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Abstract

The Black-Scholes option pricing model has several well recognized deficiencies, one of
which is its assumption of a constant and time-homogeneous stock return volatility term.
The implied volatility smile has been studied by subsequent researchers and various models
have been developed in an attempt to reproduce this phenomenon from within the models.
However, few of these models yield closed-form pricing formulas that are easy to implement
in practice. In this thesis, we study a Mixture Lognormal model (MLN) for European
option pricing, which assumes that future stock prices are conditionally described by a
mixture of lognormal distributions. The ability of mixture models in generating volatility
smiles as well as delivering pricing improvement over the traditional Black-Scholes frame-
work have been much researched under multi-component mixtures for many derivatives
and high-volatility individual stock options. In this thesis, we investigate the performance
of the model under the simplest two-component mixture in a market characterized by
relative tranquillity and over a relatively stable period for broad-based index options. A
careful interpretation is given to the model and the results obtained in the thesis. This
differentiates our study from many previous studies on this subject.

Throughout the thesis, we establish the unique advantage of the MLN model, which is
having closed-form option pricing formulas equal to the weighted mixture of Black-Scholes
option prices. We also propose a robust calibration methodology to fit the model to market
data. Extreme market states, in particular the so-called crash-o-phobia effect, are shown to
be well captured by the calibrated model, albeit small pricing improvements are made over
a relatively stable period of index option market. As a major contribution of this thesis, we
extend the MLN model to price exotic options including binary, Asian, and barrier options.
Closed-form formulas are derived for binary and continuously monitored barrier options
and simulation-based pricing techniques are proposed for Asian and discretely monitored
barrier options. Lastly, comparative results are analysed for various strike-maturity com-
binations, which provides insights into the formulation of hedging and risk management
strategies.
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Chapter 1

Introduction

The Black-Scholes option pricing model (1973)[2] is the most commonly used model in
the financial market for European style stock option pricing. It has subsequently been ex-
panded by researchers to build models that can price various forms of financial derivatives.
Basically, the model assumes that the stock price follows a Geometric Brownian Motion
with constant drift and volatility terms, which is represented statistically by a conditional
lognormal distribution. Deficiency of this assumption has been studied theoretically and
empirically by researchers, where the phenomenon of implied volatility smile/skew presents
a particular challenge to the model. This phenomenon describes how the volatility em-
bedded in the true market price of an option varies with its strike price and term to
maturity. The volatility smile phenomenon contradicts the volatility assumption underly-
ing the Black-Scholes model since the implied volatility in the Black-Scholes model is time
invariant. In fact, true stock return volatility is notoriously known for its time-varying
nature and stylized patterns, which is not captured by the Black-Scholes model. Potential
causes of the volatility smile have been a subject much studied in the literature, and this
thesis contributes further to this line of research as well.

While many models and techniques have been developed over the years in an effort to
explain the volatility smile phenomenon, none of them provide closed-form expressions for
option prices similar to the ones in the traditional Black-Scholes model. In addition, the
complexity of these models make their implementations in practice far from being straight-
forward. Examples of this include the GARCH option pricing model proposed by Duan
(1995)[13]. In addition, some of the prior studies also employ models that lack a formal
interpretation of their specifications and results. In this thesis, we present a Mixture Log-
normal option pricing model (MLN), where the stock price path is described by a mixture
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of conditional lognormal distribution. This model not only results in Black-Scholes style
formulas for European options that are easy to implement, but also generates volatility
smiles that are consistent with much of the empirical evidence.

MLN models are recently studied by Brigo et al. (2002)[4], who examined some of the
theoretical properties of the mixture lognormal distribution in producing desired volatil-
ity smiles. Empirical examples are given by Brigo (2002) using interest rate options and
individual stock options under a three-component mixture model. The ability to produce
volatility smiles is then tested under a hypothetical setting. Leisen (2003)[28] specified a
more general MLN model where the component drifts vary and studied its property as
an approximation to jump-diffusion and stochastic volatility models. Neumann (2002)[35]
discussed the two-component mixture model and obtained empirical insights on its ap-
plication to German broad-based stock index options during a period characterized by
turbulences and high volatility in the markets.

Our MLN model incorporates the major advantages of the previous specifications. In the
implementation part, we propose a least-square calibration methodology that best yields
the optimal parameter estimates. Empirical results are validated using a two-component
mixture model. However, we focus on the application to broad-based index options during
a relatively tranquil and low-volatility period, which differs from the setting in most pre-
vious empirical studies. The objective of this chosen period is to investigate the pricing
performance of our two-component MLN model versus the traditional Black-Scholes model
under the most unfavourable condition for the MLN framework and the most favourable
condition for the Black-Scholes framework. The ability of the two-component MLN model
in generating volatility smiles under different settings is carefully examined. As a ma-
jor contribution of this thesis, we extend the model to exotic stock options, for which
closed-form formulas are derived and simulation-based pricing methods are devised and
implemented. Comparative results are also presented in this thesis to highlight the unique
features of our MLN framework.

The rest of the thesis is organized as follows: Chapter 2 provides a review of the Black-
Scholes framework and discusses the nature of the volatility smile phenomenon. For com-
pleteness, results obtained in previous studies are also discussed. Chapter 3 specifies our
MLN model, which starts from the derivation of the mixture diffusion process as well as
the mixture lognormal framework for stock prices. We prove theorems that most option
quantities under the MLN model are linear mixtures of the ones under the Black-Scholes
model, which leads to closed-form pricing formulas. Hedging is briefly discussed and the
two-component mixture is studied in detail equipped with a careful interpretation of the
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results in this chapter. Empirical result is presented based on closing S&P500 index option
quotes. Chapter 4 provides detailed derivation of pricing formulas/techniques for exotic
derivatives, which include binary, Asian, and barrier options. Empirical examples are also
provided under semi-hypothetical settings that are intended to serve for illustrative pur-
pose only. Chapter 5 provides the conclusion and summary of our major findings for this
thesis. To avoid confusion, all propositions and definitions are numbered at the subsection
level while all equations, tables, and figures are numbered at the chapter level. Consistent
notations are used throughout the presentation and important definitions are conveniently
catalogued in this thesis.
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Chapter 2

Review of the Black-Scholes
Framework

2.1 The Black-Scholes Formula

An option pricing model introduced by Black and Scholes (1973)[2] provides a fundamen-
tal framework for the pricing of European style options. Subsequently this framework has
been extended to more complicated pricing models for various derivatives including exotic
options. The basic specifications of the model rely on the assumption that the price of the
underlying asset follows a lognormal distribution with constant mean and time-invariant
volatility. For simplicity and without loss of generality, we review key attributes of the
model on a single European stock option. In particular, we emphasize major deficiencies of
the model that have constituted the focus of various researches and published literatures
in finance.

Let (Ω, F, P ) denote a properly defined probability space and let t ∈ [0, T ] denote the
time, where T is the time to maturity of the option. Then, a stock price, denoted by S(t),
is assumed to be generated by the a one-dimensional time-homogeneous diffusion process:

dS(t)

S(t)
= µdt+ σdZ(t), (2.1)

where µ is the drift term, σ is the volatility or diffusion term and Z(t) is the standard
Brownian Motion.
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Solving this stochastic differential equation with the initial condition:

S(0) = S0,

where S0 denotes the stock price at the beginning of the time frame, yields the following
result (Black and Scholes[2]):

S(t) = S0e
(µ− 1

2
σ2)t+σ

√
tZ(t), (2.2)

Notice that both the instantaneous mean return µ and volatility σ are assumed to be
time-invariant. Under a risk neutral measure Q (and hence a forward measure), the risk
free rate is used as a discount rate to obtain an arbitrage-free price of an asset. This
translates equation (2.2) into its equivalence under the risk neutral measure probability
space (Ω, F,Q) that guarantees no arbitrage:

S(t) = S0e
(r−δ− 1

2
σ2)t+σZ(t), (2.3)

where:

1. r is the continuously compounded risk free rate

2. δ is the continuously paid dividend rate

Since Z(t) is a standard Brownian motion, it has a Normal (0, t) distribution and therefore
the stock price follows a lognormal distribution:

S(t) ≡ LN(lnS0 + (r − δ − 1

2
σ2)t, σ

√
t). (2.4)

For a derivation of the option prices, it is useful to define the following statistical term,
which will be used in later discussions as well.

Definition 2.1: Let X be a continuous random variable valued in R+ with a density
function fX(x) and a distribution function FX(x). A Partial Expectation of X truncated
from below at constant K, denoted by PE+

K(x), is the contribution to the expected value of
X bounded from below by K

PE+
K(x) =

∫ ∞
K

xfX(x)dx, (2.5)
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and the Partial Expectation of X truncated from above at constant K, denoted by PE−K(x),
is defined accordingly:

PE−K(x) =

∫ K

0

xfX(x)dx, (2.6)

A European Call option with a strike price K on a stock currently priced at S0 has a payoff
at maturity time T : (S(T )−K)+ and its expected discounted value is the arbitrage-free
price proposed by Black and Scholes (1973)[2] under the risk neutral measure, which we
denote by CBS(S0, K, T, r, δ):

CBS = EQ[(e−rT (S(T )−K)+] (2.7)

= e−rTEQ[(S(T )−K)+]

= e−rTEQ[S(T )−K | S(T ) > K]Q(S(T ) > K)

= e−rT [PE+
K(S(T ))−KQ(S(T ) > K)].

According to the lognormal distributional relationship in equation (2.4) for the stock price,
the following result is obtained[2]:

PE+
K(S(T )) = S0e

r−δN(d1), (2.8)

Q(S(T ) > K) = N(d2). (2.9)

where, N(·) represents the standard Normal distribution function and

d1 =
ln(

S0

K
) + (r − δ +

1

2
σ2)T

σ
√
T

, (2.10)

d2 =
ln(

S0

K
) + (r − δ − 1

2
σ2)T

σ
√
T

= d1 − σ
√
T . (2.11)

This gives the famous closed-form formula for a European call option price upon substitu-
tion into equation (2.7):

CBS(S0, K, T, r, δ) = S0e
−δTN(d1)−Ke−rTN(d2). (2.12)

To avoid redundancy, in this review, we will focus our discussions on call options only.
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However, the derivation for put option prices is relatively straightforward using the put
call parity condition. Let PBS denote the Black-Scholes price for a put option with maturity
T and strike price K, it is easy to obtain the following result:

PBS(S0, K, T, r, δ) = Ke−rTN(−d2)− S0e
−δTN(−d1). (2.13)

The above closed-form option pricing formulas conclude the review of the main results in
the Black-Scholes model. Notice that under the risk neutral measure both the discount rate
and volatility are constants. In reality, discount rates are better modelled by stochastic
processes. Stochastic Discount Factor Models under exponential-affine forms are studied
in Gourieroux and Monfort(2006)[16], and Jacobs and Karoui (2009)[25]. This will not be
the focus of the thesis although admittedly, the Volatility Skew (Smile) phenomenon can
be partially attributed to this factor.

2.2 The Volatility Smile

While the Black-Scholes pricing formula for options is appealing in practice for their sim-
plicity and ease of implementation, several of its shortcomings of have been put under
intense scrutiny by academic researchers and financial professionals.

First of all, the risk neutral densities of most stock index returns have generally displayed
negative skewness and leptokurtosis, as documented in Corrado and Su (1996) using the
S&P500 index from 1926 to 1995[10]. Individual stock returns are also found to be less
negatively skewed and present more variations as shown in Bakshi, Kapadia and Madan
(2003)[1]. Many models have been developed to accommodate these deviations from Gaus-
sian moments, including the use of Skewness and Kurtosis Adjusted Black-Scholes model
derived from density expansions by Corrado and Su (1997)[11] and Brown and Robin-
ston (2002)[5], Generalized Extreme Value Distribution (GEV) proposed by Markose and
Alentorn (2005)[31] and exponential Lévy’s Processes discussed in Shoultens and Symens
(2003)[39].

Secondly, volatilities of stock returns are observed to be ubiquitously time-varying and het-
eroscedastic. Efforts directed to account for this include the stochastic volatility models by
Hull and White (1987)[23] and Heston (1993)[22], the pricing method by Dupire (1994)[14]
derived from Fokker-Planck equations, and econometric models incorporating GARCH-
type conditional volatility processes by Engel and Mustafa (1992)[15] and Duan(1995)[13].
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The goal of the aforementioned studies is to generate the volatility smiles observed in
option markets. This is also our aim by using a novel lognormal mixture model. To this
end, we first define the implied volatility of an option as follows:

Definition 2.2: The implied volatility of an option, denoted by σim, is the volatility im-
plicitly assumed so that the option’s Black-Scholes price is equal to its market price denoted
by Cm. For an European call option, it is implicitly defined by the following relationship,

Cm(S0, K, T, r, δ) = CBS(S0, K, T, r, δ), (2.14)

or, in expanded form, by

Cm = S0e
−δTN

 ln

(
S0

K

)
+

(
r − δ +

1

2
σ2
im

)
T

σim
√
T

−Ke−rTN
 ln

(
S0

K

)
+

(
r − δ − 1

2
σ2
im

)
T

σim
√
T


(2.15)

This makes it clear that solving for the implied volatility from market option prices requires
numerical procedures except for the ideal case where the option is at the money (ATM)
and the underlying stock has a continuous dividend rate equal to the risk free rate (e.g.
r = δ). When this situation approximately holds, equation (2.15) can be substantially
simplified.

If the Black Scholes Framework holds in the real market, the implied volatility should
remain constant and invariant with respect to other option terms such as time to maturity
T and strike price K. This is generally not the case in the real world. Empirical evidence
(see Daglish, Hull, and Suo (2006)[12]) shows that for options of a specific stock with a
certain time to maturity, implied volatility are lowest when the option is at the money.
Plots of implied volatility vs. strike price (or moneyness defined as K/S) usually reveals
volatility skewness in the shape of smiles.

In addition, the implied volatilities vary for otherwise identical options with different times
to maturity. This is known as the term structure of implied volatilities. A three dimen-
sional representation, referred to as the volatility surface, can thus be created showing the
changes in implied volatility with respect to both strike price (or moneyness) and time to
maturity (See Figure 2.1 below, which is reproduced from Cont and da Fonseca (2002)[9]).
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The volatility surface predicted by the Black-Scholes framework should be a flat and hori-
zontal plane in theory, which is contradicted by the empirical stylized fact.

Figure 2.1: Volatility surface of S&P500 index options for March 1999

The cause of the volatility smile phenomenon remained unclear until a series of findings
reported in studies that emerged in the literature. Following the pioneering study on the
calculation of implied volatility smiles by Chiras and Manaster (1978)[8], research has been
attempted to explain volatility smile by appealing to market imperfections in the form of
transaction costs. In the absence of arbitrage opportunities, the time-t price St of any
security within the time frame of interest t ∈ [0, T ] equals its discounted expected terminal
value ST with respect to the equivalent martingale measure Q:

St = EQ
t [ST e

−r(T−t)]. (2.16)

This is consistent with the risk neutral pricing approach in our previous review of the
Black-Scholes Model, where the equivalent martingale measure is replaced by a unique
risk-neutral measure (Ω, F,Q).1. Using the martingale restriction test, Longstaff (1995)[30]
confirms that both implied volatilities and implied underlying stock price (and hence mon-
eyness as in Figure 2.1) from the lognormal models almost always exceed the true values.

1We will continue to use the risk-neutral methodology in our future derivations. The rationale for this
is discussed in Harrison and Kreps (1979)[19], and Harrison and Pliska (1981)[20].
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The rationale is that due to transaction costs, the replicating portfolio of any security is
more expensive than the security. Regressions of the price differences reported by Longstaff
(1995) on the bid ask spread indicate that this interpretation constitutes at least one of
the causes. However, transaction costs are nearly constant over time, meaning that the
generated Black-Scholes volatility term should be level over time as well. This is apparently
contradicted by empirical findings. Jackwerth and Rubinstein (1996)[38] showed that the
volatility changed structurally during the 1987 market crash, which cannot be captured
by the lognormal distribution implicit in the Black-Scholes framework. In addition, the
probability distribution of stock returns calculated using Rubinstein’s method (1994)[37]
revealed a fat left tail and excess skewness. This density cluster of extreme loss events,
which is referred to as a crash-o-phobia phenomenon2, cannot be modelled by the Black-
Scholes specifications.

