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Abstract

Hydrogen fuel cells are poised to become the next major power generation technology
for the automotive industry. In order to make fuel cell powered vehicles viable for every day
use, it is necessary to study how to control these vehicles to minimize fuel consumption,
thus reducing operation costs and increasing the vehicle’s range. Although hybrid vehicle
control strategies have been extensively studied, there is relatively little existing research
into fuel cell hybrid vehicle control.

Fuel cell hybrid vehicles have similar power trains to conventional series hybrid electric
vehicles where the engine and generator are replaced with a fuel cell and a DC/DC con-
verter. The underlying hybrid control concepts used for conventional hybrid vehicles are
still valid although it is unknown how well they will perform on fuel cell based vehicles
since the fuel cell is a fundamentally different power source.

This thesis reviews several control strategies for fuel cell vehicles including a mode
switching rule-based control strategy, a constant fuel cell output strategy and an adaptive
variation of the equivalent consumption minimization strategy (A-ECMS) which has been
modified for fuel cell vehicles. These strategies are implemented in simulation and evaluated
against optimal strategies. The optimal strategies have been determined using convex
optimization problem solving techniques that have been adapted to a fuel cell specific
version of the hybrid vehicle control problem.

The mode switching and constant fuel cell strategies have also been evaluated in real
world testing on a fully functional, road safe, fuel cell powered SUV. The test vehicle was
designed and built by the University of Waterloo Alternative Fuels Team (UWAFT) for the
EcoCAR competition. My responsibilities on the team were primarily to develop the rear
motor and hybrid control logic as well as to assist in the testing and physical construction
of the vehicle.

The simulation results demonstrate that near optimal fuel economies can be achieved
through operating the fuel cell at near peak efficiency while the battery manages all major
transients in the power demand. The constant fuel cell strategy demonstrates the highest
fuel economy of all the tested strategies since it operates continually within this high
efficiency region. The mode based strategy showed the worst results since the fuel cell
would follow the transients of the power demand, pushing it out of the peak efficiency
region. These results were validated by the experimental results which showed similar
relationships between the mode switching, constant fuel cell and optimal strategies. The A-
ECMS provided good results although they were lower than the constant fuel cell strategy.
The benefits of adaptive estimation are not significant enough to warrant the additional
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complexity required for estimation when compared to the simpler battery load following
strategy.

Hydrogen fuel cell vehicles have the real potential to become the next major vehicle
technology. Only by continuing to research every aspect of these vehicles needed to make
them viable for consumer use can these vehicles ever replace the gasoline powered vehicles
we use today.
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Chapter 1

Introduction

The way modern society looks at transportation is changing. Gasoline prices are constantly
increasing as the availability of fossil fuels becomes more of a concern. Concerns over global
climate change, the impact on people’s health and other environmental effects caused by
burning fossil fuels are forcing the automotive industry to make a dramatic shift in the
way vehicles work at a fundamental level. To combat these various issues the automotive
industry is putting an ever increasing emphasis on the development of alternative fuel
technologies.

1.1 Why Hybrids are Important

Conventional internal combustion vehicles burn fossil fuels which produce emissions that
have a serious impact on the environment and people’s health [12]. Hybrid vehicles are the
automotive industry’s short term solution to these issues [33]. Hybrid vehicles allow us to
reduce our energy footprint by providing an extra energy source in addition to the internal
combustion engine. The goal of a hybrid vehicle is to use a battery system to store energy
that would otherwise be wasted which reduces society’s impact on the environment by
reducing overall fuel consumption and the resulting tailpipe emissions. One way in which
this is accomplished is by using a technique called regenerative braking which recaptures
a portion of the propulsion energy when braking. With plug-in hybrids, it is even possible
to use electricity taken directly from the electrical grid to charge the battery, further
reducing fossil fuel use. Substantial work is being done to make plug-in hybrid vehicles
viable for large scale use [9]. By using the added battery system, hybrid vehicles can reduce
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fuel consumption and emissions in order to provide for a cleaner, more environmentally
friendly and energy efficient vehicle.

1.2 The Benefits and Limitations of Hydrogen

While hybrid vehicles are still being deployed by automotive manufactures to address fuel
consumption and emission concerns, these vehicles still produce harmful emissions and use
fossil fuels. Without a better solution, oil reserves will still eventually be depleted and the
use of both hybrid and non-hybrid vehicles will continue to have a negative impact on the
environment.

To completely eliminate harmful vehicle emissions and dependence on gasoline a new
clean fuel source is needed. One such possible fuel source is hydrogen. Studies have
determined that hydrogen is the only current fuel source capable of substantially reducing
global GHGs and urban air pollution [8, 37, 52]. Hydrogen fuel cell vehicles do not have
any harmful tailpipe emissions and only produce water vapor at the exhaust. Since fuel
cell vehicles run entirely on electricity either stored in their high power battery or produced
directly from hydrogen, they are completely free of dependence on gasoline. This makes
hydrogen a very promising fuel source for future hybrid vehicles [54].

Hydrogen still has some limitations that prevent it from replacing gasoline as the current
main automotive fuel. The main limitation of using hydrogen is that there are very few
places where hydrogen fuel cell vehicles can be fueled. To develop the proper infrastructure
to fuel hydrogen fuel cell vehicles a significant financial investment is required. While this
financial investment is not substantial compared to the cost of maintaining existing fuel
stations, the initial investment is still a barrier to the global adoption of hydrogen as the
main vehicle fuel [37, 52]. As hydrogen vehicles become more viable, gas stations in areas
where these vehicles are used are slowly starting supporting hydrogen and this is expected
to continue as long as hydrogen fuel cell vehicles continue to be produced. Hydrogen,
when not stored properly can also be a very dangerous fuel source and there is still some
concern over the safety of using hydrogen in vehicles. Automotive manufacturers are doing
substantial work to achieve the high level of safety required in hydrogen storage systems
for hydrogen fuel cell vehicles and currently have plans to deploy fuel cell powered vehicles
to the public as early as 2015 [38]. Hydrogen fuel cells are also currently very expensive to
manufacture and additional work is still needed to bring the cost of fuels cells down to a
more reasonable level. Once the limitations preventing hydrogen from replacing gasoline
are overcome, hydrogen could become the solution to the issues that currently plague the
automotive industry.
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1.3 Hybrid Vehicle Control

One critical aspect of developing hybrid vehicles is the hybrid vehicle control strategy. All
hybrids have multiple energy sources which they use to reduce their primary fuel usage.
The extra energy source is typically a large battery which can be treated not only as a
source but also as a means of temporarily storing energy. The ability to temporarily store
energy allows for the vehicle to take advantage of operating the primary energy source at
higher efficiency points where the excess energy can be stored and later used. At the same
time, this allows for the implementation of regenerative braking where energy initially
used to propel the vehicle can be recaptured when braking and reused [12]. While these
technologies allow for significant improvements in fuel economy, this is only true if they are
used correctly [12]. To realize the benefits of having the extra degrees of freedom the hybrid
architecture provides, the control software of the vehicle must intelligently decide how to
satisfy the power demand requested by the driver [12]. To realize the full potential of hybrid
vehicles it is necessary to develop effective control strategies that take full advantage of the
capabilities of both power sources. Automotive manufacturers and researchers around the
world are currently working on developing strategies to achieve the peak efficiency possible
for many different types of hybrid vehicles.

1.3.1 Conventional Hybrid Control

Control strategies for traditional series and parallel hybrid vehicles with internal com-
bustion engines have been studied extensively [31, 44]. Most current hybrid vehicles use
control strategies that are rule-based since these are simple to implement and test [16].
While rule-based strategies produce effective results in reducing fuel consumption com-
pared to non-hybrids, they are limited in what they can achieve compared to some of the
more complex strategies. Rule-based strategies typically only consider the current operat-
ing mode, current power demands and battery state of charge when making decisions on
how to operate the vehicle. They do not include future power demands in their decision
making process since this information is not readily available. These strategies also do not
typically consider the long term durability of the battery. The majority of hybrid control
research has been primarily focused on optimization of simulations to determine the peak
performance of different hybrid architectures. One example of this is the convex optimiza-
tion method for determining peak powertrain performance proposed by Tate and Boyd [51].
Another is the different implementations of Dynamic Programming that have been devel-
oped to analyze hybrid vehicle performance [40, 16]. Particle swarm optimization has also
been used for this purpose [55, 21]. Other methods based on optimal control theory have
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also been studied [45]. These methods are only meant for simulations and cannot be used
for real world operation since they depend on complete knowledge of the drive cycle and
an extensive amount of computation. Several strategies that are designed to be run in real
time have also been studied. One promising strategy is the equivalent consumption mini-
mization strategy (ECMS) [48, 4]. Others include modified versions of ECMS including the
Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) and the Telemetry
Equivalent Consumption Minimization Strategy (T-ECMS) [11, 19]. The ECMS and its
variants attempt to find a compromise between the optimal and rule-based strategies by
converting battery power usage to an equivalent fuel usage and optimizing over the in-
stantaneous power demand. These strategies demonstrate near optimal fuel consumption
for standard drive cycles and have been tested on a prototype Mercedes A-Class vehicle
and a prototype pre-transmission hybrid based on 2002 Ford Explorer. This research has
primarily focused on vehicles with conventional internal combustion engines and very few
of these strategies have been evaluated against other types of vehicle architectures.

1.3.2 Hydrogen Fuel Cell Hybrid Control

Due to the relatively recent development of fuel cell packs sufficiently light and efficient
enough to power passenger vehicles, there is little prior work on control strategies for hy-
brid fuel cell vehicles. Lin et al. presented a stochastic approach to fuel cell hybrid vehicle
control based on Markov chain modeling and stochastic dynamic programming [10]. The
results presented showed improvements over rule-based controllers but were only presented
in simulation. Hong-wen et al. presented a control method for a small fuel cell powered
bus [22]. Two rule-based strategies were used, but no comparison to optimization based
solutions was presented. Mallouh et al. studied the effect of control strategies on the per-
formance of a fuel cell powered auto rickshaw. Several strategies were evaluated including
a variation of the ECMS and several simple strategies [32]. Mallouh et al. demonstrated
that for his particular vehicle architecture a simple strategy can provide better fuel econ-
omy numbers than more complex optimized strategies such as ECMS [32]. For the auto
rickshaw, a strategy where the fuel cell follows the trace of the power demand was shown
to provide the best fuel economy. While it is expected that similar efficiency results will be
seen for conventional SUVs, differences in the architecture, driving patterns, mass and road
loads as well as the fuel cell architecture itself are expected to result in some differences as
to which particular control strategies are shown to be most efficient.
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1.4 Overview

Three control strategies are presented here in this thesis for use on hydrogen fuel cell
powered vehicles. The first strategy is a mode switching rule-based strategy that switches
between charging and discharging the battery based on the battery state of charge. The
second strategy is a constant fuel cell power output strategy that runs the fuel cell at the
average power demand for the drive cycle and uses the battery to manage transients in the
power demand. The third and final control strategy is an adaptive equivalent consumption
minimization strategy originally demonstrated by Musardo et al. and has been modified
in this thesis to run on fuel cell based vehicles [11]. These strategies are implemented in
simulation in Matlab and then evaluated against optimized simulations developed using
quadratic programming optimization methods. It was discovered that operating the fuel
cell at a near peak efficiency using the constant fuel cell strategy provided the best fuel
economy results. The results of the far more complicated adaptive equivalent consumption
minimization strategy, while good, were consistently below the constant fuel cell strategy
results.

The constant fuel cell strategy and mode switching rule-based strategy have also been
implemented in real-world experimentation on a modified 2009 Saturn Vue which has been
refit with a completely new fuel cell based plug-in hybrid powertrain. The modified 2009
Saturn Vue is a fully functional Li-Ion/Fuel Cell Hybrid SUV developed by the University
of Waterloo Alternative Fuels Team. A significant amount of work has been done by the
team to build this vehicle which can be seen in Figure 1.1. The fuel cell hybrid vehicle
contains a 250 V lithium ion battery pack, an OEM designed hydrogen fuel cell stack with
an electric traction system for a front axle motor, a Brusa DC/DC converter and a Ballard
electric motor paired with a Rinehart inverter for a rear axle motor. Control strategy
testing was done on-road using a custom drive cycle. The experimental results showed
remarkably similar results to the simulations, demonstrating that the constant fuel cell
strategy is an effective strategy.

