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Abstract

Since its introduction in 2004, the Structural Similarity (SSIM) index has gained
widespread popularity as an image quality assessment measure. SSIM is currently rec-
ognized to be one of the most powerful methods of assessing the visual closeness of images.
That being said, the Mean Squared Error (MSE), which performs very poorly from a
perceptual point of view, still remains the most common optimization criterion in image
processing applications because of its relative simplicity along with a number of other
properties that are deemed important. In this thesis, some necessary tools to assist in
the design of SSIM-optimal algorithms are developed. This work combines theoretical
developments with experimental research and practical algorithms.

The description of the mathematical properties of the SSIM index represents the prin-
cipal theoretical achievement in this thesis. Indeed, it is demonstrated how the SSIM index
can be transformed into a distance metric. Local convexity, quasi-convexity, symmetries
and invariance properties are also proved. The study of the SSIM index is also generalized
to a family of metrics called normalized (or M-relative) metrics.

Various analytical techniques for different kinds of SSIM-based optimization are then
devised. For example, the best approximation according to the SSIM is described for
orthogonal and redundant basis sets. SSIM-geodesic paths with arclength parameterization
are also traced between images. Finally, formulas for SSIM-optimal point estimators are
obtained.

On the experimental side of the research, the structural self-similarity of images is
studied. This leads to the confirmation of the hypothesis that the main source of self-
similarity of images lies in their regions of low variance.

On the practical side, an implementation of local statistical tests on the image residual
is proposed for the assessment of denoised images. Also, heuristic estimations of the SSIM
index and the MSE are developed.

The research performed in this thesis should lead to the development of state-of-the-art
image denoising algorithms. A better comprehension of the mathematical properties of
the SSIM index represents another step toward the replacement of the MSE with SSIM in
image processing applications.
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Résumé

Depuis son introduction en 2004, l’indice de Similarité Structurelle (SSIM) a gagné en
popularité comme mesure perceptuelle de la qualité d’image. En effet, SSIM est maintenant
reconnu comme l’une des meilleures méthode pout comparer la distance perceptuelle entre
deux images. Cependant, l’erreur quadratique moyenne reste le critère le plus répandu
pour l’optimisation d’algorithmes de traitement d’image. Car malgré sa pauvre perfor-
mance comme mesure perceptuelle, l’erreur quadratique moyenne est relativement simple et
possède plusieurs propriétés mathématiques généralement jugées importantes. Dans cette
thèse, plusieurs outils nécessaires pout aider la création d’algorithmes optimaux au sens
de SSIM sont développés. Ce travail combine des résultats théoriques avec une recherche
expérimentale ainsi que des algorithmes concrets.

La description des propriétés mathématiques de l’indice SSIM représente la principale
contribution théorique dans cette thèse. En effet, il est démontré comment l’indice SSIM
peut être transformé en une métrique. La convexité locale, la quasi-convexité ainsi que
des symétries et des propriétés d’invariance sont aussi prouvées. L’indice SSIM est aussi
généralisé en une famille de métriques dites normalisées ou M-relatives.

Plusieurs techniques analytiques pour différentes sortes d’optimisation au sens de SSIM
sont ensuite introduites. Par exemple, la meilleure approximation au sens de SSIM pour
des bases orthogonales ou redondantes est décrite. Les chemins géodésiques selon l’indice
SSIM avec une paramétérisation selon la longueur d’arc sont aussi tracés entre deux images.
Finalement, des formules pour trouver des estimateurs ponctuels selon SSIM sont obtenues.

L’étude de l’auto-similarité structurelle des images représente la facette plus expéri-
mentale de la recherche. Cela permet de confirmer l’hypothèse que la principale source
d’auto-similarité dans les images se situe dans les régions de faible variance.

Du côté pratique, l’implémentation de tests statistiques locaux sur l’image résiduelle est
proposé pour l’évaluation de la qualité d’images débruitées. Aussi, des estimés heuristiques
de l’indice SSIM et de l’erreur quadratique moyenne sont développés.

La recherche effectuée dans cette thèse devrait conduire au développement d’algorithmes
de débruitage à la fine pointe de la technologie. La meilleure compréhension des propriétés
mathématiques de l’indice SSIM représente une autre étape vers le remplacement de l’erreur
quadratique moyenne par l’indice SSIM dans les applications de traitement d’image.
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Chapter 1

Introduction

Images. They convey information, they convey emotions. But what happens if these
images are distorted? Image distortion could be from a noisy channel over the internet or
from an overzealous compression. Or simply, it could be caused by the inevitable effect of
time. When this happens the crucial spatial data becomes useless. The enjoyment is gone.
But hopefully not everything is lost.

By the power of mathematics, several algorithms have been devised to restore images,
i.e. to attempt to recover an image that will be visually pleasant. Formally, they have been
divided into categories according to the kind of distortion they take care of: noise, blur,
blotching, down-sampling or compression artifacts.

One kind of distortion that is of particular interest to this thesis is noise. Similar to
the notion of audible noise, visual noise is the spurious variation of intensity and colors in
an image. It is casually referred as “snow” in an analog television.

The first reason why we are particularly interested in noise is because it is always
present in the physical world; any measurement is subject to some kind of uncertainty and
variation. Moreover, many subsequent image processing and analysis are severely impeded
by the presence of noise. For example, there are the problems of image segmentation or
image registration.

Another reason for studying image de-noising, i.e. the restoration of noisy images, is
because it provides a benchmark to test natural image models. Indeed, several years of
research have not been enough to bring a complete understanding of what images are. It
is understood that they are acquired from the real world by some digital cameras, but the
question is how to fully describe the image statistics. That is, given any combination of
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pixel values (supposing an already sampled image), can we find the probability that this
image could be taken by a digital camera at any time in history?

Finally, given that image denoising is probably the easiest of the image restoration
problems, it is a natural starting point before attacking more involving problems like image
deblurring for example. Easiest does not necessary mean easy, as there has been limited
success up to now from any research to design good denoising algorithms.

This limited success could be explained in part by the fact that most image denoising
algorithms are either ad hoc or based on the optimization of the mean squared error (MSE).
The problem is that MSE does not simulate well the perception of quality of the human
visual system (HVS). The structural similarity (SSIM) index proposed by Wang et al. [114]
in 2004 appears to be a better alternative. This leads to the question on how to perform
SSIM-optimal image denoising and processing.

The goal of this thesis is thus to provide the necessary mathematical tools for the
performance of perceptually optimal image processing. To do so, we will need to study the
properties of the SSIM index and show how this perceptual measure can be optimized. As
an example of application, we will propose image denoising algorithms with a perceptual
criterion based on the SSIM index.

The remainder of this introduction is divided as follows: First, we will state and define
the basic concepts of mathematical imaging. Second, two standard models of noise will be
developed. After, we will briefly sketch how the MSE is used in image denoising problems.
The SSIM index will then be presented and compared to the MSE as a model of image
perception through examples and psycho-physical experiments. Finally, we will outline the
content of the whole thesis.

1.1 A Short Introduction to Digital Images

A natural image is the spatial measurement of some feature in the real world. By “real
world”, we mean the physical environment that surrounds us. Of particular interest is
the measurement of electromagnetic waves of different wavelengths (e.g. X-rays, infrared,
ultraviolet, etc.). Here, we are mainly interested in measuring the visible light acquired
from a digital camera.

We briefly summarize the acquisition process of digital images in the remaining of this
section. For a more thorough introduction the reader is referred to [54].

In the current design of digital cameras, an array of charge-coupled device (CCD)
receptors measure the amount of incoming photons as a difference of voltage. This array
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is generally organized in a mosaic of receptors for red, green and blue (RGB) components
of the light. A demoisacking algorithm then interpolates the missing values into an array
of pixels (picture elements).

An Analog-to-Digital converter quantizes the amount of possible values for each com-
ponents to a finite number. With today’s digital cameras, the convention is 8 bits-per-pixel
for each component, i.e. 256 possible values for the RGB components and a total of 24 bits-
per-pixel for the set of the three components. This is approximately 16 million different
colors. At the end, we obtain three matrices representing the amount of RGB at each
location of the image. To simplify the problem, each RGB component of the digital image
is transformed into a luminance and two chrominance channels. The value of each image
is normalized in the interval [0, 1].

For most of the work in this thesis, we will be interested solely in greyscale images.
That is, we will only consider the luminance channel. Thus, we will manipulate matrices
with values between 0 and 1 where 0 is black and 1 is white. Note that these values for
black and white are not necessarily universal but depend on the dynamic range of a given
image. With indoor images for example, the given value for white might be much lower
than with outdoor images.

Let I = {1, 2, . . . , L1} × {1, 2, . . . , L2} be the set of indices of the pixel values for
an image of L1 × L2 pixels. Let x(I) be a L1 × L2 real-valued matrix representing the
intensity values (or greyscale) at each pixel. For a mega-pixel (one million pixels) image,
the dimension of a square image will be L1 = L2 = 1024. This is considered a medium-sized
image. Today digital cameras have up to sixteen mega-pixels. That is, L1 = L2 = 4096
for every square image.

Here, we will consider small images, i.e.L1 = L2 = 256 or L1 = L2 = 512. Note that the
only practical difference between images of different sizes is the computation and memory
cost to process them. For example, if the covariance between neighbouring pixels is needed
at each location, then we have to compute and store (L1L2)2 values, which represent one
trillion values for a mega-pixel image.

1.2 Noise Distortion Models

Noise in images has several sources. Given the quantum nature of light, a discrete amount
of photons excites the photovoltaic receptor of the CCD camera. A natural variation occurs
particularly in the low luminance region of an image and thus creates noise. This source
of distortion is called shot noise or quantum noise, and is related to the physics of light
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itself and not on the particular device that acquires an image. Also, within the camera,
the interference of its electronic circuit can influence the accuracy of the measurements.
This interference is referred as the read out noise. Finally, the heating of the photovoltaic
cells can also lead to a variation in measurements. This is the effect of thermal noise.

The most common models in literature for noise in photographic images (see e.g. [5]) are
Poisson noise and additive white Gaussian noise (AWGN). The main source of distortion
is the shot noise which is well modeled by a Poisson distribution. Other sources of noise in
digital cameras are modeled either as a Gaussian or Poisson distributions, but are negligible
on high illumination situations.

The Poisson distribution describes the probability of occurrence of discrete and rare
events. For photographic images, it represents well the amount of incoming photons on
a photo-receptor. The conditional probability law of a measured pixel y given a pixel of
mean illumination x is written as

Prob(Y = y|X = x) =
xye−x

y!
. (1.1)

Note that both the mean and the variance of this distribution are x. For the whole image,
assuming independence between adjacent pixels, the probability distribution is

Prob(Y = y|X = x) =
N∏
k=1

xykk e
−xk

yk!
, (1.2)

where x = (x1, x2, . . . , xN) is the mean illumination of the image and y = (y1, y2, . . . , yN)
is the measured image written in a vector form.

In high illumination situations, the Poisson distribution is well approximated by a
Gaussian distribution. We can thus consider an AWGN model, i.e. an independent and
identically distributed Gaussian noise. Assume that x belongs to the set of natural images
X , i.e. images that are likely to be seen by the human visual system (HVS). Let I be the
index set of the pixels of an image and let N = L1L2 be its number of pixels. Let N be an
independent Gaussian noise of zero-mean and of variance σ2. More precisely, the following
assumptions can be made:

1. X and N are independent random fields;

2. N (i) and N (j) are independent for i 6= j (i, j ∈ I);

3. The noise follows a Gaussian distribution.
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Given a fixed level of noise σ, we thus have for a single pixel

Prob(Y = y|X = x) =
1√

2πσ2
e
−(y−x)2

2σ2 (1.3)

and

Prob(Y = y|X = x) =
1

(2πσ2)N/2

N∏
k=1

e
−(yk−xk)2

2σ2 (1.4)

=
1

(2πσ2)N/2
e
−‖y−x‖22

2σ2 (1.5)

for the whole image. We can then write the noise distortion model as Y = X + N ; a
particular outcome will be represented by y = x + n.

Notice that we assumed that natural images are bounded but that the effect of the noise
can lead some pixels to be outside the range of [0, 1]. This is called the saturation effect.
To reduce the effect of clamping of these extreme values, one normally processes the noisy
images without correcting the values outside the normal range. It is only for visualization
and storage that clamping will be necessary. In fact, we will save the value of the seed
parameter in the pseudo-random number generator to allow completely reproducible results
and avoid any distortion due to the storage of a noisy image affected by the saturation
effect.

The following Matlab code function gennoisy loads an original image ’name’ and then
generates a noisy image with AWGN.

function [Y] = gennoisy(name);

%% Generate noisy image

X = imread(name); % load the image ’name’

X = double(X)/255; % convert to double representation and normalize

seed = 0; % initialize seed

randn(‘state’, seed); % set the state of the pseudo-random number generator

sigma = 0.25; % standard deviation of the noise

N = randn(size(X))*sigma; % Gaussian noise image

Y = X + N; % noisy image
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1.3 L2-based Image Denoising

Given a noisy image y = x + n, the goal of a denoiser is to find a good approximation to
the noiseless image x. For any noisy image y, the action of a denoiser may be viewed as
separating y into the sum of a denoised image d = D(y) and a residual image defined by
r = y − d. To illustrate this particular outcome, in Fig. 1.1 we show the original noiseless
Barbara image x (512 × 512 pixels) along with a noise image n and the resulting noisy
image y = x+n. A denoised image d = D(y) obtained by Gaussian filtering is then shown
along with the residual image r = y − d.

The Matlab code is pretty straightforward and very high level. Note that the cropping
allows us to work around the problem of boundary handling.

function [D] = gdenoise(Y)

%% Denoise by Gaussian filtering

g = fspecial(‘gaussian’,[31 31],2.5); % create the Gaussian filter

D = filter2(g,Y,‘same’); % filter the noisy image

R = Y - D; % residual image

%% Crop the image

crop1 = 100:400; crop2 = 100:400; % cropping window

D = D(crop1,crop2);

It is then possible to compute the error of approximation between the original and the
denoised image. The most popular way to do this is with the Peak-Signal-to-Noise Ratio
(PSNR), which is simply a remapping of the Mean Squared Error (MSE) between two
normalized images:

MSE(x, x̂) =
1

L1L2

L1∑
i1=1

L2∑
i2=1

(x(i1, i2)− x̂(i1, i2))2, (1.6)

PSNR(x, x̂) = −10 log10 MSE(x, x̂). (1.7)

Although digital images are discrete, we sometimes assume in our mathematical con-
struction that they are continuous. It simplifies the treatment of the theory and makes
better sense as the real world appears continuous and is generally modeled as such in
classical physics. For example, we will refer to the Lp-norm between two images on Ω ⊂ R2,
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Figure 1.1: x : Original noiseless Barbara image. n : a noise image (σ = 15%). y :=
x + n, the noisy image. d := D(y), the denoised image (Gaussian filtering). r := y − d,
the residual image. All images are cropped between (100, 100) and (400, 400) for better
visualization and to escape boundary handling problems. Notice that y = x + n and
y = d + r are two different decompositions of the noisy image y.

which is

‖x− x̂‖p =

(∫
Ω

|x(s, t)− x̂(s, t)|pdsdt
)1/p

. (1.8)

Note that the squared L2-norm divided by the size of the domain Ω is equivalent to the
MSE.

The link between the discrete and the continuous world is a piecewise constant function
on small square regions. In what follows, we will use L2-norm and the MSE interchangeably,
but we will generally assume that images belong to RN (with N = L1L2) rather than
L2(R2). More precisely, we will assume in several instances that images belong to the
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positive octant

RN
+ := {x = (x1, x2, . . . , xN) ∈ RN |xk ≥ 0 for all 1 ≤ k ≤ N} (1.9)

since the amount of light coming from each location cannot be negative. To summarize,
natural images are well approximated by functions in L2(R2) but we will consider only their
sampled version in RN

+ . For a particular instance of an image, we will further normalize
this into the hypercube [0, 1]N for display and storage.

Since the L2-norm or one of its equivalent formulations is the traditional measure of
quality of an image denoising procedure, it is natural to attempt to optimize algorithms in
function of this norm. We divide L2-based image denoising algorithms in two categories
depending on whether they are deterministic or stochastic.

1.3.1 Deterministic Methods

Several deterministic algorithms are based on variational models. Variational models
assume that images belong to some space of functions F with norm ‖x‖F . The smaller
the norm, the more natural the image is considered. Depending on how much noise is
tolerated, a constraint of the type ‖x−y‖p ≤ s is imposed, with p = 2 for Gaussian noise.
This inequality reflects that the denoised image is expected to be close to the noisy data.
Using a suitable Lagrange multiplier, the problem is thus formulated as

x̂ = arg min
x∈F
‖x‖F + λ‖x− y‖2. (1.10)

The Lagrange multiplier λ weighs between the “smoothness” of the reconstructed image
and its goodness-of-fit to the data. The method generally employed to find the optimal
solution is to solve the associated Euler-Lagrange equations. This often leads to a partial
differential equation that has to be solved numerically.

Examples of image denoising based on variational models include spline smoothing [108]
and total variation minimization [94]. In these formulations, the L2-norm accounts for the
Gaussian nature of the noise, not for the model of perception, so we cannot really call these
methods true L2-based denoising algorithms.

On the other hand, any model involving an economical representation of an image can
be adapted into a L2-based variational model by computing the error of approximation
and adding a regularization term. Given T (x) a representation operator, the variational
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problem is formulated as follows:

d = D(y) = arg min
x
‖x− T (x)‖2

2 + λ‖x− y‖2
2. (1.11)

Note that term ‖x − T (x)‖2 is commonly called the collage error in fractal imaging
literature.

Examples of possible operator T include sparse dictionary representation [40], non-
local means [17] and fractal transforms [39]. It is to be remarked that some of these
operators can also be used for image compression. It could be explained by the fact that
to be compressible is an intrinsic property of images whereas a fundamental discriminating
factor of noise is that it is not compressible by nature.

1.3.2 Stochastic Methods

In contrast to deterministic methods, stochastic methods assume that the original image
and image distortion follow a certain probability density function (p.d.f.). In Bayesian
language, the p.d.f. of the original image P(x) is the prior whereas the conditional p.d.f. of
the distorted image knowing the original image P(y|x) is the likelihood distribution. For
Poisson or Gaussian noise, this distribution was described in the previous section. By
Bayes’ formula, the posterior distribution of x knowing the data y is proportional to the
prior distribution multiplied by the likelihood:

P(x|y) ∝P(y|x)P(x).

A Bayesian risk minimizer will then be the best estimate of the denoised image according
to a certain loss function d(·, ·). It is measured with a conditional expectation:

d = D(y) = arg min
x̂

E[d(x, x̂)|y] (1.12)

:= arg min
x̂

∫
d(x, x̂)P(x|y)dx. (1.13)

For L2-based denoising, the loss function is quadratic and, as it is well known, the best
estimator will be the expectation of the posterior distribution E[x|y]. This is called the
Minimum Mean Square Estimator (MMSE).

Examples of stochastic L2-based methods are the Wiener filter, wavelet shrinkage [35],
wavelet coring [103] and Gaussian Scale Mixture (GSM) [81]. A less known fact is that the
non-local means algorithm [16] can also enter into this category.
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1.4 Image Quality Assessment

The goal of image quality assessment (IQA) is to model the perception of the human visual
system (HVS) in order to evaluate the subjective quality of images. IQA can be divided
into full-reference and no-reference, depending on the availability of the original (ground
truth) image. For full-reference IQA, we should speak of image fidelity rather than image
quality, since the goal is to measure the similarity between two images. For no-reference
IQA, one models the subjective IQA from only the knowledge of a distorted image. This
is closer to real-world situations where the original image is not available.

1.4.1 Applications of IQA

In this work, we will be mainly interested in full-reference IQA. This will involve design,
optimization and comparison of various image restoration algorithms.

For example, given several proposed denoising algorithms, a simulation can be run:

1. Generate a pseudo-random noise on several original images for different levels of
noise;

2. Apply different image denoising algorithms;

3. Compute the quality of the denoised images versus the original images for each
combination of images, noise level and denoising algorithms;

4. For each noise level, perform a statistical test to determine if the difference in
performance between each pair of algorithms is significant.

Also, IQA measures can be used to train the denoising parameters. This will boil down
to multi-valued optimization of an objective function. The objective function will be a
combination of all the IQA measures for a training set of images. For example, if q(·, ·)
represents the full-reference IQA measure, objective functions having the following form
may be considered:

obj{xj}Jj=1,{yj}Jj=1
(c1, c2, . . . , ck) =

J∑
j=1

qr(xj,Dc1,c2,...,ck(yj)),
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where r > 0 is a fixed exponent, J is the number of images in the training set, xj is the j-th
original image and yj is the j-th distorted image, where (c1, c2, . . . , ck) are the parameters
of the denoising operator D .

Finally, and this will be our principal interest in this thesis, we can take advantage of
a full-reference IQA measure to help in the design of image restoration algorithms. For
variational problems, take q(Tx,x) as the collage error:

x̂ = arg max
x∈F

q(Tx,x)− λ‖x− y‖2. (1.14)

For the Bayesian formulation, we would maximize the expected image quality measure:

x̂ = arg max
x̃

risk(x, x̃) = arg max
x̃

E[q(x, x̃)|y]. (1.15)

1.4.2 The SSIM Index

In the classical approach for IQA, researchers attempt to model every single component of
the HVS. This is called a bottom-up approach: we start with simple features of the HVS
and combine them together until we reach a realistic model of image quality perception.

The two most famous models following this approach are Daly’s Visual Difference
Predictor [32] and Lubin’s Just Noticeable Difference [66]. Both models follow the same
general framework as described in [114] and summarized in [8].

The Structural Similarity (SSIM) index was recently proposed by Wang et al. [114] as
an alternative to the bottom-up approach. It combines simplicity of computation, accuracy
of prediction and intuitiveness of design.

The SSIM allows to quantify local image quality. Given a pixel location i = (i1, i2) in
the set of coordinates Z2, its local neighbourhood of radius r is defined as Ni = {j ∈ Z2 :
‖i− j‖1 ≤ r}. The pixels on a local neighbourhood are referred as a sub-block or an image
patch.

For two image patches x and y in Rn
+, the SSIM is defined as

SSIM(x,y) =

(
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1

)α(
2sxsy + ε2
s2
x + s2

y + ε2

)β (
sx,y + ε3
sxsy + ε3

)γ
, (1.16)

= (l(x,y))α(c(x,y))β(s(x,y))γ, (1.17)

where α, β, γ > 0 are weights on the luminance (l), contrast (c) and structure term (s) of
the fidelity measure and ε1, ε2 and ε3 are small positive stability constants. The scores are
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computed locally with a weighted average:

x̄ =
n∑
j=1

wjxj, ȳ =
n∑
j=1

wjyj, (1.18)

s2
x =

n∑
j=1

wj(xj − x̄)2, s2
y =

n∑
j=1

wj(yj − ȳ)2, (1.19)

sx,y =
n∑
j=1

wj(xj − x̄)(yj − ȳ), (1.20)

with the weights {wj}nj=1 such that
∑n

j=1wj = 1 taken from a (truncated) circular Gaussian
window of total size n. The SSIM map is the matrix composed of all these local scores.
It gives information on the location of distortion in images. A single index can then be
obtained by averaging the local scores. For example, starting from the original Barbara
image and the distorted images found in Fig. 1.2 various SSIM maps and indices are
obtained in Fig. 1.3.

A commonly used simplification of the structural similarity index is to take α = β =
γ = 1 and ε3 = ε2/2. The formula then reduces to

SSIM(x,y) =

(
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1

)(
2sx,y + ε2
s2
x + s2

y + ε2

)
, (1.21)

= S1(x,y)S2(x,y). (1.22)

We ought to make a few comments about this formula, either to point out its link with
the HVS or to constructively criticize its weaknesses. A general introduction to the SSIM
index and its extensions can be found in [113].

The general philosophy behind the SSIM index is to distinguish structural distortions
from non-structural distortions. Structural distortions are the ones that affect the most
the perception of degradation of an image, whereas non-structural distortions only slightly
affect the perception of degradation. The two first terms of the SSIM index (l and c) thus
account for non-structural distortions, while the structural distortion (s) is represented by
a loss of linear correlation.

As it is explained in [114], the luminance term of the SSIM index is related to Weber’s
Law (see e.g. [110]): the perception of the change of a stimulus is proportional to the
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intensity of the stimulus. Weber’s Law may therefore be expressed as follows:

∆I

I
= C, (1.23)

where I is the intensity, ∆I is the change of intensity and C is a constant. Given an
image x of luminance intensity Ix, the intensity Iy of the luminance of an image y for the
difference to be just perceptible must be

Iy − Ix
Ix

= C . (1.24)

This implies that for any just noticeable distortion (JND), the ratio Iy/Ix is constant. For
zero stability constant, this property applies for the first component of the SSIM index.
Indeed,

2x̄ȳ

x̄2 + ȳ2
= k ⇐⇒ ȳ

x̄
=

1±
√

1− k2

k
, (1.25)

thus the ratio of luminance intensity is constant for each distortion level. Since the property
holds not only for JND, but also for suprathreshold distortions, the SSIM index extends
Weber’s Law.

Weber’s Law not only applies when Ix = x̄, the luminance, but also with Ix = sx, the
image contrast. We reach the same conclusion that, for zero stability constants, the ratio
of contrasts sx/sy is constant for a constant SSIM distortion level.

The constants ε1, ε2 and ε3 account for the threshold of perception. Indeed, Weber’s
Law breaks down for small intensities, since there is a minimum absolute change of intensity
that needs to observed. Note the similarity with the divisive normalization model [109],
where there is a constant in the denominator. In [114], the constants are set empirically
as ε1 = 0.012, ε2 = 0.032 and ε3 = ε2/2 for an image normalized to [0, 1].

The sliding window {wj}nj=1 can be related to the functioning of the HVS where most
of the receptors are concentrated in the fovea and eye movement is necessary to acquire a
complete picture of the surrounding environment. In [114], a 11× 11 truncated Gaussian
window of standard deviation of 1.5 pixels is taken. In order to model more closely
the functions of the HVS, it might be better to use a sliding window following the true
distribution of the cones which can be modelled as a Laplacian distribution.

For the pooling of the local scores, averaging over the whole image might not lead
to an accurate prediction. Indeed, it was observed that the eyes scan images with quick
movements, gazing in the direction of the most relevant features (see e.g. [123]). In [115],
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a saliency map was derived from an information theoretical approach. Combined with the
local SSIM score, this is called the Information Weighted Structural Similarity (IW-SSIM)
map.

The SSIM index as defined in (1.16) must assume positive correlation between the two
signals x and y, otherwise the third term would be a power of a negative number, leading
possibly to an imaginary-valued SSIM score. This issue seems to be ignored in the original
contribution [114] and in more recent publication on the subject [24]. Since it is only the
relative weights that matter, one can easily come around this issue by setting new weights
as α′ = α/γ, β′ = β/γ and γ′ = 1. In the original paper [114], the weights α, β and γ are
set empirically to 1, thus escaping the problem.

The actual form of the SSIM index also implies that the worst image is the one that is
negatively correlated, i.e. y = 2x̄− x. Obviously, this image retains a lot of structure. An
alternative to the SSIM index would be to take the absolute value of the correlation term
and to multiply this term by a factor A accounting for the loss of perception for negative
correlation:

c±(x,y) = A(sx,y)

∣∣∣∣ sx,y + ε3
sxsy + ε3

∣∣∣∣γ , (1.26)

with A = 1 if sx,y ≥ 0 and A < 1 otherwise. A psycho-visual experiment could be necessary
to train for the values of the factor A.

The formula of the SSIM index does not directly take into account the visual distance
of the observer. In practice, it is proposed to first downsample the image to a resolution
between 256 and 511 pixels in each direction. A simple way to account for the visual
distance would be to adjust the resolution of the image so that the viewing angle per pixel
stays constant. That is, if the viewing distance is doubled, then the resolution should be
halved.

The Multi-Scale Structural Similarity (MS-SSIM) [119] is a multi-scale extension of
the SSIM index. It combines the SSIM index computed at several scales with different
weighting parameters. In its most general form, it can be written as

MS − SSIM(x,y) =
M∏
m=1

(l(xm,ym))αm(c(xm,ym))βm(s(xm,ym))γm , (1.27)

where xm and ym are the image x and y, respectively, at resolution m. In [24], the weight
parameters were trained from a psycho-visual database.

Another issue with the SSIM index is that it assumes perfectly registered (aligned)
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images. If the slightest misalignment occurs, then the correlation term can give erroneous
results. As it is the case with luminance shift and contrast distortion, the rigid transforma-
tions and scaling, i.e. zooming, of an image are non-structural distortions, thus not affecting
much the visual perception of quality. The problem was resolved in [95] by introducing a
Complex Wavelet Structural Similarity (CW-SSIM). Transforming the images x and y via
a complex-valued steerable pyramid decomposition we obtain the coefficients cx,i and cy,i
for 1 ≤ i ≤ N . The CW-SSIM is given by

CW-SSIM(x,y) =
2|
∑N

i=1 cx,ic
∗
y,i|+ C∑N

i=1 |cx,i|2 +
∑N

i=1 |cy,i|2 + C
, (1.28)

where C is a stability constant and c∗y,i is the complex conjugate of cy,i. In this formula, the
non-structural geometric changes is accounted in the phase shift of the complex wavelet
coefficients.

Another possible weakness of the SSIM index is its handling of textures and noise.
Indeed, it is empirically observed that the HVS cannot discriminate well between similar
textures or noisy patches, even though the linear correlation between these patches might
be weak. A statistical model of image perception could resolve the problem partly, but
there is still an open question on how to combine the deterministic model of perception of
the SSIM index with a statistical model that is fit for textures and noise.

The SSIM index was designed to measure distortion in greyscale still images. Some
authors proposed an extension to colour images [74] (and recently [59]) and to videos
[117]. The extra challenges are many. For colour images, one has to describe the per-
ception of chrominance distortion and determine how to gather the errors from luminance
and chrominance channels. For videos, one has to describe the perception of temporal
distortions and to consider the possibility of temporal misalignment, the effect of motion
for visual attention and to factor memory in the pooling of errors.

We described in this section different features of the SSIM index while outlining several
strengths and weaknesses. Although it is clear that this IQA measure is not perfect, it
is still state-of-the-art today. Particularly, the three extensions of the SSIM index – MS-
SSIM, IW-SSIM and CW-SSIM – each resolve a serious weakness and offer an excellent
performance in subjective database ratings. This will be exemplified in the next section.
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1.4.3 What’s Wrong with L2?

The legitimate question is, do we really need to develop special IQA measures for images?
Would a simple Lp-norm not be sufficient? Indeed, L2 has several mathematical properties
that makes it a very attractive choice as a design criterion for optimal image processing
algorithms (see [113]): it is simple and inexpensive to compute, it is a valid distance metric,
it is invariant under orthogonal transforms, it is convex and differentiable and it is additive
for independent sources of distortions. But Gauss himself, the inventor of the least square
estimators, has warned against the arbitrariness of this choice of criterion [45]: “Si l’on
objecte que cette convention est arbitraire et ne semble pas nécessaire, nous en convenons
volontiers.”1 Nevertheless, it seems that this warning has been forgotten at the expense of
mathematical convenience.

More recently, there has been a growing amount of voices expressing their concerns
against the use of L2-error in image processing applications. “What’s wrong with mean
squared error?” [48] is the most famous title, but an extended list of references point out in
the same direction (see [8]). In particular, the Video Quality Expert Group [106] reached
the conclusion that “the PSNR model fits significantly worse than the best models”.

A striking example (see e.g. [114]) that demonstrates the point of the blatant weakness
of L2-error for IQA purposes is the following: Take several distorted images with all the
same L2-distance from the original but generated from different types of distortions. Their
perceived quality will generally differ greatly, although L2 wrongly predicts a similar quality
(see Fig. 1.2). On the other hand, it can be seen that the SSIM index better predicts the
human rating for these same images (see Fig. 1.3).

This is only an example, although very illustrative, and one could argue, as it is done
in [37], that it is possible to devise another example with well chosen images to prove
exactly the opposite point. Nevertheless, the SSIM index still performs better than the
L2-error on the average. To prove this point, it was proposed in [118] to push further this
idea of comparing images with the same predicted quality according to one IQA model. A
procedure was proposed to make two candidate IQA measures compete against each other
by finding the image with minimal/maximal quality according to the first IQA measure
over the set of all images with equal quality according to second IQA measure, and vice
versa. By comparing subjectively these optimized images it was argued that one can choose
between the two models, or at least invalidate one or both of the models. A comparison
of the evolution of the correct discrimination rate between the MSE and the SSIM index

1If someone objects that this convention is arbitrary and does not seem necessary, we willingly agree.
(free translation)
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(a) PSNR =∞ (b) PSNR = 26 (c) PSNR = 26

(d) PSNR = 26 (e) PSNR = 26 (f) PSNR = 26

Figure 1.2: Comparison between distorted images with the same L2-distance. (a) Original
image. (b) Global luminance shift of 20/255. (c) Global contrast stretch of a factor
a = 1.1422. (d) AWGN of standard deviation 20/255. (e) Gaussian blur with a filter
of standard deviation of 5 pixels. (f) JPEG compression with a quality factor Q = 2.
All the images have the same error, although they look visually very different. This thus
invalidates the L2-error as a good IQA measure.

for different distortion levels then showed that the SSIM index outperforms the MSE for
moderate to large distortions.

The more traditional way to compare IQA measures is through psycho-physical testing.
We present in Fig. 1.4 the results for two subjective evaluation databases: LIVE (second
release) and TID-2008. The procedure used and the subjective databases are described in
details in Appendix A.

Note that the SSIM index was rescaled according to the formula

rescaled SSIM(x,y) = −10 log10(1− SSIM(x,y)) (1.29)

in order to distribute the objective scores more uniformly. It can be seen as an analog to
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(a) SSIM = 1 (b) SSIM = 0.98 (c) SSIM = 0.98

(d) SSIM = 0.76 (e) SSIM = 0.62 (f) SSIM = 0.66

Figure 1.3: Comparison of the SSIM maps between distorted images with the same L2-
distance. (a) Original image. (b) Global luminance shift. (c) Global contrast stretch. (d)
Additive white Gaussian noise. (e) Gaussian blur. (f) JPEG compression. The SSIM maps
represent the predicted error at different location of the distorted images. White means
good predicted quality (SSIM close to 1) whereas black represents a low SSIM score (SSIM
close to 0). Observe how the SSIM maps and scores follow more closely what a human
observer would except.

the PSNR for the MSE. This rescaling will not change the rank correlation, but it allows
a better fitting of the logistic curve. It will thus increase Pearson’s correlation coefficient
and decrease the ratio of outliers and the Root Mean Square Error (RMSE) between the
predicted and observed values.

The quality of prediction between the PSNR or the SSIM index and the MOS can be
compared with several measures (see Appendix A). These are summarized in Table 1.1 for
the scores obtained from LIVE database and TID-2008 database. It is clear from these
tests that the SSIM index outperforms the MSE as a predictor of subjective image quality.
In fact, according to various subjective experiments, the SSIM index and its multi-scale
extension are state-of-the-art IQA measures [61, 80, 101].
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Table 1.1: Prediction measures of MOS in the LIVE and TID-2008 databases for the PSNR
and the SSIM index.

LIVE TID-2008
Prediction Measure PSNR SSIM (rescaled) PSNR SSIM (rescaled)

Spearman’s ρ 0.8197 0.8999 0.5531 0.7749
Kendall’s τ 0.6171 0.7183 0.4028 0.5768

Correlation Coefficients 0.7999 0.9053 0.5190 0.7737
Ratio of Outliers N/A N/A 0.7800 0.7306

RMSE 9.6656 6.8405 11.4707 8.5021

We ought to make some technical remarks on these last results. Images with no distor-
tion or from the first database release were excluded from the test sequence using LIVE
database. This explains lower prediction measures than the ones reported in [101]. Also,
the choice of transformation from color to greyscale space could explain the discrepancy of
the results between different IQA validation experiments. Remark as well that the SSIM
measures computed in [61] omits the automatic downsampling of the images. Finally, the
ratio of outliers could not be computed for the LIVE database since the standard deviations
of the MOS were not available to the author.

A deeper look at the L2-error reveals its intrinsic weaknesses for IQA. As explained in
[113], four assumptions on image quality assessment are implicitly made when applying
the L2-error: 1) the image quality is independent of the spatial order of the pixels of the
original image, 2) the image quality is independent of the sign of the sample errors, 3) the
image quality is signal independent in the sense that it depends only on the error image
no matter what is the original image and 4) all image samples are equally important for
image quality. These assumptions were all proved to be erroneous.

1.5 Thesis Outline

As announced earlier, the goal of this thesis is to provide the mathematical tools needed to
incorporate a perceptual criterion such as the SSIM index in image processing algorithms.
This perceptual criterion is important for the improvement of image processing algorithms.
Indeed, algorithms have to be optimized according to a perceptually relevant model in order
to obtain better image quality. This will then eventually lead to concrete technological
applications in domain such as digital imaging, remote sensing and medical imaging.

Besides numerous algorithms that are based on the Lp-norms, a few algorithms have
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been devised in literature attempting to achieve SSIM-optimal image processing. In
particular, Channappayya et al. developed a SSIM-optimal affine transform [22] and a
SSIM-optimal linear operator [21, 20] for image denoising. More recently, Rehman et
al. [85] incorporated the SSIM index into the non-local means whereas Wang et al. [111]
tried to do the same for fractal image compression.

The layout of this thesis is divided as follows. In Chapter 2, normalized metrics are
introduced in full mathematical generality. A new normalized metric with stability constant
is introduced and methods to combine several metrics into either a scalar-valued or vector-
valued metric are developed. Some necessary or sufficient conditions are also given for a
metric to be “normalizable”. We then demonstrate how the SSIM index can be modified
into a normalized metric and show that this approximation is valid in practice.

In the next chapter, we present more mathematical properties of the SSIM index. First,
some symmetries and invariances of the SSIM index are discussed. We also prove some
convexity and quasi-convexity properties of each of the components of the SSIM index as
well as their combination. Then, methods to prove these properties for generalizations of
the SSIM index are sketched. Finally, an analytical solution of the problem of projecting
images onto convex sets according to the SSIM index is given.

In Chapter 4, we will describe the geodesic path between two images according to the
SSIM index. The problem is to find series of images that are locally maximizing the SSIM
index. A discussion on similar works by other authors will be provided as well as our own
proofs.

