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ABSTRACT 

Bacteria that inhabit the rhizosphere may influence plant growth by modifying 

phytohormone levels in plants tissues, for example, by adding to a plant's pool of the 

hormone auxin. In phytopathogenic bacteria, the auxin indoleacetic acid (IAA) is produced 

mainly via the indoleacetamide pathway, and has been implicated in the induction of plant 

tumors. Benefcial bacteria synthesize IAA predominantiy by the indolepyruvic acid 

pathway; however, the role of lAA in plant growth-promotion remains inconclusive. 

The ipdf gene encoding indolepyruvate decarboxylase, which catalyzes a key step in 

the latter pathway , was isolated fiom the plant growth-promo ting bacterium Pseudomonas 

putida GR12-2 by colony hybridization and PCR. The similarity of the amino acid 

sequences among other indolepyruvate decarboxylases, pyruvate decarboxylase, and 

acetolactate synthase suggests an evolutionary relationship among these proteins. Because 

IAA accumulates in the culture medium of P. putida GR12-2 grown in the presence of 

exogenous tryptophan, transcription of ipdc may be activated by tryptophan. To test this 

hypothesis, the ipdc prornoter region was isolated by inverse PCR, and inserted upstream of 

the biolurninescent reporter gene I d B  on a plasmid in P. putida GR12-2. Activity of the 

ipdc promoter, measured by quantieing light production, increased drarnaticaily in the 

presence of tryptophan, confirming that ipdc expression is induced by tryptophan. In 

addition, ipdc is regulated by the stationary phase sigma factor RpoS: the ipdc promoter 

contains a sequence sirnilar to the RpoS recognition sequence, and transformation of 

P. putida GR12-2 with rpoS induced promoter activity before the onset of stationary phase 

when RpoS is not normally produced, and prolonged a higher level of transcription at the 

later stages of the cell cycle. 



To determine if IAA is involved in the stimulation of plant growth by P. putida 

GR12-2, an IAAdeficient mutant was constnicted by insertional mutagenesis of ipdc. The 

lengths of canola seedling primary rwts fiom seeds treated with wild-type P. putidz GR12-2 

were on average 3540% longer than mots fiom seeds treated with the IAA-deficient mutant, 

and roots fiom uninoculated seeds. In addition, exposure of mung bean cuttings to high 

levels of IAA by soaking them in a suspension of the wild-type strain, stimulated the 

formation of many, very smali, adventitious roots. Fewer roots were initiated by the IAA- 

deficient mutant. n e s e  results suggest a major role for bacterial IAA in the development of 

the host plant root system. 
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INTRODUCTION 

In nature, plants do not grow in isolation. Rather, they are host to a complex 

comrnunity of organisms, including insects, fiingi, and bacteria Many of these organisms 

are pathogenic while others are beneficial to the host plant. In agriculture, the goal is to 

eliminate the pathogens and increase crop yield. To this end, hundreds of millions of tons of 

chernical pesticides and fertilizea are applied annually, and while they have effectively 

increased crop production, their success has come at a price to the environment and human 

health. Perhaps a better strategy to increase crop yields would be to encourage the natual, 

beneficial interactions between crop plants and associated microbes. 

There exists in the rhizosphere (the area around the roots of plants), a group of 

bacteria known as plant growth-promoting rhizobacteria, more commonly known by the 

acronym PGPR. In exchange for a rich supply of nutrients provided by plant root exudates, 

these bacteria c m  promote seedling emergence, enhance root development or shoot 

elongation, increase plant vigor and provide protection fiom phytopathogens, particularly 

when plants are stressed (Boddey and Dobereiner, 1988). Members of the bacterial genera 

Azotobacter, Bacillus, Pseudomonas, Enterobacter and Azospirillum, are described as hawig 

plant growth-enhancing attributes (Brown, 1974; Kloepper et ai., 1988; Koga et al., 1991b; 

Okon, 1994; Kloepper, 1994; Glick, 1995; Glick et al., 1999). The relationship between 

these fiee-living bacteria and their host plant is best descnbed as mutualistic, distinct fkom 

that of the Rhwbiae which establish a unique symbiotic relationship with their host legumes, 

although these latter bacteria have been shown to promote the growth of non- legdous  

plants in their fiee-living state. In order to encourage, or even irnprove, the natural influence 

of PGPR, it is first necessary to understand the mechanisms by which they promote plant 



growth. 

Plant Growtb-Promoting Mechanisms of Rhizobacteria 

Plant growth-promoting bacteria may exert their beneficiai effect by several means 

(Table 1). They may benefit the plant indirectly by inhibithg deleterious microorganisms, or 

directly by supplying the plant with elements essential for nutrition or by modiQing 

phytohormone leveb within plant tissues. 

Indirect Mechanisms 

Some rhizobactena are able to outcompete other soi1 microbes for colonization of 

roots by secreting antïmicrobial compounds such as siderophores, antibiotics and other toxic 

metabolites. These bacteria are known as biocontrol PGPR and have great potential as a soil 

inoculant to control damage to crops by soil-borne pathogens, often b g i .  

Despite the abundance of iron on the earth's surface, soil organisms such as plants 

and microbes often have difficulty obtaining enough iron to support their growth because the 

iron is largely present as insoluble, femc hydroxides, which cannot readily be transported 

into cells. To overcome this problem, a wide variety of organisms, including bacteria, 

secrete siderophores, low molecular weight molecules with a high affinity for femc iron 

(Neilands, 198 1; Neilands and Leong, 1986). Once it is formed, the iron-siderophore 

complex is taken up by specific receptors and, following reduction to the ferrous state, the 

iron is released into the cell. By scavenging iron required for its survival, a bactenum 

removes the iron fiom the soil and thereby makes it unavailable to other, perhaps 

phytopathogenic, organisms, preventing their proliferation. 



Table 1. Some mechanisrns used by plant growth-promothg rhuobacteria to enhance plant 
growth. 

Indirect Mecbanisms (Inhibition of Phytopathogens) 

Depletion of iron fkom soil via siderophore secretion 

Production of antibiotics 

Production of hydrogen cyanide 

Synthesis of celi wd-degradhg enzymes 

Induction of systemic resistance 

Direct Mechanisms 

Provision of essential eiements 

Reduction of ethylene levels 

Production of cytokinins and auxins 



The effectiveness of siderophores in reducing fimgal diseases of plants was 

demonstrated by three different types of experiments. Purified siderophores were shown to 

suppress proliferation of the phytopathogen Envinia carotovora as effectively as the 

fluorescent fseudomonas from which they were isolated (Kloepper et al., 1980). 

Siderophore syathesis is induced only under low iron conditions, therefore production cm be 

inhibited by providing excess iron. Under these conditions, the ability of several PGPR to 

prevent plant disease was reduced (Elsherif and Grossman, 1994). A siderophore 

overproducing mutant of Pseudomonas putida was able to control the phytopathogenic 

fungus Fusarium oxysporum to a greater extent than the wild-type strain (Vanderburgh and 

Gonzalez, 1984). On the other hand, siderophore deficient mutants of biocontrol strains of 

Pseudomonas oeruginosa and Alcaligenes sp. were no longer able to suppress Pythium 

induced damping-off or Fusarium oxysporum, respectively (Buysens et al., 1996; Marinetti 

and Loper, 1992). 

Production of antibiotics such as phenazines, pyoluteorin, pyrrolnitrin, agrocin and 

2,4-diacetylphloroglucinol is common among biocontrol PGPR, especially species of 

Pseudomonas (OYSullivan and O'Gara, 1992). The ability of these compounds to control 

fungal diseases in plants was established using mutants that no longer produce specific 

antibiotics. Loss of antibiotic production correlated with the loss of the capacity of these 

mutants to inhibit phytopathogenic fiuigi both in vitro and when associated with the plant 

(Tazawas-Isogami et al., 1997; Shoda et al., 1997; Hill et al., 1994; Keel et al., 1992). 

Antibiotic-overproducing mutants of Pseudomonas fluorescens CHAO were able to protect 

cucumber plants agaïnst damping-off disease caused by Pyrhium ulîimum to a greater extent 

than the wild-type strain (Maurhofer et al., 1 992; Schnider et al., 1 994). 



Other toxic metabolites produced by PGPR such as hydrogen cyanide can interfere 

with the metabolism of soi1 microorganisms. While wild-type Pseudontonos putida CHAO 

was able to effectively protect tobacco roots fiom black root rot caused by the fimgus 

Thielaviopsis basicola, a hydrogen cyanide wgative mutant was not (Voisard et al., 1989). 

Disease suppression was restored in the deficient strain and conferred on a non-producing 

strain by insertion of the genes for hydrogen cyanide biosynthesis. When the genes for 

hydrogen cyanide production were transferred to mutants of P. putida BK8661 unable to 

produce siderophores and antibiotics, the bactenum was better able to suppress wheat blotch 

caused by Septoria trifici (Flaishman et al., 1996). 

Biocontrol PGPR c m  inhibit phytopathogenic füngi through the production of fimgal 

ce11 wall degrading enzymes such as chitinases, p-glucanases, proteases and lipases (Chet 

and Inbar, 1994). Cucumber plants whose leaves were treated with Envinia ananas 

genetically engineered to cary a chitinase gene were significantly protected against gray 

mold caused by Botrytis cinerea (Ui et al., 1997). Similady, B-glucanase-producing 

Pseudomonas cepacia was able to reduce the damage to plants caused by several pathogenic 

fun@ (Fricilender et al., 1993). 

PGPR may outcompete phytopathogens for colonization of plant surfaces when they 

are better adapted to variable soil parameters such as temperature (Chiarini et al., 1 994; Sun 

et al., 1995), moishue content (Hannusch and Boland, 1996) and soil composition (Heijnen 

and van Elsas, 1994; Bashan et al., 1995). The ability to utilize unusual compounds in plant 

root exudates may also provide these bacteria with a cornpetitive advantage over other 

rhizosphere microorganisms. For example, many PGPR are able to hydrolyze the compound 

1-aminocyclopropane- 1 -carboxylic acid (ACC), present in mot exudates, as a unique source 



of carbon and nitrogen (Glick et al., 1998). 

A host plant may mount a systemic defense response, triggered by PGPR inoculation, 

effective agaïnst pathogenic fungi and bacteria. Several bacterial molecules have been 

shown to act as signals that induce systemic resistance including the outer membrane protein 

lipopolysaccharide O-antigenic side ch&, siderophores and salicylic acid (Leeman et al., 

1996; van Loon et al., 1997). By applying various purified bacterial compounds to the mots 

of Arabidopsis plants, or by treating roots with mutants deficient in specific traits, and 

subsequently challenging the leaves with a pathogen, Bakker et al. (2000) were able to 

implicate the siderophore pseudobactin, the lipopolysaccharide side chah and flagella in the 

induction of systemic resistance. While wild-type Pseudomonm putida 7NSK2 was able to 

induce resistance in tomatoes to Botrytis cinerea and in ban to anthracnose caused by 

Colletotrichum lindemuthianum, mutant sîrains unable to synthesize saiicylic acid could not 

(Hofie et al., 2000). 

Direct Mechanisms 

PGPR may enhance plant growth directly by providing a host plant with nutrients that 

are otherwise difficult to obtain such as iron, nitrogen and phosphorous. The ability of plants 

to utilize rnicrobial siderophore-iron complexes in order to obtain iron has k e n  demonstrated 

by supplying radiolabeled ferric-siderophores to plants as a sole source of iron. Both 

monocots such as sorghum and oats (Crowley et al., 1988; Bar-ness et al., 1991) and dicots 

such as peanut, Cotton, cucumber and sunflower (Che  et ai., 1994; Jurkevitch et al., 1986; 

Bar-ness et al., 1991; Wang et al., 1993) were able to take up the labeled iron. Growth of 

cucumber in the presence of microbial siderophores resulted in increased plant biomass and 



increased chiorophyll content (Wang et al., 1993). Chlorophyll concentration c m  be used as 

an indicator of plant ùon health as iron is important in the biosynthesis of chlarophyll 

(Ismande, 1998). 

Bacteria may stimulate plant growth by providing the host plant with fixed nitrogen. 

Particularly well known for this effect are the symbiotic diazotrophs of the family 

Rhizobiaceae which establish nitrogen fixing nodules on the roots of leguminous plants in 

exchange for photosynthetically fixed carbon. Although fkee-living PGPR do not fomi 

nodules on host plant roots, many are capable of fixing atmospheric nitrogen (Elmerich, 

1984; Lifshitz et al., 1986; Davison, 1988). However, only about 5% of the nitrogen fmed by 

AzospirilZum brasilense was taken up by a host plant (Boddey and Dobereiner, 1988), and a 

nitrogen-deficient mutant of a diazotrophic pseudomonad and a non-nitrogen fixing wild- 

type strain were both able to stimulate elongation of canola roots (Lifshitz et al., 1987). 

While PGPR are able to contribute some fixed nitrogen, it is not a primary mechanism of 

plant growth promotion. However, CO-inoculation of Azospirillum with Rhizobium had a 

synergistic effect on nitrogen fixation and plant growth (Oliveira et al., 1997; Bashan and 

Holguin, 1997), suggesting that PGPR may indirectly contribute to a plant's nitrogen supply. 

Perhaps by providing fiee-living diazotrophs with an environment suitable for nitrogen 

. fmation, such as decreased oxygen tension and increased access to plant nutrients, they may 

produce and transfer more fixed nitrogen to their host plants. Nodule-like structures, or para- 

nodules, on plant roots or stems, induced by application of synthetic auxin, and colonized by 

diazotrophs, have been shown to provide such an environment (Christiansen-Weniger, 1998). 

Many rhizobactena have the capacity to solubilze phosphates found in the soi1 by 

production of phosphatases or by secretion of acids. In a soluble form, phosphorous c m  be 



taken up more readily by plants to be used in important processes such a photosynthesis, 

respiration and in the biosynthesis of nucleotides and membranes. Uptake of phosphates was 

significantly improved in several agriculturally important crop species following inoculation 

with Azospirillum species (Murty and Ladha, 1988) and Rhizobium fiedii (Prévost et ai., 

2000). In addition, inoculation of plants with phosphate-solubilizing bacteria such as 

Rhizobium leguminosam bv. phareoli enhanced plant growth (Chabot et al., 1998). 

PGPR may enhance plant growth by altering the levels of phytohormones within 

plant tissues, either by metabolizing the biosynthetic precursor of ethylene or by producing 

and secreting auxins or cytokinim. The phytohormone ethylene plays an important role in 

many aspects of a plant's normal development including vegetative growth, leaf and flower 

senescence, and fruit ripening. Less desirable fkom an agricuitural point of view is its ability 

to inhibit plant growth when levels are elevated such as in response to pathogen attack or 

environmental stresses (Morgan and Drew, 1997). Plants synthesize ethylene from 

S-adenosylmethionine via the intermediate 1 -aminocyclopropane- 1 -carboxylic acid (ACC) 

(Yang and Hofmian, 1984). Several PGPR produce the enzyme ACC deaminase that can 

reduce plant ethylene levels by hydrolyzing ACC and thereby, stimulate root elongation 

(Glick et al., 1998). Pseudomonas putida GR12-2, which possesses ACC deaminase activity, 

stimulated a significant increase in the length of canola roots (Caron et al., 1995) and a 

reduction in root and shoot levels of ACC (Penrose et al., 2001). In contrast, a mutant strain 

of Enterobacter cloucue UW4 that no longer produced ACC deaminase lost its ability to 

promote root growth ( L i  et al., 2000). 

Cytokinins regulate many aspects of plant physiology and development including ce11 

division, mobilization of nutrients, and chloroplast accumulation. Many of these effects are 



the coasequence of the interaction of cytokinins with other plant hormones. For example, 

exogenous auxin is required for cytokinin-induced ce11 division in calius tissue. The most 

prevalent cytokinin in plant tissues is zeatin, although other substituted aminopurines such as 

isopentenyladenine, dihyrozeatin and sugar denvatives have been found. Cytokinins have 

been identified in the culture media of several pathogenic bacteria including 

Corynebacterium fascians (Murai et ai., l98O), Agrobacterium tumefaciens (Regier and 

Moms, 1 982), Agrobacterium rhimgenes (Regier et al., 1 989), and Pseudomonus syringae 

pv. savastanoi (Surico et al., 1975) and have been implicated in the induction of tumors by 

these bacteria (reviewed by Morris, 1986 and Gaudin et al., 1994). Beneficial bacteria, 

including Bradyrhizobium japonkum, Rhizobium leguminosamm (Sturtevant and Taller, 

1 989), Azotobacter chroococcum (Neito and Frankenberger, 1989), Azotobacter vinelandii 

(Taller and Wong, 1989) Azosprillum brasilense (Horemans et al., 1986) and several PGPR 

strains of Pseudomonas (de Salamone et ai., 1997), also produce cytokinins. 

A role for cytokinin in nodulation is indicated fiorn the increased cytokinïn content in 

root nodules, the induction of early nodulation genes by cytokinin (Dehio and deBruijin, 

1992; Bauer et al., 1996) and the formation of bacteria-fkee nodules followhg treatment with 

either exogenous cytokinin (Arora et al., 1959) or with a Rhizobium meliloti nodulation- 

deficient mutant expressing the zeatin secretion gene of Agrobacterium tumefuciew (Cooper 

and Long, 1994). Cytokinins produced by fke-living bacteria may ais0 be involved in plant 

growth-promotion. Wild-type Pseudomonas jluorescens sîrain G20- 1 8 WT increased the 

fiesh weight of tobacco callus almost five-fold whereas insertional mutants with reduced 

capacity to produce cytokinin could no longer promote callus growth to the same extent (de 

Salamone and Nelson, 2000). Although these few studies suggest that bacterial cytokinin 



impacts positively on plant growth, most of the interest regarding the effects of bacterial 

phytohormone production has foçused on auxin. 

AuUn in Plants 

Plant tissues, like those in other multiceilular organisms, use biochemical signals, or 

hormones, to induce cells to respond to intemal or extemal cues. Members of one class of 

such phytohormones, the auxins, influence many cellular functions and therefore are 

important regulators of plant growth and development. Auxins have been implicated in the 

orientation of the growth of roots and shoots in response to Iight and gravity (Kaufinan et al., 

1995), in the differentiation of vascular tissue (Aloni, 1995), in apical dominance (Tamas, 

1995), in the initiation of lateral and adventitious roots (Gaspar et al., 1996; Malamy and 

Benfey, 1997), in the stimulation of ce11 division (Kende and Zeevaart, 1997) and in 

elongation growth in stems and mots (Yang et al., 1993; Kende and Zeevaart, 1997). 

Several naturaily occurrix~g auxins are known (Fig. 1); the most common is indole-3- 

acetic acid (IAA). Various derivatives of IAA, including halogenated compounds such as 

4-chloroindole-3-acetic acid (Ernstsen and Sandberg, 1986; Reinecke et al., 1995; Antolic et 

al., 1996) and conjugated forms in which IAA is covalently bonded through its carboxyl 

group with sugars, alcohols, amino acids and glycoproteins, as in IAA-glucose and IAA- 

aspartate, are found in plant tissues (Gaspar et al, 1996; Cohen and Bandurski, 1982). 

Precursors of IAA, for example, indole-3-acetonitrile, may also have weak auxin activity 

(Normanly et al., 1997). Other endogenous auxins include indole-3-butyric acid which is 

synthesized fiom IAA (Epstein and Ludwig-Mliller, 1993; Ludwig-Müller et al., 1995) and 

phenylacetic acid (Wigbtman and Lighty, 1982). 



Figure 1. Some natural and synthetic awins. 
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Synthetic auxins with enhanced efficacy or specialized application are commercially 

available (Fig. 1). LNaphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid 

(2,4-D) are often used in tissue culture to stimulate organogenesis fiom callus and in 

horticulture to promote rooting of cuttings (Gaspar et al., 1996). Auxin-like herbicides such 

as pichloram (4-amino-3,5,6-trichlorophyridine-2-carboxylic acid) and dicambra 

(3,6-dichloro-O-anisic acid) are effective inhibitors of growth at high concentrations 

(Gianfagna, 1995; Gaspar et al., 1996). Carefully timed application of 

4chlorophenoxyacetic acid (4-CPA) and 2,4,5-trichlorophenoxypropionic acid (2,4,5-TP) in 

commercial orchards can stimulate miit set and prevent fmit abscission, respectively 

(Gianfagna, 1995). 

Biomnthesis 

Despite the recognition that IAA is an important regulator of plant growth, the 

sources of this compound in plants remains swprisingly eiusive. With the advent of more 

sophisticated and sensitive analytical techniques, the long held notion of tryptophan as the 

predorninant precursor is being challenged. Cons ide~g that plants cannot survive without 

IAA, and the inability of researchers to generate mutants completely deficient in awin (Klee 

and Estelle, 1991), it is reasonable to expect that several IAA biosynthetic pathways exist, 

even within a single plant, the relative activities of which depend on the plant species, the 

plant tissue, and on the developmental state of the plant. 

Several tryptophan-dependent biosynthetic routes have been identified in plants 

mainly fiom the presence of pathway intermediates and appropriate eoyme activity (Fig. 2); 

very little genetic evidence from plants is available. The so-called indole-3 - pyruvic acid 

pathway involves the transamination of tryptophan to indole-3-pyruvic acid, foiiowed by 



Figure 2. Proposed pathways for indole-3-acetic acid biosynthesis in plants. 
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decarboxylation to indole-3-acetaldehyde and m e r  oxidation to IAA. Indole-3-pynivic 

acid and the activity of enzymes involved in the pathway have been detected in pea and 

tomato plants (McQueen-Mason and Hamilton, 1989; Cooney and Nonhebel, 199 1 ; 

Nonhebel et al., 1993). Tryptophan may also be converted to indoleacetaldehyde via indole- 

3-acetaldehyde oxime (Ludwig-Müiler and Hilgenberg, 1988; Rajagopal et al., 1993) or 

through tryptamine. This latter pathway was suggested by the presence of tryptamine in 

tobacco (Phelps and Sequeira, 1967) and tomato (Cwney and Nonhebel, 1991), the isolation 

of a gene from periwinkle encoding tryptophan decarboxylase, which catalyzes the 

conversion of tryptophan to tryptamine (De Luca et al., 1989), and more recently, by the 

isolation of a gene (yucca) for a flavin monooxygenase that catalyzes the hydroxylation of 

tryptamine (Zhao et al., 2001). The common final step in these three pathways, the synthesis 

of IAA from indoleacetaldehyde, can occur via an aldehyde oxidase or an aldehyde 

dehydrogenase (Tsurusaki et al., 1997). The intermediate indoleacetaldehyde oxime can also 

be converted to IAA via indole-3-acetonitrile (Ludwig-Müller and Hilgenberg, 1990). 

Several differentially expressecl genes for nitrilase, the enzyme that catalyzes the conversion 

of indoleacetonitrile to IAA, have been discovered in Arabidopsis (Bartling et al., 1994; 

Bartel and Fink, 1994; Hiilebrand et al., 1996). 

Convincing evidence for a tryptophan-independent pathway for IAA biosynthesis in 

plants has emergcd from in vivo precursor labeling studies and from mutants deficient in 

tryptophan biosynthesis (Fig. 2). Even though a substantial portion of the endogenous 

tryptophan pool was enriched with heavy isotope from fed, labeled tryptophan, &er several 

days very little of the isotope was incorporated into IAA in Lemna gibba (Baldi et al., 1991), 

carrot somatic embryos (Michalczuk et al., 1992) and maize seedlings (Wright et al., 1 Wl), a 



result that stn,ngiy d e s  out tryptophan as a primary precursor of IAA in these cells. 

Mutants of Arabidopsis and maize, defective in various steps in the tryptophan 

biosynthesis pathway, produce very low levels of tryptophan compared to wild-type 

seedlings but elevated levels of IAA (Wright et al., 1991; Normanly et al., 1993). The 

accumulation of pre-tryptophan metabolites in tryptophan deficient mutants concomitant 

with an increase in IAA has led to speculation that IAA is synthesized by a pathway 

branching off from an intermediate in the anthranilate to tryptophan biosynthesis route 

(Cooney and Nonhebel, 199 1 ; Michalczuk et al., 1992; Normanly et al., 1993; Nonhebel et 

al., 1993; Rekoslavskaya and Bandurski, 1994; Bartling et al., 1994; Celenza et al., 1995; 

Bartel, 1997; Ouyang et al., 2000). 

Metabolism 

In addition to de novo synthesis, metabolic processes such as conjugate synthesis and 

hydrolysis, transportation and degradation can alter endogenous levels of plant IAA. Much 

of the newly synthesized IAA in a plant is stored in an inactive, conjugated form, covalently 

linked with various moieties such as sugars or amino acids. Many of the conjugate synthesis 

routes have been worked out (Szerszen et al., 1994; Bandurski et al., 1995) and some of the 

genes involved have been isolated (Szerszen et al., 1994). Hangarter and Good (1981) 

hypothesize that IAA is released fkom conjugate stores by slow hydrolysis to supply a 

constant, steady concentration of fiee, active IAA when needed. For example, ester 

conjugates stored in maize and legume seeds are mobilized to the developing shoot during 

germination where they are deconjugated to provide fiee IAA (Bandurski et al., 1995; Bialek 

et al., 1992). Because conjugates vary in the ease with which they are hydrolyzed by specific 

plant enzymes, the moiety to which IAA is conjugated is a major detenninant in controllhg 



the available Ievels of fiee LAA (Hangarter and Good, 198 1 ; Bartel, 1997). Conjugate- 

hydrolyzing enzymes, differing in their specincity and actiyity, have been identified and their 

genes isolated (Normanly, 1997; Bartel, 1997). 

Transportation of indoleacetic acid fiom sites of synthesis to distant regions of the 

plant can be polar, passing fiom ce11 to cell, h m  apex to base, via protein carriers, or non- 

polar, moving passively up or down via the vascuiar tissue (Lomax et al., 1995). While polar 

auxin transport is the route for movement of fiee IAA, inactive IAA conjugates move 

through the phloem to sites where they are activated by enzyme hydrolysis. Conjugate 

hydrolases are not only specific with respect to substrate but also may be localized to specific 

tissues or to specific cellular locations (Nomanly, 1997; Bartel, 1997). Isozymes of IAA 

conjugate hydrolases encoded by a six gene farnily in Arabidopsis have terminal sequences 

that may designate the final cellular location of the enzyme (Bartel, 1997). 

Free IAA is readily inactivated by two enzymatic processes: peroxidase-catalyzed 

oxidative decarboxylation of the side chah and oxidation of the indole ring (Normanly, 

1997). Protection of IAA against oxidation is provided by conjugation, although an 

exception to this may be IAA-aspartate as conjugation of IAA with aspartate is the first 

committed step in one IAA catabolic pathway (Catala et al., 1992). 

Effect of Bacterial Auxin on Plants 

Typical of its hormonal nature, the concentration of awin in plants is critical to the 

physiological response, with an excess or a deficiency having a characteristic effect. In 

addition to plant factors that influence the levels of available auxin, auxin secreted by 

microbes can contribute to a plant's endogenous pool. Production of auxin is widespread 



among plant-associated bacteria (Gaudin et al., 1994; Costacurta and Vanderleyden, 1995; 

Patten and Glick, 1996; Giickmann et al., 1998). Estimates of the number of IAA producing 

organisms range as hi& as 80% of all soi1 bacteria, highlighting the enonnous potential these 

organisms have to contribute to a plant's endogenous pool of IAA. Several of these 

microorganisms, such as Agrobacterium tumefaciens, Agrobacterium rhimgenes, Envinia 

herbicda and pathovars of Pseudomonas syringae, are involved in plant pathogenesis, while 

others of the genera Azo tu b acter, Bacillur, Pse udomonas, Enterubacter, Azospiriilum, 

Rhizobium and Bradyrhizobium are described as having plant growth enhancing aitributes. 

Although -or-inducing bacteria including A. tumefaciens, E. herbicola and P. syringae pv. 

savastanoi, and nodule-fomiing symbionts of the genera Rhizobium and Bradyrhizobium are 

not rnembers of the group defined as plant growth-promothg rhizobacteria, or PGPR, they 

produce effects in host plants that can be considered as hypergrowth. 

Why do so many rhizobactena produce IAA? It may allow bactena to detoxi6 

excess tryptophan, although IAA-deficient mutants grow well in the presence of excess 

tryptophan, suggesting that tryptophan detoxification is not the function of IAA synthesis 

(Brand1 and Lindow, 1998). Some IAA biosynthetic enzymes can convert methylated and 

halogenated tryptophan analogues to compounds that are less toxic to the bacterial cells 

(Hutcheson and Kosuge, 1985; Yamada et al., 1985; Bar and Okon, 1992). IAA is also 

suggested to regulate the synthesis of important compounds in bactena such as CAMP and 

amino acids (Katsy, 1997). Perhaps the most obvious explanation for the prevalence of 

bacterial production of a phytohormone is that it provides bactena with a mechanism to 

stimulate plant growth. In dohg so, bactena cm increase production of plant metabolites 

that the bacteria can utilize for their own growth. Another consequence of enhanced plant 



growth is a greater root SUfface area through which more of these metabolites can be exuded 

(Gaudin et al., 1 994). 

Tumor Formation 

Consider the case of the soi1 bacterium, Agrobacrerium fumefaciem which can 

transfer a specialized sequence of DNA, the so-called T-DNA, carrying auxin biosynthesis 

genes among others, into the genome of dicotyledonous plants. As a consequence of the 

genetic transfer and the ensuing unregulated overproduction of T-DNA encoded proteins, 

plant cells proliferate rapidly to form crown gall tumors and synthesize novel compounds 

h o w n  as opines which the inducing bacterium has the unique ability to metabolize (Nilsson 

and Olsson, 1997). Thus, A. tumefaciens not only enslaves plant cells to supply it with 

nutrients but expands its factory of productive cells. Although crown galls are considered 

disease symptoms, they are essentially a result of excessive growth, induced in part by IAA. 

Agrobacterium-transfonned crown gai1 cells synthesize levels of IAA much higher 

than those of untransformed plant cells and do not require the otherwise essential addition of 

a& for in viiro propagation (Liu et al., 1982; Thornashow et al., 1984). When plant cells 

are transfonned with T-DNA canying insertionally inactivated XAA biosynthesis genes, both 

IAA levels and gaU size are reduced (Garfinkel et al., 1981; Joos et al., 1983; Akiyoshi et al., 

1983). Exogenous auxin can supply the missing component required for tumor formation in 

tissues carrying the mutant T-DNA (Ooms et al., 198 1; Leemans, et al., 1982; Joos et al., 

1983). In addition, virulence is restored to mutant cells by transformation with functional 

T-DNA-derived IAA biosynthesis genes (inze et al., 1984). 

Incorporation of IAA biosynthesis genes directly into the plant genome is not the only 

mechanism for tumor formation. Galls of oleander, olive and privet are induced by IAA 



secreted by Pseudomonas smastanoi celis inhabithg the intercellular spaces in these plants. 

In P. suvastunoi strains isolated ffom oleander, a plasmid is necessary for IAA biosynthesis 

and gall formation. Loss of the plasmid is associated with loss of IAA production and loss of 

tumor induction, while reintroduction of the plasrnid restores both capabilities (Comai and 

Kosuge, 1980; Cornai et al., 1982). Infection of susceptible plants with bacterial mutants 

with an kreased level of auxin production induces the formation of larger galls, while plants 

inoculated with IAA deficient mutants failed to develop gall tumon (Smidt and Kosuge, 

1978; Cornai and Kosuge, 1983; Surico et al., 1984). 

A plasmid carrying IAA biosynthesis genes is aiso necessary for gall induction by 

pathogenic strains of Envinia herbicola pv. gypsophilia (Manulis et al., 1991a). Transfer of 

the plasmid to nonpathogenic strains of E. herbicola also transferred gall- forming ability 

(Yamada, 1993). Insertional inactivation of the plasmid IAA genes reduced virulence, 

although levels of IAA produced by the mutants in media supplemented with tryptophan, by 

a different, tryptophan-dependent pathway, were similar to the wild-type (Clark et al., 1993). 

This suggests that the pathway to IAA production may be important in determining the effect 

of a bacterium on a plant, a concept that will be explored M e r  in a later section. 

Nodulation 

The role of bacterial IAA in plant pathogenesis has long been established, however a 

role for IAA in plant growth promotion as it is beneficial to the host plant remains to be 

clearly established. Members of the genera Rhizobium and Bradyrhizobiunr induce nodules 

on the roots of legumes through which they provide the host plants with fixed nitrogen in 

exchange for photosynthetically fixed carbon. Although not likely an essential factor for 

nodulation (Wang et al., 1982; Atzom et al., 1988; Hirsch and Fang, 1994), there is some 



evidence to suggest that IAA secreted by bacteria, as they move to the root cortex from the 

site of infection at the root hair, influences nodulation, at least for some rhizobiai strains. In 

several legurne species, the auxin content is higher in the root nodules than in the remainder 

of the root tissue and in ineffective nodules that do not fm nitrogen (Badenoch-Jones et al., 

1983; Dangar and Basu, 1987). Nodules infected with Brudyrhizobium juponicum IAA- 

overproducing mutants contain elevated levels of fiee and conjugated IAA indicating that the 

nodule IAA is derived fiom the infecting bacterium rather than fiom the plant (Hunter, 

1987). 

Both nodulating and non-nodulating strains of Rhizobium produce and secrete IAA to 

the culture medium, although levels are low in the absence of tryptophan (Wang et al., 1982). 

With the addition of exogenous tryptophan, however, IAA production in the nodulating 

strains of R. legurninosarum was stimulated to a much greater extent than in the non- 

nodulating mutants (Wang et al., 1982). This suggests that at least two pathways for IAA 

biosynthesis exist in these strains - one pathway is constitutive and the other is induced by 

tryptophan. The inducible pathway, missing in the non-nodulating strain, may be involved in 

nodulation. 

Inoculation of soybeans with spontaneous mutants of R jnponicum that overproduced 

IAA by a pathway not detectable in the wild-type bacterium resulted in a three-fold increase 

in the volume of root nodules (Kaneshiro and Kwolek, 1985). On the other hand, mutants of 

Brudyrhizobium elkanii deficient in IAA production induced fewer nodules on soybean roots 

than did the parental strain, and the normal number of nodules was re-established following 

application of exogenous IAA (Fukuhara et al., 1994). IAA derived from B. elkunii has k e n  

implicated as a causative agent in the swelling of outer cortical cells of soybean roots that 



sometimes accompanies nodule formation and is suggested to give this and other such 

inducing strains a cornpetitive advantage for nodulation (Yuhashi et al., 1995). Enlargement 

of cortical cells was not observed after inoculation with either IAA-deficient mutants of 

B. elkanii (Yuhashi et al., 1995) or wild-type B. joponicum strains that do not produce IAA 

(Minéunisawa and Fukai, 199 1 ). 

Co-inoculation of legumes with Rhizobium and fiee-living IAA-producers such as 

AzospiriZZum brasilense (Yahalom et al., 1 WO), and several BaciIZus species (Srinivasan et 

al., 1996) significantly increased the number of nodules on the host roots, and where 

measured, increased nodule fiesh weight and nitrogenase activity, compared to inoculation 

with Rhizobium alone. In contrast, similar experiments using mutants of BaciZZus 

megaterium with altered IAA production levels (overproducers and underproducers) had a 

negative effect on these parameters (Srinivasan et al., 1996). Although it is not clear how 

IAA is hvolved in this enhanced nodulation, Srinivasan et al. (1996) suggest that these fiee- 

living bacteria may increase the number of infection sites for Rhizobium on roots. 

