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Abstract

Stochastic volatility (SV) models provide a natural framework for a representation

of time series for financial asset returns. As a result, they have become increasingly

popular in the finance literature, although they have also been applied in other fields

such as signal processing, telecommunications, engineering, biology, and other areas.

In working with the SV models, an important issue arises as how to estimate their

parameters efficiently and to assess how well they fit real data. In the literature, com-

monly used estimation methods for the SV models include general methods of mo-

ments, simulated maximum likelihood methods, quasi Maximum likelihood method,

and Markov Chain Monte Carlo (MCMC) methods. Among these approaches, MCMC

methods are most flexible in dealing with complicated structure of the models. How-

ever, due to the difficulty in the selection of the proposal distribution for Metropolis-

Hastings methods, in general they are not easy to implement and in some cases we

may also encounter convergence problems in the implementation stage. In the light of

these concerns, we propose in this thesis new estimation methods for univariate and

multivariate SV models. In the simulation of latent states of the heavy-tailed SV mod-

els, we recommend the slice sampler algorithm as the main tool to sample the proposal

distribution when the Metropolis-Hastings method is applied. For the SV models with-

out heavy tails, a simple Metropolis-Hastings method is developed for simulating the

latent states. Since the slice sampler can adapt to the analytical structure of the un-

derlying density, it is more efficient. A sample point can be obtained from the target

distribution with a few iterations of the sampler, whereas in the original Metropolis-

Hastings method many sampled values often need to be discarded.

In the analysis of multivariate time series, multivariate SV models with more gen-

eral specifications have been proposed to capture the correlations between the inno-

vations of the asset returns and those of the latent volatility processes. Due to some
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restrictions on the variance-covariance matrix of the innovation vectors, the estima-

tion of the multivariate SV (MSV) model is challenging. To tackle this issue, for a

very general setting of a MSV model we propose a straightforward MCMC method in

which a Metropolis-Hastings method is employed to sample the constrained variance-

covariance matrix, where the proposal distribution is an inverse Wishart distribution.

Again, the log volatilities of the asset returns can then be simulated via a single-move

slice sampler.

Recently, factor SV models have been proposed to extract hidden market changes.

Geweke and Zhou (1996) propose a factor SV model based on factor analysis to mea-

sure pricing errors in the context of the arbitrage pricing theory by letting the factors

follow the univariate standard normal distribution. Some modification of this model

have been proposed, among others, by Pitt and Shephard (1999a) and Jacquier et al.

(1999). The main feature of the factor SV models is that the factors follow a univariate

SV process, where the loading matrix is a lower triangular matrix with unit entries on

the main diagonal. Although the factor SV models have been successful in practice, it

has been recognized that the order of the component may affect the sample likelihood

and the selection of the factors. Therefore, in applications, the component order has to

be considered carefully. For instance, the factor SV model should be fitted to several

permutated data to check whether the ordering affects the estimation results. In the

thesis, a new factor SV model is proposed. Instead of setting the loading matrix to

be lower triangular, we set it to be column-orthogonal and assume that each column

has unit length. Our method removes the permutation problem, since when the order

is changed then the model does not need to be refitted. Since a strong assumption is

imposed on the loading matrix, the estimation seems even harder than the previous

factor models. For example, we have to sample columns of the loading matrix while

keeping them to be orthonormal. To tackle this issue, we use the Metropolis-Hastings

method to sample the loading matrix one column at a time, while the orthonormality
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between the columns is maintained using the technique proposed by Hoff (2007). A

von Mises-Fisher distribution is sampled and the generated vector is accepted through

the Metropolis-Hastings algorithm.

Simulation studies and applications to real data are conducted to examine our in-

ference methods and test the fit of our model. Empirical evidence illustrates that our

slice sampler within MCMC methods works well in terms of parameter estimation and

volatility forecast. Examples using financial asset return data are provided to demon-

strate that the proposed factor SV model is able to characterize the hidden market

factors that mainly govern the financial time series. The Kolmogorov-Smirnov tests

conducted on the estimated models indicate that the models do a reasonable job in

terms of describing real data.
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Chapter 1

Introduction

1.1 Stochastic Volatility Models

While the time series of asset returns are observable, volatilities of asset returns are

unobservable. In addition, one of the stylized facts about financial asset returns is that

volatilities of asset returns are time varying and clustered over time. To discuss this,

let us consider the IBM stock prices downloaded from the web site finance.yahoo.com

with 1730 observations. The top trajectory in Figure 1.1 is the time series of daily clos-

ing prices of the IBM stock from January 3, 2003 to November 13, 2009. The time series

in the middle is the log returns defined as rt = ln(pt) − ln(pt−1), where pt is the closing

price at day t, and the bottom plot is the dynamics of the absolute log returns. From

these graphs, we can see that the volatilities of asset returns are time-dependent.

There are two commonly used types of models to characterize the time-varying

volatility of asset returns. They are generalized autoregressive conditional heteroskedas-

ticity (GARCH) models and stochastic volatility (SV) models. These models attempt

to describe volatility as a random process. The GARCH models, proposed by Boller-

slev (1986), are extensions of the autoregressive conditional heteroscedasticity (ARCH)

1
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Figure 1.1: Time series of prices, log returns and absolute log returns of the IBM stock.

model by Engle (1982) to allow current volatility to depend not only on past returns but

also on past volatilities, and this has also been extended to various directions. Unlike

in GARCH related models, in SV models ( see Taylor (1986)) the log volatility of asset

returns is modeled as a latent first-order autoregressive (AR(1)) process. SV models are

attractive because they are closer to the theoretical models often specified in financial

theory to represent the behaviour of financial prices, which are generalizations of the

Black-Scholes option pricing formula to allow volatility clustering in asset returns (see,

for instance, Hull and White (1987)). Comparing with GARCH models, SV models

can better capture the main empirical properties observed in daily series of financial

asset returns. For instance, the persistence of volatility implied by the GARCH(1,1)

models is usually higher than that implied by the SV models, and also the SV mod-

els with normally distributed innovations tend to fit better than GARCH models even

with heavy-tailed distributed innovations (see, for example, Broto and Ruiz (2004) and

2



Carnero et al. (2003)). This thesis works with univariate and multivariate SV mod-

els and focuses on developing efficient estimation methods for the models as well as

proposing novel factor SV models.

1.2 Univariate SV Models

As discussed in the last section, our focus is on the stochastic volatility models in which

volatility is an unobserved random process. Specifically, the log volatility follows a

hidden Markov process. Define by yt the observation of asset returns at time t (t ≤ T ),

a generic univariate SV model can be formulated as follows:

yt = σtǫt, (1.1a)

α(σ2
t+1, δ) = µ+ φ(α(σ2

t , δ) − µ) +
√
σηt+1, (1.1b)

where the innovation vectors (ǫt, ηt+1)
′

are independently and identically distributed

(i.i.d.) according to a joint probability density function f(ǫt, ηt+1), and σt is a time-

varying scalar representing the standard volatility of yt. In the latent AR(1) process,

α(σ2
t , δ), a function of σ2

t and other parameter δ, may vary according to the behaviour

of volatility. As usual, we set |φ| < 1 to ensure covariance or weak stationarity of the

process. The latent AR(1) process indicates some volatility persistency through the

function α(σ2
t , δ). In the literature, a common representation of the function α(σ2

t , δ)

is given by a Box-Cox transformation of σ2
t . This transformation, applied by Yu et al.

(2006) and Zhang and King (2008) in the specification of model (1.1), is defined as

α(σ2
t , δ) =











(σ2δ
t − 1)/δ if δ 6= 0;

ln(σ2
t ) if δ = 0.
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Let ht = α(σ2
t , δ) denote the Box-Cox transformation. Then (1.1) can be equivalently

represented as

yt =
√

q(ht, δ) ǫt, (1.2a)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, (1.2b)

where

q(ht, δ) =











(1 + δht)
1/δ if δ 6= 0;

exp(ht) if δ = 0.

Yu et al. (2006) estimate their proposed SV model without leverage effect using daily

returns of the dollar/pound exchange rate for the period from January 1, 1986 to De-

cember 31, 1998. The authors find that the estimate of δ has a positive sign. Zhang and

King (2008) fit the daily returns of the Australian All Ordinaries stock index and obtain

a negative estimate of δ.

Most of the univariate and multivariate SV models in the literature are special cases

of (1.2) with δ = 0. In this case, the Box-Cox transformed model becomes

yt = exp(ht/2)ǫt, (1.3a)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, (1.3b)

where ht, t = 1, ..., T , are the log volatilities of asset returns that follow an AR(1)

process. The conditional mean of yt is E(yt|ht) = 0 and its conditional variance is

V ar(yt|ht) = exp(ht). The variance σ of the log volatility process (or the transition pro-

cess) (1.3b), measures the uncertainty about the future volatility. Models like (1.3) are

also referred to as non-linear state-space or hidden Markov models since the mea-

surement equation (1.3a) depends non-linearly on ht which is unobservable. This

model is studied in Taylor (1986) under the assumptions: ǫt
iid∼N (0, 1), ηt+1

iid∼N (0, 1) and
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corr(ǫs, ηt+1) = 0 for all s and t. As discussed by the author, even this simple SV model

is capable of producing excess kurtosis in the marginal distribution of data in line with

the empirical stylized facts of financial asset returns (for a discussion, see Broto and

Ruiz (2004)). In the thesis we will exclusively work with this special case of the Box-

Cox transformation.

By specifying different distributions for the innovation ǫt in (1.3a), the univariate

SV model (1.3) can be extended to capture many different stylized facts of financial

asset returns. The first extension of model (1.3) is an asymmetric stochastic volatility

model (ASV) introduced in Harvey and Shephard (1996), Jacquier et al. (2004) and

Omori et al. (2007), where the two innovations have bivariate normal distribution

with correlation ρ = corr(ǫt, ηt+1). In practice, the correlation coefficient is often found

to be negative and ρ is interpreted as the leverage effect between the asset returns and

the latent log volatility process. In other words, if an underlying asset experiences a

positive (negative) return, then the volatility at the next observation time will tend to

decrease (increase).

As argued by Yu (2005), the conditional expectation of the log variance of yt+1,

based on the ASV model, is

E(ht+1|yt) = µ(1 − φ) +
µφ

1 + φ
+ ρσ exp

(

− σ2

4(1 − φ2)2
+

µσ

(1 − φ2)

)

yt,

which results in a leverage effect between the two equations whenever ρ < 0. On the

other hand, for the model of Jacquier et al. (2004)

ht = µ+ φ(ht−1 − µ) +
√
σηt,
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and ρ = corr(ǫt, ηt), Asai et al. (2006) give the result

∂ht+1

∂yt
=
ρ
√
σ exp(ht+1)/ exp(ht)

1 + 0.5ρ
√
σǫt+1

, (1.4)

from which it is unclear whether the correlation ρ can be interpreted as a leverage effect

since the partial derivative of (1.4) also depends on the sign of ǫt+1 through the denom-

inator. More specifically, the sign of (1.4) depends on the sign of the denominator. As

a consequence, the leverage effect is not guaranteed to exist. Thus, the authors con-

clude that the ASV model formulated through (1.3) has a clear leverage effect, while

the leverage effect defined in Jacquier et al. (2004) is not correct. They use a single-

move algorithm which has slow convergent, highly dependent consecutive states and

inefficient mixing. From now on, the ASV model based on the equations in (1.3) will

be referred to as the leverage effect SV model.

The second extension of model (1.3) is to allow the innovation ǫt of the observation

equation (1.3a) to follow a Student-t distribution with unknown v degrees of freedom,

retaining the normality assumption on the latent noise ηt. In this context, the measure-

ment equation (1.3a) is able to accommodate the financial asset returns with thick tails.

This heavy-tailed SV model, called the SV-t model in short, is studied in Harvey and

Shephard (1996), Shephard and Pitt (1997), Chib et al. (1998) and Kim et al. (1998).

They proposed multi-move algorithm that sample latent volatility vector in one block

to improve simulation efficiency. It should be mentioned that if the leverage effect is in-

troduced in SV-t models, the Student-t distribution is often decomposed into a mixture

of a standard normal and square root of an inverse Gamma distribution from which

the correlation is permitted between the two standard normal variables.

The third extension is to impose more general distributions on the observation er-

rors. Since these distributions of the two innovations are not known, Xu (2006) approx-

imates the joint density of (ǫt, ηt+1)
′

by a mixture of two bivariate normal distributions.
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Abraham et al. (2006) propose a SV model under the assumption that the volatility

of asset returns follows an autoregressive process with a Gamma innovation. Also,

Barndorff-Nielsen (1997, 1998) propose univariate SV models by assuming that the as-

set returns follow a stochastic process whose innovation is a product of normal inverse

Gaussian (NIG) and standard normal variables.

1.3 Literature Review

1.3.1 Estimation of the Univariate SV Models

Since the work of Taylor (1986), univariate SV models have had some success in mod-

elling volatilities of financial asset returns. A variety of methods have been developed

to estimate the parameters and log volatilities of the model. Four of these are widely

used in practice and cited in the literature. They are method of moments (MM), max-

imum likelihood (ML) method including the simulated maximum likelihood (SML)

method, and Markov Chain Monte Carlo (MCMC) method. Taylor (1986) uses the MM

method to estimate parameters in the uncorrelated SV model. Later, the generalized

method of moments (GMM) was proposed by Duffie and Singleton (1993) and Melino

and Turnbull (1990) under very general conditions about the error distributions. These

approaches are based on the convergence of selected sample moments to their uncon-

ditional expected values. An alternative, proposed by Duffie and Singleton (1993), is

the simulated method of moments (SMM) that replaces the analytic moments by the

moments of a simulated process. However, as discussed in Broto and Ruiz (2004),

these estimation methods have poor finite sample properties, and their efficiency is

suboptimal relative to likelihood-based approaches. Harvey and Shephard (1996) de-

velop a so-called quasi-maximum likelihood (QML) method. The idea of the QML is to

first linearize the observation equation by taking logarithm of the squared observation
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equation (1.3a), that is

log(y2
t ) = α+ ht + ξt, (1.5a)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, (1.5b)

where α = E(log
(

ǫ2t )
)

, ξt = log(ǫ2t ) − E
(

log(ǫ2t )
)

.

Model (1.5) is in a linear state space form with equation (1.5a) having a non-Gaussian

innovation. Under the assumption that ǫt is Gaussian, log(ǫ2t ) has the log Gamma

distribution with mean −1.27 and variance π2

2
(see Abramowitz and Stegun (1970)

for details). In order to use Kalman filter, Harvey and Shephard (1996) assume that

ξt
iid∼N (0, π

2

2
) and obtain the MLE of parameters. Because the linearized measurement

equation does not actually have a normal innovation, the estimation method is called

a quasi-maximum likelihood method and has been extensively applied by researchers

to estimate Multivariate SV models (see Chib et al. (2009), Lopes and Polson (2010)

and references therein).

Due to the difficulty in obtaining a closed form expression for the likelihood func-

tion of the observed data, approximate maximum likelihood methods have also been

proposed to estimate parameters in the univariate SV models. For instance, Fridman

and Harris (1998) propose a direct ML method from which the likelihood is calcu-

lated by using a recursive numerical integration procedure of Kitagawa (1987) for non-

Gaussian SV models. Xu et al. (2011) establish an empirical characteristic function ap-

proach to capture the leverage between the two equations. Kawakatsu (2007) obtains

the MLE through a technique similar to that of Xu et al. (2011). Instead of approxi-

mating the joint density, the author approximates the marginal densities of individual

innovations of the SV model by a finite combination of weighted univariate normal

densities. To evaluate the likelihood of the observed data, the Gauss-Hermite quadra-

ture numerical integration was employed.
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Recently, there have been some advances in the likelihood-based technique of esti-

mating the SV models primarily due to the contribution of simulation methods such

as importance sampling and MCMC. Notably, the SML approach for estimating the

SV models is studied in Danielsson and Richard (1993) and Danielsson (1994). The

main advantage of importance sampling is that it is computationally less demanding

relative to MCMC methods, which are more time consuming and sometimes fail to

converge. Furthermore, the accuracy of the SML methods can be improved by increas-

ing the sample size of the simulations of the latent states. However, MCMC methods

have the advantage of allowing a large dimensional problem to be split into smaller di-

mensional tasks. It should be noted that most of the MCMC methods involve the use

of Gibbs procedures where the posteriors are simulated repeatedly, and the parameters

of the model are estimated by sample means.

MCMC methods, which were also proposed independently by Shephard (1993) and

Jacquier et al. (1994) to estimate the SV models, have been widely employed in the

estimation of univariate SV models. In their MCMC algorithms, the authors first cal-

culate the posterior distributions of the model’s parameters and latent states, and then

these posteriors are sampled cyclically in which the latent states are sampled through

the Metropolis-Hastings (MH) algorithm. For the correlated SV models, Jacquier et

al. (2004) estimate the parameters of the model by reparameterization through the

Cholesky decomposition. The authors even consider a heavy-tailed SV model with

leverage effect, where a Student-t distribution is introduced to the measurement equa-

tion. Although, as discussed in the previous section, their model does not lead to a

proper interpretation of the leverage effect, the estimation methodology is commonly

applied to estimate both univariate and multivariate SV models. In fact Broto and

Ruiz (2004) comment that the MCMC methods are the most efficient approaches for

estimating univariate SV models. The biggest advantage of using the MCMC methods

in estimating the SV models, compared to other estimation methods, is that the log
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volatilities can be estimated as a by-product of the estimation process. In the past few

years, many MCMC methods have been developed to estimate various versions of the

univariate SV model under different assumptions on the two innovations driving the

mean and volatility equations. Recently, Omori et al. (2007) fit a ASV model by ap-

proximating the joint density of the two innovations with a ten-component mixture of

bivariate normal distributions. In their approach, the authors first take the logarithm

of the squared measurement equation of the ASV model. Then the innovation distri-

bution of the transformed measurement equation is approximated by a mixture of ten

univariate normal distributions, which is similar to those in Kim et al. (1998) and Chib

et al. (2002), where the authors use a seven-component mixture for the density ap-

proximation to fit a univariate SV model without leverage effect. The joint distribution

of the two innovations of the transformed ASV model is then approximated by a ten-

component mixture of bivariate normal distributions. By introducing the sign random

variables based on the observations, an MCMC algorithm is derived for the estimation

of parameters of the model.

1.3.2 Basic Multivariate SV Models and Parameter Estimation

Due to the success of univariate SV models in capturing many stylized facts about

the financial asset returns, multivariate SV (MSV) models have attracted considerable

attention in modeling a group of financial asset returns. There are mainly three types

of MSV models: basic MSV models (BMSV), factor SV (FSV) models, and dynamic

correlation (DMSV) models. In this section we discuss the BMSV models and their

parameter estimation. The other two types of MSV models will be discussed in the

next two subsections.

A natural extension of the univariate SV model to the multivariate case is to simply

increase the number of univariate SV models while specifying correlations between the
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innovations. The motivation behind this extension is that multivariate asset returns

evolve in a complex way. It is often found that the trajectories of asset returns share

common features. For instance, asset prices may drop or jump almost at the same

time. To model this common feature, a series of independent univariate SV models

will not be ideal since they only characterize the individual time series of returns and

the corresponding log volatilities. To overcome this drawback, BMSV models have

been formulated. For a review of the MSV models, see Asai et al. (2006), Chib et al.

(2009) or Lopes and Polson (2010).

Let yt = (y1t, ..., ymt)
′, t ≤ T , be a vector of m time series of asset returns, where m

is a positive integer representing the dimension of yt. The more general BMSV model

is defined as

yt = H
1
2
t ǫt, t = 1, ..., T, (1.6)

ht+1 = µ + Φ(ht − µ) + ηt+1, t = 1, ..., T − 1, (1.7)

h1 ∼ N (µ,Σ0), (1.8)

where

H
1
2
t = diag

(

exp(h1,t/2), ..., exp(hm,t/2)
)

, (1.9)

Φ = diag(φ1, ..., φm), (1.10)




ǫt

ηt+1



 ∼ N (0,Σ), Σ =





Σǫǫ Σǫη

Σηǫ Σηη



 , (1.11)

and µ = (µ1, ..., µm)′ is the location vector and Φ = diag{φ1, ..., φm} is the persistence

parameters’ diagonal matrix. In order for the AR(1) processes to be stationary, all per-

sistence parameters are assumed to satisfy the weak or covariance stationarity condi-

tion as |φi| < 1, i = 1, ..., m. Further, if the (i, j) element of Σ0 is also assumed to equal
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the (i, j) element of Σηη divided by 1− φiφj, then it can be verified that Σ0 satisfies the

following stationary condition:

Σ0 = ΦΣ0Φ + Σηη, (1.12)

The cross covariance matrix Σǫη between the two innovations ǫt = (ǫ1t, ..., ǫmt)
′ and

ηt = (η1t, ..., ηmt)
′ are allowed to be a non-zero matrix, so that the model is capable

of capturing the cross correlation between the two innovation vectors. For the BMSV

model to be identifiable, Σǫ is defined as a correlation matrix. The latent vector AR(1)

process of ht = (h1t, ..., hmt)
′ models the unobserved log volatilities of asset returns. In

a more general setting, the Student-t distribution can be assumed for the innovations

ǫt as in Harvey et al. (1994), Yu and Meyer (2006) and Jacquier et al. (2004).

The BMSV models are studied by Harvey et al. (1994), Danielsson (1998), Smith

and Pitts (2006) and Chan et al. (2006) under different distributional assumptions on

the innovations and the cross correlations. Specifically, Harvey et al. (1994) use the

QML method to estimate the BMSV model where the cross covariance matrix Σǫη is

a zero matrix. In order to obtain the MLE through a Kalman filter, a linearization of

the observation equations is required. As mentioned by the authors, the QML method

can not be extended to estimate the leverage BMSV model. So et al. (1997) follow a

similar idea of Harvey et al. (1994) but consider a situation where the off-diagonal

elements of the persistence matrix Φ may not be zero. To estimate parameters of the

model, the authors derive a computationally efficient expectation-maximization (EM)

algorithm. Extended from the univariate case of the SML, Danielsson (1998) applies

the SML to estimate the parameters of model defined above. Smith and Pitts (2006)

propose a bivariate MSV model with an intervention factor contained in the latent

equation which represents the intervention by banks. An MCMC sampling scheme is

derived for parameter estimation. So and Kwok (2006) consider a MSV model with
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the specification of the measurement equation being the same as (1.6) but the latent

dynamics following an autoregressive fractionally integrated moving average process.

The model is called the ARFIMA(p, d, q) model and is estimated by the QML estimation

method.

For the asymmetric MSV model with Σǫη having potentially non-zero entries, Asai

and McAleer (2006) permit leverage effect to enter only between innovations of the

observation equations and their corresponding log volatility processes. That is, they

require

Σǫη = diag(λ1σ1,η, ..., λmσm,η),

where ση = (σ2
1,η, ..., σ

2
m,η)

′

is the variance vector of ηt+1. If the components in the vector

λ = (λ1, ..., λp)
′ are negative, then Σǫη can capture these partially specified leverage

effect. It is obvious that this is a direct extension of the formulation of leverage effect

for a univariate SV model studied for instance in Harvey and Shephard (1996).

A more general BMSV model is proposed by Chan et al. (2006), where the matrix

Σǫη could be a covariance matrix with any structure. This model permits non-zero

correlations within and between the two innovation vectors. The authors develop an

MCMC algorithm to generate estimates of parameters of their model and the latent

states. To sample the variance-covariance matrix of innovations, the authors employ a

methodology proposed in Wong et al. (2003). In their algorithm, the correlation matrix

R calculated from Σ is not sampled directly, but is parameterized as

R−1 = TGT, T = diag(
√
G11, ...,

√
G2m×2m),

where G is a correlation matrix and Gii is defined as the main diagonal components

of the inverse of G. With this reparameterization, the authors sample component wise
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the off-diagonal elements of G by using the MH algorithm. Through specified prior

distributions, each off-diagonal component is allowed to be zero. Obviously, the sim-

ulation of the correlation matrix is complex and likely to be time-consuming for high-

dimensional financial returns.

1.3.3 Factor Multivariate SV Models and Parameter Estimation

In recent years, factor-based stochastic volatility (FSV) models have also been used in

the analysis of multivariate financial asset returns. The motivation of the FSV model is

to detect the hidden factors that partially drive the underlying multivariate time series

of asset returns. Geweke and Zhou (1996) propose a factor model to measure the pric-

ing errors of the arbitrage pricing theory, where the time series of observed returns is a

linear regression of the latent factors with observation errors. In their model, all factors

are assumed to be independent and follow a standard normal distribution. It also as-

sumed that the observation errors are idiosyncratic and each follows a univariate nor-

mal distribution. These observation errors are independent of factors. In order for the

proposed factor model to be identifiable, the loading matrix is set to be a lower triangu-

lar matrix with positive entries on the main diagonal, and the entries below the main

diagonal are free parameters. Subsequent to the model studied by Geweke and Zhou

(1996), various FSV models have been proposed in the literature, such as Jacquier et al.

(1999), Pitt and Shephard (1999a), Liesenfeld and Richard (2003) and Chib et al. (2006),

among others. A common structure of the FSV models is an extension of the model

studied by Geweke and Zhou (1996), such that the loading matrix has ones on the di-

agonal. The factors in the FSV models follow standard univariate SV processes and

the observation error vector has a multivariate normal distribution with zero mean.

Conditioned on the factors, the observed returns have independent multivariate nor-

mal distributions. Jacquier et al. (1999) consider a FSV model by assuming that the
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observation errors are independently and identically distributed according to a multi-

variate normal distribution with zero mean and a general constant variance-covariance

matrix. Liesenfeld and Richard (2003) study a model similar to that of Jacquier et al.

(1999) but their model is fitted with only one factor. The time-varying correlations are

mainly captured by the dynamics of unobservable factor(s). Pitt and Shephard (1999a)

generalize the above FSV models even further by assuming that the additive errors are

uncorrelated and follow univariate latent SV processes from which the time-varying

correlation of the considered time series of asset returns is characterized by both the

factors and stochastic observation errors. An even more general extension is given

by Chib et al. (2006) where fat-tailed Student-t distributions and jumps are assumed

for the observation equations. Lopes and Carvalho (2007) have considered a general

model which includes the models studied by Pitt and Shephard (1999a), and Aguilar

and West (2000), and extend it in two directions by (i) letting the loading matrix to

be time-varying and (ii) allowing Markov switching in the log volatility of common

factors. Han (2006) modifies the model of Pitt and Shephard (1999a) and Chib et al.

(2006) by allowing the factors to be Markovian and follow first-order autoregressive

processes. The key point of the FSV models is that not only the conditional variance-

covariance of the asset returns changes with time but also the conditional correlation

depends on time.

Since the likelihood function of observed multivariate returns for FSV models does

not have a closed form expression in general, MCMC methods in Bayesian framework

have been proposed as a preferred approach. Jacquier et al. (1999) and Pitt and Shep-

hard (1999a) for instance propose MCMC methods, where the log volatilities (or the

state random variables) are augmented as parameters and sampled one at a time or

within blocks from their posterior distributions. Liesenfeld and Richard (2003) show

how the MLE can be obtained using importance sampling. Chib et al. (2006) derive

an MCMC based method to fit their complex FSV model. Lastly, Han (2006) fits the
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proposed model by adapting the approach of Chib et al. (2006) and uses the model for

asset allocation.