The research presented in this thesis has found that simpler, more practical strategies
produce very effective results for hybrid hydrogen fuel cell vehicles. More complex strategies
still produce good results however the added requirements for additional sensing methods
and more complex testing procedures that can ultimately reduce reliability make these
strategies impractical. The effectiveness of these simple strategies has been demonstrated
both in simulation and with experimental results produced using the hydrogen fuel cell
powered vehicle developed by the University of Waterloo Alternative Fuels Team.
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Figure 1.1: Modified 2009 Saturn Vue Fuel Cell Test Vehicle[53]
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Chapter 2

Background

2.1 History of Hybrid Vehicles

Hybrid vehicles have been around since the 1898 with the first hybrid being built by
Dr. Ferdinand Porsche. This hybrid car was the second car Dr. Porsche ever built and
contained an internal combustion engine powering a generator which worked in tandem
with a battery to power small electric traction motors located in the wheel hubs [1]. At
the time, the electric motor/generator in the vehicle was a key component of starting the
vehicle’s internal combustion engine. This all changed in 1913 when self-starting gasoline
powered vehicles were introduced. These simple and cheap vehicles became much more
popular than the hybrid, steam and electric vehicles of the time [1]. It wasn’t long before
the only people working with hybrid vehicles were researchers and hobbyists [1]. It wasn’t
until the 1973 oil embargo when rapid increases in oil prices rekindled global interest
in alternative energy vehicles and by extension hybrid vehicles. This was followed by
governments passing numerous resolutions and laws as well as creating incentives for cleaner
more energy efficient vehicles [1]. In 1997 Toyota introduced the very successful Prius
hybrid electric vehicle to the consumer automotive market. Since then several hybrid
vehicles using different technologies have been developed and made available to the general
public [1].
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2.2 Different Types of Hybrid Vehicles

The term hybrid vehicle refers to any vehicle that uses two or more power sources to
provide propulsion power to the vehicle. This includes all types of batteries and internal
combustion engines, fuel cells, solar panels, compressed gas based energy storage systems
such as compressed air and any other energy source which can be mounted to a vehicle
to provide propulsion power. While hybrid vehicles can use a variety of energy sources,
all hybrid vehicles can be categorized as either a series hybrid or parallel hybrid vehicle.
The terms series and parallel refer to the number of unique energy paths used to provide
propulsion. Hybrid vehicles can further be classified depending on whether or not they
have battery systems that can be charged from the electric grid using either an on-board
or external charger. Hybrids that have this capability are called plug-in hybrids. One
example of this type of vehicle is the Chevrolet Volt.

2.2.1 Series Hybrids

A series hybrid vehicle uses a single energy path to the wheels. This means that while the
vehicle has multiple energy sources such as a battery and an internal combustion engine,
only one path can exist for the wheels to receive the energy provided by those sources [30].
At some point before the wheels, the energy paths must merge to form a single path. For
example, in a conventional series hybrid electric vehicle, the mechanical energy from the
internal combustion engine is converted to electrical energy through a generator. This
electrical energy charges the battery which directly powers the wheels through an electric
motor. An example of a series powertrain architecture can be found in Figure 2.1.

2.2.2 Parallel Hybrids

Parallel hybrid vehicles are those vehicles which have multiple parallel energy paths to the
wheels. A conventional parallel hybrid vehicle will have both a battery that can power a
motor which can drive the wheels and a direct mechanical linkage to the wheels from the
engine. The two paths are typically connected through a torque coupling system which
then leads to the wheels. In this way there are two distinct energy paths available for
propulsion.

An example of a parallel hybrid architecture can be found in Figure 2.2. There are
many different types of parallel vehicles which can each be classified by the way in which
they achieve their parallel operation.
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Figure 2.1: Example of a Series Powertrain
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Pre-transmission parallel architectures like the one shown in Figure 2.2 place the trans-
mission between the torque coupler and the wheels. Post-transmission parallel architectures
instead place the transmission between the engine and the and the torque coupler. The
post-transmission architecture provides more control over the engine operating point but
is only viable for more heavily hybridized vehicles with larger electric motors which can
provide a substantial amount of torque [30]. Pre-transmission architectures on the other
hand are better suited for hybrids with small motors which only act to start and assist
the engine while also taking advantage of regenerative braking. These vehicles are often
referred to as mild hybrids [30].

Another type of parallel architecture is the separated axle parallel hybrid architecture,
shown in Figure 2.3. These vehicles have two distinctly separate powertrains. The rear
half of the vehicle is typically powered electrically by a battery and motor. The front half
is powered mechanically by the internal combustion engine. Energy can be transferred to
the battery through regenerative braking [30].

One of the more popular parallel architectures is the power-split or series-parallel ar-
chitecture. This architecture combines the standard parallel architecture and the series
architecture to get the benefits of both systems. This is the architecture used by the Toy-
ota Prius hybrid vehicle [34]. Figure 2.4 demonstrates the layout of this architecture. While
this architecture is more complicated than the others it allows for both directly charging
of the battery using the generator and directly driving the wheels using the engine. The
benefit of this is that it minimizes efficiency losses and allows the vehicle to operate as
either a full series of a full parallel depending on what will provide the best fuel economy
and lowest emissions at any given time [34].

2.2.3 Hydrogen Fuel Cell Hybrids

Hydrogen fuel cell hybrid vehicles are a unique version of the series architecture. The
primary difference between fuel cells and internal combustion engines from a powertrain
design perspective is that while internal combustion engines produce mechanical energy
which must later be converted to electrical energy to charge the battery, fuel cells directly
produce electrical energy. This fundamental difference eliminates the need for a generator
to charge the battery from the fuel cell. The generator is instead replaced with a DC/DC
converter to regulate the voltage between the fuel cell and battery. A simple fuel cell
architecture is shown in Figure 2.5.

The fact that both devices use electrical energy inherently means that hydrogen fuel
cell hybrid vehicles are mostly built as series vehicles with only one electrical energy path.
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Figure 2.2: Example of a Parallel Powertrain

Removing the conversion from mechanical to electrical energy between the fuel cell and
battery inherently results in fewer losses when charging the battery in this architecture.

Besides the fewer efficiency losses through energy conversion, fuel cell hybrids have
several other benefits over conventional hybrids [29]. Fuel cells do not have as many moving
parts which not only reduces noise and vibrations but also the need for maintenance as
there is less wear on the internal components. Hydrogen fuel cells also do not have the
harmful emissions that internal combustion engines produce. The only tailpipe emission
produced by a hydrogen fuel cell vehicle is water vapour.

Hydrogen, however, does still have some disadvantages that must be overcome before
it can become a practical fuel source. The main disadvantage of using hydrogen as a
fuel source is that the infrastructure required to fuel hydrogen vehicles does not yet exist.
There is a substantial financial investment required to upgrade the existing gas stations
to support hydrogen fueling. In addition to this, there is still some public concern over
the safety of using hydrogen as a fuel source. A very high level of safety is required in the
hydrogen storage system to protect against hydrogen leaks and damage to the compressed
hydrogen storage tanks.

While there are still some disadvantages in using hydrogen as a fuel source, with ad-
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Figure 2.3: Example of a Separated Axle Parallel Powertrain
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Figure 2.4: Example of a Power-Split or Series-Parallel Powertrain
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ditional research, the benefits of hydrogen fuel cells can make hydrogen a very promising
future power source for hybrid vehicles.

2.3 Conventional Hybrid Control Strategies

With the automotive industry pouring substantial funding into hybrid vehicle development,
a significant amount of research has been done in all aspects of hybrid vehicle development,
including battery modeling and sizing of battery systems for expected vehicle drive cycle
loads [2, 36]. Significant work has also been done on battery state of charge and capac-
ity estimation [46, 35]. One field that has received a significant amount of attention is
powertrain control.

The seemingly simple change of adding a battery to act as a secondary power source
introduces a new degree of freedom for vehicle control. It is now possible to decouple
the engine’s operating point from the instantaneous power demand and use the battery’s
power storage capabilities to operate the engine at far more efficient operating points as
well as recapture propulsion energy through regenerative braking. The problem of how to
make the most of this new degree of freedom by getting the best fuel economies and the
lowest emissions without sacrificing performance and reliability is a very difficult problem
to find a good solution for. Finding the best solution to this hybrid control problem is an
important area in automotive controls research.

2.3.1 Rule-Based Control

Most modern hybrid vehicles employ rule-based control strategies which trigger based on
battery state of charge (SOC) changes and component power limits. One typical con-
trol strategy used by hybrid vehicles is the on/off strategy which is found on the Toyota
Prius [39]. This basic strategy turns on the engine only when the vehicle’s battery is at a
low state of charge or the power demand of the vehicle cannot be satisfied by the battery
alone [12]. The engine is operated at a high efficiency point and turned off when it is no
longer needed. Another strategy that is typically used on hybrids is the blended or con-
tinuous operation strategy which runs the engine at all times, except possibly when idling,
and uses the battery to supplement power demands to better control the operating point
of the engine as well as to take advantage of regenerative braking. The strategy selected
depends in part on the exact nature of the hybrid vehicle’s architecture.
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Figure 2.5: Example of a Fuel Cell Powertrain
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Figure 2.6: Example of Plug-in Hybrid Vehicle Operation Modes [3]

A special note needs to be made about control strategies for plug-in hybrid electric
vehicles (PHEVs). For the most part plug-in hybrid control strategies function the same
way as other hybrid control strategies [3]. The main difference in PHEVs is that PHEVs
can be charged via an external charger and as such can initially have additional energy
stored in the battery. PHEVs typically have much larger battery systems as a result and
can travel a notable distance entirely on battery power. During the early stages of a driving
mission, the vehicle typically operates in a charge depleting mode where, either through
blending or operating in an electric only mode, the vehicle discharges the battery from its
higher charge level to a lower level. Once at the lower charge level the vehicle switches
to a more conventional hybrid control strategy. This second mode is referred to as the
charge sustaining mode. A plot of the battery state of charge for an example of this type
of operation is shown in Figure 2.6.

2.3.2 Optimal Control

A significant amount of research has been done on vehicle control in recent years. This
is in no small part due to rising energy prices and the resultant reintroduction of hybrid
vehicles into the normal consumer market. Much of this research has revolved around using
optimization techniques to improve vehicle fuel economy.
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Fuel Economy Units

Hybrid Optimal Solution 44.44
mpg

Non-Hybrid Vehicle 41.55

Table 2.1: Convex Optimization Results for Partial FTP Drive Cycle [51]

Convex Optimization

The most direct method of finding the optimal solution to the hybrid control problem is
to directly use a nonlinear convex optimization technique. This method was demonstrated
by Tate and Boyd where they use this approach to find the optimal fuel consumption of
a series hybrid powertrain [51]. Tate and Boyd begin by first defining their system model
as their key powertrain components; a spark ignition engine, a lead acid battery and an
electric motor. The key operating constraints of these components are then defined. This
includes battery storage and charge/discharge rate limits, engine power and slew rate limits
as well as regenerative brake power limits. A drive cycle is then expressed in terms of power
demands from the battery, engine and motor and a continuous time cost function is defined
as the total fuel consumption of the engine throughout the drive cycle. This forms the basis
of the optimization problem. The goal of the optimizer is to solve the optimization problem
so as to minimize the fuel consumption while satisfying the constraints of the system [51].
While this problem is solvable, it is still complex. To simplify this problem for use with
common optimization tools, Tate and Boyd redefine the problem as a Linear Program by
discretizing it and redefining the constraints in LP form [51]. To demonstrate the validity
of this approach Tate and Boyd performed an optimization for their vehicle using the
first 1371 seconds of the FTP drive cycle [51]. Table 2.1 shows the results of Tate and
Boyd’s optimizer compared to the same vehicle in a non-hybrid configuration. In their
conclusions it is noted that the problem definition did not allow for turning off the engine
which explains the low fuel economy produced by the optimizer. Tate and Boyd claim
that with additional this approach can be expanded to include on/off operation which will
allow for much better fuel economy results [51].

Dynamic Programming

One of the most common optimization techniques used in vehicle controls research is dy-
namic programming. Dynamic programming is a class of optimization methods that work
by breaking the optimization problem down to several smaller problems that can be solved
or optimized sequentially [40].
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Control Strategy UDDS US06 ECE-EUDC HWFET Average Units

Dynamic Programming 4.27 4.47 3.76 2.88 3.845
L/100kmRule-Based Strategy 4.3 10.5 7.8 7.9 7.625

Conventional SUV 11.7 12.8 11.9 8.6 11.25

Table 2.2: Dynamic Programming Simulation Results [40]

These approaches work by constructing a cost function based on the instantaneous fuel
consumption for the driving mission. The cost function is defined as a summation of the
current cost and a cost to go to the end point. The optimization starts from the end
point and works backward to all possible solutions reachable in the previous time step. It
relies on the principle of optimality, which states that the final solution to the optimization
problem can only be optimal if all the solutions to the separate sub-problems in the full
optimization problem are optimal.

