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Abstract 

Extreme thermophiles and hyperthermophiles are microorganisms with the ability to grow optimally 

at 65-79°C and 80°C plus, respectively. Many of the enzymes isolated from these microorganisms are 

thermostable, which makes them a potential resource for research and industrial applications. An 

increasing number of hyper/thermophiles is shown to be able to produce ethanol as an end-metabolite. 

Despite characterization of many alcohol dehydrogenases (ADHs) with a potential role in the 

production of ethanol, to date there has been no significant progress in identifying the enzymes 

responsible for the production of acetaldehyde, which is an intermediate in production of ethanol 

from pyruvate. 

Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing 

enzyme responsible for conversion of pyruvate to acetaldehyde in many mesophilic organisms. 

However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of 

hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- 

and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the 

hyperthermophilic archaeon Pyrococcus furiosus. No further investigation of such bifunctionality in 

other hyper/thermophilic PORs has been conducted. 

The bifunctional and TPP-containing POR/PDC enzyme was isolated and characterized from the 

ethanol-producing hyperthermophilic archaeon Thermococcus guaymasensis (Topt=88°C), as well as 

the bacteria Thermotoga hypogea (Topt=70°C) and Thermotoga maritima (Topt=80°C). The T. 

guaymasensis enzyme was purified anaerobically to homogeneity as judged by SDS-PAGE analysis. 

POR and PDC activities were co-eluted from each of the chromatographic columns, and the ratio of 

POR to PDC activities remained constant throughout the purification steps. Similar to other POR 

counterparts, the enzyme was extremely oxygen sensitive, with a half-life of about 30 min upon 

exposure to air. The purified enzyme showed POR/PDC bifunctionality with specific activities of 

20.2 and 3.8±0.22 Umg-1 for oxidative and non-oxidative decarboxylation of pyruvate, respectively. 

Both of the enzyme activities were CoA- and TPP- dependent. The apparent kinetic parameters were 

determined for the main substrates, including pyruvate and CoA for both activities. Since the genome 

sequence of T. guaymasensis was not available, sequence of the genes encoding POR and the closely 

related enzyme 2-ketoisovalerate ferredoxin oxidoreductase (VOR) were determined via primer 

walking and inverse PCR. 
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T. hypogea and T. maritima bifunctional POR/PDC enzymes were heterotetramers with estimated 

native molecular weights of 260 kDa. Although the POR of T. maritima was characterized previously, 

its PDC activity was not reported. Since the T. hypogea genome sequence is not available, the 

primary structure of the genes encoding each of the POR four subunits were determined using inverse 

PCR and the primer-walking approaches. The deduced amino acid sequences of both PORs were 

compared with available sequences from other organisms. Both activities of POR and PDC were 

highly sensitive toward exposure to air, with half-lives of less than 15 min for T. maritima POR/PDC 

and less than 5 min for T. hypogea POR/PDC. The optimal pHs were determined to be pH 8.4 for 

both POR and PDC activities, and their optimal temperatures were determined to be 85°C. The T. 

hypogea enzyme had a specific activity of 96.7±15.1 and 1.82±0.44 Umg-1 for POR and PDC, 

respectively, while the T. maritima enzyme had a specific activity of 90.8±11 and 1.4±0.15 Umg-1 for 

POR and PDC, respectively.  

A novel enzyme capable of catalyzing the production of acetaldehyde from pyruvate in 

hyperthermophiles was also characterized. This enzyme is a TPP- and flavin-containing 

acetohydroxyacid synthase (AHAS), which is found to be involved in the biosynthesis of branched-

chain amino acids. AHAS activities were detected in the cell-free extracts of T. maritima, T. hypogea, 

Thermotoga neapolitana, P. furiosus, T. guaymasensis and Thermococcus kodakaraensis. Among 

these, the ones that harbor a complete ilv (isoleucine-leucine valine) operon (including T. maritima, T. 

neapolitana, and P. furiosus) had the highest AHAS activity at nearly neutral pH, but the ones 

without ilv operon still had some residual AHAS activity mostly at a higher pH value (pH 10.5). It 

was shown that the cell-free extracts of T. maritima can catalyze the non-oxidative decarboxylation of 

the pyruvate to produce acetaldehyde.  

The genes encoding each of the catalytic and regulatory subunits of AHAS from T. maritima were 

over-expressed in the mesophilic host, E. coli. The recombinant proteins were purified to 

homogeneity by heat-treatment and fast performance liquid chromatography (FPLC). The highly 

active catalytic (large) subunit was responsible for both synthase and decarboxylase activities, which 

were 134±30 and 16.7±3.4 Umg-1, respectively. The activity had an optimal pH of 7.0 and an optimal 

temperature of 85°C for both activities, and was stable at 80°C (t1/2≥ 24 hours). The enzyme 

contained flavin and TPP and remained partially active without addition of these cofactors to the 

assay mixture. The enzyme can also use 2-ketoisovalerate instead of pyruvate as a substrate. The 

catalytic and regulatory (small) subunits had native molecular weights of 156 kDa and 38 kDa, which 
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was suggestive of a dimeric structure for each subunit. Reconstitution of the holoenzyme via mixing 

individually purified catalytic and regulatory subunits led to a substantial increase in both synthase 

and decarboxylase activities. This is the first report on characterization of a thermostable AHAS and 

also represents the highest specific activity of AHAS activity found to date. 

Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is 

CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is 

oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the 

reduction of acetyl-CoA to acetaldehyde. AcDH is present in some mesophilic (such as clostridia) and 

thermophilic bacteria (e.g. Geobacillus and Thermoanaerobacter). However, no AcDH gene or 

protein homologs could be found in the released genomes and proteomes of hyperthermophiles. 

Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles 

under different assay conditions. 

In conclusion, no commonly-known PDCs was found in hyperthermophiles, but two types of 

acetaldehyde-producing enzymes were present in various bacterial and archaeal hyperthermophiles. 

These enzymes were the bifunctional POR/PDC and AHAS/PDC. Although the deduced amino acid 

sequences from different hyperthermophiles are quite similar, the levels of POR and PDC activities 

appeared to differ significantly between the archaeal and bacterial enzymes, which most likely 

reflects the different physiological implications of each activity. The PDC to POR ratios for the 

archaeal enzyme from T. guaymasensis and P. furiosus were about 0.19 and 0.2, respectively. In the 

case of bacterial enzymes, the PDC to POR ratios were 0.016 and 0.018 for T. maritima and T. 

hypogea, respectively. Remarkably, the archaeal bifunctional enzymes showed different pH optima 

for POR (pH 8.4) and PDC (pH 9.5-10.2), while the bacterial POR/PDC had the same pH optima of 

8.4. The recombinant AHAS enzyme from T. maritima is the first one characterized in 

hyperthermophiles, and it is also capable of catalyzing the production of acetaldehyde from pyruvate 

with a PDC to AHAS activity ratio of 0.13. Besides the physiological implications of the AHAS per 

se, the characterized PDC activity of this enzyme is of great importance in determination of the 

ethanol production pathways in hyperthermophiles. Instead of the commonly-known PDC, it appears 

that various multifunctional enzymes are responsible for catalyzing the non-oxidative decarboxylation 

of pyruvate to acetaldehyde in hyperthermophiles. 
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1.1 Hyperthermophiles 

Extermophiles are microorganisms that require extreme conditions for optimal growth. These 

“extreme” parameters may include physical conditions, for instance, high temperature (thermophiles), 

high hydrostatic pressure (piezophiles), and high radiation doses (radiophiles). These conditions also 

encompass geo-chemical environments, including high salinity (halophiles), low pH (acidophiles), 

high pH (alkaliphiles), or even combinations of any of these conditions  (van den Burg 2003).  

Thermophilic microorganisms can be further categorized into several groups: moderate 

thermophiles, or simply thermophiles, are those that grow optimally between 50-64°C, extreme 

thermophiles are those with optimal growth temperatures between 65-79°C. Finally, the organisms 

that can grow optimally above 80°C are called hyperthermophiles. Hyperthermophiles can survive at 

room temperature for long periods of time, but cannot propagate at temperatures lower than 50°C 

(Wiegel 1990; Stetter 1996; Charlier and Droogmans 2005; Stetter 2006; Lebedinsky et al. 2007; 

Wagner and Wiegel 2008). 

Some hyperthermophiles can endure multiple extreme conditions at the same time; for example, the 

anaerobic hyperthermophilic piezophilic archaeon Thermococcus barophilus not only grows 

optimally at 85°C but also has a shorter doubling time when provided with strong hydrostatic 

pressures (Marteinsson et al. 1999). The same is also true for the moderate thermophilic bacterium 

Natranaerobius thermophilus, which can grow optimally at temperatures of 53°C, pH of 9.5 and in 

sodium ion concentrations of 3.3-3.9 M (Mesbah et al. 2007). 

The first hyperthermophilic organism (Sulfolobus acidocaldarius) was discovered in 1972 in a hot 

spring in Yellowstone National Park (Brock et al. 1972). Examples of the natural habitats for 

extremely thermophilic and hyperthermophilic microorganisms include but are not limited to marine 

and terrestrial environments like shallow deep-sea hydrothermal vents at the ocean floor (also known 

as “black smokers”) and volcanic or geo-thermally heated environments like hot springs, terrestrial 

solfataric fields (solfatares), mud pools, and oil reservoirs (Vieille and Zeikus 2001; Charlier and 

Droogmans 2005; Stetter 2006; Wagner and Wiegel 2008).  
Many of these environments naturally contain very low levels of oxygen or are completely anoxic, 

for several reasons, including the low solubility of oxygen at high temperatures and sometimes at 

high salt concentrations; the high concentration of reducing gasses; such as H2 and H2S; being distant 

from the surface area, resulting in restricted access to oxygen; and consumption of the limited 
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available oxygen by the aerobic populations. Consequently, many of these organisms are adapted to 

survive in completely anaerobic conditions or in the presence of very limited oxygen (aero-tolerant) 

(Stetter et al. 1990; Stetter 1996; Wagner and Wiegel 2008).  

Other than a few thermophilic members (Maheshwari et al. 2000; Baumgartner et al. 2003), so far 

there has been no report on the presence of hyperthermophilic members in the Eukarya domain.  Only 

a few bacterial lineages, including Thermotogaceae, Aquificaceae and Thermodesulfobacteriaceae, 

contain hyperthermophilic members. Most of the known hyperthermophiles (and other extermophiles) 

are members of Archaea, within which the families containing hyperthermophilic taxa include 

Methanopyraceae, Methanothermaceae, Methanocaldococcaceae, Thermococcaceae, 

Archaeoglobaceae, Sulfolobaceae, Desulfurococcaceae, Pyrodictiaceae, Thermofilaceae, and 

Thermoproteaceae (Stetter 2006; Lebedinsky et al. 2007; Wagner and Wiegel 2008). 

Hyperthermophiles (both bacteria and archaea) are presented at the deepest and shortest branch of the 

tripartite 16S rRNA phylogenetic tree of life (Figure 1-1) with Eukarya (also known as Eucarya), 

Bacteria, and Archaea (Woese and Fox 1977; Woese et al. 1990). While a highly controversial 

evolutionary topic [for example see (Glansdorff et al. 2008; Gribaldo et al. 2010)], the 

aforementioned data suggest (Woese 1998; Forterre 2002) that they might be the closest organisms to 

the last universal common ancestor (LUCA).  

Hyperthermophilic microorganisms are widely studied for their remarkable scientific values and 

industrial potential. It is generally accepted that hyperthermophilic enzymes have very similar 

functions and catalytic mechanisms to their mesophilic homologs. However, most of the 

hyperthermophilic enzymes characterized so far have optimum temperatures close to the host 

organism’s requirements; thus, due to their intrinsic properties, the enzymes are stable and active 

under conditions that are detrimental to their mesophilic counterparts. Interestingly, enzymes from 

extremophiles usually show increased stability not to one, but to several environmental factors. There 

are a number of advantages for using the hyper/thermophilic enzymes (especially for industrial 

applications) over their mesophilic partners, including the reduced risk of contamination during 

industrial processes, the possibility of self-distillation of the products at high temperatures, decreased 

viscosity and increased solubility/bioavailability of both the enzyme and the substrate(s) leading to 

minimization of the diffusion limitations, and elimination of the costly transportation under cold
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Figure 1-1. Universal phylogenetic tree based on small-subunit rRNA sequence. The bulky 

lineage represents hyperthermophiles (Stetter 2006). 
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temperature-controlled environment (Vieille and Zeikus 2001; Haki and Rakshit 2003; Sommer et al. 

2004; Egorova and Antranikian 2005; Morozkina et al. 2010).  

The aforementioned properties along with high demand from the biotech industries for the 

development of tailor-made bio-catalysts have created significant attention on the biochemistry and 

physiology of these organisms. Enzymes such as proteases, polymerases, hydrolases, isomerases, 

lipases, and oxidases are studied for their potential biotechnological exploitation, with the ultimate 

goal of using the whole organisms or their products (mainly enzymatic) for biotechnological 

applications.  

It is also appealing to determine the molecular, biochemical, physiological, and evolutionary 

mechanisms that enable these organisms to adapt to such hostile environments. Furthermore, 

hyperthermophilic proteins serve as models to study enzyme evolution, structure-function 

relationships and catalytic mechanisms. The findings of these studies can be benefit the design of 

highly stable and active enzymes to be used for many different applications (van den Burg 2003; 

Morozkina et al. 2010; Atomi et al. 2011). 

Hyperthermophiles survive and grow under conditions that are believed to resemble those of the 

primal earth, under which life began; thus, studying these organisms may provide clues on how life 

started (Glansdorff et al. 2008; Brazelton et al. 2010). These types of studies, generally known as 

“origin-of-life” studies, as well as astrobiological studies (Cavicchioli 2002; Tung et al. 2005) covet 

the enormous advantages of archaea, specifically hyperthermophiles. 

1.1.1 The order Thermotogales 

The order Thermotogales contains anaerobic, heterotrophic, extremely thermophilic and 

hyperthermophilic bacteria that have an outer sheath-like structure called the “toga” which surrounds 

the cell and is visible during all phases of growth. Thermotogales represent a slowly evolving and 

deep branch of the phylogenetic tree of life, along with Aquificales (Figure 1-1). Although the 

members of Thermotogales are widespread and can thrive in many diverse thermal environments, 

most of them were originally isolated from deep sub-surface oil reservoirs (Table 1-1) and almost all 

of them are strict anaerobes. The Thermotogales include a single family Thermotogaceae which 

contains seven genera: Kosmotoga (Nunoura et al. 2010), Petrotoga, Geotoga, Marinitoga, 

Fervidobacterium, Thermosipho, and Thermotoga (Huber and Hanning 2006; Wagner and Wiegel 

2008). The species representing different genera of Thermotogales are presented in Table 1-1. The 
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Table 1-1. List of the species described in the order Thermotogales 

Species Growth temp.   
[optimum] (°C) 

pH range 
[optimum] Original isolation Reference Genome sequence* 

Geotoga subterranea 30–55 [50] 5.5–9 [6.5] Oil reservoir Jeanthon et al. 1995a - 
Geotoga petraea 30-60 [45] 5.5-9 [6.5] Oil reservoir Jeanthon et al. 1995a - 
Marinitoga camini 25–65 [55] 5–9 [7] deep-sea hydrothermal chimney Wery et al. 2001 DOE-JGI 
Marinitoga piezophila 45–70 [65] 5–8 [6] deep-sea hydrothermal chimney Alain et al. 2002 DOE-JGI 
Marinitoga hydrogenitolerans 35–65 [60] 4.5–8.5 [6] deep-sea hydrothermal chimney Postec et al. 2005 - 
Marinitoga okinawensis 30–70[55–60] 5.0–7.4 [5.5–5.8] deep-sea hydrothermal chimney Nunoura et al. 2007 - 
Marinitoga litoralis 45-70 [60] 5.5-7.5 [6] Hot spring Postec et al. 2010 - 
Petrotoga mexicana 25–65 [55] 5.8–8.5 [6.6] Oil reservoir Miranda-Tello et al. 2007 - 
Petrotoga miotherma 35–65 [55] 5.5–9 [6.5] Oil reservoir Miranda-Tello et al. 2007 Integrated Genomics 
Petrotoga olearia 37–60 [55] 6.5–8.5 [7.5] Oil reservoir L'Haridon et al. 2002 - 
Petrotoga sibirica 37–55 [55] 6.5–9.4 [8] Oil reservoir L'Haridon et al. 2002 - 
Petrotoga mobilis 40–65 [58–60] 5.5–8.5 [6.5–7] Oil reservoir Lien et al. 1998 DOE-JGI 
Petrotoga halophila 45–65 [55–60] 5.6–7.8 [6.7–7.2] Oil reservoir Miranda-Tello et al. 2007 - 
Thermosipho atlanticus 45–80 [65] 5–9 [6] deep-sea hydrothermal chimney Urios et al. 2004 - 
Thermosipho melanesiensis 45–80 [70] 3.5–9.5 [6.5–9.5] deep-sea hydrothermal chimney Antoine et al. 1997 DOE-JGI 
Thermosipho geolei 45–75 [70] 6–9.4 [7.5] Oil reservoir L'Haridon et al. 2001 - 
Thermosipho japonicus 45–80 [72] 5.3–9.3 [7.2] deep-sea hydrothermal chimney Takai and Horikoshi 2000 - 
Thermosipho africanus 35–77 [75] 6–8 [7.2] deep-sea hydrothermal chimney Ravot et al. 1996 Dalhousie University 
Thermosipho globiformans 40-75 [68] 5-8.2[6.8] deep-sea hydrothermal chimney Kuwabara et al. 2011 - 
Thermosipho affectus 37-75[70] 5.6-8.2[6.6] deep-sea hydrothermal chimney Podosokorskaya et al. 2010 - 
Fervidobacterium gondwanense [65–68] [7] Geo-thermally heated water Andrews and Patel 1996 - 
Fervidobacterium islandicum 50–80 [65] 6–8 [7] Continental solfatare Huber et al. 1990 - 
Fervidobacterium nodosum 41–79 [70] 6–8 [7] Hot spring Patel et al. 1985 DOE-JGI 
Fervidobacterium pennavorans 50–80 [70] 5.5–8.0 [6.5] Hot spring Friedrich and Antranikian 1996 DOE-JGI* 
Fervidobacterium changbaicum 55–90 [75–80] 6.3–8.5 [7.5] Hot spring Cai et al. 2007 - 
Thermotoga lettingae 50–75 [65] 6–8.5 [7] Methanol-degrading bioreactor Balk et al. 2002 DOE-JGI 
Thermotoga elfii 50–72 [66] 5.5–8.7 [7.5] Oil reservoir Ravot et al. 1995 - 

Thermotoga hypogea 56–90 [70] 6.1–9.1  
[7.3–7.4] Oil reservoir Fardeau et al. 1997 - 

Thermotoga subterranea 50–75 [70] 6–8.5 [7] Oil reservoir Jeanthon et al. 1995b - 
Thermotoga thermarum 55–84 [70] 5.5–9 [7] Continental Solfataric spring Windberger et al. 1989 DOE-JGI 
Thermotoga maritima 55–90 [80] 5.5–9 [6.5] Geo-thermally heated sea floor Huber et al. 1986 TIGR 
Thermotoga petrophila 47–88 [80] 5.2–9 [7] Oil reservoir Takahata et al. 2001 Dalhousie University 
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Species Growth temp.   
[optimum] (°C) 

pH range 
[optimum] Original isolation Reference Genome sequence* 

Thermotoga naphthophila 48–86 [80] 5.4–9 [7] Oil reservoir Takahata et al. 2001 DOE-JGI 
Thermotoga neapolitana 55–90 [80] 5.5–9 [7] Submarine thermal vent Takahata et al. 2001 Genotech Corp. 
Kosmotoga oleriae 20-80 [65] 5.5-8 [6.8] Oil reservoir DiPippo et al. 2009 DOE-JGI 
Kosmotoga arenicorallina 50-65 [60] 6.2-8 [7.1] submarine hot spring Nunoura et al. 2010 - 

Kosmotoga shengliensis 47-75 [65] 6-8 [7] Oil reservoir Feng et al. 2010; Nunoura et al. 
2010 - 

 

*DOE-JGI: The U.S. Department of Energy (DOE) Joint Genome Institute (JGI); TIGR, The Institute for Genomic Research 
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genome sequences are available for eight members of the Thermotoga genus, including Thermotoga 

maritima, Thermotoga petrophila, Thermotoga naphthophila, Thermotoga thermarum, Thermotoga 

lettingae, Thermotoga neapolitana, and Thermotoga sp. strain RQ2. The organism shares many 

orthologues genes with Archaeal hyperthermophiles, suggesting the occurrence of horizontal gene 

transfer between these two domains (Nelson et al. 1999). 

Thermotogales can use sulfurous compounds as terminal electron acceptors. Members of the order 

Thermotogales have a great hydrolytic capacity and are able to utilize complex carbohydrates and 

proteins. All of the organisms under this order can produce hydrogen to some extent. In addition to 

their extensive supply of hydrolytic enzymes, the Thermotogales are particular interest to researchers 

for their high potential as hydrogen producers (Bronnenmeier et al. 1995; Balk et al. 2002; Kluskens 

et al. 2003; Yang et al. 2006; Chou et al. 2008). The type strain of Thermotogales is T. maritima 

which was originally isolated from the geothermally heated marine sediments at Vulcano, Italy. T. 

maritima utilizes glucose, maltose, xylose, galactose, glycogen, sucrose, ribose, starch, yeast extract, 

and whole cell extracts of bacteria (and archaea) for growth; it has also been investigated in more 

detail than have other members of Thermotogales and other hyperthermophilic bacteria (Huber et al. 

1986).  

The existence of a new subclass of mesophilic “mesotoga” was lately postulated based on the 

metagenomics information (Nesbø et al. 2006). The first member of this proposed genus was recently 

cultivated and shown to have an optimal growth temperature of 37°C, with a doubling time of about 

16.5 h on xylose (Ben Hania et al. 2011). It was shown that Mesotoga prima uses sulfur as terminal 

electron acceptor. The full sequence of its genome was made available recently (Nesbø et al. 2012). 

1.1.2 The order Thermococcales 

The domain archaea initially contained two kingdoms Crenarchaeota and Euryarchaeota (Zwickl et 

al. 1990). Since then, based on the isolation of new microorganisms and sequencing of the 16S 

rRNA, more kingdoms (phyla) have been proposed under the domain Archaea (Figure 1-1), 

including Nanoarchaeota (Huber et al. 2002), Korarchaeota (Elkins et al. 2008), and 

Thaumarchaeota (Brochier-Armanet et al. 2008). However, it is worth mentioning that there is a 

general consensus only on the first two kingdoms and that the classification of the latter kingdoms is 

still an ongoing debate, as some studies support the new potential kingdoms becoming new clades of 

either Euryarchaeota or Crenarchaeota (Robertson et al. 2005; Pace 2009).   
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 Euryarchaeota is the most diverse kingdom and contains all of the methanogenic and extremely 

halophilic archaea including Thermococcales, Methanomicrobiales, Methanosarcinales, 

Archaeoglobales, and Halobacteriales. Crenarchaeota consists of Sulfolobales, Thermoproteales, 

and Desulfurococcales. There has been no Korarachaeon isolated to date in pure culture, and the 

kingdom is proposed based solely on culture-independent methods such as amplification of small 

subunit rRNA from environmental samples. Nanoarchaeota contain only one isolate: Nanoarchaeum 

equitans (Figure 1-1). Thaumarchaeota consists mainly of mesophilic archaea, and so far there has 

been only one report of isolation of the two marine members (Muller et al. 2010) reported and the rest 

of the members are only assigned based on culture-independent methods (Cavicchioli 2011).  

Members of the order Thermococcales are the most commonly isolated hyperthermophiles and 

mainly consist of strictly anaerobic sulfur-reducing chemoorganotrophic euryarchaea. The optimum 

growth temperature for members of the genera Pyrococcus and Thermococcus are between 95-100°C 

and 80-90°C, respectively (Table 1-2). They are found in different thermal environments, including 

deep sea hydrothermal vents, marine and terrestrial solfatares, as well as oil reservoirs.  

The majoritiy of Thermococcales are sulfur-reducers and require sulfur for optimal growth. In view 

of the growth substrates, the general preferences of Thermococcales seem to be mostly polymeric 

substrates including proteins and peptide-related substrates; they may also utilize carbohydrates, 

although less frequently (Erauso et al. 1993). The hydrogen molecules produced during fermentation 

of proteins or carbohydrates are transferred into elemental sulfur which serves as a terminal electron 

acceptor leading to hydrogen sulfide (H2S) production (Dworkin et al. 2006a). 

1.2 Microbial production of ethanol 

Demand for biofuel as a substitute for oil-based fuels is increasing due to concerns related to national 

security, economic stability, environmental impacts, and global warming. The national research 

council of the United States has predicted that, by 2020, half of organic chemicals and materials will 

be produced by bioconversion. Bio-ethanol can also be used as a precursor for many other commodity 

chemicals, such as acetaldehyde, acetic acid and their derivatives (Lynd et al. 1999; Zaldivar et al. 

2001; Mabee and Saddler 2010).  



10 

 

Table 1-2. List of the species described in the order Thermococcales 

Species 
Growth temp. 

[optimum] 
(°C) 

pH range 
[optimum] Carbon source Growth on 

amino acids 
Effect of 
Sulfur Reference Genome sequence† 

Palaeococcus 
ferrophilus 60–88 [83] 4.0–8.0 [6] Complex substrates n.d. R Takai et al. 2000 DOE-JGI 

Palaeococcus 
helgesonii 45-85 [80] 5-8 [6.5] Yeast or beef extract, tryptone, 

peptone n.d S Amend et al. 2003 - 

Pyrococcus furiosus 3870-103 
[100] 5–9 [7] 

Complex substrates, maltose, 
starch, pyruvate, and casamino 
acids 

Yes R Fiala and Stetter 1986 Utah Genome Center 

Pyrococcus abyssi 67-100 [96] 4–8.5 [6.8] 
Complex substrates, maltose, 
starch, pyruvate, and casamino 
acids 

Yes S Erauso et al. 1993 Genoscope 

Pyrococcus woesei 
DSM 3773 

70-105  

[100-103] 
n.d. Yeast extract, tryptone, glycogen, 

and gellan Yes S Zillig et al. 1987 - 

Pyrococcus endeawori 80-110 [98] 4–8 [7] Casamino acids Yes S Holden and Baross 1993 - 
Pyrococcus horikoshii 80-102 [98] 5–8 [7] Complex substrates Yes S González et al. 1998 NITE 
Pyrococcus 
glycovorans 75-104 [95] 2.5–9.5 [7.5] Complex substrates, and glucose Yes S Barbier et al. 1999 - 

Pyrococcus yayanosii 80-108 [98] 6.0-9.5 [7.5-
8.0] 

yeast extract, peptone, casein, 
sucrose, starch, chitin, pyruvate, 
acetate ,glycerol 

No S Birrien et al. 2011 Shanghai JiaoTong 
University 

Thermococcus celer Up to93 [88] n.d. [5.8] Peptides stimulated by sucrose Yes S Zillig et al. 1983 - 
Thermococcus 
kodakaraensis 65-100 [95] 5–9 [7] Complex substrates, and peptides Yes S Morikawa et al. 1994; 

Atomi et al. 2004 Kyoto University, Japan 

Thermococcus litoralis 65-95 [88] 6.2–8.5 [7.2] Peptides, pyruvate No S Neuner et al. 1990 New England Biolabs, 
Inc. 

Thermococcus stetteri 60-85 [75] 5.7–7.2 [6.5] Starch, pectin, and peptides No R Miroshnichenko et al. 
1989 - 

Thermococcus 
profundus 50-90 [80] 4.5–8.5 [7.5] Peptides, pyruvate, starch, 

maltose n.d. R Kobayashi et al. 1994 - 

Thermococcus 
peptonophilus 60-100 [85] 4–8 [6] Peptides n.d. S González et al. 1995 - 

Thermococcus 
aggregans 60-94 [88] 4.6–7.9 [7] Peptides, Casein, dextrose, and 

maltose n.d. S Canganella et al. 1998 - 
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Species 
Growth temp. 

[optimum] 
(°C) 

pH range 
[optimum] Carbon source Growth on 

amino acids 
Effect of 
Sulfur Reference Genome sequence† 

Thermococcus 
pacificus 70-95 [80-88] 6–8 [6.5] Complex substrates n.d. S Miroshnichenko et al. 

1998 - 

Thermococcus 
guaymasensis 56–90 [88] 5.6–8.5 [7.2] Peptides, Casein, dextrose, and 

maltose No S Canganella et al. 1998 - 

Thermococcus 
gorgonarius 68-95 [80-88] 3.4–9 [7] Proteins, peptides No R Miroshnichenko et al. 

1998 - 

Thermococcus 
hydrothermalis 53-100 [85] 2–10 [7] Casein, peptides, and maltose Yes S Godfroy et al. 1997 - 

Thermococcus zilligii [75] n.d. [7.4] Casein n.d. S Ronimus et al. 1997 
Korea Research Institute 
of Bioscience and 
Biotechnology 

Thermococcus 
acidaminovorans 456-93 [85] 5–9.5 [9] Peptides Yes S Dirmeier et al. 1998 - 

Thermococcus 
aegeicus 50-90 [88] 4–9 [6] Starch No S Arab et al. 2000 - 

Thermococcus 
barophilus 75-95 [85] 4.5–9.5 [7] Yeast extract, and peptone No S Marteinsson et al. 1999 Moore Foundation 

Thermococcus 
barossii 60-92 [82.5] 3–9 [6.5-7.5] Tryptone, yeast extract, and 

malto-oligosaccharides No R Duffaud et al. 1998 - 

Thermococcus 
chitininophagus 60-93 [85] 3.5–9 [6.7] Complex substrates, and chitin No S Huber et al. 1995 - 

Thermococcus siculi 50-93 [85] 5.0–9.0 [7] Peptides Yes S Grote et al. 1999 - 
Thermococcus 
alcaliphilus 54-91 [85] 6.5–10.5 [9] Peptides Yes S Keller et al. 1995 - 

Thermococcus 
waiotapuensis 60-90 [85] 5–8 [7] Complex substrates, starch, 

maltose, and pyruvate Yes R González et al. 1999 - 

Thermococcus 
fumiculans 73-103 [90] 4.5–9.5 [8.5] Complex substrates, and pyruvate Yes S Godfroy et al. 1996 - 

Thermococcus 
sibiricus 40-88 [78] 5.8–9 [7.5] Peptides n.d. S Miroshnichenko et al. 

2001 NCBI 

Thermococcus 
atlanticus 70-95 [85] 4–9 [7] Peptides No S Cambon-Bonavita et al. 

2003 - 

Thermococcus 
gammatolerans 55-95 [88] 5.5-6.5 [6] Yeast extract, tryptone, peptone No R Jolivet et al. 2003 IGM/ Universit Paris-

Sud, France 
Thermococcus 
marinus 55-95 [88] 4-8.5 [6] Yeast extract, peptone Yes R Jolivet et al. 2004 - 

Thermococcus 55-95 [88] 4-8.5 [6] Yeast extract, peptone No R Jolivet et al. 2004 - 
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Species 
Growth temp. 

[optimum] 
(°C) 

pH range 
[optimum] Carbon source Growth on 

amino acids 
Effect of 
Sulfur Reference Genome sequence† 

radiotolerans 
Thermococcus 
thioreducens 55-94 [83-85] 5-8.5 [7] Yeast extract, peptone, Bacto-

tryptone casamino acid No R Pikuta et al. 2007 - 

Thermococcus 
coalescens 57-90 [87] 5.2-8.7 [6.5] Yeast extract, tryptone n.d S Kuwabara et al. 2005 - 

Thermococcus 
celericrescens 50-85 [80] 5.6-8.3 [7] Yeast extract, tryptone n.d S Kuwabara et al. 2007 - 

Thermococcus 
onnurineus 63-90 [80] 5.0-9.0 [8.5] Starch,  casein Yes R Bae et al. 2008 NCBI 

n.d: Not determined; S: stimulatory for growth, R: required for growth; DOI-JGI, U.S. Department of Energy (DOE) Joint Genome Institute (JGI); NITE, National Institute of 
Technology and Evaluation; NCBI, National Centre for Biotechnology Information; IGM, Institut deGénétique et Microbiologie, Université Paris-Sud 
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The most commonly used ethanologenic organisms being intensively studied or already being used 

for industrial-scale production plants are Zymomonas mobilis, Saccharomyces cervisiae, Escherichia 

coli, and Klebsiella oxytoca. Substantial attention and effort have been dedicated to redirecting the 

metabolic pathways of these -and others- towards ethanol production, by means of metabolic 

engineering (Dien et al. 2003). 

However, the lack of industrially suitable microorganisms that can efficiently convert the raw 

biomaterials to bio-ethanol has been one of the main obstacles to widespread use of bio-fuels. In 

addition to the ability to ferment a wide variety of sugars, some other features must be considered 

when choosing an organism for industrial-scale bio-ethanol production. These important features 

include but are not limited to the ability to produce high ethanol yield, tolerance to fermentation 

products/by-products, simple growth requirements, and the ability to grow under conditions that 

prevent contaminating organisms from growing (Zaldivar et al. 2001; Dien et al. 2003). 

Production of bio-ethanol using thermophilic and hyperthermophilic organisms is the focus of 

many researchers. Extermophiles in general and hyperthermophiles in particular are stout organisms 

that produce highly stable enzymes due to their natural habitats, and many of them are able to tolerate 

changes in environment; making them good candidates for bio-ethanol production (Taylor et al. 

2009). 

1.2.1 Ethanol production by thermophiles 

Several distinct advantages are associated with using thermophiles over mesophiles, including high 

temperatures and the mostly anaerobic nature of thermophilic organisms, that result in elimination of 

oxygenation and cooling of the fermenter. Another aspect is improved solubility of many reaction 

components at elevated temperatures (Bustard et al. 2000). In addition, the high temperature of the 

process leads to lowering the viscosity of reaction mixtures, causing improved production yields. 

Various thermophiles can ferment hexose and/or pentose sugars, as well as more complex substrates 

such as cellulose and xylan in some cases. Many of these organisms and their enzymes are relatively 

resistant to sudden pH or temperature changes and high concentrations of solvents (Huber and Stetter 

1998; Schiraldi and De Rosa 2002). High temperatures can result in lower gas solubility and 

significantly decrease the risk of process failure and product loss due to contamination which is the 

common problem in the yeast-based fermentation system. At the same time, high temperatures lower 

the cost of ethanol recovery due to the high volatility of ethanol at high fermentation temperatures 

(Lamed and Zeikus 1980; Klapatch et al. 1994; Zaldivar et al. 2001; Sommer et al. 2004; Taylor et 
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al. 2009). However, there are some disadvantages associated with using the hyperthermophiles, the 

most important one being their intrinsic low substrate and product/by-product tolerance. Moreover, 

some of these organisms are mixed-fermenters which results in production of sometimes too many 

various products during growth (Zaldivar et al. 2001; Dien et al. 2003).  

 Application of metabolic engineering approaches has great impacts on elimination of the problems 

associated with using thermophiles, and led to development of strains with bio-ethanol yields that are 

almost equal to those of the yeast-based systems. Members of the genus Clostridium, especially 

thermophilic members such as Clostridium thermocellum, have been studied intensively due to their 

competence in production of substantial amounts of ethanol, butanol and hydrogen (Lamed and 

Zeikus 1980; Demain et al. 2005; Barnard et al. 2010). Members of the genus Thermoanaerobacter, 

including Thermoanaerobacter ethanolicus and Thermoanaerobacter tengcongensis, are extremely 

thermophilic bacteria that are well studied for their high ethanol production potential especially from 

pentoses (Shaw et al. 2008; Yao and Mikkelsen 2010a; Yao and Mikkelsen 2010b). The genus 

Geobacillus has been studied widely for bio-ethanol production potential (Thompson et al. 2008; 

Cripps et al. 2009; Taylor et al. 2009; Barnard et al. 2010). Production of ethanol, although at lower 

concentrations, has also been reported for the extremely thermophilic Caldicellulosiruptor species 

that includes Caldicellulosiruptor owensensis (Huang et al. 1998), Caldicellulosiruptor kristjanssonii 

(Bredholt et al. 1999), and Caldicellulosiruptor saccharolyticus (van Niel et al. 2003). 

1.2.2 Ethanol production by hyperthermophiles 

Compared to the thermophilic ethanol producers, very little is known about the ethanol production 

levels and pathways in the extremely thermophilic and hyperthermophilic microorganisms. It was 

shown that the peptide- and carbohydrate-fermenting hyperthermophilic archaeon Pyrococcus 

furiosus can produce H2, CO2, acetate, alanine, and small amounts of ethanol (Kengen et al. 1994). 

The strictly anaerobic archaeon Thermococcus sp. strain ES1 produced some ethanol and butanol 

when cultures were grown at low concentrations of elemental sulfur (Ma et al. 1995). The production 

of ethanol as an end product of fermentation was also shown in the hyperthermophilic anaerobic 

archaeon Thermococcus guaymasensis (Ying and Ma 2011) and more recently in the autotrophic 

hyperthermophile, Thermococcus onnurineus (Moon et al. 2012). Within the bacterial 

hyperthermophiles, traces of ethanol were reported in cultures of different Thermotogales including 

Thermotoga hypogea (Fardeau et al. 1997), Thermotoga lettingae (Balk et al. 2002), Thermotoga 
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neapolitana (de Vrije et al. 2009), Kosmotoga olearia (DiPippo et al. 2009), and Thermosipho 

affectus (Podosokorskaya et al. 2011).  

The key enzyme in both ethanol production pathways is alcohol dehydrogenase (Figure 1-2). 

Alcohol dehydrogenases are members of the oxidoreductase family and are present in all three 

domains of life (Reid and Fewson 1994; Littlechild et al. 2004). They belong to the 

dehydrogenase/reductase superfamily and can catalyze an expansive spectrum of reactions using a 

broad range of substrates, which are the reversible inter-conversion of alcohols to corresponding 

aldehydes or ketones. ADHs can be classified based on the cofactor requirements: I) the flavin 

adenine di-nucleotide (FAD)-dependent ADHs, II) the pyrollo-quinoline quinone (PQQ), heme or 

cofactor F420 dependent ADHs, and III) NAD (P) dependent ADHs (Reid and Fewson 1994; 

Radianingtyas and Wright 2003). They can also be divided into three major groups based on their 

molecular size and metal contents: the first group is known as zinc-dependent long chain alcohol 

dehydrogenase; which have sizes of 300-900 amino acids, the second group is the short chain alcohol 

dehydrogenase: which contain no metal ions and have approximate lengths of 250 amino acids; and 

the third group is the long-chain iron dependent ADHs; with a length of 385-900 residues (Reid and 

Fewson 1994; Korkhin et al. 1998; Littlechild et al. 2004) 

Many different ADHs have been characterized from various thermophilic and hyperthermophilic 

bacteria and archaea, with a majority of them being NAD(P)-dependent. Some of the more recently 

characterized hyper/thermophilic ADHs are those from P. furiosus (Ma and Adams 1999; van der 

Oost et al. 2001; Machielsen et al. 2006), Thermococcus hydrothermalis (Antoine et al. 1999), 

Thermococcus kodakaraensis (Bashir et al. 2009; Bowyer et al. 2009), Thermococcus sibiricus 

(Lyashenko et al. 2010; Stekhanova et al. 2010), Thermococcus guaymasensis (Ying and Ma 2011), 

Sulfolobus acidocaldarius (Pennacchio et al. 2010), Thermococcus strain ES1 (Ying et al. 2009), 

Aeropyrum pernix (Guy et al. 2003),and Thermotoga hypogea (Ying et al. 2007). 

Although there is a relatively long list of ADHs isolated and characterized from thermophilic and 

hyperthermophilic archaea and bacteria, with the physiological roles of several proposed to be in the 

reduction of aldehydes to alcohols, other enzymes involved in the ethanol production pathways are 

not well characterized, especially the enzyme that was implicated in acetaldehyde production. In other 

words, it is known that some of these organisms are able to produce ethanol as an end product, which 

inevitably means acetaldehyde must be produced in a metabolic pathway; however, the origin of this 

acetaldehyde needs to be further explored. 
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1.3 Acetaldehyde production pathways 

Pyruvate is an intermediate in the central metabolism of carbohydrates (Verhees et al. 2003; Siebers 

and Schönheit 2005); it can be converted to acetaldehyde that will be reduced to ethanol via one of 

the following two pathways:  

1) A two-step pathway that is used by yeast and a few bacteria like Zymomonas mobilis (Buchholz 

et al. 1987) and Sarcina ventriculi (Canale-Parola 1970). Pyruvate is non-oxidatively decarboxylated 

to acetaldehyde and carbon dioxide, which is catalyzed by pyruvate decarboxylase (PDC). 

Acetaldehyde is then converted to ethanol which is catalyzed by ADH (Figure 1-2). 

2) A three-step pathway that is more widespread in bacteria. Pyruvate is oxidatively decarboxylated 

to acetyl-coenzyme A (acetyl-CoA) by the metalloenzyme pyruvate ferredoxin oxidoreductase (POR) 

and/or pyruvate formate lyase (PFL). In the following steps, acetyl-CoA is converted to acetaldehyde 

by a CoA-dependent-acetylating acetaldehyde dehydrogenase (AcDH). Finally acetaldehyde is 

reduced to ethanol by ADH. In both pathways, ADH is the enzyme that converts acetaldehyde to 

ethanol (Figure 1-2).  

The key metabolite for the two known pathways is acetaldehyde. Thiamine pyrophosphate (TPP)-

dependent enzyme pyruvate decarboxylase is the only enzyme proficient at direct conversion of 

pyruvate to acetaldehyde. Interestingly, a majority (but not all) of the enzymes which are involved in 

the acetaldehyde production pathways are members of the superfamily of TPP-dependent enzymes, 

which includes PDC, POR, and PFL (Duggleby 2006; Costelloe et al. 2008). 

1.3.1 TPP-dependent enzymes 

TPP, also known as thiamine diphosphate (ThDP), is composed of an aromatic 

methylaminopyrimidine ring, linked to a methyl thiazolium ring via a methylene group with a 

pyrophosphate group attached to a hydroxylethyl side chain (Figure 1-3). TPP is derived from the 

water-soluble vitamin B1 and is the most common cofactor for enzymes that catalyze the cleavage 

and formation of carbon-carbon bonds next to a carbonyl group; hence it encompasses a wide range 

of metabolic pathways. Unlike many other cofactors (e.g. nicotinamide adenine dinucleotide, NADH) 

which are basically co-reactants, TPP remains at the enzymes catalytic centre and is directly involved 

in the catalysis of the reaction with different proteins, providing the specificity toward various 
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Figure 1-2. Two pathways of ethanol production from pyruvate 

 

POR; Pyruvate ferredoxin oxidoreductase; PFL; Pyruvate formate lyase, AcDH; Acetaldehyde dehydrogenase, ADH; 

Alcohol dehydrogenase, PDC; pyruvate decarboxylase. 
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Figure 1-3. Structure of thiamine pyrophosphate (TPP)   
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substrates (Kluger and Tittmann 2008).The reactions catalyzed by TPP-dependent enzymes can be 

divided into at least three groups (Schellenberger 1998): the oxidative reactions, non-oxidative 

reactions (Figure 1-4), and carboligation reactions. 

1.3.1.1 TPP-binding motif and cation requirement 

The structure of TPP was first described by Lohmann and Schuster in 1937, although Langenbeck 

(1930) suggested earlier that the primary amines may have a catalytic role in decarboxylation of the 

α-keto acids (Krampitz 1969; Iding et al. 1998). The suggested role of amine groups in the catalysis 

mechanism was ruled out later (Stern and Melnick 1939; Stern and Melnick 1940), and the actual 

catalytic site of TPP was found to be the C2 carbon of the thiazolium ring (see sections 1.3.2.1 and 

1.3.3.2).  

The family of TPP-dependent enzymes encompasses a wide variety of enzymes catalyzing many 

different reactions (Mizuhara and Handler 1954; Reed et al. 2011). Despite their differences, they all 

share some common structural and mechanistic similarities. All TPP-dependent enzymes contain a 

TPP-binding motif and all require divalent metal ions (mostly Mg2+ or Ca2+) as cofactor. There is a 

suggested conserved motif of approximately 30 residues in all TPP-dependent enzymes, which is 

based on the sequence alignment of many TPP-dependent enzymes (Hawkins et al. 1989). This motif 

starts with the highly conserved sequence GDG and ends at the highly conserved sequence NN 

(GDG(X)26NN or NCN), which may adopt a βαβ fold (Hawkins et al. 1989). Later, it was predicted 

that these residues serve as ligands to metal ions based on data acquired from crystal structures, which 

themselves functions as a platform for the binding (through a diphosphate side chain) of TPP (Figure 

1-3). Site-directed mutagenesis experiments confirmed essential roles of these residues for TPP-

dependent enzyme activity. The experiments also showed that binding of the metal ion take place 

before the binding of the TPP (Muller et al. 1993; Schellenberger 1998; Jordan 2003). 

1.3.1.2 The “V” coenzyme binding configuration 

Another common aspect of all TPP-dependent enzymes (at least to all enzymes with an X-ray 

structure available) is the binding configuration. The presence of the so-called “V” shaped 

configuration is a common feature of all TPP-dependent enzymes, and is shown by X-ray structural 

analysis. The “V” configuration can be observed as a disposition of the aromatic 4′ -aminopyrimidine 

and thiazolium rings, with respect to the bridging methylene group. This configuration is unlike that 



20 

 

 

Figure 1-4. Reactions and intermediates in different pyruvate-processing TPP-dependent enzymes 

 

TDP, Thiamine di-phosphate; HETDP, 2-(1-hydroxyethyl)-TDP, AcTDP, acetyl-dithiamine diphosphate 

intermediate; ALTDP, 2-[(1,2-dihydroxy-2-carboxy-1,2- dimethyl)-ethyl]-TDP POX, pyruvate oxidase; LTDP, 

2-(2-lactyl)-TDP; POR, Pyruvate ferredoxin oxidoreductase; PDC, Pyruvate decarboxylase; PDHc, pyruvate 

dehydrogenase complex, AHAS, Acetohydroxyacid synthase; FAD, flavin adenine dinucleotide. Reprinted with 

permission from Kluger and Tittmann 2008, American Chemical Society. 
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of free TPP (Figure 1-3), in which the two aromatic rings can rotate with respect to the connecting 

methylene group (which is known as F conformation). TPP is always located at the interface of the 

two subunits via the attachment by pyrophosphate groups and aminopyrimidine moieties in different 

anchored enzyme subunits. For this reason, dimers are the minimal functional unit for all TPP-

dependent enzymes (Muller et al. 1993; Jordan 2003). 

1.3.2 Pyruvate decarboxylase (PDC) 

The decarboxylation of pyruvate to acetaldehyde was first described for fermenting yeast (S. 

cerevisiae) by Neuberg and Karczag in 1911. In 1922, the same research group detected the potential 

of yeast in the formation of C-C bonds in 1921. Neuberg named the new enzyme “carboligase”, and 

assumed it to exist apart from “α-carboxylase” (PDC) in yeast (Iding et al. 1998). However, the 

preliminary characterization of cofactors of the enzyme was delayed until 1937, when Lohmann and 

Schuster analyzed the complete structure of the cofactor of the enzyme pyruvate decarboxylase as 

“cocarboxylase” or “aneurinpyrophosphate” or thiamin diphosphate (Schellenberger 1998). 

The enzyme catalyzes non-oxidative decarboxylation of α-keto acids to produce a corresponding 

aldehyde and carbon dioxide. The most extensively examined enzymes of this group are the ones 

from Saccharomyces cerevisiae and its bacterial counterpart Z. mobilis. In addition to 

decarboxylation of pyruvate, PDC also catalyzes the enantio-selective formation of 2-hydroxy ketons 

via carboligase side reactions.  

