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Abstract

This thesis deals with the implementation of quantum channels using linear optics. We
begin with overviews of some important concepts in both quantum information and quan-
tum optics. First, we discuss the quantum bit and describe the evolution of the states via
quantum channels. We then discuss both quantum state and process tomography, methods
for how to determine which states and operations we are experimentally implementing in
the lab. Second, we discuss topics in quantum optics such the generation of single photons,
polarization entanglement, and the construction of an entangling gate.

The first experiment is the implementation of a quantum damping channel, which
intentionally can add a specific type and amount of decohering noise to a photonic qubit.
Specifically, we realized a class of quantum channels which contains both the amplitude-
damping channel and the bit-flip channel, and did so with a single, static, optical setup.
Many quantum channels, and some gates, can only be implemented probabilistically when
using linear optics and postselection. Our main result is that the optical setup achieves the
optimal success probability for each channel. Using a novel ancilla-assisted tomography,
we characterize each case of the channel, and find process fideilities of 0.98± 0.01 for the
amplitude-damping channel and 0.976± 0.009 for the bit-flip.

The second experiment is an implementation of a protocol for quantum computing on
encrypted data. The protocol provides the means for a client with very limited quantum
power to use a server’s quantum computer while maintaining privacy over the data. We
perform a quantum process tomography for each gate in a universal set, showing that only
when the proper decryption key is used on the output states, which is hidden from the
server, then the action of the quantum gate is recovered. Otherwise, the gate acts as the
completely depolarizing channel.
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By wisdom a house is built, and through understanding it is established; through
knowledge its rooms are filled with rare and beautiful treasures.

– Proverbs 24:3-4

If I can fathom all mysteries and all knowledge but do not have love, then I am nothing.

– 1 Corinthians 13:2

My goal is that we may be encouraged in heart and united in love, so that we may have
the full riches of complete understanding, in order that we might know the mystery of
God, namely Christ, in whom are hidden all the treasures of wisdom and knowledge.

– Colossians 2:2-3
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Chapter 1

Quantum Information Background

1.1 Introduction

Quantum computing offers great promise in solving complex problems. Problems such as
factoring large numbers, searching, and simulating complex quantum systems find solutions
in the ever-nearing quantum computer. One of the biggest hurdles in the way of a fully
functional quantum computer is decoherence. Decoherence is the unwanted interaction
between a quantum system and its surrounding environment, resulting in the loss of infor-
mation. This thesis presents two experiments done using linear optics, which is an ideal
testbed for quantum information. The first shows the construction of a damping channel,
which intentionally adds a highly controllable amount and type of decohering noise to our
precious quantum information. This is to further our understanding of decoherence in var-
ious implementations of quantum information processing and move towards correcting for
it. The second experiment shows the realization of a cloud quantum computing protocol.
The motivation for a client-server model stems from the realization that the difficulty in
implementing large scale quantum computers will limit their widespread availability. The
experiment shows how a client can securely use a server’s quantum computer, themselves
only needing a small amount of quantum information processing capability.

This thesis is comprised of five chapters. In this first chapter we will cover some of
the necessary quantum information theory background. In Chapter 2 we will move to
discussing how some of these concepts are implemented using quantum optics. In Chapter
3 we show the experiment for the optimal construction of a quantum damping channel. In
Chapter 4 we discuss the second experiment, where one can perform quantum computations
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on encrypted data. We will then conclude in Chapter 5, and discuss technical details in
the Appendices.

1.2 The Qubit

A quantum bit, or qubit, is the elementary unit of quantum information. A qubit can be
defined as a superposition of a two-level quantum system,

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1 (1.1)

This is called a pure state. The states |0〉 and |1〉 are unit vectors in a Hilbert space H:(
1
0

)
and

(
0
1

)
, respectively. They are referred to as the computational basis states, and

form an orthonormal basis in this vector space. Important physical observables of the
two-level quantum system are the Pauli operators:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1.2)

Now suppose you are given some quantum state and are told that it is |ψ〉 with prob-
abilty p, or |φ〉 with probability 1 − p. This is an example of a mixed state and cannot
be described as the pure states we outlined above. We describe mixed states using the
density matrix, ρ, which is general. A density matrix is a d × d, positive semi-definite,
Hermitian matrix which has a trace equal to 1. Here, d is the dimension of the Hilbert
space of the considered physical system (d = 2 for a single qubit, d = 4 for two qubits,
etc.). The density matrix can be written as the statistical mixture of the outer product of
pure states.

ρ =
∑
i

pi|ψi〉〈ψi|,
∑
i

pi = 1 (1.3)

Another useful way to view a single qubit is using the Bloch sphere representation.
Here, we can rewrite the density matrix in components of the three Pauli matrices X, Y
and Z. It is straightforward to verify that

ρ =
1

2
(1 + Tr(ρX)X + Tr(ρY )Y + Tr(ρZ)Z) (1.4)

2



Figure 1.1: The Bloch sphere has axes which correspond to the Pauli matrices, with their
eigenstates at the poles. Single qubit states are vectors in the unit sphere, with pure state
vectors (black) reaching the surface of the sphere, and mixed state vectors (blue) having
magnitude < 1.

Now consider a space where the basis is the set of Pauli matrices. It can be shown that
each Pauli matrix is orthogonal to every other under the Hilbert-Schmidt inner product,
(A,B) ≡ Tr(A†B). Then multiplying ρ by a Pauli matrix and taking the trace gives us
the projection of ρ onto one of the axes. In this way we can define a vector in our space
of Pauli matrices which completely represents the quantum state. Fig. 1.1 shows a the
state vector on a Bloch sphere. The surface of the Bloch sphere contains the pure states,
whereas mixed states fill the volume. The sphere then represents the set of states available
through single-qubit quantum processes.

Note that in this thesis we are concerned with quantum information encoded in the
polarization of single photons. We associate |0〉 with |H〉 (horizontal) and |1〉 with |V 〉
(vertical), the linear polarizations of light. The reader should then be put on notice that
the terms qubit and photon may be often used interchangeably.

1.3 Entanglement

Quantum entanglement is the greatest mark of the departure between quantum and clas-
sical views of the physical world. It was with entanglement that John Bell showed how we
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must leave behind our traditional notion of locality [9], and it is with entanglement that
quantum computers will provide dramatic increases in power over their classical counter-
parts.

We will define entanglement using two qubits, though the concept extends to arbitrary
dimensions. Simply put, two particles are entangled if they are not separable. To properly
define separability of states, and therefore entanglement, we must consider mixed states.
Suppose ρA and ρB are density matrices describing the quantum states of the particles A
and B. The particles are separable if the total quantum state ρ can be written as a convex
sum of separable states

ρ =
∑
i

piρAi ⊗ ρBi (1.5)

where ⊗ is the tensor product,
∑

i pi = 1 and each pi > 0. Once again, if the state cannot
be written in this way then it is entangled.

For example consider two particles, A and B, in the Bell state |Φ〉 = 1√
2
(|0A〉 ⊗ |0B〉+

|1A〉⊗|1B〉). Since it is not possible to factor the state into the form |Φ〉 = |ψA〉⊗|ψB〉, the
state |Φ〉 is entangled. Even if they are separated spatially, we can only think of the particles
as a single quantum system and not individually. We will come across entangled photon
pairs numerous times. In Chapter 2, we will briefly discuss the generation of entangled
photon pairs, and in Chapter 3 we will use entangled photon pairs to characterize a single
qubit quantum channels.

1.4 Quantum channels

A quantum channel, or process, describes the most general evolution of a quantum state
in time and/or space. Quantum channels can include anything from the quantum gates
that make up a quantum computer, to the noisy and imperfect transmission of quantum
information from one party to another. Formally, a quantum channel can be defined
as a completely positive and trace-preserving linear map. Essentially, this means that
a quantum channel is mapping that takes a physical density matrix to another physical
density matrix. The condition of complete positivity requires that the mapping takes
density matrices to density matrices when including an arbitrarily large ancilla space. In
order to better understand some of the work later on, particularly Chapter 3, it will be
useful to spend some time looking at some of the different representations of quantum
channels.

4



1.4.1 Kraus representation

One way to represent a quantum channel, E(ρ) is to describe the mapping as a sum of
linear operators, called Kraus operators, which individually act from the left and right on
the original density matrix ρ. For this reason it is also commonly called the operator sum
representation. The quantum state after the quantum channel, ρ′, is then

ρ′ = E(ρ) =
∑
i

AiρA
†
i (1.6)

where {Ai} are the Kraus operators and have the condition that
∑

iA
†
iAi = 1. The amount

of Kraus operators required for the channel depends on the process, up to a maximum of
d2 operators [52].

The most important quantum gates are unitary operations, meaning that if U is a
unitary operation then UU † = U †U = 1. Quantum gates are then, as a consequence,
unital processes, meaning that they map the maximally-mixed state, ρ = 1/d, to itself.
Quantum gates require only one Kraus operator to describe the quantum process. An
example of a single-qubit quantum gate is the Hadamard which can be written as the sum
of Pauli X and Z operators, H = (X + Z)/

√
2.

A non-unital channel is a process which does not preserve the maximally-mixed state.
An important example of this, and one which we will come back to in Chapter 3, is the
amplitude damping channel, which has Kraus operators

A1 =

(
1 0
0
√

1− γ

)
, A2 =

(
0
√
γ

0 0

)
, (1.7)

The channel models, for example, the excited state of the two-level system decaying to the
ground, and so γ represents the decay rate.

An example of a single-qubit quantum channel which requires all four Kraus operators
is the completely depolarizing channel, which maps every input state to the maximally-
mixed state. Its Kraus operators are given by the identity and the three Pauli operators,
X, Y and Z. We will encounter the depolarizing channel more in Chapter 4 when we look
at how to hide quantum states and operations from an eavesdropper.
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1.4.2 Superoperator representation

Another common way to represent a quantum channel is using a superoperator, a d2 ×
d2 matrix which is commonly written in the basis of Pauli matrices. We will see this
representation much more when we discuss quantum process tomography. We will be
using the terms superoperator, process matrix, and χ matrix interchangebly. The process
matrix shares many properties with a density matrix. For instance, the process matrix is
both Hermitian and positive semi-definite. The superoperator representation is also very
convenient since for the single-qubit it gives the direct description of how a state’s Bloch
sphere coordinates change under the action of the channel. The superoperator can be
derived simply from the Kraus operator representation by rewriting each Kraus operator
in the basis of Pauli matrices.

E(ρ) =
∑
i

AiρA
†
i

=
∑
i

(∑
m

eimẼm

)
ρ

(∑
n

e∗inẼ
†

)
=

∑
mn

χmnẼmρẼ
†
n (1.8)

where χmn =
∑

i eime
∗
in. As an example, the process matrix for the amplitude damping

channel of Eq. 1.7 is shown below.

χAD =


1
4

(
1 +
√

1− γ
)2

0 0 γ
4

0 γ
4
− iγ

4
0

0 iγ
4

γ
4

0
γ
4

0 0 1
4

(
−1 +

√
1− γ

)2

 (1.9)

where the basis is {1, X, Y, Z}. Fig. 1.2 shows the action of the amplitude damping channel
on the Bloch sphere as the amount of damping increases.

1.4.3 Choi matrix representation

The final representation of a quantum channel we will discuss is the Choi matrix. In the
single qubit case, the Choi matrix is a two-qubit density matrix describing the resulting
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Figure 1.2: The Bloch sphere under the action of the amplitude channel, with increasing
γ, the probability that |1〉 transitions to |0〉. As γ → 1, the Bloch sphere shrinks towards
the top pole, where the |0〉 state is situated.

state when the channel acted on one half of a maximally entangled state. It can be written
as τ(E) = (E ⊗ 1)(|Φ+〉〈Φ+|), where E is the quantum channel and |Φ+〉 is a maximally
entangled state. It has been shown through the Choi-Jamio lkowski isomorphism [18, 45]
that this description of a channel can be transformed to any of the other representations.
The Choi matrix will come up again in Chapter 3, when we perform a process tomography
on a single-qubit channel but using an entangled pair of photons. In our procedure, we
first reconstruct the Choi matrix by doing a state tomography on τ(E) and then use it to
find the superoperator χ.

