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Abstract

A major motivation for Lie group observers is their application as sensor fusion algo-
rithms for an inertial measurement unit which can be used to estimate the orientation of a
rigid-body. In the first part of this thesis we propose several types of nonlinear, determin-
istic, locally exponentially convergent, state observers for systems with all, or part, of their
states evolving on the general linear Lie group of invertible n× n matrices. Our proposed
Lie group observer with full-state measurement is applicable to left-invariant systems on
linear Lie groups and yields linear estimation error dynamics. We also propose a way to
extend our full-state observer, to build observers with partial-state measurement, i.e., only
a proper subset of the states are available for measurement. Our proposed Lie group ob-
server with partial-state measurement is applicable when the measured states are evolving
on a Lie group and the rest of the states are evolving on the Lie algebra of this Lie group.
We illustrate our observer designs on various examples, including rigid-body orientation
estimation and dynamic homography estimation.

In the second part of this thesis we propose a nonlinear, deterministic state observer,
for systems that evolve on real, finite-dimensional vector spaces. This observer uses the
property of high-gain observers, that they are approximate differentiators of the output
signal of a plant. Our new observer is called a composite high-gain observer because
it consists of a chain of two or more sub-observers. The first sub-observer in the chain
differentiates the output of the plant. The second sub-observer in the chain differentiates
a certain function of the states of the first sub-observer. Effectiveness of the composite
observer is demonstrated via simulation.
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Chapter 1

Introduction

Feedback control for finite dimensional systems can be broadly catagorized into full state
feedback and output feedback configurations. In full state feedback control the input signal
to the plant is calculated based on present and/or past states of the plant. In output
feedback control, the input signal is calculated based on present and/or past measured
outputs of the plant.

Every feedback control system uses sensors that measure either the full state or the
output of the plant. All physical sensors have their measurements corrupted by “noise”,
which could be caused by sensor imperfections and external disturbances. Therefore, any
feedback controller will necessarily be affected by noise and uncertainty. Observers provide
a method to reduce the effect of noise on feedback control systems. Observers also provide
a framework for designing output feedback controllers. A control engineer first designs the
controller under the assumption that the full state of the plant is available for feedback.
Subsequently, an observer is designed to estimate the plant state and the state estimates are
used to implement the controller. Provided that some version of the separation principle
holds, the closed-loop system will behave as if the states were directly measured.

An observer is a data processor that performs state estimation by measuring the inputs
and outputs of a plant. Observers can greatly improve the quality of sensor measurements,
because an observer knows the model of the plant and can use this model to its advantage.
Typically, both the plant and the observer are sets of differential equations, however there
is a fundamental difference between the two. The plant is a “physical” process, that we
can only affect through its input. On the other hand, the observer is a “virtual” process
in the sense that it runs on a computer.
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1.1 Motivation

Suppose we are given a signal of time y(t) = x(t) + d(t), which is the sum of a “useful”
signal x ∈ R

n and a noise/disturbance signal d ∈ R
n. Our goal is to apply a filter to

the signal y(t), such that d(t) is attenuated while x(t) is preserved. If we do not know
the model of the system from which the signal x(t) originated, then we can try to use a
band-pass filter to attenuate frequencies in y(t), which are not expected to be present in
x(t). If we do know the model of the system from which the signal x(t) originated, then
we can build a more complicated type of filter, called a full-state observer, to attenuate
d(t) and preserve x(t).

The scenario above is made more difficult by removing some of the output channels
from y, i.e., making y(t) = x1(t) + d1(t), where x1, d1 ∈ R are the first components of the

vectors x =
[
x1 . . . xn

]⊤
and d =

[
d1 . . . dn

]⊤
. Suppose we know the model of the

system, from which x(t) originated. We would like to estimate the state vector x(t0), at
time t0 > 0, from knowledge of previous measurements of the output {y(τ), 0 ≤ τ ≤ t0}.
One type of algorithm which can be used for this task is a partial-state observer.

Let us demonstrate, via simulation, how sensor noise affects controller performance and
how a simple full-state observer can be used to reduce the negative effect of sensor noise on
the tracking performance of the controller. To this end, consider the simple control system

ẋ = u

y = x,
(1.1)

where x ∈ R is the state, u ∈ R is the control input. Suppose we want the output, y(t), of
the system (1.1), to track a piece-wise constant reference trajectory, yref (t). This task can
be achieved by using a simple state feedback control law

u = K(yref − x) (1.2)

where K > 0 is a controller gain that determines the rate at which y approaches yref . The
controller (1.2) uses the current state x(t) to calculate the current control u(t). The signal
x(t) is directly available from the output y = x, so (1.2) is implemented as

u = K(yref − y). (1.3)

The signal y is measured by a sensor and therefore contains measurement noise. Intuitively
one expects that, the more noise present in the signal y, the worse the controller performs.
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To reduce the deterioration of controller performance, we can augment the controller (1.3)
so that it uses an estimated version of x, denoted x̂, obtained via the observer

˙̂x = u+ a0(y − x̂) (1.4)

where a0 > 0 is the observer gain. The observer (1.4) behaves similar to a low-pass filter.
Namely, when u = 0, the transfer function from y to x̂ is given by

X̂(s)

Y (s)
=

a0
s+ a0

which is the transfer function of a low-pass filter. However, the observer (1.4) is much more
powerful than a low-pass filter, because it uses an extra piece of information, namely the
input u, to filter out noise from y. Intuitively, when the state of the plant (1.1) changes, it
is because the input u has changed it. Since the observer has access to u, it can “mimic”
this change of state, by applying the same input u to its own state (1.4). Thus, any
high-frequency movements in the state of the plant are copied by the observer, without
using the output y, and therefore without low-pass filtering. The reason why the transfer
function of the observer (1.4) is that of a low-pass filter, when u = 0, is because the state
of the plant is constant when u = 0, so there is no useful high-frequency content in y. This
type of observer is sometimes called a complementary filter, because the signals y and u
“complement” each other in such a way that allows us to filter out high-frequency noise
from y, while preserving much of the useful high-frequency information in y.

When we connect the static controller (1.3) with the observer (1.4), we get the dynamic
control law

˙̂x = u+ a0(y − x̂)

u = K(yref − x̂).
(1.5)

We simulate the two controllers: (1.3) and (1.5), for tracking a piece-wise constant
signal yref (t), under increasing sensor noise. The output is taken to be y = x + d, where
d is normally distributed with zero mean and with standard deviation taking on different
values σ ∈ {0.1, 0.5, 1.0, 1.5}, to simulate increasing sensor noise. The controller gain is
taken to be K = 6 and the observer gain is taken to be a0 = 0.4. The results are shown in
Figure (1.1).
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Figure 1.1: Comparison of controller (1.3) versus the dynamic controller (1.5), in tracking
a piece-wise constant reference trajectory.

Figure (1.1) illustrates that the dynamic controller (1.5) takes a bit of time to converge
(about t = 10 is when x̂ becomes sufficiently close to x). But once x̂ becomes sufficiently
close to x, the dynamic controller (1.5) is much more resistant to noise than the static
controller (1.3). Resistance to noise is not achieved by temporal smoothing of y(t) by a
low-pass filter. This ensures that the high-frequency information in y(t) is preserved. This
is reflected in the fact that both controllers react with equal vigor to step changes in the
reference signal yref . Even though we did not do any formal noise analysis in this section,
the advantage of using a full-state observer is illustrated by the simulation results.
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1.2 Literature Review

The first subject of this thesis deals with nonlinear observers on Lie groups, which have
been the subject of much recent research. A series of recent papers propose observers,
which comprise of a copy of the system’s model, plus an “innovation” term that is based
on the projection of the measurement error from the Lie group to the Lie algebra. These
projection based observers work well for some Lie groups. For example, recent work on full-
state observers for systems on SO (3), describing rigid-body rotational kinematics, was done
in [1], [2]. For systems on SE (3), describing the pose of a rigid-body, full-state observers
were proposed in [3], [4]. For systems on SL (3), describing a homography transformation of
a moving camera which is looking at a planar image, partial-state observers were proposed
in [5]. However there has not been proposed any way to extend the projection based
observers to work on the general linear Lie group, GL (n,R). This appears to be a limitation
of the projection based observer design.

A recent breakthrough in observer design on the general linear Lie group was achieved
in [6], where exponential observers are proposed for left-invariant and right-invariant sys-
tems on arbitrary finite dimensional, connected Lie groups. The authors propose exponen-
tial observer design by using gradient-like driving terms derived from cost functions of the
Lie group measurement error. Gradient-like observers, proposed in [6], overcome some of
the limitations of the projection based observers, by allowing observer design for systems
on GL (n,R). In Chapter 3, we propose an alternative to gradient-like observers, which
also works on GL (n,R). The weakness of our result is that we only show local exponential
stability of our observers and not global stability.

One important work on partial-state observers on SO (3) is [7], which proposes a partial-
state observer, that uses measurement of the orientation and of the torque to estimate the
angular velocity of the rigid-body. A slightly different rigid-body dynamic rotation model
is used in [7], than what we use in Chapter 4. It is not clear to us, how the partial-state
observers, proposed in [7], are related to our partial-state observers.

A vector field on a connected Lie group is said to be linear if its flow is a one-parameter
subgroup, see [8]. Recent work on linear vector fields and linear systems on Lie groups was
done in [8] and [9]. The estimation error dynamics of our Lie group full-state observers
are shown to be linear vector fields on Lie group, because their flow is a one-parameter
subgroup. We also show a stronger property of our estimation error dynamics. Namely,
we show that the estimation error dynamics are differentially equivalent, by means of the
logarithm map, to a linear vector field on the Lie algebra.

Interesting research on observers for systems on Lie groups was also done in [10]. This
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article considers a class of systems which is much more general than the left-invariant
systems considered in this thesis. Namely, the article considers systems that evolve on a
vector space R

n, but are such that a certain Lie group action leaves the system equations
unchanged (this property is called invariance). Although the class of systems of [10] in-
cludes the left-invariant systems on Lie groups with full-state measurement, the observer
design of [10] is meant for a much more general problem. The research done in [10] is
interesting, because the authors show that, if the plant is invariant under the action of
some Lie group, then part of the states of the plant can be redefined as evolving on this
Lie group, at least locally. This article also proposes a rigid-body attitude estimation
algorithm, but the algorithm uses measurements from magnetometer and accelerometer
sensors directly, instead of converting them first to a rotation matrix. So, this observer is
difficult to objectively compare with our proposed observer on SO (3).

In all of our orientation estimation problems, we assume that the entire orientation
is directly measurable. This direct measurement of the orientation can be obtained from
measurement of two linearly independent vectors in the inertial and mobile frame. The
assumption that the entire orientation is measured is what makes our work very different
from work such as [11], where the authors assume that only one vector measurement is
made, but that the vector in the inertial frame changes over time. We do not think it is
possible to compare our proposed observers with the observer proposed in [11], because
they are meant for solving completely different problems.

The second subject of this thesis deals with nonlinear observers on vector spaces, which
is a now classical topic. Much research has been done and a large variety of nonlinear ob-
server design techniques exist in this field of research. A comprehensive summary of recent
results on nonlinear observers on vector spaces can be found in [12]. In Chapter 5, we will
work with one type of nonlinear observer, called the high-gain observer. A comprehensive
summary of high-gain observer results is found in [13]. High-gain observers were originally
applied to fully-feedback-linearizable plants, since this type of plant can be transformed
into a chain of integrators from the input to the output. A major breakthrough in high-gain
observer design was achieved in [14], [15], [16] and related papers, where exponential high-
gain observers are proposed for single input, single output systems, which are uniformly
observable for any input.

High-gain observers are well suited for output feedback stabilization of nonlinear sys-
tems, due to their property of being approximate differentiators. A very important work
in this direction is [17], where the authors show that a fully-feedback-linearizable plant,
under certain assumptions, can be stabilized by output feedback, using high-gain observers
as approximate differentiators of the output. Other works in this area, such as [18] and [19],
extend this to non-fully-feedback-linearizable systems. They rely on defining new states
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as derivatives of the output and of the input, and then using the high-gain observer to
estimate these derivatives. For systems which are non-fully-feedback-linearizable and also
non-minimum-phase, some interesting ideas have appeared in [20], [21], which also rely
on using high-gain observers as approximate differentiators. A number of other works on
high-gain observers underline their main property of being approximate differentiators of
smooth signals, see [13], [22], [23]. This property of high-gain observers, being approx-
imate differentiators, is very important for our analysis, because the interconnection of
several approximate differentiators is the main idea of the Composite High-Gain Observer,
discussed in Chapter 5.

1.3 Contributions

The main contribution of this thesis is a local exponential full-state observer for systems
on the general linear Lie group, which has linear estimation error dynamics.

Summary of practical contributions:

1. Section 3.3 proposes a an exponential full-state observer for left-invariant systems on
the general linear Lie group. Our observer yields linear estimation error dynamics,
which is what distinguishes it from other observers that are proposed in the literature.

2. Section 3.7 proposes an Inertial Measurement Unit (IMU) algorithm, which uses
angular rate gyroscopes to filter out noise from a noisy measurement of the rigid-
body orientation. This filter is based on the results of Chapter 3 and yields linear
estimation error dynamics.

3. Section 4.3 proposes a new type of local exponential partial-state observer, for a
class of systems that is a generalization of the left-invariant systems considered in
Chapter 3. This new class of systems has only a proper subset of its states evolving
on the Lie group, while the rest of the states evolve on the Lie algebra. Our pro-
posed partial-state observer is an extension of the observer proposed in Section 3.3
to the case when only a proper subset of the states of the system is directly available
for measurement. Our partial-state observer does not yield linear estimation error
dynamics.

4. Section 4.7.2 proposes another Inertial Measurement Unit algorithm, which is a mod-
ification of the IMU algorithm proposed in Section 3.7. This new algorithm uses

7



angular accelerometers, instead of gyroscopes, to filter out noise from a noisy mea-
surement of the rigid-body orientation and to also estimate the angular velocity of
the rigid-body.

5. Section 4.7.3 proposes a partial-state observer for estimation of homography dynamics
of a moving camera. Our proposed observer is used for solving the same problem as
the observer proposed in [24].

6. Chapter 5 introduces a new method for building high-gain observers for nonlinear
systems, by connecting several high-gain observers into a “chain” of sub-observers.
The first sub-observer in the chain is observing the plant, the second sub-observer in
the chain is observing the first sub-observer, as if it was a “virtual plant”, and so on.

7. Section 5.5 designs a composite high-gain observer for the translational oscillator with
a rotating actuator (TORA) system. The observer is not shown to be convergent,
but is tested in simulation, with and without measurement noise.

Summary of theoretical contributions:

1. Section 3.5 gives the exact solution of the nonlinear differential equation Ė = E log(E),
with E ∈ GL (n,R). It also shows that this differential equation transforms into a
linear differential equation on Lie algebra, given by ė = e, where e := log(E).

2. Corollary 3.6.1 proves that the nonlinear system on Lie group, given by Ė = [E, u],
transforms into ė = [e, u], where e := log(E).

8



Chapter 2

Preliminaries

2.1 General Notation

In Chapters 3 and 4, the state of the plant is one or more matrices in R
n×n. While in

Chapter 5, the state of the plant is a vector in R
n. Table 2.1 lists the abbreviated observer

names used in this thesis. We keep the following notation consistent throughout the whole
thesis

(i) The state of the plant is labeled by a letter without a hat, eg. x, z, X.

(ii) The measured output of the plant is labeled by Y if it is a matrix, or by y if it is a
vector or a scalar.

(iii) The input to the system is labeled by u, which may be a matrix, vector, or scalar.

(iv) The state of the observer is labeled by the same letter as the state of the plant, but
with a hat on top, eg. x̂, ẑ, X̂.

(v) For systems on Lie groups, the estimation error between the plant and the observer
is labeled by El, Er, el, or er. For systems on vector spaces, the estimation error is
labeled by the same symbol as the state of the plant, but with a tilde symbol on top,
eg. x̃, z̃.

(vi) If x ∈ R
n, then xi refers to the ith component of x. When X is a matrix, then Xi,j

refers to the (i, j)th element of X.

9



Table 2.1: List of abbreviated observer names

HGO High-Gain Observer
LFSO Lie-group Full-State Observer
LPSO Lie-group Partial-State Observer
CHGO Composite High-Gain Observer

At times, we describe the asymptotic behavior of variables, as we make a small parame-
ter approach zero. Order of magnitude notation is the standard tool used for this purpose,
see [22], [25].

Definition 2.1.1. Let x be an R
n valued signal, which is a function of both the time, and

of a small parameter ǫ, i.e., x : R× R → R
n, and x(t, ǫ) ∈ R

n. We say x is of order O(ǫ)
pointwise in time if

(∀t > 0) (∃k, c > 0) (∀ǫ < c) ‖x(t, ǫ)‖ ≤ kǫ.

Definition 2.1.2. Let x be an R
n valued signal, which is a function of both the time, and

of a small parameter ǫ, i.e., x : R× R → R
n, and x(t, ǫ) ∈ R

n. We say x is of order O(ǫ)
uniformly in time if

(∃k, c > 0) (∀t > 0) (∀ǫ < c) ‖x(t, ǫ)‖ ≤ kǫ.

Notice that x being order O(ǫ) uniformly in time is a much stronger statement than x
being order O(ǫ) pointwise in time. In this thesis, we will mostly be concerned with order
of magnitude statements pointwise in time.

Definition 2.1.3. Consider a smooth function h : Rn → R
m, which is given by m real-

valued component functions h1(x1, . . . , xn), . . ., hm(x1, . . . , xn). We define the differential
of h, denoted by dh, to be the m× n Jacobian matrix of the function h, i.e.,

dh :=







∂h1

∂x1
. . . ∂h1

∂xn

...
. . .

...
∂hm

∂x1
. . . ∂hm

∂xn






.

Definition 2.1.4. Consider a real valued function h : Rn → R and a vector field f : Rn →
R

n. We define the directional or Lie derivative of h, in the direction of f , at the point
x ∈ R

n, as
Lfh(x) := (dh(x)) (f(x)) .
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The repeated k-times Lie derivative is defined as

Lk
fh(x) :=

(
dLk−1

f h(x)
)
(f(x)) .

Definition 2.1.5. Consider a system with state x ∈ R
n and output y ∈ R

ẋ = f(x)

y = h(x),

where the maps f : Rn → R
n and h : Rn → R are assumed to be smooth. We define the

observability matrix as








dh(x)

dLfh(x)
...

dLn−1
f h(x)









,

and we say that the observability rank condition holds at x0 ∈ R
n if the rank of this

observability matrix is equal to n, at x = x0, i.e.,

rank









dh(x0)

dLfh(x0)
...

dLn−1
f h(x0)









= n.

2.2 Lie Groups

In this section, we give a brief introduction to Lie groups as subgroups of matrices. The
main mathematical reference is [26]. All the results in this section are well-known.

We denote by R
+ the set of real numbers, equipped with the additive group structure.

We denote by R
n×n the set of n × n matrices with real entries. We denote by GL (n,R)

the general linear Lie group of all invertible n × n matrices with real entries. We denote
by M (n,R) the algebra of all n × n matrices with real entries. The bilinear product that
makes M (n,R) an algebra is the matrix commutator, i.e., given A,B ∈ R

n×n, the product
of A and B is defined as [A,B] := AB −BA. We denote by In the n× n identity matrix.
We denote by 0n the n× n zero matrix. For matrices A ∈ M (n,R) and X ∈ GL (n,R), we
define the adjoint map as AdX(A) := XAX−1.
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For a vector x ∈ R
n, we let ‖x‖ denote the Euclidean norm. For a matrix A ∈ R

n×n,
we define the corresponding induced matrix norm as

‖A‖ := max {‖Ax‖ : x ∈ R
n, ‖x‖ ≤ 1} .

Induced norms on R
n×n are submultiplicative [27], i.e., for any A, B ∈ R

n×n

‖AB‖ ≤ ‖A‖‖B‖.

Definition 2.2.1. A linear Lie group G is a closed subgroup of GL (n,R), with matrix
multiplication as the group operation.

A linear Lie group is not the same thing as a matrix Lie group. A matrix Lie group
is defined to be a subgroup of GL (n,R) (see [28, Definition 5.13], for example), but not
necessarily closed as a set. The fact that linear groups are additionally restricted to be
closed sets, ensures that the Lie group is an embedded submanifold of R

n×n, see [28].
Thus, we do not apply our analysis to Lie groups which are immersed submanifolds, but
not embedded submanifolds of Rn×n. All the “interesting” or “practical” Lie groups are
embedded submanifolds, so we do not really lose much by excluding the non-embedded
submanifolds.

