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Abstract

This thesis deals with wireless channels in uncorrelated block fading environment with

Rayleigh distribution. All nodes are assumed to be oblivious to their forward channel

gains; however, they have perfect information about their backward channel gains. We also

assume a stringent decoding delay constraint of one fading block that makes the definition

of ergodic (Shannon) capacity meaningless. In this thesis, we focus on two different systems.

In each case, the throughput and expected-rate are analyzed.

First, the point-to-point multiple-antenna channel is investigated in chapter 2. We

prove that in multiple-input single-output (MISO) channels, the optimum transmission

strategy maximizing the throughput is to use all available antennas and perform equal power

allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-

layer coding (the broadcast approach) is applied. Analogously, we establish that sending

uncorrelated signals and performing equal power allocation across all available antennas

at each layer is optimum. A closed form expression for the maximum continuous-layer

expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-

input multiple-output (MIMO) channels, and formulate the maximum throughput in the

asymptotically low and high SNR regimes and also asymptotically large number of transmit

or receive antennas by obtaining the optimum transmit covariance matrix. Furthermore, a

distributed antenna system, wherein two single-antenna transmitters want to transmit a

common message to a single-antenna receiver, is considered. It is shown that this system has

the same outage probability and hence, throughput and expected-rate, as a point-to-point

2× 1 MISO channel.

In chapter 3, the problem of dual-hop transmission from a single-antenna source to

a single-antenna destination via two parallel full-duplex single-antenna relays under the

above assumptions is investigated. The focus of this chapter is on simple, efficient, and
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practical relaying schemes to increase the throughput and expected-rate at the destination.

For this purpose, various combinations of relaying protocols and multi-layer coding are

proposed. For the decode-forward (DF) relaying, the maximum finite-layer expected-rate

as well as two upper-bounds on the continuous-layer expected-rate are obtained. The

main feature of the proposed DF scheme is that the layers being decoded at both relays

are added coherently at the destination although each relay has no information about

the number of layers being successfully decoded by the other relay. It is proved that the

optimum coding scheme is transmitting uncorrelated signals via the relays. Next, the

maximum expected-rate of ON/OFF based amplify-forward (AF) relaying is analytically

formulated. For further performance improvement, a hybrid decode-amplify-forward (DAF)

relaying strategy, adopting multi-layer coding at the source and relays, is proposed and its

maximum throughput and finite-layer expected-rate are presented. Moreover, the maximum

throughput and expected-rate in the compress-forward (CF) relaying adopting multi-layer

coding, using optimal quantizers and Wyner-Ziv compression at the relays, are fully derived.

All theoretical results are illustrated by numerical simulations. As it turns out from the

results, when the ratio of the relay power to the source power is high, the CF relaying

outperforms DAF (and hence outperforms both DF and AF relaying); otherwise, DAF

scheme is superior.
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Chapter 1

Introduction

The information theoretic aspects of wireless channels have received wide attention [24]. The

widespread applications of wireless networks, along with many recent results in the network

information theory area, have motivated efficient strategies for practical applications [22].

Fading is often used for modeling the wireless channels [13]. Also, the assumption of

channel state information (CSI) at the transmitter side is not of practical relevance in

some applications (e.g., systems with many receivers). In this thesis, we investigate two

important system configurations.

1.1 Multiple-Antenna Systems

It has been shown that multiple-antenna arrays have the ability to reach higher transmission

rates [30,31,46,52,75–77,84]. With no delay constraint, the ergodic nature of the fading

channel can be experienced by sending very large transmission blocks, and the ergodic

capacity is well studied [13]. When the channel variation is slow, the channel can be

estimated relatively accurately at the receiver. By assuming perfect CSI at the receiver but

no CSI at the transmitter, Telatar [77] showed that the ergodic capacity of MIMO channels
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1.1 Multiple-Antenna Systems

is achieved by sending an uncorrelated circularly symmetric zero mean equal power complex

Gaussian codebook on all transmit antennas.

Due to the stringent delay constraint for the problem in consideration, the transmission

block length is forced to be shorter than the dynamics of the slow fading process, though

still large enough to yield a reliable communication. The performance of such channels

are usually evaluated by outage capacity [78]. The notion of capacity versus outage was

introduced in [13,57]. It has been proved that in uncorrelated MISO channels, the optimum

transmit strategy minimizing the outage probability is to use a fraction of all available

transmit antennas and perform equal power allocation with uncorrelated signals [2, 3, 43].

The maximum throughput is an important performance measure in block fading channels

[5, 6, 44,92], which is defined as the maximum of the product of the transmission rate and

the probability of successful transmission using a single-layer code (see Definition 1.1). As

mentioned in [43], the results on the outage probability cannot be directly applied to this

metric due to the maximization. In Section 2.3, we prove that to achieve the maximum

throughput in an uncorrelated MISO channel, the optimum transmit strategy is to send

equal power uncorrelated signals from all available antennas (see Theorem 2.1).

The maximum average achievable rate is another performance measure which is important

in some applications [66]. In order to increase the average achievable rate, Shamai and

Steiner [67] proposed a broadcast approach (multi-layer coding) for a point-to-point block

fading channel with no CSI at the transmitter. Since the average achievable rate increases

with the number of code layers, they reached the highest average achievable rate using a

continuous-layer (infinite-layer) code. Numerical algorithms have been proposed to find

the optimum layers’ power distribution in single-user MIMO channels [60]. The broadcast

approach was applied to a dual-hop single-relay channel in [59, 70], a channel with two

collocated cooperative users in [71], the relay channel in [88], the diamond channel in [89,90],
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1.1 Multiple-Antenna Systems

and a packet erasure channel in [26, 29]. Multi-layer coding can also achieve the maximum

average achievable rate in a block fading multiple-access channel with no CSI at the

transmitters [53] and channels with quantized limited feedback [69]. The optimized trade-off

between the QoS and network coverage in a multicast network was derived in [55] using the

broadcast approach. Multi-layer coding was later applied to joint source-channel coding

scenarios [27, 28,38,39] to minimize the received distortion by layered source transmission

and successive refinement [25] concepts.

In this thesis, we derive the maximum expected-rate of MISO channels, which is defined

as the maximum average decodable rate when a multi-layer code is transmitted (see

Definition 1.2). Theorem 2.2 proves that to maximize the expected-rate in MISO channels,

it is optimum to transmit equal power independent signals on all available antennas in each

layer. Using the continuous-layer coding approach, the maximum expected-rate of MISO

channels is then obtained and formulated in closed form in Theorem 2.3.

To evaluate the maximum throughput in uncorrelated MIMO channels, the distribution

of the instantaneous mutual information is crucial [93]. In [40, 82], it is shown that the

distribution of the instantaneous mutual information in MIMO channels is always very

close to the Gaussian distribution. The mean and variance of this equivalent Gaussian

distribution were derived in [40] for asymptotic ranges of the number of antennas. As

this distribution is not tractable in general MIMO channels, in this thesis, we consider

four asymptotic cases: asymptotically low SNR regime, asymptotically high SNR regime,

asymptotically large number of transmit antennas, and asymptotically large number of

receive antennas. In all four cases, the optimum covariance matrix is obtained and the

maximum throughput expression is derived.

Afterwards, the maximum throughput and maximum expected-rate of a distributed

antenna system with two single-antenna transmitters and one single-antenna receiver is
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1.2 Diamond Channel

obtained. It is also proved that any achievable throughput, expected-rate, ergodic capacity,

and outage capacity in a MISO channel with two transmit antennas are also achievable in

this channel.

1.2 Diamond Channel

The growing demand for quality of service (QoS) and network coverage inspires the use

of several intermediate wireless nodes to help the communication among distant nodes,

which is referred to as relaying or multi-hopping. Many papers analyze the information

theoretic and communication aspects of relay networks. An information theoretic view of

the three-node relay channel [80] was proposed by Cover and El Gamal in [20], which was

generalized in [48] and [86] for multi-user and multi-relay networks. In [20], two different

coding strategies were introduced. In the first strategy, originally named “cooperation"

and later known as “decode-forward" (DF), the relay decodes the transmitted message

and cooperates with the source to send the message in the next block. In the second

strategy, “compress-forward" (CF), the relay compresses the received signal and sends it to

the destination. Besides studying the DF and CF strategies, the authors in [23,42,50,64]

have studied the “amplify-forward" (AF) strategy for the Gaussian relay network. In AF

relaying, the relay amplifies and transmits its received signal to the destination. Despite its

simplicity, AF relaying performs well in many scenarios. El-Gamal and Zahedi [23] employed

AF relaying in the single relay channel and derived the single letter characterization of the

maximum achievable rate using a simple linear scheme (assuming frequency division and

AWGN channel).

The problems of transmission between a disconnected source and destination via two

parallel intermediate nodes, a.k.a. the diamond channel, were analyzed in [64] for the

AWGN channels and in [63] for the case where the relays transmit in orthogonal frequency
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1.2 Diamond Channel

bands/time slots. There are also some asymptotic analyses on a source to destination

communication via parallel relays with fading channels where the forward channels are

known at both the transmitter and relays sides, see [34] and references therein. Diversity

gains in a parallel relay network using distributed space-time codes, where CSI is only at

the receivers, was presented in [4, 41]. Many papers also analyzed the diamond channel in

half-duplex mode, for example see [9, 62].

Here, we consider the problem of maximum expected-rate in the diamond channel. A

good application for this network is a TV broadcasting system from a satellite to cellphones

through base stations. In second generation digital video broadcasting (DVB-S2), satellites

multicast high-speed data rates to mobile users [1]. Hence, users with better channels might

receive additional services, such as high definition TV signal [54]. The growing adoption

of broadcasting mobile TV services suggests that it has the potential to become a mass

market application. However, the quality and success of such services are governed by

guaranteeing a good coverage, particularly in areas that are densely populated. We suggest

the use of relays to provide better coverage in such strategically important areas. The

main transmitter which is a central TV broadcasting unit uses two parallel relays in each

area with large density to improve coverage (see Fig. 1.1). According to the large number

of relay pairs covering their respective areas and also the large number of users in each

designated area, neither the main transmitter nor the relays can access the forward CSI.

We investigate various relaying strategies in conjunction with multi-layer coding scheme

for the dual-hop channel with parallel relays where neither the source (main transmitter) nor

the relays access the forward channels. We also assume that channel gains are fixed during

two consecutive blocks of transmission. The main focus of this chapter is on simple and

efficient schemes, since the relays can not buffer multiple packets and also handle large delays.

Different relaying strategies such as DF, AF, hybrid DF-AF (DAF), and CF are considered.
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1.2 Diamond Channel

Figure 1.1: Dual-hop multicast transmission via two parallel relays.

In DF relaying, a combination of multi-layering and space-time coding is proposed, such that

the common layers, decoded at both relays, are decoded at the destination cooperatively.

Note that each relay has no information about the number of layers being decoded by the

other relay. The destination decodes from the first layer up to the layer that the channel

condition allows. After decoding all common layers, the layers decodable at just one relay

are decoded. It is proved that the optimal coding strategy is transmitting uncorrelated

signals via the relays. Since the DF relaying in conjunction with continuous-layer coding

is a seemingly intractable problem, the maximum finite-layer expected-rate is analyzed.

Furthermore, two upper-bounds for the maximum continuous-layer expected-rate in DF are

obtained. In the DF relaying, the relays must know the codebook of the source and have

enough time to decode the received signal. In the networks without these conditions, AF

relaying is considered next. Both the throughput and expected-rate, using a space-time

code permutation between the relays, are derived. In the same direction and for further

performance improvement, at the cost of increased complexity, a hybrid DF and AF scheme

called DAF is proposed. In multi-layer DAF, each relay decode-and-forwards a portion

of the layers and amplify-and-forwards the rest. Afterwards, a multi-layer CF relaying is
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1.3 Definitions

presented. In the CF relaying, the relays do not decode their received signals; instead,

compress the signals by performing the optimal quantization in the Wyner-Ziv sense [85],

which means each relay quantizes its received signal relying on the side information from

the other relay. Besides the proposed achievable expected-rates, some upper bounds based

on the channel enhancement idea and the max-flow min-cut theorem [21] are obtained. As

it turns out from the numerical results, in all the proposed relaying strategies combined

with multi-layer coding, the maximum expected-rate increases with the number of code

layers. It is also shown that when the ratio of the relay power to the source power is large,

the CF relaying outperforms DAF, and hence outperforms both DF and AF; otherwise,

DAF is the superior scheme. Here, ON/OFF based AF is always outperformed by either

DF or CF. This is in contrast to the full-duplex AWGN diamond channel in which CF is

always outperformed by either DF or AF [65].

1.3 Definitions

In the following, the performance metrics which are widely used are defined.

Definition 1.1. The throughput Rs is the average achievable rate when a single-layer code

with a fixed rate R is transmitted, i.e., the transmission rate times the probability of successful

transmission. The maximum throughput, namely Rm
s , is the maximum of the throughput

over all transmit covariance matrices Q, and transmission rates R. Mathematically,

Rm
s , max

R,Q
tr(Q)≤P

Pr {I ≥ R}R, (1.1)

where I is the instantaneous mutual information function of the channel whose arguments

are dropped when they are clear.

Definition 1.2. The expected-rate Rf is the average achievable rate when a multi-layer
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1.3 Definitions

code is transmitted, i.e., the statistical expectation of the achievable rate. The maximum

expected-rate, namely Rm
f , is the maximum of the expected-rate over all transmit covariance

matrices and transmission rates in each layer, and all power distributions of the layers.

Mathematically,

Rm
f , max

Ri,Pi,Qi
tr(Qi)≤Pi∑K
i=1 Pi=P

K∑
i=1

Pr {Ii ≥ Ri}Ri, (1.2)

where Ri, Qi, and Ii are the transmission rate, transmit covariance matrix, and instanta-

neous mutual information in the i’th layer, respectively.

If a continuum of code layers are transmitted, the maximum continuous-layer (infinite-

layer) expected-rate, namely Rm
c , is given by maximizing the continuous-layer expected-rate

over the layers’ power distribution.

Continuous-layer and infinite-layer are used interchangeably throughout this thesis. We

also use multi-layer coding and broadcast approach interchangeably.

Definition 1.3. The ergodic capacity Cerg is the maximum expected value of the instanta-

neous mutual information I over all transmit covariance matrices Q. Mathematically,

Cerg , max
Q

tr(Q)≤P

E (I) . (1.3)

Note that throughout the thesis, all rates are expressed in nats.

8



Chapter 2

Maximum Throughput and

Expected-Rate in Multiple-Antenna

Systems

2.1 Problem Setup

A MIMO channel with nt transmit antennas and nr receive antennas is defined as a channel

with the following input-output relationship:

~Y = H ~X + ~Z, (2.1)

where ~Y is the received signal,H ∼ [CN (0, 1)]nr×nt is the channel matrix, ~Z ∼ [CN (0, 1)]nr×1

is the independent and identically distributed (i.i.d.) additive white Gaussian noise (AWGN),

and ~X is the transmitted signal under the following total power constraint:

E
(
~X† ~X

)
= E

(
tr
(
~X ~X†

))
= tr

(
E
(
~X ~X†

))
≤ P. (2.2)
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2.1 Problem Setup

Defining Q as the transmit covariance matrix, i.e., Q = E
(
~X ~X†

)
, the instantaneous

mutual information is

I = ln det
(
Inr + HQH†

)
= ln det

(
Int + QH†H

)
. (2.3)

In a MISO channel, the channel coefficients are represented by a vector ~hT ∼ [CN (0, 1)]nt×1,

and

Y = ~h ~X + Z. (2.4)

The main focus of this chapter is to solve the following problems.

Problem 2.1. To obtain the optimum transmit covariance matrix, denoted by Qo, which

maximizes the throughput Rs in the MISO channel.

Theorem 2.1 proves that the optimum transmit strategy is to transmit uncorrelated

signals on all antennas with equal powers, i.e., Qo = P
nt
Int , and provides the maximum

throughput expression.

Problem 2.2. To derive the optimum transmit covariance matrix in each layer, i.e., Qo
i ,

for finite-layer coding in the MISO channel, which maximizes the expected-rate Rf .

As we shall see in Theorem 2.2, the optimum transmit covariance matrix in each layer

is in the form of Qo
i = Pi

nt
Int , and the maximum expected-rate is given by Eq. (2.29).

Problem 2.3. To derive the maximum continuous-layer expected-rate Rm
c in the MISO

channel.

The closed form expression of the maximum continuous-layer expected-rate is derived

in Theorem 2.3.
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2.1 Problem Setup

In the MIMO channel, the PDF of the instantaneous mutual information I is not

known even for the simplest case of Q = P
nt
Int , although there are some approximations

in literature for asymptotic cases. In the next step, the maximum throughputs in four

asymptotic cases of the MIMO channel are addressed.