Immediately following this chapter, we analyze the similar problem of how to maximize
the weighted sum of the SSIM index between several images. It turns out that the solution
differs from the previous problem. The description of the solution as well as a comparison
between the SSIM-mean and the geodesic path will also be provided in Chapter 5.

Then in Chapter 6, we will show how to optimize the SSIM index for orthogonal or
redundant basis. That is, given a fixed basis, we will show how to choose the basis elements
and their coefficients in order to maximize the SSIM index.

The self-similarity of images will be studied in Chapter 7. We will revisit the self-
similarity of images in some experimental simulations. In particular, by computing the
local block similarity of images according to the SSIM index, we will see that images are
less self-similar than they might appear at first hand.

In Chapter 8, we will take advantage of the distortion model of images by using the
residual image to assess and enhance image denoising algorithms. An estimator of the
PSNR and the SSIM index between an original image and its attempted reconstruction
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that rely only on the noisy and the denoised images will be proposed. We will also use
Fisher’s significance tests to estimate locally the quality of the image denoising.

The novelty of this thesis lies in many fronts. First, the properties of the SSIM index
are studied in depth to extend several of its known properties. Second, the optimization
of the SSIM index is not limited to linear operators or to a particular algorithm. Instead,
it will be studied in general for different kind of problems: geodesic path between images,
decomposition into an optimal basis, best SSIM estimator, etc. In several instances the
optimization takes into account the stability constants, thus allowing to treat every kind
of signals. Finally, a general framework for SSIM-optimal image processing, and image
denoising in particular, is laid down, leading the way to many applications.
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Figure 1.4: Results of psychovisual testing of the Peak-to-Noise Signal Ratio (PSNR) and
of the Structural Similarity (SSIM) index for LIVE database, second release, and for TID-
2008 database. The green line represents the least square regression of a five parameters
generalized logistic curve.
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Chapter 2

On Normalized Metrics

In an experiment conducted by Weber in 1834, he observed that the change of perception
of a stimulus depends not simply on the difference between stimulus intensities, but rather
on their ratio (see e.g. [110]). Thus, he established that it is the relative error, not the
absolute one, that needs to be considered in image quality assessment. In the metric space
framework, this observation leads to the creation of normalized distances.

In the context of image processing, the metric space structure is useful for bounding
the error between images or in order to prove the convergence of certain image processing
algorithms. For example, for the image query retrieval problem in computer vision a search
in the metric space is performed.

Moreover, Li [64] argued that the right model for images necessitates only a metric
space structure and not a full Hilbert space structure. That is, instead of representing an
image as a linear combination of some basis (i.e. discrete cosine or wavelet), he suggests
representing it as the fixed point of some non-local self-similar and non-expansive operator
(e.g. non-local means [16] or Block Matching 3-D (BM3D) [31]).

In this chapter, we will study normalized metrics and illustrates how a modification
of the Structural Similarity (SSIM) index can enter into this class of metrics. After some
preliminary discussions on Ptolemaic metric spaces, we will survey the few contributions
on normalized metrics that were made in the literature. Our own contributions will also
be added in the research of a complete characterization of these metrics. We will pursue
this chapter with a brief introduction to vector-valued metrics and their scalarization to
real-valued metrics. Finally, it will be demonstrated with a psychovisual experiment that
one of the normalized metric predicts the human perception of image quality at least as
well as the SSIM index.
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2.1 Ptolemaic Metric Spaces

This section presents the characterization of inner-product spaces found in 1952 by I.J.
Schoenberg [99] who linked them with Ptolemaic spaces. This characterization has impor-
tant consequences for the results of the subsequent sections, since Ptolemy’s inequality will
be invoked in numerous occasions.

For the sake of completeness, let us begin with the definition of metric spaces.

Definition 2.1.1. Let S be a non-empty set. A metric is a function

d : S × S → R+,

with the following properties:

Positive definiteness :

d(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ S;

Symmetry :
d(x, y) = d(y, x), ∀x, y ∈ S;

Triangle inequality :

d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ S.

We call a metric space (S, d) the set S embedded with the metric d.

An important identity for the points in RN is Ptolemy’s inequality. This is a gen-
eralization of the well-known geometric identity due to Ptolemy which states that if a
quadrilateral is inscribed in a circle, then the sum of the products of the lengths of its
opposed edges equals the product of the lengths of its diagonals. We can further generalize
this property for other metric spaces.

Definition 2.1.2. A metric space (S, d) is said to be Ptolemaic if

d(x, y)d(z, w) + d(y, z)d(x,w) ≥ d(y, w)d(x, z) (2.1)

for all x, y, z, w ∈ S.
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Theorem 2.1.3 (Ptolemy’s inequality in real inner-product space). Let x, y, z, w be four
points of X, a real inner-product space. Then

‖x− y‖‖z − w‖+ ‖y − z‖‖x− w‖ ≥ ‖y − w‖‖x− z‖. (2.2)

This theorem was first found by Schoenberg in [99], where he mentions that one can
generalize the proof of the Ptolemy’s inequality in the plane given by Johnson [57]. We
provide the details here.

Proof. Without loss of generality, we assume that w = 0. (We can always translate all
the points by subtracting them w.) Let B(0, r) be a ball of radius r. Let x′, y′, z′ be the
inversion of x, y, z, respectively, with respect to the ball B(0, r). It means that 〈x, x′〉 =
‖x‖‖x′‖ = r2. Then by the triangle inequality, we have

‖x′ − y′‖+ ‖y′ − z′‖ ≥ ‖x′ − z′‖. (2.3)

The Cauchy-Schwarz inequality 〈x, x′〉 ≤ ‖x‖‖x′‖ is an equality if and only if x′ = ax for
a ∈ R. Hence,

x′ = ax =
r2

‖x‖2
x.

Similar equalities also hold for y′ and z′. After substituting x′, y′ and z′ in the squared
norms, i.e.

‖x′ − y′‖2 =
r4

‖x‖2‖y‖2
‖x− y‖2,

the inequality (2.3) simplifies to

‖z‖‖x− y‖+ ‖x‖‖y − z‖ ≥ ‖y‖‖x− z‖.

Translating all the points by w, we get the desired result.

We are now ready to state the theorem completing the characterization of inner-product
spaces.

Theorem 2.1.4 (Characterization of inner-product spaces [99]). Let X be a real semi-
normed space (norms without the triangle inequality property). If Ptolemy’s inequality
holds for all points of this space, then it is an inner-product space.
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2.2 Characterization of Normalized Metrics

Since we are working with relative distances, we need a “zero” element in our metric space
to which we will compare the magnitude of the other elements. It brings us to define the
concept of norm, which will be useful in particular for the simplification of the notation,
although not essential for the rest of the discussion. Moreover, for the manipulation of
images, we want to be able to add them together (change of luminance) and to multiply
them by a scalar (change of contrast). Thus the vector space structure is required. The
combination of these requirements yields to the study of real normed vector space.

We call a real normed space the vector space X equipped with the norm ‖ · ‖. The
metric induced by ‖ · ‖ is defined by

d(x, y) := ‖x− y‖, ∀x, y ∈ X.

Normalized metrics are a special kind of metrics that measure relative distance between
two elements.

Definition 2.2.1. Given a metric space (X, d) with a ∈ X fixed and a function M :
R+ × R+ → R+, a normalized metric (or M -relative distance [50]) is a metric of the
form:

ρM(x, y) :=
d(x, y)

M(d(x, a), d(y, a))
. (2.4)

For well-defineteness, we exclude from the domain X all the points for which M = 0 and
d > 0. If M = 0 and d = 0, then we complete the metric as ρM := 0.

Note 2.2.2. If (X, d) is a metric induced by a norm, then we can always take a = 0 and
the normalized metric can be written more simply as

ρM(x, y) :=
‖x− y‖

M(‖x‖, ‖y‖)
. (2.5)

This is the notation we will adopt for the remainder of this work.

Contrary to the relative error |x−y||x| , which is not a metric, the function M is selected in
a fashion that yields to a metric. The question is, for which function M and metric space
(X, d) is ρM(x, y) a metric? Our search for sufficient and necessary conditions will be the
theme of the following sections.
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2.2.1 Literature Review

The first well-known example of normalized metric is the chordal metric

d(x, y) =
‖x− y‖2√

1 + ‖x‖2
2

√
1 + ‖y‖2

2

, x, y ∈ RN .

In 1976, Schattschneider [98] discovered that

d(x, y) :=
|x− y|
|x|+ |y|

is a metric on R. She called this a multiplicative metric. Later, Yianilos [124] generalized
this result on RN for

d(x, y) =
‖x− y‖2

α + β(‖x‖2 + ‖y‖2)
(2.6)

with α ≥ 0 and β > 0.

Klamkin and Meir [58] found that the generalized multiplicative metric

d(x, y) =
‖x− y‖2

(‖x‖p2 + ‖y‖p2)1/p
(2.7)

is a metric for all p ≥ 1. They also showed that

d(x, y) =
‖x− y‖2

‖x‖2‖y‖2

(2.8)

is a metric. In fact, it follows directly from Ptolemy’s inequality (2.2). Furthermore, they
generalized the chordal metric by proving that

d(x, y) =
‖x− y‖2

(α + β‖x‖p2)1/p(α + β‖y‖p2)1/p
(2.9)

is a metric for α > 0, β ≥ 0 and p ≥ 1.

Finally, in [50], Hästö found necessary and sufficient conditions for two classes of
normalized metrics. The first class consists of metrics normalized by a generalization
of the mean.
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Definition 2.2.3. The generalized p-mean of x and y in R+ is

Ap(x, y) =


(
xp+yp

2

)1/p
, if p > 0,

max(x, y) if p =∞,
min(x, y) if p = −∞,√
xy if p = 0.

(2.10)

He also proved the following theorem.

Theorem 2.2.4 ([50]).

d(x, y) =
‖x− y‖

Aqp(‖x‖, ‖y‖)
(2.11)

is a metric if and only if 0 < q ≤ 1 and p ≥ max(1− q, (2− q)/3).

For q = 1, it extends the range of p for which the generalized multiplicative distance
(2.7) is a metric to p ≥ 1/3 while showing that it is a tight bound.

The second result that Hästö derived is for metrics normalized by a product of functions.
Before stating this result, we need to first define moderately increasing functions.

Definition 2.2.5. A function f : R+ → R+ is moderately increasing if

1. f(x) is increasing, i.e., f(x2) ≥ f(x1) for x2 ≥ x1 and

2. f(x)/x is decreasing for x > 0.

Theorem 2.2.6 ([50]). If M(‖x‖, ‖y‖) = f(‖x‖)f(‖y‖), then ρM(x, y) is a metric if and
only if f is moderately increasing and convex.

In particular, this result established that the sufficient condition p ≥ 1 for the general-
ized chordal metric of Klamkin and Meir is also necessary.

Hästö further proved these two results with the help of the subsequent lemma.

Lemma 2.2.7 (Hästö’s Lemma [50]). Let (X, ‖ · ‖) be a Ptolemaic normed space and let
M(‖x‖, ‖y‖) be a moderately increasing function with respect to ‖x‖. Then

ρM(x, y) =
‖x− y‖

M(‖x‖, ‖y‖)
(2.12)

is a metric on X if and only if it is a metric on R+.
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We present and show the details of Hästö’s proof.

Proof. If ρM is a metric on X, then it is in particular a metric on any one-dimensional
subspace of X which is isometric to R+. It is clear that the symmetry and positive
definiteness properties are preserved regardless of the underlying space. Thus, the real
challenge is the triangle inequality. Without loss of generalities, let x, y, z ∈ X with
|x| ≤ |z|. We want to show that

ρM(x, y) + ρM(y, z) ≥ ρM(x, z), i.e. (2.13)

M(|x|, |z|)
M(|x|, |y|)

|x− y|+ M(|x|, |z|)
M(|z|, |y|)

|z − y| ≥ |x− z|. (2.14)

From the triangle inequality for the norm ‖ · ‖ and Ptolemy’s inequality (2.1), we have two
sufficient conditions:

M(|x|, |z|)
M(|x|, |y|)

|x− y|+ M(|x|, |z|)
M(|z|, |y|)

|z − y| ≥ |x− y|+ |y − z| and (2.15)

M(|x|, |z|)
M(|x|, |y|)

|x− y|+ M(|x|, |z|)
M(|z|, |y|)

|z − y| ≥ |z|
|y|
|x− y|+ |x|

|y|
|y − z|. (2.16)

Since M is increasing, the first condition holds if |y| ≤ |x|. When |y| ≥ |z|, the second
condition is true since M is moderately increasing. In the case |x| < |y| < |z|, we want to
combine both conditions. We have(

M(|x|, |z|)
M(|x|, |y|)

− 1

)
|x− y| ≥ |y − z|

(
1− M(|x|, |z|)

M(|z|, |y|)

)
and (2.17)(

|z|
|y|
− M(|x|, |z|)
M(|x|, |y|)

)
|x− y| ≤

(
M(|x|, |z|)
M(|z|, |y|)

− |x|
|y|

)
|y − z|. (2.18)

From the moderately increasing property of M , all sides of both equalities are positive.
Thus, the two sufficient conditions (2.15) and (2.16) can be rearranged into a single one:(

1− M(|x|,|z|)
M(|z|,|y|)

)
(
M(|x|,|z|)
M(|x|,|y|) − 1

) ≤ |x− y|
|y − z|

≤

(
M(|x|,|z|)
M(|z|,|y|) −

|x|
|y|

)
(
|z|
|y| −

M(|x|,|z|)
M(|x|,|y|)

) . (2.19)
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It further simplifies to

|z|
|y|
− M(|x|, |z|)
M(|x|, |y|)

− |z|M(|x|, |z|)
|y|M(|z|, |y|)

≤ |x|
|y|
− M(|x|, |z|)
M(|z|, |y|)

− |x|M(|x|, |z|)
|y|M(|x|, |y|)

,

|z| − |x|
M(|x|, |z|)

≤ |z| − |y|
M(|z|, |y|)

+
|y| − |x|
M(|x|, |y|)

. (2.20)

So if the triangle holds in R+, the sufficient condition (2.19) will be met and ρM will be a
metric on X.

2.2.2 Necessary and Sufficient Conditions

It is difficult to find necessary and sufficient conditions for a normalized distance ρM(x, y)
to be a metric. Here, we will give a partial answer by extending the results of Hästö
[50] and our previous results [15]. The importance of these results will be manifested in
particular when we will apply them to define a metric from each component of the SSIM
index.

Theorem 2.2.8 (Sufficient Condition). Let (X, ‖ · ‖) be a Ptolemaic normed space. Let
M(x, y) : R2

+ → R+ be a symmetric and moderately increasing function. Let

f(y, g(y, x, z)) := M(y, x)M(y, z) (2.21)

with f convex in the first argument and g(x, y, z) pair-wise symmetric. Then ρM is a
metric.

Proof. By Hästö’s Lemma 2.2.7, we only need to check that ρM is a metric on R+. Without
loss of generality, consider x ≤ z. In fact, from the sufficient condition (2.15) of the proof
of the lemma, ρM is a metric if 0 ≤ y ≤ x, since M is increasing. From the second sufficient
condition (2.16), ρM is a metric if y ≥ z, since M is moderately increasing. It remains
to treat the case 0 ≤ x < y < z. By convexity of f and symmetry of g, we have for all
λ ∈ (0, 1), with y = λx+ (1− λ)z,

f(y, g(y, x, z)) ≤ λf(x, g(x, y, z)) + (1− λ)f(z, g(z, x, y)). (2.22)

It is equivalent to

M(y, x)M(y, z) ≤ λM(x, y)M(x, z) + (1− λ)M(z, x)M(z, y). (2.23)
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Rearranging the terms and using the symmetry of M lead to

1

M(x, z)
≤ λ

M(y, z)
+

1− λ
M(x, y)

. (2.24)

Finally, by taking

λ =
z − y
z − x

,

we obtain

z − x
M(x, z)

≤ z − y
M(y, z)

+
y − x
M(x, y)

. (2.25)

Note that in particular, it implies that ρM is a metric for

M(|x|, |y|) = f(|x|)f(|y|),

thus generalizing the sufficient condition of Hästö. We can also apply the sufficient
condition just found to powers of the generalized p-mean between x, y and a constant c.

Definition 2.2.9. The generalized p-mean between x, y and a constant c in R+ is

Ap,c(x, y) =


(
xp+yp+cp

3

)1/p
, if p > 0,

max(x, y, c), if p =∞,
min(x, y, c), if p = −∞,
(xyc)1/3, if p = 0.

(2.26)

We will generalize some of these results for the family of normalized metrics taking the
form

ρAqp,c(x, y) :=
‖x− y‖

Aqp,c(‖x‖, ‖y‖)
. (2.27)

Corollary 2.2.10. ρAqp,c is a metric for c ≥ 0, 1/2 ≤ q ≤ 1 and p ≥ 1.

Proof. It is easy to verify that Aqp,c is positive, symmetric and moderately increasing for
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0 < q ≤ 1. Posing

g(x, y, z) := ypzp + ypxp + xpzp + cp(xp + yp + zp) and (2.28)

f(y, g(x, y, z)) := (y2p + ypcp + c2p + g(x, y, z))q/p, (2.29)

we can see that

32q/pAqp,c(y, x)Aqp,c(y, z) = f(y, g(x, y, z)).

It is clear that g is pair-wise symmetric. It remains, however to find the range of values of
p and q for which f is convex in the first component.

Taking the second derivative of f(y, a) with respect to y leads to

∂2f

∂y2
= qyp−2(y2p + yp + a)

q
p
−2
(
(4q − 2)y3p + (4q + p− 3)cpy2p (2.30)

+ (q + 4p− 3)c2pyp + (p− 1)c3p + a((4p− 2)yp + (p− 1)cp)
)
.

For ∂2f
∂y2

to be positive, it is sufficient that p ≥ 1 and q ≥ 1/2.

From (2.30), we can extend the range of p to p ≥ 1/2, if c = 0. Remark that in this
case the sufficient condition is not necessary based on Hästö’s Theorem 2.2.4:

p ≥ max(1− q, (2− q)/3) ≥ 1/3 for 0 < q ≤ 1.

It is worth noting that the normalized metric is continuous at (0, 0) if and only if c > 0.

We will now present two different necessary conditions for normalized metrics.

Theorem 2.2.11 (Necessary Condition 1). Let d be a Ptolemaic metric. If ρM = d(x,y)
M(‖x‖,‖y‖)

is a metric, then M is positive, symmetric and moderately increasing.

Proof. Suppose that ρM is a metric on X. In particular, it is also a metric on a one
dimensional sub-space isometric to R.

• If M is not symmetric, then M(|x|, |y|) > M(|y|, |x|) for some |x| 6= |y|. This implies
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that

d(x, x)

M(|x|, |x|)
+

d(x, y)

M(|x|, |y|)
=

d(y, x)

M(|x|, |y|)
, (2.31)

<
d(y, x)

M(|y|, |x|)
.

Hence, ρM is not a metric; a contradiction.

• If M is not positive, then M(|x|, |y|) < 0 for some x and y. Since ρM is a metric, M
has to be symmetric. This implies that

d(x, y)

M(|x|, |y|)
+

d(y, x)

M(|y|, |x|)
< 0, (2.32)

=
d(x, x)

M(|x|, |x|)
.

Hence, ρM is again not a metric; another contradiction.

• We now show that if M(|y|, |x|) > M(|z|, |x|) for some |x| < |y| < |z|, then ρM
cannot be a metric. Note that we already established that M is symmetric. Consider
the following two cases.

1. If M(|y|, |z|) ≥M(|x|, |z|), then for 0 < x < y < z,

d(x, y)
M(|x|, |z|)
M(|x|, |y|)

+ d(y, z)
M(|x|, |z|)
M(|y|, |z|)

< d(x, y) + d(y, z), (2.33)

= d(x, z).

2. If M(|y|, |z|) < M(|x|, |z|), then M(|y|, |z|) < M(|x|, |y|) as well and for y <
0 < x < z, i.e. for x = |x|, y = −|y| and z = |z|,

d(x, y)
M(|y|, |z|)
M(|x|, |y|)

+ d(x, z)
M(|y|, |z|)
M(|x|, |z|)

< d(x, y) + d(x, z), (2.34)

= d(y, z).

Thus, ρM cannot be a metric, which contradicts our previous assumption. Therefore,
M has to be increasing.
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• We perform a similar argument in the case that

M(|x|, |z|)
|x|

<
M(|y|, |z|)
|y|

for some |x| < |y| < |z|.

If M(|x|, |z|)/|z| ≤M(|x|, |y|)/|y|, then for 0 < x < y < z,

d(x, y)
M(|x|, |z|)
M(|x|, |y|)

+ d(y, z)
M(|x|, |z|)
M(|y|, |z|)

<
|z|
|y|
d(x, y) +

|x|
|y|
d(y, z), (2.35)

= d(x, z).

And, if M(|x|, |z|)/|z| > M(|x|, |y|)/|y|, then

|z|
|y|
M(|x|, |y|) < M(|x|, |z|) < |x|

|y|
M(|y|, |z|)

and for y < 0 < x < z, i.e. for x = |x|, y = −|y| and z = |z|,

d(x, z)
M(|x|, |y|)
M(|x|, |z|)

+ d(y, z)
M(|x|, |y|)
M(|y|, |z|)

<
|y|
|z|
d(x, z) +

|x|
|z|
d(y, z), (2.36)

= d(x, y).

Both cases imply that ρM is not a metric; more contradictions.

So if ρM is a metric, then M must be positive, symmetric and moderately increasing
everywhere.

Theorem 2.2.12 (Necessary Condition 2). Let M be a positive, symmetric and moderately

increasing function. If ρM(x, y) = d(x,y)
M(‖x‖,‖y‖) is a metric, then d is a metric for ‖y‖ ≥

max(‖x‖, ‖z‖) and d is Ptolemaic for ‖y‖ ≤ min(‖x‖, ‖z‖).

Proof. Suppose that d is not a metric for ‖y‖ ≥ max(‖x‖, ‖z‖). Then for some x, y, z such
that ‖y‖ ≥ max(‖x‖, ‖z‖),

d(x, y) + d(y, z) < d(x, z). (2.37)

Now, since we assumed that M is increasing and symmetric, we have

M(‖x‖, ‖z‖)
M(‖x‖, ‖y‖)

d(x, y) +
M(‖x‖, ‖z‖)
M(‖y‖, ‖z‖)

d(y, z) ≤ d(x, y) + d(y, z). (2.38)
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Combining the last two equations, we see that ρM is not a metric.

Similarly, suppose that d is not Ptolemaic for ‖y‖ ≤ min(‖x‖, ‖z‖). Then for some
x, y, z such that ‖y‖ ≤ min(‖x‖, ‖z‖),

‖z‖
‖y‖

d(x, y) +
‖x‖
‖y‖

d(y, z) < d(x, z). (2.39)

Again, since we assumed that M is moderately increasing and symmetric, we have

M(‖x‖, ‖z‖)
M(‖x‖, ‖y‖)

d(x, y) +
M(‖x‖, ‖z‖)
M(‖y‖, ‖z‖)

d(y, z) ≤ ‖z‖
‖y‖

d(x, y) +
‖x‖
‖y‖

d(y, z). (2.40)

Combining once more the last two equations, we see that ρM is still not a metric.

Corollary 2.2.13. Let M be a positive, symmetric and moderately increasing function.
Then ρM(x, y) := ‖x− y‖p/M(‖x‖p, ‖y‖p) is not a metric for p 6= 2.

Proof. From Theorem 2.1.4, ‖ · ‖p is not Ptolemaic for p 6= 2. From Theorem 2.2.12, it
implies automatically that ρM is not a metric.

This looks like bad news. Of the Lp-norms, only L2 is “normalizable” with positive,
symmetric and moderately increasing functions. Remark however that it is possible to
construct normalized metrics from non-Ptolemaic metrics (or even from non-metrics) but
it would involve other types of functions M . For example, if we can show the following
two Ptolemy-type properties for d

‖x‖α

‖y‖α
d(x, y) +

‖z‖α

‖y‖α
d(z, y) ≥ d(x, z) for ‖y‖ ≤ min(‖x‖, ‖z‖) (2.41)

and

‖x‖β

‖y‖β
d(x, y) +

‖z‖β

‖y‖β
d(z, y) ≥ d(x, z) for ‖y‖ ≥ max(‖x‖, ‖z‖), (2.42)

then we will need the following property of M for ρM to possibly be a metric:

‖x‖α

‖y‖α
≤ M(‖x‖, ‖z‖)
M(‖y‖, ‖z‖)

≤ ‖x‖
β

‖y‖β
. (2.43)

Note that this kind of condition can be generalized to any given pair of functions of ‖x‖/‖y‖.
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2.3 Vector-valued Metrics

In image quality assessment, we take into account several features of images. For example,
in the SSIM index, the luminance, contrast and structure of images are all locally compared
and usually combined into a single score. This is done via multiplication of the local
distortion scores and the average of all the scores over the whole image. One may wonder
why it is necessary to collapse all the scores into a single one. Indeed, it has already been
demonstrated that the SSIM map (see [114]) provides valuable information on the location
of distortions in an image. This leads us now to the idea of vector-valued metrics.

One attractive side of vector-valued metrics is that it accounts for the fact that certain
objects are not comparable. We will see that contrary to metrics which are totally ordered,
vector-valued are not. This means that for a certain pair of objects, it is not possible to
tell whether they are closer or farther from each other than another pair. Concretely, it is
interpreted as the impossibility to compare the quality of certain images.

2.3.1 On Cone Metric Spaces

This section follows the definitions given in a recent paper by Huang and Zhang [53]. It
will be useful later when we study the possibility of a vector-valued SSIM index.

In the definition of a metric, d maps two objects in S × S to a real number that
represents the distance between them. One can wonder why the specific use of R as a
measure of distance was chosen. One reason suggested is that real numbers are totally
ordered.

Definition 2.3.1. A set S is totally ordered if for any element a, b ∈ S, either (i) a � b
or (ii) a � b, where “ � ” is an order relationship.

For real numbers, the order relationship is the usual inequality.

For applications in image processing and quality assessment, it may be desirable to have
a metric mapping to a vector space E. In this case, we lose the total ordering property,
but we can still define a partial ordering from cones.

Definition 2.3.2. Let X be a vector space on R. A salient cone P ⊂ X obeys the following
set of conditions:

1. P is closed, nonempty and P 6= {0} ,
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2. If x, y ∈ P , then ax+ by ∈ P for all a, b ∈ R+ (i.e. a, b ≥ 0) and

3. x ∈ P and −x ∈ P implies that x = 0.

For x, y ∈ X, we write x � y if and only if x− y ∈ P . This is also written symbolically
as y ∈ x+ P .

Example 2.3.3. The positive orthant RN
+ ⊂ RN is an example of a cone. The partial

ordering associated with this cone is

x � y ⇐⇒ xk ≥ yk, 1 ≤ k ≤ N, (2.44)

where x = (x1, x2, . . . , xN).

Definition 2.3.4. A cone metric space (S,d) is a set S and an associated vector-valued
function

d(x, y) : S × S → X, (2.45)

with X a vector space, satisfying the following conditions for all x, y, z ∈ S:

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x) and

3. d(x, y) + d(y, z) � d(x, z).

Note that contrary to the definition of Huang and Zhang, we did not assume that X is
a Banach space.

2.3.2 Scalarization of Vector-valued Metrics

Given several metrics {dm}Mm=1, one can consider them as components of a vector d(x, y)
in a cone metric space. This will lead to a sometimes difficult multi-objective optimization.
Here, we will study how to collapse them into a single metric. Simpler optimization schemes
of image processing algorithms will be the principal benefit of this procedure.

First of all, it is useful to recall the following classical theorem.
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Lemma 2.3.5 (Orthogonal Decomposition Theorem). Let {Xm}Mm=1 be an orthogonal
decomposition of RN , i.e.

M⋃
m=1

Xm = RN

and
Xi ⊥ Xj for all i 6= j.

Then each element x of RN can be written uniquely as

x =
M∑
m=1

xm, (2.46)

where xm = Pm(x) are the projections of x on Xm.

Definition 2.3.6. A norm in RM is said to satisfy the increasing property if for any
a ∈ RM

+ and b ∈ RM
+ ,

‖a+ b‖ ≥ ‖a‖. (2.47)

The increasing property in (2.47) holds for suitably weighted lp norms, e.g.

‖x‖w,p =

[
M∑
m=1

wm|xm|p
]1/p

(2.48)

where wk,p > 0 and 1 ≤ p <∞ for 1 ≤ m ≤M . It also holds for the L∞-norm, e.g.

‖x‖∞ = max
1≤m≤M

{|xm|}. (2.49)

We can show however that (2.47) does not hold for all norms.

The following theorem shows that, in general, if ‖ · ‖ possesses the increasing property
then the norm of a vector of metrics is also a metric.

Theorem 2.3.7. Let {Xm}Mm=1 be a standard orthogonal decomposition of RN . Let Pm :
RN → Xm for 1 ≤ m ≤M be the associated projection of x ∈ RN to Xm with xm := Pm(x).
Let {dm}Mm=1 be M metrics on, respectively, {Xm}Mm=1. Define

d(x, y) : RN ×RN → RM
+ (2.50)

(x, y) 7→ (d1(x1, y1), . . . , dM(xM , yM)).
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Let ‖ · ‖ be a norm in RM that satisfies the increasing property (2.47) in RM
+ . Then

d(x, y) := ‖d‖ (2.51)

is a metric in RN .

Proof. It is clear that x = y implies that d = 0. Now, if d(x, y) = 0, then dm(xm, ym) = 0
for all 1 ≤ m ≤ M , so xm = ym for all 1 ≤ m ≤ M since dm is a metric. From the
Orthogonal Decomposition Theorem (Lemma 2.3.5), we can imply that x = y. So by the
property of norms, we have

‖d‖ = 0 ⇐⇒ x = y.

The symmetry property is straightforward. It remains to prove that ‖d‖ satisfies the
triangle inequality. Since d1, d2, . . . , dM are metrics, every component of d satisfies the
triangle inequality. From our assumption that the ‖·‖ norm satisfies the increasing property,
we conclude:

‖d(x, z)‖ ≤ ‖d(x, y) + d(y, z)‖
≤ ‖d(x, y)‖+ ‖d(y, z)‖. (2.52)

2.4 The SSIM Index as a Normalized Metric

It is rather straightforward to prove the following properties of the SSIM index (1.16) or
(1.21).

Proposition 2.4.1. The SSIM index is bounded between −1 and 1.

Proof. Since x,y ∈ RN
+ , both x̄ ≥ 0 and ȳ ≥ 0. It implies that l(x, y) ≥ 0. Since sx ≥ 0

and sy ≥ 0, then c(x,y) ≥ 0 as well. Since

2xy + c

x2 + y2 + ε
≤ 1 ⇐⇒ x2 − 2xy + y2 ≥ 0 ⇐⇒ (x− y)2 ≥ 0,

we have l(x,y) ≤ 1 and c(x,y) ≤ 1. By the Cauchy-Schwarz inequality,

|sx,y| ≤ sxsy.
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It implies automatically that−1 ≤ s(x,y) ≤ 1. Combining the information on l(x,y), c(x,y)
and s(x,y), we arrive at the desired conclusion.

Proposition 2.4.2. SSIM(x,y) = 1 ⇐⇒ x = y.

Proof. If x = y, then x̄ = ȳ and sx,y = s2
x = s2

y. Therefore, it is clear that SSIM(x,y) = 1.
If SSIM(x,y) = 1, then the only possibility is l(x,y) = 1, c(x,y) = 1 and s(x,y) = 1 since
0 ≤ l(x,y) ≤ 1, 0 ≤ c(x,y) ≤ 1 and −1 ≤ s(x,y) ≤ 1. By the Cauchy-Schwarz inequality,

sx,y = sxsy ⇐⇒ y = ax + b with a > 0.

It means that ȳ = ax̄+ b and sy = asx. But since

2xy + c

x2 + y2 + c
= 1 ⇐⇒ x2 − 2xy + y2 = 0 ⇐⇒ (x− y)2 = 0,

we find that x̄ = ȳ and sx = sy. This implies that a = 1 and b = 0, i.e. that y = x.

Proposition 2.4.3. The SSIM index is symmetric.

Proof. It is clear that l(x,y), c(x,y) and s(x,y) are symmetric, so automatically it implies
that SSIM(x,y) = SSIM(y,x).

Obviously, the SSIM index is not a metric. To transform the SSIM index into a metric, it
is tempting to try a function like T (x,y) = 1−SSIM(x,y) or T (x,y) =

√
1− SSIM(x,y).

With this, the only thing that remains is to prove the triangle inequality. Still, it is not
clear if this will lead to a metric, but we can show that the mean component S1 and
the zero-mean component S2 of the SSIM index can be transformed into a normalized
metric. Moreover, both components can be combined into a single metric either by taking
a weighted Lp-norm or by considering them as components of a generalized cone metric.

Corollary 2.4.4. Let S1 and S2 be a decomposition of the SSIM index between x and y
on a block/image of size n:

SSIM(x,y) = S1(x,y)S2(x,y) (2.53)

where

S1(x,y) =
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1
and S2(x,y) =

2sx,y + ε2
s2
x + s2

y + ε2
. (2.54)

Then
d1(x,y) :=

√
1− S1(x,y) and d2(x,y) :=

√
1− S2(x,y) (2.55)
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are metrics.

Proof. Develop

d1(x,y) :=
√

1− S1(x,y)

=

√
x̄2 + ȳ2 − 2x̄ȳ

x̄2 + ȳ2 + c1

=
|x̄− ȳ|√
x̄2 + ȳ2 + ε1

. (2.56)

Also,

d2(x,y) :=
√

1− S2(x,y)

=

√
s2
x + sy

2 − 2sx,y
s2
x + s2

y + ε2

=
‖(x− x̄)− (y − ȳ)‖2√

‖x− x̄‖2
2 + ‖y − ȳ‖2

2 + (n− 1)ε2
. (2.57)

We recognize d1(x̄, ȳ)/
√

3 with c =
√
ε1 and d2(x − x̄,y − ȳ))/

√
3 with c =

√
(n− 1)ε2

as metrics in R and Rn−1, respectively, of the form of Corollary 2.2.10 with p = 2, q = 1.
Since projections and scalar multiplications send elements of Rn into Rn, it is clear that
d1 and d2 are also metrics in Rn.

In practice, we only have proved that the components of the SSIM index can be
transformed into metrics but we have not yet shown anything about the full SSIM index
itself. So in order to obtain a metric, we need either to consider a vector-valued form or
to combine the components of the SSIM index into one.

From the results of Section 2.3, we have that(
Rn,d = (d1, d2)

)
(2.58)

is a cone metric space, where d1 and d2 are the components of the SSIM index given in
(2.55). It has the partial order

d(x,y) � d(z,v) ⇐⇒ di(x,y) ≥ di(z,v), for i = {1, 2}, (2.59)

where x,y, z,v ∈ Rn.
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A scalarization of this cone metric can be done via

‖d‖(w,p) = (w1d
p
1 + w2d

p
2)1/p

= (w1(1− S1)p/2 + w2(1− S2)p/2)1/p. (2.60)

From (2.51), this is a metric for all p > 0 and all (w1, w2) ∈ R2
+. In particular, for p = 2

and w = (1, 1),

D2 := ‖(d1, d2)‖((1,1),2) =
√
d2

1 + d2
2

=
√

2− S1 − S2 (2.61)

is a metric.

Writing S1 = 1− d2
1 and S2 = 1− d2

2, we compare

D2 =
√
d2

1 + d2
2 (2.62)

with

√
1− SSIM =

√
1− (1− d2

1)(1− d2
2)

=
√
d2

1 + d2
2 − d2

1d
2
2. (2.63)

That is, D2 can be seen as a lower degree approximation and an upper bound of
√

1− SSIM.
When either d1 = 0 or d2 = 0, then the two expressions are equivalent. In the next
section, we will study more concretely how D2 approximates

√
1− SSIM for common image

distortions.

To define a metric that approximates the full SSIM index, we need to combine the local
scores. Given x ∈ RN an image, we denote as xi ∈ Rn the extraction of the i-th image
block. Let N − B be the numbers of over-lapping blocks in the image x. A cone metric
over the whole image can then be defined as

Dp(x,y) = (Dp(x1,y1), Dp(x2,y2), . . . , Dp(xN−B,yN−B)), (2.64)

where Dp := ‖(d1, d2)‖p. Note that the subset of {xi}N−Bi=1 formed with non-overlapping
blocks represents an orthogonal decomposition of x. We can thus apply Theorem 2.51 to
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show that

Dp,q := ‖Dp‖q (2.65)

is a metric.

We consider two examples of metrics to be compared with the SSIM index: D2,1 and
D2,2. We proposed the first case in [15] as an approximation to the SSIM index. In the
first case,

D2,1(x,y) =
N−B∑
i=1

D2(xi,yi)

=
N−B∑
i=1

√
d2

1(xi,yi) + d2
2(xi,yi)

=
N−B∑
i=1

√
2− S1(xi,yi)− S2(xi,yi), (2.66)

whereas in the second case

D2,2(x,y) =

√√√√N−B∑
i=1

D2
2(xi,yi)

=

√√√√N−B∑
i=1

d2
1(xi,yi) + d2

2(xi,yi)

=

√√√√2−
N−B∑
i=1

(S1(xi,yi) + S2(xi,yi)). (2.67)

This has to be compared with

√
1− SSIM(x,y) =

√√√√1−
N−B∑
i=1

S1(xi,yi)S2(xi,yi). (2.68)
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2.4.1 Psycho-visual Validation of Normalized Metrics

For practical applications, the metric obtained from the modification of SSIM is essentially
equivalent to the original SSIM index and even performs slightly better in the case of D2,2.
This assertion is shown via a perceptual experiment.

Most typical image distortions Y = D(X), e.g. additive noise, blur, image compression,
roughly preserve the local mean of images, so that x̄ ' ȳ. This explains the observation
by Rouse and Hemami [90] on the LIVE database [102] that the contrast and structure
components of the SSIM index (1.16) are the most important to predict the human
perception of image distortion and justifies the use of D2,1 or D2,2 as an approximation of
SSIM. However, in the case that there exist significant changes in the mean image intensity,
as in the TID2008 database [79, 80], such an approximation is no longer valid.

To illustrate this fact, in Fig. 2.1, the SSIM index is compared with the score given by the
metric D2,2 on the 1700 distorted images of the TID2008 database. As in [114], the quality
maps were computed on 11× 11 local patches with circular Gaussian weighting (standard
deviation of 1.5 pixels) of a downsampled image and then pooled into a single index by
averaging. The resulting Pearson’s correlation coefficient between D2,2 and

√
1− SSIM

is 0.9998, showing a nearly perfect relationship. As expected, the same experiment with
the LIVE database gives also a very high correlation of 0.9986.

