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ABSTRACT

In this thesis we review the status of an approach to Quantum Gravity through lattice toy

models, Quantum Graphity. In particular, we describe the two toy models introduced

in the literature and describe with a certain level of details the results obtained so far.

We emphasize the connection between Quantum Graphity and emergent gravity, and the

relation with Variable Speed of Light theories.
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”You can know the name of a bird in all the languages of the world, but when you’re finished,

you’ll know absolutely nothing whatever about the bird. So let’s look at the bird and see what

it’s doing - that’s what counts. I learned very early the difference between knowing the name of

something and knowing something.”

Richard Feynman

”Phantasie / Vorstellungskraft ist wichtiger als Wissen, denn Wissen ist begrenzt.”

(Imagination is more important than knowledge, because knowledge is limited.)

Albert Einstein

”Ero giovanissimo, avevo l’illusione che l’intelligenza umana potesse arrivare a tutto. E perció

m’ero ingolfato negli studi oltremisura.”

(I was young, I had the illusion that human intelligence could get anywhere. For this reason I focused on

studies beyond measure.)

Enrico Fermi

Thanks.
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Chapter 1
Introduction

General Relativity is one of the most intriguing physical theories, since it deals with the

nature of space and time, and our perception of reality. Using the Planck constant ~, the

Newton constant G and the speed of light c, we can build a constant with the dimension

of an energy. This is the Planck energy, given by:

Ep =

√
~c5

G
≈ 1019GeV.

When a gravitational process has an energy of the order of the Planck energy, using the

intuition we gained by quantizing the other three known forces, we expect another theory,

a Quantum Theory of Gravity, to replace General Relativity. As we will discuss later

in detail, this process of quantization is very troublesome. So far, no fully satisfactory

quantization of General Relativity exists.

What is a Quantum Theory of Gravity? A quantum theory of gravity is a theory

which describes gravitational phenomena up to the Planck scale and such that in the
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limit ~→ 0, reduces to a gravitational theory, and that at energies much smaller then the

Planck energy, reduces to Einstein’s General Relativity. Given this, it is rather compli-

cated to describe a theory which do not exist yet. It is true that there are many proposals,

but many of these are yet not fully convincing, or cannot predict a valuable and testable

phenomenon[45].

Quantum mechanics is one of the milestones of the physics of the last century. It

describes the physics of elementary particles and of atoms and molecules and has been

tested extensively. General relativity is the other milestone of the past century. It describes

the physics of spacetime and it works very well in describing the motion of celestial bod-

ies in our solar system, in galaxies and in our Universe. However, when we put the two

together and when we try to quantize gravity as it has been done for other forces, many

obstructions appear.

In spite of progresses in several directions, finding this new theory has proven a chal-

lenging problem for several decades. In particular, there are several approaches propos-

ing a quantization of gravity [33, 1, 120, 148].

In particular, Loop Quantum Gravity[33] (LQG) is a promising quantization of Gen-

eral Relativity. It establishes that spacetime is a foam, in which atoms of space are con-

structed on Wilson gauge lines, or spin networks. Many results have been obtained, as

the spectrum of the area and volume operators [47] and the Bekenstein-Hawking Area-

Entropy law[46]. The theory can be formulated both in the covariant and canonical form.

Causal Dynamical Triangulations[1] (CDT) instead is a discrete formulation of the

Feynman’s Path Integral. It is formulated on simplices which have a built-in direction of
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time. Many results point in the direction that the resulting space-time is four dimensional

and that the expansion of the Universe in CDT is very similar to a de Sitter cosmological

model [50].

Causal sets [120] is another proposal for a quantization of gravity. It is based on the

fact that a spacetime, i.e. the metric, can be eventually be described by its causal struc-

ture, together with a local notion of volume (put in mathematical terms, the local confor-

mal factor). Thus, spacetime reduces to a directed graph in which loops are absent, and

with the number of nodes representing the volume density. These graphs are sprinkled

on a (given) metric and then the evolution of fields on these graphs is studied. The major

achievement of the approach is the prediction of the order of magnitude of the cosmolog-

ical constant[51].

String theory [148] is at the moment the most prominent of the proposals. The theory,

initially born as a theory of strong interaction, slowly became a proposal for a unification

of all forces, together with gravity. The fundamental objects are supersymmetric strings,

whose excitations are expected to describe nature. Major achievement of the approach is

the Bekenstein-Hawking entropy[52].

Current research is also paying substantial attention to the numerous theoretical in-

dications that gravity may only be emergent[163, 63, 48], meaning that it is a collective,

or thermodynamical, description of microscopic physics in which we do not encounter

geometric or gravitational degree of freedom. For instance, the thermodynamics of black

holes is an intriguing puzzle which pushes towards this direction. An analogy to illus-

trate this point of view is fluid dynamics and the transition from thermodynamics to
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the kinetic theory. What we currently know is the low energy theory, the analogue of

fluid dynamics. We are looking for the microscopic theory, the analogue of the quantum

molecular dynamics. Just as there are no waves in the molecular theory, we may not find

geometric degree of freedom in the fundamental theory. Not surprisingly, this significant

shift in perspective opens up new routes that may take us out of the old problems.

From Aristotle to the most prominent physicists nowadays, the concept of emergence

changed over the centuries. The emergent approach is concerned with the study of

the macroscopic properties of systems with many bodies. Sometimes, these properties

can be tracked down to the properties of the elementary constituents. In recent years,

though, there has been a flourishing of novel quantum systems, which show behav-

iors of the whole system that have no explanation in terms of the constituting parti-

cles. These behaviors are instead a collective phenomenon due to interactions between

the constituents. When the interaction between the particles cannot be ignored, like in

systems of strongly interacting electrons, we see many novel and beautiful properties:

gauge fields can emerge as a collective phenomenon, strange quantum phase transitions

happen, unusual forms of superconductivity and magnetism appear, novel orders of the

matter based on topological properties of the system and featuring exotic statistics are

found[100].

Nevertheless, the word “emergent” does not lack of ambiguities. For instance, in

string theory, the metric is an emergent object. There, the evidence for emergent grav-

ity is, for instance, in the form of a spin-2 field, an effective metric, or the anti-de Sit-

ter/conformal field theory (AdS/CFT) duality [57]. The emergent viewpoint we take
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amounts to treating quantum gravity as a problem in statistical physics. For instance, the

Navier-Stokes equation describes the physics of a huge number of particles. Are the Ein-

stein equations the analogue of the Navier-Stoke equation for molecules? This question

is today a fairly established field of research [36]. Still, the complexity of the physics of

fluids is absolutely astonishing 1.

In this thesis we will see how pre-geometric models for gravity are interesting test-

grounds for many questions which are at the boundary between Quantum Gravity and

Emergent Gravity. A related issue which we will be discussing is the notion of locality.

There are a number of indications that forcing for a local theory of gravity may not be

correct (a thorough investigation of this question can be found in [79]). Non-locality, in

fact, cures naturally the divergences appearing in Quantum Gravity[114]. Problems with

Unitarity appear, and only recently this issue has been tackled again[118]. Moreover, a

renormalization group approach to gravity points in the direction that a renormalizable

theory of gravity has to be non-local[61].

For the purposes of the present thesis, it is important to note that there are two possible

types of non-locality which contribute in different ways. One, violation of microlocality,

disappears when the cut-off is taken to zero, while the other, violation of macrolocality,

or disordered locality, does not [15]. Violations of macrolocality amount to the presence of

paths through spacetime disallowed in a Lorentzian topology. These are easily described

in lattice-type approaches, as non local-links in the graph. GR allows for such paths and,

1A funny anecdote involves Heisenberg. It seems that at the end of his PhD, he had been asked from
his advisor whether he would be interested in studying fluids. He answered that the physics of fluid is too
complicated and that he would rather choose a simpler topic, as particle physics, at that time a new field.
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in principle, they should be taken into account in a full quantum theory of gravity. In

particular, we will see that one of the models we will discuss[80] possesses an emergent

notion of locality and that this is connected to Variable Speed of Light theories[164].

A powerful set of methods in statistical physics involve the use of lattice-based mod-

els, such as the Ising or Heisenberg model for ferromagnetism, the Hubbard model for

the conductor/insulator transition, etc. Such methods have been introduced in quantum

gravity. This thesis is focused on discussing lattice toy models to describe phenomena

typical of GR.

It is natural for the lattice of system to play the role of (a primitive form of) geometry.

The choice of graphs as the primitive objects describing geometry is choice due to their

simplicity. General Relativity is a background independent theory, which means that a

physical system is equivalent to another one if they are connected by a diffeomorphism.

For instance, a quantity which is invariant under the action of a diffeomorphism is the

relation between events in space and time. Thus, if two points in space and time are

directly connected or not is an invariant under a diffeomorphism. This notion is easily

implementable in a graph, as there this relation is encoded in the presence of an edge

between two points of the graph or not. Then, choosing a graph, a discrete label for the

points of spacetime, instead of a continuum of labels, is a mere simplification. These

concepts are widespread also in other approaches to Quantum Gravity [33, 120, 1]. In our

approach, we will have a continuous label for time, and a discrete label for the points in

space.

Another important fact to consider is that the geometry of spacetime in GR is fully
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dynamical. By analogy, we expect that the use of a fixed lattice is inappropriate and one

instead needs models on a dynamical lattice. While for this reason desirable, dynamical

lattices raise difficult technical problems that have not been previously addressed in the

field of statistical physics. In this thesis we will address a systemic study of many prob-

lems related to having a dynamical lattice. In particular, we will discuss two Quantum

Graphity models, one introduced in [80] and one introduced in [111]. The former was

specifically introduced to understand the possibility that Universe might condensate, at

early times, into a lattice which is local. The latter, instead, has been introduced in order

to understand whether an interaction geometry-matter can drive this condensation. The

two are just toy models, but given their simplicity, very precise questions can be asked

and in some cases answered as well.

The techniques used in the thesis are those of many-body theory and quantum infor-

mation. The questions we will ask, however, will be those of a general relativist. For

instance: how is Lorentz symmetry emergent? How can be a black hole described in a

graph-theoretic approach? How can be curvature emergent?

The thesis is divided into three parts. The first part, in particular Section 2, is devoted

to understanding the problems existing with General Relativity, and the problems arising

from its quantization treating the metric as a field. We will motivate with specific mod-

els, in Section 3, modifications of GR, our approach and in order to better understand the

results. In the second part instead, we will introduce the Quantum Graphity models and

study them. In section 4, we will describe the first Quantum Graphity model and study its

mean field theory. The model is statistical and is aimed at describing a Quantum Graph
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at a particular temperature, T . A Hamiltonian associated to graph-theoretic quantities is

assumed to be the energy. As we will see, the model is related to the String-Net condensa-

tion introduced by Levin and Wen [44]. We will understand why a “space-condensation

scenario” is related to the Variable Speed of Light theories introduced in Section 3. The

Lieb-Robinson bounds will be the guiding techniques. Part of this section is based on

Phys.Rev. D84 (2011) 024002. Section 5 is devoted to the analysis of the second Quantum

Graphity model. This model introduces explicit degrees of freedom on the nodes of the

graph. A detailed analysis of the quantum and classical model will be presented. This

section is based on Phys.Rev. D81 (2010) 104032. The third part, Section 6, is instead fo-

cused on emergence. In particular, we will see how to describe trapped surfaces in graph

models. Also, we will show how the quantum hopping of a particle on the graph, is re-

lated to the equation of motion of a scalar particle in curved space. We will also show two

scenarios to give mass to the emergent scalar particle. This section is instead based on

Phys.Rev. D85 (2012) 044046 and arXiv:1201.32062. Conclusions follow.

2This paper was recently accepted in Phys. Rev. D.
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PART I

GENERAL RELATIVITY: A TROUBLED SON
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Chapter 2
General Relativity and its problems

2.1 General Relativity

We briefly recall some known facts about Einstein general theory of gravitation. The

equations which changed the way we look at the world take a seemingly simple form:

Gµν =
8πG

c4
T µν , (2.1)

where Gµν is the so called Einstein tensor and is given by:

Gµν = Rµν −
1

2
gµνR, (2.2)

and where Rµν is the so called Ricci tensor and R is the Ricci scalar. The tensor gµν , the

most important object, is the metric and fully describes, if invertible, the space-time itself.

The tensor Rµν and the scalar R are related to the Riemann tensor Rρ
µσν by subsequent
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contractions, for the Ricci tensor the first higher index with the second lower index and

the Ricci scalar by contractions of the two remaining indices. While the Ricci tensor comes

for free putting equal the two indices, for the contraction of the two Ricci tensor indices

we need to use the inverse metric gµν , defined by gρσgσν = δρν . The metric tensor contains

the informations about how we parametrize the manifold and the information on the

distance between two points on it. In particular we have that the infinitesimal distance

between two points is encoded in the line element,

ds2 = gµνdx
µdxν . (2.3)

The covariant derivative are the following differential operators:

Dαu
β = ∂αu

β + Γβασu
σ,

Dαuβ = ∂αuβ − Γσαβuσ, (2.4)

where the symbols Γσαβ are called, if we impose zero torsion and metric compatibility,

Christoffel symbols. The Christoffel symbols hold the information about the movements of

a test particle on the manifold. These symbols are symmetric under the exchange of the

two lower indices. It is important to stress that they do not transforms as tensors but as

a covariant plus an affine transformation. The relation between the Christoffel symbols
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and the metric is given by the following equation,

Γµσρ =
1

2
gµσ(∂ρgµν + ∂νgµρ − ∂µgνρ). (2.5)

This ensures the metric compatibility, Dρgαβ = 0. We recall also that through a diffeomor-

phism we can set the Christoffel symbols zero on a particular point1. This is the mathe-

matical expression of the Equivalence principle, ensuring that locally observers observe

a Minkowski space. In this sense, general relativity is described by a quasi-Riemannian

geometry. Let me recall briefly the meaning attributed to the Riemann tensor of the Ein-

stein equations. The information within this tensor is the change due to the curvature of

a vector along a closed path. To figure out in a simple and standard way this fact, let us

consider a sphere, we fix two poles, say north and south, and put a vector on one of the

two poles. Then, we drag the vector along a short closed path, modifying the direction

of the vector such that it is always parallel to itself. The curvature of the surface of the

sphere affects the direction of the vector. This is expressed by the following formula:

[Dµ, Dν ]Aρ = Rσ
µνρAσ,

[Dµ, Dν ]A
ρ = −Rρ

σµνA
σ. (2.6)

1It is important to say that this is strongly local. The Christoffel symbols, once fixed to zero on a point,
cannot be zero in a neighborhood of that point.
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We can calculate in an explicit way this tensor from the definition above. We would find,

lowering its indices:

Rµνρσ =
1

2
(∂ν∂ρgµσ + ∂µ∂σgνρ − ∂ν∂σgµρ − ∂ν∂ρgνσ) + gαβ(ΓανρΓ

β
µσ − ΓανσΓβµρ). (2.7)

From the above relation we get the following identity2:

Rµνρσ = −Rννρσ = −Rµνσρ = Rρνµσ, (2.8)

which implies that the tensor is somehow redundant. We recall the Bianchi identity as

well, which comes from the fact that we are describing the geometry with a redundant

formalism:

DσRλµνρ +DρRλµσν +DνRλµρσ = 0. (2.9)

Using the identities written above we can contract some indices and we get:

DρR
ρ
σ =

1

2
DσR. (2.10)

It is a well known theorem that, if the Riemann tensor is zero, the spacetime is flat. The

Ricci scalar is also invariant under diffeomorphism. This means that if we findR zero in a

reference frame then we will find it zero in any other reference that can be reached trough

a diffeomorphism or a Lorentz boost. The last notion we want to introduce is the so called

2However this symmetry is a general property of the Riemann tensor.
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geodesic equation. This equation tells how a point particle moves in a gravitational field in

general relativity. If we define the covariant differential:

Dξµ = dξµ + Γµνρdx
νξρ, (2.11)

where ξµ is the coordinate of a test point particle, and uµ its velocity. This particle will

follow the path given by the solution of:

D2ξµ

dτ 2
= Rµ

νρσu
νuρξσ. (2.12)

or the one of the geodesic equation:

Duµ

dτ
+ Γµνρu

νuρ = 0. (2.13)

The exact solution is quite simple in case of zero curvature and is a straight line line

along the spacetime, so we re-obtained the first Newton law. We want to stress that the

name general relativity may be misleading. General relativity is less relative than special

relativity. In fact [138], a space-time with a bump (a mass or anyway a little curvature

somewhere) is different from one completely flat, and there is no way to restore flatness

on the whole spacetime with a diffeomorphism.
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2.1.1 Conceptual problems of GR

We cannot introduce a quantum gravity model without a discussion on the fundamental

and technical problems of General Relativity [156, 157, 144] and the standard approach

to quantize it. In the next two paragraphs we discuss the properties of spacetime in the

presence of matter.

2.1.2 Breakdown of General Relativity: singularities

A singularity in General Relativity is a point of the space-time in which some diffeomor-

phism invariant quantity goes to infinity. This strange behavior is non physical and in

a full gravitational theory should be avoided. One’s hope is that a Quantum Theory of

Gravity might be curing these features. Many solutions of the Einstein equations possess

this sort of singularity, as for instance the Friedmann-Robertson-Lemaitre-Walker metric

(FRLW), the Schwarzschild solution and many others.

From the mathematical point of view, a metric is singular if it is timelike or null geodetic

incomplete3.

We now recall some important theorems related to geodetical incompleteness[157][156][155].

First of all, we define a closed trapped surface F. A closed trapped surface is a C2 space-

like closed two-surface such that the families of null geodesics orthogonal to F are only

converging in F 4.

3 Timelike geodetic incompleteness means that there are particles which after a certain amount of proper
time stop to exist. This happens if the curvature become infinity.

4This is the mathematical analog of event horizon as in the Schwarzschild or Kerr black hole.
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Theorem. A spacetime is not null geodesically complete if:

1. RabK
aKb ≥ 0 for every non-spacelike four-vector ~K;

2. there is a non-compact Cauchy surface in the manifold or the Cauchy surface is

compact but there is an observer who can not fall in the horizon requested by 3);

3. there is a closed trapped surface in the manifold.

Condition 1) is true for some physical spacetime5. This assumption is true, for instance,

for pressureless perfect fluids. The first part of condition 2) is only technical and related to

the proof of the theorem and so of scarce physical interest, but the second part is strongly

physical. On the other hand condition 3) is the condition to have an event horizon in

spacetime. This requirement on the Cauchy surface makes the theorem very weak if we

expect it to have physical consequences. On the other hand the following theorem holds:

Theorem. A spacetime is not timelike and null geodesically complete if:

1. RabK
aKb ≥ 0 for every non-spacelike 4-vector Kµ;

2. The universe is spatially closed6;

3. The universe is contracting or expanding7.

These are now physical assumptions and apply, for instance, to the current cosmological

model we have, the FRLW cosmology.

5When the strong energy condition holds, which is, for any observer with an energy greater than or equal
to zero.

6i.e. there exists a compact spacelike three-surface.
7i.e. the normals to a spatial surface are everywhere converging or diverging from it.

16



In our past or in our future there was o there will be a singularity, as predicted by the

FRLW cosmology. These singularities are known respectively as the Big Bang and the Big

Crunch. General relativity predicts its own breakdown in our cosmological model. This

is one of the main reasons why we search for a theory of quantum gravity, or quantum

cosmology.

2.2 Why quantizing gravity?

The question we pose here is: why do we need a quantum theory of gravity[117, 143]?

Here we will give many perspectives on this issue.

First of all, one might think that it is mostly for an aesthetical reason: we already quan-

tized the Strong and the Electroweak forces, and a unified family quantum picture with

Gravity standing in front might be desiderable. However, as we argued before, general

relativity poses many questions related to its validity at certain scales. At the present time,

it is not completely understood if a semiclassical treatment of general relativity makes re-

ally sense[150, 151]. Of course, this affects our comprehension of phenomena like the

Hawking and Unruh effects. Some answers to this questions are offered in the context of

analogue models [163].