When we speak of Lie groups in this thesis we refer to linear Lie groups, unless otherwise
specified. By working with Lie groups that are submanifolds of the space of real n × n
matrices, rather than abstract manifolds, we are able to use functional calculus, i.e., Taylor
series expansions of matrix functions, to prove results about our observer design.

Given a matrix A ∈ R
n×n and a real scalar r > 0, we define the following open ball

B(A, r) :=
{
X ∈ R

n×n : ‖A−X‖ < r
}
.

Proposition 2.2.2. Let X ∈ B(In, 1), then the series
∑∞

k=0(−1)k(X − In)
k converges in

norm and

X−1 =
∞∑

k=0

(−1)k(X − In)
k. (2.1)

Proof. Let X ∈ B(In, 1) and define M := In − X so that ‖M‖ < 1. Taking the norm of
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the right hand side of (2.1)

∥
∥
∥
∥
∥

∞∑

k=0

(−1)k(X − In)
k

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

∞∑

k=0

Mk

∥
∥
∥
∥
∥

≤

∞∑

k=0

‖Mk‖

≤

∞∑

k=0

‖M‖k

= (1− ||M ||)−1.

Hence the right hand side of (2.1) is a convergent series. To see that its sum equals X−1,
since X is a square matrix, it is enough to left-multiply by X and to check that the result
is the identity matrix. To this end

X
∞∑

k=0

(−1)k(X − In)
k = (In −M)

∞∑

k=0

Mk

=
∞∑

k=0

(
Mk −Mk+1

)

= In +
∞∑

k=1

(
Mk

)
−

∞∑

k=0

(
Mk+1

)

= In +M −M +M2 −M2 + · · ·

= In.

A consequence of Proposition 2.2.2 is that the set B(In, 1) is contained in GL (n,R).

Definition 2.2.3. Given a matrix A ∈ M (n,R), the matrix exponential exp : M (n,R) →
GL (n,R) is defined to be

exp(A) :=
∞∑

k=0

Ak

k!
. (2.2)

Since ||Ak|| ≤ ||A||k, the series (2.2) converges in norm for every matrix A ∈ R
n×n.
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Definition 2.2.4. Given a linear Lie group G, we define the Lie algebra of G, denoted by
Lie(G), to be the set

Lie(G) := {A ∈ M (n,R) : ∀t ∈ R, exp(tA) ∈ G} .

It is shown in [26, Theorem 3.2.1] that Lie(G) is a subalgebra of M (n,R).

Definition 2.2.5. Given a matrix X ∈ B(In, 1), the matrix logarithm map, log : B(In, 1) →
M (n,R), is defined as

log(X) :=
∞∑

k=1

(−1)k+1

k
(X − In)

k. (2.3)

The above series converges in norm for every matrix X ∈ B(In, 1) ⊂ GL (n,R) because
∑

k
1
k
‖X − In‖

k converges for ‖X − In‖ < 1.

The series definition of the matrix logarithm map (2.3) has a relatively small domain of
convergence. It is possible to extend the matrix logarithm map to a much larger domain.
By using Gregory’s series (1668), we obtain the following series definition [29, Section 11.3]

log(X) = −2
∞∑

k=0

1

2k + 1

(
(In −X) (In +X)−1)2k+1

,

which converges if all the eigenvalues of X have strictly positive real parts. In this thesis,
for clarity, we only use definition (2.3). Regardless of which series is used, the proposed
observers remain the same, only the proven region of convergence may change.

Lemma 2.2.6. The exponential and the logarithm maps have the following properties

(a) ∀X ∈ B(In, 1) : exp(log(X)) = X ,

(b) ∀A ∈ B(0n, log(2)) : log(exp(A)) = A ,

(c) ∀A ∈ M (n,R), and ∀X ∈ GL (n,R),

exp(XAX−1) = X exp(A)X−1,

(d) ∀X ∈ B(In, 1), and ∀A ∈ GL (n,R) such that AXA−1 ∈ B(In, 1),

log(AXA−1) = A log(X)A−1.
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Proof. The proof of properties (a) and (b) is standard and can be found in [26, Theorem
2.2.1] or [30].

To see that (c) holds, note that (XAX−1)k = XAkX−1. Substituting this identity into
the series definition (2.2) of the exponential map gives the desired result.

To see that (d) holds, note that (AXA−1 − In)
k = (A(X − In)A

−1)k = A(X − In)
kA−1.

Substituting this identity into the series definition (2.3) of the logarithm map gives the
desired result.

A simple consequence of Lemma 2.2.6, part (d), is that on the set B(In, 1), the logarithm
of a matrix commutes with the matrix itself, i.e., for all X ∈ B(In, 1),

X log(X) = X log(X)X−1X = log(X)X. (2.4)

This elementary property of the logarithm map will play an important role in our later
analysis.

Definition 2.2.7. Let G be a linear Lie group. A one-parameter subgroup of G is defined
to be a continuous group homomorphism γ : R+ → G.

Lemma 2.2.8 ( [26, Theorem 3.1.1]). If γ : R+ → GL (n,R) is a one-parameter subgroup
of GL (n,R), then γ is real-analytic and γ(t) = exp(tA), with A = γ′(0).

Lemma 2.2.9. Let X : R → GL (n,R) be a smooth parameterized curve. Then

d

dτ
X−1 = −X−1dX

dτ
X−1. (2.5)

Proof. For any smooth parameterized curveX : R → GL (n,R), and any τ ∈ R,X(τ)X−1(τ) =
In where τ is the curve parameter. Differentiating both sides of this identity with respect
to τ , while using the product rule, we get

0 =
d

dτ
In =

d

dτ

(
XX−1

)

=
dX

dτ
X−1 +X

d

dτ
X−1,

from which (2.5) immediately follows.

Definition 2.2.10. Given a smooth parameterized curve X : R → GL (n,R), the body-
velocity of X is the curve vX : R → M (n,R), defined by vX(t) := X−1(t)Ẋ(t).
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In addition to GL (n,R), the following linear Lie groups are used in this thesis

SL (n,R) := {X ∈ R
n×n : det(X) = 1}

SO (n,R) := {X ∈ R
n×n : XX⊤ = In, det(X) = 1}.

The corresponding Lie algebras are

Lie(GL (n,R)) := M (n,R)

Lie(SL (n,R)) := {A ∈ M (n,R) : tr(A) = 0}

Lie(SO (n,R)) := {A ∈ M (n,R) : A+ A⊤ = 0n}.

If G ⊆ GL (n,R) is any linear Lie group, then as a consequence of Lemma 2.2.6, part (a),
and of the definition of Lie(G), the matrix logarithm map takes elements of G ∩ B(In, 1)
to elements of Lie(G), i.e., log : G ∩ B(In, 1) → Lie(G).

Definition 2.2.11. If G is a linear Lie group and X ∈ G is any element of G, then the
tangent space to G at X is defined as

TXG := {A ∈ M (n,R) : A = γ̇(0), γ : (−δ, δ) ⊂ R → G is smooth and γ(0) = X}.

Proposition 2.2.12. For X ∈ G, we have

TXG = X Lie(G) = {XA : A ∈ Lie(G)}

= Lie(G)X = {AX : A ∈ Lie(G)}.

Proof. By Lemma 2.2.6, part (a), we have that

(∀X ∈ G) (∀A ∈ Lie(G)) (∀t ∈ R) X exp(tA)X−1 = exp(tXAX−1).

Thus X Lie(G)X−1 ⊆ Lie(G). Using an identical argument, replacing X with X−1, one
can verify that X−1 Lie(G)X ⊆ Lie(G), which implies Lie(G) ⊆ X Lie(G)X−1. Therefore,
we have shown that X Lie(G)X−1 = Lie(G), which proves that X Lie(G) = Lie(G)X.

Now, for any A ∈ Lie(G), the curve γ(t) = X exp(tA) is smooth with γ(0) = X, hence
γ̇(0) ∈ TXG. Computing the derivative of the curve, we get

γ̇(0) =
d

dt
X exp(tA)

∣
∣
t=0

= XA,

which shows that XA ∈ TXG. Since our choice of A ∈ Lie(G) was arbitrary, we have that
X Lie(G) ⊆ TXG.

16



Conversely, for any B ∈ TXG, there is a smooth curve γB, with γB(0) = X and
γ̇B(0) = B. For small |t|, let us define

β(t) := log(X−1γB(t)),

which is a curve in Lie(G), and is such that β(0) = 0. Furthermore, since Lie(G) is a vector
space, we have that β̇(0) ∈ Tβ(0) Lie(G) ∼= Lie(G). For small |t|, the curve γB is given by

γB(t) = X exp(β(t)).

Computing γ̇B(0), and using the fact that β(0) = 0, we get

γ̇B(0) = X
d

dt

[
∞∑

k=0

β(t)k

k!

] ∣
∣
∣
∣
∣
t=0

= X
d

dt

[

In + β(t) +
β(t)2

2
+ · · ·

]
∣
∣
∣
∣
∣
t=0

= X

[

β̇(t) +
β̇(t)β(t) + β(t)β̇(t)

2
+ · · ·

] ∣
∣
∣
∣
∣
t=0

= Xβ̇(0).

Thus, we have B = γ̇B(0) = Xβ̇(0), but we have seen before that β̇(0) ∈ Lie(G), therefore
B ∈ X Lie(G). Since our choice of B ∈ TXG was arbitrary, we have that TXG ⊆ X Lie(G).

2.3 High-Gain Observer

Consider the following nonlinear, single-input, single-output system on R
n

ẋ1 = x2

ẋ2 = x3

...

ẋn = φ(x, u)

y = x1,

(2.6)

where y is the measured output and φ : Rn × R → R is a smooth, globally Lipschitz and
uniformly bounded function.
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The high-gain observer (HGO) allows us to estimate all the states of system (2.6), by
using the signal y and possibly also u. One useful feature of the HGO is that it can estimate
the states of the system (2.6) without full knowledge of the function φ(x, u), i.e., HGO is
robust to modeling uncertainties. If we do not know the function φ(x, u) exactly, but only
know some nominal model of this function, call it φ0(x, u), then we can build the following
HGO:

˙̂x1 = x̂2 +
1

ǫ
an−1(y − x̂1)

˙̂x2 = x̂3 +
1

ǫ2
an−2(y − x̂1)

...

˙̂xn−1 = x̂n +
1

ǫn−1
a1(y − x̂1)

˙̂xn = φ0(x̂, u) +
1

ǫn
a0(y − x̂1),

(2.7)

where the constants a0, . . . , an−1 are design parameters of the HGO, chosen so that the
polynomial p(s) = sn + an−1s

n−1 + · · · + a1s + a0 is Hurwitz and the constant ǫ > 0 is a
small design parameter.

The estimation error between (2.6) and (2.7)

x̃ := x− x̂ =
[
x1 − x̂1, x2 − x̂2, . . . , xn − x̂n

]⊤

satisfies the dynamics

˙̃x =











−1
ǫ
an−1 1 0 · · · 0

− 1
ǫ2
an−2 0 1 · · · 0
...

...
...

. . .
...

− 1
ǫn−1a1 0 0 · · · 1

− 1
ǫn
a0 0 0 · · · 0











x̃+











0

0
...

0

1











δ(x, x̂, u), (2.8)

where δ(x, x̂, u) = φ(x, u) − φ0(x̂, u) is the perturbation, which arises due to modeling
uncertainty (φ0 6= φ) and due to estimation error (x̂ 6= x). The system (2.8) can be viewed
as a linear system, forced by a nonlinear term δ(x, x̂, u). The unforced, linear system has
the characteristic polynomial q(s) = sn + an−1

ǫ
sn−1 + · · · + a1

ǫn−1 s +
a0
ǫn
. For any ǫ > 0, the

polynomial q(s) is Hurwitz if and only if the polynomial p(s) = sn+an−1s
n−1+· · ·+a1s+a0,

is Hurwitz. Indeed, if p(s) factors as

p(s) = (s− r1) · · · (s− rn),
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where {r1, . . . , rn} is the set of repeating roots of p(s), then it is easy to check that q(s)
factors as

q(s) =
(

s−
r1
ǫ

)

· · ·
(

s−
rn
ǫ

)

.

Since we chose a0, . . . , an−1 such that p(s) is Hurwitz, we must have that all the roots
of the characteristic polynomial, q(s), have strictly negative real parts. Therefore all the
eigenvalues of the unforced, linear part of (2.8) also have negative real parts. Therefore
the unforced, linear system is exponentially stable, by Lemma A.3.1, if the coefficients
a0, . . . , an−1 are chosen as discussed above.

In the absence of modeling uncertainty, i.e., when φ0 = φ, the perturbation term
δ(x, x̂, u) is a vanishing perturbation, because it equals 0 when x̃ = 0, i.e., for any x ∈ R

n,
δ(x, x, u) = 0. In this case, the perturbed error system (2.8) has an equilibrium point at
x̂ = 0, which is exponentially stable for ǫ sufficiently close to zero [22].

In the presence of modeling uncertainty, i.e., φ0 6= φ, the perturbation term δ(x, x̂, u)
is non-vanishing at x̃ = 0. With modeling uncertainty, the perturbed error system (2.8)
does not have an equilibrium point at x̃ = 0. Thus, we can not talk about the stability
of x̃ = 0 and the HGO (2.7) can not converge to the system states. However, using some
perturbation theory analysis, it is shown in [17] that the estimation error x̃(t) decays to
order O(ǫ) values after a short transient period. This transient period, also called the
“peaking period”, has time duration [0, T1(ǫ)] where T1(ǫ) tends to zero as ǫ tends to zero.
During the “peaking period”, the estimation error may temporarily peak to order O(1/ǫ)
values, before decaying towards zero. Thus, by choosing ǫ sufficiently small, the state
estimates can be made arbitrarily accurate, at the expense of increased peaking in the
estimation error, see also [22], [23], [31].

When noise is present in the measurement y, decreasing ǫ causes amplification of this
measurement noise. So there will be a practical limit to how small we can make ǫ without
the observer becoming useless. If the noise is low-frequency with bounded time derivatives,
then the HGO can still work fairly well [23], [32].

HGOs were successfully used in [17] to stabilize fully feedback linearizable systems.
Much research has been done on the use of HGO in feedback control of nonlinear systems,
for a comprehensive summary, see [13].
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2.4 High-Gain Observers as Differentiators

Consider the following special case of the high-gain observer (2.7), with n = 2 and
φ0(x, u) = 0,

˙̂x1 = x̂2 +
1

ǫ
a1(y − x̂1)

˙̂x2 =
1

ǫ2
a0(y − x̂1).

(2.9)

The high-gain observer (2.9) is a linear system, computing the transfer function from y to
x̂2, we get

X̂2(s)

Y (s)
=

sa0
s2ǫ2 + sǫa1 + a0

.

In the limit, as ǫ → 0, we get X̂2(s)
Y (s)

→ s. Thus, we see that the observer (2.9) approaches
the ideal differentiator, shown in Figure 2.1.

sy ẏ

Figure 2.1: The ideal differentiator, a non-causal system

Thus, the high-gain observer should be viewed as an approximate differentiator of the
signal y(t). This viewpoint is discussed in [13], [22].
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Chapter 3

Lie Group Full-State Observers

This chapter proposes a local exponential observer for left-invariant systems on linear
Lie groups, where the full state of the system is available for measurement. We propose
two different observer designs for this class of system. We show that, depending on the
observer chosen, local exponential stability of one of the two estimation error dynamics,
left-invariant, or right-invariant error dynamics is obtained. These results are developed by
showing that the estimation error dynamics are differentially equivalent to a stable, linear
differential equation on a vector space.

We illustrate our observer design on the attitude estimation problem on SO (3), which
has direct application to mobile robotics. Where the orientation of the mobile robot and
its angular velocities are measured by means of on-board sensors.

3.1 Introduction

Nonlinear, full-state observers for left-invariant systems on Lie groups find many applica-
tions in mobile robotics. One well-developed application is the estimation of the orientation
of a rigid-body using low-cost on-board sensors. A very effective filter for this purpose was
proposed in [2]. Small autonomous robots usually undergo a lot of vibration and other
disturbances, while being restricted to carrying only a basic, light-weight sensor package.
For this reason, a lot of high-frequency noise is usually present in the sensor measurements
of these robots. The noise has a detrimental effect on the robot’s performance. Nonlinear
observers for left-invariant systems on Lie groups are useful because, in certain cases, they
can be used to filter out the sensor noise. Depending on the specific application and the
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type of sensor package available, it could be possible to use the nonlinear observer as a
sensor fusion algorithm that eliminates a lot of the sensor noise.

Left-invariant systems on Lie groups arise in kinematic modeling of rigid-body rotation.
The orientation of a rigid-body can be represented by an orthogonal matrix with unit
magnitude, R ∈ SO (3). As the rigid-body undergoes rotation, the matrix R changes with
time, according to the following left-invariant equation on SO (3),

Ṙ = Ru,

where u ∈ Lie(SO (3)) is a skew-symmetric matrix, that encodes the angular velocity of
the rigid-body. The idea is that R and u can be measured by low-cost sensors, which are
mounted on the rigid-body. We will return to this kinematic rigid-body rotation model in
Section 3.7.

In this chapter we consider left-invariant systems on the general linear Lie group, i.e.,
the group of all non-singular real n × n matrices. In other words we consider systems
whose state is an invertible, square matrix with real coefficients and whose vector field
is left-invariant. The output of the system is taken to be the entire state matrix, i.e.,
we require that the full state of the system be available for measurement. We choose to
mostly talk about left-invariant systems, to avoid frequent repetition of the same essential
concept, however it is possible to extend analogous results to right-invariant systems on
Lie groups.

At first glance it may seem unnecessary to design an observer to estimate the state of
a system if that state is already measurable. We are motivated to study this problem for
two reasons. First such an observer provides noise filtering and can be used as a sensor
fusion algorithm, as we have seen in Section 1.1. The second reason is that by looking at
this simple case we hope to gain insight into the state estimation problem when the output
is not equal to the entire state, which we will explore in detail in Chapter 4.

When analyzing the convergence properties of our observers, we treat the plant as a
deterministic process and the measurements as perfect signals, uncorrupted by noise. In
this mathematical framework, the noise filtering properties of a full-state observer are not
apparent. For this reason, we do not formally analyze the effects of measurement noise
in this thesis, but rather show that the estimation error converges to zero if the observer
is given noiseless measurements. Insight into the behavior of our observer under noise is
tested in simulation.

Many current algorithms for state estimation on Lie groups, such as those proposed
in [1], [2], [3] , [4] and [5], rely on projecting the measurement error from the Lie group
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to its corresponding Lie algebra. The projected vector in the Lie algebra is then used to
drive the observer to converge to the system trajectory. This projection based approach
is nice because the projection operator is numerically simple to implement. However this
approach has a drawback in that it does not work for the general linear Lie group, GL (n,R).
Since the Lie algebra of GL (n,R) is M (n,R), it is not clear how to project vectors from
GL (n,R) to M (n,R).

Our proposed observer is similar in form to the above mentioned observers, but instead
of using a projection operator to convert the measurement error from the Lie group to the
Lie algebra, we use the matrix logarithm map. The advantage of our observer is that it
works for the general linear Lie group, GL (n,R), and our observer also yields estimation
error dynamics that are differentially equivalent to a linear and stable vector field. The
matrix logarithm map transforms the Lie group error dynamics, in a neighbourhood of the
identity matrix, into linear dynamics, defined on the Lie algebra.

Our full-state observers are meant to solve the same type of problem as the observers
proposed in [6]. One possible advantage of our observer design, as compared to [6] is that
we give an explicit observer equation. Another possible advantage of our observer design
is that it yields linear estimation error dynamics. The major disadvantage of our analysis
is that we do not show global convergence.

3.2 Problem Statement

Let G ⊆ GL (n,R) be any linear Lie group. Consider the following system on G

Ẋ = Xu

Y = X,
(3.1)

where u : R → Lie(G) is the control input to the system, and Y ∈ G is the measured
output of the system.

The system (3.1) is left-invariant. This means, for any constant matrix A ∈ G, if we
define a new variable Z := AX, then Z will satisfy the same differential equation as X.
Computing the dynamics of Z, we get

Ż =
d

dt
AX

= AẊ

= AXu

= Zu,
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which is the same as the dynamics Ẋ = Xu in (3.1). See [10] for more information on
invariant systems.

In this thesis we assume that the input signal u is admissible for the system (3.1). This
means, for any initial condition X(0) ∈ G, the corresponding solution of (3.1) with the
admissible input signal u is unique, continuously differentiable and exists for all time.