The Mean Opinion Scores (MOS) of the image quality of both TID2008 and LIVE
database, release 2, are compared with D2,1, D2,2 and SSIM in Table 2.1. Two kinds
of rank correlation were computed: Spearman’s correlation and Kendall’s correlation (see
Appendix A for details). The metric D2,1 matches very well the SSIM index, particularly in
the presence of distortions preserving the mean (e.g. noise distortions, denoising, blurring
and compression), but does not correlate with the MOS as well as the SSIM index in
general. On the other hand, the new metric D2,2 compares advantageously to the SSIM
index, with even a slight gain in rank correlation for the TID-2008 database.

This is an important result. Not only we showed how the SSIM index can be modified
into a valid metric distance, but a psychovisual test revealed that this new metric performs
at least as well as the SSIM image quality assessment measure. Let us call this new D2,2

normalized metric the SSIM metric. Remark that as it can be seen by comparing (2.67)
and (2.68), the main difference between the SSIM metric and the SSIM index is the fact
that the former adds all the local components whereas the latter takes a sum of the product
of the local components.
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Figure 2.1: Comparison of the SSIM index and of the metric D2,2 for the distorted images of
the TID-2008 database. It is observed that the data follows extremely closely

√
1− SSIM .

Table 2.1: Correlation between MOS and image quality assessment measures.

Correlation Measure LIVE TID2008
Kendall’s tau SSIM 0.718 0.577

D2,1 0.712 0.501
D2,2 0.718 0.581

Spearman’s rho SSIM 0.900 0.775
D2,1 0.896 0.667
D2,2 0.900 0.780
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Chapter 3

Properties of the SSIM Index

One reason for the popularity of the Mean Squared Error (MSE) in image processing
applications is its mathematical convenience (see [113]). Indeed, the MSE is convex,
differentiable and invariant under orthogonal transforms. Moreover, its square root, the so-
called Root Mean Squared Error (RMSE) satisfies the properties of a metric. The problem
with the MSE, however, is that it does not model the perception of image quality well.

In this chapter, we make a detailed study of the components of the Structural Similarity
(SSIM) index. The goal is to show that they share many properties of the L2-distance and
thus are an attractive alternative to L2. The invariance, symmetry, local convexity and
quasi-convexity of the SSIM index will be studied. These properties are important for the
optimization of the SSIM index. As an illustration, we will use some of these results to
find an analytical solution of the projection on a convex set according to the SSIM index.

3.1 Invariance and Symmetry Properties

Invariance and symmetry are two fundamental properties for the simplification of the SSIM
index and represent the cornerstone in many subsequent proofs. Essentially, symmetry
allows to reduce the dimension of the signal to be studied whereas invariance permits to
reduce the number of configurations to be studied. As it is well known, invariance under
orthogonal transforms also play an important role when passing from spatial to frequency
domain.

The following properties will hold for zero-mean signals x and y in RN and for any
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quality measure of the form

q(x,y) = f(‖x‖2, ‖y‖2, cos(θ)), (3.1)

where θ is the angle between x and y. This includes normalized metrics:

ρM(x,y) :=
‖x− y‖2

M(‖x‖2, ‖y‖2)
(3.2)

=

√
‖x‖2

2 + ‖y‖2
2 − 2‖x‖2‖y‖2 cos(θ)

M(‖x‖2, ‖y‖2)
(3.3)

and the SSIM index of a zero-mean signal:

SSIM(x,y) :=

(
2sxsy + ε2
s2
x + s2

y + ε2

)β (
sxy + ε3
sxsy + ε3

)
. (3.4)

Note that when β = 1 and ε3 = ε2/2, the zero-mean SSIM index can be transformed in a
particular case of a normalized metric via

NRMSEε(x,y) :=
√

1− SSIMε(x,y). (3.5)

The following property is analogous to Parseval’s identity for L2-norm.

Proposition 3.1.1. The quality measure q(x,y) is invariant under isometries.

Proof. If U is an orthogonal matrix, then

q(Ux, Uy) = f

(
‖Ux‖2, ‖Uy‖2,

〈Ux, Uy〉
‖Ux‖2‖Uy‖2

)
= f

(
‖x‖2, ‖y‖2,

xTUTUy

‖x‖2‖y‖2

)
= q(x,y). (3.6)

This explains the preserved SSIM measure in the discrete cosine transform (DCT)
domain [23].

The next property of invariance is satisfied by only some particular normalized metrics.
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Proposition 3.1.2. If M(‖x‖2, ‖y‖2) is homogeneous, then ρM(x, y) is invariant under
scaling.

Proof. If α > 0, then

ρM(αx, αy) =
‖αx− αy‖2

M(‖αx‖2, ‖αy‖2)
(3.7)

=
α‖x− y‖2

αM(‖x‖2, ‖y‖2)

= ρM(x,y). (3.8)

For the SSIM index, the scale invariance property is valid only when its stability
constant ε equals 0. For ε > 0,

SSIMε(αx, αy) =
2〈αx, αy〉+ ε

‖αx‖2
3 + ‖αy‖2

2 + ε

=
2〈x,y〉+ ε/α2

‖x‖2
2 + ‖y‖2

3 + ε/α2
(3.9)

= SSIMε/α2(x,y),

which is very close to scaling invariance if ε and ε/α2 are negligible in comparison to
‖x‖2

2 + ‖y‖2
2.

The next property will be very useful for analyzing the SSIM(x,y) when y is fixed,
thus reducing the dimensions of interest to only three.

Proposition 3.1.3. For x,y ∈ RN (N > 1) with y fixed, g(x) := q(x,y) exhibits a
rotational symmetry around the direction of y.

Proof. Consider any x(1) = ay + bu and x(2) = ay + bv where u,v ∈ RN with 〈y,u〉 =
〈y,v〉 = 0 and ‖u‖ = ‖v‖ = 1. In this case,

g(x(1)) = g(x(2)), (3.10)

since ‖x(1)‖ = ‖x(2)‖ and 〈y,x(1)〉 = 〈y,x(2)〉 for all a, b ∈ R and for all y ∈ RN .

The next and final preliminary property of ρM(x,y), which will also apply to the SSIM
index, is useful in finding its region of convexity.
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Proposition 3.1.4. For x,y ∈ RN with N > 1, g(x) := ρM(x,y) is monotonically
increasing perpendicularly to the direction of y.

Proof. Consider any x(1) = ay + bu and x(2) = ay + b′u where u ∈ RN with 〈y,u〉 = 0
and ‖u‖ = 1. In this case,

ρM(x(1),y) =

√
(a− 1)2‖y‖2 + b2

M(
√
a2‖y‖2 + b2, ‖y‖)

≤
√

(a− 1)2‖y‖2 + b′2

M(
√
a2‖y‖2 + b′2, ‖y‖)

= ρM(x(2),y), (3.11)

for all a ∈ R, b ≤ b′ ∈ R and for all y ∈ RN .

3.2 Level Sets of the SSIM Index

We are interested in understanding the shape of the SSIM index and of normalized metrics
by studying their level sets. The rewards will be manyfold. Firstly, it could help to select
the parameters α, β of the SSIM index (1.16) or p, q of normalized metrics (2.27) which
correspond more faithfully to human perception. Secondly, the shape of the level sets
enters in the quasi-convexity definition. Finally, it will be useful for finding the projection
of the SSIM index onto convex sets.

Any signal y ∈ RN
+ can be expressed as a sum of a mean term in the direction of

1 = (1, 1, . . . , 1) and a zero-mean term, i.e.

y = ȳ1 + (y − ȳ1), (3.12)

=: ȳ + y0. (3.13)

Taking the simplified form of the SSIM index (1.21), we observe that S1 depends only on
the mean of the signal ȳ and that S2 depends only on its zero-mean component y0. This
decomposition allows us to study each component independently.

By Proposition 3.1.3, the SSIM index exhibits a rotational symmetry around the
direction of y0. It means that we only need three directions to fully describe the SSIM
index: 1√

N
, y0

‖y0‖ and any direction perpendicular to ȳ and y0. In this section, we describe
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the level sets of the SSIM index and of normalized metrics in the two-dimensional zero-
mean space and compare them with the level sets of the MSE.

A single k-level set of the SSIM index consists of all the points

{x ∈ R2 : SSIM(x,y) = k}. (3.14)

By rotational invariance of the SSIM index (Proposition 3.1.1), it can be first considered
that y = (‖y‖, 0) since all the level sets will be a rotation of this one. The signal x can
then be written in polar coordinates as

x = (r cos(θ), r sin(θ)). (3.15)

The equation that needs to be solved is thus(
2r‖y‖+ ε2

r2 + ‖y‖2 + ε2

)β (
r‖y‖ cos(θ) + ε3

r‖y‖+ ε3

)
= k, (3.16)

or isolating cos(θ),

cos(θ) = k

(
1 +

ε3
r‖y‖

)(
r2 + ‖y‖2 + ε2

2r‖y‖+ ε2

)β
− ε3
r‖y‖

. (3.17)

Since we were able to isolate cos(θ), it means that there will be a unique value of θ ≥ 0
for each r. On the other hand, the maximum value for the left hand side is cos(θ) = 1,
leading to

r =
‖y‖ ±

√
‖y‖2 − k2/β(‖y‖2 + ε2) + ε2k1/β

k1/β
. (3.18)

So by varying r between the bounds given in (3.18), it is possible to find all values of cos(θ)
and to draw the level sets from the parametric curves for θ ≥ 0 and θ ≤ 0.

Figures 3.1 to 3.4 illustrate the level sets for MSE and for the zero-mean component
of the SSIM index with zero stability constants (drawn in red). We remark that the level
sets for the SSIM index with β = 1 are circles scaled and shifted out of the center. For
β < 1, the level sets take an egg-shape and becomes more elongated as β decreases. In
the limit, the level sets tend to half-lines following the direction of its center. On the
other hand, the level sets for β > 1 have a more bulky shape and bend along the circle of
constant magnitude. This flexibility in the shape of the level sets could be very interesting
to model any similarity measure depending only on the magnitude and the angle between
two points.
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Figure 3.1: Level sets of
MSE.

Figure 3.2: Level sets of
SSIM with β = 1.

Figure 3.3: Level sets of
SSIM with β = 2.

Figure 3.4: Level sets of
SSIM with β = 0.5.

We compare the level sets of the SSIM index with the level sets of pq-normalized metrics
of the form

ρp,q,c(x,y) =
‖x− y‖2

(‖x‖p2 + ‖y‖p2 + cp)q/p
(3.19)

with q ≤ 1. By rotational symmetry, the level sets also reduce to two dimensions. Again
writing y = (‖y‖, 0) and x in polar coordinates, the equation describing the level sets
become

r2 − 2r‖y‖ cos(θ) + ‖y‖2

(rp + ‖y‖p + cp)2q/p
= k2. (3.20)
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Isolating cos(θ) once again, it simplifies to

cos(θ) =
r2 + ‖y‖2

2r‖y‖
− k2 (rp + ‖y‖p + cp)2q/p

2r‖y‖
. (3.21)

As expected, there will be a unique value of θ ≥ 0 for each r. For cos(θ) = 1, the equation
simplifies to

f(r) := rp + ‖y‖p + cp −
∣∣∣∣r − ‖y‖k

∣∣∣∣p/q . (3.22)

If k ≤ ‖y‖/(‖y‖p + cp)q/p, then this equation has two and only two solutions: one with
r < ‖y‖ and one with r > ‖y‖. Indeed, for existence notice that

f(0) = ‖y‖p + cp − (‖y‖/k)p/q ≤ 0 if and only if k ≤ ‖y‖/(‖y‖p + cp)q/p

and f(‖y‖) = 2‖y‖p + cp > 0. For r < ‖y‖, f(r) is increasing in r. So if a solution exists
for 0 ≤ r < ‖y‖, it is unique. Also, notice that limr→∞ f(r) < 0 ensures the existence of
the solution for r > ‖y‖. Since q ≤ 1 and k < 1, f(r) is decreasing for r > ‖y‖ and the
solution is unique. Thus we can find numerically the minimum and the maximum value
of r and draw the level sets from the parameterization of cos(θ) in function of r. Two
examples of level sets for p = 1/4 and p = 16 are shown in Fig. 3.5 and 3.6. For the case
p > 2,

Student Version of MATLAB

Figure 3.5: Level sets of pq-
normalized metric with p = 16, q =
1 and c = 0.

Student Version of MATLAB

Figure 3.6: Level sets of pq-
normalized metric with p = 1/4,
q = 1 and c = 0.
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3.3 Convexity Properties

The general problem of optimization can be stated as follows:

Given a function f : X → R, find x ∈ X such that f(x) is minimized.

Without knowing any particular properties of f , the only way to solve the problem is to
check all possible values of x ∈ X. This is not a very attractive solution, particularly
when X has a very large or even infinite dimension. This is why we need to specify some
properties of f and X that would make the problem more tractable.

The most desirable property of f and X is convexity:

Definition 3.3.1. A subset X of a vector space is convex if for all x, y ∈ X and for all
λ ∈ (0, 1),

λx+ (1− λ)y ∈ X. (3.23)

Definition 3.3.2. A function f : X → R is convex if for all x, y ∈ X and for all λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3.24)

The function f is said to be strictly convex if the inequality is strict.

With these properties, uniqueness of the minimum is guaranteed.

Theorem 3.3.3. Let X be a convex vector space and let f : X → R be a strictly convex
function. If f has a minimum, then it is unique.

In particular, this has useful applications for numerical optimization. For example, if
the function f is differentiable, then the fixed point of the gradient descent algorithm (if
it exists) is always the global minimum.

A weaker form of convexity is quasi-convexity.

Definition 3.3.4. Given a convex set X, a function f : X → R is said to be quasi-convex
if its h-sublevel set, defined as

Xh = {x ∈ X|f(x) ≤ h}, (3.25)

is a convex set for all h ∈ Range(f).
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Quasi-convexity is a useful property for non-linear optimization [6]:

Theorem 3.3.5. Let X be a convex vector space and let f : X → R be a quasi-convex
function. If f has a minimum, then it is either unique or the function is constant in a
neighbourhood of the minimum.

These two properties, convexity and quasi-convexity, will be studied for the components
of the SSIM index. The goal is to provide important tools for the numerical or analytical
optimization of the SSIM index or of one of its modifications. Our belief is that, in virtue of
these convexity properties, numerical optimization of the SSIM index is not much harder
than optimizing Lp-distances. For the interested reader, some details on optimization
techniques for quasi-convex functions can be found in [6].

3.3.1 Quasi-Convexity

We show the region of quasi-convexity of the components of the SSIM index and outline
how to generalize this result for normalized metrics.

Definition 3.3.6. For x,y ∈ RN , the normalized mean squared error (NMSE) with
stability constant c is defined as

NMSEc(x,y) :=
‖x− y‖2

‖x‖2 + ‖y‖2 + c
. (3.26)

It is related to the mean component S1 and zero-mean component S2 of the SSIM index
via NMSEc(x,y) = 1− Si for i = 1, 2 and for x,y ∈ R+ and RN−1 respectively.

Theorem 3.3.7. For y fixed, NMSEc(x,y) is quasi-convex on

H =
{

x ∈ RN : 〈x,y〉 ≥ − c
2

}
.

Proof. We easily see that

x ∈ H ⇐⇒ NMSEc(x,y) ≤ 1. (3.27)

So it is sufficient to show that Xh is convex for all h ≤ 1. To show that, we first examine
the inequality

NMSEc(x,y) =
‖x− y‖2

2

‖x‖2
2 + ‖y‖2

2 + c
≤ h. (3.28)
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For h < 1, this inequality becomes

‖x‖2
2 −

2

1− h2
〈y,x〉 ≤ −‖y‖2

2 + c
h2

1− h2
. (3.29)

Completing the square yields∥∥∥∥x− y

1− h2

∥∥∥∥2

≤ ‖y‖2
2

(
1

(1− h2)2
− 1

)
+ c

h2

1− h2
. (3.30)

The set of points x for which this inequality holds is a hyper-sphere, which is a convex set.

In the particular case when h = 1, we have the inequality

− 2〈y,x〉 ≤ c (3.31)

which is satisfied for all x ∈ H, as defined earlier. The set H is bounded by a hyper-plane
and therefore is convex.

The quasi-convexity region H1 of S1(x̄, ȳ) is thus

H1 =
{
x̄ : x̄ȳ ≥ −ε1

2

}
, (3.32)

and the quasi-convexity region H2 of S2(x− x̄,y − ȳ) is

H2 =
{

x− x̄ : 〈x− x̄,y − ȳ〉 ≥ −ε2
2

}
. (3.33)

In practice, x̄ and ȳ are positive and thus S1 is quasi-convex on its whole domain of
definition.

In general, to verify if a compact and simply connected subset of R2 is convex, it is
possible to study the sign of curvature of the parametrization of its boundary curve:

Theorem 3.3.8. A simple closed curve Γ is convex if and only if

γ′(t)× γ′′(t) ≥ 0, for all t ∈ [0, 1], (3.34)

where γ(t), t ∈ [0, 1], is a parametrization of Γ oriented counter-clockwise.

We already found a parameterization of normalized metrics and the SSIM index in
function of the radius r in polar coordinates. Deriving twice and computing the cross-
product, it is mandatory to check the sign of the curvature at every point and for every
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level set. If the minimum of the curvature is greater or equal to zero everywhere (going in
an anti-clockwise orientation), then the curve is convex and the function is quasi-convex.
It is possible to carry on the computations given a set of parameters ε2, ε3 and β for the
second component of the SSIM index or given c, p, q for pq-normalized metrics, but in
general it is hard to determine for which parameters we will have quasi-convexity.

For y fixed, it is observed empirically (see Figs. 3.5 and 3.6) that normalized metrics are
locally quasi-convex around y. Also, from the inspection of the level sets, it is conjectured
that SSIM(x,y) is quasi-convex for β ≤ 1. For β > 1, the convexity of the level sets might
eventually break down when r is minimal. For the pq-normalized metrics, it is observed
that the quasi-convexity eventually breaks down when r = ‖y‖ for p > 2 and when r is
minimal for p < 2.

3.3.2 Region of Convexity

For y fixed, we wish to find the set of all points where g(x) = NMSEc(x,y) is convex.
In particular, we shall show that NMSEc(x,y) is locally convex, i.e. there exists a sphere
around the minimum x = y for which NMSEc(x,y) is convex. For this, the following
technical lemma is needed.

Lemma 3.3.9. Let X be a two-dimensional convex subset of RN and let y ∈ X. If f
is convex on X, has rotational symmetry around the direction of y and is monotonically
increasing in a direction perpendicular to y, then f is convex on the rotation of X around y.

Proof. Consider any two points x(1) and x(2) in the region consisting of the rotation of X
around the direction of y and consider a third point

z = λx(1) + (1− λ)x(2), where 0 ≤ λ ≤ 1 (3.35)

somewhere in the line segment joining these two points. For convexity of f , we need to
show that

f(z) ≤ λf(x(1)) + (1− λ)f(x(2)). (3.36)

We decompose x(1) and x(2) as x(1) = a1y + b1u and x(2) = a2y + b2v where u and v
are unit vectors perpendicular to y, i.e., 〈y,u〉 = 〈y,v〉 = 0 and ‖u‖ = ‖v‖ = 1. Now,
consider two points x(3) = a1y + b1v and x(4) = a2y + b2u and construct two other points
x(5) = λx(1) + (1− λ)x(4) and x(6) = λx(2) + (1− λ)x(3) (see Fig. 3.7).
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Figure 3.7: Points x(1), x(2), . . . , x(6) and
z in the proof of Lemma 3.3.9.

Considering

z′ = µx(5) + (1− µ)x(6) (3.37)

where

µ =
λb1

λb1 + (1− λ)b2

, (3.38)

it can be checked that in fact z = z′.

By convexity of f in the two-dimensional region X and by rotational symmetry, we
have

f(x(5)) ≤ λf(x(1)) + (1− λ)f(x(4)) (3.39)

and

f(x(6)) ≤ λf(x(2)) + (1− λ)f(x(3)). (3.40)

Now, we show that

f(z) ≤ µf(x(5)) + (1− µ)f(x(6)). (3.41)

Since x(5) and x(6) have the same distance to the line generated by y, then by rotational
symmetry f(x(5)) = f(x(6)).
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It remains to show that f(z) ≤ f(x(5)). We write

z = (λa1 + (1− λ)a2)y + λb1u + (1− λ)b2v (3.42)

= ay + bw (3.43)

with 〈w,y〉 = 0 and ‖w‖ = 1, and

x(5) = (λa1 + (1− λ)a2)y + (λb1 + (1− λ)b2)u (3.44)

= ay + b′u (3.45)

with 〈u,y〉 = 0 and ‖u‖ = 1.

From the triangular inequality for norms, we know that b ≤ b′. We then use the
fact that f is monotonicity increasing in a direction perpendicular to y to conclude that
f(z) ≤ f(x(5)). From rotational symmetry, we derive f(x(4)) = f(x(2)). From all of the
above,

f(z) ≤ f(x(5)) ≤ λf(x(1)) + (1− λ)f(x(4)) (3.46)

= λf(x(1)) + (1− λ)f(x(2)). (3.47)

Theorem 3.3.10. For x, y ∈ R, g(x) = NMSE0(x, y) is convex on

0 ≤ x ≤
√

3|y|. (3.48)

For x,y ∈ RN with N > 1, g(x) = NMSE0(x,y) is convex on the region bounded by the
rotation of

R(t) =

√
−2t2 − ‖y‖2 +

√
16t2‖y‖2 + ‖y‖4

2
, (3.49)

with 0 ≤ t ≤
√

3‖y‖, around the direction of y. I.e. g is convex on the region bounded by
ty/‖y‖+R(t)u/‖u‖ for any u perpendicular to y (see Fig. 3.8).

Proof. The one dimensional case can easily be verified by finding the region where the
second derivative of g(x) is positive. For the general case, we proceed in three steps.
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Figure 3.8: Boundary of the region where g(x) =
NMSEc(x, y) is convex with y = (1, 0) and x = (x1, x2)
for c = 0, c = 0.1 and c = 1.

1. Consider the two dimensional case and denote x = (x1, x2). For y = (1, 0), we have

g(x) = NMSE0(x,y) =
(x1 − 1)2 + x2

2

x2
1 + x2

2 + 1
. (3.50)

To determine the region of convexity of g, it suffices to compute the eigenvalues of its
Hessian matrix and determine when they are non-negative. It can be checked that
this happens when

|x2| ≤

√
−2x2

1 − 1 +
√

16x2
1 + 1

2
=: R(x1) (3.51)

and

0 ≤ x1 ≤
√

3. (3.52)

We shall call this region X.

2. For any y ∈ R2, we can write y = (‖y‖ cos(θ), ‖y‖ sin(θ)) where θ is the angle
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between y and (1, 0). The vector y can be thought as a transformation of e1 = (1, 0):

y = ‖y‖Rotθe1. (3.53)

By the invariance properties of NMSE (Prop. 3.1.1 and 3.1.2), we have

NMSE0(x,y) = NMSE0(Rot−θx/‖y‖, e1). (3.54)

So NMSE0(x,y) is convex on ‖y‖RotθX, i.e. on a rotation of X by an angle θ and
a scaling by a factor ‖y‖.

3. Since g(x) = NMSE0(x,y) is convex on the convex region X, by rotational symmetry
and monotonicity of g (Prop. 3.1.3 and 3.1.4), it will also be convex in the region
consisting of the rotation of X around the direction of y in virtue of Lemma 3.3.9.

Here we considered the case c = 0. The general case is similar but since we cannot
use the scaling property, we need to consider y = (‖y‖, 0) in Step 1 which leads to a
complicated equation for the region of convexity. The region with y = (1, 0) and c 6= 0
will look very similar than the one for c = 0 but the region will be slightly larger. It adds
approximately a “sausage” around the convexity region of diameter increasing with c (see
Fig. 3.8). For practical purpose, c is usually very small (c ≤ 0.0001) and the region of
convexity of NMSEc(x,y) is almost identical to the region of convexity of NMSE0(x,y).

There is another region of convexity for some negative x but it is not of interest here
since it is not around y, the minimum of NMSEc(x,y). An easy estimate of the region of
convexity is the hyper-sphere centered at y and of radius (

√
3−1)‖y‖. Indeed, this sphere

is inscribed in the region of convexity. From Theorem 3.3.10, we can directly deduce the
convexity (or in fact, concavity) region for S1(x̄, ȳ) and for S2(x− x̄,y − ȳ).

3.3.3 Convexity of Cone Metrics

We generalize convexity for vector-valued metrics. In particular, it will apply to the metric
d in (2.50).

Theorem 3.3.11. If dm is convex on Rm for 1 ≤ m ≤ M , then the cone metric d =
(d1, d2, . . . , dm) is convex on R1 × . . .×RM in the sense that, for all x,y, z ∈ RN and for
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all 0 ≤ λ ≤ 1, the following ordering holds

d(λx + (1− λ)y, z) � λd(x, z) + (1− λ)d(y, z), (3.55)

where � is the product order (2.44).

Proof. Since the projection operator Pm(x) = xm is linear and dm is convex on Rm for
1 ≤ m ≤M , we have

dm(Pm(λx + (1− λ)y), Pm(z)) = dm(λxm + (1− λ)ym, zm) (3.56)

≤ λdm(xm, zm) + (1− λ)dm(ym, zm).

Since the inequality holds for all 1 ≤ m ≤M , we conclude that d is convex on R1×. . .×RM

in the sense of (3.55). �

We can also show the convexity of ‖d‖ with the following theorem.

Theorem 3.3.12. If dm is convex on Rm for 1 ≤ m ≤ M and if ‖ · ‖ is a norm with the
increasing property (see (2.47)), then ‖d‖ is convex on R1 × . . .×RM .

Proof. From Theorem 3.3.11, d is convex on R1×. . .×RM . Since ‖·‖ is a norm, it is convex
as well. So by the increasing property, we have the following inequalities on R1× . . .×RM

‖d(λx + (1− λ)y, z)‖ ≤ ‖λd(x, z) + (1− λ)d(y, z)‖
≤ λ‖d(x, z)‖+ (1− λ)‖d(y, z)‖. (3.57)

For our case of interest, we deduce that the region of convexity of S = (S1(x,y), S2(x,y))
and of ‖S‖2 is the (hyper)-cylinder with 0 ≤ x̄ ≤

√
3ȳ and with x− x̄ following a tear drop

shape around y − ȳ like it is described in Theorem 3.3.10.

Contrary to convex functions, the sum of quasi-convex functions is not necessarily
quasi-convex. Nevertheless, we can find a similar theorem about the quasi-convexity of d,
but we cannot establish the same result for ‖d‖.

Theorem 3.3.13. If dm is quasi-convex on Hm for 1 ≤ m ≤ M , then d is quasi-convex
on H = H1 × . . .×HM .
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Proof. Since dm is quasi-convex on Hm for 1 ≤ m ≤M , we have that the cartesian product∏M
m=1{Pm(x) ∈ Hm|dm(Pm(x), Pm(y)) ≤ hm} (3.58)

is a convex set for all h = (h1, h2, . . . , hM). By the Orthogonal Decomposition Theo-
rem 2.3.5, (3.58) is equivalent to

{x =
∑M

m=1 Pm(x) ∈ H|d(x,y) � h}, (3.59)

which we know to be convex. Hence, d is quasi-convex.

Therefore, S = (S1(x,y), S2(x,y)) is quasi-convex in the region H1×H2, where H1 and
H2 are the regions of quasi-convexity described in (3.32) and (3.33).

In summary, both of the components S1 and S2 of the SSIM index are locally convex
and quasi-convex, but the SSIM index itself does not have these nice properties in general.
The proposed SSIM metric has the advantage to be also locally convex but on the other
hand it is not quasi-convex.

3.4 Projection onto a Convex Set

In some image processing problems, a first estimate z is further regularized according to
the constraint on the data y. The goal is then to find the closest signal to z that belongs
to the constraint set, more often than not a convex set. We provide two examples.

First, in the JPEG compression post-processing algorithm of Li [64], the constraint set
represents the range of possible values that can take the original signal given its quantized
version. Indeed, the uniform quantization operation can be written as

c̃k =
[ck

∆

]
, (3.60)

where ck is the coefficient obtained after the Discrete Cosine Transform (DCT) of the
original image, ∆ is the quantization step and [x] represents the nearest integer of x. So
given a quantized coefficient c̃k, the range of possible values for the original coefficient is

(c̃k − 1/2)∆ < ck ≤ (c̃k + 1/2)∆. (3.61)

This inequality is valid for all the coefficients, hence the constraint set is an hyper-cube of
64 dimensions (assuming a DCT over an 8× 8 block).
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Second, for image denoising problems, the additive white Gaussian noise model implies
that the equi-probable levels sets are hyper-spheres centered around the noisy image y.
The constraint set can be defined as the set of points such that ‖x − y‖2

2 ≤ σ2, where σ2

is the estimated variance of the noise.

In both case, the optimization problem can be formulated as

Maximize SSIM(z,x) subject to x ∈ A, (3.62)

where A is convex. Nothing can be said of the solution in general for the full SSIM index
or even for the modified SSIM metric, since they are not known to be either convex or
quasi-convex. However, the local SSIM was proved to be quasi-convex on 〈x, z〉 ≥ −ε2/2
for zero-mean signals. We can thus exploit Theorem 3.3.5 to prove the existence and
uniqueness of the solution.

In fact, an analytic solution can be found when A is a hyper-sphere. Indeed, let

A := {x ∈ RN : ‖x− y‖2
2 ≤ σ2}, (3.63)

be the constraint set and consider the level sets of the SSIM index (see (3.30)):

{x ∈ RN : ‖x− µz‖2
2 = ‖z‖2

2(µ2 − 1) + ε2(µ− 1)}, (3.64)

where ε2 ≥ 0 is a stability constant and µ ≥ 1 is a constant to be determined. If z ∈ A,
then the optimal solution is trivially x = z. Otherwise, the two hyper-spheres will be
tangent at

xλ = (1− λ)y + λµz, (3.65)

with 0 ≤ λ ≤ 1. Plugging in xλ in the constraint set (3.63) and solving for λ leads to

λ =
σ

‖y − µz‖2

. (3.66)

Substituting λ and xλ in the SSIM level set formula (3.64) simplifies to

(‖y − µz‖ − σ)2 = ‖z‖2(µ2 − 1) + ε2(µ− 1). (3.67)
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After squaring the left hand side and isolating the term ‖y − µz‖, we obtain

‖y − µz‖ =
‖y‖2

2 + ‖z‖2
2 + ε2 + σ2

2σ
− 2〈y, z〉+ ε2

2σ
µ (3.68)

=: a− bµ. (3.69)

Squaring once again the left hand side simplifies to quadratic function of µ:

µ2(b2 − ‖z‖2
2) + 2µ(〈y, z〉 − ab) + (a2 − ‖y‖2) = 0. (3.70)

The solution for µ is thus

µ± =
ab− 〈y, z〉 ±

√
(〈y, z〉 − ab)2 − (b2 − ‖z‖2

2)(a2 − ‖y‖2)(a2 − ‖y‖2)

b2 − ‖z‖2
2

. (3.71)

The first level set to intersect the constraint is with a smaller µ, thus the negative branch
corresponds to the global maximum of SSIM while the positive branch corresponds to the
global minimum of SSIM. In this second case, the sign of λ has to be taken to be negative.

The maximal point is then

xmax = y + σ
µ−z− y

‖µ−z− y‖2

, (3.72)

that is, the point obtained by moving by σ unit away from y in the direction opposed to
y − µ−z. The minimal point can be found as well according to

xmin = y − σ µ+z− y

‖µ+z− y‖2

. (3.73)

If we seek to find the maximal SSIM on the boundary of a L2-ball, then we proceed
exactly in the same way, but we allow λ to be greater than one when z is inside the L2-ball.
In the particular case that z = y, the maximal SSIM will be at

xmax = y + σ
y

‖y‖2

, (3.74)

whereas the minimal SSIM is in the opposed direction:

xmin = y − σ y

‖y‖2

. (3.75)
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This result is equivalent to the matched-mean solution of the SSIM-ball problem described
in [49].

Note that the minimal solution does not fit well with the solution dictated by the
human perception, since xmin and y have a perfect correlation. To alleviate this problem,
a modified version of the SSIM index with a different exponent weight β between the
correlation term and the contrast term could be studied. Alternatively, one could study
pq-normalized metric with different exponents p and q.
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Chapter 4

Geodesics of the SSIM Index

Geodesics are the “straight lines” in non-Euclidean geometries. There are several reasons
why we are interested to describe the geodesics according to the Structural Similarity
(SSIM) index. First, the arc length along the geodesics can lead naturally to a metric.
This is the approach proposed by Richter in [88] were he posed the problem of finding the
SSIM-geodesic. Second, geodesics can describe a perceptually smooth evolution between
two images. Finally, the mid-point of the geodesic can be seen as an average between two
images in the geometry described by the SSIM index.

In the first section of this chapter, we will define and review the basic properties of
geodesics. In particular, we will state the necessary theorems from calculus of variation.
Contrary to Richter [88], our approach will not need all the apparatus of differential
geometry since we will be already working in RN . In the second section, we will study
the geodesics of normalized metrics. After outlining a general method, we will explicitly
solve for a few particular cases. In the last section, the geodesics of the SSIM index will
be described with examples and some extensions will be considered.

4.1 Geodesics: Preliminaries

4.1.1 Definitions

A geodesic is the shortest path between two points according to a certain metric. Let Γx,y
be the set of all rectifiable curves, i.e. of finite length, between x and y. Let (X, d) be a
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metric space and let γ : [0, 1] → X be the parameterization of a curve in Γx,y. Then the
length of γ according to the metric d is defined as

L(γ) := sup
(t0,t1,....tn)

{
n∑
i=1

d(γ(ti), γ(ti−1)) : n ∈ N, 0 = t0 < t1 < . . . < tn = 1

}
. (4.1)

If γ is piecewise differentiable and d is induced by the norm ‖ · ‖, then the length of γ is

L(γ) =

∫ 1

0

‖γ′(t)‖dt. (4.2)

The geodesic path is the curve of minimal length between two points:

arg inf
γ∈Γx,y

L(γ). (4.3)

From the geodesic, one can define a metric called intrinsic metric.

Theorem 4.1.1. Let γ be a piecewise differentiable path between x and y. Then

d(x, y) = inf
γ∈Γx,y

∫ 1

0

‖γ′(t)‖dt is a metric. (4.4)

Proof. For positive definiteness, one can easily check that d(x, x) = 0. Now, if d(x, y) = 0,
it implies that ‖γ′(t)‖ = 0 almost everywhere: hence γ(t) is constant almost everywhere.
Since γ is continuous, we have γ(t) = γ(0) = γ(1) for all t ∈ [0, 1]. That is, x = y.

The symmetry property is clear since the length of a curve does not depend on its
orientation.

For the triangular inequality, consider three points x, y and z. Since the combination
of the path between x and y with the path between y and z is also a path between x and z,
then by the definition of an intrinsic metric d(x, z) ≤ d(x, y) + d(y, z).

4.1.2 The Euler-Lagrange Equation

To find the geodesic between two points, one generally relies on the calculus of variation,
particularly the Euler-Lagrange equation. The solution of this equation may be viewed as
a generalization of finding critical points for functionals.
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Given the problem

arg inf
f(t)

∫
F (t, f(t), f ′(t))dt, (4.5)

a necessary condition for f(t) to minimize
∫
F is

∂

∂f
F − d

dt

(
∂

∂f ′
F

)
= 0. (4.6)

This is the Euler-Lagrange equation. Keeping everything else constant, the partial deriva-
tive according to f or f ′ behaves exactly the same as if f and f ′ were two independent
variables.

The computation of the Euler-Lagrange equation (4.6) leads to a second order ordinary
differential equation (ODE). Note that from the context it will be often evident when the
necessary condition is also sufficient. Note also that some authors call geodesics all the
solutions of the Euler-Lagrange equation, which would be analogous to the set of critical
points of a function. However we will stick with the definition of a geodesic as the minimal
path between two points.

A special case of the Euler-Lagrange equation is when t is absent. In this case, the
necessary condition (4.6) becomes

F − f ′
(
∂

∂f ′
F

)
= c. (4.7)

Here is a short proof taken from [46]. We denote Ff = ∂
∂f
F and Ff ′ = ∂

∂f ′
F . By the chain

rule, the Euler-Lagrange (4.6) becomes

Ff −
d

dt
Ff ′ = Ff − f ′Ff ′f − f ′′Ff ′f ′ = 0. (4.8)

Multiply by f ′:

f ′Ff − (f ′)2Ff ′f − f ′f ′′Ff ′f ′ =
d

dt
(F − f ′Ff ′) = 0. (4.9)

Hence,
F − f ′Ff ′ = c. (4.10)
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Example 4.1.2. The arc length of a graph (t, f(t)) in a Euclidean space is∫ b

a

√
1 + (f ′(t))2dt. (4.11)

By the Euler-Lagrange equation (4.7),

√
1 + (f ′(t))2 − (f ′)2√

1 + (f ′(t))2
= c. (4.12)

It simplifies to

f ′(t) = ±
√

1/c2 − 1 =: A. (4.13)

Thus f(t) = At + B. The constants A and B can be found from the initial conditions
(a, f(a)) and (b, f(b)). The final solution is

f(t) = f(b)
t− a
b− a

+ f(a)
b− t
b− a

. (4.14)

4.2 Geodesics of Normalized Metrics

In this section, we will describe the geodesic paths with constant speed associated to
different normalized metrics in RN and draw their geodesics. We will start from some
general considerations before we study several particular cases.

4.2.1 General Case

We will outline how to solve, in general, the problem of finding the geodesic associated
with a given normalized distance

ρM(x, y) =
‖x− y‖2

M(‖x‖2, ‖y‖2)
. (4.15)

The length of the curve parameterized by γ : [0, 1]→ RN can be written as

L(γ) =

∫ 1

0

‖γ′(t)‖2

M(‖γ(t)‖2, ‖γ(t)‖2)
dt. (4.16)
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We will use methods from calculus of variations, and in particular, the Euler-Lagrange
equation to solve for the minimal path.