1.5 Quantum state tomography

We are now in a position to outline how we can go about determining a density matrix
ρ from experiment. We will assume that we have many identical copies of ρ available,
which we justify in optical experiments by propagating many photons through the same
optical setup. The goal is to measure ρ in each of the Pauli bases in order to determine
the Bloch sphere vector components. For a single-qubit, we must make a minimum of
four measurements, typically {|0〉, |1〉, |+〉, |+y〉}, which we can think of as measuring the
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projection onto each axis of the state vector on the Bloch sphere We need to measure
both eigenstates in one of the bases in order to properly normalize the state. Using single
photons as an example, we would need to measure in both |0〉 and |1〉 in order to know
many detectable photons, N , are incident on the measurement apparatus. Knowing N we
can then convert our measurements, which are numbers of photons, into probabilities and
determine the projections onto each of the Bloch sphere axes. In actuality, we perform an
overcomplete tomography, meaning that we measure each eigenstate for each of the Pauli
bases. This has been shown to give more accurate results, since the amount of photons
propagating through the setup can fluctuate over the time of measurement, skewing the
normalization.

1.5.1 Maximum likelihood

Nielson and Chuang [52] describe a method to reconstruct the density matrix from exper-
imental results using a linear inversion. However, following [40] we will, in later chapters,
perform maximum likelihood estimations of density matrices. A density matrix ρ(~t) can
be parametrized using d2− 1 independent real numbers thanks to normalization. For ease
of calculation we normally use d2 numbers for the parametrization: ~t = {t1, t2, ..., td2}.
This is done by first defining a lower triangular matrix T , which for the single-qubit case
is given by

T =

(
t1 0

t3 + it4 t2

)
(1.10)

It can be shown that ρ = T †T/Tr(T †T ) has all the properties required for a physical
density matrix, for single-qubit or higher dimensional cases. We define ni as the actual
measured counts, and n̄i = N〈ψi|ρ(~t)|ψi〉 as the expected counts, given the density matrix
ρ(~t), measurement basis |ψi〉, and N photons incident on the detectors. We assume that
measured counts follow a Poissonian distribution, and so we make the approximation that
the standard deviation in the measured counts σi ≈

√
n̄i. When N is large, the Poissonian

distribution is approximately Gaussian. We can then calculate the probability of receiving
the measured counts in all k bases, assuming that the probability of measuring ni counts
follows a Gaussian distribution centred around n̄i.

P (n1, n2, ..., nk) =
1

Nnorm

k∏
i=1

exp

[
−(ni − n̄i(~t))2

2σ2
i

]
(1.11)

8



where NNorm is a normalization constant and σi is the standard deviation in the ith mea-
surement. Substituting in n̄i for the standard deviation, we obtain the likelihood that ρ(~t)
produced the measured counts

P (n1, n2, ..., nk) =
1

Nnorm

k∏
i=1

exp

[
−(ni −N〈ψi|ρ(~t)|ψi〉)2

2N〈ψi|ρ(~t)|ψi〉

]
(1.12)

As the name of the technique suggests, we want to find the parameters ~t which maximize
this likelihood. Instead of maximizing P , it is an equivalent problem to maximize the
logarithm of P , which is also equivalent to minimizing the following “likelihood” function:

L(~t) =
k∑
i

[
ni −N〈ψi|ρ(~t)|ψi〉

]2
2N〈ψi|ρ(~t)|ψi〉

(1.13)

Minimizing this function over ~t gives the density matrix which most closely represents the
actual quantum state in the experiment. In this thesis, restructed density matrices are
found using the NMinimize function in Wolfram Mathematica 8.0.

1.5.2 Monte Carlo error analysis

The question arises of how to perform uncertainty analysis for the reconstructed density
matrix. The method which is often used [53, 62], and which we also adopt for the work in
this thesis, is to add Poissonian noise to the measured photons counts. We then perform
many reconstructions of the density matrix from the adjusted counts in a Monte Carlo
fashion, and can find the standard deviation of each density matrix element, or whichever
measure desired. In order to analyze uncertainties in this way, we must make the assump-
tion that the original number of photon counts measured is close to the mean, so that we
are justified in adding statistical noise in this manner. By counting photons for long times
and accumlating many counts we reduce the fractional error, which goes as 1/

√
ni.

1.6 Quantum process tomography

Characterizing quantum processes is of grave importance to implementing quantum tech-
nologies. In order to see how close to the ideal implemented gates function, we must
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perform a quantum process tomography. Since we are aiming to reconstruct the process
matrix χ, which shares all the same properties as a density matrix, we can take some
lessons from quantum state tomography. We must still measure an input state in each of
a complete set of bases, but now we must also prepare and send in a complete set of input
states.

In total, the χ matrix for a process acting on a d-dimensional Hilbert space is described
by d4 − d2 real parameters. We can see where the d4 amount comes from using the
property that a Hermitian matrix cans be constructed using a single triangular matrix and
its adjoint. Explicitly, if T is a lower triangular matrix then TT † is a Hermitian matrix.
A triangular matrix, where diagonal elements are constrained to be real, is desribed by a
total of d4 real parameters. Adding the constraint that a process matrix must be trace
preserving leaves us with d4 − d2 real parameters to describe χ [52].

1.6.1 Maximum likelihood

In [52], a method for performing quantum process tomography is outlined using a linear
inversion. As in state tomography, the issue arises in this technique where the linear
inversion may output a χ matrix that has trace of greater than one, and therefore cannot
be a physical mapping. For this reason we turn to a maximum likelihood technique, as for
the quantum state tomography, and search for the physical χ matrix which most closely
describes the observed measurement results. Following the same logic as the appendix
of [19], we will denote nab as the number of measured counts for the ath input state and
bth measurement setting. We can then define the number of expected counts that are
output from the quantum channel as n̄ab. Since we can write the action of the channel
acting on an input state ρa as E(ρa) =

∑
mn χmnẼmρaẼ

†
n, the expected counts are n̄ab =

NTr(|ψb〉〈ψb|E(ρa)). We define the likelihood function L in the same way as for state
tomography, with one addition. We add a Lagrange multiplier term λ to enforce physical
contraints of the χ matrix. Recall that for a physical channel, we require that the Kraus
operators {Ei} have the relation

∑
iE
†
iEi =

∑
mn χmnẼ

†
nẼm = 1. Multiplying both sides

by Ẽk and taking the trace, we can see that
∑

mn χmnTr(Ẽ†nẼmẼk)−Tr(Ẽk) = 0, where k
runs from 1 to d2. The likelihood function we seek to minimize takes the form

L =
∑

ab

[nab−N
∑

mn χmnTr(|ψb〉〈ψb|ẼmρaẼ
†
n)]

2

2N
∑

mn χmnTr(|ψb〉〈ψb|ẼmρaẼ
†
n)

+ λ
∑

k

(∑
mn χmnTr(Ẽ†nẼmẼk)− Tr(Ẽk)

)2

(1.14)
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1.6.2 Ancilla-assisted process tomography

So far we have discussed process tomography where we must input at least d2 to the
quantum channel, and perform d2 measurements on each. For a single-qubit quantum
channel, this makes 4 measurements on 4 input states. Using a second, ancilla, qubit we
can shift the work from both preparing and measuring states, to only measurement. By
preparing a two-qubit state, ρAB, and sending one qubit through the quantum channel
(E ⊗ 1)(ρAB), reconstructing the process E requires just d4 = 16 measurements on this
joint state. We can then perform a maximum likelihood estimation of the process matrix
in the same way as outlined above, only now there is one input state and we only sum
over measurement settings. It is not necessary for the characterization, but it has been
shown that having entanglement between the two qubits of the input state gives better
defined results [3]. Using a maximally entangled input state, one actually can perform a
state tomography on the output state from the channel, obtaining the Choi matrix for the
process. We will use this in Chapter 3, adapting the technique according to the reality of
having imperfect resources states to input to the channel.

1.6.3 Monte Carlo error analysis

The uncertainty analysis for the reconstructed process matrix follows the same logic as for
the density matrix in the above section. We add Poissonian noise to the measured counts
and perform many process tomography reconstructions. We then get an estimate of the
uncertainty in the χ matrix, and figures of merit such as the process fidelity, which we
discuss in the next section.

1.7 Distance measures

In both Chapters 3 and 4, we will measure quantum states and processes. In order to
compare experimental findings to what is expected, it will be useful for us to lay out some
quantitative ways [29] to distinguish between ideal and actual quantum states, or processes.

1.7.1 State fidelity

Defined by Jozsa in [41], the measure of the fidelity between two quantum states follows
the same intuition as the overlap between two states |ψ〉 and |φ〉, but generalized to mixed
states. For two states ρ and σ the quantum state fidelity is defined as
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F (ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

(1.15)

It can be seen that F = 1 when ρ and σ are equal, and that F = 0 when ρ and σ are
orthogonal states. This measure is useful because more often than not, we are wanting
to compare an experimentally found density matrix ρ against some pure state |ψ〉. The
fidelity then simplifes as

F (|ψ〉, ρ) =
(

Tr
√
〈ψ|ρ|ψ〉 · |ψ〉〈ψ|

)2

(1.16)

= 〈ψ|ρ|ψ〉 (1.17)

which is the overlap between |ψ〉 and ρ.

1.7.2 Process fidelity

The process fidelity is a distance measure between two quantum processes. It is defined as

F (χ1, χ2) =

(
Tr
√√

χ1χ2
√
χ1

)2

(1.18)

This measure is often quoted against an ideal case when trying to implement a quantum
gate. Similar to the state fidelity, when comparing against a unital channel, the fidelity
simplifies to the overlap of the χ matrices. However, if we are looking at an implementation
of a non-unital channel, as we will in Chapter 3, the process fidelity lacks this operational
meaning when comparing experimental and ideal cases. For this we must turn to another
distance measure.

1.7.3 Trace distance

The trace distance between two quantum states ρ and σ is defined as

D(ρ, σ) =
1

d
Tr |ρ− σ| , (1.19)
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where d is the dimension of the Hlibert space (d = 2 for a single qubit), and |M | =
√
M †M .

Note that here D = 0 when the states ρ and σ are equal, and has a maximum of D = 1
when the states are orthogonal. We are interested in how to compare two quantum channels
EA and EB, so we look at the maximum trace distance measure. For this we input a state ρ
into both channels and find the resulting states ρ′A = EA(ρ) and ρ′B = EB(ρ). Then we can
take the trace distance between ρ′A and ρ′B, which gives us a measure of the probability
of distinguishing between the two states, and therefore the probability of distinguishing
between the two channels for the state ρ. We then maximize this quantity over all possible
input states ρ. Operationally, this means that we have found the highest probability of
telling the two channels apart using the best possible input state. At first glance, this
maximization problem seems daunting since even for a single-qubit channel, maximizing
over the Bloch sphere volume is difficult. Thankfully, the state which maximizes the trace
distance will always be pure, reducing the computational problem dramatically.
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Chapter 2

Quantum optics background

2.1 Introduction

In this chapter we will develop some of the quantum optics tools required to perform the
types of experiments coming in later chapters. We will briefly overview concepts such as
spontaneous parametric downconversion, entanglement generation, birefringence, Hong-
Ou-Mandel interference and Pockels cells. Lastly, we will, in some detail, go through the
experimental setup for an optical CNOT gate.

We use the polarization of the light field to define our notion of information. Light can
be linearly, or circularly polarized (Fig. 2.1). We use the horizontal polarization (|H〉),
defined as being in the plane of the optical table, as the logical state |0〉. The vertical
polarization, |V 〉, is the logical |1〉.

Then the diagonal polarization, |D〉, is |+〉 = 1√
2
(|0〉 + |1〉), and the anti-diagonal

polarization, |A〉, is |−〉 = 1√
2
(|0〉− |1〉). These are the eigenstates of the Pauli X operator.

Lastly, the left-circular polarization, |L〉, is |+y〉 = 1√
2
(|0〉 + i|1〉), and the right-circular

polarization, |R〉, is |−y〉 = 1√
2
(|0〉−i|1〉). These are the eigenstates of the Pauli Y operator.

Of course, nothing about this information encoding is quantum yet. Polarization optics
using a matrix algebra formulation, such as Jones matrices or the Poincaré sphere, dates
back well before the Bloch sphere was used to described spin orientations.
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Figure 2.1: Linearly (a) and circularly (b) polarized light propagating in the z-direction.
Blue arrows show the direction of the electric field at each point along the z-axis.