Problem 2.4. To derive the maximum throughput of the MIMO channel in asymptotically

• low SNR regime

• high SNR regime

• large number of transmit antennas

• large number of receive antennas

Different MIMO approximations are exploited to solve Problem 2.4. For asymptotically

low SNR regime, the MISO results are carried over and the maximum throughput and

maximum expected-rate are formulated. For asymptotically high SNR regime, Wishart

distribution properties [79] are used to obtain the maximum throughput. For asymptotically

large number of transmit or receive antennas, Gaussian approximations for the instantaneous

mutual information presented in [40] are utilized. As we shall see in Section 2.5, in

all aforementioned asymptotic regimes, the optimum transmit covariance matrix which

maximizes the throughput is Qo = P
nt
Int .

In the last problem of this chapter, a distributed antenna system consisting of two single-

antenna transmitters with common messages and a single-antenna receiver is considered.

Problem 2.5. To find the minimum outage probability, the maximum throughput, and the

maximum expected-rate in a two-transmitter distributed antenna system.
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2.2 Upper-Bound

Theorem 2.7 establishes that any achievable outage probability in the 2 × 1 MISO

channel is also achievable in the two-transmitter distributed antenna system in Problem 2.5.

Hence, both channels experience the same instantaneous mutual information distribution

and thereby, all MISO channel results are applied here with nt = 2.

2.2 Upper-Bound

In the following, we present three propositions which show that the maximum throughput

and maximum expected-rate are upper-bounded by Eq. (2.10).

Proposition 2.1. In fading channels, the maximum throughput is less than or equal to the

ergodic capacity.

Proof. The proof is based on the Markov inequality [58], that is if fx(x) = 0 for x < 0,

then, for α > 0, Pr {x ≥ α} ≤ E(x)
α

. Therefore, ∀R > 0,

Pr {I ≥ R} ≤ E (I)

R
, (2.5)

so that

Rm
s = max

R,Q
tr(Q)≤P

Pr {I ≥ R}R ≤ max
Q

tr(Q)≤P

E (I) , (2.6)

and Eq. (2.6) results because maxQ,tr(Q)≤P E (I) equals the ergodic capacity.

Proposition 2.2. In Rayleigh fading channels, the maximum expected-rate is less than or

equal to the ergodic capacity.
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2.2 Upper-Bound

Proof. From Eq. (1.2) it follows that

Rm
f = max

Ri,Pi,Qi
tr(Qi)≤Pi∑K
i=1 Pi=P

K∑
i=1

Pr {Ii ≥ Ri}Ri

(a)

≤ max
Pi,Qi

tr(Qi)≤Pi∑K
i=1 Pi=P

K∑
i=1

E (Ii)

(b)
= max

Pi,Qi
tr(Qi)≤Pi∑K
i=1 Pi=P

E

(
K∑
i=1

Ii
)

= max
Pi,Qi

tr(Qi)≤Pi∑K
i=1 Pi=P

E

 K∑
i=1

ln
det
(
Int +

∑K
j=iQjH

†H
)

det
(
Int +

∑K
j=i+1 QjH†H

)


= max
Pi,Qi

tr(Qi)≤Pi∑K
i=1 Pi=P

E

ln
K∏
i=1

det
(
Int +

∑K
j=iQjH

†H
)

det
(
Int +

∑K
j=i+1 QjH†H

)


= max
Pi,Qi

tr(Qi)≤Pi∑K
i=1 Pi=P

E

(
ln det

(
Int +

K∑
i=1

QiH
†H

))
, (2.7)

where (a) follows from Proposition 2.1, and (b) follows from the fact that expectation and

summation commute. Defining Q ,
∑K

i=1 Qi, we get

tr (Q) = tr

(
K∑
i=1

Qi

)
=

K∑
i=1

tr (Qi) ≤
K∑
i=1

Pi = P. (2.8)

Inserting Eq. (2.8) into Eq. (2.7), we obtain

Rm
f ≤ max

Q
tr(Q)≤P

E
(
ln det

(
Int + QH†H

))
= max

Q
tr(Q)≤P

E (I) , (2.9)

13



2.3 Maximum Throughput in MISO Channels

and Eq. (2.9) results because maxQ,tr(Q)≤P E (I) equals the ergodic capacity.

Propositions 2.1 and 2.2 lead to the fact that the maximum throughput and maximum

expected-rate are upper-bounded by the ergodic capacity. Proposition 2.3 presents the

ergodic capacity of the MISO channel in closed form.

Proposition 2.3. The ergodic capacity in an nt × 1 MISO Rayleigh fading channel with

total power constraint P is given by

Cerg = e
nt
P E1

(nt
P

) nt−1∑
`=0

(−nt)`
`!P `

+
nt−1∑
`=1

`−1∑
k=0

(−1)k

(`− k) k!

`−k−1∑
m=0

(nt)
k+m

m!P k+m
, (2.10)

where E1 (·) is the exponential integral function. The ergodic capacity in a 1×nr single-input
multiple-output (SIMO) channel with total power constraint P equals the ergodic capacity

of an nr × 1 MISO channel with total power constraint nrP .

Proof. We offer the proof in Appendix A.

2.3 Maximum Throughput in MISO Channels

Let the transmitted signal ~X be a single-layer code with rate R = ln (1 + Ps). In the MISO

channel, the maximum throughput in Eq. (1.1) can be rewritten as

Rm
s = max

R,Q
tr(Q)≤P

Pr
{

ln
(

1 + ~hQ~h†
)
≥ R

}
R, (2.11)

where Q is the covariance matrix of ~X, i.e., Q = E
(
~X ~X†

)
.
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For transmission rate R, the throughput is Rs = Pout(R)R, where Pout(R) is the outage

probability of a fixed transmission rate R. It is conjectured in [77], and a decade later

proved in [2, 3] that the optimum transmit strategy minimizing the outage probability is to

send uncorrelated circularly symmetric zero mean equal power complex Gaussian signals

from a fraction of antennas. Thus, here, one can restrict the transmit covariance matrix Q

to diagonal matrices whose diagonal entries are either zero or a constant subject to the

total power constraint P .

In following, Theorem 2.1 proves that the optimum solution with respect to R, denoted

by Ro, maximizing Pout(R)R is less than ln (1 + P ). In this range of the transmission rate,

the optimum transmit strategy which minimizes the outage probability and consequently,

maximizes the throughput is to use all available antennas. Equation (2.12) yields the

maximum throughput of an nt × 1 MISO block Rayleigh fading channel.

Theorem 2.1. In a single-layer nt × 1 MISO block Rayleigh fading channel, the optimum

transmit covariance matrix which maximizes the throughput is Qo = P
nt
Int. The maximum

throughput is given by

Rm
s = max

0<s<1

Γ(nt, nts)

(nt − 1)!
ln (1 + Ps) . (2.12)

Proof. As pointed out above, we can restrict our attention to assume that lt out of nt

transmit antennas are active and perform equal power allocation. Equation (2.11) is

simplified to

Rm
s = max

R,lt
Pr

{
ln

(
1 +

P

lt

lt∑
`=1

|h`|2
)
≥ R

}
R

= max
s,lt

Pr

{
lt∑
`=1

|h`|2 ≥ lts

}
ln (1 + Ps)
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2.3 Maximum Throughput in MISO Channels

= max
s,lt

F a(lts) ln (1 + Ps) , (2.13)

where a ,
∑lt

`=1 |h`|2 is gamma-distributed and thereby, F a(x) = Γ(lt,x)
Γ(lt)

. The first derivative

of Rs(s) = F a(lts) ln (1 + Ps) with respect to s is

R′s(s) = F a(lts)
P

1 + Ps
− ltfa(lts) ln (1 + Ps) . (2.14)

Let us define the following functions,

r(s) ,
F a(lts)

ltfa(lts)
, (2.15)

g(s, P ) , ln (1 + Ps)
1+Ps
P . (2.16)

As such, we get


R′s(s) > 0 iff r(s) > g(s, P ),

R′s(s) = 0 iff r(s) = g(s, P ),

R′s(s) < 0 iff r(s) < g(s, P ).

(2.17)

Noting F a(x) = Γ(lt,x)
Γ(lt)

and fa(x) = xlt−1e−x

Γ(lt)
, we have

r(s) =
Γ(lt, lts)

lt(lts)lt−1e−lts
=

Γ(lt, lts)

lltt s
lt−1e−lts

. (2.18)

For positive integer arguments of m, Γ(m,x) = (m− 1)!e−x
∑m−1

`=0
x`

`!
. Inserting the above

equation into Eq. (2.18) yields

r(s) =
(lt − 1)!e−lts

∑lt−1
`=0

(lts)`

`!

lt(lts)lt−1e−lts
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=
1

lt
+

1

lt

lt−2∑
`=0

(lt − 1) . . . (`+ 1)

(lts)lt−`−1

=
1

lt
+

1

lt

lt−2∑
`=0

lt−`−2∏
k=0

lt − k − 1

lts
. (2.19)

As lt−k−1
lts

< 1 for s ≥ 1, replacing in Eq. (2.19) gives

r(s) ≤ 1

lt
+

1

lt

lt−2∑
`=0

lt−`−2∏
k=0

1 =
1

lt
+
lt − 1

lt
= 1, ∀s ≥ 1. (2.20)

From Eq. (2.19), lims→0 r(s) = +∞.

On the other hand, the first derivative of g (s, P ) with respect to P is

∂g(s, P )

∂P
=
sP − ln (1 + sP )

P 2

=
1

P 2
ln

esP

1 + sP

=
1

P 2
ln

(
1 +

1

1 + sP

∞∑
k=2

(sP )k

k!

)
> 0. (2.21)

Therefore, g(s, P ) is a strictly increasing function with respect to P . As a result,

g(s, P ) > lim
P→0

ln (1 + Ps)
1+Ps
P = s. (2.22)

Comparing Eq. (2.20), Eq. (2.22), lims→0 r(s) = +∞, and g(0, P ) = 0, we get

 r(s) > g(s, P ) s = 0,

r(s) < g(s, P ) s ≥ 1.
(2.23)
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2.3 Maximum Throughput in MISO Channels

Inserting Eq. (2.23) into Eq. (2.17) yields

 R′s(s) > 0 s = 0,

R′s(s) < 0 s ≥ 1.
(2.24)

Since Rs(s) is a continuous function, according to Eq. (2.24), for all positive integer

values of lt and positive values of P , one can conclude that Rs(s) takes its maximum at

0 < so < 1.

Jorswieck and Boche [43] proved that when P > eR − 1, or equivalently s < 1, the

optimum transmission strategy to minimize the outage probability is to use all available

antennas with equal power allocation. Since ∀lt, 0 < so < 1, the optimum strategy

maximizing the throughput is to use all available antennas and perform equal power

allocation. The maximum throughput is given by Eq. (2.12).

Remark 2.1. In point-to-point single-input single-output (SISO) channels, by substituting

nt = 1 in Eq. (2.12), the optimum solution with respect to s is so = 1
W0(P )

− 1
P
, where W0 (·)

is the zero branch of the Lambert W-function [17,18]. Therefore,

Rm
s = e

1
P
− 1
W0(P ) ln

(
P

W0 (P )

)
. (2.25)

From Proposition 2.3, the ergodic capacity in this channel is

Cerg = e
1
P E1

(
1

P

)
. (2.26)

Remark 2.2. Note that g (s, P ) is a strictly increasing function with respect to s and P ,

and r (s) is a strictly decreasing function with respect to s and increases with the number of
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2.4 Maximum Expeted-Rate in MISO Channels

transmit antennas. Therefore, the solution to r (s) = g (s, P ), i.e., so,

• decreases with P . In asymptotically high SNR regime, so → 0.

• increases with nt. In asymptotically large number of transmit antennas, so → 1.

As a byproduct result of Theorem 2.1 and remark 2.2, we have the following.

Corollary 2.1. In the asymptotically large number of transmit antennas MISO channel,

the maximum throughput is given by

Rm
s = lim

s→1

Γ (nt, nts)

(nt − 1)!
ln (1 + Ps)

nt→∞−→ ln (1 + P ) . (2.27)

Remark 2.3. In a correlated MISO channel wherein the transmitter does neither know

the CSI nor the channel correlation, the outage probability is a Schur-convex (resp. Schur-

concave) function of the channel covariance matrix for P > eR − 1 (resp. P < eR−1
2

)

[43]. According to Theorem 2.1, in the maximum throughput of the MISO channel, i.e.,

Pout(Ro)Ro, we have eRo − 1 < P . Hence, in this range of the transmission rate, Rs is a

Schur-concave function of the channel covariance matrix, i.e., channel correlation decreases

the throughput. In terms of the impact of correlation in the MISO channel with no CSI

at the transmitter, the behavior of the maximum throughput is similar to the behavior

of the ergodic capacity which is also a Schur-concave function of the channel covariance

matrix [14]. For the definition of Schur-convexity and majorization theory see [51].

2.4 Maximum Expeted-Rate in MISO Channels

A block fading channel can be modeled by an equivalent broadcast channel whose receiver

channels represent any fading coefficient realization. The expected-rate of a fading channel
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is equal to a weighted sum-rate of its equivalent broadcast channel in which the weights

distribution is the complementary CDF (tail distribution) of the channel gain [66]. In

broadcast channels, any maximum weighted sum-rate with positive value weights is on

the capacity region [55]. Since superposition (multi-layer) coding achieves the capacity

region of degraded broadcast channels [12, 22, 32], it is the optimum coding strategy to

maximize the average achievable rate in any block fading channel whose equivalent broadcast

channel is degraded [67]. An example for such channels is the SISO channel [19]. Although

multi-layer coding is not the optimum coding strategy in MISO channels, it increases the

average achievable rate of the channel. Numerical results for the maximum continuous-layer

expected-rate of MISO and SIMO block Rayleigh fading channels were presented by Steiner

and Shamai for transmitters with no CSI and partial CSI in [72] and [73], respectively. Here,

the optimum transmit covariance matrix at each code layer is obtained, and consequently,

the maximum expected-rate of the MISO channel is analytically formulated. Note that the

maximum expected-rate of the SIMO channel with nt receive antennas can be calculated

using the same formula by replacing P with ntP in Eq. (2.39).

In order to enhance the lucidity of this section, we divide it into two subsections.

Section 2.4.1 presents the maximum expected-rate of the MISO channel when a finite-layer

code is transmitted. The more code layers, the higher expected-rate. Hence, a continuous-

layer (infinite-layer) code yields the highest expected-rate of the channel. The maximum

continuous-layer expected-rate of the MISO channel is derived in Section 2.4.2 in closed

form.

2.4.1 Finite-Layer Code

In finite-layer coding approach, the transmitter sends a K-layer code ~X =
∑K

i=1
~Xi. Let Pi

be the signal power in the i’th layer with rate Ri = ln
(

1 + Pisi
1+Iisi

)
, where Ii =

∑K
j=i+1 Pj
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is the power of the upper layers while decoding the i’th layer. The maximum expected-rate

in Eq. (1.2) is simplified to

Rm
f = max

Ri,Pi,Qi
tr(Qi)≤Pi∑K
i=1 Pi=P

K∑
i=1

Pr

{
ln

(
1 +

~hQi
~h†

1 + ~h
∑K

j=i+1 Qj
~h†

)
≥ Ri

}
Ri. (2.28)

Theorem 2.2 presents the optimum covariance matrix in each layer which maximizes

the expected-rate in the MISO channel.