Note that for the application we have in mind, i.e. to find the perceptual average of
images, not only do we need to find the geodesic path but it is also important to travel
at constant speed. Indeed, the mid-point is the location such that γ(1/2). If we do not
have an arc length parameterization of the geodesic path, then there is no obvious way to
retrieve this mid-point. Thus, we have to always make sure that

‖γ′(t)‖2

M(‖γ(t)‖2, ‖γ(t)‖2)
= S, (4.17)

where S is a constant. We call this the constant speed condition.

The first step to find the geodesic is to take advantage of symmetries and reduce the
problem to only two dimensions. Writing the parametric curve γN(t) in RN in hyper-
spherical coordinates, where ρ(t) ≥ 0, 0 ≤ φi(t) ≤ π for 1 ≤ i ≤ N − 2 and 0 ≤ θ(t) ≤ 2π
are the radius, polar angles and azimuthal angle, respectively, the arc length becomes

L(γN) =

∫ 1

0

√
(ρ′(t))2 + (ρ(t))2

∑N−2
i=1 (φ′i(t))

2 + (ρ(t))2(θ′(t))2

M(ρ(t), ρ(t))
dt. (4.18)

By rotational invariance of normalized distances (Proposition 3.1.1), we can assume with-
out loss of generality that the endpoints x,y are in the azimuthal plane, i.e. that φi(0) =
φi(1) = π/2 for 1 ≤ i ≤ N − 2.

It is clear that for the arc length (4.18) to be minimized, we need to have φ′i(t) ≡ 0
for 1 ≤ i ≤ N − 2, i.e.φi(t) ≡ π/2 for 1 ≤ i ≤ N − 2. Thus the problem reduces to two
dimensions and the solution can be expressed in polar coordinates:

γ2(t) :=
(
ρ(t) cos(θ(t)), ρ(t) sin(θ(t))

)
, (4.19)

where γ2(t) is on the plane generated by 0, x and y and where ρ(t) = ‖γ2(t)‖ and θ(t) are
the angles between γ2(t) and x.

The arc length is then

L(γ2) =

∫ 1

0

√
(ρ′(t))2 + (ρ(t))2(θ′(t))2

M(ρ(t), ρ(t))
dt (4.20)
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and the initial conditions are

ρ(0) = ‖x‖2, ρ(1) = ‖y‖2, θ(0) = α, and θ(1) = β. (4.21)

If α = β, then the geodesic path will lie on the straight line relying x and y. Indeed,
since (θ′(t))2 ≥ 0 and θ(0) = θ(1), it is clear that the parameterization of the path
minimizing (4.20) will satisfy θ′(t) ≡ 0. The formula for the arc length then simplifies
to

L(γ1) =

∫ 1

0

‖ρ′(t)‖2

M(ρ(t), ρ(t))
dt, (4.22)

where γ1(t) := ρ(t).

To enforce the constant speed condition (4.17), we need

|ρ′(t)|
M(ρ(t), ρ(t))

= S. (4.23)

Since we are in a one-dimensional subspace, it is clear that ρ(t) is monotonic. We can thus
drop the absolute value, the sign of ρ′(t) being absorbed in the constant. The solution to
the ODE (4.23) is

f(ρ(t)) :=

∫
1

M(ρ, ρ)
dρ = St+R. (4.24)

From the initial conditions (4.21), we have

θ(t) = α = β, and f(ρ(t)) = f(‖x‖2)(1− t) + f(‖y‖2)t. (4.25)

If 0, x and y are co-linear and are opposite to each other, then there are two geodesics
in R2 and an infinite number of geodesics in RN with N > 2, i.e. there are two geodesics for
each plane passing by 0, x and y. By continuity of the arc length formula, for every fixed
half-plane, we can approximate the geodesic path with another path such that |α−β| < π.

It remains to solve the geodesic problem for 0 < |β − α| < π. Since (θ′(t))2 ≥ 0, it
is clear that the angle of the geodesic path is monotonic. Without loss of generality, we
assume that θ(t) is strictly monotonic (either increasing or decreasing). If it is not the case,
and since L(γ) is continuous, then there will be another path with a strictly monotonic
angle that will have approximately the same length.

For strictly monotonic θ(t), we can express the radius as a function of the polar angle.
After the change of variables θ = θ(t) and r(θ) = ρ(t), we express the arc length in terms
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of a single variable,

L(γ2) =

∫ β

α

√
(r′(θ))2 + (r(θ))2

M(r(θ), r(θ))
dθ, (4.26)

with r(α) = ρ(0) and r(β) = ρ(1).

We denote r′(t) by ṙ. By the special case of the Euler-Lagrange equation (4.7), the
stationary points satisfy

F − ṙFṙ = c1, (4.27)

where

F =

√
ṙ2 + r2

M(r, r)
. (4.28)

That is,

√
ṙ2 + r2

M(r, r)
− ṙ2

√
ṙ2 + r2

1

M(r, r)
= c1. (4.29)

Necessarily c1 6= 0, since otherwise r ≡ 0. Rearranging (4.29) leads to

|ṙ| = r

√
r2

c2
1M

2(r, r)
− 1. (4.30)

We will solve this ODE for M(r, r) = r, for M(r, r) = rq with 0 < q < 1 and for
M(r, r) =

√
r2 + ε2.

4.2.2 Case M(r, r) = r

This case was first solved by Martin and Osgood [70] in 1986. Here, we report our own
derivation.
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Several normalized metrics satisfy M(r, r) = r:

M(|x|, |y|) =

(
|x|p + |y|p

2

)1/p

; (4.31)

M(|x|, |y|) = max(|x|, |y|). (4.32)

In particular, the normalized distance

d(x,y) =
‖x− y‖2√
‖x‖22+‖y‖22

2

(4.33)

is included in this category. This is equivalent to
√

1−SSIM
2

with zero-mean signals and

zero stability constant.

If α = β, then from (4.24) we integrate

f(r) :=

∫
1

r
dr = log(r) (4.34)

to find the solution with constant speed. Thus, from (4.25) the solution is

log(r) = log(‖x‖)(1− t) + log(‖y‖)t (4.35)

or

r(t) = ‖x‖1−t‖y‖t. (4.36)

If α 6= β, we need to find the function r(θ) that minimizes

∫ β

α

√(
ṙ

r

)2

+ 1 dθ. (4.37)

From the Euler-Lagrange equation (4.30), the parameterization of the geodesic satisfies

± log(r) =
√

1/c2
1 − 1θ + c2 =: Aθ +B, (4.38)

where c2, A and B are some constants to be determined. Notice that |ṙ| > 0 always, so
the sign of log(r) does not change and it is absorbed in the constants A and B.
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From the initial conditions (4.21), we find the values of A and B:

log(‖x‖) = Aα +B; (4.39)

log(‖y‖) = Aβ +B. (4.40)

So

A =
log(‖y‖)− log(‖x‖)

β − α
, (4.41)

B = log(‖x‖)− log(‖y‖)− log(‖x‖)
β − α

α (4.42)

and

r(θ) = ‖x‖
β−θ
β−α‖y‖

θ−α
β−α . (4.43)

The minimal path is thus a logarithmic spiral passing by x and y in the plane generated
by x and y.

For constant speed, we choose θ = θ(t) such that√(
r′(θ)

r(θ)

)2

+ (θ′)2 = S. (4.44)

Taking the derivative of r with respect to t in (4.43) yields to

d

dt
r(θ(t)) =

θ′

β − α
log(‖y‖/‖x‖)‖x‖

β−θ
β−α‖y‖

θ−α
β−α . (4.45)

Substituting (4.45) in (4.44) leads to

θ′

√(
log(‖y‖/‖x‖)

β − α

)2

+ 1 = S. (4.46)

This means that θ(t) is linear. After plugging the initial conditions (4.21), we finally obtain
the geodesic:

γ(t) = ‖x‖1−t‖y‖t
(

cos(α + t(β − α)), sin(α + t(β − α))
)
. (4.47)
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Alternatively, we can write the minimal path as1

γ(t) = ‖x‖1−t‖y‖t
(
x/‖x‖ cos(ωt) + u sin(ωt)

)
, (4.48)

where ω is the angle between x and y and where u is a unit vector in the plane generated by
x and y that is perpendicular to x and in the same half-plane than y, i.e.ω = arccos 〈x,y〉‖x‖‖y‖ ,

〈x,u〉 = 0, ‖u‖ = 1 and 〈u,y〉 ≥ 0. This last vector can be found by Gram-Schmidt
orthonormalization procedure:

u =
y − 〈y,x/‖x‖〉x/‖x‖∥∥y − 〈y,x/‖x‖〉x/‖x‖∥∥ (4.49)

=
1

sin(ω)

y

‖y‖
− cos(ω)

sin(ω)

x

‖x‖
. (4.50)

So

γ(t) = ‖x‖1−t‖y‖t
(

sin(ω(1− t))
sin(ω)

x

‖x‖
+

sin(ωt)

sin(ω)

y

‖y‖

)
. (4.51)

Computing the integral leads to the arc length formula:

L(γ) =
√

(log ‖y‖ − log ‖x‖)2 + (β − α)2, (4.52)

which is called the quasi-hyperbolic metric [107].

Example 4.2.1. We compare the last result to the length of the straight line path γl
according to the normalized metric, which is

L(γl) =


∣∣∣log

(
‖y‖2−〈x,y〉+‖y‖2‖y−x‖2
〈x,y〉−‖x‖22+‖x‖2‖y−x‖2

)∣∣∣ , if y 6= λx,∣∣ log ‖y‖2 − log ‖x‖2

∣∣, if y = λx with λ > 0,
∞ for y = −λx with λ ≥ 0.

(4.53)

1This idea was suggested by József Vass in [10].
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The results are summarized in the following table.

x y γ(t) γl(t) L(γ) L(γl)
(1, 0) (4, 0) (4t, 0) (1 + 3t, 0) log(4) log(4)

(1, 0) (0, 1) (cos(πt/2), sin(πt/2)) (1− t, t) π/2 log
(

1+
√

2
−1+

√
2

)
(1, 0) (0, 4) (4t cos(πt/2), 4t sin(πt/2)) (1− t, 4t)

√
log2(4) + (π/2)2 log

(
16+4

√
17

−1+
√

17

)
(3, 0) (−1, 0) (31−t cos(πt),±31−t sin(πt)) (2− 3t, 0)

√
log2(2) + π2 ∞

We can verify that, as expected, L(γ) ≤ L(γl) for each of the four cases.

4.2.3 Case M(r, r) = rq with 0 < q < 1

The case M(r, r) = rq with 0 < q < 1 occurs when a metric is normalized by a power of
the generalized mean:

M(|x|, |y|) =

(
|x|p + |y|p

2

)q/p
with 0 < q < 1. (4.54)

The geodesic path for this normalized metric was solved by Hästö [51] in 2005. Again, we
present our own derivation for the geodesic with constant speed.

If α = β, then from (4.24)

f(r) :=

∫
1

rq
dr =

r1−q

1− q
(4.55)

and from (4.25) the constant speed path is

r(t) = (t‖y‖1−q + (1− t)‖x‖1−q)
1

1−q . (4.56)

In the limiting cases q → 0 and q → 1, we find

r(t) = t‖y‖+ (1− t)‖x‖ and r(t) = ‖y‖t‖x‖1−t, respectively.
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If α 6= β, then from (4.30) the geodesic satisfies

|ṙ| = r

√
r2(1−q)

c2
1

− 1. (4.57)

If ṙ(θ) = 0 for some θ, then r(θ) = c
1

1−q
1 . Hence the function r(θ) has at most one critical

point. It cannot be local maximum as it is clear that the shortest path must satisfy
r(θ) ≤ max(‖x‖, ‖y‖). Otherwise by taking r̃(θ) = max(‖x‖, ‖y‖) for that particular
portion of the path where r(θ) > max(‖x‖, ‖y‖) the length of the path will be automatically
reduced.

If ṙ 6= 0, by separation of variables,

±
∫

c1

r2−q
√

1− c2
1r
−2(1−q)

dr =

∫
dθ. (4.58)

Performing the change of variables u = c1
r1−q

leads to

±
∫

du

(1− q)
√

1− u2
=

∫
dθ (4.59)

f(r) :=
arcsin(c1/r

1−q)

1− q
= ±(θ + c±), (4.60)

where c+ and c− are the constants for each branch of f(r). Isolating r, we obtain

r(θ) =

(
±c1

sin((1− q)(θ + c±))

) 1
1−q

. (4.61)

Let (r∗, θ∗) be the polar coordinate at the minimal value of r(θ). To find a relationship
between c+ and c−, we study r(θ) at its minimum:

r∗ = c
1

1−q
1 =

(
±c1

sin((1− q)(θ∗ + c±))

) 1
1−q

, (4.62)

hence,

sin((1− q)(θ∗ + c±)) = ±1. (4.63)
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The periodic solution is thus

(1− q)(θ∗ + c±) = ±π
2

+ k±π, k± ∈ Z, or (4.64)

c2 := c+ = c− +
kπ

1− q
, k± ∈ Z. (4.65)

Since a shift of kπ in the sinus function only changes its sign, we have

r(θ) =

(
c1

sin((1− q)(θ + c2))

) 1
1−q

. (4.66)

Solving for c1 and c2 using the initial conditions:

‖x‖ =

(
c1

sin((1− q)(α + c2))

) 1
1−q

and (4.67)

‖y‖ =

(
c1

sin((1− q)(β + c2))

) 1
1−q

, (4.68)

we find (
‖y‖
‖x‖

)1−q

=
sin((1− q)α) cos((1− q)c2) + cos((1− q)α) sin((1− q)c2)

sin((1− q)β) cos((1− q)c2) + cos((1− q)β) sin((1− q)c2)
. (4.69)

It thus leads to

c1 = ‖x‖1−q sin((1− q)(α + c2)) and (4.70)

c2 =
1

1− q
arctan

 sin((1− q)β)
(
‖y‖
‖x‖

)1−q
− sin((1− q)α)

cos((1− q)α)− cos((1− q)β)
(
‖y‖
‖x‖

)1−q

 . (4.71)

To enforce constant speed, we need√
ṙ2 + r2θ̇2

rq
= S. (4.72)
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Taking the derivative of r with respect to t,

d

dt
r(θ(t)) = (r(θ))2−q cos((1− q)(θ + c±))

±c1

θ̇. (4.73)

Substituting r(θ) and r′(θ) in (4.72), we obtain after simplifications

θ̇
±c1

sin2((1− q)(θ + c±))
= S. (4.74)

We solve this ODE by integrating both sides:∫
±c1

sin2((1− q)(θ + c±))
dθ = S

∫
dt (4.75)

cot((1− q)(θ + c±))

1− q
= ±(St+R). (4.76)

Isolating θ and plugging in the initial conditions (4.21), we find the parameterization of
the angle for constant speed:

θ(t) = ±arccot(tcot((1− q)(β + c2)) + (1− t)cot((1− q)(α + c2)))

1− q
− c2 −

kπ

1− q
,

(4.77)

where k ∈ Z. We choose k in order to ensure that

min(α, β) ≤ θ(t) ≤ max(α, β) (4.78)

and take the positive or negative sign of arccot depending on whether α < β or α > β.

Combining this last formula with the equation (4.66) for r(θ) and with the constants c1

and c2 given in (4.70) and (4.71), it leads to the complete parameterization of the geodesic.

In Fig. 4.1, we draw the geodesics and find the midpoints between x = (1, 0) and
y = (0, 4) for different values of the parameter q.

4.2.4 Case M(r, r) =
√
r2 + ε2

This is the most interesting case since it is related to the most common form of the SSIM

index. Indeed, this normalized metric is equivalent to

√
1−SSIM

2
with zero-mean signals
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and arbitrary stability constant. Parts of the results describing this new case were published
in Applied Mathematics Letters [10].

If α = β, then proceeding as before we obtain

f(r) =

∫
1√

r2 + ε2
dr = log(2

√
r2 + ε2 + 2r) (4.79)

and

√
r2 + ε2 + r = (

√
‖y‖2 + ε2 + ‖y‖)t(

√
‖x‖2 + ε2 + ‖x‖)1−t (4.80)

=: (g(‖y‖))t(g(‖x‖))1−t. (4.81)

Isolating r, we find

r(t) =
(g(‖y‖))t(g(‖x‖))1−t

2
− ε2

2(g(‖y‖))t(g(‖x‖))1−t . (4.82)

When ε→ 0, we are back to the geometric mean.
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Let us now solve the case α 6= β. We denote

m(r) :=
r

M(r, r)
=

r√
r2 + ε2

. (4.83)

Note that for r > 0 and ε > 0, we have 0 < m(r) < 1. If ṙ = 0, we find from (4.30) that
m(r) = c1, hence r = c1ε√

1−c21
. Again, from the same argument that for the case M(r, r) = rq

it is clear that the polar parameterization of the geodesic has at most one critical point
and that it cannot be a maximum.

If ṙ 6= 0, then m(r) > c1. We need to integrate

f(r, c1) :=

∫
c1

r
√
m2(r)− c2

1

dr. (4.84)

Performing the change of variables u = c1
√
r2+ε2

r
, du = −c1ε2

r2
√
r2+ε2

dr,

f(r, c1) =

∫
−(r2 + ε2)

ε2
√

1− u2
du (4.85)

=

∫
−c2

1

(u2 − c2
1)
√

1− u2
du−

∫
1√

1− u2
du. (4.86)

Now, setting v =

√
1−c21
c1

u√
1−u2 and dv =

√
1−c21
c1

1
(1−u2)3/2

du in the first integral, the change

of variable leads to

f(r, c1) =
c1√

1− c2
1

∫
1

1− v2
dv −

∫
1√

1− u2
du. (4.87)

Integrating, we obtain

f(r, c1) =
c1√

1− c2
1

artanh(v)− arcsin(u), 0 ≤ c1 < m(r), (4.88)

where

u =
c1

m(r)
and v =

√
1− c2

1√
(m(r))2 − c2

1

. (4.89)
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The parameterization of the minimal path will thus satisfy

f(r, c1) = ±(θ + c±), (4.90)

where c± are the integration constants for each branch of r.

Note that since c1 < m(r) < 1, hence v(r) > 1 and f(r, c1) has c1√
1−c21

iπ/2 as an

imaginary part. Also, for each r fixed,

f(r,m(r)) := lim
c1→m(r)

f(r, c1) = −π/2 +
m(r)√

1− (m(r))2
iπ/2, (4.91)

f(r, 0) := lim
c1→0

f(r, c1) = 0. (4.92)

Since m(r) is increasing in r, while u(r) and v(r) are decreasing in r, we see that the
real part of f(r, c1) is increasing in r. It implies that r(θ) will be increasing whenever the
RHS is increasing and it will be decreasing whenever the RHS is decreasing. Since the right
hand side of (4.90) has two branches of opposite sign with one increasing in θ and another
one decreasing in θ, r(θ) will have a unique minimum. Let (r∗, θ∗) be the coordinate for
which the radius of the geodesic is minimal.

From the initial conditions, we have

f(‖x‖, c1) = ±(α + c+), (4.93)

f(r∗, c1) = ±(θ∗ + c+), (4.94)

f(r∗, c1) = ∓(θ∗ + c−), (4.95)

f(‖y‖, c1) = ∓(β + c−). (4.96)

Adding the second and third equation, we obtain

2f(r∗, c1) = ±(c+ − c−). (4.97)

Isolating c+ and c− in the first and fourth equation and substituting them in (4.97) leads
to the single non-linear equation

|2f(r∗, c1)− f(‖x‖, c1)− f(‖y‖, c1)| = |β − α|. (4.98)

Without loss of generality, assume that ‖x‖ ≤ ‖y‖. From (4.30), either (i) r∗(α) = ‖x‖,
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(ii) ṙ(θ∗) = 0 or (iii) both. Note that (ii) implies that m(r∗) = c1. In case (i), we have

|f(‖y‖, c1)− f(‖x‖, c1)| = |β − α| (4.99)

whereas in case (ii), we have

|f(‖y‖,m(r∗)|+ f(‖x‖,m(r∗))− 2f(r∗,m(r∗))| = |β − α|. (4.100)

Depending on the sign of

|f(‖y‖,m(‖x‖))− f(‖x‖,m(‖x‖))| − |β − α|, (4.101)

we are either in case (i), case (ii) or case (iii).

In case (i),

0 < f(‖y‖, c1)− f(‖x‖, c1) = |β − α| < |f(‖y‖,m(‖x‖))− f(‖x‖,m(‖x‖))|, (4.102)

since from (4.92)
lim
c1→0

f(‖y‖, c1)− f(‖x‖, c1) = 0. (4.103)

By the intermediate value theorem, there exists a c1 such that 0 < c1 < m(‖x‖) for which
(4.99) is satisfied.

In case (ii),

π > |f(‖y‖,m(r∗)) + f(‖x‖,m(r∗))− 2f(r∗,m(r∗))| = |β − α| (4.104)

and

|β − α| > |f(‖y‖,m(‖x‖))− f(‖x‖,m(‖x‖))|, (4.105)

since from (4.91) and (4.92)

lim
r∗→0

f(‖y‖,m(r∗)) + f(‖x‖,m(r∗)) = 0 (4.106)

and
lim
r∗→0
−2f(r∗,m(r∗)) = π. (4.107)

By the intermediate value theorem, there exists an r∗ such that 0 < r∗ < ‖x‖ for which
(4.100) is satisfied.
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For case (iii), we simply have

|β − α| = |f(‖y‖,m(‖x‖))− f(‖x‖,m(‖x‖))|. (4.108)

In this last case, both (4.99) and (4.100) have a solution for c1 = m(‖x‖) and r∗ = ‖x‖.

To ensure constant speed, the following equation needs to be satisfied:√
ṙ2 + r2θ̇2

√
r2 + ε2

= S. (4.109)

Since θ(r) = ±(f(r, c1) + c±), we have

d

dt
θ(r(t)) = ±r′(t) c1

r(t)
√

r2(t)
r2(t)+ε2

− c2
1

. (4.110)

Substituting d
dt
θ(r(t)) in the constant speed condition (4.109), we obtain the following

ODE:

|r′|

√
1

r2 + ε2
+

c2
1

r2 − c2
1(r2 + ε2)

= S. (4.111)

The solution of this separable first order ODE can be then found by integration:

g(r) :=

∫ √
1

r2 + ε2
+

c2
1

r2 − c2
1(r2 + ε2)

dr = ±S
∫
dt. (4.112)

Let t∗ be the time t for which r(t∗) = r∗. Let R and T be the constants of integration
for each branch of g(r). Then the initial conditions lead to these four equations:

g(‖x‖) = ±R, (4.113)

g(r∗) = ±(St∗ +R), (4.114)

g(r∗) = ∓(St∗ + T ), (4.115)

g(‖y‖) = ∓(S + T ). (4.116)

After subtracting (4.113) from (4.114) and also subtracting (4.115) from (4.116), the system
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simplifies to

g(r∗)− g(‖x‖) = ±St∗, (4.117)

g(‖y‖)− g(r∗) = ∓S(1− t∗). (4.118)

Subtracting the first and second equation gives

± S = 2g(r∗)− g(‖x‖)− g(‖y‖), (4.119)

whereas solving for t∗ leads to

t∗ =
g(r∗)− g(‖x‖)

2g(r∗)− g(‖x‖)− g(‖y‖)
. (4.120)

Thus

h(t) := g(r(t)) =

{
g(‖x‖) + S ′t, if t ≤ t∗,
g(‖y‖) + S ′(1− t), if t ≥ t∗,

(4.121)

where S ′ = 2g(r∗)− g(‖x‖)− g(‖y‖).

We still need to calculate the integral g(r). In order to simplify the integral, we perform
the change of variable w = r2 +ε2, dw = 2rdr and a =

√
1− c2

1. The integral then becomes

z(w) := g(
√
w − ε2) =

∫ √
1

w
+

1− a2

a2w − ε2
1

2
√
w − ε2

dw (4.122)

=
1

2

∫ √
1

w(a2w − ε2)
dw (4.123)

=
1

a
log(2a(

√
a2w − ε2 + a

√
w)). (4.124)

Thus

g(r) =
log
(
2
√

1− c2
1(
√

(1− c2
1)(r2 + ε2)− ε2 +

√
(1− c2

1)(r2 + ε2))
)√

1− c2
1

, (4.125)

with c1 determined numerically by either (4.99) or (4.100).

Computing the inverse of z(w) and substituting it back with w = r2 + ε2 successfully
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leads to

w =

(
1

4a2
exp(az(w)) + ε2 exp(−az(w))

)2

and (4.126)

r =

√(
1

4a2
exp(ag(r)) + ε2 exp(−ag(r))

)2

− ε2. (4.127)

We thus have

r(t) =

√(
1

4(1− c2
1)

exp(
√

1− c2
1h(t)) + ε2 exp(−

√
1− c2

1h(t))

)2

− ε2. (4.128)

Gathering everything together, we are now able to trace the constant speed path between
x and y.

In Fig. 4.2, we draw the geodesics and find the midpoints between x = (1/2, 0) and
y = (1/2, 1) for different values of the parameter ε. Figure 4.3 offers a comparison of
the geodesic path according to a metric normalized with rq and with

√
r2 + ε2 for different

values of q and ε. In Appendix B, a Matlab implementation of the constant speed geodesics
of normalized metrics can be found under the name normalizedgeodesic.

4.3 Geodesics of the SSIM Index

Recall from (3.12) that any element x in RN can be decomposed into two orthogonal
components containing the mean of x and a zero-mean vector obtained by orthogonal
projection:

x = x̄⊕ (x− x̄). (4.129)

One can then solve for x̄ and x−x̄ independently to find the minimal path according to the
SSIM index. The minimal path between x and y thus will be the minimal path between
x̄ and ȳ plus the minimal path between x− x̄ and y − ȳ.

Also, notice that the minimal path according to each component of the SSIM index is
equivalent to the minimal path according to the normalized metric with M(r) =

√
r2 + ε2.

Indeed, these two paths are related by f(x) =
√

1− x2, which is one-to-one for x ≥ 0.
Thus to minimize x is equivalent to maximize f(x).
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Figure 4.2: Geodesics and mid-points between (1/2, 0)
and (1/2, 1) for M(r, r) =

√
r2 + C2 with C =

0, 1/5, 2/5, 3/5 and 4/5.

Denote ω = arccos(sx,y/sxsy). For the case ε1 = ε2 = 0, we apply the solution of the
minimal path for x̄ and x− x̄:

γ(t) = x̄1−tȳt + s1−t
x sty

(
sin(ω(1− t))

sin(ω)

x− x̄

sx
+

sin(ωt)

sin(ω)

y − ȳ

sy

)
. (4.130)

As a direct application of the SSIM geodesic, given two still images x and y, it is
possible to create a transition, or cross-fading, from x to y that preserves most structural
information from both images. For example, it could be used for slide transition in a
picture slideshow or for a scene transition in a movie. The goal is to make a transition that
is perceptually linear. This means in particular that at time t = 1/2, the image obtained
from the geodesic should be equally similar to both the images x and y. So instead of
simply applying a linear interpolation z(t) = tx + (1− t)y that would lead to a non-linear
perception of change, we apply the formula for the geodesic of SSIM.

Figure 4.4 shows an example of the SSIM-geodesic for ε1 = ε2 = 0. Some SSIM-
interpolated images are compared with their linear interpolation counterparts. Note how
the brightest image dominates the visual perception in the linear interpolation case while
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√
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√
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√

0.9,
√

1.1 and
√

1.3 (dashed red).

both images are adequately weighted in the SSIM geodesic case. Note however that, as
it is the case for linear interpolation, the SSIM geodesic fails to capture changes in the
geometry of the images. A Matlab implementation of the image transition can be found
in the Appendix B under the name EXgeodesicSSIM.

4.3.1 SSIM-geodesic Distance

One motivation for defining the geodesic according to SSIM was to derive a metric distance.
As mentioned in the introducing paragraph of this chapter, this was also the motivation of
Ritcher in [88]. But contrary to his work where he found, but not solved, a second order
differential equation describing the SSIM-geodesic path, we analytically solved the problem
up to the numerical determination of one constant. We now use this result to define a new
distance between images.

From the orthogonal decomposition x = x̄⊕(x−x̄), it is clear that the geodesic distance
between x and y is

d(x,y) =
√

(d0(x̄, ȳ))2 + (d1(x− x̄,y − ȳ))2, (4.131)

where d0 and d1 are the geodesic distances for each orthogonal components. Since we
enforced the constant speed condition, the length of each geodesic path is equivalent to its
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speed for one unit of time. Thus

d(x,y) =
√
S2

0 + S2
1 , (4.132)

where S0 and S1 are the (constant) speeds for each component of the geodesic path.

For the geodesic path of the mean component, we found in (4.24) that∫
1

M(ρ, ρ)
dρ = S0t+R0, (4.133)

where ρ(t) here represents the evolution of the mean component and S0 is its speed. The
integral for the case M(ρ, ρ) =

√
ρ2 + ε2 was solved in (4.79). Combining this result with

the initial conditions ρ(0) = x̄ and ρ(1) = ȳ, we obtain

S0 = log(2
√
ȳ2 + ε21 + 2ȳ)− log(2

√
x̄2 + ε21 + 2x̄). (4.134)

For the zero-mean component, in (4.119) the speed was found to be

S1 = |2g(r∗)− g(sx)− g(sy)|, (4.135)

where g is defined in (4.125) and r∗ has to be solved for numerically as described previously.
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Figure 4.4: Image geodesics between Barbara (low luminance and contrast) and Lena
according to the SSIM index and the Euclidean metric (linear path).
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Chapter 5

Maximum SSIM Estimators

The problem of interest consists in approximating a weighted set of points on a real line or
in a multi-dimensional space with a single number or vector. In the context of statistical
inference, the weights represent probabilities and the result is called a point estimator.
For image processing, the set of points are interpreted as image patches and the estimator
aggregates them into an average image. It is desired for the average to be perceptually
relevant, i.e. that the averaged image represents best the content of the set of patches from
a visual perspective. This is why we are interested in maximum Structural Similarity
(SSIM) estimators.

The implications of finding the SSIM-mean are important. First, it would allow to
compute the Maximum A Posteriori estimator with 1− SSIM has a loss function. Second,
it could lead to the development of a K-means type algorithm for the classification of image
patches. Third, it could be the basis on which an SSIM-based aggregation algorithm of
overlapping patches would be devised.

The organization of the chapter is as follows: First, we give a review of some classical
point estimators in R and RN . These solutions are easily derived and probably well known,
but we present them starting from first principles. The problem of finding point estimators
maximizing SSIM is then attacked. We start with the simplest one-dimensional case and
find some analytical results before moving to the general multi-dimensional case. These
estimates are compared with the arithmetic mean and the SSIM-geodesic mean for both
low dimensional paths and for images.
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5.1 Classical Point Estimators

In the discrete case, the problem can be formulated as

z = arg min
z∗

(
K∑
k=1

pk(d(xk, z
∗))r

)1/r

, (5.1)

where each xk = (xk,1, xk,2, . . . , xk,N) consists of a vector in RN and (p1, p2, . . . , pK)
represents the set of weights. In the continuous case we replace the weights by a probability
density function (p.d.f.) and obtain:

z = arg min
z∗

(∫
p(x)(d(x, z∗))rdx

)1/r

. (5.2)

Depending on the choice of the metric d(·, ·) and of the exponent r we will find different
estimators. We describe the most common point estimators for both the discrete and
continuous case.

Mean. As it is well known, the point estimator that minimizes the expected mean squared
error is the arithmetic mean. This error corresponds to an Euclidean norm raised to the
power r = 2. The quadratic risk is then

R2(z) =

∫
p(x)‖x− z‖2

2dx (5.3)

=
N∑
n=1

∫
p(x)|xn − zn|2dx. (5.4)

To show that the mean estimator minimizes the quadratic risk, simply take the partial
derivative of (5.3) with respect to each of the N components of z and set the result to zero
to find the critical points. By convexity of (5.3), it is clear that the unique critical point
is the global minimum. We thus have

z =

∑K
k=1 pkxk∑K
k=1 pk

(5.5)
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in the discrete case and

z =

∫
xp(x)dx (5.6)

in the continuous case.

Median. The absolute risk on the real line is

R1(z) =

∫
p(x)|x− z|dx. (5.7)

The point estimator that minimizes this risk is the median of the p.d.f. p(x).

There is at least two ways to generalize this result to RN by either replacing the absolute
value by a L1-norm or a L2-norm. The first case simply leads to a component-wise median
and is sometimes called the marginal median. Remark that the fact that this estimator is
not rotationally invariant could be an issue.

The second king of multivariate median is known as L1-median, geometric median or
spatial median. Finding the solution of

arg min
z

K∑
k=1

pk‖xk − z‖2 (5.8)

is more computationally challenging (see e.g. [104]).

Mid-Range. The mid-range of (x1, x2, . . . , xK) on R is defined as

z =
x(1) + x(K)

2
(5.9)

where x(k) is the k-th rank order statistic. This statistic is the point estimator that
minimizes the maximum distance between z and any other point. For the general multi-
dimensional continuous case, we search the point z such that

R∞(z) = max
1≤k≤K

(pk‖z− xk‖2) (5.10)

is minimized.

Given a pair of points xi and xj, the z which minimizes the maximum weighted distance
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between both of these points must satisfy

pi‖xi − z‖2 = pj‖xj − z‖2. (5.11)

It implies that

z =
pixi + pjxj
pi + pj

. (5.12)

It remains to find xi and xj. Substituting the z found in (5.12) into (5.11), we find

pi‖xi − z‖2 = pi

∥∥∥∥xi − pixi + pjxj
pi + pj

∥∥∥∥
2

(5.13)

=
pipj
pi + pj

‖xi − xj‖2. (5.14)

Choosing the pair of points xi and xj that maximizes this last distance leads to the mid-
range point estimator.

5.2 SSIM-Mean

We want to solve the following problem: Given {x1,x2, . . . ,xK} a set of K images and
(p1, p2, . . . , pK) a set of associated weights across patches, find z maximizing

K∑
k=1

pk SSIM(xk, z). (5.15)

We will study three cases in order: the one dimensional case, the zero-mean case and the
general case.

5.2.1 One Dimensional Case

Consider two images with constant luminance. Their variance and covariance will vanish
and the one dimensional problem thus reduces to

z∗ = arg max
z

K∑
k=1

pk
2zxk + ε1
z2 + x2

k + ε1
. (5.16)
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If all the points are close enough, we can prove existence and uniqueness of the minimizer.

Proposition 5.2.1. Let {x1, x2, . . . , xK} be K points in R+. If maxk(xk)
mink(xk)

≤
√

3, then there

exists a unique minimizer to the problem (5.16).

Proof. Denote each term of (5.16) by gk(z) and the total sum by g(z). First observe that the
local convexity property (Theorem 3.3.10) implies that gk(z) is convex on 0 ≤ z ≤

√
3xk.

Hence, g(z) is convex on 0 ≤ z ≤ mink
√

3xk. Now, if maxk(xk)
mink(xk)

≤
√

3, then all the points

{x1, x2, . . . , xK} lie in the region of convexity of g(z). By quasi-concavity of SSIM on
R+, the maximizer z∗ must be between mink xk and maxk xk since g(z) is decreasing for
z ≤ mink xk and is increasing for z ≥ maxk xk. These two last facts put together with
Theorem 3.3.3 implies the uniqueness of the maximizer. Its existence follows easily from
the fact that g(z) is a continuous function on the interval mink xk ≤ z ≤ maxk xk.

In general we could have more than one local maximum. For example, for K = 2 with
ε1 = 0 and with p1 = p2 = 1 we can derive a complete analytical solution.

Proposition 5.2.2. The function

f(z) =
2zx1

z2 + x2
1

+
2zx2

z2 + x2
2

, 0 < z <∞, (5.17)

has a unique maximum at z =
√
x1x2 if 3 − 2

√
2 ≤ x1/x2 ≤ 3 + 2

√
2 and has two global

maxima at

z± =

√
x2

1 + x2
2 − 4x1x2 ±

√
(x2

1 + x2
2 − 4x1x2)2 − 4x2

1x
2
2

2
(5.18)

and a local minimum at
√
x1x2 otherwise.

Proof. To find the critical points, we take the derivative of f with respect to z and set it
to zero:

f ′(z) =
2x1(x2

1 − z2)

(z2 + x2
1)2

+
2x2(x2

2 − z2)

(z2 + x2
2)2

= 0. (5.19)

After simplifications, it leads to the following equation of the 6-th degree:

z6(x1 +x2)−z4(x3
1−2x2

1x2−2x1x
2
2 +x3

2)+z2x1x2(x3
1−2x2

1x2−2x1x
2
2 +x3

2)−x4
1x

3
2−x3

1x
4
2 = 0.
(5.20)

Dividing out the factor (x1 + x2) and substituting Z = z2 we find

Z3 − Z2(x2
1 − 3x1x2 + x2

2) + Zx1x2(x2
1 − 3x1x2 + x2

2)− x3
1x

3
2 = 0. (5.21)
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It is clear that Z = x1x2 is one of the solution. After polynomial division we obtain

Z2 − Z(x2
1 − 4x1x2 + x2

2) + x2
1x

2
2 = 0. (5.22)

The two solutions of this quadratic equation are

Z =
(x2

1 − 4x1x2 + x2
2)±

√
(x2

1 − 4x1x2 + x2
2)2 − 4x2

1x
2
2

2
. (5.23)

Note that these solutions are real if and only if (x2
1 − 4x1x2 + x2

2)2 − 4x2
1x

2
2 ≥ 0. Thus if

3− 2
√

2 ≤ x1

x2

≤ 3 + 2
√

2, (5.24)

then f will have a unique (positive) critical point at z =
√
x1x2. Since f(0) = 0, f(∞) = 0

and f(z) ≥ 0 for 0 < z <∞, f will thus be maximal at z =
√
x1x2. On the other hand, if

3− 2
√

2 ≥ x1

x2

or
x1

x2

≥ 3 + 2
√

2, (5.25)

then f will have three positive critical points. By studying the sign of the second derivative
of f at

√
x1x2 we can determine that it is a local minimum. Indeed,

f ′′(z) =
4x1z(z2 − 3x2

1)

(z2 + x2
1)3

+
4x2z(z2 − 3x2

2)

(z2 + x2
2)3

(5.26)

and

f ′′(
√
x1x2) =

4
√
x1x2

(x1 + x2)3

(
x1

x2

+
x2

x1

− 6

)
. (5.27)

We then have f ′′(z) ≤ 0 if and only if

3− 2
√

2 ≤ x1

x2

≤ 3 + 2
√

2. (5.28)

Note that f has multiplicative symmetry in the sense that f(y1) = f(y2) if y1y2 = x1x2.
It implies that the two other critical points of f are necessary local maxima with equal
values.

