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Abstract

In this thesis we study fully nonlinear internal waves in a stratified ocean. These waves are
isolated disturbances that do not change form as they propagate horizontally along the waveguide
of the density stratified ocean. After surveying semi-analytical asymptotic theories for small. finite
amplitude waves we present a variational technique for calculating large, fully nonlinear internal
solitary waves which are exact solutions of the Euler equations governing an inviscid fluid. This
technique is subsequently used to discuss the effect of horizontal background currents on solitary
wave properties. Particular attention is paid to upper bounds on the solitary wave amplitude.
Next we discuss one way the variational algorithm can be used to compute solitary-like waves
which are past breaking, and the properties of such solitary wave-like objects. Finally we consider
the interaction of an initially solitary wave with a viscous boundary layer. We show that for cases
in which vorticity is produced in the boundary layer upstream of the wave, for example due to
an appropriately chosen background current, this interaction can lead to the instability of the

solitary wave and can result in significant transport of sediment out of the bottom boundary layer

into the main water column.
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Chapter 1

Introduction and Historical

Background

“There is one thing in the world more wicked than the desire to command, and that is the will

to obey.”

William Kingdon Clifford

In this thesis we will study large internal solitary waves (henceforth ISWs) propagating hor-
izontally in a coastal ocean, their theoretical description and numerical modeling. While these
waves have appeared quite often in the oceanographic and applied mathematics literature in the
past twenty years, it seems prudent to define certain terms for the reader. More complete in-
troductions can be found in standard text books, for example the book by Gill ([21]) on ocean
dynamics, the book by Johnson on water waves (surface waves) ([28]), or the book by Whitham
{[66]) on nonlinear waves.

Solitary waves are isolated, nonlinear disturbances that propagate along a wave-guide without
changing shape. An example of a solitary wave is given in figure 1.1.

Let us consider a right-handed system of Cartesian coordinate axes with the origin at the

bottom of the ocean. We take the = axis to be pointing up towards the surface, and the z axis to
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Figure 1.1: Example of a solitary wave propagating to the right with unit speed
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run along a flat bottom. Throughout this thesis we will neglect the effect of the Earth’s rotation,
and hence consider an inertial frame of reference. This is a valid approximation because the
phenomena of interest occur on time scales much smaller than those needed for the effects of the
Earth’s rotation to become apparent. The density of sea water is a function of temperature and
salinity. Throughout this thesis we will consider the density only and ignore the exact variation
of salinity and temperature. Given a hypothetical, still ocean, the density (denoted by g, and
henceforth caled the background density profile or background stratification) will be a function
of depth (H — z) only (i.e. p = p(2)). and the pressure will be given by the hydrostatic equation
9% = (o1

where ¢ is the acceleration due to gravity. In the field, it is often observed that the density
profile has one or more regions of rapid change called pycnoclines, separated by regions that have
nearly constant density (well-mixed regions). A simple example is provided by a single pycnocline.
See figure 1.2 for an example of a general and single pycnocline stratification. A useful further
idealization assumes the pycnocline to be infinitely thin, in other words as the interface between
two fluids of different, but constant, densities (think of a layer of oil on water). We can then
consider waves propagating horizontally along this interface, and call such waves vertically trapped
internal waves. The analogy with surface waves then becomes obvious. However, the density
changes in the ocean interior are much smaller than at the water-air interface. This means that
the restoring forces are weaker and hence for the same energy, internal wave amplitudes are much
larger than surface wave amplitudes. It is often assumed that the ocean has a rigid lid, thereby
eliminating the complications of a free boundary at the surface, as well as the fast moving surface
waves (see [29] for more details). We will make this approximation throughout this thesis.

For a general 5(z) the situation is further complicated by internal waves that propagate in
directions other than the horizontal (see the books by Kundu [29] or Gill [21] for an introduction to

such waves). In this thesis we will concern ourselves only with horizontally propagating (vertically

trapped) waves.
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The equations for an incompressible fuid under the Boussinesq approximation read

po(g—l:+f'-€'ﬁ') = ~VP-pgk+F+pVii
V".&' = 0
g_’;_f.ﬂ.ep = xV"’p.

(1.1)

where u is the fluid velocity, po is the constant density of the reference state, p is the density
perturbation to the reference state, P is the dynamic pressure (the hydrostatic part corresponding
to the reference stratification has been subtracted off}, g is the dynamic viscosity (or alternatively
the eddy viscosity for a simple turbulence model) of the fluid. For a simple turbulence model
is the eddy diffusivity of the density. For laminar flow x = 0 and density is conserved. We
should note that the Boussinesq approximation amounts to three approximations. The first sets
p constant in all terms of the momentum equations except for the buoyancy term. The second
approximates the conservation of mass equation by ¥ - i = 0, while the third reduces the cnergy
equation to a form that looks like the original consevation of mass equation (hence the energy
equation is often referred to as the density equation). A thorough discussion can be found in the
text by Kundu ([29]). The vector F, includes any body forces we wish to include (something that
is useful for certain numerical simulations). If we divide through by po the Laplacian term would

involve the kinematic viscosity

v
i
3=

For internal motions the perturbations to the background density profile 5(z) are small and hence

it makes sense to define

p=pz) +4. (1.2)

We introduce the buoyancy frequency N(:z) via

2.y 99
N%(z) = o ds (1.3)
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It is easy to show that a fluid parcel at a given height : displaced vertically oscillates about its

equilibrium height with the frequency N(z) (sce [21]). The governing equations can be written as

po(%;+a-v"a) = -VP-pg+ Fo+puVi
Vi = 0
/ ~ 12:
a_P +i-Vp (g)”°w = kV2y. (1.4)

In situations where the viscosity and diffusivity are not important to the phenomenon in question
we simply drop all the terms which include u and k. The governing equations are then referred
to as the Euler equations.

We will discuss 2D phenomena only. With the axes defined as above, we consider all field
vartables to be functions of £, z and ¢ only. Furthermore, we take v = 0 (no velocity in the y

direction). We can then introduce a stream-function ¥(z. z,t) so that

i1
(u,w) = (%%.*da—r)- (1.6)

The governing equations can now be rewritten in a form that is more convenient for theoretical

analysis (This is discussed in detail in the next chapter).

1.0.1 Some Historical Background

In what is now a standard part of the applied mathematics folklore, solitary waves were discovered
by John Scott Russell in 1834 as he rode along the Edinburgh-Glasgow shipping canal. These were
solitary waves on the {ree surface of the water. After some initial interest (and controversy) by the
great minds of 19th century physics (Airy, Rayleigh, Boussinesq, etc.) solitary waves were largely
relegated to the periphery of applied mathematics until 1965 (see the review of Miles [46] for
more complete historical notes, as well as other interesting information on solitary waves). That

vear solitary waves returned to prominence via the amazing discovery of Zabusky and Kruskal
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([68]) that numerical solutions of the KdV equation contained finite amplitude solitary waves that
interacted with one another without losing their form (as particles do). Furthermore, a general
initial condition broke up into a number of these particle-like ‘solitons’. The KdV equation was
derived by Korteweg and deVries in 1895 to describe surface waves propagating in one direction.
The same authors discussed a family of periodic solutions to this equation (called cnoidal waves)
which yield solitary wave solutions in the limit of infinite period. In retrospect it should be noted
that it was Russell himself who first showed that a fairly general initial disturbance in a long.
shaliow tank breaks up into a rank-ordered (largest waves propagate fastest) train of solitary
waves. Since the KdV equation is an asymptotic model of such an experimental situation, in
some sense the property discovered by Zabusky and Kruskal was anticipated by Russel.

Further work on solitary waves was stimulated by the astonishing work of Gardner et al.
([17], [18]) which showed that the initial value problem for the nonlinear KdV equation could be
solved exactly using analytical methods on linear equations. This technique, called the inverse
scattering method (or sometimes inverse scattering transform), has since produced a hefty volume
of mathematical literature and has been applied to a wide variety of model equations (of which
the KdV equation is just one example). See the books by Drazin and Johnson [16] or Ablowitz
and Segur {[1]) for more on this topic.

From a mathematical point of view solitary waves were interesting because certain special
nonlinear equations possessed solitary waves as solutions. These equations could be analyzed
using the inverse scattering method and had a host of interesting mathematical properties (see
the early collection [39] for an approachable introduction).

The study of internal waves has a long history of its own ([19]). In his book, Gill ([21])
includes an entry from Benjamin Franklin’s journal regarding the motion at the interface between
oil and water. Franklin noted that the motion at the interface is quite pronounced even though
the motion at the free surface is nearly negligible. Gill's book contains many other interesting
historical notes regarding waves in stratified fluids. The connection between vertically trapped
internal waves and solitary waves was established through the work of Benney ([7]) and Benjamin

([4])in 1966. Benney showed that small, finite amplitude, vertically trapped waves in a shallow
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ocean were governed by the KdV equation (which has solitary wave solutions), while Benjamin
used a variational technique to derive a solitary wave solution without explicitly deriving the KdV
equation. We will quote extensively from a version of Benney's analysis in the following chapter.
Benney's theory is an example of so called weakly nonlinear theories (henceforth WNL). These
theories have a very extensive, and active. literature with applications to internal waves reviewed
by Grimshaw in ({22]).

The mathematical work on the KdV and related equations took some time to make its way
into the field of oceanography. In what is now a standard review ([50]) Ostrovsky and Stepanyants
state that while oceanographers often observed solitary waves in the interior of the ocean, it was
not until the language of solitons and inverse scattering became widely known that a means to
discuss such observations became available. Some of the observations were quite spectacular (for
example those of Osborn and Burch in the Andaman sea [49]) and during the 1980s photos from
space (which can be found on the Internet) served to stimulate even more interest. Ostrovsky and
Stepanyants also note that it was advances in remote sensing and oceanographic measurement
techniques that made reliable observations of internal solitary waves possible, a useful reminder
in the present theoretical work.

The advent of cheap computation in the 1990s opened up new avenues for investigation of
ISWs. In 1991 Turkington et al. published a technique for computing fully nonlinear ISWs for
a given stratification ([64]). This work presented a departure from WNL theory in the sense
that the ISWs computed were exact solutions of the Euler equations. A version of Turkington
et al.’s algorithm, along with more discussion of the related literature will be presented in the
next chapter. The aigorithm derived there will subsequently be used throughout the remainder of
this work. Lamb and various co-workers have used Turkington’s method as well as various other
computational techniques to study many aspects of ISWs ([38], (31], [37], {32], (35]).

A large part of this thesis was motivated by the observations of Bogucki, Dickey and Redekopp
off the California coast ([8], henceforth referred to as BDR). These observations showed a correla-
tion between the passage of a packet of ISWs of elevation and an increase in resuspended sediment

at 8 m above the ocean bottom. The paper also made a variety of predictions about how the
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ISWs interacted with the bottom boundary layer and how they were generated. Subsequently,
Bogucki and Redekopp ([10]) published numerical simulations outlining a possible scenario for
ISW induced sediment resuspension. These simulations did not use fully nonlinear ISWs (and in
fact were not presented in a clear manner). Redekopp ([11]) subsequently presented observational
evidence of ISW induced resuspension at a number of sites in the Atlantic. The problem of sedi-
ment resuspension (and transport into the main water column) is very broad and we will aim to
examine several different aspects of its relation to fully nonlinear ISWs in this thesis.

More generally, interest in ISWs and their life cycle continues today. There are well known
regions of the world oceans where the generation, propagation and dissipation of ISWs are observed
and measured {Ostrovsky and Stepanyants provide a map and a great deal of information is
available on the Internet). Similarly there are several standard theoretical scenarios for ISW
generation (see [22] and [31]) and many (usually based on WNL) models for ISW structure (see

[22]). ISW dissipation remains largely unresolved (though {22] does discuss some simple models).

1.0.2 Plan of Thesis

In this thesis we wish to examine three broad topics in the study of fully nonlinear ISWs. First
we investigate how the presence of a background current affects fully nonlinear [SW properties
(maximum amplitude, propagation speed, etc.). Second we introduce one method for computing
ISWs past breaking, and subsequently use this method to discuss ISWs with trapped cores. Third,
we discuss the interaction of ISWs with a viscous bottom boundary layer (henceforth BL). As a
particular application we examine the relevance of ISW passage to sediment resuspension into the
water column.

Before each of these three topics is discussed in its own chapter a chapter of mathematical and
numerical tools is provided.

Each of the chapters presenting results ends with a discussion of how the results in this work
relate to the relevant literature as well as to future research directions for the particular topic.

For readers interested in specific topics the thesis need not be read in a sequential manner.

The chapter on ISW-BL interaction can be read on its own with the reader flipping back to the
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Tools chapter and Steady Waves chapter when necessary. Similarly, 2 reader less interested in
numerical simulations can read the Tools and Steady Waves chapters and skim the remaining
chapters according to their interest. The ISWs with Trapped Cores chapter depends to some

degree on both the Tools and Steady \Waves chapters, but is wholly independent of the ISW-BL

Interaction chapter.



Chapter 2

Fundamental Tools

The phenomenology of ISWs is very complicated. This is the case primarily due to the complexity
of the underlying physical situation of a variable temperature and salinity (and hence density)
ocean which is constantly in motion on a variety of length scales. and in physical and thermal
contact with the similarly active atmosphere. In this chapter we develop the various tools (or
rational simplifications) used in this thesis to investigate the behaviour of steady ISWs (steady
in an appropriate frame of reference). We will consider 2-D situations only. We begin by dis-
cussing the theory of weakly nonlinear waves (henceforth WNL} which extends the linear theory
of infinitesimal waves to the case of finite, but small, amplitude waves. We quote results that
derive the well known Korteweg de-Vries (KdV) equation for the horizontal structure of the wave.
This equation demonstrates the possibility of a balance between nonlinearity and dispersion (both
finite amplitude eflects), and indeed we write down the solitary wave solution (the proof that such
a balance is possible).

Following the section on WNL, and following the work of Turkington et al. ([(64]), we derive
a nonlinear elliptic cigenvalue problem for fully nonlinear ISWs. This eigenvalue problem is
found to be amenable to a variational formulation, which in turn provides an efficient means
for numerically calculating ISWs for a given background density and current. This algorithm

allows us to compare and contrast the predictions WNL makes with large, fully nonlinear waves

10
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{computed by the algorithm). [t has been found that for a large class of background density
profiles WNL does not successfully predict the structure of large ISWs ([34]). An alternative
theory to WNL for discussing large waves is given by the conjugate flow theory, which is discussed
in the fourth section. Unlike WNL this theory is exact. hence not restricted to small amplitudes,
however it assumes the flow is uni-directional and hence leaves out all mention of dispersion.

In the final section of the chapter we discuss the numerical model. as developed by Lamb ([31])

and modified by the author, used in all subsequent work for simulations that evolve in time.
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2.1 Weakly Non-Linear Theory

We quickly summarize the results of WNL for ISWs in shallow water, as developed by Lamb and
Yan ([38]) and extended by Lamb ([34]). Let € and u be two small, dimensionless parameters
measuring the wave amplitude and the aspect ratio (the ratio of typical vertical to horizontal
length scales) of the waves, respectively. Define b, sometimes referred to as the buoyancy, as

b=

A
pop. (2.1}

Next introduce an asymptotic expansion in the two small parameters

w - u,o +(u')|.0+"w0.l I

b = %40 4™ .- (2.2)

This assumption linearizes the governing equations at all orders. The fluid occupies the infinite
strip bounded by : = 0 and z = 1. We seek separable solutions at each order, and find that at

leading order

¥° = B(z, t)ewé(z). (2.3)

where B(z,t) is the horizontal structure function. ¢(z), the vertical structure function, and ¢,

the linear, longwave speed are given by the eigenvalue problem

_ N3(2) v _
C¢=¢”+((C{W—U)2+C(W—U)¢ 0
$(0) = 0
é(1) = 0. (2.4)

L is a linear differential operator defined by the above. The above is commonly known as the
Taylor-Goldstein equation (strictly speaking, the Taylor-Goldstein equation in the longwave limit).
For the case of no background current, and physically relevant N(z) (e.g. stratifications with

continuous N (:), multiple layer stratifications) the above eigen-value problem has an infinite set
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of discrete eigenvalues ¢, which decrease as the mode number n increases ([67]). The corresponding
eigen-functions are labeled ¢,. The mode of an eigenfunction is defined as the number of zeros
of the function strictly between - = 0 and = = | plus 1. In other words the eigenfunction that
never crosses zero between the two boundaries is called the mode 1 solution and has the largest
propagation speed. We will focus solely on mode | waves and hence drop the subscript on c,
and ¢,. When a nonzero background current is included the requirement that ¢, — U > 0 will
preclude the formation of critical layers (see [44] for a discussion of critical layers in this context).
As an aside, note that it is not possible to demand that all modes satis{fy ¢, ~ {/ > 0, and thus
a nonzero background current will restrict the number of higher modes we can consider. though

this will not be relevant in the following. To leading order t° is given by

bo
¥i = E(:)B(z.t), (2.5)
where
Clw ,
z) = . 2.
E() = o (2.6)

Extensions to higher order can be found in ({38], [34]).

To first order in both small parameters, the evolution equation for the wave amplitude is given

by

B: = —ciwB: + €2ry9Ci1e BB: + pro1Brz:- {2.

[
=3

By dropping the first-order nonlinear and dispersive terms in this equation, we see that the
eigenvalue c;,, is indeed the linear, longwave propagation speed. The physical parameters rg and

rop are given by
1
-3 [(cw — U)?E"d:
o . (2.8)
41y (e — U)E?d:
0

rio =
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and .
- (e = U)*E%:
ot = —2 . (2.9)
2 [(ctw — U)E"d:
0

Note that since ¢ip, — U > 0, ro; < 0 while rio can have either sign. With g = ¢ equation (2.7)
is the KdV equation and can be converted to standard form by switching to a reference frame
moving with the wave speed. [t can be shown that (2.7) has solitary wave solutions (see for
example, [32}) of the form

B(r.t) = ~bosech?(8) (2.10)

where

0= . (2.11)

Waves are depressions if by > 0 and elevations if bg < 0. The wavelength A, and the nonlinear

propagation speed are related via

boA? = —6—2 (2.12)
ClwT10
and
2
V=(1+ irmbo)c:u,. (2.13)

In a frame moving with the wave the waves are symmetric about the = axis, with the largest
disturbance occurring at the wave center (§ = 0). Note that since ro; < 0 and A\? > 0 waves are
waves of depression if rip > 0 and waves of elevation if rjg < 0. With no background current the
theory yields waves of depression (elevation) if the majority of the change in density occurs in the
top (bottom) half of the water column. However, since varying U(z) varies ryq, including possibly
" its sign. a background current may have an effect on this simple relationship. Note also that
borio > 0, implying that solitary waves with larger amplitude propagate faster and are narrower.
In particular this means that all finite amplitude waves propagate faster than the linear long wave
speed (often labeled ¢;, in the following as ¢ will be used for the ISW propagation speed).

Waves break if, in a frame moving with the wave, a streamline is vertical, or in other words if
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the = component of the gradient of the streamfunction is zero. In this frame, to leading order we

have

$T(0) = =V 2 + ¢8(2) + ciw B(0)9(:)

where ® is the streamfunction of the background flow. As mentioned above, the largest distur-
bances occur when 8 = 0 and hence to find the smallest wave amplitude at which breaking occurs
(henceforth 64) we consider vertical profiles at £ = 0 only. With the solitary wave solution (2.10)
the condition for breaking reads

U(:) —bocrpd: = V. (214)

To facilitate the solution for b3, define the height at which the maximum of horizontal velocity

occurs, :°, as
max(U(z) + u(D. 2)) = U(z") + u(0.2"). {2.15)
Then

s UG —aw .
ctu(d:(z*) + 2r10)

(2.16)

This means that first-order WNL predicts that waves will break for all stratifications and back-
ground currents. We shall see that this true only for some cases.
The approach discussed above can be extended to higher order as in ([34]). Higher order

extensions are more accurate.
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2.2 Fully Nonlinear ISWs

WNL is a very useful conceptual tool, however being an aymptotic theory it cannot be expected
to give valid results for very large waves. The shortcomings of first order theory were mentioned in
the previous section. Some of these can be fixed by higher-order theories (see [22] and references
therein). Nevertheless, it is desirable to have a method for calculating solitary wave solutions of
the full Euler equations for any given stratification N?(z) and background current U(z). These
exact solutions could then be compared to WNL to test the validity of the asymptotic theory.
We closely follow the work of Turkington et al. (henceforth TEW) ([64]) and its extension
by Wang (henceforth Wang) ([65]) The formulation of TEW was for ISWs without a background
current. Wang’s extension allowed a steady, horizontal current’s geometric shape to be specified.
but not its top to bottom velocity difference (this somewhat bizarre result will be discussed below
once we have derived an eigenvalue problem governing ISWs). The algorithm outlined below
allows one to specify both the geometric shape and the top to bottom velocity difference of the
current. As before. we let U(z) denote the steady horizontal current. We define o7 and o to

represent the total and wave induced vorticity, respectively. i.e.

o7 = U'(z)+Viy.

c = Vi (2.17)
J is the Jacobian, defined as the bilinear differential operator with action
J{a.b) = azb. —a;b;. (2.18)
This allows us to write the governing equations as,

pe + J(p, v7)

|
=
—_
1o
—
=)
A

g+ J(@T, ¥T) +pg = 0, (2.20)
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where the first is the continuity equation and the second is the vorticity equation, which results
from a cross-differentiation of the momentum equations. Note that the total streamfunction is

given by

e+ v
/U(:)d:.

and that the above set of equations requires L’{z) to be steady. We switch to a frame of reference

c
|

moving with the ISW. The continuity equation now reads
Jip v+’ —cz)=0. (2.21)

Next write

plz.z) = p(z = n(r,2)) (2.22)

where 5 is the isopycnal displacement. This transformation states that the density along an
isopycnal remains constant and implicitly defines the isopycnal displacement n(z, z). A diagram
of the situation is given in figure 2.1. We require that

lim p(z,z)=9 (2.23)

st

as well as the vanishing of all derivatives of  as £ — *oo. Notice this implies that ¢ and all
its derivatives vanish as z — +oo as well. The definition of the isopycnal displacement n(z, z)

(2.22) lets us write

Plz=m)d(z=nv+d®—cz)=0 (2.24)

and provided that '(z — 1) is not zero on an interval

v+ ¢ —cz=F(z-n) (2.25)
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Figure 2.1: Definition diagram for n(z, z), the isopycnal displacement
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for some function F. Using the vanishing of n and all its derivatives for large r we find

)
2y
£
X
1l
<
o
=2
e
L
|
(2}
L]
—_

2.26)
and hence
¢ = bz =n) - eP(z) + e (2.27)
This means that once n is known all other field quantities are simple to calculate. Next write the
vorticity equation in a frame moving with the wave as
JeT T = cx)+ J(p.gz) =0. (2.28)

A series of algebraic manipulations leads to the equation

J ([U(= ~n) —clo” —gnp'(z = ).z - '1) =0 (2.29)

or
G(z=n) =[U(z = n) = cloT - gnp'(z - n), (2.30)
for some function G(z — n). From the vanishing of n, ¥ and their derivatives as £ —» +o00 we
find that
G(z) :—U'(:)(U(:—q)—c). (2.31)

Using (2.30) and (2.31) along with the definition of 67, we get an equation for 7. Some simplifi-

cation shows that 7 satisfies the nonlinear, elliptic eigenvalue problem

Vi = - (- )+ ey (23)

where c is the unknown wave propagation speed and U(z) is the known background current. The
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boundary conditions are

n(r,0) = 0
n(z,H) = 0
where H is the fluid depth, and
hm n{z.z)=0.
Ir— ’C

This boundary value problem was derived by Wang ([65]).
If we define U by
U(z) =cl(2)
and A according to

gH

A= =

we can rewrite (2.32} as

-y - U'(z = )18

(z—mn

I
L J P
~°l

W
li

24+(1-n.)?

a form amenable to a variational formulation. Indeed by defining

Etn) = //(U M+u—m”aw
Q) = f[ We=n =%y,
F(ﬂ)=f/:)f(:,n)dzd:

and

(2.34)

(2.36)

(2.38)
(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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where

flz.n) =j; (A(z —n) - A(z - £))dE, (2.44)

we find that the eigenvalue problem (2.37) corresponds to the Euler-Lagrange equation for the

constrained minimization probiem

minimize E(n) + Q(n) subject to F(n) = A {2.45)

where A is a constant specifying the size of the wave. Note that D is the domain on which we
calculate the waves (the infinite strip in theory, a truncated strip in practice). For the case of
no background current £(n) and F(n) can be identified with the kinetic energy and a potential
energy for the wave, respectively. It can be shown that HgF(n) is the available potential energy
(henceforth APE) with or without a background current. The APE is the change in potential
energy if the density field on an infinite strip is sorted adiabatically to be horizontally uniform
(originally defined by Lorenz [42], a more recent reference being [13]).

