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Abstract

Recent advances in sensor and microcomputer technology and in control and aeroydynamics
theories has made small unmanned aerial vehicles a reality. The small size, low cost and
manoueverbility of these systems has positioned them to be potential solutions in a large
class of applications. However, the small size of these vehicles pose significant challenges.
The small sensors used on these systems are much noisier than their larger counterparts.
The compact structure of these vehicles also makes them more vulnerable to environmental
effects. This work develops several different control strategies for two sUAV platforms and
provides the rationale for judging each of the controllers based on a derivation of the
dynamics, simulation studies and experimental results where possible.

First, the coaxial helicopter platform is considered. This sUAV’s dual rotor system
(along with its stabilizer bar technology) provides the ideal platform for safe, stable flight
in a compact form factor. However, the inherent stability of the vehicle is achieved at the
cost of weaker control authority and therefore an inability to achieve aggressive trajecto-
ries especially when faced with heavy wind disturbances. Three different linear control
strategies are derived for this platform. PID, LQR and H∞ methods are tested in simula-
tion studies. While the PID method is simple and intuitive, the LQR method is better at
handling the decoupling required in the system. However the frequency domain design of
the H∞ control method is better at suppressing disturbances and tracking more aggressive
trajectories.

The dynamics of the quadrotor are much faster than those of the coaxial helicopter.
In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differ-
ences between each of the rotors creates moments in the roll, pitch and yaw directions.
This system greatly simplifies the mechanical complexity of the UAV, making quadrotors
cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work.
Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not
inherently damped around hover. As such, the focus of the controller development is on
using nonlinear techniques. Linear quadratic regulation methods are derived and shown
to be inadequate when used in zones moderately outside hover. Within nonlinear meth-
ods, feedback linearization techniques are developed for the quadrotor using an inner/outer
loop decoupling structure that avoids more complex variants of the feedback linearization
methodology. Most nonlinear control methods (including feedback linearization) assume
perfect knowledge of vehicle parameters. In this regard, simulation studies show that when
this assumption is violated the results of the flight significantly deteriorate for quadrotors
flying using the feedback linearization method. With this in mind, an adaptation law is
devised around the nonlinear control method that actively modifies the plant parameters
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in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory
requirements the parameters are able to adapt to the correct values (as verified by simu-
lation studies). It can also adapt to changing parameters in flight to ensure that vehicle
stability and controller performance is not compromised. However, the direct adaptive
control method devised in this work has the added benefit of being able to modify plant
parameters to suppress the effects of external disturbances as well. This is clearly shown
when wind disturbances are applied to the quadrotor simulations.

Finally, the nonlinear quadrotor controllers devised above are tested on a custom built
quadrotor and autopilot platform. While the custom quadrotor is able to fly using the
standard control methods, the specific controllers devised here are tested on a test bench
that constrains the movement of the vehicle. The results of the tests show that the con-
troller is able to sufficiently change the necessary parameter to ensure effective tracking in
the presence of unmodelled disturbances and measurement error.
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Chapter 1

Introduction

The field of autonomous vehicles is a well developed and mature industry with numerous so-
lutions to pressing problems. Within this industry, the field of unmanned and autonomous
aerial vehicles (UAV) consists of a growing body of research that gives these systems access
to terrain that was previously not drivable to their wheeled (or otherwise grounded) coun-
terparts. Applications for this technology include remote surveillance, inspection, disaster
reconnaissance, asset management, videography and many more. These possibilities have
already shown significant market potential and as civilian skies open up to these systems,
the market size is poised to grow to more than $94 Billion USD in the next decade [45].

In the last five to 10 years, small UAV systems (sUAV’s, vehicles with less than 1 meter
wing span) have become increasingly popular. This smaller scale is poised to advance
the accessibility of these systems to areas previously deemed impossible to traverse by
the traditionally larger aerial systems. This includes tight spaces such as indoors, forests,
urban centers or natural caves. This miniaturization of aerial vehicles is further boosted
by various factors,

• Low cost miniaturization of high performance computing platforms especially ampli-
fied by recent advances in the smartphone industry [2].

• Miniaturization of high performance sensor systems including IMU, GPS, RADAR
and LIDAR systems

• The maturity of a large body of work in the comprehensive modelling of low reynolds
number aerodynamics
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• Breakthroughs in comprehensive analytical and computationally efficient modelling
and control techniques

These factors together have created an excellent environment for sUAV technologies to be
developed to the point of widespread application in various markets.

The fundamental problem with the safe operation of vehicles at a small (< 1m wingspan)
scale is reliable stabilization, robustness to unpredictable changes in the environment and
resilience to noisy data from shrinking sensor systems. Autonomous operation of aerial
vehicles relies upon on-board stabilization and trajectory tracking capabilities, and signif-
icant effort has to be made to make sure these systems are able to achieve stable flight.
These problems are compounded at smaller scales as the vehicle is more susceptible to en-
vironmental effects (wind, temperature etc.). Moreover, the small scale implies that lower
quality and noisier compact MEMS sensors are used as a primary sensor. The small form
factor also makes it harder for the MEMS sensors to be isolated from the vibrations that
are common in these flight platforms. As the number and complexity of applications for
such systems grows daily, the control techniques involved must also improve to provide
better performance and versatility.

Historically, simplistic linear control techniques were employed for computational ease
and stable hover flight. However, with better modelling techniques and faster onboard
computational capabilities, comprehensive nonlinear techniques to be run real-time have
become an achieveable goal. Nonlinear methodologies promise to rapidly increase the
possible flight envelope for these systems and make them more robust. However, they may
not be universally applicable to all configurations of sUAV vehicle systems. Moreover, a
vast majority of these nonlinear control methods require accurate knowledge of vehicle
dynamics and therefore may be susceptible to any changes or inaccuracies therein.

This work presents control methods for two different sUAV configurations, the coaxial
helicopter and the quadrotor helicopter. Choices of linear and nonlinear control methods
are designed based on a comprehensive discussion of system dynamics. These methods
are comparatively evaluated with simulations of real-world scenarios and operating modes
for these flight systems. Finally, in this work a custom quadrotor and autopilot platform
is developed. The nonlinear control methods are implemented on this system and the
experimental results are evaluated.
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1.1 Coaxial Helicopters

Coaxial helicopter systems were some of the first full-scale helicopters design and built
[13]. A coaxial helicopter consists of a pair of counterrotating rotors that rotate about the
same axis, thereby eliminating the need for a tail rotor to balance motor torque as in a
conventional helicopter. This coaxial rotor configuration for a helicopter has numerous ad-
vantages especially at a smaller scale. As laid out in current literature [12], the advantages
of the coaxial helicopter can be,

• Inherent Stability: Unlike a single rotor helicopter, the coaxial configuration is
inherently stable due to its counter-rotating blades and stabilizer bar that are able
to damp out sudden movements in attitude.

• Power train efficiency: The coaxial configuration has been shown to be upto 5%
more efficient when compared to the single rotor or quad-rotor configurations [12, 13].

• Speed Capabilities: The single rotor helicopter has a fundamental disadvantage in
that it has asymmetry of lift in forward flight [12]. This produces a varying amount
of lift on the advancing and retreating half of the main rotor effectively imposing
an upper limit on the forward speed. The coaxial helicopter overcomes this issue
because there is always a pair of advancing and retreating blades. This configuration
has allowed certain versions of the full scale coaxial helicopter to achieve forward
flights of over 480 km/h [34].

• Compact structure: The coaxial helicopter does not require a tail-rotor to counter-
act the angular momentum of the main rotors. The counter-rotating rotors are used
to counter-balance this moment. This makes the overall system more compact and
lightweight. The resulting reduction in the moment of inertia significantly increases
maneuverability [12].

Figure 1.1 shows some commercially available coaxial helicopter platforms along with some
potential applications.

Despite these advantages, the coaxial helicopter design is not suitable for all appli-
cations. Being a rotorcraft, range and speed are limited relative to fixed wing designs,
so applications requiring traversal of large distances with limited need for inspection are
not suited to the coaxial helicopter. The twin rotors are more susceptible to wind distur-
bances over single rotor or quadrotor designs due to limited control authority, particularly
in the small vehicle category. The design also favors stability over maneuverability, so that
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agressive trajectories are difficult to achieve. Most coaxial systems are also mechanically
complex. The system requires various mechanical linkages to actuate the aircraft and the
coaxial configuration requires a more complex geartrain design making it costlier to main-
tain when compared to simpler designs such as the quadrotor. Ultimately, the efficiency
and stability gains make coaxial helicopters ideal platforms for surveillance tasks requir-
ing limited range and consistent perspective over moderate flight durations, but less than
desirable for long distance or target tracking missions.

Much work has been done to develop models for coaxial platforms. The development
of a precise dynamic model of the small coaxial helicopter was initiated by Bouabdallah et
al. [37], which is one of the most complete models developed. Related efforts by Chen and
McKerrow [12], Hendrix et al. [21], Wang et al. [39] and finally Dzul et al. [18] differ in the
further assumptions made to help simplify the overall model. For example, Wang et al. [39]
restrict their model to operating points close to hover conditions using small angle approx-
imations earlier in the model derivation and Hendrix et al. [21] use a quadratic polynomial
fit to thrust data in place of the usual thrust equation [9]. More critically, Hendrix et
al. [21] and Bouabdallah et al. [37] are the only works that attempt to model the stabilizer
bar movement (described in detail in Section 2.1) for controller design. Bouabdallah et
al. [37] also identifies a scaling factor between the angle of the stabilizer bar and the angle
of the upper rotor, while the work by Hendrix et al. [21] assumes this scaling factor to be
unity. When designing controllers (see Section 2.2), Hendrix et al. [21] claims that dynam-
ics between the upper rotor and the stabilizer bar can be sufficiently ignored to simplify
the controller formulation. However, in the system identification procedure carried out by
Bouabdallah et al., the stabilizer bar time constant was found to be 0.24s, and therefore
not negligible for precision control. It is for this reason that the full model defined by
Bouabdallah et al. [37] was used for the basis of controller formulation in this work.

A variety of linear multivarable controllers for the control of coaxial helicopter position,
altitude and yaw is explored in this work. The four states (3D Position and Height) are
considered critical in most missions with a focus on surveillance or data gathering. The
above modeling techniques are used to investigate PID, LQR and H∞ controller designs
on a platform developed by the authors. All three controller designs are well established in
the literature, with PID control on small coaxial helicopters first introduced by Watanabe
et al. [40] and further developed by Wu et al. [43] using vision sensors. However,
both works design and implement these controllers on conventional R/C helicopters with
a few states already controlled by onboard electronics and no access to the actual platform
actuators. Furthermore, the controllers are implemented off-board and only stable hover
flight at a fixed location is considered. Hendrix et al. [21] consider full state feedback
and optimal LQG control on coaxial platform. However, the authors only consider full
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state feedback methods, which assume perfect state measurements based on IR optical
methods, and perform all computations offboard. The controller designs by Schaforth et
al. [37] are the only work that considers direct actuator control on the helicopter based
on differential motor inputs and swashplate control. The work by Schaforth et al. [37]
also considers robust control for the coaxial platform. This work intends to build on the
work by Schaforth et al. [37] by introducing an alternate robust control structure, first
suggested by Weilenmann et al. [41] for full-scale single rotor helicopters. A method of
decoupling some of the cross-channel interaction for PID controller design is presented and
optimal Linear Quadratic Regulation(LQR) control strategies with direct actuator control
is also considered and compared.

(a) Skybotix Coax Platform (b) Artist Depiction of a Potential Coax Application (Courtesy:
MuFly)

Figure 1.1: Coaxial Helicopter Platforms

1.2 Quadrotor Helicopters

The Quadrotor helicopter configuration is currently one of the most popular sUAV heli-
copter configurations. Four independent rotors are used to create the thrust and regulate
the roll, pitch and yaw of the vehicle. This makes the mechanical design of the vehicle much
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simpler. The quadrotor has numerous advantages that make it such a popular platform
[22],

• Mechanical Simplicity: The quadrotor helicopter has fixed pitch rotors and four
seperate rotor assemblies. This makes the system mechanically simple and therefore
much easier and cheaper to maintain when compared to the coaxial and single rotor
helicopters.

• Smaller Rotor Size: The quadrotor configuration uses four rotors which allows
each rotor to be much smaller (for the same power output). This reduces the amount
of kinetic energy in the system, alleviating the risk of major damage during a crash.

• Control Authority: Unlike the coaxial helicopter, the quadrotor system possesses
substantial control authority i.e. the ability to apply signficant thrust for motion con-
trol. This enables the quadrotor helicopter to suppress the effect of various external
disturbances and track aggressive trajectories.

Figure 1.2 shows a commercially available quadrotor platform along with a potential ap-
plication currently under investigation.

However, just as in the case of a coaxial system, the quadrotor is unsuitable for long term
flights. Moreover, the quadrotor aircraft does not have a mechanical system of damping
the dynamics around hover, this means it has fast dynamics (velocities more 40km/h)
that must be accurately controlled to ensure stability . While the coaxial helicopter is
compact, the footprint of the quadrotor helicopter is larger for the same power output.
Finally, unlike the coaxial helicopter, the quadrotor configuration does not naturally tend
towards the linear flight regime (hover). This makes nonlinear control techniques more of
a necessity to provide reliable and robust flight.