The problem is that gravity and quantum mechanics are very different (and maybe

incompatible) theories. In particular one might argue, for instance, that by probing very

small scales, the energy involved might create a black hole[115, 116]. The creation of black

hole would thus render the measure impossible. A modified Heisenberg uncertainty re-
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lation is needed in this case, thus changing the structure of quantum mechanics[68]. Also,

one might think that gravity might be induced by quantum fluctuations[145, 146] or by

holography[63]. Somebody argues that geometry should not be quantized at all[152],

while the matter field should. Thus, the Einstein equations should be replaced by Gµν =

〈Tµν〉, where on the right hand side we have a quantum average.

String Theory [148], the most prominent and widespread theory of high energy physics,

treats all the fields and gravity as an emergent feature. The excitations of supersymmetric

strings in more dimensions are related to gravity and particles, and gravity (the metric) is

also there an emergent phenomenon.

Given the plethora of approaches and ideas, it is worthwhile to stress that there is no

true explanation for the conviction that gravity must be quantized. Due to the lack of

experiments, many of these approaches cannot be tested and remain only a valid theoret-

ical possibility. At the moment, we have many circumstantial theoretical evidences and

no smoking gun experimental proof that a quantum theory of gravity, valid up to the

Planck scale, is needed. Indeed, the thermodynamical aspects of gravity [48] are puzzling

enough to be suspicious about gravity being a fundamental force.

So, why quantizing gravity? In principle, an optimistic theoretical physicist thinks

that having a consistent theory of quantum gravity might solve all these problems in one

shot. As we discussed in the previous section, General Relativity as a classical theory is

far from being complete. For instance, no solution of the Einstein’s equations which could

model a rotating black hole, and which is physical in the whole spacetime in vacuum, is

known. In fact, the Kerr metric suffers of violations of causality close the the singularity
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at the core of the hole, where quantum gravity effects are expected to contribute. As

we said, also our current cosmological model requires additional fields. For instance, an

inflaton field has to be introduced in order to solve several cosmological puzzles, as the

horizon problem, the structure of the Universe, baryogenesis and the current value of the

cosmological constant[58]. Moreover, general relativity alone cannot explain the velocity

profile of galaxies and nor the anomalous acceleration of the Universe. This implies that

an invisible type of matter, dark matter, and an invisible type of energy, dark energy, are

filling the Universe [59]. Given that General Relativity has been tested only in weak field

regime [60], there is room both for modifications of gravity [106] in order to account of

these mismatches, or just to believe in the additional fields. A quantum theory of gravity,

for instance, could clarify what are the corrections to Einstein’s General Relativity and if

they contribute to these puzzling features.

In this thesis we will pursue the road (through toy models) in which gravity does not

have to be quantized in a strict sense, but that it is an emergent phenomenon. We will

motivate this assumption in Chapter III.

In the next section we will show what goes wrong with the standard quantum field

theoretic approach to quantizing gravity.
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2.3 First attempt of quantization

2.3.1 QFT: linearized theory and divergences

In the Quantum Field theoretic approach to gravity, a key role is given to the concept of

graviton. A graviton has, in the framework of quantum gravity, the same role which the

photon possesses in quantum electrodynamics: it is the gauge particle of the gravitational

force. In order to see how the graviton appears, we consider the Einstein-Hilbert action

with no cosmological constant:

S =
2

8πG

∫
d4x
√−gR. (2.14)

We then expand the metric around a background field:

gµν = ḡµν + shµν , (2.15)

where s =
√

8πG. The Einstein-Hilbert action can be expanded as[159]:

2

s2

√
gR =

√
ḡ[

2

s2
R̄ + L1

g + L2
g + · · · ] (2.16)

L1
g =

hµν
s

[ḡµνR̄− 2R̄µν ] (2.17)
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L2
g =

1

2
D̄αhµνD̄

αhµν − 1

2
D̄αhD̄

αh

+ D̄αhD̄βh
αβ − D̄αhµνD̄

νhµα + R̄(
1

2
h2 − 1

2
hµνh

µν)

+ R̄µν(2hλµhνα − hhµν) (2.18)

This method is particularly useful because, thanks to it, it is possible to maintain the

covariance of the theory explicitly. At this point the theory needs to be gauge fixed. This

can be done, in the path integral approach, by means of a Fadeev-Popov procedure. A

constrain that can be imposed is[133]:

Gα =
√√

g(D̄νhµν −
1

2
D̄µh

σ
σ)tνα, (2.19)

with ḡµν = ηαβt
µαtνβ . The gauge fixing Lagrangian is:

Lgf =
√
ḡ(D̄νhµν − D̄µh

λ
λ)(D̄σh

µσ − 1

2
D̄µhλλ), (2.20)

and the Ghosts Lagrangian is chosen to be:

Lgh =
√
ḡη∗µ[D̄λD

λḡµν −Rµν ]η
ν , (2.21)

so the theory can be gauge fixed, and as usual this gives rise to a ghost field (2.21). Now

we can see why, for instance, the graviton is a spin two particle, when expanded over a
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Minkowski background:

gµν = ηµν + fµν , (2.22)

where we assumed that fµν is a small perturbation of the background Minkowski met-

ric, so that indices are raised and lowered using the latter metric. Using the de Donder

gauge8, we obtain:

∂νfµν =
1

2
f νν,µ (2.23)

the linearized Einstein equations become:

�fµν = −16π(Tµν −
1

2
ηµνT ) (2.24)

where Tµν is the stress-energy tensor. If we change the variables through the transforma-

tion

f̄µν = fµν −
1

2
ηµνf

ρ
ρ, (2.25)

the Einstein equations become:

�f̄µν = −16πTµν . (2.26)

8The reason for using the de Donder gauge instead of others gauge is that the use of the transverse-
traceless gauge renders the formalism straightforward.
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This is analogue to the case of electromagnetism, where we have a gauge vector which

satisfies a similar equation. In the vacuum case, the stress-energy tensor is zero and the

solution is quite easy to find,

fµν = eµνe
i~k·~x + e∗µνe

−i~k·~x, (2.27)

with k2 = 0 and kµeµν = 1
2
kµe

ρ
ρ because of the de Donder gauge. Now we note that under

a gauge transformation of the form

xµ → xµ + ξµ, (2.28)

fµν transforms as

fµν → fµν − ξ(µ,ν). (2.29)

Under this gauge transformation the de Donder condition transforms as well,

dD[fµν ] = 0→ dD[fµν ] = −�ξµ, (2.30)

showing the ambiguity of the coordinates. We can fix this ambiguity by taking �ξµ = 0;

this means that ξµ must be a planar wave. We started from 10 degrees of freedom, and

after having gauge fixed 4 degrees by means of a de Donder gauge and 4 degrees by fixing
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the coordinates, we have two degrees left 9. Another way to proceed is using the so called

Transverse-Traceless gauge. We impose the following on fµν :

kµfµν = fµµ = 0 (2.31)

So we can, thanks to this gauge do the following transformation:

fµν → fµν + kµqν + kνqµ (2.32)

where ξµ = 2Re[qµe
i~k·~x]. So we can choose qµ such that the elements f0ν = 0. The result is

that the tensor fµν is:

fµν =



0 0 0 0

0 0 0 0

0 0 f22 f23

0 0 f23 −f22


9The same calculation can be done in 3d: we have 6 degrees for the metric tensors, and 3 degrees must

be fixed in the coordinates and 3 with the gauge fixing. We have no degrees left, so the theory is topological.
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If the wave is along the x-axis. This tensor can be written in terms of the so called polar-

ization tensors:

e+ =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1


= ey ⊗ ey − ez ⊗ ez

ex =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


= ez ⊗ ey + ey ⊗ ez

Where ey, ez are the unit vectors along y and z. It is clear from the above expressions that

under a counterclockwise rotation around x that:

e′+ = e+ cos(2θ) + ex sin(2θ)

e′x = e+ cos(2θ)− ex sin(2θ) (2.33)

So, if we call eR = e++iex√
2

and eL = e+−iex√
2

they transform as e′R = e2iθeR and e′L = e−2iθeL.

We recognize in eR and eL the polarization tensors for states of helicity +2 and−2. In order

to quantize the linearized theory using the path integral, we need a Lagrangian and we

need to express the gravitons as representations of the Poincaré group. It is well known

what is the Lie algebra of the Poincaré group and it is well known from Weyl how to
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proceed: find a representation of the little group and then extend it trough the symmetry.

For a massless particle, the little group is the invariance group of the euclidean geometry.

It happens that these states can be reduced to the eigenvalues of the operator ~J3 ·~k, which

is proportional to the helicity of the particle. In this case, the helicity is±2 and so the states

can be represented as the helicity eigenvalue of the J3 operator. The Lagrangian for the

linearized theory on the Minkowski background, has been introduced by Pauli and Fierz:

L =
1

64πG
(fµν,σfµν,σ − fµν,σfσν,µ − f νµ,σfσµ,ν − fµµ,νfρρ,ν + 2fρν ,νf

σ
σ,ρ) +

1

2
Tµνf

µν

(2.34)

The Euler-Lagrange equations for the Pauli-Fierz Lagrangian, give:

fµν,σ
σ − fσν,νσ − fσν,µσ + fρρ,µν + ηµν(f

αβ
,αβ − fρρ,σσ) = −16πGTµν (2.35)

By means of a trace, we find the equation:

(fαβ,αβ − fρρ,σσ) = 8πGT (2.36)

and thus:

�fµν − fσµ,νσ − fσν ,µσ + fρρµν = −16πG(Tµν −
1

2
ηµνT ) (2.37)

In the linearized theory the gravitational interaction resembles QED. In general, the
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procedure from here is straightforward. We introduce the commutation relations:

[a(k, σ), a†(k′, σ′)] = δσσ′δ(k,k′) (2.38)

And the field operator becomes:

fµν =
∑
σ

∫
d3ω√

2ω
[a(ω, σ)eµνe

i~k·~x + a†(ω, σ)e∗µνe
−i~k·~x] (2.39)

However if we expand around a non flat metric the Pauli-Fierz Lagrangian is not the

right Lagrangian. What we want to discuss now is the failure of such an approach10. It

is well known that the first request, in the framework of Quantum Field Theory, is that

the theory we are going to deal with is renormalizable. The nowadays accepted meaning

of nonrenormalizability is the impossibility to fix, in a finite number of experiment, all

the free constants of the theory. With the use of some tools of renormalization theory we

can partly understand, looking only at the Lagrangian, if our theory is renormalizable

or not. In fact, if the coupling constant of the theory has the dimension of a mass, the

theory is non renormalizable. The Einstein-Hilbert Lagrangian has, in front of it, the

coupling G that has the dimension of the inverse of a mass square. The same happens

for the effective Fermi theory of weak interactions, where we know that such kind of

interaction is the low energy theory of the Weinberg-Salam theory of elettroweak theory,

that is renormalizable. Since we know that Einstein’s theory of General relativity is right

10This approach is basically made of three steps: 1) Find a Hamiltonian for the equations of motion; 2)
Apply the canonical quantization 3) Check if theory is renormalizable; 4) Calculate observable physical
effects.
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(too many phenomena can be explained with it, as the Mercury anomaly, the bend of

light, the Hubble law and the red shift) we expect that the Einstein theory is the low

energy theory of some other high energy one. At one loop[133] the theory turns out to be

renormalizable. The counterterm, calculated explicitly from (2.16) is

L
(div)
1L =

1

8π2ε

( 1

120
R̄2 +

7

20
R̄µνR̄

µν
)
, (2.40)

where the ε = 4 − d is a hint that the calculation was performed with the use of dimen-

sional regularization11. If we do not add matter, we haveRµν = 0, and so the terms vanish

for all solutions of the Einstein equations. At 2-loops[134][135], instead, the renormaliza-

tion involvesR3 terms, moreover with contractions of the Riemann tensor which were not

present at the beginning. The result is that the theory is non renormalizable: it involves

an infinite number of coupling constants and so it cannot be renormalized. Still, however,

the effective quantum field theory approach [162] assumes that a quantum field theory

quantization can be used as an effective low energy description of a hypothetical quan-

tum theory of gravity. Moreover, a perturbative non-renormalizability does not imply

that nonperturbative techniques cannot make sense of the quantum theory [61].

11Also, a Gauss-Bonnet relation has been used in order to reduce to this form.
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Chapter 3
Motivations for an analogue description of

General Relativity

As we will argue in this section, there are many reasons why a theorist should hope for a

theory of gravity to replace current Einstein theory. We believe that the fact that gravity

might be emergent is a serious possibility to consider. There are many deep questions

related to this. For instance, what is time, and why in our approach it should be con-

sidered as a parameter. As a matter of fact, not having a real time in Quantum Gravity

causes to have many interpretational problems. This is the well known problem called

“The problem of time”[147]. In the canonical quantization of gravity, for instance, the

Wheeler-DeWitt equation encodes this fact: the universe is still and timeless and there

is no time evolution. The Hamiltonian of general relativity is, in fact, operatorially zero.

Why, then, we observe the flow of time? Is it of thermodynamical origin (and its arrow

given by the direction of increasing entropy)? Is it gravity of thermodynamical origin?

During the last two decades, this matter has been investigated deeply, without, however,
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achieving a real conclusion.

Black holes, for instance, display several features which relate gravity and thermody-

namics. It is now well known that Black Holes possess an entropy proportional to the area

of their horizons [34] and that this requires a modification of the laws of thermodynamics[35].

For instance, many academics argue that the entropy associated to the horizon must be

associated with a microscopic description of general relativity. In this sense, gravity might

be only an emergent theory, thus not fundamental. Moreover, as showed in [63], the emer-

gence of gravity might also be related to the holographic principle. Further insights come

from the investigations of the thermodynamical properties of gravity [48].

The collection of all this facts motivates the research in Analogue Models [163]. Ana-

logue models are, in general, real systems unrelated to gravity in which many gravita-

tional phenomena, as for instance the Hawking radiation, can appear. The study of these

models could give many insights into the real nature of gravity.

3.1 Condensed Matter, Quantum Mechanics and Analogue

models

So far we were concerned with pure general relativity or slight modifications of it. It is

however hard to imagine how, once the diffeomorphism symmetry is broken and time

becomes a mere parameter, the beautiful picture of Einstein’s general relativity breaks

down. There are plenty of ways this can happen and no experiments, at the moment, can

probe those scales of energy. It is then important to understand that an effective theory
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does not require the knowledge of the fundamental constituents. The effective theory of

sound in air does not require the knowledge of the physics of its underlying constituents.

In condensed matter and fluidodynamics, for instance, the Boltzmann equation allows

to forget the microphysics and obtain an effective theory which propagates the modes.

These modes are usually not coupled with the underlying constituents, not directly, but

emerge as their normal modes.

It might seem unnatural, then, to imagine general relativity as an effective theory.

How can it be that such a deep and beautiful theory, which predicts the curvature of

spacetime as a result of its matter content and viceversa, can be just a fluidodynamical

description? An easier exercise, however, is the one treating its tangent space as emer-

gent. It is possible to imagine, in fact, how Lorentz geometry could be emergent [163].

We cite a Theorem of fluidodynamics to give a rough example:

Theorem. If a fluid is barotropic and inviscid, and the flow is irrotational (though possibly

time dependent) then the equation of motion for the velocity potential describing an acoustic dis-

turbance is identical to the d’Alembertian equation of motion for a minimally-coupled massless

scalar field propagation in a (3+1)-dimensional Lorentzian geometry,

4φ ≡ 1√−g∂µ(
√−ggµν∂νφ) = 0. (3.1)

Under these conditions, the propagation of sound is governed by an acoustic metric −gµν(t, x).

This acoustic metric describes a (3+1)-dimensional Lorentzian (pseudo-Riemannian) geometry.
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The metric depends algebraically on the density, velocity of flow, and local speed of sound in the

fluid.

Of course, this is not the same as general relativity: this is merely how we describe the

movement of particles in a medium. General relativity is much more and is encoded in

the Einstein equations, i.e. which metrics have to be plugged into eqn. (3.1). In this thesis

we will mostly be focused in the kinematical aspects of general relativity. In particular,

how graph models can turn useful in studying the emergence of curvature, how surface

trapping can be encoded into the graph, or the phenomenon described in the previous

section, e.g. VSL theories, and how this can happen in a quantum mechanical model. The

relevant questions for this type of approach are: how to derive the Einstein equations? Is

the entropy of a black hole the effect of a quantum mechanical entropy of an underlying

theory?

3.2 Variable Speed of Light theories and the major cosmo-

logical problems

Our current cosmological model, the Cosmological Standard Model (CSM), heavily relies

on inflation. Inflation plays the same role in the CSM that the Higgs particle has in the

Standard Model of Particles. An exponential growth of the scale factor, in fact, would

explain not only the structure of the Universe, but solve the flatness problem and the

horizon puzzle. However, this exponential growth has to be driven by some field, which
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then vanish leaving a cosmological constant. Cosmologists are nowadays working on

trying to constrain this type of theories. The theory of inflation had an incredible effect on

cosmologists, and together with the scale factor, also the number of cosmological model

is currently growing. We are here not different in this respect, and we will argue that

one solution to this problem might come from a quantum gravity model. However, in

our case we will not rely on an inflaton field, but indeed we will show that a different

phenomenon could have taken place at 10−43 s, the Planck time, when we expect the

quantum gravitational effects to have switched off.

In this section we will describe the so-called Variable Speed of Light (VSL) theories

and how these might solve the problems which Inflation solves[164]. The simpler way

to describe a VSL is that the speed of light might not be constant, by but instead varying

with time, c(t). This breaks the Lorentz group, from SO(3, 1) down to O(3)× R. Here we

will consider a particular VSL [164], one in which the speed of light varies as

c(t) = c̄ θ(t− t0) + c θ(t0 − t), (3.2)

with c and c̄ constants. This could be achieved if the speed of light is, for instance, related

to a phase transition in the early Universe. In the spontaneously broken phase of the

evolution of the universe, the 3-dimensional space with O(3) symmetry is assumed to be

the homogeneous and isotropic Friedmann-Robertson-Walker metric,

dx2 = R2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)] (3.3)
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with k = ±1, 0 corresponding to de Sitter or anti-de Sitter, or flat universes. The time

variable, t, is here an external parameter, or Newtonian time. The full metric is

ds2 ≡ gµνdx
µdxν = dt2c2(t)−R2(t)[

dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)] (3.4)

with c(t) given by (3.2). Thus, the metric can be split into two pieces, or bimetric form,

gµν = g0 µν+ḡµν . The phase transition produces two light cones, given by the two different

speeds of light. The proper horizon is given by:

dH(t) = R(t)

∫ t

0

dt′c(t′)

R(t′)
. (3.5)

Please note that in a radiation dominated universe, R(t) ≈ t
1
2 , and therefore

dH ≈ 2c(t)t. (3.6)

This is the radius such that all the matter within it is in causal contact. We briefly state

the horizon problem of the Cosmic Microwave Background (CMB). Observations have

shown that the CMB is, apart from small fluctuations1, isotropic, i.e. its temperature is

pretty much uniform over the sky. Its distribution is, apart from resonances due to bar-

ions, a Planck spectrum. Cosmological models, prior to the advent of Inflation, suffered

from the following question: how can be the CMB so isotropic? In other words, how

could it thermalize? In fact, the proper horizon was too large for the CMB to interact and

1Which are, however, important in order to confirm a particular cosmological model.
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then thermalize. A mechanism was needed in order to stretch this horizon, and stretch

fast enough. Inflation implies a period of exponential expansion of the scale factor of the

Universe, such that the horizon can be stretched fast enough in the early Universe and

solve the thermalization problem of CMB. Another problem was associated to the flat-

ness of the Universe: how can it be that the Universe is so flat, i.e., null spatial curvature?

Inflation solves also this problem.

We now show how a Variable Speed of Light theory could solve these two problems.

