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Abstract

In recent years there has been much interest in the self-assembly of materials. Much
of this research has been focused on the self-assembly of particles in solution (colloids),
typically on the order of nanometres or micrometres in size. While it is easy to imagine
the self-assembly of either irregularly shaped particles, or particles under an anisotropic
potential, a novel class of colloids with engineerable isotropic interactions have achieved
this aim.

With the use of Self-Consistent Field Theory (SCFT), a mean-field model first devel-
oped for polymer melt systems, we develop a model for a system of particles of two species.
One species experiences a long-range repulsive and short-range attractive interaction. The
other is inert, acting as a solvent in which the former is suspended.

Using this method, we calculated the equilibrium morphologies of the system for various
parameters including the total volume fraction of one species relative to the other, the
strengths and ranges of both the attractive and repulsive components of the interaction,
and the relative particle sizes. In this way, we are able to loosely mimic the polymer-coated
colloidal systems that are one of the current subjects of self-assembly research.

By reducing our model to a simplified, isotropic interaction, we are able to show that
the self-assembly of such systems is the result of the nature of the interaction and not
any anisotropy within the model. We have also shown that the phase progressions of this
system exhibit remarkable agreement with those of diblock copolymer melt systems despite
significant differences in the molecules of these two systems.
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Chapter 1

Introduction

1.1 Motivation

Interest in self-assembly has grown in recent years. For example, block copolymer melt
systems have long been known to phase separate into easily controlled micro- and nano-
structures based in part on composition. The properties of these materials vary consid-
erably based on the nature of this phase separation. It is of interest that these materials
have the ability to form these structures without any need for external interference. While
some soft matter materials may exhibit microphase separation in a non-equilibrium situa-
tion, albeit with extremely long relaxation times, of particular interest are materials that
self-assemble in equilibrium.

Self-assembled materials can have a variety of engineered properties based on the nature
of their microstructures, divided into “classical” phases such as Lamella (L) or Body-
Centred Cubic (BCC) spheres, and “complex” morphologies such as Perforated Lamella
(PL) or the bicontinuous Gyroid (G) phase [59]. Each of these phases can be useful
for different properties. A discrete droplet phase is known for its toughness, whereas
bicontinuous gyroidal phases can have higher electrical conductivity. The ability to disperse
one material within another can also be used to improve the impact characteristics of brittle
materials [59].

Colloidal nanoparticles can have many applications due to their interesting properties.
These properties can be either optical, electrical or structural in nature [44]. For example,
DNA coated gold nanoparticles (AuNPs) have been used to construct arrays of Quan-
tum Dot (QD) “superlattices” fabricated through self-assembly [58]. Such Nanocrystal
Quantum Dots (NQDs) also have applications as possible “artificial solids” [22].
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Self-Consistent Field Theory (SCFT), pioneered by Edwards, has been a method pri-
marily deployed with polymer melt systems [13, 17, 36, 67, 55, 34]. As a mean-field theory,
it has proven to be quite useful in determining equilibrium properties of these systems.
Recently, there has been interest in using SCFT outside of this class of systems [67]. In
this project, we aim to use SCFT to model a system consisting of two species of interacting
particles, one acting as solvent, the other as the colloidal particle of interest. In this way,
we will model the self-assembly of these particles.

1.2 Brief Overview

Our model involves two species of particles, labelled A and B. Using the particle den-
sity functions of these two species, and beginning with the standard canonical partition
function, we derive a set of self-consistent equations used to determine the equilibrium
morphologies of these particles under a potential of our own engineering. This potential
is designed to parallel the long range repulsion and short range attraction of the systems
described above in a loose sense.

By reducing the systems of colloids simulated by others into a purely isotropic model, it
is our intention to show that the self-assembly is not a result of any anisotropy within the
model but purely a result of the nature of the potential, namely the long-range repulsion
and short-range attraction.

We use real-space methods for solving our resulting non-linear self-consistent equations
based on methods previously developed for polymer melt systems that do not require us
to make any assumptions regarding the symmetries in the equilibrium morphologies of the
system. This, combined with our use of random initial conditions, helps to ensure our
ability to explore the significant phases of the system.
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Chapter 2

Background

2.1 Block Copolymers

The phases of block copolymer melts are of particular interest to this project. A polymer
chain is known as a homopolymer if it is made up of one species of monomer. A copolymer,
then, is simply a polymer chain made up of more than one species of monomer. Further,
if these monomers exist together in sequences, this is known as a block copolymer.

It is easy to imagine that there are many architectures of block copolymers. For ex-
ample, if there exist two distinct species of monomer, say A and B, then the simplest
arrangement would be all A monomers on one side of the chain and all B type on the
other. This is known as a diblock copolymer. Of course, triblock and higher order block
copolymers are possible.

Triblock copolymers allow for more arrangements of the blocks. For example, the blocks
can be arranged in a linear fashion. They can also be arranged in a “star” shape where
each block is attached at a single point. Ring configurations are also possible. Higher order
block copolymers can have increasingly complex architectures.

In the case of diblock copolymer melt systems, the possible phases are well studied
[41, 34]. In such systems, there are three distinct classical phases and several complex
phases [36]. The three classical phases are Lamella (L), Cylinders (C), and Spheres (S).
The complex phases include Perforated Lamella (PL), Double Diamond (D), and Gyroid
(G). Several of these phases are illustrated in Figure 2.1. Matsen et al. discovered ex-
perimentally, and confirmed theoretically that the PL phase and the D phase are only
metastable, possessing a higher free energy than the G phase [36]. Typically, in the C
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phase, the cylinders are arranged in a hexagonal arrangement and in the S phase, the
spheres are arranged in a BCC lattice.

(a) Lamella (b) Gyroid (c) Cylinders (d) Spheres

Figure 2.1: The progression of phases observed as fA is decreased from fA = 0.5. From
fA = 0.5 to fA ≈ 0.45, Lamella (L) are observed (a). Near fA ≈ 0.4, the system moves
to a Gyroid phase (b). From fA ≈ 0.35 to fA ≈ 0.25, the system enters a Cylindrical (C)
phase (c). From fA ≈ 0.2 to fA ≈ 0.15, the system enters a Spherical (S) phase (d), before
finally becoming disordered as fA < 0.15. This result is very similar to the progression
of phases for diblock copolymer melts while varying the same parameter. Note that these
results were computed using an L = 8 sided box. The results have been tiled for clarity.

Block copolymer systems, especially of higher molecular weight, offer many advantages
for simulation. Because of the size of the macromolecules, most atomistic effects can be
ignored. Fluctuations are also minimized, lending more accuracy to mean-field models [34].

Modelling these systems requires a choice of precision [17]. The most precise, as well
as the most costly, would be a fully atomistic computational model. The individual atoms
making up the monomers are modelled using quantum mechanics, as well as the interac-
tion potentials between both bonded and non-bonded atoms [17]. The resulting equilibrium
state can be determined using either a Monte Carlo (MC) approach or using a Molecular
Dynamics (MD) approach [17]. Clearly, this method requires a large amount of compu-
tation. For applications dealing with non-atomistic length scales, this approach is not
necessary.

Such precise methods can often be approximated using some level of coarse-graining.
Yet another approach, known as the bead-spring method, models the polymers as beads
connected by springs [17], and once again solves for the equilibrium state using a MD or
MC approach. This reduces the problem to two-body interactions and treats the monomers
as simple beads, greatly reducing the complexity. The level of complexity can be further
reduced by fixing monomers into bead “backbones”. The computational requirements
remain quite high, so artificially soft repulsions are included. This can lead to some loss of
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detail and an unrealistic fluid compressibility [17].

The above approaches remain computationally expensive because of the large numbers
of degrees of freedom. It is necessary to track the positions as well as bond angles, etc.
of each of the polymers. To simplify calculations further, these degrees of freedom are
replaced by density functionals integrated over chemical potential fields, which is the basis
for the class of approaches known as the Field-Theoretic Simulations (FTS) [13, 36, 17].

The physics of block copolymers have also been well explored. It is known that am-
phiphilic block copolymers in solvent will microphase separate [39, 42, 4, 3, 36, 69]. The
phase separation comes about due to the amphiphilic nature of the copolymers. Blocks can
be chosen such that they are incompatible and prone to phase separation. However, since
they are copolymers, macrophase separation is not possible. They can instead microphase
separate, taking on a variety of structures. There are three main principles that govern
the physical properties of diblock copolymer phase morphologies [34].

The interfacial area per molecule Σ ranks highest in importance of these properties
[34]. This is simply defined as the area of the interface divided by the total number of
molecules contained by that interface. For diblock copolymers, the free energy contains
both an interfacial energy term as well as a stretching term. The interfacial energy term
is proportional to Σ whereas the stretching term is proportional to Σ−2. This means that
the interfacial term favours a smaller area and the stretching term favours a larger area.

Spontaneous curvature is also an important property [34]. The total volume fraction f
of a given block represents the relative lengths of each block. This is true since the melt
is composed of polymers with identical block lengths. For an f = 0.5 system (or equal
block lengths), the system will arrange into flat L sheets. As the fraction is decreased,
meaning that the length of one block is larger than the other, the interface will tend to
curve towards the species of shorter length.

The last major property is packing frustration [34]. Previous research has indicated
that diblock copolymer melts have a tendency to favour constant interfacial curvature.
However, in a diblock copolymer system, the blocks have a tendency to want to form
brushes of equal length [34]. These two tendencies cannot both be satisfied in most cases,
which is known as packing frustration.

2.2 Packing Frustration

Since packing frustration is an important part of the physics of diblock copolymer systems,
and is important to the phases presented in this project, it is useful to discuss previous
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research in this area.