Quadrotor dynamics have been extensively investigated, with numerous models having
been proposed which contain widely varying levels of fidelity and nonlinearity. The most
comprehensive discussions can be found in work by Pounds et al. [33] and Hoffman et al.
[23]. The work by Pounds [33] explores the effect of ’blade flapping’ in quadrotor vehicles.
Hoffman et al. [23] experimentally show the effect of blade flapping in their work and also
explore various aerodynamic phenomenon that appear during flight at high velocities.

Numerous control methods have been proposed for quadrotors, for both regulation and
trajectory tracking. The goal is to find a control strategy that allows the states of a
quadrotor to converge to an arbitrary set of time-varying reference states. Many previous
works [23, 14, 5, 33] have demonstrated that it is possible to control the quadrotor using
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linear control techniques by linearizing the dynamics about an operating point, usually
chosen to be around hover. However, a wider flight envelope and better performance can
be achieved by using nonlinear control techniques that consider a more general form of the
dynamics of the vehicle in all flight zones. Within these nonlinear methods, backstepping
[28, 6], sliding mode [44, 6, 26] and feedback linearization [16] have been demonstrated to be
effective with quadrotor control. Particularly, feedback linearization has shown significant
promise for quadrotor vehicles. Position control using feedback linearization is theoretically
impossible as the system has more output states than input signals. To get around this,
dynamic extension is used to add virtual inputs to this system. The method of dynamic
extension requires access to higher order derivative signals which have been shown to be
too noisy in experimental studies [26]. However, recent work by Das et al. [16] suggests an
alternate feedback linearization structure that deconstructs the quadrotor dynamics into
an inner loop containing the attitude and height of the vehicle and an outer loop containing
the position. The inner loop of the quadrotor platform is square i.e. it has the same number
of inputs as ouputs. This means feedback linearization can be applied without the use of
dynamic extension as long as the inverse of the dynamics exists in domain of interest. The
outer loop can then be designed assuming arbitrary inner loop attitude requests can be
achieved, which is feasible when relying on time scale separation between inner and outer
loops, and with standard controllers acting on the integrator chains that result from the
feedback linearization process. In general, this control structure shows significant promise
and is investigated in this work along with linear methods such as LQR.

All the control techniques suggested above require complete knowledge of the system
model and model parameters, but errors in the identified values of the parameters can
lead to significant deterioration of the controller performance. Furthermore, unmodeled
variations in system parameters (such as mass or inertia) during flight can cause significant
stabilization errors to occur. The need for an accurate nonlinear model of quadrotor
dynamics can be overcome by using adaptive methods that can react to and correct errors in
model parameter estimates, modify parameter estimates when they change and also adjust
for external disturbances. Linear adaptive methods such as Model Reference Adaptive
Control (MRAC) have been suggested [42]. However, as for most linear methods, the
achievable trajectory of the quadrotor is restricted due to the assumption of linearization.
Some nonlinear adaptive methods such as adaptive sliding mode control [26] and adaptive
backstepping [31] control have also been proposed. The work of Huang et al. [31]
suggests an adaptive backstepping method, and this approach was extended to include
inertia parameters in the adaptation law by Zeng et al. [46]. New work in autonomous
grasping and construction using quadrotors also use indirect adaptive methods, such as
the least-squares method (for mass) proposed by Kumar et al. [29]. However, all indirect
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methods correct parameter errors based on the difference between the expected and actual
plant outputs, but do not explicitly correct the model parameters to reduce tracking error
(as done by direct adaptive methods). Direct adaptation methods were first suggested
by Craig et al. [15] for mechanical manipulators. In this thesis, direct adaptive control
is combined with feedback linearization to make up for some of the weaknesses of the
pure feedback linearization approach. Finally, the work in nonlinear control design for
quadrotor vehicles does not consider the effect of external disturbances on the controller
performance, and yet disturbances such as wind gusts are commonly found in quadrotor
operating environments. Models of wind disturbances commonly experienced by sUAV’s
are well known [32]. In this work, the dryden wind gust models are applied to the simulated
dynamics to verify the performance of the suggested controllers.

(a) Aeryon Scout Platform (b) Onboard imagery from a Quadrotor of Flare
Stacks

Figure 1.2: Quadrotor Helicopter Platform and its potential uses

1.3 Research Approach and Contribution

This work considers two distinct sUAV platforms, the coaxial helicopter and the quadrotor
helicopter. Chapter 2 presents the different features of coaxial helicopter dynamics. The
coaxial helicopter design with flybar is passively stable, and tends to its nominal hover con-
dition, about which linear models are sufficiently accurate for control design. As a result,
PID, LQR and H∞ techniques can be applied, as has been demonstrated in the literature
[37, 8, 21]. The H∞ controller design proposed in this work builds on similar efforts applied
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to single rotor vehicles [41]. Chapter 2 also presents comprehensive simulation studies that
directly compares the performance of the various controllers. The effect of environmental
disturbances on these controllers is also presented.

Section 3 contains a comprehensive discussion of quadrotor dynamics as derived in
various current works. Quadrotor dynamics do not exhibit the same passive stability char-
acteristic of the coaxial design, and therefore, quadrotors are more natural candidates for
nonlinear control methods. In this work, a linear LQR controller for the quadrotor is de-
veloped as a baseline for comparison to various nonlinear methods. H∞ controllers and
nonlinear control methods are equally complex. Moreover, the linearity assumption (re-
quired by H∞) is frequently violated in flight. Therefore, robust linear methods are not
considered for quadrotors. Instead, the design focus is on feedback linearization and adap-
tive feedback linearization methods based on an inner loop/outer loop control structure.
Again, the performance of all the controllers is evaluated in a simulated environment in
the presence of enviromental disturbances. Experimental results for both LQR control and
feedback linearization on quadrotors can be found in recent literature [7, 26]. However,
experimental results for adaptive feedback linearization methods have not been presented
before. Section 4 contains a description of the custom autopilot and quadrotor platform
that is constructed for nonlinear control tests. Section 4 also contains the experimental
results that verify’s the advantages of the nonlinear methods described in Section 3. In
summary, the main novel contributions that will be presented in this thesis are:

• A new H∞ controller is designed using the robust mixed synthesis method. This
design uses a new set of frequency domain constrains derived from the specific re-
quirements of the coaxial helicopter. While a similar control strategy was used for
large scale single rotor helicopters [41], a controller with this design has never been
tried on a coaxial system.

• A comprehensive simulation study that shows the specific advantages and disadvan-
tages of PID, LQR and the new H∞ controller. While these controllers have been
independently developed by others, they have never been directly compared. This
comparison will aid future designers in making a more informed decision about the
controllers available to them.

• A traditional feedback linearization method is improved upon by the addition of
adaptive elements that continously correct the parameters used by the feedback
linearization method. This adaptation is shown to reduce tracking errors in vari-
ous scenarios when compared to the results of a traditional feedback linearization
method.
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• As in the case of the coaxial helicopter, the feedback linearization method, LQR
controller and the adaptive elements are directly compared under various scenarios.

• A custom autopilot platform is built and installed on an open source quadrotor
platform. This platform is then used to test the feedback linearization controller
in real-time. Using the autopilot platform, the advantages of the adaptive elements
suggested in this work is experimentally shown.

10



Chapter 2

Coaxial Helicopter Dynamics and
Control

Autonomous flight of small coaxial helicopters poses significant challenges in terms of
comprehensive yet computationally feasible modeling and control. The coaxial platform
provides several advantages at small scales in terms of size, footprint, efficiency and stabil-
ity. This study compares techniques used for the modeling and control of such an aircraft
in order to identify a viable control design for an experimental platform. Models of the
various thrust and motor dynamics are presented, and the fidelity of the model is assessed.
In terms of control techniques, linear methods such as PID, LQR and H∞ mixed synthesis
are presented. Simulation results of the control methods developed here are presented in
Section 2.3.

2.1 Flight Dynamics

2.1.1 Basic Flight Principles

The flight of a small radio-controlled coaxial helicopter is commonly controlled through
four main actuators, the two main blades (rotors) and two servos that control the orien-
tation (roll and pitch) of the lower rotor through a swash-plate. A diagram with the basic
mechanical layout is shown in Figure 2.1. Most commercially available remote controlled
coaxial helicopter platforms have fixed pitch rotors, as such the rest of the model is defined
using this assumption. This model can be extended to systems with collective and cyclic
pitch control if required.
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Servo bServo a

Motor upMotor dw

Drive gears

Rotor dw

Swashplate

Stabilizer
Bar

Rotor up

Figure 2.1: Actuators on a Coaxial Helicopter

The main thrust in the system is provided by the two main rotors. The altitude is
controlled by varying the rotational speeds of both rotors. The rotational torques generated
by turning the two rotors are in opposite directions which keeps the yaw of the system
stable, and can be varied to provide yaw control. The roll and pitch of the vehicle are
controlled by varying the orientation of the rotor hub, which tilts the tip path plane
causing the thrust direction to shift. This actuation is achieved by tilting a swashplate
using two servos, one for roll and one for pitch.

The change in the direction of thrust causes translational forces in the longitudinal
and lateral directions and a moment about the center of gravity. Along with the four
actuators there is commonly a passive input provided by a stabilizer bar that dampens
any movements in the roll and pitch directions. Such an assembly is shown in Figure 2.2.
The stabilizer bar provides a redress moment as it guides the upper rotor to follow the
lower rotors’ roll and pitch movements with dynamics commonly modeled as a first order
lag [21, 37]. This redress moment keeps the system inherently stable.
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Figure 2.2: Stabilizer Bar on Bell 212/HH-1N rotor head. Photo: Alan K. Radecki (CC
BY-SA 3.0)

2.1.2 Coordinate Systems

As is typical with aerospace applications [20], the NED inertial coordinate frame will be
used, and denoted by X, Y, Z. For body coordinates, x, y, z will be used, as depicted
in Figure 2.3. To transform between coordinate frames, a rotation matrix R ∈ SO(3) is
defined, along with 3-2-1 Euler angles φ, θ, ψ ∈ [0, 2π) such that X

Y
Z

 = R

 x
y
z

 , (2.1)

where the rotation matrix R can be expressed in term of Euler angles as,

R =

 cφcψ −cφsψ + sφsθcψ sθsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ

 (2.2)

The Euler angles φ, θ, ψ constitute the Roll, Pitch and Yaw of the vehicle respectively. The
rotations of the helicopter are represented using Euler angles instead of unit quaternions
because gimbal lock is not considered to be an issue with the manoeuvres involved in the
control of coaxial helicopters. The notation cφ, sφ, tφ is used to denote cosφ, sinφ, and
tanφ, respectively.
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Y

Z
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CoG

Figure 2.3: xyz and NED/XYZ frames.

Similarly, to transform angular rate quantities from body coordinates p, q, r (rad/s) to
Euler angle rates, the matrix C is used such that φ̇

θ̇

ψ̇

 = C

 p
q
r

 (2.3)

where C ∈ R(3×3) is defined as,

C =

 1 tθsφ tθcφ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 (2.4)

2.1.3 Equations of Motion

To capture the motion of the vehicle due to forces and moments, the general 6 DOF
equations for a moving body are used. The equations for translational acceleration in the
body frame as per [20, 30] are,  ẍ

ÿ
z̈

 =
1

m
~F − ~ω × ~v (2.5)
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Similarly, for angular rates using the Inertia tensor I ∈ R(3×3) the equations guiding the
angular moments can be expressed as, ṗ

q̇
ṙ

 = I−1( ~M − ~ω × I~ω) (2.6)

The above equations now define the motion of the helicopter in generalized co-ordinates
using external forces and torques. These external inputs must now be defined with respect
to the dynamics of the helicopter.

2.1.4 Forces and Moments

Three main forces ~F acting on the vehicle are considered,

• A force of gravity acting on the center of gravity

• Thrust forces due to the rotors

• Downwash and aerodynamic interaction between the two coaxial rotors

The center of gravity of the system is assumed to be aligned with the body z-axis. The
force of gravity acting on the body in the inertial frame is assumed to be on the inertial
Z axis with magnitude mg. The direction of this vector can be quantified in the body
co-ordinates using the transpose of Eqn. (2.1) as

~eg =

 −sθsφcθ
cφcθ

 (2.7)

In terms of the magnitude of the thrust generated by the individual blades, aerodynamic
theory suggests [9]

Fi =
ρClU

2S

2
(2.8)

where, ρ is the density of air, S is the surface area of the blade, i ∈ up, down, U is the
induced velocity and Cl is the lift coefficient. It is possible to assume that the induced
velocity is proportional to the rotor rate of rotation (steady state assumption),

Fi = kiω
2
i (2.9)
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where i signifies the top or bottom rotor on the coaxial helicopter and ωi is rotor speed.
Since the rotor pitch is fixed, the value of ki cannot be varied in flight, as is possible with
a variable pitch rotor. Instead, thrust is modulated by changing the rate of rotation of the
rotor.

The final forces under consideration are the downwash on the vehicle body and the
aerodynamic interaction of the two rotor system. Bouabdallah et al. [37] were able to
identify a small but significant downwash force (at a constant 0.0108N), while the effect of
the interaction of the two rotors is mostly ignored. That is, the effect of the downwash of
the top rotor on the freestream velocity observed by the bottom rotor is not independently
modeled but is instead lumped into different thrust coefficients for the two rotors and
modeled as essentially constant throughout the flight envelope.