To apply a generalized version of the algorithm from TEW we rewrite the problem as

—sz] =2 5(2' ")

————— + R(z,U, 2.46
(U(Z—n)—l)’+ (z.U.n) (2.46)
where
s Plz=mn -
S(“v”) - H([.f(:—n)-l)z’ (2.4‘)
and )
R(z,U,n) = —M[l -+ (1-n)H) (2.48)

U(z=n)—1
The generalized algorithm for getting the (k + 1)th iteration assuming that the kth is known, then

reads: Solve the linear elliptic probiem,
-V2pk = A*S(z,7*) + R(z. ) (2.49)

with Dirichlet boundary conditions. All instances of U in (2.48 and 2.47) are replaced by U*,
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which is defined as

k= .. 2.5
Uk = 5 (2.50)

c* is defined from A* according to {2.36). Then define

A= F(n*) + fp [ S(n*)n*dzd:

A+l = £k > y 2.
max |0 fo TS(n* ) *ded- (2.51)
and finally set
Ak+1
K+l - " v*. (2.52)

As the algorithm is quite compiicated it seems prudent to highlight several points. First, the
iteration over %, which allows us to fix the magnitude of the background current, is new (TEW
do not include a background current, and Wang does not fix the magnitude of the background
current). In the work of Wang ([65]) the magnitude of the background current is allowed to
change in order to, in the opinion of the present author, facilitate formal convergence proofs of
the algorithm. Second, the step (2.51) is equivalent to the Kuhn-Tucker conditions of optimization
theory (these can be thought of as an analogue of the method of steepest descent). It was derived
in 2 more complicated form by TEW without the Boussinesq approximation. In this case it is
actually possible to have A**! = 0 since the expression for n**! has several terms. For the present
case we have not found any cases where A*+! = 0. We should note that both the work of TEW and
Wang on the convergence of the algorithm uses a notation that precludes a simple interpretation
of the various steps of the algorithm.

In practice the method is simple to implement as each iteration requires the solution of a linear
Helmholtz problem with Dirichlet boundary conditions. Note that since we fix A in (2.45) we
do not specify the wave amplitude a priori. It should be noted that while the above algorithm
is a simple generalization of the algorithm in TEW to the case of a wave superimposed on a
background current, the convergence proofs as written in TEW or Wang do not apply to the
above. The results were tested by computing a candidate solitary wave using the above method,
then using this wave as an initial condition in a time stepping model of the full Euler equations

to make sure that the numerical implementation of the algorithm was correct.



CHAPTER 2. FUNDAMENTAL TOOLS 23

2.3 Conjugate Flows

The behaviour of ISWs as the value of A in (2.43) is increased can be classified under two different
scenarios. The first is the one predicted by first-order WNL and has been discussed in that section.
Briefly, as A increases the waves grow thinner and taller until they break (horizontal velocity equals
wave propagation speed somewhere in the wave). In the second scenario, as A increases from 0,
the ISWs initially grow thinner and taller. but after a certain point begin to broaden out and
their amplitude tends to a limiting value. For large enough values of A the waves are flat in the
middle. As an aside, note that higher order WNL which takes into account a cubic nonlinearity
(and leads to the mKdV equation) predicts waves with a flat middle region ([22]). Indeed if we
consider a frame moving with the wave and fix the origin to lie at the mid-point of the upstream
transition region of a rightward traveling wave. then as we let A — oo the long, flat-centered
wave tends to a dissipation-less bore, or a smooth, monotonic transition between two regions of
flow in the horizontal direction only. The type of scenario encountered depends on the choice of
the background stratification.

The algorithm of the previous section allows us to compute flat-centered waves, however we
could ask (ignoring the shape of the transition region) if it is possible, given the background
density and velocity profile in the upstream region. to compute the density and velocity profiles
in the downstream region. The downstream region is referred to as conjugate to the upstream
flow, or just the conjugate flow. The concept was introduced by Benjamin ([4]). In particular we
would expect the computation of the conjugate flow to have a simpler form than the algorithm of
the previous section since the flow is one-dimensional.

The problem with no background flow has been discussed in detail by Lamb and Wan ([37])
and the governing equation with a background flow is quoted in ([36]). In ([37]) the role of the
Boussinesq approximation is discussed. We make the Boussinesq approximation in all subsequent
calculations. Consider a frame moving with the wave (at the presently unknown wave speed c).

The background upstream state is then given by

(u,w, p,p) = (U{z) — ¢, 0. 5(z), p(z)) (2.53)
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and the downstream state by

(1, w.p.p) = (Up(2) = €. 0. 5y <), B(<)- (2.54)

Next. define 5(z) to be a given isopycnal’s displacement from its upstream height. In other words
the upstream height of an isopycnal passing through : in the conjugate flow is given by z — 7.
We assume that all streamlines connect to plus and minus infinity. This immediately yields,

from the definition of n. that

(=) = p(z —n). (2.55)

Il we consider two streamlines passing through z and : + Az, respectively, conservation of volume

between the two streamlines yields
Ax(lp(2) =€) = (U= = ) = O)[dz = (n(= + A2) — n(=))]. (2.56)
We can solve this relation for U,(:) and hence in the continuous limit Az — 0 get
Up(z) =U(z = n)[1 - n:] +em:. (2.57)
For the case of no background current the above simplifies to
Up(z) = cn.. (2.58)

Since the flow is steady and inviscid we can apply Bernoulli’s Theorem along a streamiine. This

vields

%po(U(: -n=cl+pz-n)+p(z—n)g(z-n) =

L rollp (=) — €7 + By ) + Bolla.



CHAPTER 2. FUNDAMENTAL TOOLS 25

However noting that

(Up(z) — ) = (U(z =) = )*(1 = no)%. (2.59)

we can eliminate the term involving the unknown function U, in favour of a term involving the
known function U(z). What is more, since we have assumed no vertical motion. both upstream
and downstream states are in hydrostatic equilibrium. Hence on using (2.55), we get

4,

i —gplz - n) (2.60)

downstream. This means that if we differentiate (2.59) with respect to = we can hope to get an
expression involving only ¢, 1 and the upstream density and velocity, both of which are known.

Some simple, though tedious, algebraic manipulation yields

(2= n)n:U'(z - n) N*(z ~n)

n:: + c—Ulz~n) (ce=U(z=n)

71 =0. (2.61)

The above can be obtained from equation (2.32) by assuming that n has no r dependence. In the

above we employ the standard definition of the buoyancy frequency,

. dp(=)
N(z) = g—=L.
(x)=g n

This means that

N3z —n) = —gp' (= = ).

Since we consider a flat bottom and a rigid lid we must impose the following boundary conditions

n0) = 0,

nH) = o (2.62)

The eigenvalue problem (2.61) can be easily solved by a shooting method. n(0) is fixed to

equal 0. 7:(0) is chosen and ¢ is varied to ensure n{H) = 0. In general each choice of n.(0)
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will yield at least one mode-1 solution. Note however that the eigenvalue problem is nonlinear,
hence may yield more than one solution for a given choice of 7:(0). What is more, unlike a linear
eigenvalue problem, varying n.(0) may change the solution (as opposed to merely scaling it like in
the linear case). The correct choice of 7.(0) is determined by an auxiliary condition which reflects

the conservation of total horizontal momentum flux, i.e.

H - H ]
(p(z) + po(Ui(2) = )?) :=/ (Bp(2) + pollp(2) = €)*)d:=. (2.63)
o (U]

With some manipulation the auxiliary condition can he simplified to read

H

A polc = U(z = n(z))?nidz = 0. (2.64)

A conjugate flow is thus a solution of {(2.61) subject to the boundary conditions (2.62) and with
n:(0) chosen to satisfy (2.6). Finally we must make sure that the assumption of all streamnlines
extending to plus and minus infinity is not violated. A streamline found at : downstream of the
wave is found at =z — n(z) upstream of the wave. We thus require : — 7(z) to be an increasing

function of . This means that

n:(z) <t (2.65)

for valid conjugate flows.
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2.3.1 Two-layer flow with constant vorticity

Following the work of Lamb ([36]) on three layer fluids with piece-wise constant currents we aim
to use the simple case of a two-layer stratification with a linear background current (constant
vorticity) to derive some qualitative results regarding conjugate flows.

Consider a two-layer fluid with densities, p; and p; for the upper (lighter) and [ower (heavier)
layer as shown in figure 2.2. Without loss of generality we assume the wavefront is rightward
propagating. Let the total water depth be given by H and far upstream set the lower layer
thickness to equal H,. This means that the upper layer has an upstream thickness H — H,, which
we label Hz. Further assume that in a frame moving with the disturbance (with velocity ¢) far

upstream there is a background current given by

U(z)=8:—-¢ (2.66)

where £ is a shear strength parameter. The problem we wish to solve is to determine the non-
zero downstream lower layer thickness which we label H; + n and the associated disturbance
propagation speed ¢ and downstream velocity u’(z).

We begin by noting that within each layer the density is constant and hence vorticity (or u,

for parallel flow) is conserved. This means

wW()=Ui+€z-c¢c (2.67)

where 1 = 1,2 depending on which layer we are considering. Next impose conservation of volume

flux in each layer, i.e.

H H
(2 —c)dz = / (U2 + €z~ c)d: (2.68)
H, Hy+n

H, Hy+n
/ £z —c)d: / (Uy+€z—¢)
() 0
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Figure 2.2: Definition sketch for conjugate flow in a two-layer fluid.
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These equations readily yield expressions for Uy and Uy:

en—$n(2H, + 1)

Uy = -
! Hy+n

(2.69)

en— $9(2H, + )

U, =
2 H—H -1

(2.70)

Next we wish to utilize Bernoulli’s Theorem along two different streamlines to derive two expres-
sions for p*(0). Equating these two expressions will give us one of two equations for 7 and ¢ needed
to get a closed system of equations. First consider the streamline along the surface. Upstream we
set the surface pressure to equal zero, but downstream of the disturbance there may be a change
in pressure which we will label pyy. Bernoulli’s theorem under the Boussinesq approximation with

the reference density labeled pg then vields
%m(&H—c)’+mgH = :},:PO(U2+€H-C)2+PH + p2gH. (2.71)
This can be solved for py to read
pi = ~5poUa (Us + 2 (€H = ¢)). (2.72)

In order to apply Bernoulli's theorem along the streamline which follows the bottom we need to
write down the hydrostatic pressure distribution upstream (p(:)) and downstream (p*(z}). The

upstream distribution has a simpler form due to the simpler expression for the layer thicknesses:

- p2g (H —z) Hi<z<H
p(z) = , (2.73)
pmg(Hy = 2) + p29 (H — Hy) 0<:< H,
. p2g (H - 2) Hi+n<:<H
P'(z)=pu + (2.74)

pg(Hi+n=-2z)+pg(H-Hi-n) 0<z< H
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Thus at the bottom (z = 0) we have

p'(0) = pu+pg(Hy+n)+p29(H~H, - 1)

p(0)

prgHy + p2g (H — H,)

or if we define the density difference via

Ap=p —p2 (2.75)
the simpler
p'(0) = pu+p2gH + Apg(Hy + 1) (2.76)
p(0) = mgH + dpgH,

With these definitions we can write down Bernoulli’s Theorem along the bottom

! 1
5P0(=0) + mgH + ApgHy = 5p0(Ur =€) + p + pagH + Spg(Hy + n). (2.77)
Upon substituting for py and simplifying this yields the single equation
1
0 = 5po (U1 (Uy = 2¢) — Uz(Uz - 2¢) — 2Un€H) + Apgn. (2.78)

Note that both U/} and U; are known from (2.69, 2.70) as functions of n and c. To get a second

equation and close the system we must consider the conservation of momentum flux
H
/ {pou? + p) dz = constant. (2.79)
°

Upstream we get

My = /OH [po (€2 = o) + 7(=)] d= (2.80)
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1 1
= po (§H3 - &cH? +c?H) +5m9H] + 5pg(H? - HY)

where the latter results from significant algebraic simplification. Downstream the expressions are

even rnessier:

Hi+n 5
Miown = / [po (Uy+8z-¢)" + p’(:}] dz (2.81)
0

+ /’ ! [po (U + €2 = ) +p ()] =

11+n

1 !
= spglHi+n)? + spma(H? — (Hi+0)*) + pu H

+po@

where

Q = W= Hi+n)+(Us=—c)*(H=-H, —n) + (2.82)
E[(Uy = c)Hy +n)* + (U =) (H* ~ (Hy + )P} +
2
[+ 0+ (B = (Hy+ 0] -

The second algebraic equation results from equating the expressions for the upstream and down-

stream momentum flux, i.e.

Myp = Maown. (2.83)

2.3.2 Numerical Solution

We have not found it possible to solve (2.78) and (2.83) for n and ¢ analytically (for piece-wise
constant currents Lamb [36] was able to find an analytical solution). However it is easy to solve
the two nonlinear algebraic equations numerically by Newton’s method. First we can rewrite
(2.78) and (2.83) in the form

Fi(n,c) 0

= . (2.84)
Fz(qv C) 0
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Next we choose an initial guess (n°.c%) and update according to the rule

k41 k
UM TS IR (2.85)
&+ Fa(n*. c*)

where J is the Jacobian matrix.

In practice J is evaluated numerically (with adaptive refinement if the algorithm breaks down).
The analytical solution given by Lamb [36] for the case of no background current is used as an
initial guess. Next £ is increased or decreased. Newton's method used to get an approximate
solution at this value of £. and the process is repeated until the solution for the desired value of
£ is reached. The algorithm is easy to implement, very fast to execute. and provides a quick and
easy way to get a qualitative idea of how the presence of a background current affects limiting

ISW amplitudes. As an example consider f{ = 100 m and the stratification given by

T=20

p(z) =1 = 0.01tanh(

).

As d gets smaller this stratification approaches the two layer limit.
In figures 2.3 and 2.4 we present numerical resuits for conjugate flow amplitude and propa-
gation speed using the continuous and two-layer equations for two values of z5. The results are

presented as functions of the constant background vorticity

as given by equation (2.66). It can be seen that the two-layer technique is quantitatively accurate
when the pycnocline has ﬁ = 0.005, not as accurate when % = 0.05, and qualitatively accurate in
general. The isopycnal displacement and propagation speed decrease as £ grows more negative for
all stratifications shown in the figures. This variation of conjugate flow amplitude and propagation

speed with background current will be discussed in more detail in the following chapter.
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Figure 2.3: Conjugate flow maximum isopycnal displacement (left panel) and propagation speed
(right panel} as a function of the constant background vorticity £ for linear background velocity
profile. H = 100. two-layer with interface at zq = 20.0 (circle), continuous hyperbolic tangent
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Figure 2.4: Conjugate flow maximum isopycnal displacement (left panel) and propagation speed
(right panel) as a function of the constant background vorticity £ for linear background velocity
profile. two-layer with interface at z9 = 30.0 (circle), continuous hyperbolic tangent density profile
with (z0,d) = (30.0,0.5) (star). (z0,d) = (30.0,5.0) (pentagram).
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2.4 Numerical Model

In this section we briefly discuss the numerical model used for all time-dependent simulations in
this thesis. The model was developed by Lamb and is discussed in several of his articles ({30],
(31], [33]). We follow the presentation in ([31}). In itsloriginal form the model solves the Euler
equations (i.e. equations (1.1} with g = 0 and x = 0) on a domain bounded by the topography
at z = h(z) < H and the rigid lid at = = H. where H is the total depth. The model is based on
a second-order projection method.

The time stepping proceeds in the following manner: First p is updated via

n+l _ n -
ET” = ~(i- Vo)t (2.86)

Next the vector V' is computed according to

n+l n o
P22 k. (2.87)

V=—(d-vi)"ti -

Finally the velocity field & and the pressure gradient VP are updated via

___‘7‘*;; T~ P, (2.88)
VP HE = (1 - PY(V) (2.89)

where [ is the identity operator and P is the projection operator of a vector onto its divergence
free part.

The time step is variable. It is restricted by calculating the Courant-Friedrichs-Lewy condition,
which states that a fluid particle cannot travel the length of a grid cell in one time step, and then
applying a safety factor smaller than 1. Quantities at the n + % time step are calculated by an
upwind extrapolation (see [31] and refetences therein for details of the method used).

The computational grid allows the specification of bottom topography. The governing equa-
tions are transformed to terrain following coordinates, and hence are solved in a slightly more

complicated form than (1.1). The transformation allows grid refinement for regions of interest
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{for example near the bottom). The values of i, p, and VP are given at the cell centers for all
interior points, and at the midpoints of cell edges for boundary points. A sample grid (taken from
Lamb's paper on tidal simulations [31]) is shown in figure 2.5.

The extension of the numerical method to include diffusion and no-slip bottom boundary
conditions was done in part by Lamb and in part by the present author. In its present state, the
model allows for variable eddy viscosities and diffusivities, but this option was not utilized in this

thesis.



Chapter 3

Steady Wave Results

In the previous chapter we derived a number of tools with which we can discuss large ISWs for a
given background density and horizontal current. In this chapter we present results pertaining to
steady waves as well as some of the consequences steady wave results can have on the evolution
of an initial disturbance.

{t is now reasonably well known that WNL does not accurately describe the spatial structure
of large waves. We briefly quote from work on this topic by the present author ([{59]). Lamb has
carried out a higher order study for simpler stratifications ([34]).

We consider the observations of BDR in water 60.0 m deep. The observed density profile
consists of a nearly unstratified upper layer 40.0 m thick overlying a linearly stratified layer 20.0

m thick. We follow the work of BDR and model this situation by the density profile

pop(z) = 1024.735 + C(In (cosh (z — 20)) - z)

C

0.0093. (3.1)

p is plotted in figure 3.1 along with the buoyancy frequency using po = 1024.8 kg m3.

38
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We considered a background current of the form

|
—

U(z) = 0.[5(% - (3.2)

where s specifies the direction of the background current at the surface. We will not go into the
details of the study (the interested reader can read [59]). In figures 3.2, and 3.3 we present
comparisons between the fullv nonlinear and WNL vertical profiles at the wave crest of the
isopycnal displacement n and horizontal velocity u, respectively. It is clear from the figures
that the WNL fit deteriorates with increasing wave amplitude and hence if a method to calculate
fully nonlinear IS\Vs is available it should be used to study large waves.

The main results section of this chapter focuses on a commonly used family of stratifications
{the hyperbolic tangent family) and the effects varying the stratification properties and back-
ground current have on various wave properties. Particular attention is paid to large waves and
the bounds on wave amplitude.

The next section discusses a few time dependent consequences that can be predicted using the
computationally cheaper steady results. As well. one instance of an ISW that cannot be calculated
by either WNL. or the variational ISW calculating algorithm, is presented.

The final section summarizes the major findings of the chapter and discusses them in terms

of the relevant literature.
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3.1 Solitary Waves with Open Streamlines

In the introduction to this chapter we have shown results, using a stratification observed in the
field. indicating that WNL does not provide an accurate description of large ISWs. In this section
we examine fully nonlinear ISWs for a class of simpler model stratifications with the aim of taking
into account the role of a background current. In particular we wish to focus on large ISWs well

past the region described successfuily by WNL.

3.1.1 Sample Run

To motivate our investigation consider the following numerical simulations of the unsteady Euler
equations. The simulations are performed on a computational domain that is 4000 m wide and

100 m deep with a grid spacing of 2 by 1 m in the horizontal and vertical, respectively. We

consider an ambient stratification given by

z - 20.
#(z) = 1.0 — 0.01 tanh ( . 0 0) (3.3)
5.0
and a background current given by
U(z) = 3'0ﬁ (3.4)
with H = 100 m. The initial density profile is given by
p(z,2,0) = p(z — ) (3.5)

with n; given by

= —15.0sm(1rﬁ) (tanh( T ) — tanh ( T

z ~ 150 . J:+150)). (3.6)

The initial density contours, along with the contours after 600 seconds are presented in figure 3.4
for the case of no background current, and in figure 3.5 using the background current (3.4).

It is clear from these figures that the initially step-like density disturbance breaks up into two
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Figure 3.4: Density profiles for sample run with no background current. a) t = 0s b) rightward
propagating disturbance ¢t = 600s c¢) rightward propagating disturbance ¢t = 1000s. Only bottom
60.0 m of the water column is shown.
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sets of rank-ordered wave trains and some small dispersive waves. However, due to the presence
of the background current the rightward and leftward traveling disturbances are not symmetric.
It can be seen from figure 3.5 that the leading rightward propagating wave is taller and narrower
than the leading leftward propagating wave. Hence, while the evolution with no background
current (figure 3.4) is symmetric about r = 0, the evolution with a non-constant background
current is not. Also from figure 3.5 we can see that all waves are advected rightward. This is due
to the fact that the vertically averaged background current is non-zero.

We will return to these sample simulations in the following section.

3.1.2 Methodology

Keeping in mind the qualitative results of figure 3.5 we now examine the effect of a background
current on steady ISWs. We use both WNL and fully nonlinear waves, though the former is only
used for qualitative ideas (given the results mentioned in the introductory section anything more

would be inadvisable).

We consider stratifications of the form

j(z) = 1.0 — 0.01 tanh (" ;“). (3.7)

The stratification {3.3) is an example of this class of stratification. In the above, zo specifies the
center while d specifies the thickness of the pycnocline. When there is no background current
stratifications with zg > 0.5 have ISWs of depression, while those with z9 < 0.5 have [SWs
of elevation. By varying the parameters we can change the nature of the upper bound on the
ISW amplitude. One type of stratification exhibits significant stratification right down to the
ocean bottom {or up to the surface) and a second type exhibits a mixed layer adjacent to both
the bottom and surface of the ocean. H, the total depth, is set to equal 100 m for all cases
considered. We will consider d = 5.0 m (thin pycnoclines) and three values for zg, 10.0, 20.0
and 30.0 m (though results will be presented in dimensionless form, as discussed below). We

focus on rightward propagating waves (the exception is in time-stepping runs where both left and
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right propagating waves result from the same initial condition). While we will generally consider
waves of elevation. under the Boussinesq approximation the results can easily be generalized to
situations involving waves of depression providing one transforms the density and background
velocity profiles appropriately (more on this later).

Recall that the variational algorithm used to calculate ISWs fixes .1, the available potential
energy. and not the wave amplitude {maximum isopycnal displacement) or the wave propagation
speed. The two types of stratification mentioned above correspond to two different scenarios of
ISW behaviour as . is increased from 0. For stratifications with a mixed layer adjacent to the
bottom and top boundaries, waves initially become thinner and taller (as predicted by WNL), but
when the maximum isopycnal displacement reaches a certain point the waves stop growing in size
and begin to broaden out, eventually becoming flat in the middle. For broad enough waves the
velocity in the flat, middle part of the wave is horizontal and corresponds to a conjugate flow of the
original stratification and background current. As discussed in the previous chapter, conjugate
flows are governed by a nonlinear ODE eigenvalue problem and hence are computationally cheaper
to calculate than fully nonlinear [SWs. See ([37]) and ([36]) for detailed discussions of conjugate
flows. With no background current. wave broadening is generally observed when the mid-point
of the pycnocline approaches the mid-depth. As we will show below (and as shown in [36]),
including a background current changes this criterion. Note, in certain cases (generally when
the pycnocline is well away from the mid-depth) the variational algorithm will fail to compute
waves past a certain, generally large amplitude. These large waves are found to have Richardson
numbers close to. or even below, 0.25 and hence we believe the variational algorithm fails to
converge due to shear instability of any larger waves.

In summary, the wave amplitude is bounded above by one of three possible scenarios. First,
the waves may reach the point at which the streamlines are vertical in a frame moving with the
wave (i.e. Urgeqt = U(2) + tyave—induced = ¢) somewhere in the water column and the waves
break. Second, the variational algorithm used to compute the waves may fail to converge to a
solution due to shear instability. Third, the waves broaden out and tend to the conjugate flow

solution. The size of the largest. non-breaking wave computable will always be identified by its
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maximum isopycnal displacement. which will in turn be labeled n,. Quasi-steady. solitary-like
waves past breaking will be the subject of the following chapter. Note that the question of what
is the maximum wave amplitude to actually appear in the ocean is a much more difficult question,
and will not be pursued in the present work.