Intuitively, the L phase does not have packing frustration simply because both the
curvature and the brush length are constant throughout [34]. The radius of curvature
is infinite throughout and the domains have equal thickness. However, the other phases
will experience packing frustration, for example the C phase. This can be illustrated by
examining one C phase Wigner-Seitz cell [34], which is hexagonal. The interfacial energy
term is satisfied by a perfect cylinder with constant curvature within the cell. However,
this requires the polymers in the “majority domain” to stretch to different lengths, which
increases the stretching energy term. In order to minimize the stretching energy term, the
cylinder would need to take on a more hexagonal shape, as illustrated in Figure 2.2.

Figure 2.2: Figure showing packing frustration in the cylindrical phase of an amphiphilic
diblock copolymer melt system. A uniform interfacial curvature minimizes the interfacial
term of the free energy, whereas the uniform thickness of the majority domain minimizes
the stretching term of the free energy. In the cylindrical phase of a diblock copolymer
system, both of these properties cannot be satisfied at once. From Matsen review [34].

A similar argument can be made for the S phase. The Wigner-Seitz cell in this case is
a truncated octahedron. While the spherical interface minimizes the interfacial energy, a
geometry closer to the truncated octahedron better satisfies the stretching energy. This is
true since both the C and S phases occur only when f 6= 0.5, thus the majority domain
will tend to dominate the stretching energy term [34].

Matsen et al. determine the amount of packing frustration by measuring the amount of
variation in the curvature as well as the variation in domain thickness. The former being
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easier to measure, they settled on this as a metric of packing frustration [34]. Using this
measure of variation, they are able to analyze the stability of each phase. The PL phase
has a high amount of variance, thus a higher packing frustration than the G phase [34].

Matsen, et al. have proposed this packing frustration as a means to explain the metasta-
bility of the PL phase. Since the variation in curvature is quite high, they explain that
this implies a high packing frustration with PL as opposed to G. They also find that the
addition of the majority domain homopolymer can reduce packing frustration, allowing
the phase PL to replace G.

2.3 Colloidal Nanoparticles

A colloidal fluid is, in a general sense, a suspension of particles in a medium, either liquid
or gas, where the particle sizes are in the nm or µm scale [28]. Particles in this size
range are small enough to undergo thermal fluctuation and large enough to overcome
sedimentation. Colloids of this type are therefore of interest for self-assembly since they are
able to sample configuration space. For example, lock and key colloids (colloids which have
been engineered with complimentary shapes that can tunably interlock) take advantage of
non-spherical nanoparticles to self-assemble into engineerable structures [56].

Lock and key colloids take advantage of the shape of the particles to induce self-
assembly. Sacanna et al. use spherical particles of two different sizes made of silica,
poly(methyl methacrylate) or polystyrene. The larger of the two spherical particles, known
as the lock particle, is created by nucleating an oil droplet then giving it a polymer shell.
The droplet then contracts, buckling the shell in a controlled fashion [56]. The smaller
key particles fit into these depressions. The particles are given a short-range attractive
potential through the use of the depletion interaction [28].

The range of the interaction between colloids is simply governed by the diameter of
the particles. Once two particles come within range of each other, a depletion interaction
between the two particles supplies a short-range attraction [56]. This will be discussed in
more detail in Section 3.1.2.

Both experimental and theoretical work has shown that polymer grafted nanoparticles
suspended in a polymer “matrix” can self-assemble [1]. The group of Ackora, et al. used
both a Monte Carlo (MC) and field-theoretic approaches to model the doping of spher-
ical nanoparticles with polymer chains of different lengths and different concentrations.
They then attempted to verify their results experimentally. It was found that, similar to
amphiphiles, these nanoparticles were capable of self-assembly.
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The theory yielded structures including many-particle chains as well as sheets depending
on the grafting density. When grafting with polymer chains of increasing length, the
particles experienced changes in the type of aggregation. Grafted with dimers, the particles
formed long chains, sheets, as well as possible intermediary morphologies. When grafted
beyond a critical density, the particles no longer agglomerate but simply disperse.

Their subsequent experimental techniques, using 14-nm spherical silica particles that
had been grafted to polystyrene in a polystyrene matrix, confirmed the theoretical results.
The particles, when ungrafted, formed large (∼ 1−100µm) spherical clusters, as expected.

Polymers can be attached to the surface of a colloid in three ways [28]. They can attach
to the surface at one end of the polymer chain. At low packing densities, the chain will
tend not to stretch to its full length (since that would decrease entropy) and will form a
mushroom shape. At higher packing densities, the chains will tend to spread out, forming
a brush. Finally, the chains do not have to attach at one end, but may attach to the surface
at random points along its chain.

The behaviour of the attached polymers depends highly on the quality of the solvent. In
a poor solvent, the polymers will tend to aggregate and collapse, as they want to minimize
contact with the solvent [28]. On the contrary, in a good solvent, the polymers will tend
to repel and stretch. This has a correspondingly profound effect on the colloids to which
they are attached.

In a good solvent, the polymers will repel, essentially causing the colloids to repel as
well. DNA can be used to customize the inter-colloid interaction [11, 33, 44, 57, 58, 66],
allowing the customization of a short-range attraction between colloids using an unpaired
“sticky” end of a DNA strand.

Recent research has indicated that nanoparticles grafted with customized DNA brushes
are capable of self-assembly [65, 11]. Larger nano-particles and micro-particles are well
suited to self-assembly since they are both large enough to allow optical imaging and small
enough to undergo thermal fluctuations, which will be described in more detail in Section
3.1.

Tindemans et al. constructed a model of DNA-coated colloid systems using a regular
lattice, each lattice site being occupied by a particle of type A, B, C, etc. [65] In this way,
they could customize the nature and range of each inter-particle interaction with nearest-
neighbour, next-nearest-neighbour, etc. range. This was done for both a square lattice
and a triangle lattice in 2-dimensions.

They argue that for a specific pattern to be a ground state, it must be lower in en-
ergy than every distinguishable configuration or symmetry (based on the symmetries of
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the lattices) [65]. They define n(0) as no-interaction, n(1) as a nearest-neighbour range
interaction, n(2) as a next-nearest-neighbour range interaction, etc...

Based on these ideas, they are able to put a lower bound on the range of interaction
required to design non-trivial patterns for a given lattice. They found this minimum
range to be n(2) for a triangular lattice and n(3) for a square lattice [65]. One of their
prescriptions for a designable pattern consists of an attractive interaction of range n(1)
and a repulsive interaction of range n(2) for a triangular lattice. The repulsive interaction
is extended to n(3) for the square lattice [65]. They used a Monte Carlo approach on
both square and triangular lattices to test their assertions, finding that indeed long range
patterns of many particle species were engineerable in this way [65].

In experiments with DNA-grafted nanoparticles, Dreyfus et al. performed an exper-
iment in which roughly 2.2 × 104 DNA molecules were coated to the surface of 525nm
particles. The DNA strands used consisted of a bottom segment of 49 double-strand base
pairs with a top segment of 11 single-strand bases [11]. The top end of the DNA molecule
was thus engineered to be “sticky”. They found that below a critical temperature Td, the
nanoparticles would begin to aggregate as illustrated in Figure 2.3.

Figure 2.3: Figure showing the aggregation and disaggregation of DNA-coated polystyrene
particles across a critical temperature Td. Below Td (left) the particles aggregate into larger
structures. Near Td (center), singlet particles and aggregates coexist at equilibrium. Above
Td (right), particles remain as singlets. From Dreyfus et al. [11]

In order to measure the aggregation, they proposed measuring the Optical Density
(OD), since the single-stranded DNA will absorb more UV light than the double-stranded
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DNA. In this way, it was possible to estimate the DNA hybridization and thus the number
of singlet particles present. They found that the dissociation temperature was highly
dependent on the DNA surface density. The dissociation curves were also very sharp, with
a well defined dissociation temperature Td [11].

Dreyfus et al. further postulate that their DNA-nanoparticle colloid self-assembly
method could also be used on noble-metals such as silver or platinum, as well as on semi-
conductor nanoparticles such as CdSe or CdS.

10



Chapter 3

Theory

3.1 Colloids

3.1.1 Sedimentation Length

As discussed previously, colloids are simply suspensions of particles within a fluid. In-
tuitively, without fluctuation the colloid would be unable to move through the possible
particle configurations. It would simply be trapped in its initial configuration. Fluctua-
tion, therefore, is essential to self-assembly.

This fluctuation is brought about by the Brownian motion of the particles in the fluid.
The energy scale of these thermal fluctuations scales with temperature. The sedimentation
length lsed is defined as the ratio of the thermal energy to the force of gravity [28]

lsed =
kBT

m∗g
(3.1)

where m∗ is the effective mass of a colloid particle due to buoyancy and is given by m∗ =
vc∆ρ, vc is the volume occupied by a colloid particle, and ∆ρ is the difference in density
between a colloidal particle and the solvent.

A colloid is said to be Brownian when the sedimentation length is roughly equal to the
size of a particle, or when lsed ≈ 3

√
vc [28].
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3.1.2 Depletion Interaction

The depletion interaction is an important consideration in colloidal systems [28]. The
depletion interaction is a short-range attraction that is a function of the solvent in which
the colloid is suspended [28, 56]. The principle applies equally to colloids suspended in a
polymer solution.

Define rp as the radius occupied by an unstretched polymer in solution [56]. For any
polymer within rp. The depletion layer surrounding a particle is defined as a layer of
thickness rp. Any polymer within this layer will experience a loss of configurational entropy
due to the excluded volume of the particle.

For an isolated particle, this leads to an isotropic osmotic pressure [28]. However, when
the depletion layers of two particles overlap, there is an imbalance in this pressure. The
forces involved are purely repulsive, but the net effect is an attractive force between the two
particles. The depletion layers will begin to overlap when the two particles come within a
distance of 2rp of each other, effectively setting this as the length-scale of the interaction.

