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Abstract 

ln this thesis we study fully nonlinear internal waves in a stratified ocean. These waves are 

isolated disturbantes that do not change form as  they propagate horizontally dong  the waveguide 

of the density stratified ocean. M'ter surveying semi-analytical asymptotic theories for small. finite 

a m  plitude waves we present a variational technique for calculating large, fully nonlinear internal 

solitary waves which are exact solutions of the Euler cquations governing an inviscid Auid. This 

technique is subsequently used to discuss the effect of horizontal background currents on solitary 

wave propcrties. Particular attention is paid to upper bounds on the solitary wave amplitude. 

Next we discuss one way the variational algorithm can be used to compute soiitary-iike waves 

which are past breaking, and the properties of such solitary wave-like objects. Finally we consider 

the interaction of an ini tially soli tary wave with a viscous boundary layer. We show that for cases 

in which vorticity is produced in the boundary layer upstrearn of the wave, for example due to 

an appropriately chosen background current, this interaction can lead to the instabiiity of the 

solitary wave and can result in significant transport of sediment out of the bottom boundary layer 

into the main water column. 
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Chapter 1 

Introduction and Historical 

Background 

T h c r c  is one thing in the world more wicked than the desire to command, and that is the will 

to obey..' 

William Kingdon Clifford 

In  this thcsis we will study large internai solitary waves (henceforth ISWs) propagating hor- 

izontally in a coastal ocean, their theoretical description and numerical modeling. While these 

waves have appeared quite often in the oceanographic and applied mathematics Iiterature in the 

past twenty years. it seems prudent to define certain terms for the reader. More complete in- 

troductions can be found in standard text books, for example the book by Gili ([21]) on ocean 

dynamics, the book by Johnson on water waves (surface waves) ([28]), or the book by Whitham 

( [ 6 6 ] )  o n  nonlinear waves. 

Solitary waves are isolated, nonlinear disturbances that propagate dong  a wave-guide without 

changing shape. An  example of a solitary wave is given in figure 1.1. 

Let u s  consider a right-handd systern of Cartesian coordinate axes with the origin a t  the 

bottom of the ocean. We take the z axis to be pointing up towards the surface, and the t axis to 
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Example of a solitary wave propagating to the right 
r I T 

. 
time=O J--time=ioI 

I ' 
I ' 

Figure 1 . 1 :  Eaarnple of a solitary wave propagating to the right with unit speed 

Figure 1.2: Two examples of a p ( . - ) .  (a) Generai, (b) single pycnocline 
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ruri along a flat bottom. Throughorit this thesis Ive will neglcct the cffcct of the Earth's rotation, 

and hence consider an inertial frarne of reference. This is a valid approximation bccause the 

phenornena of interest occur on tirne scalcs much srnaller than those needed for the effects of the 

Earth's rotation to  becornc apparent. The density of sca water is a function of temperature and 

satinity. Throughout this thcsis we will consider the dcnsity only and ignore the exact variation 

of salinity and temperaturc. Ciiven a hypothetical, still ocean. the dcnsity (dcnoted by P, and 

hcnccforth caled the background density profile or background stratification) will be a function 

of dcpth (H - :) oiily (i-c. p = p ( : ) ) ,  and the pressure will be given by the hydrostatic equation 

whcrc g is the acccleration ditc to gravity. In the field. it is often obscrvcd that the density 

profile hiis one or niore regions of rapid change called pycnoclines, separated by regions that have 

nearly constant dcnsity (wcll-mixcd rcgions). :! simple example is provided by a single pycnocline. 

See figure 1.2 for an example of a gcncral and single pycnoctine stratification. A useful further 

idealization assumes the pycnoclinc to he  infinitely thin, in othcr words as the interface between 

two fluids of different, but constant. densities (think of a laver of oil on water). CVe can then 

considcr waves propagating horizontally along this interface, and cal1 such waves vertically trapped 

internal waves. The analogy with surface waves then becomes obvious. However, the density 

changes in the ocean interior are much srnaller than at the water-air interface. This means that 

the restoring forces are weaker and hence for the sarne energv, interna1 wave amplitudes are much 

Iarger than surface wave amplitudes. It is often assumed that the ocean bas a rigid lid, thereby 

eiiminating the complications of a free boundary at  the surface, as well as the fast moving surface 

waves (see 1291 for more details). We will make this approximation throughout this thesis. 

For a general p(z )  the situation is further complicatcd by internal waves that propagate in 

directions other than the horizontal (see the books by Kundu [29] or Gill[21] for an introduction to 

such waves). In this thesis we will concern ourselves only with horizontally propagating (vertically 

t rapped) waves. 
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The equations for an incompressible fliiid iindcr the Boussinesq approsimation rcad 

where u is the fluid velocity, po is the constant density of the rcfcrence statc, p is the density 

perturbation to the reference state, P is the dy narnic pressure (the hydroststic part çorresponding 

to the reference stratification has been subtractcd off), p is the dynamic viscosity (or altcrnatively 

the eddy viscosity for a simple turbulence model) of the ftiiid. For a simple turbulence mode1 K 

is  the eddy diffusivity of the dcnsity. For laminar flow IC = O and dcrisity is conserveci. We 

should note that the Boussinesq approximation amoiints to t hree approximations. The first sets 

p constant in  al1 terms of the rnomentum equations cxcept for the buoyancy terrn. The second 

approxirnatn the conservation of mass equation by Ü = O. while the third rediices the energy 

equation to a form that looks like the original consevatian of m a s  equation (hence the energy 

equation is often referrcd to as the density equation). A thorough discussion can be found in  the 

text by Kundu ([?9]). The veetor F, includes any body forces we wish to include (sornething that 

is useful for certain numerical simulations). If we divide through by po the Laplacian term would 

involve the kinematic viscosity 

For interna1 motions the perturbations to the background density prof le p( ; )  are srnall and hence 

it makes sense to define 

p = p(=) +p' .  ( 1.3) 

ive introduce the buoyancy frequency N ( z )  via 
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It is easy to show that a fluid parce1 at  a given height z displaced vertically oscillatcs about its 

cquilibrium height with the frequency N ( z )  (sec [21]). The governing equations can be written as 

In situations where the viscosity and diffusivity are not important to the phenomcnon in question 

we simply drop al1 the terms which include /r and K. 'The governing equations are then referred 

to as the Euler cquations. 

We will discuss 2D phenornena only. With the axes defined as above. we consider al1 field 

variables to be functions of t, : and t only. Furthermore, we take u = O (no velocity in the y 

direction). We can then introduce a stream-function 9(r. t, t )  so that 

The governing equations can now be rewritten in a form that is more convenient for theoretical 

analysis (This is discussed in detail in the next chapter). 

1 .O. 1 Some Historical Background 

In what is now a standard part of the applied mathematics folklore, solitary waves were discovered 

by John Scott Russell in 1834 as he rode along the Edinburgh-Glasgow shipping canal. These were 

solitary waves on the free surface of the water. After some initial interest (and controversy ) by the 

great minds of 1% h century physics (Airy, Rayleigh, Boussinesq, etc.) solitary waves were largcly 

relegated to the periphery of applied mathematics until 1965 (see the review of Miles [46] for 

more complete historical notes, as  well as other interesting information on solitary waves). That 

year solitary waves returned to prominence via the amazing discovery of Zabusky and Kruskal 
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([68]) that numerical solutions of t he KdV equation contained finite amplitude solitary waves that 

interacted with one another without losing their form (as particles do). Furthermore, a general 

initial condition broke up into a number of these particle-like 'solitons'. The KdV equation was 

derived by Korteweg and deVries in 1895 to describe surface waves propagating in one direction. 

The sarne authors discussed a family of periodic solutions to this equation (called cnoidal waves) 

which yield solitary wave solutions in the limit of infinite period. fn retrospect it should be noted 

that it \vas Russell himsclf who first showed that a fairly general initial disturbance in a long. 

shallow tank breaks up into a rank-ordered (largest waves propagate fastest) train of solitary 

waves. Since the KdV equation is an asymptotic mode1 of such an experimental situation, in 

some sense the property discovered by Zabusky and Kruskal was anticipated by Russel. 

Further work on solitary waves was stimulated by the astonishing work of Gardner et al. 

( [ l i ] ,  Pa)) which showed that the initial value problem for the noniinear KdV cquation could be 

soived exactly using analytical rnethods on linear equations, This technique, called the inverse 

scattering method (or sometirnes inverse scattering transform), has since produced a hefty volume 

of mathematical literature and has becn applied to a wide variety of mode1 equations (of which 

the KdV cquation is just one example). See the books by Drazin and Johnson [16] or Ablowitz 

and Segur ([l]) for more on this topic. 

From a mathematical point of view solitary waves were interesting because certain special 

noniinear equations possessed solitary waves as  solutions. These equations could be analyzed 

using the inverse scattering method and tiad a host of interesting mathematical properties (see 

the early collection [39] for an approachable introduction). 

The study of interna1 waves has a long history of its own ([19]). In his book, Gill ([21)) 

indudes an entry from Benjamin Franklin's journal regarding the motion a t  the interface between 

oil and water. Franklin noted that the motion at the interface is quite pronounced even though 

the motion a t  the lree surface is nearly negligible. Gill's book contains many other interesting 

historical notes regarding waves in stratified fluids. The connection between vertically trapped 

interna1 waves and solitary waves was established through the work of Benney ([7]) and Benjamin 

([4])in 1966. Benney showed that smail, finite amplitude. vertically trapped waves in a shallow 
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occan were governed by the KdV equation (which has solitary wave solutions), while Benjamin 

used a variational technique to derive a solitary wave solution withou t explicitly deriving the KdV 

equation. We will quote extensively from a version of Bcnney's analysis in the following chapter. 

Bcnney's theory is an example of so called wveakly nonlinear theories (henceforth W NL). These 

tlieories have a vcry extensive, and active. literaturc with applications to internal wavcs reviewed 

by Crimshaw in ([2?]). 

The mathematica1 work on the KdV and reiated equations took some time to makc its way 

into the field of oceanography. In what is now a standard review ((501) Ostrovsky and Stepanyants 

state that while oceanographers olten observcd solitary waves in the interior of the ocean, it was 

not until the language of solitons and inverse scattering becarne widely known that a mcans to 

discuss such observations became available. Sorne of the observations were quite spectacdar (for 

example those of Osborn and Burch in the Andaman sea (491) and during the 1980s photos from 

space (which can be found on the Internet) served to stimulate even more interest. Ostrovsky and 

S tepanyan ts also no te t hat it was advances in remote sensing and oceanographic measurement 

techniques that made reliable observations of internal soiitary waves possible, a useful reminder 

i n  the prescnt theoretical work. 

The advent of cheap computation in the 1990s opened up new avenues for investigation of 

ISWs. In 1991 Turkington et ai. published a technique for cornputing fully nonlinear ISWs for 

a given stratification ([64]). This work presented a departure from W N L  theory in the s e n s  

that the IS Ws compu ted were exact solutions of the Euler equations. A version of Turkington 

et aLTs algorithm, along with more discussion of the related literature will be presented in the 

next chapter. The aigorithm derived there will subsequently be u s 4  throughout the remainder of 

this work. Lamb and various CO-workers have used Turkington's method as well as various other 

computational techniques to study many aspects of ISWs ((381, (311, [37], [XI, (351). 

A large part of this t hesis was motivated by the observations of Bogucki, Dickey and Redekopp 

off the California coast ([8], henceforth relerred to as BDR). These observations showed a correla- 

tion between the passage of a packet of ISWs of elevation and an increae in resuspended sediment 

a t  8 m above the ocean bottom. The paper also made a variety of predictions about how the 
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ISLVs interacted with the bottom boundary layer and how they wcre generated. Subsequently, 

Bogucki and Redekopp ([IO]) published iiiimericnl simiilations outlining a possible scenario for 

IS\V indiiced secliment resuspension. These simulations did not use fully nonlinear ISWs (and in 

fact wcre not presented in a clear manner). Redekopp ([11]) subsequently presented observational 

cvidencc of IS\V induced rcsuspension at a nurnber of sites in the Atlantic. The problcm of sedi- 

ment resuspension (and transport into the main water column) is vcry broad and wc will aim to 

examine sevcral differcnt aspects of its relation to fully nonlincar lSWs in this thesis. 

More generally, interest in ISWs and their life cycle continues today. There are well known 

regions of the world oceans where the generation, propagation and dissipation of ISWs are obscrved 

and measured (Ostrovsky and Stepanyants provide a map and a great deal of information is 

available on the Internet). Similarly there are several standard theoretical scenarios for ISW 

generation (see [El and [RI] )  and many (usiially based on WNL) models for ISW structure (see 

[32]). ISW dissipation remains largely iinresolvcd (though [211 does disciiss some simple models). 

1.0.2 Plan of Thesis 

In this thesis ive wish to examine thrce broad topics in the study of ful1y nonlinear ISWs. First 

we investigate how the presence of a background current affects fully nonlinear ISW properties 

(maximum amplitude, propagation speed, etc.). Second we i n t  roduce one method for corn pu ting 

tSWs past breaking, and subsequently use this method to discuss ISWs with trapped cores. Third, 

we discuss the interaction of lSWs with a viscous bottom boundary layer (henceforth BL). As a 

particular application we examine the relevance of ISW passage to sediment resuspension into the 

water column. 

Before each of these three topics is discussed in its own chapter a chapter of mathematical and 

numerical tools is provided. 

Each of the chapters presenting results ends with a discussion of how the results in this work 

relate to the relevant literature as well as to future research directions for the particular topic. 

For readers interested in specific topics the thesis need not be read in a sequential manner. 

The chapter on ISW-BI, interaction can be read on its own with the reader flipping back to the 
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Tools chapter and Stcady Waves chapter when neccssary. Sirnilarly. a reader less interested in 

numerical simulations can read the Tools and Steady Waves chapters and skim the remaining 

chapters according to their interest. The lSWs with Trapped Cores chapter depends CO some 

degree on boch the Tools and Steady Waves chapters, but is wholly independent of the ISW-BL 

Interaction chapter. 



Chapter 2 

Fundamental Tools 

The phenomenology of 1SWs is vcry complicated. This is the case primarily dire to the cornplexity 

of the underlying physical situation of a variable ternperatirre and salinity (and hence dcnsity) 

occan which is constantly in motion on a variety of fength scalcs. and in physical and thermal 

contact with the similarly active atrriosphere. In this chapter we develop the various tools (or 

rational simplifications) iised in  t h i s  thesis to investigate the behaviour of steady ISWs (steady 

in an appropriate frrirne of reference). We will consider 2-D situations only. We begin by dis- 

cussing the theory of weakly nonlinear waves (henceforth WNL) which extends the linear theory 

of infinitesimal waves to the case of finite, but small, amplitude waves. We quotc resiilts that 

derive the well known Korteweg de-Vries (KdV) equation for the horizontal structtire of the wave. 

This equation demonstrates the possibility of a balance between nonlinearity and dispersion (both 

finite amplitude effects), and indeed we wtite down the solitary wave solution (the proof that such 

a balance is possible). 

Following the section on WNL, and following the work of Turkington et al. ([64]), we derive 

a nonlinear elliptic cigenvalue problem for fully nonlinear ISWs. This eigenvalue problern is 

found to  be amenable to a variational formulation, which in turn provides an efficient means 

for numerically calciilating ISWs for a given background density and curent.  This algorithm 

allows us to compare and contrast the prcdictions WNL makes with large, fully nonlinear waves 
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(computed by the algorithm). it has becn found that for a large class of background density 

profiles WtVL does not successfully predict the structure of large lSWs ([34]). An alternative 

theory to CVSL for discussing large wavcs is given by the conjiigate flow thcory, which is discusscd 

in the fourth section. Unlike WNi, this theory is exact. hencc not rcstricted to small amplitudes, 

however it assunies the flow is uni-dircctionai and hence Icnves out al1 rricntion of dispersion. 

In the final section of the chapter Ise discuss the niirnerical mode!. as developed by Lamb ([31]) 

and modified by the author, used in al! subsequcnt work for sirniiiations that evolve in time. 
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2.1 Weakly Non-Linear Theory 

\Ve quickly sumrnarize the results of WNL for lSWs in shallow water. tas devcloped by Lamb and 

Yan ([38]) and extended by Lamb ([31]). Let r and p be two small. dimensionless parameters 

measuring the wave amplitude and the aspect ratio (the ratio of typical vertical to horizontal 

length scaln) of the waves, respectively. Define b. sometimes referred ro as the biioyancy. as 

Next introduce an  asymptotic expansion in the two srnall parameters 

This assumption iinearizes the governing equations a t  al1 orders. The fluid occupies the infinite 

strip bounded by : = O and = = 1. We seek separable solutions a t  each order. and find ~ h a t  at 

where B(x,  t )  is the horizontal structtire function. 6(:), the vertical structure function. and ci,, 

the linear, longwave speed are given by the eigenvalue problem 

C is a linear diflerential operator defined by the above. The above is conlmonly known as the 

Taylor-Coldstein equation (strictly speaking, the Taylor-Goldstein equation in the longwave limit). 

For the case of no background current, and physicaily relevant N ( t )  (e.g. stratifications with 

continuous N ( z ) .  multiple layer stratifications) the above eigen-value problem has an infinite set 
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of discrete eigenvalues c ,  which decrease as the mode number n increases ( [ 6 i ] ) .  The corresponding 

eigen-functions are labeled 4,. The mode of an eigenfunction is defined as the number of zeros 

of the  function strictly between : = O and : = 1 plus 1. In other words the eigenfunction that 

never crosses zero between the two boundaries is called the mode 1 solution and has the largest 

propagation speed. CVe will focus solely on mode 1 waves and hence drop the siibscript on c, 

and 4,. When a nonzero background current is included the requirement that ci, - Ci > O witl 

preclude the formation of critical laycrs (see [44] for a discussion of criticai layers in this context). 

.As an aside, note that it is not possible to demand that al1 modes satisfy c, - C i  > 0, and thus 

a nonzero background current will restrict the number of higher modes we can consider. tliough 

this will not be relevant in the following. To leading order b0 is given by 

b0 - = E ( z )  B ( r ,  t ) ,  
1v2 

w here 

Extensions to higher order can be found in ( [Sa] ,  [34]). 

To first order in both srnall parameters, the evolution equation for the wave amplitude is given 

by 

Bt = -ciw Bt -+ c2r1ociw BB, + pro1 Bt t r .  (2.7) 

By dropping the first-order nonlinear and dispersive terms in this equation, we see that the 

eigenvalue ci, is indeed the Iinear, longwave propagation speed. The physical parameters rio and 

roi are given by 
1 

-3 J(ci, - U ) 2  ~ ' ~ d ;  
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and 

Note that since ci, - U > O, roi < O whik rio can have either sign. With p = c equation (1.7) 

is the IidV equation and can be convertcd to standard form by switching to a reference frame 

moving with the wave speed. It can be shown that (2.7) has solitary wave solutions (see for 

example, (331) of the form 

w here 

Waves are depressions if bo > O and elevations if bo < O. Tlic wavelength A, and the nonlinear 

propagation speed are related via 

and 

In a frame moving with the wave the waves are symmetric about the 2 axis, with the largest 

disturbance occurring a t  the wave center (O = O). Note that since roi < O and )i2 > O waves are 

wavcs of depression if rio > O and waves of elevation if rio < O. With no background current the 

theory yields waves of depression (elevation) if the majority of the change in density occurs in the 

top (bottom) half of the water column. However, since varying Cl(;) varies rio, including possibly 

its sign, a background current may have an eflect on this simple relationship. Note also that 

borlo > 0, implying that solitary waves with Iarger amplitude propagate faster and are narrower. 

In particular this means that al1 finite amplitude waves propagate faster than the linear long wave 

speed (often labeled ci, in the following as c will be used for the ISW propagation speed). 

Waves break if, in a frame moving with the wave, a strearnline is vertical, or in other words if 
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~ t i e  : component of the gradient of the streamfunction is zero. In this frarne, to leading order we 

where dyb is the streamfunction of the background flow. As mentioned above, the largest distur- 

bances occur when O = O and hence to find the smallest wave amplitude at which brcaking occurs 

(hericeforth bg) wc consider vertical profiles at x = O onty. With the soli tary wave solution (2.10) 

the condition for brcaking reads 

Ci( : )  - boqwQZ = V. (3.14) 

To facilitate the solution for bk, define the height at ahich the maximum of horizontal velocity 

occurs, 2 * ,  as 

max(U(:) + u(0. :)) = U(tm) + ~(0.:'). (3.15) 

This means that first-order WNL predicts that waves will break for al1 stratifications and back- 

ground currents. We shall see that this true only for some cases. 

The approach discussed above can be extended to higher order a s  in ((34)). Higher order 

extensions are more accurate. 
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wherc the first is the continuity equation and the second is the vorticity equation. which results 

from a cross-diffcrentiation of the mornenturn equations. Note that t he total streamfunction is 

given by 

and that the above set of equations reqiiires Cl(:) to be steady. We switch to a frame of reference 

moving witli ttie ISW. The coiitinuity cq~ration norv reads 

J ( p ,  + iltb - cr )  = O .  

wtierc q is the isopycnal displacement. This transformation states that the density along an 

isopycnal rcmains constant and implicitly dcfines the isopycnal displacement q(r, 2 ) .  A diagrarn 

of the  situation is given in figure 2.1. We requirc that 

as well as the vanishing of ail derivatives of q as t --+ foo. Notice this implies that $ and al1 

its derivatives vanish as r -+ km as well. The definition of the isopycnal displacement q ( z , z )  

(2.22) lets us write 

$(: - q)J(r - q , $ +  ilb -CL)  = O (2.24) 

and provided that p f ( z  - q )  is not zero on an interval 



CHAPTER 2. FUiVDAMEIVT.4L TOOLS 

Figure 2.1: Definition diagram for q(z. r), the isopycnal displacement 
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for some function F. Using the vanishing of rl and al1 its derivatives for large r we find 

F(z) = $ b ( : )  - c z  

and hence 

This means that once r) is known al1 other field yuantities are simple to calculatc. Xest wtite the 

vorticity equation in a frame moving with the wave as 

X scries of algebraic manipulations leacfs to the equation 

for sorne function Cf: - v).  From the vanishing of rl, iI and their derivatives as x --, frzr, we 

find that 

(2.31) 

Using (2.30) and (?.3L) along with the definition of uT. we get an equation for q.  Some simplifi- 

cation shows that q satisfies the nonlinear, elliptic eigenvalue problem 

where c is the unknown wave propagation speed and Li(:) is the known background current. The 
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boundary conditioris are 

where If is the Auid depth. and 

This boiindary value problem was derived by Wang ((651). 

If we define Ü by 

U ( : )  = C U ( : )  

and X according to 

s tl A = -  
c2 

we can rewrite (2.32) as 

a form amenable to a variational formulation. Indeed by defining 

(O(: - q )  - l)? dzdz  

and 
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where 

we find that the eigenvalue problem (2.37) corresponds to the Euler-Lagrange equation for the 

constrained minimization probiem 

minimize E ( q )  + Q(q )  subject to F ( q )  = .4 (2.45) 

where A is a constant specifying the size of the wave. Note that D is the dornain on which we 

calculate the waves (the infinite strip in theory, a truncated strip in practicef . For the case of 

no background current E(r1) and F ( q )  can be identified with  the kinetic energy and a potential 

energy for the wave, respectively. l t  can be shown that H q F ( 7 )  is the available potential energy 

(henceforth APE) with or aithout a background current. The APE is the change in potential 

energy if the density field on an infinite strip is sorted aliabntically to be horizontally uniform 

(originally defined by Lorenz (421, a more recent reference being [13]). 

To apply a generalized version of the algorithm from T E W  we rewrite the problem as 

where 

The generalized algorithm for getting the ( k +  l ) th  iteration assuming that the &th is known, then 

reads: Solve the linear elliptic probiem, 

-v2$ = S(Z, r l k )  + R(t. $) (2.49) 

with Dirichlet boundary conditions. Al1 instances of 0 in (2.48 and 2.47) are replaced by O*. 
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which is defined as 

ck is defined from A'; according to (2.36). Then define 

-4 - F ( $ )  + JD J ~ ( ~ > ' ) ~ ~ d x d z  
A ~ + '  = A' max O, [ JDJS($ ) s t t~~ :  I 

As the algorithm is quite compiicated it seems prudent to highlight several points. First, the 

iteration over which allows us to fix the magnitude of the background currmt, is new (TEW 

do not include rr background current, and Wang does not fix the magnitude of the background 

current). In the work of Wang ([65]) the magnitude of the background current is alloived to  

change in ordcr to, in the opinion of the present author, facilitate forma1 convergence proofs of 

the algorithm. Second, the step (2.5 1) is equivalent to the Kuhn-Tucker conditions of optimization 

theory f these can be thought of as an analogue of the rnethod of steepest descent). It was derived 

in a more complicated form by TEW without the Boussinesq approximation. In this case it is 

actually possible to have Ak+' = O since the expression for r)if' has several terms. For the prescnt 

case we have not found any cases where A*+' = O. We should note that both the work of TEW and 

Wang on the convergence of the algorithm uses a notation that precludes a simple interpretation 

of the various steps of the algorit hm. 

In practice the rnethod is simple to  implement as each iteration requires the solution of a linear 

Helmholtz problern with Dirichlet boundary conditions. Note that since we fix A in (2.45) we 

do not specify the wave amplitude a priori. It should be noted that while the above algorithm 

is a simple generalization of the algorithm in TEW to the case of a wave superimposed on a 

background current, the convergence proofs a s  written in TEW or Wang do not apply to  the 

above. The results were tested by computing a candidate solitary wave using the above method, 

then using this wave as an initial condition in a tirne stepping mode1 of the full Euler equations 

to make sure that the numerical implementation of the algorithm was correct. 
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2.3 Conjugate Flows 

The behaviour of lSWs the value of rl in (2.45) is increascd can be classified under two different 

scenarios. The first is thc one predicted by first-order WNL and has been discussed in that section. 

Briefly, as ,4 increases the waves grow thinner and taller until they break (horizontal velocity equals 

wave propagation specd some~vhere in the wave). In the second scenario, as A increases from O, 

the (SN'S initially grow thinncr and taller. but after a certain point begin to broaden out and 

their amplitude tends to a limiting value. For large enough values of -4 the waves are flat in the 

middlc. As an aside, note that tiigher order WNL which takcs into account a cubic nonlinearity 

(and leads to the mKdV equation) predicts waves with a flat middle region (pz]). lndeed i l  we 

consider a frame moving with the wave and fix the origin to lie at  the mid-point of the upstream 

transition rcgion of a rightward traveling wave. then as we let A -+ CS the long, fiat-centered 

wave tends to a dissipation-Icss bore, or a srnooth, monotonie transition between two regions of 

flow in the horizontal direction only. The type of scenario encountered depends on the choice of 

the background stratification. 

