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Abstract

In this thesis, we consider the problem of diffusing information resiliently in networks that
contain misbehaving nodes. Previous strategies to achieve resilient information diffusion typ-
ically require the normal nodes to hold some global information, such as the topology of the
network and the identities of non-neighboring nodes. However, these assumptions are not suit-
able for large-scale networks and this necessitates our study of resilient algorithms based on only
local information.

We propose a consensus algorithm where, at each time-step, each normal node removes the
extreme values in its neighborhood and updates its value as a weighted average of its own value
and the remaining values. We show that traditional topological metrics (such as connectivity of
the network) fail to capture such dynamics. Thus, we introduce a topological property termed as
network robustness and show that this concept, together with its variants, is the key property to
characterize the behavior of a class of resilient algorithms that use purely local information.

We then investigate the robustness properties of complex networks. Specifically, we consid-
er common random graph models for complex networks, including the preferential attachment
model, the Erdős-Rényi model, and the geometric random graph model, and compare the metrics
of connectivity and robustness in these models. While connectivity and robustness are greatly
different in general (i.e., there exist graphs which are highly connected but with poor robustness),
we show that the notions of robustness and connectivity are equivalent in the preferential attach-
ment model, cannot be very different in the geometric random graph model, and share the same
threshold functions in the Erdős-Rényi model, which gives us more insight about the structure of
complex networks. Finally, we provide a construction method for robust graphs.
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Chapter 1

Introduction

A core question in the study of large-scale and complex networks (both natural and engineered)
is: how do the global behaviors emerge from local interactions? For instance, the fields of soci-
ology and epidemiology examine the spread of ideas, decisions and diseases through populations
of people, based on the patterns of contact between the individuals in the population [15,33,34].
In this context, one can ask whether a few stubborn individuals (who do not change their be-
liefs) are able to affect the decisions reached by the rest of the population [42, 51]. Similarly,
the efficacy of engineered networks (such as communication networks, or multi-agent systems)
is often predicated on their ability to disseminate information throughout the network [2, 20].
For example, the ‘broadcast’ operation is used as a building block for more complex functions,
allowing certain nodes to inform all other nodes of pertinent information [20].

The ability of a few individuals to affect the global behavior of the system is clearly a double-
edged sword. When the network contains legitimate leaders or experts, it is beneficial to ensure
that the innovations introduced by these small groups spread throughout the population. On the
other hand, networks that facilitate diffusion are also vulnerable to disruption by individuals that
are not acting with the best interests of the society in mind. In engineering applications, these
individuals could correspond to faulty or malicious nodes that do not follow preprogrammed
strategies due to malfunctions or attacks, respectively. Thus, a fundamental challenge is to iden-
tify network properties and diffusion dynamics that allow legitimate information to propagate
throughout the network, while limiting the effects of illegitimate individuals and actions.

Another fundamental challenge in large-scale networks is that the quantities of interest must
be computed using only local information, i.e., information obtained by each node through sensor
measurements, calculations, or communication only with neighbors in the network. To obtain
the desired computational result, it is important to design the fault tolerant algorithms to be able
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to withstand the compromise of a subset of the nodes and still ensure some level of correctness
(possibly at a degraded level of performance). We refer to such a networked system as being
resilient to adversaries.

Distributed consensus is one of the most important objectives in large-scale networks and
has applications in various areas such as data aggregation [23], distributed optimization [47],
and flocking [22]. In the consensus problem, we want the nodes to reach agreement on some val-
ue corresponding to some function of their initial states. A fundamental challenge for reaching
distributed consensus in these networks is that they are vulnerable to attacks or failures at one or
more of the nodes in the network. The problem of reaching consensus resiliently in the presence
of misbehaving nodes has been studied extensively by various communities (e.g., see [20, 31]
and the references therein). Among other things, it has been shown that given F (worst-case)
adversarial nodes, there exist strategies for these nodes to disrupt consensus if the network con-
nectivity1 is 2F or less. Conversely, if the network connectivity is at least 2F +1, then there exist
strategies for the normal nodes to use that ensure consensus is reached (under the local broadcast
model of communication) [31, 36, 43]. However, these consensus algorithms either require that
normal nodes have at least some global information (e.g., topology of the network) or assume that
the network is complete, i.e., all-to-all communication or sensing [1, 10, 12, 27, 28]. Moreover,
these algorithms lead to expensive computation and communication costs and need the normal
nodes to store large amounts of data. Therefore, there is a need for resilient consensus algorithms
that are more lightweight and operate using only local information (i.e., without knowledge of
the network topology and the identities of non-neighboring nodes).

In this thesis, we study resilient information diffusion dynamics that use only local infor-
mation, and characterize topological properties that facilitate such diffusion. The rest of this
thesis will be organized as follows. In Chapter 2, we focus on the consensus problem and show
that traditional graph theoretic properties such as connectivity and minimum degree, which have
played a vital role in characterizing the resilience of distributed algorithms (see [31, 43]), are
not adequate (i.e., there exist graphs with large connectivity and minimum degree but fail to
reach consensus) when the nodes make purely local decisions (i.e., without knowing nonlocal
aspects of the network topology). Instead, we introduce a novel topological property, referred
to as network robustness, and show that this concept is the key property for reasoning about the
ability of purely local algorithms to succeed. In particular, we introduce an efficient resilient
consensus algorithm (the W-MSR algorithm), and provide a comprehensive characterization of
the network topologies where algorithms such as W-MSR (which uses only local information)
can succeed despite the presence of a broad class of adversaries. In Chapter 3, we describe
two extensions of network robustness – (r, s)-robustness and strong robustness. The concept

1The network connectivity is defined as the number of nodes that have to be removed before the network becomes
disconnected.
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of (r, s)-robustness is a strict generalization of network robustness and characterizes two types
of information redundancy; by using this concept, we give necessary and sufficient condition
for the W-MSR algorithm to achieve resilient consensus under some specific fault model. In
addition to consensus, we also consider the problem of fault tolerant broadcast, and use robust-
ness to provide conditions for the operations to succeed. Although connectivity and robustness
are very different in general, in Chapter 4, we answer the question: how robust are complex
networks? More specifically, how do the metrics of connectivity and robustness compare for
various random graph constructions that are commonly used to model complex networks? We
study three random graph models (preferential attachment, Erdős-Rényi, and geometric random
graphs) for complex networks; we show that these models demonstrate a threshold behavior for
robustness, whereby a certain degree of robustness is almost surely inherent in the network if the
links are added with a probability above a certain value. Our analysis reveals that the notions
of robustness and connectivity ‘coincide’2 on these random graph models, and this indicates that
local filtering dynamics will be effective at facilitating resilient agreement on complex networks.
Inspired by the preferential attachment mechanism, we also provide a construction method for
robust networks. Finally, some conclusions and future research directions are given in Chapter 5.

1.1 Background on Resilient Information Diffusion

As mentioned earlier, the connectivity of the network has traditionally been viewed as the key
metric with regard to resilience of consensus algorithms (and information diffusion algorithms in
general). The intuition behind the role of connectivity in resilient consensus is illustrated by the
following example. Consider the undirected networks in Figure 1.1. In both networks, suppose
that node 1 wishes to obtain some information about the value of node 3, and that node 2 is
malicious. In Figure 1.1(a), where the graph is only 2-connected, node 2 can prevent node 1
from getting information from node 3 by pretending that node 3’s value is something that it is
not. Node 1 would never know whether to trust the information it receives from node 2, or from
node 4, and thus could never resolve the ambiguity caused by node 2’s deception. However, in
Figure 1.1(b), when the graph is 3-connected, there are three disjoint paths from node 3 to node
1, and thus node 1 will receive matching information about node 3 from at least two different
paths; it could then use an appropriate scheme (such as majority voting) to eliminate node 2’s
influence.

More generally, if the connectivity of the network is 2F or less (for some nonnegative integer
F ), then there exists at least one set of F coordinated malicious nodes that can prevent the

2More precisely, robustness and connectivity are equivalent in the preferential attachment model, cannot be very
different in the geometric random graph model, and share the same threshold functions in the Erdős-Rényi model.
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(b) 3-connected graph.

Figure 1.1: Illustration of the role of connectivity in resilient consensus.

network from reaching consensus regardless of the mechanism that is used to achieve consensus
[13, 20, 31]. On the other hand, if the connectivity is 2F + 1 or higher, various algorithms have
been proposed to overcome certain class of misbehaving nodes [31, 36, 43].

Remark 1. Note that the network connectivity is fundamental when characterizing the ability
of the network to tolerate the removal of nodes (either accidentally or by intent). The resilience
of complex networks to such structural perturbations was studied in [4, 9]. In such cases, the
network is required to have connectivity F + 1 if one wishes to tolerate the removal of up to F
nodes. Note the difference in these latter scenarios from the ones outlined above; node removal
corresponds to a structural attack, whereas malicious behavior corresponds to attacks on the
dynamical process running on the network.

While the above connectivity bounds provide fundamental limitations on the resilience of
networks to misbehaving nodes, the mechanisms proposed to overcome malicious behavior typ-
ically make the prohibitive assumption that all nodes know the entire network topology. While
this assumption allows the ‘good’ agents in the network to completely overcome the effects of
worst-case behavior by the malicious nodes, the bookkeeping burden is unrealistic in real-world
complex networks with large number of nodes. To remedy this, we need efficient mechanisms to
facilitate consensus that require only local information, such as the W-MSR algorithm proposed
in this thesis.

1.2 Notation and Terminology

Throughout this thesis, we denote the set of integers by Z and the set of real numbers by R. The
set of integers greater than or equal to some integer q ∈ Z is denoted Z≥q. Given a ∈ R, the
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ceiling of a, denoted dae, is the smallest integer that is greater than or equal to a. Similarly, the
floor of a, denoted bac, is the largest integer less than or equal to a. The cardinality of a set S
is denoted by |S|. Given sets S1,S2, the set difference of S1 by S2 is denoted S1 \ S2 = {x ∈
S1 : x /∈ S2}. Furthermore, we will use the following notation regarding the asymptotic behavior
of functions:

• f(x) = O(g(x)) if there exist constants c and x0 such that f(x) ≤ cg(x) for any x ≥ x0;

• f(x) = Ω(g(x)) if g(x) = O(f(x));

• f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x));

• f(x) = o(g(x)) if f(x)
g(x)
→ 0 as x→∞.

1.2.1 Graph Theory

A finite simple (directed) graph is denotedD = {V , E}, in which V is the node set and E ⊆ V×V
is the directed edge set. With a slight abuse of terminology, we will often refer to the network
and the graph that models the topology of the network synonymously. The underlying graph
G(D) is defined by replacing directed edges of D by undirected ones, resulting in the edge set
EG . We may also simply use G to represent an undirected graph when the context is clear. A
graph D1 = {V1, E1} is a subgraph of D, written D1 ⊆ D, if V1 ⊆ V and E1 ⊆ E . A graph
D′ = {V ′, E ′} is isomorphic to D if there exists a bijection ψ : V → V ′ such that (i, j) ∈ E if and
only if (ψ(i), ψ(j)) ∈ E ′.

A path is a sequence of distinct vertices i0, i1, . . . , ik such that (ij, ij+1) ∈ E , j = 0, 1, . . . , k−
1. We use the notion of a path to define different forms of connectedness. We say that D is
strongly connected if for every i, j ∈ V , there exists a path starting at i and ending at j. If the un-
derlying graph is connected, then D is weakly connected. Alternatively, if the underlying graph
is disconnected, then D is disconnected. A graph has a directed spanning tree if there exists a
node r, the root, such that for each i ∈ V , there exists a path from r to i.
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Chapter 2

Network Robustness

2.1 Introduction

As explored in Section 1.1, the notion of graph connectivity has long been the backbone of
investigations into fault tolerant and secure distributed algorithms. Indeed, under the assumption
of full knowledge of the network topology, connectivity is the key metric in determining whether
a fixed number of adversaries can be overcome. However, in large-scale systems and complex
networks, it is not practical for the nodes to obtain knowledge of the global network topology.1

This necessitates the development of algorithms that allow the nodes to operate on purely local
information. In this chapter, we focus on distributed consensus, which is an important operation
in networks, and introduce a resilient consensus algorithm - the W-MSR algorithm. In order
to characterize the performance of algorithms using only local information, such as W-MSR,
we develop the notion of network robustness and provide necessary/sufficient conditions for the
normal nodes in large-scale networks to mitigate the influence of adversaries. We show that the
notion of robustness is the appropriate analog to graph connectivity when considering purely
local filtering rules at each node in the network.