PDC, or its gene (pdc), is found to be widely distributed in fungi and higher plants but it is 

relatively rare in prokaryotes and unknown in animals. In fungi, PDC is found in Saccharomyces 

cerevisiae, Saccharomyces carlsbergensis (also known as S. pastorianus) and Saccharomyces 

uvarum, Neurospora crassa, members of the Kluyveromyces species, members of the Aspergillus 

species, Hanseniaspora uvarum, Schizosaccharomyces pombe, and in Candida (Torulopsis) glabrata. 

PDC is present in a variety of plants, including maize (Zea maize), parsnip, orange, pea (Pisum 

sativum), jack bean, sweet potato, wheat, cotton wood, soybean and rice (Oryza sativa). In 

prokaryotes, PDC is found and studied in Z. mobilis, Sarcina ventriculi, Clostridium botulinum, 

Acetobacter species, Zymobacter palmae, and in Erwinia amylovora (Bringer-Meyer et al. 1986; Raj 

et al. 2001; Talarico et al. 2001; Raj et al. 2002; Wang et al. 2004). So far there have been no reports 

on finding PDC/pdc homologs in thermophilic or hyperthermophilic bacteria or in any of the 

members of the third major evolutionary lineage of life, archaea as a whole (Raj et al. 2001; Talarico 

et al. 2001; Raj et al. 2002).  
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PDCs from different organisms show at least a 30% identity at the amino acid level and most of 

them are composed of subunits of 562-610 amino acid residues long. The holoenzyme is usually 

composed of four identical or non-identical subunits of approximately 60 kDa (ensuing in a total mass 

of about 240 kDa) in which every two subunits binds tightly (but not covalently) to a set of cofactors 

including TPP and Mg2+ ion. PDCs with four subunits are often arranged as a dimer of dimers, with 

multiple close contacts within the dimers and several contacts between the dimers. The contact area 

between two related dimers forms the “V” conformation that is a common property of all TPP-

dependent enzymes studied so far (see section 1.3.1.2), and it also has an essential role in cofactor 

binding for this group of enzymes (Dobritzsch et al. 1998; Jordan 2003).  

1.3.2.1 Catalytic mechanism of PDC  

The catalytic mechanism of PDC for the most part follows the principles of catalytic mechanisms of 

other TPP-dependent enzymes: in brief, carbonyl addition of pyruvate to the reactive C2 atom of the 

cofactor thiazolium ring (Figure 1-3) yields the intermediate 2-(2-lactyl)-TDP (LTDP). The 

subsequent release of carbon dioxide produces resonating carbanion/enamine forms of 2-(1-

hydroxyethyl)-TDP (HETDP, also known as hydroxyethylidene-TPP). The resonating form is 

considered to be a central and highly reactive intermediate state in TPP-dependent enzymes acting on 

pyruvate (Figure 1-4). However, unlike most other TPP-dependent enzymes in which the 

intermediate is oxidized, the carbanion/enamine in PDC is protonated at the C2α position, yielding 

C2α-hydroxylethylthiamine diphosphate (HETDP) before the final release of acetaldehyde completes 

the reaction (Kluger 1987; Candy and Duggleby 1998; Kluger and Tittmann 2008). 

Crystal structures of several pyruvate decarboxylases are solved particularly from yeasts and Z. 

mobilis (Arjunan et al. 1996; Dobritzsch et al. 1998; Siegert et al. 2005). The active sites of these 

enzymes are also studied comprehensively using site-directed mutagenesis (Pohl 1997; Candy and 

Duggleby 1998; Liu et al. 2001b). 

1.3.2.2 Carboligation reaction 

PDCs from various organisms have been studied for many years, mainly with respect to the 

mechanism of non-oxidative decarboxylation reactions. Neuberg and Hirsch first showed for the first 

time that when benzaldehyde is added to a growth medium, S. cerevisiae can produce 

phenylacetylcarbinol as an end product of fermentation (Iding et al. 1998). Many years later, in 1988, 

it was further shown that PDC was able to catalyze an enantio-selective carboligation reaction in 
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which two aldehyde molecules are subjected to a condensation reaction, resulting in chiral 2-hydroxy 

ketones, which are essential building blocks of organic and pharmaceutical chemistry and used as 

precursors for the synthesis of vitamin E and anti-fungal compounds (Bringer-Meyer et al. 1986; 

Crout et al. 1991; Iding et al. 1998). The carboligase activity of the yeast PDC has been used for 

decades in the production of R-phenylacetylcarbinol, which is also known as R-PAC (Iding et al. 

1998; Sprenger and Pohl 1999; Goetz et al. 2001; Pohl et al. 2002). R-PAC is an important precursor 

for production of some central pharmaceutical products with α and β adrenergic properties, such as L-

ephedrine, pseudoephedrine, and norephedrine (Pohl 1997; Iding et al. 1998). It is still unclear 

whether the carboligase activity has any physiological importance or is just a remnant property from 

an ancestral protein (Siegert et al. 2005).  

Two main steps are involved in the condensation reaction: the first step is the decarboxylation of 

pyruvate and the second step is ligation of the ThDP-bound acetaldehyde to benzaldehyde. Like other 

TPP-dependent catalytic mechanisms, the reaction starts with a nucleophilic attack on the carbanion 

of TPP to the keto group of α-keto acids. The resulting double-negative intermediate is then stabilized 

by elimination of carbon dioxide, producing the carbanion/enamine intermediate. During the 

carboligation reaction, the intermediate will be protonated by reacting with a second molecule of 

aldehyde, leading to production of 2-hydroxyl ketone (Pohl 1997; Pohl 1998; Siegert et al. 2005). 

Interestingly, unlike the PDC from yeast, decarboxylation of the pyruvate is not a prerequisite for 

carboligase activity from Z. mobilis; the enzyme is instead able to use acetaldehyde directly (Meyer et 

al. 2010). Numerous studies were conducted to improve the activity towards 2-hydroxy ketone 

production (carboligase activity) instead of acetaldehyde (PDC activity). In recent progress, a single 

mutation in the active site of Zymomonas PDC appears to cause a 100-fold increase toward 

carboligation activity over decarboxylation activity (Meyer et al. 2010).   

1.3.3 Pyruvate ferredoxin oxidoreductase (POR) 

The enzyme pyruvate ferredoxin oxidoreductase (also known as pyruvate synthase as the reaction is 

reversible) is one of the best studied members of the 2-oxoacid oxidoreductase family (Raeburn and 

Rabinowitz 1971; Uyeda and Rabinowitz 1971b; Uyeda and Rabinowitz 1971a; Rabinowitz 1975). 

The enzyme catalyzes coenzyme A and TPP-dependent oxidative decarboxylation of pyruvate to 

acetyl-CoA, releasing a molecule of CO2 and transferring the reducing equivalents to the electron 

acceptor ferredoxin or flavodoxin. Alternatively, in other pyruvate oxidizing enzymes, the reducing 

equivalents are transferred to NAD+ or NADH (in the case of pyruvate dehydrogenase using lipoate 
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as oxidizing agent for the production of acetyl-CoA), to molecular-oxygen-producing hydrogen 

peroxide (in the case of pyruvate oxidase), or to the carbonyl groups producing formate (in case of 

pyruvate formate lyase) (Ragsdale 2003; Ragsdale and Pierce 2008; Tittmann 2009). In acetaldehyde 

and ethanol producing organisms, acetyl CoA is usually converted to acetaldehyde via the CoA-

dependent (acetylating) acetaldehyde dehydrogenase.  

POR uses iron-sulfur cluster chemistry to catalyze the pyruvate decarboxylation and release of 

acetyl-CoA. POR is an ancient molecule, and it seems to have existed even before the divergence of 

the domains of the bacteria and archaea (Kletzin and Adams 1996). The enzyme is present in all three 

domains of life. All archaea catalyze the conversion of pyruvate to acetyl-CoA using POR, and all of 

the archaeal genomes sequenced so far contain hetero-tetrameric PORs, which have been proposed to 

be the closest to the POR common ancestor (Kletzin and Adams 1996; Zhang et al. 1996).  

POR is prevalent mainly in anaerobic bacteria and infrequently found in anaerobic protozoa, for 

example, in Giardia duodenalis (Townson et al. 1996) and Enthamoeba histolytica (Horner et al. 

1999; Pineda et al. 2010). The enzyme has been isolated and studied from many different anaerobic 

or microaerophilic microorganisms (see the full list in Table 1-3) including anaerobic bacteria like 

the genera Clostridium (Wahl and Orme-Johnson 1987), Moorella thermoacetica (Meinecke et al. 

1989) and anaerobic sulphate-reducing bacteria Desulfovibrio africanus (Pieulle et al. 1995; Pieulle et 

al. 1997; Pieulle et al. 1999a; Pieulle et al. 1999b). In hyperthermophiles, PORs are characterized 

from the hyperthermophilic bacterium Thermotoga maritima (Blamey and Adams 1994) and 

hyperthermophilic archaea Pyrococcus furiosus (Blamey and Adams 1993) and Archaeoglobus 

fulgidus (Kunow et al. 1995), as well as the methanogenic archaea Methanosarcina barkeri (Bock et 

al. 1994; Bock et al. 1996) and Methanobacterium thermoautotrophicum (Tersteegen et al. 1997). 

1.3.3.1 Structure and subunit organization 

The quaternary oligomeric structure of the POR is variable depending on the source microorganism 

(Table 1-3) and can be homo-dimeric (e.g. most bacterial PORs), hetero-dimeric (e.g. POR of 

Halobacterium salinarium), hetero-tetrameric (archaeal PORs), and heteropentameric (anabolic 

PORs), although all of the PORs studied so far, regardless of their source and structure, seem to be 

phylogenetically related and derived from a common archaeal-type heterotetrameric ancestor (Kletzin 

and Adams 1996; Zhang et al. 1996; Ikeda et al. 2010).  
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Table 1-3. PORs isolated and characterized from different microorganisms and their oligomeric structuresa 

Source organism POR structure Native Molecular 
weight (kDa) Reference 

Anabaena cylindrica (Nostoc Sp.) Homodimeric 240 Bothe et al. 1974; Neuer and Bothe 1982 
Anabaena variabilis Homodimeric NR Leach and Carr 1971 
Archaeoglobus fulgidus Heterotetrameric 120 Kunow et al. 1995 
Clostridium acetobutylicum 
(Moorella thermoacetica) Homodimeric 246 Meinecke et al. 1989 

Clostridium thermoaceticum Homodimeric 240 Drake et al. 1981 
Desulfovibrio africanus Homodimeric 256 Pieulle et al. 1995 
Desulfovibrio vulgaris Homo-octameric 1000 Garczarek et al. 2007 
Enthamoeba histolytica Homodimeric ND Horner et al. 1999; Pineda et al. 2010 
Giardia duodenalis Homodimeric 135 Townson et al. 1996 
Giardia intestinalis Homodimeric 138 Emelyanov and Goldberg 2011 
Halobacterium salinarium (halobium) Heterodimeric 256 Kerscher and Oesterhelt 1981b; Plaga et al. 1992 
Helicobacter pylori Heterotetrameric NR Hughes et al. 1995 
Hydrogenobacter thermophilus Heterotetrameric 265 Yoon et al. 1997; Ikeda et al. 2006; Ikeda et al. 2009 
Klebsiella pneumoniaeb Homodimeric 240 Shah et al. 1983; Wahl and Orme-Johnson 1987 
Methanobacterium thermoautotrophicum Heterotetrameric NR Tersteegen et al. 1997 
Methanococcus maripaludis Heteropentameric 210 Lin et al. 2003 
Methanosarcina barkeri Heterotetrameric 130 Bock et al. 1994; Bock et al. 1996 
Pyrococcus furiosus Heterotetrameric 250 Blamey and Adams 1993; Smith et al. 1994 
Rhodobacter capsulatus Homodimeric 270 Yakunin and Hallenbeck 1998 
Rhodobacter rubrum Homodimeric 252 Brostedt and Nordlund 1991 
Sulfolobus sp. strain 7 Heterodimeric 103 Iwasaki et al. 1995; Zhang et al. 1996 
Thermotoga maritima Heterotetrameric 113 Blamey and Adams 1994; Smith et al. 1994 
Trichomonas vaginalis Homodimeric 240 Williams et al. 1987; Meza-Cervantez et al. 2011 
 

a NR; not reported 
b Pyruvate flavodoxin oxidoreductase
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The crystal structures of several POR have been determined. PORs from Desulfovibrio africanus 

(with and without bound substrate) and Desulfovibrio vulgaris (Chabrière et al. 1999; Chabriere et al. 

2001; Garczarek et al. 2007) are among the most extensively studied PORs. POR is a metalloenzyme. 

All PORs studied contain between one and three [4Fe-4S] clusters arranged in a spatial order from the 

TPP located at the active center of the enzyme toward its surface, suggesting that they are part of an 

electron transfer pathway (Bock et al. 1997; Charon et al. 1999).  

POR can also catalyze the reaction to form pyruvate from acetyl-CoA and carbon dioxide, which is 

the basis of the carbon dioxide fixation in many autotrophic microorganisms (Shiba et al. 1985). This 

type represents the so called “anabolic” PORs that are studied from the thermophilic facultative 

aerobic bacterium Hydrogenobacter thermophilus (Ikeda et al. 2006; Ikeda et al. 2009; Ikeda et al. 

2010; Yamamoto et al. 2010), as well as the hydrogenotrophic methanoarchaeon Methanococcus 

maripaludis (Lin et al. 2003; Lin and Whitman 2004). In the case of the heteropentameric POR of M. 

maripaludis, four subunits are very closely related to the archaeal heterotetrameric (ancestral) PORs, 

the fifth subunit has no known homologue within PORs.  

1.3.3.2 Catalytic mechanism of PORs  

The general steps of the POR catalytic reactions follow the same principles as those of other TPP-

dependent enzymes. However, the enzyme is unique in one aspect: unlike most other TPP-dependent 

enzymes, POR takes advantage of free radical chemistry to catalyze the decarboxylation reaction 

(Figure 1-4).  

The formation of a stable radical intermediate during the course of the catalytic cycle of POR was 

first shown in early 1980s for the enzyme from the halophilic, facultative anaerobic archaeon 

Halobacterium salinarium (formerly known as Halobacterium halobium). The enzyme was chosen 

for study due to its relative stability toward oxygen compared to other PORs that are generally from 

anaerobic microorganisms and show high levels of sensitivity toward oxygen (Cammack et al. 1980; 

Kerscher and Oesterhelt 1981a; Kerscher and Oesterhelt 1982). Although there are some reports 

pertaining to the absence of the radical intermediate in some other PORs, for example, the one from 

Clostridium (Moorella) thermoacetica (Wahl and Orme-Johnson 1987; Smith et al. 1994), its absence 

can be simply attributed to its rapid decay and the transient nature of the radicals, which most 

possibly prevented its identification (Menon and Ragsdale 1997). The radical is generally stable, 

particularly when just pyruvate is present in the reaction mixture, indicating the effect of CoA 

addition and its role in fast decay of the radical intermediate (as further discussed in section 1.3.3.3). 
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The presence of the radical intermediate was also confirmed by the study of crystal structures of the 

POR isolated from the anaerobic, sulfate-reducing bacterium Desulfovibrio africanus in which the 

intermediate seems to be very stable. This stability can indeed be attributed to the enzyme’s relative 

oxygen insensitivity (Charon et al. 1999; Pieulle et al. 1999a; Chabriere et al. 2001). 

Although initial steps of the POR catalytic reaction, including the addition of a substrate to TPP 

and subsequent decarboxylation of HETDP, takes place in two-electron steps, the oxidation of 

HETDP to acetyl-CoA and regeneration of TPP takes place in two sequential one-electron steps via a 

chain of [4Fe-4S] clusters. The catalytic mechanism of the enzyme then can be viewed in three 

distinct steps (Figure 1-4 and Figure 1-5): I) a reaction between pyruvate, TPP and the enzyme 

leading to the production of HETDP intermediate, II) a redox reaction leading to the production of the 

HETDP radical intermediate, by transfer of one electron to the proximal iron-sulfur cluster (Figure 

1-6), and III) a reaction of the HETDP with coenzyme A, resulting in its decay and reduction of a 

second iron-sulfur cluster (Menon and Ragsdale 1997; Buckel and Golding 2006; Tittmann 2009).  

In the course of catalytic activity, after binding of the pyruvate to TPP and the enzyme causing 

subsequent decarboxylation, the HETDP will be oxidized by the transfer of one electron to the [4Fe-

4S] cluster that is proximal to the TPP (Figure 1-6, cluster A). This electron will then be transferred 

through the iron-sulfur cluster cascade all the way from the buried active site of the enzyme to the 

surface, where the electron will eventually be transferred to small iron-sulfur proteins ferredoxin or 

FMN containing molecules of flavodoxin. In the resulting complex of enzyme-acetyl-TDP radical, 

the acetyl group (coming from pyruvate) remains tightly bound to the abovementioned structure, until 

reaction with coenzyme A takes place. When coenzyme A is present, the intermediate will be 

oxidized once more by transferring the electron to an intra-molecular iron-sulfur cluster, leading to 

the release of acetyl-coA and zwitterionic TPP (Figure 1-5). The iron-sulfur cluster will be re-

oxidized again by cluster-to-cluster hopping of the electrons finally arriving at the electron acceptor 

molecules ferredoxin or flavodoxin (Figure 1-6) (Kerscher and Oesterhelt 1981a; Menon and 

Ragsdale 1997; Buckel and Golding 2006; Tittmann 2009). 

Although, using free radical chemistry for the catalysis provides POR a unique feature amongst 

TPP-dependent enzymes, it comes with a cost, due to the highly reactive nature of free radicals 

(resulting from the presence of a single electron in search of another electron to pair with). Radical 
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Figure 1-5. Catalytic mechanism of POR and intermediates involved in the reaction (Ragsdale 

2003) 
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Figure 1-6. Spatial organization of the [4Fe-4S] clusters in the POR of Desulfovibrio africanus 

(Furdui and Ragsdale 2002) 
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intermediates are always avid to react with small bi-radical molecules of dioxygen, which results in 

irreversible inactivation of the enzymes. Therefore, radical enzymes are rather uncommon in aerobic   

organisms, and oxygen sensitivity seems to be a typical property of almost all PORs (Buckel and 

Golding 2006). 

The oxygen sensitivity of PORs also stems from a structural reason. It has been suggested that 

when the cells are exposed to oxygen, the [4Fe-4S] cluster nearest to the enzyme surface (Figure 1-6) 

is oxidized and converted from a stable [4Fe-4S]2+ state to an unstable [4Fe-4S]3+ form. The reaction 

causes the release of an iron atom, converting the cluster to [3Fe-4S]1+, which is not functional and 

causes failure in the enzymes catalytic activities (Imlay 2006).  

Unlike most other PORs, the native homodimeric POR from the strictly anaerobic bacterium D. 

africanus is relatively oxygen-stable, and when isolated under aerobic conditions, it can remain stable 

for several days (Pieulle et al. 1995; Chabrière et al. 1999). Data from studies of the recombinant 

enzyme expressed in anaerobically grown E. coli report that the enzyme retained about 90% of its 

activity after six days of exposure to oxygen at 4⁰C. Deletion mutation studies also confirmed an 

important role of an about 60-residue extension at the C-terminal of the protein (Pieulle et al. 1997). 

This was further verified by determination of the crystal structures of the enzyme (Pieulle et al. 

1999a; Pieulle et al. 1999b), confirming the presence of an extra domain (domain VII) that is absent 

from other studied PORs. This domain protects the terminal (close to the enzyme surface) iron-sulfur 

cluster from oxidation, presumably by blocking the access of oxygen or by preventing the decay of 

the over oxidized iron-sulfur cluster. Deletion of this domain leads to restoration of oxygen sensitivity 

(Pieulle et al. 1997; Chabrière et al. 1999; Charon et al. 1999; Imlay 2006). It was shown that a single 

disulfide bound in the structure of the enzymes played a crucial role in the process of iron-sulfur 

cluster protection. The bond was important because it could switch the enzyme between two states: 

highly active/oxygen sensitivity and low active/oxygen resistance (Vita et al. 2008). Accordingly, a 

thioredoxin-dependent thiol/disulfide redox system was characterized and was shown to interact with 

POR in D. vulgaris (Pieulle et al. 2011). Another much less studied example of POR oxygen 

insensitivity can be illustrated by the enzyme from H. salinarium (Kerscher and Oesterhelt 1981a; 

Pieulle et al. 1997). Although there is no structural data available for this enzyme, it is hypothesized 

that the architecture of the protein has an essential role in stabilizing of the protein against molecular 

oxygen (Kerscher and Oesterhelt 1981a). 
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1.3.3.3 Role of coenzyme A in POR reaction 

Using electron paramagnetic resonance (EPR) spectroscopy, it has been shown that the presence of 

coenzyme A increases the rate of oxidation (decay) of the HETDP radical intermediate by 105times, 

which subsequently reduces the half-life of the radical intermediate tremendously (Furdui and 

Ragsdale 2002). Accordingly, in the absence of coenzyme A, the lifetime of the intermediate is about 

two minutes. Three major mechanisms are suggested to explain possible role of coenzyme A in 

acceleration of HETDP radical intermediate oxidation. 

 In the first mechanism, known as the “kinetic coupling mechanism”, the thiol group of coenzyme 

A performs a nucleophilic attack on the HETDP radical intermediate that leading to the generation of 

an anion radical with high reducing power. Compared to the HETDP radical intermediate, this new 

radical has a much higher driving force for electron transfer to the adjacent iron-sulfur cluster. The 

thiol group of coenzyme A then has a critical role in catalysis of the electron transfer, hence 

replacement of coenzyme A with desulfocoenzyme A will decrease the rate of the reaction by about 

106-fold compared with the time of coenzyme A presence (Menon and Ragsdale 1997; Furdui and 

Ragsdale 2002). 

 In the second mechanism, known as the bi-radical mechanism, electron transfer from the thiol 

group of coenzyme A to one of the intramolecular iron-sulfur clusters will generate a thiyl radical. 

Interactions between the HETDP radical intermediate and the thiyl radical leads to the release of 

acetyl-CoA and zwitterionic TPP that will eventually be protonated to TPP (Menon and Ragsdale 

1997; Buckel and Golding 2006).  

In the third mechanism, known as the “wire mechanism”, coenzyme A functions like a wire 

between the HETDP radical intermediate and the intramolecular [Fe-S] cluster, improving the 

efficiency of electron transfer. However, this mechanism cannot be considered as the same rate 

enhancing mechanism for coenzyme A because, if it is, replacement with desulfocoenzyme A should 

not slow down the reaction to such a large extent (Menon and Ragsdale 1997). It is also possible that 

more than one mechanism is involved in the electron transfer rate enhancement, and there might even 

be a combination of the above-mentioned mechanisms involved in the process. 
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1.3.4 POR/PDC bifunctional enzyme 

In 1997, it was reported that the POR was also capable of converting pyruvate to acetaldehyde in the 

hyperthermophilic anaerobic archaeon Pyrococcus furiosus (Ma et al. 1997). Unlike the commonly-

known PDC; which employ chemical rather than radical intermediates and therefore are oxygen 

insensitive, the reported PDC activity was highly oxygen sensitive. Both the POR and PDC activities 

of the hyperthermophilic enzyme were TPP- and coenzyme A- dependent. By using the coenzyme A 

analogue (desulfocoenzyme A) showed that coenzyme A has only a structural, not a catalytic role in 

the catalyzed PDC reaction. Consequently, a “switch” mechanism was proposed for the enzyme’s bi-

functionality, suggesting the conversion of active aldehyde to either acetyl-CoA or acetaldehyde, 

depending on the binding of CoA. According to the proposed model, binding of coenzyme A causes 

conformational changes in the intermediate structure, causing its protonation and generation of 

hydroxyethyl-TPP (HETDP). This reaction leads to the release of acetaldehyde, allowing for the 

regeneration of TPP and possible release of CoA (Ma et al. 1997). To date there has been no further 

study on the bifunctionality of the POR enzyme or its physiological relevance for any other 

organisms. It is not clear whether this bifunctionality is a trait of only Pyrococcales POR or a 

common property of hyperthermophilic PORs. 

1.3.5 Acetaldehyde dehydrogenase (CoA acetylating) 

Acetaldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) is a member of a very divergent 

superfamily of enzymes known as the “aldehyde dehydrogenases”. The prototype enzyme (adhE) was 

first discovered in Escherichia coli and is required for its anaerobic growth (Rudolph et al. 1968). It 

was then discovered in the strictly anaerobic bacterium Clostridium kluyveri (Lurz et al. 1979). The 

enzyme is responsible for the conversion of acetyl-coenzyme A (acetyl-CoA) to acetaldehyde that is 

then converted into ethanol. Two forms of the enzyme are available: one is the monofunctional 

enzyme with only AcDH activity (mhpF) and the other is the bifunctional enzyme with both AcDH 

and ADH activities (adhE). The latter group is composed of an ADH active C-terminal and an AcDH 

active N-terminal, a structure believed to be the result of gene fusion between the genes encoding for 

each single enzyme (Nair et al. 1994; Toth et al. 1999). 

Reports are available on isolation and characterization of the bifunctional NADP-dependent 

alcohol/acetaldehyde dehydrogenase (CoA-acetylating) from mesophilic microorganisms including 

Giardia lamblia (Sánchez 1998) and Enthamoeba histolytica (Bruchhaus and Tannich 1994; Pineda 
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et al. 2010). They are also present in some thermophiles, including Thermoanaerobacter ethanolicus 

(Burdette and Zeikus 1994), Thermoanaerobacter mathranii (Yao and Mikkelsen 2010b) and 

members of the genus Geobacillus (Taylor et al. 2009). However, no mono- or bi-functional AcDH 

activity was characterized from hyperthermophiles. Survey of the fully sequenced genomes of 

hyperthermophilic archaea and bacteria has shown no adhE or mhpF homologue either (present 

study). 

1.3.6 Acetohydroxy acid synthase (AHAS) 

The enzyme acetohydroxyacid synthase (AHAS, sometime referred to as acetolactate synthase, EC 

2.2.1.6) is another TPP-dependent enzyme that acts on pyruvate. The enzyme catalyzes the 

condensation of two molecules of pyruvate or a molecule of pyruvate and a molecule of 2-

ketobutyrate, leading to production of 2-acetolactate or 2-aceto-2-hydroxybutyrate, respectively. The 

enzyme is present in all of the plants, fungi, bacteria, and archaea that are capable of de novo 

biosynthesis of the branched chain amino acids (BCAAs), and they are absent from animals. The 

enzyme is always composed of two subunits: a larger (60-70 kDa) catalytic subunit and smaller (9.5-

54 kDa) regulatory subunits. Although, in contrast to the regulatory subunit, the catalytic subunit is 

active by itself, the full activity of the enzyme requires the combination of the two subunits 

(Duggleby and Pang 2000; Chipman et al. 2005). 

There has been no study of the AHAS activity of any hyperthermophilic organisms and in the case 

of the mesophilic enzymes; they have never been shown to be connected to acetaldehyde production. 

However, the primary structures of AHASs show the highest similarity to the commonly-known 

(typical) PDCs in hyperthermophiles (Chapter 4). These high levels of relatedness along with some 

structural similarity to commonly-known PDCs raise the question of whether AHASs can be involved 

in the biosynthesis of acetaldehyde.  

1.3.7 Objectives of the present study 

The objectives were to determine the presence and the characterization of acetaldehyde-producing 

enzymes in hyperthermophiles. Three types of activities were chosen for investigations pyruvate 

decarboxylase (PDC), CoA-dependent acetylating acetaldehyde dehydrogenase (AcDH), and other 

possible acetaldehyde-producing enzymes, such as acetolactate synthase (ALS, which shows the 

highest sequence homology to commonly-known PDC in hyper/thermophiles). 
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The presence of these activities was investigated in different extremely thermophilic and 

hyperthermophilic organisms, including the strictly anaerobic hyperthermophilic archaeon 

Thermococcus guaymasensis, and in bacteria Thermotoga maritima and Thermotoga hypogea. The 

specific goals were the following: 

1)   To determine the presence of the pdc coding sequences or its homologs in an increasing 

inventory of genomics and proteomics data available from various thermophilic and 

hyperthermophilic bacteria and archaea. The released genome sequences were studied in an 

attempt to characterize the commonly-known (classical) pdc gene homologs or the candidate 

genes encoding possible pyruvate decarboxylase. The primary focus was the genomes of 

heterotrophic hyperthermophilic bacteria and archaea capable of producing ethanol, especially 

members of the orders Thermotogales and Thermococcales. 

2) To determine the activities of pyruvate decarboxylase, acetaldehyde dehydrogenase (CoA-

acetylating), pyruvate ferredoxin oxidoreductase and acetohydroxyacid synthase in cell-free 

extracts of the hyperthermophilic microorganisms under study. 

3) To clone and heterologously express the recombinant acetohydroxyacid synthase (AHAS), 

selected from the hyperthermophilic bacterium T. maritima and archaeon P. furiosus, in the 

mesophilic host (E. coli), for further characterization.  

4) To purify the native or recombinant enzymes with non-oxidative pyruvate decarboxylase 

(acetaldehyde-producing) activities using fast performance liquid chromatography (FPLC) 

approaches under strictly anaerobic conditions.  

5) To determine the biochemical and biophysical characteristics of the purified enzymes, 

including optimal pH, temperature and ionic strength, thermal stability, oxygen sensitivity, and 

substrate specificity. The kinetic parameters (Km, Vmax, and kcat) of the enzymes were also 

determined by altering the concentration of cofactors and substrates.  

6) Using their gene sequences to analyze molecular and genetic properties of the enzymes, 

including their similarity, phylogeny, regulatory sequences (such as promoter and ribosome 

binding sequences), and conserved motifs. 
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Chapter 2 Characterization of a bifunctional 
POR/PDC from the hyperthermophilic archaeon 

Thermococcus guaymasensis 
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2.1 Overview 

Thermococcus guaymasensis is a strictly anaerobic hyperthermophilic archaeon with an optimal 

growth temperature of 88°C. Ethanol is produced in these organisms as an end-product of 

metabolism, and an ADH that is likely involved in ethanol production has previously been purified 

and characterized. However, the enzyme that would catalyze the formation of acetaldehyde, the 

substrate for the ethanol production, is not known. Therefore, identification and characterization of a 

Thermococcus guaymasensis (T. guaymasensis) enzyme with both pyruvate ferredoxin 

oxidoreductase (POR) and pyruvate decarboxylase (PDC) activities was carried out. 

The bifunctional enzyme was purified from T. guaymasensis grown on glucose and peptides using 

fast performance liquid chromatography (FPLC) system under strictly anaerobic conditions. Both 

POR and PDC enzyme activities were co-eluted during different steps of chromatography and the 

specific activities were increased to the same extent after each chromatography step. The purified 

enzyme was a hetero-tetrameric protein consisting of 46, 35, 26 and 12 kDa subunits (as estimated by 

SDS-PAGE). The native enzyme had an apparent molecular weight of 258,043±5650 Da, which was 

suggestive of a dimeric structure of the four subunits. The purified enzyme had specific activities of 

20.2±1.8 and 3.8±0.22 Umg-1 for POR and PDC activities, respectively. The optimal pH for POR and 

PDC activities was 8.4 and 9.5, respectively. The optimal temperature for POR activity was above 

95°C and the optimum for the PDC activity was 85°C. The activities were sensitive to air exposure 

and lost half of the POR and PDC activities within 40 and 30 min, respectively. Coenzyme A was 

essential for both PDC and POR activities. Enzyme kinetic parameters were determined for both 

activities. For POR, the apparent Km values for pyruvate and CoA were 0.53 mM and 69 µM, 

respectively. For PDC activity, the apparent Km values for pyruvate and CoA were determined to be 

0.25 mM and 13 µM, respectively. 

The sequences of the genes encoding the subunits of the bifunctional POR/PDC were determined 

using primer-walking and inverse PCR (IPCR) strategies. It was found that the genes encoding the 

subunits of POR and closely related enzyme 2-ketoisovalerate ferredoxin oxidoreductase (VOR) were 

organized in a single operon as por/vorG-vorD-vorA-vorB-porD-porA-porB in which the vor/porG 

gene product was shared between the two enzymes, a common feature conserved among members of 

Thermococcales. The released genome sequences of different hyperthermophiles were searched for 

the presence of the gene encoding the CoA-acetylating acetaldehyde dehydrogenase (AcDH); 

however, there were no gene homologs present in any of the bacterial or archaeal hyperthermophiles 
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examined. The AcDH assay on the cell-free extracts of different hyperthermophiles was also 

indicative of the absence of such activity in hyperthermophiles. It was concluded that a bifunctional 

POR and PDC enzyme was present in the hyperthermophilic archaeon T. guaymasensis. 

2.2 Introduction 

Hyperthermophiles are microorganisms with optimal growth temperatures ≥80°C (Stetter  et al. 1990; 

Stetter 1996; Wagner and Wiegel 2008). Thermococcales are represented by three genera of 

Pyrococcus, Thermococcus and paleococcus, which are typically anaerobic chemoorganotrophic 

microorganisms capable of growing on complex proteinaceous substrates (e.g., yeast extract and 

tryptone) or carbohydrates (e.g. maltose, starch, and cellobiose) using a modified version of the 

Embden-Meyerhof pathway (Schönheit and Schafer 1995; Siebers and Schönheit 2005). The growth 

rates of most Thermococcales are stimulated by addition of the elemental sulfur (S0) to the growth 

medium.  

Thermococcus guaymasensis has an optimal growth temperature of 88°C and uses starch, glucose, 

casein, chitin, dextrose and maltose as growth substrates to produce acetate, CO2, and also propionate, 

isobutyrate, isovalerate and H2S when grown on trypticase, yeast extract and elemental sulfur 

(Canganella et al. 1998) 

In most anaerobic hyperthermophilic archaea, the oxidative decarboxylation of pyruvate catalyzed 

by pyruvate ferredoxin oxidoreductase (POR), leads to production of acetyl-coenzyme A which is 

then converted to acetate as an end-product via the enzyme acetyl-coenzyme A synthase (Ma et al. 

1997; Fukui et al. 2005; Zivanovic et al. 2009). Several hyperthermophiles are able to produce 

ethanol (Kengen et al. 1994; Ma et al. 1995; Balk et al. 2002; de Vrije et al. 2009; DiPippo et al. 

2009; Podosokorskaya et al. 2011), but the enzymes and pathways involved in the process are not 

well studied.  

Among Thermococcales it is shown that the sulfur-reducing hyperthermophilic archaea T. 

guaymasensis (Ying and Ma 2011) and T. onnurineus (Moon et al. 2012) are able to produce ethanol 

as an end-product of metabolism. T. guaymasensis can produce millimolar levels of ethanol and an 

NADP-dependent zinc-containing alcohol dehydrogenase (ADH) with broad substrate range is 

purified and characterized from this organism (Ying and Ma 2011). Similar to several other ADHs 

characterized from hyperthermophiles, this novel zinc-containing ADH shows lower apparent Km 
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values for aldehydes. These findings help in understanding of the metabolic pathway for alcohol 

production in hyperthermophiles (Machielsen et al. 2006; Ying et al. 2007; Ying and Ma 2011). 

There are two pathways for ethanol production from pyruvate and in both pathways acetaldehyde is 

a key intermediate. In the two-step pathway, pyruvate is converted to acetaldehyde by the enzyme 

pyruvate decarboxylase (PDC, EC 4.1.1.1) and in the three-step pathway pyruvate is transformed into 

acetyl-CoA that is then reduced to acetaldehyde. Alcohol dehydrogenase (ADH) is the enzyme 

responsible for the ethanol production from acetaldehyde. However, the origin of the acetaldehyde in 

hyperthermophiles is not well understood. Pyruvate decarboxylase (encoded by pdc gene) catalyzes 

the non-oxidative decarboxylation of pyruvate to acetaldehyde. Within Bacteria the enzyme is shown 

to be present in Sarcina ventriculi and Zymomonas mobilis. CoA-acetylating enzyme, acetaldehyde 

dehydrogenase (AcDH, EC 1.2.1.10), is present in few prokaryotes (e.g. Clostridium sp.) and some 

mesophilic protozoa such as Giardia lamblia and Enthamoeba histolytica, catalyzes the conversion of 

acetyl-CoA to acetaldehyde. 

Since the genome sequence of T. guaymasensis is not available yet, it is not possible to determine if 

the pdc gene is present in this organism. A survey of databases containing hyperthermophilic 

genomes released to date, indicated that none of the hyperthermophilic genome sequences released –

including any of the 17 fully sequenced genomes of Thermococcales (as of Aug 2012) - bears a gene 

homologue to any of the well known acetaldehyde-producing enzymes PDC or AcDH (CoA-

acetylating).   

A bifunctional pyruvate ferredoxin oxidoreductase (POR, EC 1.2.7.1)/pyruvate decarboxylase 

(PDC) was discovered to be present in the hyperthermophilic archaeon Pyrococcus furiosus (P. 

furiosus) (Ma et al. 1997). The bifunctional enzyme is active in both oxidative and non-oxidative 

decarboxylation of pyruvate to produce acetyl-CoA and acetaldehyde, respectively. POR seems to be 

the right candidate to elucidate the unexplained origin of the acetaldehyde in P. furiosus.  

POR is a ferredoxin-dependent iron-sulfur protein catalyzing the reversible oxidative 

decarboxylation of pyruvate to acetyl-coenzyme A and CO2 with the sequential transfer of the 

reducing equivalents to ferredoxin molecules, which can be used toward the reduction of the sulfate, 

N2, or protons (Menon and Ragsdale 1996; Menon and Ragsdale 1997; Furdui and Ragsdale 2002; 

Ragsdale 2003). POR is ubiquitous in archaea and has a strong prevalence in bacteria and is present 
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in some amitochondriate protists. In aerobic organisms the same reaction is catalyzed via the large 

enzyme complex pyruvate dehydrogenase (PDH, EC 1.2.4.1). Unlike POR, the reaction catalyzed by 

PDH is irreversible, NAD+˗dependent and uses the lipoate and flavin as prosthetic groups (Kerscher 

and Oesterhelt 1982; Ragsdale 2003; Reed et al. 2011).  

Although POR is the only 2-keto acid oxidoreductase characterized in mesophilic and 

hyperthermophilic bacteria as well as anaerobic protozoa, different types of coenzyme A-dependent 

oxidoreductases, with broad range and sometimes overlapping substrate specificities are isolated and 

characterized from various hyperthermophilic archaea. The main alternative 2-keto acid 

oxidoreductases in hyperthermophilic archaea include 2-ketoisovalerate ferredoxin oxidoreductase 

(VOR) that oxidizes mainly branched-chain 2-keto acids derived from branched chain amino acids 

(BCAAs) valine, leucine, and isoleucine (Adams and Kletzin 1996; Heider et al. 1996; Ozawa et al. 

2005), indolepyruvate ferredoxin oxidoreductase (IOR) that preferentially oxidizes 2-keto acids 

generated from the aromatic amino acids (Mai and Adams 1994), and 2-ketoglutarate ferredoxin 

oxidoreductase (KGOR) that specifically uses 2-ketoglutarate as the substrate (Mai and Adams 

1996a). It is suggested that an “alternative keto acid oxidoreductase” activity is present in the 

flagellated protozoan Trichomonas vaginalis (Brown et al. 1999) and some other anaerobic protists 

(Upcroft and Upcroft 1999). However, it is shown recently that the detected activity was an artifactual 

non-enzymatic reaction resulted from the reduction of the indicator dye and not an enzyme-catalyzed 

reaction (Zedníková et al. 2012).  

In hyperthermophiles, PORs are purified and characterized from the hyperthermophilic archaea P. 

furiosus (Blamey and Adams 1993) and Archaeoglobus fulgidus (Kunow et al. 1995). Within 

hyperthermophilic bacteria, Thermotoga maritima (T. maritima) is the only bacterium with its POR 

purified and characterized (Blamey and Adams 1994). It is unclear if the bifunctional POR/PDC is 

only a property of the Pyrococcus metabolic system, or it is a general trait of all Thermococcales. In 

this study, the bifunctional POR/PDC enzyme was purified from another member of the order 

Thermococcales, the hyperthermophilic archaeon T. guaymasensis, and characterized at molecular 

and biochemical levels.  
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2.3 Materials and Methods 

2.3.1 Reagents and chemicals  

Sodium pyruvate, isobutyraldehyde, thiamine pyrophosphate (TPP), dichloromethane, coenzyme A 

(CoASH), HEPES, CAPS, EPPS, lysozyme and methyl viologen (MV) were purchased from Sigma-

Aldrich Canada Ltd. (ON, Canada). Desulfocoenzyme A was synthesized Dr. E. J. Lyon, Chemistry 

Department at Bellarmine University, USA. DNaseI for the cell lysis buffer preparation was 

purchased from Roche (Roche Applied Science, QC, Canada). The chemicals used in the growth 

media were all commercially available. Yeast extract was acquired from EMD (EMD Chemicals, Inc. 

NJ, USA) and trypticase soy broth (TSB) was purchased from Becton-Dickinson (BD Bioscience, 

Mississauga, ON, Canada). All of the FPLC columns and chromatographic media were purchased 

from GE Healthcare (QC, Canada).  

2.3.2 Microorganisms and growth conditions 

Thermococcus guaymasensis DSM11113 and Pyrococcus furiosus (DSM 3638) were obtained from 

DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany). The 

medium was supplemented with trace minerals (Table 2-1) and vitamin solutions (Table 2-2) 

prepared as previously described by Balch and coworkers (1979).  

T. guaymasensis was cultivated anaerobically at pH 7.0 and 88°C. The growth medium was based 

on tryptone, yeast extract, glucose and a mixture of trace minerals in the absence of elemental sulfur 

(Canganella et al. 1998; Ying and Ma 2011). The medium contained (per liter) KCl, 0.33 g; 

MgCl2.6H2O, 2.06 g; MgSO4.7H2O, 3.4 g; NH4Cl, 0.25 g; CaCl2.2H2O, 0.14; K2HPO4, 0.14 g; 

Na2SeO3, 0.01 mg; NiCl2.6H2O, 0.01 mg; NaHCO3, 1.0 g; NaCl, 18.0 g; resazurin, 1.0 mg; cysteine-

HCl, 0.5 g; Na2S.9H2O, 0.5 g; yeast extract, 5.0 g; trypticase soy broth, 5.0 g; glucose, 5.0 g; HEPES, 

5.2 g; vitamin solution, 10 ml (Table 2-1) and trace minerals (Table 2-2) 10 ml. For the large scale 

(15 L) growth, HEPES and vitamin solution were omitted from the media composition. The pH of the 

medium was adjusted to 7.0 before autoclave. The growth substrate (glucose) was sterilized by 

filtration using a syringe filter and added to the medium before inoculation with the starter culture. 
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Table 2-1. Composition of trace mineral solution used for the growth of T. guaymasensis  

Chemical g/L 

Nitrilotrioacetic acid 1.5 

MgSO4 1.46 

MnSO4.H2O 0.45 

NaCl 1.0 

FeSO4 0.055 

CoCl2.6H2O 0.2 

CaCl2.2H2O 0.1 

ZnSO4.7H2O 0.18 

CuSO4.5H2O 0.01 

AlK(SO4)2.12H2O 0.018 

H3BO3 0.01 

Na2MoO4.2H2O 0.01 

H2O to 1L 
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Table 2-2. Composition of 100X vitamin solution used for small-scale growth of T. guaymasensis 

Vitamin g/100 ml 

Pyridoxine hydrochloride 0.02 

Thiamine hydrochloride 0.01 

Riboflavin 0.01 

Nicotinic acid 0.01 

DL-calcium pantothenate 0.01 

Lipoic acid 0.01 

Biotin 0.004 

Folic acid 0.004 

Cyanocobalamin 0.0002 

Water to 100ml 
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P. furiosus was grown on maltose, yeast extract, and tryptone at 95°C using the procedure 

described previously (Fiala and Stetter 1986). The medium for the growth of P. furiosus contained 

(per liter) KCl, 0.33 g; MgCl2.6H2O, 2.75 g; NH4Cl, 1.2 g; NaCl, 13.8 g; KH2PO4, 0.5 g; CaCl2.2H2O, 

0.75 g; NaBr, 0.05 g; KI, 0.05 g; H3BO3, 0.015 g; SrCl, 7.5 mg; citric acid, 5.0 mg; maltose, 5.0 g; 

yeast extract, 5.0 g; Na2S.9H2O, 0.5 g and resazurin 1 mg. The pH of the medium was adjusted to 6.8. 

For media preparation the chemicals were added sequentially each after complete dissolving the 

previous one. After media preparation, 50 ml aliquots were dispensed in 160 ml serum bottles, 

covered with aluminum foil for autoclave sterilization. After autoclave, the media were capped with 

stoppers and aluminum seals under aseptic conditions and were degassed using anaerobic manifold by 

following the procedure described elsewhere (see section 2.3.4). Before inoculation the media were 

reduced using Na2S (0.024%) and cysteine hydrochloride (0.0042%). The media were inoculated with 

late log-phase starter cultures and vitamin solutions. The growth in each culture bottle was monitored 

by sampling and direct microscopic cell count using a Petroff-Hausser cell counting chamber (1/400 

mm2, 0.02 mm deep; Hausser Scientific, Horsham, PA) and a Nikon Eclipse E600 phase-contrast 

light microscope (Nikon Canada, ON, Canada). 

Large scale cultures were grown in 20 L glass carboys (15 L media per carboy) and under 

anaerobic conditions. After the cultures grown to late log-phase, the media were cooled down in a 

bucket of ice slurry and centrifuged at 13,000 ×g using Sharples continuous centrifugation system 

(Sharples equipment division, PA, USA) at 150-200 mlmin-1. The cell paste obtained was snap-frozen 

in liquid nitrogen and then stored at -76°C until use. 

2.3.3 Sequencing of por/vor operon 

Since the genome sequence of T. guaymasensis is not available, the genes encoding both POR and 

VOR were sequenced using a primer walking strategy. To acchive this amino acid sequences of the 

subunits containing the conserved motifs including TPP-binding motif, CoA-binding motif, and [4Fe-

4S] cluster-binding motif were aligned and the corresponding nucleotide sequences were chosen to 

design degenerative primers used for primer walking (Table 2-3). The PCR products with sizes close 

to the expected PCR product (estimated based on the closely related species) were sequenced in both 

(forward and reverse) directions. The identity of newly sequenced stretches of DNA was confirmed 

by searching the database for homologous sequences and then used to design next set of primers for 

amplification of the new fragments of genomid DNA. Genomes in the NCBI microbial genome 

database (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html) were used to
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Table 2-3. The primers used for the sequencing of the por/vor operon of T. guaymasensis 

 

a Primers were designed based on the sequences of the fully-sequenced closely related organisms of the genus 
Thermococcales 
b Melting temperature of the primers as determined using GeneRunner (Hasting software Inc., 1994)  
c expected size of the PCR products based on the sequence of the corresponding fragment in closely 
related organisms 
 

 

 

 

 

 

 

 

Name Sequencea Length Tm (°C)b 
Size 

(bp)c 

GPORGF 5´- TCACACTTACCCAAAGACGCCTG -3´ 23 71.1 
727 

GPORGR 5´- CTCCCCAAACAGCGTGTTCAAAC -3´ 23 72.7 

GPORDF 5´- AGGTCTTCGGCTGAGCTTTCG-3´ 21 70.4 
611 

GPORDR 5´- CACCAACACAGGCGGAGATAGC -3´ 22 71.2 

GPORA1F 5´- GACTACTGTAAGGGCTGTGGCATC -3´ 24 69.3 
798 

GPORA1R 5´- CGATGACCTTCTTTGCATTCTCG -3´ 23 70.9 

GPORB1F 5´- ACGGTGAGGAGTTTGATGAGGTC -3´ 23 68.9 
719 

GPORB1R 5´- ACCTGGACGAAAGCCGGACC -3´ 20 72.5 

GPORB2F 5´- TGCCCACCAGGTTCCGTACG -3´ 20 72.7 
661 

GPORB2R 5´- CCTCGTCTCCGGGTTTCTTCTC -3´ 22 71.1 

GVORB2F 5´- AACCGCTGACATTGGCCTTC -3´ 20 69.0 
696 

GVORB2R 5´- CTCTCTATGTCGGCCTTAAACGG-3´ 23 69.9 

GVORA1F 5´-GCWGTKGCAAAGGCCACAGG-3´ 20 67 
798 

GVORA1R 5´- GTGGAGCATCTCGTGCATGAG-3´ 21 67.5 

GVORB1F 5´- GGTGCGCTGGTTCAGGCC -3´ 18 70.5 
705 

GVORB1R 5´- GTAGAGAGCATCGTGGCCCCT -3´ 21 69.8 
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retrieve the amino acid and nucleotide sequences of PORs from various hyper/thermophiles. The 

deduced amino acid sequences were compared to protein sequences retrieved from NCBI, Swiss Prot 

and EMBL. The search in these databases were carried out using the programs FASTA, BLAST, and 

PROSITE. The ClustalW version 2.0 (Thompson et al. 1994) was used for DNA and/or protein 

sequence alignments and comparisons. 