The algorithm of the previous section ailows u s  to compute flat-centered waves, however we 

could ask (ignoring the shape of the transition region) if i t  is possible, given the background 

density and velocity profile in the upstream region, to compute the density and velocity profiles 

in the downstream region. The downstream region is referred to as conjugate to the upstrearn 

flow, or just the conjugate flow. The concept was introduced by Benjamin ([4]). In particular we 

would expect the compiitation of the conjugate flow to have a simpler form than the algorithm of 

the previous section since the flow is one-dimensional. 

The problem with no background flow has been discussed in detail by Lamb and Wan ([37]) 

and the governing equation with a background flow is quoted in ([36]). In ([37]) the roie of the 

Boussinesq approximation is discussed. We make the Boussinesq approximation in al1 su bsequent 

calculations. Consider a frame moving with the wave (at the prtsently unknown wave speeù c). 

The background upstrearn state is then given by 
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and the downstream state by 

(u. W. p . p )  = ( U p ( : )  - c. O ,  & ( : ) . p p ( : ) ) .  (2.54) 

Xcxt. define q ( : )  to be a given isopycnal's displacement froni i t s  upstream height. In other words 

the iipstrcani height of an  isopycnal pming  through : in the conjiigate f?ow i s  given by 2 - q. 

W c  ~assiime t h a t  al1 streamlincs conncct to plus and minus infinity. T h i s  immediatel y yields, 

from the definition of q .  t h a t  

&(:) = p(z - q ) .  (2.55) 

If wc consider two streamlines passing through t and : +A:. respectively, conservation of volume 

betwecn the two streamlines yields 

lire can solve t h i s  relation for Li,(:) and hetice in t h e  continuous limit A: + O get 

For t h e  case of no background current t h e  above simplifies to 

Since the flow is steady and inviscid we can apply Bernoulli's Theorem along a streamline. This 

yields 
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However noting that 

we can eliminate the term involving the iinknown function L;p in favour of a term involving the 

known function Ci(:). What is more, since we have assumed no vertical motion. both upstrearn 

and downstream statcs are in hydrostatic equilibrium. Ilence on using (2.55) ,  we get 

downstrearn. This rnenns that  if  wc cliflerentiatc (2.59) with respect to : wc can hope to gct an 

expression involving only c, q and the upstrcam density and velocity, both of which are known. 

Some simple, thotigh ttdious. algebraic manipulation yiclds 

The above can be obtained [rom equation (2.32) by ssuming that q has no r depcndence. In the 

above we employ the  standard definition of ~ h e  buoyancy frcquency. 

This means that 

X 2 ( ;  - q )  = -gp (2 - q ) .  

Since we consider a flat bottorn and a rigid lid we must impose the following boundary conditions 

The eigenvalue problem (2.61) can be easily solved by a shooting method. q(0)  is fixed to 

equal O. q:(0)  is chosen and c is varied to ensure q ( H )  = O. In general each choice of ~ ~ ( 0 )  
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will yield at lest one rnoclc-1 solution. Note howcvcr that t h  eigenvaliie problcm is non 

hence may yield more than one solution for a giïen choice of q,(O).  \Vhat is more. unlike a 

26 

Iinear, 

. linear 

eigenvalue prob]rm, varying ~ ~ ( 0 )  may change the solution (as opposed t.0 rnerely scaling it like in 

the lincar case). The correct choice of + ( O )  is dctermined by a n  auxiliary condition which rcflects 

the conservation of total horizontal rnomcntum fiiis. i.e. 

With some manipulation the auxiliary condition can 

f ff  

hc simplified to read 

A conjugate flow is thiis ri solution of (2.61) subject to t lie boiindary conditions (2.61') and with 

qz (O)  chosen to satisfy (2.64). Finally we miist mnke sure that the nssurnptiori of al1 strcamlines 

extending to plus and niinus infinity is not violatcd. ;\ strcarnline found at z downstream of the 

wave is found a t  r - q(: )  upstream of the wave. \Le thiis requirc : - q ( : )  to be an incrcasing 

function of :. This means that 

for vaIid conjugate flows. 
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2.3.1 Two-layer flow with constant vorticity 

Following the work of Lamb (1361) on threc layer fluids with piece-wise constant currents wc aim 

to use the simple case of a two-layer stratification with a lincar background current (constant 

vorticity) to derive some qualitative results regarding conjugate flows. 

Consider a two-layer fluid with densities, pz and pi for the iipper (lighter) and lower (heavier) 

layer as shown in figure 3.2. Without loss of generality we assume the wavefront is rightward 

propagating, Let the total water depth be given by H and far iipstrearn set the lower layer 

thickness to equal Hi. This means that the iippcr layer has a n  upstream thickness H - IIi, which 

we label H2. Further assurne that in  a frame moving with the disturbance ( w i t h  velocity c )  fat 

upstream there is a background current given by 

where is a shear strength parameter. The problem we wish to solve is to determinc the non- 

zero downstream lower layer thickness which ive label Hi + q and the associated disturbance 

propagation speed c and downstream velocity u'(:). 

We begin by noting that within each Iayer the density is constant and hencc vorticity (or u, 

for parallel fiow) is conserved. This rneans 

where i = 1,'L depending on which layer we are considering. Next impose conservation of volume 

flux in  each layer, Le. 
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Figure 2.2: Definition sketch for conjugate flow in a two-layer fluid. 
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These equations readily yield expressions for Cil and LI2: 

Next we wish to utilize Bernoulli's Theorem aiong two different streamiines to derive two expres- 

sions for ps (O).  Equating these two expressions will give u s  one of two equations for q and c needed 

to get a closed system of eqiiations. First consider the streamline along the surface. Upstream we 

set the surface pressure to equal zero, but downstream of the disturbance there may be a change 

i n  pressure which we will label p ~ .  Bernoulli's theorem under the Boussinesq approximation with 

the refercnce density labeled po then yields 

This can be solved for pfl to read 

In order to apply Bernoulli's theorem along the streamline which foIIows the bottom we need to 

write down the hydrostatic pressure distribution upstrearn ( p ( z ) )  and downstream ( p J ( z ) ) .  The 

upstrearn distribution has a sirnpler form due to the simpler expression for the layer thicknesses: 
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Thus at the bottom ( z  = O )  we have 

or if we define thc density clifference via 

the simpler 

With theie definitions we can write down Bernoulli's Theorem along the bottom 

1 1 
? P O ( - C ) ~  + p19H f AMHI = ~ ( U I  - clZ + P H  + hgH + <1pg(Hl+ q ) .  (3.77) .. - 

Upon substituting for p~ and simplifying this yields the single equation 

1 
O = ?po (Ui(Ui - ?c) - U2(U2 - ?c) - 2W2CH) + Apgq. (3.78) - 

Note that both Cri and U2 are known from (2.69, 2.60) as functions of q and c. To get a second 

equation and close the systern we rnust consider the conservation of  momentum flux 

(*u2 + p) dr = constant. 

Upstrearn we get 

dlup = lH ( [ z  - cl2 + pj l ) I  d~ 
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where the latter results [rom significant algcbraic simplification. Downstream the expressions are 

even rnessier: 

w here 

c2 
L [ ( H ,  + q)3  + ( H ~  - (Hi + i113)I 
3 

The second algebraic cqiiation results from equating the expressions for the upstream and down- 

strearn momentum flux, i.e. 

2.3.2 Numerical Solution 

CVe have not found it possible to solve (2.78) and (2.83) for 17 and c analytically (for piece-wise 

constant currents Lamb 1361 was able to find an anatytical solution). However it is easy to  solve 

the two nonlinear algebraic equations numerically by Newton's rnethod. First we can rewrite 

(2.78) and (2.83) in the forrn 
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Xest UT chooçc ari initial guess (qO.co)  and iipdate according to the rule 

wtierc J is t h c  .lacobian niatrix. 

l n  practice J is evaluntect numerically (with ndaptiw refinernent if the algorithm breaks down). 

'The arialytical solution given by Lamb [36] for the case of no background ciirrent is used as an 

initiai g i i c s .  Next ( is increased or decreascd. Xewton's method used to gct an approximate 

solution a t  this value of (. and the process is repeated until the solution for the desired value of 

( is reacheci. The algorithm is easy to irnplernent, very fast to execute. and provicies a quick and 

easy ivay to g ~ t  n qualitative idea of how the prcsence of a background current affects limiting 

ISW amplitudes. :\s an cxample considcr I I  = 100 m and the stratification givcn by 

- - :O 
p(:)  = 1 - 0.01 tanh (-1. 

d 

A s  t i  gcts srnaller this stratification npproachcs the two layer lirnit. 

In figures 2.3 and 2.4 we present numerical resuits for conjugate flow amplitude and propa- 

gation spcecf using the continuous and twdayer equations for two values of :o. The results are 

ptesented as functions of the constant background vorticity 

as given by equation (2.66). It can be seen that the twdayer technique is quantitatively accurate 

when the pycnocline has $ = 0.005. not as accurate when $ = 0.05, and gualitatively accurate in 

general. The isopycnd displacement and propagation speed decrease as grows more negative for 

al1 stratifications shown in the figures. This variation of conjugate flow amplitude and propagation 

speed with background current will be discussed in more detail in  the following chapter. 
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max q vs. U(H) +, = 20.0 Prop. Speed vs. U(H) \ = 20.0 

Figure 2.3: Conjugale Row maximum isopycnal displacement (left panel) and propagation speed 
(right panel) as a function of the constant background vorticity C for linear background velocity 
profile. H = 100. two-layer with interface at :O = 20.0 (cirele), continuous hyperbolic tangent 
density profile with (5. d) = (20.0.0.5) (star), (-0,  d) = (?0.0,5.0) (pentagram). 
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ma 4 vs. U(H) 5 = 30.0 

O two-layer 
t continuws d=0.5 
h continuous d=5 

Prop. Speed vs. U(H) $ = 30.0 

Figure 2.4: Conjugate Row maximum isopycnal displacement (left panel) and propagation speed 
(right panel) as a function of the constant background vorticity { for Iinear background velocity 
profile. twdayer  with interface at :O = 30.0 (circle), continuous hyperbolic tangent density profile 
with (io, d )  = (30.0.0.5) (star). (a, d )  = (30.0,5.0) (pentagram). 
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2.4 Numerical Mode1 

In this section we briefly discuss the numerical model used for al1 time-depenrient simulations in 

this thesis. The mode1 was developed by Lamb and is discussed in scveral of his articles ([30], 

[31], (331). \Ve follow the presentation in ([31)). In its original form the model solves the Euler 

equations (i.c. eqiiations (1.I) with p = O and K = 0) on a domain boiindcd by the topography 

a t  z = h ( r )  < 11 and the rigid lid at  t = H. where H is the total depth. The rnodel is bc?scd o n  

a second-order projection met hod. 

The time stepping proceeds in the following manner: First p is updated v ia  

Next the vector is cornputed according to 

Finally the veiocity field Ü and the pressure gradient e~ are updated via 

where I is the identity operator and P is the projection operator of a vector ont0 its divergence 

free part. 

The time step is variable. It is restricted by calculating the Courant-Friedrichs-Lewy condition, 

which States that a fiuid particle cannot travel the length of a grid cell in  one time step, and then 

applying a safety factor smaller than 1. Quantities a t  the n + i time step are calculated by an 

upwind extrapolation (see [31] and references therein for details of the method used). 

The cornputational grid allows the specification of bottom topography. The governing equa- 

tions are transformed tu terrain foilowing coordinates, and hence are solved in a slightly more 

complicated form than (1.1). The transformation allows grid refinement for regions of interest 
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Figure 2.5: Schematic of the computational grid showing the interior (circles) and boundary 
(squares) vector grid points as well as the scalar grid points (crosses). 
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(for example near the bottorn). The values of Ü, p, and d~ are given at the ceIl centen for al1 

interior points, and a t  the rnidpoints of ceIl edges for boundary points. A sample grid (taken from 

Lamb's paper on tidal simulations I31l) is shown in figure 2.5. 

The extension of the numerical method to include diffusion and no-slip bottom boundary 

condit.ions was done in part by Lamb and in part by the present aiithor. In its present state, the 

modcl allows for variable ectdy viscosities and diffusivities, but this option was not utilized in this 

t htsis. 



Chapter 3 

Steady Wave Results 

(n the previoris chapter we dcrived a nurnber of toots with which we can discuss large ISWs for a 

givcn background density and horizontal current. In this chapter we present results pertaining to 

stead y waves as well as some of the consequences steady wave results can have on the evoliition 

of an initial disturbance. 

It  is now reasonably well known that WNL does not accurately dcscribe the spatial structure 

of large waves. We briefly quote from work on this topic by the present author ([59]). Lamb has 

carried out a higher order study for simpler stratifications ([34]). 

CVe consider the observations of BDR in water 60.0 m deep. The observed density profiIe 

consists of a nearly unstratified upper layer 40.0 m thick overlying a linearly stratified layer 20.0 

m thick. tVe follow the work of BDR and mode1 this situation by the density profile 

pop(:) = 1024.735 + C(ln (cosh (r - 20)) - z) 

C = 0.0093. 

p is plotted in figure 3.1 along with the buoyancy frequency using po = 1024.8 kg m3. 
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density 

Figure 3.1: Density profiles. (a) Density for BDR density, (b) Buoyancy frequency N (2) for BDR 
densi ty. 



We considered a background current of the form 

where s specifies the direction of the background current a t  the surface. ive will not go into the 

cletails of the sturly (the intercsted rcder  c m  rcad [XI]). In figures 3.3. and 3.3 we preçcnt 

con~parisons bctwcn the fully nonlinear and \VSL vertical profiles a t  the wave crest of the 

isopycnal tiisplaccmcnt r] and horizontal velocity t i ,  respectively. It is clear from the figures 

that the W XL fit deterioratcs with increasing wave amplitude and hence if a method to calculate 

fiilly nonlinear IS\Vs is available it shoiild be iised to stiidy farge waves. 

The main rcsiilts section of this chapter rocuses on a commonly uscd family of stratifications 

(the hypcrbolic tangent family ) and the cffec~s varying the stratification properties and back- 

ground current havrt on various wave proptbrties. Particiilar attention is paid to large waves and 

the bounds on wave amplitude. 

The next section disctisses a few time dependent consequences t hat can be predicted using the 

cornputationally cheaper steady results. AS wcll. one instance of an 1SW that cannot be calculated 

by either WNL. or the variational ISW cakulating algorithm, is presented. 

The final section surnmarizes the major findings of the chapter and discusses thern in terms 

of the relevant literatiire. 
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Figure 3.2: Cornparison of WNL and fully nonlinear waves for the BDR density profile. Eulerian 
Theory: r) profiles. Fully nonlinear - solid, WNL - dotted. Various S. 



CHAPTEA 3. STEADY WAVE RESULTS 

Figure 3.3: Cornparison of W N L  and fully nonlinear waves for the BDR density profile. Eulerian 
Theory: horizontal velocity profiles. Fully nonlinear - solid, WNL - dotted. Various S. 
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3.1 Solitary Waves with Open Streamlines 

In the introduction to this chapter we have shown resuits, using a stratification obsctved in the 

field. indicating that WNL does not provide an acciirate description of large IS \ i s .  In this section 

we examine fuliy nonlinear ISWs for a class of sirnpler model stratifications with the aim of taking 

into account the role of a background current. In particular we wish to focus on large lStVs well 

past the region described successfulIy by WKL. 

3.1.1 Sample Run 

To motivate our investigation consider the following numerical simulations of the ~insteady Euler 

equations. The simulations are performed on a computational domain that is 4000 m wide and 

100 rn deep with a grid spacing of 2 by 1 rn in the horizontal and vertical. rcspectively. WC 

consider an ambient stratification given by 

p(:)  = 1 .O - 0.01 tanh (= - ;?gomo) 

and a background ciment given by 
1 

U(:) = 3 . 0 1  
H 

with H = 100 m. The initial density profile is given by 

with qi given by 

x - 150 
q, = -15.0sin 

H 
) - tanh (- 

1 O 

The initial density contours, along with the contours after 600 seconds are presented in figure 3.4 

for the case of no background current, and in figure 3.5 using the background current (3.4). 

It is clear from these figures that the initially steplike density disturbance breaks up into two 
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Figure 3.4: Density profiles for sample run with no background current. a) t = Os b) rightward 
propagating disturbance t = 600s c) rightward propagating disturbance t = 1000s. Only bottom 
60.0 m of the water column is shown. 
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Figure 3.5: Density profiles for sample run with background current. a) t = Os. Only bottom 
60.0 rn of the water colurnn is shown. b) rightward propagating disturbance t = 600s c) leftward 
propagating disturbance t = 600s 
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sets of rank-ordered wave trains and some small dispersive waves. Ciowever, due to the presence 

of the background current the rightward and leftward traveling disturbances are not symmetric. 

It cari be seen from figure 3.5 that the leading rightward propagating wave is taller and narrower 

than the lesding leftward propagating wave. ilence. while the evolution with no background 

currcnt (figure 3.4) is symmetric about r = 0. the evolution with a non-constant background 

current is not. Also frorn figure 3.5 we can see that al1 wavcs are advected rightward. This is due 

to the fact that the vertically averagecl background current is non-zero. 

CVe will return to these sample simulations in the following section. 

3.1.2 Methodology 

Keeping in  mind the qualitative rcsults of figure 3.5 we now examine the eflect of a background 

current on steady ISWs. We use both WNL and fully nonlinear wavcs, though the former is anly 

used for qualitative ideas (given the reçults mentioncd in the introductory section anything more 

would be inadvisable). 

ive considcr stratifications of the form 

The stratification (3.3) is an  example of this class of stratification. In the above, specifies the 

center while d specifies the thickness of the pycnocline. When there is no background current 

stratifications with > 0.5 have ISWs of depression, while those with ro < 0.5 have ISWs 

of elevation. By varying the parameters we can change the nature of the upper bound on the 

ISW amplitude. One type of stratification exhibits significant stratification right down to the 

ocean bottom (or up to the surface) and a second type exhibits a mixed layer adjacent to both 

the bottom and surface of the ocean. H, the total depth, is set to equal 100 m for ali cases 

considered. We will consider d = 5.0 m (thin pycnoclines) and three values for =O, 10.0, 20.0 

and 30.0 m (though results will be presented in dimensionless forrn, as discussed below). We 

focus on rightward propagating waves (the exception is in tirne-stepping runs where both left and 
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right propagatirig waves result from the same initial condition). W hile we will generally consider 

waves of elevation. under the Boussinesq approximation the results can easily be generalized to 

situatioris involving waves of depression providing one transforms the dcnsity and background 

veloci~y profiles appropriately (more on this later). 

R.rcsll that the variational algorithm used to calculate ISWs fixes /l, the available potentiai 

ibnerg?. and not the rvave amplitude (maximum isopycnal displacement) or the wave propagation 

s p t ~ d .  The two types of stratification mcntioned abovc correspond to two differcnt scenarios of 

IS\V hchaviour as A is increasecl from O. For stratifications with a mixed tayer adjacent to the 

bottom and top boundarics, waves initialty become thinner and taller (<as predicted by WNL), but 

when the maximum isopycnal displacement reaches a certain point the waves stop growing in size 

and bcgin to  broaden out. cvcntually bccoming flat in the middle. For broad enough waves the 

velocity in the flat, rniddle part of the wave is horizontal and corresponds to a conjugate flow of the 

original stratification and background ctirrent. AS discussed in the previous chapter, conjugate 

flows arc governcd by a nonlinear ODE cigenvalue problem and hence are computationally chcapet 

to calculate thari fully nonlinear ISiVs. Sec ([3C]) and ([36]) for detailed discussions of conjugate 

flows. Wi th no background current. wave broadening is generall y observed when the mid-point 

of the pycnocline approaches the mid-depth. As we will show below (and as shown in [36]), 

including a background current changes this criterion. Note, in certain cases (generally when 

the pycnocline i s  well away from the  mid-depth) the variational algorithm will fail to compute 

wavcs past a certain, generally large amplitude. These large waves are found to have Richardson 

numbers close to. or even below, 0.25 and hence we believe the variational algorithm fails to 

converge due to  shear instability of any larger waves. 

In summary, the wave amplitude is bounded above by one of three possible scenarios. First, 

thc waves rnay reach the point a t  which the streamlines are vertical in a frame rnoving with the 

wave (i.e. Ulotal  = O(:) + UuiovL-tnduccd = C) somewhere in  the water column and the waves 

break. Second, the variational algorithm usai to compute the waves rnay fail to converge to a 

solution due to  shear instability. Third, the waves broaden out and tend to the conjugate flow 

solution. The size of the largest. non-breaking wave cornputable will always be identified by its 
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maximum isopycnal displacement. which will in turn be labeled qs. Quasi-steady. solitary-like 

waves past breaking will bc the subject of the following chapter. Note that the question of what 

is the maximum wave amplitude to actually appear in the ocean is a miich more difficult question, 

and will not be pursiicd in the prescnt work. 

We will present the resiilts in non-clirnensional furm. Towtrds this we define 

niaxp - rninp 
9' = Y 

Po 

C H  = &77 

where (Z denotes a dirnensionless qiiantity corresponding to a dirnensional quantity Q. for al1 

quantities. 

We will mostly focus on linear background currents with a maximum velocity a t  the surface 

and 2ero slip velocity a t  the bottom. (in dimcnsionIcss forrn) 

where [ is given by 

< = max (0') (3.10) 

and specifies the maximum vorticity due to the background current. We will also consider shear 

tayer currents given by (in dirnensionless form) 

The parameter fj specifies the center of the shear layer. while d, specifies its thickness. Notice 

that for both (3.9) and (3.11) fi(?) > O for al1 whenever < > 0. 

We will compare currents for fixed values of S. This means we will be comparing currents 
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whose absolute maxima may not match. \Ve rvill refer to the maxirriiim (minimum when the 

background current is negative) dimensional current as L!Par. and ail1 henceforth drop the tildes. 

3.1.3 WNL Results 

Let us  now consider some results from \VNL. 

In figure 3.6 we plot the dimcnsionless iinear longwave propagation spccd cr, (upper panel) 

and the scaled, dimensionless linear longwave propagation s p e d  cm (lowcr pancl) versus < for the 

linear background current profile. The scaled, ciirnensionlcss propagation speed is de fined v i a  

This scaling removes some of the linear trend of the ci, vs < ciirves visible in the upper panel of 

figure 5.6. Also note from the upper panel that for al1 three values of =O, c increases with <. 
From figure 3.6 we can see that  there is an iipper bound on ( for which we can compute WNL 

results. This bound is given by the value at which U ( H )  and cl, arc cqual (critical layer forms). 

From figure 3.6 one can see that the maximum value of < for w hich wavcs can be found increases 

as :O increases. This increase continues until zo = 0.5. When :O = 0.5 first-order WNL predicts 

no mode one ISWs. M e n  :O > 0.S we get ISWs of depression, which correspond (under the 

Boussinesq approximation) to the waves of elevation produced by a stratification with to refiected 

about z = 0.5. ( is bounded below due to the change in cl, caused by the depth averaged current. 

At some point advection by the depth averaged background current wilI cause cl, to become 

negative, and again a critical layer to form (i.e. critical layer forms when ci, = O). Mowever, it 

is impossible to ptedict where this will occur a priori. Since finite amplitude waves have a larger 

ci, this bound is also dependent on wave amplitude. In practice the variational algorithm fails 

to converge due to  shear instability before the critical layer is reached in al1 cases tried. 

In figures 3.7 and 3.8 we plot X (a  rneasure of wave width given by 2.12) and the first order 

WNL coefficients (the dispersive coefficient and the nonlinear coefficient rio), respectively, vs 

(. For the calculation of X we take bo = 1.0. Both rio and roi are scaled by their counterparts 
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Linear prop. speed vg 

Modified linear prop. speed (rernove linear trend) v$ 

Figure 3.6: Linear longwave propagation speeds vs f . a) dirnensionless ci, b) scaied, di mension less 
C l ,  
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WNL width (ampiitude=.Ol) detail vs. 5 

Figure 3.7: WNL width for waves with amplitude set to 1 vs f .  Lowet panel is a detail of the 
upper panel. 
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WNL coefficient ro, vs. 6 
1.051 1 1 1 I 1 

Figure 3.8: WNL parameters vs <. Upper panel - nonlinear coefficient rio, Lower panel - dispersive 
coefficient roi 
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foiind whcn < = O (see Table 3.1.1 for the values a t  = 0.0). 

Table 3.3.1 :O, cl, rio and roi for the case of no background current. These values are used to 

nonclimensio~ialize the first-order coefficients i-10 and roi. 

From figure 3.7 we can see that the width of thc waves increases as ( grows more negative. For 

the case = 0.1 this variation is srnall. For :O = 0.2 we find the wave width more than triples 

for the most negative value of < given. The case 20 = 0.3 is even more extrerne with the predicted 

width appearing to grow unbounded near < = - 1.0 (UPa'  = -4.0 in dimensional form). Indeed 

from (2.12) and figure 3.8 we can see that rio = O near < = -1.0 (Va' = -4.0 in dimensional 

form) and this gives a singularity in  the formula for width. Notice that this means that WNL 

preclicts waves with opposite polarity for the regimes < < - 1.0 and ( > - 1.0 for the case = 0.3. 

In the region around ( = -1.0 where rto is nearly zero the weakly nonlinear theory presented 

in this thesis breaks down and rnust be augmented by adding higher order terms (for example a 

quadratic nonlinearity as in the mKdV equation could be added ([22])). We will return to the 

reversal of polarity for fuily nonlinear ISWs later. 

3.1.4 Rilly nonlinear results: Bounds of wave amplitude 

We now consider fully nonlinear ISWs as calculated by the variational technique discussed in the 

previous chapter. tVe wish to investigate several points. First of al1 we would Iike to know what 

the upper bound on isopycnal displacernent is for various values of { and (Le. how qb changes). 

This means we also n e 4  to determine the nature of the upper bound (conjugate flow, shear 

instability or wave breaking). Second we would like to investigate the change in the maximum 

horizontal velocity, propagation speed, and wave half-width as ( changes. For both of these issues 

we also investigate the role the geometric shape of the background current ptays. Finolly we 
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Içopycnal diiplacment bounds vs. shear - linear case 
L 1 I l 1 

a breaking iimited 
v shear limted 

Figure 3.9: Bounds on isopycnal displacements as functions of for linear background currents. 
:Ill three cases of are shown 

would like to investigate the actual vertical profiles of isopycnal displaxement, horizontal velocity 

and Richardson nurnber a t  the center of the wave (i.e. the wave crest). The horizontal profiles of 

the wave induced velocity a t  the surface will also be discussed. 