Observer

Ẋ = Xu
Y = X

X̂

Yu

Figure 3.1: Block diagram of the system and observer setup.

Assumption 1. The input u to system (3.1) is such that for any initial condition X(0) ∈
G, there exists a compact set G ⊆ G, such that X(t) ∈ G, for all t ≥ 0.

Note that this assumption is automatically satisfied if the group G is compact, for
example G = SO (3). This means that when working with compact Lie groups, such as
SO (3), we do not have to impose uniform boundedness of the input signal, u.

Our objective is to build an observer, having state X̂ ∈ G, for the system (3.1). The
observer has access to the measured output Y ∈ G and to the input u ∈ Lie(G). We will
design the observer such that, if Assumption 1 holds, then for X̂(0) sufficiently close to
X(0), we have X̂(t) → X(t) exponentially as t → ∞.

Results of this chapter can be extended to right-invariant systems on Lie groups, which
have the form

Ẋ = uX.

However, we choose to only talk about left-invariant systems to avoid repetition and for
clarity.
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3.3 Proposed Observers

For the left-invariant system (3.1), we propose two different observers, which we call LFSOs
(Lie-group Full-State Observers). The first is the passive LFSO, given by

˙̂
X = X̂u− a0X̂ log(Y −1X̂). (3.2)

The second is the direct LFSO, given by

˙̂
X = Y uY −1X̂ − a0X̂ log(Y −1X̂). (3.3)

In the above two observers, the constant a0 > 0 is a design parameter that, as we will
show, can be used to change the rate of observer convergence.

Following the terminology of [6], we call the term α(X̂, Y ) := −a0X̂ log(Y −1X̂), ap-
pearing in (3.2) and (3.3), the innovation term of the observer. It can be checked that this
term α satisfies the conditions for being an innovation term, given in [6, Definition 15].

An intuitive and informal explanation for taking this particular form of α(X̂, Y ) =
−a0X̂ log(Y −1X̂) is that the matrix Y −1X̂ represents a “measurement error” on the Lie
group G. The Lie group G is not a vector space and therefore Y −1X̂ is not a vector, so it
should not be added or subtracted with other matrices. To make the “group-like” matrix
Y −1X̂ more “vector-like”, we take its logarithm, which maps it to the vector space Lie(G),
while preserving all its information (since log : G → Lie(G) is a local diffeomorphism). We
then push-forward this vector, log(Y −1X̂), from TInG to TX̂G, the tangent space at X̂, by
applying the push-forward map of left translation. By Proposition 2.2.12, left translation
from TInG to TX̂G is the same as left multiplication by X̂. The result of the left translation

is a vector in TX̂G, which is a vector-like estimation error in the tangent space at X̂. This
vector-like estimation error is then multiplied by the gain a0 > 0 to adjust the rate of
observer convergence.

We call the term X̂u appearing in (3.2) and the term Y uY −1X̂ appearing in (3.3),
the synchronization terms of the observer. The choice of synchronization term is what
distinguishes the passive observer from the direct observer.

3.4 Estimation Error Functions

An estimation error function, as used in this thesis, is a map from G × G to some error
space. In this thesis, the error space will be either the Lie groupG, or its Lie algebra Lie(G).
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In [6] it is shown that two canonical choices of Lie group estimation error functions are
available, when studying observers for left-invariant systems on Lie groups.

Definition 3.4.1. Given a system on a linear Lie group G, with state X ∈ G, and an
observer for this system, with state X̂ ∈ G, the canonical left-invariant error, El : G×G →
G, is

El(X, X̂) := X−1X̂ (3.4)

and the canonical right-invariant error, Er : G×G → G, is

Er(X, X̂) := X̂X−1. (3.5)

The reason why El (respectively, Er) is called left-invariant (right-invariant) is because
it does not change if both of its arguments are multiplied on the left (on the right) by an
arbitrary element of G,

(∀A,X, X̂ ∈ G) El(AX,AX̂) = X−1A−1AX̂ = X−1X̂ = El(X, X̂)

(∀A,X, X̂ ∈ G) Er(XA, X̂A) = X̂AA−1X−1 = X̂X−1 = Er(X, X̂).

It is apparent from the definitions of El and Er that they are related by

(∀X, X̂ ∈ G) Er = XElX
−1 = AdX(El),

where AdX : G → G is a global diffeomorphism for any fixed X ∈ G, because it is smooth
and its inverse, AdX−1 , is also smooth. The canonical estimation errors always satisfy
El = In ⇐⇒ Er = In. However in general, convergence of El to In is not sufficient to
deduce convergence of Er to In and vice-versa. This is because the diffeomorphism AdX

changes with time as X changes with time. So, if X grows unbounded very fast, then
the diffeomorphism AdX might “stretch” the coordinates Er = AdX(El) faster than El is
converging to In, thus preventing Er from converting to In. To eliminate such pathological
system trajectories, it is sufficient to impose Assumption 1.

The goal of our observer design is to have ‖X̂ − X‖ → 0 exponentially. To this end,
we have the following result.

Proposition 3.4.2. Suppose that Assumption 1 holds. If either Er → In exponentially,
or if El → In exponentially as t → ∞, then X̂ → X exponentially, as t → ∞.

Proof. For any X, X̂ ∈ G the following identities hold

X̂ −X = X(X−1X̂ − In) = X(El − In)

X̂ −X = (X̂X−1 − In)X = (Er − In)X.
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Taking the norms of the above identities, we get the following inequalities

‖X̂ −X‖ ≤ ‖X‖‖El − In‖

‖X̂ −X‖ ≤ ‖X‖‖Er − In‖.
(3.6)

In addition, we also have that, for any X, X̂ ∈ G the following identities hold

(El − In) = X−1(X̂ −X)

(Er − In) = (X̂ −X)X−1.

Taking the norms of the above identities, we get the following inequalities

‖El − In‖ ≤ ‖X−1‖‖X̂ −X‖

‖Er − In‖ ≤ ‖X−1‖‖X̂ −X‖.
(3.7)

By Assumption 1, there exists a compact subset G ⊂ GL (n,R), such that X(t) ∈ G for
all t ≥ 0. This implies that ‖X(t)‖ is uniformly bounded, i.e., supt≥0 ‖X(t)‖ = K1 < ∞.
Furthermore, since the matrix inverse map is continuous, the image of G under the matrix
inverse map is also a compact subset of GL (n,R). Therefore, ‖X−1(t)‖ is also uniformly
bounded, i.e., supt≥0 ‖X

−1(t)‖ = K2 < ∞.

From (3.6) and (3.7), we then easily see that the exponential convergence of Er → In,
or of El → In, implies the exponential convergence of X̂ → X. Indeed, suppose that
‖Er(t) − In‖ → 0 exponentially, as t → ∞, then by definition of exponential stability, we
have

(∃δ > 0) (∃m,α > 0) (∀Er(0) ∈ B(In, δ)) ⇒

(∀t ≥ 0) ‖Er(t)− In‖ < me−αt‖Er(0)− In‖

By the inequalities (3.6), and uniform boundedness of ‖X‖, we have that

‖Er − In‖ < m ⇒ ‖X̂ −X‖ < K1m.

By the inequalities (3.7), and uniform boundedness of ‖X−1‖, we have that

‖X̂ −X‖ <
δ

K2

⇒ ‖Er − In‖ < δ.

Combining the above results, we have exponential convergence of ‖X̂ −X‖ → 0,

(∃δ,m, α > 0)

(

‖X̂(0)−X(0)‖ <
δ

K2

)

⇒

(∀t ≥ 0) ‖X̂(t)−X(t)‖ < K1K2me−αt‖X̂(0)−X(0)‖

The proof for El is identical.
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In addition to using the error functions El and Er, we introduce two other, closely
related error functions.

Definition 3.4.3. For El ∈ B(In, 1), we define the log left-invariant error el : G × G →
Lie(G) to be

el(X, X̂) := log(El(X, X̂)) = log(X−1X̂) (3.8)

and for Er ∈ B(In, 1), we define the log right-invariant error er : G×G → Lie(G) to be

er(X, X̂) := log(Er(X, X̂)) = log(X̂X−1). (3.9)

Since el is a function of only El, and since El is left-invariant, it follows that el is also
left-invariant, i.e., ∀A ∈ G : el(AX,AX̂) = el(X, X̂). For the same reason, it follows that
er is right-invariant, i.e., ∀A ∈ G : er(XA, X̂A) = er(X, X̂).

The variables el and er are useful because they are vectors in Lie(G) (which is a real
vector space), so they allow us to convert a differential equation on a Lie group into a
differential equation on a vector space. The disadvantage of el and er is that they are only
defined for El, Er ∈ B(In, 1), which means that we can only use el and er when the error
between the system and the observer is not too great.

Lemma 3.4.4. If El, Er ∈ B(In, 1), then

er = XelX
−1.

Proof. By direct computation and with the help of Lemma 2.2.6 (d), we obtain

er = log(Er)

= log(XElX
−1)

= X log(El)X
−1

= XelX
−1.

In this chapter, when we write one of the four possible estimation error functions, i.e.,
one of El, Er, el, or er, we always use it to denote the error between the system (3.1) and
one of the two observers (3.2) or (3.3). Whether we are referring to observer (3.2) or (3.3)
will be made obvious from the context.
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3.5 A Differential Equation on GL (n,R)

Here we restrict our attention to examining the behaviour of the following differential
equation, evolving on GL (n,R)

Ė = −a0E log(E), (3.10)

where E ∈ GL (n,R) and a0 ∈ R is a positive constant. The differential equation (3.10)
arises in the analysis of the error dynamics associated with the observers (3.2), (3.3). Note
that the above equation can also be written as Ė = −a0 log(E)E, due to identity (2.4).

Since we have only defined the log map on the domain B(In, 1), the differential equa-
tion (3.10) is only defined for E ∈ B(In, 1). We will see in Proposition 3.5.3, that E(t) will
stay in B(In, 1) for t ≥ 0, as long as E(0) is initialized sufficiently close to In.

We defined (3.10) to evolve on the set of all invertible matrices, GL (n,R). If G ⊆
GL (n,R) is any linear Lie group, then the vector field (3.10) is tangent to the submanifold
G. Therefore, the submanifold G is positively invariant for (3.10). To see that the vector
field (3.10) is tangent to any linear Lie group G, suppose that E(t0) ∈ G at some time
t0 ∈ R. Then log(E(t0)) ∈ Lie(G) and left-translation of this vector takes it to the tangent
space to G at E(t0), i.e., E(t0) log(E(t0)) ∈ TE(t0)G, by Proposition 2.2.12. Thus, the

vector field (3.10) is such that Ė(t0) ∈ TE(t0)G.

The crucial property of the differential equation (3.10) is that the matrices Ė and E
commute, i.e., EĖ = ĖE. This property is a consequence of matrices E and log(E)
commuting. Commutativity of Ė and E, combined with the product rule, gives us the
following result.

Lemma 3.5.1. Let E : R → GL (n,R) be a curve in GL (n,R), such that E and Ė commute,
i.e., EĖ = ĖE. Then for all positive integers k, we have

d

dt

[
(E − In)

k
]
= kĖ(E − In)

k−1

= k(E − In)
k−1Ė.

Proof. By straight-forward computation, using the product rule and commutativity of Ė
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and E, we get

d

dt

[
(E − In)

k
]
=

d

dt





k times
︷ ︸︸ ︷

(E − In)(E − In) · · · (E − In)





=

k times
︷ ︸︸ ︷

Ė(E − In)
k−1 + (E − In)Ė(E − In)

k−2 + · · ·+ (E − In)
k−1Ė

= kĖ(E − In)
k−1

= k(E − In)
k−1Ė.

Lemma 3.5.1 is the key reason why we will be able to convert the differential equa-
tion (3.10) into a linear differential equation via a certain change of coordinates. This
change of coordinates is the matrix logarithm map defined on B(In, 1) ⊂ GL (n,R). By
Lemma 2.2.6, the matrix logarithm map log : B(In, 1) → M (n,R) is a diffeomorphism onto
its image. Furthermore, the codomain of the log map is the set M (n,R), which is isomor-
phic to R

n2

, as a vector space. Therefore, the log map is a local coordinate transformation
on GL (n,R), defined on the ball B(In, 1).

We denote by e ∈ M (n,R) the log coordinates of the matrix E ∈ B(In, 1)

e := log(E). (3.11)

To express the differential equation (3.10) in log coordinates we differentiate e with respect

30



to time, making use of Lemma 3.5.1 and Proposition 2.2.2

ė =
d

dt
log(E)

=
d

dt

[
∞∑

k=1

(−1)k+1

k
(E − In)

k

]

=
∞∑

k=1

(−1)k+1

k

d

dt

[
(E − In)

k
]

=
∞∑

k=1

(−1)k+1

k

[

kĖ(E − In)
k−1

]

=
∞∑

k=0

(−1)k(E − In)
kĖ

= E−1Ė

= −a0E
−1E log(E)

= −a0e.

The above equation, rewritten ė = −a0e, is linear and its poles are real and located at
−a0, with multiplicity n2. Thus, for any positive constant a0 > 0, the point e = 0n is an
exponentially stable equilibrium of ė = −a0e, by Lemma A.3.1. Therefore, the equilibrium
point E = In is locally exponentially stable for (3.10), by Lemma A.2.1. The above
discussion proves the following.

Lemma 3.5.2. On the set E ∈ B(In, 1), the vector field (3.10) is differentially equivalent
to the vector field

ė = −a0e, (3.12)

where e := log(E). As a result, the equilibrium point E = In of (3.10) is locally exponen-
tially stable.

The solution, E(t), of the differential equation (3.10) can be expressed in closed form.
This is useful in obtaining an intuitive understanding of the equation (3.10), but is not
necessary for our main argument.

Proposition 3.5.3. Let E0 ∈ B(In, 1) be sufficiently close to In so that log(E0) ∈ B(0n, log(2))
and let a0 > 0 be arbitrary. Then the solution of (3.10) with initial condition E(0) = E0

is defined for all t ≥ 0 and is given by

E(t) = exp(exp(−a0t) log(E0)). (3.13)
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Proof. First, we will show that the candidate solution (3.13) is a solution to the differential
equation (3.10) with initial condition E0. First, we check the initial condition. The value
at t = 0 of E(t) is E(0) = E0 as required.

Next, let us check that E(t) satisfies (3.10). Differentiate E(t) with respect to time

d

dt
E(t) =

d

dt
[exp(exp(−a0t) log(E0))]

= −a0 exp(−a0t) log(E0) exp(exp(−a0t) log(E0))

= −a0 log(E)E,

where we have used the identity

log(E) = log(exp(exp(−a0t) log(E0))) = exp(−a0t) log(E0),

which follows from Lemma 2.2.6 (b) and the assumption that log(E0) ∈ B(0n, log(2)).

To finish the proof, let us check that the solution E(t) of (3.10), with initial condition
E0 as stated in the proposition, is such that for all future times t > 0, we have E(t) ∈
B(In, 1). The solution of the linear differential equation (3.12) is e(t) = e(0) exp(−a0t),
where e(0) = log(E0) . Using the fact that E(t) = exp(e(t)), we compute upper bound on
‖E(t)− In‖, for t ≥ 0:

‖E(t)− In‖ =

∥
∥
∥
∥
∥

∞∑

k=0

1

k!
e(0)k exp(−a0tk)− In

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

k=1

1

k!
e(0)k exp(−a0tk)

∥
∥
∥
∥
∥

≤

∞∑

k=1

1

k!
‖e(0)‖k exp(−a0tk)

≤

∞∑

k=1

1

k!
‖e(0)‖k

= exp(‖e(0)‖)− 1

< 2− 1 = 1.

The last inequality follows from the assumption that log(E0) ∈ B(0n, log(2)). Thus, E(t) ∈
B(In, 1) for all t ≥ 0.
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Let E(t) be a solution of (3.10), which is initailized at E0 = E(0), such that the
conditions of Proposition 3.5.3 are satisfied. Then for all t ≥ 0, E(t) stays on the same one-
parameter subgroup, on which it was initialized at time t = 0. Indeed, by Proposition 3.5.3,
we have

(∀t ≥ 0) (∃τ ∈ R) E(t) = exp(τ log(E0)).

Thus, in a neighbourhood of In ∈ GL (n,R), the vector field (3.10) is a linear vector field
on Lie group, since its flow is a one-parameter subgroup [8], [9].

3.6 Estimation Error Dynamics

In this section, we analyze the dynamics of the error functions El and Er. When looking
at the observer equations (3.2) and (3.3), we substitute X for the variable Y . Also, we
make frequent use of Lemma 2.2.9.

In this section, we make the assumption that X̂ is initialized sufficiently close to X, so
that El, Er ∈ B(In, 1). This assumption is sufficient to ensure that our series definitions,
using (2.3), of log(Er) and log(El) are convergent series, and also sufficient for proper-
ties like for example, X log(El)X

−1 = log(Er), to hold. Actually, the assumption that
El, Er ∈ B(In, 1) is not necessary to ensure that log(El) and log(Er) are convergent series,
as discussed in Section 2.2.

3.6.1 Passive Observer

Consider what happens when the passive observer (3.2) is applied to estimate the state of
the system (3.1). First, we examine the dynamics of the right-invariant error, Er, making
use of Lemma 2.2.9:

Ėr =
d

dt

[

X̂X−1
]

=
˙̂
XX−1 − X̂X−1ẊX−1

= X̂uX−1 − a0X̂ log(X−1X̂)X−1 − X̂uX−1

= −a0X̂ log(X−1X̂)X−1

= −a0X̂X−1X log(X−1X̂)X−1

= −a0X̂X−1 log(X̂X−1)

= −a0Er log(Er).

(3.14)

33



The above differential equation is the same as the equation (3.10), if we identify E with
Er. This means that if X̂ is sufficiently close to X so that Er ∈ B(In, 1), then we can use
Lemma 3.5.2 to rewrite the above equation in er-coordinates

ėr = −a0er, (3.15)

which is a linear differential equation. Lemma 3.5.2 also tells us that if we choose a0 > 0
to be any positive constant, then the equilibrium point Er = In is locally exponentially
stable for the dynamics (3.14).

Next, we examine the dynamics of the left-invariant error, El

Ėl =
d

dt

[

X−1X̂
]

= −X−1ẊX−1X̂ +X−1 ˙̂
X

= −uX−1X̂ +X−1X̂u− a0X
−1X̂ log(X−1X̂)

= −uEl + Elu− a0El log(El)

= δP (u,El)− a0El log(El),

(3.16)

where δP (u,El) := Elu − uEl is a perturbation term that vanishes when El = In. In the
differential equation (3.16), the matrices El and Ėl do not commute in general, because El

and δP (u,El) do not commute in general. For this reason, Lemma 3.5.1 does not hold for
the vector field (3.16). This makes it difficult to compute the derivative of the Taylor series
expansion of the matrix logarithm map, like we did in the proof of Lemma 3.5.2. This makes
the differential equation (3.16) harder to analyze than the differential equation (3.10).

Our goal is to transform the error dynamics (3.16) into log coordinates, i.e., to find
the expression for ėl. To perform the transformation into log coordinates, we recall
Lemma 3.4.4 which gives us the equality el = X−1erX. Thus, to compute ėl, we can
just differentiate both sides of this relation and use the product rule. We know derivatives
of X−1, of er and of X, which gives us enough information to compute the expression of
ėl. To be able to do this, it is sufficient that the conditions of Lemma 3.4.4 are satisfied,
i.e., that El, Er ∈ B(In, 1).

ėl =
d

dt

[
X−1erX

]

= −X−1ẊX−1erX +X−1ėrX +X−1erẊ

= −uel − a0el + elu

= −a0el + [el, u] .

(3.17)
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The above system, rewritten ėl = −a0el + [el, u], is not linear, but is bilinear. Indeed, this
vector field is linear in el and linear-affine in u, because the matrix commutator [el, u] is
linear in el and in u, therefore the system (3.17) is bilinear.

3.6.2 Direct Observer

We now consider what happens when the direct observer (3.3) is applied to estimate the
state of the system (3.1). We first examine the dynamics of the left-invariant error El,
making use of Lemma 2.2.9,

Ėl =
d

dt

[

X−1X̂
]

= −X−1ẊX−1X̂ +X−1 ˙̂
X

= −uX−1X̂ + uX−1X̂ − a0X
−1X̂ log(X−1X̂)

= −uEl + uEl − a0El log(El)

= −a0El log(El).

(3.18)

The above equation (3.18) is the same as the equation (3.10), if we identify El with E.
This means that if X̂ is sufficiently close to X so that El ∈ B(In, 1), then we can use
Lemma 3.5.2 to convert the above equation into el-coordinates

ėl = −a0el, (3.19)

which is a linear differential equation. Lemma 3.5.2 also tells us that if we choose a0 > 0
to be any positive constant, then the equilibrium point El = In is locally exponentially
stable for the dynamics (3.18).