2.2 Generation of single photon entangled states

For the work presented in this thesis, we produce single photon states through a nonlinear
optical process called spontaneous parametric downconversion (SPDC). Simply put, SPDC
is a process whereby an incoming pump photon “splits” into two photons of lower energies,
called the signal and idler (Fig.2.2a).

2.2.1 Spontaneous parametric downconversion

SPDC occurs in a nonlinear medium, meaning there is a nonlinear response of the medium’s
electric field to the electric field of the propagating light. The strength of this nonlinearity
is given by the susceptiblity tensor ~χ. This is expressed through the polarization of the
medium [12], P (t) = ε0

[
χ(1)E(t) + χ(2)E2(t) + ...

]
. Here we only consider nonlinear effects

due to the χ(2) term. For the two experiments in this thesis we use potassium titanyl phos-
phate (KTP), and barium borate (BBO), materials with χ(2) nonlinearities large enough
to be used for efficient downconversion.

SPDC is a quantum effect that the classical nonlinear optics theory does not account
for. Classically, we would describe the process of downconversion as a three-wave mixing
[51]. For this discussion, we will assume that the input field, called the pump, and two
output fields, traditionally called signal and idler, are all plane waves travelling along the
z-axis. Each field is then given by an electric field operator Ê

(+)
j = Ejei(kjz−ωjt), where Ej

is the field amplitude and ωj is its frequency. For signal, idler and pump field amplitiudes
Es, Ei, and Ep, the respective coupled field equations for three-wave mixing in a χ(2) medium
are:
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dEs
dz

∝ χ(2)E∗i Epe−i∆kz (2.1)

dEi
dz

∝ χ(2)E∗sEpe−i∆kz (2.2)

dEp
dz

∝ χ(2)EsEiei∆kz (2.3)

where ∆k is the phase mismatch defined as ∆k = kp − ks − ki, and z is the distance along
the medium which in this case is a non-linear crystal. Now, for downconversion we initially
only have amplitude in the pump field E3, and E1 = E2 = 0. From the equations above, we
have that all three derivatives are equal to zero, and so no intensity can build up in the
signal and idler modes over the length of the crystal. It is for this reason that we must turn
to a quantum mechanical description of downconversion. The interaction Hamiltonian is
[36]

Hint = −ε0
3
χ(2)

∫
V

dV Ê(+)
p Ê(−)

s Ê
(−)
i + Ê(−)

p Ê(+)
s Ê

(+)
i (2.4)

where ε0 is the vacuum permittivity, V is the crystal volume in which the interaction is
taking place. For the quantum process we must first quantize the electric fields, such that
they describe single photon propagation. For simplicity, we will assume the three fields
are all plane waves occupying single modes, and propagating in the positive z direction.
Taking the signal and idler modes to be initially in the vacuum state, and the pump mode
to be a coherent state |α〉, the state |ψ(t = 0)〉 = |α〉p|0〉s|0〉i evolves under the interaction
Hamiltonian as

|ψ(t)〉 = e−iHintt/~|α〉p|0〉s|0〉i

= |α〉p|0〉s|0〉i + i
ε0χ

(2)t

3~

∫ t

0

dt′
∫
V

dV Ê(+)
p Ê(−)

s Ê
(−)
i |α〉p|0〉s|0〉i + ... (2.5)

where higher order terms will be heavily suppressed. Also, the second term in the interac-
tion Hamiltonian, Ê

(−)
p Ê

(+)
s Ê

(+)
i , will not contribute since the signal and idler modes are

initally in the vacuum. We will focus on the first-order term from here on, since it shows
the generation of single photons. We write quantized single-mode electric field operators
as
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E
(+)
j = i

√
~ωj

2ε0V
aje

i(kjz−ωjt) (2.6)

where aj is the annihilation operator for the jth mode. We can rewrite the state evolution
and drop the constant prefactors:

|ψ(t)〉 =

(
~

2ε0V

) 3
2 √

ωpωsωi
ε0χ(2)t

3~

∫ t

0
dt′
∫
V
dV apa

†
sa
†
i e

i(kpz−ωpt
′)−i(ksz−ωst

′)−i(kiz−ωit
′)|α〉p|0〉s|0〉i

∝ t

∫ t

0
dt′
∫
V
dV αei(kp−ks−ki)ze−i(ωp−ωs−ωi)t

′
|α〉p|1〉s|1〉i (2.7)

where single photons have been generated in the signal and idler modes. Since the time
interval over which the interaction occurs is long compared to optical frequencies, we can
make the approximation that

lim
t→∞

∫ t

0

dt′e−i(ωp−ωs−ωi)t
′
= 2πδ(ωs + ωi − ωp) (2.8)

which shows that the process conserves energy, ωs + ωi = ωp. Next we must discuss the
remaining spatial integration

∫
V
dV ei(kp−ks−ki)z. This integration can be performed if we

take the interaction volume to have sidelengths Lx, Ly, and Lz. It is clear to see that the
integral is maximized when the phase mismatch term ∆k = kp−ks−ki = 0. If we integrate
over one direction, we can gain some intuition for how the strength of the interaction varies
when δK 6= 0.

∫ Lz

0

dzei∆kzz =
i

∆kz

(
1− ei∆kzLz

)
= ei∆kzLz/2(−i) 2i

∆kz
sin

(
∆kzLz

2

)
= ei∆kzLz/2Lzsinc

(
∆kzLz

2

)
(2.9)

The phase mismatch then deviates from the ideal as a product of three sinc functions, one
in each direction.

Before moving on to further discussing phase matching, we should note that if we had
kept the next-order term in the series expansion of e−iHintt/~ we would have found a term
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Figure 2.2: (a) A cartoon of the SPDC process in a material with a χ(2) nonlinearity.
Energy is conserved in the process. (b) shows the absorption of a pump photon at fre-
quency ωp and the spontaneous emission of signal and idler photons at frequencies ωs and
ωi. (c) shows the conservation of momentum between pump and downconverted photons.
Angle tuning (changing θ) allows for variety in signal and idler momenta and wavelengths.
Downconverted photons are emitted at angles φ and ϕ from the pump propagation (for
co-linear phase matching these angles are both ≈ 0).

which describes two photons generated in the each mode. We call these “double pairs”
and can be detrimental to experiments based off of postselecting on coincident photon
detections, since they can trigger false counts. For this reason we often reduce the pump
power while performing experiments to observe higher fidelity quantum operations.

2.2.2 Phase matching

As stated above, ∆k = kp − ks − ki is the phase mismatch, which we want to minimize.
This can be achieved by phase matching techniques such as angle tuning (Fig. 2.2c), as is
the case when using BBO, or temperature tuning for KTP. We also use a periodically-poled
KTP crystal (PPKTP) to further compensate for the phase mismatch through quasi-phase
matching. The idea behind periodic poling is that over the length of the KTP crystal
the pump phase oscillates (Fig.2.3a), reducing the downconversion efficiency. However,
if after some characteristic length in the material, Λ/2, we flip the crystal’s orientation,
the pump is brought back into phase (Fig.2.3b). Performing these flips, called periodic
poling, along the entire length of the crystal keeps the pump beam in phase, and allows
the downconversion efficiency to continually increase. In practice, the orientation of the
crystal is periodically flipped on the micrometer scale by applying a strong electric field.

It is also necessary to quickly discuss the polarization of the downconverted photons.
There are two types of phase matching, which will depend on the birefringence of the
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Figure 2.3: (a) Phasor diagram of the pump propagating through the crystal without
quasi-phase matching. (b) With quasi-phase matching, the crystal orientation is flipped
each half cell, Λ/2, reversing the phase.

nonlinear material. Type I downconversion emits signal and idler photons with the same
polarization, which is opposite to that of the pump, |H〉p → |V 〉s|V 〉i. We use type I down-
conversion with a BBO crystal for the experiment in Chapter 4. Type II downconversion
emits signal and idler photons with opposite polarizations, |H〉p → |H〉s|V 〉i. We use type
II downconversion for the experiment in Chapter 3, along with an additional condition
that the signal and idler photons are emitted collinearly (φ, ϕ ≈ 0 in Fig. 2.2c).

2.2.3 Polarization entanglement

In Chapter 3, we use a source of photons, entangled in polarization, to characterize a
quantum channel. It is useful for us to review how these entangled states are generated.
We use a Sagnac interferometer, shown in Fig. 2.4. The polarization of the pump is set
using a half- and quarter-wave plate (HWP and QWP). First suppose that the pump
is H-polarized. It will then propagate around the interferometer in the counterclockwise
direction. If it downconverts (type II colinear) in the PPKTP crystal, the resulting state
is |H〉s|V 〉i. The photons then pass through the HWP at 45◦, and are split into different
spatial modes by the polarizing beam splitter (PBS) giving the state |H〉1|V 〉2, where
the subscripts refer to the spatial modes. Now suppose the pump is V-polarized. It then
propagates clockwise around the interferometer, is flipped to horizontal polarization by the
HWP, and then downconverts to |H〉s|V 〉i. The photons are separated into spatial modes
by the PBS, but this time the resulting state is |V 〉1|H〉2. Finally, suppose the pump
is set to the diagonal polarization |D〉 = 1√

2
(|H〉 + |V 〉). It then propagates around the
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Figure 2.4: A PPKTP crystal placed in a Sagnac interferometer. By controlling the
polarization state of the blue pump beam, the downconverted two-photon state can be
tailored, and entanglement can be generated.

interferometer in both directions, such that if we detected a downconverted photon pair, we
do not know through which direction of the crystal the process occured, and consequently
we have generated the entangled state 1√

2
(|H1V2〉+ |V1H2〉).

2.3 The beamsplitter and Hong-Ou-Mandel interfer-

ence

The beamsplitter is of fundamental importance in quantum optics as it allows for interac-
tion between different spatial modes. We describe a beamsplitter using ladder operators
for each mode, see Fig. 2.5a. The beamsplitter transforms the ladder operators based on
its reflectance and transmittance. They transform as

a 7→ tc+ rd

b 7→ td− rc (2.10)

where r and t are complex numbers with the condition that |r|2 + |t|2 = 1. We also
commonly use polarizing beamsplitters (PBS), which transmit H-polarized light, while
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Figure 2.5: (a) A simple HOM inteferometer. A beamsplitter maps photons in input modes
a and b to output modes c and d. Simultaneous detections of photons in both output modes
triggers the coincidence logic. (b) Detected coincidence counts when changing the path
length of input mode a. HOM interference occurs when the path lengths are matched, as
shown by the dip.

reflecting V-polarized light. The beamsplitter is often used in describing different inter-
ference effects in optics. It is at the heart of the Michelson and Hanbury-Brown-Twiss
interferometers. In a later section, we will look at the implementation of a two-photon
entangling gate, and so we will primarily be concerned with the Hong-Ou-Mandel (HOM)
interferometer [37] (Fig. 2.5a). Photons enter the setup in modes a and b, described in
the number state basis as |ψin〉 = |1a, 1b〉 = a†b†|0, 0〉. Supposing that we have a 50:50
beamsplitter (r = t = 1/

√
2), the ladder operators a and b are mapped to c and d such

that

|ψout〉 =
1√
2

(c† + d†)
1√
2

(d† − c†)|0, 0〉

=
1

2

(
(d†)2 − (c†)2

)
|0, 0〉

=
1√
2

(|0c, 2d〉 − |2c, 0d〉) (2.11)

It can be seen that when the input photons arrive at the beamsplitter in the same time
and interference occurs, we get photon bunching, and have no coincidence photons between
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modes c and d. If we record coincidence counts while varying one of the input photon path
lengths, we then observe the HOM dip (Fig. 2.5b). A more general treatment shows that to
observe interference photons must be indistinguishable in frequency, polarization, arrival
time, and of course have overlap between output modes. We will discuss HOM interference
again shortly when we look at the implementation of an optical CNOT gate.

2.4 Pockels cells

Pockels cells are comprised of a non-linear crystal which is quickly switched between two
indices of refraction controlled by fast-switching high voltages. They are based off of
the Pockels effect, where a strong electric field applied to a non-linear medium changes
the effective index of refraction. In linear optics these cells can be used for fast-unitary
operations in feed forwards systems, or to perform one-time pads for encrypting photonic
qubits, as we do in Chapter 4.