Dynamic programming’s main flaw is that it is computationally intensive [11]. Qiuming
Gong uses dynamic programming in his paper entitled Optimal Power Management of Plug-
in HEV with Intelligent Transportation System where he proposes an improved control
strategy based on dynamic programming which uses traffic and GPS data to predict road
loads [40]. His strategy was implemented on a model of a parallel plug-in hybrid SUV and
tested against the UDDS, US06, ECE-EUDC and HWFET drive cycles. Table 2.2 shows
the results of Gong’s research.

Based on his results the average fuel economy of the dynamic programming based
control in the charge depleting mode is 3.845 L/100 km which corresponds to a 49.6%
improvement over a typical rule-based control strategy and a 65.8% improvement over a
typical SUV [40]. These results demonstrate that there is a considerable improvement in
fuel economy of hybrids over non-hybrid vehicles. At the same time, as effective as basic
rule-based strategies are, there is still room for improvement and advanced optimization
based strategies such as the one proposed by Qiuming Gong demonstrate this. This however
comes at a cost of complexity since Gong’s strategy carries with it the requirement for
accurate, up to date, and consistently available GPS and traffic data or another alternative
means of predicting the drive cycle to a highly accurate degree [40]. Despite this, Gong does
still demonstrate the limitations of simple rule-based strategies and that better strategies
are needed to achieve the best possible results.

Dynamic programming was also implemented by Dominik Karbowski from Argonne
National Labs and optimizes based on changes in the state of charge for the battery [16].
Using dynamic programming, Dominik Karbowski finds the optimal solutions for use on a
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plug-in parallel pre-transmission hybrid for various standardized drive cycles. This opti-
mal solution is then evaluated and used to create an improved rule-based strategy which
Karbowski uses in the PSAT simulation tool [16]. The intent is that these drive cycles for
which the simple strategy has been optimized will closely reflect the driving patterns of the
actual drivers of the vehicle. This in turn yields a better fuel economy and lower energy
consumption. Figure 2.7 shows the power consumption for the total vehicle, the engine
and the battery in both the optimal solution and the simulated rule-based strategy. The
results are shown on a plot against the distance traveled for ten consecutive NEDC drive
cycles.

Karbowski developed his optimized rule-based strategy for a range of close to 40 km [16].
Karbowski’s results show that his simulated rule-based strategy shows very promising
results up to about 40 km at which point the vehicle switches from a charge depleting
mode to a charge sustaining mode and starts consuming substantially more energy from
the engine. The optimal solution instead uses the battery power much more gradually and
does not need to switch into the charge sustaining mode of operation. The optimal solution
is able to retain better control over the engine operating points throughout the remainder
of the driving mission as shown in Figure 2.8. The end result is that the rule-based strategy
consumes substantially more overall energy than the optimal solution.

Based on these results, the inability to predict the mission length leads to a strategy
that operates the engine at some highly inefficient points towards the end of the mission
which resulted in a 60% increase in input energy consumption [16]. Karbowski states in
his conclusions that it is best to gradually discharge the battery to its lowest acceptable
state of charge throughout the entire driving mission [16]. It is therefore best to always
operate in a charge depleting mode since this provides the best flexibility for controlling
the engine’s operating point, while still using the energy stored in the battery as much as
possible. Since the mission length is not known, it is difficult to develop a simple optimal
solution for all operating distances. Karbowski’s results demonstrate that simple SOC and
power limit rule-based strategies are inherently flawed and there is significant room for
improvement.

Particle Swarm Optimization

Another optimization method that has been proposed is a modified version of particle
swarm optimization [55]. The principle logic behind particle swarm optimization is that
a set of solutions for the power split problem are created with a position and velocity in
a multidimensional solution space. Each solution is evaluated based on fuel consumption
and each solution is updated based on the velocity and distance from the current best
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Figure 2.7: Input Energy Consumed for Rule-Based Simulation and Optimal Solution [16]
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Figure 2.8: Engine Operating Points for Rule-Based Simulation and Optimal Solution [16]
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PSAT Controller Particle Swarm Units

Fuel Consumption 160.7 192.8 mpg
Electrical Consumption 114.64 119.10 Wh/mile

Powertrain Path Efficiency 49.53 53.72 %
Energy Recovered at Battery 34.29 61.92 %

Table 2.3: Simulation Results for Particle Swarm Optimization [21]

solution. This is repeated for several iterations until the optimal solution is found within
a defined degree of certainty [55]. In 2009, Banvait et al. demonstrated this approach for
a parallel plug-in hybrid and compared the results against the rule-based control strategy
used by the PSAT vehicle modeling and simulation tool [21]. The vehicle model was run
with both strategies against a UDDS drive cycle. The results are shown in the Table 2.3.

Banvait et al. demonstrates that the particle swarm optimization yields a significant
gain of 32.8 mpg which corresponds to a 4.19 % increase in bidirectional path efficiency and
a 27.63 % increase in energy recovered by the battery [21]. This demonstrates that there
is substantial room for advancement over basic rule-based control strategies particularly
for plug-in hybrids.

Limitations of Optimal Control

The implementations of convex optimization, dynamic programming and particle swarm
optimization all show that there is notable room for improvement over standard rule-based
strategies for conventional hybrid vehicles. In many cases the rule-based strategies only
performed well for specific drive cycles, examples of which can be seen in Table 2.2 and
Figure 2.7.

As effective as optimal control techniques are, they have one significant limitation that
is common among all the techniques that have been discussed. This limitation is that
in order to determine the optimal solution it is necessary to have complete knowledge of
the drive cycle. While it is possible to obtain the required knowledge to perform these
optimizations in real-time, the complexity of the sensing systems needed to predict the
drive cycle with the required accuracy makes real-time implementation impractical. As
such, these optimization methods are only usable as benchmarking tools and guidelines
that can be used to develop and evaluate other control strategies. To overcome these
limitations more advanced strategies that can be run in real-time have been developed.
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Driving Cycle Dynamic Programming ECMS

UDDS 1 1.017
US06 1 1.017

FTP highway 1 1.009

Table 2.4: Relative Comparison of Dynamic Programming and ECMS Fuel Consump-
tion [28]

2.3.3 Equivalent Consumption Minimization Strategy

One strategy that was proposed to overcome many of the downfalls of other optimal
strategies is the equivalent consumption minimization strategy (ECMS). This strategy
was demonstrated by Antonio Sciarretta [48]. The basic premise of this strategy is that
energy stored in the battery comes at the cost of fuel consumed at another point in the
vehicle’s operation [48]. Using this knowledge, the global optimization for the power split
over the entire driving mission can be reduced to a series of instantaneous optimizations
where battery usage is given an equivalent fuel cost. The battery energy is added to the
fuel consumption optimization calculation as shown in Equation (2.1).

ETotal = EICE + s× EB (2.1)

This equation shows the change in total instantaneous fuel energy used by the vehicle
as a function of fuel energy consumed by the engine and equivalent fuel energy consumed
by the battery. The s term is called the equivalence factor which is used to convert battery
energy to equivalent fuel energy [48]. Each driving mission has two equivalence factors, one
that is used when charging the battery and one that is used when discharging the battery.
The value of the equivalence factors used to achieve optimal performance are dependent
on the driving mission and can be determined by experimentation [48].

Serrao et al. performed a comparision between the ECMS and dynamic programming
methods which is presented in Table 2.4 [28]. All the values presented in Table 2.4 are
normalized with respect to the Dynamic Programming results. The results presented in
Table 2.4 demonstrate that the ECMS is capable of achieving fuel economy values that are
very close to the results generated by optimal controllers which cannot be used in real-time.

Variations to the ECMS strategy have been developed to calculate equivalence factors
while driving the vehicle based on data that is available to the vehicle’s controller.
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Control Strategy FUDS FHDS ECE EUDC NEDC JP10-15 Units

Dynamic Programming 25.7 26.0 24.5 24.8 24.5 25.2
mpg

ECMS 25.7 25.8 24.5 24.7 24.5 25.1
A-ECMS 25.5 25.8 24.5 24.7 24.4 24.8

Table 2.5: A-ECMS Simulation Results [11]

Adaptive Equivalent Consumption Minimization Strategy

One modified version of the ECMS strategy is called the Adaptive Equivalent Consumption
Minimization Strategy (A-ECMS). This strategy is demonstrated in a paper by Musardo
et al. and is implemented on a simulation of a pre-transmission parallel hybrid vehicle [11].
The basic principle behind A-ECMS is to simplify the ECMS optimization problem by
adding an additional algorithm to generate a single equivalence factor in real time. The
equivalence factor is determined by taking past and predicted data, along with the vehicle’s
current operating conditions and then using this to generate a prediction of the vehicle’s
mission while it is being driven. The algorithm presented requires GPS data and is designed
to easily adapt to changes in the drive cycle [11]. Table 2.5 shows the results of the A-ECMS
strategy for various drive cycles.

Based on the results presented in Table 2.5, the A-ECMS strategy shows a small de-
crease in performance when compared to the ECMS strategy, although it is still very close
to the optimal result. In many cases the differences are not even measurable at the resolu-
tion presented in the report. This strategy is still limited by a requirement for GPS data
which makes it difficult to implement.

Telemetry Equivalent Consumption Minimization Strategy

Telemetry ECMS (T-ECMS) is another variation on the ECMS strategy. This strategy is
based on stochastic control methods [48]. The basic principle states that the equivalence
factor can be simplified to a single value that is bounded between two values based on
the optimal values that have been computed for similar driving conditions [4]. The idea
is that these values are stored in the controller and selected based on patterns in the
vehicle’s operation. The equivalence factor can be calculated as a function of these two
values and the probability that the battery is being discharged overall [4]. This is shown
in Equations (2.2) and (2.3).

s = p× sdis + (1− p)× schg (2.2)
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Control Strategy MVEG-A ECE JP10-15 Units

Optimal 3.18 2.82 2.90
L/100 km

T-ECMS 3.21 2.94 2.97

Table 2.6: T-ECMS Simulation Results [4]

p =
Emax

Emax − Emin

(2.3)

The optimal equivalence factors for the known similar drive cycle are represented by
schg and sdis for the charging and discharging values respectively while the probability that
the battery is being discharged throughout the drive cycle is represented by p and the final
resulting equivalence factor is represented by s. The maximum possible electrical energy
used for the mission is represented by Emax while Emin is the minimum possible electrical
energy used for the mission [4]. Simulated results for various drive cycles are show in
Table 2.6.

Based on these results, T-ECMS provides a result that is very close to the optimal
solution with the difference being close to 0.1 L/100 km. This strategy does still require
some knowledge of the expected drive cycle and future road loads which makes it difficult
to implement.

2.4 Fuel Cell Hybrid Control Strategies

Due to the relatively recent development of fuel cell systems designed for use in passenger
vehicles, there is little prior work focusing on control strategies for hybrid fuel cell vehi-
cles. Much of the fuel cell based hybrid vehicle research has focused either on the design
of the vehicle itself or on the design or control of the inner components of the fuel cell.
Many researchers have been involved in developing models of different fuel cell systems and
researching long term performance degradation [18, 49, 26, 47]. Dumercy et al. in partic-
ular has done substantial research on thermal modeling of fuel cell systems. [27]. Other
researchers have studied PEM fuel cell modeling from a control oriented approach [24].
Several reviews and comparisons of the different fuel cell models which have been devel-
oped, have been published [6, 13, 23]. Ahluwalia et al. has extensively studied the energy
efficiency of fuel cell systems and how to best achieve peak efficiency operation by reducing
parasitic loads and ensuring the fuel cell operates near its peak efficiency operating region
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as often as possible [42]. A substantial amount of fuel cell development research has fo-
cused particularly on the development, modeling and testing of various different membrane
materials [43, 17, 5, 56]. Some researchers have performed extensive research on the design
of fuel cell vehicles [7, 14, 15]. Sundstrom et al. in particular, has studied component
sizing for fuel cell vehicles [50].

Despite the focus on lower level fuel cell design and control research, there are some
researchers in the hybrid vehicle control field that have studied hybrid control for fuel
cell based vehicles. The existing research includes simulations of theoretical control ap-
proaches based on optimal control theory as well as studies of rule-based strategies and
their corresponding performance. There has, however been very little on-road testing done.

2.4.1 Stochastic and Rule-Based Control Strategies

Lin et al. presented a stochastic approach to fuel cell hybrid vehicle control based on
Markov chain modeling and stochastic dynamic programming [10]. The approach taken
by Lin et al. begins by developing a reduced-order fuel cell model for a theoretical fuel
cell system including all the auxiliary components such as the compressor, humidifier and
cooler. Models for a DC/DC converter, Li-ion battery pack, electric motor/inverter and
the vehicle itself are then produced.