Next, we examine the dynamics of the right-invariant error Er, when the direct observer
is used

Ėr =
d

dt

[

X̂X−1
]

=
˙̂
XX−1 − X̂X−1ẊX−1

= XuX−1X̂X−1 − a0X̂ log(X−1X̂)X−1 − X̂uX−1

= XuX−1Er − ErXuX−1 − a0ErX log(El)X
−1

= XuX−1Er − ErXuX−1 − a0Er log(Er)

= δD(u,X,Er)− a0Er log(Er),

(3.20)
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where δD(u,X,Er) := XuX−1Er − ErXuX−1 is a perturbation term that vanishes when
Er = In. The above equation (3.20) has the same problem that we encountered when trying
to analyze equation (3.16). The problem with (3.20) is that matrices Er and Ėr do not
commute in general, because Er and δD(u,X,Er) do not commute in general. Fortunately,
we can use the same trick that we used to transform equation (3.16) into log coordinates.
Namely, we differentiate the equation er = XelX

−1 and use our knowledge of derivatives of
X, of el and ofX−1. To be able to do this, it is sufficient that the conditions of Lemma 3.4.4
are satisfied, i.e., that El, Er ∈ B(In, 1).

ėr =
d

dt

[
XelX

−1
]

= ẊelX
−1 +XėlX

−1 −XelX
−1ẊX−1

= XuelX
−1 − a0XelX

−1 −XeluX
−1

= −a0er +
[
XuX−1, er

]
.

(3.21)

The above system, rewritten ėr = −a0er+[XuX−1, er], is not linear, but is bilinear. Indeed,
this vector field is linear in er and linear-affine in u, because the matrix commutator
[XuX−1, er] is linear in er and in u. However, unlike (3.17), dynamics (3.21) are not
autonomous, because X appears as part of its vector field. Since X changes with time, it
means that the dynamics (3.21) are not time invariant.

3.6.3 Discussion

We summarize the results of this section in Table 3.1. It is interesting to note that neither

Table 3.1: Summary of Lie-group full-state observer convergence results

System Observer Error Error Dynamics

Left-invariant Passive er Linear, Autonomous
Left-invariant Passive el Bilinear, Autonomous
Left-invariant Direct er Bilinear, Non-autonomous
Left-invariant Direct el Linear, Autonomous

the system (3.1), nor the passive LFSO (3.2) are linearizable via the change of coordinates
log(X) and log(X̂), respectively. However, the right-invariant Lie group estimation error
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between them is linearizable via the matrix logarithm map, i.e., via log(Er). The same
can be said of the direct LFSO (3.3).

We have seen that the passive observer (3.2) produces exponential convergence of the
right-invariant error, Er → In, while the direct observer (3.3) produces exponential con-
vergence of the left-invariant error, El → In. Therefore, if Assumption 1 holds true, then
both of these observers are such that X̂ → X, by Proposition 3.4.2. Unfortunately, with-
out invoking Assumption 1, convergence of either one of El → In or of Er → In is not
sufficient to deduce convergence of X → X̂ (see Proposition 3.4.2).

For example, if we use the direct observer and get El → In, then we can have a
situation where the input u to the system (3.1) makes ‖X‖ grow unbounded. This can
cause the diffeomorphism AdX to “stretch” the coordinates Er = AdX(El) faster than El

is converging to In. This can prevent the convergence of Er to In, even as El does converge
to In. This problem is eliminated if we make Assumption 1 hold, because it forces ‖X‖ to
be uniformly bounded for all time (see Proposition 3.4.2).

Another way to look at this convergence problem is to consider the perturbation term
from the passive observer, δP (u,El) := Elu−uEl. If this perturbation term is not identically
equal to zero for all u, then we can make the norm of this perturbation term arbitrarily
large by some choice of the input u. For example, suppose that El and u do not commute,
so that we have ‖δP (u,El)‖ = r > 0. Then if we set ū = ku, where k > 0 is an arbitrarily
large, positive constant, we will have δP (ū, El) = kδP (u,El). If u is an admissible input to
the system (3.1), then so is ū = ku. So we see that ‖δP (u,El)‖ can be made arbitrarily large
if it is not identically equal to zero for all u. Analogous result holds for the perturbation
term of the direct observer: δD(ku,X,Er) = kδD(u,X,Er).

By showing that the system (3.16) is diffeomorphic to the system (3.17), we have found
an easy way to prove the following result.

Corollary 3.6.1. Let G ⊆ GL (n,R) be a linear Lie group. Consider the following system
on G

Ė = [E, u], (3.22)

where E ∈ G ⊆ GL (n,R) is the state and u ∈ Lie(G) ⊆ M (n,R) is an admissible input
signal. The system (3.22) is diffeomorphic to the following dynamical system on the Lie
algebra of G

ė = [e, u], (3.23)

where e = log(E) is defined for all E ∈ B(In, 1).
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Proof. Rewrite (3.22) as a difference of two vector fields

Ė = ([E, u] + E log(E))− (E log(E))

= f(E, u)− g(E),

where f(E, u) := [E, u] + E log(E) and g(E) := E log(E). Since the system (3.16) trans-
forms into the system (3.17), we know that the vector field f(E, u) transforms into [e, u]+e.
Also, since the dynamics (3.10) transform into the dynamics (3.12), we know that the vec-
tor field g(E) transforms into e. This means that the vector field f(E, u)−g(E) transforms
into [e, u] + e− e = [e, u].

Recall, that in the equation (3.10), we were able to easily differentiate the Taylor
series expansion of log(E), because the matrices E and Ė = −a0E log(E) were mutually
commuting, i.e., EĖ = ĖE. However, in the equation (3.22), the matrices E and Ė =
[E, u] are not mutually commuting, i.e., in general EĖ 6= ĖE. This non-commutativity
makes it very difficult to differentiate the Taylor series expansion of log(E), when Ė =
[E, u], as in (3.22). Thus, it seems that the result of Corollary 3.6.1 would be difficult
to obtain by directly differentiating the series expansion of log(E) and substituting Ė =
[E, u]. However, our analysis of equation (3.22) is made much easier by “splitting” the
equation (3.22) into a pair consisting of “system” (3.1), with state X, and “observer” (3.2),
with state X̂. The splitting is done as E = X−1X̂, and allows us to convert the differential
equation (3.22) into log coordinates.

3.7 Example: Kinematic Rigid-Body Orientation Es-

timation on SO (3)

The LFSO, described in this section, can be used to accurately estimate the orientation of
any object by means of two sets of on-board sensors: an orientation sensor and angular-
rate gyroscopes. An orientation sensor is a device that can approximately determine the
orientation of the rigid-body, possibly with a large amount of zero-mean measurement
noise. The orientation sensor can be a number of different things, depending on the
specific application. For an outdoor flying vehicle, the orientation can be measured by
a combination of a triaxial accelerometer and a triaxial magnetometer. For an indoor
flying vehicle, the orientation can be measured by an on-board camera, possibly combined
with a triaxial accelerometer. Measurements made by the orientation sensor, such as an
accelerometer and magnetometer pair, are usually corrupted by a large amount of high-
frequency, zero-mean noise. In the accelerometer, measurement noise is caused by vibration
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of the rigid-body. In the magnetometer, measurement noise is caused by high-frequency
electric currents, flowing near the magnetometer.

As we have seen in Section 1.1, feeding sensor measurements directly into a state
feedback control law makes the controller very sensitive to high-frequency, zero-mean mea-
surement noise. To make any rigid-body control law more resistant to measurement noise,
one solution is to use a full-state observer, as was shown in Figure 3.1. To this end, we
define the “input” to our system to be the angular velocity of the rigid-body, which can
be measured by angular rate gyroscopes. Knowledge of the angular velocity is the extra
piece of information that lets our LFSO efficiently filter out noise from the orientation
measurement. This type of full-state observer has also been called “complementary filter”
in some of the literature, such as [1] and [2].

Each element R ∈ SO (3) can be used to represent a “relative rotation”, between any
two “orientations”, or frames, {A} and {B}, which have common origin. Any vector
v{B} ∈ R

3, expressed in frame {B} coordinates, is transformed into frame {A} coordinates
via multiplication on the left by R, i.e., v{A} = Rv{B}. We assume that the frame {A}
remains stationary while the frame {B} rotates with known angular velocities. The angular
velocities of {B}, expressed in the {B} coordinates, are encoded into a skew-symmetric
matrix u ∈ Lie(SO (3)). In this case, the rotation matrix R satisfies the left-invariant
kinematic equations

Ṙ = Ru

Y = R,
(3.24)

where Y ∈ SO (3) is a direct measurement of R. The reason why this equation is useful
is because Y and u can be measured or estimated by low-cost sensors, mounted on the
mobile frame {B}. In fact, u can be measured using angular rate gyroscopes, while the
rotation matrix Y can be calculated from sensor measurements, made by an accelerometer
and magnetometer pair.

An accelerometer tells us which direction is “up” and a magnetometer tells us the di-
rection of the Earth’s magnetic field, which tells us the direction of the magnetic North.
Both of these sensors output 3-dimensional vectors, as measured in the mobile frame {B},
they can then be compared with the same 3-dimensional vectors, as measured in the in-
ertial frame {A}, to uniquely compute the corresponding measured rotation, Y ∈ SO (3).
One convenient way to convert these vector measurements into a corresponding measured
rotation matrix Y , is to first convert these vector measurements into Euler angles repre-
sentation of Y . For example, the accelerometer measurement can tell us the roll and pitch
of the rigid-body, all that remains is to use the magnetometer measurement to determine
the yaw. Once Euler angles are known, they are converted into the matrix Y , by using
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standard formulae.

For the kinematic system (3.24), our passive LFSO is

˙̂
R = R̂u− a0R̂ log(Y ⊤R̂) (3.25)

and our direct LFSO is
˙̂
R = Y uY ⊤R̂− a0R̂ log(Y ⊤R̂). (3.26)

We would like to briefly discuss the connection between our two observers and the
filters proposed in [1], [2]. The filters proposed in these two papers use the anti-symmetric
projection operator in matrix space, πa : M (n,R) → Lie(SO (3)), in their innovation terms.
The anti-symmetric projection operator is defined as

πa(A) :=
1

2
(A− A⊤).

The anti-symmetric projection operator satisfies: πa(A
⊤) = −πa(A). The passive filter

proposed in [1], [2] is
˙̂
R = R̂u+ kR̂πa(R̂

⊤Y )

= R̂u− kR̂πa(Y
⊤R̂)

(3.27)

and the direct filter proposed in [1], [2] is

˙̂
R = AdY (u)R̂ + kAdR̂(πa(R̂

⊤Y ))R̂

= Y uY ⊤R̂ + kR̂πa(R̂
⊤Y )

= Y uY ⊤R̂− kR̂πa(Y
⊤R̂),

(3.28)

where k ∈ R is a positive constant, which adjusts the rate of observer convergence, similar
to the positive constant a0 in our proposed observers.

To compare our proposed observers (3.25) and (3.26) to the filters (3.27) and (3.28),
we will rewrite the equations of our obsevers (3.25) and (3.26), so that they use the anti-
symmetric matrix projection, instead of the matrix logarithm map. We can express the
matrix logarithm map on SO (3) in terms of the anti-symmetric projection operator by
using the following equation from [1, Section III. C.]

πa(A) =
sin(θA)

θA
log(A), A ∈ SO (3) , (3.29)
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where θA is the rotation angle associated to the rotation matrix A ∈ SO (3), which can be
computed as follows [33]

θA := arccos

(
tr(A)− 1

2

)

=arccos

(
1

2
[A11 + A22 + A33 − 1]

)

.

Using the identity (3.29), we can immediately rewrite our proposed observers (3.25) and (3.26)
so that they use the anti-symmetric projection operator, rather than the logarithm map.
For θY ⊤R̂ 6= ±π, our passive LFSO (3.25) is rewritten as

˙̂
R = R̂u− a0

θY ⊤R̂

sin(θY ⊤R̂)
R̂πa(Y

⊤R̂) (3.30)

and our direct LFSO (3.26) is rewritten as

˙̂
R = Y uY ⊤R̂− a0

θY ⊤R̂

sin(θY ⊤R̂)
R̂πa(Y

⊤R̂). (3.31)

If we identify the observer gains to be equal k = a0, then our observers (3.30), (3.31)

differ from the observers (3.27), (3.28) only by the scalar quantity
θ
Y ⊤R̂

sin(θ
Y ⊤R̂

)
, which appears

in the innovation terms of (3.30), (3.31), but does not appear in the innovation terms

of (3.27), (3.28). This scalar quantity,
θ
Y ⊤R̂

sin(θ
Y ⊤R̂

)
, approaches 1 as θY ⊤R̂ approaches 0. Thus,

on SO (3) and for small θY ⊤R̂, our observers behave similar to the observers of [1], [2].

It is computationally costly and inefficient to compute the matrix logarithm map by us-
ing the series definitions. Fortunately, by rewriting our LFSOs in the form (3.30) and (3.31),
we avoid using the logarithm map and only use the anti-symmetric projection operator,
which is much faster to compute. Thus, we have found a computationally fast method to
implement our proposed LFSOs for state estimation on the Lie group SO (3).

We now simulate our direct and passive LFSOs. The initial conditions for the plant
and the observer are chosen (somewhat arbitrarily) to be the following matrices

R(0) =






0.6330 −0.1116 −0.7660

0.7128 −0.3020 0.6330

−0.3020 −0.9467 −0.1116




 , R̂(0) = I3.

41



The angular velocity input is chosen (somewhat arbitrarily) to be

u(t) =






0 −2 sin(t) cos(t)

2 sin(t) 0 − sin(t)

− cos(t) sin(t) 0




 .

The observer gain is taken to be
a0 = 1.

Figure 3.2 shows the simulation results when there is no noise, i.e., when Y is exactly
equal to R. From these plots we see that, when there no measurement noise, the direct
and passive LFSOs have similar performance.
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Figure 3.2: Direct and Passive LFSOs, without measurement noise.
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The Lie group estimation errors, El and Er, are initially (at time t = 0)

El(0) = R−1(0)R̂(0) = R−1(0)

Er(0) = R̂(0)R−1(0) = R−1(0).

Calculating the distance between El(0) or Er(0) and I3, we get

‖El(0)− I‖ = ‖Er(0)− I‖

= ‖R−1(0)− I‖

=

∥
∥
∥
∥
∥
∥
∥






0.6330 0.7128 −0.3020

−0.1116 −0.3020 −0.9467

−0.7660 0.6330 −0.1116




− I3

∥
∥
∥
∥
∥
∥
∥

= 1.6675,

therefore El(0), Er(0) /∈ B(I3, 1). Our analysis of the Lie group estimation error dynamics
was performed on the ball B(In, 1), in particular the differential equivalence of (3.10)
to (3.12) was shown to hold for E ∈ B(In, 1). So the fact that El(0), Er(0) /∈ B(I3, 1)
means that the results of this chapter do not allow us to deduce the convergence of our
LFSO, with the initial conditions as chosen in this simulation. However, our simulation
shows that that our LFSOs are indeed convergent. This suggests that the local exponential
stability of our LFSO is a conservative statement, and that our LFSOs could have a fairly
large (perhaps global) region of convergence.

Next, we add measurement noise to our simulation. Measurement noise is simulated
by multiplying R on the right by a randomly generated rotation matrix N , to obtain the
noise corrupted output: Y = RN . The matrix N represents uncertainty that arises from
the inaccuracy of measuring sensors. To generate the random rotation matrix N ∈ SO (3),
we first generate a random skew-symmetric matrix, n ∈ Lie(SO (3)) ∼= R

3, so that it is
normally distributed, with zero-mean and standard deviation of σ = 0.4. The random
rotation matrix N ∈ SO (3) is then computed as N := exp(n).

Since both R and N are elements of SO (3), their product, Y = RN , is also an element
of SO (3). The noisy output, Y = RN , is fed into the observer and the observer tries to
reconstruct the state R. Figure 3.3 shows the simulation results when there a significant
amount of measurement noise added to the output. From the noisy simulation, we see
that the passive LFSO appears to work better than the direct LFSO, in the presence of
significant amounts of noise.
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Figure 3.3: Direct and Passive LFSOs, with measurement noise.

3.8 Application to Control

The results of Section 3.5, can be used to design control laws for left-invariant systems
on Lie group, such as for the system (3.1). Suppose that we know the state X exactly,
and our goal is to set the input u ∈ Lie(G) such that X → Xref , where Xref ∈ G is the
constant target state. To achieve this task, we propose to use the following “proportional”
state feedback control law:

u = −k0 log(X
−1
refX),
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where k0 ∈ R is a positive constant, which is the controller gain. With such a controller,
the closed loop system is:

Ẋ = −k0X log(X−1
refX).

Consider the quantity: X−1
refX, which is a way to express “control error” between X and

Xref . This quantity satisfies the differential equation:

d

dt
X−1

refX = X−1
refẊ

= −k0X
−1
refX log(X−1

refX).
(3.32)

The differential equation (3.32) is the same as (3.10), if we identify X−1
refX with E. There-

fore, Lemma 3.5.2 tells us that X−1
refX = In is a locally exponentially stable equilibrium

point of (3.32). Which implies that if X is initialized sufficiently close to Xref , then
X → Xref exponentially, since Xref ∈ G is constant.
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Chapter 4

Lie Group Partial-State Observers

In this chapter, we propose an extension of the results presented in Chapter 3 to a broader
class of systems. The class of systems considered in this chapter has only a proper subset
of its states evolving on the Lie group. The rest of the states are evolving on the Lie
algebra of the Lie group. The states that are evolving on the Lie group are the states
that are available for measurement from the output. The states that are evolving on the
Lie algebra are not available for measurement from the output. This class of systems
arises when dynamics are considered for a left-invariant system on Lie group. We propose
observer design for this class of dynamical systems. Since not all the states are available for
measurement, this type of observer falls under the class of partial-state observers. We show
that the estimation error dynamics are locally exponentially stable at the zero equilibrium
point. We also give some examples where such observers can be used.

4.1 Introduction

In this chapter, we generalize the results of Chapter 3 to the case when the output does
not include all the states. To motivate our research, we return to the example of kinematic
rigid-body orientation estimation on SO (3), from Section 3.7, where we used the kinematic
rigid-body rotation model (3.24), given here again

Ṙ = Ru

Y = R,

where the input, u ∈ Lie(SO (3)), is the angular velocity of the mobile frame and the
output, Y ∈ SO (3), is its angular position. The reason for using this kinematic model was
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originally to fuse measurements from two sensors that are mounted on the mobile frame:
1) an orientation sensor, which measures the angular position and 2) a set of tri-axial laser
ring gyroscopes, which measure angular velocity. The LFSO’s knowledge of the angular
velocity of the mobile frame was the extra piece of information that allowed it to efficiently
filter out noise from the measurement of the orientation.

The angular velocity of the mobile frame can be measured by laser ring gyroscopes,
mounted on the mobile frame. As long as the laser ring gyroscopes can accurately measure
the angular velocity of the mobile frame, our proposed LFSO of Section 3.7 can be used to
estimate the orientation of the mobile frame. Unfortunately, laser ring gyroscopes become
progressively less accurate, as the angular velocity of the mobile frame increases. All laser
ring gyroscopes typically have a “saturation” angular speed, after which the gyroscope
becomes inaccurate. Therefore, when the mobile frame is spinning very fast, the LFSO of
Section 3.7 will become inaccurate. In such a scenario, we can use another type of sensor -
angular accelerometer, which can measure angular acceleration accurately even when the
mobile frame is spinning very fast.

Thus, suppose our observer does not have knowledge of the angular velocity of the
mobile frame, but it does have knowledge of the angular acceleration. To solve this sensor
fusion problem, we can no longer rely on the kinematic rigid-body model (3.24). We must
modify this model in such a way that the input to the system is the angular acceleration
and the output of the system is the angular position. This is done by adding a state to
encode the angular velocity, call it ω ∈ Lie(SO (3)). The input u ∈ Lie(SO (3)) is then
defined to be the time derivative of ω, i.e., the angular acceleration of the mobile frame.
Doing this we get

Ṙ = Rω

ω̇ = u

Y = R.

