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Abstract

Optimal trade execution aims at balancing price impact and timing risk. With respect
to the mathematical formulation of the optimization problem, we primarily focus on
Mean Variance (MV) optimization, in which the two conflicting objectives are maximizing
expected revenue (the flip side of trading impact) and minimizing variance of revenue (a
measure of timing risk). We also consider the use of expected quadratic variation of the
portfolio value process as an alternative measure of timing risk, which leads to Mean
Quadratic Variation (MQV) optimization.

We demonstrate that MV-optimal strategies are quite different from MQV-optimal
strategies in many aspects. These differences are in stark contrast to the common belief
that MQV-optimal strategies are similar to, or even the same as, MV-optimal strategies.
These differences should be of interest to practitioners since we prove that the classic
Almgren-Chriss strategies (industry standard) are MQV-optimal, in contrary to the com-
mon belief that they are MV-optimal.

From a computational point of view, we extend theoretical results in the literature
to prove that the mean variance efficient frontier computed using our method is indeed
the complete Pareto-efficient frontier. First, we generalize the result in Li (2000) on the
embedding technique and develop a post-processing algorithm that guarantees Pareto-
optimality of numerically computed efficient frontier. Second, we extend the convergence
result in Barles (1990) to viscosity solution of a system of nonlinear Hamilton Jacobi
Bellman partial differential equations (HJB PDEs).

On the numerical aspect, we combine the techniques of similarity reduction, non-
standard interpolation, and careful grid construction to significantly improve the efficiency
of our numerical methods for solving nonlinear HJB PDEs.

iii



Acknowledgements

First, I would like to thank Professor Peter Forsyth who supervised this thesis. At each
struggling point in my research, I benefited tremendously from discussing with Peter in
frequent unscheduled meetings, without which work that took weeks to finish could have
taken months. I look forward to exiting his infinite loop of “How’s your progress” cries
that have made my thesis work converged at a higher rate.

I am grateful to my co-supervisor Justin Wan, who introduced me to Peter, convinced
me to switch from mathematics to computer science, and guided me in other research
work. A casual first meeting with Justin in my third year as an undergraduate has had
the butterfly effect of changing my entire career.

I thank my committee members, Yuying Li, George Labahn and Ken Vetzal, for taking
the time to review the thesis and give me valuable comments. Yuying and George also
helped me on technical aspects in the thesis.

I would like to thank my external examiner, Robert Almgren, whose seminal work in
optimal trade execution is intimately related to this thesis.

I also thank Heath Windcliff and Shannon Kennedy for collaboration and sharing their
work at Morgan Stanley, which provides me with financial support.

I also benefit a lot from academic discussions with fellow schoolmates. Particular
mention must be made of Ma Kai, Cui Zhenyu, Amir, Titian, Parsiad and Ad. Friendships
from other SciCom members, especially Yoyo, Wang Bo and Han Dong, have given me
many memorable moments in my first two years in Waterloo.

Thanks must also be made to my family for giving me the freedom to pursue my goals.
Last but not least, I thank my long-distance girlfriend for her love and trust.

iv



Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Algorithmic Trade Execution . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Models for Implementation Shortfall Algorithms . . . . . . . . . . . . . . . 1

1.3 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Optimal Trade Execution : Mean Variance Optimization Approach 4

2.1 Trade Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basic Model: Geometric Brownian Motion . . . . . . . . . . . . . . 4

2.1.2 Extension to Regime Switching . . . . . . . . . . . . . . . . . . . . 6

2.2 Mean Variance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Mean Variance Optimality in the Pareto Sense . . . . . . . . . . . . 7

2.2.2 Scalarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Precommitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Time Inconsistency of Optimal Strategies . . . . . . . . . . . . . . . 9

3 Mean Variance Strategy: Numerical Method 10

3.1 Embedding Technique for Mean Variance Optimization . . . . . . . . . . . 10

3.1.1 Scalarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Using the Embedding Technique in a Numerical Algorithm . . . . . 15

3.1.4 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



3.1.5 Numerical Estimates of YnumQ . . . . . . . . . . . . . . . . . . . . . 20

3.1.6 Implementing the S operator . . . . . . . . . . . . . . . . . . . . . 21

3.2 HJB PDE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Systems of HJB PDEs . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Localization and Boundary Conditions . . . . . . . . . . . . . . . . . . . . 24

3.4 Formal Formulation of Localized Problem . . . . . . . . . . . . . . . . . . 25

3.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Discretizing LlV l . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Discretizing the Lagrangian Derivative Terms . . . . . . . . . . . . 27

3.5.4 Discretizing maxv∈[vmin,0]
DlV l

Dτ
(x, v) . . . . . . . . . . . . . . . . . . 28

3.5.5 Discretizing J lV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.6 Complete Discretization Scheme . . . . . . . . . . . . . . . . . . . . 30

3.6 Computing Results of Practical Interest . . . . . . . . . . . . . . . . . . . . 30

3.6.1 The PDE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 The Hybrid (PDE-Monte Carlo) Method . . . . . . . . . . . . . . . 31

3.7 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 Similarity Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.2 Parametric Curve Interpolation Method . . . . . . . . . . . . . . . 33

3.7.3 Scaled Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Proof of Convergence to Viscosity Solution for System of PDEs 36

4.1 Viscosity Solution Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Semi-Lagrangian Interpolation . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Truncation Error Analysis : Smooth Test Functions . . . . . . . . . 41

4.3.3 Handling restricted set of admissible velocities . . . . . . . . . . . . 43

4.3.4 Proof of Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



5 Mean Variance Optimization: Numerical Results 51

5.1 Trade Execution Model Parameters . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Geometric Brownian Motion Model . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Computational Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Computational Information . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Numerical Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.4 Efficient Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.5 Verifying Pareto Optimality . . . . . . . . . . . . . . . . . . . . . . 54

5.2.6 MV-optimal Trading Strategies . . . . . . . . . . . . . . . . . . . . 58

5.2.7 Illustrations of Computational Techniques . . . . . . . . . . . . . . 58

5.3 Regime Switching Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Computational Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.3 Numerical Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.4 Increasing Switching Intensities . . . . . . . . . . . . . . . . . . . . 63

5.3.5 A Look at Greedy Strategies . . . . . . . . . . . . . . . . . . . . . . 65

5.3.6 Sub-optimality from Mis-specification . . . . . . . . . . . . . . . . . 66

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Optimal Trade Execution: Mean Quadratic Variation Approach 69

6.1 Mean Quadratic Variation Optimization . . . . . . . . . . . . . . . . . . . 69

6.1.1 Quadratic Variation as a Risk Measure . . . . . . . . . . . . . . . . 69

6.1.2 Mean Quadratic Variation Optimality in the Pareto Sense . . . . . 70

6.1.3 Scalarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.4 Time Consistency of Optimal Strategies . . . . . . . . . . . . . . . 71

6.2 HJB PDE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Localization and Boundary Conditions . . . . . . . . . . . . . . . . . . . . 72

6.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Arithmetic Brownian Motion Model . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1 Trade Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.2 HJB PDE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.3 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Computing Results of Practical Interest . . . . . . . . . . . . . . . . . . . . 79

6.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



7 Comparing Mean Variance and Mean Quadratic Variation 84

7.1 MQV as an Approximation to MV . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Optimality of the Classic Strategy . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Comparing the Two Risk Measures . . . . . . . . . . . . . . . . . . 86

7.3.2 Comparison of Strategies for Similar Expected Values . . . . . . . . 89

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusions and Future Work 95

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Deriving the System of HJB PDEs for the Mean Variance Problem 96

B Deriving the HJB PDE for the Mean Quadratic Variation Problem 98

C Proof of No Round-trip Price Manipulation 100

D Equivalence between Variance and Expected Quadratic Variation 102

E Details of Monte Carlo Simulations 104

E.1 Change of Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

E.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

E.3 Updating State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

F Example Computation for the Temporary Price Impact Factor 106

G Proof of uniform boundedness of E[S(t)] 107

References 109

viii



List of Tables

3.1 Summary of discretization notations for the Mean Variance problem. . . . 27

4.1 Summary of notations for convergence proof. . . . . . . . . . . . . . . . . . 37

5.1 Parameter values shared by all computational examples in the thesis. . . . 51

5.2 Computational cases for the Geometric Brownian Motion model. . . . . . . 52

5.3 Computational grid for solving the Mean Variance problem in the Geomet-
ric Brownian Motion model. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Convergence table for the Mean Variance problem. . . . . . . . . . . . . . 54

5.5 Convergence test to confirm smax is sufficient large for the Mean Variance
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Underlying regimes for computations in the Regime Switching model. . . . 61

5.7 Computational cases for the Regime Switching model. . . . . . . . . . . . . 62

5.8 Computational grid in the Regime Switching model. . . . . . . . . . . . . . 62

6.1 Summary of discretization notations for the Mean Quadratic Variation
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Computational grid for solving the Mean Quadratic Variation problem. . . 80

6.3 Convergence table for the Mean Quadratic Variation problem. . . . . . . . 80

6.4 Convergence test to confirm smax is sufficient large for the Mean Quadratic
Variation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



List of Figures

3.1 Schematic illustration of the parametric curve interpolation method. . . . . 34

3.2 The scaled computational grid. . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Efficient frontiers of Mean Variance-optimal strategies. . . . . . . . . . . . 55

5.2 Verifying Pareto-optimality of computed efficient frontiers. . . . . . . . . . 56

5.3 Mean Variance-optimal strategies. . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Illustrations of value function. . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 The parametric curve interpolation method is more accurate than standard
linear interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Numerical convergence in the Regime Switching problem. . . . . . . . . . . 62

5.7 Efficient frontiers for increasing switching intensities. . . . . . . . . . . . . 63

5.8 Mean Variance-optimal strategies under rapid regime switching. . . . . . . 65

5.9 Sub-optimality of the greedy strategy. . . . . . . . . . . . . . . . . . . . . . 66

5.10 Optimal selling velocity of the greedy strategy. . . . . . . . . . . . . . . . . 67

5.11 Mis-specifying as no regime switching is worse than using the greedy strategy. 68

6.1 Efficient frontiers of Mean Quadratic Variation-optimal strategies. . . . . . 81

6.2 Mean Quadratic Variation-optimal strategy. . . . . . . . . . . . . . . . . . 82

6.3 Comparison between one-dimensional optimization and linear search. . . . 83

7.1 Comparing efficient frontiers of MV-optimal strategies and MQV-optimal
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Comparing efficient frontiers of MV-optimal strategies and MQV-optimal
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Comparing efficient frontiers of MV-optimal strategies and MQV-optimal
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Comparing efficient frontiers of MV-optimal strategies and MQV-optimal
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



7.5 Comparing efficient frontiers of MV-optimal strategies and MQV-optimal
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6 Comparing MV-optimal strategy and MQV-optimal strategy with similar
expected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7 Comparing MV-optimal strategy and MQV-optimal strategy with similar
expected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Comparing MV-optimal strategy and MQV-optimal strategy with similar
expected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.9 Comparing MV-optimal strategy and MQV-optimal strategy with similar
expected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



Chapter 1

Introduction

1.1 Algorithmic Trade Execution

Algorithmic trade execution has become a standard technique for institutional market
players in recent years, particularly in the equity market where electronic trading is most
prevalent. A trade execution algorithm typically seeks to execute a trade decision op-
timally upon receiving inputs from a human trader. For concreteness and exposition
purposes, this thesis will discuss trade execution in the context of share liquidation.

At the relatively macro level, the execution decisions consist of the timing and quantity
of sell order submissions. Mathematically, a macro-level liquidation policy can be modeled
by an optimal selling velocity function v∗(X(t), t; p), where X(t) is the state vector at time
t and p is the parameter vector. We work at this macro-level, using a continuous time
model.

Given the macro-level decision, numerous micro-structural aspects of order submission
decisions remain to be made, which include order types, order prices, execution venues,
among others. We will not further discuss these micro-structural aspects of trade execu-
tion.

In practice, execution algorithms can be roughly classified [42] into the following over-
lapping types: (i) schedule-based type, which uses time or volume schedules to track
selected benchmarks; (ii) liquidity seeking type, which sources liquidity in both dark and
lit venues; and (iii) implementation shortfall type, which strikes a balance between the
conflicting goals of minimizing both market impact and timing risk. In this thesis we fo-
cus on implementation shortfall type algorithms, which account for a significant portion
of the methods used in practice [29].

1.2 Models for Implementation Shortfall Algorithms

Implementation shortfall [55] is defined as the difference between the mean execution
price and the arrival price when trading starts. Implementation shortfall can be broken
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down into permanent price impact, temporary price impact and timing risk. Permanent
price impact comes from other trading parties adjusting their trades upon observing our
trades [46], e.g. when other traders know about a large buyer in the market, they will
tend to buy more, moving prices against the larger buyer. Temporary price impact comes
from temporary imbalance of supply and demand, and is best illustrated by a large buy
market order matching with sell orders of successively higher limit prices. Timing risk
comes from potentially adverse random price changes.

There are two fundamental modeling aspects in any optimal execution model. The
first aspect is the modeling of asset price dynamics in the presence of price impacts. In
this aspect, our approach is similar to that of the pioneering works [18] and [9, 8]. In
our models, price impacts are specified exogenously as functional forms that appear in
the stochastic differential equations governing the state dynamics. In addition, temporary
price impact is assumed to be instantaneous and affects only the executing trade. Another
common approach in the literature generates price impacts endogenously via a limit order
book model [53, 2, 1, 57], which gives rise to temporary price impacts that are transient
[3, 33, 35].

The second aspect concerns the choice of what objective function to optimize. We
primarily focus on Mean Variance (MV) optimization, in which the two conflicting objec-
tives are maximizing expected revenue (the flip side of trading impact) and minimizing
variance of revenue (a measure of timing risk). We also consider the use of expected
quadratic variation of the portfolio value process as an alternative measure of timing risk,
which leads to Mean Quadratic Variation (MQV) optimization.

A similar multi-objective optimization approach is used in [34], except that it uses
time-averaged value-at-risk as the risk measure. Another common approach is to maximize
the expectation of a utility function of revenue, see for example [59, 60, 52, 43].

1.3 Overview and Contributions

The Mean Variance objective is intuitive, well-known and aligns with performance mea-
surement in optimal trade execution. For these reasons we focus on efficient computa-
tional methods for determining MV-optimal strategies. We consider the Mean Quadratic
Variation objective to demonstrate that MV-optimal strategies are quite different from
MQV-optimal strategies in many aspects. These differences are in stark contrast to the
common belief that MQV-optimal strategies [9] (which are standard [44, 42, 40] in the
optimal trade execution industry) are similar to, or even the same as, MV-optimal strate-
gies.

The main contributions of this thesis with regard to computational methods are as
follows.

• We extend the result in [47] on the embedding technique to tackle non-convex multi-
period MV optimization problems. For non-convex problems, the embedding tech-
nique may produce Pareto-inefficient points. We prove a number of results that
guarantee Pareto-optimality of the computed frontier.

2



• We extend the convergence result in [16] to the system of nonlinear HJB PDEs that
arises under our regime switching trade execution model. First, we prove that our
discretization of the system of nonlinear HJB PDEs is monotone, consistent and
infinity-norm stable. Second, we prove in detail that these properties guarantee the
convergence of numerical solutions to the viscosity solution, provided that a strong
comparison principle holds.

• We combine the techniques of similarity reduction, non-standard interpolation, and
careful grid construction to significantly improve the efficiency of our numerical
methods for solving nonlinear HJB PDEs.

The main contributions of this thesis with regard to MV-optimal and MQV-optimal
strategies are as follows.

• We show that it is important to adapt MV-optimal strategies to random changes in
temporary price impact. When the real dynamics is rapidly switching between two
regimes of differing price impacts, mis-specifying the dynamics as the non-switching
mixture results in significant sub-optimality.

• We show that MQV-optimal strategies are poor approximations to MV-optimal
strategies in many aspects. In particular, for the same variance, an MQV-optimal
strategy can have significantly smaller expected revenue compared to an MV-optimal
strategy.

• We prove that the classic strategies in [9, 8] are MQV-optimal, in contrary to the
common belief that they are MV-optimal.

1.4 Outline

Chapters 2 to 5 study the Mean Variance optimization problem. Chapter 2 introduces our
optimal trade execution models. Chapter 3 discusses computational methods. Chapter 4
details the proof of convergence to viscosity solution for a system of nonlinear HJB PDEs.
Chapter 5 presents numerical results.

Chapter 6 studies the Mean Quadratic Variation optimization problem. Chapter
7 compares Mean Variance-optimal strategies with Mean Quadratic Variation-optimal
strategies. Chapter 8 concludes.

3



Chapter 2

Optimal Trade Execution : Mean
Variance Optimization Approach

This chapter introduces our optimal trade execution models in the context of Mean Vari-
ance optimization. We start by describing our trade execution models in Section 2.1, and
then discuss Mean Variance optimization in Section 2.2.

2.1 Trade Execution Model

In this section, we first introduce our basic Geometric Brownian Motion (GBM) trade
execution model and then extend it with a finite-state Markov chain to a Regime Switching
model.

For generality, we will discuss Mean Variance optimization in the context of the Regime
Switching model. Nevertheless, the basic GBM model will be used in most of our com-
putational results.

2.1.1 Basic Model: Geometric Brownian Motion

Let

S = Price of the underlying risky asset,

B = Balance of risk free bank account,

A = Number of shares of underlying asset.

P = B + AS = Portfolio Value.

The optimal execution problem over t ∈ [0, T ] has the initial condition

S(0) = sinit, B(0) = 0, A(0) = αinit. (2.1.1)

4



If αinit > 0, the trader is liquidating a long position (selling). If αinit < 0, the trader
is liquidating a short position (buying). In this thesis, for definiteness, we consider the
selling case.

At terminal time t = T ,

S = S(T ), B = B(T ), A = A(T ) = 0,

where B(T ) is the cash generated by selling shares and investing in the risk free bank
account B, with a final liquidation at t = T− to ensure that A(T ) = 0.

In our research work, we consider Markovian trading strategies v(·) that specify a
trading rate v ∈ [vmin, 0] as a function of the current state, i.e. v(·) : (S(t), B(t), A(t), t) 7→
v = v(S(t), B(t), A(t), t). Note that in using the shorthand notations v(·) for the mapping,
and v for the value v = v(S(t), B(t), A(t), t), the dependence of v on the current state is
implicit.

By definition,
dA(t) = v dt. (2.1.2)

As in [13], we assume that due to temporary price impact, selling shares at the rate v at
the market price S(t) gives an execution price Sexec(v, t) ≤ S(t). It follows that

dB(t) =
(
rB(t)− vSexec(v, t)

)
dt, (2.1.3)

where r is the risk free rate. Note that since v ≤ 0 for selling, the term (−vSexec(v, t))
represents the rate of cash obtained by selling shares at price Sexec(v, t) at a rate v.

In the basic model, we suppose that the market price of the risky asset S follows a
Geometric Brownian Motion, where the drift term is modified due to the permanent price
impact of trading, i.e. we assume the dynamics

dS(t) = (η + g(v))S(t) dt+ σS(t) dW(t), (2.1.4)

where η is the drift rate, g(v) is the permanent price impact function, σ is the volatility,
and W(t) is a Wiener process under the real world measure.

In the basic model, we assume the temporary price impact scales linearly with the
asset price, i.e.

Sexec(v, t) = f(v)S(t), (2.1.5)

with

f(v) = (1 + κs sgn(v)) exp[κt sgn(v)|v|β], (2.1.6)

where κs is the bid-ask spread parameter, κt is the temporary price impact factor, and
β is the price impact exponent. The form (2.1.6) is suggested by empirical statistical
analysis of order book dynamics [13, 6, 49, 56]. We also refer the interested reader to [4]
for more discussion about price impact functions and a more general functional form.
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Note that we assume κs < 1, so that Sexec(v, t) ≥ 0, regardless of the magnitude of v.

The permanent price impact function g(v) is assumed to be of the form

g(v) = κpv, (2.1.7)

where κp is the permanent price impact factor. This linear form of permanent price
impact function eliminates the possibilities of round-trip price manipulation [13, 38]; see
also Appendix C.

Given the state (S(T−), B(T−), A(T−)) at the instant t = T− before the end of the
trading horizon, we have one final liquidation (if necessary) so that the number of shares
owned at t = T is A(T ) = 0. The liquidation value, denoted by B(T ), after this final
trade is defined as follows:1

B(T ) = B(T−) + lim
v→−∞

A(T−)Sexec(v, T
−)

=

∫ T−

0

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−). (2.1.8)

2.1.2 Extension to Regime Switching

Let L(t) be a continuous-time stationary Markov chain taking values inM = {1, · · · ,M}
such that L(t) is independent of W(t) in (2.1.4). Let λlm ≥ 0 denote the switching
intensity from regime l to regime m, i.e.

P (L(t+ dt) = m|L(t) = l) = λlm dt, for l 6= m. (2.1.9)

In our regime switching model, the drift rate η, the volatility σ, the permanent price
impact function g(v) and the temporary price impact function f(v) are regime-dependent;
we use the notations

ηl = η(l), σl = σ(l), gl(v) = g(v, l), f l(v) = f(v, l), (2.1.10)

where l = L(t) denotes the regime state at time t.

We also extend the trading strategy v(·) to be regime-dependent, i.e

v(·) : (S(t), B(t), A(t), L(t), t) 7→ v = v(S(t), B(t), A(t), L(t), t). (2.1.11)

The dynamics of our regime switching trade execution model are specified by the
Markov chain L(t) and the equations

dA(t) = v dt, (2.1.12)

1In actual implementation, we would replace limv→−∞ by a finite vmin � 0. Also, in the case
of liquidating a short position (buying), which is not considered in this thesis, equation (2.1.8) would
be defined as B(T ) = B(T−) + limv→∞A(T−)Sexec(v, T

−), and we would replace limv→∞ by a finite
vmax � 0 in implementation.

6



dB(t) = rB(t)dt− vf l(v)S(t)dt, (2.1.13)

dS(t) =
(
ηl + gl(v)−

M∑
m=1
m6=l

λlm(ζ lm − 1)
)
S(t) dt+ σlS(t) dW(t) +

M∑
m=1
m6=l

(ζ lm − 1)S(t) dL(t),

(2.1.14)
where ζ lm ≥ 0 is the stock price jump factor when switching from regime l to m, i.e.
S(t+) = S(t−)ζ lm; and

dL(t) =

{
1 with probability λlm dt

0 with probability 1− λlm dt
. (2.1.15)

Note that λlm and ζ lm are defined only for l 6= m.

Assumption 2.1. We assume

f l(0) = 1, gl(0) = 0 ; f l(v) ∈ [0, 1] and gl(v) ≤ 0 for v ≤ 0. (2.1.16)

for obvious financial reasons. We also assume that f l(v) and gl(v) are Lipschitz continuous
in v, for technical reasons that will become apparent in the convergence proof in Chapter
4.

We remark that Assumption 2.1 is satisfied by (2.1.6) and (2.1.7), where there are no
regime-dependence.

2.2 Mean Variance Optimization

This section introduces our Mean Variance (MV) optimization approach that aligns well
with how performance is measured in the optimal trade execution industry. More specif-
ically, suppose that a trade execution engine carries out many thousands of trades and
uses the post-trade data to determine the realized mean return and the standard devia-
tion. Assuming that the modeled dynamics very closely match the dynamics in the real
world, an MV-optimal strategy in our framework would result in the largest realized mean
return, for a given standard deviation, compared to any other possible strategy.

There are two variants of continuous time (multi-period) Mean Variance optimization,
namely the pre-commitment version [17] and the time-consistent version [63]. The pre-
commitment version of Mean Variance optimization aligns with performance measurement
in practice as discussed above. We use the pre-commitment version throughout the thesis.

2.2.1 Mean Variance Optimality in the Pareto Sense

To simplify notations, we useX(t) = (S(t), B(t), A(t), L(t)) to denote the multi-dimensional
space-state process and x = (s, b, α, l) to denote a space-state. We will also use the nota-
tion X(t) = x in our context as a shorthand for (S(t) = s, B(t) = b, A(t) = α,L(t) = l).
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Let Ex,t
v(·)[B(T )] be the expectation of B(T ) conditional on the initial state (x, t) and

the control v(·) : (x, t) 7→ v = v(x, t). More specifically, define

E[·] : Expectation operator,

Ex,t[·] : E[·|X(t) = x] when observed at time t,

Ex,t
v(·)[·] : Ex,t[·] with v(·) being the strategy that controls

the stochastic process X(t) given by (2.1.9-2.1.15).

Similarly we define V arx,tv(·)[B(T )] as the variance of B(T ) conditional on the initial state

(x, t) and the control v(·).
All optimizations will be over the set of admissible strategies defined as follows.

Definition 2.2. A strategy v(·) : (x, t) 7→ v = v(x, t) is said to be admissible if v(x, t) ∈
[vmin, 0], where vmin ≤ 0, and v(x, t) = 0 when A(t) = 0

Definition 2.3. An admissible strategy v∗(·) is defined to be Mean Variance optimal in
the Pareto sense if there exists no admissible strategy v(·) such that

1. Ex,t
v(·)[B(T )] ≥ Ex,t

v∗(·)[B(T )], V arx,tv(·)[B(T )] ≤ V arx,tv∗(·)[B(T )].

2. At least one inequality in the above is strict.

Essentially, the mean-variance tradeoff of a Pareto-optimal strategy cannot be strictly
dominated by any other strategy.