In the case of a VSL, e.g. using eqn. (3.2), the horizon of eqn. (3.6) is suddenly increased

if c̄� c. Due to the Heaviside step function being discontinuous, no diffeomorphism can

produce such a sudden change in the metric. This is a departure from general relativity, as

it could have been expected by having broken the Lorentz group. It is then clear that such

a change depends on the dimensionless ratio γ = c̄/c. The flatness problem is resolved in

a similar way. The Friedmann equations in the broken phase are:

H2 +
c2k

R2
=

8πGρ

3
(3.7)

where H = Ṙ/R is the Hubble parameter and we have set the cosmological constant to

zero, as it plays no role in what follows. We have that the parameter which measure the

spatial curvature, is given by ε ≡ |Ω− 1| = c2|k|/Ṙ2, where Ω = 8πGρ/3H2. Taking a time

derivative, we obtain:

ε̇ = −2c2|k|R̈
Ṙ3

+ 2
ċ

c

c2|k|
Ṙ2

(3.8)
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If the Universe is radiation dominate, we have R̈ < 0, and if the speed of light decreases in

the phase transition, ċ/c < 0 as well at the moment of the transition, and zero elsewhere.

We thus see that ε̇ < 0, which means that the universe curvature is automatically driven

to zero. One might ask if γ has to be fine-tuned. A standard calculation shows that

|Ω(10−43)− 1| ≈ O(γ210−60). (3.9)

Therefore, γ ≡ c̄/c ≈ 10−30 is required in order to have the right amount of curvature

in order to explain current observations. Such a big number requires, apart from a fast

transition, also an underlying theory which, seen from the observer after the transition, is

highly non-local.

Regarding the scale invariant fluctuations of the Cosmic Wave Background, it is obvi-

ous that it is impossible that the proper wavelengths can catch up with the Hubble hori-

zons, if the transition happens fast enough. Thus, a rapid crossing of the horizon freezes

the modes, which then are left scale invariant. How fast is probably the right question

to ask to each individual physical model mimicking (3.2) and aiming to explain current

cosmology observations.

It is fair to say that these models are not free of debates[158]. Within the context of

general relativity per se, in fact, it has been argued that a variable speed of light might

be only a coordinate effect. Moreover, it is not clear in these proposals, what is a clock

measurement in proper time, as this is strictly related to the varying c(t). Moreover, since

the Lorentz group is broken, it should be made clear, model by model, how the limiting
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dynamical speed c(t) is determined, i.e. what physical mechanism drives it.

In the case of Quantum Graphity, where a similar effect is observed, many of these

points are not valid. In fact, we will have a physical mechanism to drive the speed of

propagation of signals, and we will have a newtonian clock.
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PART II

GRAPH MODELS
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Chapter 4
Quantum Graphs without matter

In this first part of the thesis we will pursue a very particular idea which we want to an-

ticipate here. The first model we will introduce in the next sections is aimed at modeling

the following physical picture.

In the early Universe, close to the Big Bang singularity, space was a crumbled object,

in which there was no notion of distance. This can be modeled in terms of graphs, for

instance, by considering a graph in which all the nodes are connected, i.e. a complete

graph. This graph describes a high energy phase of the Universe. When the Universe

cooled down, then the most of the edges of the graph turned off, leaving a lattice which

at low temperature took a structure which is local, i.e. to each node there are only few

neighbors.

For this reason, the first Quantum Graphity model is considered as a model of emergent

locality. In the following, we will study the properties of this process and see how this

model is related to Variable Speed of Light theories.
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4.1 Graph Models

There are several reasons why graph models are attractive. First of all, a graph is a clear

implementation of the relational content of general relativity. As we previously said in the

introduction, general relativity is a background independent theory. The notion of vicin-

ity and distance could be encoded, in simple models based on graph, in the connectivity

structure of a graph. Graph models do not rely on any background metric and thus are the

background independent objects par excellence. This might be the reason why graphs are

the most common objects among many approaches to Quantum Gravity [1, 33, 2, 120, 82].

Moreover, it has been previously argued in the literature that at the discrete level, spa-

tial diffemorphisms should appear as the permutation invariance of these fundamental

constituents [83, 43], i.e. the nodes of the graph. This can be implemented by starting with

a complete graph KN , which is a graph on N nodes such that, between any two nodes

of the graph, there is an edge, or by using a dynamics which is permutation invariant.

Moreover, the dynamics of the various models is chosen such that the energy depends on

natural graph properties, as number of links, closed and open paths.

It should be stressed that graph models, asunder from being interesting on their own,

are the simplest choice to study phenomena related to background independence. In

particular, there is in principle no obstruction in studying these models in the continuum.

In fact, very often the continuum limit will be considered.

In the following we will first review the String-Net condensation mechanism to gen-

erate a U(1) gauge theory and motivate the Quantum Graphity approach. Some useful

graph-theoretic properties and techniques and the necessary quantum mechanical nota-
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tion are introduced.

4.2 A brief review of the String-Net condensation

The concept of topological order is one of the most productive recent ideas in condensed

matter theory [100]. It provides explanations for phases of matter (for example, fractional

quantum Hall liquids) that cannot be described by the paradigm of local order parame-

ters and symmetry breaking. If local order parameters cannot describe such phenomena,

then their order could be of topological nature [100], which will mean that long range

correlations could be protected by quantum entanglement.

Topological order gives rise to a ground state degeneracy that depends on the topol-

ogy of the system and is robust against any local perturbations [101]. Because of this

property, topologically ordered systems appear to be good candidates for robust quantum

memory and fault-tolerant quantum computation [102], and thus are useful for quantum

information as well. Recently, experimental studies have been performed on particular

materials [160].

From the point of view of a “Quantum Gravitist” interested in an emergent picture,

topological order offers a whole new perspective to the problem of elementary parti-

cles. Particles regarded as fundamental, like photons and fermions, and other particles

that can be interpreted as collective modes of a crystal. Recently, detailed studies on

graphene show that also the spin itself could be emergent from an underlying discrete

structure[119] 1. In fact, if quantum gravity is emergent, the best possible picture is given

1As Wheeler himself pointed out[109], we will not understand the nature of space and time until we
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by one in which not only gravity is emergent, but also particles.

The understanding of the phases of matter provides an explanation for the phonon

and other gapless excitations. However, one can also ask whether photons, electrons, or

gravitons are emergent phenomena too, not elementary particles.

Let us consider the case of light. Photons are U(1) gauge bosons and they cannot cor-

respond to the breaking of any local symmetry [31]. However, models with topological

order can feature photons, fermions and even gravitons as emerging collective phenom-

ena [100, 12]. The reason is that the mechanism to obtain emergent particles is not the

same as ordinary symmetry breaking.

In the case of String-Net condensation, light emerges from topological order as the

effective low-energy theory of a quantum spin system.

The quantum spin system is a local bosonic model, in the sense that the Hilbert space

decomposes in a direct product of local Hilbert spaces. All the observables have to com-

mute when far apart.

Moreover, the Hamiltonian must be a sum of local observables. In the low-energy

sector, and in the continuum limit, the effective theory can be described by the Lagrangian

of electromagnetism. A theory of light as an emergent phenomenon needs to explain

why we do not see signals faster than light. A unified model of all interactions, should

also explain why the speed of light is so universal. However, let us focus on a single

interaction and neglect this problem for the time being.

A local bosonic model is a theory where the total Hilbert space is the tensor product

explain the nature of spin.
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of local Hilbert spaces, local physical operators are finite products acting on nearby local

Hilbert spaces, and the Hamiltonian is a sum of local physical operators. If we restrict

ourselves to the case of a discrete number of degrees of freedom and finite-dimensional

local Hilbert spaces, we have a quantum spin model.

A quantum spin model can be defined as follows. To every vertex x in a graph G we

associate a finite dimensional Hilbert spaceHx. The total Hilbert space of the theory is

H = ⊗x∈GHx, (4.1)

and to every subset of vertices X ⊂ G, we can associate local physical operators with

support in X .

The Hamiltonian will take the form Hlocal =
∑

X⊂G ΦX , where to every X ⊂ G we

associate an hermitian operator ΦX with support inX . An example of local bosonic model

is given by a spin 1/2 system on a lattice, where to every vertex x in the lattice we associate

a local Hilbert spaceHx
∼= C2.

String-net condensation emerges from a collection of quantum rotors on a lattice[100].

Consider a square lattice whose vertices are labeled by i, with angular variable θ̂ij and

angular momentum Szij on the links Lij of the graph. The Hamiltonian for the quantum
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rotor model is given by

Hrotor = U
∑
i

(∑
α

Szi,α

)2

+ J
∑
i,α

(Szi,α)2

+
∑
i,α1,α2

s.t. α1·α2=0

(
tα1,α2e

i(θi+α1−θi+α2) + h.c.
)
, (4.2)

where α = {±1/2(1, 0),±1/2(0, 1)} are the spinors of length 1/2 pointing towards the

lattice axes [31]. In the limit t, J � U , the first term of the Hamiltonian Hrotor behaves like

a local constraint and makes the model a local gauge theory. Defining

g ≡ 2

U(t12t−1−2 + t2−1t−21)
, (4.3)

the effective low-energy theory becomes

Heff = J
∑
i,j

(Szij)
2 − g

∑
p

Wp + h.c.

2
≡
∑
i,j,p

(Φ1
ij + Φ2

p) (4.4)

where Wp = ei(θ12−θ23+θ34−θ41) is the operator which creates a string around a plaquette p,

while the t’s are couplings. Here Heff is just an effective theory and thus its nonlocality

is not troublesome. In the g � J limit, the continuum theory for the Hamiltonian Heff is

the Lagrangian of electromagnetism[100]:

L =

∫
d2x

(
1

4J
E2 − g

2
B2

)
, (4.5)

with speed of light given by c =
√

2gJ .
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4.3 Graph theory preliminaries

The complete undirected graph on N vertices is denoted by KN . It is a graph in which

every two vertices are connected by an edge. If the vertices are labeled by 1, 2, . . . , N, then

KN has an edge eab connecting any two a and b.

It should be stressed that any graph G on N vertices can be regarded as a subgraph

of the complete graph KN ; in particular, it can be obtained by removing edges from KN .

A convenient way to represent G is via its set of edges E(G) or via its N × N adjacency

matrix

Aab(G) =


1 if eab ∈ E(G)

0 otherwise.
(4.6)

By construction, the adjacency matrix is symmetric and it has zero diagonal elements.

This matrix enjoys many properties. Powers of the adjacency matrix,

ANij =
∑

r1,··· ,rN−1

Air1Ar2r3 · · ·ArN−1j (4.7)

contain information about open and closed paths in the graph. In particular, paths which

go several times on the same edges, or retracing paths.

For future use, it is also useful to define the notion of nonretracing paths. A nonre-

tracing path is an alternating sequence of vertices and edges, in which any particular edge

appears exactly once. It is useful to specify that nonretracing paths can be open or closed

and that a nonretracing path is not necessarily a geodesic between two vertices. A closed
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nonretracing path is also said to be a cycle. The number of cycles can be computed algo-

rithmically but not with the straight forward use of powers of the adjacency matrix. Some

questions regarding counting the number of cycles of a given length can be very difficult

(see, e.g., [84]).

4.4 Quantum mechanics preliminaries

All the subgraphs of the graph KN can be encoded in a Hilbert space that we will now

define. In general, it is possible to associate a Hilbert space Hedge to each edge eab and a

Hilbert spaceHvertex to each vertex. The total Hilbert space of the system is then given by

the tensor product

Htotal =

N(N−1)/2⊗
Hedge

N⊗
Hvertex. (4.8)

In the following, we will specialize to models in which all the degrees of freedom are on

the edges of the graph as opposed to both the edges and vertices. In Chapter 5, instead,

we will consider also the case with degrees of freedom on the vertices.

The basic Hilbert space associated with an edge is chosen to be that of a fermionic

oscillator. That is,Hedge will be

Hedge = span{| 0〉, | 1〉}; (4.9)

the state | 0〉 is called the empty state and the state | 1〉 is said to contain one particle. (One
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can alternatively think of | 0〉 and | 1〉 as being states in the computational basis of a qubit.)

A general state in the total space of edgesH⊗N(N−1)/2
edge is

|ψ〉 =
∑
{n}

c{n} |n12〉 ⊗ |n13〉 ⊗ |n23〉 ⊗ · · · , (4.10)

i.e., a superposition of all possible states which are themselves tensor products of states

|nab〉 associated with single edges; nab = 0, 1 are occupation numbers and c{n} are complex

coefficients.

A given edge of the graph is interpreted as being on or off depending on whether

the corresponding qubit state takes the value 1 or not. The collection of on states define

a subgraph of the complete graph KN . Thus, the total Hilbert space of edges can be

decomposed as (recall that we ignore degrees of freedom on the vertices)

Htotal =
⊕
G

HG (4.11)

with the tensor sum being over all subgraphs G of KN . Each term in (4.10) corresponds to

a state in one of the blocks HG. Since we treat the vertices as distinguishable, there may

be many blocks in the sum that correspond to isomorphic graphs 2.

Acting on the Hilbert space of each edge can be done through creation and annihila-

tion operators a† and a. They act in the usual way,

a| 0〉 = 0, a| 1〉 = |0〉, (4.12)

2Two graphs are isomorphic if they are identical up to a relabeling of vertices.
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and obey the anticommutation relation

{a, a†} = aa† + a†a = 1. (4.13)

The other anticommutators are zero, {a, a} = {a†, a†} = 0. There is a Hermitian operator

a†a, whose action on a state |n〉with n = 0, 1 is

a†a|n〉 = n |n〉. (4.14)

This operator is commonly called the number operator because it reveals the number of

particles present in a state.

It is now possible to define operators (4.14) that act on each of the copies of Hedge.

These will be denoted by subscripts and defined in the intuitive way, e.g.

N13 (|n12〉 ⊗ |n13〉 ⊗ · · · )

= (1⊗ a†a⊗ · · · ) (|n12〉 ⊗ |n13〉 ⊗ · · · )

= n13 (|n12〉 ⊗ |n13〉 ⊗ · · · ) .

(4.15)

From the definition of the operators on the middle line, one can see that number operators

acting on different edges commute. Since the graphs are undirected (that is, the edges are

unordered pairs of vertices), the identity Nab = Nba holds.

The set of operators Nab can be understood as analogous to elements of an adjacency

matrix Aab and thus all the properties described in the previous section are understood.
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There are some differences, however, due to the fact that the creation and annihilation

operators aab and a†ab acting on the same edge do not commute. Terms which contain at

least two creation operators and two annihilation operators can in principle be ordered

in several inequivalent ways. In setups involving the harmonic oscillators, there is a

standard convention for ordering operators called normal ordering and denoted by putting

colons around an operator. In this convention, all annihilation operators aab are set to the

right of the creation operators a†ab. When b = d, the same two annihilation operators

appear on the right. It is then easy to understand that

: NbcNcb : = 0. (4.16)

Consequently, whenever a term of : N
(L)
ab : with L ≥ 2 acts on the same edge more than

once, that term does not contribute. Therefore, the eigenvalues of operators : N
(L)
ab : for

each a, b return the number of nonoverlapping paths between vertices a and b. We will make

use of the normal ordering convention and this property, in particular, when defining and

analyzing the quantum Hamiltonian for the graph model and in the mean field theory

approach.

4.5 The Hamiltonian

We would now like to describe the Quantum Graphity Hamiltonian introduced in [80].

For this purpose we consider Hamiltonian function (operator) H acting on states in

the Hilbert space Htotal defined in (4.8). A Hamiltonian operator associates an energy
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E(G) to a state |ψG〉. We can thus define, using a normal-ordering prescription,

E(G) = 〈ψG| : H : |ψG〉. (4.17)

This notation for the energy should not be confused with the set of edges of a graph; the

meaning of the symbol E(G) should be clear from the context.

The Hamiltonian will preserve the permutation invariance symmetry of KN by con-

struction.

4.5.1 Valence term

The general form of this valence Hamiltonian should depend only on the number of on

edges attached to a given vertex,

HV = gV
∑
a

fa

(∑
b

Nab, v0

)
. (4.18)

Here gV is a positive coupling constant and v0 is a free real parameter. The function fa will

be chosen such that its minimum occurs when vertex a has exactly v0 on-links attached to

it. The outer sum over vertices a indicates that all vertices in the graph should have the

same valence v0 to minimize the total energy.

A specific choice of HV is

HV = gV
∑
a

ep (v0−
∑
bNab)

2

(4.19)
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where p is another real constant. The exponential is defined by its series expansion in p,

ep (v0−
∑
bN1b)

2

=1+p (v0 −N12 −N13 −· · ·)2

+
p2

2
(v0 −N12 −N13 −· · ·)4 +O(p3)

(4.20)

The ellipses within the parentheses stand instead of the summation over the other N1b.

The effect of the valence Hamiltonian HV is to set the preferred valence for a graph to

v0 in the ground state.

4.5.2 Closed Paths

This term of the Hamiltonian counts the number of closed paths of the graph. This is

given by,

HB =
∑
a

HBa (4.21)

where HBa is rooted at a vertex a and is given by

HBa= −gB
∑
b

δab e
rNab . (4.22)

Here gB is a positive coupling and r is a real parameter. The exponential is defined in

terms of a series expansion in the parameter r, and thus NL
ab at the Lth order. When these

powers of the number operator are normal-ordered, overlapping paths become unimpor-

tant and only nonoverlapping paths contribute. The sum over b and the delta function δab
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in (4.22) together ensure that only closed paths are counted.It is easy to understand that

the Hamiltonian HB starts contributing at L = 3.

4.5.3 Interaction Terms

The termsHV andHB do not change the graph state. A generic graph model Hamiltonian

might also have some interaction terms which change the graph state. Interaction terms

are necessary in a because they define how a graph state can evolve from one configura-

tion to another.

Some examples of such possible interactions are the N-dimensional Pachner moves

depending on which space dimensionality ones tries to emulate. However, in the follow-

ing we will not consider these terms and we find not important to describe them here.

Thus, the final form of the Hamiltonian reads, not neglecting the interaction terms:

H = HV +HL +HB (4.23)

This is the Hamiltonian that we will study in the following.

4.6 Extensions with More Degrees of Freedom and String-

Net condensation

In this section we see how generalization of the previous model can be related to quantum

field theories, including quantum gravity.
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The Hilbert space Hedge associated to each edge in the complete graph can be altered

in order to add more degrees of freedom. There is still a requirement that the new Hedge

contains a state |0〉, which can be interpreted as the physical link between two vertices

being off.

In order to get string-net condensation, it is necessary to consider an infinity of label-

ing. Here instead we focus on the case s = {1, 2, 3}. The Hilbert space of the new edge is

the span of all possible states, given by

Hedge = span{| 0〉, | 11〉, | 12〉, | 13〉}. (4.24)

The difference between the edge Hilbert space (4.24) and the old one (4.9) is that there

are now multiple on states that can be distinguished by an internal label s. This will

change the phase space of the model in the mean field theory approximation.

The total Hilbert space for this extended model is defined as in (4.8) and can still be

decomposed according to (4.11). However, the spaces HG in the tensor sum decomposi-

tion are here no longer zero-dimensional but reflect the internal degrees of freedom of the

on links.

This Hilbert space can be considered as the one of spin operators, M which has the

states |j, m〉 as eigenstates,

M | j, m〉 = m | j, m〉, (4.25)
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and operators M± that change the internal m labels,

M+ |j, m〉 =
√

(j −m)(j +m+ 1) | j, m+ 1〉

M− |j, m〉 =
√

(j +m)(j −m+ 1) | j, m− 1〉.
(4.26)

These are the familiar operators of angular momentum and all the known facts about

them follow trivially.