 After sequencing of each fragment, overlapping primers were designed within the sequenced 

fragment to get the neighboring DNA sequence. In some cases, when using the primer walking 

strategy failed to produce a positive PCR product, inverse PCR (IPCR) was used to get the sequences 

of the neighboring known parts. 

2.3.4 Anaerobic techniques 

All of the buffers and reagents were degassed in vials and flasks sealed with red rubber sleeved 

stoppers. The stoppers were punctured with needles to allow the alternate exposure between vacuum 

and nitrogen (N2) using a manifold. The nitrogen gas (Praxair, ON, Canada) was deoxygenated by 

passing through a heated column containing a BASF catalyst (BASF, NJ, USA). Assay and 

purification buffers were degassed in magnetically-stirred flasks for 30 min, followed by three cycles 

of vacuum/flushing (each 3 min). Then a second needle was inserted to flush out N2 to ensure an 

oxygen-free head space in the container (even if there would be residual O2 contamination in the 

manifold system). The vials and flasks were kept under a nitrogen positive pressure (~3 psi). All of 

the purification buffers contained 2 mM sodium dithionate (SDT) and 2 mM dithiotheritol (DTT) to 

remove traces of oxygen contamination. 

2.3.5 Preparation of cell-free extracts 

To purify the native PORs from T. guaymasensis and P. furiosus, cell-free extracts (CFEs) were 

prepared from the cells grown to late log-phase. All operations were performed under strictly 

anaerobic conditions and at room temperature, unless otherwise specified 

Cell pellets stored at -76ºC (50 g of T. guaymasensis and 20 g of P. furiosus) were re-suspended in 

anaerobic lysis buffer [50 mM Tris-HCl, 5% glycerol, 2 mM DTT, and 2 mM SDT, 0.1 mgml-1 

lysozyme, and 0.01 mgml-1 DNaseI, pH 7.8] in a pre-degassed flask. The ratio of the lysis buffer to 

cells (wet weight) was 1:6 (w/v) for T. guaymasensis and 1:4 (w/v) for the cell-free extract for P. 

furiosus. The cell suspensions were then incubated at 37°C while stirring for 2 h and subsequently 

were centrifuged anaerobically at 10,000 ×g for 30 min at 4°C. The supernatant designated as cell-
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free extracts (CFEs) and was transferred to anaerobic serum bottle using a syringe pre-rinsed with 

anaerobic buffer A (50 mM Tris-HCl, 5% glycerol, 2 mM dithiotheritol, and 2 mM sodium dithionite 

with the pH adjusted to 7.8) and used directly as starting materials for the following purification 

steps. 

2.3.6 Enzyme purification 

Due to high levels of the oxygen sensitivity of both PfPOR (POR from P. furiosus) and TgPOR (POR 

from T. guaymasensis), all purification steps were carried out using a FPLC system (GE Healthcare, 

QC, Canada) at ambient temperatures and under strictly anoxic conditions to protect the enzyme from 

exposure to air. During the purification, the POR and PDC activities were monitored in 

chromatography fractions using each corresponding assay methods (sections 2.3.11 and 2.3.12) to 

further confirm the co-elution of the activities all through purification steps. At each step the purity of 

the active fractions were determined by running an aliquot of the eluted fraction on SDS-PAGE. The 

buffer A was used throughout the purification. 

To purify TgPOR, the CFE was loaded on a diethylaminoethyl (DEAE)-sepharose column (5.0×10 

cm) pre-equilibrated with anaerobic buffer A. The column was washed with 3 column volumes of 

buffer A and then a gradient (0-0.5 M NaCl) of buffer B [50 mM Tris-HCl, 5% glycerol, 1 M sodium 

chloride, 2 mM DTT, and 2 mM SDT, pH 7.8] was applied at a flow rate of 8.0 mlmin-1. The active 

fractions (160-220 mM NaCl) were pooled together and applied to a hydroxyapatite (HAP, 2.6×15 

cm) column pre-equilibrated with buffer A. After loading of the active fractions, the column was 

washed with 100 ml of buffer A and then the absorbed proteins were eluted with a gradient (0-0.5 M 

potassium phosphate) of buffer C [50 mM Tris-HCl, 5% glycerol, 0.32 M K2HPO4, 0.18 M KH2PO4, 

2 mM DTT, and 2 mM SDT pH 7.8] at a flow rate of 2.5 mlmin-1. The active fractions (110-145 mM 

potassium phosphate) were pooled together and loaded on a phenyl sepharose column (PS, 2.6×10 

cm) pre-equilibrated with 0.8 M ammonium sulphate in buffer A. The column was washed with two 

column volume of 0.8M buffer A and then a linear gradient (0.8-0 M ammonium sulphate) of buffer 

D [50 mM Tris-HCl, 5% glycerol, 2 M ammonium sulphate, 2 mM DTT, and 2 mM SDT pH 7.8] 

was applied at a flow rate of 2.5 mlmin-1. 

The purified POR was eluted as 440-290 mM ammonium sulphate was applied based on SDS-

PAGE. The purified fractions were then desalted and concentrated under anaerobic conditions using 

an ultrafiltration device (Advantec MFS, Inc., CA, USA) with a 44.5 mm membrane of 
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polyethersulfone and nominal molecular weight limit (NMWL) of 50,000 (Millipore, MA, USA) and 

under pressure of nitrogen. After concentration, the purified POR was stored as protein balls in liquid 

nitrogen until use.  

To purify the bifunctional POR/PDC from P. furiosus, the CFE was loaded on a DEAE-sepharose 

column (5.0×10 cm) pre-equilibrated with anaerobic buffer A. The column was washed with 2.5 

column volume of anaerobic buffer A and then a gradient (0-0.5 M NaCl) of buffer B [50 mM Tris-

HCl, 5% glycerol, 1 M sodium chloride, 2 mM DTT, and 2 mM SDT, pH 7.8] was applied to the 

column at a flow rate of 5.0 mlmin-1. The collected fractions were tested for the POR activity and the 

active fractions (162-198 mM NaCl) with POR specific activity higher than 5 Umg-1 were pooled 

together and loaded on a phenyl sepharose column (2.6×10 cm) pre-equilibrated with 1 M ammonium 

sulphate in buffer A. The column was washed with 1.5 column volume of 1M ammonium sulphate 

and then a linear gradient (1-0 M ammonium sulphate) of buffer D [50 mM Tris-HCl, 5% glycerol, 2 

M ammonium sulphate, 2 mM DTT, and 2 mM SDT pH 7.8] was applied to the column at a flow rate 

of 3.0 mlmin-1. The PfPOR was eluted from the phenyl sepharose column as 900-700 mM ammonium 

sulphate applied to the column. The active fractions were pooled together, desalted and concentrated 

using an ultrafiltration device (Advantec MFS, Inc., CA, USA). The ultrafiltration was carried out 

using a 44.5 mm membrane of polyethersulfone and nominal molecular weight limit (NMWL) of 

50,000 (Millipore, MA, USA) under anaerobic conditions and pressure of nitrogen. The concentrated 

fraction was then loaded onto a HiLoad Superdex-200 (GE healthcare, QU, Canada) gel-filtration 

chromatography column (2.6×60 cm) pre-equilibrated with buffer E (50 mM Tris, 5% glycerol, 100 

mM KCl, pH 7.8) and eluted from the column at the flow rate of 2 mlmin-1. The active fractions then 

were pooled and loaded on a hydroxyapatite (2.6×15 cm) column equilibrated with buffer A at 4.0 

mlmin-1. After loading of the active fractions, the column was washed with 100 ml of buffer A and 

then eluted with a gradient (0-0.5 M potassium phosphate) of buffer C [50 mM Tris-HCl, 5% 

glycerol, 0.32 M K2HPO4, 0.18M KH2PO4, 2 mM DTT, and 2 mM SDT pH 7.8]. The purified PfPOR 

(as judged by SDS-PAGE) was eluted from the HAP column at 90-139 mM phosphate concentration. 

The purified POR was desalted and concentrated again and stored in liquid nitrogen until use. 
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2.3.7 Protein concentration determination 

The protein concentration was routinely determined using Bradford dye-binding method (Bradford 

1976) using the Bradford reagent purchased from Bio-Rad Laboratories (ON, Canada). Bovine serum 

albumin (BSA) was used for obtaining a standard curve as instructed by the manufacturer.   

2.3.8 SDS-PAGE 

The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine 

the enzyme purity and apparent subunit molecular weights. SDS-PAGE was performed according to 

Laemmli (1970) with acrylamide and molecular weight standards from Bio-Rad (ON, Canada) using 

a Hoefer™ Mighty small system (Hoefer Inc., MA, USA) with the gels (8×10 cm) prepared and 

stained with Coomassie Brilliant Blue R250. The de-staining was carried out by storing the gel in the 

de-staining solution (12% 2-propanol and 7% acetic acid) with moderate shaking overnight. 

2.3.9 Estimation of native molecular mass 

The molecular weight of TgPOR subunits was estimated by loading the concentrated protein 

(approximately 1 mg) on a HiLoad Superdex-200  size-exclusion chromatography column of 

(2.6×60cm, GE Healthcare, QC, Canada) pre-equilibrated with buffer E (50 mM Tris, 5% glycerol, 

100 mM KCl, pH 7.8) at the flow rate of 2.5 mlmin-1. The following standards from Pharmacia 

protein standard kit (pharmacia, NJ, USA) were applied to the column: blue dextran (2,000,000 Da), 

thyroglobulin (669,000 Da), ferritin (440,000 Da), catalase (232,000 Da), aldolase (158,000, Da), 

bovine serum albumin (67,000, Da), ovalbumin (43,000 Da), chymotrypsinogen A (25,000 Da) and 

ribonuclease A (13,700 Da).  

2.3.10 AcDH assay 

CoA-dependent acetaldehyde dehydrogenase activity was determined in CFEs of T. guaymasensis 

and P. furiosus. The assays were carried out at 80°C in an assay mixture (2 ml) composed of glycine 

buffer (50 mM, pH 10.5), 1 mM MgCl2, 1 mM DTT, 0.1 mM coenzyme A, and 1.5 mM NAD+ or 

NADP+ and different amounts of the CFEs were used as the source of the activity. The anaerobic 

assay buffer was transferred to a pre-degassed assay cuvette using syringes rinsed (three times) with 

anaerobic buffer. The cuvette was incubated in a water-jacketed cuvette holder on a Genesys 10 UV-

Vis spectrophotometer (Thermo Scientific, MA, USA) and pre-warmed to the assay temperature 
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(80°C) for 4 min. After temperature equilibration, it was taken out and the assay components (other 

than enzyme) were added using pre-rinsed Hamilton gas-tight syringe (Hamilton Company, Reno, 

NV, USA) in rapid succession and cuvette was placed back in the holder for another 30 seconds. 

Then the reaction was started by adding the acetaldehyde and monitoring the absorbance change at 

340 nm. 

2.3.11 POR activity assay 

The spectrophotometric measurement of pyruvate- and coenzyme A-dependent reduction of the 

benzyl (or methyl) viologen was used to assay the POR activity as previously described (Wahl and 

Orme-Johnson 1987).  

The catalytic activities of purified PORs were assayed in duplicate and under strictly anaerobic 

conditions unless otherwise mentioned. The sodium pyruvate was routinely used as substrate 

(electron donor) and methyl viologen (MV) replaced ferredoxin as electron acceptors. The assays 

were carried out at 80°C in an assay mixture (2 ml) composed of 100 mM EPPS, pH 8.4, 1 mM 

MgCl2, 5 mM sodium pyruvate, 0.4 mM TPP, 100 µM coenzyme A, 1 mM of methyl viologen (MV), 

and enzyme in stoppered optical glass cuvettes with 1cm light path (Starna cells, Inc., Atascadero, 

CA, USA). In addition, small amount of sodium dithionate (SDT) was added to the assay mixture 

(until a light blue color appeared) to scavenge residual oxygen and slightly reduce the assay mixture 

before the addition of the enzyme to start the reaction (section 2.3.4).  

The anaerobic assay buffer was transferred to pre-degassed assay cuvette using a syringe pre-rinsed 

with anaerobic buffer for at least three times. The cuvette was incubated in a water-jacketed cuvette 

holder on a Genesys 10 UV-Vis spectrophotometer (Thermo Scientific, MA, USA) and pre-warmed 

to the assay temperature (80°C) for 4 min, then it was taken out and the assay components (all but the 

enzyme) were added using a pre-rinsed Hamilton gas-tight syringe (Hamilton company, Reno, NV, 

USA) in a rapid succession. Subsequently, the cuvette was placed back in the holder for another 30 

seconds. The reaction was started by adding the enzyme fraction and the absorbance change at 578 

nm was monitored. An extinction coefficient of ε578= 9.8 mM-1cm-1 (Yoon et al. 1997; Schut et al. 

2001a) was used for calculation of the activity. The oxidation of one pyruvate would release two 

electrons. The activity was determined based on the initial linear part of enzymatic reaction progress 

curve, and one unit of enzyme activity was defined as the oxidation of 1µmol of the substrate or the 

reduction of 2 µmol methyl viologen per minute. Linear correlation between the activity and the 
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amount of protein in assay was determined to ensure that all activities were within the linear range of 

measurement. 

2.3.12 PDC activity assay 

Pyruvate decarboxylase activity (PDC) was determined by measuring the rate of acetaldehyde 

production. In principle, acetaldehyde produced during the enzymatic reaction (Figure 2-1, step A) 

was derivatized with a freshly prepared acidic solution of 2, 4-dinitrophenylhydrazine (DNPH) also 

known as Brady’s reagent (Figure 2-1, step B). The reaction of the reagent with aldehyde groups 

creates a yellow-reddish color resulting from the formation of the corresponding hydrazone 

derivative. Subsequent to liquid-liquid phase extraction with a solvent (Figure 2-1, step C), the 

acetaldehyde-DNPH complex was quantified by reverse-phase high performance liquid 

chromatography (RP-HPLC). The general procedures and main steps involved in the assay are 

presented in Figure 2-1. 

The enzymatic reactions were carried out in duplicate in stoppered 8 ml vials under anaerobic 

conditions at 80°C unless otherwise specified. The standard assay mixture (1 ml final volume) 

containing EPPS buffer (100 mM, pH 8.4), 1 mM MgCl2, 0.1 mM thiamine pyrophosphate (TPP), 10 

mM sodium pyruvate, and 1 mM coenzyme A (CoASH) was pre-warmed by incubation at 80°C 

water bath for 4 min. When specified, sodium pyruvate was replaced with 10 mM of 2-

ketoisovalerate. The reaction was started by adding the enzyme (or enzyme containing fraction). Tests 

were carried out to make sure that there would be a linear correlation between the activity and the 

amount of enzyme in the assay. Unless specified, the enzyme reaction was stopped after 20 min by 

transferring the assay vials on the ice and adding of 2 ml of freshly prepared saturated DNPH solution 

in 2 N HCl (stirred at room temperature and dark for 1hr). The vials were then incubated overnight at 

room temperature with shaking (150-200 rpm) to allow derivatization of acetaldehyde with the 

DNPH. The resulting hydrazone (acetaldehyde-DNPH) derivative was then extracted with 1 ml of 

dichloromethane (DCM) by vigorous shaking at room temperature for 15 min. the extraction was then 

repeated for one more time. The organic (lower) phase was then transferred to a new clean vial 

covered with a piece of Parafilm M® membrane with few holes on it. The assay vials were placed in a 

vacuum desiccator covered with aluminum foil (to protect from the light), which was connected to a 

water pump to evaporate the DCM in a fume hood. After evaporation of DCM (about 3-4 h), the 
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Figure 2-1. General steps involved in PDC activity assay  

 
 

DNPH-HCl, hydrochloridric acid solution saturated with dinitrophenylhydrazine; DCM, dichloromethane; HPLC, high 

performance liquid chromatography. All assays were carried out at 80°C and under strictly anaerobic conditions; the buffer 

routinely used for the assay was glycine (100 mM, pH 9.5) unless specified. 
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resulting yellowish-red powder was dissolved in 4 ml of pure (HPLC grade) acetonitrile by 

incubation at 4°C overnight. 

An aliquot of the assay product was filtered through a 0.2 µm nylon syringe filter (National 

Scientific, Rockwood, TN, USA), and the filtered sample was then analyzed using a Perkin-Elmer LC 

series 4 HPLC system (Norwalk, CT, USA) fitted with a reversed-phase Allure C18 column (150×4.6 

mm, 5 μm, 60 Å). Isocratic elution conditions with a mobile phase of acetonitrile/water (80:20 v/v) 

were used at a flow rate of 1 mlmin-1. A micrometrics model 788 dual variable wavelength detector 

(Norcross, GA, USA) was used and operated at 365 nm. The sample was applied using a Rheodyne 

Model 7125 injection valve (Rheodyne Inc., CA, USA) with a 20 µl sample loop. The HPLC system 

was operated at room temperature. The final concentration of acetaldehyde and isobutyraldehyde 

were determined using a calibration curve prepared by linear regression plotting of known 

concentrations of each product which was processed under the same assay conditions.  

2.3.13 Determination of PDC of pyruvate dehydrogenase (PDH) 

To determine the ability of pyruvate dehydrogenase to catalyze the production of acetaldehyde from 

pyruvate, PDC enzyme assays were carried out using the procedure described previously (section 

2.3.12). The porcine heart PDH was purchased from Sigma-Aldrich Canada Ltd. (ON, Canada). The 

PDC assays were carried out under aerobic conditions and at different pHs of 6.2 and 7.5 (sodium 

phosphate), 8.4 (EPPS), and 10.2 (CAPS) with a concentration of 100 mM. The standard assay 

mixture (1 ml final volume) containing 1 mM MgCl2, 2.4 mM NAD, 0.3 mM dithiotheritol, 0.5 mM 

thiamine pyrophosphate (TPP), 5 mM sodium pyruvate, and 0.5 mM coenzyme A (CoASH) was pre-

incubated in water bath (30°C) for 4 min. The reactions started by adding the enzyme and continued 

for 90 min. After the enzymatic reaction time, the vials were transferred on ice, and stopped by 

addition of 3 ml of freshly prepared and filtered saturated DNPH-HCl. The rest of the procedures 

including solvent extraction and HPLC analysis were followed using the procedure described in 

section 2.3.12 without deviations. Control assays were performed, which included reactions with no 

enzyme, no CoA, and no substrate (pyruvate), respectively. 

2.3.14 Biochemical and biophysical characterization 

To determine the pH dependence of each activity, assays were carried out in duplicate, at different pH 

values ranging from 6.0 to 11. The optimal pH (pH dependence) was determined for both activities 

using purified POR/PDC from T. guaymasensis. All assays were carried out at 80°C, under strictly 
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anaerobic conditions using degassed buffers (100 mM) as previously described. The pH values 

expressed throughout this manuscript were adjusted and measured at room temperature unless 

specified differently. The buffers used were sodium phosphate buffer (pKa 7.20, ΔpKa/°C=-0.0028) 

for pH values of 6.0, 7.0, and 7.5, EPPS buffer [N-(2-Hydroxyethyl)-piperazine-N’-3-propanesulfonic 

acid, pKa 8.0, ΔPKa/°C=-0.015] for pH values of 7.5, 8.0, 8.4 and glycine buffer (pKa 9.55, 

ΔpKa/°C=-0.0025) for pH values of 8.5, 9.0, 9.5, 10.0, 10.5 and finally CAPS buffer [3-

(Cyclohexylamino)-propanesulfonic acid, pKa 10.40, ΔpKa/°C=-0.009] for pH values of 10.0, 10.5, 

and 11.0. 

Steady-state kinetic parameters (Km and Vmax) were determined for each activity at the optimal pH 

and under strictly anaerobic conditions. All of the kinetic experiments were carried out at 80°C. The 

kinetic parameters were determined for pyruvate (substrate), TPP and coenzyme A (cofactor) and the 

artificial electron acceptor methyl viologen (MV) by applying various concentrations of each 

component and keeping the concentration of other assay components invariable. All of the assays 

were performed in duplicate. The kinetic parameters were calculated from best fit of data to 

Michaelis-Menten equation by non-linear regression using the SigmaPlot® software (SYSTAT 

Software Inc., CA, USA).  

To investigate oxygen sensitivity of each activity, an aliquot of the enzyme was exposed to air at 

4°C by gentle stirring. Enzyme activities were then measured at different time points and compared to 

a control preparation that was kept on ice and under anaerobic conditions (unexposed control).  

The temperature dependencies of both activities were determined by assaying the enzyme activity 

at different temperatures from 30°C to 95°C under standard assay conditions. The POR assays were 

carried out in 100 mM EPPS buffer containing 10 mM MgCl2, at pH 8.4. To determine the half-life of 

the enzyme at 80°C, the residual activities at different time points were determined and compared to 

un-heated control. 

To determine the ability of the enzyme to use 2-ketoisovalerate in the oxidation or decarboxylation 

reactions, 2-ketoisovalerate was replaced for pyruvate in the assay mixture. To quantify the product 

of the decarboxylase activity, a standard curve was prepared using various concentrations of 

isobutyraldehyde. The whole assay procedures described for the PDC activity assay were followed. 

The assay mixtures for the standard preparations contained no enzyme and as limited amounts of 2-
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ketoisovalerate was available, pyruvate was incorporated into the assay mixtures instead of the 2-

ketoisovalerate. The final products were measured via HPLC as previously described (section 2.3.12).  

2.4 Results 

2.4.1 Growth of T. guaymasensis 

T. guaymasensis cells were grown on glucose, yeast extract, tryptone without adding elemental 

sulfure (S0). When cultures were in the late log phase-early stationary phase after 18-20 h of growth, 

the cells were harvested by continuous centrifugation. The cell density of the cultures at the time of 

harvest was approximately 5.5-6.5×108 cellsml-1, which resulted in a final cell yield of 0.6±0.17 g 

(wet weight) per liter of culture (n=21). 

2.4.2 Sequencing of the por/vor gene cluster in T. guaymasensis 

A total of 6.7 kbp of the genome of T. guaymasensis was sequenced using primer walking and inverse 

PCR strategies. The primers were designed based on highly conserved regions (including CoA-

binding motif, TPP-binding motif, and [4Fe-4S] cluster-binding motifs) within por/vor operons of 

released coding sequences of the Thermococcales genomes including T. kodakaraensis, P. furiosus, 

P. horikoshii, and P. abyssi. The sequences obtained encompassed genes encoding all of the subunits 

of POR and VOR. Parts of the neighboring sequences were also retrieved using the aforementioned 

strategies. By analysis of the sequence information from the por/vor gene cluster in T. guaymasensis 

and comparison with other hyperthermophilic por/vor sequences from different databases, the gene 

organization in T. guaymasensis was determined (Figure 2-2). The deduced nucleotide sequences 

encoded for proteins of 186, 105, 391, 311, 105, 394, and 332 amino acid residues in lengths. 

The subunit gamma (Por/VorG) was shared between POR and VOR, which is a common property of 

the gene organization in Thermococcales por-vor operons (Kletzin and Adams 1996). The subunits 

delta (vorD), alpha (vorA) and beta (vorB) of VOR were located downstream of the common subunit 

gamma gene (por/vorG) and then the subunit delta (porD), alpha (porA) and beta (porB) of POR were 

located downstream of the vor genes.  

Interestingly, three coding sequences encoding for the subunits delta, alpha, and beta of each VOR 

and POR, had overlapping intercistronic regions. That is the start codon of the adjacent gene (coding 

the next subunit of the same enzyme) was separated by only few base pairs from the translation 
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Figure 2-2. Gene organization of por/vor gene cluster in T. guaymasensis 

por, pyruvate ferredoxin oxidoreductase; vor, 2-ketoisovalerate ferredoxin oxidoreductase; CODH, carbon monoxide dehydrogenase 
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termination sequence of the next subunit, then the ribosome binding site (RBS) of the next (distal) 

subunit is located in the coding sequence of the previous (proximal) subunit (Figure 2-3).   

This was observed for some other proteins in bacteria and phages and was suggested to be a 

mechanism to assure all of the genes involved in making a multisubunit enzyme or the genes that are 

involved in the same biological pathway are being transcribed together and to the same level (Nichols 

and Yanofsky 1979; Schoner et al. 1984). Based on the transcription start and termination sequences 

identified, it was concluded that the genes were expressed as three independent transcriptional units, 

expressing the por/vorG, vorDAB, and porDAB (Figure 2-2), respectively. Each of the transcripts 

seemed to start from their own transcription initiation sequences. It seems to be a mechanism to 

assure that the shared subunit (PorG) is being expressed independent of each enzyme POR and VOR, 

and it might be suggestive that the POR and VOR are not necessarily being expressed at the same 

time. 

 TgPOR contained 15 conserved cysteine residues. Subunits PorA, PorB, and PorD contained 1, 6, 

and 8 cysteine residues, respectively. Unlike PORs of Thermotogales, which contained two highly 

conserved cysteine residues per PorG, there were no cysteines present in Thermococcales PorD. The 

primary sequence analysis confirmed the presence of two typical highly conserved cysteine-rich 

ferredoxin type [4Fe-4S] cluster binding motifs (CXXCXXCXXXCP) in the subunit delta. There 

were four highly conserved cysteine residues in the subunit beta, which were believed to be involved 

in the coordination of the third iron-sulfur cluster for the electron transfer to low molecular weight 

ferredoxin molecules (Kletzin and Adams 1996). Additionally two other cysteine residues were found 

to be conserved in all Thermococcales (with except for T. sibiricus and T. barophilus). The subunit 

beta (PorB) also contained the conserved TPP-binding motif (Figure 2-4), which is the common 

feature of all TPP-dependent enzymes and is known to be involved in Mg2+-TPP cofactor binding 

(Hawkins et al. 1989; Muller et al. 1993).  

2.4.3 Searching for AcDH (CoA acetylating) activity in hyperthermophiles 

The extensive database search to find a gene or protein homolog of the CoA-dependent AcDH in 

hyperthermophilic archaea and bacteria failed. The available genome sequences from different 

archaeal and bacterial hyperthermophiles were searched based on both the annotations and the 

homology to the known adhE and mhpF sequences. CoA-dependent acetaldehyde dehydrogenase 

activity under the conditions examined (different pHs and buffers, different amounts of CFEs, and  

using NAD+ and NADP+ as cofactors) was not detectable in CFEs of two hyperthermophilic archaea,  
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Figure 2-3. Intercistronic sequences in por/vor operon of T. guaymasensis 

 

The translation initiation (start) codons of the distal genes are indicated in bold, the ribosome-binding site 

(RBS) of the distal gene is boxed, and the translation terminations of the proximal genes are underlined. 
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Figure 2-4. Multiple sequence alignment of part of PorB from various bacteria and archaea 

 

The amino acid sequences of PorB were retrieved from GenBank and aligned using MegAlign software 

(Lasergene, DNAStar, Madison, USA). The TPP-binding motif (GDGX24-27NN) is boxed. 

A. fulgidus, Archaeoglobus fulgidus; H. pylori, Helicobacter pylori, H. butylicus, Hyperthermus butylicus; K. 

oleriae, Kosmotoga oleriae; M. kandleri, Methanopyrus kandleri; P. mobilis, Petrotoga mobilis;  P. mobilis, 

Petrotoga mobilis; P. abyssi, Pyrococcus abyssi; P. furiosus, Pyrococcus furiosus; P. horikoshii, Pyrococcus 

horikoshii; Pyrococcus NA2, Pyrococcus species strain NA2; P. yayanosii, Pyrococcus yayanosii;  S. marinus, 

Staphylothermus marinus; S. solfataricus, Sulfolobus solfataricus;  T. africanus, Thermosipho africanus; T. 

melanesiensis, Thermosipho melanesiensis; Thermococcus AM4, Thermococcus species strain AM4;  T. 

barophilus, Thermococcus barophilus;  T. naphthophila, Thermotoga naphthophila; T. lettingae, Thermotoga 

lettingae; T. neapolitana, Thermotoga neapolitana, T. hypogea, Thermotoga hypogea; T. thermarum, 

Thermotoga thermarum; T. maritima, Thermotoga maritima; TRQ2, Thermotoga species strain RQ2; 

Thermococcus 4557, Thermococcus species strain 4557; T. sibiricus, Thermococcus sibiricus; T. 

gammatolerance, Thermococcus gammatolerance; T. kodakaraensis, Thermococcus kodakaraensis 



59 

 

 

 

 



 

60 

 

Figure 2-5. Rooted phylogenetic three based on amino acid sequences of various Thermococcales POR subunits 

 

The amino acid sequences of subunit alpha (A), subunit beta (B), subunit gamma (C), and subunit delta (D) of Thermococcales PORs were aligned. The amino 

acid sequences used for the generation of tree were retrieved from the genome databases as described in the Materials and Methods (section 2.3.3). In the case of 

TgPOR, the amino acid sequences were determined by translation of the nucleotide sequences retrieved by primer walking and inverse PCR (section 2.3.3). The 

sequences homology and the phylogenetic trees were prepared using MegAlign software (Lasergene, DNAStar, Madison, USA). The numbers at the bottom of 

each tree indicate the number of the amino acid substitutions. A dotted line on the phenogram indicates a negative branch length, a common result of averaging.   

P. abyssi, Pyrococcus abyssi; P. furiosus, Pyrococcus furiosus; P. horikoshii, Pyrococcus horikoshii; Pyrococcus NA2, Pyrococcus species strain NA2; P. 

yayanosii, Pyrococcus yayanosii;  Thermococcus AM4, Thermococcus sp. strain AM4;  T. barophilus, Thermococcus barophilus;  Thermococcus 4557, 

Thermococcus species strain 4557; T. sibiricus, Thermococcus sibiricus; T. gammatolerance, Thermococcus gammatolerance; T. kodakaraensis, Thermococcus 

kodakaraensis; T. guaymasensis, Thermococcus guaymasensis. 
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T. guaymasensis and P. furiosus (and some bacterial hyper/thermophiles including Thermotoga 

hypogea and T. maritima). 

2.4.4 Purification 

Both bifunctional POR/PDC enzymes were present in the CFEs of T. guaymasensis and P. furiosus 

indicating that they are cytoplasmic. The typical purification steps for the enzymes from P. furiosus 

(Table 2-4) and T. guaymasensis (Table 2-5) resulted in a relatively low (about 7-8%) recovery yield. 

Both of proteins were purified to the homogeneity as judged by SDS-PAGE analysis (Figure 2-6 and 

Figure 2-7). The purified proteins from both organisms had a brownish color, which is the common 

characteristic of the iron-sulfur containing proteins.  

CFE of T. guaymasensis showed a POR specific activity typically in the range of 2.6 Umg-1 and a 

PDC activity of approximately 0.04 Umg-1. CFE of P. furiosus had POR and PDC of about 3.2 and 

0.03 Umg-1, respectively. The final preparation of the purified enzyme from T. guaymasensis had 

specific activities of 20.2±1.8 Umg-1 and 3.8±0.22 Umg-1 for oxidation and decarboxylation reactions, 

respectively. The POR and PDC activities were co-eluted throughout different steps of 

chromatography purification (Figure 2-8). Interestingly, on the final column (PS) there are two peaks 

of the POR and PDC activities with the larger one most likely belonging to POR and the second one 

belonging to the VOR activity (as confirmed by corresponding enzyme assay on both fractions), 

which is apparently able to catalyze the oxidative and non-oxidative decarboxylation of the pyruvate, 

albeit with a lower rate. The purified enzyme of P. furiosus had POR specific activity of 22.3 Umg-1 

and PDC activity of 3.8 Umg-1 using pyruvate as the substrate. 

Purification of PfPOR resulted in a specific activity increase of 7.8-fold over that of CFE. This was 

in agreement with the previously reported 7-fold increase with a specific activity of 21 Umg-1 

(Blamey and Adams 1993; Schut et al. 2001a). 
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Table 2-4. Purification of bifunctional POR/PDC from P. furiosusa 

Step 
Total proteinb 

(mg) 

Total activity c  

(units) 

Specific activityd 

(Umg-1) 

Purification 

( fold) 

Recovery 

(%) 

Cell-free extract 1267  8442  3.2  1 100 

DEAE sepharose 386  2016  5.2  1.7 23.8 

Phenyl sepharose 80  1031  13.1 4.1 12.2 

Gel filtration 28.2  495  19.1 6.0 5.8 

Hydroxyapatite 21  392  22.3 7.0 4.6 
 

a CFE was prepared from 20 g (wet weight) of P. furiosus cells  
b As determined by Bradford assay using BSA as the standard protein as described in the Materials and Methods  
section 
c POR activity assay as described in the material and methods (section 2.3.11) 
d One unit was defined as micromoles of pyruvate oxidized per min  
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Table 2-5. Purification of bifunctional POR/PDC from T. guaymasensisa 

Step 
Total proteinb 

(mg) 

Total activityc 

(units) 

Specific activityd 

(Umg-1) 

Purification 

( fold) 

Recovery 

(%) 

Cell-free extract 1358 3434 2.6 1 100 

DEAE sepharose 322  1748  5.6 2.2 50.9 

Hydroxyapatite 84  580  7.5  2.9 16.9 

Phenyl sepharose 17.9  363 20.2±1.8 7.8 10.6 
 

a CFE was prepared from 25 g (wet weight) of  T. guaymasensis cells  
b As determined by Bradford assay using BSA as the standard protein as described in the Materials and Methods  
(section 2.3.7). 
c The POR activity assay as described in the material and methods (section 2.3.11) 
d One unit was defined as micromoles of pyruvate oxidized per min 
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Figure 2-6. Analysis of purified enzyme from T. guaymasensis using SDS-PAGE (12.5%) 

 

Lane 1, 5 µg of the purified protein; lane 2, BLUeye pre-stained protein ladder (Froggibio, ON, Canada) 
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Figure 2-7. Analysis of purified enzyme from P. furiosus using SDS-PAGE (12.5%) 

Lane 1, 8 µg of the purified protein; lane 2, 12 µg of the purified protein; lane M, molecular weight standard 

marker. The numbers on the right side indicate the molecular weight of the maker bands and the numbers on the 

left side indicate the estimated molecular weights calculated based on the SDS-PAGE. 
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Figure 2-8. Co-elution of POR and PDC activities during chromatography steps 

 

Different fractions from DEAE-sepharose (A) Hydroxyapatite (B), and Phenyl-sepharose (C) chromatography 

columns for T. guaymasensis. The fractions from each chromatography step were assayed for both PDC and POR 

activities. All assays were carried out under strictly anaerobic conditions and at 80ºC as described in Material and 

Methods (sections 2.3.11 and 2.3.12). The filled and open symbols represent POR and PDC activities, respectively. 
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2.4.5 Estimation of native molecular mass 

The apparent molecular weight of the purified POR was determined to be 258,043±5650 Da (n=3) by 

running approximately 0.5 mg of the purified protein on a gel-filtration chromatography column. The 

SDS-PAGE analysis of the purified enzyme after gel-filtration column (Figure 2-6) revealed that the 

enzyme was composed of four different subunits with estimated molecular weights of 12, 26, 35, and 46 

kDa, respectively. These were further verified by estimation made by the amino acid sequences deduced 

from the nucleotide sequence of each subunit (11.9, 19.9, 36.1, and 43.8 kDa). Overall, the subunit 

molecular weights are suggesting the native molecule is a dimer of heterotetramers (α2β2γ2δ2-type). 

2.4.1 Catalytic properties of the enzymes 

Both activities were highly CoA-dependent and no oxidation or decarboxylation of pyruvate was 

catalyzed when CoA was omitted from the assay mixture. To see if other chemicals with structural 

similarities to CoA can be substituted for this cofactor, while preserving the enzyme activity, PDC assays 

were carried out by substituting CoA with different candidate chemicals including adenosine triphosphate 

(ATP), adenosine monophosphate (AMP), pantothenic acid, combination of ATP and pantothenic acid, 

and combination of ADP and pantothenic acid, all of which were at a final concentration of 0.1 mM. The 

complete POR assay containing coenzyme A was used as positive control. No pyruvate oxidation or 

decarboxylation was catalyzed with any of the above mentioned compounds, indicating that they could 

not replace CoA in the POR or PDC assays. Desulfo-CoA a known coenzyme A analog was able to 

replace CoA in the non-oxidative decarboxylation of pyruvate for both enzymes from T. guaymasensis 

and P. furiosus. 

Enzyme kinetic parameters were calculated from the non-linear regression of Michaelis-Menten plots 

(Table 2-6). When necessary, the bifunctional POR/PDC enzyme from P. furiosus (Blamey and Adams 

1993; Ma et al. 1997) was used as control or for comparison. Both the oxidation and decarboxylation 

reactions displayed a typical Michaelis-Menten progress curve for pyruvate, CoA, and the artificial 

electron acceptor methyl viologen (MV). 
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Table 2-6. Kinetic parameters of POR and PDC of T. guaymasensis and P. furiosus 

Source activity 
Pyruvatea CoAb Specific 

activityc Apparent Km 
(mM) 

Apparent 
Vmax (Umg-1) 

Apparent 
Km (mM) 

Apparent 
Vmax (Umg-1) 

T. guaymasensis 
POR 0.53±0.03 18±0.23 69±10 21.8±0.8 20.2±1.8 
PDC 0.25±0.05 3.8±0.14 12.3±1.8 3.3±0.09 3.8±0.22 

P. furiosus 
PORd 0.46 23.6 110 39.9 22.0 
PDCe 1.1 4.3±0.3 0.11 4.3±0.3 4.3±0.3 

 

a For POR measured at 0.1 mM CoA, 1 mM MV, 0.4 mM TPP, and for PDC at 1mM CoA, 0.1mM TPP  
b For POR measured at 5 mM pyruvate, 1 mM MV, 0.4 mM TPP, and for PDC at 10mM pyruvate, 0.1mM TPP  
c Expressed as micromoles of pyruvate oxidized per min per milligram of enzyme  
d Values reported by Blamey et al. (1993) measured using EPPS (50 mM, pH 8.4) at 80°C  
e Values reported by Ma et. al. (1997) measured using CAPS (50 mM, pH 10.2) at 80°C  
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The effect of pH on both oxidation and decarboxylation reactions was determined using a set of 100 

mM buffers (pH 6.0 to 11.0). TgPOR showed a significant (more than 75%) activity in a relatively wide 

pH range from 7.5 to 10, with the highest at pH 8.4 (Figure 2-9A). The optimal pH for non-oxidative 

decarboxylation of pyruvate (PDC activity) displayed a relatively sharp optimum at pH 9.5 (Figure 

2-9B), indicating the optimal pH for the PDC activity was higher than that of the POR activity. 

Both oxidative and non-oxidative decarboxylation reactions were oxygen sensitive. The time required 

for a 50% loss of POR activity (t1/2) of the purified enzyme [1.3 mgml-1 in 50 mM Tris-HCl (pH7.8) 

containing 2 mM SDT and 2 mM DTT] was about 40 min at 4°C (Figure 2-10A). The time required for 

the PDC activity [0.8 mgml-1 in 50 mM Tris-HCl (pH7.8) containing 2 mM SDT and 2 mM DTT) was 

approximately 30 min (Figure 2-10B). Ideally the sensitivity of both activities should have determined on 

the same batch of the enzyme; however, due to technical difficulties (different assay procedures, 

preparations …etc.), it was not possible to determine the oxygen sensitivity on the same batch of the 

enzymes. Therefore, the differences in the time might be simply reflective of the different contents for the 

reducing agents (SDT/DTT) in the enzyme preparations. 

The optimal temperature for both POR and PDC activities were determined by conducting 

corresponding assays at different temperatures. The reaction rates of both POR and PDC reactions 

increased along with the increasing assay temperature. The optimal temperature for POR activity seems to 

be above 95°C (Figure 2-11). In the case of the PDC activity though, the reaction rate increased 

constantly with increasing the reaction temperature, starting at 50°C and all the way up to 85°C. PDC 

activity decreased at assay temperatures above 85°C (Figure 2-11).  

The the bifunctional POR/PDC from T. guaymasensis was able to use 2-ketoisovalerate as substrate for 

both oxidative and non-oxidative decarboxylation reactions, although with a lower rate. The rates of 

oxidative and non-oxidative decarboxylation of 2-ketoisovalerate were 32% (specific activities of 6.5 

Umg-1) and 44% (specific activity of 1.7 Umg-1) compared to that of pyruvate, respectively. The enzyme 

purified from P. furiosus was also examined for its ability of using 2-ketoisovalerate; however, it was 

unable to use it as substrate for oxdative and non-oxidative reactions.  

The results of the PDC assay on the commercially purchased porcine PDH indicated the inability of the 

enzyme for production of acetaldehyde. There were some residual amounts of acetaldehyde detected in 

each vial; however, this residual activity was lower than the amount detected in the negative controls, 

which contained no enzyme and/or no CoA. These trace amounts of acetaldehyde can be attributed to the 

non-enzymatic decarboxylation of pyruvate in the presence of reducing agents, which was reported 

previously (Constantopoulos and Barranger 1984). 
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Figure 2-9. pH dependency of POR (A) and PDC (B) activities of the enzyme from T. guaymasensis 

 

The activities of POR (A) and PDC (B) were measured as described previously (sections 2.3.11 and 2.3.12) under 

strictly anaerobic conditions and at 80°C. The relative activities of 100% equals to highest measured specific 

activities (17.4 Umg-1 and 2.6 Umg-1 for POR and PDC, respectively). The POR assay mixtures contained 100 mM 

buffers at different pHs, 1 mM magnesium chloride, 5 mM sodium pyruvate, 0.4 mM thiamine pyrophosphate 

(TPP), and 0.1 mM CoA. The PDC assay mixture contained 100 mM buffers at different pHs, 1 mM magnesium 

chloride, 10 mM sodium pyruvate, 0.1 mM thiamine pyrophosphate (TPP), and 1 mM CoA. The filled circles 

represent the reactions with sodium phosphate buffers (pH 6.2, 7.0, 7.5, and 8.0); the open circles represent the 

reactions with EPPS buffer (pH 8.0, 8.4, 9.0, and 9.5); the filled triangles represent glycine buffer (pH 9.5 and 10); 

and open triangles represent the CAPS buffer (pH 10.5 and 11.0).  
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Figure 2-10. Oxygen sensitivity of POR and PDC activities of T. guaymasensis  

 

The activities of pyruvate oxidation (A) and decarboxylation (B) reactions were measured at different time 

points in enzyme aliquots exposed to air while stirring. The enzyme assays were conducted as described 

previously (section 2.3.11and 2.3.12) under strictly anaerobic conditions. The POR assay mixtures (2 ml) 

contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium chloride, 5 mM sodium pyruvate, 0.4 mM thiamine 

pyrophosphate (TPP), and 0.1 mM CoA. The assay mixture for the PDC assay (1 ml) contained 100 mM 

glycine buffer, pH 9.5, 1 mM magnesium chloride, 10 mM sodium pyruvate, 0.1 mM thiamine pyrophosphate 

(TPP), and 1 mM CoA. The relative activities of 100% equals to highest measured specific activity at time zero 

with no exposure to air (16.2 Umg-1 and 2.2 Umg-1 for POR and PDC activities, respectively). 
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Figure 2-11. Temperature dependence of T. guaymasensis POR and PDC activities 

 

The POR and PDC assays were conducted as described in the material and methods (section 2.3.11and 2.3.12, 

respectively) under standard assay conditions except the temperatures were varied. The vials containing the 

standard assay mixture were pre-incubated at each temperature for 4min. The assay reactions were started by 

adding the enzyme. The POR assay mixtures (2 ml) contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium 

chloride, 5 mM sodium pyruvate, 0.4 mM thiamine pyrophosphate (TPP), and 0.1 mM coenzyme A. The PDC 

assay mixture (1 ml) contained 100 mM glycine buffer, pH 9.5, 1 mM magnesium chloride, 10 mM sodium 

pyruvate, 0.1 mM thiamine pyrophosphate (TPP), and 1 mM coenzyme A. The filled circles indicate the POR 

activity and the open circles are indicative of PDC activity. The filled circles represent the POR and the open 

circles represent the PDC activity. 
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2.5 Discussion 

The absence of the commonly-known pyruvate decarboxylase (PDC) is a perplexing feature of 

hyperthermophiles, especially considering that some of them have the ability to carry out 

fermentation at high temperatures and produce ethanol as an end-product (Karakashev et al. 2007). 

Many of these hyperthermophiles can grow on peptides and/or sugars via a fermentative-type 

metabolism (Adams et al. 1992; Adams 1993; Kelly and Adams 1994; Dworkin et al. 2006a). As 

expected, several alcohol dehydrogenases are found to be present in different ethanologenic 

hyper/thermophiles, including, T. hypogea (Ying et al. 2007), Thermococcus strain species ES1 (Ying 

et al. 2009), T. guaymasensis (Ying and Ma 2011) and T. onnurineus (Moon et al. 2012). PDC is 

widely distributed in plants and fungi, but limited in bacteria. The enzyme is not detected in animals 

(Konig 1998). The only PDC activity that has been reported from hyperthermophiles is a bifunctional 

POR/PDC isolated from the heterotrophic hyperthermophilic archaeon P. furiosus (Ma et al. 1995; 

Ma et al. 1997). The current study provided evidence confirming that POR of T. guaymasensis was 

also able to catalyze the non-oxidative decarboxylation of pyruvate to produce acetaldehyde. 

As in other studies pertaining to hyperthermophilic proteins, obtaining sufficient amounts of cells 

for enzyme purification and characterization is a major challenge. Factors such as limited availability 

of information on physiology, generation of large amounts of hydrogen sulfide and other gases, low 

cell yields, and growth under anaerobic conditions, are considered to be potential difficulties in 

studying such organisms and their enzyme (Verhagen et al. 2001). Some heterotrophic 

hyperthermophiles (mostly Thermococcales and Thermotogales) can grow without addition of 

elemental sulfur to the medium, which makes them appropriate candidates for purification and 

characterization of their native thermostable proteins. Low biomass yield of T. guaymasensis 

(0.6±0.17 g cell paste per liter of culture), made the growth of sufficient biomass an immense 

challenge.   

Nucleotide sequence of por/vor cluster in T. guaymasensis indicated that POR or VOR was 

encoded by four genes, with one of them (por/vorG) shared between the two enzymes (Figure 2-2). 

These findings were in accordance with the gene organization and enzyme structure of other archaeal 

hyperthermophiles studied so far (Kletzin and Adams 1996; Ragsdale 2003). Bacterial 

hyperthermophiles, including T. hypogea and T. maritima (Chapter 3), do not have the VOR and only 

the four subunits of POR were present that have similar gene organization to that of their archaeal 
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counterparts (porG, porD, porA, and porB). Amino acid sequences of TgPOR subunits were 

remarkably similar to the corresponding subunits of other 2-keto acid oxidoreductases, especially to 

PORs from various hyperthermophiles (Figure 2-5). 