This new rigid-body model is no longer kinematic, but is now dynamic. The part of
the state space that is directly measurable is the rotation matrix R ∈ SO (3), which can
be obtained using exteroseptive sensors, such as on-board cameras. In this context our
observer receives a measurement of the orientation Y = R and a measurement of the
angular acceleration u ∈ Lie(SO (3)). The job of the observer is now to fuse measurements
Y and u, to estimate the angular velocity ω, and also to filter out noise from Y . Since the
angular velocity is not directly measurable, this type of observer falls under the class of
partial-state observers. We call it a Lie group partial-state observer (LPSO), since part of
its state evolves on a Lie group.

The above example is not the only application of our proposed LPSOs, it is only a
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special case of our LPSO when the Lie group is taken to be G = SO (3). However the
example of dynamic orientation estimation allows us to more easily visualize the problem
that is being solved and to see the importance of the problem. In fact, the LPSOs proposed
in this chapter work not only for SO (3), but for any linear Lie group.

4.2 Problem Statement

Let G be any linear Lie group, then as we have already seen, the Lie algebra, Lie(G),
is a vector space and a subspace of M (n,R), therefore its tangent space at any point is
isomorphic to the Lie algebra itself. So if x : R → Lie(G) is any smooth curve, then its
derivative, ẋ, is also a curve in Lie(G), i.e., ẋ : R → Lie(G). Now, consider the following
system with dynamics

Ẋ = Xx2

ẋ2 = x3

...

ẋd = u

Y = X,

(4.1)

where X ∈ G is the state that evolves on Lie group, x2 ∈ Lie(G) is the body-velocity of X,
x3 ∈ Lie(G) is the body-acceleration of X, and so on. The input to (4.1) is u : R → Lie(G)
which we assume to be a smooth, uniformly bounded and globally Lipschitz signal of time.
The output of (4.1) is Y = X ∈ G which will, in practice, be corrupted by noise.

The following assumption, almost identical to Assumption 1 from Chapter 3, will be
assumed to hold throughout this chapter.

Assumption 2. The input u to system (4.1) is such that for any initial conditions X(0) ∈
G and x2(0), . . . , xd(0) ∈ Lie(G), there exists a compact set G ⊆ G such that X(t) ∈ G, for
all t ≥ 0.

Note that this assumption is automatically satisfied, for all admissible inputs, if the
group G itself is compact, for example if G = SO (3).

Our objective is to build an observer, with states X̂ ∈ G and x̂2, . . . , x̂d ∈ Lie(G), for
the plant (4.1). The observer has access to the measured output Y ∈ G and to the input
u ∈ Lie(G). We will design the observer such that, under Assumption 2, if ‖X̂(0)−X(0)‖,
‖x̂2(0) − x2(0)‖, . . ., ‖x̂d(0) − xd(0)‖ are sufficiently small, then ‖X̂(t) − X(t)‖ → 0,
‖x̂2(t)− x2(t)‖ → 0, . . ., ‖x̂d(t)− xd(t)‖ → 0 exponentially, as t → ∞.
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4.3 Proposed Observers

For the system (4.1), we propose two different partial-state observers. The first is the
direct LPSO, given by

˙̂
X = Y x̂2Y

−1X̂ − ad−1X̂ log(Y −1X̂)

˙̂x2 = x̂3 − ad−2 log(Y
−1X̂)

...

˙̂xd−1 = x̂d − a1 log(Y
−1X̂)

˙̂xd = u− a0 log(Y
−1X̂)

(4.2)

and the second is the passive LPSO, given by

˙̂
X = X̂x̂2 − ad−1X̂ log(Y −1X̂)

˙̂x2 = x̂3 − ad−2 log(Y
−1X̂)

...

˙̂xd−1 = x̂d − a1 log(Y
−1X̂)

˙̂xd = u− a0 log(Y
−1X̂).

(4.3)

In the above two observers, the constants a0, . . . , ad−1 ∈ R are design parameters, chosen
such that the polynomial p(s) = sd + ad−1s

d−1 + · · · + a1s + a0 is Hurwitz. These design
parameters can be used to modify the rate of convergence of the estimation error.

We will show that the direct LPSO (4.2) is locally exponentially stable for the sys-
tem (4.1), but unfortunately we are not able to show exponential stability of the passive
LPSO (4.3). However, we will see in simulation that the passive LPSO appears to work
quite well in the presence of measurement noise.

4.4 Estimation Error Functions

To quantify the estimation error betweenX and X̂, we use the Lie group canonical invariant
error functions El and Er, which we used in Chapter 3. The matrices xi and x̂i, for
i = 2, . . . , d are vectors in Lie(G), so to quantify the error between xi and x̂i, we can
subtract them as vectors, i.e.,

ei := xi − x̂i, i = 2, . . . , d. (4.4)
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Since the matrices xi and x̂i are elements of the vector space Lie(G), the estimation error
ei is also an element of Lie(G).

4.5 A Differential Equation on GL (n,R) and M (n,R)

Here we restrict our attention to examining the behaviour of the following differential
equation, which is a natural extension of the differential equation (3.10),

Ė = e2E − ad−1E log(E)

ė2 = e3 − ad−2 log(E)

...

ėd−1 = ed − a1 log(E)

ėd = −a0 log(E),

(4.5)

where E ∈ GL (n,R), ei ∈ M (n,R) for i = 2, . . . , d and a0, . . . , ad−1 ∈ R are constants
such that the polynomial p(s) = sd + ad−1s

d−1 + · · · + a1s + a0 is Hurwitz. The differen-
tial equation (4.5) arises in the analysis of the error dynamics associated with the direct
LPSO (4.2). We have only defined the log map on the domain B(In, 1). Therefore the
differential equation (4.5) is only defined when E ∈ B(In, 1).

Remark 4.5.1. Let G ⊆ GL (n,R) be any linear Lie group, then the embedded submanifold,
S := G × Lie(G) × · · · × Lie(G), in the state space of (4.5) is positively invariant under
the dynamics (4.5). To see this, we just check that, if p = (E, e2, . . . , ed) is any point in
S, then the vector field (4.5), evaluated at p, lies in the tangent space to S at p.

Indeed, by Proposition 2.2.12, we have that E log(E) ∈ TEG and that e2E ∈ TEG.
Therefore, the vector Ė = e2E − ad−1E log(E) is in the tangent space to G at E, i.e.,
Ė ∈ TEG. Furthermore we have that, for i = 2, . . . , d, ėi ∈ Lie(G) ∼= Tei Lie(G), because
Lie(G) is a vector space. So the following holds

E ∈ G, e2 ∈Lie(G), . . . , ed ∈ Lie(G)

⇓

Ė ∈ TEG, ė2 ∈Te2 Lie(G), . . . , ėd ∈ Ted Lie(G),

Therefore, the vector field (4.5) is tangent to the submanifold S.
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The matrices E and Ė in (4.5) are generally non-commuting matrices, i.e., [E, Ė] 6= 0.
This is because E and e2 are generally non-commuting matrices, i.e.,

[

E, Ė
]

= [E, e2E − a1E log(E)]

= [E, e2E]

= Ee2E − e2E
2

= [E, e2]E.

When we try to convert the differential equation (4.5) into log coordinates, i.e., define
e1 := log(E) and find ė1, we are not able to do it as easily as we did with equation (3.10)
in Section 3.5, due to the non-commutativity of E and Ė. Recall that in Section 3.5, we
were able to easily differentiate the series expansion of log(E), when E(t) was a solution
of (3.10), because the matrices E and Ė were commuting in that case. When we try to
repeat the same approach with E(t) being a solution of (4.5) we are not able to get a
closed form expression for ė1, because E and Ė do not commute. We do not know how to
convert the differential equation (4.5) into log coordinates, the following provides a clue.

Proposition 4.5.2. For E ∈ B(In, 1), the differential equation (4.5) is differentially equiv-
alent to

ė1 = e2 − ad−1e1 +K(e1, e2)

ė2 = e3 − ad−2e1
...

ėd−1 = ed − a1e1

ėd = −a0e1,

where e1 := log(E) and K : Lie(G) × Lie(G) → Lie(G) is a function, which vanishes for
any commuting e1 and e2, i.e.,

[e1, e2] = 0 ⇒ K(e1, e2) = 0.

Proof. Since e1 = log(E) is a Taylor series only in E, when we differentiate this Taylor
series we find that, ė1 only depends on E and Ė. Furthermore, from (4.5), we know that
Ė only depends on E and e2. Thus, using E = exp(e1), we have that ė1 only depends on
e1 and e2. Let K(e1, e2) := ė1 − e2 + ad−1e1.

Assume that e1 and e2 commute, this implies that E = exp(e1) and e2 also commute
and this implies that E and Ė commute. Since EĖ = ĖE, we can repeat almost the same

51



analysis that we used in Section 3.5, doing this we get

ė1 = ĖE−1

= e2 − ad−1e1,

therefore K(e1, e2) = 0 for any commuting e1 and e2.

The expressions of ėi for i = 2, . . . , d are computed by substituting log(E) = e1
into (4.5).

This is as far as we want to go in trying to convert (4.5) into log coordinates, from now
on we focus on the simpler task of analyzing the stability of (4.5).

Lemma 4.5.3. The equilibrium point (E, e2, . . . , ed) = (In, 0, . . . , 0) of the differential
equation (4.5) is locally exponentially stable if the constants a0, . . . , ad−1 ∈ R are chosen
such that the polynomial p(s) = sd + ad−1s

d−1 + · · ·+ a1s+ a0 is Hurwitz.

Proof. Adapting the proof of [5, Theorem 3.1 (ii)] and using Lemma A.3.2, we will show
that (4.5) is locally exponentially stable at the equilibrium point, by showing that its
linearization, around the equilibrium point, is exponentially stable.

We define δE, δe2, . . . , δed to be elements of Lie(G) corresponding to the first order
approximations of E, e2, . . . , ed, respectively, around the equilibrium point (In, 0n, . . . , 0n):

δE := E − In, δe2 := e2 − 0n, . . . , δed := ed − 0n.

Using the series definition of the matrix logarithm (2.3)

log(E) = (E − In)−
1

2
(E − In)

2 + · · ·

we deduce that near δE = 0
log(E) ≈ δE.

Similarly, using E = δE + In, and dropping higher order terms in δE, we get

E log(E) = (δE + In)

(

(δE)−
1

2
(δE)2 + · · ·

)

≈ δE.

Similarly, using e2 = δe2, and dropping higher order terms in δE and δe2, we get

e2E = (δe2) (δE + In) ≈ δe2.
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Substituting these approximations into the differential equation (4.5), we get the lin-
earization of (4.5) at the equilibrium (In, 0n, . . . , 0n)

d

dt














δE

δe2

δe3
...

δed−1

δed














=














−ad−1In In 0n . . . 0n 0n

−ad−2In 0n In . . . 0n 0n

−ad−3In 0n 0n . . . 0n 0n
...

...
...

. . .
...

...

−a1In 0n 0n . . . 0n In

−a0In 0n 0n . . . 0n 0n



























δE

δe2

δe3
...

δed−1

δed














.

The above linear system has its eigenvalues located at the roots of the polynomial p(s) =
sd + ad−1s

d−1 + · · · + a1s + a0, with multiplicity n, for each (possibly repeating) root of
p(s). Since all the eigenvalues have negative real parts, the linearization above is stable by
Lemma A.3.1. Therefore the equilibrium point, (E, e2, . . . , ed) = (In, 0n, . . . , 0n), of (4.5)
is locally exponentially stable, by Lemma A.3.2.

4.6 Estimation Error Dynamics

4.6.1 Direct Observer

Consider what happens when we apply the direct LPSO (4.2) to estimate the state of
the system (4.1). For the direct observer, we use the left-invariant error El = X−1X̂ to
quantify the estimation error between X and X̂. Let us begin by computing the dynamics
of El

Ėl =
d

dt

[

X−1X̂
]

= −X−1ẊX−1X̂ +X−1 ˙̂
X

= −x2X
−1X̂ + x̂2X

−1X̂ − ad−1X
−1X̂ log(X−1X̂)

= (x̂2 − x2)X
−1X̂ − ad−1X

−1X̂ log(X−1X̂)

= e2El − ad−1El log(El).

(4.6)

Next, we compute the dynamics of ei, for i = 2, . . . , d− 1

ėi =
d

dt
[x̂i − xi]

= x̂i+1 − ad−i log(X
−1X̂)− xi+1

= ei+1 − ad−i log(El).

(4.7)
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Finally, we compute the dynamics of ed

ėd =
d

dt
[x̂d − xd]

= u− a0 log(X
−1X̂)− u

= −a0 log(El).

(4.8)

Putting together results (4.6) , (4.7) and (4.8), we obtain the following complete estimation
error dynamics between the system (4.1) and the direct LPSO (4.2),

Ėl = e2El − ad−1El log(El)

ė2 = e3 − ad−2 log(El)

...

ėd−1 = ed − a1 log(El)

ėd = −a0 log(El).

(4.9)

The above differential equation is the same as the equation (4.5), if we identify E with El.
This means that, by Lemma 4.5.3, the equilibrium point (El, e2, . . . , ed) = (In, 0n, . . . , 0n)
of (4.9) is locally exponentially stable.

4.6.2 Passive Observer

Consider what happens when we apply the passive observer (4.3) to estimate the state of
the system (4.1). For the passive observer, we use the right-invariant error Er = X̂X−1 to
quantify the estimation error between X and X̂. Let us compute the dynamics of Er

Ėr =
d

dt

[

X̂X−1
]

=
˙̂
XX−1 − X̂X−1ẊX−1

= X̂x̂2X
−1 − ad−1X̂ log(X−1X̂)X−1 − X̂x2X

−1

= X̂(x̂2 − x2)X
−1 − ad−1X̂X−1X log(X−1X̂)X−1

= X̂X−1X(x̂2 − x2)X
−1 − ad−1X̂X−1 log(X̂X−1)

= ErXe2X
−1 − ad−1Er log(Er)

= Er AdX(e2)− ad−1Er log(Er).

(4.10)
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The dynamics of ei, for i = 2, . . . , d are computed just as we did in (4.7) and (4.8). There-
fore we have the following complete estimation error dynamics between the system (4.1)
and the passive LPSO (4.3)

Ėr = Er AdX(e2)− ad−1Er log(Er)

ė2 = e3 − ad−2 log(Er)

...

ėd−1 = ed − a1 log(Er)

ėd = −a0 log(Er).

(4.11)

The above differential equation is not the same as the equation (4.5), because of the
term AdX(e2). Therefore, we can not apply Lemma 4.5.3 to deduce the stability of the
equilibrium point (Er, e2, . . . , ed) = (In, 0n, . . . , 0n). Unfortunately, we are not able to prove
the stability of this error dynamics, but we will see in simulation that the passive LPSO
appears to work quite well and in fact appears to work better than the direct observer,
when a large amount of measurement noise is present in Y .

4.6.3 Discussion

We have seen that the direct LPSO (4.2) produces local exponential convergence of the
left-invariant Lie group estimation error, El → In, and of the Lie algebra estimation errors,
ei → 0n, for i = 2, . . . , d. Therefore, by Proposition 3.4.2, if Assumption 2 holds, then
the direct observer is such that X̂ → X and x̂i → xi, for i = 2, . . . , d, if the observer
is initialized sufficiently close to the system. Unfortunately we are not able to prove
exponential stability of the error dynamics Er for the passive LPSO (4.3). However we
conjecture that the passive LPSO is locally exponentially convergent if Assumption 2 holds.
This conjecture will be supported by simulation, where the passive LPSO seems to perform
better than the direct LPSO, when a large amount of measurement noise is present in Y .

4.7 Examples

4.7.1 Scalar Lie Group GL (1,R)

The Lie group GL (1,R) is the group of non-zero real numbers, with the group operation
being multiplication. Consider the following system on R

2, which arises when calculating
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continously compounded interest,
ẋ1 = x1x2

ẋ2 = u

y = x1,

(4.12)

where x1 ∈ R/{0} = GL (1,R), x2 ∈ R = Lie(GL (1,R)) and u ∈ R = Lie(GL (1,R)).
The state x1 represents the instantaneous amount of money invested and the state x2

represents the instantaneous interest rate, that the investment generates. It is unclear
to us how building observers for the above system can be useful in solving any practical
problem, however this system offers an interesting example of a particularly simple LPSO.

The system (4.12) is nonlinear and it can be viewed as a system of class (4.1), with
G = GL (1,R) and d = 2. Therefore, the system (4.12) admits the following LPSO

˙̂x1 = x̂1x̂2 − a1x̂1 log(y
−1x̂1)

˙̂x2 = u− a0 log(y
−1x̂1),

(4.13)

which is both a direct and a passive LPSO, since GL (1,R) is a commutative Lie group.

The system (4.12) can be converted into the form (2.6) by a change of coordinates:

z1 := x1 and z2 := x1x2.

In z-coordinates, the system (4.12) takes on the form

ż1 = z2

ż2 =
z22
z1

+ z1u

y = z1.

The above system admits an HGO of type (2.7), in z-coordinates,

˙̂z1 = ẑ2 +
a1
ǫ
(y − ẑ1)

˙̂z2 =
ẑ22
ẑ1

+ ẑ1u+
a0
ǫ2
(y − ẑ1).

We convert this HGO back into x-coordinates

˙̂x1 = x̂1x̂2 +
a1
ǫ
(y − x̂1)

˙̂x2 = u+

(
1

x̂1

a0
ǫ2

−
x̂2

x̂1

a1
ǫ

)

(y − x̂1) .
(4.14)
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Thus, we have obtained two nonlinear observers for the system (4.12), the first observer
is the LPSO (4.13) and the second observer is the HGO (4.14). Let us compare these two
observers in simulation. For the observer parameters, we take the following constants

a0 = 1, a1 = 2, ǫ = 1.

The results of the simulation are shown in Figure 4.1. From the simulation, it appears that
the two observers have very similar performance, we can not conclusively say which one of
the observers is better.
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Figure 4.1: Estimation of system (4.12) by means of LPSO (4.13) and HGO (4.14).

4.7.2 Dynamic Rigid-Body Orientation Estimation on SO (3)

The system that we use to model the dynamics of rigid-body orientation is

Ṙ = Rω

ω̇ = u

Y = R,

(4.15)

where R ∈ SO (3) is the rotation matrix, which encodes the orientation of the rigid-body,
ω ∈ Lie(SO (3)) is the skew-symmetric matrix, which encodes the angular velocity and
u ∈ Lie(SO (3)) is the skew-symmetric matrix, which encodes the angular acceleration.

A similar type of system was mentioned by Brockett in [34]. In that paper, Example
2 gives a model for rigid-body dynamics, with torque as the input and orientation as

57



the output. If we simplify this rigid-body model, so that input is taken to be angular
acceleration, rather than torque, then then we get the model (4.15). Building an observer
for this system allows us to estimate rigid-body orientation and angular velocity by using
angular accelerometer sensors and an orientation sensor, such as a camera.

Applying the results of this chapter, we have the following direct LPSO

˙̂
R = Y ω̂Y −1R̂− a1R̂ log(Y −1R̂)

˙̂ω = u− a0 log(Y
−1R̂)

(4.16)

and the following passive LPSO

˙̂
R = R̂ω̂ − a1R̂ log(Y −1R̂)

˙̂ω = u− a0 log(Y
−1R̂).

(4.17)

We will now simulate the direct and the passive LPSOs, with increasing amounts of noise
in the output. The initial conditions for the plant and the observer are chosen to be the
following matrices

R(0) =






0 1 0

0 0 1

1 0 0




 , ω(0) =






0 −1 1

1 0 −1

−1 1 0




 , R̂(0) = I3, ω̂(0) = 03.

The angular acceleration input is chosen (somewhat arbitrarily) to be

u(t) =






0 −2 sin(t) cos(t)

2 sin(t) 0 − sin(t)

− cos(t) sin(t) 0




 .

The observer gains are chosen as

a0 = 1, a1 = 2.

Noise is injected into the output via the random rotation matrix N ∈ SO (3), by setting
Y = RN . The matrix N is generated as in Section 3.7. The simulation results are shown
in Figure 4.2. From the simulation we can see that, when there is no measurement noise,
the direct LPSO appears to converge faster than the passive LPSO. However, with a large
amount of measurement noise, the passive LPSO appears to be comparable to the direct
LPSO.
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Figure 4.2: Direct and Passive LPSOs, with increasing amounts of measurement noise.
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4.7.3 Dynamic Homography Estimation on SL (3)

Many control laws for mobile robots are designed based on visual information provided
by a camera. A homography is an invertible mapping between two images, made by
two different cameras, looking at the same planar scene. Relative homography between
any two cameras can be estimated based on the images these two cameras take of the
same planar scene. Algorithms exist to decompose a homography into the corresponding
camera pose (rotation and translation). The details of these decomposition algorithms are
beyond the scope of this chapter, see [35] and [36] for details. As an alternative to doing
this decomposition, it was proposed in [37] to design control laws based directly on the
homography itself. The set of all homographies forms a Lie group, with composition as the
group operation. Intuitively this implies that if there are three cameras: A, B and C, then
the homography from A to B, composed with the homography from B to C, is the same
as the homography from A to C. A key component of the work in [37] is the existence of
a group isomorphism between the Lie group of homographies and the group of invertible
3 × 3 matrices with unit determinant. These matrices form the special linear Lie group,
SL (3). In this section, we propose an LPSO on SL (3) that solves exactly the same problem
as the nonlinear observer designed in [5], [24].