A Hamiltonian for a model with this edge structure can be written, for instance, as

H = HV +HB +HC +HD +H±, (4.27)

where HV and HB are the same as in Sec. 4.1, while the other terms are

HC = gC
∑
a

(∑
b

Mab

)2

, (4.28)

HD = gD
∑
ab

M2
ab, (4.29)

H± = −
∑
cycles

g± (L)
L∏
i=1

M±
i . (4.30)
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This Hamiltonian mimics the action of the one of Section. 4.1 3

Note the similarity of this coupling function to that of in the loop term HB without

the extended phase space . This is just a choice, and in principle many others could be

made. For the time being, no detailed analysis of the H± has been made. Later on, when

discussing the mean field theory analysis of the model, a simpler choice for counting the

loops will be chosen.

Since the new terms of the Hamiltonian contain only M and M± operators and not

as and a†s operators by themselves, they do not change the linking configuration. At low

temperatures, we can consider the base graph to be frozen in a particular configuration

which the Hamiltonian will choose, and discuss the action of HCD and H± on this back-

ground. If the Hamiltonian is well chosen and the ground state graph is hexagonal, the

terms of (4.28), (4.29) and (4.30) reduce to a model of string nets [44].

Since the loop Hamiltonian H± does not commute with HC or HD, the eigenstates

of the full Hamiltonian will generally be superpositions of states involving different m

configurations. Nonetheless, intuitively, the model can be developed by first describing

the eigenstates of the HC + HD terms alone, and then considering the effect of the loop

3Though, there are some clear differences. The couplings gC , gD, and g± are additional terms. In the H±
term, referred to as the loop term below, the product is taken around a cycle of length L (i.e., consisting of
L edges) and with alternating raising and lowering operators:

L∏
i=1

M±
i = M+

abM
−
bc...M

+
yzM

−
za. (4.31)

Thus, the loop operator is naturally restricted to act on cycles of even length. The coupling g±(L) is

g±(L) =
rL

L!
g±, (4.32)

and thus resemble a term of the Taylor expansion of an exponential.
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term.

The ground state of HC + HD consists of all links having m = 0. When gC � gD,

low-energy excited states appear as closed chains of links on which the m variables have

alternating values m = +1 and m = −1. These excitations are called strings and their en-

ergy above the ground state is proportional to the coupling gD times their length (number

of edges.) Thus gD can be thought of as a string tension. The coupling gC can instead be

related to the mass of pointlike particles [44].

Given a graph with all on edges labeled by m = 0, a loop operator (4.31) acts as to

create a closed string of alternating m = +1 and m = −1 edges (a loop operator cannot

create open strings.). Of course, these closed strings acquire tension (energy) through the

gD term. However, since the sign of the g± term is negative, the overall energy of the state

may either increase or decrease as a result of string creation and so there is the possibility

of two distinct scenarios. Depending on the choice of the couplings, the tension in a

string could be greater than the contribution from the loop term, so the overall effect of

creating a string is to increase the energy of the system. If this is the case, then the string

represents an excited state over the vacuum in which all m values are set to zero. If the

tension is small compared to the contribution from H± so that creating a string decreases

the energy, then the creation of the string actually lowers the energy and indicates that the

original configuration cannot be the ground state. Instead, the true ground state consists

of a superposition of a large number of strings - a string condensate. The Hamiltonian is

bounded from below due to the finiteness of the graph, which acts as a regulator.

The characterization of the string-condensed ground state is difficult but its excita-
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tions are conjectured to be that of a U(1) gauge theory [44]. In fact, the Hamiltonian is

close in form to the Kogut-Susskind formulation of lattice gauge theory [85]. The two

main differences between this formulation of the model and the original string-net con-

densation model proposed by Levin and Wen [44] are that in the present case the back-

ground lattice is dynamical and has different types of plaquettes in the ground state,

rather than only square plaquettes. This is in general more complicated than this, as the

Konopka showed in [14]. In fact, in the model with a generalized phase space, in general

the ground state has been found to be effectively one-dimensional, though with a degree

fixed by the Hamiltonian. This latter fact will be confirmed later on through a mean field

theory approach. Interestingly enough, a different formulation, but still close in spirit to

Quantum Graphity but based on simplices [123], obtained a 2-dimensional ground state.

More recently[65], a study of the domain structures in this type of models has shown that

typical phenomena like gravitational lensing can occur in these models.

4.7 Lieb-Robinson Bounds and (non-)locality

4.7.1 Locality and non-locality

So far we have dealt with Quantum Mechanical models. As it is well known, Quantum

Mechanics is non-local in a very strict sense. While information cannot be propagated

faster than the speed of light, Quantum Mechanics propagates signals (i.e. probability)

outside the local light-cone fixed by the speed of light. The solution to this non-locality

problem is well known: Quantum Field Theory. In Quantum Field Theory the idea is to
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replace a point-particle with a field and quantize it imposing that equal time commutators

between fields are zero if not acting on the same point. This is the principle of locality.

The principle of locality is one of the most fundamental and powerful ideas of modern

physics and is strictly connected to the concept of causality. Roughly, it states that given

any local piece of a physical system can be influenced only by those pieces in its neigh-

borhood. The principle of causality, instead, states that the cause precedes the effect. In

special relativity, information cannot propagates faster than the speed of light.

Relativistic quantum mechanics, as we said, is built by taking the locality principle

as a central feature. In non-relativistic quantum mechanics the situation is more subtle:

signals can propagate at every speed and quantum correlations are non-local in their

nature.

One can, in fact, send information over any finite distance in an arbitrary small time

[95]. However, the amount of information that can be sent decreases exponentially with

the distance if the Hamiltonian of the system is the sum of local Hamiltonians. This

statement, as we will see, can be made very precise through the Lieb-Robinson bounds.

Specifically, there is an effective light cone resulting from a finite maximum speed of

the interactions in quantum systems.

This interesting fact has attracted interest in the context of quantum information the-

ory, condensed matter physics, and the creation of topological order [95, 98, 161, 97].

Later, we will see that a real light cone emerge for particles hopping on the graph, in a

different model that we will introduce.
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4.7.2 Lieb-Robinson Bounds and the emergent speed of sound

Here we recall the standard proof of the Lieb-Robinson bounds [96, 98, 97]. Let us con-

sider a Hamiltonian of the formH :=
∑

X⊂G ΦX . Also, let us consider an operatorOY with

support in a set Y ⊂ G. The time evolution for this operator, in Quantum Mechanics, is

under the unitary 1-parameter transformation induced by H , and is OY (t) = eitHOY e
−itH .

The Lieb-Robinson bound is an upper bound estimate of the commutator of these two

operators OP (t), OQ(t′) with support in different regions P and Q and at different times t

and t′.

In principle we could time evolve the two operators, but only the time difference will

result relevant, as it will be clear during the proof.

If the interaction map ΦX couples only nearest-neighbor degrees of freedom, the Hamil-

tonian can be written as H =
∑

<ij> hij and the Lieb-Robinson bound reads

‖[OP (t), OQ(0)]‖ ≤ 2‖OP‖‖OQ‖
∞∑
n=0

(2|t|hmax)n
n!

NPQ(n)

≤ 2‖OP‖‖OQ‖C exp [−a(d(P,Q)− vt)] (4.33)

where hmax = max<ij>∈G hij and NPQ(s) is the number of paths of length s/2 between

the points P,Q at distance d(P,Q) in G [95]; || · || is instead the operatorial norm, ||T̂ || =

supv
|T̂ v|
|v| . The constants C, a, v have to be determined in order to get the tightest possible

bound. This bound is loose for several reasons: the crude maximization over hij, the

overlook about the Hamiltonian’s details, and the fact that all interactions are summed in

modulus instead than amplitude, so that destructive interference is not taken in account.
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4.7.3 Lieb-Robinson Bound for the emergent U(1) model

What do the Lieb-Robinson bounds tell us about the model Heff with emergent light?

Here we recall the results of [54], where this question has been undertaken. We have ar-

gued that the effective model of Levin and Wen has an emergent U(1) gauge-symmetry. Is

the maximum speed of the interactions something like the speed of the emergent light or

something completely different? As we have seen, this is of great importance if we want

to take seriously the theory of light as an emergent phenomenon. More importantly, we

will see that the degree of the graph, which in the model is a function of the temperature,

plays a major role in the speed of propagation.

If we apply naively the Lieb-Robinson bounds to the Hamiltonian of the U(1) lattice

gauge theory, we see that the speed v is proportional to the strongest of the coupling

constants, v ∝ g. Since light only exists in the phase g � J , we would have v � √gJ .

However, the bound can be made much tighter by examining the details of the Hamil-

tonian and the specific way the interactions propagate [54]. Consider the function f(t) :=

[OP (t), OQ(0)] and consider the set Z1 := {Z ⊂ G : [ΦZ , OP ] 6= 0}, the support of the

complement of the commutant of OP in the set of interactions. The function f(t) obeys a

differential equation [97]

f ′(t) = −i
∑
Z⊂Z1

([f(t),ΦZ(t)] + [OP (t), [ΦZ(t), OQ(0)]]) , (4.34)

where ΦZ(t) = eiHtΦZe
−iHt. From the above equation, and using the norm-preserving
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property of unitary evolutions, one can establish [97] the bound

‖[OP (t), OQ(0)]‖ ≤ ‖[OP , OQ]‖

+2‖OP‖
∫ |t|

0

‖
∑
Z⊂Z1

[ΦZ(t), OQ(0)]‖. (4.35)

Successive iterations of the above formula yield

‖[OP (t), OQ(0)]‖ ≤ 2‖OP‖‖OQ‖
∞∑
n=0

(2|t|)n
n!

an, (4.36)

where

an :=
∑
Yi⊂Zi

n∏
i=1

‖ΦYi‖, (4.37)

and where we define Zi+1 := {Z ⊂ G : [ΦZ ,ΦZ′⊂Zi ] 6= 0}. The operators O1 and O2 are

non-commuting and local operators of the Hamiltonian.

It is clear, at this point, that every element of the sum is a product of the type
∏

i ‖Φi‖

such that [Φi,Φi−1] 6= 0 for every i. If each Φi is a local bosonic operator, every one of those

products is a path on the lattice.

These considerations can be applied to the case of the effective Hamiltonian Heff [54].

Let us consider OP , OQ to be the spin operator Sz at the points P,Q. For this Hamil-

tonian, the only non commuting operators are Wp and Szi when they have a vertex in

common. Therefore, a path in (4.37) consists of steps from a plaquette to any of the four

links bordering it, alternated with steps from a link to any of the two incident plaque-
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ttes. To every path of length n on G′ will then correspond an operator whose norm is∏n
i=1 ‖Φi‖ = (gJ)n/2. Thus, denoting with N ′PQ(n, d) the number of paths of length n on

G′ from P to a given point Q at a distance 2d, the following bound can be obtained

an ≤ N ′PQ(n, d)(gJ)
n
2 . (4.38)

A bound has been given in [54] to N ′PQ(n, d) ≤ 2
√

8
n
eκ(n−2d+4), for every κ > 0. Moreover,

the iteration of Eq.(4.36) can be built by replacing the 2|t|with ‖[Φ1,Φ2]‖(‖Φ1‖‖Φ2‖)−1|t| =
√

2|t|, and obtain

‖[OP (t), OQ(0)]‖ ≤ 4e4κ

e2κd
‖OP‖‖OQ‖

∞∑
n=0

(
√

16gJeκ|t|)n
n!

= ≤ 4e4κ‖OP‖‖OQ‖e−2κ(d−
√

2
√
2gJeκ

κ
|t|). (4.39)

Optimizing for κ, one could get vLR =
√

2e
√

2gJ ≡
√

2e× c.

The speed v has been estimated numerically as v ≈
√

2e
√

2gJ ≡ vLR =
√

2e× c and it

is tighter than the ordinary Lieb-Robinson bound.

Eq. (4.39) establishes that all the observables that are outside of the effective light cone

centered on P with speed of light vLR will have an exponentially small commutator with

the observables in P . It proves that any signal outside of a light cone generated with a

speed that is of the same order of magnitude (and with the same dependence on coupling

constants) of light will be exponentially suppressed. This result is a strong indication that

the maximum speed of signals is light. Thus, the theory of emerging light explains why

its speed is also the maximum speed for any signal at low energies. If we were able to
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probe energies of order U one could still find faster signals. This is still, however, an open

problem[74].

4.8 Mean field theory approximation at Low Temperature

We will now study the mean field theory approximation4. As we have seen in the pre-

vious sections, Quantum Graphity models are built such that at low temperatures the

model mimics the Levin-Wen Hamiltonian. We have also seen as the degree of the graph

is very relevant for the Lieb-Robinson bounds. We ask ourselves what is, then, the ef-

fective degree of the graph as a function of the temperature, in the Quantum Graphity

model introduced in [80, 107]. We tackle this problem by means of a Mean Field theory

approach. We will first relate the model to an Ising model, and then study the degree on

this reformulation. For this, we will introduce line graphs, which are special graph duals.

4.8.1 Graphs and Line Graphs

We start by defining line graphs. Let G = (V,E) denote a graph with vertex set V =

{v1, v2, ...} and edge set E = {e1, e2, ...}. The line graph L(G) = (Ṽ , Ẽ) is the graph of

the adjacencies of G, containing information on the connectivity of the original graph.

Each vertex ṽ ∈ Ṽ (L(G)) corresponds to an edge e ∈ E(G). Two vertices ṽ1 and ṽ2 in

Ṽ (L(G)) are adjacent if and only if the edges in G corresponding to ṽ1 and ṽ2 share a

vertex. The correspondence between G and L(G) is not one to one. From a given graph

4This section is based on [64]. The role of the author of the present thesis was to find the relation between
the speed of propagation of perturbations and the temperature.
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Figure 4.1: The simplest example of element of the Beineke classification of a minimal graph that is
not a line graph of any other one. This means that in general there is not a one-one correspondence
between a graphs and line-duals.

G we can construct only one L(G) but it is not true that any graph is a line graph. In

fact, according to the Beineke classification, there are 9 non-minimal graphs that are not

line graphs of another graph and each graph containing them is not a line graph[49]. The

simplest example of a line graph is depicted in Fig. 4.1.

Given a graph G, we can construct its line graph using the following procedure:

1. Enumerate the vertices of G.

2. Enumerate the edges of G with a fixed prescription (see example below) and put a

blob on them.

3. If two edges share a vertex, draw a bold line between them.

4. Remove G and its enumeration.

What is left is the line graph of G where the blobs represent its vertices.

Let us now introduce some useful quantities:

Definition. (Kirchhoff matrix) Let G be a generic graph, V = {v1, v2, · · · , vn} be the set of

vertices of G and E = {e1, e2, · · · , ep} be the set of edges of G. Let us define the matrix P of size

n × p with entries Piβ , where i is an integer between 1 and n on the set of vertices and β is an
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integer between 1 and p on the set of edges, such that:

Piβ =


1 if the edge β has an vertex on the vertex i,

0 otherwise .
(4.40)

The Kirchhoff matrix K is the p× p matrix built from P , such that:

K = P t P, (4.41)

P t representing the transpose of P .

A well-known theorem now gives the incidence matrix of the line graph L(G):

Theorem. Let G be a graph with p edges and n vertices and let L(G) be its line graph. Then the

matrix:

J = K − 2 I, (4.42)

where I is the p× p identity matrix, is the incidence matrix of L(G).

In the next section we will show how the graphity hamiltonian can be recast on the

line graph using (4.40) and (4.42).

4.8.2 The line graph representation

Since in the hamiltonian (4.23) we neglect the terms in which vertices are interacting be-

cause we assume there are no degrees of freedom on them, one could expect that it can be
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rewritten only in terms of the connectivity of the graph. To carry out such a reformulation,

let us expand the first term in (4.23) for small values of the parameter p:

ĤV = gV
∑
i

1̂ + pgV
∑
i

(
v0 −

∑
j

N̂ij

)2

+ O(p2)

= gV
(
1 + v2

0p
)∑

i

1̂ + pgV
∑
ijk

N̂ijN̂jk − 2gV pv0

∑
ij

N̂ij + O(p2). (4.43)

As we will see later, such an expansion does not modify the properties of the model at

low temperature. The first term in (4.43) is an energy shift and, for what is to come, can

be neglected. We should now be able to recognize some particular terms in the expansion

(4.43). The third term is proportional to the operator
∑

ij N̂ij . It is the sum over all the

edges of the graph, zero or not, of the number operator. We will change the notation to

∑
ij

N̂ij → 2
∑
β

N̂β, (4.44)

where β, as in the previous section, runs from 1 to N(N − 1)/2 and labels the edges of KN

or, equivalently in what follows, the vertices of its line graph.

To rewrite the second term in (4.43), we need the matrix Piβ of (4.40) in this context.

This matrix maps the graph to its line graph, as we will see. We first fix a prescription

to label edges. Let KN be the complete graph of N vertices. Let I be any enumeration of

V (KN), i ∈ I = 1, ..., N . We identify edges by their endpoint vertices (i, j), with i, j ∈ I.

A labeling Sβ , β ∈ B = {1, · · · , N(N − 1)/2} is an enumeration of Ẽ(L(KN)), according to
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the following prescription:

S1, · · · , SN−1 label the edges connecting the vertices {(1, 2), · · · , (1, N)};

SN , · · · , S2(N−1) label the edges connecting the vertices {(2, 3), · · · , (2, N)};

...

SN(N−1)/2 labels the edge connecting the vertices (N − 1, N). (4.45)

Using this prescription it is easy to see that the matrix Piβ introduced in (4.40), for the

complete graph KN , has the simple (recursive) form:

PN =

 ~VN−1
~0

IN−1
b′c′ PN−1

a′α′

 , (4.46)

where ~VN−1 is a row vector of length N − 1, IN−1 is the identity matrix of size (N − 1) ×

(N − 1) and ~0 represents a null row vector of length N(N − 1)/2 − (N − 1). The indices

{a′, b′, c′} and α′ run from 1 toN−1 and 1 to (N−1)(N−2)/2 respectively. As an example,

for the graphs of Fig. 4.2 the P matrices are:

P 3 =


1 1 0

1 0 1

0 1 1

 , (4.47)
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Figure 4.2: Three examples of complete graphs labeled according to the prescription (4.45).

P 4 =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


, (4.48)

P 5 =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


, (4.49)

for (a), (b) and (c) respectively.
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It is easy to see that two edges α and β have a common vertex if and only if we have:

∑
i∈I

P t
βiPiα = c 6= 0, (4.50)

where t is the transposition operation. By construction, c can take the following values

only:

c =


2 if α = β,

1 if α 6= β and α and β have a common vertex,

0 if α 6= β and α and β do not have a common vertex.

(4.51)

In particular, for N = 4, K is given by:

K4 =



2 1 1 1 1 0

1 2 1 0 0 1

1 1 2 0 1 1

1 0 0 2 1 1

1 0 0 1 2 1

0 1 1 1 1 2



, (4.52)

Using now the matrix Piβ just introduced, we want to construct generic n-string matrices

as composition of n edges of the graph, thus a path on the graph. The n-string matrices

will be needed both for the non-retracing loop term and the 2-edge interaction term in
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equation (4.43). The quantity:

Ki
αβ = P t

αiPiβ (4.53)

is the definition of the Kirchhoff matrix of equation (4.42) if we sum over the index i.

From Ki
αβ we can construct strings of P ’s of the form

Qi1···in
α1···αn+1

= Ki1
α1α2

Ki2
α2α3
· · ·Kin

αnαn+1
, (4.54)

that we call string matrices of nth order. These string matrices represent paths through

vertices i1 · · · in and they are zero unless the edges corresponding to α1 · · ·αn+1 are in the

correct order, that means, they represent an actual path on the graph. For instance, the

number of paths of length 2 on the complete graph is given by

#2-strings =
∑

α 6=β∈B

∑
i∈I

Qi
αβ =

∑
α 6=β∈B

Kαβ, (4.55)

or, equivalently, we can use (4.40) and rewrite (4.55) as

#2-strings =
∑
αβ∈B

∑
i∈I

Qi
αβ =

∑
αβ∈B

(Kαβ − 2 Iαβ) . (4.56)

The subtraction of twice the identity in (4.56) is the same as the subtraction of the self-

energy of each edge. We now clearly see that this matrix is precisely the incidence matrix

of the line graph of KN introduced in (4.42), with α, β ∈ Ṽ (L(KN)).
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So far we have dealt with the complete graph only. We wish to extend this formalism

to a dynamical graph. In order to do that we return to the Hilbert space formulation of

the graph with on/off edges. Recall that any graph on N vertices is a subgraph of the

complete graph KN , with some edges off. Thus, since we can always map a graph on a

complete graph, we can count paths on any graph by modifying (4.56) so that it counts

paths of only on edges on the corresponding complete graph. To do so, we introduce in

the sum the number operators N̂β in the following way:

#2-strings =
∑
αβ∈B

(Kαβ − 2 Iαβ) N̂αN̂β

=
∑
αβ∈B

Jαβ N̂αN̂β. (4.57)

This term does not contribute if any of the two edges α, β is off. It is easy to see that this

term of the hamiltonian is an Ising interaction. The important difference between these

two Hamiltonians is that in our case the spin system is on the line graph a complete graph

KN .