Figure 5.1 shows an example of the plotting of the function f(z) described in (5.17) for
two choices of x1 and x2. For the first combination (shown in blue), x1 = 0.1 and x = 0.4.
In this case, the absolute maximum of the sum of the one dimensional structural similarity
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is their geometric mean, i.e. at z = 0.2. For the second combination (shown in magenta),
x1 = 0.05 and x2 = 0.8. In this other case, the geometric mean of these points is the same,
but it is a local minimum instead of a global maximum. The two global maxima on each
side of the geometric mean are shown with red Xs.
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Figure 5.1: Plot of the one dimensional sum of the structural similarity between two points
x1 and x2 for stability constant ε1 = 0. Blue: x1 = 0.1 and x2 = 0.4. Magenta: x1 = 0.05
and x2 = 0.8. The critical points of each function are shown with red Xs. Note how the
geometric mean

√
x1x2 is either a global maximum or a local minimum depending on how

far x1 and x2 are from each other.

Note that we can find an approximation of the analytical solution for the case ε1 > 0
by writing the solution as a Taylor series in ε. The polynomial equation to solve is of the
form

f0(z) + ε1f1(z) + ε21f2(z) + ε31f3(z) = 0 (5.29)

where fi(z) for 0 ≤ i ≤ 3 are polynomials in z. The linear approximation of the solution
will be

z = z0 + ε1z1 (5.30)

where z0 is the solution for ε1 = 0 and z1 is the first order approximation coefficient.
Substituting z in the polynomial equation and keeping only the first order terms, we
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obtain
f0(z0) + ε1(Az1 +B) = 0. (5.31)

Since f0(z0) = 0, the linear approximation coefficient will be z1 = −B/A where A and B
are in function of x1 and x2 only. Following the method laid down in the previous proof
combined with the technique to find the linear perturbation, one can find

A = 6z5
0(x1 + x2) + 4z3

0(2x1x
2
2 + 2x2

1x2 − x3
1 − x3

2)

+2z0(x1x
4
2 + x4

1x2 − 2x2
1x

3
2 − 2x3

1x
2
2), (5.32)

B = 2z5
0 + z4

0(x1 + x2) + 2z3
0(x3

1 + x3
2)− 2z2

0(x3
1 + x3

2) + z0(x4
1 + x4

2)

−(x1x
4
2 + x4

1x2 + 2x2
1x

3
2 + 2x3

1x
2
2). (5.33)

In Figs. 5.2 and 5.3 a visual comparison of the analytical solution for the critical points
of f(z) = 2x1z+ε1

x2
1+z2+ε1

+ 2x2z+ε1
x2
2+z2+ε1

when ε1 = 0 with the linear approximation of the analytical

solution for ε1 > 0 and of the numerical approximation of the solution for ε1 > 0 is
presented for two cases: i) x1 = 0.1 and x2 = 0.4 and ii) x1 = 0.05 and x2 = 0.8. Only a
global maximum is found in the first case, whereas in the second case we observe two local
maxima and one local minimum.

To find the numerical approximations, we employed a standard one dimensional search
over an interval (Brent’s method [7]). Starting from the analytical solution, we determined
in a first step how many extrema to search for. This number will not change for ε1 small
enough. We then constructed the search intervals from the position and number of extrema
in the case ε1 = 0.

Observe that the numerical approximation is generally more precise that the analytical
approximation. Moreover, if ε1 grows too much away from 0, the analytical linear approx-
imation will not be valid anymore and the analytical solutions for the case ε1 = 0 cannot
be used as bounds for the search algorithm. Finally, note that when ε1 is not negligible,
the number of extrema could pass from 3 to 1. The best option in this case seems to
first sample the function to be optimized at regular intervals (possibly with a logarithmic
scale) and then to use numerical methods to determine more precisely the location of local
extrema once they are detected within an interval. That is, if there exists zk−1 < zk < zk+1

such that f(zk−1) < f(zk) and f(zk) > f(zk+1), then we search for a local maximum within
the interval ]zk−1, zk+1[.

The one-dimensional case for two points with zero stability constant and non-uniform
weights can also be solved analytically. This will allow us to compare this solution with the
SSIM-geodesic path and the linear path between two points. By normalizing the weights
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with λ = w1

w1+w2
and 1− λ = w2

w1+w2
, the problem to solve becomes

arg max
z
fλ(z) = arg max

z

(
(1− λ)

2zx1

z2 + x2
1

+ λ
2zx2

z2 + x2
2

)
, 0 < z <∞. (5.34)

Observe that when z =
√
x1x2, then fλ(z) =

4
√
x1x2

x1+x2
for all λ. Also, it is clear that for

every z fixed, fλ(z) is decreasing with respect to λ on 0 ≤ z ≤ √x1x2 and increasing with
respect to λ on

√
x1x2 ≤ z ≤ 1. Since we know from Proposition 5.2.2 that f1/2(z) has

either two maxima with one on each side of
√
x1x2 or a unique maximum at

√
x1x2, thus

the maximum of fλ(z) is in the interval [0,
√
x1x2] for 0 ≤ λ ≤ 1/2 and in the interval

[
√
x1x2, 1] for 1/2 ≤ λ ≤ 1.

Since we now know how to compute the SSIM weighted mean between two points, we
can as well draw a path between two points by varying the weights. Figures 5.4 and 5.5
illustrate these paths with an example for each of the two cases of Proposition 5.2.2. The
position of the SSIM weighted mean is plotted as a function of the weight ratio λ. A
very interesting observation is the presence of a discontinuity in the second case. This
corresponds to a jump in the path describing the linearly weighted average between these
two points. Notice that this jump represents the change of mode from one local maximum
to the next. Thus, if a smooth transition between two images is desired, the SSIM-geodesic
is the method of choice since it will not lead to abrupt changes in the series of images.
On the other hand, to take the SSIM-mean is the way to go if we want to estimate the
perceptual average between several images.

5.2.2 N-Dimensional Case

For zero-mean signal, i.e. for the second component S2 of the SSIM index, the cost function
to maximize is

G(z) =
K∑
k=1

pkS2(xk, z) (5.35)

=
K∑
k=1

pk
2〈xk, z〉+ ε2

‖xk‖2
2 + ‖z‖2

2 + ε2
. (5.36)

We solve this problem for a general quality metric.
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Theorem 5.2.3. The mean of x1,x2, . . . ,xK according to the quality metric

Q(x,y) = f(‖x‖, ‖y‖)〈x,y〉+ g(‖x‖, ‖y‖), (5.37)

i.e.

m = arg max
z

K∑
k=1

pkf(‖xk‖, ‖z‖)〈xk, z〉+ g(‖xk‖, ‖z‖) (5.38)

is in the direction of

u =
K∑
k=1

pkf(‖xk‖, ‖z‖)xk. (5.39)

Proof. Let u = z/‖z‖. Then, adding this constraint with a lagragian λ,

m =
K∑
k=1

pk
(
f(‖xk‖, ‖z‖)〈xk,u‖z‖〉+ g(‖xk‖, ‖z‖)

)
+ λ(1− ‖u‖). (5.40)

Taking the derivative with respect to each component of u, we obtain

d

du
m = ‖z‖

K∑
k=1

pkf(‖xk‖, ‖z‖)xk − λ
u

‖u‖
. (5.41)

Since ‖u‖ = 1, setting the derivative to zero, it simplifies to

u =
‖z‖
λ

K∑
k=1

pkf(‖xk‖, ‖z‖)xk. (5.42)

It remains to determine λ by substituting u into the constraint ‖u‖ = 1:

‖u‖ =
‖z‖
λ

(
K∑
j=1

K∑
k=1

pjpkf(‖xj‖, ‖z‖)f(‖xk‖, ‖z‖)〈xj,xk〉

)1/2

= 1. (5.43)

Isolating λ and substituting back into the expression for u we finally conclude that

u(‖z‖) =

∑K
k=1 pkf(‖xk‖, ‖z‖)xk(∑K

j=1

∑K
k=1 pjpkf(‖xj‖, ‖z‖)f(‖xk‖, ‖z‖)〈xj,xk〉

)1/2
. (5.44)
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Notice that the denominator of u is the norm of the numerator.

Thus we can find analytically the maximal point on any given hyper-sphere of fixed
radius. By varying the radius between 0 and ∞ we can find numerically ‖z‖. In practice
the magnitude of z is bounded between 0 and 1. The problem to solve is

‖z‖ = arg max
r

[
K∑
k=1

pk
(
f(‖xk‖, r)〈xk, ru(r)〉+ g(‖xk‖, r)

)]
(5.45)

= arg max
r

r( K∑
j=1

K∑
k=1

pjpkf(‖xk‖, r)f(‖xj‖, r)〈xk,xj〉

)1/2

+
K∑
k=1

pkg(‖xk‖, r)

 .
We then write z = ‖z‖u, where u(‖z‖) is the maximal point on a given hyper-sphere.

For zero-mean signals, the magnitude of the mean SSIM is then

‖z‖ = arg max
r

2r

(
K∑
j=1

K∑
k=1

pjpk〈xj,xk〉
(‖xj‖2 + r2 + ε2)(‖xk‖2 + r2 + ε2)

)1/2

+
K∑
k=1

pkε2
‖xk‖2 + r2 + ε2

]
. (5.46)

For non-zero mean signals, we simply replace pk by pkS1(x̄k, z̄) and xk by xk − x̄k as well
as ‖z‖ by z− z̄ in the formula (5.46) for the numerical optimization of ‖z‖. We obtain

(z̄, sz) = arg max
(b,r)

[
2r

(
K∑
j=1

K∑
k=1

pkpj

(
S1(x̄j, b)

s2
xj

+ r2 + ε2

)(
S1(x̄k, b)

s2
xk

+ r2 + ε2

)
sxj ,xk

)1/2

+
K∑
k=1

pkS1(x̄k, b)ε2
s2
xk

+ r2 + ε2

]
. (5.47)

Here, we have to optimize in function of both z̄ and sz. The complete solution is then
z = szu + z̄.

We thus have in hands two non-linear optimization problems, one with a single variable
and the other one with two variables. Note that in both of these cases the global maximum
is not necessary unique, but that in practice it will generally be so.

For the one dimensional optimization problem, we employ the same technique that
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was outlined in the previous section. We first sample the domain [0, 1] on a logarithmic
scale. This choice of sampling is due to the multiplicative nature of the structural sim-
ilarity metric. Let (t1, t2, . . . , tn) be n uniformly sampled points between 0 and 1. The
transformation ti 7→ 10−bti with b a fixed integer sends the uniform interval [0, 1] to a
logarithmic scale between 10−b and 1. The location of local maxima can be determined
from this sampling by comparing the magnitude of three successive points. The standard
black-box method (Matlab’s fminbnd) alternates between a golden section search and a
parabolic interpolation (see [7]). The global maximum is finally determined by taking the
greatest local maximum.

An example of the S2-mean of five random points in the plane R2 is shown in Fig. 5.6.
This also corresponds to the SSIM-mean of five points lying on the zero-mean plane, a
R2 subspace of the R3 space. Figure 5.7 illustrates the one dimensional optimization to
find the norm of z. Notice how the SSIM-mean differs with the arithmetic mean: the
SSIM-mean roughly takes the average direction (or angle) of the five points whereas the
arithmetic mean takes, as we already know, the average position. This particular example
was chosen to showcase the difference between the two estimators, but it is observed that
the S2-mean and the arithmetic mean are often comparable.

For the two-dimensional optimization problem, a similar sampling is performed on a
two-dimensional grid in [0, 1] × [0, 1]. The points that are detected as locally maximal
in both directions constitute the initial guesses of the numerical scheme. The stan-
dard medium-scale black-box method (Matlab’s fminunc) uses Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton method (see [43]).

The main function is implemented in Matlab in Appendix B under the name ssimmean.
The two functions to be optimized for zero-mean and non zero-mean are constructed in,
respectively, funopt1 and funopt2. The Matlab function globalmin proceeds with the
global optimization for one or two dimensions.

We provide two examples of the SSIM-mean on a two-dimensional plane. In the first
case, we took all the points on the same side of the mean direction y = x and in the
same quadrant. Thus, after the decomposition of the points into a mean component in
the direction of y = x and a zero-mean component in the direction of y = −x, all the
zero-mean components of the points were trivially positively correlated. A comparison
between the SSIM-mean and the arithmetic mean is then shown in Fig. 5.8. The result of
the optimization over the mean component z̄ and the norm of the zero-mean component
sz can be seen in Fig. 5.9. It is observed that the points with small zero-mean components
drag the SSIM-mean toward the axis y = x.

As it is illustrated in Fig. 5.10, the sum of the SSIM index exhibits some strange behavior
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for points with negatively correlated zero-mean component. In this case, the SSIM-mean
will be on the side of the mean direction y = x for which a majority of points lie. Because
of the influence of points that are anti-correlated, the SSIM-mean might be outside the
convex hull of the data points. This undesirable result indicates the poor performance of
the SSIM index for signals that are negatively correlated. Also, observe in Fig. 5.11 how
several local maxima are found in the optimization procedure for this particular example.
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Figure 5.2: The function f(z) = 2x1z+C
x2
1+z2+C

+
2x2z+C
x2
2+z2+C

with x1 = 0.1 and x2 = 0.4 and its
extrema.
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Figure 5.3: The function f(z) = 2x1z+C
x2
1+z2+C

+
2x2z+C
x2
2+z2+C

with x1 = 0.05 and x2 = 0.8 and its
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Figure 5.4: Optimal path between x1 = 0.1
and x2 = 0.4 according to different metrics.
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Figure 5.5: Optimal path between x1 = 0.05
and x2 = 0.8 according to different metrics.
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Figure 5.6: Comparison between the arithmetic mean
and the S2-mean (SSIM without the mean distortion
component) of points in R2.
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Figure 5.7: Global optimization of the norm r in the
computation of the S2-mean.
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Figure 5.8: Comparison between the arithmetic mean
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Figure 5.9: Global optimization of the norm r and the
mean component b in the computation of the SSIM-
mean for the points in Fig. 5.8.
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Figure 5.10: Comparison between the arithmetic mean
and the SSIM-mean of points in R2 that do not have
positively correlated zero-mean components.
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Figure 5.11: Global optimization of the norm r and the
mean component b in the computation of the SSIM-
mean for the points in Fig. 5.10.
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Chapter 6

SSIM-based Approximation using
Bases

One practical way of representing images is by decomposing them in terms of a basis. The
basis is most commonly orthogonal, e.g. Discrete Cosine Transform (DCT) or Daubechies
wavelets [33], but it can also be biorthogonal (e.g. Cohen-Daubechies-Fauvreau wavelets
[29]) or redundant (e.g. Gabor filter).

The approximation problem consists of finding the basis and coefficients that best
approximate an image economically. That is, we want an approximated image to look
the closest to the original image and to be represented with the fewest number of basis
blocks. Of course, the choice of basis blocks and coefficients depends on what we mean
by “closest.” The most popular choice is to employ the L2-norm. Here, we restudy the
problem using the Structural Similarity (SSIM) index.

After reviewing the classical L2-based approximation problem, we will solve the local
SSIM-based approximation problem for orthogonal, biorthogonal and redundant bases.
The simplest case with zero-stability constants will be considered first and then the more
general case that includes the stability constants will be treated last. As an application,
we will outline how to use this sparse representation of images for compression, restoration
and super-resolution of images.
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6.1 L2-based Approximation

It is helpful to review this standard result. We consider x to be a given signal and y to
be an approximation to x. We generally also consider y to be an element of a particular
subset A ⊂ RN (details to be given below) and look for solutions to the problem

yA = arg max
y∈A
‖x− y‖2. (6.1)

In the case A = RN , y = x and ‖x− y‖2 = ‖x− x‖2 = 0.

6.1.1 Orthogonal Basis

We start with a set of (complete) orthogonal basis functions in RN to be denoted as

Ψ = {ψ1, ψ2, · · · , ψN}. (6.2)

The L2-based expansion of x in this basis is, of course,

x =
N∑
k=1

fkψk, fk = 〈x, ψk〉, 1 ≤ k ≤ N. (6.3)

The expansions of the approximation y will be denoted as follows,

y = y(a) =
N∑
k=1

akψk, (6.4)

where the notation y(a) acknowledges the dependence of the approximation on the coeffi-
cients ak.

In the orthogonal case, the approximation spaces A in (6.1) will be the span of subsets
of the set of basis functions {ψk}Nk=1. At this point, we do not exactly specify which other
ψk basis functions will be used but consider all possible subsets of M < N basis functions:

A = span{ψγ(1), ψγ(2), · · · , ψγ(M)}, (6.5)

where γ(i) ∈ {1, 2, · · · , N} and aγ(M+1) = · · · = aγ(N) = 0. Of course, we are interested in
finding the optimal M -dimensional subset in the L2 sense.
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The well-known L2-based optimal approximation is summarized in the following theo-
rem:

Theorem 6.1.1. For a given x ∈ RN , the M coefficients ak of the optimal L2-based
approximation y ∈ A to x are given by the M Fourier coefficients fk = 〈x, ψk〉 of greatest
magnitude, i.e.

aγ(k) =

{
fγ(k) = 〈x, ψγ(k)〉, 1 ≤ k ≤M,
0, M + 1 ≤ k ≤ N.

(6.6)

where |fγ(1)| ≥ |fγ(2)| ≥ . . . ≥ |fγ(M)| ≥ |fl| with l ∈ {1, 2, · · · , N} \ {γ(1), · · · , γ(M)}.

6.1.2 Linear Redundant Basis

A redundant or over-complete basis of RN consists of P ≥ N column vectors Ψ = {ψk}Pk=1

such that N of them are linearly independent. Given x in RN , we search for an approxima-
tion y of x with the help of the first M < N linearly independent vectors of a redundant
basis:

y =
M∑
k=1

akψk. (6.7)

We seek for the coefficients a = [a1, a2, . . . , aM ] that will minimize the L2-error:

‖x− y‖2
2 = 〈x−

M∑
j=1

ajψj,x−
M∑
k=1

akψk〉 (6.8)

= ‖x‖2
2 − 2

M∑
k=1

ak〈x, ψk〉+
M∑
j=1

M∑
k=1

ajak〈ψj, ψk〉. (6.9)

Taking the partial derivative of the L2-norm with respect to ak and setting it to zero, we
find

∂

∂ak
‖x− y‖2

2 = −2〈x, ψk〉+ 2
M∑
j=1

aj〈ψj, ψk〉 = 0, 1 ≤ k ≤M. (6.10)

111



This simplifies to

M∑
j=1

aj〈ψj, ψk〉 = 〈x, ψk〉, 1 ≤ k ≤M. (6.11)

So to find the optimal coefficients a, we need to solve a M ×M linear system of equations
Φa = f with φj,k := 〈ψj, ψk〉 and f = [f1, f2, . . . , fM ] where fk = 〈x, ψk〉. In practice, a is
found by multiplying the pseudo-inverse Ψ+ of the dictionary matrix Ψ with x:

a = (ΨTΨ)−1ΨTx (6.12)

= Ψ+x. (6.13)

This pseudo-inverse can be computed from the singular value decomposition UΣV T of Ψ:

Ψ+ = V Σ+UT , (6.14)

where Σ+ is the diagonal matrix whose positive elements are the reciprocal of the non-zero
elements of Σ.

Biorthogonal Basis

A biorthogonal wavelet basis {ψk}Nk=1 and its dual basis {ψ̃k}Nk=1 are defined such that

〈ψj, ψ̃k〉 = δj,k, (6.15)

where δj,k is Kronecker’s delta. We decompose x as

x =
N∑
j=1

〈x, ψ̃j〉ψj =
N∑
j=1

〈x, ψj〉ψ̃j. (6.16)

Notice that

〈x, ψk〉 =
N∑
j=1

〈x, ψ̃j〉〈ψj, ψk〉 for 1 ≤ k ≤ N. (6.17)

Comparing this last equation with (6.11), we find

ak = 〈x, ψ̃k〉, for 1 ≤ k ≤M. (6.18)
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Thus, for biorthogonal basis it is not necessary to solve a linear system to find the optimal
coefficients.

6.1.3 Non-Linear Approximation

For a non-linear approximation, we pick the M best vectors from the P ≥ N vectors
Ψ = {ψk}Pk=1. The problem can be written as

arg min ‖x− y‖2
2 subject to ‖a‖0 = M, (6.19)

where x is the signal to be approximated,

y := Ψa =
P∑
k=1

akψk (6.20)

is the approximation and

‖a‖0 :=
P∑
k=1

a0
k = {#k : |ak| > 0} (6.21)

is the 0-pseudonorm. We follow the convention that 00 = 0.

To solve the problem given in (6.19), we choose M basis from the dictionary of size P .
And, we solve a linear system in a similar fashion as that in the linear case (see (6.11))
to determine the coefficients a. We have P !

(P−M)!M !
possibilities, which grow exponentially

with P . In fact, it has been shown that finding the approximation that minimizes ‖x−y‖2
2

is a NP-hard problem [34].

Since the optimal solution is not computationally tractable, we instead search for a
sub-optimal solution with a greedy approach: the Matching Pursuit (MP) algorithm. Note
that an alternative approach would be the Basis Pursuit [27]. This replaces the L0-“norm”
by L1-norm in the optimization problem, thus transforming it into a linear programming
problem. These two competing approaches have gained renewed interest recently with the
advent of compressive sensing [19, 36].
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Matching Pursuit

The MP algorithm from Mallat and Zhang [69] adds vectors one at a time until a M vectors
approximation is found. For the first vector, we want to minimize

‖x− aγ(1)ψγ(1)‖2
2 = ‖x‖2

2 − 2aγ(1)fγ(1) + f 2
γ(1). (6.22)

By taking partial derivatives and setting them to zero, we find that the solution is exactly
the same as the orthogonal case: We pick the index that maximizes |fk| = |〈x, ψk〉|.

For the K-th vector, the L2-error is

‖x−
K∑
k=1

aγ(k)ψγ(k)‖2
2 = ‖x‖2

2 +
K∑
k=1

a2
γ(k) − 2

K∑
k=1

aγ(k)fγ(k)

+2
K∑
j=1

K∑
k=1(j 6=k)

aγ(j)aγ(k)φγ(j),γ(k), (6.23)

where fk = 〈x, ψk〉 and φj,k = 〈ψj, ψk〉. Taking the partial derivative of the L2-error with
respect to aγ(K) and setting it to zero, we find

aγ(K) = fγ(K) −
K−1∑
k=1

aγ(k)φγ(k),γ(K) (6.24)

= 〈x, ψγ(K)〉 −
K−1∑
k=1

aγ(k)〈ψγ(k), ψγ(K)〉. (6.25)

Substituting aγ(K) back in the equation of the L2-error, we conclude that the error will be
minimized when

|〈x−
K−1∑
j=1

aγ(j)ψγ(j), ψk〉| (6.26)

is maximized. In the case of an orthogonal basis, the matching pursuit algorithm coincides
with the optimal algorithm who picks the M biggest basis coefficients.
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Orthogonal Matching Pursuit

The Orthogonal Matching Pursuit (OMP) [76] combines the MP with a Gram-Schmidt
procedure to obtain an orthogonal basis.

Given a linearly independent basis {ψ1, ψ2, . . . , ψN} of RN , the Gram-Schmidt proce-
dure successively projects the basis to an orthogonal subspace

G1 = ψ1 (6.27)

G2 = ψ2 −
〈G1, ψ2〉
〈G1, G1〉

G1 (6.28)

...

GN = ψN −
N−1∑
j=1

〈Gj, ψN〉
〈Gj, Gj〉

Gj. (6.29)

The basis is then normalized with gk = Gk/‖Gk‖2.

The OMP algorithm thus alternates between finding the best matching vector and
the orthonormalization process. The trade-off is a convergence with a finite number of
iterations against an extra computational cost for the orthonormalization.

For the numerical implementation, the naive approach to compute an orthonormal basis
is well known to be unstable. A correct way to perform the OMP is with the following
algorithm [92]:

1. Initialize: I = ∅, r := x and a := 0.

2. While ‖r‖2 > T , do

3. k∗ := arg maxk |〈ψk, r〉|;

4. Add k∗ to the set of indices I;

5. aI := Ψ+
I x;

6. r := x−ΨIaI ;

7. end while.

Here, aI and ΨI represent the restriction of, respectively, a and Ψ to the elements or
columns of indices I. Note that since the pseudo-inverse of Ψ has to be computed for
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incrementally larger matrices, there are ways to make computations more efficient with
the help of Cholesky factorization (see [92]).

It is not immediately clear that this algorithm really performs the OMP. To see this,
note that since g = [g1, g2, . . . , gK ] is an orthonormal basis, the change of basis

K∑
j=1

ajψj =
K∑
j=1

〈x, gj〉gj (6.30)

(6.31)

is performed via

a = (ΨTΨ)−1ΨTggTx (6.32)

= Ψ+x. (6.33)

Thus, the residual r can be computed from the original basis Ψ and the orthonormalization
is hidden in the computation of the coefficients a.

6.2 SSIM-based Approximation

The problem now can be stated as follows:

Given x and Ψ, find the y = Ψc that maximizes S := SSIM(x,y).

This problem was first solved for the orthogonal case in [12] before being generalized to
the redundant case in [86] and [84].

6.2.1 Linear Approximation

In a linear approximation, the choice of dictionary vectors Ψ = (ψ1, ψ2, . . . , ψM) is already
fixed and we only need to find the coefficients c = (c1, c2, . . . , cM) that maximizes the
SSIM. To do that, we search for the stationary points of the partial derivatives of SSIM
with respect to ck. First, we write the mean, the variance and the covariance of y in terms
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of c:

ȳ = 〈
M∑
k=1

ckψk〉 =
M∑
k=1

ck〈ψk〉, (6.34)

(N − 1)s2
y = 〈y,y〉 −N〈y〉2

= 〈
M∑
j=1

cjψj,

M∑
k=1

ckψk〉 −N ȳ2 (6.35)

=
M∑
j=1

M∑
k=1

cjck〈ψj, ψk〉 −N ȳ2,

(N − 1)sxy = 〈x,y〉 −N〈x〉〈y〉

= 〈x,
M∑
k=1

ckψk〉 −N x̄ȳ

=
M∑
k=1

ck〈x, ψk〉 −N x̄ȳ. (6.36)

Next, we find the partial derivatives:

∂ȳ

∂ck
= 〈ψk〉; (6.37)

(N − 1)
∂s2

y

∂ck
= 2

M∑
j=1

cj〈ψj, ψk〉 − 2N ȳ〈ψk〉; (6.38)

(N − 1)
∂sxy

∂ck
= 〈x, ψk〉 −N x̄〈ψk〉. (6.39)

The SSIM can be written as

logS = log(2x̄ȳ + ε1)− log(x̄2 + ȳ2 + ε1) + log(2sxy + ε2)− log(s2
x + s2

y + ε2). (6.40)

So for all 1 ≤ k ≤M ,

∂S

∂ck
= S

[
2x̄〈ψk〉

2x̄ȳ + ε1
− 2ȳ〈ψk〉

x̄2 + ȳ2 + ε1
+

2〈x, ψk〉 − 2Nx̄〈ψk〉
(N − 1)(2sxy + ε2)

−
2
∑M

j=1 cj〈ψj, ψk〉 − 2N ȳ〈ψk〉
(N − 1)(s2

x + s2
y + ε2)

]
.

(6.41)
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Solution for Oscillatory Basis

In a particular case where the basis is made of normalized oscillatory functions, we have

〈ψk〉 = 0 and 〈ψk, ψk〉 = 1 for 1 ≤ k ≤M. (6.42)

It leads to

ȳ = 0, (6.43)

(N − 1)s2
y =

M∑
j=1

M∑
k=1

cjck〈ψj, ψk〉 (6.44)

(N − 1)sxy =
M∑
k=1

ck〈x, ψk〉. (6.45)

So the partial derivative in (6.41) reduces to

∂S

∂ck
= S

[
2〈x, ψk〉

(N − 1)(2sxy + ε2)
−

2
∑M

j=1 cj〈ψj, ψk〉
(N − 1)(s2

x + s2
y + ε2)

]
. (6.46)

We now search for stationary points:

∂S

∂ck
= 0 ⇒ 〈x, ψk〉∑K

j=1 cj〈ψj, ψk〉
=

2sxy + ε2
s2
x + s2

y + ε2
=:

1

α
, for 1 ≤ k ≤M. (6.47)

We can rewrite this equation as

M∑
j=1

cj〈ψj, ψk〉 = α〈x, ψk〉, for 1 ≤ k ≤M. (6.48)

This equation is very similar to the one of optimal coefficients for the L2-based approxi-
mation (6.11). In fact, since the equations (6.11) and (6.48) are identical up to a scaling
factor and since the solution of the linear system is unique, we have

ck = αak. (6.49)
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Now, we seek to find an expression for α:

α =
s2
x + s2

y + ε2

2sxy + ε2

=
s2
x + 1

N−1

∑M
j=1

∑M
k=1 cjck〈ψj, ψk〉+ ε2

2
N−1

∑M
k=1 ck〈x, ψk〉+ ε2

. (6.50)

Substituting the equation for ck (6.49) into the equation for α (6.50), we obtain

α =
α2A+B

αC +D
, (6.51)

where

A =
1

N − 1

M∑
j=1

M∑
k=1

ajak〈ψj, ψk〉, (6.52)

B = s2
x + ε2, (6.53)

C =
2

N − 1

M∑
k=1

ak〈x, ψk〉, (6.54)

D = ε2. (6.55)

Isolating α gives a quadratic equation

α2(C − A) + αD −B = 0. (6.56)

Solving for α, we find

α =
−D ±

√
D2 + 4(C − A)B

2(C − A)
(6.57)

=
−ε2 ±

√
ε22 + 2C(s2

x + ε2)

C
. (6.58)

Note that C − A = C/2 = A, since the ak’s are found by solving the linear system (6.11).
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Flat Approximation Case

A flat approximation ψ0 ≡ 1 is added to the oscillatory basis. In this case,

ȳ = c0. (6.59)

The coefficient c0 is the stationary point of (6.41):

∂S

∂c0

= S

[
2x̄〈ψ0〉

2x̄c0 + ε1
− 2c0〈ψ0〉
x̄2 + c2

0 + ε1
+

2〈x, ψ0〉 − 2Nx̄〈ψ0〉
(N − 1)(2sx,y + ε2)

−
2
∑M

j=0 cj〈ψj, ψ0〉 − 2Nc0〈ψ0〉
(N − 1)(s2

x + s2
y + ε2)

]

= S

[
2x̄

2x̄c0 + ε1
− 2c0

x̄2 + c2
0 + ε1

]
. (6.60)

Solving for the stationary point leads to the following quadratic equation in c0:

c2
0x̄+ ε1c0 − x̄(x̄2 + ε1) = 0. (6.61)

Its solution is

c0 =
−ε1 ±

√
ε21 + 4x̄2(x̄2 + ε1)

2x̄
. (6.62)

We take the positive branch to maximize the SSIM index, which is simply c0 = x̄, as
expected. The other coefficients are found as in the oscillatory basis case.

Orthogonal Basis

In the orthogonal case, the constants in the equation for α (6.58) simplify to

α =
−ε2 ±

√
ε22 + ( 4

N−1

∑M
k=1〈x, ψk〉2)(s2

x + ε2)

2
N−1

∑M
k=1〈x, ψk〉2

. (6.63)

The SSIM index is maximized with the positive branch. If ε2 = 0, then

α =
sx√

1
N−1

∑M
k=1〈x, ψk〉2

, (6.64)

thus the coefficients are adjusted in order to preserve the variance of the original signal.
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Biorthogonal basis

The SSIM-optimal decomposition with a bi-orthogonal basis is a particular case of the
general solution with an oscillatory basis. From (6.18), (6.49) and (6.58), we have

ck = α〈x, ψ̃k〉, (6.65)

with

α =
−ε2 +

√
ε22 + 4

N−1

∑M
k=1〈x, ψ̃k〉〈x, ψk〉(s2

x + ε2)

2
N−1

∑M
k=1〈x, ψ̃k〉〈x, ψk〉

. (6.66)

6.2.2 Non-Linear Approximation

Similar to the L2-case, the problem is to find, given a dictionary Ψ ∈ RP×N and a signal
x ∈ RN , the coefficients c ∈ RP with ‖c‖0 = M < N such that

SSIM(x,Ψc) (6.67)

is maximized.

SSIM-based matching pursuit

We already know how to pick the best coefficients given a set of vectors (see Section 6.2.1).
We now pick the vectors in a greedy way.

First step. We want to find ψγ0 and cγ0 that will maximize S(x, cγ0ψγ0). The SSIM is

S(x, cγ0ψγ0) =
2cγ0〈x, ψγ0〉+ ε2(N − 1)

‖x‖2 + c2
γ0

+ ε2(N − 1)
. (6.68)

For any fixed ck, the absolute value of SSIM will be maximized when |〈x, ψk〉| is maximized
as well. We thus pick

γ0 = arg max
1≤k≤P

|〈x, ψk〉| (6.69)

and

cγ0 = α〈x, ψγ0〉. (6.70)
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In general, we want to find ψγK and cγK that will maximize

S(x,
K−1∑
k=0

cγkψγk + cγKψγK ). (6.71)

For every choice of ψγK , we would need to find {aγk}0≤k≤K , i.e. we have to solve a K ×K
linear system of equations and compute the SSIM with cγk = αaγk , then pick the basis
ψγK that gives the maximum value. Although this procedure makes sense in theory, in
practice it is intractable given that a potentially large linear system has to be solved for
every possible basis of the dictionary and at every iteration of the greedy algorithm.

SSIM-based Orthogonal Matching Pursuit

According to the MP algorithm, the choice of the first basis that maximizes the SSIM index
is the same as that of the optimal L2-basis. Indeed, (6.68) is maximized when |〈x, ψk〉| is
maximized.

For the choice of the K-th basis, we seek to maximize

S(x,
K−1∑
j=1

aγjψγj + aγKψγK ) = S(x,
M−1∑
j=1

cγjgγj + cγMgγM ) (6.72)

=
2
∑K−1

j=1 cγj〈x, gγj〉+ cγK 〈x, gγK 〉+ ε2

‖x‖2 +
∑K

j=1 c
2
γj

+ ε2
. (6.73)

The choice of basis that will maximize the SSIM index is

γK = arg max
1≤k≤P

|〈x, gk〉|. (6.74)

Note that

〈x, gk〉 = 〈x, ψk −
K−1∑
j=1

〈gj, ψk〉gj〉 (6.75)

= 〈x−
K−1∑
j=1

〈x, gj〉gj, ψk〉 (6.76)

= 〈r, ψk〉. (6.77)
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Thus, the optimal basis for the SSIM-based and the L2-based algorithms are exactly
the same. Indeed, the SSIM-based coefficients will be simply a scaling of the L2-based
coefficients. The difference will be in the stopping criterion: the SSIM-OMP stopping
criterion will obviously depend on the SSIM index instead of the L2-error.

6.3 Applications

6.3.1 Image and Video Coding

Both JPEG and JPEG2000 image compression standards are based on the decomposition
of images into a basis. For JPEG compression, an orthogonal cosine basis is taken whereas
JPEG2000 standard recommends a biorthogonal wavelet transform. Moreover, the H.264
standard of video coding also incorporates the representation of the residual video frames
after motion compensation with a cosine basis.

A general introduction to data compression can be found in [97]. The reader is also
referred to the author Master’s Thesis [8]. The general framework is as follows. In a first
step, the image is decomposed into a basis. The basis coefficients are then quantized to
a finite number of possible values and it is these quantized coefficients that are losslessly
encoded with an entropy coding scheme. The image decompression consists in the decoding,
the dequantization and the image reconstruction with an inverse transform. Note that
ignoring the round-off errors, the loss of information only occurs in the quantization step.
For video compression, an extra step consists in computing and encoding motion vector
between frames. A JPEG-like compression is then performed on the first frame of a group
of frames as well as on the residual frames.

From the invariance property under orthogonal transforms (3.1.1), it is possible to
optimize the SSIM index in the frequency domain for perceptual coding. However, one
constraint is that the local SSIM coefficients can only be measured for non-overlapping
blocks. Thus the SSIM-optimal coding will not prevent the “blocking effect”, i.e. the
apparition of image artifacts at the interface of two independently coded blocks. To remedy
this problem one should combine locally optimal blocks into a globally approximately
optimal image with an aggregation process.

For biorthogonal wavelet-based compression, since the transform is not orthogonal, we
cannot optimize directly in the frequency domain. Nevertheless, it is generally assumed
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that the biorthogonal wavelets possess Riesz stability

(1− δ)‖x‖2
2 ≤

∑
k

|〈x, ψk〉|2 ≤ (1 + δ)‖x‖2
2, (6.78)

where δ > 0. We thus have an approximate preservation of energy. Moreover, under the
simplifying assumption that the signal is independent and identically distributed, one can
show that

E[|〈x, ψk〉|2] = E[
∑
j

∑
l

ψk(j)ψk(l)x(j)x(l)] (6.79)

=
∑
j

ψ2
k(j)E[x2(j)]] (6.80)

= 〈ψk, ψk〉E[‖x‖2
2]. (6.81)

In [89], Richter and Kim proposed an optimal Multi-Scale SSIM JPEG2000 encoder on
non-overlapping blocks. In fact, a rate allocation scheme is performed on the linear
approximation of the SSIM index. Wang et al. [116] suggested another bit allocation scheme
based on an iterative refinement of bitplanes trimming functions. In this case, the image
is transformed back to the image domain and the full SSIM index is computed at each
iteration. The strategy taken is then to allocate bits to the region with the lowest predicted
quality. In comparison to the two previous propositions, the optimal decomposition found
in Section 6.2 would allow to devise a direct rate allocation scheme according to the exact
SSIM index (over non-overlapping blocks).

An important problem in image and video coding is to find the rate-distortion curve.
This curve describes the maximum rate that an algorithm can compress a signal for a given
distortion level. Channappayya et al. [23] derived bounds for the rate-distortion curve of
the SSIM index for quantized images. Several authors (see [112] and references therein)
also have developed algorithms to estimate rate-distortion curve of the SSIM index for
video coding. Many simplifying assumptions are generally made and a numerical solution
rather than an analytical solution is sought. From the tools developed in this chapter,
we are still a far cry from a complete rate-distortion theory. Nevertheless, an analytical
solution can be computed for some simple approximation problems.
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6.3.2 Image Denoising by Sparse Representation

Best K-terms approximation can be included in an image denoising algorithm. We present
the work of Elad and Aharon [40] and present the extension done in collaboration with
A. Rehman and M. Rostami [86, 84] to accomodate for the SSIM index.