1Note that only knowing the connectivity is not sufficient for previous strategies to operate.
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2.2 Problem Formulation

2.2.1 Network Model

Consider a time-varying network modeled by the (directed) graph D[t] = {V , E [t]}, where
V = {1, ..., n} is the node set and E [t] ⊂ V × V is the directed edge set at time-step t ∈ Z≥0.
The node set is partitioned into a set of normal nodesN and a set of adversary (or misbehaving)
nodes A which is unknown a priori to the normal nodes. Each directed edge (j, i) ∈ E [t] models
information flow and indicates that node i can be influenced by (or receive information from) n-
ode j at time-step t. The set of in-neighbors, or just neighbors, of node i at time-step t is defined
as Vi[t] = {j ∈ V : (j, i) ∈ E [t]} and the (in-)degree of i is denoted di[t] =|Vi[t]|. Likewise,
the set of out-neighbors of node i at time-step t is defined as Vout

i [t] = {j ∈ V : (i, j) ∈ E [t]}.
Because each node has access to its own state at time-step t, we also consider the inclusive neigh-
bors of node i, denoted Ji[t] = Vi[t] ∪ {i}. Note that time-invariant networks are represented
simply by dropping the dependence on t.

2.2.2 Update Model

Suppose that each node i ∈ N begins with some private value xi[0] ∈ R (which could represent a
measurement, optimization variable, vote, etc.). In order to achieve some specified objective, the
nodes interact synchronously by conveying their value to (out-)neighbors in the network. Each
normal node updates its own value over time according to a prescribed rule, which is modeled as

xi[t+ 1] = fi({xij[t]}), j ∈ Ji[t], i ∈ N , t ∈ Z≥0,

where xij[t] is the value sent from node j to node i at time-step t, and xii[t] = xi[t]. The up-
date rule fi(·) can be an arbitrary (potentially time-varying) function of the values from node i’s
inclusive neighborhood, and may be different for each node, depending on its role in the net-
work. These functions are designed a priori so that the normal nodes compute some desired
function. Note that the strategy can be easily extended to the case xi[0] ∈ Rm by doing compo-
nentwise iterations. However, some of the nodes may not follow the prescribed strategy if they
are compromised by an adversary. Such misbehaving nodes threaten the group objective, and it
is important to design the fi(·)’s in such a way that the influence of such nodes can be eliminated
or reduced without prior knowledge about their identities.
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2.2.3 Fault Model

Definition 1. A node i ∈ A is said to be Byzantine if it does not send the same value to all of its
neighbors at some time-step, or if it applies some other function f ′i(·) at some time-step.

Definition 2. A node i ∈ A is said to be malicious if it sends xi[t] to all of its neighbors at each
time-step, but applies some other function f ′i(·) at some time-step.

Note that both malicious and Byzantine nodes are allowed to update their states arbitrarily
(perhaps colluding with other malicious or Byzantine nodes to do so). The only difference is in
their capacity for duplicity. If the network is realized through sensing or broadcast communica-
tion, it is natural to assume that the out-neighbors receive the same information, thus motivating
the definition of malicious nodes. If the network is point-to-point, however, Byzantine behavior
is possible. Note that all malicious nodes are Byzantine, but not vice versa. When we do not need
to explicitly distinguish between Byzantine and malicious nodes, we simply say those nodes are
misbehaving.

It is clear that we cannot deal with networks that only contain misbehaving nodes and thus
it is necessary to restrict the number of misbehaving nodes. We consider upper bounds on the
number of compromised nodes either in the network (F -total) or in each node’s neighborhood
(F -local). To account for varying degrees of different nodes, we also introduce a fault model that
considers an upper bound on the fraction of compromised nodes in any node’s neighborhood.

Definition 3 (F -total set). A set S ⊂ V is F -total if it contains at most F nodes in the network,
i.e., |S| ≤ F , F ∈ Z≥0.

Definition 4 (F -local set). A set S ⊂ V is F -local if it contains at most F nodes in the neigh-
borhood of each node which is not in S for all t, i.e., |Vi[t]

⋂
S| ≤ F , ∀i ∈ V \ S , ∀t ∈ Z≥0,

F ∈ Z≥0.

Definition 5 (f -fraction local set). A set S ⊂ V is f -fraction local if it contains at most a fraction
f of nodes in the neighborhood of each node which is not in S for all t, i.e., |Vi[t]

⋂
S| ≤ f |Vi[t]|,

∀i ∈ V \ S , ∀t ∈ Z≥0, 0 ≤ f ≤ 1.

It should be noted that in time-varying network topologies, the local properties defining an
F -local set (or an f -fraction local set) must hold at all time steps. These definitions facilitate the
following fault models.

Definition 6. A set of misbehaving nodes is F -totally bounded, F -locally bounded or f -fraction
locally bounded if it is an F -total set, F -local set or f -fraction local set, respectively. We refer
to these fault models as the F -total, F -local, and f -fraction local models, respectively.
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F -totally bounded faults have been studied in distributed computing [27, 31, 49] for both
stopping (or crash) failures and Byzantine failures. The F -locally bounded fault model has
been studied in the context of fault-tolerant broadcasting [21, 37]. However, to the best of our
knowledge, there are no prior works discussing the f -fraction local model; our investigation of
this motif is inspired by ideas pertaining to contagion in social and economic networks [15],
where a node will accept some new information (behavior or technology) if more than a certain
fraction of its neighbors has adopted it. However these previous works do not consider faulty
or malicious behavior, and our definition is a natural extension to the interpretation placed in
previous work.

2.2.4 Resilient Asymptotic Consensus

Given the fault models, we formally define resilient asymptotic consensus. Let M [t] and m[t] be
the maximum and minimum values of the normal nodes at time-step t, respectively.

Definition 7 (Resilient Asymptotic Consensus).The normal nodes are said to achieve resilient
asymptotic consensus in the presence of (a) F -totally bounded, (b) F -locally bounded, or (c)
f -fraction locally bounded misbehaving (Byzantine or malicious) nodes if

• ∃L ∈ R such that limt→∞ xi[t] = L for all i ∈ N , and

• [m[0],M [0]] is an invariant set (i.e., the normal values remain in the interval for all t),

for any choice of initial values.

The resilient asymptotic consensus problem has three important conditions. First, the normal
nodes must reach asymptotic consensus in the presence of misbehaving nodes given a particular
threat model (e.g., malicious) and scope of threat (e.g., F -total). This is a condition on agreemen-
t. Additionally, it is required that the interval containing the initial values of the normal nodes is
an invariant set for the normal nodes; this is a safety condition. This safety condition is impor-
tant when the current estimate of the consensus value is used in a safety critical process and the
interval [m[0],M [0]] is known to be safe. The agreement and safety conditions, when combined,
imply a third condition on validity: the consensus quantity that the values of the normal nodes
converge to must lie within the range of initial values of the normal nodes.

The validity condition is reasonable in applications where any value in the range of initial
values of normal nodes is acceptable to select as the consensus value. For instance, consider a
large sensor network where every sensor takes a measurement of its environment, captured as a
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real number. Suppose that at the time of measurement, all values taken by correct sensors fall
within a range [a, b], and that all sensors are required to come to an agreement on a common mea-
surement value. If the range of measurements taken by the normal sensors is relatively small, it
will likely be the case that reaching agreement on a value within that range will form a reason-
able estimate of the measurements taken by all sensors. However, if a set of malicious nodes is
capable of biasing the consensus value outside of this range, the error in the measurements could
be arbitrarily large.

2.3 Resilient Consensus Algorithm: W-MSR

While there are various approaches to facilitate consensus, a class of linear algorithms have
attracted significant interest in recent years [35,40]. This has been largely due to the applicability
of linear systems theory and matrix theory to analyzing such strategies, but is also motivated by
the resulting low communication overhead and simplicity. In such strategies, at each time-step t,
each node senses or receives information from its neighbors, and changes its value according to

xi[t+ 1] =
∑
j∈Ji[t]

wij[t]x
i
j[t], (2.1)

where wij[t] is the weight assigned to node j’s value by node i at time-step t. The above strategy
is the so-called Linear Consensus Protocol (LCP).

Different conditions have been reported in the literature to ensure asymptotic consensus is
reached [22,32,39,46,50]. It is common to assume that there exists a constant α ∈ R, 0 < α < 1
such that all of the following conditions hold:

• wij[t] = 0 whenever j 6∈ Ji[t], i ∈ N , t ∈ Z≥0;

• wij[t] ≥ α, ∀j ∈ Ji[t], i ∈ N , t ∈ Z≥0;

•
∑n

j=1wij[t] = 1, ∀i ∈ N , t ∈ Z≥0.

Given these conditions, a necessary and sufficient condition for reaching asymptotic con-
sensus in time-invariant networks is that the graph has a directed spanning tree [40]. The case
of dynamic networks is not quite as straightforward. In this case, under the conditions stated
above, a sufficient condition for reaching asymptotic consensus is that there exists a uniformly
bounded sequence of contiguous time intervals such that the union of graphs across each interval
has a directed spanning tree [39]. Recently, a more general condition referred to as the infinite
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flow property has been shown to be both necessary and sufficient for asymptotic consensus for
a class of discrete-time stochastic models [45]. Finally, the lower bound on the weights is need-
ed because there are examples of asymptotically vanishing weights in which consensus is not
reached [30].

One problem with the linear update given in (2.1) is that it is not resilient to misbehaving
nodes. In the rest of this section, we will discuss the sensitivity of LCP to misbehaving nodes
(and more generally, the topic of resilient consensus), and introduce an efficient algorithm to
remedy this using only local information.

2.3.1 Background on Resilient Consensus

In this subsection, we provide more background on resilient consensus. Note that the prob-
lem of resilient consensus has been investigated in the computer science community for several
decades [31], but here we focus on LCP which has been studied extensively by the control com-
munity. While various conditions have been provided to guarantee consensus in the absence of
misbehaving nodes, it was shown in [18, 22] that consensus can be disrupted by even a single
node that updates its values arbitrarily. The paper [22] studied the use of linear iterative strategies
as a mechanism for achieving flocking behavior in multi-agent systems. They showed that if a
‘leader’ node in the network does not update its value at each time-step (i.e., it maintains a con-
stant value), then the linear iterative strategy will cause all nodes to asymptotically converge to
the value of the leader. While this may be acceptable behavior when the network has a legitimate
leader, it also seems to indicate that a simple asymptotic consensus scheme can be easily dis-
rupted by just a single malicious node. A similar analysis was done in [18], where it was argued
that since the asymptotic consensus scheme can be disrupted by a single node that maintains a
constant value, it can also be disrupted by a single node that updates its values arbitrarily (since
maintaining a constant value is a special case of arbitrary updates). Both of these works only
considered a straightforward application of the linear iteration for asymptotic consensus, without
having the normal nodes perform any operations to avoid the influence of malicious behavior.

In [43], the authors provided a comprehensive analysis of linear iterative strategies in the p-
resence of malicious nodes. They demonstrated that linear iterative strategies are able to achieve
the minimum bound required to disseminate information reliably; specifically, when a network
is 2F + 1 connected, F malicious nodes will be unable to prevent any node from calculating
any function of the initial values (under the broadcast model of communication). Variations of
this problem were studied in [36, 44]. The result was extended in [36] to analyze linear iterative
strategies for asymptotic consensus in the presence of faulty agents (in addition to malicious a-
gents), and [44] studied the problem of detecting attacks in networks of linear continuous-time
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systems. While these results require minimal connectivity, they also require each normal node to
have full knowledge of the network topology, along with strong computational and storage ca-
pabilities. The paper [11] considered the problem of reducing the influence of external intruders
on asymptotic consensus in tree networks. They proposed a rewiring scheme whereby each node
changes its parent node in an effort to slow down the effect of externally connected adversaries.
While the approach presented in that paper is distributed, it only applies to tree topologies and
requires that the location and intention of the adversaries to be known by the nodes.

2.3.2 Description of W-MSR

As argued before in Section 2.3.1, a single ‘leader’ node can cause all agents to reach consensus
on an arbitrary value of its choosing (potentially resulting in a dangerous situation) simply by
holding its value constant. Thus the dynamics given by (2.1) do not facilitate resilient asymptotic
consensus for any of the fault models. We now describe a simple modification to the update
rule, and then provide a comprehensive characterization of network topologies in which resilient
asymptotic consensus is reached under such dynamics. We focus first on the F -local and F -total
models, and then describe the modifications required for the f -fraction local model. At every
time-step t, each normal node i obtains the values of other nodes in its neighborhood. At most F
of node i’s neighbors may be misbehaving; however, node i is unsure of which neighbors may be
compromised. To ensure that node i updates its value in a safe manner, we consider a protocol
where each node removes the extreme values with respect to its own value. More specifically:

1. At each time-step t, each normal node i obtains the values of its neighbors, and forms a
sorted list.

2. If there are less than F values strictly larger than its own value, xi[t], then normal node i
removes all values that are strictly larger than its own. Otherwise, it removes precisely the
largest F values in the sorted list (breaking ties arbitrarily). Likewise, if there are less than
F values strictly smaller than its own value, then node i removes all values that are strictly
smaller than its own. Otherwise, it removes precisely the smallest F values.

