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Abstract

Although healthcare operations management has been an active and popular research

direction over the past few years, there is a lack of formal quantitative models to analyze

the ambulance offload delay problem. Offload delays occur when an ambulance arriving at

a hospital Emergency Department (ED) is forced to remain in front of the ED until a bed

is available for the patient. Thus, the ambulance and the paramedic team are responsible

to care for the patient until a bed becomes available inside the ED. But it is not as simple

as waiting for a bed, as EDs also admit patients based on acuity levels. While the main

cause of this problem is the lack of capacity to treat patients inside the EDs, Emergency

Medical Services (EMS) coverage and availability are significantly affected. In this thesis,

we develop three network queueing models to analyze the offload delay problem. In order

to capture the main cause of those delays, we construct queueing network models that

include both EMS and EDs. In addition, we consider patients arriving to the EDs by

themselves (walk-in patients) since they consume ED capacity as well.

In the first model, ED capacity is modeled as the combination of bed, nurse, and

doctor. If a patient with higher acuity level arrives to the ED, the current patient’s

service is interrupted. Thus, the service discipline at the EDs is preemptive resume. We

also assume that the time the ambulance needs to reach the patient, upload him into the

ambulance, and transfer him to the ED (transit time) is negligible. We develop efficient

algorithms to construct the model Markov chain and solve for its steady state probability

distribution using Matrix Analytic Methods. Moreover, we derive different performance

measures to evaluate the system performance under different settings in terms of the

number of beds at each ED, Length Of Stay (LOS) of patients at an ED, and the number

of ambulances available to serve a region. Although capacity limitations and increasing

demand are the main drivers for this problem, our computational analysis show that

ambulance dispatching decisions have a substantial impact on the total offload delays

incurred.
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In the second model, the number of beds at each ED is used to model the service

capacity. As a result of this modeling approach, the service discipline of patients is

assumed to be nonpreemptive priority. We also assume that transit times of ambulances

are negligible. To analyze the queueing network, we develop a novel algorithm to construct

the system Markov chain by defining a layer for each ED in a region. We combine the

Markov chain layers based on the fact that regional EDs are only connected by the number

of available ambulances to serve the region. Using Matrix Analytic Methods, we find the

limiting probabilities and use the results to derive different system performance measures.

Since each ED’s patients are included in the model simultaneously, we solve only for small

instances with our current computational resources.

In the third model, we decompose the regional network into multiple single EDs. We

also assume that patients arriving by ambulances have higher nonpreemptive priority

discipline over walk-in patients. Unlike the first two models, we assume that transit

times of ambulances are exponentially distributed. To analyze the decomposed queueing

network performance, we construct a Markov chain and solve for its limiting probabilities

using Matrix Analytic Methods. While the main objective for the first two models is

performance evaluation, in this model we optimize the steady state dispatching decisions

for ambulance patients. To achieve this goal, we develop an approximation scheme for the

expected offload delays and expected waiting times of patients. Computational analysis

conducted suggest that larger EDs should be loaded more heavily in order to keep the

total offload delays at minimal levels.

iv



Acknowledgements

I am most grateful to my supervisors Prof. Elizabeth Jewkes and Prof. Qi-Ming He for

their guidance, support and inspiration throughout my Ph.D. studies. Thank you Prof.

Jewkes for your encouragement and support during my Masters degree as well.

I would like to thank the members of my examination committee, Prof. Armann

Ingolfsson, Prof. Steve Drekic, Prof. Samir Elhedhli and Prof. Fatma Gzara. I am very

grateful for their insightful comments and helpful suggestions on my thesis that improved

this research.

I wish to express my gratitude to all my friends and colleagues at the Department of

Management Sciences who were always there when I needed them. And for making this

an enjoyable experience. Special thanks to Bissan, Hossa, Mina and Tiffany.

I am greatly indebted to my husband Islam Saleh who has provided me with uncon-

ditional love and support throughout my long journey. Without him, I wouldn’t have

achieved this success. Also, I am indebted for my sweet little kids Noor and Dania for

their patience and understanding when I was busy.

Finally, I am forever indebted to my parents, brothers and sister for their constant

care, support, and encouragements.

v



Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Background 7

2.1 Ambulance offload delay and ambulance diversion . . . . . . . . . . . . . . 7

2.2 Queueing Models for Healthcare Systems . . . . . . . . . . . . . . . . . . . 10

2.2.1 Benefits of queueing models . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Characteristics of queueing models . . . . . . . . . . . . . . . . . . 11

2.2.3 Validity of queueing models assumptions for healthcare systems . . 12

2.3 Queueing Networks with Blocking . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Queueing Networks with Blocking and Multiple Servers . . . . . . . 17

2.3.2 Queueing Networks with Blocking and Multiple Classes of Customers 18

2.3.3 Decomposition and Approximation for Queueing Networks with

Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Matrix Analytic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Model 1: Multiple ED Network with Preemptive Priority Discipline

and Zero Transit Time 23

vi



3.1 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 High priority ambulance patients . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 The Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Matrix-Geometric Solution . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Waiting times of ambulance patients . . . . . . . . . . . . . . . . . 34

3.3 Low priority walk-in patients . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 The Modified Markov chain . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Matrix-Geometric Solution . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Sojourn Times of Walk-in Patients . . . . . . . . . . . . . . . . . . 38

3.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Case Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Case Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Case Study 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 Case study 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Model 2: Multiple ED Network with Non-Preemptive Priority Disci-

pline and Zero Transit Time 58

4.1 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 The Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Matrix-Geometric Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Model 3: Decomposed EMS-ED Network with Priorities and Transit

Time 77

vii



5.1 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The Exact Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 A Matrix Geometric Solution . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Hospital level performance measures . . . . . . . . . . . . . . . . . 85

5.2.3 Regional level performance measures . . . . . . . . . . . . . . . . . 90

5.3 Approximation and Optimization . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Approximation using the M/M/c queue . . . . . . . . . . . . . . . 92

5.3.2 The Ambulance Routing Problem . . . . . . . . . . . . . . . . . . . 94

5.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 The exact results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Approximation and comparison of approximation with exact results 97

5.4.3 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.4 More computational results for the optimization problem . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion 105

Bibliography 107

viii



List of Figures

2.1 A tandem queue with finite capacity . . . . . . . . . . . . . . . . . . . . . 15

2.2 A two node tandem queueing network with blocking . . . . . . . . . . . . . 20

3.1 EMS-ED Queueing Network Diagram for K = 3 . . . . . . . . . . . . . . . 24

3.2 Arrivals to an ED by acuity level and mode of arrival . . . . . . . . . . . . 26

3.3 The distribution for the total number of ambulances in offload delay . . . . 47

3.4 The fitted distribution for ambulance transit time . . . . . . . . . . . . . . 51

3.5 The fitted distribution for patient flow time . . . . . . . . . . . . . . . . . 54

4.1 ROW EMS-ED Queueing Network Diagram . . . . . . . . . . . . . . . . . 60

5.1 An EMS-ED flow chart for a region of K hospitals . . . . . . . . . . . . . . 79

5.2 One ED Network Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Illustration of blocking delay . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Probability distribution for the number of ambulances in offload delay and

in transit at ROW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Probability distribution for the number of busy ambulances at ROW . . . 97

5.6 Probability distribution for the number of ambulances busy at the ROW . 99

5.7 Optimal routing probabilities results . . . . . . . . . . . . . . . . . . . . . 101

5.8 Expected waiting time results . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.9 Optimal utilization rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



List of Tables

1.1 Region of Waterloo data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Middlesex Region data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Summary of modeling assumptions for the three models developed . . . . . 6

2.1 Summary of literature for queuing theory for healthcare systems . . . . . . 14

2.2 Summary of literature for queuing networks with blocking and multiple

servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 System parameters for Case Study 1 . . . . . . . . . . . . . . . . . . . . . 44

3.2 Performance measures for Case Study 1 . . . . . . . . . . . . . . . . . . . . 44

3.3 System parameters for Case Study 2 . . . . . . . . . . . . . . . . . . . . . 46

3.4 Performance measures for Case Study 2 . . . . . . . . . . . . . . . . . . . . 46

3.5 System parameters for Case Study 3 . . . . . . . . . . . . . . . . . . . . . 47

3.6 Performance measures for Case Study 3 . . . . . . . . . . . . . . . . . . . 48

3.7 System parameters for Case Study 4 . . . . . . . . . . . . . . . . . . . . . 49

3.8 Performance measures for Case Study 4 . . . . . . . . . . . . . . . . . . . . 49

3.9 Effects of nonzero transit time (Note: The 95% confidence interval half

widths for simulation in parentheses) . . . . . . . . . . . . . . . . . . . . . 52

3.10 Service time distribution effect(95% confidence interval half widths in paren-

theses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Transition rates for the model Markov chain . . . . . . . . . . . . . . . . . 62

4.2 System parameters for Case Study . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Performance measures for Case Study . . . . . . . . . . . . . . . . . . . . . 75

x



5.1 Transition rates for the model Markov chain . . . . . . . . . . . . . . . . . 81

5.2 Case study input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Case study exact results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Comparison for the expected queue length for the approximation scheme . 98

5.5 comparison for performance measures for the case study . . . . . . . . . . 98

5.6 Performance measures under optimal routing policy . . . . . . . . . . . . . 99

5.7 Optimal routing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 Optimal routing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



Chapter 1

Introduction

There is a growing interest among Operations Research (OR) practitioners to apply OR

methodologies to the healthcare sector. Healthcare systems present many complex prob-

lems that could benefit from operations research type analysis and applications [1]. The

long waiting times of patients, the lack of resources and recently, the offload delay problem

faced by the Emergency Medical Services (EMS) are among those issues. On the other

hand, working in the healthcare brings up complicated non-technical challenges due to

the fact that ”Patients Aren’t Widgets” [2].

Ambulance offload delays are increasingly becoming a concern for healthcare providers

across Canada and the United States. Offload time is the time taken to transfer a pa-

tient from an ambulance stretcher into an Emergency Department (ED); this time usually

is around 30 minutes. This transfer includes unloading the patient from the ambulance,

moving the ambulance stretcher inside the ED, giving the report to the triage nurse, trans-

ferring the patient to an ED gurney, completing paperwork, and preparing the equipment

for the next run [3]. If an Emergency Department is overcrowded and cannot accept

transfer of care for an incoming patient, an offload delay results, and the paramedic crews

are delayed in emergency departments for extended periods of time, caring for their pa-

tients while waiting for an available hospital bed. Moreover, it is not possible to use

ambulance crews and vehicles for other jobs whilst they are waiting to offload the patient.

In some countries, such as the United States, an ED can declare ”diversion” status if
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they are overcrowded [4]. For EMS management, ”diversion” means that patients should

be routed to other less crowded EDs. Diversion, or reallocating patients to a regional

hospital can be a key to minimize overall offload delays experienced by ambulances.

From an EMS perspective, offload delays decrease the EMS coverage in the community

and increase their response times and costs due to the increase in the actual utilization of

ambulances [5]. This leads to a waste of a scarce resource (ambulance). From a patient

perspective, the delay of patient admission to the ED has serious consequences on his

medical condition. Those clinical consequences are greater for the sicker patients than for

those who are less ill. Difficulty offloading patients who need urgent resuscitation results

in delayed ED care and worse patient outcomes, especially so in time-critical conditions

such as stroke [6]. Delayed admission of patients leads also to patient discomfort and

inconvenience, and in some cases, it might lead to poor patient outcomes [7].

The ambulance offload delay problem is a direct consequence of a much bigger problem,

which is the lack of capacity in the healthcare system [8]. The principal cause of ambulance

offload delay is the lack of capacity to treat hospital inpatients, leading to prolonged

Emergency Department Length of Stay and ED overcrowding. Over the years, patients

who would have been better cared for in alternate settings remained in acute care beds. As

a result of hospital restructuring and financial constraints, acute care beds were reduced

without the necessary community support. This led to the care of inpatients in EDs,

followed by ED overcrowding and consequent offload delays leading to delayed ambulance

response to emergency calls from the community [9].

Ambulance offload delay is a complex problem that happens due to the interaction

between an EMS provider and regional EDs served by that EMS provider. So far, there

are no quantitative models developed to analyze the interaction between EDs and EMS

that capture the effect of ED crowding on ambulance operations and offload delays. In

addition, the research available on EMS operations ignores the effect of offload delays on

ambulance utilization and consequently, ambulance coverage for a region. To capture the

effect of offload delays on EMS performance in general, and on EMS utilization in specific,

quantitative models should be developed to quantify offload delays experienced. In the
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Grand River Hospital St. Mary’s Hospital
Cambridge Memorial
Hospital

ED (visit/yr) 56, 000 45, 000 40, 000

ED capacity (beds) 39 34 23

EMS (arrival/yr) 8900 5700 5200

Offload delays (hr/mo) 200 81 16

Table 1.1: Region of Waterloo data

context of long term strategic planning, EMS management needs to estimate the response

time based on the EMS’ available capacity, as well as the regional hospitals’ capacity and

arrival rates.

1.1 Motivation

Different regions in Canada have started to report on offload delays, in this section we

highlight some of the statistics from EMS reports to show the significance of the problem.

For example, in 2006 the Provincial government of Ontario invested $96 million in its

comprehensive action plan to reduce the length of time paramedics wait to offload patients

in front of hospital EDs. Offload delays cost Toronto EMS approximately 180 ambulance

hours per day in December 2007 [10]. The average offload delay in the Toronto area in

the same period was reported to be 3 to 8 hours. That’s 3 to 8 hours a fully equipped

ambulance and its trained paramedics wait for an ED bed while they could be available

to respond to other emergency calls in the community.

The EMS in the Region of Waterloo, Ontario, own 18 ambulances that serve the re-

gion’s three hospitals. According to the EMS 2008 Master Plan [11], the region reported

a maximum of 22 offload delay incidents in a single day in December of 2007. In 2006,

the Region of Waterloo incurred more than 6000 hours of offload delays and lost 12.36

ambulance days per month. In 2005, the number of ambulances lost to offload delays to-

taled to as many as 13.25 ambulance days per month. Table 1.1 illustrates some statistics

about the offload delays in the region with respect to the three hospitals in 2007.

Middlesex-London, Ontario EMS have had at least one Cardiac Arrest in the hall-
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way at University Hospital. Table 1.2 summarizes some of the Middlesex-London region

statistics for the offload delay problem in the last two years. In Peel, Ontario the average

growth in offload delay since 2001 is approximately 25 per cent per year. The growth

in offload delay hours for 2007-2008 is 36 per cent. In York region, the time spent in

hospitals by paramedics was reported to be 12,946 hours in 2000, and 27,238 in 2004. All

these data shows that the problem is serious and it is getting worse.

Victoria Hospital University Hospital

ED visits/yr 2008 12, 186 11, 552
2009 11, 674 12, 445

Offload delays, min/yr 2008 138,720 116,580
2009 117,780 95,400

Table 1.2: Middlesex Region data

1.2 Objectives

Ambulance offload delay is a complex problem that happens due to the interaction between

an EMS provider and EDs in a region. Motivated by a project conducted with the EMS

in Waterloo, Canada, in this research we model this interaction using queueing networks.

For that purpose we develop three models to analyze the problem. We use those models to

suggest possible solutions for the problem. While all the models developed are stochastic,

each is model is unique in the modeling approach and assumptions. Our focus is primarily

on the application, and indeed, we use the Region of Waterloo project as a running

example throughout this research.

Our models are capable of capturing the offload delay variability in terms of the

hospitals emergency departments’ capacities, the Length Of Stay (LOS) of patients, and

the number of ambulances available to serve a region. Our methodology provides exact

solutions for various performance measures. The aim is to provide the decision makers

with a decision support tool that can be used to investigate different possibilities in terms

of EMS number of ambulances, ED capacity, and population arrival rates. The operational
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research method used can be customized to any regional EMS-ED system through the

use of its corresponding data elements.

In this research we address the following issues:

1. The impact of limited capacity of emergency departments and the LOS of patients

on offload delays, at the hospital level and at the regional level.

2. The impact of ambulance dispatching decisions on offload delays and on crowding

at both hospital level and regional level.

3. The impact of arrival rate of patients arriving to a hospital ED by themselves (later

are called walk-in patients) on offload delays incurred.

4. The likelihood that the EMS cannot respond to an emergency call because all the

ambulances are busy.

5. The effect of offload delays on the probability distribution of the number of busy

ambulances in a region, and as a result, the total actual ambulance utilization.

6. The optimal allocation of ambulance patients to regional hospitals such that offload

delays are minimal.

The queueing models developed are different in terms of modeling assumptions, solu-

tion methodologies and research objectives. The first model we develop in Chapter 3 is

based on the idea of modeling the capacity in an ED as the combination of beds, nurses,

and doctors. Due to this modeling approach, the service discipline at the ED can be

represented by a preemptive resume system. This means that if the combination (bed,

doctor, and nurse) is not available, then the patient service will be interrupted. This

model is built on a regional level to achieve the above objectives.

In Chapter 4, we model the beds as servers. In this case, when a patient with a more

acute condition arrives to the ED, he will be admitted to the ED before other patients

with less acute conditions that arrived to the ED before him. For this model, we use the

nonpreemptive priority discipline to model the admission of patients into hospital EDs.

The model is built on a regional level.
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Model Network size priority transit time
Model 1 (Ch. 3) multiple EDs preemptive negligible
Model 2 (Ch. 4) multiple EDs nonpreemptive negligible
Model 3 (Ch. 5) single ED nonpreemptive exponential

Table 1.3: Summary of modeling assumptions for the three models developed

The third queueing model in Chapter 5 uses similar modeling assumptions as the

second model but has different research objectives. While the first two models focus

on performance evaluation for the queueing network and quantifying offload delays of

ambulances, this model aims to optimize the allocation of patients arriving by ambulances

to regional EDs. Table 1.2 summarizes the main assumption differences of the queueing

models developed in this thesis. More details on each model assumptions, methodologies,

and objectives are provided in the corresponding chapters.

1.3 Outline of the Thesis

The thesis is organized as follows. In Chapter 2 we present an overview of related liter-

ature. In Chapter 3, we develop and analyze the first queueing model when the service

priority at the EDs are preemptive and transit times are negligible. In Chapter 4, we de-

velop the second model when the service priority is nonpreemptive and the transit times

are negligible, while in Chapter 5 we develop the decomposed model with nonpreemptive

priority discipline and Markovian transit time. Finally, conclusions and future research

directions are discussed in Chapter 6.
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Chapter 2

Related Background

In this chapter, we classify the related background into four broad categories: first, the

literature related to the modeling and analysis of the ambulance offload delay problem or

ambulance diversion which is the problem we investigate in this thesis. Second, the litera-

ture on the use of queueing theory to model congestion and delays in healthcare systems.

Third, the literature on queueing networks with blocking which we use in Chapter 5 to

analyze the resulting queueing model. Fourth, we introduce the Matrix analytic Methods

which we utilize to derive the limiting probabilities of the resulting Markov chains of each

model considered.

2.1 Ambulance offload delay and ambulance diver-

sion

The increasing awareness in the delay ambulances experience when they offload patients

to the Emergency Departments has urged decision makers to start analyzing this problem,

yet, there has been little research performed from an OR perspective. This research is

motivated by recent work conducted by Majedi [12] who models the ambulance offload

delay using queueing theory. He models the one hospital interaction with the ED using a

two-dimensional Markov chain and analyzes the system performance under different input

parameters. His model does not capture the impact of dispatching decisions on offload
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delays, nor the effect of walk-in patient arrivals to the EDs.

Other research done on the offload delay problem has been conducted by MD practi-

tioners who try to shed some light on the importance of the problem and its implications.

For example, Ting [6] investigates the causes of ambulance offload delay and the impact of

delayed ED care for patients. Taylor et al. [13] conduct an observational study to deter-

mine the difference between documented ambulance arrival times and the actual arrival

times of patients from the ambulance into the emergency department.

There is some work that investigates the impact of limited capacity in hospital beds

on the EMS offload delay. Silvestri et al. [14] examine the effect of ED bed availability

on offload delays experienced by conducting an observational study for 22 months in

Orange County in Florida. The study suggests that ED bed availability has an impact

on EMS unit offload delays. Later, Silvestri et al. [15] conduct an observational study to

evaluate offload delay intervals and the association between out-of-hospital patient triage

categorization (PTC, which is similar to CTAS in Canada) and admission. The study

concludes that delayed EMS units have reduced the EMS response availability, and PTCs

are not able to determine need for admission and should not be used to support offload

delays.

Eckstein and Chan [3] investigate the effect of ED crowding on paramedic ambulance

availability from April 2001 through March 2002 in Los Angeles, CA. Their empirical

study suggests a direct relation between ED crowding and the ability of EMS to provide

timely responses. Schull et al. [16] conduct a quantitative analysis to determine the

relationship between physician, nursing, and patient factors on emergency department

use of ambulance diversion.

The main cause of ambulance delays is ED overcrowding. Drummond [7] investigates

and summarizes the causes of ED overcrowding to be:

1. Lack of beds for patients admitted to the hospital;

2. Shortage of nursing staff;

3. Increased volume, complexity and acuity of patients in the ED;
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4. Delays in service provided by other departments, e.g. labs and consultants.

The delays inside the ED have a cascading effect which result in ambulance offload

delays or ambulance diversion on the EMS side. As a result, ambulance offload delays are

being proposed as a realistic measure of ED overcrowding [17]. According to a quantitative

study by Schull et al. [16] on the determinants of ambulance diversion, they found that

admitted patients in the ED is the main cause for ambulance diversion, whereas nurse

hours and the volume of walk-in patient arrivals to the ED are minor contributors for

ambulance diversion.

In Australia, the term ”access block” is used to define the situation where patients

are unable to gain access to hospital beds within a specified amount of time [18]. Forero

et. al [18] survey access block studies and report their impact on patients’ mortality and

ambulance diversion. They conclude that the problem will remain unless the hospital

capacity is addressed in an integrated approach. They suggest that this should be done

at both national and state levels.