2.2.2 Scalarization

Although Pareto-optimality as defined in Section 2.2.1 is economically intuitive, it is
mathematically inconvenient because there are two conflicting criteria to optimize. A
standard scalarization reformulation [30] combines the two criteria into a single objective
(the subtleties of the scalarization reformulation will be discussed in Chapter 3). More
specifically, consider the following family of objective functionals parametrized by λ > 0

Fλ =

{
Jx,tλ
(
v(·)
)

: v(·) 7→ Ex,t
v(·)
[
B(T )

]
− λV arx,tv(·)

[
B(T )

]}
. (2.2.1)

In the notation of (2.2.1), the members (functionals) in the family Fλ have different
initial states (x, t) but the same λ. Given (x, t) and λ, we use v∗x,t,λ(·) to denote an optimal

policy that maximizes the corresponding functional, i.e. Jx,tλ
(
v(·)
)
.

2.2.3 Precommitment

According to previous discussion about performance measurement, optimal trade exe-
cution is concerned about determining v∗x0,0,λ0(·), where (x0, 0) = (X(t = 0), t = 0)
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denotes the initial state at the beginning of trade execution and λ0 denotes the risk aver-
sion level chosen. To maximize the performance metric in practice, i.e. Jx0,0λ0

(
v(·)
)
, the

same strategy v∗x0,0,λ0(·) should be used throughout the trading horizon t ∈ [0, T ], i.e. as
time proceeds and the state changes to (x′, t′) = (X(t′), t), the optimal trading rate is
v∗x0,0,λ0(x

′, t′), as opposed to v∗x′,t′,λ0(x
′, t′). In other words, the trader pre-commits to the

strategy v∗x0,0,λ0(·) and does not recompute v∗(·) as time proceeds.

2.2.4 Time Inconsistency of Optimal Strategies

As far as trade execution performance is concerned, it is sufficient to determine v∗x,t,λ(·)
for only t = 0. Nevertheless, it is interesting, from computational and economics points
of view, to consider the relationship among optimal strategies v∗x,t,λ(·) for t ∈ [0, T ].

Optimal strategies in our Mean Variance optimization framework are time-inconsistent
in the following sense. Let (x1, t1) be some state at time t1 and v∗x1,t1,λ(·) be a corresponding

optimal strategy that maximizes Jx1,t1λ

(
v(·)
)
. Let (x2, t2) be some other state at time

t2 > t1 and v∗x2,t2,λ(·) be a corresponding optimal strategy that maximizes Jx2,t2λ

(
v(·)
)
.

The optimal strategies are time-inconsistent in the sense that, for t′ ≥ t2,

v∗x1,t1,λ(x
′, t′) = v∗x2,t2,λ(x

′, t′) does not always hold. (2.2.2)

Although time-inconsistency (2.2.2) is considered as unnatural by some authors in the
context of long-term asset allocation [17] and creates computational difficulties, time-
inconsistency often arises naturally in reasonably formulated problems in financial eco-
nomics; see [20] for examples.

As discussed in [17], there is no dynamic programming principle for determining
v∗x,t,λ(·) for all t ∈ [0, T ] due to the time-inconsistency (2.2.2). Fortunately, it is suffi-
cient for our purpose to determine v∗x,t,λ(·) for only t = 0. The computational methods
for determining v∗x,0,λ(·) will be detailed in Chapter 3.
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Chapter 3

Mean Variance Strategy: Numerical
Method

We begin this chapter by explaining that it is necessary to transform the mean variance
objective (2.2.1) for computation using dynamic programming, and the subtleties therein.
Next, HJB PDEs are derived from the reformulation. Finally, the numerical issues of
localization, boundary conditions and discretization are discussed in detail.

3.1 Embedding Technique for Mean Variance Opti-

mization

The dynamic programming principle cannot be directly applied to solve the pre-commitment
mean variance problem formulated as (2.2.1). This is because dynamic programming is
applicable only for the expectation term but not the variance term in (2.2.1). For the
expectation term in (2.2.1), dynamic programming is applicable due to the “smoothing-
property” of conditional expectation, i.e. E[B(T )|I1] = E[E[B(T )|I2]|I1], where I1 ⊆ I2

are information sets. However, no analogous relation is available for the variance term
in (2.2.1). More specifically, in general (E[B(T )|I1])2 6= E[(E[B(T )|I2])2|I1], where the
terms (E[B(T )|Ii])2 arise from the variance term in (2.2.1).

In order to apply the dynamic programming principle to derive an HJB PDE for the
MV problem, we will use the embedding technique introduced in [65, 47]. Instead of
performing the scalarization (2.2.1), which is linear in Ex,t

v(·)[B(T )] and V arx,tv(·)[B(T )], the

embedding technique performs a scalarization that is a quadratic function of Ex,t
v(·)[B(T )]

and V arx,tv(·)[B(T )]. This is called the embedding technique since every optimal control for

the original linear scalarization problem (2.2.1) is an optimal control for the quadratic
scalarization problem (but not vice versa in general). The quadratic scalarization problem
can be solved using dynamic programming.

The embedding technique for multi-period mean variance optimization was originally
developed in the context of asset allocation problems, in which the terminal bank account
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value is typically a linear function of the control variable [47, 65, 48, 19], giving rise to
convex problems. Applying the quadratic scalarization formulation to convex problems
is relatively straightforward by the virtue of duality results [48]. In contrast, B(T ) is a
nonlinear function of v in our optimal trade execution problem, and therefore the problem
is in general non-convex. This potential non-convexity gives rise to a number of subtle
issues in applying the embedding technique. In this section we prove a number of results
to tackle these subtleties. In summary:

• The embedding technique generates a superset of the Pareto-optimal points. We
develop a post-processing algorithm which can be used to eliminate the spurious
points.

• We prove that all Pareto optimal points obtainable from the linear scalarization
problem (2.2.1) can be obtained by solving the quadratic scalarization problem, even
though only one out of possibly many optimal controls of the quadratic scalarization
problem is computed.

The above results are quite general (not specific to our optimal trade execution prob-
lem) and can be applied to solving any multi-period mean variance optimization problem
using the dynamic programming principle.

3.1.1 Scalarization

The following definition slightly extends the notion of Pareto optimality first introduced
in Definition 2.3.

Definition 3.1. Let (x0, 0) = (X(t = 0), t = 0) denote the initial state. Let

Y = {(V,E) = (V arx0,0v(·) [B(T )], Ex0,0
v(·) [B(T )]) : v(·) admissible } (3.1.1)

denote the feasible objective space and Ȳ denote its closure. A point (V∗, E∗) ∈ Ȳ is
called a Pareto (optimal) point if there exists no admissible strategy v(·) such that

Ex0,0
v(·) [B(T )] ≥ E∗

V arx0,0v(·) [B(T )] ≤ V∗ , (3.1.2)

and at least one of the inequalities in equation (3.1.2) is strict. Essentially, the mean-
variance tradeoff of a Pareto point cannot be strictly dominated by that of any admissible
strategy. We denote the set of Pareto points by P ⊆ Ȳ .

The linear scalarization (2.2.1) can then be generalized as determining for each µ > 0

YP (µ) =
{

(V0, E0) ∈ Ȳ : (V0, E0) = inf
(V,E)∈Y

µV − E
}
. (3.1.3)
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Remark 3.2. It is well known that if the feasible objective space Y is convex, then every
point in P is in some YP (µ). In general, every point in YP (µ) is in P but the converse may
not hold. This thesis is concerned with determining

⋃
µ>0 YP (µ), which will turn out to be

equal to P in our computational examples. The more difficult problem of determining the
entire set P, in the most general case, is an unsolved problem.

Instead of computing the whole feasible objective space Y (which would be very com-
putationally inefficient), we would like to use dynamic programming to solve for YP (µ) via
the value functions

P (x, t;µ) = inf
v(·)

{
µV arx,tv(·)[B(T )]− Ex,t

v(·)[B(T )]

}
. (3.1.4)

However, as pointed out in [65, 47], the value function P (x, t;µ) is not amenable to
solution by means of dynamic programming due to the variance term. To overcome this
difficulty, we use the embedding technique of [47, 65] to embed the objective in (3.1.4)
into the value functions (parameterized by γ > 0)

Q(x, t; γ) = inf
v(·)

{
Ex,t
v(·)[(B(T )− γ/2)2]

}
, (3.1.5)

which can be solved by dynamic programming.

Remark 3.3. We remark that the quadratic objective can be considered as a target-based
approach with a quadratic loss function [62]: by regarding γ/2 > 0 as a target (recall that
B(0) = 0), we see that an optimal strategy should stop selling1 when B(t) = γ/2, since
more selling will increase B(T ) beyond γ/2, which is penalized in the quadratic objective.

3.1.2 Previous Results

In this section, we review the embedding technique in [65, 47] using a more general
notation. This generalization will help us derive some new results which are important
for numerical algorithms.

The following property of the feasible objective space Y is essential in our new results
on the embedding technique.

Proposition 3.4 (Bounded Properties of Y). The feasible objective space Y is a non-
empty subset of {(V,E) ∈ R2 : V ≥ 0, 0 ≤ E ≤ CE} for some positive constant CE.

Proof. Since V represents variance, V ≥ 0 is obvious. To prove the boundedness of E,
we can assume without loss of generality that the interest rate r is zero. Hence,

dB(t) = −vf l(v)S(t)dt

≤ −vS(t)dt (since v ≤ 0, f l(v) ≤ 1 by Assumption 2.1.16 and S(t) ≥ 0)

≤ |vmin|S(t)dt,

1Assuming zero interest rate. The case for non-zero interest rate is analogous.
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which implies

E[B(T )] ≤ B(0) + |vmin|E

[∫ T

0

S(t)dt

]
,

where E[·] denotes Ex0,0
v(·) [·]. By applying the result in [25] (for details see Appendix G),

we can show that supt∈[0,T ] E[S(t)] is bounded by a constant CS, hence

E[B(T )] ≤ B(0) + |vmin|CST, (3.1.6)

which completes the proof.

The authors of [65, 47] work directly with optimal controls (for the value functions
P (x, t;µ) and Q(x, t; γ)), which may not exist if Y is not a closed set. To generalize their
results, we work with the following point sets.

For the reader’s convenience, the definition below restates (3.1.3).

Definition 3.5. For µ > 0, define

YP (µ) = {(V0, E0) ∈ Ȳ : µV0 − E0 = inf
(V,E)∈Y

µV − E} , (3.1.7)

and
YP =

⋃
µ>0

YP (µ). (3.1.8)

Definition 3.6. For γ > 0, define

YQ(γ) = {(V∗, E∗) ∈ Ȳ : V∗ + E2
∗ − γE∗ = inf

(V,E)∈Y
V + E2 − γE}. (3.1.9)

and
YQ =

⋃
γ>0

YQ(γ).

Note that since

V arx,tv(·)[B(T )] + (Ex,t
v(·)[B(T )])2 − γEx,t

v(·)[B(T )]

=Ex,t
v(·)[B(T )2]− (Ex,t

v(·)[B(T )])2 + (Ex,t
v(·)[B(T )])2 − γEx,t

v(·)[B(T )]

=Ex,t
v(·)[B(T )2 − γB(T )]

=Ex,t
v(·)[(B(T )− γ/2)2]− γ2/4,

the objective in (3.1.9) is essentially the same as that in (3.1.5), since including the con-
stant term −γ2/4 in (3.1.9) does not change YQ(γ). It is clear that dynamic programming
can be used to determine optimal strategies of (3.1.5).

By Proposition 3.4, we have the following obvious results.
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Lemma 3.7. For any µ > 0, YP (µ) is non-empty, i.e. there exists (V0, E0) ∈ YP (µ) ⊆ Ȳ
such that

µV0 − E0 = inf
(V,E)∈Y

µV − E.

Similarly, for any γ > 0, YQ(γ) is non-empty, i.e. there exists (V∗, E∗) ∈ YQ(γ) ⊆ Ȳ such
that

V∗ + E2
∗ − γE∗ = inf

(V,E)∈Y
V + E2 − γE.

Proof. Construct convergent sub-sequences using the boundedness result.

Lemma 3.8. If (V ′, E ′) ∈ Ȳ, then

µV ′ − E ′ ≥ inf
(V,E)∈Y

µV − E.

Similarly,
V ′ + E ′2 − γE ′ ≥ inf

(V,E)∈Y
V + E2 − γE.

Proof. The objective functions are continuous.

The following result is a slight generalization of the main result on the embedding
technique in [65, 47].

Theorem 3.9. Let (V0, E0) ∈ Ȳ and µ > 0 be such that

µV0 − E0 = inf
(V,E)∈Y

µV − E, i.e. (V0, E0) ∈ YP (µ). (3.1.10)

Then

V0 + E2
0 − γE0 = inf

(V,E)∈Y
V + E2 − γE, i.e. (V0, E0) ∈ YQ(γ). (3.1.11)

where

γ =
1

µ
+ 2E0 > 0. (3.1.12)

Proof. Assume to the contrary that (3.1.11) does not hold. Then, by Lemma 3.8,

inf
(V,E)∈Y

V + E2 − γE < V0 + E2
0 − γE0. (3.1.13)

By Lemma 3.7, there exists (V∗, E∗) ∈ Ȳ such that

V∗ + E2
∗ − γE∗ = inf

(V,E)∈Y
V + E2 − γE. (3.1.14)

Combining (3.1.13) and (3.1.14) gives

V∗ + E2
∗ − γE∗ < V0 + E2

0 − γE0.
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Rearranging and multiplying by µ > 0 gives

µ
(
V∗ + E2

∗ − (V0 + E2
0)
)
− γµ(E∗ − E0) < 0. (3.1.15)

Define the function
πµ(v, e) = µv − µe2 − e.

Note that

πµ(v + e2, e) = µv + µe2 − µe2 − e = µv − e. (3.1.16)

It is easy to see that πµ(v, e) is concave quadratic in (v, e). Consequently,

πµ(v +4v, e+4e) ≤ πµ(v, e) +
∂πµ(v, e)

∂v
4v +

∂πµ(v, e)

∂e
4e

= πµ(v, e) + µ4v − (1 + 2µe)4e. (3.1.17)

A direct application of (3.1.17) gives

πµ(V∗ + E2
∗ , E∗) ≤ πµ(V0 + E2

0 , E0) + µ
(
V∗ + E2

∗ − (V0 + E2
0)
)
− (1 + 2µE0)(E∗ − E0)

= πµ(V0 + E2
0 , E0) + µ

(
V∗ + E2

∗ − (V0 + E2
0)
)
− γµ(E∗ − E0)

< πµ(V0 + E2
0 , E0), (3.1.18)

where we have used (3.1.12) in the equality and (3.1.15) in the last inequality.

By (3.1.16), the strict inequality (3.1.18) means that

µV∗ − E∗ < µV0 − E0,

which contradicts equation (3.1.10).

It is immediate that the following holds, which explains the embedding terminology.

Corollary 3.10. Every element in YP is in YQ, i.e. YP ⊆ YQ.

Remark 3.11 (Time-inconsistency). When solving for the value function Q(x, t; γ) (3.1.5),
γ is treated as a constant. However, when we consider the relationship between optimal
controls of the transformed problem (3.1.5) and that of the original problem (3.1.4), equa-
tion (3.1.12) in Theorem 3.9 shows that γ depends on the initial state, i.e. γ = γ(x, t;µ).
Hence optimal strategies are time-inconsistent [20].

3.1.3 Using the Embedding Technique in a Numerical Algo-
rithm

We pointed out previously that the linear scalarization problem (Definition 3.5) involves
the variance directly and does not allow the use of dynamic programming to compute
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optimal strategies. Theorem 3.9 showed that optimal strategies can be found from the
quadratic scalarization formulation (Definition 3.6).

We should be aware that for our optimal trade execution problem, the set of controls
which generate a given Pareto point may not be unique (see Chapter 5 for more discus-
sion). As a trivial example, consider the case of the point (V,E) = (0, 0). This point can
be clearly generated by selling all shares at an infinite rate at t = 0 since the price impact
will cause the execution price to be zero. Alternatively, the trader could wait any time
t > 0, and then sell all shares at an infinite rate, and achieve the same result.

In a typical numerical algorithm, when there are multiple optimal strategies that pro-
duce the same minimum value of the objective function, only one strategy will be selected.
Therefore, we have to be cognizant of possible non-uniqueness of optimal strategies when
dealing with the transformed problem.

The following summarizes the challenges and our main results on using the embedding
technique in the context of a numerical algorithm.

• Since YP ⊆ YQ, the embedding technique may generate points in YQ which are not
Pareto optimal points. We develop a post-processing algorithm which can be used
to eliminate the spurious points.

• We prove that all Pareto optimal points obtainable from the linear scalarization
problem (3.5) can be obtained by solving the quadratic scalarization problem (3.6),
even though only one out of possibly many optimal controls of the quadratic scalar-
ization problem is computed.

3.1.4 New Results

This section collects our new results on using the embedding technique in the context of
a numerical algorithm.

The following definition of scalarization optimal point (SOP) will prove useful.

Definition 3.12. Let X be a non-empty subset of Ȳ , i.e. the closure of the feasible
objective space. We define

Sµ(X ) = {(V0, E0) ∈ X̄ : µV0 − E0 = inf
(V,E)∈X

µV − E}.

We call an element of Sµ(X ) a scalarization optimal point (SOP) w.r.t. (X , µ).

We also define

S(X ) = {(V0, E0) : (V0, E0) is an SOP w.r.t. (X , µ) for some µ > 0}.

We call an element of S(X ) a SOP w.r.t. X .

Remark 3.13. Note that Definition 3.12 generalizes Definition 3.5 in the sense that
Sµ(Y) = YP (µ) and S(Y) = YP .
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Remark 3.14. For any µ > 0, Sµ(X ) is non-empty by a trivial generalization of Lemma
3.7.

Remark 3.15. A point in (V0, E0) ∈ Sµ(X ) has the geometric interpretation that (V0, E0)
lies on a supporting hyperplane [21] (in our case a supporting line with slope µ) of X .

Lemma 3.16. For any µ > 0,

inf
(V,E)∈Y

µV − E = inf
(V ′,E′)∈YQ

µV ′ − E ′.

Proof. Let (V0, E0) be a SOP w.r.t. (Y , µ). By Corollary 3.10, YP ⊆ YQ, hence (V0, E0) ∈
YQ. Consequently,

µV0 − E0 = inf
(V,E)∈Y

µV − E ≥ inf
(V ′,E′)∈YQ

µV ′ − E ′.

Equality follows since the reverse inequality

inf
(V,E)∈Y

µV − E ≤ inf
(V ′,E′)∈YQ

µV ′ − E ′

holds by YQ ⊆ Ȳ .

Theorem 3.17. The SOPs of YQ are the same as the SOPs of Y, i.e.

S(YQ) = YP = S(Y).

Proof. From Corollary 3.10, we have that YP ⊆ YQ. By definition, YQ ⊆ Ȳ . Suppose
(V0, E0) ∈ S(YQ). Hence there exists µ > 0 such that

µV0 − E0 = inf
(V,E)∈YQ

µV − E .

Since (V0, E0) ∈ Ȳ , then from Lemma 3.16,

µV0 − E0 = inf
(V,E)∈Y

µV − E ,

and (V0, E0) ∈ S(Y). Suppose (V0, E0) ∈ S(Y), then

µV0 − E0 = inf
(V,E)∈Y

µV − E ,

and since YP ⊆ YQ, then (V0, E0) ∈ YQ, and then from Lemma 3.16,

µV0 − E0 = inf
(V,E)∈YQ

µV − E ,

hence (V0, E0) ∈ S(YQ).

The following theorem will prove useful when we construct a subset of YQ using a
numerical algorithm.
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Theorem 3.18 (Uniqueness of SOP points). If (V,E) is a SOP w.r.t. YQ, then there
exists a γ such that (V,E) ∈ YQ(γ) and YQ(γ) is a singleton.

Proof. Let (V∗, E∗) be a SOP w.r.t. (YQ, µ∗). By Lemma 3.16, (V∗, E∗) ∈ YP (µ∗). Hence,
by Theorem 3.9, there exists γ∗ such that

(V∗, E∗) ∈ YQ(γ∗), where γ∗ =
1

µ∗
+ 2E∗. (3.1.19)

Suppose there is another element of YQ(γ∗), which we label (V0, E0). Since both elements
are in YQ(γ∗) we have that

V∗ + E2
∗ − γ∗E∗ = V0 + E2

0 − γ∗E0 = inf
(V,E)∈Y

V + E2 − γ∗E ,

so that

V0 + E2
0 − (V∗ + E2

∗)− γ∗(E0 − E∗) = 0 . (3.1.20)

Consider the function πµ
∗
(v, e) = µ∗v − µ∗e2 − e as in Proposition 3.9. Following similar

steps as in the proof of Proposition 3.9, we obtain (using equations (3.1.19) and (3.1.20))

πµ
∗
(V0 + E2

0 , E0) ≤ πµ
∗
(V∗ + E2

∗ , E∗) + µ∗(V0 + E2
0 − (V∗ + E2

∗))− (1 + 2µ∗E∗)(E0 − E∗)
= πµ

∗
(V∗ + E2

∗ , E∗) + µ∗(V0 + E2
0 − (V∗ + E2

∗)− γ∗(E0 − E∗))
= πµ

∗
(V∗ + E2

∗ , E∗) . (3.1.21)

Recalling that πµ
∗
(v + e2, e) = µ∗v − e, thus equation (3.1.21) yields

µ∗V0 − E0 ≤ µ∗V∗ − E∗.

Since (V∗, E∗) ∈ YP (µ∗) and (V0, E0) ∈ Ȳ ,

µ∗V∗ − E∗ = inf
(V,E)∈Y

µ∗V − E ≤ µ∗V0 − E0.

Hence

µ∗V0 − E0 = µ∗V∗ − E∗ . (3.1.22)

Rewrite equations (3.1.20) and (3.1.22) as

µ∗(V∗ − V0)− (E∗ − E0) = 0 (3.1.23)

(V∗ − V0) + (E∗ − E0)(E∗ + E0 − γ∗) = 0 . (3.1.24)

Noting equation (3.1.19), equation (3.1.24) becomes

(V∗ − V0) + (E∗ − E0)(E0 − E∗ − 1/µ∗) = 0 . (3.1.25)
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Solving equations (3.1.23) and (3.1.25) for (E∗ − E0) gives the unique solution E∗ = E0

and V∗ = V0.

We immediately have the following result for elements of YQ(γ).

Corollary 3.19 (Properties of YQ(γ)). For a fixed γ > 0, YQ(γ) is either

• A singleton containing a SOP w.r.t. YQ.

• A non-empty set that does not contain any SOP w.r.t YQ.

Since only one out of possibly many optimal controls (which all minimize V +E2−γE)
is selected, a typical numerical algorithm will generate a subset of YQ, which we denote
by YnumQ . We define the following in view of Corollary 3.19.

Definition 3.20 (Numerical YQ). Let YnumQ(γ) be a singleton subset of YQ(γ), defined as
follows. YnumQ(γ) contains either

• The unique single point which is SOP w.r.t. YQ if YQ(γ) is the singleton set con-
taining a point SOP w.r.t. YQ.

• A single point if YQ(γ) does not contain any points SOP w.r.t. YQ. The single point
is selected arbitrarily.

Let
YnumQ =

⋃
γ>0

YnumQ(γ).

Lemma 3.21. If (V0, E0) is a SOP w.r.t. YQ, then (V0, E0) ∈ YnumQ , i.e. S(YQ) ⊆ YnumQ

Proof. By Theorem 3.18, there exists γ > 0, such that (V0, E0) ∈ YQ(γ) and YQ(γ) is a
singleton. Hence (V0, E0) ∈ YnumQ by Assumption 3.20.

Lemma 3.22. For any µ > 0,

inf
(V,E)∈YQ

µV − E = inf
(V ′,E′)∈Ynum

Q

µV ′ − E ′.

Proof. Let (V0, E0) ∈ ȲQ be SOP w.r.t. (YQ, µ). It follows from Lemma 3.21 that
(V0, E0) ∈ YnumQ . Hence

µV0 − E0 = inf
(V,E)∈YQ

µV − E ≥ inf
(V ′,E′)∈Ynum

Q

µV ′ − E ′.

The reverse inequality holds since YnumQ ⊆ YQ.

Our main result is proving the correctness of the following simple post-processing
algorithm that recovers YP from YnumQ .
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Theorem 3.23. The set S(YnumQ ) is identical to the set of Pareto points YP , i.e.

S(YnumQ ) = YP = S(Y) .

Proof. By Theorem 3.17, we know that S(YQ) = YP . Hence we need only show that
S(YnumQ ) = S(YQ).

Suppose (V0, E0) ∈ S(YQ). Hence there exists µ > 0 such that

µV0 − E0 = inf
(V,E)∈YQ

µV − E .

From Lemma 3.21, S(YQ) ⊆ YnumQ , hence (V0, E0) ∈ YnumQ . From Lemma 3.22,

µV0 − E0 = inf
(V,E)∈Ynum

Q

µV − E ,

and (V0, E0) ∈ S(YnumQ ). Suppose (V0, E0) ∈ S(YnumQ ), then

µV0 − E0 = inf
(V,E)∈Ynum

Q

µV − E ,

and from Assumption 3.20, (V0, E0) ∈ ȲQ. From Lemma 3.22,

µV0 − E0 = inf
(V,E)∈YQ

µV − E ,

hence (V0, E0) ∈ S(YQ).

3.1.5 Numerical Estimates of YnumQ

In general, YnumQ needs to be approximated in two aspects:

1. YnumQ(γ) can be computed for only finitely many γ > 0, giving rise to finite set error.

2. YnumQ(γ) needs to be approximated by a sequence of points converging to YnumQ(γ), e.g.

due to PDE discretization error/Monte Carlo sampling error (examples in Section
5.2).