Force Directions

Longitudinal and lateral acceleration are primarily achieved through deflection of the rotor
plane. The fixed pitch tip path plane control method is used primarily on small coaxial
helicopters, where it is considered sufficiently capable to control the vehicle. The direction
of the thrust can be resolved into two perpendicular vectors α and β that can be used
to express the angle of the rotor hub and the resultant tip path plane. These vectors are
shown in Figure 2.4 with respect to the body frame.

-z

i

x

y

i

iT

Figure 2.4: αi and βi for each rotors tip path plane
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The swash-plate angles (αdw and βdw) are directly controlled by independent servos and
lead to the unit vector [37] of the rotor plane normal,

êdw =

 cosαdw sin βdw
sinαdw

− sinαdw cos βdw

 (2.10)

Therefore, the total force from the lower rotor would be, as per Eq. (2.9),

~Fdw = kdwω
2
dwêdw (2.11)

While the above equations describe the force direction for the lower rotor, the upper
rotor has an independent force direction. The top rotor is coupled to a stabilizer bar and
has slower transients that keep the overall system stable. Similar to the lower rotor hub,
the stabilizer bar tip path plane can be quantified using the angles αs and βs. The stabilizer
bar dynamics can be described as [37],

α̇s =
1

Tstab
(φ− αs) (2.12)

β̇s =
1

Tstab
(θ − βs) (2.13)

The stabilizer bar angles lag behind any changes in the roll and pitch causing the redress
moment that keeps the vehicle stable. This lag is represented using the first order lag
equation shown in Eqn (2.12) and (2.13). The stabilizer bar angles are then transferred
to body coordinates and linearly scaled to express the angles of the top rotor hub, which
controls the thrust direction.

αup = kstab(αs − φ)

βup = kstab(βs − θ) (2.14)

Based on these angles the direction of the thrust vector can be realised as per Eqn. (2.10)
and the total force from the upper rotor is defined analogously to Eqn. (2.11). Therefore,
the total force generated on the helicopter in body co-ordinates is,

~F = ~Fup + ~Fdw +mgêg (2.15)

Once the forces and their corresponding directions are established, the equations guiding
the generation of the moments ( ~M) can be gathered from two sources,
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• A misalignment between the forces in Eqn. (2.15) and the body z-axis

• Aerodynamic reaction torques applied on the central rotor hub due to the rotor
velocities

The misalignment between the body forces and the body z-axis are due to nonzero thrust
directions (αi and βi). The forces causing moments about the center of gravity act at the
rotor hubs. The distance between the rotor hub and the center of gravity is quantified here
as the vector ~zi where i ∈ up, dw. Thus, the moments due to this misalignment can be
expressed [37, 39, 18] as,

~Mal = ~zup × ~eupFup + ~zdw × ~edwFdw (2.16)

The aerodynamic reaction torques can be expressed [37] as a function of the rotational
velocity of the rotors,

Mae = cupQ πρR
5ω2

up + cdwQ πρR5ω2
dw = kupq ω

2
up + kdwq ω2

dw (2.17)

where, once again, i ∈ up, dw. Note that as a simplifying assumption, the aerodynamic
reaction torques are assumed to act solely about the body z-axis. Thus, the total moments
acting on the body can be quantified as,

~M = ~Mal + ~Mae

= ~zup × Fup~eup + ~zdw × Fdw~edw + kq,upω
2
upẑ + kq,dwω

2
dwẑ (2.18)

The coaxial helicopter system also experiences gyroscopic torques as a result of com-
bined motion in the roll or pitch and the yaw direction [12]. This is a nonlinearity that is
present when experiencing a yaw moment during extreme roll and/or pitch motion which
the coaxial helicopter is not expected to experience. As a result, this phenomenon is not
considered in this work. This simplification has been made in numerous works about
coaxial helicopters. [37, 21, 37].

2.1.5 Actuator Transients

The inputs used to define the forces and moments in the dynamic model have been assumed
to be αdw, βdw, ωup and ωdw. However, these inputs are derived from actuators that have
transients that must be considered. It is possible to consider the standard DC motor model
to quantify these transients [21] as,

Jmω̇ = −bω +KtI − τ (2.19)

18



Lİ = −RI −Keω + V (2.20)

where, Jm is the motor inertia Kt and Ke are electrical constants, L is the circuit induc-
tance, R is the armature resistance, τ is the generated motor torque, ω is the motor speed
and V and I are the input voltage and current respectively. However, this model can be
simplified by assuming a linear relationship between the electronic input and the motor
speed and armature current. This removes the requirement to track motor transients and
also reduces the size of the state to be controlled. However, this is done at the expense of
a higher fidelity motor model

The servos that control the swashplate are modeled as having a first order lag and a
linear mapping. This is done as,

Ẋdw =
1

Tf,dw
(−ldwus,iθS −Xdw) (2.21)

where X ∈ (α, β) can be either servo actuating both rotor path angles, us,i is the electronic
servo input (arbitrarily scaled), Tf,dw is the time constant guiding the first order lag, ldw is
a linear mapping between the swashplate angle and the rotor angle and θS is the maximum
swashplate angle. Furthermore, it is also possible to model the rotor transients as a function
of input voltage, gear train efficiencies, frictional losses and aerodynamic back torques [37],

Jmω̇i =
kmUbatumot,i − kmkeigωi

igRω

− drωi −
cq,ikq,iω

2
i

i2gηg
(2.22)

where Jm, km, ke, Rω are the motor constants as described before, ig and ηg are the gear
ratio and gear efficiencies respectively, Ubat is the full battery voltage, and the last term is
simply based on the aerodynamic back torque as per Eq. (2.17).

Here it must be noted that the time constant guiding the servo transients (Tf,dw) can
be extremely fast (as little as 0.001s [37]). This small time constant for the servo transient
can be removed from the model without significant detriment to the system model [21, 39].
However, the rotor transients cause a significant time delay that is often ignored [21, 39].
Since the rotor speed is used to control the altitude of the aircraft, the rotor speed delay
may cause less than ideal altitude controller performance. As such, in this work the motor
time delay is included into the model by making motor speeds (ωup and ωdw) a part of
the state. In summary, the equations of motion that sufficiently capture the motion of a
coaxial helicopter with inputs u =

[
αdw βdw umot,up umot,dw

]
are,
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 ẍ
ÿ
z̈

 =
1

m
~F − ~ω × ~v (2.23)

 ṗ
q̇
ṙ

 = I−1( ~M − ~ω × I~ω) (2.24)

where,

~F = ~Fup + ~Fdw +mgêg (2.25)

~Fdw = kdwω
2
dwêdw (2.26)

~Fup = kupω
2
upêup (2.27)

~M = ~zup × Fup~eup + ~zdw × Fdw~edw + kq,upω
2
upẑ + kq,dwω

2
dwẑ (2.28)

The motion of the force vectors can be characterized with,

êdw =

 cosαdw sin βdw
sinαdw

− sinαdw cos βdw

 (2.29)

êup =

 cosαup sin βup
sinαup

− sinαup cos βup

 (2.30)

αup = kstab(αs − φ) (2.31)

βup = kstab(βs − θ) (2.32)

α̇s =
1

Tstab
(φ− αs) (2.33)

β̇s =
1

Tstab
(θ − βs) (2.34)

Finally, the speed of the motors can be characterized with,

Jmω̇up =
kmUbatumot,up − kmkeigωup

igRω

− drωup −
cq,upkq,upω

2
up

i2gηg
(2.35)

Jmω̇dw =
kmUbatumot,dw − kmkeigωdw

igRω

− drωdw −
cq,dwkq,dwω

2
up

i2gηg
(2.36)
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2.2 Control Techniques

2.2.1 Linearization

As is common in helicopter control and necessary for the linear control methods described
below, the plant is linearized about the hover operating point. The coaxial helicopter
dynamics are designed to ensure the plant always tends towards this hover point to keep
the system stable. This means that the coaxial design favors stability and tighter control
over faster, wider and more aggressive trajectory tracking (such as flips and high angle of
attack maneuvers) and makes the coaxial platform favourable for flight in tight spaces. An
important advantage of this tendency towards damping hover flight is that it makes the
linearization about hover a reasonable and reliable assumption.

The plant state is first divided into three main components as illustrated in Figure 2.5.

• Throttle/Yaw Plant: Upper and lower motors (umot,up and umot,dw) controlling the
throttle (affecting altitude) and yaw of the plant.

• Y Position (Roll) Plant: Lower Swashplate Angle(αdw) controlling the Roll (and Y
position) of the plant

• X Position (Pitch) Plant: Lower Swashplate Angle(βdw) controlling the Pitch (and
X position) of the plant

It is noted here that the three plants have minimal cross-channel interaction in the
full non-linear plant when linearized about hover. The linearization is a Taylor series
approximation of the nonlinear equations shown in Section 2.1.3, with the higher order
terms ignored as the plant is sufficiently close to the equilibrium point of hover. This
approximation is derived by calculating the Jacobian of the nonlinear functions around the
prescribed state. This linearization results with the three plants with states as follows,

Throttle/Yaw Plant

x =
[
z ż ψ r ωup ωdw

]T
(2.37)

Roll/Y Direction Plant

x =
[
y ẏ θ q ζbar

]T
(2.38)
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Figure 2.5: Linearized Sub-Plants

Pitch/X Direction Plant

x =
[
x ẋ φ p ηbar

]T
(2.39)

The position and velocity variables in the above states are kept in local co-ordinates.
This can be transformed to inertial co-ordinates using complete attitude information when
required. With these plants the controllers can now be designed. A sample set of plant
parameters are used to aid in the simulation studies.

2.2.2 PID Control

Some of the earliest techniques applied to small coaxial helicopters involved simple PID
or PD loops assuming near linear behaviour in hover conditions [43, 40]. Multi-loop PID
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control techniques were used to first stabilize the helicopter in hover using PD control on
the attitude of the vehicle and then track positions using PID control with the attitude as
the output of the controller. This basic layout is shown in Figure 2.6.

Heave-Yaw
Controller

Position
Controller

Roll-Pitch
Controller

Coaxial 
Helicopter

dwu

upu

au

bu

Full State Estimate
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y
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Figure 2.6: General PID Loop layout.

Both PID control methods shown in current literature [43, 40] are successful in achieving
hover flight, and remain close to the point of linearization. However, the performance of the
helicopter in complex trajectories or the evidence of cross-channel interaction is not shown.
Furthermore, in all PID controller designs, the helicopters have had stock R/C chassis
controllers and stabilizers present within the loop. This includes yaw rate regulators and
throttle controllers abstracted out for easier pilot control. As such, the controller designs
have used the yaw rate and throttle controllers as inputs. However, in most applications of
autonomous coaxial systems the inputs would be the electronic control of the two motors
affecting the throttle and yaw of the helicopter (as previously discussed in Section 2.1.1).

With this in mind, PID controllers are designed using the inputs and controller structure
laid out in Figure 2.6 for the sub-plants shown in Figure 2.5. PID controllers for the
throttle and yaw of the helicopter are designed first. As described before, the throttle of
most coaxial helicopters are controlled by changing the speed of the two rotors (changing
the total thrust). The yaw of the vehicle is controlled by a difference in the speed of the two
rotors. This coupled behaviour between the throttle and yaw of the vehicle must first be
removed for PID control to be effective. This is done by constructing two PID controllers
that generate a thrust control signal and a yaw control signal based on the errors of the
respective states. The yaw control signal is applied to the two motors differentially so
as to minimize any effect on the total throttle. The throttle signal is applied equally to
both motors to minimize any effect on the yaw rate of the helicopter. This decoupling is
illustrated in Figure 2.7.
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Figure 2.7: Altitude/Yaw PID Decoupling

This decoupling allows the PID loops to be tuned and used separately. However, this
structure assumes that the upper motor and lower motor signals have an equal effect on the
two rotors and therefore on the total thrust and aerodynamic reaction torques. This will
most likely be untrue on most coaxial helicopters due to the extra inertia of the stabilizer
bar on the upper rotor and the downwash of the upper rotor which affects the lower rotor
freestream velocity. These effects were not considered in the design of the PID control
structure. The PID controller is tested in simulation with the results of a step input to
both altitude (1 m rise in altitude) and yaw (1 rad ≈ 60◦) presented in Figure 2.8.
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Figure 2.8: Altitude/Yaw PID results

As is clear from Figure 2.8, the decoupling strategy is able to effectively stabilize the
system, however, the performance is less than desirable. This is mostly due to the cross-
channel effects compounded by the asymmetry of torque generated by the two motors
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(included in the simulation). A better tuned PID controller may be possible, but the
inherent weakness of ignoring the interaction between yaw and altitude remains.