The purification scheme of TgPOR (Table 2-5) was similar to previously published reports 

(Blamey and Adams 1993; Schut et al. 2001a) on purification of the similar enzyme from a closely 

related archaeon P. furiosus (Table 2-4). The purified enzyme of T. guaymasensis was eluted out as a 

single peak from a Superdex-200 gel-filtration column, indicating the purity of the protein 

preparation. When it was loaded on SDS-PAGE, four subunits with apparent molecular weights of 46, 

35, 26, and 12 kDa were revealed (Figure 2-6) which was in accordance with genetics information 

acquired from the nucleotide sequencing (Figure 2-2), and also the subunit composition of similar 

enzymes from various organisms (Table 2-7). Both enzymes purified from T. guaymasensis and P. 

furiosus were heterotetrameric proteins, with native molecular weights of approximately 260 kDa, 

which was indicative of the native protein being a dimer of tetramers (α2β2γ2δ2 structure).  

POR and PDC activities were absolutely dependent on CoA, and no activity was observed when it 

was omitted from the assay mixture. No other components (ATP, ADP, pantothenic acid, and 

different combinations of these could be used to substitute for CoA, indicating an essential role of the 

cofactor in the catalytic mechanisms of both reactions. It was shown that desulfo-CoA was 

completely inhibitory for the oxidation (POR) reaction, but not for the decarboxylation (PDC) 

reaction. When desulfo-CoA was substituted for CoA in the PDC assay, the enzymes from P. furiosus 

and T. guaymasensis exhibited approximately 75% and 80% of the complete activities with CoA, 

respectively. The ability of the PDC activity to utilize desulfo-CoA instead of CoA as cofactor 

supported the previously suggested (Ma et al. 1997) structural role of CoA rather than a catalytic role 

in the pyruvate decarboxylation reaction. 

Like other archaeal PORs characterized so far, including P. furiosus (Blamey and Adams 1993; 

Schut et al. 2001a) and A. fulgidus (Kunow et al. 1995), addition of TPP to the standard assay 

mixture had no effect on the rate of pyruvate oxidation or decarboxylation when the enzymes were 

assayed in the crude extracts or CFEs of T. guaymasensis. Additional TPP also had no impact on the 

PDC activity of the bifunctional enzyme from P. furiosus (Ma et al. 1997 and this study). However, 

incorporation of TPP to the assay mixtures led to a 20-25% stimulation of both oxidation and
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Table 2-7. Structure and activities of PORs and VORs from various organismsa 

Organism Enzymea 

Subunit Specific 

activity 

(U/mg)b 

Reference Subunit 
α (kDa) 

Subunit 
β (kDa) 

Subunit 
γ (kDa) 

Subunit 
δ (kDa) 

Subunit 
ε (kDa) 

Archaeoglobus fulgidus POR 45 33 25 13 - 74 Kunow et al. 1995 
Desulfovibrio africanus POR 45 33 24 13 - 14 Pieulle et al. 1997 
Helicobacter pylori POR 47 36 24 14 - 2.5 Hughes et al. 1995 
Hydrogenobacter 
thermophilus POR 46 31.5 29 24.5 - 3.5 Yoon et al. 1997 

Methanococcus 
maripaludis POR 47 33 25 13 21.5 79 Lin et al. 2003 

Methanosarcina barkeri POR 48 30 25 15 - 25 Bock et al. 1997 

Pyrococcus furiosus POR 45 
44 

31 
36 

24 
20 

13 
12 - 20 

Blamey and Adams 1994 
Blamey and Adams 1993; 
Menon et al. 1998 

Thermococcus litoralis VOR 47 34 23 13 - 46 Heider et al. 1996 
Thermococcus litoralis KGOR 43 29 23 10 - 22.3 Mai and Adams 1996a 
Thermococcus 
guaymasensis POR 46 35 26 12 - 20.2 this study 

Thermococcus profundus VOR 45 31 22 13 - 128 Ozawa et al. 2005 
Thermotoga hypogea POR 44 39 25 13  96.7 this study 

Thermotoga maritima POR 45 
42 

37 
36 

22 
29 

12 
14 - 87.4 

90 
Blamey and Adams 1994 
this study 

 

a POR, Pyruvate ferredoxin oxidoreductase; VOR, 2-ketoisovalerate ferredoxin oxidoreductase; KGOR, 2-ketoglutarate ferredoxin oxidoreductase 
b Expressed as micromoles of pyruvate oxidized per min per milligram of enzyme  
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decarboxylation reactions catalyzed by the purified enzyme from T. guaymasensis. This observation 

was presumably due to a partial dissociation of the TPP from the enzyme during the purification steps 

which is a common feature of bacterial PORs but exceptional within archaeal PORs. Considering that 

even in the absence of additional TPP the enzyme exhibited a significant portion of its POR and PDC 

activities, the apparent kinetic parameters for TPP were not determined.  

The pyruvate oxidation reaction displayed an activity optimum at pH 8.4, which was in accordance 

with the previous findings on the closely related archaeon P. furiosus (Blamey and Adams 1993) as 

well as the hyperthermophilic bacteria T. hypogea and T. maritima (Chapter 3). However, PDC 

activity, displayed an optimal pH of 9.5 (Figure 2-9), which was close to the value reported for the 

similar bifunctional enzyme from P. furiosus. Bifunctional POR/PDC enzymes of Thermotogales 

showed optimal pH for both oxidation and decarboxylation reactions at pH 8.4 (Chapter 3). The 

physiological significances of these differences are not clear. The pH optima for both groups 

(bacterial and archaeal bifunctional PDCs) were higher than that those of the commonly-known 

bacterial and fungal PDCs, which (as summarized in Table 2-8) work more efficiently at slightly 

acidic pHs (Raj et al. 2001; Talarico et al. 2001; Raj et al. 2002).  

Optimal temperature for the POR activity of TgPOR was determined to be above 95°C (Figure 

2-11), which was similar to those of P. furiosus and T. maritima with growth temperature optima of 

about 100°C and 80°C, respectively (Blamey and Adams 1993; Blamey and Adams 1994). However, 

PDC activity of the enzyme had an optimal temperature of 85°C (Figure 2-11). This was not in 

accordance with that of T. maritima and P. furiosus, which both have their temperature optima above 

95°C. The difference between the pH optima for oxidation and decarboxylation activities was also 

observed for the bacterial POR/PDC isolated from T. hypogea (Chapter 3). As in many other studies, 

the temperature ranges higher than 95°C was not investigated due to instability of the assay 

components at such high temperatures as well as the technical difficulties of conducting assays at 

such higher temperatures. The difference between the minimum limit of the decarboxylase reaction 

detection for the POR and PDC activities is presumably reflective of the lower sensitivity limits of 

each corresponding assay. 
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Table 2-8. Properties of commonly-known PDCs characterized from various organisms 

 

a N, normal Michaelis-Menten kinetics; S, sigmoidal kinetics; NR, not reported 
 b One unit of enzyme activity was defined as the amount of enzyme that generates 1 µmol of acetaldehyde per min. 
c Enzymes were incubated at different temperatures ranging from 30-70ºC and residual activity measured at 25ºC, as described in (Raj et al. 2002). When 
provided, the values in parentheses show the residual relative activity. 
d Determined at 60°C. 

Source 
Km for 
pyruvate 
(mM) 

Pyruvate 
kineticsa 

Specific 
activityb 

Thermal 
stabilityc 

Optimal 
Temp. 

Optimal 
pH Enzyme reference 

Zymobacter palmae 0.24 N 130 
66 

60ºC 
(100%) 55ºC 5.5-6.0 Recombinant 

Native Raj et al. 2002 

Sarcina ventriculi 13.0 S 103 N/A 42ºC 6.3-7.6 Native Lowe and Zeikus 1992 

Sarcina ventriculi 2.8 S 67 42ºC 
(100%) 42ºC 6.3-7.6 Recombinant Talarico et al. 2001; Raj 

et al. 2002 

Acetobacter 
pasteurianus 0.39 N 71 60ºC (65%) 65ºC 5.0-5.5 Native Raj et al. 2001; Raj et 

al. 2002 

Zymomonas mobilis 0.3 N 160c 60ºC (65%) 60ºC 6.0 Recombinant 
Native 

Hoppner and Doelle 
1983; Neale et al. 1987 

Saccharomyces 
cerevisiae 3.75 S 40 50ºC 43ºC 5.8-6.0 Native Liu et al. 2001a; Gocke 

et al. 2009a 

Zea mays 0.9 S 96 NR NR 5.8-6.0 Native Lee and Langston-
Unkefer 1985 

Torulopsis glabrata 0.8 S 40 NR 30ºC 6.0-6.5 Recombinant 
Native Wang et al. 2004 
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Both oxidation and decarboxylation reactions catalyzed by the bifunctional enzyme isolated from 

T. guaymasensis were highly oxygen sensitive, that is a typical characteristic of the majority of PORs 

isolated and characterized and in contrary to the commonly-known PDCs. Upon exposure to air, the 

bifunctional POR/PDC of T. guaymasensis lost 50% of its POR activity within 40 min. The time 

taken to lose 50% of the PDC activity of the same enzyme was estimated to be about 30 min (Figure 

2-10).  

Interestingly, only one type of KOR enzyme (i.e. POR) is present in bacterial hyper/thermophiles. 

PORs are purified and characterized from the hyperthermophilic bacterium T. maritima and the 

extremely thermophilic bacterium T. hypogea, which have specific activities of approximately 

90.8±11 Umg-1 and 96.7±15.1 Umg-1, respectively (Blamey and Adams 1994 and this study). The 

physiological significance of having single type of KOR is not understood.  

KORs including POR, VOR, KGOR, and IOR play central roles in amino acid degradation 

pathways of majority of sulfur-dependent hyperthermophilic archaea (Schönheit and Schafer 1995). 

Other than POR, which is involved in the metabolism of both sugars and amino acids, other enzymes 

of the KOR family are found only in hyper/thermophilic heterotrophic and methanogenic archaea 

(Schäfer et al. 1993; Heider et al. 1996; Mai and Adams 1996a; Ozawa et al. 2005). When grown on 

peptides, 2-keto acids produced from transamination of different amino acids are oxidized by the 

corresponding KORs. The 2-ketoglutatrate (KGOR), aromatic amino acids (IOR), the keto acids 

derived from the branched chain amino acids (VOR) and pyruvate (POR) are oxidized to the 

corresponding aryl- or acyl-CoA compounds, with concomitant release of CO2, and finally to organic 

acids. The final step in archaea is catalyzed by the enzymes acetyl-coenzyme A synthase I and II 

(ACS) coupling energy conservation in the form of ATP (Schönheit and Schafer 1995; Mai and 

Adams 1996b; Schut et al. 2001a; Zivanovic et al. 2009). Generally, KORs do not have a broad 

substrate range and act very specifically (Schut et al. 2001a) although some levels of overlapping 

substrate specificity exist, particularly between the Thermococcales POR and VOR (Heider et al. 

1996; Ozawa et al. 2005). 

The microarray studies show a constitutive transcription of KORs, including the por and vor, when 

P. furiosus is grown on peptides (Schut et al. 2001b; Schut et al. 2003). Even when the organism is 

cultivated on maltose, the transcription of the genes encoding four POR subunits displays no major 

change (unlike other KOR genes, which show decreased transcription), which is most likely due to 

the role of POR in the metabolism of pyruvate produced from glycolysis (Schut et al. 2001a; Schut et 
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al. 2003). This is also in accordance with the gene organization of the por/vor operon determined in 

T. guaymasensis, in which three transcription units were identified: the por/vorG, vorDAB, and 

porDAB. Then for each expression of each enzyme (POR or VOR), two of the transcription units 

would be transcribed and eventually translated. Transcription levels of the POR subunit encoding 

genes is not affected during the early (1-2 h) and late (5 h) cold-shock (72ºC) response, which is 

consistent with no change in POR activity (Weinberg et al. 2005). 

It is shown that within Thermococcales, P. furiosus (Kengen et al. 1994), Thermococcus species 

strain ES1 (Ma et al. 1995), T. guaymasensis (Ying and Ma 2011), and T. onnurineus (Moon et al. 

2012) are capable of producing ethanol. Thermococcales have a modified Embden-Meyerhof 

pathway for glycolysis using various novel enzymes including an ADP-dependent glucokinase and 

glyceraldehyde-3-phosphate ferredoxin oxidoreductase (Verhees et al. 2003; Sakuraba 2004). 

Different alcohol dehydrogenases with possible roles in catalysis of aldehyde reduction and alcohol 

production were characterized from these organisms (Ma et al. 1994; Li and Stevenson 1997; Antoine 

et al. 1999; Ying and Ma 2011). ADH isolated and characterized from T. guaymasensis is suggested 

to be involved in the NADP+ regeneration by concomitant production of acetoin and ethanol (Ying 

and Ma 2011). Nevertheless, no commonly-known acetoin-producing enzyme is characterized in 

members of the genus Thermococcus. The enzymes involved in generation of acetoin in various 

organisms (including bacteria and plants) are anabolic acetohydroxyacid syntheses (AHASs). Survey 

of genomes of the members of the genus Thermococcus indicated the absence of AHAS-encoding 

gene homologs from these microorganisms (Chapter 4).  Intriguingly, acetoin can be detected in spent 

cultures of T. guaymasensis (Ying and Ma 2011). In current study, an AHAS activity was detected in 

CFE of T. guaymasensis and T. kodakaraensis (Chapter 4). Purification and characterization of 

enzyme catalyzing this activity would be highly valuable in determining how acetoin would be 

produced in hyperthermophiles. 

The proposed pathway for producing ethanol in T. guaymasensis is presented in Figure 2-12. There 

are two possible pathways for production of acetaldehyde, which are a) the consecutive function of 

POR and/or pyruvate formate lyase (PFL) followed by AcDH (CoA-dependent) and b) the direct 

production of acetaldehyde from pyruvate by the enzyme PDC (Figure 2-12). Genes encoding AcDH 

(CoA-acetylating) were absent from the released genome sequences of hyperthermophiles (this 

study). 
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Figure 2-12. Schematic pathway of ethanol production in T. guaymasensis 

 

AcDH; acetaldehyde dehydrogenase; ACS, acetyl-CoA synthase I and II both types are involved in the ADP-

dependent formation of acetate with different substrate specificities); ADH; alcohol dehydrogenase; PDC, 

pyruvate decarboxylase; POR, pyruvate ferredoxin oxidoreductase. The dashed arrow indicates the speculated 

pathway, while the solid arrows indicate the steps confirmed by enzyme assays.  
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CFEs of different hyperthermophilic bacteria and archaea indeed displayed no CoA-dependent 

AcDH activity when examined under different assay conditions (this study). PDC activity catalyzed 

by the bifunctional POR/PDC that was characterized here would complete our understanding of 

ethanol production in Thermococcales. Considering the very high activity of the zinc-containing 

ADH characterized from T. guaymasensis (223 Umg-1 in the aldehyde/ketone reduction direction) and 

relatively low PDC activity of the enzyme characterized here (3.8 Umg-1), it appears that PDC 

activity is the limiting factor and the reason for low ethanol yield of hyperthermophiles. Although the 

PDC reaction of archaeal hyperthermophiles display higher specific activities compared to bacterial 

hyperthermophiles (Chapter 3), the extents of the PDC activities are residual compared to the 

activities of most commonly-known PDCs from yeasts and bacteria (Table 2-8). In 

hyperthermophiles, pyruvate is most likely catabolized by POR reaction, leading to production of 

acetyl-CoA, which is either used for biosynthesis purposes or converted to acetate by acetyl–CoA 

synthase due to the absence of CoA-dependent AcDH activity (Jenney and Adams 2008). The 

production of acetate is coupled to energy conservation in the form of ATP (Figure 2-12). 

Surprisingly, despite having specialized enzymes for oxidation of different 2-keto acids such as 2-

ketoisovalerate (VOR, 2-ketoisovalerate ferredoxin oxidoreductase), the purified POR from T. 

guaymasensis was able to catalyze the oxidative and non-oxidative decarboxylation of 2-

ketoisovalerate. However, there is always possibilty of residual contamination of purified enzyme 

with the closely related VOR. Due to their very high sequence and size similarities it is possible that 

the two activities were not completey separated from each other during different chromatography 

steps. Such residual contamination was not detected by loading the purified POR on size-exclusion 

chromatography column.  

The PORs isolated and characterized from P. furiosus (Blamey and Adams 1993), A. fulgidus 

(Kunow et al. 1995), and Methanosarcina barkeri (Bock et al. 1996) cannot use 2-oxoglutarate, 

phenyl pyruvate, indole pyruvate, and hydroxy pyruvate as a substrate for oxidation reaction. PfPOR 

was also shown to be unable to use 2-ketoisovalerate as substrate for oxidative decarboxylation 

(Schut et al. 2001a and this study) or non-oxidative decarboxylation (this study). Interestingly, VOR 

isolated from the hyperthermophilic archaeon Thermococcus litoralis, can use 2-ketoisovalerate as 

the best substrate while pyruvate is used as a substrate with a lower (8.5%) activity (Schut et al. 

2001a). 
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Catalytic mechanisms of oxidative decarboxylation of pyruvate by PORs are studied in detail, and 

it is well known that POR uses radical chemistry for the catalysis, which is a distinctive characteristic 

of PORs within the family of the TPP-dependent enzymes (Ragsdale 2003; Buckel and Golding 

2006). Using radical chemistry is also the reason for the extraordinary oxygen sensitivity of almost all 

of PORs studied from different organisms, and the only exception so far, are the enzymes 

characterized from the sulfate-reducing bacterium D. africanus (Pieulle et al. 1995; Pieulle et al. 

1999a; Pieulle et al. 1999b) and the halophilic archaeon H. salinarium (Kerscher and Oesterhelt 

1981a; Kerscher and Oesterhelt 1981b; Plaga et al. 1992). The free-radical chemistry is absent from 

the catalytic mechanism of the analogous aerobic enzyme pyruvate dehydrogenase (PDH), which uses 

lipoic acid and flavin chemistry to catalyze the reaction of hydroxyethyl-TPP (HETPP) and CoA 

(Witzmann and Bisswanger 1998; Tittmann 2009). 

Since PDC activity of bifunctional enzymes characterized from the hyperthermophiles is highly 

CoA-dependent and oxygen-sensitive (Ma et al. 1997 and this study), it is hypothesized that the 

reaction is using a modified version of the free-radical chemistry for the catalysis (Ma et al. 1997 and 

this study), which is different from that of the commonly-known PDCs. In commonly-known PDCs, 

acetaldehyde is released following protonation of the HETPP intermediate, a reaction that is not 

sensitive to oxygen, nor is CoA-dependent (Kluger 1987; Arjunan et al. 1996; Kluger and Tittmann 

2008). Ma et al. (1997) proposed a “switch mechanism’ for the control of acetaldehyde production by 

the bifunctional POR/PDC isolated from P. furiosus, a mechanism that seems to be expandable to the 

newly characterized activities from T. guaymasensis (this study) and the isolated bacterial 

counterparts from T. hypogea and T. maritima  (Chapter 3). In the proposed mechanism, TPP 

activation follows the steps similar to other pyruvate utilizing TPP-dependent enzymes, especially the 

typical example of this group, PDC. Protonation of the N1 atom of the pyrimidine ring by the highly 

conserved glutamine residue results in the induction a 1,́ 4́ -iminotautomer. Due to the common “V-

conformation”, the 4-imino group is located in the proximity of the C2 catalytic centre of the AHAS, 

which results in de-protonation of the C2 atom. The proton abstraction step gives rise to formation of 

a highly reactive ylide (Kern et al. 1997; Lie et al. 2005; McCourt and Duggleby 2006). The 

nucleophilic attack of ylide on the carbonyl group of pyruvate, results in production of 2-(2-lactyl)-

TPP (also known as L-TPP or L-TDP). Binding of CoA at this step is hypothesized to result in 

decarboxylation of L-TPP and production of the resonating carbanion/enamine forms of 2-(1-

hydroxyethyl)-TPP (HETPP), which is a central and highly reactive intermediate state common in 
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TPP-dependent enzymes that act on pyruvate (Candy and Duggleby 1998; Tittmann et al. 2003; 

Kluger and Tittmann 2008). This step is followed by the release of acetaldehyde and possibly CoA 

and regeneration of TPP (Ma et al. 1997). The decarboxylation reaction is suggested to be 

independent of the redox state of the enzyme; however, since the oxidation of HETPP takes place in 

two sequential one-electron steps via a chain of [4Fe-4S] clusters, then the POR activity of the 

enzyme is dependent on the redox state of the enzyme, which is in fact reliant on the redox state of 

the [4Fe-4S] clusters. The latter is determined by the overall redox potential of the cytoplasm that is, 

in turn, dependent on the physiological growth conditions and stages (Ma et al. 1997). 

POR has many general features of moonlighting enzymes, which are generally defined as 

multifunctional proteins that can perform multiple -often unrelated- functions (Piatigorsky et al. 1988; 

Jeffery 1999); it is a highly conserved ancient enzyme (Kletzin and Adams 1996; Zhang et al. 1996; 

Ragsdale 2003) which is  involved in the sugar metabolism and constitutively expressed (Schut et al. 

2003) under different environmental and metabolic conditions (Jeffery 2003; Pomel et al. 2008; 

Huberts and van der Klei 2010). Besides POR/PDC functions, POR is shown to be involved in other 

metabolic (catalytic) and structural (non-catalytic) processes. For instance, in some sulfate-reducing 

bacteria it is shown that POR can function as a hydrogenase in the absence of external electron 

carriers (Menon and Ragsdale 1996). In the pathogenic protozoan, Trichomonas vaginalis it is shown 

that there is a surface-associated version of POR, which although lacking the POR activity, but is 

involved in the trichomonal cell-surface binding to host cells (Meza-Cervantez et al. 2011). In the 

Gram-positive anaerobic pathogenic bacterium Clostridium perfringens and the pathogenic protist 

Enthamoeba histolytica, the enzyme is shown to be involved in the pathogenesis, serving as a 

virulence factor (Thammapalerd et al. 1996; Kulkarni et al. 2007; Kulkarni et al. 2008; Lee et al. 

2011).  

An intriguing feature of the sequenced part of the T. guaymasensis genome was a homologous gene 

encoding a carbon monoxide dehydrogenase-associated protein located downstream of porB encoding 

sequence (Figure 2-2). The protein is an accessory nickel-insertion protein that is involved in the 

maturation of the metalloenzyme carbon monoxide dehydrogenase (CODH, EC 1.2.99.2). The 

enzyme CODH is a metalloenzyme involved in the reversible conversion of carbon monoxide (CO) to 

carbon dioxide (CO2) and is a prerequisite for the autotrophic life. 
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Proteins with high levels of similarity (more than 85% amino acid homology to the retrieved 

sequence) to the identified accessory protein sequence in T. guaymasensis could be found in the 

genomes of Thermococcus sp. strain AM4 (TAM4_1296) and Thermococcus gammatolerans 

(TGAM_0231). The enzyme CODH is not common within the members of the order Thermococcales 

and the genes annotated as CODH and found only in genomes of T. onnurineus (TON_1019), T. 

gammatolerans (TGAM_0824), T. barophilus (TERMP_01183), and Thermococcus sp. strain AM4 

(TAM4_0582). Accordingly, capability of lithotrophic growth under a carbon monoxide atmosphere 

was shown for Thermococcus sp. strain AM4 (Sokolova et al. 2004; Oelgeschläger and Rother 2008; 

Oger et al. 2011) and T. onnurineus (Lee et al. 2008; Yun et al. 2011; Bae et al. 2012). However, in 

the case of T. guaymasensis, the preliminary growth experiments using carbon monoxide as a sole 

carbon source were not conclusive and need to be continued.  
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Chapter 3 POR/PDC bifunctional enzyme from 
Thermotoga maritima and Thermotoga hypogea 
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3.1 Overview 

Bifunctional pyruvate ferredoxin oxidoreductase (POR)/ pyruvate decarboxylase (PDC) enzymes 

from two hyper/thermophilic bacteria Thermotoga maritima (Tm) and Thermotoga hypogea (Th) 

were purified to apparent homogeneity using fast performance liquid chromatography (FLPC) under 

strictly anaerobic conditions. Both purified enzymes shared structural properties that are common to 

the hyperthermophilic PORs and were composed of four different subunits of approximately 45, 35, 

22, and 12 kDa and native molecular masses of approximately 160 kDa suggesting a heterotetrameric 

native structure. The nucleotide sequences of the genes encoding the bifunctional enzyme of T. 

hypogea were determined via primer walking and inverse PCR (IPCR). The amino acid sequence 

showed similarity to other known bacterial and archaeal PORs. 

 Both TmPOR and ThPOR had PDC activities were highly coenzyme A-dependent because no 

acetyl-CoA or acetaldehyde was produced when CoA was omitted from the assay mixture. Addition 

of TPP to the assay mixture stimulated both activities. The purified enzymes displayed POR specific 

activities of 96.7±15.1 Umg-1 (PDC specific activity 1.82±0.44 Umg-1) and 90.8±11 Umg-1 (PDC 

specific activity 1.4±0.15) for T. hypogea and T. maritima, respectively. Both activities were highly 

oxygen sensitive with a half-life (t1/2) of less than 15 min upon exposure to air. The optimal pH for 

the POR and PDC activities of the enzyme purified from both bacteria were 8.4. The optimal 

temperature for the POR and PDC activities of the enzyme from T. maritima was above 95°C, while 

the optimal temperatures for the POR and PDC activities of the enzyme purified from T. hypogea 

were 90°C and 80°C, respectively. The POR and PDC activities of the enzyme from T. hypogea were 

thermostable, with t1/2 of 180 min and 130 min, respectively. The steady-state kinetics parameters 

were determined for both activities of each enzyme. Both of the enzymes had consistently lower 

apparent Km values for pyruvate in the POR activities compared to their PDC activities. On the other 

hand, the apparent Km for PDC activity was much lower compared to that of the POR activities.  

The results showed that POR/PDC bifunctionality was indeed present in bacterial 

hyper/thermophiles. The bifunctional POR/PDC activity along with the previously reported alcohol 

dehydrogenases (ADHs) would be most likely involved in the alcohol fermentation pathway in 

bacterial hyper/thermophiles. 
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3.2 Introduction 

The genus Thermotoga is comprised of a group of Gram-negative heterotrophic bacteria belonging to 

the order Thermotogales. Members of the order Thermotogales are generally characterized by the 

presence of an outer sheath-like structure surrounding the cells called “toga” (Conners et al. 2006; 

Dworkin et al. 2006b). They are mainly isolated from habitats with elevated temperatures, including 

volcanically or geothermally heated terrestrial environments. They are also typically extreme 

thermophiles with optimal growth temperature of 65-79°C or hyperthermophiles that can grow 

optimally at ≥ 80°C (Wagner and Wiegel 2008). However, a more recent st udy has proposed a new 

subclass of the mesophilic “mesotoga” (Nesbø et al. 2006) with the first member of this genus 

cultivated (Ben Hania et al. 2011) and fully sequenced (Nesbø et al. 2012). The representatives of the 

genus Thermotoga have been investigated extensively during the last two decades, mainly for their 

abundance of hydrolyzing enzymes and their ability to use a wide range of substrates, in particular 

both simple and complex carbohydrates including, but not limited to, hexoses, pentoses, xylan, pectin, 

chitin, amorphous cellulose, starch, …etc. (Bronnenmeier et al. 1995; Chhabra et al. 2003; Conners et 

al. 2005; Chou et al. 2008; Frock et al. 2012) Thermotogales are also being studied as model 

organisms for the study of the adaptation to high temperatures (Huber et al. 1986; Conners et al. 

2006).  

 The growth substrates in Thermotogales (predominantly oligosaccharides or oligopeptides) are 

metabolized via the conventional Embden-Meyerhof (EMP) and Entner-Doudoroff (ED) pathways to 

pyruvate and the major products of fermentation are acetate, lactate, alanine, CO2 and H2, (Schröder 

et al. 1994; Schönheit and Schafer 1995; Selig et al. 1997; Conners et al. 2006). It is shown that some 

heterotrophic extreme thermophiles and hyperthermophiles including some members of the order 

Thermotogales, namely Thermotoga hypogea (Fardeau et al. 1997), Thermotoga lettingae (Balk et al. 

2002), Thermotoga neapolitana (de Vrije et al. 2009), Kosmotoga olearia (DiPippo et al. 2009), and 

Thermosipho affectus (Podosokorskaya et al. 2011) are able to produce ethanol. However, the 

pathways and enzymes leading to the production of ethanol are not well understood. Several 

NADPH-dependent alcohol dehydrogenases have been isolated and characterized from different 

hyperthermophiles including the extremely thermophilic bacterium T. hypogea with kinetics data 

suggesting that -at least some of them- are active in the direction of aldehyde reduction and alcohol 

production (Hirakawa et al. 2004; Machielsen et al. 2006; Ying et al. 2007; Ying and Ma 2011). 
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Two enzyme activities are known to be able to produce acetaldehyde from pyruvate: pyruvate 

decarboxylase (PDC, EC 4.1.1.1), which is the enzyme that directly converts pyruvate to 

acetaldehyde via non-oxidative decarboxylation, and coenzyme A-dependent acetaldehyde 

dehydrogenase (AcDH, EC 1.2.1.10) that converts acetyl-coenzyme A to acetaldehyde. The presence 

of at least one of these two activities seem to be essential for any of the biological alcohol production 

pathways in which the enzyme alcohol dehydrogenase (ADH, EC 1.1.1.1) reduces the aldehydes to 

the corresponding alcohols. 

No pyruvate decarboxylase or acetaldehyde dehydrogenase (CoA acetylating) has ever been 

detected from any extremely thermophilic or hyperthermophilic bacterium. In accordance with the 

missing activities, no pdc or acdh gene homologue could be found in the fully sequenced genomes of 

any hyperthermophilic organism (this study). The question rises about how acetaldehyde is produced.  

 There is a report on a bifunctional pyruvate ferredoxin oxidoreductase/pyruvate decarboxylase of 

the hyperthermophilic archaeon Pyrococcus furiosus (Ma et al. 1997). Pyruvate ferredoxin 

oxidoreductase (POR, EC 1.2.7.1) is a metalloenzyme that catalyzes the ferredoxin-dependent 

oxidative decarboxylation of pyruvate to acetyl-coenzyme A (and vice versa) in a TPP and CoA-

dependent reaction. Although pyruvate is the best substrate, the enzyme is indeed able to bind and use 

other 2-keto acids as substrates (Assary and Broadbelt 2011). The redox equivalents during the 

reaction are transferred to low potential single electron carrier oxidants, ferredoxin or flavodoxin. 

POR is widespread in all three different domains of life and is isolated and characterized from 

different archaea, bacteria, and protozoa (Townson et al. 1996; Horner et al. 1999; Pineda et al. 

2010).  

The majority of the PORs isolated from bacteria and protists have homodimeric structures, unlike a 

majority of the archaeal PORs, which are heterotetrameric. There are exceptions in each group, the 

mesophilic bacterium Helicobacter pylori and all of the extremely thermophilic and 

hyperthermophilic bacteria contain the heterotetrameric-type POR (Hughes et al. 1995). 

Alternatively, in halophilic archaeon Halobacterium halobium, POR is a heterodimeric molecule 

composed of two different subunit types (Kerscher and Oesterhelt 1981b; Plaga et al. 1992). It has 

been suggested that mesophilic monomeric and dimeric PORs are results of the fusion of four 

ancestral subunits, which are now present in the hyperthermophilic bacteria and archaea (Kletzin and 

Adams 1996; Zhang et al. 1996).  
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POR was isolated and characterized from the hyperthermophilic fermentative archaeon P. furiosus 

(Blamey and Adams 1993), the sulfate-reducing hyperthermophilic archaeon Archaeoglobus fulgidus 

(Kunow et al. 1995), the hyperthermophilic anaerobic bacterium T. maritima (Blamey and Adams 

1994) the extremely thermophilic bacterium Hydrogenobacter thermophilus (Yoon et al. 1997)as 

well as the hyperthermophilic archaeon T. guaymasensis (Chapter 2). Both types of the PORs are 

TPP- and CoA-dependent and contain at least two [4Fe-4S] clusters. Hyperthermophilic PORs are 

composed of four distinct subunits with holoenzyme being heterotetrameric and molecular weights of 

approximately 120 kDa. However, the POR/PDC bifunctionality was only shown for the enzyme 

from P. furiosus. It was unclear if such POR/PDC bifunctionality was only a property of the POR 

from Pyrococcales or if it would be a universal property of all hyperthermophilic PORs. If such 

bifunctionality exists in the thermophilic and hyperthermophilic bacterial (e.g. Thermotogales) 

enzymes, it would still be intriguing to study the possible contributions of each activity to the 

physiology of the corresponding microorganism.  In this study, the bifunctional POR/PDCs were 

purified from two members of the genus Thermotoga, the hyperthermophilic bacterium T. maritima 

and the extremely thermophilic bacterium T. hypogea and the properties of both activities were 

studied. Although the catalytic properties of the POR activity from T. maritima were mostly 

characterized in a previous study (Blamey and Adams 1994), some of the characterization 

experiments (the optimal pH determination) would be carried out to be compared with the PDC 

activities. 
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3.3 Materials and Methods 

3.3.1 Reagents and chemicals 

Sodium pyruvate, isobutyraldehyde, thiamine pyrophosphate (TPP), dichloromethane, coenzyme A 

(CoASH), HEPES, CAPS, EPPS, lysozyme and methyl viologen (MV) were purchased from Sigma-

Aldrich Canada Ltd. (ON, Canada). Desulfocoenzyme A was kindly synthesized Dr. E. J. Lyon, 

Chemistry Department at Bellarmine University, USA. DNaseI for the cell lysis buffer preparation 

was purchased from Roche (Roche Applied Science, QC, Canada). The chemicals used in the growth 

media were all commercially available. Yeast extract was acquired from EMD (EMD Chemicals, Inc. 

NJ, USA) and trypticase soy broth (TSB) was purchased from Becton-Dickinson (BD Bioscience, 

Mississauga, ON, Canada). All of the FPLC columns and chromatographic media were purchased 

from GE Healthcare (QC, Canada).  

3.3.2 Microorganisms and growth conditions 

Thermotoga maritima (DSMZ 3109) and Thermotoga hypogea (DSM 11164) were obtained from 

DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany) and 

were grown routinely under anaerobic conditions in 20 L glass carboys, and small scale starter 

cultures were grown in the media supplemented with vitamin solutions and no vitamin mixture was 

used for large scale (15L) growth. 

T. maritima was grown anaerobically on glucose and yeast extract at 80°C as described by Huber et 

al. (1986) with modifications as previously described (Yang and Ma 2010). The medium contained 

(per liter) KCl, 2.0 g; MgCl2.6H2O, 1.42 g; MgSO4.7H2O, 1.8 g; CaCl2.2H2O, 0.05 g; NaCl, 20 g; 

(NH4)2CO3, 1.14 g; KH2PO4, 0.05 g; resazurin 0.05 mg, trace minerals [prepared as described by 

Balch et al. (1979)]., 10 ml, Yeast extract 2.5 g, and glucose, 4.0 g. The pH of the medium was 

adjusted to 6.8 before autoclave. 

T. hypogea was grown under anoxic conditions at 70°C as described previously (Fardeau et al. 

1997) with some modifications of the procedure as described elsewhere (Yang and Ma 2005). The 

media contained (per liter) KCl, 0.1 g; MgCl2.6H2O, 0.2 g; CaCl2.2H2O, 0.1 g; NaCl, 20 g; NH4Cl, 

1.0 g; KH2PO4, 0.3 g; K2HPO4, 0.3 g; resazurin 0.05 mg, trace minerals [prepared as described by 

Balch et al. (1979)]., 10 ml, Yeast extract 2.0 g, and trypticase, 2.0 g. The pH of the medium was 

adjusted to 7.3 prior to autoclave (Yang and Ma 2005). 
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The cell density and growth phases of the large-scale cultures were monitored by direct sampling 

using Petroff-Hausser cell counting chamber (1/400 mm2, 0.02 mm deep; Hausser Scientific, 

Horsham, PA) and a Nikon Eclipse E600 phase-contrast light microscope (Nikon Canada, ON, 

Canada). After the growth reached to the late log-phase the cultures were cooled down in an ice slurry 

bucket and centrifuged at 13,000 ×g using a Sharples continuous centrifugation system (Sharples 

equipment division, PA, USA) at 150-200 mlmin-1. The biomasses were snap-frozen in liquid 

nitrogen and subsequently stored at -76°C freezer until use. 

3.3.3 Sequencing of por genes of T. hypogea 

The genome sequence is not available for T. hypogea. The genes encoding the four subunits of POR 

as well as the promoter regions and parts of the neighboring genes were sequenced using a primer 

walking strategy. The primers were designed based on highly conserved regions within por operon of 

the Thermotoga species released by the time of the study, including T. maritima, T. petrophila, and T. 

lettingae. To acchive this amino acid sequences of subunits containing the conserved motifs including 

TPP-binding motif, CoA-binding motif, and [4Fe-4S] cluster-binding motif were aligned and the 

corresponding nucleotide sequences were chosen to design the degenerative primers (Table 3-1). The 

primers were used for amplification of the unknown sequence of DNA from genomic DNA of T. 

hypogea. The PCR products with sizes close to the expected PCR product (estimated based on the 

closely related species) were sequenced in both (forward and reverse) directions. The identity of 

newly sequenced stretches of DNA was confirmed by searching the database for homologous 

sequences. And then used to design the next set of the primers for amplification of the new fragments 

of genomid DNA.After sequencing of each fragment, overlapping primers were designed within the 

newly sequenced fragment to be used for amplification and sequencing of the neighboring DNA 

sequence. The overlapping sequenced segments were subsequently assembled manually. 

Genomes in the NCBI microbial genome database (http://www.ncbi.nlm.nih.gov/genomes/ 

MICROBES/microbial_ taxtree .html) were used to retrieve the amino acid and nucleotide sequences 

of PORs from various hyper/thermophiles. The deduced amino acid sequences were compared to 

protein sequences retrieved from NCBI, Swiss Prot and EMBL. The search in these databases were 

carried out using the programs FASTA, BLAST, and PROSITE. ClustalW version 2.0 (Thompson et 

al. 1994) was used for DNA and/or protein sequence alignments and comparisons.  
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Table 3-1. The primers used for the sequencing of the por operon of T. hypogea 

 

a Primers were designed based on the sequences of the fully-sequenced closely related organisms of the genus 
Thermococcales 
b Melting temperature of the primers as determined using GeneRunner (Hasting software Inc., 1994)  
c expected size of the PCR products based on the sequence of the corresponding fragment in closely 
related organisms 

 

 

 

 

 

 

 

 

 

 

Name Sequencea Length Tm (ºC)b Size(bp)c 

HPORGF 5’-CGTCGTTGTGGTGATCGATG-3’ 20 66.2 
652 

HPORGR 5’-AAACTCWGTYTCAGGTCTCATCTC-3’ 24 57.0 

HPORA1F 5’-AGCGATGACAGCAACCAGTGC -3’ 67.5 21 
683 

HPORA1R 5’-TCGGGAATGGTCTGAACATCC-3’ 68.4 21 

HPORG2F 5’- CAGAAGAAATGATTCAGGCGAAC -3’ 67.9 23 
770 

HPORG2R 5’- ATCCAACCCGAATCTCTCACC -3’ 67 21 

HPORG1R 5’- TCTTGACACGCCAATCACCG-3’ 20 68.7 
646 

HPORG1F 5’- GAAATMMGRTGGCACKSWAGAGC-3’ 23 63 

HPORA2F 5’- ATGGTTGCTCTGGGATCTTCC-3’ 21 67.1 
749 

HPORA2R 5’- CATACGTTCCWCCRTCTCCACC -3’ 22 67.7 

HPORBF 5’- TACAGGGCGTTGAAGAAGGC -3’ 20 67.0 
668 

HPORBR 5’- CCAGTGTRAGYARTCTTTCCCATCTT -3’ 26 64.1 
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3.3.4 Anaerobic techniques 

All of the buffers and reagents were degassed in containers sealed within red rubber sleeved stoppers. 

The stoppers were punctured with needles to allow the alternate exposure to vacuum and nitrogen 

(N2) using a manifold. The nitrogen gas (Praxair, ON, Canada) was deoxygenated by passing through 

a heated column containing a BASF catalyst (BASF, NJ, USA). Assay and purification buffers were 

degassed in magnetically stirred flasks for 30 min, followed by three cycles of flushing/vacuum (each 

3 min). Then a second needle was inserted to flush out more N2 to ensure oxygen-free head space in 

the container (even if there is residual O2 contamination in the manifold system). The containers were 

kept under nitrogen pressure (~3 psi). All of the purification buffers contained 2 mM sodium 

dithionate (SDT) and 2 mM dithiotheritol (DTT) to remove traces of oxygen contamination. 

3.3.5 Preparation of cell-free extracts 

To purify the bifunctional POR/PDC from T. maritima and T. hypogea, the cell-free extract (CFE) 

were prepared from the biomass grown to the late log-phase. Unless otherwise noted all operations 

were performed under anoxic conditions and on ice.  

The cell pellets (50 g of frozen T. hypogea and 60 g of frozen T. maritima biomass) were re-

suspended in the anaerobic lysis buffer [50 mM Tris-HCl, 5% glycerol, 2 mM DTT, and 2 mM SDT, 

0.1 mgml-1 lysozyme, and 0.01 mgml-1 DNaseI, pH 7.8] in a pre-degassed flask. The ratio of the lysis 

buffer to the biomass was 1:5 (v/w) for T. hypogea and 1:4 (w/v) for T. maritima. The cell 

suspensions were incubated at 37°C with stirring for two hours and subsequently were centrifuged at 

10,000 ×g for 30 min at 4°C. The supernatants were designated as cell-free extracts and were 

transferred to anaerobic serum bottles using a syringe pre-rinsed with anaerobic buffer A (50 mM 

Tris-HCl, 5% glycerol, 2 mM DTT, and 2 mM SDT with pH adjusted to 7.8) and used directly as 

starting materials for the following purification steps. 

3.3.6 Enzyme purification 

Protein purifications were carried out using anaerobic multistep chromatography and at ambient 

temperature. The columns were run using a fast performance liquid chromatography (FPLC) system 

and all the materials were obtained from GE Healthcare (GE Healthcare, QC, Canada). Similar 

purification steps were followed for the purification of the POR/PDC bifunctional enzyme from T. 

maritima and T. hypogea. All of the purification steps were conducted under strictly anaerobic 
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conditions and by following the POR activity (since the assay is faster compared to the PDC assay) as 

well as the SDS-PAGE analysis of the chromatography fractions at each step. In the case of T. 

maritima the co-elution of both activities were followed throughout FPLC purification steps by 

assaying both POR and PDC activities. The buffer A was used throughout the purification, which was 

consisted of 50 mM Tris-HCl, 5% glycerol, 2 mM DTT, and 2 mM SDT and pH 7.8.  

The CFEs were diluted two times before being loaded on a diethylaminoethyl (DEAE)-sepharose 

column (5.0×10 cm) pre-equilibrated with anaerobic buffer A. The column was washed with 300 ml 

buffer A and after that a gradient (0-0.5 M NaCl) of buffer B [50 mM Tris-HCl, 5% glycerol, 1 M 

sodium chloride, 2 mM DTT, and 2 mM SDT, pH 7.8] was applied to the column at a flow rate of 3.0 

mlmin-1. The collected fractions were tested for the POR activity. The active fractions (170-220 mM 

NaCl for T. hypogea and 180-240 mM sodium chloride for T. maritima) were combined and loaded 

on a hydroxyapatite (HAP, 2.6×15 cm) column pre-equilibrated with buffer A. After loading of the 

active fractions, the columns were washed with 100 ml of anaerobic buffer A and then eluted with a 

gradient (0-0.5 M potassium phosphate) of buffer C [50 mM Tris-HCl, 5% glycerol, 0.32 M K2HPO4, 

0.18 M KH2PO4, 2 mM DTT, and 2 mM SDT pH 7.8] at a flow rate of 2.0 mlmin-1. The active 

fractions (125-150 mM and 115-135 mM phosphate for T. hypogea and T. maritima, respectively) 

were pooled and loaded on a phenyl sepharose column (PS, 2.6×10 cm) pre-equilibrated with 0.8 M 

ammonium sulphate in buffer A. The column was washed with 50 ml of 0.8 M buffer D followed by a 

linear (decreasing) gradient (0.82-0 M ammonium sulphate) of buffer D [50 mM Tris-HCl, 5% 

glycerol, 2 M ammonium sulphate, 2 mM DTT, and 2 mM SDT pH 7.8] at flow rates of 2.0 mlmin-1 

for elution of proteins. The active enzymes from both T. maritima and T. hypogea were eluted from 

the column as 0.3-0.1 M ammonium sulphate applied to the column for the enzymes. The purified 

enzymes (as judged by SDS-PAGE) were desalted and concentrated using an ultrafiltration device 

(Advantech MFS, Inc., CA, USA) via a 44.5 mm membrane of polyethersulfone and nominal 

molecular weight limit (NMWL) of 50,000 (Millipore, MA, USA) under anaerobic conditions and 

pressure of nitrogen (10-15 Mpa). The concentrated purified protein was subsequently stored in liquid 

nitrogen until use.  
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3.3.7 Protein concentration determination 

The protein concentrations were routinely determined using Bradford dye-binding method (Bradford 

1976) via the reagent purchased from Bio-Rad Laboratories (ON, Canada). Bovine serum albumin 

(BSA) was used for preparation of the standard protein curve as instructed by the manufacturer.    

3.3.8 SDS-PAGE 

The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine 

the enzyme purity and apparent subunit molecular weights. The SDS-PAGE was performed according 

to Laemmli (1970) with acrylamide and molecular weight standards from Bio-Rad (ON, Canada). 

SDS-PAGE was run using a Hoefer™ Mighty Small System (Hoefer Inc., MA, USA) with the gels 

(8×10 cm) prepared and stained with Coomassie Brilliant Blue R250. The de-staining was carried out 

by storing the gel in the de-staining solution (12% 2-propanol and 7% acetic acid) with moderate 

shaking and overnight. 

3.3.9 Estimation of native molecular masses 

The molecular weights of the purified enzymes were estimated by loading the concentrated proteins 

on a size exclusion chromatography column (2.6×60 cm). The HiLoad Superdex-200 column (GE 

healthcare, QC, Canada) pre-equilibrated with buffer C (50 mM Tris, 5% glycerol, 100 mM KCl, pH 

7.8) at the flow rate of 2 mlmin-1. The following standards from Pharmacia protein standard kit 

(pharmacia, NJ, USA) were applied to the column: blue dextran (2,000,000 Da), thyroglobulin 

(669,000 Da), ferritin (440,000 Da), catalase (232,000 Da), aldolase (158,000 Da), bovine serum 

albumin (67,000 Da), ovalbumin (43,000 Da), chymotrypsinogen A (25,000 Da) and ribonuclease A 

(13,700 Da). 

3.3.10 POR assay 

The spectrophotometric measurement of pyruvate- and coenzyme A-dependent reduction of the 

benzyl (or methyl) viologen was used to assay the POR activity as previously described (Wahl and 

Orme-Johnson 1987).  