By extension of the above, we are now able to construct a generic path operator out of

Ki
αβ’s. We define

P̂ (n) :=
∑
Q

∑
α1···αn

Ki1
α1α2

Ki2
α2α3
· · ·Kin−1

αn−1αn
N̂α1 · · · N̂αn

=
∑
Q

∑
α1···αn

Qi1···in−1
α1···αn N̂α1 · · · N̂αn , (4.58)
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where the set Q is

Q =


i1 6= · · · 6= in−1 ∈ I for non-retracing paths,

i1, . . . , in−1 ∈ I for retracing paths.
(4.59)

It is easy to see that it counts the number of paths of length n in the graph, that is why we

call the Q’s string matrices. Note that Qi1···in−1
α1···αn can take values 0 and 1 only because it is a

product of 0’s and 1’s. This string matrix is not the matrix multiplication of the Kirchhoff

matrices: it only reduces to matrix multiplication for retracing paths where we sum over

all possible vertices.

In the following, we will denote the two sets in (4.59) as Qr and Qnr for the retracing

and non retracing cases respectively; moreover, we may explicitly show the indices on

which we are doing the sum as Qr/nr(ib(j)). In order to count loops, we just need to impose

α1 = αn:

Pα1i1Pi1α2︸ ︷︷ ︸Pα2i2Pi2α3︸ ︷︷ ︸Pα3i3Pi3α1︸ ︷︷ ︸ .
Ki1
α1α2

Ki2
α2α3

Ki3
α3α1

(4.60)

Thus we have discovered that, when there are no degrees of freedom on the vertices

of the graph and we neglect the interaction terms, we can recast the Quantum Graphity

hamiltonian on the line graph L(KN) representation in the weak coupling regime at finite

N .

We end this section with two properties of the nth-order string matrices. Let us define:
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Q̃r/nr
α1···αn =

∑
Qr/nr

Qi1···in−1
α1···αn . (4.61)

The following properties of the sum of these string matrices on complete graphs will be

required next:

Property 1: Let G = KN . Then, for a loop of n edges:

∑
α1 6=α2 6=···6=αn

Q̃nr
α1······αLα1

= N(N − 1) · · · (N − L) (4.62)

and

∑
α1 6=α2 6=···6=αn

Q̃r
α1······αLα1

= NL. (4.63)

Proof. These two facts follow trivially if we note that the equations (4.62) and (4.63) count

the number of retracing and non-retracing paths of length L on the complete graph re-

spectively.

Property 2: Let G = KN . Then, for a loop of n edges, and for L ≥ 4, we have:

∑
α3 6=α4 6=···6=αn Q̃

nr
α1······αLα1

= (N − 3) · · · (N − 3− (L− 4))Kα1α2 , (4.64)
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while, for L = 3:

∑
α3
Q̃nr
α1α2α3α1

= Kα1α2 , (4.65)

if α1 6= α2 6= α3 · · · 6= αn.

Proof. Note that
∑

α3 6=α4 6=···6=αn Q̃
nr
α1······αnα1

is the number of non-retracing loops of length

L on the complete graph KN which pass by the edges α1 and α2. Now, it is easy to see

that if the edges α1 and α2 do not share a link this quantity is zero. Also note that, by

the symmetry of the complete graph, the number of non-retracing loops based on two

neighboring edges must be the same for each pair of edges αj1 ,αj2 sharing a node. Since

the matrix Kαj1αj2
takes values 1 or 0 depending on whether the edges αj1 ,αj2 are neigh-

bors or not,
∑

α3 6=α4 6=···6=αn Q̃
nr
α1······αLα1

must be proportional to the matrix Kα1α2 . In order

to evaluate the proportionality constant, let us note that each loop is weighed by a fac-

tor of 1 because n-string matrices take values 1 or 0 only. The combinatorial quantity

(N − 3) · · · (N − 3− (L− 4)) is then the number of non-retracing loops of length L passing

from two consecutive fixed edges on the complete graph of N vertices, as can be easily

checked. The special case (4.66) follows from the fact that if we fix two edges there is only

one edge which closes the 3-loop.
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Note that, for N � L, we have:

∑
α3 6=α4 6=···6=αn

Q̃nr
α1······αLα1

≈
∑

α3 6=α4 6=···6=αn

Q̃r
α1······αLα1

= NL. (4.66)

We can now collect the results of this section to write the hamiltonian (4.43) as

Ĥ = A
∑
α,β∈B

JαβN̂αN̂β −B
∑
α∈B

N̂α − C
∑

α 6=β 6=γ∈B

Q̃nr
α,β,γ N̂αN̂βN̂γ, (4.67)

where

A = p gV ,

B = 2 gV p v0,

C = gL
r3

6
, (4.68)

and neglecting higher order loop terms.

4.8.3 Mean field theory approximation and low temperature expansion

Having rewritten the hamiltonian in an Ising fashion, we now can approach the problem

of finding a graph observable and its equilibrium distribution using mean field theory. As

we will see, the natural graph observable to consider is the average valence of the graph.

We will assume that the system is at equilibrium and we neglect the interaction terms. In

this case, it is straightforward to use mean field theory analysis [53]. In what follows, we

assume units in which the Boltzmann constant kB = 1.
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We start by replacing the number operators N̂α with semi-classical analogs, imposing

that their expectation value must lie in the interval I = [0, 1]:

N̂β → 〈N̂β〉P = mβ, (4.69)

where P is a probability measure of the following form:

P (mβ) = mβδ1,mβ + (1−mβ)δ0,mβ . (4.70)

It is easy to see that this probability distribution forces the spin-average to lie in I . Recall

that in order to obtain the mean field theory distribution we have to extremize the Gibbs

functional given by

Φ[m] = H[m]− 1

β
S[m], (4.71)

where β = T−1, H[m] is the energy and S[m] is the entropy functional. The latter can be

written as:

S[m] = −
∑

mβ={0,1}

niP (mβ(i)) logP (mβ(i)), (4.72)

where ni is the degeneracy of the state.
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Case I: Non-degenerate edge states

In this subsection we focus on the case in which the states on and off are not degenerate,

so that ni = 1. In the next subsection we will deal with non-degenerate edge states and in

particular with 3-degenerate on states.

In the process of extremizing the Gibbs functional we will see how the average valence

of the graph naturally emerges. We impose:

∂mβΦ[m] = 0. (4.73)

Using

∂mβS[m] = − log(
mβ

1−mβ

) (4.74)

and

∂mβH[m] = A
∑
α∈B

Jαβmα −B − C
∑

αγ∈B,α 6=γ 6=β

Q̃αβγmαmγ, (4.75)

we find that the distribution for the mα is

mβ =
e−β∂mβH[m]

1 + e−β∂mβH[m]
=

1

1 + eβ∂mβH[m]
. (4.76)

The solution of this equation gives the equilibrium value of mβ once the value of the

temperature is fixed.
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We now want to write (4.76) as a function of an average quantity on the graph. Let us

first note that, in the mean field theory approximation, we have

∑
α

Jαβmα = 2 d(T ), (4.77)

where d(T ) is the mean valence of the graph. The valence d(T ) is a good graph observable

that we can use also as a double check for our procedure since it appears explicitly in the

original formulation of the hamiltonian and in the low temperature regime must take the

value v0. First, we note that:

mα =
Non edges

N(N − 1)/2
=

∑
i∈I d(i)/2

N(N − 1)/2
=

d(T )

N − 1
. (4.78)

In the first equality, Non edges is the number of edges of the graph which are in an on state.

In the second equality, the average valence (the sum over all the local valencies divided

by the number of vertices) is explicitly written as a temperature dependent quantity. In

the third equality we used the graph property:

∑
i∈I

d(i)

N − 1
= 〈d〉 ≡ d(T ). (4.79)

The most complicated term in the hamiltonian is the 3-loop one. The simplest way to deal

with it is to use the Ansatz dictated by the mean field theory:

∑
αγ∈B

Q̃αβγmαmβ ≈ ξ(T )d2(T ). (4.80)
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Let us replace mβ with its average value: d(T )/N − 1. Using eq. (4.62) for non-retracing

paths and assuming N � 1 we obtain the dependence on d(T ). ξ(T ) is a function of order

∼ 1 at low temperature, which we assume is dependent on T . Using these approximations

we can see that d(T ) is a natural order parameter for our mean field theory since it is easily

recognized as implicitly defined in the stable distribution:

d(T ) =
N − 1

1 + eβ[2d(T )A−ξC
2
d2(T )−B]

. (4.81)

Again, in order to double check our procedure, we can ask if such an order parameter

behaves as expected at low temperature. We must keep in mind that the starting hamil-

tonian (4.23) was constructed in such a way that the average valence at zero temperature

was a fixed value of the parameter v0 at finite N . We can now use (4.81) to check if this

is the case. To do so, we Taylor expand both sides and match the zeroth and first order

coefficients on the left and right hand side of the equation. That is, we start with the

expansion

d(T ) = α̃ + β̃T +O(T 2), (4.82)

and, for the approximation to be consistent at T = 0, we require analicity of the order

parameter (this has to be the case for a finite volume system in ordinary statistical me-

chanics, which is the case for finite N ) . We then require that inside the exponential of

equation (4.81) the temperature independent terms in the numerator cancel out so that at
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T = 0 the exponent is well defined. This gives the second order equation in α:

2αA− ξ(0)Cα2 = B. (4.83)

Now note that, while this equation has two solutions, we need to only look for the one

which is analytical in the parameters of the model and tends smoothly to the solution

α̃ = B
2A

in the C → 0 limit. This fixes α to the value α̃, given by

α̃ =
A

ξ(0)C

(
1−

√
1− Cξ(0)B

A2

)
. (4.84)

We can now plug α̃ at T = 0 into (4.81):

α̃ =
N − 1

1 + e(2A−ξ(0)Cα̃)β̃
, (4.85)

to obtain the value of β̃ in (4.82):

β̃ =
1

2A− ξ(0)Cα̃
log

(
N − 1

α̃
− 1

)
. (4.86)

It is easy to see that in the limit N → ∞ we have β̃ → ∞, indicating a second-order

phase transition (a discontinuity in the first derivative of the order parameter). In our

case, this happens at T = 0, meaning that this transition is not possible because there is

no way to cool down the system to zero temperature with an external bath. However, we

have to remember that we are just approximating the real system with a semi-classical
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analog. We then simply interpret the above result as the fact that the system reaches the

ground state very quickly when the temperature approaches zero.

It is interesting now to plug in the couplings. Inserting equations (4.68) into (4.84), we

find that at T = 0

d(T = 0) = α̃ =
A

ξC

(
1−

√
1− CξB

A2

)
=

6pgV
ξ(0)gLr3

(
1−

√
1− ξ(0)

gLr3v0

3pgV

)
. (4.87)

Note that, for small values of r, when r3 � 3pgV
gLv0

, we have α̃ = v0, meaning that at low

temperature the mean degree is the one imposed by the degree term of the hamiltonian,

as expected. We can, however, see how the 3-loops term contributes to this quantity by a

Taylor expansion in r:

d(T = 0) = α̃ = v0

(
1 +

2

3
ξ(0)

gLr
3v0

pgV

)
. (4.88)

From this expression it is clear that the loop terms are suppressed if gV � gL. This is

the main result derived in this section using the line graph representation. A plot of the

function d(T ) is shown in Figure 3.

We now have the tools to calculate the susceptibility function for the theory in the

mean field theory approximation. Recall that the susceptibility function tells us how the

system reacts to a variation of the external magnetic field. In our case, the magnetic field

is the combination 2gV pv0 and we note that the parameter v0 in the hamiltonian appears

only here. We have the following analogy: v0 represents the external magnetic field, while

2gV p represents the spin-coupling combination.
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Figure 4.3: The behavior of log(d(T)) (y-axis) against T (x-axis), for increasing N .

In order to calculate the susceptibility, we assume that the constant B is site-dependent

(i.e. a field). Thus, we have

〈Gαβ〉B = − 1

β

∂

∂Bβ

∂

∂Bα

F [h] =
1

β

∂mβ

∂Bα

. (4.89)

In particular, we are interested in the susceptibility function when T ≈ 0. From the study

of it we can gain some information about the low energy behavior of the model. We

expand the equilibrium distribution

mβ =
1

2

[
1− β

(
A
∑
α∈B

Jαβmα −Bβ − C
∑
αγ∈B

Q̃αβγmαmγ

)]
. (4.90)
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Using the notation ραβ :=
∑

γ∈B Q̃αβγmγ , we obtain

B̃β = Bβ −
1

2
=
∑
α∈B

(
2
δαβ
β

+ AJαβ + Cρ̃αβ

)
mα. (4.91)

To invert this equation, we approximate ραβ by replacing mγ → d(T )/(N − 1):

∑
γ∈B

Q̃αβγmγ →
d(T )

N − 1

∑
γ∈B

Q̃αβγ. (4.92)

We can now can use property (4.66) of the Q̃ matrices to find that the sum of the Q̃’s

reduces to the incidence matrix of L(KN). Hence, inverting equation (4.91), we obtain

mβ =
∑
γ

QγβB̃γ, (4.93)

where Qγβ = (2 δ
β

+ c0J)−1

γβ
and c0 is an effective constant in front of the Ising term of the

hamiltonian:

c0 ≈ pgV + gL
r3

3!

d(T )

N − 1
. (4.94)

It is interesting to note that, thanks to property (4.65), we can sum all the loop terms up

to a finite number 1 � L̃ � N in the hamiltonian if we assume the mean field theory

approximation. Inserting the couplings, we find

c0 ≈ pgV +gL

L̃∑
L=3

r2

L!

(
r
d(T )

N

)L−2

NL−3 ≈ pgV +
gLr

2

Nd(T )2

(
er d(T ) − 1− r d(T )− r2

2
d(T )2

)
.
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(4.95)

It is interesting to note that in the limit r → 0, or T → 0 (where d(T ) tends to a finite

number for N � 1), this effective constant tends to pgV . We interpret this as the fact that

at low temperature the loops become less and less important and the model is dominated

by the Ising term. In particular, since the external “magnetic” field is given by v0 and

is assumed to be nonzero, it is not surprising that at T = 0 the average valence, the

equivalent “magnetization”, approaches this value. We note that the N → ∞ limit does

not behave well unless L = 3. Higher loops are highly non-local objects. For a given pair

of edges, all the L-loops based on these edges span the whole graph already at L = 4,

while of course this is not the case for 3-loops. As a result, in formula (4.95) there is a

factor proportional to NL−3 which is not present at L = 3.

Case II: Degenerate edge states

The Quantum Graphity model [80] allows for degenerate on states on the edges or the ver-

tices of the graph. Degeneracy of edge states is necessary, for instance, in order to have

emergent matter via the string-net condensation mechanism of Levin and Wen. Degener-

acy requires modifying our calculations above and we will address it in this subsection.

The first possible generalization of the Quantum Graphity model is to introduce a

Hilbert space on the edges of the form:

He
β = span{|0〉β, |11〉β, |12〉β, |13〉β}. (4.96)
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This changes the degeneracy number in equation (4.72). With n1 = 3 and n0 = 1, we

obtain

∂mβS[m] = − log(
m3
β

1−mβ

)− 2. (4.97)

The equilibrium distribution solves this equation. If we put Q = exp[β(∂mβH[m]− 2)], we

have

mβ =

(
2

3

) 2
3 Q(

9 +
√

3
√

27 + 4Q3
) 2

3

+

(
9 +
√

3
√

27 + 4Q3
) 1

3

2
1
3 3

2
3

, (4.98)

obtained from the only real solution of the third order polynomial equation m3
β +Qmβ −

1 = 0.

Using the same procedure as before, it is easy to see that equation (4.84) remains un-

changed: the low energy average valence is the same in both cases. However, the first

derivative, that is, the coefficient of the T term in the Taylor expansion of the average

valence in the temperature, changes, so that β̃3,1 ≥ β̃1,1 (with the obvious notation for the

two coefficients). This phenomenon can be understood using the following argument. At

high temperature, the two models behave in the same way, forcing the valence to be high.

When the temperature drops, d(T ) also goes down. While in the (1,1) case the phase space

of the on edges is the same as that of the off edges, in the (3,1) case the system prefers to

stay in the on state. Thus, when the temperature decreases the system (3,1) is, at first,

slowly converging to the ground state, but at T = 0 it is forced to go to the ground state.
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For this reason the function d(T ) has a greater derivative near T = 0 in the (3,1) case.

4.9 The cosmological horizon problem and the speed of

propagation of signals

The isotropy of the cosmic microwave background presents us with the horizon problem:

how is it possible that regions that were never causally connected have the same tem-

perature? We discussed this issue in section the section on the Variable Speed of Light

theories. As we said, the horizon problem arises from the stipulation that interactions

cannot travel faster than a finite speed, which defines a causal cone. Inflation solves the

horizon problem by introducing an exponentially fast early expansion which allows for

initial causal contact and thermalization of the observable universe [103]. Alternative

proposed solutions require a mechanism for changing the speed of light as we trace the

history of the universe backwards in time [104] or a bimetric theory [105]. Dynamically

emerging light could also resolve the horizon problem. We now wish argue that the re-

sults on the maximum speed of interactions in speed systems can be used to justify this.

In fact, the Lieb-Robinson bound which we described earlier shows that the maximum

speed of interactions is directly proportional to the degree of the graph. As the plot in

Fig. 4.3 shows, the degree as a function of the temperature is a monotonically increasing

function. Thus, the physical picture which we would like to argue is the following. As

the Universe cooled, the graph became more and more sparse, thus decreasing the aver-

age degree. With the degree, also the speed of interaction decreased, and the light cone
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became more and more wide.

However, as we argued in the section on the variable speed of light, this phenomenon

has to happen suddenly. In our picture instead, no phase transition occurs, if not at T = 0.

Thus, this model cannot describe the Universe. Still, it remains an interesting attempt.

4.10 Problems with this model and the external bath

So far, we described a model of a time-varying graph. Since we took a thermodynamical

description, time is encoded into the temperature, T ≡ T (t). An adiabatic transformation

cools down the Universe down to the present value, which is assumed to be constant5.

However, what is the Temperature of the Universe? In standard thermodynamics, a gas is

kept at a fixed temperature by an external bath, with a specific heat much larger than the

sample we are doing experiments on. What keeps the graph (our model of Universe) at

a particular temperature? Having an external bath is very troublesome if we are dealing

with the Universe. This is the reason why a new model has been introduced, where the

graph interacts with matter, i.e. degrees of freedom on the vertices of the graph, which

allow the graph to thermalize.

5Here we are implicitly assuming that the temperature of the Universe is the same as the one of the
CMB. This assumption is in principle not exact, as the Universe is not at thermal equilibrium.
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Chapter 5
Quantum Graphs with matter

We now introduce a different model for quantum graphs, based on [111]1.