Therefore, the crash-o-phobia phenomenon serves as a major, if not conclusive, cause
for the implied volatility smile/surfaces observed in the real market as it cannot be prop-
erly captured by the lognormal stock price model under the Black-Scholes framework. As
pointed out by Neumann (2002)[35], Melick and Thomas(1997)[32] report similar prob-
lems using American oil futures options during the Gulf crisis. They also extend the effort
to show that a mixture of lognormal distributions is able to represent the crash-o-phobia
phenomenon and leads to better oil future option prices than the Black-Scholes model em-
pirically. This finding enlightens subsequent researches on mixture models in solving smile
related problems, which constitutes the topic of our study.

In summary, studies on implied volatilities were abundant in the literature and presented
serious challenges to the efficacy of the traditional Black-Scholes option price model. Ap-
parently, the existence of volatility smile makes the empirical application of Black-Scholes
formula questionable. Studies mentioned previously provide solutions to the volatility smile
phenomenon. However, most of them do not provide closed-form pricing formulas like the
ones in the original Black-Scholes framework. In fact, one of the key advantages of the log-
normal mixture model is its ability to provide Black-Scholes style option pricing formulas
that are easy to implement. In the next chapters, we will present this model in general as
well as in its most basic form, propose calibration procedures, and extend its application
to exotic options.

2Literally, the term refers to the market’s general fear of downside risk upon experience of extreme
events. However, it involves additional elements under the context of implied parameters and option
pricing, which will be briefly explained in Section 3.2.3.
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Chapter 3

Lognormal Mixture Model for
European Option Pricing

As introduced in the previous section, the volatility skew/smile is both evidence and result
of the deficiencies in the original Black-Scholes framework. Most of the methods adapted
in the studies mentioned earlier rely on the ad-hoc inclusion and adaptation of external
model families to generate a desired theoretical level of negative skeweness, leptokurtosis,
jumps, and volatility clusters in stock returns. Though some of these methods have been
proven to be quite successful, they are often introduced at an increasing cost. For instance,
individual equities usually display more variability in returns where positive skewness is
occasionally observed (Bakshi, Kapadia and Madan (2003)[1]). Applying one of the tech-
niques to price options of individual stocks may not produce the ideal effect as hypothesized.

In this chapter, we present a basic Lognormal Mixture Model for European option pricing
leveraging on the established idea that stock prices (approximately) follow a lognormal dis-
tribution conditioning on known information. This model improves on the Black-Scholes
model in its ability to produce implied volatility smiles that are consistent with empirical
market evidence. It also has the advantage over the previously mentioned approaches in
the simplicity of its pricing formula: a closed form Black-Scholes Style formula that is easy
to implement for both investment and hedging purposes

11



3.1 The Mixed Diffusion Process for Stock Prices

We start from diffusion processes as we did for the review conducted in Chapter 1. There
are different versions of the model of mixed diffusion processes for stock returns proposed
by researchers that vary in their assumptions about the underlying stochastic paths fol-
lowed by the stock price. Notably, Brigo and Mercurio (2001)[4] assume that component
diffusion processes of the mixture share the same constant drift term but different time-
varying volatility terms. The advantage of the restriction of a common drift is that under
certain regularity conditions, a mixture process followed by the stock price has a nice
closed form expression for the volatility term as a function of the volatilities of component
processes. The derivation for this result relies on the existence of a parametric risk neutral
distribution (and hence risk neutral measure) and the dynamics are quite similar to the
one adopted by Dupire (1994)[14]. Other studies propose a general approach where drifts
vary among component diffusion processes (See Leisen (2003)[28] and Leisen (2004)[29]).
In fact, this variation has no effect for the resultant pricing formula under the risk neutral
measure. Following these studies, we propose a new specification of the model.

Under a properly defined probability space (Ω, F, P ) and time frame of interest t ∈ [0, T ],
the stock price is assumed to follow the following one dimensional stochastic process:

dS(t) = µS(t)dt+ σ(S(t), t)S(t)dZ(t), (3.1)

with an initial condition:
S(0) = S0,

where µ is the drift term, σ(S(t), t) is the volatility term, and Z(t) is the standard Brownian
Motion. Notice that the volatility term is time varying and usually referred to as the local
volatility. For generality, it is also assumed to be a deterministic function of the stock
price. In order to ensure the existence of a unique strong solution to this SDE, Brigo
and Mercurio[4] propose that the following linear growth regularity condition must hold
uniformly in t for a suitable L ∈ R+:

σ2(S, t)S2 ≤ L(1 + S2), (3.2)

which is assumed to be satisfied almost surely in our case as we consider bounded time
intervals only.

In the same probability space, consider N independent one-dimensional time-homogeneous
diffusion processes:

dSi(t) = µiSi(t)dt+ σiSi(t)dZ(t), i ∈ 1, 2...N, (3.3)
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with the common initial condition:

Si(0) = S0, i ∈ 1, 2...N.

The volatilities of the component processes are constants consistent with the assumption of
the Black-Scholes framework and thus the regularity condition in equation (3.2) is satisfied
trivially. It is not necessary to introduce additional complexity to those processes as the
mixture of component volatilities behaves well enough to generate the dynamics of implied
volatility smile in the option pricing context, which will be shown later. The problem
remained now is the construction of the mixed diffusion process, which requires that we
solve for the local volatility term σ(t, S(t)) in equation (3.1)

Under the same probability space, let f(s, t) denote the density function of S(t) in equa-
tion (3.1) and fi(s, t) denote the density function in equation (3.3). We want to find an
expression for σ(t, S(t)) such that the following result holds:

d

ds
P (S(t) ≤ s) = f(s, t) =

N∑
i=1

λi
d

ds
P (Si(t) ≤ s) =

N∑
i=1

λifi(s, t), i ∈ 1, 2...N, (3.4)

where each λi ∈ (0, 1) represents a mixture weight for its corresponding component process,
meaning that:

N∑
i=1

λi = 1, i ∈ 1, 2...N. (3.5)

The solution to a less general problem is provided by Brigo and Mercurio (2001)[4], who
impose the restriction of equal component diffusion drifts. We extend this theorem and
provide the proof in Appendix A.

Proposition 3.1: Under a mixture diffusion framework defined by equation (3.1) to equa-
tion (3.5), assume that the condition of equal drifts is satisfied,

µ = µi, ∀i ∈ 1, 2..N

Then, the local volatility term in equation (3.1) can be expressed as follows:

σ(S(t), t) =

√√√√√√√
N∑
i=1

λiσ
2
i fi(S(t), t)

N∑
i=1

λiS(t)2fi(S(t), t)

(3.6)
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This proposition uniquely characterizes a mixture diffusion process whose component pro-
cesses are described by equation (3.3). By simple substitution of the result into equation
(3.1), the stochastic path followed by the stock is described by the following:

dS(t) = µS(t) +

√√√√√√√
N∑
i=1

λiσ
2
i fi(S(t), t)

N∑
i=1

λiS(t)2fi(S(t), t)

S(t)dZ(t). (3.7)

Notice that the proposition applies almost surely under the risk neutral measure where
the risk free rate dominates. At the same time, the generality of a mixture models is pre-
served as the density functions are not specified. The lognormal density is chosen in this
case (as implied by equation (3.3)) for its simplicity and consistency with most established
option pricing frameworks. However, future research using other density functions, such
as a Student’s t distribution, is encouraged. In fact, option pricing models based on the
t-distribution and its extensions have been developed in an effort to take advantage of
their extra kurtosis and modified skewness to more accurately described stock returns (see
Cassidy et al. (2010)[6]).

In addition, volatility models can also be accommodated to some extent when component
volatilities are treated as deterministic functions independent of the price processes. Some
proper averaging or simulation techniques can be used when the models are stochastic. In
these cases, the volatilities are no longer calibrated in the mixture model. Discretization
procedure is also required for this purpose so that the volatilities used are integrals over
the desired periods of time. For example, over the period [0, t1], we may have:

σi =

∫ t1

0

σi(t)dt (3.8)

The effect of the incorporation of volatility models is not part of our study and we mention
it here for illustrative purposes only. The possibly infinite number of component processes
brings both flexibility and challenge to us in working with this model. In principle, more
mixing processes is expected to yield better fits for the model. At the same time, more
effort has to be spent for the calibration of parameters, which adds considerably to the
required computational costs. It is thus desirable to use just as many component processes
as it is required. Fortunately, a few components are usually enough to capture the volatility
smiles, as we will demonstrate later by focusing on the two-component mixture model.
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3.2 The Lognormal Mixture Model

In this section we specify the Lognormal Mixture Model, which is simply an extension of
the mixture diffusion process discussed previously. We assume that the density function
of the stock price process is that of a lognormal distribution conditioning on the most
recent information. This is to say, under the probability space (Ω, F, P ), we have for each
component process:

Si(t) | Ft− ≡ LN

(
lnSi(t

−) +

(
µi −

1

2
σ2
i

)
(t− t−), σi

√
t− t−

)
,

or, equivalently,

fi(S, t) =
1√

2πSσit
exp

−
(

ln
S

S0

− µit+ 1
2
σ2
i t

)2

2σ2
i

 , i ∈ 1, 2..N (3.9)

While it is desirable to work backwards from this equation and Proposition 3.1 to derive
pricing a formula for some derivatives, it is not necessary for European stock option pricing.
Base on the mixture diffusion framework in the previous section and equation (3.9), we can
specify a parametric model directly. Nevertheless, the diffusion processes themselves serve
as the fundamental elements of the model and thus must be considered in the derivation
and application of any mixed-distributional derivative pricing model.

3.2.1 Model Specifications

We claim that a positive continuous random variable follows a Mixture Lognormal (MLN)
distribution according to the following definition:

Definition 3.2.1: Under the probability space (Ω, F, P ), let C denote the underlying dis-
crete state variable taking values on {i | i ∈ 1, 2, ...N} with P (C = i) = λi. Also, define
binary indicator variables 1C=i, which take the value of 1 if C = i and 0 otherwise. A
random variable Y follows a Mixture Lognormal distribution (MLN) iff

Y =
N∑
i=1

1C=iXi,
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where the Xi are independent lognormal random variables with density functions:

fXi
(x;mi, σi) =

1√
2πxvi

exp

{
−(lnx−mi)

2

2v2i

}
, i ∈ 1, 2...N..

In addition, let Λ ∈ RN ,M ∈ RN 1, and V ∈ RN be vectors of the weight parameters λi, the
mean parameters mi, and the standard deviation parameters vi, i ∈ 1, 2...N respectively.
We denote the parametric distributional relationship of Y as follows:

Y ≡MLN(Λ,M, V )

The cumulative distribution and probability density functions of Y , denoted by FY (y) and
fY (y), directly follow from the above definition:

FY (y) = P (Y ≤ y) = P (
N∑
i=1

1C=iXi ≤ y)

=
N∑
j=1

P (
N∑
i=1

1C=iXi ≤ y | C = j)P (C = j)

=
N∑
j=1

P (Xj ≤ y)P (C = j)

=
N∑
i=1

λiFXi
(y), (3.10)

and

fY (y) =
d

dy
FY (y) =

d

dy

N∑
i=1

λiFXi
(y)

=
N∑
i=1

λifXi
(y). (3.11)

1Here we have usedm and v to denote the mean and standard deviation parameter, which is traditionally
denoted by µ and σ for lognormal distributions. We did so to avoid confusion with the drift and volatility
terms denoted by µ and σ earlier for diffusion processes. In fact, from the Black-Scholes framework in
Chapter 1, we know that m = lnS0 + (µ− δ− 1

2σ
2)(T − t) and v = σ

√
T − t) for stock price processes and

distributions at time t.

16



The results are just as we expect for mixture distributions.

For each component stock price process, we know from the Black-Scholes framework that
the price Si(t) is a lognormal random variable given the initial price S0 while the mean
parameter is equal to the dividend and risk adjusted drift term (see equation (2.4)). The
MLN model we construct for stock price based on the diffusion mixture assumes that:

S(t) =
N∑
i=1

1C=iSi(t),

Clearly, S(t) is a MLN random variable by definition and consequentially, we further claim
the following:

ST | S0 ≡MLN

(
Λ, 1N lnS0 + UT − 1NδT − 1

2
Σ2T,Σ

√
T

)
, (3.12)

where 1N ∈ RN is the vector whose elements are all equal to 1 to make the vector dimen-
sions match and U ∈ RN is the vector containing the drift terms. Notice that the initial
price and dividend rate are properties of the stock of interest and thus do not vary among
the component price processes.

For derivative pricing, we adopt the traditional risk neutral pricing technique to ensure
that there is no arbitrage. Under the risk neutral probability measure (Ω, F,Q), the drift
terms of component processes are all replaced by the risk free rate r, which is also used
to discount the future derivative payoff. The risk free rate is a market element and thus
shared by the component price diffusion processes, making the drift terms equal. As a
result, Proposition 3.1 applies almost surely. This is the key reason that generality is still
preserved under the model by Brigo and Mercurio (2001)[4], which is not directly pointed
out in the literature. Our model specification is thus consistent with most published works
on this topic. Notice that equation (3.12) can be translated to its equivalence under a risk
neutral measure (and hence a forward measure):

ST | S0 ≡MLN

(
Λ, 1N lnS0 + (r − δ)T − 1

2
Σ2T,Σ

√
T

)
, (3.13)
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with density function:

fST |S0(S) =
N∑
i=1

λi√
2πTSσi

exp

−
(

ln
S

S0

− (r − δ − 1

2
σ2
i )T

)2

2σ2
i T

 . (3.14)

To price an European Call Option, we take the expected present value of its future payoff
under the risk neutral measure:

CMLN = EQ[(e−rT (S(T )−K)+]

= e−rTEQ[(
N∑
i=1

1C=iSi(T )−K)+]

= e−rTEQ[EQ[(
N∑
i=1

1C=iSi(T )−K)+ | C]]

= e−rT
N∑
i=1

EQ[(Si(T )−K)+]Q(C = i)

=
N∑
i=1

λie
−rTEQ[(Si(T )−K)+]

=
N∑
i=1

λiC
i
BS, (3.15)

where CMLN denotes the Call option price under our MLN model and Ci
BS denotes the

price corresponding to component process Si(t) under the Black-Scholes model. Here the
advantage of our simple mixing processes (equation 3.3) becomes apparent as they are
essentially the same Geometric Brownian Motion as the one used under the Black-Scholes
framework (equation (2.1)) except for the parameters. This allows us to reach our final
result in equation (3.15) by risk neutral pricing. For put options with maturity payoff
(K − S(T ))+, only a trivial modification is required to obtain:

PMLN =
N∑
i=1

λiP
i
BS, (3.16)

The above derivation serves as the proof for the following key proposition.
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Propositon 3.2.1: Consider a European stock (either call or put) option under risk
neutral pricing and the MLN model specified by equation (3.13). The stock price pro-
cess S(t) has mixing components Si(t) with corresponding weights λi and volatilities σi for
i ∈ {1, 2, ...N}. The arbitrage free option price is equal to a linear combination of Black-
Scholes option prices from the components weighed by the mixing weights.

A more detailed proof using partial expectations is presented in Appendix B. This proposi-
tion also concludes this section on MLN model specifications. In summary, we are making
the Black-Scholes assumption introduced in Chapter 2 for each component stock price
process. The resultant option pricing formula is in the form of a linear combination of
component option prices, which is quite intuitive. However, recall that the volatility is not
in such a nice form (see equation (3.6) in Proposition 3.1). This is the reason that the
MLN model produces desired volatility smiles. It is also interesting to see that to some
extent, the component density function values act as weights in the contribution to total
volatility by each component volatility. In the next section, we will look at the option
Greeks under the MLN model and their implications for hedging.

3.2.2 Option Greeks and Hedging

This section is a direct extension from the previous one. Here we consider option Greeks
used frequently for hedging purposes, which may be of particular interest to market makers
and dealers. In risk management practices, an option portfolio is hedged through buying
or selling other assets and derivatives, which often include the underlying stock and other
options. Hedging is usually done dynamically so that the portfolio must be rebalanced
periodically, which incurs considerable transaction costs. Here we treat these costs as ex-
ternalities and only present the theoretical hedging formula under the Mixture Lognormal
model specified in the previous section. The empirical effectiveness of the hedging tech-
nique is beyond our study.