The catalytic activities of the purified PORs were assayed in duplicate and under strictly anaerobic 

conditions unless otherwise mentioned. The sodium pyruvate was routinely used as the substrate 

(electron donor) and methyl viologen (MV) replaced ferredoxin as the electron acceptors. The assays 
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were carried out at 80°C in an assay mixture (2 ml) composed of 100 mM EPPS, pH 8.4, 1 mM 

MgCl2, 5 mM sodium pyruvate, 0.4 mM TPP, 100 µM coenzyme A, 1 mM of methyl viologen (MV), 

and enzyme in stoppered optical glass cuvettes with 1cm light path (Starna cells, Inc., Atascadero, 

CA, USA). In addition, small amounts of sodium dithionate (SDT) were added to the assay mixture to 

scavenge the residual oxygen and slightly reduce the assay mixture before the addition of the enzyme 

to start the reaction (section 3.3.4).  

The anaerobic assay buffer was transferred to the pre-degassed assay cuvette using a syringe pre-

rinsed with anaerobic buffer for at least three times. The cuvette was incubated in a water-jacketed 

cuvette holder on a Genesys 10 UV-Vis spectrophotometer (Thermo Scientific, MA, USA) and pre-

warmed to the assay temperature (80°C) for 4 min, then it was taken out and the assay components 

were added using a pre-rinsed Hamilton gas-tight syringe (Hamilton company, Reno, NV, USA) in a 

rapid succession the SDT was added at a very small amount until a light blue color appeared in the 

cuvette. Subsequently the cuvette was placed back in the holder for another 30 seconds. The reaction 

was started by adding the enzyme fraction and monitoring the absorbance change at 578 nm. An 

extinction coefficient of methyl viologen is ε578= 9.8 mM-1cm-1 (Yoon et al. 1997; Schut et al. 2001a). 

The oxidation of pyruvate would release two electrons. The activity was determined based on the 

linear part of the enzymatic reaction progress curve and one unit of enzyme activity was defined as 

the oxidation of 1 µmol of the substrate or the reduction of 2 µmol MV per minute. Tests were done 

to determine the linear correlation between the activity and the amount of protein in the assay. 

3.3.11 PDC activity assay 

The pyruvate decarboxylase activity (PDC) was determined by measuring the rate of acetaldehyde 

production. In principle, the acetaldehyde produced during the enzymatic reaction (Figure 3-1, step 

A) was derivatized with a freshly prepared acidic solution of 2, 4-dinitrophenylhydrazine (DNPH) 

also known as Brady’s reagent (Figure 3-1, step B). The reaction of the reagent with aldehyde groups 

creates a yellow-reddish color resulting from the formation of the corresponding hydrazone 

derivative. Subsequent to liquid-liquid phase extraction with a solvent (Figure 3-1, step C), the 

acetaldehyde-DNPH complex was quantified by reverse-phase high performance liquid 

chromatography (RP-HPLC). The general procedures and main steps involved in the assay are 

presented in Figure 3-1. 
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Enzymatic reactions were carried out in duplicate, in stoppered 8 ml vials under anaerobic 

conditions and 80°C unless specified. The standard assay mixture (1 ml final volume) containing 

EPPS buffer (100 mM, pH 8.4), 1 mM MgCl2, 0.1 mM thiamine pyrophosphate (TPP), 10 mM 

sodium pyruvate, and 1 mM coenzyme A (CoASH) was pre-warmed by incubation at 80°C water 

bath for 4 min. When specified, sodium pyruvate was replaced with 10 mM of 2-ketoisovalerate. The 

reaction was started by adding the enzyme (or enzyme containing fraction). Tests were done to make 

sure that there is a linear correlation between the activity and the amount of enzyme in the assay. 

After the enzymatic reaction time (20 min), the reaction was stopped after 20 min unless specified by 

transferring the assay vials on the ice and adding 2 ml of freshly prepared saturated DNPH solution in 

2 N HCl (stirred at room temperature and dark for 1 h). The vials were then incubated overnight at 

room temperature with shaking (150-200 rpm) to allow derivatization of acetaldehyde with the  
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Figure 3-1. General steps involved in PDC activity assay  

 

DNPH-HCl, hydrochloridric acid solution saturated with dinitrophenylhydrazine; DCM, dichloromethane; 

HPLC, high performance liquid chromatography. All assays were carried out at 80°C and under anaerobic 

conditions unless specified. The buffer routinely used for the assay was EPPS (100 mM, pH 8.4). 
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DNPH. The resulting hydrazone (acetaldehyde-DNPH) derivative was then extracted with 1 ml of 

dichloromethane (DCM) by vigorous shaking at room temperature for 15 min. The extraction was then 

repeated for one more time. The organic (lower) phase was then transferred to a new clean vial covered 

with a piece of Parafilm M® membrane with few holes on it. The assay vials were placed in a vacuum 

desiccator covered with aluminum foil (to protect from the light) which was connected to a water pump to 

evaporate the DCM in a fume hood. After evaporation of DCM (about 3-4 h), the resulting yellowish-red 

powder were dissolved in 4ml of pure (HPLC grade) acetonitrile by incubation at 4°C overnight. 

An aliquot of the assay product was filtered through a 0.2 µm nylon syringe filter (National Scientific, 

Rockwood, TN, USA), and analyzed by a Perkin-Elmer LC Series4 HPLC system (Norwalk, CT, USA) 

fitted with a reversed-phase Allure C18 column (150×4.6 mm, 5 μm, 60 Å). Isocratic elution conditions 

with a mobile phase of acetonitrile/water (80:20 v/v) were used at a flow rate of 1 mlmin-1. A 

micrometrics model 788 dual variable wavelength detector (Norcross, GA, USA) was used and operated 

at 365 nm. The sample was applied using a Rheodyne Model 7125 injection valve (Rheodyne Inc., CA, 

USA) with a 20 µl sample loop. The HPLC system was operated at room temperature. The final 

concentration of acetaldehyde and isobutyraldehyde were determined using a calibration curve prepared 

by linear regression plotting of known concentrations of each product which was processed under the 

same assay conditions.  

3.3.12 Biochemical and biophysical characterization 

The optimal pH (pH dependence) was determined for the purified POR from both T. maritima and T. 

hypogea. Sodium pyruvate was used as the substrate for routine assays unless specified. The activity 

assays were carried out in minimum of duplicates, at different pH values ranging from 6.0 to 11. All 

buffers had a concentration of 100 mM. The pH values expressed throughout this manuscript were all 

adjusted and measured at room temperature unless specified differently. Sodium phosphate buffer (pKa 

7.20, ΔpKa/°C=-0.0028) was used for pH values 6.0, 7.0, and 7.5. HEPES buffer (pKa 7.39, ΔPKa/°C=-

0.014) covered pH values 7.5, 8.0, 8.5 and 9.0 and glycine buffer (pKa 9.55, ΔpKa/°C=-0.0025) was used 

for the pH values 9.0, 9.5, 10.0, and 10.5. Finally, for the pH points of 10.0, 10.5, and 11.0 the CAPS 

buffer (pKa 10.40, ΔpKa/°C= -0.009) was used. 

Assays to determine the apparent kinetics parameters of the purified enzyme from T. hypogea and T. 

maritima were all carried out at 80°C and under standard assay conditions using the optimal pH for each 

activity (POR and PDC). The kinetic parameters were determined for pyruvate (substrate) and coenzyme 

A (cofactor) by applying various concentrations of each component and keeping the concentration of 

other assay components invariable. The kinetic parameters were also determined for the artificial electron 
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acceptor, methyl viologen, in the case of ThPOR. All of the assays were carried out in minimums of 

duplicate or triplicate. The activities were assayed with various concentrations and the kinetic parameters 

were calculated from the nonlinear best fit of data to the Michaelis-Menten equation by non-linear 

regression using the SigmaPlot® software (SYSTAT Software Inc., CA, USA). 

The oxygen sensitivity of POR and PDC activities for both purified enzymes from T. maritima and T. 

hypogea were determined by exposing aliquots of each purified enzyme to the ambient atmosphere at 4°C 

by gentle stirring. At different time intervals the enzyme activities were determined and compared with 

the control preparation that was kept at 4°C and under anaerobic conditions and nitrogen pressure.  

The temperature dependencies of both activities were determined by assaying the enzyme activities at 

different temperatures from 30°C to 95°C under anaerobic conditions. The assay mixtures were prepared 

as described previously. The mixture was pre-incubated at each corresponding temperature for four 

minutes, before starting the reaction by adding the enzymes. The enzymatic reaction time for PDC assays 

were 20 min. To determine the half-life of the activities at high temperature, the enzyme was incubated at 

80°C and the residual activities at different time points were determined and compared to unheated 

control. 
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3.4 Results 

3.4.1 Sequence analysis of por genes 

The nucleotide sequences of about 4.9 kb including the POR-encoding genes of the genome of T. hypogea 

were determined using the primer walking strategy and inverse PCR. Four genes corresponding to 

subunits α, β, γ, and δ with 391, 324, 190, and 100 amino acid residues, were sequenced which showed 

similar gene arrangements as other Thermotogales. The sequenced genes are arranged in the porG-porD-

porA-porB order. An overview of the POR open reading frame (ORF) gene arrangement in T. hypogea 

and other Thermotogales was shown in Figure 3-2.  

A phylogenetic analysis of Tm- and ThPOR sequences indicated their close relatedness to each other 

and to other bacterial and archaeal PORs. Each of the subunits was orthologous to corresponding subunits 

in other Thermotogales PORs as well as other keto acid ferredoxin oxidoreductases which are present in 

hyperthermophilic archaea. The closest homologues of the ThPOR seem to be the PORs from T. lettingae 

and T. thermarum (Figure 3-3). Amino acid sequences of TmPOR subunits are highly similar to the one 

from Thermotoga sp. strain RQ2, T. petrophila and T. naphthophila (Figure 3-3). The Thermotogales 

POR subunit sequences were divergent from the Thermococcales counterparts, which were shown by 

their separate clustering as in Figure 3-3. The pairwise comparison of the amino acid sequences of the 

whole length PORs from T. hypogea and T. maritima indicated an overall 76% amino acid sequence 

identity. 

ATG was identified to be the start codon for the translation of porA, porB, and porG, while GTG was 

the start codon for the translatioin of subunit delta (porD) in all Thermotogales. It was found that TmPOR 

contained 15 conserved cysteine residues per tetrameric structure which were all conserved within the 

PORs of the Thermotogales and other hyperthermophilic PORs. The subunits PorA, PorB, PorG, and 

PorD contain 1, 4, 2, and 8 conserved cysteine residues, respectively. However, there was an extra 

cysteine residue in ThPOR subunit alpha (in total two cysteine residues) which was also conserved within 

some (but not all) other members of Thermotogales, including T. lettingae, T. thermarum, and K. oleriae. 

 Sequence analysis confirmed the presence of two typical cysteine-rich ferredoxin type [4Fe-4S] cluster 

motifs (CXXCXXCXXXCP) in subunit delta of Thermotogales PORs as well as the PorD of T. hypogea 

(Figure 3-4). The presence of such motif is a conserved characteristic of all different types of 

oxidoreductases. There is an additional cysteine rich [4Fe-4S] cluster binding motif located in the subunit 

beta which is composed of four highly conserved cysteines. PorB also contains the typical TPP-binding 

motif (GDGX24-27NN) which is a conserved feature of all TPP-dependent enzymes   
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Figure 3-2. Schematic representation of por ORF organization in Thermotogales 

 

ACP, acyl carrier protein; DUF, domain of unknown function  

The genes encoding different subunits of POR are indicated with their corresponding names. The arrangement of the 

analogous genes are presented for T. maritima, T. neapolitana, Thermotoga species strain RQ2, T. petrophila, and T. 

naphthophila (A) T. thermarum; (B) T. lettingae; and T. hypogea (C). 
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Figure 3-3. A rooted phylogenetic analysis of POR subunits from various bacteria and archaea 

 

The amino acid sequences of subunit alpha (A), subunit beta (B), subunit gamma (C), and subunit delta (D) were aligned using the ClustalW multiple sequence 

alignment program. The amino acid sequences used for the generation of tree were retrieved from the genome databases as described in the Materials and 

Methods (section 3.3.3). The amino acid sequences of ThPOR were determined by translation of the nucleotide sequences retrieved by primer walking and 

inverse PCR (section 3.3.3). The numbers at the bottom of each tree indicate the number of the amino acid substitutions. A dotted line on the phenogram 

indicates a negative branch length, a common result of averaging. 

A. fulgidus, Archaeoglobus fulgidus; H. pylori, Helicobacter pylori, H. butylicus, Hyperthermus butylicus; K. oleriae, Kosmotoga oleriae; M. kandleri, 

Methanopyrus kandleri; P. mobilis, Petrotoga mobilis; P. mobilis, Petrotoga mobilis; P. abyssi, Pyrococcus abyssi; P. furiosus, Pyrococcus furiosus; P. 

horikoshii, Pyrococcus horikoshii; Pyrococcus NA2, Pyrococcus species strain NA2; P. yayanosii, Pyrococcus yayanosii;  S. marinus, Staphylothermus marinus; 

S. solfataricus, Sulfolobus solfataricus;  T. africanus, Thermosipho africanus; T. melanesiensis, Thermosipho melanesiensis; Thermococcus AM4, Thermococcus 

species strain AM4;  T. barophilus, Thermococcus barophilus;  T. naphthophila, Thermotoga naphthophila; T. lettingae, Thermotoga lettingae; T. neapolitana, 

Thermotoga neapolitana, T. hypogea, Thermotoga hypogea; T. thermarum, Thermotoga thermarum; T. maritima, Thermotoga maritima; TRQ2, Thermotoga 

species strain RQ2; Thermococcus 4557, Thermococcus species strain 4557; T. sibiricus, Thermococcus sibiricus; T. gammatolerance, Thermococcus 

gammatolerance; T. kodakaraensis, Thermococcus kodakaraensis 
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Figure 3-4. Multiple sequence alignment of part of PorD subunit from Thermotogales  

 

The iron-sulfur binding motif (CXXCXXCXXXCP) is boxed. Thermotoga hypogea, Thermotoga maritima, Thermotoga thermarum, Thermotoga lettingae, 

Thermotoga naphthophila, Thermotoga neapolitana, Thermotoga petrophila, Thermotoga sp. strain RQ2, Kosmotoga oleriae, Petrotoga mobilis, Thermosipho 

melanesiensis, and Thermosipho africanus 
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(Hawkins et al. 1989; Muller et al. 1993). Subunit gamma (PorG) contains a highly conserved coenzyme 

A binding motif (GXXGXG) which is indeed a conserved feature of the hyperthermophilic 2-keto acid 

oxidoreductases. 

For both T. hypogea and T. maritima POR operons, a typical putative Shine-Dalgarno sequence (RBS) 

is located upstream of the porG. The translational stop and start codons of porG-porD, porD-porA, and 

porA-porB are overlapping which is indicative of polycystronic transcription of POR operon in members 

of the order Thermotogales. Such polycystronic arrangement has been previously reported mostly in some 

phage and bacterial operons, for instance in tryptophan biosynthesis pathway of E. coli (trp operon). This 

manner of gene organization is particularly common in case of the multi-subunit enzymes or 

metabolically inter-related enzymes and seems to be a mechanism to assure all of subunits are being 

transcribed and translated simultaneously and to the same extent (Das and Yanofsky 1984; Schoner et al. 

1984). 

3.4.2  Purification of POR/PDC from T. maritima and T. hypogea 

The bifunctional POR/PDC was purified from the CFEs of T. hypogea and T. maritima. Almost all of 

the POR/PDC activities were associated with the soluble fractions after anaerobic centrifugation which is 

consistent with previous finding regarding the solubility of PORs. CFEs of T. hypogea and T. maritima 

contained 2.6 and 5 Umg-1 of the POR, respectively. When assayed under the specified conditions (EPPS 

buffer, 100 mM, pH 8.4 and at 80°C), both CFEs exhibited PDC activity, with thespecific activities of 

0.08 and 0.12 Umg-1 for T. hypogea and T. maritima, respectively. Omitting coenzyme A from the assay 

mixture resulted in no PDC activity in CFE of T. hypogea and a residual PDC activity of about 0.012 

Umg-1 in the CFE of T. maritima. The purified enzymes from both microorganisms exhibited a brownish 

color which is characteristic of the iron-sulfur containing proteins. Typical purification of the POR/PDC 

from T. hypogea and T. maritima were summarized in Table 3-2 and Table 3-3, respectively. 

A considerable part of activity was lost during hydroxyapatite (HAP) chromatography step which is 

similar to what observations reported previously for POR purifications from T. maritima and P. furiosus 

(Blamey and Adams 1993; Blamey and Adams 1994). The purity of the enzymes was judged by SDS-

PAGE analysis (Figure 3-5 A and B) and it had POR specific activities of about 96.7± 15.1 and 90.8±11 

Umg-1 for T. hypogea and T. maritima, respectively. The specific activity of the purified TmPOR was 

fairly close to the previously reported value of approximately 85 Umg-1 (Blamey and Adams 1994).  
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Table 3-2. Purification of bifunctional POR/PDC from T. hypogeaa 

Step 
Total proteinb 

(mg) 

Total activityc 

(U) 

Specific activityd 

(Umg-1) 

Purification 

(fold) 

Recovery 

(%) 

Cell-free extracta 1242  6189  5  1 100 

DEAE sepharose 264  5890  22.8  4.6 95.2 

Hydroxyapatite 32.2  3049  94.5 18.9 49.3 

Phenyl sepharose 11.6  1617  119 23.8 26.2 
 

a CFE was prepared from 50 g of T. hypogea cells (wet weight) 
b As determined by Bradford assay using BSA as the standard protein as described in the Materials and Methods  
section 3.3.7 
c POR activity assays were conducted as previously described in the Materials and Methods  (section 3.3.10) 
d One unit was defined as micromole of pyruvate oxidized per min 
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Table 3-3. Purification of POR/PDC from T. maritimaa 

Step 
Total proteinb 

(mg) 

Total activityc 

(units) 
Specific activityd 

(Umg-1) 

Purification 

(Fold) 

Recovery 

(%) 

Cell-free extracta 1094  3028  2.6  1 100 

DEAE sepharose 348  2320  6.6  2.6 76.7 

Hydroxyapatite 32. 556  17.4  6.7 18.3 

Phenyl sepharose 4  268  78  30 8.9 
 

a CFE was prepared from 60 g of T. maritima cells (wet weight) 
b As determined by Bradford assay using BSA as the standard protein as described in Materials and Methods  
(section 3.3.7)  
c POR activity as described in the material and methods (section 3.3.10) 
d One unit was defined as micromoles of pyruvate oxidized per min  
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Figure 3-5. Analysis of purified POR/PDC from T. maritima (A) and T. hypogea (B) using SDS-

PAGE (12.5%) 

 

 

lane1, 2 µg of purified POR from T. maritima; lane 2, 4 µg purified POR from T. maritima; lane 3, 6 µg purified 

POR from T. hypogea; lanes M, molecular weight standard markers (Bio-Rad Laboratories, ON, Canada) 
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In T. maritima, POR and PDC activities were co-eluted throughout different FPLC steps. Also, POR 

and PDC activities were increased to the same extent after each chromatography step (Figure 3-6 A and 

B). In T. hypogea only the elution of the POR activity was followed during different purification steps, 

and PDC activity was determined just on the resulting purified enzyme fraction. Purified TmPOR and 

ThPOR both catalyzed the non-oxidative decarboxylation of pyruvate with specific activities of 1.82±0.44 

Umg-1 and 1.4±0.15 Umg-1 for T. hypogea and T. maritima, respectively. 

3.4.3 Molecular mass determination 

Each of the purified POR/PDC of T. maritima and T. hypogea showed four bands on 12.5 % SDS-PAGE 

(Figure 3-5 A and B) which is in accordance with the previously studied PORs from hyper/thermophilic 

bacteria and archaea. The estimated apparent molecular masses of the subunits were 46, 35, 23, and 13 

kDa for T. maritima and 45, 35, 22, and 14 kDa for the enzyme from T. hypogea, which are similar to the 

previously purified and characterized PORs from Archaeoglobus fulgidus, P. furiosus, and M. 

maripaludis (Blamey and Adams 1993; Kunow et al. 1995; Lin et al. 2003). When separated on SDS-

PAGE the protein bands had different staining densities, with the smallest band always stained very 

poorly compared to the other three bands (Figure 3-5 A and B). The same phenomenon was observed 

archaeal PORs purified from the hyperthermophilic archaeon A. fulgidus (Kunow et al. 1995). 

 To determine the apparent native molecular masses, aliquots of each purified enzyme was loaded on a 

Superdex-200 gel-filtration chromatography column. The enzymes were eluted as single peaks from gel 

filtration column. The apparent native molecular mass of the bifunctional POR/PDC was estimated to be 

156,769± 6,107 Da for T. hypogea and 159,654±4,526 Da for the enzyme purified from T. maritima, 

which suggested that both enzymes were heterotetramers (αβγδ). These apparent molecular weights were 

in accordance with the previous report on the Thermotogales POR (Blamey and Adams 1994). 

3.4.4 Catalytic properties of the enzymes 

The biophysical and biochemical properties of the purified enzymes from T. maritima and T. hypogea 

were characterized based on their ability for both oxidative (POR) and non-oxidative (PDC) 

decarboxylation of pyruvate. The optimal pH for both POR and PDC activities of the enzyme from T. 

maritima was determined to be 8.4 (Figure 3-7 A and B, respectively). Repeating the optimal pH 

experiment for several times, resulted in the same activity trend, confirming that the higher activity 

observed at pH 8.4 is not an artifactual effect resulting from the poor anoxic conditions during buffer 

preparation steps. Similarly the optimal pH for both POR and PDC activities of T. hypogea was 

determined to be 8.4 (Figure 3-8). 
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Figure 3-6. Co-elution of PDC activity in T. maritima 

 

Different fractions from DEAE-sepharose (A) and Hydroxyapatite (B) chromatography during the purification of T. 

maritima POR. Fractions from each chromatography step were assayed for both the PDC and POR activities. All 

assays were carried out under anaerobic conditions and at 80ºC as described in the material and methods sections 

3.3.10 and 3.3.11.  
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Figure 3-7. pH dependency of POR (A) and PDC (B) activities of bifunctional POR/PDC from T. 

maritima 

 

POR and PDC activities were measured as described previously (sections 3.3.10 and 3.3.11) under strictly anaerobic 

conditions and at 80ºC. The relative activities of 100% equals to highest measured specific activity for both enzymes 

at 80ºC and in EPPS buffer, pH 8.4 (99.1 Umg-1 for POR and 1.8 Umg-1 for PDC activity). The filled circles 

represent the sodium phosphate buffers (pH 6.2, 7.0, 7.5, and 8.0); the open circles represent the EPPS buffer (pH 

8.0, 8.4, 9.0, and 9.5); the filled triangles represent glycine buffer (pH 9.5 and 10); and open triangles represent the 

CAPS buffer (pH 10.5 and 11.0).  
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Figure 3-8. pH dependency of POR (A) and PDC (B) activities of the bifunctional POR/PDC from 

T. hypogea 

 

POR and PDC activities were measured as described previously (sections 3.3.10 and 3.3.11) under strictly anaerobic 

conditions and at 80ºC. The relative activities of 100% equals to highest measured specific activity for both enzymes 

at 80ºC and in an assay mixture containing 100 mM EPPS buffer (pH 8.4), 1 mM magnesium chloride, 10 mM 

sodium pyruvate, 1 mM thiamine pyrophosphate (TPP), and 1 mM CoA   (78.0 Umg-1 for POR and 1.8 Umg-1 for 

PDC activity). The filled circles represent the sodium phosphate buffers (pH 6.2, 7.0, 7.5, and 8.0); the open circles 

represent the EPPS buffer (pH 8.0, 8.4, 9.0, and 9.5); the filled triangles represent glycine buffer (pH 9.5 and 10); 

and open triangles represent the CAPS buffer (pH 10.5 and 11.0).  
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The kinetic constants were calculated using data fitted to the Michaelis-Menten equation for pyruvate, 

TPP, and CoA in the standard POR and PDC assay mixtures. The results of the kinetic studies were 

presented in Table 3-4. It is not clear that how valid are the apparent Km values determined for TPP, as it 

is not a substrate for the enzyme and even without addition of the TPP to the assay mixture, both enzymes 

preserved considerable levels of the activity. In the absence of TPP in the assay mixture, the enzyme of T. 

hypogea and T. maritima showed 67% and 80% of the full activity, respectively. 

The sensitivity toward molecular oxygen is a common property of majority of PORs. The only 

exceptions so far are the enzymes characterized from the halophilic bacterium H. salinarium (Kerscher 

and Oesterhelt 1981b; Plaga et al. 1992) and the mesophilic sulfate-reducing bacterium D. africanus 

(Pieulle et al. 1995; Pieulle et al. 1997; Pieulle et al. 1999b). In Thermotogales, both activities of 

TmPOR/PDC and ThPOR/PDC were extremely sensitive to oxygen. Exposure of the CFEs to air or the 

addition of trace amounts of air during the assay or purification resulted in a complete loss of both (POR 

and PDC) activities. Hence, all of the preparations that were used for the oxygen sensitivity experiment 

contained no extra SDT and DTT, other than the 2 mM SDT and DTT supplemented into the buffer used 

for enzyme dilution. This results in SDT and DTT final concentrations of approximately 0.5-1.0 mM. The 

previously reported half-life (t1/2) of TmPOR at room temperature was about 70 min (Blamey and Adams 

1994). The half-life (t1/2) that was acquired in the course of the experiments in this study was less than 10 

min for the POR and less than 15 min for the PDC activity in TmPOR (Figure 3-9 panels A and C, 

respectively). The differences were presumably the result of differences in the amount of the reducing 

agents (SDT and/or DTT) present in the enzyme preparation as well as the difference in protein 

concentration of the enzyme preparations used for the experiment. The T. hypogea enzyme was 

exceedingly sensitive to oxygen with t1/2 determined for POR and PDC activities to be at 5 min or less 

(Figure 3-9 panels B and D, respectively).  

The temperature dependence of the POR activity of T. maritima was investigated previously, TmPOR 

activity was detected at 35°C and the rate of the reaction constantly increased up to 95°C (Blamey and 

Adams 1994). There was POR activity detected at temperatures from 35ºC and PDC activity was detected 

at temperatures from 60 to 95ºC (Figure 3-10). Similar temperature dependence trend was observed for 

the enzyme isolated from T. hypogea. Optimal temperatures for POR and PDC were approximately 90°C 

and 80°C (Figure 3-11). The differences in the optimal temperatures were observed repeatedly and 

seemed to be reflective of differences between the stability of each activity. 
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Table 3-4. Kinetic parameters for POR and PDC activities of T. hypogea and T. maritimaa 

Source activity 

Pyruvateb TPP (µM)c CoA (µM)d MV (mM)e 
Specific 

Activityf 
Apparent 

Km (mM) 

Apparent 

Vmax (Umg
-1

) 
Apparent 

Km (mM) 

Apparent 

Vmax (Umg
-1

) 
Apparent 

Km (mM) 

Apparent 

Vmax (Umg
-1

) 
Apparent 

Km (mM) 

Apparent 

Vmax (Umg
-1

) 

T. maritima 
PORg 0.4±0.09 81±6.2 43 NR 63±6.4 94±2.1 - - 90.8±11 

PDC 0.92±0.28 1.4±0.04 - - 3.1±1.2 1.3±0.03 NA NA 1.4±0.15 

T. hypogea 
POR 0.13±0.03 99±2.9 14±2.2 58±2.5 21±2.3 73±3.6 0.14±0.03 81.4±5.5 96.7±15.1 

PDC 1.4±0.4 2.5±0.18 - - 1.4±0.02 1.6±0.13 NA NA 1.82±0.44 
 

a NA, not applicable; -, not determined 
b For POR measured at 0.1 mM CoA, 1 mM MV, 0.4 mM TPP, and for PDC at 1mM CoA, 0.1mM TPP 
c For POR measured at 0.1 mM CoA, 1 mM MV, and 5 mM pyruvate 
d For POR measured at 5 mM pyruvate, 1 mM MV, 0.4 mM TPP, and for PDC at 10mM pyruvate, 0.1mM TPP 
f Expressed as micromoles of pyruvate oxidized per min per mg of enzyme 
g Values reported by Blamey et. al. (1994), are 14.5 mM and 340 µM as Km values for the pyruvate and CoA, respectively. The assays were conducted using 
EPPS (50 mM, pH 8.4) and at 80°C 
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The thermal stability was determined for the POR and PDC activities of the enzyme purified from T. 

hypogea by incubation of enzyme aliquots at 80°C and the residual activities were measured at different 

time intervals. Although ideally such assays needed to be done using the same batch of the enzyme for 

both activity assays, two different batches of the enzymes (but from the same purification round) were 

used for these assays, due to technical difficulties (different assay procedures for POR and PDC assays 

and time restraints). The results indicated that both activities were highly stable at 80°C. The time 

required for a 50% loss of POR activity (t1/2) of the purified enzyme (1.7 mgml-1 in 50 mM Tris-HCl [pH 

7.8] containing 0.5-1.0mM SDT and 0.5-1.0mM DTT) was about 180 min (~3 h) at 80°C (Figure 

3-12A). The half-life (t1/2) for PDC activity of the same enzyme (0.9 mgml-1 in 50 mM Tris-HCl [pH7.8], 

containing 0.5-1.0 mM SDT and 0.5-1.0 mM DTT) was about 130 min. 

The ability of bifunctional Tm- and Th-POR/PDC to catalyze non-oxidative decarboxylation of 2-

ketoisovalerate was also investigated. A standard curve was prepared under the same assay conditions as 

PDC assay (anaerobic conditions, 80°C) using various amounts of isobutyraldehyde, the product of the 

non-oxidative decarboxylation of 2-ketoisovalerate. ThPOR could catalyze non-oxidative decarboxylation 

of 2-ketoisolvalerate with a rate of about 10% of the reaction with pyruvate (specific activity 0.14 Umg-1 

compared to 1.4 Umg-1). T. maritima enzyme was also able to catalyze the non-oxidative decarboxylation 

of 2-ketoisovalerate with an activity of about 13% of the reaction with pyruvate (specific activity of 0.18 

Umg-1 compared to 1.4 Umg-1). 
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Figure 3-9. Oxygen sensitivity of POR and PDC activities of T. maritima and T. hypogea 

 

TmPOR (A), ThPOR (B), TmPDC (C), and ThPDC (D) activities were measured in the samples exposed and un-exposed to air. The enzyme assays were 

conducted as described previously (section 3.3.10 and 3.3.11) under strictly anaerobic conditions. The assay mixtures for POR assay contained 100 mM EPPS 

buffer, pH 8.4, 1 mM magnesium chloride, 5 mM sodium pyruvate, 0.4 mM thiamine pyrophosphate (TPP), and 0.1 mM CoA. The assay mixture for the PDC 

assay contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium chloride, 10 mM sodium pyruvate, 0.1 mM thiamine pyrophosphate (TPP), and 1 mM 

coenzyme A. The relative activities of 100% equals to highest measured specific activity at time zero with no exposure to air (90 Umg-1 and 1.6 Umg-1 for T. 

maritima POR and PDC activities, respectively and 66.2 Umg-1 and 2.1 Umg-1 for T. hypogea POR and PDC activities, respectively). The filled circles indicate 

the exposed samples and the open circles indicate the un-exposed controls. 
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Figure 3-10. Temperature dependence of T. maritima PDC activity  

 

PDC assays were conducted as described in Material and Methods (section 3.3.11) standard assay conditions, except 

temperature was varied. The vials containing the standard assay mixture were pre-incubated at each temperature for 

4 min. The reactions were started by adding the enzyme. The assay mixtures (1 ml total volume) contained 100 mM 

EPPS buffer, pH 8.4, 1 mM magnesium chloride, 10 mM sodium pyruvate, 1 mM thiamine pyrophosphate (TPP), 

and 1 mM coenzyme A. 
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Figure 3-11. Temperature dependence of T. hypogea POR and PDC activities 

 

POR and PDC assays were conducted as described in the material and methods (section 3.3.10 and 3.3.11, 

respectively) under standard assay conditions except the temperature was varied. The vials containing the standard 

assay mixture were pre-incubated at each temperature for 4 min. In each case the reactions were started by adding 

the enzyme. The assay mixtures for POR assay contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium chloride, 

5 mM sodium pyruvate, 0.4 mM thiamine pyrophosphate (TPP), and 0.1 mM coenzyme A. The assay mixture for 

the PDC assay contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium chloride, 10 mM sodium pyruvate, 0.1 

mM thiamine pyrophosphate (TPP), and 1 mM coenzyme A. Filled circles indicate the POR activity and the open 

circles indicate the PDC activity. 
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Figure 3-12. Thermal stability of POR (A) and PDC (B) activities of purified ThPOR 

 

Aliquots (approximately 1 ml) of the enzyme were incubated at 80ºC and at each time point the corresponding assay 

were conducted to assay the residual activity. All assays were carried out anaerobically and at 80°C. The assay 

mixtures for POR assay contained 100 mM EPPS buffer, pH 8.4, 1 mM magnesium chloride, 5 mM sodium 

pyruvate, 0.4 mM TPP, and 0.1 mM coenzyme A. The enzyme had 1.7 mgml-1 protein in 50 mM Tris-HCl [pH 7.8] 

containing 2 mM SDT and 2 mM DTT. The assay mixture for the PDC assay contained 100 mM EPPS buffer, pH 

8.4, 1 mM magnesium chloride, 10 mM sodium pyruvate, 0.1 mM TPP, and 1 mM coenzyme A. The enzyme 

preparation had 0.9 mgml-1 protein in 50 mM Tris-HCl [pH 7.8] containing 2 mM SDT and 2 mM DTT. The relative 

activities of 100% equals to highest measured specific activity at time zero with no heat-treatment (69.1 Umg-1 for 

POR activity and 2.1 Umg-1 for PDC activity). 
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3.5 Discussion 

The discovery of ethanologenic capabilities of a growing list of hyper/thermophiles has promted an 

increasing attention on isolation and characterization of the enzymes that are involved in the alcohol 

production pathways. Although the list of the ADHs involved in the process is getting longer, there is not 

much progress in characterization of enzymes involved in production of aldehydes. Unlike the ADHs, 

which are widely distributed (Reid and Fewson 1994; Radianingtyas and Wright 2003), the enzymes that 

catalyze acetaldehyde production are quite rare in prokaryotes. There are two major classes of 

acetaldehyde–producing enzymes in various ethanologenic organisms: the commonly-known pyruvate 

decarboxylases, which are rare in bacteria and completely absent from the hyper/thermophiles, and the 

coenzyme A-dependent acetaldehyde dehydrogenases, which are present in mesophilic and some 

thermophilic bacteria like Thermoanaerobacter (Burdette and Zeikus 1994; Peng et al. 2008; Yao and 

Mikkelsen 2010b) and Geobacillus species (Taylor et al. 2009), but not in any hyperthermophilic 

bacterium or archaeon (this study).  

POR catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2, and the resulting 

reduced ferredoxins are usually re-oxidized by various [NiFe]- and/or [FeFe]-type hydrogenases (Ma et 

al. 1997; Ma et al. 2000; Joe Shaw et al. 2008; Schut and Adams 2009). The POR isolated from the 

hyperthermophilic archaeon P. furiosus can also catalyze the non-oxidative decarboxylation of pyruvate 

to produce acetaldehyde (Ma et al. 1997). It was shown that the same bifunctionality is also present in the 

PORs from the extremely thermophilic bacteria T. hypogea and T. maritima. 

Comparison of the deduced nucleotide sequence of genes encoding the POR of T. hypogea with other 

POR-encoding genes from other fully sequenced members of the Thermotogales have provided a 

complete picture of the POR operon structure and gene organization (Figure 3-2). Unlike the POR/VOR 

operon in the hyperthermophilic archaea, which is transcribed as at least three transcripts, there seems to 

be only one transcript produced from the POR operon of Thermotogales (Kletzin and Adams 1996). The 

genes encoding all of the four subunits have overlapping intercistronic sequences, and the ribosome-

binding sites (RBSs) are located in the coding sequence of the previous gene. This mechanism ensures 

that after its binding to first RBS (porG), the translation of next gene does not require detachment and re-

attachment of the ribosome. This seems to be a mechanism to assure that all four subunits of the enzyme 

are being translated and eventually translated with the same ratio (Nichols and Yanofsky 1979; Schoner et 

al. 1984). That finding is further supportive of the 1:1 subunit stoichiometry of PORs suggested in 

previous studies (Kunow et al. 1995).  



 

123 

 

The deduced amino acid sequence of each subunit showed close relatedness of PORs of T. hypogea and 

T. maritima to other bacterial and archaeal PORs, especially within the members of the order 

Thermotogales (Figure 3-3). General biophysical properties of TmPOR and ThPOR were also quite 

similar to other hyper/thermophilic 2-keto acid oxidoreductases (Blamey and Adams 1993; Blamey and 

Adams 1994; Iwasaki et al. 1995; Ikeda et al. 2006). During purification, POR and PDC activities were 

co-eluted from various chromatography columns, and PDC to POR ratios were constant after each step 

(Figure 3-6) which is supportive of the bifunctionality of the enzymes. Both POR and PDC activities 

were extremely sensitive to exposure to air (Figure 3-9). PORs from T. maritima and T. hypogea were 

found to be heterotetramers (αβγδ structure) which is consistent with previously characterized PORs from 

hyperthermophiles (Blamey and Adams 1993; Blamey and Adams 1994). Thermotogales PORs were 

composed of four subunits with apparent molecular sizes of approximately 45, 35, 22 and 12 kDa, 

respectively (Figure 3-5 A and B) and a native molecular weight of approximately 155 kDa which are 

similar to previously characterized bifunctional POR/PDC isolated from the hyperthermophilic archaeon 

P. furiosus, and PORs from A. fulgidus and M. maripaludis (Blamey and Adams 1993; Kunow et al. 

1995; Lin et al. 2003).  

The optimal pH for POR activity of the enzyme from T. maritima was determined to be pH 8.4 (Figure 

3-7), which is not in agreement with the value of 6.3 previously reported by Blamey and Adams (1994). 

The previous optimal pH was low compared to optimal pH values reported for other PORs (Table 3-5). 

The purified enzyme from T. hypogea showed an optimal pH for both POR and PDC activities at 8.4. The 

optimal pH for the PDC activity of the enzyme from T. maritima was also 8.4 (Figure 3-7). In the case of 

purified enzyme from T. hypogea the optimal pH for both POR and PDC activities was found to be 8.4 

(Figure 3-8). These values were different from the bifunctional POR/PDCs characterized in archaea, 

where the PDCs generally had higher pH optima (pH 10.2 for P. furiosus and pH 9.5 for Thermococcus 

guaymasensis) compared to POR activities, which have optimal pHs closer to neutral (Table 3-5). Taking 

the effect of the temperature on pH of the buffers, the optimal pH for the bifunctional PDC activities (pH 

7.5) at 80ºC is still higher than most of the commonly-known PDCs from different mesophilic bacteria 

and yeasts, which generally have slightly acidic pHs (pH 5.5-6.5) for optimal activity (Raj et al. 2002). 

The only exception is the PDC from the Gram-positive bacterium Sarcina ventriculi with an optimal pH 

value higher than neutral pH with a range of pH of 6.3-7.6 (Lowe and Zeikus 1992; Talarico et al. 2001). 

T. maritima POR is reported to be highly temperature-dependent, and has an optimal temperature 

above 95°C (Blamey and Adams 1994). Its PDC activity also followed a similar increasing trend, and had 

a maximal activity at above 95°C (Figure 3-10). However, POR and PDC activities of T. hypogea 

enzyme showed different thermal dependencies as the POR activity constantly increased, from 30°C to 
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90°C, while PDC activity showed an increasing trend starting from 60°C up to 80°C, and its activity 

decreased at temperatures higher than 80°C (Figure 3-11). 

 The difference between minimum temperatures determined for the activities might be attributed to the 

lower sensitivity limit of the PDC assay procedure compared to POR assay. The thermal liability of the 

assay components does not appear to be a factor, as both (POR and PDC) assay mixtures contains same 

components and, in fact, POR assay mixture contained fewer amounts of pyruvate and CoA and still 

showed full activity at temperatures higher than 80°C. Moreover, all of the assay components were 

relatively stable at high temperatures; the time required for a 1 mM solution of TPP (pH 8.0) to lose 50% 

of its cofactor activity is about 70 min at 80°C. Coenzyme A (1 mM, pH 8.0) is also resistant to heat-

denaturation, with a half-life of about 90 min at 80⁰C (Adams and Kletzin 1996). Such temperature 

difference was not observed for TmPOR/PDC. 

Bifunctional POR and PDC of T. hypogea were thermostable which was shown by their half-lives of 

about 3 h and 2 h at 80°C, respectively (Figure 3-12 A and B). The POR of T. maritima is also stable 

under anaerobic conditions with t1/2 of 11 h, which made the enzyme the most thermostable POR 

characterized so far (Blamey and Adams 1994). PfPOR had t1/2 of only 18 min at 80ºC (Blamey and 

Adams 1993). Since both TmPOR and PfPOR are optimally active at above 90°C, the difference between 

their thermal stabilities is intriguing. However, considering the optimal growth temperature (Topt) of 70°C 

for T. hypogea, and 80°C for T. maritima it was not unexpected that ThPOR would displayed less thermal 

stability than TmPOR.  

Apparently most enzyme-bound TPPs were dissociated during purification of enzymes from T. 

hypogea and T. maritima which is similar to other reports on purification and characterization of PORs 

from T. maritima (Blamey and Adams 1994) and mesophilic bacteria (Wahl and Orme-Johnson 1987; 

Brostedt and Nordlund 1991).The addition of TPP, could result in a full recovery of both POR and PDC 

activities. Only negligible amounts of activity could be detected for both POR and PDC from T. hypogea 

enzyme, if TPP was omitted from the assay mixture (5% and 12% for POR and PDC activities, 

respectively). T. maritima enzyme displayed approximately 30% of its full activity of both POR and 

PDC. 

When CoA was omitted from the enzyme assay mixture, CFE of T. maritima showed some residual 

PDC activity of about 0.012 Umg-1. Such residual activity might be the result of uncharacterized PDC 

activities or the results of residual CoA remained in CFE. The T. maritima acetohydroxyacid synthase 

(AHAS) was found to be able to catalyze non-oxidative decarboxylation of 2-keto acid to 
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Table 3-5. Kinetic properties of some characterized PORsa 

Organism 

Apparent Km value for 
Optimal 

pH 

Specific 

activityb 

(Umg-1) 

Reference Pyruvate 

(mM) 

TPP 

(µM) 

CoA 

(µM) 

MV 

(µM) 

Trichomonas vaginalis 0.14 - 2.5 - 7.0c 18 Williams et al. 1987; Meza-Cervantez et al. 2011 

Archaeoglobus fulgidus 0.3 - 20 100 7.5 74 Kunow et al. 1995 

Clostridium acetobutylicum 0.33 - 3.7 - 7.5 25 Drake et al. 1981; Meinecke et al. 1989 

Desulfovibrio africanus 2.5 - 0.5 500 9.0 14 Pieulle et al. 1995 

Halobacterium salinarium (halobium) 1.1 - NR - 9.0 6 Kerscher and Oesterhelt 1981b 

Helicobacter pylori NR - NR - 8 2.5 Hughes et al. 1995 

Hydrogenobacter thermophilus 3.45 - 54 - 7.6 3.46 Yoon et al. 1997 

Klebsiella pneumoniad 2.0 - 4 - 7.0 6.0 Shah et al. 1983; Wahl and Orme-Johnson 1987 

Methanosarcina barkeri 0.07 - 6 70e 7.0 25 Bock et al. 1996 

Pyrococcus furiosus 0.46 - 110 - 8.0 21 Blamey and Adams 1993; Schut et al. 2001a 

Thermococcus guaymasensis 0.53 - 70 90 8.4 22.3 this study 

Thermotoga hypogea 0.13 14 21 140 8.4 96.7 this study 

Thermotoga maritimaf 0.4 43 63 - 8.4 90.8 Blamey and Adams 1994, this study 

Trichomonas vaginalis 0.14 - 2.5 - 7 18.3 Williams et al. 1987 
 

a -, not reported 
b Expressed as micromoles of pyruvate oxidized per min per mg of enzyme  
c The optimal pH is not reported in the reference, and this is the pH used for the assay 
d Pyruvate flavodoxin oxidoreductase. 
e Benzyl viologen. 
f Km values reported by Blamey et al. (1994) are 14.5 mM, 340 µM, for pyruvate, CoA, respectively. The optimal pH is 6.3 
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corresponding aldehydes (Chapter 4). However, such “alternative PDC activity” was not present in 

the CFE of the closely related bacterium T. hypogea, that most likely lacks the AHAS (Chapter 4). 

Moreover, there might be some other acetaldehyde-producing activities not detectable under the 

conditions used for the assay. 

The PDC to POR ratios of the enzymes from hyper/thermophilic bacteria T. hypogea and T. 

maritima were much lower (>10 times) than the ratios from the hyperthermophilic archaea P. furiosus 

(Ma et al. 1997 and this study) and T. guaymasensis (Chapter 2). The physiological implications of 

the higher POR activity levels (at least 4–fold) in Thermotogales (hyper/thermophile bacteria) 

compared to the same activity in the archaeal counterparts (Thermococcales) are not well understood.  

Bifunctional T. hypogea POR/PDC had lower apparent Km values for pyruvate in POR activity 

(0.13 mM) than the 1.4 mM for the PDC activity (Table 3-4), suggesting that under normal 

physiological conditions, POR is most likely the dominant catalytic activity. Apparent Km values of 

TmPOR, are reported for both pyruvate and CoA (Blamey and Adams 1994) which are unusually 

high (14.5 mM and 340 µM, respectively), compared to the corresponding Km of the similar enzyme 

of the closely related T. hypogea POR as well as the other PORs (Table 3-5). Therefore, the kinetic 

parameters were determined again for pyruvate and CoA, for TmPOR. As expected, the Km values 

were much closer to the apparent Km values reported from the bacterial and archaeal PORs (0.4 mM 

and 63 µM for pyruvate and CoA, respectively) (Table 3-4). 

The PORs from hyper/thermophilic archaea and bacteria have higher (~10 times) apparent Km 

values for CoA than their mesophilic counterparts (Table 3-5). The Km values of the mesophilic 

PORs have at least an order of magnitude lower Km values for CoA. This effect cannot be the result of 

the thermal liability of the CoA, since, as mentioned, CoA is quite stable at 80°C. Surprisingly, the 

bifunctional PDC activities from bacteria had a lower apparent Km for CoA which was lower than that 

for the POR of the same enzyme (Table 3-4). 

Among the only known PDCs characterized from Gram-negative bacteria Z. mobilis (Hoppner and 

Doelle 1983; Neale et al. 1987) and Z. palmae (Raj et al. 2002), Acetobacter pastorianus (Raj et al. 

2001; Raj et al. 2002), and the Gram-positive bacterium S. ventriculi (Lowe and Zeikus 1992; 

Talarico et al. 2001), only the enzyme from S. ventriculi does not follow the Michaelis-Menten 

kinetics for pyruvate and displays a sigmoid saturation curve which is typical characteristic of fungal 

and plant PDCs (Lee and Langston-Unkefer 1985; Wang et al. 2004). The bifunctional POR/PDC 

studied from hyperthermophiles displayed Michaelis-Menten kinetics for pyruvate (Ma et al. 1997 



 

127 

 

and this study). The apparent pyruvate Km values for pyruvate of the bacterial PDCs were all about 

0.3 mM (Raj et al. 2001; Raj et al. 2002), which is lower than the values determined for PDCs from 

T. hypogea and T. maritima, which were 1.4 mM and 0.92 mM, respectively (Table 3-4). 

 Both bifunctional enzymes of T. maritima and T. hypogea were able to catalyze the non-oxidative 

decarboxylation of 2-ketoisovalerate in the presence of CoA, although at a much lower rate compared 

to pyruvate. When pyruvate was substituted with 2-ketoisovalerate in PDC assays, the enzymes from 

T. maritima and T. hypogea displayed approximately 13% and 10% of full activity with pyruvate, 

respectively. Surprisingly, none of these enzymes were able to catalyze the oxidative decarboxylation 

of 2-ketoisovalerate when measured in the oxidation direction. It was reported that TmPOR is unable 

to catalyze the oxidative decarboxylation of 2-oxoglutarate, indolyl pyruvate, and phenyl pyruvate 

(Blamey and Adams 1994), however, the ability of the enzyme to catalyze the oxidation of 2-

ketoisovalerate was not examined at that time. Here, it was shown that TmPOR could catalyze the 

oxidative decarboxylation of 2-ketoisovalerate with only about 0.7% of the rate of POR oxidation, 

and ThPOR cannot catalyze the oxidative decarboxylation of the 2-ketoisovalerate. It is found that 

only one type of 2-keto acid oxidoreductase (i.e. POR) is present in prokaryotic and eukaryotic 

microorganisms which is different from the situation in hyperthermophilic archaea, which contain at 

least four types of the 2-keto acid ferredoxin oxidoreductases (namely POR, VOR, KGOR, and IOR). 