For position control, a tilt in the tip path plane causes a change in the roll and pitch
of the vehicle and a tilt of the total thrust vector in the x and/or y direction. The input
to the tilt of the tip path plane are the two servo inputs αdw and βdw affecting the roll/y
position and the pitch/x position systems, respectively. The stabilizer bar design tends to
return the roll and pitch of the vehicle towards zero. As such, these attitude commands do
not need to be actively controlled or stabilized. However, for tighter PID position control
it is more effective to have closed loop roll and pitch control. The overall order of the open
loop plant, which translates servo inputs to position, is 5th order, which makes it difficult
for any PID controller to achieve acceptable transient performance. With this in mind,
two PID controllers are designed for position control in each axis. There is minimal cross-
channel interaction between the controllers for the two axes, and they can be individually
tuned. The result of a step input in the x-direction is shown in Figure 2.9.
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Figure 2.9: Position PID results

The plot shows that the controller is able to stabilize the position of the vehicle. Fur-
themore, saturators in the simulation ensured that no more than a 10◦ roll and pitch is
commanded of the vehicle to ensure the stabilizer bar can effectively keep the attitude of
the vehicle stable around hover. A constant error is seen in the plot. This consant error
could be due to inherent nonlinearities in the system that the PID structure is unable to

25



remove. Stronger integral action could remove this error faster, however this could lead
to more ’ringing’ in the position which is undesirable for a platform to be used in small
spaces.

For more complex position, altitude and yaw trajectories and comparative results be-
tween all three controllers presented in this section, see Section 2.3.

2.2.3 LQR/LQG Control

Full state feedback control using optimal control techniques has been shown to be effective
in MIMO systems with significant cross-channel interaction [10]. With this in mind, a
static gain LQR controller is constructed for a sample coaxial helicopter [8]. A similar
LQR controller has been constructed by Hendrix et al. [21], along with a Kalman filter
for state estimation. However, just as in the case of the existing PID designs, the LQG
controller is designed for an R/C platform with built-in yaw, throttle, roll and pitch control.
Furthermore, complex position trajectories are not analyzed. As described in detail in
Skogestad et al. [38], LQR/LQG control works to generate a control signal u(t), which
minimizes the quadratic cost function based on the state feedback x(t),

Jr =

∫ (
x(t)TQx(t) + u(t)TRu(t)

)
dt (2.40)

This can be done with a control signal, u(t) = Kx(t), calculated by

K = R−1BTX (2.41)

where X is calculated using the algebraic Ricatti equation,

ATX +XA−XBR−1BTX +Q = 0 (2.42)

which can be solved using several mathematical computing software packages. The matrices
Q and R in the above equations are weighting matrices that provide information about
the relative importance of each state and input respectively. Also, note here that the LQR
control strategy assumes full state feedback. State estimators can be used to handle noisy
sensor measurements and incorporate details about the model (eg. LQG control).

LQR controllers are designed for each of the three sub-plants shown above using Q
and R matrices that favour precise tracking of the altitude, yaw and x-y position states
and weight all inputs equally. The matrices are also scaled to ensure they use a nominal

26



0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

A
lt
it
u
d
e
(m

)
Time(s)

 

 

Achieved

Reference

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

Y
a
w

 A
n
g
le

(r
a
d
s
)

Time(s)

 

 

Achieved

Reference

Figure 2.10: Altitude/Yaw results using LQG Control

amount of control effort. Based on this design, simulation results are shown in Figure 2.10
and Figure 2.11, for the Altitude/Yaw and Position sub-plants, respectively.

In Figure 2.10, the cross-channel interaction is shown to be completely mitigated, es-
pecially when compared to the PID results shown in Figure 2.8 for the same plant. The
controller actively takes into account the lack of symmetry in both plants and is shown to
remove its effects.

Figure 2.11 shows results of position control using the LQG controller. The controller is
able to converge to the required trajectory much faster than in PID control. For explicitly
comparative results and results of the frequency domain analysis and complex trajectories,
see Section 2.3.

2.2.4 H∞ Control

While LQR control strategies provide good cross-channel interaction suppression and can
provide good transient characteristics, they do not allow for the direct design of the fre-
quency domain properties. This includes the shaping of the system response at different
frequencies and guaranteed phase margins [17]. LQG control with dynamic weightings us-
ing the H2 norm has been suggested as an alternative that provides more frequency domain
control. However, current results on full-sized single-rotor helicopters by Weilenmann et
al. [41] show that H∞ control can provide superior results. For this, mixed sensitivity H∞
techniques are employed to design the frequency domain characteristics of a controller for
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Figure 2.11: Position control using LQG control

the sample coaxial platform as before [8]. A more comprehensive description of the mixed
synthesis design theory and process can be found in Skogestad et al. [38]. In traditional
mixed synthesis design, the sensitivity (S = 1

1+KP
with K the controller and P the plant),

complementary sensitivity (T = I − S) and control effort (KS) functions are shaped to
be under some bounds prescribed in the frequency domain. These functions represent the
tracking error suppression (and disturbance rejection), target tracking (and sensor noise
rejection) and bounds on the control effort in a wide range of frequencies. The bounds
(namely Wp, Wu, Wy) are defined to ensure the controller satisfies the inequalities,

||S|| ≤
∣∣∣∣∣∣∣∣ 1

Wp

∣∣∣∣∣∣∣∣ , ||KS|| ≤ ∣∣∣∣∣∣∣∣ 1

Wu

∣∣∣∣∣∣∣∣ , ||T || ≤ ∣∣∣∣∣∣∣∣ 1

Wy

∣∣∣∣∣∣∣∣ (2.43)

The above equations can then be rearranged to be,

||WpS|| ≤ 1, ||WuKS|| ≤ 1, ||WtT || ≤ 1 (2.44)

The mixed synthesis problem is then framed as an H∞ norm optimization problem by
stacking the three inequalities above,
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min
K

∥∥∥∥∥∥
WpS
WTT
WuKS

∥∥∥∥∥∥
∞

(2.45)

Note, however, that this structure for the design of H∞ controllers cannot be used
with non-square systems, that is systems that do not have the same number of inputs and
outputs. An alternative design based on Weilenmann et al. [41] is proposed that includes
a feedforward term. This structure will further aid in the tight control of reference trajec-
tories due to the feedforward struture, which is especially important for precise position
control in small spaces. A modifiction of the Weilenmann et al. structure is illustrated in
Figure 2.12.

fK

bK

pW

uW

tW

P









 d

r

y

Figure 2.12: Proposed H∞ structure

The H∞ structure proposed in Figure 2.12 assumes a reference trajectory, r, plant out-
put y and output disturbance, d. More dynamic weights to shape the effect of disturbances
and reference signals can be added if required. With this structure, the minimization de-
scribed in Eqn. (2.45) remains the same and an extra degree of freedom in the controller
design is added. The gain Kf is the dynamic feedforward gain while the gain Kb is the
dynamic feedback gain as shown in Figure 2.12. The weight Wp is picked to minimize the
tracking error at low frequencies as shown in the resultant magnitude plot in Figure 2.13.

Wp =
s+ 0.0007

s+ 7
(2.46)

This also translates to effective disturbance rejection at these frequencies. Similarly, Wt is
picked as,

Wt =
0.001s+ 10

s+ 7
(2.47)
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which attempts to ensure a high gain response of the reference trajectory tracking at lower
frequencies and a fast roll-off after the bandwidth (≈ 7 rad/s) to ensure good sensor noise
rejection at high frequencies. The magnitude response of this is shown in Figure 2.13.
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Figure 2.13: Magnitude plot for H∞ design bounds

The bounds shown in Figure 2.13 are applied to all channels and used for both the
throttle/yaw and position sub-plants. The weight Wu depends on the scaling of the inputs
and the plant, it is picked to be < 1 to let the control effort be managed efficiently. The H∞
norm optimization problem shown in Eqn.(2.45) can now be solved using thesse bounds
to provide an effective controller. This can be done with built in tools in most popular
mathematical computing packages. The controller design results must satisfy (or come
close to) the inequality shown in Eqn.(2.44). A commonly used measure of optimality here
is γ which is the distance of the achieved controller closed loop response from the bounds
shown in Figure 2.13. This value is confirmed to be close to unity (i.e. no difference).
However, the exact value of γ will depend on the particulars of the plant.

The controllers acquired from the H∞ norm optimization process are applied to the
plants as before. Figure 2.14 shows the result of a unit step reference commanded of the
H∞ controller for throttle/yaw sub-plant (as done before for the other controllers). It is
clear that the controller is able to stabilize the plant and also results in faster response
times than the PID and LQR controllers (see Section 2.3 for comparisons).

Figure 2.15 shows the tracking of a unit step position command where fast and stable
tracking of position commands can be seen.
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Figure 2.14: Altitude and Yaw control using H∞ control
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Figure 2.15: X Position tracking using H∞ control
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2.3 Comparitive Results

Figure 2.16 shows the unit step responses for the three controllers. The PID controller
results have a significant ’ringing’ due to the cross-channel effects and platform restrictions.
LQR and H∞ control provide good results, with H∞ resulting in the fastest response times
with an acceptable amount of overshoot.
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Figure 2.16: Heave and Yaw Unit step tracking

A similar response can be seen in Figure 2.17, where the H∞ controller outperforms
the LQR and PID controllers in unit step position tracking with LQR control providing
acceptable results.

Furthermore, to test the overall robustness of the controllers, a variant of the Dryden
wind gust model [19] is applied to the relevant states as wind disturbances. The Dryden
wind gust model mathematically defines the affect of wind gusts on an aircraft. It generates
an approximation of wind gusts by summing wind velocities over a pre-defined freqency
power spectra. The model then generates an approximation of the forces experienced by a
flight craft based on the wind speed and the speed of the aircraft with respect to the free
stream velocity. A simplification of the Dryden model is simulated for this work. A force
vector is generated based on the sum of wind velocities over a pre-defined frequency. This
force is applied as a disturbance on the dynamics of the aircraft as a simulation of the affect
of wind. The response under these conditions on the altitude of the system is shown in
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Figure 2.17: Position Unit Step Tracking for all controllers

Figure 2.18, which demonstrates the system is able to maintain stability and performance
for all three controllers. However, for the PID control strategy, the disturbance in the
altitude also affects the performance of the yaw controller because of the coupling effects
previously mentioned. The LQR and H∞ controllers are able to actively supress these
cross-channel interferences.

The coaxial platform is more susceptible to disturbances in the X and Y position plane
because of the lower inertia in this direction (when compared to the altitude states). This is
evident in Figure 2.19, where the wind disturbance is applied to the helicopter in the x di-
rection. The PID controller results show significant degradation as expected. However, the
LQR and H∞ controllers continue to perform well. Here, it could be hypothesized that the
H∞ controller should perform better than LQR control in disturbance rejection, however
the controller design’s focus is on better performance in tight spaces (versus disturbance
rejection in wide open spaces). Furthermore, the coaxial platform has a fundamental phys-
ical limitation in that it is far more susceptible to external disturbances and is much slower
to react to the same when compared to other rotorcraft configurations. This limitation
may be causing the inability of the H∞ controller to perform more ably under external
disturbances.

In the following simulations, a changing reference trajectory (sinusoid) is applied to
each of the controllers. The resulting trajectory is shown in Figure 2.20. Here, both
the LQG and PID controllers show significant degradation in performance, while the H∞
controller is still able to perform with an acceptable amount of error at this frequency. A
practical application of this improved response at different frequencies is the tracking of
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Figure 2.18: Altitude and Yaw under scaled Wind Disturbance
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Figure 2.19: Position Control under scaled Wind Disturbance

34



aggressive and tight trajectories that require the helicopter to respond to fast changing
reference signals. This is especially useful for maneouvering in small spaces with speed and
accuracy. A sample of such an aggressive multivariable trajectory is shown in Figure 2.21.
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Figure 2.20: Sinusoidal Trajectory Tracking with Degrading PID/LQG performance

The H∞ controller is able to very accurately track the given trajectory while the LQR
and PID controllers provide less desirable results. In summary, the PID controller is able
to stabilize the coaxial helicopter dynamics however the controller is unable to suppress
various nonlinearities in the system. The LQR controller is able to control the helicopter
with better results. However, the frequency domain design of H∞ is shown to be superior
in suppressing the various nonlinearties, and performs better when required to track an
aggressive trajectory or suppress external disturbances.
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Chapter 3

Quadrotor Helicopter Dynamics and
Control

The four rotor helicopter configuration is a popular UAV/MAV platform in the <1m
wingspan category. Along with a simpler mechanical design, quadrotor systems have a
unique set of dynamics that allow for holonomic flight which makes it suitable for flight in
tight spaces such as indoors, forests, urban centers or natural cave environments. In this
work, the dynamics of the quadrotor helicopter are derived and include most major factors
that affect the motion of quadrotors. Furthermore, a combination of linear, nonlinear and
adaptive control methods are presented for the quadrotor vehicle.

3.1 Flight Dynamics

3.1.1 Basic Flight Principles

Basic quadrotor dynamics are well understood and various derivations can be found in
literature [23, 4, 33]. The quadrotor helicopter is a VTOL aircraft that can be controlled
by four main rotors that provide an upward thrust. The rotors spin in clockwise and
counter clockwise directions in pairs so that the resultant torque created can be controlled
to keep the yaw angle of the system stable. Similarly, by reducing or increasing the thrust
generated by each rotor, the roll and pitch of the vehicle can be controlled. This also
provides control of the overall thrust vector which can be used to control the position of
the helicopter. A freebody diagram for this is shown in Figure 3.1(a).
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(a) Quadrotor freebody diagram (b) Quadrotor co-ordinate frames

Figure 3.1: Freebody dynamics and Co-ordinate frames.