We adopt the same option Greeks notation as commonly used under the Black-Scholes
Framework and its extensions. The formulas are included in Appendix C.

1. ∆: the derivative of option price with respect to the underlying stock price (∂C
∂S

or
∂P
∂S

). It is positive for call options and negative for put options 2.

2To be precise, under the Black-Scholes framework, we have ∆call ∈ (0, 1) and ∆put ∈ (−1, 0)
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2. γ: the derivative of option with respect to the underlying stock price. ∆ (∂
2C
∂S2 or

∂2P
∂S2 ). It is positive and the same for call and put options.

3. θ: the derivative of option price with respect to time to maturity (∂C
∂T

or ∂P
∂T

). As the
option approaches maturity, its intrinsic value decreases, making this Greek often
negative for both call and put options

4. ρ: the derivative of option price with respect to the continuous risk free rate(∂C
∂r

or
∂P
∂r

). It is usually positive for call options and negative for put options.

5. ψ: the derivative of option price with respect to the continuous dividend rate (∂C
∂δ

or
∂P
∂δ

). It is usually negative for call options and positive for put options.

6. ν: the derivative of option price with respect to the volatility term. (∂C
∂σ

or ∂P
∂σ

). It
is usually positive for both call and put options.

An obvious departure of the Greeks in our MLN model from those in the Black-Scholes
model is ν. By definition, stock return volatility under the MLN model is directly governed
by multiple component volatility parameters as shown in equation (3.6). This subtle point
is not explored in many previous studies. Proposition 3.2.1 in the earlier section gives the
pricing formula of a stock option price under the MLN model, which simply equals a linear
combination of Black-Scholes prices from component stock price processes. Due to the
linearity of differential operators, we claim that each option Greek is also in the form of
a linear combination of Black-Scholes option Greeks from the component processes. How-
ever, ν is an exception to this rule as a single explicit volatility term does not appear in
the option pricing formula. Therefore, it is necessary to define partial-ν terms denoted by
νiMLN .

Definition 3.2.2: Consider a European stock (either call or put) option under risk neutral
pricing and the MLN model specified by equation (3.13). The stock price process S(t) has
mixing components Si(t) with corresponding weights λi for i ∈ {1, 2, ...N}. The option
Greek νiMLN is the derivative of the option price with respect to volatility in component
process i (e.g. ∂C

∂σi
or ∂P

∂σi
).

The formula for partial ν is easily derived:

νiMLN =
∂C

∂σi
=

∂
N∑
j=1

λjC
j
BS

∂σi
=

N∑
j=1

λj
Cj
BS

σi
= λiν

i
BS, (3.17)

20



where νiBS denotes the Black-Scholes option ν from component process i.

With this formula and the relationship described in equation (3.6) we are able to obtain a
solution for the traditionally defined ν Greek under our MLN model by the chain rule of
differentiation. However, it is numerically demanding and the component volatility terms
still remain in the result, which is cumbersome for analysis. For a hedging purpose, it can
be easily inferred that when all component process volatilities are hedged simultaneously,
so is the overall volatility. Therefore, we consider portfolios that are partial-ν neutral to
be volatility hedged, which we strive to achieve. For all other option Greeks, a natural
conclusion can be drawn as follows.

Proposition 3.2.2: Consider a European stock (either call or put) option under risk
neutral pricing and the MLN model specified by equation (3.13). The stock price process
S(t) has mixing components Si(t) with corresponding weights λi for i ∈ {1, 2, ...N}. Any
option Greek properly defined under the MLN model is equal to a linear combination of
the corresponding Black-Scholes option Greeks from the components weighed by the mixing
weights.

For illustrative purpose, it is sufficient to present the derivation for ∆ as given below.

∆MLN =
∂C

∂S
=

∂

∂S

N∑
i=1

λiC
i
BS =

N∑
i=1

λi
∂Ci

BS

∂S
=

N∑
i=1

λi∆
i
BS, (3.18)

where ∆i
BS denotes the Black-Scholes ∆ from component process i.

So far we have presented the concepts of, and constructed the required results for, op-
tion Greek hedging under our MLN model specified in previous sections. Notice that the
mixing weights λi, i ∈ {1, 2...N}, are treated as stable parameters recalibrated periodically
and thus not a risk exposure in the dynamic hedging process. Intuitively, the weights as
defined in Definition 3.2.1 are probabilities that each component process dominates and
thus can be viewed as a periodic market element, lending justification to our approach.
Here we provide an example of hedging. Notice that this is only a theoretical example
where parameters are given information. In practice, all parameters need to be calibrated,
which we will discuss in the next sections.

Example 3.2.2: delta-gamma-vega hedging

We hold a European call option of Microsoft stock with strike price $29 maturing in 3
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months. The Microsoft stock currently trades at $30/share. In annual terms, the con-
tinuously compounded risk free rate is 3% and the continuously compounded dividend rate
is 1%. Assume that the MLN option pricing framework holds true in the market and we
have confirmed the effectiveness of a 2 component process MLN model. Through calibration
we determined mixing weights λ1 = 0.25 and λ2 = 0.75 as well as component volatilities
σ1 = 0.2 and σ2 = 0.4. Next we construct a Delta-Gamma-Vega neutral portfolio that
completely hedges our exposure using:

1. European call option on Microsoft stock with strike price $31 maturing in 3 months

2. European call option on Microsoft stock with strike price $28 maturing in 1 month

3. European put option on Microsoft stock with strike price $31 maturing in 2 months

The solution is presented below.

We denote the dj quantity obtained from component process i by dij, j ∈ {1, 2} and
for this case i ∈ {1, 2}. We also denote an Black-Scholes option Greek from component
process i by adding a superscript to the corresponding Black-Scholes notation. Using the
provided information, we apply equations (2.10) and (2.11) as well as the option Greek
formula in Appendix C. The result is presented in Table 3.1 below.

Option C(K = 29, T = 3
12

) C(K = 31, T = 3
12

) C(K = 28, T = 1
12

) P(K = 31, T = 2
12

)
d11 0.439016 −0.227898 1.252727 −0.319942
d12 0.339016 −0.327898 1.194992 −0.401592
d21 0.294508 −0.038949 0.669665 −0.098734
d22 0.094508 −0.238949 0.554195 −0.262033

∆1
BS 0.668003 0.408839 0.894102 −0.624452

∆2
BS 0.614277 0.483256 0.747841 −0.538427

γ1BS 0.120462 0.129248 0.105006 0.154484
γ2BS 0.063510 0.066274 0.091955 0.080903
ν1BS 5.420805 5.816175 1.575087 4.634512
ν2BS 5.715857 5.964667 2.758665 4.854171

Table 3.1: Calculation for example 3.2.2 - component process Greeks

Now we apply Proposition 3.2.2 and equation (3.17) to find the Greeks under the MLN
model. The option prices are calculated using Proposition 3.2.1 and the Black-Scholes
option price formulas in Chapter 2. Again, for volatilities we are effectively hedging the
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partial-ν in Definition 3.2.2. With given mixing weights, the result is summarized in Table
3.2 below.

option C(K = 29, T = 3
12

) C(K = 31, T = 3
12

) C(K = 28, T = 3
12

) P(K = 31, T = 2
12

)
Price 2.67 1.72 2.48 2.22
∆MLN 0.627709 0.464652 0.784406 −0.559933
γMLN 0.077748 0.082018 0.095218 0.099298
ν1MLN 1.355201 1.454044 0.393772 1.158628
ν2MLN 4.286893 4.473500 2.068999 3.640628

Table 3.2: Calculation for example 3.2.2 - option Greeks under the MLN model

This hedging problem is then transformed into solving a system of linear equations. The
key is to hedge the γ and νiMLN first to ensure the existence of a solution as any excess ∆
can always be hedged using the underlying stock. Let w1, w2, and w3 represent the number
of each type of options to be purchased. We need to solve:0.082018 0.095218 0.099298

1.454044 0.393772 1.158628
4.473500 4.473500 3.640628

w1

w2

w3

 =

−0.077748
−1.355201
−4.286893

 ,
where we obtain the result w1

w2

w3

 =

−1.1396
−0.1651
0.3166

 .
The net ∆ exposure is:

[
0.627709 0.464652 0.784406 −0.559933

] 
1

−1.1396
−0.1651
0.3166

 = −0.2086,

which we hedge by buying 0.2086 shares of Microsoft stock. The net cost of hedging is
then:

[
30 1.72 2.48 2.22

] 
0.2086
−1.1396
−0.1651
0.3166

 = 4.59,
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There are several intuitions we may obtain from this example. First of all, it is appar-
ent that our result only occurs in a theoretical setting as the total cost of the hedging
instruments exceeds the price of the hedged option. This phenomenon is rare in the Black-
Schole framework, where the risk is captured by a single volatility term. It happens in our
MLN model most likely due to “over-hedging”, where we effectively hedge each component
volatility fluctuation.

In addition, notice that the ranges of the Black-Scholes option Greeks also apply to the
MLN Greeks. This result is not coincidence and can be proved without loss of generality
using option ∆. As a direct result of Proposition 3.2.2 above, we have:

N∑
i=1

λi min{∆i
BS | i = 1, 2..N} ≤ ∆MLN ≤

N∑
i=1

λi max{∆i
BS | i = 1, 2..N},

which then gives:
0 ≤ ∆MLN ≤ 1

Lastly, we used the two-component MLN model in this example, which is numerically
efficient. The two-component model is the simplest example of the MLN framework we have
established to be capable of capturing volatility smiles in most situations. Not surprisingly,
its simplicity leads to some additional desirable properties, which we will discuss in the
next section.

3.2.3 Dynamics of the Two-component Mixture model

In this subsection, we reproduce the discussion in Neumann (2002)[35] and adapt it to the
setting of this thesis by placing special emphasis on the ability of the model to generate
the volatility smile phenomenon observed in the markets. When the MLN model assumes
its simplest form, only two component price processes are involved, which we denote by
two triplets: (S1, µ1, σ1) and (S2, µ2, σ2). In addition, we let λ denote the mixing weight
for S1 (traditionally denoted by λ1). As a direct result, the mixing weight for S2 equals
1− λ. Under the same time frame of interest t ∈ [0, T ] and probability space (Ω, F, P ) as
stated earlier, the diffusion processes are just an example of equation (3.3):

dS1(t) = µ1S1(t)dt+ σ1S1(t)dZ(t),

dS2(t) = µ2S(t)dt+ σ2S2(t)dZ(t),
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with common initial conditions:

S1(0) = S2(0) = S0.

Moreover, the density function of the stock price S(t) is an example of equation (3.11) and
equation (3.14):

fmixSt|S0
(s;λ,m1,m2, v1, v2) = λfLN(s;m1, v1) + (1− λ)fLN(s;m2, v2), (3.19)

where fmixSt|S0
denotes the density function of the stock price at time t conditioning on the

current stock price and fLN denotes the lognormal density function as the one used in Def-
inition 3.2.1. As before, we use mi and vi to represent the mean and standard deviation
parameters to avoid confusion.3 Under the MLN model, Proposition 3.2.1 applies to give:

CMLN = λC1
BS + (1− λ)C2

BS, (3.20)

PMLN = λP 1
BS + (1− λ)P 2

BS. (3.21)

While the above contents has no additional derivation, the simplicity of the two-component
mixture allows us to study the stock price directly, which would otherwise be clumsy for
a greater number of components. First note that the expected value and variance of a
lognormally distributed random variable ST at time point t ∈ [0, T ] is given by:

Et[ST ] = em+ 1
2
v2 , (3.22)

V art(ST ) = (ev
2 − 1)(e2m+v2), (3.23)

where the subscript t indicates expected value is taken with the σ-algebra at time t. Now,
let S1

t and S2
t be the time t discounted expected values of the component stock prices.

That is to say:

S1
t = e−r(T−t)Et[S1(T )], (3.24)

S2
t = e−r(T−t)Et[S2(T )]. (3.25)

3As we essentially assume the same Black-Scholes framework for each component process, we have
mi = lnS0 + (µi − δ − 1

2σ
2
i )(T − t) under (Ω, F, P ) or mi = lnS0 + (r − δ − 1

2σ
2
i )(T − t) under the risk

neutral measure (Ω, F,Q), and vi = σi
√
T − t for both cases, i ∈ {1, 2}.
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These two variables are completely determined by the martingale restriction of the under-
lying time-t stock price St:

St =e−r(T−t)Et[S(T )]

= e−r(T−t)Et[Et[S(T ) | C]]

= S1
t P (C = 1) + S2

t P (C = 2)

= λS1
t + (1− λ)S2

t . (3.26)

As a result, the observed stock price St must satisfy the following equation:

S2
t =

St − λS1
t

1− λ
. (3.27)

It is easy to see that the stock price is actually a linear interpolation of the expected com-
ponent prices. Let us assume that S1

t ≤ S2
t , which is equivalent to saying that S1

t ≤ St.
Then λ can be viewed as the probability that a low asset price market dominates. S1

t

therefore follows this interpretation and is referred to as the downside component in this
thesis. This property enables the model to capture the phenomenon of crash-o-phobia,
which is the strong negative skews in the implied stock return distribution. The cause
of the crash-o-phobia extends beyond the general market’s fear of crash.4 The level of
crash-o-phobia effect depends on the parameters S1

t and λ, where a low level of S1
t implies

potential significant drop of the underlying stock price perceived by the market. The mag-
nitudes of component volatilities σi are also proportional to the stock price levels in each
market condition represented by the components.

Nevertheless, option prices follow the path given by the general diffusion S(t) and not
only on the first(downside) component S1(t). Consequently, both component volatilities
enter the option pricing formula under the MLN model. As mentioned earlier when dis-
cussing option Greeks under the MLN model in Section 3.2.3, there is no explicit single
measure of volatility in the MLN option pricing formula. However, an appropriate risk
measure, namely the variance of the mixture distribution, can be derived for this two-
mixture case as its simplicity encourages us to neglect equation (3.6) and work with the
moments directly. The result can be summarized in the following proposition, where the
detailed proof of this proposition is in included in Appendix D.

4In fact, one economic rationale is that put options have been widely used as hedging instruments for
stocks to protect against significant losses. This generally adopted strategy bid up prices of put options
relative to call options and create a negative skew in the implied stock returns.
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Proposition 3.2.3: Consider a stock price under the MLN framework specified in Section
3.1-3.2.1 with two component processes (S1, µ1, σ1) and (S2, µ2, σ2) with mixing weights λ
and 1 − λ. Then the variance of the terminal stock price distribution evaluated at time
t ∈ [0, T ] can be decomposed as follows:

V art(S(T )) =λV art(S1(T )) + (1− λ)V art(S2(T ))

+ λ(1− λ)(Et[S1(T )]− Et[S2(T )])2.

Obviously, the variance of the mixture distribution for the time T stock price consists of
the weighted variances of the components and the distance between the expectations of
the components. Notice that this decomposition does not yield such a nice form when the
number of component price processes increases.

With this information about the composition of the terminal stock price distribution un-
der mixture diffusion, it is possible to calculate the contribution of the first component to
the total variance of the mixture distribution. Therefore, we define the share of downside
risk(SDR).

Definition 3.2.3: Under the two-factor MLN model specified in this section, the share
of downside risk (SDR) is a measure of the contribution to the total variance of the mix-
ture stock price distribution by the first component distribution corresponding to low price
market condition:

SDRt =
V art(S(T ))− (1− λ)(V art(S2(T )))

V art(S(T ))
.

SDR is a good indicator for the influence of the downside component to the pricing of
options. In addition, this calibrated risk measure resonates in definition with the interpre-
tation we provided for the component price variables in this section. Notice that it can
also be easily modified to accommodate other risk management frameworks as a market
statistic implied by derivatives.

The approach of a two-component mixture presented in this section is straightforward
and utilizes our MLN framework in its simplest form. Nevertheless, this approach still
incorporates the possibility of future extreme underlying price movements. The Law of
Parsimony also recommends that we start from this two-factor approach as more complex
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models must display a significant level of improved fits for them to be selected. The empir-
ical analysis in the next section will assess whether two mixture components are sufficient
for the pricing of S&P 500 index options.