In order to solve this problem, some countries, e.g. the United States, allow the ED to

declare ”diversion” status if they are overcrowded [4]. For EMS management, ”diversion”

means that patients should be routed to other less crowded EDs. Recently, Deo and

Gurvich [4] developed a queueing game model for two EDs that each try to minimize

their waiting times. They show that decentralized diversion decisions result in depooling

of the network resources. They also provide a near optimal solution for the ambulance

diversion problem when a centralized dispatcher (social planner) coordinates diversion.

Our work is unique because we develop quantitative models to analyze and minimize

the offload delays in terms of ED-specific parameters. While the literature above focuses

on a single ED, our models combine the effect of overcrowding in multiple EDs for a

region. This is because EMS are always provided on a regional basis. In that view, our

models are more general and can give more insightful results for EMS decision makers

and analysts.

9



2.2 Queueing Models for Healthcare Systems

Queueing theory has been used in literature to analyze systems that are characterized

by limited resources and variable customer arrival and service times. Queueing network

models have been used extensively to model production, telecommunication systems, and

traffic flow to help determine capacity levels that are needed to fulfill demand within an

acceptable time frame [19]. Although queueing theory is useful for analyzing systems

faced with extended delays and resource shortages, as faced by healthcare systems, the

use of queueing models in this field is limited.

Utley and Worthington [20] review the modeling methods available for healthcare

organizations in terms of resources and service levels. They focus on the insights that

can be drawn from queueing and simulation models. Formundam and Herrmann [21] and

Green [22] provide extensive surveys on the contributions and applications of queueing

theory in healthcare systems. Queueing model performance measures are available in the

form of analytical, numerical, or approximate solutions.

2.2.1 Benefits of queueing models

We summarize the benefits of the queueing modeling and analysis approach for the health-

care systems as follows:

1. It can help determine levels of staffing, equipment and beds to achieve a service

standard;

2. It can be used to assess the implications of decisions with respect to resource allo-

cation and design of new services;

3. It is helpful in gaining insight on the degree of flexibility in organizing resources;

4. It can give simple formulae results for the system performance, e.g. expected delays,

expected queue length and the probability of waiting, among other measures;

5. The performance measures derived can be used to develop optimization models.
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Those models can be used to find optimal solutions efficiently and with minimum

input data.

Simulation is another approach that has been used more frequently to model healthcare

systems. Queueing models, compared to simulation in which the queueing assumptions

are relaxed, require less input data and yet, they can provide insightful results, making

them easier to implement than simulation models [23].

2.2.2 Characteristics of queueing models

In most queueing models, there are six basic characteristics that should be identified to

describe the system of interest:

1. Arrival pattern of customers: In order to identify the arrival pattern, the charac-

teristics of the stochastic process that generates the arrivals should be specified, as

well as the number of customers at each arrival epoch if the customers arrive in

batches. Another important criterion that should be defined is the reaction of the

customer upon entering the system: wait, balk or renege.

2. Service pattern of customers: A probability distribution to identify the sequence of

customers’ service times, in addition to specifying whether the service is done in

batches or for each customer.

3. Queue discipline: the manner in which customers are selected to start service. The

most common discipline observed is First Come First Serve (FCFS). Other queueing

disciplines might include Last Come First Serve (LCFS), preemptive priority and

nonpreemptive priority.

4. System capacity: Some queueing systems include a limitation on the queue size, in

this case, a queue limit should be identified. If the queue limit is reached, customers

arriving to the system are lost.

5. Number of Servers: A queueing system can either be served by one server or multiple

servers. If multiple servers are used, then it should be identified whether the system

11



is fed by a single line or multiple lines.

6. Stages of service: A queueing system might have a single stage of service, or several

stages of service.

For each queueing model we develop in the next chapters, we identify the basic character-

istics mentioned above. We use the real system behavior to make decisions about those

characteristics.

2.2.3 Validity of queueing models assumptions for healthcare

systems

In a queueing model, a number of assumptions are usually made for the above character-

istics. In this subsection, we list our main assumptions and argue the validity of those

assumptions in the healthcare context.

1. The system has reached steady state: Most queueing models assume that the system

has been operating with the same characteristics (number of physicians, number of

nurses,...) for a sufficiently long time, such that the probability distributions de-

rived are independent of the time. Although this assumption might not be true for

healthcare systems, Green [22] gives an example on how steady state queueing mod-

els are useful to effectively allocate resources in such situations. Responding to the

staffing variations without a quantitative model leads to inefficient and ineffective

allocation of resources.

2. Stationary arrival process: Empirical analysis of healthcare system arrivals indicates

that arrival processes are non-stationary, which means that arrival rates depend on

the time of the day, day of the week, and month of the year. Using a stationary

arrival process to approximate a non-stationary arrival process for admission has

been justified by Lewis [24] and Kao and Tung [25] among others. To account for

nonhomogeneity, practically, Cochran and Roche [26] suggest the use of a season-

ality multiplier and a peaking multiplier to adjust for seasonality and time-of-day

12



variation in the ED arrivals as follows:

λ0 =
yearly ED arrival

365 ∗ 24
∗ seasonality multiplier ∗ peaking multiplier (2.1)

3. The system is stable: This implies that the system operates strictly under 100%

utilization rate. This fact is actually useful to explain the long waiting lines in front

of clinics, EDs or specialist lists since those systems operate usually near 100%

utilization.

4. Poisson arrival process: In healthcare, the Poisson process has been verified to be a

good representation for unscheduled arrivals to various parts of hospital including

EDs. See Green [22] and the references therein.

In Table 2.2, we summarize some of the work that has been done using queueing

models for healthcare systems. For each article we identify the application, queueing

model used, and main results.

The major objective of this research is to quantify the delays ambulances experi-

ence upon arrival to EDs. Another key objective is to assess the implications of patient

re-allocation to regional hospitals. In order to capture those delays, we develop three

queueing models each with different assumptions. Queueing analysis can be an extremely

valuable tool for utilizing resources in the most cost effective way to reduce delays [22].

For those reasons, we use this methodology to analyze the offload delay problem.

2.3 Queueing Networks with Blocking

A queueing network is a set of interconnected nodes. Each node consists of a queue, where

customers wait for service, and one or more servers [27]. If one or more queues in the

network have limited capacity, blocking may occur. Queueing Networks with blocking

have recently become an important and active research topic in performance evaluation

because of their applicability to model real life systems. They have been used, for example,
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Figure 2.1: A tandem queue with finite capacity

to model production lines and telecommunication networks where capacity limitations

may affect the performance of the system.

To illustrate the blocking process in more detail, we consider a queueing network

that consists of two nodes as depicted in Figure 2.1. We denote the first node as the

upstream node and the second as the destination or downstream node. The destination

node has finite capacity (K2) including the customer in service, while the upstream node

has infinite capacity. If a customer at the upstream node finishes service and finds the

destination node queue full, he will wait at the upstream server until there is space for him

in the destination node. Thus, the upstream server acts as an extra waiting spot for the

destination node, and at this moment we say that the upstream server is blocked. Blocking

implies that the server is not able to serve additional customers, and the customer at the

blocked server is delayed. We emphasize here that the blocking we consider in this work

is not related to the blocking in the literature that assumes blocked customers are lost,

where the later was the assumption made by e.g. Tahilramani et al. [28], Kouvatsos and

Xenios [29], Dijk and Wal [30], and Smith [31].

Blocking may happen in different mechanisms, depending on when blocking and un-

blocking occur. The main blocking mechanisms used in literature are:

• Blocking After Service (BAS): The customer at the blocked node finishes service and

then waits for a space in the destination node. We use this blocking mechanism in

our work to model the blocking of ambulances. If an ambulance, after transferring

a patient to the ED, finds the ED full, it will not be able to transfer other patients

until there is space for the current patient in the ED.

15



• Blocking Before Service (BBS): The upstream server checks the queue of the desti-

nation node; if the queue is full, it stops and does not serve the current customer

unless there is space for him in the destination node. This type of blocking is mostly

incurred in telecommunication networks.

• Repetitive Service Blocking (RS): The customer receives repeated services until

there is space for him in the destination node.

Analysis of queueing networks with blocking is challenging. Some small networks

have exact analytical solutions, while approximations are mostly used to analyze more

complicated networks. The main techniques used in literature for the analysis of these

networks can be grouped into three broad categories as follows:

1. Analytical Solutions: Analytical solutions exist only for special networks, for exam-

ple, the open two node queueing network, with single and multiple servers, when

the service times are exponential and the arrival process is Poisson, e.g. Perros [27].

2. Numerical Solutions: Numerical solutions that are based on constructing a Markov

chain model for the system have been used to solve simple queueing networks with

blocking, e.g. Houdt and Alfa [32], and Latouche and Neuts [33].

3. Approximate Solutions: Most of the available literature on queueing networks with

blocking is in the form of approximate solutions that utilize basic, one or two node

configurations, to decompose the network into smaller blocks.

In the healthcare systems, although queueing networks with blocking can be suitable

to model scarce resources, its use is limited. Koizumi et al. [34] applied queueing net-

works with blocking to analyze patient flow in mental health institutions in Philadelphia.

Recently, Osorio and Bielaire [35] developed an approximation scheme to find the queue

length distribution for a general topology queueing network with blocking and multiple

servers. They apply their results to study patient flow for hospital units. However, their

model does not consider multiple patients with different priorities as we assume in our

work.
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Bretthauer et. al [36] use the concept of blocking to model patient flow in a hospital.

From a queueing perspective, they develop a heuristic for tandem queues to evaluate the

effect of blocking on the entire system performance.

In Chapter 5, we model the ambulances as servers that might experience blocking. We

use a computational stochastic method which is the Matrix Analytic Method, to solve a

simplified model for the ambulance offload delay problem. The resulting queueing network

has a general configuration with multiple priority classes and multiple servers that has

not yet been analyzed. We develop an approximation algorithm to analyze the network

and its performance. Since our work is related only to queueing networks with blocking

and multiple servers, we review only the literature in queueing networks with blocking

that consider multiple servers, or that consider multiple customer priorities.

2.3.1 Queueing Networks with Blocking and Multiple Servers

There is a considerable amount of literature that has analyzed queueing networks with

blocking when one or more nodes have multiple servers. Some of the literature use the

Expansion Method to analyze open, general topology networks. To account for blocking,

they introduce a holding node between finite capacity nodes. Han and Smith [37] use the

Expansion Method to calculate the throughput of a queueing network that has Poisson

arrivals and exponential service times at each server. They approximate the service time

at the finite node by a Coxian distribution. Jain and Smith [38] use the same method

to derive the network throughput and investigate the optimal ordering of servers. Lately,

Cruz and Smith [39] use the Expansion method to derive the blocking probability and

the expected waiting time and number of customers in the system for a network that has

no buffer space for customers. Andriansyah et al. [40] extend Cruz and Smith’s work by

optimizing the number of servers and the network throughput using genetic algorithms.

While the previous authors consider general topology networks, there are some articles

that analyze tandem queues that consist of two or more nodes. Akyildiz [41] approximates

the throughput for a closed tandem network. Latouche and Neuts [33] derive the exact

probability distribution for the number of customers in the system for a two-node tandem
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queue using the Matrix Analytic Method, while van Vuuren el al. [42] decompose the

network into two station subsystems to find the approximate mean sojourn time and

network throughput. Table 2.2 summarizes the main research that has analyzed queueing

networks with blocking and multiple servers.

2.3.2 Queueing Networks with Blocking and Multiple Classes

of Customers

The theory on queueing networks with blocking is mainly related our model in Chapter 5

where ambulances are modeled as servers that have exponential service time. Queueing

Networks with blocking and multiple classes of customers have received less attention

because they are difficult to analyze. Wagner [43] considers a single node multi-server

queue with finite capacity. The arrival process for all customer classes is Poisson and

the service times are exponential. He assumes non-preemptive priority discipline. If an

arrival finds all the waiting spaces occupied, it is lost. For this model, Wagner derives the

steady-state probability distribution explicitly for the number in the system for a two-

customer class model, and the Laplace-Stieltjes Transform for the actual waiting time of

each customer class using Matrix Analytic Methods.

To our knowledge, no work has modeled multiple priorities in queueing networks with

blocking where customers are delayed when the server is blocked.

2.3.3 Decomposition and Approximation for Queueing Networks

with Blocking

In this section, we present one of the main methodologies used to analyze queueing net-

works with blocking which is decomposition and approximation. The algorithm decom-

poses the queueing network into isolated single nodes, each with modified arrival rate,

service rate, and buffer capacity. Then each node is studied in isolation based on the new

approximated parameters. The main steps to perform the analysis are:

• Decomposition of the queueing network into single nodes.
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Figure 2.2: A two node tandem queueing network with blocking

• Analysis of each single node in isolation. The single nodes are related to their

network surroundings by input (arrival) and output (departure) processes.

• Approximation of all nonrenewal processes by stationary renewal processes.

Consider for example the tandem queue in Figure 2.2 which consists of two nodes.

The decomposition algorithms are based on determining the effective service and arrival

rates for each isolated node. These approximate parameters are usually based on one

of two assumptions. Either the effective service times are exponential, or they have a

phase type distribution. Once the effective arrival and service rates are determined, the

expected queue length and expected waiting times for customers are calculated using the

M/M/1/mi + 1 results. In Chapter 5, we develop an approximation scheme based on the

decomposition approach described to approximate offload delays.

In the next section, we introduce some background concepts for the Matrix Analytic

Methods that we use to solve our simplified version of the model.

2.4 Matrix Analytic Methods

Over the last two decades, Matrix Analytic Methods have been used to analyze a wide

range of systems. These methods are popular as modeling tools because they provide

the ability to construct and analyze, in a unified way and an algorithmically tractable

manner, a wide class of stochastic models [44]. Matrix Analytic Methods, since their

introduction in 1970s by Marcel F. Neuts, have been successfully used to model a wide

variety of applications that range from queueing systems to inventory models, and most
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commonly, telecommunication systems. In these models, the embedded Markov chains

are two-dimensional generalizations of elementary GI/M/1 and M/G/1 queues and their

intersection, i.e., Quasi-Birth-and-Death (QBD) processes [45].

In this section we describe the computational procedure that was developed by Neuts

in 1981 [46] to analyze QBD processes where transitions are only allowed to adjacent

levels. It can be used to calculate the steady state queue length distribution for a QBD

process {X(t) : t ≥ 0} that has a tridiagonal generator matrix P of the form:

P =



A0,0 A0,1

A1,0 A1,1 A0

A2 A1 A0

. . . . . . . . .

. . . . . .


(2.2)

The essential problem in determining the steady state probability distribution of a

Markov process is solving a set of linear flow balance equations, where there is an equa-

tion associated with each state of the system. For systems with a large or possibly infinite

number of states, exact solutions can only be obtained if one can exploit structural prop-

erties of these balance equations. Neuts developed a body of results that allows one to

exploit repetitive structures. If the states of the Markov process can be grouped into

vectors which possess a certain repetitive structure as in (2.2), then a recursive procedure

can be used to determine the stationary state probabilities of any vector in terms of the

probabilities for the previous vector [47]. If the QBD process is ergodic, Neuts shows that

a nonnegative solution exists for the set of linear equations:

πP = 0 (2.3)

πe = 1

where e is a column vector of ones of appropriate size. And π is the limiting probability
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vector associated with the QBD process. This solution has the geometric form:

πn = πn−1R, for n ≥ 2 (2.4)

where the rate matrix R is the minimal nonnegative solution to the nonlinear equation:

A0 +RA1 +R2A2 = 0

To calculate the boundary probabilities, (π0, π1), we solve the set of equations below:

(π0,π1)

A0,0 A0,1

A1,0 A1 +RA2

 = 0 (2.5)

π0e+ π1(I −R)−1e = 1 (2.6)

The method described only applies for infinite QBD processes with independent levels,

whereas for our models, we show that the resulting Markov processes are dependent on

one another (Model 1 and Model 2). In the next chapter, we model the ambulance offload

delay problem using a queueing network and develop a Markov chain representation for

its steady state distribution when the service discipline is preemptive.
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Chapter 3

Model 1: Multiple ED Network with

Preemptive Priority Discipline and

Zero Transit Time

The first model we develop for the offload delay problem is constructed for multiple

EDs network. This model is based on three main assumptions: First, regional EDs are

dependent among each others; second, ambulance patients have higher preemptive priority

over walk-in patients; third, the time for an ambulance to pick up a patient, load him into

the ambulance, transfer him to the ED, and unload him from the ambulance is negligible.

In this chapter, we first describe the stochastic model in details along with the model

assumptions in Section 3.1. We analyze the model with ambulance patients only in Section

3.2. Then we investigate the model with both ambulance patients and walk-in patients in

Section 3.3. Numerical analysis and some case studies are shown in Section 3.4. Two of

the model assumptions are validated in Section 3.5. Finally, we conclude at Section 3.6.

3.1 The Stochastic Model

We consider a queueing network for a system with one EMS provider that serves K

hospitals, each with a single ED. The nodes represent hospital EDs all served by a common
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Figure 3.1: EMS-ED Queueing Network Diagram for K = 3

EMS provider. Figure 3.1 illustrates a network consisting of three hospitals. Ambulance

patients arrive and obtain service from the EMS provider which has N ambulances. We

assume that patients arrive according to a Poisson process with rate λ0.

When an arrival occurs and an ambulance is available, the patient is brought to the

kth ED with probability pk. In practice, the hospital to which the patient is taken may

depend on the type of complaint they have, or on which hospital is the closest. We have

constructed our model so that it does not reflect these characteristics as we wanted to

understand the pattern of overall patient flows in steady state. In our model, when an

arrival occurs and an ambulance is not available, the patient demand is assumed to be lost.

In reality, the EMS operators monitor very carefully the number of ambulances available

to respond to emergency calls. When the number becomes critically low, they will contact

neighboring EMS providers to request assistance. This does not happen frequently, and

the event of having no ambulances available is extremely rare. Hence we feel that our

assumption of lost customers is reasonable as it will not have a large impact on the quality

of our solutions.

Finally, we assume that the transit time to the hospital is small in comparison to

the time a patient spends at the hospital. This simplification permits us to obtain many

insights without overly complicating our model. More importantly, Offload delays, which
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are the focus of this work, only depend on ED capacities. In section 6 of this paper, we

show how adding the EMS transit time into the model has minimal impact on offload

delays and other performance measures of interest for the ambulance patients. The kth

ED has a service capacity of ck. This can be viewed as the combination of resources

(e.g. nurse, doctor, and bed) needed to serve an individual patient. Each unit of capacity

operates independently of others. Note that we are modeling the area of the ED that

deals with acute and intermediate care patients - those that have more severe ailments.

From the ED perspective, there are two arrival streams: ambulance patients, and

walk-in patients. When patients arrive to an ED, they are triaged in order to assess the

acuity of their illness. Generally, patients who call for an ambulance have higher acuity

levels than walk-in patients. Figure 3.2, constructed with data from a local hospital,

shows that patients arriving by an ambulance are most of the time are those with high

acuity conditions. In the figure, CTAS 1 (Canadian Triage and Acuity Scale) represents

patients with the most severe conditions who require immediate attention. For this reason

we have assumed that ambulance patients have preemptive priority over walk-in patients.

Preempting the service of a walk-in patient can be interpreted as preempting their care,

as is the case when a severely ill patient arrives to the ED.

Walk-in patients arrive to the kth ED according to a Poisson process with rate λk.

The service time for both ambulance and walk-in patients at the kth ED is assumed to be

exponentially distributed with parameter µk. Since the service time of walk-in patients

has an exponential distribution, when a walk-in patient regains service, it does not matter

whether its service is resumed or repeated. Thus, both preemptive repeat and preemptive

resume cases for walk-in patients are considered.

We summarize the model parameters as follows:

• K: Number of regional hospitals;

• λ0: Patient arrival rate to the EMS system;

• pk: Probability that an EMS arrival is sent to the kth ED, for k = 1, 2, ..., K;

• µk: Service rate per server in the kth ED, for k = 1, 2, ..., K;
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Figure 3.2: Arrivals to an ED by acuity level and mode of arrival

• λk: arrival rate of walk-in patients at the kth ED, for k = 1, 2, ..., K;

• ck: Number of servers in the kth ED, which corresponds to the service capacity at

the kth ED, for k = 1, 2, ..., K.

• N : Total number of ambulances available in the system;

In order to analyze the queueing network, we introduce a Markov chain that can

be used to analyze system performance. The Markov chain allows us to derive various

probability distributions which we use later to derive system performance measures. We

start by defining 2 sets of state variables to describe the system state:

1. qk(t): The number of ambulance patients at the kth ED, including the ambulance

patients in service, at time t, for k = 1, 2, ..., K;

2. qw,k(t): The number of walk-in patients in service and waiting in the kth ED, at

time t, for k = 1, 2, ..., K.

The total number of state variables we need to represent the queues in the network

is 2K. Based on the definition, if qk(t) ≥ ck, then all walk-in patients are waiting in

the queue; if qk(t) < ck, then there are ck − qk(t) servers available to serve the walk-in

patients at the kth ED. The fact that the service discipline at each hospital ED is assumed

to be preemptive, where walk-in patients have lower priority and ambulance arrivals are

assigned higher priority allows us to analyze the queue of ambulance patients separately

without the need to include the walk-in arrivals. We use this observation as a building

block in the next layer to analyze the queue of walk-in patients.
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The value of this methodology in constructing the Markov chain will become evi-

dent when we solve for real life instances of the model where the size of the problem

increases. Due to splitting the high priority patients from low priority ones, we don’t

need to solve the entire model to find the steady state probabilities and performance

measures related to ambulance patients. Solving only for the K dimensional Markov

chain {(qK(t), qK−1(t), ..., q1(t)), t ≥ 0} gives us all the results pertaining to ambulance

patients and offload delays.

3.2 High priority ambulance patients

In this section, we analyze the stochastic model with only ambulance patients. The anal-

ysis consists of five steps. First, a recursive method is introduced for constructing the

infinitesimal generator for {(qK(t), qK−1(t), ..., q1(t)), t ≥ 0}. Then matrix-analytic meth-

ods are used for computing the stationary distribution of that continuous time Markov

chain. A number of performance measures are derived. A Markov chain is also con-

structed for the waiting times of ambulance patients. Finally, at the end of this section,

some real cases are studied using the methods developed.