The driver’s demand is modeled as a discrete-time stochastic dynamic process. The
changes in the power demand are tracked in a Markov chain, which is a series of mathe-
matical state equations that define a finite set of interconnected operating states [10]. The
optimization process itself uses an infinite dynamic optimization problem where the cost
function is a direct function of the hydrogen consumption rate and the deviation of the
SOC from a desired reference SOC [10].

Lin et al. evaluates this approach against a simple rule-based control strategy defined
by Equation (2.4) where PFC,req is the fuel cell power request, Pmbr is the electrical power
demand of the motor, SOCdes is the desired SOC, PFC,chg is a constant power level and
SOCmin and SOCmax represent the minimum and maximum limits of the SOC.

PFC,req = max (Pmbr, 0) +
SOC − SOCdes

SOCmax − SOCmin

× PFC,chg (2.4)

The results of this work are shown in Table 2.7. The results presented showed improve-
ments over rule-based controllers but made no mention of real-time implementations.
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Drive Cycle Rule-based (g/km) Stochastic (g/km) Improvement (%)

UDDS 9.33 8.86 5.0
LA92 12.64 12.14 4.0

HWFET 10.82 10.69 1.2
SC03 10.27 9.61 6.4
US06 18.79 18.09 3.7

NYCC 12.34 11.33 8.2

Table 2.7: Stochastic Simulation Results [4]

2.4.2 Fuel Cell Vehicle Modeling with Mode Based Control

Ning et al. developed a fuel cell vehicle model in Simulink and demonstrated its imple-
mentation using a simple mode based control strategy containing six unique operating
modes [41]. The control strategy was developed to guarantee that at any given time the
total power from the battery system and fuel cell would meet the traction motor power
demand. The focus of the research was on developing an accurate model of the fuel cell
and not evaluating the control strategy or fuel economy data.

2.4.3 Design and Control of a Fuel Cell Powered Bus

Hong-wen et al. designed a small fuel cell powered bus and proposed two rule-based
strategies for controlling the bus’s hybrid powertrain [22]. The first rule-based strategy
operates the fuel cell between different modes with an On/Off operation and uses the
fuel cell to follow changes in the power demand with the battery operating at a constant
set-point proportional to its current SOC. This mode switching strategy is described by
Figure 2.9. Si is the on/off operating mode of the engine, k is the current time-step, Pf

is the power demand and cSOC is the state of charge of the battery represented as a value
from zero to one. The fuel cell is always on in the light blue area and always off in the
dark blue area. The remaining area is a transition area where the fuel cell maintains its
on/off state from the previous state that it was in.

The second strategy is an enhanced rule-based strategy and uses similar logic to the
mode switching strategy but includes some notable differences. The first is that if the
vehicle is braking, the fuel cell ignores the current operating mode and operates at a
predefined minimum power set-point. The second is that the battery SOC is now controlled
using a target set-point as well as defined upper and lower bounds. If the SOC is above a
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Figure 2.9: Control Logic for the conventional Fuel cell output power oriented Control
Strategy [10]
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Figure 2.10: Driving cycle for the simulation experiments [10]

Mode Switching Strategy Enhanced Rule-Based Strategy

Simulation Results 2.7144 kg/100km 2.5054 kg/100km
Experimental Results N/A 2.464 kg/100km

Table 2.8: Fuel Cell Powered Bus Results [10]

desired target SOC, the desired battery charging power from the fuel cell is set to zero and
the battery discharges slowly based on system transients that cannot be handled by the
relatively slow fuel cell. The third is that the fuel cell is now always on in the transition
area of Figure 2.9.

The two strategies were tested in simulation on a custom drive cycle as shown in
Figure 2.10. Both the mode switching and enhanced rule-based strategies were tested in
simulation with the enhanced rule-based strategy showing better results. The enhanced
rule-based strategy was then tested on the actual bus. The simulation and experimental
results are shown in Table 2.8.

2.4.4 Control of a Fuel Cell Powered Rickshaw

Mallouh et al. studied the effect of different control strategies on the performance of a fuel
cell powered auto rickshaw. Using PSAT, a model of a fuel cell powered auto rickshaw

29



Control Strategy Fuel Economy Initial SOC Final SOC

Fuel Cell Load Following Strategy 1.82 L/100km 60.00% 59.97%
Battery Load Following Strategy 1.88 L/100km 60.00% 58.21%

Fuel Cell Optimized Strategy 1.86 L/100km 60.00% 59.89%
Modified ECMS 1.84 L/100km 60.00% 54.58%

Table 2.9: ECMS Results for Auto Rickshaw Simulation [32]

was developed and four different control strategies were tested in simulation. The rickshaw
powertrain is comprised of an 8 kW motor, a 1.5 kWh Li-ion battery system and a 4.4 kW
hydrogen fuel cell. The first control strategy tested is a modified ECMS strategy where
the cost function, shown in Equation (2.5) is the sum of the power output by the fuel
cell added to the adjusted equivalent battery power output. Only one equivalence factor
is used and it is directly calculated as a function of the DC/DC converter, fuel cell and
battery efficiencies as shown in Equation (2.6).

J = PH2
FC + PH2

batt (2.5)

s =
ηbatt

ηFC × ηDCDC

(2.6)

The second strategy evaluated is a fuel cell load following strategy where the fuel cell
provides the full power demand up to its peak output at which point the battery provides
the remaining power. The fuel cell charges the battery when the battery state of charge,
SOC, drops below a predefined set-point. The third strategy is a battery load following
strategy where the battery provides the full power demand up to its maximum output at
which point fuel cell is switched on to provide the remaining power. As with the second
strategy, the fuel cell is used to charge the battery when the SOC goes below a predefined
set-point. The final strategy evaluated is called the fuel cell optimized strategy and sets
the fuel cell to its peak efficiency operating point. The battery manages all transients.
When the battery SOC drops below a minimum set-point the fuel cell switches modes and
starts charging the battery while also meeting the full power demand. Table 2.9 presents an
evaluation of these strategies in simulation for a custom drive cycle. For the auto rickshaw,
a fuel cell load following strategy was shown to provide the best fuel economy.

The results presented by Mallouh et al. demonstrate a viable fuel cell control strategy
for fuel cell powered rickshaws. Rickshaws, however, have very different dynamics when
compared to many other vehicles, such as the vehicle presented in this thesis. Furthermore,
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the fuel cell system and battery were substantially smaller than the ones used in the test
vehicle presented in this thesis and all tests were only performed in simulation without
experimental results to validate the performance in real-world applications. It is therefore
necessary to test hybrid fuel cell control strategies against other vehicles in order to ensure
that these results remain constant for different types of vehicles and to further validate
these results with on-road testing.
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Chapter 3

Fuel Cell Hybrid Vehicle Testbed

The research presented in this thesis uses a custom built Li-ion fuel cell hybrid vehicle
as a test bench. This vehicle is based on a 2009 Saturn Vue and was originally built by
the University of Waterloo Alternative Fuels Team (UWAFT) for the three year EcoCAR
competition [53]. The author of this work’s role on the student team during the EcoCAR
competition was that of a controls team member. Primary responsibilities were to develop
the hybrid control strategy and the control code necessary to operate the rear motor. This
included configuring and tuning the rear motor controller for the specific motor that was
used as well as developing supervisory control logic for the vehicle. This also involved
assisting with the various electric and mechanical tasks required to build the vehicle in-
cluding battery pack manufacturing, DC/DC testing, high voltage wiring, cooling system
design and various other tasks.

The EcoCAR competition is part of a series of typically three year competitions spon-
sored by several other organizations involved in the automotive industry [53]. The goal
of these competitions is to train students in the skills needed to work in the automotive
industry by having them build customized vehicles that incorporate some of the newest
and most advanced vehicle technologies currently available. The competition sponsors pro-
vide substantial funding and support to the student teams by providing them access to
a substantial amount of automotive hardware, software and tools which allows the teams
to build technologically advanced, fully functional, road-safe vehicles. Many universities
across North America apply to participate in these competitions with only a few being ac-
cepted based on the team’s available facilities, technical capability and university support.
The University of Waterloo has a long history of competing in these competitions and is
one of sixteen universities to compete in the EcoCAR competition.
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In June 2011, UWAFT completed the three year EcoCAR competition. For this com-
petition, the team built a Plug-in Hybrid Hydrogen Fuel Cell / Li-Ion Battery powered
Saturn Vue which placed third of sixteen in the competition. This vehicle was one of only
two fuel cell vehicles to participate in the competition and was noted as having excellent
drivability with the vehicle just missing first place in the autocross competition by 0.026
seconds. This vehicle was also noted as having a high reliability as the vehicle performed
without any hardware or software failures throughout the final competition while perform-
ing well in all stress testing events. This combined with the zero tailpipe emissions allowed
the vehicle to perform exceptionally well throughout the final competition.

From September to December 2011, this vehicle was used to test control strategies as
part of the research outlined in this thesis. In early January 2012, the hydrogen storage
tanks from the vehicle were removed and returned to the OEM. In the summer of 2012,
the fuel cell stack and front motor were removed and also returned. This vehicle has since
been restored as a full electric rear wheel drive vehicle with a new 12 V deep cycle battery
bank to provide 12 V power.

This test platform has many advantages. Besides using an industry designed and man-
ufactured fuel cell system that was intended for automotive applications, the fact that the
vehicle was developed by the university allows for complete unrestricted access to the ve-
hicle’s supervisory control software. This allows for complete freedom in the development
and testing of various control strategies without having to bypass any additional software
or hardware to enforce the operation of the strategy. The only limitations of this platform
are the availability of hydrogen and the return deadline for the hydrogen storage system
which limited the amount of testing that could be completed.

3.1 Vehicle Powertrain Architecture

This section provides a detailed description of the test vehicle built by the student team
to clearly outline the vehicle architecture which is used in deriving a model of the vehicle
used in simulation in Section 3.3.

The powertrain for the Li-ion hydrogen fuel cell hybrid vehicle used in this research is
shown in Figure 3.1. The vehicle powertrain is split into two main high voltage electric
buses connected together through a Brusa DC/DC converter. The high side of the bus
runs at a voltage that is consistently above the 250 V battery system and is comprised
of a fuel cell, an electric motor and inverter combination and an integrated 12V DC/DC
converter. The low side of the bus runs at a nominal 250 V and is comprised of a 250 V
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Figure 3.1: Vehicle Powertrain Architecture

battery pack, a Brusa battery charger, a Rinehart inverter and Ballard electric motor. The
Brusa DC/DC converter acts as a gateway between the two buses and regulates the power
flow in order to allow for charging and discharging of the battery as well as driving the
front motor using the battery or the rear motor using the fuel cell. Key operating limits for
these components are shown in Table 3.1 where PFC is the fuel cell power output, PFCSlew

is the slew rate of the fuel cell power output, PB is the battery power output, IDC/DC is
the current passing through the DC/DC converter, PFM is the power of the front motor
and PBM is the power of the rear Ballard motor.

3.1.1 Hydrogen Fuel Cell System

The fuel cell system used in this vehicle was originally developed for a hydrogen fuel cell
vehicle program. For the EcoCAR competition, the hydrogen fuel cell system was directly
taken from this program so that these systems could be integrated into a 2009 Saturn Vue.
The fuel cell system was provided under the agreement that it would be returned at the
end of the competition. The donated fuel cell system is comprised of three
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Component Limit

Fuel Cell
0 kW ≤ PFCi

. 100 kW
|PFCSlew

| . 40 kW
250 V Battery −38 kW ≤ PBi

≤ 98 kW
DC/DC Converter

∣∣IDC/DC

∣∣ ≤ 150A
Front Motor |PFM | ≤ 110 kW

Ballard Motor |PBM | ≤ 67 kW

Table 3.1: Key Component Operating Limits

The hydrogen storage system contains three hydrogen tanks designed specifically for use
in automotive applications. Integration of the hydrogen storage system posed a significant
challenge. While the tank system was intended to fit within a normal vehicle, the addition
of the rear motor to the vehicle architecture resulted in the tank system moving into the
passenger cabin and replacing the rear seats.

The fuel cell stack is a proton exchange membrane fuel cell which uses hydrogen and
the ambient air to produce electrical energy with water vapour as a byproduct. The fuel
cell runs at a peak power output of approximately 100 kW.

Integrated into the fuel cell stack is a 12 V DC/DC converter which takes the power
currently on the high voltage bus and converts it into the 12 V power needed for the all
the 12 V systems in the vehicle. This power can be sourced from either the fuel cell or the
battery. When not active, a small 12 V battery provides the 12 V accessory power to the
vehicle which is also required for start up.