We denote by (YnumQ )k a sequence of approximations that contain the above errors, where
(YnumQ )k+1 uses finer meshes and more Monte Carlo simulations than (YnumQ )k.

Theoretically, these additional approximations give rise to subtleties in applying our
new results on the embedding technique, i.e. whether S((YnumQ )k) converge smoothly to
S(YnumQ ). Fortunately, the sequence of approximations S((YnumQ )k) can be plotted/tabulated
and thus smooth convergence can be (heuristically) confirmed, in which case the theoret-
ical subtleties should not be a concern.
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3.1.6 Implementing the S operator

In this section we discuss an approach for implementing the S operator for a finite set
A = {(Vk, Ek)}, where k = 1, · · · , K. Essentially, we show that S(A) can be obtained
from the upper-left convex hull of A.

Standard algorithms exist for generating the (vertices of the) convex hull of a finite set
of points [14]. The upper-left convex hull is defined as the part of the convex hull which
starts with the left-most vertex and ends with the top-most vertex by going clockwise. (If
there are multiple left-most/top-most vertices, the upper-left convex hull starts with the
top-most left-most vertex and ends with the left-most top-most vertex).

Theorem 3.24. S(A) can be obtained from a convex hull algorithm by

S(A) = Cul(A) ∩ A,

where Cul(A) denotes the upper-left convex hull of A.

Proof. Let us order (in clockwise order) the vertices in the upper-left convex hull by
Pl = (Vl,El), where l = 1, · · · , L.

Let (Vl,El) ∈ Cul(A) ∩ A. Since (Vl,El) is a vertex on the upper-left convex hull,
there exists a positive-sloping supporting hyperplane (in our case a line) of A that goes
through (Vl,El). Hence (Vl,El) ∈ S(A) by Remark 3.15.

Let (V,E) ∈ S(A). Since S(A) ⊆ A for the finite set A, (V,E) = (Vk, Ek) ∈ A. Since
a supporting hyperplane of A always intersects the boundary of the convex hull of A,
(Vk, Ek) must be a vertex in the convex hull. (Vk, Ek) ∈ Cul(A) then follows since there
exists a supporting hyperplane through (Vk, EK) that (i) has positive slope; and (ii) have
A on its right.

3.2 HJB PDE Formulation

In this section, we develop an HJB PDE formulation to solve the Mean Variance opti-
mization problem under the regime switching model.

3.2.1 Value Functions

In the embedding technique we solve for the value function (3.1.5), i.e.

Q(x, t; γ) = inf
v(·)

{
Ex,t
v(·)

[(
B(T )− γ

2

)2
]}
, (3.2.1)

for initial states (x, t), where x = (s, b, α, l).
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To avoid the need to compute separate value functions for different values of γ, we
change variables. Recall that, from (2.1.1) and (2.1.13), the process B(t) follows the
dynamics

dB(t) =
(
rB(t)− vf l(v)S(t)

)
dt.

We define the new process

B(t) = er(T−t)B(t)− γ

2
, (3.2.2)

which satisfies

dB(t) = −rer(T−t)B(t)dt+ er(T−t)dB(t) = −er(T−t)vf l(v)S(t)dt,

and
B(T ) = B(T )− γ

2
.

Hence
inf
v(·)

{
Es,b=0,α,l,t=0
v(·)

[(
B(T )− γ

2

)2
]}

= inf
v(·)

{
Es,b,α,l,t=0
v(·)

[
B(T )2

]}
,

where b = B(0) = −γ/2.

Let τ = T − t be the backward time. We define value functions V l by

V l = V l(s, b, α, τ) = inf
v(·)

{
Es,b,α,l,t=T−τ
v(·)

[
B(T )2

]}
, (3.2.3)

where we have used the notation b for a state of the process B(t).

We also define the value functions

U l = U l(s, b, α, τ) = Es,b,α,l,t=T−τ
v∗(·) [B(T )], (3.2.4)

where v∗(·) is an optimal control2 in (3.2.3). The value functions U l will be required to
compute the mean variance efficient frontier, as discussed in Section 3.6. It will be clear
in Section 3.6 that mean and variance for various risk aversion levels γ can be determined
from the same value functions V l and U l; this is the reason we change variables from B(t)
to B(t).

3.2.2 Systems of HJB PDEs

Before deriving the systems of HJB PDEs for solving V l and U l, we first define some
shorthand for ease of exposition. The reader is suggested to review the notation in Section

2If optimal controls are not unique, the value of Es,b,α,l,t=T−τv∗(·) [B(T )] in general depends on the choice

of optimal control. This is one of the subtleties that was discussed in Section 3.1. By Theorem 3.23, this
non-uniqueness is not a practical concern since using the post-processing algorithm will guarantee the
Pareto-optimality of the computed frontier.
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2.1.2. Define

λl =
M∑
m=1
m6=l

λlm , ρl =
M∑
m=1
m6=l

λlm(ζ lm − 1), (3.2.5)

the differential operator Ll by

LlV l =
(σls)2

2
V l
ss + (ηl − ρl)sV l

s − λlV l,

and the operator J l by

J lV =
M∑
m=1
m 6=l

λlmV m(ζ lms, b, α, τ).

We also define the Lagrangian differential operator Dl

Dτ
(v) by

DlV l

Dτ
(v) = V l

τ − gl(v)sV l
s + erτvf l(v)sV l

b − vV l
α,

which is the rate of change of V l along the characteristics s = s(τ ′), b = b(τ ′), α = α(τ ′)
defined by the trading velocity v through

ds

dτ ′
= −gl(v)s,

db
dτ ′

= erτvf l(v)s,
dα

dτ ′
= −v. (3.2.6)

By standard dynamic programming arguments (see Appendix A for details), the value
functions V l solve the system of nonlinear HJB PDEs

− LlV l − J lV + max
v∈[vmin,0]

DlV l

Dτ
(v) = 0; l = 1, . . . ,M, (3.2.7)

in the domain Ω = {s ≥ 0, b ≤ 0, α ≥ 0, τ > 0}, with initial condition at τ = 0 given by

V l(s, b, α, τ = 0) = (b + as lim
v→−∞

f l(v))2. (3.2.8)

After the optimal trading velocities v∗ have been obtained from solving the system of
nonlinear HJB PDEs (3.2.7), we can then determine the expected values by solving the
system of linear PDEs

− LlU l − J lU +
DlU l

Dτ
(v∗) = 0; l = 1, . . . ,M, (3.2.9)

in the domain Ω, with initial condition at τ = 0 given by

U l(s, b, α, τ = 0) = b + as lim
v→−∞

f l(v). (3.2.10)
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Since v∗ has been determined, the PDEs in the system (3.2.9) are linear and inexpen-
sive to solve.

3.3 Localization and Boundary Conditions

For computational purposes, we localize the domain Ω to ΩL = {s ∈ [0, smax], b ∈
[bmin, 0], α ∈ [0, 1], τ ∈ [0, T ]}. The following remark explains why it suffices to consider
only non-positive b.

Remark 3.25. Recall from (3.2.2) that B(0) < 0. Intuitively, in view of definition
(3.2.3), when b < 0 an optimal strategy should increase B(t) towards zero by selling
stocks. When b = 0, any selling can only increase B(T ) and therefore an optimal strategy
should not sell until the final liquidation, which essentially discards the remaining stock
holding. Therefore, B(t) should stay at zero after it has reached zero from below. In fact,
this observation that B(t) should not exceed the target of zero has already been seen in
Remark 3.3 in terms of the original variable B(t).

Let us now consider how to localize the system of PDEs (3.2.7) for V l and impose
boundary conditions.

For the localized problem, we define J l by

J lV =
M∑
m=1
m6=l

λlmV m(min{ζ lms, smax}, b, α, τ),

to ensure that V m is evaluated within ΩL.

No boundary conditions are required at s = 0 because all Vs and Vss terms vanish in
(3.2.7).

No boundary condition is required at α = 1 since −v ≥ 0 and thus the characteristics
are outgoing there.

No boundary condition is required at b = bmin < 0 since erτvf l(v)s ≤ 0 and thus the
characteristics are outgoing there.

At s = smax, we use the boundary conditions V l
s = 0 and V l

ss = 0.

The rationale for imposing V l
s = V l

ss = 0 at s = smax is that V l → constant as s→∞
when other variables are held constant. Note that this is obvious when α = 0; otherwise,
consider separately the cases where b < 0 and b = 0. Intuitively, in view of definition
(3.2.3), when b < 0 an optimal strategy should increase B(t) towards zero by selling stocks.
As s → ∞ and αs � |b|, an optimal strategy will force B(T ) → 0 (and V l → 0). When
b = 0, any selling can only increase B(T ) and therefore an optimal strategy should not
sell until the final liquidation which will essentially discard the remaining stock holding,
and consequently V l will be independent of s.
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The boundary conditions V l
s = 0 and V l

ss = 0 at s = smax are clearly approximations
for a finite smax. We shall verify that if smax is sufficiently large then this does not cause
any appreciable error in the region of interest.

At b = 0 and α = 0, we impose v = 0 so that (s, b, α, τ) stays in ΩL. These are
legitimate since b should not become positive (see Remark 3.25) and α should not become
negative (i.e. a short position).

The localized problem for U l is extremely similar to that for V l. To avoid repeating
ourselves, henceforth our discussion on numerical methods will be detailed for only V l.

3.4 Formal Formulation of Localized Problem

We now formalize the localized problem with boundary conditions discussed in the pre-
vious section. We will use the notation3 x = (s, b, α, τ) to denote a point in ΩL = {s ∈
[0, smax], b ∈ [bmin, 0], α ∈ [0, 1], τ ∈ [0, T ]}. Note that since different values of l correspond
to different PDEs in the system, l does not appear in this notation which concerns the
domain of a single PDE.

Definition 3.26. The following domains partition ΩL.

Ωin = {s < smax, b ∈ [bmin, 0), α > 0, τ > 0}
Ωsmax = {s = smax, b ∈ [bmin, 0), α > 0, τ > 0}
Ωv=0 = {s < smax, b ∈ [bmin, 0), α = 0, τ > 0} ∪ {s < smax, b = 0, τ > 0}

Ωsmax,v=0 = {s = smax, b ∈ [bmin, 0), α = 0, τ > 0} ∪ {s = smax, b = 0, τ > 0}
Ωτ0 = {τ = 0}

Definition 3.27. The following definition of the Lagrangian differential operator Dl

Dτ
(x, v)

encompasses various boundary conditions.

DlV l

Dτ
(x, v) =


V l
τ (x)− gl(v)sV l

s (x) + erτvf l(v)sV l
b (x)− vV l

α(x) x ∈ Ωin

V l
τ (x) + erτvf l(v)sV l

b (x)− vV l
α(x) x ∈ Ωsmax

V l
τ (x) x ∈ Ωv=0 ∪ Ωsmax,v=0

(3.4.1)

3Note that the same notation x was previously used to mean a state x = (s, b, α, l) of the process
X(t) = (S(t), B(t), A(t), L(t)). The meaning of the notation x should be clear from the context and no
confusion should arise.
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Definition 3.28. Using the notations

DV l(x) = (V l
s (x), V l

b (x), V l
α(x), V l

τ (x)),

D2V l(x) = V l
ss(x),

LlV l(x) =
(σls)2

2
V l
ss(x) + (ηl − ρl)sV l

s (x)− λlV l(x),

J l
LV (x) =

M∑
m=1
m6=l

λlmV m(min{ζ lms, smax}, b, α, τ),

the system of HJB PDEs (3.2.7) can be formally written as

F l(x, V l(x), {V m(min{ζ lms, smax}, b, α, τ)}m 6=l, DV l(x), D2V l(x)) = 0

for l = 1, · · · ,M, (3.4.2)

where

F l(x, V l(x), {V m(min{ζ lms, smax}, b, α, τ)}m 6=l, DV l(x), D2V l(x))

=



F l
in(· · · ) = −LlV l(x)− J l

LV (x) + λlV l(x) + maxv∈[vmin,0]
DlV l

Dτ
(x, v) x ∈ Ωin

F l
smax

(· · · ) = −J l
LV (x) + λlV l(x) + maxv∈[vmin,0]

DlV l

Dτ
(x, v) x ∈ Ωsmax

F l
v=0(· · · ) = −LlV l(x)− J l

LV (x) + λlV l(x) + DlV l

Dτ
(x, v) x ∈ Ωv=0

F l
smax,v=0(· · · ) = −J l

LV (x) + λlV l(x) + DlV l

Dτ
(x, v) x ∈ Ωsmax,v=0

F l
τ=0(· · · ) = V l(x)− b2 x ∈ Ωτ=0

3.5 Discretization

For easy reference, notations in this and subsequent sections are defined/summarized in
Table 3.1.

3.5.1 Computational Grid

Define a set of nodes {si}, {bj}, {αk} and {τn}, where 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax,
0 ≤ k ≤ kmax, and 0 ≤ n ≤ nmax. We order the nodes in ascending order and make
τn = n4τ , where 4τ = T/nmax.

3.5.2 Discretizing LlV l

We use standard finite difference methods to discretize LlV l(xi,j,k,n+1). Let (Llh V l
h)i,j,k,n+1

denote the discretized version of LlV l(xi,j,k,n+1). LlV l(xi,j,k,n+1) is discretized using cen-
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Notations Descriptions
x = (s, b, α, τ) a point in ΩL

Ωh grid; spacing between neighboring nodes is O(h)
xi,j,k,n grid node (si, bj, αk, τn) in Ωh

xh shorthand notation for xi,j,k,n+1

Vh = (V 1
h , · · · , V M

h ) RM -valued discrete function defined on Ωh

V l
h l-th component of Vh; real-valued

V l
i,j,k,n value of V l

h at xi,j,k,n
x̂i,j,k,n(v) = (sî, bĵ, αk̂, τn) foot of Lagrangian characteristics; not on grid in general

x̃l→m shorthand for (min{ζ lms, smax}, b, α, τ).
x̃l→mi,j,k,n+1 shorthand for (min{ζ lmsi, smax}, bj , αk, τn+1).

V l
interp(x̂i,j,k,n(v)) linear interpolated value of V l

h

V m
interp(x̃

l→m
i,j,k,n+1) linear interpolated value of V m

h

{V l
i′,j,k,n+1}i′ 6=i values V l

i′,j,k,n+1 defining (Llh V l
h)i,j,k,n+1, where i′ 6= i

{V l
i′,j′,k′,n} values V l

i′,j′,k′,n defining V l
interp(x̂i,j,k,n(v))

{V m
i′,j′,k′,n+1}m 6=l values V m

i′,j′,k′,n+1 defining V m
interp(x̃

l→m
i,j,k,n+1)

Table 3.1: Summary of notations for discretizing the system of HJB PDEs (3.2.7)
for the Mean Variance problem.

tral, forward, or backward differencing in the s direction to give

(Llh V l
h)i,j,k,n+1 = ali

(
V l
i−1,j,k,n+1

)
−
(
ali + bli + λl

)(
V l
i,j,k,n+1

)
+ bli

(
V l
i+1,j,k,n+1

)
for all i except i = 0, imax,

where the positive coefficient condition

ali ≥ 0 and bli ≥ 0 (3.5.1)

is guaranteed by the algorithm [28]. The boundary conditions at s = 0 and s = smax are
taken into account by setting

al0 = bl0 = alimax
= blimax

= 0.

3.5.3 Discretizing the Lagrangian Derivative Terms

The discretized version of the Lagrangian derivative DlV l

Dτ
(xh, v) is given by

DlV l

Dτ
(xi,j,k,n+1, v) =

1

4τ

(
V l
i,j,k,n+1 − V l

interp(x̂i,j,k,n(v))
)
, (3.5.2)

where x̂i,j,k,n(v) = (sî, bĵ, αk̂, τn) is the foot of the characteristics when we solve the ODEs

(3.2.6) initially at xi,j,k,n+1, from τn+1 to τn, and V l
interp(x̂i,j,k,n(v)) denotes a linear inter-
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polated value.

The foot of the Lagrangian characteristics can be written as a function of the desti-
nation point xh and the trading velocity v as

(sî, bĵ, αk̂, τn) = I l(xi,j,k,n+1, v,4τ), (3.5.3)

where I l = (I l1, I l2, I l3, I l4) is defined for x ∈ ΩL and v ∈ [vmin, 0] by

I l1(x, v,4τ) =

{
s exp(gl(v)4τ) s 6= smax

s s = smax
, (3.5.4)

I l2(x, v,4τ) = b − erτvsf l(v)
(egl(v)4τ − 1

gl(v)

)
, (3.5.5)

I l3(x, v,4τ) = α + v4τ, (3.5.6)

I l4(x, v,4τ) = τ −4τ. (3.5.7)

Remark 3.29. Note that s = smax has to be treated separately in (3.5.4) because of the
boundary condition Vs = Vss = 0 at s = smax.

For theoretical purposes, we can approximate (3.5.3) - (3.5.7) by

sî =

{
si + sig

l(v)4τ +O((4τ)2) i < imax

si i = imax
, (3.5.8)

bĵ = bj − erτn+1vsif
l(v)4τ +O((4τ)2), (3.5.9)

αk̂ = αk + v4τ, (3.5.10)

τn = τn+1 −4τ. (3.5.11)

3.5.4 Discretizing maxv∈[vmin,0]
DlV l

Dτ (x, v)

In order to motivate our discretization technique, we will first explain why the following
straightforward discretization has conceptual difficulties:

max
v∈[vmin,0]

DlV l

Dτ
(xi,j,k,n+1, v) ≈ 1

4τ

(
V l
i,j,k,n+1 − min

v∈[vmin,0]
V l
interp(x̂i,j,k,n(v))

)
. (3.5.12)

The problem with the discretization (3.5.12) is that the point at which we interpolate V l
h,

i.e. the point x̂i,j,k,n(v) = I l(xh, v,4τ), may go out of ΩL for some v ∈ [vmin, 0].

3.5.4.1 Restriction of admissible velocities

We now proceed more formally and set up notations that will be useful later in proving
consistency of our numerical scheme.
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According to Definition 3.27, restricting admissible velocities is relevant only when a
grid node xh ∈ Ωin ∪ Ωsmax . For such xh in a grid Ωh with time spacing 4τ , we define

ΩVl
h,res

=
{
xh ∈ Ωin ∪ Ωsmax s.t.∃v ∈ [vmin, 0] s.t. I l(xh, v,4τ) /∈ ΩL

}
(3.5.13)

to be the places where the set of admissible velocities needs to be restricted so that
I l(xh, v,4τ) stays in ΩL.

For xh ∈ Ωin∪Ωsmax ∪Ωv=0∪Ωsmax,v=0, we define Vl
h,res(xh) to be the set of restricted

admissible velocities, i.e.

Vl
h,res(xh) =

{
{v ∈ [vmin, 0] s.t. I l(xh, v,4τ) ∈ ΩL}, xh ∈ Ωin ∪ Ωsmax

{0}, xh ∈ Ωv=0 ∪ Ωsmax,v=0

Note that Vl
h,res(xh) is guaranteed to be non-empty since I l(xi,j,k,n+1, v = 0,4τ) =

(si, bj, αk, τn) ∈ ΩL.

3.5.4.2 Discretizing the control space

For a grid node xi,j,k,n+1, we discretize the set4 of restricted admissible velocities Vl
h,res(xi,j,k,n+1)

into a discrete set V̂l
h,res(xi,j,k,n+1) in the usual way such that the maximum spacing be-

tween neighboring nodes goes to zero at a rate of O(h).

Our discretization can now be stated as

max
v∈[vmin,0]

DlV l

Dτ
(xi,j,k,n+1, v) ≈ 1

4τ

(
V l
i,j,k,n+1 − min

v∈V̂l
h,res(xi,j,k,n+1)

V l
interp(x̂i,j,k,n(v))

)
.

Since V l
h may not be convex, we use a linear search as the minimization algorithm to

guarantee global optimality.

3.5.5 Discretizing J lV

The discretized version of J lV at node xi,j,k,n+1 is given by

(J l
h Vh)i,j,k,n+1 =

M∑
m=1
m6=l

λlm V m
interp(x̃

l→m
i,j,k,n+1),

where the notation x̃l→mi,j,k,n+1 is defined in Table 3.1 and V m
interp(x̃

l→m
i,j,k,n+1) is a linear inter-

polated value.

4We note that Vl
h,res(xh) is a closed and bounded interval of the form [vlh,res(xh), 0] by continuity

arguments.
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3.5.6 Complete Discretization Scheme

For the RM -valued discrete function Vh defined on grid Ωh, let

Hl
i,j,k,n+1

(
h, V l

i,j,k,n+1, {V l
i′,j,k,n+1}i′ 6=i, {V l

i′,j′,k′,n}, {V m
i′,j′,k′,n+1}m 6=l

)
=−

M∑
m=1
m6=l

λlm V m
interp(x̃

l→m
i,j,k,n+1)

+
1

4τ

(
V l
i,j,k,n+1 − min

v∈V̂l
h,res(xi,j,k,n+1)

V l
interp(x̂i,j,k,n(v))

)
− (Llh V l

h)i,j,k,n+1, (3.5.14)

where

{V l
i′,j,k,n+1}i′ 6=i = {values V l

i′,j,k,n+1 defining (Llh V l
h)i,j,k,n+1, where i′ 6= i}

{V l
i′,j′,k′,n} = {values V l

i′,j′,k′,n defining V l
interp(x̂i,j,k,n(v)), where i′, j′, k′ are arbitrary}

{V m
i′,j′,k′,n+1}m6=l = {values V m

i′,j′,k′,n+1 defining V m
interp(x̃

l→m
i,j,k,n+1), where i′, j′, k′ are arbitrary}

The complete discretization scheme can be given as

Gli,j,k,n+1

(
h, V l

i,j,k,n+1, {V l
i′,j,k,n+1}i′ 6=i, {V l

i′,j′,k′,n}, {V m
i′,j′,k′,n+1}m6=l

)
= 0 for l = 1, · · · ,M,

(3.5.15)

where

Gli,j,k,n+1 =

{
V l
i,j,k,n+1 − b2

j τn+1 = 0

Hl
i,j,k,n+1 τn+1 > 0

(3.5.16)

The linear discretized equations (3.5.15) are solved at each time step as follows: the
optimal control is first determined by linear interpolation, then the equations are solved
using a fixed point iteration scheme [36, 37].5

Note that solution of the system of discrete equations (3.5.15) is an RM -valued discrete
function V defined on the grid Ωh. We will prove that the discrete solutions converge to
the viscosity solution in Chapter 4.

3.6 Computing Results of Practical Interest

In this section, we discuss two methods for computing results of practical interest for
Mean Variance optimal strategies. The PDE method is more elegant whereas the Hybrid
(PDE-Monte Carlo) method is more versatile.

5In the papers [36, 37], the scheme is called a fixed point policy iteration method since it can also be
used to determine the optimal control in other discretizations; in our case, the optimal control is already
determined based on time n information from the semi-Lagrangian discretization.
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3.6.1 The PDE Method

The PDE method can be used to obtain the mean variance efficient frontier6 by straight-
forward evaluation of value functions. The PDE method requires solving the system of
linear PDEs (3.2.9) in addition to solving (3.2.7).

In the PDE method, the mean variance efficient frontier is obtained directly from the
value functions (3.2.7) and (3.2.9). For each value of γ, the corresponding point on the
frontier YQ (for initial regime L(0) = l) can be shown to be given by the expressions

Es,b,α,l,t=0
v∗(·) [B(T )] = U l

0(b) +
γ

2
, (3.6.1)

V ars,b,α,l,t=0
v∗(·) [B(T )] = V l

0 (b)− (U l
0(b))2, (3.6.2)

where b = B(0) = −γ/2 by equation (3.2.2), and U l
0(b) and V l

0 (b) are shorthand notations
for

V l
0 (b) ≡ V l(s, b, α, τ = T ) = Es,b,α,l,t=0

v∗(·) [B(T )2],

U l
0(b) ≡ U l(s, b, α, τ = T ) = Es,b,α,l,t=0

v∗(·) [B(T )].

The formula (3.6.1) and (3.6.2) are obtained by solving for Es,b,α,l,t=0
v∗(·) [B(T )] andEs,b,α,l,t=0

v∗(·) [B(T )2]
from the linear system

Es,b,α,l,t=0
v∗(·) [B(T )2]− γEs,b,α,l,t=0

v∗(·) [B(T )] +
γ2

4
= Es,b,α,l,t=0

v∗(·) [B(T )2]

Es,b,α,l,t=0
v∗(·) [B(T )]− γ

2
= Es,b,α,l,t=0

v∗(·) [B(T )]

Remark 3.30. Note that mean and variance for various risk aversion levels γ can be
determined from the same value functions V l and U l using different values of b. This
means that the entire efficient frontier can be obtained with a single PDE solve.

This was the reason we changed variables from B(t) to B(t); if we were to work with
Q(x, t; γ) in (3.2.1), we would need to compute separate value functions for each value of
γ.

3.6.2 The Hybrid (PDE-Monte Carlo) Method

In the Hybrid method, the optimal control v∗(·) is first obtained by solving the system
of HJB PDEs (3.2.7). Monte Carlo simulations are then carried out (see Appendix E for
details) to estimate quantities of interest, using the optimal control v∗(·). An advantage of
the Hybrid method is that we can estimate interesting statistics (e.g. liquidation progress)
that are difficult to obtain directly from the value functions.