Therefore, it would be expected that the bacterial POR have a wider substrate range than the archaeal 

enzyme. However, TmPOR has strict substrate specificity for pyruvate. Similarly, ThPOR had a very 

low apparent Km value for the pyruvate (Table 3-5) and could not use 2-ketoisovalerate as substrate 

in the oxidation direction implying the high affinity of the enzyme to use pyruvate as substrate. 

T. hypogea is capable of producing ethanol (Fardeau et al. 1997). An iron-containing ADH with 

lower apparent Km values for reducing acetaldehyde and butyraldehyde compared to that for ethanol 

and butanol was isolated from these bacteria suggesting (Ying et al. 2007) its physiological role in 

production of alcohols from aldehydes. However, no aldehyde-producing activity was known in T. 

hypogea or any other hyper/thermophilic bacterium. Here the PDC activities of both TmPOR and 

ThPOR were confirmed - for the first time- that are most likely involved in aldehyde production in 

hyperthermophilic bacteria. CFE of T. hypogea contains approximately 0.2 Umg-1 of ADH activity 

(Ying et al. 2007) compared to specific PDC activity in CFE of about 0.08 Umg-1, indicating that the 

production of ethanol is limited by availability of aldehydes, the substrates used by ADH.  
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Chapter 4 AHAS/PDC activities of recombinant AHAS 
from Thermotoga maritima 
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4.1 Overview 

Acetohydroxyacid synthase (AHAS) activity was determined to be present in the cell-free extracts of 

different archaeal and bacterial hyperthermophiles including Thermococcus guaymasensis, Thermococcus 

kodakaraensis, Pyrococcus furiosus (Pf), Thermotoga maritima (Tm), Thermotoga hypogea, and 

Thermotoga neapolitana.  Higher AHAS activity was found in the organisms harboring the BCAA 

biosynthesis operon (ilv operon) with an optimum at neutral pH, and lower activity in members of the 

genus Thermococcus which have no ilv operon in their genomes at higher pH (pH 10.5), suggesting the 

presence of a possible alternative uncharacterized enzyme with AHAS activity. 

T. maritima and P. furiosus cell-free extract showed AHAS specific activities of 100.2±9 mUmg-1 and 

73±6 mUmg-1, respectively. The genes encoding the catalytic and regulatory subunits of AHAS from both 

organisms were cloned and over-expressed in an Escherichia coli strain containing a plasmid expressing 

tRNAs that are rare in E. coli. The recombinant proteins were purified using a simplified procedure 

including a heat-treatment step to precipitate E. coli proteins. The catalytic (large) subunit of T. maritima 

AHAS was purified approximately 30-fold following two chromatography steps, resulting in an AHAS 

activity of approximately 163 Umg-1. Its native molecular mass was determined to be 156±6.2 kDa 

suggesting a dimeric structure. The regulatory (small) subunit had no catalytic activity and was purified to 

homogeneity via denaturing immobilized metal affinity chromatography (IMAC). The purified regulatory 

subunit showed a native molecular mass of approximately 37.7±0.4 kDa, suggesting a dimeric structure. 

The recombinant T. maritima enzyme also had pyruvate decarboxylase (PDC) activity that catalyzed the 

reaction from pyruvate to acetaldehyde and CO2 at a rate approaching 10% of AHAS activity.  

Reconstitution of the catalytic and regulatory subunits led to increased AHAS and PDC activities that 

were consistent with the findings on bacterial and fungal AHASs. The addition of both TPP and FAD in 

the assay mixture resulted in increased levels of both AHAS and PDC activities, indicating the cofactors 

(TPP and FAD) were partly dissociated from the recombinant enzymes during purification.  Both 

activities had the same pH and temperature optima of 7.0 and 85ºC, respectively. The recombinant 

AHAS/PDC was thermostable with a half-life of approximately 23 h at 80ºC when incubated in sealed 

vials anaerobically without stirring. When stirred under aerobic conditions, both activities had a half-life 

(t1/2) of approximately 30 min. Under anaerobic conditions the half-life of the enzyme was prolonged to 

approximately 85 min and 110 min for AHAS and PDC activities, respectively. Without stirring, it was 

quite stable and remained highly active even after 5 days at 4ºC under anaerobic conditions, suggesting 

the destructive effect of stirring on the enzyme. This was the first characterization of a hyperthermophilic 

AHAS and the discovery of 2-keto acid decarboxylase activity in an anabolic AHAS. 
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4.2 Introduction 

Hyperthermophiles are organisms that exhibit optimum growth temperatures of 80°C or above (Stetter 

2006; Wagner and Wiegel 2008). During the last decade there has been enormous attention toward 

biotechnological and industrial applications of hyperthermophiles. One promising avenue is to use the 

organisms (or their metabolites) in bio-processing of various substrates toward production of value-added 

commodities (e.g., alcohols). However, advances are hindered by the relatively poor understanding of the 

physiology and metabolic pathways of these organisms.  

Ethanol has been detected as an end-product of fermentation in many extreme thermophiles and some 

hyperthermophiles (Kengen et al. 1994; Ma et al. 1995; Balk et al. 2002; de Vrije et al. 2009; DiPippo et 

al. 2009; Podosokorskaya et al. 2011; Ying and Ma 2011). Although some of the enzymes (e.g., alcohol 

dehydrogenases) involved in the ethanol fermentation pathways have been isolated and characterized 

from hyper/thermophilic archaea and bacteria, there is limited information available about the other 

enzymes involved in these metabolic pathways. One of the essential questions about the ethanol 

production by hyper/thermophiles, is the source of the aldehydes which are the substrates for the alcohol 

dehydrogenases for the production of alcohols. 

Acetaldehyde is the key precursor in the ethanol production pathway and it can be produced by either 

non-oxidative decarboxylation of pyruvate catalyzed by TPP-dependent enzyme pyruvate decarboxylase 

(PDC, EC 4.1.1.1) or the reduction of acetyl-CoA catalyzed by a CoA-dependent acetaldehyde 

dehydrogenase (AcDH, EC 1.2.1.10). However, search of the available genome sequences of the 

thermophilic and hyperthermophilic bacteria and archaea against the commonly-known (yeast and 

bacterial) PDC and AcDH amino acid sequences, failed to detect any orthologs (this study). 

Consequently, the potential role of alternative enzyme(s) for the catalysis of the acetaldehyde production 

from pyruvate was considered. One such enzyme was discovered to the bifunctional pyruvate ferredoxin 

oxidoreductase/pyruvate decarboxylase (POR/PDC) enzyme, which was described first time in the 

hyperthermophilic archaeon Pyrococcus furiosus. This bifunctional enzyme was previously shown be 

able to catalyze both oxidative and non-oxidative decarboxylation of pyruvate to produce acetyl-CoA and 

acetaldehyde, respectively (Ma et al. 1997) and the bifunctionality seems to be a universal trait of 

hyperthermophilic (archaeal and bacterial) PORs.  

When the genome sequences of hyper/thermophilic archaea and bacteria were searched for the 

orthologues of the commonly-known PDCs, the closest hit (when present) is almost exclusively the 

enzyme acetohydroxyacid synthase (Table 4-1). Like PDC, acetohydroxyacid synthase is a thiamine 

pyrophosphate (TPP) - and Mg2+-dependent enzyme. Given the high homology levels of the AHAS to the 
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Table 4-1. Search of the genome sequences of some hyperthermophiles against the commonly-

known PDC sequencesa 

Organism Annotation 

Sa
cc

ha
ro

m
yc

es
 

ce
re

vi
si

ae
 

Sa
rc

in
a 

ve
nt

ri
cu

li 

Ze
a 

m
ay

s 

Zy
m

om
on

as
 

m
ob

ili
s 

As
pe
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ill
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N
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ot
ia

na
 

ta
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m

 

Archaeoglobus fulgidus acetolactate synthase III, (large subunit) 23.5 20.4 17.2 19.7 21.2 17.4 
Methanothermobacter          
thermautotrophicus 

acetolactate synthase large subunit 
pyruvate dehydrogenase / acetolactate 
acetolactate synthase, large subunit 

21.9 
18.1 
20.5 

21.3 
16.6 
22.5 

18.8 
18.2 
19.6 

19.9 
18.1 
20.2 

20.6 
16.6 
21.2 

16.8 
13..9 
17.6 

Pyrococcus abyssi GE5 acetolactate synthase, large subunit 22.1 22.8 20.5 22.8 22.5 14.8 
Pyrococcus furiosus acetolactate synthase 22.2 22.2 19.3 22.6 23.9 14.5 
Pyrococcus horikoshii OT3 426aa long hypothetical protein 0.5 0.5 0.4 0.2 0.1 0.4 
Saccharomyces cerevisiae yeast PDC isozyme 1 100 36.9 31.0 29.6 47.0 24.5 
Sulfolobus acidocaldarius thiamine pyrophosphate enzyme 21.4 20.4 20.4 20.4 20.3 17.1 
Sulfolobus solfataricus acetolactate synthase large subunit 21.7 21.6 21.7 20.8 22.8 15.8 
Sulfolobus tokodaii str.7 acetolactate synthase large subunit 21.4 20.5 21.0 20.4 22.4 16.0 
Thermoanaerobacter 
tengcongensis 

thiamine pyrophosphate-requiring 
enzyme [acetolactate synthase] 

21.5 23 19.4 18.8 22.1 17.5 

Thermococcus 
kodakaraensis KOD1 

hypothetical protein TK1705 
hypothetical protein, DUF1102 family 

0.1 
3.7 

0.7 
0.5 

1.2 
3.0 

0.8 
1.4 

0.3 
0.2 

0.7 
0.8 

Thermotoga maritima acetolactate synthase, large subunit 21.6 19.4 17.4 19.6 21.4 15.0 
Thermus thermophilus acetolactate synthase large 22.2 20.3 20.3 20.4 22.5 17.7 
Zea mays maize PDC isozyme 1 31.0 28.8 100 39.4 32.4 54.9 
Zymomonas mobilis pyruvate decarboxylase 29.6 30.8 39.4 100 29.7 29.8 
 

a Genomes in the NCBI microbial genome database (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree 

.html) were used to retrieve the amino acid and nucleotide sequences of PDCs from various organisms. The deduced amino acid 

sequences were compared to protein sequences retrieved from NCBI, Swiss Prot and EMBL. The search in these databases were 

carried out using FASTA, BLAST, and PROSITE.  
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commonly-known PDCs and considering the high frequency of multi-functionality in the superfamily of 

TPP-dependent enzymes, the question arises: can the enzyme AHAS also catalyze the non-oxidative 

decarboxylation of pyruvate to acetaldehyde? 

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6, formerly and EC 4.1.3.18) can be divided into two 

classes based on the metabolic/physiological roles, substrate specificity and cofactor (FAD) requirements, 

the anabolic and catabolic AHASs (Duggleby and Pang 2000; Duggleby et al. 2008). The general 

properties of anabolic and catabolic AHASs are summarized in Table 4-2. 

The anabolic AHAS catalyzes the first common step in the biosynthesis of the branched-chain amino 

acids (valine, leucine, and isoleucine) as well as the precursors derived from the same biosynthetic 

pathway (e.g. coenzyme A and pantothenate). The enzyme is relatively prevalent in archaea, bacteria, 

fungi, algae, and plants, but is absent from animals (Umbarger and Brown 1958; Radhakrishanan and 

Snell 1960; Grimminger and Umbarger 1979). The anabolic AHAS catalyzes two parallel reactions 

during which one molecule of pyruvate is decarboxylated, and the resulting “active aldehyde” is 

condensed with either a second molecule of pyruvate or alternatively a molecule of 2-ketobutyrate 

producing acetolactate (precursor of valine and leucine) and 2-aceto-2-hydroxybutyrate (precursor of 

isoleucine), respectively (Figure 4-1 and Figure 4-2).  

The anabolic enzymes characterized contain one molecule of FAD per catalytic site (Chipman et al. 

2005). In all of the cases studied to date, the enzyme is composed of two subunits: a larger active subunit 

known as catalytic subunit (generally 59-66 kDa) and a smaller (catalytically inactive) subunit known as 

regulatory subunit (generally 9-35 kDa). The regulatory subunit mediates the regulation of the catalytic 

subunit through the feedback regulation by one or more of the branched chain amino acids (Weinstock et 

al. 1992). In all of the anabolic AHASs studied to date, the holoenzyme (catalytic and regulatory subunits 

together) has the highest specific activity. Addition of the purified regulatory subunit to the catalytic 

subunit leads to at least a several-fold increase in the specific activity of the reconstituted holoenzyme 

(Chipman et al. 2005; McCourt and Duggleby 2006; Duggleby et al. 2008; Gedi and Yoon 2012). 

The catabolic AHAS (also known as acetolactate synthase; ALS) is usually approximately 60 kDa in 

size, involved in channeling the excess pyruvate to the less inhibitory product 2-acetolactate and which is 

converted to 2, 3-butanediol under certain fermentation conditions and by the help of the enzyme acetoin 

decarboxylase (Störmer 1968b; Störmer 1968c; Störmer 1968a). Unlike the anabolic enzyme, the 

catabolic enzyme is composed of single subunit and is FAD-independent. Catabolic AHAS is less 

common compared to the anabolic enzyme and is only found in certain bacterial species including 

Klebsiella, Bacillus species, and some lactic acid bacteria (Duggleby and Pang 2000; Pang et al. 2004). 
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Table 4-2. General properties of anabolic and catabolic AHASs 

Characteristics Anabolic (AHAS) Catabolic (ALS) 

Structure Two type of subunits One type of subunit 

Optimum pH 7-9 ~6 

FAD 
requirement + - 

Inhibition by 
BCAAs + - 

Inhibition by 
acetate - + 

Prevalence 
Many plants, algae, 

fungi, bacteria, and 
archaea 

few bacteria including Enterobacter, some 
Klebsiella, Serratia and Bacillus species, certain lactic 

acid bacteria  

Gene 
organization 

In BCAA pathways 
operon In butanediol operon 

 

“+” means that the trait is present and “–“ means the trait is absent from each specific class of enzyme.
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Figure 4-1. Reactions catalyzed by anabolic AHAS and catabolic AHAS (also known as ALS) 

 
The upper reaction is catalyzed by both anabolic and catabolic acetohydroxyacid synthase and the lower reaction is only 
catalyzed by the anabolic enzyme 
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Figure 4-2. Biosynthesis pathways of branched chain amino acids and the butanediol pathway (Boxed) 
 
TD, threonine deaminase (EC 4.3.1.19); KARI, ketol-acid reductoisomerase (EC 1.1.1.86); DHAD, dihydroxyacid dehydratase (EC 4.2.1.9) ; TA, transaminase 
(EC 2.6.1.42, EC 2.6.1.66, EC 2.6.1.6); IPMS, 2-isopropylmalate synthase (EC 2.3.3.13); IPMD, isopropylmalate dehydratase (EC 4.2.1.33); IPMDH, 3-
isopropylmalate dehydrogenase (EC 1.1.1.85); AD, acetolactate decarboxylase (EC 4.1.1.5); AR, acetoin reductase (EC 1.1.1.4). 
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Unlike the anabolic enzyme (which produces both 2-acetolactate and 2-ketobutyrate), the catabolic 

enzyme reacts almost exclusively with pyruvate as the second substrate and is only able to produce 2-

acetolactate (Figure 4-1). The unstable 2-acetolactate can be either decomposed to diacetyl 

(spontaneously) or be decarboxylated to acetoin by the enzyme acetolactate decarboxylase. The enzyme 

acetoin reductase (butanediol dehydrogenase) can catalyze the reversible conversion of acetoin to 2, 3-

butanediol as well as the reduction of the diacetyl to acetoin (Figure 4-2).  

Several anabolic AHASs from various organisms have been characterized including different isozymes 

(isozymes I, II, and III) from Escherichia coli (Sella et al. 1993; Vyazmensky et al. 1996; Hill et al. 

1997), and Salmonella (Schloss et al. 1985), Corynebacterium glutamicum (Keilhauer et al. 1993), 

Klebsiella pneumoniae (Peng et al. 1992), different pathogenic mycobacteria species (Grandoni et al. 

1998; Zohar et al. 2003; Choi et al. 2005; Singh et al. 2011), Shigella sonnei (Lim et al. 2011) and 

Haemophilus influenzae (Gedi et al. 2011), Saccharomyces cerevisiae (Pang and Duggleby 1999), 

Arabidopsis thaliana (Singh et al. 1991), and Nicotiana tabacum (Yoon et al. 2003). Considering the 

absence of the BCAA biosynthesis pathway in animal hosts, the anabolic AHAS has attracted great 

attention as a potential candidate for development of new antimicrobial drugs and herbicides and has been 

explored extensively during the last few years.  

Very few AHASs have been investigated from the third domain of life (archaea) as well as the bacterial 

extremophiles. An oxygen-sensitive AHAS from the mesophilic archaeon Methanococcus aeolicus was 

previously isolated and characterized (Xing and Whitman 1994; Bowen et al. 1997). An AHAS with 

properties comparable with the bacterial counterparts has been purified and characterized from the 

halophilic archaeon Haloferax volcanii (Vyazmensky et al. 2000). The genes encoding a thermophilic 

AHAS have been expressed from the thermophilic bacterium Bacillus stearothermophilus. Like its non-

thermophilic  counterpart, the larger subunit is catalytically active and the holoenzyme can be 

reconstituted by titration with the regulatory subunit resulting higher specific activity at 55°C (Porat et al. 

2004). However, to date no extreme- or hyperthermophilic AHAS have been studied per se, and the 

properties of the potential PDC activity have not been investigated.  

The few bacterial lineages that contain extremely thermophilic or hyperthermophilic members include 

Thermotogaceae, Aquificaceae, and Thermodesulfobacteriaceae. The genus Thermotoga represents one 

of the deepest and most slowly evolving phylogenetic lineages within the domain Bacteria and is 

composed of rod-shaped anaerobic heterotrophs with an outer “sheath-like” envelops known as “toga” 

(Bocchetta et al. 2000). Thermotoga maritima is the model organism in the order of Thermotogales with a 

growth temperature range of 55-90°C and an optimum growth temperature of 80°C (Huber et al. 1986). 
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Thermotoga hypogea is an extremely thermophilic bacterium with an optimal growth temperature of 70°C 

and maximum growth temperature of 90°C (Fardeau et al. 1997).  

The hyperthermophilic archaea are found in diverse archaeal lineages; members of the order 

Thermococcales are the most commonly isolated archaeal hyperthermophiles. Pyrococcus furiosus is the 

model organism of the genus Pyrococcus and is a strictly anaerobic organotrophic hyperthermophile with 

optimum growth temperature of 100°C. It is capable of growth on complex proteinaceous substrates 

including yeast extract supplemented with tryptone and few sugars including maltose (Fiala and Stetter 

1986).  

It has been shown that the T. maritima does not require addition of any BCAA to the growth medium 

for optimal growth, suggesting the organism is equipped for biosynthesis of these compounds (Rinker and 

Kelly 2000). However, characterization of the catalytic steps in BCAA production in hyperthermophilic 

anaerobic bacteria can certainly begin with an examination of the key enzyme of the pathway: AHAS. 

None of the enzymes involved in the BCAA biosynthetic pathway has been studied in any other 

hyperthermophile. Also there are few studies pertaining to the amino acid requirement of 

hyperthermophiles (Table 4-3), and the results of existing studies are sometimes controversial or even 

contradictory (e.g. see the studies on P. furiosus in Table 4-3). These discrepancies presumably result 

from the use of different media compositions and growth conditions. In addition, in some cases the result 

of the minimal amino acid requirement studies are not in agreement with the information from the 

genome sequences. For instance, the results of the minimal amino acid requirement for P. furiosus is 

dissimilar in two independent studies conducted by Hoaki and coworkers (1994) and Ravenand 

coworkers (1997), with the earlier one being contradictory with that of the genomic information which 

confirmed the presence of a full ilv operon in P. furiosus (see Table 4-3). 

In this study, AHAS activity was investigated in the cell lysates of different hyperthermophilic archaea 

and bacteria. The results were then compared with published genomic information (where available) 

concerning the presence or absence of BCAA biosynthesis operon and/or the results of the growth 

requirement experiments in the presence of different amino acids. The genes encoding the hypothetical 

catalytic and regulatory subunits of AHAS from the hyperthermophilic bacterium T. maritima and the 

hyperthermophilic archaeon P. furiosus were heterologously expressed in the mesophilic bacterial host E. 

coli. The presence of pyruvate decarboxylase activity was confirmed for the recombinant T. maritima’s 

enzyme; the general properties of both PDC and AHAS activities were characterized after purification.  
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Table 4-3. Amino acid requirements of Thermotogales and Thermococcales 

Organisma BCAA requirementb 
BCAA 

operonc 
Study type Reference 

Pyrococcus furiosus 
Requires val  and ile, poor growth 

w/o leu 
+ 

Amino acid and growth 

requirement study, 

Hoaki et al. 1993; 

Hoaki et al. 1994 

Pyrococcus furiosus Does not need any of BCAAs to grow + 
Minimum medium 

development 

Raven and Sharp 

1997 

Pyrococcus abyssi 
Minimal medium contains val, leu, 

and ile 
+ 

Minimal amino acid 

requirement 
Watrin et al. 1995 

Pyrococcus abyssi Requires val, leu, and ile + 
genome analysis, 

confirmed experimentally 

Cohen et al. 2003 

 

Pyrococcus strain 

GB-D 
Requires val, leu, and ile NA 

Amino acid and growth 

requirement study 

Hoaki et al. 1993; 

Hoaki et al. 1994 

Pyrococcus 

horikoshii 

The genes for val, leu, and ile are 

missing from the genome 
- Genomic data comparison Maeder et al. 1999 

Thermococcus 

hydrothermalis 

Minimal medium contains val, leu, 

and ile 
NA 

Minimum medium 

development 
Postec et al. 2004 

Thermococcus 

marinus 
BCAAs are essential for growth - 

Original paper on the 

species, experimental 
Jolivet et al. 2004 

Thermococcus 

gammatolerans 
Requires val and leu, but not ile - 

Genome analysis and 

proteomics, experimental 

Zivanovic et al. 

2009 

Thermococcus celer Requires val, leu, and ile NA 
Amino acid and growth 

requirement study 

Hoaki et al. 1993; 

Hoaki et al. 1994 

Thermococcus 

kodakaraensis 

The BCAA biosynthesis genes are 

missing; requires val, ile, and leu for 

growth 

- Genome analysis Fukui et al. 2005 

Thermococcus 

onnurineus 

Lacks the genes for biosynthesis of 

BCAA, has the genes for their 

transport 

- Genome analysis Lee et al. 2008 

Thermococcus 

litoralis 
Requires val, leu, and ile NA 

Amino acid and growth 

requirement study 

Rinker and Kelly 

2000 

Thermotoga 

maritima 

Does not need any amino acid in the 

minimal medium 
+ 

Amino acid and growth 

requirement study 

Rinker and Kelly 

2000 

Thermotoga 

neapolitana 

Does not need any amino acid in the 

minimal medium 
+ 

Amino acid and growth 

requirement study 
Hoaki et al. 1993 

 
a The published studies for Thermococcales and Thermotogales were examined 
b BCAA, branched-chain amino acids; val, valine; leu, leucine; ile, isoleucine; “+”, the BCAA operon is present 
in the genome; “-”, the BCAA operon is not present; NA, the genome sequence is not available 
c The presence of the complete BCAA biosynthesis operon was examined in the available genomes 
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4.3 Materials and Methods 

4.3.1 Reagents and chemicals 

Sodium pyruvate, thiamine pyrophosphate and flavin adenine dinucleotide (FAD), acetoin (3-

hydroxybutanone), isobutyraldehyde, 2-ketoisovalerate, and lysozyme were purchased from Sigma-

Aldrich Canada Ltd. (ON, Canada). Other chemicals including isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and dithiotheritol (DTT), alpha naphthol and creatine were all of reagent grade and purchased 

from Fisher Scientific (Ottawa, ON, Canada). The yeast extract was acquired from EMD (EMD 

Chemicals, Inc. NJ, USA) and Bacto-tryptone was purchased from Becton-Dickinson (BD Bioscience, 

Mississauga, ON, Canada). Proteinase K, restriction enzymes and markers for the agarose gel 

electrophoresis were all purchased from Fermentas (Ontario, Canada) and Phusion® High-Fidelity DNA 

polymerase (NEB, ON, Canada) was used for amplification of DNA.  

4.3.2 Microorganisms and plasmids 

Thermotoga maritima (DSMZ 3109), Thermotoga hypogea (DSM 11164), Thermotoga neapolitana 5068, 

Thermococcus guaymasensis DSM11113, and Pyrococcus furiosus (DSM 3638) were obtained from 

DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany) and 

Thermococcus kodakaraensis KOD1, was acquired from the Japan type culture collection (RIKEN 

BioResource Center, Saitama, Japan). All of the organisms were grown routinely under anaerobic 

conditions in 20 L glass carboys. In all cases, the small scale starter cultures were grown in media 

supplemented with vitamin solutions and no vitamin mixture was used for large scale (15 L) growth. 

The hyperthermophilic archaeon T. guaymasensis was grown in batch cultures under anaerobic 

conditions at 88°C on glucose, yeast extract and trypticase soy broth in the absence of elemental sulfur 

(Canganella et al. 1998; Ying and Ma 2011). The medium contained (per liter) KCl, 0.33 g; MgCl2.6H2O, 

2.06 g; MgSO4.7H2O, 3.4; NH4Cl, 0.25 g; CaCl2.2H2O, 0.14 g; K2HPO4, 0.14 g; Na2SeO3, 0.01 mg; 

NiCl2.6H2O, 0.01 mg; NaHCO3, 1.0 g; NaCl, 18; resazurin, 1.0 mg; cysteine-HCl, 0.5g; Na2S.9H2O, 0.5g; 

yeast extract, 5.0 g; trypticase soy broth, 5.0 g; glucose, 5.0 g; HEPES, 5.2 g; vitamin solution, 10 ml and 

trace mineral, 10 ml [prepared as described previously by Balch et al. (1979)]; for large scale growth no 

HEPES and no vitamin solution was added to the medium. The pH of the medium was adjusted to 7.0 

after preparation. The growth substrate (glucose) was sterilized by filtration using a syringe filter and 

added to the medium before inoculation with the starter culture. 

T.  kodakaraensis KOD1 was cultivated under anaerobic conditions at 85°C as described previously 

(Atomi et al. 2004) using sodium pyruvate as substrate and without addition of elemental sulfur and 
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vitamin supplements. The medium used for growing T. kodakaraensis contained (per liter): KCl, 0.33 g; 

MgCl2.6H2O, 2.8 g; MgSO4.7H2O, 3.4 g; NH4Cl, 0.25 g; NaCl, 15 g; K2HPO4, 0.3 g; FeSO4.7H2O,0.025 

g; NaBr, 1 mg, Na2S.9H2O, 0.5 g; resazurin 1mg; yeast extract, 5.0 g; tryptone, 5.0 g and 10 ml of trace 

minerals [prepared as described by Balch et al. (1979)], the pH of the medium was adjusted to 7.0. The 

growth substrate was prepared separately and sterilized by filtration using a 0.45µm syringe filter, and 

added before inoculation to a final concentration of 0.5% (5.0 g per liter). 

P.  furiosus was grown on maltose, yeast extract, and tryptone and with elemental sulfur (S0) at 95°C 

using a procedure described previously (Fiala and Stetter 1986). The medium for the growth of P. 

furiosus contained (per liter) KCl, 0.33 g; MgCl2.6H2O, 2.75 g; NH4Cl, 1.2 g; NaCl, 13.8 g; KH2PO4, 0.5 

g; CaCl2.2H2O, 0.75 g; NaBr, 0.05 g; KI, 0.05 g; H3BO3, 0.015 g; SrCl, 7.5 mg, citric acid, 5.0 mg; 

maltose, 5.0 g; yeast extract, 5.0 g; Na2S.9H2O, 0.5 g and resazurin 1 mg. The pH of the medium was 

adjusted to 6.8. 

The hyperthermophilic bacterium T. maritima was grown anaerobically on glucose and yeast extract at 

80°C as described by Huber et al. (1986) with modifications as previously described (Yang and Ma 

2010). The medium contained (per liter) KCl, 2 g; MgCl2.6H2O, 1.42 g; MgSO4.7H2O, 1.8 g; 

CaCl2.2H2O, 0.05 g; NaCl, 20 g; (NH4)2CO3, 1.14 g; KH2PO4, 0.05 g; resazurin 0.05 mg, trace minerals 

[prepared as described previously by Balch et al. (1979)]., 10 ml, yeast extract 2.5 g, and glucose, 4.0 g. 

Before autoclave the pH of the medium was adjusted to 6.8 using 1 M NaOH. 

T. hypogea and T. neapolitana cell biomasses were from another study and was grown at 70°C and 

77°C on glucose using the procedure modified from (Fardeau et al. 1997) as described by Yang and Ma 

(2005; 2010). In each case, growth was monitored by direct sampling from cultures and direct 

microscopic cell count using a Petroff-Hausser cell counting chamber (1/400 mm2, 0.02 mm deep; 

Hausser Scientific, Horsham, PA) and a Nikon Eclipse E600 phase-contrast light microscope (Nikon 

Canada, ON, Canada). The late log-phase cultures were cooled down in an ice slurry bucket and 

centrifuged at 13,000 ×g using a Sharples continuous centrifugation system (Sharples equipment division, 

PA, USA) at 150-200 mlmin-1. The resulting biomass was snap-frozen in liquid nitrogen and then stored 

at -76°C until the time of use. 

Escherichia coli strains DH5α (BRL, CA, USA) was used for recombinant DNA propagation and E. 

coli BL21 (DE3) Rosetta 2 [F – ompT hsdSB (rB- mB–) gal dcm pRARE27 (CamR)] (Novagen, WI, USA) 

was used for overexpression of AHAS subunits under the control of T7 polymerase of the plasmid 

pET30a (+) (Novagen, WI, USA). The recombinant E. coli strains were grown in LB broth (10 g Bacto-

Tryptone, 5.0 g yeast extract, 10 g NaCl per liter, pH 7.5) supplemented with kanamycin (30 µgml-1) and 
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chloramphenicol (34 µgml-1) for plasmid maintenance. All materials and columns for fast protein liquid 

chromatography (FPLC) were obtained from GE Health (Quebec, QC, Canada). 

4.3.3 CFE preparation from hyperthermophiles 

The procedure for cell-free extract preparation was carried out under anaerobic conditions and at 4°C 

unless specified otherwise. For each organism, the frozen biomass was thawed in a pre-degassed flask and 

then re-suspended in anaerobic lysis buffer (10 mM Tris-HCl, 5% glycerol, 2 mM SDT, 2 mM DTT, 0.01 

mgml-1 DNase, and 0.1 mgml-1 lysozyme, pH 7.8) with 1:9 ratio (w/v). To study their impact on activity, 

TPP and FAD were included into the composition of the lysis buffer with the final concentrations of 0.1 

mM and 0.01 mM, respectively. The suspension was incubated at 37°C for 1.5-2 h and then centrifuged at 

10,000 ×g for 30 min. The supernatant was transferred to a new anaerobic serum bottle and used as the 

cell-free extract for further experiments. The success of cell lysis was confirmed by light microscopy 

under 400X magnification. 

4.3.4 Genomic DNA isolation from T. maritima and P. furiosus 

The genomic DNA of the native organisms was isolated for amplification of the genes encoding the 

catalytic and regulatory subunits of AHAS. The biomasses were prepared by harvesting logarithmic 

growth phase cultures and storing the harvested cells at -76°C until the time of use. For purification of 

chromosomal DNA, 0.1 g of each frozen biomass was transferred in a 1.5 ml tube and washed twice and 

each time with 500 µl of Tris-EDTA buffer (Tris-HCl, 10 mM and 1 mM EDTA, pH 7.5). After each 

wash, the cells were pelleted by centrifugation and the supernatant was decanted. To the pellet from the 

last wash 437 µl of Tris-EDTA buffer, 3 mg lysozyme (Sigma, ON, Canada) added and the mixture was 

incubated at 37⁰C for 1 h. Then, 0.6% SDS (Bio-Rad Laboratories, ON, Canada) and 60 µg of proteinase 

K (Fermentas, ON, Canada) were added. The tube was incubated for another 1hr at 37°C.  

To remove the proteins and other contaminants from the preparations, 500 µl of the phenol: chloroform 

solution (1:1 v/v) added and mixed for 2-3 min. The tubes were centrifuged for 2 min at 10,000 ×g and 

then the upper phase containing the genomic DNA was transferred to a new 1.5ml tube using a clean 

Pasteur pipette. The genomic DNA was precipitated by adding 0.3 volumes of 10 M ammonium acetate 

and 0.6 volumes of 2-propanol and gently mixing the tube contents. The tubes were then centrifuged at 

10,000 ×g and the supernatant was discarded. To the pellet, 500 µl of 70% ethanol was added and the 

centrifugation step repeated. The pellets were then re-suspended and dissolved in Tris-EDTA buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.5). 
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A NanoDrop spectrophotometer (Thermo Scientific, DE, USA) was used for quantification of the 

purified chromosomal DNAs as well as checking the quality. An absorbance ratio (A260/A280) of 1.8-2.0 

was considered an indicator of the purity of the isolated genomic DNA. 

4.3.5 Genome searches 

The NCBI Microbial Genomes database (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_ 

taxtree.html) was searched for homologs of bacterial and plants pyruvate decarboxylase gene (pdc), 

catabolic AHAS genes (als) and anabolic AHAS genes (ilv). The putative hits were also examined for 

presence of the conserved motifs and binding sites. 

4.3.6 Construction of expression plasmids 

Standard procedures were followed for all DNA manipulation, competent cell preparation and 

transformation according to the methods described by Sambrook and Russell (2001). The coding 

sequences of the putative catalytic (TM0548, PF0935) and regulatory (TM0549, PF0934) subunits of 

AHAS were PCR-amplified using genomic DNA of T. maritima and P. furiosus and gene-specific 

primers (Table 4-4). For simultaneous amplification of coding sequence of the catalytic and regulatory 

subunits from T. maritima, the primers TMCSF and TMRSR were used as forward and reverse primers, 

respectively. 

The amplified coding sequences of the putative catalytic and regulatory subunits were cloned 

separately into pET30a (+) inducible overexpression vector to produce fusion proteins with N-terminal 

histidine tags. The final plasmid constructs for T. maritima and P. furiosus putative genes are presented in 

Figure 4-3 and Figure 4-4, respectively. The recombinant plasmids were transformed into E. coli DH5α 

and subsequently were isolated again and introduced into E. coli BL21 (DE3) Rosetta 2 cells. 

4.3.7 Purification of recombinant proteins 

The expression conditions were optimized by varying the induction temperatures. Induction in LB 

medium was carried out at 18°C; room temperature (24ºC), 30ºC and 37ºC with shaking at 180-200 rpm 

for about 18-24 h. Cells were lysed in the cell lysis buffer and resulting lysates were loaded 

polyacrylamide gels for SDS-PAGE to determine the optimal temperature for production of each soluble 

recombinant protein. Three different preparations were electrophoresed depending on the extent of 

treatment: the crude extract (CE) resulted from lysis of cells in the cell lysis buffer, the cell-free extract 

(CFE) was the supernatant from centrifugation of crude extract; and heat-treated crude extract (HTCE) 

was supernatant resulting from centrifugation of heat-treated (80°C for 1 h) crude extract. 
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Table 4-4. Oligonucleotide primers used for amplification of the coding sequences of the putative 

catalytic and regulatory subunits of ilvB and ilvN genes from T. maritima (Tm) and P. furiosus (Pf) 

Primer name Sequencea Restriction 
site 

TMCSF 5´-ATACATATGGTTCACGTGAAGATGAAAGG-3´ NdeI 
TMCSR 5´-TACTCGAGTCTTTCATCACCTCTCCTGCTCT-3´ XhoI 
TMRSF 5´-ATACATATGACGGACCAGATTCGAGAGC-3’ NdeI 
TMRSR 5´-ATCTCGAGGAATCCCTCCCCTTCTTTTACG-3´ XhoI 
PFCSF 5´-ATACATATGGAAATGTCCGGTGCAAAAGCC-3´ NdeI 
PFCSR 5´-ATCTCGAGATACCTTGTCACAACGTTTGAGATG-3´ XhoI 
PFRSF 5´-ATACATATGGAGTTCGAAGCCATGAAG-3´ NdeI 
PFRSR 5´- ATCTCGAGGTACCTATTCATCATATTTCTCAATATGT-3´ XhoI 

a Nucleotide sequences added to incorporate the restriction sites are indicated in bold 
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Figure 4-3. Construction of expression plasmids for T. maritima AHAS 

 

 Plasmids containing ilvN, the putative regulatory subunit (A), ilvB, the putative catalytic subunit (B), and (ilvB-

ilvN) the coupled catalytic and regulatory subunits (C) of acetohydroxyacid synthase from T. maritima. For each 

clone, the coding sequences and their transcription direction is indicated with grey arrows; in all cases the amplified 

coding sequences were digested with NdeI˗XhoI and inserted into the pET30a(+) vector; the plasmid pETTm0548/9 

was constructed by insertion of the consecutive catalytic and regulatory subunits (ilvB˗ilvN) in their natural order. 

The plasmid maps were generated using the SeqBuilder software (Lasergene, DNAStar, Madison, USA). 
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Figure 4-4. Construction of expression plasmids for P. furiosus AHAS 

 

Plasmids containing the ilvN gene encoding a putative regulatory subunit (A) and ilvB gene encoding a putative 

catalytic subunit (B) of acetohydroxyacid synthase from P. furiosus; for each clone, the coding sequences and their 

transcription direction is indicated with grey arrows; in both cases the amplified coding sequences were digested 

with NdeI˗XhoI and inserted into the pET30a vector. The plasmid maps were generated using the SeqBuilder 

software (Lasergene, DNAStar, Madison, USA). 
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The recombinant proteins were purified from the corresponding recombinant strains. The E. coli 

Rosetta 2 cells harboring the recombinant plasmids were grown in a 4 L flask at 37°C with shaking at 

200rpm until the OD600 reached 0.6-0.8. The cultures were then induced with 0.4 mM of isopropyl β-D-1-

thiogalactopyranoside (IPTG) as recommended by the manufacturer of the vector. The induced cultures 

were then incubated at 37°C overnight. The biomass of the recombinant strain was then harvested by 

centrifugation at 10,000 ×g for 30 min at 4°C using a RC6-plus centrifuge in a SLA-3000 rotor (Thermo 

Scientific, MA, USA). After collection and weighing, the cell-pellets were snap-frozen in liquid nitrogen 

and stored at -76°C until use.  

During purification steps when necessary, the eluted fractions containing the recombinant proteins were 

concentrated using an ultrafiltration device (Advantec MFS, Inc., CA, USA). The ultrafiltration was 

carried out under anaerobic conditions and pressure of nitrogen (10-25 PSi). The purified proteins were 

subsequently stored in liquid nitrogen until use.  

Since small subunit of TmAHAS has no detectable activity, the presence of desired protein and its 

purity was checked by subjecting the chromatography fractions to SDS-PAGE. The cell lysis and 

purification steps were all carried out under anaerobic conditions. No activity could be detected in the cell 

lysates (prepared under different conditions including crude extract, heat-treated crude extract, and cell-

free extract (CFE) with and without heat-treatment as well as the CFE prepared under denaturing 

conditions and re-natured by dilution in non-denaturing buffer. There was no detectable activity present in 

the recombinant clones expressing catalytic and regulatory subunits of PfAHAS either alone or mixed 

together and hence the purification was not further pursued for these two clones. 

4.3.7.1 Heat-denaturation of the native E. coli proteins 

To determine the optimum temperature for denaturation of the native E. coli (host) proteins, the crude 

extract was prepared from the strain expressing the catalytic subunit of TmAHAS. The crude extract was 

then heat-treated under anaerobic conditions for different time periods (0, 0.5, 1, 1.5 h) and at two 

different temperatures of 70°C and 80°C. The preparations then were centrifuged at 10,000 ×g and the 

supernatant (HTCE) was transferred to a new anaerobic container. The protein concentration (Bradford 

assay) and purity (SDS-PAGE), as well as the AHAS activity (AHAS activity assay) was determined and 

compared for each time point. 

4.3.7.2 Purification of recombinant catalytic subunit 

The purification steps were carried out at room temperature and under anaerobic conditions unless 

otherwise specified. SDS-PAGE and AHAS activity assay were used to determine the purity of the 

proteins at each step. The cell lysis was achieved by thawing the cell pellet in anaerobic lysis buffer [(10 



 

147 

 

mM Tris-HCl, 1 mM EDTA, 50 mM sodium chloride, 5% (v/v) glycerol, 0.5 mgml-1, 1 mM sodium 

dithionite (SDT) and 1 mM dithiotheritol (DTT), 1 mM TPP, and 10 µM FAD, pH 7.8] under nitrogen 

pressure. The suspension was incubated at room temperature for 90 min to promote the cell lysis and then 

0.01 mgml-1 DNase I and 5 mM MgCl2 were added. Incubation continued for another 30 min. The lysate 

was then heat-treated to denature the unwanted native proteins from the expressing host (the recombinant 

E. coli Rosetta 2 strain). Cell lysis was verified by examining a sample of the prepared lysate under a light 

microscope to confirm the absence of intact cells as an indicator of complete cell lysis. The cell debris 

and denatured proteins were removed by centrifugation (10,000 ×g for 30 min) and the supernatant was 

transferred to a new anaerobic container. 

The heat-treated CFE was loaded on a Ni Sepharose™ High Performance (GE Healthcare, QC, 

Canada) column pre-equilibrated with anaerobic binding buffer (20 mM phosphate buffer, 0.5 M sodium 

chloride, 10 mM imidazole, and 5% glycerol, 1 mM SDT, 1 mM DTT, pH 8.0) and eluted with an 

increasing linear gradient of imidazole from 10 to 250 mM.  

4.3.7.3 Purification of recombinant regulatory subunit 

The recombinant regulatory (small) subunit was expressed mostly in the form of insoluble inclusion 

bodies (IBs) under normal growth conditions in accordance with a previous report (Petkowski et al. 

2007). The recombinant small subunit was purified by denaturing immobilized nickel affinity 

chromatography followed by on column renaturation as described previously (Petkowski et al. 2007). All 

purification steps were carried out at 4°C unless otherwise mentioned and SDS-PAGE was used to 

determine the purity of the proteins at each step. To solubilize the IBs, 5 M urea was incorporated into the 

composition of the lysis buffer [(10 mM Tris-HCl, 1 mM EDTA, 50 mM Sodium chloride, 5% (v/v) 

glycerol, 0.5 mgml-1 lysozyme, 1 mM SDT and 1 mM DTT, 1 mM TPP, and 10 µM FAD, pH 7.8] and 

buffer A (50 mM phosphate buffer, 20 mM Tris, 0.5 M NaCl, 5 M urea, 10 mM imidazole, 5% glycerol, 1 

mM SDT, and 1 mM DTT, pH 8.0). The cells were lysed using the same procedure as for catalytic 

subunit. 

After the heat precipitation step (80°C for 1hr), the CFE was loaded on Ni Sepharose™ High 

Performance (GE Healthcare, QC, Canada) column equilibrated with buffer A (50 mM phosphate buffer, 

20 mM Tris, 0.5 M NaCl, 5 M urea, 10 mM imidazole, 5% glycerol, 1 mM SDT, and 1 mM DTT, pH 

8.0). On column refolding was carried out by applying a linear gradient of urea from 5M (Buffer A) to 0 

M (Buffer B: 50 mM phosphate buffer, 20 mM Tris, 0.5 M NaCl, 10 mM imidazole, 5% glycerol, 1 mM 

SDT, and 1 mM DTT, pH 8.0), and then the recombinant protein was eluted by applying a gradient of 
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imidazole from 10 mM (Buffer B) to 250 mM (Buffer C: 50 mM phosphate buffer, 20 mM Tris, 0.5 M 

NaCl, 250 mM imidazole, 5% glycerol, 1 mM SDT, and 1mM DTT, pH 8.0). 

4.3.8 Protein determination 

The protein concentration was determined using the Bradford dye-binding assay (Bradford 1976) with 

reagent purchased from Bio-Rad Laboratories (ON, Canada). Bovine serum albumin (BSA) was used for 

preparation of the standard with modifications of the protocol as supplied by the manufacturer.   

4.3.9 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine the 

enzyme purity and apparent subunit molecular weights. SDS-PAGE was performed according to Laemmli 

(1970) with acrylamide and molecular weight standards from Bio-Rad (ON, Canada) using a Hoefer™ 

Mighty Small System (Hoefer Inc., MA, USA). Gels (8×10 cm) were prepared and stained with 

Coomassie Brilliant Blue R250. The de-staining was carried out by storing the gel in de-staining solution 

(12% 2-propanol and 7% acetic acid) with moderate shaking and overnight. 

4.3.10 AHAS activity assay 

The AHAS activity assay procedure was a modification of the discontinuous colorimetric method of 

Singh et al. (1988). The AHAS activity was determined by measuring the production of acetolactate from 

pyruvate (Figure 4-5, step A), upon its decarboxylation (Figure 4-5, step B) to acetoin or diacetyl under 

high temperature and acidic condition. The products of decarboxylation (acetoin and diacetyl) will react 

with the guanidino groups of creatine under alkaline conditions creating a cherry red colored complex 

(Westerfeld 1945), which can be measured at 525 nm (Figure 4-5, step C).  The enzymatic reactions were 

carried out in duplicate; in stoppered 8 ml vials under strictly anaerobic conditions (as described in 

section 4.3.12) at 80°C unless otherwise specified. CFEs prepared from E. coli Rosetta 2 strain (the 

expression host) transformed with an empty pET30a vector were used as blank for each set of assays. 

The anaerobic assay mixture (1 ml final volume) containing 100 mM sodium phosphate (pH7.0),10 

mM MgCl2, 2.5 mM thiamine pyrophosphate (TPP), 50 mM sodium pyruvate, and 10 µM FAD was pre-

heated by incubation in a an 80°C water bath for 4 min. The final concentration of 2-acetolactate was 

determined using a calibration curve prepared by linear regression plotting of known concentrations of 

acetoin and processed under same assay conditions.  