3.1.2 Traction System

The vehicle uses a four wheel drive traction system comprised of two electric motors, one for
each axle. The front motor is part of the integrated fuel cell system and sits at the bottom
of the fuel cell. The front motor has a maximum power output of 110 kW. The rear motor is
a Ballard electric traction motor originally sourced from the team’s last competition vehicle
based on a Chevrolet Equinox. The rear motor has a maximum power output of 67 kW and
is powered by a Rinehart PM100 inverter. This motor was rebuilt by the team in order to
fix issues with oil leaks and noise. The rear motor suffers from substantial electrical noise
issue which required that the motor communication be isolated from the rest of the vehicle
and wired directly into the supervisory controller. Additionally, the motor had significant
issues with torque shudder which caused the vehicle to shake violently at certain speeds
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Figure 3.2: Rear Traction Motor with Subframe[53]

and required a substantial amount of tuning to eliminate. The rear motor and its custom
built subframe can be seen in Figure 3.2.

3.1.3 DC/DC Converter

Initially, the vehicle was designed to run with a custom built 110 kW bidirectional buck-
boost DC/DC converter designed by the student team. This DC/DC converter would be
built by one of the student team’s graduate students as a PhD research project. Unfor-
tunately due to time constraints and issues with getting the DC/DC converter to work
reliably, the custom DC/DC converter was dropped and replaced with an off the shelf
DC/DC converter provided by Brusa and purchased with money donated by Natural Re-
sources Canada. The Brusa DC/DC converter is shown in Figure 3.3. The DC/DC con-
verter used is a BDC412 bidirectional DC/DC converter with dedicated high and low sides
as opposed to dynamically switching sides supported by the custom DC/DC converter.
This DC/DC converter is used to connect the battery and fuel cell high voltage buses and
regulates power flow between the two high voltage systems.
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Figure 3.3: Brusa DC/DC Converter

3.1.4 Energy Storage System

The energy storage system is comprised of two major components, a Brusa NLG513-Sx
battery charger and a 250 V battery pack. The Brusa charger is shown in Figure 3.4 and is
used to add plug-in charging capability to the vehicle’s battery system. The Brusa charger
directly communicates with the battery using CAN.

The battery pack, shown in in Figure 3.5, is a lithium ion battery pack and functions
as the high voltage energy storage system for the vehicle. The battery provides power to
the two electric motors and the 12 V DC/DC Converter. The battery can operate with or
without the fuel cell system being enabled, allowing for an electric only operating mode as
well as a full hybrid mode.

3.1.5 CAN Bus Communication System

The main method of communication used to coordinate the operation of the various com-
ponents in the vehicle is the CAN Bus. The vehicle’s CAN bus architecture is comprised
of seven separate CAN buses. Figure 3.6 shows a simplified diagram of this CAN bus
architecture with the standard GM controllers and sensors reduced to single nodes.

At the center of the CAN bus is the dSPACE MicroAutoBox (MABX) which acts as
the supervisory controller for the vehicle. The vast majority of the high level control logic
written by the various members of the team is running on this hardware. The four CAN
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Figure 3.4: Brusa Charger[53]
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Figure 3.5: 250 V Battery Pack[53]

buses the MABX interfaces with are the only CAN buses that need to be directly controlled
in order to operate the vehicle.

PTECAN is the powertrain expansion bus and is part of the original vehicle as is the
Single Wire GMLAN CAN bus. High Speed GMLAN is also part of the original Saturn
Vue CAN bus architecture. This CAN bus originally controlled the various components
of the stock vehicle. Much of the functionality of this CAN bus has been removed and
replaced with the functionality of the new buses. The original signals transmitted by these
now missing components are being replicated by the MABX. The main use of this bus is
to interface with the Body Control Module (BCM) and read various vehicle sensors while
maintaining important stock vehicle functionality such as the ability to use the original
vehicle starting system, locks, power windows, lights and gauges.

Fuel Cell CAN is the CAN bus used by the MABX to control the fuel cell both during
start up and normal operation. Control is primarily handled by sending power requests
to the fuel cell system (FCS) which will cause the fuel cell’s internal controller to manage
the various internal components of the fuel cell as well as communicate with the hydrogen
safety controller to produce the appropriate amount of power. These components will also
read the hydrogen sensors which are also located on the CAN bus and automatically shut
down when a serious hydrogen leak is detected. The fuel cell system communicates with a
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Figure 3.6: CAN Bus Architecture
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data logging system through the FCI CAN bus.

High Voltage CAN is used to manage the high voltage battery system and related
components in the vehicle. The BMS is the controller for the battery system. It is primarily
used to report the battery status to the rest of the vehicle. The front traction motor has
its own controller which is controlled through CAN by the MABX. The Human Machine
Interface (HMI) is a dash mounted display that is used to report key vehicle operating
parameters to the driver. This includes vehicle operating mode, diagnostics, battery state
of charge and voltages for both the high a low voltage batteries. The Mototron MT112 is a
secondary controller which runs software developed by the team to directly supply power
to pins on various hardware components based on commands received from the MABX.
The Mototron was used to address current draw limitations that exist within the MABX
hardware.

The Rinehart inverter has its own CAN bus called Rear Motor CAN. This bus is used to
control the rear motor and was implemented as a separate bus to address noise issues caused
by the inverter when it was originally placed on the High Voltage CAN bus. Commands
are sent directly from the MABX.

3.2 Vehicle Software Architecture

The MABX is used as the supervisory controller for the vehicle. All high level decision
making is done here. The MABX code is written using Simulink. At the highest level the
control code is broken into three sections which interface with the sensing and actuation
systems of the vehicle as shown in Figure 3.7.

3.2.1 Diagnostic Subsystem

The first section is the Diagnostics subsystem. This subsystem is responsible for detecting
component failures and setting component state control flags which indicate the current
operating mode of the individual hardware components. The detected failures and com-
ponent flags are used later in the code to inform the high level control code about any
issues or commands to which it must respond and to facilitate switching vehicle operating
modes.

The diagnostic code is divided up into eight subsystems based on the individual pow-
ertrain components. These diagnostic subsystems are listed below:

41



Figure 3.7: MABX Software Architecture Overview

• Fuel Cell Stack

• 250 V Battery System

• Brusa DC/DC

• Brusa Hydrogen Storage System

• Brusa Front Traction Motor

• Brusa Rear Traction Motor

• Brusa Brusa Charger

• Brusa Vehicle

3.2.2 Component Control and Safety Subsystem

The Component Control and Safety subsystem is responsible for managing the vehicle
state machine and reinterpreting the decisions made by the control strategy subsystem
into signals that can be directly sent out onto the CAN bus to the other components of the
vehicle. The vehicle state machine contains a Simulink Stateflow diagram that manages
the highest level of operating state for the vehicle. An overview of the Stateflow diagram
is shown in Figure 3.8.
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Figure 3.8: Vehicle State Machine
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The vehicle state machine manages the start up and shutdown sequencing for the vehicle
and is responsible for responding to any serious system failures in the vehicle by either
reverting to an electric only operation, disabling one of the two traction motors or shutting
off the vehicle. The Run state is subdivided into two parallel Stateflow diagrams. The
first is called the Energy Source State which manages the start up, shut down and failure
modes for the main energy source components including the Fuel Cell System, Battery
and DC/DC converter. This logic is also responsible for enabling or disabling full hybrid
operation as selected by the driver using the hybrid mode enable switch. The second state
flow diagram is called the traction motor state and is responsible for enabling and disabling
motors based on the state of the motors and power sources.

3.2.3 Control Strategy Subsystem

The Control Strategy subsystem contains the main decision making algorithms for the
high level operation of the vehicle’s powertrain. This system is divided into three major
subsystems. These subsystems are thermal control, torque control and hybrid control.

Thermal Control

The thermal control subsystem is responsible for managing the temperatures of all the
main powertrain components. This is accomplished by enabling or disabling the various
fans and pumps that are part of the vehicle’s cooling systems. This system operates using
thermostat control logic, enabling pumps when the temperature of a component in the loop
exceeds a certain threshold and enabling fans when an even higher threshold is exceeded.
A small hysteresis in the temperature thresholds exists between the on/off operation of the
pumps and fans in order to prevent rapidly cycling the pumps and fans.

Torque Control

The Torque Control subsystem is responsible for controlling the vehicle’s traction subsys-
tem which is comprised of the two motor/inverter systems.

The torque control strategy processes the driver’s torque request by using the accel-
erator pedal map which is given in Figure 3.9. If the brakes have been engaged then the
resulting torque from the pedal map is set to 0. This is to prevent the driver from trying
to demand positive acceleration torque while also pressing down on the brake pedal.
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Figure 3.9: Accelerator Pedal Map

The brake pedal position is also used to calculate the regenerative braking request. This
is calculated using Equation (3.1), where BPos is the break pedal position as a fraction from
0 to 1, TRegen is the regenerative braking torque requested in Nm, and vveh is the vehicle
speed in kph. K is a scaling factor set to 250 to produce torque from the brake pedal
position and the vehicle speed. The value of K was selected through extensive testing.

TRegen = BPos ×K × (vveh − 10) (3.1)

Regenerative braking is set to 0 at speeds under 10 km/h and when the regenerative
braking disable switch is engaged. In this situation all braking is done using the mechanical
braking system.

The acceleration and braking demands are processed using the motor torque splitting
algorithm which takes the desired torque and splits it between the two motors based on
the desired torque split ratio and the motor power limits.

The desired torque split is set to a constant 30% rear and 70% front. As the vehicle’s
motor torque demand approaches the limits of the front motor, the vehicle shifts the torque
split putting a greater percentage of the torque demand on the rear motor to protect the
front motor from exceeding its power limit.
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Hybrid Control

The hybrid control subsystem is responsible for managing the high level control of the ve-
hicle energy sources. This includes the 250 V battery, the fuel cell and the Brusa DC/DC
Converter. Several different control strategies have been implemented as part of the re-
search detailed in this thesis. These strategies are described in detail in Chapter 4.

The hybrid control subsystem reads in the power requested by the front and rear motors
and then calculates the desired amount of fuel cell power that must be provided based on
the current control strategy logic. The fuel cell power is then read by the DC/DC control
subsystem which determines the voltage set points for the DC/DC required to provide the
remaining requested power from the battery. In the process, all decisions made on the
power set-points are validated against the safe operating limits of the components.

3.3 Vehicle Model

To test various different control strategies, a simulated model of the vehicle has been
developed in Matlab. The vehicle model used in simulation is a powertrain model which
relates the changes in battery state of charge (SOC) and hydrogen consumption to the
power output of the fuel cell and battery.

The fuel cell model assumes a constant temperature. Equation (3.2) is defined as the
fuel map equation which was determined through on-road testing. Equation (3.2) forms the
basis of the fuel cell model. The equation that defines the amount of hydrogen consumed
as a function of the fuel cell power is represented by m (PFC).

m (PFC) = 9.65× 10−11 × P 2
FC + 1.38× 10−5 × PFC + 3.29× 10−2 (3.2)

A plot of the fuel cell stack efficiency as for the model of the fuel cell is shown in
Figure 3.10, where it can clearly be seen that the fuel cell operates at peak efficiency in
the 10 to 20 kW region. Outside this region, the fuel cell efficiency starts to drop off.

The DC/DC converter efficiency is approximately 97%. This value was provided by the
data sheet from the manufacturer and is represented in the following equations as ηDC/DC .

The battery model assumes constant temperatures. Nonlinearities in power transfer in
or out of the battery pack are included as part of the battery efficiency. The electrical
efficiency, η, is calculated using Equation (3.3) when the battery is being charged and
Equation (3.4) when the battery is being discharged.
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Figure 3.10: Simulated Fuel Cell System Efficiency Curve
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η = ηB × ηDC/DC I < 0 (3.3)

η =
1

Ks × ηB + (1−Ks) ηBatt × ηDC/DC

I > 0 (3.4)

The battery efficiency, ηB, has been measured to be fairly static at approximately
97.55%. This battery efficiency was calculated by matching experimental data to the
model and minimizing the prediction error. Ks is the percentage of the power output
consumed by the rear motor and is set to 30%. This value can change throughout the
drive cycle as the torque controller has the capability of dynamically shifting torque to
adjust for component limits such as the DC/DC converter current limit and the motor
torque limits.

The battery SOC is modeled using Equation (3.5) where SOC is the battery state of
charge as a percentage, η, is the efficiency of energy going into and out of the battery, as
defined in (3.3) and (3.4), I is the current output by the battery and Q is the capacity of
the battery and is set as 40 Ah.

SOCt = SOCt−1 −
I × η × dt
Q× 3600

× 100 (3.5)

3.3.1 SOC Adjusted Fuel Economy

The fuel economy of a vehicle is typically calculated using the fuel mass consumption of
the given driving mission and the distance traveled. For hybrid vehicles, this calculation
becomes slightly more complicated, as it is necessary to also account for the net change in
the battery state of charge over the drive cycle. Since the final state of charge of the battery
can vary, depending on the strategy used, the fuel economy numbers can become skewed.
To account for changes in the battery SOC, an SOC adjusted fuel economy is used. Four
methods of calculating the fuel consumption have been considered. These include a fuel
only calculation, a power adjusted fuel map method, an optimal charge/discharge method
and an averaged charge/discharge method.