Theorem 2.2. In a finite-layer nt × 1 MISO block Rayleigh fading channel, the optimum

transmit covariance matrix in each layer which maximizes the expected-rate is Qo
i = Pi

nt
Int,

where Pi is the power allocated to the i’th layer. The maximum K-layer expected-rate is

given by

Rm
f = max

0<si<1,Pi∑K
i=1 Pi=P

K∑
i=1

Γ (nt, ntsi)

(nt − 1)!
ln

(
1 +

Pisi

1 +
∑K

j=i+1 Pjsi

)
. (2.29)

Proof. Since in the absence of CSI at the transmitter in uncorrelated MISO channels, the

outage probability does not depend on the directions of the transmit covariance matrix

Q [81, 87], the problem is diagonalized. Therefore, the expected-rate received at the

destination is simplified to

Rf =
K∑
i=1

Pr

{
ln

(
1 +

Pi
∑nt

`=1 δ`|h`|2
1 + Ii

∑nt
`=1 η`|h`|2

)
≥ Ri

}
Ri, (2.30)

where δ` and η` are the power fraction and upper-layer interference portion at the `’th

antenna in the i’th layer, respectively, subject to
∑nt

`=1 δ` =
∑nt

`=1 η` = 1. Equation (2.30)
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can be rewritten as

Rf =
K∑
i=1

Pr

{
nt∑
`=1

(δ` + siIiδ` − siIiη`) |h`|2 ≥ si

}
Ri. (2.31)

As
∑nt

`=1 (δ` + siIiδ` − siIiη`) = 1, to minimize Pr {∑nt
`=1 (δ` + siIiδ` − siIiη`) |h`|2 < si} , ∀i,

the optimum value of δ` + siIiδ` − siIiη` must be either zero or a constant independent of `

for any positive value of si [74]. Hence, up to now, the optimum solution to Eq. (2.31) is to

choose either δ` = η` = 1
lti

or δ` = η` = 0, that is to use lti out of nt antennas with power
Pi
lti

in each layer. Therefore, Eq. (2.31) is simplified to

Rf =
K∑
i=1

Pr


lti∑
`=1

|h`|2 ≥ ltisi

Ri =
K∑
i=1

F ai (ltisi)Ri, (2.32)

where ai =
∑lti

`=1 |h`|2. In the remainder of the proof, we shall show that the optimum

solution with respect to lti is loti = nt, ∀i. Analogous to the throughput case in Theorem 2.1,

let us define

Rs(si) , F ai (ltisi) ln

(
1 +

Pisi
1 + Iisi

)
, (2.33)

r(si) ,
F ai(ltisi)

ltifai(ltisi)
, (2.34)

g(si, Pi, Ii) ,
(1 + Iisi) (1 + (Ii + Pi) si)

Pi
ln

(
1 +

Pisi
1 + Iisi

)
. (2.35)

Note that g(0, Pi, Ii) = 0, limsi→0 r(si) = +∞, and Eqs. (2.17) and (2.20) still hold by

redefining Rs(si), r(si), and g(si, Pi, Ii) as above, and with s replaced by si.
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Defining P̂i , Pi
1+Iisi

, from Eq. (2.22) and noting Iisi ≥ 0, we have

g(si, Pi, Ii) = (1 + Iisi)

(
1 + Pisi

1+Iisi

)
Pi

1+Iisi

ln

(
1 +

Pisi
1 + Iisi

)

≥ ln
(

1 + P̂isi

) (1+P̂isi)
P̂i >si, ∀si ≥ 1. (2.36)

Therefore, Eqs. (2.23) and (2.24) still hold with the above functions, and lead to

0 < soi < 1. This directly corresponds to the proof of Theorem 2.1 and shows that

the optimum power allocation strategy is to use all available antennas with equal power

allocation in each layer, i.e., Qo
i = Pi

nt
Int , and the maximum expected-rate is given by

Eq. (2.29).

2.4.2 Continuous-Layer Code

In the continuous-layer coding, a continuum of code layers is transmitted. Similar to

finite-layer coding in Section 2.4.1, the receiver decodes the signal from the lowest layer up

to the layer that the channel condition allows.

Theorem 2.3 yields a closed form expression for the maximum continuous-layer expected-

rate in the MISO channel by optimizing the power distribution over the layers.

Theorem 2.3. In the MISO block Rayleigh fading channel, the maximum continuous-layer

expected-rate obtained by optimizing the power distribution over the layers is given by

Rm
c = R(s1)−R(s0), (2.37)
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2.4 Maximum Expeted-Rate in MISO Channels

where,

R(s) = e−s
nt−1∑
`=1

1

`!

(
s` − (nt + 1− `)(`− 1)!

`−1∑
k=0

sk

k!

)

+e−s − (nt + 1)E1(s). (2.38)

s0 and s1 are the solutions to 
∑nt−1

`=0
(nt−1)!

`!s
nt−`
0

= 1 + P
nt
s0,∑nt−1

`=0
(nt−1)!

`!s
nt−`
1

= 1,

(2.39)

respectively.

Proof. Based on Theorem 2.2, transmitting each of the code layers on all available antennas

and performing equal power allocation is optimum. As showed in [67], the maximum

continuous-layer expected-rate of fading channels with general distribution is given by

Rm
c = max

I(s)

∫ ∞
0

F a(s)
−sI ′(s)

1 + sI(s)
ds. (2.40)

Noting F a(s) = Γ(nt,s)
Γ(nt)

= e−s
∑nt−1

`=0
s`

`!
, we have

Rm
c = max

I(s)

∫ ∞
0

−se−sI ′(s)
1 + sI(s)

nt−1∑
`=0

s`

`!
ds. (2.41)

The optimization solution to Eq. (2.41) with respect to I(s) under the total power constraint
P
nt

at each antenna is found using variation methods [33]. By solving the corresponding
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Eüler equation [33], we come up with the final solution as follows,

Rm
c =

∫ s1

s0

e−s
(
nt + 1

s
− 1

) nt−1∑
`=0

s`

`!
ds, (2.42)

where boundaries s0 and s1 are the solutions to
∑nt−1

`=0
(nt−1)!

`!s
nt−`
0

= 1+ P
nt
s0 and

∑nt−1
`=0

(nt−1)!

`!s
nt−`
1

=

1, respectively. The indefinite integral (antiderivative) of Eq. (2.42) is given by Eq. (2.38)

(the derivation steps are deferred to Appendix B). Applying the integration limits completes

the proof.

Remark 2.4. By substituting nt = 1 in Theorem 2.3, the maximum continuous-layer

expected-rate of the SISO channel is

Rm
c = 2E1

(
2

1 +
√

1 + 4P

)
− 2E1(1)− e

−2
1+
√
1+4P + e−1, (2.43)

which is consistent with the result of [67]. As pointed out earlier, one can model a point-to-

point block Rayleigh fading channel with an equivalent broadcast channel. According to the

degradedness of the equivalent SISO broadcast channel, and the optimality of superposition

(multi-layer) coding for such channels [12,22,32], the maximum continuous-layer expected-

rate of the SISO channel, i.e., Eq. (2.43), represents its maximum average achievable

rate [67].

Remark 2.5. Since the equivalent broadcast channel of the MISO channel is not degraded

[83], its maximum continuous-layer expected-rate is not the maximum average achievable

rate of the channel. For example, in asymptotically low SNR regime, the multiple-access

scheme provides a higher average achievable rate in the MISO channel. In the multiple-

access scheme, the antennas send independent messages, and the receiver decodes as much

as it can.
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Figure 2.1: Maximum throughput, maximum two-layer expected-rate, and maximum
continuous-layer expected-rate (all in nats) in the MISO channel with nt = 2 and nt = 6.

Remark 2.6. Similar to remark 2.3, one can conclude that for 0 < soi < 1, ∀i, the

maximum expected-rate of the MISO channel with uninformed transmitter is a Schur-

concave function of the channel covariance matrix, that is channel correlation reduces the

maximum expected-rate.

Figure 2.1 compares the maximum throughput (red dashed-dotted line), maximum

expected-rate with two-layer coding (blue dashed line), and maximum expected-rate with

continuous-layer coding (black solid line) of the MISO channel for nt = 2 and nt = 6.

2.5 Maximum Throughput in MIMO Channels

The throughput maximization problem in the MIMO channel is less tractable than that

corresponding to the MISO channel. Since in the Gaussian MIMO channel, in the sense of
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the outage probability, the optimum eigenvectors of the transmit covariance matrix always

correspond to the eigenvectors of the channel correlation matrix [81], one can restrict the

transmit covariance matrix to be diagonal in the problem of interest.

Recall from Section 2.1, in an nt × nr MIMO channel, the PDF of the instantaneous

mutual information in Eq. (2.3) does not lend itself to a closed form expression. In

order to analyze the throughput, it is necessary to characterize this PDF. There are some

approximations for the PDF of the instantaneous mutual information in literature, e.g.,

approximations on the distribution of the eigenvalues of HH† in MIMO channels with

asymptotically large number of antennas at both the transmitter and receiver sides [16, 68].

In a MIMO channel with Q = P
nt
Int , the PDF of the instantaneous mutual information

can be well approximated by the Gaussian distribution with the same mean and variance

[40,82], i.e.,

I ∼ N
(
µ(nt, nr), σ

2(nt, nr)
)
, (2.44)

where 
µ(nt, nr) = E (I) ,

σ2(nt, nr) = Var (I) .

(2.45)

Note that for Q = P
nt
Int , µ(nt, nr) equals the ergodic capacity of an nt× nr MIMO channel,

which is a strictly increasing function with respect to nt and nr [77]. This Gaussian

distribution approximation allows the throughput maximization to be expressed as

Rm
s = max

R
Pr {I ≥ R}R

= max
R
Q
(
R− µ(nt, nr)

σ(nt, nr)

)
R. (2.46)
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With z , R−µ(nt,nr)
σ(nt,nr)

, Eq. (2.46) leads to

Rm
s = max

z
Q(z) (σ(nt, nr)z + µ(nt, nr)) (2.47)

= Q(zo) (σ(nt, nr)z
o + µ(nt, nr)) , (2.48)

where zo is the solution to

− 1√
2π
e−

zo
2

2 (σ(nt, nr)z
o + µ(nt,nr)) + σ(nt, nr)Q(zo)=0. (2.49)

Since the existing approximations for the PDF of the instantaneous mutual information

in the MIMO channel are not tractable enough to analyze the maximum throughput in

general case, four asymptotic cases are investigated. In all four cases, it is shown that the

optimum transmit strategy is to use all available antennas. It seems reasonable to conjecture

that the above statement holds with the general MIMO channel. To test the claim, Fig. 2.2

shows the maximum throughput in a MIMO channel with 10 receive antennas. Note that

the number of transmit antennas varies from 1 to 20 and the total power P sweeps the

range of -10 dB to 50 dB.

2.5.1 Asymptotically Low SNR Regime

For small SNR values, the eigenvalues of QH†H are small enough to approximate the

following,

nt∏
`=1

(
1 + eig`

(
QH†H

))
≈ 1 +

nt∑
`=1

eig`
(
QH†H

)
, (2.50)
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Figure 2.2: Maximum throughput (in nats) in a MIMO channel with 10 receive antennas
(nr = 10).
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where eig`(·) is the `’th ordered eigenvalue of matrix. Therefore, the instantaneous mutual

information of Eq. (2.3) can be approximated by

I = ln det
(
Int + QH†H

)
= ln

nt∏
`=1

(
1 + eig`

(
QH†H

))
≈ ln

(
1 +

nt∑
`=1

eig`
(
QH†H

))
. (2.51)

Using Eq. (2.51), we can prove the following proposition on the optimum transmit covariance

matrix which maximizes the throughput in the asymptotically low SNR regime MIMO

channel.

Proposition 2.4. The optimum transmit strategy maximizing the throughput in the asymp-

totically low SNR regime MIMO channel is transmitting independent signals and performing

equal power allocation across all available antennas. The maximum throughput is

Rm
s = max

0<s<nr

Γ (ntnr, nts)

(ntnr − 1)!
ln (1 + Ps) . (2.52)

Proof. Let δ`P denote the allocated power to the `’th antenna subject to
∑nt

`=1 δ` = 1.

From Eq. (2.51), the instantaneous mutual information for low SNR values can be expressed

as,

I ≈ ln

(
1 +

nt∑
`=1

eig`
(
QH†H

))

= ln
(
1 + tr

(
QH†H

))
= ln

(
1 + P

nt∑
`=1

nr∑
k=1

δ` |h`,k|2
)
. (2.53)
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Equation (2.53) corresponds to the instantaneous mutual information in the MISO

channel. Therefore, the optimum transmit strategy minimizing the outage probability in

the asymptotically low SNR regime MIMO channel is to transmit independent signals and

perform equal power allocation across a fraction of available antennas.

Assume that the transmitter has allocated equal power to lt out of nt transmit antennas.

The maximum throughput is given by

Rm
s = max

s

Γ (ltnr, lts)

(ltnr − 1)!
ln (1 + Ps) . (2.54)

With ŝ , s
nr
, Eq. (2.54) leads to

Rm
s = max

ŝ

Γ (ltnr, ltnrŝ)

(ltnr − 1)!
ln (1 + Pnrŝ) . (2.55)

Equation (2.55) corresponds to the maximum throughput expression of the MISO channel,

i.e., Eq. (2.13), with ltnr transmit antennas and total power Pnr. According to Theorem 2.1,

the optimum transmit strategy is to use all available antennas and 0 < ŝ < 1, and

equivalently 0 < s < nr.

In the same direction, the finite-layer expected-rate is given by Proposition 2.5.

Proposition 2.5. The optimum transmit strategy maximizing the expected-rate of the

asymptotically low SNR regime MIMO channel is transmitting independent signals and

performing equal power allocation across all available antennas in each code layer. The

maximum finite-layer expected-rate is

Rm
f = max

0<si<nr,Pi∑K
i=1 Pi=P

K∑
i=1

Γ (ntnr, ntsi)

(ntnr − 1)!
ln

(
1 +

Pisi

1 +
∑K

j=i+1 Pjsi

)
. (2.56)
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Proof. At the i’th layer, let δ`Pi and η`Ii denote the allocated power and upper-layers

power at the `’th antenna subject to
∑nt

`=1 δ` =
∑nt

`=1 η` = 1, and Ii =
∑K

j=i+1 Pj . Following

the same steps in Eq. (2.53), the i’th layer instantaneous mutual information can be

approximated by

Ii ≈ ln

(
1 +

Pi
∑nt

`=1

∑nr
k=1 δ` |h`,k|

2

1 + Ii
∑nt

`=1

∑nr
k=1 η` |h`,k|

2

)
. (2.57)

Equation (2.57) corresponds to the instantaneous mutual information of the multi-layer

MISO channel in Section 2.4.1. The proof is completed by following the steps in the proof

of Theorem 2.2 and Proposition 2.4.

Corresponding to Theorem 2.3, we have the following proposition for continuous-layer

coding in the low SNR MIMO channels.

Proposition 2.6. The maximum continuous-layer expected-rate in the asymptotically low

SNR regime MIMO channel is given by

Rm
c = R(s1)−R(s0), (2.58)

where,

R(s) = e−s
ntnr−1∑
`=1

1

`!

(
s` − (ntnr + 1−`)(`− 1)!

`−1∑
k=0

sk

k!

)

+e−s − (ntnr + 1)E1(s). (2.59)
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s0 and s1 are the solutions to
∑ntnr−1

`=0
(ntnr−1)!

`!s
ntnr−`
0

= 1 + P
nt
s0,∑ntnr−1

`=0
(ntnr−1)!

`!s
ntnr−`
1

= 1,

(2.60)

respectively.

Remark 2.7. Analogous to the MISO channel, in the asymptotically low SNR regime

MIMO channel with uninformed transmitter, channel correlation decreases the maximum

throughput and maximum expected-rate.

2.5.2 Asymptotically High SNR Regime

For large SNR values, we take advantages of Wishart distribution properties. In order to

enhance the lucidity of this section, let us define p , min {nt, nr}, n , max {nt, nr}, and

W =


H†H nt ≤ nr,

HH† nt > nr.

(2.61)

Matrix W has a central complex p-variate Wishart distribution with scale matrix Ip and n

degrees of freedom [8,56,61].

Theorem 2.4 yields the maximum throughput in the asymptotically high SNR regime

MIMO channel by obtaining the optimum transmit covariance matrix Qo.

Theorem 2.4. The optimum transmit strategy maximizing the throughput in the asymptot-

ically high SNR regime MIMO channel is sending independent signals and performing equal

power allocation across all available antennas. The maximum throughput is

Rm
s = max

s
F a

(
npt s

P p−1

)
ln (1 + Ps) (2.62)
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= max
z
Q(z)

z
√√√√π2

6
p−

p−1∑
k=0

n−k−1∑
`=1

1

`2
+ p

(
z(1) + ln

(
P

nt

))
+

p−1∑
k=0

n−k−1∑
`=1

1

`

 , (2.63)

where −z(1) ≈ 0.577215 is the Eüler-Mascheroni constant, a ,
∏p

`=1 a
2
`,`, and a2

`,`,∀` are
independent gamma-distributed with scale 1 and shape n− `+ 1, i.e., fa2`,`

(x) = Γ(n−`+1,x)
(n−`)! .

Proof. Again, we first assume that lt out of nt transmit antennas are active. Then, we

shall see that the optimum solution is lot = nt. Define the index set Z (Q) , {` : q`,` = 0}.
Denote by Qlt the matrix obtained from Q by eliminating of all the `’th rows and columns

with ` ∈ Z (Q). Clearly, Qlt has full rank. We divide the proof into two parts: Part i)

lt ≤ nr, Part ii) lt ≥ nr. We wish to show that in both cases, the throughput is a strictly

increasing function with respect to lt.