The Pockels cells are driven by square waves voltages oscillating between high and low
states, which then control the oscillation between two amounts of effective bifringence,
±λ/4. A quarter-wave plate immediately after each Pockels cell shifts these rotations to
0 and λ/2, meaning that the Pockels cell either acts as the identity, or a half-wave plate
at the angle of the crystal’s orientation. Half-waves plates before and after each Pockels
cell are used to set the angle of the half-wave rotation about an arbitrary axis in the x-z
plane of the Bloch sphere. The crystals in each Pockels cell are aligned at 45 + δ degrees
to the plane of the optical table, where δ is small. For the experiment in Chapter 4, we
use three Pockels cells to perform X, Hadamard, and Phase gates. In order to perform an
X rotation, half-wave plate at 45 degrees, the additional HWPs are both then set to δ/2
degrees.

1 = HWP(θ = δ/2) ·QWP(θ = π/4 + δ) ·
PC(φ = −λ/4, θ = π/4 + δ) · HWP(θ = δ/2),

X = HWP(θ = δ/2) ·QWP(θ = π/4 + δ) ·
PC(φ = λ/4, θ = π/4 + δ) · HWP(θ = δ/2) (2.12)

where the Pockels cell (PC) is modeled as a general waveplate with retardance φ and optic
axis at angle θ. The second Pockels cell switches between performing the identity and the
Hadamard gate. Here we want the HWPs before and after the Pockels cell to be at 11.5±δ
degrees, and so it can similarly be shown
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1 = HWP(θ = 3π/16 + δ/2) ·QWP(θ = π/4 + δ) ·
PC(φ = −λ/4, θ = π/4 + δ) · HWP(θ = 3π/16 + δ/2),

H = HWP(θ = 3π/16 + δ/2) ·QWP(θ = π/4 + δ) ·
PC(φ = λ/4, θ = π/4 + δ) · HWP(θ = 3π/16 + δ/2) (2.13)

The last Pockels cell switches between performing the identity and the Phase gate
(|0〉 7→ |0〉, |1〉 7→ i|1〉). Because this is a quarter-wave rotation, we oscillate the voltage
between ±λ/8 and require an eighth-waveplate (EWP) afterwards, for which we can use a
half-waveplate tilted to give the proper amount of birefringence. It is simple to verify that

1 = EWP(θ = 0) · HWP(θ = π/8 + δ/2) ·
PC(φ = −λ/8, θ = π/4 + δ) · HWP(θ = π/8 + δ/2),

P = EWP(θ = 0) · HWP(θ = π/8 + δ/2) ·
PC(φ = λ/8, θ = π/4 + δ) · HWP(θ = π/8 + δ/2) (2.14)

2.5 Optical CNOT gate

The controlled-NOT, or CNOT, gate is of critical importance to quantum computing, and
is commonly used in the set of quantum gates required for universal computation [52]. The
matrix for the CNOT operation is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.15)

The importance of the CNOT can be seen in its ability to entangle two initially separable
qubits. For example, suppose a two-qubit state is initialized as |+0〉, where |+〉 = 1√

2
(|0〉+

|1〉), then the output state after applying a CNOT gate with the first qubit as the control
is

CNOT|+0〉 =
1√
2

(|00〉+ |11〉), (2.16)
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which is the maximally entangled state. To build a CNOT using linear optics requires the
interaction of the two photonic qubits at some optical element. The scheme used for this
project is shown in Fig. 2.6, and is derived from that shown in [42, 46, 53], which gives a gate
success probability of 1/9. Photons meet at a partially-polarizing beam splitter (PPBS),
where H-polarized light is fully transmitted, and V-polarized light is 1/3 transmitted and
2/3 reflected.

2.5.1 Partially-polarizing beamsplitters

Similar to the PBS we discussed earlier, the partially-polarizing beamsplitter (PPBS) per-
forms the following mappings on the lowering operators:

aH → cH

aV →
1√
3
cV +

√
2

3
dV

bH → dH

bV →
1√
3
dV −

√
2

3
cV (2.17)

Now suppose two indistinguishable V-polarized photons arrive at the PPBS at the same
time, one in mode a and one in mode b. Then the PPBS maps

a†V b
†
V |00〉ab →

1

3
(−c†V d

†
V −
√

2c†2V +
√

2d†2V )|00〉cd (2.18)

When no interference occurs, the maximum probability of observing a coincident pho-

tons in each path is
(

2
3

)2
+
(

1
3

)2
= 5

9
. In the coincidence subspace, detecting one photon

in each output mode, we see that the amplitude is 1/3 of the original, giving a reduction
to a minimum of 1/9. The visibility of this HOM interference is calculated as follows,

Vis =
Max−Min

Max

=
5/9− 1/9

5/9

= 4/5 (2.19)
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Figure 2.6: (a) Photons of indistinguishable frequency in input modes a and b interfere
at the first PPBS. Polarizations are flipped using half-wave plates at 45 degrees. A tilted
quarter-wave plate in one mode compensates for unwanted phases due to mismatched path
lengths. Two further PPBSs normalize the output state in modes c and d. Post-selecting
on coincidences in the c and d modes gives the desired output state with 1/3 of the original
amplitude. (b) Additional Hadamard and Pauli X components transform the setup into
a CNOT gate. State preparation and analysis are performed using a PBS, quarter- and
half-wave plate, and photons detected within a 3 ns window are recorded.
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Figure 2.7: Measured coincidences in a 3 ns time window, where one input single-mode
fibre coupler was mounted on a motorized stage, stepped at 0.01 mm interval, changing the
relative delay between photon paths. Photons interfere and bunch at a PPBS when their
path lengths are matched, showing a dip in coincidence counts. Dip visibility is 83± 1%.

The PPPSs were purchased from Asahi and had actual reflectivities of 65.5%, 65.3%
and 65.6%, where the primary PPBS is listed first followed by those in modes c and d
respectively. This discrepancy from ideal reflectivity (2/3) changes the expected HOM
dip visibility. For a general reflectivity for the V-polarized light rV , and assuming the
H-polarization is perfectly transmitted, the HOM visibility goes as

Vis =
1

1− 2rV (1− rV )
− 1 (2.20)

Using the actual reflectivity for the first PPBS, we find the ideal visibility to be 82.5%.
Fig. 2.7 shows a HOM dip scan where the state sent into the PPBS was |V V 〉. The
visiblility was found to be 83± 1%.

2.5.2 Using the PPBS to generate entanglement

To see the entangling operation of the setup in Fig. 2.6a, consider one D-polarized photon
in both a and b modes,
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|ψ〉 = |DD〉
= a†Db

†
D|00〉ab

=
1√
2

(a†H + a†V )
1√
2

(b†H + b†D)|00〉ab (2.21)

Performing the first PPBS mapping and simplifying by postselecting on the coincidence
basis, one photon in each of the c and d modes, we find

|ψ〉 → 1

2

(
c†Hd

†
H +

1√
3
c†Hd

†
V +

1√
3
c†V d

†
H −

1

3
c†V d

†
V

)
|00〉cd (2.22)

Half-wave plates at 45 degrees then flip H and V polarizations, H ↔ V , and the state after
the second set of PPBSs is

|ψ〉 → 1

3
· 1

2

(
c†V d

†
V + c†V d

†
H + c†Hd

†
V − c

†
Hd
†
H

)
|00〉cd

=
1

3
· 1

2
(−|HH〉+ |HV 〉+ |V H〉+ |V V 〉) (2.23)

which is an entangled state. The factor of 1/3 corresponds to the success probabilty of the
gate (1/9), while the rest of the state amplitude is lost when we postselect on coincidences
in the two paths. However, the operation that the setup in Fig. 2.6a performs is not a
CNOT. One can verify that its operation is given by the following matrix,

S =


0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0

 (2.24)

This can be easily transformed into the CNOT gate (Fig. 2.6b) using Hadamards and
Pauli X rotations. It is straightforward to see that

CNOT = (1⊗ H) · S · (X⊗ X) · (1⊗ H) (2.25)
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Figure 2.8: The real (a) and imaginary (b) parts of a density matrix reconstructed using a
maximum likelihood quantum state tomography. Here, the state |DH〉 was sent into the
optical setup. The resulting density matrix has quantum state fidelity of 0.893 with the
|Φ+〉 Bell state.

2.5.3 Experimental setup

Photon pairs were generated by spontaneous parametric downconversion (SPDC) using
a Titanium Sapphire (Ti:Saph) laser pulsed at 80 MHz to pump a 1 mm Barium Borate
(BBO) crystal at 395 nm producing downconverted photons at 790 nm. Photons were
propagated through the optical setup outlined in Fig. 2.6b, and were detected using silicon
avalanche photo-diodes (PerkinElmer four-channel SPCM-AQ4C modules) and coincidence
photons were counted with a timing window of 3 ns using a 16 channel logic unit.

2.5.4 Results

Preparing the state |HD〉, we expect to get out the |Φ+〉 Bell state. Fig. B.1 shows the
reconstructed two-qubit density measured from the output of the CNOT setup compared
with the ideal. The quantum state fidelity was calculated to be 0.893 ± 0.004, where
the uncertainty was found using a Monte Carlo simulation adding Poissonian noise to the
measured state tomography data.

In order to fully characterize the gate, an overcomplete process tomography was per-
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formed, where each of the 36 two-qubit Pauli basis states were input to the setup and
photon coincidence counts were measured in all 36 bases. Detailed results of this are
shown in Chapter 4. The process fidelity between the ideal and experimental process
matrices was found to be 0.869± 0.004.
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Chapter 3

Optimal linear optical
implementation of a single-qubit
damping channel

3.1 Notes and acknowledgements

In this chapter we describe the implementation and characterization of a quantum channel
which can controllably add a given amount and type of noise to a qubit. We build on
the discussions of quantum channels and process tomography in Chapter 1, and use the
entangled photon source outlined in Chapter 2. We show that the optical setup was realized
in an optimal way, maximizing the probabilty of success of the channel.

Notice: The contents of this chapter has been published in:

K. A. G. Fisher, R. Prevedel, R. Kaltenbaek and K. J. Resch, Optimal linear optical
implementation of a single-qubit damping channel. New Journal of Physics, 14, 033016,
2012.

Author contributions

KF and RP performed the experiment and analyzed the data.

RK designed the experiment.

KR contributed to the design and realization of the experiment.
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KF took primary responsibility for writing the first draft. All authors contributed to
editing for the final version.

3.2 Abstract

We experimentally demonstrate a single-qubit decohering quantum channel using linear
optics. We implement the channel, whose special cases include the familiar amplitude-
damping channel and the bit-flip channel, using a single, static optical setup. Following
a recent theoretical result [M. Piani et al., Phys. Rev. A, 84, 032304 (2011)], we realize
the channel in an optimal way, maximizing the probability of success, i.e., the probability
for the photonic qubit to remain in its encoding. Using a two-photon entangled resource,
we characterize the channel using ancilla-assisted process tomography and find average
process fidelities of 0.98 ± 0.01 and 0.976 ± 0.009 for amplitude-damping and the bit-flip
cases, respectively.

3.3 Introduction

Time evolution in quantum mechanics converts a density matrix to another density matrix.
This evolution is referred to as a quantum channel and can be described mathematically
as a completely positive (CP) map [52]. Due to generality of the concept of quantum
channels, their use is ubiquitous in quantum information. For example, unitary quantum
channels are used in quantum computing to describe quantum gates. Non-unitary channels,
on the other hand, describe the interaction of quantum states with an environment, and
have recently been connected to fundamental physical questions in quantum information
science, such as channel capacity, superadditivity [69, 33] and bound entanglement [38].

Linear optics and single photons have several characteristics that make them an ideal
testbed for quantum information. Single-qubit unitaries are easy to implement as, for po-
larization encoded qubits, they only require waveplates. Photonic qubits also exhibit long
decoherence times, and spontaneous parametric downconversion allows the generation of
high-quality entangled states, which can be easily manipulated. However, certain opera-
tions, such as the two-qubit CNOT-gate, are difficult in this architecture [50, 48], and can
only be implemented probabilistically [44, 59, 54].

Unfortunately, the ease of single-qubit operations does not extend to more general
CP maps. Some quantum channels, like the depolarizing single-qubit channel [52] can
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be implemented with unit probability, but this is not the case in general. For instance,
the amplitude-damping channel, a non-unital quantum process, has been implemented in
linear optics only with a limited success probability of 1/2 [58, 47]. In one experiment [2],
the Kraus operators describing an amplitude-damping channel were implemented using
a Sagnac interferometer such that all photons were transmitted. However, because the
outputs from each Kraus operator were not coherently recombined on a beamsplitter, our
notion of the success probability of a quantum channel does not apply to this case.