We will present the results in non-dimensional form. Towards this we define

(£.2.d.20) = (£ 3.d.2)H
, max g — ming
g = g———
o
ey = o'H
(c.Uww) = (60,1, d)ey (3.8)

where (@ denotes a dimensionless quantity corresponding to a dimensional quantity Q. for all
quantities.
We will mostly focus on linear background currents with a maximum velocity at the surface

and zero slip velocity at the bottom, (in dimensionless form)

Ul

ta
LET)

y=¢

(3.9)
where £ is given by
€ = max(0") (3.10)

and specifies the maximum vorticity due to the background current. We will also consider shear

layer currents given by (in dimensionless form)

0m=@0+mMJ§O (3.11)
7

The parameter Z; specifies the center of the shear layer, while d-j specifies its thickness. Notice

that for both (3.9) and (3.11) l;'(.;) > 0 for all Z whenever £ > 0.

We will compare currents for fixed values of £. This means we will be comparing currents
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whose absolute maxima may not match. We will refer to the maximum {minimum when the

background current is negative) dimensional current as {/P*", and will henceforth drop the tildes.

3.1.3 WNL Results

Let us now consider some results from WNL.
In figure 3.6 we plot the dimensionless linear longwave propagation speed ¢, {(upper panel)
and the scaled, dimensionless linear longwave propagation speed ¢* (lower panel) versus £ for the

linear background current profile. The scaled, dimensionless propagation speed is defined via

. __ c(w - L[(:O)
c —_—

= (3.12)
CH

This scaling removes some of the linear trend of the ¢y, vs & curves visible in the upper panel of
figure 3.6. Also note from the upper panel that for all three values of zp, ¢ increases with §.

From figure 3.6 we can see that there is an upper bound on £ for which we can compute WNL
results. This bound is given by the value at which U(H) and ¢, are equal (critical layer forms).
From figure 3.6 one can see that the maximum value of £ for which waves can be found increases
as o increases. This increase continues until zo = 0.5. When :o = 0.5 first-order WNL predicts
no mode one ISWs. When zo > 0.5 we get ISWs of depression, which correspond (under the
Boussinesq approximation) to the waves of elevation produced by a stratification with z¢ reflected
about z = 0.5. £ is bounded below due to the change in ¢, caused by the depth averaged current.
At some point advection by the depth averaged background current will cause ¢, to become
negative, and again a critical layer to form (i.e. critical layer forms when ¢, = 0). However, it
is impossible to predict where this will occur a priori. Since finite amplitude waves have a larger
ciw this bound is also dependent on wave amplitude. In practice the variational algorithm fails
to converge due to shear instability before the critical layer is reached in all cases tried.

In figures 3.7 and 3.8 we plot A (a measure of wave width given by 2.12) and the first order
WNL coefficients (the dispersive coefficient rp; and the nonlinear coefficient ryp), respectively, vs

§. For the calculation of A we take by = 1.0. Both rig and ro; are scaled by their counterparts
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Clw



CHAPTER 3. STEADY WAVE RESULTS 51

WNL width (amplitude=.01) vs.&
10— T v T T T
Y — 2,701
I
a_ I l N 20302 |}
| | - Zo=0.3
¢ ¥ o |
3 ;!
3
4+ y \ .
N \
~ 4 :
~ ”’ \
2 L S~ - -z —— ~ ~. o -
D )] | L 1 ] l—
-2 -15 -1 -05 0 0.5
3
WNL width (amplitude=.01) detail vs.§
3 T AY 1 ! 1} \ T R 1
\
25} \ oo :
) \ / \
\ .
ot AN / \ -
~ \/ \
£ s ~
o1 5 3 S - ~ ~ -
H S~e__ T~
1t — A o
05r 1
0 1 1 A L i L
-2 -15 -1 -05 0 05
§

Figure 3.7: WNL width for waves with amplitude set to | vs £. Lower panel is a detail of the
upper panel.
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coefficient ro;



CHAPTER 3. STEADY WAVE RESULTS 53

found when £ = 0 (see Table 3.1.1 for the values at £ = 0.0).

Zo d Tto ro1

0.1} 0.05 ! -0.055 | -241.0
0.2 { 0.05 | -0.027 | -504.3

0.3 0.05|-0.014 | -738.6

Table 3.3.1 zq, d, rig and rq; for the case of no background current. These values are used to
nondimensionalize the first-order coefficients rip and rg,.

From figure 3.7 we can see that the width of the waves increases as £ grows more negative. For
the case zg = 0.1 this variation is small. For zp = 0.2 we find the wave width more than triples
for the most negative value of £ given. The case zg = 0.3 is even more extreme with the predicted
width appearing to grow unbounded near £ = —1.0 {UP%" = —4.0 in dimensional form). Indeed
from (2.12) and figure 3.8 we can see that ryo = 0 near § = —1.0 (UP®" = —4.0 in dimensional
form) and this gives a singularity in the formula for width. Notice that this means that WNL
predicts waves with opposite polarity for the regimes £ < —1.0 and £ > —1.0 for the case 7 = 0.3.
In the region around £ = —1.0 where r;g is nearly zero the weakly nonlinear theory presented
in this thesis breaks down and must be augmented by adding higher order terms (for example a
quadratic nonlinearity as in the mKdV equation could be added ([22])). We will return to the

reversal of polarity for fully nonlinear ISWs later.

3.1.4 Fully nonlinear results: Bounds of wave amplitude

We now consider fully nonlinear ISWs as calculated by the variational technique discussed in the
previous chapter. We wish to investigate several points. First of all we would like to know what
the upper bound on isopycnal displacement is for various values of £ and zp (i.e. how n, changes).
This means we also need to determine the nature of the upper bound (conjugate flow, shear
instability or wave breaking). Second we would like to investigate the change in the maximum
horizontal velocity, propagation speed, and wave half-width as € changes. For both of these issues

we also investigate the role the geometric shape of the background current plays. Finally we
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Figure 3.9: Bounds on isopycnal displacements as functions of £ for linear background currents.
All three cases of =y are shown

would like to investigate the actual vertical profiles of isopycnal displacement, horizontal velocity
and Richardson number at the center of the wave (i.e. the wave crest). The horizontal profiles of
the wave induced velocity at the surface will also be discussed.

We begin by showing, in figure 3.9, the upper bounds on isopycnal displacement as it varies
with £ for the linear background velocity profile (3.9). All three values of zg used are shown. In
this figure, as in all future figures involving the upper bound on isopycnal displacement, we follow
the convention that triangles denote upper bound by shear instability, diamonds indicate upper

bound by conjugate flow, and squares indicate upper bound by wave breaking. From figure 3.9 we
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can note that the zp = 0.1 case has the largest computable waves when £ is positive and slightly
negative, For positive values of £ the three cases for differing zo behave in a similar manner.
All three curves of n, vs £ are bounds by shear instability and increase with increasing £. The
maximum value of £ used for each of the three values of 3 is determined by the formation of a
critical layer. Since [SWs have a propagation speed that grows with amplitude, and is bounded
below by the linear long-wave speed, this value of £ is larger than that for WNL. In other words for
a certain range of £ values we will only be able to compute ISWs larger than a certain amplitude.
Examples of this phenomenon will be presented below.

For negative values of £ the zg = 0.3 case is bounded above by the conjugate flow amplitude.
The zp = 0.2 is bounded above by the conjugate flow amplitude when £ < —0.5 and is otherwise
bounded above by shear instability. In general it can be said that the zg = 0.2 and 8.3 curves
behave in a similar manner while the zo = 0.1 curve behaves quite differently. This is due to the
fact that only the zg = 0.1 case exhibits wave breaking and hence does not have a conjugate flow.
The amplitude of the conjugate flow that bounds the zo0 = 0.2 and 0.3 cases when & < 0 decreases
as £ becornes more negative. For the zo = 0.3 case the conjugate flow amplitude becomes negative,
and hence ISWs reverse polarity (become waves of depression in this case). The point at which the
reversal of polarity occurs corresponds to the point at which rig changes sign. This means that
reversal of polarity is successfully predicted by WNL. The possible values of £ are bounded below
by the point at which advection by the background current causes the wave propagation speed
to become negative. and hence a critical layer to form. {n practice we found that the variational
algorithm failed to converge, du to shear instability, before a critical layer formed. Finally notice
that for zo = 0.1 and £ < 0 the curve is rather more concave up than the corresponding curves
for the zg = 0.2 and 0.3 cases. Again this can be attributed to the qualitatively different nature
of the upper bound on the wave amplitude.

Next we consider the three cases in detail on their own. In figure 3.10 we show results for
the zp = 0.3 case. The reversal of polarity is now clearly visible, as is the region {(small in this
case) where there is a minimum amplitude for waves that can be calculated due to critical layer

formation. Also included in the figure are actual values for the conjugate low amplitude for
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Figure 3.10: Bounds on isopycnal displacements as functions of € for linear background currents.

0= 0.3

Isepycnal displacment bounds vs. shear - hnear case z,=0.2

0.45 T T ™~ T T
7 shear limited o
QO conjuagte flow hmited
[oXC 2 o O cntical layer limited g
® conjugate low breaks
* conjugale flow amplitude
0351 p
03p .
casr -
=
02 ;
o.1st K 4
[
[
0.t ] .
]
i
Qosk 4 p
[
i
'
) : N : " :
-2 -1.5 ~1 -0.5 [\] 0.5 t
13

Figure 3.11: Bounds on isopycnal displacements as functions of £ for linear background currents.

20=0.2



CHAPTER 3. STEADY WAVE RESULTS 57
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Figure 3.12: Bounds on isopycnal displacements as functions of € for linear background currents.
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cases in which shear instability prevents the calculation of ISWs right up to the conjugate flow
amplitude. In practical terms, the shear instability exhibits itself in the variational algorithm’s
failure to converge.

Figure 3.11 (for zo = 0.2) is similar in most respects to figure 3.10. The two key points of
difference being the larger region where a minimum wave amplitude due to critical layer formation
exists and the fact that no reversal of polarity occurs. Instead it was found that for very negative
values of £ the computed conjugate flow was breaking. However the conjugate flow amplitude for

the smallest non-breaking case was about 0.01.

Figure 3.12 shows the zo = 0.1 case. Again we see a clear region where a minimum wave

amplitude due to critical layer formation exists. We can also note that much more negative values
of £ yield non-breaking waves for this case compared to zp = 0.2 or 0.3. This is due to the larger
values of ¢ for the zp = 0.1 stratification. No non-breaking conjugate flows were found for any

values of £.

Next we turn to the issue of the geometric shape of the background current. At the outset of
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the discussion it should be pointed out that there is no possibility of being exhaustive (something
we can strive for with linear background currents). We can merely seek to gain an idea of
how background currents that are geometrically more complex than linear currents change the
results. Toward this end we consider three shear layer currents of the form (3.11) for the z6 = 0.1
stratification. Two are centered at the center of the pyenocline (z; = 0.1) and have thicknesses
given by d; = 0.1 and 0.2. The other is centered well away from the pycnocline (at z; = 0.8) and
has a thickness given by d; = 0.1. The currents are chosen to allow us to make some statements
about the importance of shear in, and away from, the pycnocline.

In figure 3.13 we show the isopycnal displacement bounds versus § for the linear current and
the three shear layer currents. The most immediately obvious difference is between the shear layer
centered well away from the pycnociine and all the other cases. The shear layer centered away
from the pycnocline is bounded for all £ by shear instability and my is only weakly dependent on &.
Furthermore, the range of values for £ is bounded above and below by points where the variational
algorithm fails to converge (as opposed to critical layer formation}. The shear layers centered at
the center of the pycnocline are qualitatively similar to the linear case. Namely, positive values
of £ have an upper bound due to shear instability, while negative values of £ are bounded above
by wave breaking. For all the curves the breaking amplitude becomes smaller as £ grows more
negative. Note however that both shear layer cases centered at z; = 0.1 have a range of £ values
bounded by points where the variational algorithm fails to converge. The d; = 0.2 case has a
smaller range of possible £ values. A partial explanation for this is that for a fixed value of £
the d; = 0.2 case will have double the UP®" of the d; = 0.1 case. In other respects however, the
d; = 0.2 case is closer to the linear case when compared to the d; = 0.1 case (i.e. thicker shear
layers behave more like linear currents).

In figures 3.14, 3.15, 3.16 we show the n, versus & curves for the three shear layer profiles in

detail.
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Figure 3.14: Bounds on isopycnal displacements as functions of £ for zp = 0.1 . Shear layer current
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Figure 3.15: Bounds on isopycnal displacements as functions of € for zo = 0.1 . Shear layer current
;3 =0.1d; =0.2.
3] j



CHAPTER 3. STEADY WAVE RESULTS 61

2,=0.1 Isopycnal displacment bounds vs. shear - shear layer ﬁ-o.a dlno,l

T

0.3t

T T T T T T

03

029

<0281

027F

0.26}

-

025 L
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3.1.5 Fully nonlinear results: changes with wave amplitude

Next we'd like to get some perspective on what happens to the waves for a given background
current as the wave amplitude (maximum isopycnal displacement, nmar) changes. The number
of possible figures that can be shown can be quite overwhelming. For this reason we will focus on
three quantities, namely the maximum horizontal velocity (henceforth referred to as uma:), the
wave propagation speed (c) and the wave half-width. The first two are chosen to emphasize the
difference between cases with and without wave breaking (recall that when wave breaking occurs
u = ¢ somewhere in the water column). The depth averaged background current will, in general,
modify both ¢ and um,: by advecting the entire wave. To account for this problem (and because
we expect the background current in the pycnocline to be more important than the background
current outside of it) we plot ¢ = U(2g) and umaz — U(20). This, of course, will not affect whether
wave breaking occurs, or shift its location. The curves will be referred to as the umq: and ¢ versus

Nmaz CUTVeES.

The point of showing how the wave half-width changes with wave amplitude, fmq:, is obvious.
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Figure 3.17: Maximum horizontal velocity and wave propagation speed as functions of the maxi-
mum isopycnal displacement. 2o = 0.1, linear current § = 0.4515, 0, —0.4515 ,—-0.93

Recall. however, that there is no unique way to define the half-wave width. We choose to do so
in the following manner: first find the height at which the isopycnal displacement is maximum,
second consider the density through this point as a function of z, third find the half-width of this
function. Other possible choices include using the wave induced surface or bottom current. Both
would give results qualitatively similar to those found below. Since the zo = 0.3 and zp = 0.2
cases were found to be qualitatively similar we show plots only for the zo = 0.1 and z¢9 = 0.2 cases.

In figure 3.17 we show the um,: and ¢ versus nmaz curves for linear background current for
four different values of £. For non-breaking waves umqr < ¢, with the difference decreasing with
increasing nmar. It can be seen from the figure that for the two negative values of & the umq.
and ¢ curves cross indicating wave breaking. Note that strictly speaking we should stop the
curves at the exact point where they cross and wave breaking sets in. We choose to continue the
curves slightly past breaking to draw attention to the fact that the curves cross (and to hint at
the fact that the variational algorithm may be used to discuss waves past breaking, as is done

in the next chapter). For £ > 0 we find that the curves do not cross, indicating, in this case,
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Figure 3.18: \Wave half-width as a function of the maximum isopycnal displacement. z = 0.1,
linear current § = 0.4515, 0, —0.4515 ,—0.93

an upper bound due to shear instability. Note that for rightward propagating waves, in general,
waves of elevation have the largest positive wave-induced currents near the bottom and the largest
negative wave-induced currents near the surface. Furthermore the positive wave-induced currents
tend to have a larger magnitude than the negative wave-induced currents. In practice this means
that for non-negative background currents it is possible to have umgs, occur outside the wave (i.e.
due to the background current). This is exactly what happens for smaller waves (i.e. the umqaz
curve has a flat section and a corner) for £ = 0.4515. Also note that the flat part of the umar
curve nearly intersects the ¢ curve. The point where this occurs is the point at which the ISWs
reach their minimum amplitude due to critical layer formation. The variational algorithm breaks
down before this point is reached. For this reason we are never able to calculate the minimum
amplitude exactly (though through carefully repeating the computations with different values of
the available potential energy we can get rather close). To get the minimum amplitude we use
the standard third order spline interpolation-extrapolation algorithm in the Matlab package.

In figure 3.18 we show the half-width versus maximum isopycnal displacement curves for linear
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Figure 3.19: Maximum horizontal velocity and wave propagation speed as functions of the maxi-
mum isopycnal displacement. z9 = 0.2, linear current £ = 0.4515. 0. —0.4515 .—0.93

background currents with the same four values of £ as in figure 3.17. It can be seen rom figure 3.18
that in general the wave half-width is rather large for small waves, then decreases rapidly until a
minimum is reached. The minimum is followed by a gradual increase. The more negative values of
€ yield larger wave half-widths. Also note that since there is a lower bound on the wave amplitude
for the £ = 0.4515 case no region of half-width decrease appears on the graph.

The above results can be compared and contrasted with the corresponding results for the
2o = 0.2 case found in figures 3.19 and 3.20, for the umqr and ¢ versus nmgar curves, and the
half-width versus ng,, curves, respectively. From figure 3.20 we can note that the zp = 0.2 case
has waves that are a great deal wider for all values of £ when compared with the zp = 0.1 case.
For the negative values of £ where the maximum isopycnal displacement is bounded above by
the conjugate flow amplitude this is very easy to understand: As waves near the conjugate flow
amplitude increasing A can no longer be accomplished by increasing wave amplitude, hence the
waves begin to broaden, eventually becoming flat in the middle (see the article by Lamb and Wan

(37] for more details). From figure 3.19 we can see that since no wave breaking occurs for the
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Figure 3.20: Wave half-width as a function of the maximum isopycnal displacement. z = 0.2,
linear current £ = 0.4515. 0, -0.4515 ,—0.93

20 = 0.2 case, the um,: curves remain below the c curves for all values of £. Also notice that for
€ = 0.4515 umar occurs outside the wave for all but the largest waves (i.e. nearly the entire Umqa:
Versus Nmgar curve is flat).

Next we return to the effect of shear layer currents versus the effect of linear currents. We
choose £ = £0.22575. This value of £ has no minimum wave amplitude for any of the cases
considered and hence allows a comparison over the full range of wave amplitudes. As before we
consider linear background currents as well as three different shear layer profiles: two centered at
the center of the pycnocline (i.e. z; = 0.1 and 0.2 for the cases 3o = 0.1 and 0.2, respectively)
and one centered well away from the pycnocline (i.e. z; = 0.8). One of the shear layers centered
at the pycnocline is chosen to be twice as broad as the other (i.e. dj = 0.1 and 0.2). The shear
layer outside of the pycnocline is chosen to have the same width as the narrower of the two shear
layers centered at the center of the pycnocline {i.e. d; = 0.1).

In figures 3.21 and 3.23 we show the ume- and c versus 7, curves for the various background

currents with £ = —0.22575 and 0.22575, respectively. The corresponding curves for half-width
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Figure 3.21: Maximum horizontal velocity and wave propagation speed as functions of the maxi-
mum isopycnal displacement. zo = 0.1, linear and shear layer currents £ = +0.22575
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Figure 3.22: Wave half-width as a function of the maximum isopycnal displacement. z = 0.1,
linear and shear layer currents § = —0.22575
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Figure 3.23: Maximum horizontal velocity and wave propagation speed as functions of the maxi-
mum isopycnal displacement. zg = 0.1, linear and shear layer currents § = 0.22575
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Figure 3.25: Maximum horizontal velocity and wave propagation speed as functions of the maxi-
mum isopycnal displacement. :p = 0.2, linear and shear layer currents £ = —0.22575
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Figure 3.26: Wave half-width as a function of the maximum isopycnal displacement. ¢ = 0.2,
linear and shear layer currents £ = —0.22575
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can be found in figures 3.22 and 3.24. From figure 3.21 we can see that only the linear, and
shear layer with (zj,d;) = (0.1,0.2) cases lead to wave breaking. In fact for the shear layer with
z; = 0.1, d; = 0.2 case, wave breaking occurs very close to the shear instability limit and some
care had to be taken to actually compute waves past breaking. From all four graphs it appears
that ISWs computed using the z, = 0.8 background current are very close to the waves that result
when there is no background current. In fact there appear to be only two differences between
the no background current and :; = 0.8, d; = 0.1 cases. First. as evidenced by figure 3.13, the
maximum wave amplitude computable changes slightly as £ varies for the z; = 0.8, d; = 0.1
case. Second, for the shear layer with z; = 0.8, d; = 0.1 case, when £ becomes large enough in
magnitude the variational method stops being able to compute ISWs at all.

For the £ = 0.22575 cases figure 3.23 shows that all shear layer cases have a maximum wave
amplitude smaller than the linear current case. From the same figure we also see that the region
where unq. lies outside the wave occurs only for the linear background current, and z; = 0.1.
d; = 0.2 cases. Since we fix £ (as opposed to UP*") the amplitude of the background currents for
the linear and z; = 0.1, d; = 0.2 cases is larger than for the corresponding z; = 0.1, d; = 0.1 case,
and hence the above result is not unexpected.

The corresponding figures for the (z;,d;) = (0.8,0.1) and (zj,d;) = (0.1,0.2) cases have been
produced. They confirmed the qualitative comments made about these cases in the text, but were
not deemed by the author to be sufficiently different from the above to merit their inclusion in
the text.

To ensure that the above results are not special to the zp = 0.1 case we show a similar
comparison for the zo = 0.2 case. In figures 3.25 and 3.27 we show the u,,. and ¢ curves for no
background current, linear background current and shear layer background current with z; = 0.2,
d; = 0.1, all with § = —-0.22575 and 0.22575, respectively. The corresponding curves for half-width
can be found in figures 3.26 and 3.28.

From figure 3.25 we see that for £ < 0 all three cases are qualitatively very similar, with the
no background current case exhibiting the largest, and the linear background current case the

smallest maximum wave amplitudes. Figure 3.26 shows that the half-width versus nm,: curve for
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the shear layer case lies below and above the curves for the linear, and no background currents,
respectively.

Figures 3.27 and 3.28 give the corresponding results for £ positive. In particular we can see
again that the shear layer background current (which is nonzero only on a subset of the total
water column) has less of an effect on wave properties than the linear current for a corresponding

value of £.

3.1.6 Fully nonlinear resuits: fixed wave amplitude, £ varies

So far we have allowed 1,4, to vary. However it would be useful to get some idea of how wave
properties change when nn,4; is fixed. Since the variational algorithm does not fix fmq: a priori
it can be rather time consuming to find ISWs with ., fixed for various stratifications and
background currents. We have chosen to present one set of results for g = 0.1, 0.2 and 0.3. We
take nmq- = 0.1 and consider linear background currents for various values of €.

In general, it is not possible to find a wave with n,,. = 0.1 for all values of £ for which we can
compute waves. There are four possible reasons for this. For cases like the zp = 0.1 case where
wave breaking is possible it may be that the largest non-breaking wave has ny,,, < 0.1. On the
other hand, for cases where conjugate flows exist it may be that the conjugate flow amplitude (the
amplitude of the largest conjugate flow for cases in which more than one conjugate flow exists) is
smaller than 0.1. For large. positive values of £ we have found that it is possible to have a lower
bound on fma- (to avoid critical layer formation). To find waves with n;,,: = 0.1 the lower bound
must be smaller than 0.1. Finally it is possible that shear instability may prevent the variational
algorithm from computing a wave with fm.: = 0.1 (though this never occurred in the present
calculations).

In figure 3.29 we show the umqr and c versus £ curves for fmqar = 0.1. We again account for
the advection of the pycnocline by the depth averaged background current by subtracting U{zp)
from both umg, and c in the figure. We can see that the propagation speed increases linearly
with & for all three cases. All three upy,. curves show a kink where un,- moves from inside the

wave {induced by the wave) to outside the wave (induced by the background current). We can
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also note that at approximately & = —0.85 waves with nm.- = 0.1 break for the zg = 0.1 case. in
agrrement with figure 3.13. This is clear from the figure since the un,,, and c curves cross.

In figure 3.30 we show the half-width versus £ curves for 7m.- = 0.1. We can see that for all
three values of zg the waves become narrower as £ increases. The large increases in half-width for
the zp = 0.2 and 0.3 cases can again be understood in terms of conjugate flows (see above). The
wave half-width becomes unbounded at the value of £ at which the conjugate flow amplitude is
0.1. Finally we can see from the figure that as zg increases, the maximum value of £ for which it

was possible to compute a wave with 19,,,, = 0.1 also increases.