Part i):

In high SNR regime, the eigenvalues of QltH
†H are large. The instantanous mutual

information can be well approximated by

I = ln det
(
Ilt + QH†H

)
= ln

lt∏
`=1

(
1 + eig`

(
QH†H

))
≈ ln

lt∏
`=1

(
eig`

(
QltH

†H
))

= ln det
(
QltH

†H
)

= ln detQlt + ln det
(
H†H

)
= ln detQlt + ln detW. (2.64)

Clearly, the CDF of ln detW decreases by the use of more antennas. We shall now
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show that ln detQlt and thereby, I increases with the number of active antennas. It is

straightforward to verify that the solution to the maximization problem max detQlt subject

to tr (Qlt) = P over diagonal matrices is Qlt = P
lt
Ilt . Therfore, Eq. (2.64) is simplified as

follows

I ≈ lt ln

(
P

lt

)
+ ln detW. (2.65)

For P > elt,

∂
(
lt ln

(
P
lt

))
∂lt

= ln

(
P

lt

)
− 1 > 0. (2.66)

As a result, in high SNR regime, the instantaneous mutual information I is strictly increasing

with respect to the number of transmit antennas.

Part ii):

In this case, we approximate the instantaneous mutual information as follows.

I = ln det
(
Inr + HQH†

)
= ln

nr∏
`=1

(
1 + eig`

(
HQH†

))
≈ ln

nr∏
`=1

(
eig`

(
HQltH

†))
= ln det

(
HQltH

†) . (2.67)

Based on Telatar’s conjecture [77], let us assume that the transmitter performs equal
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power allocation on lt out of nt transmit antennas. Therefore,

I ≈ nr ln

(
P

lt

)
+ ln det

(
HH†

)
= nr ln

(
P

lt

)
+ ln detW. (2.68)

In the following, we shall establish that the maximum throughput of the channel is strictly

increasing with respect to lt. From the maximization problem of Eq. (2.47), the maximum

throughput can be equivalently expressed as

Rm
s = max

z
Q(z) (σ(lt, nr)z + µ(lt, nr)) , (2.69)

with

µ(lt, nr) = E (ln detW) + p ln

(
P

lt

)
, (2.70)

σ2(lt, nr) = Var (ln detW) . (2.71)

A central complex Wishart-distributed matrix W satisfies [79]

E (ln detW) =

p−1∑
k=0

z(n− k), (2.72)

Var (ln detW) =

p−1∑
k=0

z′(n− k). (2.73)

For natural arguments, the Eüler’s digamma function and its derivative, i.e., z(m) and

z′(m), can be expressed as

z(m) = z(1) +
m−1∑
`=1

1

`
, (2.74)
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z′(m) =
π2

6
−

m−1∑
`=1

1

`2
, (2.75)

with −z(1) = −Γ′(1) = limm→∞
(∑m

`=1
1
`
− ln(m)

)
≈ 0.577215, often referred to as the

Eüler-Mascheroni constant. Inserting Eq. (2.75) into Eq. (2.73) and then into Eq. (2.71) to

obtain

σ2(lt, nr) =
π2

6
nr −

nr−1∑
k=0

lt−k−1∑
`=1

1

`2
, (2.76)

we see that σ2(lt, nr) is a monotonically decreasing function with respect to lt. Whereas

µ(lt, nr) is a strictly increasing function with respect to both lt and nr as it represents the

ergodic capacity of the high SNR lt × nr MIMO channel. On the other hand, σ2(lt, nr) =∑p−1
k=0 z′(n− k) is a monotonically increasing function with respect to nr, because of the

Basel problem, i.e., limm→∞
∑m

`=1
1
`2

= π2

6
, which verifies that z′(m) ≥ 0.

As the Q-function is upper-bounded by the Chernoff bound, i.e., Q(z) ≤ 1
2
e−

z2

2 , z ≥ 0,

we have for z ≥ 0,

− 1√
2π
e−

z2

2 (σ(lt, nr)z + µ(lt, nr)) + σ(lt, nr)Q(z)

≤ − 1√
2π
e−

z2

2 σ(lt, nr)

(
z +

µ(lt, nr)

σ(lt, nr)
−
√
π

2

)
(a)
< 0, (2.77)

where (a) follows the fact that z ≥ 0 and µ(lt,nr)
σ(lt,nr)

−√π
2
> 0 as P and thereby µ(lt, nr) is large.

From Eqs. (2.49) and (2.77), one immediately finds that zo < 0. Recall from Eq. (2.48),

the maximum throughput is a strictly increasing function with respect to lt because Rm
s is

a strictly increasing function with respect to µ(lt, nr), a monotonically decreasing function

with respect to σ(lt, nr), and zo < 0.

Thus, in both parts, i.e., lt ≤ nr and lt ≥ nr, Rm
s is a strictly increasing function with
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respect to lt. We conclude that in the asymptotically high SNR regime MIMO channel, the

maximum throughput is a strictly increasing function with respect to the number of active

transmit antennas, and hence, lot = nt.

Performing Bartlett decomposition [45, 49], we get W = AA†, where A is a square

lower triangular matrix (left triangular matrix) in the form of

A =



a1,1 0 0 · · · 0

a2,1 a2,2 0 · · · 0

a3,1 a3,2 a3,3 · · · 0

...
...

... . . . ...

ap,1 ap,2 ap,3 · · · ap,p


, (2.78)

where a`,k ∼ CN (0, 1), ` 6= k, and a2
`,`,∀` are independent gamma-distributed with scale 1

and shape n− `+ 1. Clearly, detW = detA× detA† =
∏p

`=1 a
2
`,`.

Therefore, the maximum throughput is

Rm
s = max

s
Pr

{
det

(
P

nt
W

)
≥ Ps

}
ln (1 + Ps)

= max
s

Pr

{
detW ≥ npt s

P p−1

}
ln (1 + Ps)

= max
s

Pr

{
p∏
`=1

a2
`,` ≥

npt s

P p−1

}
ln (1 + Ps) . (2.79)

From Eqs. (2.69) to (2.76), the throughput can also be written as

Rm
s = max

z
Q(z) (σ (nt, nr) z + µ (nt, nr))

= max
z
Q(z)

(
z

√√√√p−1∑
`=0

z′(n− `) + p ln

(
P

nt

)
+

p−1∑
`=0

z(n− `)
)
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= max
z
Q(z)

(
z

√√√√π2

6
p−

p−1∑
k=0

n−k−1∑
`=1

1

`2
+ p

(
z(1) + ln

(
P

nt

))
+

p−1∑
k=0

n−k−1∑
`=1

1

`

)
. (2.80)

Remark 2.8. Since in asymptotically high SNR regime, the outage probability is Schur-

convex with respect to the channel covariance matrix [43], the maximum throughput is a

Schur-concave function of the channel covariance matrix, i.e., channel correlation decreases

the maximum throughput.

2.5.3 Asymptotically Large Number of Antennas

Here, two asymptotic results for large number of transmit antennas and large number of

receive antennas are presented. As pointed out earlier, we can restrict our attention to

diagonal transmit covariance matrices. To prove by contradiction, first we assume that

the optimum transmit covariance matrix is Qo = P
lt
Ilt based on Telatar’s conjecture [77];

next, we shall show that the maximum throughput increases with the number of transmit

antennas and hence, Qo = P
nt
Int . Finally, we formulate the maximum throughput.

In following, Theorems 2.5 and 2.6 yield the maximum throughput of asymptotically

large number of transmit antennas and asymptotically large number of receive antennas,

respectively. In the proof of both theorems, we use the results presented by Hochwald,

Marzetta, and Tarokh [40] which provide us with approximations for mean and variance of

the instantaneous mutual information in the large number of transmit antennas and large

number of receive antennas asymptotes.

Theorem 2.5. In the MIMO channel with asymptotically large number of transmit antennas,

the optimum transmit covariance matrix which maximizes the throughput is Qo = P
nt
Int.
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The maximum throughput of the channel is given by

Rm
s = max

z
Q(z)

(√
nr
nt

P√
1 + P 2

z + nr ln (1 + P )

)
. (2.81)

Proof. According to the results provided in [40], we have

lt →∞⇒


µ (lt, nr) ≈ nr ln (1 + P ) ,

σ2 (lt, nr) ≈ nrP 2

lt(1+P 2)
.

(2.82)

From Eq. (2.82) and noting the Q-function’s Chernoff bound, i.e., Q(z) ≤ 1
2
e−

z2

2 , z ≥ 0,

we have for z ≥ 0,

− 1√
2π
e−

z2

2 (σ (lt, nr) z + µ (lt, nr)) + σ (lt, nr)Q(z)

≤ − 1√
2π
e−

z2

2 σ (lt, nr)

(
z +

µ (lt, nr)

σ (lt, nr)
−
√
π

2

)
(a)
< 0, (2.83)

where (a) comes from the fact that for z ≥ 0,

z +
µ (lt, nr)

σ (lt, nr)
−
√
π

2
≥ µ (lt, nr)

σ (lt, nr)
−
√
π

2

=
√
nrlt

√
1 +

1

P 2
ln(1 + P )−

√
π

2

lt→∞
> 0. (2.84)

Comparing Eqs. (2.49) and (2.83), we have zo < 0. Since µ (lt, nr) does not depend on lt,

σ (lt, nr) is a strictly decreasing functions with respect to lt, and zo < 0, one can conclude

that Rm
s = Q(zo) (σ (lt, nr) z

o + µ (lt, nr)) is a strictly increasing function with respect to lt.

Thus, Qo = P
nt
Int .
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Theorem 2.6. In the MIMO channel with asymptotically large number of receive antennas,

the optimum transmit covariance matrix which maximizes the throughput is Qo = P
nt
Int.

The maximum throughput of the channel is given by

Rm
s = max

z
Q(z)

(√
nt
nr
z + nt ln

(
1 +

nr
nt
P

))
. (2.85)

Proof. As the number of receive antennas goes to infinity, the mean and variance of the

channel mutual information obey [40]

nr →∞⇒


µ (lt, nr) ≈ lt ln

(
1 + nr

lt
P
)
,

σ2 (lt, nr) ≈ lt
nr
.

(2.86)

From Eqs. (2.47) and (2.82), the maximum throughput is

Rm
s = max

z
Q(z)

(√
lt
nr
z + lt ln

(
1 +

nr
lt
P

))
(a)

≥ Q(−√nr)
(
−
√
lt + lt ln

(
1 +

nr
lt
P

))
(b)
> Q(−√nr)

(
− ln

(
1 +

nrP

lt − 1

)
−lt ln

(
1− 1

lt

)
+ lt ln

(
1 +

nr
lt
P

))
(c)
> Q(−√nr)

(
(lt − 1) ln

(
1 +

nr
lt − 1

P

))
(d)

≥
(

1− 1

2
e−

nr
2

)(
(lt − 1) ln

(
1 +

nr
lt − 1

P

))
(e)

nr→∞−→ (lt − 1) ln

(
1 +

nr
lt − 1

P

)
(f)

≥max
z
Q(z)

(√
lt−1

nr
z+(lt−1) ln

(
1+

nr
lt−1

P

))
, (2.87)
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where (a) follows from choosing z = −√nr instead of its optimum value, (b) follows

form
√
lt + lt ln

(
lt
lt−1

)
< ln

(
1 + nrP

lt−1

)
for large values of nr, (c) follows from algebraic

simplifications, (d) follows from the Q-function’s Chernoff bound, (e) follows from

lim
nr→∞

e−
nr
2 ln

(
1 +

nr
lt − 1

P

)
= 0,

and (f) follows from the fact that the maximum throughput is always less than or equal to

the ergodic capacity based on Proposition 2.1.

Equation (2.87) proves that Rm
s is a strictly increasing function with respect to lt, and

hence, Qo = P
nt
Int .

2.6 Two-Transmitter Distributed Antenna Systems

There has been some research in assumption of perfect cooperation between base stations,

and consequently treat them as distributed antennas of one base station [35, 36]. Here,

we investigate a block Rayleigh fading system wherein two uninformed single-antenna

transmitters want to transmit a common message to a single-antenna receiver. Let h1

and h2 denote the fading coefficients of the first transmitter-receiver link and second

transmitter-receiver link, respectively. We assume that h1 and h2 are independent i.i.d.

complex Gaussian random variables, each with zero-mean and equal variance real and

imaginary parts (h1, h2 ∼ CN (0, 1)). We also assume that h1 and h2 are constant during

two consecutive transmission blocks.

We propose a practical distributed algorithm that provides all instantaneous mutual

information distributions which are achievable by treating the transmitters as antennas of

one composed element. Theorem 2.7 proves that the outage probability in a MISO channel

with two transmit antennas is also achievable in this channel.
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Theorem 2.7. The outage probability in a MISO channel with two transmit antennas and

total power constraint P is achievable in a distributed antenna system with two single-

antenna transmitters and one single-antenna receiver, where the total power constraint at

each transmitter is P
2
.

Proof. To prove the statement, first, a general expression for the outage probability in a

2× 1 MISO channel is derived. Afterwards, we shall show that this expression is achievable

in the two-transmitter distributed antennas system.

In the 2× 1 MISO channel, the outage probability for transmission rate R is expressed

as

Pout = Pr
{

ln
(

1 + ~hQ~h†
)
< R

}
, (2.88)

where Q is the transmit covariance matrix. Since Q is non-negative definite, one can write

it as Q = UDU†, where D is non-negative diagonal and U is unitary. As h1 and h2 are

independent complex Gaussian random variables, each with independent zero-mean and

equal variance real and imaginary parts, the distribution of ~hU is the same as that of ~h [77].

Thus, Eq. (2.88) is simplified to

Pout = Pr

{
ln

(
1 +

(
~hU
)
D
(
~hU
)†)

< R

}
= Pr

{
ln
(

1 + ~hD~h†
)
< R

}
. (2.89)

Since U0 = 1√
2

1 1

1 −1

 is unitary, the distribution of ~hU0 is also the same as that of ~h.

43



2.6 Two-Transmitter Distributed Antenna Systems

Inserting into Eq. (2.89) yields

Pout = Pr

{
ln

(
1 +

(
~hU0

)
D
(
~hU0

)†)
< R

}
= Pr

{
ln
(

1 + ~h (U0DU0)~h†
)
< R

}
. (2.90)

Since tr (Q) = tr (D), the total power constraint can be written as tr (D) ≤ P . Without

loss of generality, let us define D , P

δ 0

0 δ

, where 0 ≤ δ ≤ 1 and δ = 1− δ. Inserting

into Eq. (2.90) yields

Pout = Pr

ln

1 + ~h
P

2

 1 2δ − 1

2δ − 1 1

~h†
 < R

 . (2.91)

Defining ρ , 2δ − 1, we get

Pout = Pr

ln

1 + ~h
P

2

1 ρ

ρ 1

~h†
 < R


= Pr

{
ln

(
1 +

(
|h1|2 +|h2|2 + 2ρ<(h1h

∗
2)
) P

2

)
< R

}
. (2.92)

Note that as 0 ≤ δ ≤ 1, we have −1 ≤ ρ ≤ 1.

We shall now show that the outage probability in Eq. (2.92) is achievable in the

two-transmitter distributed antenna system with power constraint P
2
at each transmitter.

The transmission strategy in two consecutive time slots is as follows. In time slot t, the

first (resp. second) transmitter sends X(t) (resp. ρX(t) +
√

(1− ρ2)X(t+ 1)). Note that

X(t) and X(t+ 1) are independent, each with power P
2
. In time slot t+ 1, the first (resp.

second) transmitter sends −X∗(t+ 1) (resp. −ρX∗(t+ 1) +
√

(1− ρ2)X∗(t)). Assuming

E
(
|X|2

)
= P

2
, the power consumption per time slot in each transmitter is P

2
.
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The received signal at the receiver is


Y (t) = h1X(t) + h2

(
ρX(t) +

√
(1− ρ2)X(t+ 1)

)
+ Z(t),

Y (t+ 1) = −h1X
∗(t+ 1) + h2

(
− ρX∗(t+ 1) +

√
(1− ρ2)X∗(t)

)
+ Z(t+ 1).

(2.93)

In matrix form,

 Y (t)

−Y ∗(t+ 1)

 = G

 X(t)

X(t+ 1)

+

 Z(t)

−Z∗(t+ 1)

 , (2.94)

where

G ,

 h1 + h2ρ h2

√
(1− ρ2)

−h∗2
√

(1− ρ2) h∗1 + h∗2ρ

 . (2.95)

By multiplying G† to the both sides of Eq. (2.94), two parallel channels are separated as

 Ỹ (t)

Ỹ (t+ 1)

 = G†

 Y (t)

−Y ∗(t+ 1)

 =
(
|h1 + h2ρ|2 + |h2|2

(
1− ρ2

) )
I2

 X(t)

X(t+ 1)


+ G†

 Z(t)

−Z∗(t+ 1)

 = hI2

 X(t)

X(t+ 1)

+

 Z̃(t)

Z̃(t+ 1)

 , (2.96)

where h , |h1 + h2ρ|2 + |h2|2 (1− ρ2), and Z̃(t) and Z̃(t+ 1) are independent zero mean

complex Gaussian random variables with power equal to E
(∣∣∣Z̃∣∣∣2) = h. Thus, the received
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2.6 Two-Transmitter Distributed Antenna Systems

signal-to-noise ratio (SNR) at the receiver is

h2 P
2

E
(∣∣∣Z̃∣∣∣2) =

(
|h1 + h2ρ|2 + |h2|2

(
1− ρ2

)) P
2

=
(
|h1|2 + |h2|2 + 2ρ< (h1h

∗
2)
) P

2
. (2.97)

Therefore, the outage probability in the proposed scheme is given by

Pout = Pr

{
ln

(
1 +

(
|h1|2 + |h2|2 + 2ρ<(h1h

∗
2)
) P

2

)
< R

}
. (2.98)

Equation (2.92) together with Eq. (2.98) shows that the outage probability in a 2 × 1

MISO channel with any transmit covariance matrix is also achievable in the two-transmitter

distributed antenna system.