1.3.4 Dynamic Correlation MSV Models and Parameter Estimation

In the BMSV models, the conditional correlation of financial asset returns is a con-

stant matrix which seems somewhat inconsistent with a model in which variances are

dynamically changing. Dynamic conditional correlation (DCC) model allows the con-

ditional correlations among the asset returns to be time-dependent. Yu and Meyer

(2006) propose a bivariate SV model, where the Fisher transformation of the correla-

tion of the two innovations follows a stationary AR(1) process. The WinBUGS program

is used for the estimation of the model. The authors find that the models that allow

for time-varying coefficients generally fit the data better. Tsay (2005) considers a DCC

model based on a Cholesky decomposition of the conditional correlation matrix. After

the decomposition, the author assumes that the components on the main diagonal of

the lower triangular matrix follow univariate SV processes. Since the decomposition

is performed at each discrete observation time, the free parameters in the lower trian-

gular matrix are also evolving with time. Jungbacker and Koopman (2006) consider a

similar model assuming that these free parameters are time-invariant. A Monte Carlo

likelihood method is developed and the model is fitted to daily exchange rate returns.

Another type of DCC model is defined through a Wishart process. Philipov and

Glickman (2006a, 2006b) propose a MSV model by assuming that the conditional co-

variance follows an inverse Wishart distribution where the scalar matrix depends on

the past covariance matrix. Asai and McAleer (2007) propose two similar models,

where the correlation matrix is represented by a singular value decomposition. In these

models the orthogonal matrices are time-dependent. The settings of the two models

ensures that the random variance-covariance matrices are positive definite. Recently,
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more DCC models via Wishart processes have been used to address the dynamic cor-

relation by Gourieroux et al. (2004) and Gourieroux (2006).

1.4 Contributions and the Presentation of the Thesis

It is common to use univariate and multivariate SV models to model the evolution of

time series of financial asset returns over time. Efficient estimation of SV models has

been extensively studied in the past two decades. Many methods have been proposed

to estimate the models according to specific assumptions made about the innovations

of SV models. MCMC is a general and more efficient approach to estimate both the

univariate and multivariate SV models. Under the Bayesian framework, Jacquier et al.

(1994, 2004) propose MCMC algorithms to fit univariate SV models, which avoid the

difficulty of evaluating the likelihood function analytically. Most MCMC approaches

are based on the MH technique for simulation under various proposal densities. Some

of them are not efficient and have convergence problems due to the low acceptance

rate produced by the proposal distributions. Accordingly, this thesis first considers

how to estimate parameters and log volatilities efficiently for univariate SV models

and a generalized BMSV model. MCMC based simulation strategies for latent states

are developed via the slice sampler introduced in Neal (2003). For the general MSV

model defined in Chan et al. (2006), an MH algorithm is derived for the simulation

of the variance-covariance matrix of the two observation errors. The inverse Wishart

distribution is selected as the proposal when we implement the algorithm for estimat-

ing the model. To model latent market factors, a factor SV model is proposed under a

probabilistic principal component analysis (PPCA) framework to determine the mar-

ket factors that govern the multivariate process and model the time-varying correlation

of asset returns.

Our first contribution is to consider fitting univariate SV models by using a slice
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sampler within an MH algorithm for the simulation of latent state. It is well known

that the proposal distribution of the MH algorithm is important for the performance of

the simulation procedure. Chib and Greenberg (1995) comment that choosing a good

proposal density is like searching for a proverbial needle in a haystack. Usually, a pro-

posal density can be found by approximation of the underlying full conditional (see

Jacquier et al. 1994, 2004) or by choosing a standard normal density (see Zhang and

King 2008). As is noticed in the literature, the crucial aspect of MCMC for fitting SV

models is the sampling quality of the full conditionals of the augmented parameters,

which are the log volatilities. Our contribution is to develop MH methods, where the

proposal distributions are either simple distributions that can be sampled directly, or

unknown distributions that can be simulated by the slice sampler. Since the analytic

structure of the underlying density can be adapted by the slice sampler, the resulting

algorithm is more efficient. The efficiency of the slice sampler is studied by Roberts

and Rosenthal (1999) and Mira and Tierney (2002). The actual use of the slice sam-

pler depends on the specified innovations of SV models and will be presented in the

following chapters.

Our second contribution is the estimation of the MSV model under a general cor-

relation structure studied in Chan et al. (2006). In this model, correlations are not

only permitted among the innovations of observation and latent equations, but also

permitted between the two innovations. We develop an efficient MCMC method for

this more general MSV model, where the whole variance-covariance matrix is simu-

lated simultaneously in each iteration through a parameter-extension MH algorithm.

The proposal is an inverse Wishart density. For the simulation of the latent states, we

propose a slice sampler within an MH method which moves one state at a time. Com-

paring with the MCMC method in Chan et al. (2006), where the states are simulated

within blocks using a multivariate normal proposal, our solution is relatively more

straightforward. For instance, in Chan et al. (2006), the proposal is a Gaussian approx-
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imation to the underlying posterior distribution whose mode is obtained through the

Newton-Raphson method which is time-consuming. Our method is more applicable

for high-dimensional data because of the simulation of the variance matrix of innova-

tions.

The last contribution is to propose a factor SV model based on the PPCA frame-

work. Stimulated by the principal component analysis (PCA) and the PPCA (see, for

example, Tipping and Bishop 1999), our factor SV model estimates the unobserved fac-

tors that drive the processes of financial asset returns. To do this, the observed vectors

of asset returns are projected onto a subspace spanned by several constant orthogo-

nal unit vectors, where the projection errors are either isotropic or idiosyncratic. The

columns of the loading matrix are closely related to the eigenvectors of the observa-

tional time series, and the weights along these orthonormal directions are called fac-

tors. In performing this projection, we believe that asset returns are mainly determined

by several hidden market factors. In addition to this, we further assume that each fac-

tor follows a univariate SV process which is also unobserved. Upon the formulation of

this factor SV model, not only the conditional variance-covariance matrix, but also the

correlations of the asset returns are allowed to be time-varying. To estimate this hidden

Markov model, an MCMC algorithm is developed. Assuming a uniform prior distri-

bution on the unit hypersphere, the posterior distribution of each column, given that

other columns having been sampled, is assumed to follow either a von Mises-Fisher

distribution in the isotropic case or an unknown distribution for the idiosyncratic type.

So the loading matrix can be sampled one column at a time using the method intro-

duced in Hoff (2007) by directly simulating a von Mises-Fisher distribution or using

MH algorithm through a von Mises-Fisher proposal.

Chapter 5 concludes the thesis and discusses avenues for future research.
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Chapter 2

Slice Sampler within MCMC Methods

for Univariate SV Models

2.1 Introduction

Stochastic volatility (SV) models have enjoyed some success in the analysis of time

series for financial asset returns. Define by yt the observation of excess returns at time

t (t ≤ T ), the basic univariate SV (BSV) model, proposed by Taylor (1986), can be

formulated as

yt = exp(ht/2)ǫt, t = 1, ..., T, (2.1)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, t = 1, ..., T − 1, (2.2)

h1 ∼ N (µ, σ/(1− φ2)), (2.3)

where ǫt
iid∼N (0, 1), ηt+1

iid∼N (0, 1), corr(ǫs, ηt+1) = 0 for all s and t, and N (a, b) is a uni-

variate normal distribution with mean a and variance b. The latent random variables

ht, t = 1, ..., T , are the log volatilities of yt assumed to follow a first-order autoregressive
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(AR(1)) process. In Taylor’s model, extensions have been proposed to the distribution

of ǫt and the definition of the correlation between the two equations. For instance,

Harvey and Shephard (1996) propose that the two innovations have a correlated bi-

variate normal distribution. In practice, as the correlation coefficient is often found to

be negative, this model is called the asymmetric stochastic volatility model (ASV) or

the SV model with leverage effect. In order to characterize the heavy tail property of

the marginal distribution of asset returns, a Student-t distribution with unknown de-

grees of freedom is assumed for the innovations ǫt. The heavy-tailed SV models are

introduced in Harvey and Shephard (1996) and Jacquier et al. (2004) and adapted by

other researchers, such as Shimada and Tsukuda (2005), Yu et al. (2006), Chib et al.

(2006) and Zhang and King (2008).

In the estimation of univariate SV models, many methods have been proposed in

the literature, such as the quasi-maximum likelihood (QML) method by Harvey and

Shephard (1996), the numerical integration method in Kawakatsu (2007), the simulated

maximum likelihood (SML) methods by Danielsson (1994), Shephard and Pitt (1997)

and Sandmann and Koopman (1998). Recently, Bayesian inference approaches that use

Markov Chain Monte Carlo (MCMC) methods have been proposed in Jacquier et al.

(1994, 2004), Kim et al. (1998), Omori et al. (2007) and Zhang and King (2008) for the SV

models with or without leverage effect. The greatest advantage of the MCMC method-

ology is that a large dimensional problem can be divided into lower dimensional sim-

ulation tasks, in which the log volatilities are estimated simultaneously. Broto and

Ruiz (2004) claim that MCMC approaches are more efficient among other estimation

methods, such as the QML and the general method of moment by Melino and Turn-

bull (1990). As usual, in the MCMC methods for SV models, the posterior densities

of the parameters and the augmented parameters are either simple density functions

or proportional to some positive functions. These distributions generally cannot be

sampled directly and therefore simulation is carried out by using Metropolis-Hastings
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algorithm. It is well known that the performance of the Metropolis-Hastings algorithm

depends on the selection of proposal density. Choosing an appropriate proposal den-

sity is difficult and different proposal densities yield different acceptance rates. Due to

a high correlation of latent states, the simulation of the log volatilities is critical, which

is discussed in Jacquier et al. (2004). There are two main methods for simulating the

latent states. One is called the single-move simulation method developed in Jacquier

et al. (1994, 2004), Yu et al. (2006), Zhang and King (2008) and Kim et al. (1998), in

which the states are simulated one at a time. Another method, known as a block sam-

pling, is introduced by Shephard and Pitt (1997) and has been employed in Pitt and

Shephard (1999a) and Chib et al. (2006). In a block sampling algorithm, the latent

states are divided into random blocks and the blocks are sampled via the Metropolis-

Hastings algorithm. The proposal distribution is either a multivariate Gaussian as in

Shephard and Pitt (1997) or a multivariate Student-t distribution as in Chib et al. (2006),

where the modes of these proposal distributions can be found by the Newton-Raphson

method. As discussed in Shephard and Pitt (1997), the Newton-Raphson algorithm

may converge slowly. Given slow convergence of Newton-Raphson algorithm, the au-

thors suggest using a pseudo dominating MCMC and only two or five iterations are

needed for calculating the modes of the proposal distribution. Thus, the block sam-

pling is relatively more time-consuming.

In this chapter, we mainly focus on the estimation of univariate SV models, where

the measurement equation has either standard normal or Student-t observation errors.

The non-zero correlation between the innovations of asset returns and the latent AR(1)

process is permitted. The focus of this exercise is to consider simulation-based infer-

ence for the parameters of the model and its log volatilities. Our contributions are

two-fold. First, we develop single-move MCMC algorithms for the heavy-tailed SV

models in simulating latent states based on the Metropolis-Hastings algorithm, where

an observation from the proposal distribution is simulated by the slice sampler intro-
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duced in Edwards and Sokal (1988) and Neal (2003). For the SV models without heavy

tails, single-move simulation methods based on the Metropolis-Hastings method are

developed, where the proposal distribution is either a univariate normal distribution

or a product of several positive functions that can be sampled by the slice sampler. The

second contribution relates to the heavy-tailed SV models as well. compared with the

method, where a mixture decomposition of the Student-t distribution (for examples,

see Jacquier et al. (2004) and Zhang and King (2008)) is required at each observation

time, our method uses the Student-t distribution directly. We do not need to estimate

the extra parameters from the mixture decomposition. This methodology is studied

via simulation in terms of parameter and volatility estimation and statistical test of

model assumptions. Using the slice sampler within MCMC approach, the estimation

of the heavy-tailed SV models is relatively straightforward.

The rest of the chapter is organized as follows. In Section 2.2, we propose a slice

sampler within the MCMC approach for the heavy-tailed SV model and a simple

Metropolis-Hastings method for the ASV model in the simulation of the latent states.

To assess the overall model fit, in addition to checking the realized innovations of the

observation equation, we test the so-called probability integral transforms (PITs) calcu-

lated from the density forecast introduced by Diebold et al. (1998). Since it is difficult

to obtain the analytical conditional densities of observed data, we employ the auxil-

iary particle filter in Pitt and Shephard (1999b) to evaluate the likelihoods. Section 2.3

presents simulation studies for the ASV model. A comparison of our approaches with

that of Jacquier et al. (1994) and Kim et al. (1998) is made on the same simulated return

data. We illustrate by means of asset return data that the SV models without heavy

tail can be fitted without the slice sampler but through a Metropolis-Hastings method.

This is not the case for heavy-tailed SV models, where the slice sampler is necessary

to generate a stationary time series from the full conditionals of parameters. In Section

2.4, we apply our estimation methods to the ASV and heavy-tailed ASV models and
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several other competing SV models to a data set of the IBM stock returns and use the

AIC in Akaike (1987) and the BIC in Schwarz (1978) for model comparison. Conclu-

sions and remarks can be found in the last section.

2.2 Slice Sampler Within MCMC Algorithms for Univari-

ate SV Models

In this section, the slice sampler within the MCMC approach for the ASV and heavy-

tailed ASV models are discussed in detail. To assess the goodness of fit of the models,

beside checking on the normality assumption of the realized observation errors, we

also test the PITs produced by the estimated model. In order to evaluate the sam-

ple likelihood, calculate the PITs from the estimated model and perform the one-step

ahead volatility forecast, the auxiliary particle filter is introduced and employed.

2.2.1 Estimation of the ASV Model

As discussed earlier, the ASV model allows for non-zero correlation between the two

Gaussian noises of the BSV model formulated by equations (2.1) to (2.3). Define by

Θ = (µ, φ, ρ, σ) the parameter of the ASV model, where ρ = corr(ǫt, ηt+1) is the corre-

lation coefficient, h = (h1, ..., hT )
′

the vector of latent random variables (or the latent

states) and y = (y1, ..., yT )
′

the vector of observations. In the implementation of the

MCMC algorithm, h is augmented as a vector of parameters and will be estimated si-

multaneously. Let f(.) denote a generic density function. Applying Bayes’ Theorem

the joint conditional distribution of Θ and h is

f(Θ,h|y) ∝ f(y|h,Θ)f(h|Θ)f(Θ), (2.4)
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where f(y|h,Θ) is the likelihood of y given (Θ,h), f(h|Θ) is the density of h and

f(Θ) is the prior density of Θ. Bayesian inference of (Θ,h) is based upon the posterior

distribution f(Θ,h|y). Sine the two errors ǫt and ηt+1 are correlated, the ASV model

can be written in an equivalent form ( see Jacquier et al. (2004), Zhang and King (2008)

and Omori et al. (2007)) as

yt = exp(ht/2)ǫt, (2.5a)

ht+1 = µ+ φ(ht − µ) + ρ
√
σ exp(−ht/2)yt +

√

σ(1 − ρ2)vt+1, (2.5b)

where ǫt
iid∼N (0, 1), vt+1

iid∼N (0, 1) and cov(ǫt, vt+1) = 0. The log volatility ht+1 is defined

by the shock vt+1, the correlation ρ and the return yt. Following the re-parametrization

of ρ and σ in Jacquier et al. (2004) and Zhang and King (2008), we denote ψ=
√
σρ and

τ=σ(1 − ρ2) and obtain

yt = exp(ht/2)ǫt, (2.6a)

ht+1 = µ+ φ(ht − µ) + ψ exp(−ht/2)yt +
√
τvt+1. (2.6b)

Instead of sampling ρ and σ directly, we now sample ψ and τ and then transform back

by σ = ψ2 + τ and ρ = ψ/
√
σ. With this transformation, we redefine Θ = (µ, φ, ψ, τ).

The ASV model is completed by specifying informative prior distributions for the

parameters. We assume that all parameters in Θ are mutually independent. The prior

distributions of µ and ψ are chosen to be µ ∼ N (0, 10) and ψ ∼ N (0, 10), respectively.

These prior distributions result in reasonably flat densities over their support regions.

To impose stationary condition on the latent process, the prior distribution of φ fol-

lows a univariate normal distribution φ ∼ N (0, 10) truncated in the interval (−1, 1).

The prior distribution of σ is an inverse Gamma distribution given by IG(2.5, 0.025),

which was also used in Pitt and Shephard (1999a). It is seen that all prior distributions
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except for φ are conjugate, which is convenient for the calculation of the posterior dis-

tributions or the full conditionals (note: the full conditional of a parameter is defined

as the conditional distribution given that other parameters in the model have been pre-

viously sampled). The outline of the MCMC algorithm is listed in Table 2.1 followed

by detailed explanations.

Table 2.1: MCMC algorithm for the ASV model.

Step 0. Initialize h, µ, φ, ψ and τ .

Step 1. Sample ht, t = 1, ..., T .

Step 2. Sample φ.

Step 3. Sample ψ, µ and τ .

Step 4. Go to Step 1.

Step 0. Initialize h, µ, φ, ψ and τ . To start the MCMC algorithm, the parameters

of the latent Markov process are set as µ = −5.5, φ = −0.5, ψ = −0.08 and τ = 0.04,

respectively. The initial values of h are generated from the distribution N (−5.5, 0.06),

which is the equilibrium distribution of the latent states.

Step 1. Sample h. The simulation is conducted via a single-move Metropolis-

Hastings algorithm. The full conditionals of the latent random variables are expressed

as follows:

f(h1|y, h2,Θ) ∝ f(y1|h1)f(h1|Θ)f(h1|h2, y1,Θ),

f(ht|y, ht−1, ht+1,Θ) ∝ f(yt|ht)f(ht|ht−1, yt−1,Θ)f(ht|ht+1, yt,Θ),

f(hT |y, hT−1,Θ) ∝ f(yT |hT )f(hT |hT−1, yT−1,Θ),

where f(yt|ht), t = 1, ..., T, are the conditional densities of the asset returns at discrete
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time points and f(h1|Θ) is the density of the latent log volatility h1. f(ht|ht−1, yt−1,Θ)

and f(ht|ht+1, yt,Θ) are the conditional densities of ht given ht−1 and of ht given ht+1

by the latent equation (2.6b), respectively. Since yT is the last observation, the posterior

distribution of hT depends only on yT , yT−1 and hT−1.

Here we only present the simulation algorithm for the full conditionals of ht, t =

2, ..., T − 1.

f(ht|y, ht−1, ht+1,Θ)

= c1tf(yt|ht)f(ht|ht−1, yt−1,Θ)f(ht|ht+1, yt,Θ)

= c2t exp

{−ht
2

}

exp

{

− y2
t

2
exp(−ht)

}

× exp

{

−
[

(ht − µ) − φ(ht−1 − µ) − ψ exp(−ht−1/2)yt−1

]2

2τ

}

× exp

{

−
[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

= c2t exp

{

−
[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× g(ht), (2.7)

where c1t and c2t are the two normalizing constants, and

g(ht) = exp

{−ht
2

}

exp

{

− y2
t

2
exp(−ht)

}

× exp

{

−
[

(ht − µ) − φ(ht−1 − µ) − ψ exp(−ht−1/2)yt−1

]2

2τ

}

. (2.8)

The full conditionals of h1 and hT are given in the Appendix. The full conditional of

ht in (2.7) is not a simple distribution and therefore can not be simulated directly. It

is noticed that g(ht) is a product of three positive functions, which can be sampled by

the slice sampler introduced in Edwards and Sokal (1988) and Neal (2003). Thus, the

Metropolis-Hastings method can be applied to simulate the full conditional of ht with
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proposal density proportional to g(ht).

Algorithm for the slice sampler

It is easy to verify that the proposal density in (2.8) can be expressed by

g(ht) ∝ exp

{−y2
t

2
exp(−ht)

}

exp

{

− (ht − µt)
2

2τ

}

, (2.9)

where µt = µ− τ
2

+ φ(ht−1 − µ) + ψ exp(−ht−1/2)yt−1.

1. Initialize h
(0)
t and set n = 0.

2. Draw u1 uniformly from the interval

(

0, exp
{

−y2t
2

exp(−h(n)
t )
}

)

. Then we define

an interval for ht through the inequality

u1 ≤ exp

{−y2
t

2
exp(−ht)

}

,

which, under the condition yt 6= 0, is equivalent to

ht ≥ − log

(−2 log(u1)

y2
t

)

. (2.10)

3. Draw u2 uniformly from the interval

(

0, exp
{

− (h
(n)
t −µ

(n)
t )2

2τ

}

)

. Then we define

an interval for ht through the inequality

u2 < exp

{

− (ht − µ
(n)
t )2

2τ

}

,

which leads to

µ
(n)
t −

√

−2τ log(u2) ≤ ht ≤ µ
(n)
t +

√

−2τ log(u2). (2.11)

4. If yt 6= 0, draw h
(n+1)
t uniformly from the interval determined by the inequalities
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(2.10) and (2.11):

h
(n+1)
t ∼ U

(

max
{

− log
(−2 log(u1)

y2
t

)

, µ
(n)
t −

√

−2τ log(u2)
}

, µ
(n)
t +

√

−2τ log(u2)

)

.

Otherwise,

h
(n+1)
t ∼ U

(

µ
(n)
t −

√

−2τ log(u2), µ
(n)
t +

√

−2τ log(u2)

)

.

5. Stop if a stopping criterion is met; otherwise, set n = n+ 1 and repeat from 2.

In the slice sampling procedure, two auxiliary uniform random variables u1 and u2

over the interval (0, 1) were introduced. Once h
(n+1)
t is sampled, the two values sim-

ulated from the auxiliary variables are ignored. To start the slice sampling procedure,

the sampled value of ht from the last MCMC step is set as the initial value. Since the

distributions of the full conditionals of ht in each MCMC step are similar, this initial

value is a good starting point. Because the slice sampler adapts to the analytical density

function of the underlying random variable, it is more efficient. For instance, the tar-

get distribution can be sampled directly with the help of auxiliary random variable(s).

Under some sufficient conditions, Roberts and Rosenthal (1999) show that the slice al-

gorithm is robust and has extremely robust geometric ergodicity properties. Mira and

Tierney (2002) prove that the slice sampler has a smaller second-largest eigenvalue,

which ensures faster convergence to the underlying distribution. Typically the pro-

posed slice sampler is iterated for five times when sampling the full conditional of ht

in our MCMC algorithm.

It is noticed that the second part of the proposal density g(ht) defined in (2.9) is a

univariate normal density. Then the proposal distribution could be a univariate normal

distribution. That is, the slice sampler for simulating the states may not be needed. Our
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experience shows that using the slice sampler, the acceptance rates of the Metropolis-

Hastings method are higher but the running speed of the algorithm is slower. We will

compare this in Section 2.3.3.

Step 2. Sample φ. Given a truncated prior distribution φ ∼ N (αφ, β
2
φ), the full

conditional of φ is

f(φ|y, µ, ψ, τ) ∝ p(h1|Θ)
T−1
∏

t=1

p(ht+1|ht,Θ, yt) exp
{

− (φ− αφ)
2

2β2
φ

}

∝ N
(

φ;
d

c
,
1

c

)

(1 − φ2)
1
2 , |φ| < 1,

where

c =
−(h1 − µ)2 +

∑T−1
t=1 (ht − µ)2

τ
+

1

β2
φ

,

d =

∑T−1
t=1 (ht − µ)

(

ht+1 − µ− ψ exp(−ht/2)yt
)

τ
+
αφ
β2
φ

.

The full conditional is detailed in the Appendix. It is proportional to the product of a

univariate normal distribution and a positive function, and so can be sampled by the

slice sampler or acceptance-rejection method.

Step 3. Sample parameters µ, ψ and τ . Since the priors for these parameters are con-

jugate, the full conditionals are normal and inverse Gamma distributions, respectively.

Those full conditionals are presented in the Appendix, and can be easily simulated.

We have proposed an MCMC method for fitting the ASV model, where the latent

states are sampled one at a time. In the literature, the single-move simulation ap-

proaches for sampling the latent states are popular. See for instance Jacquier et al.

(1994, 2004), Yu et al. (2006), and Zhang and King (2008), among others. In spite of

high autocorrelation between the latent states, our experience shows that for the ASV

model and the heavy-tailed ASV model (to be introduced in the next subsection) our
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simulation methods work very well. As clarified in Mira and Tierney (2002), the slice

sampler converges faster than the independent Metropolis-Hastings method. The ad-

vantage of the slice sampler is that after a few iterations, a sampled point may be ob-

tained from the target distribution. In applications of the slice sampling, we obtained

very similar results even when only one iteration of the slice sampler algorithm was

used. This is unlike the Metropolis-Hastings algorithm, where many generated points

have to be discarded.

2.2.2 Estimation of a Heavy-tailed ASV (ASV-t) Model

Assuming the innovations ǫt in the ASV model follow a Student-t distribution with v

degrees of freedom, a heavy-tailed ASV model is specified as

yt = exp(ht/2)ǫt, ǫt ∼ t(v), (2.12)

ht+1 = µ+ φ(ht − µ) +
√
σut+1, ut+1 ∼ N (0, 1). (2.13)

In the literature, the Student-t distribution is often decomposed as ǫt =
√
λtet,

where λt ∼ IG(v/2, v/2), an inverse Gamma distribution, and et ∼ N (0, 1) as, for

instance, in Harvey and Shephard (1996), Kim et al. (1998), Chib et al. (2002), Jacquier

et al. (2004), Shimada and Tsukuda (2005), Chib et al. (2006) and Zhang and King

(2008). The correlation between the two equations is then defined as ρ = corr(et, ut+1),

which is the correlation of the two standard normal distributions.

In the above heavy-tailed SV models, the inverse Gamma random variables λt have

to be estimated during the MCMC estimation procedure. Instead of a mixture decom-

position, we introduce a type of heavy-tailed SV model that uses a Student-t distribu-
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tion directly. The model is defined as follows

yt = exp(ht/2)ǫt, ǫt ∼ t(v), (2.14)

ht+1 = µ+ φ(ht − µ) + ψǫt +
√
τut+1, ut+1 ∼ N (0, 1), (2.15)

where ǫt and ut+1 are i.i.d innovations and ǫt and ut+1 are mutually independent. Be-

cause of the presence of ǫt in (2.15), the latent process is effectively correlated with the

asset return process. The innovation of the latent process is driven by a mixture of

a Student-t distribution and a univariate normal distribution. We expect that in ap-

plications the estimate of ψ will be negative, indicating that the observed asset return

process and the latent AR(1) process are negatively correlated. Based on this consider-

ation, the proposed model will be called the ASV-t model hereafter. It is noticed that

this model can be rewritten equivalently as

yt = exp(ht/2)ǫt, ǫt ∼ t(v), (2.16)

ht+1 = µ+ φ(ht − µ) + ψyt exp(−ht/2) +
√
τut+1, ut+1 ∼ N (0, 1), (2.17)

which is similar to the ASV model with a Choleskey decomposition except here we as-

sume that the innovation of the measurement equation has a Student-t distribution. In

our ASV-t model, there is only one extra parameter v to be estimated when compared

with the ASV model, while in the mixture case we have to estimate v together with T

augmented parameters λt. Again, we propose a slice sampler within the MCMC algo-

rithm to fit the ASV-t model. The algorithms for simulating (µ, φ, ψ, τ)
′

are the same as

those for the ASV model. Therefore, below we only describe methods to simulate the

latent states ht and v.