Application of exogenous auxins to the roots of graminaceous plants that do not 

normally form symbiotic relationships with Rhizobiaceae, induces the formation of tumor- 

like structures called para-nodules (reviewed by Christiansen-Weniget, 1998). Interestingly, 

fiee-living diazotrophs such as Azospirillum and Azotobacter were able to colonize these 

para-nodules and efficiently fix atmospheric nitmgen to the benefit of the host plant. 

Root svstem develomnent 

Promotion of root growth is one of the major markers by which the beneficial effect 

of plant growth-promoting bacteria is measured. Rapid establishment of roots, whether by 

elongation of primary roots or by proliferation of lateral and adventitious roots, is 



advantageous for young seedlings as it uicreases their ability to anchor themselves to the soi1 

and to obtain water and nutrients from their environment, thus enhancing their chances for 

s u ~ v a l .  It was soon recognized that most root promoting microbes synthesize IAA, and that 

their effect on plants mimics that of exogenous IAA. Establishing a direct relationship 

between root growth and bacterial IAA has proven to be more elusive, given the difficuky in 

isolating bacterial mutants completely deficient in IAA synthesis (Liu et al., 1982; Abdel- 

Salam and Klingmiiller, 1987; Manulis et al., 1991 b; Clark et al., 1993). 

Plants generally put down one or more prhary roots fiom which lateral roots emerge 

by division of specific pencycle ce11 (Lynch, 1995; Malamy and Benfey, 1997). 

Adventitious roots are a type of lateral root that &se fiom non-root tissue, such as at the base 

of the stem or on cuttings (Barlow, 1986). Whereas lateral and adventitious roots are 

induced by high concentrations of IAA, a feature exploited in horticulture by applying 

exogenous natural and synthetic auxins, primary root elongation is stimulated by relatively 

low levels of IAA, typically between 1O9M and IO-" M (Thimann, 1938; Pilet and Saugy, 

1987; Alvarez et al., 1989; Meuwley and Pilet, 1991 ; Gaspar et al., 1996; Malamy and 

Benfey, 1997; Lloret et al., 1998). 

The effect on root morphology seen following application of various concentrations 

of exogenous IAA is also seen followuig inoculation of plants with plant growth-promoting 

bacteria that produce different levels of IAA. For exarnple, inoculation of canola seeds with 

wild-type Pseudomonas pufida GR1 2-2, which produces relatively low levels of IAA (Xie et 

al., 1996), resulted in a two- to three-fold increase in the length of seedling pnmary roots 

compared to uninoculated controls (Glick, 1995; Caron et al., 1995). An IAA overproducing 

mutant of this bacteriuni stimulated extensive lateral root development on canola roots (Xie 



et al., 1996) and adventitious roots on mung bean cuttings (Mayak et al., 1997). In both 

cases, it was impossible to tell whether the development of lateral roots was a consequence of 

IAA directly or of IAA-induced ethylene. The increase in the number of roots on the mung 

bean cunings correlated with an increase in ethylene production. 

The diazotroph, AzospiriZZum brasilense, naturally produces high levels of IAA and 

appears to positively influence root system development. Inoculation with A. brasilense 

increases the number and length of lateral roots in wheat (Barbien et al., 1986; Barbieri and 

Galli, 1993) and pearl millet (Tien et ai., 1979) similar to the application of exogenous IAA. 

That the plant response was due to IAA secretion rather than nitrogen fixation was confirmed 

using combinations of mutants unable to fix nitrogen or synthesize high levels of IAA. Loss 

of the capacity to fix nitrogen did not reduce the root promoting eflect on wheat seedlings, 

whereas inoculation with a mutant that produced 70% less IAA did have this effect (Barbieri 

et al., 1986; Barbieri and Galli, 1993). 

As previously mentioned, much of what is known about the role of auxin in plant 

growth and development was worked out from plant responses to the application of 

exogenous IAA. The underlying assumption of this approach is that the applied 

concentration is available to the target tissue, which may be erroneous in view of the fact that 

uptake, translocation and metabolism are seldom measured. Nevertheless, it was determined 

that only a small window of exogenous IAA concentration positively influences elongation 

growth (Thimann, 1938). The actual range of effective concentrations varies according to 

p lk t  species or to the sensitivity of the plant organ to auxin, roots k i n g  more sensitive to, or 

stimulated by lower concentrations of exogenous auxin, than are shoots (Thimann, 1938; 

Evans et al., 1994). Levels below this range have no effect, whereas higher concentrations 



inhibit elongation growth, likely via auxin induced ethylene (Peck and Kende, 1995). For 

example, Evans et al. (1994) found that only exogenous concentrations between 10-Io M and 

1 0-l2 M stimulated primary root elongation in A. thaliana seedlings. 

Two different approaches have been taken to test for a similar trend in the effect of 

bacterial IAA on plant growth. One method compares the effects of inoculating roots with 

bacterial mutants that produce altered levels of IAA. A second approach varies the size of 

the inoculum for a single strain; the rationale here is that a bigher inoculuni density means 

more IAA is available to the plant. While P. putida GR12-2 stimulated elongation of roots of 

canola seedlings, an IM-overproducing mutant significantly inhibited the length of canola 

primary roots (Xie et al., 1996). The deleterious effect on primary root growth has been 

dernonstrated for many strains that synthesize high levels of IAA, for example, with a 

P. fluorescens CHAO overproducing mutant added to autoclaved soi1 used to grow wheat and 

cucumber (Beyerler et al., 1997) and with Enterobacter tuylorae which inhibited root growth 

in several weed species (Sawar and Krernmer, 1995). Loper and Schroth (1986) established 

a linear relationship between accumulation of IAA, above a threshold level in cultures of 

enterobacteria, and a negative effect on root elongation in sugar beet seedlings. Similarly, 

wild-type P. syringae pv. savastanoi, which produces high levels of IAA in culture, inhibited 

sugar beet root growth, whereas a spontaneous and an insertionally inactivated IAA-minus 

mutant did not (Loper and Schroth, 1986). 

The inhibition of root elongation that follows inoculation of Panicium miliaceun 

plants with the culture extract of A. brasilense could be reversed by diluting the IAA- 

containing fraction (Harari et al., 1988). Moreover, greater dilutions of extracts from an 

IAA-overproducing strain of A. brasilense were required to achieve the same result, that is, 



promotion rather than inhibition of root elongation. This confimm that the concentration of 

IAA secreted by a bacterium plays a role in the effect of that bactenum on a plant. 

Conversely, Selvadurai et al. (199 1) showed that concentrathg the indole hct ion of culture 

supernatant fiom Bacillus cereus, a low IAA producer, shifted the effect of inoculation of 

wheat roots fiom growth promotion to growth inhibition. These latter observations are 

consistent with data obtained by varying the size of the inoculum, and therefore the 

concentration of M A ,  of AzospiriZIum on various plant species (Bashan, 1986; Morgenstern 

and Okon, 1987; Harari et al., 1988; Fallik et al., 198%). Beyerler et al. (1997) found that 

decreasing the inoculum density of an IAA-overproducing mutant of P. fluorescens CHAO 

resulted in elongation of cucurnber and wheat roots that are inhibited by inoculation with a 

greater number of cells. That this beneficial effect was observed in non-stenle soil, suggests 

that cornpetition may reduce the number of P. jluoresens CHAO cells on a given host and 

consequently the level of IAA available to inauence the host plant. 

The level of awcin synthesized by the plant itself may be an important factor in 

detennining whether bacterial IAA will stimulate or inhibit growth in a plant. in plant roots 

endogenous levels of IAA may be suboptimal or optimal for growth (Pilet and Saugy, 1987). 

Additional input into the IAA pool by bacteria could modiQ endogenous a d  to either 

optimal or supraoptimal levels, resulting in the induction or inhibition of plant growth, 

respectively. Dubeikovsky et al. (1993) inoculated two different species of plants with a 

recombinant strain of P. fluorescens that produced high levels of IAA. While this bacterium 

stimulated root development in blackcurrant cuttings, root development was suppressed in 

sour cherry cuttings. It could be argued that IAA contributions by this strain of 

P. fluorescens elevated endogenous IAA in blackcurrant to levels optimal for root growth. 



Sour cherry, on the other hand, was already producing favorable concentrations of IAA, 

thetefore additional input was inhibitory. 

The auxin response may also depend upon the stage of plant root development. 

Application of low concentrations of IAA promoted growth in young maize roots, but 

inhibited growth in older roots (Pilet et al., 1979). This may indicate that with age, plant 

endogenous auxin content increases fiom suboptimal to almost supraoptimal levels or, 

alternatively, may reflect an altered sensitivity to auxin. 

Also for consideration is the possibility that bactena may alter the sensitivity of a 

plant to auxin rather than alter plant auxin levels directly. In a marner similar to 

A. tumefaciens, Agrobacterium rhizogenes tramfers the T-DNA region of its Ri plasmid into 

thé genome of wounded plants. However, rather than induce tunior formation, incorporation 

and expression of the Ri plasmid T-DNA genes leads to development of an extensive root 

system at the site of infection, a condition known as hairy root disease. In crown gall 

tumorigenesis, the expression of T-DNA encoded auxin biosynthesis genes induces rapid 

division of undifferentiated transformed and untransformed cells. In contrast, development of 

the highly branched lateral and adventitious roots charactenstic of hairy root disease occurs 

by proliferation of dserentiated cells fiom a single transfomed phloem ce11 (Chilton et al., 

1982; Nilsson and Olsson, 1997), and does not absolutely requise T-DNA auxin biosynthesis 

genes. Neither fiee nor conjugated IAA levels are altered significantly in this root tissue 

(Hansen et al., 1991; Schaerer et al., 1993; Nilsson et al., 1993; Schmülling et al., 1993; 

Biondi et al., 1997). Rather, insertional mutagenesis and single gene transformation studies 

have shown that incorporation and expression of A. rhizogenes rol genes, particularly rolB, 

are necessary to induce hais, root disease symptoms (White et al., 1985; Spena et al., 1987). 



The rolB gene products may increase the sensitivity of transfonned cells to auxin, especially 

in those cells that are competent to become lateral rwt primordia (Shen et al., 1988; Spano et 

al., 1988; Matuel et ai., 199 1 ; Nilsson et al., 1997). Tobacco protoplasts expressing the d B  

gene were able to form callus in the absence of exogenous auxin (Wdden et al., 1993) and 

roots that developed fkom this callus were inhibited by much lower concentrations of auxin 

than their wüd-type counterparts (Schmüliing et al., 1993). 

Not only are plant cells transformed with the rolB genes more sensitive to 

endogenous auxin, but CO-transformation with microbial auxin biosynthesis genes enhances 

the effect of RolB activity (Cardarelli et al., 1987). Furthemore, expression of RolB is 

regulated by auxin (Maure1 et al., 1990). Bacterial auxin genes seern to be involved in the 

induction of extensive root hairs, a characteristic for which the disease is named (Biondi et 

al., 1997). 

Replation of Auxin Leveis in Bacteria 

From the preceeding discussion it is evident that levels of IAA produced by a 

bacterium are at least partially responsible for the effect of the bacterium on a host plant. 

Thus, factors that regulate bacterial IAA synthesis must be considered, necessitating a 

knowledge of biosynthetic pathways and the regulation of IAA expression therefkom, the 

availability of precmors and inducers in the rhizosphere and the interaction of IAA with 

other plant hormones. 

At least five different pathways for auxin biosynthesis have been identified in 

rhizobacteria (Patîen and Glick, 1996).  ne of these pathways are constitutively expressed, 

while others are inducible. Genes for the enzymes involved are found on plasmids as weil as 



in the bacterial genome. As is shown below, the manner and extent to which bacteriai awcin 

impacts on the plant is govemed by the number, type and genomic position of biosynthesis 

pathways and their regdation by genetic and environmental factors. 

Biosynthesis 

Several bacterial IAA biosynthesis pathways, classified in tems of their 

intermediates, are known, most proceeding from tryptophan as the precursor. Although the 

importance of bacterial IAA mutants as a tool for understanding growth promotion has long 

been recognized, attempts to isolate strains completely deficient in IAA synthesis have for 

the most part failed, probably due to the presence in many of these organisms of multiple 

routes to IAA production. In nature, two pathways appear to predominate, the indole-3- 

acetamide pathway and the indole-3-pyruvic acid pathway. Much of the available genetic 

and biochemical evidence for bacterial IAA biosynthesis centers on these two pathways, 

although documentation for the existence of other pathways is described. 

Indole-3-acetamide pathwuy. Although the indoleacetamide pathway has been found in both 

turnorigenic and non-tumongenic bacteria, it seems to be the primary route for IAA synthesis 

in strains ctassified as pathogenic. Two enzymes are responsible: tryptophan 

rnonooxygenase converts tryptophan to indole-3-acetamide which is then hydrolyzed by 

indoleacetamide hydrolase to IAA (Fig. 3). 

Kuo and Kosuge (1970) determined that IAA biosynthesis in the pathogen P. syringae 

pv. savastanoi occurs predominantly via the indoleacetarnide pathway. Essentially al1 

exogenous radiolabelled tryptophan was converted to IAA through the intennediate 

indoleacetamide. The gene for tryptophan 2-monooxygenase (iaaM) was isolated by 



Figure 3. Indole-3-acetamide pathway for indole-3-acetic acid biosynthesis in bacteria 

A, tryptophan 2-monooxygenase; B, indoleacetamide hydrolase. 





expression in E. coli of restriction enzyme digested fragments of the previously identified 

P. syringae pv. suvastanoi 52 kb plasmid and identification of indoleacetamide-producing 

clones through Salkowski's chernical assay, thin layer chromatography, and tryptophan 

2-monooxygenase activity (Cornai and Kosuge, 1982). Organization of the IAA biosynthesis 

genes into a typical prokayotic operon was indicated by the loss of both tryptophan 

2-monooxygenase and indoleacetamide hydrolase (encoded by the iaaH gene) activity upon 

insertion of a tramposable element into the iaaM locus (Comai and Kosuge, 1983). The 

location of the promoter, 400 base pairs upstream from the iaaM gene, was detennined by 

fusing various regions of the operon to the E. coli lac2 reporter gene (Gafniey et al., 1990). 

Tryptophan 2-monooxygenase, purified fiom P. syringae pv. smastanoi, has been 

characterized as a somewhat unstable, 62 kDa protein that requires the catslytically active 

cofactor flavin adenine dinucleotide (FAD) to catalyze the oxidative decarboxylation of 

tryptophan to indoleacetarnide (Hutcheson and Kosuge, 1985). It has broad substrate 

specificity for substituted rryptophan compounds, including a number of methylated and 

hdogenated derivatives. 

Mutagenesis of the Ti-plasrnid T-DNA revealed that two genes were also involved in 

IAA biosynthesis in A. tumefaciens (Inzé et al., 1984; Klee et al., 1984; Schroeder et al., 1984). 

The product of "gene 2", overexpressed in E. coli cells, could convert supplied indole-3- 

acetamide to indole-3-acetic acid (Thornashow et al., 1984; Schroeder et al., 1984). Similarly, 

crown gall cells, transformed by A. tumefaciens, could also hydrolyze indoleacetamide to 

IAA whereas untransformed cells could not (Schroeder et al., 1984). "Gene 2", designated 

trns-2, therefore must encode indoleacetamide hydrolase. 

Incubation of cell-free extracts fiom E, coli cells expressing "gene 1 " with 



["Cl-tryptophan, resulted in the production of radiolabeled indole-3-acetamide, and when 

this product was added to ceiI-fiee extracts prepared h m  E. coli expressing the nns-2 gene, 

LAA was produced (Thornashow et al., 1986). Accumulation of indoleacetamide in extracts 

of transfonned tobacco cells expressing 'gene 1' but not tms-2, confbmed that T-DNA "gene 

1 ", now known as tnrs-1, encodes the enqme tryptophan 2-monooxygenase (Van Onckelen 

et al., 1986). 

The monocistronic arrangement of the IAA genes of A. tumeficiens suggests 

adaptation for expression within plant cells. This is m e r  supported by the obsewation that 

the tms-l and fms-2 genes, located on opposite DNA strands (Inzé et al., 1984), are flanked 

by regulatory signals typical to eukaryotes including TATA and C M T  boxes in a promoter 

region recognized by RNA polymerase II, polyadenylation signals, and sequences recognized 

by plant transcription faftors (Gaudin et al., 1994). 

Nucleotide sequence cornparison shows there is 54% identity (colurnns in an 

alignment of two sequences that contain identical amino acids) between iaaM fkom 

P. syringue pv. savastanoi and tms-l from A. tumefaciens, 38% identity between iaaH and 

tms-2, and 50% and 27% identity, respectively, at the amino acid Ievel (Klee et al., 1984; 

Gielen et al., 1984; Yamada et al., 1985; Follin et al., 1985). Identity was strongest in a 25 

amino acid region in both iaaM and tms-1, predicted to be a putative flavin adenine 

dinucleotide (FAD) binding site fiom the high degree of similarity to a known FAD site 

(Klee et al., 1984). The open reading f h n e  for iaaMencodes a 557 amino acid protein with 

a molecular weight of 6 1,783 Da, which compares well with the estimated mass of 62,000 Da 

for purified tryptophan monooxygenase as determined by SDS-PAGE (Hutcheson and 

Kosuge, 1985). The larger tnts-l open reading h e ,  indicating a 755 amino acid protein 



with a molecular weight of 83,769 (Klee et al., 1984), may reflect requirements for 

expression in the plant genome. The 455 amino acid protein revealed by the iaaH open 

reading h e ,  is similar to the tm-2 open reading fiame that encodes a 473 residue protein 

with a molecular weight of 49,588 Da (Yamada et al., 1985). 

Analysis of enzyme activity has revealed the A. tumefaciens indoleacetamide 

hydrolase to be a simple enzyme that functions in the absence of cofactors, with a high 

affinity for indoleacetamide (K. = 1 FM; Kemper et al., 1985). Other substrates can be 

hydrolyzed at a much slower rate, including indole-3-acetonitrile, phenylacetamide and IAA- 

ester conjugates such as IAA-glucose and IAA-myo-inositol, but not amide conjugates. 

The aux genes of A. rhimgenes, located in the Ri-plasmid T-DNA region that is 

incorporated into the plant genome, are similar to the tms sequences of A. tumefaciem; aux-1 

and tms-2 show 60% identity, while aux-2 and tms-2 show 71% identity. Regulation signals 

are also similar to those for tms-l and hns-2 (Gaudin et al., 1994). 

Similar to P. syringae pv. savastanoi, another pathovar of this species, P. syringae 

pv. syringae, produces IAA by the indoleacetamide pathway; however, in the latter case, the 

genes are present on the bacterial chromosome rather than a plasmid, and the consequences 

of IAA production are not clear (Fett et al., 1987). Rather than induce gall formation, 

P. syringae pv. syringae causes circular, brown necrotic lesions surrounded by a ring of 

chlorotic tissue (Manola and White, 1994). These symptoms of brown spot disease resulting 

from infection of bean correlate with high levels of IAA. The IAA biosynthesis genes 

involved were identified and cloned using the iaaM and iuuH genes of P. syringae pv. 

savastanoi as a probe (White and Ziegler, 1991). Although the arnino acid sequences of i ~ a M  

and iaaH in the two pathovars share 90% identity, there are significant differences in the 



nucleotide sequences flanking the two genes (Maaola and White, 1994). Differences in the 

regdatory regions may account for the lower levels of IAA produced by P. syringae pv. 

syringae compared to P. *ngae pv. smastanoi (White and Ziegler, 1991). 

Biochemical evidence, including identification of pathway intennediates and 

production of IAA after treatment with intermediates, suggests that only pathogenic straias of 

Envinia herbicola produce IAA via the indoleacetamide pathway (Manulis et al., 1991 b). 

The genes hvolved were isolated fiom a plasmid of the gvpsophilia pathovar of E. herbicola 

using P. syringae p. smastanoi iaaM and îaaH genes as hybridization probes (Clark et al., 

1993). Mutants of E. herbicola pv. gvpsophilia containhg insertionally inactivated ia& and 

iaaH produce the same amount of IAA from tryptophan as the wild-type, indicating the 

presence of an additional pathway for IAA biosynthesis. 

Sekine et al. (1988) have suggested that Bradyrhizobium japonicum and Rhizobium 

fiedii synthesize IAA via the indoleacetarnide pathway. These strains were able to convert 

an indoleacetamide analogue, naphthaleneacetamide (NAM) to naphthaleneacetic acid 

(NAA) suggesting that indoleacetamide hydrolase is produced. Sequence analysis of the 

B. japonicwn gene (barn) responsible, isolated by mutant complementation (Sekine et al., 

1989a), revealed an open reading frame of 465 amino acids correspondhg to a 50,266 Da 

protein (Sekine et al., 1989b). A high degree of identity at the amino acid level was found 

only arnong the central regions of the bam gene, iauH of P. syringae pv. smastanoi and 

ims-2 of A. iumefaciens (Sekine et al., 1989b). Aithough both indoleacetamide and IAA 

were detected in B. japonicum cultures grown in tryptophan-supplemented media, regions 

upstream and downstream fiom the barn gene did not show similarity to iaaM or t m d .  The 

location of a tryptophan 2-monooxygenase gene in B. japonicum remains unknown. 



There are indications that Rhizobium species may synthesize indoleacetamide 

hydrolase when associated with the host plant, but that this capacity is suppressed in the fiee- 

living state, making detection difficult. The high degree of similarity between the barn gene 

of B. japonicum and D N A  sequences fiom a biovar of Rhizobium Ieguminosmm suggests 

that an indoleacetamide hydrolase gene is present in the latter bacterium; however, enymatic 

activity could only be detected in the fiee-living state of spontaneous mutants (Kawaguchi et 

al., 1990). Host plant flavonoids appear to have a stimulating effect on IAA production in 

several Rhizobium species (Rinsen et al., 1991). 

Although the principal IAA biosynthesis route in AzospiriIIum does not appear to 

proceed via indoleacetarnide (Prinsen et al., 1993; Okon, 1994; CostacUrta et al., 1994), this 

pathway does exist in at least some strains of A. brasilense (Bar and Okon, 1993). 

Indoleacetamide was identified in extracts of the culture supernatant of severai A. brasilense 

strains and accumulated in mutants with a reduced capacity to synthesize IAA (Prinsen et al., 

1993). Tryptophan 2-monooxygenase activity was detected in a 56 kDa protein on a non- 

denaturing gel and a probe containhg iaaM and part of iaaH fiom P. syringae pv. suvastanoi 

hybndized to A. brasilense total DNA (Bar and Okon, 1993). 

Indole-3-pymic acid pafhwoy. Although early work on IAA production in phytopathogens 

focused on the indoleacetamide pathway, it was recognized that IAA in bactena can also be 

denved fiom indolepyruvic acid. This latter pathway however was believed to contribute 

relatively little to the measurable levels of IAA (Kuo and Kosuge, 1970). Later, when 

mutagenesis experiments desigwd to inactivate the indoleacetamide pathway failed to 

generate mutants completely deficient in the ability to synthesize IAA, interest in alternate 

pathways was renewed. An A. tumefuciens strain cured of its Ti-plasmid was able to 



synthesize 50% of the level of IAA produced by the parental strain fkom genes located on the 

chromosome (Liu et al., 1982). After testing 5,000 Tn5-mutagenized colonies of 

Azospirillum lipoferurn for decreased -1evels of MA synthesis, Abdel-Salam and Klingmiiller 

(1987) isolated eleven mutants that produced 945% of the IAA level of the wild-type. That 

the mutants still produced some IAA suggests that more than one biosynthesis pathway, or 

perhaps multiple gene copies for a single pathway, may be present. E. herbicola pv. 

gypsophilae strains containing insertionally inactivated iaaA4 and iaaW were still able to 

produce IAA from tryptophan (Manulis et al., 1991b; Clark et al., 1993). Chernical 

identification of intermediates, enzyme activity analysis, and, more recently, genetic 

evidence indicates that these strains c m  alternatively synthesize IAA via indolepynivic acid. 

This other major bacterial IAA biosynthesis pathway is believed to be similar to that 

suggested for plants; tryptophan is converted to indoiepyruvic acid by an aminotransferase 

reaction, followed by decarboxy lation to indole-3 metaldehyde, which is then further 

oxidized by indoleacetaldehyde dehydrogenase to IAA (Fig. 4). Transamination to a keto 

acid by pyridoxal phosphate-dependent enzymes is a common first step in tryptophan 

metabolism. Aromatic amino acid transferase activity has been detected in P. syringaz pv. 

savmtanoi (Kuo and Kosuge, 1970), A. tumefaciens (Liu et al., 1982), A. lipoferum 

(RuckBchel et al., l988), A. brasilense (Soto-Urzua et al., 1 W6), R. meliloti (Kittel et al., 

1989), E. cloacae (Koga et al., 1994) and E. herbicola (Brand1 et al., 1 W6), although in al1 

cases little substrate specificity was observed. In fact, in P. syringae pv. savastanoi, 

L-tryptophan was the poorest amino donor of the aromatic amino acids tested (Kuo and 

Kosuge, 1970) and, in E. cloacae and A. brasilense, the aminotransferase has a v e r -  low 

affinity for L-tryptophan (Koga et al., 1994; Soto-Umm et al., 1996). 



Figure 4. Indole-3-pynivic acid pathway (A-C) and tryptophan side chah pathway @) 

for indole-3-acetic acid biosynthesis in bacteria. A, tryptophan aminotramferase; 

B, indole-3-ppvic acid decarboxylase; C, indole-3-acetaldehyde oxidase; D, ûyptophan 

side chin oxidase 





The genes for three of the four aromatic aminotransferases found in R. meliloti have 

been cloned (Kittel et al., 1989). Mutants with transposon insertions in one of these genes 

produced less LZA than the parental strain in the presence of tryptophau., and double mutants 

with dismptions in two of the genes had M e r  decreased levels of IAA. Similarly, plasmid- 

cured A. tumefaciens cells with a mutation in a chromosornally located aromatic 

aminotransferase gene were able to produce some indolepyruvic acid fkom tryptophan, but 

with reduced efficiency (Liu et al., 1982). The presence of multiple aromatic 

aminotransferases in most of the bacteria studied may in some cases explain the inability to 

isolate true IAA-minus mutants. 

Considering that tryptophan aminotransferase lacks substrate specificity and has a 

poor affinity for tryptophan, the key enzyme in the indolepyruvic acid pathway may be 

indole-Epynivate decarboxylase, which catalyzes the second step, the conversion of indole- 

3-pyruvic acid to indole-3-acetaldehyde. Tryptophan aminotransferase, in fact, has a much 

higher affiaity (138-fold lower K,,, value) for indolepyruvic acid than for tryptophan (Koga, 

1995), and may be involved in the synthesis of tryptophan. However, in the presence of 

indolepyruvate decarboxylase, indolepyruvic acid is efficiently converted to 

indoleacetaldehyde (Koga et al., 1994; Koga, 1995). Thus, htracellular indolepyruvic acid 

would be maintained at levels too low to contribute significantly to ûyptophan biosynthesis, 

and the reaction equilibrium would be shifted to favour IAA production. 

The presence of indolepyruvate decarboxylase has been detected in several plant 

growth-promoting bacterial strains. Enterobacter cloacae was able to convert tryptophan, 

indolepyruvic acid and indoleacetaldehyde to IAA, suggesting that this microbe synthesizes 

IAA via indolepyruvic acid (Koga et al., 1991b). An IAA biosynthesis gene was isolated by 



screenùig a cosmid library, derived from E. cloacae chromosomal DNA, in E. coli, for the 

ability to convert tryptophan to IAA (Koga et al., 1991a). Cell-fiee extracts prepared fiom 

positive E. coli clones showed indolepyruvate decarboxylase activity; the presence of this 

enzyme was confirmed by nuclear magnetic resonance m). Sequence analysis of the 

isolated cZoucae ipdc gene indicates that it codes for a single, 60 kDa protein (Koga et al., 

1991a). PCR primers designed fiom the E. cloacae ipdc sequence were able to ampli@ a 

fragment of predicted size from seven IAA producing enterobacteria, including strains of 

E. cloacae, E. agglomeruns and Mebsiella sp. and from the plant Zea mays (Zimmer et ai., 

1994 and 1995). 

Indolepynivate decarboxylase from E. cloacae has been purified and characterized as 

having high specificity and high &nity for indolepyruvic acid (Koga et al., 1992; Koga, 

1995). In its active form the enzyme exists as a homotetramer, requiring the cofactors Mgz+ 

and thiamine diphosphate for activity and stability, and for formation of the tetramer. In the 

presence of these cofactors, cell-fiee extracts prepared fkom Bradyrhisobium elkanii cultures 

were able to produce high levels of indoleacetaldehyde fiom supplied indolepynivic acid, 

strongly indicating that indolepyruvate decarboxylase is active in these cells (Minamisawa et 

al., 1996). 

Indolepyruvate decarboxylase genes isolated from two A. brasilense strains are highly 

(97%) similar (the percentage of columns in an alignment of two sequences that contain 

amino acids that are either identical or have similar properties); however the flanking regions 

are not similar (Costacurta et al., 1994; Zimmer et al., 1998). Both appear to be 

monocistronic, although there is evidence for a second copy of the gene elsewhere in both 

chromosomes. DNA hybridhtion experiments indicate that the A. brasilense sequence is 



present in A. lipofirum and A. haloprueferens, but not in A. irakense, a low IAA producer 

(Costacurta et al., 1994). Cornparison of the deduced amino acid sequences with that fkom 

the ipdc gene sequence fiom E. cloacae shows 43% and 56% similarity (29% and 28% 

identity) between the A. brasilense Sp245 and A. brasilense Sp7 enzymes, respectively 

(Costacurta et al., 1994). Sequence andysis of the 1,635 nucleotide open reading h e  fiom 

A. brasilense Sp245 shows that the 64 kDa protein shares 38% amino acid similarity with 

pyruvate decarboxylases fiom Zymomonas mobilis and Saccharomyces cerevisiae. 

Turnorigenic and non-tumorigenic strains of E. herbicola synthesize IAA via the 

indolepyruvic acid pathway as determined by detection of pathway intermediates in ce11 

cultures and production of IAA after incubation of cells in the presence of appropriate 

intermediates (Manulis et ai., 1991 b; Brandl et al., 1996). The gene for indolepymvate 

decarboxylase was isolated fkom an E- herbicola pear isolate by screening a cosmid library of 

genomic DNA in E. coli for the ability to synthesize IAA (Brandl and Lindow, 1996). The 

open reading frame was characterized as a 1,650 base pair sequence encoding a 550 amino 

acid protein with 56% and 26% identity to the ipdc gene fiom E. cloacae and A. brasilense, 

respectively, and a high degree of similarity to pyruvate decarboxylases from several plant 

and fiingal species. Mutants containing transposon insertions in the ipdc locus produced 90% 

less IAA than the wild-type and were unable to convert indolepyruvic acid to 

indoleacetaldehy de. 

Almost nothing is known about bacteriai indoleacetaldehyde oxidase that catalyzes 

the 1 s t  step in the indolepynivic acid pathway, the conversion of indoleacetaldehyde to IAA. 

Several aldehyde oxidase have been found in plants, each playing a unique role in the 

regulation of plant growth and development (Min et al., 2000; Sekimoto et al., 1997). An 



aldehyde oxidase that preferentidy utilizes indoleacetaldehyde as a substrate was identified 

in wild-type Arabidopsis thuliana and has higher activity in a sur1 mutant that produces 

higher levels of endogenous LAA (Seo et al., 1998). 

Tryptophan side chain pathway. An IAA biosynthesis route in which tryptophan is 

converted directly to indole-3-acetaldehyde, bypassing indole-3-pyruvic acid, has been 

demonstrated in Pseudomonas fluorescens (Nanimiya et al., 1979; Oberhiinsli et al., 1991). 

Indoleacetaldehyde is produced fkom tryptophan by the action of tryptophan side chah 

oxidase and is subsequently oxidized to IAA by aldehyde dehydrogenase (Fig. 4). 

Oberhasli et al, (1991) present evidence that a biocontrol strain of P. jluorescens (CHAO), 

which can suppress some fungal borne root diseases including black root rot of tobacco, 

synthesizes tryptophan aminotransferase which is involved in the indolepyruvic acid 

pathway, as well as tryptophan side c h a h  oxidase. Tryptophan monooxygenase and 

indoleacetamide hydrolase, both part of the indoleacetarnide pathway, were not detected. 

Tryptophan transaminase activity is constant throughout the exponential and 

stationary phases of bacterial growth, and is not significantly S u e n c e d  by the addition of 

tryptophan to the culture medium. In contrast, tryptophan side chah oxidase activity is only 

observed during the stationary growth phase of P.jluorescem CHAO (this was also observed 

by Narumiya et al. (1979) in another P. fluorescens strain) and is repressed four-fold in the 

presence of 10 mM tryptophan. In addition, in increasingly acidic media (fiom pH 7 to 

pH 5.5), IAA produced by the tryptophan side chain pathway increases, whereas that 

produced by the indolepynivic acid pathway decreases. These observations support the 

suggestion that the pathway by which a microbe synthesizes IAA is dependent upon 

environmental conditions. Incidentally, mutations in tryptophan side chain oxidase did not 



alter the ability of P. fluorescens CHAO to protect wheat and tobacco against black root rot 

indicating that the hyptophan side chah pathway does not play an important role in disease 

suppression (Oberhansli et al., 1991). 

Tryptumine pathway- Tryptophan can also be converted to indole-3-acetaldehyde and IAA 

via the intermediate tryptamine. The initial metabolism of tryptophan to tryptamine is 

catalyzed by tryptophan decarboxylase followed by conversion of tryptamine to 

indoleacetaldehyde by amine oxidase (Fig. 5). Although this pathway appears to be present 

in plants (De Luca et al., 1989; Cooney and Nonhebel, 1991) and fungi (Frankenberger and 

Arshad, 1995), very little attention has k e n  focused on tryptamine as a possible intermediate 

in bacterial IAA biosynthesis. However, Bacillus cereus has been reported to synthesize a 

decarboxylase which can act on tryptophan to produce tryptamine (Perley and Stowe, 1966) 

and A. brasilense could convert tryptamine, added to the culture medium, into IAA 

(Hartmann et al., 1983). 

Indole-3-acetonitrie pathway. Although the pathway by which indole-3-acetonitnle is 

converted to indole-3-acetic acid has been identified in higher plants (Kobayashi et al., 1993; 

Kobayashi and Shimizu, 1994; Bartel and Fink, 1994; Bartling et al, L994), its contribution to 

microbial IAA production tends to be overlooked. Nitriles can be hydrolyzed directly to 

their correspondhg acids through the action of specific nitrilases, or can be catabolized via a 

two step process involving an initial conversion to an amide by nitrile hydratase followed by 

hydrolysis of the amide to an acid by amidase (Kobayashi et al., 1992; Fig. 6). Production of 

indoleacetonitrile for IAA synthesis by these reactions may be tryptophan-dependent, 

involving conversion of tryptophan to indoleacetaldoxime and then to indoleacetonitrile 



Figure 5.  Tryptamine pathway for indole-3-acetic acid biosynthesis in bacteria. 