3.2 Model

3.2.1 Densities

The particle density function for a given species s can be written as:

Φ̂s(r) ≡ vs

Ns∑
i=1

drδ(r− ri,s) (3.2)

where ri,s is the position of particle i, Ns is the number of particles of species s, and vs is
a normalization constant. This definition of the density function assumes that the particle
i is localized entirely at the position ri,s.

While it is convenient to imagine the density function this way, the following arguments
are also valid for a smoothed density function that represents the volume fraction of species
s at the point r. It should be noted that I will be referring to the volume fraction function
(the smoothed version of the above) as a density function. Since much of the literature
uses density functions, it is easier to maintain continuity.

Assuming that the particles are confined to a volume V , then the total volume occupied
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by a particular species s must be the integral of its density over all space.∫
Φ̂s(r)dr =

∫
vs

Ns∑
i=1

drδ(r− ri,s) = Nsvs = fsV (3.3)

This indicates that the normalization constant vs is the volume of a particle of species s.
A total volume fraction fs can also be defined as the fraction of volume V that all of the
s-species particles occupy.

Moving to a two species system, it is convenient to define vA ≡ v0 as the volume
occupied by an A-species particle and vB ≡ αv0 to be the volume occupied by a B-species
particle. In this way, the relative particle size

vB
vA

= α (3.4)

is the ratio of the volumes of a B-species particle to an A-species particle.

3.2.2 Interaction Potential

The potential U is a function of the positions of all of the particles in the system.

U({rA}, {rB}, {rC}, ...) = U
[
Φ̂A, Φ̂B, Φ̂C , ...

]
(3.5)

where {rs} represents the set of all position vectors r of particles of species s.

Now, it is necessary to define the potential functional in order to calculate the potential
of the system for a given set of density distribution functions as defined in Equation 3.2.
For the purposes of this model, only two-particle interactions will be considered.

There exist three possible two-particle interactions in the two-species system: UAA(r),
UAB(r) and UBB(r) which are functions of the separation between particles. These poten-
tials correspond to the A-A interactions, A-B interactions, and B-B interactions respec-
tively. The potential of the system due to these inter-particle interactions is expressed
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as

U({rA}, {rB}) =

NA∑
i=1

∑
j<i

UAA(|ri − rj|) +

NA∑
i=1

NB∑
j=1

UAB(|ri − rj|)

+

NB∑
i=1

∑
j<i

UBB(|ri − rj|) (3.6)

which, using Equation 3.2, reduces to an integral on the density functions ΦA and ΦB.

U [Φ̂A, Φ̂B] =

∫ ∫
drdr′

(
1

2v2
0

Φ̂A(r)UAA(|r− r′|)Φ̂A(r′)

+
1

αv2
0

Φ̂A(r)UAB(|r− r′|)Φ̂B(r′)

+
1

2α2v2
0

Φ̂B(r)UBB(|r− r′|)Φ̂B(r′)

)
(3.7)

3.2.3 Partition Function

It is now possible to write down the Hamiltonian of the system. For a system of Ns

interacting particles of species s, the classical Hamiltonian can be expressed as

H =
Ns∑
i=1

p2
i

2m
+

1

2

Ns∑
i=1

Ns∑
j=1

U (ri − rj) (3.8)

It should be noted that in the above sum, the terms i = j represent self-interactions. These
terms have been retained since, in the following computation of the partition function Z
and free energy F of the system, the contribution of these terms will not be relevant. In
the canonical ensemble, with a fixed number of particles N , this factor is a constant and
can be ignored in energy calculations.

It can be shown that for a classical system of N interacting particles confined to a
volume, the canonical ensemble, the partition function is [52]

ZN(T, V ) =
1

N !h3N

∫ ∫
drNdpNe

−β
(∑N

i=1

p2
i

2m
+ 1

2

∑N
i=1

∑N
j=1 U(|ri−rj |)

)
(3.9)

Assuming that species A particles interact with each-other with potential UAA(r) and

14



species B particles are non-interacting, then the partition function for the combined system
is simply the product of the two separate partition functions. Define N = NA +NB

ZN(T, V ) =
1

NA!NB!h3N

×
∫
drNAA drNBB dpNAA dpNBB e

−β
(∑NA

i=1

p
A,i2

2m
+
∑NB
i=1

p
B,i2

2m
+ 1

2

∑NA
i=1

∑NA
j=1 UAA(|rA,i−rA,j |)

)
(3.10)

For particles in the classical regime, the momentum dependent portion of the partition
function is characterized by the thermal wavelength [52] λT .

λT =

(
2m~2

mkBT

)1/2

(3.11)

Thus Equation 3.10 becomes

ZN(T, V ) =
1

NA!NB!λ3NA
T,A λ

3NB
T,B

∫
drNAA drNBB e−

β
2

∑NA
i=1

∑NA
j=1 U(|rA,i−rA,j |) (3.12)

It is now desirable to rewrite the partition function as a functional integral. It is
necessary to introduce the functional identity [17]

∫
DΦ δ(Φ− Φ̂) = 1. Equations 3.6 and

3.7 allow the potential term of the Hamiltonian to be rewritten in terms of the density
functions ΦA and ΦB.

ZN(T, V ) =
1

NA!NB!λ3NA
T,A λ

3NB
T,B

×
∫
drNAA drNBB

∫
DΦADΦBδ(ΦA − Φ̂A)δ(ΦB − Φ̂B)e

−βσ
6

2v20

∫
dr
σ3

dr′
σ3

Φ̂A(r)UAA(|r−r′|)Φ̂A(r′)

(3.13)

where we define σ to be an arbitrary length-scale in order to render the contents of the
exponential dimensionless. The choice of length-scale will be discussed in greater detail
later on.

In order to continue it is convenient to introduce the real fields WA(r) and WB(r), which
are interpreted as chemical potential fields. We are free to choose the delta functional δ,
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which we can express as [17]

δ
(

Φ− Φ̂
)

=

∫ +i∞

−i∞
DW exp

[∫
dr

σ3
W (r)

(
Φ− Φ̂

)]
(3.14)

leading to a functional form of the partition function integrated over all possible density
functions and fields. It is now possible to define the term Qs as

∫
drNss
σ3Ns

exp

(
−
∫

dr

σ3
Ws(r)Φ̂s(r)

)
=

∫
drNss
σ3Ns

exp

(
− vs
σ3

Ns∑
i=1

Ws(ri,s)

)

=

(∫
dr

σ3
exp[− vs

σ3
Ws(r)]

)Ns
≡ Q

fsV
vs
s (3.15)

where we have expressed the number of particles of specied s as Ns = fsV
vs

. This allows
for the further simplification of Equation 3.13, which can now be written as a functional
integral of chemical potential fields as well as densities.

ZN(T, V ) =
1

NA!NB!λ3NA
T,A λ

3NB
T,B

×
∫
DΦADΦB

∫
DWADWBQ

fAV

v0
A Q

fBV

αv0
B e

−βσ
6

2v20

∫
dr
σ3

dr′
σ3

ΦA(r)UAA(|r−r′|)ΦA(r′)+
∫
dr
σ3
WA(r)ΦA(r)+WB(r)ΦB(r)

(3.16)

which has the form

ZN(T, V ) ∝
∫
DΦ

∫
DW exp (−βH [Φ,W ]) (3.17)

3.2.4 Saddle Function Approximation and Free Energy

The saddle-function approximation, also known as the method of steepest descent [10]
provides an approximation for further simplifying the partition function in Equation 3.16.
It is possible to approximate the integral by expanding the action about some φ(r) and
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w(r) that minimize the Hamiltonian.

δH[W (r)]

δW (r)

∣∣∣∣
W (r)=w(r)

= 0 (3.18)

δH[Φ̂(r)]

δΦ̂(r)

∣∣∣∣
Φ̂(r)=φ(r)

= 0 (3.19)

The drawback to using this method is that it does not take into account any fluctuation
in these functions. This method assumes that there exists a unique global minimum [2].
Typically, this is not the case, since local minima known as metastable states may well
exist. This approximation also does not make any assertion as to how the system can
achieve this state. Using this approximation, the integral can be approximated using

ZN(T, V ) ≈ 1

NA!NB!λ3NA
T,A λ

3NB
T,B

×Q
fAV

v0
A Q

fBV

αv0
B e

−βσ
6

2v20

∫
dr
σ3

dr′
σ3
φA(r)UAA(|r−r′|)φA(r′)+

∫
dr
σ3
wA(r)φA(r)+wB(r)φB(r)

(3.20)

where QA and QB are now functions of wA and wB respectively.

With the partition function of the canonical ensemble in hand, it is now possible to
calculate the Helmholtz free energy of the system using the relation F = −kBT lnZN(V, T ).
This leads to the following free energy

F

kBT
= − ln

(
1

NA!NB!λ3NA
T,A λ

3NB
T,B

)
− fAV

v0

lnQA −
fBV

αv0

lnQB

+
σ6

2v2
0

∫
dr

σ3

dr′

σ3
φA(r)

UAA (|r− r′|)
kBT

φA(r′)−
∫

dr

σ3
wA(r)φA(r) + wB(r)φB(r) (3.21)

Rather than introduce incompressibility strictly, which can be expressed as φA(r) +
φB(r) = 1, it is possible to introduce an energy penalty for incompressibility violation.
This energy penalty can be controlled by adding an incompressibility parameter κ̂. The
free energy derived above is an extensive property. It is useful in the bulk case to deal
with an intensive free energy by dealing with the free energy per unit volume. Since the
length-scale σ is arbitrary, it is convenient to define it as the “size” of a particle of species
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A. Let σ = 3
√
v0.

v0F

kBTV
= −v0

V
ln

(
1

NA!NB!λ3NA
T,A λ

3NB
T,B

)
− fA ln (QA[wA(r)])− fB

α
ln (QB[wB(r)])

+
v0

2V

∫
dr

v0

dr′

v0

φA(r)
UAA (|r− r′|)

kBT
φA(r′)− v0

V

∫
dr

v0

wA(r)φA(r) + wB(r)φB(r)

+
κ̂

2

∫
dr

v0

(φA(r) + φB(r)− 1)2 (3.22)

where QA and QB are, from Equation 3.15, defined as

QA =

∫
dr

v0

e−wA(r) (3.23)

QB =

∫
dr

v0

e−αwB(r) (3.24)

3.2.5 Self-Consistent Equations

The final intensive form of the free energy in Equation 3.22 is a functional of four functions:
φA(r), φB(r), wA(r), and wB(r), which are the two density functions and the two chemical
potential fields, respectively.