Remark 2.9. To achieve the minimum outage probability in Theorem 2.7, the optimum

solution to δ is either 1 or 1
2
, depending on R and P . Equivalently, in the two-transmitter

distributed antennas, the optimum value of ρ is either 1 or 0. This remark is an special

case of [47].

Note that for ρ = 0, the proposed transmission scheme in the two-transmitter distributed

antenna system is equivalent to the Alamouti code [7].

Remark 2.10. Since the outage probability is the CDF of the instantaneous mutual infor-

mation, one concludes that any achievable instantaneous mutual information distribution

in the 2× 1 MISO channel is also achievable in this two-transmitter distributed antenna

system.

Remark 2.11. Based on Theorem 2.7, the maximum throughput in the two-transmitter
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2.6 Two-Transmitter Distributed Antenna Systems

distributed antenna system with total power constraint P
2
at each transmitter is the same

as that of a 2× 1 MISO channel with total power constraint P . By substituting nt = 2 in

Eq. (2.12), the maximum throughput is given by

Rm
s = max

0<s<1
(1 + 2s)e−2s ln (1 + Ps) . (2.99)

Remark 2.12. In a similar approach, it can be shown that the maximum expected-rate as

well as the ergodic capacity of this two-transmitter distributed antenna system and the 2× 1

MISO channel are the same.

Based on Theorem 2.7 and recall from Theorem 2.3 with nt = 2, we come up with the

following Corollary.

Corollary 2.2. The maximum continuous-layer expected-rate of the distributed antenna

system with two transmitters each with total power P
2
is

Rm
c = 3E1(s0) + (1− s0)e−s0 − 3E1(s1)− (1− s1)e−s1 , (2.100)

where s1 = 1+
√

5
2

, and s0 =
3
√√

A2 −B3 + A+ B
3
√√

A2−B3+A
− 2

3P
with A = 1

P
− 2

3P 2 − 8
27P 3

and B = 2
3P

+ 4
9P 2 .

From Proposition 2.3, the ergodic capacity in this channel is

Cerg = 1 +

(
1− 2

P

)
e

2
P E1

(
2

P

)
. (2.101)

Maximum throughput (red dashed-dotted line), maximum two-layer expected-rate

(blue dashed line), maximum continuous-layer expected-rate (black solid line), and ergodic

capacity (purple circle-marked line) in the two-transmitter distributed antenna system are

depicted in Fig. 2.3.
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Figure 2.3: Maximum throughput, maximum two-layer expected-rate, maximum continuous-
layer expected-rate, and ergodic capacity (all in nats) in the two-transmitter distributed
antenna system with total power constraint P

2
at each transmitter.
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Chapter 3

A Broadcast Approach to the Diamond

Channel

3.1 Network Model

Let us first restate the network model. As Fig. 3.1 shows, the destination receives data via

two parallel relays and there is no direct link between the source and the destination. The

source transmits a signal X subject to the total power constraint Ps, i.e., E
(
|X|2

)
≤ Ps,

and the received signal at the `’th relay is denoted by

Yr` = hr`X + Zr` , ` = 1, 2 (3.1)

The i.i.d. AWGN at the `’th relay is represented by Zr` ∼ CN (0, 1), and hr` ∼ CN (0, 1) is

the channel coefficient from the source to the `’th relay. The `’th relay forwards a signal

Xr` to the destination under the total power constraint Pr, i.e., E
(
|Xr` |2

)
≤ Pr, ` = 1, 2.
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3.2 Decode-Forward Relays

Figure 3.1: Network model of dual-hop transmission from a single-antenna source to
single-antenna destinations via two single-antenna relays.

The received signal at the destination is

Y = h1Xr1 + h2Xr2 + Z, (3.2)

where Z ∼ CN (0, 1) is the i.i.d. AWGN and h` ∼ CN (0, 1) is the channel coefficient from

the `’th relay to the destination. All hr` and h` are assumed to be constant during two

consecutive transmission blocks. Obviously, channel gains a` = |h`|2 and ar` = |hr` |2 have

exponential distribution.

Note that the source as well as both relays and the destination are equipped with one

antenna. We assume that the relays operate in a full-duplex mode and they are not capable

of buffering data over multiple coding blocks or rescheduling tasks. Since there is no link

between the relays, the half-duplex mode is a direct result of the full-duplex mode with

frequency or time division [91]. Throughout this chapter, we assume that E
(
|Xi|2

)
= 1, ∀i.

3.2 Decode-Forward Relays

In order to enhance the lucidity of this section, single-layer coding is studied first. The

idea is then extended to multi-layer coding. Since the continuous-layer expected-rate of
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3.2 Decode-Forward Relays

this scheme is a seemingly intractable problem, a finite-layer coding scenario is analyzed in

Section 3.2.2.

3.2.1 Single-Layer Coding

In single-layer coding, a signal X = γX1 with power Ps and rate R = ln(1 + Pss) is

transmitted, where γ2 = Ps. The `’th relay decodes and forwards the received signal in

case ar` ≥ s. If ar` < s, then ar` is replaced by zero. The coding scheme at the relays is

a distributed block space-time code in the Alamouti code sense [7]. At time t, the first

relay sends αX1(t) while the other relay sends βX1(t + 1). To satisfy the relays power

constraint, it is required that α2 = β2 = Pr. At time t+ 1, the first and the second relays

send −αX∗1 (t+ 1) and βX∗1 (t), respectively. The relay with ar` < s simply sends nothing.

Applying the Alamouti decoding procedure and decomposing into two parallel channels,

the throughput is given by

RD,s =

[
Pr {ar1 ≥ s}Pr {ar2 ≥ s}Pr

{
a1 + a2 ≥ s

Ps
Pr

}
+ Pr {ar1 ≥ s}Pr {ar2 < s}Pr

{
a1 ≥ s

Ps
Pr

}
+ Pr {ar1 < s}Pr {ar2 ≥ s}Pr

{
a2 ≥ s

Ps
Pr

}]
ln(1 + Pss). (3.3)

The first term in the right-hand-side of Eq. (3.3) represents the case of decoding the signal

at both relays and the destination. The second and third terms represent the probability of

decoding the signal at only one relay and the destination. Substituting the channel gain

CDFs in (3.3), the throughput is given by

RD,s =

(
Ps
Pr
se−s − e−s + 2

)
e−s(

Ps
Pr

+1) ln(1 + Pss). (3.4)

51



3.2 Decode-Forward Relays

Theorem 3.1 proves the optimality of the above scheme and presents the maximum

throughput of the channel.

Theorem 3.1. In the proposed single-layer DF, the maximum throughput is achieved by

sending uncorrelated signals on the relays. the maximum throughput is given by

Rm
D,s = max

0<s<st

(
Ps
Pr
se−s − e−s + 2

)
e−s(

Ps
Pr

+1) ln(1 + Pss), (3.5)

where st = min
{

2Pr
Ps
, 1.212

}
.

Proof. Without loss of generality, consider Q , Pr

1 ρ

ρ 1

 as the relays transmit covariance

matrix. Therefore, E
(
Xr1X

∗
r2

)
= ρPr. In the following, we shall show that ρo = 0. Let us

define F (s) as follows

F (s) , Pr {ar1 ≥ s}Pr {ar2 ≥ s}Pr

{
a ≥ s

Ps
Pr

}
+ Pr {ar1 ≥ s}Pr {ar2 < s}Pr

{
a1 ≥ s

Ps
Pr

}
+ Pr {ar1 < s}Pr {ar2 ≥ s}Pr

{
a2 ≥ s

Ps
Pr

}
, (3.6)

where a , 1
Pr
~hQ~h† and ~h ,

[
h1 h2

]
. The maximum throughput of the diamond channel

in general form is

Rm
D,s = max

s,−1≤ρ≤1
F (s) ln(1 + Pss). (3.7)

The only term in F (s) which depends on ρ is Pr
(
a ≥ sPs

Pr

)
. Since Q is non-negative definite,

one can write it as Q = UDU†, where D = Pr

1 + ρ 0

0 1− ρ

 is non-negative diagonal and
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U = 1√
2

1 1

1 −1

 is unitary. Since h1 and h2 are independent complex Gaussian random

variables, each with independent zero-mean and equal variance real and imaginary parts,

the distribution of ~hU is the same as that of ~h [77]. Thus,

Pr

{
a ≥ s

Ps
Pr

}
= Pr

{
~hQ~h† ≥ Pss

}
= Pr

{(
~hU
)
D
(
~hU
)†
≥ Pss

}
= Pr

{
~hD~h† ≥ Pss

}
. (3.8)

The last expression in Eq. (3.8) corresponds to the complementary CDF in MISO

channels. Abbe et al. [3] proved that in an uncorrelated MISO channel with no CSI at

the transmitter, but perfect CSI at the receiver, for every transmission rate, the optimal

transmit strategy minimizing the outage probability is to use a fraction of all available

transmit antennas and perform equal power allocation with uncorrelated signals. Therefore,

the solution of max−1≤ρ≤1 Pr
{

ln
(

1 + ~h′D~h†
)
≥ ln(1 + Pss)

}
is ρ = 0 or ρ = 1.

Defining

sc , −
(

2W−1

( −1

2
√
e

)
+ 1

)
Pr
Ps
≈ 2.5129

Pr
Ps
, (3.9)

where W−1 (·) is the -1 branch of the Lambert W-function [17, 18], one can show that if

s ≤ sc, then

F ρ=0(s) ≥ F ρ=1(s). (3.10)

In the remainder of the proof, we shall show that in case ρ = 1, so ≤ sc. Then, as ∀s ≤ sc,

F ρ=0(s
o) ≥ F ρ=1(s

o), it implies ρo = 0, i.e., the optimum correlation coefficient between
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3.2 Decode-Forward Relays

the relay signals maximizing the throughput of DF diamond channel is zero.

Assume that so maximizes R(s) = F ρ=1(s) ln (1 + Pss). Hence, R′(so) = 0. Defining

fρ=1(s) = −F ′ρ=1(s), we get

R′(s) = F ρ=1(s)
Ps

1 + Pss
− fρ=1(s) ln (1 + Pss) . (3.11)

Let us define g (s, Ps) = ln (1 + Pss)
1+Pss
Ps and r(s) = F ρ=1(s)

fρ=1(s)
. As such, we get


R′(s) > 0 iff r(s) > g (s, Ps) ,

R′(s) = 0 iff r(s) = g (s, Ps) ,

R′(s) < 0 iff r(s) < g (s, Ps) .

(3.12)

Noting F ρ=1(s) =
(
e−s + 2 (1− e−s) e−PsPr s2

)
e−(1+ Ps

2Pr
)s, we have

r(s) =
e−s + 2(1− e−s)e−s Ps2Pr(

2 + Ps
2Pr

)
e−s + 2

(
1 + Ps

Pr

)
e−s

Ps
2Pr − 2

(
2 + Ps

Pr

)
e−se−s

Ps
2Pr

. (3.13)

It can be shown that as far as s ≥ st = min
{

2Pr
Ps
, 1.212

}
, we have

r(s) < s, ∀s ≥ st. (3.14)

The derivative of g (s, Ps) over Ps is

∂g (s, Ps)

∂Ps
=
sPs − ln (1 + sPs)

P 2
s

=
1

P 2
s

ln

(
1 +

1

1 + sPs

∞∑
k=2

(sPs)
k

k!

)
≥ 0. (3.15)

Therefore, g (s, Ps) is a monotonically increasing function of Ps and its minimum is in
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Ps = 0. As a result,

g (s, Ps) > lim
Ps→0

ln (1 + Pss)
1+Pss
Ps = s. (3.16)

Comparing Eq. (3.14), Eq. (3.16), r(0) = 2Pr
Ps

> 0 and g (0, Ps) = 0 yields

 r(s) > g (s, Ps) s = 0,

r(s) < g (s, Ps) s ≥ st.
(3.17)

Applying Eq. (3.17) to Eq. (3.12) gives

 R′(s) > 0 s = 0,

R′(s) < 0 s ≥ st.
(3.18)

As R(s) is a continuous function, according to Eq. (3.18), 0 < so < st. Noting st < sc,

Eq. (3.10) yields F ρ=0(so) > F ρ=1(so) and as a result, ρo = 0 and a = a1 + a2. Substituting

the channel gain CDFs in Eq. (3.6), the maximum throughput of the DF diamond channel

is given by Eq. (3.5), which is achievable by applying the aforementioned distributed

space-time code.

3.2.2 Finite-Layer Coding

For the lucidity of this section, the encoding and decoding procedures are presented sparately.
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Encoding Procedure

The transmitter sends a K-layer code X =
∑K

i=1 γiXi to the relays, where γ2
i represents

the power allocated to the i’th layer with rate

Ri = ln

(
1 +

γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
. (3.19)

The relays start decoding the received signal from the first layer up to the layer that their

backward channel conditions allow. Then, the relays re-encode and forward the decoded

layers to the destination. To design the transmission strategy, we first state Theorem 3.2.

Theorem 3.2. In multi-layer DF, if the layers’ power distribution in the first relay is equal

to that of the second relay, the relay signals must be uncorrelated in order to achieve the

maximum expected-rate.

Proof. Analogous to the proof of Theorem 3.1, let us define

Pi , F ar1
(si)F ar2

(si)Pi,1,2

+ F ar1
(si)Far2

(si)Pi,1 + Far1
(si)F ar2

(si)Pi,2, (3.20)

where Pi,1,2, Pi,1, and Pi,2 are the probability of decoding the i’th layer at the destination

successfully when both relays, only the first relay, and only the second relay decode the

signal, respectively. The expected-rate of the i’th layer can be written as

Ri(s) = Pi ln
(

1 +
γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
. (3.21)

The only term in Eq. (3.20) which depends on the transmit strategy at the relays is

Pi,1,2. We denote Qi as the transmit covariance matrix of the relays in the i’th layer. So
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that,

Pi,1,2 = Pr

{
1 +

~hQi
~h†

1 + ~h
∑K

j=i+1 Qj
~h†
≥ eRi

}
. (3.22)

Analogous to the proof of Theorem 3.1, by decomposing Qi and
∑K

j=i+1 Qj , and noting the

fact that multiplying ~h by any unitary matrix does not change the distribution of ~h, we get

Pi,1,2 = Pr


1 +

Pi~h

1 + ρi 0

0 1− ρi

~h†
1 + Ii~h

1 + ρ̂i 0

0 1− ρ̂i

~h†
≥ eRi


. (3.23)

It can be shown that the optimum solutions for ρ and ρ̂ to minimize Pi,1,2 in Eq. (3.23)

is either ρi = ρ̂i = 0 or ρi = ρ̂i = 1. We shall now show that the optimum solution is

ρoi = ρ̂oi = 0. Towards this, we follow the same general outline to the proof of Theorem 3.1.

Let us define the following functions,

g (si, Pi, Ii) =
(1 + Iisi) (1 + (Ii + Pi) si)

Pi
ln

(
1 +

Pisi
1 + Iisi

)
, (3.24)

r(si) = − PidPi
dsi

. (3.25)

One can simply show that Eqs. (3.12) and (3.14) still hold by redefining the functions as

above, and with s replaced by si.

Defining P̂ , Pi
1+Iisi

, from Eq. (3.16) and noting Iisi ≥ 0, we have

g (si, Pi, Ii) = (1 + Iisi)

(
1 + Pisi

1+Iisi

)
Pi

1+Iisi

ln

(
1 +

Pisi
1 + Iisi

)
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≥

(
1 + Pisi

1+Iisi

)
Pi

1+Iisi

ln

(
1 +

Pisi
1 + Iisi

)

= ln
(

1 + P̂ si

) (1+P̂ si)
P̂

> si. (3.26)

Therefore, Eqs. (3.17) and (3.18) still hold with the above functions, and then, 0 < soi < st.