A, tryptophan decarboxylase; B, amine oxidase; C, indole-3-acetaldehyde oxidase. 





Figure 6. Bacterial synthesis of indole-3 -acetic acid fÎom indole-3-acetonitrile directiy 

via Ntrilase (A) or via a two step pathway catalyzed by the enzymes nitrile hydratase (B) 

and amidase (C). Production of indole-3-acetonitrile rnay involve the conversion of 

tryptophan to indoleacetaldoxime and then to indoleacetonitrile either directly or via 

glucobrassicin, or may occur fiom anthranilate without proceeding through tryptophan as 

an intermediate. Solid arrows represent a single enymatic step; the broken arrow 

denotes that this pathway has not k e n  N ly  characterized. 





either directly or via glucobrassicin (Kobayashi et al., 1993), or may be denved nom the 

precursor anthranilate without proceeding Uirough tryptophan as an intermediate (Normanly 

et al., 1993; Barthg et al., 1994). 

Nitrilases are highly specific and are classified according to the substrate type upon 

which they act. Although several nitrilases have been found in microbes, of particular 

interest here are the arylacetonitrilases. Such a nitrilase, specific for indole-3-acetonitrile, 

was purified fiom Alcaligenesfaeculis (Kobayashi et al., 1993) and the gene for this enzyme 

has k e n  cloned and sequenced (Kobayashi et al., 1993). The deduced amino acid sequence 

shares only 27% identity with a nitrilase whose gene was cloned nom the higher plant, 

Arabidopsïs thaliana; however, residues in the active sites of these enzymes appear to be 

highly conserved (Bartling et al., 1994). In Bradyrhito bium japonicum, nitrilase activity 

catalyzes the conversion of indoleacetonitrile to IAA (Vega-Hemandez et al., 1999). 

The conversion of indole-3-acetonitrile to IAA via indole-3-acetamide was 

demonstrated in Agrobacterium and Rhizobium species with nitrile hydratase and amidase 

activity (Kobayashi et al., 1995). The nitrile hydratase, which acts on indoleacetonitrile, was 

purified fiom the cell-fiee extract of A. tumefaciens and charactenzed. The molecular mass 

of the enzyme was determined to be 102 kDa, consisting of four subunits of identical mas. 

The occurrence of nitrile hydratases and amidases is believed to be quite common in 

bacteria, although those identified in various species appear to be specific for different 

substrates (Nagasawa et al., 1987; Kobayashi et al., 1992; Duran et al., 1993). For example, 

the arnino acid sequences of the nitrile hydratases from Rhodococcus sp. and Rhodococc~~ 

eryrhropolis are highly similar (95% identical), however their substrate preferences are 

different, suggesting that only a few arnino acid residues are responsible for determinhg 



substrate specificity (Dunui et al., 1993). The arrangement of nitrile hydratase and amidase 

genes in an operon has been confinned in several strains of Rhodococcus and in 

Pseudomonas chlororaphis (Duran et al., 1993; Kobayashi et al., 1992). Although nitrile 

hydratases and amidases appear to be widespread, the discovery of those specific for 

indoleacetonitrile is very recent, and much more study is required to determine their 

contribution to IAA biosynthesis in plant-associated bacteria. 

Coniugation 

In a marner similar to plants, microorganisms may also synthesize inactive IAA 

conjugates. IAA-lysine synthetase activity, which yields IAA-lysine and a denvative, acetyl- 

IAA-lysine, was discovered in oleander-denved strains of P. syringae pv. savastanoi (Glass 

and Kosuge, 1986). The gene for this enzyme (iaaL) was localized to a plasmid carrying the 

IAA biosynthesis genes iaaM and iaaH. The i a d  gene is not part of the IAA biosynthesis 

operon, but rather appears to be transcribed dong with a gene encoding a hydrophobie 

protein that may b c t i o n  as a membane transport protein for IAA or IAA-lysine (Roberto et 

ai., 1990). 

Olive- and privet-denved strains of P. gringue pv. savastanoi, whose IAA genes are 

located on chromosomal DNA, could not convert IAA to IAA-lysine. These strains normally 

accumulate twice as much fiee IAA as their oleander counterparts. When the iaaL gene was 

introduced into olive isolates, not only could these strains convert fed, radiolabelled IAA to 

IAA-lysine, but IAA accumulation was reduced by one third to one half that of the wild-type 

strain after 72 hours (Glass and Kosuge, 1988). Similarly, oleander-denved strains with 

deletions in the IAA-lysine synthetase gene could no longer convert radiolabelled IAA to 

IAA-lysine and also accumulated five times more fkee IAA than the parental strains. These 



results confïrm that conversion of IAA to a conjugated fonn influences the pool size of fke  

I . A .  

Not only can some bacteria synthesize IAA conjugates but some can also hydrolyze 

conjugates to yield fiee IAA. Along with 18 other unidentified bacterial strains, an 

Enterobucter agglornerans seain was selected fiom sewage sludge by its ability to grow on 

IAA-aspartate as a sole carbon and nitrogen source (Chou et al., 1996). IAA-aspartate 

hydrolase was purified fiom this bacterium and found to consist of a 45 kDa monomer with a 

high specificity for converting IAA-asparîate to IAA. 

Number and type of ~athwavs 

A survey of the pathways by which various bacterial strains synthesize IAA reveals 

an interesting pattern; one that suggests that the pathway to IAA production may be 

important in determinhg the effect of a bacterium on a plant (Table 2). Manulis et al. (l991b) 

have found that both pathogenic and non-pathogenic strains of Erwinia herbicola pv. 

g~psophilae synthesize IAA via the indolepyruvic acid pathway. However, only the 

tumongenic strain can produce IAA via indoleacetamide. Inactivation of this latter pathway 

reduces virulence, while inactivation of the indolepyruvic acid pathway reduces the 

epiphytic fitness of E. herbicola pv. gypsophilcle (Manulis et al., 1998). 

Although rare incidence of the indoleacetarnide pathway has been reported in plants 

(Saotome et al., 1993; Kawaguchi et al., 1993), it is generally believed that this is 

predorninantly a microbial IAA biosynthesis route (Manulis et ai., 199la; Gaudin et al., 1994). 

The uniqueness of this pathway to bactena may allow them to evade plant regdatory signals 

that would normally keep plant IAA at non-toxic or physiologically appropriate levels, and 

thereby to induce uncontrolied growth in the plant tissues. Indeed, phytopathogens such as 





P. syringae (Kuo and Kosuge, 1970; White and Ziegler, 1991 ; Manola and White, 1994), 

and Agrobacterium-trmsformed plant cells (Schroeder et al., 1984), synthesize IAA 

predominantly via the indoleacetamide pathway. Altematively, because bacterial IAA 

synthesis by this route is generally constitutive, it may be that high ievels of IAA exceed the 

capacity for iAA rnetabolism by a host plant (Sitbon et al., 1992). In contrast, plant growth- 

promoting bacteria such as P. putidu GR12-2 (Patten, 1996)- E. cloucae (Koga et al., 1991b) 

and Azospiri lh spp. (Costacurta et al., 1994) synthesize IAA mainly via the indolepynivic 

acid pathway, which may be subject to more stnngent regulation by plant metabolites. 

The position of IAA biosynthesis genes in the bacterial genome, that is, whether it is 

on a plasmid or in the chromosome, may also be important in specieing the effect of a 

bacteriurn on its host plant (Table 2). Transfer of the T-DNA region of a specialized plasmid 

carrying genes involved in the indoleacetamide pathway for IAA synthesis provides a unique 

mechanism by which Agrubacterium species can deliver high levels of IAA directly to plant 

celis and thereby induce tumor formation (Nilsson and Olsson, 1997). Similar genes are also 

carried on plasmids in tumongenic strains of P. syringae pv. savastanoi (Cornai and Kosuge, 

1980) and E. herbicola (Manulis et al., 1991b): however, these are not transferred into the 

host plant genome. Perhaps significantly, P. syringae pathovars that induce bark and leaf 

lesions rather than tumorous growths also synthesize IAA via indoleacetamide, but fiom 

chromosomal genes (Mazzola and White, 1994). A non-tumorigenic E. herbicola isolate that 

induces lesions on pear fhit also c d s  IAA genes in the chromosome, although in this case 

the genes encode enzymes for the indolepyruvic acid pathway (Brand1 and Lindow, 1996). 

Both pathogenic and nonpathogenic strains of Xanthomonas campestris pv. glycines can 

produce IAA; however IAA biosynthesis genes are found on a plasmid in the pathogenic 



strains and in the chromosome of the nonpathogenic strains (Fett et al., 1987). Again, by 

cornparison, the IAA biosynthesis genes of the sixains that promote plant growth are found in 

the chromosome (Koga et al., 1991a; Costacurta et al., 1994; Patten, 1996), and thus IAA is 

more likely to be produced at lower levels in these bacteria than in bactena whose IAA 

biosynthesis genes are expressed nom multicopy plasmids. 

Reeulation of IAA exmession 

In general, the indoleacetonitrile and indolepyruvic acid pathways have been found to 

be inducible by pathway intermediates or precursors, whereas the indoleacetarnide pathway 

is constitutive in most of the organisms stuclied. Nitrile hydratase, the enzyme that catalyzes 

the initial step in the conversion of indoleacetonitnle to IAA, is inducible by 

indoleacetamide, the intermediate in the pathway (Kobayashi et al., 1995). Tryptophan 

supplements have been shown to dramatically increase IAA biosynthesis by the 

indolepyruvic acid pathway in cultures of Enterobacter cloacae (Koga et al., 1991b), 

Rhizobium phaseoli (Ernstsen et al., 1987), Bradyrhirobium japonicum (Kaneshiro et al., 

1983), Pseudomonas putida (Patten, 1996), Envinia herbicola (Brand1 and Lindow, 1996) 

and Azospiri#um brasilense (Barbieri et al., 1986; Omay et al., 1993). In contrast, genes 

involved in the indoleacetamide pathway are transcribed constitutively in Pseudomonas 

syringae pv. suvastanoi (Gaffney et al., 1990) and Pseudomonas syringae pv. syringae (Fett 

et al., 1987). 

In addition to tryptophan, other amino acids are able to induce bacterial I A A  

synthesis. Of the amino acids detected in the root exudates of 15 different plants, alanine, 

lysine and asparagine were found to be the most abundant (Rovira, 1970). When bacteria 

isolated h m  the roots of lettuce were pre-grown in soi1 supplemented with any one of these 



three amino acids, prior to addition of tryptophan, production of IAA increased (Martens and 

Frankenberger, 1993). Possibly by a similar mechanism, growth of P. putida GR12-2 in a 

nch medium results in substantial increases in IAA production compared with growth in 

minimal medium or minimal medium supplemented solely with tryptophan (Patten, 1996). 

This difference in the effect of rich versus mininial medium may dso explain dserences in 

the development of canola seedling roots after incubation of seeds in variously pre-treated 

bacterial inoculums. For example, it was found that inoculation of seeds with P. putidu 

GR12-2 grown in rich medium resulted in root lengths that were on average double those 

fiom uninoculated seeds (Caron et al., 1995). Roots fiom canola seeds treated with the same 

bacterial strains, cultured in minimal medium with or without tryptophan, rarely achieved 

such lengths (Patten, 1996). 

Few studies examining the promoters that govern production of IAA have been 

carried out. The prornoter region for the P. syringae pv. smastanoi IAA operon, nom which 

the constitutive expression of enzymes involved in the indoleacetamide pathway is initiated, 

was found to be similar to the -10 and -35 regions of the E. coli a'' consensus promoter 

(Gafniey et al., 1990). The region upstream of the indolepymvate decarboxylase gene fkom 

A. brasilense contained a sequence sirnilar to as'-dependant promoter (Costacurta et al., 

1994). Vande Broek et al. (1999) fused the A. brasilense ipdc gene promoter to the gur 

reporter gene and found that the ipdc promoter is not regulated by tryptophan. Rather, 

expression was ce11 density dependent, being highest in the stationary phase, and was 

induced by IAA and other synthetic auxins. In addition, a sequence similar to the auxin- 

responsive element found in the promotea of some awin-regulated plant genes was found in 

the ipdc promoter region (Lambrecht et ai., 1999). 



Brandl and Lindow (1997) fused a gene for an ice nucleation protein to the 

insertionally inactivated indolepyruvate decarboxylase gene in the chromosome of 

E. herbicola and examined factors that induced transcription of the latter gene by assaying 

for ice nucleation activity. In addition to several other factors that had no effect on promoter 

fûnction, such as pH, oxygen and nitrogen availability, and variation of carbon source, 

addition of tryptophan did not promote reporter gene expression. Rather, in this bacterium, 

tryptophan appears to induce expression of tryptopban aminotmnsferase which cataiyzes the 

first step in the indolepynivic acid pathway for IAA synthesis (Brandl and Lindow, 1997). 

A~so, because tryptophan aminotransferase prefers to convert indolepyruvic acid to 

tryptophan rather than the reverse reaction that yields IAA (Koga et al., 1994), excess 

tryptophan would be necessary to drive the reaction toward indolepyruvic acid, and 

subsequently IAA, production. On the other hand, tryptophan does induce the 

indolepyruvate decarboxylase gene promoter in A. brasilense Sp7 (Zimmer et al., 1998). 

This was assessed by replacing the ipdc sequence in the bacterial chromosome with the 

reporter gene ZacZ, encoding $-galactosidase. 

Interactions with other hormones 

When considering the observations summarized in the preceeding discussion it must 

be borne in mind that many of the effects of auxin on plants, whether from application of 

synthetic or bacterial IAA, are a consequence of interactions between IAA and other 

phytohormones, especially ethylene and cytokinins. While it is likely that low levels of IAA 

enhance growth directly either by stimulating ce11 elongation or ce11 division (Theologis, 

1986; Brummel and Hall, 1987), the inhibitory effects of high IAA levels are believed to be 

mediated by ethylene (Botella et al., 1992; Peck and Kende, 1995). The rate-limiting step in 



ethylene biosynthesis, the conversion of S-adenosylmethionine (SAM) to 

1 -aminoc yclopropane- 1 -carboxy lic acid (ACC), is catalyzed by the enzyme ACC synthase. 

Expression and activity of this enzyme, and therefore ethylene production, are increased by 

exogenous IAA (Peck and Kende, 1995; Bekman et al., 2000). 

Manipulation of the relative concentrations of awin and cytokinin in order to induce 

root or shoot development in callus cultures is a longstanding practice in plant propagation 

(Skoog and Miller, 1957). It is now recognized that auxins and cytokinins interact to 

regulate a variety of physiological processes in plants and that these interactions may be 

antagonistic, as in the case of control of apical dominance, or synergistic, for example, in the 

activation of ce11 division (Coenen and Lomax, 1997). Furthemore, an increase in the 

concentration of either one of awùn or cytokinin, whether by endogenous overproduction or 

exogenous application, can decrease the levels of the other in plant tissues (Elkof et al., 

1997). Our understanding of the effect of bacterial auxin on plants is thus further 

confounded by the production of cytokinins by many of these bacteria, including both 

tumorigenic (reviewed by Moms, 1986; Gaudin et ai., 1994; Costacurta and Vandetleyden, 

1995) and plant growth-promoting strains (Salamone et al., 1997). 

Objectives 

The rhizobacterium Pseudomonas putida GR12-2 is a strong candidate for 

development as a soi1 inoculant to enhance crop yields. Inoculation of canola, tomato, and 

other agriculturally important plants with this strain, results in substantial promotion of 

seedling root growth (Caron et al., 1995; Hall et al., 1996). This is of significant value as the 

early life of a plant is somewhat tenuous, and if mots could be established quickly the plant 



would have an increased chance for suwival. Characteristics that may contribute to the 

ability of P. purida GR12-2 to enhance plant growth include the capacity to synthesize 

siderophores (Hong et al., 1995), ACC deaminase (Jacobson et al., 1994; Glick et al., 1995) 

and IAA (Xie et al., 1996; Patten, 19%). 

Prelimary evidence suggests that production of IAA by P. putida GR12-2 occurs via 

indolepyruvic acid The lack of growth inhibition in the presence of the tryptophan analogue, 

a-methyltryptophan, whose toxicity seems to require tryptophan monooxygenase activity 

(Costacurta and Vanderleyden, 1995), and the inducibility of IAA by tryptophan (Patten, 

1 996), indirectly suggest that IAA is not synthesized via the indoleacetamide pathway. More 

direct support for this hypothesis can be found in Southern blots containhg P. putida 

GR12-2 genomic DNA which indicate that sequences complementary to the genes encoding 

enzymes for the indoleacetamide pathway fiom P. syringae pv. suvastanoi are not present, 

while sequences similar to the ipdc gene encoding indolepyruvate decarboxylase fiom the 

indolepyruvic acid pathway in E. cloacae FERM BP-1529 were detected (Patten, 19%). 

The goal of the research described herein was to understand at the molecular level 

how IAA is synthesized by the PGPR P. putida GR12-2. The IAA biosynthesis pathway was 

confïrmed by isolating the indolepynivate decarboxylase gene (ipdc). The enzyme encoded 

by this gene catalyzes a key step in the indolepynnic acid pathway and was chosen over the 

gene for tryptophan aminotransferase as the latter is neither specific for IAA synthesis nor 

does it prefer to catabolize tryptophan, the initial substrate in the pathway. In addition, it is 

iikely that several genes for aromatic amino acid aminotransferases exist in a single 

bacterium. The ipdc promoter region was also isolated and analyzed in order to gain insight 

into how IAA synthesis is regulated in this bacterium. 



The role of bacterid IAA in the mechanism by which P. putida GR12-2 influences its 

host plant was also investigated. By analogy to application of exogenous IAA, the level of 

IAA secreted by a bacterium may be important to the outcome of the interaction between a 

plant and a bacterium. A small wïndow of IAA concentration positively influences plant 

growth, while levels below thîs range have no effect and levels above are inhibitory. To test 

this hypothesis, an IAA-deficient mutant of P. putida GR12-2 was created and characterized. 

Morphological changes in plants as a consequence of their interaction with this mutant were 

docurnented and compared to the effects of the wild-type strain. 



MATERIALS AND METHODS 

Bacterial Strains 

Pseudornonas purida GR1 2-2 (Lifshitz et al., 1987) was kindly provided by Dr. G. 

Brown of Agrium, Inc. (Saskatoon, Sask.). Escherichia coli strains DH5a (Hanahan, l983), 

S 1 7.1 (Simon et al., l983), and Ml09 (Yanisch-Perron et al., 1985) were used as recipients 

for recombinant plasmids. 

P. putida GR12-2 was routinely maintained in 3.6% (w/v) Tryptic Soy Broth (TSB; 

Difco), containing 1.8% (w/v) technical agar (Difco) as a solidiQing agent when needed. 

The DF salts minimal medium of Dworkin and Foster (1958), used for propagation of 

P. purido GR12-2 where indicated, consisted of: -SO4, 4 g; Na2HP04, 6 g; MgSO4.7H20, 

0.2 g; @H&SO4, 2 g; D-glucose, 2 g; D-glucooic acid, potassium salt, 2 g; citric acid, 

monohydrate, 2 g; and trace elements, including FeS0&7HzO, 1 mg; H3B04, 10 pg; MnS04, 

10 pg; ZnS04, 70 pg; CuS04, 50 pg; and MoO,, 10 pg; in 1 L of distilled H20. E. coli 

strains were grown in either 2% (wh) Luria Broth (LB; Difco), or M9 minimal media 

(5X M9 salts (Na2HP04-7H20, 64 g; KH2P04, 15 g; NaCI, 2.5 g; NH4Cl, 5g; in 1 L of 

distilled, deionized water), 200 mL; 20% (w/v) glucose, 20 mL; in 1 L of distilled, deionized 

water). 

Isolation of the ipdc Gene 

Isolation of nenornic DNA 

Genomic DNA was isolated from bacterial cells by the method described by 

Sambrook et al. (1 989). From a 5 mL ovemight culture in TSB, 1 00 pL of P. putida GR1 2-2 

were transferred into 50 mL TSB and incubated for an additional 20 h at 25°C in a shaking 



water bath. Cells were coilected by centrifixgation in a Sowall GSA rotor for 15 min at 5,000 

x g and 4"C, washed once with TE buffer (10 mM Tris 

(tri(hydroxymethy1)aminomethane)-Cl; 1 m M  EDTA (ethylenediaminetetraacetic acid); pH 

8.0). Following resuspension in 20 mL TE bufTer, cells were lysed with 1 mL of 20% (wh) 

SDS (sodium dodecyl sulfate), pH 7.2, for 20 min at room temperature. DNA was then 

precipitated by addition of 2.4 mL of 3.0 M sodium acetate, pH 8.0, and 13 mL isopropanol, 

collected by spooling on a glass rod, and resuspended in 10 mL TE bufTer. Protehase K 

(Roche Diagnostics) was added to a h a 1  concentration of 50 pg/mL and incubated ovemight 

at 37OC to digest any protein present. RNA was hydrolyzed with RNase A (Roche 

Diagnostics; 50 pg/mL). To puri@ the DNA, sequential extractions were carried out once 

each with equal volumes of phenol (equilibrated with 0.1 M TrisCl, pH. 8.0), 

phenol:chloroform:isoamylalcohol (24:24: 1 ), and chloroform:isoamylalcohol (24: 1). For 

each extraction the solution was mixed thoroughly by inverting slowly many times and then 

the aqueous phase was carefùlly collected &er centrifugation (1 7,000 x g for 20 min at 4°C). 

The DNA pellet required 1.8 mL TE buffer for complete resuspension. The DNA was 

aliquoted into smaller volumes and stored at -20°C until needed. 

Pre~aration of a clone bank 

P. putida GR12-2 genomic DNA (0.5 - 1 pg) was digested with 0.125 U of Sau3AI 

(Gibco BRL) in 1X One-Phor-Allm B d e r  (OPA; Phannacia) restriction enzyme digestion 

buffet for 20,3440 and 50 min at 37°C. The reaction was terminated by incubation at 6S°C 

for 20 min and then stored on ice to prevent reactivation of the restriction enzyme. Haif 

(10 PL) of the products fiom each digestion were run on a 0.8% agarose gel containing 

0.5 pg/mL ethidiurn brornide in TBE b s e r  (45 mM Tris; 45 mM bric acid; 1 mM EDTA, 



pH 8.0) for approximately 2 h at 80 V. Visualization under UV light revealed that the 

majority of products from the 30 min digestion were between 4 and 9 kb, large enough to 

carry a fidl length ipdc gene expected to be approximately 1.7 kb. Therefore, the remaining 

30 min digestion products were used for subsequent ligation with pUC18. 

Ten PL of the digested genomic fragments were mixed with 3 pL (150 ng) pUC18 

(pre-cut with BamHI and treated with alkaline phosphatase; Pharmacia), 1 pL T4 DNA ligase 

(400 U; New England Biolabs) and 1.7 PL 10X ligation buffer, and then incubated overnight 

at 14OC. Calcium chloride-competent E. coli DH5a cells were prepared for transformation 

with the recombinant plasmids as follows (Sambrook et al., 1989). Five mL LB medium 

were inoculated with a loopN of E. coli DHSa and incubated ovemight in a 37°C shaking 

water bath. The next &y, 300 pL of the overnight culture were transferred to 30 mL pre- 

warmed (37OC) LB medium and incubated again in a 37OC water bath until the culture 

reached an optical density at 600 nrn of approximately 0.2. At this point, the culture was 

transferred to an ice-cold centrifuge tube and chilled on ice for 10 min. The cells were 

collected by centrifugation in a Sorvall centrifuge using an SS34 rotor at 5,000 rpm for 

10 min. AAer decanting the supernatant, the cells were resuspended in 15 mi, ice-cold 

100 mM CaC12, stored on ice for 30 min, and then centrifuged again as above to collect the 

cells. The cells were ha l ly  resuspended in 3 mL icesold 100 mM CaC12. 

After combining 200 pL of comptent cells with 10 pL of ligation products, the 

mixture was stored on ice for 30 min and then the cells were treated with a mild heat shock 

(42OC) for 2 min. To allow the cells to recover and express the ampicillin resistance gene 

encoded on the plasmid, 1 mL LB medium was added and the culture was incubated at 37OC 

for 1 h. Serial dilutions (1 O-' to 1 04) were prepared in LB medium and 100 Cu, of each were 



spread on LB agar containing ampicillin (1 00 pg/mL) for selection of transfonned cells. For 

colony hybridization, 80 pL of undiluted cells were plated onto each of three LB plus 

arnpicilih plates to generate approximately 1,000 CFU per plate. 

 colon^ lifts 

Bacterial colonies carrying the P. putida GR12-2 genomic library were transferred 

fkom agar plates to nylon membranes in order to screen for the clone carrying the 

indolepyruvate decarboxylase (ipdc) gew. Hybondm-N nylon membrane disks were cut just 

smaller than the plate, wetted with distilled, deionized water, and autoclaved between two 

pieces of Whatman 3MM paper wrapped in alumlliium foil. Under aseptic conditions, a disk 

was carefüily placed ont0 the surface of pre-cooled (4OC, 30 min) colonies on an agar plate, 

k ing  cateful to avoid air bubbles and to avoid moving the membrane once it had been 

applied. The membrane was marked in three places using a p e n d  in order to later orient the 

membrane to the plate to identify positive colonies. After approximately 1 min, the 

membrane was carefully removed nom the agar plate and blotted briefly, colony side up, on 

dry Whatman 3 MM paper. Keeping the colony side up, the membrane was placed for 

15 min on two layers of Whatman 3 MM paper pre-soaked in denaturation solution (0.5 N 

NaOH; 1.5 M NaCl; prepared fresh). The membrane was then transferred to two layers of 

Whatman 3 MM paper pre-soaked in neutralization solution (1 .O M Tris-HC1, pH 7.5; 1.5 M 

NaCl) for 15 min, and finally, to two layers of Whatman 3 MM paper satunrted with 2X SSC 

b a e r  (prepared fiom 20X SSC (0.3 mM NaCl; 30 mM sodium citrate, pH 7.0)) for 10 min. 

The membrane was then placed colony side up on a piece of dry Whatman 3 MM papez and, 

while still damp, exposed to 150 mJoules of W light in a GS Genelinkerm W chamber 

(Bio-Rad) to fix the DNA to the membrane. 



Cellular protein was digested by pipening 750 pL of proteinase K (2 mg/mL in 2X 

SSC buffer) over the entire sudace of each membrane, which were then wrapped in plastic 

wrap and incubated at 37°C for 1 h. To remove cellular clebns, each membrane was blotted 

with a piece of Whatman 3 MM paper, fully wetted with distilled, deionized water, by 

applying pressure by rolling a bottle across the paper. This process was repeated several 

times, using fresh pieces of wetted 3 MM paper, until debns appeared to be completely 

removed. 

Isolation and purification of probe fragment 

The ipdc gene isolated fiom Enterobacter cloacue BP FERM-1529 (Koga et al., 

1991) was used as a DNA hybndization probe and was kindly provided by Dr. Jinichiro 

Koga of Meiji Seika Kaisha, Ltd. (Saitama, Japan) on plasmid pIP27 as a 2.0 kb BamHI 

fragment. This plasmid was maintained in E. coli D H S a  fo llowing CaClz-mediated 

transformation and selection on LB plus ampicillin (1 00 pg/mL). 

Approximately 15 pg of plasmid pIP27 DNA were digested simultaneously with Pst1 

(1 5 U; Gibco BRL) and BamHI (1 5 U; Gibco BRL) in a final volume of 60 pL 1X OPA 

b a e r  at 37OC for 1 h. The digestion reaction was stopped with 2 pL 0.5 M EDTA and 

12 pL of gel loading bufEer (50% glycerol; 0.25% bromophenol blue; in distilled water). The 

products of two such digestions were combined, yielding a total volume of approximately 

1 50 PL. Fifty pL were then loaded into each of three lanes in an 1 1 x 14 cm 0.7% low- 

melting-temperature agarose (Gibco BRL) gel and electrophoresed at 80 V for approximately 

2.5 h at 4OC. While illurninated under W light, the 1.7 kb PstI-BumHI hgments were cut 

fiom the gel using a scaipel and combined in a 12 mL plastic tube. 

Gene Clean II@@, a DNA purification kit purchased fiom BiolOl, Inc. (La Jolla, CA, 



USA), was used to punfy the probe hgments fiom the surroundhg agarose gel. The tube 

containing the probe hgments was incubated in a 5S°C water bath until the agarose gel was 

melted, and then 0.5 volumes of TBE modifierm and 4.5 volumes of Na1 were added and the 

tubes were retumed to the water bath for an additional 5 min. Ten pL of GLASSMILK@ 

were mixed with the DNA solution and stored on ice, with penodic mixing, for 5 min to 

allow the DNA to bind to the silica matrix. The DNNGLASSMILKO composite was 

recovered by pelleting in an IEC HN-S centrifuge at approximately 1,500 x g for 5 sec at 

4"C, and the resulting pellet was washed by resuspension in 500 pL of New Wash b s e r  (a 

specially formulated solution containing NaCl, Tris, EDTA and ethanol; prepared by Bi01 

10 1, Inc.) followed by recentrifugation. A second resuspension in 500 pL of New Wash 

b a e r  was transferred to a 1.5 rnL microcentrifuge tube before continuing with the next 

centrifùgation step. 

Mer a total of three washes in New Wash buffer, DNA was eluted into 5 pL of TE 

buffer by incubating in a 5S°C water bath for 3 min. A brief spin at room temperature for 

30 sec in an Eppendorf centrifuge separated the GLASSMILKm particles fiom the DNA, and 

the supematant containing the DNA was transferred to a new microcentrifuge tube. Another 

5 pL aliquot of TE bmer  was added to the remaining pellet to extract any residual DNA and 

after centrifugation the supernatant was combined with that fiom the fist extraction. 

Labeiinn the  robe 

The protocol recommended by Boehringer Mannheim (now Roche Diagnostics) in 

their DIG DNA Labeling and Detection Kit was followed for tagging the purified PstI- 

BamHI probe f'ragment with digoxigenin (DIG). A 10 pL diquot of template DNA (the 

1.7 kb PstI-BamHI ipdc fiagrnent prepared above) was diluted to a total volume of 15 PL 



with TE buffer, and then denatured by boiling for 10 min in a water bath and immediately 

chilling in ice-water. While on ice, 2 PL of hexanucleotide reaction mix, 2 pL of dNTP 

labeling mixture (1 mM dATP; 1 mM dCTP; 1 mM dGTP; 0.65 mM d m ;  0.35 mM DIG- 

11-dUTP (digoxygenin linked to the deoxyuridine nucleotide via a carbon chain); pH 7.5) 

and 1 pL of Kienow enzyme (2 UfpL; labeling grade fiom E. coli) were added and gently 

mixed. Incorporation of DIG molecules into the newly synthesized complementary DNA 

strands continued for 16 hours in a 37OC water bath and then the reaction was stopped with 

1 PL of O S  M EDTA. Labeled DNA was collected by adding 2.5 pL of 4 M LiCl and 75 pL 

of ice-cold absolute ethanol and leaving the mixture for 30 min at -70°C before 

microcentrifuging for 15 min at 4OC. AAer a wash with 50 pL of ice-cold 70% ethanol, and a 

10 min spin at 4OC, the pellet was dned under vacuum. Subsequently, the DNA was 

dissolved in 20 pl of TE bufTer containhg 0.1 % SDS by heating to 37OC for 5 min to help 

dissolve the somewhat insoluble DIG molecules. 

To estimate probe yield, DIG-labeled, linearized pBR328 (control DNA supplied with 

the DIG DNA Labeling and Detection kit) of known concentration was used for cornparison. 

Control DNA was sequentially diluted to the following concentrations (pg/pL): 1000, 100, 

10, 1, 0.1, and 1 pL of each dilution was spotted ont0 a small piece of Hybondm-N nylon 

membrane. A 1 0-fold serial dilution in TE b a e r  (2 pl in 20 PL) was also prepared for the 

labeled probe to a maximum dilution of 1 : 10,000. Aliquots of 1 PL fiom each dilution were 

applied and then fixed to the membrane by exposure to 150 mJoules of W light. The 

membrane was immersed briefly in 20 mL of maleic acid bufEer (0.1 M mdeic acid; 0.15 M 

NaCl; pH 7.5) and then incubated in 20 mL blocking buffer (1% w/v blocking reagent 

consisting of proteolytic hgments of casein dissolved in maleic acid buffer) for 10 min at 



rwm temperature with gentle agitation (60 rpm). The blocking solution was replaced with 

20 mL of blocking buffer containing sheep antiDIG Fab fiagrnents conjugated to alkaline 

phosphatase (diluted 1:10,000 nom a 750 U/mL stock), incubated as above for 10 min, and 

then washed with 20 mL maieic acid buEer containing 0.3% (v/v) Tweed@ 20 for 10 min. 

The membrane was transferred to a 4" x 6" KAPAK heat sealable pouch (Fisher Scientific) 

containing 20 mL maleic acid bufEer for a second 10 min wash. To adjust the pH to a level 

optimal for the anti-DIG/alkaline phosphatase detection reaction, the membrane was soaked 

for 5 min in 20 mL detection buffer (0.1 M Tris; 0.1 M NaCl; 50 m M  MgC12; pH 9.5) prior 

to addition of the color development solution, which was prepared fkesh by adding 45 pL of 

nitro blue tetrazoliurn salt (NBT; 75 rng/mL in 70% dimethylformamide) and 35 pL of 

5 -bromo4chloro-3-indoly l phosphate toluidinium salt (BCIP, also known as X-phosphate; 

50 mg/mL in 100% dimethylformamide) to 10 mL of detection buffer. The color was 

developed in the dark for 15 min and the probe concentration was estimated by comparing 

spot intensities with those for the labeled control DNA dilutions. 

Hvbridization 

To prevent non-specific binding of the probes, three membranes were placed in a 6 3" 

x 8" KAPAK heat sealable bag and incubated in 60 mL prehybridization solution (5X SSC 

buffer (prepared fiom 20X SSC: 3 M NaCl; 0.3 M sodium citrate, pH 7.0); 0.1 % (w/v) 

N-laurylsarcoshe; 0.02% (w/v) SDS; 1% (wlv) blocking reagent dissolved in maleic acid; 

pre-warmed to 68OC) for 2 h with gentle agitation (80 rpm) at 68'C. The DIG-labeled ipdc 

probe, descnbed above, was prepared for hyridization by boiling for 10 min, immediately 

immersing into ice-water, and then diluting into 5 mL of pre-warmed (68OC) prehybridization 

bufEer for a fmd concentration of approxirnately 3.5 ng/mL. Where probes were re-used, 



they were boiled for 10 min, rapidly cooled in ice-water, and then added directly to the 

membranes. The membranes were incubated in the b&er containing the probe for 17 h at 

68OC while shaking gently . 
AAer hybndization, the probe solution was poured off into a 15 mL polypropylene 

tube and stored at -20°C for subsequent re-use. The membranes were subjected to a series of 

high stringency washes as follows: two washes with 60 mL 2X SSC/O.l% SDS at room 

temperature for 5 min, followed by two washes with 60 mL 0.5X SSC/O. 1 % SDS at 68°C for 

IS min. 