It should be noted that the saddle-function approximation mentioned in the previous
section requires these functions to be the functions that minimize the action. This can
be accomplished by finding the functions that minimize the free energy. By taking the
functional derivative of Equation 3.22 with respect to each of densities and fields and
setting them to zero, it is possible to obtain four self-consistent equations.

φA(r) =
fAV

v0QA

e−wA(r) (3.25)

φB(r) =
fBV

v0QB

e−αwB(r) (3.26)

wA(r) =

∫
dr′

v0

φA(r′)
UAA (|r− r′|)

kBT
+ κ̂(φA(r) + φB(r)− 1) (3.27)

wB(r) = κ̂(φA(r) + φB(r)− 1) (3.28)
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3.2.6 Expression of Potential

The free energy expression in Equation 3.22 applies for a general potential U(r). The
potentials of interest to research into self-assembly exhibit characteristic properties. In
contrast to the more standard inter-particle interactions, such as the Lennard-Jones 6-12
potential, these potentials feature an attraction at short-range and a repulsion at long
range.

In addition to the attraction-repulsion requirements, the potential should feature key
properties. In Section 3.2.2 the nature of the interaction potential was described in rough
detail as being only a function of the separation between particles, implying this potential
is characteristic of a conservative force. It follows then that the potential must be not only
continuous, but continuously differentiable as a function of separation r.

At first we tried to simply flip the Lennard-Jones potential but this was not a sat-
isfactory solution for several reasons. As the separation distance approaches r → 0, the
Lennard-Jones potential approaches positive infinity. This singularity is useful in enforcing
an excluded volume; as the separation between particles becomes small, the situation be-
comes increasingly energetically unfavourable. Flipping this potential would result flipping
the singularity into an attraction, which is not desirable. A possible solution would be a
linear shift of the potential along the separation r axis. However, this would create a cusp
at r = 0 resulting in a potential U(r) that is not differentiable at the point r = 0.

The next solution we tried was to create a potential by superimposing two Gaussians
representing the attractive and repulsive regions. For example, an inverted Gaussian cen-
tred about the origin and a positive Gaussian centred at some r = λ. Such a potential
would have the form

σ3U(r)

v0kBT
= −A1 exp

(
− r

2

σ2

)
+ A2 exp

(
−(r − λ)2

σ2

)
(3.29)

where A1 and A2 determine the depth of the potential well and the height of the potential
barrier, respectively. λ represents the position of the repulsive region, effectively controlling
the length-scale of the attractive and repulsive regions.

The potential in Equation 3.29 is simple and meets several requirements. During the
computation of the fixed points of the SCFT equations, it is necessary to discretize the
potential. Should the potential contain a singularity, the nature of the potential would
change depending on the discretization. Since Equation 3.29 contains no singularities, it
is clear that the potential is continuous on the interval (0,+∞].
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Problems began to arise as the limits are analysed. Ideally, the two Gaussians that form
the potential should be quite independent. The depth of the potential well A1 should not

be affected by the height of the potential barrier A2. However, the limit limr→0
σ6U(r)

v20kBT
=

−A1 + A2 exp
(
−λ2

σ2

)
indicates that the depth of the potential well is indeed coupled to

the height of the potential barrier. Using a similar argument, the height of the potential
barrier is also coupled to the depth of the potential well, making these parameters very
difficult to control independently.

Next, it is necessary that the potential of a conservative force be differentiable over
its domain. At first glance, the potential in Equation 3.29 may seem differentiable, but
problems arise at r → 0. Since later computations are done in Cartesian space, and since
the mapping r : (x, y, z) → r(x, y, z) is itself not differentiable at r = 0, it is neces-
sary to look at the potential in the cartesian coordinate system. A simple calculation
reveals that the partial derivatives with respect to the coordinates x, y, z respectively

do not exist at the origin; the limit limx→0+
∂U(x,y,z)

∂x

∣∣∣∣
y=0,z=0

= 2A2λ
σ2 exp

(
−λ2

σ2

)
whereas

limx→0−
∂U(x,y,z)

∂x

∣∣∣∣
y=0,z=0

= −2A2λ
σ2 exp

(
−λ2

σ2

)
. This implies that the potential is not differ-

entiable at the origin, since no Jacobian can be calculated at this point. Without being
everywhere differentiable, the Gaussian potential is not acceptable as the characteristic
potential of a conservative inter-particle force.

With the requirements for an acceptable potential outlined, it is possible to generate
an appropriate potential. The potential we have chosen for our purposes can be expressed
as a piecewise function.

σ3U(r)

v0kBT
=

{
− (A1+A2)

2
cos
(
πr
λ

)
− (A1−A2)

2
, for r ≤ λ

A2 exp
(
− (r−λ)2

2γ2

)
, for r > λ

(3.30)

where A1 and A2 are dimensionless quantities corresponding to the depth of the potential
well and the height of the potential barrier respectively and γ controls the width of the
potential barrier. Figure 3.1 plots the new potential as a function of the relative separation
r between two particles.

Quick examination of this potential reveals that it meets the aforementioned criteria.
The new potential is continuous, differentiable everywhere including at the origin, does
not contain any singularities, and most importantly contains the desired two length-scale
interaction. Further, the regions of attraction and repulsion can be controlled independently
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Figure 3.1: A plot of the isotropic inter-particle potential, which features long-range re-
pulsion and short-range attraction, as a function of particle separation. A weak excluded
volume is enforced through incompressibility, not through the potential itself.

using their respective parameters.

3.3 Algorithm

In order to solve the self-consistent equations in Section 3.2.5, a method is required to
search density space in order to find a fixed-point. In order to minimize the free energy, a
density function must be found that satisfies all of the equations. This is not trivial since
the equations are self-consistent.

The most obvious method would be to search density space by somehow randomly sam-
pling configurations. Approaches may even be designed to mimic a Monte Carlo algorithm.
The drawback to this approach is that it would be extremely computationally demanding
and inefficient. A more systematic approach is appropriate.
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There are two main classes of methods for solving the SCFT equations. They fall into
Spectral (Fourier space) and Real Space methods [17]. Each of these methods present
different strengths and weaknesses.

The Spectral methods, pioneered by Matsen and Schick, involves computing the field
functions in a Fourier basis. This Fourier basis is composed of functions which must satisfy
two requirements [17]; the functions must be eigenfunctions of the Laplacian operator, and
they must also have the same symmetries as the phase of the fluid at the saddle-point. This
requires some fore-knowledge of the phases being sought. The Fourier expansion of the
fields is typically truncated after a given number of terms, the number of which dictates the
computational cost of solving the equations. The obvious drawback of the Matsen-Schick
method is that it requires some foreknowledge of the symmetries. For example, in the
diblock copolymer case, there exist a relatively small number of morphologies which can
be used to calculate these basis functions. A comparison of the relative free energies of
these morphologies for a given set of parameters allows the selection of a particular state
over another [17]. However, for more complex systems such as copolymers with greater
number of components, these symmetries may be more complicated and less clear. The
symmetries not being known in the colloidal systems being investigated, it was decided not
to use the spectral approaches.

It is worth going into greater detail regarding the Real Space methods, since they are
favoured in this project. Early real-space methods, such as the method developed by
Helfand and Wasserman, attempted to use symmetry to reduce the problem to a single
dimension [17]. Again, as it was not advantageous to reduce the problem to a finite number
of known phases, these approaches were not selected.

It is possible to iterate on either the fields w(r) or the densities φ(r). For our purposes,
it was decided to iterate on the density functions. The recursion equation that gives rise
to the algorithm can be expressed as

φk+1(r) = (1− ρ)φk(r) + ρφk+1/2(r) (3.31)

where k is the current iteration and k+ 1/2 represents the new density function calculated
by using the SCFT equations 3.25 - 3.28 and ρ is the mixing parameter, representing how
much of the new function should be mixed with the old to put into the next iteration. The
superscripts in this section denote iteration.

The algorithm proceeds as follows: for a density function φkA, it is possible to calculate
the corresponding chemical potential field wkA. Using incompressibility, this choice of φkA
density implies a unique φkB that likewise allows calculation of the field w

k+1/2
B . Since the
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equations are self-consistent, the densities φ
k+1/2
A and φ

k+1/2
B can then be calculated using

these fields. Should the new A and B densities match the old ones to some tolerance, the
densities represent a fixed point and the process is finished. If not, then the densities are
mixed according to Equation 3.31.

3.4 Computation

In order to implement the algorithm represented by Equation 3.31, the volume must be
“sampled” as a finite lattice. A balance between resolution and computation was achieved
using a lattice of 64× 64× 64 data points. System size was chosen to be large enough to
minimize finite size effects while small enough to allow for a reasonable resolution. Using
the rough length-scale 3

√
v0, box sizes were chosen to be L = 8, 10, 15 per side.

In this section, superscripts represent iteration. The initial guess for the density func-
tion φ0

A(r) was chosen randomly using a Gaussian random number generator with mean fA
and standard deviation of 0.15. In this way, the density would fluctuate about the volume
average fA, in order that no single phase would be consistently favoured over the others
because of the initial conditions. Since the system should obey incompressibility, the B
particle density was simply chosen to be φ0

B(r) = 1− φ0
A(r).