6Technically, this means YQ as defined in Definition 3.6. This terminology will be used in the rest of
this section.
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3.7 Improving Efficiency

In this section we explain how we combine the techniques of similarity reduction, non-
standard interpolation and grid scaling to significantly improve the efficiency of our numer-
ical methods for solving the system of HJB PDEs (3.2.7). These techniques are important
in overcoming the challenges in solving (3.2.7). Without these techniques, solving (3.2.7)
to satisfactory precision would be computationally expensive.

For readers who need to solve HJB PDEs that pose similar challenges, the techniques
discussed here will be of interest. On the other hand, readers who are not interested in
these techniques can safely skip this section, which is largely independent of the rest of
the thesis.

We also note that our convergence proof in Chapter 4 is for the discretization scheme
(3.5.15) that uses none of the techniques in this section. It is straightforward, but alge-
braically tedious, to prove convergence for the case of using similarity reduction; we refer
interested readers to [31] for such a proof in the single regime case.

We will discuss the techniques using V l (3.2.3) as an example. The same techniques
can be applied to U l (3.2.4).

In this section we explain the techniques by analyzing the HJB PDE. Section 5.2.7
will illustrate the improvements by numerical results.

3.7.1 Similarity Reduction

It can be verified that the form of the system of PDEs (3.2.7) and the initial condition
(3.2.8) imply the homogeneity properties (for positive scalar ξ)

V l(ξs, ξb, α, τ) = ξ2V l(s, b, α, τ), (3.7.1)

v∗(ξs, ξb, α, τ, l) = v∗(s, b, α, τ, l), (3.7.2)

which suggests the use of similarity reduction as follows. By the homogeneity property
(3.7.1),

V l(s, b, α, τ) = (
b
b∗

)2V l(
sb∗

b
, b∗, α, τ). (3.7.3)

Therefore we only need a single grid node b∗ < 0 in the b direction, which saves significant
computational cost. For b = 0, (3.7.1) implies the boundary condition V l = 0. In using
similarity reduction, the calculation of V l

interp(x̂i,j,k,n(v)) needs to be adapted by using a
discrete version of (3.7.3), i.e.

V l
interp(x̂i,j,k,n(v)) =

( bĵ
b∗
)2
V l
interp(

sîb
∗

bĵ
, b∗, αk̂, τn).
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3.7.2 Parametric Curve Interpolation Method

Recall that in our semi-Lagrangian discretization, we need to interpolate the discrete value
function V l at the foot of the Lagrangian characteristics, i.e. the term V l

interp(x̂i,j,k,n(v))
in (3.5.2). It turns out that standard linear interpolation, which interpolates along the
axes directions, has poor accuracy in approximating V l. To obtain accurate interpolation
results, we develop a parametric curve interpolation method, which is essentially linear
interpolation along a carefully chosen direction.

We explain the parametric curve interpolation method by considering a limiting case
with extreme parameter values σ = κt = 0, and typical parameter values r = κp = κs =
η = 0 (single regime). Since the asset price is constant, problem (3.2.3) degenerates to the
deterministic control problem of minimizing B(T )2. Moreover, since there is no pricing
impact, B(T ) = αs+ b with certainty7. Consequently, the value function V is 8

V (s, b, α, τ) = inf
v(·)

Es,b,α,T−τ
v(·) [B(T )2] = B(T )2 = (αs+ b)2, (3.7.4)

which can also be verified by direct substitution into the HJB equation (3.2.7), (3.2.8)
as follows. First, note that the initial condition (3.2.8) is satisfied because f(v) ≡ 1. To
verify (3.2.7), note that the parameter values yield the simplifications

LV = 0,
DV

Dτ
(v) = Vτ + vsVb − vVα. (3.7.5)

Substituting (3.7.4) into (3.7.5) gives

Vτ = 0, Vb = 2(αs+ b), Vα = 2s(αs+ b) =⇒ DV

Dτ
(v) ≡ 0 for all v. (3.7.6)

Since any admissible trading velocity v is optimal in this case, the problem of determining
the optimal control v is completely ill-posed.

The above limiting case motivates the definition of the parametric curve interpolation
method. In the limiting case, the method is defined as replacing linear interpolation along
the α-axis direction by linear interpolation along the parametric curve L defined by

L = (sî, bĵ, αk̂) + ζ(
ds

dζ
,
db
dζ
,
dα

dζ
),

ds

dζ
= 0,

db
dζ

= vsî,
dα

dζ
= −v. (3.7.7)

Note that different parametric curves L are used for different trading velocities v (the
candidate control). In the limiting case, linear interpolation along the parametric curve L
is exact, since (3.7.7) defines a curve of constant wealth {αs+ b = constant}. The differ-

7Our definition of the liquidation value in (2.1.8) is designed to handle this case so that
limv→−∞A(T−)Sexec(v, T

−) = A(T−)S(t−) when κt = 0
8We drop the superscript l since there is only one regime.
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ence between standard axis-aligned interpolation and the parametric curve interpolation
method is illustrated in Figure 3.1.

b

alpha

s

point to interpolate

(a) The standard method linearly interpolates
along the axes directions.

b

alpha

s

point to interpolate

L

(b) In the parametric curve method, linear inter-
polation along the α-axis direction is replaced by
linear interpolation along L.

Figure 3.1: Comparing the two methods of interpolation at the foot of characteristics,
shown as “point to interpolate” in the diagram. The dashed lines correspond to the
computational grid and the dots are interpolation nodes.

For general parameter values, the definition of the parametric curve L is generalized
to

L = (sî, bĵ, αk̂) + ζ(
ds

dζ
,
db
dζ
,
dα

dζ
),

ds

dζ
= −g(v)sî,

db
dζ

= erτn+1vf(v)sî,
dα

dζ
= −v. (3.7.8)

To conclude our discussion about the parametric curve interpolation method, we note
the following.

• Since equations (3.7.8) express how changes in α lead to changes in s and b through
both trading revenue ( db

dζ
= vsî) and pricing impact (the terms g(v) and f(v)),

interpolating along L can be seen as an extension to interpolation along L defined
in (3.7.7), which takes into account trading revenue but not pricing impact.

• It turns out that the parametric curve interpolation method illustrated in Figure
3.1(b) is very accurate along the α direction. Consequently, our computational grid
will use much fewer nodes in the α direction than in the s direction; see Chapter 5
for details.
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3.7.3 Scaled Grid

Consider again the analytical solution (3.7.4) for the limiting case. Recall that V changes
slowly along curves of constant wealth {(αs + b) = const}. This property of V suggests
a computational grid with constant curves of wealth built into it as follows, which is
illustrated in Figure 3.2.
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a

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Figure 3.2: The scaled computational grid.

• For α > 0, scale the s grid by {si} → {si}/α.

• For α = 0, no scaling is performed, i.e. the original s grid {si} is used.

3.8 Summary

The main results in this chapter are the followings.

• We extend the result in [47] on the embedding technique to tackle non-convex multi-
period MV optimization problems. For non-convex problems, the embedding tech-
nique may produce Pareto-inefficient points. We prove a number of results that
guarantee Pareto-optimality of the computed frontier.

• We combine the techniques of similarity reduction, non-standard interpolation, and
careful grid construction to significantly improve the efficiency of our numerical
methods for solving nonlinear HJB PDEs.
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Chapter 4

Proof of Convergence to Viscosity
Solution for System of PDEs

In this chapter, we extend the convergence result in [16] to a quasi-monotone [39] system
of nonlinear PDEs.

It was proved in [16] that for a nonlinear second-order PDE, any monotone, consistent
and infinity-norm stable discretization scheme converges to the viscosity solution, provided
that there exists a strong comparison principle for the PDE. We extend this result for a
nonlinear PDE to the quasi-monotone system of nonlinear HJB PDEs (3.4.2) that arises
under our regime switching trade execution model. Although our proof (Proposition 4.17)
is given in this concrete context, it can be easily adapted to similar systems of nonlinear
PDEs.

We choose to prove convergence for the discretization scheme (3.5.15), which does
not use similarity reduction and other techniques for improving efficiency. This allows us
to concentrate on the new results regarding a system of PDEs (from a regime switching
model) without further algebraic complication. For readers interested in proof of conver-
gence in the case of using similarity reduction, [31] provides a proof in the single regime
case.

This chapter is organized as follows. Section 4.1 defines the viscosity solution for the
system (3.4.2). Sections 4.2 to 4.4 show that our discretization (3.5.15) of the system
(3.4.2) is monotone, consistent, and infinity-norm stable. Finally, Section 4.5 proves the
main convergence result, i.e. these properties of the discretization scheme guarantee the
convergence of numerical solutions to the viscosity solution.

For easy reference, notations in this chapter are defined/summarized in Table 4.1.

4.1 Viscosity Solution Formulation

To define viscosity solution, we need to introduce the notions of upper and lower semi-
continuous envelope. For a real-valued function ω : C 7→ R defined on the closed set C,
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Notations Descriptions
φl φl : ΩL 7→ R has continuous derivatives of all orders

{Ωhq}q∈N → ΩL a sequence of grids with spacing O(hq), where hq → 0 as q →∞
xiq ,jq ,kq ,nq = (siq , bjq , αkq , τnq) a grid node in Ωhq .

xhq shorthand for xiq ,jq ,kq ,nq+1.
Vhq = (V 1

hq
, · · · , V M

hq
) RM -valued discrete function defined on Ωhq

V l
hq

l-th component of Vhq ; real-valued

{xhq}q∈N → x a sequence of grid nodes converging to x ∈ ΩL.
φli,j,k,n value of φl evaluated at grid node xi,j,k,n in Ωh

φliq ,jq ,kq ,nq
value of φl evaluated at grid node xiq ,jq ,kq ,nq in Ωhq

Table 4.1: Summary of notations for Chapter 4.

the upper semi-continuous envelope ω∗ and lower semi-continuous envelope ω∗ are defined
as

ω∗(x) = lim sup
ε→0

{ω(y) s.t. |x− y| < ε, y ∈ C},

ω∗(x) = lim inf
ε→0

{ω(y) s.t. |x− y| < ε, y ∈ C}.

Definition 4.1 (Definition of viscosity solution of the system of PDEs (3.4.2)). An RM -
valued function u = (u1, · · · , uM), where each ul : ΩL 7→ R is locally bounded, is called a
viscosity sub-solution (respectively super-solution) [39, 23, 15, 61] of the system of PDEs
(3.4.2), if for all (real-valued) test functions φl ∈ C∞(ΩL) and all x ∈ ΩL such that
ul∗−φl (respectively ul∗−φl ) has a strict local maximum (respectively minimum) of zero
at x = (s, b, α, τ) ∈ ΩL, we have

F l
∗(x, u

l∗(x), {um∗(x̃l→m)}m6=l, Dφl(x), D2φl(x)) ≤ 0,

(respectively

F l∗(x, ul∗(x), {um∗ (x̃l→m)}m6=l, Dφl(x), D2φl(x)) ≥ 0.)

Since there is no coupling of derivative terms among individual PDEs in the system
(3.4.2), the test function for the l-th equation should be scalar-valued and replaces only
the l-th component of the solution u, as in the above definition of viscosity solution.
Consequently, there is no information regarding how the m-th component of the solution
u compares with the test function φl. Recall that a key step in the convergence proof of
[16] consists of (i) comparing the numerical solution with the test function; and (ii) using
monotonicity of the numerical scheme to obtain inequality in the right direction. In using
the above definition, only the l-th component of the numerical solution can be replaced by
test function φl, the m-th component must be handled separately. It is in this sense that
we extend the convergence result of [16] to systems of PDEs that arise under a regime
switching model; see the proof of Proposition 4.17 for the details. A related recent work
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that also generalizes the result of [16] to systems of PDEs is [23].

We note that this technicality is overlooked in [54], which compares a vector-valued
numerical solution with a test function in its convergence proof.1

Remark 4.2. The above definition, which assumes φl ∈ C∞(ΩL), is equivalent to the
more common definition which assumes φl ∈ C2(ΩL). This equivalence is discussed in
[15] and [61].

4.2 Monotonicity

The notion of monotonicity in [16] needs to be extended for discretization of a system.
To motivate the extended definition, let us first show that the system of PDEs (3.4.2) has
the quasi-monotone property, which is an important assumption in the theory of viscosity
solution for systems of PDEs [39].

Proposition 4.3. Let w1, w2 ∈ RM and l ∈ {1, · · · ,M}. We use the notation w1 ≥l w2

to mean that w1 ≥ w2 component-wise and wl1 = wl2. The system of PDEs (3.4.2) is called
quasi-monotone [39] if whenever w1 ≥l w2, then

F l(x,wl1, {wm1 }m 6=l, Dφl(x), D2φl(x)) ≤ F l(x,wl2, {wm2 }m 6=l, Dφl(x), D2φl(x))

for all x ∈ ΩL and φl ∈ C∞(ΩL).

Proof. This follows from straightforward calculation by noting that the switching inten-
sities λlm are by definition nonnegative.

We now prove that our discretization scheme is monotone. Note that the definition of
monotonicity with respect to the last argument of Gli,j,k,n+1 in (4.2.1) below is a discrete
version of the quasi-monotone property (Proposition 4.3).

Proposition 4.4. The numerical scheme (3.5.15) is monotone in the following sense.
For any two RM -valued discrete functions Wh and Uh defined on Ωh such that Wh ≥ Uh
and W l

i,j,k,n+1 = U l
i,j,k,n+1,

Gli,j,k,n+1

(
h,W l

i,j,k,n+1, {W l
i′,j,k,n+1}i′ 6=i, {W l

i′,j′,k′,n}, {Wm
i′,j′,k′,n+1}m6=l

)
≤Gli,j,k,n+1

(
h, U l

i,j,k,n+1, {U l
i′,j,k,n+1}i′ 6=i, {U l

i′,j′,k′,n}, {Um
i′,j′,k′,n+1}m6=l

)
(4.2.1)

Proof. The following proof consists of simple positive coefficient condition analysis.

Note that from the definition of Gli,j,k,n+1 in (3.5.16), we only need to focus on the case

when Gli,j,k,n+1 = Hl
i,j,k,n+1 ; the other case is trivial.

1See equation (30) in the proof of Theorem 4.8 in [54].
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Linear interpolation guarantees that the term V l
interp(x̂i,j,k,n(v)) can be written as

V l
interp(x̂i,j,k,n(v))

=
∑

0≤i′≤imax

0≤j′≤jmax

0≤k′≤kmax

ŵi′,j′,k′(v)V l
i′,j′,k′,n, where ŵi′,j′,k′(v) ∈ [0, 1],

∑
0≤i′≤imax

0≤j′≤jmax

0≤k′≤kmax

ŵi′,j′,k′(v) = 1. (4.2.2)

and the term V m
interp(x̃

l→m
i,j,k,n+1) can be written as

V m
interp(x̃

l→m
i,j,k,n+1) =

∑
0≤i′≤imax

w̃i′ V
m
i′,j,k,n+1, where w̃i′ ∈ [0, 1],

∑
0≤i′≤imax

w̃i′ = 1. (4.2.3)

The positive coefficient discretization (3.5.1) guarantees that

(Llh V l
h)i,j,k,n+1

= ali
(
V l
i−1,j,k,n+1

)
−
(
ali + bli + λl

)(
V l
i,j,k,n+1

)
+ bli

(
V l
i+1,j,k,n+1

)
, where ali, b

l
i, λ

l ≥ 0

(4.2.4)

The monotonicity (4.2.1) directly follows by subtracting the right hand side of (4.2.1) from
the left hand side, using the positive coefficient conditions (4.2.2)-(4.2.4), and noting that

− min
v∈V̂l

h,res(xi,j,k,n+1)

{
W l
interp(x̂i,j,k,n(v))

}
−
(
− min

v∈V̂l
h,res(xi,j,k,n+1)

{
U l
interp(x̂i,j,k,n(v))

})
≤ max

v∈V̂l
h,res(xi,j,k,n+1)

{
ŵi′,j′,k′(v)U l

i′,j′,k′,n − ŵi′,j′,k′(v)W l
i′,j′,k′,n

}
≤ 0.

4.3 Consistency

This section proves that the numerical scheme (3.5.15) is a consistent approximation to the
system (3.4.2) in the viscosity solution sense. Before stating our definition of consistency,
we introduce the following notation.

Definition 4.5. Let {dm}m 6=l be a set of real values dm. We use the notation

Gli,j,k,n+1

(
h,W l

i,j,k,n+1, {W l
i′,j,k,n+1}i′ 6=i, {W l

i′,j′,k′,n}, {dm}m 6=l
)

to mean

Gli,j,k,n+1

(
h,W l

i,j,k,n+1, {W l
i′,j,k,n+1}i′ 6=i, {W l

i′,j′,k′,n}, {Wm
i′,j′,k′,n+1 = dm}m 6=l

)
,

i.e. for a fixed m, Wm
i′,j′,k′,n+1 all have the same value dm.
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Definition 4.6. The numerical scheme (3.5.15) is said to be consistent with the HJB
PDE (3.4.2) if for a sequence of grids {Ωhq}q∈N → ΩL and sequences of points

{xhq = xiq ,jq ,kq ,nq+1}q∈N → x = (s, b, α, τ) ∈ ΩL, {ξq}q∈N → 0, {dmq }
m 6=l
q∈N → dm,

(4.3.1)
we have

lim inf
q→∞

Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {dmq }m6=l

)
≥F l
∗(x, φ

l(x), {dm}m 6=l, Dφl(x), D2φl(x)) (4.3.2)

and

lim sup
q→∞

Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {dmq }m 6=l

)
≤F l∗(x, φl(x), {dm}m 6=l, Dφl(x), D2φl(x)) (4.3.3)

Before going into the details, it is helpful to review the discretization scheme to have
an overall idea of what needs to be shown. For the reader’s convenience, we reproduce
the discretization (3.5.14) below. For τn+1 > 0,

Gli,j,k,n+1

(
h, V l

i,j,k,n+1, {V l
i′,j,k,n+1}i′ 6=i, {V l

i′,j′,k′,n}, {V m
i′,j′,k′,n+1}m6=l

)
=−

M∑
m=1
m6=l

λlm V m
interp(x̃

l→m
i,j,k,n+1)

+
1

4τ

[
V l
i,j,k,n+1 − min

v∈V̂l
h,res(xi,j,k,n+1)

{
V l
interp(x̂i,j,k,n(v))

}]
− (Llh V l

h)i,j,k,n+1.

Our proof of consistency will proceed as follows. Section 4.3.1 shows that the semi-
Lagrangian term V l

interp(x̂i,j,k,n(v)) is a consistent discretization. Section 4.3.2 performs a
classical error analysis of the discretization scheme for infinitely differentiable test func-
tions, temporarily ignoring the errors due to restricting the set of admissible velocities to
Vl
h,res(x). Section 4.3.3 treats the technical issues that arise from restricting the set of

admissible velocities to Vl
h,res(x). Section 4.3.4 proves the main consistency result.

Remark 4.7 (Technical comment on definition of consistency). In Definition 4.6, the
last argument of Gliq ,jq ,kq ,nq+1 is {dmq }m 6=l, instead of the more typical {ψmi′,j′,k′,nq+1}m6=l, i.e.
values of locally bounded functions ψm : ΩL 7→ R at grid nodes in Ωhq . The rationale of
using {dmq }m6=l will become apparent in our main convergence proof (Proposition 4.17).

40



4.3.1 Semi-Lagrangian Interpolation

Lemma 4.8. Let xh = xi,j,k,n+1 = (si, bj, αk, τn+1) ∈ Ωh and v ∈ Vl
h,res(xh), we have

1

4τ

[
φl(xh)− φlinterp(x̂i,j,k,n(v))

]
=
Dlφl

Dτ
(xh, v) +O(4τ),

where φlinterp(x̂i,j,k,n(v)) is a linearly interpolated value.

Proof. Recall the definition of Dlφl

Dτ
(x, v) in (3.4.1) for three different cases. In each case,

the proof follows from straightforward Taylor’s expansion around xi,j,k,n+1 using (3.5.8
- 3.5.11), similar to that in [26]. We note that the boundary conditions are correctly
handled at s = smax. Since sî = smax by construction (3.5.8), there is no φs term in the

Taylor’s expansion of φlinterp when s = smax, which agrees with the definition of Dlφl

Dτ
(x, v)

in (3.4.1) .

4.3.2 Truncation Error Analysis : Smooth Test Functions

In this section, we perform a truncation error analysis on our numerical scheme (3.5.15-
3.5.16). For ease of exposition in proving consistency with regard to restricting the set of
admissible velocities, we define the following terms.

Definition 4.9. Using the notation of Section 3.4, define

F lVl
h,res∩in

(x, φl(x), {dm}m 6=l, Dφl(x), D2φl(x))

=− Llφl(x)−
M∑
m=1
m6=l

λlmdm + λlφl(x) + max
v∈Vl

h,res(x)

Dlφl

Dτ
(x, v)

and

F lVl
h,res∩smax

(x, φl(x), {dm}m 6=l, Dφl(x), D2φl(x))

=−
M∑
m=1
m 6=l

λlmdm + λlφl(x) + max
v∈Vl

h,res(x)

Dlφl

Dτ
(x, v)
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Lemma 4.10. We have for all grid nodes xh = xi,j,k,n+1 ∈ Ωh

Gli,j,k,n+1

(
h, φli,j,k,n + ξ, {φli′,j,k,n+1}i′ 6=i + ξ, {φli′,j′,k′,n}+ ξ, {dm}m 6=l

)

=



F l
in(xh, φ

l(xh), {dm}m6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ Ωin \ ΩVl
h,res

F l
smax

(xh, φ
l(xh), {dm}m 6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ Ωsmax \ ΩVl

h,res

F l
Vl

h,res∩in
(xh, φ

l(xh), {dm}m 6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ ΩVl
h,res
∩ Ωin

F l
Vl

h,res∩smax
(xh, φ

l(xh), {dm}m6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ ΩVl
h,res
∩ Ωsmax

F l
v=0(xh, φ

l(xh), {dm}m 6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ Ωv=0

F l
smax,v=0(xh, φ

l(xh), {dm}m 6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ) if xh ∈ Ωsmax,v=0

F l
τ=0(xh, φ

l(xh), {dm}m6=l, Dφl(xh), D2φl(xh)) +O(ξ) if xh ∈ Ωτ=0

Proof. Consider the case xh = xi,j,k,n+1 ∈ Ωin \ ΩVl
h,res

. By definition we have

Gli,j,k,n+1

(
h, φli,j,k,n + ξ, {φli′,j,k,n+1}i′ 6=i + ξ, {φli′,j′,k′,n}+ ξ, {dm}m 6=l

)
=−

M∑
m=1
m 6=l

λlm dm +
1

4τ

[
φl(xh) + ξ − min

v∈V̂l
h,res(xi,j,k,n+1)

{
φlinterp(x̂i,j,k,n(v)) + ξ

}]
−
(
ali
(
φl(xi−1,j,k,n+1) + ξ

)
−
(
ali + bli + λl

)(
φl(xi,j,k,n+1) + ξ

)
+ bli

(
φl(xi+1,j,k,n+1) + ξ

))
=−

M∑
m=1
m6=l

λlm dm +
1

4τ

[
φl(xh)− min

v∈V̂l
h,res(xi,j,k,n+1)

φlinterp(x̂i,j,k,n(v))
]
−
(

(Llhφl)i,j,k,n+1 − λlξ
)

(4.3.4)

Note that the term dm in (4.3.4) above is a result of linear interpolating (4.2.3) the
constant grid values {dm}m 6=l (see Remark 4.7).

By Taylor series expansion and the smoothness of φl,

(Llhφl)i,j,k,n+1 = (Llφl)(xi,j,k,n+1) +O(h). (4.3.5)

By Lemma 4.8,

1

4τ

[
φl(xh)− φlinterp(x̂i,j,k,n(v))

]
=
Dlφl

Dτ
(xh, v) +O(h). (4.3.6)

Since the coefficients of the PDEs are Lipschitz continuous (see Assumption 2.1), dis-
cretizing the control space Vl

h,res(xi,j,k,n+1) as V̂l
h,res(xi,j,k,n+1) gives an O(h) error, i.e.

max
v∈V̂l

h,res(xi,j,k,n+1)

Dlφl

Dτ
(xh, v) = max

v∈Vl
h,res(xi,j,k,n+1)

Dlφl

Dτ
(xh, v) +O(h). (4.3.7)
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Since xh = xi,j,k,n+1 ∈ Ωin \ ΩVl
h,res

,

Vl
h,res(xi,j,k,n+1) = [vmin, 0]. (4.3.8)

Substituting (4.3.5) - (4.3.8) into (4.3.4) gives

Gli,j,k,n+1

(
h, φli,j,k,n + ξ, {φli′,j,k,n+1}i′ 6=i + ξ, {φli′,j′,k′,n}+ ξ, {dm}m 6=l

)
=−

M∑
m=1
m6=l

λlm dm + max
v∈[vmin,0]

Dlφl

Dτ
(xh, v)− (Llφl)(xi,j,k,n+1) +O(h) +O(ξ)

=F l
in(xh, φ

l(xh), {dm}m 6=l, Dφl(xh), D2φl(xh)) +O(h) +O(ξ)

The rest of the lemma can be proved by similar direct calculations in (4.3.4) together
with (4.3.6) - (4.3.8).

4.3.3 Handling restricted set of admissible velocities

Note that Lemma 4.10 would be sufficient for proving consistency in the viscosity sense
if F l

Vl
h,res∩in

and F l
Vl

h,res∩smax
were F l

in and F l
smax

respectively. Although it is possible

to impose (ad-hoc) conditions on the grid so that ΩVl
h,res

becomes an empty set in the

limit (in which case Lemma 4.10 would be sufficient for proving consistency), we opt for
generality in the grid construction. The cost of this generality is the need to prove the
following two technical lemmas.