3.3 Calibration Techniques

So far we have specified and discussed the MLN option pricing model. The framework stems
from a mixture of diffusion processes adopting lognormal component density functions.
This lognormal nature simplifies the derivation process and leads us to a closed form option
pricing formula as described in Proposition 3.2.1. We have also studied the two-component
mixture as the simplest example under the MLN framework. A comprehensive study of
the three-component MLN model and its pricing performance on an individual stock is
done by Brigo et.al. (2002)[4], where the capability of such a model in producing volatility
smiles is demonstrated in a hypothetical setting. We now test the effectiveness of the two-
component model on index options using S&P 500 option price data. In particular, we
examine its pricing accuracy as well as capability in generating volatility smiles, which is
absent in the traditional Black-Scholes context. As published literature reveals little about
the calibration of mixture models, for simplicity, we propose and implement a calibration
technique using least square error

3.3.1 Data Structure and Calibration Methodology

Due to various limitations, historical high frequency tick-by-tick option quotes are not
available to our research. Therefore we adopt an alternative approach of manually collect-
ing and organizing end of day option chain information published by the Chicago Board
of Trade. For a systemic investigation, we vary the underlying index price by aggregating
the information over several trading days.

The raw information collected consists of all daily closing quotes (e.g. bid price, ask
price, volumes, and interests) for S&P500 index option traded on Chicago Board of Ex-
change(CBOE) for 7 non-consecutive trading days from June 19, 2012 to June 29, 2012.
To create our sample, we first eliminate non-European style options (e.g. binary options,
which is studied later in the next chapter). Then, as a noise reduction effort, we keep only
the traditional European option quoted as “SPX” on CBOE and exclude both the weekly
(SPXW) and quarterly (SPXQ) options though they are extremely similar to the SPX
option. We do not exclude non-actively traded options as their bid-ask prices still carry
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fair information of the market. For a calibration purpose, we use the midpoint between
bid and ask as an estimate of the true value of the option. This gives us a 7-day time
series panel of call and put option prices. The prices are then matched with the daily
closing S&P 500 index levels for the corresponding day to create our final sample, where
each data row is a combination of option price (C for call and P for put), underlying in-
dex price S, strike price K, and time to maturity T . As expected, no two rows are identical.

The MLN model parameters for each day is calibrated separately from others. This yields
a 7-day time series of mixture weights λi and component volatilities σi, i ∈ {1...N}. The
main advantage of this approach is that it obeys the definition of local volatility and admits
the fact that volatility itself is non-constant and time-varying. It also minimizes the effects
of the discontinuity in data collection. Notice that the time window can be extended to
obtain more observations in practice.

Several advantages arise by using S&P500 index option data as our sample. First of all, it
is consistent with the approaches taken by most previous researches on the Black-Scholes
framework and thus forms a good comparative basis. Secondly, it avoids company-specific
factors such as firm dependent skewness and kurtosis shapes mentioned in Chapter 1.
Lastly, the underlying index pays no dividend. This greatly simplifies our numerical pro-
cedure as the calibration of a stable continuously compounded dividend rate is expected
to introduce more uncertainty to the model.

On the other hand, significant challenges are brought by this dataset. First of all, as
S&P500 option is exchange-traded, its bid and ask prices change in fixed minimum steps.
This conceals information about the exact market price. In addition, the midpoint of the
bid-ask pair is used as the best approximation of market option price. The quality of this
approximation is likely to become worse when the bid-ask spread is large, which results in
unreasonable prices in the data5. We treat those cases as noises and remove them from the
sample set. This is why the sizes of the final sample tend to differ for each day. However,
we state as a qualification that both factors will remain inevitable as a source of bias.

The risk free interest rate r used for calculating theoretical option prices can be found
through several methods. For a genuinely noise-free sample, it is best estimated by work-
ing with the put-call parity condition as suggested by Shimko (1993)[40] using the two pairs
of put and call options closest to at the money with identical maturity. Theoretically, a

5This includes, for instance, cases where a call option with a higher strike costs less than an otherwise
identical option with a lower strike
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single pair of at the money call and put options with identical terms is sufficient for the
estimation of a risk free rate with minimal noise. However, as options are standardized
contracts in the exchange, exactly at-the-money options are rare. On the contrary, for
a sample requiring a noise reduction measure, subjective input from economics informa-
tion performs better as the sample-estimated rate is vulnerable to bias source6. To be
conservative, we choose the latter approach in the implementation stage. Notice that, to
be consistent with the traditions in most previous work on the Black-Scholes model, we
ignore the term structure of interest rates and assume its differential effects offset each
other overall.

Calibration of the MLN model may also be performed through several different numer-
ical procedures. Heuristically, stock return parameters such as local volatilities are calcu-
lated through conditional maximum likelihood estimations (MLE). The rationale is based
on the assumption of the lognormal stock price distribution in the Black-Scholes frame-
work. It takes advantage of the unique MLE features of lognormal random variables, where
consecutive log returns are independent normal variables whose mean and variances have
estimators with well established statistical properties. However, this advantage is lost un-
der our MLN model specified in Sections 3.1 and 3.2. The reason for this is that taking the
logarithm of a mixture lognormal variable does not yield a corresponding mixture normal
variable7. As a result, the conditional MLE technique requires us to derive maximum like-
lihood estimators from the mixture lognormal density function (equation (3.14)) directly,
where a system of equations representing the first-order conditions does not have a nice
closed form expression. The adoption of likelihood based technique will thus result in in-
tractable numerical procedures for our MLN model.

For this reason, we propose an alternative calibration methodology using the principle
of the least sum of square error. The data must be organized into the sample format in
our case, where each data row is a unique combination of market option price with the
corresponding underlying asset price, strike price, and time to maturity. For illustrative
purpose we focus on call option only. Let n denote the sample size for each day. Let
cj, j ∈ {1..n}} be the observed option prices with corresponding theoretical price CMLNj

under our MLN framework. The calibration of the model parameters λi and σi, i ∈ 1..N ,

6The vulnerability may be exemplified by negative calibrated risk free rates from near-maturity options
7In fact, to obtain such a result, the consecutive stock price ratios must be modelled by an exponential

of a mixture normal variable, which is similar to the Regime Switching Model[17] that will be briefly
discussed later in comparison with our MLN model.
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is a process equivalent to solving the following optimization problem:

minimize
λi,σi

N∑
j=1

(CMLNj − cj)2

subject to
N∑
i=1

λi = 1,

σi ≥ 0, i ∈ {1, ...N}
λi ≥ 0, i ∈ {1, ...N}

The complexity of the objective function renders standard algorithms such as the simplex
method inefficient. Therefore, parameter estimates are calculated for each option series by
performing a grid pattern search with non-linear regressions on observed and theoretical
option prices. We implement this process using Matlab. Apparently, for the special case
of only one mixture component we obtain the conventional lognormal distribution. As
suggested previously, we will fit the two-component mixture model and examine its per-
formance in comparison to the Black-Scholes model.

The unique features of the two-component MLN model introduced in Section 3.2.3 al-
lows us to perform additional analysis beyond the testing of pricing accuracy of a general
MLN model. It also affords an interpretation of the model involving downside risk. To
measure the impact and/or improvements of introducing a downside risk, we may look at
the evolution of the expected discounted downside component S1

t in equation (3.24) and
the Share of Downside Risk (SDR) introduced by Definition 3.2.3, which are both post-
calibration analysis.

From the relevant formulas, we see that both measures require a good fit of S1
t value.

Ideally, the quantities S1
t and S2

t are best estimated through an additional round of cali-
bration using the intra-day high-frequency option and stock price quotes. However, such
data is costly and may adversely affect the numerical efficiency. Therefore, we propose an
alternative approach that calculates S1

t and S2
t value from the MLN model parameters. As

we ignore transaction costs in this implementation, the martingale restriction in equation
3.26 can be imposed. However, equation (3.26) alone gives infinitely many solutions. Intu-
itively, it is desirable to maximize the differential component impacts from S1

t and S2
t to the

overall discounted expected stock price. We measure this “impact” by the Contribution to
Martingale Expectation(CME) under the MLN model, which is defined below.
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Definition 3.3.1: Under the risk neutral pricing and the MLN model specified in Chapter
3, the stock price process S(t) has mixing components Si(t) with corresponding weights λi
and volatilities σi for i ∈ {1, 2, ...N}. The Contribution to Martingale Expectation (CME)
for component Si measures the percentage of the true time-t stock price, St, attributed to
the time-t discounted expectation from process Si under the martingale restriction:

CMEi
t =

λiS
i
t

St
,

where, for the two-component case (i.e. N = 2) in Section 3.2.3, Sit is given by equation
(3.24) and equation (3.25).

Notice that, by definition, we have CME ∈ (0, 1), which guarantees the existence of
an entropy H i

t . In interpreting the model, each component corresponds to a market state.
Thus, it is desirable to maximize the divergence in CME between components. We are
therefore encouraged to set the S1

t and S2
t values, within their feasible regions, to the ones

that maximize the entropy of the CME space. For the two-component model, this is equiv-
alent to solving the following problem, where we replaced S2

t by its solution to equation
(3.26) in terms of S1

t :

maximize
S1
t

Ht = −λS1
t ln(λS1

t )− (St − λS1
t )ln(St − λS1

t )

subject to Sit > 0, i ∈ {1, 2}

This one-dimensional optimization problem has a continuous objective function within
the defined domain and can be easily solved by working with its respective first and second
order conditions. The derivations are provided in Appendix F. We obtain the following
result:

Ŝ1
t =

St
2λ
,

Ŝ2
t =

St
2(1− λ)

,

The optimal CME values associated with the above critical Sit values are 0.5 for both com-
ponents. Apparently, the construct condition S1

t ≤ St is satisfied if and only if λ > 0.5.
Therefore, this approach fully utilizes the market information and captures interactions
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between the weight parameters and the component processes under the martingale restric-
tion. It also allows us to examine the validity and significance of the downside component.
If the condition is satisfied in all (or most) of the sample days, we can conclude the presence
of strong empirical evidence in support of our model.

The rest of the analysis is straight-forward. To calculate the associated variance terms, we
apply equation 3.23 to obtain:

V art(Si(T )) = (Sit)
2e2(r−δ)(T−t)(eσ

2
i (T−t) − 1),∀i ∈ {1, 2}. (3.28)

As a consequence, the variance of the stock price at maturity can be calculated by Propo-
sition 3.2.3 as:

V art(S(T )) =λ(S1
t )

2e2(r−δ)(T−t)(eσ
2
1(T−t) − 1)

+ (1− λ)(S2
t )

2e2(r−δ)(T−t)(eσ
2
2(T−t) − 1) (3.29)

+ λ(1− λ)(S1
t − S2

t )
2e2(r−δ)(T−t).

The time series of SRD can be then easily calculated by Definition 3.2.3 through a simple
substitution of relevant quantities.

In summary, we will use the two-component MLN model for its ease of interpretation
and implementation for the empirical example in the next section. The effect of downside
risk is checked for its significance and impacts on index option prices. We also compare the
in-sample results to those produced by the Black-Scholes model to see if any improvement
exists for the MLN framework in pricing stable period index options. Most importantly,
we verify that our MLN produces the desired level of implied volatility smile.

3.3.2 Empirical Results and Analysis

We present the empirical results of this section. As mentioned previously, we focus our
analysis on call options only. The final sample of Call option quotes used for calibration
is summarized in Table 3.3 below, where n denotes the sample size, S denotes the closing
S&P500 quotes, and C denotes the call option price used for calibration. T and K respec-
tively denote the time to maturity (years) and strike price (U.S. dollars) as usual. Notice
that the moneyness η is defined differently from before.
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Definition 3.3.2: Consider a European Call option with market price C and strike price
K. The moneyness η of this option is the percentage difference between the spot underlying
stock price S and the strike price relative to the strike price:

η = (S −K)/K

We will follow this definition from now on unless otherwise specified.

19-Jun 21-Jun 22-Jun 25-Jun 26-Jun 28-Jun 29-Jun
n 767 759 764 759 763 761 763
S 1357.98 1325.51 1335.02 1313.72 1319.99 1329.04 1362.16

Max 1248.90 1216.81 1223.90 1205.05 1214.15 1221.05 1255.30
C Min 0.05 0.05 0.05 0.05 0.05 0.04 0.075

Mean 300.34 282.32 288.17 278.47 282.30 287.27 308.08
Sdev. 311.75 303.47 307.1013 301.8303 304.2660 306.4119 315.4625
Skew. 1.0963 1.1447 1.1078 1.1336 1.1237 1.1083 1.0527
Kurt. 3.3272 3.4300 3.3192 3.3784 3.3562 3.3213 3.2053
Max 2.5041 2.4986 2.4959 2.4877 2.4849 2.4795 2.4767

T Min 0.0877 0.0822 0.0795 0.0712 0.0685 0.0630 0.0602
Mean 0.7125 0.7110 0.7090 0.7026 0.6979 0.6934 0.6871

Median 0.4137 0.4082 0.4055 0.3973 0.3945 0.3890 0.3863
Sdev. 0.7474 0.7488 0.7464 0.7481 0.7468 0.7475 0.7481
Max 3000 3000 3000 3000 3000 3000 3000

K Min 100 100 100 100 100 100 100
Mean 1137.10 1131.11 1129.50 1124.64 1127.63 1126.22 1124.16

Median 1190 1180 1180 1175 1175 1175 1175
Sdev. 424.33 421.56 425.16 422.83 423.85 423.30 418.4085
Max 12.5800 12.2551 12.3502 12.1372 12.1999 12.2904 12.6216

η Min -0.5897 -0.5582 -0.5550 -0.5621 -0.5600 -0.5570 -0.5459
Mean 0.5897 0.5597 0.5745 0.5552 0.5585 0.5712 0.6099

Median 0.1412 0.1233 0.1314 0.1181 0.1234 0.1311 0.1593
Sdev. 1.5819 1.5502 1.5577 1.5364 1.5407 1.5528 1.5891

Table 3.3: Summary of call option data used for calibration

Notice that for all 7 days, the mean and median moneyness values are not far from zero as
we expect, indicating that the sample is reasonable in spite of the defects and data noises
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mentioned in the previous section. The time to maturity ranges from 0.060274(22 days)
to 2.50411(914 days) and the strike price ranges from 100 to 3000. These large ranges
facilitates our analysis of volatility smiles.

To calibrate the model parameters, we subjectively introduce a risk-free rate of 2%, which
is consistent with the economic conditions for the period of interest. Using the proposed
calibration methodologies in the previous section, the following parameter estimates are
obtained for each of the seven days:

19-Jun 21-Jun 22-Jun 25-Jun 26-Jun 28-Jun 29-Jun Mean Sdev.
λ 0.6399 0.6245 0.5997 0.5874 0.7219 0.6625 0.7036 0.6485 0.0506
σ 0.1464 0.1534 0.1448 0.1526 0.1523 0.1476 0.1386 0.1480 0.0053
σ1 0.1461 0.1530 0.1444 0.1521 0.1518 0.1472 0.1382 0.1476 0.0053
σ2 0.1472 0.1545 0.1452 0.1535 0.1535 0.1484 0.1396 0.1488 0.0054
St 1357.98 1325.51 1335.02 1313.72 1319.99 1329.04 1362.16 1334.77 18.5702
S1
t 1061.10 1061.24 1113.01 1118.25 914.22 1003.09 967.97 1034.12 75.8065
S2
t 1885.52 1765.05 1667.66 1592.01 2373.43 1968.81 2297.94 1935.77 301.53

Table 3.4: Fitted parameters for the MLN model and Black-Scholes model

We see that the volatility under Black-Scholes framework and the component volatilities
under the MLN framework all fall within the 13%-15% range. In addition, for each day,
the two-component volatilities are not substantially different. This is consistent with the
general economic market condition for the period of our study, during which both the
index level and interest rate are fairly stable with little sign of extreme conditions. Volatil-
ity stability and absence of stylized volatility patterns also correspond to the observation
that estimated component volatilities display immaterial difference. A more pronounced
difference can be expected for options of individual stocks, where company-specific risk
has a much higher potential in driving the price further in both directions. Nevertheless,
the fact that σ1 < σ < σ2 is consistent with our expectation, leading to a higher range of
distribution component corresponding to high and low underlying prices when compared
to a single lognormal distribution. In addition, the condition S1

t < St < S2
t is well satisfied

for all 7 sample days. Simple calculation reveals that on average, S1
t is 22.51% lower than

St while S2
t is 45.03% higher than St for our sample. As discussed in the previous chapter,

the fitted component expectations are determined by the interactive effect of the proba-
bilities and price expectations for high and low market conditions implied in the market
data. Such an observation can therefore be taken as reasonable evidence of the existence of
downside risk and crash-o-phobia. These risks are captured by the MLN model but not the
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Black-Scholes model where we have a single component (N = 1) and S = S2. A summary
on the evolution of the downside risk for selected maturities (in days) is presented in Table
3.5 below. Notice that to form a comparable basis, we fix the time to maturities for all
sample days, which, thus, may not correspond to existing options traded.