3.2.1 The Markov chain

Consider the process {(qK(t), qK−1(t), ..., q1(t)), t ≥ 0}. Since the arrival process of am-

bulance patients to the system EDs is Poisson and the service times are exponential, it

is easy to see that the stochastic process {(qK(t), qK−1(t), ..., q1(t)), t ≥ 0} is a contin-

uous time Markov chain. The queue lengths, q1(t), q2(t), ..., and qK(t) are finite such

that q1(t) + q2(t) + ... + qK(t) ≤ N + c1 + c2 + ... + cK , which implies that the process

{(qK(t), qK−1(t), ..., q1(t)), t ≥ 0} is a continuous time Markov chain with a finite state

space. For convenience, we use ik for the value of qk(t). The state space Ω of the Markov

chain can be organized as follows:

• Ω = Ω0 ∪ Ω1 ∪ . . . ∪ ΩN+cK ;
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• ΩiK = ΩiK ,0 ∪ ΩiK ,1 ∪ . . . ∪ ΩiK ,N+cK−1−max (0,iK−cK), for 0 ≤ iK ≤ N + cK ;

• ΩiK ,iK−1
= ΩiK ,iK−1,0 ∪ ΩiK ,iK−1,1 ∪ . . .

∪ ΩiK ,iK−1,N+cK−2−max (0,iK−cK)−max (0,iK−1−cK−1), for 0 ≤ iK−1 ≤ N + cK−1, 0 ≤ iK +

iK−1 ≤ N + cK + cK−1;

• ΩiK ,iK−1,...,ij = ΩiK ,iK−1...,ij ,0 ∪ ΩiK ,iK−1,...,ij ,1 ∪ . . .

∪ ΩiK ,iK−1,...,ij ,N+cj−1−max{0,iK−cK}−...−max{0,ij−cj}, for 0 ≤ ij ≤ N + cj, and 0 ≤ iK +

...+ it ≤ N + cK + ...+ ct, j + 1 ≤ t ≤ K;

• ΩiK ,iK−1,...,i2 = {0, 1, ..., c1, c1 +1, ..., c1 +N−max{0, iK−cK}−. . .−max{0, i2−c2}},

for 0 ≤ i2 ≤ N + c2, and 0 ≤ iK + ...+ ij ≤ N + cK + ...+ cj, 2 ≤ j ≤ K;

We observe here that each of the state variables qK(t), qK−1(t), ..., and q1(t) changes

its value by at most one whenever an arrival or a service completion occurs. Thus,

{(qK(t), qK−1(t), ..., q1(t)), t ≥ 0} is a level dependent quasi-birth-and-death (QBD) pro-

cess with a finite number of levels. See Neuts [46], and Latouche and Ramaswami [44] for

more details on QBD processes.

Next, we construct an infinitesimal generator for the Markov chain. We shall call

qK(t) the level variable and (qK−1(t), ..., q1(t)) the phase variable. The states in Ωi, 0 ≤

i ≤ cK +N , will be called level i states. The infinitesimal generator of the Markov chain

{(qK(t), qK−1(t), ..., q1(t)), t ≥ 0} has the following general structure:

Q
(K)
N =



A
(K)
(0,0)

A
(K)
(0,1)

A
(K)
(1,0)

A
(K)
(1,1)

A
(K)
(1,2)

. . .
. . .

. . .

A
(K)
(N+cK−1,N+cK−2)

A
(K)
(N+cK−1,N+cK−1)

A
(K)
(N+cK−1,N+cK)

A
(K)
(N+cK ,N+cK−1)

A
(K)
(N+cK ,N+cK)


. (3.1)

Intuitively, the matrices A
(K)
(i,i+1), A

(K)
(i,i−1), and A

(K)
(i,i) give the rate by which the number

of patients at the Kth ED increases by one, decreases by one, or does not change, respec-

tively. The construction of the infinitesimal generator must be done with care. The main

difficulty comes from the fact that the number of states in a level depends on the level. We

observe that the number of states in each level is determined by the number of ambulances
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available to hospitals other than K. Based on this observation, we introduce the following

recursive method for constructing the matrix blocks in the infinitesimal generator Q
(K)
N .

Note that, in the following construction, the variable k, 1 ≤ k ≤ K, represents the num-

ber of hospitals involved (i.e., hospitals 1, 2, ..., and k), and the variable n, 0 ≤ n ≤ N ,

represents the number of available ambulances. For k = 1, we have, for n = 0,

Q
(1)
0 =

0

1

...

c1



0

µ1 −µ1

. . .
. . .

c1µ1 −c1µ1


; (3.2)

and for n ≥ 1,

Q(1)
n =

0

1

...

c1
...

c1 + n− 1

c1 + n



−p1λ0 p1λ0

µ1 −µ1 − p1λ0 p1λ0
. . .

. . .
. . .

c1µ1 −c1µ1 − p1λ0 p1λ0
. . .

. . .
. . .

c1µ1 −c1µ1 − p1λ0 p1λ0

c1µ1 c1µ1



.

(3.3)

Note that, if n = 0, there is no ambulance available. Thus, there can be no arrival of

patients in Q
(1)
0 . If n ≥ 1, the total arrival rate of patients is λ0 and the arrival rate to

the first ED is p1λ0. The service rate is determined by min{c1, q1(t)}.

We also define the following matrices:

U
(1)
0 = (0)(c1+1)×(c1+1); U (1)

n =

I(c1+n)×(c1+n) 0

0 0


(c1+n+1)×(c1+n+1)

, for n ≥ 1. (3.4)

V (1)
n =

I(c1+n)×(c1+n)

0


(c1+n+1)×(c1+n)

, for n ≥ 1. (3.5)

To indicate the size of a matrix, we have used subscripts. For example, (0)(c1+1)×(c1+1) is

a square matrix of zeros of size c1 + 1.
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We define

U (k)
n =

0

...

ck

ck + 1

...

ck + n



U
(k−1)
n

. . .

U
(k−1)
n

U
(k−1)
n−1

. . .

U
(k−1)
0


, for n ≥ 0. (3.6)

V (k)
n =

0

...

ck

ck + 1

...

ck + n− 1

ck + n



V
(k−1)
n

. . .

V
(k−1)
n

V
(k−1)
n−1

. . .

V
(k−1)

1

U
(k−1)
0



, for n ≥ 1. (3.7)

For 2 ≤ k ≤ K, we have, for n ≥ 0 and 0 ≤ i ≤ n+ ck,

A
(k)
n(i,i) = Q

(k−1)
n−max(0,i−ck) −min(i, ck)µkI − pkλ0U

(k−1)
n−max(0,i−ck). (3.8)

If ik = i, the number of ambulances available to hospitals 1, 2, ..., and k− 1 is max{0, i−

ck}. Thus, the transitions for (qk−1(t), ..., q1(t)) are described by Q
(k−1)
n−max{0,i−ck}. The

transitions of qk(t) are determined by min{i, ck}µkI for decreasing its value by one, and

by pkλ0U
(k−1)
n−max{0,i−ck} for increasing its value by one.

A
(k)
n(i,i+1) =

 pkλ0U
(k−1)
n , for 0 ≤ i ≤ ck − 1;

pkλ0V
(k−1)
n−(i−ck), for ck ≤ i ≤ n+ ck − 1.

(3.9)

Note that, for levels i and i+1, if i ≥ ck, they have different number of states. The reason

is that if i ≥ ck, for level i+ 1, there is one less ambulance available for hospitals 1, 2, ...,
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and k − 1.

A
(k)
n(i,i−1) =

 min(i, ck)µkI, for 1 ≤ i ≤ ck;

min(i, ck)µk(V
(k−1)
n+1−(i−ck))

′, for ck + 1 ≤ i ≤ n+ ck.
(3.10)

where (V
(k−1)
n+1−(i−ck))

′ is the transpose of (V
(k−1)
n+1−(i−ck)). Then Q

(K)
N is constructed from

A
(K)
n(i,i), A

(K)
n(i,i+1), and A

(K)
n(i,i−1) by equation (3.1) when n = N . We summarize the steps to

construct the infinitesimal generator for the stochastic model with only the high priority

ambulance patients in algorithm 1.

Algorithm 1 Computing matrix blocks in Q
(K)
N

1. Based on equations (3.3), (3.4), and (3.5), compute matrices {Q(1)
n , for 0 ≤ n ≤ N},

{U (1)
n , for 0 ≤ n ≤ N}, and {V (1)

n , for 1 ≤ n ≤ N}. Set k = 2.

2. If k ≤ K, go to step (3); Otherwise, Stop.

3. Based on equations (3.8), (3.9), and (3.10), compute {A(k)
n(i,i), for 0 ≤ n ≤ N and

0 ≤ i ≤ n + ck}, {A(k)
n(i,i+1), for 0 ≤ n ≤ N and 0 ≤ i ≤ n + ck − 1}, {A(k)

n(i,i−1), for

0 ≤ n ≤ N and 1 ≤ i ≤ n + ck}. Then compute {Q(k)
n , for 0 ≤ n ≤ N}, {U (k)

n , for

0 ≤ n ≤ N}, and {V (k)
n , for 1 ≤ n ≤ N}. Set k =: k + 1, Go to step (2).

3.2.2 Matrix-Geometric Solution

We denote by π = (π0,π1, . . . ,πN+cK ) the stationary distribution of Q
(K)
N . Since the

Markov chain is irreducible, π exists and is the unique non-negative solution for the

linear system:

πQ
(K)
N = 0; and πe = 1, (3.11)

where e is a column vector of ones. Since the infinitesimal generator Q
(K)
N has a block

tridiagonal structure, a matrix-geometric solution can be obtained. First, for the levels

N + cK and N + cK − 1, we obtain

πN+cK = πN+cK−1R(N + cK), (3.12)
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where

R(N + cK) = −A(K)
(N+cK−1,N+cK)

(
A

(K)
(N+cK ,N+cK)

)−1

. (3.13)

Then we solve recursively starting from level N + cK − 1 down to level 1 to obtain:

πi = πi−1R(i), for 1 ≤ i ≤ N + cK , (3.14)

where

R(i) = −A(K)
(i−1,i)(A

(K)
(i,i) +R(i+ 1)A

(K)
(i+1,i))

−1. (3.15)

In order to find π, we need to find the boundary π0. The boundary balance equations

and the normalization condition lead to the following linear system for π0:

π0

(
A

(K)
(0,0) +R(1)A

(K)
(1,0)

)
= 0;

π0(e+R(1)e+R(1)R(2)e+ ...+R(1)...R(N + cK)e) = 1.
(3.16)

We summarize the solution steps as follows:

Algorithm 2 Stationary distribution of Q
(K)
N

1. Find R(N + cK) using equation (3.13).

2. Find R(i) for 1 ≤ i < N + cK recursively starting from the higher level using
equation (3.15).

3. Find the vector π0 using the boundary and normalization conditions in (3.16).

4. Find πi starting from i = 1 up to i = N + cK using equation (3.14).

3.2.3 Performance Measures

A number of performance measures can be derived directly from π. We shall focus on

the performance measures for the Kth ED. Performance measures for other hospitals can

be obtained by changing the role of another ED and the Kth ED in the analysis.

1. In steady state, the distribution of the number of ambulance patients qK in the Kth
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ED is given by

π(K)(i) = πie, for i = 0, 1, . . . , N + cK . (3.17)

2. The mean number of ambulance patients in the Kth ED is given by

E[qK ] =

N+cK∑
i=0

iπ(K)(i). (3.18)

3. The probability distribution of the number of ambulances in offload delay at the

Kth ED. We define random variable O(K) as the number of ambulances in offload

delay at the Kth ED. We note that there are ambulances in offload delay at the

Kth ED if and only if qK(t) > cK . Thus, we have O(K) = max{0, qK(t) − cK}.

The probability distribution for the number of ambulances in offload delay can be

calculated as follows:

P{O(K) = m} =


∑cK

i=0 π
(K)(i), for m = 0;

π(K)(m+ cK), for 0 < m ≤ N .

(3.19)

The mean number of ambulances in offload delay E[O(K)] can be obtained accord-

ingly.

4. For state (iK , ..., i1), we denote by πiK ,...,i1 its steady state probability, which is

an element in the vector π. The probability distribution of the total number of

ambulances in offload delay, denoted by O, is given by

P{O = m} =
∑

(iK ,...,i1)∈Ω:
∑K

k=1 max{0,ik−ck}=m

πiK ,...,i1 , for 0 ≤ m ≤ N ; (3.20)

5. The loss probability: We refer to the probability that all ambulances are in offload

delay as the loss probability, denoted as PL. Then the loss probability is given by

P{O = N} = PL =
∑

(iK ,...,i1)∈Ω:
∑K

k=1 max{0,ik−ck}=N

πiK ,...,i1 . (3.21)
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3.2.4 Waiting times of ambulance patients

The waiting time wK of an ambulance patient arriving to the Kth ED depends on the

number of ambulance patients waiting at the Kth ED. Denote by ηi(K) the probability

that i ambulance patients are in the Kth ED when an ambulance patient arrives in the

Kth ED. Note that an arriving patient can reach the Kth ED if and only if there is an

ambulance available at the time of arrival. By definition, we have, for 0 ≤ i ≤ cK +N−1,

ηi(K) =

∑
(i,iK−1,...,i1)∈Ω: max{0,i−cK}+

∑K−1
k=1 max{0,ik−ck}<N πi,iK−1,...,i1

1− PL
. (3.22)

Define α(K) = (ηcK (K), ..., ηcK+N−1(K)). Then the i-th component of α(K) gives the

probability that an arriving ambulance patient to the Kth ED has to wait for the service

completion of i patients before getting a bed. Since there are cK beds for all patients in

the Kth ED, each with an exponential service time with parameter µK , if all beds are

occupied, the time to serve one patient has an exponential distribution with parameter

cKµK . Thus is all ck servers are busy, the total time to serve i patients has an Erlang

distribution of order i. Consequently, when an ambulance patient arrives to hospital K,

the waiting time has a generalized Erlang distribution with a phase-type representation

(α(K), cKµKJN), where

JN =


−1

1 −1

. . . . . .

1 −1


N×N

. (3.23)

The distribution function of the waiting time wK is given by

P{wK < t} = 1−α(K) exp{−cKµKJN t}e. (3.24)
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By routine calculations, we obtain

E[wK ] =
N∑
i=1

iηcK−1+i(K)

cKµK
. (3.25)

The mean waiting time E[wK ] and the mean queue length E[qK ] satisfy Little’s law

as follows: E[qK ] = λ0(1 − PL)pK(E[wK ] + 1/µK), which is useful for a computational

accuracy check.

Denote by w the waiting time of an arbitrary ambulance patient who enters the system

(i.e., is not lost). Since arriving ambulance patients are sent to individual hospitals with

probabilities {p1, ..., pK}, the mean waiting time of an arbitrary ambulance patient who

actually enters a hospital is given by E[w] =
∑K

k=1 pkE[wk].

Since the service time in the kth ED has an exponential distribution with parameter

µk, the mean sojourn time of an ambulance patient to the kth ED is given by E[wk]+1/µk.

The mean sojourn time of an arbitrary ambulance patient who enters the system can be

calculated by
∑K

k=1 pi(E[wk] + 1/µk).

3.3 Low priority walk-in patients

To account for the walk-in patients who arrive to the hospitals’ EDs with lower acuity

problems, we utilize the Markov chain outlined in section 4 to develop a new Markov

chain model that includes both arrival streams. Due to the fact that walk-in patients

across hospitals are independent, we can focus on one hospital at a time without loss

of generality. We also recall that the service discipline is preemptive. Since the service

time of walk-in patients is assumed to be exponential, its overall service time will be

exponential regardless of whether its service is preempt-resume or preempt-repeat.

3.3.1 The Modified Markov chain

We add qw,K(t) to the Markov chain considered in Section 4 to obtain a continuous

time Markov chain {(qw,K(t), qK(t), qK−1(t), ..., q1(t)), t ≥ 0}, which has an infinite state
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space. Since the level variable qw,K(t) changes its value by at most one, decreasing by one

or increasing by one, the process {(qw,K(t), (qK(t), qK−1(t), ..., q1(t))), t ≥ 0} is a QBD

process with an infinite number of levels. Since the service discipline is preemptive, walk-

in patients have no impact on the service of ambulance patients. Thus, the infinitesimal

generator QwK has the following structure:

QwK = I ⊗ (Q
(K)
N − λKI)

+



0 λKI

MK,1 −MK,1 λKI

. . .
. . .

. . .

MK,cK −MK,cK λKI

MK,cK −MK,cK λKI

. . .
. . .

. . .


,

(3.26)

where I ⊗ (Q
(K)
N − λKI) is the Kronecker product of I and Q

(K)
N − λKI, Q

(K)
N is defined

in equation (3.1), and MK,n are diagonal matrices that include service rates for walk-

in patients conditioning on the number of ambulance patients in the Kth ED: (Note:

n = qw,K(t) ≥ 1)

MK,n =

0

1

...

cK − 1

cK
...

cK +N



min{n, cK}µKI

min{n, cK − 1}µKI

. . .

µKI

0

. . .

0



, (3.27)

The diagonal elements of MK,n indicate the number of walk-in patients with a bed,

which depends on the number of available beds and the number of walk-in patients in

the Kth ED, and is given by max{0,min{n, cK − qK(t)}}. We note that the Markov

chain is level dependent up to level cK . Beyond this level, the Markov chain has a level

independent structure. This allows us to find its stationary probability distribution using

matrix-analytic methods.
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3.3.2 Matrix-Geometric Solution

Let φ = (φ0,φ1, . . .) be the stationary probability distribution of {(qw,K(t), (qK(t), qK−1(t),

..., q1(t))), t ≥ 0}. The stationary distribution exists if and only if the Markov chain is

ergodic. Since the Markov chain of interest is irreducible and has a QBD structure, by

Neuts [46], the Markov chain is ergodic if and only if λKπe < πMK,cKe, which can be

simplified to

λK + pKλ0(1− PL) < cKµK . (3.28)

Intuitively, the left hand side of equation (3.28) is the total arrival rate to the Kth ED

and the right hand side is the potential service capacity at the Kth ED. Equation (3.28)

ensures that there is enough capacity to serve all patients arriving to the Kth ED. In

the rest of this paper, we assume that equation (3.28) holds. The stationary probability

distribution φ can thus be obtained by solving the linear system

φQwK = 0; and φe = 1. (3.29)

By Neuts (1981), the stationary distribution has a matrix geometric form:

φn = φcKR
n−cK , for n ≥ cK (3.30)

where the rate matrix R is the minimal nonnegative solution to the nonlinear equation:

λKI +R(Q
(K)
N − λKI −MK,cK ) +R2MK,cK = 0. (3.31)

The above equation can be solved using the logarithmic reduction algorithm of [44]. For

the level dependent part of the Markov chain, the probabilities can be obtained by solving

a finite level QBD process of size cK . Details for computing φ are given in Algorithm 3.

By routine calculations, the mean queue length of walk-in patients in the Kth ED can
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Algorithm 3 Computation of stationary distribution for QwK

1. Check stability of the Markov chain using the condition (3.28). If the system is
stable, continue with step 2; Otherwise the stationary probability distribution does
not exist.

2. Find R by solving (4.19).

3. Set RcK = R.

4. Find Rn for 1 ≤ n < cK recursively starting from n = cK − 1 using the equation:
Rn = −λK(Q

(K)
N − λKI −MK,n +Rn+1MK,n+1)−1

5. Find the vector φ0 using the boundary and normalizing conditions:

φ0(Q
(K)
N − λKI +R1MK,1) = 0,

φ0(I +R1 +R1R2 + . . .+R1R2 . . . RcK−1
+R1R2 . . . RcK (I −R)−1)e = 1.

6. Find φn starting from n = 1 up to n = cK using equation:
φn = φn−1Rn for 1 ≤ n ≤ cK .

7. Find φn for n > cK using equation (3.30).

be obtained as

E[qw,K ] =

cK−1∑
n=0

nφne+ φc
K

(
R(I −R)−2 + cK(I −R)−1

)
e. (3.32)

3.3.3 Sojourn Times of Walk-in Patients

We now construct a continuous time Markov chain for analyzing the sojourn time of a

walk-in patient. Since a walk-in patient may get a bed and then lose it a number of times

prior to leaving the hospital, the waiting time is less meaningful than the sojourn time,

ww,K , the total time that a walk-in patient is in the ED.

To construct the absorbing Markov chain for the sojourn time of a tagged walk-in

patient, we only need to consider those walk-in patients who arrived before the tagged

walk-in patient. The Markov chain is terminated when the tagged walk-in patient com-

pletes its service. If the tagged walk-in patient occupies a bed, the service is completed

at the rate µK . The tagged walk-in patient may be pushed out of a bed a number of

times by ambulance patients before the completion of service. Again, we recall that the

service to ambulance patients is not affected by that of walk-in patients. We define, for
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0 ≤ n ≤ cK − 1,

Tn,w =



Q
(K)
N −MK,1

MK,1 Q
(K)
N −MK,2

. . .
. . .

MK,n Q
(K)
N −MK,n+1


, (3.33)

and, for n ≥ cK ,

Tn,w =

0

1

...

cK

...

n



Q
(K)
N −MK,1

MK,1 Q
(K)
N −MK,2

. . .
. . .

MK,cK Q
(K)
N −MK,cK

. . .
. . .

MK,cK Q
(K)
N −MK,cK


. (3.34)

Given that there are n walk-in patients already in the hospital when a tagged walk-

in patient arrives, the tagged patient’s sojourn time has a phase-type distribution with

matrix representation ((0, ..., 0,φn/(φne), Tn,w). Note that, if the phase in Tn,w is cK − 1

or less, the tagged patient is in service and may complete its service earlier than other

patients in service. Then we obtain the conditional probability distribution of the sojourn

time as:

P (ww,K ≤ t | n) = 1− (0, ..., 0,φn/(φne)) exp{Tn,wt}e. (3.35)

The distribution of the sojourn time of an arbitrary walk-in patient can be obtained

as

P (ww,K ≤ t) = 1−
∞∑
n=0

(0, ..., 0,φn) exp{Tn,wt}e. (3.36)

By using truncation, the above formula can be used for computing the distribution

of sojourn time. As for the mean sojourn time, the following explicit formula can be

obtained, where the computation is finite as long as the matrix R can be obtained. Define

DK = −(Q
(K)
N −MK,cK )−1MK,cK , and AK = −(Q

(K)
N −MK,cK )−1, and for 0 ≤ n ≤ cK − 1,

Bn = −(Q
(K)
N −MK,n+1)−1 + (Q

(K)
N −MK,n+1)−1MK,n(Q

(K)
N −MK,n)−1

−...+ (−1)(n+1)(Q
(K)
N −MK,n+1)−1MK,n(Q

(K)
N −MK,n)−1...MK,1(Q

(K)
N −MK,1)−1.