Noting st < sc results because as pointed out earlier Pi,ρ=0(soi ) > Pi,ρ=1(soi ).

With respect to Theorem 3.2, the following transmission scheme is proposed. Assume

that the first and the second relays decode M and N layers out of the whole K transmitted

layers, respectively, according to their corresponding backward channel. As the relays

do not know the channel of the other relay, and hence, do not know the layers’ power

distribution in the other relay, its code construction is based on a similar power distribution

assumption for the other relay. Theorem 3.2 demonstrates that uncorrelated signals must

be transmitted over the relays. For this purpose, the following scheme is proposed. At

time t, the first relay sends
∑K

i=1 αiXi(t) while the other relay sends
∑K

i=1 βiXi(t + 1).

At time t+ 1, the first and the second relays send
∑K

i=1−αiX∗i (t+ 1) and
∑K

i=1 βiX
∗
i (t),

respectively. Note that
∑M

i=1 α
2
i = Pr, αi = 0 for i = M + 1, ..., K and

∑N
i=1 β

2
i = Pr, βi = 0

for i = N + 1, ..., K.

The received signal at the destination is


Y (t) = h1

∑K
i=1 αiXi(t) + h2

∑K
i=1 βiXi(t+ 1) + Z(t),

Y (t+ 1) = −h1

∑K
i=1 αiX

∗
i (t+ 1) + h2

∑K
i=1 βiX

∗
i (t) + Z(t+ 1).

(3.27)

58



3.2 Decode-Forward Relays

One may express a matrix representation for Eq. (3.27) as

 Y (t)

−Y ∗(t+ 1)

 =
K∑
i=1

 h1αi h2βi

−h∗2βi h∗1αi

 Xi(t)

Xi(t+ 1)

+

 Z(t)

−Z∗(t+ 1)

 . (3.28)

Decoding procedure

The destination starts decoding the code layers in order, from the first layer up to the

highest layer that is decodable. To decode the i’th layer, after decoding the first i− 1 layers,

the channels are separated into two parallel channels by multiplying both sides of Eq. (3.28)

by

h∗1αi −h2βi

h∗2βi h1αi

. Therefore,
 Ỹ (t)

Ỹ (t+ 1)

 =

a1α
2
i + a2β

2
i 0

0 a1α
2
i + a2β

2
i

 Xi(t)

Xi(t+ 1)


+

K∑
j=i+1

h∗1αi −h2βi

h∗2βi h1αi

 h1αj h2βj

−h∗2βj h∗1αj

 Xj(t)

Xj(t+ 1)

+

 Z̃(t)

Z̃(t+ 1)

 . (3.29)

Z̃(t) and Z̃(t+ 1) are two independent i.i.d AWGN, each with power a1α
2
i + a2β

2
i .

The interference power caused by upper layers while decoding the i’th layer is

Ii =
K∑

j=i+1

(
(a1αiαj + a2βiβj)

2 + a1a2 (αiβj − αjβi)2)
=
(
a1α

2
i + a2β

2
i

) K∑
j=i+1

(
a1α

2
j + a2β

2
j

)
. (3.30)
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Thus, the probability that the i’th layer can be successfully decoded at the destination is

Pi = Pr

 a1α
2
i + a2β

2
i

1 +
∑K

j=i+1

(
a1α2

j + a2β2
j

) ≥ γ2
i si

1 +
∑K

j=i+1 γ
2
j si

 . (3.31)

Hence, the achievable expected-rate using this scheme can be written as

RD,f =
K∑
i=1

Pi ln
(

1 +
γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
. (3.32)

To summarize, we have shown the following.

Theorem 3.3. In the diamond channel, the above result implies that the following expected-

rate is achievable.

Rm
D,f = max

si,γi,αi,βi

K∑
i=1

Pi ln
(

1 +
γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
, (3.33)

with Pi = Pr

{
|h1|2α2

i+|h2|
2β2
i

1+
∑K
j=i+1(|h1|

2α2
j+|h2|

2β2
j )
≥ γ2i si

1+
∑K
j=i+1 γ

2
j si

}
. The maximization is subject to∑K

i=1 γ
2
i = Ps,

∑K
i=1 α

2
i =

∑K
i=1 β

2
i = Pr, where αi and βi are zero for the layers which are

not decoded at the relays. Note that αis and βis are optimized separately.

Remark 3.1. One important feature of the proposed scheme is that the layers being decoded

at both relays are added coherently at the destination although each relay has no information

about the number of layers being successfully decoded by the other relay.

3.3 Amplify-Forward Relays

A simple but efficient relaying solution for the diamond channel is to amplify and forward

the received signals. In order for the destination to coherently decode the signals, it

employs a distributed space-time code permutation along with the threshold-based ON/OFF
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power scheme, which has been shown that improves the performance of AF relaying [41].

According to the ON/OFF concept, any relay whose backward channel gain is less than

a pre-determined threshold, namely ath, is silent. In this scheme, the relays transmit the

signals to the destination in two consecutive time slots. In time slot t, the first (resp. second)

relay transmits c1Yr1(t) (resp. c2Yr2(t+ 1)). In time slot t+ 1, the first (resp. second) relay

transmits −c1Y
∗
r1

(t+ 1) (resp. c2Y
∗
r2

(t)) with the backward channel phase compensation [41].

To satisfy the relays’ power constraint, it is required that c` =

√
U(ar`−ath)Pr

ar`Ps+1
, ` = 1, 2,

where U(·) is the unit step function. At the destination, the channels are parallelized using

the Alamouti decoding procedure [7]. The received signal at the destination is


Y (t) = c1h1Yr1(t) + c2h2Yr2(t+ 1) + Z(t),

Y (t+ 1) = −c1h1Y
∗
r1

(t+ 1) + c2h2Y
∗
r2

(t) + Z(t+ 1).

(3.34)

As the destination accesses the backward channels, after compensating the phases of hr1

and hr2 into h∗r1 and h∗r2 in time slot t+ 1, we get

 Y (t)

−Y ∗(t+ 1)

 =

 hr1h1c1 hr2h2c2

−h∗r2h∗2c2 h∗r1h
∗
1c1

 X(t)

X(t+ 1)


+

 c1h1Zr1(t) + c2h2Zr2(t+ 1) + Z(t)

c1h
∗
1Zr1(t+ 1)− c2h

∗
2Zr2(t)− Z∗(t+ 1)

 . (3.35)

Multiplying

 hr1h1c1 hr2h2c2

−h∗r2h∗2c2 h∗r1h
∗
1c1

† to both sides of Eq. (3.35), two channels are paral-

lelized, and the source-destination instantaneous mutual information is

I (X;Y ) = ln

(
1 +

(|hr1h1|2c2
1 + |hr2h2|2c2

2)Ps
1 + |h1|2c2

1 + |h2|2c2
2

)
, (3.36)
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which is equivalent to a point-to-point channel with the following channel gain,

aAF,2 ,
Pr

ar1Ps+1
ar1a1 + Pr

ar2Ps+1
ar2a2

1 + Pr
ar1Ps+1

a1 + Pr
ar2Ps+1

a2

. (3.37)

If one relay is silent and only one relay transmits, let say the `’th relay, by replacing zero

instead of one of the channel gains into Eq. (3.37), we get

aAF,1 ,
ar`a`Pr

1 + ar`Ps + a`Pr
. (3.38)

The expected value of the optimum ON/OFF threshold in which aAF,2 > aAF,1 is given by

ath =
Pr

1 + Ps + Pr
. (3.39)

Proposition 3.1 yields the maximum achievable throughput in this method.

Proposition 3.1. The maximum achievable throughput in the above AF scheme is specified

by

Rm
A,s = max

s
e−

Pr
1+Ps+Pr

(
e−

Pr
1+Ps+Pr F aAF,2(s)

+2
(

1− e− Pr
1+Ps+Pr

)
F aAF,1(s)

)
ln(1 + Pss), (3.40)

where FaAF,2(·) and FaAF,1(·) are the CDFs of aAF,2 and aAF,1 from Eqs. (3.37) and (3.38),

respectively.

The maximum continuous-layer expected-rate of the above AF relaying is presented in

Theorem 3.4.
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Theorem 3.4. The maximum achievable expected-rate in the above AF relaying is given by

Rm
A,c = e−

Pr
1+Ps+Pr

(
2− e− Pr

1+Ps+Pr

)∫ s1

s0

F (s)

(
2

s
+
f ′(s)

f(s)

)
ds, (3.41)

with

F (s) ,
2
(
e

Pr
1+Ps+Pr − 1

)
FaAF,1(s) + FaAF,2(s)

2e
Pr

1+Ps+Pr − 1
, (3.42)

f(s) , F ′(s). (3.43)

The integration limits are the solutions to F (s0) = s0(1 + Pss0)f(s0) and F (s1) = s1f(s1),

respectively.

Proof. The maximum achievable expected-rate at the destination can be expressed by

Rm
A,c = 2e−ath

(
1− e−ath

)
Rm

1 + e−2athRm
2

= e−ath
(
2− e−ath

)(2 (1− e−ath)

2− e−ath R
m
1 +

e−ath

2− e−athR
m
2

)
, (3.44)

where Rm
1 and Rm

2 are the maximum expected-rates when only one relay is active and both

relays are active, respectively. According to [67], Rm
1 and Rm

2 are given by

Rm
1 = max

I(s)

∫ ∞
0

F aAF,1(s)
−sI ′(s)

1 + sI(s)
ds,

Rm
2 = max

I(s)

∫ ∞
0

F aAF,2(s)
−sI ′(s)

1 + sI(s)
ds. (3.45)

Substituting the above equations in Eq. (3.44), we get

Rm
A,c = max

I(s)
e−ath

(
2− e−ath

) ∫ ∞
0

(
1− 2 (1− e−ath)

2− e−ath FaAF,1(s)
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− e−ath

2− e−athFaAF,2(s)

) −sI ′(s)
1 + sI(s)

ds. (3.46)

Defining

F (s) ,
2 (1− e−ath)

2− e−ath FaAF,1(s) +
e−ath

2− e−athFaAF,2(s), (3.47)

the maximum expected-rate of the proposed AF scheme is found by

Rm
A,c = max

I(s)
e−ath

(
2− e−ath

) ∫ ∞
0

F (s)
−sI ′(s)

1 + sI(s)
ds. (3.48)

Substituting ath by Pr
1+Ps+Pr

and maximizing over I(s) by solving the corresponding Eüler

equation [33], we come up with the maximum expected-rate as

Rm
A,c = e−

Pr
1+Ps+Pr

(
2− e− Pr

1+Ps+Pr

)∫ s1

s0

F (s)

(
2

s
+
f ′(s)

f(s)

)
ds, (3.49)

where s0 and s1 are the solutions to F (s0) = s0(1 + Pss0)f(s0) and F (s1) = s1f(s1),

respectively, and f(s) , F ′(s).

Remark 3.2. In the above results, the power constraint Pr has been applied only to the

time slots when the relays are ON. Alternatively, one can assume that the relays have the

ability to save their power while working in the OFF state and consume it in the ON state.

In this case, all the above calculations in Theorem 3.4 hold except for the integration limit

s0 which is now the solution to F (s0) = s0(1 + e
Pr

1+Ps+Pr Pss0)f(s0).
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3.4 Hybrid Decode-Amplify-Forward Relays

In this section, we propose a DAF relaying strategy which takes advantage of amplifying

the layers that could not be decoded at the relays in the DF scheme. Specifically, each

relay tries to decode as many layers as possible and forward them by spending a portion of

its power budget. The remaining power is dedicated to amplifying and forwarding the rest

of the layers. This method is indeed completely different from another method with similar

name in [10,15].

In order to enhance the lucidity of this section, single-layer coding is studied first. The

idea is then extended to multi-layer coding. As the continuous-layer expected-rate of this

scheme is a seemingly intractable problem, a finite-layer coding scenario is analyzed.

3.4.1 Maximum Throughput

Here, a single-layer code X = γX1 with power Ps, i.e., γ2 = Ps, and rate R = ln(1 +Pss) is

transmitted. If ar` ≥ s, then the `’th relay decodes the signal and forwards it, otherwise, it

amplifies and forwards the signal to the destination. In time slot t, the first (resp. second)

relay transmits Xr1(t) (resp. Xr2(t+ 1)). In time slot t+ 1, the first (resp. second) relay

transmits −X∗r1(t+ 1) (resp. X∗r2(t)) with the backward channel phase compensation on the

amplified layers. There are three possibilities:

1. ar1 ≥ s and ar2 ≥ s: both relays decode the signal. In this case DAF is simplified to

DF in Section 3.2.

2. ar1 < s and ar2 < s: none of the relays decodes the signal. This case is simplified to

AF in Section 3.3.

3. ar1 ≥ s, ar2 < s or ar1 < s, ar2 ≥ s: only one relay decodes the signal.
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In the third case, without loss of generality, assume that the first relay decodes the signal

and the second relay does not decode it, i.e., ar1 ≥ s, ar2 < s. Hence, Xr1(t) = αX1(t)

and Xr2(t) = c2Yr2(t) = c2 (hr2γX1(t) + Zr2(t)), where α2 = Pr and c2 =
√

Pr
ar2Ps+1

. At the

destination, we have


Y (t) = h1αX1(t) + h2c2hr2γX1(t+ 1) + h2c2Zr2(t+ 1) + Z(t),

Y (t+ 1) = −h1αX
∗
1 (t+ 1) + h2c2h

∗
r2
γX∗1 (t) + h2c2Z

∗
r2

(t) + Z(t+ 1).

(3.50)

After compensating the phase of hr2 into h∗r2 in time slot t+ 1, we get

 Y (t)

−Y ∗(t+ 1)

 =

 h1α hr2h2c2γ

−h∗r2h∗2c2γ h∗1α

 X1(t)

X1(t+ 1)

+

 c2h2Zr2(t+ 1) + Z(t)

−c2h
∗
2Zr2(t)− Z∗(t+ 1)

 .
(3.51)

Multiplying

 h1α hr2h2c2γ

−h∗r2h∗2c2γ h∗1α

† to both sides of Eq. (3.51), two channels are paral-

lelized, and the source-destination instantaneous mutual information is

I (X;Y ) = ln

(
1 +

(|h1|2α2 + |hr2h2|2c2
2γ

2)

1 + |h2|2c2
2

)
. (3.52)

A comparison of this method and the DF scheme reveals that if ar2 >
Pr
Ps
a1, then DAF

outperforms DF, otherwise, we switch to DF, that is the second relay becomes silent. Since

the relays have no information about the other relay and thereby, do not know the relaying

protocol, the threshold value is optimized. As a result, the amplification coefficient of DAF

can be written as c` =

√
U(ar`−ath)Pr

ar`Ps+1
. It can be shown that the maximum throughput of

this scheme is given by the following proposition.

Proposition 3.2. The maximum throughput of the proposed hybrid decode-amplify-forward

66



3.4 Hybrid Decode-Amplify-Forward Relays

relaying is given by

Rm
DA,s = max

s,ath

[(
e−ath − e−s

)2
F aAF,2(s) + 2

(
e−ath − e−s

) (
1− e−ath

)
F aAF,1(s)

+ 2e−s
(
e−ath − e−s

)
F aDAF

(
s
Ps
Pr

)
+ 2

(
1− e−ath

)
e−s(1+Ps

Pr
)

+

(
1 + s

Ps
Pr

)
e−s(2+Ps

Pr
)
]

ln(1 + Pss), (3.53)

where aDAF , a1+ar2Ps(a1+a2)

1+ar2Ps+a2Pr
, and aAF,2 and aAF,1 are from Eqs. (3.37) and (3.38), respec-

tively.

3.4.2 Maximum Finite-Layer Expected-Rate

Since continuous-layer coding for DAF relaying can not be directly solved by variations

methods, we choose a finite-layer code and proceed as follows. In the finite-layer broadcast

approach, the source transmits a K layer code X =
∑K

i=1 γiXi to the relays, where γ2
i

represents the power allocated to the i’th layer with rate

Ri = ln

(
1 +

γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
. (3.54)

Each relay decodes its received signal from the first layer up to the layer that its backward

channel conditions allow and forwards them to the destination. Afterwards, each relay

amplifies and forwards the remaining undecoded layers.

Suppose that the first and second relays allocate portions ξPr and ζPr of their power to

the decoded layers, respectively. Also, assume that the first and second relays respectively

decode M and N layers out of the K transmitted layers. Without loss of generality, assume

M ≥ N . Denote by α2
i (resp. β2

i ) the power allocated to the i’th layer at the first (resp.

second) relay. The amplifying coefficients are c1 =

√
ξPr

ar1
∑K
i=M+1 γ

2
i +1

for the first relay and
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c2 =

√
ζPr

ar2
∑K
i=N+1 γ

2
i +1

for the second relay. Note that ξ = 1− ξ and ζ = 1− ζ. Let us define
αi , hr1c1γi for i = M + 1, ..., K and βi , hr2c2γi for i = N + 1, ..., K. The coding scheme

is as follows. At time t, the first relay sends
∑K

i=1 αiXi(t) + c1Zr1(t) while the other relay

sends
∑K

i=1 βiXi(t+ 1) + c2Zr2(t+ 1). At time t+ 1, the first and the second relays send∑K
i=1−αiX∗i (t+ 1)− c1Z

∗
r1

(t+ 1) and
∑K

i=1 βiX
∗
i (t) + c2Z

∗
r2

(t), respectively.