We begin by showing, in figure 3.9, the upper bounds on isopycnal displacement as it varies 

with f for the linear background velocity profile (3.9). Al1 three values of :O used are shown. In 

this figure, as in al1 future figures involving the upper bound on isopycnal displacement, we follow 

the convention that  triangles denote upper bound by shear instability, diamonds indicate upper 

bound by conjiigate flow, and squares indicate upper bound by wave breaking. From figure 3.9 we 
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can note that the ;O = 0.1 case has the Iargcst cornputable waves when is positive and slightly 

negative, For positive values of ( the three c a e s  for differing :O behave in a similar manner. 

:III three curves of qb vs < are bounds by shear instability and increase with increasing c. The 

rnasinium value of < used for cach of the three values of :O is determined by the formation of a 

critical Iayer. Since ISWs have a propagation speed that grorvs with amplitude, and is bounded 

below by the linear long-wave speed, this value of < is largcr than thcrt for WNL. In other words for 

a certain range of < d u c s  wc will only be able to compute ISWs larger than a certain amplitude. 

Examples of this phenornenon will be presentcd below. 

For negative values of f thc :Q = 0.3 case is bounded above by the conjugate flow amplitude. 

The :O = 0.2 is botinded above by the conjugate flow amplitude when < < -0.5 and is otherwise 

boiinded abovc by shear instability. In gencral it can be said that the :O = 0.2 and 0.3 curves 

hehavc in a sirni lar rnanner w h i l e  the :O = 0.1 ciirve behaves quite difkrently. This is due to the 

fact that only the = O. i case exhibits wavc hrcnking and hence does not have a conjugate Bow. 

The amplitude of the conjugate flow that botinds the = 0.2 and 0.3 calses when f < O dccreases 

as < becomes more riegative. For the :O = 0.3 case the conjugate flow amplitude becomes negative, 

and hence lSWs reverse polarity (bccome waves of depression in this case). The point a? which the 

reversal of polarity occurs corresponds to the point at which rio changes sign. This means that 

revcrsal of polarity is successfully predicted by WNL. The possible values of ( are bounded below 

by the point a t  which advection by the background current causes the wave propagation speed 

to become negative, and hence a critical layer to form. In practice we found that the variational 

algorithm failed to converge, du to shear instability, before a critical layer formed. Finally notice 

that for = 0.1 and f < O the curve is rather more concave up than the corresponding curves 

for the :O = 0.2 and 0.3 cases. Again this can be attributed to the qualitatively different nature 

of the upper bound on the wave amplitude. 

Next we consider the three cases in detail on their own. In figure 3.10 we show results for 

the :Q = 0.3 case. The reversal of polarity is now clearly visible, as is the region (small in this 

case) where tfiere is a minimum amplitude for waves that can be calculated due to critical layer 

formation. Also included in the figure are actual values for the conjugate flow amplitude for 



Figure 3.10: Bounds on isopycnal displaceinen ts as fiinctions of < for linear background ciirrents. 
3, = 0.3 

lsopycnal dispiacmenl bounds vs. shaor - linoar COSU 5.0.2 

0.45 - 7 

v sheor limcleû 
O conluagte flow Inniled 

0.4 - O cntkd layer lirnited 
conjugale iiow twoaks * con u ale flow am Iitudo 

0.35 - 

Figure 3.1 1: Bounds on isopycnal displacements as functions of C for linear background currents. 
z', = 0.2 
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zO=O.l Isupycnal dijplacment boundr vi. shear - tinear case 

Figure 3.12: Bounds on isopycnal displacements (as fiinctions of ( for linear background currents. 
:,, = 0.1 

cases in which shear instability prevents the calculation of lSWs right up to the conjugate flow 

amplitude. In practical terms, the shear instabiii ty exhibits itsetf in the variational algorithm's 

failure to converge. 

Figure 3.1 1 (for 20 = 0.2) is sirnilar in most respects to figure 3.10. The two key points of 

difference being the larger region where a minimum wave amplitude due to critical layer formation 

exists and the fact that no reversal of polarity occurs. Instead it was found that for very negative 

values of ( the computed conjugate flow was breaking. However the conjugate fiow amplitude for 

the smallest non-breaking case was about 0.01. 

Figure 3.12 shows the zo = 0.1 case. Again we see a ctear region where a minimum wave 

amplitude due to critical layer formation exists. We can also note that much more negative values 

of yield non-breaking waves for this case compared to to = 0.2 or 0.3. This is due to the larger 

values of c for the t0 = 0.1 stratification. No non-breaking conjugate flows were found for any 

values of (. 

Next we turn to the issue of the geometric shape of the background current. At the outset of 
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I I  

shear layer p.8 ?=O. 1 

Figure 3.13: Bounds on isopycnal displacements as  functions of ( cornparing linear background 
currents with various shear layer currents- :O = 0.1 
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the discussion it should be pointed out that there is no possibility of being exhaustive (something 

we can strive for with linear background currents). CVe can merely seek to gain an idea of 

how background ctirrents that are geometrically more complex than linear currents change the 

results. Taward this end we consider three shcar layer currents of the form (3.1 1) for the :O = 0.1 

stratification. Two are centered at the center of the pycnocline ( z j  = 0.1) and have thicknesses 

given by di = 0.1 and 0.2. The other is centcred well away from the pycnocline (at :j = 0.8) and 

has a thickness given by dj  = 0.1. The currents are chosen to allow us to make some statements 

about the importance of shear in, and away from, the pycnocline. 

In figure 3.13 we show the isopycnal displacement bounds versus ( for the linear current and 

the three shear layer currents. The most immediately obvious difference is between the shear layer 

ccntered well away from the pycnociine and al1 the other cases. The shear layer centered away 

from the pycnocline is bounded for ali < by shear instabi1it.y and qb  is only weakly dependent on  t. 

Furthermore, the range of values for ( is bounded above and beiow by points where the variational 

algorithm fails to converge (as opposed to critical layer formation). The shear layers centered a t  

the center of the pycnocline are qualitatively similar to the linear case. Namely, positive values 

of < have an upper bound due to sheat instability, white negative values o f f  are bounded above 

by wave breaking. For al1 the curves the breaking amplitude becornes smaller as ( grows more 

negative. Note however that both shear layer cases centered at rj = 0.1 have a range of values 

bounded by points where the variational algorithm fails to converge. The dj  = 0.2 case has a 

smaller range of possible f values. A partial explanation for this is that for a fixed value of ,f 

the di = 0.2 case will have double the UPar of the dj  = 0.1 case. In other respects however, the 

dj  = 0.2 case is closer to the linear case when compared to the dj  = 0.1 case (i.e. thicker shear 

Iayers behave more li ke linear currents). 

In figures 3.14, 3.15, 3.16 we show the q b  versus (E curves for the three shear layer profiles in 

detail. 
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zo=O. 1 I m c n a l  dispiacmenl bounds vs. shear - shear iaysr ?=O. 1 d.iO. 1 

Figure 3.14: Bounds on isopycnal displacements as functions of ( for = 0.1 . Shear 1aycr current 
= 0.1 I r j  = 0.1. 

Figure 3.15: Bounds on isopycnal displacements as functions of < for :O = 0.1 . Shear iayer current 
zj = O -  1 dj  = 0.3. 
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Figure 3.16: Boiinds on isopycnal displacements a s  functions of for zo = 0.1 . Shear layer current 
:, = 0.8 dl = 0.1. 

3.1.5 Fully nonlinear results: changes with wave amplitude 

Sext we'd like to get some perspective on what happens to the waves for a given background 

current as the wave amplitude (maximum isopycnal displacement, 'lmar) changes. The number 

of possible figures that can be shown can be quitc overivhelming. For this reason wc will focus on 

three quantities, namely the maximum horizontal velocity (henceforth referred to as u,,,), the 

wave propagation speed (c) and the wave hall-width. The fint two are chosen to emphasize the 

difference betwcen cases with and without wave breaking (recall that when wave breaking occurs 

u = c somcwhere in the water column). The depth averaged background current will, in general, 

modify both c and u,,, by advecting the entire wave. To account for this problem (and because 

we expect the background current in the pycnocline to be more important than the background 

current outside of it) we plot c - U ( Q )  and u,,, - U ( z o ) .  This, of course, will not affect whether 

wave breaking occurs, or shift its location. The cuves will be referred to as the u,,, and c versus 

Vmar C U W e S .  

The point of showing how the wave half-width changes with wave amplitude, q,,,, is obvious. 



Prop Speed and maximum u us. max. isowtnal disp. 6x0 1 - linear 

Figure 3.17: Maximuni horizontal velocity and ivave propagation speed as functions of the maxi- 
muni isopycnal displaccment. :O = 0.1. linear current { = 0.4515, 0. -0.4515 .-0.93 

Recall. however, that there is no unique way to define the half-wave width. W e  choose to do so 

in the following rnanner: first find the height a t  which the isopycnal displacement is maximum. 

second consider the density through t his point as a function of x. third find the half-width of this 

function. Other possible choices include using the wave induced surface or bottom current. Both 

would give results qualitatively similar to  those found beiow. Since the :O = 0.3 and :O = O.? 

cases were found to be qualitatively similar w t  show plots only for the :O = O. 1 and :O = 0.2 cases. 

In figure 3.17 we show the u,, and c versus q,., curves for linear background current for 

four diRerent values of <. For non-breaking waves u,., < c, with the difference decreasing with 

increasing qma+. It can be seen from the figure that for the two negative values of Ç the u,., 

and c curves cross indicating wave breaking. Note that strictly speaking we should stop the 

curves at  the exact point where they cross and wave breaking sets in. We choose to continue the 

curves slightly past breaking to draw attention CO the fact that the curves cross (and to hint at 

the fact that the variational algorithm may be used to discuss waves past breaking, as is done 

in the next chapter). For E > O tve find that the curves do not cross, indicating, in this case, 
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Wave hall-width vs. max. sopycnal disp. 6x0 1 - linear 

Figure 3.18: \\;ave half-width as a runction of the maximum isopycnal displacement. :O = 0.1, 
linear currcnt < = 0.4515, 0, -0.45 1.5 ,-0.93 

an uppcr boiind due to shear instability. Note that for rightward propagating waves, in general, 

waves of elevation have the largest positive wave-induced currents near the bottom and the largest 

negative wave-induced currents near the surface. Furthermore the positive wave-induced currents 

tend to have a larger magnitude than the negative wave-induced currents. In practice this means 

that for non-negative background currcnts it is possible to have u,,, occur outside the wave (i.e. 

due to  the background current). This is exactly what happens for smaller waves (Le. the u,,, 

curve has a flat section and a corner) for ( = 0.4515. Also note that the flat part of the u,,, 

curve nearly intersects the c curve. The point where this occurs is the point at  which the lSWs 

reach their minimum amplitude due to  critical layer formation. The variational algorithm breaks 

down before this point is reached. For this reason we are never able to calculate the minimum 

amplitude exactly (though through carefully repeating the computations with different values of 

the available potential energy we can get rather close). To get the minimum amplitude we use 

the standard third order spline interpolation-extrapolation algorithm in the Matlab package. 

In figure 3.18 we show the haIf-widt h versus mrtvimurn isopycnal displacement curves for linear 
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Prop. Speed and maximum u vs. max. isopycnal disp. 5 x 0  2 - Iinear 

Figure 3.19: Maximum horizontal velocity and wnve propagation speed as functions of the maxi- 
mum isopycnal displacement. zo = 0.2, linear current < = O.4SI.5. 0. -0.4515 .-0.93 

background currents with the same four values of ( as in figure 3.17. It can be seen from figure 3.18 

that in general the wave half-width is rather large for small waves, then decreases rapidly until a 

minimum is reached. The minimum is followed by a gradua1 increase. The more negative values of 

f yield Iarger wave half-widths. Also note that since there is a iowcr bound on the wave amplitude 

for the f = 0.4515 case no region of hall-width decrease appears on the graph. 

The above results can be cornparcd and contrasted with the corresponding revults for the 

= 0.2 case found in figures 3.19 and 3.20, for the u,,, and c versus qmûc curves, and the 

half-width versus qmat curves, respectively. From figure 3.20 we can note that the 20 = 0.2 case 

has waves that are a great deal wider for al1 values of < when compared with the zo = 0.1 case. 

For the negative values of ( where the maximum isopycnal displacement is bounded above by 

the conjugate flow amplitude this is very easy to understand: As waves near the conjugate flow 

amplitude increasing -4 can no  longer be accomplished by increasing wave amplitude, hence the 

waves begin to broaden, eventually becoming Bat in the middle (see the article by Lamb and CVan 

[3i] for more details). From figure 3.19 we can see that since no wave breaking occurs for the 
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Wave hall-wdlb vs. mûr. ~ s o g y c ~ l  disp. %=O 2 - Iinear 
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Figure 3.30: Wave half-width as a function of the niaxirniim isopycnal displacement. = 0.1, 
linear ctirrent ( = 0.45 1.5. 0, -0.451.5 .-0.93 

:O = 0.2 case, the u,,, curves rcmain below the c curves for al1 values of (. Also notice that for 

< = 0.4515 u,,, occurs outside the wavc for al1 but the largest wavcs (Le, nearly the entire u,,, 

versus qmot curve is flat). 

Next we return to the effect of shear layer currents versus the effect of linear currents. CVe 

choose ( = f0.22575. This value of ( has no minimum wave amplitude for any of the cases 

considered and hence allows a comparison over the full range of wave amplitudes. As before we 

consider linear background ciments as well a s  three different shear layer profiles: two centered a t  

the center of the pycnocline (i.e. :j = 0.1 and 0.2 for the cases :O = 0.1 and 0.2, respectively) 

and one centered well away from the pycnocline (i.e. zj  = 0.8). One of the shear layers centered 

at the pycnocline is chosen to be twice as broad as the other (i.e. d j  = 0.1 and 0.3). The shear 

layer outside of the pycnocline is chosen to have the sarne width as the narrower of the two shear 

layers centered a t  the center of the pycnocline (ix. d, = 0.1). 

In figures 3.21 and 3.23 we show the u,,, and c versus qmllr curves for the various background 

currents with = -0.21555 and 0.22575, respectively. The corresponding curves for half-width 



2,=0.1 - c and rnarimum u vs. max. isopycnal disp. <=-O 2258 

Figure 3.11: Maximum horizontal velocity and wavc propagation specd .as fiinctions of the mawi- 
mum isopycnal displacement. .-O = 0.1. linear and shear Iayer currents E = +U.11575 

Figure 3.22: \Vave half-ridth as a function of the maximum isopycnal displacement. :O = 0.1. 
linear and shear layer currents < = -0.22575 
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z,rO. 1 - c and maximum u vs. ma. uopymel disp. <=O.US8  

Figure 3.23: Maximum horizontal velocity and wave propagation speed as functions of the maxi- 
mum isopycnal displacement. :a = 0.1, linear and shear layer currents C = 0.22575 

x,=O. 1 - Han-wbdlh va. ioopycnel disp. -€.-0.2258 

Figure 3.24: Wave hall-width as a iunction of the maximum isopycnal displacement. :O = 0.1. 
linear and shear layer currents [ = -0.22575 
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Figure 3.25: Maximum horizontal velocity and aave  propagation speed as functions of the maxi- 
mum isopycnal displacernent. :O = 0.2. linear and shear layer currents ( = -0.22575 

Figure 3.26: Wave half-width as a function of the maximum isopycnal displacernent. r o  = 0.2, 
linear and shear layer currents = -0.22575 
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2,-0.2 - c and maximum u vs. ma%. ~sapycnai disp. <=0.2258 

Figure 3.27: Maximum horizontal velocity and wave propagation speed as functions of the maxi- 
mum isopycnal displacement. :O = O.'?, linear and shear layer currents ( = 0.22575 

Figure 3.28: Wave half-width as a function of the maximum isopycnal displacement. zo = O.?, 
linear and shear layer currents < = -02257.5 
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can be found in figures 3.22 and 3.24. Frorn figure 3.21 we can see that only the linear, and 

shear layer with ( z j , d j )  = (0.1.0.2) casses lead to wave breaking. In fact for the shear layer w i t h  

- -  = 0.1. d j  = 0.2 case. wave breaking occurs very dose to  the shear instability Iimit and some 
-J 

care had to be taken to actually compute waves past breaking. From al1 four graphs it appears 

that IS\Vs computed using the 2, = 0.8 background current are very close to the waves that result 

whcn thcre is n o  background current. In fact there appear to be only trvo differences between 

the no background crirrent and q = O.S. cf, = 0.1 cases. First. as evidenced by figure 3.13, the 

maximum wave amplitude computable changes slightly as ( varies for the :, = 0.8. d j  = 0.1 

case. Second, for the shear layer with zj = 0.8, d j  = 0.1 case, when < becomes large enough in 

magnitude the variational method stops being able to compute ISWs at all. 

For the ( = 0.22575 cases figure 3.23 shows that al1 shear layer cases have a maximum wave 

amplitude srnaller than the linear current case. From the same figure we also see that the region 

where u,,, lies outsidc the wave occurs only for the linear background current, and : j  = 0.1. 

dl = 0.2 cases. Since we fix ( (as opposed CO ( ; P u )  the amplitude o l  the background currents for 

the linear and z, = O. 1, cij = 0.2 cases is larger than for the corresponding 5 = O. 1, dl = 0.1 case, 

and hencc the above result is not unexpected. 

The corresponding figures for the (zj, d j )  = (0.8,O.l) and (,, d j )  = (O. 1,0.2) cases have been 

produced. They confirmed the qualitative comments made about these cases in the text, but were 

not deemed by the author to be sufficiently differcnt from the obove to merit their inclusion in 

the text. 

To ensure that the above results are not special to the zo = 0.1 case we show a similar 

cornparison for the :O = 0.2 case. In figures 3.25 and 3.27 we show the u,,, and c curves for no 

background current, linear background current and shear Iayer background current with zj = 0.2, 

d, = 0.1, al1 with ( = -0.22575 and 0.32575, respectively. The corresponding curves for half-width 

can be found in figures 3.26 and 3.28. 

From figure 3.25 we see that for ( < O ail three cases are qualitatively very similar, with the 

no background current case exhibiting the iargest, and the linear background current case the 

srnallest maximum wave amplitudes. Figure 3-26 shows that the hdf-width versus qmar curve for 
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the shcar layer case lies below and abovc the curves for the linear. and no background currents, 

rcspcct ive1 y. 

Figures :3.27 and 3-23 give the corresponding results for < positive. In particular we can sec 

again that ttie shear layer background current (which is nonzero only on a subsct of the total 

water coliimn) lias less of an clfcct on wnve propertir's than the linear currerit for a corrcsponding 

value of <. 

3.1.6 Fully nonlinear results: fixed wave amplitude, ( varies 

So far wc have allowed q,,, to vary. However it wouid be iiseful to get some idea of how wave 

propettics change when Tlma+ is fixed. Since the variational algorit hm does not fix qmor a priori 

it crin bc rathcr tirne constiming to find IS\Vs with rlmar fixed for various stratifications and 

tlackgrounci ciirrerits. ive have choscn to present one set of rcsi~lts for :O = 0.1, 0.2 and 0.3. We 

take qmar = 0.1 and consider linear background ciirrents for various values of (. 

In general, it is not possible to find a wave with rlmor = 0.1 for ail values of ( for which we can 

compute waves. There are four possible recasons for this. For cases like the :O = O. L case where 

wave breaking is possible it rnay be that the Iargest non-breaking wave has rima+ < 0.1. On the 

other hand, for cases where conjugate flows exist it may be that the conjugate flow amplitude (the 

amplitude of the largest conjugate flow for cases in which more than one conjugate flow exists) is 

sniailer than 0.1. For large, positive values of < we have found that it is possible to have a lower 

bound on qmai (to avoid critical layer formation). To find waves with qmot = 0.1 the lower bound 

must be  srnalier than 0.1. Finally it is possible that shear instability may prevent the variational 

algorithm from computing a wave with rima+ = 0.1 (though this never occurred in the present 

calculations). 

In figure 3.29 we show the u,,, and c versus ( curves for rlmar = 0.1. We again account for 

the advection of the  pycnocline by the depth averaged background currcnt by subtracting LI(:*) 

frorn both u,,, and c in the figure. We can see that the propagation speed increzwes linearly 

with < for al1 three cases. Ail three u,,, curves show a kink where u,,, moves from inside the 

wave (induced by the wave) to outside the wave (induced by the background current). We can 
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Figure 3.29: blaximum horizontal v e l o c i ~  and n a v c  propagation speed as îunctions < for wave of 
amplitude Tlmar = 0.1 

5 

Figure 3.30: Half-width versus (. qmot = 0.1 
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also note that a t  approximately < = -0.85 waves with v,,, = 0.1 break for the :O = 0.1 case. in 

agrrement with  figure 3.13. This is clear from the figure since the u,,, and c curves cross, 

In figure 3.30 we show the half-width versus < curves for vml:= = 0.1, We can see that for al1 

three values of 20 the waves beçome narrowcr ;is f incrcrc?ses. The large incrcases in half-width for 

the io = 0.2 and 0.3 cases can again be understood in terms of conjugate Rows (sce abovc). The 

wave haIf-width becomes uribounciecl a t  the value of < at wliich the conjugate fiorv amplitude is 

0.1. Finally we can see from the figure that  as :O increascs. the rnaxiniiirn value o f f  for rvhich i t  

was possible to  cornpute a wave with qmat = 0.1 also increascs. 

3.1.7 h l l y  nonlinear results: sample profiles 

\Ve now turn to the examination of acttial vertical profiles of q,  u and ni (the Richardson numbcr) 

versus z .  Thesc profiles arc plottecl at the crest of the wave ( x  = O by sy mrnetry ). We also examine 

the horizontal profile of the wave-indriced. horizontal velocity at the surface vcrsirs c. 

\Ve bcgin with the :O = 0.1 case. For each backqrourid currcnt considercd we show four 

waves ranging over the computable. non-breaking amplitudes. The largest, non- breaking wave 

computable is always plotted with a solid line. To compare the vnrious c~ases of background 

current we keep the scale for the various quantities plotted the same for al1 background currents. 

This means that for certain cases the whole domain will not be used. 

In figures 3.31, 3.32 we compare isopycnal displacements for various values of c, for a lincar 

background current and a shear laper background current with ( Z j ,  d l )  = (0.1,0.1), respectively. 

We can see that the linear background current has a much greater effect on q b  than the shear 

layer current. In particular, more negative values of ( lead to lower values of rlb ( this will a h  

imply smailer wave-induced velocities, as discussed below). CVe can also see that as ( becomes 

more negative the r) versus : profiles become more concave up in the upper portion of the water 

column. Also note that the location of the maximum isopycnal displacement moves upward as 

waves grow in amplitude. This resujt is independent of the background current chosen. 

In figures 3.33, 3.34 we compare the wave-induced horizontal current a t  the surface. CVe find 

the results for the maximum magnitude of the wave-induccd horizontal current agree with the 
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q vs. z various waves. $4.1, U(z) linear 
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Figure 3.31: q versus z .  ( z 0 , d )  = (0.1,0.05)+ U ( z )  linear. various values of < 
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q vs. z various waws, bd.1, sheaf iayer U(z). z=O.t d4.1 
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Figure 3.32: 7 versus 2. (:O, d) = (0.1,0.05), U ( Z )  shear layer with (ij, d j )  = (0.1,0.1), various 
values of ( 
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Wave-induced u vs. x various waves, p . 1 ,  U(z) linear 

Figure 3.33: Waw-induced u versus r .  (3, d )  = (0.1,0.05), Lr(.-) Iinear, various values of C 
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~(1)-U(1) vs. x various waves. $4.1. shear layer U(z). zd.1 1 d.4.1 I 

Figure 3.34: Wave-induced u at the surface versus z. ( zo:d)  = (0.1,0.05), U(r) shear layer with 
( i j  , d j )  = ( O .  1, O. l ) ,  various values of < 
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Ri vs. z various Iuaves. 5d.1, U(4 iinear 

Figure 3.35: Richardson number versus .-. (zo, d )  = (0.1.0.05), U(r )  linear, various values OC C 
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Ri vs. z various waves. $=O.(. shear layer U(& z4.1 d.4.1 
1 1  

(b) j=O.O I 

Figure 3.36: Richardson number versus 2 .  ( z o , d )  = (0.1'0.05), LI( : )  shear layer nith  ( z j , d j )  = 
(0.1,O. 1). various values of ( 
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u vs. 2 various waves. +,=0.1. U(z) linear 
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Figure 3.37: u versus :. (zo,  d )  = (0.1,0.05)? Li( : )  linear. various values of < 
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u us. z various waves. $QI,  skar layer. zd.1 dd.1 
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Figure 3.38: u versus r. ( z 0 , d )  = (0.1,0.05), U(z)  shear layer with ( + . d j )  = (0.1.0.1). various 
values of < 
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above results for maximum isopycnal displacement. The figures also show t hat for the ( values 

shown, the increase in wave half-width is mainly due to a change in the shape of the u(r. F I ) - [ l ( H )  

vcrsus r ciirve. as opposed to an increase in the width of the overall disturbance. Suctt an incre'ue 

occurs for the :O = 0.2 case discussed below. 

Despite of some rescrvations on the part of the atithor as to its utility for non-parallel ff ows (see 

for example the article [.13]), figures 3.35, 3.36 show profiles of the Richardson number (Ri)  versus 

: at  the crest of the wave. It can be seen that the Richardson number decrcases to very near zero 

in the unstratified portions of the water column for al1 cases. Furthermore, in the wcakly stratified 

near bottom region the Richardson number dips to below 0.1 for linear background currents with 

< < O. In the stratified region the Richardson number stays above o.%, reaching 0.25 for the 

linear backgroiind current case with < = 0.225'75 which has qb given by shcar instability. 

In figures 3.37, 3.38 we show the vertical profiles of the total horizontal velocity IL vcrsus : at 

the wave crest. In  general, the largest positive ciments are found near or a t  the bottom (where 

the background current is weak), while the most negative currents are found eithcr a t  the top 

of the advected pycnocline (when ( 2 0.0 for the linear currents and for both shear layer cases 

shown) or a t  the surface (when ( < 0.0 for the linear background currents). it can thus be seen 

that  the linear background current affects the top and bottom portions of the water column in a 

different way. In the bottom quarter of the water column the weak background current mainly 

modifies the geometric shape of the wave induced horizontal velocity versus z profile (of course for 

the no background current case the total and wave induced currents are the sarne). For example 

the = 0.22575, linear background cuirent case has the maximumcurrent well above the bottom, 

unlike the other linear cases. In the upper portion of the water column the strong background 

current is the dominant portion of u, with the wave-induced current rnodifying the geometric 

shape, AS in the cases discussed above, the shear layer background currents have a much smaller 

effect when cornpared to their Linear counterparts. 