3. LetRi[t] denote the set of nodes whose values were removed by normal node i in step 2 at
time-step t. Each normal node i applies the update

xi[t+ 1] =
∑

j∈Ji[t]\Ri[t]

wij[t]x
i
j[t], (2.2)
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where the weights wij[t] satisfy the conditions stated before, but with Ji[t] replaced by
Ji[t] \ Ri[t].2

To accommodate the f -fraction local model, the parameter F in step 2 above is replaced by
Fi = bfdi[t]c. As a matter of terminology, we refer to the bound on the number (or fraction) of
larger or smaller values that could be thrown away as the parameter of the algorithm. Above, the
parameter of W-MSR with the F -local and F -total models is F , whereas the parameter with the
f -fraction local model is f , and the meaning of the parameter will be clear from the context.

Observe that the set of nodes removed by normal node i, Ri[t], is possibly time-varying.
Hence, even if the underlying network topology is fixed, the W-MSR algorithm effectively in-
duces switching behavior, and can be viewed as the linear update of (2.1) with a specific rule for
state-dependent switching (the rule given in step 2).3

Remark 2. Consensus algorithms with state-dependent switching have drawn increased atten-
tion in recent years in the context of opinion dynamics [7,19]. For example, the following model
was introduced in [19] to capture opinion dynamics in networks:

xi[t+ 1] =

∑
j:|xi[t]−xj [t]|<1 xj[t]

|{j :|xi[t]− xj[t]| < 1}|
.

The constraint |xi[t] − xj[t]| < 1 represents ‘bounded confidence’ among these nodes: each
node considers one of its neighbors’ opinions as reasonable and accepts it if their opinions
differ by less than 1. There are various differences in the analysis in these previous works in
comparison with this paper. First, the above updating scheme assumes that the underlying graph
is complete, so that each node sees all other nodes and selects only those whose values are close
to its own. Second, there exists a fixed threshold (1 in the above scheme) to represent ‘bounded
confidence’, and this might cause the agents to converge to different clusters for certain choices
of initial states [7]. Most importantly, these previous works on state-dependent connectivity do
not consider the presence of misbehaving nodes; we posit that the fixed threshold in the update
rule still allows a misbehaving node to draw all of the other nodes to any desired consensus value,
simply by waiting until all node values have converged sufficiently close together, and then slowly
inducing drift by keeping its value near the edge of the fixed threshold. The algorithm considered
in this paper, on the other hand, applies to general topologies and inherently limits the amount
of bias that can be introduced by a broad class of misbehaving nodes.

2In this case, a simple choice for the weights is to let wij [t] = 1/(1 + di[t]− |Ri[t]|) for j ∈ Ji[t] \ Ri[t].
3Note that from the view of the whole system, the W-MSR algorithm is nonlinear.
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The above algorithm is more lightweight than previous strategies, and does not require any
normal node to have any knowledge of the network topology or of the identities of non-neighbor
nodes. Given these highly desirable properties, the question that we answer is: in what networks
will the above algorithm facilitate resilient asymptotic consensus?

2.3.3 Related Algorithms in Previous Work

The use of similar algorithms that remove extreme values and then form an average from a subset
of the remaining values have been studied for decades. In [14], functions that perform this type
of operation are referred to as approximation functions, and both synchronous and asynchronous
algorithms are studied that use these approximation functions in complete networks for resilience
to F -total Byzantine faults. These approximation functions are used in the family of so-called
Mean-Subsequence-Reduced (MSR) algorithms [25]. There are a few key differences between
the operations used in the W-MSR algorithm and the MSR algorithm of [25]. First, W-MSR
does not always remove the largest and smallest F values as in the MSR algorithm [25]. Instead,
only the extreme values that are strictly larger or strictly smaller than the given node’s value are
removed. Since the node’s own value may be one of the F extreme values, the MSR algorithm
may throw away this useful (correct) information. Second, W-MSR uses all values retained after
removing the extreme values. MSR, on the other hand, may select only a subsequence of the
remaining values to use in the update. However, because the lower bound on the weights, α > 0,
may be arbitrarily small, W-MSR can come arbitrarily close to selecting only a subsequence
of remaining values by setting the appropriate weights to α (instead of 0 as would be done in
MSR). Finally, MSR averages the remaining values instead of allowing for weighted averages as
in W-MSR.

Besides Byzantine faults, some works also consider other fault models and a combination
of these faults [25]. However, few papers have addressed the convergence of MSR algorithms
in less restrictive (non-complete) networks. Some exceptions include [5, 6, 24]. In [24], the au-
thors studied local convergence (convergence of a subset of nodes) in undirected regular graph-
s4; the results are extended to asynchronous networks in [6] and global convergence of a class
of undirected regular graphs, named Partially Fully Connected Networks (PFCN), in [5]. More
recently, [49] provides necessary and sufficient conditions on the network topology required for
a special case of the MSR algorithm (which retains all of the values after removing the extreme
ones) to achieve consensus in the presence of F -total Byzantine faults. In the following sections,
we will develop a novel topological property and show that this property is essential for studying

4A regular graph is a graph where each vertex has the same number of neighbors.
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Figure 2.1: Example of a n
2
-connected graph which fails to reach consensus.

MSR (and more generally, W-MSR) algorithms in arbitrary networks for the broad class of fault
models described in Section 2.2.3.

2.4 Network Robustness

While network connectivity has been the key metric for studying robustness of distributed algo-
rithms (as described in Section 1.1), the following proposition suggests that in general networks,
connectivity is no longer useful for characterizing the behavior of purely local algorithms, such
as W-MSR.

Proposition 1. For any n, F ∈ Z>0 with F ≤ bn
2
c, there exists a graph with connectivity

κ = bn
2
c+ F − 1 in which W-MSR with parameter F does not ensure asymptotic consensus.

The proof of Proposition 1 can be found in Appendix A. Figure 2.1 illustrates an example of
this kind of graph with F = 1. This network is undirected and there are two complete subgraphs
(the upper and lower sets) each with degree n

2
(suppose n is even). Each node in the upper set

has one and only one neighbor from the lower set. Note that the graph is n
2
-connected and has

minimum degree n
2
. Suppose that nodes in the upper and lower sets have initial values a and b,

respectively. When a 6= b, consensus will not be reached by using the W-MSR algorithm with
parameter F = 1. This is because each node will throw away the value of its neighbor from the
opposite set and thus its own value will remain unchanged, even when there are no misbehaving
nodes.

Thus, even a relatively large connectivity (or minimum in-degree) in graphs is not sufficient to
guarantee consensus of the normal nodes, indicating the inadequacy of these traditional metrics
to analyze the convergence properties of W-MSR. Taking a closer look at the graph in Fig. 2.1,
we see that the reason for the failure of consensus is that no node has enough neighbors in the
opposite set; this causes every node to throw away all useful information from outside of its
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set, and prevents consensus. What is needed is a metric that formalizes the notion of sufficient
redundancy of information flow directly to at least one node in a subset. To capture this intuition,
we develop novel graph-theoretic properties termed reachable sets and network robustness. We
also provide a variation on these properties for the f -fraction local model.

Definition 8 (r-reachable set). Given a graph D and a nonempty subset S of nodes of D, we say
S is an r-reachable set if ∃i ∈ S such that |Vi \ S| ≥ r, where r ∈ Z≥0.

Definition 9 (p-fraction reachable set). Given a graph D and a nonempty subset S of nodes of
D, we say S is a p-fraction reachable set if ∃i ∈ S such that |Vi| > 0 and |Vi \ S| ≥ p|Vi|,
where 0 ≤ p ≤ 1. If |Vi| = 0 or |Vi \ S| = 0 for all i ∈ S, then S is 0-fraction reachable.

A set S is r-reachable (or p-fraction reachable) if it contains a node that has at least r (or
dpdie) neighbors outside of S. The parameter r (or p) quantifies the redundancy of information
flow from nodes outside of S to some node inside S. Intuitively, the r-reachability (or p-fraction
reachability) property captures the idea that some node inside the set is influenced by a suffi-
ciently large number of nodes from outside the set. The above reachability property pertains to a
given set S. The following definitions generalize this notion of redundancy to the entire network.

Definition 10 (r-robustness). A graphD = {V , E} on n nodes (n ≥ 2) is r-robust, with r ∈ Z≥0,
if for every pair of nonempty, disjoint subsets of V , at least one of the subsets is r-reachable.

Definition 11 (p-fraction robustness). A graph D = {V , E} on n nodes (n ≥ 2) is p-fraction
robust, with 0 ≤ p ≤ 1, if for every pair of nonempty, disjoint subsets of V , at least one of the
subsets is p-fraction reachable.

The reason that pairs of nonempty, disjoint subsets of nodes are considered in the definition
of r-robustness can be seen in the example of Fig. 2.1. If either the upper or the lower set is
2-reachable (r = F + 1 = 2), then at least one node would be sufficiently influenced by a node
outside of its set (because each node only removes up to F = 1 nodes that have values lower or
higher than its own). This would drive it away from the values of its group, and thereby allow
it to lead its group to the values of the other set. In the next section, we will show that network
robustness is essential to characterize the performance of the W-MSR algorithm.

2.5 Resilient Consensus Using Only Local Information

We start with the following result showing that W-MSR always satisfies the safety condition for
resilient asymptotic consensus. Recall thatM [t] andm[t] are the maximum and minimum values
of the normal nodes at time-step t, respectively.
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Lemma 1. Suppose each normal node updates its value according to the W-MSR algorithm with
parameter F under the F -total or F -local Byzantine model, or with parameter f under the f -
fraction local Byzantine model. Then, for each node i ∈ N , xi[t + 1] ∈ [m[t],M [t]], regardless
of the network topology.

Proof. The proof is straightforward and follows directly from the definitions and the facts that
the values in Ji[t] \ Ri[t] used in the W-MSR update rule lie in the interval [m[t],M [t]], and the
update rule in (2.2) is a convex combination of these values.

Note that since the malicious model is a special case of the Byzantine model, the above result
also holds for related malicious models. Having guaranteed the safety condition, we now provide
a characterization of networks where the agreement condition (and thus, the validity condition)
will be satisfied for each of the threat models introduced in Section 2.2.3.

2.5.1 F -Local and f -Fraction Local Malicious Models

The following key result provides a condition on the network that will guarantee that the algo-
rithm achieves resilient consensus. The proof of Theorem 1 can be found in Appendix B.

Theorem 1. Consider a time-invariant network modeled by a graph D = {V , E} where each
normal node updates its value according to the W-MSR algorithm with parameter F . Under
the F -local malicious model, resilient asymptotic consensus is achieved if the topology of the
network is (2F+1)-robust. Furthermore, a necessary condition is for the topology of the network
to be (F + 1)-robust.

F

F

F

F
2F 2Fx1 x2

S1 S3

S2

Figure 2.2: Illustration of Proposition 2

Although the sufficient and necessary conditions in Theorem 1 do not coincide, the following
results show that both the sufficient and necessary conditions in the theorem are sharp, i.e.,
relaxing the sufficient condition leads to examples in which consensus is not achieved and there
exist graphs satisfying the necessary condition where consensus is guaranteed.
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Proposition 2. For every F ∈ Z>0, there exists a 2F -robust network that fails to reach consensus
using the W-MSR algorithm with parameter F under the F -local malicious model.

Proof. We will prove the result by giving a construction of such a graph, visualized in Figure 2.2.
In Figure 2.2, S1, S2 and S3 are all complete subgraphs with |S1| =|S3| = 2F and |S2| = 4F .
Each node in S1 connects to 2F nodes of S2 and each node in S3 connects to the other 2F nodes
of S2, and all these connections are undirected. Node x1 has incoming edges from all nodes in S1
and similarly node x2 has incoming edges from all nodes in S35. We choose F nodes of S1 and
also F nodes of S3 to be malicious; note that this constitutes an F -local set of malicious nodes.
Then we assign node x1 with initial value m, node x2 with initial value M and the other normal
nodes with initial values c, such that m < c < M . Malicious nodes in S1 and S3 will keep their
values unchanged atm andM , respectively. We can see that, by using the W-MSR algorithm, the
values of nodes x1 and x2 will never change and thus consensus cannot be reached, completing
the proof.