• Sample the latent states ht, t = 1, ..., T −1. The simulation of h1 and hT are similar.
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The full conditionals of ht, t = 2, ..., T − 1, is

f(ht|y, ht−1, ht+1,Θ)

= c1tf(yt|ht)f(ht|ht−1, yt−1,Θ)f(ht|ht+1, yt,Θ)

= c2te
−ht

(

1 +
y2
t e

−ht

v

)− v+1
2

× exp

{

−
[

(ht − µ) − φ(ht−1 − µ) − ψ exp(−ht−1/2)yt−1

]2

2τ

}

× exp

{

−
[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

= c2t exp

{

−
[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× g(ht), (2.18)

where c1t and c2t are the two normalizing constants, and

g(ht) = e−ht

(

1 +
y2
t e

−ht

v

)− v+1
2

× exp

{

−
[

(ht − µ) − φ(ht−1 − µ) − ψ exp(−ht−1/2)yt−1

]2

2τ

}

. (2.19)

Similar to the simulation algorithm for the ASV model, the full conditional of ht in

(2.18) can not be sampled from a known distribution. We use a Metropolis-Hastings

method with proposal distribution proportional to g(ht), where g(ht) can be sampled

via the slice sampler. The slice sampler for this proposal distribution can be found in

the Appendix.

We notice that a proposal distribution for the full conditional of ht in (2.18) can also

be written as

g(ht) = c2te
−ht

(

1 +
y2
t e

−ht

v

)− v+1
2

. (2.20)
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To sample this proposal distribution, we first sample a Student-t distribution with v

degrees of freedom. By variable transformation, a sample point from the proposal

distribution is obtained, which is accepted with a probability calculated through the

Metropolis-Hastings step. In Section 2.3.3, we will compare the use of (2.19) and (2.20)

and show (2.20) has lower acceptance rate for proper mixing.

• Sample v. The full conditional of v is given by

f(v|y,h, µ, φ, σ2) ∝ f(y|h, v)f(v)

= f(v)
T
∏

t=1

vv/2Γ((v + 1)/2)

Γ(v/2)Γ(1/2)
(v + y2

t exp(−ht))−(v+1)/2, (2.21)

where f(v) is a prior density of v. In the literature, there are several ways to specify this

prior distribution. For instance, Jacquier et al. (2004) propose a discrete prior distribu-

tion U [3, 40] from which the full conditional can be sampled directly from a multinomal

distribution. Geweke (1993) suggests α exp(−αv) with α = 0.2 as an alternative, while

Zhang and King (2008) choose a normal distribution v ∼ N (20, 25). Bauwens and Lu-

brano (1998) use a Cauchy prior proportional to 1/(1 + v2). In our procedure we use a

normal prior proposed in Zhang and King (2008). Since this full conditional is an un-

known distribution, we use a random-walk Metropolis-Hastings algorithm, in which

the proposal density is a standard Gaussian density and the acceptance probability is

computed using equation (2.21).

2.2.3 Particle Filter

To perform model comparison, we use the AIC and BIC, which require that we eval-

uate the sample likelihood approximately. For the ASV and ASV-t models, the likeli-

hoods are very difficult to compute due to their non-linear structure. We employ the

auxiliary particle filter in Pitt and Shephard (1999b) to perform this task, which is a
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recursive efficient algorithm to approximate the filter and one-step ahead predictive

distributions. The likelihood of the specific SV model via a successive conditional de-

composition is

f(y|Θ) = f(y1|Θ)

T
∏

t=2

f(yt|Ft−1,Θ), (2.22)

where Ft = (y1, ..., yt) is the information known at time t. The conditional density of

yt+1 given Θ and Ft has the following expression

f(yt+1|Ft,Θ) =

∫

f(yt+1|ht+1,Θ)dF (ht+1|Ft,Θ)

=

∫

f(yt+1|ht+1,Θ)f(ht+1|ht,Θ)dF (ht|Ft,Θ). (2.23)

In general, it is impossible to have an analytical solution of (2.23); instead numerical

methods such as the auxiliary particle filter will have to be employed. Suppose that we

have a particle sample {h(i)
t , k = 1, ..., N} of ht from a filtered distribution of (ht|Ft,Θ)

with weights {πi, k = 1, ..., N} such that
∑N

i=1 πi = 1. Based on this sample, the one-

step ahead predictive density of ht+1 is

f(ht+1|Ft,Θ) ≈
N
∑

i=1

πif(ht+1|h(i)
t ,Θ). (2.24)

Then the one-step ahead prediction distribution of ht+1 can be sampled and the condi-

tional density (2.23) can be evaluated numerically by

f(yt+1|Ft,Θ) ≈
N
∑

i=1

πif(yt+1|h(i)
t+1,Θ), (2.25)
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where h
(i)
t+1 are particles from the prediction distribution of (ht+1|Ft,Θ). The assump-

tion for the above evaluations (2.24) and (2.25) to be valid is that the prediction density

of ht+1 is at least approximately known. This assumption is satisfied since from the

latent AR(1) process, ht+1 has a conditional normal distribution ht+1 ∼ N (µ + φ(ht −
µ) + ψ exp(−ht−1/2)yt−1, τ), which can also be used for volatility forecast.

Now the question is how to sample (ht+1|Ft+1,Θ) given that we have a particle

sample from the filter distribution of (ht|Ft,Θ). We present the algorithm for the ASV

and ASV-t models based on the procedure in Chib et al. (2006).

Step 1. Given a sample {h(i)
t , i = 1, ..., N} from (ht|Ft,Θ), we calculate the expecta-

tion ĥ
∗(i)
t+1 = E(ht+1|h(i)

t ) and

πi = f(yt+1|ĥ∗(i)t+1,Θ), i = 1, ..., N. (2.26)

SampleN times with replacement the integers of 1, ..., N with probability π̂i = πi/
∑N

i=1 πi.

Denote the number of occurrences of the indices 1, ..., n in one sample by n1, ..., nN and

associate these with particles {h(n1)
t , ...,h

(nN )
t }.

Step 2. For each value ni from Step 1, sample the values {h∗(1)t+1 , ..., h
∗(N)
t+1 } from

h
∗(i)
t+1 = µ+ φ(h

(ni)
t − µ) + ψ exp(−h(ni)

t /2)yt +
√
τvt+1, i = 1, ..., N, (2.27)

where vt+1 ∼ N (0, 1).

Step 3. Calculate the weights of the values {h∗(1)t+1 , ..., h
∗(N)
t+1 } as

π∗
i =

f(yt+1|h∗(i)t+1,Θ)

f(yt+1|ĥ∗(i)t+1,Θ)
, i = 1, ..., N, (2.28)

and resample the values {h∗(1)t+1 , ..., h
∗(N)
t+1 }N times with replacement using these weights

to obtain a fair sample {h(1)
t+1, ..., h

(N)
t+1} with weights 1/N from the filter distribution of
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(ht+1|Ft+1,Θ).

In our experience, N = 3000 is sufficient for our simulation studies and the real

stock return data that we use to illustrate our estimation methods.

2.2.4 Diagnostics

There are many techniques to check the overall fit of a specific ASV or ASV-t model.

One method is a Kolmogorov-Smirnov test that can be used to examine whether the

realized observation errors come from the assumed distribution. Another method is to

analyze the PITs proposed in Diebold et al. (1998). We discuss this method below.

Suppose that {f(yt|Ft−1)}Tt=1 is a sequence of conditional densities that guides the

time series of yt. Let {p(yt|Ft−1)}Tt=1 be the corresponding sequence of one-step ahead

density forecasts. The PIT of yt is defined as

u(t) =

∫ yt

−∞

p(z|Ft−1)dz. (2.29)

Under the hypothesis that the sequence {p(yt|Ft−1)}Tt=1 coincides with {f(yt|Ft−1)}Tt=1,

the sequence {u(t)}Tt=1 is independent and identically distributed (i.i.d.) Uniform [0, 1].

In our univariate ASV and ASV-t models, the PITs can be calculated by the formulas

below.

u(t) ≈ 1

N

N
∑

i=1

∫ yt

−∞

1√
2π

exp

(

− z2

2
e−h

(i)
t − h

(i)
t

2

)

dz, (2.30)

in the ASV model, and

u(t) ≈ 1

N

N
∑

i=1

∫ yt

−∞

Γ(v+1
2

)

Γ(v
2
)

1√
vπ

(

1 +
z2 exp(−h(i)

t )

v

)− v+1
2

dz, (2.31)

in the ASV-t model. In the computation of u(t), h
(i)
t are particles from the corresponding
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predictive distribution of ht with weights 1/N .

It is noticed that the PITs can only be calculated from the fitted SV models indexed

by the estimated parameters, since the true values of the parameters are not known. As

remarked in Diebold et al. (1998), when density forecast analysis is applied in real ap-

plications, the parameter estimation uncertainty is often ignored. Clements and Smith

(2000) discuss this issue and suggest using the parameter estimates as the population

values for generating the forecasts. In this and the following chapters, when conduct-

ing simulation studies and analyzing real data, we follow these ideas to assess the

goodness-of-fit for univariate and multivariate SV models. We use the Kolmogorov-

Smirnov test to assess the normality assumption of the realized observation errors and

the uniform distribution U [0, 1] for PITs produced by the fitted SV models. Because our

Kolmogorov-Smirnov test is based on the fitted model, the assessment of the overall

model fit should not rely only on the test results. Instead of using this test alone, we

also compare theoretical cumulative distribution functions (CDFs) with the empirical

CDFs of the realized observation errors and the PITs.

2.3 Simulation Studies and Methodology Comparison Based

on Real Data

2.3.1 Simulation Studies for the ASV Model

In this subsection, we conducted simulation studies for the ASV model. Here we only

present the results when the proposed slice sampler within the MCMC method was

applied to an artificially generated data set of asset returns. To generate asset returns,

38



we make a transformation to the innovation ǫt of the ASV model and obtain

yt = exp(ht/2)(ηt+1 +
√

1 − ρ2vt), (2.32)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, (2.33)

where vt and ηt+1 are independent and i.i.d. with vt ∼ N (0, 1) and ηt+1 ∼ N (0, 1). For

given Θ, the following equations will be used to generate h and y.

ht+1 ∼ N
(

µ+ φ(ht − µ), σ
)

, (2.34)

yt ∼ N
(

exp(ht/2)ρ(ht+1 − µ− φ(ht − µ))/
√
σ, exp(ht)(1 − ρ2)

)

, (2.35)

where h1 ∼ N
(

µ, σ/(1 − φ2)
)

and yT ∼ N
(

0, exp(hT )
)

.

The parameters used to generate the asset returns were set in the second column

of Table 2.2. We generated 2000 observations from the ASV model. The prior distri-

bution of v is v ∼ N (20, 25), which is the same as in Zhang and King (2008). Our

proposed slice sampler within MCMC algorithm was iterated 50,000 iterations and the

first 10,000 sampled points were discarded as the burn-in prior to conducting Bayesian

inference. Figure 2.1 graphs the time series of the first 5000 sampled points from the

full conditionals of parameters. These time series appear to converge in distribution

quickly, certainly in less than 10,000 iterations, indicating that a short burn-in period

is necessary before convergence. As we mentioned when we derived the MCMC al-

gorithm, all the slice samplers for the latent states were iterated for five iterations. In

Figure 2.2 we plot the histograms and sample paths of parameters after the burn-in,

while Table 2.2 includes summaries in terms of standard errors and Bayesian high-

est probability density (HPD) confidence intervals for the parameters. The estimated

parameters are close to their true values with relatively small standard errors.

To assess the overall model fit, we first check the normality assumption of the mea-
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Figure 2.1: Time series of the first 5000 sampled points from the full conditionals of
parameters in the ASV model based on the generated return data.
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Figure 2.2: Histograms and dynamics of the samples from the full conditionals of
parameters in the ASV model based on the generated return data.

Table 2.2: True and estimated parameters of the ASV model based on the simulated
return data.

Parameter True Est. Std. HPD CI(95%)
µ -10.45 -10.42 0.14 ( -10.70, -10.15 )
φ 0.98 0.98 0.01 ( 0.97, 0.99 )
ρ -0.41 -0.39 0.06 ( -0.52, -0.27 )
σ 0.036 0.048 0.009 ( 0.033, 0.066 )
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surement equation. The realized observation errors can be calculated using the follow-

ing formula

ǫ̂t = yt exp(−ĥt/2), t = 1, ..., T, (2.36)

where ĥt are the estimated log volatilities. Intuitively, we plot and compare the theo-

retical CDF of the standard normal distribution with the empirical CDF of the realized

innovations in Figure 2.3. The two CDFs appear to be close, which means that the

realized innovations are close to the standard normal distribution of the actual inno-

vations. For a statistical test of the normality assumption, we perform a Kolmogorov-

Smirnov test. Although the realized innovations came from the fitted ASV model, the

applicability of the Kolmogorov-Smirnov test may still be justified (e.g., Diebold et al.

(1998) and Clements and Smith (2000)). The computed Kolmogorov-Smirnov statistic

is 0.0239 with the critical value 0.0303 at the 5% significance level. So we do not reject

the null hypothesis at the 5% significance level that the realized innovations follow a

standard normal distribution.

We compare the absolute values of the simulated asset returns y, the simulated

volatilities exp(−ht/2), t = 1, ..., T, with the estimated and forecasted volatilities de-

picted in Figure 2.4. The Bayesian estimated volatilities can be calculated by the fol-

lowing formula

V̂t =
1

N − n

N
∑

k=n+1

exp(h
(k)
t /2), (2.37)

where h
(k)
t is the k-th simulated value of ht and n is the size of the burn-in. The esti-

mated and forecasted volatilities appear to visually resemble the simulated volatilities.

An alternative comparison is to check the ratios between the true and estimated volatil-

ities with the ratios between the true and forecasted volatilities graphed in Figure 2.5
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Figure 2.3: Comparison between the theoretical CDF of the standard normal distribu-
tion and empirical CDF of the residuals after fitting the ASV model to the generated
returns.

with root mean square errors (RMSE). These ratios vary about the value of 1, indicating

that the estimated and forecasted volatilities ”agree” with the true volatility.

The overall model fit can also be assessed through the analysis of the PITs obtained

from the formula (2.30). The uniform distribution of u(t) on the interval [0,1] is visual-

ized in Figure 2.6 by scatter and histogram plots. The Kolmogorov-Smirnov test statis-

tic is 0.0204 with the critical value 0.0303 at the 5% significance level, upon which we do

not reject the null hypothesis at the 5% significant level that the PITs are Uniform [0,1].

The empirical CDF of the PITs is depicted together with a theoretical CDF of the Uni-

form [0,1] in Figure 2.7. From the above comparisons and the Kolmogorov-Smirnov

tests, we may conclude that the proposed slice sampler within MCMC approach for

the ASV model fits the simulated asset return data reasonably well. The comparison

with other MCMC algorithms will be seen in the next subsection.
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Figure 2.4: Comparison between the absolute returns and the true volatilities with the
estimated and one-step ahead forecasted volatilities under the ASV model based on
the generated asset return data.
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Figure 2.5: Ratio comparison between true and estimated and forecasted volatilities
based on the generated asset return data.
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Figure 2.6: The top panel shows the scatter plot of u(t) while the bottom the histogram
of u(t).
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Figure 2.7: Comparison between the theoretical uniform CDF and the empirical CDF
of the PITs from generated return data.

2.3.2 Comparison Between Three Single-move Estimation Methods

We compare our approach with two other single-move methods used in the literature

by simulations. This comparison was conducted under the BSV model, where the cor-

relation between the two innovations in the ASV model is zero. The first method, pro-

posed in Jacquier et al. (2004) (called JPR hereafter), is a Metropolis-Hastings within

the MCMC method, which uses a non-Gaussian proposal density based on an approx-

imation of the full conditional of ht. The other is derived in Kim et al. (1998), where a
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full conditional of ht is simulated via a Metropolis-Hastings method with a Gaussian

proposal obtained through a Taylor expansion. We generated 100 data sets each with

2000 observations from the BSV model indexed with the same given parameters. Each

data set was fitted by our slice sampler within the MCMC method and the approaches

in Jacquier et al. (2004) and Kim et al. (1998), respectively. The estimated parameters

are summarized in Tables 2.3 to 2.5. It is found that the estimated parameters from

our approach and those by Kim et al. (1998) have a shorter confidence interval, while

the estimated volatility and location parameters of the latent AR(1) process based on

the JPR are not contained in the corresponding confidence intervals. This illustrates

that at least for the BSV model, the JPR may not be efficient. The reason behind this

phenomena is possibly due to the inefficient sampling of the log volatilities caused by

either a high autocorrelation of latent states, which is discussed in Kim et al. (1998), or

inappropriate proposal distributions. It is seen that the confidence intervals from the

method in Kim et al. (1998) are even shorter than those from our method. This does not

mean that our method is not comparable to their method. It is noticed that for the ASV

and ASV-t models, the single-move acceptance-rejection simulation method of Kim et

al. (1998) is not applicable, where a block sampling algorithm has to be used for the

simulation of the latent states. As discussed in Section 2.1, to deal with these leveraged

SV models, the block sampling algorithm is employed.

Table 2.3: True and estimated parameters of the BSV model via the slice sampler within
MCMC method.

Parameter True Est. Std. HPD CI(95%)
µ -10.45 -10.39 0.24 ( -10.80, -9.98 )
φ 0.98 0.98 0.01 (0.96, 0.99 )
σ 0.036 0.036 0.009 (0.018, 0.054 )
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Table 2.4: True and estimated parameters of the BSV model through the JPR approach.

Parameter True Est. Std. HPD CI(95%)
µ -10.45 -11.14 0.23 ( -11.58, -10.69 )
φ 0.98 0.97 0.01 (0.96, 0.99 )
σ 0.036 0.055 0.009 ( 0.037, 0.073 )

Table 2.5: True and estimated parameters of the BSV model via the method in Kim et
al. (1998).

Parameter True Est. Std. HPD CI(95%)
µ -10.45 -10.41 0.20 ( -10.78, -10.04 )
φ 0.98 0.98 0.01 ( 0.96, 0.99 )
σ 0.036 0.035 0.008 (0.019, 0.048 )

2.3.3 Comparison in Sampling the Latent States with and without

the Slice Sampler

We noticed earlier that, in the algorithms for the ASV and ASV-t models, the slice sam-

pler for simulating the latent states may not be necessary. In the estimation algorithm

for the ASV model, the proposal distribution of the full conditional of ht could be

g(ht) =
1√
2πτ

exp

{

− (ht − µt)
2

2τ

}

. (2.38)

This leads to a Metropolis-Hastings simulation method for the full conditional of ht

with a univariate normal distribution as the proposal distribution.

To check whether the slice sampler can actually affect the fit of the SV model, we

consider a data set of daily pound/dollar exchange rate from 01/10/1981 to 28/06/1985

using the BSV and ASV models. The sample size is 945. This data set was also ana-

lyzed in Harvey et al. (1994), Shephard and Pitt (1997), Kim et al. (1998), Meyer and

Yu (2000), Skaug and Yu (2007) and Huang and Yu (2008). In Kim et al. (1998), the BSV

model was fitted by an MCMC method. The latent states were simulated one at a time
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by using an acceptance-rejection method, where the dominating density is a univari-

ate normal density obtained through a Taylor’s expansion. We name this method the

BSV-K method. Huang and Yu (2008) consider the BSV model but using an importance

sampler based on Laplace approximation, which is called the BSV-Y method. The BSV

model was also fitted by applying our MCMC methods with and without the slice

sampler, which are named as the BSV-S and BSV-N methods, respectively. Similarly,

ASV-S and ASV-N are the estimation methods for the ASV model with and without

the slice sampler simulation, respectively.

When the data was fitted, each algorithm was iterated 50,000 times on the comput-

ing server of the University of Waterloo, and the last 40,000 sampled points were used

for Bayesian inference. As we mentioned earlier, in all of the estimation procedures, if

the slice sampler was used, it was iterated for five times. The estimated parameters of

the SV models are included in Table 2.6, where the last row contains the CPU time in

seconds. Since the BSV-Y method is not an MCMC algorithm, the running speed is not

given here.

Table 2.6: Estimated parameters of the SV models under various MCMC methods for
daily observations of weekday close exchange rates for the U.K. Sterling/U.S. Dollar
exchange rate from 1/10/81 to 28/6/85.

Parameter BSV-K BSV-Y BSV-S BSV-N ASV-S ASV-N

µ -0.8724 -0.9128 -0.8523 -0.8615 -0.8460 -0.9061
φ 0.9797 0.9734 0.9804 0.9821 0.9856 0.9825
σ 0.1479 0.1687 0.1485 0.1418 0.1429 0.1503
ρ -0.1222 -0.0955

Duration 56 314 54 335 92

It is not surprising that the estimated parameters are roughly the same across the

SV models and the estimation methods. But the running speeds are quite different. For

the BSV model, the BSV-N method is about 6 time faster than the BSV-S method, while

the ASV-N model is about 4 time faster than the BSV-S model. Hence, we can conclude
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that with the slice sampler, the running time is much longer than the approaches using

a simple Metropolis-Hastings method although with the former, we can have higher

acceptance rate.

For the ASV-t model a slice sampler within the MCMC approach has been proposed

for simulating latent states. Simulation studies illustrated that this method works well

on parameter estimation. As mentioned earlier, the sampling algorithm for latent states

may be further simplified. The proposal density for the full conditional of ht can also

be expressed as

g(ht) = c2te
−ht

(

1 +
y2
t e

−ht

v

)− v+1
2

. (2.39)

If we can simulate this proposal distribution easily, the proposed MCMC method for

the heavy-tailed SV model would be faster. We know that yt exp(−ht/2) follows a

student-t distribution t(v). To obtain a sample point of ht from the proposal distribu-

tion g(ht), the Student-t distribution is first sampled, then the sampled value is trans-

formed to a candidate value. This value is accepted with a probability calculated from

a Metropolis-Hastings method using (2.14). We found that the acceptance rates for this

simulation method based on the ASV-t and heavy-tailed BSV (BSV-t) models, plotted

in Figure 2.8, are less than 10%, have very small acceptance probabilities to accept a

point generated from the proposal distribution. The reason behind these low accep-

tance rates probably came from the proposal distribution since only the parameter v

was used. A direct consequence of this is that the simulated time series from the full

conditionals of latent states may not mix well. This may cause the samples from full

conditionals of latent states to be unreliable, which will affect the estimates of the static

parameters in the latent log volatility process. By checking the sampled time series

from the full conditional of v, we found that the time series are not ergodic showing

a slow downside trend. Consequently we did not use the simple Metropolis-Hastings
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method for heavy-tailed SV models.
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Figure 2.8: Acceptance rate of the latent states of the heavy-tailed SV models fitted to
the exchange rate data.

Simulation studies and comparisons with the two competing methods demonstrate

that our estimation methods is consistent in terms of parameter estimation. The simple

Metropolis-Hastings method can be applied to the latent states of SV models without

heavy tails, and the estimation speed can increase substantially. The normality as-

sumption of the realized observation errors and the uniform distribution of the PITs

from the ASV model are all supported by the results of the Kolmogorov-Smirnov tests.

2.4 Empirical Illustrations

In this section, we present an application of our MCMC methods to the ASV and ASV-t

models using daily returns of the IBM stock. The historical data was downloaded from

the web site finance.yahoo.com yielding 1730 observations from Jan. 3, 2003 to Nov.

13, 2009. We fit the ASV and ASV-t models to the first 1500 observations and the other

230 observations were used for an out-of-sample forecast assessment.
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2.4.1 Data Analysis of the ASV and ASV-t Models

We fitted the ASV and ASV-t models to the asset return data. For each model, the

estimation algorithm was iterated 50,000 times. The parameters and log volatilities

were estimated by means of a sample average based on the last 40,000 observations.

After fitting the ASV and ASV-t models, we checked the innovation assumptions

of the measurement equations of the two models. For the ASV model, we assessed the

normality assumption of the realized errors using the Kolmogorov-Smirnov test. The

statistic of the Kolmogorov-Smirnov test is 0.0203 with the the critical value 0.035 at

the 5% significance level. So we can not reject the null hypothesis at the 5% signifi-

cance level that the realized innovations of the ASV model follow a standard normal

distribution. In the test of Student-t distribution for the observation errors of the ASV-

t model, the degrees of freedom is unknown; so we use its estimate v = 15.98. The

Kolmogorov-Smirnov test statistic is 0.0148 with the critical value 0.035 at the 5% sig-

nificance level. Thus, we do not reject the null hypothesis that the realized innovations

follow a Student-t distribution with 15.98 degrees of freedom. Figure 2.9 compares

the empirical CDFs of the realized errors and the related theoretical CDFs, which is

consistent with both the normality and Student-t assumptions.

To assess the overall fit of the ASV and ASV-t models to the return data, we test the

PITs. In Figure 2.10, we plot the theoretical CDF of Uniform [0, 1] and empirical CDFs

of the PITs. The Kolmogorov-Smirnov test statistic for the PITs from the ASV model is

0.0207 with the critical value 0.035 at the 5% significance level. Thus, we do not reject

the null hypothesis that the estimated ASV model agrees with the IBM return data.

Similarly, for the ASV-t model, the Kolmogorov-Smirnov test statistic for the PITs is

0.0183 with the the critical value 0.035 at the 5% significance level, indicating that the

PITs are i.i.d. Uniform [0, 1]. Both of the Kolmogorov-Smirnov tests show that the ASV

and ASV-t models are good candidates for the IBM daily return data. The estimated
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Figure 2.9: Comparison between the theoretical and empirical CDFs of the observation
errors of the ASV (left) and ASV-t (right) models based on the IBM return data.

parameters are presented in the second and third columns of Table 2.7.

2.4.2 Estimation of Several Competing Models

In order to obtain a good model for the IBM return data, we compare the results from

several competing models estimated from the first 1500 observations of the IBM stock.