T − t 19-Jun 21-Jun 22-Jun 25-Jun 26-Jun 28-Jun 29-Jun
30 1985 2176 2133 2389 1589 1800 1477

V ar(S1(T )) 178 12021 13182 12917 14472 9626 10905 8942
365 25298 27756 27180 30470 20267 22952 18807
729 53149 58372 57088 64073 42615 48228 39467
30 6355 6138 4840 4930 10958 7045 8493

V ar(S2(T )) 178 38493 37192 29314 29874 66398 42672 51418
365 81016 78323 61687 62907 139816 89819 108158
729 170234 164759 129581 132309 294070 188765 227016
29 160691 120204 77307 58015 433060 212791 373643

V ar(S(T )) 178 181255 140644 94781 76297 461292 234269 397669
365 208370 167642 117853 100472 498414 262566 429215
729 264954 224138 166094 151150 575548 321541 494605
29 0.9858 0.9808 0.9749 0.9649 0.9930 0.9888 0.9933

SDR 178 0.8187 0.7761 0.7355 0.6682 0.8780 0.8447 0.8886
365 0.6680 0.6043 0.5522 0.4691 0.7620 0.7083 0.7828
729 0.4521 0.3785 0.3331 0.2590 0.5675 0.5000 0.6051

Table 3.5: Estimated crash-o-phobia parameters of selected times to maturity

From the table, no clear time series trend is observed for the Share of Downside Risk
(SDR) measure across the sample days. However, as the estimated component volatilities
do not differ much, the SDR decreases rapidly for larger times to maturities in this case.
In spite of this, the prominence of the downside component S1 is still apparent for our
dataset as the SDR take material values without showing diminishing pattern.

The empirical results so far confirms the significance of the additional component cap-
turing downside risk and crash-o-phobia effects in our two-component MLN model. These
findings are crucial as the implied volatility can be more readily replicated by the MLN
framework when mixture models are recommended by market data. Now we compare the
pricing accuracies of the two models.
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The resultant prices from the two models are presented in Table 3.6 below for each sample
day, where MSE, MAE, MPE stand for “mean square error, “mean absolute error”, and
“mean percentage error” respectively.

19-Jun 21-Jun 22-Jun 25-Jun 26-Jun 28-Jun 29-Jun
µ(C) 309.3458 290.4542 298.2489 286.7256 289.3501 295.5416 317.1228

MLN σ(C) 323.5973 315.2607 319.6783 313.6970 315.2579 318.1074 326.9159
Prices MSE 375.4110 356.0509 412.0614 360.8936 330.7851 366.5772 387.0121

MAE 10.6560 10.1759 11.3880 10.1848 9.3159 10.0881 10.3425
MPE 21.18% 18.26% 16.29% 13.84% 13.59% 13.60% 13.74%
µ(C) 309.3295 290.4322 298.2565 286.7113 289.3576 295.5375 317.1199

BS σ(C) 323.6077 315.2739 319.6734 313.7057 315.2534 318.1099 326.9179
Prices MSE 375.4096 356.0529 412.0609 360.8918 330.8829 366.5862 387.0106

MAE 10.6572 10.1771 11.3876 10.1858 9.3156 10.0883 10.3428
MPE 21.02% 18.04% 16.36% 13.71% 13.65% 13.56% 13.71%

Table 3.6: Performance of fitted MLN and Black-Scholes models for European call

From statistics, we observe no clear improvement in prediction accuracy for the two-
component MLN model over the traditional Black-Scholes model. As mentioned previ-
ously, the result may be heavily biased by data quality emanated directly from our choice
of period under study. Similar result is shown by Figure 3.1 below, which is created from
the aggregate data.

(a) Black-Scholes (b) MLN

Figure 3.1: Results for call option pricing, percentage error vs. spot-strike difference
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The two charts plot the percentage pricing error versus the spot-strike difference calculated
as S − K from both models. It is observed that pricing errors display almost identical
patterns. The well-known practical feature of the Black-Scholes model remains, where in-
the-money call options are priced at much better accuracy than the out-of-the-money ones.

In summary, we see that for S&P500 index options, the two-component MLN model does
not introduce material pricing improvements compared to Black-Schole model. At first,
this seems to be contradicting the established theories as well as empirical findings in some
studies. However, such observations can be well explained by the nature of our index op-
tion. As previously mentioned, S&P500 index has displayed very high stability and low
volatility during the sample period. Compared to individual stocks, it has much less styl-
ized fact in returns and volatilities. As a result, the two-component volatilities are close
to each other as well as to the Black-Scholes volatility, obscuring the theoretical pricing
improvements that are discovered for individual stock options. Therefore, all comparative
analysis we generated in this section is particular to this index option, which still leads to
valuation conclusions that constitutes our contribution to this topic of MLN models. Over-
all, we may state that compared to the traditional Black-Scholes model, the two-component
mixture model does capture statistically significant downside risk underlying the S&P500
index but does not yield improved pricing accuracy for options due to a relatively tranquil
market for the period under study.

To test if the two-component mixture generates desired volatility smiles, we switch to
a semi-hypothetical setting as proposed by Brigo (2002)[4]. The theoretical capability of
general MLN models in spanning maximal skewness and kurtosis domains is proved by
Brigo (2002), who also illustrated the performance of three-component MLN model in
generating volatility smiles. We take exactly the same approach to see if two-component
model yield satisfactory smile-generating performance. To do so, we modify the calibrated
parameters as the true results include extremely similar components that distort the per-
formance. We randomly choose June 19, 2012 for demonstration and adopt new MLN
parameter estimates: λ = 0.65, σ1 = 0.15, σ2 = 0.45. Notice the weight parameter is not
varied much and where we widen the component volatility gap to create a semi-hypothetical
setting, which can be well expected for high-volatility periods. We randomly select the call
option maturing in 32 days (T − t = 0.087671) with strike prices ranging from K = 800 to
K = 1600. The corresponding implied volatility is graphed below in Figure 3.2, where the
horizontal axis represents the strike price.

The volatility figure exhibited a well-shaped smile, indicating that the two-component mix-
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Figure 3.2: Implied volatility under MLN for call option maturing in 32 days

ture is sufficient for capturing volatility skews of S&P500 index options when component
parameters are distinctive. To complete the analysis, we compare it with the market im-
plied volatility as well as the Black-Scholes volatility estimate. Apparently, as we used
hypothetical parameters in the MLN model for this purpose, the two volatility smiles are
not expected to match in general magnitude. More specifically, the implied volatilities
produced by our MLN model should be much greater than the market ones as we assumed
high component volatilities. However, the overall shapes should be similar. The compara-
tive result is presented in Figure 3.3 below.

From the graph, it is obvious that the result is expected. The implied volatility smile
from our MLN model lies above the one from the market data at even distance, while the
shapes of two are extremely similar. Notice that due to data quality problem discussed
in the previous section and feasible region discontinuity embedded in the grid search al-
gorithm, the market volatility smile contains noise points, though its overall shape still
represents a typical volatility smile. The Black-Scholes volatility displays a flat line and
is invariant to strike prices, which is a trivial result. Furthermore, observe that the MLN
implied volatility is a little to the right of the market implied volatility. This can be cor-
rected by introducing additional scale and shape parameters into the MLN model. Such
complex models are closely studied in Brigo (2002) [4] and we do not discuss about this
issue further here. A firm conclusion we can draw is that the two-component MLN model
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Figure 3.3: Comparative result of implied volatility smiles

does produce desired volatility smile shapes.

To justify our previous claim that similarity in component volatilities reduces the im-
provements of the MLN model over the Black-Schole model, we examine the effect on
implied volatility smiles from varying the difference between component volatilities while
keeping the mean unchanged. We add to our current case scenarios where i. σ1 = 0.2 and
σ2 = 0.4, ii. σ1 = 0.25 and σ2 = 0.35, and iii. σ1 = 0.1 and σ2 = 0.5. The resultant smile
is presented in Figure 3.4 below.

It is apparent that as the difference in the magnitude of component volatilities decreases,
the implied volatility smile becomes flatter. As such trend propagates, extremely close
component volatilities as in our case of S&P500 index option in tranquil period do not
result in an observable smile. In fact, the pattern of the resulting implied volatility in this
case resembles that of the Black-Scholes volatility for all strike-maturity combinations.
This is consistent with our previous conclusion about pricing precisions.

In summary, we have studied the dynamics of mixture diffusion processes for stock price
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Figure 3.4: Implied volatility smiles under varying MLN volatility combinations

and specified the general Mixture Lognormal model (MLN) for European stock option
pricing. We then focused on the two-component mixture as the simplest example of our
MLN model with implementation for index option pricing during stable, low volatility pe-
riods. We confirm the existence of downside risk, which is not captured by the traditional
Black-Scholes model. We found no clear improvement in S&P500 index option pricing
by using the two-component MLN model under prolonged stable market conditions, sug-
gesting that, in such an environment, the Black-Scholes model is sufficient for European
option pricing purposes. Nevertheless, even the simplest two-component MLN model is
shown to be capable of producing desired implied volatility smiles as illustrated under
a semi-hypothetical setting. This is a unique feature we should exploit in future MLN
model applications, particularly under periods of high volatilities and pronounced stylized
returns.

3.4 Interpretation of the Mixture Model

The effectiveness of the MLN model in capturing implied volatility smiles was examined
in the previous section. While we briefly interpreted the model in Section 3.2.3 under
the two-component case, it can be extended to obtain an interpretation for the complete
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MLN model that helps explain its advantages over the traditional Black-Scholes framework.

From a mathematical viewpoint, we look at our MLN model fully specified in Chapter
3.1 and 3.2.1. It is easy to see that the mixture is obtained by super-imposition of the
components (Si, µi, σi) with respect to the mixing weights λi, i ∈ {1...N} . The weights
λi represent the probability mass function of the underlying state variable C choosing the
diffusion process and can thus be viewed as a joint probability distribution of the drift
and volatility parameters (µi, σi). Consequently, the assumption of a mixture of distribu-
tions in our MLN model leads to a specification with randomly changing parameters. This
extra randomness captured by the MLN model is the main reason that the MLN model
improves over the traditional Black-Scholes framework. While in the two factor model we
treated the components as representatives of low price and high price markets, maximal
complexity is obtained in the N component case. The state variable to some extent rep-
resents the aggregate effects of economic factors (e.g. low interest rate plus low inflation
rate) as continuous scenarios, which we implicitly discretized by restricting the outcome
to N cases. Apparently, for the two-component mixture, the aggregate effect is either a
downside market or the reverse, a binary variable as shown in our model in Section 3.2.3.

From the viewpoint of economic theory, we obtain a similar interpretation, which is first
pointed out by Neumann (2002)[35]. That is, Harris (1987)[18] argued that in a model
where a number of agents trade in response to new information, the component variables
can be perceived as random results of the major information events each day directed by the
market state. Ignoring the evolution of such events and the triggered supply-demand shifts,
our MLN model can be compared to models with stochastic volatility processes. Merton
(1976)[34], for instance, assumes that the stock price experiences random jumps that can
be captured by a jump-diffusion model. Other authors, such as Hull/White (1987)[23],
provide a separate diffusion process for volatility as mentioned previously in Chapter 2.2.
A theoretical study of the lognormal mixture models as approximations to the jump dif-
fusion process and the stochastic volatility model is studied by Leisen (2004)[29]. Though
significant complexities are required to be added to the simple lognormal mixture, the
convergence in distribution result implies that a mixture process potentially combines ad-
vantages of both models (by Merton[34], and Hull and White[23]).

Another interesting fact worth mentioning at this stage is the relationship between the
MLN model we specified and the Regime Switching Model for long term stock returns
studied by Hardy (2001)[17]. Although both frameworks assume mixture distributions of
stock returns, the nature of the mixtures are different. In the regime switching model, the
log stock returns are modelled directly by a normal mixture conditioning on the underlying
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market state variable. This results in a completely different density/distribution function
than our lognormal mixture case as a linear mixture of exponentials differs from the expo-
nential of a linear mixture. Moreover, the mixture weights in the regime switching model
is subject to a Markov Chain process where a transition probability matrix P is involved
and estimated. This is not the case in our MLN framework, where the mixing weights
λi, i ∈ {1..N} are treated as stable parameters implied by the market through the current
derivative prices. To reflect any evolution of these parameters the whole model needs to
be recalibrated by the technique suggested in Section 3.3.1. A detailed comparative study
on the two models is not presented here

In conclusion, the approach we presented in the MLN model can be interpreted as consist-
ing of multiple diffusions for the price process with different volatility parameters. Then we
can choose among these diffusions with probability λi to capture the true market dynamic
through the proposed calibration processes and consequently volatility changes randomly
over time. Notice that this underlying procedure is exactly what a mixture distribution
entails and we are taking full advantage of it. Since further knowledge about the corre-
sponding price process is not necessary for the valuation of European options, this question
is not addressed any further here.
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Chapter 4

Pricing Exotic Options

The effectiveness of our MLN model for stable period index options is empirically dis-
cussed in the previous section. We now extend the framework to the pricing of exotic eq-
uity derivatives, which has been a popular subject of research in quantitative finance and
actuarial risk management. Surprisingly, despite a large variation of mixture lognormal
model specification, there is limited published literature on its application to exotic options.
Admittedly, other complex models such as the simulated exponential Lévy’s process[39]
produce satisfactory results. However, most of them are numerically demanding. We now
explore this topic under the MLN framework specified in Chapter 2. In particular, we de-
rive closed-form pricing formulas for simple binary options and devise Black-Scholes style
efficient simulation techniques for the pricing of path dependent options. These topics form
a major portion of our contribution in this thesis.

4.1 Binary Options

A binary option is a European style option. It is also referred to as all or nothing option
or, in the foreign exchange/interest rate market, a digital option. Depending on the payoff
mechanics, there are two major categories of binary options:

1. Cash-or-nothing. For a call option, it pays the option holder a predefined amount
Y if the underlying stock price exceeds the strike price K at option maturity and 0
otherwise. For a put option, the reverse is true.
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2. Asset-or-nothing. For a call option, it pays the option holder the price of the under-
lying stock if it exceeds the strike price K at option maturity and 0 otherwise. For
a put option, the reverse is true.

As before, we limit the scope of our discussion to call options only. In both categories, the
call option holder receives nothing if the underlying stock price is below the strike price at
maturity. Intuitively, the two types of binary options correspond to the two-components
in the Black-Scholes option pricing formula (equation (2.12)), which will be shown below.
The reason for this is that the strike price itself is not a deduction in the option payoff,
which is solely based on the condition that the terminal underlying stock price exceeds the
strike level. Under the MLN framework specified in Chapter 3, pricing formulas can be
easily derived using partial expectations.

4.1.1 A Closed-form Pricing Formula under Mixture Lognormal
Model

Similar to European options, closed-form pricing formulas are available for binary options
and its derivation is quite straightforward. For cash-or-nothing call option, the terminal
payoff is Y if S(T ) > K and 0 otherwise. LetBCCMLN denote the price of this option under
our MLN framework specified in Chapter 3 with risk neutral probability space (Ω, F,Q),
components (Si, λi, σi), and current time t = 0. Assume a continuously compounded risk
free rate of r and dividend rate of δ, we obtain the risk neutral price by taking the expected
discounted payoff:

BCCMLN = e−rTEQ[Y | S(T ) > K]Q(S(T ) > K)

As each component Si(t) follows the Black-Scholes framework, equations (2.8) and (2.9)
apply. We also need to use an intermediary result in the alternative proof for Proposition
3.2.1 presented in Appendix B (equation (10)). This transforms the above equation to:

BCCMLN = e−rTY

N∑
i=1

Q(Si(T ) > K)

= e−rTY
N∑
i=1

λi(d
i
2), (4.1)
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where di2 denotes the d2 quantity (defined by equation (2.11)) calculated using the param-
eters of the ith component process, Si.