Detection of mobe hvbndizaîion 

Binding of DIG-labeled probes to complementary sequences on the membranes was 

detected immunologically using anti-DIG antibodies coupled to an enzyme that, in the 

presence of an appropnate substrate, yields a characteristic colorimetnc response. M e r  the 

washes indicated above, residual SDS was removed fiom the membranes by briefly k i n g  

them in 50 mL maleic acid buffer. To prevent non-specific binding of the antibody, the 

membranes were blocked with 50 mL 1% (w/v) blocking reagent in maleic acid bufXer in a 

new KAPAK pouch for 1 h at room temperature while rotating at 60 rpm. The blocking 

buffer was replaced with a 15,000 dilution of anti-DIG-alkaline phosphatase conjugate, 

prepared immediately before use by diluting 8 pL stock antibody (750 U/mL) in 40 mL 

blocking buffer, and the membranes were gently agitated for 30 min at room temperature. 

Two washes of 15 min each in 50 mL maieic acid buffer containing 0.3% (vh) TweenO 20 

followed; before each wash the membranes were transferred to a new Petri dish. 

The membranes were equilibrated to pH 9.5 in detection buffer (described above) for 

5 min before addition of 4 mL color substrate solution (prepared by diluting 54 PL NBT and 



42 pL BCIP stock solutions in 12 mL detection buffer) to each membrane separately in a 

heat sealable bag. The color was developed in the dark for 30-45 min until spots of sufficient 

intensity were observed, at which time the reaction was terminated by washing the 

membranes for 5 min with 50 mL water. Results were documented by photography. 

Isolation of ~lasmids fiom positive clones 

Plasrnids were routinely isolated fiom their host E. coli cells by modification of the 

alkaiine lysis method described by Sambrook et al. (1989) and subsequent purification using 

polyethylene glycol (PEG). Five mL LB containing an appropriate antibiotic (e.g., 

ampicillin, 100 pg/mL; tetracycline, 10 pg/mL; kanamycin, 50 &mL) were inoculated with 

a single bacterial colony and grown ovemight in a 37'C water bath with gentle shaking 

(300 rpm). The next morning, cells were collected fiom 1.5 mL of overnight culture by 

centrifugation at full speed in an Eppendorf Mode1 5414 microcentrifuge for 1 min at room 

temperature. Afier decanting the supernatant, another 1.5 mL aliquot of overnight culture 

was added to the same tube and again centrifùged as above. In this way, cells fiom a total of 

4.5 mL of culture were collected in a single microcentrifuge tube. AAer the final 

centrifugation, the pellet was resuspended in 200 pL of GTE buffer (50 mM glucose; 25 m M  

Tris-Cl, pH 8.0; 10 mM EDTA, pH 8.0) and then lyzed with 300 PL of fieshly prepared 

0.2 M NaOH plus 1% SDS by gently mixing and incubating on ice for 5 min. The solution 

was neutralized with 300 pL of 3.0 M potassium acetate, pH 4.8, mixed by inversion, and 

again placed on ice for 5 min. Plasmid DNA was separated h m  cellular debris by spinning 

at full speed in an Eppendod microcentrifuge for 10 min at room temperature. The 

supernatant was transferred to a 1.5 mL screw cap microfùge tube and treated with RNase A 

(20 p g / d )  for 20 min at 37OC, &et which the DNA was extracted at least twice with 



phenol:chloroform:isoamylalcohol (24:24:1). Each tirne the solution was mixed well by 

inverting the tube several times and the phases separated by microcentrifugation at room 

temperature for 1 min. The plasmid DNA was collected by precipitation for 1 h at -20°C 

with an equal volume of 100% isopropanol followed by centrifugation at 4°C for 15 min. 

The resultant pellet was rinsed with 500 pi, of 70% ethanol, air dried, and then resuspended 

in 32 pL of distille& deionized water. The plasmid DNA was punfied by precipitation with 

8.0 pL of 4 M NaCl and 40 PL of 13% PEG 4000 on ice for 20 min and then collected by 

centrifugation for 15 min at 4'C. Once again the pellet was rinsed with 500 pL of 70% 

ethanol and air dried, this thne resuspending in 20 pL of water. Plasmid DNA was stored at - 
20°C until required. 

Quantification of DNA me~arations 

To estimate the quantity of DNA present, 0.5 pL of undiluted and diluted (HO) 

plasmid preparation were spotted onto the surface of a small piece of 1% agarose containing 

0.5 pg/rnL ethidium brornide. Around these were also spotted 0.5 pL aliquots of pBR.328 

DNA (Roche Diagnostics) of the following known concentrations (ng/pL): 200, 150, 100, 

50, and 25. After allowing the DNA to bind to the ethidium bromide for 1 h at room 

temperature, the samples were viewed under W light and the intensity of fluorescence of the 

samples of unknown concentration were compared to the intensities of the DNA of known 

concentration. 

Analvsis of dasrnids bv restriction enzyme dioestion 

The insert in the plasmid fiom the positive clone was mapped by restriction enzyme 

digestion. Approximately 200 ng of plasmid DNA were digested with each of the following 



restriction endonucleases, either alone for single digestions or with a combination of two 

restriction endonucleases for double digestions: BomHI (Gibco BU), EcolU (Roche 

Diagnostics), HindIII (Gibco BRL) and Scal (Roche Diagnostics). Plasmid DNA was added 

to a volume of sterile distilled water calculated such that the fmal reaction volume, after 

addition of al1 reagents, would be 20 pL. Two pL of appropnate restriction enzyme 

digestion buffer (fiom a 10X stock) were added, foilowed by 5 U of restriction enzyme. The 

mixtures were incubated in a 37°C water bath for 1 h or ovemight and then the reaction was 

stopped by addition of 0.5 M EDTA to a finai concentration of 10 mM. 

Fragment sizes were determined by cornparison of migration distance with known 

DNA markers (usuaily bactenophage I DNA digested with HindIII (MBI Fermentas) or 1 kb 

ladder (MBI Fermentas)) following agarose gel electrophoresis. Four pL of loading buffer 

was mixed with 20 pi., of digestion mix, and 12 pL was loaded into each well of a 0.7-1 .O YO 

(depending on the expected fragment size) agarose gel prepared in OSX TBE buffer. 

Plasmid DNA was generally electrophoresced at 80- 120 V. Staining with ethidium bromide 

was either through addition of 0.5 pg/mL ethidium bromide to the agarose gel or after 

electrophoresis. In the latter case, 10 pL of ethidium bromide (10 mg/mL) were added to 

120 mL TE b a e r  in a large disposable weigh boat. The gel was carefülly irnmersed in this 

solution for 10 min and then rinsed several times with water to remove residual stain. 

Anahsis of ~iasrnids bv Southem hvbridization 

Plasmid DNA fiom the positive clone was digested with BomHI and HindIII as 

described above and then transferred to a nylon membrane by capillary action (Southern, 

1975; Sambrook et al., 1989). After electrophoresis in a 0.8% agarose gel, the hgmented 

plasmid DNA was denatured to its single stranded nom by submersing the gel in 1.5 M 



NaCl, 0.5 M NaOH for 45 min while gently agitating on an orbital shaker &ab-line) at 

60 rpm. The gel was then neutralized by soaking in 1M Tris, pH 8.0, and 1.5 M NaCl for 

45 min at room temperature, again with gentle shaking; the neutralization solution was 

changed once afkr 30 min. 

A support for the gel was fashioned by inverting a gel casting tray, wrapped with a 

piece of Whatman 3MM paper, in a glass baking dish. Transfer b e e r  (20X SSC) was 

poured into the reservoir dish until the level of the bufTer was just below the top of the 

support. After allowing the 3MM paper to become saturated with the transfer buffet, and 

removing any air bubbles present under the paper by rolling a test tube over the surface, the 

neutralized gel was inverted and placed on the wet 3MM paper in the center of the support. 

A piece of Hybondm-N nylon membrane (Amersham Life Sciences), cut just larger than the 

gel and wetted fnst in distilled water before saturating with 20X SSC, was positioned 

carefully over the gel and then overlaid with two pieces of 3MM paper, cut to the same size 

as the gel and soaked in 2X SSC. The orientation of the nylon membrane with respect to the 

gel was marked by clipping the bottom left hand corner fkom both. Each time a layer of this 

assemblage was added, trapped air bubbles were displaced by carefùlly rolling a test tube 

across the uppermost layer. An 8 cm stack of papa towels, cut only slightly smaller than the 

3MM paper covering the membrane, was placed on top of the 3MM papers to draw the 

transfer bufZer up through the gel and membrane. The whole apparatus was covered in 

plastic wrap to minimize evaporation and then topped with a g las  plate and weighted down 

with a weight of at least 500 g. 

Following transfer of the DNA for 19 h at room temperature, the nylon membrane 

was retrieved (the positions of the gel slots were marked with a pend)  and soaked in 



6X SSC for 5 min at room temperature. The membrane was then removed nom this solution, 

placed DNA side up on a piece of dry 3MM paper and, while still damp, exposed to 150 

mJoules of W light in a GS Genelinker- UV chamber to fix the DNA to the membrane. 

The air-dried membrane was stored between two sheets of 3MM paper in an envelope at 

room temperature. 

Hybrïdization with the recycled ipdc probe nom the colony hybridization, and 

detection of bomd probe were performed as described above for colony hybridization; 

volumes of the various buffers were adjusted to levels better suited to a smaller membrane, 

usually 20 mL. For detecting probes bound to Southern blots, membranes were blocked with 

blocking reagent overnight prïor to addition of anti-DIG antibodies, rather than for 1 h as for 

detection of bound probes following colony hybridization. In addition, a more dilute 

concentration of anti-DIG-alkaline phosphate conjugate was used, 15,000 for Southem blots 

compared 1 : 10,000 for colony blots. Genedly, a signal of sufficient intensity, indicating 

hybridization of the probe to a complementary sequence, was seen d e r  incubation of the 

membrane in the dark for 15-30 min. 

Seauence analvsis of insert fiom msitive clone 

Restriction enzyme digestion and Southem hybridization of the BamHI-digested 

2.7 kb insert in the plasmid fiom the positive clone revealed that the ipdc gene was carried on 

a 1.1 kb BamHI fragment. This fiagrnent was therefore subcloned into the BamHI site of 

pUC18 and introduced into E. coli DHSa. Restriction enzyme digestion of the plasmid, 

purification of the ipdc fragment fiom an agarose gel by Gene Clean II@, ligation with 

pUC18, and preparation and transformation of CaC12-competent cells were as described 

above. Colonies carrying plasmid pUC18 with an insert were selected by insertional 



inactivation of the E. coli lac2 gene on pUC18 (Sambrook et al., 1989). To a pre-made LB 

agar plate containing an appropriate antibiotic, 40 pL of a stock solution of X-Ga1 

(20 mg/mL in dimethylformamide; MBI Fermentas) and 4 PL of a stock solution of 

isopropylthio-PD-galactoside (IPTG; 200 mg/mL in water; Bio-Rad) were added and spread 

over the entire surface using a sterile glass spreader. The plate was incubated at 37°C for 

approximately 3 h in order to allow absorption of the X-Ga1 and IPTG, and evaporation of 

the dimethylformamide. After inoculating the plate with 100 pL of transformation mixture 

and incubating overnight at 37"C, both white and blue colonies were seen on the plate; 

storing the plate for several hours at 4°C allowed the blue coior to develop fully. White 

colonies indicated plasmids with the IacZ gene dimpted by an inserted hgment (designated 

E. coli DHSa/pUCIPDC), while blue colonies contained a fiuictional lacZ gene and therefore 

active &galactosidase capable of hydrolyzing X-Gal. 

In order to obtain enough plasmid DNA in a purifïed form required for sequencing of 

the inserted f'ragment, plasmid DNA was isolated using a large-scale aikaline lysis method 

combined with a polyethylene glycol purification step outlined by Sambrook et al. (1 989). A 

culture of E. coli DHSa/pUCIPDC was grown ovemight fiom a single colony in 5 mL LB 

plus ampicillin in a shaking water bath at 37°C. From this culture, 2 mL was inoculated into 

500 mL of pre-warmed (37°C) LB containing ampicillin and again incubated overnight in a 

shaking (300 rpm) water bath at 37'C. Bacterial cells were harvested by centrifugation in a 

Sorvall GSA rotor at 5,000 x g for 15 min at 4°C and resuspended in 100 mL of ice-cold STE 

buffer (0.1 M NaCl; 10 mM Tris-Cl, pH 8.0; 1 m M  EDTA, pH 8.0). Cells were again 

coliected by centrifugation as described above and this time resuspended in 10 mL of GTE 

buffer. Bacterial lysis was accomplished by addition of 1 mL fieshly prepared lysozyme 



(10 mg/mL in 10 mM Tris-Cl, pH 8.0; Roche Diagnostics), followed by 20 mL of 0.2 N 

NaOWl% SDS, again prepared fiesh. Several inversions of the tube allowed the contents to 

mix gently and the solution was then left at room temperature for 10 min. Following this, 

15 mL of ice-cold 3.0 M potassium acetate, pH 4.8, was added and the mixture stored on ice 

for 10 min. Cellular debns was removed fkom the bacterial lysate by centrifugation in a 

Sorvall GSA rotor at 2,600 x g and 4'C for 15 rnin. The supernatant was passed through four 

layers of sterile cheesecloth, a 0.6 volume of 100% isopropanol was added to the filtrate, and 

DNA ailowed to precipitate for 1 h at room temperature. The plasmid DNA was collected by 

centrifugation in a Sorvall SS34 rotor (3,000 x g, 4'C, 20 min), rinsed with 70% ethanol and 

air dried before dissolving in 3 mL TE bufTer. 

High molecular weight RNA was removed nom the plasmid solution by precipitation 

with 3 mL of ice-cold 5 M LiCl in a 15 mL CorexTu tube followed by centrifugation in a 

Sorvall SS34 rotor at 1 2,000 x g for 1 0 min at 4'C. DNA was recovered, afler decanting the 

supernatant into a clean tube, by addition of an equal volume of 100% isopropanol, 

precipitating at room temperature for 15 min and then centrifbging as described above. The 

pellet was nnsed with 70% ethanol and allowed to air dry for several minutes before 

dissolving in 320 pL TE buffer containing 20 pg/mL RNase A for 30 min at room 

temperatwe. The DNA was precipitated with 80 pL of 4 M NaCl plus 400 pL of 13% PEG 

8000 (BDH) on ice for 20 rnin and then collected by centrifugation (full speed in Eppendorf 

Mode1 5414) for 5 min at 4'C. After dissolving the pellet in 400 PL of TE buffer, the 

solution was extracted once each with phenol, phenol:chloroform:isoarnylalcohol, and 

chloroform:isoamylalcohol as previously described. DNA was again recovered nom the 

aqueous phase by addition of 0.1 volume of 3 M sodium acetate, pH 8.0, and 2 volumes of 



ice-cold 1 0 %  ethanol, storing at m m  temperature for 30 min, and centrifùging at fidl speed 

for 5 min at 4'C. The resulting pellet was N w d  with 200 pL of 70% ethanol, dried under 

vacuum for 10 min, and finally resuspended in 50 pL of TE buffer. 

Because the plasmid preparation was found to be contaminated with residual RNA 

that might affect sequencing, the DNA preparation was again treated with lithium chloride to 

rernove RNA (Sambrook et al., 1989). To the plasmid DNA, 300 PL of ice-cold 4 M LiCl 

was added and left at room temperature for 30 min. The mixture was then centrifuged at 

13,000 rpm for 10 min at 4'C in a microcentrifuge, and the supernatant removed. The pellet 

was rinsed once with 70% ethanol, recentrifbged as above, dried, and ka l ly  resuspended in 

20 pL of water. 

Six pg of plasmid DNA dissolved in 30 pL of sterile, distilled, deionized water were 

sent to MOBIX (McMaster University, Hamilton, Ontario) for sequencing of the insert. Ml  3 

universal fonvard and reverse primers were used to sequence approximately 400 bp of the 5' 

end of each of the coding and non-coding strands. The initial seqwnce was analyzed for 

sirnilarity to the probe ipdc sequence fiom E. cZoucae FERM BP-1529 using ALIGN, an 

algorithm that aligns and compares two sequences, that can be found at the website for 

GeneS trearn (http://vega.igh.cnrs. fi). 

Polvmerase Chain Reaction 

The following PCR primers were designed h m  the published E. cloacae FERM BP- 

1529 igdc gene (Koga et al., 1991a) to span the entire open reading f.i=ame: forward primer, 5' 

GAAGGATCCCTGTTATGCGAACC 3'; reverse primer, 5' CTGGGGATCCGACAAGT- 

AATCAGGC 3' (MOBIX, McMaster University, Hamilton, Ontario). A BumHI restriction 

site (underiined) was hcorporated into the 5' end of both the foward and reverse primers in 



order to facilitate subsequent subcloning of PCR products. These primers were used to 

ampli@ the ipdc gene fkom lysed cells of P. putida GRl2-2 and fkom purified P. putidu 

GR12-2 genomic DNA. The PCR reaction was also pefiormed using pIP27 (that carries the 

ipdc sequence from E. cloacae FERM BP-1529) and water as templates, for a positive and 

negative control, respectively. 

On ice, in a sterile 0.5 mL microcentrifbge tube, îhe following were mixed: dNTPs, 

200 FM each (5 pL of a 2 mM stock; Roche Diagnostics); forward and reverse primers, 

300 n M  each (5 pL each fkom a 3 ph4 stock in 0.1 TE buffer, pH 8.0); template DNA, 100 ng 

genomic DNA or 100 pg plasmid DNA; and stede water to a volume of 25 PL. The 

polymerase was prepared in a separate tube, on ice, by adding 3.5 U of Expand High Fidelity 

PCR System (Roche Diagnostics), containing a mixture of Taq polymerase and Pwo 

polymerase, to Expand High Fidelity PCR b a e r  with 15 mM MgCl2 diluted to a 1X 

concentration in sterile water. 

Twenty-five PL of the polymerase mixture were added to each of the tubes containing 

template DNA, mixed bnefly by vortexkg, and then centrifüged for a few seconds at 4'C to 

collect droplets nom the side of the tube. The reaction mixture was overlaid with 30 pL of 

mineral oil (white, light; Mallinckrodt) to prevent evaporation, and incubated in a Perkin 

Elmer Cetus DNA Thermal Cycler as follows: one cycle of 94'C for 5 min; 30 cycles of 

94'C for 30 s, SO°C for 30 s, 68'C for 2 min; and one cycle of 68'C for 2 min. PCR products 

were visuaiized by adding 3 pL of loading buffer to 15 pL of PCR reaction mixture and 

running on a 0.9% agarose gel, as described above. 

Where whole cells were used as a template for PCR, the sarne procedure was 

followed except that al1 reagents, including the enzyme solution, were mixed on ice prior to 



adcling the template. Using a steriIe toothpick, a smail amount of a bacterial colony was 

aseptically transferred fiom an agar plate directly into the PCR reaction miutUrp. Tweenm 20 

(nom a fieshly prepared 10% v/v stock solution) was added to a nnal concentration of 0.5% 

(v/v) before the mixture was overlaid with mineral oil and incubated using the same cycles 

described above for purified DNA templates. 

Sequence analvsis of PCR ~roducts 

PCR products were purified for sequencing by extraction with pheno1:chioroform. 

The solution containing the PCR products was removed fiom below the mineral oil layer 

using a pipette and transferred to a clean 1.5 mL microfbge tube. Ten pL of 3 M sodium 

acetate, pH 8.0, was added foilowed by stenle water to a fuial volume of 100 pL. DNA was 

extracted twice with 100 pL of phenol:chloroform, precipitated with an equal volume of 

isopropanol and rinsed with 70% ethanol before final resuspension in 10 pL of sterile water. 

After quantification of DNA using the agarose plate method outlined above, the PCR 

products were ligated with pUC18 following digestion of both with BamHI to generate 

pIPD2, and then transformed into E. coli DHSa as previously described. PCR products were 

also diluted to a final concentration of 500 ng in 20 JAL of water and sent to MOBIX 

(McMaster University, Hamilton, Ontario) for determination of the nucleotide sequence. 

Primers used for the initial sequencing reactions were the same as those used to 

ampli@ the sequence via PCR. Subsequent primers were designed from the retumed 

sequences, until the complete sequence was obtained for both the coding and non-coding 

strands: for the second sequencing reactions, forward primer 5' CGCTCTCACTCATA- 

AGCAGGC 3', reverse primer 5' CTGGGTAAGCGAACCGTCCG 3'; for the third 

sequencing reactions, forward primer 5 ' CAGGGAAC ATCGGCCTTCG 3 ' , reverse primer 



5' GCCACATCGGCGGGTAACATC 3' (al1 synthesized by MOBM, McMaster University, 

Hamilton, Ontario). The sequence (GenBank accession number AF285632) was analyzed 

using BLAST (Altschul et al., 1997), found at the website for the National Center for 

Biotechnology Information (NCBI; http ://www.ncbi .nlm.nih.gov), to find similar nucleotide 

sequences of known identity in the databases, and by multiple alignment with known i'pdc 

sequences available fiom GenBank (at NCBI) using the algorithm ClustalW, available fkom 

the website of the Europeaa Bioinfonnatics Institute GMBL; http://www.ebi.ac.uk). 

Isolation of the ipdc Gene Promoter Sequence 

Inverse PCR 

Two pg of P. putida GR12-2 genomic DNA was digested overnight at 37'C with 5 U 

u n 1  (Gibco BRL) in a total volume of 20 )IL 1X OPA buffer (Pharmacia) diluted in water. 

KpnI was chosen for genomic digestion because it would generate fairly large genomic 

fragments with cohesive ends that are relatively easy to ligate, and wouid cut once within the 

ipdc gene, at a known site near the 3' end, to avoid isolation of the 3' flanking region. The 

digestion reaction was stopped by addition of 1 pL of 0.5 M EDTA, and the DNA was 

extnicted once with pheno1:chloroform and once with chloroform before addition to the final 

aqueous phase of 10 JJL 3 rnM sodium acetate, pH 8.0, and sterile water to 100 pL. 

Following precipitation with isopropanol and rinsing with 70% ethanol, the pellet was air- 

dned and resuspended in 34 pL of water. 

To circularize the KpnI fkagments, 4 pL of 10X ligation buffer (MBI Fermentas) and 

2 pL of T4 DNA ligase (4 U; ME31 Fermentas) were added to 34 pL of purified digestion 

products. Ligation was allowed to proceed ovemight at 16'C before heat inactivation of the 



ligase at 65'C for 15 min. 

To ampl* the region upstream of the ipdc gene, the following PCR primers were 

designed to bind within the ipdc sequence, approximately 50 bp fiom each end; however, 

rather than ampli@ the ipdc gene, the primers would initiate DNA synthesis in the opposite 

direction: forward primer (in this case, complementary to the 5' end of the non-coding sirand 

just upstream of the KpnI recognition site), 5' CAAACTGGCGATGAGCAAACG 3'; 

reverse primer (complementary to a region near the 5' end of the coding sequence), 

5' GACGGTCCAGCAGGTAATCG 3' (MOBIX, McMaster University, Hamilton, Ontario). 

Twenty pL of inactivated ligation mixture were mixed on ice with 5 pL of each primer (nom 

a 3 p M  stock in 0.1X TE buffer) and 5 PL dNTPs (fkom a 2 rnM stock; Roche Diagnostics). 

Expand High Fidelity PCR enzyme was prepared as before but with additional MgClz (3 pL 

per PCR reaction fiom a 25 rnM stock solution; Roche Diagnostics). PCR cycles were as 

previously described, except that annealing of the primers to the template was performed at 

53'C. 

Subclonine the iDdc u~strearn seauence 

Because Toq polymerase, a cornponent of the Expand High Fidelity PCR System 

used to ampliq the ipdc upstream sequence, generates a single deoxyadenosine overhang on 

the 5' ends of PCR products, subcloning of PCR products is facilitated by vectors which have 

compatible thymidine overhangs in their cloning sites. One such vector is pGEM0-T, 

available in the kit pGEM@-T Vector System (Promega). PCR products were purified by . 

pheno1:chloroform extraction as described above and resuspended in sterile water to a finai 

concentration of 5 ng/pL. Three pL (15 ng) PCR products were ligated to 1 pL (50 ng) 

pGEM@-T vector using 1 pL (3 U) T4 DNA ligase (Promega) in a total volume of 10 PL of 



1X Rapid Ligation Buf5er (Promega) diluted in sterile water. 

The reaction w-as incubated overnight at 4'C before transfonning E. coli Ml09 High 

Efficiency Competent CeUs (Promega) as foilows. Note that these cells were recommended 

and supplied with the pGEM0-T Vector System because ligation of fragments with a single 

base overhang is inefficient and a high transformation efficiency is necessary to obtain a 

reasonable number of transformed colonies. Competent cells were removed fkom storage at 

70'C and allowed to thaw on ice for about 5 min. Fifty pL of cens were gently mixed with 

2 pL of ligation mixture in a microcentfifuge tube and placed on ice for 20 min. The cells 

were subjected to a mild heat shock in a 42'C water bath for 45 sec and then returned to ice 

for 2 min. To allow the cells to recover and express antibiotic resistance genes, 950 pL of 

SOC medium were added and cells were incubated for 1.5 h in a 37°C water bath with gentle 

shaking. SOC medium was prepared as follows: Bacto-tryptone, 2g; Bacto-yeast extract, 

0.5 g; 1 M NaCl, 1 mL; 1 M KC1, 0.25 mL; were combined with 97 mL distilled deionized 

water and autoclaved. Once cooled, 1 mL 2 M glucose (filter sterilized) and 1 mL 2 M M ~ ~ +  

stock (MgC12-6H20, 20.33 g; MgS04-7Hz0, 24.65 g in 100 mL water, filter sterilized) were 

added aseptically; the final pH is 7.0. Cells (100 PL) were spread ont0 LB agar plates 

containing ampicillin, IPTG and X-Gd, prepared as previously described. Successfùi 

transformants were identified as white colonies resistance to ampicillin and confmed to 

carry a plasrnid of the appropriate size. 

Because the products of inverse PCR included part of the ipdc gene sequence, the 

positions of restriction enzyme recognition sites within the promoter sequence relative to the 

ipdc gene were known. Thus, it was possible to determine the orientation of the promoter 

fiagrnent inserted into pGEM9-T by the position of restriction enzyme recognition sites 



(e-g., an NcoI site) in the promoter region in relation to those on the vector (e.g., NcoI and 

ScaI). Knowledge of the orientation in pGEM@-T was important for subsequent subcloning 

of the promoter fragment into the reporter vector pQF7O in the proper orientation for 

transcription of the IuxAB gene carried on the vector. pGEM@-T carrying the promoter 

region was digested with 10 U Sua in 1 X BufEer H (Roche Diagnostics) for 1 h at 37'C. The 

digestion reaction was heat inactivated for 10 min at 65"C, and the sticky ends made blunt 

using the IUenow fragment of DNA polymerase 1 as follows. Two pL Klenow mix (5U 

Klenow polymerase in Klenow buffer; Promega) were added to 18 pL digestion mix and 

incubated at 37°C for 3 min. Then, 2 pL dNTPs (0.125 mM each, Promega) were added and 

the mixture again incubated, this tirne at 30'C for 10 min. The polymerase was inactivated 

by incubation at 65'C for 10 min and the mixture stored on ice until the DNA was extracted 

once each with pheno1:chloroform and chloroform, and precipitated with isopropanol as 

descnbed previously. Similarly, vector pQF70 (Farinha and Kropinski, 1990) was digested 

with 10 U HindIII (Roche Diagnostics) in 1 X Buffet B (Roche Diagnostics) for 1 h at 37'C, 

and then heat inactivated and treated with Klenow polymenw as above. 

The purified linear plasmids were then digested (separately) with 10 U of NcoI (ME31 

Fermentas) in 1X Y+ Tango buffer Fermentas) ovemight at 37'C. The 0.5 kb NcoI-San 

promoter fragment from pGEM@-T was recovered from a 0.9% (w/v) low-melting- 

temperature agarose (Gibco BRL) gel and purifîed as follows. The slices of agarose 

containing the desired hgments were melted in 5 volumes of 20 m M  Tri~Cl, pH 8.0, 1 m M  

EDTA, pH 8.0, for 5 min at 65°C. After cooling to room temperature, the DNA was 

extracted fkom the solution once each with phenol, phenol:chloroform, and chloroform, 

precipitated with 0.1 volume of 3 M sodium acetate, pH 8.0, and 1 volume of isopropanol as 



previously described, and finally, resuspended in 10 pL water. 

To insert the ipdc promoter into pQF7O (to create pQFPROM), 25 ng of the gel- 

purined NcoI-San promoter fiagrnent and 50 ng of pQF70, digested with HindIII and then 

NcoI, were &ed with 2 U T4 DNA ligase (Roche Diagnostics) in 1X ligation buffer (Roche 

Diagnostics) and 2 pL 50% PEG 4000 (MBI Fermentas) in a total reaction volume of 20 pL 

overnight at 14'C. The ligation mixture was heat inactivated at 65'C for 10 min and then 

used to transform CaC12-competent E. coli DHSa. Ampicillin-resistant transformants 

(selected on LB agar containing 100 pg/rnL ampicillin) were assayed for LuxAB activity, 

driven by the ipdc promoter, by spotting 5 pl, n-decyl aldehyde (Sigma) on the lid of the 

inverted agar plate on which the cells were cultured, and checking for light emission by eye 

in a dark room. 

To verifi that the region isolated by inverse PCR was indeed the region upstream of 

the ipdc gene, a 5' (forward) PCR primer was designed fiom the putative upstream sequence 

(5' CCCACATGGTATAACCCGCTTTGG 3') and a 3' (reverse) PCR primer fiom the 3' 

end of the ipdc structural gene (5' CTGGGGATCCGACAAGTAATCA-GGC 3') such that 

amplification of the P. putida GR12-2 genome would yield a single fragment that would 

include approximately 500 bp of the promoter region and the entire ipdc gene. To a 0.5 mL 

microcentrifuge tube containuig Ready-to-Go@ PCR beads (consisting of 1.5 U dehydrated 

Taq DNA polymerase, buffer (10 m M  TrisCl, pH 9.0; 50 m M  KCl; 1.5 mM MgC13, 

200 p M  each dNTP; and BSA; Amersham-Pharmacia), on ice, approximately 100 ng of 

genomic DNA, 300 nM of each primer, and stenle water to a total volume of 25 pL were 

added. M e r  vortexing to mix well, and centrifiging for about 5 sec to collect any droplets 

fiom the sides of the tube, the mixture was overlaid with 30 pL of mineral oil and then placed 



in PTC-100fM Themal Cycler (MJ Research) for amplification using the cycles previously 

described (Ta = 53'C). Confirmation that the amplified fragments contained the expected 

sequence was obtained by restriction enzyme mapping. 

Characterizrition of @dc Promoter Activity 

Introduction of DOFPROM-Kan into P. &da GR12-2 bv electrowration 

Because P. putida GR12-2 is somewhat resistant to ampicillin, it was necessary to 

insert the gene for kanamycin resistance into pQFPROM before introducing it into P. putida 

GR12-2. To this end, the 2.3 kb EcoRI fiagrnent carrying the kanamycin resistance gene was 

isolated from pHP45GKm (Fellay et al., 1987; Prentki and Krisch, 1984) and the ends made 

blunt by treatment with S1 nuclease as described below. Plasmid pQFPROM (200 ng) was 

digested with 10 U ?'vuII in 1X buffer M (Roche Diagnostics) ovemight at 37OC, extracted 

twice with 100 pL phenol:chioroform, precipitated with isopropanol, and resuspeaded in 

10 pL water. The linear plasmid (approx. 100 ng) was then ligated overnight with 100 ng of 

the kanamycin resistance gene with 8 U T4 DNA ligase (MBI Fermentas) and 2 pL PEG 

4000. The resultant plasmid, pQFPROM-Kan, was intitially introduced into CaC12- 

competent cells of E. coli DHSa, selected for LuxAB activity (Le., light production in the 

presence of n-decyl aldehyde) and insertion of the kanamycin resistance gene in LB medium 

plus kanamycin, and then introduced into P. puticla GR1 2-2 via electroporation. 

Electrocompetent cells of P. put ih GR12-2 were prepared by the method of Dower 

et al. (1988). A culture of P. putida GR1202 was grown overnight in 5 mL TSB at 2S0, and 

then 2.5 mL of the ovemight culture was transferred to 250 mL TSB and incubated again at 

25OC until the optical density at 600 nm reached 0.4. The culture was decanted into an ice- 



cold centrifuge bottîe and placed on ice for 10 min to chill. Cells were centrifuged in a 

Sorvall GSA rotor at 6,000 x g for 15 min at 4°C and resuspended in approximately 20 rnL 

ice-cold MilliQ water. Mer a second centrifugation, cells were again suspended in ice-cold 

MilliQ water, this tirne in a volume of approximately 100 mL. These two cycles of 

centrifugation and suspension in fmt a small volume of MilliQ water and then a larger 

volume were repeated once more. The cells were next resuspended in 5 mL ice-cold 10% 

glycerol and centrifuged in a Sorval SS34 rotor for 15 min at 6,000 x g and 4OC, before 

finally being resuspended in 800 pL ice-cold 10% glycerol. Aliquots (40 PL) were 

dispensed into chilled 0.5 mL microcentrifuge tubes and flash-fiozen in liquid nitrogen 

before k ing  stored at -70°C. 

Just pnor to electroporation, the cells were thawed on ice, and then pQFPROM-Kan 

(5 ng suspended in water) was added, mixed gently, and the mixture stored on ice for a few 

minutes before king transferred to a chilled cuvette. Air bubbles were removed by gently 

tapping the cuvette and any moisture on the sides of the tube was removed. The cuvette was 

placed in the chilled cuvette holder and then in a Bio-Rad Gene PulserTM. The cells were 

pulsed under the foilowing conditions: 2.5 KV, 25 pF capacitance, and 200 ohms. 

Immediately following electr~poration~ 1 mL SOC medium was added to the cells and mixed 

by pipening up and down. The cells were transferred to a sterile 1.5 mL microcentrifuge 

tube and incubated at 2S°C for 1 h with gentle shaking. P. putida GR1202 cells carrying 

pQFPROM-Kan were selected by plating 100 pL of the transformation mixture on Tryptic 

Soy Agar (TSA) containhg kanamycin (50 pg/mL). 

Control cells P. putida GR12-2 carrying pQF7O-Kan, which is similar to pQFPROM- 

Kan except that it does not contain the ipdc promoter, were prepared similarly. 