Recently, it was shown by Piani et al. [56] that, any single-qubit quantum channel
could be implemented probabilistically using linear optics and postselection, i.e., similar
to many two-qubit operations. Moreover, they derived an explicit formula for the optimal
success probability.

In the present work, we use this recent theoretical result to design and demonstrate a
linear-optics-based implementation of a certain class of non-unital single-qubit quantum
channels called “damping channels”. The class of channels we focus on can be parametrized
by two real numbers: α and β. In the operator-sum representation, the channel’s action
on an arbitrary quantum state ρ can be written as E(ρ) =

∑
iAiρA

†
i , where the two Kraus

operators are [73]:

A0 =

(
cosα 0

0 cos β

)
, A1 =

(
0 sin β

sinα 0

)
(3.1)

This channel is of great interest as its special cases include the amplitude-damping (α =
0) and bit-flip (α = β) channels, both of which are common sources of error in other
implementations of quantum information processing, such as ion traps. Furthermore, it
belongs to the small class of quantum channels for which the quantum capacity can be
directly calculated via the coherent information [23].

Here, we experimentally realize this single-qubit damping quantum channel using linear
optics. We can use the setup to add controlled amounts of noise of various types to a single
qubit. The schematics of the experimental setup are shown in Figure 4.4. The key step in
the implementation of the channel is the splitting of the polarization encoded information
into different spatial modes, which then allows for the manipulation of different logical
states independently of one another. An arrangement of half-wave plates and liquid-crystal
retarders allows us to probabilistically implement both Kraus operators within a single,
static optical setup. We characterize the channel using an ancilla-assisted quantum process
tomography method, and show the optimality of our optical setup, with our success rates
in the amplitude-damping case surpassing those of previous implementations [58, 47]. In
order to characterize the action of the channel on entanglement we study the amount of
entanglement of photon pairs when one photon is sent through the channel.
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3.4 Optimality of the implementation

Following Ref. [56], it can be shown that the probability of success for a specific Kraus

decomposition {Ai} is psucc({Ai}) =
(∑

i ‖Ai‖
2
∞
)−1

, where the norm ‖M‖∞ is the largest
singular value of the operator M . Maximizing over all possible Kraus decompositions
Ai describing the channel allows one to achieve the optimal success probability popt

succ =
maxAi

1∑
i‖Ai‖2∞

. For our particular channel, if we assume that cos(α) ≥ cos(β), this yields:

popt
succ =

1

cos2 α + sin2 β
(3.2)

In order to achieve popt
succ, each Kraus operator is implemented with individual proba-

bilities pAi
= ‖Ai‖2

∞ · popt
succ. We find that the optimal probability of success is achieved for

pA0 = cos2 α
cos2 α+sin2 β

and pA1 = sin2 β
cos2 α+sin2 β

. We show experimentally that for various values of
α and β, which can be independently controlled in our experiment, we indeed achieve this
upper bound.

3.5 Ancilla-assisted process tomography

Quantum process tomography (QPT) allows one to experimentally reconstruct the super-
operator describing an unknown physical process. Ancilla-assisted QPT (AAQPT) uses
ancillary qubits to facilitate and reduce the reconstruction procedure to quantum state
measurements only; AAQPT has been applied assuming that the initial state is perfect
[3]. AAQPT provides us with the physical matrix that best describes the action of the
experimentally channel and has been used to study various unitary quantum gates. How-
ever, it has not yet been extended to the characterization of non-unital channels which we
address in our work. Here we describe and use a maximum likelihood approach for AAQPT
that takes into account the imperfection of the input ancilla state (Maximum likelihood
methods have been applied to standard quantum state and process tomography before
[40, 53, 27, 39, 6, 49]). To our best knowledge, a maximum likelihood AAQPT technique
which includes errors in the state preparation has not been implemented previously.

The standard techniques for QPT and AAQPT are described in [52, 40, 53, 19] and
[3], respectively. Below, we outline our method following their nomenclature. Consider a
two-qubit state, ρAB, whose density matrix is known; e.g., it might have been reconstructed
using quantum state tomography (QST). The quantum channel E acts on subsystem A,
while subsystem B is unaffected. The transformed two-qubit state after the channel is
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ρ′AB = (E ⊗ 1) (ρAB). Characterizing ρ′AB, e.g., by performing standard QST, allows for
reconstruction of the quantum process using the Choi–Jamio lkowski isomorphism [18, 45].

The quantum process can be written as ρ′AB =
∑d2−1

m,n=0 χmn(Ẽm⊗1)ρAB(Ẽn⊗1)† where

{Ẽi} are operators which form a basis in the space of d×d matrices (d = 2 in our case). It
is common to use the basis formed by the Pauli matrices {1, X, Y, Z}. The d2-dimensional
process matrix χ then fully describes the quantum process. In our maximum-likelihood
technique, we parameterize χ by d4−d2 = 12 real numbers [40, 53, 27] and seek to minimize
the following function:

f =
ν∑
i=1

(ni −NTr[Miρ
′
AB])2

2NTr[Miρ′AB]
+ λ

∑
k

[∑
m,n

χmnTr(Ẽ†nẼmẼk)− Tr(Ẽk)

]2

,

such that the resulting χ most closely resembles a physical quantum process. Here, i labels
the measurement setting in the final QST, ν is the number of measurement settings, ni is
the number of two-fold coincidence counts recorded in the ith setting, N corresponds to the
number of photons incident on the detectors, Mi is the projector of the ith measurement,
and λ is a Lagrange multiplier used to force the resulting process matrix to be trace
preserving [19].

3.6 Experiment

We use the experimental setup shown in Figure 4.4 to implement the quantum channel
defined by the Kraus operators in Equation 3.1. Two 40 mm calcite beam displacers are
used to construct an interferometer. Within these beam displacers, photons with horizontal
(|H〉) and vertical (|V 〉) polarization are spatially displaced with respect to each other [54].
Half-wave plates (HWPs) are used to set the amount of damping by allowing to adjust α
and β in Equation 3.1. The relations between these parameters and the individual angles
a, b, c, d of the four HWPs are given by sin 4a = cosβ

cosα
, b = a − π

4
, sin 4c = − sinα

sinβ
and

d = π
2
− c. The channel is realized by switching randomly between the Kraus operators A0

and A1. The switching is performed using two liquid-crystal retarders (LCRs). We set the
two LCRs to X1 and 12, respectively, to implement A0, and we set them to 11 and X2 to
implement A1. Here, the subscripts represent the action of the first and the second LCR.
The probabilities, pA0 and pA1 , with which each configuration is realized are determined
by the values of α and β such that the overall success probability of realizing the channel
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Figure 3.1: The experimental setup. We use spontaneous parametric downconversion in
periodically poled KTiOPO4 (PPKTP) to generate entangled photon pairs of the form
|Φ+〉 = 1√

2
(|HH〉+ |V V 〉) which are subsequently coupled into single-mode fibres. One of

the photons is sent through the damping channel parameterized by α and β, which are set
by the angles a, b, c and d of four half-wave plates (HWPs). Two liquid-crystal retarders
(LCRs) switch anti-correlatively between the identity, 1, and the Pauli X operation. The
polarization of each photon is measured by an analyzer (A and B) consisting of a half- and
a quarter-wave plate (QWPs) followed by a polarizing beam splitter (PBS). Eventually,
the photons are detected by single-photon counting modules.
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follows Equation 3.2, and is optimal [56]. The switching rate of the LCRs was chosen to
be 10 Hz, significantly faster than the integration time for a single measurement (5 s).

To characterize the channel, we use the AAQPT scheme outlined above. Our resource
state is an entangled photon pair generated in a type-II downconversion source in a Sagnac
configuration [24, 57]. A 0.5 mW laser diode at 404.5 nm pumps a 25 mm periodically-poled
crystal of KTiOPO4 (PPKTP). This typically yielded a coincidence rate of 10 kHz. The
characterization of the channel is executed as follows: The HWP angles a, b, c and d are
set to zero and the LCRs to X1 and 12 such that the channel acts as the identity map. A
QST is performed to obtain the density matrix of the input state, ρAB. The HWP angles
and the probabilities for switching the LCRs and the HWP angles are then set according to
the values of α and β. Another QST yields the output state, ρ′AB. QST involves recording
coincidences for all combinations of the eigenstates of the Pauli X, Y and Z operators.
For each of these 36 projective measurements, we integrated coincidence counts for 5 s.
The resulting data were then used in conjunction with Equation 3.3 to reconstruct the
superoperator describing the quantum process.

3.7 Results

We now turn to our main result, the optimality of our quantum channel implementation.
Figure 3.2a shows the probability of success for the amplitude-damping, bit-flip, and one
in-between case (α = 2

3
β). Since amplitude-damping manifests itself as photon loss in our

particular implementation, determining the probability of success reduces to measuring
the transmission of the channel. The experimental data closely follow the theoretical
predictions (solid lines) that are based on Equation 3.2.

Previous optical implementations of the amplitude-damping channel [58, 47] have given
at most 50% probability of success, whereas here we find that only in the case of maximum
damping (β = π/2) the probability of success decreases to 50%. The experimental results
for the success probability closely resemble the theoretical prediction. This is also true for
our experimental implementation of the bit-flip channel and the α = 2

3
β case of single-qubit

damping.

Fig. 3.2b shows the tangle [74] of the two-photon output density matrix, ρ′AB, for the
amplitude-damping, bit-flip, and α = 2

3
β cases, where one of the two photons passes

through the quantum channel. Theoretical curves are based on the action of the respective
ideal quantum channels on the experimental input density matrix when the channel is
turned off. This also explains the rather high deviation of the data points at larger values
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Figure 3.2: (a) Probability of success as a function of damping parameter β for cases
α = 0, α = 2

3
β and α = β. The shaded region below 0.5 represents probabilities of success

in previous optical implementations of the amplitude-damping channel, see Refs. [58, 2, 47]
(b) The tangle, τ , of the resulting two-photon state as a function of damping β after one
photon has passed through the damping channel. Errors in the experimental data are
calculated from Poissonian noise in the coincidence counts [71] and are not visible on the
scale of the plots. The solid lines in both panels represent the theoretically expected
dependance. In (b), the experimental density matrix of the input state was used for the
calculations. The shaded regions around the theory curves in both plots represent the
expected standard deviation in the simulation assuming 1◦ and 1% rotation errors in the
HWPs and LCRs respectively. The margin of error in the α = β case is significantly
smaller than for the other cases due to the fact that the HWP angles and LCR settings all
lie at points where partial derivatives of the Kraus-operator matrix elements are zero.
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Figure 3.3: (a) Measured process fidelity (solid data points) and trace distance (unfilled
data points) as a function of damping for each of the three cases studied. Error bars (∼
10−3), calculated using Monte-Carlo simulations adding Poissonian noise to the measured
state tomography counts in each run, are too small to see on this scale due to high photon
counting rates. Additional systematic errors are discussed in the text. (b) Real and
imaginary parts of the experimentally determined and ideal process matrices at maximum
amplitude-damping (α = 0, β = π/2).

of β, as drift in the optical setup can lead to slightly different input states over the course
of the experiment.

The process fidelity is defined by F =
(
Tr
√√

χexpχid
√
χexp

)2
[41], where χexp and χid

are the experimental and ideal process matrices, respectively. Process fidelities for the three
tested cases, α = 0, α = β and α = 2

3
β can be seen in Figure 3.3. The uncertainty in the

process fidelity of each individual point was estimated by maximum-likelihood assuming
Poissonian noise in the measured counts and is on the order of 10−3. However, it is clear
from the deviation of process fidelities over the range of damping values that there is an
additional systematic error. We attribute this systematic error to the reduced coupling
efficiencies when rotating the half-wave plates in the interferometer when setting values of
α and β. We then estimate the statistical error in the data and find the average process
fidelities to be 0.98± 0.01, 0.976± 0.009, 0.981± 0.004 for the three respective cases.