Proposition 3. For every F ∈ Z>0, there exists a (F + 1)-robust network where resilient con-
sensus is achieved using the W-MSR algorithm with parameter F under the F -local malicious
model.

Proof. For simplicity, we focus on the case when n is even and construct an undirected graph
which is similar to the one constructed in the proof of Proposition 1. Let X and Y be two
complete graphs on n

2
nodes. Number nodes in X and Y as x1, x2, . . . , xn

2
and y1, y2, . . . , yn

2
,

respectively. For any node xi ∈ X , if i ≤|Y| − F , connect xi with nodes yi, yi+1, . . . , yi+F ;
otherwise, connect xi with nodes yi, . . . , yn

2
and nodes y1, . . . , yi+F−n

2
. Then each node in X and

Y has exactly F + 1 neighbors in the other set and thus, the graph is (F + 1)-robust. Note that
the minimum degree of this graph is n

2
+ F . Further note that, the F -local model is equivalent

to the F -total model in this graph, i.e., there does not exist a F -local set with more than F
nodes. In [29], the authors have shown that if the minimum degree of the graph is bn

2
c+ F , then

consensus can be reached under the F -total malicious model; by using this result, we complete
the proof.

While the above discussions have been for an underlying time-invariant network D, it is
relatively straightforward to extend the results to time-varying networks as follows. The proof of
Corollary 1 can be found in Appendix C.

5This is an example of a graph that arises from the construction that we will derive in Section 4.4, where we will
show that such a graph is 2F robust.
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Corollary 1. Consider a time-varying network modeled by a graphD[t] = {V , E [t]} where each
normal node updates its value according to the W-MSR algorithm with parameter F . Let {tk}
denote the set of time-steps in which D[t] is (2F + 1)-robust. Then, under the F -local malicious
model, resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c, ∀k, where
c ∈ Z>0.

We now extend the discussion to the f -fraction local malicious model.

Theorem 2. Consider a time-invariant network modeled by a graph D = {V , E} where each
normal node updates its value according to the W-MSR algorithm with parameter f . Under the
f -fraction local malicious model, resilient asymptotic consensus is achieved if the topology of
the network is p-fraction robust, where 2f < p ≤ 1. Furthermore, a necessary condition is for
the topology of the network to be p′-fraction robust, where p′ > f .

Proof. The proof is similar to the proof of Theorem 1. For the proof of sufficiency, note that
under the f -fraction local model, each normal node will disregard at most 2×bfdic values from
its neighborhood at each time-step. Thus, if the network is p-fraction robust, where 2f < p ≤ 1,
at least one of these two sets XM(tε, ε0) and Xm(tε, ε0) defined in the proof of Theorem 1 will
adopt some normal node’s value from outside.

Corollary 2. Consider a time-varying network modeled by a graphD[t] = {V , E [t]} where each
normal node updates its value according to the W-MSR algorithm with parameter f . Let {tk}
denote the set of time-steps in which D[t] is p-fraction robust, where 2f < p ≤ 1. Then, under
the f -fraction local malicious model, resilient asymptotic consensus is achieved if |{tk}| = ∞
and |tk+1 − tk| ≤ c, ∀k, where c ∈ Z>0.

2.5.2 F -Total, F -Local and f -Fraction Local Byzantine Models

Our above results have focused on the case of malicious (but not Byzantine) adversaries. The
recent paper [49] investigates a similar algorithm in the context of F -total Byzantine faults, and
provides necessary and sufficient conditions for the algorithm to succeed. While their proof
techniques are different, the main result can be captured neatly by the notion of robustness as
follows.

Definition 12. For a network D = {V , E}, define the normal network of D, denoted by DN , as
the network induced by the normal nodes, i.e., DN = {N , EN}, where EN is the set of edges
among the normal nodes.
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Theorem 3 ( [49]). Consider a time-invariant network modeled by a graph D = {V , E} where
each normal node updates its value according to the W-MSR algorithm with parameter F . Under
the F -total Byzantine model, resilient asymptotic consensus is achieved if and only if the topology
of the normal network is (F + 1)-robust.

Proof. To prove sufficiency, besides the method used in [48, 49], we can also use the approach
proposed in the proof of Theorem 1. Consider the two disjoint sets XM(tε, εi) and Xm(tε, εi)
defined in the proof of Theorem 1. If the normal network is (F + 1)-robust, then one of the two
sets (or both) contains some normal node which has at least F + 1 normal neighbors outside.

To prove necessity, if the normal network is not (F + 1)-robust, we can assign the two
disjoint sets that are not (F + 1)-reachable the maximum and minimum values, respectively.
Since the Byzantine nodes can send different values to different neighbors, suppose they send
the maximum and minimum values to the maximum and minimum sets, respectively. Then,
nodes in these two sets never use any values from outside their own sets and consensus is not
reached.

The following results are straightforward extensions of the above result from [49] to the local
models and time-varying networks.

Corollary 3. Consider a time-invariant network modeled by a graph D = {V , E} where each
normal node updates its value according to the W-MSR algorithm with parameter F (or param-
eter f for the f -fraction local model). Under the F -local Byzantine model, resilient asymptotic
consensus is achieved if and only if the topology of the normal network is (F + 1)-robust. Under
the f -fraction local Byzantine model, resilient asymptotic consensus is achieved if the normal
network is p-fraction robust, where p > f , and a necessary condition is for the normal network
to be p′-fraction robust, where p′ ≥ f .

Proof. The proof is similar to the proof of Theorem 3. For the proof of necessity, note that the
choice of Byzantine nodes should satisfy the F -local and f -fraction local properties, respectively.
Further note that the only difference between the sufficient and necessary conditions for the f -
fraction local model is p = f . When the network is f -fraction robust, we can choose two sets
which are f -fraction reachable and these two sets contain some node iwhich has dfdie neighbors
outside. Consensus can be reached if fdi 6∈ Z≥1 and cannot be reached if fdi ∈ Z≥1.

Corollary 4. Consider a time-varying network modeled by a graph D[t] = {V , E [t]} where
each normal node updates its value according to the W-MSR algorithm with parameter F (or
parameter f for the f -fraction local model). Let {tk} denote the set of time-steps in which
the normal network of D[t] is either (i) (F + 1)-robust, or (ii) p-fraction robust, where f <
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p ≤ 1. Then, under the (i) F -local Byzantine model, or (ii) f -fraction local Byzantine model,
respectively, resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c, ∀k,
where c ∈ Z>0.

Remark 3. Note that when the original network is (2F + 1)-robust (or p-fraction robust, where
2f < p ≤ 1), the normal network will be (F +1)-robust (or p-fraction robust, where f < p ≤ 1).
Thus, the results in Section 2.5.1 also hold for related Byzantine models. Further note that, the
necessary conditions described in this section do not apply for the related malicious models,
which implies that the restriction of the ability of misbehaving nodes results in extra complexity.
Thus, the results in Section 2.5.1 are nontrivial.
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Chapter 3

Extensions of Network Robustness

3.1 Introduction

In the previous chapter, we introduced the concept of network robustness and showed that this
concept is the key property to characterize the performance of algorithms using only local in-
formation, such as W-MSR. In this chapter, we will study two extensions of network robustness
– (r, s)-robustness and strong robustness. We first introduce the concept of (r, s)-robustness,
where s represents the total number of nodes in a pair of sets that each have at least r neighbors
outside their own set and characterizes another type of information redundancy; we will provide
a necessary and sufficient condition for the W-MSR algorithm to achieve resilient consensus
under the F -total malicious model using this concept1. Then we will turn to fault tolerant broad-
cast, which is another important operation in networks, and use strong robustness to show that
broadcast will succeed in certain networks that do not meet the conditions studied before.

3.2 (r, s)-Robustness for Resilient Consensus

Consider the network modeled by the graph in Fig. 3.1. One can verify that the graph is 3-robust
by checking every possible pair of disjoint subsets, and confirming that at least one of them is
3-reachable. Consider the disjoint subsets X and Y shown in the figure, and note that both of
them are 3-reachable – nodes 2 and 8 each have three neighbors outside of their respective sets.
However, no other nodes in those two sets have more than two neighbors outside their own set,

1This part of work is done in conjunction with H. LeBlanc and X. Koutsoukos from Vanderbilt University.
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Figure 3.1: A 3-robust graph in which sets X and Y are each 3-reachable. Nodes 2 and 8 are
malicious (shown in grey).

Figure 3.2: Illustration of an (r, s)-reachable set of nodes.

and thus nodes 2 and 8 are the only ones with access to sufficient information outside their own
set. Suppose these two nodes 2 and 8 are malicious (or Byzantine) and the initial values of nodes
in X and Y are a and b, respectively. Then, by stubbornly maintaining their initial values, nodes
2 and 8 are able to prevent consensus whenever the normal nodes use W-MSR with parameter
F = 2. One way to remedy this is to require the whole network to be more robust. Another
way is to introduce another form of information redundancy by specifying a minimum number
of nodes that are sufficiently influenced from outside of their set. Given a set of nodes, this type
of redundancy may also reduce the requirement on the number of neighbors from outside each
set. In order to capture this intuition, we define the following concept.

Definition 13 ((r, s)-reachable set). Given a graph D and a nonempty subset of nodes S , we say
that S is an (r, s)-reachable set if there are at least s nodes in S, each of which has at least r
neighbors outside of S, where r, s ∈ Z≥0; i.e., given XS = {i ∈ S : |Vi \S| ≥ r}, then |XS | ≥ s.

An illustration of an (r, s)-reachable set of nodes is shown in Fig. 3.2. Observe that, in
general, a set S is (r, s′)-reachable, for s′ ≤ s, whenever S is (r, s)-reachable. At one extreme,
whenever there are no nodes in S with at least r neighbors outside of S, then S is only (r, 0)-
reachable. At the other extreme, S can be at most (r, |S|)-reachable. Also note that r-reachability

23



is equivalent to (r, 1)-reachability. Hence, (r, s)-reachability strictly generalizes r-reachability,
and better quantifies the number of nodes with redundant information flow from outside of their
set. This additional specificity is useful for defining a more general notion of robustness.

Definition 14 ((r, s)-robustness). A graph D = {V , E} on n nodes (n ≥ 2) is (r, s)-robust, for
nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every pair of nonempty, disjoint subsets S1 and
S2 of V such that S1 is (r, sr,1)-reachable and S2 is (r, sr,2)-reachable with sr,1 and sr,2 maximal
(i.e., sr,k = |XSk | where XSk = {i ∈ Sk : |Vi \ Sk| ≥ r} for k ∈ {1, 2}), then at least one of the
following hold:

(i) sr,1 = |S1|;

(ii) sr,2 = |S2|;

(iii) sr,1 + sr,2 ≥ s.

The definition of (r, s)-robustness aims to capture the idea that “enough” nodes in every pair
of nonempty, disjoint sets S1,S2 ⊂ V have at least r neighbors outside of their respective sets.
To quantify what is meant by “enough” nodes, it is necessary to take the maximal sr,k for which
Sk is (r, sr,k)-reachable for k ∈ {1, 2} (since Sk is (r, s′r,k)-reachable for s′r,k ≤ sr,k). Since
sr,k = |XSk |, condition (i) or (ii) means that all nodes in Sk have at least r neighbors outside of
Sk. Given a pair S1,S2 ⊂ V such that 0 < |S1| < r and S2 = V \ S1, there can be no more than
|S1| nodes with at least r neighbors outside of their set. Hence, conditions (i) and (ii) quantify
the maximum number of nodes with at least r neighbors outside of their set for such pairs, and
must therefore be “enough”. Alternatively, if there are at least s nodes with at least r neighbors
outside of their respective sets in the union S1 ∪ S2, then condition (iii) is satisfied. For such
pairs S1,S2 ⊂ V , the parameter2 1 ≤ s ≤ n quantifies what is meant by “enough” nodes.

In the rest of this section, we will show that these concepts we have proposed above are
the key properties needed to characterize the performance of the W-MSR algorithm under the
F -Total Malicious Model. We will also explore properties of of (r, s)-robust graphs.

3.2.1 F -Total Malicious Model

The following result provides a necessary and sufficient condition for the W-MSR algorithm to
succeed under the F -total malicious model.

2Note that s = 0 is not allowed in (r, s)-robustness because in that case any graph on n ≥ 2 nodes satisfies the
definition for any r ∈ Z≥0, which subverts the interpretation of the parameter r. At the other extreme, the maximal
meaningful value of s is s = n since condition (iii) can never be satisfied with s > n.
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Theorem 4. Consider a time-invariant network modeled by a graph D = {V , E} where each
normal node updates its value according to the W-MSR algorithm with parameter F . Under the
F -total malicious model, resilient asymptotic consensus is achieved if and only if the network
topology is (F + 1, F + 1)-robust.