3.1.7 Fully nonlinear results: sample profiles

We now turn to the examination of actual vertical profiles of 5, v and Ri (the Richardson number)
versus :. These profiles are plotted at the crest of the wave (r = 0 by symmetry). We also examine
the horizontal profile of the wave-induced. horizontal velocity at the surface versus r.

We begin with the zp = 0.1 case. For each background current considered we show four
waves ranging over the computable, non-breaking amplitudes. The largest, non-breaking wave
computable is always plotted with a solid line. To compare the various cases of background
current we keep the scale for the various quantities plotted the same for all background currents.
This means that for certain cases the whole domain will not be used.

In figures 3.31, 3.32 we compare isopycnal displacements for various values of £, for a linear
background current and a shear layer background current with (z;,d;} = (0.1,0.1), respectively.
We can see that the linear background current has a much greater effect on n than the shear
layer current. In particular, more negative values of £ lead to lower values of ny (this will also
imply smaller wave-induced velocities, as discussed below). We can also see that as £ becomes
more negative the n versus : profiles become more concave up in the upper portion of the water
column. Also note that the location of the maximum isopycnal displacement moves upward as
waves grow in amplitude. This resuit is independent of the background current chosen.

In figures 3.33, 3.34 we compare the wave-induced horizontal current at the surface. We find

the results for the maximum magnitude of the wave-induced horizontal current agree with the
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Figure 3.31: n versus z. (z0,d) = (0.1,0.05), U(z) linear, various values of §
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Wave-induced u vs. x various waves, 7=0.1, U(2) linear
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Ri vs. Z vanous waves, 1°=0.1 , Ul2) linear
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Ri vs. Z various waves, 2,=0.1, shear layer U(z), zl=ﬂ.¥ d.]=0.1
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U VS. 2 various waves, 7D=0.1. U(2) linear
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U VS. Z various waves, zD=0.1, shear layer, zl:O.I dl=04
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Figure 3.38: u versus z. (zo,d) = (0.1,0.05), U(z) shear layer with (zj.d;) = (0.1,0.1), various
values of §
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above results for maximum isopycnal displacement. The figures also show that for the £ values
shown, the increase in wave half-width is mainly due to a change in the shape of the u(x, H)-U(H)
versus r curve, as opposed to an increase in the width of the overall disturbance. Such an increase
occurs for the z5 = 0.2 case discussed below.

Despite of some reservations on the part of the author as to its utility for non-parallel flows (see
for example the article {43]), figures 3.35, 3.36 show profiles of the Richardson number { Ri) versus
z at the crest of the wave. It can be seen that the Richardson number decreases to very near zero
in the unstratified portions of the water column for all cases. Furthermore, in the weakly stratified
near bottom region the Richardson number dips to below 0.1 for linear background currents with
£ < 0. In the stratified region the Richardson number stays above 0.25, reaching 0.25 for the
linear background current case with £ = 0.22575 which has 5, given by shear instability.

In figures 3.37. 3.38 we show the vertical profiles of the total horizontal velocity u versus = at
the wave crest. In general, the largest positive currents are found near or at the bottom (where
the background current is weak), while the most negative currents are found either at the top
of the advected pycnocline (when £ > 0.0 for the linear currents and for both shear layer cases
shown) or at the surface (when £ < 0.0 for the linear background currents). It can thus be seen
that the linear background current affects the top and bottom portions of the water column in a
different way. In the bottom quarter of the water column the weak background current mainly
modifies the geometric shape of the wave induced horizontal velocity versus = profile (of course for
the no background current case the total and wave induced currents are the same). For example
the £ = 0.22575, linear background current case has the maximum current well above the bottom,
unlike the other linear cases. In the upper portion of the water column the strong background
current is the dominant portion of u, with the wave-induced current modilying the geometric
shape. As in the cases discussed above, the shear layer background currents have a much smaller
effect when compared to their linear counterparts.

A different perspective on the effects of linear versus shear layer currents is provided by fig-
ures 3.39, 3.40, 3.41, 3.42. In these figures the largest non-breaking waves computable for linear

and shear layer background currents with £ £0.22575 are shown on the same set of axes (again we
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n vs. 2 largest waves, zuzo.t, §=-0.22575
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Figure 3.39: 5 versus z, largest non-breaking wave. zg = 0.1, upper panel - § = 0.22575, lower
panel - £ = —0.22575. solid - linear background current, dashed - shear layer current :; = 0.1,
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uf1}-U(1} vs. x largest waves - zo=0.1 - §=0.-22575
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Figure 3.40: wave induced horizontal current at the surface versus z, largest non-breaking wave.
20 = 0.1, upper panel - £ = 0.22575, lower panel - £ = —0.22575. solid - linear background current,
dashed - shear layer current z; = 0.1, d; = 0.1, dot-dashed - no current
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Rivs. z largest waves - 3=0.1- £=-0.22575
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Figure 3.41: Richardson number versus z, largest non-breaking wave. zo = 0.1, upper panel -
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current z; = 0.1, d; = 0.1, dot-dashed - no current



CHAPTER 3. STEADY WAVE RESULTS 86

uvs. zlargest waves, 2=0.1, =0.-22575
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show the vertical profiles at the wave crest of the isopycnal displacement, the Richardson number,
and the total horizontal velocity along with the horizontal profile of the wave-induced horizontal
velocity at the surface). Recall that the linear and shear layer background currents have matching
shear (£) and hence do not have the same value of U'P4",

Next we consider the zp = 0.2 case. Again we plot four waves ranging from small to large.
For cases bounded above by shear instability. the largest wave possible to compute is plotied
using solid lines. For cases in which the upper bound on isopycnal displacement is given by the
conjugate flow amplitude a similar choice cannot be made. We chose to plot vertical profiles and
horizontal profiles based on the broadest wave computed. Another valid choice would have been
to plot vertical profiles based on the conjugate flow, and horizontal profiles based on an ISW
computed. We have taken some care to confirm that this alternate choice would not alter the
results presented.

In figure 3.43 we compare isopycnal displacements for a linear background current with four
values of £ (£ = —0.4515, —0.22575, 0.0 and 0.22575). We find that n, decreases by about one
third between the £ = 0.22575 and £ = —0.4515 case. As in the z¢ = 0.1 case. we find that
the location of the maximum isopycnal displacement moves upward in the water column as wave
amplitude increases. Also. while the negative values of & yield waves that are slightly concave up
in the upper part of the water column, the effect is not nearly as pronounced as in the zp = 0.1
case.

In figure 3.44 we plot the wave-induced horizontal velocity at the surface for the cases discussed
above. We can see that when £ < 0 the width of the wave increases markedly as the waves get
bigger. Again, this is a manifestation of the decrease in conjugate flow amplitude as £ becomes
more negative.

In figure 3.45 we plot the vertical Richardson number profiles. As in the zp = 0.1 case we see
that the Richardson number drops to near zero in the unstratified portions of the water column
{this time there is an unstratified near-bottom region). Also, as in the zp = 0.1 case there is
a tongue of reduced Richardson number in the (upward advected) stratified region, but in the

20 = 0.2 case the Richardson numbers in this region do not dip below 0.3.
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Wave-induced u at the surface vs. x various waves, 5:0.2. U(z) linear
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Ri vs. Z various waves, zozoz, U(z2) linear
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U VS. Z Various waves, z°=0.2. U(z) linear
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In figure 3.46 we plot the vertical profiles of the total horizontal velocity. Perhaps the most
obvious effect is the strong role played by the background current (as seen by comparing the top
and bottom panels). Also, note that for £ > 0 the maximum horizontal velocity occurs well above
the bottom (near = = 0.3 for the £ = 0.22575 case).

In figure 3.47 we show the vertical profiles of 5 and the Richardson number at the wave crest,
for the largest non-breaking wave computed for various values of £, and all three values of zq.
Again we can see that as £ becomes more negative the wave amplitude decreases quite profoundly.
We can also note that the wave amplitude decreases as zy increases. Note also that in the bottomn
portion of the water column the larger zq is. the slower the increase in 1 with :.

While all cases have 1, approach zero as £ decreases, only the zg = 0.3 exhibits polarity
reversal. The wave of depression shown for the zp = 0.3 case has a markedly different vertical
structure from the waves of elevation.

For the Richardson number versus = curves, due to the scale chosen, not all of the waves are
clearly visible. It can be readily seen that only the ;9 = 0.1 case has the Richardson number dip
to near (in fact slightly below in one case) 0.25 in the stratified portion of the water column.

Before concluding this section, we make a couple of comments about the effect of the geometric
shape of the background current: We have found that shear layers centered at the center of the
pycnocline have a much greater etfect on the wave properties than a shear layer centered well away
from the pycnocline. Furthermore, thicker shear layers yield resuits closer to the case of a linear
background current. We found that changing the geometric shape of the background current did
not change the qualitative nature of the half-width versus fmqsr curves. However, changing the
geometric shape of the background current does influence whether nm,: is bounded above by wave
breaking, shear instability, or the conjugate flow amplitude. In particular strong shears in the
interior of the water column can lead to shear instability. As there are many possible geometric
configurations for the background current the present work merely scratches the surface of what
is possible. It thus seems sensible to the author, to proceed by using oceanic measurements on a
case by case basis in the future (with the results for linear currents providing a guide to what is

expected to occur).
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Figure 3.47: n and Richardson number versus : for largest, non-breaking wave computable, zo =
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3.1.8 A summary of findings

To summarize, then, it was found that the presence of a background current affects wave properties
ranging from the amplitude of the maximum, non-breaking wave computable using the variational
algorithm to the shape of the n versus : profile at the crest of the wave. The effects of a weak
background current were consistent for stratifications with and without a conjugate flow. However,
for stratifications for which a conjugate flow can be found. the presence of a background current
can strongly affect the conjugate flow amplitude when the background currents are strong. This
means that cases with background currents with £ < 0 can exhibit very wide waves at what would
be moderate amplitudes if no background current was present. Conversely, cases with background
currents with £ > 0 may exhibit waves that displace the center of the pycnocline well past the
mid-depth before reaching the conjugate flow amplitude. Often the amplitude of waves with & > 0
is bounded above by shear instability of the variational algorithm rather than the conjugate flow
amplitude.

For stratifications in which wave breaking is possible the presence of a background current
with £ < 0 can greatly reduce the breaking amplitude. Conversely a background current with
£ > 0 can lead to shear instability of the variational algorithm before a breaking wave is reached.

While it is impossible to be exhaustive on the question, an attempt was made to investigate the
role of the geometric shape of the background current. It was found that shear iayers centered at
the center of the pycnocline had much more pronounced effects on the wave properties compared
to shear layers centered outside the pycnocline. It was also found that broader shear layers with
the same maximum vorticity, behaved more like linear background currents than narrower shear
layers. Waves with regions of strong shear in the interior of the water column tended to have n
bounded by shear instability.

In conclusion, the author believes that the results clearly show that the presence of a back-
ground current can have a much more pronounced effect on ISWs than merely to change the wave
half-width and propagation speed. This is even more apparent when time dependent phenomena
are considered, as will be done (briefly} in the following section.

Finally. at the risk of belabouring an obvious point, we make a comment on symmetry of waves
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of depression and elevation under the Boussinesq approximation and in the presence of currents.
Recall that the Boussinesq approximation implies that with no background current ISWs with
the same amplitude of maximum isopycnal displacement for the case (20, d) = (0.2.0.05) and the
case (20, d) = (0.8, 0.05) will be antisymmetric in the sense that the former are waves of elevation,
and the later waves of depression. What is more, the wave induced currents at the bottom for
the former. match those at the surface for the latter. and vice versa. The propagation speed is

identical. However if we now add a non-constant background current to both stratifications, say,
U(z) ==

To recover the symmetry, say we add the above current to the case (zg.d) = (0.2,0.05). then we

must add the current.

to the (zg.d) = (0.8.0.05) case (recall all quantities are dimensionless).
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3.2 Miscellaneous Consequences

The resuits for steady waves of the previous section have various consequences for the time evo-
lution of both ISWs and more general disturbances. In this section we briefly outline some time
dependent phenomena and discuss how they are related to the results of the previous section.
We discuss solutions of the Euler equations only, using the numerical model of Lamb ([31]). All
simulations are discussed in dimenstonal variables.

We begin by examining the phenomenon of polarity reversal. Recall that in the previous
section we found that with zp = 30.0 (30 = 0.3 in dimensionless form) and a large enough linear
background current oriented against the direction of wave propagation. a stratification of the type
given by (3.7), which would produce waves of elevation with no background current yielded waves
of depression. To test this prediction we consider an initial disturbance given by (3.6) and impose
a background current given by

/::.-:—.
U(s) ﬁl)H

The computational grid is regular in both the horizontal and vertical, with a grid spacing of 2
m and | m in the two directions, respectively. The initial disturbance breaks up into two wave
trains. For the train propagating rightward the background current is oriented with the direction
of propagation, and hence will not change wave polarity. For the wave train propagating leftward,
however, the background current is oriented against the direction of propagation and the results
of the previous section predict ISWs with an opposite polarity. To demonstrate this consider the
series of contour plots of the density fields in figure 3.48. After approximately 700s the rightward
propagating train of ISWs leaves the computational domain and hence the final panel shows only
the leftward propagating disturbance which takes the form of a steadily broadening undular bore.
Recall that according to WNL for the KdV equation {consistent with inverse scattering theory)
an undular bore evolves from a disturbance that has the opposite polarity to solitary waves.

In figure 3.49 we show the contours of the horizontal velocity. At 600 s we can see the
leftward propagating bore in an early stage of development as well as the rank-ordered, rightward

propagating train of ISWs. Notice that the background current is strong enough that the wave
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Density Contours Reversal of Polarity Example
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Figure 3.48: Density contours for sample run with background current strong enough to influence
wave polarity.
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induced currents due to the rightward propagating waves do not induce negative {total) horizontal
currents. In contrast the leftward propagating bore does induce (total) negative currents (in the
near bottom region where the background current is weak).

Finally. in figure 3.50 we plot vertical profiles of horizontal velocity (left panel} and horizontai
wave-induced velocity (right panel) at three different locations. Two of the profiles shown are
at the crest of the leading rightward propagating ISW and the trough of the leading wave of
the leftward propagating undular bore. The crest and trough are identified by using the local
maxima/minima of the horizontal velocity at the surface. The third vertical profile is taken near
the maximum of the rise which leads the undular bore. As such there is no unique way to choose
its location and hence this profile is meant only for a qualitative comparison with the other two.
These profiles are included to point out the profound difference in vertical structure between the
ISW propagating with the current and the undular bore propagating against it.

In conclusion, then, the predictions of reversal of polarity based on the resuits of the variational
method discussed in the previous section are borne out in time dependent calculations.

We wish to examine whether some of the ISWs that fission from an initial condition exhibit
a critical layer. Towards this end we consider a 2000 by 100m domain with a grid resolution of 1
by Im. To keep the computational domain as small as possible (and hence the resolution as high
as possible) we take

U(z) =3.0- 304

We also move the center of the initial step-like disturbance to £ = —500.0. The initialization is
otherwise unchanged from subsection 3.1.1 ((z0, d} = (0.3, 0.05) and the initial density is given by
equations 3.5 and 3.6). This choice of grid and initialization keeps the waves of interest in the
computational domain for a long enough time for the [SWs to fission from the initial disturbance.
In figure 3.51 we show the density contours at ¢ = 0, 200 and 2000s. At 200s we can see that the
waves furthest to the right in the contour plots are broader then those furthest to the left. Note
that both trains of ISWs shown propagate to the right. It is the slower moving wave train that
we are interested in, and by 2000s it is clear that only the leading two waves of this wave train

remain in the computational domain.
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u vs z at 1=600s wave-induced u vs z at t=600s
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Figure 3.50: Horizontal velocity (left panel) and wave-induced horizontal velocity (right panel)
vs. z at { = 600s. Crest of elevation at front of undular bore - solid, crest of first wave in the
undular bore - dashed, crest of leading ISW - dot-dashed
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100 I L) 1 b ]

1 T v ]

-800 -600 -400 -200 0 200 400 600 800
100

-800 ~-600 -400 -200 0 200 400 600 800

~-800  -600  -400  -200 0 200 400 600 800
x (m)

Figure 3.51: Density contours ¢ = 0, 200 and 2000s
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Figure 3.52: Background horizontal velocity profile and approximate propagation speeds of the
two leading rightward propagating ISWs
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Figure 3.53: Horizontal velocity (left panel) and horizontal wave-induced velocity (right panel)
profiles. leading wave - solid, 2nd wave - dashed, ¢t = 2000s.
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The approximate propagation speeds of the two waves of interest are calculated in the following
manner. We find the location of local maxima of the horizontal, wave-induced velocity at the
surface at successive output times. The difference hetween the successive locations divided by
the time interval between output times then gives an estimate for the wave propagation speed.
Due to the discretization of the space variable the values calculated using the above described
method will vary slightly with time. For this reason we calculate approximate propagation speeds
for output times separated by 100s starting at 1000s and ending at 2000s. We then average the
resulting values to get final estimates. Using this technique for the present grid spacing the results
shown in figure 3.52 are accurate to two decimal places. more than enough for our purposes. From
figure 3.52 we see that both the leading and second waves have a propagation speed between the
minimum and maximum value of the background current. Since both WNL and the fully nonlinear

algorithm utilize terms of the form

where G is not identically zero, neither can successfully compute waves when U{z) = ¢ for some
z. Yet the time evolution proceeds much as predicted by KdV theory. What is more, neither the
contours of horizontal velocity shown in figure 3.51 nor the vertical profiles of horizontal velocity
shown in figure 3.53 show any appreciable differences from waves calculated using the variational
algorithm. Thus we can conclude that the fully nonlinear, time-dependent simulations yield ISWs
for a broader range of background current maxima and minima than the variational algorithm.
The variational algorithm in turn yields ISWs for a broader range of background current maxima
and minima than WNL (as was discussed in the previous section).

Finally we can ask whether we can construct a simple situation in which an initial condition
like the one used above does not yield any ISWs. Towards this end consider a density profile of
the type 3.7 with zg = 20.0 (z¢ = 0.2 in dimensionless form) d = 5.0 (d = 0.05 in dimensionless
form), a step-like initial condition centered at z = 0.0 (details as in the above examples) and a

horizontal background velocity given by

U(z) =4.0-8.5

:’In
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This current is chosen so that a rightward propagating undular bore (hence no ISWs) fissions
from the initial disturbance. We are interested in whether an ISW wave train fissions to the left
of z = 0. The computational domain is 3000m wide and 100m deep with a grid spacing of 1.5 by
Im.

In figure 3.54 we plot the density contours of the disturbance at times ranging between 0 and
7000s. From this figure we see that instead of a rank ordered train of ISWs, a pair of waves fissions
from the initial condition. This pair of waves appear to move with the same speed (and hence
maintain the same distance from one another). At ¢t = 1000s the leading, leftmost wave appears
to be slightly smaller in amplitude. Subsequently the pair decays, with the second, or rightmost
wave decaying more quickly. This behaviour is reminiscent of the breather solution of the mKdV
equation (see [53] for example). In the breather, however, the two disturbances pulsate without
losing energy.

To get a more precise idea of what is happening we focus on the wave-induced horizontal
velocity at the surface.

In figure 3.55 we plot the wave-induced horizontal velocity at the surface for a sequence of
times at 200 s intervals, starting at 600 s and ending with 2000 s. From this sequence it is
clear that the initially larger leftmost disturbance decays until about 1200s. At the same time
the rightmost disturbance grows slightly. After this, the rightmost disturbance decays, while the
leftmost disturbance remains virtually unchanged, decaying slightly. The total disturbance decays
with each cycle. This decay is clearly shown in figure 3.56 where the wave-induced horizontal
velocity at the surface is plotted at 1000 s intervals ranging from ¢t = 1000 s to ¢ = 7000 s.
The evolution of the amplitudes of the two waves at eatly times is seen much more clearly in
figure 3.57 where we plot the values of u(H) at the two local maximuma as functions of time, as
well as the ratio of u(H,t) to u(H, 1400) for the leftmost maximum. Furthermore, it is clear that
the total disturbance decays with each cycle. This decay is clearly shown in figure 3.56 where the
wave-induced horizontal velocity at the surface is plotted for a sequence of times ranging from
1000s to 7000s, separated by 1000s. From this figure we can also see that as the breather-like

wave decreases in amplitude its leftward propagation speed decreases and it is advected to the
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Wave-induced u(H) vs. time at the two maxima showing relative changes
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right by the depth averaged background current.

Thus, using the results of the previous section, we were able to construct a rather simple
situation in which an initial disturbance did not vield a train of ISWs in either direction. At the
time this section is being written there is no theoretical explanation available for the appearance of
the breather-like wave. This concludes our brief examination of some time dependent consequences

of the steady wave results found in the previous section.
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3.3 Conclusions and Literature

In this chapter we have explored in some detail, the behaviour of large, fully nonlinear ISWs. We
began by showing that, for a stratification taken from field measurements. WNL cannot success-
fully be used to represent the spatial structure of large ISWs {as calculated by the variational
technique presented in the previous chapter).

The major issue addressed in this chapter is the effect of background currents on fully nonlinear
ISW properties. In general we found that the presence of a background current can greatly alter
the wave properties (such as the wave half-width and the shape of the vertical profile of n at £ = 0,
the wave crest). Perhaps more importantly, as the amplitude of the background current varies,
so does 7y, the maximum isopycnal displacement of the largest non-breaking wave computable.
Furthermore the type of upper bound may change. i.e. for stratifications with density change
right to the ocean bottom. waves of elevation may be bhounded above by wave-breaking or by
shear instability, while for stratifications with a mixed layer adjacent to the ocean bottom waves
of elevation may be bounded above by the conjugate flow amplitude or by shear instability. Note
however that in no circumstances did the presence of a background current change an upper
bound due to conjugate flow to ane due to wave-breaking. This is due to the thin pycnoclines
used in the present study. A stratification with a thicker pycnocline (such as (zo,d) = (0.3,0.15)
can have the upper bound change from one due to conjugate tlow to one due to breaking, as £
becomes more negative (with a linear background current).

An attempt was also made to investigate what role the geometric shape of the background
current plays. While it is not possible to be exhaustive, we have found that shear layer background
currents centered at the center of the pycnocline had a much larger effect on the wave properties
compared to shear layer background currents centered in the unstratified region well away from
the pycnocline. Also, as can be expected, thicker shear layers led to effects more closely matching
those of linear currents. Finally, background currents with strong shears in the interior of the
water column had upper bounds on the wave amplitude due to shear instability of the variational
algorithm.

Overall the time dependent simulations performed showed that the predictions made based on
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steady ISWs computed with the variational algorithm were borne out in the simulations. The fuily
nonlinear waves, in turn, agreed with the qualitative predictions of WNL. Thus the variational
algorithm (as well as the conjugate flow calculator, when applicable) provide a new set of tools for
understanding 1SWs and similar phenomena in the ocean. Notably, we also constructed a simple
case for which the break up of an initial disturbance led to no ISWs in cither direction. This
construction used results of the variational algorithm for fully nonlinear waves that WNL simply
could not provide.

In terms of the literature the present study is another chapter in a series of papers by Lamb and
co-workers. Lamb and Yan ([38]) compared the evolution of an undular bore governed by the full
Euler equations and various versions of WNL. They found that higher order asymptotics provided
a better fit to the actual evolution, but that even these showed discrepancies in the WNL. Lamb
and Wan ({37}]) then addressed the correspondence between broad ISWs with a flat center and
conjugate flows. In a subsequent study Lamb ([36]) discussed the simpler case of conjugate flows
in a three layer fluid. This case allows a more analytically based approach. In tangential. but
relevant work, Lamb discussed Lagrangian particle transport by ISWs ({32]) using both WNL and
fully nonlinear waves. The generation of ISWs (an issue completely ignored in the present work)
by tidal flow over the continental shelf was discussed in ([31}). Finally, in an extensive. but as
of yet unpublished manuscript Lamb ([34]) showed how and when the two formulations of WNL
succeed and fail to descirbe large, fully nonlinear ISWs for different classes of standard background
density profiles at leading, first and second order (without a background current). The present
work is an attempt to outline the need for, and utility of, the variational algorithm for ISW
calculation when it comes to undertsanding ISWs in the ocean. As such it is a fairly new piece
of work with little in the way of precursors. The study of Brown and Christie ([12]) is the only
instance in the literature (to the author’s knowledge) where fully nonlinear ISWs are calculated for
continuous stratifications with an eye towards oceanic or atmospheric applications (the paper of
Turkington et al. ([64]) which formulates the variational method extended in the previous chapter
computes [SWs only to show that the algorithm works). The paper {[12]), however, attempts to

put together a great many issues (ISWs, ISW broadening, ISWs past breaking, etc.) ending up, in



CHAPTER 3. STEADY WAVE RESULTS 113

the author’s opinion. with a somewhat unclear picture. In particular the conjugate flow concept
is not utilized. and hence wave broadening is not clearly explained. ISW-like waves with trapped
cores merit detailed attention and will be discussed in the following chapter.