The vial containing the assay mixture was pre-incubated in a water bath at assay temperature for 4min 

and then the reaction was started by adding the enzyme (or enzyme-containing fraction) using a pre-

rinsed Hamilton gas-tight syringe (Hamilton company, Reno, NV, USA). Care was taken to ensure a  
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Figure 4-5. General steps of AHAS activity assay 

 
All assays were carried out at 80°C and under anaerobic conditions, the buffer routinely used for the assays were 

sodium phosphate (100 mM, pH 7.0) unless specified otherwise.
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linear correlation between the activity and the amount of protein sample in the assay. The assay vials were 

incubated in the water bath (80°C) for 30min after adding the enzyme and then the reaction was quenched 

by adding sulfuric acid (50% v/v) to a final concentration of 0.85%. The assay solution then was 

incubated at 60°C for 15 min to allow transformation of the acetolactate to acetoin (chemical 

decarboxylation). The amount of the acetoin produced was quantified by adding 0.5% (w/v) creatine 

(final concentration 0.17%) and 5 % (w/v) 1-naphthol in 4 N NaOH (final concentration 1.7%). The 

mixture was incubated at 60°C for 15 min and then at room temperature for another 15 min with frequent 

mixing followed by centrifugation for 2 min at 10,000 ×g. The enzyme activity was determined by 

measuring the absorbance at 525 nm using a Genesys 10 UV-Vis spectrophotometer (Thermo Scientific, 

MA, USA). One unit of activity was defined as the formation of 1 µmol of acetolactate per min under 

these conditions. 

4.3.11 PDC activity assay (of AHAS) 

The pyruvate decarboxylase activity (PDC) was assayed by measuring the rate of the production of 

acetaldehyde from pyruvate. In principle, the acetaldehyde produced during the enzymatic reaction 

(Figure 4-6, step A) was derivatized with a freshly prepared acidic solution of 2, 4-

dinitrophenylhydrazine (DNPH) also known as Brady’s reagent (Figure 4-6, step B). Reaction of the 

reagent with aldehyde groups creates a yellow-reddish color resulting from formation of the 

corresponding hydrazone derivative. Subsequent to liquid-liquid phase extraction with a solvent (Figure 

4-6, step C), the acetaldehyde-DNPH complex was quantified by reverse-phase high performance liquid 

chromatography (RP-HPLC). The general procedures and main steps involved in the assay are presented 

in Figure 4-6. 

The enzyme assays were carried out in duplicates, in stoppered 8 ml vials under anaerobic conditions at 

80°C, unless otherwise specified. The assay mixture (1 ml final volume) containing 100 mM sodium 

phosphate buffer (pH7.0), 200 mM sodium chloride, 10 mM MgCl2, 2.5 mM thiamine pyrophosphate 

(TPP), 50 mM sodium pyruvate, and 10 µM FAD was pre-heated by incubation in an 80°C water bath for 

4 min. When specified, sodium pyruvate was replaced with 50 mM of 2-ketoisovalerate. The reaction was 

started by adding the enzyme (or enzyme-containing fraction). As with AHAS activity assay, tests were 

done to make sure that there is a linear correlation between the activity and the amount of protein in the 

assay. After the enzymatic reaction time (30 min), the reaction was stopped by placing the assay vials on 

ice and adding 3 ml of freshly prepared saturated DNPH solution in 2 N HCl (stirred at room temperature 

in the dark for 1 h). The vials were then incubated overnight at room temperature with shaking (150-200 

rpm) to allow derivatization of acetaldehyde with the DNPH. The resulting hydrazone (acetaldehyde-
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Figure 4-6. General steps of PDC activity assay for the AHAS 

 
DNPH-HCl, hydrochloridric acid solution saturated with dinitrophenylhydrazine; DCM, Di chloromethane; HPLC, 

high performance liquid chromatography. Unless otherwise mentioned all assays were carried out at 80°C and under 

anaerobic conditions, the buffer routinely used for the assays were sodium phosphate (100 mM, pH 7.0). 
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DNPH) derivative was then extracted twice, each time with 1 ml of dichloromethane (DCM) by vigorous 

shaking at room temperature for 15 min. The organic (lower) phase was then transferred to a new clean 

vial covered with a piece of Parafilm M® membrane with few holes in it. The assay vials were placed in a 

vacuum desiccator covered with aluminum foil (to protect them from the light) connected to a water 

pump to evaporate the DCM in a fume hood. After evaporation of DCM (about 3-4 h), the resulting 

yellowish-red powder was dissolved in 4 ml of pure (HPLC grade) acetonitrile by incubation at 4°C 

overnight. 

An aliquot of the assay product was filtered through a 0.2 µm nylon syringe filter (National Scientific, 

Rockwood, TN, USA), and the filtered sample was then analyzed by a Perkin-Elmer LC Series4 HPLC 

system (Norwalk, CT, USA) fitted with a reversed-phase Allure C18 column (150×4.6 mm, 5μm, 60  Å). 

Isocratic elution conditions with a mobile phase composition of acetonitrile/water (80:20 v/v) were used 

at a flow rate of 1 mlmin-1. A micrometrics model 788 dual variable wavelength detector (Norcross, GA, 

USA) was used and operated at 365 nm. The sample was applied using a Rheodyne Model 7125 injection 

valve (Rheodyne Inc., CA, USA) with a 20 µl sample loop. The HPLC system was operated at room 

temperature. The final concentration of acetaldehyde and isobutyraldehyde were determined using a 

calibration curve prepared by linear regression plotting of known concentrations of each product 

processed under the same assay conditions.  

4.3.12 Anaerobic techniques 

All of the buffers and reagents were degassed in containers sealed with red rubber sleeved stoppers. The 

stoppers were punctured with needles to allow the alternate exposure to vacuum and nitrogen (N2) using a 

manifold. The nitrogen gas (Praxair, ON, Canada) was deoxygenated by passing through a heated column 

containing a BASF catalyst (BASF, NJ, USA). Assay and purification buffers were degassed in 

magnetically stirred flasks for 30 min, then three cycles of flushing/evacuation (3 min each) were applied. 

Then a second needle was inserted to flush out more N2 to ensure oxygen-free head space in the container 

(even if there is residual O2 contamination in the manifold system). The containers were kept under 

nitrogen pressure. 

4.3.13 Native molecular mass estimation  

The apparent molecular masses of the purified large and small subunits were estimated by loading the 

concentrated individual proteins on a size exclusion chromatography column (2.6×60 cm) of HiLoad 

Superdex-200 (GE healthcare, QC, Canada) pre-equilibrated with buffer C (50 mM Tris, 5% glycerol, 

100 mM KCl, pH 7.8) at the flow rate of 2 mlmin-1. The following standards from Pharmacia protein 

standard kit (Pharmacia, NJ, USA) were applied to the column: blue dextran (2,000,000 Da), 
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thyroglobulin (669,000 Da), ferritin (440,000 Da), catalase (232,000 Da), aldolase (158,000, Da), bovine 

serum albumin (67,000, Da), ovalbumin (43,000), chymotrypsinogen A (25,000) and ribonuclease A 

(13,700). 

4.3.14 Biochemical and biophysical characterization 

To investigate the pH dependency of both AHAS and PDC activities, enzyme assays were carried out at 

different pH values ranging from 4.0 to 11.0. The pH values expressed throughout this manuscript were 

adjusted and measured at room temperature unless specified differently. In each case, assays were carried 

out at 80°C, under anaerobic conditions using 100 mM buffers degassed as described previously (section 

4.3.12). For pH values between 4 and 5.6, sodium acetate buffer (pKa= 4.76, ΔpKa/°C=0.0002) was used. 

Sodium phosphate buffer (pKa 7.20, ΔpKa/°C=-0.0028) was used for pH values 6.0, 7.0, and 7.5. HEPES 

buffer (pKa 7.39, ΔPKa/°C=-0.014) covered pH values 7.5, 8.0, 8.5 and 9.0 and glycine buffer (pKa 9.55, 

ΔpKa/°C=-0.0025) was used for the pH values 9.0, 9.5, 10.0, and 10.5. Finally for the pH points of 10.0, 

10.5, and 11.0 the CAPS buffer (pKa 10.40, ΔpKa/°C= -0.009) was used.   

To determine the steady-state kinetic parameters (Km and Vmax), enzyme assays were performed at 

optimum pH. All assays were carried out at 80ºC and under strictly anaerobic conditions. The kinetic 

parameters were established for pyruvate (5 to125 mM), TPP (0.05-4 mM), and FAD (0.05-40 µM) by 

applying various concentrations of each component and keeping the concentration of other assay 

components constant. All of the assays were repeated in duplicate or triplicate. The activity then was 

assayed for various concentrations and the kinetic parameters were calculated from the best fit of the 

results to the Michaelis-Menten equation by non-linear regression using SigmaPlot® software (SYSTAT 

Software Inc., CA, USA).  

The oxygen sensitivity of each activity was established by exposing an enzyme aliquot to ambient 

atmosphere at 4ºC by gentle stirring and comparing the synthase and decarboxylase activities at different 

time courses with the control preparation kept under anaerobic conditions. Both of the enzyme samples 

were protected from light through the experiments. 

The temperature dependence of the enzyme was determined by measuring the enzyme activity at 

different temperatures ranging from 30°C to 95°C under anaerobic conditions and in 50 mM EPPS buffer, 

pH 8.4 containing 10 mM MgCl2. Thermal stability of the enzyme was determined by incubation of an 

anaerobic enzyme preparation and determining the residual activity at different time points compared to 

unheated control. 
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4.3.15 Reconstitution of TmAHAS 

The purified large and small subunits of the recombinant TmAHAS were combined in various molar 

ratios, incubated both at low temperature (ice bath) or heat treated (80ºC) for various lengths of time and 

then were loaded on a size-exclusion chromatography column (2.6×60 cm) of HiLoad Superdex-200 (GE 

healthcare, QC, Canada) pre-equilibrated with buffer C (50 mM Tris, 5% glycerol, 100 mM KCl, pH 7.8) 

at a flow rate of 2 mlmin-1. The activities of the reconstituted TmAHAS holoenzyme were determined 

using the AHAS and PDC enzyme assay procedures as described previously in sections 4.3.10 and 4.3.11. 

4.4 Results 

4.4.1 The ilv operon in hyperthermophiles: genome sequence analysis (in silico study) 

The accessible genome sequences of various Thermotogales and Thermococcales were explored in search 

of genes encoding the enzymes involved in the biosynthesis of BCAAs. The results of searches for 

AHAS-encoding genes and the operon containing the other genes involved in the BCAA biosynthesis are 

presented in Table 4-5. To determine the phylogenetic relatedness of the putative proteins, phylogenetic 

trees were constructed based on the amino acid sequence of the some mesophilic and hyper/thermophilic 

catalytic (Figure 4-7) and regulatory subunits (Figure 4-8). 

4.4.1.1 The ilv operon in Thermotogales 

The catalytic and regulatory subunits of AHAS in bacteria are encoded by genes ilvB and ilvN, 

respectively. The survey of the genome sequences of Thermotogales demonstrated that all members of the 

genus Thermotoga, except for T. lettingae, had a complete set of coding sequences for the enzymes 

involved in the BCAA biosynthesis. Similarly, complete ilv operon is also present in the members of the 

closely related genus Petrotoga. However, other members of the order Thermotogales (with fully 

sequenced genomes) including Thermosipho and Kosmotoga did not have the genes of the ilv operon 

(Table 4-5).  

In T. maritima (and most other Thermotogae), the first gene in the ilv operon is the gene encoding 

catalytic subunit (ilvB) of AHAS, followed immediately by the gene encoding small subunit (ilvN) and 

then other genes involved in the biosynthesis of the branched chain amino acids including ketol-acid 

reductoisomerase (ilvC), dihydroxy-acid dehydratase (ilvD), 2-isopropylmalate synthase (leuA), 3-

isopropylmalate dehydratase large and small subunits (leuC and leuD), and 3-isopropylmalate 

dehydrogenase (leuB) (Figure 4-9). 

The study of the gene organization of the ilv operon in Thermotogales indicates that the genes involved 

in the biosynthesis of the isoleucine and leucine have overlapping intercistronic regions, and the start 
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Table 4-5. Homologs of ilv operon in Thermotogales and Thermococcales
a
 

Th
er

m
oc

oc
ca

le
s (

A
rc

ha
ea

) 

Organism AHAS catalytic subunitb 
(locus Tag) 

AHAS regulatory subunitb 
(locus Tag) Operonc 

Palaeococcus ferrophilus - - - 
Pyrococcus furiosus PF0935 PF0934 BCAA 
Pyrococcus abyssi PAB0888 PAB0887 BCAA 
Pyrococcus sp. strain NA2 PNA2_1346 PNA2_1347 BCAA 
Pyrococcus yayanosii - - - 
Pyrococcus horikoshii - - - 
Thermococcus sibiricus - - - 
Thermococcus gammatolerance - - - 
Thermococcus kodakaraensis - - - 
Thermococcus barophilus - - - 
Thermococcus sp. strain 4557 - - - 
Thermococcus sp. strain AM4 - - - 
Thermococcus zilligii - - - 
Thermococcus litoralis - - - 
Thermococcus sp. strain PK - - - 
Thermococcus onnurineus - - - 

Th
er

m
ot

og
al

es
 (B

ac
te

ria
) 

Thermotoga maritima TM0548 TM0549 BCAA 
Thermotoga lettingae - - - 
Thermotoga thermarum Theth_0200 Theth_0199 BCAA 
Thermotoga neapolitana CTN_0120 CTN_0119 BCAA 
Thermotoga naphthophila Tnap_0328 Tnap_0329 BCAA 
Thermotoga petrophila Tpet_0372 Tpet_0371 BCAA 
Thermotoga sp. strain RQ2 TRQ2_0389 TRQ2_0388 BCAA 
Thermotogales bacterium MesG1.Ag.4.2d - - - 
Thermosipho melanesiensis - - - 
Thermosipho africanus - - - 
Petrotoga mobilis Pmob_1592 Pmob_1591 BCAA 
Petrotoga miotherma - - - 
Fervidobacterium nodosum - - - 
Fervidobacterium pennivorans - - - 
Kosmotoga olearia - - - 
Marinitoga camini - - - 
Marinitoga piezophila - - - 

 
a The genome sequences were searched by annotation as well as by homology against the protein sequence of the 
closest known AHAS gene (P. furiosus in Thermococcales and T. maritima for Thermotogales) 
b Alphanumeric codes indicate the locus tag of the gene in the corresponding genome; -, not present 
c The presence of a complete set of ilv genes was checked  
d This strain was recently suggested to be named “ Mesotoga prima” and to be the first member of a new sub-group 
of mesophilic Thermotogales (Ben Hania et al. 2011; Nesbø et al. 2012) 

http://www.genome.jp/dbget-bin/www_bget?pfu:PF0935�
http://www.genome.jp/dbget-bin/www_bget?pfu:PF0934�
http://www.genome.jp/dbget-bin/www_bget?pab:PAB0888�
http://www.genome.jp/dbget-bin/www_bget?pab:PAB0887�
http://www.genome.jp/dbget-bin/www_bget?pyn:PNA2_1346�
http://www.genome.jp/dbget-bin/www_bget?pyn:PNA2_1347�
http://www.genome.jp/dbget-bin/www_bget?tma:TM0548�
http://www.genome.jp/dbget-bin/www_bget?tma:TM0549�
http://www.genome.jp/dbget-bin/www_bget?tta:Theth_0200�
http://www.genome.jp/dbget-bin/www_bget?tta:Theth_0199�
http://www.genome.jp/dbget-bin/www_bget?tna:CTN_0120�
http://www.genome.jp/dbget-bin/www_bget?tna:CTN_0119�
http://www.genome.jp/dbget-bin/www_bget?tnp:Tnap_0328�
http://www.genome.jp/dbget-bin/www_bget?tnp:Tnap_0329�
http://www.genome.jp/dbget-bin/www_bget?tpt:Tpet_0372�
http://www.genome.jp/dbget-bin/www_bget?tpt:Tpet_0371�
http://www.genome.jp/dbget-bin/www_bget?trq:TRQ2_0389�
http://www.genome.jp/dbget-bin/www_bget?trq:TRQ2_0388�
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http://www.genome.jp/dbget-bin/www_bget?pmo:Pmob_1591�


 

156 

 

 

Figure 4-7. Relatedness of AHAS catalytic subunits 

 

Genomes in the NCBI microbial genome database (http://www.ncbi.nlm.nih.gov/genomes/ MICROBES/microbial_ 

taxtree.html) were used to retrieve the amino acid and nucleotide sequences of AHASs from various thermophilic 

and mesophilic organisms. The amino acid sequence homology and the phylogenetic tree were prepared based on 

the ClustalW analysis using MegAlign software (Lasergene, DNAStar, Madison, USA).  
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Figure 4-8. Relatedness of AHAS regulatory subunits 

  

Genomes in the NCBI microbial genome database (http://www.ncbi.nlm.nih.gov/genomes/ MICROBES/microbial_ 

taxtree .html) were used to retrieve the amino acid and nucleotide sequences of AHASs from various thermophilic 

organisms. The numbers at the bottom of each tree indicate the number of the amino acid substitutions. A dotted line 

on the phenogram indicates a negative branch length, a common result of averaging. The amino acid sequences 

homology and the phylogenetic tree were prepared using MegAlign software (Lasergene, DNAStar, Madison, 

USA).  
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Figure 4-9. Gene organization of the ilv gene cluster in T. maritima (A) and P. furiosus (B) 

 

The filled arrows indicate the genes encoding enzymes involved in BCAA biosynthesis in each scheme. The black arrows are the hypothetical genes encoding 

the catalytic and regulatory subunits of AHAS. 

ilvB: catalytic subunit of acetohydroxyacid synthase (AHASL); ilvN, regulatory subunit ofacetohydroxyacid synthase (AHASS); ilvC, ketol-acid 

reductoisomerase (KARI); ilvD ; dihydroxy-acid dehydratase (DHAD); leuA, 2-isopropylmalate synthase (IPMS); leuC 3-isopropylmalate dehydratase large 

subunit (IPMDL); and leuD, 3-isopropylmalate dehydratase small subunit (IPMDS). 
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codon of the adjacent gene is either overlapping or separated by few base pairs. This is the case with ilvB- 

ilvN, ilvN-ilvC, ilvC-ilvD, leuA-leuC, leuC-leuD, and leuD-leuB. In each of these pairs, a putative 

ribosome˗binding site (RBS) for the downstream coding sequence was identifiable upstream of the start 

codon within the coding sequence of the upstream gene (Figure 4-10).  

4.4.1.2 The ilv operon in Thermococcales 

 All of the available genome sequences of the genus Thermococcus (T. gammatolerance, T. 

kodakaraensis, T. sibiricus, T. barophilus, T. onnurineus, Thermococcus sp. strain AM4, Thermococcus 

sp. strain 4557, Thermococcus sp. strain PK) are lacking the the ilv operon (Table 4-5) or any AHAS-

encoding genes. Within the members of the genus Pyrococcus, three members (namely P. furiosus, P. 

abyssi, and the recently sequenced hyperthermophilic archaeon Pyrococcus sp. strain NA2) have been 

found to contain the ilv operon. But, P. yayanosii and P. horikoshii lacked the operon (Table 4-5).  

Surprisingly, the ilv operon lacked the gene encoding the regulatory subunit in the members of the 

genus Pyrococcus, and the operon starts with the gene encoding the catalytic (large) subunit followed by 

the genes for other BCAA biosynthesis pathway enzymes (ketol-acid reductoisomerase, 2-

isopropylmalate synthase, 3-isopropylmalate dehydratase, 3-isopropylmalate dehydrogenase, 2-

isopropylmalate synthase, and dihydroxy-acid dehydratase).  

There was a gene encoding a hypothetical protein (PF0934 in P. furiosus) located just upstream of the 

gene encoding the catalytic subunit in the ilv operon of P. furiosus, P. abyssi, and Pyrococcus sp. strain 

NA2 (Figure 4-9). This gene may encode the regulatory subunit (ilvN) of PfAHAS and is annotated as 

“hypothetical protein”. However, the deduced amino acid sequences were very dissimilar from that 

produced by IlvN sequences from other hyperthermophiles. The amino acid sequences of this 

hypothetical protein showed about 15% amino acid identity to the regulatory subunit of Thermotogales 

and only about 16% identity to AHAS regulatory subunit of E. coli (IlvH). Thermotogae IlvH shows 

approximately 37% identity to its homolog in E. coli. In phylogenetic tree drawn based on the amino acid 

sequences of the regulatory subunits from different hyperthermophiles, the hypothetical genes of the 

Pyrococcus ilv operon showed divergence from the other sequences (Figure 4-8), while the catalytic 

subunit was clustered with other archaeal catalytic subunits (Figure 4-7). 

4.4.2 FAD- and TPP-binding motif in hyperthermophilic AHASs 

There was a highly conserved FAD-binding motif (RFDDR) in the catalytic (large) subunit of AHAS 

from different mesophilic organisms which was showed to be an indicator of the association with the 

FAD-requirement for its activity (Le 2005). Sequence alignments of AHASs indicated the presence of the 

FAD-binding motif in the catalytic subunits of the enzymes from extreme thermophiles and 
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Figure 4-10. Intercistronic sequences in the ilv operon of T. maritima 

 

The translation initiation (start) codon of the distal genes are indicated in bold, the ribosome-binding site (RBS) of 
the distal gene is boxed, and the translation termination of the proximal genes are underlined   
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hyperthermophiles, including the Thermotogales and Thermococcales (Figure 4-11A). The motif is 

generally conserved as RFSDR in Thermotogales, but in and in Thermococcales (only in members of the 

genus Pyrococcus which have the gene cluster) the motif is RWSDR. The catalytic subunits of all 

anabolic and catabolic AHASs contained the typical TPP-binding motif (GDGX24-26N) as indicated in 

Figure 4-11B. This highly conserved motif is a common feature of all TPP-dependent enzymes (Hawkins 

et al. 1989). 

4.4.3 AHAS activity in cell-free extracts of hyperthermophiles 

AHAS activities were determined in CFEs of three hyperthermophilic bacteria including T. hypogea, T. 

maritima, and T. neapolitana and three hyperthermophilic archaea belonging to the order 

Thermococcales, namely T. guaymasensis, T. kodakaraensis and P. furiosus at different pHs. The goal of 

the experiments was to determine the best pH range for the activity, and also to determine the nature of 

possible AHAS activities in the CFEs (Table 4-6). As expected, the organisms with the ilv gene cluster 

showed the highest levels of AHAS activity, but surprisingly, some levels of AHAS activity could be 

detected in the cell-free extracts of T. kodakaraensis and T. neapolitana which were known to have no ilv 

operon (Table 4-5). This was also the case for T. guaymasensis and T. hypogea, which are both expected 

not to contain any ilv gene cluster and then no AHAS activity (Figure 4-12).   

4.4.4 Oxygen sensitivity of native AHAS activity 

The effect of oxygen on the AHAS activities in the CFEs of T. maritima and P. furiosus was determined, 

and the half-life (the exposure time to air required for the enzyme to lose 50% of its activity) was 

estimated. A sample kept under anaerobic conditions (nitrogen pressure) served as a negative control in 

each case.  

The AHAS activity in T. maritima was quite unstable. It was un-expected that both aerobic and 

anaerobic samples lost major portion of their activity at almost the same rate (Figure 4-13A), indicating 

that the decrease of the activity was likely caused by factors other than air exposure. The time for the 

exposed and unexposed CFEs of T. maritima to lose half of their AHAS activity was about18 h. The air 

exposed CFE of P. furiosus lost about 50% of AHAS activity in approximately 48 h (Figure 4-13B). The 

oxygen sensitivity of AHAS (and its correlated PDC activity) was further studied using the purified 

recombinant enzyme from T. maritima (section 4.4.9). 
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Figure 4-11. Conserved motifs in AHASs 

 

The FAD-binding motif (A) and TPP-binding motif (B) in AHASs are highly conserved and are boxed. The AHAS 

amino acid sequences of different thermophilic and mesophilic organisms were aligned using MegAlign software 

(Lasergene, DNAStar, Madison, USA).  
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Table 4-6. AHAS activity in cell-free extracts of different hyperthermophiles 

Organism pHa Bufferb Specific activityc 

Pyrococcus furiosus 6.0 Phosphate, pH 6.2 73±6m mUmg-1 (n=6) 

Thermococcus guaymasensis 10.5 CAPS, pH 11.8 19±1.5 mUmg-1 (n=4) 

Thermococcus kodakaraensis 10.5 CAPS, pH 11.8 12.5±4m mUmg-1 (n=4) 

Thermotoga maritima 6.0 Phosphate, pH 6.2 100.2±9 Umg-1 (n=6) 

Thermotoga hypogea 10.5 CAPS, pH 11.8 17.4±1.9 Umg-1 (n=4) 

Thermotoga neapolitana 10.5 CAPS, pH 11.8 18.1±1.4 Umg-1 (n=4) 
 

a pH at 80°C 
b All buffers were used at 50 mM; the pH was adjusted at room temperature 
c The activity assays were all conducted at 80°C under anaerobic conditions with the assay compositions as 
described in Materials and Methods section; the value of “n” represents the number of independent repeats (each in 
duplicate) for each experiment  
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Figure 4-12. AHAS activity in CFEs of different hyperthermophilic bacteria and archaea 

 

Buffers used for the experiment (all used at 50 mM concentration):  pH 4.0 and pH 5.0, sodium acetate; pH 6.2, sodium phosphate; pH 8.4, EPPS; pH 10.3, 

glycine buffer, and pH 11.8, CAPS buffer. All of the pH values are at room temperature. The error bars indicate the standard error from mean. For the number of 

repeats (n) see Table 4-6. 
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Figure 4-13. Oxygen sensitivity of AHAS activities in CFEs of T. maritima (A) and P. furiosus (B) 

 

All assays were done in duplicates, at 80ºC; the assay mixture contained EPPS buffer (50 mM), MgCl2 (10 mM), 

TPP (0.5 mM), pyruvate (50 mM), and FAD (0.01 mM). All CFEs were kept on ice and magnetically stirred 

throughout the experiment.  
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4.4.5 Expression of recombinant AHAS 

There is a significant difference between the codon usage of E. coli and hyperthermophiles. To solve the 

codon bias problem between the hyperthermophiles (T. maritima and P. furiosus) and the mesophilic 

expression hosts, E. coli strain Rosetta 2 BL21 (DE3) was used to supply tRNA for codons AUA, AGG, 

AGA, CUA, CCC, GGA, and CGG on a chloramphenicol-resistant plasmid. A total of  five expression 

plasmids were constructed (Figure 4-3 and Figure 4-4) for the following genes: the expression plasmids 

Ml-pET30a, Ms-pET30a, and Mc-pET30a were constructed for the expression of catalytic (large) subunit, 

regulatory (small) subunits, and both the large and small subunits (simultaneously and in their native 

order) of TmAHAS-encoding genes, respectively (Figure 4-14) and the recombinant plasmid Fl- and Fs-

pET30a were constructed for the expression of the large subunit and the hypothetical small subunits of 

PfAHAS (Table 4-5).  

Each construct encoded a fusion protein with six histidine-tags (hexa-histidine) at the N-terminal end 

for purification of the protein. After induction with IPTG, the recombinant strains produced bands with 

the expected sizes on SDS-PAGE for each corresponding protein (Figure 4-15). The expected sizes, the 

isoelectric points (PI) and net charges of the recombinant proteins at pH 7.0 were calculated from the 

deduced amino acid sequences resulted from the translation of gene sequence (Table 4-7).  

The clone Ml-pET30a produced reasonable amounts of soluble recombinant protein (Figure 4-15, 

lanes 1-3); addition of FAD, TPP, and the MgCl2 both in the culture medium and in lysis buffer had no 

obvious effect on the expression levels or the solubility of the heterologously expressed catalytic subunit. 

In particular, the regulatory (small) subunit recombinant protein showed low solubility and mainly was 

aggregated in the insoluble fractions (Figure 4-15, lanes 4-6). In case of the clone Mc-pET30a the large 

subunit was expressed and present in the soluble fractions. The protein yield of the regulatory (small) 

subunit was very small as indicated by a weak protein band in SDS-PAGE of both soluble and insoluble 

fractions (Figure 4-15, lanes 7-9), suggesting the possible proteolysis or incomplete translation of the 

recombinant regulatory subunit. 

Effect of different temperatures on the expression of TmAHAS clones was studied by incubation of the 

cultures at 18°C, 24°C, 30°C, and 37°C following growth at 37ºC and induction. The expression levels 

were compared using SDS-PAGE (Figure 4-16) and enzyme activity assays (Figure 4-17 and Figure 

4-18). The highest yield of soluble recombinant proteins were expressed when the cultures were 

incubated at 30 or 37°C following induction.  
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Figure 4-14. Coding sequences of catalytic and regulatory subunits of TmAHAS 

 

The start codons for the large and small subunits are indicated in bold. Stop codon for the large subunit is italicized. 

Boxed sequence indicates the putative RBS for the small subunit; Ml, the catalytic (large) subunit; Ms, regulatory 

small) subunit; Mc, combined large and small subunits in their natural orders. 
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Figure 4-15. Analysis of over-expression of different clones at 37ºC using SDS-PAGE (12.5%)  

 

Lane 1, crude extract of Ml-pET30a; lane 2, CFE of Ml-pET30a; lane 3, heat-treated CFE of Ml-pET30a; lane 4, 

crude extract of Ms-pET30a; lane 5, CFE of Ms-pET30a; lane 6, heat-treated CFE of Ms-pET30a; lane 7, crude 

extract of Mc-pET30a; lane 8, CFE of Mc-pET30a; lane 9, heat-treated CFE of Mc-pET30a; M: BLUeye pre-stained 

Protein Ladder (Froggibio, ON, Canada), the arrows indicate the position of the recombinant protein band; 

approximately 15 µg protein was loaded per lane. 
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Table 4-7. Properties of recombinant proteins as deducted from their primary structuresa 

Clone  Description 
Locus 

tag 

Net charge  

at pH 7.0 
PI Molecular weight 

Ml-pET30a Catalytic (large) subunit of TmAHAS TM0548 -10 5.9 65.5 

Ms-pET30a 
Regulatory(small) subunit of 

TmAHAS 
TM0549 +0.3 7.2 20.6 

Fl-pET30a Catalytic (large)  subunit PfAHAS PF0935 -4.6 6.4 64 

Fs-pET30a Regulatory(small) subunit PfAHAS PF0934 +1.93 8.4 16.1 

 
a For plasmid Mc-pET30a (expressing the catalytic and regulatory subunits in their natural orders), the properties of 
the resulting recombinant protein is not included in the table as it was expected to produce two separate proteins of 
catalytic and regulatory subunits. The parameters were calculated using the EditSeq software (Lasergene, DNAStar, 
Madison, USA). 
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Figure 4-16. Analysis of the effect of temperatures on expression of Ml-pET30a (recombinant 

catalytic subunit of TmAHAS) using SDS-PAGE (15%) 

 

Lane 1, CFE, 18ºC; lane 2, CFE 24ºC; lane 3, heat-treated CFE, 24ºC; lane 4, CFE 30ºC; lane 5, heat-treated CFE, 

30ºC; lane 6, CFE, 37ºC; heat-treated CFE 37ºC; M: BLUeye pre-stained protein ladder (Froggibio, ON, Canada), 

the arrows indicate the position of the recombinant protein band (calculated molecular weight 65.5 kDa); 40 µg of 

the protein loaded per lane, 
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Figure 4-17. Effect of the expression temperature on AHAS activity of Ml-pET30a 

 

RT, room temperature (24ºC); CE, crude extract; CFE, cell-free extract; HTCE, heat-treated (80ºC, 1hr) crude 

extract. Assays were conducted in duplicates, at 80ºC under anaerobic conditions; the assay mixture contained EPPS 

buffer (50 mM, pH 7.5), MgCl2 (10 mM), TPP (0.5 mM), pyruvate (50 mM), and FAD (0.01 mM) 
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Figure 4-18. Effect of the expression temperature on AHAS activity of Mc-pET30a  

 

RT, room temperature (24ºC); CE, crude extract; CFE, cell-free extract; HTCE, heat-treated (80ºC, 1 h) crude 

extract. Assays were conducted in duplicates, at 80ºC under anaerobic conditions; the assay mixture contained EPPS 

buffer (50 mM, pH 7.5), MgCl2 (10 mM), TPP (0.5 mM), pyruvate (50 mM), and FAD (0.01 mM). 
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No activity was detected in any of the crude extracts and CFEs from the P. furiosus clones despite 

checking the activity with different conditions including: the preparation with cofactors (1 µM) added to 

the lysis buffer, cell lysis in the presence of different detergent concentrations, different buffers and pHs, 

heat-treatment at different temperatures, and mixing the preparations from the large and small subunits 

with different ratios (1:5, 1:10, and 1:20). 

4.4.6 Purification of recombinant TmAHAS subunits  

The over- expressed catalytic and regulatory subunits of TmAHAS in E. coli were purified approximately 

30-fold to a specific activity of 163 Umg-1. The purification procedure is carried out in two major steps. 

First, heat-induced precipitation was exploited to simplify the recombinant protein purification. In the 

second step, DEAE and HAP column chromatography methods were used for the purification of the the 

catalytic subunits, and immobilized metal affinity chromatography (IMAC) method was used for 

purification of the regulatory subunit. 

Heat-induced precipitation (heat-treatment) is widely used for purification of the recombinantly 

expressed thermostable proteins. During the heat-treatment, majority of mesophilic host proteins are 

denatured and aggregated, rendering the recombinantly expressed thermostable protein in the soluble 

fraction. The optimal temperature for heat-induced precipitation was selected based on the examination of 

literatures on expression of various hyperthermophilic proteins in E. coli. The results of the survey 

indicated that the heat-precipitation step was mostly carried out successfully at the temperature close to 

the optimal growth temperature of the native organism (Table 4-8). 

The effect of heating temperatures on the yield of the soluble protein and the corresponding enzyme 

activity of TmAHAS was studied on crude cell extracts incubated at 70°C and 80°C under anaerobic 

conditions. Samples that were taken at different time intervals were analyzed using SDS-PAGE and 

enzyme activity assays. The heat-treatment of TmAHAS (catalytic subunit) at 70°C and 80°C showed 

increased purity of the prepared protein over time (Figure 4-19). The highest AHAS activity was 

achieved after heat-treatment at 80°C for 60 min (Figure 4-20). Interestingly, the incubation of the cell 

crude extracts at any of the two temperatures (70 and 80ºC) resulted in an increased AHAS activity with 

the highest activity found after 1hr  of incubation at each temperature, but extended incubation caused 

enzyme inactivation (Figure 4-20) indicating its thermal stability.  

Fractions containing the catalytic (large) subunit were eluted out from DEAE-sepharose column when a 

gradient of sodium chloride (from 275-370 mM) was applied. The protein was eluted from HAP column 

when a gradient of 180-230 mM of sodium phosphate was applied to the column.  
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Table 4-8. Survey of heat-precipitation temperatures for some recombinant hyperthermophilic proteins expressed in E. coli 

The recombinant protein Native organism Heat-precipitation  Topt
a Reference 

Glutaredoxin-like protein Pyrococcus  furiosus 65°C for 10min 100°C Guagliardi et al. 1995 

The HU protein  Thermotoga maritima 80°C for 20min 80°C Esser et al. 1999 

Phosphoglycerate kinase Thermotoga maritima 60min at 80°C 80°C Grättinger et al. 1998 

ADP-dependent phosphofructokinase Pyrococcus furiosus 30min at 80°C 100°C Tuininga et al. 1999 

Chemotaxis protein Thermotoga maritima 80°C for 10min 80°C Swanson et al. 1996 

Maltose-binding protein Thermotoga maritima 75°C for 30min 80°C Wassenberg et al. 2000 

Carboxylesterase Sulfolobus sulafataricus 75°C for 30min 80°C Morana et al. 2002 

Glyceraldehyde-3-phosphate dehydrogenase Pyrococcus  woesei 90°C for 30min 100-103°C Zwickl et al. 1990 

Glyceraldehyde-3-phosphatdee hydrogenase Thermotoga maritima Inactive proteinb 80°C Tomschy et al. 1993 

Xylose isomerase Thermotoga maritima 90°C for 2.5h 80°C Vieille et al. 1995 

L-arabinose isomerase Thermotoga neapolitana 85°C for 15min 80°C Kim et al. 2002 

Alcohol dehydrogenase (adhC) Pyrococcus furiosus 80°C for 30min 100ºC Kube et al. 2006 

a-L-arabinofuranosidase Thermotoga maritima 80°C for 30min 80°C Miyazaki 2005 

6-phosphogluconate dehydrogenase Thermotoga maritima 90°C for 30min 80°C Wang and Zhang 2009 
 

a Optimum growth temperature of the native hyperthermophilic organism 
b The heat-treated purified recombinant protein was inactive 
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Figure 4-19. Analysis of the effect of heat-treatment on purification of Ml-pET30a (recombinant 

catalytic subunit of TmAHAS) using SDS-PAGE (12.5%) 

 

Lane 1, CFE with no heat-treatment; lane 2, CFE,  30 min at 70ºC; lane 3, CFE, 60 min at 70ºC; lane 4, CFE, 90 min 

at 70ºC; lane 5, CFE with no heat-treatment; lane 6, CFE, 30 min at 80ºC; lane 7, CFE, 60 min at 80ºC; lane 8, CFE, 

90 min at 80ºC; M: BLUeye pre-stained protein ladder (Froggibio, ON, Canada), the black arrow indicate the 

position of the recombinant protein band (calculated molecular weight 65.5 KDa); approximately 30 µg of the 

protein loaded per lane 
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Figure 4-20. Effect of heat-treatment of crude extract on AHAS activity  

 

The CFEs were heat-treated at 70ºC and 80ºC under anaerobic conditions and assayed for AHAS activity at different 

time points. The relative activities were calculated compared to the activity after 1 h at each temperature. Assays 

were carried out in duplicates, at each temperature under strictly anaerobic conditions; the assay mixture contained 

EPPS buffer (50 mM, pH 7.5), MgCl2 (10 mM), TPP (0.5 mM), pyruvate (50 mM), and FAD (0.01 mM). A relative 

activity of 100% was considered as the highest specific activities measured at each temperature after 1h of heat-

treatment (8.0 Umg-1 and 8.7 Umg-1, for 70 and 80°C, respectively).  
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After HAP column the TmAHAS catalytic subunit was judged to be pure by analysis on SDS-PAGE 

(Figure 4-21). A typical purification of the catalytic subunit is summarized in Table 4-9. Approximately 

1mg purified recombinant protein was obtained from each gram (wet weight) of the E. coli biomass. 

The small subunit was expressed partly as insoluble inclusion bodies as judged by SDS-PAGE analysis 

(Figure 4-15), which was expected based on a previous report pertaining to the expression of the same 

protein (Petkowski et al. 2007). Altering the expression conditions namely temperature and IPTG 

concentration (0.1-0.5 mM), growing the recombinant strain in the presence of different glycerol 

concentrations (0-40%), incorporation of TPP, FAD, and MgCl2 (together or individually), as well as 

expression and cell lysis in the present of different (Triton X-100) concentrations (0-0.5%), did not 

improve the solubility of the small subunit (although increasing the expression temperature from 18ºC to 

37ºC increased expression of the recombinant protein). Hence, re-solubilization of the recombinant small 

subunit was carried out by its purification under denaturing conditions using hexa-histidine affinity 

chromatography and subsequent on-column refolding of the denatured protein which resulted in a soluble 

and highly pure protein (Figure 4-22). The solubility of the regulatory subunit was also highly dependent 

on the concentration of sodium chloride with the buffer of higher concentration (250-300 mM) resulting 

in better solubility of the protein. 

4.4.7 Molecular weights of the recombinant proteins 

The native molecular masses of catalytic and regulatory subunits were estimated by loading each protein 

separately on size-exclusion chromatography column. The recombinant catalytic subunit (calculated 

molecular mass was 65,497 Da and estimated molecular mass on SDS-PAGE was 66,398±7,700 Da) was 

eluted as a single peak and corresponded to molecular mass of 156,830±6,200 Da (n=4) indicating a 

dimeric structure. This is in agreement with previous finding of the minimal functional unit of TPP-

dependent enzyme being a dimer to accommodate the active site of the enzyme in interface between 

subunits (Muller et al. 1993; Vyazmensky et al. 1996; Schellenberger 1998; Gedi and Yoon 2012) and 

also previous report on recombinantly expressed catalytic subunits from different organisms (Hill et al. 

1997). The regulatory subunit of TmAHAS (calculated molecular mass was 20,508 Da and estimated 

molecular mass on SDS-PAGE gel 22,210±3,540 Da) had a native molecular mass of 37,700±413 Da 

(n=4) measured in size-exclusion chromatography, suggesting a dimeric structure for the small subunit. 

Increasing the slat concentration of the elution buffers from 50 to 300 mM had no effect on elution 

behavior of proteins. 
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Table 4-9. Purification of recombinant catalytic (large) subunit of TmAHASa 

Step 
Total proteinb 

(mg) 

Total activityc 

(Units) 

Specific activityd 

(Umg-1) 

Purification 

( fold) 

Recovery 

(%) 

Crude extract 1175 6345 5.4 1 100 

Heat-treatment 138 4882 31.1 5.8 76.9 

DEAE 53 3808 70.8 13.2 60.1 

HAP 21 3302 163 30.2 52.1 
 

a CFE was prepared from 20 g (wet weight) of the recombinant E. coli strain Ml-pET30a 
b As determined by Bradford assay using BSA as the standard protein as described in Materials and Methods 
(section 4.3.8) 
c AHAS activity assays were carried out using standard procedure as described in the Material and Methods (section 
4.3.10) 
d Expressed as  micromoles of acetolactate produced per min per milligram of the enzyme  
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Figure 4-21. Analysis of purified catalytic subunit of TmAHAS (Ml-pET30a) using SDS-PAGE 

(12.5%) 

 

Lane 1, 4 µg of the purified protein; lane 2, 2 µg of the purified protein; lane 3, BLUeye pre-stained protein ladder 

(Froggibio, ON, Canada) 
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Figure 4-22. Analysis of purified recombinant regulatory subunit of TmAHAS (Ms-pET30a) using 

SDS-PAGE (15%) 

 

Lane 1, 8µg of the purified protein; lane 2, 4µg of the purified protein; lane 3, BLUeye pre-stained protein ladder 

(Froggibio, ON, Canada) 
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4.4.8 PDC activity of recombinant AHAS 

To determine if the recombinant AHAS would have pyruvate decarboxylase activity, different 

preparations of the recombinant clones were used. All CFEs, except that prepared from the clone 

expressing the regulatory (small) subunit showed PDC activity. The PDC activity of the recombinant 

TmAHAS was measured when FAD and TPP were added to the assay mixture. The CFE containing the 

catalytic subunit after heat-treatment showed a specific activity of approximately 0.7± 0.18 Umg-1 which 

increased to 16.7±3.4 Umg-1 after purification. When FAD was not added to the assay buffers, the 

purified enzyme still showed about 45% of the full activity, suggesting presence of the cofactor (FAD) in 

the purified enzyme. However, omitting TPP from assay mixture resulted in decreased specific activity to 

approximately 10% of the full activity (1.6 Umg-1 versus 16.1 Umg-1) indicating much less tight-binding 

of TPP incorporated to the the enzyme structure. 

The ability of the catabolic AHAS (ALS) in catalyzing non-oxidative decarboxylation of 2-

ketoisobutyrate (3-methyl-2-oxobutyrate) was reported previously (Atsumi et al. 2009). To investigate the 

ability of the recombinant anabolic TmAHAS for non-oxidative decarboxylation of other 2-keto acids, the 

decarboxylase activity assays were conducted with 2-ketoisovalerate instead of pyruvate. A standard 

curve was prepared with the product of decarboxylation reaction, isobutyraldehyde. Although with lower 

affinity, the recombinant TmAHAS was able to non-oxidatively decarboxylate the 2-ketoisovalerate to 

isobutyraldehyde with a rate about 10% of that when pyruvate was used.  

4.4.9 Catalytic properties of synthase and decarboxylase reactions 

To determine optimal pH for AHAS and PDC activities of TmAHAS, a set of 100 mM buffers were used 

under anaerobic conditions and at 80ºC. The highest activities were measured for both AHAS and PDC 

reactions at pH 7.0 with phosphate buffer (Figure 4-23). The optimal pH of the AHAS was in agreement 

with the pH optima of the previously reported anabolic AHASs from various organisms (Grimminger and 

Umbarger 1979; Kalme et al. 2008).  

The steady-state kinetic parameters were determined for each substrate (pyruvate, TPP, and FAD) at 

pH 7.0 and 80ºC for both AHAS and PDC activities (Table 4-10). It seemed that the effect of the 

pyruvate concentration on velocity of the PDC reaction catalyzed by TmAHAS did not follow the simple 

Michaelis-Menten kinetics, but displays a sigmoid cooperative effect (Figure 4-24). Several repeats of 

the same experiment resulted in the similar curves shapes. The sigmoid effect did not seem to be the 

result of the change in the assay volume due to the addition of large pyruvate stock volumes; as the 



 

183 

 

 

Figure 4-23. pH dependency of AHAS and PDC activities of recombinant TmAHAS 

 

Both enzyme activities were measured as described previously (sections 4.3.10 and 4.3.11) under anaerobic 

conditions. The assay mixtures (1 ml total volume) contained corresponding buffers at 100 mM concentrations, 200 

mM NaCl, 10 mM MgCl2, 2.5 mM thiamine pyrophosphate (TPP), 50 mM sodium pyruvate, and 10 µM FAD. The 

relative activities of 100% equals to highest measured specific activity for both enzymes at 80ºC and in sodium 

phosphate buffer, pH 7.0 (114 Umg-1 for AHAS and 17.7 Umg-1 for PDC activity).   

The filled symbols represent the AHAS activity and the open symbols represent the PDC activity. The plus symbols 

represent the sodium acetate buffer (pH values 4.0, 5.0, and 5.5); the triangles and inverted triangles represent the 

sodium phosphate buffer (pH 6.2, 7.0, 7.5, and 8.0); the square symbols represent the EPPS buffer (pH 8.0, 8.4, 9.0, 

and 9.5); the triangles represent glycine buffer (pH 9.5 and 10); and circles represent the CAPS buffer (pH 10.5 and 

11.0). 
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Table 4-10. Apparent kinetic parameters for AHAS and PDC activities of recombinant TmAHASa 

Substrate 

AHAS activity PDC activity 

Apparent Km 
Apparent 

Vmax (Umg-1) 
kcat (S-1) Apparent Km 

Apparent Vmax 

(Umg-1) 
kcat (S-1) 

Pyruvate 16.4±1.9 mM 246±7.4 98.5 ND ND ND 

TPPb 57±6.0 µM 242±3.8 96.9 35±0.6µM 25.9±0.6 7.6 

FADb 0.15±0.07 µM 134±11 53.7 0.12±0.05 µM 18.1±1.7 7.3 

 
ND, not determined as the saturation curve is not following the Michaelis-Menten kinetics 
a The kinetics parameters were determined following the procedure explained in the Materials and Methods  (section 
4.3.14). The assays were all conducted at 80ºC and under anaerobic conditions using the procedures described in 
sections 4.3.10 and 4.3.11 for AHAS and PDC activities, respectively. Various concentrations of each substrate were 
used for the determination of the kinetic parameters for the corresponding substrate while keeping the other 
concentrations constant.  
b The kinetic parameters for the TPP and CoA must be considered prudently, as even in the absence of these 
cofactors significant activity is present. 
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Figure 4-24. Dependence of AHAS (A) and PDC (B) activities on pyruvate concentration 

The kinetics for pyruvate was determined for AHAS and PDC activities of TmAHAS. The assays were conducted as 

described in Material and Method (section 4.3.10 and 4.3.11) with the reaction mixtures (1 ml total volume) 

contained 100 mM sodium phosphate, 200 mM sodium chloride, 10 mM magnesium chloride, 2.5 mM thiamine 

pyrophosphate (TPP), 10 µM FAD and different concentrations of sodium pyruvate. The points are experimental 

values and repeated in duplicates (three independent repeats). The curves are the theoretical fit of data to the 

hyperbolic and sigmoid plot equations for AHAS and PDC activities, respectively. 
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reaction volumes were kept constant for different pyruvate concentrations. The non-Michaelis-Menten 

kinetics for the AHAS substrate pyruvate is a common phenomenon and the positive cooperativity was 

reported previously from the AHAS activities of Lactococcus lactis (Snoep et al. 1992), Serratia 

marcescens (Yang and Kim 1993), Haemophilus influenza (Choi et al. 2007; Gedi et al. 2011), 

Mycobacterium tuberculosis (Choi et al. 2005; Singh et al. 2011), and the mesophilic archaeon 

Methanococcus aeolicus (Xing and Whitman 1994). 