A major idea in image representation is to decompose image into a sparse basis. That
is, images are modeled as being well approximated by the sum of only few atom ele-
ments. Traditionally, several bases have been studied: Fourier, Gabor, separable wavelets,
curvelets and all the family of X-lets. Some success have been obtained with hard or soft
thresholding techniques [35] or coring methods [103], but it is possible to push further the
sparse representation by learning the dictionary of bases from images themselves. There
are two possibilities: either one trains the dictionary from a set of clean natural images
or one learns adaptively the basis from the noisy image. We will adopt the second option
since this is the method that generated best results in [40].

We represent blocks in a vectorial form with the lexicographical order. Consider blocks
of length n and assume that the dictionary Ψ ∈ Rn×K with K > n is given. Once the
dictionary is fixed, the L2 sparse approximation problem for an image block xi is

ĉi = arg min
ci
‖ci‖0 subject to ‖Ψci − xi‖2

2 ≤ T, (6.82)

where ci is the coefficient vector of length m associated with the i-th image block, ‖·‖0 is the
counting pseudo-norm and T is a stopping criterion. The problem of sparse approximation
can be approximatively solved either by matching or basis pursuit as described in Section
6.1.3. The optimal coefficients are found for every sliding block of an image. The global
solution is then given by the minimizer of

M∑
i=1

‖Ψĉi − xi‖2
2 + λ‖x− y‖2

2, (6.83)

where λ controls the weight between fitting to the noisy image and respecting the sparsity
constraint. An analytical solution of this problem is given by

x =

(∑
i

RT
i Ri + λI

)−1(∑
i

RT
i Ψci + λy

)
, (6.84)

where Ri is the n×N matrix extracting the i-th block from x.

The dictionary learning procedure described by Aharon and Elad [1] is called K-SVD,
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since it is seen as a generalization of the K-means clustering algorithm [67]. The goal of
the algorithm is to find the dictionary Ψ and the coefficients c that minimize the Frobenius
norm of the error between a training set y and its sparse representation Ψc:

min
Ψ,c
‖y −Ψc‖2

F subject to ‖ci‖0 ≤ T for 1 ≤ i ≤ K. (6.85)

The algorithm starts with M examples y = {yi}Ki=1 forming the training set and an initial
dictionary Ψ(0) ∈ Rn×K . In a first stage, a representation vector is found according to
(6.82) for every 1 ≤ i ≤ K. Then, each column of the dictionary and its corresponding
coefficients are updated one at the time in order to minimize the Frobenius norm of the
error of the sparse representation via a singular value decomposition. This process is
iterated until convergence.

The SSIM-based sparse representation with a learned dictionary replaces the L2-norm
with the SSIM index in the local sparse approximation. In [84], the L2-error is also
replaced by the SSIM index in the global reconstruction problem (6.83). The SSIM-inspired
algorithm is thus separated in three steps1:

1. Find

ĉi = arg min
ci
‖ci‖0 subject to SSIM(Ψci,xi) ≥ T (6.86)

with orthogonal matching pursuit.

2. Aggregate the local patches by averaging:

w =

(∑
i

RT
i Ri

)−1(∑
i

RT
i Ψĉi

)
. (6.87)

3. Numerically optimize for the global solution

arg max
x
{SSIM(w,x) + λSSIM(x,y)} (6.88)

by gradient descent.

In [84], the SSIM-sparse representation algorithm was modified following [122] to allow

1This idea as well as the implementation of the algorithm was first developed by A. Rehman.
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for super-resolution2. The global solution (6.88) is replaced with

arg max
x
{SSIM(w,x) + λSSIM(HDx,y)} , (6.89)

where H is a blurring operator and D is a downsampling operator. In this case, two
dictionaries need to be learned: Ψh, the dictionary on high-resolution patches and Ψl,
the dictionary on low-resolution patches. Contrary to the image denoising problem, the
dictionaries cannot be trained adaptively, but have to be trained from a set of examples.
The SSIM-inspired super-resolution algorithm is then described as follows:

1. Train the dictionaries Ψh and Ψl as in [122].

2. Find the vector of coefficients ci for all patches of the low-resolution image y.

3. Reconstruct high-resolution patches with xi = Ψhci.

4. Aggregate the high-resolution patches by averaging to obtain w.

5. Regularize the image by maximizing (6.89).

Note that the stopping criterion proposed in [84] is in fact a hidden L2 constraint.
Indeed,

SSIM(y,Ψc) ≥ TSSIM = 1− TMSE

‖y‖2
2 + ‖Ψc‖2

2 + ε2
, (6.90)

if and only if

‖y −Ψc‖2
2 ≤ TMSE. (6.91)

The constant TMSE is set to (1.15σ)2, where σ2 is the variance of the noise. In fact, this
constraint makes sense, since the goal is to approximate the original image, which is known
to satisfy (6.91) with high probability, and not the noisy image. A fixed bound for the
SSIM of the approximation would instead imply that the algorithm optimizes the structural
similarity between the basis approximation and the noisy image. Besides taking the L2

bound, other options could be to pre-process the noisy image to obtain a first estimate of
the clean image. It is also suggested, at the cost of extra computation time, to apply the
algorithm iteratively. A third possibility is to estimate the SSIM index from the noisy and
the residual image as it will be discussed in Chapter 8.

2These ideas were developed by M. Rostami
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Chapter 7

A Study of Self-Similarity of Images

The effectiveness of a good number of nonlocal image processing methods, including non-
local means denoising [16], restoration [31, 125], compression [42], super-resolution [38, 41,
44], fractal image coding [71, 65, 47] and adaptive dictionary learning [40], is due to how
well pixel-blocks of an image can, in some way, be approximated by other blocks. This
property of natural images may be viewed as a form of self-similarity.

In this chapter, we propose to revisit the L2-based affine model of self-similarity of [2]
by appropriately penalizing the image blocks with low variance. This is done naturally via
the Structural Similarity (SSIM) index.

7.1 L2-based Affine Model of Self-Similarity

In [2], a simple model of affine self-similarity which includes a number of nonlocal image
processing methods as special cases was introduced. (It was analyzed further in [60].)
An image I will be represented by an image function u : X → Rg, where Rg ⊂ R
denotes the greyscale range. Unless otherwise specified, we work with normalized images,
i.e.Rg = [0, 1]. The support X of an image function u is assumed to be an L1 × L2-pixel
array. Let R be a set of n× n-pixel subblocks Ri, 1 ≤ i ≤ NR such that X = ∪iRi, i.e. R
forms a covering of X. We let u(Ri) denote the portion of u that is supported on Ri.

We examine how well an image block u(Ri) is approximated by other image blocks
u(Rj), j 6= i. Let us consider a block u(Ri) being approximated as the range block and
a block u(Rj), j 6= i, approximating it as the domain block. In order to distinguish the
roles of these blocks, we shall denote the domain blocks as u(Dj) with the understanding
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that Dj = Rj. For two pixel blocks Ri and Dj, the approximation of an image range block
u(Ri) by a domain block u(Dj) may be written in the following general form,

u(Ri) ≈ αiju(Dj) + βij, i 6= j. (7.1)

The error associated with the approximation in (7.1) is defined as

∆ij = min
α,β∈Π

‖u(Ri)− αu(Dj)− β‖, i 6= j, (7.2)

where ‖ · ‖ denotes the L2(X) norm (or RMSE) and where Π ⊂ R2 denotes the (α, β)
parameter space appropriate for each case.

The affine self-similarity model is comprised of four cases. The optimal parameters
and associated errors for each case will be given. In what follows, we denote x = u(Ri),
y = u(Dj) and N = n2.

Case 1: Purely translational. This is the strictest view of similarity: Two image sub-
blocks u(Ri) and u(Dj) are considered to be “close,” u(Ri) ≈ u(Dj), if the L2 distance
‖u(Ri) − u(Dj)‖ is small. This is the basis of non-local means denoising. There is
no optimization here: αij = 1, βij = 0 and the approximation error is simply

∆
(Case 1)
ij = ‖x− y‖ = N−1/2

√
(N − 1)[s2

x + s2
y − 2sxy] + [x̄− ȳ]2. (7.3)

Case 2: Translational + greyscale shift. This is a slightly relaxed definition of simi-
larity. Two image subblocks are considered similar if they are close up to a greyscale
shift, i.e.u(Ri) ≈ u(Dj) + β. This simple adjustment can improve the non-local
means denoising method since more blocks are available in the averaging process. In
this case, αij = 1 and we optimize over βij:

βij = x̄− ȳ, ∆
(Case 2)
ij =

[
N − 1

N

]1/2

[s2
x + s2

y − 2sxy]1/2. (7.4)

Case 3: Affine transformation. A further relaxation is afforded by allowing affine grey-
scale transformations, i.e.u(Ri) ≈ αu(Dj) + β. This method has been employed in
vector quantization [42]. We optimize over α and β.

αij =
sxy

s2
y

, βij = x̄− αijȳ, ∆
(Case 3)
ij =

[
N − 1

N

]1/2 [
s2
x −

s2
xy

s2
y

]1/2

. (7.5)
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Case 4: Cross-scale affine transformation. u(Ri) ≈ αu(w(Dj))+β, whereDj is larger
than Ri and where w is a contractive spatial transformation. This is the basis of
fractal image coding. The optimization process and the error distribution for Case 4
are almost identical to those of Case 3. For this reason, this case will not be discussed
further.

Note that in both Cases 2 and 3, the means of the range block and optimally trans-
formed range block are equal, i.e. x̄ = αȳ + β.

Of particular interest in [2] were the distributions of L2 errors denoted as ∆
(Case k)
ij ,

in approximating range blocks u(Ri) by all other domain blocks u(Dj), j 6= i, for the
cases 1 ≤ k ≤ 3. In order to reduce the computational cost, we employ nonoverlapping
subblocks. Normally, one could consider eight affine spatial transformations that map
a square spatial domain block Dj to a square range block Ri. In our computations,
however, unless otherwise specified, we shall consider only the identity transformation,
i.e. zero rotation.

Figure 7.1 shows Case 1 to 3 ∆-error distributions for all possible matches for the Lena
and Mandrill images using 8× 8-pixel blocks.

As we move from Case 1 to Case 3 above, the error in approximating a given range
block u(Ri) by a given domain block u(Dj) will generally decrease since more parameters
are involved in the fitting. It was observed that the Case 3 ∆-error distributions for images
demonstrate a significant peaking near zero error, indicating that blocks of these images
are generally very well approximated by other blocks under the action of an affine greyscale
transformation.

For a given Case k, the ∆-error distributions of some images were observed to be more
concentrated near zero approximation error than others. The former images were viewed as
possessing greater degrees of self-similarity than the latter. A quantitative characterization
of relative degrees of self-similarity was also considered in terms of the means and variances
of the error distributions. To illustrate, in the seven well-known test images employed in
the study, the degree of Case 3 self-similarity could be ordered as follows:

Lena ≈ San Francisco > Peppers > Goldhill >

Boat > Barbara > Mandrill.

As shown in [2], the histogram distributions of the standard deviations su(Ri) of the 8×8-
pixel range blocks of both images are virtually identical to the Case 3 ∆-error distributions
in Fig. 7.1. This is to be expected since the standard deviation of the image subblock u(Ri)
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is the RMSE associated with the approximation by its mean: u(Ri) ≈ ū(Ri). This is, in
turn, a suboptimal form of the Case 3 approximation obtained by fixing the greyscale
parameter α = 0. The distribution of α greyscale parameters is, however, found to be
highly concentrated at zero [2], implying that in most cases the standard deviation is a
very good estimate of the Case 3 ∆-error.

7.2 SSIM-based Affine Self-Similarity Model

We re-examine the above self-similarity model in terms of the Structural Similarity (SSIM)
index (1.21). The first step is to determine the formulas for optimal SSIM-based approxi-
mations of image range blocks by domain blocks which correspond to Cases 1 to 3 above.
We then present the distributions of SSIM measures between domain and range blocks for
the Lena and Mandrill test images which, from the order above, lie on opposite ends of the
L2-based self-similarity spectrum.

7.2.1 Optimal SSIM-based Affine Approximation

We now consider the approximation of an image range block u(Ri) by a domain block
u(Dj) as written in (7.1) according to the SSIM index. The SSIM measure associated with
the approximation in (7.1) is defined as

Sij = max
α,β∈Π

S(u(Ri), αu(Dj) + β), i 6= j. (7.6)

The optimal parameters and associated SSIM measures are given below for positive stability
parameter, i.e. ε1 = ε2 ≥ 0, thus extending our previous study [14]. In what follows, we
once again denote x = u(Ri), y = u(Dj) and N = n2.

Case 1: Purely translational. There is no optimization in this case: αij = 1, βij = 0
and the SSIM measure is simply

S
(Case 1)
ij = S(x,y). (7.7)

Case 2: Translational + greyscale shift. Here, αij = 1 and we optimize over β.

βij = x̄− ȳ, S
(Case 2)
ij = S2(x,y) =

2sx,y + ε2
s2
x + s2

y + ε2
. (7.8)
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(a) Cases 1, 2 and 3: Lena

(b) Cases 1, 2 and 3: Mandrill

Figure 7.1: Case 1 to 3 RMS ∆-error distributions for normalized Lena and Mandrill
images over the interval [0, 0.5].
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Note that the SSIM-optimal β parameter is identical to its L2 counterpart.

Case 3: Affine greyscale transformation. We optimize over α and β.

αij =
−ε2 +

√
ε22 + 4s2

x,y(s2
x + ε2)/s2

y

2sxy

, βij = x̄− αijȳ, (7.9)

S
(Case 3)
ij =

2s2
xy√

ε22s
4
y + 4s2

xys
2
y(s2

x + ε2)− ε2s2
y

. (7.10)

If ε2 = 0, then

αij = sign(sxy)
sx
sy
, βij = x̄− αijȳ, S

(Case 3)
ij =

|sxy|
sxsy

, (7.11)

where sign(t) = 1 if t > 0, 0 if t = 0, and −1 if t < 0. In this case, the SSIM measure
Sij is the magnitude of the correlation between x and y.

In Cases 2 and 3, the means of the range block and optimally transformed range block are
equal, i.e. x̄ = αȳ + β, as was the case for L2-fitting.

Note that the affine transform in Case 3 can also be seen as an approximation with the
basis ψ0 = 1 and ψ1 = 1√

N−1

y−ȳ
sy

. In this case, the flat basis approximation (see Section

6.2.1) will lead to exactly the same result.

Since more parameters are involved as we move from Case 1 to 3, the associated SSIM
measures behave as follows,

S
(Case 1)
ij ≤ S

(Case 2)
ij ≤ S

(Case 3)
ij . (7.12)

Figure 7.2 shows Case 1 to 3 SSIM measure distributions over the interval [−1, 1] of the
Lena and Mandrill images using 8× 8-pixel blocks once again.

Before commenting on these plots, we briefly discuss the issue of the stability parameters
ε1 and ε2. As proposed in [114], the stability parameters employed in all computations
reported below were ε1 = 0.012 and ε2 = 0.032. In the case of ε1 = ε2 = 0, the Case 1 SSIM
measure distributions of the Lena and Mandrill images are almost identical. The slightly
nonzero values of the stability parameters will increase the SSIM values associated with
domain-range pairs with low variance. Since the Lena image contains a higher proportion
of such blocks, there is a slight increase of the distribution for S > 0.
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(a) Cases 1, 2 and 3: Lena

(b) Cases 1, 2 and 3: Mandrill

Figure 7.2: Case 1 to 3 SSIM measure distributions for normalized Lena and Mandrill
images over [−1, 1].
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The difference between the two distributions is more pronounced in Case 2. For the
Lena image, the better domain-range block approximations yielded by the greyscale shift
cause its SSIM measure distribution to increase over the region S ⊂ [0.5, 0.8].

But the situation is most interesting in Case 3, i.e. affine greyscale approximation. For
both images, there are no negative SSIM values. This follows from the positivity of Sij in
(7.9) which is made possible by the inclusion of the α scaling factor. When the domain
and range blocks are correlated, as opposed to anticorrelated, i.e. sxy > 0 then the optimal
α coefficient is positive, implying that S will be positive. When α < 0, the domain and
range blocks are anticorrelated. So multiplying the domain block by a negative α value
will “undo” this anticorrelation to produce a roughly correlated block.

The SSIM distribution for the Lena image has a much stronger component near S = 1.
This indicates that many more blocks are well approximated in terms of the SSIM measure.
Conversely, the SSIM measure for the Mandrill image is quite strongly peaked at S = 0. In
summary, the SSIM measure corroborates the fact that the Lena image is more self-similar
than the Mandrill’s. That being said, despite the dramatic peaking of the RMS ∆-error
distribution of the Lena image at zero error, which is primarily due to a high proportion
of low-variance blocks, its SSIM measure distribution does not demonstrate such peaking
near S = 1.

As mentioned earlier, lower-variance blocks are more easily approximated in the L2

sense than higher-variance blocks. Consequently, the Case 3 ∆-error distributions of images
with a higher proportion of “flatter” (i.e. low variance) blocks will exhibit a greater degree
of peaking near zero, particularly for Case 3. It turns out that our SSIM-based results allow
us to address the question, raised in [2]: whether the self-similarity of an image is actually
due to the “approximability” of its blocks which, in turn, is determined by their “flatness.”
If range blocks of low variance are easier to approximate, then perhaps a truer measure of
self-similarity (or lack thereof) may be obtained if their corresponding ∆ approximation
errors are magnified appropriately to adjust for this “unfair advantage”. The SSIM measure
takes this “unfair advantage” into account, resulting in much less peaking near zero error
compared to the RMS ∆-error distribution.

7.2.2 Relation between Optimal L2- and SSIM-based Coefficients

At this point it is instructive to compare the affine greyscale transformations of the L2- and
SSIM-based approximations. Obviously, in Case 1, no comparison is necessary since no
greyscale transformations are employed. In Case 2, the greyscale shift β = ū(Ri)− ū(Dj)
is the same in both approximations. In Case 3, it is sufficient to compare the α greyscale
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coefficients. Recall that for a given domain block x = u(Dj) and range block y = u(Ri),

αL2 =
sxy

s2
y

, αSSIM = αij =
−ε2 +

√
ε22 + 4s2

xy(s2
x + ε2)/s2

y

2sxy

. (7.13)

It follows that

αSSIM
αL2

=
−ε2s2

y +
√
ε22s

4
y + 4s2

xy(s2
x + ε2)s2

y

2s2
xy

≥ 1. (7.14)

This result implies that the SSIM-based affine approximation αu(Dj) + β will have a
higher variance than its L2-based counterpart. Such a “contrast enhancement” was also
derived for SSIM-based approximations using orthogonal bases [12].

Finally, as it was observed in [111], note that given a fixed range block, the choice of
best domain block for the L2− and SSIM-based affine approximation is exactly the same.
Indeed, for a fixed range block x, the best L2-based affine approximation will minimize

∆
(Case 3)
ij =

[
N − 1

N

]1/2 [
s2
x −

s2
xy

s2
y

]1/2

. (7.15)

In a similar way, the best SSIM-based affine approximation will maximize

S
(Case 3)
ij =

2s2
xy/s

2
y√

ε22 + 4(s2
x + ε2)s2

xy/s
2
y − ε2

. (7.16)

In both cases, the choice of block y that will maximize sxy/sy will be optimal. Thus, for
the block search itself, there is absolutely no difference between L2-based and SSIM-based
affine approximations. This can be explained by the fact that affine approximations do
not change the structure of the blocks. Therefore they do not take advantage of the full
potential of the SSIM index.

7.3 Self-Similarity of Natural Images vs. Pure Noise

Images

The presence of noise in an image will decrease the ability of its subblocks to be approx-
imated by other subblocks. In [2] it was observed that as independent and identically
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distributed (i.i.d.) Gaussian noise of increasing variance σ2 is added to an image, any
near-zero peaking of its ∆-error distribution becomes diminished. Moreover, a χ error
distribution associated with the noise which peaks at σ eventually dominates the ∆-error
distribution. This peaking at σ is actually the basis of the block-variance method of
estimating additive noise.

Naturally, the SSIM measure distributions will also be affected by the presence of
noise. But instead of simply adding noise to natural images, we wish to study pure noise
images. Synthesizing such kinds of images allows us to compare the ∆-error distributions
of natural images with a benchmark image that possesses no self-similarity. Indeed, for
independent pure noise images there is no self-similarity between two blocks in the sense
that the expectation of the covariance between them is zero. The only parameters affecting
the self-similarity (in RMSE or SSIM-sense) are the local mean and variance of the image.
This leads to the following idea: Generate an image from a uniform distribution with the
local mean and variance matched to the statistics of a natural image. In our experiments,
we chose a uniform distribution. But the histograms would have been similar for Gaussian
or Poisson probability distribution. Figure7.3 shows two examples of pure noise images for
which the local statistics are matched to a natural image. Also shown is a pure noise image
following i.i.d. uniform distribution on [0, 1]. To be consistent throughout this chapter,
disjoint blocks were used to compute the local statistics.

(a) Lena-like noise (b) Mandrill-like noise (c) Uniform noise

Figure 7.3: Images made of uniform noise with statistics matching the local mean and
variance of natural images: (a) Lena (b) Mandrill (c) Noise image with each pixel value
taken from an uniform distribution on [0,1].

In Fig. 7.4, we compare the RMS ∆-error distribution of natural images with the RMS
∆-error distribution of a pure noise image with the local statistics matched and of a pure
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noise image following a uniform distribution on [0, 1]. We observe that there is as much
self-similarity for natural images than for pure noise images with matched statistics. Notice
that all possible blocks were compared, whereas in non-local image processing only a limited
number of (best) blocks are usually needed. So even if the best matches are generally more
self-similar, on average, natural images are not more self-similar than pure noise images
with matched statistics. Therefore, we conclude that low variance is the principal factor
for self-similarity according to RMSE.

In order to correct this low variance bias, the same experiment was performed with the
SSIM index for Case 1 to 3. The results are shown in Fig. 7.5. Now we can see a difference
between the SSIM measure distributions of natural images and pure noise images. We
quantify the self-similarity of images by computing the first moment (i.e. the mean) of the
SSIM measure distributions. The results are shown in Table 7.1. Again, the local variance
has a major influence on the self-similarity of images but now we can see, as expected,
that natural images are more self-similar than pure noise images in the SSIM-sense. To
theoretically determine the distribution of the SSIM between two blocks that are generated
by a known probability distribution remains an open question. The difficulty here is the
fact that rational functions are involved in the definition of the SSIM measure.

Table 7.1: Mean of the SSIM measure distributions of natural images (NI), pure noise
images with matched statistics (MN) and uniform pure noise images (UN) for self-similarity
models Case 1 to 3 of Lena and Mandrill images.

Case 1 Case 1 Case 2 Case 2 Case 3 Case 3
Lena Mandrill Lena Mandrill Lena Mandrill

NI 0.2719 0.0682 0.3091 0.0731 0.5578 0.2246
MN 0.2698 0.0684 0.3074 0.0735 0.5206 0.1896
UN 0.0057 0.0057 0.0057 0.0057 0.1003 0.1004

138



(a) Lena Case 1 (b) Mandrill Case 1

(c) Lena Case 2 (d) Mandrill Case 2

(e) Lena Case 3 (f) Mandrill Case 3

Figure 7.4: Comparison of RMS ∆-error distribution of Lena and Mandrill for Case 1 to
3 (grey histogram) with the RMS ∆-error distribution of pure noise images for which the
local mean and local variance are matched (red) and with the RMS ∆-error distribution
of an i.i.d. uniform pure noise image on [0, 1] (blue).
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(a) Lena Case 1 (b) Mandrill Case 1

(c) Lena Case 1-2 (d) Mandrill Case 1-2

(e) Lena Case 3 (f) Mandrill Case 3

Figure 7.5: Comparison of SSIM measure distribution of Lena and Mandrill for Case 1 to
3 (grey histogram) with the SSIM measure distribution of pure noise images for which the
local mean and local variance are matched (red) and the SSIM measure distribution of an
i.i.d. uniform pure noise image on [0, 1] (blue).
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Chapter 8

The Use of Residuals in Image
Denoising

As described in the introduction, the problem of image denoising may be conveniently
summarized as follows: Given a noisy version y of an image x, construct a denoising
operator D so that D(y) is “close” to x. In previous chapters, we have studied how to
model and optimize closeness between images. This chapter addresses the model of image
corruption.

We have mentioned that in most, if not all, image denoising studies, the noiseless
image x is available for testing, thus enabling a direct comparison of d and x for the
evaluation of denoising operators. But what if x is not available, as is the case in practical
situations? Can one estimate the efficacy of the denoising operator from knowledge of d
and y alone? This is the essence of no-reference quality assessment for image denoising.
Note that contrary to traditional no-reference image quality assessment where the quality
of a distorted image is sought after, here we want to estimate the quality of the restored
image.

In general, image denoising is an ill-posed problem. In order to provide a meaningful
solution, additional knowledge about the target image x must be imposed into the solu-
tion. In recent years, statistical models of natural images have attracted great interest.
These have provided useful statistical prior knowledge about the clean natural image and
thus have helped the denoiser to distinguish the image signal from noise. However, one
intuitively useful aspect that is generally missing from state-of-the-art image denoising
algorithms is the unexplored properties of the residual image r := y − d. More precisely,
these algorithms attempt to approximate x with d (by using the prior knowledge about

141



x) but generally ignore the desirable property that r should also follow the assumed
distribution of the noise. This obviously motivates us to study the use of the residual
in image denoising.

In literature, most examinations of the residual image have involved only a visual in-
spection of r [16]. In fact, several authors have employed r in the design of image denoising
algorithms [56, 28, 78, 73, 68, 75, 100]. Nevertheless, none have deeply investigated the
statistical properties of r, i.e. whether or not r is a valid sample from a particular noise
distribution, and how such statistics can be used for no-reference image quality assessment
and for improving image denoising results.

The image residual could be used in two different fashions: it can either be used to
evaluate the performance of a particular instance of image denoising or to assess the general
performance of an image denoising algorithm. We will mostly be interested in the first case,
but we will keep in mind the possibility of the second case.

The chapter is divided as follows: In the first section, we describe ways to estimate
the Mean Square-Error (MSE), the Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity (SSIM) index between a given denoised image and the original image from only
the knowledge of the noisy image and of the denoised image. Then, in the second section,
we describe significance tests for determining locally the performance of image denoising
algorithms. Finally, in the last section, we take advantage of these estimates and tests to
propose boosting algorithms for image denoising.

8.1 No-Reference Estimation of MSE, PSNR and SSIM

For a quality assessment of image denoising algorithms, one relies generally on a full-
reference image quality assessment (IQA) measure like the MSE or the SSIM index. The
problem is that in real life situations, the original image is not provided for comparison.
Our goal is thus to estimate IQA measures from only the noisy image y := x + n and the
denoised image d.

As before, we denote the sample mean of x by x̄, the unbiased sample variance of x by
s2
x and the unbiased covariance between x and d by sx,d. These statistics are related to

the L2-norm and inner product via

‖x‖2 = (N − 1)s2
x +Nx̄2 (8.1)

x · d = (N − 1)sx,d +Nx̄d̄. (8.2)
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These are all the statistics that need to be estimated in the computation of the MSE,
PSNR and SSIM index.

8.1.1 Estimating the Mean and Variance of the Signal and Noise

Let N be the random vector generating the image noise n. Let X be the random vector
of the full population of images from which x is sampled. We assume that N is additive
white Gaussian noise. Specifically, here are the assumptions we make about N :

1. E[X (i)N (i)] = 0 for all indices i ∈ I;

2. E[N (i)N (j)] = 0 for all indices i 6= j ∈ I;

3. E[N (i)] = 0 for all indices i ∈ I;

4. E[N 2(i)] = σ2 for all indices i ∈ I.

Here the variance of the noise is assumed to be known, but it should be estimated in
practice.

From these assumptions, we can easily deduce well known unbiased estimates and errors
for the sample mean and sample variance of n as well as for the sample covariance between
x and n. Denoting x̂ as the estimate of the sample x drawn from a probability distribution
X, we obtain the following estimates and errors:

ˆ̄n = E[ ¯N ] = 0, Var( ¯N ) =
σ2

N
, (8.3)

ŝ2
n = E[s2

N ] = σ2, Var(s2
N ) =

2σ4

N − 1
. (8.4)

ŝx,n = E[sX ,N ] = 0. (8.5)

The variance of sX ,N is empirically estimated from a training set. As it can be seen in
Fig. 8.1(a), it is negligible. For simplification, we consider that sx,n = 0 in what follows.

The estimates of the sample mean and sample variance of x easily follow. Indeed, since
x = y − n, we have

ˆ̄x = ȳ − ˆ̄n = ȳ and (8.6)

ŝ2
x = s2

y − 2ŝx,n − ŝ2
n = max(0, s2

y − σ2). (8.7)
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The maximum is taken to ensure the positivity of the variance of x. The variance of these
estimates is negligible when they are computed over the whole image. Indeed, since the
number of pixels of an image is several orders of magnitude greater than the variance of the
noise, we can see from (8.3) and (8.4) that the variance of ˆ̄n and ŝ2

n tend to zero. It thus
implies that estimates of functions of x̄ and s2

x can be directly obtained by substitution.
For example,

ŝx =
√

max(0, s2
y − σ2) and (8.8)

ˆ̄x2 = ȳ2. (8.9)

In particular, this observation will allow us to directly obtain an estimate of the PSNR
from the estimate of the MSE.

8.1.2 Estimating the Covariance of the Noise and the Residual

We now estimate the covariance between the residual image r = y−d and a sampled noise
n = y − x. This is the key step for the estimation of both the PSNR and SSIM index.

We model a denoised image as

di = aixi + bini + gi, for all i ∈ I, (8.10)

where 0 ≤ ai ≤ 1 and 0 ≤ bi ≤ 1 are linear attenuation factors of the original image and the
noise, respectively, and gi represents some image artifacts independent of both xi and ni.
The intuition behind this model is that most denoising algorithms, for example Gaussian
filtering, reduce the amplitude of the signal and might add some spurious artifacts.

This model automatically implies the first and the third heuristic proposed in [11]:

sr,x ≥ 0, (8.11)

sr,x ' sr,d and (8.12)

sr,n ≤ s2
n. (8.13)

The second heuristic cannot be directly explained with the model (8.10). Although it might
seem to be the most intuitive since it is assumed that the denoised image should be close
to the original image, the heuristic reveals itself to be probably the weakest empirically. In
Fig. 8.1, we test these heuristics from the computation of histograms obtained from various
images, denoising algorithms and noise levels.
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(a) (b)

(c) (d)

Figure 8.1: Histograms of global covariance for the images in the training set. (a) sx,n
(b) sr,x (c) sr,x − sr,d (d) s2

n − sr,n.
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From the heuristics (8.11) and (8.12) we deduce that

ŝr,x =

{
0 if sr,d ≤ 0,
sr,d if sr,d ≥ 0.

(8.14)

It follows that the estimate of sr,n is

ŝr,n =

{
sr,y if sr,d ≤ 0,
s2
r if sr,d ≥ 0.

(8.15)

Since sy,r = sr,d + s2
r and from the third heuristic (8.13), we finally obtain

ŝr,n = min(s2
r, sr,y, s

2
n). (8.16)

Similarly, we can also obtain an estimate of r · n:

r̂ · n = min(‖r‖2, r · y, ‖n‖2). (8.17)

In addition, estimates of sd,n and sx,d may also be obtained as well, since

sd,n + sr,n = sx,n + s2
n ' σ2 and (8.18)

sy,d = sn,d + sx,d. (8.19)

8.1.3 Partial-Reference IQA Estimates

From the statistics of the noise obtained in the previous sections, we can now easily compute
estimates of two common IQA measures: the MSE and its equivalent, the PSNR, as well as
the SSIM index. We call the estimates partial-reference since no knowledge of the original
image x is available, but only its distorted version y = x+n as well as the restored image d.

The mean-square error (MSE) between the original image x and the denoised image d
is

MSE(x,d) =
1

N
‖x− d‖2

2, (8.20)

where L is the size of the signals. The peak signal-to-noise ratio (PSNR) is computed from
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the MSE by the following formula:

PNSR(x,d) = 10 log10

(
1

MSE(x,d)

)
, (8.21)

where x and d are normalized into the range [0, 1].

Observe that

MSE(x,d) = MSE(r,n) (8.22)

=
‖r‖2

N
− 2

N
r · n +

‖n‖2

N
. (8.23)

A no-reference estimate is derived by substituting (8.16) in (8.22) and combining this with
the estimate of ‖n‖2:

M̂SE(x,d) =
‖r‖2

N
− 2

N
min(‖r‖2, r · y, Nσ2) + σ2 (8.24)

= max

(
‖r‖2

N
− 2

N
r · y + σ2,

∣∣∣∣‖r‖2

N
− σ2

∣∣∣∣) . (8.25)

Since the IQA is taken over the whole image, the variance of the estimated variance of
the noise is negligible and the “plug-in” estimate of the PSNR follows directly from the
formula (8.21) applied to our estimate of the MSE (8.24).

The results of a number of experiments comparing the PSNR to its no-reference es-
timate are shown in Fig. 8.2. We used three images (Lena, Boat and Barbara) while
artificially adding white Gaussian noise with seven different standard deviation values
(σ = 10, 15, 25, 35, 50, 70 and 100). Ten denoising methods were applied to the resulting
noisy images: Gaussian filtering, wavelet soft-thresholding [35], stationary wavelet hard-
thresholding [30], anisotropic filter [77], total variation minimization [94], Wiener adaptive
filter [63], curvelet denoising [18], scaled mixtures of Gaussian [81], non-local means [16]
and sparse 3D transform-domain collaborative filtering [31]. A last “denoising” procedure
applied was a pathological one, where the denoised image is the noisy image added with a
Gaussian white noise image of variance σ2. This can be expressed with

d = y + m where σ2
M = σ2

N and σM ,N = σX ,M = 0. (8.26)

The no-reference estimate of the PSNR provides a fairly good approximation of the true
PSNR. Indeed, their Pearson’s correlation coefficient is 0.87.
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We employ the same “plug-in” method for the estimation of the SSIM index. Gathering
the estimates of x̄ (8.6), x̄2 (8.9), s2

x (8.7) and sx,d (8.19) combined with the estimates of sn,d
(8.18) and sn,r (8.16) in the equation of the SSIM index (1.21), we obtain the no-reference
SSIM map

ŜSIM(x,d) =

(
2ˆ̄xd+ ε1

ˆ̄x2 + d
2

+ ε1

)(
2(sy,d − ŝ2

n + ŝn,r) + ε2
ŝ2
x + s2

d + ε2

)
(8.27)

=

(
2yd+ ε1

y2 + d
2

+ ε1

)(
2(sy,d − σ2 + ŝn,r) + ε2

max(0, s2
y − σ2) + s2

d + ε2

)
. (8.28)

Proceeding as in the experiment for the no-reference PNSR estimate, we present in
Fig. 8.2(b) a scatter plot of quality indices against their estimates for different images,
noise levels and denoising algorithms. We observe an excellent estimate of the SSIM index
when the noise level is reasonable, but for high levels of noise (σ ≥ 50), the estimate is
slightly less accurate. A linear correlation coefficient of 0.96 between the SSIM index and
its estimate represents a very convincing practical argument of the validity of the method.
One can explain the better estimate of the SSIM index compared to the estimate of the
PSNR by the fact that the former is obtained by averaging scores obtained on a local
window whereas the later computes the average of errors on a single pixel. Thus, the
greater sample size will allow a smaller error of estimation of the local score.

Contrary to the global SSIM index estimate, the local estimate of the SSIM map is
rather poor. When comparing the full-reference SSIM map with its no-reference estimate
(8.27), we found that the rough estimate ŝx slightly overestimates sx in flat regions of
x while sometimes underestimating it around edges and textures, creating instabilities
in the correlation term. An example of SSIM map and its estimate for an artificially
corrupted image Lena denoised by Gaussian filtering is illustrated in Fig. 8.3. The noise
was simulated to be additive, white and Gaussian with standard deviation of 25/255,
whereas the Gaussian filter had a standard deviation of 2 pixels and was truncated on a
13× 13 pixel window.

8.1.4 Analysis of the Estimate of sx

When the estimates are computed locally as is the case for the SSIM index or for a weighed
MSE, the variance of the estimates x̄ and s2

x is non-negligible. Thus, a direct substitution
may lead to a bias in the estimation of IQA measures. Ideally, if the distribution of the
estimation error can be calculated analytically, it is the way to go. For example, if N is a
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(a) (b)

Figure 8.2: (a) Scatter plot of the PSNR and its no-reference estimates. (b) Scatter plot
of the SSIM index and its no-reference estimates.
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(a) (b)

Figure 8.3: (a) SSIM map between the original image Lena and its denoised version.
(b) Partial-Reference Estimate of the SSIM map.
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Gaussian distribution of zero mean and variance σ2, then the distribution of ¯N is simply
a scaling of N by a factor 1

N
, i.e. a Gaussian distribution of zero mean and variance σ2

N
as

given by (8.3). Also, s2
N is chi-squared distribution with N − 1 degrees of freedom scaled

by a factor σ2

N−1
.

However, in most of cases it is not possible to find the exact distribution. We then
have to rely on random sampling. Given a sample from a known distribution, we apply
the transformation on each sampled element to find the new distribution. For example,
to estimate the local standard deviation of a clean image from a noisy one, we proceed
as follows. First, we compute the local variance of the noisy image over with a sliding
window. Then, we estimate the distribution of the variance of the noise image by random
sampling. To do so, we generate a huge number (10000 in our experiment) of random
copies of a block of the noise image and filter each copy by the local window. We then
obtain a distribution of possible estimates by applying (8.8) for each location of the image
with the true noise variance σ substituted by the calculated distribution of noise variances.
Our scalar estimate will finally be the mean of the distribution of possible estimates. A
confidence interval can also be easily obtained for each estimate.

A comparison between the rough estimate and the estimate obtained from random
sampling is presented in Figs. 8.4 and 8.5. Notice that the two estimates only differ when
the local variance of the noisy image is small. The estimate obtained from random sampling
performs slightly better: its mean absolute error (MAE) is 0.02 whereas the MAE of the
rough estimate is 0.0213. Both estimates perform relatively poorly in flat regions, by either
overestimating or underestimating the local variance of the original image.

One limitation is the fact that the estimates are scalar, only taking into account s2
y in

order to estimate s2
x. A more powerful estimate would involve information on the local

variance of neighbourhood pixel since it is observed to be strongly correlated.