A heavy-tailed asymmetric SV model with leverage

Let us recall that for the heavy-tailed ASV model presented in Jacquier et al. (2004), it

is not obvious how to obtain and interpret the leverage effect. The revised version of

this model is given by

yt = exp(ht/2)ǫt, ǫt ∼ t(v), (2.40)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, ηt+1 ∼ N (0, 1), (2.41)
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Figure 2.10: Comparison between the theoretical and empirical CDFs of the PITs of
the ASV (left) and ASV-t (right) models upon the IBM returns.

where the measurement error ǫt is decomposed as ǫt =
√
λtet, λt follows an inverse

Gamma distribution λt ∼ IG(v/2, v/2), and et ∼ N (0, 1), which is correlated with

ηt+1, such that ρ = corr(et, ηt+1). We call this model a ASV-d model, where the letter d

stands for the decomposition of Student-t distribution. This mixture decomposition is

used by Harvey et al. (1994), Jacquier (2004) and can be found in some latter papers,

such as in Hautsch and Ou (2008), Shimada and Tsukuda (2005), and Zhang and King

(2008). The reason for introducing inverse Gamma variables λt in the ASV-d model

is that the existing estimation methods for the ASV model can be easily modified and

applied, which will be seen later. Under the mixture specification, the volatilities of

asset returns are not only described by ht but also
√
λt. That is, the conditional variance

of yt is λt exp(ht). In terms of interpreting volatilities of asset returns, we consider

the two values together. It is also noticed that under the mixture decomposition, the

correlation between the two equations is determined by the correlation between the

two standard normal noises. Moreover, The latent process partially describes the log

volatilities of y.

52



To estimate this model, we notice that once λt, t = 1, ..., T , have been sampled,

y∗t = yt/
√
λt, t = 1, ..., T , can be modeled by the ASV model. So the parameters of the

AR(1) process can be estimated in the same way as in the ASV model. The simulation

of v proceeds in the same way as that in the ASV-t model by using formula (2.21). To

sample λt, the density of λt, given v, is

f(λt|v) =
(v/2)(v/2)

Γ(v/2)

( 1

λt

)v/2+1

exp
{

− v/2

λt

}

. (2.42)

The full conditional of λt, given yt, ht and v, is

f(λt|yt, ht, v) ∝
{ 1

λt

}(1/2)

exp
{

− y2
t exp(−ht/2)

2λt

}(v/2)(v/2)

Γ(v/2)

( 1

λt

)v/2+1

exp
{

− v/2

λt

}

∝
{ 1

λt

}(v+1)/2+1

exp
{

− y2
t exp(−ht/2) + v

2λt

}

. (2.43)

Hence we can sample λt directly from the inverse Gamma distribution

λt|yt, ht, v ∼ IG
(

(v + 1)/2, (y2
t exp(−ht/2) + v)/2

)

. (2.44)

Using the same prior densities of parameters as those used for the ASV and ASV-t

models, we applied the sampling algorithm to the ASV-d model for the first 1500 ob-

servations of the IBM returns. A summary of the posterior means of the parameters is

listed in the fourth column of Table 2.7. If the λt’s were all equal to one, the innova-

tion would be a standard normal distribution. If it has an inverse gamma distribution,

the innovation has a Student-t distribution. Figure 2.11 graphs the time series of the

estimated volatilities and the time series of
√
λt, respectively. The mean of

√
λt is 1.032

with standard deviation 0.16. This indicates that the innovations ǫt follow a Student-t

distribution. The AIC and BIC values of the ASV-t and ASV-d models presented in

Table 2.8 are very close, which says that these two models are ranked first when they
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are estimated on asset return data. It is found that the estimated degrees of freedom

v in both of the ASV-t and ASV-d models are approximately the same. In practice, we

would prefer the ASV-t model since it is convenient for obtaining volatility forecasts.

Specifically, to perform an out-of-sample forecast, the ASV-t model is not required to

predict and filter λt during the auxiliary particle filter procedure; instead it only re-

quires v and the conditional Student-t distribution of yt. We can directly sample the

Student-t distribution without any mixture decomposition.
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0

0.005
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0.015

Estimated volatilities 
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1

1.5

2
Time series of

√
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Figure 2.11: The estimated
√
λts and volatilities obtained from the fit of the ASV-d

model to the IBM return data.

The BSV model

The BSV model was defined by equations (2.1) to (2.3), where a non-zero correlation

between the two innovations are not permitted. Using the same prior distributions of

parameters as those in ASV model and fixing ρ = 0, the IBM return data was fitted and

the parameter estimates are included in Table 2.7.

54



Heavy-tailed basic SV (BSV-t) model

Similar to the BSV model, if the correlation coefficient in the ASV-t model is assumed

to be zero, then we obtain a heavy-tailed basic SV model (BSV-t) expressed as:

yt = exp(ht/2)ǫt, ǫt ∼ t(v), (2.45)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, ηt+1 ∼ N (0, 1), (2.46)

where the correlation corr(ǫt, ηt+1) = 0. We fitted this model to the asset return data

with prior distributions being the same as those in the ASV-t model and by pre-setting

ρ = 0. The estimated parameters are presented in the last column of Table 2.7.

Table 2.7: Estimates of parameters obtained from daily returns of the IBM stock
through the ASV, ASV-t and competing models. The standard errors are in the paren-
theses.

Parameter ASV ASV-t ASV-d BSV BSV-t
µ -10.49 -10.18 -10.45 -10.47 -10.17

(0.39) (1.24) (0.72) (0.50) (1.32)
φ 0.98 0.99 0.99 0.98 0.99

(0.01) (0.01) (0.01) (0.01) (0.01)
ρ -0.42 -0.34

(0.09) (0.10)
ψ -0.06

(0.01)
σ 0.035 0.011 0.021 0.029 0.012

(0.013) (0.005) (0.009) (0.011) (0.006)
v 15.98 16.10 15.98

(4.49) (5.59) (4.36)

According to the estimation results in Table 2.7, we found that the estimated vari-

ances of the latent AR(1) processes are different across various specifications of the

SV model. Using the Student-t distribution, the estimates of volatility parameter σ

are much smaller than those from other SV models, which is related to the AIC and
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BIC values on the next page. Moreover, the estimated correlations in the ASV and

ASV-d models are significantly negative, indicating that the leverage effect between

the returns and the volatilities does exist. The estimate of ψ in the ASV-t model is neg-

ative, indicating this model can also capture a negative correlation between the two

processes. Table 2.8 presents the values of AIC and BIC of the fitted SV models. The

last column is obtained when the first 1500 observations of the IBM returns were fitted

by a GARCH(1,1) model with i.i.d. univariate standard normal innovations. Both of

the AIC and BIC attained their smallest values for the ASV-t model. Thus, the ASV-t

model seems to have the best fit among the six models for the IBM daily return data.

Table 2.8: The AIC and BIC values for the ASV and ASV-t and competing models based
on the IBM return data.

Model ASV ASV-t ASV-d BSV BSV-t GARCH(1,1)
AIC -11538.4 -11560.4 -11557.3 -11522.7 -11539.9 -11449.0
BIC -11517.1 -11533.8 -11530.7 -11501.5 -11513.3 -11428.0

Figure 2.12 compares the absolute IBM returns with the forecasted volatilities from

the ASV, ASV-t and the other competing models. The time series before and after the

dotted vertical line at t = 1500 are the in-sample and out-of-sample one-step ahead

forecasted volatilities. Although we can not observe the true volatilities, we may be

confident that the ASV-t and ASV-d model will perform better in terms of volatility

forecast.

To further assess whether the ASV-t model fits the IBM return data well, we re-

peatedly generated asset returns and fitted the ASV-t model to see how often the fitted

model agreed with the generated data. We generated 100 data sets of asset returns

from this model indexed by the estimated parameters. Each data set contains 1500

observations which also has the same size as the IBM return data used to fit the ASV-

t model. For each generated data set, we fitted the ASV-t model and computed the

Kolmogorov-Smirnov statistic of the PITs. We found that there were 45 times that the
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Figure 2.12: Comparison of absolute asset returns vs. forecasted volatilities from the
competing models.
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calculated statistics were greater than 0.0183, which was the value of the Kolmogorov-

Smirnov statistic for the Uniform [0, 1] test of PITs from the ASV-t model to the first

1500 observations of the IBM returns. An empirical estimate of the significance proba-

bility is 0.55. Therefore, there is no evidence to suggest that the ASV-t model fails to fit

the real data.

2.5 Conclusion

In this chapter, the slice sampler within the MCMC methods were developed for var-

ious specifications of the univariate SV models including the ASV and ASV-t models.

For heavy-tailed SV models, the Student-t distribution can be used directly without

any decomposition of inverse Gamma and standard normal distributions. Simulation

studies and empirical applications showed that our proposed approaches work well in

terms of parameter estimation. We employed the AIC and BIC criteria for model selec-

tion, where the sample likelihoods were evaluated via the auxiliary particle filter. The

overall model fit was assessed by the Kolmogorov-Smirnov test of the PITs realized

from the estimated models. Since the ASV-t model seems to fit the IBM asset return

data better than the other competing SV models, volatility forecasts conducted via the

auxiliary particle filter based on this model resemble the time series of the absolute

asset returns.
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2.6 Appendix

Full Conditionals of Parameters and Latent States in the ASV Model

• Full conditional of µ, given a normal prior N (αµ, β
2
µ), is expressed as

f(µ|y, φ, ψ, τ)

∝ f(h|Θ,y) exp

{

− (µ− αµ)
2

2β2
µ

}

∝ f(h1|Θ)

T−1
∏

t=1

f(ht+1|ht,Θ, yt) exp

{

− (µ− αµ)
2

2β2
µ

}

∝ exp

{

−
∑T−1

t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

exp

{

− (µ− αµ)
2

2β2
µ

}

= exp

(

− 1

2

[

µ2

{

1 − φ2

σ
+

(T − 1)(1 − φ)2

τ
+

1

β2
µ

}

− 2µ

{

h1(1 − φ2)

σ
+

(1 − φ)
∑T−1

t=1

(

ht+1 − φht − ψ exp(−ht/2)yt
)

τ
+
αµ
β2
µ

}])

∝ N
(

µ;
b

a
,
1

a

)

.

where

a =
1 − φ2

σ
+

(T − 1)(1 − φ)2

τ
+

1

β2
µ

,

b =
h1(1 − φ2)

σ
+

(1 − φ)
∑T−1

t=1

(

ht+1 − φht − ψ exp(−ht/2)yt
)

τ
+
αµ
β2
µ

.
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• Full conditional of φ, given a normal prior N (αφ, β
2
φ), is given by

f(φ|y, µ, ψ, τ)

∝ f(h|Θ,y) exp

{

− (φ− αφ)
2

2β2
φ

}

∝ f(h1|Θ)
T−1
∏

t=1

f(ht+1|ht,Θ, yt) exp

{

− (φ− αφ)
2

2β2
φ

}

∝ exp

{

−
∑T−1

t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

exp

{

− (φ− αφ)
2

2β2
φ

}

(1 − φ2)
1
2

= exp

(

− 1

2

[

φ2

{−(h1 − µ)2

σ
+

∑T−1
t=1 (ht − µ)2

τ
+

1

β2
φ

}

− 2φ

{
∑T−1

t=1 (ht − µ)
(

ht+1 − µ− ψ exp(−ht/2)yt
)

τ
+
αφ
β2
φ

}])

(1 − φ2)
1
2

∝ N
(

φ;
d

c
,
1

c

)

(1 − φ2)
1
2 ,

where

c =
−(h1 − µ)2

σ
+

∑T−1
t=1 (ht − µ)2

τ
+

1

β2
φ

,

d =

∑T−1
t=1 (ht − µ)

(

ht+1 − µ− ψ exp(−ht/2)yt
)

τ
+
αφ
β2
φ

.
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• Full conditional of ψ, given a normal prior density N (αψ, β
2
ψ), is given by

f(ψ|y, µ, φ, τ)

∝ f(h|Θ,y) exp

{

− (ψ − αψ)2

2β2
ψ

}

∝ f(h1|Θ)
T−1
∏

t=1

f(ht+1|ht,Θ, yt) exp

{

− (ψ − αψ)2

2β2
ψ

}

∝ exp

{

−
∑T−1

t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× exp

{

− (ψ − αψ)2

2β2
ψ

}

= exp

(

− 1

2

[

ψ2

{∑T−1
t=1 [exp(−ht/2)yt]

2

τ
+

1

β2
ψ

}

− 2ψ

{
∑T−1

t=1

[

exp(−ht/2)yt{(ht+1 − µ) − φ(ht − µ)}
]

τ
+
αψ
β2
ψ

}])

∝ N
(

ψ;
b1
a1

,
1

a1

)

,

where

a1 =

∑T−1
t=1 [exp(−ht/2)yt]

2

τ
+

1

β2
ψ

,

b1 =

∑T−1
t=1

[

exp(−ht/2)yt{(ht+1 − µ) − φ(ht − µ)}
]

τ
+
αψ
β2
ψ

.
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• Full conditional of τ , given an inverse Gamma prior density f(ατ , βτ ), is

f(τ |y, µ, ψ, φ)

∝ f(h|Θ,y)f(ατ , βτ)

∝ f(h1|Θ)
T−1
∏

t=1

f(ht+1|ht,Θ, yt)f(ατ , βτ )

∝ exp

{

−
∑T−1

t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

2τ

}

× exp

{

− (1 − φ2)(h1 − µ)2

2τ

}

×
(

1

τ

)T
2
(

βτ
)ατ

e−βτ/στ

Γ(ατ )(στ )ατ +1

∝ exp

(

βτ + 1
2
(h1 − µ)2(1 − φ2) + 1

2

∑T−1
t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2

τ

}

×
(

1

τ

)(ατ + T
2

)+1

∝ IG(τ ; a, b),

which is an inverse Gamma distribution with parameters,

a = ατ +
T

2
,

b = βτ +
1

2
(h1 − µ)2(1 − φ2) +

1

2

T−1
∑

t=1

[

(ht+1 − µ) − φ(ht − µ) − ψ exp(−ht/2)yt
]2
.
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• Full conditional of h1 can be specified as

P (h1|y1:T , h2,Θ)

= c1f(y1|h1)f(h1|Θ)f(h1|h2, y1,Θ)

= c2 exp

{−h1

2

}

exp

{

− y2
1

2
exp(−h1)

}

exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

× exp

{

−
[

(h2 − µ) − φ(h1 − µ) − ψ exp(−h1/2)y1

]2

2τ

}

< c2 exp

{−h1

2

}

exp

{

− y2
1

2
exp(−h1)

}

exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

,

where c1 and c2 are the two normalizing constants.

• Full conditional of hT is given by

f(hT |y1:T , hT−1,Θ)

∝ f(yT |hT )f(hT |hT−1, yT−1,Θ)

∝ exp

{−hT
2

}

exp

{

− y2
T

2
exp(−hT )

}

× exp

{

−
[

(hT − µ) − φ(hT−1 − µ) − ψ exp(−hT−1/2)yT−1

]2

2τ

}

.
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Full Conditionals of Latent States of the ASV-t Model

• Full conditional of h1 can be expressed as

f(h1|y1:T , h2,Θ)

= c1f(y1|h1)f(h1|Θ)f(h1|h2, y1,Θ)

= c2e
−h1/2

(

1 +
y2

1e
−h1

v

)− v+1
2

exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

× exp

{

−
[

(h2 − µ) − φ(h1 − µ) − ψ exp(−h1/2)yt
]2

2τ

}

< c2e
−h1/2

(

1 +
y2

1e
−h1

v

)− v+1
2

exp

{

− (1 − φ2)(h1 − µ)2

2σ

}

,

where c1 and c2 are the two normalizing constants.

• Full conditional of hT .

f(hT |y1:T , hT−1,Θ)

∝ f(yT |hT )f(hT |hT−1, yT−1,Θ)

∝ Γ(v+1
2

)

Γ(v
2
)

1√
πv
e−hT /2

(

1 +
y2
Te

−hT

v

)− v+1
2

× exp

{

−
[

(hT − µ) − φ(hT−1 − µ) − ψ exp(−hT−1/2)yT−1

]2

2τ

}

∝ e−hT /2

(

1 +
y2
T e

−hT

v

)− v+1
2

× exp

{

−
[

(hT − µ) − φ(hT−1 − µ) − ψ exp(−hT−1/2)yT−1

]2

2τ

}

.

Slice Sampler for the ASV-t Model

Based on the full conditionals of ht, t = 1, ...., T , we only give the slice sampler for

sampling ht. It can be verified that the full conditional of ht, obtained in Section 2.2, is
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dominated by f(ht) as follows.

f(ht) ∝ g1(ht)g2(ht)

∝
{

1 +
y2
t exp(−ht)

v

}− v+1
2

exp

{

(ht − µt)
2

2τ

}

,

where µt = µ− τ
2

+ φ(ht−1 − µ) + ψ exp(−ht−1/2)yt−1.

Step 0. Given h
(k)
t , the draw at the iteration k.

Step 1. Draw u1 ∼ U(0, 1). Let u2 = u1 ∗
{

1 +
y2t exp(−h

(k)
t )

v

}− v+1
2

and

u2 ≤
{

1 +
y2
t exp(−ht)

v

}− v+1
2

.

If yt 6= 0, then we have

exp(−ht) ≤ v

(

( 1

u2

)
2

v+1 − 1

)

/

y2
t

ht ≥ − log

[

v

(

( 1

u2

)
2

v+1 − 1

)

/

y2
t

]

. (A.1)

Step 2. Draw u3 ∼ U(0, 1).

Let u4 = u3 ∗ exp

{

− (h
(k)
t −µ

(k)
t )2

2τ

}

and

u4 ≤ exp

{

− (ht − µ
(k)
t )2

2τ

}

log(u4) ≤ −(ht − µ
(k)
t )2

2τ

(ht − µ
(k)
t )2 ≤ −2τ log(u4).
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Then we have

µ
(k)
t −

√

−2τ log(u4) ≤ ht ≤ µ
(k)
t +

√

−2τ log(u4). (A.2)

Step 3. If yt 6= 0, draw h
(k+1)
t uniformly from the interval determined by the in-

equalities (A.1) and (A.2),

ht ∼ U
(

max
{

− log

[

v

(

( 1

u2

)
2

v+1 − 1

)

/

y2
t

]

, µ
(k)
t −

√

−2τ log(u4)
}

, µ
(k)
t +

√

−2τ log(u4)

)

,

otherwise,

ht ∼ U
(

µ
(k)
t −

√

−2τ log(u4), µ
(k)
t +

√

−2τ log(u4)

)

.
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Chapter 3

Efficient Bayesian Estimation of a

Multivariate Stochastic Volatility

Model with Cross Leverage

3.1 Introduction

In equity markets, leverage effects are often observed between asset returns and latent

volatilities. As discussed by Yu (2005) and also studied in Jacquier et al. (2004) and

Omori et al. (2007), there is strong evidence for a leverage effect and leverage is a par-

ticularly important feature of asset returns in the equity market. Univariate stochastic

volatility (SV) models have been successful in capturing this property of asset returns.

Current research work in this area includes studies by Jacquier et al. (2004), Omori et

al. (2007), Zhang and King (2008), Kawakatsu (2007) and Harvey and Shephard (1996).

Since likelihood functions are difficult to evaluate for SV models, Bayesian inference

methods such as the Markov Chain Monte Carlo (MCMC) methods have been pro-

posed instead ( e.g. Shephard and Pitt (1997), Jacquier et al. (2004) and Omori et al.
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(2007)).

It is known that the individual asset return’s time series evolve not only on their

own but are also related to other financial time series in the market. To study such

complex phenomena, univariate SV models are not sufficient since they are unable to

model the correlations of multivariate asset returns. Based on this observation, uni-

variate SV models have been extended to multivariate SV (MSV) settings to capture

the properties of multivariate financial asset returns. Analogous to the univariate SV

models, non-zero cross correlations between the innovations of multivariate returns

and those of the latent Markov processes are permitted. Our aim in this chapter is to

develop a novel MCMC method to estimate a more general specification of the MSV

model.

The leverage MSV model was first mentioned by Danielsson (1998) in his empirical

study of foreign exchange rates and stock indices, but the author did not fit the model

to real data. The reason that the leverage effect MSV model has not been extensively

studied is the difficulty arising in the estimation of conditional variances of the two

innovations; for instance, the covariance matrix of the observation errors in this model

is a correlation matrix. Chan et al. (2006) propose a more general leverage MSV model,

where non-zero correlations are permitted across the innovations of asset returns and

those of the volatility dynamics. In estimating this model, the authors focus not on

the simulation of the variance-covariance matrix directly but the correlation matrix in-

stead. An MCMC algorithm is proposed from which an inverted correlation matrix is

simulated one entry at a time through the Metropolis-Hastings (MH) algorithm using

a parsimonious reparameterization proposed in Wong et al. (2003). In the implemen-

tation, Chan et al. (2006) perform an element selection on the off-diagonal elements

of the inverted correlation matrix. By imposing a prior, the off-diagonal elements of

the inverse of the correlation matrix are allowed to be identically zero. The technique

is also adapted by Pitt et al. (2006) in their fit of Gaussian copula regression models.
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In order to improve the simulation efficiency, Chan et al. (2006) simulate the latent

random variables by blocks with the MH algorithm as in Smith and Pitts (2006). The

proposal is a Gaussian density obtained by a quadratic approximation to the full con-

ditional around the mode. The mode is found by using an additional Newton-Raphson

method. Because of the extra numerical algorithm required in this case, the realized

simulation method is relatively more time-consuming. To the best of our knowledge,

the study by Chan et al. (2006) represents the first attempt to fit such a general MSV

model.

In this chapter, we consider the same model as in Chan et al. (2006) but develop

a straightforward MCMC approach for parameter and log volatility estimation. The

main difficulty with the MSV model is the sampling of the latent states and the re-

stricted conditional variance-covariance matrix of the model. Our contributions be-

yond Chan et al. (2006) are as follows. First, we provide a framework in the simu-

lation of the constrained variance-covariance matrix under which the required com-

putation altogether is reduced by simulating the variance-covariance matrix simulta-

neously rather than element-by-element. Second, for the latent states, we use an MH

method, where the proposal distribution is sampled by the slice sampler proposed by

Edwards and Sokal (1988) and Neal (2003). Because the slice sampler can adapt to the

analytical structure of the target density, it is expected to be more efficient when com-

pared with other sampling methods, such as the one given in Chan et al. (2006). Third,

our method is relatively more straightforward in dealing with high-dimensional data

than the method of Chan et al. (2006).

The rest of the chapter is organized as follows. Section 3.2 gives the definition

of a MSV model with cross variance-covariance structure. An MCMC algorithm for

estimating the parameters and log volatilities is presented in Section 3.3. Simulation

studies and applications to asset return data are given in Section 3.4 and Section 3.5,

respectively. Concluding remarks can be found in Section 3.6.
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3.2 Model and Estimation

3.2.1 Model

To simplify the exposition, we assume that the considered financial asset returns are

demeaned. Before formulating the MSV model, we first reproduce the specification of

the univariate SV model with a leverage effect. Define by yt the return at time t, t ≤ T .

The univariate model is specified as

yt = exp(ht/2)ǫt, t = 1, ..., T, (3.1)

ht+1 = µ+ φ(ht − µ) +
√
σηt+1, t = 1, ..., T − 1, (3.2)

where h1 ∼ N (µ, σ/(1 − φ2)) and





ǫt

ηt+1



 ∼ N (0,Σ), Σ =





1 ρ

ρ 1



 , (3.3)

where ρ is the correlation coefficient between the two innovations, N (a, b) denotes a

univariate normal distribution with mean a and variance b, and N (µ,Σ) is a multivari-

ate normal distribution with mean vector µ and variance-covariance matrix Σ. The log

volatility of yt follows a first-order autoregressive (AR(1)) process. We assume that the

persistence parameter in the AR(1) process, φ, satisfies the weak stationarity restriction

|φ| < 1. In various applications of this model to financial time series, the correlation ρ is

often found to be negative, which can be interpreted as a leverage effect between asset

returns and latent volatilities. The resulting model is called the univariate asymmetric

stochastic volatility (ASV) model.

Now we extend the ASV model to a multivariate setting following the definition

in Chan et al. (2006). Let yt = (y1,t, ..., ym,t)
′

denote an m-dimensional vector of asset
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returns at time t, and ht = (h1,t, ..., hm,t)
′

be the m × 1 vector of log volatility of yt. We

assume that ht follows a vector AR(1) process with mean µ = (µ1, ..., µm)
′

and persis-

tence parameter vector φ = (φ1, ..., φm)
′

that satisfies the weak stationarity condition

|φi| < 1 for i = 1, ..., m. The MSV model is given by

yt = H
1
2
t ǫt, t = 1, ..., T, (3.4)

ht+1 = µ + Φ(ht − µ) + ηt+1, t = 1, ..., T − 1, (3.5)

h1 ∼ N (µ,Σ0), (3.6)

where

H
1
2
t = diag

(

exp(h1,t/2), ..., exp(hm,t/2)
)

, (3.7)

Φ = diag(φ1, ..., φm), (3.8)




ǫt

ηt+1



 ∼ N (0,Σ), Σ =





Σǫǫ Σǫη

Σηǫ Σηη



 . (3.9)

The (i, j) element of Σ0 equals the (i, j) element of Σηη divided by 1−φiφj. Then it can

be verified that Σ0 satisfies the weak stationarity condition

Σ0 = ΦΣ0Φ + Σηη. (3.10)

Assume that the marginal variances of components in ǫt are var(ǫk,t) = 1, k = 1, ..., m,

so that Σǫǫ is a correlation matrix. The covariance matrix between ǫt and ηt+1 is Σǫη,

and Σηη is the variance matrix of ηt+1. As usual, we denote y = (y1, ...,yT ), h =

(h1, ...,hT ), and the collection of the parameters to be estimated by Θ = (µ,φ,Σ). We

permit non-zero correlations within and between ǫt and ηt+1. In the literature, this

more general setup of cross correlation only appears in the study by Chan et al. (2006).
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3.2.2 Estimation: an MCMC Algorithm

In this section we develop an MCMC algorithm for our proposed MSV model. For con-

venience in presenting the sampling scheme, we introduce some additional notation.

The innovations in (3.4) and (3.5) are assumed to be jointly represented as a column

vector Zt with length 2m:

Zt =
(

(H
− 1

2
t yt)

′

, (ht+1 − µ − Φ(ht − µ)
′
)′

. (3.11)

Then Z = (Z1, ...,ZT−1) represents an i.i.d. sample from the multivariate normal distri-

bution N (0,Σ). This Z will be used when we specify the proposal distribution in the

MH algorithm for the simulation of Σ.

Our proposed algorithm uses a Cholesky decomposition of Σ, which enables us to

find posterior distributions of latent variables. At each MCMC iteration, when Σ is

simulated and accepted, we perform a Cholesky decomposition of the form Σ = AA
′

,

where A is a lower triangular matrix with strictly positive entries on the main diagonal

and A
′

is a transpose of A. We represent A as

A =





C 0

D E



 , (3.12)

where C and E are two lower triangular m×m matrices. Note the MSV model defined

by equations (3.4) and (3.5) can be rewritten as

yt = H
1
2
t Cet, et ∼ N (0, Im×m), (3.13)

ht+1 = µ + Φ(ht − µ) + Det + Evt+1, vt+1 ∼ N (0, Im×m). (3.14)

If we denote Xt = (e′
t,v

′
t+1)

′, then Xt, t = 1, ..., T −1, are i.i.d. multivariate standard
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normal random vectors, such that Xt ∼ N (0, I2m×2m). Then (3.13) and (3.14) can be

represented by

yt = H
1
2
t Cet, ǫt ∼ N(0, Im×m), (3.15)

ht+1 = µ + Φ(ht − µ) + DC−1H
− 1

2
t yt + Evt+1, vt+1 ∼ N (0, Im×m). (3.16)

It is seen that the log volatility ht+1 includes a contribution from the previous obser-

vation yt. The transition equation (3.16) is very convenient for the calculation of the

posteriors of latent states. Like the asymmetric univariate SV models, the leverage

effect is introduced by DC−1 in the coefficient of yt in (3.16).