The received signal at the destination is



Y (t) = h1

∑K
i=1 αiXi(t) + h2

∑K
i=1 βiXi(t+ 1)

+h1c1Zr1(t) + h2c2Zr2(t+ 1) + Z(t),

Y (t+ 1) = −h1

∑K
i=1 αiX

∗
i (t+ 1) + h2

∑K
i=1 βiX

∗
i (t)

−h1c1Z
∗
r1

(t+ 1) + h2c2Z
∗
r2

(t) + Z(t+ 1).

(3.55)

One may express a matrix representation for Eq. (3.55) as

 Y (t)

−Y ∗(t+ 1)

 =
K∑
i=1

 h1αi h2βi

−h∗2β∗i h∗1α
∗
i

 Xi(t)

Xi(t+ 1)


+

 h1c1Zr1(t) + h2c2Zr2(t+ 1) + Z(t)

h∗1c1Zr1(t+ 1)− h∗2c2Zr2(t)− Z∗(t+ 1)

 . (3.56)

The destination starts decoding the code layers in order, from the first layer up to the

highest layer that is decodable. To decode the i’th layer, after decoding the first i− 1 layers,

the channels are separated into two parallel channels by multiplying both sides of Eq. (3.56)
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by

 h1αi h2βi

−h∗2β∗i h∗1α
∗
i

†. Therefore,
 Ỹ (t)

Ỹ (t+ 1)

 =

a1|αi|2 + a2|βi|2 0

0 a1|αi|2 + a2|βi|2

 Xi(t)

Xi(t+ 1)


+

K∑
j=i+1

h∗1α∗i −h2βi

h∗2β
∗
i h1αi

 h1αj h2βj

−h∗2β∗j h∗1α
∗
j

 Xj(t)

Xj(t+ 1)

+

 Z̃(t)

Z̃(t+ 1)

 . (3.57)

Z̃(t) and Z̃(t+ 1) are two independent i.i.d. AWGN, each with power:

(
a1|αi|2 + a2|βi|2

) (
1 + a1c

2
1 + a2c

2
2

)
.

The interference power caused by upper layers while decoding the i’th layer is

Ii =
K∑

j=i+1

(∣∣a1α
∗
iαj + a2βiβ

∗
j

∣∣2 + a1a2

∣∣α∗iβj − α∗jβi∣∣2)
=
(
a1|αi|2 + a2|βi|2

) K∑
j=i+1

(
a1|αj|2 + a2|βj|2

)
. (3.58)

Thus, the probability that the i’th layer can be correctly decoded at the destination is

Pi = Pr

{
a1|αi|2 + a2|βi|2

1 + a1c2
1 + a2c2

2 +
∑K

j=i+1 (a1|αj |2 + a2|βj |2)
≥ γ2

i si

1 +
∑K

j=i+1 γ
2
j si

}
, (3.59)

Hence, the expected-rate at the destination using this scheme can be written as

RDA,f =
K∑
i=1

Pi ln
(

1 +
γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
. (3.60)

To summarize, we have shown the following.
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Theorem 3.5. The maximum achievable expected-rate in the proposed DAF relaying is

given by

Rm
DA,f = max

ξ,ζ,si,γi,αi,βi

K∑
i=1

Pi ln
(

1 +
γ2
i si

1 +
∑K

j=i+1 γ
2
j si

)
, (3.61)

where

Pi = Pr

{
a1|αi|2 + a2|βi|2

1 + a1c2
1 + a2c2

2 +
∑K

j=i+1 (a1|αj |2 + a2|βj |2)
≥ γ2

i si

1 +
∑K

j=i+1 γ
2
j si

}
, (3.62)

and αi = hr1

√
ξPr

ar1
∑K
j=M+1 γ

2
j+1

γi, i = M + 1, ..., K, and βi = hr2

√
ζPr

ar2
∑K
j=N+1 γ

2
j+1

γi, i =

N + 1, ..., K. The power constraints are
∑K

i=1 γ
2
i = Ps,

∑M
i=1 α

2
i = ξPr, and

∑N
i=1 β

2
i = ζPr.

Note that (α1, α2, . . . , αM , ξ) and (β1, β2, . . . , βN , ζ) are real positive values and optimized

separately.

3.5 Compress-Forward Relays

In CF relaying, the relays quantize their received signals using an optimal Gaussian quantizer

with minimum mean-square error (MSE) criterion [21], and then forward the quantized

signals. With respect to the correlation between the relays signals, Wyner-Ziv compression

method [85] is applied. In this scheme, the relays do not decode the signal and hence,

the latency and complexity is lower in comparison with DF and DAF. Also, the relays do

not need to access the source codebook; however, the source-relay channel gains must be

available at the destination.

Denote by qr1 and qr2 the quantized signals at the first and second relays, respectively.
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One can write the following equations on qr` , ` = 1, 2,

Yr` = qr` + nr` , (3.63)

and

qr` = θ`Yr` + ñr` , (3.64)

where nr` ∼ CN (0, D`) and ñr` ∼ CN (0, θ`D`) are the equivalent quantization noises

independent of qr` , θ` , 1− D`
1+ar`Ps

, and D` is the quantizer distortion at the `’th relay [11].

If the destination decodes qr1 and qr2 , and the transmission rate is below I(X; qr1 , qr2),

the signal is successfully decodable. For simplicity, let us assume that the optimum

value of the quantizer distortion Do
` and the optimum value of the relays rate Ro

r`
are

selected independent of the source-relays channel gains. Hence, with respect to the network

symmetry, Do
1 = Do

2 and Ro
r1

= Ro
r2
, and therefore, they are simply denoted by D and Rr,

respectively.

To decoded the quantized signals at the destination, based on the multiple-access

capacity region [21] in the second-hop, the following inequalities must be satisfied,

Rr < I(Xr1 ;Y |Xr2) = ln (1 + a1Pr) ,

Rr < I(Xr2 ;Y |Xr1) = ln (1 + a2Pr) ,

2Rr < I(Xr1 , Xr2 ;Y ) = ln (1 + (a1 + a2)Pr) . (3.65)

For compression of the quantized signals, based on the Wyner-ziv rate region [85], we
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have the following inequalities,

Rr ≥ I(qr1 ;Yr1|qr2), (3.66)

Rr ≥ I(qr2 ;Yr2|qr1), (3.67)

2Rr ≥ I(qr1 , qr2 ;Yr1 , Yr2). (3.68)

For the problem in consideration, Eq. (3.68) is

I(qr1 , qr2 ;Yr1 , Yr2) = ln

(
detRY1Y2

detRY1Y2|qr1 ,qr2

)
= ln

(
1 + (ar1 + ar2)Ps

D2

)
, (3.69)

where RY1Y2 and RY1Y2|qr1 ,qr2 represent the covariance matrix and conditional covariance

matrix of random variables, respectively. In order to derive a closed form expression for

Eqs. (3.66) and (3.67), let us first estate the following lemmas.

Lemma 3.1. The mutual information between the source signal and the relays quantized

signals can be expressed by

I(qr1 , qr2 ;X) = ln (1 + aCFPs) , (3.70)

where

aCF ,
ar1

1 + θ2+D
θ2+1

D
θ1

+
ar2

1 + θ1+D
θ1+1

D
θ2

. (3.71)

Proof. The mutual information between the source signal and the relays quantized signals
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can be expressed by

I(qr1 , qr2 ;X) = ln

(
detRqr1qr2

detRqr1qr2 |X

)
, (3.72)

where

detRqr1qr2
= θ2

1θ
2
2ar1Ps + θ2

1θ2Dar1Ps + θ2
1θ

2
2ar2Ps + θ2

1θ
2
2

+ θ2
1θ2D + θ1θ

2
2ar2PsD + θ1θ

2
2D + θ1θ2D

2, (3.73)

and

detRqr1qr2 |X = θ2
1θ

2
2 + θ2

1θ2D + θ1θ
2
2D + θ1θ2D

2. (3.74)

Thus,

I(X; qr1 , qr2) = ln

(
1 +

θ1θ2ar1 + θ1Dar1 + θ1θ2ar2 + θ2ar2D

θ1θ2 + θ1D + θ2D +D2
Ps

)
= ln

(
1 +

(
ar1

θ1θ2 + θ1D

θ1θ2 + θ1D + θ2D +D2

+ ar2
θ1θ2 + θ2D

θ1θ2 + θ1D + θ2D +D2

)
Ps

)

= ln

(
1 +

(
ar1

1 + θ2D+D2

θ1θ2+θ1

+
ar2

1 + θ1D+D2

θ1θ2+θ2

)
Ps

)

= ln

(
1 +

(
ar1

1 + θ2+D
θ2+1

D
θ1

+
ar2

1 + θ1+D
θ1+1

D
θ2

)
Ps

)
. (3.75)

Equation (3.71) together with Eq. (3.75) results.
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Lemma 3.2. In the problem of interest, we have

I(qr1 ;Yr1 |qr2) = ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + ar2Ps)

)
. (3.76)

Proof.

I(qr1 ;Yr1|qr2) = I(qr1 ;X, Yr1|qr2)− I(qr1 ;X|Yr1 , qr2)
(a)
= I(qr1 ;X, Yr1|qr2)

= I(qr1 , qr2 ;X, Yr1)− I(qr2 ;X, Yr1)

= I(qr1 , qr2 ;X, Yr1)− I(qr2 ;Yr1|X)− I(qr2 ;X)

(b)
= I(qr1 , qr2 ;X, Yr1)− I(qr2 ;X)

= I(qr1 , qr2 ;X) + I(qr1 , qr2 ;Yr1|X)− I(qr2 ;X)

= I(qr1 , qr2 ;X) + I(qr1 ;Yr1|X)

+ I(qr2 ;Yr1|qr1 , X)− I(qr2 ;X)

(c)
= I(qr1 , qr2 ;X) + I(qr1 ;Yr1|X)− I(qr2 ;X)

= I(qr1 , qr2 ;X) +H(qr1|X)

−H(qr1|Yr1 , X)−H(qr2) +H(qr2|X)

(d)
= I(qr1 , qr2 ;X) +H(qr1|X)

−H(qr1|Yr1)−H(qr2) +H(qr2|X)

= ln (1 + aCFPs) + ln

(
1 +

θ1

D

)
− ln

(
1 +

θ2ar2Ps
θ2 +D

)
= ln (1 + aCFPs)

+ ln

(
(θ1 +D) (θ2 +D)

D (D + θ2 (1 + ar2Ps))

)
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= ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + ar2Ps)

)
. (3.77)

(a) and (d) follow from the fact that X 7−→ Yr1 7−→ qr1 is a Markov chain, and hence

I(qr1 ;X|Yr1 , qr2) = 0 andH(qr1|Yr1 , X) = H(qr1|Yr1). (b) and (c) follow from I(qr2 ;Yr1|X) =

0 and I(qr2 ;Yr1|qr1 , X) = 0, respectively, with respect to the Markov chain qr2 7−→ X 7−→
Yr1 .

With respect to the network symmetry and based on Lemma 3.2, one can express

I(qr2 ;Yr2 |qr1) = ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + ar1Ps)

)
. (3.78)

In order to have a successful transmission, the destination must first decode the relays

signals and then X. From Eqs. (3.65) to (3.69), (3.76) and (3.78), to decode the relays

signals at the detination, the following inequalities must be satisfied.

ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + ar2Ps)

)
≤ Rr < ln (1 + a1Pr) ,

ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + ar1Ps)

)
≤ Rr < ln (1 + a2Pr) ,

ln

(
1 + (ar1 + ar2)Ps

D2

)
≤ 2Rr < ln (1 + (a1 + a2)Pr) . (3.79)

Therefore, the probability of decoding the relays signals at the destination successfully

is expressed as follows,

PC = Pr

{
max

{
ln

(√
1 + (ar1 + ar2)Ps

D

)
,

ln (1 + aCFPs) + ln

(
(θ1 +D) (θ2 +D)

D (1 + arminPs)

)}
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3.5 Compress-Forward Relays

< Rr <

min
{

ln
(√

1 + (a1 + a2)Pr

)
, ln (1 + aminPr)

}}
, (3.80)

where armin , min {ar1 , ar2} and amin , min {a1, a2}.

After decoding the relays signals at the destination, the source signal is decoded subject

to

R ≤ I(qr1 , qr2 ;X) = ln (1 + aCFPs) , (3.81)

where R = ln (1 + Pss) is the source transmission rate.

To summarize, we have shown the following.

Theorem 3.6. The maximum throughput in the proposed CF scheme is expressed by

Rm
C,s = max

s,D,Rr
PCF aCF (s) ln (1 + Pss) , (3.82)

where aCF and PC are given by Eqs. (3.71) and (3.80), respectively.

Analogously, Eq. (3.83) yields the maximum continuous-layer expected-rate in this

scheme.

Rm
C,c = max

D,Rr
PC
∫ s1

s0

F aCF (s)

(
2

s
+
f ′aCF (s)

faCF (s)

)
ds. (3.83)

The integration limits are the solutions to F aCF (s0) = s0 (1 + Pss0) faCF (s0) and F aCF (s1) =

s1faCF (s1), respectively.

It turns out from the numerical results that the proposed CF scheme outperforms DAF

and consequently, DF and AF, when the relays power to the source power ratio is higher
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than a threshold. This is in contrast to the full-duplex AWGN diamond channel in which

CF is always worse than either DF or AF in terms of channel capacity [65].

Remark 3.3. If Ps → ∞, Eq. (3.71) is simplified to aCF ≈ ar1+ar2
1+

D(D+1)
2

. If Pr → ∞, then

PC → 1 and aCF ≈ ar1 + ar2. In high SNR asymptote at the relays, Eq. (3.83) meets the

cutset-bound in Proposition 3.3 in Section 3.6.1, and is optimum.

3.6 Upper-Bounds

3.6.1 Cutset Bound

The network cutset bound is the minimum of the maximum throughput and maximum

expected-rate of the first-hop and the second-hop which lends itself to a closed form

expression. The first-hop cutset is equivalent to a point-to-point SIMO channel with two

receive antennas. The second-hop cutset is equivalent to a MISO channel with two transmit

antennas. The throughput cutset bound is the minimum of the maximum throughput in

these two cutsets, that is

Rm
CS,s = max

s
e−s(1 + s) ln (1 + Ps) , (3.84)

where P , min {Ps, Pr}.

Similarly, the maximum expected-rate of the diamond channel is upper-bounded by the

minimum of the maximum expected-rates of those two cutsets, which is summarized below.

Proposition 3.3. In the diamond channel, the cutset bound on the maximum expected-rate

is specified by

Rm
CS,c = 3E1(s0)− 3E1(s1)− (s0 − 1)e−s0 + (s1 − 1)e−s1 , (3.85)
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3.6 Upper-Bounds

where s1 = 1+
√

5
2

, and s0 =
3
√√

A2 −B3 + A + B
3
√√

A2−B3+A
− 1

3P
with P = min {Ps, Pr},

A = 1
2P
− 1

6P 2 − 1
27P 3 , and B = 1

3P
+ 1

9P 2 .

Proof. According to [67], the maximum continuous-layer expected-rate is given by

Rm
CS,c = max

I(s)

∫ ∞
0

F a(s)
−sI ′(s)

1 + sI(s)
ds. (3.86)

Noting F a(s) = (1 + s) e−s based on Theorem 2.2, we have

Rm
CS,c = max

I(s)

∫ ∞
0

−s (1 + s) e−sI ′(s)

1 + sI(s)
ds. (3.87)

The optimization solution to Eq. (3.87) with respect to I(s) under the total power constraint

P = min {Ps, Pr} is found using variation methods [33]. By solving the corresponding Eüler

equation [33], we come up with the final solution as follows,

Rm
CS,c =

∫ s1

s0

e−s (1 + s)

(
3

s
− 1

)
ds, (3.88)

where boundaries s0 and s1 are the solutions to Ps3
0 + s2

0 − s0 − 1 = 0 and s2
1 − s1 − 1 = 0,

respectively. Therefore, s1 = 1+
√

5
2

, and s0 =
3
√√

A2 −B3 + A + B
3
√√

A2−B3+A
− 1

3P
with

A = 1
2P
− 1

6P 2 − 1
27P 3 , and B = 1

3P
+ 1

9P 2 . The indefinite integral (antiderivative) of Eq. (3.88)

is

∫
e−s (1 + s)

(
3

s
− 1

)
ds = (s− 1)e−s − 3E1(s). (3.89)

Applying the integration limits completes the proof.
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3.6 Upper-Bounds

Figure 3.2: The upper-bound model.