Similarly, for asset-or-nothing call option, the terminal payoff is S(T ) if S(T ) > K and
0 otherwise. Let BACMLN denote the price of an asset-or-nothing call option under the
MLN framework. In addition, based on Definition 2.1, Let PE+

MLN,K denote the partial

expectation of ST truncated from below at K under the MLN model and PE+
i,K denote the

Black-Scholes partial expectation from the ith component process. We apply the result in
equation 9 of the alternative proof for Proposition 3.2.1 presented in Appendix B to obtain
the arbitrage free price:

BACMLN = e−rTEQ[S(T ) | S(T ) > K]Q(S(T ) > K)

= e−rTPE+
MLN,K

= e−rT
N∑
i=1

PE+
i,K ,

= S0e
−(r−δ)T

N∑
i=1

N(di1) (4.2)

where the di1 denotes the d1 quantity (defined by equation (2.10)) calculated using the
parameters of the ith component process, Si. The last line above is the direct result of
equation (2.8) as each component process is assumed to obey the Black-Scholes framework.

Now we have derived the binary option pricing formulas under our MLN model. By
comparing them to the MLN pricing formula for call options in Proposition 3.2.1, it is
quite apparent that each binary option is “half” of the regular call option depending on
its type. The only deviation is that the payment amount Y may be (and usually is)
different from the strike price K. Under the special case where there exists a pair of
asset-or-nothing option and cash-or-nothing with cash payout Y = K sharing the same
maturity T and strike price K, a synthetic call option may be created by taking a long
position in the former and a short position in the latter. This provides some insight in
hedging strategies or portfolio constructions depending on the transaction costs associated
with each type of option. Undoubtedly, it is desirable to choose the one with the least cost.

A second key observation is that the MLN binary option price of a binary option is
simply a linear combination of Black-Scholes binary option prices from the components
with corresponding weights. This result justifies the previous observation since the rela-
tionship between binary and call options (as we discussed) is well established under the
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Black-Scholes model. We simply confirm that the same relationship holds under our MLN
framework. This gives us the concluding proposition for this section of MLN binary option
pricing formula.

Proposition 4.1.1: Consider a binary option (call or put, cash-or-nothing or asset-or-
nothing) under risk neutral pricing and the MLN model specified in Chapter 3. The stock
price process S(t) has mixing components Si(t) with corresponding weights λi and volatil-
ities σi for i ∈ {1, 2, ...N}. The arbitrage free binary option price is equal to a linear
combination of Black-Scholes binary option prices from the components weighed by the
mixing weights.

While the pricing formulas are given by equations (4.1) and (4.2), Proposition 4.1.1 clearly
resonates with our previous results on European option pricing (Proposition 3.2.1) and
Greek hedging (Proposition 3.2.2) under the our MLN framework. Again, numerical sim-
plicity is a key advantage possessed by the MLN model compared to other complex ap-
proaches. Next, we propose an efficient calibration technique for the MLN binary option
pricing model just established.

4.1.2 Calibration Technique and Empirical Example

The MLN binary option pricing model involves the same mixture parameters as the MLN
model for European option pricing established previously. Therefore, the calibration pro-
cedure of minimizing the sum of square errors discussed in Section 3.3.1 is expected to be
also a suitable approach for binary options. However, binary options are much less traded
on the exchange, which implies that only limited market data is available for model cali-
bration. Therefore, a better alternative approach is to estimate binary option parameters
using the corresponding European option data. As the underlying stock paths remains the
same, mixture parameters (e.g. mixing weights and component volatilities) do not vary
among types of options. Therefore, this approach does not result in any methodological
biases and can be further extended to price path dependent options as well.

As we have performed calibration of mixture parameters in Section 3.3.2 for the two-
component MLN model, it suffices to demonstrate the concept using the same model and
the same S&P500 index option data. We extract the calibrated parameters for the seven
sample days and explore the pricing performances of the MLN model versus the traditional
Black-Scholes model for binary cash-or-nothing call options. Notice that cash-or-nothing
options are the only binary options for S&P500 traded on CBOE and all payment amounts
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are equal to $1 (e.g. Y = 1). The implied volatilities are not of a main concern to us in
this extension of the MLN framework to exotic option pricing. Again, due to similarity
of component volatility parameters given by stable period low volatility index levels, the
pricing differences between our two-component MLN model and the Black-Scholes model
is likely to be small. By the same procedure, we take the average of the bid-ask pair as the
market option price and set r = 2%. By applying the pricing formula in equation (4.1), we
obtain the results as reported in Table 4.1 below. Recall that the Black-Sholes formula for
a binary option is a simplified version of equation (4.1) obtained by setting N = 1, where,
as before, N is the number of component processes in the MLN model.

19-Jun 21-Jun 22-Jun 25-Jun 26-Jun 28-Jun 29-Jun
µ(C) 0.6043 0.5685 0.5733 0.5466 0.5581 0.5611 0.6050

MLN σ(C) 0.3924 0.4055 0.4081 0.4141 0.4133 0.4147 0.4132
Prices MSE 0.0018 0.0019 0.0015 0.0020 0.0021 0.0018 0.0015

MAE 0.0376 0.0391 0.0399 0.0390 0.0388 0.0381 0.0338
MPE -2.06% -8.42% -9.68% -14.47% -13.94% -13.76% -10.17%
µ(C) 0.6044 0.5685 0.5733 0.5466 0.5581 0.5612 0.6051

BS σ(C) 0.3925 0.4056 0.4081 0.4141 0.4134 0.4146 0.4133
Prices MSE 0.0018 0.0019 0.0016 0.0020 0.0021 0.0019 0.0015

MAE 0.0378 0.0392 0.0400 0.0391 0.0388 0.0382 0.0338
MPE -2.11% -8.48% -9.70% -14.51% -13.96% -13.77% -10.18%

Table 4.1: Performance of fitted MLN and Black-Scholes models for binary call

It is evident that qualitatively similar results are obtained as previously for European call
options. No great improvement is observed from the MLN model over all seven sample
days. A consistent conclusion is also implied by the aggregate data. The percentage pricing
errors are plotted against spot-strike difference for both fitted models in Figure 4.1 below,
which display extremely similar patterns as in the previous case for call options. Therefore,
we conclude that the two-component MLN model does not yield much improvement over
the standard Black-Scholes model in terms of pricing accuracy for S&P500 index binary
options during stable market and low volatility periods.

4.2 Path Dependent Options: Asian Option

Asian options can be deemed as a fairly special case of path dependent options, where
the option payoff directly depends on the average of the daily closing prices until option
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(a) Black-Scholes (b) MLN

Figure 4.1: Results for binary option pricing, percentage error vs. spot-strike difference

maturity. Unlike other path dependent options such as the barrier option, where variation
in the underlying stock price of any particular day may render the option worthless, the
averaging effect diminishes the impact of price changes over any single day. Consequently,
price manipulative activities near option maturity has a less impact on Asian option prices.
At the same time, just as most of the path dependent options, there is no closed-form pric-
ing formula developed for Asian options. The difficulty lies in the fact that the average of
lognormal random variables is not lognormally distributed[7], which is the key assumption
for stock price under the Black-Scholes framework. The pricing is conducted through sim-
ulations, which we will present under our MLN model.

There are variations among Asian options. Most of them are European style without
any possibility of early exercise but exceptions exist. For our purpose, only European style
Asian options are considered. Let S̄(T ) denote the average daily closing price until option
maturity. An Asian option generally fall into one of the two categories below:

1. Average Strike Option: an average strike call option pays (S(T ) − S̄(T ), 0)+ and
average strike put option pays (S̄(T )− S(T ), 0)+ at option maturity.

2. Average Price Option: an average price call option pays (S̄(T )−K, 0)+ and average
strike put option pays (K− S̄(T ), 0)+ at option maturity, where K is the strike price

The term “average” may be refers to either an arithmetic mean or a geometric mean. This
is specified for the Asian option contract. To avoid redundancy, we discuss the pricing for
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the arithmetic average price call option only. Published literature on the pricing of Asian
options is abundant. Chen and Lyuu (2007) derived a closed-form formula for the lower
bound of arithmetic average Asian options (either average price or average strike) from the
stochastic relationship between the time-t stock price and average stock price[7]. Other
earlier literature focused on pricing the option directly, which includes the commonly used
Monte Carlo simulation method in Boyle (1997)[3], Binomial Tree method in Hull and
White (1993)[24], and approximation techniques using Taylor’s expansion in Ju (2002)[26].

We present a Monte-Carlo simulation pricing technique under risk neutral pricing and
the MLN model specified in Chapter 3, where the stock price conditionally follows a mix-
ture lognormal distribution as defined in equations (3.13) and (3.14). This difference
in distributional assumption is a fundamental difference between this approach and the
Monte-Carlo method under the Black-Scholes framework. We will implement and compare
the pricing results from the two-component mixture model in Section 3.2.3 and the one
from the Black-Scholes framework. Accuracy will also be comparatively analyzed with the
real market quote.

4.2.1 Pricing Technique with Simulation

Under the MLN framework specified in Chapter 3, we assume the stock price follows a
continuous mixture diffusion path of N components. Therefore, the arbitrage-free price of
an Asian average price call option under risk neutral measure (Ω, F,Q) is given by:

ACAPMLN = e−rtEQ[(
1

T

T∫
0

S(t)dt−K)+], (4.3)

where ACAPMLN denotes the value of the option under the MLN framework and stands
for “Asian call option, average price”. By Definition 3.2.1, we decompose the integral
expression into integral of components Si(t) to obtain:

ACAPMLN = e−rt
N∑
i=1

λiE
Q[(

1

T

T∫
0

Si(t)dt−K)+] (4.4)

In reality, the average price is not calculated continuously. Rather, it is calculated in a
discrete manner by taking the arithmetic average of the daily (or other periodically) closing
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prices. This simplifies equation (4.3) and (4.4) above to:

ACAPMLN = e−rtEQ[(
1

T

T∑
j=1

S(j)−K)+], (4.5)

where we have discretized the stock price path so that S(j) represents the closing price
on day j. As mentioned previously, the distribution of the average term is difficult to
derive under the Black-Scholes framework. It can be reasonably assumed that the same
problem persists under our MLN model, which involves more complex mixture lognormal
distributions. Therefore, we resort to Monte Carlo simulation in generating possible future
stock price paths.

Under the Black-Scholes model, simulation is performed based on equation (2.3), where the
Brownian motion takes randomly generated values from a standard normal distribution.
By Definition 3.2.1 and equation (3.12) in our MLN model specifications, we obtain the
equivalence of equation (2.3) under our MLN framework and risk neutral pricing with risk
neutral probability space (Ω, F, P ):

S(t) | (S0, C = i) = S0e
(r−δ− 1

2
σ2
i )(t)+σi

√
tZ(t), (4.6)

where Q(C = i) = λi.

Based on this equation, we propose the following simulation based pricing procedure. To
generate a single stock price path, we need to:

1. Fully calibrate the MLN parameters using the European Call option data for the
same underlying stock. This is consistent with the approach for binary options and
the calibration technique is discussed in Section 3.3.1.

2. For in-sample testing, the parameter time series may be used for sufficiently large
time window. In practice, we need to simulate future price paths. Then we can
either take the average over the time series for each parameter1 or use the parameter
estimates for the most recent day, whichever yields results that are more consistent
with the economic/market trends. Notice that a subjective input is required here
unless some external models are introduced.

1This includes the risk-free rate determined using the put-call parity condition as discussed in Section
3.3.1
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3. To generate the next closing price from the current price, draw a value wt from a
standard normal distribution. This will be used as the shock Z(t) value.

4. Determine which component process dominates. We do so by first partitioning the
[0,1] interval to N subintervals whose lengths are proportional to the associated
weight parameter λi. This creates a one-to-one matching between components and
intervals. Randomly generate a number from a uniform [0,1] distribution. Choose
the component whose interval this number falls into.

5. Suppose that component i dominates from step 4, compute the next closing price as:

S(t) = S0e
(r−δ− 1

2
σ2
i )(t)+σi

√
twt , (4.7)

where t = 1
365

as we are averaging daily prices. Record this price and the correspond-
ing date.

6. Shift the simulation window one day forward so that the price generated in step 4
enters the σ-algebra and is treated as the new S0. Recursively perform steps 1-4 until
we have reached and generated the maturity price.

For each price path, the option payoff is calculated as in equation (4.5). The fair price of
the Asian average price call option is then the discounted mean of those payoff values. In
our implementation, we shall produce 10000 price paths, which is sufficient for demonstra-
tion purpose. The option price is the discounted average of the payoffs produced under
each simulated path.

There are several important elements that comprises the foundation of this simulation-
based pricing method. First of all, it precisely implements the definitions and assumptions
embedded in our MLN model, which is particularly pronounced in the modelling of mixture
distribution by Definition 3.2.1. Secondly, it effectively applies the established Monte-Carlo
simulation technique[3] for the Black-Scholes framework to each component, which, as dis-
cussed in Chapter 3, falls into the Black-Scholes case. Therefore, all rationales given by
previous researchers on this topic serve well to justify our approach. Again, this is the
main advantage of our MLN model over other complex exotic option models.

4.2.2 Pricing Example and Analysis

As Asian options are usually traded over-the-counter (OTC), there are no Asian option
quotes available to us from the exchange data. Little information is given by other public
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sources as well. Therefore, we do not have a data set of real market price as the benchmark
for pricing precision analysis. In addition, we found in Section 3.3.2 that the S&P500 in-
dex option data sample does not yield component volatility parameters that are sufficiently
different in magnitude to yield sharp demonstration. Therefore, we devise an example in a
semi-hypothetical setting, where the calibrated parameters are preset. We will only focus
on the pricing differences (if any) between the MLN model and Black-Scholes model to
examine any possible improvements of our MLN model.

Example 4.2.2: pricing average price Asian call options

The SP500 index reaches $1357.98 at the end of June 19, 2012. Assume that the fol-
lowing average price Asian call options are traded:

1. APAC with K=1520 maturing in 60 days,

2. APAC with K=1350 maturing in 60 days,

3. APAC with K=1210 maturing in 60 days,

4. APAC with K=1410 maturing in 120 days,

5. APAC with K=1410 maturing in 365 days,

6. APAC with K=1410 maturing in 547 days,

where the price average is calculated from daily closing prices. The risk free interest rate is
r = 0.02 and the stock pays no dividend. Suppose that, through the calibration process in
Section 3.3.2 using European option quotes on the index, we obtain the following parameter
estimates:

1. under the Black-Scholes model: σ=0.27,

2. under the two-component MLN model: σ1=0.15, σ2=0.45, and λ=0.65

We would like to price the above 6 options using both the MLN and the Black-Scholes mod-
els.

Notice that in this semi-hypothetical setting, we deliberately choose volatility values so
that the weighted average of the component volatilities under the two-component MLN
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model stays close to the single volatility in the Black-Scholes model2. This forms a rela-
tively fair basis for model comparison. We would like to see if the independent existence
of the downside and upside component introduces significant effect in the produced Asian
call option prices. Using the simulation based methodology discussed previously in Section
4.2.2. we generate 100 prices per option. The result is summarized in Table 4.2 below,
where the statistics is organized by strike-maturity combinations and the last row contains
the percentage differences between the mean option prices given by the two models.