As usual, for the use of MCMC sampler, all prior distributions of the parameters in

Θ have to be specified in advance. We assume that the prior distributions of µi follow

univariate normal distributions, where the location hyperparameters are estimated by

fitting a univariate ASV model to the corresponding component of the considered mul-

tivariate time series, and the variance hyperparameters are all set to 10, so these prior

distributions are reasonably flat over their supports. For the prior distributions of φi,

we set univariate norm distributions with restrictions |φi| < 1, i = 1, ..., m. The prior

distribution of Σ is Σ ∼ IW(R0, n0), which is an inverse Wishart distribution with the

probability density function f0(Σ) given by

f0(Σ) ∝ |Σ|−n0+m+1
2 exp

{

−1

2
tr(R0Σ

−1)

}

, (3.17)

where n0 is the number of degrees of freedom, R0 is a positive-definite matrix called

the scale matrix and tr(.) represents the trace of the argument matrix.

The MCMC algorithm for the MSV model is outlined in Table 3.1 followed by a

detailed explanation.

The initial values for the states and latent parameters of the MSV model are set
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Table 3.1: MCMC algorithm for the MSV model.

Step 1. Sample hk,t, k = 1, ..., m, t = 1, ..., T .

Step 2. Sample µ.

Step 3. Sample φ.

Step 4. Sample Σ.

Step 5. Repeat Step1 to Step 5.

equal to the estimates obtained from fitting the univariate ASV model to each univari-

ate time series. The variance-covariance matrix Σ is initialized to be a diagonal matrix,

where the first m components on the diagonal are set to one and the lastm components

are the estimates of the asymptotic volatilities of the latent AR(1) processes from the

estimated univariate models. For the convenience of presenting the algorithm, by f(.)

we denote a generic density function.

Step 1. Sample ht, t = 1, ..., T . The full conditional of ht, t = 2, ..., T − 1, given that

other parameters have been sampled, satisfies

f(ht|Θ,y,h−t)

= β1tf(yt|Θ,ht)f(ht|Θ,yt−1,ht−1)f(ht|Θ,yt,ht+1)

= β2t exp

{

− Σm
i=1hi,t
2

}

exp

{

− (H
− 1

2
t yt)

′(CC′)−1(H
− 1

2
t yt)

2

}

× exp

{

− (ht − µt)
′(EE′)−1(ht − µt)

2

}

× exp

{

− (ht+1 − µt+1)
′(EE′)−1(ht+1 − µt+1)

2

}
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< β2t exp

{

− Σm
i=1hi,t
2

}

exp

{

− (H
− 1

2
t yt)

′(CC′)−1(H
− 1

2
t yt)

2

}

× exp

{

− (ht − µt)
′(EE′)−1(ht − µt)

2

}

, (3.18)

where β1t and β2t are the two normalizing constants, h−t denotes all elements of h =

(h1, ...,hT ) excluding ht, and

µt = µ + Φ(ht−1 − µ) + DC−1H
− 1

2
t−1yt−1. (3.19)

The full conditionals of h1 and hT are given in the Appendix. It follows from (3.18)

that the full conditional of ht is bounded above by a product of three positive and inte-

grable functions. According to the structure of the right-hand side of (3.18), we could

simulate ht using the vector slice sampler. That is, the dominating function in (3.18)

can be simulated through a slice sampler, and then an MH step is needed to sample the

left-hand side, which is the full conditional of ht. However, as discussed in Chapter

8 of Robert and Casella (2004), the direct multi-dimensional slice sampler may not be

efficient. If we inspect the inequality (3.18) carefully, we find that the full conditional

of hk,t is bounded above by a product of several univariate positive functions. Then

a univariate slice sampler with the MH method can be applied to sample hk,t. Thus,

the MH algorithm proposed by Jacquier et al. (1994, 1999) or the block simulation ap-

proach in Smith and Pitts (2006) are not needed here. The procedure of sampling ht

is summarized in Table 3.2, which splits the multivariate simulation problem into a

series of univariate simulation tasks. That is , hk,t, k = 1, ..., m, are simulated cyclicly

by the proposed MH method with a univariate slice sampler. It is observed that the

sampling of each latent state may also be conducted by the single-move simple MH

method introduced in Chapter 2 for the univariate SV models without heavy tails. In

this chapter we use the slicing sampling as an example to illustrate that the simulation

can be conducted in a simpler way relative to the method used in Chan et al. (2006).
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Table 3.2: The MCMC sampler for sampling ht from iteration n to n + 1.

1. h
(n+1)
1,t ∼ f

(

h1,t|h(n)
1,t−1, h

(n)
1,t+1, h

(n)
2,t , ..., h

(n)
m,t,Θ

(n),y
)

,

2. h
(n+1)
2,t ∼ f

(

h2,t|h(n)
2,t−1, h

(n)
2,t+1, h

(n+1)
1,t , h

(n)
3,t , ..., h

(n)
m,t,Θ

(n),y
)

,
.
.
.

m. h
(n+1)
m,t ∼ f

(

hm,t|h(n)
m,t−1, h

(n)
m,t+1, h

(n+1)
1,t , ..., h

(n+1)
m−1,t,Θ

(n),y
)

.

We only give the full conditional of hi,t, i = 1, ..., m, t = 2, ..., T −1. Let B = (CC′)−1

and G = (EE′)−1 be two positive definite matrices, where C and E were defined in

(3.12). In the following derivation of the full conditional, we assume yi,t 6= 0, otherwise

the derivation requires a minor adjustment. Analogous to the formula (3.18), it is easy

to see that the full conditional of hi,t satisfies the following:

f(hi,t|h−i,t)

= η1t exp

{

− hi,t
2

}

exp

{

−
bi,iy

2
i,te

−hi,t + 2yi,te
−

hi,t

2

∑m
j=1,j 6=i(bi,j yj,t e

−
hj,t

2 )

2

}

× exp

{

−
gi,i (hi,t − µi,t)

2 + 2(hi,t − µi,t)
∑m

j=1,j 6=i(gi,j(hj,t − µj,t))

2

}

× exp

{

−
gi,i (hi,t+1 − µi,t+1)

2 + 2(hi,t+1 − µi,t+1)
∑m

j=1,j 6=i(gi,j(hj,t+1 − µj,t+1))

2

}

= η2t exp

{

− hi,t
2

}

exp

{

−

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

}

× exp

{

−

(

(

hi,t − µi,t
)

+
∑m

j=1,j 6=i

(

gi,j(hj,t−µj,t

)

gi,i

)2

2 1
gi,i

}

× exp

{

−
gi,i (hi,t+1 − µi,t+1)

2 + 2(hi,t+1 − µi,t+1)
∑m

j=1,j 6=i(gi,j(hj,t+1 − µj,t+1))

2

}
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< η2t exp

{

− hi,t
2

}

exp

{

−

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

}

× exp

{

−

(

(

hi,t − µi,t
)

+
∑m

j=1,j 6=i

(

gi,j(hj,t−µj,t

)

gi,i

)2

2 1
gi,i

}

= η2t exp

{

−
(

hi,t − µ̂i,t
)2

2 1
gi,i

}

exp

{

−

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

}

, (3.20)

where µ̂i,t = µi,t − 1
2gi,i

−
∑m

j=1,j 6=i

(

gi,j(hj,t−µj,t)
)2

gi,i
, and η1t and η2t are the two normalizing

constants. The dominating distribution is a mixture of univariate normal of hi,t and a

truncated normal of exp(hi,t/2). So the full conditional of hi,t can be sampled by the

MH method, where the proposal distribution is the dominating distribution that can

be simulated using the slice sampler. The slice sampling of the proposal distribution

can be found in the Appendix.

Step 2. Sample µ.

The full conditional of µ is given in the Appendix, which is a multivariate normal

distribution. The simulation of this parameter can be performed using most of the

statistical software packages.

Step 3. Sample φ.

Denote rt = ht+1 −µ−Φ(ht−1 − µ)−DC−1H
− 1

2
t−1yt−1 and r = {r1, ..., rT−1}, then the

full conditional of φ is

f(φ|µ,Σ,y,h) ∝ f(h1|Σ0)

T−1
∏

t=2

f(rt|E)f(φ)

∝ f(h1|Σ0)
T−1
∏

t=2

exp
(

− 1

2
r
′

t(EE
′

)−1rt

)

f(φ), (3.21)

where f(h1|Σ0) is the conditional density of h1 and f(φ) is the prior density of φ, re-
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spectively. Because of the weak stationarity condition (3.10), the full conditional of φ

is not a standard distribution function and its simulation is not routine. But, it is no-

ticed that
∏T−1

t=2 exp(−1
2
r
′

tEE
′

rt)f(φ) is proportional to a truncated multivariate normal

density. Hence, the full conditional (3.21) can be sampled by the MH algorithm with

the proposal density proportional to
∏T−1

t=2 exp(−1
2
r
′

tEE
′

rt)f(φ) truncated in the inter-

val (−1, 1). To sample the multivariate truncated proposal, for each k we calculate the

full conditional of φk, which is a truncated univariate normal distribution and can be

sampled easily. The proposal density of (φ|r) is given in the Appendix.

Step 4. Sample Σ. The full conditional of Σ, given the prior density f0(Σ) in (3.17),

is given by

f(Σ|y,h,µ,φ) ∝ f(Σ)

T−1
∏

t=1

f(Zt|0,Σ)f(yT |hT ,Σǫǫ)f(h1|µ,Σ0),

∝ |Σ|−n+m+1
2 exp

{

−1

2
tr(RΣ−1)

}

× g1(Σ), (3.22)

g1(Σ) = |Σ0|−
1
2 exp

{

−1

2
h

′

1
Σ−1

0 h1

}

× |Σǫǫ|−
1
2 exp

{

− 1

2
y

′

T
exp(−hT

2
)Σ−1

ǫǫ exp(−hT

2
)yT

}

, (3.23)

where R = R0 + Σh, Σh = ZZ
′

, n = n0 + T − 1, and f(Zt|0,Σ) is the multivariate

normal density function of Zt with mean 0 vector and variance-covariance matrix Σ,

respectively. Since this full conditional is not a simple distribution, it can not be simu-

lated directly. Moreover, draws from this full conditional may not satisfy the condition

that the upper-left m×m square matrix is a correlation matrix. We discuss simulation

from this full conditional in the next subsection.
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3.2.3 Simulation of Σ

We now focus on a method for sampling Σ and discuss how to set up its prior distribu-

tion. In the literature, the Bayesian inference of special matrices such as the correlation

matrix is an active research area. Liu (2001), Zhang et al. (2006), Liu and Daniels (2006)

and Liu (2008) propose parameter-extended methods to simulate the correlation matri-

ces in multivariate probit and multivariate regression analysis models. The main idea

is simple, first a variance matrix is drawn from an inverse Wishart distribution, and

then, using a decomposition of this matrix, it is transformed into a diagonal matrix

and a correlation matrix. The latter is accepted through the MH algorithm. Motivated

by that approach, we propose a parameter-extended Metropolis-Hastings (PX-MH) al-

gorithm for the simulation of our constrained covariance matrix.

It can be seen from (3.22) that the first part of the full conditional is the kernel of

an inverse Wishart distribution IW(Σ|R, n). We choose this distribution as the pro-

posal distribution for the MH algorithm when sampling the full conditional of Σ. The

probability density function of this proposal distribution is

fiw(W|Z) = c−1|R|−m
2 |W|−T+m

2 exp

{

− tr
(

RW−1
)

2

}

, (3.24)

where c is the normalizing constant and |D| is the determinant of matrix D. The reason

that we use W rather than Σ is that a draw from this distribution does not have to meet

the constraint that the upper-leftm×m submatrix is a correlation matrix. To obtain the

required matrix Σ we perform the following transformation:

Σ = D
1
2 WD

1
2 , (3.25)

where D = diag(w11, ..., wmm, 1, .., 1) and wii, i = 1, ..., m, are the main diagonal ele-
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ments of W. The Jacobian of the transformation W → (Σ,D) is

J
W→Σ,D

= |D| 3m−1
2 . (3.26)

By transforming the variables, we can find that the joint distribution of (Σ,D) is of the

form

p(Σ,D|y,h,µ,φ) = c−1|D| 3m−1
2 |R|−m

2 |D|−T+m
2 exp

{

− tr
(

RD
1
2 Σ−1D

1
2

)

2

}

= c−1|D|−T−2m+1
2 |R|−m

2 exp

{

− tr
(

RD
1
2Σ−1D

1
2

)

2

}

. (3.27)

It would appear that the marginal density of Σ can be obtained by integrating out

D from the above joint density. As discussed in Zhang et al. (2006), this is virtually

impossible unless Σ is a nonsingular diagonal matrix. In our specified MSV model, Σ

can be a more general variance-covariance matrix including cross correlations. In other

words, we are not able to find an analytical representation of the posterior distribution

of Σ through the above joint distribution. So the simulation of Σ is not to be done

directly.

Although the closed form for the marginal density of Σ is unavailable in general,

it is noticed that under the transformation (3.25), the joint density of (Σ,D) has an

explicit representation. Instead of accepting Σ alone, we will accept Σ and D together.

At this point, the auxiliary parameter matrix D makes the sampling of Σ quite easy.

Based on this argument, the sampling of the full conditional of Σ is replaced by the

simulation of the joint full conditional of (Σ,D), and Σ then is accepted by the MH

algorithm.

Like the usual PX-MH algorithms, for our model, we apply this strategy by focus-

ing on the joint posterior distribution f(Σ,µ,φ,D|y). The full conditionals of µ and φ
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are the same as before. The full conditional distribution for Σ, similar to the full con-

ditional (3.22), is replaced by the joint posterior distribution as follows:

f(Σ,D|Z) ∝ |Σ|−n+m+1
2 exp

{

−1

2
tr(R−1Σ)

}

× g1(Σ), (3.28)

where g1(Σ) was defined in (3.23). The MH algorithm for sampling the constrained

matrix is the following.

PX-MH Algorithm

Set initial values of (Σ(0),D(0)) through the setting W(0) = D(0) 1
2 Σ(0)D(0) 1

2 to an

initial covariance matrix, and let n = 1. Calculate Σ
(n)
h

from the definition (3.22).

1. Generate (Σ∗,D∗) by generating W∗ = D∗ 1
2Σ∗D∗ 1

2 from the inverse Wishart dis-

tribution IW(W|R, n).

2. Calculate Σ∗
0 according the stationary condition (3.10)

Σ∗
0 = ΦΣ∗

0Φ + Σ∗
ηη. (3.29)

3. Calculate the acceptance probability

β = min

{

1,
g1(Σ

∗)

g1(Σ
(n))

}

. (3.30)

4. Generate α uniformly from the interval [0,1]. If α ≤ β then Σ(n+1) = Σ∗ otherwise

Σ(n+1) = Σ(n), keep the generated matrix from the last iteration.

To put the above MH algorithm in use, the prior distribution of (Σ,D) has to be

specified in advance. In our proposed algorithm, instead of setting a prior distribution

for Σ explicitly, we set up a prior distribution for W, and transform it to a joint prior
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distribution of (Σ, D). In the algorithm we construct an inverse Wishart prior for W,

which is a diagonal matrix where the firstm elements on the main diagonal equal 1 and

the other m elements are estimated marginal variances of the latent AR(1) processes.

To ensure that this prior distribution has high prior variance the degrees of freedom is

set to 2m+ 2.

3.3 Simulation Studies

This section summarizes results of our simulation studies, designed to illustrate the

ability of our method to recover the parameters and correlations among innovations.

A four-dimensional correlated time series was generated from a MSV model. Table 3.3

includes the variance-covariance matrix in boldface and the correlations in italics for

data generation, and the true location and persistence parameters are provided in Table

3.5 in boldface. Those parameter values are close to the estimates from asset return

data, which will be seen in the next section. There are 2000 observations generated

from this specified MSV model. The MCMC algorithm was run 50,000 iterations with

the first 10,000 iterations discarded as the burn-in and the following 40,000 iterations

used for inference. In order for the prior distribution of the unconstrained variance

matrix to have a higher variability, its degrees of freedom was set to 10.

Histograms and time series of samples from the full conditionals of selected param-

eters are given in Figures 3.1 and 3.2, respectively. Those plots show that the sample

paths of the location and persistence parameters are well mixed.

Table 3.4 provides the estimated variance-covariance matrix in the lower triangular

matrix and the true cross correlations in the upper triangular matrix. Compared with

the values in Table 3.3, the estimated covariance matrix and the correlations are similar

to their true counterparts. Table 3.5 includes the estimated location, persistence and

volatility parameters of the latent AR(1) processes, where the numbers in the paren-
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Table 3.3: The variance-covariance matrix (in boldface) and correlations (in italics) used
for data generation.

1.00 0.40 0.43 0.47 -0.23 -0.07 -0.13 -0.19
0.39 1.00 0.32 0.42 -0.17 0.07 -0.10 -0.19
0.43 0.32 1.00 0.44 -0.17 0.00 -0.10 -0.19
0.47 0.42 0.44 1.00 -0.20 0.00 -0.13 -0.30

-0.07 -0.06 -0.05 -0.06 0.09 0.47 0.78 0.76
-0.01 0.01 0.00 0.00 0.02 0.02 0.71 0.53
-0.04 -0.03 -0.03 -0.04 0.07 0.03 0.09 0.63
-0.05 -0.05 -0.05 -0.08 0.06 0.02 0.05 0.07
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Figure 3.1: Histograms and time series of samples from the full conditionals of the
location parameters based on the generated return data.
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Figure 3.2: Histograms and time series of samples from the full conditionals of the
persistence parameters based on the generated return data.

theses are standard errors. The columns titled ’ASV’ provide the estimated parameters

and standard errors when each component time series was fitted by the univariate ASV

model. Although the estimated parameters of the latent AR(1) processes from both of

the ASV and MSV models are close to their true values, the MSV model has several

advantages. First, it not only models the leverage effect between the asset returns and

the corresponding volatilities but also the cross correlations. The correlation matrix

captures the complex dependence among the dynamics of the asset returns and latent

volatilities. Second, for forecasting volatility, the MSV model provides more informa-

tion than univariate SV models. Third, in portfolio selection, the MSV model gives us

a more complete picture about the relationships among individual components.

Figure 3.3 depicts the absolute simulated returns, the simulated volatilities and the

estimated volatilities for the fourth component of the generated returns. We can see

that these estimated volatilities resemble the true volatilities.
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Table 3.4: Bayesian estimates of the variance-variance (in boldface) and correlations (in
italics) from the generated return data.

1.00 0.40 0.39 0.45 -0.18 -0.06 -0.13 -0.12
0.40 1.00 0.34 0.42 -0.19 0.14 -0.09 -0.14
0.45 0.34 1.00 0.47 -0.19 0.02 -0.05 -0.11
0.46 0.42 0.47 1.00 -0.22 0.14 -0.12 -0.26

-0.05 -0.06 -0.05 -0.06 0.09 0.65 0.81 0.85
-0.01 0.02 0.00 0.02 0.03 0.03 0.70 0.61
-0.04 -0.03 -0.02 -0.04 0.08 0.04 0.11 0.77
-0.03 -0.03 -0.03 -0.06 0.06 0.03 0.06 0.06

Table 3.5: Comparison between true and estimated parameters from the ASV and MSV
models based on generated data.

µi φi σi

True ASV MSV True ASV MSV True ASV MSV

Series
1 -10.56 -10.48 -10.41 0.93 0.95 0.94 0.09 0.08 0.09

( 0.13) (0.12) (0.01) (0.01) (0.02) (0.01)
2 -10.01 -10.40 -9.81 0.97 0.97 0.97 0.02 0.03 0.03

(0.12) (0.13) (0.01) (0.01) (0.01) (0.01)
3 -10.56 -10.40 -10.44 0.90 0.90 0.90 0.09 0.11 0.11

(0.02) (0.08) (0.02) (0.03) (0.02) (0.02)
4 -9.95 -9.86 -9.75 0.98 0.98 0.99 0.07 0.07 0.06

(0.32) (0.38) (0.01) (0.003) (0.01) (0.01)
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Figure 3.3: Volatility comparison for the fourth component of the generated time series
of returns.

To assess goodness-of-fit of the MSV model we can compare the root mean square

errors (RMSE) of the true (simulated) and estimated volatilities from the MSV and ASV

models. The RMSEs can be calculated using the following formula

vk =

√

√

√

√

1

T

T
∑

t=1

(exp(hk,t) − exp(ĥk,t))2, k = 1, ..., 4, (3.31)

where hk,t and ĥk,t, k = 1, ..., 4, t = 1, ..., T, are the true and estimated log volatilities,

respectively. Table 3.6 summarizes the RMSEs from both of the MSV and ASV models.

We can see that the RMSEs from the MSV model are smaller than the ones for the ASV

models, suggesting that the MSV model fits the simulated data better. We repeated the

simulations several times and obtained similar results.

We may check the differences between the true and estimated volatilities from the
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Table 3.6: RMSE for the ASV and MSV models.

Component ASV MSV
1 0.0014 0.0013
2 0.0013 0.0012
3 0.0014 0.0013
4 0.0023 0.0013

MSV model. Figure 3.4 graphs these differences for the four components of the gen-

erated return time series. It can be seen that the time series of differences are around

zero and there is no explicit pattern, indicating reasonable agreement between esti-

mated and true volatilities.
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Figure 3.4: Differences between the true and estimated volatilities from the MSV
model based on the generated return data.

An alternative method to assess the overall fit of the MSV model can be conducted

by means of the probability integral transform (PIT) test proposed in Diebold et al.

(1998, 1999), which was also employed in Chapter 2. Suppose that {ft(yt|Ft−1)}Tt=1
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is a sequence of densities that governs the time series yt, and {pt(yt|Ft−1)}Tt=1 is the

corresponding sequence of the one-step ahead density forecast of yt, where Ft is the

information known up to time t. Then the PIT of yt is defined as the following

ut =

∫

At

pt(x|Ft−1)dx, (3.32)

where At = {x;−∞ < x < yt}. For the univariate SV models yt is observed scalar

time series and pt is a univariate normal density function. Under the null hypothesis

that the sequence {pt(yt|Ft−1)}Tt=1 coincides with {ft(yt|Ft−1)}Tt=1, the sequence {ut}Tt=1

is i.i.d. according to the uniform distribution over the interval [0, 1]. In our MSV model,

yt is the observed vector of returns at time t and its one-step predictive distribution is

a multivariate normal distribution. Since pt in (3.32) is a multivariate normal density,

the PITs ut are no longer uniformly distributed on the interval [0,1]. We can still use

the method in Diebold et al. (1998, 1999) by successive conditioning. Considering the

PIT of yt, the conditional density of yt can be factored into conditionals as

pt(yt|Ft−1) = p(ym,t|y1:m−1,t,Ft−1)...p(y2,t|y1,t,Ft−1)p(y1,t|Ft−1), (3.33)

where y1:k,t = (y1,t, ..., yk,t), 2 ≤ k ≤ m− 1, is the partial information of yt.

Define ut = (u1,t, ..., um,t)
′

. The PIT of yt based on the factored conditional density

is given by

uk,t =

∫ yk,t

−∞

p(x|y1:k−1,t,Ft−1)dx, k = 2, ..., m− 1, (3.34)

and

u1,t =

∫ y1,t

−∞

p(x|Ft−1)dx, (3.35)
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where yi,t, i = 1, ..., k, are the components taking scalar real values.

We can also factor the joint prediction density into the conditionals starting from

yk,t, where k could be any integer number between 1 to m. If all PITs uk,t are stacked

together as a sample, according to Diebold et al. (1998, 1999), these PITs are i.i.d. uni-

form over the interval [0,1]. To calculate the PITs (3.34) and (3.35) we use the auxiliary

particle filter in Pitt and Shephard (1999b), which is also employed in Chib et al. (2006)

for density forecast. The detailed procedure is provided in the Appendix.

Figure 3.5 presents the scatter plot and the histogram of the PITs, and Figure 3.6

is the comparison between the empirical CDF of PITs and the theoretical CDF of the

uniform distribution over the support [0,1]. As discussed in Chapter 2, we can use

the Kolmogorov-Smornov test even when the population values are estimated. The

KS statistic is 0.0067 which is less than 0.0152, the critical value at the 5% significance

level. Since the p-value for this test is 0.8647, we do not reject the null hypothesis that

the PITs are i.i.d. uniform on [0, 1] and conclude that the MSV model agrees with the

generated return data.
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Figure 3.5: Scatter plot (top) and histogram (bottom) of the PITs for the generated
return data.
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Figure 3.6: Comparison between the empirical CDF of the PITs under the MSV model
based on the generated returns and the theoretic CDF of the uniform distribution over
the interval [0, 1].

The study of the proposed approach for the general MSV model on the simulated

return data demonstrates that our variance-covariance sampling scheme via the in-

verse Wishart distribution works well in terms of parameter estimation. With a linear

transformation to the variance-covariance matrix simulated from an inverse Wishart

proposal distribution, the transformed constraint matrix is accepted with a certain

probability. Also the slice sampler within the MCMC method is easier to implement

for the simulation of the latent random variables, which avoids the commonly used

complicated MH algorithms. The correlation structure among innovations of the ob-

servation equations and that of the latent processes are then easily estimated.

3.4 Application

In this section we provide two examples in analyzing financial return data from the

stock market. The first example is based on four-dimensional return data from differ-

ent industries and the second is five-dimensional return data from the Canadian banks.

The proposed MCMC method was run 50,000 iterations in each of the two applications,

90



where the first 10,000 sampled points were burn-in and 40,000 iterations recorded for

the inference of parameters and log volatilities.

3.4.1 Stock Returns from Different Industries

The data is a collection of time series of stock daily returns of IBM, Toyota, Wal-

mart, and Citibank whose historical prices were downloaded from the web site fi-

nance.yahoo.com from Jan. 3, 2003 to Nov. 13, 2009 yielding 1730 observations for

each stock. For comparison purpose, each individual time series of asset returns was

also fitted by the univariate ASV model. The estimated variance-covariance matrix in

boldface and correlations in italics are presented in Table 3.7. It is observed from the

estimated correlation matrix that the innovations of the measurement equations have

high positive correlations. The same evidence can also be found for innovations of the

latent processes. Moreover, each measurement equation is also negatively correlated

with the corresponding volatility process except for the returns of the Toyota stock,

where the returns and the latent volatilities are positively correlated. The interesting

thing here is that each return time series also has a negative correlation with other la-

tent innovations of the AR(1) processes except for the process of Toyota returns, which

is positively correlated with the latent innovation of Citibank and has no correlation to

the AR(1) process of Walmart.