When assayed in the cell-free extract or heat-treated cell-free extract, the activity of the enzyme was 

independent of FAD because the addition of FAD to the assay mixture showed no effect on the enzyme 

activities. However, FAD seems to be partially dissociated from the enzyme during chromatography 

steps. Omitting FAD from the assay mixture caused up to three times decrease in AHAS activity of the 

active DEAE sepharose fractions. Similarly, for the purified enzyme, the specific activity of the enzyme 

without adding the FAD into the assay mixture is almost four times lower compared to the assay mixture 

containing 10 µM FAD (43 Umg-1 without FAD versus 159 Umg-1 with FAD). The apparent Km value of 

both activities are very close (0.15 µM and 0.12 µM for the synthase and decarboxylase activities, 

respectively) and much smaller than the Km value for the other cofactor TPP. However, the Km values for 

both TPP and FAD must be considered cautiously as there are some tightly bound cofactors present in the 

purified enzyme preparations. The presence of FAD in the enzyme structure was evident by the yellowish 

color of the purified enzyme preparation.  

Both activities catalyzed by the recombinant TmAHAS were salt dependent and activities diminished 

considerably (approximately 80%) when the assays were conducted in buffer concentrations less than 100 

mM. At concentrations higher than 100 mM the activity levels are quite similar (up to 500 mM salt was 

checked). This effect might be the results of the dissociation of the enzyme dimers. The gel-filtration of 

purified catalytic subunit at different salt concentrations (150-500 mM) showed no difference in elution 

profile. However, in each case, the salt content of the chromatography buffer was higher than 150 mM. 

Using a buffer with lower salt content was not recommended by the column manufacturer as it could 

cause an ionic interaction between the protein and the size-exclusion resin.  

4.4.10 Oxygen sensitivity of TmAHAS 

Both synthase and decarboxylase activities were highly susceptible toward exposure to air (protected 

from light, moderate stirring). The half-life (t1/2) was about 30 min for each of the AHAS (Figure 4-25) 

and PDC (Figure 4-26). The unexposed samples were also extremely labile and had half life times (t1/2) 

of approximately 85 min and 110 min for PDC and AHAS, respectively. Moreover, when the anaerobic 

sample was not stirred and kept under anaerobic conditions and at 4ºC, the activities were quite stable and 
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lost only about 35-40% of their activity after 5 days (see control negatives in Figure 4-27 A and B). 

Hence, it seemed that the physical factors rather than the oxidative damage affected the enzyme stability. 

There are few reports indicating the instability of the native and recombinant AHAS (Duggleby and Pang 

2000).  

4.4.11 Thermal stability of TmAHAS 

When TmAHAS was incubated under anaerobic conditions the time needed to lose half of its activity 

(t1/2) was about 25 h and 40h for AHAS and PDC activities, respectively (Figure 4-27 A and B). When 

incubated at 4ºC and under anaerobic conditions, both activities were highly stable and only about 40% of 

each activity lost after five days (Figure 4-27 A and B). Both AHAS and PDC increased following 

raising the assay temperature to 85ºC (Figure 4-28) which was the optimal temperature for the activities.  

There are some reports on light sensitivity of the anabolic AHASs due to “FAD-mediated photo 

oxidation” (Hill et al. 1997; Duggleby and Pang 2000). The light sensitivity of the purified TmAHAS was 

tested. TmAHAS aliquots were incubated under anaerobic conditions with one of them exposed to light 

and the other vial protected from the light by aluminum foil. The AHAS enzyme assays were performed 

on both preparations and there was no difference in the specific activities of the preparation. Therefore, it 

seemed that light exposure had no negative effect of light on the activity of the TmAHAS.   

4.4.12 Reconstitution of holoenzyme 

In all of the anabolic AHASs studied so far, mixing the individually expressed catalytic and regulatory 

subunits resulted in reconstitution of the holoenzyme with full activity. The reconstitution process is 

usually a rapid and cooperative process and follows the hyperbolic saturation kinetics with a 1:1 

stoichiometry (Duggleby and Pang 2000; Porat et al. 2004; Choi et al. 2005). The impact of the 

regulatory subunit on full activation of the enzyme is usually large but diverse, depending on the source 

of the enzyme. In case of the AHAS III from E. coli the catalytic subunit alone shows only about 5% of 

the activity of the holoenzyme (Vyazmensky et al. 1996). Reconstituted yeast AHAS has an increase of 

about 7-10-fold in the specific activity (Pang and Duggleby 1999). Reconstituted holoenzyme of A. 

thaliana showed least 2-3-folds increase over catalytic subunit alone. For all AHASs studied, the cofactor 

requirement and substrate specificity of the catalytic subunit is similar to the holoenzyme (Chipman et al. 

1998; Duggleby and Pang 2000). 

The purified catalytic and regulatory subunits were mixed under anaerobic conditions and with 

different molar ratios and the PDC and AHAS activities were determined. The reconstitution of the 

enzyme had evident impact on both AHAS and PDC activities. Both activities followed the same 

increment trend for most part, however, it appeared that when 1:5 ratio of catalytic and regulatory 



 

188 

 

 

Figure 4-25. Oxygen sensitivity of recombinant TmAHAS when AHAS was measured 

 

The enzyme assays were conducted as described previously in Materials and Methods (section 4.3.10) under 

anaerobic conditions. The assay mixtures (1 ml total volume) contained 100 mM sodium phosphate, 200 mM 

sodium chloride, 10 mM magnesium chloride, 50 mM sodium pyruvate, 2.5 mM thiamine pyrophosphate (TPP), and 

10 µM FAD. The relative activities of 100% equals to highest measured specific activity at time zero without 

exposure to air (166 Umg-1). The filled circles indicate the exposed sample and open circles indicate the un-exposed 

sample. 
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Figure 4-26. Oxygen sensitivity of recombinant TmAHAS when PDC was measured 

 

Both enzyme activities were measured as described previouslyin Materials and Methods (section 4.3.11) under 

anaerobic conditions. The assay mixtures (1 ml total volume) contained 100 mM sodium phosphate, 200 mM 

sodium chloride, 10 mM magnesium chloride, 50 mM sodium pyruvate, 2.5 mM thiamine pyrophosphate (TPP), and 

10 µM FAD. The relative activities of 100% equals to highest measured specific activity at time zero without 

exposure to air (16.4 Umg-1). The filled circles indicate the exposed sample and open circles indicate the un-exposed 

sample. The filled circles indicate the exposed sample and open circles indicate the un-exposed sample. 
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Figure 4-27. Thermal stability of synthase (A) and decarboxylase (B) activities 

 

The thermal stabilities were determined for AHAS and PDC activities catalyzed by recombinant TmAHAS at 80ºC 

and under anaerobic conditions. A similar aliquot of enzyme was incubated at 4ºC as a control. At each time point 

the corresponding assay was conducted to assay the residual activity. All assays were carried out anaerobically and 

at 80°C. The reaction mixtures (1 ml total volume) contained 100 mM sodium phosphate, 200 mM sodium chloride, 

10 mM magnesium chloride, 50 mM sodium pyruvate, 2.5 mM thiamine pyrophosphate (TPP), and 10 µM FAD. 

The relative activities of 100% equals to highest measured specific activity at time zero with no heat-treatment 

(195.0 Umg-1 for AHAS activity and 18.0 Umg-1 for PDC activity). Filled circles indicate the enzymes incubated at 

80°C and the open circles indicate the enzymes stored at 4°C. 
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Figure 4-28. Determination of optimal temperatures of AHAS and PDC activities of recombinant 

TmAHAS 

Both enzyme activities were measured as described previously (sections 4.3.10 and 4.3.11) under anaerobic 

conditions. The assay mixtures (1 ml final volume) contained 100 mM sodium phosphate, 200 mM sodium chloride, 

10 mM magnesium chloride, 50 mM sodium pyruvate, 2.5 mM thiamine pyrophosphate (TPP), and 10 µM FAD 

were equilibrated at each temperature for 4 min before adding the enzyme. The relative activities of 100% equals to 

highest measured specific activity for both enzymes at 85ºC (235 Umg-1 for AHAS and 18.6 Umg-1 for PDC 

activity). The filled symboles indicate the AHAS and the open symboles indicate the PDC activity. 
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subunits were mixed, the stimulatory effect of the regulatory subunit became significant as there were a 3-

fold increase in PDC activity only a slight increase in AHAS activity; But, no further increase of both 

activities were observed by mixing increasing ratios of catalytic to regulatory subunit up to 1:50 (Figure 

4-29).   

When the purified preparations were loaded on size-exclusion column individually each produced their 

corresponding bands (160 kDa and 50 kDa, respectively) at the expected elution volumes (Figure 4-30 A 

and B). When catalytic and regulatory subunits were mixed together in a molar ratio of 1:10 and pre-

incubated at room temperature for 30 min before being loaded on size-exclusion column, the peak 

corresponding to large subunit was disappeared and a new peak with higher molecular mass appeared in a 

position equivalent to apparent molecular size of approximately 230 kDa (Figure 4-30C) which was 

suggestive of reconstitution of holoenzyme in higher oligomeric state as was expected. It seems then the 

holoenzyme is composed of two catalytic and two regulatory subunits (α2β2). This is in accordance with 

findings on some mesophilic AHASs including AHAS III of E. coli (Vyazmensky et al. 1996). 
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Figure 4-29. Effect of TmAHAS reconstitution on AHAS and PDC activities 

 

Ml, the purified catalytic subunit of TmAHAS; Ms, the purified regulatory subunit of TmAHAS 

The effect of the enzyme reconstitution was studied on AHAS and PDC reactions catalyzed by recombinant 

TmAHAS. The purified catalytic subunit (50 pmol) was mixed with the purified regulatory subunit (50, 100, 250, 

and 500 pmol) in assay mixture. The AHAS and PDC activity assays (triplicates) were conducted as described 

previously (sections 4.3.10 and 4.3.11, respectively) using same batches of enzyme. In each case, the assay mixtures 

contained 100 mM sodium phosphate buffer (pH 7.0), 200 mM NaCl, 10 mM MgCl2, 2.5 mM thiamine 

pyrophosphate (TPP), 50 mM sodium pyruvate, 10 µM FAD and when necessary various amounts of the regulatory 

subunit, was equilibrated at each temperature for 4 min before adding the enzyme. The specific activity of 100% 

was considered for AHAS and PDC activities of catalytic subunit alone and was corresponding to 145 Umg-1 for 

AHAS and 9.5 Umg-1 for PDC activity. 
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Figure 4-30. Gel-filtration chromatography of AHAS subunits 

The catalytic subunit (A), regulatory subunit (B), and reconstituted holoenzyme (C) of AHAS were loaded on gel 

filtration column. The numbers indicate the apparent molecular masses of the proteins eluted in each peak. The 

column was eluted using buffer C as previously described (section 4.3.13). The peaks eluted after 250ml correspond 

to molecular weights of less than 5000 Da and are most likely resulted from the change in the buffer phase rather 

than elution of individual molecules. For reconstitution experiment a molar ratio of 1:10 of catalytic subunit to 

regulatory subunit were mixed together and incubated at room temperature for 1 h. The mixture then was loaded on 

the size-exclusion column to determine the oligomeric state. 
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4.5 Discussion 

AHAS is a member of the decarboxylase family that catalyzes the reactions whose initial step is 

decarboxylation of 2-keto acids. The decarboxylase family is one of the five members of TPP-dependent 

enzymes superfamily (Duggleby 2006). AHAS shares a common ancestry with pyruvate decarboxylase 

(Kellermann et al. 1986; Neale et al. 1987; Green 1989) as is indeed apparent from its sequence 

homology to the PDCs from various organisms (Table 4-1) and pyruvate oxidase (POX) (Chang and 

Cronan 1988). Considering the catalytic mechanism of the enzyme, it is also believed that the enzyme is 

very close to pyruvate decarboxylase. Moreover, preliminary information on AHAS structure indicates 

high levels of similarity with PDCs. 

The anabolic AHASs are relatively well studied in plants and a number of mesophilic bacterial 

pathogens (Table 4-11). The physiological substrate of AHASs are two molecules of keto acids, usually 

two molecules of pyruvate or one molecule of pyruvate and one molecule of 2-hydroxybutyrate. The first 

molecule of pyruvate is decarboxylated and the resulting hydroxyethyl moiety will be condensed with 

either another pyruvate or hydroxybutyrate (Barak et al. 1987; Gollop et al. 1989; Gollop et al. 1990). It 

seems that the first substrate binding site is very specific for pyruvate; however, the second substrate 

binding site seems to be less specific. AHAS I and II from E. coli, can also condense two molecules of 2-

ketobutyrate, leading to 2-ethyl-2 hydroxy-3-oxopentanoate (Schloss et al. 1988; Gollop et al. 1989). The 

AHAS II and III from E. coli can accept 2-ketovalerate as a second substrate yielding 2-aceto-2-

hydroxyvalerate (Gollop et al. 1989).  

As a well known side reaction, AHASs are also capable of catalyzing the carboligation reactions and 

producing α-hydroxy ketones. During the reaction, decarboxylation of pyruvate generates a hydroxyethyl-

TPP (HETDP), also known as “active acetaldehyde”, intermediate (Hübner et al. 1998) and the 

stereospecific condensation of this intermediate with aldehydes produces α-hydroxy ketones (Iding et al. 

1998). The reaction has been extensively studied in pyruvate decarboxylases (Ward and Singh 2000), and 

there have been some studies demonstrating higher efficiency of AHASs than the pyruvate 

decarboxylases, presumably because the condensation reaction is an intrinsic property of the AHASs 

(Engel et al. 2003; Engel et al. 2005; Vyazmensky et al. 2011). Similar to PDC (Crout et al. 1991; Crout 

et al. 1994; Iding et al. 1998), AHAS I from E. coli was shown to be able to use a wide range of 

aldehydes as the second substrate, including benzaldehydes, heterocyclic, hetero-aromatic and non-

aromatic aldehydes (Engel et al. 2004a). As another side reaction, it is reported that some AHASs can 

catalyze oxidative decarboxylation of pyruvate or 2-oxobutyrate, yielding peracetic acid or 

peroxypropionic acid, respectively. During this reaction, the enzyme bond hydroxyethyl-TPP 
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Table 4-11. Catalytic and structural properties of AHAS activity from different organismsa 

Organism 
catalytic 

regulatory Apparent Km for Specific 
activity 
(Umg-1)b 

Enzyme Reference 
catalytic regulatory pyruvate 

(mM) 
TPP 
(µM) Mg2+ (µM) FAD 

(µM) 
Mycobacterium avium 65.9 18.1 2±0.2 7.5±0.4 NR 0.1 4 R Choi et al. 2005 
Haemophilus influenza 63 NR 9.2 13.6 NR NR 1.5 R Gedi et al. 2011 
Shigella sonnei 65 NR 8.1 0.01 180  0.12 R Lim et al. 2011 
Mycobacterium 
tuberculosis NR NR 1.56±0.39 1.40±0.3 NR NR 4.6 R Zohar et al. 2003 

Escherichia coli 
Isozyme I 60.4 11.1 3.7 NR NR 760 0.4 R Barak et al. 1987; 

Weinstock et al. 1992 

Escherichia coli 
Isozyme II 59.3 9.6 5.0±0.5 

2.6 
0.65±0.03 

1.1 

0.01±0.00
2 

3.8 

0.17±0.04 
NR 

20 
52.7 R Bar-Ilan et al. 2001 

Hill et al. 1997 

Escherichia coli 
Isozyme III 63.0 17.5 11.5±1.4 

 18±3 3300±800 2.2±0.5 2.6 R Sella et al. 1993; 
Vyazmensky et al. 1996 

Saccharomyces 
cerevisiae ~70 40 8.6±1.4 110 280 0.3 49±1.8 R Pang and Duggleby 1999 

Arabidopsis thalianad 61 NR 11.7±0.6 25.3±1.4 198±19 1.46±0.22 7.9 R Singh et al. 1991; Chang 
and Duggleby 1997 

Nicotiana tabacumd NR NR 8.1-12.8 80-210 NR 1.4-2.6 2.8-3.4 R Kil and Chang 1998 
Bacillus 
stearothermophilusd 62.4 18.7 8.8±1.2 5.5±0.8 20±3 NR 9.2 R Porat et al. 2004 

Corynebacterium 
glutamicum 66.8 15.4 8.4 NR NR NR 0.37 N Eggeling et al. 1987; 

Gollop et al. 1990 
Methanococcus 
aeolicus 65 19 6.8 1.6 300 1.3 39.3 Nc 

R 
Xing and Whitman 1994; 
Bowen et al. 1997 

Haloferax volcanii 50 NR 25.5±5 8.7±0.9 NR NR 0.005 N Vyazmensky et al. 2000 
Salmonella 
typhimurium 59.3 9.7 10.6±0.7 1.5±0.2 22±4 0.8±0.1 25.3 R Schloss et al. 1985 

Thermotoga maritima 65.5 20 16.4±1.9 56.5±5.6 NR 0.15±0.07 134±30 R this study 
 

a NR: not reported; R, recombinant; N, native enzyme 
b Expressed as micromoles of acetolactate produced per min per milligram of enzyme 

c The kinetic parameters are for the native 
d The kinetics parameters are only available for the catalytic subunit  
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(E-HETPP) reacts with the molecular oxygen, leading to the formation of hydroproxide-HETPP, which is 

then decomposed to peracetic acid and TPP. The rate of this oxygen-consuming reaction is approximately 

1% of the AHAS activity in case of AHAS II from E. coli (Tse and Schloss 1993; Abell and Schloss 

2002). Within the members of the TPP-dependent enzymes, AHAS and pyruvate decarboxylases are the 

only enzymes that can catalyze this oxygenase side reaction (Chipman et al. 1998). The PDC activity that 

is being reported here is another “side reaction” of AHASs, though other possible side reactions of the 

enzyme were not tested. 

All of the genes involved in the biosynthesis of leucine, valine and isoleucine appear to be transcribed 

in polycystronic compartments. For example, among the genes involved in the biosynthesis of isoleucine 

(ilvB-ilvN-ilvC-ilvD), the stop and start codons of every two adjacent genes are overlapping or are 

separated only by a few nucleotides (Figure 4-10). The same organization is found for genes involved in 

biosynthesis of leucine (leuA-leuC-leuD-leuB). The ribosome˗binding sites (also known as 

Shine˗Dalgarno (SD) sequence) of the genes except the first gene in the polycystronic complex, is located 

in coding sequence of the proximal (upstream) gene (Figure 4-10). 

Similar polycistronic gene organization is reported for some bacterial and phage operons, for the 

tryptophan biosynthesis (trp operon) pathway in E. coli, which is the first and best studied (Nichols and 

Yanofsky 1979). This property may ensures the coupled translation of all genes involved in the same 

biological pathway by making sure that the translation of the distal gene is dependent on the translation of 

the proximal coding sequence (cistron) from a single messenger RNA (mRNA) transcript (Das and 

Yanofsky 1984; Schoner et al. 1984).  

The ilv operon has been found to be present in most sequenced genomes of Thermotogales. Amongst 

ten fully sequenced genomes of Thermotoga genus, only Thermotoga lettingae had no recognizable ilv 

operon (Table 4-5), which was also in accordance with the auxotrophy of this organism for these three 

amino acids (leucine, valine, and isoleucine) (Balk et al. 2002). AHAS-encoding genes from different 

Thermotogae were highly conserved, showing more than 90% amino acid sequence identity. However, 

both catalytic and regulatory subunits of Thermotoga thermarum seem to be an exception, showing only 

47% amino acid level sequence identity to that of other Thermotogae species (Figure 4-7 and Figure 

4-8). Considering differences in gene organization and its higher sequence identity (~70% identity) to 

those of the Caldicellulosiruptor genus, it can be speculated that the genes might have been acquired from 

another species.  

The ilv operon was absent in most of the Thermococcales genomes studied and only a few could be 

found in genomes of P. furiosus, P. abyssi, and Pyrococcus sp. strain NA2. The gene organization and 

structure were different from those found in Thermotogales (Figure 4-9). Generally, the regulatory 
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subunits of AHASs are not easy to identify as they vary greatly, both in their sizes and sequences (Pang 

and Duggleby 1999; Gedi and Yoon 2012). Although located in the same operon as the catalytic subunit, 

sequence of the regulatory subunit, which was annotated as hypothetical protein (PF0934), showed very 

low similarity to other known genes annotated as regulatory subunit of AHAS (Figure 4-8). Interestingly, 

microarray study shows that transcription levels (and enzyme activity) increases approximately 6-fold for 

both PF0935 and its upstream hypothetical coding sequence (PF0934) during the early (1-2 h) and late (5 

h) cold-shock (72ºC) response (Weinberg et al. 2005). Other microarray studies only report the increase 

the transcription levels of the catalytic subunit. For example, transcription of the gene encoding the 

catalytic subunit AHAS (PF0935) increases approximately 7-fold by the addition of elemental sulfur 

(Schut et al. 2001a), 17-fold after growth on maltose based medium compared to the peptide based 

medium (Schut et al. 2003), and 9-fold when subjected to peroxide shock (Strand et al. 2010). 

 There is a 308 bp non-coding region between the gene encoding the hypothetical protein (PF0934) and 

the catalytic subunit of PfAHAS (PF0935) in P. furiosus. A putative ribosome-binding site (RBS) is 

recognized to be close to each of PF0934 and PF0935 genes, which may be suggestive of their translation 

from independent transcripts. The overlapping intercistronic sequences were not in the same order as they 

were in Thermotogales ilv operon. The genes encoding the catalytic subunit of AHAS and ketolacid 

reductoisomerase (ilvB-ilvC) displayed overlapping intercistronic sequences and same organization was 

observed for leuA-leuC-leuD-leuB-leuA, which are involved in the biosynthesis of leucine and valine 

(Figure 4-9). Interestingly, the ilv operon of P. furiosus and P. abyssi contains two different copies of 

genes encoding 2-isopropylmalate synthase (Figure 4-9) and the two genes PF0937 and PAB0890 are 

paralogs of PF0941 and PAB0894, respectively. The two genes showed approximately 32% amino acid 

sequence identitypair. Only a single copy of the isopropylmalate synthase (IPMS)-encoding gene was 

detectable in Pyrococcus sp. strain NA2 (PNA2_1340 that are the orthologues of PF0941 and PAB0894) 

that harbors an ilv operon. None of these genes were included in microarray studies of Pyrococcales 

(Schut et al. 2003; Weinberg et al. 2005; Williams et al. 2007; Strand et al. 2010) and it is not known 

whether presence of second copy has any physiological functions or whether it is only result of gene 

duplication or acquisition from two different ancestors. 

The purified catalytic subunit of TmAHAS had much higher AHAS activity than any other AHAS 

activity characterized (Table 4-11), although some of these differences might be a result of various 

modifications of the assay systems. The regulatory subunit (Ms-pET30a) was often expressed partly as 

inclusion bodies (approximately 50%) in E. coli which is very similar to other reports (Engel et al. 2004b; 

Vinogradov et al. 2006; Petkowski et al. 2007). The inclusion bodies were purified under denaturing 

conditions followed by gentle renaturation steps. 
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The recombinant TmAHAS showed a much higher AHAS and PDC activities after heat-treatment for 

30 min (Figure 4-20), indicating thermal activation of the expressed enzyme which was observed in 

many heterologously expressed hyperthermophilic proteins. A typical example of this phenomenon is the 

alcohol dehydrogenase (AdhC) from the hyperthermophilic archaeon P. furiosus expressed in E. coli 

(Table 4-8). The homotetrameric recombinant protein does not attain the correct configuration unless a 

heat-treatment step is applied to the enzyme (Kube et al. 2006). However, a monomeric short chain 

alcohol dehydrogenase expressed from the same organisms does not need this thermal activation step 

(Kube et al. 2006). 

The optimal pH and temperature for both AHAS and PDC activities were 7.0 (Figure 4-23) and 85°C, 

respectively (Figure 4-28). The latter is the highest optimal temperature reported for AHASs. TmAHAS 

was highly thermostable when kept under anaerobic conditions without stirring (Figure 4-27). The 

exposure to light had no effect on either of the activities. Although there are reports of oxygen sensitivity 

of AHAS isolated from the mesophilic archaeon Methanococcus aeolicus (Xing and Whitman 1994; 

Bowen et al. 1997), TmAHAS was not oxygen sensitive, but other factors (e.g. stirring) inactivated the 

enzyme. Without stirring TmAHAS was fairly stable under anaerobic or aerobic conditions (Figure 

4-27), however, it became extremely labile toward stirring under aerobic and anaerobic condition, though 

the air exposed samples lost the activity in a faster paces (Figure 4-25 and Figure 4-26). Moreover, in M. 

aeolicus, the oxygen sensitivity of the enzyme cannot be explained (Bowen et al. 1997), but it might be 

related to the enzyme’s high cysteine contents (12 cysteine residues compared to 3 residues in TmAHAS).  

The FAD-dependence is a perplexing feature of the anabolic AHAS, since the enzyme is not catalyzing 

any redox reactions. In fact, the enzyme pyruvate oxidase (POX) is the only member in the TPP-

dependent enzymes superfamily that catalyzes a redox reaction (Duggleby 2006). Based on experiments 

with FAD-analogue molecules (McCourt and Duggleby 2006), it has been suggested that the role of the 

FAD is merely structural (and not mechanistic). This may be further supported by the fact that the 

catabolic version of the enzyme (ALS) is completely FAD-independent, despite catalyzing the same 

reaction and have a very similar crystal structures (Table 4-2) (Tittmann et al. 2004; Duggleby et al. 

2008). Other members present in the so called “non-redox flavoproteins” group including TPP-dependent 

enzymes pyruvate oxidase (EC 1.2.3.3) and glyoxylate carboligase (EC 4.1.1.47). The FAD-dependence 

in these enzymes is thought to be an evolutionary relic in this particular sub-family of TPP-dependent 

enzymes (Chang and Cronan 1988; Duggleby 2006). 

A putative FAD-binding motif (RFDDR) was thought to be associated with FAD-dependence in 

anabolic AHASs. The motif is found to absent from amino acid sequences of catabolic AHASs (ALSs). 

The role of these highly conserved amino acid residues in incorporation of FAD into the enzyme structure 
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is confirmed by mutagenesis in the motif and measuring the FAD binding in the resulting mutants (Le 

2005). The sequence alignments of the catalytic subunits of AHAS from various organisms, including 

hyper/thermophiles, (Figure 4-11A) also confirms the presence of FAD-binding motif (Figure 4-11A). 

Hence, it was expected that TmAHAS activity to be FAD-dependent. The addition of FAD to the assay 

mixtures had stimulatory effects on both AHAS (approximately 70% higher activity) and PDC activities 

(~55% higher activity). The difference in the FAD effect on each activity might be the result of using 

different enzyme preparations.  

 Even though the apparent Km of FAD for TmAHAS (Table 4-10) was close to that of most other 

recombinant AHASs characterized (Table 4-11), it should be considered with caution as the purified 

enzyme still retained activity even without addition of FAD. The same observation is reported for other 

AHASs expressed from different organisms, suggesting a relatively tight-binding of FAD molecule to the 

protein. 

Although the TPP-binding motif was detected in the sequences of TmAHAS and other 

hyperthermophiles (Figure 4-11B), the enzyme was not completely dependent on addition of TPP, but 

addition of TPP to assay mixture was stimulatory for both PDC and AHAS activities, resulting in more 

than 90% increase in both activities. It is predicted that TPP is bound to the enzyme non-covalently, 

which might result in dissociation of the cofactor from the enzyme during purification steps. 

Anabolic AHASs have two subunits, large catalytically active subunit and smaller inactive regulatory 

subunit. Both subunits have been shown to be essential for the full activity and reconstitution of the 

holoenzyme; mixing the catalytic and regulatory subunits leads to a fully active enzyme. The two major 

functions of the regulatory subunit of anabolic AHAS are activation and allosteric feedback regulation of 

the catalytic subunit (Sella et al. 1993; Vyazmensky et al. 1996; Hill et al. 1997; Porat et al. 2004). 

Mixing the purified catalytic and regulatory subunits of TmAHAS resulted in the considerable and 

reproducible increase of both AHAS and PDC activities (Figure 4-29). Mixing the catalytic and 

regulatory subunits also resulted in higher oligomeric states for the holoenzyme, which is in accordance 

with findings in mesophilic AHASs such as E. coli AHAS III (Vyazmensky et al. 1996). Because of high 

propensity of the regulatory subunit for aggregation, it has been suggested that it is highly involved in the 

process of oligomerization and enzyme reconstitution (Choi et al. 2005). 

The principal catalytic mechanism of AHAS, follows the activation step of the enzyme is similar to 

those of the other pyruvate utilizing TPP-dependent enzymes especially the classic example of this group, 

PDC (Bar-Ilan et al. 2001). Protonation of the N1 atom of pyrimidine ring by the highly conserved 

glutamine residue results in induction of a 1,́ 4́ -iminotautomer. Due to the common “V-conformation” the 

4-imino group is located in the proximity of the C2 catalytic centre of the AHAS, which results in de-
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protonation of the C2 atom. The proton abstraction step gives rise to a highly reactive ylide (Kern et al. 

1997; Lie et al. 2005; McCourt and Duggleby 2006). The nucleophilic attack of the ylide to the first 

molecule of pyruvate, results in production of 2-(2-lactyl)-TPP (also known as L-TPP or L-TDP). Later, 

decarboxylation of L-TPP gives the resonating carbanion/enamine forms of 2-(1-hydroxyethyl)-TPP 

(HETPP, also known as hydroxyethylidene-TPP), which acts as a central and highly reactive intermediate 

(Candy and Duggleby 1998; Tittmann et al. 2003; Kluger and Tittmann 2008). 

 During the normal course of the catalysis, HETPP intermediate reacts in an enantio-specific manner 

with the second molecule of 2-keto acid (usually pyruvate or 2-ketobutyrate), resulting in the release of 

the product. The ability of heterologously expressed TmAHAS to generate acetaldehyde is most likely the 

result of protonation of the HETDP/enamine intermediate in C2 position. This step, results in the releases 

of acetaldehyde from active site of the enzyme. Unfortunately, with the available data on recombinant 

TmAHAS, it is not possible to deduce further mechanistic details of PDC activity of enzyme. Complete 

and accurate understanding of the mechanisms involved in acetaldehyde formation demands more in-

depth study of the reaction intermediates and more importantly crystal structure of enzyme. Other than a 

preliminary X-ray crystal structure for catalytic subunit of E. coli AHAS II (Niu et al. 2011), so far, no 

crystal structure has been provided for any catalytic (large) subunit of AHAS (Gedi and Yoon 2012).  

Catabolic AHAS (ALS) has been isolated and characterized mainly from enteric bacteria, including 

Enterobacter, certain Klebsiella and Serratia species, some lactic acid bacteria, and Bacillus subtilis. A 

typical ALS is composed of only one subunit of ~60 kDa (no regulatory subunit), generally located in the 

butanediol operon when it is present. It is FAD-independent. Despite catalyzing same reactions, anabolic 

and catabolic AHASs are very divergent, showing less than 30% amino acid sequence identity with each 

other (Chipman et al. 1998; Duggleby and Pang 2000; Gedi and Yoon 2012). Different factors can trigger 

activation of butanediol operon in bacteria, including low pH, presence of excess acetate and/or pyruvate, 

as well as growth during the stationary phase (Störmer 1968b; Störmer 1968c; Störmer 1968a; Tsau et al. 

1992; Renna et al. 1993; Duggleby and Pang 2000). As an important development, it is shown that 

besides its synthase activity, the catabolic ALS of B. subtilis can also catalyze the non-oxidative 

decarboxylation of the 2-ketoisovalerate both in vitro and in vivo (Atsumi et al. 2009). Considering the 

major mechanistic similarities between the anabolic and catabolic AHAS, the involvement of the anabolic 

AHAS in the similar non-oxidative decarboxylation reaction is not very surprising. 

Hyperthermophilic heterotrophic archaeon, T. guaymasensis, can produce acetoin (Ying and Ma 2011). 

A survey of database information confirmed that gene(s) encoding the AHAS are always clustered with 

other genes involved the branched chain amino acid biosynthesis (Figure 4-9). There is no report on 

detection of catabolic AHAS (ALS) and 2-acetolactate decarboxylase. Since no commonly-known 



 

202 

 

AHAS-encoding-gene(s) could be found in genomes of any species of the genus Thermococcus (Table 

4-5), it is believed that besides the conventional AHAS present in some hyperthermophiles (many 

Thermotogales and few species of the genus Pyrococcus), there is an alternative, yet-to-be characterized 

enzyme, that catalyzes the production of acetoin in T. guaymasensis and T. kodakaraensis (Table 4-6 and 

Figure 4-12). The same enzyme is presumably responsible for production of the acetoin detected in T. 

guaymasensis (Ying and Ma 2011).  

There are two pathways that lead to production of acetoin: one is present in mesophilic organisms, like 

Lactococcus lactis, by which acetolactate can be converted to diacetyl spontaneously, particularly at low 

pH environments such as stationary growth phase (Goupil-Feuillerat et al. 1997). This spontaneous 

oxidative decarboxylation conversion seems to be even faster at high temperatures. The next step which is 

an irreversible conversion of diacetyl to acetoin is catalyzed by acetoin reductase/2, 3-butanediol 

dehydrogenase (Speckman and Collins 1982). An ADH with high acetoin reductase (EC 1.1.1.4) activity 

was detected in T. guaymasensis (Ying and Ma 2011).  

 There is yet another possible explanation for the origin of acetoin detected in spent culture of T. 

guaymasensis; by which 2-acetolactate can be directly decarboxylated to diacetyl by the enzyme 2-

acetolactate decarboxylase. The enzyme 2-acetolactate decarboxylase is present in many mesophilic 

methanogenic archaea, including Methanoplanus, Methanococcus, Methanoregula, Methanoculleus, 

Methanosaeta, but is absent from the studied genomes of hyperthermophilic archaea and bacteria (this 

study). However, there is no need for the presence of the acetolactate decarboxylase in 

hyperthermophiles. It is shown that high temperature and low pH can result in direct conversion 

(spontaneous conversion/degradation) of 2-acetolactae to acetoin (Ramos et al. 1994; Goupil-Feuillerat et 

al. 1997; Dulieu and Poncelet 1999). 

The acetoin production pathway is likely present in hyperthermophiles and the resulting acetolactate 

can be further channeled to either branched-chain amino acids via BCAA biosynthesis pathway (Figure 

4-2) or to acetoin and possibly to 2, 3-butanediol (Figure 4-31). Another possible pathway to explain the 

origin of acetoin (but not 2, 3-butanediol) is its production by pyruvate decarboxylase (Gocke et al. 

2009b). It is shown that some bacterial and yeast PDCs can catalyze the carboligation of two molecules of 

acetaldehyde, yielding one molecule of acetoin. This reaction is reported for the PDCs from yeast (Chen 

and Jordan 1984; Bornemann et al. 1993; Neuser et al. 2000; Kurniadi et al. 2003), Z. mobilis PDC 

(Bornemann et al. 1993; Siegert et al. 2005) and Zymobacter palmae PDC (Rosche et al. 2003). 

However, to date there is no commonly-known PDC found in any hyperthermophilic microorganisms 

(this study). It is not known if the acetaldehyde-producing activity of AHAS can also catalyze such a 

condensation reaction with two molecules of acetaldehyde. 
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A more recently noticed aspect of the BCAA biosynthesis pathways in general and AHAS in particular 

is their potential application in the biosynthesis of modern biofuels, via non-fermentative pathways for 

biosynthesis of branched chain alcohols (C4-C5). The higher alcohols are preferred over traditional 

biofuels (such as ethanol) due to their higher energy density and octane number, lower volatility, and 

lower hygroscopicity. During these pathways, 2-keto acids are decarboxylated by specialized 

decarboxylases, and resulting aldehydes are converted to corresponding alcohols by ADHs (Atsumi et al. 

2008; Cann and Liao 2010; Peralta-Yahya and Keasling 2010). However, none of these studies 

considered the possibility of ethanol- and acetaldehyde-production (classical biofuels) by using AHASs.  

Although the presence of the ilv operon can be verified in organisms with available full genome 

sequences (Table 4-5), no enzymes of the ilv operon is purified and studied from hyper/thermophiles. 

Moreover, the data pertaining to amino acid requirements of hyperthermophiles are quite limited, and 

what is available comes from only a very few minimal media studies as well as the genome surveys of 

fully sequenced microorganisms (Table 4-3). The results of such studies are sometimes not conclusive 

and, in some cases, in disagreement or even contradictory to each other. For instance, there have been two 

studies on the minimal amino acid requirements of the relatively well-known hyperthermophilic archaeon 

P. furiosus. One suggested that the organism requires the BCAAs for growth (Hoaki et al. 1993; Hoaki et 

al. 1994) and the other reports that the growth is independent of BCAAs (Raven and Sharp 1997). As 

another example, P. abyssi was shown to contain the gene encoding for the BCAA biosynthesis operon 

(Cohen et al. 2003); another study indicated the organisms auxotrophy for BCAAs (Watrin et al. 1995). 

So verification of enzyme activity in the organisms seems to be critical to determining the presence of the 

enzymes and corresponding activities. 
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Figure 4-31. Proposed acetoin production pathway in hyperthermophiles 

AD, acetolactate decarboxylase (EC 4.1.1.5); AR, acetoin reductase (EC 1.1.1.4). 

The acetolactate produced by AHAS or the alternative AHAS can be converted to both acetoin and diacetyl at high 

temperature. The dashed arrows indicate the step that is generally catalyzed by the enzyme acetolactate 

decarboxylase, but at high temperature the reaction can occur spontaneously. The solid arrows indicate the 

enzymatic reactions that are known in hyperthermophiles.  The dotted arrow indicates a spontaneous reaction in all 

the microorganisms that have a 2, 3-butanediol pathway. 
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5.1 Commonly-known PDC and AcDH are not present in hyperthermophiles  

Thermophilic and hyperthermophilic ADHs are studied extensively, however, very little is known 

about enzymes involved in acetaldehyde production in these organisms. PDC and AcDH are the 

commonly-known enzymes catalyzing the production of acetaldehyde from pyruvate. PDC catalyzes 

the direct conversion of pyruvate to acetaldehyde and AcDH catalyzes acetaldehyde formation by 

reducing acetyl-CoA produced from pyruvate by POR or PFL. The genes encoding CoA-dependent 

acetaldehyde dehydrogenase have previously been isolated and characterized from some mesophilic 

and thermophilic (but not hyper- or extremely thermophilic) bacteria, including members of the 

genera Thermoanaerobacter and Geobacillus, with optimal temperatures of approximately 55-60ºC 

(Burdette and Zeikus 1994; Pei et al. 2010; Yao and Mikkelsen 2010a; Yao and Mikkelsen 2010b). 

However, such activities and the genes encoding such enzymes were absent from the 

hyperthermophilic bacteria and archaea studied here (Chapter 2).  

5.2 POR/PDC and AHAS/PDC are novel enzymes catalyzing the production of 
acetaldehyde from pyruvate in hyperthermophiles 

It is shown that pyruvate ferredoxin oxidoreductases, and most likely all 2-keto acid ferredoxin 

oxidoreductases (KORs), can catalyze the non-oxidative decarboxylation of keto acids to produce 

corresponding aldehydes (Ma et al. 1995; Ma et al. 1997). Hence, KORs can be regarded as 

regulating factors for conversion of keto acids to both acyl-CoA and corresponding aldehyde. For 

more than a decade, PfPOR has been considered to be the only acetaldehyde-producing enzyme 

known in hyperthermophiles, though; there was no systematic study to confirm either presence of the 

same bifunctionality in any other hyper/thermophilic counterparts or the occurrence of any other 

acetaldehyde-producing enzyme in hyperthermophiles. The present study confirms that POR/PDC 

bifunctionality is indeed a common trait of the enzyme from hyper/thermophilic bacteria and archaea 

(Table 5-1).  

All of the bifunctional POR/PDCs characterized were strictly CoA- and TPP- dependent and highly 

thermostable. PDC activity was not affected by substitution of desulfo-CoA for CoA, suggesting a 

structural (rather catalytic) role of CoA. PDC activities were also highly sensitive to oxygen. All of 



 207 

Table 5-1. POR/PDC and AHAS/PDC activities in hyperthermophiles 

Category Organism 
POR or 
AHAS 
activity 

PDC 
activityb 

Ratio of 
PDC/POR (or 

AHAS) 
References 

POR/PDC 

T. maritima 90.8±11a 1.4±0.15 0.016 this study 
T. hypogea 96.7±15.1a 1.82±0.44 0.018 this study 

P. furiosus 22.0±1a 4.3±0.3 0.20 
Ma et al. 

1997 
this study 

T. guaymasensis 20.2±1.8a 3.8±0.22 0.19 this study 
AHAS/PDC T. maritima 134±3.0c 16.7±3.4 0.13 this study 
 

a Expressed as micromoles of pyruvate oxidized per min per milligram of enzyme  
b Expressed as micromoles of acetaldehyde produced per min per milligram of enzyme 
c Expressed as micromoles of acetolactate produced per min per milligram of enzyme 
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the enzymes showed higher activity of POR compared to the PDC activity under the conditions 

examined (in vitro), suggesting that POR reaction would most likely dominate under physiological (in 

vivo) conditions. The bifunctional enzyme isolated from bacterial hyper/thermophiles had lower PDC 

to POR ratios when compared with their archaeal counterparts (Table 5-1). Bacterial 

hyper/thermophilic POR/PDC had similar pH optima for both activities, but archaeal 

hyperthermophilic POR/PDCs showed higher pH optima for PDC activity than POR activity. The 

potential physiological significance of such differences between bacterial and archaeal PORs/PDCs is 

not clear at this point. PDCs of Tg-, Tm-, and Th-POR/PDC had the highest temperature optima 

compared to commonly-known PDCs characterized from mesophilic bacteria Z. mobilis (Hoppner 

and Doelle 1983) , A. pasteurianus (Raj et al. 2001; Raj et al. 2002), and  Z. palmae (Raj et al. 2002), 

which are only moderately thermostable with a limit of up to 60ºC for their activities.  

AHASs were the second type of enzymes catalyzing the production of acetaldehyde from pyruvate 

in hyperthermophiles. For the first time, it was shown that AHAS was able to produce acetaldehyde 

beside its known catalytic reaction which is condensation of two molecules of 2-keto acids. Like the 

archaeal POR/PDC bifunctionality (and unlike the bacterial POR/PDC activity), the PDC to AHAS 

activity ratio was high (Table 5-1). The majority of Thermococcales lack the genes required for 

biosynthesis of amino acids and therefore rely on the uptake of the amino acids using the energy-

dependent transport systems (Cohen et al. 2003; Lee et al. 2003). Even in the few Thermococcales 

able to perform BCAA biosynthesis such as P. furiosus (Raven and Sharp 1997), microarray data 

suggest that following growth on carbohydrates (maltose), the expression of genes involved in amino 

acid biosynthesis increases. This finding suggests that cells depend on amino acids imported into the 

cell to be used for the biosynthetic and physiological applications when growing on carbohydrates 

(Schut et al. 2003). Besides using the peptides as an energy source, amino acids are also needed for 

the biosynthesis of different components necessary for general housekeeping purposes. Therefore, the 

enzymes of amino acid catabolism (especially the 2-keto acid ferredoxin oxidoreductases) may not 

need to be highly active, especially considering the existence of four individual and specialized 

versions of these enzymes that act specifically on various keto acids resulting from transamination of 

different amino acids. Presumably, having the differentiated KORs is a mechanism to make sure that 

only the amino acids that are not required for cell survival are catabolized for energy conservation 

purposes. 
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Thermotogales are able to use both carbohydrates (simple and complex) and peptides as a source of 

carbon and energy (Conners et al. 2006), and many of them are capable of de novo synthesis of amino 

acids required for growth (Chapter 4). Presumably, the “extra” amino acids imported and/or 

synthesized inside the cells would be channeled to the energy conservation process, during which 

they are decarboxylated after a transamination step. Like Thermococcales, the reduced ferredoxin 

produced during the POR reaction can be used via different hydrogenase enzymes for energy 

conservation (Jenney and Adams 2008) and acetyl-CoA is used for both biosynthesis and energy 

conservation (Kelly and Adams 1994).  

Both POR/PDC and AHAS/PDC were TPP-dependent and had the highly conserved canonical 

TPP-binding motifs in their primary structures. Although, the catalytic mechanisms of these two 

classes of enzymes are completely different, with the POR (and most likely PDC) using radical 

chemistry and the AHAS using non-radical mechanisms, there is not much information available on 

the catalytic mechanisms for the PDC activities. The bifunctionality does not seem to be a property of 

all TPP-dependent enzymes, as preliminary results showed that porcine PDH is unable to catalyze the 

production of acetaldehyde from pyruvate (Chapter 2). 

It seems that the keto acids produced by catabolism of different amino acids and/or carbohydrates 

can be decarboxylated both oxidatively and non-oxidatively via either bifunctional POR/PDC or, 

when present, the bifunctional AHAS/PDC. The aldehydes resulting from the non-oxidative 

decarboxylation of keto acids can be further reduced to produce corresponding alcohols. This 

reduction is accompanied by the regeneration of oxidized NADP+.  

5.3 Outlook  

In this study, evidence supporting the involvement of bifunctional enzymes (POR/PDC or 

AHAS/PDC) in production of acetaldehyde from pyruvate in hyperthermophiles was presented.  

Although production of acetaldehyde was shown by POR/PDC and AHAS/PDC in vitro, and both 

enzymes are from ethanol-producers, it is still not known what factors favors one activity over 

another under physiological conditions. In vivo studies such as microarray and real-time PCR 

combined with enzyme activity studies may be exploited to determine the physiological conditions 

and substrates that regulate each of the activities. Also, detailed analysis of the end-products under 

each growth condition may further clarify potential roles of each enzyme activity. The elucidation of 



 

210 

 

the catalytic mechanism will be helpful in determining the amino acid residues that might be involved 

in non-oxidative pyruvate decarboxylation (PDC activity).  

Since catalysis of the condensation reactions is an inherent feature of the anabolic AHASs, it is 

very likely that this enzyme can catalyze the condensation of two acetaldehyde molecules, which 

results in the production of acetoin. Considering the high volatility of the acetaldehyde, a specific 

assay method (most likely based on GC or HPLC) would need to be formulated to detect the products 

of the reaction. The results of such a study would be helpful in determining the metabolic pathway for 

the production of acetoin detected in hyperthermophiles (Ying and Ma 2011). 

Biocatalysis using hyperthermophilic organisms and/or their thermostable enzymes are attracting 

increasing attention. Isolated hyperthermophilic POR/PDC and AHAS/PDC may have potential in the 

production of value-added commodities. Engineering the bifunctional enzymes to increase the 

activities is a promising approach, and even shifting the activity towards production of even the 

product that is unfavored under physiological conditions. This has previously been achieved for the 

commonly-known yeast PDC that is engineered to increase the unfavored carboligation reaction up to 

a 100-fold (Meyer et al. 2010).  

 

 

 



211 

 

 
Copyright Permissions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

212 

 

Copyright permission for Figure 1-1 (pgae 4) 
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Copyright permission for Figure 1-4 (pgae 20) 
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Copyright permission for Figure 1-5 (pgae 28) 
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Copyright permission for Figure 1-6 (pgae 29) 
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