Introduction of m S  into P. mti& GR12-UDOFPROM-Kan b~ tri~arental matin& 

To detennine whether the stationary phase sigma factor RpoS (a") regulates 

transcription fiom the ipde promoter, the rpoS gene nom Pseudomonasfluorescens Pf-5, 

c h e d  on plasmid pJEL5649 (Samiquet et al., 1995) kindly provided by Dr. J. Loper (USDA 

Agricultural Research Service, Corvallis, Oregon), was transferred fiom E. coli HB 1 O 1 to 

P. putida GR12-2/pQFPROM-Kan by triparental mating using E. coli HB 10 1 /pRK20 13 

(Ditta et al., 1980) as a helper. Upregulation of the ipdc promoter by constitutively produced 

RpoS could then be measured by assaying for increased LuxAB activity. P. putida 

GR12-2/pQF70-Kan was similarly transformed with pJEL5649 and used as a negative 

control. E. coli HB 1 0 1 /pJEL5649 (donor), E. coli HB 10 1/pRK20 1 3 (helper), and either 

P. putida GR12-UpQF70-Kan or P. putida GR1 2-2/pQFPROM-Kan (recipients) were gmwn 

oveniight in 5 mL rich medium (LB plus 10 pg/mL tetracycline for donor cells, LB plus 

50 pg!rnL kanarnycin for helper cells, and TSB plus 50 pghL kaoamycin for recipient cells) 

at 37OC for El coli cells and 27OC for P. puridu GR12-2. Cells were washed once with 0.85% 

NaCl to remove antibiotics and then resuspended in 5 mL Nutrient Broth (8 g/L; D i . ) .  The 

optical density of al1 of the cultures at 600 nm was adjusted to 1.2 with Nutrient Broth and 

then 1 mL donor cells was mixed with 1 mL helper cells and 5 mL recipient cells. Vacuum 

filtration was used to concentrate the mixed cells on a Millipore filter (0.45 p M  

nitrocellulose) which was then placed with the cells facing up on Nutrient Agar (23 g/L; 

Difco) and incubated at 30°C for 24 h to allow rnating and homologous recombination to 

occur. To collect the cells, the filter was transferred to 1 mL 0.85% NaCl and incubated at 

27OC for 1 h with gentle shaking. P. putida GR12-2 transconjugants were selected by 

spreading 100 pL of the collected cells onto DF salts minimal agar (on which E. coli cannot 



grow) supplemented with tetracycline (10 &mL) to select for the presence of pJEL5649 and 

kanamycin (50 pg/mL). to select for the presence of pQF70-Kan or pQFPROM-Kan. To 

ensure that selected colonies were indeed P. putida GR12-2, these were subcultured on 

Simmon's Citrate agar (24.2 g/L; Difco) (on which E. coli cannot grow) containing 

tetracycline and kanamycin. That these cells carried both pJEL5649 and pQF70-Kan or 

pQFPROM-Kan was verified by isolation and restriction enzyme digestion of plasmids h m  

selected transconjugants. Transconjugants carrying both plasmids were designated P. putida 

GR1 2-2IpQF70-KanlpRpoS and P. putida GR1 2-UpQFPROM-KadpRpoS. 

Ouantification of ~romoter activitv in the mesence of -tophan 

In addition to visuaiization by eye in the presence of n-decyl aidehyde as descnbed 

above, Lux activity driven by the ipdE promoter in P. pufida GR12-2/pQFPROM-Kan and in 

P. putida GR12-UpQFPROM-KanlpRpoS was quantified using a luminometer (Turner 

Design Mode1 TD20/20). Five mL DF salts minimal medium, containing kanamycin for 

P. putida GR12-2/pQFPROM-Kan and kanamycin and tetracycline for P. putida 

GR12-UpQFPROM-KanlpRpoS, were inoculated fiom a single colony and grown for 24 h at 

27OC. From the ovemight culture, 200 pL were transferred into 50 mL DF salts minimal 

medium with and without tryptophan (200 pg/mL final concentration, prepared from a 

5 mg/mL stock in warm water) and retumed to the 27°C water bath. 

At various times (8, 16,20,24,27, 32 and 48 h), the optical density of the culture at 

600 nm was determined (in duplicate), and then two 1 mL aliquots of each culture were 

transferred to 1.5 mL microcentrifuge tubes to measure Lux activity. In addition, the 

supernatant fiom 1 mL of culture was assayed for IAA content by reaction with Salkowski's 

reagent as described below. AAer centrifugation to remove the bacterial cells, 200 pL of the 



culture supernatant was mixed with 800 PL of Salkowski's reagent in a disposable 1 mL 

cuvette (VWR) and left to stand at room temperature for 20 min. The absorbance at 535 MI 

was measured in a Novaspec II spectrophotometer; uninoculated DF salts minimal media 

with and without tryptophan were used as references. 

The 1.5 mL microcentrifuge tubes containhg 1 ml of culture were stored on ice until 

just before addition of n-decyl aldehyde when they were removed fiom the ice and warmed 

to room temperature for 5 min. Five pL n-decyl aldehyde were added to each tube, mived 

well by vortexing, and the cells lefi at room temperature for an additional 5 min. Just before 

placing the tubes in the luminometer, the cells were again mixed briefly by vortexing, and 

then luminescence was measured imrnediately at the following luminometer settings: delay, 

3 sec; integration, 15 sec; sensitivity, 20.1%. Light production by control cells P. putih 

GR 1 2-UpQF70-Kan, and P. putida GR1 2-2/pQF70-KadpRpoS, was also measured to 

detemiine background levels of LuxAB activity. 

Collection of canola seed exudate 

To determine whether unidentified factors present in seed exudate can stimulate the 

ipdc promoter and IAA production in P. putida GR12-2, exudate was collected fiom imbibed 

canola seeds by the method of Penrose and Glick (2001) and added to the medium of 

P. putida GRI2-2/pQFPROM-Kan cultures. Canola seeds (Hyola 401), kindly provided by 

Dr. J. Omielan (University of Guelph, Guelph, Ontario), were surface stenlized by soaking 

100 seeds in 5 mL 10% H202 at room temperature for 2 min and then ~ s i n g  four times with 

sterile distilled water to remove residual &O2. The seeds were then imbibed for 1 h in 5 mL 

0.03 M MgS04 at room temperature, rinsed twice with sterile distilled water, and transferred 

to a 100 pm sterile nylon ce11 strainer (Becton Dickinson Labware, Franklin Lakes, N.J.) set 



in to a sterile polypmpylene Petri dish (60 x 15 mm) containïng 1 mL of sterile distilled 

water. Four such Petri dishes containhg 100 seeds each were placed in a plastic dish fitted 

with a lid to shade the seeds fiom light, and incubated in a growth chamber at 20°C. At 3, 

6.5, and 10 h following imbibition, the exudate fiom four dishes was collected using a 

micropipene, and combined before f i l t e ~ g  through a 0.2 pM syringe filter (Acrodisc@, P d  

Gelman Laboratories) pre-wetted with sterile distilled water. Immediately following 

collection, the exudate was stored in 15 mL polypropylene tubes (Falcon) at -80°C. 

Ouantification of ~romoter activity in the presence of canola seed exudate 

To measure the effect of canola seed exudate on IAA production and @de promoter 

activity, P. putida GR1 2-2/pQFPROM-Kan, and P. putida GR12-2/pQF70-Kan as a negative 

control, were f ~ s t  grown for 24 h at 27OC in 5 mL DF salts minimal medium containhg 

kanamycin (50 &rd.) before transferring 20 PL to 5 mL DF salts minimal medium to 

which either 400 pL water or 400 PL exudate (roughly equivalent to the exudate collected 

nom 100 seeds) had been added. These cultures were incubated at 27°C for an additional 

24 h, after which two 1 mL aliquots were transferred to cuvettes to measure the optical 

density of the cultures at 600 nm, and three 1 mL aliquots were transferred to 1.5 mL 

microcentrifuge tubes to measure prornoter activity (LWAB activity) and IAA production as 

described above. For each bacterial strain, the effect of exudate collected fiom Hyola 401 

seeds after 3,6.5, and 10 h was measured in duplicate and analyzed by two-way ANOVA; 

F-values shown in the text summarize the results of the analysis. 

Construction of an MA-Deficient Mutant of P. puWu GR12-2 

To construct a vector for insertional mutagenesis of the ipdc gew in P. putida 



GR12-2, the ipdc sequence isolated above was first transferred fiom pIPD2 to the suicide 

vector pJQ200 (sa& oriT, rnub fiom RP4, emR, lucz Quandt and Hynes, 1993) and then 

inserted with a gene for kanamycin resistance. Plasmid pJQ2OO (150 ng) and pIPD2 (300 ng) 

were digested separately with 10 U of h H . 1  (Roche Diagnostics) in a fmal volume of 

20 pL of 1X B S e r  B (Roche Diagnostics) overnight at 37'C. Digestion fhgments of the 

appropriate size (4.9 kb for pJQ200 and 1.7 kb for pIPD2) were cut nom a 0.8% agarose gel, 

purified using Gene CleanIIR and ligated using standard methods described previously. The 

resulting ligation products were transfonned into E. coli Ml09 and selected on LB aga. 

containing gentamich (30 pg/mL; Sigma), IPTG and X-Gd. After confirmation of plasrnid 

size and the presence of expected restriction sites, one plasmid, pJQIPDC4, was chosen for 

further manipulation. 

Construction of vJOIPDC4-Kn 

The kanarnycin resistance gene carried on a 2.3 kb EcuRI hgrnent was isolated fiom 

pHP45n-Km (Fellay et al., 1987; Prentki and Krisch, 1984) by digestion of 800 ng of 

plasmid with 10 U EcoRI (MBI Fermentas) in 20 pL of 1X EcoRI b a e r  (MBI Fermentas) 

ovemight at 37'C. Following the digestion, EcoRI was heat inactivated by incubation at 

6S°C for 15 min. To puri@ the DNA fiom the mixture, 10 pL of 3 M sodium acetate, pH 8.0, 

and 70 pL of water were added to 20 pL of digestion mix, and the DNA was extracted twice 

with 100 pL of pheno1:chloroform. Digestion products were collected by precipitation with 

100 pL of isopropanol for 1 h at -20°C, centrifugation for 20 min at full speed in an 

Eppendorf microcentrifuge, followed by washing with 70% ethanol and resuspension of the 

air-dried pellet in 18.2 PL of water. The cut ends of the EcoRI fragments were made blunt 

by addition of 5 U of S1 nuclease (diluted in 1 CL of water fiom a 30 U/pL stock; Promega) 



and 3 pL 7.4X S1 butrer (Promega) to the DNA suspension, and incubation at 30°C for 

30 min. To inactivate the nuclease, 1 pL of S1 nuclease stop b s e r  (Promega) was added 

and the mixture was incubated at 65'C for 10 min. The DNA Fagments were precipitated in 

2 volumes of 100Y0 ethanol and 2.2 pL of sodium acetate (3 M, pH 8.0) for 2 h at -20°C, 

coliected by centrifugation and rinsed with 70% ethanol as described previously, and finally 

resuspended in 7.5 pL of water. 

Plasrnid pJQIPDC4 (100 ng) was digested at a unique site within the ipdc gene ushg 

P d  (10 U; MBI Fermentas) in 10 pi, of 1X Y+ Tango bmer (MB1 Fermentas) overnight at 

37'C. Because PmA generates blunt ends, S 1 nuclease treatment was not required; therefore, 

following heat inactivation of the restriction enzyme, the digestion products were directly 

ligated with the blunt-ended kanamycin resistance gene fragment. To this end, 10 pL of the 

pJQIPDC4-Pd digestion mixture was combined with 7.5 pL of S1 nuclease-treated 

pHP45n-Km EcoW fragments, 2.5 pL 10X ligation b a e r  (MBI Fermentas), 2 pL PEG 

4000 (MBI Fermentas) and 4 pL T4 DNA ligase (2 U/pL; MBI Fermentas), and incubated 

overnight at 20°C. Competent cells (200 PL) of E. coli S17.1 (carrying the RP4 tra genes 

required for transfer of the plasmid to P. putida GR1 2-2 via conjugation; Simon et al., 1983) 

were transfonned with 12.5 pL of the ligation mixture and then selected for the presence of 

pJQIPDC4-Kn by resistance to gentamicin (30 pg/mL) and karïamycin (50 pgIrnL). 

Coniunation - to transfer pJOIPDC4-Kn to P. mtida GR12-2 

Donor cells (E. coli S17. UpJQIPDC4-Kn) and recipient cells (P. putido GR1 2-2) 

were grown overnight in 5 mL rich media (LB plus 30 pg/mL gentamicin and 50 pg/mL 

kanamycin, and TSB, respectively). Cells were washed once with 5 mL 0.85% (wh) NaCl 

to remove antibiotics, and resuspended in 5 mL Nutrient Broth (8 gL). The optical density 



(at 600 nm) of each ce11 suspension was adjusted to 1.3 with Nutrient Broth- Two mL of 

donor celis were mixed with 8 mL of recipient cells and collected on a 0.45 p M  Millipore 

filter by vacuum filtration. The filter containing the mixed cells was placed with the cells 

facing up on a Nutrient Agar (23 g/L) plate and incubated at 30°C for 24 h to allow mating 

and homologous recombination to occur. To collect the cells, the filter was transferred to 

1 mL 0.85% NaCl and incubated at room temperature for 1 h with gentle shaking. Because 

E. coli donor cells cannot grow on Simrnon's Citrate medium, and untransformed P. purida 

GR12-2 parental cells cannot grow on medium containing kanamycin, transconjugants were 

identified by growth on Simmon's Citrate agar (24.2 g/L)  supplemented with kanarnycin 

(50 pg/mL). Individual colonies were replica plated ont0 DF salts minimal medium agar (on 

which E. coli cannot grow) plus kanamycin to venfy the identification of transconjugants. 

To select for transconjugants that had replaced the fwictional ipdc gene in their chromosome 

with the disrupted ipdc gene nom the plasmid by double crossover between homologous ipdc 

sequences, colonies resistant to the lethal effects of the vector-encoded sacB gene product in 

the presence of sucrose were identified on TSA containing kanamycin and 5% (wfv) sucrose. 

In addition, these colonies were plated on TSA supplemented with gentamicin; lack of 

growth c o n f i e d  the absence of gentamicin acetyltransferase aiso encoded on the vector. 

Insertion of the kanamycin resistance gene into the chromosomal ipdc gene was substantiated 

by PCR using the primers used to isolate the ipdc gene, and by Southem hybridization. In the 

latter case, the probe was labeled by PCR using Ready-to-Go@ PCR beads, 100 pg of pIPD2 

as a template, 300 nM each of the primers used to isolate the ipdc gene, and 10 fi iLTP 

labeling mix (1 m M  stock containing 1 :2 DIG-dUTP:dTTP; Roche Diagnostics), in a total 

reaction volume of 25 a. Amplification cycles were as described above. 



Characterization of IAA-Defîcient Mutant of P. purida GR124 

The chemical assay described by Gordon and Weber (1951) provides a reasonably 

specific and sensitive method for estimatiag the concentration of IAA in solution (Gliclmiann 

and Dessaux, 1995). The basis for the test is the reaction of Salkowski's reagent with IAA, 

resulting in a characteristic colorimetric change, the intensity of which can be measured 

spectrophotometricaily . 

Colonies of wild-type and IAA-deficient P. putida GR12-2 were propagated in 5 mL 

DF salts minimal medium overnight (17-20 h) at 30°C in a shaking water bath and then 

20 pL were transferred into 5 mL DF salts minimal medium supplemented with the 

following concentrations of L-txyptophan (pg/mL; from a füter-sterilized 2 mg/rnL stock 

prepared fiesh in warm water; Sigma): 0, 50, 100, 200, 500. AAer incubation for 42 h at 

30°C in a shaking water bath, the density of the culture was measured spectrophotometrically 

at 600 nm and then the bacterial cells were removed from the culture medium by 

centrifugation (IEC Mode1 HN; 5,500 x g) at room temperature for 10 min. A 1 mL aliquot 

of the supernatant was mixed vigorously with 4 mL Salkowski's reagent (150 mL 

concentrated HzS04, 250 mL distilled H20, 7.5 mL 0.5 M FeCl36H20) in a 13 x 100 mm test 

tube and allowed to stand at room temperature for 20 min. One mL was transferred to a 

disposable semi-micro cuvette (VWR), and the absorbance at 535 nm was measured 

immediately in a Shimadzu UV2102PC spectrophotometer; uninoculated medium, 

supplemented with the appropriate concentration of tryptophan, was used as a reference. 

The concentration of ïAA in each culture medium was determined by comparison 



with a standard curve generated as follows. A 100 pglmL stock solution of IAA (Sigma) was 

fieshly prepared by dissolving 10 mg of IAA in 200 pL of 100Y0 ethano1 followed by 90 mL 

sterile distilled water. The solution was warmed slightly at 37OC to remove the ethanol and 

the volume adjusted to 100 mL with sterile distilled water. From tbis stock solution, 

dilutions were prepared to final concentrations of O, 1, 2, 5, 10, 20, and 40 pg/mL. The 

absorbance of each concentration of IAA standard was measured using Saikowski's assay 

described above. and the values for absorbance at 535 n m  versus IAA concentration (pg/mL) 

were plotted (Fig. 7). 

To compare the reactions of IAA and indolepyruvic acid with Salkowski's reagent, 

the above procedure was modified slightly. Because indolepynivic acid is highly unstable 

and difficult to dissolve in water, stock solutions and subsequent dilutions of both IAA and 

indolepynivic acid were prepared in 100% ethanol. Although the concentrations of IAA are 

expressed elsewhere in pg/mL, for comparison of their reaction with Saikowski's reagent, 

the compounds were prepared in concentrations of O, 0.005, 0.01, 0.025, 0.05, 0.125, 0.25, 

and 0.5 rnM to account for differences in molecular weight between IAA (1 75 g/mole) and 

indolepyruvic acid (203 g/mole). 

Gnotobiotic Root Elongation Assav 

Cultures of wild-type and IAA-deficient strains of P. putida GR12-2 were grown 

ovemight nom a single colony in 5 mL DF salts minimal medium with and without 

kanamycin (50 pg/mL), respectively, at 30'C in a shaking water bath. M e r  approximately 

24 h, 20 pL of each culture was transferred to 5 rnL DF salts minimal medium supplemented 

with tryptophan (200 pg/mL) to induce IAA production, and incubated for an additional 42 

hours. The turbidity of the cultures was measured spectrophotometrically at 600 nm before 



Figure 7. Standard curve for the spectrophotometric quantification of IAA in bacterial 

cultures using Salkowski' s ragent. 



IAA concentration (pg/mL) 



separating the bacterial cells fiom the culture medium by centrifugation (5,500 x g) for 

10 min at room temperature. The supernatant was immediately assayed for IAA 

concentration by Salkowski's assay as previously described. Cells were washed twice by 

suspension in 5 mL sterile 0.03 M MgS04 followed by centrifùgation for 10 min. The final 

resuspension was adjusted to an absorbance of 0.5 at 600 nm with 0.03 M MgSO4, and stored 

on ice while seeds were prepared. 

Canola seeds (Hyola 401), kindly provided by Dr. J. Ornielan, University of Guelph, 

were prepared and inoculated by the method outlined by Lifshitz et al. (1987) with some 

modifications (Caron et al., 1995). Approximately 300 seeds, previously stored in a 

dessicator at 4"C, were surface sterilized by soaking in 10 rnL 70% ethanol for 1 min, 

followed by 10 mL 1% sodium hypochlorite (bleach) for 10 min in sterile polystyrene Petri 

dishes (100 x 15 mm). To remove residual bleach, the seeds were washed five times with 

sterile distilled water. For each treatment, approximately 100 seeds were transferred 

aseptically to sterile polystyrene Petri dishes (60 x 15 mm) and incubated with 5 mL of either 

the wild-type or the mutant bacterial suspension at room temperature for 1 h to allow the 

bacteria to bind to the seed coat and for seed imbibition. Seeds were also incubated in 5 mL 

0.03 M MgS04 under the same conditions as a control. 

Six seeds were aseptically placed in each growth pouch (Mega International, 

Minneapolis, Mn.) which had been previously filled with 10 mL distilled water and 

autoclaved. For each treatment, 10 pouches were prepared. Pouches were placed upright in 

metal racks, one treatment per rack to prevent cross-contamination, with two empty pouches 

at either end of the rack. Racks were set in a plastic bin containhg about 3 cm of deionized 

water and covered loosely with plastic wrap to prevent dehydration. Pouches were incubated 



in a growth chamber at 20'C with a cycle of 12 hours of dark followed by 12 hours of light 

(18 pmol photons/m2/sec2). For the first two days, seeds were kept in the dark by covering 

the pouches with aluminium foil. AAer five days, shoot and primary root length, and shoot 

and root fresh and dry weight were measured and analyzed by two-way ANOVA; F-values 

shown in the text sulllfllarize the results of the analysis. Seeds that failed to gemiinate three 

days after sowing were marked and shoots and roots that subsequently developed fiom these 

seeds were not measured. 

Rootina Assav 

The effect of wild-type and the IAA-deficient mutant of P. putida GR12-2 on the 

development of adventitious roots on mung bean cuttings was assessed using the method 

outlined by Mayak et al. (1999). Mung bean (Vigna radiata) seeds were surfaced sterilized 

in a manner similar to that used for canola seeds above, by soaking for 1 min in 70% ethanol 

and then for 10 min in 1% sodium hypochlorite (bleach) in a sterile polystyrene Petri dish, 

before nnsing five tirnes with sterile distilled water. Seeds were imbibed for 1 h in sterile 

distilled water and then sown in sterile vermiculite in a flat equipped with a drainage tray and 

a transparent lid. Mung beans seedlings were grown in a growth chamber at 20°C with a 

cycle of 12 hours of dark followed by 12 hours of light (1 8 pmol photons/m2/sec2). M e r  

7 days, the portion of the seedlings above the surface of the vermiculite was excised using a 

razor blade and placed immediately in either water or a bacterial suspension prepared as 

follows. 

Five mL DF salts minimal medium was inoculated with wild-type or the IAA- 

deficient mutant of P. putida GR12-2 and incubated ovemight at 27OC. Eighty pL of the 

overnight culture was transferred to 20 mL DF salts minimal medium containing tryptophan 



(200 &mL) and incubated at 27OC for an additional 42 h. Cells were washed twice with 

stenle distilled water and resuspended in stenle water to an optical demity of 0.5 at 600 nm. 

Three mL of each bacterial matment were transferred to each of ten borosilicate g las  tubes 

(10 x 75 mm), and ten additional tubes were filled with 3 m .  sterile distilled water. One 

mung bean cutting was placed in each tube, for a total of ten cuttings per treatment, and these 

were placed in a rack, covered loosely with plastic wrap to prevent evaporation, and 

incubated in the growth chamber under the same conditions described above. Mer eight 

days, the cuttings were rinsed briefly with distilled water, and the number and lengths of 

adventitious roots were measured under a magniQing glass and analyzed by two-way 

ANOVA; F-values shown in the text summarize the results fiom the analysis. 



RESULTS 

Isolation of the Indolepyrwate Decarbosylase Gene 

Hybridization of approximately 3,000 colonies of E. coli DHSa carrying fragments 

fiom the P. putida GR12-2 genome on plasmid pUC18, with the DIG-labeled indolepynivate 

decarboxylase (ipdc) gene fiom Enterohder cioucae FERM BP-1529 (Koga et al., 199 la) 

revealed a single colony carrying a 2.6 kb insert in pUC 18 similar to the probe sequence (Fig. 

8A). A secondary screen of this colony, in duplicate, using the sarne probe as above, 

confirmed hybridization (Fig. 8B). Digestion of the insert fiom the positive clone and 

Southem hybridization using the E. cloacae ipdc probe, showed that the P. putida GR12-2 

ipdc sequence was present on a 1.1 kb BaniHI hgment  (Fig. 9A). Sequence analysis of the 

1.1 kb fiagrnent indicated that oniy 200 bp of the ipdc sequence were contained on the 

fiagrnent (Fig. 9B); however, this sequence was 98% identical at the nucleotide level to the 

3' end of the E. cloocae FERM BP- 1529 ipdc gene (Fig. 9C). The remainder of the 1.1 kb 

BamHI fragment, which corresponds to the region downstream of the ipdc gene in the 

P. putida GR12-2 genorne, carries a sequence 72% identical at the nucleotide level to an 

open reading frame in E. coli of unknown function (Accession No. AE000327) on the 

opposite strand (Fig. 10A). A putative transcription termination signal was also identified in 

the region immediately downstream of the ipdc gene by the presence of sequences capable of 

forming a stable stem-loop structure in the mRNA (Fig. 10B). A stable stem structure is 

characterized by 4-20 cornplementary nucleotide pairs with a high W C  content; the loop 

usually ranges fiom about 3- 10 nucleotides (Emolaeva et al., 2000). 

Working on the assumption that the high degree of identity between the 3' ends of the 



Figure 8. Hybndization of a colony of E. coli DHSa carrying a hgment of the P. putida 

GR12-2 genome with the DIG-labeled indolepyruvate decarboxylase (ipdc) gene fi013 

E. cloucae FERM BP-1529. A, primary screen; B, secondary screen. 





Figure 9. A 1.1 kb BamHI m e n t  fiom the P. pufida GR12-2 genome carries 200 bp 

of the 3' end of the indolepyrwate decarboxylase (ipdc) gene. A, Southem hybridization 

revealed that this m e n t  hybridized to the E. cloacae FERM BP-1529 ipdc gene probe 

(Lane 1, plasmid nom positive clone revealed by colony hybridization of P. putida 

GR12-2 genomic clone bank (see Fig. 8), digested with BonHI and HindIII; Lane 2, 

plasmid from the same positive clone digested with ScaI and HindIII; Lane 3, Plasmid 

pIP27 carrying the E. cloacae FERM BP-1529 ipdc gene on a 1.7 kb Pstl-BamHI 

fragment); B, Map of the 1.1 kb fiagrnent showing the 3' end of the ipdc gene and a 

sequence downstream similar to an E. coli gene of unknown bction; C, The 3' end of 

the P. putida GR12-2 ipdc gene is 98% identical to the correspondhg region of the 

E. cloacae FERM BP-1529 ipdc gene. 



Query : tcctcagtctgagtgctggcgggtcagtgaagcggaacagctggcggacgtacttgaaaa 
I l l l l l t I l l l l l l l l l I l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I l l l I I I 1 1 I I I l  

ipdc: 1518 t c c t c a g t c t g a g t g c t g g c g g g t c a g t g a a ~ g c t g g c g g a c g t a c t t g a a a a  

Query : agtggcgcaccacgagcggctctcgttgattgaggtgatgctcccgaaagcggatatccc 
l l l l l l l l l l l l l l l l l l I l I l 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I l I I I I I I  

ipdc: 1578 agtggcgcaccacgagcggctctcgttgattgaggtgatgctcccgaaagcggatatccc 

Query : gccgctgctcggggcgcttaccaaagctctggaagcgcgtaataacgcctgactacttgt 
I I I I I I I I I I I I I I I 1 1 1 I I l l l l  l l l l l l l l l l l l  1 1 1 1 1 1 1 1 1 1 1 1 1 1  l l l l l l l  

ipdc: 1638 gccgctgctcggggcgcttaccaaggct~tggaagcgtgtaataacgcctgattacttgt 

Que ry : cgtttcgccaggccatcatcatcggtttgcccgcca 
I l l l l l l l l l l l l l l l l l l l I l 1 I l I l l l I 1 1 1 1 1 1  

ipdc: 1698 cgtttcgccaggccatcatcatcggtttgcccgcca 



Figure 10. The 1.1 kb BamHI fragment fiom the P. putida GR12-2 genome carries a 

sequence downstream of the ipdc gene that is 72% identical to an E. coli gene of 

unknown fiinction (A) and, immediately downstream of the ipdc gene, a transcription 

temination signal (B, compiementary sequences capable of fonning a stem structure of a 

hairpin loop are underlined). 



Query: 181 tggactggaccatcctcgcctctgcaggcaccatcggggcgcttttcggcacgcccgttg 240 
1 1 1 1  1 1 1 1 1  I I  I11111111 I I  1 1 1 1 1 1 1 1  I I  I I  I l  l l l l l  1 1  1 1 1 1  

Sbjct: 1742 tggagtggactattttagcctctgccggaaccatcggcgcactgtttggcactcctgttg 1801 
Orf 1 4 5 M E W T I L A S A G T I G A L F G T P V  

Query: 241 ccgccgcccttattttttctcagacgcttaccagcaataacgacgtcccgctctgggata 300 
I  I I  I I  I  1 1  1 1 1 1 l  1 1  I I  I  I  I l l  I I  I I  I I  1 1 1 1 1  1 1 1 1 1 1  

Sbjct: 1802 cggcggcgttgatattttcgcaaaccttaaatggcagtagtgaagttccgctatgggatc 1861 
Orf 1 6 5 A A A L I F S Q T L N G S S E V P L W D  

Query: 301 aactctttgcgccgctgatggccgctgcggctggtgcgctcacgaccagtctgtttttcc 360 
1 1 1 1 1 1 1 1 1 1 1 1  I  1 1 1 1 1  I I  I I  i l l l l l l l  I I  1 1  1 1 1  1 I  l l l l l l l  

Sbjct: 1862 gtctctttgcgccgttaatg~cggcagcagctggtgcacttactaccggattatttttcc 1921 
Orf 1 8 5 R L F A P L M A A A A G A L T T G L F F  

Query: 361 atcctcatttctcactctctctgccccactaaggccagatgcatattgccgatattttca 420 
1 I I I I I I I l I  1 1 1 1 1  I  I  I  I I  I I  I l  1 1 1 1 1 1  I  I I  l l l l l l l l  I I I  

Sbjct: 1922 atcctcatttttcactgcccattgctcattacggacagatggaaatgaccgatattctca 1981 
Orf 2 0 5 H P H F S L P I A H Y G Q M E M T D I L  

Query: 421 gcggtgccatcgtcgtcgcgatcgccattcgactcgggatgattgcggtatggtgccttc 480 
1 1 1 1 1 1 1  I I  I l I l  1 1 1 1 1  1 1 1 1 1  I  1 1 1 1 1 1  I  I I  1 1 1 1 1 1 1 1 1  I  I  

Sbjct: 1982 gcggtgcaattgtcgcggcgattgccat~gcagcagggatggtcgccgtatggtgcttac 2041 
Orf 2 2 5 S G A I V A A I A I A A G M V A V W C L  

Query: 481 cgcgcctgcaccgtctgatgcaccggctgaagcacccggtcgtqattctgggggcgggtg 540 
I  I I  1 1 1 1 1  1 1 1 1 1 1 1  I  l i l l  1 1 1 1 1 1  I  11111l I I  I  

Sbjct: 2042 cacggttgcacgcgatgatgcatcaaatgaaaaatccggtgctcgtgctgggtattggcg 2101 
Orf 2 4 5 P R L H A M M H Q M K N P V L V L G I G  

Query: 541 gtctgatgctgggcgtattaggggctatcggcggaacggtaacgctgtttaaaggccttg 600 
l  I  I I  I I  I I  I  I  I l l1  I l l  1 1  1 1 1  1 I l  I l l l l l l l l l i l l  I l  I 

Sbjct: 2102 gatttatrctcggtattctgggggttattggtggaccagtttcgctgtttaaagggctgg 2161 
Or£ 2 6 5 G F I L G L G V I G G P V S L F K G L  

Query: 601 atgaaatgcagcagttggctttcagccaggtgttcagcgtgtctgattacctgctgtttg 660 
I l I l  1 1 1 1 f i 1 1 1  1 1 1  I  l i l l  l l l l l l  1 1 1 1 1 1  1 I I  1 I  

Sbjct: 2162 atgagatgcagcagatggtggcaaatcaggctttcagcaccagcgattactttttgctgg 2221 
Orf 2 8 5 D E M Q Q M V A N Q A F S T S D Y F L L  

Query: 661 cgctggttaaactggcggcgctggtggtagctgcagcatgtgggttccgcggtgggcgta 720 
I I  I I I I I I I I  I I  I I  I I I I I  I I  1 1 1 1 1  1 1  1 1 1 1  1 1  I I I I I I I I I I I  1 

Sbjct: 2222 cggtaattaaacttgccgccctggtcgttgctgccgccagtggctttcgcggtgggcgaa 2281 
Orf 3 0 5 A V I K L A A L V V A A A S G F R G G R  

Query: 721 tcttcccggcggtgtttatcggtgtggcgctggggctgatgctgcatgagcatgtggatg 780 
l l l l l l l l l l  1 1 1 1 1 1  1 1 1 1  l l l l l  1 1 1 1  l l l l l l ~ l l ~ l l l l ~ l  1 1  1 

Sbjct: 2282 tcttcccggcagtgtttgtcggcgtggcattagggttgatgctgcatgagcacgttcccg 2341 
O r f  3 2 5 I F P A V F V G V A L G L M L H E H V P  



Q u e r y :  781  cggtgccggcagcgataacggtctcttgctcaattctggggctggtgctggggtgacqc 8 4 0  
I  I I  I I  I I  I I  1 1 1 1 1  I I  1 1 1 1 1 1  I 1 1 1 1 1  I I  1 1 1 1 1 1 1 1 1 1 1 1  1 1  I  

S b j c t :  2 3 4 2  ccgtaccagcggcaataaccgtttcttgcgctattctcggcatcgtgctggtqgtaacac 2401 
0x9 ~ ~ S A V P A A I T V S C A I L G I V L V V T  

Q u e r y :  8 4 1  gcgatgcgtggctgagcctgtttatggcggcggtagtggtgccggattcaacgctcttcc 9 0 0  
1 1 1 1 1 1  1 1 1  1 I I  1 1  11l11111111 1 1  I I  I l  I I  I I  I  I I  I I  I  

Sbjct: 2 4 0 2  gcgatggctggttaagtctttttatggcggcagtcgttgtacccaataccacattgctac 2 4 6 1  
Orf 3 6 5 R D G W L S L F M A A V V V P N T T L L  

Q u e r y :  901 ccctgctctgtatcgtgatgttqcccgcctggctcctgctgqcgggcaaaccgatqatga 9 6 0  
I  I l l l l l l l l l l l l l  I I I  I  l t  I I  1 1 1 1 1  I  I  I l  I I  1 1  1 1 1 1 1 1 1 1 1 1  

Sbjct: 2 4 6 2  cgctgctctgtatcgtcatgcttccggcatggctgttattagcaggtaagccgatgatga 2 5 2 1  
O r f  3 8 5 P L L C I V M L P A W L L L A G K P M M  

Q u e r y :  961 tgg 9 6 3  
I I I  

Sbjct: 2 5 2 2  tgg 2 5 2 4  
Orf 4 0 5  M 

gaagcgcgtaataacgcctgactacttgtcgtttcgccaggccatcatcatcggtttqcccgccagca 
cttcgcgcattattgcggactgatgaacagcaaagcggtccggtagtagtagccaaacgggcggtcgt 
E A R N N A *  

ggagccaggcqggcaacatca 
cctcggtccgcccgttgtagt 



P. putida GRl2-2 and E. cloacae FERM BP-1529 ipdc sequences could be extended to the 

entire gene, PCR primers were designed fiom the published E. cloacae FERM BP-1529 

sequence in an attempt to amplify the entire open reading frame. Electrophoresis of the PCR 

products fiom purified genomic DNA and fÎom whole ce11 lysates of P. putida GR12-2 

revealed a single band of the expected size, about 1.7 kb (Fig. 11). Sequence anaiysis of the 

PCR products, and aiignment of the nucleotide sequence with the ipdc gene fiom E. cloacae 

FERM BP-1529, confirrned that the P. puîida GR12-2 ipdc gene had indeed been isolated 

(GenBank Accession No. AF285632) (Fig. 1 2). Furthemore, the translated amino acid 

sequence is similar to other known bacteriai indolepyruvate decarboxylases (Fig. 13, 

Table 3). 