5.1 Bose-Hubbard model on Dynamical Graphs

An important issue in the research on quantum gravity is the dynamical nature of geom-

etry in general relativity. Usually, lattice-type of methods in condensed matter theory use

a fixed background, for example, a spin system on a fixed lattice. The lattice determines

the locality of the interactions and hence is a discretization of geometry. This is studied

in many approaches to quantum gravity. For example, CDT is based on path integral

dynamics on an ensemble of all lattices (each lattice is a regularization of a Lorentzian ge-

ometry), thus providing a proper non-perturbative approach to the problem. Elsewhere,

ideas from quantum information theory have been introduced in order to deal with this

problem [82, 42, 80].

1The role of the author of the present thesis, in this section, was to solve numerically the model in the
classical and the quantum case.
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An alternative direction, and the one we are pursuing in the present thesis, is to make

the lattice itself dynamical. The basic idea is to promote the lattice links to dynamical

quantum degrees of freedom and construct a Hamiltonian such that, at low energy, the

system “freezes” in a configuration with recognizable geometric symmetries, interpreted

as the geometric phase of the model. In the present section we revisit the same idea but

in a different model with two central properties:

• The model is a spin system on a dynamical lattice.

• There are lattice and matter degrees of freedom. The lattice interacts with the matter:

matter tells geometry how to curve and geometry tells matter where to go.

The starting point for the implementation of the above is considerations of locality. In

general relativity, locality is specified by the metric gµν on a manifold M. Dynamics of

matter on (M, gµν) is given by a Lagrangian which we call local if the interaction terms are

between systems local according to gµν . That is, the matter dynamics is made to match the

given space-time geometry. We will do the reverse and define geometry via the dynamics

of the matter. Our principle is that if particles i and j interact, they must be adjacent. This

is a dynamical notion of adjacency in two ways: it is inferred from the dynamics and,

being a quantum degree of freedom, it changes dynamically in time. This amounts to a

spin system on a dynamical lattice and to interaction of matter with geometry.

To summarize, we present a toy model for the emergence of locality from the dynamics

of a quantum many-body system. No notion of space is presupposed. Extension, sepa-

rateness, distance, and all the spatial notions are emergent from the more fundamental
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notion of interaction. The locality of interactions is now a consequence of this approach

and not a principle. We will promote the interaction terms between two systems to quan-

tum degrees of freedom, so that the structure of interactions itself becomes a dynamical

variable. This makes possible the interaction and even entanglement between matter and

geometry.

This toy model is also a condensed matter system in which the pattern of interaction

itself is a quantum degree of freedom instead of being a fixed graph. It can be regarded

as a Hubbard model where the strength of the hopping emerges as the mean field value

for other quantum degrees of freedom. We show a numerical simulation of the quantum

system and results on the asymptotic behavior of the classical system. The numerical

simulation is mainly concerned with the entanglement dynamics of the system and the

issue of its thermalization as a closed system. A closed system can thermalize in the

sense that the partial system shows some typicality, or some relevant observables reach

a steady or almost steady value for long times. The issue of thermalization for closed

quantum system and the foundations of quantum statistical mechanics gained recently

novel interest with the understanding that the role of entanglement plays in it [29]. The

behavior of out of equilibrium quantum system under sudden quench, and the approach

to equilibrium has been recently the object of study to gain insight in novel and exotic

quantum phases like topologically ordered states.

From the point of view of Quantum Gravity, the interesting question is whether such

a system can capture aspects of the dynamics encoded by the Einstein equations. We

start investigating in this direction by studying an analogue of a trapped surface that may
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describe, in more complete models, black hole physics. We discuss physical consequences

of the entanglement between matter and geometry.

The model presented here is very basic and we do not expect it to yield a realistic

description of gravitational phenomena. We now introduce the basic facts of the model.

We first recall the Bose-Hubbard model

5.1.1 The Bose-Hubbard model

As we will see shortly, the Bose-Hubbard model is the discrete version of a scalar field

in which the number of particles is conserved2. In order to see this, let us consider the

Hamiltonian of a 1-dimensional scalar field,

H =

∫
Dx
(

1

2
π2(x) +

1

2

(Dφ
Dx(x)

)2

+
1

2
M2φ2(x)

)
, (5.1)

where M is the mass of the field φ(x), and π(x) is the canonical momentum density. This

model is used widely for the classification of the various phases of superfluids (Mott

insulator/superfluid). In order to discretize eqn. (5.1), let us first define the following

operators

φ(x) −→ xn = φ(na)

π(x) −→ pn = π(na) (5.2)

Dφ
Dx −→

xn − xn−1

a
(5.3)

2We thank Arnau Riera for the present derivation.
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With this transformation, the Hamiltonian reads

H =
1

2

N−1∑
n=0

(
p2
n +

1

a2
(xn − xn−1)2 +M2x2

n

)
=

1

2

N−1∑
n=0

(
p2
n +

2

a2
(x2

n − xnxn−1) +M2x2
n

)
(5.4)

where the operators xn and pn fulfill the canonical commutation relations [xn, pm] = i δnm.

We will consider that the system has periodic boundary conditions, such that we can

identify x0(p0) as xN (pN ). In analogy with the quantization of the continuous version of

the scalar field, let us introduce the transformation

xn =
1√
N

N∑
k=0

1√
2ωk

(
ei 2π

N
kn âk + e− i 2π

N
kn â†k

)
(5.5)

pn =
1√
N

N∑
k=0

(− i)

√
ωk
2

(
ei 2π

N
kn âk − e− i 2π

N
kn â†k

)
.

This transformation implies that the commutation relations for âk an â†q are

[âk, â
†
q] = δkq1̂ . (5.6)

By changing the limits of the sum in Eq. (5.5) and reshuffling its terms, xn and pn become

xn =
1√
N

bN/2c∑
k=−bN/2c

1√
2ωk

ei 2π
N
kn
(
âk + â†−k

)
(5.7)

pn =
1√
N

bN/2c∑
k=−bN/2c

(− i)

√
ωk
2

ei 2π
N
kn
(
âk − â†−k

)
,
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where we have assumed that ωk = ω−k and N is an odd number. The terms of the Hamil-

tonian can be written in terms of âk and â†k as

∑
n

p2
n = −

bN/2c∑
k=−bN/2c

ωk
2

(
âk − â†−k

)(
â−k − â†k

)
∑
n

x2
n =

bN/2c∑
k=−bN/2c

1

2ωk

(
âk + â†−k

)(
â−k + â†k

)
(5.8)

∑
n

xnxn−1 =

bN/2c∑
k=−bN/2c

1

2ωk
ei 2π

N
k
(
âk + â†−k

)(
â−k + â†k

)

=

bN/2c∑
k=−bN/2c

1

2ωk
cos

(
2π

N
k

)(
âk + â†−k

)(
â−k + â†k

)
,

where in the last equation we have used the fact that [a−k + a†k, ak + a†−k] = 0. If we put

together Eqs. (5.1.1) and (5.8), the Hamiltonian reads

H =
N−1∑
k=0

(
−ωk

4

(
âk − â†−k

)(
â−k − â†k

)
+

2
(
1− cos

(
2π
N
k
))
/a2 +M2

4ωk

(
âk + â†−k

)(
â−k + â†k

))
.

Thus,

H =
N−1∑
k=0

ωk

(
â†kâk +

1

2

)
(5.9)

with

ω2
k =

2

a2

(
1− cos

(
2π

N
k

))
+M2 . (5.10)

From this approach, the particles are simply collective excitations of a field.
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Let us now rewrite the Hamiltonian as

1

µ
H =

∑
n

p2
n

2M
+

1

2
M2x2

n +
∑
n

1

a2M

(
x2
n − xnxn−1

)
(5.11)

where the first sum is a set of uncoupled Harmonic oscillators with frequency one and

the second term is the nearest neighbor interaction among them.

If we introduce the standard creation and annihilation operators,

b̂n =

√
M

2

(
xn +

i

M
pn

)
(5.12)

b̂†n =

√
M

2

(
xn −

i

M
pn

)
,

the Hamiltonian becomes a Bose-Hubbard model with a non-conserved number of parti-

cles

H =
1

2Ma2

∑
n

(
b̂†nbn−1 + b†n−1bn

)
+

(
M +

1

Ma2

)∑
n

b†nbn+
1

2Ma2

∑
n

(bn−1bn + bnbn + h.c.)

(5.13)

where we have used that

x2
n =

1

M
b̂†nb̂n +

1

2M

(
b̂†nb̂
†
n + b̂nb̂n + 1

)
,

xnxn−1 =
1

2M

(
b̂†n−1b̂n + b̂†nb̂n−1 + b̂†n−1b̂

†
n + b̂n−1b̂n

)
.
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In th efollowing, we will rename the parameters:

Ehop = 1
2Ma2

(5.14)

µ = M + 1
Ma2

(5.15)

where we can see the relation between the various constants of the model and lattice

spacing and mass of the scalar field.

Later on, we will consider eqn. (5.13) for the case in which the term which increase and

decrease the number of particle are absent. This will allow to diagonalize the Hamiltonian

in blocks of constant number operator and study the effective geometry. Here we derived

the equation for the Fermionic case, but for the bosonic case an analogous derivation is

possible. Bosons, for instance, can have an additional potential of the form:

Hp = −U
∑
i

N̂j(N̂j − 1) (5.16)

with N̂j = b̂†j b̂j . This hamiltonian gives a penalty to piling up bosons. Hard-core bosons

have bosonic commutation relations but are defined by the property {b†}2 ≡ 0. This

property can be achieved in the U →∞ limit of eqn. (5.16).

The Hubbard model is not only an interesting model, but has physical applications

which we briefly describe here[75]. The Bose-Hubbard, the Fermi-Hubbard and the Bose-

Fermi-mixtures describe many features of optical lattices. The simplest optical lattice is

a 3D cubic lattice. It is formed by three pairs of laser beams creating three orthogonal

standing waves with orthogonal polarizations. The potential traps atoms in its minima,
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creating the “virtual“ lattice with no defects. These lattices are very robust as they have

no phononic modes. Scattering length, instead, drive the on-site interactions. Long and

short lengths interactions are achieved in different phases of the model.

Regarding the different phases, the Bose-Hubbard model has a rather non trivial phase

structure. In particular, the model exhibits a Superfluid-Mott insulator quantum phase

transitions3. This transition happens when the lattice filling factor, the number of atoms

per site, is integer and is driven by the ratio Ehop/U . We will discuss these phases exten-

sively later in the thesis.

5.1.2 Promoting the edges of the lattice to a quantum degree of freedom

In this Section we describe how the graph can be made dynamical by introducing an

appropriate Hilbert space associated to the edges of a graph. We start with the primitive

notion of a set of N distinguishable physical systems. We assume a quantum mechanical

description of such physical systems, given by the set {Hi, Hi} of the Hilbert spaces Hi

and Hamiltonians Hi of the systems i = 1, ..., N . This presumes it makes sense to talk of

the time evolution of some observable with support in Hi without making any reference

to space.

We choose Hi to be the Hilbert space of a harmonic oscillator. We denote its creation

and destruction operators by b†i , bi, respectively, satisfying the usual bosonic relations.

Our N physical systems then are N bosonic particles and the total Hilbert space for the

3The transition is quantum, as it happens ideally at zero temperature, and thus is driven only by the
ratios of coupling constants.
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bosons is given by

Hbosons =
N⊗
i=1

Hi. (5.17)

If the harmonic oscillators are not interacting, the total Hamiltonian is trivial:

Hv =
N∑
i=1

Hi = −
∑
i

µib
†
ibi. (5.18)

If, instead, the harmonic oscillators are interacting, we need to specify which is interacting

with which. Let us call I the set of the pairs of oscillators e ≡ (i, j) that are interacting.

Then the Hamiltonian would read as

H =
∑
i

Hi +
∑
e∈I

he (5.19)

where he is a Hermitian operator on Hi ⊗ Hj representing the interaction between the

system i and the system j.

We wish to describe space as the system of relations among the physical systems la-

beled by i. In a discrete setup like ours, a commonly used primitive notion of the spatial

configuration of N systems can be provided by an adjacency matrix A, the N × N sym-

metric matrix defined as follows:

Aij =


1 if i and j are adjacent

0 otherwise.
(5.20)
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The matrix A is associated to a graph on N vertices whose edges are specified by its the

nonzero entries. Now, it is clear that the set I of interacting nodes in the Hamiltonian

(5.19) also defines a graph G whose vertices are the N harmonic oscillators and whose

edges are the pairs e ≡ (i, j) of interacting oscillators. Here I is the edge set of G. We

want to promote the interactions - and thus the graph itself - to a quantum degree of

freedom.

To this goal, let us define G as the set of graphs G with N vertices. They are all sub-

graphs of KN , the complete graph on N vertices, whose N(N−1)
2

edges correspond to the

(unordered) pairs e ≡ (i, j) of harmonic oscillators. To every such pair e (an edge of KN )

we associate a Hilbert space He ' C2 of a spin 1/2. The total Hilbert space for the graph

edges is thus

Hgraph =

N(N−1)/2⊗
e=1

He. (5.21)

We choose the basis inHgraph so that to every graph g ∈ G corresponds a basis element in

Hgraph: the basis element | e1 . . . eN(N−1)/2〉 ≡| G〉 corresponds to the graph G that has all

the edges es such that es = 1. For every edge (i, j), the corresponding SU(2) generators

will be denoted as Si = 1/2σi where σi are the Pauli matrices.

The total Hilbert space of the theory is

H = Hbosons ⊗Hgraph, (5.22)
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and therefore a basis state inH has the form

| Ψ〉 ≡| Ψ(bosons)〉⊗ | Ψ(graph)〉 ≡| n1, ..., nN〉⊗ | e1, ..., eN(N−1)
2

〉 (5.23)

The first factor tells us how many bosons there are at every site i (in the Fock space rep-

resentation) and the second factor tells us which pairs e interact. That is, the structure

of interactions is now promoted to a quantum degree of freedom. A generic state in our

theory will have the form

| Φ〉 =
∑
a,b

αa,b | Ψ(bosons)
a 〉⊗ | Ψ(graph)

b 〉, (5.24)

with
∑

a,b |αa,b|2 = 1. In general, our quantum state describes a system in a generic super-

position of energies of the harmonic oscillators, and of interaction terms among them. A

state can thus be a quantum superposition of “interactions”. For example, consider the

systems i and j in the state

| φij〉 =
| 10〉⊗ | 1〉ij+ | 01〉⊗ | 0〉ij√

2
. (5.25)

This state describes the system in which there is a particle in i and no particle in j, but

also there is a quantum superposition between i and j interacting or not. The following

state,

| φij〉 =
| 00〉⊗ | 1〉ij+ | 11〉⊗ | 0〉ij√

2
. (5.26)

99



represents a different superposition, in which the particle degrees of freedom and the

graph degrees of freedom are entangled. It is a significant feature of our model that matter

can be entangled with geometry.

An interesting interaction term is the one that describes the physical process in which

a quantum in the oscillator i is destroyed and one in the oscillator j is created. The possi-

bility of this dynamical process means there is an edge between i and j. Such dynamics

is described by a Hamiltonian of the form

Hhop = −Ehop
∑
(i,j)

Pij ⊗ (b†ibj + bib
†
j) (5.27)

where

Pij ≡ S+
(i,j)S

−
(i,j) =| 1〉〈1 |(i,j)=

(
1

2
− Sz

)
(i,j)

(5.28)

is the projector on the state such that the edge (i, j) is present and the spin operators

are defined as S+
(i,j) =| 1〉〈0 |(i,j) and S−(i,j) =| 0〉〈1 |(i,j). With this Hamiltonian, the state

Eq.(5.25) can be interpreted as the quantum superposition of a particle that may hop or

not from one site to another. It is possible to design such systems in the laboratory. For

instance, one can use arrays of Josephson junctions whose interaction is mediated by a

quantum dot with two levels.

We note that it is the dynamics of the particles described by Hhop that gives to the

degree of freedom | e〉 the meaning of geometry4. The geometry at a given instance is

4 We use geometry and space as shorthand for the adjacency relations encoded in |Ψgraph〉, even though
the generic |Ψgraph〉 will be a graph (or a superposition of graphs) without any symmetries and hence
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given by the set of relations describing the dynamical potentiality for a hopping. Two

points j, k can be ”empty”, that is, the oscillators j, k are in the ground state, but they

can have a spatial relationship consisting in the fact that they can interact. For example,

they can serve to have a particle to hop from i to j, then to k, then to l. We read out the

structure of the graph from the interactions, not from the mutual positions of particles.

In addition, Hhop tells us that it takes a finite amount of time to go from i to j. If the

graph is represented by a chain, it tells us that it takes a finite amount of time (modulo

exponential decaying terms) for a particle to go from one end of the chain to another. This

results to a “spacetime” picture (the evolution of the adjacency graph in time) with a finite

lightcone structure. The hopping amplitude is given by t, and therefore all the bosons

have the same speed. We can make the model more sophisticated by enlarging the Hilbert

space of the links, and obtain different speeds for the bosons. Instead of considering spins

1/2, consider an S−level system. The local Hilbert space is therefore

He = span{| 0〉, | 1〉, . . . , | S − 1〉} (5.29)

Now consider the projector onto the s−th state on the link (i, j): P (s)
ij =| s〉〈s |ij . We can

define a new hopping term whose amplitude depends on the level of the local system in

the following way:

Hhop = −
∑
s,(i,j)

Es
hopP

(s)
ij ⊗ (b†ibj + bib

†
j) (5.30)

not a candidate for a discretization of a smooth geometry. In this simple model, we make no attempt
to dynamically flow to a |Ψgraph〉 with recognizable geometric symmetries, as was done, for example, in
[14, 15, 80]. One can address this in a future model by extending the Hamiltonian of the model.
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where the hopping amplitudes Es
hop depend on the state s of the system, and E0

hop = 0.

For instance, the Es
hop can be chosen larger for larger s. In this way, moves through higher

level links are more probable, and therefore the speed of the particles is not constant. In

the following, we will study the model with just the two level system.

Of course, we need a Hamiltonian also for the spatial degrees of freedom alone. The

simplest choice is simply to assign some energy to every edge:

Hlink = −U
∑
(i,j)

σz(i,j) (5.31)

Finally, we want space and matter to interact in a way that they can be converted one

into another. The term

Hex = k
∑
(i,j)

(
S−(i,j) ⊗ (b†ib

†
j)
R + S+

(i,j) ⊗ (bibj)
R
)

(5.32)

can destroy an edge (i, j) and createR quanta at i andR quanta at j, or, vice-versa, destroy

R quanta at i and R quanta at j to convert them into an edge.

The terms Hlink and Hex are so simple that we will not expect them to give us any

really interesting property of how regular geometry can emerge in such a system. This is

the subject for a more refined and future work. Nevertheless, this term has an important

meaning because the nature of the spatial degrees of freedom is completely reduced to

that of the quanta of the oscillators: an edge is the bound state of 2R quanta. When in

the edge form, the quanta cannot hop around. When unbounded, they can hop around

under the condition that there are edges from one vertex to another. One can replace the
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separation of the fundamental degrees of freedom into bosons and graph edges with a

unified set of underlying particle ones, single bosons and collections of 2R bound bosons.

Therefore a bound state of 2R quanta in the pair (Hi,Hj) tells us what physical systems

are at graph distance one. The set of such bound states as we vary j is the neighborhood

of the system i. This is the set of vertices j a free particle in i can hop to. The projector Pij

has thus the meaning that the hopping interaction must be local in the sense just defined.

Now we see that the term Hex is not satisfactory because exchange interactions are

possible between any pair of vertices, no matter their distance. So quanta that are far

apart can be converted in an edge between two points that were very far just before the

conversion. Moreover, also the conjugate process is problematic, because it can easily

lead to a graph made of disconnected parts. We implement locality by allowing exchange

processes only between points that are connected by some other short path of length L.