Consider the homography dynamics, evolving on the Lie group SL (3) and on its Lie
algebra, using the notation of [24],

Ḣ = HA

Ȧ = 0

Y = H,

(4.18)

where H ∈ SL (3) describes the homography transformation between two cameras, A ∈
Lie(SL (3)) is the body-velocity of H, this body-velocity is unknown, but is assumed to be
constant. The model (4.18) fits the class (4.1), with X = H, x2 = A, u = 0, and d = 2.
We do not know the physical meaning of the body-velocity, A, or of the body-acceleration,
u, that is why we assume that A is constant and that u is equal to zero (as do the authors
of [24]). If we had some way of knowing u, then we would not have to assume that u = 0
and our homography estimator would be improved.

The idea is that we have some way to compute H by analyzing the images taken by
the cameras, hence the output of the system (4.18) is the homography Y = H. The
computation of the homography, based on image data, will not be perfect and there will
be some measurement noise in Y . So the first goal of our LPSO is to filter out noise from
Y . The second goal of our LPSO is to estimate the body-velocity, A, which is assumed to
be constant.
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Applying the results of this chapter, we have the following direct LPSO, for the sys-
tem (4.18),

˙̂
H = Y ÂY −1Ĥ − a1Ĥ log(Y −1Ĥ)

˙̂
A = −a0 log(Y

−1Ĥ),
(4.19)

which is similar to the projection based observer of [24]. In addition, we also have the
following passive LPSO, for the system (4.18),

˙̂
H = ĤÂ− a1Ĥ log(Y −1Ĥ)

˙̂
A = −a0 log(Y

−1Ĥ).
(4.20)

As usual, the constants a0, a1 in the above two observers are design parameters, chosen
such that the polynomial p(s) = s2 + a1s+ a0 is Hurwitz.

We now use numerical simulation to compare our two LPSOs with the projection based
observer of [24], which is written in expanded form as

˙̂
H = Y ÂY −1Ĥ − a1Y P(Y ⊤Ĥ−⊤(I3 − Ĥ−1Y ))Y −1Ĥ

˙̂
A = −a0P(Y

⊤Ĥ−⊤(I3 − Ĥ−1Y )),
(4.21)

where P(H) is the projection from the Lie group SL (3) to its Lie algebra Lie(SL (3)), with
respect to the Euclidean matrix inner product ≪ A,B ≫= tr(A⊤B),

P(H) :=

(

H −
tr(H)

3
I3

)

∈ Lie(SL (3)).

Due to our assumption that Ȧ = 0, we have that ∀t > 0:

A(t) = A(0) and H(t) = H(0) exp(A(0)t).

The gains, a0 and a1, of the observers are chosen as

a0 = 1, a1 = 2.

The initial conditions of the plant are chosen as

H(0) =






0.2189 1.3770 −0.7845

−1.3770 4.9422 −1.3770

−0.7845 1.3770 0.2189




 , A(0) =






0.1 −0.1 0.1

0.1 −0.2 0.1

0.1 −0.1 0.1




 ,
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which are chosen such that the state H of the plant starts far away from the identity
matrix, then passes close to the identity matrix during the middle of the simulation (at
t = 10) and then goes off far away from the identity matrix again. It was discovered,
during the course of the simulation, that if the state H of the plant is very far away from
the identity, then measurement noise starts to have a very detrimental effect on all three of
the observers. For this reason, we designed the system trajectory such that H does not get
extremely far away from the identity matrix during the time period from t = 0 to t = 20.
The initial conditions of the observer are chosen as

Ĥ(0) = I3, Â(0) = 03.

We model measurement noise by setting Y = HN where N ∈ SL (3) is a randomly
generated SL (3) matrix, N = exp(n), where n ∈ Lie(SL (3)) is Gaussian distributed. This
ensures that our output, Y , is always an element of SL (3). We model the system as being a
deterministic process and the only place where randomness appears is in the measurement
of the output. The results of the simulation are shown in Figure 4.3. From the plots, we
can see that our proposed LPSOs appear to work better than the projection based observer
of [24] in the presence of measurement noise. Furthermore, it was found that the projection
based observer of [24] has a tendency to escape to infinity when noise is increased further
from what is shown in the plots.

The Lie group estimation errors, El and Er, are initially (at time t = 0)

El(0) = H−1(0)Ĥ(0) = H−1(0)

Er(0) = Ĥ(0)H−1(0) = H−1(0).

Calculating the distance between El(0) or Er(0) and I3, we get

‖El(0)− I‖ = ‖Er(0)− I‖

= ‖H−1(0)− I‖

=

∥
∥
∥
∥
∥
∥
∥






xx xx xx

xx xx xx

xx xx xx




− I3

∥
∥
∥
∥
∥
∥
∥

= xx,

which shows that El(0), Er(0) are initially quite far from I3. In spite of this, the simulation
shows that our LPSOs still converge to the system trajectory, which seems to suggest that
local exponential stability of the estimation error is actually a very conservative statement.
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Figure 4.3: Direct and Passive LPSOs versus the Projection observer.
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Chapter 5

Composite High-Gain Observers

This chapter is a departure from systems on Lie groups, in this chapter we consider systems
whose state is a vector in R

n. A new approach to observer design for nonlinear, input-affine,
single-input, single-output systems, evolving on R

n is proposed. Our approach works by
interconnecting two or more approximate differentiators (high-gain observers) to build a
composite high-gain observer. We show that this approach to observer design is effective
through simulation and do not prove the converge of the estimation error.

Designing the composite high-gain observer involves adding one, or more, redudant
state variables to the system’s differential equations in such a way that the augmented
system takes on a special form. In this special form, the augmented system may be viewed
as an interconnection of two, or more, sub-systems. The interconnection is such that it is
possible to build two, or more, interconnected high-gain observers, which together behave
as a single high-gain observer for the augmented system.

5.1 Introduction

In Section 2.3, we introduced the high-gain observer and in Section 2.4, we mentioned
that high-gain observers act as approximate differentiators of a smooth signal, y(t). If we
connect two exact single differentiators (transfer function H(s) = s) in series, the resulting
system will be an exact double differentiator (transfer function H(s) = s2). Thus, we
expect that if we connect two approximate single differentiators in series, the resulting
system will be an approximate double differentiator.
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To illustrate the above discussion, let us take two high-gain observers of type (2.7)
with n = 2 and φ0(x̂, u) = 0 and connect them in series. We get the following composite
high-gain observer

˙̂x1 = x̂2 +
1

ǫ
a1(y − x̂1)

˙̂x2 =
1

ǫ2
a0(y − x̂1)

˙̂x3 = x̂4 +
1

ǫ
b1(x̂2 − x̂3)

˙̂x4 =
1

ǫ2
b0(x̂2 − x̂3),

(5.1)

where ǫ > 0 is a small design parameter, and the constants a0, a1 and b0, b1 are chosen such
that the polynomials p1(s) = s2 + a1s + a0 and p2(s) = s2 + b1s + b0 are Hurwitz. Notice
that the (x̂3, x̂4)-subsystem of (5.1) does not use a direct measurement of y. Instead, the
role of y is played by the state estimate x̂2. Hence we can view the (x̂1, x̂2)-subsystem as
providing a “virtual measured output” to the (x̂3, x̂4)-subsystem.

The system (5.1) is linear, so we can compute the transfer function from y to x̂4. To
this end, we treat the signal y as the input and rewrite the observer (5.1) as follows

˙̂x = Ax̂+ By

where

A =








−a1
ǫ

1 0 0

−a0
ǫ2

0 0 0

0 b1
ǫ

− b1
ǫ

1

0 b0
ǫ2

− b0
ǫ

0








, B =








a1
ǫ
a0
ǫ2

0

0








.

Computing the transfer function from y to x̂4, we get

X̂4(s)

Y (s)
=

s2a0b0
(s2ǫ2 + sǫa1 + a0)(s2ǫ2 + sǫb1 + b0)

.

In the limit, as ǫ → 0, we get X̂4(s)
Y (s)

→ s2. Thus, we see that connecting two approximate
single differentiators in series, yields an approximate double differentiator. In fact, the
observer (5.1) is one simple example of a composite high-gain observer. The observer (5.1)
happens to be linear, but in general our composite high-gain observers will not be linear.
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The CHGO (5.1) can be viewed as a “chain” of two sub-HGOs. The first sub-HGO is

˙̂x1 = x̂2 +
1

ǫ
a1(y − x̂1)

˙̂x2 =
1

ǫ2
a0(y − x̂1)

and the second sub-HGO is
˙̂x3 = x̂4 +

1

ǫ
b1(x̂2 − x̂3)

˙̂x4 =
1

ǫ2
b0(x̂2 − x̂3).

The first sub-HGO differentiates the signal y, while the second sub-HGO differentiates the
signal x̂2, which comes from the first sub-HGO. In the general case, the second sub-HGO
can differentiate not just x̂2, but any function of the states of the first sub-HGO. We can
also have more than two sub-HGO connected into a chain, so that each sub-HGO in the
chain differentiates some function of the states of the sub-HGOs which are up the chain
from itself and the first sub-HGO in the chain differentiates the signal y.

5.2 Composition of High-Gain Observers

Recall from Section 2.3, that to observe the system (2.6) we could use the HGO (2.7). We
now consider building observers for the following, slightly more general system

ẋ1 = x2

ẋ2 = x3

...

ẋr = φr(x1, . . . xr, xr+1, u)

ẋr+1 = xr+2

...

ẋn = φn(x, u)

y = h(x) = x1,

(5.2)

where φr and φn are globally Lipschitz and bounded. We write the above system as
ẋ = f(x, u). The following result tells us that φr is non-singular in its xr+1 argument if
and only if the system (5.2) is observable.
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Proposition 5.2.1. The observability rank condition for the system (5.2) holds at x = 0
and for u = u0 if and only if [

∂φr

∂xr+1

] ∣
∣
∣
x=0,u=u0

6= 0.

Proof. Assume that the system (5.2) is observable, at x = 0 and for u = u0, i.e., assume
that:

rank{dh, dLfh(x), dL
2
fh(x), . . . , dL

n−1
f h(x)} = n

at x = 0 and for u = u0. It is clear that

dh = dx1, dLfh(x) = dx2, . . . , dLr−1
f h(x) = dxr, dLr

fh(x) = dφr (5.3)

and since rank{dh(x), . . . , dLr
fh(x)} = r + 1, the differential dφr must be linearly inde-

pendent from the set of differentials {dx1, dx2, . . . , dxr}. Since φr is only a function of the
states x1, . . . , xr+1, the row vector dφr can be written as

dφr =
∂φr

∂x1

dx1 + · · ·+
∂φr

∂xr

dxr +
∂φr

∂xr+1

dxr+1.

If ∂φr

∂xr+1
was equal to 0, then from the above equation, we would have that dφr is linearly

dependent with the row vectors dx1, . . . dxr, which is a contradiction of what we have said

above. Therefore we must have that
[

∂φr

∂xr+1

] ∣
∣
∣
x=0,u=u0

6= 0.

For the converse, assume that ∂φr

∂xr+1
= p 6= 0. The observability matrix of the sys-

tem (5.2) is given by









dh(x)

dLfh(x)
...

dLn−1
f h(x)









=












Ir 0r×n−r

∗ p 0 . . . 0

∗ ∗ p . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . p












,

which is full-rank, since p 6= 0.

From (5.3) we see that x1, . . . , xr, φr are just derivatives of the output up to order r.
The quantity φr(x, u) is not a state but it can be estimated by means of an observer. Let
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us begin by building an approximate differentiator to estimate x1, . . . , xr and φr(x, u):

˙̂x1 = x̂2 +
ar
ǫ
(y − x̂1)

˙̂x2 = x̂3 +
ar−1

ǫ2
(y − x̂1)

...

˙̂xr = γ̂ +
a1
ǫr
(y − x̂1)

˙̂γ =
a0
ǫr+1

(y − x̂1),

(5.4)

where x̂i approximates the state xi, and γ̂ approximates the quantity φr(x, u). If the
constants a0, . . . , ar are chosen such that the polynomial p(s) = sr+1+ars

r + · · ·+a1s+a0
is Hurwitz, then the error between x and x̂ becomes of order O(ǫ) after a short transient
peaking period, whose duration tends to zero, as ǫ tends to zero.

At this point, in light of Proposition 5.2.1, we have enough information to obtain an
estimate of xr+1, based on the states of the sub-HGO (5.4). To do this, note that the
output of the system (5.2) satisfies

y(r) = φr(y, . . . , y
(r−1), xr+1, u).

Since φr is non-singular in xr+1 and is C∞ in all of its arguments, by the inverse func-
tion theorem there exists a C∞ function λ, such that in an open neighbourhood of Rr+2

containing (y, . . . , y(r−1), y(r), u) = (0, . . . , 0, φr(0, . . . , 0, u0), u0),

λ(y, . . . , y(r−1), y(r), u) = xr+1. (5.5)

Notice that all arguments to λ are either known (i.e., input u), or are estimated by sub-
HGO (5.4). In other words, we can estimate the quantities y, . . . , y(r−1), y(r), by states of
the sub-HGO (5.4) x̂1, . . . , x̂r, γ̂, to any desired accuracy. Therefore we evaluate λ with
the states of (5.4)

λ(x̂1(t), . . . , x̂r(t), γ̂(t), u(t))
ǫ→0
−−→ λ(x1(t), . . . , xr(t), y

(r)(t), u(t)) = xr+1(t).

This convergence is pointwise in time, i.e., it holds for any particular fixed time t > 0, but
may fail to hold uniformly for all t > 0. This means that for any fixed time t > 0, we can
make the estimates arbitrarily accurate at this t by decreasing ǫ towards 0 [25].

The next step is to treat the function λ(x̂1(t), . . . , x̂r(t), γ̂(t), u(t)) as a “virtual output”,
or “virtual measurement” of xr+1, and to build a second sub-HGO that approximately
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differentiates the “virtual output”

˙̂xr+1 = x̂r+2 +
bn−r−1

ǫ
(λ− x̂r+1)

˙̂xr+2 = x̂r+3 +
bn−r−2

ǫ2
(λ− x̂r+1)

...

˙̂xn−1 = x̂n +
b1

ǫn−r−1
(λ− x̂r+1)

˙̂xn =
b0
ǫn−r

(λ− x̂r+1),

(5.6)

where the constants b0, . . . , bn−r−1 are chosen such that the polynomial p(s) = sn−r +
bn−r−1s

n−r−1+ · · ·+b1s+b0 is Hurwitz. The function λ in the above HGO is understood to
be evaluated as λ = λ(x̂1, . . . , x̂r, γ̂, u). The two sub-HGOs (5.4) and (5.6) are connected
by means of the function λ, present in the second sub-HGO. These two sub-HGOs, taken
together, form a Composite High-Gain Observer (CHGO) for the system (5.2).

During the peaking period, the function λ(x̂1, . . . , x̂r, γ̂, u) may fail to be defined.
However, if λ is globally defined, then we conjecture that, as ǫ → 0, the composite sys-
tem (5.4), (5.6) will behave more and more like the composition of ideal differentiators,
shown in Figure 5.1.

x1

x1

x2

xr

φr(x, u)

xr+1

xr+2

xn−1

xn

λ(x1, . . . , xr, φr, u)
sub-HGO 1 sub-HGO 2

(ideal) (ideal)
xr+1

Figure 5.1: Composition of ideal differentiators, a non-causal system.

Notice that both of our sub-HGOs (5.4) and (5.6) are linear systems and do not include
the full model of the system. In particular, the sub-HGO (5.4) does not include a model
for how γ̂ changes with time and the sub-HGO (5.6) does not include a model for how x̂n

changes with time. Therefore, when we compose the two sub-HGOs, we do not expect the
estimation error dynamics of the resulting observer to have an equilibrium point at 0. We
do not include the full model in the sub-HGO (5.4), because doing so would mean that
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we need to know the derivative of u, because the quantity φr(x, u) depends on u. We can
still include the full model in the sub-HGO (5.6), but we choose not to do this right now,
because we simply want to illustrate interconnection of linear high-gain observers. In later
sections of this chapter, we will show how to make the estimation error have an equilibrium
at 0 without knowing the derivative of the input, we can do this by using a more powerful
high-gain observer, which will be introduced in the next section.

Let us summarize the process that we used to design the CHGO:

1. Build the first sub-HGO to estimate derivatives of y up to order r.

2. Construct the C∞ function λ, which satisfies (5.5). The function λ is meant to be
evaluated at the states of the first sub-HGO, thus providing a “virtual measurement”
of xr+1. Ideally, the function λ will be globally, or at least semi-globally defined.

3. Build the second sub-HGO to estimate derivatives of λ(x̂1, . . . , x̂r, γ̂, u) up to order
n− r.

The reader might be wondering why we have chosen to compose specifically high-gain
observers and not some other type of observers, such as sliding mode observers, or extended
Kalman filters. The answer lies in the fact that high-gain observers are approximate differ-
entiators, as discussed in Section 2.4. Approximate differentiators are robust to modeling
uncertainties, because it is possible to approximately differentiate a signal without know-
ing the full model of the system from which this signal originated. The robustness to
modeling uncertainties is crucial for CHGO to work, because the observation error of the
first sub-HGO must decay to order O(ǫ) values, while the estimation error of the second
sub-HGO is still large. This is where the robustness of the high-gain observer is useful -
the HGO can approximately differentiate the signal y(t) without knowing the full model
of the system from which y(t) originated. This allows the first sub-HGO to get order O(ǫ)
close to {x1, . . . , xr, y

(r)}, without using the full model of the system.

Once the first sub-HGO’s observation error has decayed to order O(ǫ) values, the func-
tion λ(x̂1, . . . , x̂r, γ̂, u) becomes close to the value of xr+1 and the second sub-HGO will
begin receiving correct “virtual measurement” of xr+1, which it approximately differenti-
ates.

5.3 Generalized High-Gain Observer

In this section, we briefly present a more powerful type of HGO, which works for a
much larger class of systems than (2.6). This type of high-gain observer is analyzed
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in [14], [15], [16] and other related papers.

Consider the problem of partial-state observer design for the following nonlinear, input
affine, single-input, single-output system defined on R

n

ẋ = f(x) + g(x)u

y = h(x) = x1,
(5.7)

where x = (x1, . . . , xn) ∈ R
n, f, g : Rn → R

n are assumed to be C∞ maps. The variable y
is the measured output of the system and the variable u is the input applied to the system,
also measured.

Definition 5.3.1. For the system (5.7), define the region of observability for any input,
Ωx, to be the subset of the state space of (5.7), on which the observability rank condition
holds for any input, i.e.,

Ωx :=
{
x ∈ R

n : rank{dh(x), dLf+guh(x), . . . , dL
n−1
f+guh(x)} = n, ∀u ∈ R

}
.

The authors of [14] suggest a local change of coordinates, z = Ψ(x), which is defined
for x ∈ Ωx, and is computed as follows

z1 := h(x) = x1

z2 := Lfh(x)

...

zn := Ln−1
f h(x).

(5.8)

The result [14, Theorem 2], implies that Ψ : Ωx → R
n is a local diffeomorphism and the

change of coordinates z = Ψ(x) transforms the system (5.7) into the following triangular
normal form

ż1 = z2 + g1(z1)u

ż2 = z3 + g2(z1, z2)u

...

żn−1 = zn + gn−1(z1, . . . , zn−1)u

żn = φ(z) + gn(z)u

y = z1.

(5.9)

It is shown in [15] and [16] that, if the functions φ, gi, i = 1, . . . , n are globally Lipschitz
and bounded then, for ǫ > 0 sufficiently small, the following is an exponential observer
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for (5.9),

˙̂z1 = ẑ2 + g1(ẑ1)u+
1

ǫ
an−1(y − ẑ1)

˙̂z2 = ẑ3 + g2(ẑ1, z2)u+
1

ǫ2
an−2(y − ẑ1)

...