A different perspective on the effects of linear versus shear layer currents is provided by fig- 

ures 3.39, 3.40, 3.41, 3.42. In these figures the largest non-breaking waves cornputable for linear 

and shear layer background currents with (f O.225TS are shown on the same set of axes (again we 
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I( VI. z largest waves. p . 1 ,  {=-û.22575 

1 Y'. T 1 1 1 1 I l 
(a) \=-O22575 i 

q YS. z larges! waves. +,=0.1, (=ûP575 

Figure 3.39: r) versus :, largest non-breaking wave. r o  = 0.1, upper panel - ( = 0.22575. lower 
panel - 5 = -0.22575. solid - linear background current, dashed - shear layer current 5 = 0.1, 
d j  = 0.1, dot-dashed - no current 
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u(1)-U(1) vs. x largest waves - 54.1 - \=O.-22575 

Figure 3.40: wave induced horizontal current at the surface versus r ,  largest non-breaking wave. 
20 = 0.1, upper panel - C = 0.??575, lower panel - f = -0.22575. solid - linear background current, 
dashed - shear layer current zj  = 0.1, d ,  = 0.1, dot-dashed - no current 
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Ri vs. z largest waves - $ 4 1  - (-0.22575 

- linear - - ~4.1 \=a1 1 -  m m i  l 
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Figure 3.41: Richardson number versus z ,  largest non-breaking wave. = 0.1, upper panel - 
< = 0.22575, lower panel - < = -0.22575. solid - linear background current, dashed - shear layer 
current zj = 0.1, dj  = 0.1, dot-dashed - no current 
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u vs. z largest waves. $=O.l, {=O.-22575 

u vs. z iargesl waves. $=0.1, \=O22575 

Figure 3.4?: u versus :, largest non-breaking wave. 20 = 0.1, upper panel - C = 0.22575, lower 
panel - E = -0.225'75. solid - linear background current, dashed - shear layer current zj  = 0.1, 
d, = 0.1. dot-dashed - no current 
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show the vertical profiles nt the wave crest of the isopycnal displacenient, t h e  Richardson niimber, 

and the total horizontal vclocity along with the horizontal profile of the wave-induced horizontal 

vclocity a t  the surface). Recall that the linear and shear layer background currents have matching 

shear ( f )  and hence do no1 have the sanie value of LrPur. 

Xext we corisider the 20 = 0.2 c'ase. Again WC plot four waves ranging frorn small to large. 

For cases bounded above Ily shear instability, the largcst wavc possible to cornpiite is plotted 

using solid lines. For cases in which the iippcr hoiind on isopycnal clisplacement is given by the 

conjugate flow aniplitiide a sirnilar choice cannot be made. We chose to plot vertical profiles and 

horizontal profiles bascd on the broaclcst wave computcd. Another valid choice would have been 

to plot vertical profiles based on the conjugate flow, and horizontal profiles based on an ISW 

computecf. i v e  have taken some carc to confirm that this alternate choicc would not alter thc 

resrrlts prcsentcd. 

l n  figure 3-43 we compare isopycnal displacements for a linear background ciirrent with four 

values of < (< = -0.4515, -0.22575, 0.0 and 0.257.5). We find that q b  decrcases by about one 

third between the ,C = 0.32575 and ( = -0.45 15 case. AS in  the :O = 0.1 case. we find that 

the location of the maximum isopycnal displacement. moves upward i n  the water coliimn as wave 

amplitude increases. Also. wtiile the ncgative values of 5 yield waves that are slightly concave up 

in the upper part of the water column, the effect is not nearly as pronounced as in the = 0.1 

case. 

In figure 3.44 we plot the wave-induced horizontal velocity at  the surface for the cases discussed 

above. LVe can see that when ( < O the width of the wave increases markedly as the waves get 

bigger. Again, this is a manifestation of the decrease in conjugate flow amplitude as  { becomes 

more negativc. 

In figure 3.4.5 we plot the vertical Richardson number profiles. As in  the :O = 0.1 case we see 

that the Richardson number drops to  near zero in the unstratified portions of the water coiurnn 

(this time there is an unstratified near-bottom region). A h ,  as in the :O = 0.1 case there is 

a tongue of reduced Richardson number i n  the (upward advected) stratified region, but in the 

= 0.2 case the Richardson numbers in this region do not dip below 0.3. 
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q vs. 2 vanous waves. 5d.2. U(2) linear 
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Figure 3.43: r)  versus .-. = O.?, C ( : )  linear. various values of ( 
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Wave-induced u at the surface vs. x various waves. 54.2. U(z) linear 
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Figure 3.44: Wave-induced u versus r .  r o  = O.?, U ( r )  linear, various values of ( 
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Ri vs. z various waves. yO2. U(z) linear 

Figure 3.45: Richardson number versus z. 10 = 0.2, U ( z )  linear, various values of < 
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u vs. z various waves. 5.0.2. U(z) linear 
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In figure 3.46 we plot the vertical profiles of the total horizontal velocity. Perhaps the most 

nbvious effect is the strong role played by the background current (as seen by comparing the top 

and bottom panels). Also, note that for < > O the maximum horizontal velocity occurs well above 

the bottom (near : = 0.3 for the < = 0.22575 case). 

In figiire 3.47 we show the vertical profiles of q and the Richardson riumber a t  the wave crest, 

for the largcst non-breaking wave computed for various values of (, and dl thrce values of :o. 

Again we cari sce that as < bcconies more negativc the wave amplitude decreases qiiite profoundly. 

Cire can also note that the wave amplitude decreases as 20 increases. Note also that i n  the bottorn 

portion of the watcr column the larger :O is. the slower the increase in q with :. 
While al1 cases have qb  approach zero (as decreases, only the :O = 0.3 exhibits polarity 

revcrsal. The wave of depression shown for the :O = 0.3 case has a rnclrkedly different vertical 

structure from the waves of elevation. 

For the Richardson numbcr versus : curves, due to the scaie choscn, not al1 of the waves are 

cleariy visible. It can be readily secn that only the :O = 0.1 case has the Richardson number dip 

to near (in fact slightly below in one case) 0.15 in the stratified portion of the water colurnn. 

Before concluciing this section, we make a couple of comments about the effect of the geornetric 

shape of the background current: \Ve have found that shear layers centered a t  the center of the 

pycnocline have a much greater etfect on the wave properties than a shear layer centered well away 

from the pycnocline. Furthermore, thicker shear layers yield results closer to the case of a linear 

background current. We iound that changing the geometric shape of the background current did 

not change the qualitative nature of the half-width versus bar curves. However, changing the 

geometric shape of the background current does influence whether qmor is bounded above by wave 

breaking, shear instability, or the conjugate Row amplitude. In particular strong shears in the 

interior of the water column can lead to  shear instability. As there are rnany possible geometric 

configurations for the background current the present work merety scratches the surface of what 

is possible. It thus seems sensible to  the author, to  proceed by using oceanic measurements on a 

case by case basis in the future (with the results for linear currents providing a guide t o  what is 

expected to  occur). 
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Limiting wave profiles vs. z, U(z) linear Richardson number vs. z 

(b) zo=o.l 
0, . 

r\ Richardson numbet 

Figure 3.47: q and Richardson number versus .- for largest. non-breaking wave cornputable, ro = 
0.1. O.?, 0.3, U ( 2 )  linear, various values of ( 
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3.1.8 A summary of findings 

To siimmarize, then, it was found that the prescnce of a background current affects wave properties 

ranging frorn the amplitude of the maximum, non-breaking wave cornputable iising the variational 

algorithm ta the shape of the r )  vc~sus  : profile nt the c r s t  of the wave. The effects of a weak 

background current wcrc consistent for stratifications with and withoii t a conjiigate flow. However. 

for stratifications for which a conjiigate flow cari be found. the presence of a background current 

c m  strorigly affect the conjugate flow amplitude whcn the background currents are strong. This 

means t ha t  cases with background currents with < O can exhibit very wide waves at what would 

be nioderate amplitudes if no background current was  prescrit. Conversely, cases with background 

currcnts with < > O rnay exhibit waves that disptace the center of the pycnocline wcll past the 

micl-depth beforc rcaching the conjugate flow amplitude. Often the amplitude of waves with ( > O 

is bounded above l y  shcar instability of the variational algorithm rather than the conjugate flow 

ampli tude. 

For stratifications in which wave breaking is possible the presencc of a background current 

with < O can greatly reduce the breaking amplitude. Conversely a background current with 

< > O can lead to shear instability of the variational algorithm before a breaking wave is reached. 

While it is impossible to be exhaustive on the question, an attempt was made to investigate the 

role of the geometric shape of the background current. It was found that shear layers centered at 

the center of the pycnocline had rnuch more pronounced effects on the wave properties campared 

to shear layers centered outside the pycnocline. It was also found that broader shear layen with 

the same maximum vortici ty, behaved more like linear background currents t han narrower shear 

layers. CVaves with regions of strong shear in the interiot of the water colurnn tended to have 

bounded by shear instability. 

In conclusion, the author believes that the results clearly show that the presence of a back- 

ground current can have a much more pronounced effect on iSWs than merely to change the wave 

half-width and propagation speed. This is even more apparent when time dependent phenornena 

are considered, as wilI be done (briefly) in the following section. 

Finally. a t  the risk of belabouring an obvious point, we make a comment on symmetry of waves 
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of depression and clevation under the  Boussinesq approximation and in the preence of currents. 

Recall that the Boussinesq approximation irnpiies thai, with no background current ISWs with 

t h e  same ampli tude of maximum isopycnal displacenient for the case ( : O ,  d) = (0.2.0.05) and the 

case ( z o ,  d) = (0.8.0.05) will be antisy nirnctric in  the sense t hat the former are waves of elevation, 

and the later waves of depression. What is more. the wave indiiced currcnts a t  the bottom for 

the former, match those at the surfacc for the latter. and cice cema. The propagation specd is 

identical. However if wc now add a non-constant background current to both stratifications, say, 

To recover t h e  syrrirnetry, Say we add the abovr ciirrcnt to the rase (:o.ci) = (0.2,O.OS). then we 

must adcl the ciirrcnt. 

f _ ' ( z )  = 1 - : 

to the (:*. d) = (0.8.0.0.5) case (recall riIl qiiantitics are ciimensionlcss). 
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3.2 Miscellaneous Consequences 

The resuits for steady waves of the previous section have varioiis consequences for the timc evo- 

lution of both ISWs and more general disturbanccs. In this section we briefly outline somc time 

dependent phenornena and discuss how they are related to the results of the previous section. 

We discuss solutions of the Euler cqiiations only, using the numerical mode1 of Lamb ([:>,Lj). :!II 

simulations are discussed in dimensional variables. 

We begin by examining the phenornenon of polarity reversal. Rccall that in the previous 

section we found that with 20 = 30.0 ( z o  = 0.3 in dimensionless form) and a large enough linear 

background current oriented against the direction of wave propagation. a stratification of the type 

given by (3.7), which would produce waves of elevation with no background current yielded waves 

of depression. To test this prediction WC consider an initial disturbancc given by (3.6) and impose 

a background current given by 

The computational grid is regular in both the horizontal and vertical, with a grid spacing of 2 

m and 1 m in the two directions, respectively. The initial disturbance breaks up  into two wave 

trains. For the train propagating rightward the background current is oriented with the direction 

of propagation, and hence will not change wave polarity. For the wavc train propagating leftward, 

however, the background current is oriented against the direction of propagation and the results 

of the previous section predict ISWs with an opposite polarity. To demonstrate this consider the 

series of contour plots of the density fields in figure 3.48. After approximately 700s the rightward 

propagating train of lSWs leaves the computational domain and hence the final panel shows only 

the leftward propagating disturbance which takes the form of a steadily broadening undular bore. 

Recall that according to WNL for the KdV equation (consistent with inverse scattering theory) 

an undular bore evolves frorn a disturbance that has the opposite polarity to solitary waves. 

In figure 3.49 we show the contours of the horizontal velocity. At 600 s we can see the 

leftward propagating bore in an early stage of developrnent as weli as the rank-ordered, rightward 

propagating train of ISWs. Notice that the background current is strong enough that the wave 



CHAPTER 3. STEADY WAVE RESULTS 

Density Contours 
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Figure 3.48: Density contours for sample run with background current strong enough to influence 
wave polarity. 
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U contours at t=600s 
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Figure 3.49: Horizontal velocity contours for sarnple run w i t h  background current strong enough 
to influence wave polarity 
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induccd currerrts due to  the rightward propagating waves do not induce negative (total) horizontal 

currents. ln contrat  the leftward propagating bore doeç induce (total) negative currents (in the 

near bottom region where the background current is weak). 

Finally. in figure 3.50 we plot vertical profiles of horizontal velocity (left panel) and horizontai 

wave-induced velocity (right panel) a t  thrce different locations. Two of the profiles shown are 

at the  crest of the leading rightward propagating ISW and the trough of the Ieading wave of 

the Ieftward propagating undular bore. The crest and trough are identified by using the local 

maxirna/rninima of the horizontal velocity a t  the surface. The third vertical profile is taken near 

the maximum of the rise which leads the undular bore. As such there is no unique way to choose 

its location and hence this profile is mean t only for a qualitative comparison with  the other two. 

These profiles are included to point out the profound difference in vertical structure bctween the 

ISW propagating with the current and the undu lar bore propagating against it. 

In conclusion, then, the predictions of reversal of polarity based on the results of the variational 

method discussed in the previous section are borne out in time dependent calculations. 

WC wish to examine whether some of the ISWs that fission from an initial condition exhibit 

a critical layer. Towards this end we consider a 2000 by lOOm domain with a grid resolution of 1 

by lm. To keep the computational dornain as small as possible (and hence the resolution as high 

as possible) we take 
f 

U (z) = 3.0 - 3.0- 
fi- 

CVe also move the center of the initial steplike disturbance to x = -500.0. The initialization is 

otherwise unchanged from subsection 3.1.1 ( ( z0 ,  d) = (0.3,0.05) and the initial density is given by 

equations 3.5 and 3.6). This choice of grid and initialization keeps the waves of interest in the 

cornputational domain for a long enough time for the ISWs to fission frorn the initial disturbance. 

In figure 3.51 we show the density contours at t = 0,200 and 2000s. At 200s we can see that the 

waves furthest to the right in the contour plots are b roder  then those furthest to  the left. Note 

that both trains of ISWs shown ptopagate to the right. It is the slower moving wave train that 

we are interested in, and by 2000s it is ctear that only the leading two waves of this wave train 

rernain in the computational domain. 
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wave-induced u vs z at t=600s 

Figure 3.50: Horizontal velocity (left panel) and waveinduced horizontal velocity (right panel) 
vs. z at t = 600s. Crest of ekvation at front of undular bore - solid, crest of first wave in the 
undular bore - dashed, crest of leading ISW - dot-dashed 
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Figure 3.51: Density contours t = 0, 200 and 2000s 
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Prop. speeds and U(z) 
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Figure 3.52: Background horizontal velociw profile and approximate propagation speeds of the 
two leading rightward propagating ISWs 
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u vs. z t=2000s wave induced u vs. z t=2000s 

Figure 3.53: Horizontal velocity (left panel) and horizontal wave-induced velocity (right panel) 
profiles. leading wave - solid. 2nd wave - dashed. t = 2000s. 
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The approximate propagation speeds of the two waves of interest are calciilated in the following 

mariner. CVe find the location of local maxima of the horizontal, wave-induced velocity at the 

surface a t  successive out put times. The ciifference between the successive locations divided by 

the time interval bctween output times thcn gives a n  estimate for the wave propagation speed. 

Due to the discretization of the space variable the values calculatcd iising the above cfcscribed 

method will Vary slightly with timc. For this rcason ive calculate approsirnate propagation spceds 

for output times separated by 100s starting a t  1000s and cnding at  2000s. \Ve thcn average the 

resulting values to get final estimatcs, Using this technique for the present grid spacing the results 

shown in figure 3.52 are accurate to two decimal places. more than enough for orir purposes, From 

figure 3.52 WC see that both the leading and second waves have a propagation speed between tlie 

minimum and maximum value of the background ctirrent. Since bot h IVN L and the fully nonlinear 

algorithm utilize terms of the form 
G 

U ( r )  - c 

where G is not identically zero, neit her can successfully compute waves when U ( : )  = c for some 

t. Yet the time evolution proceeds much as predicted by KdV theory. What is more. ncither the 

contours of horizontal velocity shown in figure 3.51 nor the vertical profiles of horizontal velocity 

shown in figure 3.53 show any appreciable differences from waves calculated using the variational 

algorithm. Thus we can conclude that the fuily nonlinear, time-dependent simulations yield ISWs 

for a broader range of background current maxima and minima than the variational algorithm. 

The variational algorithm in turn yields ISWs for a broader range of background current maxima 

and minima than W N t  (as was discussed in the previous section). 

Finally we can ask whether we can construct a simple situation in which an initial condition 

like the one used above does not yield any ISWs. Towards this end consider a density profile of 

the type 3.7 with zo = 20.0 ( zo  = 0.3 in dimensionless form) d = 5.0 (d  = 0.05 in dimensionless 

forrn), a steplike initial condition centered a t  t = 0.0 (details as in the above examples) and a 

horizontal background velocity given by 
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This ciment is chosen sa that a rightward propagating undular bore (hence no ISWs) Fissions 

from the initial disturbance. We are intcrested in whether an ISW wave train fissions to  the left 

of r = O. The computational domain is 3000m wide and lOOm deep with a grid spacing of 1.5 by 

lm. 

In figure 3.54 we plot the density contours of the disturbance a t  times ranging bctween O and 

7000s. From this figure wc see that instead of a rank ordcred train of ISWs, a pair of waves fissions 

from the initial condition. This pair of waves appear to move with the same speed (and hence 

maintain the same distance from one another). A t  t = 1000s the leading, Ieftmost wave appears 

to be slightly smaller in amplitude. Subsequently the pair decays, with the second, or rightmost 

wave decaying more quickly. This behaviour is reminiscent of the breather solution of the mKdV 

equation (see (53) for example). In  the breather, however, the two disturbatices pulsate without 

losing entrgy. 

To get a more precise idea of what is happening we focus on the wave-inditced horizontal 

veloci ty a t  the surface. 

In figure 3.55 we plot the wave-induced horizontal velocity at  the surfacc for a sequence of 

times a t  200 s intervals, starting a t  600 s and ending with 2000 S. From this sequence it is 

clear that the initially larger leftmost disturbance decays until about 1300s. At the same tirne 

the rightmost disturbance grows slightly. After this, the rightmost disturbance decays, while the 

leftmost disturbance remains virtually unchanged, decaying slightly. The total disturbance decays 

with each cycle. This decay is clearly shown in figure 3.56 where the wave-induced horizontal 

velocity at the surface is plotted at 1000 s intervals ranging from t = 1000 s to t = 7000 S. 

The evolution of the amplitudes of the two waves at  early times is seen rnuch more clearly in 

figure 3.57 where we plot the values of u ( H )  a t  the two local maximuma as  functions of time, as 

well as the ratio of u(H, t )  to u(H, 1400) for the leftmost maximum. Furthermore, it is clear that 

the total disturbance decays with  each cycle. This decay is clearly shown in figure 3.56 where the 

wave-induced horizontal velocity a t  the surface is plotted for a sequence of tirnes ranging from 

1000s to  7000s, separated by 1000s. From this figure we can also see that as the breather-like 

wave decreases in amplitude its leftward propagation speed decreases and it is advected to the 



CHAPTER 3. STEADY WAVE RESULTS 

Breather-like Evolution 
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Figure 3.54: Density contours for leftward propagating, breather-like disturbance t = 0, 1000, 
2000,3000, 5000 and 7000s 
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wave induced u at the surface 
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Figure 3.55: Wave-induced horizontal velocity at the surface. t = 600, 800, 1000, 1200, 1400, 
1600 and 2000s 
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wave induced u al the surface 

Figure 3.56: Wave-induced horizontal velocity at the surface. t = L000, 2000, 3000. 4000, 5000, 
6000 and 7000s 
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Wave-induced u(H) vs. time at the two maxima showing relative changes 
I I 1 

o left-most maximum 

I I 1 1 1 

500 1000 1500 2000 
time (s) 

u(H)/u(H.1400) vs. time, decay of leftmost maximum 
1.005 I 1 1 1 I 1 I 

time (s) 

Figure 3.57: Wave-induced velocity at the two maxima vs. tirne, (panel (a) ), and the ratio of 
u(H, 1 )  to u( H. 1400) vs. time. (panel (b) ), showing the slow decay of the leh-most disturbance 
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right by the depth averaged background ciirrent. 

Tliiis, using the resutts of the previoiis section, we were able to construct a rather simple 

situation in which an initial distiirbanct did n o t  yield a train of 1SWs in eithcr direction. At the 

time this section is bcing written there is no theorint,ical explariation availablc for ~ h e  appearance of 

the brcnther-likc wave. This concliides our bricf cxamination of some time dependent consequences 

of the steady wave resiilts foiind in the prcvioiis section. 
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Conclusions and Literat ure 

In this chapter we have explored in some detail, the behavioiir of large, fiilly nonlinear IS\Vs. We 

began by showing th& for a stratification taken from field mc,?siircmerits. W N L  cannot succcss- 

fully be used to  represent the spatial structure of large ISWs (cas calculatecl tiy the variational 

technique presented in the previous chapter). 

The major issue addressed in this chapter is the cffcct of background currents on fully nonlinear 

ISW properties. In general we found that the presence of a background ciirrent c m  greatly alter 

the wave properties (such as the wave half-widt h and the shape of the vertical profile of q a t  r = 0. 

the wave crest). Perhaps more importantly, as the amplitude of the background current varies, 

so does q b ,  the maximum isopycnal displacement of the larges1 non-breaking wave computable. 

Furthermore the type of uppcr bound rnay change, i.e. for stratifications with ciensity change 

right to  the ocean bottom. waves of elevation rnay be botintlcd ahove by wave-breaking or by 

shear instability, while for stratifications with a mixed tayer adjacent to the ocean bot~orn waves 

of elevation rnay be bounded above by the conjugate f ow amplitude or by stiear instability. Note 

however that in no circumstances did the presence of a background current change an irpper 

bound due to  conjiigate flow to one due to wave-breaking. This is due to the thin pycnoclines 

u s 4  in the present study. A stratification with a thicker pycnocline (such as (20,  d) = (0.3,O.  1.5) 

can have the upper bound change from one due to conjugate flow to one due to  breaking, as ,C 

becomes more negative (with a linear background current). 

An attempt was also made to investigate what role the geometric shape of the background 

current plays. While it is not possible to  be exhaustive, we have found that shear layer background 

currents centered a t  the center of the pycnocline had a much larger effect on the wave properties 

compared to shear layer background currents centered in the unstratifieci region well away from 

the pycnocline. Also, as can be expected, thicker shear layers Icd to effects more closely matching 

those of linear currents. Finalfy, background currents with strong stiears in the interior of the 

water column had upper bounds on the wave amplitude due to  shear instability of the variational 

algorit hm. 

Overall the time dependent simulations performed showed that the predictions made based on 
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steady lSWs computed with the variational algorithm werc borne out in t h e  simulations. The fuily 

nonlinear waves, in turn, agrecd with the qualitative predictions of WYL. Thus the variational 

algorithm (as well as the conjugate flow calculator, when applicable) provide a new set of tools for 

understanding lSWs and similar phenornena in the ocean. Notably, we also constructed a simple 

case for which the break iip of an initial disturbance led to no ISWs in  cither direction. This 

construction iised results of the variational algorithm for fully nonlinear wavcs that WNL simply 

could not provide. 

In terms of the literature the present study is another chapter in a series of papers by Lamb and 

CO-workers. Lamb and Yan ([38]) compared the evolution of a n  undular bore governed by the full 

Euler cquations and various versions of WNL. They found that higher order asymptotics providecl 

a better fit to  the actual evolution, but that even these showcd discrepancies in the WNL. Lamb 

and Wan ((37)) then addresscd the correspondence between broad 1SWs w i t h  a flat centcr and 

conjugate flows. In  a subsequent study Lamb ([36)) discussed the simplvr case of conjugate flows 

in a three layer fluid. This case allows a more analytically b'ased approach. In tangcntial. but 

relevant work, Lamb discussed Lagrangian particle transport by lSWs ([32]) using both WNL and 

fully nonlinear waves. The generation of ISWs (an issue completely ignored in the present work) 

by tidal flow over the continental shelf was discussed in ([31]). Finally, in an extensive, but as 

of yet unpublished manuscript Lamb ([34]) showed how and when the two formulations of W N L  

succeed and fail to  descirbe large, fulty nonlinear lSWs for different classes of standard background 

density profiles at leading, first and second order (without a background cuvent). The present 

work is an attempt to outline the need for, and utility of, the variational algorithm for ISLV 

calculation when it cornes to undertsanding ISWs in the ocean. As such it is a fairly new piece 

of work with little in the way of ptecursors. The study of Brown and Christie (1121) is the only 

instance in the literature (to the author's knowledge) where fully nonlinear ISWs are calculated for 

continuous stratifications with an eye towards oceanic or atmospheric applications (the paper of 

Turkington et al. ([64]) which formulates the variational rnethod extended in the previous chapter 

cornputes ISWs only to show that the algorithm works). The paper ([12)), however, attempts to 

put together a great many issues (ISWs. ISW broadening, ISWs past breaking, etc,) ending up, in 
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the author's opinion. with a soniewhat unclear picturc. In particular the conjugate flow concept 

is not utilized. and lience wave broadening is not clearly explained. ISW-like waves with trapped 

cores merit detailed attention and will be discussed in the following chapter. 

Oldrr work is generally based on WNL, starting with the papes of Benney ([Ï)) and Benjamin 

([.1]. f.51). The former provides the basis for the WNL used in this  work and the latter provides 

an alternative approach based on variational techniques. The extensions of W N L  are rnany ancf 

include extensions to second order (["O]), disciission of critical layers ([44]), discussion of shear 

([s?]), and incorporating variablecurrents and topography ([69]). The  survey article by Grimshaw 

([??]) is a good compendium of these ideas as well as providing a full set of references. The same 

survey article also discusses the many attempts to compare experirnent and WNL. 