Note that this refers to the locality of the state |Ψgraph〉 at time t relative to the locality of

the state at time t− 1. Consider again the projector Pij on the edge (i, j) being present. Its

L−th power is given by

PL
ij =

∑
k1,...,kl−1

Pik1Pk2k3 . . . PkL−1j. (5.33)

For every state | Ψ〉 ∈ Hgraph, we have that Pij | Ψ〉 6= 0 if and only if there is at least

another path of length L between i and j. We can now modify the term Hex as follows:

Hex = k
∑
(i,j)

(
S−(i,j)P

L
ij ⊗ (b†ib

†
j)
R + PL

ijS
+
(i,j) ⊗ (bibj)

R
)
. (5.34)
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In the extended S−level system, the exchange term is modified as | (s+1)(modS)〉〈s(modS) |(i,j)

⊗(bibj)
R and similarly for the hermitian conjugate.

This was the final step that brings us to the total Hamiltonian for the model which is

H = Hlink +Hv +Hex +Hhop. (5.35)

In the following, we consider the theory for L = 2, which is the strictest notion of locality

for the exchange interaction one can implement.

5.1.3 Discussion of the model

We can summarize the model in the following way. All we have is matter, namely the

value of a function fi, where the indexes i label different physical systems. We have

chosen fi to be the number of quanta of the i-th harmonic oscillator. The bound state

of a particle in i and a particle in j has the physical effect that other particles in i and j

can interact. When there is such a bound state, we say there is an edge between i and

j. Then other particles at i and j can interact, for instance, they can hop from i to j.

The collection of these edges, or bound states, defines a graph which we interpret as the

coding of the spatial adjacency of the particles (in a discrete and relational fashion). The

physical state of the many body system is the quantum superposition of configurations of

the particles and of the edges. The system evolves unitarily, and particles can hop around

along the edges. But the distribution of the particles also influences the edges because

some particles at vertices i, j can be destroyed (if i and j are nearby in the graph) to form
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another edge, and therefore making i and j nearer. The new edge configurations then

influence the motion of the particles and so on. We have a theory of matter interacting

with space. The intention of the model is to study to what extend such dynamics captures

aspects of the Einstein equation and whether it (or a later extension of such a spin system)

can be considered as a precursor of the gravitational force. From the condensed matter

point of view, this is a Hubbard model for hopping bosons, where the underlying graph

of the Hubbard model is itself a quantum dynamical variable that depends on the motion

of the bosons. In the spirit of General Relativity, the edges (space) tell the bosons (matter)

where to go, and the bosons, by creating edges, tell the space how to curve.

We note that, in this theory, all that interacts has a local interaction by definition. We

defined locality using the notion of neighborhood given by the set of systems interacting

with a given system 5. We also note that, due to quantum superpositions, matter and

space can be entangled. For this reason, the dynamics of the matter alone is the ruled by

a quantum open system, the evolution for the matter degrees of freedom is described no

more by a unitary evolution operator but by a completely positive map. We can show

that the entanglement increases with the curvature. To fix the ideas, let us start with

a flat geometry represented by the square lattice as the natural discretization of a two

dimensional real flat manifold. In this model, a flat geometry with low density of matter

can be described by a square (or cubic) lattice with a low density of bosons. This means

5 There is, however, a way to define non-local interactions. For instance, consider the configuration of
the graph of the square lattice. Pick two vertices i, j at large distance lij on this lattice (in the graph distance
sense), and place a new edge connecting them. Now by definition the two vertices i and j are adjacent.
Nevertheless, the ratio between the number of paths of distance one from i to j with the number of paths
of distance lij goes to zero in the limit of large lij . This is what one can call a non-local interaction. It
corresponds to the situation in lattice field theory where one has a fixed graph, and then some interactions
between points that are far apart.
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that a particle is most of the time alone in a region that is a square lattice. The model will

not then allow interaction between the particle and the edges, and all that happens is a

free walk on the graph. On the other hand, when we increase the degree of the vertices by

adding more edges, we make interaction, and hence entanglement, between edges and

particles possible. This corresponds to increasing the curvature. In a regime of very weak

coupling, k � Ehop � U, µ, entanglement will be possible only in presence of extremely

strong curvature. From the point of view of the dynamics of the quantum system, this

means that the evolution for the matter is very close to be unitary when curvature is low,

while very strong curvature makes the evolution for the particles non-unitary and there

will be decoherence and dissipation with respect to the spatial degrees of freedom.

How does the graph evolve in time in such a model? The quantum evolution is com-

plex, and since the model is not exactly solvable, numerical study is constrained to very

small systems. In the next section we simulate the system with 4 vertices and hard core

bosons.

We can gain some insight from the analysis of the classical model, regarding H as the

classical energy for classical variables. Since we delete edges randomly and build new

edges as the result of a random walk of the particles, and there is nothing in this model

that favors some geometry instead of others, we do not expect to obtain more than ran-

dom graphs in the limit of extremely long times. Indeed, we can argue as follows. With

the exception of a very small number or graphs, all the other graphs belong to the set of

graphs in which one can - under the evolution of our model - reach a ring. In practice, this

means that there is a configuration in which one deletes all the edges without disconnect-
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ing the graph, and obtains many particles. This means that, starting from a state with zero

particles, N vertices and L0 edges the number of eligible edges for deletion is L0 − αN

with some constant α of order 1. So, as long as L0 > αN , the dynamical equilibrium be-

tween the number of edges and particles is realized when the rate of conversion of edges

into particles equals the one of conversion of particles into edges. Let r be the number

of edges destroyed (and pairs of particles created). If we assume that the particles move

much faster than the edges, they will always be eligible for creating a new edge. The rates

will be then the same when L0 − r = r which implies that at the dynamical equilibrium

half of the initial edges are destroyed. Consider the case of the complete graph KN , with

zero initial particles. The initial number of edges is L0 = N(N − 1)/2, and at long times,

the dynamical equilibrium is reached when r = L0/2. A similar reasoning can be applied

to r instance, consider a square lattice ofN vertices with periodic boundary conditions. In

the state without particles, this is an eigenstate of the Hamiltonian, and therefore its evo-

lution is completely frozen. Nevertheless, if we add a pair of particles, then all the other

configurations of the graph can be reached, including the ring immersed in a gas of many

particles. It turns out that the dynamical equilibrium is reached when L0/2 = N of the

initial edges are destroyed. The equilibrium state is obtained by deleting the edges ran-

domly, and thus we expect to obtain a random graph. In order to obtain more interesting

stable geometries, one has to put other terms in the Hamiltonian, that involve more edges

together, meaning that curvature has a dynamical importance. The rigorous treatment of

the asymptotic evolution of such graphs requires an analysis in terms of Markov chains,

and it is developed in the next section.
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Figure 5.1: Simulation of the system H1/2 for N = 4. The initial state is ρ1 =| ψ1〉〈ψ1 | where
| ψ1〉 =| 0000111111〉, that is, there are no particles and all edges are present. The parameters for
this simulation are U = µ = 1, Ehop = k = .1. In the figure are plotted the quantities 〈S+

i S
−
i 〉 (red

line), F(t) (blue line), S(t) (black line), Pij(t), Di(t)/3 (green line) as a function of time. Revivals
of the expectation value of the link operator coincide with revivals in the fidelity with the initial
state. The initial value of the entanglement is S(0) = 0 because the initial state is separable. Notice
that even though the fidelity is F(t) & 0.85, the state has a non negligible entanglement.
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Figure 5.2: The initial state of this numerical integration is | ψ2〉 =| 0000111101〉, the parameters
are in the “insulator” phase, U = µ = 1, Ehop = k = 0.1. The temporal scale is in units of ~, on
a range of 104 seconds. The diagonalization of the full system has been performed by means of
Householder reduction. a) Time evolution of 〈D1(t)〉, 〈D4(t)〉. The damping of the oscillations is a
sign of thermalization. b) Expectation values 〈P12(t)〉, 〈P24(t)〉. The latter observable is thermaliz-
ing. c) Von Neumann Entropy si(t) for the sites i = 1, 2. We see that the entanglement dynamics
is split in two different bands. The two vertices are only distinguished by the initial degree. d)
Entanglement evolution S(t) and overlap with the initial stateF(t). The damping ofF(t) is a clear
sign of thermalization. The entanglement S(t) between particles and edges shows the entangling
power of the system. e) Expectation value of the particle operators at two different sites i = 1, 4. f)
Concurrence C(t) as a function of time of the particles on the site i = 2 with the edge (2, 4)(blue).
Again we notice a damping of oscillations. Instead, the concurrence between the site 1 and the
link 5 (red) is identically zero.
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Figure 5.3: The initial state of this numerical integration is | ψ2〉 =| 0000111101〉, the parameters
are in the “superfluid” phase, U = µ = 0.1, Ehop = k = 1. The temporal scale is in units of ~,
on a range of 104 seconds. The diagonalization of the full system has been performed by means
of Householder reduction. a) Time evolution of 〈D1(t)〉, 〈D4(t)〉.. The oscillations have constant
amplitude and the system does not present signs of thermalization. b) Expectation values of
the link operators P14, P24. There is no sign of thermalization. The two values belong to two
different bands depending on the initial value of the operator. c) Von Neumann Entropy si(t) for
the sites i = 1, 2. We see that the entanglement dynamics is split in two different bands. The
two vertices are only distinguished by the initial degree and the splitting is more marked than
in the “insulator” case. Compare the result with the higher overlap of the operators Dij(t). d)
Entanglement evolution S(t) and overlap with the initial state F(t). Again the plots show no
signs of thermalization. The behavior of F(t) implies very long recurrence times. e) Expectation
value of the particle operators at two different sites i = 1, 4. f) Time evolution of ConcurrenceC(t).
In blue is plotted the Concurrence between the vertex i = 2 and the edge (2, 4) for the “superfluid”
case. Unlike the insulator case, the behavior ofC(t) does not show any sign of thermalization. The
concurrence between the site 1 and the link 5 is identically zero, as in the “insulator” case.

110



5.1.4 Setting of the model

In this section, we study the model Eq. (5.35) when the particles are hard core bosons. In

this model, only at most one particle is allowed per site and the model can be mapped

onto a spin system. We are particularly interested in the entanglement dynamics of the

system. We have performed a numerical simulation of the time evolution of the model

described by Eq. (5.35). Since we are interested also in describing the quantum correla-

tions in the reduced density matrix, we have resorted to exact diagonalization. In this

way, we are able to compute the entanglement of the matter degrees of freedom with re-

spect to the spatial ones. Of course, the simulation of a full quantum system is heavily

constrained by the exponential growth of the Hilbert space. In this work, we have re-

sorted to the simulation of hard-core bosons: at most one particle is allowed at any site.

Hardcore bosons creation and annihilation operators must thus satisfy the constraints

(b̂†i )
2 = (b̂i)

2 = 0, {b̂i, b̂†i} = 1 (5.36)

With these constraints, the bosonic operators map into the SU(2) generators

b̂†i ↔ S+
i (5.37)

b̂i ↔ S−i (5.38)

b̂†i b̂i ↔
(

1

2
− Sz

)
i

(5.39)
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The local Hilbert space of a site i for a hard core boson is therefore that of a spin one

half: Hhcb
i ' C2. After the projection onto the hard-core bosons subspace, the model

becomes a purely spin 1/2 model. For a system with n sites, the Hilbert space for the

particles is thus the 2N -dimensional Hilbert spaceHbosons = ⊗Ni=1Hhcb
i ' C2⊗N . The Hilbert

space for the spatial degrees of freedom is still the 2N(N−1)/2-dimensional Hilbert space

Hgraph =
⊗N(N−1)/2

e=1 He. The total Hilbert space is thus the 2N(N+1)/2-dimensional Hilbert

space

Hspins = Hbosons ⊗Hgraph '
N⊗
i=1

Hhcb
i

N(N−1)/2⊗
e=1

He (5.40)

As a basis forHspins we use the computational basis. The basis is thus {| i1, ..., iN(N−1)/2; j1, ..., jN〉},

where the first N(N − 1)/2 indices ik label the edges of the graph, and the remaining N

indices jk label the vertices. Of course ik, jk = 0, 1 for every k.

After the projection onto the hard core bosons space Hspins, the model Hamiltonian

becomes thus the spin one-half Hamiltonian (for µi uniform):

H1/2 =− U
∑
(i,j)

Sz(i,j) − µ
N∑
i=1

(
1

2
− Sz

)
i

− t
∑
(i,j)

Pij ⊗ (S+
i S
−
j + S−i S

+
j )

− k
∑
(i,j)

(
S−(i,j)P

2
ij ⊗ (S+

i S
+
j ) + P 2

ijS
+
(i,j) ⊗ (S−i S

−
j )
)

(5.41)

Let us examine the model in some limits. When the exchange term is vanishing, k = 0,

112



the model has particle number conservation

[H1/2, N̂ ] = 0, N̂ =
∑
i

b†ibi (5.42)

and therefore it has a U(1) symmetry, corresponding to the local transformation at every

site given by

| ψ〉 →
∏
l

eiφb
†
l bl | ψ〉, φ ∈ [0, 2π) (5.43)

while the total system with k 6= 0 does not have particle conservation because particles

can be created or destroyed by means of the exchange term with the edges. Moreover,

the k = 0 system is self dual at µ = 0 under the transformation bi → b†i . For every

separable state of the form | ψ〉 =| i1, ..., iN(N−1)/2〉⊗ | ψ〉bosons, the system is just the usual

Hubbard model on the graph specified by the basis state | i1, ..., iN(N−1)/2〉. In the limit of

−U positive and very large, all the edges degrees of freedom are frozen in the | 1〉 state.

The model becomes a Bose-Hubbard model for hard-core bosons on a complete graph.

It is a typical feature of the richness of the Hubbard model that summing the poten-

tial and kinetic term gives a model with an incredibly rich physics. Depending on the

interplay between potential and kinetic terms, it can accommodate metal-insulator tran-

sitions, ferromagnetism and antiferromagnetism, superconductivity and other important

phenomena. The richness of the model comes from the interplay between wave and par-

ticle properties. The hopping term describes degrees of freedom that behave as ’waves’,

whereas the potential term describes particles [13]. As it is well known, the model is not
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solvable in two dimensions. The present model is even more complicated by the fact that

the graph itself is a quantum variable. It is therefore extremely difficult to extract results

from such a model. The hopping term in t favors delocalization of the bosons in the

ground state, while the chemical potential µ is responsible for a finite value of the bosonic

density ρ in the ground state given by

ρ =
1

N

∑
i

〈b†ibi〉. (5.44)

The strength of |µ| determines how many bosons are present in the ground state. For

µ > 0, a large value of µ determines ρ = 1, meaning that the ground state has a boson at

every site, whereas for µ < 0, a large value of µ means there are no bosons in the ground

state ρ = 0. In any case, there is no possibility for hopping and this situation describe

what is called a Mott insulator. On the other hand, for k = 0 and Ehop > µ the hopping

dominates and the system is in a superfluid phase. The non vanishing expectation value

in the ground state is that of the average hopping amplitude per link

σ =
2

N(N − 1)

∑
i,j

〈b†ibj〉. (5.45)

We expect this situation to hold even for the weakly interacting system Ehop � k 6= 0.

As in the Hubbard model, there should be a quantum phase transition between the Mott

insulator and the superfluid phase for a critical value of µ/Ehop. An extensive numerical

simulation of the ground state properties of the model is necessary to understand if, for

k 6= 0, such transition belongs to the same universality class or a different one. It would
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also be interesting to understand whether there is a Lieb-Mattis theorem for such a sys-

tem, namely that there are gapless excitations in the thermodynamic limit for the system

of spins one-half.

It should also be evident that depending on the interplay between potential and ki-

netic energy, the ground state of the system is entangled in the bipartition edges-particles.

Starting instead from some separable initial state, the unitary evolution induced by H1/2

will entangle states initially separable.

5.1.5 Numerical analysis

We have analyzed several aspect of the dynamics of the system in two different situations.

The “insulator” case is the one in which the potential energies are dominant over the

kinetic terms: U = µ = 1;Ehop = k = 0.1. The second situation is when the kinetic terms

are much stronger, the so called “superfluid” case: U = µ = 0.1;Ehop = k = 1. We have

studied numerically the entanglement dynamics of the model, using as figures of merit

the (i) Entanglement between particles and edges expressed by the von Neumann entropy

S(t) of the density matrix reduced to the system of the particles, (ii) the Entanglement per

site j expressed by the von Neumann entropy sj(t) of the density matrix reduced to the

system of just one site, and (iii) the Concurrence C(t) between a pair of edges, or particles

or the particle-edge pair. This expresses the entanglement between these two degrees of

freedom alone.

We have simulated the system described by H1/2 with N = 4 sites, which is 210 dimen-

sional. We have labeled the sites i = 1, .., 4 starting from the lower left corner of a square
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and going clockwise. The basis states for the system are | J1J2J3J4; e14e12e23e34e24e13〉

with Ji, ekl = 0, 1. By direct diagonalization of the Hamiltonian, we compute the time

evolution operator U(t) = e−iHt. Starting from an initial state ρ(0), the evolved state is

ρ(t) = U(t)ρU †(t). The entanglement S(t) as a function of time between particles and

edges is obtained by tracing out the spatial degrees of freedom, we obtain the reduced

density matrix for the hard core bosons: ρhcb(t) = Trgraphρ(t). The evolution for the sub-

system is not unitary but described by a completely positive map. The entanglement is

computed by means of the von Neumann entropy for the bipartitionH = Hbosons⊗Hgraph,

so we have

S(t) = −Tr (ρhcb(t) log ρhcb(t)) (5.46)

The single-site entanglement sj(t) is instead obtained by tracing out all the degrees of

freedom but the site j and then computing the von Neumann entropy of such reduced

density matrix. Finally, the last figure of merit to describe the entanglement dynamics of

the model is the two-spins concurrence C(t) defined in [20]. We define the τ(t) reduced

system of any two spins in the model, i.e., an edge-edge pair, or an edge-particle pair or a

particle-particle pair. The entanglement as function of time between the two members of

the pair is given by

C(τ(t)) ≡ max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), (5.47)

where λi’s are the eigenvalues (in decreasing order λ1 > λ2 > λ3 > λ4 ) of the operator
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τ(t)(σy ⊗ σy)τ ∗(t)(σy ⊗ σy).

There are other important quantity to understand the time evolution of the model. We

have computed the expectation value of the particle number operator S+
i S
−
i =| 1〉〈1 |i at

the site i, the link operator Pij , and the vertex degree operator Di =
∑

k 6=i Pik, whose ex-

pectation value gives the expected value for the number of edges connected to the vertex

i. The last important quantity is the fidelity F(t) := |〈ψ(0)|ψ(t)〉| of the state | ψ(t)〉 with

the initial state | ψ(0)〉. This quantity gives a measure of how much the state at the time t

is similar to the initial state.

The simulations have been carried out using two initial states | ψ1〉, | ψ2〉. The state

| ψ1〉 is the basis state describing the complete graph K4 without particles: | ψ1〉 =|

0000111111〉. In Fig. 5.1 is shown the result of the simulation using | ψ1〉 as initial state,

and for the model where the on-site potential energy is bigger than the kinetic energies,

that is, in the “insulator” phase: U, µ > Ehop, k. Due to the very high symmetry of the

Hamiltonian in the initial subspace, the system is basically integrable and we can indeed

see a short recurrence time. Due to the initial symmetry of the state and the fact that no

more than one particle is allowed at every site, the system is very constrained and it is

integrable. The entangling power of the Hamiltonian is elevated and despite the fact that

the overlap with the initial state is very high, the entanglement is non negligible. The

expectation value of every link is the same because of symmetry. For such an initial state,

there is no qualitative difference other than different time scales between the “insulator”

and “superfluid” case.

The time evolution starting from a just less symmetric state is far richer. The state
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| ψ2〉 =| 0000111101〉 is the basis state describing the square with just one diagonal, and

again no initial particles. As anticipated, we have studied the model for two sets of pa-

rameters. The case (a) is the “insulator” case with parameters µ = U = 1;Ehop = k = 0.1.

The case (b), or “superfluid” case has parameters µ = U = 0.1;Ehop = k = 1.