˙̂zn−1 = ẑn + gn−1(ẑ1, . . . , ẑn−1)u+
1

ǫn−1
a1(y − ẑ1)

˙̂zn = φ(ẑ) + gn(ẑ)u+
1

ǫn
a0(y − ẑ1),

(5.10)

where the constants a0, . . . , an−1 are design parameters, chosen such that the polynomial
p(s) = sn + an−1s

n−1 + · · · + a1s + a0 is Hurwitz. These results of [14], [15] and [16] are
important because they allow high-gain observer design for a much broader class of systems
than the “standard” HGO (2.7), which we introduced in Section 2.3. The HGO (5.10) is
still very similar in structure to the HGO (2.7), because it is just a copy of the vector field
of the system (5.9), plus the same corrective high-gain term used in the HGO (2.7).

To construct an HGO for the nonlinear system (5.7) using the normal form (5.9), one
normally follows the following steps:

1. Use (5.8) to compute the change of coordinates, z = Ψ(x), which transforms (5.7)
into the normal form (5.9).

2. The mapping z = Ψ(x) has a full-rank Jacobian matrix for all x ∈ Ωx, so Ψ : Ωx → R
n

is a local diffeomorphism around each point x ∈ Ωx. However Ψ may fail to be a global
diffeomorphism onto its image, because it may fail to be injective. This means that
some global information may be lost when we change the coordinates to z = Ψ(x).

3. Build the HGO (5.10) in z-coordinates.

4. Transform the HGO (5.10) back into x-coordinates using the inverse coordinate trans-
formation x = Ψ−1(z). After doing this, one has obtained the HGO equations in
x-coordinates. The observer equations obtained using the procedure above will be
undefined at x /∈ Ωx.

Example 1. Consider the following system, given in its original coordinates,

ẋ1 = (x1 − 1)x2 + u

ẋ2 = u

y = h(x) = x1.

(5.11)
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Write the above system as ẋ = f(x, u), then the observability matrix for this system is
[

dh(x)

dLfh(x)

]

=

[

1 0

x2 (x1 − 1)

]

. (5.12)

Therefore, the region of observability for any input of the above system is

Ωx = {(x1, x2) ∈ R
2 : x1 6= 1}.

To convert the above system into the normal form (5.9), define a coordinate transformation
z = Ψ(x), according to (5.8), to be z1 := x1 and z2 := (x1 − 1)x2. In the z-coordinates,
the system (5.11) takes on the normal form (5.9)

ż1 = z2 + u

ż2 =
z2(z2 + u)

z1 − 1
+ (z1 − 1)u

y = z1.

(5.13)

Next, we build the HGO in the z-coordinates:

˙̂z1 = ẑ2 + u+
a1
ǫ
(y − ẑ1)

˙̂z2 =
ẑ2(ẑ2 + u)

ẑ1 − 1
+ (ẑ1 − 1)u+

a0
ǫ2
(y − ẑ1).

(5.14)

Finally, we convert the HGO into the x-coordinates:

˙̂x1 = (x̂1 − 1)x̂2 + u+ a1
1

ǫ
(y − x̂1)

˙̂x2 = u+
(a0
ǫ2

−
a1
ǫ
x̂2

) y − x̂1

x̂1 − 1
.

(5.15)

Notice that as x̂1 → 1, we have ˙̂x2 → ∞. This is because the state x2 becomes progressively
“less observable” as x1 approaches 1 and x2 becomes unobservable when x1 = 1.

5.4 Simple Design Example

We will design a CHGO, based on the observers from Section 5.3, for the system from
Example 1. By composing HGOs of type (5.10) we will be able to obtain estimation error
dynamics that have an equilibrium point at the zero error x̃ = 0, unlike the case when
observers of Section 5.2 are used.
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5.4.1 Observer Design

Step 1: Augment the states of the system (5.11) with one additional redundant state
variable γ ∈ R, which is defined to be drift of x1 under zero input

γ :=
d

dt
x1

∣
∣
∣
u=0

= (x1 − 1)x2.

We defined γ to be the drift of x1 under zero input, rather than the full derivative of x1 as
in Section 5.2, because this way γ is not dependent on u and therefore u̇ does not appear
in the equation of γ̇. Since u̇ does not appear in γ̇, we will later be able to include a full
model of γ in our observer, without knowing u̇.

If we know x1 and γ, we can uniquely solve for x2 if and only if x1 6= 1. For future use,
define the function that solves for x2, given x1 and γ

λ(x1, γ) :=
γ

x1 − 1
.

Notice that this function λ(x1, γ) is singular when x1 = 1, i.e., when x /∈ Ωx. This is not
surprising because when x1 = 1, the system loses observability and the state x2 can not be
obtained from the knowledge of the output and its derivatives.

Step 2: Compute the expression for the derivative of γ with respect to time

γ̇ =
d

dt
[(x1 − 1)x2]

= (x1 − 1)x2
2 + (x1 + x2 − 1)u

=: M(x1, x2, u).

Now we can rewrite the system (5.11), with the redundant variable γ included, as

ẋ1 = γ + u

γ̇ = (x1 − 1)x2
2 + (x1 + x2 − 1)u

ẋ2 = u

y = x1.

(5.16)

The idea is to treat the augmented system (5.16) as an interconnection of two sub-systems.
The first sub-system has states x1 and γ, while the second sub-system has state x2. The
first sub-system is

ẋ1 = γ + u

γ̇ = (x1 − 1)x2
2 + (x1 + x2 − 1)u

y = h1(x) = x1,

(5.17)
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where x1, γ are states and x2 is treated as an unknown function of time, i.e., a modeling
uncertainty. The second sub-system is

ẋ2 = u

y = h2(x) = x2.
(5.18)

The output of the second sub-system (5.18) is h2(x) = x2, but this output is also equal
to λ(x1, γ) =

γ

x1−1
, which is a function entirely of the states of the first sub-system (5.17).

This happens because γ

x1−1
= x2, as long as x ∈ Ωx.

Step 3: Both the sub-systems (5.17) and (5.18) are in the triangular normal form (5.9).
So we design two sub-HGOs of type (5.10), one for each sub-system. The first sub-HGO
uses the measured output y and the input u to estimate the states x1 and γ

˙̂x1 = γ̂ + u+
a1
ǫ1
(y − x̂1)

˙̂γ = (x̂1 − 1)x̂2
2 + (x̂1 + x̂2 − 1)u+

a0
ǫ21
(y − x̂1),

(5.19)

where ǫ1 > 0 is a small design parameter and a0, a1 ∈ R are design parameters, chosen
such that the polynomial p1(s) = s2 + a1s+ a0 is Hurwitz.

The first sub-HGO (5.19) can provide a “virtual measurement” of x2, via the function
λ(x̂1, γ̂), once the estimation error between (x̂1, γ̂) and (x1, γ) has decayed to order O(ǫ1)
values. The second sub-HGO uses this “virtual measurement”, λ(x̂1, γ̂), which is a function
entirely of the states of the first sub-HGO, as if it was the signal h2(x) = x2. Thus, the
second sub-HGO uses λ(x̂1, γ̂) and the input u to estimate the state x2:

˙̂x2 = u+
b0
ǫ2

(λ(x̂1, γ̂)− x̂2) , (5.20)

where ǫ2 > 0 is a small design parameter and b0 > 0 is a design parameter, chosen such
that the polynomial p2(s) = s+ b0 is Hurwitz.

Combining the two sub-HGOs (5.19) and (5.20) into a single CHGO, we get

˙̂x1 = γ̂ + u+
a1
ǫ1
(y − x̂1)

˙̂γ = (x̂1 − 1)x̂2
2 + (x̂1 + x̂2 − 1)u+

a0
ǫ21
(y − x̂1)

˙̂x2 = u+
b0
ǫ2
(λ− x̂2),

(5.21)
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where the function λ is understood to be evaluated as λ(x̂1, γ̂). The two sub-HGOs (5.19)
and (5.20), which make up the CHGO (5.21), are interconnected in a rather complicated
way, because x̂2 appears in (5.19). However, as ǫ1, ǫ2 → 0, the dominant interconnection
is through the λ function from the first sub-HGO to the second sub-HGO.

We have not yet explained how to choose the design parameters ǫ1 and ǫ2, other than
saying that they should be made small. We will later argue that these parameters should
be chosen such that the first sub-HGO has higher gain than the second sub-HGO, i.e.,
ǫ1 << ǫ2. For example, we can take ǫ1 = ǫ2 and ǫ2 = ǫ, where ǫ > 0 is a single design
parameter that replaces ǫ1 and ǫ2. The intuitive explanation for taking the gain of the first
sub-HGO to be higher than the gain of the second sub-HGO is that the “virtual output”
λ(x̂1, γ̂) that goes into the second sub-HGO must become approximately accurate, i.e.,
sufficiently close to x2, before it can becomes useful to the second sub-HGO. In other
words, the first sub-HGO’s estimation error must decay to small values before the second
sub-HGO can even begin to do anything useful.

5.4.2 Estimation Error Dynamics

We define the estimation errors to be x̃i := xi−x̂i for i = 1, 2 and γ̃ := γ−γ̂. Differentiating
these variables, we obtain the following estimation error dynamics

˙̃x1 =γ̃ − a1
1

ǫ1
x̃1

˙̃γ =(x1 − 1)x2
2 − (x̂1 − 1)x̂2

2 + (x̃1 + x̃2)u−
a0
ǫ21
(x̃1)

˙̃x2 =−
b0
ǫ2
(λ− x̂2),

(5.22)

where λ is understood to be evaluated as λ = λ(x̂1, γ̂).

We introduce the virtual measurement error, λ̃, which is defined to be the difference
between the true state, x2, and its virtual measurement, λ(x̂1, γ̂)

λ̃(x̃1, γ̃, x1, γ) :=λ(x1, γ)− λ(x1 − x̃1, γ − γ̃)

=λ(x1, γ)− λ(x̂1, γ̂)

=x2 − λ(x̂1, γ̂).

We will suppress the arguments to λ̃ so that when we write λ̃, it is understood that we
mean λ̃(x̃1, γ̃, x1, γ). Using this definition, the term λ− x̂2 from the error dynamics (5.22)
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is written as
λ(x̂1, γ̂)− x̂2 = λ(x̂1, γ̂)− λ(x1, γ) + λ(x1, γ)− x̂2

= λ(x̂1, γ̂)− λ(x1, γ) + x2 − x̂2

= λ(x̂1, γ̂)− λ(x1, γ) + x̃2

= x̃2 − λ̃.

Using this, we rewrite the error dynamics (5.22) to make it look like a linear, stable system,
which is perturbed by a nonlinear perturbation,

d

dt






x̃1

γ̃

x̃2




 =






−a1
1
ǫ1

1 0

−a0
1
ǫ2
1

0 0

0 0 −b0
1
ǫ2











x̃1

γ̃

x̃2




+ δ +∆, (5.23)

where δ and ∆ are perturbation terms, given by

δ =






0

(x1 − 1)x2
2 − (x̂1 − 1)x̂2

2 + (x̃1 + x̃2)u

0




 ,

∆ =






0

0

b0
1
ǫ2
λ̃




 .

The good thing about the perturbation terms δ and ∆ is that they are vanishing pertur-
bations, meaning that when the estimation error is zero (i.e., when x̂ = x and γ̂ = γ, or
equivalently, when x̃ = 0 and γ̃ = 0), then the perturbation terms are equal to zero:

(
∀x ∈ R

2
)
(∀γ ∈ R) (∀u ∈ R) δ

∣
∣
x̃=0,γ̃=0

= 0 and ∆
∣
∣
x̃=0,γ̃=0

= 0.

This means that the point (x̃, γ̃) = 0 is an equilibrium point of the error dynamics.

The bad thing about the perturbation term ∆ is that it contains a term multiplied by
1/ǫ2. So ∆ increases in magnitude as ǫ2 → 0. Fortunately, the high-gain perturbation
only depends on the estimation error of the first sub-HGO, which decreases to order O(ǫ1)
values.

5.4.3 Simulation

We simulate the CHGO (5.21) and the HGO (5.15), both applied to the system (5.11)
from Example 1. The control input is chosen to be a fixed function of time

u = − sin(t/2).
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The system and the observer are initialized at

x1 = −2, x2 = −2, x̂1 = 0, x̂2 = 0.

The results of the simulation are shown in Figure 5.2. From the simulation, we can see
that the CHGO and the HGO have similar performance in the absence of measurement
noise.
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Figure 5.2: Simulation of the CHGO (5.21) and the HGO (5.15), both applied to the
system (5.11), without measurement noise.

5.5 TORA System

In this section, we design a CHGO to estimate the states of a particular simple mechanical
system, called the translational oscillator with a rotating actuator (TORA) system, shown
in Figure 5.3. The TORA system consists of a rotating pendulum on a cart, the cart is
free to move back and forth in one dimension and is attached to a fixed wall by a spring.
To our knowledge, there has been no work on successfully applying high-gain observers to
estimate the states of the TORA system. In [21], the authors stabilize the TORA system
without constructing an explicit observer for all of its states. We are not going to attempt
to stabilize the TORA system to any equilibrium point.

For simplicity, we assume there is no gravity and no friction in any of the components.
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mc

mr

N

I
θk

Figure 5.3: The translational oscillator with a rotating actuator (TORA) System

The equations of motion of the TORA system are given by [38]

(mr +mc)d̈+mrlr(θ̈ cos(θ)− θ̇2 sin(θ)) + kd = 0,

(I +mrl
2
r)θ̈ +mrlrd̈ cos(θ) = N.

Table 5.1 gives a list of physical parameters of the TORA system.

Table 5.1: List of Parameters of the TORA System

mc mass of the cart
mr mass of the rotating actuator
lr length of the actuator
N torque on the actuator
I inertia of the disk
θ angle of the actuator away from horizontal
d displacement of the cart

Following the procedure of [38], we introduce the dimensionless variables

A :=
mrlr

√

(I +mrl2r)(mr +mc)
, τ :=

√

k

mr +mc

t,

x3 :=

√
mr +mc

I +mrl2r
d, u :=

mr +mc

k(I +mrl2r)
N.
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We define the state variables as follows

x = (x1, x2, x3, x4) := (θ, θ̇, x3, ẋ3),

where the dot and double dot now denote derivatives with respect to τ . The vector field
of the TORA system in these coordinates, is given by

ẋ1 =x2

ẋ2 =
A cos(x1) (x3 − Ax2

2 sin(x1))

1− A2 cos2(x1)
+

1

1− A2 cos2(x1)
u

ẋ3 =x4

ẋ4 =
Ax2

2 sin (x1)− x3

1− A2 cos2(x1)
−

A cos(x1)

1− A2 cos2(x1)
u

y =h(x) = x1.

(5.24)

Note that the denominator 1 − A2 cos2(x1) is never zero, because A < 1 by definition.
Writing the system (5.24) as ẋ = f(x, u), then the observability matrix is








dh(x)

dLfh(x)

dL2
fh(x)

dL3
fh(x)







=









1 0 0 0

0 1 0 0

∗ ∗ A cos(x1)
1−A2 cos2(x1)

0

∗ ∗ ∗ A cos(x1)
1−A2 cos2(x1)









. (5.25)

Since 1 − A2 cos2(x1) is never zero, the observability matrix of the TORA system is full
rank, for any input and at points x ∈ R

4, such that cos(x1) 6= 0. Therefore the region of
observability for any input is

Ωx := {x ∈ R
4 : cos(x1) 6= 0}.

We see that the TORA system loses observability when cos(x1) = 0. Physically, the
configuration cos(x1) = 0 corresponds to the rotating actuator (pendulum) being in the
horizontal position. In this configuration, any acceleration of the cart does not produce
torque on the pendulum. On the other hand, when cos(x1) 6= 0, acceleration of the cart
induces a torque on the pendulum. This torque appears in the second derivative of the
output.

Theoretically, it is possible to convert the TORA system into the triangular normal
form (5.9) and then apply the high-gain observer (5.10). Unfortunately, this change of
coordinates is very cumbersome to work with. When we design a CHGO for the TORA
system, we avoid doing this coordinate transformation and design the CHGO in the original
coordinates of the TORA system (5.24), by introducing a redundant state variable.
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5.5.1 Observer Design

We will design a CHGO for the TORA system by following the same steps we took in
Section 5.4.

Step 1: Augment the states of the TORA system (5.24) with one additional redundant
state variable γ ∈ R, which is defined to be the drift of x2 under zero input, the expression
for which is easy to compute,

γ :=
d

dt
[x2]

∣
∣
∣
u=0

=
A cos(x1) (x3 − Ax2

2 sin(x1))

1− A2 cos2(x1)
. (5.26)

If we know x1, x2 and γ, we can uniquely solve for x3, by rearranging the equation (5.26),
if and only if cos(x1) 6= 0. For future use, we define the “virtual output” function, that
solves for x3 given x1, x2 and γ

λ(x1, x2, γ) :=
γ(1− A2 cos2(x1))

A cos(x1)
+ Ax2

2 sin(x1) (5.27)

As expected, the function λ(x1, x2, γ) is undefined when cos(x1) = 0, i.e., when x /∈ Ωx.
When cos(x1) = 0, the TORA system loses observability and the states x3 and x4 can not
be estimated from the output.

Step 2: Compute the expression for the derivative of γ with respect to time

d

dt
γ =

d

dt

[
A cos(x1) (x3 − Ax2

2 sin(x1))

1− A2 cos2(x1)

]

=
−Ax2x3 sin(x1) + A2x3

2 sin
2(x1)− A2x3

2 cos
2(x1) + A cos(x1)x4

1− A2 cos2(x1)
+

− 4
A3x2x3 cos

2(x1) sin(x1)− A4x3
2 sin

2(x1)

(1− A2 cos2 (x1))
2 − 2

A2 cos (x1) x2 sin (x1)

(1− A2 cos2 (x1))
2 u

=: M(x1, x2, x3, x4, u).

(5.28)
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Now we can rewrite the TORA system (5.24), with the redundant variable γ included, as

ẋ1 =x2

ẋ2 =γ +
1

1− A2 cos2(x1)
u

γ̇ =M(x1, x2, x3, x4, u)

ẋ3 =x4

ẋ4 =
Ax2

2 sin (x1)− x3

1− A2 cos2(x1)
−

A cos(x1)

1− A2 cos2(x1)
u

y =h(x) = x1.

(5.29)

The idea is to treat the augmented system (5.29) as an interconnection of two sub-systems.
The first sub-system has states x1, x2 and γ, while the second sub-system has states x3

and x4. The first sub-system is

ẋ1 =x2

ẋ2 =γ +
1

1− A2 cos2(x1)
u

γ̇ =M(x1, x2, x3, x4, u)

y =h1(x) = x1,

(5.30)

where x1, x2, γ are states and x3, x4 are treated as unknown functions of time, i.e., modeling
uncertainties. The second sub-system is

ẋ3 =x4

ẋ4 =
Ax2

2 sin (x1)− x3

1− A2 cos2(x1)
−

A cos(x1)

1− A2 cos2(x1)
u

y =h2(x) = x3,

(5.31)

where x3 and x4 are states and x1, x2 are treated as unknown functions of time, i.e., mod-
eling uncertainties. The output of the second sub-system is h2(x) = x3, but this output
is also equal to λ(x1, x2, γ) = x3, which is a function entirely of the states of the first
sub-system (5.30).

Step 3: Both the sub-systems (5.30) and (5.31) are in the triangular normal form (5.9).
So we design two sub-HGOs of type (5.10), one for each sub-system. The first sub-HGO
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uses the measured output y and input u to estimate the states x1, x2 and γ

˙̂x1 =x̂2 + a2
1

ǫ1
(y − x̂1)

˙̂x2 =γ̂ +
1

1− A2 cos2(x̂1)
u+ a1

1

ǫ21
(y − x̂1)

˙̂γ =M(x̂1, x̂2, x̂3, x̂4, u) + a0
1

ǫ31
(y − x̂1) ,

(5.32)

where ǫ1 > 0 is a small design parameter and a0, a1, a2 ∈ R are design parameters, chosen
such that the polynomial p1(s) = s3 + a2s

2 + a1s+ a0 is Hurwitz.

The first sub-HGO (5.32) provides a “virtual measurement” of x3, via the function
λ(x̂1, x̂2, γ̂), after the estimation error between (x̂1, x̂2, γ̂) and (x1, x2, γ) has decayed to
order O(ǫ1) values. The second sub-HGO uses the “virtual measurement”, λ(x̂1, x̂2, γ̂) ≈
x3, which is a function entirely of the states of the first sub-HGO, as if it was the signal
h2(x) = x3. Thus, the second sub-HGO uses λ(x̂1, x̂2, γ̂) and the input u to estimate the
states x3 and x4

˙̂x3 =x̂4 + b1
1

ǫ2
(λ(x̂1, x̂2, γ̂)− x̂3)

˙̂x4 =
Ax̂2

2 sin (x̂1)− x̂3

1− A2 cos2(x̂1)
−

A cos(x̂1)

1− A2 cos2(x̂1)
u+ b0

1

ǫ22
(λ(x̂1, x̂2, γ̂)− x̂3) ,

(5.33)

where ǫ2 > 0 is a small design parameter and b0, b1 ∈ R are design parameters, chosen such
that the polynomial p2(s) = s2 + b1s+ b0 is Hurwitz.