(3.37)
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By routine calculations, the mean sojourn time can be found as, for 0 ≤ n ≤ cK − 1,

E[ww,K |n] = −(0, ...0,φn/(φne))T
−1
n,we =

φn
φne

Bne, (3.38)

and, for n ≥ cK ,

E[ww,K |n] =
φn

φne
(AK +DKAK +D2

KAK + . . .+Dn−cK
K AK +Dn−cK+1

K BcK−1)e. (3.39)

which can be reduced to,

E[ww,K |n] =
φn

φne

(
(I −Dn−cK+1

K )(I −DK)−1AK +Dn−cK+1
K BcK−1

)
e. (3.40)

For an arbitrary walk-in patient at the Kth ED, we obtain:

E[ww,K ] =
∑cK−1

n=0 φneE[wK |n]

+ φcK (I −R)−1(I −DK)−1Ake

+ φcK (
∑∞

n=0R
nDn

K)DK(I −DK)−1Ake

+ φcK (
∑∞

n=0R
nDn

K)DKBcK−1)e.

(3.41)

The infinite summation in equation (3.41) can be transformed into the following form by

using a direct sum f(.):

f

(
∞∑
n=0

RnDn
K

)
=
∞∑
n=0

f(I)(R′ ⊗Dk)
n = f(I)(I −R′ ⊗DK)−1. (3.42)

Note: 1) The direct sum f(X) of X is a row vector and is obtained by stringing out the

vectors starting from the first row of X; 2) R′⊗DK is the Kronecker product of matrices

R′ and DK . Consequently, computation of E[ww,K ] involves only finite summations and

can be done efficiently if the sizes of the matrices involved are moderate. If the sizes of

the matrices involved are large, the following recursive method can be used for computing
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E[ww,K ]:

B0 = −(Q
(K)
N −MK,1)−1;

x0 = φ0B0e;

Bn = −(Q
(K)
N −MK,n+1)−1(I +MK,nBn−1), for 1 ≤ n ≤ cK − 1;

xn = xn−1 + φnBne, for 1 ≤ n ≤ cK − 1;

Bn = AK +DKBn−1, for n ≥ cK .

xn = xn−1 + φcKR
n−cKBne, for n ≥ cK .

(3.43)

By definition, we have limn→∞ xn = E[ww,K ]. This approach requires truncation, which

can be done properly since the matrix-geometric solution {φn, n ≥ 0} has a geometric

decay. Details are omitted.

Similar to the mean queue length and mean waiting time for patients arriving by

ambulance, Little’s law applies to the mean queue length E[qw,k] and mean sojourn time

E[ww,k], i.e., E[qw,k] = λkE[ww,k]. Thus, computing one gives the other. Little’s law can

be used for an accuracy check if both are computed separately. Since all computations in

this section, as well as in Section 4, involve large size matrices, it is important to compute

both E[qw,k] and E[ww,k] and use Little’s law to check the accuracy of the computations.

Remark: We remark that the waiting time of a tagged walk-in patient (i.e., the time

from the arrival of the patient until the first time that the patient gets a bed) can be

studied similarly. Absorbing Markov chains can be constructed in the same way, except

that only states without a bed available to the tagged patients are kept. Details are

omitted.

Kao and Narayanan [48] consider a multiprocessor single node queue and two types

of jobs with one having preemptive priority over the other. To find the waiting time

distribution for the low priority jobs; they find two distributions: the time spent waiting

in the queue until reaching a server, and the time elapsed between the epoch when the job

reaches the server for the first time and the epoch it departs the system. Our approach

described above is more efficient.
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3.4 Numerical Analysis

Using the methods developed in Sections 3 and 4, we analyze four cases for which the

models imitate the ROW EMS-ED network mentioned in the introduction and depicted

in Figure 1. The four cases are mainly differ in the number of ambulances and beds

available, which are selected to reflect different design scenarios in the ROW. We also test

the possibility to balance workloads between EDs by adjusting the routing probabilities of

ambulances. For each case study, we calculate first the stationary probability distributions

of the queue lengths and then the performance measures for ambulance patients and walk-

in patients, followed by a discussion on observations.

3.4.1 Parameter Selection

Parameter selection for each of the four case studies is guided by the the ROW project.

The the ROW EMS-ED network consists of one EMS provider and three hospitals; Grand

River General Hospital, St. Mary’s General Hospital, and Cambridge Memorial Hospital.

In order to mimic the real network, we utilize the available data from one of the regional

hospitals. The four case studies are developed with the following features.

1. Case study 1 represents a small network that experience low offload delays.

2. Case study 2 represents a medium sized network in which significant offload delays

are incurred. For this case study, we also investigate the effect of ambulance patients

routing probabilities on total offload delays experienced by the EMS.

3. Case study 3 represents the case that is most close to the ROW EMS-ED system.

For this case study, we investigate the effect of service rates on offload delays.

4. Case study 4 represents a similar network size as case study 3. The main difference

is the higher service rates at the regional EDs.

More specifically, the system parameters for the four case studies are selected as fol-

lows:
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Patient arrival rates We use different arrival rates for ambulance patients to gener-

ate different workloads to the EMS and regional EDs. On the other hand, we use available

data to estimate the arrival rates of walk-in patients. To do so, we use the current EDs

utilizations as provided by the regional hospitals to calibrate our model, and to find the

corresponding ED walk-in patients arrival rates.

Routing probabilities To calculate the routing probability vector {p1, p2, p3} for

the region’s three hospitals, we use the 2006 data for the numbers of EMS visits per

year for individual EDs that were (8900, 5700, 5200) visits per year, respectively. This

corresponds to 45% of the arrivals being transferred to Grand River General Hospital,

29% to St. Mary’s General Hospital, and 26% to Cambridge Memorial Hospital.

Number of beds at EDs The numbers of physical beds at the three EDs in ROW

are 39, 34, 23. We approximate the service capacity at each ED to be about 36%, 50%

and 60% of the total number of beds for case study 1, 2, and 3, respectively. The reason

for the use of a smaller number of beds is that the service to patients consists of beds,

nurses, doctors, and other necessary resources.

Service rates at EDs The service rate at each ED, µk, corresponds to the reciprocal

of the Length Of Stay (LOS) of patients in the corresponding ED which is approximately

6 hours as reported by the Grand River General Hospital. We use this information for

the first three cases. For case study 4, we change EDs service rates to observe their effect

on EDs’ performance measures.

To compare between EDs in each case study, we define two types of server utilization

for the kth ED, for 1 ≤ k ≤ K:

• ED utilization for ambulance patients ρa,k: Since the service of ambulance patients

is not affected by walk-in patients, we can define the server utilization for ambulance

patients alone. Define ρa,k = min{1, λ0pk(1 − PL)/(ckµk)}, where λ0pk(1 − PL) is

the arrival rate of ambulance patients to the kth ED, and ckµk is the total service

capacity at the kth ED.

• ED total utilization ρk: Considering the service of both types of patients, the server

utilization can be defined as ρk = min{1, (λ0pk(1− PL) + λk)/(ckµk)}.
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Parameter set value

N 6
(λ0)patients/hr 1.5
(λ1, λ2, λ3) patient/hr (1.7, 1.4, 0.8)
(µ1, µ2, µ3) patient/hr (1/6, 1/6, 1/6)
(c1, c2, c3) (15, 12, 8)
(p1, p2, p3) (0.45, 0.29, 0.26)
(ρa,1, ρa,2, ρa,3) (27%, 22%, 29%)
(ρ1, ρ2, ρ3) (95% , 91.75% , 89.25%)

Table 3.1: System parameters for Case Study 1

Matrix analytic results
Measures k = 1 k = 2 k = 3
E[qa,k] 4.05 2.61 2.34
E[O(k)] 8.7 ∗ 10−6 5.4 ∗ 10−6 1.3 ∗ 10−3

E[wa,k] 1.29 ∗ 10−6 1.25 ∗ 10−6 3.2 ∗ 10−3

PL 1.35 ∗ 10−6

E[qw,k] 24.10 16.06 10.44
E[ww,k] 14.17 11.47 13.06

Table 3.2: Performance measures for Case Study 1

3.4.2 Case Study 1

The system parameters used in this case are recorded in Table 3.1. The results are

reported in Table 3.2.

As we can see from the results, the waiting times of ambulance patients and walk-in

patients are quite different. For ambulance patients, the mean waiting times (offload

delays) are almost zero. For walk-in patients, the mean waiting times are more than 11

hours in all three EDs. The reason is that the utilizations for the two types of patients

are quite different. As shown in Table 1, the utilizations for ambulance patients only are

less than 30%, which implies that there is enough service capacity to serve all incoming

ambulance patients when they arrive at an ED. On the other hand, the total utilizations

for both types of patients are about 90% or higher at the EDs. The results show clearly

the effect of the priority service discipline on the waiting times of all patients and the

offload delays of ambulances.
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The results also show the effect of routing on the waiting time of walk-in patients.

Since 45% of ambulance patients are transported to the first ED resulting in the highest

utilization for that ED, the corresponding ED waiting walk-in patients mean waiting time

is the longest. On the other hand, the third ED has the least service capacity. Although

it is small, the ambulance patients sent to the third ED has the longest waiting time.

This case study shows that different admitting policies into the EDs have a great im-

pact on the waiting of both types of patients. Assigning a higher priority for ambulance

patients decreases their waiting time and, consequently, decreases the offload delays ex-

perienced by the ambulances, but at the expense of increased waiting times for walk-in

patients.

3.4.3 Case Study 2

In this case, we investigate the impact of routing probabilities {p1, . . . , pK} on system

performance, which is relevant to the ROW EMS-ED network. To do so, we consider

two scenarios. The first scenario represents the current unbalanced system in ROW,

for which the service capacity is scaled down to 50% of the full capacity. The second

scenario corresponds to a proposed balanced system for which the routing probabilities

are proportional to the EDs’ capacities. Specifically, we set pk = ckµk/(c1µ1 +c2µ2 +c3µ3)

for k = 1, 2, 3. For the two scenarios, the patient arrival rates are the same. The system

parameters used in this case are recorded in Table 3.3.

The results, which are recorded in Table 3.4 for both scenarios, show how balancing

the utilizations {ρa,1, ρa,2, ρa,3}, has balanced the numbers of ambulances in offload delays

at EDs. More interestingly, the expected total number of ambulances in offload delay is

decreased from 3.42 (i.e.,
∑3

k=1E[O(k)] = 1.68+0.16+1.58) in the current scenario to 2.92

(=0.83+0.93+1.16) ambulances in the balanced scenario, which corresponds to a 14%

decrease in the number of ambulances in offload delays. The total expected offload delay

(i.e.,
∑3

k=1 pkE[wa,k]) is decreased from 0.54 hours to 0.45 hours in the balanced scenario.

This corresponds to a 9.9% decrease in the total hours of offload delays experienced in

the region. The loss probability PL is decreased from 6.93% in the current scenario to
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Parameter set value

N 9
(λ0) patient/hr 7
(λ1, λ2, λ3) patient/hr (0.3, 0.6, 0.23)
(µ1, µ2, µ3) patient/hr (1/6, 1/6, 1/6)
(c1, c2, c3) (20, 17, 12)

Table 3.3: System parameters for Case Study 2

Performance Current Balanced
measure k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

pk 45% 29% 26% 40.82% 34.69% 24.49%
ρa,k 87.95% 66.68% 84.69% 81.45% 81.44% 81.45%
ρk 96.95% 87.86% 96.19% 90.45% 100% 92.95%
E[qa,k] 19.27 11.50 11.74 17.12 14.78 10.93
E[O(k)] 1.68 0.16 1.58 0.83 0.93 1.16
E[wa,k] 0.60 0.09 0.93 0.32 0.43 0.71
PL 6.93% 4.98%
E[qw,k] 18.12 7.46 15.34 5.33 − 7.75
E[ww,k] 60.40 12.43 66.70 17.77 − 33.70

Table 3.4: Performance measures for Case Study 2

4.98% in the balanced scenario.

In addition, from the EMS perspective, decision makers are interested in finding the

routing probabilities for which the total number of ambulances in offload delay is reduced.

Figure 5.4 presents the distributions of ambulances in offload delay under both the current

and balanced scenarios. Under the current scenario, the probability of zero ambulances in

offload delay is 29% while under the balanced scenario this probability increases to 35%,

which is a significant increase in the availability of ambulances to deal with sudden events

for which a number of ambulances has to be used.

While the benefit to ambulance patients is clear, the impact of balancing the utilization

of ambulance patients on walk-in patients is negative for the second ED. As shown in Table

3.3, the total utilizations of the second ED is 100% for the balanced scenario. Then the

queue of walk-in patients can be very long. Consequently, the routing mechanism has to

be adjusted for implementation in practice. Nevertheless, the results indicate a possible

direction for reducing offload delays of ambulance patients, without increasing service
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Figure 3.3: The distribution for the total number of ambulances in offload delay

Parameter set value

N 16
(λ0) patient/hr 7
(λ1, λ2, λ3) patient/hr (0.75, 0.9, 0.5)
(c1, c2, c3) (24, 21, 16)
(p1, p2, p3) (0.45, 0.29, 0.26)

Table 3.5: System parameters for Case Study 3

capacity.

3.4.4 Case Study 3

In this case study, we increase the number of ambulances to 16, which is close to 18,

the total number of ambulances available in ROW. We set the service capacity to be

60% of the numbers of beds available at ROW. We vary the mean service time from

(1/6, 1/6, 1/6) to (1/5, 1/5, 1/5) to observe the effect of increasing the service capacity

on the model output. Increasing the service rate or increasing the number of servers

have similar effects on the performance measures because both variations correspond to

increasing the service capacity at the destination EDs. The system parameters for this

case study are reported in Table 3.5.

The results, which are recorded in Table 3.6, indicate that the EMS provides enough

ambulances and three hospitals provide ample capacities to serve ambulance patients.

Thus, the loss probability PL is quite small. The waiting times of ambulance patients are

short as well. This is consistent with the actual situation in ROW. On the other hand,
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Performance Current Increased capacity
measure k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

µk 1/6 1/6 1/6 1/5 1/5 1/5
ρa,k 78.75% 58.00% 68.25% 65.63% 48.33% 56.88%
ρk 97.50% 83.71% 87.00% 81.25% 69.76% 72.50%
E[qa,k] 19.52 12.19 11.14 15.82 10.15 9.14
E[O(k)] 0.64 0.02 0.23 0.07 0.00 0.04
E[wa,k] 0.20 0.01 0.13 0.02 9.32 ∗ 10−5 0.04
PL 9.01 ∗ 10−4 1.6 ∗ 10−5

E[qw,k] 20.85 7.10 5.98 4.74 4.69 2.90
E[ww,k] 27.80 7.89 11.95 6.32 5.21 5.79

Table 3.6: Performance measures for Case Study 3

both the queue lengths and waiting times of walk-in patients are significant.

We also record the results when the service rate of each of the three EDs is increased

from 1/6 to 1/5 in Table 3.6. As it is shown in the table, the total offload delays, walk-in

patients waiting and expected queue lengths decreases as the service capacity increases.

Compared to the ambulance patients, the walk-in patients waiting time decreases more

drastically. More interestingly, we notice that the EDs with higher utilizations benefit

more from adding more capacity to the system (e.g. the first ED performance change is

the highest and the second ED change is the lowest among the three EDs).

This case study shows how our model can be used to assess the effect of adding more

capacity to the system. It also shows where to add resources in order to maximize system

performance.

3.4.5 Case study 4

This case study is similar to case study 3 in terms of the number of ambulances and number

of beds at each ED. Unlike the previous cases, where we set the mean service time at EDs

to be identical, we set (µ1, µ2, µ3) to be (1/5, 1/6, 1/5) respectively to observe the effect

of different service rate on the system performance measures. The input parameters for

this case study are reported in Table 3.7.

Table 3.8 shows the analytic results. We notice that the first ED, which has the
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Parameter set value

N 16
(λ0) patient/hr 7
(λ1, λ2, λ3) patient/hr (1.4, 1.2, 1.0)
(µ1, µ2, µ3) patient/hr (1/5, 1/6, 1/5)
(c1, c2, c3) (24, 21, 16)
(p1, p2, p3) (0.45, 0.29, 0.26)
(ρa,1, ρa,2, ρa,3) (65.63%, 58.00%, 56.88%)
(ρ1, ρ2.ρ3) (94.75%, 91.95%, 88.19%)

Table 3.7: System parameters for Case Study 4

Performance Matrix analytic results
measure k = 1 k = 2 k = 3

E[qa,k] 15.82 12.20 9.14
E[O(k)] 0.07 0.02 0.04
E[wa,k] 0.02 0.01 0.02
PL 1.86 ∗ 10−5%
E[qw,k] 18.73 13.98 8.86
E[ww,k] 13.38 11.65 8.86

Table 3.8: Performance measures for Case Study 4

highest utilization, experiences the most offload delays, while the second ED experiences

the least. In the previous case studies, where the service rates were set to be identical,

we noticed that the expected offload delays experienced by each ED are directly related

to the specific ED utilization ρa,k. In this case study, this observation does not hold, for

example, the second ED utilization is higher than the third ED utilization (ρa,2ρa,3, while

the expected offload delays are lower for the second ED than the third ED. This is due

to the difference in the service rate among the EDs.

From walk-in patients perspective, the expected queue length and the expected waiting

time are the highest for the first ED which has the highest utilization (ρw,k).

We note here that for cases with a small and moderate state space (e.g., Case 1 and

Case 2), the matrix-analytic methods are effective and efficient. On the other hand, for

large size problems, the efficiency of matrix-analytic methods is limited by the computer

physical memory needed for storing matrices. For such cases, the classical Gauss-Seidel

iteration can be used for computing the stationary distributions of queue lengths. How-
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ever, the matrix-analytic methods is more efficient than the Gauss-Seidel iteration for

small and moderate cases.

In the next section, we validate two main assumption made by this model using discrete

event simulation.

3.5 Model Validation

In this section, through simulation, we validate two assumptions made in Section 3.2:

1. the transit time of an ambulance patient is zero; and

2. the service times in EDs have an exponential distribution.

We use the three case studies in Section 5 as the base models for model validation.

Then we add transit time into the queueing network or change the service time distribu-

tion from exponential to more general distributions. The extended models are analyzed

through simulation. Performance measures are collected for the original models (Sec-

tion 2) and for the extended models. Then we compare the results in order to validate

the assumptions. Of course, the assumptions are validated if the performance measures

collected for the two groups of models are close to each other.

The assumption on transit time First, we consider an extended model in which the

transit time of ambulance patients is nonzero. Real data on transit times from the ROW

EMS database is used. By using the Stat-Fit Package, it is found that the transit time

can be approximated by a beta distribution with parameters (α = 2.75, β = 22.9) and a

coefficient of variation of 0.5. See Figure (3.4) for the fitted data from the ROW EMS. We

also use the exponential distribution to model that transit time since it was used in the

literature, e.g. ([49], [50]). We use a parameter of µ = 1/0.73. We define uA the utilization

of ambulances in the EMS, which is the long-term percentage of ambulances being used.

For the zero transit time case, ambulances are busy only when they are experiencing

offload delays. Mathematically, uA = E[O]/N . While for the nonzero transit time case,
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Figure 3.4: The fitted distribution for ambulance transit time

an ambulance is busy if it is either transferring an patient or waiting outside an ED. The

EMS utilization in this case is collected from the simulation output.

Through simulation, performance measures of the system with nonzero transit time

are collected (including the EMS utilization). Results are presented in Table 3.9. Also

presented in Table 3.9 are the results for the zero transit time case. Results are presented

for all three cases considered in Section 3.5. We have the following observations.
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• The results in Table 3.9 supports the assumption that zero transit time has negligible

effect on the offload delays experienced by ambulances for case studies 1 and 3, where

the ambulance utilization uA is small or moderate (i.e., 18% and 36%).

• When the ambulances are highly utilized as in case study 2 (i.e., 65%), the probabil-

ity of losing patients increases significantly when the transit time becomes nonzero.

The offload delays does not change significantly, but the waiting times of walk-in pa-

tients are changed dramatically. In fact, due to losing about 12% of the ambulance

patients, walk-in patients get their service more quickly (i.e., E[ww,k] is smaller).

• Both the beta and exponential distributions have given similar results in terms of

system performance measures.

• For case study 1 (low offload delays case) the simulation did not show any possibility

of offload delays at the three EDs. While the analytic method gives, for example,

that the third ED expected offload delay is 3.2 ∗ 10−3, which corresponds to 13.82

ambulance hours per month. This demonstrates a limitation of the simulation ap-

proach, which is the difficulty in capturing rare events.

The assumption on service times The second assumption we want to validate is

the exponential service time for serving patients at the EDs. The data we have from one

of the regional hospitals in ROW is for the flow time of patients, so it includes patients’

delays in addition to service time. To approximate the service time distribution, we fit

flow time data using the Stat-Fit package. The resulting distribution is Erlang and is

shown in Figure 3.5. We assume that the service time has a similar distribution to the

flow time but with different parameters. Then the Erlang distribution can be a good

candidate for the service time distribution.

Since the Erlang distribution does not have the memoryless property, the preemptive

repeat and the preemptive resume give different results. We assume preemptive resume

in this section, which is closer to the practice in the EDs.

In Table 3.10, analytical and simulation results are reported for the first three case

studies in Section 5, where the service time is exponential or Erlang with the same mean.
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We have the following observations.
 Fitted Density

 Input Values

 0.00

 0.10

 0.20

 0.00  5.0  10.  15.  20.  25. 30.