The P. putida GR1 2-2 indolepyruvate decarboxylase is also similar to pyruvate 

decarboxylase from Zymomonar mobilis and Saccharomyces cerevisiae, sharing substantial 

identity (33% and 36%, respectively) and similarity (51% and 53%, respectively) in their 

amino acid sequences (Fig. 14), and to the C-terminal end of pyruvate oxidase fiom 

Lactobacillus plantarum. Four of the six residues believed to be involved in substrate 

binding and catalysis for pyruvate decarboxylase are conserved in the indoiepymvate 

decarboxy lase sequence: ~ s ~ ~ ~ ,  ~ i s  l 15, ~ i s l  16, and GIC' of indolepyruvate decarboxy lase 

fiom P. putida GR12-2 correspond to residues  AS^^', ~is" ' ,  ~ i s " ~ ,  and G ~ u ~ ' ~  in the active 

site of Zymomonas mobilis pyruvate decarboxylase (Dobritzsch et al., 1998) (Fig. 14). In 

addition, most of the residues known to bhd cofactors M~~~ and thiamine diphosphate in 

pyruvate decarboxylase are conserved in indolepymvate decarboxylase including ~ i u ~ ~ ,  

~ l ~ ~ ~ ~ ,  ~ s ~ ~ ~ ~ ,  and ~l~~ 64. Indolepyruvate decarboxylase is also similar to 

acetolactate synthase (large subunit), another member of the thiamine diphosphate-dependant 



Figure 1 1 .  Agarose gel electrophoresis of PCR products amplified from purified 

genomic DNA (Laue 2) and whole ce11 lysates (Lane 3) fiom P. putida GR12-2 using 

primers designed fiom the E. cloacae FERM BP-1529 ipdc sequence to ampli@ the ipdc 

gene (Lane 1, PCR products fiom water as a template; Lane 4, DNA size markers). 





Figure 12. Nucleotide and translated amino acid sequence of the ipdc gene from 

P. putida GR12-2 (GenBank Accession No. AF285632). 



1 A T G C G A A C C C C A T A C T G G G T C G C C C A T T A C C T G C T G G A C C T G C C  60 
M R T P Y W V A H Y L L D R L T D C G A  

61 GATCATCTGTTTGGCGTGCCGGGCGACTATAACCTGCAGTTTCTCGACCACGTAATAGAC 120 
D H L F G V P G D Y N L Q F L D H V I D  

121 AGCCCGGATATTTGTTGGGTGGGCTGTGCCAATGAGCTGAACGCATCCTATGCCGCTGAC 180 
S P D I C W V G C A N E L N A S Y A A D  

181 GGATACGCCCGATGTAAGGGCTTTTGCCGCGCTGCTGACCACATTCGEGTTGGGGATTGGGTTA 240 
G Y A R C K G F A A L L T T F G V G E L  

241 AGTGCCATGAACGGCATTGCCGGCAGCTATGCCGAGCATGTCCCGGTTTTACATATTGTG 300 
S A M N G I A G S Y A E H V P V L H I V  

301 GGGGCGCCGGGTACGGCGGCACAGCAAAGGGGAGAGTTGCTGCATCATACGTTGGGGGAT 360 
G A P G T A A Q Q R G E L L H H T L G D  

361 GGGGAGTTCCGTCACTTTTATCATATGAGCGAGCC~TCACCGTCGCACAGXGGTCCTT 420 
G E F R H F Y H M S E P I T V A Q A V L  

421 ACCWCAAAATGCCTGTTATGAAATCGACCGTGTGTTCCTGCTTCGGCGT 480 
T E Q N A C Y E I D R V L T T M L R E R  

481 CGCCCCGGTTATCTGATGTTACCCGCCGATGTGGCAAAAAAAGCCGCCACGCCGCCTGTA 540 
R P G Y L M L P A D V A K K A A T P P V  

541 AACGCTCTCACTCATAAGCAGGCTAATGCCGATAC-CGCCTGCCTGAAAGCGTTCCGGAT 600 
N A L T H K Q A N A D S A C L K A F R D  

601 GCTGCTGAGAACAAACTGGCGATGAGCAAACGTACCGCGCTTCCTTGTT 660 
A A E N K L A M S K R T A L L A D F L V  

661 C T G C G C C A T G G C C T G A A G C A T G C G C T A C A G A A G T G A C A T  720 
L R H G L K H A L Q K W V K E V P M A H  

721 GCCACCATGCTGATGGGGAAAGGGGATATTCGACGAGCGTCAGGCGGGTTTTTACGGTACA 780 
A T M L M G K G I F D E R Q A G F Y G T  

781 TACAGTGGTTCAGCCAGCACCGGTGCGGTAAAAGAGGCGAGGCGATTGGGGGCTCACGGA 840 
Y S G S A S T G A V K E A I E G A D T V  

841 TTGTGTGTTGGCACGCGTTTTACCGATACCCTGACGGCCGGGTTCACGCACCAGCTTACC 900 
L C V G T R F T D T L T A G F T H Q L T  

901 CCGGCGCAAACCATTGAAGTTCAGCCGCATGCCGCACGCGTCGGGGATGTCTGGTTTACC 960 
P A Q T I E V Q P H A A R V G D V M F T  

961 GGCATCCCAATGAACCAGGCGATTGAGACGCTGGTCGAACCAGCACGTGCAC 1020 
G I P M N Q A I E T L V E L S K Q H V H  

1021 ACTGGCCTTATGTCGTCATCATCCGGCGCAATACCGTTCCCGCAGCCGGACGGTTCXTT 1080 
T G L M S S S S G A I P F P Q P D G S L  

1081 ACCCAGGAGAATTTCTGGAGAACGTTGCAAACCTTTATTCGCCCGGGGGACATTATCCTT 1140 
T Q E N F W R T L Q T F I R P G D I I L  

1141 G C C G A C C A G G G A A C A T C G G C C T T C G G C G C G A T T G C  1200 
A D Q G T S A F G A I D L R L P A D V N  

1201 TTTATCGTCCAGCCGCTGTGGGGCTCGATTGGTTGGTTACACGCTGGCGGCGGCGTTTGGTGCA 1260 
F I V Q P L W G S I G Y T L A A A F G A  

1261 CAAACCGCATGCCCGAACCGGCGCGTGATTGTGCTGACGGGGGATGGCGCGGCCmGCC 1320 
Q T A C P N R R V I V L T G D G A A Q L  

1321 ACTATTCAGGAACTAGGCTCGATGCTGCGTGATAAACAGCACCCCATTATTCTGGTGCTC 1380 
T I Q E L G S M L R D K Q H P I I L V L  

1381 AACAACGAAGGCTACACGGTTGAAAGGGCTATCCATGGGGCAGCAGCGGTATAACAC 1440 
N N E G Y T V E R A I H G A E Q R Y N D  

1441 ATTGCTTTGTGGAACTGGACGCACATTCCACAGGCGTTGAGCCTCGATCCTGTCTGAG 1500 
I A L W N W T H I P Q A L S L D P Q S E  

1501 TGCTGGCGGGTCAGTGAAGCGGAACAGCTGGCGGACGTACTTGAAAAAGTGGCGCACCAC 1560 
C W R V S E A E Q L A D V L E K V A H H  

1561 GAGCGGCTCTCGTTGATTGAGGTGATGCTCCCGAAAGCGGATATCCCGCCGCTGCTCGGG 1620 
E R L S L I E V M L P K A D I P P L L G  

1621 GCGCTTACCAAAGCTCTGGAAGCGCGTAATAACGCCTGA 1657 
A L T K A L E A R N N A *  



Figure 13. Alignment of bacterial indolepyruvate decarboxylase amino acid sequences 

fiom Enterobacter cloacae FERM BP- 1529, Pseudomonas putida GR1 2-2, Envinia 

herbicola 299R and Azospirillum brasilense Sp245. The following symbols found 

below the sequences indicate conserved positions: *, columns that contain identical 

amino acid residues; :, columns that contain amino acids that have strongly similar 

properties (e.g., amino acids with similar charge); ., columns that contain amino acids 

that have weakly similar properties. 



E. cloacae 
P. putida 
E. herbieola 
A. brasiluue 

E. çloacae 
P. puticla 
E.herbicola 
A. brasilense 

E . cloacae 
P. putid8 
E . htrbico l s  
A. brasilense 

E . cloacae 
P. putida 
E. herbicola 
A.brasi1ease 

E.clorcae 
P *puti& 
Lherbicolo 
A. brasilense 

E . cloacae 
P. putida 
B. herbicola 
A.brrsilaase 

B. doacae 
P. putida 
E . he rbicolr 
A. brarrilcnae 



Table 3. Cornparison of the P. putida GR12-2 indolepynivate decarboxylase amino acid 
sequence with other bacterial indolepyruvate decarboxylases. 

Organisn Identity (%) Similarity (YO) 

Enterobacter cloacae FERM BP-1529 99 

Erwinia hericola 299R 57 

Azospir illum braileme Sp245 29 



Figure 14. Alignment of P. puri& GR1 2-2 (P.p) indolepyruvate decarboxylase (IPDC) 

with pynivate decarbqhse (PDC) h m  the yeast Saccharomyces cerevisiae (Sc) ,  the 

bacterïum Zymomonas mobilis (2-mo), and the plant Zea mqys (Z.ma), and with 

acetolactate synthase (ALS) fiom the chloroplast of Brossica n a p s  (Rn), fiom the 

genome of E coli (E.c), and nom the mitochondrion of Succharomyces cerevisiae (S.c). 

Conserved residues involved in substrate and cofactor binding are s h o w  in bold. The 

following symbols found below the sequences indicate conserved positions: *, columns 

that contain identical amino acid residues; :, columns that contain amino acids that have 

strongly similar properties (e.g., amino acids with similar charge); ., columns that contain 

amino acids that have weakly similar properties. 



Z.mo/PDC ------------------------------------------------------------ 
Z,~O/PDC -------------------------------------------- METLLAGNPANGVAKP 16 
B.n/ALS --------- MAAATSSSPISLTAKPSSKSPLPISRFSLP---- FSLTPQKPSSRLHRPLA 47 
E.c/ALS ------------------------------------------------------------ 
S. c/ALS MIRQSTLKNFAIKRCFQHIAYRNTPAMRSVALAQRFYSSSSRYYSASPLPASKRPEPAPS 60 

P.p/IPDC nDHVIDSPDICWVGCANELNASYAADGYARCKG-FAALLTTFGVGELSAMNGIAGSYAE 92 
S.c/PDC LLDKIYEVEGMRWAGNANELNARYAADGYARIKG-MSCIITTFGVGELSNGIAGSY 91 
Z.rno/PDC LLDNLLLNKNMEQVYCCNELNCGFSAEGYARAKG-AAAAVVTYSVGALSAFDAIGGAYAE 90 
2. ma/ PDC L L D Y L I A E P G L T L V G C C N E L N A G Y A A D G Y A R S R G - V G A C A E  135 
B.n/ALS IHQALTRSSTIRNVLPRHEQGGVFAAEGYARSSGKPGICIATSGPTNLVSGDD 167 
E.c/ALS VYDALYDGG-VEHLLCRHEQGAAMAAIGYARATGKTGVCIATSGP~TNLITG~DALLD 88 
S.c/ALS VYDAIHNSDKFNFVLPKHEQGAGHMAEGYARASGKPGWLVTSGPGATNVVTPMADAFAD 180 . - . . :* . * **** . . . -  .* * . .  .... . 
P.p/IPDC HVPVLHIVGAPGTAAQQRGELLRHTLGDGEFRHFYHMSEPITVAQAVLTEQN-ACYEIDR 151 
S.c/PDC HVGVLHWGVPS1SSQAKQLLL)IHTLGNGDFTVFHRMSANfSETTAMITDICTAPAEIDR 151 
Z.mo/PDC N L P V I L I S G A P N N N D H A A G H V L B H A L G K T D Y H Y Q L E M A K N I D H  150 
Z.ma/PDC NLPWCIVGGPNSNDYGTNRIL~IGLPDFSQELRCFQTITCYQAIINNLDDEQIDT 195 
B.n/ALS SVPLVAITGQVPRRMIGTDAFQETPIVE--------- VTRSITKHNYLVMDVDDIPRIVQE 219 
E. c/ALS SIPWAITGQVSAPFIGTDAFQEVDVLG--------- LSLACTKHS FLVQSLEELPRIMAE 14 0 
S. c/ALS GIPMVVFTGQVPTSAIGTDAFQEADWG-------- ISRSCTKWNVMVKSVEELPLRINE 232 . .. . .. . * . .  - 
P.p/IPDC VLTTMLRERR-PGYLMLPADVAKK--MTPP-VNALTHKQA-----NADSACLFRD 202 
S.c/PDC CIRTTYVTQR-PVYLGLPANLVDLNVPAKLL-QTPIDMSLK----- PNDAESEKEVIDTI 204 
Z.mo/PDC VIKTALREKK-PVYLEIACNIA--SMPCAAPGPASALFNDE----- AS DEASLNAAVEET 202 
Z.ma/PDC AIATALRESK-PVYISVSCNLAGLSHPTFSRDPVPMFISPR----- LSNKANLEYAVEAA 2 4 9 
B.n/ALS AFFLATSGRPGPVLVDVPKDIQQQLAIPNWDQPMRLPGYMS----- RLPQPPEVSQLGQI 274 
E.c/ALS AFDVASSGRPGPVLVDIPKDIQ-QLASGDLEPWFTTVENEV----- TFPH----AEVEQA 18 9 
S.c/ALS A F E I A T S G R P G P V L V D L P K D V T A A I L R N P I P T K T T L P S N A  292 

: :. :: 
P.p/IPDC ENKLAMSKRTALLADF-LVLRHGLKHALQKWViCEVPMAHATMLMGKGIFDERQAGE'YGTY 261 
S.c/PDC L V L A K D A K N P V I L A D A - C C S R H D V K A E T K K L I D L T Q F P A F  263 
Z mo/ PDC LKFIANRDKVAVLVGS -KLRAAGAEEAAVKFADALGGAVATMAAAKS FFPEENPHYIGTS 261 
Z . ma/ PDC ADFLNKAVKPVMVGGP-KIRVAKAREAFAAVADASGYPFAPKGLVPEHHPRIGTY 308 
B.n/ALS VRLISESKRPVLWGG---GSLNSSEELGRFVELTGIPVASTLMGLGSYPCNDELSLQ-M 330 
E.c/ALS RQMLAKAQKPMLWGGGV-GMAQAVPALREFLATTKMPATCTLKGLGAVEADYPYYLG-M 247 
S.c/ALS A D L I N L A K K P V L Y V G A G I L N H A D G P R L L K E L S D R A Q I P V T L D - M  351 

. . .  . . 



SGSASTGAVKEAIEGADTVLCVGTRFTDTLTAGFTHQLTPAQ--------- TIEVQPHAA 312 
VGTLSKPEVKEAVESADLILSVGALLSDFNTGSFSYSYKTKN--------- IVEFHSDHM 314 
WGEVSYPGVEKTMKEADAVIALAPVFNDYSTTGWTDIPDPKK--------- LVLAEP-RS 311 
WGAVSTTFCAEIVESADAYLFAGPIFNDYSSVGYSLLLKRK--------- AVIVQPDRM 359 
LGMHGTVYANYAVEHSDLLLAFGVRFDDRVTGKLEAFASRAK--------- IVHIDIDSA 381 
LGMHGTKAANFAVQECDLLIAVGARFDDRVTGKLNTFAPHAS--------- VIHMDIDPA 298 
L G M H G C A T A N L A V Q N A D L I I A V G A R F D D R V T G N I S K F A P E V S  411 

* .  .. * - .. . - *  : 
m . .  . . 

RVGD-VWFTGIPMNQAIETLV----ELSKQ----------- HVHTGLMSSSS-GAIPFPQ 355 
KIRN-ATFPGVQMKE'VLQECLLTNIADAAKG----------- YKPVAVPARTP-ANAAVP- 360 
VVVNGIRFPSVHLKDYLTRLAQKVSKKTGA----------- LDFFKSLNAGELKKAAPAD 360 
WGDGPAFGCILMPEFLRALAKRLRRNTTA----------- YDNYRRIFVPD-REPPNGK 407 
E I G K N K T P H V S V C G D V K L A L Q G M N K V L E N R A E E L K L D F L  439 
EMNKLRQAHVALQGDLNALLPALQQPLN--------- INDWQQYCAQLRDEHAWRY-- DH 3 4 7 
NINKWQTQIAVEGDATTNLGKMMSKIFPVKE----- RSEWFAQINKWKKEYPYAYMEET 4 6 6 
. . * 

P D G S L T Q E N F W R T L Q T F I R - - P G D I I L A D Q G - - T S A F ~ P L W G S I G  411 
A S T P L K Q E W M W N Q L G N F L Q - - E G D W I A E T G - - T S A F G I N G S I G  416 
PSAPLVNAE I A R Q V E A L L T - - P N T T V I A E T G - - D S W F N A Q P N G Y E M Q G H I  4 16 
PNEPLRWLFKH1KGMLS--GDSAWAETG--DSWFNCQPEGCGFQMQYGSIG 463 
FGEAI PPQYAIQVLDELT---QGKAIISTGVGQHQMWAAQFYKYRKPRQWLSSSGLGAMG 4 96 
PGDAIYAPLLLKQLSDRK---PADCVVTTDVGQHQMWAAQHIAHTRPENFITSSGLGTMG 404 
PGSKIKPQTVIKKLSKVANDTGRHVIVTTGVcQHQMWAAQHWTWRNPHTFITSGGLGTMG 526 
. 0 . . m . .  . . ... * :+ 

YT----LAAAFGAQTACPNRRVIVLTGDGAAQLTIQELGSMLRDKQHPIIL--GY 465 
FTTGATLGAAFAAEEIDPKKRVILFIQ)GSLQLTVQEISTMIRWGLKPYLD--GY 474 
WS----VPAAFGYAVGAPERRNILMVGDGSFQLTAQEVAQMVRLKLPVIIFLINNY--GY 470 
WS----VGATLGYAQAAKDKRVIACIGDGSFQVTAQDVSTMLRCKSIIFLIG--GY 517 
FG---- L P A A I G A S V A N P D A I W D I D G D G S F I M N V Q E L A T I R V E N L  552 
FG--- -LPAAVGAQVARPNDTWCISQGSFMMNVQELGTKQL L K V L L D N G M  4 60 
y~---- LPAAIGAQVAKPESLVIDIDQASFNMTLTELSSAVQAGTPVKILIEQM 532 

: *:.. . . : **.: : ... . ...* * 
...o. 

TVERAIHGAEQRYNDIALWN------- WTHI PQALSLDP----- QSECWRVSEAEQLADV S 13 
TIEKLIHGPKAQYNEIQGWD------- HLSLLPTFGAK------ DYETHRVATTGEWDKL 521 
TIEVMIH--DGPYNNIKNWD------- YAGLMEVE'NGNGGYDSGAGKGLKAKTGGELAEA 521 
TIEVEIH--DGPYNVIKNWD------- YTGLVNAIHNS---- EGNCWTMKVRTEEQLKEA 5 64 
VMQWEDRFYKANRAHTYLGDPARENEIFPNMLQFAGACG------ IPAARVTKKEELREA 606 
VRQWQQLFFQERYSETTLTD------- NPDFLKLASAFG------ IPGQHITRKDQVEAA 507 
VTQWQSLFYEHRYSHTHQLN-------- PDFIKLAEAMG------ LKGLRVKKQEELDAK 628 . . 



protein f d y ,  involved in amino acid biosynthesis, fiom bacteria and plastids found in some 

yeast, plants and algae (Fig. 14). 

Isolation of the @dc Promoter Region 

The prornoter region for the P. putido GR12-2 ipdc gene was isolateci by inverse PCR 

as outlined in Fig. 15. Briefly, P. puîida GR12-2 genomic DNA was digested with KpnI 

because it was known that this restriction enzyme wouid cut within the ipdc gene as well as 

at an unknown site somewhere upstream of the ipdc gene. This facilitated isolation of oniy 

the upstream region and avoided isolation of the downstream region which would have 

unnecessarily complicated the identification of the promoter sequence. Following 

circularization of the KpnI genomic fragments, the region upstream of the ipdc gene was 

amplified using PCR primers designed to anneal to regions within the ipdc gene as illustrated 

in Fig. 16. Fonvard and reverse primers were chosen to bind just upstream of the KpnI 

recognition site and slightly downstream of the s t a n  codon in the ipdc sequence, respectively, 

such that PCR products containing the ipdc upstream region could be c o n f i e d  by the 

presence of some ipdc coding sequence. Agarose gel electrophoresis of PCR products 

revealed a single band of about 700 bp (Fig. 17A). Subsequent sequence anaiysis of the PCR 

products suggested that a sequence recognized by the RNA polymerase sigma factor RpoD 

(&'O), characterizPd by the consensus sequence TTGACA and TATAAT at positions -35 and 

-1 0, respectively, and separated by a spacer of 16-1 8 nucleotides, was not present; however, 

three possible stationary phase sigma factor RpoS (638) recognition sequences (CTATACT) 

were apparent (Fig. 17B). In addition, two putative ribosome binding sites were revealed 

(Fig. 17B). Interestingly, the region further upstream from the binding site for the 



Figure 15. Strategy to isolate the P. putida GR12-2 Qdc promoter region using inverse 

PCR. P. putida GRl2-2 genornic DNA was digested with KpnI which is known to cut 

within the ipdç gene. KpnI hgments were circuiarized by Iigation with T4 DNA ligase 

and the region upstream of the ipdc gene was arnplified using PCR prirners designed to 

anneal to regions within the ipdc gene. 



P. putida GR12-2 Chmmosomal DNA 

1 Digest with o n 1  

1 Ligate 



Figure 16. Nucleotide sequence of the P. purida GR12-2 ipdc gene showing positions 

within the gene for binding of PCR primers used to arnplify the region upstream of the 

ipdc gene. The binding position for each primer and the direction of amplification are 

indicated by the amows. The unique e n 1  site within the ipdc gene is underlined. 



1 
ATGCGAACCCCATACTGGGTCGCCaTTU:Cn=CTGGACCGTCTTACAGATTGTGGTGCC 

GATCATCTGTTTGGCGTGCCGGGCGACTATAACCTGCAGTTTCTCGACCACGTMTAaC 

AGCCCGGATATTTGTTGGGTGGGCTGTGCCAATGAGCTGAACGCATCCTATGCCGCTGAC 

GGATACGCCCGATGTAAGGGCTTTGCCGCGCTGCTGACCACATTCGGCGTTGGaGTTA 

AGTGCCATGAACGGCATTGCCGGCAGCTATGCCGAGCATGTCCCGGTTTTACATATTGTG 

GGGGCGCCGGGTACGGCGGCACAGCAAAGGGGAGAGTTGCTGCATCATACGTTGGGGGAT 

GGGGAGTTCCGTCACTTTTATCATATGAGCGAGCCGATCACCGTCG-CAGKGGTCCTT 

ACC-CAAAATGCCTGTTATGAAATCGACCGTGTGTTGACAACCATGCTTCGGGAACGT 

CGCCCCGGTTATCTGATGTTACCCGCCGATGTGG~GCCGCCACGCCGCCTGTA 

AACGCTCTCACTCATAAGCAGGCTAATGCCGATAGCGCCTGCCTGAAAGCGTTCCGGGAT 

GCTGCTGA ACCGCGCTGCTGGCCGACTTCCTTGTT 

CTGCGCCATGGCCTGAAGCATGCGCTACAGAAGTGGGTGAAAGAGGTAiI=CGATGGCACAT 

GCCACCATGCTGATGGGGAAAGGGGATATTCGACGAGCGTCAGGCGGGTTTTTACGGTACA 

TACAGTGGTTCAGCCAGCACCGGTGCGGTAAAAGAGGCGATTGAAGGGGCTGACACGGTA 

TTGTGTGTTGGCACGCGTTTTACCGATACCCTGACGGCCGGGTTmCGCACCAGCTTACC 

CCGGCGCAAACCATTGAAGTTCAGCCGCATGCCGCACGCGTCGGGGATGTCTGGTTTACC 

G G C A T C C C A A T G A A C C A G G C G A T T G A G A C G C T G G T C G A A C  

ACTGGCCTTATGTCGTCATCATCCGGCGCAATACCGTTCCCGCAGCCG-CGGTTCGCTT 

ACCCAGGAGAATTTCTGGAGAACGTTGCAAACCTTTATTCGCCCGGGGGACATTATCCTT 

GCCGACCAGGGAACATCGGCCTTCGGCGCGATTGATCTGCGTTTACCGGCTGATGTGAAC 

TTTATCGTCCAGCCGCTGTGGGGCTCGATTGGTTACACGCTGGCGGCGGCGTTTGGTG- 

C A A A C C G C A T G C C C G A A C C G G C G C G T G A T T G T G C T C G C T C  

ACTATTCAGGAACTAGGCTCGATGCTGCTGCGTGATAAACAGCACCCCATTATTCTGGTGCTC 

AACAACGAAGGCTACACGGTTGAAAGGGCTATCCATGGGGCGGAGCAGCGGTATAACGAC 

A T T G C T T T G T G G A A C T G G A C G C A C A T T C C A C A G G C G T T G A  

TGCTGGCGGGTCAGTGAAGCGGAACAGCTGGCGGACGTACTTWGTGGCXACCAC 

GAGCGGCTCTCGTTGATTGAGGTGATGCTCCCGAAAGCGGATATCCCGCCGCTGCTCGGG 

GCGCTTACCAAAGCTCTGGAAGCGCGTAATAGCCTGA 



Figure 1 7. The region upstream of the P. putidu GR1 2-2 ipdc gene. A, inverse PCR 

products following agarose gel electrophoresis (Lane 3). The 700 bp fiagrnent carrying 

the upstream region is indicated by the arrow. Lane 1, DNA size markers; Lane 2, PCR 

products fiom water as a template. B, Nucleotide sequence of the upstream region 

showing possible bindhg sites for sigma factor RpoS (overlined) and ribosomes 

(underlined), and the translation start codon for indolepymvate decarboxylase (in bold). 

The position of the start codon and the direction of translation for a putative potassium 

ion channel protein is indicated by an arrow. 



ATCCACATATTCCAGCCCCATACGCTTCAGGCTTTTGATCCAGGCTGGCAACCAGATATTT 
V Y E L G M R K L S Q D L S A V L Y K R  

GCGTGACCCCCAGTCGCCGTAGGGGCCATCCCACATGGTATMCCC~TTTffiTCGA~T 
S G W D G Y P G D Q M T Y G A K T S I I  

GATCAGCTCGTCGCGCCATGGCAGGAAATCTTCCTGCAAAATGCGACCGAAATTACGTTC 
L E D R W P L F D E Q L I R G F N R E A  

GGCTGAGCCGGGAGGAGGACCGTAATTATTATTGGCmGGTCaTGCGTMTACCaMTC 
S G P P P G Y N N A L D F H T I G L D F  

GAACGCGCGTTGTAAAAGTTGACGGCTGTTTTCGACAAGCGTGGCGTCGCCAAAATTGTG 
A R Q L L Q R S S N E V L T A D G F N H  

C C A C A A C C C G A G T G A G A T G G C A G G C A A C C T G A G T C C G C T T T G  
W L G L S I A P L R L G S Q G C R R Y Q  

%TGTcTGATmcGATTTTTGTccGGcTGGTAAcccATTcTGATGcccTcTGGcGc~~~ 
M 

AAGGAAAAATCAGTGTATACGTTTACATTTACATGAAAAAAAAGAGCATAGCGCAGCCTT - 
481 T T T T G T A A A G C A T T C T T T C C A T G C C C T T C T T A C G A C C T T  - 
541 CTTTAATACTCAAAGTGAGGTCAACGTCAGAAGGACACCTGTTAmUCCCCATACTG 

M R T P Y W  

601 GGTCGCCCATTACCTGCTGGACCGTCTTACAGATTGTGGTGCCGAT-TCTGTTTGEGT 
V A H Y L L D R L T D C G A D H L F G V  



transcriptional machinery is significantly similar (63% identical over approximately 400 bp) 

to the corresponding nucleotide sequence upstream of the ipdc gene fiom Erwinia herbicola 

(Brand1 and Lindow, 1996). This region may encode a potassium ion channel protein subunit 

similar to that found in many organisms including microorganisms, animals and plants (Fig . 
18). The protein is transcribed fiom the strand opposite to that carrying the ipdc gene, 

beginning fiom the translation start codon 220 bases upstream of the start codon for 

indolepyruvate decarboxylase (Fig . 17B). 

That the isolated sequence indeed corresponded to the region upstream nom the ipdc 

gene was coofinned by several means. As expected, the sequence of the products from 

inverse PCR revealed that the 5' end was identical to approximately 60 bases just upstream 

fkom the KpnI site in the ipdc gene, and similarly, the 3' end of the PCR products was 

identical to the fust 23 bases of the ipdc gene. In addition, PCR primers designed fiom the 5' 

end of the isolated upstream sequence and fiom the 3' end of the ipdc structural gene, 

amplified a region of P. putida GR12-2 genomic DNA of expected size'(2.2 kb, Fig. 19A) 

and with expected restriction enzyme recognition sites (Fig. 19B). 

The proximity of the promoter to the ipdc gene, and the presence of a putative 

transcription termination sequence and a putative gene transcribed fiom the opposite strand 

in the region downstream of the ipdc gene, indicate that the genes involved in IAA 

biosynthesis in this bacterium are not organized in an operon. 

Characterization of ipdc Promoter Activity 

The 700 bp PCR Fagment was initially inserted into vector pGEM@-T by ligating the 

single deoxyadenosine on the 5' ends of the PCR products, generated by Taq polymerase, 



Figure 18. Alignrnent of the open reading frame upstream of the P. putida GR1 2-2 ipdc 

gene with the sequences for a potassium ion channel protein from E. coli (E.c), 

Arabidopsis tha lhu (A.t) and Homo sapiens (H.s). The numbers shown to the right of 

the P. putida GRl2-2 sequence (P.p) indicate the nucleotide position upstream relative to 

the indolepynivate decarboxylase start codon. 



---------------------- MQYRRCGQSGLRLPAISLGLWHNFGDATLVENSSRQLL 334 
---------- MVWLANPERYGQMQYRYCGKSGLRLPALSLGLWHNFGHVNALE-SQRAIL 49 
---------------------- MQYKNLGKSGLKVSTLSFGAWVTFGNQLDVK-EAKSIL 37 

MYPESTTGSPARLSLRQTGSPGMIYRNLGKSGLRVSCLGLGTEGQTDE-EQLM 59 

Q R A F D L G I T H F D L A N N Y G P P P G S A E R N F G R I L Q E D F L P W R G Y T M Q D G P Y G D  514 
RKAFDLGITHFDLANNYGPPPGSAEENFGRLLREDFAAYRDELIISTKAGYDMWPGPYGS 10 9 
Q C C R D H G V N F F D N A E V Y A N - - G R A E E f M G Q A I R E - - L G W R G G P G N D K  93 
T L A Y D N G I N L F D T A E V Y A A - - G K A E V V L G N I I K K - - K G P E T  115 

WGS~LVASLDQSL~GLE~~D------------------------------------ 586 

G G S R K Y L L A S L D Q S L K R M G L E W D I F Y S H R V D E N T P M E E T A S V Q S G G I S S  169 
GLSRKHIVEGTKASLKRLDMDWDVLYCHRPDASTPIEEAVRAMNYVIDKGWAFYWGSE 153 
G L S R K H I I E G L K A S L E R L Q L E Y V D W F A N R P D P N T P M E E T V I N Q G G T S R  175 



Figure 19. The 2.2 kb genomic fragment carrying the P. putidn GR12-2 ipdc gene and its 

upstream flanking region. A, Agarose gel electrophoresis of PCR products using primers 

designed to anneal to the 5' end of the upstream region and the 3' end of the ipdc gene 

fkom P. putida GR1202 (Lane 1) and water (Lane 2) as a template. Lane 3, 1 kb ladder 

DNA size markers. B, Map of restriction eayme recognition sites. 



promoter ipdc gene 



with compatible thymidine overhangs in the cloning site of the vector. The promoter 

fiagment was subsequently transferred from pGEM@-T as an NcoISaA fragment to 

NcoYHindIII-digested pQF7O ca-g the lwvlB reporter gene to generate pQFPROM (the 

Sa11 site was abolished but the HindIII site was regenerated following treatment with Klenow 

polymerase to fil1 in sticky ends) (Fig. 20). 

Light production (LwcAB activity) in trrinsformed E-coli DH5a cells, driven by the 

ipdc promoter, was quantified in a luminometer before isolating plasmids for further 

manipulation. E. coli DHSa cells carrying plasrnids with the promoter fiagment inserted 

upstream of lwv lB  in pQFPROM produced about one hundred times more light in rich 

medium than cells carrying plasmids without the promoter inserted (pQF70) (Table 4). 

Because P. putida GR12-2 is naturally resistant to ampicillin (100 pgIrnL), cells transformed 

with pQFPROM could not be selected using the ampicillin resistance marker on the plasmid. 

Therefore, a kanamycin resistance gene was inserted into the PvuII site of pQFPROM to 

generate pQFPROM-Kan (Fig. 20). Colonies of both E. coli DHSdpQFPROM and 

P. putidu GR12-2IpQFPROM-Kan growing on agar plates produced light in the presence of 

n-decyl aldehyde, whereas corresponding control cells, E. coli DHSalpQF70 and P. putidu 

GR1 2-2/pQF70-Kan, did not (Fig. 2 1). 

Effect of t rv~to~han and RwS on Dromoter activity 

Preliminary experiments indicated that ipdc promoter activity in P. putida 

GR12-UpQFPROM-Kan, assayed by measuring light production by LuxAB, increased 

sharply in the presence of tryptophan around the onset of stationary phase. To determine 

whether the stationary phase sigma factor RpoS regulates the ipdc promoter, P. putida 

GR12-2IpQFPROM-Kan, and P. putida GR12-2/pQF7OoKan as a negative control, were 



Figure 20. Construction of promoter reporter plamllds pQFPROM and pQFPROM-Kan. 

The 0.6 kb NcoISalI ipdc promoter fbgment was excised fiom the pGEM-T vector and 

uiserted into the Ncd-HindIII site upstream of the ZwrAB reporter gene in pQF7O to 

create pQFPROM. The orientation of the promoter was preserved by ligation into the 

Ne01 site; the Slln site was abolished but the HindIII site was regenerated following 

treatment with Wenow polymerase to fil1 in sticky ends and subsequent blunt end 

ligation. The kanamycin resistance gene, carried on a 2.3 kb EcoRI fragment, was 

removed fkom pHP450-Kn and inserted into the PvuII site in pQFPROM to generate 

pQFPROM-Kan. 



pGEM-T+PROM 

+ S 1 nuclease 

PQFPROM-Kan 



Table 4. Light production (Lux activity) in E. coli cells carrying reporter plasmids with 
and without the P. ptida GR12-2 ipdc promoter inserted upstream of luxAB (pQF70 and 
pQFPROM, respectîvely). 