It is helpful to consider Fourier space at this point in order to calculate the interaction
term of Equation 3.27. In this way, it is possible to take advantage of the Convolution
Theorem of Fourier transforms. The theorem states that the Fourier transform of the
convolution of functions f and g, denoted (f ◦g)(r) =

∫
R3 dr

′f(r′)g(r−r′) into the frequency

domain becomes the point-wise product of functions f̃(ξ)g̃(ξ) and conversely the Fourier
transform of the product of functions f(r)g(r) into the frequency domain becomes the
convolution(f̃ ◦ g̃)(ξ). Exploiting this theorem, the integral becomes∫

dr′φA(r′)UAA(r− r′) = (φA ◦ UAA)(r) = F
[
(φ̃AŨAA)(ξ)

]
= F

[
φ̃A(ξ)ŨAA(ξ)

]
(3.32)

which greatly simplifies the procedure. The integral simply becomes the point-wise product
of the Fourier transform of the two functions, which can then be transformed to real-space
once again.

Once the integral in Equation 3.27 has been calculated, it is trivial to calculate the
fields w0

A and w0
B in order to implement the recursion in Equation 3.31. Assuming that

the guess is not a fixed point, the field, once plugged into Equations 3.25 and 3.26, will
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produce a new set of densities φ
1/2
A and φ

1/2
B . Point-wise mixing the old and new densities

with mixing parameter ρ will generate a new guess for the densities.

At each step, the relative divergence is estimated. This is done by computing the square
of the relative L2 norm of the difference between φkA and φ

k+1/2
A using the equation

divergence ≡

∫
dr
v0

(
φ
k+1/2
A (r)− φkA(r)

)2

∫
dr
v0

(
φkA(r)

)2 (3.33)

which can easily be computed in real space. In essence, this is a measure of whether or
not the fields going into the algorithm are the same as the ones coming out.

Once the divergence has dropped below some tolerance, typically a value of 10−7 or
10−10, the algorithm is stopped.

3.4.1 Stability

In all, the model here presented has eleven parameters. All of these parameters have
specific effects on the stability of the system which were investigated individually.

Six of these parameters are physical, relating to the potential and the macroscopic
features of the system. These parameters are the total volume fraction fA, the relative
particle size α, the depth of the potential well A1, the height of the potential barrier A2, the
width of the potential well λ, and the width of the potential barrier γ. The temperature
kBT has already been scaled out of the potential for convenience.

Five of the parameters are purely computational. They are the incompressibility pa-
rameter κ̂, the mixing parameter ρ, the number of points on the lattice n3, and the size of
the system, taken to be a box of volume V = L3.

The length of the box, the number of lattice points, and the two width parameters
of the potential have a strong combined effect on stability. Should the box be too small,
then finite size effects might wash out any of the interesting behaviour. Should it then be
decided to make the box extremely large, the resolution of the lattice points would be far
too big, washing out the subtleties of the morphologies and the potential. Increasing the
size of the box would also cause the system to converge much more slowly or possibly fail
to converge at all. Balancing these considerations, we chose a box length of approximately
L = 10, with n3 = 262144 lattice points for a potential with λ = 2 and γ = 0.38 by trial
and error. With γ > 2, the excluded volume becomes too great, and the colloids essentially
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have no room. Similarly as it approaches zero, the repulsive region begins to disappear and
the colloids will macrophase separate. The width of the attractive region λ dictates how
far apart the colloids should be before they will begin to feel repulsion. If λ < 1 then the
attractive region is almost exclusively within the particle and there is no room for particles
to aggregate. If λ > 3 then the interactions are too de-localized, happening far from the
particles themselves.

The mixing parameter and the incompressibility parameter are also intimately related
to stability. Should the incompressibility be too strong, then the region of density space
that minimizes the free energy would be too small, the saddle point too “steep”, causing the
algorithm to never converge for any reasonable mixing parameter. Decreasing the mixing
parameter to compensate would require too many iterations. It was found that κ = 1000
was sufficient to enforce incompressibility for the potentials of interest. To achieve this high
incompressibility, ρ = 0.001 was found to be the largest mixing parameter which would
achieve convergence.

3.4.2 Variable Incompressibility

In order to improve stability and speed convergence, a method was developed in which the
incompressibility parameter κ̂ and the mixing parameter ρ were varied strategically. It has
been found that by keeping a lower incompressibility and a higher mixing parameter to
create a “less steep” saddle point, and allowing the densities to converge, it is possible to
use this density, assumed to be close to the fixed point, as an initial guess with an increased
κ̂ and decreased ρ.

For example, beginning with a κ of 10 and a ρ of 0.01, it is possible to achieve con-
vergence relatively quickly, albeit to a density which may deviate from incompressibility.
However, when κ is then turned up to 100 and ρ to 0.005, this density will converge much
more quickly to a better estimate. Finally increasing κ to 1000 and ρ to 0.001, the system
as a whole will have converged much faster, with a lower divergence measure than it would
have otherwise. We refer to this method as the variable incompressibility method. Figure
3.2 compares the divergence as a function of iteration for a fixed incompressibility sim-
ulation versus a variable incompressibility simulation with identical physical parameters.
After 100000 iterations, the divergence of the variable incompressibility simulation is 102

lower than that of the fixed incompressibility simulation.

25



0 1 2 3 4 5 6 7 8 9 10
x 104

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Iteration

D
iv

er
ge

nc
e

Figure 3.2: Comparison of the methods of fixed incompressibility versus variable incom-
pressibility for systems with identical physical parameters in 1D. Using the fixed incom-
pressibility method (red), the divergence decreases much more slowly with ρ = 0.0005 and
κ̂ = 1000. Using the variable incompressibility method (blue), the divergence decreases to
a lower value, also with a final ρ = 0.0005 and κ̂ = 1000. The spikes in the divergence
correspond to the increases in incompressibility.

3.4.3 Density Functional Theory

The SCFT method was chosen for several reasons. In polymer physics, SCFT is well
studied, allowing us a common formalism with a large body of research. Our approach is
also easily scalable, allowing us to include many more particles species and interactions
without a significant change to our framework.

Density Functional Theory (DFT) is an approach pioneered by Hohenberg and Kohn
that creates a density function ρ(r) defined everywhere in the system[23]. It should be
noted that the ρ defined here is distinct from the mixing parameter introduced in Section
3.3. Beginning with our free energy in Equation 3.22, it is possible to algebraically reduce
the free energy to just a density φA and φB functional.

While moving to a DFT version may be numerically more simple, the solutions may
not be easier to obtain. Such an approach may be interesting but is beyond the scope of
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this project.
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Chapter 4

Results and Discussion

4.1 Potential and Dimensionality

In order to understand the relationship between the four parameters associated with the
potential and the morphologies of the system, the parameters were varied while fixing
fA = 0.5 and α = 1. This system, where the solvent and colloid particles are of equal size
is unphysical but allowed for higher mixing parameters and faster convergence.

Our results in one-dimension served both as a proof of concept and allowed us to
investigate the dependence of morphology on dimensionality for given parameters. Three
phases were observed by varying the parameters of the potential. For infinite temperature
where A1 = 0 and A2 = 0, the densities remained uniform (disordered) as expected. Fixing
A2, as we pass A1 > 2, the densities begin to show signs of phase separation. By A1 > 4,
the densities have robustly phase separated, exhibiting macrophase separation as one would
expect for a purely attractive potential. The A-species particle aggregation is moderated
only by the incompressibility.

Conversely, fixing A1 = 0 and varying A2 has a different effect. For the most part,
this results in a disordered phase. For simplicity, the γ parameter was replaced with the
more intuitive Half Width at Half Maximum (HWHM) for the Gaussian portion of the

potential. The relationship between these two parameters is HWHM =
√

ln 2
2
γ. Fixing

HWHM = 0.65 while increasing the parameter A2 results in a fairly rapid transition at
A2 > 0.4 to microphase separation. This phase manifests as a “dashed line” as illustrated
in Figure 4.1, equivalent to a 1D cross section of a lamellar phase, and variations on this
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Figure 4.1: Plot of the density functions φA (blue) and φB (red) of a 1D system in a mi-
crophase separated phase. The “dashed line” morphology is the only microphase separated
morphology available in 1D. Note that the system is strongly segregated, as the layers are
either composed almost entirely either of A or B species particles.

are the only possible microphase separation in 1D. Turning up either A1 or A2 significantly
higher simply led to a lack of stability.

In 2D, the possible morphologies become more interesting. Once again at high temper-
ature, the A and B particles are distributed uniformly. As A1 is increased, the system will
macrophase separate beyond A1 > 2. Fixing A1 and increasing A2, the system will begin
to shift over to a striped morphology as A2 > 0.2. Further decrease of temperature also
led to instability. Figure 4.2 illustrates the microphase separated phases observed in 2D.

In 3D, similar behaviour was observed. A1 = A2 = 0 once again corresponds to a
disordered phase. A1 > 0 and A2 = 0 corresponds to macrophase separation. Fixing
A1 = 3 and A2 = 0.3 led to a lamellar morphology. We observed that the L region of the
2D system was significantly wider in terms of fA than in 3D for the same potential. The
2D system would exhibit stripes until fA decreased beyond 0.4, whereas by fA = 0.4 in the
3D system, the system would have changed to a C phase.
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(b) 2D cylinder phase

Figure 4.2: The results of 2D SCFT computation using A1 = 3 and A2 = 0.3. The
colourbar represents the volume fraction φA. Figure (a) is the result of a calculation with
fA = 0.5. Figure (b) uses the same potential with fA = 0.2.