Lemma 4.11 shows how to bound F l
Vl

h,res∩in
and F l

Vl
h,res∩smax

.

Lemma 4.11.

F l
v=0(xhq , · · · ) ≤ F lVl

hq,res
∩in(xhq , · · · ) ≤ F l

in(xhq , · · · ). (4.3.9)

and
F l
smax,v=0(xhq , · · · ) ≤ F lVl

hq,res
∩smax

(xhq , · · · ) ≤ F l
smax

(xhq , · · · ), (4.3.10)

where (xhq , · · · ) stands for (xhq , φ
l(xhq), {dmq }m6=l, Dφl(xhq), D2φl(xhq)).

Proof. Note that the definitions of F l
in(xhq , · · · ), F lVl

hq,res
∩in(xhq , · · · ) and F l

v=0(xhq , · · · )
differ only in the sets of admissible velocities; for F l

in(xhq , · · · ) the set is [vmin, 0], for
F l

Vl
hq,res

∩in(xhq , · · · ) the set is Vl
hq ,res

(xhq), for F l
v=0(xhq , · · · ) the set is {0}. Since we are

maximizing over the sets of admissible velocities, and {0} ⊆ Vl
hq ,res

(xhq) ⊆ [vmin, 0], this
proves (4.3.9). The proof for (4.3.10) is very similar.

Lemma 4.11 suggests that it is clearly consistent to bound F l
Vl

h,res∩in
(respectively

F l
Vl

h,res∩smax
) from the above by F l

in (respectively F l
smax

). The next lemma shows that it
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is also consistent to bound F l
Vl

h,res∩in
(respectively F l

Vl
h,res∩smax

) from the above by F l
v=0

(respectively F l
smax,v=0).

Lemma 4.12. Let {xhq = (siq , bjq , αkq , τnq+1) ∈ Ωhq}q∈N → x = (s, b, α, τ) ∈ ΩL. Then
the following implications hold.

xhq ∈ ΩVl
hq,res

∩ Ωin for infinitely many q =⇒ x ∈ closure(Ωv=0). (4.3.11)

xhq ∈ ΩVl
hq,res

∩ Ωsmax for infinitely many q =⇒ x ∈ closure(Ωsmax,v=0). (4.3.12)

Proof. We will prove (4.3.11) in some detail. The proof for (4.3.12) is similar.

First, note that by Definition 3.26,

closure(Ωv=0) = {b = 0 or α = 0} ∩ ΩL,

thus it remains to prove b = 0 or α = 0. We proceed using proof by contradiction.
Assume to the contrary that b < 0 and α > 0, we will show that

(sîq , bĵq , αk̂q , τnq) = I l(xhq , v,4τ) ∈ ΩL for all v ∈ [vmin, 0] for all q sufficiently large,

(4.3.13)
which would lead to a contradiction by definition (3.5.13).

Showing (4.3.13) is equivalent to showing that each of the followings holds for q suf-
ficiently large: (i) sîq ∈ [0, smax]; (iia) bĵq ≥ bmin ; (iib)bĵq ≤ 0; (iiia)αk̂q ≥ 0; and (iiib)
αk̂q ≤ 1.

The following is basically a straightforward analysis of the formula (3.5.4-3.5.7) to-
gether with the assumptions f l(v) ≥ 0, gl(v) ≤ 0 and v ≤ 0; see (2.1.16).

By the assumptions on the signs of f l(v), gl(v) and v, (i), (iia) and (iiib) hold trivially.

Finally, since 4τ → 0 as q → ∞ and the admissible control set [vmin, 0] is compact,
by continuity we have

lim
q→∞

bĵq = lim
q→∞

bjq = b < 0 and lim
q→∞

αk̂q = lim
q→∞

αkq = α > 0,

which proves (iib) and (iiia).

4.3.4 Proof of Consistency

We need one final easy lemma before proving the main consistency result.

Lemma 4.13. Let {Ωhq}q∈N → ΩL and {xhq}q∈N → x ∈ ΩL, then for x ∈ closure(Ωin)

(xhq not necessarily in Ωin) and sequences {dmq }
m6=l
q∈N → dm

lim inf
q→∞

F l
in(xhq , φ

l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq))

≥F l
∗(x, φ

l(x), {dm}m 6=l, Dφl(x), D2φl(x)). (4.3.14)
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Similarly,

lim sup
q→∞

F l
in(xhq , φ

l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq))

≤F l∗(x, φl(x), {dm}m6=l, Dφl(x), D2φl(x)). (4.3.15)

By identical arguments, the above results hold when the pair (Ωin, F
l
in) is replaced by

(Ωsmax , F
l
smax

), (Ωv=0, F
l
v=0), (Ωsmax,v=0, F

l
smax,v=0) or (Ωτ=0, F

l
τ=0).

Proof. The result follows easily by the definition of lower-semicontinuous envelope F l
∗, the

convergence of dmq to dm, and the smoothness of φl. Similar steps can be used to show
(4.3.15).

Having proved Lemma 4.10-4.13, proving consistency in the viscosity sense will be
straightforward.

Proposition 4.14. The numerical scheme (3.5.15) is consistent with the HJB PDE
(3.4.2) in the sense of Definition 4.6.

Proof. We will prove only (4.3.2). The proof of (4.3.3) is more straightforward (does not
require Lemma 4.12)

In applying Lemma 4.10, it is obvious that the only tricky case is when xhq ∈ ΩVl
hq,res

for infinitely many q. Without loss of generality, we can assume xhq ∈ ΩVl
hq,res

for all q.

Note that for each q, we may have

xhq ∈ ΩVl
hq,res

∩ Ωin; and/or (4.3.16)

xhq ∈ ΩVl
hq,res

∩ Ωsmax (4.3.17)

For ease of exposition, we focus on the case when (4.3.16) holds for all q. The situation
when either (4.3.16) or (4.3.17) can hold can be similarly handled.

Applying Lemma 4.10 (to each grid Ωhq) gives

lim inf
q→∞

Gliq ,jq ,kq ,nq+1(hq, φ
l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {dmq }m 6=l)

= lim inf
q→∞

F lVl
hq,res

∩in(xhq , φ
l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq)) +O(hq) +O(ξq)

= lim inf
q→∞

F lVl
hq,res

∩in(xhq , φ
l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq)) + lim

q→∞
O(hq) +O(ξq)

= lim inf
q→∞

F lVl
hq,res

∩in(xhq , φ
l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq))

≥ lim inf
q→∞

F l
v=0(xhq , φ

l(xhq), {dmq }m 6=l, Dφl(xhq), D2φl(xhq)) (4.3.18)

≥ F l
∗(x, φ

l(x), {dm}m 6=l, Dφl(x), D2φl(x)), (4.3.19)
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where we have used Lemma 4.11 in (4.3.18) to lowerbound F l
Vl

hq,res
∩in by F l

v=0. Note

that the application of Lemma 4.13 in (4.3.19) is legitimate since the closure condition is
satisfied by using (4.3.11) in Lemma 4.12.

When either (4.3.16) or (4.3.17) can hold, we just need to (i) lower bound F l
Vl

hq,res
∩in

by F l
v=0 if (4.3.16) holds; and (ii) lower bound F l

Vl
hq,res

∩smax
by F l

smax,v=0 if (4.3.17) holds.

The application of Lemma 4.13 will be legitimate since the closure condition is satisfied
by using (4.3.11) and (4.3.12) in Lemma 4.12.

4.4 Stability

Proposition 4.15. The numerical scheme (3.5.15) (for the localized problem (3.4.2) on
ΩL) is unconditionally stable in the infinity norm. More precisely,

0 ≤ V l
i,j,k,n ≤ K,

where K = b2
min is a constant independent of the grid Ωh.

Proof. We proceed by induction. The base case (n = 0, τn = 0) is obvious from the initial
condition V l

i,j,k,n = b2
j .

For τn+1 > 0, V l
i,j,k,n+1 is solved from Hl

i,j,k,n+1 = 0 (See (3.5.14)), which we rewrite as

V l
i,j,k,n+1 −4τ(Llh V l

h)i,j,k,n+1 −
M∑
m=1
m 6=l

λlm4τ V m
interp(x̃

l→m
i,j,k,n+1)

= min
v∈V̂l

h,res(xi,j,k,n+1)
V l
interp(x̂i,j,k,n(v)) (4.4.1)

Note that the left hand side of (4.4.1) consists of nodes V l′

i′,j,k,n+1 with various values of
i′ and l′, and the same values of j, k and n + 1. Therefore (4.4.1) can be written as a
matrix equation

(I −4τL)V l′

i′,j,k,n+1 = RHS

by considering all i′ = 0, · · · , imax and all l′ = 1, · · · ,M with fixed j, k and n. By (i)
the positive coefficient condition ali, b

l
i, λ

l ≥ 0 (4.2.4); (ii) λlm ≥ 0; (iii) m 6= l in (4.4.1);
and (iv) the use of linear interpolation, (I − 4τL) is an M-matrix. Since RHS (which
consists solely of nodes at time step n) is non-negative by the induction hypothesis and
linear interpolation, we have proved that V l

i,j,k,n+1 ≥ 0.

To prove the other inequality, rearranging the terms in (4.4.1) and applying the in-
duction hypothesis gives

(1 + (ali + bli + λl)4τ)V l
i,j,k,n+1 ≤ K + λl4τ ||Vn+1||+4τ(ali + bli)||Vn+1||,
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where ||Vn+1|| = maxi,j,k,l{V l
i,j,k,n+1}. It then easily follows that

0 ≤ V l
i,j,k,n+1 ≤ ||Vn+1|| ≤ K.

4.5 Convergence

We prove convergence of the numerical scheme (3.5.15) under the following assumption
on the PDE system (3.4.2).

Assumption 4.16. Strong Comparison Principle for (3.4.2)

If V
l
is an upper semi-continuous subsolution of (3.4.2) and V l is a lower semi-continuous

supersolution of (3.4.2), then

V
l ≤ V l in Ωint ∪ ∂Ωreg,

where Ωint stands for the interior of ΩL and ∂Ωreg ⊆ ∂ΩL stands for the regular part of
the boundary ∂ΩL (regular meaning that boundary conditions imposed on ∂Ωreg influence
the solution in the interior domain; see [41, 27] for more discussion).

We note that the strong comparison principle has recently been proved for a similar
system of PDE from a regime switching model in [32].

Proposition 4.17. Under Assumption 4.16, numerical solutions of (3.5.15) converge
locally uniformly in Ωint ∪ ∂Ωreg to the unique continuous viscosity solution of (3.4.2).

Proof. Define the upper semi-continuous function V : ΩL → RM component-wise by

V
l
(x) = lim sup

h→0
xh→x

V l
h(xh).

Note that V
l

is bounded by Proposition 4.15.

For a fixed l, let φl ∈ C∞(ΩL) be a test function such that V
l − φl has a strict local

maximum of zero at x ∈ ΩL. By a classic argument in the theory of viscosity solution (see
e.g. [27]), there exists sequence {Ωhq}q∈N → ΩL and sequence2 {xhq = xiq ,jq ,kq ,nq+1}q∈N →
x ∈ ΩL such that V l

hq
− φl has a global maximum at xhq and

V l
iq ,jq ,kq ,nq+1 → V

l
(x). (4.5.1)

2Note that this xhq
may not be the same as that in (4.3.1).
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Let ξq be defined by3

V l
iq ,jq ,kq ,nq+1 = φliq ,jq ,kq ,nq+1 + ξq, where ξq → 0 by (4.5.1) and V

l
(x) = φl(x) (4.5.2)

Since xhq is a global maximum of V l
hq
− φl, we have

V l
iq ,jq ,kq ,nq+1 ≤ φliq ,jq ,kq ,nq+1 + ξq, for xi′,j′,k′,n′ ∈ Ωhq (4.5.3)

Since V l
hq

is a numerical solution,

Gliq ,jq ,kq ,nq+1

(
hq, V

l
iq ,jq ,kq ,nq+1, {V l

i′,jq ,kq ,nq+1}i′ 6=iq , {V l
i′,j′,k′,nq

}, {V m
i′,j′,k′,nq+1}m 6=l

)
= 0

(4.5.4)

By the monotonicity property (4.2.1) in Proposition 4.4, substituting (4.5.2) and
(4.5.3) to (4.5.4) gives the inequality

0 ≥ Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq+ξq, {φli′,j′,k′,nq
}+ξq, {V m

i′,j′,k′,nq+1}m6=l
)

(4.5.5)

To proceed, for each m 6= l, let Nm
q = {xmhq} ⊆ {Ωhq}q∈N be the interpolation nodes

such that the values {V m
hq

(xmhq)} (subset of {V m
i′,j′,k′,nq+1}) are used for linear interpolating

V m
interp(x̃

l→m
iq ,jq ,kq ,nq

), where x̃l→miq ,jq ,kq ,nq
→ x̃l→m. By virtue of linear interpolation, we know

that for each m 6= l,
V m
interp(x̃

l→m
iq ,jq ,kq ,nq

) ≤ max
xmhq∈N

m
q

{V m
hq (xmhq)}

and
max

xmhq∈N
m
q

|xmhq − x̃
l→m| → 0 as q →∞.

Consequently,

lim sup
q→∞

V m
interp(x̃

l→m
iq ,jq ,kq ,nq

) ≤ lim sup
q→∞

max
xmhq∈N

m
q

{V m
hq (xmhq)} ≤ V

m
(x̃l→m)

Define sequences {dmq }q∈N by

dmq = max
{
V
m

(x̃l→m), sup
q′≥q

vq′
}
, where vq = max

xmhq∈N
m
q

{V m
hq (xmhq)}

such that

dmq ≥ each V m
hq (xmhq) used in linear interpolation, dmq → V

m
(x̃l→m) as q →∞

By the monotonic property (4.2.1) of Gli,j,k,n+1 in the last argument (discrete quasi-

3Note that for any finite grid size, the global maximum at xhq
will not necessarily be zero, i.e. ξq 6= 0

in general.
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monotonicity)

lim inf
q→∞

Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {V m

i′,j′,k′,nq+1}m6=l
)

≥ lim inf
q→∞

Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {dmq }m6=l

)
(4.5.6)

By Proposition 4.14 and dmq → V
m

(x̃l→m) as q →∞

lim inf
q→∞

Gliq ,jq ,kq ,nq+1

(
hq, φ

l
iq ,jq ,kq ,nq

+ ξq, {φli′,jq ,kq ,nq+1}i′ 6=iq + ξq, {φli′,j′,k′,nq
}+ ξq, {dmq }m6=l

)
≥ F l

∗(x, φ
l(x), {V m

(x̃l→m)}m6=l, Dφl(x), D2φl(x)) (4.5.7)

In summary, (4.5.5), (4.5.6) and (4.5.7) give

F l
∗(x, φ

l(x), {V m
(x̃l→m)}m 6=l, Dφl(x), D2φl(x)) ≤ 0

By assumption, V
l
(x) = φl(x), therefore

F l
∗(x, V

l
(x), {V m

(x̃l→m)}m 6=l, Dφl(x), D2φl(x)) ≤ 0

Note that V
l

and V
m

are their own upper semi-continuous envelopes by construction,

thus V
l

is a sub-solution of (3.4.2).

Similarly, the lower semi-continuous function V : ΩL → RM defined component-wise
by

V l(x) = lim inf
h→0
xh→x

V l
h(xh)

is a super-solution of (3.4.2).

By Assumption 4.16, V
l ≤ V l in Ωint ∪ ∂Ωreg. On the other hand, V

l ≥ V l by
construction. Hence we have

V
l
= V l in Ωint ∪ ∂Ωreg.

This immediately implies point-wise convergence to the unique continuous viscosity solu-
tion of (3.4.2). Locally uniform convergence follows by a variation of Dini’s theorem4.

4.6 Summary

The main result in this chapter is the following.

4The classical Dini’s theorem [58] states that if a monotonically increasing sequence of continuous
real-valued functions on a compact topological space converges point-wise to a continuous function, then
the convergence is uniform.
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• We extend the convergence result in [16] to the system of nonlinear HJB PDEs that
arises under our regime switching trade execution model. First, we prove that our
discretization of the system of nonlinear HJB PDEs is monotone, consistent and
infinity-norm stable. Second, we prove in detail that these properties guarantee the
convergence of numerical solutions to the viscosity solution, provided that a strong
comparison principle holds.
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Chapter 5

Mean Variance Optimization:
Numerical Results

This chapter presents numerical results for the Mean Variance optimization problem. We
start by a brief discussion about parameter values in Section 5.1. Numerical results for
the basic Geometric Brownian Motion model are then presented in Section 5.2. Finally,
Section 5.3 presents numerical results for the Regime Switching model.

5.1 Trade Execution Model Parameters

The set of common parameter values shared by all computational examples in the thesis
is summarized in Table 5.1. There are a number of points that are worth noting.

• Our numerical methods are designed to handle the quite general trade execution
model in Section 2.1. The restriction to the parameter values in Table 5.1 is by no
means necessary from a computational point of view.

• Since the drift rate is extremely hard to estimate in practice for a short trading
horizon (e.g. one day), we set η = 0 (we refer reader to [11] for more discussion
about drift rate in the context of optimal trade execution).

• Since interest rate has little effect over a short trading horizon, we set r = 0.

• Recall that we use a linear permanent price impact function (2.1.7) to eliminate
the possibilities of round-trip price manipulation. As such, integrating (2.1.7) w.r.t.

η r κp κs sinit αinit β T vmin Action
0.0 0.0 0.0 0.0 100 1.0 1.0 1/250 -1000/T Sell

Table 5.1: Parameter values shared by all computational examples in the thesis.
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Case σ κt Percentage of Daily Volume
1 1.0 2× 10−6 16.7%
2 0.2 2.4× 10−6 20.0%
3 0.2 6× 10−7 5.0%
4 0.2 1.2× 10−7 1.0%
5 0.2 2.4× 10−8 0.2%

Table 5.2: Computational cases for Section 5.2. The cases have different volatility
and temporary impact factors. Other parameters are the same as that specified in Table
5.1.

time would give total permanent price impact = κpαinit, which is a constant that
does not affect execution optimality in our model. Therefore, we set κp = 0.

• The cost from spread is in practice much smaller than that from temporary price
impact, so we set κs = 0.

• We note that sinit and αinit can be normalized to 100.0 and 1.0 respectively without
loss of generality.

5.2 Geometric Brownian Motion Model

In this section we report numerical results for the Mean Variance optimal trade execution
problem under the basic Geometric Brownian Motion model of Section 2.1.1.

5.2.1 Computational Cases

The computational cases we consider have parameters as listed in Table 5.2. Case 1
corresponds to liquidating a high volatility stock with low liquidity. Case 2 to Case 5
correspond to liquidating a low volatility stock with various levels of liquidity.

Note that we simulate liquidating different percentages of the daily volume by us-
ing different values of κt while keeping the total liquidation volume unchanged. More
specifically, we simulate liquidating Y% of the daily volume by using κt = (1.2× 10−7)Y
while keeping αinit unchanged at unity. The estimate that κt = 1.2× 10−7 corresponds to
liquidating 1% of the daily volume is explained in Appendix F.

5.2.2 Computational Information

In this section we provide brief information in using the PDE method and the Hybrid
(PDE-Monte Carlo) method to compute results of interest. The reader can review the
two methods in Section 3.6.
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Refinement Level Timesteps s nodes b node α nodes v nodes
0 200 369 1 11 8
1 400 737 1 21 15
2 800 1473 1 41 29
3 1600 2945 1 81 57

Table 5.3: Computational grid for Section 5.2. The same grid is used for solving the
HJB PDE (3.2.7) and in the Hybrid method.

Table 5.3 shows the computational grid for solving the PDEs (3.2.7) and (3.2.9), and
for the Hybrid method (for interpolating optimal selling velocities v∗ during Monte Carlo
simulations). We note the following points about the design of the computational grid.
(Readers interested in this should review Section 3.7.)

• The v nodes are required to carry out a linear search to determine optimal con-
trols. Note that we use quite few v nodes to save computational time. Numerical
experiments show that using more v nodes gives little improvement in computing
the value functions.

• There is only one node in the b direction (with value b∗ = −100) because of the use
of similarity reduction; see Section 3.7.1 for details.

• The number of s nodes is significantly more than the number of α nodes. This is
because our parametric curve interpolation scheme (Section 3.7.2) has small errors
in interpolating along the α direction.

In using the Hybrid (PDE-Monte Carlo) method, we always use enough simulations
to reduce sampling error to negligible levels in our reported results. For example, 400, 000
simulations are used for Case 1 where the volatility is large.

5.2.3 Numerical Convergence

Table 5.4 reports convergence information in solving the PDEs (3.2.7) and (3.2.9) for
Case 1. We note that first order convergence rate is observed. The next section contains
additional graphical illustrations of convergence.

Table 5.5 shows that smax is sufficiently large so that the boundary conditions at
s = smax introduce negligible errors.

5.2.4 Efficient Frontiers

The mean variance efficient frontier1 can be computed using either the PDE method or the
Hybrid method discussed in Section 3.6. Figure 5.1 plots the efficient frontiers computed

1Technically, this means YQ as defined in Definition 3.6. We will use the this terminology throughout
this chapter since no confusion should arise. See also Section 5.2.5.
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Refinement Level V U Mean Variance Standard Deviation
0 4.1483 -1.7042 99.5458 1.2439 1.1153
1 4.0109 -1.6842 99.5658 1.1745 1.0838
2 3.9427 -1.6742 99.5758 1.1398 1.0676
3 3.9086 -1.6691 99.5808 1.1226 1.0595

Table 5.4: Convergence table for solving the PDEs (3.2.7) and (3.2.9) for the value
functions V and U , respectively. Mean and variance are calculated from the value func-
tions as discussed in Section 3.6. Results are reported for Case 1 at the risk preference
level γ = 202.5. First order convergence rate is observed for this case (and other cases
not reported), as expected.

Refinement Level smax V U Mean Variance Standard Deviation
3 20,000 3.9086 -1.6691 99.5808 1.1226 1.0595
3 40,000 3.9086 -1.6692 99.5808 1.1223 1.0594

Table 5.5: Convergence test to confirm smax is sufficient large for the Mean Variance
problem. Results for smax = 20, 000 are the same as that reported in Table 5.4. Results
for smax = 40, 000 show that increasing smax makes negligible difference.

using the two methods for each of the computational case in Table 5.2. We plot standard
deviation instead of variance so that the x-axis and the y-axis have the same unit (dollar).

We make the following comments on Figure 5.1 from a computational point of view.

• The same computational grid is used in both the PDE method and the Hybrid
method (for interpolating optimal selling velocities v∗ during Monte Carlo simula-
tions) at each refinement level.

• The frontiers computed by both the PDE method and the Hybrid method converge
to the same limit as the computational grid is refined.

• The frontiers computed by the Hybrid (PDE-Monte Carlo) method converge faster
than those computed by the PDE methods. This may seem counter-intuitive as the
Monte Carlo simulations use the optimal trading strategies determined by the PDE
method. Nevertheless, it is plausible that Monte Carlo simulations produce better
estimates of expected values and standard deviations, which is what our numerical
results suggest.

5.2.5 Verifying Pareto Optimality

Recall the discussion in Section 3.1 about the subtleties in applying the embedding tech-
nique to numerically solve mean variance optimization problems. In this section we use
Theorem 3.23 to verify the Pareto-optimality of the computed frontiers in Figure 5.1. For
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Figure 5.1: Efficient frontiers of Mean Variance-optimal strategies. The frontiers
labeled with PDE are obtained from the PDE value functions. The frontiers labeled
with Hybrid are obtained from Monte Carlo simulations which use the optimal controls
determined by solving the HJB PDE (3.2.7).
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Figure 5.2: Plot of YnumQ for Case 1 in Table 5.2. Numerical solution has essentially
converged at the higher grid refinement levels.

illustration, we reproduce the result in Figure 5.1(a) in Figure 5.2(b); Figure 5.2(a) plots
expected value against variance instead of standard deviation.

Using the terminology of Section 3.1, Figure 5.2(a) plots YnumQ for two grid refinement
levels. It is clear that the numerical solution has essentially converged at the higher
refinement level. From the plot, we see that every point of YnumQ lies on the upper-left
convex hull of YnumQ . Therefore, every point on YnumQ is Pareto-optimal by Theorem 3.23.

As discussed in Section 3.1.5, discretization of γ gives rise to theoretical subtleties in
applying Theorem 3.23 to numerical solutions. For the example plotted above, we believe
that these should not be a concern since

• Although we did not compute YnumQ(γ) for all γ > 0, we have used sufficiently many γ
values to compute YnumQ , i.e. computing YnumQ(γ) for more γ values results in a negli-
gible change to the plotted YnumQ . We also note that mean and variance increases
monotonically with γ.

• The numerical convergence of YnumQ (or S(YnumQ )) is smooth.

• We have used sufficiently many Monte Carlo simulations so that the standard error
is negligible.

All mean variance efficient frontiers in the thesis can be verified to be Pareto optimal
in the same way.
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standard deviation 1.13, and corresponds to γ =
203.50. The optimal normalized velocity at
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(d) This MV-optimal strategy has mean 99.78,
standard deviation 1.46, and corresponds to γ =
209.42. The optimal normalized velocity at the
beginning of the execution is approximately −8.8.