Trial 1 Trial 2 



Figure 21. E. coli DHSdpQFPROM and P. putida GRl2-2fpQFPROM-Kan, carrying 

the ipdc promoter region upstream of the ZuxAB reporter gene, produce light in the 

presence of n-decyl aldehyde whereas control cells without the promoter region, E. coli 

DHSalpQFïO and P. putida GR12-ZpQF70-Kan, do not. A and B, E. coli DHSdpQF70 

(top half of plates) and E. coli DHSodpQFPROM (bottom half of plates) in the light (A) 

and in the dark (B). C and D, P. putida GR1 Z-UpQFIO-Kan (top half of plates) and 

P. putida GR12-ZpQFPROM-Kan (bottom half of plates) in the light (C) and in the dark 

m. 





transformed with pJEL5649 @RpoS) which carries the gene encoding RpoS nom 

Pseudomonus fluorescens Pf-5 (Samiguet et al., 1995). Resistance to both kanamycin 

(encoded on pQF70-Kan and pQFPROM-Kan) and tetracycline (encoded on pRpoS), and the 

pattern of bands for uncut and EcoRI-digested plasmids isolated fiom P. purida 

GRl2-2/pQF70-KanfpRpoS (Fig. 22A, lane 3) and fkom P. putida GR124pQFPROM- 

KadpRpoS (Fig. 22B, lane 3) in an agarose gel, confvmed that these strains carry both 

pRpoS (Figs. 22A, lanes 2 and 3; Fig. 22B, lane 2) and the ZuulB reporter plasmid (Figs. 

22A, lanes 6 and 7; Fig. 22B, lane 4). 

The growth of al1 four strains, that is, P. putida GR12-2/pQF70-Kan, P. putida 

GR12-2IpQFPROM-Kan, P. putida GR12-21pQF70-KanIpRpoS, and P. putida 

GR12-UpQFPROM-KanlpRpoS, was similar whether cultured in the presence or absence of 

tryptophan (Fig. 23A and 23B). The rate of ce11 proliferation was maximal fiom about 8 

hours until the onset of stationary phase at around 20 hours. 

Production of IAA by al1 strains in minimal medium without tryptophan was very low 

throughout the 48 hour penod of the experiment, never reaching more than 1 pg/mL. In 

media supplemented with tryptophan (200 pg/mL), IAA was first apparent in cultures of 

P. putida GR1 2-2 strains carrying extra copies of rpoS (on pRpoS) at 16 hours (Fig. 24A and 

24B). At this t h e ,  IAA production in cells without pRpoS was still ve r '  low. These latter 

cells without pRpoS began to produce IAA in the presence of tryptophan four hours later, 

and at levels well below those of cells overexpressing RpoS. Strains carrying extra copies of 

the ipde promoter, on pQFPROM-Kan, always lagged behind correspondhg strains carrying 

pQF70-Kan, which does not cany the promoter fragment, in IAA production, although this 

was alleviated somewhat by RpoS overproduction in the early stages of the 



Figure 22. Agarose gel electrophoresis of plasmids isolated from P. pt i& 

GR12-ZlpQF70-Kan/pRpoS (A; Lane 3, EcolXi digest) and P. putido GR1 2- 

Z/pQFPROM-KadpRpoS (B; Lane 4, uncut; Lane 5, EcoRI digest) to confimi the 

presence of pRpoS (A; Lane 2, uncut; Lane 3, EcoRI digest; B; Lane 2, EcoRI digest), 

and pQF70-Kan (A; Lane 6, uncut; Laue 7, EcoRI digest) or pQFPROM-Kan (B; Lane 4, 

EcoRI digest). (A; Lanes 1 and 8, and B; Lanes 1 and 5, 1 kb ladder DNA size marken) 





Figure 23. Growth of P. putida GR1 2-2/pQF70-Kan, P. puti& GR1 2-2/pQFPROM-Kan, 

P. putida GR12-UpQF70-KaolpRpoS, and P. ph '&  GR12-2/pQFPROM-Kan/pRpoS in 

the presence (Trp) and absence (MM) of tryptophan (200 pg/mL) over a 48 hour period. 

Growth was detemllned spectrophotometricdy by the absorbance of the cultures at 600 

nm. (+Prorn indicates the presence of pQFPROM-Kan; -Prom indicates the presence of 

pQF70-Kan and I R ~ S  indicates the presence or absence of pRpoS in cells; n=2 for each 

strain at each time point) 
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Figure 24. IAA production by P. putida GR12-2/pQF70-Kan (-Prom) and P. ptrrida 

GRt2-2/pQFPROM-Kan (+Prom) in the presence of cryptophan (200 pg/mL) and in the 

presence or absence of pRpoS (*RpoS) over a 48 hour period. In each experiment, n=2 

for each main at each tirne point; error bars indïcate standard error of the mean (SE). 

Where error bars are not visible, they are smaller than the marker. 
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growth cycle. These trends continwd as IAA accumuiated in the culture media, at least to 48 

hours; however, in the later stationary phase, overproduction of RpoS did not infïuence IAA 

production. 

When the promoter was absent, as in control cells P. putida GR12-ZpQF7O-Kan and 

P. putida GR12-2/pQF70-KadpRpoS, cells did not produçe light (always less than 1 RLU; 

for cornparison, light producing cells reached values ranging from several hundred to several 

thousand RLU). In cells carrying the promoter fragment (on pQFPROM-Kan), LuxAB 

activity increased at between 16 to 24 hours, and then decreased rapidly (Fig. 25). In the 

presence of tryptophan, this increase in promoter activity was approximately 5 times greater 

than in cells grown without tryptophan. Light was emitted earlier, and was maintained at a 

higher level later in the growth cycle, in cells carrying extra copies of rpoS, compared to 

corresponding cells without pRpoS. However, at the onset of stationary phase, at around 20 

hours, overproduction of RpoS did not result in a M e r  increase in promoter1LuxAB 

activity . 

Effect of canola seed exudate on Dromoter activitv 

Exudate collected fiom canola (Hyola 401) seeds 3,6.5 and 10 hours after imbibition 

in 0.03 M MgS04, did not influence IAA production (Fig. 26À) in P. putida GR120 

2/pQFPROM-Kan (+Prom) or P. putida GR12-2/pQF70-Kan (-Prom). IAA levels in the 

culture medium of cells treated with exudate were very low, less than 1 pg/mL, and were not 

sipificantly different From cells grown in minimal medium without added exudate. 

However, light emission decreased slightly in P. putida GR12-2/pQFPROM-Kan cultures 

supplemented with exudate compared to light production in the absence of exudate. 



Figure 25. Activity of the ipdc promoter as determined by LuxAB activity (measured in 

relative light uni&, RLU) in P. putida GR1 2-Z/pQFPROM-Kan (+Prom) in the presence 

(Trp) and absence (MM) of tryptophan (200 pg/mL), and in the presence or absence of 

pRpoS (hRpoS) over a 48 hour period. In each experiment, n=2 for each strain at each 

time point; error bars indicate SE. Where error bars are not visible, they are smaller than 

the market. 
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Figure 26. IAA production (A) and ipdc promoter activity (LuxAB activity; measured in 

relative light units, RLU) (B) in P. putida GR12-21pQF70-Kan (-Rom) and P. putiàù 

GR12-2/pQFPROM-Kan (+Prom) in media supplemented with exudate collected nom 

canola seeds 3, 6.5 and 10 h following imbibition in 0.03 M MgS04. Note that O 

indicates cultures where sterile distilled water was added in place of exudate, and that, for 

clarity, values for LuxAB activity @) in P. putida GR12-2lpQF70-Kan were omitted 

because they were negligible (< 1 RLU) compared with values for P. putida GR12- 

ZIpQFPROM-Kan. In each experiment, n=4 for each treatment and e m  bars indicate 

standard error of the mean (SE). Where error bars are not visible, they are smailer than 

the marker. The analysis of variance showed that Lux activity in P. putido GR120 

2lpQFPROM-Kan cells treated with exudate (B) was significantiy lower (at P value < 

0.05) than in cells grown in the absence of exudate (Fin = 12.2). 
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Construction of an IAADeficient Mutant of P. p d a  GR12-2 

Vector pJQ200 (Quandt and Hynes, 1993) was chosen as a vehicle for delivery of the 

ipdc sequence, disrupted by insertion of a gene for kanamycin resistance, into the genome of 

P. putida GR12-2 because it has an origin of transfer (oriï') and mob genes from plasmid 

RP4 enabling tramfer of the vector nom E. coli S 1 7.1 (Simon et ai., 1983) into P. pufido 

GR12-2 via conjugation. However, once in P. putida GR12-2 the plasmid cannot replicate 

because it has an origin of replication derived fiom pACYC184 that is fhctional only in 

enterobactena (Quandt and Hynes, 1993). Thus, following transfer of the vector to P. putida 

GR12-2, kanamycin resistant cells can only a i se  if the kanarnycin resistance gene has been 

inserted into the ipdc gene in the genome by a double crossover between homologous ipdc 

sequences on the plasmid and in the chromosome. In addition, because gentamicin 

acetyltransferase and SacB are encoded on the vector, selection for the absence of these 

traits, that is, selection for sensitivity to gentarnicin and resistance to the lethal effects of 

SacB in the presence of sucrose, selects against the incorporation of the entire plasmid into 

the genome thai would result fiom a single crossover event. 

The 1.7 kb BamHI fiagrnent carrying the ipdc gew fiom pIPD2 was subcloned into 

the BamHI site in the multiple cloning site of pJQ2OO to yield pJQIPDC4 (Fig. 27). A 

kanamycin resistance gene, camied on a 2.3 kb EcoRl fragment nom pHP45R-Kn (Fellay et 

al., 1987; Prentki and Knsch, 1984), was inserted into the unique PmA site of pJQIPDC4, 

roughly in the middle of the ipdc gene. The orientation of the kanamycin resistance gene in 

the resulting plasmid (pJQIPDC4-Kan) was detennined by restriction enzyme mapping of 

plasmids isolated fkom transformed cells of E. coli S17.1 that were initially selected on the 

basis of kanamycin and gentamicin resistance. In addition to connmùng the expected size 



Figure 27. Construction of plasmid pJQIPDC4-Kan used for insertional mutagenesis of 

the ipdc gene in the genome of P. puti& GR12-2. The ipdc gene was transferred nom 

pIPD2 to vector pJQ2OO as a 1.7 kb BarnHI thgrnent to generate pJQIPDC4. The 2.3 kb 

EcoRl fiagrnent h m  pHP45R-Ko, carrying a kanamycin mistance gene, was inserted 

into the P d  site in the ipdc gene in pJQIPDC4 by blunt end ligation following S1 

nuclease treatment of the EcoRI sticky ends. The resulting plasmid was designated 

pJQIPDC4Kan. 
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(8.9 kb) of the plasmids fiom positive transfonnants by agarose gel electrophoresis of 

digested plasmids (Fig. 28), insertion of the kanamycin resistance gene into the ipdc gene on 

pJQIPDC4-Kan was verified by an increase of 2.3 kb in the size of PCR products compared 

to those fiom plQIPDC4 using primers designed to amplify the ipdc gene (Fig. 29). 

Following the transfer of pJQIPDC4-Kan fiom E. coli S 17.1 to P. putida GR12-2 by 

conjugation, transconjugants were initially selected on SUnmon's Citrate agar (on which 

E. con donor cells cannot grow) containing kanamycin (on which non-transformed P. putida 

GR12-2 cells cannot grow). After three days, the surface of the Simmon's Citrate plates was 

almost covered with small colonies and, in addition, 20 larger colonies were visible. Cells 

fiom eight large colonies were carefully picked and subcuitured onto Simmon's Citrate agar 

plus kanamycin in order to isolate single colonies, and then ont0 DF salts minimal agar (on 

which E. coli cannot grow) containing kanamycin to confïrm that they were indeed derived 

from P. pufida GR12-2; four transconjugants were selected for M e r  analysis. Growth on 

TSB agar containing kanamycin and 5% sucrose, and lack of growth on TSB agar containing 

gentamicin, indicated that the kanamycin resistance gene, but not the remainder of the 

plasmid, had been inserted into the chromosome of al1 four selected transconjugants. 

Replacement of the functional ipdc gene in the chromosome of P. putida OR12-2 with the 

ipdc gene disrupted by the kanamycin resistance gene fiom pJQIPDC4-Kan was confinned 

by PCR using primers designed to ampli@ the ipdc gene, and whole ce11 lysates of 

tnuisconjugants and wild-type P. putida GR12-2 as templates. As can be seen in Fig. 30, 

PCR products nom transconjugants (Lanes 2,3, and 5) are 2.3 kb larger, corresponding to 

the size of the kanamycin resistance gene fragment, than PCR products fiom the wild-type 

strain (Law 6); PCR products were confimied to contain the ipdc sequence by Southem 



Figure 28. S a n  digestion products of pJQIPDC4-Kan foiiowing agarose gel 

electrophoresis. Lanes 1 and 7, 1 kb ladder DNA size marker; Lanes 2-6, plasmids 

pJQIPDC4-Kan isolated k m  positive transformants. The plasxnid shown in lane 5 was 

chosen for M e r  manipulation. 





Figure 29. Products of PCR amplification of the P. putida GR12-2 ipdc gene in 

pJQIPDC4-Kan (Lane 2) and pJQIPDC4 (Lane 3) foilowing agarose gel electrophoresis. 

Lane 1, PCR products h m  water as a template; Lane 4, 1 kb ladder DNA size markers. 





Figure 30. Products of PCR amplification of the ipdc gene fiom whole ce11 lysates of 

transconjugants (Lanes, 2-5) and wild-type (Lane 6) P. putida GR12-2. The 2.3 kb 

increase in the size of the PCR products nom the transconjugants compared to those fiom 

the wild-type strain c o n b  that the kanamycin resistance gene was inserted into the 

ipdc gene in the P. putida GR12-2 genome. Lanes 1 and 7, 1 kb ladder DNA size 

markers; Lane 8, PCR products nom wata as a template. 





hybridization (Fig. 3 1, lanes 3 and 4). In addition, Southern hybridization confimed the 

presence of a larger EcoRI fiagment carrying the ipdc gene in the chromosome of the mutant 

strain compared to the wild-type bacterium (Fig. 3 1, lanes 1 and 2)- 

Characterization of the IAA-Deficient Mutant of P. putida GR12-2 

IAA ~roduction 

In the absence of tryptophan supplements, both the IAA-deficient mutant and wild- 

type P. putida GR12-2 produced very low levels of IAA (Fig. 32). However, when both 

strains were grown in the presence of 50 pg/mL (or approx. 0.25 mM) tryptophan for 

approximately 42 hours, wild-type P. putida GR12-2 responded by producing substantial 

levels of IAA, while the mutant was not capable of producing significant amounts of IAA 

(Fig. 32). As the concentration of tryptophan in the growth medium was increased, so did 

IAA production by the wild-type strain. In contrast, IAA production by the mutant strain 

remained low. The apparent slight increase in IAA concentration in the medium of mutant 

cultures supplemented with high levels of tryptophan (500 pg/mL) is most likely due to 

accumulation of indolepyruvic acid, which can also react with Salkowski's reagent w d  to 

estimate IAA concentration colorimetrically, albeit to a lesser extent than IAA (Fig. 33). 

Indolepynwic acid is the product of catalysis of tryptophan by tryptophan transaminase, the 

first step in the IAA biosynthetic pathway, and the substrate for indolepyruvate 

decarboxylase, which is no longer functional in the mutant. The growth of the mutant and 

wild-type strains of P. putida GR12-2 was not affected by the addition of high levels of 

tryptophan to the medium (Fig. 34). 



Figure 31. Southern hybridization of EcoRI-digested genornic DNA fiom an IAA- 

deficient mutant (Lane 1) and a wild-type strain (Lane 2) of P. putida GR12-2, and the 

products of PCR amplification of the ipdc gene fkom whole ce11 lysates of the IAA- 

deficient mutant (Lane 3) and the wild-type strain (Law 4), with a DIG-labeled ipdc gene 

probe. 





Figure 32. Production of IAA by wild-type and an IAA-deficient mutant of P. putido 

GR12-2 in the presence of various concentrations of tryptophan. The concentration of 

IAA in the cell-fiee growth media was measured by reaction with Salkowski's reagent 

d e r  42 hours of growth and adjusted to account for small differences in ce11 numbea 

among the various cultures (absotbance of the cultures at 600 m). Error bars indicate 

standard error of the mean (SE); n=3. 
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Figure 33. Reaction of indoleacetic acid (IAA) and indolepyruvic acid (IPyA) with 

Salkowski's reagent used for the colorimetrîc estimation of IAA concentration 

(absorbance of the reaction products at 535 nm). Although the concentration of IAA is 

expressed elsewhere in pg/mL (see Fig. 32), the concentration here is expressed in m M  to 

account for differences in molecular weight between IAA (175 ghole)  and 

indolepynivic acid (203 g/mole); however, for the purposes of conversion, 0.5 rnM of 

these compounds corresponds roughly to 100 pg/mL. Error bars indicate standard error 

of the mean (SE); n=2. 



O O. 1 0.2 0.3 0.4 0.5 

Concentration (mM) 



Figure 34. Growth of wild-type and an IAAdeficient mutant of P. putida GR12-2 in the 

presence of various concentrations of tryptophan as measured by the optical density 

(turbidity) of 42-hour cultures at 600 nm. Error bars indicate standard error of the mean 

(SE); n=3. 
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Root elonaation assavs 

IAA produced by P. putida GR12-2 has a significant impact on the ability of this 

bacterium to stimulate the growth of primary roots of canola seedlings. Whereas roots fkom 

seeds treated with wild-type P. putidn GR12-2 were on average 35% longer than those h m  

uninoculated control seeds after five days, the lengths of roots fiom seeds treated with the 

IAA-deficient mutant were not significantly different from those fiom uninoculated control 

seeds (Fig. 35, Table 5). IAA produced by the wild-type strain had no effect on shoot length, 

as shoots fiom seeds inoculated with wild-type P. putida GR12-2 were not different in length 

fiom shoots fiom uninoculated seeds (Fig. 36). Similarly, wild-type P. putida GR12-2 did 

not have an effect on the fiesh or dry weight of shoots and roots (Table 6). As expected then, 

abolishing IAA production also did not affect these parameters. 

Rootinpr assavs 

Mung bean cuttings, excised fiom above the roots after seven days of growth in 

vermiculite and placed in either water or a bacterial suspension, showed visible roots at the 

base of the stem afier five days. After eight days, the cuttings in water had a few long roots, 

on average about six 3.7 mm long roots (Table 7) growing fiom just above the base (Fig. 3 7). 

More than three times as many adventitious roots developed in a suspension of wild-type 

P. putida GR1 2-2 (Table 7). Most of these were very small, less than 1 mm long (Fig. 3 8), 

distributed over several centimeters up from the base of the stem, sometimes with a few 

longer roots right at the base (Fig. 37). Roots that developed in the suspension of IAA- 

deficient mutant of P. putida GR12-2 were both abundant and long (Fig. 37), likely the best 

situation for propagation of the cutting in the long term. Twice as many mots were present 

on these cuttings compared to those gmwing in water, and these were generally longer than 



Figure 35. Lengths of roots fiom canola seeds treated with wild-type or an IAA-deficient 

mutant of P. putido GR12-2 and fiom iuiinoculated control seeds &et five days of 

growth. The average lengths of roots fkom five separate experiments are presented; 

n=300 rootdtreatment, error bars indicate standard error of the mean (SE). The analysis 

of variance indicated that roots fiom uninocuiated control seeds were significantly shorter 

(at P value < 0.0 1) than those fiom seeds treated with wild-type P. pufi& GR1 2-2 (F in = 

30. l), but were not different fiom roots fiom seeds treated with the IAA-deficient mutant 

(Frre = 4.3). 
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Table 5. Length of five day old canola seedling mots fkom seeds treated with either wild- 
type or an IAA-deficient mutant of P. putida GR12-2 or MgSOa as a negative control. 
The root lengths from five separate root elongation assays are presented as the mean 
value of approximately 60 roots * SE (standard error of the mean). 

Average Root Length (mm * SE) 

Assay No. 
Control IAA- Mutant Wild-type 



Figure 36. Lengths of shoots fiom canola seeds treated with wild-type or an IAA- 

deficient mutant of P. putida GR12-2 and fiom iininocuiated control seeds after five days 

of growth. In each assay, 60 seeds were used for each treatment, emr bars indicate 

standard emr of the mean (SE). The analysis of variance indicated that shoots fiom 

uninocuiated control seeds were not signüicantly different fiom those fiorn seeds treated 

with wild-type P. putida GR12-2 (F = 5.1) or from shoots that developed fiom seeds 

treated with the MA-deficient mutant (Frn = 3.9). 
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Table 6. Fresh and dry weight of five &y old canola seding mots and 
shoots fiom seeds treated with wild-type or IAAdeficient P. pufida 
GR1 2-2 or MgSO, as a control (n =60). 

Root Fresh Shoot Fresh Root Dry Shoot Dry 
Treatment Weight Weight Weight Weight 

(mg * SE) (mg SE) (mg * SE) (mg * SE) 

Control 10.5 0.4 34.6 1.0 0.66 * 0.02 3.5 0.1 

IAA-Mutant 12.0*0.4 35.8*0.9 0.66*0.03 3.6k0.1 

WiId-iype 11.5 0.4 36.0 * 0.7 0.68 * 0.02 3.7 0.1 



Figure 37. Adventitious roots on mung beau cunings after eight days of incubation in 

water, or in a suspension of wild-type or an IAA-deficient mutant of P. putida GR12-2. 





Table 7. Effect of wild-type and an IAA-deficient mutant of P. putida GR12-2 on the number and length of adventitious roots on 
mung bean cuttings. Roots were measured eight days after treatrnent with the bacteria. In each expriment, ten cuttings were measured 
foi each treatrnent; SE indicates standard error of the mean. The analysis of variance indicated that significantly (at P value < 0.05) 
more (Fia = 19.2) and shorter (Filr = 17.8) adventitious roots developed on cuttings treated with wild-type P. pufida GR1 2-2 than in 
water, and that the number and lengtb of adventitious roots that developed on cuttings treated with the IAA-deficient mutant were 
intermediate between these two (FiI4 = 0.4 for abundance; File = 0.3 for iength). 

Treatment Roots/Cutting (No. * SE) Avg. Root Length (mm I SE) 

---p. - - - - -- - - - -- - - - - 

Water 6.8 * 1 ,O 5.5 î 1.3 6.3 * 0.6 3.4 -t 0.2 3.4 i 0.2 4.2 î 0.2 

IAA-Mutant 13.8 * 1.9 10.1 * 1.8 14.2 1.6 2.6 k O, 1 2.1 k 0.1 2.9 î 0.2 

Wild-type 20.3 2.2 16.1 =t 3.8 33.4 * 3.4 1.6 * O.! 2.4 k 0.1 1.4 0.1 



Figure 38. Number of adventitious roots of each length (1-9 mm) that developed on ten 

mung bean cuttings after eight days of incubation in water (control), or in a suspension of 

wild-type or an IAA-deficient mutant of P. putik GR12-2, in three separate experiments. 
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those that developed in the wild-type bacterial suspension (Table 7, Fig. 38). 



DISCUSSION 

Indolepyruvate Deearboxyhse 

The amino acid sequence detemiiwd fiom the ipdc gene isolated fkom P. putida 

GR12-2 reveals a protein of 552 amino acids with a predicted molecular weight of 

approximately 60 Wla. It is not encoded in an operon containhg the other gens  involved in 

the biosynthesis of IAA by the indolepyruvic acid pathway as it is transcribed fkom its own 

promoter and has a transcription termination sequence just downstream of the translation stop 

codon. Also, the ipdc gene is flanked by two genes, transcribed fiom the opposite strand on 

the chromosome, one encoding a putative potassium ion channel protein in the 5' flanking 

region, and the other, a protein similar to an E. coli protein of unknown b c t i o n  in the 

3' flanking region; rarely are two genes transcribed fiom complementary DNA strands in the 

same region of DNA. It is reasonable that the enzymes involved in the indolepyruvic acid 

pathway are not expressed fiom an operon because the genes for the fust enzyme in the 

pathway, an aromatic aminotransferase, are ofien present in multiple copies in a single 

bacterium, and cm utilize substrates other than tsrptophan (Kuo and Kosuge, 1970; Liu et 

al., 1982; Ruckiischel et al., 1988; Soto-Urzua et al., 1996; Kittel et al., 1989; Koga et al., 

1994; Brand1 et al., 1996). Not only does this enzyme lack specificity for L-tryptophan, but 

it prefers to utilize other amino acids as substrates. For example, the K,,, values for the 

aromatic aminotransferase fiom Azospirillum brasilense for L-tyrosine, L-histidine, and 

L-phenylalanine were 0.19, 0.35, and 0.43 mM, respectively, compared to 1 .O5 mM for 

L-tryptophan (Soto-Urzua et ai., 1996). Thus, this aromatic aminotransfenise is not solely an 

IAA biosynthesis enzyme. 

Indolepyruvate decarboxylase fiom P. putida GR12-2 is similar in sequence to 



indolepyruvate decarboxylase from Enterobacter cloacae FERM BP-1529, which was 

isolated fkom the rhizosphere of cucumber (Koga et al., 1991), and to the same protein fiom 

Envinia herbicola 299% an epiphytic bacterium isolated fiom pear (Brand1 and Lindow, 

1996). The E. cloacae indolepyruvate decarboxylase is a 552 amino acid protein with a 

molecular weight of 60 kDa and the protein fiom E. herbicola consists of 550 amino acids. 

In contrast, indolepyruvate decarboxylase from two Azospirillurn brasilense strains, Sp245 

and Sp7 (Costacurta et ai., 1994; Zimmer et al., 1998), is somewhat different in sequence 

fiom those fkom the aforementioned bacteria including P. putida GR1 2-2, although identified 

conserved regions are present. These Azosprillurn strains are capable of producing high 

levels of IAA in the presence of tryptophan, compared to P. putida GR12-2 which is a 

moderate IAA producer. This could be due to differences in the regdation of IAA synthesis, 

or altematively, to differences in indolepyruvate decarboxylase activity. 

Attempts to isolate the ipdc gene fkom Enterobacter cloacae CAL3, another 

bacterïum capable of producing levels of IAA much higher than P. putida GR12-2 (Patten, 

1996), using homology-based methods such as colony hybridization and PCR, were 

unsuccessful, possibly because this gene fiom E. cloacae CAL3 is also different fiom that 

fiom the other bacteriai strains. Support for this can be found in Southern blots of P. putida 

GR12-2 and E. cloacae CAL3 genomic D N A  in which the probe, the ipdc gene from 

E. cloacae FERM BP-1529, hybridized strongly to a fragment of the P. purida GR1 2-2 

genome but gave only a faint signal from the E. cloacae CAL3 genome. Perhaps there is 

some correlation between the indolepynivate decarboxylase sequence present in a bacterium 

and the levels of IAA produced. Altematively, the dserences among the sequences may 

simply manifest evolutionary relationships among these strains, with P. putida GR12-2 being 



more closely related to E. cloacae FERM BP-1529 and E. herbicola 299R than to the 

Azospirillurn brasilense strains. Interestingly, the putative potassium ion channel protein 

upstream of ipdc in P. putida GR12-2 is also present upstream of ipdc in E. herbicola 299R 

(GenBank Accession No. L80006) suggesting that not only the i ' c  gene sequences, but also 

the organization of genes in this region, are conserved in these two organisms. Whether or 

not the organization of these genes is conserved because it is important for theh hct ion is 

not clear. There is some evidence that a gene similar to ipdc is present in other 

Enterobacteriaceae such as Klebsiella aerogenes and Enterobacter agglomerans, although 

only partial sequences have k e n  obtained as PCR products fiom primers designed to anneal 

to conserved regions within the gene (Zimmer et al., 1994); function has not been confmed. 

Koga (1 995) has extensively characterized indolepyruvate decarboxylase fiom 

E. cloacae FERM BP-1529 as a homotetramer that requires thiamine diphosphate and M ~ ~ +  

as cofactors and has a high specificity and high affinity (K,,,=15 @f) for indolepymvic acid 

(Koga et al., 1992). Thiamine diphosphate and M ~ ~ +  are involved in the formation and 

stability of the tetramer. Pymvate decarboxylases h m  the bacterium Zymomonas mobilis 

(Dobntzsch et al., 1998) and fiom the yeast Saccharomyces cerevisiae (Kellermann et al., 

1986) share extensive similarity to indolepyruvate decarboxylase nom E. cloacae FERM BP- 

1529 and fiom P. putida GR12-2, especially in many of the residues that, from the crystal 

structure and site-directed mutagenesis of pyruvate decarboxylase, are believed to be 

involved in cofactor and substrate binding (Candy et al., 1996; Lobe11 and Crout, 1996; 

Schenk et al., 1997; Dobritzsch et al., 1998). Pyruvate decarboxylase h m  Z. rnobilis is also 

a homotetramer; each subunit is composed of 568 amino acids with a molecular mass of 

60 kDa This enzyme catalyzes the decarboxylation of p p v i c  acid to acetaldehyde and 



CO2, a key step in the fermentation of glucose to alcohol. 

The sirnilarity arnong the sequences for pyruvate decarboxylases and indolepynivate 

decarboxylases, and the ability of indolepynivate decarboxylase to utilize pyruvate as a 

substrate, albeit with a relatively low binding m t y  (?Cm=2.5 mM) (Koga et al., 1992), 

suggests that indolepyruvate decarboxylase rnay have evolved from pynivate decarboxylase. 

Alterations in some of the substrate binding residues may have changed the substrate 

preference of an ancestral pynwate decarboxylase molecule for indolepyruvate rather than 

pyruvate. That pymvate decarboxylase is the ancestral protein rather than indolepynivate 

decarboxylase, is suggested by some of the characteristics of pyruvate decarboxylase: 1) It is 

the key enzyme in energy metabolism under anaerobic conditions that were believed to be 

present on ancient earth; 2) It is more ubiquitous than indolepyruvate decarboxylase, king 

present in a wide range of organisms including bacteria, h g i ,  plants (Kelley et al., 199 1 ; 

Hossain et al., 1996) and animals (Zhang et al., 1993). This suggests that pyruvate 

decarboxylase was conserved through evolution, although more recent lateral transfer of the 

gene arnong these organisms cannot be rded out. 

Indolepyruvate decarboxylase is also similar to the acetolactate synthase large 

subunit, involved in the biosynthesis of branched chah amino acids in bacteria, fungi, plants, 

and archaea (Bowen et al., 1997; Chipman et al., 1998; Pang and Duggleby, 1999). 

Acetolactate synthase, also a thiamine-diphosphate- and ~ ~ ~ + - r e ~ u i r i n ~  enzyme, catalyzes 

two different reactions, both involving the decarboxylation of pyruvate. In one reaction 

acetolactate synthase converts two molecules of pynivate to acetolactate, the precursor of 

valine and leucine, while in the other, acetolactate synthase converts one molecule of 

pyruvate and one molecule of 2-ketobutyrate to acetohydroxybutyrate. a key step in the 



synthesis of isoleucine (Gollop et al., 1990). Although the overall identity between 

indolepynivate decarboxylase and acetolactate synthase is moderate (approximately 25%), 

conserved residues are concentrated in several regions of the proteins. 

It is possible that the gene for acetolactate synthase gave rise to ipdc, or vice versa 

The reaction that results in the biosynthesis of IAA nom tryptophan via the indolepyruvic 

acid pathway is, in reverse, an amino acid biosynthesis reaction. In fact, tryptophan 

aminotransferase, the enzyme that catalyzes the f ~ s t  step in the indolepyruvic acid pathway, 

preferentiaily catalyzes the conversion of indolepyruvic acid to tryptophan (Koga et al., 

1994). The Km value of tryptophan aminotramferase for indolepyruvic acid is 24 pM, 

whereas the Km value for L-ûyptophan is 3.3 mM. Only when indolepynivate decarboxylase 

is present, and indolepynivate levels are therefore low, does the reaction favor IAA synthesis. 

The sequence similarity among genes encoding acetolactate synthase in archaea and 

bacteria, and the ubiquity of the enzyme among organisms, suggest that it is an ancient 

molecule, arising before the divergence of bactena and archaea (Bowen et al, 1997). 

However, othen argue that on ancient earth, amino acids were abundant and therefore 

proteins that catalyze arnino acid biosynthesis would be a late development (Chang and 

Cronan, 1988). Rather, they suggest that pyruvate oxidase, another thiamine diphosphate- 

dependent enzyme similar in sequence to both indolepynivate decarboxylase and acetolactate 

synthase, was the ancestral molecule. Pyruvate oxidase catalyzes the oxidative 

decarboxylation of pyruvate to acetate but also has acetolactate synthase activity (Chang and 

Cronan, 1988). Thus, while there is an evolutionary relationship among indolepynivate 

decarboxylase, acetolactate synthase, pyruvate oxidase and pyruvate decarboxylase, the 

precise phylogenetic linkages are not clear. 



Indulging in some speculation, if acetolactate synthase or pynivate decarboxylase 

gave rise to indolepyruvate decarboxylase in bacteria, then it is equally possible that one of 

these genes in plants gave nse to the elusive plant indolepymvate decarboxylase. Careful 

phylogenetic analysis of acetolactate synthase genes fkom a variety of organisms, suggests 

that the eukaryotic, nuclear-encoded acetolactate synthase genes are of bacterial ongin 

(Funke et al., 1999). Acetolactate sythase is also encoded on some plastid genomes such as 

the chloroplast chromosome of the red alga, Porphyra umbilicalis (Reith and Munhulland, 

1993). This, and the presence of a similar acetolactate synthase gene in cyanobacteria 

(Maestri and Joset, 2000), suggests that the gene was transferred to eukaryotes from bactena 

during the endosymbiosis that gave rise to the chloroplast. Perhaps, after transfer to plants 

and a gene duplication event, an acetolactate synthase paralogue diverged to generate plant 

indolepyruvate decarboxylase. A sirnilar duplication, and divergence, in bactena would yield 

bacterial indolepynivate decarboxylase with a sequence different fiom that from plants. 

Such a scenario would explain why, despite biochemical evidence for the presence of 

indolepyruvate decarboxylase in plants (McQueen-Mason and Hamilton, 1989; Cooney and 

Nonhebel, 1991 ; Nonhebel et al., 1993), a gene similar to bacterial ipdc has not been found. 

Regulation of Indolepymvate Decarboxylase Expression 

IAA accumulates in the culture medium of P. purida GR12-2 and many other 

bacterial cells grown in the presence of exogenous tryptophan (Koga et al., 199 1 b; Ernsten et 

al., 1987; Kaneshiro et al., 1983; Patten, 1996; Brand1 and Lindow, 1996; Barbieri et al., 

1986; Omay et ai., 1993). When rxyptophan is not added, ody very low levels of IAA are 

produced. From this, it is concluded that exogenous tryptophan is required for IAA 



synthesis. But is it required to regdate the expression or activity of the enzymes involved in 

IAA biosynthesis, or is it simply required as a substrate, to drive the reaction in favor of IAA 

synthesis? As noted above, Koga et al. (1994) suggest that tqptophan aminotransferase, the 

f m  enzyme in the indolepyruvic acid pathway, preferentially catalyzes the synthesis of 

tryptophan fiom indolepyruvic acid rather than the reverse reaction which leads to IAA 

production. However, when the levels of indolepyruvic acid are low, or possibly when the 

levels of tryptophan are hi&, the synthesis of IAA is favored. Because appreciable levels of 

IAA are not produced unless an extemai source of tryptophan is supplied to the bacterial 

cells, endogenous levels of tryptophan are not sufficient for IAA production. There is iikely 

a high demand for tryptophan by bacterial cells as it is used to produce many essential 

compounds such as proteins and vitarnins (Martens and Frankenberger, 1993). Perhaps IAA, 

a secondary metabolite that is not required for ce11 proliferation, is not important enough for 

the ce11 to use up lirnited amounts of available endogenous tryptophan for its production. 