4.2 Self-Assembly

4.2.1 Particle Size

We then focused entirely on the 3D system. With a potential in hand that produces
lamellar morphologies at L = 8, α = 1, HWHM = 0.65, A1 = 3, and A2 = 0.3, it was
possible to fix the potential and investigate the morphologies by varying the total volume
fraction fA.

It was found that for fixed α = 1 the phases exhibited a clear progression as fA was
decreased. Near fA = 0.5, we found that the only possible phase was lamellar. From
lamella, the progression was clear. For decreasing fA, the lamella transition to cylindrical
morphologies, then to spherical morphologies, followed finally by a disordered phase. In
between the lamellar and cylindrical phases, we noticed a transitional phase of interest,
which will be discussed later.

As previously discussed, α represents the relative particle volume as given by Equation
3.4. Since the A species particle in our model represents a colloidal particle and the B
species particle represents solvent molecules, we are particularly interested in the small α
regime α << 1.

We repeated the procedure above at a lower temperature for fixed α = 0.1. The
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(a) Lamella (b) Gyroid (c) Cylinders (d) Spheres

Figure 4.3: The results of our 3D SCFT computation for α = 0.5, HWHM = 0.65 and
L = 8. The progression of phases observed as fA is decreased from fA = 0.5. From fA = 0.5
to fA ≈ 0.45, Lamella (L) are observed (a). Near fA ≈ 0.4, the system moves to a Gyroid
phase (b). From fA ≈ 0.35 to fA ≈ 0.25, the system enters a Cylindrical (C) phase (c).
From fA ≈ 0.2 to fA ≈ 0.15, the system enters a Spherical (S) phase (d), before finally
becoming disordered as fA < 0.15. This result is very similar to the progression of phases
for diblock copolymer melts while varying the same parameter. Note that these results
were computed using an L = 8 sided box. The results have been tiled for clarity.

potential characterized by A1 = 11, and A2 = 3 was sufficient to produce a lamellar
phase at fA = 0.5. It was found that, although requiring a lower temperature, the system
exhibited the same progression as it did for higher α. In addition, it also exhibited the same
transitional phases going from lamella to cylinders. We noted that as α and fa decreased,
the mixing parameter ρ had to correspondingly decrease as well.

Extrapolating from the experiences above, it was finally possible to map the phases for
α ≈ 0.05 and α ≈ 0.01 as a function of fA, which correspond to more physical systems.
These required yet another reduction of temperature and mixing parameter, and produced
the same progression of phases as the previous systems. A potential characterized by
A1 = 17, and A2 = 5 was chosen.

The dependence of phase on the particle size is to be expected. As particle size de-
creases, the entropic gain of a disordered system will dominate the energy gain of aggre-
gation.

4.2.2 Temperature

In order to better understand the temperature dependence of the self-assembly, we per-
formed several runs varying both temperature and total volume fraction fA.
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Figure 4.4: Phases of the system as a function of total volume fraction and particle size
at fixed temperature using an isosurface of φA = 0.5. The plot was computed using the
Variable Incompressibility method with final ρ = 0.0005 and κ̃ = 900. The purple region
indicates the surface facing the solvent particle. The filled boxes indicate the disordered
phase. Note the progression of the phases from L to S. The G phase is omitted from this
plot, however it has been observed between fA = 0.5 and fA = 0.4 on higher resolution
plots.

As expected, at high temperature, the system was in a disordered phase. The phases
achieved as the temperature was dropped depended heavily on the total volume fraction.
For fA ≈ 0.5, the system entered a lamellar phase. As the total volume fraction dropped,
the system first entered a complex phase (PL or G) then moved to cylindrical, then spherical
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before finally becoming disordered for small fA.

We produced plots by fixing alpha and varying temperature T and total volume fraction
fA. We plotted the phases as a function of these two parameters. Fixing the ratio of A1 to
A2, we scaled the temperature by a multiplicative factor. The maximum temperature was
set using a potential characterized by A1 = 11 and A2 = 3. This was repeated for α = 0.05
and α = 0.1.

In the case of α = 0.1, the system was unsurprisingly in a disordered state at high
temperatures. As the temperature was decreased in the neighbourhood of fA ≈ 0.5, the
system first macrophase separated, then as temperature decreased further began to move
to an L phase. Near fA ≈ 0.3, the system moved from the disordered phase to first a
macrophase separation then a cylindrical phase. Finally, for fA = 0.1, the system moved
directly from a disordered phase to an S phase.

In each case, both the divergence as well as the energy, given by Equation 3.22, was
calculated along with the densities for comparison. For the same potential, two states with
different free energies would imply that the higher of the two is likely a metastable state.

4.3 Comparison with Diblock Copolymer Melts

Perhaps the most striking agreement comes from the results of Matsen et al. Our results
parallel their simulations of a diblock copolymer melt system. Comparing our progression
of phases, seen in Figure 4.3, with the theoretical results reported by Matsen et al. reveals
some striking similarities as shown in Figure 4.6. Their progression of phases [42], L →
G→ C → S, shows strong agreement with our own as shown in Figure 4.5.

There are marked differences in the physics of our system and diblock copolymer sys-
tems. As previously discussed in Section 2.1, one of the more important properties of
block copolymers is packing frustration. As previously discussed in Section 2.2, packing
frustration is a result of the conflict between the interfacial and stretching energy terms of
diblock copolymer systems. Packing frustration is an important consideration when exam-
ining the G, PL and D phases. Interestingly, our model does not include any connectivity
between particles, thus does not have any packing frustration, yet exhibits a very similar
progression of phases including a G phase.
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Figure 4.5: Phases of the system as a function of total volume fraction and temperature
at fixed particle size α = 0.05 using an isosurface of φA = 0.5. The plot was computed
using the Variable Incompressibility method with final ρ = 0.0005 and κ̃ = 900. The
purple region indicates the surface facing the solvent particle. The filled boxes indicate the
disordered phase. It should be noted that the empty space is a simulation that failed to
converge below the threshold divergence.

4.4 Improvements to SCFT

As a mean-field theory, SCFT has several notable shortfalls. As previously discussed, our
mean-field approach does not take into account any fluctuations. As a result, some of the
saddle points computed may not be physically significant [17]. For example, while a PL
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Figure 4.6: A theoretical plot of the mean curvature < H > versus total volume fraction
f of a diblock copolymer melt system. Solid lines indicate stability, while dashed lines
indicate metastability. The plot illustrates the progression of stable phases as the total
volume fraction is decreased. From Matsen and Bates [38].

phase may correspond to a saddle point, fluctuations may prevent this state from being
observed due to its instability.

As suggested by Fredrickson et al., this project implements a method whereby each
simulation is begun using a random seed. It can be reasonably assumed that using this
method, for a large number of trials, that all of the relevant fixed points will be found [17].
Suspicions of metastability can also be verified by checking the free energies of a given set
of states (under identical parameters, differing only in their initial random states) in order
to determine if one state is significantly higher in energy. One must be careful employing
this method, as factors such as the size and shape of the “box” may raise the free energy
of a given morphology.

It is also possible to incorporate Gaussian fluctuations into an SCFT approach [46].
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Fluctuations away from a metastable saddle function will wash out any unstable fixed
points.

36



Chapter 5

Conclusions

Using self-consistent field-theory, we have shown that the system of particles, with an
isotropic interaction characterized by a long-range repulsion and short-range attraction, is
capable of self-assembly. We have mapped these phases as they vary with temperature,
volume fraction and particle size and found striking similarities to diblock copolymer melt
systems, despite the lack of connectivity and packing frustration in our model.

By varying the total volume fraction of our A species particle with respect to the B
species particle, we have found that the system moves through an L→ G→ C → S phase
progression. This same progression was observed in diblock copolymer melts as the total
volume fraction of the A block was varied with respect to the B block.

We also mapped the phase progression of the system as a function of temperature. We
have found that as it decreases from an infinite temperature, the system moves first from a
disordered phase, then to a macrophase separated phase, then into a microphase separated
morphology determined by the total volume fraction of species A relative to species B
particles. This behaviour diverges from that of diblock copolymers, as those classes of
systems are by construction not capable of macrophase separation.

While it was not possible in the scope of this project, there is much that can be done
using the SCFT approach to modelling systems of particles with isotropic interactions. For
example, while we have modelled a two-species system, it would be relatively simple to
expand our self-consistent equations for multi-particle species systems. This would allow
customized interactions between different types of colloidal particles. Beginning with our
SCFT framework, it would also be possible to construct a density functional theory model,
perhaps even allowing for more efficient computation. In this way, our approach allows
much room for expansion into systems not covered in the scope this project.
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Appendix A

Derivation of mathematical theorems
used in derivation and computation

A.1 Path Integrals

The path integral formalism, which was first refined by Feynman, is explained in Das[10]
by beginning with a Quantum Mechanical treatment.

We must first begin with, using the Dirac bra-ket notation, with the position basis
denoted |x〉. Since the position basis is a complete basis, we can use the property∫

dx |x〉 〈x| = I (A.1)

which is also true in the Heisenberg picture∫
dx |x, t〉 〈x, t| = I (A.2)

and since the basis states are orthonormal

〈x|x′〉 = δ(x− x′) (A.3)

where I is the identity operator. Note that these properties are equally valid for the
momentum basis |p〉.

Without going into extreme detail, Weyl ordering is a method of converting classical
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commuting products into non-commuting operators. Weyl ordering simply symmetrizes
all possible combinations with equal weight [10]. Thus, for example, the position and
momentum operators can be reordered as

x2p→ 1

3
(x2p+ xpx+ px2) (A.4)

Applying Weyl ordering to the Hamiltonian, it can be shown that

〈x|HWO|x′〉 =

∫
dp

2π~
e−

i
~p(x−x

′)H

(
x+ x′

2
, p

)
(A.5)

Next, let us define an infinitesimal length of time ε ≡ tf−ti
N

.