Fuel Only

The fuel only calculation ignores the deviation in the battery charge. This approach
assumes the deviation to be minor and calculates the fuel economy using only the fuel map
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provided in Equation (3.2). The fuel consumption calculation is given in Equation (3.6)
where M is the total fuel consumption and n is the final time step of the simulation or
experiment.

M =
n∑

i=1

[m (PFCi
)] (3.6)

The fuel consumption calculated using this method completely ignores the battery
energy usage which makes it impractical for use on hybrid vehicles. This approach favours
completely discharging the battery and is expected to show inaccurate results for cases
where the SOC of the battery changes substantially at the end of the drive cycle.

Power Adjusted Fuel Map

The power adjusted fuel map method attempts to recalculate the fuel consumption of the
fuel cell so that the battery state of charge at the end of the cycle matches the initial
battery state of charge. The amount of power required to charge or discharge the battery
is calculated using Equations (3.7) and (3.8).

4SOC =
SOC1 − SOCn

100%
(3.7)

PSOC =
Q× 3600×4SOC × V

η × dt
(3.8)

This power is then added to the power output of the fuel cell using Equation (3.9) to
get the adjusted fuel cell power demand, Padji .

Padji = PFCi
+
PSOC

n
(3.9)

The fuel consumption is calculated using Equation (3.10).

M =
n∑

i=1

[m (Padji)] (3.10)

When PSOC is negative and the fuel cell power output is sufficiently low, this approach
allows for the value of the adjusted fuel cell power to dip below the idle fuel consumption
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of the fuel cell and potentially result in an instantaneous fuel consumption that is negative.
This is valid since this comes as a result of energy being stored in the battery from con-
suming fuel at other points in the drive cycle the total fuel consumption calculated using
this method will always return positive values for all simulations and tests performed as
part of this research.

Optimal Charge/Discharge

The optimal charge/discharge method calculates the fuel consumption from the fuel only
method given in Equation (3.6) and adds or subtracts the equivalent fuel for the bat-
tery state of charge deviation based on the optimal operating point of the fuel cell. The
equivalent battery fuel is calculated using Equation (3.11).

mB = m (P ∗
FC)× PSOC

P ∗
FC

(3.11)

The fuel consumption is then calculated using the fuel cell fuel consumption calculated
in Equation (3.6) and Equation (3.12).

M = mFC +mB (3.12)

Averaged Charge/Discharge

The averaged charge/discharge method is almost identical to the optimal charge/discharge
method. The only difference is that instead of basing the equivalent fuel usage on the
optimal efficiency point of the fuel cell, this approach uses the average power output of
the fuel cell over the full drive cycle. The average fuel cell power output is calculated in
Equation (3.13).

PFCavg =

∑n
i=1 (PFCi

)

n
(3.13)

The equivalent fuel for the battery is calculated using Equation (3.14).

MB = m
(
PFCavg

)
× PSOC

PFCavg

(3.14)
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The fuel consumption is then calculated using the fuel cell fuel consumption calculated
in Equation (3.6) and Equation (3.12) as before.

Since SOC deviations can introduce a significant amount of error when calculating fuel
economy each of the above methods are discussed in the results presented in Chapter 5, in
order to demonstrate a proper comparison between the various strategies being evaluated.

Fuel Economy Calculation

Once the equivalent hydrogen fuel consumption is calculated using one of the above meth-
ods it must be converted into an equivalent measurement in miles per gallon of gasoline.
This is done by multiplying the fuel economy measured in miles driven per kilograms
of hydrogen consumed by a scaling factor, KH as shown in Equation (3.15) where D is
the distance driven. The value of KH is defined as 0.98 and is taken from the EcoCAR
competition guidelines.

FuelEconomy =
D

M
×KH (3.15)
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Chapter 4

Controllers

Once the vehicle model has been properly defined, the specific control strategies to be tested
can be developed. In this thesis, three main control strategies are tested and evaluated
against an optimized solution. The three strategies evaluated are a mode switching rule-
based strategy, a constant fuel cell output strategy and an adaptive equivalent consumption
minimization strategy. To begin evaluating these strategies, the full control problem must
first be defined.

4.1 Problem Statement

At its most basic level, hybrid vehicle control comes down to satisfying the vehicle power
demand, PD, as shown in Equation (4.1) where PB is the power provided by the battery.

PD = PFC + PB (4.1)

This equation states that at any given time, the power coming from the battery and the
fuel cell must equal the vehicle power demand as commanded by the driver based on the
current position of the brake and accelerator pedals as well as the current vehicle speed.
Equation (4.1) must be satisfied in order for the vehicle to be considered drivable and
as such is considered a hard constraint on the vehicle’s operation, secondary only to the
operating limitations of the components and the safety requirements for the vehicle. This
also means that the fuel consumption of the vehicle is solely dependent on the ratio of PFC

and PB throughout the entire drive cycle. Ideally, PFC and PB would be selected so as to
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also minimize the overall fuel consumption of the vehicle and maximize fuel economy over
the drive cycle. Determining how to set the power levels PFC and PB to minimize fuel
consumption while satisfying power demand is where the challenge lies in hybrid vehicle
control.

4.2 Optimal Power Split

With prior knowledge of the vehicle’s power demand, determining the best possible fuel
economy for a given drive cycle can be achieved by formulating the power split problem as
a quadratic programming optimization problem. The cost function is given directly as the
fuel map for the fuel cell since this provides the most direct measurement of fuel consump-
tion without introducing any inaccuracy or bias towards a strategy that unfairly favours
charging or discharging the battery [48] This optimization is formulated in Equations (4.2)
through (4.11) which restate the model of the hybrid fuel cell vehicle defined in Chapter 3.

minimize:

J =
n∑

i=1

[m (PFCi
)] (4.2)

subject to:

PDi
− PFCi

− PBi
= 0 i = 1, ..., n (4.3)

0 ≤ PFCi
. 100000 i = 1, ..., n (4.4)∣∣PFCi

− PFCi+1

∣∣− PFCSlew
≤ 0 i = 1, ..., n (4.5)

SOCi − SOCi−1 +
Ii × η × dt
Q× 3600

× 100 = 0 i = 2, ..., n (4.6)

−38000 ≤ PBi
≤ 98000 i = 1, ..., n (4.7)

40 ≤ SOCi ≤ 60 i = 1, ..., n (4.8)

SOCI − SOC1 = 0 (4.9)

SOCI − SOCn = 0 (4.10)∣∣IDC/DCi

∣∣ ≤ 150 i = 1, ..., n (4.11)

The cost function is given as J , SOCi is the state of charge of the battery at a given
time and SOCI is the initial SOC of the battery. The optimization is constrained such
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that the battery’s state of charge is bounded between 40 and 60 percent and is also fixed to
a desired final value. For simulation, this value is selected to be the initial state of charge
which is set to 50 percent.

While performing the above optimization gives the solution that provides the best
possible fuel economy, it requires that the drive cycle’s power demand profile be completely
known prior to starting the drive cycle. It is, however, not possible to know the power
demand in advance for normal driving conditions, as the driver initiates the requests while
driving based on traffic and road conditions. As such, this approach is not usable on real
vehicles and is only useful as a benchmark in simulation to determine the effectiveness of
other control strategies.

4.3 Rule-Based Strategies

Rule-based strategies are strategies that use a series of rules to define their operation
based on the current state of the vehicle’s operation. Rule-based strategies do not include
advanced learning or prediction methods which can be used to tune the operation of the
strategy. These strategies are used on most current hybrid vehicles such as the Toyota
Prius [20]. The advantage of rule-based strategies is that they are simple to implement,
consistently causal and easy to test. The following two strategies were tested on the vehicle
in real world implementations as well as in simulation.

4.3.1 Mode Based Control

The idea of this strategy is to run the vehicle in several different operating modes based
on battery SOC and vehicle power demands. The goal is to keep the battery SOC between
an upper, SOCUB, and lower, SOCLB, bound. The region defined by these bounds should
be low enough to take full advantage of the battery capacity while still allowing for some
room below the bounds in the event that the driver requests a significant amount of power
from the vehicle while the SOC is relatively low. The bandwidth defined by the bounds
only needs to be large enough to prevent aggressive braking and acceleration events from
causing the vehicle to continually hit the bounds and repeatedly switch operating modes.
This strategy operates in three distinct modes as shown in Table 4.1 where Pdischarge is a
constant discharging set point for the battery and Pcharge is a constant charging set point
for the battery. These modes are Discharge, Sustain and Charge. Component safety code
also exists which is used to protect DC/DC convert and the fuel cell from exceeding their
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Mode Entry Condition Operating Points

Discharge SOC ≥ SOCUB
PBi

= PDi

PFCi
= 0 kW

Sustain SOCLB < SOC ≤ SOCUB
PBi

= Pdischarge

PFCi
= PDi

− Pdischarge

Charge SOC ≤ SOCLB
PBi

= Pcharge

PFCi
= PDi

− Pcharge

Table 4.1: Rule-Based Control Strategy Operating Modes

current and power limits respectively. This code detects when requests from the mode
based control approach the limits of the components as specified in Table 3.1 and shifts
the power split to stay within the safety limitations of the vehicle powertrain.

4.3.2 Constant Fuel Cell Output

The constant fuel cell output strategy is a simple control strategy which was inspired by
the realization that the difference between peak fuel cell efficiency and off peak is notably
larger than the storage losses in the battery. The relatively small loss in round trip power
storage and consumption from the battery is more efficient than all but a small band of
fuel cell operating points near the peak efficiency point of the fuel cell. As a result, keeping
the fuel cell at near constant power output and using the battery to satisfy instantaneous
power demand is a promising rule-based strategy. This rule-based strategy sets the fuel
cell output to the average power demand expected for the drive cycle. The battery acts as
a buffer and handles all the transients. Due to the sizing of the fuel cell for the test vehicle,
this set point is close to the optimal operating point of the fuel cell for the drive cycles
that have been tested. This is not necessarily true for all drive cycles as some cycles may
have very low or high power demands or extensive idling time. Each of the tested cycles
represent typical driving patterns for the average driver and as such it is expected that a
properly sized fuel cell for any vehicle should operate near its optimal operating point under
normal operation for the average driver. This strategy is very simple computationally and
should also be able to improve the fuel economy over the mode based strategy.
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4.4 Equivalent Consumption Minimization Strategy

As part of the research presented in this thesis, a variation of the Adaptive Equivalent Min-
imization Strategy (A-ECMS) capable of running on a fuel cell vehicle has been developed.
To create a fuel cell variation of the A-ECMS strategy it is first necessary to general-
ize the Equivalent Consumption Minimization Strategy (ECMS) so that the fundamental
principles of the ECMS can be implemented in the modified A-ECMS.

The ECMS strategy was earlier introduced in Chapter 2 and was developed primarily
for use in hybrid electric vehicles with an internal combustion engine as a way of optimally
selecting the power split based on the current state of charge of the vehicle’s battery. The
goal of the strategy is to reduce the complexity of the optimization problem to an opti-
mization that can be run in real time on the vehicle with minimal knowledge of the future
power demand [11]. This is accomplished by formulating an equivalent fuel consumption
calculation for the energy that is consumed from the battery and relating it to changes in
the state of charge of the battery. The new cost function for the optimization becomes a
function of the engine’s fuel map and the equivalent battery fuel map. This map is based
on the fuel map of the engine. The value of battery power however, depends on the drive
cycle and the resulting changes in battery SOC throughout the vehicle’s operation [11].
To use a generic equivalent battery fuel map the battery power must be adjusted to it’s
equivalent value for the current drive cycle. The equivalent battery power is formulated
using Equation (4.12) where s is called the equivalence factor.

PBEq
= s× PB (4.12)

This equivalence factor is dependent on changes in the battery state of charge over the
expected drive cycle. Each drive cycle has two equivalence factors, one for charging the
battery and one for discharging the battery. The calculation of these factors is discussed
in detail in [4, 19].

To adapt the ECMS for use on a fuel cell vehicle, the fuel cell fuel map must replace
the engine fuel map in the cost function and the equivalence factors must be adjusted
according to the new vehicle architecture. The new equivalence factors used are based on
the adaptive equivalent minimization strategy discussed in the next section.