Finally ive should note that the work of Turkington et al. on large. fully nonlincar ISWs is 

preceded by the work of Tung et al. ([63]) on fully nonlincar, mode-? ISWs. The latter uses 

a different numerical approach, and in fact treats mode-1 waves only, recovering mode-2 waves 

from a symmetry condition. The focus on waves with closed streamlines rnakes this article more 

relevant to the material of the next chapter, 

To conclude then, the present work addresses many of the questions that have appearcd and 

re-appearcd in  the literature in the past 30 years. In particular, we show that the qualitative 

predictions of WiVL are often borne out by large, fully nonlinear ISWs. However, the present 

results also show that large, fully nonlinear objects are more cornplex than the tidy solitons of 

WNL (sec for example ([33])). The rich phenornenotogy of lSWs in the ocean will be explored 

further in the next two chapters. 



Chapter 4 

ISW-like Objects With Trapped 

Ta motivate the study of waves with trapped cores consider the situation of an initial ISW corn- 

puted using the futiy nonlincar solitary wave calculator, propagating leftward in a fluid with no 

current. The fiuid is forced by a steady, user irnposed body force that sets up a steady, hear  

background current. The forcing 

background current has the form, 

occun over the first 1000 s of the simulation and the final 

For the simulation shown below the forcing is sirnply switchd off after 1000 S. Tests with a rapid 

damping that ensured the forcing was Cm revealed no change from the simulation shown below. 

We consider the adjustment of the ISW for two tanh-type densities (i.e. given by equation 3.71, 

one with q-~ = 10.0 rn and the other with :O = 20.0 m. The cornputational domain is 6000.0 m 

long and 100.0 m deep and has a resolution of 6 by 1 meters. 

In figures 4.1 and 4.2 we plot the density contours for the :O = 10.0 m and r o  = 20.0 m cases 

respectively. I t  can be readily seen that the ro = 20.0 m case undergoes a great deal more wave 

shedding behind the initial ISW during its adjustment to the imposed current. Indeed the initial 
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Figure 4.1: Density contours for 20 = 10.0 m stratification at various Cimes. 
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Figure 4.2: Density contours for :O = 20.0 m stratification at various times. 
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u contours zo- 1 O t-3300s 

Figure 4.3: Horizontal Velocity contours for :O = 10.0 rn stratification positive values in solid, 
negativc values d;tshed, and the region where u < c shaded. 

ISW appears to fission into a srnaller ampli tude, widcr lcading IS W followed by a small amplitude 

shelf ending in a n  iindular bore. Aftcr a longer time (not shown) the undutar bore evolves into a 

train of smaller lSWs and is left behind the leading wave. In sharp contrast the :O = 10.0 m case 

appears to consist of a single ISW-Iike object which, while smaller and broader than the original 

ISW sheds only small dispersive waves and non-cohercnt noise ( visible in the 2700 s panel). 

From figures 4.3 and 4.4 we can sec that oniy the = 10.0 m case undergoes wave breaking 

(uLoltll < c since the waves are propagating to the left). Here c is calcuiated approximately from 

the time-dependent results by finding the location of the maximum surface current a t  successive 

times and dividing by the time interval. The actual wave overturning begins in the first 1000 s 

of the simulation, while the forcing is  turned on. Some sample density contours illustrating the 

overturning after the forcing bas been turned off are given in figure 4.5. From figures 4.1 and 4.5 

we can see that the results of the wave adjustment process in the :O = 10.0 m case consist of a 

large ISW-like wave with a dynamically active core that is trapped near the bottorn and sorne 

small-scaie shedding behind the wave t hat does not propagate with the leading ISW-like object. 

For the  = 20.0 m case the wave shedding during the wave adjustment process is much larger, 
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u contours zO-20 .0  t i 3 3 0 0 s  

Figure 4.4: Horizontal Velocity contours for a = 50.0 m stratification positive values in  solid. 
negative values dashed. 

and propagates leftward much faster than in the :O = 10.0 m case. This is clear from figures 4.1 

and 4.2, or figures 4.3 and 4.4. 

These results are, of course, consistent with the previous chapter where it was round that only 

the .-O = 10.0 m case had maximum wave amplitude bounded above by wave breaking. The body 

forcing to set-up a background current used in the lime-stepping simulations merely provides one 

illustration of' an ISW adjustment pmcess. A more common one from a n  oceanographic point of 

view is that of shoaling as discussed in ((351). The apparently coherent response of the initial 

ISW in the :O = 10.0 m case provides the motivation of this  chapter. An  interesting question to 

answer is whether the dynamically active core settles to an eventual steady or quasi-steady state, 

and if it does, what sort of velocity and density profiles result. We should note that overturning 

similar to the above has been thoroughly discussed in the context of ISW (waves of depression) 

shoaling ont0 the continental shelf by Lamb ([15]). 

There are several reasons to be interested in waves with trapped cores. First and foremost it 

appears that timcdependent simulations of lSWs under various types of' forcing can lead to ISWs 

with trapped cores. From a physical point of view. an active core must lead to enhanced rates of 



CH.4PTER 4. ISW-LIKE OBJECTS WZTH TRAPPED CORES 

Figure 4.5: Density contours for :O = 10.0 rn  stratification at various tirnes showing wave overturn- 
ing. The highest four contours are chosen to highlight the near bottom region where overturning 
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mixing (of passively advected nutrients or sediment. for example), and even a stagnant core could 

lead to  enhanced vertical transport of sediment into the water column due to passive advection of 

material up and over the core. 31oreover, particles trapped in the core may be transported long 

distances by the wave before they are expelled (if they are expelled a t  all). ISW interaction with 

the bottom boundary layer has been hypothesized as a mechanism for increased rcsuspension of 

sediments measured bencath ISWs ([BI), but one can imagine a trapped, active core Ieading to 

signi fican t sedi mcnt resuspension independently of any viscous effects. From a t heoretical point 

of view the question of whether a final steady (or more reasonably quasi-steady) state emerges 

from a givcn initial wave is interesting in  its own right. Derzho and Grimshaw ( [ ICI )  have argiicd 

on the basis of a finite amplitude asymptotic theory for a fluid with a nearly linear stratification 

(nearly constant IV) that the small, but finite-sized core should be stagnant in a frame moving 

with the wave. Recent experirnents by Crue et al. ((231) agree with this prediction up to a point. 

though the details of the flow in the core observed in  the experiments are Iikeiy dependent on the 

method used to generate the wave. ISW-like objects with a trapped core were discussed by Brown 

and Christie ([12] within the framework of a b roder  paper on steady ISWs. However their work 

exhibits at  lcast one major short-coming (discussed in the presentation of the core calculation 

method) and as such is not of direct relevance to the present study. 

This chapter is organized in the following manner. First a technique for computing ISW-like 

objects with a trapped core is introduced. In particular, we show that the variational solitary 

wave calculator can provide an initial condition that evolves to a quasi-steady ISW-like object 

with a trapped core. This is followed by a detailed discussion of the evolution process and eventual 

quasi-steady outcome for a particular initial condition (that is chosen to be representative of the 

general behaviour). Next the variation of the adjustment process and its quasi-steady outcome 

are discussed for various parameters. The most detailed attention is paid to varying the initial 

core size. The effect of how the core is initialized on the quasi-steady state is subsequently 

discussed. The effect of background currents and the possibility of waves with trapped cores for 

a background density profile that allows a conjugate flow (i.e. has a mixed layer near the top and 

bottom boundary) are discussed in the final section of conclusions and directions for future study. 
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The final section also discusses how the results of this chaptcr relate to the relevant Iiterature. 
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4.1 Method 

Ciiven a suitable stratification and background currcnt. the variational mcthod discussed in C'hap- 

ter 2 can be uscd to compute ISWs with closed streamlines. These wavcs are past breaking (i.e, 

> c somewhere). The region of closed streamlines corresponds to locations in which the 

matheniatical algorithm sets the density in the wave to be equal to values found below the ocean 

bottom, or since the ambient density is a strictly decrcasing function of :. to values larger than 

the value of the ambient density at  the bottom (sec figure 4.6). While this presents no problem 

for the algorithm, it is clearly unphysical and the region of closed streamlines must be modified 

to yield physically valid objects. In  their study Brown and Christie ([12]) did not modify the 

density within the core and for this reason the details of their resiilts do not appear relevant 

to the present work. WC have chosen to replace the unphysical values of dcnsity in the closed 

streamline region with p(O) ,  the value of the density at  the bottom of the ocean, far upstrcam of 

the wave. The initial velocities in t he  corc region can bc madified in many ways. We consider two 

possibilities, cither the velocities are left as given by the ISW calculator or they are set according 

to ( u .  w )  = (c, O) in agreement with ([lS]). The latter approach introduces velocity discontinuities 

a t  the core boundary. The initial wave is not a solution of the steady Euler's equations, but we 

expect t h a t  by using it as the initial condition in a time dependent simulation we will get an 

IS\V-like object with a trapped core after =me time. We find that the object which eventually 

emerges does not depend on how the velocities in the initial core were defined. The variational 

met hod allows u s  to have some control over the size of the core and to set up an initial state 

quickiy and inexpensiveiy. The domain used for the simulations is rectangular (flat bottom). In 

order to minimize the spatial domain needed for the computations the evolution is performed in 

a moving frame of reference. N'e would Iike the noise and smaller waves shed behind the ISW- 

like object during adjustment to leave the cornputaticinal domain without disturbing the main 

object of interest. For this reason the initial ISW is chosen to propagate leftward (c < O). For 

consistency, we present the ueIocity fields in a frarne moving with the initial (as given by the ISW 

calculator) propagation speed, unless ot herwise specified. 
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Figure 4.6: Density contours a) as given by lSMr calculator b) after modification. 
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4.2 A Sample Core 

In this section we consider in detail the evolution and final state of one particiilar test run. 

The background density tiscd is the thtoretical fit to the measurcments of Bogucki. Dickey and 

Rcdekopp (BDR) OR the California coast. and is givcn by (3.1). For this section we assume no 

backgroilnd current is present. The water is 60 m deep and the computational domain is 1500 

m long. For the run prescnted wc takc 1000 points rcgularly spaced in the horizontal (horizontal 

resotution 1.5 m )  and LOO points quadratically spaced in the vertical so that 10 points lie in the 

bottom 1 m. 27 points lie in the bottom 5 m, and 57 points lie in the bottom t'O m (the stratified 

region iri the undisturbecl state). Upon cornparison with runs using a tefined grid (double the 

resoliition in the horizontal. and with 1.50 points in the vertical), it was found that the 1000x100 

riin resolvcs the ISIV-likc objcct well and runs in a reasonahle amount of time using computing 

resoiirces presently available to the aiithor. The qualitative rcsults presented in this section are 

not altered by grid refincment, though quantitative results in the active core would be (of course 

3-D effects, completely ignored in the prment cornputations, would be most important in this 

region as well}. For the chosen density the largest nonbreaking ISW possible to calculate using 

the IStV calculator has A = 0.042. For the sample of core evolution we consider a wavc computed 

by the ISW calciilator with .4 = 0.06. 

In figure 4.7 we show the initial density and vclocity fields. A clock-wise rotating vortex 

centered a t  the Iine of symmetry and about 7 m above the bottorn can be seen to dorninate the 

core. The size of the initial core is indicated by plotting the contour of density at  the first grid- 

point above the bottorn (zi = 0.03 m). This is essentially the value of the density throughout 

the core. We choose the value at the first grid point instead of right at the bottorn in order to 

minimize numerical noise in the contour plotting routine. The region in which p = /5(z1) is about 

13 m high and has a haif-width of approxirnately 20 m at the bottorn. We also plot the smalkr 

regions enclosed by the contours u = 0.02lcl and u = c. 

In figure 4.8 we show the eariy development of the core as it tilts away from the direction of 

propagation (1000 s). begins a cornplex mixing (2000 s) and loses a tail of dense fluid in a thin 

Iayer trapped near the bottom (3000 s). Note that a t  1000 s the velocities in the region of the 
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Figure 4.7: Initial density contours and velocity field in a frarne moving with the wave speed for a 
leftward propagating wave. Densitg contours - shaded. contour of p ( z i )  where r i  is the first grid 
point above the bottom - dotted. contour of u = O.O'Llcl - dashed. contour of u = c - solid 

core overhang are oriented leitward and downward. The contour u = c (not shown) now toucha 

the bottom a t  t = 47 m. By 8000 s the core has decreased slightly in size. 

In figure 4.9 we show the density contours and velocity fields for 8000, 16000.24000 and 32000 

S. The initial vortex remains reasonably coherent at 8000 s and strengthens a t  16000 and 24000 s 

(this is difficult to see in the figure). At 32000 s the vortex has d e c r e e d  in height and a cornplex 

motion is visible at the back of the wave. This cornplex motion drifts rightward and out of the 

computational domain. 

In figure 4.10 we consider density and velocity fields a t  later times in the core adjustment 

process. The figure shows that ~ h e  core region stabilizes to a quasi-steady state dominated by 

an asymmetric region where the horizontal velocity is very low (in the frarne moving with the 

initiai wave propagation speed). \Ve choose to outline the region in which the horizontal velocity 

is less than two percent of the original propagation speed. This asymmetric region reaches down 

to the bottom near the front of the core thrn lifts up off the bottom. forming a n  approximately 
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Figure 4.8: Velocity field and near bottom density contours (shaded) at 1000, 2000, 3000 and 
8000 S. 
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Figure 4.9: Density contours (shaded) and velocity field at 8000, 16000, 24000 and 32000 S. 
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Figure 4.10: Density contours (shaded) and velocity field at 64000 and 68000 S. Contours of 
region where u < 0.021c( (dashed line), u = 0.0 (solid line). 
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trianguiar region with a base of 40 m and a height of 5 m. i t  can be seen from figure 4.10 that 

while the shape of this region is not steady, it does not change much with time. It is for this 

renson that ive cal1 the final state of the core quasi-steady. 

ln figure 4.1 1 we reconsider the velocity field a t  72000 s in detail. The region of low velocities 

can now be clearly seen. Frirthermore we can note that the region u < O is lifted off the bottom, 

in cont ra t  to figure 1.7 where it is widest a t  the bottom. The area of the region where u < O is 

reduced by approximately onc third from the initial to the final state. We should note that the 

magnitude of the propagation speed of the final wave is lower than magnitude of the propagation 

speed given by the ISW calculator. For this example, however, this reduction is l e s  than 1% 

of the original propagation speed value. It is unlikety that this reduction could be detected in 

oceanic measurernents. 

'fo further examine the diffetence between the initial and final state we consider the contours 

of horizontal velocity for both states. 

From figure 4.12 we can see that the contours for u = 0.02 and u = 0.03 are largely unaffected 

by the adjustrnent process Save for a small region at the back of the wave extending t o  about 1.5 m 

above the bottoni. The region of negative velocities in the initial core is replaced in the final quasi- 

steady state by a region of srnaii positive velocities trapped near the bottom and a n  approximately 

triangular region of slightly negative velocities lying between about 2 and 7 m above the bottom, 

as discussed above. Since the cornputations was performed in a frame moving with the original 

wave propagation speed, the figure also shows the slight reduction of wave propagation speed 

during adjustment that results in the wave's small rightward drift. 

The vertical velocities have a rather different spatial distribution and for this reason it was 

found that the visualisation technique used above to compare the horizontal velocities was too 

clut tered. Instead, shaded contours of the density along wit h contours of vertical velocity (solid 

line - positive, dashed Iine - negative) for the initial and final states are presented in two separate 

panels in figure 4.13. 

From the figure we see that, in the final state, the core consists of an approximately triangular 

region rnarked by regions of weak downdrafts and updrafts. The core has a base length of about 
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Figure 4.11: Density contours and velocity field at 72000 S. Contour of region wherc u = 0.0 solid, 
u = 0.03lcl dashed. 



Figure 4.12: Horizontal velocity contours at  O s (solid) and 71000 s (dashed). 

40 rn along the bottom and a heigbt of about i m. The vertical velocitis in the core rcgion are 

very wcak and hence the flow is nearly horizontal. Outside the core region the contours appear 

largely unchanged from the initial to the final state. In  other words the final ISW-like object 

consists of a weakly active core with a velocity profile very different from that of a nonbreaking 

ISW and wave body with a velocity profile virtually indistinguishable from a nonbreaking ISW. 

A very clear illustration of this spiitting is furnished by examining the vertical profile down the 

middle of the wave of the horizontal velocity (figure 4.14). In the majority of the water column 

the only difference from the initial to the final state is a srnall decrease in magnitude (due to the 

shedding of material behind the wave during the adjustment phase). In the near-bottom, or core 

region. the final profile is blunted with  the most negative velocity occliring just below 6 m above 

the bottom. For the initial state the largest negative velocity occurs right a t  the bottom. 
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Initial densily and vertical velocity contours 

O 
x (ml 

Quasi-steady density and verîical velocity contours (detail) 

Figure 4.13: Density (shaded) and vertical velocity contours at Os (top) and 72000 s (bottom). 
Positive values - solid, negative values - dashed 
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Figure 4.14: Vertical profiles of the horizontal velocity down the middle of the wave. The final 
propagation speed (in a frame rnoving with the initial propagation speed) is indicated by a vertical 
Iine. Final state - solid, initial state - dashed. a) entire water cotumn b) near bottom region only. 
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4.3 Comparison of Quasi-steady States 

Having estabfished the qualitative featurcs of the adjustment procm we now tiirn to t he  important 

ta& of comparing the resulting trapped cares <as various physical pararncters arc changecl. In 

particular we wish to  examine the effcct of initial corc sizc and the choice of vclocity initialization 

in the initial core. 

4.3.1 Comparison by Initial Core Size 

Recall that the variational algorithm used to cornputc the initial candidate wave does not specify 

maximum isopycnai displacement. Instead the algorithm fixes the avaitable potential energy, -4. 

(see equations 2.43, 2.43, and 2.45). This means that while we have some control ovcr the size of 

the initial core, this control is not exact. 

We considcr eight test cases using the ambient ciensity profile (3.1) used i n  the previotis scction. 

The values of -4 used range from A = 0.05 to .4 = 0.12 incremented by 0.01. X s  in  the prcvious 

section al1 waves propagate from right to left (hence c is negative). The relevant propcrties of the 

waves computed by the variational ISW calculator are shown in table 4.3.1. 

Table 4.3.1 Avaiiable potential energy, propagation speed, qma+ and largest wave induced 

current for ISWs past breaking as cornputed by the ISW calculator. The breaking amplitude is 

rlb = 15.6 m. 
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Figure 4.15: Initial wave states. Density contours - shaded, contour of P(zi) - dotted, contour of 
u = 0.021ci - dashed, contour of u = O - solid. (a) A=0.05, (b) A=0.06, (c) A=0.07, (d) A=0.08, 
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Final State, (a) A 4 0 5  

1 .  I 
-50 O 50 100 

Final State, (c) A=0.07 

Final State. (b) Ad.06 

Final State, (d) Ad.08 

Figure 4.16: Final wave states, four smallest waves. Density contours - shaded. contour of ~(2,) 
- dotted. contour of u = 0.02(4 - dashed, contour of u = O - solid. 
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Figure 4.17: Final wave states, four laxgest waves. Density contours - shaded. contour of P(zi) - 
dotted, contour of u = O.O?(cl- dashed, contour of u = O - solid. 
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We begin by comparing the initial and final states for the various waves. In figure 4.15 we show 

the inital conditions (after adjustment) for ail eight waves. We can see that the initial core height 

down the center and haff-width at  the bottom grow from about 8.5 rn and 15 m, rcspectively, for 

.-( = 0.05, to about 20.5 m and 45 m, respectively, for -4 = O. IL CVe caii ako see that the region 

wt)cre u < O (in a frame moving with the initial propagation speed) is about half the core height. 

AS for the case discussed in the last section, al1 quasi-steady waves have a lowr  propagation speed 

than the initial waves (as given by the ISW calculator) used to compute them. We will discuss 

this point in more dctail below, however we should point out that the reduction is l e s  than 4% 

for al1 waves considered. Ive will consider all contours of velocity to be in a frarne moving with 

the initial wave propagation speed. 

In  figures 4.16 and 4.17 we show the final, quasi-steady states of the cores for the four smallest 

ancl four largest waves, respectively. The general features of al1 the final states are in qualitative 

agreement with the exarnple discussed a t  length in the previous section. Namely the final core is 

a regian of nearly stagnant fluid in a frarne rnoving with the original propagation speed. Al1 plots 

are shown at 63.000 S. Frorn figure 4.16 we can see that for al1 four waves shown, the region of 

srnall horizontal velocities (we show contours of u = O and u = 0.02(cl) occupies an approximately 

triangular rcgion centered a t  Ieast 4 m above the bottom. The three srnallest initial cores aiso have 

a region of reduced horizontal velocities that reaches right to the bottom a t  the front of the core. 

Starting with ri = 0.08 and for al1 four cases shown in figure 4.17 the region of reduced horizontal 

velocities does not reach the bottom. For the four larger waves, the final core is characterized 

by an approxirnately 5 m tall, 100 rn wide region of neariy stagnant f l  uid centered a t  about 7 m 

above the bottom. 

An increase in the size of the initial core leads to an increase in the size of the quasi-steady 

core. However, increasing the size of the initial core also leads to a more violent adjustment 

process. Thus doubling the size of the initial core will not lead to a doubling of the quasi-steady 

core size. An example of the rather violent adjustment for the larger initial cores is given in 

figure 4.18 where we show two contour plots of the adjustment phase of the A = 0.12 case. It can 

be expected that 3D effects wouid play a large role in the adjustment phase of the larger initial 
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cores. 

Another way to took at  tiow the quasi-steady state changes as the initial core size incrcases is 

to look at plots of die horizontal velocity at fixed hcights. In figure 4.19 we show horizontal plots 

of the wavc-induccd, horizontal velocity for the initial state dong  with the ditference between the 

initial and quasi-steacly states for four waves (-4 = 0.05. 0.06, 0.08 and 0.12). LVe can see that 

al1 four wczves shown experience adjustment at 1 ni  above the bottom. However, at  5 m above 

the bottorri only thc A = 0.08 and 0.12 cases show significant adjustment, and a t  10 rn above the 

bottom only the largest wave shows significant adjustment. We can also sec that larger initial 

torts experience larger adjustment. This is consistent with the contour plots 4.16 and 4.17. 

The core adjustrnent process results in a solitary-like wave that has a propagation speed, 

maximum isopynal clisplacement, and wave-induccd horizontal velocity of smaller magnitude. 

Strictly spcaking WC can only spcak of an average final propagation speed since wc calculate the 

final propagation spcrti from horizontal vclocity values rit the surface, which are output only cvery 

-!000s. It seerns reclsonablc to focus on the wave induced horizontal velocity a t  the surface since 

the final adjusted wave is very close to the initial wave in the near surface region. In contrast, 

the near bottorn region changes markedIy, as discussed abovc. 

In figure 4.30 we show the initial and final values of maximum horizontal velocity a t  the surface, 

propagation speed and maximum isopycnal displacement. The cornparisons are done as a function 

of A. Since A does not have a clear meaning for the final, adjusted ISW-like object it makes sense 

to consider the propagation speed as a function of either the mavimum isopycnal displacement 

or the maximum wave induced horizontal velocity a t  the surface. This is done in figure 4.21. It 

is clear from this figure that the decreases in al1 quantities considered are larger for larger initial 

cores. Furt hermore. it appears t hat the maximum isopycnal displacernent and propagation speed 

of the final state have an  upper bound (approx. 21.0 rn and 0.203, respectively), 

In figure 4.22 we consider the propagation speed as a function of maximum isopycnal displace- 

ment for the four largest nonbreaking lSWs as well as ISW-like o b j e t s  resulting from the eight 

initial core regions. It can be seen chat decreases in both the maximum isopycnal displacement 

and propagation speed appear to follow a smooth relationship for the four (arguably five) smallest 
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Figure 4.18: Density contours during the adjustment phase of the A = 0.12 case 
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u vs. x initial state A UVS. X 

Figure 4.19: Wave-induced horizontal velocity vs. x at a t = O s and fixed heights, (a) 1 m, (c) 
5 m, (e) 10 rn a l m g  with the difkrence between initial and quasi-steady wave-induced horizontal 
velocities vs. x at fixed heights, (b) 1 rn, (d) 5 m, (1) 10 m. Four waves shown, -4 = 0.05 - d o t t d ,  
A = 0.06 - dot-dashed, A = 0.08 - dashed. A = 0.12 - solid. 
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Figure 4-20: Initial and final values of (a) the propagation speed, (b) the maximum wave induced 
velocity at the surface, (c) maximum isopycnal displacement as a function of A. Magnitudes 
plotted. 
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(b) loinll i+ finai 

Figure 4.21: Initial and final values of the propagation speed as a function of (a) the maxi- 
mum isopycnd displacemen t, (b) the maximum wave induced horizontal velocity at the surface. 
Magnitudes plot ted. 
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Figure 4.22: Initial and final values of the propagation speed as a function of the maximum 
isopycnal displacement for the four largest nonbreaking ISWs as well as the eight ISW-like objects 
with ttapped corcs. Magnitudes plotted. 

cores, but that this smooth relationship does not hold for the larger cores. 

We now tiirn to vertical profiles of the horizontal velocity. .As in the previous section we 

consider profiles taken at the center of the wave where the largest wave induced horizontal currents 

occur. In figures 4.23 and 4.24 we compare initial and quasi-steady states for .4 = 0.06, 0.08,0.10 

and 0.12. Figure 4.23 shows the entire water column white figure 4.24 focuses on the near bottom 

core region. We can see that while for it = 0.06 the decay of the velocity profile over the top 

30.0 m of the water column is nearly negligible, it increases with increasing initial core size (A) 

becoming clearly visible for A = 0.10 and 0.12. The profile in the near bottom region is blunted in 

the quasi-steady state with the most negative current occurring between 5.0 and 10.0 m above the 

bottom. Figure 4.24 shows some of the details of the core region. In particular, one can note that 

the oscillations in the profile appear to grow with increasing initial core size ( A ) .  It is neverthelm 

interesting that the larger initiai core cases, which undergo a more violent adjustment, end up 

with essentiall y unchanged characteristics frorn the smaller cases. 

Finally we examine the vorticity contours in the quasi-steady core region. From figure 4.25 we 

can see that for smaller initial cores the core region remains largely free of vorticity while large 

vorticity variations form a ring around the core, For larger cores there is more variation in the 
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Figure 4.23: Vertical profile of the horizontal velocity at  the wave crest: Cornparisons of initial 
(dashed) and quasi-steady (solid) states. Final propagation speed indicated by solid line. 
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Figure 4.24: Vertical profile of the horizontal velocity at the wave crest: Cornparisons of initial 
(dashed) and quasi-steady (solid) states. Final propagations speed indicated by soiid line. 
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Figure 4.25: Contours of the vorticity in the core region for A = 0.06,0.08,0.10 and 0.12. Positive 
values - solid. negative values - dashed. 
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vorticity field within the corc itself. tlowever. for .4 = 0.10 we c m  see that a sizable region free 

of vorticity (corresponding to stagnant fluid) is foiind roughly 5 m above the bottom. 