Proof. (Necessity) IfD is not (F+1, F+1)-robust, then there are nonempty, disjoint S1,S2 ⊂ V
such that none of the conditions (i) − (iii) hold. Suppose the initial value of each node in S1
is a and each node in S2 is b, with a < b. Let all other nodes have initial values taken from the
interval (a, b). Since sF+1,1 + sF+1,2 ≤ F , suppose all nodes in XS1 and XS2 are malicious and
keep their values constant. With this assignment of adversaries, there is still at least one normal
node in both S1 and S2 since sF+1,1 < |S1| and sF+1,2 < |S2|, respectively. Since these normal
nodes remove the F or less values of in-neighbors outside of their respective sets, no consensus
among normal nodes is reached.

(Sufficiency) The proof of sufficiency is similar to the proof of Theorem 1. Note that here we
need to modify the definitions of XM(tε, εi) and Xm(tε, εi) defined in the proof of Theorem 1 to
be XM(t, εi) = {i ∈ V : xi[t] > AM − εi}, which includes all normal and malicious nodes that
have values larger than AM − εi, and Xm(t, εi) = {i ∈ V : xi[t] < Am + εi}, which includes
all normal and malicious nodes that have values smaller than Am + εi. Since the network is
(F + 1, F + 1)-robust and there are no more than F malicious nodes in the network (F -total
model), there is a normal node in the union that has at least F + 1 neighbors outside of its
set.

This result establishes the notion of (r, s)-robustness introduced in Definition 14 as the appro-
priate metric for reasoning about purely local distributed algorithms, supplanting the traditional
metric of connectivity. When the network is time-varying, one can state the following corollary
of the above theorem.

Corollary 5. Consider a time-varying network modeled by a graphD[t] = {V , E [t]} where each
normal node updates its value according to the W-MSR algorithm with parameter F . Let {tk}
denote the set of time-steps in which D[t] is (F + 1, F + 1)-robust. Then, under the F -total
malicious model, resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c,
∀k, where c ∈ Z>0.

To illustrate these results consider the graph in Figure 3.3. This graph can withstand the
compromise of F = 1 malicious node in the network using the W-MSR algorithm with parameter
F = 1 (the graph is (2,2)-robust but not (3,3)-robust). This is not to say that it is impossible for
the normal nodes to reach consensus if there are two nodes that are compromised. Instead, these
results say that there are two specific nodes that can be compromised by an adversary to prevent
consensus (e.g., nodes 5 and 6 in Fig. 3.3).
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Figure 3.3: A 3-robust graph that is not (3,2)-robust.

3.2.2 Properties of (r, s)-Robust Graphs

In this subsection, we explore more properties of (r, s)-robust graphs. We begin with the impor-
tant observation that (r, 1)-robustness is equivalent to r-robustness. This holds because condi-
tions (i) − (iii) in Definition 14 for (r, 1)-robustness collapse to the condition that at least one
of S1 and S2 is r-reachable. We next establish an inheritance property of (r, s)-robust graphs.

Lemma 2. Every (r, s)-robust graph D = {V , E} is also (r′, s′)-robust when 0 ≤ r′ ≤ r,
1 ≤ s′ ≤ s.

Proof. For any nonempty, disjoint pair S1,S2 ⊂ V , at least one of the three conditions (i)–(iii)
of Definition 14 holds. Observe that sr′,k ≥ sr,k for k = 1, 2. Hence if (i) or (ii) hold, then
sr′,k ≥ sr,k = |Sk| ≥ sr′,k, which implies sr′,k = |Sk|. If (iii) holds, then

sr′,1 + sr′,2 ≥ sr,1 + sr,2 ≥ s ≥ s′.

Thus, any pair of nonempty, disjoint subsets of nodes in D satisfy Definition 14 with r and s
replaced by r′ and s′. Therefore, D is (r′, s′)-robust.

It follows from Lemma 2 that a graph is r-robust whenever it is (r, s)-robust. The converse,
however, is not true. Consider the graph in Fig. 3.3. This graph is 3-robust, but is not (3, 2)-
robust. For example, let S1 = {1, 3, 5, 6, 7} and S2 = {2, 4}. Only node 2 has at least 3 nodes
outside of its set, so all of the conditions (i) − (iii) fail. Therefore, (r, s)-robustness is a strict
generalization of r-robustness.

The following result formalizes the intuition that adding links to a robust network can never
reduce the robustness of the network.
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Lemma 3 (Monotonicity). Suppose D = {V , E} is an (r, s)-robust spanning subgraph of D′ =
{V , E ′}, where E ′ = E ∪ E ′′ and |E ′′| ≥ 0. Then D′ is (r, s)-robust.

Proof. Suppose D′ is not (r, s)-robust. Then there exists a pair of nonempty, disjoint subsets
S1,S2 ⊂ V that are (r, sr,k)-reachable with maximal sr,k for k ∈ {1, 2}, but all of conditions
(i)-(iii) in Definition 14 fail to hold. By removing directed edges in E ′′, the magnitude of sr,1
and sr,2 can only decrease, and therefore none of conditions (i)-(iii) hold for the pair S1,S2 in
D. Hence, D is not (r, s)-robust, which is a contradiction.

The next property relates robustness of the network to its minimum in-degree.

Lemma 4 (Minimum In-Degree). Given an (r, s)-robust graphD = {V , E}, with 0 ≤ r ≤ dn/2e
and 1 ≤ s ≤ n, the minimum in-degree of D, δin(D), is at least

δin(D) ≥

{
r + s− 1 if s < r;
2r − 2 if s ≥ r.

Proof. Whenever r = 0, 1, there is nothing to prove. Therefore, assume 2 ≤ r ≤ dn/2e, and fix
j ∈ V . First, let S1 = {j} and S2 = V \ S1. Then, sr,2 = 0 so that sr,1 = |S1|. This proves
Vj ≥ r. Next, whenever s < r, form S1 by choosing s− 1 of node j’s in-neighbors along with j
itself. Take S2 = V \ S1 as before. Since |S1| = s < r, again sr,2 = 0 so that sr,1 = |S1|. This
implies j has an additional r in-neighbors outside of S1, thereby guaranteeing Vj ≥ r + s − 1.
On the other hand, whenever s ≥ r, form S1 by choosing r − 2 of node j’s in-neighbors along
with j itself. Again, choose S2 = V \ S1. Since |S1| < r and s ≥ r, again sr,2 = 0 so that
sr,1 = |S1|. This implies j has an additional r in-neighbors outside of S1, thereby guaranteeing
Vj ≥ 2r − 2. Since j ∈ V is arbitrary, the bound on δin(D) follows.

The following result provides a lower bound on the amount of robustness that can be main-
tained in a graph after removing incoming edges from nodes in the network.

Lemma 5 (Directed Edge Removal). Given an (r, s)-robust (p-fraction robust) graph D, let D′
be the graph produced by removing up to k (q-fraction of) incoming edges of each node in D,
where 0 ≤ k < r (0 ≤ q < p ≤ 1). Then D′ is (r − k, s)-robust ((p− q)-fraction robust).

Proof. From the definition of (r, s)-reachable (p-fraction reachable) set, we know that if a set is
(r, s)-reachable (p-fraction reachable), then by removing up to k (q-fraction of) incoming edges
of each node in D, where 0 ≤ k < r (0 ≤ q < p < 1), the set is (r − k, s)-reachable ((p − q)-
fraction reachable). Thus, by the definition of (r, s)-robustness (p-fraction robustness), the result
follows.

27



Recall that when there are no misbehaving nodes, the Linear Consensus Protocol given in
(2.1) achieves consensus if and only if the network contains a directed spanning tree. The fol-
lowing result shows that 1-robustness is equivalent to containing a directed spanning tree.

Lemma 6. A graph D is 1-robust if and only if D contains a directed spanning tree.

Proof. If D is 1-robust, we will prove that D has a directed spanning tree by contradiction.
Assume thatD does not have a directed spanning tree. DecomposeD into its strongly connected
components, and note that since D does not have a directed spanning tree, there must be at
least two components that have no incoming edges from any other components. However, this
contradicts the assumption thatD is 1-robust (at least one of the two subsets must have a neighbor
outside the set), so it must be true that there exists a directed spanning tree.

AssumeD contains a directed spanning tree, but is not 1-robust. Then we can find two subsets
of nodes which do not have neighbors from outside, which contradicts with the assumption that
D contains a directed out-branching, completing the proof.

Remark 4. The proof of Lemma 6 is a more direct and simpler version of the proof of Theorem
5 in [32].

Finally, we relate the robustness of the underlying graph to its connectivity.

Lemma 7 (Connectivity of Robust Graphs). Suppose D = {V , E} is an r-robust graph, with
0 ≤ r ≤ dn/2e. Then the underlying graph GD is at least r-connected. Furthermore, if D is
(r, r)-robust, with 3 ≤ r ≤ dn/2e, then GD is at least (d3r/2e − 1)-connected.

Proof. If r = 0, the first statement is vacuously true, and if r = 1, it holds by Lemma 6.
Therefore, assume r ≥ 2. By Lemma 3, the underlying graph GD = {V , EG} is r-robust. By
Lemmas 2 and 6, the graph is connected. Suppose there is a vertex cut K ⊂ V such that |K| < r,
and denote the k ≥ 2 connected components remaining after the removal of K by C1, C2, . . . , Ck.
Let S1 = C1 and S2 = C2. Since GD is r-robust, either S1 or S2 is r-reachable, which contradicts
the fact that K is a vertex cut. Hence, any vertex cut K must satisfy |K| ≥ r, so that GD is at least
r-connected.

For the second statement, suppose there is a vertex cutK ⊂ V such that r ≤ |K| ≤ d3r/2e−2,
and denote the k ≥ 2 connected components remaining after the removal of K by C1, C2, . . . , Ck.
Partition K into K = K1 ∪K2 ∪K3 such that |K1| = |K2| = dr/2e − 1 and the remaining nodes
go to K3; i.e., 1 ≤ |K3| ≤ br/2c. Then form S1 = C1 ∪ K1 and S2 = C2 ∪ K2. Since GD is
(r, r)-robust by Lemma 3, δ(GD) ≥ 2r− 2 by Lemma 4, so that |Ci| ≥ br/2c+ 1, i ∈ {1, . . . , k}
(since there are at most d3r/2e − 2 neighbors in K). It follows that |S1|, |S2| ≥ r, and we are
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guaranteed sr,1 + sr,2 ≥ r. Because |K1 ∪ K2| ≤ r − 1 and r ≥ 3, there is v ∈ C1 ∪ C2 such
that v has at least r neighbors outside of its set. Without loss of generality, assume v ∈ C1.
Since |K2| + |K3| ≤ r − 1, ∃j ∈ C2 ∪ · · · ∪ Ck such that (j, v) ∈ E , which contradicts the fact
that K is a vertex cut whose removal results in components C1, C2, . . . , Ck. Hence, GD is at least
(d3r/2e − 1)-connected.

3.3 Strong Robustness for Resilient Broadcasting

Having characterized the behavior of the consensus algorithm in terms of the network robustness,
we now turn our attention to another important objective in networks: broadcasting a single value
throughout the network. We focus on the following problem, studied in [26,37]. Consider a time-
invariant communication network D = {V , E}, with a specially designated source node s ∈ V .
The source has a value xs[0] that it wishes to broadcast to every other node in the network.
However, there may be various misbehaving nodes scattered throughout the network that wish
to prevent certain nodes from obtaining the correct value of the source. To achieve broadcast
(i.e., all normal nodes receive the source’s message) under the F -local model, [26] proposes the
following so-called Certified Propagation Algorithm (CPA):

1. At time-step 0, the source broadcasts its value to all of its neighbors, and maintains its
value for all subsequent time-steps.

2. At time-step 1, all normal neighbors of the source receive the source’s value and broadcast
it to all of their neighbors. The normal neighbors of the source maintain this value for all
subsequent time-steps.

3. At each time-step t, if a normal node has received an identical value from F +1 neighbors,
then it accepts that value and broadcasts it to all of its neighbors. This normal node keeps
this value for all subsequent time-steps.

Under the F -local model, it is easy to see that a normal node will only ever accept a value if
it is the actual value broadcast by the source. For CPA, the following result from [37] provides a
sufficient condition for all normal nodes in the network to eventually accept the value broadcast
by the source.