Older work is generally based on WNL, starting with the papers of Benney ([7]) and Benjamin
{[4). [5]). The former provides the basis for the WNL used in this work and the latter provides
an alternative approach based on variational techniques. The extensions of WNL are many and
include extensions to second order ([20]), discussion of critical layers ([44]), discussion of shear
([62]), and incorporating variable currents and topography ([69]). The survey article by Grimshaw
([22]) is a good compendium of these ideas as well as providing a full set of references. The same
survey article also discusses the many attempts to compare experiment and WNL.

Finally we should note that the work of Turkington et al. on large. fully nonlinear ISWs is
preceded by the work of Tung et al. ([63]) on fully nonlinear, mode-2 ISWs. The latter uses
a different numerical approach, and in fact treats mode-1 waves only, recovering mode-2 waves
from a symmetry condition. The focus on waves with closed streamlines makes this article more
relevant to the material of the next chapter.

To conclude then, the present work addresses many of the questions that have appeared and
re-appeared in the literature in the past 30 years. In particular, we show that the qualitative
predictions of WNL are often borne out by large, fully nonlinear ISWs. However, the present
results also show that large, fully nonlinear objects are more complex than the tidy solitons of
WNL (see for example ([33])). The rich phenomenology of ISWs in the ocean will be explored

further in the next two chapters.



Chapter 4

ISW-like Objects With Trapped

Cores

To motivate the study of waves with trapped cores consider the situation of an initial ISW com-
puted using the fully nonlinear solitary wave calculator, propagating leftward in a fluid with no
current. The fluid is forced by a steady, user imposed body force that sets up a steady, linear
background current. The forcing occurs over the first 1000 s of the simulation and the final
background current has the form,

U(Z) = 4.5-,7.

For the simulation shown below the forcing is simply switched off after 1000 s. Tests with a rapid
damping that ensured the forcing was C™ revealed no change from the simulation shown below.
We consider the adjustment of the ISW for two tanh-type densities {i.e. given by equation 3.7),
one with zg = 10.0 m and the other with zo = 20.0 m. The computational domain is §000.0 m
long and 100.0 m deep and has a resolution of 6 by 1 meters.

In figures 4.1 and 4.2 we plot the density contours for the zo = 10.0 m and 29 = 20.0 m cases
respectively. It can be readily seen that the 2o = 20.0 m case undergoes a great deal more wave

shedding behind the initial ISW during its adjustment to the imposed current. Indeed the initial
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Figure 4.3: Horizontal Velocity contours for 29 = 10.0 m stratification positive values in solid,
negative values dashed, and the region where u < c shaded.

ISW appears to fission into a smaller amplitude. wider leading ISW followed by a small amplitude
shelf ending in an undular bore. After a longer time (not shown) the undular bore evolves into a
train of smaller ISWs and is left behind the leading wave. In sharp contrast the zo = 10.0 m case
appears to consist of a single [SW-like object which, while smaller and broader than the original
ISW sheds only small dispersive waves and non-coherent noise ( visible in the 2700 s panel).
From figures 4.3 and 4.4 we can see that only the zp = 10.0 m case undergoes wave breaking
{teoeat < € since the waves are propagating to the left). Here c is calculated approximately from
the time-dependent results by finding the location of the maximum surface current at successive
times and dividing by the time interval. The actual wave overturning begins in the first 1000 s
of the simulation, while the forcing is turned on. Some sample density contours illustrating the
overturning after the forcing has been turned off are given in figure 4.5. From figures 4.1 and 4.5
we can see that the results of the wave adjustment process in the zo = 10.0 m case consist of a
large ISW-like wave with a dynamically active core that is trapped near the bottom and some
small-scale shedding behind the wave that does not propagate with the leading ISW-like object.

For the z5 = 20.0 m case the wave shedding during the wave adjustment process is much larger,
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Figure 4.4: Horizontal Velocity contours for zp = 20.0 m stratification positive values in solid,
negative values dashed.

and propagates leftward much faster than in the zg = 10.0 m case. This is clear from figures 4.1
and 4.2, or figures 4.3 and 4.4.

These results are, of course, consistent with the previous chapter where it was found that only
the zp = 10.0 m case had maximum wave amplitude bounded above by wave breaking. The body
forcing to set-up a background current used in the time-stepping simulations merely provides one
illustration of an ISW adjustment process. A more common one from an oceanographic point of
view is that of shoaling as discussed in ([35]). The apparently coherent response of the initial
ISW in the zo = 10.0 m case provides the motivation of this chapter. An interesting question to
answer is whether the dynamically active core settles to an eventual steady or quasi-steady state,
and if it does, what sort of velocity and density profiles result. We should note that overturning
similar to the above has been thoroughly discussed in the context of ISW (waves of depression)
shoaling onto the continental shelf by Lamb {[35]).

There are several reasons to be interested in waves with trapped cores. First and foremost it
appears that time-dependent simulations of ISWs under various types of forcing can lead to ISWs

with trapped cores. From a physical point of view, an active core must lead to enhanced rates of
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mixing (of passively advected nutrients or sediment. for example), and even a stagnant core could
lead to enhanced vertical transport of sediment into the water column due to passive advection of
material up and over the core. Moreover, particles trapped in the core may be transported long
distances by the wave before they are expelled (if they are expelled at all). ISW interaction with
the bottom boundary layer has been hypothesized as a mechanism for increased resuspension of
sediments measured beneath [SWs ({8]), but one can imagine a trapped, active core leading to
significant sediment resuspension independently of any viscous effects. From a theoretical point
of view the question of whether a final steady (or more reasonably quasi-steady) state emerges
from a given initial wave is interesting in its own right. Derzho and Grimshaw ({13]) have argued
on the basis of a finite amplitude asymptotic theory for a fluid with a nearly linear stratification
(nearly constant V) that the small, but finite-sized core should be stagnant in a frame moving
with the wave. Recent experiments by Grue et al. ([23]) agree with this prediction up to a point.
though the details of the flow in the core observed in the experiments are likely dependent on the
method used to generate the wave. ISW-like objects with a trapped core were discussed by Brown
and Christie ([12] within the framework of a broader paper on steady ISWs. However their work
exhibits at least one major short-coming (discussed in the presentation of the core calculation
method) and as such is not of direct relevance to the present study.

This chapter is organized in the following manner. First a technique for computing [SW-like
objects with a trapped core is introduced. [n particular, we show that the variational solitary
wave calculator can provide an initial condition that evolves to a quasi-steady ISW-like object
with a trapped core. This is followed by a detailed discussion of the evolution process and eventual
quasi-steady outcome for a particular initial condition (that is chosen to be representative of the
general behaviour). Next the variation of the adjustment process and its quasi-steady outcome
are discussed for various parameters. The most detailed attention is paid to varying the initial
core size. The effect of how the core is initialized on the quasi-steady state is subsequently
discussed. The effect of background currents and the possibility of waves with trapped cores for
a background density profile that allows a conjugate flow (i.e. has a mixed layer near the top and

bottom boundary) are discussed in the final section of conclusions and directions for future study.
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The final section also discusses how the resuits of this chapter relate to the relevant literature.
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4.1 Method

Given a suitable stratification and background current. the variational method discussed in Chap-
ter 2 can be used to compute ISWs with closed streamlines. These waves are past breaking (i.e.
Usoras > ¢ somewhere}. The region of closed streamlines corresponds to locations in which the
mathematical algorithm sets the density in the wave to be equal to values found below the ocean
bottom, or since the ambient density is a strictly decreasing function of =, to values larger than
the value of the ambient density at the bottom (see figure 4.6). While this presents no problem
for the algorithm, it is clearly unphysical and the region of closed streamlines must be modified
to yield physically valid objects. In their study Brown and Christie {[12]) did not modify the
density within the core and for this reason the details of their results do not appear relevant
to the present work. We have chosen to replace the unphysical values of density in the closed
streamline region with §(0), the value of the density at the bottom of the ocean, far upstream of
the wave. The initial velocities in the core region can be modified in many ways. We consider two
possibilities, either the velocities are left as given by the ISW calculator or they are set according
to (u. w) = (c, 0) in agreement with ([15]). The latter approach introduces velocity discontinuities
at the core boundary. The initial wave is not a solution of the steady Euler’s equations, but we
expect that by using it as the initial condition in a time dependent simulation we will get an
ISW-like object with a trapped core after some time. We find that the object which eventually
emerges does not depend on how the velocities in the initial core were defined. The variational
method allows us to have some control over the size of the core and to set up an initial state
quickly and inexpensively. The domain used for the simulations is rectangular (flat bottom). In
order to minimize the spatial domain needed for the computations the evolution is performed in
a moving frame of reference, We would like the noise and smaller waves shed behind the ISW-
like object during adjustment to leave the computational domain without disturbing the main
object of interest. For this reason the initial ISW is chosen to propagate leftward (¢ < 0). For
consistency, we present the velocity fields in a frame moving with the initial (as given by the ISW

calculator) propagation speed, unless otherwise specified.
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Figure 4.6: Density contours a) as given by ISW calculator b) after modification.
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4.2 A Sample Core

In this section we consider in detail the evolution and final state of one particular test run.
The background density used is the theoretical fit to the measurements of Bogucki, Dickey and
Redekopp (BDR) off the Calilornia coast, and is given by (3.1). For this section we assume no
background current is present. The water is 60 m deep and the computational domain is 1500
m long. For the run presented we take 1000 points regularly spaced in the horizontal (horizontal
resolution 1.5 m) and 100 points quadratically spaced in the vertical so that 10 points lie in the
bottom 1 m. 27 points lie in the bottom 5 m, and 57 points lie in the bottom 20 m (the stratified
region-in the undisturbed state). Upon comparison with runs using a refined grid (double the
resolution in the horizontal, and with 150 points in the vertical). it was found that the 1000x100
run resolves the ISW-like object well and runs in a reasonable amount of time using computing
resources presently available to the author. The qualitative results presented in this section are
not altered by grid refinement, though quantitative resuits in the active core would be (of course
3-D effects. completely ignored in the present computations, would be most important in this
region as well}. For the chosen density the largest nonbreaking ISW possible to calculate using
the ISW calculator has A = 0.042. For the sample of core evolution we consider a wave computed
by the ISW calculator with 4 = 0.06.

In figure 4.7 we show the initial density and velocity fields. A clock-wise rotating vortex
centered at the line of symmetry and about 7 m above the bottom can be seen to dominate the
core. The size of the initial core is indicated by plotting the contour of density at the first grid-
point above the bottom (z; = 0.03 m). This is essentially the value of the density throughout
the core. We choose the value at the first grid point instead of right at the bottom in order to
minimize numerical noise in the contour plotting routine. The region in which p = 5(z,) is about
{3 m high and has a haif-width of approximately 20 m at the bottom. We also plot the smaller
regions enclosed by the contours u = 0.02|cj and u = c.

In figure 4.8 we show the early development of the core as it tilts away from the direction of
propagation (1000 s). begins a complex mixing (2000 s} and loses a tail of dense fluid in a thin

layer trapped near the bottom (3000 s). Note that at 1000 s the velocities in the region of the
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Figure 4.7: Initial density contours and velocity field in a frame moving with the wave speed for a
leftward propagating wave. Density contours - shaded, contour of p(zy) where zy is the first grid
point above the bottom - dotted. contour of u = 0.02|c| - dashed. contour of u = ¢ - solid

core overhang are oriented leftward and downward. The contour u = ¢ (not shown) now touches
the bottom at r = 27 m. By 8000 s the core has decreased slightly in size.

In figure 4.9 we show the density contours and velocity fields for 8000, 16000, 24000 and 32000
s. The initial vortex remains reasonably coherent at 8000 s and strengthens at 16000 and 24000 s
(this is difficult to see in the figure). At 32000 s the vortex has decreased in height and a complex
motion is visible at the back of the wave. This complex motion drifts rightward and out of the
computational domain.

In figure 4.10 we consider density and velocity fields at later times in the core adjustment
process. The figure shows that Lhe core region stabilizes to a quasi-steady state dominated by
an asymmetric region where the horizontal velocity is very low (in the {rame moving with the
initial wave propagation speed). We choose to outline the region in which the horizontal velocity
is less than two percent of the original propagation speed. This asymmetric region reaches down

to the bottom near the front of the core then lifts up off the bottom, forming an approximately
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triangular region with a base of 40 m and a height of 5 m. It can be seen from figure 4.10 that
while the shape of this region is not steady, it does not change much with time. It is for this
reason that we call the final state of the core quasi-steady.

In figure 4.11 we reconsider the velocity field at 72000 s in detail. The region of low velocities
can now be clearly seen. Furthermore we can note that the region u < 0 is lifted off the bottom,
in contrast to figure 4.7 where it is widest at the bottom. The area of the region where u < 0 is
reduced by approximately one third from the initial to the final state. We should note that the
magnitude of the propagation speed of the final wave is lower than magnitude of the propagation
speed given by the ISW calculator. For this example, however, this reduction is less than 1%
of the original propagation speed value. It is unlikely that this reduction could be detected in
oceanic measurements.

To further examine the difference between the initial and final state we consider the contours
of horizontal velocity for both states.

From figure 4.12 we can see that the contours for u = 0.02 and u = 0.03 are largely unaffected
by the adjustment process save for a small region at the back of the wave extending to about 1.5 m
above the bottom. The region of negative velocities in the initial core is replaced in the final quasi-
steady state by a region of small positive velocities trapped near the bottom and an approximately
triangular region of slightly negative velocities lying between about 2 and 7 m above the bottom,
as discussed above. Since the computations was performed in a frame moving with the original
wave propagation speed, the figure also shows the slight reduction of wave propagation speed
during adjustment that results in the wave's small rightward drift.

The vertical velocities have a rather different spatial distribution and for this reason it was
found that the visualisation technique used above to compare the horizontal velocities was too
cluttered. Instead, shaded contours of the density along with contours of vertical velocity (solid
line - positive, dashed line - negative) for the initial and final states are presented in two separate
panels in figure 4.13.

From the figure we see that, in the final state, the core consists of an approximately triangular

region marked by regions of weak downdrafts and updrafts. The core has a base length of about
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Figure 4.11: Density contours and velocity field at 72000 s. Contour of region where u = 0.0 solid,
u = 0.02|c| dashed.
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Figure 4.12: Horizontal velocity contours at 0 s (solid) and 72000 s (dashed).

40 m along the bottom and a height of about 7 m. The vertical velocities in the core region are

very weak and hence the flow is nearly horizontal. Outside the core region the contours appear

largely unchanged from the initial to the final state. In other words the final ISW-like object

consists of a weakly active core with a velocity profile very different from that of a nonbreaking

ISW and wave body with a velocity profile virtually indistinguishable from a nonbreaking ISW.

A very clear illustration of this splitting is furnished by examining the vertical profile down the

middle of the wave of the horizontal velocity (figure 4.14). In the majority of the water column

the only difference from the initial to the final state is a small decrease in magnitude (due to the

shedding of material behind the wave during the adjustment phase). In the near-bottom, or core

region, the final profile is blunted with the most negative velocity occuring just below 6 m above

the bottom. For the initial state the largest negative velocity occurs right at the bottom.
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"4.3 Comparison of Quasi-steady States

Having established the qualitative features of the adjustment process we now turn to the important
task of comparing the resulting trapped cores as various physical parameters are changed. In
particular we wish to examine the effect of initial core size and the choice of velocity initialization

in the initial core.

4.3.1 Comparison by Initial Core Size

Recal!l that the variational algorithm used to compute the initial candidate wave does not specify
maximum isopycnal displacement. Instead the algorithm fixes the available potential energy, A.
(see equations 2.43, 2.44, and 2.45). This means that while we have some control over the size of
the initial core, this control is not exact.

We consider eight test cases using the ambient density profile (3.1) used in the previous section.
The values of 4 used range from A = 0.05 to A = 0.12 incremented by 0.01. As in the previous
scction all waves propagate from right to left (hence ¢ is negative). The relevant properties of the

waves computed by the variational ISW calculator are shown in table 4.3.1.

A | lel (ms™1) | tmas (m) | Jumin] (ms~)
0.05 0.19477 16.37 0.20634
0.06 0.19778 17.72 0.22300
0.07 0.20034 18.92 0.23791
0.08 0.20012 20.01 0.25144
0.09 0.20450 21.01 0.26390
0.10 0.20637 21.94 0.27546
0.11 0.20780 22.81 0.28628
0.12 0.20921 23.62 0.29645

Table 4.3.1 Available potential energy, propagation speed, nmar and largest wave induced
current for ISWs past breaking as computed by the ISW calculator. The breaking amplitude is

m = 15.6 m.
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Figure 4.15: Initial wave states. Density contours - shaded, contour of 5(z1) - dotted, contour of
u = 0.02|c| - dashed, contour of u = 0 - solid. (a) A=0.05, (b) A=0.06, (c) A=0.07, (d) A=0.08,
(e) A=0.09, (f) A=0.10, (g) A=0.11, (h) A=0.12
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Figure 4.16: Final wave states, four smallest waves. Density contours - shaded. contour of p(z1)
- dotted. contour of u = 0.02|c| - dashed, contour of u = 0 - solid.
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Figure 4.17: Final wave states, four largest waves. Density contours - shaded, contour of p(z1) -
dotted, contour of u = 0.02|c| - dashed, contour of u = 0 - solid.
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We begin by comparing the initial and final states for the various waves. In figure 4.15 we show
the inital conditions (after adjustment) for all eight waves. We can see that the initial core height
down the center and half-width at the bottom grow from about 8.5 m and 15 m, respectively, for
A = 0.05, to about 20.5 m and 45 m, respectively, for A4 = 0.12. We can also see that the region
where u < 0 (in a frame moving with the initial propagation speed) is about half the core height.
As for the case discussed in the last section, all quasi-steady waves have a lower propagation speed
than the initial waves (as given by the ISW calculator) used to compute them. We will discuss
this point in more detail below, however we should point out that the reduction is less than 4%
for all waves considered. We will consider all contours of velocity to be in a frame moving with
the initial wave propagation speed.

In figures 4.16 and 4.17 we show the final, quasi-steady states of the cores for the four smallest
and four largest waves, respectively. The general features of all the final states are in qualitative
agreement with the example discussed at length in the previous section. Namely the final core is
a region of nearly stagnant fluid in a frame moving with the original propagation speed. All plots
are shown at 72,000 s. From figure 4.16 we can see that for all four waves shown, the region of
small horizontal velocities (we show contours of u = 0 and u = 0.02|c{) occupies an approximately
triangular region centered at least 4 m above the bottom. The three smallest initial cores also have
a region of reduced horizontal velocities that reaches right to the bottom at the front of the core.
Starting with 4 = 0.08 and for all four cases shown in figure 4.17 the region of reduced horizontal
velocities does not reach the bottom. For the four larger waves, the final core is characterized
by an approximately 5 m tail, 100 m wide region of neatly stagnant fluid centered at about 7 m
above the bottom.

An increase in the size of the initial core leads to an increase in the size of the quasi-steady
core. However, increasing the size of the initial core also leads to a more violent adjustment
process. Thus doubling the size of the initial core will not lead to a doubling of the quasi-steady
core size. An example of the rather violent adjustment for the larger initial cores is given in
figure 4.18 where we show two contour plots of the adjustment phase of the A = 0.12 case. It can

be expected that 3D effects would play a large role in the adjustment phase of the larger initial
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cores.

Another way to look at how the quasi-steady state changes as the initial core size increases is
to look at plots of the horizontal velocity at fixed heights. In figure 4.19 we show horizontal plots
of the wave-induced. horizontal velocity for th_e initial state along with the difference between the
initial and quasi-steady states for four waves (A = 0.05. 0.06, 0.08 and 0.12}. We can see that
all four waves shown experience adjustment at 1 m above the bottom. However, at 5 m above
the bottom only the A = 0.08 and 0.12 cases show significant adjustment, and at 10 m above the
bottom only the largest wave shows significant adjustment. We can also see that larger initial
cores experience larger adjustment. This is consistent with the contour plots 4.16 and 4.17.

The core adjustment process results in a solitary-like wave that has a propagation speed,
maximum isopycnal displacement, and wave-induced horizontal velocity of smaller magnitude.
Strictly speaking we can only speak of an average final propagation speed since we calculate the
final propagation speed from horizontal velocity values at the surface, which are output only every
4000s. It seems reasonable to focus on the wave induced horizontal velocity at the surface since
the final adjusted wave is very close to the initial wave in the near surface region. In contrast,
the near bottom region changes markedly, as discussed above.

In figure 4.20 we show the initial and final values of maximum horizontal velocity at the surface,
propagation speed and maximum isopycnal displacement. The comparisons are done as a function
of A. Since A does not have a clear meaning for the final, adjusted ISW-like object it makes sense
to consider the propagation speed as a function of either the maximum isopycnal displacement
or the maximum wave induced horizontal velocity at the surface. This is done in figure 4.21. It
is clear from this figure that the decreases in all quantities considered are larger for larger initial
cores. Furthermore. it appears that the maximum isopycnal displacement and propagation speed
of the final state have an upper bound (approx. 21.0 m and 0.203, respectively).

[n figure 4.22 we consider the propagation speed as a function of maximum isopycnal displace-
ment for the four largest nonbreaking ISWs as well as ISW-like objects resulting from the eight
initial core regions. [t can be seen that decreases in both the maximum isopycnal displacement

and propagation speed appear to follow a smooth relationship for the four (arguably five) smallest
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Figure 4.18: Density contours during the adjustment phase of the A = 0.12 case
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Figure 4.19: Wave-induced horizontal velocity vs. z at a t = 0 s and fixed heights, (a) 1 m, (c)
5 m, (¢) 10 m along with the difference between initial and quasi-steady wave-induced horizontal
velocities vs. z at fixed heights, (b) 1 m, (d) 5 m, (f) 10 m. Four waves shown, A = 0.05 - dotted,

A = 0.06 - dot-dashed, 4 = 0.08 - dashed, A = 0.12 - solid.
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with trapped cores. Magnitudes plotted.

cores, but that this smooth relationship does not hold for the larger cores.

We now turn to vertical profiles of the horizontal velocity. As in the previous section we
consider profiles taken at the center of the wave where the largest wave induced horizontal currents
occur. In figures 4.23 and 4.24 we compare initial and quasi-steady states for .4 = 0.06, 0.08, 0.10
and 0.12. Figure 4.23 shows the entire water column while figure 4.24 focuses on the near bottom
core region. We can see that while for A = 0.06 the decay of the velocity profile over the top
20.0 m of the water column is nearly negligible, it increases with increasing initial core size (A)
becoming clearly visible for A = 0.10 and 0.12. The profile in the near bottom region is blunted in
the quasi-steady state with the most negative current occurring between 5.0 and 10.0 m above the
bottorn. Figure 4.24 shows some of the details of the core region. In particular, one can note that
the oscillations in the profile appear to grow with increasing initial core size (A). It is nevertheless
interesting that the larger initial core cases, which undergo a more violent adjustment, end up
with essentially unchanged characteristics from the smaller cases.

Finally we examine the vorticity contours in the quasi-steady core region. From figure 4.25 we
can see that for smaller initial cores the core region remains largely free of vorticity while large

vorticity variations form a ring around the core. For larger cores there is more variation in the
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Figure 4.23: Vertical profile of the horizontal velocity at the wave crest: Comparisons of initial
(dashed) and quasi-steady (solid) states. Final propagation speed indicated by solid line.
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(dashed) and quasi-steady (solid) states. Final propagations speed indicated by solid line.
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Figure 4.25: Contours of the vorticity in the core region for A = 0.06, 0.08, 0.10 and 0.12. Positive

values - solid, negative values - dashed.
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vorticity field within the core itsell. However. for 4 = 0.10 we can see that a sizable region free
of vorticity {corresponding to stagnant fluid) is found roughly 5 m above the bottom.