In sumrnary then, as the initial corc sixe (.4) is incr~~lçcd we finci that the size of the qiiasi- 

steady, nearly stagnant core increases. initiaily keeping a n  asyrnrnetric shape consisting of a main 

area of reduced velocities found severai meters abovc the bottoin and a small region of reduced 

velocities reaching the bottom at the front of the corc. Whcn the initial core sizc is increased piut 

a certain point, the region of reduced velacities that reachcs right to the bottom disappcars and 

the entire quasi-steady core is found in a broad (approx. 60.0 m),  region ly ing between 5.0 and 

15.0 m a b o v e  the bottom. The adjustment for the larger initial corc values is quite violent and 

hence could be significantly modified by 3D cfkcts. Xevertheless. for al1 cores (values of -4) used 

the vertical profiles of the horizontal vclocity at the crest of the wavc.  wcrc remarkably sirnilar. 

The adjustment process leads to a dtcrcase in propagation spccd and maximum isopycnai 

displacement for al1 wavcs. This change incrcases in magnitude 'as t h e  initial core amplitude is 

increased. The results for the larger initial cores appear to indicate that the wave amplitude as  

defined by the maximum isopycnal displacerticnt cannot be incrcascd arbitrarily. In  other words 

pa.t a certain point increasing the sizc of the initiai core will lcad to a more violent adjustrrient 

during which more material is shed behind the wave, but will not yield a final, quasi-steady wave 

with a larger amplitude. 

We next turn to the effect of the core initialization 

4.3.2 Core Initialization Effects 

As mentioned in the Methods section, the rnanner in which we have chosen to set the velocities 

in the initial core is not unique. Recall tha t  the initial core is defined as the set of points a t  

which the variational algorithm sets the density to be larger than the density a t  the bottom of 

the ocean. To ensure that our initial wave is a physically reasonable object we set the density in 

this region to equal the density a t  the bottom, far upstream of the wave. At this point we must 

also make a choice as to what to do about the velocities in this region. The choice made in the 

above discussion is to sirnply keep the velocities as givcn by the variational tSW calculator (this 
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is referred to as the original initialization in the figures and discussion below). Of course we do 

not expect the final quasi-steady state of the 1SW-likc object to necessarily reflect thesc velocities, 

however therc! seems no a priori reason to modify the vclocities. Other choices arc possibte. For 

exarriple we could set the entire core rcgion to be stagnanl with respect to the initial wave speed. 

This makm some sense as we found that the final qu=zsi-stcacfy state had a nearly stagnarit core 

region. Furthermore it agrces with the thcory of Derzho and Grimshaw ( [ I  Fi]). 'This initialiaation 

(referred to as  the u = c initialization in the figures and discussion below), howcver. is not pcrfect 

from the point of view of the numerical solver as it introctuces discontinuities in the velocity field 

a t  the edge of the core. In practice these discontinuitics lead to srnnll scale noise. but no othcr 

profound effects on the resulting ISW-like abject. The Ievcl of noise increases as the initial core 

region increases in size. 

Setting (u,  w )  = (c, O) modifies the velocities in the bottom rcgion. For srnall cores the change 

is srnall (Le. the change in u is l e s  than 6% of the  maximum wave induccd u value for tht! .-I = 0.05 

case), but increases with  the initial core size (the change in u is about 25% of the maxirtiiim wave 

induccd u value for the A = 0.08 case). 

In t his subsection we compare and contrc?st the results of the two abovc-mentioned initializa- 

tions for three values of .4 (-4 = 0.05, -4 = 0.06 and A = 0.08). We choose to focus on the smaller 

initial cores in order to avoid questions regarding the violent adjustment phase for largcr initiai 

cores. 

In figure 4.26 we show the final quasi-steady velocity fields for the three waves for both ini- 

tializations. For fixed cl the shape of the nearly stagnant region is not greatly changed by a 

change of initialization. There is a ciear difference for the smaller cores in that there is no region 

where u < O. However, as the negative currents for the original initialization (in the quasi-steady 

state) have a srna11 magnitude, the quantitative difference between the two initialization cases is 

very srnaII. The fact that a region with u < O results for the Iarger initial core corresponding 

to  A = 0.08 can be expfained by noting that the final, quasi-steady region is much smaller than 

the initial core and hence for A = 0.08 a more violent adjustment process can induce negative 

velocities in the core region. Recall the adjustment consists of instability a t  the edge of the core 
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u=c Parametrization Original Parametrization 

Figure 4.26: Quasi-steady state compaiison for the two initializations used, density contours 
(shaded), bottom density contour (dotted), contour of u = 0.02(c( (dashed), contour of u = O 
(solid). (a) A = 0.05 u = e initialization, (b) A = 0.05 original pararnetrization, (c) A = 0.06 
u = e initialization, (d) A = 0.06 original initialization, (e) A = 0.08 u = e initialization, (f) 
.4 = 0.08 original initialization. 
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region, followed by intrusion into the core itself as well as downstream washout of material in the 

core, A t  the risk of being repetitious, we remind the reader that we are talking about negative 

velocities in a frame of' reference moving with the initial wave propagation speed. 

The two initializations lead to different value for the final propagation speed. In particular, 

the u = c initialization yields a larger drop in propagation specd from the value given by the 

solitary wave solver. More quantitatively if we define the ratio 

we find that for the original initialization 8, = 0.0038, 0.0076 and 0.0167 and for the u = c 

initialization Re = 0.0058, 0.0114 and 0.0204 for A = 0.05, 0.06 and 0.08, respectively. Thus 

neither the difference in the drop between the two initializations, nor the drop in propagation 

specd itself are very large. Note that due to the drop in propagation speed it is the dashed 

contours representing 0.02(cl in figure 4.26 that give the nearly stagnant region for the quasi- 

steady state. 

In figure 4.2'7 we show the contours of vorticity for the initial and quasi-steady states for the 

.4 = 0.08 case with both the original and the u = c initialization. Tbe u = c initialization leads to 

slightly more vorticity in the core interior, but in general the two plots are qualitatively similar. 

Finally we consider vertical profiles of the horizontal velocity a t  the center of the wave (the 

wave crest). In figure 4.28 we compare the two initializations. It can be seen that when examining 

the entire water column the results of the two initializations are indistinguishable for A = 0.05 

and very nearly identical for both A = 0.06 and 0.08. If we focus on the near bottom or core 

region we can see that there are i n d d  small differences for al1 values of A. However the major 

characteristics noteà in the previous subsection fi.e. the blunted profile with a minimum veiocity 

found some ways above the bottom) are common to both initializations. 

The above results suggest that ISW-like objects with a main body very close to a solitary 

wave and a smaller (though possibly quite large in physical space) core region of nearly stagnant 

fluid are largely independent of the way the velocities in the initial core are initiaiized. Of course 

the above results are not exhaustive. Still there seems Iittle evidence that a different quasi-steady 
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Original Initialization, A=0.08 

u=c Initialization, Ad.08 

Figure 4.27: Contours of the quasi-steady vorticity in the core region for A = 0.08 with the 
original initialization (top panel) and the u = c initilization (bottom panel) for the velocities in 
the initial core. Positive values - solid, negative values - dashed. 
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- original 1 

Figure 4.28: Cornparisons of vertical profiles of the horizontal velocity at the wave crest for the 
two core initializations as A varies: original (solid), u = c (dashed). Top three panels show entire 
water column, bottom three focus on core region. 
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statc (for exaniple a vortex corc) from that cfescribed abovc could be achicved. 
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Conclusions and Future Work 

In the prcvioiis sections tve have outlincd a method for calciilating interna1 solitary-like waves 

with a trappcd core arid discussecl some of the propertics of tliese wavcs. In particular we have 

shown that i t  is possibie to find waves that are qucasi-stcaciy. These waves are made up of a main 

body that is virtiially indistingiiishable from a nonbreaking ISW and a nearly stagnant core (in 

a frame moving with the wave propagation speed). 'The waves were corn putcd by first using the 

variational solitary wave calculating algorit hm to prepare an initial state. The wave calculated 

by the variational rnethod rniist be modified by acijtisting the density (and possibly the velocities) 

in the closed streamline region. Once rnodified, the wave is allo~ved to evolve until a quasi-steady 

state is reachcd. In al1 cases a quasi-steady state was reached. Two differcnt initializations for 

the vclocity field in the core wcre tricd, but thcse dit! not scem to have much bearing on the final 

quasi-steady state. tC'c also ran several test c,ascs with a non-zero. linear background current. 

Again we foiind that, aside from a change in rlb (as disciissecl in Chapter 31, the presence of the 

background ciirrent did not atfcct the final quasi-steady outcorne. as cvidenced by the exarriplc in 

figure 4.29. 

In  figure 4.29 we show the initial and quasi-steady contours for two waves with U ( : )  = O . l +  

and one wave with no background current for corn parison. The maximum value of the background 

currcnt is approximately 69% of the linear longwave speed. 

Though the variational algorithm does not specify the wave amplitude, it does allow us to  have 

some control of the size of the initial core region. For al1 cases, the adjustment tirne needed for 

the initial state to  reach the final, or quasi-steady state is quite Iong (50,000 s for a stratification 

with a linear long wave speed of 0.14 ms-'). This long adjustment time rnakes it difficuit to 

envision a situation in which quasi-steady cores would be observed in  the ocean. During the 

adjustment procciss both the amplitude and propagation of the initial wave decrease. For smaller 

initial cores i t  was found that the propagation speed versus maximum isopycnal displacement 

curve (after adjustment) for waves with a trapped core can be smoothly joined to the same curve 

for nonbreaking ISWs. For larger initial cores this was not possible. This can be attributed to the 

fact that the adjustment proccss is much more violent for larger initial cores. While 3 0  effects 
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Initial States Quasi-steady States 
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Figure 4.29: Initial and quasi-steady States, (a)-(d) with linear background current. Density 
contours (shaded), bottom density contour (dotted), contour of u = 0.021ei (dashed), contour 
of u = O (solid). (a) (A, U ( H ) )  = (O.05,O.l) initial, (b) as (a) quasi-steady, (c) (A, U ( H ) )  = 
(0.06,O.l) initial, (d) as (c) quasi-steady. (e) (A,  U ( H ) )  = (0.07.0.0) initial. ( f )  as (e) quasi-steady 
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would undoubtedly play sorne part in the adjustment process, it is interesting that even the largest 

waves tried eventually reached a quasi-steady state. 

.4II cases shown in this chapter used a stratification for which the wave amplitude, q,,,, is 

boundeù above by wave breaking. For stratifications with conjugate flows it is impossible LO use 

the variational algorithm to calculate waves past breaking. Ive atternpted to produce waves with 

trapped cores for such stratifications using first-ordcr WNL (which predicts breaking waves for al1 

stratifications). Despite considerable effort, it was found that the cores did not remain trapped 

and the steady state reached was a nonbreaking ISW (confirmcd by the variational algorithm). 

The literature on waves with trapped cores is not nearly as extensive as for nonbreaking 

ISWs. The numerical study of shoaling ISWs of depression by Lamb ([35]) serves as the main 

cornparison to the present study. Lamb finds that shoaling waves will not forrn trappcd cores 

if a mixed layer is found near the surface (or i n  other words, for stratifications which admit a 

conjugate flow solution). He discusses the evolution of the trapped cores as the waves propagate in  

the shallow (on shelf) region. However Lamb does not follow the waves long enough to sec whether 

quasi-steady cores form. For stratifications with the pycnociine found in the bottom half of the 

water column (resulting in waves of elevation) it is perhaps more Likely that the water column is 

stratified right to the bottom, and hence that shoaling will lead to waves with trapped cores. in 

fact for waves of elevation, very srnall changes in the total depth can lead to wave breaking and the 

formation of trapped cores. For example a change in total depth from 60 m to 55 m over 100 m 

was found to lead to breaking and core formation for the density profile discussed in this chapter. 

Observations of ISWs of elevation on the Pechora shelf by Serebryany and Shapiro ([56)) show 

several waves consistent with the properties described in this chapter. While the waves observed 

did not likely have quasi-steady cores (as they were likeiy formed during shoaling and had not haâ 

time to settle to the quasi-steady state), it would be interesting to compare the rneasurements 

with the present results in more detail. 

The experiments of Grue et al. ([23]) were rnentioned in the introductory section of this 

chapter. These experiments follow the formation and propagation of an ISW that is formed by 

the collapse of a rectangular region (kept apart from the main tank) with a density profile that is 
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different from the profile found in the main portion of the experimental wave tank. The technique 

tised to create the waves leads to a very active core region. The tank length is sufficiently large so 

that an ISW with a trappcd core is observed before the wave reach- the end of the tank. Given 

the long adjustment time it is unlikely that the ISWs studied by Grue et al. have quasi-steady 

cores. Grue et al. find that thc main wave body is well described by nonbreaking. theoretical 

predictions (their theory can be thoicght of as a special case of the general formulation used to 

construct the variational lSCV calculating algorithm). However, their theory cannot describe the 

core region. Given the results in this chapter, it is dificult to imagine a simple theory for the 

motions in the core. Evcn for nearly linear stratifications, as Derzho and Crimshaw's theory 

breaks clown for large cores since the core is no longer adjacent to the bottom and the fluid in the 

core is not stagnant. 

In summary, the experimerits of Crue et al. are an escellent complement to the rcsults of this 

chapter. Given that the two studies attempt to answer somewhat difirent questions (Griie et al. 

make no mention of a quasi-steady state and there is some question of how dependent the details 

of their waves are on the generation technique) the agreement between the two sets of results 

speaks to thc robust nature of the phenornena being discussd. Numerical simulations that mimic 

the experimental set-up of Grue et al. provide an obvious avenue for future work. 

CVe should briefly mention that experimental and numerical work on trapped cores for mode 

2 waves is much more extensive (i.e. [14], 1631, [58], [60]). However the case of mode-2 waves is 

complicated by the fact that it is possible to have srnail, mode-1, oscillatory taiis that propagate 

with the wave and drain energy from it (hence the wave is not solitary, see [?]). Preliminary 

investigations by the author indicate that mode-2 waves with trapped cores are possible for density 

profiles which have conjugate ffow solutions. Space and time considerations relegate further 

investigation to the future. 

We should note that the numerical simulations of both Terez and Knio (1601) and Tung et ai. 

([63]) actually involve mode-I waves (mode-:! waves are then plotted using a line of symmetry), 

and as such are somewhat relevant to the present work. The study of Tung et al. provides an 

alternative numerical technique (same governing equation) for calculating ISWs as well as some 



CH:IPTER 4. ISW-LIKE OBJECTS CVITH TRAPPED CORES 159 

preliminary discussion of waves with closed streamlines (along the lines. and with many of the 

shortcomings of the previously discussed (il?])). in the study of Terez and Knio, the waves are 

gcnerated by collapsing an initially mixed region in a main dornain that is a stably stratified, 

two-layer fliiid. The resulting waves appear qi~alitatively sirnilar to both the present work and 

the experiments of Grue et al., though the authors do not provide quantitative discussion of the 

velocity fields, concentrating instead on Lagrangian particle tracking for short times and wave- 

w ~ v e  collisions. 

In sumrnary then the present work shows that it is possible to calculate quasi-steady waves 

with a trapped core in a systematic manner. For small initial cores. these waves are in reasonably 

good agreement with the theoretical prediction of Derzho and Grimshaw (1151) that the trapped 

core should be stagnant in a frame moving with the wave. It is found that the waves are only 

apptoximately stagnant and that their propagation speed is over-estimated by the variational 

ISW calculation algorithm (the drop in propagation speed increases with initiai core size). For 

Iarger initial cores the quasi-steady core is found well above the ocean bottom, something not 

prcdicted by ([1 fi]). In nature it is possible that waves of elevatian with trapped c o r s  can be 

formed as an initially nonbreaking ISW shoals ont0 bottom topography of relatively small size 

(compared, for example with that used in [35]). We should note, however, that the interaction of 

an ISW with realistic topography would likely be more complex than to simply form a trapped 

core. Preliminary simulations performed by the author indicate that even for Iong (100 m), small 

amplitude (2 rn) sinusoidai topography the near bottom region of the wave is modified a great 

deal. This issue requires careful exploration in the future. 



Chapter 5 

IS W-BL Interaction 

'The previous two chapters considcred waves governcd by inviscid governing equations. This is 

often a good approximation in the ocean, particularly il there is no background current, as the 

hottom boundary layer (BL) will be t hin and the 10% of energy from the ISW to viscous dissipation 

small. However there is some question whether the interaction between the wave and the bottom 

boundary layer could lead to qualitatively different dynamics (from a slowly changing solitary-like 

wave). The measurements of Bogucki et al. (or BDR) ([8]) off the California Coast indicate that 

the passage of an interna1 wave packet of elevation Ieads to a n  increase in the amount of sediment 

in the water coiurnn well above the bottorn (8 m above the bottom in water 60.0 rn deep). These 

measurements imply that the interaction of the wave-induced currents with the bottom boundary 

Iayer leads to sediment resuspension. In ((81) the authors hypothesize. b a s 4  on WNL, that the 

resuspension sets in due to shear instability in  t he  boundary layer, with the shear instability being 

crucially dependent on the presence of a (non-constant) background current. We calculated fully 

nonlinear ISWs for the situation outlined in ([8]) and fuund that for al1 nonbreaking ISWs the 

Richardson number (Ri) did not dip below 0.3. While Ri  > 0.25 does not guarantee stability 

for non-parallel flows, our results appear to invalidate the predictions in ((81). The problem 

is paper of resuspension was revisited by Bogucki and Redekopp in the short paper ([IO]). Th' 

presented direct numerical simulations of the bottom layer in a twdayer  fluid (however the top 



bouiictary was held fixed), and argued that ( WNL) waves larger than a certain ampli tude exhibitcd 

a global instabili ty. W hile the implications of the given results werc clear, the same could not be 

said for the niirnerical mcthodology and hence ([lu]) served more as an impctus for further work 

than as a valici explanation of the sedirnent rcsuspension process measured by BDR. A particuiar 

conccrn for the airthor was the reliance in ( [ [ O ] )  o n  WYL for the velocity profiles (though even this 

was not done in a ciear rnanner). Fiirthcr observations of resuspension events due to  ISW passage 

werc prescntcd by Bogucki and Redekopp i n  the proceedings of the Fifth International Symposium 

on Stratified Flows ( [ I l ] ) .  'These observations indicated that resuspension of sediment by lSWs 

in  coastal seas occrirs quite often and underlincd further the need for a theoretical understanding 

of t hc resuspension process. 

LIS the prcsent work ainis to clarify the work of Bogucki and Redekopp it makes scnse to 

commcrit on their papcr ([10]) moreextensively. The authors argue that below a critical amplitiide 

the flow in the DL beneath the \C'Pl L wave is given by a recasonabIy symmetric, stationary eddy. 

tlhove the critical amplitude (which is b,ased on the magnitude of the WNL horizontal velocity 

perturbation) spoiitaneous vortex shedding occurs. The aut hors interpret the vortex shedding as 

a global instahility of the initial scparation bu bble. Ta the prcscnt author, this seems rather odd, 

,as Bogucki and Redekopp never discuss whether a fully noniinear ISW is allowed to  evolve from 

their initial conditions at all. 

Indecd the work of Bogucki and Redekopp is perhaps b a t  understood in terms of previous 

work on separation bubbles in  the boundary layer (15 11, [52]). In ([5 11) separation bubbles induced 

by suction at the upper boundary of a twedirnensional channel and their instabili ty were studied 

by direct numerical simulation. The authors found that below a certain critical suction rate the 

separation bubbles induced by the adverse pressure gradient were steady. Above this  critical 

suction rate vortex shedding resulted. The authors found, sornewhat surprisingly, that vortex 

shedding began to occur when L 1% of the incoming fluid was removed from the computational 

domain by suction for the entire range of Reynolds nurnbers tried. The remainder of the paper 

provided a cornparison of numerical and experimental results on boundary layer separation. As 

such it is not relevant to the present work. The results of ([Fjl]) were repeated for a more complex 
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Figure 5.1: Density and horizontal velocity contours (in afrarne fixed with the ground) for ISW 
with well devetoped bottom BL. (O,, v )  = (0.0,10- J) 
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flow a t  the upper boundary in ([Z]), again to providc a cornparison with experinient. Lnter in 

this chapter wc will present work attempting to reprodiice some of the results of ([5 11, [iiZ]). 

Rcturning to the paper of Bogucki and Rcciekopp. it seems reaçonable to adopt the viewpoint 

that an instability may occur in the DL bcneath large. fully nonlincar ISWs. Itawever, the details 

of the instability may not be accitrately describcd by the WXL based simulations of Bogiicki and 

Redekopp. 

There are two methods availahte to us for computing solitary-like wwes in the presencc of no 

slip boundary conditions on the ocean bottom. First we could sirnply allow an initial distiirbance 

in the density fieId to break iip into a rank ordercd wave train of solitary-like waves (though the 

resulting wave amplitudes woiild be largely uncontrollcd). Second we could use an inviscid ISW as 

an initial condition with the hope that the acljustrnent to the no slip bottoni boundary conditions 

proceeds in a physically reasonabic manner. Thcre is no guarantee a priori that this will be the 

case. tIowever, several computations for di fferent sizcd ISWs (as well as di fferent dcnsity profiles) 

have demonstrated quite conclusively that the initial wave rcmains largely unchanged. save for 

the formation of a bottom boundary layer whose thickness depends on the choice of eddy viscosity 

value. For these runs we computc a leftward propagating wave. switch to a frame moving with 

the wave, and then begin time-stcpping with no slip boundary conditions applied at the moving 

bottom (this setup means srnalier waves will propagate to the right and out of the computationai 

domain). In figure 5.1 we show an example of a leftward propagating ISW with a well developed 

BL. The details of the grid used will be given in the following section. Frorn the figure it is clear 

that the wave rernains essentially solitary with a narrow Bi, attached to the bottom. An area 

of weak horizontal velocities directed opposite to the direction of propagation is seen to trail the 

wave in the bottom BL. 

The same result was found for waves of various size and in the presence of a background 

current provided that U ( 0 )  = O, or in other words the velocity of the background current at the 

bottom was zero. When the velocity of the background current a t  the bottom is not zero (in 

the inviscid case) a boundary layer forms upstream of the wave as soon as the no slip bottom 

boundary condition is applied. This means vorticity is produced upstrearn of the wave. This 
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Figure 5.2: Density contours of initial condition for ISW fissionhg with bottom BL. (Us, v )  = 
(0.5.10-5) 

vorticity is subsequently advected into (and interacts with) the main wave body. We wiiI  show 

that this interaction can lead to large instabili tics wi thin thc bottorn boundary layer. 

We will look a t  the the simplest possible background currents. nameiy non-zero constants (we 

will label these Us). These can be thought of as a mode1 of the barotropic interna1 tide. To 

motivate the remainder of the chapter consider the evoiution of an initial disturbance shown in 

figure 5.3. The length scales in the figure have been non-dirnensionalized by the total depth. The 

computation was carried out in a domain 10 units wide and 1 unit deep using a grid of 3000 by 150 

points. Al1 lengths were nondimensionalized by the water column height of 60 m. The horizontal 

spacing was regular giving a resolution of 0.0033 (0.2 rn). The vertical spacing was quadratic with 

20 points in the bottom 0.0167 (1 m) and 80 points in the bottom 0.0833 (5 m), giving excellent 

resolution of the boundary layer region as well as the remainder of the water column. The initial 

background current is fixed to be a constant, approximately one half of the propagation speed 

of the expected, leading ISW. We take the eddy viscosity to be  IO-^ m2 s-', and the Prandtl 

number to  be unity. This simulation has the highest resolution of any presented in this thesis. 

The Reynolds nurnber (Re) based on the estimated value of the maximum magnitude of the 
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Figure 5.3: Density contours and velocity field for leading two ISWs . Instability and vortex 
shedding are well developed. (U, ,  u )  = (0.5, 10-5) 

wavcinduced horizontal velocity due to the leading wave. the total depth and the eddy viscosity 

is approximately Re = 7.5 x 106. 

The initial disturbance will break up into two rank ordered trains of lSWs, with the rightward 

propagating train being swept out of the computational domain. In figure 5.3 we show the leftward 

propagating train well after it has fissioned from the initial disturbance and the bottom BL has 

had plenty of time to develop. We show both the density and the velocity field. We can note 

immediately that the two waves that are visible have a much more active acd complex structure 

than the inviscid lSWs (even the waves with trapped cores). Further note that several regions of 

heavy fluid (in white) have been adyected up into the pycnocline. In Tact it appears that large 

vortices are shed from the bottom boundary layer near the front of the leading wave (white region 

near + = -2.5) and are advected up into the pycnocline and over the main wave body. In the 

remainder of the chapter we airn to systematically examine the onxt  of the instability in the 

boundary layer, the values of the physical parameters for which the instability does and d o s  not 

occur, and the repercussions of the instability for sediment cesuspension. We will also comment 

on some details of the instability as well as some possible theoretical explanations for the onset 
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of the instability. 



5.1 Methodology 

The high resolution simulation presented in the previous section is not an efficient means to 

investigate ISW induccd wave reçtispension for several reasons. The primary theoretical objection 

is that we cannot control the size of the ISW that fissions from the initial disturbance, something 

we could do with the variational ISW calculating method. What is more. on a practical level, to 

rcsolve the iissioning process with the same level of accuracy as in the previous section would prove 

too costly in terms of computational time and storage space to make a thorough investigation 

of the parameter spacc. X compromise betwcen what is computationally reasoiiable and what 

is desircd in terms of resolution is afforded by the ISW calculating algorithm. We adopt the 

following approach for a given stratification profile: 

O Calculate the dcsired ISW using the  variational method on a rcgular grid with no background 

ciirrent. 

Interpolate to a grid that resolves the bottom BL using third order splines. 

:tdd the desired background current (which we shall cal1 U,). 