8.2 Statistical Tests on the Image Residual

Here, the idea is to apply a statistical test locally on the residual image to determine
whether or not it behaves like the model of pure noise. Indeed, some assumptions on the
nature of the noise were made, and we can test if they are observed in the residual image.
We employ two kinds of hypothesis tests about the residual image: (1) goodness-of-fit and
(2) independence.

The first test will hopefully show that if r follows a normal distribution and if the
intensity values of r are identically distributed with zero-mean and variance σ2. The
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(a) (c) (e)

(b) (d) (f)

Figure 8.4: (a) Local variance of upper left corner of the original Barbara image. (b) Local
variance of noisy Barbara image. (c) Rough estimate of the local variance of the original
Barbara image. (d) Estimation of the local variance of the original Barbara image from
random sampling. (e) Absolute error map of the rough estimate. (f) Absolute error map
of the random sampling estimate.
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Figure 8.5: Scalar estimate of the local standard deviation of the original Barbara image
from the local standard deviation of the noisy Barbara image. Black x: true value of

the local standard deviation. Red cross: rough estimate ŝx =
√

max(0, s2
y − σ2). Blue

dot: estimate obtained by random sampling of noise images. Green line: average of the
local standard deviation of the original image sx given the standard deviation of the noisy
image sy.
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second test will help determine whether or not d and r are independent and if there is any
autocorrelation in r.

Note that there are several potential issues with this technique. First, the strength of
the test will depend on how accurate the model of the noise is. The model studied in this
section follows the standard model in image processing literature, but it is agreed that this
might represent an oversimplification of reality. In the case of rejection of a hypothesis, it
might be hard to distinguish between a misspecification of the model and a true problem
with the denoising algorithm. Second, hypothesis testing only offers a dichotomic choice
on rejecting or not a hypothesis, but does not give in general any information on how
to correct the image denoising algorithm. Third, there is the potential difficulty often
encountered in multiple testing. Repeating several times a hypothesis test will eventually
lead to the detection of significance in the data no matter what is its true significance.

The first issue will be of importance in analyzing denoising procedures in the real-
world, but we will concentrate here only in simulation studies where the noise is simulated
from a given model. In order to answer the second issue, we will explore the possibility
of denoising the residual image. Finally, we will attempt to address the third problem by
adjusting appropriately the significance level of each individual test. Moreover, one can
determine the overall quality of an image denoising procedure by comparing the significance
level with the ratio of rejected image blocks.

8.2.1 Goodness-of-Fit Tests

Several goodness-of-fit tests are available to test the normality of a given sample. For
example, one can use the kurtosis and the skewness of the distribution to compute the
Jarque-Bera test [55]. Here we consider the Kolmogorov-Smirnov (K-S) test, applicable to
any continuous distribution with the requirement, however, that all parameters are known.
The K-S statistic is defined by

k = sup
x∈[0,1]

|E(x)− F (x)|, (8.29)

where F is the theoretical cumulative distribution function of the distribution being tested
and where E is the empirical cumulative distribution function of the sample. The hypoth-
esis is rejected if the test statistic, k, is greater than a computed critical value.

The details of an implementation in Matlab are provided in the Appendix under the
name vwkstest. The statistic k is computed in parallel using Matlab’s matrix represen-
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(a) (b) (c)

Figure 8.6: (a): Residual image. (b): The local Kolmogorov-Smirnov statistics of r
scaled between 0 (black) and 0.5 (white). (c): The result of the K-S test (white: reject
normality hypothesis, black: do not reject). All images were cropped between (101, 101)
and (400, 400).

tation. The Kolmogorov-Smirnov cumulative distribution function is estimated by the
truncation of some series (see [82]).

Using again the residual image r as described in Fig. 1.1, the K-S test was performed
locally, using a 5 × 5 sliding window. The test can reveal at the same time if there is a
departure from normality and if the mean and variance are, respectively, 0 and σ2 over the
entire residual image. Figure 8.6(a) shows again the residual to facilitate comparison while
the resulting local K-S statistics can be seen in Fig. 8.6(b). In Fig. 8.6(c) are presented the
result of the local hypothesis test for α = 0.05. Observe that in this particular example
departure from normality is detected at the vicinity of edges. This can be explained by
the nature of the denoising procedure that smoothes out edges and textures.

8.2.2 Independence Tests

Correlation Coefficient Tests

Given n data points (x,y), the Pearson’s correlation coefficient is defined by

ρ =
sx,y
sxsy

, (8.30)
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where sx and sy are the sample standard deviations of, respectively, x and y and sx,y is
the sample covariance of x and y. We use a criterion based on the value

t = ρ

√
n− 2

1− ρ2
. (8.31)

The criterion t follows a Student-t distribution with n− 2 degrees of freedom.

For a localized solution, we computed the Pearson’s linear correlation on a weighted
sliding window. In this case, the sample standard deviation sx and sy and the sample
covariance sx,y are computed as in the SSIM index. Since it is not clear exactly which
distribution the statistic t will follow, we assumed the same distribution as in the uniform
window case, but with an unknown number of degrees of freedom. Instead of tuning
the number of degrees of freedom for the desired significance level α, we adjusted the
parameters of the weighted window given a fixed amount of degrees of freedom. Thus,
specifying the distribution of the statistic t with n − 2 degrees of freedom, we chose the
parameters of a Gaussian window in order to reject approximately 100α% of the blocks
(for a significance level of α) for two independent randomly generated noise images.

The linear correlation test on uniform 7 × 7 window is presented in Fig. 8.7(a) and
(d). These results are compared with the weighted linear correlation test on a truncated
circular Gaussian window of size 9× 9 and of standard deviation 2 in Fig. 8.7(b) and (e).
It can be seen that the former test presents more natural results with the significance test
detecting dependence on clearly defined edges.

The Pearson’s linear correlation test is only valid if the data is randomly sampled from
a normal distribution. Since we already tested for normality for blocks ri, we can test for
their correlation. On the other hand, since d is not expected to follow a normal distribution
this test should not be valid for testing independence between d and r. Nevertheless, the
linear correlation between the denoised image and its residual appears to be the most
accurate statistic in practice.

A simple alternative to this test is to replace the linear correlation ρ by the Spearman
rank-order correlation

ρs =
ss,t
ssst

(8.32)

with s and t the ranks of x and y, respectively. That is, if xi is the k-th biggest element of
x, then si = k. If there is a tie between two or more elements of x, then an appropriate mid-
rank is assigned for these elements. The advantage of this test over the linear correlation
test is that we do not need anymore to make any assumption on the distribution of the
sample. The cost to be paid is the loss of precision in the computation of the correlation
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coefficients as it can be seen in Fig. 8.7(c) and (f). The weighted version of the Spearman’s
correlation test did not provide any interesting results and is not included in the figure.

The independence between blocks of the residual is tested with the Pearson’s linear
correlation test on a weighted window. Since only the linear dependence is accounted for
in correlation coefficients, we can adventure to test even for overlapping blocks. Indeed,
the test is more likely to detect dependence for small shift of the residual blocks. The
computation of the correlation coefficients was limited to a horizontal and a vertical shift
of a single pixel to assure the independence between the correlation coefficients. The
local independence test with significance level β = 1 − (1 − α)1/2 was then performed for
each shift. The combination of the locations where dependence was detected leads to an
independence test with a significance level α = 0.05. The results are shown in Fig. 8.8.

The vectorized Matlab’s implementation of the weighted Pearson’s linear correlation
test and of the Spearman’s rank correlation test are included in the Appendix under the
respective names vwpctest and vwsctest. The handling of tie ranks for the Spearman’s
rank correlation was not implemented in Matlab since no simple solution (i.e. memory
efficient) was found for a parallel processing. A C++ implementation of this algorithm is
included in Numerical Recipes, third edition[82], under the name crank.

One attractive feature of Pearson’s and Spearman’s correlation coefficient test is their
simplicity. The computational burden is light and a modest sample size is needed to
estimate the correlation coefficient. That being said, the correlation coefficient describes
only linear dependency and Pearson’s coefficient lack of robustness to outliers.

G-test

Given n data points (x, y) and a I × J binning for these points, the G-test is based on the
mutual information

MI(x; y) =
I∑
i=1

J∑
j=1

pi,j ln

(
pi,j
pi,·p·,j

)
, (8.33)

where pi,j is the sample joint probability that x is in the i-th bin and y is in the j-th bin
and pi,· and p·,j are the sample marginal probabilities that, x is in the i-th bin and y is in
the j-th bin, respectively. The criterion G = 2nMI(x; y) follows a chi-square distribution
with r = (I − 1)(J − 1) degrees of freedom. The advantage of this method over Pearson’s
correlation coefficient is that it takes account of all types of dependencies. The drawback,
however, is that a large number of samples is required to estimate the joint distribution.
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(a) (b) (c)

(d) (e) (f)

Figure 8.7: First row: Local statistics for the computation of local independence tests
between d and r. (Black for negative correlation and white for positive correlation). (a):
Pearson’s correlation coefficients on a 7 × 7 sliding window. (b): Pearson’s correlation
coefficients on a 9×9 sliding circular Gaussian window with standard deviation of 2 pixels.
(c): Spearman’s rank correlation coefficients on a 7×7 sliding window. Second row: Result
of local independence tests between d and r at a significance level α = 0.05. (White: reject
independence hypothesis, black: do not reject) (d): Pearson’s linear correlation tests on
a 7 × 7 sliding window. (e): Pearson’s linear correlation tests with 47 degrees of freedom
on a 9× 9 sliding circular Gaussian weighted window with standard deviation of 2 pixels.
(f): Spearman’s rank correlation tests on a 7× 7 sliding window. All images were cropped
between (101, 101) and (400, 400).
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(a) (b) (c)

Figure 8.8: Result of local autocorrelation test between r and its horizontal and vertical
shifts. (White: reject independence hypothesis, black: do not reject) (a): Horizontal shift.
(b): Vertical shift (c): Combination of horizontal and vertical shifts. All images were
cropped between (101, 101) and (400, 400).

Even though it is desired to compute local statistics, a sufficient amount of data is
required to obtain good estimates of the joint distribution. We employ the naive histogram
estimation technique with uniform binning. The number of bins was arbitrary set to b = 6
to ensure a sufficient number of samples in each bin. We did not adapt locally the range
of the bins in order to provide a uniform estimation of the joint distribution and of the
mutual information. Using once again the images in Fig. 1.1, we present in Fig. 8.9 an
example of the local mutual information and its associated G-test computed between a
denoised image d and its residual r. The statistic was computed on a 15 × 15 truncated
circular Gaussian window with standard deviation of 4.25 pixels. This choice of window
leads to a rejection of 100α% of the samples (at a significance level α) when the G-test is
performed between two independent random noise images. In general, the test does not
lead to the expected rate of rejection given a significance level. This could be explained by
the fact that the joint distribution is poorly approximated.

A vectorized version G-test on a weighted window is implemented in Matlab under
the name vwgtest. The computation of the mutual information as well as of the joint
entropy and of the entropy of each distribution is gathered in the function vwMI whereas
the histogram estimation of the joint distribution is performed by the function vwhist.
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(a) (b)

Figure 8.9: (a) Local mutual information between r and d computed on a 15×15 truncated
circular Gaussian window with standard deviation of 4.25 pixels. Image scaled between 0
(black) and 1/3 (white). (b) Result of the G-test. (White: reject independence hypothesis,
black: do not reject) (All images were cropped between (101, 101) and (400, 400).

8.3 Image Denoising Boosting

The statistics and tests developed in the previous section can not only help to determine the
performance of a given denoising algorithm, but they can also guide the image denoising
algorithm by giving feedback on its performance.

In this section we present a result from some preliminary experiments (first reported
in [11]) which show that denoising a residual image and adding it to a denoised image can
potentially enhance the quality of the latter. We then show how one could implement this
scheme iteratively. Finally, we shall take advantage of the local statistical tests designed
in the previous section to suggest a better way to improve the image quality.

8.3.1 Residual Filtering

In addition to denoising the noisy image, one may also try to denoise a residual by applying
a different denoising algorithm and then adding it back. Mathematically, this may be
expressed as follows,

E (d) = d + D2(r) = D1(y) + D2(y −D1(y)), (8.34)

where D1 and D2 are two denoising algorithms.
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(a) (b) (c) (d)

Figure 8.10: (a): Boat denoised by Total Variation Minimization (PSNR = 28.6, SSIM
= 0.75). (b): Residual image. (c): Residual “denoised” by Adaptive Wiener Filter.
(d): Enhanced denoised image (PSNR = 29.8, SSIM = 0.77). The images were cropped
between (100, 100) and (400, 400).

The residual filtering step can be interpreted as a regularization step. Also, the
modification of the non-local means to adjust the variance of the residual in Theorem
5.7 of [16] can be seen as applying Lee’s filter on the residual image:

D2(r) =
max(0, s2

r − σ2)

s2
r

r (8.35)

and adding the result to the denoised image d.

We consider image enhancement to be achieved if the image quality obtained by adding
the denoised residual is greater than the image quality obtained by simply denoising the
image with either of the two methods. Here we show an example where (8.34) is used
successively. Gaussian white noise of standard deviation σ = 15 was first added to create
a noisy image. This image was then denoised with the Total Variation Minimization [94]
algorithm (D1). The residual image was then denoised with the Adaptive Wiener Filter
[63] (Matlab’s wiener2) (D2). The results are shown in Fig. 8.10. The PSNR and the
SSIM indices for E (d) are greater than the quality measurements obtained by processing
the image with either D1(y) or D2(y) alone.

In general, simply taking a traditional denoising algorithm to denoise the residual and
then adding back the result to the denoised image does not guarantee an improvement in
the quality of the denoised image. The point, however, is that with a good no-reference
or partial-reference quality measure (cf. Section 8.1), we can at least perform this step and
then verify whether or not an improved image is obtained.
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8.3.2 Iterative Schemes and Statistical Tests

We now present an iterative scheme of the above denoising procedure. Let Q denote a
no-reference quality measure. Then the larger that Q(d) is, the higher the quality of d.
We iterate the algorithm J times and then choose the image with the best quality. As
such, the algorithm will always produce an image of at least the same quality as that of
the denoised image.

1. Set j ← 1, d̃(0) ← y and d(0) ← 0;

2. Denoise the image: d(j) ← D1(d̃(j));

3. Compute the residual: r(j) ← y − d(j);

4. Denoise the residual: r̃(j) ← D2(r(j));

5. Add it back to the denoised image: d̃(j) ← d(j) + r̃(j);

6. While j < J , increment j ← j + 1 and go to step 2.

7. Find j that maximizes Q(d(j)) or Q(d̃(j));

8. If Q(d(j)) > Q(d̃(j)) return d(j), else return d̃(j).

Denoising could be further improved by using a statistical test to determine which parts
of the residual need to be added back to the denoised image. If one of the hypothesis tests
is rejected, it is likely that the residual is not Gaussian white noise, hence we may consider
that the denoising was insufficient. In this case we perform locally an enhancement such
as (8.34).

The estimate of the noise variance can also be performed on the set of windows that
passes the statistical test. This can be seen as a generalization of the simple, yet efficient,
technique that estimates the noise variance from a flat region of the image determined by
the user. This noise variance estimate can then be used for the subsequent image denoising
in iterative schemes.
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Chapter 9

Conclusion and Future Work

The goal of this thesis was to provide the mathematical tools for perceptually optimal
image processing. In a first section we will summarize the contributions to the scientific
community that were brought in this thesis. We will also refer to all our related publica-
tions. In a second section we will discuss different avenues for future research.

9.1 Summary of Contributions

CHAPTER 2 Normalized, relative or multiplicative metrics are different names found
in the literature for metrics formed by a ratio of a metric over a normalizing function. We
extended previous work on the subject by finding sufficient or necessary conditions for a
metric to be “normalizable” and then shown how the SSIM index can be transformed into
this kind of metric. Part of this work has been first presented in [13] and then has been
published in [15].

Specifically, we found in Theorem 2.2.8 a sufficient condition for a metric d(x, y) to be
“normalizable” by a function M(|x|, |y|). This condition generalizes the case M(|x|, |y|) =
f(|x|)f(|y|) and partially generalizes the case M(|x|, |y|) = Aqp(x, y). Indeed, from Corol-
lary 2.2.10 the q-th power of generalized p-mean with a constant c is a metric for a certain
range of values of p, q, c.

We also discovered two different necessary conditions for normalized metrics. Theorem
2.2.11 describes necessary conditions on M(|x|, |y|) for a Ptolemaic metric to be “normaliz-
able”, whereas Theorem 2.2.12 imposes necessary conditions on d to be “normalizable” by
a symmetric, positive and moderately increasing function. The automatic consequence of

163



this theorem is that from all Lp-distance, only L2-distance can be normalized by symmetric,
positive and moderately increasing functions.

In Theorem 2.3.7 we then studied how to combine a vector of metrics acting on an
orthogonal decomposition of RN into a single metric. The trick was to apply a norm
possessing the increasing property. For example, Lp-norms have such property.

This theoretical development was then applied to the SSIM index. Indeed, it was shown
how each component of SSIM can be transformed into a metric via

√
1− Si for i = 1, 2. It

was then hinted how these metrics can be combined into a vector-valued metric in a cone
metric space or “scalarized” into a single SSIM metric via

SSIM∗(x,y) =

√
2−

∑
i

(S1(xi,yi) + S2(xi,yi)). (9.1)

We then demonstrated experimentally the striking fact that the derived SSIM metric
behaves in a very similar fashion than the original SSIM index and even performs slightly
better in psycho-physical tests.

As an application, the contractivity of the affine fractal transform was studied according
to this new SSIM metric. This application was orally presented before in [9], but this work
has not been published otherwise.

CHAPTER 3 In this chapter, we proved several useful properties for general quality
measures of the form q(‖x‖, ‖y‖, cos(θ)), which include components of the SSIM index and
other normalized metrics. Most of these results were included in [15] for the specific case
of the SSIM index.

First, we observed invariance under isometries (Property 3.1.1) and invariance under
scaling for homogeneous normalized metrics (Property 3.1.2). Some symmetry properties
(Property 3.1.3) allowed to reduce the dimensions to only two for normalized metrics and
three for the SSIM index. We thus gave an analytical description and traced the level sets
of pq-normalized metrics and of the SSIM index on zero-mean signals.

The next endeavour was to describe the convexity and quasi-convexity region of the
components of the SSIM index and of the SSIM metric. The quasi-convexity region for
the SSIM index was straightforwardly described from the level sets. We also provided the
analytical formula of the region of convexity of SSIM without stability constant and laid
down a procedure to find the region of convexity of SSIM for any given stability constant.
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Table 9.1: Region of validity for the properties of the components of SSIM index and of
the SSIM metric.

Properties S1 S2 ‖(S1, S2)‖ (S1, S2)

Distance Preserving R+ RN−1 RN R×RN−1

Quasiconcavity R+ H2 - R+ ×H2

Concavity R1 R2 R1 ×R2 R1 ×R2

where

H2 =

{
x− x̄ ∈ RN−1 : 〈x− x̄,y − ȳ〉 ≥ −ε2

2

}
,

R1 = [0,
√

3ȳ],

R2 : A tear drop shape pointed at 0 containing the ball centered

at y − ȳ and of radius (
√

3− 1)‖y − ȳ‖ (see Theorem 3.3.10).

That last part involved more work. We needed to prove Lemma 3.3.9 to ensure that the
convexity of a function on a region in R2 will extend to its rotation in RN by symmetry
and monotonicity. In Theorem 3.3.11 and Theorem 3.3.12 we deduced the generalized
convexity and quasi-convexity regions for vector-valued metrics as well as the convexity
region for scalarized metrics. All these results are summarized in Table 9.1.

Finally, the quasi-convexity property was used to prove existence and uniqueness of the
maximizer of the SSIM index of zero-mean signals on convex regions. In fact, an analytical
solution was provided in the case of a projection of a point on a L2-ball according to SSIM.

CHAPTER 4 We showed in the second chapter how the SSIM index can be transformed
into a metric. Richter [88] proposed another way through the geodesic distance, but he
did not solve the second order differential equation describing the path.

Our contribution was to solve for this geodesic path by taking advantage of the symme-
tries of SSIM to reduce the problem to two dimensions. In fact, we remarked that in this
problem the Euler-Lagrange equation reduces to a first order differential equation and can
thus be solved by separation of variables. The integration was carried analytically, but a
one-dimensional non-linear equation needed to be solved to find some unknown constant.
A rigorous proof of the existence and uniqueness of the solution was provided. These
results are compiled in [10].

In practice, the parameterization of the geodesic has to be according to its arc length in
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order to describe meaningful paths and distances. We solved this constant speed condition
(a first order differential equation) not only for the SSIM geodesic, but also for the quasi-
hyperbolic and the α-quasi-hyperbolic metrics.

The SSIM-geodesic allows to describe an evolution between images such that the SSIM
index between two successive images is maximized, thus modeling a perceptually linear
change between images. An implementation of these geodesic paths as well as an example
of application for the morphing between two images with different luminance and contrast
was provided.

CHAPTER 5 In the fifth chapter, we described a solution of the SSIM-mean estimation
problem. We found the point in RN that maximizes the weighted sum of the SSIM index.
We derived an analytical solution for the simplest case of two real points with no stability
constant and estimated the perturbation induced by the addition of the stability constant.

This simple case was used to illustrate some striking facts about the solution of this
problem. If the points are close enough, the problem becomes convex and the solution is
the geometric mean between the points. But when the points are far apart, the objective
function has several local maxima and more than one solution can be found. The direct
consequence of this fact is that the evolution of the SSIM-mean computed via

f(λ) = max
z

(SSIM(λx1, z) + SSIM((1− λ)x2, z)) (9.2)

can have a discontinuity at λ = 1/2. Thus, contrary to the SSIM-geodesic, the evolution
of the SSIM-mean is not perceptually smooth.

For the general case with zero-mean, an analytical solution can be found on every
hyper-sphere of fixed radius. The problem thus reduces to one or two dimensions whether
or not we are looking for zero-means signals. The numerical optimization of the reduced
problem can lead to several local maxima depending on the distribution of the points xis.
On the other hand, we can expect that these local maxima will be sufficiently spaced
from the local convexity property of SSIM. The simple idea was thus to provide uniformly
sampled points of the domain as initial guesses of a local optimization scheme. Since the
dimension of the problem is very small, the cost for multiple tries is reasonable. Also, from
the multiplicative nature of the SSIM index, the samples should in fact be distributed on
a logarithmic scale.

The SSIM-mean estimator is very important in a variety of applications. A simple way
to see that, just replace mean by SSIM-mean in the most popular algorithms: we obtain a
K-SSIM-means clustering and a non-local SSIM-means. This is only a small sample of the
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possibilities. In fact, in every imaging problem written in a stochastic form, the Minimal
Mean Squared Error estimator could be replaced with the Maximal Structural Similarity
estimator.

CHAPTER 6 The principal contribution in this chapter consisted in providing a so-
lution for the SSIM-optimal approximation according to an orthogonal or a redundant
basis. This solution ended out to be surprisingly simple. The SSIM-optimal coefficients
are simply scaling up the L2-optimal coefficients and the choice of basis is the same for
both the orthogonal approximation and the approximate solution of the optimal redundant
basis by the orthogonal matching pursuit algorithm.

The scaling acts as a contrast enhancement of the approximated image. In fact, for
zero stability constant the variance of the approximated image is exactly matched with the
variance of the original image. The difference between the SSIM-optimal and L2-optimal
algorithms will be manifested when a budget for the total number of coefficients or a
threshold on the error of approximation is set in a local approximation scheme. In this
case, even though the bases are chosen in the same order for each local approximation, the
amount of bases for each local approximation might differ.

Three examples of application were briefly described in the chapter as well as in
publications: image compression [14], image denoising by sparse representation [86, 84]
and image super-resolution by sparse representation [84].

CHAPTER 7 The study of the affine self-similarity of images was extended by defining
a penalty term to remove the “flat block bias”. This variance weighted L2 is in fact exactly
the SSIM index. The histogram of the self-similarity measures according to the SSIM index
still indicates the presence of affine self-similarity in images, but to a lesser extend to what
the RMSE indicates.

In fact, by comparing the histogram of the RMS of natural images with the histogram
of the RMS of random noise with local mean and variance matching the natural images,
we confirmed the hypothesis that the principal source of self-similarity in images comes
from the low variance of the image blocks.

This work was first published in [12].

CHAPTER 8 The inspiration to study the image residual in image denoising came
from the non-local means paper [16] where it is proposed to inspect the residual image to
determine if it “looks” like noise. This way of doing did not seem rigorous, but from there
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came the idea to apply statistical test to automatically verify if the residual image behaves
like noise.

A heuristic estimate of the MSE, PSNR and SSIM index between an original image and
a denoised image was also proposed from the sole knowledge of the noisy image and its
denoised version. The idea was to combine various empirical estimates of the corvariance
between the noise and the residual image. It was then verified that the estimated measures
predict well the full measures on average.

Finally, it was outlined how any image denoising algorithm could be potentially en-
hanced by applying statistical tests on the residual image and by filtering the residual
image. Since its publication in 2009 [11], this idea inspired some others to use similar
techniques [83, 121, 25].

9.2 Future Work

This thesis is the foundation of a far reaching research program aiming to incorporate
better image, distortion and perception models in image processing applications. In future
years, it could be extended to other types of image distortions and to more refined models
of images.

9.2.1 Fundamental Research

Characterization and properties of normalized metrics

Our work done on normalized metrics constitutes the first synthesis on the subject, but
the full characterization of normalized metric spaces is still lacking. Intuitively, it seems
that a certain type of convexity is needed for the normalizing function as it is the case for
M(|x|, |y|) = f(|x|)f(|y|) or in our own sufficient condition (Theorem 2.2.8), but what is
the exact condition is still an open problem. Even for the particular case

M(|x|, |y|) = (|x|p + |y|p + cp)q/p (9.3)

a necessary and sufficient condition is still to be found. The obvious angle of attack would
be to study more deeply the proof of Hästö [50] for the case c = 0.

One particular aspect that has not been fully studied is if the mathematical properties
of the classical Structural Similarity index (1.21) can be extended to more general forms
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of SSIM or to other normalized metrics. In particular, we only touched the surface of the
properties of the SSIM index with general exponents α and β. It is not known yet if we can
also prove that they can be transformed into metrics and what are their region of convexity
and quasi-convexity. In fact, we have not even answered the question if

√
1− SSIM itself

is a metric. One can argue that it is not so much a problem of importance since in many
applications we work with zero-mean blocks and that anyway our proposed approximation
works at least as well as the original SSIM index. Nevertheless, numerical simulation seems
to indicate that

√
1− SSIM may be indeed a metric. However, to prove this fact seems

arduous since the developed tools on normalized metrics do not apply directly here.

Similar questions can be raised for the various generalization of the SSIM index (MS-
SSIM [119], CW-SSIM [95] and IW-SSIM [115]). A preliminary result indicates that the
Complex-Wavelet SSIM should be slightly modified if we want even the simplest property
of identity for metrics.

Optimal CW-SSIM image processing

The CW-SSIM allows to assess the quality of images that are slightly shifted, rotated or
zoomed. However, it does not quantify the perceptual loss for shifts and instead assumes
perfect quality for coefficients of the same magnitude and of a difference phase.

In order to correct this problem, let us define a function f(θ) for −π ≤ θ ≤ π such
that f(θ) ≤ 1 with f(θ) = 1 if and only if θ = 0. For example, f(θ) = cos(θ) satisfy this
condition. Let cx and cy be the complex coefficients of a linear transform of, respectively,
the images x and y. Then we write θcx,cy as the angle between cx and cy. A variation of
the CW-SSIM is then defined as

CW-SSIM∗(x,y) =
2|〈cx, cy〉|f(θcx,cy) +K

‖cx‖2 + ‖cy‖2 +K
, (9.4)

where K ≥ 0 is a stability constant.

Theorem 9.2.1. Let cx and cy be the coefficients obtained after a complex-valued transform
of the image x and y, respectively. Then

CW-SSIM∗(x,y) = 1 ⇐⇒ cx = cy. (9.5)

Moreover, if the transform is invertible, then

CW-SSIM∗(x,y) = 1 ⇐⇒ x = y. (9.6)
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Proof. If x = y, then necessary cx = cy. It implies that |〈cx, cy〉| = ‖cx‖2 = ‖cy‖2 and
θx,y := ang(〈cx, cy〉) = 0. It follows automatically that CW-SSIM∗(x, y) = 1.

If CW-SSIM∗(x, y) = 1, then its numerator equals its denominator:

2|〈cx, cy〉|f(θx,y) +K = ‖cx‖2 + ‖cy‖2 +K. (9.7)

But from the Cauchy-Swartz inequality

‖cx‖2 + ‖cy‖2 ≥ 2‖cx‖‖cy‖ (9.8)

≥ 2|〈cx, cy〉|. (9.9)

Comparing with the previous equation, it implies that f(θcx,cy) ≥ 1, hence ang(〈cx, cy〉) = 0.
We thus have cy = acx with a > 0. Substituting this expression in the equation comparing
the numerator and the denominator of the modified CW-SSIM (9.7), we conclude that
a = 1. When the transform is invertible, we have x = y as well.

9.2.2 Applications

Search in Metric Spaces

An important application of a perceptual metric is to perform nearest neighborhood search.
This enters in the computer vision problem of entry retrieval in an image database. The
problem goes as follows: Given a database D of size n and a query q, find the element in
u ∈ D such that d(q, u) is minimized, or at least very close to the minimum. A related
problem is to find the k nearest neighbors of a given query. Both of these problems can
be solved by finding all the points such that d(q, u) < r with r a range value adjusted
iteratively so that the desired number of neighbors are retained. This is this formulation
that we will discuss in this section.

In this problem, the size of n is assumed to be very large (i.e.n > 104) and the cost
of computing a distance is generally considered to dominate the algorithmic complexity
[26]. Thus, a search strategy is needed to solve this problem efficiently. There is a vast
literature on the subject (see [26] for a review). The vast majority of these techniques can
be summarized in two categories: pivot-based or partition-based.

In the first class of techniques, the triangular inequality allows to bound the distance
between elements not yet compared. Indeed, the distance between the query q, a pivot p
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and any other point u ∈ D such that d(q, u) < r can be related via

d(p, q) ≤ d(q, u) + d(p, u) < d(p, u) + r and (9.10)

d(p, u) ≤ d(q, u) + d(p, q) < d(p, q) + r. (9.11)

Thus any point u that does not satisfy

d(p, q)− r ≤ d(p, u) ≤ d(p, q) + r (9.12)

should be eliminated as a candidate for the nearest neighbor of q.

Alternatively, given a set of centers {ci}mi=1, the dictionary is partitioned in m equiv-
alence classes (i.e. clusters). For example, one could divide the dictionary in Voronoi-like
regions according to the rule that u belongs to the i-th class if

d(u, ci) ≤ d(u, cj) for all i 6= j. (9.13)

From the triangular inequality, he have the following inequalities for any element u satis-
fying d(q, u) < r:

d(u, ci) ≤ d(q, ci) + d(q, u) < d(q, ci) + r and (9.14)

d(u, cj) ≥ d(q, ci)− d(q, u) > d(q, cj)− r. (9.15)

It implies that u does not belong the class represented by cj if

d(q, ci) + r ≤ d(q, cj)− r. (9.16)

It remains to describe a search strategy taking advantage of these criteria. The pro-
cedure is generally divided into a pre-processing (or indexing) step and the actual search.
In the pre-processing step, the data is organized according to the pre-computed distance
between elements. It is then that the centers or pivots are chosen. In the search step,
candidates are pruned taking advantage of the triangular inequality until only a few
candidates remain. This small set has to be searched exhaustively in order to uncover
the nearest neighbor.

For example, if the data is divided into m classes of n/m elements, then the search will
consist in comparing the query with each of the centers of these classes. The exhaustive
search within the selected classes will require an extra n/m comparisons per class. A
hierarchical organization of the dictionary could lead in theory to close to log2(n) query
comparisons. In practice, it ends up that the process is not so clean as the dimensionality
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of the data in the dictionary increases. This is the so-called curse of the dimensions. In
this case, only approximate solutions guarantee a faster search than the exhaustive linear
search [120].

Since the SSIM index is designed to assess the quality of distorted images and not to
compare in general the conceptual similarity between two different images, it can not be
directly used for this problem. On the other hand, it could be combined with a particular
metric that performs well in image retrieval: the Earth’s Mover Distance (EMD)[93]. This
metric measures differences in histogram (or signature) of features as a transportation
problem. The features represent local characteristics of images (e.g. color, texture or
corners) and can be compared via a local similarity measure called the ground metric.
In [93] it is shown that the EMD is truly a metric when the local similarity measure is also
a metric. It leads us to propose the SSIM metric as the ground metric of the EMD.

Here is the outline of the procedure. First, partition the images x and y to be compared
into clusters of similar image patches. Following the theory of Chapter 5, one can easily
show how to perform a K-means algorithm according to the SSIM metric. To each cluster,
assign a weight representing the relative size of the cluster. We obtain a set of couples
{(pi, wi)}ni=1 and {(qj, vj)}mj=1 for each image, where pi and qj represent the image patches
centering, respectively, the i-th cluster of x and the j-th cluster of y and wi and vj represent
the proportion of patches belonging to, respectively, the i-th cluster of the x and the j-th
cluster of the y. The next step is to compare the distance between all possible pairs of
clusters. Denote the SSIM distance between pi and qj by dij. The EMD between x and y
is then found by solving the following linear problem:

Minimize
n∑
i=1

m∑
j=1

dijfij, (9.17)

with the constraints

fij ≥ 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ m, (9.18)
m∑
j=1

fij ≤ wi for 1 ≤ i ≤ n, (9.19)

n∑
i=1

fij ≤ vj for 1 ≤ j ≤ m and (9.20)

n∑
i=1

m∑
j=1

fij = 1. (9.21)
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The cost function represents the total work done by the flow f . The first constraint ensures
that the flow is positive while the last constraint accounts for the preservation of the mass.
The second and third constraint informs us about the capacity of respectively pi and qj.

Non-Rigid Image Deformation

We showed in Chapter 4 that a direct application of the SSIM-geodesic was for the creation
of a perceptual linear change between two images. Other similar applications would be for
the temporal interpolation or resampling of a sequence of images or of slices of volumetric
data [3]. A major limitation for all these applications is that the SSIM index assumes that
all images are well registered. So in general, the morphing between two objects according
to the SSIM-geodesic will not lead to much better results than if the morphing was done
according to a linear interpolation.

To correct this deficiency, a registration step will be needed before the computation
of the SSIM-geodesic. For example, diffeomorphic mappings (i.e. differentiable bijections)
between coordinate systems can be found to allow for non-rigid registration [4]. In fact, they
are defined according to some geometric geodesics. The SSIM-geodesic thus complete the
transformation process between two images by defining a so-called photometrical change.

The exact formulation of the problem leading to a diffeomorphic map φ1 is as follows
(see [4, 3]). Given a domain Ω ⊂ R2 and two images x : Ω→ R and y : Ω→ R, we seek
for a diffeomorphic map φ1 : Ω→ Ω that will minimizes

‖y − x ◦ φ−1
1 ‖2

2. (9.22)

To do so, we introduce an evolution of diffeomorphic maps φt with 0 ≤ t ≤ 1 and φ0 = Id
the identity map, i.e. Id(x) = x for all x ∈ Ω. Associated with this family of diffeomorphic
mappings is the family of vector fields vt = ∇φt for 0 ≤ t ≤ 1. We equip the vector
field with some norm ‖ · ‖V measuring its smoothness, thus ensuring the obtention of a
diffeomorphic map. The variational problem

v̂ = arg min

∫ 1

0

‖vt‖2
V dt+ α‖x ◦ φ−1

1 − y‖2
2, (9.23)

subject to

∇φt = vt(φt) (9.24)

will then lead to a smooth evolution of vector fields describing the local change of coordi-

173



nates minimizing the distance between x and y. From this evolution of vector fields one
can then find the geodesic evolution of diffeomorphisms φt starting from φ0 = Id.

The L2-norm in (9.23) can sometimes be justified if one compare an image template
with a noisy measurement. But if the goal is to register two clean images, a perceptual
distance such as the SSIM index would be more appropriate. In fact, the L2-distance have
already been replaced by various similarity measure in computer vision applications [3].
But note that these formulations do not account for intensity changes in images.

A geodesic distance combining both geometric and photometric (i.e. intensity) distor-
tions was proposed in [72]. The SSIM-geodesic could not be directly inserted in their
framework since it is not defined from a norm, but one could combine the SSIM-geodesic
with the geometric geodesic that is found from (9.23) and (9.24). The parameter α will
then control the weight between the geometric and the photometric geodesics. Indeed, for
α→ 0, the vector field v̂ = 0 minimizes the variational problem given in (9.23), thus only
intensity changes will occur. On the other hand, when α→∞, the diffeomorphic map will
seek for the best possible match between x ◦ φ−1

1 and y, thus reducing the need to correct
the intensities.

Perceptual image denoising: A general framework

Although the two previous applications remain exciting, the objective in mind while
conducing this doctoral research was to develop state-of-the-art image denoising algorithms
by optimizing a perceptual criterion. Here is a general framework inspired in part by K-
SVD denoising [40], Block Matching 3-D (BM3D) [31] and collective sensing [64].

1. Initialize d = y, σ := σy and k = 0.

2. Construct a self-similar representation of d(k) by matching similar blocks according
to the local full-reference quality metric q(·, ·).

3. Locally denoise the image blocks d
(k)
i := D1(yi) with the help of the non-local

representation.

4. Compute the residual blocks r
(k)
i := yi − d

(k)
i .

5. Test if the residual blocks follow the model of the noise.

6. Update the estimate of the variance of the noise.
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7. Filter the rejected residual blocks r̃
(k)
i := D2(r

(k)
i ).

8. Test again if the residual blocks follows the model of the noise.

9. Update again the estimate of the variance of the noise.

10. Regularize the denoised blocks corresponding to the rejected residual blocks d
(k+1)
i :=

d
(k)
i + r̃

(k)
i .

11. Aggregate the local estimates into a single image d(k+1).

12. Repeat from Step 2 with k := k + 1 until convergence.

We give more details on the meaning of each step. The second step corresponds to the
block matching step in the BM3D algorithm or the computation of distance weights wi,j
in the non-local means (NLM) algorithm. For every block, we search for up to P blocks
that are similar, where P is a moderately large number to be determined. By similar, we
mean that q(di,dj) ≤ δ for some δ. For example, the SSIM index was used by Rehman in
his SSIM-NLM algorithm [85].