In summary then, as the initial core size () is increased we find that the size of the quasi-
steady, nearly stagnant core increases, initially keeping an asymmetric shape consisting of a main
area of reduced velocities found several meters above the bottomn and a small region of reduced
velocities reaching the bottom at the front of the core. When the initial core size is increased past
a certain point, the region of reduced velocities that reaches right to the bottom disappears and
the entire quasi-steady core is found in a broad (approx. 60.0 m), region lying between 5.0 and
15.0 m above the bottom. The adjustment for the larger initial core values is quite violent and
hence could be significantly modified by 3D effects. Nevertheless. for all cores (values of A) used
the vertical profiles of the horizontal velocity at the crest of the wave. were remarkably similar.

The adjustment process leads to a decrease in propagation speed and maximum isopycnal
displacement for all waves. This change increases in magnitude as the initial core amplitude is
increased. The results for the larger initial cores appear to indicate that the wave amplitude as
defined by the maximum isopycnal displacement cannot be increased arbitrarily. In other words
past a certain point increasing the size of the initial core will lead to a more violent adjustment
during which more material is shed behind the wave, but will not yield a final. quasi-steady wave
with a larger amplitude.

We next turn to the effect of the core initialization

4.3.2 Core Initialization Effects

As mentioned in the Methods section, the manner in which we have chosen to set the velocities
in the initial core is not unique. Recall that the initial core is defined as the set of points at
which the variational algorithm sets the density to be larger than the density at the bottom of
the ocean. To ensure that our initial wave is a physically reasonable object we set the density in
this region to equal the density at the bottom, far upstream of the wave. At this point we must
also make a choice as to what to do about the velocities in this region. The choice made in the

above discussion is to simply keep the velocities as given by the variational [SW calculator (this
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is referred to as the original initialization in the figures and discussion below). Of course we do
not expect the final quasi-steady state of the ISW-like object to necessarily reflect these velocities,
however there seems no a priori reason to modify the velocities. Other choices are passible. For
example we could set the entire core region to be stagnant with respect to the initial wave speed.
This makes some sense as we found that the final quasi-steady state had a nearly stagnant core
region. Furthermore it agrees with the theory of Derzho and Grimshaw ([15]). This initialization
(referred to as the u = ¢ initialization in the figures and discussion below), however, is not perfect
from the point of view of the numerical solver as it introduces discontinuities in the velocity field
at the edge of the core. In practice these discontinuities lead to small scale noise. but no other
profound effects on the resuiting ISW-like abject. The level of noise increases as the initial core
region increases in size.

Setting (u, w) = (c, 0) modifies the velocities in the bottom region. For small cores the change
is small (i.e. the change in u is less than 6% of the maximum wave induced u value for the A = 0.05
case), but increases with the initial core size (the change in u is about 25% of the maximum wave
induced u value for the A = 0.08 case).

In this sub-section we compare and contrast the results of the two above-mentioned initializa-
tions for three values of 4 (A = 0.05, A = 0.06 and A = 0.08). We choose to focus on the smaller
initial cores in order to avoid questions regarding the violent adjustment phase for larger initial
cores.

In figure 4.26 we show the final quasi-steady velocity fields for the three waves for both ini-
tializations. For fixed A the shape of the nearly stagnant region is not greatly changed by a
change of initialization. There is a clear difference for the smaller cores in that there is no region
where u < 0. However, as the negative currents for the original initialization (in the quasi-steady
state) have a small magnitude, the quantitative difference between the two initialization cases is
very small. The fact that a region with 2 < 0 results for the larger initial core corresponding
to A = 0.08 can be explained by noting that the final, quasi-steady region is much smaller than
the initial core and hence for A = 0.08 a rore violent adjustment process can induce negative

velocities in the core region. Recall the adjustment consists of instability at the edge of the core
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Figure 4.26: Quasi-steady state comparison for the two initializations used, density contours
(shaded), bottom density contour (dotted), contour of u = 0.02|c| (dashed), contour of u = 0
(solid). (a) A = 0.05 u = c initialization, (b) A = 0.05 original parametrization, (c) A = 0.06
u = c initialization, (d) A = 0.06 original initialization, (¢) A = 0.08 u = c initialization, (f)
A4 = 0.08 original initialization.
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region, followed by intrusion into the core itself as well as downstream washout of material in the
core. At the risk of being repetitious, we remind the reader that we are talking about negative
velocities in a frame of reference moving with the initial wave propagation speed.

The two initializations lead to different values for the final propagation speed. In particular,
the u = c initialization yields a larger drop in propagation speed from the value given by the
solitary wave solver. More quantitatively if we define the ratio

R, = Coriginal ~ Cfinal

= —orpnal e (4.1)

Coriginal

we find that for the original initialization R. = 0.0038, 0.0076 and 0.0167 and for the u = ¢
initialization R. = 0.0058, 0.0114 and 0.0204 for A = 0.05, 0.06 and 0.08, respectively. Thus
neither the difference in the drop between the two initializations, nor the drop in propagation
speed itself are very large. Note that due to the drop in propagation speed it is the dashed
contours representing 0.02|c| in figure 4.26 that give the nearly stagnant region for the quasi-
steady state.

In figure 4.27 we show the contours of vorticity for the initial and quasi-steady states for the
A = 0.08 case with both the original and the u = c initialization. The u = ¢ initialization leads to
slightly more vorticity in the core interior, but in general the two plots are qualitatively similar.

Finally we consider vertical profiles of the horizontal velocity at the center of the wave (the
wave crest). In figure 4.28 we compare the two initializations. [t can be seen that when examining
the entire water column the results of the two initializations are indistinguishable for A = 0.05
and very nearly identical for both A = 0.06 and 0.08. If we focus on the near bottom or core
region we can see that there are indeed small differences for all values of A. However the major
characteristics noted in the previous subsection (i.e. the blunted profile with a minimum velocity
found some ways above the bottom) are common to both initializations.

The above results suggest that ISW-like objects with a main body very close to a solitary
wave and a smaller (though possibly quite large in physical space} core region of nearly stagnant
fluid are largely independent of the way the velocities in the initial core are initialized. Of course

the above results are not exhaustive. Still there seems little evidence that a different quasi-steady
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Figure 4.27: Contours of the quasi-steady vorticity in the core region for A = 0.08 with the

original initialization (top panel) and the u = c initilization (bottom panel) for the velocities in
the initial core. Positive values - solid, negative values - dashed.
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Figure 4.28: Comparisons of vertical profiles of the horizontal velocity at the wave crest for the
two core initializations as A varies: original (solid), u = ¢ (dashed). Top three panels show entire
water column, bottom three focus on core region.
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state (for example a vortex core} {rom that described above could be achieved.
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4.4 Conclusions and Future Work

In the previous sections we have outlined a method for calculating internal solitary-like waves
with a trapped core and discussed some of the properties of these waves. In particular we have
shown that it is possible to find waves that are quasi-steady. These waves are made up of a main
body that is virtually indistinguishable from a nonbreaking ISW and a nearly stagnant core (in
a frame moving with the wave propagation speed). The waves were computed by first using the
variational solitary wave calculating algorithm to prepare an initial state. The wave calculated
by the variational method must be modified by adjusting the density (and possibly the velocities)
in the closed streamline region. Once modified, the wave is allowed to evolve until a quasi-steady
state is reached. In all cases a quasi-steady state was reached. Two different initializations for
the velocity field in the core were tried. but these did not seem to have much bearing on the final
quasi-steady state. We also ran several test cases with a non-zero, linear background current.
Again we found that, aside from a change in n (as discussed in Chapter 3), the presence of the
background current did not atfect the final quasi-steady outcome, as evidenced by the example in
figure 4.29.

In figure 4.29 we show the initial and quasi-steady contours for two waves with U(z) = 0.1
and one wave with no background current for comparison. The maximum value of the background
current is approximately 69% of the linear longwave speed.

Though the variational aigorithm does not specify the wave amplitude, it does allow us to have
some control of the size of the initial core region. For all cases, the adjustment time needed for
the initial state to reach the final, or quasi-steady state is quite long (50,000 s for a stratification
with a linear long wave speed of 0.14 ms~!). This long adjustment time makes it difficuit to
envision a situation in which quasi-steady cores would be observed in the ocean. During the
adjustment process both the amplitude and ptopagation of the initial wave decrease. For smaller
initial cores it was found that the propagation speed versus maximum isopycnal displacement
curve (after adjustment) for waves with a trapped core can be smoothly joined to the same curve
for nonbreaking ISWs. For larger initial cores this was not possible. This can be attributed to the

fact that the adjustment process is much more violent for larger initial cores. While 3D effects
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Figure 4.29: Initial and quasi-steady states, (a)-(d) with linear background current. Density
contours (shaded), bottom density contour (dotted), contour of u = 0.02|c| (dashed), contour
of u = 0 (solid). (a) (A,U(H)) = (0.05,0.1) initial, (b) as (a) quasi-steady, (c) (A, U(H)) =
{0.06, 0.1) initial, (d) as (c) quasi-steady, (e) (4, U(H)) = (0.07,0.0) initial. (f) as (e) quasi-steady
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would undoubtedly play some part in the adjustment process, it is interesting that even the largest
waves tried eventually reached a quasi-steady state.

All cases shown in this chapter used a stratification for which the wave amplitude, 5,.;, is
bounded above by wave breaking. For stratifications with conjugate flows it is impossible to use
the variational algorithm to calculate waves past breaking. We attempted to produce waves with
trapped cores for such stratifications using first-order WNL (which predicts breaking waves for all
stratifications). Despite considerable effort, it was found that the cores did not remain trapped
and the steady state reached was a nonbreaking ISW (confirmed by the variational algorithm).

The literature on waves with trapped cores is not nearly as extensive as for nonbreaking
ISWs. The numerical study of shoaling ISWs of depression by Lamb ([35]) serves as the main
comparison to the present study. Lamb finds that shoaling waves will not form trapped cores
if a mixed layer is found near the surface (or in other words, for stratifications which admit a
conjugate flow solution). He discusses the evolution of the trapped cores as the waves propagate in
the shallow (on shelf) region. However Lamb does not follow the waves long enough to see whether
quasi-steady cores form. For stratifications with the pycnocline found in the bottom half of the
water column (resulting in waves of elevation) it is perhaps more likely that the water column is
stratified right to the bottom, and hence that shoaling will lead to waves with trapped cores. In
fact for waves of elevation, very small changes in the total depth can lead to wave breaking and the
formation of trapped cores. For example a change in total depth from 60 m to 55 m over 100 m
was found to lead to breaking and core formation for the density profile discussed in this chapter.
Observations of ISWs of elevation on the Pechora shelf by Serebryany and Shapiro ([56]) show
several waves consistent with the properties described in this chapter. While the waves observed
did not likely have quasi-steady cores (as they were likely formed during shoaling and had not had
time to settle to the quasi-steady state), it would be interesting to compare the measurements
with the present results in more detail.

The experiments of Grue et al. ([2]]) were mentioned in the introductory section of this
chapter. These experiments follow the formation and propagation of an ISW that is formed by

the collapse of a rectangular region (kept apart from the main tank) with a density profile that is
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different from the profile found in the main portion of the experimental wave tank. The technique
used to create the waves leads to a very active core region. The tank length is sufficiently large so
that an ISW with a trapped core is observed before the wave reaches the end of the tank. Given
the long adjustment time it is unlikely that the ISWs studied by Grue et al. have quasi-steady
cores. Grue et al. find that the main wave body is well described by nonbreaking. theoretical
predictions (their theory can be thought of as a special case of the general formulation used to
construct the variational ISW calculating algorithm). However, their theory cannot describe the
core region. Given the results in this chapter, it is difficult to imagine a simple theory for the
motions in the core. Even for nearly linear stratifications, as Derzho and Grimshaw’s theory
breaks down for large cores since the core is no longer adjacent to the bottom and the fluid in the
core is not stagnant.

In summary, the experiments of Grue et al. are an excellent complement to the results of this
chapter. Given that the two studies attempt to answer somewhat different questions (Grue et al.
make no mention of a quasi-steady state and there is some question of how dependent the details
of their waves are on the generation technique) the agreement between the two sets of resuits
speaks to the robust nature of the phenomena being discussed. Numerical simulations that mimic
the experimental set-up of Grue et al. provide an obvious avenue for future work.

We should briefly mention that experimental and numerical work on trapped cores for mode
2 waves is much more extensive (i.e. [14), [63], [58], [60]). However the case of mode-2 waves is
complicated by the fact that it is possible to have small, mode-1, oscillatory tails that propagate
with the wave and drain energy from it (hence the wave is not solitary, see (2]). Preliminary
investigations by the author indicate that mode-2 waves with trapped cores are possible for density
profiles which have conjugate flow solutions. Space and time considerations relegate further
investigation to the future.

We should note that the numerical simulations of both Terez and Knio ([60]) and Tung et al.
([63]) actually involve mode-1 waves (mode-2 waves are then plotted using a line of symmetry),
and as such are somewhat relevant to the present work. The study of Tung et al. provides an

alternative numerical technique (same governing equation) for calculating ISWs as well as some
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preliminary discussion of waves with closed streamlines (along the lines, and with many of the
shortcomings of the previously discussed ([12])). In the study of Terez and Knio, the waves are
generated by collapsing an initially mixed region in a main domain that is a stably stratified,
two-layer Auid. The resulting waves appear qualitatively similar to both the present work and
the experiments of Grue et al., though the authors do not provide quantitative discussion of the
velocity fields, concentrating instead on Lagrangian particle tracking for short times and wave-
wave collisions.

In summary then the present work shows that it is possible to calculate quasi-steady waves
with a trapped core in a systematic manner. For small initial cores, these waves are in reasonably
good agreement with the theoretical prediction of Derzho and Grimshaw ([15]) that the trapped
core should be stagnant in a frame moving with the wave. [t is found that the waves are only
approximately stagnant and that their propagation speed is over-estimated by the variational
ISW calculation algorithm (the drop in propagation speed increases with initial core size). For
larger initial cores the quasi-steady core is found well above the ocean bottom, something not
predicted by ([15]). In nature it is possible that waves of elevation with trapped cores can be
formed as an initially nonbreaking ISW shoals onto bottom topography of relatively small size
(compared, for example with that used in [35]). We should note, however, that the interaction of
an ISW with realistic topography would likely be more complex than to simply form a trapped
core. Preliminary simulations performed by the author indicate that even for long (100 m}, small
amplitude (2 m) sinusoidal topography the near bottom region of the wave is modified a great

deal. This issue requires careful exploration in the future.



Chapter 5

ISW-BL Interaction

The previous two chapters considered waves governed by inviscid governing equations. This is
often a good approximation in the ocean, particularly if there is no background current, as the
hottom boundary layer (BL) will be thin and the loss of energy {from the ISW to viscous dissipation
small. However there is some question whether the interaction between the wave and the bottom
boundary layer could lead to qualitatively different dynamics (from a slowly changing solitary-like
wave). The measurements of Bogucki et al. (or BDR) ([8]) off the California coast indicate that
the passage of an internal wave packet of elevation leads to an increase in the amount of sediment
in the water column well above the bottom (8 m above the bottom in water 60.0 m deep). These
measurements imply that the interaction of the wave-induced currents with the bottom boundary
layer leads to sediment resuspension. In ({8]) the authors hypothesize, based on WNL, that the
resuspension sets in due to shear instability in the boundary layer, with the shear instability being
crucially dependent on the presence of a (non-constant) background current. We calculated fully
nonlinear ISWs for the situation outlined in ([8]) and found that for all nonbreaking ISWs the
Richardson number (Ri) did not dip below 0.3. While Ri > 0.25 does not guarantee stability
for non-parallel flows, our results appear to invalidate the predictions in ([8]). The problem
of resuspension was revisited by Bogucki and Redekopp in the short paper ({10]). This paper

presented direct numerical simulations of the bottom layer in a two-layer fluid (however the top

160
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boundary was held fixed), and argued that (WNL) waves larger than a certain amplitude exhibited
a global instability. While the implications of the given results were clear. the same could not be
said for the numerical methodology and hence ([10]) served more as an impetus for further work
than as a valid explanation of the sediment resuspension process measured by BDR. A particular
concern for the author was the reliance in ([10]} on WNL for the velocity profiles (though even this
was not done in a clear manner). Further observations of resuspension events due to ISW passage
were presented by Bogucki and Redekopp in the proceedings of the Fifth International Symposium
on Stratified Flows ([11]). These observations indicated that resuspension of sediment by ISWs
in coastal seas occurs quite often and underlined further the need for a theoretical understanding
of the resuspension process.

As the present work aims to clarify the work of Bogucki and Redekopp it makes sense to
comment on their paper ([10]) more extensively. The authors argue that below a critical amplitude
the flow in the BL beneath the WNL wave is given by a reasonably symmetric, stationary eddy.
Above the critical amplitude (which is based on the magnitude of the WNL horizontal velocity
perturbation) spontaneous vortex shedding occurs. The authors interpret the vortex shedding as
a global instability of the initial separation bubble. To the present author, this seems rather odd,
as Bogucki and Redekopp never discuss whether a fully nonilinear ISW is allowed to evolve from
their initial conditions at all.

Indeed the work of Bogucki and Redekopp is perhaps best understood in terms of previous
work on separation bubbles in the boundary layer ([51}, (52]). In ([51]) separation bubbles induced
by suction at the upper boundary of a two-dimensional channel and their instability were studied
by direct numerical simulation. The authors found that below a certain critical suction rate the
separation bubbles induced by the adverse pressure gradient were steady. Above this critical
suction rate vortex shedding resulted. The authors found, somewhat surprisingly, that vortex
shedding began to occur when 11% of the incoming fluid was removed from the computational
domain by suction for the entire range of Reynolds numbers tried. The remainder of the paper
provided a comparison of numerical and experimental results on boundary layer separation. As

such it is not relevant to the present work. The results of ([51]) were repeated for a more complex
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Figure 5.1: Density and horizontal velocity contours (in aframe fixed with the ground) for ISW
with well developed bottom BL. (U,,v) = (0.0, 10~1)
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flow at the upper boundary in ([52]), again to provide a comparison with experiment. Later in
this chapter we will present work attempting to reproduce some of the resulits of ([51], [52]).

Returning to the paper of Bogucki and Redekopp. it seems reasonable to adopt the viewpoint
that an instability may occur in the BL beneath large. fully nonlinear ISWs. However, the details
of the instability may not be accurately described by the WNL based simulations of Bogucki and
Redekopp.

There are two methods available to us for computing solitary-like waves in the presence of no
slip boundary conditions on the acean bottom. First we could simply allow an initial disturbance
in the density field to break up into a rank ordered wave train of solitary-like waves (though the
resulting wave amplitudes would be largely uncontrolled). Second we could use an inviscid ISW as
an initial condition with the hope that the adjustment to the no slip bottom boundary conditions
proceeds in a physically reasonable manner. There is no guarantee a priori that this will be the
case, However, several computations for different sized ISWs {as well as different density profiles)
have demonstrated quite conclusively that the initial wave remains largely unchanged. save for
the formation of a bottom boundary layer whose thickness depends on the choice of eddy viscosity
value. For these runs we compute a leftward propagating wave, switch to a frame moving with
the wave, and then begin time-stepping with no slip boundary conditions applied at the moving
bottom (this setup means smaller waves will propagate to the right and out of the computationai
domain). In figure 5.1 we show an example of a leftward propagating ISW with a well developed
BL. The details of the grid used will be given in the following section. From the figure it is clear
that the wave remains essentially solitary with a narrow BL attached to the bottom. An area
of weak horizontal velocities directed opposite to the direction of propagation is seen to trail the
wave in the bottom BL.

The same result was found for waves of various size and in the presence of a background
current provided that U/{0) = 0, or in other words the velocity of the background current at the
bottom was zero. When the velocity of the background current at the bottom is not zero (in
the inviscid case) a boundary layer forms upstream of the wave as soon as the no slip bottom

boundary condition is applied. This means vorticity is produced upstream of the wave. This
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Denaity contours tar initial candition

Figure 5.2: Density contours of initial condition for ISW fissioning with bottom BL. (U,.v} =
(0.5.1075)

vorticity is subsequently advected into {(and interacts with) the main wave body. We will show
that this interaction can lead to large instabilities within the bottom boundary layer.

We will look at the the simplest possible background currents. namely non-zero constants (we
will label these U,}. These can be thought of as a model of the barotropic internal tide. To
motivate the remainder of the chapter consider the evolution of an initial disturbance shown in
figure 5.2. The length scales in the figure have been non-dimensionalized by the total depth. The
computation was carried out in a domain 10 units wide and 1 unit deep using a grid of 3000 by 150
points. All lengths were nondimensionalized by the water column height of 60 m. The horizontal
spacing was regular giving a resolution of 0.0033 (0.2 m). The vertical spacing was quadratic with
20 points in the botton 0.0167 (1 m) and 80 points in the bottom 0.0833 (5 m), giving excellent
resolution of the boundary layer region as well as the remainder of the water column. The initial
background current is fixed to be a constant, approximately one half of the propagation speed
of the expected, leading ISW. We take the eddy viscosity to be 105 m? s~!, and the Prandtl
number to be unity. This simulation has the highest resolution of any presented in this thesis.

The Reynolds number (Re) based on the estimated value of the maximum magnitude of the
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Leading two waves of wave tra:in at 1= 18 .99

Figure 5.3: Density contours and velocity field for leading two [SWs . Instability and vortex
shedding are well developed. (U,,v) = (0.5, 1075)

wave-induced horizontal velocity due to the leading wave, the total depth and the eddy viscosity
is approximately Re = 7.5 x 10°.

The initial disturbance will break up into two rank ordered trains of ISWs, with the rightward
propagating train being swept out of the computational domain. In figure 5.3 we show the leftward
propagating train well after it has fissioned from the initial disturbance and the bottom BL has
had plenty of time to develop. We show both the density and the velocity field. We can note
immediately that the two waves that are visible have a much more active and complex structure
than the inviscid ISWs (even the waves with trapped cores). Further note that several regions of
heavy fluid (in white) have been advected up into the pycnocline. In fact it appears that large
vortices are shed from the bottom boundary layer near the front of the leading wave (white region
near £ = —2.5) and are advected up into the pycnocline and over the main wave body. In the
remainder of the chapter we aim to systematically examine the onset of the instability in the
boundary layer, the values of the physical parameters for which the instability does and does not
occur, and the repercussions of the instability for sediment resuspension. We will also comment

on some details of the instability as well as some possible theoretical explanations for the onset
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of the instability.
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5.1 Methodology

The high resolution simulation presented in the previous section is not an efficient means to
investigate ISW induced wave resuspension for several reasons. The primary theoretical objection
is that we cannot contro! the size of the ISW that fissions from the initial disturbance, something
we could do with the variational ISW calculating method. What is more, on a practical level, to
resolve the fissioning process with the same level of accuracy as in the previous section would prove
too costly in terms of computational time and storage space to make a thorough investigation
of the parameter space. A compromise between what is computationally reasonable and what
is desired in terms of resolution is afforded by the ISW calculating algorithm. We adopt the

following approach for a given stratification profile:

o Calculate the desired ISW using the variational method on a regular grid with no background

current.
e Interpolate to a grid that resolves the bottom BL using third order splines.
o Add the desired background current (which we shall call U,).
e Switch to a frame moving with the wave (see details below)
o Run the time-stepping solver for the desired value of the eddy viscosity and diffusivity

Note that in the frame moving with the wave the bottom will be moving as well. We should
note that with the no slip bottom BCs it is not possible to shift to a frame moving with the wave
exactly, since the wave propagation speed is altered slightly by drag due to the bottom BL and
decreases as the wave amplitude decreases. In practice this issue is irrelevant as the wave drift is
nearly negligible on the time scales of interest. Also note that to run cases with varying Reynolds
number (alternatively eddy viscosity) we need only repeat steps 3 through 5. Because the wave is
basically still we can specify a smaller domain in the horizontal direction {thereby getting greater
resolution without increasing computational cost). Plots of horizontal velocity will be given in

the moving frame unless otherwise specified.
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For the simulations presented in the following section we utilize a domain L = 16.66 by H =1
units with 1000 by 120 points. All lengths are nondimensionalized by the water column depth of
60 m. The grid is regular in the horizontal direction with a resolution of 0.0167 (1 m) while the
vertical grid is quadratic with 12 points in the bottom 0.6167 (1 m), 32 points in the bottom 0.0833
(5 m) and 48 points in the bottom 0.167 (10 m). Resolution tests for the horizontal spacing were
performed by doubling the horizontal resolution. We found that this did not aflect the occurrence
or time to onset of the instability in the bottom boundary layer. However certain fine scale features
that appear after the onset of the instability are affected by doubling the horizontal resolution.
Resolution tests for the vertical grid yielded more interesting results and will be discussed at length
in the following section. In the final analysis, however, the grid spacing mentioned above proved
to be both computationally cconomical and capable of resolving the details of the instability to a
reasonable level.