Theorem 5 ( [37]). For a graphD = {V , E} and nodes v, s ∈ V , let X(v, s) denotes the number
of nodes that are in v’s neighborhood and are closer to s than v. LetX(D) = min{X(v, s)|v, s ∈
V , (v, s) /∈ E}. Then CPA succeeds if X(D) > 2F .
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This is only a sufficient condition; we will now provide a different sufficient condition for C-
PA to succeed, in terms of the robust-graph property that we have defined. We will first introduce
another variation of the concept of an r-robust graph.

Definition 15 (Strongly r-robustness). For a positive integer r, a graph D = {V , E} is strongly
r-robust if for any nonempty subset S ⊆ V , either S is r-reachable or there exists a node i ∈ S
such that Vi = V \ S.

Note that the difference between a strongly r-robust graph and the standard r-robust graph
is that the former requires every subset of nodes to be either r-reachable, or have a node that
connects to every node outside the set, whereas the latter only requires that one of any two sets
satisfies the property of being r-reachable. Any strongly r-robust graph is r-robust, but not vice
versa.

Theorem 6. Under the F -local Byzantine (or malicious) model, CPA succeeds for any source if
the network is strongly (2F + 1)-robust.

Proof. All normal neighbors of the source receive the message directly, and thus they all accept
it. We will use contradiction to prove that all other nodes receive the broadcast message. Suppose
that CPA fails to deliver the message to all normal nodes, and let S denote the set of all such
normal nodes. By the definition of a strongly (2F + 1)-robust graph, we know that some node
i in S must have 2F + 1 neighbors outside S or connects to all nodes outside. For the former
situation, at most F of these nodes can be malicious, and all other nodes are normal nodes that
have received the message and re-broadcasted it; for the latter, this node would directly connect
to the source and thus get the message. In either case, this contradicts the assumption that node
i would fail to get the message, and thus the algorithm achieves broadcast.

The following Proposition shows that CPA succeeds in certain networks which do not satisfy
the condition proposed in Theorem 5.

Proposition 4. For some F , there exist graphs with X(D) ≤ 2F but that are strongly (2F + 1)-
robust.

Proof. For F = 1, construct an undirected graph G as follows. Start with a fully-connected graph
of five nodes, denoted 1, 2, 3, 4, 5. Add two nodes 6 and 7 and connect them to nodes 2, 3, 4 and
3, 4, 5 respectively. Finally, add a node 8 and connect it to nodes 3, 4, 6, 7. If we take node 1 as
the source, it’s easy to check that in the neighborhood of node 8, there are only two nodes that
are closer to the source. Thus X(G) ≤ 2F here, but the graph is still strongly (2F + 1)-robust,
and CPA will succeed.
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Finally, it will be of interest to note that the notions of r-reachable sets and and p-fraction
reachable sets are similar to the notion of ‘clusters’, which are topological structures identified
in [15] as being impediments to information cascades in networks. While the topic of informa-
tion cascades (and more specifically, behavior adoption) is closely related to the problem that
we considered in this section, the presence of misbehaving nodes in our setup significantly com-
plicates the analysis; in the rest of this section, we provide more discussions on the differences
between these two scenarios.

3.3.1 Behavior Adoption

We first give some background on the behavior adoption problem discussed in [15]. Consider a
fixed (time-invariant) social network where every node i can adopt one of two possible behaviors
at any given time-step t; we model this by saying that x[t] ∈ {0, 1} for all t ∈ N. At each time-
step t, each node i plays a game against each of its neighbors, where the strategy set available
to each node is {0, 1} (i.e., it chooses how to behave at that time-step), and the payoffs are as
follows: node i and its neighbor j both get a payoff of a if both play strategy 0, both get a
payoff of b of both play strategy 1, and they get no payoff if they play different strategies. The
total payoff of any node i is the sum of the payoffs from the games played against each of its
neighbors. Let Ai[t] denote the number of neighbors of node i that are playing strategy 0 at time-
step t, and let Bi[t] = degi−Ai[t] be the number of neighbors that are playing strategy 1. In this
case, it was shown in [15] that there exists a constant q satisfying 0 < q < 1 (and depending on
the payoffs in the game) such that the best strategy for each node to follow is as follows:

xi[t+ 1] =

{
0 if Ai[t]

degi
> q,

1 otherwise.
(3.1)

In other words, each node should follow a threshold rule: if a sufficiently large fraction of neigh-
bors plays strategy 0, the node should also play 0, and it should play 1 otherwise. Based on this
interaction rule, the authors studied the following problem: suppose that all nodes in the network
start out playing strategy 1, except for a small subsetA of nodes that start playing strategy 0, and
commit to 0 forevermore (i.e., xi[0] = 1 for all i ∈ V \ A, and xi[t] = 0 for all i ∈ A and for all
t ∈ N). Under what conditions will every node in the network eventually adopt strategy 0? The
answer depends on the nature of the set A and the topology of the network, and is given by the
following theorem.

Theorem 7 ( [15]). All nodes in the network will eventually switch to strategy 0 if and only if
the rest of the graph does not contain a set of nodes where each node (in this set) has at least a
fraction 1− q of their neighbors inside the set.
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At this point, we highlight the following comparisons between the fault-tolerant broadcast-
ing scenario and the behavior adoption scenario described previously. In both cases, there is
a small set of nodes in the network that wish to have their values adopted by all other nodes.
Furthermore, both scenarios feature threshold-based interactions; in the broadcasting case, the
value is accepted if more than a fixed number of neighbors carry that value, whereas in the be-
havior adoption case, the value is adopted if more than a fixed fraction of the neighbors carry
the value. However, there is one key difference between the two scenarios: there is no notion of
a misbehaving node in the behavior adoption scenario. In other words, each node executes only
the strategy 0 or 1, and each node follows the prescribed dynamics. The presence of misbehaving
nodes in the broadcasting scenario complicates matters, and prevents us from directly applying
the result in [15].
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Chapter 4

Robustness of Complex Networks

4.1 Introduction

In Section 2.5 (see Remark 3), we show that (2F + 1)-robustness is sufficient to achieve resilient
asymptotic consensus under the F -local Byzantine model. Since the F -total Byzantine and mali-
cious models and the F -local malicious model are special cases of the F -local Byzantine model,
the condition of being (2F + 1)-robust is sufficient for those fault models as well. Although
the robustness condition presented in Theorem 1 is not necessary for all of these fault models,
we will show later in this chapter that this metric is conducive for deriving threshold functions
under which random graphs will be resilient to all four fault models.1 Furthermore, these thresh-
old functions will ‘coincide’ with the threshold functions for (2F + 1)-connectivity (which is
a necessary condition for all four models); in other words, we sandwich the various conditions
for resilient consensus by our sufficient condition ((2F + 1)-robustness) and the fundamental
necessary condition ((2F + 1)-connected), thereby implicitly providing threshold functions for
those conditions as well. Although we can construct ‘worst-case’ networks where even very
large connectivity can not guarantee sufficient robustness, we show that the story is different in
complex networks. Specifically, in the rest of this chapter, we will demonstrate that in complex
networks, connectedness and robustness cannot differ too much (the meaning will be clear in the
following sections).

1Namely, the F -total Byzantine, F -local Byzantine, F -total malicious and F -local malicious models.
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4.2 Robustness of Erdős-Rényi Random Graphs

In this section, we study robustness in Erdős-Rényi Random graphs [8, 16, 17], one of the most
common models for large-scale complex networks. Erdős and Rényi proposed a number of ver-
sions of their model and the most commonly studied is the one denoted as Gn,p. In this model, the
graph consists of n vertices and each possible (undirected) edge between two vertices is present
with independent probability p (which may be a function of n), and absent with probability
q = 1−p. Let the probability of an event be denoted by P(·). Recall that a graph property can be
regarded as a class of graphs that is closed under isomorphism. A key feature of the Gn,p model
is that we can explore properties that are shared by almost all graphs, a notion that is defined as
follows.

Definition 16. AssumeP is a graph property and p = p(n) is a fixed function (possibly constant).
We say that almost all G ∈ Gn,p have the property P if P(G ∈ P) → 1 as n → ∞; and almost
no G ∈ Gn,p has the property P if P(G ∈ P)→ 0 as n→∞.

We are interested in the evolution of random graphs as p evolves and normally we consider
the case when p → 0. One important feature of Gn,p, which was demonstrated by Erdős and
Rényi, is that the model shows a ‘phase transition’ phenomenon. More precisely, we define a
threshold function as follows.

Definition 17 (Threshold Function). A threshold function for a graph property P is a function
t(n) such that p(n) = o(t(n)) implies that almost no G ∈ Gn,p has the property P and t(n) =
o(p(n)) implies that almost all G ∈ Gn,p have the property P .

Note that the assumption that p(n) = o(t(n)) or t(n) = o(p(n)) is conservative in some cases
and we define the following property for threshold functions.

Definition 18 (Sharp Threshold Function). A threshold function t(n) with the form g(n)
n

for a
graph property P is sharp if p(n) = g(n)+x

n
implies that almost no G ∈ Gn,p has the property P

and p(n) = g(n)−x
n

implies that almost every G ∈ Gn,p has the property P , where g(n) is some
function of n, x = o(g(n)) and x→∞ as n→∞.

Note that the reason we consider the threshold function with the form g(n)
n

is that all properties
we are going to study in this section have this form. In the rest of this section, when we refer to a
threshold function, we will use Definition 17 if we do not emphasis its sharpness. Now we focus
on the following properties.
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Definition 19. For G ∈ Gn,p and constants r, F ∈ Z≥1, define the properties of being r-
connected, r-robust and achieving resilient asymptotic consensus (RAC) using the W-MSR
algorithm with parameter F (under the F -local/total Byzantine/malicious models) by Cr, Rr

andRACF , respectively.

Lemma 8 ( [8, 17]). For any constant r ∈ Z≥1, t(n) = lnn+(r−1) ln lnn
n

is a sharp threshold
function for the property Cr.

The following is one of our main results: it establishes a threshold function for r-robustness
in Erdős-Rényi random graphs.

Theorem 8. For every constant r ∈ Z≥1, t(n) = c lnn
n

is a threshold function for the property
Rr, where c > 0 is some constant.

Proof. Let γ ≡ p(n)
t(n)

. For the first part of the proof, we show that almost all G ∈ Gn,p are r-robust
if γ → ∞ as n → ∞. Denote the probability that some set of cardinality up to nc = dn

2
e is

not r-reachable as P0 and the probability that some vertex set S ⊂ V with cardinality k (i.e.,
|S| = k) is not r-reachable as Pk. By the union bound, we know that P0 ≤

∑nc
k=1 Pk. Note that if

P0 → 0, then all sets of cardinality up to dn
2
e are r-reachable and by the definition of robustness,

graphs G ∈ Gn,p are r-robust.

For fixed S, the probabilities that a vertex v ∈ S has less than r neighbors outside and S is
not r-reachable are

∑r−1
i=0

(
n−k
i

)
qn−k−ipi and (

∑r−1
i=0

(
n−k
i

)
qn−k−ipi)k, respectively. Since there

are
(
n
k

)
such sets S, we know that Pk ≤

(
n
k

)
(
∑r−1

i=0

(
n−k
i

)
qn−k−ipi)k. We obtain the following

upper bound for Pk:

Pk ≤
(
n

k

)
(
r−1∑
i=0

(
n− k
i

)
qn−k−ipi)k

≤ nk(
r−1∑
i=0

(n− k)iqn−k−ipi)k

≤ (n(n− k)r−1
r−1∑
i=0

qn−k−ipi)k

≤ (n(n− 1)r−1qn−k
1−

(
p
q

)r
1− p

q

)k.
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Note that
(
n
k

)
≤ nk

k!
≤ nk. Let f(k) ≡ n(n− 1)r−1qn−k

1−( p
q
)r

1− p
q

be a function of k. We can check

that f ′(k) > 0 for all k ≥ 1. Thus, f(k) ≤ f(nc) and

P0 ≤
nc∑
k=1

Pk

≤
nc∑
k=1

f(nc)
k

= f(nc)
1− f(nc)

nc

1− f(nc)
.

Now we get the following approximation for f(nc):

f(nc) = O
(
n(n− 1)r−1qn−nc

)
(4.1)

= O
(
nr(1− γc lnn

n
)nc
)

= O
(
nr exp{−γc

2
lnn}

)
(4.2)

= O
(
nr−

γc
2

)
.

Note that (4.1) is due to the fact that
1−( p

q
)r

1− p
q
→ 1 as2 p → 0 and (4.2) is due to the fact that

1 −m < e−m for m > 0. Thus, we know that f(nc) → 0 as n, γ → ∞ and the first part of the
proof is obtained by noting that P0 → 0 as n, γ →∞.