3.1.2 Coordinate Systems

In deriving the dynamics, a generalized set of co-ordinates are defined. These co-ordinate
frames are summarized in Figure 3.1(b). The inertial position co-ordinates [X, Y, Z] and
the body-fixed co-ordinates [x, y, z] are related by the rotation matrix R ∈ SO(3) which
can be represented using 3-2-1 Euler angles φ, θ, ψ ∈ [0, 2π) such that, X

Y
Z

 = R

 x
y
z

 , (3.1)

where the rotation matrix R can be expressed in term of Euler angles as,

R =

 cφcψ −cφsψ + sφsθcψ sθsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ

 (3.2)

where cφ = cosφ and sφ = sinφ for all three Euler angles.

Along with the 3-2-1 Euler angles, the angular rates in the body co-ordinates (p q r),
have a direct relationship to the euler angle rates as,

 φ̇

θ̇

ψ̇

 =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 p
q
r

 (3.3)
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3.1.3 Equations of Motion

Using the Newton-Euler equations, the motion of the quadrotor can be described using ẍ
ÿ
z̈

 =
1

m
~F − ~ω × ~v (3.4)

 ṗ
q̇
ṙ

 = I−1( ~M − ~ω × I~ω) (3.5)

where m is the mass of the quadrotor, I ∈ R3×3 is the inertia matrix, xp = [X, Y, Z]T

denotes the position of the origin of the body fixed frame with respect to the inertial
frame, ω = [p, q, r]T denotes the standard angular body rates, and ~F and ~M represent the
vector of external forces and moments, respectively.

3.1.4 Forces and Moments

The external forces in the inertial frame are given by

~F = mgêZ − utRê3 (3.6)

where êZ is the unit vector in the inertial Z axis, ê3 is the unit vector in the body z axis
and ut is the total thrust generated by rotors as described in Section 3.1.5. The external
moments in the body frame, ~M are given by,

~M = ~τ −Ga (3.7)

where Ga represents the gyroscopic moments caused by the combined rotation of the four

rotors and the vehicle body, and ~τ =
[
τφ τθ τψ

]T
are the control torques generated by

differences in the rotor speeds as described in Section 3.1.5. The vector Ga is given by

Ga =
4∑
i=1

Jp(ω × ê3)(−1)i+1Ωi (3.8)

where Jp is the inertia of each rotor. In previous works, the Jp term is found to be
small [4] and as such the gyroscopic moments are removed in the controller formulation.
However, the rotor inertia terms are included in all quadrotor simulations and result in
minor unmodeled nonlinearities to be rejected by the controllers.

In addition to the thrust dynamics, there are numerous aerodynamic and aeroelastic
phenomenon that affect the flight of the quadrotor. These include [23],
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• Thrust Variation: At high velocities and angles of attack, the rotor thrust and torque
models of Eqn (3.11) is no longer valid. More complex models based on momentum
theory are discussed in Hoffmann et al [23].

• Blade Flapping: In high speed flight, the advancing and retreating portions of the
rotorblade generate unequal thrusts. This difference in thrusts causes the blade to
’flap’ causing considerable disturbance in attitude control [33].

• Body Drag: The vehicle in high speed flight feels a considerable amount of drag. The
drag is compounded when there are wind gusts creating random oscillating forces on
the quadrotor.

• Ground Effects: When flying close to the ground (or during the landing stage), the
downwash of the rotors creates an extra force buoying against the helicopters descent.

The methods above require extensive system identification and aerodynamic studies
that are beyond the scope of this work. As such, the above sources of discrepancy in
the dynamics are treated as disturbances that are especially prevalent in fast and/or high
angle of attack flights. The drag forces created by wind gusts is included in the simulation
studies shown in Section 3.3

3.1.5 Actuator Dynamics

The four rotors each generate forces fi where i ∈ 1, 2, 3, 4 (shown in Figure 3.1(a)). The ro-
tors are electronically controlled by Brushless DC motors. The torque (Q), rotor speed(ω),
voltage(V ) and current(I) dynamics can be summarized by [22],

Q = KqI (3.9)

V = RaI +Keω (3.10)

where Kq, Ra and Ke are motor constants. The rotors generate thrust by changing the
velocity of the air as it passes through the geometry of the rotorblade. As such, the thrust
is highly dependent on blade geometry. However, when the freestream velocity (velocity
of air relative to the vehicle) is approximately zero, the power generated by the rotors can
be approximated by [27],

P = fvh (3.11)

vh =

√
f

2ρA
(3.12)
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where, P is the power generated by the rotor, f is the thrust of the rotor, vh is the change
in velocity of the air through the rotor, ρ is the density of air and A is the area of the
blade. In an effort to find a relationship between input voltage and rotor thrust, the power
of the BLDC motors can be equated to the power of the rotors. This gives the relationship
[22],

P = fvh = V I =
Q

Kq

V (3.13)

The reaction torque in the generated by each of the rotors, Q can be modeled as propor-
tionally dependent on the thrust of the rotor, with the linear model defined by kt [27].
Therefore,

Q

Kq

V =
ktf

Kq

V (3.14)

Combining Eqn. (3.14) and Eqn. (3.13) gives the relationship [22],

f =
2ρAk2t
K2
q

V 2 (3.15)

The constants above can be combined to a constant ki which gives us the quadratic rela-
tionship for the rotor i,

fi = kiV
2 (3.16)

Four of the thrusts above are combined to create a total body thrust ut, as

ut = f1 + f2 + f3 + f4

A difference in the rotor speeds creates a torque in the roll and pitch directions (τφ and τθ
respectively), directly proportional to the distance of the motors to the center of gravity
(l). The torque in the yaw direction (τψ) is guided by an aerodynamic constant (c). These
kinematic actuator relationships can be summarized as [16],

ut
τφ
τθ
τψ

 =


1 1 1 1
−l 0 l 0
0 l 0 −l
c −c c −c



f1
f2
f3
f4

 (3.17)

Note that the matrix in the above relationship has rank 4 (the matrix is invertible) and
as such any set of required thrusts and torques can be resolved into forces to be generated
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by each of the individual motors using Eqn (3.17). These forces can then be generated
by the electronically controlled BLDC motors using the relationship in Eqn (3.16). The
dynamics of the quadrotor with inputs

[
ut τφ τθ τψ

]
can be summarized as,

 ẍ
ÿ
z̈

 =
1

m
~F − ~ω × ~v (3.18)

 ṗ
q̇
ṙ

 = I−1( ~M − ~ω × I~ω) (3.19)

where,

~F = mgêZ − utRê3 (3.20)

~M =
[
τφ τθ τψ

]T
(3.21)

3.2 Control Techniques

3.2.1 Linear Quadratic Regulation for Quadrotor Helicopters

Most previous works in LQR control of quadrotors have considered a nested control struc-
ture, where an inner loop controls the roll, pitch and yaw of the vehicle [5]. An outer loop to
control the position of the vehicle is then designed assuming the orientation angles can be
achieved with negligible delay. However, for this work, this decoupling is removed in favour
of a full state controller. The design is then prioritized for the states of most importance for
most UAV systems, position (x, y, z) and yaw (ψ). The full state controller uses the dynam-
ics as described in Eqn. (3.4) and (3.5). These dynamics are linearized around hover using
the state x =

[
X Y Z Ẋ Ẏ Ż φ θ ψ p q r

]
and input u = [ut, τφ, τθ, τψ] .

The state and inputs at hover would be x0 = 0 and u0 =
[
mg 0 0 0

]
. With this, the

linearized system can be represented as,

ẋ = Ax+Bu (3.22)

where,

A(x, u) = ∂ẋ
∂x

(3.23)

B(x, u) = ∂ẋ
∂u

(3.24)
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where the function ẋ is as described in Eqn. (3.4) and (3.5). The matrices A and B
can then be acquired by substituting for the linearized states and inputs, A = At(x0, u0)
and B = Bt(x0, u0).

Given the linearization in Eqn (3.22), the following quadratic cost function,

J =

∫
xTQx+ uTRu (3.25)

is used, where Q and R are the relative scaling matrices for the state and input costs
respectively. This cost function can be optimized with the control input [38],

u(t) = −Kcx(t) (3.26)

Here,
Kc = R−1BTP

where P obeys the Ricatti Equation,

− PA− ATP + PBR−1BTP −Q = Ṗ (3.27)

In the steady state case with infinite horizon optimization, Eqn (3.27) can be solved with
Ṗ = 0. A derivation for the optimization problem can be found in various works, [38, 5].
The LQR problem is solved for the system and linearization described in Eqn (3.22) with Q
and R matrices that contain the relative importance of tracking each state. In this case all
the states and inputs are given equal importance (i.e. the Q and R matrices are identity).
However, this could be modifed if certain states have a higher accuracy requirement. Using
these identiy Q and R matrices the Ricatti equation can then be solved for a static gain
Kc that is calculated before flight. This static gain is used in a simulation of the dynamics
and controller. Figure 3.2 and Figure 3.3 shows the position control results of a unit step
command given to the quadrotor. In Figure 3.2 it is clear that the quadrotor is able to
successfully track the required position command using the LQR controller and settles onto
the required position in less than 4 seconds. The response of the system when commanded
to track more complex trajectories can be found in Section 3.3.

3.2.2 Feedback Linearization for Quadrotor Helicopters

Feedback Linearization (also referred to as Dynamic Inversion) is a popular method for
control for nonlinear systems. A full description of this methodology can be found in
current literature [25]. A summary is presented here along with a derivation for quadrotor
dynamics.
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Figure 3.2: Position response of the LQR controller to a step input

Figure 3.3: Attitude Response of the LQR controller to a step input
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Feedback Linearization Controller Formulation

Given a state x and output y and dynamics that can be expressed in control affine form,

ẋ = f(x) + g(x)u (3.28)

y = h(x) (3.29)

where f , g and h are sufficiently smooth and with x ∈ Rn. Consider for now, that this is
a single-input, single-output system, i.e. u, y ∈ R1. The derivative of the output y can be
expressed as [25],

ẏ =
∂h

∂x
[f(x) + g(x)u (3.30)

The derivative of h along the trajectory of the state ẋ is known as the Lie Derivative
denoted as,

∂h

∂x
[f(x) + g(x)u = Lfh(x) + Lgh(x)u (3.31)

If on the first derivative Lgh(x) = 0 as in,

ẏ = y(1) = Lfh(x) (3.32)

note that the output y remains independent of input u. However, subsequent higher order
derivatives can be taken such that,

y(2) = L2
fh(x) + LgLfh(x)u (3.33)

y(3) = L3
fh(x) + LgL

2
fh(x)u (3.34)

y(i) = Lifh(x) + LgL
i−1
f h(x)u (3.35)

and if for a certain i, LgL
j
fh(x)u 6= 0, then the equation

y(i) =Lifh(x) + LgL
i−1
f h(x)u (3.36)

can be linearized with full state feedback by,

u =
1

LgL
i−1
f h(x)

(−Lifh(x) + v) (3.37)
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in the region that the inverse 1

LgL
i−1
f h(x)

exists. In this region the feedback linearized model

becomes,

y(i) = v (3.38)

The value i is defined to be the relative degree of the system. The resulting linear dynamic
system defined in Eqn (3.38) can be stabilized by most linear control techniques and consists
of a set of i-1 integrators to the required output y. Moreover, with this linearization
and assuming such a relative degree exists a linear controller can be designed such that
the overall system can be proven to be exponentially stable [25]. Finally, if u ∈ Rep
and y ∈ Rem in Eqn (3.28) then for the feedback linearization to be possible the matrix
LgL

i−1
f h(x) must be square and full rank. Moreover the sum of the relative degrees of

all the inputs must equal the number of states in x. If the sum of the relative degrees is
not equal to the number of states then there are states that are not directly controllable
through the inputs. These extra states are called zero dynamics and must be proven to be
stable externally.

Feedback Linearization Quadrotor Dynamics

The quadrotor helicopter has six output states y = (X, Y, Z, φ, θ, ψ). The vehicle has four
inputs as shown in Eqn (3.17). Das et al. [16] shows that the relative degree is not equal
to the number of states to be controlled. There are two states that are left uncontrollable
and must be proven stable. A solution suggested by previous works [26, 3, 1] uses dynamic
extension as a method to add virtual inputs to control these zero dynamics. However, for
the virtual inputs to affect the zero dynamics, more derivatives must be taken as shown
in Eqn (3.33). In implementation this would imply the system would need to 3rd or 4th
order derivatives of the orientation and/or position states. In most quadrotor platforms,
these states are measured using noisy MEMS sensors, GPS recievers or indoor localization
methods. Taking derivatives of these measurements leads to amplification of measurement
noise, which can cause significant chatter in the system. This factor is confirmed by the
feedback linearization methodology implemented on quadrotors by Shastry et al. [26].
Another solution to this problem is to decompose the problem into two distinct control
loops. The two control loops comprise of an inner loop that controls the height and
attitude of the system, and an outer loop that controls the position. This solution was
first suggested by Das et al. [16]. This controller is used as a baseline for the feedback
linearization controller in this work.