Now, it is possible to calculate the transition amplitude between some initial state and
final state by repeatedly applying the completeness identity from Equation A.1.

U(xi, ti;xf , xf ) = 〈xf , tf |xi, xi〉 (A.6)

= lim
N→∞

∫
dx1...dxN 〈xf , tf |xN−1, tN−1〉 ... 〈x1, t1|xi, ti〉 (A.7)

We now see that

〈xf , tf |xi, ti〉 = 〈xn|e−
i
~ tnHe

i
~ tn−1H |xn−1〉 (A.8)

= 〈xn|e−
i
~ εH |xn−1〉 (A.9)

=

∫
dpn
2π~

e
i
~pn(xn−xn−1)− i

~ εH
(
x+x′

2
,p
)

(A.10)

Substituting a Hamiltonian of the form H(x, p) = p2

2m
+ V (x), we arrive at

U(xi, ti;xf , xf ) = lim
N→∞

( m

2πi~ε

)N
2

∫
dx1...dxNe

iε
~
∑N
n=1

(
m
2

(
xn−xn−1

ε

)2
−V
(
xn+xn−1

2

))
(A.11)

which can be rewritten as

U(xi, ti;xf , xf ) = A

∫
Dxe

i
~S[x] (A.12)

The significance of this, as explained by Das, is that in this integral, the endpoints are
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fixed while all intermediary points are integrated over all space [10]. This is equivalent to
integrating over all possible paths, with each path weighted according to exp( i~S[x]) [10].

In the classical limit, as ~ → 0, the phase factor becomes very large and therefore,
with phases very near each other likely to have different signs, many paths will cancel each
other. However, the paths near the classical path, which satisfies δS[x]

δx
= 0, will contribute

to the transition amplitude. Therefore, these paths will dominate [10].

A.2 The Saddle-Function Approximation

From Das [10], it is possible to use the results of Section A.1 to approximate a path integral.
We argued that in the classical limit, the classical path is the path that satisfies

δS[x]

δx

∣∣∣∣
x=xc

= 0 (A.13)

where the c subscript denotes the classical path. Let us expand the action S[x] about the
classical trajectory by defining x(t) ≡ xc(t) + η(t). Therefore, we can write the Taylor
expansion of the action about the classical path.

S[x] = S[xc + η] (A.14)

= S[xc] +
1

2

∫ ∫
dt1dt2η(t1)

δ2S[xc]

δxc(t1)δxc(t2)
η(t2) +O(η3) (A.15)

Note that due to Equation A.13, the first order expansion is zero.

Referring back to the transition amplitude from Equation A.12, we can now integrate
over all paths.

U(xi, ti;xf , xf ) = A

∫
Dηe

i
~

(
S[xc]+

1
2

∫ ∫
dt1dt2η(t1)

δ2S[xc]
δxc(t1)δxc(t2)

η(t2)+O(η3)

)
(A.16)

allowing us to approximate the transition amplitude using the classical trajectory [10].

U(xi, ti;xf , xf ) ≈
A√

det
(

1
~

δ2S[xc]
δxc(t1)δxc(t2)

)e i~S[xc] (A.17)
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A.3 Functional Derivatives

In order to compute the functional derivative of the free energy in Equation 3.22, it is nec-
essary to begin with the definition of the functional derivative. The functional derivative,
or Gateaux derivative [10], is given as given by

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
(A.18)

and is defined as the functional derivative of functional F with respect to function f. Using
the above definition, it is possible to calculate the functional derivatives given in Equations
3.18 and 3.19.

A.4 The Convolution Theorem

From Riley et al. we find a proof of the convolution theorem. The proof is shown for
functions of a single variable, but the theorem is easily extended to Rn. The convolution
of two functions f and g is given by

h(z) ≡ f(g(z)) =

∫ +∞

−∞
f(x)g(z − x)dx (A.19)

Let us now take the Fourier transform of h(z).

h̃(z) =

∫ +∞

−∞
dze−ikz

[∫ +∞

−∞
f(x)g(z − x)dx

]
=

∫ +∞

−∞
f(x)dx

[∫ +∞

−∞
g(z − x)e−ikzdz

] (A.20)

Now let us define u ≡ z − x. The equation then becomes

h̃(z) =

∫ +∞

−∞
f(x)dx

[∫ +∞

−∞
g(u)e−ik(u+x)du

]
=

∫ +∞

−∞
f(x)e−ikxdx

[∫ +∞

−∞
g(u)e−ikudu

]
= f̃(k)g̃(k)

(A.21)
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The converse can similarly be proven [53].
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Appendix B

Notes on MATLAB Functions Used
in the Computation

The following notes on MATLAB functions were made with the use of the MATLAB
R2012a Documentation[...].

B.1 Notes on the Fast Fourier Transform

The Fourier transforms required to solve the self-consistent equations were accomplished
using the MATLAB FFT and FFTN functions. These functions calculate the discrete
Fourier transforms of a vector of length N and an array of Nd respectively.

Let us define wN ≡ exp(−2πi/N). Using the FFT function in MATLAB on the vector
x of length N is equivalent to applying

X(k) =
N∑
j=1

x(j)w
(j−1)(k−1)
N (B.1)

with the inverse Fourier transform IFFT equivalent to

x(j) =
1

N

N∑
k=1

X(k)w
−(j−1)(k−1)
N (B.2)

Higher dimensional calculations required the use of the MATLAB functions FFTN and
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IFFTN. From the MATLAB documentation, using the FFTN function is equivalent to
applying

Y = X;

for p = 1:length(size(X))

Y = fft(Y,[],p);

end

where SIZE(X) returns the number of elements in each dimension of the array X. Should d-
dimensional array X haveNd elements, SIZE(X) would return the vector [NN...N ] of length
d. The function LENGTH(Z) returns the number of elements in the largest dimension of
an array. For the vector Z = [NN...N ] of length d, the function LENGTH(Z) would return
d.

The above code calculates the Fourier transform using FFT by applying it to each
dimension in sequence.

B.2 Notes on the Random Number Generator

The MATLAB RANDN function was used in order to randomly generate the initial density
function, as described in Section 3.3. This function generates random number based on
the Normal (Gaussian) distribution.

In order to improve the random number generation, the MATLAB random number
generator (RandStream) was initialized using the “shuffle” command. This ensured that
the number stream was seeded using the system clock.
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Appendix C

The MATLAB Code Used in the
Project

clear

fa min = 0 . 1 ;
fa max = 0 . 5 ;
f a s t e p = 0 . 1 ;
T min = 0 . 2 ;
T max = 1 ;
T step = 0 . 2 ;

alpha = 0 . 0 5 ;
maxn = 3 ;

kappa = [10 100 9 0 0 ] ;
mix = [ 0 . 0 1 0 .005 0 . 0 0 0 0 5 ] ;

i t e r = 200000;
t o l = 10ˆ(−7) ;
mj = 64 ;
mk = 64 ;
ml = 64 ;
x s i z e = 8 ; %8 , 10 , 15
y s i z e = 8 ;
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z s i z e = 8 ;

in i tA1 = 11 ; %3.00 , 11 , 17
in i tA2 = 3 ; %0.30 , 3 , 5
lambda = 2 ;
HWHM = 0 . 6 5 ;

for n = 1 :maxn
for f a = fa min : f a s t e p : fa max

for T = T min : T step : T max
fb = 1 − f a ;
A1 = T∗ in i tA1 ;
A2 = T∗ in i tA2 ;
o u t f i l e = s t r c a t ( ’ f a ’ ,num2str( f a ) , ’T ’ ,num2str(T) , ’A1 ’

,num2str(A1) , ’A2 ’ ,num2str(A2) ) ;
p a r o u t f i l e = s t r c a t ( o u t f i l e , ’ ’ ,num2str(n) , ’ par . mat ’

) ;
f e o u t f i l e = s t r c a t ( ’ /work/ kvonkoni / orca / alpha0 .05 xs8

’ ,num2str(n) , ’ / ’ , o u t f i l e , ’ f e . mat ’ ) ;
o u t f i l e = s t r c a t ( ’ /work/ kvonkoni / orca / alpha0 .05 xs8 ’ ,

num2str(n) , ’ / ’ , o u t f i l e , ’ . mat ’ ) ;
save ( p a r o u t f i l e ) ;

end
end

end

clear

p a r f i l e = input ( ’ Parameter f i l e : ’ , ’ s ’ )
load ( p a r f i l e ) ;

hmj = mj /2 ;
hmk = mk/2 ;
hml = ml /2 ;
dx = x s i z e /mj ;
dy = y s i z e /mk;
dz = z s i z e /ml ;
xxs=−x s i z e /2 : dx : ( x s i z e /2−dx ) ;
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yys=−y s i z e /2 : dy : ( y s i z e /2−dy ) ;
z z s=−z s i z e /2 : dz : ( z s i z e /2−dz ) ;

s h i f t = zeros (1 , numel ( kappa ) ) ;

Vaa = zeros (mj ,mk, ml ) ;
Vbb = zeros (mj ,mk, ml ) ;
Vab = zeros (mj ,mk, ml ) ;
gamma = HWHM/sqrt (2∗ log (2 ) ) ;
for j =1:mj

for k=1:mk
for l =1:ml

r = sqrt ( xxs ( j )ˆ2+yys ( k )ˆ2+zzs ( l ) ˆ2) ;
i f r<=lambda

Vaa( j , k , l ) = −(A1+A2)∗cos (pi∗ r /lambda ) /2−(A1−A2)
/2 ;

else
Vaa( j , k , l ) = A2∗exp(−(r−lambda ) ˆ2/(2∗gammaˆ2) ) ;

end
end

end
end

Vaa = c i r c s h i f t (Vaa , [ hmj hmk 0 ] ) ;
Vbb = c i r c s h i f t (Vbb , [ hmj hmk 0 ] ) ;
Vab = c i r c s h i f t (Vab , [ hmj hmk 0 ] ) ;