Table 3.8 summarizes estimated location, persistence and variance parameters of

the latent AR(1) processes with standard errors in the parentheses from the MSV and

ASV models. It is found that the volatility parameters σi of the latent processes of IBM

and Walmart stocks are higher than the other two stocks. This can be explained by

the corresponding smaller persistence parameters. Figure 3.7 graphs the histograms

and dynamics of samples from the full conditionals of location parameters from the

MSV model. These graphs show that the sampled time series from the corresponding
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Table 3.7: Bayesian estimates of the unconditional variance-covariance (in boldface)
and correlation matrices (in italics) from the return time series of four industries.

1.00 0.39 0.43 0.47 -0.24 -0.04 -0.13 -0.17
0.39 1.00 0.32 0.42 -0.18 0.06 -0.11 -0.18
0.43 0.32 1.00 0.44 -0.15 0.00 -0.09 -0.20
0.47 0.42 0.44 1.00 -0.21 0.03 -0.14 -0.30
-0.07 -0.06 -0.05 -0.06 0.09 0.51 0.74 0.72
-0.01 0.01 0.00 0.01 0.02 0.02 0.69 0.46
-0.04 -0.03 -0.03 -0.04 0.07 0.03 0.09 0.61
-0.05 -0.05 -0.05 -0.08 0.06 0.02 0.05 0.07

Table 3.8: Comparison of estimated parameters between ASV and MSV models.

µi φi σi

ASV MSV ASV MSV ASV MSV

Stock
IBM -10.47 -10.56 0.98 0.93 0.04 0.09

( 0.24) (0.11) (0.01) (0.01) (0.01) (0.02)
Toyota -10.01 -10.01 0.99 0.97 0.03 0.02

(0.13) (0.15) (0.02) (0.02) (0.02) (0.01)
Walmart -10.53 -10.56 0.96 0.90 0.04 0.09

(0.19) (0.08) (0.02) (0.01) (0.02) (0.04)
Citibank -10.12 -9.95 0.99 0.98 0.04 0.07

(0.74) (0.32) (0.002) (0.01) (0.01) (0.02)

full conditionals are mixed well, and the location parameters can be estimated by the

Bayesian means of samples from their full conditionals.

Figure 3.8 includes the scatter plot and the histogram for the PITs, and Figure 3.9

includes the CDF plot of PITs together with theoretical CDF plot of the uniform distri-

bution over the interval [0, 1]. The KS test statistic for the PITs is 0.0114 with a critical

value of 0.0163 at the 5% significance level. Therefore, at the 5% level, we do not reject

the null hypothesis that the PITs follow the uniform distribution over the interval [0, 1]

and conclude that the four-dimensional MSV model fits the four-dimensional return
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Figure 3.7: Histograms and dynamics of samples of the location parameters of the
MSV model for the four industry stock return data.
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Figure 3.8: Scatter (top) and histogram (bottom) plots of the PITs for the four-
dimensional industry return data.
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Figure 3.9: Comparison between the CDF of the PITs for the four-dimensional industry
return data and the theoretical CDF of the uniform distribution over the interval [0, 1].

3.4.2 Stock Returns from the Finance Sector

The data set is a collection of five time series of stock returns from the Canadian banks:

Royal Bank of Canada (RY), Toronto-Dominion Bank (TD), Bank of Montreal (BMO),

Bank of Nova Scotia (BNS) and Canadian Imperial Bank of Commerce (CM). The his-

torical daily closing prices were downloaded from the web site finance.yahoo.com

from Jan. 3, 2003 to Nov. 13, 2009 yielding 1730 observations for each stock. Again,

each return time series was also fitted by the ASV models. The estimated variance-

covariance matrix and correlation matrix are presented together in Table 3.9. All in-

novations of the asset returns are positively correlated and the positive correlation can

also be found in those of the latent AR(1) processes. The cross correlations are all

negative, which illustrates that each asset return also has a leverage effect with other

latent volatility processes. This is reasonable since these stocks belong to the same

industry in the same country, and common factors such as political issues, financial

policy adjustments, and government intervention can cause similar changes to stock
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prices. Investors will adjust their portfolios based on such information causing similar

changes to stock prices and returns across the five banks. The estimated positive corre-

lations between the observation innovations and the latent process are higher than the

absolute values of the cross correlations, which indicates that the leverage effect seems

to play a relatively minor role for the dynamics of the multivariate asset return time

series.

Table 3.9: Bayesian estimates of the unconditional variance-covariance (in boldface)
and correlation matrices (in italics) from the return time series of the five banks.

1.00 0.69 0.66 0.70 0.64 -0.20 -0.17 -0.20 -0.19 -0.11
0.69 1.00 0.68 0.69 0.66 -0.21 -0.19 -0.20 -0.17 -0.19
0.66 0.68 1.00 0.66 0.64 -0.25 -0.20 -0.20 -0.17 -0.10
0.70 0.69 0.66 1.00 0.66 -0.24 -0.18 -0.23 -0.28 -0.18
0.64 0.66 0.64 0.66 1.00 -0.23 -0.20 -0.19 -0.24 -0.26

-0.07 -0.08 -0.09 -0.09 -0.08 0.13 0.93 0.89 0.87 0.83
-0.05 -0.06 -0.06 -0.06 -0.06 0.11 0.10 0.92 0.85 0.87
-0.06 -0.06 -0.06 -0.07 -0.06 0.10 0.09 0.10 0.89 0.90
-0.04 -0.03 -0.03 -0.05 -0.05 0.06 0.05 0.06 0.04 0.88
-0.03 -0.05 -0.03 -0.05 -0.07 0.09 0.08 0.08 0.05 0.08

Table 3.10 summarizes estimated location, persistence and variance parameters of

the latent AR(1) processes with standard errors in the parentheses. The estimated per-

sistence parameters from the MSV model are smaller than those from the ASV models.

This can be explained by the smaller estimated volatilities of the latent processes of the

univariate SV models. It seems that the fitted univariate SV models are more persistent

than the MSV model.

Figure 3.10 provides the scatter plot and the histogram for the PITs, and Figure 3.11

draws the CDF of PITs together with theoretical CDF of the uniform distribution over

the interval [0, 1]. The KS test statistic for the PITs is 0.0172 with a critical value of

0.0175 at the 1% significance level. Therefore we do not reject the null hypothesis at

the 1% significance level that the PITs follow the uniform distribution over the interval
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Table 3.10: Comparison of estimated parameters between ASV and MSV models based
on the five-bank return data.

µi φi σi

ASV MSV ASV MSV ASV MSV

Stock
RY -10.57 -10.66 0.97 0.93 0.07 0.13

( 0.26) (0.13) (0.01) (0.006) (0.02) (0.03)
TD -10.27 -10.59 0.99 0.95 0.02 0.10

(0.52) (0.13) (0.004) (0.008) (0.01) (0.03)
BMO -10.59 -10.60 0.98 0.95 0.05 0.10

(0.36) (0.15) (0.01) (0.006) ( 0.01) (0.02)
BNS -10.26 -10.63 0.99 0.97 0.014 0.04

(0.75) (0.15) (0.002) (0.007) (0.004) (0.02)
CM -10.32 -10.43 0.99 0.96 0.04 0.08

(0.38) (0.15) (0.005) (0.008) (0.01) (0.03)

[0, 1] and that the MSV model fits the five-dimensional return data well.
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Figure 3.10: Scatter (top) and histogram (bottom) plots of the PITs for the five-bank
return data.
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Figure 3.11: Comparison between the CDF of the PITs for the five-bank return data
and the theoretical CDF of the uniform distribution over the interval [0, 1].

3.5 Conclusion

In this chapter, we have developed an MCMC approach for a more general multivari-

ate stochastic volatility model. Non-zero correlations are permitted between the inno-

vations of measurement and latent processes. Instead of simulating the constrained

variance-covariance matrix one entry at a time, we use the MH algorithm to sample

the whole matrix in each iteration. In sampling of log volatilities, we propose a slice

sampler in the simulation of full conditionals. The derived slice algorithms are easier

to implement compared to other commonly used sampling schemes, where some extra

auxiliary numerical tools have to be employed. Moreover, compared with the method

in Chan et al. (2006), our proposed MCMC algorithm for the multivariate stochastic

volatility model can handle higher dimension data more easily because of the straight-

forward simulation of the covariance matrix.
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3.6 Appendix

Full Conditionals of the Parameters in the MSV Model

• Full conditional of µ.

From the equation (3.19) we have the following, for t = 1, ..., T − 1,

ht+1 = µ + Φ(ht − µ) + DC−1A
− 1

2
t yt + Evt+1

(I −Φ)µ = ht+1 − µ − DC−1A
− 1

2
t yt − Evt+1

Let us define

µt = (I −Φ)−1(ht+1 − µ − DC−1A
− 1

2
t yt),

Σt = (I −Φ)−1EE
′

(I − Φ)−1.

Then the conditional distribution of µ, for t = 1, ..., T − 1, is

µ ∼ N (µt,Σt).

The conditional density of µ is

f(µ|y,h,Φ,Σ) ∼ N (µ∗,Σµ∗),

where

Σµ∗ = (I −Φ)−1(EE)′(I −Φ)−1/(T − 1),

µ∗ = (I −Φ)−1

T−1
∑

t=1

(ht+1 − µ −DC−1A
− 1

2
t yt)/(T − 1).
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Following the above conditional we can calculate the full conditional of µ given its

conjugate prior.

• Proposal density for the full conditional of φ defined in (3.21).

From the equation (3.19) we have the following, for t = 1, ..., T − 1,

ht+1 = µ + Φ(ht − µ) + DC−1A
− 1

2
t yt + Evt+1.

Then we have

ht+1 − µ − DC−1A
− 1

2
t yt = diag(ht − µ)φ + Evt+1,

diag−1(ht − µ) ∗ (ht+1 − µ − DC−1A
− 1

2
t yt) = φ + diag−1(ht − µ)Evt+1.

Let us define

φt = diag−1(ht − µ) ∗ (ht+1 − µ −DC−1A
− 1

2
t yt),

Ψt = diag−1(ht − µ)EE
′

diag−1(ht − µ).

Then the distribution of φ, for t = 1, ..., T − 1, is

φ ∼ N(φt,Ψt).

Thus the conditional density of φ, given h, is

f(φ|y,h,µ,Σ) ∼ N (φ∗,Σφ
∗),
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where

Σ−1

φ
∗ =

[

T−1
∑

t=1

diag(ht − µ)

(

EE
′

)−1

diag(ht − µ)

]

,

and

φ∗ =

[

T−1
∑

t=1

diag(ht − µ)

(

EE
′

)−1

diag(ht − µ)

]−1

×
[

T−1
∑

t=1

diag(ht − µ)

(

EE
′

)−1

diag(ht − µ)φt

]

.

Following the above conditional we can calculate the proposal density of φ given

its conjugate prior. This sampling scheme is also employed in Aguilar and West (2000).

• Full conditional of h1 is given by

f(h1|y,h2,Θ)

= η1f(y1|h1,Θ)f(h1|Θ)f(h1|h2,Θ)

= η2 exp

{−∑m
i=1 hi,1
2

}

exp

{

− y′
1diag(e−

h1
2 )(CC′)−1diag(e−

h1
2 )y1

2

}

exp

{

− (h1 − µ)′(Σ0)
−1(h1 − µ)

2

}

exp

{

− (h2 − µ2)
′(EE′)−1(h2 − µ2)

2

}

< η2 exp

{−∑m
i=1 hi,1
2

}

exp

{

− y′
1diag(e−

h1
2 )(CC′)−1diag(e−

h1
2 )y1

2

}

exp

{

− (h1 − µ)′(Σ0)
−1(h1 − µ)

2

}

,

where η1 and η2 are the two normalizing constants, Σ0 and µ2 were defined in (3.10)

and (3.19), respectively.
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• Full conditional of hT is

f(hT |y,h−T ,Θ)

∝ p(yT |hT ,Θ)p(hT |Θ,hT−1)

∝ exp

{−∑m
i=1 hi,T
2

}

exp

{

− y′
Tdiag(e−

hT
2 )(CC′)−1diag(e−

hT
2 )yT

2

}

∝ exp

{

− (hT − µT )′(EE′)−1(hT − µT )

2

}

,

where µT was defined in (3.19).

Slice Sampler for Simulating hi,t, t = 1, ..., T − 1.

The dominant distribution for the full conditional of hi,t derived in Section 3.2.2 is

p(hi,t) = η2t exp

{

−
(

hi,t − µ̂i,t
)2

2 1
gi,i

}

exp

{

−

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

}

,

where µ̂i,t = µi,t − 1
2gi,i

−
∑m

j=1,j 6=i

(

gi,j(hj,t−µ̂j,t

)2

gi,i
, and η1t and η2t are the two normalizing

constants. Suppose that we have a sampled point h
(n)
i,t from the nth iteration. Assume

yi,t 6= 0, otherwise, the algorithm can be adjusted easily.

Step 1. Draw u1 uniformly from the interval (0, 1).
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Let u1 = u1 ∗ exp
{

− (h
(n)
i,t −µ̂

(n)
i,t )2

2 1
gi,i

}

and

u3 ≤ exp
{

− (hi,t − µ̂
(n)
i,t )2

2 1
gi,i

}

2 log(u3)

gi,i
≤ −(hi,t − µ̂

(n)
i,t )2.

Then we have

−
√

−2 log(u3)

gi,i
+ µ̂

(n)
i,t ≤ hi,t ≤

√

−2 log(u3)

gi,i
+ µ̂

(n)
i,t . (A.1)

Step 2. Draw u2 uniformly from the interval (0, 1).

Let u2 = u2 ∗ exp

{

−

(

e
−h

(n)
i,t
2 +

∑m
j=1,j 6=i

(bi,j yj,t e
−

h
(n)
j,t
2 )

bi,iyi,t

)2

2 1

bi,iy2
i,t

}

and

u2 ≤ exp

{

−

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

}

log(u2) ≤ −

(

e
−hi,t

2 +
∑m

j=1,j 6=i(bi,j yj,t e
−

hj,t
2 )

bi,iyi,t

)2

2 1
bi,iy2i,t

(

e
−hi,t

2 +

∑m
j=1,j 6=i(bi,j yj,t e

−
hj,t

2 )

bi,iyi,t

)2

≤ −2 log(u2)

bi,iy
2
i,t

.
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Define βhi,t
=

∑m
j=1,j 6=i(bi,j yj,t e

−
hi,t
2 )

bi,iyi,t
. Then we have

−
√

−2 log(u2)

bi,iy
2
i,t

− βhi,t
≤ e

−hi,t

2 ≤
√

−2 log(u2)

bi,iy
2
i,t

− βhi,t

log
(

−
√

−2 log(u2)

bi,iy2
i,t

− βhi,t

)

≤ −hi,t
2

≤ log
(

√

−2 log(u2)

bi,iy2
i,t

− βhi,t

)

−2 log
(

√

−2 log(u2)

bi,iy2
i,t

− βhi,t

)

≤ hi,t ≤ −2 log
(

−
√

−2 log(u2)

bi,iy2
i,t

− βhi,t

)

.

(A.2)

Step 3. Draw h
(n+1)
i,t uniformly from the joint interval determined by the inequalities

(A.1) and (A.2).

Auxiliary particle filter algorithm for the MSV model

The algorithm for our MSV model is based on the procedure in Chib et al. (2006).

Step 1. Given a sample {h(i)
t , i = 1, ..., N} from (ht|y1:t,Θ), we calculate the expec-

tation ĥ
∗(i)
t+1 = E(ht+1|h(i)

t ) and

πi = p(yt+1|ĥ∗(i)
t+1,Θ), i = 1, ..., N. (A.3)

SampleN times with replacement the integers of 1, ..., N with probability π̂i = πi/
∑N

i=1 πi.

Define the sampled indexes n1, ..., nN and associate these with particles {h(n1)
t , ...,h

(nN )
t }.

Step 2. For each values of ni from Step 1, sample the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 } from

h
∗(i)
k,t+1 = µk + φk(h

(ni)
k,t − µk) +

√
σkuk,t+1, (A.4)

where uk,t+1 ∼ N (0, 1), k = 1, ..., q, i = 1, ..., N.
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Step 3. Calculate the weights of the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 } as

π∗
i =

p(yt+1|h∗(i)
t+1,Θ)

p(yt+1|ĥ∗(i)
t+1,Θ)

, i = 1, ..., N, (A.5)

and resample the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 }N times with replacement using these weights

to obtain a random sample {h(1)
t+1, ...,h

(N)
t+1} from the filter distribution of (ht+1|y1:t+1,Θ).
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Chapter 4

Factor Stochastic Volatility with

Orthogonal Loadings

4.1 Introduction

In recent years, factor-based stochastic volatility models have been used in the anal-

ysis of multivariate financial time series of asset returns. This is largely motivated

by the observation that the underlying multivariate time series are governed by la-

tent common factors. For instance Geweke and Zhou (1996) propose a factor model

to measure the pricing errors in the context of the arbitrage pricing theory, where the

time series of the observed returns is a linear regression of latent factors with idiosyn-

cratic observation errors. Lopes and West (2004) employ the same model to detect the

factor structure in international exchange rates. Following Geweke and Zhou (1996),

the mean factor stochastic volatility (FSV) models were proposed by Jacquier et al.

(1999), Pitt and Shephard (1999a), Chib et al. (2006), Aguilar and West (2000), Lopes

and Carvalho (2007), among others. From the models of Geweke and Zhou (1996) and

Lopes and West (2004), we note that the common structure of the FSV models is that
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the latent factors follow standard univariate SV processes, and the observation errors

either have a multivariate normal distribution with a zero mean vector and a constant

variance-covariance matrix or follow uncorrelated univariate SV processes. Because

the likelihood function of observed multivariate returns does not always have a closed

form, to estimate FSV models simulation based approaches have been applied using

Bayesian framework. Sampling the latent states of the factor stochastic volatility mod-

els is the most difficult part. Jacquier et al. (2004), Pitt and Shephard (1999a), Chib et

al. (2006), Aguilar and West (2000) and Lopes and Carvalho (2007) propose Markov

Chain Monte Carlo (MCMC) methods, where the log volatilities (or the state random

variables) are augmented as parameters and sampled one at a time or within blocks

from their full conditionals.

Although FSV models have been successful in financial time series analysis, the

structure of the loading matrix may make the sample likelihood critically depend on

the order of the multivariate time series. Thus the analysis results may be affected.

This is undesirable if components are observed simultaneously. Lopes and West (2004)

show that interchanging the order of two individual time series does not affect the

estimates of the corresponding rows of the loading matrix but influences the likelihood

of data and hence the number of factors. Aguilar and West (2000) discuss the same

issue and suggest the use of a specific ordering to define and interpret the factor effects.

Lopes and Carvalho (2007) point out that the number of factors can even be affected

when both common factors and the idiosyncratic errors follow univariate SV processes.

Motivated by FSV models, we propose a multivariate stochastic volatility model

based on standard factor analysis. Instead of requiring that the factor loading matrix is

a lower triangular matrix, we assume that its columns are orthogonal with unit length.

Similar to the FSV model, all factors follow univariate standard SV processes, but the

observation errors are assumed to be independent and follow a multivariate normal

distribution with zero mean and a constant diagonal variance matrix. An MCMC al-
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gorithm is used to estimate the loading matrix, the latent factors, their log volatilities,

and the parameters of latent Markov processes. The loading matrix is sampled one col-

umn at a time either directly from a von Mises-Fisher full conditional or through the

Metropolis-Hastings algorithm, where the proposal distribution is a von Mises-Fisher

distribution. In the simulation of latent states, we use the single-move Metropolis-

Hastings algorithms derived in Chapter 2. One merit of the proposed factor model is

that it avoids problems concerning the order of components. Consequently, our results

are invariant under a permutation of the components.

The rest of the chapter is organized as follows. Section 4.2 briefly reviews the stan-

dard factor analysis model and the FSV models. In Section 4.3, we present a factor

SV model, discuss the model identifiability, the MCMC algorithm and how to perform

model selection and assessment. Section 4.4 includes some empirical results from ap-

plying our model and estimation methods to simulated asset return data. Section 4.5

presents the results from applying our model to international index return data. We

conclude this chapter with a short discussion in the last section.

4.2 Factor SV Models: a Brief Review

In this section, we briefly review the standard factor analysis and FSV models, and

discuss model identification.

Standard normal factor analysis (see Press (1985)) is the basis of FSV models. Define

by yt = (y1,t, ..., ym,t)
′

, t ≤ T , a random sample from a zero-mean multivariate normal

distribution with a non-singular variance-covariance matrix. Assuming q (q < m)

unobserved factors ft = (f1,t, ..., fq,t)
′

, we have

yt = Dft + ǫt, (4.1)
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where (i) D = [D1, ..., Dq] is a m × q matrix of unknown parameters, (ii) ǫt, t = 1, 2, ...,

are independent m-multivariate normal random variables with ǫt ∼ N (0,Ψ) and Ψ =

diag(ψ1, ..., ψm) is a constant variance-covariance matrix, which may have idiosyncratic

entries on the main diagonal, (iii) ft are independent with ft ∼ N (0, Iq), where Iq is the

q × q identity matrix and (iv) ǫt are independent of the latent factors fs for all t and s.

There is a fundamental rotation problem in factor analysis which leads to multiplic-

ities of solutions. Under the factor analysis model, the variance-covariance structure

of the data yt is V (yt|D,Ψ) = DD
′

+Ψ. Suppose that R is any q× q orthogonal matrix,

such that R
′

R = Iq. Then equation (4.1) can be re-written as

yt = DR
′

Rft + ǫt. (4.2)

The variables yt have the same variance-covariance matrix but a different loading ma-

trix DR
′

and the factors Rft, where the latter satisfy Rft ∼ N (0, Iq). Hence, model (4.1)

is unidentifiable.

There are several ways to eliminate the ambiguity due to rotation by imposing con-

straints on the loading matrix D. A detailed discussion about this issue can be found

in Anderson and Rubin (1956), where the authors provide several methods to guaran-

tee that the factor model (4.1) has a unique solution. The first approach requires that

D is column-orthogonal and satisfies D
′

Ψ−1D = C, where C = diag(c1, ..., cq) and

c1 > c2 > ... > cq, which can also be found in Press 1982, Chapter 10. The second ap-

proach imposes restrictions on the loading matrix by letting it to be a lower triangular

matrix with positive elements on the main diagonal. That is, Wk,k > 0, k = 1, ..., q,

Wi,j = 0, 1 < i < j ≤ q, j = 2, ..., q, and all other entries are free parameters. This spec-

ification of the loading matrix was used in formulating factor SV models in Geweke

and Zhou (1996) and Lopes and West (2004). The third approach assumes that the

loading matrix in model (4.1) is column-orthonormal. We adopt this approach in the
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factor SV model that we propose in the next section. Conditional on the latent common

factors, the observed variables yt are independent with (yt|D, ft) ∼ N (Dft,Ψ). That is,

the dependence structure among the m-dimensional time series are mainly explained

by the latent factors, while the idiosyncratic errors measure the residual variability in

each of the component time series after the contribution by the latent factors.

There is an important issue arising in the models of both Geweke and Zhou (1996)

and Lopes and West (2004): how many factors that the model can have without en-

countering identifiability problems. To answer this question, it is noticed that the ft

are independent and estimation is largely based on the variance-covariance matrix.

Therefore there are at most m(m + 1)/2 distinct parameters that can be included. For

the factor model not to be over-parameterized, the number of parameters that index

the model must satisfy the inequalities q < m and

m(m+ 1)/2 − (mq − q(q − 1)/2 +m) ≥ 0, (4.3)

where mq− q(q−1)/2 is the total number of free parameters in the loading matrix, and

m is the number of the idiosyncratic error parameters. For instance, with m = 5 the

factor model can have at most 2 factors, with m = 6 or 7 we have q ≤ 3, with m = 8 the

upper boundary for q is 4. For high-dimensional data where m is large, the number of

factors is usually not a constraint since we try to have only a small number of factors.

In the context of SV models, the standard FSV models are considered by Pitt and

Shephard (1999a), Aguilar and West (2000), Chib et al. (2006) and Lopes and Carvalho

(2007). These papers extend the model in Geweke and Zhou (1996) and Lopes and West

(2004), so that both the factors and idiosyncratic errors follow standard univariate SV
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models. In the more general specification, in equation (4.1) we assume





ft

ǫt



 |At,Bt ∼ N
{

0,





At 0

0 Bt





}

.

That is, ft and ǫt are conditionally independent Gaussian random vectors with zero

mean and time-dependent variances. The time-varying variance matrices At and Bt

are assumed to be diagonal and depend on the unobserved random variables ht =

diag(h1t, ..., hq+m,t) as in the following representation

At = diag(exp(h1,t), ..., exp(hq,t)), (4.4)

Bt = diag(exp(hq+1,t), ..., exp(hq+m,t)), (4.5)

hk,t+1 = µk + φ(hk,t − µk) +
√
σkuk,t+1, k = 1, ..., q +m. (4.6)

To ensure that the FSV model is identifiable, the loading matrix D is specified as a lower

triangular matrix but the main diagonal entries are set to 1. Pitt and Shephard (1999a)

consider this model by setting uk,t to be independent and identically distributed ac-

cording to the univariate standard normal distribution uk,t ∼ N (0, 1), whereas Aguilar

and West (2000) propose that the innovation vectors of the latent volatility processes

of factors uAt
= (u1,t, ..., uq,t)

′

are independent and multivariate Gaussian with zero

mean and a constant non-diagonal variance-covariance matrix. Lopes and Carvalho

(2007) consider a FSV model which includes the model of Pitt and Shephard (1999a)

and Aguilar and West (2000), and extends it in two directions by (i) letting the ma-

trix of factor loadings D to be time-varying and (ii) allowing Markov switching in the

common factor volatilities. For a systematic review of the FSV models, see Chib et al.

(2009) and a more recent one by Lopes and Polson (2010).

As in the model of Geweke and Zhou (1996) and Lopes and West (2004), there
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is still a question about the maximum number of factors for FSV models. Pitt and

Shephard (1999a) fit their model with two factors in the analysis of returns of exchange

rates. Although each latent univariate SV process contains three parameters, Lopes

and West (2000) and Lopes and Carvalho (2007) determine the maximum number of

factors using the inequality (4.3) as if the factors ft were independent, and fit their

models with a number of factors at the upper boundary.