We also compute the maximum trace distance [52], which is defined asD = maxρin
1
2
Tr
∣∣ρexp

out − ρid
out

∣∣,
where |A| =

√
A†A and ρ

exp/id
out =

∑
m,n χ

exp/id
mn ẼmρinẼ

†
n. Operationally, D corresponds to

the highest probability of distinguishing between the experimental and ideal channels using
the best possible input state. Maximum trace distances for α = 0, α = β and α = 2

3
β
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cases can also be seen in Figure 3.3. As with the process fidelities, we can estimate the
errors for the three cases from the statistical error of the data points for different values
of β. Using this approach, the average maximum trace distances for α = 0, α = β, and
α = 2

3
β are 0.10± 0.01, 0.11± 0.02, and 0.11± 0.03, respectively.

3.8 Summary

Decoherence plays an important role in quantum information science. Investigating its
effects requires careful and well-controlled implementations of these noisy processes. Non-
unital damping channels, like the ones studied here, are crucial in further understand-
ing quantum communication, in determining channel capacities and for the generation of
bound-entangled states. We have implemented a general damping single-qubit quantum
channel with linear optics in which both type and amount of decohering noise can be
precisely controlled. A single, static optical setup can perform as the amplitude-damping
channel, the bit-flip channel, or more general cases characterized by two real parameters,
α and β. Most importantly, we have shown that this channel has been implemented in an
optimal way, so as to maximize the probability of success. The channels were characterized
using a new approach to ancilla-assisted process tomography and, in all cases, operate with
high fidelity.
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Chapter 4

Quantum computing on encrypted
data

4.1 Notes and acknowledgements

In this chapter we describe the experimental realization of a protocol for quantum comput-
ing on encrypted data. We implement each quantum gate in a universal set in the client-
server model outlined by the protocol. We use the notions of quantum process tomography
discussed in Chapter 1, and make use of the CNOT gate demonstrated in Chapter 2. We
find that when the client encrypts the input state sent to the server and properly decrypts
the output, a process tomography gives the action of the gate as expected. However,
if the proper decryption is not used, as would be the case for an eavesdropper, process
tomography returns the completely depolarizing channel.

Notice: The contents of this chapter will be submitted for publication.

A. Broadbent, K. A. G. Fisher, L. K. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jennewein
and K. J. Resch. Quantum computing on encrypted data. In preparation.

Author contributions

AB designed the protocol and proved its security.

KF performed the experiment and analyzed the data.
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KF, LS, ZY, JL, RP and KR contributed to the design and realization of the experi-
ment.

AB and KF took primary responsibility for writing the first draft. All authors con-
tributed to editing for the final version.

4.2 Introduction

Quantum information technologies promise dramatic increases in computational power
for numerous applications[26, 22, 32, 67]. However, the complexity of implementing a
large scale quantum computer begs the question of whether they will have widespread
availability in the future. One solution is a cloud computing model[34], with relatively few
quantum computers that can be accessed remotely by clients. This involves aspects from
both quantum computing and cryptography, two integral parts of quantum information
processing. Data protection for the client comes from encrypting quantum data using a
quantum one-time pad, which provides perfect privacy[4]. Performing classical algorithms
on encrypted data is a recently solved problem[28]. Here we present and realize quantum
computing over encrypted data. The proof of privacy for our protocol covers all types
of prior information known to the cloud. We show that each quantum gate necessary
for universal computation is implemented with high fidelity from the point-of-view of the
client, whereas the cloud observes completely depolarized states. Our result demonstrates
the practicality and current experimental feasibility of a quantum cloud computing model,
where the client has very limited quantum power.

Recently, a protocol for blind quantum computation[15, 8] has been put forward which
shows how a client can use a cloud quantum computer without the cloud having knowledge
of the algorithm it is performing. This provides the client with the desired security, but
is expensive in its use of resources. Here we instead present a protocol which allows the
cloud to know the circuit, but can never find out the state the client sends it. Specifically,
we show that for each gate in a universal set the client can encrypt a qubit, send it to the
cloud for computation, and knowing how each gate acts on the encryption, can perform
the proper decryption to obtain the desired operation (Fig. 4.1).
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Server Client 

Figure 4.1: A client encrypts a quantum state |ψ〉 with a quantum one-time pad[4]. He
sends the state to a quantum cloud computer which performs a set of unitary operations
U . The returned state is then decrypted by the client who then finds the computation
performed on the original state |ψ〉.

b c a 

Figure 4.2: The process of encrypting a qubit, performing a gate, decrypting and mea-
suring. (a) shows the encryption’s effect on a state |ψ〉, black vector, in the Bloch sphere.
(b) shows the action of U , in this case a P gate shown as a quarter rotation about the
z-axis, mapping semi-transparent vectors to opaques. (c) shows the action of decrypting
the different cases, each giving the desired result U|ψ〉.
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4.3 Protocol

A general quantum circuit acting on qubits can be decomposed into a sequence of the
following elements: auxiliary qubit preparation in |0〉, single-qubit computational basis
measurements, Clifford gates in {X,Z,H,P,CNOT}, as well a non-Clifford gate, R. If these
operations are executed by a cloud who has access only to the input in its encrypted form
(where the encryption is a quantum one-time pad with operation XaZb, a, b ∈ {0, 1}), the
output can nevertheless be decrypted by the client, and the cloud does not learn anything
about the input (Fig. 4.2). Recall that the given gates have the following actions on a
qubit |j〉, j ∈ {0, 1}:

X : |j〉 7→ |j ⊕ 1〉
Z : |j〉 7→ (−1)j|j〉

H : |j〉 7→ 1√
2

(|0〉+ (−1)j|1〉)

P : |j〉 7→ (i)j|j〉
CNOT : |j〉|k〉 7→ |j〉|j ⊕ k〉

R : |j〉 7→ (eiπ/4)j|j〉 (4.1)

Single-qubit preparations and measurements are easily performed on encrypted data;
the actions of the Clifford gates on the encryption are, up to a global phase,

X(XaZb|ψ〉) = XaZb(X|ψ〉)
Z(XaZb|ψ〉) = XaZb(Z|ψ〉)
H(XaZb|ψ〉) = XbZa(H|ψ〉) (4.2)

P(XaZb|ψ〉) = XaZa+b(P|ψ〉)
CNOT(XaZb ⊗ XcZd|ψ〉) =

XaZb+d ⊗ Xa+cZd(CNOT|ψ〉)

One cannot use this technique for the R gate since it requires a conditional P gate,
RXaZb|ψ〉 = XaZa⊕bPaR|ψ〉. We solve this using a method inspired by the circuit ma-
nipulation techniques of [75, 17]: it suffices to use classical interaction (one bit in each
direction) and a single forward auxiliary qubit randomly chosen out of four possibilities
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Figure 4.3: A simple protocol for the R gate over encrypted data. An auxiliary qubit is
initialized to 1√

2
(|0〉 + iy+2d|1〉), where y and d are random bits. The server performs the

R gate and a hidden P gate, concealed by the combination of x, y and d. The client uses
these values, along with the measurement result c ∈ {0, 1} to decrypt the returned qubit.

(see Fig. 4.3). We manage to halve the size of the set from which random qubits are cho-
sen from 8[15] to 4. This is due to the fact that the cloud directly implements an R gate
followed by a hidden P gate, instead of using a hidden R gate. Additionally, we manage
to reduce the complexity in terms of communication to null for all but the execution of
a non-Clifford group gate; prior work requires for each gate (including the identity), 24
bits of forward communication, 8 bits of backward communication and 8 auxiliary qubits.
Note that our protocol also enables the hiding of the computation itself, via the use of a
standard universal circuit.

Our protocol provides the same level of security as the one-time pad, that is, it provides
perfect (information-theoretic) privacy. In contrast, fully homomorphic encryption [28]
provides computational security only because it uses a public-key encryption scheme.
Formally, we define privacy based on simulations and provide a proof via an equivalent,
entanglement-based protocol[68].

Compared to prior work, our contribution has the advantage of providing a conceptually
simple proof of correctness, together with a security definition and proof that is applicable
to all types of prior information, including shared entangled quantum registers.
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Figure 4.4: The single photon source (a), connects to the single-qubit Clifford gate setup
(b), or the CNOT and R gate setup (c).

4.4 Experiment

Using linear optics, we perform an experiment encoding quantum information in the po-
larization of single photons. The horizontal and vertical polarizations of light, |H〉 and
|V 〉, are |0〉 and |1〉 respectively. Eigenstates of the Pauli X and Y operators are encoded
in the diagonal (|D〉, |A〉) and circular (|L〉, |R〉) polarizations respectively. Fig. 4.4a shows
the single photon source. Single photon pairs are generated by pumping a barium bo-
rate (BBO) crystal with a Ti:Sapphire laser beam with λ = 395 nm through spontaneous
parametric down conversion (SPDC). Photons are then propagated through the setup in
Fig. 4.4b to perform a single-qubit Clifford gate, or the setup in Fig. 4.4c to perform the
CNOT and R gates (see Methods).

We characterize each gate using a maximum likelihood quantum process tomography
(QPT) [53, 40, 19] , where we reconstruct the process matrix χ which most closely de-
scribing the measurements. We use overcomplete sets of input states and measurements
to cover all possible encryptions and to ascertain more accurate count rates.

The X, Z, and H gates are half-wave plates (HWPs) at 45◦, 0◦ and 22.5◦ respectively,
and the P gate is a quarter-wave plate (QWP) at 0◦. To quantify the discrepancy between
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experimental and ideal gates, we calculate the process fidelity F = Tr(χexpχid). We find
process fidelities of 0.984 ± 0.002, 0.985 ± 0.001, 0.983 ± 0.001 and 0.985 ± 0.001 with
the ideal X, Z, H and P gates, respectively. Counts were then summed over the different
encryption cases, a, b ∈ {0, 1}, simulating what an eavesdropper finds, and for each gate
we find the fidelity with the completely depolarizing channel F > 0.999. Uncertainties
were estimated by adding Poissonian noise to count data and performing 100 Monte Carlo
iterations of each process matrix reconstruction.

With linear optics and post-selection, the CNOT gate can only be implemented in a
probabilistic way [44]. We use a scheme [42, 46] outlined in the Fig. 4.4c inset, which has
a 1/9 success probability. Control and target photons interfere at a partially-polarizing
beamsplitter (PPBS), which fully transmits H-polarized light, but reflects 2/3 of the V-
polarization. Postselecting on coincident photons gives the action of the gate. Results of the
QPT are shown in Fig. 4.5. We found a process fidelity of 0.869±0.004 with the ideal CNOT,
which is on par with the best demonstrated optical CNOT gates [53, 42, 46]. This less
than ideal fidelity comes primarily from emitted double pairs and non-interfering photons
passing propagating through the optical setup. When summing over the 16 encryption
cases, a, b, c, d ∈ {0, 1}, we find F > 0.995 with the two-qubit completely depolarizing
channel.

The R gate protocol setup is shown in Fig. 4.4c. The gate itself is a HWP at 0◦ tilted
to give the proper phase delay between H- and V-polarizations. The auxiliary photon
is initialized to a random choice of {|D〉, |A〉, |L〉, |R〉} using fast optical switches called
Pockels cells (see Methods). Coincident photon detections in conjunction with Pockels cell
configurations were recorded into 8 bins, depending on the state of the auxiliary photon
and the outcome of the primary photon measurement. Consequently, knowing in which
bin a count was recorded is the same as knowing the values of y, d and c. The client,
who also knows the values of a and b is then able to properly decrypt the measurement
results. Again, we performed a QPT inputting and measuring all single-qubit Pauli basis
states. Summing bin counts with knowledge of the proper decryption, we obtained a
process matrix, Fig. 4.5, whose fidelity is 0.863± 0.004 with the ideal R gate. This fidelity
is of course capped by that of the CNOT gate. Summing over bin counts without using the
proper decryption gave a process with F > 0.987 with the completely depolarizing channel.
Additionally, summing over the encryption cases a, b boosted this fidelity to F > 0.999.
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Client Server 

Figure 4.5: The left panel shows real and imaginary parts of reconstructed χ matrices for
the single-qubit gates when the proper decrypting operations were used. The right panel
shows the real parts (imaginary parts were negligible) of the reconstructed χ matrices when
proper decryptions were not known.
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Client Server 

Figure 4.6: Real and imaginary parts of reconstructed χ matrices for the CNOT gate when
the proper decrypting operations were (left) and weren’t (right) used. The 11 component
of the CNOT matrix has a height of 0.318, and the largest imaginary component is 0.06.
Imaginary parts of undecrypted results were negligible (< 0.004).