Vka = f f t n (Vaa) . / ( mj∗mk∗ml) ;
Vkb = f f t n (Vbb) . / ( mj∗mk∗ml) ;
Vkm = f f t n (Vab) . / ( mj∗mk∗ml) ;

% Load from f i l e .
%{
f i l e = load ( ’ d r i f t c h e c k . mat ’ ) ;
phia = f i l e . phia ;
phib = f i l e . phib ;
%}
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rng ( ’ s h u f f l e ’ ) ;
std = 0 . 1 5 ;
phia = fa + std .∗ randn(mj ,mk, ml ) ;
phib = 1 − phia ;

g=1;
for h=1:numel ( kappa )

for i =1: i t e r

i ph i a = f f t n ( phia ) ;
iph ib = f f t n ( phib ) ;

cnva = iph i a .∗Vka ;
cnvb = iph ib .∗Vkb ;
cnvma = iph ib .∗Vkm;
cnvmb = iph i a .∗Vkm;

icnva = x s i z e ∗ y s i z e ∗ z s i z e ∗ i f f t n ( cnva ) ;
icnvb = x s i z e ∗ y s i z e ∗ z s i z e ∗ i f f t n ( cnvb ) ;
icnvma = x s i z e ∗ y s i z e ∗ z s i z e ∗ i f f t n (cnvma) ;
icnvmb = x s i z e ∗ y s i z e ∗ z s i z e ∗ i f f t n (cnvmb) ;

wa = icnva+icnvma−kappa (h) .∗(1−phia−phib ) ;
wb = icnvb+icnvmb−kappa (h) .∗(1−phia−phib ) ;

ewa = exp(−wa) ;
ewb = exp(−alpha∗wb) ;
QA = dx∗dy∗dz∗sum(sum(sum( ewa ) ) ) ;
i f isnan (QA)

error ( ’Q i s NaN ’ ) ;
end
QB = dx∗dy∗dz∗sum(sum(sum(ewb) ) ) ;

phiatemp = fa ∗ x s i z e ∗ y s i z e ∗ z s i z e ∗ewa/QA;
phibtemp = fb ∗ x s i z e ∗ y s i z e ∗ z s i z e ∗ewb/QB;

phiaave = fa−dx∗dy∗dz∗sum(sum(sum( phiatemp ) ) ) /( x s i z e ∗
y s i z e ∗ z s i z e ) ;
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phibave = fb−dx∗dy∗dz∗sum(sum(sum( phibtemp ) ) ) /( x s i z e ∗
y s i z e ∗ z s i z e ) ;

phianew = phiatemp+phiaave ;
phibnew = phibtemp+phibave ;

phia = mix (h)∗phianew+(1−mix (h) )∗phia ;
phib = mix (h)∗phibnew+(1−mix (h) )∗phib ;

max phi tot = max(max(max( phia+phib ) ) ) ;
min ph i to t = min(min(min( phia+phib ) ) ) ;

dev = phianew−phia ;
dev2 = dev .∗ dev ;
norm = sum(sum(sum( phianew .∗ phianew ) ) ) ;
phidev ( g ) = sum(sum(sum( dev2 ) ) ) /norm ;

i f phidev ( g ) < t o l
s h i f t (h) = g ;
break ;

end
g=g+1;

end
end

i ph i a = f f t n ( phia ) ;
iph ib = f f t n ( phib ) ;

iphiaVka = iph i a .∗Vka ;
iphibVkb = iph ib .∗Vkb ;
iphiaVkm = iph i a .∗Vkm;

phiaVphia = ( x s i z e ∗ y s i z e ∗ z s i z e )∗ i f f t n ( iphiaVka ) .∗ phia ;
phibVphib = ( x s i z e ∗ y s i z e ∗ z s i z e )∗ i f f t n ( iphibVkb ) .∗ phib ;
phiaVphib = ( x s i z e ∗ y s i z e ∗ z s i z e )∗ i f f t n ( iphiaVkm ) .∗ phib ;

iwa = f f t n (wa) ;
iwb = f f t n (wb) ;
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iwa iph ia = iwa .∗ i ph i a ;
iwbiphib = iwb .∗ i ph ib ;

waphia = ( x s i z e ∗ y s i z e ∗ z s i z e )∗ i f f t n ( iwa iph ia ) ;
wbphib = ( x s i z e ∗ y s i z e ∗ z s i z e )∗ i f f t n ( iwbiphib ) ;

comprss = phia+phib−ones (mj ,mk, ml ) ;
comprss2 = comprss . ˆ 2 ;

F = −f a ∗ log (QA)−( fb / alpha )∗ log (QB)+dx∗dy∗dz∗sum(sum(sum( phiaVphia
) ) ) /(2∗ x s i z e ∗ y s i z e ∗ z s i z e )+dx∗dy∗dz∗sum(sum(sum( phiaVphib ) ) ) /(
x s i z e ∗ y s i z e ∗ z s i z e )+dx∗dy∗dz∗sum(sum(sum( phibVphib ) ) ) /(2∗ x s i z e ∗
y s i z e ∗ z s i z e )−dx∗dy∗dz∗sum(sum(sum( waphia ) ) ) /( x s i z e ∗ y s i z e ∗ z s i z e
)−dx∗dy∗dz∗sum(sum(sum( wbphib ) ) ) /( x s i z e ∗ y s i z e ∗ z s i z e )+(kappa (
end) /2)∗dx∗dy∗dz∗sum(sum(sum( comprss2 ) ) )

l a s t p h i d e v = phidev (end)

phimax = max(max(max( phia+phib ) ) )
phimin = min(min(min( phia+phib ) ) )

phiamin = min(min(min( phia ) ) )
phibmin = min(min(min( phib ) ) )

i f exist ( ’ alpha max ’ , ’ var ’ )
save ( o u t f i l e , ’ phia ’ , ’ phib ’ , ’F ’ , ’ f a ’ , ’ alpha ’ , ’A1 ’ , ’A2 ’ , ’HWHM’ ,

’ lambda ’ , ’ x s i z e ’ , ’ y s i z e ’ , ’ z s i z e ’ , ’ alpha max ’ , ’ alpha min ’ , ’
a lpha s t ep ’ , ’ fa max ’ , ’ fa min ’ , ’ f a s t e p ’ , ’ l a s t p h i d e v ’ ) ;

e l s e i f exist ( ’T max ’ , ’ var ’ )
save ( o u t f i l e , ’ phia ’ , ’ phib ’ , ’F ’ , ’ f a ’ , ’ alpha ’ , ’A1 ’ , ’A2 ’ , ’T ’ , ’

HWHM’ , ’ lambda ’ , ’ x s i z e ’ , ’ y s i z e ’ , ’ z s i z e ’ , ’T max ’ , ’ T min ’ , ’
T step ’ , ’ fa max ’ , ’ fa min ’ , ’ f a s t e p ’ , ’ l a s t p h i d e v ’ ) ;

e l s e i f exist ( ’A1 max ’ , ’ var ’ )
save ( o u t f i l e , ’ phia ’ , ’ phib ’ , ’F ’ , ’ f a ’ , ’ alpha ’ , ’A1 ’ , ’A2 ’ , ’HWHM’ ,

’ lambda ’ , ’ x s i z e ’ , ’ y s i z e ’ , ’ z s i z e ’ , ’A2 max ’ , ’ A2 min ’ , ’
A2 step ’ , ’A1 max ’ , ’ A1 min ’ , ’ A1 step ’ , ’ l a s t p h i d e v ’ ) ;

else
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save ( o u t f i l e ) ;
end

52



References

[1] Pinar Akcora, Hongjun Liu, Sanat K. Kumar, Joseph Moll, Yu Li, Brian C.
Benicewicz, Linda S. Schadler, Devrim Acehan, Athanassios Z. Panagiotopoulos, Vic-
tor Pryamitsyn, Venkat Ganesan, Jan Ilavsky, Pappanan Thiyagarajan, Ralph H.
Colby, and Jack F. Douglas. Anisotropic self-assembly of spherical polymer-grafted
nanoparticles. Nature materials, 8(4):354–9, April 2009.

[2] Daniel J. Amit. Field Theory, the Renormalization Group, and Critical Phenomena.
McGraw-Hill, 1978.

[3] T. M. Beardsley and Mark W. Matsen. Monte Carlo phase diagram for diblock copoly-
mer melts. The European physical journal. E, Soft matter, 32(3):255–64, July 2010.

[4] T. M. Beardsley and Mark W. Matsen. Monte Carlo Phase Diagram for a Polydisperse
Diblock Copolymer Melt. Macromolecules, 44(15):6209–6219, August 2011.

[5] Adi Ben-Israel. A Newton-Raphson method for the solution of systems of equations.
Journal of Mathematical Analysis and Applications, 15(2):243–252, August 1966.

[6] Pawe Bryk and Luis G. Macdowell. Self-consistent field/density functional study of
conformational properties of polymers at interfaces: role of intramolecular interac-
tions. The Journal of chemical physics, 129(10):104901, September 2008.

[7] Sergey V. Buldyrev, Gianpietro Malescio, C. A. Angell, N. Giovambattista,
S. Prestipino, F. Saija, H. Eugene Stanley, and L. Xu. Unusual phase behavior of
one-component systems with two-scale isotropic interactions. Journal of Physics:
Condensed Matter, 21(50):504106, December 2009.

[8] R. Car. Unified Approach for Molecular Dynamics and Density-Functional Theory.
Physical Review Letters, 55(22):2471–2474, November 1985.

53



[9] David Chandler. Introduction to Modern Statistical Mechanics. Oxford University
Press, 1987.

[10] Ashok Das. Field Theory: A Path Integral Approach. World Scientific, 1993.
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