 Input  Erlang  Exponential

Figure 3.5: The fitted distribution for patient flow time

• Due to the lower coefficient of variation for the Erlang distribution, expected queue

lengths and consequently, expected waiting times for both ambulance and walk-in

patients are slightly lower under the Erlang service time distribution (for case 1 and

3 only). Thus, our assumption of exponentially distributed service time gave an

upper bound on the system performance measures.

• Another observation we have with respect to case study 2 is the significant increase

in walk-in patients expected sojourn time and queue lengths at all EDs. This is

because under the Erlang distribution service time, which has less coefficient of

variation, more high priority ambulance patients are accepted (PL decreased). As

a result, the low priority walk-in patients queue lengths and consequently, waiting

times are affected significantly.

In summary, if the loss probability is small, performance measures for both types of

patients are not affected significantly by adding the transit time or by changing the service

time distribution. In reality, ambulances usually operate at around uA = 35% utilization

[11] including transit time which is similar to case study 3. For such a case, the loss

probability is small. This indicates that the queueing network introduced in the paper is

robust as long as the system of interest is working under normal operating conditions. In
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Performance Exponential Erlang M = 2
measure k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Case study 1

E[qa,k] 4.05 2.61 2.34 4.05(0.01) 2.61(0.01) 2.34(0.01)
E[O(k)] 8.7 ∗ 10−6 5.4 ∗ 10−6 1.3 ∗ 10−3 0.00(0.00) 0.00(0.00) 0.00(0.00)
E[wa,k] 1.29 ∗ 10−6 1.25 ∗ 10−6 3.2 ∗ 10−6 0.00(0.01) 0.00(0.01) 0.00(0.01)
E[qw,k] 24.10 16.06 10.44 22.44(0.43) 14.78(0.24) 9.63(0.17
E[ww,k] 14.17 11.47 13.06 13.20(0.24) 10.56(0.14) 12.03(0.21)
PL 1.35 ∗ 10−6 1.00 ∗ 10−6(1.17 ∗ 10−6)

Case study 2

E[qa,k] 19.27 11.50 11.74 19.5(0.03) 11.63(0.03) 11.83(0.02)
E[O(k)] 1.68 0.16 1.58 1.69(0.01) 0.15(0.01) 1.54(0.01)
E[wa,k] 0.60 0.09 0.93 0.57(0.01) 0.08(0.01) 0.90(0.01)
E[qw,k] 18.12 7.46 15.34 27.76(1.65) 7.54(0.11) 21.15(0.93)
E[ww,k] 60.40 12.43 66.70 86.39(2.34) 12.57(0.20) 92.00(3.98)
PL 6.93% 5.77%(0.05%)

Case study 3

E[qa,k] 19.52 12.19 11.14 19.43(0.03) 12.20(0.02) 11.09(0.03)
E[O(k)] 0.64 0.02 0.23 0.54(0.01) 0.02(0.00) 0.18(0.01)
E[wa,k] 0.20 0.01 0.13 0.17(0.01) 0.01(0.00) 0.10(0.01)
E[qw,k] 20.85 7.10 5.98 32.63(1.97) 6.94(0.05) 5.58(0.07)
E[ww,k] 27.80 7.89 11.95 44.29(2.57) 7.74(0.04) 11.52(0.11)
PL 9.01 ∗ 10−4 4.5 ∗ 10−4%(3.1 ∗ 10−5%)

Table 3.10: Service time distribution effect(95% confidence interval half widths in paren-
theses)
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other words, the analysis in this section indicates that the assumptions made in Section 2

are valid as long as the ambulance utilization is not too high, which is the actual condition

under which the EMS operates.

3.6 Conclusion

In this chapter, we modeled ambulance offload delays for a multiple ED network. We

assumed that the transit times of ambulance patients are negligible. We also assumed that

ambulance patients have higher preemptive priority over walk-in patients. We developed

a Markov chain that captured the number of ambulance and walk-in patients at each

ED. Subsequently, we presented an exact solution methodology based on matrix-analytic

methods to find the probability distribution of the number of patients at each hospital.

We derived various queueing performance measures to evaluate the system performance

under different model parameters. Moreover, we derived the waiting time distributions

for both patient classes using an absorbing Markov chain methodology. Discrete event

simulation approach was used to validate two model assumptions. Validation results show

that our model is robust with low to medium ambulance utilization, which is the actual

operating conditions for EMS.

Although the main cause of ambulance offload delays is serious congestion in the

Emergency Departments in particular and the healthcare system in general. We show

that even small changes in routing decisions can have great impact on the total offload

delay experienced. This is the most important practical contribution of this model. A

second contribution, more theoretical in nature, is that we have taken advantage of the

problem structure to create an efficient algorithm that solves a complex queueing model

with priorities.

The main challenge we faced with this model was computational in nature. Once

the model with walk-in patients increases in size to represent real cases, the time to get

walk-in patients results is long. But, for ambulance patients, who are the main concern

of this work, results were collected quickly and efficiently. This is due to the simplifying
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assumption of preemptive priority discipline. In the next Chapter, we analyze a similar

model network structure with different modeling approach. Instead of using the concept

of service capacity as being the combination of (doctor, nurse, bed), we model the beds

as being the servers.
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Chapter 4

Model 2: Multiple ED Network with

Non-Preemptive Priority Discipline

and Zero Transit Time

From queueing perspective, in a preemptive priority discipline, a patient with a higher

priority is allowed to enter service immediately even if another patient with lower priority

is already present in service [51]. On the other hand, in a nonpreemptive discipline,

the highest priority patient just goes to the head of the queue to wait for his turn. In

the previous model, we assumed that patients arriving to the EDs by an ambulance have

higher preemptive discipline over patients arriving to the EDs by themselves. Interrupting

the service for a walk-in patient can be explained as follows: when an ambulance patient

with higher acuity level arrives to the ED, and if there are any walk-in patients already in

service, the service of the walk-in patient is interrupted by moving the nurse and the doctor

to treat the more seriously sick ambulance patient. The preemptive priority discipline is

justified when we think of the number of servers in the queueing network as the service

capacity. Another modeling approach would be to model the physical beds available in an

emergency department as the number of servers. As a result, we assume that ambulance

patients have higher nonpreemptive priority discipline over walk-in patients. That is, if a

walk-in patient is occupying a bed upon an arrival of an ambulance patient, the ambulance
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patient will have to wait until a bed is available for him.

In this chapter, we present a similar model to the one developed in Chapter 3 but

we assume nonpreemptive priority discipline. We first describe the stochastic model in

details along with the model assumptions in Section 4.1. We analyze the model with both

types of patients in Section 4.2. Then we find the matrix geometric solution in Section

4.3. In Section 4.4, we derive some performance measures of interest. Numerical analysis

and some case studies are shown in Section 4.5. Finally, we conclude at Section 4.6.

4.1 The Stochastic Model

We consider a queueing network for a region that consists of K hospitals and one EMS

provider. Figure 4.1 is an example of a region that consists of 3 hospitals. For each ED,

there are two types of arrivals into the system; a generic arrival stream of patients who

arrive by an ambulance and a specific arrival stream for each ED or walk-in patients who

decide to go to a specific hospital by themselves. When an ambulance patient calls for an

ambulance, and if an ambulance is available, it transfers the patient to the kth ED with

probability pk. The EMS provider has a finite number of ambulances N . If all ambulances

are busy, the patient is lost. Losing the patient in our model mimics the cases in which

adjacent regions’ ambulances are called to back up the fully utilized system. We assume

that the transit time for patients is zero in comparison to the time spent at the ED waiting

or in service. The kth ED has a capacity of ck beds that operate independently of each

other.

We assume that ambulance patients arrive to the EMS according to a Poisson process

with rate λ0. Patients who arrive by an ambulance are assigned a high priority before

getting admission to the hospital ED. They possess a higher nonpreemptive priority over

walk-in patients due to the fact that ambulance patients generally are assigned higher

CTAS levels than walk-in patients (see Figure 3.2). And walk-in patients who usually

arrive with lower acuity conditions are assigned a low priority. They arrive according to

a Poisson process with rates λk for the kth ED, for k = 1, 2, . . . , K.
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Figure 4.1: ROW EMS-ED Queueing Network Diagram

The service time at each ED has an exponential distribution with parameter µk for

hospital k = 1, 2, . . . , K. The service times for both types of patients are identically

distributed.

We summarize the model parameters as follows:

• K: The number of regional hospitals;

• λ0: Patient arrival rate to the EMS system;

• pk: Probability that an EMS arrival is sent to the kth ED, for k = 1, 2, ..., K;

• µk: Service rate per server in the kth ED, for k = 1, 2, ..., K;

• λk: arrival rate of walk-in patients at the kth ED, for k = 1, 2, ..., K;

• ck: Number of servers in the kth ED, which corresponds to the number of beds

available at the kth ED, for k = 1, 2, ..., K.

• N : Total number of ambulances available in the system;

In order to analyze the queueing network, we establish a Markov chain representation

that can be useful to analyze system performance. The Markov chain allows us to derive
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various probability distributions which we use later to derive system performance mea-

sures. We start by defining 2 sets of state variables to describe the system state at any

point in time:

1. qk,1(t): The number of patients that are in service (from both arrival streams) and

waiting in an ambulance, at time t, for k = 1, 2, . . . , K;

2. qk,2(t): The number of walk-in patients waiting in the queue, at time t, for k =

1, 2, . . . , K.

Since the service-time distribution for both priorities is identical, we don’t need to

differentiate between the two patients classes when they are in service, thus qk,1(t) includes

both walk-in and ambulance patients. Based on our definition, if qk,1(t) ≥ ck, no walk-in

patients are admitted to the ED, and there are qk(t)− ck ambulances in offload delay in

front of the kth ED.

4.2 The Markov Chain

In this section, we a introduce a method for constructing the infinitesimal generator for the

continuous time Markov chain that represents the stochastic model. Consider the process

{(q1,1(t), q1,2(t), . . . , qK,1(t), qK,2(t)), t ≥ 0} or in a shorter format {(qk,1(t), qk,2(t)), t ≥

0, k = {1, . . . , K}}. The value of organizing the state variables in this manner will become

evident as we illustrate the Markov chain construction process. Since the arrival processes

to each ED node are Poisson and the service times are exponential, it is easy to see that the

stochastic process {(qk,1(t), qk,2(t)), t ≥ 0, k = {1, . . . , K}} is a continuous time Markov

chain. The state variables associated with the ambulance patients and the patients in

service, qk,1(t), have a finite state space. While the state variables associated with the

walk-in patients have an infinite state space if we assume that waiting rooms are big

enough to accommodate all the arriving patients. Table (4.1) illustrates the possible

transitions in the system along with the corresponding transition rates.

In order to construct the Markov chain infinitesimal generator, QK , we observe the
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Possible event Rate From To Condition

Ambulance arrival to ED k pkλ0 (qk,1, qk,2) (qk,1 + 1, qk,2) if
∑k=K

k=1 (qk,1 − ck)+ < N
Walk-in patient arrival to ED k λk (qk,1, qk,2) (qk,1, qk,2 + 1) if qk,1 ≥ ck

(qk,1, qk,2) (qk,1 + 1, qk,2) if qk,1 < ck
Service completion at ED k ckµk (qk,1, qk,2) (qk,1 − 1, qk,2) if qk,1 > ck

qk,1µk (qk,1, qk,2) (qk,1 − 1, qk,2) if qk,1 ≤ ck and qk,2 = 0
ckµi (qk,1, qk,2) (qk,1, qk,2 − 1) if qk,1 = ck and qk,2 > 0

Table 4.1: Transition rates for the model Markov chain

state of the EDs sequentially and based on that we construct the Markov chain infinitesi-

mal generator with 2K state variables in a very structured process. Namely, we pair each

ED state variables together and set the state variable for the walk-in patients as the level

and the state variable that corresponds to the ambulance patients as the phase for the ED

layer as follows: {(qK,2(t), qK,1(t)), (qK−1,2(t), qK−1,1(t)), . . . , (q1,2(t), q1,1(t)), t ≥ 0}. The

K pairs are only connected when all the ambulances for a region are consumed.

The state variables qk,1(t), k = {1, . . . , K}, have a finite range of {0, . . . , N + ck};

while the state variables qk,2(t), k = {1, . . . , K}, have infinite range. To facilitate the

construction of the Markov chain infinitesimal generator, we truncate qk,2(t) for k < K at

M . We choose the value of M large such that the stationary probabilities that the system

is in state M is negligible. Or P (qk<K,2 = M) ≈ 0. We divide the states into subgroups

according to the ED layer where we choose the Kth ED walk-in patients state variable as

the level: Ω = Ω0 ∪ Ω1 ∪ . . . ∪ Ω∞, where, for iK = 0, 1, ...,∞,

ΩiK = {(iK , jK , iK−1, jK−1, ..., i1, j1) : iK ≥ 0;∑k=K
k=1 (jk − ck)+ ≤ N ;

ik = 0 if jk < ck, k = 1, . . . , K;

0 ≤ i1, i2, . . . , iK−1 ≤M}.

(4.1)

Our methodology in constructing the model Markov chain is based on pairing each

ED state variables together. We use K layers to construct the Markov chain infinitesimal

generator such that each layer represents one ED. We start the first layer with the first

ED, and then adding layer by layer of the other EDs. All EDs service and walk-in arrivals
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are independent. While the ambulance patients’ arrival to the K EDs are only connected

when there are no ambulances available to transfer a patient who called for an ambulance.

Thus, each layer only affects the size of the inner layers.

Another benefit for organizing the state space as explained above would be the future

addition of other hospitals into the Markov chain model, if needed. If the queueing

network of interest, for example, consists of more hospitals instead of K, then all what we

need to do is to add another layer to the constructed Markov chain for the new ED. Next,

we describe the process of constructing the Markov chain layers in three main steps.

Step 1: First ED Layer

In the first step, we start by the first ED state variables {q1,2(t), q1,1(t)}. Given the

number of ambulances available for ED1, n, where 0 ≤ n ≤ N . {q1,2(t), q1,1(t), t ≥ 0} is a

Markov chain. Its infinitesimal generator, Q
(n)
1 , has the following tri-diagonal structure:

Q
(n)
1 =



Q
(n)
1(0,0) Q

(n)
1(0,1)

Q
(n)
1(1,0) Q

(n)
1(1) Q

(n)
1(2)

Q
(n)
1(0) Q

(n)
1(1) Q

(n)
1(2)

. . . . . . . . .

Q
(n)
1(0) Q

(n)
1(1) Q

(n)
1(2)

Q
(n)
1(0) Q

(n)
1(M,M)


(4.2)

where M is the truncation limit for qk,2(t).

The state space for the finite random variable, q1,1(t), is reduced by the number of

ambulances in offload delay at the other EDs, or mathematically: qmax1,1 = N + c1 −∑k=K
k=2 (qk,1 − ck)+ or simply n + c1. Next, we specify the transition blocks in equation

(4.2). First, we note that the level variable, q1,2(t), increases by one only when the phase
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variable, q1,1(t), is greater or equal to c1. Otherwise, it does not increase. In general:

Q
(n)
1(0,1) = λ1 ·



c1 . . . n+ c1

0 0

...
...

c1 1

...
. . .

n+ c1 1


(4.3)

Q1(2) = λ1 · In+1 (4.4)

where In+1 is an identity matrix of size n + 1. The level variable, q1,2(t), decreases by

one only when the phase variable, q1,1(t), equals c1, otherwise it does not change. This

is because of the lower priority assigned to the walk-in patients, so if there was a line

of ambulance patients or if q1,1(t) > c1, then ambulance patients will get served before

walk-in patients.

Q
(n)
1(1,0) = c1µ1 ·



0 . . . c1 c1 + 1 . . . n+ c1

c1 0 . . . 1

c1 + 1
... 0

...
. . .

n+ c1 0


(4.5)

Q
(n)
1(0) = c1µ1 ·



c1 c1 + 1 . . . n+ c1

c1 1

c1 + 1 0

...
. . .

n+ c1 0


(4.6)

The diagonal matrices Q1(0,0) in equation (4.2) include transitions for the phase vari-

able, q1,1(t). The upper diagonal elements of Q1(0,0) specify the rates at which q1,1(t)
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increases by one. If all ED1 beds are full, then the rate of arrival for the ED is just p1λ0,

that is only the high priority patients will be admitted. While if there is at least one

empty bed at ED1, then both arrival streams (walk-in and ambulance patients) can be

admitted to the ED, this results in a total arrival rate of p1λ0 + λ1.

The lower diagonal elements of the diagonal matrices Q1(0,0) specify the rate at which

q1,1(t) decreases by one. The rate of service completion at ED1 depends on the number

of occupied beds or simply it is the min{q1,1, c1}. Q1(0,0) has the following structure:

Q
(n)
1(0,0) =



0 1 . . . c1 − 1 c1 c1 + 1 . . . n+ c1

0 ∗ p1λ0 + λ1

1 µ1 ∗ p1λ0 + λ1

...
. . .

. . .
. . .

c1 − 1 (c1 − 1)µ1 ∗ p1λ0 + λ1

c1 c1µ1 ∗ p1λ0

c3 + 1
. . .

. . .
. . .

...
. . . ∗ p1λ0

n+ c1 c1µ1 ∗


(4.7)

where ∗ is calculated such that the row sums of Q
(n)
1 are zeros.

When the level variable, q1,2(t) > 0, the diagonal matrices Q1(1) have a different

structure than the previous equation. Having q1,2(t) > 0 means that there is a queue

of walk-in patients waiting for admission. The queue exists because all the beds are

occupied, or q1,1(t) ≥ c1. This means that the states q1,1 = 0, 1, . . . , c1 − 1 do not exist

when q1,2 > 0. The general structure for Q1(1) is as follows:

Q
(n)
1(1) =



c1 c1 + 1 . . . n+ c1 − 1 n+ c1

c1 ∗ p1λ0

c1 + 1 c1µ1 ∗ p1λ0

...
. . .

. . .
. . .

n− 1 c1µ1 ∗ p1λ0

n+ c1 c1µ1 ∗


(4.8)

65



Step 2: the kth ED Layer

To construct the kth ED layer, we define the Markov chain {qk,2(t), qk,1(t), . . . , q1,2(t), q1,1(t), t ≥

0}. The infinitesimal generator for the this Markov chain has a similar structure as Q
(n)
1

as follows:

Q
(n)
k =



Q
(n)
k(0,0) Q

(n)
k(0,1)

Q
(n)
k(1,0) Q

(n)
k(1) Q

(n)
k(2)

Q
(n)
k(0) Q

(n)
k(1) Q

(n)
k(2)

. . . . . . . . .

Q
(n)
k(0) Q

(n)
k(1) Q

(n)
k(2)

Q
(n)
k(0) Q

(n)
k(M,M)


(4.9)

where n is the number of ambulances available for the kth ED, or mathematically,

n = N −
∑k̂=K

k̂=k+1 (qk̂,1 − ck̂)+. The state space for the finite random variable qk,1 is

reduced by the number of ambulances in offload delay at the upper layers EDs only, or

mathematically: qmaxk,1 = N + ck −
∑k̂=K

k̂=k+1 (qk̂,1 − ck̂)+ = n + ck. Next, we specify the

transition blocks in equation (4.9). First, we note that the level variable, qk,2, increases

by one only when the phase variable, qk,1, is greater or equal to ck. Otherwise, it does not

increase. In general:

Q
(n)
k(0,1) = λk ·



ck . . . ck + n

0 0 . . . 0

...

ck In
...

. . .

ck + n I0


(4.10)

Q
(n)
k(1) = λk · I (4.11)
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where In is an identity matrix of size Q
(n)
k−1. The level variable decreases by one only when

the phase variable equals ck, otherwise it does not change. This is because of the lower

priority assigned to the walk-in patients, so if there were at least one ambulance in offload

delay, or if qk,1 > ck, then ambulance patients will get served before walk-in patients.

Q
(n)
k(1,0) = ckµk ·



0 . . . ck ck + 1 . . . n+ ck

ck 0 In

ck + 1 0 0

...
...

. . .

n+ ck 0 0


(4.12)

Q
(n)
k(0) = ckµk ·



ck ck + 1 . . . n+ ck

ck In

ck + 1 0

...
. . .

n+ ck 0


(4.13)

The diagonal matrices Qk(0,0) in equation (4.9) include transitions for both the phase

variable, qk,1, and the transitions associated with the inner layers which are included in

the matrix Q
(n)
k−1. The upper diagonal elements of Qk(0,0) specify the rates at which qk,1

increases by one. If all the kth ED beds are full, then the rate of arrival is just pkλ0, that

is only the high priority patients will be admitted. While if there is at least one empty

bed at the kth ED, then both arrival streams (walk-in and ambulance patients) can be

admitted, this results in a total arrival rate of pkλ0 + λk when qk,1 < ck.

The lower diagonal elements of the diagonal matrices Qk(0,0) specify the rate at which

qk,1 decreases by one upon a service completion. The rate of service completion at the kth

ED depends on the number of occupied beds, or simply it is the min{qk,1, ck}. The diag-

onal elements in Qk(0,0) include the inner layers details. Qk(0,0) has the following general

structure:
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Qk(0,0) =



0 1 . . . ck − 1 c2 ck + 1 . . . ck + n

0 ∗+Q
(n)
k−1 pkλ0I

(k−1) + λkI

1 µkI ∗+Q
(n)
k−1 pkλ0I

(k−1) + λkI

...
. . .

. . .
. . .

ck − 1 (ck − 1)µkI ∗+Q
(n)
k−1 pkλ0I

(1) + λkI

ck ckµkI ∗+Q
(n)
k−1 pkλ0I

(k−1)

ck + 1
. . .

. . .
. . .

... ckµkI ∗+Q
(1)
k−1 pkλ0I

(k−1)

ck + n ckµkI ∗+Q
(0)
k−1


(4.14)

where ∗ is calculated such that the rows of Q
(n)
k sum to zeros. ∗ = −pkλ0I

(k−1) −

Ick>qk,1λkI − µk min{qk,1, ck}I. And I(k−1) has the following structure:

I(k−1) =


I(k−2)

. . .

I(k−2)

0


This matrix is used to show that there is no ambulance arrival to the kth ED when all

ambulances are being used. I(1) is an identity matrix that have the last lower left M + 1

diagonal elements are zeros. note: The identity matrix associated with transitions down

one level has the form (0 I) when qk,1 > ck since the size of Qn
1 decreases as n decreases.