4.5 Summary

In summary, we have demonstrated how a quantum cloud can perform each gate in a
universal set over encrypted data. While the protocol for the Clifford gates is straight-
forward, as could be expected, we have also shown a simple protocol for the non-Clifford
R gate. This protocol uses a hidden P gate which calls for one auxiliarly qubit and two
more classical classical bits. This reduction in required resources was enough to perform a
proof-of-principle experiment using linear optics. We have shown experimentally that we
can perform a desired gate with high fidelity when the decryption key is known, and that
without the key, as is the case for the cloud, nothing can be learnt about the data. Recent
developments such as blind quantum computing, as well as the protocol we have shown
here, are paving the way to the eventual reality of being able to remotely and securely
perform quantum computations.

4.6 Methods

Single photon pairs of λ = 790 nm are generated via SPDC by pumping a BBO crystal
with a Ti:Sapph laser pulsed at 80 MHz. Photons are then relayed through single-mode
fibre to either the setup for single-qubit Clifford gates or for the CNOT and R gates. In
the single-qubit Clifford gate setup (Fig. 4.4b), photons in the top rail are initialized to a
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given input state using a PBS, QWP and HWP. The gates are then performed using either
a HWP or QWP at the angles mentioned in the main text. The state is measured in a
given basis using a HWP and QWP followed by a PBS. Measurements are heralded by the
detection of coincidence photons in the lower rail within a 3 ns window.

The CNOT and R gate setup is shown in Fig. 4.4c. Photons in the lower, primary,
rail are initialized and pass through the R gate. Photons in the upper, auxiliary, rail are
rotated from |H〉 to a uniformly random choice of {|D〉, |L〉, |A〉, |R〉} using two Pockels
cells performing Xm and Hn with m,n ∈ {0, 1}, followed by a QWP at 45◦. Pockels cells are
driven between high and low voltage configurations, triggered randomly at a rate of 1 MHz,
to switch between unitary transformation on the photon polarization. Single photon rates
were about 7000/ s, where the pump power was reduced to limit the effect of double pairs
on the fidelity of the CNOT gate. The auxiliary photon controls the CNOT gate (outlined
in grey), interfering at a PPBS with the primary photon, upon which the R has acted. The
primary photon is measured in the computational basis, and both |0〉 and |1〉 detections
are recorded. The conditional P gate on the auxiliary photon is implemented using a third
Pockels cell. It is possible to trigger this Pockels cell based on the values of a and y, but in
practice it was driven independentally and both correlated and anti-correlated cases were
recorded. The auxiliary photon is then measured in each of the single-qubit Pauli bases.
The CNOT gate was tested by moving state initialization and analysis to within the grey
borders.

4.7 Supplementary Information

4.7.1 Correctness of the R-gate protocol

We give below a step-by-step proof of the correctness of the R-gate protocol as given in
Figure 4.3. The basic building block is the circuit identity for an X-teleportation from [75],
which we re-derive here. Also of relevance to this work are the techniques developed by
Childs, Leung, and Nielsen [17] to manipulate circuits that produce an output that is
correct up to known Pauli corrections.

We will make use of the following identities which all hold up to an irrelevant global
phase: XZ = ZX, PZ = ZP, PX = XZP, RZ = ZR, RX = XZPR, P2 = Z and Pa⊕b = Za·bPa+b

(for a, b ∈ {0, 1}).

1. Our first circuit identity swaps a qubit |ψ〉 with the state |+〉 and is easy to verify.
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|ψ〉 • |+〉

|+〉 • |ψ〉

2. We can measure the top qubit in the above circuit and classically control the output
correction. We have thus re-derived the circuit corresponding to the “X-teleportation”
of [75].

|ψ〉 c

|+〉 • Xc|ψ〉

3. Next, we re-define the input to be RXaZb|ψ〉, so the output becomes XcRXaZb|ψ〉 =
Xa⊕cZa⊕bPaR|ψ〉.

XaZb|ψ〉 R c

|+〉 • Xa⊕cZa⊕bPaR|ψ〉

4. Then add three gates (Py, Zd, Pa⊕y) to the bottom wire (see circuit below). Using
the fact that the P and Z commute with control, and applying identities given above,
we get as output what we expect:

Pa⊕yZdPyXa⊕cZa⊕bPaR|ψ〉 = Za·yPa+yZdPyXa⊕cZa⊕bPaR|ψ〉 (4.3)

= Zd⊕a·y⊕yPaXa⊕cZa⊕bPaR|ψ〉 (4.4)

= Zd⊕a·y⊕yXa⊕cZa(a⊕c)PaZa⊕bPaR|ψ〉 (4.5)

= Xa⊕cZd⊕a·y⊕y⊕a
2⊕a·cZbR|ψ〉 (4.6)

= Xa⊕cZa(c⊕y⊕1)⊕b⊕d⊕yR|ψ〉 (4.7)

XaZb|ψ〉 R c

|+〉 Py Zd • Pa⊕y Xa⊕cZa(c⊕y⊕1)⊕b⊕d⊕yR|ψ〉

4.7.2 Security definition and proof

Preliminaries

Quantum registers and channels. A quantum register is a collection of qubits in some
finite dimensional Hilbert space, say X . We denote D(X ) the set of density operators
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acting on X . The set of all linear mappings from X to Y is denoted by L(X ,Y), with L(X )
being a shorthand for L(X ,X ). A linear super-operator Φ : L(X ) → L(Y) is admissible
if it is completely positive and trace-preserving. Admissible super-operators represent
mappings from density operators to density operators, that is, they represent the most
general quantum maps.

Given admissible super-operators Φ and Ψ that agree on input space L(X ) and output
space L(Y), we are interested (for cryptographic purposes) in characterizing how “indis-
tinguishable” these processes are. The diamond norm provides such a measure: given that
Φ or Ψ is applied with equal probability, the optimal procedure to determine the identity
of the channel with only one use succeeds with probability 1/2 + ‖Φ−Ψ‖�/4. Here,

‖Φ−Ψ‖� = max{‖(Φ⊗ 1W)(ρ)− (Ψ⊗ 1W)(ρ)‖1 : ρ ∈ D(X ⊗W)} , (4.8)

where W is any space with dimension equal to that of X and 1W is the identity in L(W),
and where the trace norm of an operator X is defined as ‖X‖1 = Tr

√
X∗X .

Definition and proof of privacy

Our protocol provides the same level of security as the one-time pad, that is, it provides
perfect (information-theoretic) privacy. The rest of this section formalizes the definition
of privacy based on simulations and gives a proof based on the technique of giving an
equivalent, entanglement-based protocol. For our definition of privacy, we have used no-
tions similar to those introduced by Watrous in the context of quantum zero-knowledge
interactive proof systems [72]. We use as proof technique the method of transforming a
qubit-based protocol into an equivalent protocol that is more easily proved secure, but that
involves entanglement. This technique is attributed to Shor and Preskill [68], who used it
in the context of proving the security of the BB84 [10] quantum key exchange protocol, and
has since appeared in the context of quantum message authentication [7] and cryptography
in the bounded-quantum-storage model [21].

Formally, a protocol for delegated computation is specified by a pair (C, S) representing
an honest client and an honest server (without loss of generality, both parties are quantum).
As the client is always honest, the security property concerns interactions between pairs
(C, S ′) where S ′ deviates arbitrarily from S. At the onset of the protocol, both parties agree
on the classical input q which determines the general quantum circuit to be executed as an
ordered series of gates acting on specified wires. The structure of the interaction between
C and S is thus determined by q. At the same time, a quantum input ρin ∈ D(C ⊗ S)
is distributed, C receiving the register in C and S receiving the register in S. A cheating
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server S ′ is any quantum computational process that interacts with C according to the
message structure determined by q. By allowing S ′ access to the input register S, we
explicitly allow S ′ to share prior entanglement with C’s input; this also models any prior
knowledge of S ′ and formalizes the notion that the protocol cannot be used to increase
knowledge.

Let Z denote the output space of S ′ and let Φq : L(S)→ L(Z) be the mapping induced
by the interaction of S ′ with C. Security is defined in terms of the existence of a simulator
SS′ for a given server S ′, which is a general quantum circuit that agrees with S ′ on the
input and output dimensions. Such a simulator does not interact with C, but simply
induces a mapping Ψq : L(S)→ L(Z) on each input q. Informally, (C, S) is private if the
two mappings, Φq and Ψq are indistinguishable for every choice of q and every choice of ρin.
Allowing for an ε amount of leakage, we formalize this as Definition 1.

Definition 1. A protocol (C, S) for a delegated quantum computation is ε-private if for
every server S ′ there exists a simulator SS′ such that for every classical input q,

‖Φq −Ψq‖� ≤ ε , (4.9)

where Φq is the mapping induced by the interaction of S ′ with the client C on input q and
Ψq is the mapping induced by SS′ on input q.

Taking ε = 0 gives the strongest possible security against a malicious server: it does not
allow for even an ε amount of leakage, and allows the server to deviate arbitrarily (without
imposing any computational bounds). Theorem 1 states that this is the level of privacy
achieved in our protocol.

Our proof technique will construct a sequence of protocols. For clarity, we refer to the
protocol in the main paper as Protocol 1.

Theorem 1. Protocol 1 is an ε-private protocol for delegated quantum computation, with
ε = 0.

Proof. Fix a value for q. We construct a simulator SS′ by giving instructions how to
prepare messages that replace the messages that the client C would send to the server S ′

in the real protocol. Privacy follows since we will show that these transmissions are identical
to those in the real protocol.

A high-level sketch of the proof is that we modify the behaviour of the client in the
main protocol (Protocol 1) in a way that the effect of the protocol is unchanged, yet the
client delays introducing her input into the protocol until after her interaction with the
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server has ended (this makes the simulation almost trivial). In order to do so, we describe
below an entanglement-based protocol (Protocol 2) as well as a delayed-measurement
protocol (Protocol 3).

We first consider Protocol 2, which is an entanglement-based version of Protocol 1.
In Protocol 2, we modify how the client prepares her messages, without modifying the
server’s actions or the effect of the protocol. Thus, the preparing and sending of an
encrypted quantum register is replaced by an equivalent teleportation-based protocol, as
given in Figure 4.7. Also, the R-gate protocol is replaced by an equivalent protocol as given
in Figure 4.9. The protocol of Figure 4.9 can be seen to be correct via an intermediate
protocol (Figure 4.8), in which the classical bit x from the client to the server becomes
a uniformly random bit; this transformation is possible because in the R-gate protocol,
x = a ⊕ y with y a random bit. Then choosing x to be random and y = a ⊕ x gives
an equivalent protocol. The final entanglement-based protocol of Figure 4.9 is seen to be
correct via the circuit identity given in Figure 4.10. The remaining protocols for stabilizer
circuit elements (Clifford gates, qubit preparation and measurements) are non-interactive
and thus unchanged in Protocol 2.

The main advantage of considering Protocol 2 instead of Protocol 1 is that we can
delay all the client’s measurements (in Figures 4.7 and 4.9) until the output register is
returned, without affecting the computation or the server’s view of the protocol (because
actions on different subsystems commute); call the result Protocol 3. In this delayed-
measurement protocol, the messages from the client to the server can be chosen before any
interaction with the server, and are thus clearly independent of the actions of S ′.

Thus we construct a simulator SS′ that plays the role of the client in Protocol 3, but
that never performs any measurements (thus, access to the actual input is not required).
By the argument above, SS′ actually prepares the same transmissions as would C in
Protocol 1 interacting with S ′ on any input ρin. It follows that simulating S ′ on these
transmissions will induce the same mapping as S ′ in the real protocol, and thus ‖Φq −
Ψq‖� = 0 .
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Server XaZb|ψ〉

Client
|0〉 H •

|0〉 a

|ψ〉 • H b


Figure 4.7: Protocol to encrypt and send a qubit using teleportation[11]. The circuit in
the dashed box prepares an EPR-pair.

XaZb|ψ〉 R •

Server • •

• Px Xa⊕cZa(c⊕y⊕1)⊕b⊕d⊕yR|ψ〉

Client
x ∈R {0, 1} • • c

|+〉 Py Zd (d ∈R {0, 1}, y = a⊕ x)




Figure 4.8: Intermediate Protocol for an R-gate. Compared to Figure 4.3, the classical
message from the client to the server is chosen uniformly at random. This protocol performs
the same computation as the protocol in Figure 4.3.