Switch to a frame moving with the wave (sce details below) 

+ Run the rime-stepping solver for the desired value of the eddy viscosity and diffusivity 

Note that in the frame moving with the wave the bottom will be moving as well. We should 

riote that wit h the no slip bottom BCs it is not possible to shift to a frame moving with the wave 

exactly, since the wave propagation speed is altered slightly by drag due to the bottom BL and 

decreases as the wave amplitude decreases. In practice this issue is irrelevant as the wave drift is 

nearly negligible on the time scales of interest. Also note that to run cases with varying Reynolds 

number (alternatively eddy viscosity) we need only repeat steps 3 through 5. Because the wave is 

basically still we can specify a smaller domain in the horizontal direction (thereby getting greater 

resolution without increasing computational cost). Plots of horizontal velocity will be given in 

the moving frame unless otherwise specified. 



For the simulations presented in the following section we utilize a domain L = 16.66 by H = 1 

units with  1000 by 120 points. .-Ill lengths are nondimensionalized by the water column depth of 

fi0 m. The grid is rcgular in the horizontal direction with a resolution of 0.0167 ( 1  m) while the 

vertical grid is quadratic wi th 12 points in the bottom 0.0 167 ( 1 m), 32 points in the bottom 0.0833 

(5 ni) and 48 points in the bottom 0.167 ( 10 rn). Resolution tests for the horizontal spacing were 

performed by douhling the horizontal resolutiori. We found that this did not affect the occurrence 

or time to onsct of t he  instability in the bottom boundary layer. However certain fine scale features 

that appear aftcr the onset of the instability arc affected by doubling the horizontal resolution. 

Rcsolution tests for the vertical grid yielded more interesting results and will be discussed a t  length 

in the following section. In the final analysis, however, the grid spacing nientioned above proved 

CO bc both computationally cconomical and capable of resolving the details of the instability to a 

rra~ionablc levcl. 

For al1 4mulations the bottom is Rat. the Prancl tl number is set to unity and the eddy viscosity 

is constant. The value of the eddy viscosity varies from simulation to simulation. Al1 ISWs are 

cornputed as leftward propagating so that in a frarne moving with the ivave al1 disturbances shed 

behind the wavc propagate rightward and out of the computational dornain (throiigh a n  open 

right side boundary). 

We consider several stratifications of the form 

2 - q) 
p(:) = 1 - 0.0 1 tanh (-). 

d 

,411 results will be presented in nondimensional form. We take the total depth, H, as the charac- 

teristic length, the linear long-wave propagation speed in a fluid at rest, ci,, as the characteristic 

velocity. and hence t' = 5 as the characteristic time. 

Finally, we shoiild note that the simulations presented in this work are fairiy crude. They 

are 2D only and the turbulence rnodeling is extremely simplistic. As such our simulations do not 

attempt to reproduce nature, serving instead to provide an indication of whether an instability 

occurs, and if the instability occurs, some idea as to the qualitative effects of this instability. This 

is important since most iarge scale oceari models cannot hope to resolve the scales we are dealing 
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with and must parametrize their effects on larger scale motions. 
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5.2 Results 

In this section we present the results of oiir nurnerical expcriments. The section is broken tip into 

four parts. First we describe the evoliition of a canonical esample in detail. thereby giving us a 

baseJine case to compare the general resuits with. Ncxt we turn to a more general exploration of 

phase space in order to attempt to answcr when the instability does and does not occur. Third 

we rcturn t o  give several differetit examples of the instability evolution. Thcse examples aim to 

clarify the effects of initial ISW size, the efiect of background current amplitude. and the effect 

of changing the stratification. Finally we comment on the relation of the instability to  seciiment 

resuspcnsion. 

Before discussing the results we present two tables. The first lists the dimensional lincar long- 

wave specds in a fluid a t  rcst for the three stratifications useci. whilc the second tists some relevant 

information about the ISWs used in this section. 

Table 5.3.1 zo, d and ci,, the dimensional iinear longwave speed in rr fluid at r a t  for the three 

stratifications used in this section. 

0.15 / 1.3710 1 O.?? 1 0.9628 

Table 5.3.0 zo (d = 0.05 in al1 cases), propagation speed, q,,, and max (lut) (al1 in dimensionless 

form) for the lSWs discussed in this section. 
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For al1 cases tried Us < O did not yield any intereshg dynarnics in  the bottom BL region. For 

this reason we will consider Us 2 O only. ft shoiild be noted however that for wavcs of depression 

cases with LI, < O would need to be examincd. 

In all figures showing the contours of horizontal vclocity we wili follow the convention that 

we arc in a frarne fixed with the ground. Unless otherwise iiidicated, the contoiirs rire regularly 

s paced . 

5.2.1 An Example 

We begin with a thorough discussion of a sarnple niimerical simulation. \Ve take ( c o , d )  = 

(0.1.0.05), rl,., = 0.19 and Us = 0.76. The Reynolds nurnber (Re )  is set eqiial to 6.8 x 10'. 

U, and u arc chosen so that a global instability does occiir. For this stratification ISW amplitudes 

are bounded above by shcar instability and no conjugate flow exists ((371). In figures 5.4 and 3.5 

we show the density and vertical velocity contours, and density and horizontal veloci ty contours 

for the initial wave, respectively. In figure 5.6 we show the density and horizontal velocity contours 

early in the wave's evolution. It can be seen from the uppcr panel that the BL is quite thin. The 

detail of the BL in the lower panel shows that there is virtually no stratification in the bottom 

BL and that a long, thin separation region forrns on the upstream side of the wave crest (1: = O a t  

t = O). Note that we cannot cal1 this region a separation bubble as there is no clear reattachment 

(it occurs a t  the rear of the wave, well away from the region shown). 

ln figure 5.7 we show the separation region just a t  the point of the instability sctting in. W e  

can see that the hcight of the separation region has increased from figure 5.6 and that the isolines 

of negative velocity have begun crowding together a t  about r = -0.55. The instability formation 

is perhaps better illustrated by a plot of the contours of vertical velocity, shown in figure 5.8, In 

this figure we can see that the region of isoline crowding in the contours of horizontal velocity 

corresponds to an momalous region of negative vertical velocity. 

In figures 5.9 and 5.10 we can see the developrnent of the instability as it grows in size. By 

t = 4.66 the instability extends from deep in the BL to the bottom of the stratified region and 

can be seen to consist of alternating bands of strong updrafts and downdrafts. The updrafts are 
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Figure 5.4: Density and vertical velocity contours for sample initial ISW with (U,. Re)  = 
(0.76, 16.8 x 105). Positive veloci ty (solid), negativc velocity (dashed). 

Figure 5.5: As figure 5.4 but for horizontal velocities bebre no slip boundary conditions are 
appiied. 
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Figure 5.6: Density and horizontal velocity contours for sample ISW with (U,, Re) = (0.76,6.8 x 
105) at t = 2.33. Positive velocity (solid), negative veiocity (dashed). 
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Figure 5.7: As figure 5.6 but at t = 2.91. Note the change in vertical scale. 
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Density and W conloufs a1 k291 tg0.1 M.05 Large Wave 

Figure 5.8: As in figure 5.7 but for vertical velocities. Note the change in vertical scale. 
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Figure 5.9: As in figure 5.8 at t = 3.496. 



Oensity and W contours at 84.66 zO=û.l 60.05 Large Wave 

Figure 5.10: As in figure 5.8 at I = 4.66. 



capable of transporting near bottom sediment high ( r  = O.?) into the water column. Furthcrmore, 

the violent nature of the instability onset could induce sediment motion (more on this in the 

subsection on sediment transport). In figures 5.1 1 and 5-12 we show the contours of vorticity. 

Figure 5.12 shows the vorticity at times corresponding to figures 5.9 and 5. IO. It can be seen that 

the positive vorticity advected over the separation region breaks up ancf by i = 4.66 twa large 

positive vortices appear ready to separate and move into the stratified region. 

To get a better idea of how this situation cornes about, we tiirn to vorticity dynamics. The 

inviscid ISW has a certain amount of baroclinic vorticity associateci with it, concentrated in 

the deformed pycnocline (see top left panel of figure 5.11) well away from the ocean bottom. 

As  mcntioned in the introduction, the background current and no slip BCs ltad to upstream 

vorticity production (as a BL forms upstream of the wave). The upstream prodiiced vorticity is 

positive. or clockwise, the same as the ISW vorticity. However the extent of the BL is quite small 

and hence the strong DL vorticity remains well away from the weaker I S W  vorticity even as the 

former is advected into the wave body (see top right panel in figure 3.1 1). For this particular case, 

the horizontal velocity under the center of the wave (wave-induced plus background current) is 

initially negative in the BL region. Hence the vorticity produced beneath the ISW once the no 

slip BCs are applied is negative (see figure S. 1 1, bottom panel). AS the positive upstream vorticity 

is advected horizontally into the wave by the background current it is advected upward by the 

wave-induceà currents, and over the region of negative vorticity. The interaction between the two 

regions of vorticity leads CO the creation, deformation and eventual instability of the separation 

region discussed above. 

As mentioned in the introduction, instability of separation bubbles in the bottom EL is asse 

ciated w i t h  vortex shedding (see [5 11, [52] for work on suction induced separation bubbles in a ff a t  

plate BL for constant density fluid). Some effort was expended in reproducing the general resul ts 

of (1511) with our numerical model. As ive cannot easily impose a suction condition a t  the upper 

bounding surface, we use a body force term to induce the desired flow profile. We use 
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Figure 5.11: Vorticity contours for sarnple ISW with (Us, Re) = (0.76,6.8 x 105) at t = O and 
t = 2.91. Positive BL vorticity (solid), negative BL vorticity (dashed), smaller magnitude, positive 
baroclinic vorticity (dot-dashed). (a) t = O, (b) t = 2.91, (c) t = 2.91 expanded view. 
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Figure 5.12: Vorticity contours for sarnple ISW with (Us, Re) = (0.76,6.8 x 105) at t = 3.496 
and t = 4.66. Positive BL vorticity (solid), negative BL vorticity (dashed). Note the change in 
vertical scale from figure 5.11 (c). 
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Vertical velocity amtours for forœd vortex shedQng 

Figure 5.13: Vertical velocity contours for sample run of a separation bubble induced by suction 
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Tracer contours for torced vortex shedding 

Figure 5.14: Tracer contours for sample run of a separation bubble induced by suction. Focus on 
the vortex shedding region. 
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The forcing tcrm that yields the desired velocity profile is found by an iterative process. We 

choose a forcing term and solve the steady, linearized version of the 2D Euler equations with a 

constant background current. If the resulting velocity field is not the one desired, we modify the 

forcing function and repeat the process. The solution of the 'LD, steady, linearized Euler equations 

arnoiints to the solution of a Helmholtz problem for the stream-function 9. Once WC have found 

a forcing that yields the desired velocity fieid, we utilize this forcing in  thc numcrical solver 

for the  Savier-Stokes equations. After an initial period of adjustment a neatly steady suction- 

type velocity profile is achieved. The constant background ciirrent is fixed so that al1 transient 

disturbances are advectcd to the right and out of the computational domain. In figure 5.13 we 

show a n  exampie of the vertical velocity contours while the vortex shedding is stiil quite small in 

magnitude. In  figure 5.14 we show the contours of a tracer field (with a maximum concentration 

at the bottom) at a points in time when the vortex shedding is well developed. The results agree 

qiialitatively with those of ([51], [XI). The sarnple simulation was performed on a domain 16.66 

wide and 1.0 ta11 (where we have nondirnensionalized using the domain height H = 6.0) or 100 m 

by 6 m in dimensionai variables. There were 1000 regularly spaced points in the horizontal and 

120 quadratically spaced points in the vertical (44 point in the bottom 0.1, or 1 m in dimensional 

variables). 

Returning to the ISW-BL interaction we can see the effect of the separated vortices on the 

wave body frorn the sequence in figure 5.15. In this figure we plot the contours of density in the 

bottom 40% of the water column for various times. It can be seen that the separated vortices 

have a profound effect on the wave. First, they bring up heavy fiuid (and possibly sediment) 

from the bottom BL, and second they cause a significant dway in the wave amplitude (due to  

wave radiation) with time. By 37.97 the wave is l e s  than half of its original size. Interestingly 

it appears that the vortex shedding has greatly diminished (but not stopped cornpletely) a t  this 

point. 
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Figure 5.15: Density contours for sample ISW with (Us, Re) = (0.76,6.8 x IO5) at various times, 
showing instability onset, vortex shedding and iSW decay. 
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Density and W contours t=4.66 

Figure 5.16: Density and vertical velocity contours for sample ISW with (U,, Re) = (0.76.1.13 x 
104) at t = 4.66 showing the instability is suppressed. Positive velocity (solid), negative velocity 
(dahed) 
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Density contours t=16.31 boîîorn @ion of water calurnn oniy 

Density contours k27.97 bottom portion of waier coiurnn only 

Figure 5.17: Density contours for sarnple ISW with (Us, Re) = (0.76.1.13 x 10') at 1 = 16.31 and 
t = 27.97 showing small lSWs king shed, but no vortex shedding. 
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Densiîy and W conlours t=27.97 bottom ponion of water wlurnn only 
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Figure 5.18: Density contours and vertical velocily for sarnple ISW with (U,, Re) = (O.i6,1.13 x 
10') at t = 27-97 showing that no anornalous updrafts below the wave. Positive velocity (solid), 
negative veloci ty (dashed) 
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An important qiiestion we sought to answer is what happens as the the Reynolds number, 

Re. decreases? In figure 5.16 we plot the density and vertical veiocity contours a t  t = 4.66 for 

the same wave as discussed above with Re = 1.13 x 104. This value of Re is chosen deliberately 

so that the giobal instability does not occur. lnstead of a violent instability we see a small 

region of anomalous downdraft followed by a larger region of anomalous updraft. Neither appears 

particularly strong, nor to extend deep into the bottorn BL. lndeeti the density contours later in 

the wave's evolution ( t  = 16.31 and 27.97) found in figure 5-17 show that the adjustrnent to  the 

no slip bottom BCs results in the shedding of only two small lSWs (seen to trail the main wave 

in the top panel). Figure 5.18 shows the density and vertical velocity contours a t  t = 37.97. We 

can see that while the wave is no longer symmetric about its crest, it remains very close to its 

initial condition (hence no global instability exists). The weak updrafts and the lack of coherent 

vortices shed both indicate that sediment transport from the bottorn BL into the main water 

column would be small in this case. 

Several resolution tests were performed for the vertical discretization. The number of grid 

points was held fixed (120). The grids used ranged from a regular grid (with the first grid point 

above the bottorn at  0.004166 m and a vertical grid spacing of 0.00833 m) to various quadratic 

grids. Refining the grid in the near bottorn region (the finest grid tried was a 150 point grid 

ris described in the Introduction section) improved the resolution of the details of the instability 

(as expecteâ), but did not affect the time of instability onset or the qualitative nature of the 

instability evolution. On the other hand, coarse grids simply could not resolve the separation 

region. Nevertheless. the Re = 6.8 x 10' case developed a global instability a t  times within 10% 

of the above results for al1 grids tried including the regular grid. As expected, very coarse grids 

(such as a regular grid) could not resolve the complicated dynamics past the omet of the global 

instability and Ied to numerical instability in the solver. In figure 5-19 we show contours plots of 

the horizontal velocity a t  global instability onset for various grids. It can be seen that apart from 

the regular grid (the coarsest grid tried) the contours appear qualitatively similar. 

For larger values of u,  or equivalently srnaller values of Re, the boundary layer is thicker and 

hence coarser grids can do an adequate job. This has to do, in large part, with the qualitative 
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Figure 5.19: Horizontal velocity contours for various grids as global instability sets in. positive 
velocity (solid), negative velocity (dashed) 
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diflerence in the evolution between the two cases. In conclusion. it is quite interesting that runs 

on a regular grid with only 2 points in the bottorn 0.0167 ( 1  m in dimensional units) stiil lead 

to a global instability, even if they cannot rcsolve its dynamics far beyond onset. However, as 

runs on the grid used (described in the !iIethodology section) can be handled by a work station in 

about five tiours or less, there seems Iittle incentive to try to use coarser grids. Finer grids may be 

possible in the future, though a 3D soiver or a bctter turbulence mode1 would likely prove much 

more iiseful. 

5.2.2 Phase Space Bounds 

.A vital question to answer about the instability described in the previous section is, "Given some 

amount of upst rcam vorticity production, for what range of Reynolds numbers do we get a global 

instability?" A s  ive SBW in the previous subsection, large eddy viscosities damp out the global 

instability (and hence out proposed mechanisin for sedimcnt transport from the bottom BL into 

t hc main water column). 

In order to discuss the region in parameter space in which a global instability occurs we need 

to have an easy to impiement definition of such an instability. This is particularly difficult as any 

upstream vortici ty production will lead to some adjust ment once the vorticity is advected into 

t hc ISW, regardless of the value of v. While we are primarily interested in ISW dynamics, we 

would like the present results to have some relevance to the twin issues of wave-induced sediment 

resuspension and sediment transport into regions of the water colurnn well away from the bottom. 

For this reason it seems reasonable to make the following definition, We consider the horizontal 

profile of the vertical velocity at a fixed height above the bottom (we choose 0.5 m in dimensional 

units or 0.0083333 in non-dimensional units) for an inviscid ISW, and find the maximum value 

(labei this value W r ) .  tVe consider a global instability to have occurred if the maximum value of 

the horizontal profile of the vertical velocity a t  the same height at a later time (label this value 

CVm(t)) exceeds twice the inviscid value, Le. 
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ln practice this criterion is very easy to implcrncnt. Moreover, the low values of EV for inviscid 

ISWs in the ncar-bottom region rnean that if the initial wave sheds smaller waves behind it (as 

opposed to  a full global instability that leads to  vortex shedding from the bottom DL) the above 

criterion for global instability will not be satisfied. A criterion bascd on the horizontal velocity 

woiild not have this property. Similarly a criterion based on vorticity would pose problerns due 

to the varying BL thickness as u changes. The above criterion has proven to be a good, if by no 

nicaris unique. way to sort t hc various simiihtions. 

As we will see in the following section. the manner in which (5.1) is satisfied can Vary depending 

on the stratification. For this reason we should perhaps, for reasons of accuracy, invent some new 

terminology to  label the event in question. Yevertheless, we will continue to use the simpler global 

instability to emphasize the lin& with the ideas of Bogucki and Redekopp ([IO]). 

I r i  figure .5.'LO we show the phase plane rcsults for the case with ( z o ,  d) = (0.1.0.05) for two 

ISIVs. The large and small wavcs have an amplitude of 0.19 and 0.063, respectively. In the figure 

we show only the simulations needed CO show the boiindary between cases of global instability 

and no global instability. There are several points to notice about the figure. First. the minimum 

background current rieeded to  get a global instability a t  the largest Reynolds number used for the 

two wavcs, respectively, is more than three times larger for the small wave. Second, the shape of 

the boundary between the regions of instability and no instability (it would not be correct to cal1 

it a neutral curve in this case since waves we label globally stable still undergo some adjustment) 

is very similar for both waves. Third. with fixcû, large values of U,, the values of Re required 

to stabilize the srnaIl wave are  ncarly ten times larger then those requited to  stabilize the large 

wave. Also note from the figure that the curve for the small wave lies entirely within the curve 

for the large wave, and that the two curves do not collapse into a single curve. 

The concept of global instability leading to  possible sediment resuspension loses meaning for 

large values of u because the original 1SW breaks down into a train of smaller ISWs in a laminar 

manner, and because large eddy viscosities are associated with more turbulence. ln these cases 

we foiind that the initial ISW shed several smaller ISWs, decreasing in size and propagation 

speed in the process. Eventually the wave was swept out of the computational dornain. Since the 



v Large ISW no glob. instab. 
O Small ISW glob. instab. 
O Small ISW no glob. insîab. 

. . 
* I V; J 
10' 10' 

Reyndds number 

Figure 5.20: Phase space bounds for (zo ,  cf) = (0.1,O.OS) ISWs with amplitude 0.19 and 0.063. 
Reynolds number based on rnax(lu1) used 
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motion did not exhibit any srnall scale featurcs, we labelled this type of ISW brcakdown .larninar 

breakdown'. 

.-1s we rnentioned previously, the ( z o .  d )  = (0.1.0.05) case d0c.s not hnvc a conjugate flow 

solution. It thus seemed natural to ask whether a stratificatior, that does have a conjugate flow 

would exhibit similar instability behaviour. Towards this end wc considered two stratifications, 

one with ( z o ,  d) = (0.15,0.05) and another with ( zo .  d )  = (0.333333,0.05), both of which have a 

conjugate Aow solution (though only the latter has vmnr boundcd above by t h e  conjugate flow 

amplitude, the former is bounded by shear instability). The first was chosen with the  hope 

of finding similar behaviour to that describeci above. The second, on thc otlier hand. has the 

pycnocline situated near the mid-depth yielding very long, small amplitucle ISWs. 

[n figure 5.21 we show the phase plane rcsults for the ( :o ,d )  = (O.l.ï.0.05) case for a wave of 

amplitude 0.22. ive will disciiss the evolution of one particular esample of global instabiIity for 

this case in the following subsection. The phcase plane plot i s  qtiite siniilar to that of the larger 

wave in figure 5.20, except for the fact that for values of Li, larger than about 0.8 the global 

instability proved impossible to suppress without inducing a laminar breakdown of the initial 

ISW. 

In figure 5.22 we show the phase plane results for the (to,d) = (0.33333.0.0.5) case for a wave 

of amplitude 0.099 (5.96 m, roughly 60% of the conjugate ffow amplitude). The evolution for 

this case is markedly different from the cases mentioned above (a particdar example will be 

discussed in detail later). The global instability sets in as a shear instability in the bottom BL. 

Furthermore, there are clear cases in which a sinusoidal perturbation grorvs to a visible size, but 

the global instability criterion is not satisfied. These cases are labeled as marginal in figure 5-22. 

We have discussed one example of the evolution of a global instability as wcll as how a sufficient 

decrease in Reynolds number (Re) alters the evolution so that no global instability (according to 

our criterion) results. In the following subsections we use several examples to discuss the efîects 

of initial wave size, the background current rnagnit ude, and the stratification. 
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(zo,d)=(O. 1 5.0.05) Runs 

Re 

Figure 5.21: Phase space bounds for (:O, d )  = (0.15,0.05) ISW with amplitude 0.22. 
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Figure 5.??: Phase space bounds for (zo ,  d )  = (0.3333,0.05) ISW with amplitude 0.099. 
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5.2.3 Effect ofISW size 

We begin by rettirning to the (zo,d) = (O.k, 0.05) case with Cr, = 0.76, but this time for the 

small wave (maximum isopycnal displacement is 0.063, and the magnitude of the maximum wave- 

induced horizontal current is 0.5442) discussed in the previous section. This wave is chosen so 

that rnax (lu)) < Il,, in contrast to the large wave case. 

In figure 5.23 we show the density contours for the initial state as well as for 1 = 11.14, well 

alter the global instability has set in. LVe can see that by t = 11.14 the global instability has 

virtually swarnped the initial ISW. In figure 5.24 we show the density and horizontal velocity 

contours with a focus on the separation bubble (in this case it is an actual separation bubble with 

a clear reattachment point), just as the global instability is setting in f i  = 5.57). Figure 5.25 

shows the vertical velocity contours at the sarne time. Figure 5.26 shows the vertical velocity 

contours at  i = 11.14. In this figure we can clearly see the alternating bands of updrafts and 

downdrafts that indicate that the initial ISW is slowly losing energy to wave radiation. 

tViiile the details of this case are different from the case of the larger wave discussed previously, 

certain characteristics of the evolution appear to be robust. In particular we can note that as 

the  positive, upstream vorticity is advected into the wave body it does not matter whether the 

currents in the E3L within the wave body are positive or negative, only that the vorticity is reduced 

in the BL beneath the wave body, and that the vorticity created in the BL upstream of the wave is 

advected up and over the BL within the wave body. For Us > O this will always be the case. The 

ISW-induced vertical current advects the upstrearn vorticity over the BL within the wave body 

and the interaction between the BL and upstrearn vorticity leads to the subsequent instability. 

5.2.4 Effect of background current magnitude 

We now return to the larger wave, (zo,d)  = (0.1,0,05), q,,, = 0.19. We would like to get 

some idea as to how the amount of upstream vorticity production changes the evolution of the 

instability (when it happens). Towards this end consider a case with a smaller background current, 

(U,, Re) = (0.22,6.8 x 105). In figures 5.27 and 5.28 we show the density and vertical velocity 

contours during the instability onset and early development ( t  = 6.991 and 9.3.0). In contrast with 
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Density contours td.0 Small Wave - botiom part of water column 

Density wntours t=ll.M Small Wave - botîarn part of water wlumn 

Figure 5.23: Density contours for q,,,,, = 0.063 ISW with (Us, Re) = (0,56,3.0 x lo5) at t = 0.0 
and t = 11.14 showing ISW decay due to vortex shedding. 
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Figure .5.24: Density and horizontal velocity contours for T],,, = 0.063 ISW with (U;, Re) = 
(0.76.3.0 x 10') at t = 5.37 during instability onset. Positive velocity (solid), negative velocity 
(ciCashed) 

figures 5.8 and 5.9 the instability sets in closer to the wave crest. This is confirmed in figures 5.29 

and 5.30 which show the horizontal velocity at the same times. The instability dynamics in 

this case do not involve the ltading scparation region at all. Figure 5.31 shows the vorticity at 

î = 6.993 and 9.3.0. By this time the upstream vorticity has interacted with the BL in the wave 

body and we can see the positive, upstream vorticity overlaying the negative vorticity. lt appears 

that any vortex shedding that results will be small. This is confirrned in figure 5.32 which shows 

the density contours at t = 16.31 and 27.97. It can be seen that the waves radiated downstream 

of the ISW are quite small in this case. In figure 5.33 we plot the vertical velocity in the near 

bottom region at t = 27.97. We can see that the BL region beneath the ISW remains active even 

for late times (contrast this with the inviscid simulations of the prcvious chapter). 

The above exarnple shows that the dynamics in diflerent parts of the parameter space can be 

rather different, even if our definition of global instability onset is satisfied. On reflection, this 

should not be unexpected (we are exploring a very Iarge parameter space), yet this point is not 

discusseâ in the literature ([IO]), perhaps because fully nonlinear lSWs are not u d .  

Next we would like to examine how ciecreasing Re affects the evolution for the above case. 

We consider Re = 8.2 x 104, a case right on the brink of global instability onset according to our 
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Density and W mnlow at 1=5.57 SmP Wave 
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Figure 5.25: As in figure 5.24 but for vertical velocity. 
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Detaii lnstabilii Region 

Figure 5.26: Vertical velocity contours for r),, = 0.063 iSW with (Us, Re) = (0.76.3.0 x 10') at 
t = 1 1.14 showing vortex shedding. Positive velocity (solid), negative velocity (dashed) 
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Density and W contours k6.991 

N 
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Figure 5.21: Onset of instability. Density and vertical velocity contours for (>lmot = 0.19 ISW 
with ( z o ,  d) = (0.1,0.05), (U,, Re) = (0.22,6.8 x 10') at t = 6.991. Positive velocity (solid), 
negative velocity (dashed). 
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Densiiy and W contours t=9.322 

Detaii of lnstability Region 

Figure 5.28: As figure 5.27 but at a later time, t = 9.3.0. 
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Figure 5.29: AS figure 5.27 but for horizontal velocity. 