The same argument holds for the identity matrix associated with going up one level but

with the structure (I; 0).

When the level variable is strictly positive, qk,2 > 0, the diagonal matrices Qk(1) have

a different structure than the previous equation. Having qk,2 > 0 means that there is

a queue of walk-in patients waiting for admission in front of the kth ED. The queue

exists because all the beds are occupied, or when qk,1 ≥ ck. This means that the states

qk,1 = 0, 1, . . . , ck − 1 do not exist when qk,2 > 0. The general structure for Qk(1) is as

follows:
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Qk(1) =



ck ck + 1 . . . ck + n− 1 ck + n

ck ∗+Q
(n)
k−1 pkλ0I

(k−1)

ck + 1 ckµkI ∗+Q
(n−1)
k−1 pkλ0I

(k−1)

...
. . .

. . .
. . .

ck + n− 1 ckµkI ∗+Q
(1)
k−1 pkλ0I

(k−1)

ck + n ckµkI ∗+Q
(0)
k−1


(4.15)

Step 3: The last Layer

The last layer is achieved by adding the pair (qK,2, qK,1) into the previous layer Markov

chain, the resulting Markov chain is {qK,2(t), qK,1(t), . . . , q1,2(t), q1,1(t), t ≥ 0}. The Markov

chain infinitesimal generator, QK , has a similar structure to the previous layer but with one

main distinction. It has an infinite tri-diagonal structure as follows:

QK =



QK(0,0) QK(0,1)

QK(1,0) QK(1) QK(0)

. . .
. . .

. . .

QK(2) QK(1) QK(0)

. . .
. . .

. . .


(4.16)

The blocks in equation (4.16) can be generated similar to the previous inner layers. We

summarize the main steps to find the transition blocks for a network that consists of K hospitals

in the following algorithm:

Algorithm 4 Computing matrix blocks in QK

1. Construct Q
(n)
1 and its blocks using equations (4.3), (4.4), (4.5), (4.6), (4.7), (4.8).

Set k = 2.

2. if k < K go to step (3); otherwise, stop.

3. Construct Q
(n)
k matrices using equations (4.10), (4.11), (4.12), (4.13), (4.14), (4.15).

4. if k < K go to step (3); otherwise, stop.
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4.3 Matrix-Geometric Solution

We denote by π = (π0,π1, . . .) the stationary probability distribution of QK . The stationary

distribution exists if and only if the Markov chain is ergodic. Since the Markov chain of interest

is irreducible and has a QBD structure, by Neuts [46], the Markov chain is ergodic if and only if

QK(0)πe < QK(2)πe, where e is a column vector of ones. If the stability condition is satisfied,

then π exists and it is the unique non-negative solution for the linear system:

πQK = 0; and πe = 1, (4.17)

Since the infinitesimal generator QK has a block tri-diagonal structure, a matrix-geometric

solution can be obtained and it has the geometric structure:

πi = πi−1R, for i > 1 (4.18)

where the rate matrix R is the minimal nonnegative solution to the nonlinear equation:

QK(0) +RQK(1) +R2QK(2) = 0. (4.19)

The boundary probabilities can be calculated as outlined in §2.4. In the next section we derive

a number of performance measures of interest.

4.4 Performance Evaluation

In this section, we derive a number of performance measures that can be useful to assess current

system parameter decisions. As we have done in the previous chapter, we focus on the last layer

(Kth ED) performance measures. Other EDs performance measures are found by replacing the

(Kth ED) with another ED. The performance measures of interest are:

1. The steady state probability distribution of the number of ambulances in offload delay at

the Kth ED is given by: Let {ηK(j), 0 ≤ j ≤ cK+N} be the distribution of qK,1(t). Recall

that qK,1(t) is defined as the number of both ambulance patients and walk-in patients in

service and in an ambulance at the Kth ED. If qK,1(t) is greater than cK , then there are

qK,1(t) − cK ambulances experiencing offload delays outside of the Kth ED. We use this
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fact to find the probability distribution of the number of ambulances in offload delay as

follows:

ξ2(m) =


∑j=cK

j=0 η2(j), for m = 0

η2(m+ cK), for m = 1, . . . , N

(4.20)

The mean queue number of ambulances in offload delay E[qK,1] can be found accordingly.

2. The probability distribution of the total number of ambulances in offload delay, denoted

by O, is given by

P{O = m} =
∑

(jK ,...,j1)∈Ω:
∑K

k=1 max{0,jk−ck}=m

πjK ,...,j1 , for 0 ≤ m ≤ N ; (4.21)

The mean total number of ambulances in offload delay, E[O], can be obtained accordingly.

3. The distribution of the number of walk-in patients in the queue at the Kth ED can be

found using the matrix geometric solution as {πie, i = 0, 1, . . .}. The mean number of

walk-in patients in the queue can be calculated by:

E[qK,2] =

∞∑
i=0

iπie =

∞∑
i=1

iπ1R
i−1e = π1

( ∞∑
i=1

iRi−1

)
e = π1(I −R)−2e. (4.22)

4. The loss probability is given by:

PL = P{O = N} =
∑

(jK ,...,j1)∈Ω:
∑K

k=1 max{0,jk−ck}=N

πjK ,...,j1 (4.23)

5. Waiting Time Distribution for the Kth ED ambulance patients. The waiting time wK,1 of

an ambulance patient arriving to the Kth ED depends on both the number of ambulance

patients at the Kth ED and the number of walk-in patients already in service, which are

captured in the state variable (qK,1). Denote by αi(K) the probability that i patients

are in the Kth ED when an ambulance patient arrives. Note that an arriving patient can

reach the Kth ED if and only if there is an ambulance available at the time of arrival. For

0 ≤ jK ≤ cK +N − 1, we define:

αj,1(K) =

∑
(j,jK−1,...,j1)∈Ω: max{0,j−cK}+

∑K−1
k=1 max{0,jk−cK}<N πjK,1,jK−1,1,...,j1,1

1− PL
. (4.24)
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Define ξ(K) = (αcK ,1(K), ..., αcK+N−1,1(K)). Then the i-th component of ξ(K) denotes

the probability that an arriving ambulance patient to the Kth ED has to wait for the

service completion of i patients before getting a bed. Since there are cK beds for all

patients in the Kth ED, each with an exponential service time with parameter µK , if

all beds are occupied, the time until the next service completion is exponential with

parameter cKµK . Thus, the total time to serve i patients has an Erlang distribution of

order i. Consequently, when an ambulance patient arrives to hospital K, the waiting time

has a generalized Erlang distribution with a phase-type representation (ξ(K, 1), cKµKJN ),

where

JN =



−1

1 −1

. . .
. . .

1 −1


N×N

. (4.25)

The distribution function of the waiting time wK,1 is given by P{wK,1 < t} = 1 −

ξ(K, 1) exp{−cKµKJN t}e. The expected waiting time is,

E[wK,1] =

N∑
i=1

iαcK−1+i(K)

cKµK
. (4.26)

6. The waiting time distribution for walk-in patients, wK,2, arriving to the Kth ED has a

similar phase type structure to that of the ambulance patients. Recall that the state

variable qK,2 is defined such that it includes only walk-in patients in the waiting rooms. If

a tagged walk-in patient can get admission to the corresponding ED, then that is captured

in qK,1. While if the tagged walk-in patient arriving to the Kth ED finds i walk-in patients

ahead of him in the queue and j ambulance patients waiting outside the ED; then he has

to wait for i + j service completions plus the service completion for ambulance patients

who arrived during his waiting time. The events that affect the tagged walk-in patient

waiting time are service completions of both patients types, and arrivals of high priority

ambulance patients during waiting time. While subsequent arrivals of walk-in patients

do not affect the tagged walk-in patient waiting time because same priority patients are

admitted based on a FCFS rule.

If the state of the Kth ED at time t upon arrival of the the tagged walk-in patient was
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(iK , jK) as described by the duplet (q(K,2), q(K,1)) where iK ≥ 0, and cK ≤ jK ≤ cK +N ,

then the waiting time constitutes the time till absorption for the continuous time Markov

chain that has the infinitesimal generator as follows:

Qw,K =



QK(0,0)

QK(1,0) QK(1,1)

. . .
. . .

. . .
. . .

QK(j−1,j−2) QK(j−1,j−1)

QK(j,j−1) QK(j,j)


(4.27)

Qwk has a similar structure as Q
(N)
1 but without the arrival of walk-in patients, and

QK(0,0) does not have the states qK,1 = 0, 1, . . . , cK − 1. Then we obtain the conditional

probability distribution of the waiting time as:

P (wK,2 ≤ t | j) = 1− (0, ..., 0,πiK/(πiKe)) exp{Qw,Kt}e. (4.28)

The distribution of the waiting time of an arbitrary walk-in patient can be obtained as,

P (wK,2 ≤ t) = 1−
∞∑

iK=0

(0, ..., 0,πiK ) exp{Qw,Kt}e. (4.29)

By using truncation, the above formula can be used to compute the distribution of the

waiting time of walk-in patients.

4.5 Numerical Analysis

In this section, we use the derived performance measures in the previous section to analyze a

network that consists of one EMS provider and two EDs. Compared to the preemptive model

of Chapter 3, the nonpreemptive model of this chapter requires more computational resources.

Recall that for a network that consists of three EDs in the preemptive model, we need three finite

state variables to derive ambulance patients performance measures, and four state variables

to derive performance measures pertaining to walk-in patients. While, in the nonpreemptive
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Parameter set value

N 5
(λ0) patients/hr 1.3
(λ1, λ2) patient/hr (0.2, 0.2)
(µ1, µ2) patient/hr (1/5, 1/6)
(c2) (6)
(p1, p2) (0.55, 0.45)

Table 4.2: System parameters for Case Study

model, six state variables are needed to model a three-ED network, three of which are infinite.

For the above reason, we consider a network that consists of two EDs in the numerical analysis.

However, the methodology and analysis developed in the previous sections can be used to analyze

a network of an arbitrary size.

To compare between EDs, we define two types of parameters for the kth ED, for 1 ≤ k ≤ K:

• The proportion of time the servers are busy with ambulance patients (ρk,1): Since the

service of ambulance patients is not affected by walk-in patients, we can define the server

utilization for ambulance patients alone. Define ρk,1 = min{1, λ0pk(1−PL)/(ckµk)}, where

λ0pk(1−PL) is the arrival rate of ambulance patients to the kth ED, and ckµk is the total

service capacity at the kth ED.

• ED utilization ρk,2: Considering the service of both types of patients, the server utilization

can be defined as ρk = min{1, (λ0pk(1− PL) + λk)/(ckµk)}.

The system parameters for the case study are reported in Table 4.2. For this case study,

we truncate the walk-in patients state variable at 50. We note here that the truncation limit

should be increased to increase the solution accuracy. Also, as the system utilization increases,

the truncation limit should be increased. The results for this case study are reported in Table

4.3.

As we can see from the results, the waiting times for ambulance patients and walk-in pa-

tients are different but are closer than those when the service priority is preemptive. Although

ambulance patients spend less time in the first ED getting service (µ1 = 1/5), the offload delays

experienced by ambulances at the first ED are similar to those of the second ED. This is because

the second ED has more beds than the first ED (6 compared to 5). Consequently, speeding up

the service at the first ED have balanced the offload delays at the second ED. From the walk-in
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Scenario 1 (c1 = 5) Scenario 2 (c1 = 6)
Measures k = 1 k = 2 k = 1 k = 2
ρk,1 66.57% 54.47% 56.97% 55.94%
ρk,2 86.57% 74.47% 73.64% 75.94%
E[qk,1] 0.02 0.01 0.01 0.01
E[wk,1] 0.02 0.02 0.02 0.02
E[qk,2] 0.05 0.04 0.03 0.05
E[wk,2] 0.06 0.05 0.04 0.06
PL 0.074 0.044

Table 4.3: Performance measures for Case Study

patients perspective, the faster service at the first ED have less impact because of the lower

priority of walk-in patients.

As shown in Table 4.3, the first ED have higher utilization compared to the second ED. This

have affected both ambulance patients and walk-in patients queue lengths. We notice that the

probability of an emergency call being served by other regions’ EMS is high (PL=7.4%). This

is because of the ambulances being used by ED patients.

To assess the effect of increased capacity on the system performance, we compare the results

when the first ED number of beds are 5 (Scenario 1) versus 6 (Scenario 2). As expected, when

the first ED capacity is increased, the expected queue lengths and expected waiting times are

decreased. More interestingly, the second ED queue length and waiting times for walk-in patients

are increased. This is because when the first ED has more capacity to serve ambulance patients,

the probability of losing patients is decreased and as a result more patient are being served by

the EMS. Although one might think that increasing the capacity on the first ED should not

affect the system performance at the second ED, the results reveal that increasing the capacity

at the fist ED have increased the utilization of servers at the second ED (ρk,1 and ρk,2). This

observation supports the idea of dependence among regional EDs if and only if the EMS system

is highly utilized, otherwise the EDs behave independently from each other.

In the next chapter, we used the idea of independence among regional EDs to develop a

decomposed model for the ambulance offload delay problem.
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4.6 Conclusion

In this chapter, we developed a stochastic model for a network that consists of one EMS provider

and K hospitals. We modeled the beds at the regional EDs as the servers and hence, we

assumed that patients arriving by an ambulance have a higher nonpreemptive priority over

patients arriving by themselves. We developed an efficient algorithm to construct the model

Markov chain for a network of arbitrary size. Then used the matrix analytic methods to derive

its limiting probabilities. Similar to the previous model in Chapter 3, we developed a number

of performance measures to evaluate offload delays and walk-in patients waiting.

One of the limitations of the above model is computational in nature; when we look into

realistic problem size, the computation time is very high. Another limitation of this model is

the truncation that is performed for the infinite state variables related to walk-in patients. As

the number of EDs increases in a network, the number of variables that should be truncated

increases as well. This truncation, if not performed carefully, might affect the accuracy of the

model results. From an application perspective, the truncation limit can be viewed as the waiting

room capacity inside the ED.

In the next chapter, we consider a model with nonpreemptive priority and Markovian transit

time in which analysis is performed first at hospital level and then results are combined to get

regional level results. This decomposition is practical because it does not have computational

limitations.
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Chapter 5

Model 3: Decomposed EMS-ED

Network with Priorities and Transit

Time

The third model we develop to analyze offload delays that ambulances experience in front of

EDs is based on one main assumption; queues of ambulances in front of EDs are independent.

Based on this assumption, we decompose the K EDs network into separate networks. This

simplifying assumption makes the size of the problem manageable for realistic size networks.

Another assumption we make is with respect to the transit time of ambulances when they

transfer patients to the EDs. In the previous two models we assumed that transit time is

negligible, in this model we consider the transit time into the stochastic model. As a result of

this assumption, blocking of ambulances is used to explain the offload delays compared to the

previous two models where high priority ambulance patients waiting time was used to model

offload delays.

Our objective in this chapter is the optimal allocation of ambulance patients into the regional

hospitals, not performance evaluation as in Chapters 3 and 4. The problem of workload alloca-

tion was studied by a number of researchers particularly in flexible manufacturing systems. This

problem is also related to job shop manufacturing [52]. Calabrese [52] investigates the work-

load allocation problem in an open Jackson network with multiple M/M/c queues. The author

proves that nodes with a higher number of servers should be loaded more heavily with respect
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to nodes with less number of servers (the utilization per server is higher) due to server pooling.

But if the nodes have identical number of servers, they should be loaded equally. Mehrotra et

al. [53] study routing in call centers to decide which calls should be handled by which agents

based on the state of the system. The focus of the paper is on customer waiting time and overall

resolution rate for different routing strategies.

In this chapter, we first describe the stochastic model in details along with the model as-

sumptions and Markov chain details in Section 5.1. We present an iterative algorithm to obtain

the steady state probabilities of the Markov chain, and the network performance measures at

both the hospital level, and at the regional level in Section 5.2. Then we develop an approxima-

tion scheme for computing the system performance measures in Section 5.3. An optimization

problem for ambulance routing decisions is developed in Section 5.4. Numerical analysis is

performed in Section 5.5. Finally, we conclude in Section 5.6.

5.1 The Stochastic Model

As illustrated by Figure 5.1, when an emergency call that requires an ambulance arrives to the

EMS, an ambulance is dispatched to the call scene. Upon arrival, the paramedic team apply

the basic life saving procedure and upload the patient into the ambulance. Then they transfer

the patient into one of the region K hospitals. Usually the time it takes to reach the patient,

upload him into the ambulance and then transfer him into the ED is about 1 hour which we

refer to as the transit time. In steady state, pk of the EMS arrivals are transferred to the kth

ED. ED beds are also allocated to other emergency patients who arrive to the corresponding

EDs independently by themselves, we shall refer to those patients as walk-in patients later.

Although the network diagram in Figure 5.1 depicts for the actual flow of patients from the

community until they leave an ED bed, the network of a region is quite complicated from a

stochastic modeling perspective. This is due to two reasons: first, the ambulances may expe-

rience blocking; second, there are two priority levels for patients through the network. One of

the main operating characteristics for the EMS services is normally to operate at low utilization

levels (35% or less [11]). Or to set the probability of having all the ambulances busy in any

period of the day equal to zero. Thus, the availability of ambulances is high. Consequently,

it is reasonable to assume that an ambulance is always available. Under this assumption, the
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Figure 5.1: An EMS-ED flow chart for a region of K hospitals
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Figure 5.2: One ED Network Diagram

EMS-ED network of figure 5.1 can be decomposed into K similar networks such that each de-

composed network consists of two stages; the EMS stage, and the ED stage as depicted in Figure

5.2. Once we analyze one of the decomposed networks, we can use the results to analyze the

regional network utilizing the fact that all the EDs operate independently across the region.

We assume that emergency calls to the EMS arrive according to a Poisson process with rate

λ0. From the ED perspective, there are two arrival streams: ambulance patients, and walk-in

patients. Once they arrive to an ED, emergency patients are assigned different acuity level score

that ranges from 1-5 where 1 corresponds to the severely ill patients who require immediate care

and 5 corresponds to the least ill patients. Usually the highest ill patients (level 1 and 2) arrive

to the ED by an ambulance while the lower acuity patients (level 3 and 4) walk to the ED. For

this reason we assume that ambulance patients have higher priority over walk-in patients. A

patient that begins service, completes its service before another patient is admitted, regardless
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of the priorities of the patients in the queue. Walk-in patients arrive to the kth ED according

to a Poisson process with rate λk.

The Length of Stay (LOS) of patients inside the ED corresponds to the time the patient

spends with the doctor, time he waits for lab results, until he is discharged by the ED doctor.

We assume that this time is exponentially distributed with parameter 1/µk. The capacity of

the ED is determined by the number of beds available (ck).

In terms of available capacity at the EMS, there are N ambulances available to serve a

region’s emergency calls. We assume that transit times (travel times, time at scene, travel times

to the hospital) are independent and exponentially distributed with mean
1

µ0
. Restrepo et al.

[49] and the references therein assume that the total service time (which includes offload delays)

is exponential. They also argue that the time spent by an ambulance at the scene typically

dominates the travel time, so the dependence between calls is mild.

The model parameters are:

• K: Number of hospitals in a region;

• λ0: Patient arrival rate to the EMS system;

• pk: Probability that a patient arrival to the EMS triggers an arrival to the kth ED, for

k = 1, . . . ,K;

• µk: Service rate per server in the kth ED, for k = 1, . . . ,K;

• µ0: Service rate per server in the EMS;

• N : Total number of ambulances available;

• λk: Walk-in patients arrival rate to the kth ED, for k = 1, . . . ,K;

• ck: Number of servers (beds) at the kth ED, for k = 1, . . . ,K.

For notational convenience, in Section 5.2, we remove subscript k from µk, ck, pk, and λk,

which are parameters for the kth ED. We still use parameters µ0 and λ0 for the EMS. Because

there is no buffer between the EMS stage and the ED stage, upon service completion at the

EMS node, a patient may get blocked if at that moment he finds all the downstream node

servers (beds) are occupied. The server of that patient (ambulance) will get blocked too. When

a patient departure occurs at the downstream node (ED), one of the blocked patients at the
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Possible event Rate From To Condition
an ambulance patient arrival pλ0 (q1, q2, q3) (q1, q2, q3 + 1) –

a walk-in patient arrival to ED λ1 (q1, q2, q3) (q1, q2 + 1, q3) if q2 < c
(q1, q2, q3) (q1 + 1, q2, q3) if q2 ≥ c

Service completion at ED cµ (q1, q2, q3) (q1, q2 − 1, q3) if q2 > c
q2µ (q1, q2, q3) (q1, q2 − 1, q3) if q2 ≤ c and q1 = 0
cµ (q1, q2, q3) (q1 − 1, q2, q3) if q2 = c and q1 > 0

Service completion at EMS q3µ0 (q1, q2, q3) (q1, q2 + 1, q3 − 1) if q3 > 0

Table 5.1: Transition rates for the model Markov chain

upstream node will start service and its corresponding server will be unblocked. This is referred

to as Blocking After Service (BAS).

To describe the system state at any point of time t, we introduce the following state variables:

1. q1(t): The number of walk-in patients waiting in the queue at time t;

2. q2(t): The number of both ambulance and walk-in patients in service and ambulance

patients blocked at time t;

3. q3(t): The number of ambulance patients in transit at time t.

It is easy to see that {q1(t), q2(t), q3(t), t ≥ 0} is a Markov chain. This Markov chain allows

us to derive various probability distributions which we use later to derive system performance

measures. The state space Ω of the Markov chain {q1(t), q2(t), q3(t), t ≥ 0} can be organized

such that q1(t) is the level variable, q2(t) is the sublevel variable, and q3(t) is the phase variable.

Thus, the state space is as follows:

• Ω = Ω0 ∪ Ω1 ∪ . . .;

• Ωi = Ωi,0 ∪ Ωi,1 ∪ . . . ∪ Ωi,N+c, for i = 0; Ωi = Ωi,c ∪ Ωi,c+1 ∪ . . . ∪ Ωi,N+c, for i > 0;

• i = 0 : Ω0,j = Ω0,j,0 ∪ Ω0,j,1 ∪ . . . ∪ Ω0,j,N−(j−c)+ ;

i ≥ 1 : Ωi,j = Ωi,j,0 ∪ Ωi,j,1 ∪ . . . ∪ Ωi,j,N−(j−c), for c ≤ j ≤ c+N .