Since the power stored in the battery is primarily produced by the engine, the equiv-
alent fuel consumed by the battery, mB, is calculated by taking the peak efficiency fuel
consumption of the fuel cell and linearly scaling it based on the equivalent battery power
as shown in Equation (4.13).
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mB = PBEq
× m (P ∗

FC)

P ∗
FC

(4.13)

The optimization problem for the ECMS strategy is defined in Equations (4.14) through
(4.21) where PFCi−1

and SOCi−1represent the fuel cell power and battery SOC from the
optimization for the last time step. The fuel cell power from the last time step is initialized
to 0 and the SOC is initialized to SOCI for the first optimization.

minimize:

Ji = m (PFCi
) +mBi

(4.14)

subject to:

PDi
− PFCi

− PBi
= 0 (4.15)

0 ≤ PFCi
. 100000 (4.16)∣∣PFCi−1

− PFCi

∣∣− PFCSlew
≤ 0 (4.17)

SOCi − SOCi−1 +
Ii × η × dt
Q× 3600

× 100 = 0 (4.18)

−38000 ≤ PBi
≤ 98000 (4.19)

40 ≤ SOCi ≤ 60 (4.20)∣∣IDC/DCi

∣∣ ≤ 150 (4.21)

Note that this optimization does not depend on any future time steps and as such
is much simpler and faster to compute. In order for this optimization to work it is still
necessary to have the two equivalence factors which are directly dependent on the drive cy-
cle [11]. To implement the ECMS optimization, it is necessary to find a way of determining
the equivalence factors without directly knowing the drive cycle. Several variations of the
ECMS have been developed to overcome this issue, including a telemetry based ECMS and
an adaptive ECMS [19]. The adaptive ECMS is discussed in more detail in the following
section.

4.4.1 Adaptive Equivalent Consumption Minimization Strategy

The Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) was also intro-
duced in Chapter 2. This section describes how the A-ECMS strategy is adapted for use
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Figure 4.1: Control Layout for Adaptive Equivalent Consumption Minimization Strategy
Implementation

on the test vehicle.

The way A-ECMS works is that it takes the ECMS and simplifies it by reducing the two
equivalence factors to a single factor and then adjusting this factor in real time [11]. This
is done by generating an estimate of the vehicle’s power demand throughout the driving
mission and producing an estimate of the equivalence factor in order to maintain a desired
battery SOC range. The approach proposed by Musardo uses the velocity profile of the
vehicle and the elevation provided by GPS data to predict the road load of the vehicle for
the duration of the driving mission [11]. The approach used in the simulations presented
in this paper takes the average power demand of the drive cycle and an estimate of the
end time of the mission and uses this to predict deviations in the battery SOC from an
ideal desired value. The equivalence factor is adjusted to compensate for these deviations
by reacting proportionally to the error in SOC relative to the desired SOC set point. A
block diagram of the adaptive control structure is given in the Figure 4.1.

To adjust the equivalence factor, the average current going into the battery since the
start of the mission is calculated. This average current gets propagated forward using an
estimate of the end time of the mission and the model of the battery given in Equation (3.5)
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to determine an estimated final state of charge as shown in Equation (4.22) with the error,
e, given by Equation (4.23). The end time of the mission can be estimated using GPS
navigation software or recorded past driving mission times which can be cross-referenced
with the current day of the week and time to get an estimate of the driving time for the
current mission. For the simulations presented in this thesis, the end time is taken as the
actual end time of the drive cycle.

SOCnest = SOCi +
Iavg × η × dt
Q× 3600

× (n− i)× 100% (4.22)

e =
SOCndes

− SOCnest

100
(4.23)

The SOCndes
term is the final desired SOC and SOCnest is the estimated final SOC.

Iavg is the average battery current over the current drive cycle. The adaptive estimation
of the equivalence factor is then calculated using Equation (4.24) where K is the adaptive
gain and must be determined through experimentation or simulation.

si = si−1 +K × e (4.24)

Based on simulation, a value of 0.005 per second for K has been selected. This value
provides a good balance between allowing the SOC to drift which provides some freedom
in controlling the fuel cell power output and ensuring the battery state of charge does not
drift close to its safety limits. The calculation in Equation (4.24) is done at each time step
prior to calculating the optimal solution. Once the equivalence factor has been determined
it is used in Equation (4.12) to determine PBEq

and the optimization problem for the ECMS
strategy defined in Equations (4.14) through (4.21) is solved.
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Chapter 5

Results

Five controllers have been presented in the previous chapter. The optimal controller is the
first controller presented and provides the best possible fuel economy that can be achieved
on the vehicle. The optimal controller is only usable in simulation because the entire drive
cycle power demand must be known in advance. The optimal controller is therefore used
exclusively to provide a benchmark for all other strategies to be measured against. Two
rule-based strategies have also been presented. These strategies include a mode based
control strategy that switches between three different algorithms to maintain the battery
state of charge between an upper and lower bound and a constant fuel cell output strategy
that keeps the fuel cell output near its peak efficiency based on the average power required
by the vehicle. Both strategies are implementable in both simulation and experimental
tests with the constant fuel cell strategy promising to show very efficient results. An
ECMS has been presented which promises near optimal fuel economy results. The main
drawback for the ECMS is that it requires accurate equivalence factors be determined for
each drive cycle prior to driving through the cycle and is not directly compatible with
the fuel cell architecture. Rather than implement this strategy directly, the final strategy
that has been presented is an A-ECMS that has been modified to operate on a fuel cell
vehicle. This strategy promises to show near optimal fuel economy results, similar to
the ECMS, but uses a different prediction method that is not directly dependent on the
vehicle architecture which makes it more practical for implementation in simulation. Some
knowledge of future parameters is still needed by the A-ECMS which makes implementation
on a vehicle still challenging. Each of the proposed controllers, with the exception of
ECMS, were investigated in simulation with the two rule-based strategies also investigated
in on-road testing. The results of these simulations and experiments are described in the
following sections.
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5.1 Simulation Results

Simulations of the various controllers have been performed on several drive cycles, includ-
ing UDDS, HWFET and US06. Based on experimentation with the test vehicle, it was
determined that the bandwidth defined by the SOC bounds for the mode switching strat-
egy can be as little as one or two percent of the SOC. The SOC limits were therefore set
to 51% and 49% for the upper and lower bounds respectively as used in Table 4.1 while
Pdischarge = 15kW and Pcharge = −15kW were selected as the charge and discharge con-
stants. Power split and fuel economy results are presented for each type of controller on
all three drive cycles, and reveal remarkably consistent results.

5.1.1 Fuel Economy Results

Four different fuel economy measurement methods have been evaluated, as described in
Section 3.3.1, to determine an appropriate way of adjusting the vehicle fuel economy to
accommodate for deviations in the battery state of charge. Table 5.1 presents the final
state of charge for each simulation. In all cases, the SOC deviations are less than 2%.
Tables 5.2, 5.3, 5.4 and 5.5 present the simulation results for the various different SOC
adjustment methods. As can be seen from Table 5.2, not taking the SOC deviations into
account makes it impossible to compare the results from the different strategies. In two
cases, the fuel economies of the different strategies exceed the fuel economy reported as the
optimal value. This indicates that in order to properly compare these results it is necessary
to consider the extra power stored or discharged by the battery when determining the
effectiveness of a strategy. The power adjusted fuel map, optimal charge / discharge and
averaged charge / discharge weighting methods shows similar results with the same general
trends in terms of which strategies provide better results. Most importantly, all the results
indicate that the optimal solutions have the best fuel economy which is a requirement for
these methods to be considered valid. The consistency of these results indicates that all
three of these methods are effective at accounting for the deviation in the state of charge
of the battery. These results are expected since the deviations in SOC are relatively minor
which makes it difficult to distinguish the differences between the methods.

One interesting note is that there is very little difference in the fuel economies between
the different control strategies for each drive cycle. The largest difference in fuel economy
is only 3.51 mpg. It is very clear, however, that the mode based strategy and A-ECMS are
not as efficient as the constant fuel cell strategy which can achieve consistently higher fuel
economy results.
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Cycle Mode Based Constant Fuel Cell AECMS Optimal

US06 50.58 49.50 49.23 50.00
HWFET 51.30 50.04 48.37 50.00
UDDS 49.70 49.16 49.92 50.00

Table 5.1: Simulation Final State of Charge (%)

Cycle Mode Based Constant Fuel Cell AECMS Optimal

US06 33.64 37.10 36.99 37.15
HWFET 58.33 63.15 65.00 63.86
UDDS 48.28 50.09 47.70 49.03

Table 5.2: Fuel Only Fuel Economy

Cycle Mode Based Constant Fuel Cell AECMS Optimal

US06 34.20 36.57 36.19 37.15
HWFET 61.14 63.25 61.46 63.86
UDDS 47.80 48.67 47.57 49.03

Table 5.3: Power Adjusted Fuel Economy

Cycle Mode Based Constant Fuel Cell AECMS Optimal

US06 34.19 36.58 36.21 37.15
HWFET 61.36 63.26 61.18 63.86
UDDS 47.72 48.44 47.55 49.03

Table 5.4: Optimal Charge/Discharge Fuel Economy

Cycle Mode Based Constant Fuel Cell AECMS Optimal

US06 34.19 36.58 36.21 37.15
HWFET 61.42 63.26 61.08 63.86
UDDS 47.61 48.13 47.52 49.03

Table 5.5: Averaged Charge/Discharge Fuel Economy
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5.1.2 Drive Cycle Simulation Results

Plots of the simulation results for the fuel cell power, battery power and battery state of
charge can be seen in Figures 5.1, 5.2, 5.3 and 5.4. The fuel economies for all simulations
are captured in Tables 5.3, 5.4 and 5.5.

Optimal Simulation Results

The optimal solution, Figure 5.1, tends to have the fuel cell power, represented by the
blue lines, follow very close to the average power demand of the drive cycle with only
slight deviations to control the final battery state of charge. The three different drive
cycles show drastically different power demands, represented by the red lines in Figure 5.1.
Despite the drastic differences in the power demands, all three drive cycles have an average
power demand that tends to fall within the 8 kW to 20 kW range. The 8 to 20 kW region
happens to also closely match the fuel cell’s 10 to 20 kW optimal operating region depicted
in Figure 3.10. The average power demand coinciding with this region comes as a result
of properly sizing the fuel cell for this particular type of vehicle. These results show that
it is most efficient to run the fuel cell at near peak efficiency as much as possible and let
the battery follow the net load.

Mode Based Control Simulation Results

The mode based strategy, Figure 5.2, shows a very different approach to controlling the
vehicle. The fuel cell primarily follows the power demand with the battery supplementing
the power demand and acting primarily as a buffer to handle transients. The mode based
strategy continually switches between charging and discharging the battery based on the
SOC without any direct regard for fuel cell efficiency, as shown by the sawtooth pattern in
the SOC plots of all three drive cycles in Figure 5.2. The mode based strategy frequently
drives the fuel cell’s operating point outside the optimal operating region of the fuel cell
which is shown in Figure 3.10.Running the fuel cell outside the 10 to 20 kW region cause
the fuel cell to waste hydrogen which directly impacts the fuel economy. In the US06
cycle the fuel cell is frequently run above the 20 kW operating region. In the UDDS cycle,
this strategy frequently idles the fuel cell bringing the operating point below 8 kW and
wasting hydrogen since no usable energy is produced from the fuel cell at that time and all
hydrogen consumed is used to keep the fuel cell active. Since the fuel cell has long start
up and shut down times which take several minutes, it is not even practical to turn off
the fuel cell during these brief but frequent idling periods. From the fuel economy results
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Figure 5.1: Optimal Solutions
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in Tables 5.3, 5.4 and 5.5, it is apparent that the mode based strategy consistently shows
the lowest fuel economy, which come as a result of the fuel cell running at much more
inefficient operating points throughout the drive cycles.

Constant Fuel Cell Simulation Results

The constant fuel cell strategy, Figure 5.3, stands out from the rest of the controllers
in that it is both easy to implement and provides the highest fuel economy numbers for
an implementable controller. Despite the 150 A current limit of the DC/DC converter,
this strategy was able to operate the fuel cell at the average power demand without any
significant adjustments to the fuel cell power set point required to ensure that the system
respects the component limits. The UDDS and HWFET drive cycles show consistently
constant fuel cell power output plots while the US06 cycle shows some changes in the fuel
cell set point at 150, 300 and 680 seconds to prevent the vehicle from exceeding the DC/DC
converter current limit. These three adjustments are very brief and do not substantially
impact the vehicle fuel consumption. Had the vehicle component limits been more severe,
it is possible that this strategy may not have proven to be as effective. At the same time,
the drive cycles tested do not include unusual driving patterns such as significant idle times
and extremely aggressive driving which may have moved the average fuel cell operating
point outside the optimal operating region and would have negatively impacted the fuel
economy. The evaluation of the constant fuel cell strategy under these cases is left for
future research. The constant fuel cell approach uses the fuel cell very efficiently for the
tested drive cycles, but extensively uses the battery to satisfy power demand, resulting in
additional losses through the DC/DC converter and potentially more significant wear on
the battery system which may impact the battery life. Further research is needed to fully
evaluate the impacts of this strategy on the life of the battery system. The additional
efficiency losses through the DC/DC tend to be lower than the losses of operating the
fuel cell inefficiently, which is why the constant fuel cell strategy has a such a good fuel
economy.