To determine if exogenous tryptophan is an activator of transcription of IAA 

biosynthesis genes, transcriptional fusions can be constnicted in which the promoter region 

of an IAA gene is inserted upstream of a reporter gene, and then expression of the reporter 

gene compareà in the presence and absence of tryptophan. To date, the promoter regions 

nom only a few indolepynivate decarboxylase genes have been studied. Only in one case 

was tryptophan found to increase the expression of indolepyruvate decarboxylase. Zimmer 

et al. (1998) inserted the lac2 reporter gene in the genome of AzospiriIlum brasilense Sp7 

such that it was expressed by the native ipdc promoter and found that &galactosidase activity 

increased three- to four-fold in the presence of 50 pg/mL tryptophan. In contrast, the ipdc 

promoter in A. brasilense Sp245 (Vande Broek et al., 1999) and in Envinia herbicola 299R 



(Brand1 and Lindow, 1997), fused to the gus reporter gene and to an ice nucleation gene, 

respectively, in the bacterial chromosome, was not influenced by exogenous tryptophan, 

although in both bacteria the levels of IAA were substantially elevated when the culture 

medium was supplemented with tryptophan. 

Both ipdc promoter activity and IAA production in P. putida GR1202 are increased in 

response to exogenous tryptophan. By late-loglearly stationary phase, LuxAB (luciferase 

fkom the bacterium Vibrio harveyï) activity driven by the ipdc promoter in pQFPROM-Kan, 

was about five-fold higher in cells grown in the presence of 200 pg/mL L-tryptophan than in 

medium without tryptophan. At this tirne, tryptophan-induced IAA was also beginning to 

accumulate in the culture medium. The rapid decline in L W  activity after this stage may 

be due to the instability of luciferase andor to reduced transcription, especially as the 

inducer, tryptophan, is king depleted as a consequence of IAA production. Luciferase may 

be recognized as foreign by P. putida GR12-2 and degraded rapidly by proteases, a cornmon 

problem for recombinant proteins that is often a fhction of the protein sequence and the host 

ce11 (Murby et al., 1996). Teminal sequencing of the products of limited proteolysis of the 

alpha subunit of bacterial luciferase (LUXA) indicated a protease-labile C-terminal region 

(Noland et al., 1999). In contrast to luciferase, indolepynivate decarboxylase may be more 

stable, although the turnover rate for this enzyme has not been determined. If transcription of 

ipdc is induced only for a short period of time, as is indicated by the sharp peak in LuxAB 

activity in the presence of tryptophan and the lack of continuous transcription, then 

indolepynivate decarboxylase would have to be a reasonably stable protein in order to have 

continued production of IAA for at least an additional 28 hours. 

Several tryptophan-regulated promoters have been identified in bacteria; these usually 



control the transcription of genes involved in tryptophan metabolism. Expression of most of 

these genes, such as those involved in the biosynthesis of tryptophan (e.g., the E. coli hp 

operon) and other amino acids (e-g., the aroW and amL operom) are repressed by tryptophan 

vittard, 1996; Caligiuri and Bauerle, 199 1 ; Heatwole and Sommerville, 1992; Lawley and 

Pittard, 1994). In E. coli, repression is mediated by the tryptophan repressor TrpR, which is 

also negatively regulated by tryptophan at the transcriptional level, and by transcription 

attenuation (Pittard, 1996; Santilliin and Mackey, 2001 ; Khodursky et ai., 2000). Mironov et 

al. (1999) established a recognition rule for tryptophan-regulated promoters in E. coli and 

Haemophilus influemue by identifjhg sequences common to the upstream regions of genes 

known to be regulated by tryptophan. This approach assumes that the cognate regulatory 

molecules are also conserved. The consensus sequence T(T/C)GTACT(AK)GT(T/G)AAC- 

TAGTACA was fond  in the promoters of RpR, the frp operon, aroH, and rntr (a tryptophan- 

specific permease), dl of which are negatively regulated by TrpR. They then used this 

recognition rule to identify putative tryptophan-regulated genes in unannotated bacterial 

genomes. 

Very few genes are known to be positively regulated by tryptophan. In contras to the 

E. coli t rp  operon, the trpBA operon for tryptophan biosynthesis in fluorescent 

pseudomonads is positively regulated by its cognate regulatory molecule TrpI, however, 

tryptophan has not been implicated in the mechanism (Auerbach et al., 1993). Rather, 

indoleglycerol phosphate, an intermediate in tryptophan synthesis, mediates the binding of 

TrpI to the trpBA promoter, causing the DNA to bend such that transcription by RNA 

polymerase is facilitated (Pineiro et al., 1997). 

Genes likely to be up-regulated by tryptophan are those involved in tryptophan 



catabolism; however, the known mechanisms of activation do not seem to apply to 

tryptophan-induced transcription of ipdc in P. putida GR12-2. For example, tryptophan 

oxygenase, which catalyzes the f m  step in the conversion of tryptophan to niacin via the 

kynurenine pathway, is subject to allosteric activation by tryptophan; this of course does not 

explain the increased transcription of the ItaAB reporter gene nom the ipdc promoter. Using 

DNA microarrays to measure changes in transcnpt levels in response to exogenous 

tryptophan in E. coli, Khodursky et al. (2000) found that only transcription fiom the maAB 

operon was increased by tryptophan. This operon encodes tryptophanase (TnaA), which 

converts tryptophan to indole and pyruvate, and tryptophan pennease (TnaB). In the absence 

of tryptophan, transcription of tnaAB, which is regulated by catabolite repression, is 

terminated in the leader region (tnaC) of the operon (Stewart and Yanofsky, 1985). When 

tryptophan is present, termination is inhibited and expression of i n d B  proceeds. A leader 

peptide similar to TnaC (GenBank Accession No. 154862) is not apparent in the region 

upstream of ipdc in P. putida GR12-2, therefore it is unlikely that indolepynwate 

decarboxylase expression is regulated in a similar marner. 

Given that only a small nurnber of promoters known to be positively-regulated by 

tryptophan are available, identification of a tryptophan-responsive element using the method 

of Mironov et al. (1 999) is not possible at this time. However, the reduced production of 

IAA in cells carrying pQFPROM-Kan compared to negative control cells carrying pQF7O- 

Kan supports the hypothesis that a transcription factor is involved in the expression of ipdc. 

Many extra copies of the ipdc promoter on the multicopy plasmid pQFPROM-Kan would 

compete with the chromosomal ipdc promoter for binding of such a factor. It is not likely 

that a high level of expression of LuxAB on the plasmid is placing a metabolic load on the 



cells because growth of these ceils was s h d a r  to that of P. putida GRl2-2lpQF70-Kan cells, 

in which LuxAB was not expressed. Also, despite the fact that tryptophan was continuously 

present in the culture medium, LuxAB activity did not increase for approximately 20 hours, 

perhaps awaiting the production/activation of a transcription factor. Aithough not likely to 

be applicable to bacterial celis, an element required for induction of transcription in response 

to tryptophan was present in the upstream region of both an aromatic aminotramferase and 

an indolep yruvate decarboxylase homologue in Saccharomyces cerevisiae ; the cognate 

transcriptional activator was also identified (Iraqui et al., 1999). 

It is possible that tryptophan only indirectly induces expression of indolepynivate 

decarboxylase. AzospiriZZum irakense, a low IAA producer, accumulates more anthranilate 

than AzospiriZZum strains that synthesize higher levels of IAA (Zimmer et al., 1991). Wben 

A. irahnse was transformed with genes for enzymes that metabolize anthranilate, for 

exarnple, those from the tryptophan biosynthesis operon, anthranilate levels were reduced 

and IAA levels were increased (Zirnmer et al., 1991). Exogenous or high levels of 

endogenous tryptophan cm reverse suppression of IAA production by anthranilate by 

preventing anthranilate synthesis through feedback inhibition of anthranilate synthase, the 

enzyme that catalyzes the synthesis of anthranilate fiom chorismic acid (Denenu and 

Demain, 198 I ; Hartmann et ai., 1983). Alternatively, tryptophan may indirectly induce 

indolepyruvate decarboxylase expression by increasing expression of tryptophan 

aminotransferase. This enzyme converts tryptophan to indolepyrwic acid which may be 

responsible for increased expression of indolepyruvate decarboxylase. The tryptophan 

aminotransferase fiom E. herbicola was shown to be regulated by tryptophan (Clark et al., 

1992; Jaeger et al., 1999). It would be very dSicult to test the hypothesis that indoleppvic 



acid activates the ipdc promoter by adding indolepyruvic acid to the culture medium because 

indolepynivic acid is extremely unstable in vitro. 

IAA itself has been shown to regulate expression of indolepyruvate decarboxylase in 

A. brasilense Sp245 (Vande Broek et al., 1999). A sequence similar to the auxin-responsive 

element found in the promoter of this gene is not present in the P. putida GR12-2 ipdc 

promoter. Lambrecht et al. (1999) believe that this element was derived fiom plants because 

it is similar in sequence to the awin-responsive element found in promoter of some plant 

auxin-regulated genes (Ulmasov et al., 1999), and because its proximity to the RNA 

polymerase 0% recognition sequence in the A. brasilense ipdc promoter is suggestive of the 

modular arrangement of elements conserved in the hormone-inducible promoters of plants. 

Since exogenous tryptophan is required for bacterial IAA production, it must be 

present in the rhizosphere for bacteria to synthesize IAA when associated with their host 

plants. One possible source of tryptophan is in the exudates of seeds and rmts of plants. 

Seed and root exudates are known to contain many different compounds, mainly sugars, 

amino acids (including tryptophan (Martens and Frankenberger, 1994)), and organic acids, 

some of which c m  increase protein expression in bacteria (Van Bastelaere et al., 1993; 

Overbeek and van Elsas, 1995; Jaeger et al., 1999). It was hypothesized that a compound, 

possibly tryptophan, present in exudates collected from irnbibed canola seeds, could activate 

the ipdc promoter and induce production of IAA in P. putida GR12-2. Seed exudates were 

expected to increase IAA expression to a greater extent than root exudates because the 

concentration of many amino acids is higher in seed exudates than in root exudates (Penrose, 

2000), and because PGPR are believed to exert their effect early, before roots have 

developed, and therefore bacterial IAA, if involved in plant growth promotion, must also be 



present early. 

Contrary to expectation, exudates collected fiom canola seeds at 3,6S and 10 hours 

after imbibition slightly inhibited transcription from the ipdc promoter in P. putida 

GR12-2ipQFPROM-Kan, although the exudates had no effect on IAA production. This does 

not necessarily preclude that tryptophan, or some other inducing factor, is not present in seed 

exudates. Levels of such a factor in the volume of exudates added to the cultures may be 

outside the range required to stimulate promoter activity. One explanation for lack of 

induction of ipdc is that the exudate was collected fkom uninoculated seeds and therefore. 

sufficient levels of an appropriate inducer were not available. It is well known that bacteria 

stimulate exudation fiom seeds and roots (Lee and Gasbs ,  1982; Heulin et al., 1987; 

Laheurte and Berthelin, 1988; Mehag and Killham, 1995), possibly by alteration of plant ce11 

membrane permeability, a process that may be innuenced by bacterial IAA (Rausch et al., 

1984; Bnunmel and Hall, 1987; Bashan and Levanony, 1991). It is also possible that 

bacteria may stimulate exudation of specific compounds, such as tryptophan. For example, 

bacteria that synthesize ACC deaminase are a sink for that enzyme's substrate, the amino 

acid 1 -aminocyclopropane-l -carboxy lic acid (ACC) (Penrose and Glick, 200 1). 

Certainly, levels of tryptophan available in exudates fkom roots of Avena barbata 

treated with E. herbicola 2991 were adequate to increase the activity of a tryptophan- 

responsive promoter in E. herbicola 299R (Jaeger et al., 1999). IAA production has been 

shown to be induced in the presence of leaf extracts in Xanthomonas monopodis pv. cihi 

(Costacurta et al., 1998), and ipdc promoter activity, assessed by k i n g  the promoter to a 

gene for ice nucleation protein or for green fluorescent protein, increased dramatically when 

E. herbicola 299R was associated with the leaves and flowers of various plants, in some 



cases, more so than levels induced under the best conditions in vitro (Brandl and Lindow, 

1997; Brandl et al., 200 1). 

During the logarithmic phase of bacterial ce11 growth, expression of many of the 

genes required for ce11 proliferation is controlled by the sigma factor, RpoD (0'4 (Jishage 

and Ishihama, 1995). RpoD is a component of bacterial RNA polymerase and is responsible 

for promoter recognition. When available nutrients begin to be depleted, cells respond by 

increasing production of another sigma factor known as RpoS (da) (Jishage and Ishihama, 

1995). This stationary phase sigma factor cornpetes with RpoD for association with RNA 

polymerase and directs RNA polymerase to the promoters of genes whose products enable 

the bacterial cells to survive d e r  starvation or stress conditions (McCann et al., 199 1; 

O'Neal et al., 1994; Lazazzera, 2000). Examples of genes shown to be regulated by RpoS 

include those involved in DNA repair, in the deterrnination of ce11 morphology (cells become 

more compact under nutrient stress conditions), in thermotolerance, and in virulence 

(Loewen and Hengee-Aronis, 1994; Schellhom et al., 1998). It is likely that, outside of 

laboratory conditions, bacterial celis spend most of their time in such a suivival mode, during 

which stationary phase responsive genes are expressed. IAA biosynthesis genes, and 

specifically ipdc, in P. putida GR12-2 seem to belong in this group of stationary phase genes 

for the following reasons: 1) IAA production normally begins in the late-log/early stationary 

phase, at the same t h e  as RpoS levels are known to increase (Zhou and Gottesman, 1998; 

Jishage and Ishihama, 1995), and accumulates into the later stationary phase of ce11 growth, 

at least to 48 hours. Recombinant cells carrying constitutively produced RpoS produce IAA 

earlier, and continue to do so at consistently elevated levels, compared to cells that produce 

natural levels of RpoS; 2) The ipdc promoter of P. putida GR1 2-2 contains a sequence 



sirnilm to the consensus sequence CTATACT recognized by RpoS (Espinosa-Urgel et al., 

1996). Brand1 et al. (2001) also indicate that indolepyruvate decarboxylase is regdated by 

RpoS in Emtinia herbicola 299R 3) Although constitutive production of RpoS does not 

increase transcription of ipdc at its peak, suggesting that RpoS is not norrnally limiting at this 

stage of ce11 growth, it does cause the promoter to be activated earlier, when RpoS is not 

naturally produced. In addition, constitutively produced RpoS prolongs a significantly 

higher level of transcription at the later stages of the ce11 cycle, when nuûients in the culture 

medium are severely depleted and RpoS is likely to be in high demand. Elevated levels of 

ipdc transcription are seen both in cultures grown in minimal medium supplemented with 

tryptophan and in those grown without tryptophan, aithough in the latter case the increase in 

transcription compared to celis lacking extra RpoS is not as dramatic. 

Role of Iadoleacetic Acid in Plant Growth Promotion 

To understand how microbial IAA influences plant growth, mutants can be created 

that overproduce or underproduce IAA, and any alterations from the plant's response to the 

wild-type strains c m  be observed. Despite the inability to obtain bacterial mutants 

completely deficient in IAA synthesis, some mutants with significady reduced levels have 

been generated by several means. Where IAA biosynthesis genes are plasmid-encoded, IAA 

underproducing mutants have been isolated following curing of plasmids fiom the 

phytopathogens Pseudomonas syringae pv. savastanoi and Agrobacterium tumefaciens, 

using acridine orange (Cornai and Kosuge, 1980) and heat and ethidiurn bromide treatment 

(Liu et al., 1982), respectively, and by transposon mutagenesis of the Ti plasmid of 

A. tumefaciem (Liu et al., 1982) and a large plasmid fiom ERvinia herbicola pv. gypsophilae 



(Clark et al., 1993). Spontaneous mutants have also k e n  identified in P. syringue pv. 

savastanui (Smidt and Kosuge, 1978; Surico et al., 1984; Soby et al., 1994). Where IAA 

genes are located in the chromosome, chernical mutagenesis has been used to isolate an 

aromatic aminotramferase deficient mutant of A. tumefaciens (Liu et al., 1982) and 

transposon insertion has interrupted IAA biosynthesis genes in P. syringae pv. gringue 

(Mazzola and White, 1994) and in Azosprillum lipoferum (Abdel-Salam and Klingmiiller, 

1987). 

Replacement of a wild-type IAA biosynthesis gene in the chromosome of a bacterial 

ce11 with a non-bctional version will also aboiish IAA production. This technique, known 

as marker exchange, necessitates a knowledge of the gene sequence that is to be dismpted. 

The target gene sequence, subcloned onto a suicide plasmid that cannot replicate in the host 

bacterium, is intempted with a marker gene, for example, a gene encoding antibiotic 

resistance. Following transformation of the host bacterium with this constnict, one can select 

for double cross-over recombination events between homologous regions of the target 

sequence on the plasmid and on the chromosome by growing cells in the presence of an 

appropriate antibiotic. Resistant cells will have integrated the antibiotic resistant marker into 

the genornic sequence. The plasmid, which would now contain the wild-type IAA gene 

sequence, would be lost as it carmot replicate in these cells. This technique has been used 

successfully to generate indolepymvate decarboxylase deficient mutants of E. herbicola 

(Brand1 and Lindow, 1996) and A. brasilense (Costacurta et al., 1994). 

Marker exchange was also used here to successfully generate an IAA-deficient 

mutant of P. putidu GR12-2. Mutant cells are resistant to kanamych indicating that the 

kanamycin resistant gene was transferred fiom pJQIPDC4-Kan to the chromosome of 



P. pufi& GR12-2 by homologous recombination, and the cells were also resistant to sucrose 

but not to gentamicin, evidence that the entire plasmid carrying the genes for SacB and 

gentamicin acetyltransferase (Quandt and Hynes, 1993) had not been incorporated into the 

genome by a single cross-over event. The most conclusive evidence for the creation of an 

IAA-deficient mutant was the lack of IAA production in the presence of tryptophan, 

conditions under which the wild-type strain produces copious amounts of IAA. As 

mentioned above, mutants with reduced ability to synthesize IAA have k e n  generated for 

some other bacteria, however, these strains still produce low levels of IAA in the presence of 

tryptophan (Abdel-Salam and Klingmüller, 1 987; Clark et al., 1 993 ; Costacurta et al., 1 994; 

Brand1 and Lindow, 1996). It was concluded that an altemate pathway for IAA biosynthesis 

is present in these bacteria; many bactena are known to possess genes for at least two 

different IAA biosynthesis pathways (Kuo and Kosuge, 1970; Liu et al., 1982; Manulis et al., 

199 1 b; Clark et al., 1993). 

The low level of IAA apparently present in the culture medium of the IAA-mutant of 

P. putidcl GR12-2 supplemented with high levels of tryptophan is more likely a consequence 

of the accumulation of indolepyruvic acid which can react with Salkowski's ragent, used in 

the colonmetric determination of IAA concentration, than to the synthesis of IAA by an 

alternate pathway. That the Salkowski's reactive product is not IAA is M e r  evidenced by 

the color of the reaction product which was purple-red rather than pink-red indicative of 

IAA. n i e  Salkowski's reactive product was present only at very low, barely detectable, 

levels in cultures supplemented with lower levels of tryptophan (e.g., 50 pg/mL), levels of 

tryptophan sufficient to induce IAA production in the wild-type strain. The contribution of 

an alternative, tryptophan-inducible pathway to the production of IAA would be expected to 



be higher than that observed in cultures containhg 50 pg/mL of tryptophan. Southem 

hybridization and PCR indicated that only a single copy of ipdc is present in the P. putida 

GR12-2 genome. Southern blots contauiing P. putida GR12-2 genomic DNA failed to 

hybridize to the ia&iaiaaH genes fiom indoleacetamide pathway used as a probe, even under 

low stringency conditions (Patten, 1996), however, lack of significant homology necessary 

for hybridization cannot be ruled out. The presence of a Salkowski's reactive product, rather 

than an altemate IAA biosynthesis pathway, may also explain the apparent low levels of IAA 

production in A. lipofeerum mutants (Abdel-Salam and Klingmüller, 1987). High 

performance liquid chromatography (HPLC) could be used to differentiate between IAA and 

indolepynivic acid, and any other indole compounds secreted into the culture medium by the 

IAA mutant strains. 

Loss of the ability to produce IAA following disruption of the ipdc gene c o n f i s  that 

P. putida GR12-2 produces IAA via the indolepyruvic acid pathway. This provides more 

support for the hypothesis that plant growth-promoting bacteria such as Azospirilhm spp. 

(Costacurta et al., 1994) and Enterobacter cloacae (Koga et al., l991 b) produce IAA via the 

indolepyruvic acid pathway in contrast to plant pathogens which seem to preferentially 

synthesize IAA via the indoleacetamide pathway (Kuo and Kosuge, 1970; Schroeder et al., 

1984; White and Ziegler, 1991 ; Mawla  and White, 1994). Indeed, rendering the ipdc gene 

inactive by insertional mutagenesis, and thereby abolishing IAA production by this pathway, 

significantly reduces the ability of P. pufi& GR12-2 to promote primary root growth in 

canola seedlings. It is known nom application of exogenous IAA (Thimam, 1938; Evans et 

al., 1994), or application of diluted culture extracts or low density inocula of bacteria that 

produce high levels of IAA (Harari et al., 1988; Selvadurai et al., 1991; Beyerler et al., 



1997), that low concentrations of IAA can stimulate primary mot elongation; however, this is 

the fïrst report to demonstrate directly that bacterial IAA plays a major role in promotion of 

root elongation when the bacterium is associateci with its host plant 

IAA secreted by a bacterium may promote root growth directly. Application of 

exogenous IAA has been shown to regulate the expression of many plant genes and to 

influence a variety of physiological responses in plants including ce11 elongation and celi 

division. It is generally believed that ce11 elongation, which occurs withïn minutes of 

exposure to exogenous IAA, is explained by ce11 wall acidification, whereas IAA-induced 

ce11 division is a later effect involving specific changes in gene expression (Theologis, 1986; 

Hagen, 1987). In the acid growth theory, acidification of the plant ce11 apoplast l e d s  to 

loosening of the ce11 wall and subsequently, to ce11 extension as the uptake of water increases 

(Brummei and Hall, 1987; Rayle and Cleland, 1992). IAA acts on the extemal s h c e  of the 

ce11 to activate a plasma membrane-bound c ~ T P a s e  which pumps hydrogen ions into the 

apoplast. The decrease in apoplastic pH may activate enzymes that cm cleave bonds 

between ce11 wall components. 

Exogenous IAA has both a rapid effect on mRNA levels, within minutes of 

application, as well as a delayed effect, hours after exposure (Theologis, 1986; O'Neill and 

Scott, 1987). Hagen (1987) has identified over forty &As that are either u p  or down- 

regulated in response to IAA. The early mRNAs encode small, short-lived, nuclear proteins 

with DNA-binding domains (Goldsmith, 1993; Garbers and Simmons, 1994; Abel and 

Theologis, 1996) and may encode transcription factors that control auxin-regulated gene 

expression. Products of the later RNAs have k e n  identified as ribosomal RNAs, RNA 

polymerase 1, ribosomal proteins, peroxidases, cellulases, glucanases, and pectin enzymes 



(Theologis, 1986; O'Neill and Scott, 1987; Garbers and Simmons, 1994). 

Although roots fiom seeds inoculated with wild-type P. putida GR12-2 were 

consistently longer than those fiom uninoculated seeds, there was some varïability in the 

response of plants to the IAA-deficient mutant. The roots fiom seeds treated with the mutant 

were generally shorter than those fiom seeds treated with the wild-type strain, and were 

usually, but not always, as short as those from uninoculated seeds, suggesting that IAA 

production, or lack thereof, is not solely responsible for influencing primary root growth. 

Bacteria can use one or more of several mechanisms to promote plant growth. ACC 

dearninase, produced by many plant growth-promoting bacteria (Shah et al., 1997; Glick et 

al., 1998; Belimov et al., 1998; Shah et ai., 1998), including P. putida GR12-2 (Jacobson et 

al., 1994), is also involved in the stimulation of root elongation in seedlings (Glick et al., 

1994; Li et al., 2000). ACC deaminase hydrolyzes plant ACC, the immediate precursor to 

ethylene, and thereby prevents the production of plant growth-inhibithg levels of ethylene 

(Penrose et al., 2001). Mutants of plant growth-promoting bacteria that no longer produce 

ACC deaminase, have lost the ability to stimulate root elongation (Glick et al., 1994; Li et 

al., 2000). Thus, it is possible that both IAA and ACC deaminase work in concert to 

stimulate root elongation. IAA produced by P. puîida GR12-2 may indirectly promote root 

growth by influencing ACC dearninase activity. Exogenous IAA is known to increase the 

transcription and activity of ACC synthase (Peck and Kende, 1995), which catalyzes the 

production of ACC fiom S-adenosylmethionine. Because ACC stimulates ACC deaminase 

activity in bacteria (Honma and Shimomura, 1978; Jacobson et al., 1994; Li and Glick, 

2001), perhaps when bacterial IAA is not available to induce ~ ~ c i e n t  ACC production via 

ACC synthase, ACC deaminase activity is low and therefore plant ethylene levels remain 



high enough to inhibit root growth. In addition, bacterial IAA may indirectly increase ACC 

deaminase activity by stimulating exudation of metabolites, including ACC, fiom plant roots. 

Although, great effort was made to exactly replicate each root elongation assay, seed 

formation and storage conditions prior to inoculation with the bacteria may have varied, 

especially hurnidity levels and temperature. During the development and maturation dryhg 

of seeds, the content of fiee IAA and other hormones such as abscisic acid decreases 

(Buchanan et al., 2000; Mayer and Poljakoff-Mayber, 1989). Upon rehydration, the hormone 

levels within the seeds increases (Mayer and Poljakoff-Mayber, 1989), and thus their 

responsiveness to additional input of these hormones from associated bacteria may diminish. 

In plants, endogenous levels of IAA may be suboptimal or optimal for growth (Pilet and 

Saugy, 1987). If IAA levels within seeds stored under humid conditions increased to levels 

optimal for root development, then IAA contributed by a bactenum would be ineffective; that 

is, the seeds would no longer be sensitive to exogenous IAA, or a lack thereof. 

The inability of the IAA-deficient mutant to stimulate root growth may be less a 

consequence of loss of IAA directly than a consequence of a reduced ability to colonize plant 

surfaces. Recently, Brand1 and Lindow (1998) have shown that an E. herbicola 299R mutant 

strain in which IAA production was abolished, could no longer compete with the wild-type 

strain for colonization of bean leaves and pear flowers. In viîro, the mutant strain grew at the 

sarne rate and reached the same ce11 density as the wild-type strain indicating that growth of 

the mutant was not debilitated. 

IAA does not seem to influence shoot growth, at least within the first five days of 

seedling growth. Shoots are generaliy Iess sensitive to awin than are roots and require 

higher levels of exogenous IAA for growth stimulation (Thbmn, 1 952). 



While low levels of IAA stimulate root elongation, high levels of bacterial IAA, 

wbether fiom IAA-overproducing mutants or strains that naturally secrete high levels, or 

fiom hi& density inocula, stimulate the formation of lateral and adventitious mots (Barbieri 

et al., 1986; Loper and Schroth, 1986; Barbieri and Gaili, 1993; Sawar and Kremmer, 1995; 

Xie et al., 1996; Mayak et al., 1997; Beyerler et ai., 1997). P. putid' GR1292 cells that 

produce wild-type levels of IAA stimulated the formation of many short adventitious roots 

on mung bean cuniogs, and an IAA-overproducing mutant induced even more adventitious 

roots than the wild-type strain (Mayak et al., 1997). In contrast, the IAA-deficient mutant of 

P. putido GR12-2 stimulated fewer roots than the wild-type bacterium and these were 

generally longer than those induced by the wild-type strain. 

Several lines of evidence suggest a role for IAA in laterai and adventitious root 

development (reviewed by Malamy and Benfey, 1997). Exogenous IAA increases root 

initiation. Arabidopsis mutants with higher levels of endogenous IAA have more lateral 

roots, while auxin-resistant mutants have fewer. IAA initiates rooting by establishing a 

population of rapidly dividing pericycle ceils (Laskowski et al., 1995; Casimiro et al., 2001). 

Recent work is attempting to elucidate the mechanism by which the IAA signal is transduced 

to stimulate ce11 division for root formation. Nakazawa et al. (2001) have identified a gene 

(dfll) that is induced by IAA and is involved in the initiation and development of lateral roots 

in Arabidopsis. Rooting in a dfll-overproducing mutant was significantly reduced and dfll 

antisense transgenic plants had significantly more lateral roots suggesting that DFLl 

negatively regulates root formation. Rogg et al. (2001) also describe an Arabidopsis gene 

(iaa28) whose product represses IAA-induced genes involved in lateral root initiation. 

Initiation of adventitious and lateral rwts may be mediated by MA-induced ethylene. 



An ACC deambase-negative mutant of P. putida GR12-2 which is no longer capable of 

reducing ethylene levels in plants, stimulated more small adventitious rwts than the wild- 

type strain (Mayak et al., 1997). The increase in the number of roots on the cuttings 

correlated with an increase in ethylene production. Mung bean cuttings treated with 

1 -methylcyclopropene, a cyclic ethylene analogue which binds ethylene receptors in plants 

and thereby prevents perception of ethylene (Sisler and Serek, 1997), also prevents the 

initiation of adventitious roots (Saleh et al., in preparation). The IAA-âeficient mutant of 

P. putida GR12-2 would no longer be able to stimulate ACC synthase, and therefore ethylene 

synthesis in plants, thus fewer adventitious roots are initiated on the cuttings. An attempt 

was made to measure ethylene levels stimulated in cuttings by the IAA-deficient mutant in 

the fust 4.5 houn &er treatment using the method described by Mayak et al. (1997), 

however, levels were outside the lower limit of detection. That more roots are still 

stimulated by the mutant compared to treatment with water, suggests that the presence of the 

bacteria alone is suficient to induce root initiation. Again, this may be related to ethylene; 

inoculation with a bacteriurn imposes a certain amount of stress on the plants and ethylene 

production is a weli-known plant stress response (Deban,  1997). 

High levels of exogenous or bacteriai IAA, and therefore hi& levels of ethylene, 

have also been shown to inhibit elongation growth in roots (Rahman, 2001; Xie et al., 1996; 

Beyerler et al., 1997; Sawar and Kremmer, 1995; Loper and Schroth, 1986). Thus, while 

adventitious roots that formed on mung bean cuttings inoculated with wild-type P. putida 

GR12-2 were very short, most less than Imm long, the rmts stimulateci by the IAA-deficient 

mutant strain were longer. Because cunings were suspended in a bacterial suspension for 

eight days, they were exposed to a high i n o c u l ~  density continuously for an extended 



pend of the. Cuaings treated with the wild-type bacterhm would therefore be exposed to 

a high level of IAA thioughout this period. 

From a practical point of view, treatment of cuttings with an IAA-deficient mutant 

may be a beneficial method for propagation of plants. Certainly while many adventitious 

roots are desirable, longer roots with more sunace area through which the plants can absorb 

nutrients and water fiom the soi1 would be advantageous. Treatment with the IAA-deficient 

mutant of P. putido GR12-2 provides just such a compromise between the many shorî roots 

stimulated by the wild-type strain and the few long mots produced by treatment with water. 

Before such a treatment would be viable commercidy, it would have to be demonstrated that 

it stimulates root development in cuttings better than, or at least as well as, current 

treatments, that it has the desired effect on plants that are horticulturally more valuable than 

mung beans, and that, in the long term, cuttings with more and longer roots are propagated 

more successfiilly than current treatments. 

Conclusion 

Finally, we are left with the question as to why bacteria have evolved to produce 

IAA, a plant hormone which does not apparently fûuction as such in bacterial cells. Others 

have suggested that IAA production is a mechanism by which bacterial cells c m  detoxi@ 

high levels of tryptophan or tryptophan analogues that are deleterious to bacteriai cells. 

Some IAA biosynthetic enzymes c m  convert methylated and halogenated substrates to less 

toxic compounds (Hutcheson and Kosuge, 1985; Yamada et al., 1985; Bar and Okon, 1992), 

however, these enzymes are fkom the indoleacetamide pathway which does not explain the 

presence of enzymes involved in the indolepyruvic acid pathway. It is also doubtfbl that high 



levels of tryptophan would often be encountered by bacterial cells in nature. Rather, it is 

expected that the converse would usually be the case, as levels of tryptophan in the soi1 and 

even in the rhizosphere are low (Weibuli et al., 1990; Kravchenko et al., 1991). 

IAA production may have evolved in bacteria because it is important in the bacterial- 

plant relationship. In this research and that of othea, it has been shown that bacterial IAA 

plays a role in the development of the host plant root system, and in phytopathogens such as 

Agrobacterium turnefaciens, IAA stimulates the formation of gall tumors; in both situations 

the advantage for the bacterium is an increased food supply. As much as 30% of the 

metabolic products of the carbon h e d  by plants may be lost fiom roots into the rhizosphere 

as exudates, lysates and mucilage (Martens and Frankenberger, 1994) providing a rich source 

of carbon and energy for root-associated bactena; bacterial IAA may enhance the release of 

plant metabolites from roots. Brandl and Lindow (1998) postulate that IAA-deficient 

mutants are less cornpetitive on plant surfaces because decreased levels of IAA result in 

decreased exudation of nutrients fiom plants. It may be significant that nutrient-deprived 

Azospirillum sp. (Yahalom et al., 1990; Omay et al., 1993), and Enviniu herbicola (Brandl 

and Lindow, 1997) increase IAA production, thereby providing a mechanism to promote root 

exudation and obtain nutrients essential for their growth. Here it has been shown that 

production of indolepyruvate decarboxylase and IAA in P. purida GR12-2 are regulated by 

tryptophan, a component of many plant exudates, and by RpoS, a stationary phase sigma 

factor that regdates gene expression in response to nutrient stress. 

If it is tnre tbat bacteria have evolved to produce IAA because it is involved in their 

relationship with the host plant, then one would expect only plant-associated bacteria to 

possess genes for IAA synthesis. However, this is not the case. A search of the sequenced 



bacterial genomes suggests that a protein highly sïmïiar to indolepyruvate decarboxylase is 

widespread among bacteria, even in those that are not normally associated with plants. For 

example, a protein 66% identical (77% similar) to indolepynivate decarboxylase was found 

in Salmonella iyphimurium . Several species of ~cobacterium, including M. Ieprae and 

M. tuberculosis, also carry a sequence with a high degree of similarity (47% identity, 61% 

similarity) to indolepyruvate decarboxylase. The extent of similarity is much higher than that 

between indolepyruvate decarboxylase and closely related proteins such as pyruvate 

decarboxylase and acetolactate synthase which are 35% and 25% identical (50% and 40% 

similar), respectively, suggesting that the simila. proteins found in the genome databases are 

indolepyruvate decarboxylase rather than another related protein. 
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