Combining the two sub-HGOs (5.32) and (5.33), we get

˙̂x1 =x̂2 + a2
1

ǫ1
(y − x̂1)

˙̂x2 =γ̂ +
1

1− A2 cos2(x̂1)
u+ a1

1

ǫ21
(y − x̂1)

˙̂γ =M(x̂1, x̂2, x̂3, x̂4, u) + a0
1

ǫ31
(y − x̂1)

˙̂x3 =x̂4 + b1
1

ǫ2
(λ− x̂3)

˙̂x4 =
Ax̂2

2 sin (x̂1)− x̂3

1− A2 cos2(x̂1)
−

A cos(x̂1)

1− A2 cos2(x̂1)
u+ b0

1

ǫ22
(λ− x̂3) ,

(5.34)

where the function λ in the above CHGO is understood to be evaluated as λ = λ(x̂1, x̂2, γ̂).
The two sub-HGOs (5.32) and (5.33), which make up the CHGO (5.34) are interconnected
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in a rather complicated way, because x̂3 and x̂4 appear in (5.32) and x̂1 appears in (5.33).
However, as ǫ1, ǫ2 → 0, the dominant interconnection is through the λ function from the
first sub-HGO to the second sub-HGO.

5.5.2 Estimation Error Dynamics

We define the estimation errors to be x̃i := xi − x̂i for i = 1, 2, 3, 4 and γ̃ := γ − γ̂.
Differentiating these variables, we obtain the following error dynamics

˙̃x1 =x̃2 − a2
1

ǫ1
x̃1

˙̃x2 =γ̃ +
1

1− A2 cos2(x1)
u−

1

1− A2 cos2(x̂1)
u− a1

1

ǫ21
x̃1

˙̃γ =M(x, u)−M(x̂, u)− a0
1

ǫ31
x̃1

˙̃x3 =x̃4 − b1
1

ǫ2
(λ− x̂3)

˙̃x4 =

(
Ax2

2 sin (x1)− x3

1− A2 cos2(x1)
−

A cos(x1)

1− A2 cos2(x1)
u

)

−

−

(
Ax̂2

2 sin (x̂1)− x̂3

1− A2 cos2(x̂1)
−

A cos(x̂1)

1− A2 cos2(x̂1)
u

)

− b0
1

ǫ22
(λ− x̂3) ,

(5.35)

where λ is understood to be evaluated as λ = λ(x̂1, x̂2, γ̂).

We introduce the virtual measurement error, λ̃, which is defined to be the difference
between the true state, x3, and its virtual measurement, λ(x̂1, x̂2, γ̂),

λ̃(x̃1, x̃2, γ̃, x1, x2, γ) :=λ(x1, x2, γ)− λ(x1 − x̃1, x2 − x̃2, γ − γ̃)

=λ(x1, x2, γ)− λ(x̂1, x̂2, γ̂)

=x3 − λ(x̂1, x̂2, γ̂).

We will suppress the arguments to λ̃ so that when we write λ̃, it is understood that we mean
λ̃(x̃1, x̃2, γ̃, x1, x2, γ). Using this definition, the term λ− x̂3 from the error dynamics (5.35)
is written as

λ(x̂1, x̂2, γ̂)− x̂3 = λ(x̂1, x̂2, γ̂)− λ(x1, x2, γ) + λ(x1, x2, γ)− x̂3

= λ(x̂1, x̂2, γ̂)− λ(x1, x2, γ) + x3 − x̂3

= λ(x̂1, x̂2, γ̂)− λ(x1, x2, γ) + x̃3

= x̃3 − λ̃.
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Using this, we rewrite the error dynamics (5.35) to make it look like a linear, stable system,
which is perturbed by a nonlinear perturbation

d

dt











x̃1

x̃2

γ̃

x̃3

x̃4











=











−a2
1
ǫ1

1 0 0 0

−a1
1
ǫ2
1

0 1 0 0

−a0
1
ǫ3
1

0 0 0 0

0 0 0 −b1
1
ǫ2

1

0 0 0 −b0
1
ǫ2
2

0





















x̃1

x̃2

γ̃

x̃3

x̃4











+ δ +∆, (5.36)

where δ and ∆ are perturbation terms, given by

δ =












0
1

1−A2 cos2(x1)
u− 1

1−A2 cos2(x̂1)
u

M(x, u)−M(x̂, u)

0
(

Ax2
2
sin(x1)−x3

1−A2 cos2(x1)
− A cos(x1)

1−A2 cos2(x1)
u
)

−
(

Ax̂2
2
sin(x̂1)−x̂3

1−A2 cos2(x̂1)
− A cos(x̂1)

1−A2 cos2(x̂1)
u
)












,

∆ =











0

0

0

b1
1
ǫ2
λ̃

b0
1
ǫ2
2

λ̃











.

(5.37)

The good thing about the perturbation terms δ and ∆ is that they are vanishing pertur-
bations, meaning that when the estimation error is zero (i.e., when x̂ = x and γ̂ = γ, or
equivalently, when x̃ = 0 and γ̃ = 0), then the perturbation terms are equal to zero

(
∀x ∈ R

4
)
(∀γ ∈ R) (∀u ∈ R) δ

∣
∣
x̃=0,γ̃=0

= 0 and ∆
∣
∣
x̃=0,γ̃=0

= 0.

This means that the point (x̃, γ̃) = 0 is an equilibrium point of the error dynamics.

The bad thing about the perturbation term ∆ is that the last two components of
∆ contain terms multiplied by 1/ǫ2 and 1/ǫ22. Namely the two terms: b1

1
ǫ2
λ̃ and b0

1
ǫ2
2

λ̃

are problematic because they increase in magnitude as ǫ2 → 0. Fortunately, these high-
gain perturbation terms only depend on the estimation error of the first sub-HGO, which
decreases to order O(ǫ1) values.

The two high-gain perturbation terms b1
ǫ2
λ̃ and b0

ǫ2
2

λ̃ are not unexpected. Indeed, if

the estimation errors: x̃1, x̃2 and γ̃, of the first sub-HGO are not small then the virtual
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measurement error, λ̃, is not guaranteed to be small. This means that the second sub-
HGO will receive an incorrect virtual output signal, λ(x̂1, x̂2, γ̂), which is not close to
λ(x1, x2, γ) = x3. When the virtual output is incorrect, i.e., when λ̃ is not small, then
increasing the gain of the second sub-HGO will not help it in reducing estimation error,
since it will simply be differentiating an incorrect virtual output signal. Thus, we see that
for the CHGO (5.34) to work, the estimation errors: x̃1, x̃2, γ̃, of the first sub-HGO must
decay to sufficiently small values, so that λ̃ becomes sufficiently small. Only after this has
happened, can the second sub-HGO begin to work properly.

5.5.3 Simulation

We simulate the CHGO (5.34), applied to the TORA system (5.24). The physical param-
eters of the TORA system are taken to be

k = 10, mr = 15, mc = 5, lr = 7, I = 1.

With these parameter values, the transformation into dimensionless variables is given by

A = 0.8654, τ = 0.7071t, x3 = 0.1648d, u = 0.0027N.

The following gains are chosen for the CHGO

a0 = 1, a1 = 3, a2 = 3, b0 = 1, b1 = 2, ǫ1 = 0.49, ǫ2 = 0.70.

The TORA system (5.24) is initialized at

x1 = −0.5, x2 = −0.1, x3 = 0.5, x4 = 0.

The CHGO (5.34) is initialized at

x̂1 = 0, x̂2 = 0, γ̂ = 0, x̂3 = 0, x̂4 = 0.

The control input, u, is chosen in such a way that the state x does not leave the set Ωx

during the simulation, i.e., such that cos(x1) 6= 0 holds,

u =







0.06 for τ < 9

0.07 for τ ≥ 9 and τ < 15

0.1 for τ ≥ 15

Figure 5.4 shows simulation of the CHGO without measurement noise, i.e., taking
y = x1. Figure 5.5 shows simulation of the CHGO with additive measurement noise, i.e.,
taking y = x1 + n, where n is normally distributed.
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Figure 5.4: Simulation of the CHGO (5.34) applied to the TORA system (5.24), without
measurement noise.
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Figure 5.5: Simulation of the CHGO (5.34) applied to the TORA system (5.24), with
measurement noise. 88



Chapter 6

Future Research

The following future research directions could be considered:

(i) Relativistic observer on SO (3, 1). The Lorentz group SO (3, 1) is the Lie group
of proper Lorentz transformations of Minkowski space-time. The group SO (3, 1) is 6
dimensional, 3 of the dimensions account for rotations, while the other 3 dimensions
account for Lorentz boosts. Recall from Section 3.7, that an element X ∈ SO (3)
“encodes” orientation, while an element u ∈ Lie(SO (3)) “encodes” angular velocities
of rigid-body {A} relative to rigid-body {B}. In much the same way, an element
X ∈ SO (3, 1) “encodes” orientation and relativistic velocity (a.k.a. “boost”), while
an element u ∈ Lie(SO (3, 1)) “encodes” angular velocities and linear accelerations
of rigid-body {A} relative to rigid-body {B}. For objects that move at relativistic
speeds, Newtonian mechanics become less accurate due to effects of Special Relativity.
To build a sensor fusion algorithm that takes into account the effects of Special
Relativity, one could try to use the LFSO proposed in this chapter, applied to Lie
group SO (3, 1). Measurement of the boost between {A} and {B} one could likely
rely on the physical phenomenon called “red-shift”, where the color of an object
changes depending on how fast this object is moving towards or away from the
observer. Obviously such a measurement of boosts would be highly noisy, which is
where the full-state observer would become useful in filtering out the noise. The
input u encodes linear accelerations (in 3 dimensions) and angular velocities (in 3
axis) of frame {A} relative to frame {B}, which is something that can be measured
with a set of accelerometers and angular-rate gyroscopes.

(ii) Efficient discrete-time implementation on SU(2) representing the orientation
of a flying robot by means of a rotation matrix is not always convenient, because the
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rotation matrix needs to be “orthogonalized” periodically to make sure that it does
not drift off the SO (3) submanifold due to numerical errors. It is well known that the
Lie group SU(2) ⊂ GL (2,C) ⊂ GL (4,R) is a double cover for the Lie group SO (3),
which implies that SU(2) can also be used to represent the orientation of a rigid-
body. The group SU(2) can be shown to be diffeomorphic to a 3-sphere embedded
into 4 dimensions. Just like any sphere, it has the notion of a “geodesic along the
sphere”, which is the shortest path along the sphere between any two orientations.
There is a simple formula to compute the motion along this geodesic. The formula is
called spherical linear interpolation (SLERP) and it is derived in [39]. We conjecture
that the differential equation (3.10) always evolves on the same geodesic curve that
it started on. In other words, we conjecture that, for the Lie group SU(2), the
one-parameter subgroup coincides with the geodesic along the sphere. Using the
SLERP formula, a very efficient and accurate attitude estimation algorithm can be
built for discrete time implementation of the algorithm proposed in this chapter.
This algorithm treats the system’s state (orientation) as evoling on a sphere in 4
dimensions.

(iii) Control of systems on Lie groups. Extend the results of Section 3.8 to design
controllers that can converge to non-constant reference trajectories. It would be
useful to design a Lie group analogue of the Proportional, Integral, Derivative (PID)
controller that is often used for controlling linear systems. Also, one could try to
design controllers for “dynamical” systems on Lie groups, which were discussed in
Chapter 4.

(iv) Proof of CHGO convergence. Find out under what conditions the CHGO con-
verges and how the gains of the sub-observers should be chosen to have better con-
vergence.
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Appendix A

Stability of Equilibria

A.1 Definitions

Consider the system
ẋ = f(x, t), (A.1)

where x ∈ R
n is the state, and f(x, t) is the system vector field. Assume that the system

has an equilibrium point at x∗ = 0, i.e., assume that (∀t ∈ R) : f(0, t) = 0.

Definition A.1.1. Equilibrium point x∗ = 0 of (A.1) is (Lyapunov) stable if any solution
x(t) of (A.1) satisfies

(∀t0 ∈ R) (∀ǫ > 0) (∃δ > 0) (∀‖x(t0)‖ < δ) (∀t ≥ t0) ‖x(t)‖ < ǫ.

Definition A.1.2. Equilibrium point x∗ = 0 of (A.1) is asymptotically stable if it is stable
and if any solution x(t) of (A.1) satisfies

(∀t0 ∈ R) (∃δ > 0) (‖x(t0)‖ < δ) ⇒ (x(t) → 0, as t → ∞) .

Definition A.1.3. Equilibrium point x∗ = 0 of (A.1) is exponentially stable if it is asymp-
totically stable and if any solution x(t) of (A.1) satisfies

(∀t0 ∈ R) (∃δ > 0) (∃m,α > 0) (‖x(t0)‖ < δ) ⇒ (∀t ≥ t0) ‖x(t)‖ < me−α(t−t0)‖x(t0)‖.
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A.2 Stability Under Diffeomorphism

In this section, we will show that stability of equilibria is preserved under diffeomorphisms.
To this end, consider a change of coordinates z = Ψ(x), where Ψ : Rn → R

n is a local
diffeomorphism onto its image at x = 0 and is such that Ψ(0) = 0. In the z-coordinates,
the system (A.1) transforms to

ż = g(z, t), (A.2)

where z ∈ R
n is the state, and g(z, t) is the vector field. The point z∗ = 0 is an equilibrium

point of (A.2), i.e., (∀t ∈ R) : g(0, t) = 0.

Lemma A.2.1. (i) x∗ = 0 is stable if and only if z∗ = 0 is stable.

(ii) x∗ = 0 is asymptotically stable if and only if z∗ = 0 is asymptotically stable.

(iii) x∗ = 0 is exponentially stable if and only if z∗ = 0 is exponentially stable.

Proof. Choose a neighbourhood U ⊆ R
n of x∗ = 0, and a neighbourhood V ⊆ R

n of z∗ = 0,
sufficiently small, so that Ψ : U → V is a diffeomorphism.

(i) (⇐) Assume that x∗ = 0 is stable. Let t0 ∈ R and ǫz > 0 be arbitrary. Using
continuity of Ψ, choose ǫx > 0 sufficiently small so that

‖x‖ < ǫx ⇒ ‖Ψ(x)‖ < ǫz

and using stability of x∗ = 0, choose δx > 0 sufficiently small so that

‖x(t0)‖ < δx ⇒ (∀t ≥ t0 : ‖x(t)‖ < ǫx),

now using continuity of Ψ−1, choose δz > 0 sufficiently small so that

‖z‖ < δz ⇒ (z ∈ V, ‖Ψ−1(z)‖ < δx).

Then, we have that

‖z(t0)‖ < δz ⇒ (∀t ≥ t0 : ‖z(t)‖ < ǫz).

The proof of the converse is symmetrical and therefore omitted.
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(ii) (⇐) Assume that x∗ = 0 is asymptotically stable and let t0 ∈ R be arbitrary, then

(∃δ > 0) : (‖x(t0)‖ < δ) ⇒ (x(t) → 0, as t → ∞) .

Since Ψ−1 : V → U is smooth, it is also locally Lipschitz, so there exists a neighbour-
hood, V0 of 0 ∈ V and a Lipschitz constant L > 0, such that

(∀z ∈ V0) : ‖Ψ−1(z)‖ ≤ L‖z‖.

Thus, if ‖z(t0)‖ < δ
L
, then ‖Ψ−1(z(t0))‖ < δ. By the asymptotic stability of x∗ = 0,

this implies that Ψ−1(z(t)) → 0 and therefore z(t) → 0 as t → ∞. Proof of the
converse is symmetrical and therefore omitted.

(iii) (⇐) Assume that x∗ = 0 is exponentially stable and let t0 ∈ R be arbitrary, then

(∃δ > 0) , (∃m,α > 0) : (‖x(t0)‖ < δ) ⇒
(
(∀t ≥ t0) : ‖x(t)‖ < me−α(t−t0)‖x(t0)‖

)
.

Since Ψ−1 : V → U is smooth, it is also locally Lipschitz, so there exists a neighbour-
hood, V0 of 0 ∈ V and a Lipschitz constant L > 0, such that

(∀z ∈ V0) : ‖Ψ−1(z)‖ ≤ L‖z‖

and since Ψ : U → V is smooth, it is also locally Lipschitz, so there exists a neigh-
bourhood, U0 of 0 ∈ U and a Lipschitz constant K > 0, such that

(∀x ∈ U0) : ‖Ψ(x)‖ ≤ K‖x‖.

Thus, if ‖z(t0)‖ < δ
L
, then ‖Ψ−1(z(t0))‖ < δ. By the exponential stability of x∗ = 0,

this implies that
‖Ψ−1(z(t))‖ < me−α(t−t0)‖Ψ−1(z(t0))‖)

and therefore
‖z(t)‖ < KLme−α(t−t0)‖z(t0)‖.

Proof of the converse is symmetrical and therefore omitted.
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A.3 Linear Systems and Linearization

Consider the nonlinear, time-invariant system

ẋ = f(x), (A.3)

where x ∈ R
n and f : D → R

n is continuously differentiable and D is a neighbourhood of
x∗ = 0. Assume that the Jacobian matrix ∂f

∂x
is bounded and Lipschitz on D. Let

A :=
∂f

∂x
(x)

∣
∣
∣
x=0

,

then the following system is the linearization of (A.3), around the equilibrium point x∗ = 0,

ẋ = Ax. (A.4)

In this thesis, we will require the following simplified versions of [22, Theorem 4.5] and [22,
Theorem 4.13].

Lemma A.3.1 ( [22, Theorem 4.5]). The equilibrium point x∗ = 0 of the linear sys-
tem (A.4) is globally exponentially stable (we also say that the system (A.4) is exponentially
stable), if and only if all the eigenvalues of A have strictly negative real parts.

Lemma A.3.2 ( [22, Theorem 4.7]). The equilibrium point x∗ = 0 of the nonlinear sys-
tem (A.3) is locally exponentially stable if the linearization (A.4) is exponentially stable.
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Appendix B

Symbols and Abbreviations

HGO High-gain observer, page 18.

CHGO Composite high-gain observer, page 66.

LFSO Lie-group full-state observer, page 25.

LPSO Lie-group partial-state observer, page 49.

O(ǫ) A function of ǫ, which is upper bounded by ǫ, as ǫ → 0, page 10.

dh(x) Differential of a vector-valued function h : Rn → R
m, page 10.

Lfh(x) Lie derivative of a scalar-valued function h : Rn → R, along the vector field
f : Rn → R

n, page 10.

Lk
fh(x) Repeated k-times Lie derivative of a scalar-valued function h : Rn → R, along

the vector field f : Rn → R
n, page 10.

R
+ Real numbers, with addition as the group operation, page 11.

GL (n,R) The general linear Lie group of all invertible n× n matrices, with real coef-
ficients, page 11.

M (n,R) Lie algebra of n× n matrices, with real coefficients, page 11.

[A,B] Lie bracket of two n× n matrices, A and B, page 11.
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In The n× n identity matrix, page 11.

0n The n× n zero matrix, page 11.

AdX(A) Matrix adjoint of A by X, given by X−1AX, page 11.

‖x‖ The Euclidean norm of a vector x ∈ R
n, page 12.

‖A‖ The induced operator norm of matrix A ∈ R
n×n, page 12.

B(A, r) The open ball of radius r > 0, centered at A ∈ R
n×n, page 12.

exp(A) Matrix exponential of A ∈ R
n×n, page 13.

Lie(G) The Lie algebra of a linear Lie group G, page 14.

log(X) Matrix logarithm of X ∈ B(In, 1), page 14.

TXG Tangent space to Lie group G ⊆ GL (n,R), at X ∈ G, page 16.

SO (n) The special orthogonal Lie group of n × n, orthogonal matrices with unit de-
terminant, page 16.

SL (n) The special linear Lie group of n× n matrices with unit determinant, page 16.

El Left-invariant Lie group error, page 26.

Er Right-invariant Lie group error, page 26.

el Log left-invariant Lie algebra error, page 28.

er Log right-invariant Lie algebra error, page 28.
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