A-ECMS Simulation Results

The A-ECMS strategy, Figure 5.4, shows a similar trace to the optimal solution. The
main difference is that the average operating point of the fuel cell shifts throughout the
drive cycle as the value of battery power changes in the cost function due to the adaptive
elements of the controller. The gradual shifting of the power demand is visible in all three
drive cycles and is evidenced by the curve of the blue fuel cell power output plot. There
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Figure 5.2: Mode Based Control Solutions
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Figure 5.3: Constant Fuel Cell Output Solutions
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are times where the A-ECMS strategy idles the fuel cell in the UDDS cycle, bringing the
power output down to zero and negatively impacting the fuel economy. There is a notable
trade off between adapting to changes in the power demand and trying to stay close to the
10 to 20 kW peak fuel cell efficiency region. Operating outside the 10 to 20 kW region and
idling the fuel cell directly affects the efficiency of the solution and is the reason that the
constant fuel cell strategy shows better results than the A-ECMS strategy.

5.2 Experimental Results

Experimental result were gathered from the vehicle using on-road testing for both the
mode based and the constant fuel cell strategies. The poor performance of the A-ECMS
strategy in simulation, coupled with the expanded implementation difficulty and limitations
in the availability of hydrogen led for it to be discarded as a control strategy for on-road
experimentation. To protect the vehicle hardware, both the tested strategies are wrapped
in safety control logic designed to prevent the control logic from exceeding the power limits
of the fuel cell, battery and DC/DC converter.

The goal of the on-road testing was to get a mix of urban and local highway style driving
over a short drive cycle. Testing was done manually by maintaining constant vehicle speeds
and performing uniform accelerations between defined markers. Test driving was done
early in the morning on weekends at a time when there was very little traffic to ensure
consistent driving conditions. Plots of two separate test runs are presented in Figure 5.5,
and while the plots are close, small deviations do exist between runs. This is shown in
more detail by examining a plot of the power demands for the two drive cycle runs which
can be found in Figure 5.6. The power demands vary significantly at various times as a
result of slightly different acceleration and braking patterns. Such variations are expected
in on-road testing and, although not available to our team, a chassis dynamometer could
be used to reduce the inter-cycle variation in subsequent testing. To ensure that these
variations do not impact the results of the comparison, the optimal control strategies for
both cycles have been independently determined. The experimental results are compared
by evaluating the percentage of the optimal fuel economy achieved for the corresponding
test cycle. The optimal solutions are configured so the final SOC is allowed to deviate
by 1% of the final SOC of experimental results. This is to accommodate for the 0.5%
resolution of the battery SOC reported by the battery controller which can account for up
to 1% error in the SOC reported by the battery throughout the drive cycle. The averaged
charge/discharge method has been used to measure the fuel economies.
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Figure 5.4: A-ECMS Solutions
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Figure 5.5: Custom Drive Cycle

Figure 5.6: Custom Drive Cycle Power Demand
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Control Strategy Experimental Result Optimal Percentage of Optimal

Mode Based Control 31.60 mpg 33.30 mpg 94.89 %
Constant Fuel Cell 32.40 mpg 32.87 mpg 98.57 %

Table 5.6: Experimental Fuel Economy Results

5.2.1 Drive Cycle Experimental Results

Figure 5.7 presents the constant fuel cell strategy experimental results along with the
corresponding optimal solution. Figure 5.8 presents the mode based control experimental
results along with the optimal solution determined through simulation. Table 5.6 presents
the fuel economies for these results. From Figures 5.7 and 5.8, it can be seen that the
constant fuel cell strategy shows a very similar plot to the optimal solution. This is
reflected in the fuel economy which is 98.57% of the optimal value. The deviations in
the constant fuel cell solution are a result of the safety control logic designed to protect
the major powertrain components. The mode based solution shows a slightly lower fuel
economy which is 94.89% of the optimal. The plot of the mode based solution looks very
similar to the optimal solution but more aggressively changes the power demand of the
fuel cell to match the trace instead of using the battery to supplement the power demand.
The constant fuel cell strategy shows a 4% improvement in fuel economy over the mode
based control strategy.

The simulations and experiments showed consistent relative results, validating the fi-
delity of the simulations. Both the simulation and experimental results agree that a con-
stant fuel cell strategy provides near optimal fuel economies for this vehicle configuration
where the fuel cell has been sized properly for the average power demand expected during
the vehicle’s normal operation.
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Figure 5.7: Experimental Test Run 1 - Constant Fuel Cell
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Figure 5.8: Experimental Test Run 2 - Mode Based Control
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Chapter 6

Conclusion

With increasing concerns over the environmental impact of vehicles and reliance on deplet-
ing fossil fuels, hybrid vehicles are quickly becoming the new standard for vehicle design.
To completely eliminate concerns over fossil fuel usage and the resulting harmful emissions
the automotive industry is already looking towards the future of hybrid vehicle technology
with hydrogen fuel cell powered hybrids. Fuel cell hybrids have numerous benefits over con-
ventional hybrids including a higher efficiency energy production, environmentally friendly
emissions and independence from fossil fuels. A substantial amount of research and devel-
opment still needs to be done to make fuel cell hybrids viable for general consumer use.
One such area of research is fuel cell hybrid vehicle control. Conventional hybrid vehicle
control has been extensively studied by numerous researchers. Due to the relatively new
development of road-safe fuel cell hybrids, most hybrid control theories have not yet been
studied on passenger fuel cell powered vehicles.

This thesis has set out to fill in the gap in fuel cell hybrid vehicle control design by
evaluating several common hybrid control strategies on a fuel cell hybrid vehicle. These
strategies include an adaptive version of the popular equivalent consumption minimization
strategy and two rule-based strategies; a constant fuel cell strategy which runs the fuel cell
at a constant output, and a mode based strategy which switches operating modes based
on changes in the battery state of charge and vehicle power demand. These strategies
are implemented in simulation on a model of the vehicle powertrain developed in Matlab
and then evaluated against optimal solutions determined by formulating the optimization
problem as a quadratic programming problem.
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6.1 Simulation Conclusions

The simulated results of the optimal solution showed that the best results can be achieved
by closely tying the fuel cell power output to the peak efficiency operating points of the
fuel cell. This is intuitively expected since the efficiency of the fuel cell changes very
dramatically depending on the fuel cell operating point, as depicted in Figure 3.10, while
the battery efficiency remains constant. Achieving the best possible fuel economy would
therefore come as a result of minimizing efficiency losses in the fuel cell.

The constant fuel cell strategy takes advantage of this characteristic by keeping the
fuel cell output at a constant high efficiency point which resulted in the constant fuel
cell strategy producing the best fuel economies of all the tested strategies. The high fuel
economy of the constant fuel cell strategy comes as a direct result of properly sizing the fuel
cell for the vehicle which caused the average power demand of the vehicle to consistently be
near the optimal efficiency operating region of the fuel cell. By properly sizing the fuel cell
and running the fuel cell at the average power demand while using the battery to handle
transients, the overall change in the battery state of charge is kept minimal while the fuel
cell consistently operates near peak efficiency, producing very high fuel economy results for
all the tested drive cycles.

The mode based strategy was originally used in the EcoCAR competition and was
designed to reduce power flow through the DC/DC converter in order to protect the vehicle
powertrain from exceeding current and voltage limitations. The mode based strategy shows
a very different approach from the optimal strategy with the fuel cell directly following the
power demand. The mode based strategy operates without any direct regard for fuel cell
efficiency, often idling the fuel cell. As a direct result of consistently operating outside the
high efficiency region for the fuel cell, this strategy shows the lowest fuel economy of all
the tested strategies.

A-ECMS is an adaptive version of the equivalent consumption minimization strategy
which was designed to take the fuel economy optimization problem and reduce it to an
instantaneous optimization based on the fuel map of the engine and the battery state of
charge. A-ECMS was originally developed for use on conventional hybrids. The research
done as part of this thesis has adapted this strategy for use on hydrogen fuel cell hybrid
vehicles.

The A-ECMS results show a plot that is similar to the constant fuel cell strategy but
can periodically shift outside the optimal operating range of the fuel cell which negatively
impacts the fuel economy. This strategy is far more sensitive to changes in the vehicle
power demand than the constant fuel cell strategy which resulted in very poor traces for
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the UDDS cycle and ultimately lower fuel economy results.

6.2 Experimental Conclusions

To validate the simulation results, the mode switching and constant fuel cell strategies were
evaluated on a fully operational fuel cell hybrid vehicle that was built by the University
of Waterloo Alternative Fuels Team. The test vehicle was initially built for the EcoCAR
competition and is based on a 2009 Saturn Vue which has been refit with two electric
motors, a Li-ion battery and an automotive grade fuel cell system. A significant amount
of work has been put into developing this vehicle. The A-ECMS was not implemented on
the vehicle due to its complexity combined with the lower simulated fuel economy results
and limitations in hydrogen availability.

Using the vehicle produced by the student team, the mode-based strategy and constant
fuel cell strategy were tested on-road using a customized drive cycle that contained a
mix of residential, local and highway driving conditions. During on-road testing, the
drive cycles were found to have some minor variations. To account for these variations,
the two strategies were compared by measuring their effectiveness compared to optimized
results. The experimental results validated the simulation results with the constant fuel
cell strategy providing notably better results that were much closer to the optimal solution.
The results showed that the constant fuel cell strategy achieved a fuel economy which was
within 98.57% of the optimal solution which demonstrates that this strategy is extremely
effective for fuel cell based hybrid vehicles. One caveat is that in order for this strategy
to be effective, it is necessary for the fuel cell to be sized properly for the vehicle’s power
demand so that the constant fuel cell power demand is near the peak efficiency point for
the fuel cell.

6.3 Overall Conclusions

The research presented here has found that a simple practical strategy can produce very
effective results for hybrid hydrogen fuel cell vehicles. The simulation results demonstrate
that maintaining the fuel cell at a constant power output near its peak efficiency is the most
effective means of reducing fuel consumption. Both the optimal solution and constant fuel
cell strategy demonstrate this observation, and to a lesser extent, the A-ECMS strategy
does as well. While the A-ECMS strategy shows reasonable results in simulation, the added
complexity of this strategy does not make it practical for use in a fuel cell vehicle over the
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far simpler and more efficient constant fuel cell strategy. Further improvements to the A-
ECMS which restrict the adaptation to a small band of operating points within the peak
efficiency region of the fuel cell may improve the A-ECMS results. In its current form, the
A-ECMS does not produce sufficiently good results to support its use in fuel cell powered
vehicles. The mode based strategy used in the vehicle competition shows reasonable results
but is consistently inferior to the more efficient constant fuel cell strategy. The simulation
results are validated through on-road testing with a hybrid hydrogen fuel cell vehicle test
bed. In on-road testing, the constant fuel cell strategy outperformed the mode based
strategy by a similar margin to the simulations. By managing the fuel cell set point to
control the battery state of charge, the constant fuel cell strategy can be used as a highly
efficient yet simple control strategy for fuel cell vehicles.

6.4 Future Research

With the vehicle’s fuel cell and hydrogen storage system removed, the University of Water-
loo will be unable to continue fuel cell hybrid control research on this vehicle. If UWAFT
decides to build another fuel cell vehicle in future competitions, the university will have
the opportunity of evaluating these strategies on a different vehicle in order to validate
that these results hold constant for other fuel cell vehicles.

Ideally, future research would also expand on the capabilities of the constant fuel cell
strategy and consider variations of this strategy which allow for on/off operation of the
fuel cell and more advanced methods of predicting the average power demand. Additional
testing of this strategy should also be done under more unusual and aggressive drive cycles.

Additional research should also be done on charge depletion control strategies. Charge
depletion strategies must take into account the distance to be driven and battery power
available in order to determine the best control strategy as these factors directly impact
the fuel economy of the vehicle in a far more substantial way than in charge sustaining
control. The research discussed in this thesis focuses primarily on charge sustaining control
strategies. There is still substantial room for studying charge depletion control as it relates
to fuel cell powered vehicles. Future research would ideally focus on this area.

This work presents a viable set of controllers for fuel cell hybrids, with a clear winner in
terms of ease of implementation and efficiency. Identifying the constant fuel cell controller
and evaluating it on a real vehicle is an important step to enabling eventual deployment
of fuel cell hybrids as commercially viable vehicles.
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