Figure 5.3: MV-optimal strategies for the case σ=1.0, κt = 2 × 10−6 for different
risk preference levels γ, plotted at t = 0 and s = sinit = 100. A normalized velocity of
−1.0 corresponds to the constant liquidation rate −αinit/T . Refinement level 3 is used
to compute the results.
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5.2.6 MV-optimal Trading Strategies

Figure 5.3 plots the MV-optimal strategies in Case 1 for various risk preference levels.
MV-optimal strategies for the other cases have similar properties. We make the following
comments on Figure 5.3 about MV-optimal strategies.

• MV-optimal strategies sell much faster as the stock price increases (becomes more
favorable for selling). We note that similar results have been reported in [51].

• As the risk preference level γ increases, it is optimal to sell slower. Consequently,
the mean increases since trading impact is reduced, and the standard deviation
increases since there is more timing risk.

We make the following comments on Figure 5.3 from a computational point of view.

• Comparing the four subfigures would reveal that the curves are the same curve
scaled differently. This is because different risk preference levels γ correspond to
different initial asset prices under similarity reduction.2

• The curves are not smooth when Normalized Velocity is between −40 and −100.
These very fast initial selling rates correspond to small levels of mean and standard
deviation that are not of practical interest. Moreover, Figure 5.1 shows that the
efficient frontiers are smooth even though the optimal controls are not smooth.

• The non-smoothness observed above is an unavoidable consequence of numerically
determining the optimal selling rate when the objective function is flat and close to
zero. Reader interested in the detail can read Section 5.2.7 and look at the figures
therein for illustrations.

• We have refined the v grid at t = 0 for plotting purposes. The original coarse v grid
is sufficient for computing the value functions accurately.

5.2.7 Illustrations of Computational Techniques

Recall the efficiency-improving techniques discussed in Section 3.7. In this section we use
numerical results to illustrate the improvement.

Figure 5.4 illustrates the value function V computed under a traditional Cartesian grid
and that computed under the scaled grid illustrated schematically in Figure 3.2. Since
the two value functions have very similar values, in the following we sometimes refer to
them as “the value function”.

We make the following comments about Figure 5.4.

2Using equations (3.2.2) and (3.7.2), the optimal velocity at risk preference level γ is
v∗(sinit,−γ/2, αinit, T ) = v∗(−2b∗sinit/γ, b∗, αinit, T ).
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(b) Value function under the scaled grid.

Figure 5.4: Illustrations of value function V for the case σ=1.0, κt = 2 × 10−6,
plotted at t = 0. Note that there is no b grid since similarity reduction is used with
b∗ = −100 (see Section 3.7.1).

• Note that the value function at t = 0 is approximately (min{αs + b∗, 0})2 (see the
discussion in Section 3.7.2). When plotted under a traditional Cartesian grid in
Figure 5.4(a), the value function has a more complicated shape than when plotted
under the scaled grid Figure 5.4(b). In particular, curves of constant wealth, i.e.
{αs+ b = const}, are straight lines under the scaled grid by construction.

• Table 5.4 shows that accuracy in the region where V is small is important since this
region corresponds to the most curved part of the efficient frontier. The scaled grid
has more nodes in the region where V is small.

• There is a large region where V = Vs = Vb = Vα = 0. Optimal selling velocity v is
not unique in this region (the value function V is unique though); see also Section
3.7.2.

Figure 5.5 illustrates the improvement made by the parametric curve interpolation
method by comparing interpolated values on exactly the same discrete value function V l

(with values very similar to that in Figure 5.4).

We make the following comments on Figure 5.5.

• The parametric curve linear interpolation produces a smooth approximation of the
local objective, whereas the standard linear interpolation method has large errors.

• Since the local objective is essentially a portion of the value function, the flatness of
the local objective in Figure 5.5 is clearly a consequence of the flatness of the value
function (see e.g. Figure 5.4(a))
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Figure 5.5: Two methods for interpolating exactly the same discrete value function V l

at the foot of the Lagrangian characteristics, i.e. V l
interp(x̂i,j,k,n(v)). The local objective

V l
interp(x̂i,j,k,n(v)) is plotted as function of the normalized velocity v/T . The parametric

curve interpolation method is a significant improvement compared to the poor accuracy
of standard linear interpolation.

• Here we have used thousands of values of v (the control variable) for illustration
purposes. When solving the HJB PDE, much fewer candidate controls are used (see
Table 5.3). In that case, the standard interpolation method can produce large errors
in estimating both the optimal control and the minimum objective value.

We also note that Figure 5.4 also explains the improvement made by the parametric
curve interpolation method. Figure 5.4(a) shows that the value function changes rapidly
and quadratically when s is fixed but α is changing, i.e. along {s = const}, causing large
α-direction interpolation error for the standard axis-aligned interpolation method. In
contrast, the parametric curve method interpolates (almost) along the curves of constant
wealth, along which the value function changes slowly, as can be clearly seen in Figure
5.4(b). Recall that the curves of constant wealth are equivalent to ScaledAssetPrice =
const by construction.

5.3 Regime Switching Model

In this section we report numerical results for the Mean Variance optimal trade execution
problem under the Regime Switching model of Section 2.1.2.
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Regime σ κt Percentage of Daily Volume Description
A 0.2 2.4× 10−6 20.0% largest impact
B 0.2 6× 10−7 5.0% smallest impact
C 0.2 1.2× 10−6 10.0% 2 × smallest impact
D 0.2 1.5× 10−6 12.5% Average of Regimes A and B

Table 5.6: Underlying regimes for Section 5.3. The underlying regimes differ only in
their temporary price impact factors. Other parameters are the same as that specified
in Table 5.1.

5.3.1 Computational Cases

Table 5.7 lists the Regime Switching computational cases, which are based on individual
underlying regimes specified in Table 5.6.

Note that the underlying regimes in Table 5.6 differ only in their temporary price
impact factors κt. We choose to focus on temporary price impact for the following rea-
sons: (i) it directly affects execution cost and execution strategies; (ii) it is random and
difficult to determine in practice [10]; (iii) as we will see, it is beneficial to adapt execution
strategies to the level of temporary price impact. We refer interested readers to [7] for a
more detailed discussion on the importance of considering stochastic liquidity.

In the context of liquidating large-cap stocks, the temporary impact factors κt consid-
ered in Table 5.6 are near the high end of those encountered in practice, e.g. liquidation
of U.S. government’s stock holdings acquired during the 2008 credit crisis [64]. In the
context of liquidating small-cap stocks, which have much less liquidity on average, our
temporary impact factors are more typical.

The computational cases in Table 5.7 are built on the underlying regimes in Table 5.6.
Case AB-0, AB-4, AB-40 and AB-400 study regime switching between Regime A and
Regime B. Case GREEDY is the same as AB-400, except that selling is allowed in only
Regime B (the regime with smaller impact). Case GREEDY-PROXY, which is just the
single Regime C with no switching, will be used as a proxy to Case GREEDY. In Case
MISSPEC-AVERAGE the true dynamics is that of Case AB-400 and we investigate the
(suboptimal) performance of the optimal strategy for Regime D.

5.3.2 Computational Grid

The computational grid is listed in Table 5.8, which is the same as Table 5.3 for the GBM
model, except that the number of time steps is multiplied by ten. We note that many
time steps are required to compute Case AB-400 and Case GREEDY since there are 400
switchings on average over the trading horizon.
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Case Initial Regimes λ12 = λ21 ζ12 = ζ21 Description
AB-0 A or B 0 1 No Switching
AB-4 A or B 1000 1 4 Switchings/Day
AB-40 A or B 10000 1 40 Switchings/Day
AB-400 A or B 100000 1 400 Switchings/Day

GREEDY A or B 100000 1 sell in only Regime B
GREEDY-PROXY C N/A N/A compare with GREEDY

MISSPEC-AVERAGE D N/A N/A true dynamics is AB-400

Table 5.7: Computational cases for Section 5.3. The underlying regimes are specified
in Table 5.6.

Refinement Level Timesteps s nodes b node α nodes v nodes
0 2000 369 1 11 8
1 4000 737 1 21 15
2 8000 1473 1 41 29

Table 5.8: Computational grid for Section 5.3.
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Figure 5.6: Convergence of numerical solutions for Cases AB-0 and AB-400. Similar
convergence results are observed for other cases in Table 5.7.
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Figure 5.7: Efficient frontiers for switching between Regime A and Regime B. Differ-
ence between “Initial Regime = A” and “Initial Regime = B” diminishes as switching
intensity increases.

5.3.3 Numerical Convergence

Figure 5.6 shows that the efficient frontiers computed3 using Refinement Level 1 and
Refinement Level 2 are essentially the same, for Cases AB-0 and AB-400 (similar results
hold for other cases not shown here.). This means that the numerical solutions have
essentially converged at Refinement Level 2. All subsequent numerical results reported
are computed using Refinement Level 2.

5.3.4 Increasing Switching Intensities

In this subsection we compare Case AB-0, AB-4, AB-40 and AB-400 in Table 5.7 which
differ only in the switching intensities between the two underlying regimes.

5.3.4.1 “Convergence” of Efficient Frontiers in Frequent Switching

Figure 5.7 plots the efficient frontiers for the regime switching cases, when initial regime
(at t = 0) is Regime A or Regime B. Recall that the temporary impact is larger in Regime
A. The following observations can be drawn from Figure 5.7:

3All efficient frontiers in this section are computed using the Hybrid method. We have shown previously
in Section 5.2.4 that frontiers computed by the Hybrid method converge faster than those computed by
the PDE Method.
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• The frontiers “AB-0 - Initial Regime = A” and “AB-0 - Initial Regime = B” rep-
resent the efficient frontiers for the underlying regimes (i.e. Regime A and Regime
B), since there is no switching in Case AB-0. The frontier “AB-0 - Initial Regime
= A” is worse because of larger impact in Regime A.

• As switching intensities increase, the frontiers associated with “Initial Regime =
A” become better. This is because switching to Regime B, which has a lower price
impact, results in larger expected value. For similar reasons, as switching intensities
increase, the frontiers associated with “Initial Regime = B” become worse.

• Consider the differences in the following pairs: AB-0 v.s. AB-4, AB-4 v.s. AB-40,
and AB-40 v.s. AB-400. We note that the difference between AB-4 and AB-40 is
particularly large.

• The frontiers “AB-400 - Initial Regime = A” and “AB-400 - Initial Regime = B”
are very close to each other. As switching becomes extremely frequent, the initial
regime has little effect on the end result.

• By extrapolating the results in Figure 5.7, we can see that as switching intensities go
to infinity, the efficient frontiers will converge to a limiting efficient frontier between
“AB-400 - Initial Regime = A” and “AB-400 - Initial Regime = B”. It is interesting
to know whether the limiting efficient frontier corresponds to that of a single regime,
and what parameters that regime would have. The next section will shed some light
on this problem.

5.3.4.2 Sell More Slowly when Price Impact is Larger

Figure 5.8 compares the optimal trading velocities between Case AB-0 and Case AB-400.
The following observations can be drawn from Figure 5.8:

• The difference between “Initial Regime = A” and “Initial Regime = B” is smaller
in Case AB-0 when there is no switching.

• The difference between “Initial Regime = A” and “Initial Regime = B” becomes
larger when switching intensity is increased. As temporary price impact switches
between Regime A and Regime B, an optimal strategy would try to sell more in
Regime B (which has lower price impact) and less in Regime A. Such “selective
selling” behavior becomes more pronounced as switching intensity becomes larger.
Note that this is in contrast to Figure 5.7, in which the difference between the
frontiers labeled “Initial Regime = A” and “Initial Regime = B” becomes smaller
as switching intensity is increased.

• Despite the above, selling velocity does not drop to zero in “AB-400 Initial Regime
= A”. Therefore the straightforward strategy that simply sells in only the regime
with lower price impact is sub-optimal. We will study such a strategy in detail in
Section 5.3.5.
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Figure 5.8: Optimal selling velocities in Case AB-0 and Case AB-400. A normalized
velocity of −1 corresponds to the liquidation rate −αinit/T = −1/T .

• A careful look would reveal that the selling velocity in “AB-400 Initial Regime =
B” is four times that in “AB-400 Initial Regime = A” in Figure 5.7. Recall that
κt in Regime B is one-fourth of that in Regime A. This relation can be explained
by observing that the optimum of the objective function in the HJB PDE is ap-
proximately linear in 1/κt (holding everything else constant in the HJB PDE), and
noting that the value functions at Regime A or B are approximately the same for
rapid switching.

• The above analysis (regarding optimum of the objective function) is valid for all
risk-aversion levels, and in particular at the risk-neutral limit where expected value
is maximized regardless of standard deviation. By interpreting t as volume time
(rather than clock time), a strategy that sells at a constant rate tracks the volume
weighted averaged price (VWAP). Our results show that even if the objective is to
solely maximize expected value, it is still beneficial to adapt selling speed to the
(constantly changing) level of temporary price impact in the market.

5.3.5 A Look at Greedy Strategies

As discussed in Section 5.3.4.2, when regime switching is frequent, a liquidation strategy
that sells in only the lower-impact regime (henceforth referred to as a greedy strategy) is
suboptimal. We now study in detail the sub-optimality of such greedy strategies.

We can forbid any selling in Regime A (which has a larger price impact) by changing
the set of admissible selling velocities to {0} in our numerical algorithm. Our algorithm
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Figure 5.9: The best greedy strategy is noticeable suboptimal. The efficient frontier
of Regime C (GREEDY-PROXY) is close to that of GREEDY.

will then solve for the best greedy strategy, which we denote by Case GREEDY in Table
5.7.

Figure 5.9(a) (respectively Figure 5.9(b)) shows that even the best greedy strategy
is still noticeably suboptimal compared with the truly optimal strategy, when the initial
regime is Regime A (respectively Regime B).

It is interesting to note in Figure 5.9(a) and Figure 5.9(b) that the efficient frontier
of Case C, which has roughly4 double the temporary impact of the lower-impact regime
(Regime B), is very close to that of Case GREEDY. Intuitively, approximately half of
the time is spent in the lower-impact regime when switching is frequent, thus the optimal
strategy in Case GREEDY needs to “double the selling speed” to finish liquidation in
time. Consequently, “doubling the selling speed” for κt = 6 × 10−7 (Regime B) gives an
effective κt of 2 × 6 × 10−7 = 1.2 × 10−6, which is the price impact in Regime C. This
reasoning is supported by numerical results in Figure 5.10 which shows that the optimal
selling velocity in Case GREEDY is very close to double of that in Case C.

5.3.6 Sub-optimality from Mis-specification

Note that for a strategy that sells at a constant rate, its expected trading impacts under
the following two market dynamics are the same.5

1. Rapid switching between regime A with κt = κAt and regime B with κt = κBt (with
equal switching intensities)

4We say roughly because exp{κtv} ≈ 1 + κtv.
5In fact they are just approximately the same since exp{κtv} is a slightly nonlinear function of κt for

typical values of v. However, the difference is negligible for all practical purposes.
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2. Single regime with κt = (κAt + κBt )/2

Consequently, if the true dynamics follow rapid switching, but no switching is assumed
in measuring κt, one would obtain the “averaged” value of κt from the measurement. Since
the stochastic nature of κt is typically ignored and assumed to be constant in practice
[7, 64], it is important to understand the consequences of such mis-specification.

Recall that κt in Regime D is the average of that of Regimes A and B. In Figure
5.11(a) and Figure 5.11(b), the sub-optimality of MISSPEC-AVERAGE (optimal strat-
egy for Regime D) is seen to be quite large. Moreover, sub-optimality is clear even at
the risk-neutral limit. Although this is not very surprising given the large difference be-
tween Regime A and B, it is still worth noting that MISSPEC-AVERAGE is clearly more
suboptimal than GREEDY (plotted in Figures 5.9). This means that it is better to take
advantage of stochastic changes in temporary price impacts, even in a sub-optimal way
as in GREEDY, than simply assuming constant price impact.

5.4 Summary

The main results in this chapter are the followings.

• MV-optimal strategies sell much faster as the stock price increases.

• It is important to adapt MV-optimal strategies to random changes in temporary
price impact. When the real dynamics is rapid switching between two regimes of
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Figure 5.11: The optimal strategy for Regime D is significantly suboptimal when
the real dynamics is that of Case AB-400, even at the risk-neutral limit. Note that
MISSPEC-AVERAGE is more sub-optimal than GREEDY; see Figure 5.9.

differing price impacts, mis-specifying the dynamics as the non-switching mixture
results in significant sub-optimality.
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Chapter 6

Optimal Trade Execution: Mean
Quadratic Variation Approach

This chapter discusses optimal trade execution using the Mean Quadratic Variation
(MQV) optimization approach, as opposed to the Mean Variance (MV) optimization ap-
proach studied in earlier chapters. A main result in this chapter is the proof in Section 6.5
that the classic strategies in [9] are MQV-optimal, in contrast to the common belief that
they are MV-optimal. This chapter also develops computational methods for determining
MQV-optimal strategies, which will allow us to show in Chapter 7 that MQV-optimal
strategies are poor approximations to MV-optimal strategies in many aspects.

The computational methods for determining MQV-optimal strategies are quite similar
to those for determining MV-optimal strategies. Therefore, our discussion on computa-
tional methods in this chapter will be relatively brief compared to earlier chapters.

6.1 Mean Quadratic Variation Optimization

In this chapter we restrict attention to the single regime case and study MQV-optimal
strategies primarily1 under the Geometric Brownian Motion trade execution model intro-
duced in Section 2.1.1.

6.1.1 Quadratic Variation as a Risk Measure

Formally, the quadratic variation risk measure is defined as

E

[∫ T

0

(
A(t′)dS(t′)

)2

]
. (6.1.1)

1The notable exception is Section 6.5, where we consider the Arithmetic Brownian Motion model to
compare with results in the literature.
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Informally, the risk measure definition (6.1.1) can be interpreted as the (expected)
quadratic variation of the portfolio value process as follows: by expanding the square of
dP (t′) = dB(t′) + d(A(t′)S(t′)), we have∫ T

0

(
A(t′)dS(t′)

)2
=

∫ T

0

(
dP (t′)

)2
, (6.1.2)

when the trading velocity process v(t) is bounded.

From the interpretation (6.1.2), minimizing quadratic variation clearly corresponds to
minimizing the volatility of the portfolio value process. The definition (6.1.1) shows that
quadratic variation takes into account the trading trajectory A(t′) over the whole trading
horizon. This is in contrast with using variance (V ar[B(T )]) as a risk measure, which is
independent of the trading trajectory A(t′) given the end result B(T ). We note that the
idea of using quadratic variation as a risk measure was first suggested in [24].

6.1.2 Mean Quadratic Variation Optimality in the Pareto Sense

To simplify notations, we use X(t) = (S(t), A(t)) to denote the multi-dimensional space-
state process and x = (s, α) to denote a space-state2. We also let Ex,t

v(·)[·] denote expec-

tation conditional on the initial state (x, t) and the control v(·) : (x, t) 7→ v = v(x, t), as
defined in Section 2.2.1.

Definition 6.1. Define the objective functionals Jx,t1

(
v(·)
)

and Jx,t2

(
v(·)
)

by

Jx,t1

(
v(·)
)

= Ex,t
v(·)

[∫ T

t

(
A(t′)dS(t′)

)2

]
,

Jx,t2

(
v(·)
)

= Ex,t
v(·)

[∫ T−

t

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−)

]
.

Definition 6.2. An admissible strategy v∗(·) is defined to be Mean Quadratic Variation
optimal in the Pareto sense if there exists no admissible strategy v(·) such that

1. Jx,t1

(
v(·)
)
≤ Jx,t1

(
v∗(·)

)
, Jx,t2

(
v(·)
)
≥ Jx,t2

(
v∗(·)

)
.

2. At least one inequality in the above is strict.

Remark 6.3. We note that Definition 6.2 does not require the definition of the state
process B(t), i.e. MQV-optimality is still well-defined even if we did not define the state
process B(t) in (2.1.3). For notational simplicity, we define B̃(T ) as a formal3 shorthand

2The notations X(t) and x have slightly different meanings from that in previous chapters. The
underlying meaning should be clear from the context and no confusion should arise.

3There is no state process B̃(t) defined for t ∈ [0, T ].
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as follows

B̃(T ) =

∫ T−

t

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−). (6.1.3)

6.1.3 Scalarization

As we discussed in Section 2.2.1, Pareto-optimality is economically intuitive but mathe-
matically inconvenient because there are two conflicting criteria to optimize. A standard
scalarization reformulation combines the two criteria into a single objective (the subtleties
of the scalarization reformulation was discussed in Chapter 3). More specifically, consider
the following family of objective functionals parametrized by φ > 0

Fφ =

{
Jx,tφ

(
v(·)
)

: v(·) 7→ Ex,t
v(·)

[
B̃(T )− φ

∫ T

t

(
A(t′)dS(t′)

)2
]}

. (6.1.4)

In the notation of (6.1.4), the members (functionals) in the family Fφ have different
initial states (x, t) but the same φ. Given (x, t) and φ, we use v∗x,t,φ(·) to denote an optimal

strategy that maximizes the corresponding functional, i.e. Jx,tφ

(
v(·)
)

.

6.1.4 Time Consistency of Optimal Strategies

Optimal strategies in the above Mean Quadratic Variation formulation optimization
framework are time-consistent [17] in the following sense. Let (x1, t1) be some state
at time t1 and v∗x1,t1,φ(·) be a corresponding optimal strategy. Let (x2, t2) be some other
state at time t2 > t1 and v∗x2,t2,φ(·) be a corresponding optimal strategy. The optimal
strategies are time-consistent in the sense that

v∗x1,t1,φ(x′, t′) = v∗x2,t2,φ(x′, t′) ; t′ ≥ t2 .

6.2 HJB PDE Formulation

In view of the formulation (6.1.4), define

V̂ (s, α, t;φ) = sup
v(·)

{
Es,α,t
v(·)

[
B̃(T )− φ

∫ T

t

(
A(t′)dS(t′)

)2
]}

(6.2.1)

for initial states (x, t) = (s, α, t) and risk aversion parameter φ > 0.

For t < T , let V = V (s, α, τ = T − t;φ) = V̂ (s, α, t;φ). For notational simplicity, we
drop the parameter φ from V henceforth, i.e. we simply write V = V (s, α, τ).

71



The dynamic programming principle is directly applicable4 to (6.2.1). Standard deriva-
tion of the HJB PDE (see Appendix B) gives

Vτ = ηsVs +
σ2s2

2
Vss − φσ2α2s2 + max

v∈[vmin,0]

{
− erτvf(v)s+ g(v)sVs + vVα

}
(6.2.2)

for τ > 0; with initial condition

V (s, α, τ = 0) = lim
v→−∞

αsf(v) (6.2.3)

in accordance with (6.1.3).

In order to plot expected value (Ex,t
v(·)[B̃(T )]) against expected quadratic variation

(Ex,t
v(·)[
∫ T
t

(
A(t′)dS(t′)

)2
]), we will need to know the values of each term in (6.2.1). To

compute only the expected value, let Û(s, α, t) be defined by

Û(s, α, t) = Es,α,t
v∗(·)[B̃(T )] ,

where v∗(·) is found by solving the HJB PDE (6.2.2).

Let U(s, α, τ = T−t) = Û(s, α, t). Following the same steps as used to derive equation
(6.2.2), or simply setting φ = 0, we obtain

Uτ = ηsUs +
σ2s2

2
Uss − erτv∗f(v∗)s+ g(v∗)sUs + v∗Uα . (6.2.4)

We have the initial condition

U(s, α, τ = 0) = lim
v→−∞

αsf(v). (6.2.5)

in accordance with (6.1.3).

6.3 Localization and Boundary Conditions

For computational purposes, we localize the computational domain to ΩL = {s ∈ [0, smax], α ∈
[0, 1], τ ∈ [0, T ]}.

No boundary condition is required for V in (6.2.2) at s = 0 because the Vs and Vss
terms vanish and we simply need to solve

Vτ = max
v∈[vmin,0]

[
vVα

]
. (6.3.1)

4In contrast, the dynamic programming principle cannot be directly applied to the objective functional
(2.2.1) in the (pre-commitment) Mean Variance problem; see Section 3.1.
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Notation Descriptions
x = (s, α, τ) a point in the localized domain

Ωh grid with spacing O(h)
xi,k,n grid node in Ωh

Vh R-valued discrete function defined on Ωh

Vi,k,n value of Vh at grid node
x̂i,k,n(v) = (sî, αk̂, τn) foot of Lagrangian characteristics
Vinterp(x̂i,k,n(v)) linear interpolated value of Vh

Table 6.1: Summary of discretization notations for the MQV problem.

No boundary condition is required at α = 1 since v ≤ 0 and thus the characteristic is
outgoing there.

At α = 0, we impose v = 0 so that (s, α, τ) stays in ΩL. More specifically, this ensures
that we do not allow α to become negative (i.e. a short position).

At s = smax, we make the assumption that V ' C(α, τ)s2, which can be justified by
noting that the term φσ2α2s2 acts as a source term in equation (6.2.2). We also assume
that the effect of any permanent price impact at s = smax can be ignored i.e. g(v) = 0 at
s = smax. This gives

Vτ = (2η + σ2)V − φσ2α2s2 + max
v∈[vmin,0]

[
−erτvf(v)s+ vVα

]
. (6.3.2)

Equation (6.3.2) is clearly an approximation. We will carry out numerical tests with
varying smax to show that the error in this approximation can be made small in regions
of interest.

Similar reasoning suggests that no boundary condition is needed for U in (6.2.4) at
α = 0, α = 1 or s = 0. At s = smax, we assume U ' D(α, τ)s (based on the initial
condition (6.2.5)) and g(v) = 0. Consequently,

Uτ = ηU − erτv∗f(v∗)s+ v∗Uα ; s = smax. (6.3.3)

Again, equation (6.3.3) is clearly an approximation. We will verify that the error of this
approximation is small for sufficiently large smax.