XaZb|ψ〉 R •

Server • •

• Px Xa⊕cZa(c⊕y⊕1)⊕b⊕d⊕yR|ψ〉

x ∈R {0, 1} • • c

Client |0〉 H • (y = a⊕ x)

|0〉 Py H d




Figure 4.9: Entanglement-based protocol for an R-gate. This protocol performs the same
computation as the protocols in Figures 4.3 and 4.8. The circuit in the dashed box prepares
an EPR-pair.
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|0〉 H • ZdPy|+〉

|0〉 Py H d

Figure 4.10: Circuit identity: entanglement-based circuit that prepares a qubit ZdPy|+〉 for
uniformly random bits y and d (here, y is chosen uniformly at random, and d is determined
by the measurement). The circuit in the dashed box prepares an EPR-pair.
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Chapter 5

Conclusion

In this thesis we have covered a broad spectrum of quantum information processing with
linear optics. In Chapter 3, we demonstrated an optimal realization of a single-damping
channel. This channel could add a controllable amount and type of decoherence to a qubit.
We characterized the channel using a novel ancilla-assisted quantum process tomography,
where we took into account the imperfection of the two-qubit resource state.

A natural next step is to implement a recently developed error correction code for the
detected jump channel [31], which is the amplitude damping channel where the decay is
marked by the detection of a photon. The error correction protocol calls for the use of a
CNOT gate, which was also implemented in this thesis. Realizing this correction scheme
will require constructing and characterizing a second amplitude damping channel to run
in parallel with the current one.

In Chapter 4 we showed the implementation of a protocol for performing quantum
computations on encrypted data. We showed that for each quantum gate in a universal
set that if data is encrypted and decrypted properly the proper action of the gate is
observed, and with high fidelity. On the other hand, if the proper decryption is not known,
as is the case for an eavesdropper, the gate becomes a completely depolarizing channel,
mapping every state to the maximally-mixed state. A next step in this work might include
performing some simple algorithms, such as a two-qubit Grover search, over encrypted
data.
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Appendix A

Configuring Pockels cells

The Pockels cells used in the experiment in Chapter 4 were purchased from Bergmann Mess-
geraete Entwicklung KG (BME). They drive a rubidium titanyl phosphate, RbTiOPO4

(RTP), with voltage oscillating between high (set to given the desired amount of retar-
dance, polarization rotation). We drove the Pockels cells between ±Vλ/4, using splitter
boxes electronics designed by Thomas Jennewein and programmed by Zhizhong Yan. This
different from previous experiments which operated the cells between 0 and Vλ/2.

The basic protocol for aligning and configuring a Pockels cell follows these steps.

1. Aligning the isogyre (Fig. A.1). An isogyre is an image which results from send-
ing polarized and somewhat dispersed light through a birefringent material (Pockels
cell) and placing a crossed polarizer on the other end. Light propagating along the
material’s optic axis will not change polarization and will be absorbed by the sec-
ond polarizer, leaving a dark line in the resulting image, showing where the axis is.
Ideally, the isogyre image is a cross, but some alignment is required to observe this.
Here we performed many iterations of:

(a) Using 2 of the 4 tilting degrees of freedom in the Pockels cell to back reflect the
crystal.

(b) Using the other 2 degrees of freedom to centre the isogyre crossing on the ob-
served image (Note that until properly aligned, the dark bands may not form
a cross, but rather look like an avoided crossing. But just keep repeating the
steps and it will all be fine.)

2. Use single photons in a setup like that of Fig. A.2a.
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screen 

PC PBS 
PBS 

isogyre 

Figure A.1: Polarized light is dispersed through some cloudy screen (a sticky note was
used) and propagated through the birefringent Pockels cell. Placing a crossed polarizer
afterwards allows for the observation of the isogyre, an image which when properly aligned
looks like a cross.

3. Send in each of two orthogonal input states (eg. |H〉 and |V 〉), and looking at
coincidence counts, vary driving voltage while measuring the state you expect output
from the Pockels cell when the voltage is high (eg., for a Hadamard 〈D| and |A〉).
Choose the voltage that gives the best contrast between the two measurement bases.

4. Same as step 3, but vary the angle δ, changing the HWPs and QWP, to find the best
contrast again.

5. Same as steps 3 and 4, but now vary the delay of the signal into the Pockels cell.
The idea here is that when the Pockels changes from low to high voltage states, there
is some “ringing”, meaning the voltage is not instantly constant at the desired Vλ/4,
and so changes the desired rotation. (Note that for the experiment in Chapter 4, we
did not have to perform this step).

6. Iterate step 3-5 until the the contrast is reasonably high (∼ 100 : 1 should be easy
to attain. With changing the delay ∼ 1000 : 1 is possible).

The tables below show an example of data taken when configuring the second Pockels
cell (performing 1/H). First, we set all the waveplates such that δ = 0. We send in |H〉
and |V 〉 and scan over the voltage while measuring coincidence counts over 5 seconds in
both 〈A| and 〈D|, to find the best contrast.
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PC	  

QWP 
PBS 

Analyzer 

PC OFF PC Low PC High 

a 

b c d 

HWP 

Initalize state 

Figure A.2: (a) A simple setup to configure the Pockels cell. Photons are initialized as |H〉
from the PBS. The Pockels cell is sandwiched by HWPs, and a QWP. Finally, a polarization
analyzer and photon detection. Coincidence counts with another photon detection should
be used. (b)–(d) show the action of the HWP-PC-QWP-HWP setup when the Pockels cell
is OFF, at low voltage, and at high voltage, respectively. For this example, the desired
operation of the setup is to perform the identity when the PC is at low voltage, and an
X rotation at high voltage. Recall from the discussion in Chapter 2 that this requires the
HWPs to be at δ◦, and the QWP at (45 + δ)◦ (since the PC crystal is aligned at (45 + δ)◦

where |δ| � 1 ).
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|H〉 |V 〉
V (dial) 〈A| 〈D| 〈A| 〈D|

1.5 156 3437 3382 61
1.6 113 3371 3255 59
1.7 96 3482 3248 56
1.8 69 3335 3135 61
1.9 56 3402 3153 84
2.0 40 3338 3101 85
2.1 52 3334 3071 117
2.2 45 3323 3118 192
2.3 64 3325 3009 217

The best contrast for |H〉 is ∼ 83 : 1 at V = 2.0. For |V 〉 it is ∼ 58 : 1 at V = 1.7.
We then set the voltage to V = 1.85, in between the two optima. Next, with the voltage
set, we vary the angle discrepancy δ, changing the angle of each waveplate. We measure
coincidence counts over 5 seconds for both 〈A| and |D〉. Sending in |H〉 and |V 〉 we get:

|H〉 |V 〉
δ(◦) 〈A| 〈D| 〈A| 〈D|
-3 72 3487 3374 40
-2 55 3471 3441 20
-1 47 3568 3391 27
0 61 3547 3387 52
1 112 3341 3432 138

The best constrast for |H〉 is ∼ 76 : 1 at δ = −1◦, and for |V 〉 is ∼ 172 : 1 at δ = −2◦.
The next step would be to scan over the delay time of the input signal to the Pockels cell.
However, because of the nature of the experiment in Chapter 4, the time intervals for PC
switching where long in comparison to other experiments, and so fine tuning of the delay
was not necessary. Taking δ = −1.5◦, we again scan over the voltage:
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|H〉 |V 〉
V (dial) 〈A| 〈D| 〈A| 〈D|

1.6 94 2982 2798 14
1.65 65 2874 2833 17
1.7 66 2984 2845 13
1.75 59 3072 2757 25
1.8 57 3047 2674 15
1.85 30 2901 2706 27
1.9 35 2993 2656 36
1.95 34 3114 2671 33
2.0 19 3113 2826 51
2.05 36 2962 2758 57
2.1 14 2931 2830 67
2.15 18 2972 2817 76
2.2 25 2955 2684 102

The best contrasts are again at V = 2.1 for |H〉 and V = 1.7 for |V 〉, are greatly
improved (∼ 209 : 1 and ∼ 218 : 1). Taking the voltage to be in between, V = 1.85 we get
contrasts ∼ 100 : 1 for both inputs.

Figure A.3 shows the splitter box and electronics setup for Pockels cells in Chapter 4.
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Electronics setup 

Splitter Boxes 

To PC 1 To PC 2 To PC 3 

AND 

DAQ (1 MHz) 

Photon	  Detector	  

Coinc. 
Logic 

Func. Gen. (6 MHz) 

phot. 2 phot. 1 

Figure A.3: Detected photons cause a TTL pulse to be generated from the single-photon
counting modules. TTL pulses are passed through an array of AND logic with the square-
wave pulses which drove the Pockels cell, originally produced from the DAQ. This results
in TTL pulses sorted into times when the Pockels cell were acting as the identity, or as the
assigned unitary.
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Appendix B

Imperfection in the CNOT gate

B.1 Imperfect interference

The operation of the optical CNOT entirely depends on the quality of the two-photon
interference at the initial partially-polarizing beamsplitter (PPBS). We used a motorized
stage to adjust path delays, ensuring that we were operating the gate in the bottom of the
HOM dip, which had the desired visibility. Nonetheless, we can see the effects of imperfect
interference on the measured output state. This could be due to path lengths drifting
over the course of the experiment. As can be seen in Fig. B.1, we have non-negligible
contributions to the density matrix from what looks like a mixture of |DH〉〈DH| and
|V A〉〈V A|.

This can explained by considering the state |DaHb〉 in input modes a and b. Since
they don’t interfere at the PPBS we can consider their propagations through the setup
separately. Recall from CNOT setup outlined in Chapter 2, that we begin with a Hadamard
gate in path b before a and b modes interfere at a PPBS. Half-wave plates (HWP) at 45◦ are
next, followed by another PPBS in each mode, now called c and d. Batears then perform
an X operation on each mode, and finally another Hadamard acts on mode d. The |Da〉
state then propagates as follows:
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Figure B.1: The real (a) and imaginary (b) parts of an output density matrix from the
CNOT. The input state was |DH〉.
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The input state |Hb〉 propagates as:
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Since we measure coincidence photons between c and d modes, we would measure a
mixture of |DcAd〉 and |VcAd〉. Moving the motor stage to completely outside of the HOM
dip, this is precisely what we observe, see Fig. B.2. Refer back to Fig.B.1 and notice that
thesis components are clearly visible in the density matrix, and diminish the state fidelity
with the ideal Bell state.
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Figure B.2: Theoretical (a) and measured (b) density matrices for propagating |DH〉
through the CNOT setup when operating outside of the HOM dip. These components are
still clearly visible when trying to operate the CNOT with the HOM dip.
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[73] M. M. Wolf and D. Pérez-Garçia. Quantum capacities of channels with small envi-
ronment. Phys. Rev. A, 75:012303, Jan 2007.

73



[74] W. K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys.
Rev. Lett., 80:2245–2248, Mar 1998.

[75] X. Zhou, D. Leung, and I. L. Chuang. Methodology for quantum logic gate construc-
tion. Physical Review A, 62:052316, 2000.

74


	List of Figures
	Quantum Information Background
	Introduction
	The Qubit
	Entanglement
	Quantum channels
	Kraus representation
	Superoperator representation
	Choi matrix representation

	Quantum state tomography
	Maximum likelihood
	Monte Carlo error analysis

	Quantum process tomography
	Maximum likelihood
	Ancilla-assisted process tomography
	Monte Carlo error analysis

	Distance measures
	State fidelity
	Process fidelity
	Trace distance


	Quantum optics background
	Introduction
	Generation of single photon entangled states
	Spontaneous parametric downconversion
	Phase matching
	Polarization entanglement

	The beamsplitter and Hong-Ou-Mandel interference
	Pockels cells
	Optical CNOT gate
	Partially-polarizing beamsplitters
	Using the PPBS to generate entanglement
	Experimental setup
	Results


	Optimal linear optical implementation of a single-qubit damping channel
	Notes and acknowledgements
	Abstract
	Introduction
	Optimality of the implementation
	Ancilla-assisted process tomography
	Experiment
	Results
	Summary

	Quantum computing on encrypted data
	Notes and acknowledgements
	Introduction
	Protocol
	Experiment
	Summary
	Methods
	Supplementary Information
	Correctness of the R-gate protocol
	Security definition and proof


	Conclusion
	APPENDICES
	Configuring Pockels cells
	Imperfection in the CNOT gate
	Imperfect interference

	References