For all simulations the bottom is flat, the Prandtl number is set to unity and the eddy viscosity
is constant. The value of the eddy viscosity varies from simulation to simulation. All {SWs are
computed as leftward propagating so that in a frame moving with the wave all disturbances shed
behind the wave propagate rightward and out of the computational domain (through an open
right side boundary).

We consider several stratifications of the form

<= 20

p(z) =1-0.01tanh{ p, ).

All results will be presented in nondimensional form. We take the total depth, H, as the charac-

teristic length, the linear long-wave propagation speed in a fluid at rest, ¢, as the characteristic

velocity. and hence t* = é’: as the characteristic time.

Finally, we should note that the simulations presented in this work are fairly crude. They
are 2D only and the turbulence modeling is extremely simplistic. As such our simulations do not
attempt to reproduce nature, serving instead to provide an indication of whether an instability
occurs, and if the instability occurs, some idea as to the qualitative effects of this instability. This

is important since most large scale ocean models cannot hope to resolve the scales we are dealing
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with and must parametrize their effects on larger scale motions.
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5.2 Results

In this section we present the results of our numerical experiments. The section is broken up into
four parts. First we describe the evolution of a canonical example in detail, thereby giving us a
baseline case to compare the general results with. Next we turn to a more general exploration of
phase space in order to attempt to answer when the instability does and does not occur. Third
we return to give several different examples of the instability evolution. These examples aim to
clarify the effects of initial ISW size, the effect of background current amplitude. and the effect
of changing the stratification. Finally we comment on the relation of the instability to sediment
resuspension.

Before discussing the resuits we present two tables. The first lists the dimensional linear long-
wave speeds in a fluid at rest for the three stratifications used. while the second lists some relevant

information about the ISWs used in this section.

20 d | ¢ ms!

0.1} 0.05] 0.918578
0.15 { 0.05 1.11795
0.33 { 0.05 1.52708

Table 5.3.1 zo, d and cyy,, the dimensional linear longwave speed in a fluid at rest for the three

stratifications used in this section.

20 el | maz | max({|ul)

0.1 | 1.5221 | 0.19 1.1383
0.1 | 1.2127 | 0.063 0.5442
0.15 | 1.3710 { 0.22 0.9628

0.33 | 1.0529 | 0.099 0.2645

Table 5.3.0 zo (d = 0.05 in all cases), propagation speed. Nmq; and max (Jul} (all in dimensionless

form) for the ISWs discussed in this section.
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For all cases tried U, < 0 did not yield any interesting dynamics in the bottom BL region. For
this reason we will consider U, > 0 only. It should be noted however that for waves of depression
cases with U/, < 0 would need to be examined.

In all figures showing the contours of horizontal velocity we will follow the convention that
we are in a frame fixed with the ground. Unless otherwise indicated, the contours are regularly

spaced.

5.2.1 An Example

We begin with a thorough discussion of a sample numerical simulation. We take (z0,d) =
(0.1,0.05), mar = 0.19 and U, = 0.76. The Reynolds number {Re) is set equal to 6.8 x 10°.
U, and v are chosen so that a global instability does occur. For this stratification ISW amplitudes
are bounded above by shear instability and no conjugate flow exists ([37]). In figures 5.4 and 5.5
we show the density and vertical velocity contours, and density and horizontal velocity contours
for the initial wave, respectively. In figure 5.6 we show the density and horizontal velocity contours
early in the wave’s evolution. It can be seen from the upper panel that the BL is quite thin. The
detail of the BL in the lower panel shows that there is virtually no stratification in the bottom
BL and that a long, thin separation region forms on the upstream side of the wave crest (x = 0 at
t = 0). Note that we cannot call this region a separation bubble as there is no clear reattachment
(it occurs at the rear of the wave, well away from the region shown).

In figure 5.7 we show the separation region just at the point of the instability setting in. We
can see that the height of the separation region has increased from figure 5.6 and that the isolines
of negative velocity have begun crowding together at about z = —0.55. The instability formation
is perhaps better illustrated by a plot of the contours of vertical velocity, shown in figure 5.8. In
this figure we can see that the region of isoiine crowding in the contours of horizontal velocity
corresponds to an anomalous region of negative vertical velocity.

In figures 5.9 and 5.10 we can see the development of the instability as it grows in size. By
t = 4.66 the instability extends from deep in the BL to the bottom of the stratified region and

can be seen to consist of alternating bands of strong updrafts and downdrafts. The updrafts are
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Figure 5.4: Density and vertical velocity contours for sample initial ISW with (U,, Re) =
(0.76, 16.8 x 10°). Positive velocity (solid), negative velocity {dashed).

U contours for iInviscid. shifted ISwW

Figure 5.5: As figure 5.4 but for horizontal velocities before no slip boundary conditions are
applied.
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Figure 5.6: Density and horizontal velocity contours for sample ISW with (U,, Re) = (0.76,6.8 x
10%) at ¢t = 2.33. Positive velocity (solid), negative velocity (dashed).
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U contours 1=2.91 showing separation bubble just at instability onset
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Figure 5.7: As figure 5.6 but at ¢
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Density and W contours at t=2.91 2,501 d=0.05 Large Wave

Instability forming - detail

Figure 5.8: As in figure 5.7 but for vertical velocities. Note the change in vertical scale.
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Density and W contours at 1=3.496 2,=0.1 d=0.05 Large Wave

Figure 5.9: As in figure 5.8 at ¢ = 3.496.
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Figure 5.10: As in figure 5.8 at ¢ = 4.66.
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capable of transporting near bottom sediment high (z = 0.2) into the water column. Furthermore,
the violent nature of the instability onset could induce sediment motion (more on this in the
subsection on sediment transport). In figures 5.11 and 5.12 we show the contours of vorticity.
Figure 5.12 shows the vorticity at times corresponding to figures 5.9 and 5.10. It can be seen that
the positive vorticity advected over the separation region breaks up and by { = 4.66 two large
positive vortices appear ready to separate and move into the stratified region.

To get a better idea of how this situation comes about, we turn to vorticity dynamics. The
inviscid ISW has a certain amount of baroclinic vorticity associated with it, concentrated in
the deformed pycnocline (see top left panel of figure 5.11) well away from the ocean bottom.
As mentioned in the introduction, the background current and no slip BCs lead to upstream
vorticity production (as a BL forms upstream of the wave). The upstream produced vorticity is
positive, or clockwise, the same as the ISW vorticity. However the extent of the BL is quite small
and hence the strong BL vorticity remains well away from the weaker ISW vorticity even as the
former is advected into the wave body (see top right panel in figure 5.11). For this particular case,
the horizontal velocity under the center of the wave (wave-induced plus background current) is
initially negative in the BL region. Hence the vorticity produced beneath the [SW once the no
slip BCs are applied is negative (see figure 5.11, bottom panel). As the positive upstream vorticity
is advected horizontally into the wave by the background current it is advected upward by the
wave-induced currents, and over the region of negative vorticity. The interaction between the two
regions of vorticity leads to the creation, deformation and eventual instability of the separation
region discussed above.

As mentioned in the introduction, instability of separation bubbles in the bottom BL is asso-
ciated with vortex shedding (see [51], [52] for work on suction induced separation bubbles in a flat
plate BL for constant density fluid). Some effort was expended in reproducing the general resuits
of ([51]) with our numerical model. As we cannot easily impose a suction condition at the upper

bounding surface, we use a body force term to induce the desired flow profile. We use

£ o= [0 sinh(X)cosh(Z)]
¢ = 2cosh?(X)
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Figure 5.11: Vorticity contours for sample ISW with (U,, Re) = (0.76,6.8 x 10°) at ¢t = 0 and
t = 2.91. Positive BL vorticity (solid), negative BL vorticity (dashed), smaller magnitude, positive
baroclinic vorticity (dot-dashed). (a) t =0, (b) t = 2.91, {c) t = 2.91 expanded view.
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Vorticity in the instability region at 3.496
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Figure 5.12: Vorticity contours for sample ISW with (U,, Re) = (0.76,6.8 x 10°) at t = 3.496
and t = 4.66. Positive BL vorticity (solid), negative BL vorticity (dashed). Note the change in
vertical scale from figure 5.11 (c).
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Verticai velocity contours for forced vortex shedding
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Figure 5.13: Vertical velocity contours for sample run of a separation bubble induced by suction
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The forcing term that yields the desired velocity profile is found by an iterative process. We
choose a forcing term and solve the steady, linearized version of the 2D Euler equations with a
constant background current. If the resulting velocity field is not the one desired, we modify the
forcing function and repeat the process. The solution of the 2D, steady, linearized Euler equations
amounts to the solution of a Helmholtz problem for the stream-function ¥. Once we have found
a forcing that yields the desired velocity field, we utilize this forcing in the numerical solver
for the Navier-Stokes equations. After an initial period of adjustment a nearly steady suction-
type velocity profile is achieved. The constant background current is fixed so that all transient
disturbances are advected to the right and out of the computational domain. In figure 5.13 we
show an example of the vertical velocity contours while the vortex shedding is still quite small in
magnitude. In figure 5.14 we show the contours of a tracer field (with a maximum concentration
at the bottom) at a points in time when the vortex shedding is well developed. The results agree
qualitatively with those of ([51], [52]). The sample simulation was performed on a domain 16.66
wide and 1.0 tall (where we have nondimensionalized using the domain height H = 6.0) or 100 m
by 6 m in dimensional variables. There were 1000 regularly spaced points in the horizontal and
120 quadratically spaced points in the vertical {44 point in the bottom 0.1, or 1 m in dimensional
variables).

Returning to the ISW-BL interaction we can see the effect of the separated vortices on the
wave body from the sequence in figure 5.15. In this figure we plot the contours of density in the
bottom 40% of the water column for various times. It can be seen that the separated vortices
have a profound effect on the wave. First, they bring up heavy fluid (and possibly sediment)
from the bottom BL, and second they cause a significant decay in the wave amplitude (due to
wave radiation) with time. By 27.97 the wave is less than half of its original size. Interestingly

it appears that the vortex shedding has greatly diminished (but not stopped completely) at this

point.
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Figure 5.15: Density contours for sample ISW with (U,, Re) = (0.76, 6.8 x 10%) at various times,
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Density and W contours t=4.66
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Figure 5.16: Density and vertical velocity contours for sample ISW with (U,, Re) = (0.76,1.13 x
10%) at ¢t = 4.66 showing the instability is suppressed. Positive velocity (solid), negative velocity
(dashed)
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Density contours t=16.31 botiom portion of water column only
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Figure 5.17: Density contours for sample ISW with (U,, Re) = (0.76,1.13 x 10%) at t = 16.3! and
= 27.97 showing small ISWs being shed, but no vortex shedding.
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Density and W contours t=27.97 bottom portion of water column only
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Figure 5.18: Density contours and vertical velocity for sample ISW with (U,, Re) = (0.76, 1.13 x
10%) at ¢ = 27.97 showing that no anomalous updrafts below the wave. Positive velocity (solid),
negative velocity (dashed)
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An important question we sought to answer is what happens as the the Reynolds number,
Re. decreases? In figure 5.16 we plot the density and vertical velocity contours at ¢ = 4.66 for
the same wave as discussed above with Re = 1.13 x 10%. This value of Re is chosen deliberately
so that the global instability does not occur. Instead of a violent instability we see a small
region of anomalous downdraft followed by a larger region of anomalous updraft. Neither appears
particularly strong, nor to extend deep into the bottom BL. Indeed the density contours later in
the wave’s evolution (¢ = 16.31 and 27.97) found in figure 5.17 show that the adjustment to the
no slip bottom BCs results in the shedding of only two small ISWs (seen to trail the main wave
in the top panel). Figure 5.18 shows the density and vertical velocity contours at ¢t = 27.97. We
can see that while the wave is no longer symmetric about its crest, it remains very close to its
initial condition (hence no global instability exists). The weak updrafts and the lack of coherent
vortices shed both indicate that sediment transport from the bottom BL into the main water
column would be small in this case.

Several resolution tests were performed for the vertical discretization. The number of grid
points was held fixed (120). The grids used ranged from a regular grid (with the first grid point
above the bottom at 0.004166 m and a vertical grid spacing of 0.00833 m) to various quadratic
grids. Refining the grid in the near bottom region (the finest grid tried was a 150 point grid
as described in the Introduction section) improved the resoiution of the details of the instability
(as expected), but did not affect the time of instability onset or the qualitative nature of the
instability evolution. On the other hand, coarse grids simply could not resolve the separation
region. Nevertheless, the Re = 6.8 x 10° case developed a global instability at times within 10%
of the above results for all grids tried including the regular grid. As expected, very coarse grids
(such as a regular grid) could not resolve the complicated dynamics past the onset of the global
instability and led to numerical instability in the solver. In figure 5.19 we show contours plots of
the horizontal velocity at global instability onset for various grids. It can be seen that apart from
the regular grid (the coarsest grid tried) the contours appear qualitatively similar.

For larger values of v, or equivalently smaller values of Re, the boundary layer is thicker and

hence coarser grids can do an adequate job. This has to do, in large part, with the qualitative
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Quad. grid 12 pts. in bottom 0.05

Figure 5.19: Horizontal velocity contours for various grids as global instability sets in. positive
velocity (solid), negative velocity (dashed)
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difference in the evolution between the two cases. In conclusion. it is quite interesting that runs
on a regular grid with only 2 points in the bottom 0.0167 (I m in dimensional units) still lead
to a global instability, even if they cannot resolve its dynamics far beyond onset. However, as
runs on the grid used (described in the Methodology section) can be handled by a work station in
about five hours or less, there seems little incentive to try to use coarser grids. Finer grids may be
possible in the future, though a 3D solver or a better turbulence model would likely prove much

more useful.

5.2.2 Phase Space Bounds

A vital question to answer about the instability described in the previous section is, “Given some
amount of upstream vorticity production, for what range of Reynolds numbers do we get a global
instability?™ As we saw in the previous subsection, large eddy viscosities damp out the global
instability (and hence our proposed mechanism for sediment transport from the bottom BL into
the main water column).

In order to discuss the region in parameter space in which a global instability occurs we need
to have an easy to implement definition of such an instability. This is particularly difficult as any
upstream vorticity production will lead to some adjustment once the vorticity is advected into
the ISW, regardless of the value of v. While we are primarily interested in ISW dynamics, we
would like the present results to have some relevance to the twin issues of wave-induced sediment
resuspension and sediment transport into regions of the water column well away from the bottom.
For this reason it seems reasonable to make the following definition. We consider the horizontal
profile of the vertical velocity at a fixed height above the bottom {we choose 0.5 m in dimensional
units or 0.0083333 in non-dimensional units) for an inviscid ISW, and find the maximum value
(label this value W{"). We consider a global instability to have occurred if the maximum value of
the horizontal profile of the vertical velocity at the same height at a later time (label this value

W™ (t)) exceeds twice the inviscid value, i.e.

W™ (t) > 2w (5.1)
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In practice this criterion is very easy to implement. Moreover, the low values of W for inviscid
ISWs in the near-bottom region mean that if the initial wave sheds smaller waves behind it (as
opposed to a full global instability that leads to vortex shedding from the bottom BL) the above
criterion for global instability will not be satisfied. A criterion based on the horizontal velocity
would not have this property. Similarly a criterion based on vorticity would pose problems due
to the varying BL thickness as v changes. The above criterion has proven to be a good, if by no
means unique. way to sort the various simulations.

As we will see in the following section. the manner in which (5.1) is satisfied can vary depending
on the stratification. For this reason we should perhaps, for reasons of accuracy, invent some new
terminology to label the event in question. Nevertheless, we will continue to use the simpler global
instability to emphasize the link with the ideas of Bogucki and Redekopp ([10]).

In figure 3.20 we show the phase plane results for the case with (z0,d) = (0.1.0.05) for two
ISWs. The large and small waves have an amplitude of 0.19 and 0.063, respectively. In the figure
we show only the simulations needed to show the boundary between cases of global instability
and no global instability. There are several points to notice about the figure. First. the minimum
background current needed to get a global instability at the largest Reynolds number used for the
two waves, respectively, is more than three times larger for the small wave. Second, the shape of
the boundary between the regions of instability and no instability (it would not be correct to call
it a neutral curve in this case since waves we label globally stable still undergo some adjustment)
is very similar for both waves. Third. with fixed, large values of U,, the values of Re required
to stabilize the small wave are nearly ten times larger then those required to stabilize the large
wave. Also note from the figure that the curve for the smalil wave lies entirely within the curve
for the large wave, and that the two curves do not collapse into a single curve.

The concept of global instability leading to possible sediment resuspension loses meaning for
large values of v because the original ISW breaks down into a train of smaller ISWs in a laminar
manner, and because large eddy viscosities are associated with more turbulence. In these cases
we found that the initial ISW shed several smaller ISWs, decreasing in size and propagation

speed in the process. Eventually the wave was swept out of the computational domain. Since the
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Figure 5.20: Phase space bounds for (zo,d) = (0.1,0.05) ISWs with amplitude 0.19 and 0.063.
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motion did not exhibit any small scale features, we labelled this type of ISW breakdown "laminar
breakdown’.

As we mentioned previously, the (zg.d) = (0.1,0.05) case does not have a conjugate flow
solution. It thus seemed natural to ask whether a stratification that does have a conjugate flow
would exhibit similar instability behaviour. Towards this end we considered two stratifications,
one with (z9,d) = (0.15,0.05) and another with (z,d) = (0.33333.0.05). both of which have a
conjugate flow solution (though only the latter has nm,,: bounded above by the conjugate flow
amplitude, the former is bounded by shear instability). The first was chosen with the hope
of finding similar behaviour to that described above. The second, on the other hand. has the
pycnocline situated near the mid-depth yielding very long, small amplitude ISWs.

[n figure 5.21 we show the phase plane results for the (z0.d) = (0.15.0.05) case for a wave of
amplitude 0.22. We will discuss the evolution of one particular example of global instability for
this case in the following subsection. The phase plane plot is quite similar to that of the larger
wave in figure 5.20, except for the fact that for values of U larger than about 0.8 the global
instability proved impossible to suppress without inducing a laminar breakdown of the initial
ISW.

In figure 5.22 we show the phase plane results for the (zq,d) = (0.3333,0.05) case for a wave
of amplitude 0.099 (5.96 m, roughly 60% of the conjugate flow amplitude). The evolution for
this case is markedly different from the cases mentioned above (a particular example will be
discussed in detail later). The global instability sets in as a shear instability in the bottom BL.
Furthermore, thete are clear cases in which a sinusoidal perturbation grows to a visible size, but
the global instability criterion is not satisfied. These cases are labeled as marginal in figure 5.22.

We have discussed one example of the evolution of a global instability as well as how a sufficient
decrease in Reynolds number ( Re) alters the evolution so that no global instability (according to
our criterion) results. In the following subsections we use several examples to discuss the effects

of initial wave size, the background current magnitude, and the stratification.
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Figure 5.21: Phase space bounds for (zo,d) = (0.15,0.05) ISW with amplitude 0.22.
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Figure 5.22: Phase space bounds for (zo, d) = (0.3333, 0.05) ISW with amplitude 0.099.
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5.2.3 Effect of ISW size

We begin by returning to the (z0,d) = (0.1,0.05) case with U, = 0.76, but this time for the
small wave (maximum isopycnal displacement is 0.063, and the magnitude of the maximum wave-
induced horizontal current is 0.5442) discussed in the previous section. This wave is chosen so
that max(|u|) < Uy, in contrast to the large wave case.

In figure 5.23 we show the density contours for the initial state as well as for ¢t = 11.14, well
after the global instability has set in. We can see that by ¢ = 11.14 the global instability has
virtually swamped the initial ISW. In figure 5.24 we show the density and horizontal velocity
contours with a focus on the separation bubble (in this case it is an actual separation bubble with
a clear reattachment point), just as the global instability is setting in {¢ = 5.57). Figure 5.25
shows the vertical velocity contours at the same time. Figure 5.26 shows the vertical velocity
contours at £ = 11.14. In this figure we can clearly see the alternating bands of updrafts and
downdrafts that indicate that the initial ISW is slowly losing energy to wave radiation.

While the details of this case are different from the case of the larger wave discussed previously,
certain characteristics of the evolution appear to be robust. In particular we can note that as
the positive, upstream vorticity is advected into the wave body it does not matter whether the
currents in the BL within the wave body are positive or negative, only that the vorticity is reduced
in the BL beneath the wave body, and that the vorticity created in the BL upstream of the wave is
advected up and over the BL within the wave body. For U, > 0 this will always be the case. The
ISW-induced vertical current advects the upstream vorticity over the BL within the wave body

and the interaction between the BL and upstream vorticity leads to the subsequent instability.

5.2.4 Effect of background current magnitude

We now return to the larger wave, (z9,d) = (0.1,0.05), fmaz = 0.19. We would like to get
some idea as to how the amount of upstream vorticity production changes the evolution of the
instability (when it happens). Towards this end consider a case with a smaller background current,
(U,, Re) = (0.22,6.8 x 10°). In figures 5.27 and 5.28 we show the density and vertical velocity

contours during the instability onset and early development (¢ = 6.991 and 9.3.0). In contrast with
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Density contours t=0.0 Small Wave -~ botiom part of water column
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Figure 5.23: Density contours for fme: = 0.063 ISW with (U,, Re) = (0.76,3.0 x 10%) at ¢t = 0.0
and t = 11.14 showing ISW decay due to vortex shedding.
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- asparation bubble just prior to instabiity t=5 57

Figure 5.24: Density and horizontal velocity contours for fma.r = 0.063 ISW with (U,, Re) =

(0.76,3.0 x 10%) at ¢ = 5.57 during instability onset. Positive velocity (solid), negative velocity
{dashed)

figures 5.8 and 5.9 the instability sets in closer to the wave crest. This is confirmed in figures 5.29
and 5.30 which show the horizontal velocity at the same times. The instability dynamics in
this case do not involve the leading separation region at all. Figure 5.31 shows the vorticity at
t = 6.992 and 9.3.0. By this time the upstream vorticity has interacted with the BL in the wave
body and we can see the positive, upstream vorticity overlaying the negative vorticity. It appears
that any vortex shedding that results will be small. This is confirmed in figure 5.32 which shows
the density contours at ¢ = 16.31 and 27.97. It can be seen that the waves radiated downstream
of the ISW are quite small in this case. In figure 5.33 we plot the vertical velocity in the near
bottom region at ¢ = 27.97. We can see that the BL region beneath the ISW remains active even
for late times (contrast this with the inviscid simulations of the previous chapter).

The above example shows that the dynamics in different parts of the parameter space can be
rather different, even if our definition of global instability onset is satisfied. On reflection, this
should not be unexpected (we are exploring a very large parameter space), yet this point is not
discussed in the literature ([10]), perhaps because fully noniinear ISWs are not used.

Next we would like to examine how decreasing Re affects the evolution for the above case.