Table 5.1 illustrates the possible transitions in the system along with the corresponding

transition rates. {q1(t), q2(t), q3(t), t ≥ 0} is a continuous time Markov chain with the following
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infinitesimal generator:

Q =



A0,0 A0,1

A1,0 A1 A0

A2 A1 A0

. . .
. . .

. . .


. (5.1)

We call q1(t) a level variable and (q2(t), q3(t)) the phase vector. Based on this organization

{q1(t), q2(t), q3(t), t ≥ 0} is a level independent QBD process. In the next paragraphs we provide

all the details of the Markov chain. Once we construct all the Markov chain infinitesimal

generator details, we can find its exact steady state probability distribution using the Matrix

Analytic Method which we illustrate in the next section. The boundary matrices A00, A01, A10

details are as follows:

A0,0 =



0 1 2 . . . N + c− 1 N + c

0 a0 b0

1 d1 a1 b1
...

. . .
. . .

. . .

N + c− 1 dN+c−1 aN+c−1 bN+c−1

N + c dN+c aN+c


(5.2)

A1,0 = cµ ·



0 . . . c c+ 1 . . . N + c

c 0 . . . IN+1

c+ 1
... 0N
...

. . .

N + c 0 0


(5.3)

A0,1 = λ1 ·



c c+ 1 . . . N + c

0 0

...
...

c IN+1

c+ 1 IN
. . .

N + c 1


(5.4)
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The rate at which the number of walk-in patients increases is defined in the matrix A0. We

note that the queue size increases by one only when the beds at the destination ED are full,

otherwise it does not change. The details of A0 are as follows:

A0 = λ1 ·



c c+ 1 . . . N + c

c IN+1

c+ 1 IN
. . .

N + c 1


(5.5)

The matrix A1 includes transitions that do not affect the walk-in patients queue length;

it includes service completions of ambulances, service completions of ambulance patients, and

ambulance patients arrival to the EMS service. The details of A1 are as follows:

A1 =



c c+ 1 . . . N + c− 1 N + c

c ac bc

c+ 1 dc+1 ac+1 bc+1

. . .
. . .

. . .

N + c− 1 dc+N−1 ac+N−1 bc+N−1

N + c dc+N ac+N


(5.6)

The matrix A2 represents the rate at which the walk-in patients queue decreases by one.

Because those patients poses lower priority than patients arriving by an ambulance, a walk-in

patient cannot get admitted unless there are no patients of the higher priority waiting for a bed,

or simply when q2(t) > c. The details of A2 are as follows:

A2 = cµ ·



c c+ 1 . . . N + c

c IN+1

c+ 1 0N
. . .

N + c 0


(5.7)

At the boundary, the transition rates are different because when q1(t) = 0 the states {(0, 0, ·), . . . , (0, c−
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1, ·)} exist.

ai =



0 1 2 . . . N − (i− c)+

0 ∗ pλ0

1 ∗ pλ0

2 ∗ pλ0

...
. . .

. . .

∗ pλ0

N − (i− c)+ ∗


(5.8)

where ∗ is calculated such that the rows of the matrix Q sum to zero. ai(j, j) = −(λ1 +

min (i, c)µ+ p1λ0 + jµ0)

bi =



0 1 2 . . . N

0 λ1

1 µ0 λ1

2 2µ0 λ1

...
. . .

. . .

N Nµ0 λ1


, for i < c (5.9)

bi =



0 1 2 . . . N − (i− c)− 1

0 0

1 µ0 0

2 2µ0 0

...
. . .

. . .

N − (i− c)− 1 (N − (i− c)− 1)µ0 0

N − (i− c) (N − (i− c))µ0


, for i ≥ c

(5.10)

di = min(i, c) · µ · IN+1−(i−c)+ for i ≤ c (5.11)

di = min (i, c) · µ ·
(
IN+1−(i−c) 0

)
for i > c (5.12)
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5.2 The Exact Analysis

In this section, we analyze the Markov chain {q1(t), q2(t), q3(t), t ≥ 0} and find performance

measures in two steps. Then we use the results for the single ED network to find performance

measures for the entire EMS-ED network.

5.2.1 A Matrix Geometric Solution

We denote by π = (π0,π1, . . .) the stationary probability distribution of {q1(t), q2(t), q3(t), t ≥

0}, where πi includes all the limiting probabilities of the states in level Ωi. The stationary

distribution exists if and only if the Markov chain is ergodic.

Let A = A0 +A1 +A2. Let θ satisfy θA = 0 and θe = 1. Since the Markov chain of interest

is irreducible and has a QBD structure, by Neuts [46], the Markov chain is ergodic if and only

if θA0e < θA2e, which can be reduced to

λ+ pλ0 < cµ (5.13)

If the ergodicity condition is satisfied, then π exists and it can be found as described in Section

2.4.

In the next two subsections, we utilize the matrix-geometric solution to find performance

measures at the hospital level and the regional level.

5.2.2 Hospital level performance measures

The performance measures of interest at the hospital level are:

1. ED utilization: The maximum arrival rate to the ED node is λ+ pλ0. While the available

capacity for those arrivals is cµ. As a result, the ED utilization, ρ, can be calculated as

follows:

ρ =
λ+ pλ0

cµ
(5.14)

2. The distribution of the number of walk-in patients in the queue can be found using the

matrix geometric solution as {πie, i = 0, 1, . . .}. The mean number of walk-in patients
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in the queue can be calculated by

E[qw] =

∞∑
i=0

iπie =

∞∑
i=1

iπ1R
i−1e = π1

( ∞∑
i=1

iRi−1

)
e = π1(I −R)−2e. (5.15)

3. The distribution for the number of ambulances in offload delay at an ED. Let {η2(j), 0 ≤

j ≤ c+N} be the distribution of q2(t). Recall that q2(t) is defined as the number of both

ambulance patients and walk-in patients in service and blocked. If q2(t) is greater than

c, then there are q2(t) − c ambulances blocked outside the ED. That distribution can be

obtained from the two vectors {π0,π1(I −R)−1}. We use this fact to find the probability

distribution of the number of ambulances in offload delay as follows:

ξ2(m) =


∑j=c

j=0 η2(j), for m = 0

η2(m+ c), for m = 1, . . . , N

(5.16)

The mean queue number of ambulances in offload delay E[qa] can be found accordingly.

4. Offload delay distribution: Offload delays occur when ambulance patients are forced to

wait for a bed. Thus, the offload delay distribution is the waiting time distribution for

ambulance patients who possess the high nonpreemptive priority. We use a phase-type

distribution to model ambulance patients waiting times. This type of distributions allows

us to capture heterogeneity in patients waiting where there may be a large variation in

the amount of time patients spend in the hospital. The waiting time wa of an ambulance

patient arriving to an ED depends on the number of ambulance patients at the ED and

the number of walk-in patients already in service which are captured in the state variable

q2(t). Denote by α(j) the probability that j patients are in the ED when an ambulance

patient arrives. Since there are c beds for all patients in the ED, each with an exponential

service time with parameter µ, if all beds are occupied, the time to serve one patient has

an exponential distribution with parameter cµ. Thus, the total time to serve j patients

has an Erlang distribution of order j. Consequently, when an ambulance patient arrives to

the hospital ED, the waiting time has a generalized Erlang distribution with a phase-type
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representation (α, cµJN ), where

JN =



−1

1 −1

. . .
. . .

1 −1


N×N

. (5.17)

α(j) = η2(c+ j) for j = 0, 1, . . . , N (5.18)

The distribution function of the waiting time wa is given by P{Wa < t} = 1−α exp{−cµJN t}e.

The expected offload delays can be found using the formula:

E[Wa] =
1

cµ

N∑
j=1

(j + 1)α(j) (5.19)

Little’s Law holds for the queueing model, i.e., E[qa] = pλ0E[Wa], which can be used to

check the accuracy of the results obtained.

5. Waiting time distribution for the walk-in patients: The waiting time ww of a walk-in

patient arriving to an ED depends on the number of ambulance patients in service and

waiting outside the ED. It also depends on the number of walk-in patients already in

service which is captured in the state variable q2(t). First, we find the waiting time for a

tagged walk-in patient arriving to the ED. Then, we generalize the result for an arbitrary

patient using conditional probability concepts. The waiting time for a tagged walk-in

patient has a phase type structure. Since walk-in patients possess a lower priority with

respect to patients arriving by an ambulance, a walk-in patient cannot get admission

unless there is a bed available for him, or mathematically only when q2(t) < c. Denote by

αw(n− 1) the probability that the tagged walk-in patient arriving to the ED finds n− 1

walk-in patients ahead of him in the queue, and j− c patients blocking ambulances (recall

that when j < c the patient does not have to wait); then he has to wait for i+j−c service

completions plus the service completions for ambulance patients who arrived during his

waiting time. The events that affect the tagged walk-in patient’s waiting time are service

completions of both patients types, and arrivals of high priority ambulance patients during

his waiting time. While subsequent arrivals of walk-in patients do not affect his waiting
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time because same priority patients are admitted based on a FCFS rule.

If the state of the ED at time t upon arrival of the the tagged walk-in patient was (i, j, l)

as described by the triplet (q1(t), q2(t), q3(t)), then the waiting time constitutes the time

until absorption for the continuous time Markov chain that has the infinitesimal generator

as follows:

Qw,n =



A1 + λ1I

A2 A1 + λ1I

. . .
. . .

A2 A1 + λ1I


(5.20)

Note that Qw,n has a similar structure as Q but without the transitions associated with

walk-in patients’ arrival. The tagged walk-in patient’s waiting time has a phase type

distribution with matrix representation ((0, ..., 0,πn−1/(πn−1e)), Qw,n). Then we obtain

the conditional probability distribution of the waiting time as:

P (Ww ≤ t | n) = 1− (0, ..., 0,πn−1/(πn−1e)) exp{Qw,nt}e. (5.21)

The distribution of the waiting time of an arbitrary walk-in patient can be obtained as

P (ww ≤ t) = 1−
∞∑
n=0

(0, ..., 0,πn) exp{Qw,nt}e. (5.22)

Theorem 1. The mean waiting time for an arbitrary walk-in patient who arrives to the

ED is:

E[Ww] = π̃0L+ π1(I −R)−1(I −B + eθ)−1L

−π1φinv(φ(I)(I −R′ ⊗B)−1)B2(I −B + eθ)−1L

+π1
[
(I −R)−2 + (I −R)−1

]
eθL

(5.23)

Proof. The mean waiting time for the tagged walk-in patient who arrive to the system

and find n− 1 walk-in patients ahead of him can be found as follows:

E[Ww | n] = −(0, . . . ,
πn−1

πn−1e
)Q−1

w,ne (5.24)

Since Qw,n has a lower diagonal structure, its inverse can be found as follows:
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Q−1
w,n = −(A1 + λ1I)−1 + (A1 + λ1I)−1A2(A1 + λ1I)−1 − . . .

+(−1)n+1(A1 + λ1I)−1A2(A1 + λ1I)−1 . . . (A1 + λ1I)−1
(5.25)

Let B = −(A1 + λ1I)−1A2, and L = −(A1 + λ1I)−1e, then the conditional expected

waiting time for the tagged walk-in patient can be found as follows when he arrives to an

empty queue:

E[Ww | n = 1] = [π0,c, ...., π0,c+N ]L (5.26)

Or from the following formula if the tagged walk-in patient arrives to a non-empty queue:

E[Ww | n > 1] =
πn−1

πn−1e

[
I +B + +B2 + . . .+Bn−1

]
L (5.27)

By combining the above equations we find the expected waiting time for an arbitrary

walk-in patient as follows:

E[Ww] =

∞∑
n=1

πneE[Ww | n] = π̃0L+

∞∑
n=2

π1R
n−2

[
I +B + +B2 + . . .+Bn−1

]
L (5.28)

where π̃0 = [π0,c, ...., π0,c+N ]. Since B is a stochastic matrix then there exits a vector θ

such that θB = θ and θe = 1, to find θ, and since B has a special structure as follows:

B =

 B11 0

B21 0

, where B11 is of size N + 1

Then, we find first θ1 such that θ1(B11 − I) = 0 and θ1e = 1. Then θ = [θ1,0].

To find the geometric sum
[
I +B + +B2 + . . .+Bn−1

]
we multiply it with (I −B+ eθ),

the detailed steps are as follows:

(
I +B + +B2 + . . .+Bn−1

)
(I −B + eθ) = (I −Bn + neθ)(

I +B + +B2 + . . .+Bn−1
)

= (I −Bn + neθ)(I −B + eθ)−1(
I +B + +B2 + . . .+Bn−1

)
= (I −Bn)(I −B + eθ)−1 + neθ(I −B + eθ)−1(

I +B + +B2 + . . .+Bn−1
)

= (I −Bn)(I −B + eθ)−1 + neθ

(5.29)
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Next, we substitute the above result in equation (5.28). The detailed steps are as follows:

E[Ww] = π̃0L+
∞∑

n=2
π1Rn−2

[
(I −Bn)(I −B + eθ)−1 + neθ

]
L

= π̃0L+
∞∑

n=2
π1Rn−2(I −B + eθ)−1L−

∞∑
n=2

π1Rn−2Bn(I −B + eθ)−1L+
∞∑

n=2
π1Rn−2neθL

= π̃0L+ π1(I −R)−1(I −B + eθ)−1L− π1
∞∑

n=2
Rn−2Bn−2B2(I −B + eθ)−1L+ π1

[
(I −R)−2 + (I −R)−1

]
eθL

(5.30)

To find the infinite sum
∞∑
n=2

Rn−2Bn−2, we use the direct sum as follows:

φ

( ∞∑
n=2

Rn−2Bn−2

)
= φ(I)(I −R′ ⊗B)−1 (5.31)

where φ(I) is a row vector and is obtained by stringing out the vectors starting form the

first row of I. Equations (5.30) and (5.31) can be used to find the expected queue length

for walk-in patients without the need for truncation. We use Little’s Law to verify our

results for the expected waiting time.

5.2.3 Regional level performance measures

In this section, we consider performance measures for the entire EMS-ED network. We focus on

the availability of ambulances. In Section 5.1, we assumed that individual single ED networks

operate independently. Based on the assumptions, we construct performance measures from

that of individual single ED networks.

1. Let ξ
(k)
2 = (ξ

(k)
2 (0), ξ

(k)
2 (1), ..., ξ

(k)
2 (N + ck)), for k = 1, 2, ...,K, be the distribution of the

number of ambulances in offload delay in the kth single ED network. Since we assume that

all K single ED networks operate independently, the distribution of the total number of

ambulances in offload delay can be found as the convolution of {ξ(1)
2 , ..., ξ

(K)
2 }. Note that

the total number of ambulances in offload delay found by using this method may exceed

N , and it is an approximation to the actual number of ambulances in offload delay.

2. Let ξ
(k)
3 be the distribution for the number of ambulances in transit, which is the distri-

bution of q3(t) at the kth ED. Then ξ
(k)
3 can be obtained from {π0,π1(I − R)−1}. The

distribution of the total number of ambulances in transit can be obtained by the convo-

lution of {ξ(1)
3 , ..., ξ

(K)
3 }. Again, due to the approximation assumption, the total number

of ambulances in transit obtained in this way may exceed N .
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3. EMS utilization: The load faced by the EMS consists of two parts, transferring the high

priority patients to the corresponding EDs, and serving patients who are blocking ambu-

lances. It is clear that blocked ambulances consume the EMS utilization as well as new

arrivals to the EMS. The total arrival for the EMS is λ0 while the total capacity available

is Nµ0. In the case of no blocking, the EMS utilization, ρEMS , would be λ0
Nµ0

. But since

blocking exists, we modify the available capacity to take into account the effect of blocking

or offload delays.

ρEMS = min

{
1,

λ0

(N −
∑K

k=1E[qa]
(k))µ0

}
. (5.32)

5.3 Approximation and Optimization

The network under consideration consists of two nodes, as illustrated in Figure 5.2; node 0 is the

EMS node, and node 1 is the ED node. One of our main observations related to the project with

the ROW is that one hospital ED is contributing to most of the total offload delays. This leads to

the problem of load balancing or work allocation for the region EDs. Our aim here is to propose

an approximation for the network to obtain explicit and simple expressions for performance

measures. The approximation can serve as an effective way to determine the optimal proportion

of patients that should be routed to individual EDs.

In a related work, Deo and Gurvich [4] develop a queueing game model for two EDs in which

each ED tries to minimize its waiting times. They show that decentralized diversion decisions

result in a depooling of the network resources. They provide a near optimal solution for the

ambulance diversion problem when a centralized dispatcher coordinates diversion. In that sense.

our model extends Deo and Gurvich’s work by considering any number of EDs and by explicitly

including offload delays into the analysis.

To approximate the performance measures of this network, we develop an approximation

scheme by further decomposing the single ED network into single node queues each with modified

arrival rate, service rate, and number of servers. Perros [27] used this methodology to analyze

queueing networks with blocking of various topologies. Our model is different since it deals

with a queueing network with blocking and multiple servers. Moreover, arrivals to the network

possess different priorities. Later, we utilize the matrix geometric solution of Section 5.2 to

assess the effectiveness of the approximation results.
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Figure 5.3: Illustration of blocking delay

5.3.1 Approximation using the M/M/c queue

Our methodology is based on substituting a single ED network with two disconnected nodes

each with a modified arrival rate, service rate, and number of servers that represent the effective

parameter. Then, we use the existing results on single node queues with multiple servers to

derive the expected queue length and the expected waiting time for each node of the queueing

network. We start the analysis with the queue within an ED, called Node 1, since this node

cannot get blocked. Then we use Node 1 results to approximate the parameters of Node 0.

1. Node 1. The queue within an ED can be treated as an isolated M/M/c queue with c

servers each with service rate µ, and two types of arrivals with nonpreemptive priority

service discipline. The high priority arrival rate for node 1 is still pλ0. While the arrival

rate of the low priority patients is λ. The approximate mean waiting in the queue for the

high priority arrivals, E[Ŵa], and the low priority arrivals, E[Ŵa], can be calculated as

(cf. Gross et al. [51]):

E[Ŵa] =
1

1− σ1

(
c!(1− ρ)cµ

c−1∑
n=0

(cρ)n−c

n!
+ cµ

)−1

, (5.33)

where σ = pλ0/(cµ) and ρ = (pλ0 + λ)/(cµ) = σ + λ/(cµ).

In order to find the dispatching probability vector p to minimize system costs (expected

waiting times), we prove an interesting property on E[Ŵa].
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Theorem 2. E[Ŵa] is convex in σ

Proof. First note that equation (1) can be rewritten, in term of the Erlang delay formula

B(c, ρ), as follows:

E[Ŵa] =
1

cµ(1− σ)
B(c, ρ) (5.34)

By [54] and [55], B(c, ρ) is convex in ρ. Then E[Ŵa] is convex in σ.

Since we are optimizing a convex function with equality constraints, this leads to a convex

problem. Based on this Theorem, any optimal solution found is in deed a global optimal

solution for the ambulance routing problem.

The mean waiting time of walk-in patients (lower priority patients) is given by (e.g., Gross

et al. [51]):

E[Ŵw] =
1

(1− σ) (1− ρ)

(
c!(1− ρ)cµ

c−1∑
n=0

(cρ)n−c

n!
+ cµ

)−1

. (5.35)

The expected queue length for both arrival streams, ˆE[La] and ˆE[Lw], can be obtained

by using Little’s law:

E[L̂a] = p1λ0E[Ŵa], E[L̂w] = λ1
ˆE[Ww] (5.36)

2. Node 0: Node 0 can be treated as an isolated M/M/c/c queue with one stream of arrivals,

which is the high priority patients only. First, we need to find the effective number of

servers at node 0. Due to the blocking that occurs for some of the N servers, arrivals

to this node will see less available servers than the node has because some servers will

be blocked when node 1 is full. If the expected queue length of the high priority arrivals

exceeds c, then on average there are E[L̂a] − c servers at node 0 lost due to blocking,

which makes the effective number of servers at node 0, N̂ = N − (E[L̂a]− c)
+

. To find

the effective arrival rate at node 0, we need to account for the probability the node is

full, which results in a rejection of arrival. Thus, λ̂0 = pλ0(1 − πN ), where πN is the

probability that node 0 is full. This probability equals zero in our model, which is an

operating characteristic of the EMS-ED network of interest. If, in other cases, this node
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is highly utilized then this probability can be calculated from the M/M/c queue results.

Lastly, we need to derive the effective service rate at node 0. Although, the service rate

per server at node 0 is µ0, arrivals are expected to spend more time in the server waiting

for an empty server at the destination node 1. We estimate the effective service rate per

server at node 0 as follows:

µ̂0 = (
1

µ0
+ E[Ŵa])

−1

(5.37)

The above approximation for the service rate is similar to Koizumi et al. [34]. After we

derive the effective arrival rate, service rate, and number of servers at node 0, we use the

M/M/c/c queue results to find performance measures.

5.3.2 The Ambulance Routing Problem

Offload delays occur due to the high utilization experienced at the destination hospital EDs. In

order to eliminate or decrease the offload delays ambulances experience, it is trivial to suggest

to add more beds at the destination hospital EDs in order to accommodate the high traffic.

However, it is less trivial to try to decrease offload delays given the same network settings. i.e.

by keeping the same number of beds and ambulances. One of the main observations we had

with respect to the Region of Waterloo network was the different utilization levels experienced

at the regions’ three hospitals which resulted in higher offload delays at one hospital more than

the other.