Remark that as it is done in Chapter 7 and contrary to the non-local means algorithm,
the search for similar blocks does not have to be only with simple translation of blocks,
but could as well include affine transforms, or even contractions and rigid transforms of
the blocks as in fractal coding. The fact that most of the affine self-similarity in images is
related to flat blocks does not mean that higher variance image blocks can not be matched.
Indeed, it is intuitively clear that edges can be matched together. One could even argue
that textures are not only statistically self-similar (in the sense that they share the same
probability distribution), but that they are also self-similar in the appropriate resolution
since they reduce to edges in high resolution and to flat regions in a low resolution.

The local denoising step can employ algorithms such as the NLM or BM3D. Alterna-
tively, Steps 2 and 3 together can be seen as a mix of the construction of a dictionary
by K-SVD (or simply K-means clustering) and of the matching pursuit. Note that a
SSIM-based version of the K-means algorithm can be easily deduced from the SSIM-mean
(see Chapter 5), but it is less clear how the K-SVD algorithm could be modified into a
SSIM-optimal algorithm.

A more Bayesian approach would be to interpret the matched blocks as a prior prob-
ability distribution on the block to be denoised. The denoising could then be seen as a
statistical estimation problem. For the NLM algorithm, the mean indeed corresponds to
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the Minimal Mean Square Estimator [91]. This could be replaced by a Maximal SSIM
estimator following the work in Chapter 5.

The residual testing and the noise variance estimation were briefly described in Chap-
ter 8. It remains to determine which statistical test is the most appropriate or even if they
are appropriate at all. Indeed, to keep some statistics about the independence and the
distribution of the residual blocks could be more informative than the dichotomic decision
to reject or not to reject a certain block.

For the choice of the residual filter, Lee’s filter seem a good first try. A SSIM-optimal
alternative would be to project the approximation di on the L2-ball of variance σ and
centered at yi as described at the end of Chapter 3. Other choice of filters would need to
be able to detect structure in possibly highly noisy patches. One direction would be to
study the algorithms employed in astronomical image denoising.

There are two classical ways to perform the aggregation. Either the center pixel
is retained as in the non-local means algorithm or a weighted average of the blocks is
computed as in the K-SVD denoising or the BM3D algorithm. The weights could depend
on the confidence we have on the denoising of a certain block as indicated by a statistical
test. A SSIM-based approach would seek for the global image that will maximize the sum
of the local SSIM between each block. This should be found with a small modification of
the SSIM-mean estimator of Chapter 5.

A convergence criterion is generally set according to the relative change between two
successive iterations. There might be no guarantee of the convergence of the algorithm.
One way to force convergence is to cool down the denoising parameters. Indeed, several
denoising algorithms have one parameter (call it λ) controlling the strength of the denoising.
For λ = 0, no denoising at all is performed, whereas for λ→∞ a completely flat image is
obtained. So by gradually decreasing the value of λ in the iterative scheme, the algorithm
will eventually freeze (i.e. converge) to some solution. This might not be necessary the
optimal solution in the sense of our quality metric, but with a sufficiently slow cooling, the
iterative scheme will have the chance to stop the denoising at the right moment.

A difficulty could be to control the computational cost, particularly in the non-local
processing (Step 2), but we do not believe that it is an essential difficulty for several reasons.
First, parallelization of the processing on local blocks is very well possible. Second, the
organization of the blocks according to their metric distance can save the need to compare
all pair of blocks as it is generally done in image retrieval. Notice that this fact is known by
the fractal imaging community [96], but does not seem to have been noticed by non-local
image processors. Finally, the self-similar representation of the previous iteration could be
used as an initial guess for the next step, thus effectively directing the search.
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Appendix A

Psychovisual Testing
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In psycho-physical experiments, subjects are asked their opinion on the perceived
quality of distorted images. These experiments not only serve to compare the subjective
performance of image processing algorithms but also allow the comparison of image quality
assessment (IQA) measures. With this last goal in mind, the procedure is as follows:

Gathering of the test images. A set of test images is chosen. Ideally, images should
represent a wide range of content within the set of images relevant for the desired
application. It is important that the test images are independent from the images
used for the tuning of the image processing algorithms and the IQA measures. This
condition is hard to verify in practice when the test images are publicly available
and, essentially, depends on the honesty of the researchers.

Simulation of image distortion at different levels. Each test image is artificially al-
tered with a different kind of distortion to create several distortion levels. The
range of distortion levels should span from just noticeable difference to severe image
degradation. The types of distortion chosen depend on the application in mind. But
generally, the aim is to simulate the kind of image distortions that one would en-
counter in practice. That is, different kinds of artifacts, noise and blur are simulated.

Selection of the subjects. To be statistically reliable, psycho-physical experiments need
a number of subjects that is big enough, i.e. more than twenty-five. Again, the choice
of subjects should normally be a sample of the population of interest. In theory, it
should be non-expert subjects tested for normal vision. But in practice, the subjects
are often the researchers and their students because of convenience.

Preparation of the controlled testing environment. In order for the experiment to
be reproducible, the testing environment needs to be accurately specified. It includes
the type of display monitors used, the calibration parameters of these monitors, the
set up of the room (in particular the distance from the subjects to the screen and
the ambient lighting condition), and the procedure of the experiment itself.

The actual psycho-physical testing. Different procedures are available in literature for
carrying on the actual psycho-physical testing. The standard method proposed by
the Video Quality Expert Group (VQEG) [106] can easily be adapted for still images.
It is a double stimuli experiment with a continuous grading scale. Adjectives for five
different gradings are provided to help the scoring: excellent, good, fair, poor and
bad.

Processing of the opinion scores. Before computing the Mean Opinion Scores (MOS),
it might be necessary to discard the outliers, particularly if the size of the experiment
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is small. The raw scores are then normalized to reduce bias between subjects. The
MOS are computed from the normalized scores. Finally, a renormalization of the
MOS to the 0-1 scale is done. An additional information that can be extracted
from the normalized raw scores is the MOS variance or equivalently, the confidence
intervals for each score.

A.1 Methods for the comparison of IQA measures

Psycho-physical testing can be used to determine if objective IQA measures follow subjec-
tive rating. One aspect consists of gathering the MOS as previously described, whereas
the other aspect is the computation of the objective measures.

Once the objective and subjective scores are obtained, their comparison can be carried
on through different metrics. According to [106], three features need to be verified:
accuracy, monotonicity and consistency. Accuracy measures the fitting of the model with
the data. Monotonicity of a model is verified if the MOS increases whenever the prediction
score increases. Finally, consistency counts how many times or by how much the model
fails to predict the right MOS.

Pearson Linear Correlation Coefficient. The Pearson Linear Correlation Coefficient
(CC) between the MOS and a fitted curve of the predicting model informs us of the
accuracy of the model. The fitting is carried on through non-linear least square fitting of a
logistic function with four parameters. This choice is somehow arbitrary but was observed
to provide a good fitting generally. In the first version of their report [105], the VQEG
recommends to take a generalzed logistic function with either four or five parameters. In
the report for the second phase [106] however, it is suggested to take only three.

A logistic function with five parameters is defined as follows:

f(x; β) =
β1

1 + exp(−β2(x− β3))
+ β4 + β5x. (A.1)

For a generalized logistic function with three and four parameters, one or both of the
parameters β4 and β5 are dropped.

We remind that the Pearson Linear Correlation Coefficient (CC) is defined as

cc(x, y) =
sx,y
sxsy

, (A.2)
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where sx,y, sx and sy are, respectively, the sample covariance between x and y and the
standard deviation of x and of y.

Spearman Rank Correlation Coefficient. As a rank correlation, the Spearman’s ρ
measures the monotonicity between the predicted and the observed data. It is defined as
the Pearson linear correlation coefficient of the ranking order of data. That is, the data
{(xi, yi)}Ni=1 is first transformed into {(ki, li)}Ni=1, where ki is the rank of xi and li is the
rank of yi. The Pearson linear correlation is then computed from these ranks. In the case
of a tie between the rank of two or more data points, the average rank is taken for each
one.

Kendall Rank Correlation Coefficient. Kendall’s τ is another rank correlation that
can also measure the monotonicity of the data. It is computed by counting the difference
between the number of pairs where the monotonicity is respected and where it is not. If
there is any tie in a pair, this pair is ignored. The measure is then normalized with the
number of possible pairs. Mathematically, it is written as

C = #{(xi, yi); (xj, yj)
∣∣(xi > xj) & (yi > yj) or (xi < xj) & (yi < yj)} (A.3)

D = #{(xi, yi); (xj, yj)
∣∣(xi > xj) & (yi < yj) or (xi < xj) & (yi > yj)} (A.4)

with

τ(x, y) =
C −D

1
2
N(N − 1)

, (A.5)

where N is the size of the data.

Ratio of outliers. The outlier ratio (OR) is simply the proportion of outliers in the
data. It is thus a measure of consistency. An outlier is defined as a predicted data that is
away from the observed data more than twice its standard deviation:

OR = #{xi
∣∣ |xi − yi| > 2std(yi)}/N. (A.6)

Root Mean Square Error. The Root Mean Square Error (RMSE) also measures the
consistency of the data in the sense that it weighs more heavily on the outliers. It can
also be seen as a measure of accuracy. The RMSE is simply the squared root of the Mean
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Square Error defined in the Introduction:

RMSE(x, y) =

√√√√ 1

N

N∑
i=1

(xi − yi)2. (A.7)

A.2 IQA databases

Several image quality assessment databases are publicly available for the assessment of
image quality measures. Associated with these databases are the opinion scores of the
perceived image quality. We describe five of the most popular ones: the LIVE database
[102] from the Laboratory of Image and Video Engineering at the University of Texas at
Austin, the Tempere Image Database (TID-2008) [80] from the Tempere University of Tech-
nology, the IVC database [62] from the Image and Video Communication research group of
the Institut de Recherche en Communications et Cybernétique of Nantes, the Categorical
Subjective Image Quality (CSIQ) database [61] from the Computational Perception and
Image Quality Lab of the Oklahoma State University and the Toyama database [52] from
the Toyama University.

In Table A.1, we summarize the number of images, distortion types, distortion levels
and subjects for each database. A second table (Table A.2) describes the distortion type
included in each database. It is clear from these tables that LIVE database and TID-2008
database are the two most extensive one and this is the two databases we will adopt in
our experiments. Note that the ratings from the TID-2008 database were not gathered
in a controlled laboratory environment but instead from different subjects on their home
computer. In one way it could be argued that the results are thus not reliable, but on
the other way one could answer that this is the most natural setting for image quality
assessment. Moreover, the analysis in [79] indicates that the sheer number advantage
eventually allows for better quality of the results. Following this line, it has recently
been suggested to perform this kind of psycho-visual task online through what it is called
crowd-sourcing [87].
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Table A.1: Number of test images, distortion type, distortion levels, distorted images,
subjects and ratings in various psycho-physical databases.

Database Test Distortion Distortion Distorted Subjects Ratings
images types levels images

CSIQ 30 6 3-5 866 3 2601
IVC 10 4 5-6 235 15 3525
LIVE 29 5 6-8 779 20-29 22457
TID-2008 25 17 4 1700 833 256428
Toyama 14 2 6 168 16 2688

Table A.2: Type of distortion in various psycho-physical databases.

Distortion type CSIQ IVC LIVE TID-2008 Toyama

JPEG X X X X X
JPEG-2000 X X X X X
LAR-coding X
quantization X
packet loss X
transmission error XXX
block-wise distortion X
fast fading X
BM3D denoising X
Gaussian blur X X X X
white noise X X X
impulse noise X
non-white noise X XXXX
contrast change X X
luminance shift X
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Matlab Codes
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function normalizedgeodesic(x,y,q,C,color)

% =========================================================

% Geodesic path between ’x’ and ’y’ in R^2 according to a normalized metric

% with power ’q’ and stability constant ’C’ (display result according to

% option specified by ’color’)

% Method: see Chapter 4.

%% transform in polar coordinates

xc = x(1)+i*x(2);

yc = y(1)+i*y(2);

rx = abs(xc);

ux = angle(xc);

ry = abs(yc);

uy = angle(yc);

%% define z

t = 0:0.01:1;

%%

if q == 1 && C == 0

z = rx.^(1-t)’.*ry.^(t)’.*exp(i*(ux*(1-t)’+uy*t’));

elseif 0 < q && q < 1 && C == 0

A = atan( (-sin((q-1)*ux)+sin((q-1)*uy)*(rx/ry)^(q-1))...

/(cos((q-1)*ux)-cos((q-1)*uy)*(rx/ry)^(q-1)) )/(q-1);

theta = ux*(1-t)’+uy*t’;

r = rx*((sin((q-1)*(theta+A)))./(sin((q-1)*(ux+A)))).^(1/(q-1));

z = r.*exp(i*(theta));

elseif q == 1 && C > 0

K = @(r,C) (r.^2+C^2)./r.^2;

f = @(B,r,C) B./sqrt(1-B.^2).*atanh(sqrt(1-B.^2)...

./sqrt(1./K(r,C)-B.^2)) - asin(B.*sqrt(K(r,C)));

eqn1 = @(B) f(B,ry,C) - f(B,rx,C) - uy + ux;

B0 = (max(rx,ry))^2/((max(rx,ry))^2 + C^2)/2;

F1 = @(Br,Bi) real(eqn1(Br+i*Bi));

F2 = @(Br,Bi) imag(eqn1(Br+i*Bi));

FF = @(B) [F1(B(1),B(2));F2(B(1),B(2))];

Bv = fsolve(FF,[B0;0]);

B = Bv(1)+i*Bv(2);
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A = f(B,rx,C) - ux;

rt = ry:(rx-ry)/99:rx;

theta = real(f(B,rt,C) - A);

z = rt’.*exp(i*(theta’));

else

z = (1-t).*(x(1)+i*x(2)) + t.*(y(1)+i*y(2));

disp(’Case not covered, displaying: case q=0’)

end

Mx = max(real(z(:)));

mx = min(real(z(:)));

My = max(imag(z(:)));

my = min(imag(z(:)));

hold on, plot(real(z(:)),imag(z(:)),color,x(1),x(2),’xk’,y(1),y(2),’xk’),...

axis(’equal’), axis([mx-1/2 Mx+1/2 my-1/2 My+1/2]),...

%title([’geodesic: q=’,num2str(q),’, C=’,num2str(C)])

% ==================================================================

function [] = EXgeodesicSSIM()

% Example of the geodesic evolution between two images according

% to SSIM and L^2

%% define x and y

X = imread(’images/barbara.png’);

x = double(X)/255;

xv = x(:);

xv = (xv-mean(xv))*0.4+mean(xv)*0.4;

x = reshape(xv,512,512);

xv = x(:);

Y = imread(’images/lena.png’);

y = double(Y)/255;

yv = y(:);

%% transform in polar coordinates
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ux = mean(xv);

uy = mean(yv);

uxv = ux(ones(numel(xv),1));

uyv = uy(ones(numel(yv),1));

rx = sqrt((xv-uxv)’*(xv-uxv));

xn = (xv-uxv)/rx;

ry = sqrt((yv-uyv)’*(yv-uyv));

yn = (yv-uyv)/ry;

omega = acos(xn’*yn);

%%

nm = @(x) sqrt(x’*x);

rx2 = nm(xv);

xn2 = xv/rx2;

ry2 = nm(yv);

yn2 = yv/ry2;

omega2 = acos(xn2’*yn2);

s

for t = 0:0.01:1

sv = uxv.^(1-t)’.*uyv.^(t)’ + rx.^(1-t)’.*ry.^(t)’...

.*(sin(omega*(1-t)’)/sin(omega).*xn’ + sin(omega*(t)’)/sin(omega).*yn’);

s = reshape(sv,512,512);

m = x.*(1-t)+y.*t;

figure(33);

subplot(1,2,1); imshow(s,[0,1]),title([’geodesic-SSIM at t=’,num2str(t)])

subplot(1,2,2); imshow(m,[0,1]),title([’geodesic-L2 at t=’,num2str(t)])

pause(0.01)

end

% ============================================================

function [z] = ssimmean(X,w,C)

% Compute the weighted mean of K vectors according to SSIM (see Chapter 5)

% 0 < x <= 1

% Input

% X: K x N are K vectors of length N

% w: K x 1 are K weights

% C: 1 x 1 or 2 x 1 constants for zero-mean or non zero-mean signals
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% Temporaty Variable

% z: M x 1

% Output

% mz: 1 x 1

% Dependencies: funopt1, funopt2, globalmin

% Examples:

% z = ssimmean(rand(5,2),ones(5,1),0)

% z = ssimmean(rand(5,2),ones(5,1),[0 0])

% r = rand(5,2); z = ssimmean([max(r’)’ min(r’)’],ones(5,1),[0 0])

cas = length(C);

[K,N] = size(X);

if cas == 1

mf = @(z) -funopt1(X,w,C,z);

mz = globalmin(mf,0,N);

X0 = X;

else

mf = @(r,b) -funopt2(X,w,C(1),C(2),r,b);

mz = globalmin(mf,[0 0],[N N]);

Xm = mean(X,2); % K x 1

X0 = X - repmat(Xm,1,N); % K x 1

end

ip = X0*X0’; % K x K

nx = diag(ip); % K x 1

if cas == 2

S1 = (2*mz(2)*Xm+C(2))./(mz(2)^2+Xm.^2+C(2)); % K x 1

else % dm == 1

S1 = ones(K,1);

mz(2) = 0;

end

ws = w.*S1; % K x 1

wp = ws*ws’; % K x K

%%

d = nx+mz(1)^2+C(1); % K x 1
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den = d*d’; % K x K

sx = sqrt(sum(sum(wp.*ip./den))); % 1 x 1

rat = ws./d;

if sx>0

u = (rat’*X0)/sx;

else

u = zeros(2,1);

end

z = mz(1)*u + mz(2);

% ============================================================

function v = funopt1(X,w,C,z)

% function to optimize (zero-mean case)

M = length(z);

ip = X*X’; % K x K

wp = w*w’; % K x K

nx = diag(ip); % K x 1

K = length(nx);

b = repmat(nx,1,M)+repmat(z.^2,K,1)+C; % K x M

den = zeros(K,K,M);

for m=1:M

den(1:K,1:K,m) = (b(1:K,m))*(b(1:K,m))’; % K x K x M

end

sx = sqrt(sum(sum(repmat(wp,[1 1 M]).*repmat(ip,[1 1 M])./den,1),2)); % M x 1

v = 2*z’.*squeeze(sx) + C*(sum(repmat(w,1,M)./b,1))’; % M x 1

% =============================================================

function v = funopt2(X,w,C1,C2,r,b)

% function to optimize (non zero-mean case)

% 0 < x <= 1

% Input

% X: K x N

% w: K x 1

% C1: 1 x 1

% C2: 1 x 1
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% r: M x 1

% b: M x 1

% Output

% v: 1 x 1

r = r(:);

b = b(:);

M = length(r);

[K,N] = size(X);

Xm = mean(X,2); % K x 1

Xmm = repmat(Xm,1,M);

X = X - repmat(Xm,1,N); % K x 1

ip = X*X’; % K x K

nx = diag(ip); % K x 1

bb = repmat(b’,K,1);

d = repmat(nx,1,M)+repmat(r’.^2,K,1)+C2; % K x M

S1 = (2*bb.*Xmm+C1)./(bb.^2+Xmm.^2+C1); % K x M

ws = repmat(w,1,M).*S1; % K x M

wp = zeros(K,K,M);

den = zeros(K,K,M);

for m=1:M

wp(1:K,1:K,m) = (ws(1:K,m))*(ws(1:K,m))’; % K x K x M

den(1:K,1:K,m) = (d(1:K,m))*(d(1:K,m))’; % K x K x M

end

sx = sqrt(sum(sum(wp.*repmat(ip,[1 1 M])./den,1),2)); % M x 1

v = 2*r.*squeeze(sx) + C2*(sum(ws./d,1))’; % M x 1

% =====================================================================

function z = globalmin(fun,lb,ub)

%==================================

% Global minimizer in one or two dimensions

% Goal: To find a global minimum of a function

% constrained on an hyper-cube

% Input: fun - function to minimize
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% lb - lower bound

% ub - upper bound

% Output: z - minimizer

%==================================

dm = length(lb);

n = 10; % number of initial guesses

a = -4; % smallest point = 10^a

if dm == 1

t = logspace(log10(max(10^a,lb)),log10(max(10^(a),ub)),n);

tm = [10^a t(1:end-1)];

tp = [t(2:end) ub];

v = fun(t);

vm = fun(tm);

vp = fun(tp);

ind = find((v-vm <= 0).*(vp-v >= 0));

lind = length(ind);

lm = zeros(1,lind);

for ii=1:lind

lm(ii) = fminbnd(fun,tm(ind(ii)),tp(ind(ii)));

if v(ind(ii)) < fun(lm(ii)) % if local minimum found not better,

lm(ii) = t(ind(ii)); % keep the middle point

end

end

vlm = fun(lm);

[M,mind] = min(vlm);

z = lm(vlm == M);

lmm = [lm(1:mind-1); lm(mind+1:end)];

vlmm = [vlm(1:mind-1); vlm(mind+1:end)];

figure(63), close(63), figure(63), hold on,

h1 = plot(t,-v,’.b’,’MarkerSize’,15);

h2 = plot(lmm,-vlmm,’+g’,’linewidth’,2,’MarkerSize’,10);

h3 = plot(z,-M,’+r’,’linewidth’,2,’MarkerSize’,10);

axis1 = gca;

set(axis1,’FontSize’,16)
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xlabel(’r’,’FontSize’,16)

ylabel(’sum of SSIM’,’FontSize’,16)

legend([h1; h2; h3],’samples’,’local maxima’,’global maximum’);

elseif dm == 2

t1 = logspace(log10(max(10^a,lb(1))),log10(max(10^(a),ub(1))),n);

tm1 = [10^a t1(1:end-1)];

tp1 = [t1(2:end) 1];

t2 = logspace(log10(max(10^a,lb(2))),log10(max(10^(a),ub(2))),n);

tm2 = [10^a t2(1:end-1)];

tp2 = [t2(2:end) 1];

[tx,ty] = meshgrid(t1,t2);

g = @(x) fun(x(1),x(2));

v = fun(tx,ty);

[twx,twy] = meshgrid(tm1,t1);

[tex,tey] = meshgrid(tp1,t1);

[tnx,tny] = meshgrid(t2,tm2);

[tsx,tsy] = meshgrid(t2,tp2);

vw = fun(twx,twy);

ve = fun(tex,tey);

vn = fun(tnx,tny);

vs = fun(tsx,tsy);

ind = find((v-vs <= 0).*(v-vn <= 0).*(v-ve <= 0).*(v-vw <= 0));

lind = length(ind);

lm = zeros(lind,2);

for ii=1:lind

opts = optimset(’largescale’,’off’);

lm(ii,:) = fmincon(g,[tx(ind(ii)) ty(ind(ii))],[],[],[],[],...

[twx(ind(ii));tny(ind(ii))],[tex(ind(ii));tsy(ind(ii))],[],opts);

if v(ind(ii)) < g(lm(ii,:)) % if local minimum found not better,

lm(ii,:) = [tx(ind(ii)) ty(ind(ii))]; % keep the middle point

end

end

vlm = fun(lm(:,1),lm(:,2));

[M,mind] = min(vlm);

z = [lm(mind,1) lm(mind,2)];

lmm = [lm(1:mind-1,1:2); lm(mind+1:end,1:2)];

vlmm = [vlm(1:mind-1); vlm(mind+1:end)];
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v = reshape(v,n,n);

figure(63), close(63), figure(63), hold on,

h1 = mesh(tx,ty,-v,’linewidth’,2);

h2 = plot3(z(1),z(2),-M,’+r’,’linewidth’,2,’MarkerSize’,10);

h3 = plot3(lmm(:,1),lmm(:,2),-vlmm,’+g’,’linewidth’,2,’MarkerSize’,10);

axis1 = gca;

set(axis1,’FontSize’,16)

xlabel(’r’,’FontSize’,16)

ylabel(’b’,’FontSize’,16)

zlabel(’sum of SSIM’,’FontSize’,16)

legend([h1; h2; h3],’mesh of samples’,’global maximum’,’local maxima’);

end

%% =================================================================

function [A]=OMPssim(D,X,T0)

%=============================================

% Sparse coding of a group of signals based on a given

% dictionary and specified number of atoms to use.

% input arguments: D - the dictionary

% X - the signals to represent

% errorGoal - the maximal allowed representation error for

% each siganl.

% output arguments: A - sparse coefficient matrix.

%=============================================

[n,P]=size(X);

[n,K]=size(D);

C = (0.03*255)^2*(n-1);

T2 = (n-1)*T0^2;

E2 = (1.15*T0)^2*n;

maxNumCoef = n/2;

A = sparse(K,P);

for k=1:1:P,

indx = [];

x = X(:,k);

f = D’*x; % Fourier coefficients

proj = f;

nx = x’*x;
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nxhat2 = max(0,nx-T2);

%currSSIM = C./(nxhat2+C);

currL2 = sum(x.^2);

%TS = (C + sqrt(C^2+4*nx*(T2+nx+C)))/(2*(T2+nx+C));

j = 0;

%while currSSIMs<TS && j < maxNumCoef,

while currL2>E2 && j < maxNumCoef,

j = j+1;

pos=find(abs(proj)==max(abs(proj)));

pos=pos(1);

indx(j)=pos;

a = pinv(D(:,indx(1:j)))*x; % L^2 coefficients

z = D(:,indx(1:j))*a; % L^2-approximation

F = a’*f(indx(1:j)); % approximation variance

% solve quadratic equation for alpha

cc = C+nxhat2;

q = 1/2*(C+sqrt(C^2+4*F*cc));

alpha = cc/q; % scaling factor

%zs = alpha*z;

%r = x-zs; % residual

r = x - z;

proj = D’*r;

%currSSIM = (2*x’*zs+C)./(nxhat2+zs’*zs+C);

currL2 = sum(r.^2);

end;

if ~isempty(indx)

A(indx,k)=a*alpha;

end

end;

return;

%% ===================================================================

function [H,d,p] = vwkstest(funk,data,weight,alpha)

%% ====================================================================

% Goal : Test the hypothesis that sets of data follow a specified

% probability distribution at a certain significance level.

% Method : Implementation of a vectorized version of Kolmogorov-Smirnov
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% (K-S) test. The empirical cumulative probability function (cdf)

% constructed from the data is compared with the true cdf of the

% given probability distribution function (pdf). The maximum

% difference between these two distributions is the

% statistic to be compared between with the Kolmogorov-Smirnov

% distribution (see Chapter 8).

% Input:

% data : N x M (M series of length N)

% funk : cdf function of the continuous pdf to be compared

% weight: N x 1

% alpha : significance level (generally 0<alpha<0.5)

% Output:

% H : M x 1 vector of hypothesis test (0 for false, 1 for true)

% p : M x 1 vector of p-values (0 <= p <= 1)

% Call example :

% ncdf = @(x) cdf(’norm’,x,0,1)

% [H,p] = vwkstest(ncdf,randn(100,1000),ones(100,1),0.05);

% Speed : For large matrices, this code is approximately 60 times faster

% than performing a loop of Matlab’s ’kstest’ while retaining

% double precision.

%% ====================================================================

N = size(data,1); % number of rows in data

%% Compute the cdf of the pdf to be compared at data points

data = sort(data);

ff = funk(data);

%% Compute the weighted empirical cdf

weight = weight/sum(weight); % normalize weights

f0n = [0; cumsum(weight)]; % empirical cumulative distribution function

%% Compute maximum distance

dt1 = max(abs(bsxfun(@minus,ff,f0n(1:N))),[],1); % distance at left

dt2 = max(abs(bsxfun(@minus,ff,f0n(2:N+1))),[],1); % distance at right

d = max(dt1,dt2); % maximum distance between ecdf and cdf

%% Estimate p-value (see Numerical Recipes, 3rd edition (2007), p.335)

194



en = sqrt(N);

z = (en+0.12+0.11/en)*d;

z0 = max(z,0.05); % 0.05 is the minimal value of z for a p-value < 1

c1 = pi^2/8; % constants in the K-S cdf series

c2 = 4/sqrt(pi);

y = exp(-c1./z0.^2);

py = 1 - c2*sqrt(-log(y)).*(y + y.^9 + y.^25 + y.^49); % case z < 1.18

x = exp(-2*z0.^2);

px = 2*(x - x.^4 + x.^9); % case z >= 1.18

p = (z<=0.05).*1+(z<1.18).*(z>0.05).*py+(z>=1.18).*px; % vectorized if-then

%% Test hypothesis

p = p’; % put into column format

H = (alpha >= p); % vectorized comparison

%% =================================================================

function [H,r,p] = vwpctest(data1,data2,weight,nu,alpha)

%% =================================================================

% Goal : Test the hypothesis that data1 and data2 are linearly independent

% Method : Implementation of a vectorized version of a linear correlation

% test (see Chapter 8)

% Hypothesis : data1 and data2 are jointly normally distributed

% Input:

% data1 : N x M (M series of length N)

% data2 : N x M (M series of length N)

% weight: N x 1

% nu : 1 x 1 number of degrees of freedom

% alpha : significance level (generally 0<alpha<0.5)

% Output:

% H : M x 1 vector of hypothesis test (0 for false, 1 for true)

% p : M x 1 vector of p-values (0 <= p <= 1)

% Call example :

% [H,p] = vwpctest(randn(100,1000),randn(100,1000),ones(100,1),0.05);

%% ==================================================================

%% Compute weighted Pearson’s correlation coefficient

weight = weight./sum(weight); % normalize weight
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mx = (weight’*data1);

my = (weight’*data2);

sxy = weight’*(data1.*data2)-mx.*my; % covariance between data1 and data2

sx2 = weight’*(data1.*data1)-mx.*mx; % variance of data1

sy2 = weight’*(data2.*data2)-my.*my; % variance of data2

r = sxy./(sqrt(sx2.*sy2)+eps); % correlation

%% Compute statistic

t = r.*sqrt(nu./((1-r+eps).*(1+r+eps)));

%% Estimate p-value (double sided test)

p = cdf(’t’,t,nu)’; % Student-t cdf

%% Test hypothesis

alpha = alpha/2;

H = (alpha >= p)|((1-alpha) <= p); % vectorized comparison

%% =================================================================

function [H,r,p] = vwsctest(data1,data2,weight,alpha)

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Goal : Test the hypothesis that data1 and data2 are linearly independent

% Method : Implementation of a vectorized version of a rank correlation

% test (see Chapter 8)

% Input:

% data1 : N x M (M series of length N)

% data2 : N x M (M series of length N)

% weight: N x 1

% alpha : significance level (generally 0<alpha<0.5)

% Output:

% H : M x 1 vector of hypothesis test (0 for false, 1 for true)

% p : M x 1 vector of p-values (0 <= p <= 1)

% Call example :

% [H,p] = vwsctest(randn(100,1000),randn(100,1000),ones(100,1),0.05);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[N,M] = size(data1);

nu = N-2;
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%% sort and rank data

[ord1,ind1] = sort(data1);

[ord2,ind2] = sort(data2);

%% handle ties

rank1 = crank(ord1);

rank2 = crank(ord2);

%%

tind1 = N*repmat(0:M-1,N,1)+ind1;

tind2 = N*repmat(0:M-1,N,1)+ind2;

%% linear correlation test on the rank

[H,r,p] = vwpctest(rank1(tind1),rank2(tind2),weight,nu,alpha);

%% =================================================================

function [H,p] = vwgtest(mi,N,nu,alpha)

%% G-test

G = 2*N*mi;

p = 1-chi2cdf(G,nu);

H = (alpha >= p);

%% === Vectorized and weighted information measures ====== %%

function [mi,Hx,Hy,Hxy] = vwMI(xv,yv,b,g)

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Goal : Find vectorized and weighted information measures (entropy, joint

% entropy and mutual information) of xv and yv)

% Method : Implementation of a vectorized version. Construct histogram

% with vwhist and then compute vectorized joint and marginal distribution

% in order to obtain the information measures (see Chapter 8).

% Input:

% xv : N x M (M series of length N)

% yv : N x M (M series of length N)

% b: 2 x 1 number of bins for x and y respectively
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% g: N x 1 weigths

% Output:

% mi : M x 1 vector of mutual information

% Hx : M x 1 vector of entropy of xv

% Hy : M x 1 vector of entropy of yv

% Hxy : M x 1 vector of joint entropy of xv and yv

% Dependency: vwhist

% Call example :

% g = fspecial(’gaussian’,[10 10],1.5); g = g(:);

% x = floor(256*rand(100,1000));

% y = floor(256*rand(100,1000));

% whist = vwhist(x,y,[6 6],g);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[N M] = size(xv);

%% construct joint probability distribution and joint entropy of x and y

whist = vwhist(xv,yv,b,g);

sumhist = sum(sum(whist,1),2);

pij = bsxfun(@rdivide,whist,max(eps,sumhist));

Hxy = -sum(sum(pij.*log2(max(pij,eps))));

%% marginal distribution and entropy of x

pi = sum(pij,1);

Hx = -sum(pi.*log2(max(pi,eps)));

%% marginal distribution and entropy of y

pj = sum(pij,2);

Hy = -sum(pj.*log2(max(pj,eps)));

%% mutual information of x and y

pi = repmat(pi,[b 1 1]);

pj = repmat(pj,[1 b 1]);

mi = squeeze(sum(sum(pij.*log2(max(pij,eps)./max(pj.*pi,eps)),1),2));

%% =================================================================

function whist = vwhist(x,y,b,g)
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%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Goal : Find the weighted joint histogram of x and y

% Method : Implementation of a vectorized version. First build a sparse

% matrix of ones indicating the values of (x,y)

% Input:

% x : N x M (M series of length N)

% y : N x M (M series of length N)

% b: 2 x 1 number of bins for x and y respectively

% g: N x 1 weigths

% Output:

% whist : b(1) x b(2) x M (M histograms of dimension b(1) x b(2))

% Call example :

% g = fspecial(’gaussian’,[10 10],1.5); g = g(:);

% x = floor(256*rand(100,1000));

% y = floor(256*rand(100,1000));

% whist = vwhist(x,y,[6 6],g);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% check dimensions

[N M] = size(x);

ng = length(g);

if (size(y,1) ~= N) || (size(y,2) ~= M)

disp(’error: dimension of x and y not matching’)

return

end

if ng > N

disp(’error: g longer than x’)

return

end

if ng < N

disp(’error: g shorter than x’)

return

end

%% handle case of scalar b or L

if length(b) == 1

b(2) = b(1);

end
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%% binning

x = double(x);

mx = min(min(x));

Mx = max(max(x));

Lx = (Mx-mx)*(1+eps)+eps; % epsilon ensures that Lx > 0 and (y-mx)/Lx < 1

x = floor((x-mx)/Lx*b(1));

y = double(y);

my = min(min(y));

My = max(max(y));

Ly = (My-my)*(1+eps)+eps; % epsilon ensures that Lx > 0 and (y-mx)/Lx < 1

y = floor((y-my)/Ly*b(2));

%% vectorized values of (x,y)

B = b(1)*b(2);

x = B*repmat(0:M-1,N,1)+x*b(2)+y+1;

x = x(:);

%% indices of x and y

y = repmat((1:N)’,1,M);

y = y(:);

%% counting vector

w = true(N,1);

w = repmat(w,1,M);

%% vectorized and weighted histogram

S = sparse(x(:),y(:),w(:),B*M,N);

%% clear some memory

clear w

clear x

clear y

%% weighted histogram

whist = S*g;

whist = reshape(whist,[b(1) b(2) M]);
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[51] P.A. Hästö. A new weighted metric: the relative metric II. Journal of Mathematical
Analysis and Applications, 301(2):336 – 353, 2005. 76

[52] Y. Horita, K. Shibata, and Y. Kawayoke. MICT image quality evaluation database,
2010. http://mict.eng.u-toyama.ac.jp/mictdb.html. 181

[53] L.-G. Huang and X. Zhang. Cone metric spaces and fixed points theorems of
contractive mappings. J. Math. Anal. Appl., 332:1468–1476, 2007. 36

[54] A.K. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989. 2

[55] C.M. Jarque and A.K. Bera. Efficient tests for normality, homoscedasticity and serial
independence of regression residuals. Economics Letters, 6(3):255–259, 1980. 154

205



[56] F.-C. Jeng and J. W. Woods. Inhomogeneous gaussian image models for estimation
and restoration. IEEE Trans. on Acoust., Speech & Signal Proc., 36(8):1305, 1988.
142

[57] R.A. Johnson. Modern Geometry. Houghton Mifflin Harcourt, 1929. 25

[58] M.S. Klamkin and A. Meir. Ptolemy’s inequality, chordal metric, multiplicative
metric. Pacific J. Math., 101(2):389–392, 1982. 27

[59] A. Kolaman and O. Yadid-Pecht. Quaternion structural similarity: a new quality
index for color images. IEEE Trans. Image Processing, 21(4):1526–1536, 2012. 15

[60] D. La Torre, E. R. Vrscay, M. Ebrahimi, and M. F. Barnsley. Measure-valued images,
associated fractal transforms and the self-similarity of images. SIAM J. Imaging Sci.,
2:470–507, 2009. 128

[61] E. C. Larson and D. M. Chandler. Most apparent distortion: full-reference im-
age quality assessment and the role of strategy. Journal of Electronic Imaging,
19(1):011006:1–21, Jan.-Mar. 2010. 18, 19, 181

[62] P. Le Callet and F. Autrusseau. Subjective quality assessment IRCCyN/IVC
database, 2005. http://www.irccyn.ec-nantes.fr/ivcdb/. 181

[63] J.-S. Lee. Digital image enhancement and noise filtering by use of local statistics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:165–168, 1980.
147, 161

[64] X. Li. Collective sensing: a fixed-point approach in the metric space. In P. Frossard et
al., editor, Proc. SPIE Visual Comm. and Image Processing, volume 7744, 2010. 23,
62, 174

[65] N. Lu. Fractal Imaging. Academic Press, 1997. 128

[66] J. Lubin. A visual discrimination model for imaging system design and evaluation. In
E. Peli, editor, Vision Models for Target Detection and Recognition, pages 245–283.
World Scientific Publishing, 1995. 11

[67] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967. 126

206



[68] F. Malgouyres. A noise selection approach of image restoration. In SPIE, Interna-
tional Conference on Wavelets IX, volume 4478, pages 34–41, 2001. 142

[69] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41:3397–3415, 1993. 114

[70] G.J. Martin and B.G. Osgood. The quasihyperbolic metric and associated estimates
on the hyperbolic metric. Journal d’Analyse Mathématique, 47(1):37–53, 1986. 72
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