For the second part of the proof, we need to show that almost no G ∈ Gn,p are r-robust if
γ → 0 as n → ∞. By Lemma 7 and Lemma 8, we know that if γ → 0 as n → ∞, almost no
G ∈ Gn,p are r-connected and thus are not r-robust, completing the proof.

Note that in the first part of the proof, for fixed r, γ → ∞ is not necessary and we just need
γc > 2r. From Theorem 8, we know that any function t(n) = Θ( lnn

n
) is a threshold function

for the propertyRr and since lnn+(r−1) ln lnn
n

= Θ( lnn
n

), the threshold function for r-connectivity
is also a threshold function for r-robustness. The development of a sharp threshold function for
r-robustness is ongoing.

Finally, we characterize the threshold function for the W-MSR algorithm to achieve resilient
asymptotic consensus in the Gn,p model.

2Note if p 6→ 0, then p (and thus q) is some constant and f(nc) → 0 as n → ∞, and we will still get the same
result.
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Theorem 9. For every constant F ∈ Z≥1, t(n) = c lnn
n

is a threshold function for the property
RACF , where c > 0 is some constant.

Proof. As discussed in Section 4.1, Theorem 1 and Remark 3, (2F+1)-connectivity is necessary
and (2F + 1)-robust is sufficient, respectively, for the W-MSR algorithm to achieve resilient
asymptotic consensus under the F -local/total Byzantine/malicious models. Thus, by Lemma 8
and Theorem 8, the result follows.

4.3 Robustness of Geometric Random Graphs

In addition to the Erdős-Rényi model, another widely used model is the geometric random graph,
which captures edges between nodes that are in close (spatial) proximity to each other. In Sec-
tion 4.2, we showed that the properties of connectedness and robustness have the same threshold
function in Erdős-Rényi graphs. In this section, we will prove similar results for geometric ran-
dom graphs.

We consider the geometric random graph model Gdn,ρ,l, which is a random undirected graph
generated by first placing n vertices at random (uniformly and independently) in a region Ωd =
[0, l]d, where d = 1, 2, 3. Two vertices in the graph are then connected by an edge if and only
if the distance between them is at most a threshold ρ. In the more widely-studied model Gdn,ρ,
in which the vertices are distributed on [0, 1]d, where d = 1, 2, 3, graph properties are typically
explored when n→∞ and ρ→ 0 [38]. Thus, this model is more suitable for dense random net-
works [41]. In the more general model Gdn,ρ,l, however, the density n

ld
can converge to 0 or some

constant, making it suitable for capturing both dense and sparse random networks. Furthermore,
the model Gdn,ρ,l is more convenient for us to deal with.

We define properties for almost all graphs in Gdn,ρ,l as follows, similar to the Gn,p model.

Definition 20. AssumeP is a graph property. We say that almost allG ∈ Gdn,ρ,l have the property
P if P(G ∈ P)→ 1 as l →∞; and almost no G ∈ Gdn,ρ,l has the property P if P(G ∈ P)→ 0
as l→∞.

Note that we study these properties in Gdn,ρ,l as l → ∞ and n and ρ are functions of l, i.e.,
n = n(l) and ρ = ρ(l). In the rest of this section, we focus on the one-dimensional case
and consider the line Ω1 = [0, l]. We start by providing a result showing that connectivity and
robustness cannot be very different in one-dimensional geometric graphs (regardless of how they
are generated).
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Lemma 9. In Ω1 = [0, l], if the graph is b3
2
rc-connected, then the graph is r-robust.

Proof. Denote vertex i’s value on the line Ω1 = [0, l] by x(i), i ∈ {1, . . . , n}. Without loss of
generality, we assume if i < j, then x(i) < x(j), ∀i, j ∈ {1, . . . , n}; otherwise, we can just
renumber the vertices. When the graph is b3

2
rc-connected, any interval [x, x+ ρ] ⊆ (x(1), x(n))

contains at least b3
2
rc vertices; otherwise, removing the vertices in [x, x+ ρ] will disconnect the

graph, which contradicts the assumption that the graph is b3
2
rc-connected.

For a set S of vertices, we say the set of consecutive vertices {i1, . . . , ik},3 where k ∈ Z≥1, is
a cluster of S, denoted as CS , if {i1, . . . , ik} ⊆ S and i1 − 1, ik + 1 6∈ S. Denote the i-th cluster
of S by CiS (which is ordered by the positions of the vertices inside the cluster). We say two
disjoint clusters CiS = {i1, . . . , ik} and CjS = {j1, . . . , jt} are connected if either |x(ik) − x(j1)|
or |x(i1) − x(jt)| is smaller than ρ. Denote d(i, ρ) as the interval within distance ρ of x(i),
i.e., d(i, ρ) = [x(i) − ρ, x(i) + ρ]. We say a set S of vertices is a full coverage of the graph if
[x(1), x(n)] ⊆

⋃
i∈S d(i, ρ).

For any set S of vertices, consider the following two cases:

• Case 1: there exist two clusters CiS and Ci+1
S which are not connected;

• Case 2: S is not a full coverage of the graph.

Assume S = {i1, . . . , ik}. If Case 1 is true, there will be r vertices which are not in S
belonging to d(ik, ρ) and S is r-reachable. If Case 2 is true, then either there exist two clusters
of set S which are not connected, or |x(i1)−x(1)| or |x(ik)−x(n)| (or both) will be bigger than
ρ and S is r-reachable.

Thus, consider any pair of sets S1 and S2; if either Case 1 or Case 2 is true for either
of the two sets, then at least one of them is r-reachable. Otherwise, we can choose a ver-
tex i ∈ S2 such that d(i, ρ) ⊂ [x(1), x(n)].4 Since Case 2 is not true for the set S1, there
must exist at least one vertex of S1 in both d(i, ρ) ∩

(
x(1), x(i)

)
and d(i, ρ) ∩

(
x(i), x(n)

)
.

The situation is illustrated in Figure 4.1, where j, k ∈ S1 and x(j) < x(i) < x(k). The in-
terval [x(j) − ρ, x(k) + ρ] can be divided into eight segments based on x(j), x(i), x(k) and
d(j, ρ), d(i, ρ), d(k, ρ), and let a, b, . . . , h be the number of vertices which are not in S1 within
their related intervals, respectively. If S1 is not r-reachable, then a+ b+ c+ d+ e+ f < r − 1
and c+ d+ e+ f + g+ h < r− 1. Thus, we get a+ b+ 2(c+ d+ e+ f) + g+ h < 2r− 2 and
b+c+d+e+f+g < 2r−2−(a+c+d+e+f+h). Let the number of vertices in d(i, ρ) which are

3In the rest of the proof, when we refer to a set of vertices {i1, . . . , ik}we assume it is ordered, i.e., i1 < · · · < ik.
4Note that the case when

(
x(i), x(n)

)
≤ 2ρ is trivial.
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Figure 4.1: Illustration of the proof of Lemma 9.

not in S2 be s. Then s ≥ 2b3
2
rc−(b+c+d+e+f+g) ≥ 3r−1−(2r−2)+(a+c+d+e+f+h) > r.

So if S1 is not r-reachable, S2 must be r-reachable.

Thus, if the graph is b3
2
rc-connected, for any pair of sets, at least one of them is r-reachable

and the graph is r-robust, completing the proof.

Once again, note that the result in Lemma 9 does not depend on how the positions of the
nodes are generated. Unfortunately, the proof of the lemma does not extend to geometric graphs
in higher-dimensions. For example, the graph shown in Figure 2.1 can be viewed as a geometric
graph in two dimensions, where the nodes in each set are all clustered horizontally within a
distance ρ, and the two sets are vertically separated by a distance just below ρ, so that each node
is within a distance ρ of exactly one node in the opposite set. Clearly that graph is only 1-robust,
despite having a connectivity of n

2
.

Next we will present an asymptotic approach to analyzing one-dimensional random graphs
(complementary to the analysis in Lemma 9). We will be using the following result from [41].

Theorem 10 ( [41]). Assume that ρn = kl ln l for some k > 0.

• If k > 2, or k = 2 and ρ→∞, then almost all G ∈ G1n,ρ,l are connected.

• If k ≤ (1− ε) and ρ ∈ Θ(lε) for some 0 < ε < 1, then almost no G ∈ G1n,ρ,l is connected.

We now present the following conditions under which the one-dimensional random graph
becomes r-robust.5

Theorem 11. Assume that ρn = kl ln l for some k > 0.

• If k > b3
2
rc+ 1, or k = b3

2
rc+ 1 and ρ→∞, then almost all G ∈ G1n,ρ,l are r-robust.

• If k ≤ (1− ε) and ρ ∈ Θ(lε) for some 0 < ε < 1, then almost no G ∈ G1n,ρ,l is r-robust.

5The proof of this result is inspired by the prior work on Gdn,ρ,l in [41].
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Proof. In order to prove the first part, we know it is sufficient to show that any interval of length ρ
contains at least b3

2
rc vertices (as argued in the proof of Lemma 9). Let Ω1 = [0, l] be subdivided

into c =
(b 3

2
rc+1)l

ρ
non-overlapping segments of length ρ

b 3
2
rc+1

. Then any interval of length ρ will

contain at least b3
2
rc whole segments and thus we just need to show every segment contains at

least one vertex.

Let ω be a random variable representing the number of empty segments. Since ω is a non-
negative integer random variable, by Markov’s inequality we know P(ω > 0) < E(ω), where
E(ω) = c(1− 1

c
)n is the expected value of ω. Since 1− x < exp(−x) for x > 0, we have

E(ω) = c
(
1− 1

c

)n
< c exp

(
− n

c

)
=

(b3
2
rc+ 1)l

ρ
exp

(
− k

b3
2
rc+ 1

ln l
)

=
b3
2
rc+ 1

ρ
l
1− k

b 3
2 rc+1 .

If k > b3
2
rc + 1, or k = b3

2
rc + 1 and ρ → ∞, then E(ω) → 0 as l → ∞ and completing the

proof for the first part.

The second part is obvious, because under the given conditions, Theorem 10 indicates that
the graph will not be connected with high probability, and thus the result follows.

4.4 Robustness of Preferential Attachment Networks

In this section, we provide a construction for (r, s)-robust graphs, and show that our construction
contains the preferential-attachment model of scale-free networks as a special case [3]. Note
that in the previous sections we focused on undirected graphs, but in this section, we considered
directed graphs.

Theorem 12. Let D = {V , E} be an (r, s)-robust graph (with s ≥ 1). Then the graph D′ =
{V ∪ {vnew}, E ∪ Enew}, where vnew is a new vertex added to D and Enew is the directed edge set
related to vnew, is (r, s)-robust if dvnew ≥ r + s− 1.

Proof. For a pair of nonempty, disjoint sets S1 and S2, there are three cases to check: vnew 6∈ Si,
{vnew} = Si and vnew ∈ Si, i ∈ {1, 2}. In the first case, since D is (r, s)-robust, the conditions
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in Definition 14 must hold. In the second case, XSi = Si, and we are done. In the third case,
suppose, without loss of generality, S2 = S ′2 ∪ {vnew}. Since D is (r, s)-robust, at least one of
the following conditions hold: sr,1 + s′r,2 ≥ s, sr,1 = |S1|, or s′r,2 = |S ′2|. If either of the first two
hold, then the corresponding conditions hold for the pair S1,S2 inD′. So assume only s′r,2 = |S ′2|
holds. Then, the negation of the first condition sr,1 + s′r,2 ≥ s implies s′r,2 = |S ′2| < s. Hence,
|Vvnew \ S2| ≥ r, and sr,2 = |S2|, completing the proof.

The above result indicates that to construct an (r, s)-robust graph with n nodes (where n > r),
we can start with an (r, s)-robust graph with relatively smaller order (such as some complete
graph), and continually add new nodes with incoming edges from at least r + s − 1 nodes in
the existing graph. The theorem does not specify which existing nodes should be chosen as
neighbors. A particularly interesting case is when the nodes are selected with a probability pro-
portional to the number of edges that they already have; this is known as preferential-attachment,
and leads to the formation of so-called scale-free networks. Specifically, the construction pro-
cess in Theorem 12 coincides with the Barabási-Albert (BA) model [3]: start with a network of
k0 nodes and add new nodes to the network one at a time; each new node connects to k existing
nodes chosen by the preferential-attachment mechanism. The BA model is cited as a plausible
mechanism for the formation of many real-world complex networks, and thus our analysis indi-
cates that these networks will also be resilient to locally-bounded Byzantine or malicious nodes
(provided that r is sufficiently large when the network is forming).