6.4 Discretization

Since much of the discretization is similar to that in the MV problem (Section 3.5), the
discussion will be relatively brief here. Adapting the discretization notations for the MV
problem to the MQV problem, we summarize the discretization notations for the MQV
problem in Table 6.1.
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Define a set of nodes {si}, {αk} and {τn}, where 0 ≤ i ≤ imax, 0 ≤ k ≤ kmax, and
0 ≤ n ≤ nmax. We make τn = n4τ , where 4τ = T/nmax.

Define the differential operator L by

LV = ηsVs +
σ2s2

2
Vss.

Define the Lagrangian differential operator D
Dτ

(v) by

DV

Dτ
(v) = Vτ − Vsg(v)s− Vαv,

which is the rate of change of V along the characteristics s = s(τ), α = α(τ) defined by
the trading velocity v through

ds

dτ
= −g(v)s,

dα

dτ
= −v. (6.4.1)

Equation (6.2.2) can be rewritten as

−LV + min
v∈[vmin,0]

[
DV

Dτ
(v) + erτvf(v)s

]
+ φα2s2σ2 = 0.

We use standard finite difference methods to discretize LV . Let (Lh Vh)i,k,n+1 denote
the discretized version of LV at node xi,k,n+1. LV is discretized using central, forward,
or backward differencing in the s direction to give

(Lh Vh)i,k,n+1 = ali
(
Vi−1,k,n+1

)
−
(
ali + bli

)(
Vi,k,n+1

)
+ bli

(
Vi+1,k,n+1

)
for all i except i = 0, imax,

where the positive coefficient condition

ali ≥ 0 and bli ≥ 0

is guaranteed by the algorithm [28].

Note that LV does not appear in the boundary conditions at s = 0 (6.3.1) and s = smax
(6.3.2).

The discretized version of the Lagrangian derivative DV
Dτ

(v) at node xi,k,n+1 is given by(DV
Dτ

(v)
)
i,k,n+1

=
1

4τ

(
Vi,k,n+1 − Vinterp(x̂i,k,n(v))

)
,

where x̂i,k,n(v) = (sî, αk̂, τn) is the foot of the characteristics when we solve the ODEs
(6.4.1) initially at xi,k,n+1, from τn+1 to τn; and Vinterp(x̂i,k,n(v)) is a linear interpolated
value.
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Since the point x̂i,k,n(v) may go out of ΩL for some v ∈ [vmin, 0], we need to restrict the
set of admissible velocities for the localized discrete problem. Since the details are very
similar to that in Section 3.5.4 for the MV problem; here we just state the discretization
as

min
v∈[vmin,0]

{(DV
Dτ

(v)
)
i,k,n+1

}
≈ min

v∈V̂h,res(xi,k,n+1)

{ 1

4τ

(
Vi,k,n+1 − Vinterp(x̂i,k,n(v))

)}
,

where V̂h,res(xi,k,n+1) is a discrete set of restricted admissible velocities.

The final discretization is

0 = min
v∈V̂h,res(xi,k,n+1)

{ 1

4τ

(
Vi,k,n+1 − Vinterp(x̂i,k,n(v))

)
+ erτn+1vf(v)si

}
− (Lh Vh)i,k,n+1 + φα2

ks
2
iσ

2. (6.4.2)

We will use two methods to determine the minimum in (6.4.2). The first method uses
a linear search, which guarantees convergence to the global minimum. The second method
uses a one dimensional optimization algorithm [22] to determine the optimal control. This
has the advantage of being less computationally expensive. The drawback, however, is
that one dimensional optimization methods are not guaranteed to converge to the global
minimum. We will carry out numerical tests using both methods.

Our discretization of the HJB PDE (6.2.2) is very similar to that of (3.2.7) in the
Mean Variance problem. By following similar steps in Chapter 3 and 4, we can show
that our discretization of (6.2.2) is monotone, consistent and stable. Assuming a strong
comparison principle for (6.2.2), numerical solutions converge to the viscosity solution by
the result in [16].

6.5 Arithmetic Brownian Motion Model

In the context of optimal trade execution, the trading horizon T is typically short (e.g. one
day). Therefore, it is typical in the literature, see e.g. [9, 60], to approximate Geometric
Brownian Motion (GBM) by Arithmetic Brownian Motion (ABM). In this section we use
the ABM model in the Mean Quadratic Variation framework to compare with the analytic
result in the seminal work [9]. We did not use the ABM model in the Mean Variance
framework because there is no corresponding analytic result in that framework.

6.5.1 Trade Execution Model

Recall that the basic GBM model was introduced in Section 2.1.1. This section describes
our ABM optimal execution model based on modifications to the GBM model.

The asset price dynamics (2.1.4) is modified to the ABM process

dS(t) =
(
η + g(v)

)
S(0) dt+ σS(0) dW(t) . (6.5.1)
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In addition, we assume that temporary price impact is asset-price-independent, i.e.

Sexec(v, t) = S(t) + S(0)h(v), (6.5.2)

where

h(v) = κs sgn(v) + κtv, (6.5.3)

to be in accordance with [9]. Note that Sexec(v, t) may be negative for v → −∞, i.e.
(6.5.3) is valid only for small trading rates.

Temporary impact in the ABM model (6.5.2) - (6.5.3) is related to that in the GBM
model (2.1.5) - (2.1.6) as follows. Assuming β = 1, κt|v| � 1 and κtκs � 1, temporary
impact of the form (2.1.6) is approximately

f(v) ≈ 1 + κs sgn(v) + κtv

by Taylor’s expansion. By (2.1.5), the price impact (in dollar terms) is

Sexec(v, t)−S(t) = f(v)S(t)−S(t) = S(t)[κs sgn(v)+κtv] ≈ S(0)[κs sgn(v)+κtv] (6.5.4)

for S(t) ≈ S(0). Note that (6.5.4) now agrees with (6.5.2) - (6.5.3).

The permanent price impact function in the ABM model takes the same form (2.1.7)
as that in the GBM model, i.e.

g(v) = κpv. (6.5.5)

We also assume r = 0 in the ABM model, since trades are usually executed within
one day.

6.5.2 HJB PDE Formulation

We define the value functions V and U for the ABM model as for the GBM model. A
derivation similar to that in the GBM case gives the HJB PDE

Vτ = ηS(0)Vs +
σ2S(0)2

2
Vss − φσ2α2S(0)2 + max

v∈[vmin,0]

[
v(Vα − s)− vh(v)S(0) + g(v)S(0)Vs

]
,

(6.5.6)

where h(v) and g(v) were defined in (6.5.3) and (6.5.5).

Note that the explicit s dependence in (6.5.6) appears only in the term v(Vα− s). Let

Ṽ (s, α, τ) = V (s, α, τ)− αs. (6.5.7)

76



Substituting (6.5.7) into (6.5.6) gives

Ṽτ = ηS(0)(Ṽs + α) +
σ2S(0)2

2
Ṽss − φσ2α2S(0)2 + max

v∈[vmin,0]

[
vṼα − vh(v)S(0) + g(v)S(0)

(
Ṽs + α

)]
.

(6.5.8)

From (6.5.3) and (6.1.3), the initial condition for V is

V (s, α, τ = 0) = lim
v→−∞

α(s+ S(0)h(v)). (6.5.9)

Therefore, from (6.5.7) we obtain

Ṽ (s, α, τ = 0) = lim
v→−∞

α(s+ S(0)h(v))− αs = lim
v→−∞

αS(0)h(v). (6.5.10)

Now, note that (6.5.8) has no explicit s dependence, and that the initial condition
(6.5.10) has no s dependence. It therefore follows that (6.5.8) with initial condition
(6.5.10) can be satisfied by a function

V̄ (α, τ) = Ṽ (s, α, τ), (6.5.11)

where V̄ (α, τ) satisfies the PDE

V̄τ = ηS(0)α− φσ2α2S(0)2 + max
v∈[vmin,0]

[
vV̄α − vh(v)S(0) + g(v)S(0)α

]
, (6.5.12)

with initial condition

V̄ (α, τ = 0) = lim
v→−∞

αS(0)h(v). (6.5.13)

6.5.3 Analytic Results

Proposition 6.4. Assuming Arithmetic Brownian Motion (6.5.1), asset-price-independent
temporary price impact (6.5.2), zero interest rate, and initial condition (6.5.9), an optimal
control for equation (6.5.6) is static, even when optimization is over the class of dynamic
strategies.

Proof. An optimal control for equation (6.5.6) is also an optimal control for equation
(6.5.12), which is independent of s, i.e. v∗(·) : (α, τ) 7→ v∗, hence an optimal control for
problem (6.5.6) is also independent of s, i.e. static.

In general, the PDE (6.5.12) has no known analytical solution. This section gives
a special case analytical solution under the additional assumptions of zero drift, uncon-
strained control and linear price impact functions. More formally, we make the following
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set of common assumptions5 which gives the result in Proposition 6.6.

Assumption 6.5.

dS(t) = g(v)S(0)dt+ σS(0)dW(t),

r = 0,

h(v) = κs sgn(v) + κtv,

g(v) = κpv,

v ∈ (−∞,∞)

Proposition 6.6. Under Assumption 6.5, an optimal control for (6.5.12) is identical with
the (continuous equivalent of the) static strategy in [9, 5], i.e.

v∗(α, τ) = −αK cosh (Kτ)

sinh (Kτ)
(6.5.14)

where K =
√
φσ2S(0)/κt.

In addition, the value function V̄ (α, τ) is

V̄ = E + φF , (6.5.15)

where

E =
S(0)α (2κsf1(τ)2 + ακpf1(τ)2 + αφσ2S(0) τ + ακtKf1(τ)f2(τ))

−2f1(τ)2
,

F =
σ2S(0)2α2 (−f3(τ)2f1(τ)− f1(τ) + 2 τ Kf3(τ))

4Kf1(τ)2f3(τ)
,

f1(τ) = sinh(Kτ) ,

f2(τ) = cosh(Kτ) ,

f3(τ) = exp(Kτ) .

(6.5.16)

Note that if κs = 0, then both E and F , and hence V̄ are proportional to α2.

Proof. Under Assumption 6.5, the PDE (6.5.12) has the form

V̄τ = −φσ2α2S(0)2 + max
v∈(−∞,∞)

[
vV̄α −

(
κsv sgn(v) + κtv

2
)
S(0) + κpvS(0)α

]
. (6.5.17)

Using an initial condition that is consistent with (6.5.13) for V̄ (α, τ) gives

V̄ (α, 0) =

{
0 α = 0

−∞ otherwise
(6.5.18)

5Note that the assumption of unconstrained control may not be desirable as it allows buying shares
during stock liquidation.
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by using the definitions (6.5.7) and (6.5.11). It can be verified by straightforward cal-
culations that the value function (6.5.15) and the control (6.5.14) solves the HJB PDE
(6.5.17) with initial condition (6.5.18).

In general, we would like to restrict v from taking all real values. For example, in the
case of selling, a natural constraint is v ∈ [vmin, 0], as in this thesis. This constraint may
take effect if η 6= 0, in which case the analytical solution will no longer be valid.

6.6 Computing Results of Practical Interest

In this section we briefly discuss using the PDE method and the Hybrid (PDE-Monte
Carlo) method to compute results of practical interest about Mean Quadratic Variation-
optimal strategies. The PDE method and the Hybrid method are introduced in Section
3.6 in the context of Mean Variance optimization.

The PDE method can be used to obtain the mean quadratic variation efficient frontier
by straightforward evaluations of value functions. The PDE method requires solving the
linear PDE (6.2.4) in addition to solving the nonlinear HJB PDE (6.2.2). For each value
of risk aversion level φ, the corresponding point on the frontier is given by the formula

Es,α,t=0
v∗(·) [B̃(T )] = U(s, α, τ = T ;φ)

Es,α,t=0
v∗(·)

[ ∫ T

0

(
A(t′)dS(t′)

)2
]

=
U(s, α, τ = T ;φ)− V (s, α, τ = T ;φ)

φ
,

where the optimal control v∗(·) found by solving V is used in solving U .

In the Hybrid method, the optimal control v∗(·) is first obtained by solving the HJB
PDE (6.2.2). Monte Carlo simulations are then carried out to estimate quantities of
interest, using the optimal control v∗(·) (see Appendix E for details). An advantage of
the Hybrid method is that we can estimate interest statistics that are difficult to obtain
directly from the value functions.

To plot expected value against risk in the same unit, we define QV Risk as the square
root of (expected) quadratic variation, i.e.

QV Risk =

√
Es,α,t=0
v∗(·)

[ ∫ T

0

(
A(t′)dS(t′)

)2
]
,

which has the same unit (dollar) as Es,α,t=0
v∗(·) [B̃(T )].

6.7 Numerical Results

In this section we report numerical results for the Mean Quadratic Variation optimal
trade execution problem under the basic Geometric Brownian Motion model of Section
2.1.1.
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Refinement Level Timesteps s nodes α nodes v nodes
0 800 67 41 30
1 1600 133 81 59
2 3200 265 161 107
3 6400 529 321 213

Table 6.2: Computational grid for Mean Quadratic Variation optimization. The
same grid is used for solving the PDEs (6.2.2) and (6.2.4), and for the Hybrid method.

Refinement Level V U (Mean) Quadratic Variation QV Risk
0 98.4268 99.2824 0.8556 0.9250
1 98.4403 99.2876 0.8473 0.9205
2 98.4472 99.2902 0.8431 0.9182
3 98.4506 99.2916 0.8410 0.9170

Table 6.3: Convergence table for solving the PDEs (6.2.2) and (6.2.4) for the value
functions V and U , respectively. The one-dimensional optimization method is used
in local optimization. Quadratic variation and QV Risk are calculated from the value
functions as discussed in Section 6.6. Results are reported for Case 1 at the risk aversion
level φ = 1. First order convergence rate is observed for this case (and other cases not
reported), as expected.

The computational cases we consider have the same parameters as those listed in Table
5.2. In this section we will present results for only Case 1 in Table 5.2. Results for other
cases will be reported in Chapter 7 when we compare MV-optimal and MQV-optimal
strategies.

Table 6.2 shows the computational grid for solving the PDEs (6.2.2) and (6.2.4), and
for the Hybrid method (for interpolating optimal selling velocities v∗ during Monte Carlo
simulations).

We note that the v nodes are used only in the linear search method; they are not
needed in the one-dimensional optimization method (see the end of Section 6.4). We will
use the one-dimensional optimization method since it is faster. It will be shown that the
two methods have similar accuracy.

Table 6.3 reports convergence information in solving the PDEs (6.2.2) and (6.2.4) for
Case 1 in Table 5.2. We note that first order convergence rate is observed.

Table 6.4 shows that smax is sufficiently large so that the boundary conditions at
s = smax introduce negligible errors.

The mean quadratic variation efficient frontier can be computed using either the PDE
method or the Hybrid method discussed in Section 6.6. Figure 6.1 plots the efficient
frontiers computed using the two methods for Case 1 in Table 5.2. We make the following
comments on Figure 6.1 from a computational point of view.
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Refinement Level smax V U (Mean) Quadratic Variation QV Risk
1 5,000 98.4403 99.2876 0.8473 0.9205
1 10,000 98.4403 99.2876 0.8473 0.9205

Table 6.4: Convergence test to confirm smax is sufficient large for the Mean Quadratic
Variation problem. Result for smax = 5, 000 is the same as that reported in Table 6.3.
Result for smax = 10, 000 shows that increasing smax makes negligible difference.
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Hybrid Method
Refinement Level 0

PDE Method
Refinement Level 1

Hybrid Method
Refinement Level 1

PDE Method 
Refinement Level 0

Figure 6.1: Efficient frontier of Mean Quadratic Variation optimal strategies for
Case 1. The frontiers labeled with PDE are obtained from the PDE value functions.
The frontiers labeled with Hybrid are obtained from Monte Carlo simulations which use
the optimal controls determined by solving the HJB PDE (6.2.2).
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Figure 6.2: An optimal mean quadratic variation strategy for Case 1 in Table 5.2,
plotted at t = 0 and s = sinit = 100. This strategy has mean 99.29, QV Risk 0.93, and
corresponds to the risk aversion level φ = 1. A normalized velocity of −1.0 corresponds
to the constant liquidation rate −αinit/T . Refinement level 1 is used to compute the
results.

• Numerical convergence has essentially been reached at Refinement Level 1. There
is little change between the frontiers at Level 0 and those at Level 1, especially for
the Hybrid method.

• The comments we made in Section 5.2.4 on Figure 5.1 for the Mean Variance problem
are all applicable here.

Figure 6.2 plots the MQV-optimal strategies in Case 1 for the risk aversion level φ = 1.
We note that the strategy sells slightly faster as the stock price increases (becomes more
favorable for selling). MQV-optimal strategies for the other cases (and other risk aversion
levels) have similar properties.

Figure 6.3 shows that the one-dimensional method has similar accuracy as the linear
search method.

6.8 Summary

The main results in this chapter are the followings.

• The classic strategies in [9] are MQV-optimal, in contrary to the common belief that
they are MV-optimal.

• MQV-optimal strategies sell slightly faster as the stock price increases.
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Figure 6.3: The efficient frontier computed using the one-dimensional method is
essentially the same as that computed using the linear search method.
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Chapter 7

Comparing Mean Variance and
Mean Quadratic Variation

In this chapter we compare Mean Variance (MV) optimal strategies with Mean Quadratic
Variation (MQV) optimal strategies. We demonstrate that MV-optimal strategies are
quite different from MQV-optimal strategies in many aspects. These differences are in
stark contrast to the common belief that MQV-optimal strategies are similar to, or even
the same as, MV-optimal strategies. This is important in the practice of trade execution
since performance is measured in terms of MV-optimality (see Section 2.2), whereas the
classic strategy in [9], which is the industry standard [44, 42, 40], is actually MQV-optimal
(see Section 6.5).

7.1 MQV as an Approximation to MV

So far we have considered Mean Variance optimization and Mean Quadratic Variation
optimization as two separate approaches and on equal footing. In this section we will see
that the two approaches are closely related, and that it is natural to consider the MQV
approach as an approximation to the MV approach.

The key connection between MV and MQV is that variance is the same as expected
quadratic variation for static (asset price independent) strategies, i.e.

V arx,t=0
v(·) static

[
B(T )

]
= Ex,t=0

v(·) static

[∫ T

0

(A(t′)dS(t′))
2

]
, (7.1.1)

under some additional mild assumptions; see Appendix D for details.

From a practical point of view, there is no reason to restrict admissible strategies to
static strategies. For dynamic strategies, variance is (of course) not the same as expected
quadratic variation. However, in view of the equality (7.1.1) in the above special case, it
is natural to consider using expected quadratic variation as an approximation to variance,
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i.e.

V arx,t=0
v(·)

[
B(T )

]
≈ Ex,t=0

v(·)

[∫ T

0

(A(t′)dS(t′))
2

]
. (7.1.2)

The approximation (7.1.2) is mathematically convenient, since we have seen that the MQV
problem is easier to solve than the MV problem. In particular, the dynamic programming
principle can be directly applied to the MQV problem but not to the MV problem (see
Section 3.1). Nevertheless, the approximation (7.1.2) can be quite poor for practical
parametric cases; see the numerical results in this chapter.

7.2 Optimality of the Classic Strategy

This section explains in what sense the classic strategy (6.5.14) in [9] is optimal or not
optimal. Before we explain the subtleties, let us first summarize the key points. For ease
of exposition, we denote by S the classic strategy (6.5.14) in [9].

1. MV-optimal strategies are dynamic (s-dependent) under (a) the GBM model; and
(b) the ABM model.

2. S is static (s-independent).

3. By the above, S is not MV-optimal. We remark that S is used as the industry
standard, however, even though performance is measured in terms of MV-optimality.

4. No other static strategy has better MV-performance than S (in the sense of Defini-
tion 2.3).

5. S is MQV-optimal under the ABM model. No other strategy, including dynamic
strategies, has better MQV-performance better than S (in the sense of Definition
6.2).

6. MQV-optimal strategies are dynamic under the GBM model. Thus S is not MQV-
optimal under the GBM model.

In fact we have shown points 1(a), 2, 3, 5 and 6 in previous chapters. Point 1(a)
is illustrated in the numerical results in Chapter 5. Point 2 is clear from the formula
(6.5.14). Point 5 is proved in Section 6.5. Point 6 is illustrated in the numerical results
in Chapter 6. Point 1(b) is the result in [12, 50].

Point 4 is in fact the main result in [9], which optimizes MV-performance over the class
of static strategies. Interestingly, through the equality (7.1.1), the paper [9] is actually
adopting the MQV objective function! However, we emphasize that the paper [9] does
not show that the strategy S is MQV-optimal over the class of dynamic strategies; we
prove the MQV-optimality of S as a consequence of the result in Section 6.5.
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Remark 7.1 (Static as a restriction or as a property). It should be clear at this point that
it is important to distinguish between whether the use of the concepts static or dynamic
refer to the class of admissible strategies, or to a property of an optimal strategy. In
particular, even if optimization is over the class of dynamic strategies, an optimal control
may turn out to be static. As explained above, the classic strategy in [9] is a case in point.
Another example can be found in [60].

7.3 Numerical Results

In this section we compare MV-optimal strategies and MQV-optimal strategies.

We consider all five computational cases listed in Table 5.2. In computing MV-optimal
strategies and MQV-optimal strategies, we use the computational grids specified in Table
5.3 and Table 6.2, respectively.

We will compare MV-optimal strategies and MQV-optimal strategies using 800 and
1600 timesteps1. We have previously shown that the numerical solutions have essentially
converged at 1600 timesteps for both MV and MQV.

We will compare the two strategies using the Hybrid (PDE-Monte Carlo) method.
Monte Carlo simulations allow us to estimate the QV Risk of MV-optimal strategies and
standard deviation of MQV-optimal strategies; these estimates cannot be obtained di-
rectly from the value functions. Note also that the frontiers computed by the Hybrid
method converge faster to the limit solution than those computed by the PDE method,
as shown earlier in Chapter 5 and Chapter 6.

7.3.1 Comparing the Two Risk Measures

The left subplots in Figures 7.1 to 7.5 compare MV-optimal and MQV-optimal strategies
using standard deviation as the risk measure. The right subplots in Figures 7.1 to 7.5
compare MV-optimal and MQV-optimal strategies using QV Risk as the risk measure.

Several conclusions can be drawn from the comparisons.

• As one would expect, in using standard deviation as the risk measure, MV-optimal
strategies dominate MQV-optimal strategies.

• Conversely, in using QV Risk as the risk measure, MQV-optimal strategies dominate
MV-optimal strategies.

• It appears that the MV-optimal strategies perform reasonably well using either
risk measure. The difference between the MV-optimal strategies and MQV-optimal
strategies is most pronounced at lower risk levels.

1These correspond to Refinement Level 2 and 3 in Table 5.3 for MV, and to Refinement Level 0 and
1 in Table 6.2.

86



Standard Deviation

E
x

p
e

c
te

d
 V

a
lu

e

0 1 2 3
98

98.5

99

99.5

100

Mean Quad Var (Hybrid) 
800 time steps

Mean Var (Hybrid) 800 time steps

Mean Var (Hybrid) 1600 time steps

Mean Quad Var (Hybrid) 
1600 time steps

QV Risk

E
x

p
e

c
te

d
 V

a
lu

e

0 1 2 3
98

98.5

99

99.5

100

Mean Quad Var (Hybrid) 
800 time steps

Mean Var (Hybrid) 800 time steps

Mean Var (Hybrid) 1600 time steps

Mean Quad Var (Hybrid) 
1600 time steps

Figure 7.1: Comparison between MV-optimal strategies and MQV-optimal strategies
for the case σ=1.0, κt = 2× 10−6.
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Figure 7.2: Comparison between MV-optimal strategies and MQV-optimal strategies
for the case σ=0.2, κt = 2.4× 10−6.
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Figure 7.3: Comparison between MV-optimal strategies and MQV-optimal strategies
for the case σ=0.2, κt = 6× 10−7.
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Figure 7.4: Comparison between MV-optimal strategies and MQV-optimal strategies
for the case σ=0.2, κt = 1.2× 10−7.
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Figure 7.5: Comparison between MV-optimal strategies and MQV-optimal strategies
for the case σ=0.2, κt = 2.4× 10−8.

Market practitioners may consider expected implementation shortfall (the relative dif-
ference between expected value and initial stock price) of 10 basis points to be significant.
To achieve small implementation shortfall, liquidation must be done slowly to reduce
trading impact, at the expense of increasing timing risk. Striking a good balance is im-
portant here, as it might not be wise to aim at an expected shortfall of 10 bps if the risk
(as measured by either standard deviation or QV Risk) is several times larger. Our plots
show that risk can be several times of a 10 bps expected shortfall in the parametric cases
(a) σ = 1.0, 16.7% daily volume; (b) σ = 0.2, 20% daily volume; and (c) σ = 0.2, 5%
daily volume.

The analysis above suggests that one way to choose a risk aversion level on an efficient
frontier is to choose a ratio between the implementation shortfall and risk. Alternatively,
a common practice among market practitioners is to pick the “corner of the frontier”.
Our plots show that picking the corner can result in expected implementation shortfall
much larger than 10 bps.

7.3.2 Comparison of Strategies for Similar Expected Values

In this section we compare MV-optimal strategies with MQV-optimal strategies that give
similar expected values. In particular, we focus on the parametric case σ = 1, κt = 2×10−6

since the differences are more apparent when volatility and pricing impacts are larger.