We consider Re = 8.2 x 10, a case right on the brink of giobal instability onset according to our
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Figure 5.25: As in figure 5.24 but for vertical velocity.
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Figure 5.26: Vertical velocity contours for mq: = 0.063 ISW with (U,, Re) = (0.76,3.0 x 10%) at
t = 11.14 showing vortex shedding. Positive velocity (solid), negative velocity (dashed)
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Density and W contours t=6.991

Figure 5.27: Onset of instability. Density and vertical velocity contours for (fmer = 0.19 ISW
with (z0,d) = (0.1,0.05), (U, Re) = (0.22,6.8 x 10%) at ¢t = 6.991. Positive velocity (solid),
negative velocity {dashed).
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Figure 5.28: As figure 5.27 but at a later time, ¢t = 9.3.0.
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U contours in 1he separation bubbie region 1=6.991
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Figure 5.29: As figure 5.27 but for horizontal velocity.
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Figure 5.30: As figure 5.28 but for horizontal velocity.
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Vorticity in the instabiity region at 1=6.992
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Figure 5.31: Vorticity contours for (fmar = 0.19 ISW with (z0,d) = (0.1,0.05), (U,, Re) =
(0.22,6.8 x 10%) at t = 6.991. Positive BL vorticity (solid), negative BL vorticity (dashed).
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Density contours t=16.31 - bottom portion of water column
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Figure 5.32: Density contours for (fmsz = 0.19 ISW with (20,d) = (0.1,0.05), (U, Re) =
(0.22,6.8 x 10%) at t = 16.31 and 27.97 showing no visible vortex shedding.
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Density and W contours t=27.97
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Figure 5.33: Late in the evolution process. Density and vertical velocity contours for (msr = 0.19
ISW with (z0.d) = (0.1,0.05), (U,, Re) = (0.22,6.8 x 10%) at t = 27.97. Positive velocity (solid),
negative velocity (dashed).
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Density and W contours t=9.322
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Figure 5.34: Density and vertical velocity contours for (mar = 0.19 ISW with (x,d) = (0.1, 0.05),
(Us, Re) = (0.22,8.2 x 10%) at ¢t = 9.3.0. Positive velocity (solid), negative velacity (dashed).
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Figure 5.35: Density and horizontal velocity contours for (fmar = 0.19 ISW with (z0,d) =
(0.1.0.05), (U,, Re) = (0.22,8.2 x 10%) at t = 9.3.0. Positive velocity (solid), negative velocity

(dashed).

definition. Figures 5.34 and 5.35 show the vertical and horizontal velocity contours at { = 9.3.0,
respectively. The evolution appears to be quite complex, however note that the updrafts and
downdrafts in figure 5.34 as well as the isoline crowding in figure 5.35 are confined to a region well
above : = 0.01. In other words, the large thickness of the BL precludes global instability onset
according to our definition. Furthermore, as can be seen in figure 5.36, the stronger diffusion leads
to a much less active region beneath the ISW at t = 27.97.

In figures 5.37, 5.38 and 5.39 we show the vertical velocity contours at ¢ = 9.3.0, the horizontal
velocity contours at ¢ = 9.3.0 and the vertical velocity contours at ¢ = 27.92, respectively, for an
even smaller Reynolds number (Re = 3.3 x 10*). We can see that in this case the diffusion keeps
the interaction between the upstream vorticity and the ISW very smooth and uneventful. In
its late stages, it appears the interaction cannot cause sediment resuspension beneath the wave.
Though setting the eddy viscosity to be large implies more sub-scale turbulence that could lead
to sediment resuspension.

From the previous two subsections we see that the interaction between a fixed upstream
vorticity and the ISW for small waves changes gradually as we change the Reynolds number. For

larger waves the range of Reynolds numbers for which global instability sets in is larger and hence
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Figure 5.36: As figure 5.34 at a later time, t = 27.97
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Figure 5.37: Densnty and vertical velocity contours for {)n.z = 0.19 ISW with (zo,d) = (0.1, 0.05),
(U, Re) = (0.22,3.3 x 10%) at t = 9.3.0. Positive velocity (solid), negative velocity (dashed).
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Figure 5.38: Density and horizontal velocity contours for (fmar = 0.19 ISW with (z,d) =
(0.1,0.05), (U,, Re) = (0.22,3.3 x 10%) at t = 9.3.0. Positive velocity (solid), negative velocity
(dashed).

large parts of parameter space show similar behaviour. This is another issue that is hinted at,

but not really explored in ([10]).

5.2.5 Effects of stratification

All of the cases discussed so far have set (z0,d) = (0.1,0.05). In this subsection we briefly explore
what effect varying the stratification has on the instability dynamics. We begin by reconsidering
the case (zq,d) = (0.15,0.05) and npqer = 0.22, fixing U, = 0.626 and Re = 6.46 x 10%. From
table 5.3.2 we can see that maz(|u]) > U,. As mentioned previously, this stratification has a
conjugate flow, however fm,: is bounded above by shear instability of the variational algorithm
and not the conjugate flow amplitude. In figure 5.40 we show the density and vertical velocity
contours for the initial wave. On comparison with figure 5.4 (the (z9,d) = (0.1,0.05) and gmq: =
0.19 case) we see that the present wave is roughly 1.5 times wider. In figures 5.41 and 5.42 we
show the vertical and horizontal velocity contours during the onset of the instability, respectively.
Figures 5.43 and 5.44 show the vortex shedding process later in the instability’s evolution. It is
worth noting that the vortex shedding in figure 5.44 has the closest resemblance to the vortex

shedding found by Pauley and Moin ([51]) of all the simulations examined. Figure 5.45 shows
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Figure 5.39: As figure 5.37 at a later time, ¢ = 27.97
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the evolution of the density field. It can be clearly seen that heavy fluid from near the bottom
intrudes into the pycnocline. Furthermore, the initial wave is seen to decay dramatically due to
wave radiation. This is very similar to the (zo,d) = (0.1,0.05) and nymqr = 0.19 case described
previously.

Finally we could ask what sort of dynamics we get if 7r,4: is bounded above by the conjugate
flow amplitude. This was the motivation for the previously discussed (:o,d) = (0.3333,0.05) and
Nmar = 0.099 case, which we will presently revisit. We take Re = 2.4 x 10° and fix U, = 0.85.
From table 5.3.2 we see that max(|u|) < U,. From figure 5.46, where we plot the initial density
and vertical velocity contours, we can see that the initial [SW is extremely broad (nearly four
times the cases discussed previously). We can also note that the maximum wave-induced vertical
current is weaker in this case than in all other cases shown so far. In figure 5.47 we show the
horizontal velocity contours at the point where a shear instability has begun to form behind the
separation bubble. We can see that the separation bubble in this case is extremely broad and
very short. Thus the flow is nearly parallel over this entire region. In figures 5.48 and 5.49 we
show the vertical velocity contours as the shear instability grows. It can be seen that by ¢t = 21.44
the shear instability stretches over about three quarters of the ISW's length and that it extends
well above the bottom BL. No vortex shedding is apparent, and indeed no vortex shedding was
observed for this stratification regardless of the values of U, and Re used. It is possible that no
vortex shedding occurs due to the large length and weak wave induced currents found in the ISW.

In summary we have shown that a global instability consisting of vortex shed;ling occurs for
stratifications with and without a conjugate flow. Stratifications with a center near the mid-depth,
for which ISWs are small and broad, exhibits a shear instability instead. This shear instability
produces strong enough vertical currents to satisfy our global instability criterion, despite being
qualitatively different from the vortex shedding instability. We have found that as the initial ISW
decayed due to wave radiation caused by vortex shedding the intensity of the vortex shedding
decreased. The intensity of vortex shedding also decreased when the amount of upstream vorticity

was decreased (the background current was smaller).
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Density and W contours =0

Figure 5.40: Density and vertical velocity contours for (gmar = 0.22 ISW with (20,d) =
(0.15,0.05), (U,, Re) = (0.626,6.45 x 10%) at t = 0. Positive velocity (solid), negative veloc-
ity (dashed).
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Density and W contours t=4.538 - anset of instability

Figure 5.41: Density and vertical velocity contours for (gmer = 0.22 ISW with (3,d) =
(0.15,0.05), (U,, Re) = (0.626,6.45 x 10°) at ¢ = 4.598 and ¢ = 5.365. Positive velocity (solid),
negative velocity (dashed).
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Figure 5.42: As figure 5.41 but for horizontal velocity at ¢t = 4.598 only.

5.2.6 Sediment Resuspension

We have stated in the introduction to this chapter that the primary motivation for studying
the interaction of ISWs with the bottom BL was provided by the measurements of BDR which
showed abnormally high sediment concentration in the water column when a packet of ISWs of
elevation passed by. Qur results regarding the global instability of ISWs suggest two implications
for sediment measurements in the water column. The first is the transport of sediment already
suspended in the bottom BL by the anomalous regions of positive vertical velocity which we have
shown to be associated with a global instability (for example figure 5.10). The second is the
resuspension of sediment by increased bottom stress.

We will consider transport first. To keep the number of figures reasonable we will focus on the
{z0,d) = (0.1, 0.05), larger wave case. In figure 5.50 we consider the case of no upstream vorticity
(U, = 0.0) with Re = 6.8 x 10%. We show the horizontal profiles of the vertical velocity at the
same height used for the global instability criterion (z = 0.0083 or : = 0.5 m in dimensional
variables). As the BL grows the vertical velocity at this height is reduced, reaching a steady state
whose maximum vertical velocity is about one third of the original, inviscid value. In figure 5.51
we show the corresponding case for (U,, Re) = (0.76,6.8 x 10%). As the instability develops (and

continuing to later times) there are large variations in the vertical velocity, with the largest vertical
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Figure 5.44: As figure 5.41 at later time, t = 17.88
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Figure 5.45: Density contours for (fmna: = 0.22) ISW with (z0,d) = (0.15,0.05), (U,, Re) =
(0.626,6.45 x 10%) showing evolution of instability.
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Figure 5.46: Density and vertical velocity contours for {(fmer = 0.099 ISW with (z9,d) =
(0.3333.0.05), (U,, Re) = (0.85,2.4 x 10%) at ¢t = 0. Positive velocity (solid), negative veloc-
ity (dashed).
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Figure 5.47: Horizontal velocity contours for (fmarz = 0.099 ISW with (20,d) = (0.3333, 0.05),
(Us, Re) = (0.85.2.4 x 10°) at ¢t = 10.72. Positive velocity (solid), negative velocity (dashed).



CHAPTER 5. ISW-BL INTERACTION

Density and W contours at t=13.40

Detail of Instability Region
TT T
|
1t
1o
bl
i
I
I
|
!

[
[
fl
(!
|
Iull‘i

Figure 5.48: Instability development. As figure 5.46 for later time, t = 13.40.
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Density and W contours at t=21.44

1
BINERTANE.
.n|:‘u‘| N

! |
URTRMTIN LR
1

Y
| !
‘I‘ I
Hy I,
I'l|l§
uE
L
I
W
7 “

15

Figure 5.49: Instability development. As figure 5.46 for later time, t = 21.44.
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Figure 5.50: Vertical velocity vs. z at a fixed height > = 0.0083 for the case nmq- = 0.19 ISW
with (zo,d) = (0.1,0.05), (U,, Re) = (0.0,6.8 x 10%).
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Figure 5.51: Vertical velocity vs. z at a fixed height = = 0.0083 for the case nm,- = 0.19 ISwW
with (zo0,d) = (0.1,0.05), (U,, Re) = (0.76, 6.8 x 10°).
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Figure 5.52: Vertical velocity vs. z at a fixed height z = 0.0083 for the case fms- = 0.19 ISW
with (zo,d) = (0.1,0.05), (U, Re) = (0.22,6.8 x 10%).



CHAPTER 5. ISW-BL INTERACTION

-~
(3]
-]

W vs. x, comparison of global instability (Us,v)=(0.76.10") and main wave

T T ¥ T

T
— initial ISW 2=0.4
- Us=0.76 1=13.98

1
: - U=0761=21.97 |
/

I

W vs. x, comparison of global instability (Us,v)=(0.22,10") and main wave

1 T T 1 .
— initial ISW 2=0.4
03¢ _ U 02t1631 |
: U =0.221=27.97
0.2} - vzl
0.1t ]
3 |
0 i AT e
01t -
02t -
1 L —l L 1
3 2 -1 0 { 2 3

Figure 5.53: Vertical velocity vs. z at two fixed heights, z = 0.4 at t = 0 (showing wave-induced
vertical currents) and z = 0.0083 for later times (showing instability induced vertical currents).
Nmaz = 0.19, (z0,d) = (0.1,0.05), (U, Re) = (0.76, 6.8 x 10°) and (U, Re) = (0.22, 6.8 x 10°).
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Figure 5.54: Vertical velocity vs. r at a fixed height, - = 0.0083 (showing that cases of no global
instability do not induce persistently large vertical currents in the bottom BL). fm,: = 0.19,
(z0,d) = (0.1,0.05), (U,, Re) = (0.76, 1.13 x 10%).
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currents more than 20 times larger than the inviscid (or the U, = 0} value.

Figure 5.52 shows similar results for the (L/,, Re} = (0.22.6.8 x 10%) case. Note however that
the increase in maximum vertical velocity over the inviscid value is now only about 5 times and
that by ¢ = 27.97 the vertical currents are only of comparable magnitude to the I, = 0 case and
as such not likely to make an impact on sediment transport.

As we can see from figure 5.4 the largest wave-induced vertical currents occur well above the
bottom. {t is thus interesting to compare the vertical currents due to the instability with those
due to the wave. This is what figure 5.33 shows. \e choose to plot the vertical currents due to
the ISW at a fixed height z = 0.4, giving a typical horizontal profile of the largest vertical currents
due to the wave. We can see that the instability in the (U,. Re) = (0.76,6.8 x 10%) case induces
vertical currents as large as the largest induced by the ISW, while the ({/,, Re) = (0.22, 6.8 x 10%)
case does not. Thus more upstream vorticity at fixed v implies more sediment transport out of
the bottom BL.

In figure 5.54 we show the vertical velocity profiles for the (U,, Re) = (0.76.1.13 x 10%) which.
according to our criterion. did not undergo a global instability. It can be seen that while the
interaction of the upstream vorticity with the ISW does lead to closely spaced regions of updraft
and downdraft the maximum vertical current never surpasses the original inviscid value (in sharp
contrast with the cases presented above). In addition. the large values of vertical currents are
short lived, being associated with the shedding of small ISWs behind the original wave.

To summarize. in all cases where our global instability criterion is satisfied, we find vertical
currents capable of pumping previously suspended sediment out of the BL and into the main
water column. As the value of U, is increased (with fixed Re), the vertical currents in the bottom
BL increase to be as large as the maximum wave-induced vertical current for inviscid waves. Since
ISWs generally have the largest wave-induced vertical currents well away from the bottom this
marks a significant difference between inviscid ISWs and ISWs with a viscous BL and an upstream
source of vorticity. For the latter waves a great deal of sediment can be transported into the water
column (as evidenced by the intrusions of heavy fluid into the pycnocline in figure 5.3).

The second issue is the actual resuspension of sediment. The initiation of sediment motion is
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an extremely complex problem involving complex fluid-solid and solid-solid interactions. Much
of the complex physical issues {grain size, grain shape. grain cohesion, etc.) will be ignored in
our simplistic presentation (see for example the book by Nielsen {47] some of whose presentation
we follow, or the book by Sleath [57]). The models available in the literature {including the
two books mentioned above) generally deal with surface wave effects, only. This focus on surface
waves is quite understandable as surface waves are important in the coastal zone where man-made
structures most often interact with the ocean. Thus the state of research on the onset of sediment
motion in deeper water where surface wave effects are not important is rather incomplete (though
the author can hardly claim to have a great deal of knowledge in this field).

Sediment resuspension can be modeled according to a conservation law which states that the
rate of sediment transport {rom the ocean bottom to the fluid just above the bottom per unit of
time is equal to the rate of pickup minus the rate of deposition. The rate of pickup is specified
by empirical pickup functions (see for example [47] page 223) which differ according to the type
of flow (steady flow. oscillatory flow due to surface waves. etc.). In general the pickup functions
depend on various physical properties of the sediment. In the case of sinusoidal surface waves
(and surface waves superimposed on a steady current) the role of the flow is represented by the
Shields parameter. The Shields parameter is shear stress at the bottom, nondimensionalized by a
combination of parameters based on the physics of the sediment (i.e. grain density, grain diameter,
etc.). Furthermore, in order to fit experimental data, the Shields parameter is modified for more
complex situations such as wave-current interactions. We do not wish to address these issues here,
hence we will focus our attention on the shear stress at the bottom. The idea is that once the
shear stress on the bottom due to the instability crosses some threshold, sediment begins to move
and is resuspended in the water column. It is likely that the threshold of motion will have to
be determined by observation or experiment, and as such we will not discuss the threshold stress
value in this thesis.

The bottom stress is important for the issue of ISW-induced sediment motion. For this brief
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discussion we take the nondimensional shear stress to be given by

1
T= —u,. (f

Re

31
t~
—_—

In figure 5.55 we show the shear stress for the {z0.d, U, Re) = (0.1.0.05,0.76,6.8 x 10%) case
compared with the (U,, Re) = (0.76.1.13 x 10%) and (U,, Re) = {0.0,6.8 x 10%) cases. \We can
see that the global instability is responsible for a large increase in 7 over both the no upstream
vorticity and upstream vorticity with no global instability cases.

We found that, consistent with the results on vertical velocity, the (L,, Re) = (0.22,6.8 x 10%)
case is responsible for much smaller values of ¥ when compared with the (U, Re) = (0.76.6.8 x 10°)
case. In fact the oscillations in the bottom stress due to the global instability for (U,. Re) =
(0.22,6.8 x 103) have an amplitude of about one third the maximum bottom stress magnitude
in the (U,, Re) = (0.0,6.8 x 10°) case. However both the U, = 0.76 and U, = 0.22 cases (with
Re = 6.8 x 10°)) show a great deal of variation of the nondimensional bottom stress with z.
This is in contrast to the slowly varying nondimensional bottom stress found when U, = 0.0.
The fast spatial variation of the nondimensional bottom stress (that persists in time) for cases in
which a global instability occurs may provide a mechanism for setting sediment into motion. This
conjecture, as well as the issue of what is a correct estimate of the bottomn stress, merit further
investigation in the future.

We should note that surface wave-induced sediment motion models usually take the bottom
BL to be turbulent, and hence define the dimensional bottom stress, 1, as

1 2

™ = 5P (5.3)

for an appropriately defined u,. For the present results there is no unambiguous way to define u.,
though if we were to consider 7, to be based on u at : = 0.008333 (or z = 0.5 m in dimensional
variables) the global instability would again be responsible for an increase in n,.

In summary, we have shown that the global instability leads to an increase in bottom stress

when compared to cases of no global instability. Since the bottom stress is used in phenomenolog-
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ical pickup function models to increase the concentration of sediment in the BL our results show
that ISW interaction with upstream vorticity can serve as a mechanism for sediment resuspen-
sion. Coupled with the instability induced pumping out of the bottom BL the presented results
show that global instability can explain the correlation between ISW passage and an increase in

sediment concentration measured well away from the bottom (as in [8]).



CHAPTER 5. ISW-BL INTERACTION 234

5.3 Conclusions and Future Directions

In this chapter we have discussed the interaction between fully nonlinear ISWs and the bottom,
viscous BL using a numerical model with a constant eddy viscosity and diffusivity. The Prandtl
number was set to one for all simulations. \We found that when there is no background current
the adjustment of an inviscid ISW to no-slip bottom BCs was very small. The only change from
an inviscid ISW was to set up a laminar bottom BL. However when a background current with
non-zero bottom velocity was included in the computation of the inviscid ISW the adjustment
was markedly different. For simplicity, we concentrated on constant background currents U,.
The value of U, controls the amount of vorticity produced upstream of the ISW once the no-slip
bottom BC's are switched on. We found that for all non-zero values of U, and all eddy viscosities
used there was a complex interaction between the upstream vorticity and the ISW as the upstream
vorticity was advected into the wave.

For larger values of the eddy viscosity it was found that the interaction leads to the shedding
of smaller ISWs behind the main wave. For smaller values of eddy viscosity the interaction was
much more violent, with vortex shedding and ejection of material from the bottom BL into the
main water column. This type of interaction was referred to as a global instability (consistent
with [10]). A criterion for the onset of the instability was defined based on the vertical current
at a fixed height above (but close to) the bottom. Through extensive numerical experimentation
it was found that this criterion was very good at discriminating between cases of ISW shedding
and vortex shedding. From a practical point of view, the instability criterion is useful since the
vertical velocity near the bottom will give some information on how much sediment suspended in
the bottom BL will be pumped up into the water column.

We used the instability criterion to explore the parameter space (U,,v) (or alternatively
(U,. Re)) for several different ISWs and stratifications to get bounds on when a global insta-
bility will and will not occur. It was found that bounds depended on the wave amplitude, with
larger waves exhibiting a global instability for smaller values of U, (with v fixed), as expected.
Furthermore, larger values of U, (i.e. more upstream vorticity production) exhibit global instabil-

ity for larger ranges of v (Re). If the value of the eddy viscosity is too large no global instability
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will occur, regardless of the size of the ISW or U,. and the initial ISW will break down via
breakdown of the initial ISW into a train of smaller ISWs (we termed this ‘laminar’ breakdown).

We discussed several examples of the global instability onset and evolution in detail to show
the similarities and differences between different stratifications and ISW amplitudes. As discussed
in the chapter on steady waves, three different possibilities bound the ISW amplitude. We found
that the global instability did not change qualitatively when a stratification did, or did not have a
conjugate flow solution provided that the maximum amplitude (n) was not given by the conjugate
flow amplitude (i.e. given by wave-breaking or shear instability of the variational algorithm). For
the case when the conjugate flow amplitude did give the upper bound on an,, the [ISWs were
very broad and the instability set in as a shear instability (as opposed to vortex shedding).

In order to get some idea of how the present results relate to observations of sediment in the
main water columnn we presented horizontal profiles of the vertical velocity at a fixed height above
(but close to) the bottom (z = 0.5 m in all cases}. We found that the global instability, and vortex
shedding in particular, causes a large increase in w at this height. In some cases we found that
it was possible to increase w near the bottom to be larger than the largest ISW-induced vertical
velocity (which occurs well away from the bottom). Thus the global instability provides a strong
pumping mechanism to move sediment from the bottom BL to the main water column.

The onset of sediment motion was also discussed. The treatment was brief due to the inherent
physical complexity of the problem. We looked at the eflect of the global instability on the
bottom shear stress. The bottom stress in cases of global instability was found to greatly exceed
the bottom stress in cases of no global instability. However this result depended on a particular
nondimensionalization for the bottom stress (to account for the large changes in eddy viscosity).
For this reason the results relating to ISW induced sediment motion are open to question and
deserving of more extensive future study. We should note that sediment motion in the BL is likely
much more complex than our naive model. In particular, experiments ([48]) have shown that the
coherent structures in a turbulent BL have a profound influence on how sediment motion begins,
and where the moving sediment gathers. Of course, eddy viscosity-type models cannot model this

behaviour and the dynamics once the BL is turbulent remains largely unexplored. Nevertheless,
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the global instability provides a mechanism for getting sediment high into the water column.

A quadratic stress boundary condition is often used in large scale ocean models as a simple
means to incorporate a turbulent bottom boundary layer. Preliminary investigations with a
quadratic bottom stress BC

u.(r,0.t) = Kulul, (5.4)

where K is ap empirical constant, indicate that a global instability sets in at times comparable
to, and in a qualitatively identical manner to, the no slip BC cases.

The treatment in this chapter is far from complete. The parameter space involved is very large
and as such only certain regions were explored. Furthermore the actual onset of the instability
should be explored further. While vorticity dynamics provides a simplistic explanation for the
dynamics of the interaction between the upstream vorticity and the ISW, a much more detailed
treatment would prove useful. This would require a numerical model that allows the resolution
of the region of interaction to a much higher degree. with a smaller aspect ratio between the grid
height and width. The difficulty lies in how to incorporate the spatially large ISW into such a
model (in a clearer manner than [10]).

Issues relating to the dynamics after instability onset would likely require a 3D model to
investigate properly. The same challenges as the 2D model described above would have to be
addressed. along with issues relating to memory and computation time. Due to the high cost
of such simulations it may be that an entirely different approach, based on Reynolds averaged
equations and turbulence modeling, may be needed.

In ([11]) the issue of resuspension by waves of depression is brought up. While this appears to
be possible given our results, a detailed investigation remains to be carried out. In the author’s
opinion the gap between the present simulations and specific oceanic measurements is quite large
and a very obvious line of research would seek to redress this problem.

Finally, as mentioned in the previous chapter, realistic bottom topography would greatly
complicate the dynamics. In ([8]) it is mentioned that the ISWs responsible for the measured
sediment resuspension are likely generated by topographic resonance. Numerical simulations

that tested this hypothesis would provide one means of including bottom topography while stiil
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maintaining a connection with the present work.

In conclusion, throughout this work we have shown a variety of fascinating physical phenomena
relating to fully nonlinear ISWs. In general, the starting point for all our investigations was the
variational algorithm that allowed the calculation of fully nonlinear ISWs. As many questions
remain unanswered, it is the author's hope for the future that fully nonlinear ISWs, and the host
of interesting behaviours they exhibit, will merit the same sort of attention paid to WNL in the

past.
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