Figure 5-30: As figure 5.38 but for horizontal velocity. 



Vorbctîy in the instability regiori at t=6.992 
0.08 - 

N 0.04 - 

-1 -0.5 
X 

VaRiC'i in the expanding instability region at t=9.322 

Figure ,531: Vorticity contours for (ha, = 0.19 ISW with (zo,d)  = (0.1,0.05), (U,, Re) = 
(0.22-6.8 x 105) at L = 6.99 1 .  Positive BL vortici ty (solid), negative EL vorticity (dashed). 
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Densily contours k16.31 - bottom poition of water column 
0.4 ( I 

Figure 5.32: Density contours for (q,., = 0.19 ISW with (ro, d )  = (0.1,0.05), (LI,, Re) = 
(O.??, 6.8 x los) at 1 = 16.31 and 27.97 showing no visible vortex shedding. 
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Oensity and W contours k27.97 

Figure 5.33: Late in the evolution process. Density and vertical velocity contours for (ha= = 0.19 
ISW with ( zO ,  d) = (O. 1,0.05), (U, , Re) = (0.2?,6.8 x 10') at t = 27.97. Positive velocity (solid), 
negative velocity (dashed). 



Density and W contours t=9.322 

- - - - - - - - w  

Figure 5.34: Density and vertical velocity contours For (ha= = O .  19 (SW with ( -0 ,  d) = (0.1,0.05), 
(CI,, Re) = (0.?2,8.2 x 104) at t = 9.3.0. Positive velocity (solid), negative velocity (dashed). 
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Figure 5.35: Density and horizontal velocity contours for ('lm.= = 0.19 ISW with ( z o ,  d) = 
(0.1.0.05), (Us, Re) = (0.?2,8.? x lQ4) at  t = 9.3.0. Positive velocity (solid). negative velocity 
(doshed). 

definition. Figures 5.34 and 5.35 show the vertical and horizontal velocity contours at i = 9.3.0, 

respectively. The evolution appears to be quite cornplex, however note that the updrahs and 

downdrafts in figure 5.34 as well as the isoline crowding in figure 5.35 are confined to a region well 

above t = 0.0 1. in other words, the large thickness of the BL precludes global instability onset 

according to Our definition. Furthermore, as can be seen i n  figure 5.36. the stronger diffusion leads 

to a much less active region beneath the ISW a t  t = 27.97. 

In figures 5.37, 5.38 and 5.39 we show the vertical velocity contours at t = 9.3.0, the horizontal 

velocity contours a t  t = 93.0 and the vertical velocity contours at t = 27.92, respectively, for an  

even smaller Reynolds number (Re = 3.3 x 10'). We can see that in this case the diffusion keeps 

the interaction between the upstream vorticity and the ISW very smooth and uneventful. In 

its late stages, it appears the interaction cannot cause sediment resuspension beneath the wave. 

Though setting the eddy viscosity to be large implies more subscale turbulence that could lead 

to sediment resuspension. 

From the previous two s u k t i o n s  we see that the interaction between a fixed upstream 

vorticity and the ISW for small waves changes gradually as we change the Reynolds number. For 

larger waves the range of Reynolds numbers for which global instability sets in is larger and hence 



CHAPTER 5 .  ISW-BL INTERACTION 

Figure 5.36: As figure 5.34 al a later tirne, t = 27.97 
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Oensity and W contours 1=9.322 

Figure 5.37: Density and vertical velocity contours for (q,,,,, = 0.19 ISW with ( a , d )  = (0.1,0.05), 
(U,, Re)  = (O.r>,3.3 x 10') at t = 9.3.0. Positive velocity (solid), negative velocity (dwhed). 
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Figure 5.38: Density and horizontal velocity contours for (qmar = 0.19 ISW with (zo,d) = 
(0.1,0.05), (L4, Re)  = (0.22.3.3 x 10') a t  t = 9.3.0. Positive velocity (solid), negative velocity 
(dashcd). 

large parts of parameter space show similar behaviour. This is another issue that is hintcd at, 

but not really explored in ([10]). 

5.2.5 Effects of stratification 

All of the cases discussed so far have set (20, d) = (0.1,0.05). In this subsection we briefly explore 

what effect varying the stratification has  on the instability dynamics. tVe begin by reconsidering 

the case (zo.  d) = (O.l5,O.O5) and qmot = 0.22, fixing U, = 0.626 and Re = 6.46 x 105. From 

table 5.3.2 we can see that maz((u1) > II,. As mentioned previously, this stratification has a 

conjugate flow, however qmat is bounded above by shear instability of the variational algorithm 

and not the conjugate fiow amplitude. In figure 5.40 we show the density and vertical velocity 

contours for the initial wave. On cornparison with figure 5.4 (the (ro,d) = (0.1,0.05) and qmat = 

0.19 case) we see that the present wave is roughly 1.5 times wider. In figures 5.41 and 5.42 we 

show the vertical and horizontal velocity contours during the onset of the instability, respectively. 

Figures 5.43 and 5.44 show the  vortex shedding process later in the instabiiity's evolution. It is 

worth noting that the vortex shedding in figure 5.44 has the closest resernblance to the vortex 

shedding found by Pauley and Moin ([SI]) of ail the simulations cxamined. Figure 5.45 shows 
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Density and W contours t=27.97 

N 

Figure 5.39: As figure 5.3'7 at a later time, t = 27.97 



the evolution of the density field. It can be clearly seen that heavy fluid from near the bottom 

intrudcs into the pycnocline. Furthermore, the initial wave is seen to decay dramatically due to 

wave radiation. This is very sirnilar to the ( zo ,  d )  = (0.1,0.05) and qmor = 0.19 case described 

previotisl y. 

Finally wc cotild ask what sort of dynarnics we get if Tlmor is bounded above by the conjugate 

flow amplitude. This was the motivation for the previoiisly discussed (:*, 6)  = (0.3333,0.05) and 

Omar = 0.099 cascl. which we will presently revisit. We take Re = 1.4 x lo5 and fix U, = 0.85. 

Frorn table .5.3.2 we see that max((u()  < LI,. Frorn figure 5.46, where we plot the initial density 

and verticai vclocity contours, we can see that the initial ISW is extremely broad (nearly four 

cimes the cases discussccl previously). 1% can also note that the maximum wave-induced vertical 

ciirrent is weaker in th i s  ccue than in al1 other cases shown so far. In figure 5.47 we show the 

tiorizontal velocity contours at the point where a shear instability has hegun to form behind the 

separation bu bble. WC can see that the scparation bubble in this case is extremely broad and 

very short. Thus the flow is nearly parallel over this entire rcgion. In figures 5.48 and 5.49 we 

show the vertical velocity contours as the shear instability grows. f t  can be seen that by t = 21.44 

the shear instability stretches over about three quarters of the ISW's length and that it extends 

well above the bottom BL. No vortex shedding is apparent, and indeed no vortex shedding was 

obscrved for this stratification regardless of the values of U, and Re used. It is possible that no 

vortex shedding occurs due to the large length and weak wave induced currents found in the ISW. 

In  summary we have shown that a global instability consisting of vortex shedding occurs for 

stratifications with and without a conjugate fiow. Stratifications with a center near the mid-depth, 

for which ISWs are srnaIl and broad, exhibits a shear instability instead. This shear instability 

produces strong enough vertical currents to satisfy Our  global instability ctiterion, despite being 

qualitatively diff'erent from the vortex shedding instability. We have found that as the initial ISW 

decayed due to wave radiation caused by vortex shedding the intensity of the vortex shedding 

decreased. The intensity of vortex shedding also decreased when the amount of upstream vorticity 

was decreased (the background current was smaller). 
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Density and W contours 1=4.598 - onsel of instabili 

Density and W contours 1=5.365 - onsei of instabilii 

Figure 5.41: Density and vertical velocity contours for (qmoz = 0.22 iSW with (z0,d)  = 
(0.15,0.05), (Us. Re)  = (0.6?6,6.45 x 10') at  t = 4.598 and t = 5.365. Positive velocity (solid), 
negative velocity (das hed), 
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Figure 5.42 As figure 5.41 but for horizontal vslocity at t = 4.598 only. 

5.2.6 Sediment Resuspension 

We have stated in the introduction to this chapter that the primary motivation for stiidying 

the interaction of lSWs with the bottom BL was provided by the measurements of BDR which 

showed abnormally high sediment concentration in the water column nhen a packet of ISWs of 

elevation passed by. Our results regarding the global instability of ISWs suggest two implications 

for sediment measurements in the water column. The first is the transport of sediment already 

suspended in the bottom BL by the anomalous regions of positive vertical velocity which we have 

shown to be associated with a global instability (for example figure 5.10). The second is the 

resuspension of sediment by increased bottom stress. 

We will consider transport first. To keep the number of figures reasonable we will focus on the 

( z O ,  d) = (0.1,0.05), larger Have case. In figure 5.50 we consider the case of no upstream vorticity 

(Us = 0.0) with Re = 6.8 x los. We show the horizontal profiles of the vertical velocity a t  the 

same height used for the global instability criterion (z = 0.0083 or r = 0.5 m in dimensional 

variables). As the BL grows the vertical velocity a t  this height is reduced, reaching a steady state 

whose maximum vertical velocity is about one third of the original, inviscid value. In  figure 5.51 

we show the corresponding case for (Us, Re) = (0.76,6.8 x 10'). As the instability develops (and 

continuing to latet times) there are large variations in the vertical velocity, wit h the largest vertical 
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Density and W contours k7.664 - devehping insbbiQ 

Figure 5.43: As fi y r e  5.41 at later time, î = 7.664 



Density and W contours k17.88 - main and trading inslabilities 
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Detait - Main and Two Trailing lnstabiiiîies 

Figure 5.44: As fi y re 5.4 1 at later tirne, t = 17.88 
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Figure 5.45: Density contours for (i),., = 0.22) ISW with ( : ~ , d )  = (0.15,0.05), (UI, Re) = 
(0.626.6.45 x 105) showing evoiution of instability. 
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Density and W contours at 1=0 

Figure 5.46: Density and vertical velocity contours for (rl,, = 0.099 ISW with ( zo ,d )  = 
(0.3333.0.05), (U,, Re)  = (0.85,?.4 x 105) at t = O. Positive velocity (solid), negative veloc- 
ity (dashed). 
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U contours showing sepration bubble and instability t= tO.72 

Figure 5.47: Horizontal velocity contours for (q,,,., = 0.099 ISW with (so, d) = (0.3333,0.05), 
(Li,, Re) = (0.85.2.4 x 105) at t = LO.72. Positive velocity (solid), negative velocity (dashed). 
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Density and W contours al 1=13.40 

Detaii of Instability Region 

Figure 5.48: Instability development. As figure 5.46 for later tirne. t = 13.40. 
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Figure 5.49: lnstability development. As figure 5.16 for later time, t = 21.44. 
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Figure 5.50: Vertical velocity vs. r at a fixed height : = 0.0083 for the case qmor = 0.19 ISW 
with (zo,  d )  = (0.1,0.05), (Us, Re)  = (0.0,6.8 x 10'). 



W vs. x, (+,,d)=(0.1,0.05), (u,,v)=(o.~~.~o) 

Figure 5.51: Vertical velocity vs. x at a fixed height ; = 0.0083 for the case q,., = 0.19 ISW 
with ( z o , d )  = (0.1,0.05), (U,, Re) = (0.76,6.8 x 10'). 
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Figure 5.52: Vertical velocity vs. z at a fixed height r = 0.0083 for the case qmoz = 0.19 ISW 
with (zO,  ci) = (0.1,0.05), (U,, Re) = (0.22,6.8 x 10'). 
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Figure .5.53: Vertical velocity vs. z ab two fixed heights, z = 0.4 at t = O (showing wave-induced 
vertical currents) and r = 0.0083 for later times (showing instability induced vertical currents). 
q,,, = 0.19, ( rO ,d )  = (0.1,0.05), (Us, Re) = (0.76,6.8 x 105) and (Us, Re) = (022.6.8 x los). 
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Figure 5.54: Vertical velocity vs. r at a fixed height, : = 0.0083 (showing chat cases of no global 
instability do not induce persistently large vertical currents in the bottorn BL). qm,, = 0.19, 
(:,,d) = (0.1.0.05), (Us, Re)  = (0.76,1.13 x 104). 



currents more than 20 timcs targer than the inviscid (or the Li, = 0) value. 

Figure 5.52 shows sirnilar results for the ( L i 9 .  Re) = (0.22.6.8 x lo5) case. Note however that 

the incrccase in maximum verticai velocity ovcr the inviscid value is now only about 5 tirnes and 

that by f = 27-97 the vertical currents are only of comparable magnitude to the L< = O case and 

(as such not likely to makc an impact on scdimcnt transport. 

A s  we can see from figure 5.4 the 

bottom. lt is ttius intercsting to con 

due to the  wavc. This is what figure 

the ISW at a fixed height : = 0.4, giv 

due to thc wave. Ive can see that th 

largmt wave-induced vertical ciirrerits occur well above the 

pare the vertical ciirrents dlic to the instability with those 

. 5 . 3  shows. \Ve choose to plot the vertical currents due to  

ng a typical horizontal profile of the largcst vertical currents 

b instability in the (U,. Re) = (0.76.6.8 x 10') case induces 

vertical currents as large as the largest indiiced by thc ISW. ahile the ( L i .  Re)  = (0.22.6.8 x lo5) 

c,ue dots not,. Thus more iipsttcrirri vorticity nt fiwd u implics more sediment transport out of 

the battom BL. 

I n  figure .5.54 we show the vertical velocity profiles for the (Us ,  Re) = (0.76.1.13 x 10') which. 

according to oiir criterion. did not unciergo a global instability. it can be seen that while the 

interaction of the upstream vorticity with the ISW does lead to closely spaced regions of updraft 

and downdraft the maximum vertical current never surpasses the original inviscid value (in sharp 

contrast with the cases presented above). In  addition, the large values of vertical currents are 

short iived, being associateci with the shedding of small ISWs behind the original wave. 

To summarize. in al1 cases where out global instability criterion is satisfied, we find vertical 

currents capable of pumping previously suspended sediment out of the BL and into the main 

water column. As the value of CI,  is increased (with fixed Re), the vertical currents in the bottom 

BL increase to be as large as the maximum wave-induced vertical current for inviscid waves. Since 

ISWs generally have the largest ivave-induced vertical currents well away from the bottom this 

marks a significant difference between inviscid ISWs and ISWs with a viscous BL and an upstream 

source of vorticity. For the latter waves a great deal of sediment can be transported into the water 

column (as evidenced by the intrusions of heavy fiuid into the pycnocline in figure 5.3). 

The second issue is the act.ua1 muspension of sediment. The initiation of sediment motion is 



an extremely cornplex prohlern involving cornplex fluid-solid and solid-solid interactions. Much 

of the cornpiex physical issues (grain size, grain shape. grain cohesion. etc.) will be ignored in  

Our simplistic presentation (see for example the book by Siclsen p i ]  some of whose presentation 

we follow, or the book by Sleath [,57]). The rnodels available in the literature (including the 

two books mentioned above) generally deal with surface wave effects, only. This fociis on surface 

waves is quitc understandable as surface wavts are important in the cocasta! zone where man-riicde 

structures most often intcract with the ocean. Thus the state of research on thc onset of sediment 

motion in deeper water wiiere surface wave effects are not important is rather incornpletc (though 

the author can hardly c l a h  to have a great dca1 of knowledge in this field). 

Sediment resuspension can be modeled according to a conservation law which states that the 

rate of sediment transport from the occan bottom to t h e  fliiid jiist above the bottom pcr unit of 

time is equal to the rate of pickup minus the rate of clcposition. The rate of pickup is specificd 

by empirical pickup functions (see for example [47] page 223) which difi'er according to the type 

of flow (steady flow, oscillatory flow due to surface waves. etc.). In gencral the pickup functions 

depend on various physical properties of the sediment. In the case of sinusoidal surface waves 

(and surface waves superirnposed on a steaciy currcnt) the role of the flow is represented by the 

Shields parameter. The Shields parameter is shear stress a t  the bottom, nondimensionalized by a 

combination of parameters based on the physics of the sediment (i.e. grain density, grain diameter, 

etc.). Furthermore, in order to fit experimental data. the Shields parameter is rnodified for more 

complex situations such as wave-current interactions. We do not wish to  address these issues here, 

hence we will focus our attention on the shear stress a t  the bottom. The idea is that once the 

shear stress on the bottom due ta  the instability crosses some threshold, sediment begins to move 

and is resuspended in the water colurnn. It is likely that the threshold of motion wil1 have to 

be determined by observation or experiment, and as such we will not discuss the threshold stress 

value in this thesis. 

The  bottom stress is important for the issue of ISCV-induced sediment motion. For this brief 



discrission we take the nondimensional shear stress to be given by 

In figure 5.55 we show the shear stress for the ( z o .  d ,  L!, , Re) = (0.1.0.05,0.76,6.8 x 1 05) case 

compared with the (Us, Re) = (0.76.1.13 x 10") and (Crs ,  RE) = (0.0.6.8 x 10') cases. \Ve can 

sce that the global instability is responsible for a large increase in r over both the no upstrcam 

vorticity and upstream vorticity with no global instability cases. 

We found t hat, consistent with the results on vertical velocity, the ( K .  R e )  = (0.22.6.8 x lu5) 

case is responsible for much smaller values of r when compared wit h the ( K .  Re) = (0.76.6.8 x 1 05)  

case. In fact t he  oscillations in the bottom stress due to the global instability for (U,.  Re) = 

(O.??. 6.8 x los) have an amplitude of about one third the maximum bottom stress magnitude 

i n  the (b, Re) = (0.0.6.8 x ko5) case. tlowcver both the Lr, = U.76 and L:, = 0 . 2  cases (with 

Re = 6.8 x 105)) show a great deal of variation of the nondinicnsional bottom stress with r .  

This is in contrast to the slowly varying nondimensional bottom stress found wtien Us = 0.0. 

The fast spatial variation of the nondimensional bottom stress (that pcrsists in time) for cases in 

which a global instability occurs may provide a mechanism for setting sediment into motion. This 

conjecture, as well as the issue of what is a correct estimate of the bottorn stress. merit further 

investigation in the future. 

We should note that surface wave-induceù sediment motion models usually take the bottom 

BL to be turbulent, and hence define the dimensional bottom stress, Q as 

for an appropriateIy defined u,. For the present results there is no unambiguous way to define u., 

thoiigh if we were to consider q, to be based on u at : = 0.008333 (or z = 0.5 m in dimensional 

variables) the global instability would again be responsible for a n  increase in Q,. 

In sumrnary, we have shown that the global instability leads to an increase in bottom stress 

when compared to cases of no global instability. Since the bottom stress is used in phenomenolog- 
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Figure 5.53: Nondimensional bottom stress vs. x. 
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ical pickup function models to incrcase the concentration of sedimcnt in the BL Our results show 

that ISW interaction with upstream vorticity can serve as a mechanism for sediment resuspen- 

sion. Coiipled with the instability induced pumping out of the bottom BL the presented results 

show that global instability can explain the correlation between ISW passage and an increase in 

sediment concentration measured well away from the bottom (as in (81). 



5.3 Conclusions and Future Directions 

In this chapter we have discussed the interaction between fully nonlinear ISWs and the bottom, 

viscous BL iising a numerical model with a constant eddy viscosity and diffusivity. The Prandtl 

niimber was set to one for al1 simulations. Ive found that when there is no background current 

the adjiistment of an inviscid ISW to no-slip bottom BCs wris very small. The only change from 

an inviscid ISW was to set iip a larninar bottom BL. However when a background currcnt with 

non-zero bottom velocity was included in the cornputation of the inviscid ISW the adjustrnent 

was markedl y different. For simplici ty, we concentrated on constant background currents U,. 

The value of U, controls the arnoiint of vorticity produced upstream of the ISW once the no-slip 

bottom BCs are switched on. \Ve found that for al1 non-zero values of Ci, and al1 eddy viscosities 

t~scd thcre WC= a cornplex interaction betwcen the iipstream vorticity and the ISW as  the upstrearn 

vortici ty was advected into the wave. 

For larger values of the cddy viscosity it w,u found that the interaction leads to the shedding 

of srnallcr ISWs behind the main w a v ~ .  For srnaller values of eddy viscosity the interaction was 

much more violent, with vortex shedding and ejection of material from the bottom BL into the 

main water column. This type of interaction was referred to as a global instability (consistent 

with [IO]). A criterion for the onset of the instability was defined based on the vertical current 

at a fixed height above (but ciose CO) the bottom. Through extensive numerical experimentation 

it was found that this criterion was very good at discriminating between cases of ISW shedding 

and vortex shedding. From a practical point of view, the instability criterion is useful since the 

vertical velocity near the bottom will givc some information on how rnuch sediment suspended in 

the bottom BL will be pumped up into the water colurnn. 

We used the instability criterion to explore the parameter space (U,, u) (or alternatively 

(U,, Re)) for several different ISWs and stratifications to get bounds on when a global insta- 

bility will and will not occur. It was found that bounds depended on the wave amplitude, with 

larger waves exhibiting a global instability for smaller values of U, (with v fixed), as expected. 

Furt hermore, larger values of U, (Le. more upstream vorticity production) exhibit global instabil- 

ity for larger ranges of u (Re). If the value of the eddy viscosity is too large no global instability 
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wiil oçcur, regardless of the size of the ISW or U,. and the initial ISW will break down via 

breakdown of the initial IS\S into a train of smaller lSNrs (we termed this 'laminar' breakdown). 

We discussed several examples of the global instability onset and evolution in detaii to show 

the similarities and differences between different stratifications and ISW amplitudcs. As discussed 

in the chrlpter on steady waves, three different possihilities bound the ISW amplitude. ÇVe found 

that the global instability did not change qualitatively wheri a stratification ciid, or did not have a 

conjugatc flow solution provided that the maximum amplitude (qb)  was not given by the conjugate 

flow amplitude (i.e. given by wave-breaking or shear instability of the variational algorithm). For 

the case when the conjiigate flow amplitude did givc the upper bound on a,,, the lSWs were 

very broad and the instability set in as a shear instability (as opposed to vortex shedding). 

In  order to get some idea of how the prcsent rmults relate to observations of scdiment in the 

main watcr colurnn we presented horizontal profiles of the vertical velocity a t  a fixèd height above 

(but close to) the bottom ( z  = 0.5 m in  al1 cases). Cfre found that the global instability, and vortex 

shedding in particular, causes a large increase in w at  this height. In some cases we found that 

it was possible to increase w near the bottom to be largcr than the largest ISW-induced vertical 

vcloci ty (whicli occurs well away from the bottom). Thus the global instability provides a strong 

purnping mechanism to move sediment from the bottom BL to the main water colurnn. 

The onsct of sediment motion was also discussed. The treatment was brief due to the inherent 

physicai complexity of the problem. 1% looked at the effect of the global instability on the 

bottom shear stress. The bottom stress in cases of global instability was found to greatly exceed 

the bottom stress in cases of no global instability. However this result depended on a particular 

nondimensionalization for the bottom stress ( to  account for the large changes in eddy viscosity). 

For this reason the results relating to ISW induced sediment motion are open to question and 

deserving of more extensive future study. We should note that sediment motion in the BL is likely 

much more cornplex than our naive model. In particular, experiments ([48]) have shown that the 

coherent structures in a turbulent BL have a profound influence on how sediment motion begins, 

and where the moving sediment gathers. Of course, eddy viscosity-type models cannot mode1 this 

behaviour and the dynamics once the BL is turbulent rernains largely unexplored. Nevertheless, 
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the global instability provides a rnechanism for getting sediment high into the water column. 

A quadratic stress boundary condition is often used in large scale ocean modeis as a simple 

means to  incorporate n tiirbiilcnt bottom boiindary laycr. Prelirninary investigations wit h a 

quadratic bottorn stress BC 

u: (x* o. t )  = I ; l l ~ i l ~ ,  (.5.4) 

whcre II' is an empirical constant. inclicate that a global iristability sets in a t  times comparable 

to, and in a qiialitatively identical nianner to, the no  slip BC cases. 

The trcatment in this chapter is far from complete. The parametcr space invoived is very large 

and as sucti unly certain regions were explored. Furthermore the actual onsct of the instability 

shoiild bc cxplored furthcr. While vorticity dynamics provides a simplistic expianation for the 

ciynaniics of the interaction betwccn the upstrcarn vorticity and the ISW, a rnuch more detailed 

treatrnent. woiild prove iiscful. This rould reqiiire a numerical model that allows the rrsolution 

of the region of interaction to a rnuch higher degree. with a smaller aspect ratio between the grid 

height and  widtb. The ciifficiilty lies in how to incorporate the spatially large ISW into such a 

model ( in  a clearer manncr than [IO]). 

lssues relating to the dynamics after instability onset would likely require a 3D mode1 to  

investigate properly. The same challenges as the 2D model described above would have to  be 

addressed. dong with issues relating to memory and cornputation time. Due to the high cost 

of such simuiations it may be that an entirely different approach, based on Reynolds averaged 

equations and turbulence modeIing, may be needed. 

In ([I l ])  the issue of resuspension by waves of depression is brought up. While this appears to 

be possible given our results, a detailed investigation remains to be carried out. In the author's 

opinion the gap between the present simulations and specific oceanic rneasurements is quite large 

and a very obvious line of research would seek to redrcss this problem. 

Finally, as mentioned in the prtvious chapter, realistic bottorn topography would greatly 

complicate the dynamics. In [[a]) i t  is rnentioned that the ISWs responsible for the measured 

sediment resuspension are likely generated by topographic resonance. Numerical simulations 

that tested this hypothesis would provide one means of including bottom topography while still 



maintaining a conntction with the present work. 

in  conclusion. throughout this work WC have shown a variety of fascinating physical phenornena 

relating t o  fully nonlinear ISWs. In gencral. the startirig point for al1 our investigations was the 

variational algorithm that allowed the calciilation of fully nonlincar ISWs. -4s many questions 

remain unanswered, it is the author's hope for the future that fully nonlinear ISLVs, and the hast 

o f  interesting behaviours they exhibit, will merit the same sort of attention paid to WNL in the 

pswt. 
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