Figures 7.6 to 7.9 correspond to comparisons across four horizontal lines in Figure
7.1, with four different expected values chosen to represent the more interesting part of
the frontiers. For example, in Figure 7.6 both strategies give an expected value of around
99.29. For the MV-optimal strategy, this corresponds to γ = 199.82; for the MQV-optimal
strategy, this corresponds to φ = 1.
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7.3.2.1 Common Observations for Each Level of Expected Value

In each of Figures 7.6 to 7.9, the subplots labeled (a) and (b) compare the optimal trading
velocities at t = 0, where we normalized the trading velocities so that a normalized
velocity of −1.0 corresponds to the constant liquidation rate −αinit/T . It is clear that
while both strategies sell faster as price becomes more favorable2, the sensitivity in the
MV-optimal strategy is much more non-linear. More specifically, around the initial asset
price sinit = 100, the optimal control for the MV-optimal is a curve with rapidly changing
slope whereas that for the MQV-optimal strategy is more or less a straight line.

In each of Figures 7.6 to 7.9, the subplots labeled (c) and (d) compare the mean
(E[A(t)]) and standard deviation (Std[A(t)]), respectively, of the liquidation profiles A(t)
of the MV-optimal strategies and the MQV-optimal strategies over the trading horizon. It
is interesting to note that while the mean profiles are very similar, the standard deviation
profile of the MV-optimal strategy is much larger than that of the MQV-optimal strategy.
This reflects the fact that the MV-optimal strategy is much more sensitive to change in
asset price during the liquidation, which is also suggested by the strategy subplots. We
also note that the mean profiles are convex, i.e. the mean liquidation rate is always
decreasing over time, as expected.

7.3.2.2 Differences among Different Levels of Expected Values

As we move from Figure 7.6 to 7.9, the expected value is increasing, and so as the standard
deviation and QV Risk. By comparing subplots (a) and (b), we see that the optimal
selling rates become slower as expected value increases. Recall that the mean profiles are
convex, so that the mean liquidation rate is always decreasing over time. By comparing
subplots (c), we observe that the convexities of the mean liquidation profiles diminish as
expected value increases, and the mean liquidation profiles approach a straight line. By
comparing subplots (d), we observe that the mean-variance strategy becomes less variable
as expected value increases.

7.4 Summary

The main result in this chapter is the following.

• MQV-optimal strategies are poor approximations to MV-optimal strategies in many
aspects. In particular, for the same variance, an MQV-optimal strategy can have
significantly smaller expected revenue compared to an MV-optimal strategy.

2For the buying case, mean-variance optimal strategies would buy faster as price becomes more favor-
able (drops). For both selling and buying, mean-variance optimal strategies trade faster as price becomes
more favorable; this property is called aggressive in the money [45]. Mean variance-optimal strategies
are aggressive in the money because this introduces an anti-correlation between trading revenue and
trading impacts [51]. Mean-quadratic-variation optimal strategies are different: for the buying case,
mean-quadratic-variation optimal strategies would buy faster as price increases (unfavorable), to reduce
quadratic variation of the remaining position; we have verified this numerically.
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Figure 7.6: Comparison between MV-optimal strategy and MQV-optimal strategy for
the case σ=1.0, κt = 2× 10−6. The MV-optimal strategy plotted has mean 99.29, stan-
dard deviation 0.68, QV Risk 0.93, and corresponds to γ=199.82. The MQV-optimal
strategy plotted has mean 99.29, standard deviation 0.82, QV Risk 0.84, and corresponds
to φ=1. 1600 time steps are used to compute the results.
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Figure 7.7: Comparison between MV-optimal strategy and MQV-optimal strategy for
the case σ=1.0, κt = 2× 10−6. The MV-optimal strategy plotted has mean 99.50, stan-
dard deviation 0.90, QV Risk 1.05, and corresponds to γ=201.30. The MQV-optimal
strategy plotted has mean 99.50, standard deviation 0.98, QV Risk 1.00, and corresponds
to φ=0.5. 1600 time steps are used to compute the results.
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Figure 7.8: Comparison between MV-optimal strategy and MQV-optimal strategy for
the case σ=1.0, κt = 2× 10−6. The MV-optimal strategy plotted has mean 99.65, stan-
dard deviation 1.13, QV Risk 1.21, and corresponds to γ=203.50. The MQV-optimal
strategy plotted has mean 99.65, standard deviation 1.17, QV Risk 1.19, and corresponds
to φ=0.25. 1600 time steps are used to compute the results.
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Figure 7.9: Comparison between MV-optimal strategy and MQV-optimal strategy for
the case σ=1.0, κt = 2× 10−6. The MV-optimal strategy plotted has mean 99.78, stan-
dard deviation 1.46, QV Risk 1.49, and corresponds to γ=209.42. The MQV-optimal
strategy plotted has mean 99.78, standard deviation 1.48, QV Risk 1.49, and corresponds
to φ=0.1. 1600 time steps are used to compute the results.
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Chapter 8

Conclusions and Future Work

From the computational point of view, we developed efficient methods to solve for opti-
mal trade execution strategies based on discretization of nonlinear HJB PDEs. We took
particular care in rigorously proving that the numerically computed efficient frontier is
indeed the complete Pareto-efficient frontier by (i) extending the result in [47] on the em-
bedding technique to non-convex mean variance optimization problem, and in particular
proving a simple post-processing algorithm guarantees Pareto-optimality of the computed
frontier; and (ii) extending the result in [16] to prove convergence of numerical solutions
to viscosity solution of a system of nonlinear HJB PDEs.

From the optimal trade execution point of view, we illustrated in detail many in-
teresting properties of Mean Variance-optimal strategies (which align with performance
measurement) and their unexpected differences from Mean Quadratic Variation-optimal
strategies. These differences should interest practitioners since MQV-optimal strategies
are used widely in practice to approximate MV-optimal strategies, but with little under-
standing of such differences.

8.1 Future Work

We suggest the following directions for future work.

• Stochastic trading impact was restricted to switching between two temporary price
impact factors in the thesis. It would be interesting to adopt a more realistic model
of stochastic trading impact based on high frequency analysis of trading data.

• The effect of temporary trading impact is assumed to be instantaneous in the cur-
rent work. Empirical analysis of limit order books suggest that trading impact is
transient, i.e. the impact decays over time.

• It would be interesting to consider the simultaneous liquidation of multiple assets
that have correlated price movements.
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Appendix A

Deriving the System of HJB PDEs
for the Mean Variance Problem

In this section, we derive the system of HJB PDEs (3.2.7) from a dynamic programming
principle.

By a slight abuse of notation, let us denote by V

V = V (s, b, α, l, t) = inf
v(·)

Es,b,α,l,t
v(·)

[
B(T )2

]
. (A.0.1)

Note also that the original definition (3.2.3) uses the backward time τ as the last variable.

For notational simplicity, we define X(t) = (S(t),B(t), A(t), L(t)) and x = (s, b, α, l).
We also use X(t) = x to denote (S(t) = s,B(t) = b, A(t) = α,L(t) = l). We also write
x+4x = X(t+4t). Using these notations, we can rewrite (A.0.1) as

V = inf
v(·)

Ex,t
v(·)

[
B(T )2

]
,

By using the law of iterated expectation, i.e.

Ex,t
v(·)

[
Ex+4x,t+4t
v(·)

[
·
]]

= Ex,t
v(·)

[
·
]
,

we have

V (s, b, α, l, t) = inf
v(·)

Ex,t
v(·)

[
B(T )2

]
= inf

v(·)
Ex,t
v(·)

[
Ex+4x,t+4t
v(·)

[
B(T )2

]]
= inf

v(·)
Ex,t
v(·)

[
V (s+4s, b +4b, α +4α,L(t+4t), t+4t)

]
, (A.0.2)

where the last equality follows by the optimality of the control.
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Let 4V = V (s+4s, b +4b, α+4α,L(t+4t), t+4t)−V (s, b, α, l, t), we can rewrite
(A.0.2) as

0 = inf
v(·)

Ex,t
v(·)

[
4V

]
(A.0.3)

By Ito’s Lemma,

Ex,t
v(·)

[
4V

]
=Ex,t

v(·)

[
Vt4t+ Vs4s+

1

2
Vss(4s)2 + Vb4b + Vα4α +

M∑
m=1
m 6=l

λlm4t
(
V (ζ lms, b, α,m, t)− V (s, b, α, l, t)

)]
(A.0.4)

From (2.1.12), (2.1.14) and (3.2.2)

Ex,t
v(·)[4s] =

(
ηl + gl(v)−

M∑
m=1
m 6=l

λlm(ζ lm − 1)
)
s 4t

Ex,t
v(·)[(4s)

2] = (σls)24t

Ex,t
v(·)[4b] = −er(T−t)vf l(v)s4t

Ex,t
v(·)[4α] = v4t (A.0.5)

Substituting (A.0.5) into (A.0.4), we have

Ex,t
v(·)

[
4V

]
=4t

(
Vt +

(
ηl + gl(v)−

M∑
m=1
m 6=l

λlm(ζ lm − 1)
)
sVs +

(σls)2

2
Vss +−er(T−t)vf l(v)sVb + vVα

+
M∑
m=1
m6=l

λlm
(
V (ζ lms, b, α,m, t)− V (s, b, α, l, t)

))
(A.0.6)

By substituting (A.0.6) into (A.0.3), dividing by 4t, and then changing back to the
backward time variable τ , we will have derived the system of nonlinear HJB PDEs (3.2.7).
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Appendix B

Deriving the HJB PDE for the Mean
Quadratic Variation Problem

In this appendix, we derive the HJB PDE (6.2.2) from a dynamic programming principle.

For the asset-price dynamics (2.1.4) in our trade execution model,∫ T

t

(A(t′) dS(t′))
2

=

∫ T

t

σ2A(t′)2S(t′)2 dt′ . (B.0.1)

Using the definitions (6.1.4), (6.2.1) and (6.1.3), as well as (B.0.1) we have

V̂ (s, α, t;φ)

= sup
v(·)

Es,α,t
v(·)

[
B̃(T )− φ

∫ T

t

(A(t′) dS(t′))
2

]
= sup

v(·)
Es,α,t
v(·)

[∫ T

t

(
er(T−t

′)
(
− vSexec(v, t′)

)
− φσ2A(t′)2S(t′)2

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−)

]
(B.0.2)

Using the law of iterated expectation on (B.0.2), i.e.

Es,α,t
v(·)
[
Es+∆s,α+∆α,t+∆t
v(·) [·]

]
= Es,α,t

v(·) [·],
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we have

V̂ (s, α, t;φ)

= sup
v(·)

Es,α,t
v(·)

[∫ t+∆t

t

(
er(T−t

′)
(
− vSexec(v, t′)

)
− φσ2A(t′)2S(t′)2

)
dt′

+ Es+∆s,α+∆α,t+∆t
v(·)

∫ T

t+∆t

(
er(T−t

′)
(
− vSexec(v, t′)

)
− φσ2A(t′)2S(t′)2

)
dt′

+ Es+∆s,α+∆α,t+∆t
v(·)

[
lim

v→−∞
A(T−)Sexec(v, T

−)

]]
(B.0.3)

Noting that for an optimal control v∗(·),

Es+∆s,α+∆α,t+∆t
v∗(·)

[∫ T

t+∆t

(
er(T−t

′)
(
− vSexec(v, t′)

)
− φσ2A(t′)2S(t′)2

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−)

]
=V̂ (s+ ∆s, α + ∆α, t+ ∆t;φ). (B.0.4)

From equations (B.0.3-B.0.4) and the form of the price impact (2.1.5),

V̂ (s, α, t;φ)

= sup
v(·)

Es,α,t
v(·)

[
er(T−t)(−vf(v)s)∆t− φσ2α2s2∆t+V̂ (s+ ∆s, α + ∆α, t+ ∆t;φ)

]
+O((∆t)3/2).

(B.0.5)

Define
∆V̂ = V̂ (s+ ∆s, α + ∆α, t+ ∆t;φ)− V̂ (s, α, t;φ).

Rearranging equation (B.0.5) gives

0 = sup
v(·)

Es,α,t
v(·)

[
er(T−t)(−vf(v)s)∆t− φσ2α2s2∆t+ ∆V̂

]
+O((∆t)3/2) . (B.0.6)

Using Ito’s Lemma, and equations (2.1.2) and (2.1.4), we obtain

Es,α,t
v(·) [∆V̂ ] = ∆t

[
V̂t + (η + g(v)sV̂s +

σ2s2

2
V̂ss + vV̂α

]
+O((∆t)3/2) . (B.0.7)

Let V = V (s, α, τ = T − t;φ) = V̂ (s, α, t;φ). Substituting equation (B.0.7) into
equation (B.0.6), dividing by ∆t, and letting ∆t→ 0, then we obtain the HJB PDE

Vτ = ηsVs +
σ2s2

2
Vss − φσ2α2s2 + sup

v

[
erτ (−vf(v))s+ g(v)sVs + vVα

]
.
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Appendix C

Proof of No Round-trip Price
Manipulation

Since temporary impact always leads to trading losses, there is no restriction on the func-
tional form of the temporary impact [38, 13]. In contrast, the form of the permanent price
impact must be restricted to ensure non-positive expected gain from round-trip trades, as
noted by [38]. In this appendix, we show that a linear permanent price impact function of
the form (2.1.7) is consistent with the no round-trip price manipulation condition of [38],
which basically states that the expected gain from a round trip trading strategy should
be non-positive.

Note that while previous work considered only Arithmetic Brownian Motion, we handle
both Geometric Brownian Motion (GBM) and Arithmetic Brownian Motion here.

In the following, we assume that there is no temporary price impact, since this is
irrelevant in terms of no round-trip price manipulation.

We assume that the deterministic drift rate η is zero, so that the the asset price
dynamics (2.1.4) is

dS(t) = κpv(X(t), t)S(t)dt+ σS(t)dW(t) , (C.0.1)

which has the solution

S(T ) = S(0) exp

[
κp

∫ T

0

v(X(t), t) dt

]
exp

[
σW(T )− σ2T/2

]
. (C.0.2)

Noting that ∫ T

0

v(X(t), t) dt =

∫ T

0

dA(t)

dt
dt =

∫ T

0

dA(t) = A(T )− A(0),

equation (C.0.2) becomes

S(T ) = S(0) exp

[
κp(A(T )− A(0))

]
exp

[
σW(T )− σ2T/2

]
,
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and consequently

E[S(T )] = S(0) exp

[
κp(A(T )− A(0))

]
.

For a round trip trade, A(T ) = A(0), hence

E[S(T )] = S(0) . (C.0.3)

Let R(t) be the revenue from a trading strategy v(t), so that

dR(t) = −v(X(t), t)S(t) dt. (C.0.4)

Rearranging equation (C.0.1), we obtain

v(X(t), t)S(t) dt =
dS(t)

κp
− σS(t)

κp
dW(t) . (C.0.5)

Substituting equation (C.0.5) into (C.0.4) gives

R(T ) = −
∫ T

0

[
dS(t)

κp
− σS(t)

κp
dW(t)

]
= −S(T )− S(0)

κp
+
σ

κp

∫ T

0

S(t) dW(t) .

Noting that

E
[∫ T

0

S(t) dW(t)
]

= 0 ,

then, for a round trip trade (from equation (C.0.3))

E[R(T )] = −E[S(T )]− S(0)

κp
= 0 .

Consequently, the expected revenue for any round trip trade for a permanent price impact
of the form (2.1.7) is zero, hence this precludes round-trip price manipulation.

Note that equation (C.0.3) also holds in the ABM case, and the rest of the proof is
similar.
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Appendix D

Equivalence between Variance and
Expected Quadratic Variation

In this appendix, we give conditions under which the approximation

V arv(·)

[
B(T )

]
≈ Ev(·)

[∫ T

0

(A(t)dS(t))2

]
. (D.0.1)

becomes an equality.

We specialize1 our trade execution model of Section 2.1.1 as follows

dA(t) = v dt, (D.0.2)

dS(t) = σ(S(t), t) dW(t), (D.0.3)

dB(t) = −vSexec(v, t)dt, (D.0.4)

Sexec(v, t) = S(t) + S(0)h(v) (D.0.5)

For generality, we will first2 consider dynamic strategies v(·), i.e.

v(·) : (S(t), A(t), t) 7→ v = v(S(t), A(t), t).

We also assume A(T−) = A(T ) = 0, i.e. all shares are liquidated before T−.

From the above model we have that

dB(t) = −vS(t)dt− S(0)vh(v)dt = −S(t)dA(t)− S(0)vh(v)dt,

Using the integration by part formula for stochastic integrals on the product A(t)S(t), we

1We assume zero drift in (D.0.3), zero interest rate in (D.0.4) and asset-price independent price impact
(6.5.2) in (D.0.4). Note also that (D.0.3) encompasses both our GBM model and ABM model as special
cases.

2We will later impose the assumption of static v(·) for proving equality in (D.0.1).
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have

−S(t)dA(t) = −d(S(t)A(t)) + A(t)dS(t)

since dA(t)dS(t) = o(dt). Consequently,

dB(t) = −d(S(t)A(t)) + A(t)dS(t)− S(0)vh(v)dt. (D.0.6)

Integrating (D.0.6) from 0 to T , and noting A(T−) = A(T ) = 0, gives

B(T ) = S(0)A(0) +

∫ T

0

A(t)dS(t)−
∫ T

0

S(0)vh(v)dt (D.0.7)

Note that the last termBimpact ≡
∫ T

0
S(0)vh(v)dt =

∫ T
0
S(0)v(S(t), A(t), t)h(v(S(t), A(t), t))dt

corresponds to the cost from nonzero trading impact and is stochastic in general. Now
we restrict v(·) to be static.

Assumption D.1. The control v(·) is of the form

v(·) : (A(t), t) 7→ v = v(A(t), t),

i.e. a static strategy that is independent of S(t).

With Assumption D.1, the term Bimpact =
∫ T

0
S(0)v(A(t), t)h(v(A(t), t))dt becomes

deterministic. As a result, equation (D.0.7) implies

V ar

[
B(T )

]
= V ar

[∫ T

0

A(t)dS(t)

]
= E

[(∫ T

0

A(t)dS(t)

)2]
= E

[(∫ T

0

A(t)σ(S(t), t)dW(t)

)2]
since the Ito integral has zero expectation. Now we have

E

[(∫ T

0

A(t)σ(S(t), t) dW(t)

)2]
= E

[∫ T

0

(
A(t)σ(S(t), t)

)2
dt

]
= E

[(∫ T

0

A(t)dS(t)

)2]
,

where the first equality is a result of the Ito isometry.

In conclusion, we have shown that under the model (D.0.2 - D.0.5),

V arv(·) static

[
B(T )

]
= Ev(·) static

[∫ T

0

(A(t)dS(t))2

]
.
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Appendix E

Details of Monte Carlo Simulations

In this appendix, we provide some details about how to perform Monte Carlo simulations
in the Hybrid (PDE-Monte Carlo) method of Section 3.6. For ease of exposition, we will
explain in the context of Mean Variance optimization using the basic Geometric Brownian
Motion model, i.e no regime switching.

Numerically solving the HJB PDE (3.2.7) gives us the optimal strategy on the discrete
computational mesh, i.e. vMV (si, bj, αk, tn)1. By using vMV (si, bj, αk, tn) as input for
Monte Carlo simulations, we can obtain information about the trading strategy that is not
readily available from the value functions. For example, we can estimate the probability
distribution of B(T ), and the mean and the standard deviation of the liquidation profile
(plot of A(t) against t). In particular, Monte Carlo simulations enable us to measure
the MQV-performance of MV-optimal strategies, and conversely, the MV-performance of
MQV-optimal strategies; see Chapter 7 for examples.

The Monte Carlo simulations also provide a verification of the solution from the PDE
method (Section 3.6), in the sense that given an optimal control, we can obtain indepen-
dent estimates of mean and variance.

E.1 Change of Variable

Suppose that the optimal strategy vMV (si, bj, αk, tn) is obtained from solving the HJB
PDE (3.2.7). For a fixed value of γ, each Monte Carlo simulation starts with the initial
values S(0), B(0), A(0) at time t = 0 and is updated at the discrete times tn. In the
following we give a full specification of the simulation procedure by detailing the simulation
from time point told to the immediate next time point tnew.

At told, the state is (Sold, Bold, Aold). To look up the optimal trading velocity, we
first need to change the variable from B to B. For the fixed value of γ, we have
Bold = er(T−told)Bold − γ/2 from equation (3.2.2). Now the optimal trading velocity
v(Sold,Bold, Aold, told) needs to be interpolated from the discrete vMV (si, bj, αk, tn).

1Note the use of forward time notation.
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E.2 Interpolation

Our numerical study (see Section 3.7.2) shows that it is more accurate to linearly inter-
polate vMV (si, bj, αk, tn) along a constant line of wealth {αs + b = constant} than along
the coordinate axes. Therefore, we interpolate vMV (si, bj, αk, tn) as in Figure 3.1(b) with
L given by the constant line of wealth {αs+b = constant}. Note that the form of the line
L as defined by equation (3.7.7) is not applicable in the current context because there is
no candidate control v.

E.3 Updating State Variables

Let 4t = tnew − told, we update the state variable as follows:

Aopt = Aold + v(Sold,Bold, Aold, told)4t,
Anew = max(Aopt, 0),

vopt = (Anew − Aold)/4t,

Snew = Sold exp{(η + g(vopt)−
1

2
σ2)4t+ σ

√
4tN (0, 1)},

Bnew = Bold − er(T−told)voptf(vopt)Sold4t,
QVnew = QVold + (Aold(Snew − Sold))2,

whereN (0, 1) is a standard normal variate andQVnew is an approximation of
∫ tnew

0
(A(t′) dS(t′))2.
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Appendix F

Example Computation for the
Temporary Price Impact Factor

In this appendix we discuss how to relate an execution program’s participation (in terms
of percentage of daily volume) and the temporary price impact factor κt in our model.
We describe a simplified, yet realistic, scenario in which using a temporary price impact
factor κt = 1.2× 10−7 in our model corresponds to liquidating 1% of the daily volume of
a stock.

Suppose that the initial stock price sinit = 100 dollars, buy rate = 1,000 shares/min,
corresponding temporary price impact = 3 dollars/min, daily trading time = 420 minutes,
and daily volume = 42,000,000 shares. For such a scenario, our trading corresponds to
1% of the daily volume, and the daily market turnover for the stock is 4.2 billion dollars,
corresponding to that typical of a large-cap stock.

Assuming a constant trading rate over one day (T = 1/250), then the total price
impact is 3 × 420 dollars. The impact ratio, i.e. ratio of total post-execution value to
total initial value of stock, is then given by

R =
total post-execution value

total initial value
=

total initial value− total price impact

total initial value

= 1− 3× 420

420× 1000× 100
= 1− 3× 10−5

Using our trading model1 (2.1.3), (2.1.5) and (2.1.6), the impact ratio is f(v) =
exp(κtv) ≈ 1 + κtv. Therefore, the ratio R is approximately 1 + κtv.

Since αinit = 1 in our model and T = 1/250, the constant trading rate is v = −250.
Substituting v = −250 into

1 + κtv = 1− 3× 10−5

gives κt = 1.2× 10−7.

1We also set κs = 0 and β = 1.
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Appendix G

Proof of uniform boundedness of
E[S(t)]

Proposition G.1. In the regime switching model of Section 2.1.2, E[S(t)] is uniformly
bounded over t ∈ [0, T ], i.e. supt∈[0,T ]E[S(t)] is bounded by a constant CS > 0.

Proof. Without loss of generality, we can change the drift rate in (2.1.14) to any constant
C1 and replace ζ lm by a single constant C2 = maxl,m ζ

lm. Hence we consider

dS(t) = C1S(t) dt+ σlS(t) dW(t) +
M∑
m=1
m6=l

(C2 − 1)S(t) dL(t). (G.0.1)

The uniformly boundedness then follows from the first-moment exponential stability
result in [25]; to see this, we now write (G.0.1) using the notation in [25] as follows:

dx(t) = fr(t)(x(t))dt+ σr(t)(x(t)) dW(t), t 6= t̃k

x(t) = ξkJr(t−)(x(t−)), t = t̃k, k ∈ {1, 2, 3, · · · }, (G.0.2)

where

x(t) = S(t),

r(t) ∈ Q = {1, · · · ,M} denotes the mode/regime at time t,

fq(x) = C1x for all q ∈ Q,
σq(x) = σqx for all q ∈ Q,

ξk ≡ 1 is deterministic,

Jq(x) = C2x,

t̃k denotes the regime switching time. (G.0.3)

Note that the conditions fq(0) = 0 and σq(0) = 0 in [25] are satisfied in our model.
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To apply Theorem 3.1 in [25], we pick Vq(x) = x, a1
q = b1

q = 1, β = 1, ζ = C1, and
µ(·) = C2. For p = 1, condition (7) (in [25]) is clearly satisfied. Note that LVq(x) =
fq(x) = C1x, thus condition (8) is satisfied by the choice of ζ. It is clear that condition
(9) is satisfied. Since Vq(ξkJq(x)) = Vq(Jq(x)) = Jq(x) = C2x, condition (10) is satisfied.
Since µ̄, λJ and λS are finite, condition (11) is satisfied for C1 negative enough, which we
can assume without loss of generality.

Applying Theorem 3.1 in [25] shows that there exists constants C and α such that

E[|x(t)|] ≤ C|x(0)|e−αt, (G.0.4)

which clearly implies E[x(t)] is uniformly bounded over t ∈ [0, T ].
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