4.3 Proposed Model, Identification, Estimation and As-

sessment

4.3.1 Model and Its Identification

Let yt = (y1,t, ..., ym,t)
′

denote the vector of measurements from m objects at time t (t ≤
T ). In this chapter, yt is a demeaned vector. Assuming q (q < m) unobserved factors

ft = (f1,t, ..., fq,t)
′

, yt can be characterized by the following hierarchical factor model

specification:

yt = Wft + Ψ
1
2 ǫt, t = 1, ..., T, (4.7)

W = [W1, ...,Wq], (4.8)

fk,t = exp(hk,t/2)vk,t, k = 1, ..., q, (4.9)

hk,t+1 = µk + φk(hk,t − µk) +
√
σk uk,t+1, t = 1, ..., T − 1, (4.10)

where W is an unknown m × q (q < m) column-orthogonal loading matrix such that

W
′

W = Iq, and Ψ
1
2 = diag(

√
ψ1, ...,

√
ψm) is a constant diagonal variance matrix which

may have idiosyncratic diagonal entries. The vector ft is defined, as in FSV models, so

that each component follows a univariate SV process. Denote by ht = (h1,t, ..., hq,t)
′
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the vector of log volatilities of the latent factors which follows a univariate first order

vector AR(1) process. To ensure weak stationarity of the latent AR(1) processes, we

assume |φk| < 1 for k = 1, ..., q. Let vt = (v1,t, ..., vq,t)
′

and ut = (u1,t, ..., uq,t)
′

be the

innovations of the factor processes and that of the corresponding volatility processes,

respectively. Assume











ǫt

vt

ut











∼ N
{

0,











Im 0 0

0 Iq 0

0 0 Iq











}

,

which implies that ft and ǫt are independent. Generally, q is much smaller than m, so

the latent variables ft and the loading matrix W offer a parsimonious representation

for multivariate random variables yt. Conditioned on the latent factors ft, the observa-

tions yt are allowed to be independent and follow multivariate normal distributions,

such that (yt|W, ft) ∼ N (Wft,Ψ). The conditional dependence structure of yt is char-

acterized by the latent factors ft. In other words, both the conditional variance and

correlation of yt are allowed to be time-dependent.

Our model is an extension of the model based on the probabilistic principal com-

ponent analysis (PPCA) proposed by Tipping and Bishop (1999), where the columns

of the loading matrix are orthogonal, the latent factors are orthonormal and the obser-

vation errors are isotropic. Due to the similarity of our setting of the loading matrix to

that in Tipping and Bishop (1999), we call our factor SV model the PPCAF model. Tip-

ping and Bishop (1999) prove that the subspace defined by the maximum likelihood

estimates (MLE) of the columns of W is the principal subspace of the observed data.

This is also true even when the sample covariance is not equal to the model covari-

ance. However, this result does not hold for general factor analysis with idiosyncratic

observation errors. Following a similar argument, we can reach the conclusion that for
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isotropic observation errors the subspace spanned by the columns of W is the principal

subspace.

In a general situation when the model has idiosyncratic errors, the problem is more

difficult to solve. There are two issues that need to be considered. The first one is

whether the proposed factor model has a solution and the other is under what con-

dition(s) our model has a unique solution. Anderson and Rubin (1956) provide a

necessary and sufficient condition to address the first issue, namely, Σ̂ is a variance-

covariance matrix of a factor SV model with q factors if there exists a diagonal matrix

Ψ with nonnegative elements such that Σ̂ − Ψ is positive semidefinite of rank q. Our

PPCAF model satisfies this sufficient and necessary condition. For the second issue,

Anderson and Rubin (1956) give a sufficient condition by requesting that W
′

W is di-

agonal, which was used in our PPCAF model and also stated in Alexander (1994) and

Hardle and Simar (2007). As discussed in Anderson and Rubin (1956), this condition

and the other two reviewed in the previous section are more or less arbitrary ways to

eliminate the indeterminacy of rotation. There are no theoretical considerations that

would help us choose any of these representations. In practice, if the estimate of Ψ

from our PPCAF model is near isotropic, then the estimated columns of W are similar

to the leading eigenvectors of the sample variance-covariance matrix of the observed

data. Simulation studies and applications to financial asset return data appear to sup-

port this conclusion.

The PPCAF model specification is completed by specifying prior distributions of

the parameters. Define by Θ = (Wk, µk, φk, σk, ψk, k = 1, ..., q) the collection of param-

eters of the idiosyncratic PPCAF model (for the isotropic case all ψk are set to equal

each other). The prior distributions of parameters in Θ are assumed to be mutually

independent. For the columns of the loading matrix, since we have not much informa-

tion, a uniform distribution on the unit hypersphere is set as prior distribution, which

makes us easier to obtain the corresponding posterior distributions. As discussed in
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Hoff (2007), a noninformative prior distribution for each column of the loading matrix

is nature since it is the unique probability measure on the unit hypershere that is in-

variant under left- and right-orthogonal transformations. For parameters in the latent

AR(1) processes, we set µk ∼ N (−1, 9) and σk ∼ IG(5, 0.05), respectively, as in Pitt

and Shephard (1999a), where IG(.) represents a generic inverse Gamma distribution.

Further, we assume that each φk has a uniform distribution over the interval (−1, 1),

such that φk ∼ unif(−1, 1). Since we do not have much information about these prior

distributions, all hyperparameters are set to make the prior distributions flatter over

their support.

Based upon our PPCAF model, them-multivariate time series yt under the common

Rm coordinate system is transformed into a q-dimensional factor time series ft through

a new orthogonal coordinate system in Rm defined by the columns of W. We expect

the lower-dimensional time series ft to provide a parsimonious fit to the original data

yt.

There is one important feature of the idiosyncratic PPCAF model that requires some

discussion. The idiosyncratic standard errors are the residuals when the observed mul-

tivariate time series is projected onto the subspace spanned by the columns of W. The

components of these residuals can be used to measure the extent of factor contribu-

tions. A larger idiosyncratic error indicates that the corresponding component of time

series is less affected by the factors, while a smaller idiosyncratic error indicates that

the corresponding return time series is more influenced by the factors.

As in the basic factor analysis and FSV models, we give an upper boundary for q to

prevent the proposed PPCAF model from being over parameterized. The argument for

this is similar to that of Geweke and Zhou (1996) and Lopes and Carvalho (2007). For

a q-factor m-variate PPCAF model, we have (m − 1)q free parameters for the loading

matrix since each column has unit length such as ||Wk|| = 1, where ||x|| stands for a

Euclidian norm of vector x, and q parameters from the standard deviances of latent
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factors. Also we have one parameter for the isotropic errors or m parameters for the

idiosyncratic constant errors. Again, we have a total of m(m + 1)/2 free parameters

provided by the sample variance-covariance matrix. So the upper bound of q should

satisfy the inequality constraint that m(m + 1)/2 −mq − 1 ≥ 0 in the isotropic case, or

m(m + 1)/2 − (m+ 1)q ≥ 0 in the idiosyncratic case. For instance, in the idiosyncratic

PPCAF model, withm = 5, we can have at most 2 factors, while, withm = 8, the upper

boundary of q is 3.

As discussed in Pitt and Shephard (1999a), the unconditional variance-covariance

matrix estimated from the model shows the relative importance of the factors for each

of the return series. This matrix can be used in comparison with the corresponding

sample variance-covariance matrix of the observed data. The Bayesian mean of the

unconditional variance from our model is

Σ = E
{

Wdiag (σ2
f1
, ..., σ2

fq
)W

′

+ Ψ
}

, (4.11)

where the operator E(.) is the expectation with respect to the posterior density and

σ2
fk

= E(f 2
k,t) − (E(fk,t))

2

= Ehk,t
{E[f 2

k,t|hk,t]} − (Ehk,t
[E(fk,t|hk,t)])2

= Ehk,t
{exp(hk,t)}

= exp
{

µk +
σk

2(1 − φ2
k)

}

, k = 1, ..., q, (4.12)

where the last equality is due to the fact that hk,t follows a normal distribution, hkt ∼
N (µk, σk/(1 − φ2

k)). Thus Σ can be unbiasedly estimated by using our MCMC output.

Our model is similar to the principal component analysis because of the orthogonal

loading matrix. As discussed in Ahn and Oh (2003) and Roweis (1997), direct use

of PCA via eigenvalue decomposition of the sample covariance matrix of the data is
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often unsuitable for high-dimensional data due to its high computational complexity.

To deal with this situation, our PPCAF model provides an alternative estimate of the

sample variance-covariance matrix. We want the dominant eigenvectors from Σ to be

close to the leading eigenvectors of the sample variance-covariance matrix. Therefore,

the dimension of the observation data can be reduced significantly as in the context of

PCA. In the simulation studies and the application to asset return data, we compare the

estimated unconditional sample variance-covariance matrix from our PPCAF model

with the sample variance-covariance matrix of the observed data and find that the two

matrices are very similar. This suggests that our proposed PPCAF model is capable

of capturing the dependency structure of multivariate financial time series. We also

found that the columns of the loading matrix are very close to the principal sample

eigenvectors. This indicates that our model can extract the main factors of the data

that govern the multivariate time series.

4.3.2 Estimation: an MCMC Algorithm

There are two difficult issues involved in applying the MCMC sampler to the problem

at hand. One is how to sample the column-orthogonal loading matrix and the other is

how to sample the full conditionals of latent states efficiently. Considering the first is-

sue, it is known (see, for example, Hoff (2007)) that the full conditional of each column,

given the other columns, follows a von Mises-Fisher distribution if the uniform prior

distribution on the unit hypersphere is assumed and the PPCAF model has isotropic

errors. The simulation of these full conditionals can be done by following the proce-

dure in Hoff (2007) and Dobigeon and Tourneret (2010), which allows us to preserve

the orthonormality among columns. In the case of idiosyncratic errors, the full condi-

tionals of these columns no longer follow von Mises-Fisher distributions. We simulate

these columns by using a Metropolis-Hastings algorithm with von Mises-Fisher pro-
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posal distributions.

Regarding the second issue, once the factors fk,t have been sampled, the sampling

of hk,t and the parameters in the latent AR(1) processes can be done by employing some

of the commonly used MCMC methods for univariate SV models. Our approach for

this simulation is the slice sampler within the MCMC method introduced in Chapter

2. The MCMC algorithm for the PPCAF model is outlined in Table 4.1 followed by

detailed procedures.

Table 4.1: MCMC algorithm for the PPCAF model.

Step 1. Sampling Wk, k = 1, ..., q, in the isotropic case.

Step 1’. Sampling Wk, k = 1, ..., q, in the idiosyncratic case.

Step 2. Sampling fk,t, k = 1, ..., q, t = 1, ..., T .

Step 3. Sampling hk,t, k = 1, ..., q, t = 1, ..., T .

Step 4. Sampling φk, µk, σk, k = 1, ..., q.

Step 5. Go to Step 1.

Step 1. Sampling Wk, k = 1, ..., q, in the isotropic case. Define by W−k the loading

matrix where the k-th column has been removed.

The likelihood of yt, t = 1, ..., T , given that Θ and f have been sampled, is

p(yt|Θ, f) = (2πψ)−
m
2 exp

(

− 1

2ψ
||yt −

q
∑

i=1

Wifi,t||2
)

. (4.13)

By Bayes’ Theorem, from (4.13) we can show that the full conditional of Wk, given the
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uniform prior distribution, is

p(Wk|y,W−k, f , ψ) ∝
T
∏

t=1

p(Wk|y∗
k,t, fk,t, ψ)

= (2πψ)−
m
2 exp

(

− 1

2ψ

T
∑

t=1

||y∗
k,t −Wkfk,t||2

)

∝ exp

(

1

ψ
W

′

k

T
∑

t=1

fk,ty
∗
k,t

)

, (4.14)

where y∗
k,t = yt−

∑q
i=1,i6=kWifi,t is defined as the residual from the projection of yt onto

the subspace spanned by the columns of W−k. The question now is how to sample this

full conditional while maintaining orthogonality with other columns. Define by Nk a

basis for the null space of W−k. As argued in Hoff (2007), conditional on W−k, there

exists a vk which is uniform on the unit (q− 1) hypersphere and such that Wk = Nkvk.

Thus from (4.14), the full conditional of vk is

p(vk|y,W−k, f , ψ) ∝ exp

(

1

ψ
v

′

kN
′

k

T
∑

t=1

fk,ty
∗
k,t

)

, (4.15)

which is a von Mises-Fisher distribution with parameter 1
ψ
N

′

k

∑T
t=1 fk,ty

∗
k,t. The de-

tails for simulating this distribution can be found in Hoff (2007) and Dobigeon and

Tourneret (2010). Then the full conditional of Wk is simulated by drawing vt from the

von Mises-Fisher distribution (4.15) and setting Wk = Nkvk.

Step 1’. Sampling Wk, k = 1, ..., q, in the idiosyncratic case.

The likelihood of yt, t = 1, ..., T , given that Θ and f have been sampled, is

p(yt|Θ, f)

= (2π)−
m
2 |Ψ|− 1

2 exp

(

− (yt −
∑q

i=1Wifi,t)
′

Ψ−1(yt −
∑q

i=1Wifi,t)

2

)

, (4.16)
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where |Ψ| is the determinant of the square matrix Ψ. According to Bayes’ Theorem,

the full conditional of Wk is given by

p(Wk|y,W−k, f ,Ψ)

∝ (2π)−
mT
2 |Ψ|−T

2

T
∏

t=1

exp

(

− (yt −
∑q

i=1Wifi,t)
′

Ψ−1(yt −
∑q

i=1Wifi,t)

2

)

= (2π)−
mT
2 |Ψ|−T

2

T
∏

t=1

exp

(

−
(y∗

k,t −Wkfk,t)
′

Ψ−1(y∗
k,t −Wkfk,t)

2

)

, (4.17)

where y∗
k,t is defined as before. This full conditional is no longer a von Mises-Fisher

distribution and unlike the isotropic case, can not be simulated directly. We use instead

a Metropolis-Hastings algorithm. Define by B an m × m diagonal matrix where the

entries on the diagonal are equal to the average of the idiosyncratic variance, given by

b =
∑m

k=1 ψk/m. By replacing Ψ in formula (4.17) with this B, the proposal density is

chosen as

f(X|y,W−k, f , b) ∝ exp

(

1

b
X

′

T
∑

t=1

fk,ty
∗
k,t

)

. (4.18)

Comparing with the distribution (4.14), this proposal distribution is a von Mises-Fisher

distribution. To sampleX , which is orthonormal to W−k, we first sample the following

von Mises-Fisher distribution

f(vk|y,W−k, f , b) ∝ exp

(

1

b
v

′

kN
′

k

T
∑

t=1

fk,ty
∗
k,t

)

, (4.19)

and then set X = Nkvk, where Nk is a basis for the null space of W−k, and X will be

accepted from the Metropolis-Hastings algorithm. The whole procedure for sampling

from the full conditional of Wk can be summarized as follows:

Suppose that we have a simulated value W
(n)
k from the n-th iteration of the MCMC
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algorithm. Then at iteration n+ 1, we perform the following steps:

1. Generate a uniform random number α from the interval [0,1].

2. Sampling vk from the von Mises-Fisher distribution (4.19) and set X = Nkvk.

3. Define

β = min

{

1,
p(X|y,W−k, f ,Ψ)

p(W
(n)
k |y,W−k, f ,Ψ)

×
exp

(

1
b
(W

(n)
k )

′∑T
t=1 fk,ty

∗
k,t

)

exp
(

1
b
X ′
∑T

t=1 fk,ty
∗
k,t

)

}

.

4. If α ≤ β then W
(n+1)
k = X otherwise W (n+1)

k = W
(n)
k , keep the generated vector

from the last iteration.

Step 2. Sampling fk,t, k = 1, ..., q, t = 1, ..., T .

If the PPCAF mode has isotropic errors, the full conditional of fk,t is

p(fk,t|Θ,h) ∝ p(fk,t|hk,t)p(fk,t|y∗
k,t,Wk, ψ)

= p(fk,t|hk,t)(2πψ)−m/2 exp

(

− 1

2ψ
(fk,t −W

′

ky
∗
k,t)

2

)

,

which is a univariate normal distribution and can be easily sampled. The full condi-

tional of fk,t in the idiosyncratic case is also easy to calculate and it will not be given

here.

Step 3. Sampling hk,t, k = 1, ..., q, t = 1, ..., T .

Once the q factor time series ft has been sampled, the simulation of hk,t can be done

by the slice sampler within the MCMC method. The detailed procedure can be found

in Chapter 2.

Step 4. Sampling φk, µk, σk, k = 1, ..., q.

For given priors, the full conditionals of these parameters can be easily sampled by

using the method proposed in the previous chapters.
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4.3.3 Model Selection and Assessment

In financial time series, the goal of our PPCAF model is to detect the latent factors

(within the upper boundary) that govern the underlying time series. This is a model

selection problem. In the literature, traditional model selection criteria based on the

likelihood include the AIC in Akaike (1987) and the BIC in Schwarz (1978), which are

the functions of parameters of the model. For hierarchical models, the log likelihood

involves high-dimensional integrals and is virtually impossible to obtain its analytical

form. In order to use AIC and BIC, the likelihood of data has to be given approximately.

In the past decade, the auxiliary particle filter (APF) proposed in Pitt and Shephard

(1999b) has been extensively employed as an efficient tool for hidden Markov models,

especially the SV models, in the calculation of likelihood. Typically it is assumed that

the underlying model is only indexed by static (non time-varying) parameters and the

sample likelihood can be obtained by APF recursively. Once the likelihood is available,

we can apply AIC and BIC to assess the model fit and determine the number of factors.

From the definition of the PPCAF model, the observations yt, t = 1, ..., T , can be

defined sequentially. Specifically, at each time t the observation equation defines the

observation density

p(yt|ht,Θ), (4.20)

and the latent AR(1) Markov process defines the transition density

p(ht|ht−1,Θ). (4.21)

Thus, the log-likelihood of the data can be written as

log p(y1, ...,yT |Θ) = ΣT−1
t=1 log p(yt+1|y1:t,Θ) + log p(y1|Θ),
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where y1:t = (y1, ...,yt) is the information known at time t.

At time t+ 1 we have

p(yt+1|y1:t,Θ) =

∫

p(yt+1,ht+1|y1:t,Θ)dht+1 (4.22)

=

∫

p(yt+1|ht+1,y1:t,Θ)p(ht+1|y1:t,Θ)dht+1 (4.23)

=

∫

p(yt+1|ht+1,Θ)p(ht+1|y1:t,Θ)dht+1. (4.24)

Since

p(ht+1|y1:t,Θ) =

∫

p(ht+1,ht|y1:t,Θ)dht (4.25)

=

∫

p(ht+1|ht,y1:t,Θ)p(ht|y1:t,Θ)dht (4.26)

=

∫

p(ht+1|ht,Θ)p(ht|y1:t,Θ)dht, (4.27)

the conditional density of yt+1 can be calculated if we know the one-step ahead predic-

tion distribution of ht+1, where the latter depends on the filtered density of ht. The

challenge here is that we do not know the filter distribution of ht explicitly. Our

solution is to approximate this filter density (or posterior distribution) with an effi-

cient sequential Monte Carlo particle filtering procedure, the APF in Pitt and Shephard

(1999b), which is also applied in Chib et al. (2006), Omori et al. (2007) and among

others for FSV models. Suppose that we approximate a sample {h(i)
t , i = 1, ..., N} of ht

from the filtered distribution of (ht|y1:t,Θ) with the weights {πi, i = 1, ..., N} such that
∑N

i=1 πi = 1. Given this sample, the one-step ahead predictive density of ht+1 is

p(ht+1|y1:t,Θ) ≈ 1

N

N
∑

i=1

p(ht+1|h(i)
t ,Θ). (4.28)

Under this particle approximation, the one-step ahead conditional density (4.22) can
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be calculated numerically. The APF used here is similar to that in Chib et al. (2006),

and is given in the Appendix. In our experience N = 10, 000 particles are sufficient for

our simulation studies and the index return data that we use to illustrate our model

and the estimation method.

4.4 Empirical Exploration and Comparative Analysis

We conducted simulation studies for the one-factor and two-factor PPCAF models,

where the observation errors are either isotropic or idiosyncratic. In total, there are

four cases to be examined. The following procedure was used to generate multivariate

time series of asset returns.

hk,t+1 ∼ N
(

µk + φk(hk,t − µk), σk
)

, t = 1, ..., T − 1, (4.29)

yt ∼ Nm(0,Wdiag(exp(h1,t), ..., exp(hq,t))W
′

+ Ψ), t = 1, ..., T, (4.30)

where hk,1 ∼ N (µk, σk/(1 − φ2
k)), k = 1, ..., q, are the initial distributions of h1.

We considered an eight-dimensional problem in each of the four cases based on

generated return data from a PPCAF model indexed by true parameters presented in

Tables 4.3 and 4.4. As discussed earlier, there are 36 free parameters in total provided

by the sample variance-covariance matrix. The generated return data can be fitted by

our proposed PPCAF model with up to four factors in the isotropic type and three

factors in the idiosyncratic type. For each data set, we fit the specific type of PPCAF

model with the number of factors from 1 to 3 and employed AIC and BIC for model

selection. There are 1500 observations in each of the following examples, from which

the first 1000 observations were analyzed and the other 500 observations were used

for the assessment of out-of-sample one-step ahead forecast. To estimate the PPCAF

model, the derived MCMC algorithm was iterated for 50,000 iterations and the first
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10,000 sampled values were discarded as the burn-in. All parameters and augmented

parameters were then estimated by sample averages of the full conditionals. The es-

timates of the parameters were used as the true values when the APF was applied to

evaluate the likelihoods of data and conduct the in-sample and out-of sample volatility

forecast. We chose 10,000 particles when the filter and the prediction densities of latent

random variables were approximated recursively.

It should be mentioned, for each of the four types of PPCAF models, we conducted

several experiments using simulated asset return data to see how often that AIC and

BIC correctly identified the true number of factors. It was found in all replications that

AIC and BIC always identified the PPCAF model used to generate the asset returns. We

just take one example from each type of the four PPCAF models and present the anal-

ysis results. Table 4.2 summarizes the AIC and BIC values from the specified PPCAF

models where the boldface values are the smallest. Table 4.3 compares the true and

estimated parameters of the latent Markov processes, where θfk
= (µk, φk, σk), k = 1, 2,

are the vectors of parameters for the latent AR(1) processes. The comparison between

the true and estimated loading matrix is provided in Table 4.4. It is clear that the esti-

mated parameters are very close to the true values used to generate the asset returns.

These examples provide some evidence that our proposed PPCAF model and cor-

responding estimation method work well, and the AIC and BIC criteria can correctly

identify the number of factors contained in the observation processes.

4.4.1 Forecast Assessment for the two-factor Idiosyncratic PPCAF

Model

In terms of forecasting, we forecast in-sample and out-of-sample volatilities for a two-

factor idiosyncratic PPCAF model using 2000 simulated observations. Since MCMC

estimation methods are generally time consuming, we used the selected two-factor
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Table 4.2: Model selection using the AIC and BIC criteria.

Type True q Criterion q = 1 q = 2 q = 3

Isotropic

1
AIC -49808.7 -49785.2 -49762.2

BIC -49749.8 -49672.3 -49595.3

2
AIC -48917.1 -51442.7 -51419.8

BIC -48863.1 -51339.6 -51267.6

Idiosyncratic

1
AIC -50761.3 -50743 -50747.6

BIC -50668.1 -50595.7 -50546.4

2
AIC -50858.8 -52820.6 -52802.4

BIC -50765.6 -52673.4 -52601.2

Table 4.3: Comparison between true and estimated parameters of the latent AR(1) pro-
cesses.

Type Factor q Parameter True Estimate

Isotropic

1 θf1 (-8.11, 0.99, 0.03) (-8.07, 0.99, 0.04)

2
θf1 (-7.89, 0.99, 0.02) (-7.56, 0.99, 0.03)

θf2 (-9.09, 0.98, 0.06) (-8.99, 0.98, 0.05)

Idiosyncratic

1 θf1 (-8.45, 0.99, 0.03) (-8.03, 0.99, 0.03)

2
θf1 (-7.89, 0.99, 0.02) ( -7.05, 0.99, 0.03)

θf2 (-9.34, 0.99, 0.06) ( -8.33, 0.99, 0.06)

PPCAF model fitted from the first 1000 observations, when forecasting in-sample and

out-of-sample one-step ahead volatilities. The multi-step-ahead forecast can be done

in the same fashion.

First, we examine the two-factor PPCAF idiosyncratic model in terms of volatility

forecast. The idiosyncratic PPCAF model was fitted with q = 0, 1, 2, 3 factors to the

simulated data. That is, we also considered the situation with q = 0, where the data
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Table 4.4: Comparison between true and estimated parameters of the measurement equations.

Type q Par. True Estimate

Iso.

1
W

′

0.33, 0.40, 0.41, 0.36, 0.34, 0.40, 0.31, 0.24 0.32, 0.40, 0.42, 0.37, 0.34, 0.41, 0.30, 0.24

ψ 0.0097 0.0097

2
W

′
0.33, 0.40, 0.42, 0.37, 0.34, 0.41, 0.29, 0.23 0.33, 0.40, 0.42, 0.36, 0.34, 0.41, 0.29, 0.23

-0.11, -0.27, -0.30, -0.24, 0.07, 0.03, 0.61, 0.62 -0.10, -0.28, -0.31, -0.24, 0.08, 0.03, 0.64, 0.58

ψ 0.0073 0.0073

Idi.

1

W
′

0.33, 0.40, 0.41, 0.36, 0.34, 0.41, 0.31, 0.24 0.32, 0.38, 0.41, 0.35, 0.33, 0.40, 0.33, 0.29

Ψ 0.0077, 0.0070, 0.0084, 0.0066, 0.0081, 0.0091, 0.0135, 0.0136 0.0081, 0.0078, 0.0089, 0.0074, 0.0084, 0.0093, 0.0128, 0.0127

2
W

′
0.33, 0.40, 0.42, 0.37, 0.34, 0.41, 0.29, 0.23 0.32, 0.39, 0.40, 0.34, 0.35, 0.42, 0.32, 0.27

-0.11, -0.27, -0.30, -0.24, 0.07, 0.03, 0.62, 0.62 -0.12, -0.28, -0.34, -0.25, 0.02, -0.01, 0.60, 0.61

Ψ 0.0073, 0.0048, 0.0062, 0.0048, 0.0078, 0.0087, 0.0089, 0.0091 0.0073, 0.0057 0.0067, 0.0056, 0.0077, 0.0084, 0.0084, 0.0086

In order to save space, we use Par. for parameter, Iso. for isotropic and Idi. for idiosyncratic, respectively.
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does not depend on any factors, and the situation with q = 3 where we added an extra

factor for comparison purpose. The standard deviations of univariate time series of

asset returns are compared with the root mean square errors (RMSEs) obtained from

the idiosyncratic PPCAF model with different number of factors in Table 4.5, where

the RMSEs were calculated based on the differences between the true and forecasted

volatilities. The model used for forecasting was estimated using only the first 1000

observations. The ”In” columns in Table 4.5 show the in-sample forecast RMSEs for the

first 1000 observations, while the columns ”Out” show the RMSEs for the second half of

the data. It is obvious that the RMSEs with q > 0 are smaller than the RMSEs with q =

0. This result indicates that by introducing factors into the SV model the RMSEs can be

highly reduced. We also observe that between q = 2 and q = 3 the forecast RMSEs do

not change much. It is evident that the correct number of factors has been detected. By

using the AIC and BIC, we can also reach the same conclusion in this experiment. That

means, the third factor is not significant in terms of forecasting volatility. Figures 4.1

and 4.2 compare the generated time series of the two factors and their true volatilities

with the corresponding estimated and in-sample forecasted volatilities. It is easy to see

the forecasted volatilities of factors resemble the true volatilities.