K − T Comb. 1520-60 1350-60 1210-60 1410-120 1410-365 1410-547
Mean 3.1411 48.3368 160.5432 37.2577 79.4346 102.4843

MLN Std. 0.1786 0.6909 0.9382 0.6112 1.4617 1.6330
Prices Max 3.6512 50.5248 163.1176 38.5183 82.9906 106.6586

Min 2.7183 46.4855 158.9941 36.0075 75.2663 99.0957
Mean 2.1332 45.5134 160.4397 33.2391 72.4691 95.6772

BS Std. 0.1341 0.5945 0.8972 0.6049 1.2386 1.5424
Prices Max 2.5129 47.5565 163.1366 34.6224 76.2676 98.3991

Min 1.8119 44.1810 157.8285 31.8432 69.3904 90.7806
% Mean Dif. 47.24% 6.20% 0.31 % 12.09 % 9.61% 7.11 %

Table 4.2: Performance of MLN and Black-Scholes models for Asian call

Several key conclusions can be drawn from the results. Firstly, the variances in prices
given by the MLN model exceed the ones produced by the Black-Scholes model for all 6
options. This is consistent with our expectation as the mixture distribution contains more
uncertainly than the single lognormal distribution. Secondly, the Black-Scholes prices for
all options fall below their counterparts from the MLN model. Though it may be biased
from the relationship we imposed on the volatility parameters, some general trends do
emerge: For the same time to maturity, difference in the mean option prices decrease as
option becomes in-the-money3 (see results for the first 3 options). For the same strike
price, such difference slightly decreases as time to maturity increases (results for the last 3
options).

While both phenomenon can be well explained, we start from the first option, where

2We do so to construct a fair model comparison basis, which is ideally done through calibration. The
implication for using the weighted average volatility as an approximation is given by the previous result in
Table 3.4. Working with equation (3.29) is not an alternative as it yields approximated implied volatilities.

3We use “in-the-money” or “out-of-the-money” to refer to the relationship of the spot underlying stock
price and the strike price only. Their precise definitions for Asian options include the average stock price
and is not what we mean here.
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the difference is most pronounced. We have strike price K = 1520 and time to maturity
T = 60 days. Taking into account the low interest rate and thus small risk-neutral drift
term, this option is significantly out-of-the-money and close to maturity. In order for the
option to generate a non-zero maturity payoff, it needs to go through a series of significant
upward jumps before expiration, which is easier to achieve under the MLN case due to the
existence of the upside component S2(t). When this happens, the two-component mixture
mimics Merton’s Jump Diffusion process(See Leisen (2004)[29]). The sensitivity to the
downside component S1(t) is small as the option is deeply out-of-the money and the mag-
nitude of maturity moneyness is irrelevant if the option expires with no payoff. However,
the downside component becomes more effective in offsetting the high volatility momen-
tum as the option becomes more deeply in-the-money (K = 1210), where each movement,
whether up or down, is equally significant in affecting the maturity payoff. This explains
the first trend, which is also illustrated by Figure 4.2 below. The vertical axis represents
the percentage price difference calculated as

APACMLN − APACBS
APACMLN

,

and the horizontal axis is the option number. While T = 60 days for all plotted options,
options 1 to 100 have K = 1520, options 101-200 have K = 1350, and options 200 to 300
share K = 1210. The three distinct regions clearly display a stepwise decreasing pattern
as we expect.

Figure 4.2: APAC price differences under MLN and BS models, fixed maturity
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The second trend is also intuitive. The effects of both components diminish systematically
when the average price is taken on a larger pool of daily closing prices brought by a longer
time to maturity. Notice that the first trend is also visible in the last three options. As
they are all out-of-the money, the one with the least maturity has the largest mean price
difference to its Black-Scholes counterpart.

Therefore, we see that under the two component MLN model, the downside component
does not exert significant momentum of crash-o-phobia effect to Asian options. Even when
its existence is significant (λ > 0.5 and thus the expectations S1

t < St < S2
t ), the effect

is offset by the price averaging nature of Asian options as well as the effect of the upside
component. The jump-diffusion nature of the MLN model makes near-maturity out-of-the
money call options more expensive than their corresponding Black-Scholes prices. In spite
that no real market quotes is available for accuracy comparison, the observations can be
utilized for hedging purposes. For instance, a short position in a near maturity out-of-
the-money Asian call should be conservatively hedged using the MLN model to prevent
unexpected losses.

4.3 Path Dependent Options: Barrier Option

In contrast to Asian options, Barrier options are regular Call or Put options with an
underlying stock price barrier or trigger level that either must be met or must be avoided
for the option to be active at maturity. Almost all barrier options are European style. As
a result, the price of a barrier option must be less than that of its European counterpart.
Under the broad category of Call or Put options, there are four types of barrier options:

1. up-and-out options: the option becomes worthless if the underlying stock attains
a price above the barrier some time before maturity. Otherwise it functions as a
European option.

2. down-and-out options: the option becomes worthless if the underlying stock attains
a price below the barrier some time before maturity. Otherwise it functions as a
European option.

3. up-and-in options: the option becomes active as an European option if and only if
the underlying stock attains a price above the barrier some time before maturity.
Otherwise it pays nothing at maturity.
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4. up-and-in options: the option becomes active as an European option if and only if
the underlying stock attains a price below the barrier some time before maturity.
Otherwise it pays nothing at maturity.

The former two types of barrier options are commonly referred to as “knock-out options”
while the latter two are “knock-in options”. Once the option is knocked-out, it immedi-
ately becomes worthless and there is no means of reversal. On the other hand, once the
option is knocked-in, it remains effective regardless of future price movement. Therefore,
any jump in price may incur a huge impact on the option value. Though stock prices
are modelled by continuous stochastic paths under the Black-Scholes framework as well
as in our MLN model, in practice, the price is usually discretely measured at fixed time
steps. Discrete price monitoring brings difficulty to barrier option pricing. In particular, it
does not allow the development of a closed-form formula as in the case of continuous price
unless m-dimensional Brownian motions are used, where m is the number of monitoring
points(See Kou (2003)[27]). The complexity of such a model can be reasonably envisioned.
On the other hand, barrier options with continuously monitored underlying stock price is
a classic topic fist studied by Merton(1973)[33], who derived the analytical pricing formula
for a down-and-out put option. Subsequent research by Reiner and Rubinstein (1991)[36]
refined Merton’s work and further proposed closed-form formulas for all 8 possible types of
Barrier options by solving Black-Scholes PDEs with additional barrier conditions. These
formulas are shown in Appendix E. We do not review the detailed derivation as it is far
more complex than that of the Black-Scholes model reviewed in Chapter 1. For barrier
options with discrete price measurements, pricing is commonly performed through Monte
Carlo simulation as we introduced for Asian options.

Nevertheless, all those pricing formulas and techniques are base on the Black-Scholes frame-
work, where the stock price follows a single diffusion process described by equation (2.1).
We now devise a pricing formulas and methodologies under our MLN model introduced in
Chapter 3, where the price dynamic is described by a mixture diffusion process (equation
(3.3) to (3.7)). We then implement the techniques using the same S&P500 data and the
two-component mixture model as before and compare the pricing results to those produced
under the Black-Scholes framework.
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4.3.1 Pricing Formulas and Simulation-based Pricing Methodol-
ogy

The pricing of Barrier options, whether continuously or discretely monitored, can be sub-
stantially simplified by identifying the properties and parity conditions embedded in the
option payoff. Those properties are commonly used under the Black-Scholes framework.
However, as the derivation is based on the option payoff at maturity, they also hold true
under our MLN model.

Let H denote the barrier of the option and K the strike price as usual. An up-and-
out call option with H ≤ K, which has no value as the option is knocked out before it
ever becomes in the money. As a result, it has a price of 0. Similar argument applies to a
down-and-out put option with H > K. Notice that if we categorize all possible options by
the relationship between H and K combined with call/put type, we will have a total of 16
cases. The simple result under these two special cases saves a lot of derivation efforts.

In addition to the two special cases above, consider an up-and-in call option with H ≤ K.
The barrier is satisfied automatically if the call option ever becomes in-the-money. If not,
the option has no payoff and barrier is thus of no concern. Therefore, the barrier in this
case is ineffective and the option functions exactly the same way as a regular European call
option, meaning its no-arbitrage price is equal to that of its European option counterpart.
Similar argument applies to a down-and-in put option with H > K. These two cases
further simplifies the derivation of formula.

Lastly, consider taking long positions in a pair of down-and-in call and down-and-out call
options with the same barrier, strike price, and maturity. Clearly, exactly one of these two
options will stay effective at maturity and the payoff is identical to that of an equivalent
European call option. To guarantee no arbitrage, we have the following relationship:

CDI + CDO = CBS, (4.8)

where the subscript DI and DO represent the barrier type (e.g.“down-and-in” and “down-
and-out” respectively).

Such a relationship is known as barrier option in-out parity. By the same argument,
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the other three parities can be easily obtained:

CUI + CUO = CBS, (4.9)

PDI + PDO = PBS, (4.10)

PUI + PUO = CBS, (4.11)

where the subscript UI and UO also represent the barrier type (e.g.“up-and-in” and “up-
and-out” respectively).

All of these three major properties are used in Reiner and Rubinstein (1991)[36], where
the closed-form formulas for continuously monitored barrier option prices are derived. We
summarized these key results and presented them in Appendix E. As those formulas are
built under the Black-Scholes framework, the following proposition extends its application
to continuously monitored barrier options under our MLN framework.

Proposition 4.3.1: Consider a continuously monitored barrier option (either call or put,
knock-in or knock-out) under risk neutral pricing and the MLN model specified in Chapter
3. The stock price process S(t) has mixing components Si(t) with corresponding weights λi
and volatilities σi for i ∈ {1, 2, ...N}. The arbitrage free barrier option price is equal to a
linear combination of Black-Scholes barrier option prices from the components weighed by
the mixing weights.

Similar to previous propositions, we prove the result by conditioning on the underlying
mixture state variable C. Without loss of generality, it suffices to present the proof for an
down-and-in call option only. Define binary indicator variable 1A, which takes value of 1
if event A is holds and 0 otherwise. Also define the following quantity:

ξ(S,H) = inf{t|t ≥ 0, S(t) < H}.

Under risk-neutral pricing with probability space (Ω, F,Q), the price of this down-and-in
call option is equal to the expected discounted value of its payoff. We add the superscript
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to indicate which framework the pricing is based on. This gives us:

CMLN
DI = EQ[e−rT (S(T )−K)+1ξ(S,H)<T ]

= EQ[e−rTE[(S(T )−K)+1ξ(S,H)<T | C]]

= e−rT
N∑
i=1

EQ[(Si(T )−K)+1ξ(Si,H)<T | C = 1]Q(C = i)

=
N∑
i=1

λiE
Q[e−rT (Si(T )−K)+1ξ(Si,H)<T ]

=
N∑
i=1

λiC
BS,i
DI , (4.12)

where CBS,i
DI denotes the continuously monitored down-and-in option price under the Black-

Scholes model using parameters from component process Si(t). This proves Proposition
4.3.1 above. Therefore, we have obtained closed-form pricing formulas for all continuously
monitored barrier options under our MLN framework. The fully extended forms of these
formulas are obtained by substitutions of the relevant Black-Scholes barrier option formu-
las in Appendix E. We do not demonstrate this trivial step here.

For discretely measured barrier options, we propose a simulation based pricing technique.
The simulation procedure is the same as the one proposed in Section 4.2.1 for Asian options
except for the calculation of payoff. The modification is added after step 6 of the simula-
tion process, where, for each simulated stock path, we determine if the barrier option of
interest is knocked-in or knocked-out at monitoring points and calculate the maturity pay-
off accordingly. The price of the option is the discounted average of the maturity payoffs
produced by each simulated price path. Again, for demonstrative purpose, we generate
10000 stock price path when pricing each option. Also, we assume the underlying stock
price is monitored at the end of every 3 days.

4.3.2 Pricing Example and Analysis

In this section, we show the application of the pricing formulas and techniques for barrier
options proposed in the previous section. We provide the example for pricing down-and-in
call options. As discussed in the previous section, closed-form formulas are available for
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continuously monitored options only and simulation-based technique is used when pricing
discretely monitored barrier options. We illustrate the result under each of the two scenar-
ios. Similar to Asian options, real market quotes for barrier options are not available to
us, indicating the absence of a comparative basis for pricing accuracy. To emphasize the
difference (if any) in pricing results by the two models, we use the same assumed parame-
ters as in our demonstration for Asian options

Example 4.3.2: pricing down-and-in barrier call options

The SP500 index reaches $1357.98 at the end of June 19, 2012. Assume that the fol-
lowing down-and-in barrier call options are traded:

1. CDI with K=1520 maturing in 60 days,

2. CDI with K=1350 maturing in 60 days,

3. CDI with K=1210 maturing in 60 days,

4. CDI with K=1410 maturing in 120 days,

5. CDI with K=1410 maturing in 365 days,

6. CDI with K=1410 maturing in 547 days,

The barrier is H = 1300 for all 6 options. The risk free interest rate is r = 0.02 and the
stock pays no dividend. Suppose that, through the calibration process in Section 3.3.2 using
European option quotes on the index, we obtain the following parameter estimates:

1. under the Black-Scholes model: σ=0.27,

2. under the two-component MLN model: σ1=0.15, σ2=0.45, and λ=0.65

We would like to price the above 6 options using both the MLN and Black-Scholes models
under two different scenarios:

1. the barrier options are monitored continuously,

2. the barrier options are monitored at the end of every 3 trading days,
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and compare the results obtained.

The first scenario allows us to apply closed-form formulas directly. We implement the
extended formulas obtained by applying Proposition 4.3.1 and the Black-Scholes barrier
option pricing formulas in Appendix E. The result is summarized in Table 4.3 below.

K − T Comb. 1520-60 1350-60 1210-60 1410-120 1410-365 1410-547
CMLN
DI 6.4971 21.1975 67.9332 28.6990 79.7177 110.7492
CBS
DI 2.2038 20.1638 74.6123 26.6403 84.3119 118.8180

% Dif. 66.08% 4.88% -9.83 % 7.17 % -5.76% -7.29 %

Table 4.3: Performance of MLN and Black-Scholes models for continuous barrier call

While a fairly small price sample is produced by the two models for comparison, some key
observations can be made readily.

First of all, the near maturity deeply out-of-the-money4 option is priced substantially
higher by the MLN model as exemplified by the first option with K = 1520 and T = 60
days, which is similar to what we observed for Asian average price call options priced
by our proposed simulation method. This effect is magnified by the knock-in barrier of
H = 1300, which is much smaller than the strike price. To produce a positive payoff, the
stock price must dive below the barrier and rise above the strike price at maturity. Such
paths are more likely under the MLN model, which, as discussed previously, is capable of
producing the jump-diffusion pattern due to the existence of the volatile upside component
S2(t). The downside component is least effective here. However, as the option becomes
in the money, the barrier becomes the only concern and the jump-diffusion is less valued.
As a result, the downside component exerts more momentum due to its heavier weights.
This decreases the MLN prices to levels below their Black-Scholes counterparts as shown
by the table. Unlike Asian options, where averaging effects takes part in offsetting the
contradicting forces from the two MLN components, any price difference is pronounced in
this case, as demonstrated by the first three options in the table.

Secondly, the same pattern propagates as time to maturity increases, which is shown by
the last three options sharing the same strike price and barrier. The main reason is that
the requirement for jump-diffusion is less when a longer time to maturity remains, putting
the more heavily weighted downside component into a dominant position. A significant

4Similar to the Asian option case, we use moneyness in describing the spot-strike relationship only.
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positive price difference exist for the fourth option with K = 1410 and T = 60 days. The
argument is exactly the same as the one for the first option. However, as moneyness is
less nagative and distance to barrier is smaller in this case, the MLN price exceeds the
Black-Scholes price by a smaller amount.

Notice that the rationales here for the observed patterns are more systematic and firmly
established compare to the ones drawn for Asian options. Moreover, recall that for Asian
options, though the MLN prices decrease and move toward their Black-Scholes counter-
parts in the same K − T patterns observed here for binary options, the MLN prices never
fall below the corresponding Black-Scholes prices. This is not true in our barrier option
case, where the MLN prices can decrease in the identified pattern and eventually fall below
their Black-Scholes counterparts. This is most likely caused by the fundamental difference
in option mechanics.

Our results above show that continuously monitored down-and-in call options are sen-
sitive to crash-o-phobia effects. We now examine if the same argument hold for discretely
monitored barrier options. To price theses options, we implement the same simulation
based technique as for Asian options introduced in Section 4.2.1. Similar to our analysis
for Asian options, we price each of the six barrier options 100 times to using each model
to obtain a summary statistics for the produced prices. The results are presented in Table
4.4 below.

