +mavaΛa + ky
h2
y

L2
va + cy

h2
x

L2
v̇a (A.17b)

where

Λa =
ẅ + g√

L2 − u2
a − v2

a

+
u̇2
a + v̇2

a

L2 − u2
a − v2

a

+
uaüa + vav̈a
L2 − u2

a − v2
a

+
(uau̇a + vav̇a)

2

(L2 − u2
a − v2

a)
2 (A.18)
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