Next, we compare the forecasted volatilities between the two-factor PPCAF and

univariate SV models. The first 1000 observations in each component were also fit-

ted by the univariate SV model introduced in Chapter 2, and the estimated univariate

SV models were employed to perform the in-sample and out-of-sample volatility fore-

cast. Similarly we compare the absolute value of the generated returns and the true

volatilities with the in-sample and out-of-sample forecasted volatilities. In Figure 4.3,

we present a comparison for the third component of the multivariate time series of as-

set returns based on the two-factor PPCAF and univariate SV models, where the asset

returns before and after the vertical dotted line at t = 1000 are the in-sample and out-of-

sample volatility forecasts, respectively. The RMSEs from the PPCAF model is 0.0022
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Table 4.5: RMSE comparison between true and forecasted volatilities on the simulated
eight-dimensional return data from an idiosyncratic two-factor PPCAF model. All val-
ues have been multiplied by 1000.

q = 0 q = 1 q = 2 q = 3

In Out In Out In Out In Out

Component
1 10.4 10.0 1.4 1.8 1.4 1.7 1.3 1.8
2 10.2 10.8 2.4 2.6 1.8 2.4 1.8 2.4
3 11.6 12.2 2.5 2.6 1.9 2.4 1.9 2.4
4 9.8 10.2 2.1 2.4 1.7 2.1 1.7 2.2
5 10.3 11.1 1.2 1.7 1.1 1.7 1.1 1.7
6 11.7 13.1 1.4 2.1 1.4 2.1 1.4 2.2
7 14.5 12.9 5.3 3.5 2.8 2.2 2.8 2.2
8 14.3 12.6 5.3 3.5 2.7 2.0 2.8 2.0
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Figure 4.1: Comparison of the absolute first factor time series and the corresponding
true volatilities with the estimated and the in-sample forecasted volatilities based on a
simulated data set from the two-factor idiosyncratic PPCAF model.

which is smaller than 0.0026 from the univariate model. Thus, the proposed PPCAF
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Figure 4.2: Comparison of the absolute second factor time series and the correspond-
ing simulated volatilities with the estimated and the in-sample forecasted volatilities
based on a simulated data set from the two-factor idiosyncratic PPCAF model.

model is able to forecast the volatilities of multivariate time series of asset returns.

A more sophisticated way to check the forecast ability is called the block assess-

ment. To do this, we first generate multivariate time series of asset returns with N

observations from a PPCAF model, and then divide the data into j blocks, each of the

blocks consists of N/j observations. Within each block, the N/j observations were fit-

ted by the same type of PPCAF model, and the resulting model is used to perform the

in-sample volatility forecast within the block and the out-of-sample volatility forecast

for the successive block. In the first block, the in-sample forecast is conducted and for

other four blocks both out-of-sample and in-sample forecasts are performed. In this

example, we studied a two-factor idiosyncratic PPCAF model with settings m = 8,

N = 10, 000 and j = 5. Figure 4.4 compares out-of-sample forecast RMSEs based on

the last four block data from the two-factor idiosyncratic PPCAF and univariate SV
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Figure 4.3: Comparison of the absolute simulated third time series with the in-sample
and out-of-sample forecasts based on a simulated data set from the two-factor idiosyn-
cratic PPCAF model.

models. It shows that the RMSEs of the out-of-sample forecast from the two-factor id-

iosyncratic PPCAF are smaller than those from the univariate SV models. Figure 4.5

compares the time series of true volatility and the out-of-sample forecasted volatilities

of the first component in the last four blocks.

Again, the forecast errors from the PPCAF model are smaller than those from the

univariate SV models. The reason for this is that the PPCAF model takes advantage of

the cross correlations that drive the multivariate time series of asset returns, while the

univariate SV model only captures the correlation between the observed time series

and the corresponding latent volatility process. In the analysis of asset return data,

although the true volatilities are unobservable, we expect the PPCAF model to perform

better than the univariate SV model in terms of forecasting volatility.
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Figure 4.4: RMSE comparison between true and out-of-sample forecasted volatilities
through the two-factor idiosyncratic PPCAF models (the dotted line) and univariate
SV models (the solid line) based on the last four block data.
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Figure 4.5: Comparison between true and out-of-sample forecasted volatilities of the
first component from the two-factor idiosyncratic PPCAF and univariate SV models in
the last four blocks.

131



4.5 Factor Structure of Returns of International Stock In-

dices

We considered a return data set of eight international stock indices. The AIC and BIC

were the main tools to determine the number of factors within the upper boundary.

Since the volatilities of the return time series are unavailable, we compared the in-

sample and out-of-sample one-step ahead forecasted volatilities with the absolute asset

returns.

4.5.1 Model Fit and Data Analysis

The time series considered here are the returns of stock indices from eight main stock

markets: the Toronto Stock Exchange (TSX), the Standard & Poor’s 500 (S&P500),

the NASDAQ Stock Market (NASDAQ), the Dow Jones Industrial Average (DJI), the

London Stock Exchange FTSE 100 Index (FTSE), the Frankfurt Stock Exchange index

(DAX), the Hang Seng Index (HS) and the Nikkei Stock Average (Nikkei) from the

Tokyo Stock Exchange. The data was downloaded from the web site finance.yahoo.com,

for the period from January 6, 2003 to July 8, 2011 yielding 2204 observations for each

index. Because this is an eight-dimensional data set, the PPCAF model can be fit with

up to q = 4 factors in the isotropic case and q = 3 for the idiosyncratic model. As in the

simulation studies, we fit the data based on the first 2000 observations and the last 204

observation were used for the assessment of out-of-sample one-step ahead volatility

forecast.

To determine how well the PPCAF model fits the data, we used the AIC and BIC.

To do this, the return data was fitted by the isotropic PPCAF models with up to four

factors and the idiosyncratic PPCAF models with up to three factors, respectively. Ta-

ble 4.6 presents the AIC and BIC values for the fitted PPCAF models. Both AIC and
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BIC attained their smallest values at the upper boundaries for the two types of models.

By looking at these values, we found that the three-factor idiosyncratic PPCAF model

has the smallest AIC and BIC values and, therefore, this model is a preferred candidate

for the asset return data.

Table 4.6: Model selection using the AIC and BIC criteria.

Type Criterion q = 1 q = 2 q = 3 q = 4

Isotropic
AIC -98918.6 -104068 -106585 -108431

BIC -98851.4 -103940 -106395 -108179

Idiosyncratic
AIC -102076 -106690 -109659

BIC -101969 -106522 -109429
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Figure 4.6: Time series comparison of the estimated factors from the indices return
data using the four-factor idiosyncratic PPCAF model.

Figure 4.6 plots the time series of the estimated four factors from the idiosyncratic

four-factor PPCAF model, where the magnitudes of the third and fourth factor time

series are much smaller than those of the first two factor time series. Accordingly, this
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provides additional evidence that a two or three factor PPCAF model is an adequate

representation for the international indices return data.

Table 4.7 includes summaries of standard errors and Bayesian highest probability

density (HPD) confidence intervals for the parameters. It is clear that the 95% HPD

intervals contain the estimated values.

Table 4.7: Estimated parameters of the three latent AR(1) processes from the three-
factor PPCAF model with idiosyncratic observation errors.

Parameter Estimate Std. HPD CI (95%)
µ1 -7.78 0.80 ( -8.78, -6.74 )
φ1 0.99 0.01 ( 0.98, 0.99 )
σ1 0.02 0.01 ( 0.01, 0.03 )
µ2 -9.04 0.72 (-10.19, -7.89 )
φ2 0.99 0.01 ( 0.98, 0.99 )
σ2 0.04 0.01 ( 0.02, 0.06 )
µ3 -10.33 0.39 (-11.12, -9.61 )
φ3 0.97 0.01 ( 0.96, 0.99 )
σ3 0.13 0.04 ( 0.06, 0.23 )

For model assessment, as in Pitt and Shephard (1999a), we can compare the sample

variance-covariance matrix of the observed data given as Σ in (4.31) with the Bayesian

mean Σ̂ of the unconditional variance-covariance matrix in (4.32) from the three-factor

idiosyncratic PPCAF model using the formulas (4.11) and (4.12). The two matrices

(having been multiplied by 1000) do not differ much, indicating that the variation of
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the index returns is mostly accounted for by the first three leading factors.

Σ =









































0.1469 0.1207 0.1232 0.1056 0.0872 0.0946 0.0633 0.0454

0.1207 0.1764 0.1820 0.1600 0.0926 0.1182 0.0516 0.0293

0.1232 0.1820 0.2096 0.1630 0.0936 0.1250 0.0529 0.0305

0.1056 0.1600 0.1630 0.1500 0.0848 0.1090 0.0477 0.0279

0.0872 0.0926 0.0936 0.0848 0.1606 0.1556 0.0825 0.0717

0.0946 0.1182 0.1250 0.1090 0.1556 0.2161 0.0884 0.0769

0.0633 0.0516 0.0529 0.0477 0.0825 0.0884 0.2666 0.1595

0.0454 0.0293 0.0305 0.0279 0.0717 0.0769 0.1595 0.2338









































, (4.31)

Σ̂ =









































0.1382 0.1101 0.1160 0.1000 0.0781 0.0959 0.0585 0.0409

0.1101 0.1616 0.1550 0.1329 0.0886 0.1117 0.0476 0.0252

0.1160 0.1550 0.1930 0.1405 0.0921 0.1164 0.0485 0.0247

0.1000 0.1329 0.1405 0.1380 0.0812 0.1022 0.0441 0.0238

0.0781 0.0886 0.0921 0.0812 0.1615 0.1544 0.0641 0.0663

0.0959 0.1117 0.1164 0.1022 0.1544 0.2176 0.0682 0.0700

0.0585 0.0476 0.0485 0.0441 0.0641 0.0682 0.2604 0.1678

0.0409 0.0252 0.0247 0.0238 0.0663 0.0700 0.1678 0.2274









































. (4.32)

The leading three eigenvalues (multiplied by 10000) of the sample variance-covariance

matrix (4.31) are 8.712, 3.568 and 1.412 with corresponding eigenvectors Ê
′

listed in

(4.33). The estimated loading matrix Ê′
1 is provided in (4.34) with the corresponding

factor variances (multiplied by 10000) equal to 7.709, 2.928 and 1.157. For a compar-

ison purpose, the estimated eigenvalues from the isotropic PPCAF model are 7.619,

2.966 and 1.299 (multiplied by 10000) with corresponding eigenvectors provided as Ê′
2

in (4.35). It is observed that the eigenvalues and the corresponding eigenvectors from
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the sample variance-covariance matrix (4.31) are close to the columns of the estimated

loading matrices (4.34) and (4.35), and the leading eigenvalues of the sample variance-

covariance matrix are closely related to the variances of extracted factors. Also the

corresponding eigenvectors and the columns of the loading matrices appear to point

to similar directions.

Ê
′

=











0.326 0.397 0.419 0.361 0.339 0.408 0.302 0.240

−0.110 −0.279 −0.305 −0.249 0.066 0.022 0.615 0.611

0.143 0.230 0.268 0.199 −0.543 −0.637 0.325 0.100











, (4.33)

Ê
′

1 =











0.330 0.380 0.406 0.348 0.352 0.425 0.305 0.252

−0.118 −0.247 −0.279 −0.222 0.009 −0.060 0.635 0.627

0.190 0.248 0.304 0.223 −0.527 −0.611 0.326 0.049











, (4.34)

Ê
′

2 =











0.323 0.389 0.408 0.354 0.354 0.422 0.300 0.243

−0.111 −0.279 −0.304 −0.249 0.055 −0.010 0.621 0.605

0.143 0.247 0.268 0.219 −0.548 −0.607 0.354 0.061











. (4.35)

Lastly, we check whether the factors appear to be independent of the innovations

by plotting the realized observation errors against each of the estimated factors, where

the observation errors can be calculated by the following formula

R̂i,t = yt −
q
∑

k=1

Ŵkf̂k,t, t = 1, ..., T ; i = 1, ..., q.

Here we only give the scatter plots of these errors versus the estimated first factor in

Figure 4.7. There is no systematic pattern discernible among these scatter plots and the

assumption of independence between the first factor and observation errors is accept-

able.

The estimated idiosyncratic standard errors, listed in (4.36), are quite different show-
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Figure 4.7: Check the independence between the first factor and additive innovations.

ing that the projection errors are asset dependent.

Ψ̂ = diag
(

0.0070 0.0038 0.0053 0.0041 0.0053 0.0058 0.0080 0.0088
)

. (4.36)

An important alternative model assessment is to check the percentages of the marginal

variances explained by individual factors. For each return series i = 1, ..., m, the per-

centage di,k of the variance explained by each factor k, k = 1, ..., q, is simply given by

di,k =
W (i, k)2σ2

fk
∑q

l=1W (i, l)2σ2
fl

+ ψ2
i

× 100.

Table 4.8 summarizes the values of these quantities with W and ψi and σfk
, k = 1, ..., q,

estimated at their posterior means. This table will be referred to later when we con-

clude the discussion of the empirical analysis.

We can draw various conclusions based on the estimated loading matrix (4.34), the
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Table 4.8: Percentage of the variance of each series explained by each factor in anal-
ysis of the international indices return time series from the three-factor idiosyncratic
PPCAF model.

Index Factor 1 Factor 2 Factor 3 Total
TSX 58.53 1.97 1.91 62.42
S&P 500 73.90 11.88 5.00 90.78
NASDAQ 68.11 11.77 5.02 84.90
DJI 71.77 11.02 4.56 87.35
FTSE 60.00 0.16 21.57 81.63
DAX 63.90 0.05 19.63 83.58
HS 24.23 47.53 4.32 76.08
Nikkei 17.99 47.71 0.04 65.74

percentage Table 4.8 and the estimated idiosyncratic standard errors in (4.36) for the

indices returns. The first factor represents a dominating common market factor that

influences the stock market indices. All eight markets have similar sensitivity to this

factor since the components of the first loading vector in (4.34) are positive and nearly

equal. These market indices will go up or down when this factor changes. The second

factor has an interesting interpretation. Looking at the second loading vector in (4.34),

the entries for the North American market are (-0.118 -0.247 -0.279 -0.222), which are

all negative and far from zero, while the entries for the European market are (0.009

-0.060), which are close to zero and the entries (0.635 0.627) for the Asian market are

positive and large. This factor is negatively correlated with the North American market

and strongly positively correlated with the Asian market. In other words, the North

American market will have a minor negative response to the second factor and the

Asian market has a strong positive response. The third panel of Figures 4.11 to 4.18

shows volatility contributed by this second factor to the eight indices. For the third

factor, all components in the third column of the loading matrix (4.34) are positive

except for the European market where the components (-0.527 -0.611 ) are negative.

As a consequence, this factor will cause the European market to move in the opposite
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direction of the other markets. Since the elements of the European markets in this

loading vector have the largest absolute values, this market depends strongly on the

third factor, which is seen in the fourth panel of Figures 4.15 and 4.16. Table 4.8 is also

informative. First, the weights on factor 1 are relatively high, indicating that the first

factor explains most of the variation except in the Asian indices. Second, the Canadian

market puts little weight on the second and third factors and all three only explain

about 62% of the volatility. The United States and Asian markets largely depend on the

two leading factors shown in Figures 4.12 to 4.14 and 4.17 to 4.18. Finally, the European

markets are largely driven by the first and third factors. In summary, we might say that

the first factor is the dominant factor representing the global market changes, while the

second factor is an Asian factor and the third factor represents the European market.

The last column in Table 4.8 includes the ratio of the variances explained by these three

factors to the total marginal variance. We notice that the Canadian market and the

Asian market are less influenced by these three factors, whereas the others account for

more than 80% of their volatility. If we look at the estimated standard idiosyncratic

errors in (4.36), the first and the last two entries are larger, confirming this fact.

The factor effects can also be visualized in Figure 4.8, which plots the cumulate

percentages explained by the three extracted factors. The positive signs in the parts that

represent the factor effects from the first two factors indicate that the corresponding

loadings are positive, while the two positive signs in the third factor areas indicate that

the corresponding loadings are opposite to that of the other markets. It can be seen

that the second factor has almost no impact on the two European markets, and the

third factor does not contribute much to the Japanese market.

It is also reasonable to check the correlations between the eight international mar-

kets. The estimated correlation matrix R̂ is given in (4.37). We see that the eight in-

dex returns are positively correlated. It is noticed that the four indices of the North

American market are highly correlated, the correlation coefficient between the two Eu-
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Figure 4.8: Factor effect comparison.

ropean indices is 0.8236 indicating a hight correlation and the two Asian markets are

also highly correlated with correlation coefficient 0.6894.

R̂ =









































1.0000 0.7370 0.7105 0.7243 0.5229 0.5533 0.3086 0.2305

0.7370 1.0000 0.8778 0.8905 0.5486 0.5956 0.2320 0.1313

0.7105 0.8778 1.0000 0.8609 0.5218 0.5679 0.2163 0.1178

0.7243 0.8905 0.8609 1.0000 0.5440 0.5897 0.2325 0.1345

0.5229 0.5486 0.5218 0.5440 1.0000 0.8236 0.3124 0.3462

0.5533 0.5956 0.5679 0.5897 0.8236 1.0000 0.2864 0.3147

0.3086 0.2320 0.2163 0.2325 0.3124 0.2864 1.0000 0.6894

0.2305 0.1313 0.1178 0.1345 0.3462 0.3147 0.6894 1.0000


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























, (4.37)
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4.5.2 Forecasting Analysis

As in the simulation studies, we performed in-sample and out-of-sample one-step

ahead volatility forecasts for the fitted model. All Bayesian estimated parameters from

the first 2000 observations were taken as the true parameters. Figures 4.8 plots the dy-

namics of the estimated first factor with the corresponding estimated and forecasted

volatilities, whereas in Figures 4.9, the absolute returns of NASDAQ is compared with

the in-sample and out-sample forecasted volatilities separated by the vertical dotted

line at t = 2000. It is demonstrated that the magnitude of the estimated volatilities

of the first factor and that of the asset returns of NASDAQ stock are similar to those

of the corresponding forecasted volatilities. As illustrated in the simulation studies,

although we can not observe the true volatilities of asset returns, we are confident that

the one-step-ahead forecasted volatilities can resemble future volatilities of the asset

returns.
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Absolute values of the first factor time series

2004 2005 2006 2007 2008 2009 2010
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Estimated volatilities by MCMC fit
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0.1
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Forecasted volatilities

Figure 4.9: Comparison of the estimated first factor time series with the corresponding
MCMC estimated and forecasts volatilities based on the international return data set.
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Figure 4.10: Comparison between the absolute returns of NASDAQ with the one-step
ahead forecasted volatilities.

The application to the international index returns illustrates that our model and the

corresponding estimation method are able to capture the market dynamics, and the

extracted three factors characterize the economic changes that affect the world-wide

stock markets. In addition to this, with the help of the APF, the PPCAF model can

perform one-step ahead volatility forecast reasonably well.

4.6 Conclusion and Remarks

In this chapter, we proposed a factor stochastic volatility model with an orthonormal

loading matrix. The aim of the model is to extract the key factors that govern the

movement of underlying time series of financial asset returns. In our PPCAF model,

the factors contribute to the underlying asset returns in orthonormal directions. An

MCMC method has been developed for the Bayesian estimation of parameters. The

complexity of sampling of the loading matrix was resolved by simulation via the von

Mises-Fisher distribution while the orthogonality of the columns is preserved in the

process. The slice sampler within the MCMC method derived in Chapter 2 was applied
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to simulate the latent states. Since the slice sampler adapts the analytical expressions of

the target densities, this procedure may make the simulation of full conditionals faster

than other sampling schemes introduced in the literature, where complex Metropolis-

Hastings algorithms would otherwise be needed. Our model not only can remove the

rotation ambiguity of the estimated loading matrix, but also permits factors to vary

stochastically. The PPCAF model can explain most of the properties of the observed

return data. Simulation studies confirm that the true factors can be extracted correctly

and the assumptions for the PPCAF models are satisfied. In an application to financial

return data, the latent factors that drive the market evolution can be characterized, and

the fitted model was shown to satisfy the assumed conditions.
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4.7 Appendix

The APF algorithm for the PPCAF model

The algorithm for our PPCAF model based on the procedure in Chib et al. (2006).

Step 1. Given a sample {h(i)
t , i = 1, ..., N} from (ht|y1:t,Θ), we calculate the expec-

tation ĥ
∗(i)
t+1 = E(ht+1|h(i)

t ) and

πi = p(yt+1|ĥ∗(i)
t+1,Θ), i = 1, ..., N. (4.38)

SampleN times with replacement the integers of 1, ..., N with probability π̂i = πi/
∑N

i=1 πi.

Define the sampled indexes n1, ..., nN and associate these with particles {h(n1)
t , ...,h

(nN )
t }.

Step 2. For each values of ni from Step 1, sample the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 } from

h
∗(i)
k,t+1 = µk + φk(h

(ni)
k,t − µk) +

√
σk uk,t+1, uk,t+1 ∼ N (0, 1), k = 1, ..., q, i = 1, ..., N.

(4.39)

Step 3. Calculate the weights of the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 } as

π∗
i =

p(yt+1|h∗(i)
t+1,Θ)

p(yt+1|ĥ∗(i)
t+1,Θ)

, i = 1, ..., N, (4.40)

and resample the values {h∗(1)
t+1 , ...,h

∗(N)
t+1 }N times with replacement using these weights

to obtain a fair sample {h(1)
t+1, ...,h

(N)
t+1} from the filter distribution of (ht+1|y1:t+1,Θ).
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Figure 4.11: Comparison of volatilities explained by the first three dominant factors for
the returns of TSX from the PPCAF model with idiosyncratic errors.
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Figure 4.12: Comparison of volatilities explained by the first three dominant factors
for the returns of S&P500 from the PPCAF model with idiosyncratic errors.
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Figure 4.13: Comparison of volatilities explained by the first three dominant factors for
the returns of NASDAQ from the PPCAF model with idiosyncratic errors.
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Figure 4.14: Comparison of volatilities explained by the first three dominant factors for
the returns of DJI from the PPCAF model with idiosyncratic errors.
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Figure 4.15: Comparison of volatilities explained by the first three dominant factors
for the return of FTSE from the PPCAF model with idiosyncratic errors.
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Figure 4.16: Comparison of volatilities explained by the first three dominant factors
for the returns of DAX from the PPCAF model with idiosyncratic errors.
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Figure 4.17: Comparison of volatilities explained by the first three dominant factors
for the returns of HS from the PPCAF model with idiosyncratic errors.
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Figure 4.18: Comparison of volatilities explained by the first three dominant factors
for the returns of Nikkei from the PPCAF model with idiosyncratic errors.
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Figure 4.19: Comparison of the estimated second factor time series with the corre-
sponding MCMC estimated and forecasts volatilities based on the international return
data set.

149



2004 2005 2006 2007 2008 2009 2010
0

0.1

0.2

|f
3
|

Absolute values of the third factor time series

2004 2005 2006 2007 2008 2009 2010
0

0.1

0.2

Estimated volatilities by MCMC fit

2004 2005 2006 2007 2008 2009 2010
0

0.1

0.2

Forecasted volatilities

Figure 4.20: Comparison of the estimated third factor time series with the correspond-
ing MCMC estimated and forecasts volatilities based eon the international return data
set.
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Chapter 5

Avenues for Future Work

We first summarize what has been accomplished in this thesis. Then we discuss vari-

ous possible extensions of our proposed models and methods.

5.1 Summary of Contributions

In this thesis, we have studied univariate and multivariate SV models, by focussing

on the estimation of parameters and log volatilities based on different distributional

assumptions of the observation innovations, and the leverage specification between

asset returns and log volatilities. A novel factor SV model was proposed to extract

market factors and characterize the time-varying correlation.

In Chapter 2, the slice sampler within the MCMC algorithms were developed for

various univariate SV models. The innovation of measurement equation has either

univariate normal or Student-t distribution, and the correlation is permitted between

the observation equation and the latent process. If a Student-t distribution is intro-

duced, it does not need a mixture decomposition. For the SV models without heavy

tails, we used a Metropolis-Hastings method to sample the latent states, where the

proposal distribution is either a univariate normal distribution that can be sampled
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directly or an unknown distribution that can be simulated by the slice sampler. In the

proposed Metropolis-Hastings simulation methods for the latent states of heavy-tailed

SV models, the proposal distributions were simulated through the slice sampler, so

that the popular Metropolis-Hastings algorithms used in the literature for SV models

were avoided. To assess the goodness-of-fit, in addition to the test of the normality

assumption of the measurement equation, we examined the probability integral trans-

forms produced by the estimated model.

In Chapter 3, a multivariate SV model with more general cross correlation was con-

sidered. One main difficulty in fitting this model under the Bayesian framework is how

to sample the variance-covariance matrix. Our solution to this problem is a Metropolis-

Hastings method whose proposal was given by an inverse Wishart distribution. A slice

sampler within the MCMC algorithm was then proposed to estimate the augmented

parameters and the log volatilities of the model.

In Chapter 4, we proposed a novel factor SV (FSV) model within the framework of

PCA and PPCA. The new model is motivated by the factor SV models and is combined

with the PPCA. The main purpose of this model is to determine how many factors can

actually affect the behavior of asset returns. Although our study focussed only on

the cases under either the isotropic or idiosyncratic observation errors, our empirical

application provides some indication that the idiosyncratic FSV model is of practical

relevance.

5.2 Estimation of More General Univariate SV Models

The goal of the univariate SV model includes modeling the time-varying volatility of

asset returns and the correlation between the two random processes. In the litera-

ture, the heavy tail property is modeled by introducing the Student-t distribution to

the asset returns equation. This assumption may not adequately fit some daily return
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time series. Accordingly, we can impose alternative distributions such as the asymmet-

ric Laplace distribution or the normal inverse Gaussian (NIG) distribution, where the

properties of the latter are detailed in McLeish (2005). Mathematical correlated errors

of these distributions may be used. MCMC methods may be modified and applied to

these more general models.

An alternative approach for modeling correlation between asset returns and latent

volatilities is to introduce copulas to the innovations. The advantage of doing this is

that the correlation explained by copulas is independent of the marginal distributions.

Thus copula specification gives us more freedom to look at the correlations between

the two innovations of the univariate SV models.

5.3 Multivariate SV Models Under the General PPCA Frame-

work

Recently, FSV models have been proposed to analyze latent market factors that affect

the dynamics of asset returns. Under the FSV model, the time-varying correlations of

the asset returns can be captured by the dynamics of factors. Our PPCAF model is

parsimoniously specified and yet flexible enough to capture many empirical regulari-

ties. One extension of our PPCAF model, analogous to the model in Han (2006), is to

let the factors to be stochastic but follow univariate AR(1) processes. In other words,

the factors are Markovian, whose shocks are assumed to have univariate SV processes.

The Markov factor model formulation is suitable and has been used to study many

financial time series, such as the dividend yield and Treasury-bill yield where the ob-

servations have strong serial dependence. After minor modifications, MCMC can be

efficiently used to study the dynamics of these time series.
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