K − T Comb. 1520-60 1350-60 1210-60 1410-120 1410-365 1410-547
Mean 1.6578 14.3183 54.9675 22.2282 79.7520 110.1820

MLN Std. 0.1448 0.4388 0.8090 0.6971 1.7417 2.6866
Prices Max 1.9863 15.2823 57.2432 23.6008 83.7797 121.1133

Min 1.3824 13.3226 52.3798 20.5401 75.7857 107.8225
Mean 1.0847 12.6478 55.9777 18.9996 70.9619 104.3091

BS Std. 0.1091 0.4289 0.7749 0.6118 1.7033 2.2628
Prices Max 1.3399 13.7219 56.8648 20.6072 74.5928 109.8326

Min 0.8430 11.7010 52.8357 17.5872 66.5029 99.9039
% Mean Dif. 34.57% 11.67% -1.84 % 14.52 % 11.02% 9.44 %

Table 4.4: Performance of MLN and Black-Scholes models for discrete barrier call

Observe that the mean option prices are generally lower than prices of the continuously
monitored down-and-in call options in Table 4.3. This is expected as less frequent mon-
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itoring decreases the chance that the option gets knocked in. Exceptions are option 5
and 6 from the MLN model, where the prices are similar to those from the continuous
cases. This can be partially explained by the long maturities these two options possess,
which means that there is a small chance that they stay above the barrier. Also notice
that under this discrete case, the relationship between price levels, strike price, and ma-
turities resemble what we observed previously for Asian options in Section 4.2.2. The
differences between each pair of MLN and Black-Scholes prices decrease as option become
in-the-money and as time to maturity increases. However, rarely do the MLN price fall
below their Black-Scholes counterparts. This implies that for discretely monitored barrier
options, the crash-o-phobia effect implied by the downside component is overcome by the
combined effect of jump-diffusion and high mixture volatility brought by the upside com-
ponent, especially for long maturities. This is a departure from the patterns observed for
continuously monitored barrier options. On the other hand, such a departure does not
give rise to a contradiction. Figure 4.3 below shows the percentage differences between
all MLN and Black-Scholes prices for the first three options, where maturity is fixed at
T = 60 days. The options are numbered so that prices 1 to 100 correspond to option 1
with K = 1520, prices 101 to 200 correspond to option 2 with K = 1350, etc.

Figure 4.3: CDI price differences under MLN and BS models, fixed maturity

Notice that similar to Figure 4.2 for Asian call options, 3 decreasing regimes are easily
identified. This suggests similar implications for hedging barrier options, where short
positions in near maturity out-of-the-money calls are conservatively hedged using the MLN
model. Again, pricing accuracy is beyond our study in this case.
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Chapter 5

Conclusion

In conclusion, we have examined the main properties of the mixture lognormal option pric-
ing model. We started the analysis by specifying the mixture diffusion process followed by
the stock price path and extend the result to define and form a general MLN model for
stock price with time-invariant component volatilities. Closed-form formulas are derived
for European style options under our MLN framwork based on the proved propositions
that option prices under the mixture model are linear combinations of the corresponding
Black-Scholes prices.

The two-component mixture, as the simplest MLN model, is closely studied and empir-
ically demonstrated through an application to S&P500 index options under a relatively
tranquil and stable volatility period. It appears that though significant existence of crash-
o-phobia parameters is evident, the individual component volatilities do not differ much
from each other, delivering only minimal improvements in pricing accuracy from our MLN
model over the Black-Scholes model. This departs from the results in previous researches
applying the mixture model to turbulent period stock options. Nevertheless, we found
that the capability of producing the desired volatility smiles is preserved as the difference
between component volatilities widens in magnitude, meaning the downside component
S1(t) plays a critical role in generating the volatility skews from market information, and
the two-component model is sufficient for capturing this feature.

As a major contribution of this thesis, we extended our MLN model to price exotic op-
tions. We found that binary options for tranquil period stock index are not priced at
a significant better accuracy under the MLN model for the same reason of similarity in
component volatilities. This is expected to be improved for volatile period markets or
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individual stocks. We proposed simulation-based pricing methodology for Asian options
and discretely monitored barrier options. It is found that call options are priced higher by
our MLN model compared to the Black-Scholes prices due to the jump-diffusion nature of
our mixture model brought by the high-volatility upside component S2(t). The magnitude
of this difference decreases as time to maturity or moneyness increases. This same trend
also prevails for continuously monitored barrier call options, where closed-form formulas
are available. Nevertheless, crash-o-phobia and effect of the downside component are more
pronounced so the MLN prices fall below the Black-Schole prices for options with long
maturities. These unique features provides insights in the formulation of risk management
portfolios, where the MLN model should be used to create conservative hedging strategies
for short positions in these exotic options.

Overall, our MLN model is an effective option pricing tool for assets during high volatility
period, especially when stylized return patterns are evident. The volatility smile problem
is well resolved by this framework. For future work, extensions and more empirical study
of the model on various financial derivatives traditionally priced under the Black-Sholes
model is desired.
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APPENDICES

This section contains proofs, formulas, and other supplemental material that facilitates the
comprehension of key concepts presented in the thesis.
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Appendix A

Proof of Proposition 3.1

The Fokker Plank equation applies to diffusion processes in the following form:

dXt = D1(Xt, t)dt+
√

2D2(xt, t)dZ(t), (A.1)

Let f(x, t) denote the density function of Xt. The Fokker-Plank equation states that the
following holds true for all defined t ∈ R+:

∂

∂t
f(x, t) = − ∂

∂x
[D1(x, t)f(x, t)] +

∂

∂x

[
D2(x, t)

∂

∂x
f(x, t)

]
. (A.2)

Apply equation (A.2) to equation (3.1) and (3.2), we get:

∂

∂t
f(S, t) = −µS ∂

∂s
f(S, t) +

1

2
σ2(S, t)S2 ∂

2

∂S2
f(S, t) (A.3)

∂

∂t
fi(S, t) = −µiS

∂

∂S
fi(S, t) +

1

2
σ2
i S

2 ∂
2

∂S2
fi(S, t), i ∈ 1, 2..N. (A.4)

Now, multiply both sides of equation (A.4) by the mixture weight λi and take summation
for i ∈ 1, 2, ..N , we obtain equation (A.5) below by the linearity of partial differentiations:

∂

∂t

N∑
i=1

λifi(S, t) = −S ∂

∂S

N∑
i=1

λiµifi(S, t) +
1

2
S2 ∂

2

∂S2

N∑
i=1

λiσ
2
i fi(S, t), i ∈ 1, 2..N. (A.5)
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If all drifts terms are set to be equal, that is to say, µ = µi, ∀i ∈ 1, 2..N , equation (A.5) is
simplified by factoring out the drift term from the summation:

∂

∂t

N∑
i=1

λifi(S, t) = −µS ∂

∂S

N∑
i=1

λif(S, t) +
1

2
S2 ∂

2

∂S2

N∑
i=1

λiσ
2
i fi(S, t), i ∈ 1, 2..N. (A.6)

By the definition of the mixture diffusion process in equation (3.4), we know that

f(S, t) =
N∑
i=1

λif(S, t),

and therefore equation (A.6) is further simplified to:

∂

∂t
f(S, t) = −µS ∂

∂S
f(S, t) +

1

2
S2 ∂

2

∂S2

N∑
i=1

λiσ
2
i fi(S, t), (A.7)

Matching equation (A.7) with equation (A.3), it is apparent that:

1

2
S2σ2(S, t)

∂2

∂S2
f(S, t) =

1

2
S2 ∂

2

∂S2

N∑
i=1

λiσ
2
i fi(S, t), (A.8)

Integrate twice both sides of the equation with respect to t and solve for σ2(s, t) to get

σ(S(t), t) =

√√√√√√√
N∑
i=1

λiσ
2
i fi(S(t), t)

N∑
i=1

λiS(t)2fi(S(t), t)

, (A.9)

which is exactly as we stated in equation (3.6).
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Appendix B

Proof for Proposition 3.2.1 Using
Partial Expectations

Similar to equation (2.7) in the review of the Black-Scholes Framework, using risk neutral
pricing:

CMLN = EQ[(e−rT (S(T )−K)+]

= e−rTEQ[(S(T )−K)+]

= e−rTEQ[S(T )−K | S(T ) > K]Q(S(T ) > K)

= e−rT [PE+
K(S(T ))−KPr(S(T ) > K)]. (B.1)

The MLN framework is as defined in Section 3.1 and Section 3.2.1. To simplify the notation,
we ignore S(T ) in the notation by treating it as the default variable of interest unless
otherwise specified. Based on definition 2.1, Let PE+

MLN,K denote the partial expectation

of ST truncated from below at K under the MLN model and PE+
i,K denote the Black-

Scholes partial expectation from the ith component process. Also, let f(s) denote the
density function for S(T ) and fi(s) the density function for mixing component Si(T ), with
F (s) and Fi(s) being the corresponding distribution function. Then, by equation (3.11),
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we have

PE+
MLN,K =

∫ ∞
K

sf(s)ds =

∫ ∞
K

s
N∑
i=1

λifi(s)ds

=
N∑
i=1

λi

∫ ∞
K

sfi(s)ds

=
N∑
i=1

λiPE
+
i,K . (B.2)

Similarly, by equation (3.10), we have:

Q(S(T ) > K) = 1− F (K) = 1−
N∑
i=1

λiFi(K) (B.3)

= 1−
N∑
i=1

λi(1−Q(Si(T ) > K))

= 1− 1 +
N∑
i=1

λiQ(Si(T ) > K)

=
N∑
i=1

λiQ(Si(T ) > K).

Equations (B.1) to (B.3) give:

CMLN = EQ[(e−rT (S(T )−K)+]

= e−rT [PE+
MLN,K −KQ(S(T ) > K)]

= e−rT [
N∑
i=1

λiPE
+
i,K −K

N∑
i=1

λiQ(Si(T ) > K)]

=
N∑
i=1

λie
−rT (PE+

i,K −KQ(Si(T ) > K))

=
N∑
i=1

λiC
i
BS, (B.4)

which is what we expect from Proposition 3.2.1. The proof for put option requires only a
trivial modification on the payoff functions and the type of partial expectation involved.
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Appendix C

Formula for European Option Greeks
under Black-Scholes Framework

For an European stock option with time to maturity T and strike price K, let S denote
the initial/current stock price, r the continuously compounded risk free rate, and δ the
continuously compounded dividend rate. The option Greeks can be calculated via the
following formulas [21]:

Greek Call option Put option
∆ e−δTN(d1) −e−δTN(−d1)

γ e−δT
N
′
(d1)

Sσ
√
T

e−δT
N
′
(d1)

Sσ
√
T

θ
−e−δTSN ′(d1)σ

2
√
T

− rKe−rTN(d2) +

δSe−δTN(d1)

−e−δTSN ′(d1)σ
2
√
T

+rKe−rTN(−d2)−

δSe−δTN(−d1)
ρ KTe−rTN(d2) −KTe−rTN(−d2)
ψ −STe−δTN(d1) −STe−δTN(−d1)
ν Se−δTN

′
(d1)
√
T Se−δTN

′
(d1)
√
T

Table C.1: Black-Scholes formulas for option Greeks

where d1 and d2 are specified in equations (2.10) and (2.11) and we repeat here for conve-
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nience:

d1 =
ln(

S

K
) + (r − δ +

1

2
σ2)T

σ
√
T

,

d2 =
ln(

S

K
) + (r − δ − 1

2
σ2)T

σ
√
T

= d1 − σ
√
T ,

and

N
′
(d1) = φ(d1) =

e
−d21
2

√
2π
.
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Appendix D

Proof for Proposition 3.2.3

We prove this proposition by conditioning on the state variable C underlying the mixture
process.

V art(S(T )) =Et[V art(S(T ) | C)] + V art(Et[S(T ) | C])

=(V ar(S1(T ))λ+ V ar(S2(T ))(1− λ))

+ (E[S1(T )]2λ+ E[S2(T )]2(1− λ))

− (E[S1(T )]λ+ E[S2(T )](1− λ))2

=λV ar(S1(T )) + (1− λ)V ar(S2(T )) + λE[S1(T )]2

+ (1− λ)E[S2(T )]2 − λ2E[S1(T )]2 − (1− λ)2E[S2(T )]2

− 2λ(1− λ)(E[S1(T )]E[S2(T )])

=λV ar(S1(T )) + (1− λ)V ar(S2(T )) + λ(1− λ)E[S1(T )]2

− λ(1− λ)E[S2(T )]2 − 2λ(1− λ)(E[S1(T )]E[S2(T )])

=λV ar(S1(T )) + (1− λ)V ar(S2(T )) + λ(1− λ)(E[S1(T )]− E[S2(T )])2,

which is exactly what we proposed.
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Appendix E

Formula for Continuously Monitored
Barrier Option Prices under
Black-Scholes Framework

The following pricing formulas for continuously monitored barrier options are summarized
and adapted from Reiner and Rubinstein (1991)[36]. Let H denote the barrier level, we
define the following quantities:

m =
r − δ + 0.5σ2

σ2
,

y =
ln (

H2

S0K
)

σ
√
T

+mσ
√
T ,

z =
ln (

H

S0

)

σ
√
T

+mσ
√
T ,

x =
ln (

S0

H
)

σ
√
T

+mσ
√
T .

Then, depending on the relationship between the barrier and the strike price, we have:
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Barrier Type Pricing Formula for Continuously Monitored Option
Call, H ≤ K

down-in(DI) S0e
−δT (H

S0
)2mN(y)−Ke−rT (H

S0
)2m−2N(y − σ

√
T )

down-out(DO) CBS − CDI
up-in(UI) CBS

up-out(UO) 0
Put, H ≤ K

down-in −S0e
−δTN(−x)+Ke−rTN(−x+σ

√
T )+S0e

−δT (H
S0

)2m(N(y)−N(z))−
Ke−rT (H

S0
)2m−2(N(y − σ

√
T )−N(z − σ

√
T ))

down-out PBS − PDI
up-in PBS − PUO

up-out −S0e
−δTN(−x) + Ke−rTN(−x + σ

√
T ) + S0e

−δT (H
S0

)2mN(−z) −
Ke−rT (H

S0
)2m−2N(−z + σ

√
T )

Call, H > K
down-in CBS − CDO

down-out S0e
−δTN(x) − Ke−rTN(x − σ

√
T ) − S0e

−δT (H
S0

)2mN(z) +

Ke−rT (H
S0

)2m−2N(z − σ
√
T )

up-in S0e
−δTN(x)−Ke−rTN(x−σ

√
T )−S0e

−δT (H
S0

)2m(N(−y)−N(−z)) +

Ke−rT (H
S0

)2m−2(N(−y + σ
√
T )−N(−z + σ

√
T ))

up-out CBS − CUI
Put, H > K

down-in PBS
down-out 0

up-in S0e
−δTN(x)−Ke−rTN(x−σ

√
T )−S0e

−δT (H
S0

)2m(N(−y)−N(−z)) +

Ke−rT (H
S0

)2m−2(N(−y + σ
√
T )−N(−z + σ

√
T ))

up-out −S0e
−δT (H

S0
)2mN(−y) +Ke−rT (H

S0
)2m−2N(−y + σ

√
T )

Table E.1: Black-Scholes formulas for continuously monitored barrier options
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Appendix F

Derivation of the Critical Values for
CME Entropy

For simplicity in notation, we temporarily ignore the subscript t in the problem, which in
no way affects the validity of the derivation. We have objective function:

H(S1) = −λS1 ln(λS1)− (S − λS1) ln(S − λS1),

with first derivative:
H ′(S1) = −λ ln(λS1) + λ ln(S − λS1).

Thus, the first order optimality conditions imply:

H ′(S1) = 0⇒ λS1 = S − λS1 ⇒ Ŝ1 =
S

2λ
.

Therefore, by equation (3.26), we get:

Ŝ2 =
S

2(1− λ)
.

Now, check second-order condition (convexity), we have:

H ′′(S1) = − λ

S1
− λ2

S − λS1
⇒ H ′′(Ŝ1) =

−4λ2

S
< 0.

Therefore, the results are just as we proposed in Section 3.3.1.
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