First, consider the inner loop of the quadrotor system as the height and attitude(i.e xq =[
Z φ θ ψ

]T
). For this system, the traditional feedback linearization methodology can
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be applied here with the output equation y = xq as per Eqn (3.28). Picking this inner loop

as the output equation, the first derivative would lead to ẏ =
[
Ż φ̇ θ̇ ψ̇

]T
. Note here

that the control input dependent term Lgh(x) is zero. Taking the second derivative of the
state makes the dynamics summarized in Eqns (3.4) and (3.5) appear as,

ẍq =


Z̈

φ̈

θ̈

ψ̈

 = Ad +Bdud (3.39)

where,

Ad =


−g

θ̇ψ̇ Iy−Iz
Ix

φ̇ψ̇ Iz−Ix
Iy

φ̇θ̇ Ix−Iy
Iz

 (3.40)

Bd =


− 1
m
cθcφ 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz

 (3.41)

ud =


u
τφ
τθ
τψ

 (3.42)

Here a simplification is made by setting
[
φ θ ψ

]
=
[
p q r

]
. This is contrary

to the dynamics described in Eqn. (3.3). This assumption simplifies the derivation of
the feedback linearization controller as the derivatives of the dynamics in Eqn. (3.3) are
highly complex. The assumption holds true for smaller angles of movement. However, the
nonlinear structure is still superior to a complete linear simplification because the nonlinear
quadrotor dynamics shown in Eqn. (3.39) account for fast angular movements closer to
hover. Moreover, at extreme angles the more complex aerodynamic phenomenon described
in Section 3.1.4 may become more dominant than the trigonometric nonlinearities described
in (3.3).

Based on the dynamics described in (3.39), the control input can be selected as per
Eqn (3.37) to be,

ud = B−1d (−Ad + ẍq∗) = M q(xq)ẍq∗ + Cq(xq, ẋq) (3.43)
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where,

M q(xq) =


− m
cθcφ

0 0 0

0 Ix 0 0
0 0 Iy 0
0 0 0 Iz

 (3.44)

Cq(xq, ẋq) =


g

cθcφ

θ̇ψ̇(Iz − Iy)
φ̇ψ̇(Ix − Iz)
φ̇θ̇(Iy − Ix)

 (3.45)

Note that Cq(xq, ẋq) exists for the region −90◦ < θ, φ < 90◦. Furthermore, the remaining
linear dynamics after feedback linearization are an integrator chain, ẍq = ẍq∗, which can
be controlled by the linear controller,

ẍq∗ = ẍqd − kv(ẋ
q − ẋqd)− kp(x

q − xqd) (3.46)

where, ẍd is the desired acceleration of the inner loop, xqd and ẋqd are the desired trajectories
for the state and its velocities. Finally, kv > 0 and kp > 0 are tunable gains that can be
used to place the poles of the subsequent feedback linearized dynamics on the left hand
side plane. Using the controller described in Eqn (3.43) and Eqn. (3.46) the attitude of
the controller can be stabilized and arbitrarily commanded.

The controller in Eqn (3.46) and its related feedback linearization method stabilizes
the attitude dynamics of the system. However, the position dynamics (internal states) still
remain unstable. These dynamics as per Equation (3.4) are,

ẍ =
−u
m

sin θ (3.47)

ÿ =
u

m
cos θ sinφ (3.48)

Das [16] suggests a method to control these dynamics by controlling the desired roll (θd)
and pitch(φd) angle shown in Eqn. (3.46) as part of xd. As before there is a chain of
two integrators to get to the desired position variables (x, y). Therefore, The same linear
controller used in the inner loop control is applied to stabilize the outer loop dynamics,

θd = −m
u

[ẍd + k11(ẋd − ẋ) (3.49)

+ k12(xd − x)]

φd =
m

u
[ÿd + k11(ẏd − ẏ) (3.50)

+ k12(yd − y)]
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where (xd, yd) is the required position trajectory for the vehicle along with its derivatives
and kii are tunable gains that can be used to place the poles of the position dynamics of the
system on the left hand plane. This position controller along with the feedback linearized
inner loop has been demonstrated to be stable [16].

Figure 3.4 shows the result of the feedback linearization controller when given a position
control command. Figure 3.5 shows the resultant orientation results. The controller is
shown to be stable and gives results similar to that of the LQR controller in Section 3.2.1.
Comparitive results of the various controllers to different reference trajectories can be found
in Section 3.3.

Figure 3.4: Position response of the Feedback Linearization controller to a step input

3.2.3 Adaptive Feedback Linearization for Quadrotor Attitude
Control

The primary drawback of the feedback linearization technique is that it assumes accurate
knowledge of the nonlinear model to guarantee stability, and unmodeled nonlinearities
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Figure 3.5: Attitude Response of the Feedback Linearization controller to a step input
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frequently limit the applicability of feedback linearization in practice [26]. A major source
of errors in the models can be attributed to inaccuracies in the parameters that drive
the dynamics. In the case of the quadrotor, these parameters include the mass m and
the quadrotor inertia (Ix, Iy, Iz) as part of the inertia matrix in Eqn. (3.5). These
parameters are not always known to adequate accuracy, and may even change during
flight. This can cause significant error in the feedback linearization and may also cause
instabilities in the system. Adaptive control methods have been proposed as a method
to adapt parameters to strengthen control algoritms sensitive to accuracies therein. As
such, an adaptive law around the feedback linearization method is derived here. This
method was first suggested by [15] for mechanical manipulators, however a summary of
the derivation and its evaluation for quadrotor helicopters is presented here.

Adaptive Controller Formulation

Given a state x and input torques τ , a large class of mechanical systems (including the
quadrotor helicopter) can be expressed in the form:

u = M(x, p)ẍ+ C(x, ẋ, p) (3.51)

where the nonlinear functions M and C describe the dynamics of the system and are
assumed to be linear with respect to the parameters, p. The above dynamics can be
controlled by the feedback linearizing controller,

u = M(x, p)ẍ∗ + C(x, ẋ, p) (3.52)

where we choose,

ẍ∗ = ẍd + kvĖ + kpE (3.53)

where, ẍd are the desired state accelerations, Ė and E are the state error velocities and
positions defined as E = xd − x and Ė = ẋd − ẋ

The gains kv and kp can be picked to place the poles of the linearized closed loop
dynamics in the left hand plane. However, in Eqn (3.51) if the functions M and C are
unknown due to parameter error, they can be estimated with M̂ and Ĉ which are linear
with respect to the unknown parameters p̂. Therefore, the control becomes,

u = M̂(x, p̂)ẍ∗ + Ĉ(x, ẋ, p̂) (3.54)
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A parameter adaptation law can now be derived by first re-defining the system dynamics
in parameter error terms. First define,

M̃ = M − M̂ (3.55)

C̃ = C − Ĉ (3.56)

Φ = p− p̂

which are the errors in the two matrices M and C and the parameter error, Φ. Inserting
the control law in Eqn (3.54) into the dynamics in Eqn (3.51) and subtracting M̂(x, p̂)ẍ
from both sides yields,

M̃(x,Φ)ẍ+ C̃(x, ẋ,Φ) = M̂(x, p̂)(Ë + kvĖ + kpE) (3.57)

which leads to the following equation for the error dynamics,

Ë + kvĖ + kpE = M̂−1(M̃(x,Φ)ẍ+ C̃(x, ẋ,Φ)) (3.58)

The matrices for the dynamics (Eqn (3.51)) are linear with respect to the parameters p.
Therefore, the dynamics in error terms can be rewritten as,

M̃(x,Φ)ẍ+ C̃(x, ẋ,Φ) = W (x, ẋ, ẍ)Φ (3.59)

where, W is a nonlinear matrix that captures the dependence of the error dynamics on the
parameters. Therefore, the system dynamics from Eqn. (3.58) can be written as,

Ë + kvĖ + kpE = M̂(x, p̂)−1W (x, ẋ, ẍ)Φ (3.60)

Using the above equations, consider the system with the state xe =
[
E Ė

]T
which

would have the dynamics,

ẋe = Axe +BM̂−1WΦ (3.61)

where,

A =

[
0 I
kp kv

]
B =

[
0
I

]
With the above system, consider the output equation

E1 = Cxe (3.62)
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with C =
[

Ψ I
]

and Ψ is a tunable gain. The variable E1 is effectively a filtered output
error signal. For the above system, consider the Lyapunov Function

V = xTe Pxe + ΦTΓ−1Φ (3.63)

where Γ > 0 is the adaptation gain and P > 0 . The Kalman-Yakubovich-Popov Lemma
guarantees that if,

• A is Hurwitz (choice of kv and kp will ensure of this) and,

• (A,B) is controllable,

then there exists a matrix Q > 0 such that,

ATP + PA = −Q (3.64)

PB = CT (3.65)

Using this, the derivative of the signal in Eqn (3.63) along the trajectory of the system can
be shown to be [15],

V̇ = −xTeQxe + 2ΦT (W TM̂−1E1 + Γ−1Φ̇) (3.66)

Choosing the adaptation law,
Φ̇ = −ΓW TM̂−1E1

the energy function in Eqn (3.66) becomes,

V̇ = −xTeQxe

which is negative semidefinite for all Q > 0 and xe ∈ Rn. Note here that, Φ = p − p̂ and
Φ̇ = − ˙̂p. Therefore, the resultant parameter adaptation law would be,

˙̂p = ΓW TM̂−1E1 (3.67)

According to Lyapunov theory [25], the adaptation law given in Eqn (3.67) used with the
control law in Eqn (3.54) ensures bounded stability around the error surface defined in
Eqn (3.62).
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Adaptive Controller for Quadrotor Dynamics

The quadrotor helicopter dynamics presented in Section 3.1 have four critical parameters,
as mentioned before. These parameters can be arranged in the parameter vector as,

pq =


pq1
pq2
pq3
pq4

 =


m
Ix
Iy
Iz

 (3.68)

Note that this choice of p ensures the system in Eqn (3.43) is linear in the parameters.

In Section 3.2.2, a feedback linearizing controller was designed for the inner loop for

xq =
[
Z φ θ ψ

]T
. This feedback linearizing controller can be re-interpreted to include

the parameter vector (pq) as,

u = M q(xq, pq)ẍq
∗

+ Cq(xq, ẋq, pq) (3.69)

where,

uq =


uqt
τ qφ
τ qθ
τ qψ

 (3.70)

M q(x, pq) =


− m
cθcφ

0 0 0

0 Ix 0 0
0 0 Iy 0
0 0 0 Iz

 (3.71)

Cq(xq, ẋq, pq) =


g

cθcφ

θ̇ψ̇(Iz − Iy)
φ̇ψ̇(Ix − Iz)
φ̇θ̇(Iy − Ix)

 (3.72)

Finally, as per the variable W (x, ẋ, ẍ) in Eqn (3.59), one can define,

W (ẍq, ẋq, xq) =


−Z̈+g
cθcφ

0 0 0

0 φ̈ θ̇ψ̇ −θ̇ψ̇
0 −φ̇ψ̇ θ̈ φ̇ψ̇

0 θ̇φ̇ −θ̇φ̇ ψ̈

 (3.73)
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Using the definition in Eqn (3.73), the parameter adaptation law for the quadrotor vehicle
would be,

˙̂
pq = −ΓW TM̂ q

−1
E1 (3.74)

where adaptation gain Γ and tracking error surface E1 are defined in Eqn (3.63) and
Eqn.(3.62), respectively. This parameter adaptation law, along with the control law in
Eqn (3.69) can now be use to stabilize the quadrotor dynamics with unknown inertia
and mass parameters. Note here that the parameter adaptation law is driven by trajectory
errors (E, Ė) and not plant errors. Therefore, the overall goal for this controller is to reduce
tracking error and not necessarily to achieve consistent and universally correct inertia and
mass terms. If the input trajectories are sufficiently rich (contain an adequate number of
frequencies), then the parameters may become correct and consistent. However, this is not
a requirement for safe and accurate flight.

Figure 3.6 shows the result of a simulated quadrotor flight using the adaptive feedback
linearization controller. The quadrotor is commanded to follow a sinusoidal trajectory
using the feedback linearization method, however the parameters used for the feedback
linearization are initialized to have over 40% error. Figures 3.6 and 3.7 show that the
adaptive controller is able to stabilize the dynamics to the required path and follow an ag-
gressive trajectory. Moreover, Figure 3.8 shows the result of the parameter adaptation. In
the trajectory shown in Figure 3.6, the trajectory is sufficiently rich so that the parameters
converge to the correct parameters.

3.3 Comparitive Results

In an effort to evaluate the strengths of each controller, the simulation results are directly
compared under various circumstances. First, the linear (LQR) and nonlinear feedback lin-
earization controllers are compared when experiencing aggressive input trajectories. The
performance of the controllers is shown in Figure 3.9 and Figure 3.10 for the position and
orientation response respectively. It is clear from these figures that the LQR controller is
unable to provide adequate tracking for aggressive trajectories. This is primarily due to the
fact that the LQR controller is designed around the linear hover point. An aggressive tra-
jectory, as shown in Figure 3.10, pushes the vehicle dynamics far outside this linearization
point rendering the linear controller ineffective.