3.6.2 Relay-Cooperation (RC) Bound

Here, a tighter upper-bound based on a full-cooperation between the relays is proposed. Let

us define an upper-bound model by considering a full cooperation and power cooperation

between the relays in the problem of interest. The upper-bound model is equivalent to a

dual-hop single-relay channel with two antennas at the relay (see Fig. 3.2). The following

presents the throughput of this upper-bound model.

Proposition 3.4. the maximum throughput in the above upper-bound model is given by

Rm
RC,s = max

s
(1 + s)

(
1 + s

Ps
Pr

)
e−s(1+Ps

Pr
) ln (1 + Pss) . (3.90)

Proof. The optimum relaying strategy for dual-hop single-relay channels is DF. In the same

general outline to the proof of Theorem 3.1, let F (s) denote

F (s) = Pr {ar ≥ s}Pr

{
a ≥ Ps

Pr
s

}
, (3.91)

where a , 1
Pr
~hQ~h†, ~h ,

[
h1 h2

]
, and Q is the transmit covariance matrix at the relays.

The maximum throughput in general can be expressed as

RRC,s = max
s
F (s) ln(1 + Pss). (3.92)

Analogously to the proof of Theorem 3.1, we can restrict our attention to ρ = 0 or

ρ = 1, where ρ is the correlation coefficient between the signals transmitted from two relay
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3.6 Upper-Bounds

antennas. To prove by contradiction, first we assume that ρo = 1; next, we shall show that

F ρ=0(so) > F ρ=1(so), which implies a contradiction and concludes ρo = 0. Defining

g (s, Ps) , ln (1 + Pss)
1+Pss
Ps , (3.93)

r(s) ,
F ρ=1(s)

fρ=1(s)
, (3.94)

Eqs. (3.10) and (3.12) hold.

Noting

F ρ=1(s) = (1 + s) e−s(1+ Ps
2Pr

), (3.95)

we have

r(s) =
1 + s

(1 + s)
(

1 + Ps
2Pr

)
− 1

. (3.96)

It can be shown that

r(s) < s, ∀s ≥ st, (3.97)

where

st ,

√
P 2
s + 4PsPr + 20P 2

r − Ps + 2Pr
2Ps + 4Pr

. (3.98)

Hence, Eqs. (3.17) and (3.18) still hold by redefining r(s) and st as above.
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3.6 Upper-Bounds

As R(s) is a continuous function, one can conclude that 0 < so < st. Noting

st < sc = −
(

2W−1

( −1

2
√
e

)
+ 1

)
Pr
Ps
≈ 2.5129

Pr
Ps

(3.99)

and

F ρ=0(s) > F ρ=1(s), ∀s < sc (3.100)

yields F ρ=0(so) > F ρ=1(so) and thereby, ρo = 0 and a = a1 + a2. Substituting the channel

gain CDFs in Eqs. (3.91) and (3.92), the maximum throughput of the DF diamond channel

is given by Eq. (3.90).

The highest expected-rate of dual-hop single-relay channels has been studied in [70].

Here, only the final solution is mentioned as

Rm
RC,c = max

Is(ar)
Ir(a|ar )

∫ ∞
0

∫ ∞
0

far(t)F a(s)
−sI ′r(s|ar = t)ds
1 + sIr(s|ar = t)

dt. (3.101)

The power constraints at the transmitter and the relay are

Is(0) = Ps, Ir(0|ar = t) = Pr. (3.102)

Note that in the upper-bound model, the power constraint at the relay is 2Pr; however, the

factor 2 is absorbed in the channel CDF. As the maximum transmission rate of the relay

can not exceed its successfully decoded rate, the constraint on rate is

∫ ∞
0

sI ′r(s|ar = t)ds
1 + sIr(s|ar = t)

=

∫ t

0

sI ′s(s)ds
1 + sIs(s)

, ∀t. (3.103)
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3.6 Upper-Bounds

The optimization problem of Eq. (3.101) can be solved numerically using the algorithm

proposed in [59].

Following a similar outline in the proof of Theorem 3.2 and Proposition 3.4, one can show

that the optimum transmission strategy at the relay is to transmit uncorrelated equal power

signals from both of the relay antennas at each layer. Thus, F ar(s) = F a(s) = (1 + s)e−s.

Substituting in Eq. (3.101), we come up with the upper-bound as follows, which does not

lend itself to a closed form formulation.

Proposition 3.5. In the diamond channel, the maximum expected-rate at the destination

is bounded by

Rm
RC,c = max

Is(ar)
Ir(a|ar )

∫ ∞
0

te−t
∫ ∞

0

−s(s+ 1)e−sI ′r(s|ar = t)

1 + sIr(s|ar = t)
dsdt, (3.104)

subject to the power and rate constraints Eqs. (3.102) and (3.103), respectively.

3.6.3 DF-Upper-Bounds

As pointed out earlier, the continuous-layer coding for DF relaying can not be directly

solved by variations methods. Here, two upper-bounds for the maximum continuous-layer

expected-rate in DF scheme are obtained. Let us define a DF-upper-bound model as a

diamond channel with uninformed transmitters, wherein the channel gains of the source-

relay links are both max{ar1 , ar2}, and those of the relays-destination links are a1 and a2,

respectively. This channel can be modeled by a dual-hop single-relay channel with the

channel gains ar = max{ar1 , ar2} and a for the source-relay link and the relay-destination

link, respectively. Clearly, the maximum expected-rate of this model yields an upper-bound

on the maximum expected-rate of DF relaying.

The optimum relaying strategy in the DF-upper-bound model is DF, and is given by
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3.6 Upper-Bounds

Eq. (3.101). Analogous to Section 3.6.2, it can be shown that the optimum transmission

strategy at the relays is to transmit uncorrelated equal power signals from the relays at each

layer. Hence, substituting F ar(s) = e−s (2− e−s) and F a(s) = (1 + s)e−s in Eq. (3.101),

we come up with the upper-bound as follows, which does not lend itself to a closed form

formulation.

Proposition 3.6. In the DF diamond channel, the maximum expected-rate at the destina-

tion is bounded by

Rm
RC,D = max

Is(ar)
Ir(a|ar )

2

∫ ∞
0

e−t
(
e−t − 1

) ∫ ∞
0

s(s+ 1)e−sI ′r(s|ar = t)

1 + sIr(s|ar = t)
dsdt, (3.105)

subject to the power and rate constraints Eqs. (3.102) and (3.103), respectively.

The cutset bound of the DF-upper-bound model results in a closed form expression. The

results are summarized below.

Proposition 3.7. The cutset bound of the DF-upper-bound model is specified by Rm
CS,D =

min {R1,R2}, where

R1 = 4E1(s1)− 2E1(2s1) + e−2s1 − 3e−s1 − ln
(
1− e−s1

)
− 0.1157,

R2 = 3E1(s2)− (s2 − 1)e−s2 − 0.1296. (3.106)

s1 is the solution to 2−e−s1
2s1(1−e−s1)

= 1 + Pss1 and s2 =
3
√√

A2 −B3 + A+ B
3
√√

A2−B3+A
− 1

3Pr

with A = 1
2Pr
− 1

6P 2
r
− 1

27P 3
r
, and B = 1

3Pr
+ 1

9P 2
r
.

Proof. The bound on the second hop, i.e., R2, is a direct result of Proposition 3.3.

Noting F ar(s) = e−s (2− e−s) in the first hop, analogous to the proof of Proposition 3.3,
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we have

R1 = max
I(s)

∫ ∞
0

−se−s (2− e−s) I ′(s)
1 + sI(s)

ds. (3.107)

The optimization solution to Eq. (3.107) with respect to I(s) under the total power constraint

Ps is found by solving the associated Eüler equation [33], which leads to

R1 =

∫ s3

s1

e−s
(
2− e−s

)(2

s
+

2e−s − 1

1− e−s
)
ds, (3.108)

where boundaries s1 and s3 are the solutions to 2−e−s1
2s1(1−e−s1)

= 1 + Pss1 and 2−e−s3
2s3(1−e−s3)

= 1,

respectively. The indefinite integral (antiderivative) of Eq. (3.108) is

∫
e−s
(
2− e−s

)(2

s
+

2e−s − 1

1− e−s
)
ds =

− 4E1(s) + 2E1(2s)− e−2s + 3e−s + ln
(
1− e−s

)
. (3.109)

Applying the integration limits completes the proof.

3.7 Numerical Results

The achievable throughput, two-layer expected-rate, and continuous-layer expected-rate

in the proposed multi-layer relaying schemes are shown respectively in Figs. 3.3 to 3.5 for

Ps = 0 dB and −10 dB ≤ Pr ≤ 60 dB. Note that the rates are expressed in nats. When
Pr
Ps
, namely powers ratio, is less than 25 dB, DAF is the best scheme. In higher values of

the powers ratio, CF is the superior. AF has the worst performance for Pr
Ps
> 10 dB, but

ON/OFF based AF, outperforms DF for Pr
Ps
> 30 dB. When Pr goes to infinity, CF meets

the upper-bounds, which is consistent with remark 3.3. As pointed out earlier, these results

84



3.7 Numerical Results

Figure 3.3: Throughput in the diamond channel.

are in contrast to the full-duplex AWGN diamond channel in which CF is never the best

option [65].
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Figure 3.4: Two-layer expected-rate in the diamond channel.
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Figure 3.5: Continuous-layer expected-rate in the diamond channel.
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Chapter 4

Conclusions and Future Directions

In chapter 2, the throughput and expected-rate maximization of point-to-point multiple-

antenna channels are addressed in Rayleigh block fading environments, in which the

transmitter does not access the CSI. It is established that, in order to achieve the maximum

throughput, one has to transmit uncorrelated circularly symmetric zero mean equal power

Gaussian signals on all the transmit antennas. This indeed yields the same transmit

covariance matrix that achieves the ergodic capacity.

In point-to-point uncorrelated MISO channels, in contrast to using a fraction of antennas

which is optimum for outage capacity, the throughput is maximized by sending uncorrelated

equal power signals on all transmit antennas. The maximum expected-rate is analyzed

using multi-layer codes. It is proved that in each layer, sending uncorrelated signals with

equal powers on all available antennas is optimum. The continuous-layer expected-rate of

the channel is then derived in closed form.

The optimum transmit strategy maximizing the throughput is obtained for point-to-

point uncorrelated MIMO channels. Since the PDF of the MIMO instantaneous mutual

information is not tractable in general, four asymptotic cases are considered: low SNR
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regime, high SNR regime, large number of transmit antennas, and large number of receive

antennas. In each case, the maximum throughput of the MIMO channel is derived.

Afterwards, a distributed antenna system with two single-antenna transmitters and one

single-antenna receiver is investigated. It is proved that any achievable instantaneous mutual

information distribution in the 2× 1 MISO channel is also achievable in the two-transmitter

distributed antenna system. Hence, both systems achieve the same maximum throughput

and expected-rate.

The problem of maximum throughput and maximum expected-rate in the general MIMO

channel can be investigated in future. Another future extension is to investigate the problem

of maximum average achievable rate instead of maximum expected-rate.

In chapter 3, simple, efficient, and practical relaying schemes are proposed in order to

increase the average achievable rate in dual-hop networks with two parallel relays, Rayleigh

block fading links, and uninformed transmitters. To this end, different relaying schemes, in

conjunction with the broadcast approach, were proposed. The performance of the proposed

schemes were derived and numerically compared with obtained upper-bounds.

Our results in this chapter are restricted to two relays. In a more general scenario, the

number of relays may be increased in future works. Increasing the number of hops is also

of practical relevance. it would be interesting to consider the problem of asymptotically

large number of relays and propose optimal coding schemes. In this thesis, we considered

Rayleigh distributed fading links. Investigating different fading distributions such as Rician

and Nakagami are other possible extensions.
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Appendix A

Proof of Proposition 2.3

The ergodic capacity of a 1× nr SIMO channel is given by

Cerg =

∫ ∞
0

xnr−1e−x

(nr − 1)!
ln (1 + Px) dx. (A.1)

Applying the integration by parts rule on Eq. (A.1) leads to

Cerg =

[
−e−x

nr−1∑
`=0

x`

`!
ln (1 + Px)

]∞
0

+

∫ ∞
0

e−x
nr−1∑
`=0

x`

`!

P

1 + Px
dx. (A.2)

One can simply show that the first part on the right-hand-side in Eq. (A.2) is zero by

repeatedly applying l’Hôpital’s rule. With t , 1 + Px, Eq. (A.2) yields

Cerg =

∫ ∞
1

e−
t−1
P

nr−1∑
`=0

1

t`!

(
t− 1

P

)`
dt. (A.3)
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From (t− 1)` =
∑`

ı=0

(
`
ı

)
tı (−1)`−ı, where

(
`
ı

)
is the binomial coefficient, we get

Cerg = e
1
P

∫ ∞
1

e−
t
P

nr−1∑
`=0

1

P ``!t

∑̀
ı=0

(
`

ı

)
tı (−1)`−ı dt

= e
1
P

nr−1∑
`=0

(−1)`

P ``!

∫ ∞
1

e−
t
P

t
dt

+ e
1
P

nr−1∑
`=1

1

P ``!

∑̀
ı=1

(−1)`−ı
(
`

ı

)∫ ∞
1

e−
t
P tı−1dt. (A.4)

With u , t
P
, we have

∫ ∞
1

e−
t
P tı−1dt = P ı

∫ ∞
1
P

e−uuı−1du

= (ı− 1)!P ıe−
1
P

ı−1∑
m=0

1

m!

(
1

P

)m
. (A.5)

Inserting Eq. (A.5) into Eq. (A.4), we obtain

Cerg = e
1
P E1

(
1

P

) nr−1∑
`=0

(−1)`

P ``!

+
nr−1∑
`=1

1

P `

∑̀
ı=1

(−1)`−ı

ı (`− ı)!P
ı

ı−1∑
m=0

1

m!

1

Pm
. (A.6)

Let k , `− ı, the above leads to

Cerg = e
1
P E1

(
1

P

) nr−1∑
`=0

(−1)`

P ``!

+
nr−1∑
`=1

`−1∑
k=0

(−1)k

(`− k) k!

`−k−1∑
m=0

1

m!P k+m
. (A.7)

From [77], the ergodic capacity in an nt × 1 MISO channel with total power constraint

92



P equals the ergodic capacity in a 1 × nt SIMO channel with total power constraint P
nt
.

Hence, we obtain Eq. (2.10) by replacing P with P
nt

and nr with nt in Eq. (A.7).
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Appendix B

Part of the Proof of Theorem 2.3

The indefinite integral (antiderivative) of Eq. (2.42) can be written as

R(s) =

∫
e−s
(
nt + 1

s
− 1

) nt−1∑
`=0

s`

`!
ds

= (nt + 1)

∫
e−s

s
ds+ (nt + 1)

∫
e−s

nt−1∑
`=0

s`−1

`!
ds

−
∫
e−s

nt−1∑
`=0

s`

`!
ds

= (nt + 1)

∫
e−s

s
ds+

nt−1∑
`=0

1

`!

(
(nt + 1)

∫
s`−1e−sds

−
∫
s`e−sds

)
. (B.1)

The definite integral of R(s) over the interval [s0 ∞] is given by

[R(s)]∞s0 = (nt + 1)

∫ ∞
s0

e−s

s
ds+

nt−1∑
`=0

1

`!

(
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(nt + 1)

∫ ∞
s0

s`−1e−sds−
∫ ∞
s0

s`e−sds

)

= (nt + 1)E1 (s0) +
nt−1∑
`=0

1

`!

(

(nt + 1) (`− 1)!e−s0
`−1∑
k=0

sk0
k!
− `!e−s0

∑̀
k=0

sk0
k!

)

= (nt + 1)E1 (s0)− e−s0 + e−s0
nt−1∑
`=1

1

`!

(

− s`0 + (nt + 1− `) (`− 1)!
`−1∑
k=0

sk0
k!

)
. (B.2)

The definite integral of R(s) over the interval [s0 s1] can be written as [R(s)]∞s0 − [R(s)]∞s1 .

Therefore, defining

R(s) , − (nt + 1)E1 (s) + e−s

+ e−s
nt−1∑
`=1

1

`!

(
s` − (nt + 1− `) (`− 1)!

`−1∑
k=0

sk

k!

)
, (B.3)

and inserting into Eq. (B.2) leads to the conclusion that

[R(s)]s1s0 = R(s1)−R(s0). (B.4)
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