The problem of workload allocation relates to the general stream of research in call centers

and flow shop manufacturing systems. Examples include [52] and [56] among others. In the

manufacturing context, optimal assignment of tasks to machine centers is found either by mini-

mizing total costs or by maximizing profit. In this section, we develop an optimization problem

to find the routing probability vector that minimizes the total offload delays experienced by an

EMS provider in a region. We utilize the approximation scheme developed in Section 5.2 for

the expected offload delays which we aim to minimize given that all patients should be sent to

a hospital. The optimization problem is:
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Parameter set value

N 17 ambulances
λ0 3 patients per hr
µ0 1 patient per hr
λ1, λ2, λ3 (4.2,3.5,3.3) patient per hr
(µ1, µ2, µ3) (1/6, 1/6, 1/6) patient per hr
(c1, c2, c3) (35, 30, 29) beds
(p1, p2, p3) (0.45, 0.29, 0.26)

Table 5.2: Case study input parameters

min
p1,...,pk

K∑
k=1

E[Ŵa]k =
K∑
k=1

1

1− σk

(
ck!(1− ρk)ckµk

ck−1∑
n=0

(ckρk)
n−ck

n!
+ ckµk

)−1

s.t.
K∑
k=1

pk = 1

pk ≥ 0

(5.38)

where σk =
pkλ0

ckµk
and ρk =

pkλ0 + λk
ckµk

, k = 1, 2, . . . ,K. By Theorem 2, the objective function

is convex in {σ1, ..., σK}. Thus, the optimization problem is a convex programming problem,

which can be solved effectively by existing methods. We solve the above optimization problem

using the fmincon solver in Matlab (note: we use the interior-point algorithm).

5.4 Numerical Analysis

In this section, we analyze a number of examples numerically. The examples emerged from a

running project with the Region of Waterloo (ROW) EMS. The Region of Waterloo, which is

located in Southern Ontario Canada, is served by three hospitals and one EMS provider. The

input parameters used are recorded in Table 5.2, our choice of the parameters was guided by the

real data acquired from the ROW EMS and Grand River Hospital, one of the main hospitals in

the region.

The steps for the analysis are:

1. Find the exact performance measures for the EMS-ED network using results from §5.2.

2. Solve the optimization problem of §5.3.2 to find optimal routing probabilities.
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ambulance patients walk-in patients
hospital ρ E[Wa] E[qa] E[Ww] E[qw]
ED 1 93.7% 0.15 0.21 3.17 13.33
ED 2 84.8% 0.09 0.08 0.72 2.51
ED 3 81.4% 0.07 0.06 0.45 1.50

Table 5.3: Case study exact results

3. Find the approximate performance measures using results from §5.3.1 and compare the

exact and approximate results to ensure that the optimal routing obtained from the ap-

proximation model is indeed optimal or near-optimal.

4. Perform extra computational analysis on the ambulance routing problem with variable

arrival rates of high priority ambulance patients.

5.4.1 The exact results

As the exact results in Table 5.3 suggest, the first ED, which is the highly utilized one, experiences

the highest offload delays compared to the other EDs as quantified by E[qa] = 0.21 patients.

At the regional level, we calculate the probability distribution for the number of ambulances

in offload delay, or blocked and the probability distribution for the number of ambulances in

transit. The results are shown in Figure 5.4.

0 0.749087 0.049785
1 0.183107 0.149356
2 0.050275 0.224035
3 0.013114 0.224035
4 0.003309 0.168026
5 0.000816 0.100816
6 0.000198 0.050408
7 4.75E-05 0.021603
8 1.13E-05 0.008101
9 2.67E-06 0.0027

10 6.28E-07 0.00081
11 1.47E-07 0.000221
12 3.43E-08 5.52E-05
13 7.96E-09 1.27E-05
14 1.83E-09 2.73E-06
15 4.07E-10 5.46E-07
16 8.50E-11 1.02E-07
17 0.00E+00 1.81E-08
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Figure 5.4: Probability distribution for the number of ambulances in offload delay and in
transit at ROW

Another performance measure of interest for the EMS management is the probability distri-

bution for the number of busy ambulances. This includes either being busy transferring patients
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Figure 5.5: Probability distribution for the number of busy ambulances at ROW

or being in offload delay. Figure 5.5 shows the actual distribution for the number of busy ambu-

lances gathered from the ROW EMS data for quiet, moderate, and busy days. It also includes

the distribution based on our model output for the case study. As we can see, the queueing

model output is close to the actual system performance at the quiet time. This result also

validates our modeling approach and assumptions made to get into the steady state solution.

In order to compare the system performance at the moderate and busy times, the ambulance

patients arrival rate should be increased.

We also utilize the exact matrix geometric solution to calculate the EMS utilization using

equation (5.32) and it is found to be 18.01%.

5.4.2 Approximation and comparison of approximation with ex-

act results

In this subsection, we evaluate the efficiency of our approximation scheme by comparing some of

the performance measures we have derived with the corresponding exact results acquired from

the steady state matrix geometric solution. Namely, we compare the expected queue lengths for

different instances when N = 10, µ0 = 1, we report the results in Table 5.4.

As the results suggest, our approximation scheme is effective and the maximum error in esti-

mating the expected queue length is 0.12%. Another result that follows from our approximation
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Input parameters Exact measures Approximate measures

(p1λ0, λ1, µ, c) E[qa] E[qw] E[L̂a] E[L̂w]
(1, 0.5, 1/2, 5) 0.0149 0.0249 0.0149 0.0249

(1.5, 0.5, 1/2, 5) 0.0559 0.0745 0.0559 0.0745
(1.5, 1, 1/2, 5) 0.1619 0.7196 0.1619 0.7197
(1.5, 1, 2/3, 5) 0.0445 0.1250 0.0445 0.1251
(1.5, 1, 2/3, 3) 0.4634 4.9431 0.4640 4.9491

Table 5.4: Comparison for the expected queue length for the approximation scheme

Exact results Approximation results

Hospital ρ E[qa] E[qw] E(Wa) E(Ww) ρ̂ E[q̂a] E[q̂w] E(Ŵa) E(Ŵw)
ED1 93.7% 0.21 13.33 0.15 3.17 95.1% 0.21 13.33 0.15 3.17
ED2 84.4% 0.08 2.51 0.09 0.72 87.4% 0.08 2.51 0.09 0.72
ED3 81.4% 0.06 1.50 0.07 0.45 84.4% 0.06 1.50 0.07 0.45

Table 5.5: comparison for performance measures for the case study

is the applicability of Little’s formula for the expected queue length results derived using Matrix

Analytic Methods. More over, we compare the approximation results for the case study with

the exact results in Table 5.5. The results show high accuracy of our approximation scheme. In

Figure 5.6, we compare the number of busy ambulances probability distribution from the ap-

proximation scheme with the Matrix Analytic solution. Although the EMS node can be modeled

as an M/M/c queue, the results suggest that including offload delays by adjusting the effective

service rate of ambulances have resulted in close results for both methods which is also close to

the observed probability distribution in the region ROW. Such an adjustment have increased the

width of the tail of the probability distribution. This example indicates that the approximation

quality for low utilized first node networks is high.

5.4.3 The optimization problem

We solve the optimization problem outlined in §5.3.2 for the ROW-ED network that consists of

three hospitals. Recall that the routing probability vector (0.45, 0.29, 0.26) resulted in a total

expected offload delays of 0.3153 hour for the region. When we supply the same network data

to the optimization problem we get the optimal routing probability of (0.3946, 0.3031, 0.3023).

If the optimal routing probabilities are used, then the total expected offload delays decreases to

0.3086 hour, or it decreases by 2.12%. The detailed results for the network optimal performance
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Figure 5.6: Probability distribution for the number of ambulances busy at the ROW

ambulance patients walk-in patients
hospital p∗ ρ ρa E(Wa) E[qa] E(Ww) E[qw]
ED 1 0.3946 90.33% 20.29% 0.1167 0.1381 1.5142 6.3597
ED 2 0.3031 85.56% 18.19% 0.0981 0.0892 0.8308 2.9077
ED 3 0.3023 84.05% 18.76% 0.0939 0.0851 0.7241 2.3896

Table 5.6: Performance measures under optimal routing policy

metrics are summarized in Table 5.6.

Although the main purpose of the developed optimization problem is to decrease the overall

offload delays ambulances experience in a region, it resulted also in decreasing walk-in patients

waiting. Specifically, we notice that the total expected number of walk-in patients waiting in the

waiting room have decreased significantly (32.77%) when the optimal routing decision is used.

Decreasing walk-in patients waiting time will increase their morale and prevent their condition

from deteriorating while waiting to be seen.

5.4.4 More computational results for the optimization problem

In this subsection, we perform extensive numerical analysis for the optimal routing decisions

in the long run for a network that consists of 3 hospitals. The test instances are generated

by increasing the ambulance patients arrival rate to the region and fixing all the other model

parameters. We picked those numbers based on the Region of Waterloo case. We consider

the capacity at each ED to be (35, 30, 29) beds respectively. The service rate at each ED is

99



λ0 p1? ρ1 p2? ρ2 p3? ρ3 E[Ŵa]R E[Wa]1 E[Wa]2 E[Wa]3 E[Wa]R % dev.
1.0 0.1241 74.11 0.8227 72.05 0.0532 69.36 0.0315 0.0109 0.0117 0.009 0.0316 0.32
1.1 0.1443 74.71 0.7816 72.66 0.0741 69.95 0.0347 0.012 0.0129 0.0099 0.0348 0.29
1.2 0.1612 75.30 0.7473 73.28 0.0915 70.53 0.0383 0.0132 0.0142 0.0109 0.0383 0.00
1.3 0.1754 75.89 0.7184 73.90 0.1062 71.12 0.0421 0.0145 0.0156 0.012 0.0421 0.00
1.4 0.1877 76.49 0.6935 74.52 0.1189 71.71 0.0462 0.016 0.0171 0.0131 0.0462 0.00
1.5 0.1983 77.08 0.6719 75.13 0.1298 72.29 0.0507 0.0175 0.0188 0.0144 0.0507 0.00
1.6 0.2076 77.68 0.6531 75.75 0.1393 72.87 0.0555 0.0192 0.0206 0.0158 0.0556 0.18
1.7 0.2158 78.27 0.6364 76.36 0.1478 73.46 0.0606 0.021 0.0225 0.0172 0.0607 0.17
1.8 0.2231 78.87 0.6216 76.98 0.1552 74.04 0.0662 0.0229 0.0245 0.0188 0.0662 0.00
1.9 0.2297 79.47 0.6084 77.60 0.1619 74.63 0.0721 0.025 0.0267 0.0204 0.0721 0.00
2.0 0.2356 80.06 0.5964 78.21 0.1679 75.21 0.0785 0.0272 0.029 0.0222 0.0784 -0.13
2.1 0.2410 80.66 0.5856 78.83 0.1734 75.79 0.0852 0.0295 0.0315 0.0242 0.0852 0.00
2.2 0.2459 81.26 0.5758 79.45 0.1783 76.38 0.0925 0.0321 0.0342 0.0262 0.0925 0.00
2.3 0.2504 81.86 0.5668 80.06 0.1828 76.96 0.1002 0.0348 0.0371 0.0284 0.1003 0.10
2.4 0.2545 82.45 0.5585 80.67 0.1870 77.55 0.1084 0.0376 0.0401 0.0307 0.1084 0.00
2.5 0.2583 83.05 0.5509 81.29 0.1907 78.12 0.1171 0.0407 0.0433 0.0331 0.1171 0.00
2.6 0.2618 83.65 0.5439 81.90 0.1942 78.71 0.1264 0.0439 0.0467 0.0358 0.1264 0.00
2.7 0.2651 84.25 0.5374 82.52 0.1975 79.29 0.1363 0.0474 0.0504 0.0385 0.1363 0.00
2.8 0.2682 84.86 0.5313 83.13 0.2005 79.88 0.1467 0.0511 0.0542 0.0415 0.1468 0.07
2.9 0.2710 85.46 0.5257 83.74 0.2033 80.46 0.1578 0.0549 0.0583 0.0446 0.1578 0.00
3.0 0.2737 86.06 0.5204 84.35 0.2059 81.04 0.1695 0.059 0.0626 0.0479 0.1695 0.00
3.1 0.2762 86.66 0.5155 84.97 0.2083 81.62 0.1818 0.0634 0.0671 0.0514 0.1819 0.06
3.2 0.2786 87.27 0.5108 85.58 0.2106 82.20 0.1949 0.068 0.0719 0.055 0.1949 0.00
3.3 0.2808 87.87 0.5064 86.19 0.2128 82.79 0.2087 0.0728 0.0769 0.0589 0.2086 -0.05
3.4 0.2829 88.47 0.5023 86.80 0.2148 83.37 0.2232 0.0779 0.0822 0.063 0.2231 -0.04
3.5 0.2850 89.08 0.4983 87.40 0.2167 83.95 0.2384 0.0834 0.0878 0.0673 0.2385 0.04
3.6 0.2869 89.69 0.4946 88.01 0.2185 84.53 0.2545 0.089 0.0936 0.0718 0.2544 -0.04
3.7 0.2887 90.29 0.4911 88.62 0.2202 85.12 0.2714 0.095 0.0998 0.0766 0.2714 0.00
3.8 0.2904 90.90 0.4878 89.23 0.2218 85.70 0.2891 0.1013 0.1063 0.0816 0.2892 0.03
3.9 0.2921 91.51 0.4846 89.83 0.2234 86.28 0.3077 0.1079 0.1130 0.0868 0.3077 0.00
4.0 0.2936 92.11 0.4815 90.43 0.2248 86.86 0.3273 0.1148 0.1201 0.0923 0.3272 -0.03
4.1 0.2952 92.73 0.4786 91.04 0.2262 87.45 0.3477 0.1221 0.1275 0.0981 0.3477 0.00
4.2 0.2966 93.34 0.4758 91.64 0.2276 88.04 0.3692 0.1297 0.1352 0.1042 0.3691 -0.03
4.3 0.2980 93.95 0.4731 92.24 0.2289 88.62 0.3916 0.1377 0.1433 0.1105 0.3915 -0.03
4.4 0.2993 94.56 0.4706 92.84 0.2301 89.21 0.4150 0.1461 0.1518 0.1171 0.4150 0.00
4.5 0.3006 95.17 0.4681 93.44 0.2313 89.79 0.4395 0.1548 0.1606 0.1241 0.4395 0.00

Table 5.7: Optimal routing results

(1/6, 1/5, 1/6). We set µ0 to equal 1 patient per hour. Lastly, the walk-in patients arrival rates

are (4.2, 3.5, 3.3) for ED1, ED2, and ED3 respectively.

Table 5.7 displays the arrival rate (λ0), the optimal routing decision (p1
?, p2

?, p3
?), the

expected offload delays based on the optimization problem (E[Ŵa]
R), the separate expected

offload delays based on the analytical solution (E[Wa]
k), and the difference between the total

expected offload delays from the approximation algorithm and the exact analytical algorithm

(% dev.).

The computational results reveal the efficiency and accuracy of the approximation scheme

developed in the previous section at different system utilization rates. The maximum deviation

between the two solution algorithms is reported to be as low as 0.32%. See Table 5.7.

Observation 1: Hospitals with higher number of beds should be loaded more

heavily than hospitals with lower number of beds when the arrival rates for low
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Figure 5.7: Optimal routing probabilities results

priority patients are aligned with the corresponding EDs capacity.

Careful examination of the results in Table 5.7 shows that hospitals with higher number of

beds should be loaded more heavily than hospitals with lower number of beds. The intuitive

explanation for this results is mainly due to make use of server pooling which reduces congestion.

This finding is inline with [52] who look at workload balancing in open Jackson networks of

multiserver queues with one class of customers. For the current model, and by observing the

results, we find that this observation is only true when the arrival rates for low priority patients

are aligned with the corresponding EDs capacity. Otherwise it does not hold. For hospitals that

have equal number of beds and equal walk-in arrival rate, then they should be loaded equally

with respect to ambulance patients.

Observation 2: Highly utilized networks are closer to balance than low utilized

networks.

Another observation from the optimal results is with respect to how much change in routing

proportion is needed to achieve optimality. We notice that when the network is highly utilized,

it is closer to balance than low utilized networks. As suggested by Figure 5.7. For example, if

we compare the change in p∗1 when λ0 increases from 1.2 to 1.3 patient per hour then the change

in p∗1 is from 16.12% to 17.54% corresponding to a 8.8% increase. While when λ0 increases from

3.7 to 3.8 patient per hour, the change in p∗1 is from 28.87% to 29.04% corresponding to only

0.5% increase in the fraction of ambulance patients.
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Figure 5.8: Expected waiting time results

Figure 5.8 shows a graph of total arrival rate for ambulance service (λ0) versus the expected

offload delays based on the allocation problem. Note that each point in the figure represents

a unique solution for the allocation problem. We notice also that the separate and the total

offload delay functions are convex with respect to the arrival rate of the high priority patients.

In Table 5.8 we change the first ED walk-in arrival rate from 2.8 to 4.5 patient per hour

and keep all the other parameters constant. An empirical observation from the results is the

following: when λ1
λ2
< c1µ1

c2µ2
then the optimal allocation probabilities are set such that p∗1 > p∗2.

Our results for the ambulance routing problem assume that Emergency Departments are

identical. Practically, in some communities, there are specialized EDs where patients, for ex-

ample, with certain conditions should be sent only to one of the region hospitals. This issue

should not affect the results of the model because what we are solving is for the general flow

of patients in the long run. To account for the specialized EDs case, we can update our opti-

mization problem by adding a limiting constraint on the minimum percent of patients routed

to a specific hospital ED. The minimum allowable limit would be such that it accounts for the

fraction of patients that are usually sick with that condition in the corresponding region.

5.5 Conclusion

In this Chapter, we developed a decomposed model for a network that consists of K hospitals.

We modeled the beds at the EDs as servers and as a result used nonpreemptive priority to

model the difference between acuity levels for patients arriving by an ambulance and patients
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λ1 p1
? ρ1 p2

? ρ2 p3
? ρ3 E[Ŵa]

R

2.8 0.5454 76.03 0.3664 76.65 0.0882 73.74 0.0612
2.9 0.5253 76.71 0.3778 77.22 0.0968 74.27 0.0664
3.0 0.5054 77.41 0.3891 77.79 0.1055 74.81 0.0719
3.1 0.4855 78.10 0.4004 78.35 0.1141 75.34 0.0778
3.2 0.4657 78.79 0.4116 78.91 0.1227 75.88 0.0841
3.3 0.4460 79.49 0.4228 79.47 0.1312 76.40 0.0907
3.4 0.4264 80.20 0.4339 80.03 0.1397 76.93 0.0977
3.5 0.4069 80.91 0.4449 80.58 0.1481 77.45 0.1052
3.6 0.3875 81.63 0.4559 81.13 0.1565 77.97 0.1130
3.7 0.3683 82.35 0.4669 81.68 0.1649 78.50 0.1213
3.8 0.3491 83.08 0.4777 82.22 0.1732 79.01 0.1300
3.9 0.3301 83.82 0.4885 82.76 0.1814 79.52 0.1391
4.0 0.3112 84.56 0.4992 83.29 0.1896 80.03 0.1488
4.1 0.2924 85.31 0.5098 83.82 0.1978 80.54 0.1589
4.2 0.2737 86.06 0.5204 84.35 0.2059 81.04 0.1695
4.3 0.2552 86.82 0.5309 84.88 0.2139 81.54 0.1806
4.4 0.2368 87.59 0.5413 85.40 0.2219 82.03 0.1922
4.5 0.2185 88.36 0.5516 85.91 0.2299 82.53 0.2043

Table 5.8: Optimal routing results
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Figure 5.9: Optimal utilization rates
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arriving by themselves. To optimally allocate patients to regional hospitals we developed an

approximation scheme to compute the expected offload delays in terms of ED parameters. We

showed that our approximation scheme is efficient and close to the exact results when the EMS

operates under normal operating conditions. i.e. low to medium utilization.

Theoretically, our model looked into analyzing a queueing network with blocking and mul-

tiple servers. This kind of networks are challenging to analyze. By taking advantage of the

operating conditions of the queueing network, we were able to develop an approximation scheme

to analyze the queueing network.

In the next chapter, we conclude this research and discuss some future research directions.
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Chapter 6

Conclusion

In this thesis we model the ambulance offload delay problem using queueing theory. We show

how patient re-allocation to hospitals has great impact on the total offload delays experienced

by a regional EMS provider. To achieve that purpose, we develop three distinct queueing models

each with a different modeling approach.

In Chapter 3, we develop a regional network model with preemptive priority discipline where

we model the service capacity at EDs as the combination of doctor, nurse and bed. We demon-

strate, through case studies, how routing decisions can affect the total offload delays and walk-in

patients queues. We also perform some scenario analysis to show the effect of speeding up the

service at the EDs on offload delays and other performance measures of interest. From a the-

oretical perspective, we develop efficient algorithms to construct the stochastic model Markov

chains, find the limiting probabilities, and calculate the performance measures.

Chapter 4 takes a different approach to model service capacity at the EDs. We model the

beds as servers in the queueing network model which leads to the nonpreemptive assumption for

admitting patients arriving by an ambulance to the ED. The nonpreemption assumption adds

complexity and computational limitations into the model. Theoretically, we develop a novel

approach to construct the network model Markov chain using the idea of ED layers. Through a

case study, we show the effect of adding more beds on system performance measures in general,

and offload delays in particular.

Contrary to the previous chapters where we analyze the EMS-ED network at the regional

level, in Chapter 5 we decompose the network into multiple networks. We utilize the idea of
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independence across hospital EDs to decrease the size of the network and hence improve the

computational capability for the model. In addition, we consider the transit time of ambulances

to be Markovian. To formally address the ambulance allocation problem, we first develop an

approximation scheme to the offload delays at each ED. Then, we use it to optimally re-allocate

patients to regional hospitals such that the total offload delays are minimal. Through extensive

numerical analysis, we show that larger EDs should be loaded more heavily to make use of server

pooling.

While this thesis provides a number of insights on the offload delay problem and its rela-

tionship with capacity and routing decisions, there are several aspects that can be considered

for further research. For example, variation in patients’ arrival rates based on the day of the

week can be modeled using the Markovian Arrival Process (MAP). This can be viewed as a

generalization of the Poisson arrival process we have assumed in this research. Our models can

be extended easily to include this variation but at the expense of high dimensionality. Further-

more, careful observation for the ED bed usage reveals that admitted patients block ED beds

when there are no beds available for them at the destination wards. In fact, blocking is observed

almost at each stage of the hospital network. Deriving more insights from a more complex

queueing model that includes patients from the point of arrival to the ED to being discharged

from the hospital will be valuable for decision makers.
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