In an effort to show the specific advantages of adaptation, the simulation is subjected
to three different flight scenarios,
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Figure 3.6: Position response of the Adaptive Feedback Linearization controller to a step
input

Figure 3.7: Attitude Response of the Adaptive Feedback Linearization controller to a step
input
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Figure 3.8: Parameter adaptation for Adaptive Controller with upto 40% parameter error

Figure 3.9: Position Tracking with LQR and Feedback Linearization Controllers
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Figure 3.10: Orientation Tracking with LQR and Feedback Linearization Controllers

• Flight with incorrect model parameters (up to 40% error) with and without adapta-
tion.

• Flight with random parameter changes during flight, due to payload changes, physical
breakage etc.

• Flight with external disturbances and incorrect model parameters (up to 30% error).

Figures 3.11, 3.12 and 3.13 present the results of a simulated flight using the adaptive
feedback linearization controller with up to 40% error in initial flight parameter estimates.

It is clear from the position tracking results in Figure 3.11 that there is a substantial
improvement in tracking due to the adaptation. The parameters used for feedback lin-
earization are close enough to their respective correct values to allow the linear controller
in Eqn (3.53) to keep the flight stable. However, after the adaptation is turned on, the
controller shows improved tracking results. As described in Section 3.2.3, the adaptation
is driven by trajectory errors and not plant errors. Therefore, the parameters are not
guaranteed to converge to the universally correct parameters. Convergence will depend on
the richness and complexity of the required input trajectory. As seen in Figure 3.13, with
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Figure 3.11: Position Tracking with and without adaptive control

Figure 3.12: Quadrotor Orientation with and without adaptive control
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Figure 3.13: Parameter adaptation with and without Adaptive Control
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the trajectory shown in Figure 3.11 the parameters do converge to their respective correct
values.

Parameter changes during the flight of a helicopter can significantly deteriorate and
even destabilize a controller. During quadrotor flight, the most common parameter change
is a change in mass due to changes in payload. This scenario is simulated in Figure 3.3.
Figure 3.3 shows that when the mass of the vehicle changes (after about 10 seconds of
flight), the feedback linearized controller is unable to accurately control the vehicle. The
error in tracking could be reduced by drastically increasing the linearized gains, however
the incorrect feedback linearization will always cause significant steady state error. Simply
adding an integrator may also reduce the tracking error. However, this will add extra
dynamics to the controller and make it difficult to tune. Moreover, an integrator is not
as effective in improving the transient dynamics of the vehicle. In general, if there are
changes in vehicle parameters during flight, a feedback linearized or PID controller will
always need to be re-tuned for the performance of the controller to stay the same. The
adaptive controller is able to maintain the performance by adapting the estimate of mass
online. This allows the quadrotor vehicle to safely change plant parameters without the
risk of degraded controller performance or destabilization.

Finally, most sUAV’s are sensitive to various environmental effects such as wind gusts
outdoors or turbulent air when flying indoors due to the airflow created by rotors. The
scenario with these external effects is simulated using a variant of the Dryden wind gust
model as in the case of the coaxial helicopter before. The results of such a flight are
presented in Figure 3.15 and Figure 3.16. Figure 3.17 presents the parameter adaptation
of the quadrotor vehicle in these conditions.

Figure 3.15 result shows that under gusty wind conditions the flight under regular
feedback linearization has significantly deteriorated. The simulated conditions contain a
constant bias in the form of a constant force as is common in windy conditions. This
constant bias also causes a constant position tracking error in addition to the significant
ringing in the orientation tracking of the vehicle. In the case of the adaptive controller,
the vehicle adapts the parameters so as to minimally suppress the ringing in orientation.
Moreover, the parameter adaptation significantly reduces the tracking error caused by the
combination of windy conditions and parameter error. In the case of altitude tracking
the estimate of the parameter is moved to its actual value (1.5kg) to enable accurate
tracking of the vehicle, the effect of the wind is minimal. However, in the case of x, y
position tracking, the inertia parameters that primarily enable effective attitude tracking
are increased to be significantly above the actual value. The increase in parameters allows
the quadrotor vehicle to assume that the quadrotor is heavier (in inertia terms) than its
actual parameters. Due to this adaptation, the feedback linearization controller responds
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Figure 3.14: Quadrotor flight with parameter (mass) changes mid-flight
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Figure 3.15: Position Tracking with and without adaptive control

Figure 3.16: Quadrotor Orientation with and without adaptive control
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Figure 3.17: Parameter adaptation with and without Adaptive Control under windy con-
ditions

by using more input torque to effectively overcome the effects of the wind gusts. The
increased input torque results in accurate tracking of the required attitude trajectory and
the resultant position tracking as shown in Figure 3.15.
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Chapter 4

Experimental Flight Testbed and
Results

4.1 Autopilot Platform

In an effort to create a testbed of helicopter platforms for the testing of the controllers
presented in Sections 2 and 3, a versatile and customizable autopilot testbed was required.
Autopilot systems are most commonly designed for specific aerial platforms, however for
sUAV systems it is possible to build a single autopilot system that is able to serve the needs
of various flight systems. Such an autopilot system was required in this work to be installed
on Quadrotor Helicopters, Coaxial Helicopters and potentially other flight configurations.
This autopilot system has three main requirements,

• The platform has to be small, compact and lightweight so that it could be mounted
on and lifted by most sUAV platforms.

• The platform must employ high quality MEMS sensor systems to provide the best
sensor measurements to aid in the control

• The system needs substantial computational power and high bandwidth communica-
tion capabilities to allow for the implementation of the various controllers suggested
and all the supporting estimation and sensor systems.

• The system needs to have a flexible software architecture to allow for future expansion
into more complex autonomy software.
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A range of publicly available, open source and/or commercial solutions were considered.
A few of the most popular autopilot systems are shown in Figure 4.1.

(a) Ardupilot (b) Micropilot (c) Paparazzi Lisa

Figure 4.1: Popular sUAV Autopilot Systems

The Ardupilot platform shown in Figure 4.1(a) is one of the most popular open-source
autopilot platforms used. It is compact and has been installed on a large number of rotor
and fixed wing aircrafts. However, the Ardupilot is based on a low-power (< 16Mhz)
ATMEGA microcontroller framework that will not be able to the support the heavy com-
putation required for the controllers and its related estimation algorithms. The Micropilot
shown in Figure 4.1(b) is a popular commercial autopilot solution especially for rotorcrafts,
however it does not allow for software architecture customization and is therefore inappro-
priate for controller studies. Finally, the Paparazzi platform shown in Figure 4.1(c) is a
compact open-source autopilot platform. The latest iterations of the papparazzi platform
includes powerful microprocessor (> 600Mhz). However, as of the inception of this work
the Paparazzi platform was based on a slower ARM microcontroller (< 32Mhz) system and
therefore not considered for use. Moreover, both the Ardupilot and Paparazzi platforms
used low-quality MEMS sensors that have larger systemic biases in measurements.

As an appropriate commercially available autopilot platform does not exist, a custom
autopilot system was designed for the vehicles employed in this work. The autopilot design
is based on the Paparazzi system however it uses a better suite of MEMS sensors. In addi-
tion to the microcontroller found on earlier iterations of the Paparazzi platform, the autopi-
lot designed here also includes a more powerful microprocessor (800Mhz, 512MB RAM)
running Linux to aid in more computationaly intensive and high bandwidth communication
operations. The addition of the microprocessor also makes the software architecture flexible
as software modules can be run on the microcontroller or the microprocessor depending on
the computational intensity and real-time performance requirements. The microcontroller
is more suited for operations that require guaranteed timing (such as controller algorithms)
and while the microprocessor can handle more computationally heavy operations such as
high bandwidth communication. The microprocessor also allows for further development
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of more complex autonomy software (mapping, planning and related vision algorithms).
Figure 4.2 shows the final architecture designed for the autopilot system.

Figure 4.2: UWMAV Autopilot Framework

Figure 4.2 shows the selected sensor components, microcontrollers, microprocessors
and the communication systems that connect all the components. The autopilot has a
32Mhz Phillips ARM LPC2148 microcontroller and two Gumstix Cortex A8 800Mhz
microprocessors to satisfy all the required computing needs. The system uses an Analog
Devices IMU as its primary sensor. Additional sensors can be added to the available
device communication buses, I2C, SPI and UART for the microcontroller and/or USB on
the Gumstix. The actuators of a rotorcraft can be controlled onboard by the PWM system,
or the other communication methods available (I2C, SPI and UART) depending on the
requirements of the rotorcraft. The Gumstix processors are equipped with Wifi cards that
enable wireless communication with the autopilot.

The above system is brought together on a single PCB to ensure the system remains
compact. This PCB design was carried through multiple prototyping cycles to ensure
electrical stability. The final product is shown in Figure 4.3.
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Figure 4.3: UWMAV Autopilot
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The UWMAV autopilot can now be installed on various rotorcraft to create autonomous
flight craft that provide the required software capabilities and sensor systems to test various
controllers and potentially expand to further autonomous behaviour.

4.2 Nonlinear Controllers on the MikroKopter

Quadrotor

The quadrotor controller developed in this work needs to be tested on a real helicopter
platform. For this, a custom quadrotor platform using the UWMAV Autopilot platform is
constructed. A standard quadrotor platform such as the MikroKopter (Figure 4.4(a)) pro-
vides a capable mechanical platform and has been employed by previous studies in control
systems [36]. Given these previous successes, the Mikrokopter framework is employed
along with the UWMAV Autopilot developed before to construct a Quadrotor testbed. The
MikroKopter framework uses custom designed brushless motors for actuating the rotors.
These motors are controlled by onboard motor controllers designed by MikroKopter. The
quadrotor also has an onboard Autopilot system that is interfaced to the motor controllers
using the I2C bus. In this work, the MikroKopter autopilot is replaced with the UWMAV
Autopilot platform shown in Section 4.1 so as to allow for custom controllers. However, the
MikroKopter autopilot is kept in the system as a backup system. The UWMAV Autopi-
lot is mounted onto the Quadro XL platform and the I2C bus on the UWMAV Platform
is used to control the brushless motors of the vehicle. Figure 4.4(b) shows the complete
system with the UWMAV Autopilot mounted onto the Quadro XL Platform.

4.2.1 Orientation Estimation

The controllers developed in Section 3 assume perfect knowledge of the orientation of the
vehicle. However, the UWMAV Autopilot’s onboard IMU is equipped with 3 gyroscopes,
3 accelerometers and 3 magnetometers. The gyroscopes provide a measurement of the
rotation rates of the quadrotor, the accelerometers measure the vehicle accelerations and
can also aid in the measurement of the direction of gravity. The magnetometers measure
the orientation of the vehicle with respect to the earth’s magnetic field. However, these
measurements have a few different sources of error,

• The gyroscopes are known to have signficant biases in the rate measurements
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(a) Stock Mikrokopter Quadro XL being using for
Aerial Photography

(b) Quadrocopter Testbed using the Mikrokopter and
UWMAV Autopilot

Figure 4.4: Quadrotor Testbed

• In order to accurately measure the gravity vector using the accelerometers, the body
must experience no other sources of acceleration.

• The magnetometers are prone to large amounts of error due to electrical disturbance
caused by the quadrotor motors and related electrical systems.

• Vibrations during flight are a large source of high frequency noise to all measurements
from the IMU.

In the period of a single flight, the gyroscopic biases are assumed to be constant. In
the first three seconds of flight (before takeoff), the quadrotor is assumed to be static at
which time the gyroscopic biases are measured and removed from future measurements.
Incorporating magnetometers requires extensive electro-magnetic disturbance studies that
is deemed to be outside the scope of this work. The combination of accelerometers and
gyroscopes allows us to accurately measure the roll, pitch, roll rate, pitch rate and yaw
rate of the vehicle. An accurate measurement of yaw can be acquired through external
sources (vision algorithms, indoor positioning systems etc.). In order to combine all the
sensor information into one accurate estimate of the orientation, a kinematic Extended
Kalman Filter (EKF) is employed. This EKF is also used to suppress the effect of vibra-
tion and occasional errors introduced into the measurement of the gravity vector due to
quadrotor body accelerations. The EKF is used to estimate the orientation state namely,
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x =
[
φ θ ψ p q r

]T
. The motion model of the EKF assumes constant acceleration

and incorporates the rotation between body angular rates measured by the gyroscopes
and the euler rates that are part of the state as shown in Equation (3.3). This can be
summarized as,

ẋ = f(x) (4.1)

=


φ̇

θ̇

ψ̇
ṗ
q̇
ṙ

 =



0 0 0 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 0 0 0 cos(φ) − sin(φ)

0 0 0 0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.2)

Given the sensor suite the measurements fed into the EKF are,

y = h(x) =


cos θ sinφ

sin θ
p
q
r

 =


yacc
g

xacc
g

pmeas
qmeas
rmeas

 (4.3)

where, yacc and xacc are acceleration measurements and pmeas, qmeas, and rmeas are the
body rate measurements from the gyroscopes. The measurement equations of roll (θ)
and pitch(φ) above are based on a general aircraft model. However, in a quadrotor, this
measurement model is not always correct. When a quadrotor experiences a roll and/or
pitch motion, it also accelerates in the body x and/or y axes. This acceleration nullifies
the measurement shown in Eqn (4.3). However, in the case of near hover flight, on average,
the measurement model shown in Eqn. (4.3) will provide accurate results as evident in the
results shown in Figure 4.5.