Recall that for resilient consensus, the fundamental necessary condition is (2F+1)-connectivity
and we have shown the sufficiency of (2F + 1)-robustness. In order to sandwich various con-
ditions by connectivity and robustness, we now focus on r-robust graphs (s = 1). Note that the
network constructed in Theorem 12 is (at most) r-connected, since each node only connects to
r existing nodes. In other words, in scale-free networks generated by this process, r-connected
implies r-robustness. This leads to the following result.

Theorem 13. In the BA model, when the initial network is r-robust, then the generated scale-free
network is r-connected if and only if the network is r-robust.

Proof. Note that in the BA model, if there exists some new node which connects to less than r
existing nodes, then the network will be neither r-connected or r-robust; on the other hand, if
all the new nodes connect to r existing nodes, then the network will be both r-connected and
r-robust.
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Chapter 5

Conclusions and Future Research

In this thesis, we have studied the problem of disseminating information in networks that contain
misbehaving nodes, where each normal node has no knowledge of the global topology of the
network. Under the assumption of full knowledge of the network topology by every node, it has
been well established that connectivity is the key metric for success. However, we have shown
that connectivity is no longer an appropriate metric for an algorithm that uses a purely local
filtering strategy. Instead, we introduced the notions of network robustness and its variants, and
showed that these concepts allow us to provide conditions for achieving the objectives of resilient
distributed consensus and fault-tolerant broadcast.

While in the worst-case, networks with very large connectivity cannot guarantee sufficient
robustness, we showed in this thesis that the notions of robustness and connectivity ‘coincide’ in
complex networks. Specifically, we considered three common models for the complex networks.
In Erdős-Rényi random graphs, we showed that connectedness and robustness share the same
threshold functions. In geometric random graphs, we focused on the one-dimensional case and
proved that 3

2
r-connected implies r-robust and robustness exhibits similar thresholds as connec-

tivity. In preferential attachment networks, we showed that when the initial network is robust,
connectivity and robustness are equivalent in the BA model. We also provided a construction
method for robust graphs based on the preferential attachment mechanism.

There are many interesting directions for future research. First, the necessary and sufficient
condition for resilient consensus under the F -local malicious model is still an open problem.
Secondly, we mainly focus on the consensus dynamics in this thesis and it will be of interest to
use the concept of network robustness (and its invariants) to capture the performance of other
resilient algorithms. Another topic is to explore sharp threshold functions for robustness in the
Erdős-Rényi random graphs and threshold results for geometric random graphs in higher dimen-
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sions. Finally, it will be of interest to relate strong robustness defined in this thesis to other recent
characterizations of network topologies that facilitate fault-tolerant broadcast [21].

Just as the notion of connectivity has played a central role in the existing analysis of reliable
distributed algorithms with global topological knowledge, we believe that robust graphs (and its
variants) will play an important role in the investigation of purely local algorithms.
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Appendix A

Proof of Proposition 1

Proof. For simplicity, we focus on the case when n is even and construct an undirected graph
as follows. Let X and Y be two complete graphs on n

2
nodes. Number nodes in X and Y

as x1, x2, . . . , xn
2

and y1, y2, . . . , yn
2
, respectively. For any node xi ∈ X , if i ≤|Y| − F +

1, connect xi with nodes yi, yi+1, . . . , yi+F−1; otherwise, connect xi with nodes yi, . . . , yn
2

and
nodes y1, . . . , yi+F−n

2
−1. Then each node in X and Y has exactly F neighbors in the other set.

Next we will prove that the connectivity of this graph is n
2

+ F − 1. Let C = {CX , CY}
be a vertex cut, where CX = C ∩ X and CY = C ∩ Y . Without loss of generality, assume
that CX = {x1, x2, . . . , x|CX |}; other ways of choosing CX are equivalent to this situation by
renumbering the nodes. By the definition of a vertex cut, we know |CX | > F ; otherwise, each
node in Y \ CY still has at least one neighbor in X , and since X \ CX and Y \ CY each induce
fully-connected subgraphs, we see that the graph will be connected (contradicting the fact that C
is a vertex cut). When F < |CX |< n

2
, the remaining nodes of X still have k = n

2
−|CX |+ F − 1

neighbors in Y , which implies we need to remove at least k nodes from Y to disconnect the
graph. When CX = X , since Y is complete, we know |CX | = n

2
− 1. Thus the connectivity of

this graph is n
2

+ F − 1.

In this graph, assume that all nodes in X have initial value a, and all nodes in Y have initial
value b, where a < b. When any node xi applies the W-MSR algorithm, all of its F neighbors in
Y have the highest values in xi’s neighborhood, and thus they are all disregarded. Similarly, all
of yi’s neighbors in X are disregarded as well. Thus, each node in each set only uses the values
from its own set, and no node ever changes its value, which shows that consensus will never be
reached in this network.
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Appendix B

Proof of Theorem 1

Proof. (Necessity) If the network is not (F + 1)-robust, there exist two disjoint subsets of nodes
that are not (F + 1)-reachable, i.e., each node in these two sets would have at most F neighbors
outside the set. If we assign the maximum and minimum values in the network to these two
sets, respectively, the nodes in these sets would never use any values from outside their own sets.
Thus, their values would remain unchanged, and consensus will not be reached.

(Sufficiency) Recall that N is the set of normal nodes, and define N = |N |. Furthermore,
recall thatM [t] andm[t] are the maximum and minimum values of the normal nodes at time-step
t, respectively. From Lemma 1, we know that both M [t] and m[t] are monotone and bounded
functions of t and thus each of them has some limit, denoted by AM and Am, respectively. Note
that if AM = Am, the normal nodes will reach consensus. We will now prove by contradiction
that this must be the case.

Suppose that AM 6= Am (note that AM > Am by definition). We can then define some
constant ε0 > 0 such that AM − ε0 > Am + ε0. At any time-step t and for any positive real
number εi, let XM(t, εi) denote the set of all normal nodes that have values in the range (AM −
εi, AM + εi), and let Xm(t, εi) denote the set of all normal nodes that have values in the range
(Am − εi, Am + εi). Note that XM(t, ε0) and Xm(t, ε0) are disjoint, by the definition of ε0.

For some ε (which we will show how to choose later) satisfying ε0 > ε > 0, let tε be such
that M [t] < AM + ε and m[t] > Am − ε, ∀t ≥ tε (we know that such a tε exists by the definition
of convergence). Consider the disjoint sets XM(tε, ε0) and Xm(tε, ε0). At least one of these two
sets must be (2F + 1)-reachable due to the assumption of (2F + 1)-robustness of the network. If
XM(tε, ε0) is (2F + 1)-reachable, there exists some normal node i ∈ XM(tε, ε0) that has at least
F + 1 normal neighbors outside XM(tε, ε0). By definition, all of these neighbors have values
at most equal to AM − ε0, and at least one of these values will be used by node i (since node i
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removes at most F values lower than its own value). Note that at each time step, every normal
node’s value is a convex combination of its own value and the values it uses from its neighbors,
and each coefficient in the combination is lower bounded by α. Since the largest value that node
i will use at time-step tε is M [tε], placing the largest possible weight on M [tε] produces

xi[tε + 1] ≤ (1− α)M [tε] + α(AM − ε0)
≤ (1− α)(AM + ε) + α(AM − ε0)
≤ AM − αε0 + (1− α)ε.

Note that this upper bound also applies to the updated value of any normal node that is not in
XM(tε, ε0), because such a node will use its own value in its update. Similarly, if Xm(tε, ε0) is
(2F + 1)-reachable, there exists some normal node j ∈ Xm(tε, ε0) that will satisfy xj[tε + 1] ≥
Am + αε0 − (1− α)ε. Again, any normal node that is not in Xm(tε, ε0) will have the same lower
bound.

Define ε1 = αε0 − (1 − α)ε, and consider the sets XM(tε + 1, ε1) and Xm(tε + 1, ε1). Since
at least one of the sets XM(tε, ε0) and Xm(tε, ε0) was (2F + 1)-reachable, it must be that either
|XM(tε + 1, ε1)| < |XM(tε, ε0)| or |Xm(tε + 1, ε1)| < |Xm(tε, ε0)|, or both. Further note that ε1 <
ε0, and thusXM(tε+1, ε1) andXm(tε+1, ε1) are still disjoint. We can repeat this analysis for time-
steps tε+j, j ≥ 2, to define sets XM(tε+j, εj) and Xm(tε+j, εj), where εj is defined recursively
as εj = αεj−1− (1−α)ε. Furthermore, at time-step tε+j, either |XM(tε+j, εj)| < |XM(tε+j−
1, εj−1)| or |Xm(tε+j, εj)| < |Xm(tε+j−1, εj−1)|, or both. Since |XM(tε, ε0)|+|Xm(tε, ε0)| ≤ N ,
there must be some time-step tε+T (where T ≤ N ) where eitherXM(tε+T, εT ) orXm(tε+T, εT )
is empty. In the former case, all nodes in the network at time-step tε + T have value less than
AM − εT , and in the latter case all nodes in the network at time-step tε + T have value greater
than Am + εT . We will show that εT > 0, which will contradict the fact that the largest value
monotonically converges to AM (in the former case) or that the smallest value monotonically
converges to Am (in the latter case). To do this, note that

εT = αεT−1 − (1− α)ε

= α2εT−2 − α(1− α)ε− (1− α)ε

· · ·
= αT ε0 − (1− α)(1 + α + · · ·+ αT−1)ε

= αT ε0 − (1− αT )ε

≥ αNε0 − (1− αN)ε.

If we choose ε < αN

1−αN ε0, we obtain εT > 0, providing the desired contradiction. It must thus be
the case that ε0 = 0, proving that AM = Am.

47



Appendix C

Proof of Corollary 1

Proof. As in the proof of Theorem 1, we define the same terms and argue by contradiction. In
this case, fix ε < αNc

1−αNc ε0, which satisfies ε0 > ε > 0. Let tε be such that M [t] < AM + ε and
m[t] > Am − ε, ∀t ≥ tε. By hypothesis, there exists τ1 ∈ {tε, tε + 1, . . . , tε + c − 1} such that
D[τ1] is (2F + 1)-robust. As in the proof of Theorem 1, there either exists i ∈ XM(τ1, ε0) such
that xi[τ1 + 1] ≤ AM − ε1 or j ∈ Xm(τ1, ε0) such that xj[τ1 + 1] ≥ Am + ε1, or both, where
we have defined ε1 = αε0 − (1− α)ε. Note that as before, these inequalities hold for all normal
nodes outside of the sets XM(τ1, ε0) and Xm(τ1, ε0), respectively, and 0 < ε < ε1 < ε0 by the
choice of ε. Furthermore, |XM(τ1 + 1, ε1)| < |XM(τ1, ε0)| or |Xm(τ1 + 1, ε1)| < |Xm(τ1, ε0)|, or
both.

Define recursively εk = αεk−1 − (1 − α)ε for 1 ≤ k ≤ Nc. Regardless of the network
topology, we can show that any normal node i satisfying xi[τ1 + 1] ≤ AM − ε1 will satisfy
xi[τ1 + k] ≤ AM − εk at time τ1 + k, for all 1 ≤ k ≤ Nc. This holds because each normal
node uses its own value with weight no smaller than α. Likewise, any normal node j satisfying
xj[τ1 + 1] ≥ Am + ε1 will satisfy xj[τ1 + k] ≥ Am + εk at time τ1 + k, for all 1 ≤ k ≤ Nc.
Because of these relationships, we have that |XM(τ1 + k, εk)| ≤ |XM(τ1 + k − 1, εk−1)| and
|Xm(τ1 +k, εk)| ≤ |Xm(τ1 +k−1, εk−1)|, for each time-step regardless of the network topology.
However, we are interested in the time-steps τ1, τ2, . . . , in which |XM(τj + 1, ε(1+τj−τ1))| <
|XM(τj, ε(τj−τ1))| or |Xm(τj + 1, ε(1+τj−τ1))| < |Xm(τj, ε(τj−τ1))|. These time-steps correspond
to the times at which D[τj] is (2F + 1)-robust. Since |XM(τ1, ε0)| + |Xm(τ1, ε0)| ≤ N and
|τN − τ1| ≤ Nc, there must be some time-step τ = τ1 + T (where T ≤ Nc) where either
XM(τ1 + T, εT ) or Xm(τ1 + T, εT ) is empty. In the former case, all normal nodes in the network
at time-step τ1 + T have value at most AM − εT , and in the latter case all normal nodes in the
network at time-step τ1 + T have value no less than Am + εT . Since ε < αNc

1−αNc ε0, we can show
that εT > 0, producing the desired contradiction.
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