The dynamics in Eqn. (4.1) and Eqn (4.3) are linearized about the current state as
required by the the EKF framework using the pre-calculated Jacobian matrices,

Jx =
∂f(x)

∂x
(4.4)

Hx =
∂h(x)

∂x
(4.5)

The above system is then implemented onboard the UWMAV Autopilot using the EKF
algorithm [11]. The filter is discretized to run at 100Hz and implemented on the micro-
controller.
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In order to verify that the designed EKF is working as expected, the orientation es-
timates are compared to those generated by an Optitrack motion capture system. The
Optitrack system uses IR cameras to offer highly accurate estimates of the position and
orientation of a body based on triangulation of IR markers placed on the body. These
IR markers are strategically placed on the quadrotor body and the quadrotor is flown
with the stock MikroKopter controller. Figure 4.5 presents the result of such a flight and
demonstrates that the Kalman filter output closely tracks the presumed ground truth mea-
surements from the Optitrack and that the orientation estimator is adequately accurate to
be used for control tests onboard the quadrotor.

4.2.2 Quadrotor System Identification

The feedback linearized controller proposed in Section 3 assumes that two sets of parame-
ters can be determined before flight:

• The controllers assume that the body forces and torques described in Section 3.1.5 are
controllable. However, the MikroKopter framework only provides control over motor
speeds. For accurate control of the body forces and torques, accurate knowledge
of the parameters ki and c described in Eqn (3.16) and Eqn (3.17) respectively, is
required.

• The body mass (m) and inertia parameters (Ix, Iy, and Iz) are also assumed to be
known.

The constant, ki is the aerodynamic constant that relates the motor input to the thrust
generated by the rotors. It depends on the blade geometry and the electronic motor input.
In an effort to accurately estimate this parameter, the quadrotor platform is mounted on
a scale as shown in Figure 4.6. The scale provides an accurate estimate of the mass (m)
of the aircraft.

As the motor input is varied, the scale provides an estimate of the amount of thrust
generated by the quadrotor. The motor input can be systematically varied to construct
a dataset that can provide an estimate of the constant ki. However, when the quadrotor
attempts to generate thrust close to the ground, as in Figure 4.6, the thrust study will be
affected by the rotor backwash from the ground (ground effects) as described in Section
3.1.4. As described before, modelling and predicting the affect of rotor downwash can be
quite complex. Moreover, an alternate thrust study stand that minimizes the effect of rotor
downwash is outside the scope and resources of this work. The affect of the rotor downwash
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Figure 4.5: Onboard Orientation Estimation System Output
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Figure 4.6: Quadrotor platform mounted on a Scale for thrust study

on the thrust study will create a disturbance in the controller as the forces generated by
the rotor in flight will be lower than the expected value. The controllers must be able to
reduce the affect of this disturbance.

As the constant, ki, depends on blade geometry, two tests, one with a 12 inch diameter
blade and the other with a 13 inch diameter blade is carried out. The result of this thrust
test is shown in Figure 4.6. Figure 4.6 also shows the results of a quadratic interpolation
on both rotor sizes. As guided by the relationship in Eqn (3.11), the larger rotor generates
more thrust for the same applied voltage and is therefore more efficient. Moreover, the
quadratic fit can be seen to be accurate and the constant ki can be retrieved from this fit.
The exact values of each of the parameters is summarized in Table 4.1. The parameter c
relates the motor speed to the torque generated about the body z axis (to control the yaw
of the vehicle). This parameter is retrieved from previous system identification work on
fixed pitch rotor systems [8] and scaled to the appropriate rotor size.

Finally, the inertia of the vehicle is estimated using some simplifying assumptions. The
central hub and the motors of the vehicle are approximated to circular cylinders and the
rods are approximated to be thin rods. This inertia is transferred to be about the x, y and z
axis using the parallel axis theorem. The final inertia value used for controller formulation
are shown in Table 4.1.
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Figure 4.7: Thrust Study Results

Parameter value
ki 0.00011952 N
c 0.00001106 N
m 1.555 kg
Ix 0.00294 kg2.m2.rad
Iy 0.00294 kg2.m2.rad
Iz 0.05607 kg2.m2.rad

Table 4.1: Quadrotor Parameters Used
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4.2.3 Controller Results

The inner loop controllers described in Section 3 are implemented onboard the UWMAV
autopilot on the system shown in Figure 4.4(b). The controllers are formulated using the
parameters shown in Table 4.1 and run real time on the microcontrollers. The continuous
time dynamics of the controllers shown in Eqn (3.43) and Eqn (3.74), are approximated
by running an euler approximation of the continuous controller at 100Hz. The parameters
and gains of the controllers are tuned to provide reliable and stable results. This controller
setup is used to fly the helicopter while assessing performance. Figure 4.8 shows the
quadrotor mid flight.

Figure 4.8: UWMAV Autopilot mid flight on the Mikrokopter

The tracking volume available from the Optitrack indoor positioining system is small.
Therefore, quadrotor flights using the more complex input orientation trajectories shown
in Section 3 are impossible to safely reproduce. In an effort to assess the reaction of the
controllers under more complex sinusoidal trajectories, the quadrotor is placed in a custom
test bench that constrains the position movement of the aircraft while allowing it to pitch
or roll with minimal additional torque. Figure 4.9 shows the quadrotor in this constrained
testbench.

With the quadrotor in this constained testbench, a sinusoidal trajectory can be safely
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Figure 4.9: Quadrotor in a constrained testbench
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commanded of its orientation.

Using the adaptive and non-adaptive feedback linearized controller a sinusoidal pitch
trajectory is commanded of the helicopter. The result is shown in Figure 4.10. Figure

Figure 4.10: Quadrotor Control Results

4.10 shows the commanded and achieved pitch trajectory along with the parameter adap-
tation of the inertia parameter primarily affecting the pitch direction. In Figure 4.10, the
controller is commanded to output a sinusoidal pitch trajectory without the aid of any
parameter adaptation for the first 25% of the flight. In this time, a large amount of track-
ing error (frequently more than 0.05 rad) is noticed. The source of this error could be a
combination of,

• Aerodynamic backdraft from the surrounding walls around the testbench area.

• Inaccuracies in the parameters idenfitied in Table 4.1.

• Friction from the testbench in the pitch direction of the aircraft.
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However, as the inertia parameter is allowed to adapt, the controller is seen to overcome
these sources of error to provide improving trajectory tracking. In the last 25% of the flight,
the quadrotor is tracking the required trajectory accurately. The parameter Iy in Figure
4.10 settles at over three times the initial value shown in Table 4.1. As described in Section
3, the adaptive controller framework is direct and therefore the parameter estimate has
settled at a value that is appropriate for the given trajectory and potential sources of error.
The parameter may not be universally accurate and may change to a lower value when it
is required to track a less aggressive trajectory or when the flight is under the influence of
fewer disturbances. This behaviour of the controller, to increase parameter estimates to
values larger than required, is visible in Figure 3.17 where the parameters sharply rise to
a larger amount to ensure suppression of wind disturbances.

Finally, a major difference between the experimental results and the simulation studies
shown in Section 3 can be observed. The simulated parameter response (Figure 3.17 and
3.13) in the inertia direction is sharp, leading to the quadrotor being able to track the
required trajectory much faster. However, in the case of the experimental results in Figure
4.10 the parameter reacts slowly, resulting in longer periods of inaccurate tracking. This
slower response is likely the result of higher levels of measurement noise and dynamic
disturbances.
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Chapter 5

Conclusions

Small Unmanned Aerial Vehicles (< 1m) have recently seen a large growth in popularity.
Their small size, relatively cheap cost and potential flight capabilities have made them an
extremely popular choice in a growing number of industries and applications that have
previously been unable to employ unmanned technology. Moreover, recent advances in
microcomputer technology and MEMS sensor systems have created a perfect environment
for systems like these to flourish.

The fundamental problem with most UAV systems is the safe, robust and reliable flight
of the platform in various circumstances. The small size of these vehicles pose a unique
set of challenges for the potential users and designers of these vehicles. The shrinking size
of the onboard sensor systems inject more noise into the control algorithms. The small
physical size of the flight chassis makes the system more susceptible to disturbances from
the environment. These factors must be considered and mitigated when designing these
platforms for robust and reliable flight. In current literature over the last decade, there
have been numerous works in developing linear control methods for sUAV systems. How-
ever, recent advancements in microcomputer technology have allowed for more advanced
nonlinear algorithms to be implemented onboard these systems. These nonlinear methods
promise better results but assume perfect knowledge of the vehicle dynamics. This work
intends to discuss and develop these control methods in the context of two different sUAV
configurations.

Many different configurations of sUAV’s are currently under investigation, with new
designs still being made. However, the coaxial helicopter and the quadrotor helicopter
configurations are two of the most popular platforms that are being considered or have
already been commercialized for use in various applications. The coaxial helicopter dy-
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namics rely on a dual-rotor system that makes this configuration compact and easier to
control using linear methods due to the damped response around the linear zone of flight.
Along with the compactness, the damping of the dynamics makes the coaxial helicopter
inherently stable and the dual rotor system makes the power train much more efficient.
However, the damping also takes away a lot of the control authority making it difficult to
fight wind and/or follow aggressive trajectories.

The quadrotor platform is better suited for providing a larger amount of control au-
thority to be able to suppress the effect of external disturbances. It uses four rotors to
create thrust and uses the difference in thrust between the various rotors to create mo-
ments about the roll, pitch and yaw directions. The simpler set of quadrotor dynamics
means the vehicle does not require a complex mechanical geartrain system making quadro-
tor platforms cheaper and easier to maintain. Moreover, the small rotor size (compared
to traditional helicopters) injects less kinetic energy in the system which ensures fewer
catastrophic crashes. However, the extra control authority comes at the price of nonlinear-
ities being present in regular flight. The vehicle does not have the damping that a coaxial
helicopter possesses and therefore any controller designed for this system must contain
knowledge of these faster nonlinearities and/or use suitable control methods to regulate
the vehicle.

In terms of controller design, due to its inherent damping and stability, only linear
methods are considered for the coaxial helicopter system. A full set of dynamics is derived
based on simplifications from earlier work. These dynamics are then decoupled so that
four seperate PID systems can control the roll, pitch, yaw and height of the vehicle while
minimizing interference. The dynamics are linearized about hover and an optimal control
strategy based on quadratic costs (Linear Quadratic Regulation) is also designed. Finally,
to test the applicability of frequency domain designs a Robust H∞ method is also devised.
The LQR control method is shown to be superior to PID control methods in suppressing the
cross-channel interactions in coaxial helicopter simulation flights. However, the simulation
studies also showed that the H∞ control method is better at suppressing higher frequency
wind disturbances frequently experienced by sUAV platforms. Moreover, the H∞ controller
is shown to be able to better track aggressive position trajectories.

The quadrotor control problem is more complicated due to the inherent nonlinearities
in the flight of the quadrotor. In this work, the dynamics of the quadrotor are derived
using various current works. In an effort to provide adequate comparison, an LQR control
method is designed to control the dynamics of the quadrotor. Various nonlinear methods
are considered, however the popular feedback linearization method is deemed to show the
most promise for usage in quadrotor platforms. Based on the recommendations of some
previous work, the feedback linearization plant is decoupled into an inner and outer loop.
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The feedback linearization method is simulated and shown to be superior to the LQR
method devised in this work.

Feedback linearization, like most nonlinear methods, requires accurate knowledge of
the quadrotor plant parameters. These parameters are difficult to accurately estimate and
may even change during the course of a flight. Using simulation studies, inaccuracies in
plant parameters are shown to be detrimental to the performance of feedback linearization
methods. To counteract the effects of these inaccuracies a direct adaptation law is derived
based on some previous work on mechanical manipulators to run parallel to the feedback
linearization method. This adaptation law is directly driven by trajectory tracking errors
and modifies the plant parameters to suppress these errors. As the adaptation law is driven
by tracking errors, it may modify the parameters so as to increase or decrease the effective
gains used by the feedback linearization method to suppress all sources of error (not just
parameter errors). This adaptation method is shown to accurately estimate the correct
parameters in cases with no other sources of disturbances. It is also shown to estimate
changes in plant parameters during flight to maintain stable flight of the quadrotor. Finally,
the disturbance rejection characteristics of the controller are also tested. In general, the
feedback linearization method is shown to improve under all scenarios when coupled with
the results of the parameter adaptation law.

Finally, a custom autopilot and helicopter testbed is constructed to test the quadrotor
controllers. Various estimation and softare systems are developed and tested to support the
proper functioning of the controller. The feedback linearization controller is implemented
online and tested with and without the adaptation law on a custom test bench. The custom
test bench constrains the flight of the quadrotor which allowed the quadrotor platform to
safely follow a complex inner loop roll or pitch trajectory. The trajectory tracking is shown
to substantially improve when the plant parameters are allowed to adapt according to the
adaptation law derived in this work. Moreover, the plant parameters are shown to grow
significantly to suppress the larger sources of disturbances that appeared in real flight.
This illustrates the advantage of a direct adaptive control method that has the flexibility
to change the parameters to reduce tracking error ultimately ensuring safer, more reliable
and accurate flight.
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