“Insulator” case (a).— In the graph, Fig. 5.2(a) are plotted the time evolutions of 〈D1(t)〉, 〈D2(t)〉

which have initial values of 〈D1(0)〉 = 3, 〈D2(0)〉 = 2. The oscillations of these operators

are damped as well and the system is thermalizing towards a state which represents an

homogeneous graph. It is very remarkable to see the phenomenon of eigenstate thermal-

ization in such a small system. Recently, there has been a revival in the study of how

quantum systems react to a sudden quench in the context of equilibration phenomena in

isolated quantum systems, and our results are showing indeed that for such an isolated

quantum system, the reduced system can thermalize due to the entanglement dynamics

[29, 30]. In Fig. 5.2 (b) are plotted the expectation value of the link operators P12, P24 as a

function of time In the initial state | ψ2〉we have 〈ψ2 | P12 | ψ2〉 = 1, 〈ψ2 | P24 | ψ2〉 = 0. The

evolution of 〈P12(t)〉 is almost periodic but we see that on the other hand the oscillations

of 〈P24(t)〉 are damping and the system is thermalizing. The behavior of the P13 opera-

tor is complementary to P24 and at long times limt→∞〈P24(t) − P13(t)〉 = 0. In Fig. 5.2 (c)

we plotted the entanglement per site measured by the von Neumann entropy sj(t) as a

function of time. The sites considered are again j = 1 and j = 4. The two quantities split

in two separated bands. Naively, one would expect that the vertices with higher degree

are more entangled, but it is not so. Comparing with Fig.5.2 (a) we see that the degrees

〈D1(t)〉, 〈D4(t)〉 cross several time and have same time average. Surprisingly, the vertex
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with consistent higher entanglement is the one that started with higher degree at time

zero, when the system was in a separable state. The system has a memory of the initial state

that is revealed in the entanglement dynamics. This means that there are some global con-

served quantities that are not detected by any local observable, but are instead encoded

in the entanglement entropy, which is a function of the global wavefunction. The ther-

malization process is also shown in the behavior of the fidelity F(t) that presents damped

oscillations, see Fig. 5.2 (d). The behavior of the von Neumann entropy S(t) in Fig. 5.2 (d)

shows that the reduced system of the particles is indeed evolving as an open quantum

system. Though some of the observables are thermalizing, the entanglement dynamics

does not show any damping. In Fig. 5.2 (e) is shown the time evolution of the expectation

values of the number operators Ni(t) = S+
i S
−
i (t)at the vertices i = 1, 4. The vertices are

distinguished by the initial state of the graph, namely by their degree. The average num-

ber of particles per site is Ni(t) ∼ 0.05. This means that particles are basically involved

in virtual creation/annihilation processes through which the graph acquires a dynamics.

The next graphs show that the entanglement dynamics is all but trivial. The following

Fig. 5.2 (f) shows the time evolution of the Concurrence C(t) between the vertex i = 2 and

the edge (2, 4) which is in the state | 0〉 at the initial time. We see deaths and revivals of

entanglement, and the damping of the oscillation signals again some thermalization.

“Superfluid” case (b).— In this case, the kinetic terms k,Ehop are dominant over the

potential terms U, µ. The dynamics of this model for these parameters is completely

different. We do not have any sign of thermalization. The degree expectation values

〈D1(t)〉, 〈D2(t)〉 have a similar oscillating behavior with an even higher overlap, see Fig. 5.3

119



(a). The link operators P14, P24, shown in Fig. 5.3 (b) oscillate with no damping and are

almost completely overlapped. To such distinct behavior with respect to the insulator

case, we find a very strong similarity in the behavior of the entanglement per site si(t)

(see Fig. 5.3 (c) where, again, and in a more pronounced way, there is a splitting in two

bands depending on the initial state of the system, and not on the degree (or other inter-

esting observables) of the system during the time evolution. As in the insulator case, the

vertex that started off with a higher degree is constantly more entangled than the one that

started off with a lower degree, even if in the initial state they are both separable states

and during the evolution all the relevant observables overlap strongly and have same

time averages. This phenomenon again reveals how the entanglement contains global in-

formation on the state of the system that is not revealed in the usual local observables one

looks at. The entanglement between edges and particles has a similar behavior than in

the “insulator” case, but it is an order of magnitude greater, which is consistent with the

fact that now the terms that couple edges and particles (and thus create entanglement) are

larger. The superfluidity is revealed also in the behavior of the fidelity F(t) that shows

no sign of thermalization with constant amplitude of oscillations, see Fig. 5.3 (d). The

average number of particles per site is now Ni(t) ∼ 0.52 and is homogeneous (Fig. 5.3

(e)). Particles are delocalized over the quantum graph with a non vanishing expectation

value. The Concurrence C(t) in Fig. 5.3 (f) confirms that there is no thermalization in the

system.

To conclude this section, we have studied the model Eq.(5.35) in the case of hard-core

bosons. The usual Hubbard model with hard-core bosons on a fixed graph presents two
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quantum phases at zero temperature. An insulator phase, when the potential energy of

the electrons is dominant, and a superfluid phase, when the kinetic energy is dominant.

In our model, the graph interacts with the electrons and the graph degrees of freedom are

themselves quantum spins that can be in a superposition. We have studied numerically

the entanglement dynamics of the system with four vertices starting from a separable

state. The evolution with insulator parameters shows typical signs of thermalization in

some of the relevant observables. Moreover, the entanglement dynamics reveals a mem-

ory of the initial state that is not captured in the observables. The behavior of the dynam-

ics of the “superfluid” system is completely different, in the fact that there is no apparent

thermalization. The memory effect revealed by the entanglement dynamics is present in

an even more pronounced way. There are many open questions to be answered: how

the entanglement spectrum behaves and what it reveals of the system, what is the phase

diagram of the model at zero temperature in the thermodynamic limit, and a systematic

study of the correlation functions in the model. We barely started studying the features

of this model that presents formidable difficulties, but that promises to be very rich.

5.2 Markov chains analysis of the model

In this section, we develop a general method to describe the evolution of graphs. We

regard Eq.(5.35) as the Hamiltonian for a classical model and consider a configuration of

the system with a fixed number of edges and particles. The sum of these two quantities is

a constant of the evolution. Moreover, it is safe to assume that almost all edges can be po-
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tentially converted in particles. The reason is simple: fixing the number of vertices, every

connected graph (up to isomorphism) can be obtained by deleting and adding edges that

are part of triangles. With this approximation, we expect that at long times a dynamical

equilibrium is established between particles and edges. When considering the classical

model, we can disregard superpositions and look at the dynamics as a discrete-time pro-

cess with characteristics described as follows. For simplicity, we focus on the complete

graph KN = (V (KN), E(KN)), with set of vertices V (KN) and set of edges E(KN). Note

that this constraint is not necessary, since we can start from any graph containing a trian-

gle. The process simply needs at least one triangle in order to run. The process, starting

from time t = 0, can be interpreted as a probabilistic dynamics gradually transforming

the complete graph into its connected spanning subgraphs. These are subgraphs on the

same set of vertices. Methods from the theory of Markov chains appear to be good can-

didates to study such a dynamics. We identify with a “graph of graphs” the phase space

representing all possible states of the system considered. In this way a random walk on

the graph, driven by appropriate probabilities, will allow us to study the behavior of the

Hamiltonian, at least restricting ourselves to the classical case. Thus, the Hamiltonian

transforms graphs into graphs. The Markov chain method suggests different levels of

analysis: a level concerning the support of the dynamics; a level concerning the distribu-

tion of particles. At the first level, we are interested in studying graph theoretic properties

of the graphs/objects obtained during the evolution, if we disregard the movement of the

particles. This consists of studying expected properties of the graphs obtained by running

the dynamics long enough. It is important to remark that the presence of particles does
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not modify the phase space, which, if we start from KN , is the set of all connected graphs.

The graphs obtained cannot have more edges than the initial one. Notably, particles only

alter the probability of hopping between elements of the phase space. At the second level,

we are interested in studying how the particles are going to be distributed on the vertices

of the single graphs, and therefore in what measure the particles determine changes on

the graph structure and consequently modify the support of the dynamics. When con-

sidering only the support, the Hamiltonian for the classical model determines the next

process:

• At time step t = 0, we delete a random edge of G0 ≡ KN and obtain G1.

• At each time step t ≥ 1, we perform one of the following two operations on Gt:

– Destroy a triangle: We delete an edge randomly distributed over all edges in

triangles of Gt. A triangle is a triple of vertices {i, j, k} together with the edges

{i, j}, {i, j}, {j, k}.

– Create a triangle: We add an edge randomly distributed over all pairs {i, j} /∈

E(Gt) such that {i, k}, {j, k} ∈ E(Gt) for some vertex k.

This process is equivalent to a random walk on a graph GN whose vertices are all con-

nected graphs. Each step is determined by the above conditions. The Hamiltonian gives a

set of rules determining the hopping probability of the walk. The theory of random walks

on graphs is a well established area of research with fundamental applications now rang-

ing in virtually every area of science [19]. The main questions to ask when studying a ran-

dom walk consist of determining the stationary distribution of the walk and estimating
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Figure 5.4: The graph G4. The number of vertices is 38 and 72 edges. The number of vertices of
Gn is exactly the number dn of connected labeled graphs on n vertices. The number dn satisfies
the recurrence n2(n2) =

∑
k kdk2

(n−k2 ) [17]. The walker starts from the vertex corresponding to the
graph K4. Even when we add particles, the graph Gn remains the support of the dynamics. The
vertices of Gn are the possible states of classical evolution. In the quantum evolution, we have a
weighted superposition of vertices.

temporal parameters like the number of steps required for the walk to reach stationarity.

The stationary distribution at a given vertex is intuitively related to the amount of time a

random walker spends visiting that vertex. In our setting, the walker is a classical object

in a phase space consisting of all connected graphs with the same number of vertices. Fig.

5.4 is a drawing of G4, the configuration space of all connected graphs on four vertices.

This is a graph whose vertices are also graphs. The initial position of the walker is the

vertex corresponding to K4.

The graph GN (N ≥ 2) is connected and bipartite. The number of vertices of GN equals

the number of connected labeled graphs on N vertices. We need labels on the vertices to

distinguish between isomorphic graphs. From the adjacency matrix of a graph G, we can
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construct the transition matrix T (G) inducing a simple random walk onG: [T (G)]i,j = 1/d(i)

if {i, j} ∈ E(G) and [T (G)]i,j = 0, otherwise. Here, d(i) := |{j : {i, j} ∈ E(G)}| is the

degree of a vertex i. Notice that the degrees of the vertices in GN are not uniform, or, in

other words, GN is not a regular graph. In fact, the degree of the vertex corresponding to

KN , which is the number of edges in this graph, is much higher than the degree of the

graphs without triangles. In Fig. 5.4, it is easy to see that K4 has degree 6 and that the

path on 4 vertices, drawn in the bottom-right corner of the figure, has only degree 2.

The evolution of a random walk is determined by applying the transition matrix to

vectors labeled by the vertices encoding a probability distribution on the graph. The

law
(
T (G)T

)t
v

(i)
0 = vt gives a distribution on V (G) at time t, with the walk starting

from a vertex i. The vector v
(i)
0 is an element of the standard basis of RN . The vec-

tor vt = (v
(1)
t ,v

(2)
t , ...,v

(N)
t )T is a probability distribution, being v

(i)
t the probability that

the walker hits vertex i at time t. The distribution π = (d(i)/2 |E(G)| : i ∈ V (G)) is

the stationary distribution, that is T (G)π=π. If G is connected and non-bipartite then

limt→∞
(
T (G)T

)t
v

(i)
0 = π [19]. The stationary distribution is independent of the initial

vertex. Therefore, a walk on GN can start from any vertex and the asymptotic dynam-

ics remains the same. It is simple to see that GN is bipartite. Then a random walk

does not converge to a stationary distribution, but it oscillates between two distribu-

tions with support on the graphs with an odd and an even number of edges, respec-

tively. In fact, for a bipartite graph G with V (G) = A ∪ B, we have the following:

limt→∞,even
(
T (G)T

)t
v

(i)
0 = πeven with [πeven]i = d(i)/ |E(G)| if i ∈ A and [πeven]i = 0,

otherwise; analogously for limt→∞,odd
(
T (G)T

)t
v

(i)
0 = πodd. For instance, it follows that
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the stationary distribution of a random walk starting from any vertex of G4 oscillates be-

tween the two distributions

πodd = ( 0︸︷︷︸
1

, 1/12, ..., 1/12︸ ︷︷ ︸,
6

0, ..., 0︸ ︷︷ ︸
15

, 1/24, ..., 1/24︸ ︷︷ ︸
4

, 1/36, ..., 1/36︸ ︷︷ ︸
12

)

and

πeven = (1/12︸︷︷︸
1

, 0, ..., 0︸ ︷︷ ︸,
6

5/72, ..., 5/72︸ ︷︷ ︸
4

, 1/31, ..., 1/31︸ ︷︷ ︸
3

, 5/72, ..., 5/72︸ ︷︷ ︸
8

, 0, ..., 0︸ ︷︷ ︸
4

, 0, ..., 0︸ ︷︷ ︸
12

).

In particular, for πodd,
∑

i:d(i)=6[πodd]i = 1
2
,
∑

i:d(i)=4[πodd]i = 1
6
,
∑

i:d(i)=2[πodd]i = 1
3
; for πeven,∑

i:d(i)=6[πodd]i = 1
12

,
∑

i:d(i)=5[πodd]i = 5
6
,
∑

i:d(i)=2[πodd]i = 1
12

. Now, what is the most likely

structure of a graph/vertex of GN in which the random walker will spend a relatively

large amount of time? In other words, where are we going to find the walker if we wait

long enough and what are the typical characteristics of that graph or set of graphs? From

the above description, one may answer this question by determining the stationary distri-

bution of the walk in GN . We do not have immediate access to this information, because

we do not know the eigenstructure of T (GN). For this reason, we need some way to go

around the problem. We can still obtain properties of the asymptotics by making use

of standard tools of random walks analysis. In particular, as a first step, we are able to

estimate the number of edges in the most likely graph in GN . Even if this information

is not particularly accurate and it is far from being sufficient to determine the graphs, it

still can give an idea of their structure. The probability π(G) that the walk will be at a

given graph G after a large number of time steps is given, up to a small error term, by the
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stationary distribution π of the walk. As we have mentioned above, π(G) is given by the

number of possible transitions from G in the walk, divided by a normalizing constant E

which is independent of G. Based on this, it is possible to find the expected number of

edges in a graph visited by the walk. We will provide here a sketch of the proof. A more

extensive discussion is the Appendix. In total there are
((N2 )
k

)
graphs with N vertices and

k edges. By some of the classical results in the theory of random graphs [18] we know

that for k ≥ (1+ε) logN
N

, the probability that a random graph is connected converges to 1

as N grows. Let us recall briefly that a random graph is a graph whose edges are chosen

with a fixed probability, equal and independent for each pair of vertices. The probability

that a graph is visited by our walk will have k edges is given by
∑

V (GN ):|E(GN )|=k π(GN),

where the sum is in fact taken over all connected graphs with k edges. In order to estimate

this sum we must know how much π(GN) can vary. However by the results mentioned

earlier π(GN) cannot be larger than
(
N
2

)
/E and not smaller than (N − 1)/E, since that is

the largest and smallest number of edges in a connected graph, and every transition in

the walk can be associated with an edge in the current graph. Hence, the probability that

the graph will have k edges will lie between
((N2 )
k

)(
N
2

)
/E and

((N2 )
k

)
(N − 1)/E. However

for large N and k this value is completely dominated by the first term, which is of order

2N
2
/N for k =

(
N
2

)
/2. A more careful use of these estimates shows that the expected num-

ber of edges will be close to
(
N
2

)
/2 ∼ N2/4. Furthermore this results will hold true for

any walk where the ratio between probabilities for the most and least likely graphs is not

exponentially large in N . This observation tells us that the most likely graphs obtained

during the process tend to have less edges than regular objects as lattice-like graphs. The
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number of edges in a square lattice with n2 vertices is 2n (n+ 1). For a cubic lattice on n3

vertices this number is 3n (n+ 1)2, from the general formula dn (n+ 1)d−1, where d is the

dimension of the lattice. It seems natural to try to establish a relation between our walk

and random graphs. After a first analysis, such a relation does not appear obvious. In

fact, the walk on GN is based upon a locality principle which is not usually defined when

considering random graphs. An attempt to implement this principle for random graphs

would consist in constructing Erdös-Renyi graphs starting from a random tree instead of

the empty graph, that is, the graph with zero edges. A random tree, insures connectivity.

Each pair of vertices at distance two is then joined with a probability p. If we keep adding

and deleting edges, we obtain a dynamics similar to the one induced by our Hamiltonian.

It is important to observe that the differences with the standard notion of random graph

are essentially two: vertices at distance larger than two cannot be joined with a single step

of the process; there is an additional probability of deleting edges.

Let us keep in mind that so far we have not consider particles. Indeed, we have stud-

ied only a random walk on GN , where this is the space of objects obtained by deleting

and adding edges that form triangles. However, our Hamiltonian describes an evolution

including particles. Each edge deletion creates two particles sitting at the end vertices of

the deleted edge. These particles are free to move in the graph. Creation of another edge

will depends on the number of particles. Only when two particles are located on two

different vertices at distance two from each other, then we have a nonzero probability of

creating an edge between such vertices and therefore creating a new triangle. Including

particles, we can define the following process:
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• At time step t = 0, we delete a random edge of G0 := KN and obtain G1.

• At each time step t ≥ 1, we perform one of the following two operations on Gt:

– Destroy a triangle: We delete an edge randomly distributed over all edges in tri-

angles ofGt. When deleting an edge we create two (indistinguishable) particles.

Each particle is located on a vertex of the graph according to the stationary dis-

tribution over Gt+1. This reflects the assumption that the particles thermalize.

– Create a triangle: With a certain probability, we add an edge {i, j} /∈ E(Gt) such

that {i, k}, {j, k} ∈ E(Gt) for some vertex k. The probability of adding this edge

is proportional to the probability of finding a particle at vertex i and a particle

at vertex j at the same time t. When adding an edge, we destroy two particles.

Specifically, the particles located in the two end vertices.

Notice that the probability of deleting an edge is independent of the number of parti-

cles in the graph and their locations. On the other side, the probability of adding an edge

is fundamentally connected to the number of particles. Higher is the number of parti-

cles in the graph Gt ∈ V (GN) and higher is the probability of adding edges. The process

exhibits a conservative behavior since the number of particles is always

2

(
N

2

)
− |E(Gt)| . (5.48)

So, the dynamics is again equivalent to a random walk on the graph GN . This time the

random walk is not a simple random walk, since the probability of each step is deter-
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mined by the above conditions. In the transition matrix T (GN) we can have [T (GN)]i,j 6=

[T (GN)]i,k 6= 0, whenever j 6= k. This fact gives different nontrivial weights on the edges

of GN . The transition matrix of the walk is then not necessarily symmetric and we need

a normalization factor to keep it stochastic (i.e., the sums of the elements in each row is

1). Whenever an edge is deleted two particles are created. In the simplest version of our

model all particles are distinguishable and at each time step of the walk all particles are re-

distributed according to a random walk on each graph/vertex of GN . By Eq. (5.48), there

are N2p possible particle configurations. By the standard behavior of a random walk, par-

ticles will tend to cluster at vertices with high degree. For this model the state of the walk

will consist both of the current graph G and the vector x of positions of all particles. Here

the number of possible transitions will depend both on the structure of G, as before, and

the number of particles. Since the number of particle configurations grows rapidly while

the number of edges decreases, the walk will concentrate on connected graphs with few

edges, rather than the denser graphs favored by the model without particles. If we make

a rough estimate of the number of states corresponding to graphs with
(
N
2

)
/2 edges, we

see that they are fewer than N(N2 )2(N2 ) and that the number of states corresponding to

graphs with O(N) edges are more than N (2−ε)(N2 ), for any ε > 0. A comparison argument

like the one used for the case without particles then shows that the expected number of

edges for a graph/vertex will be o(N2). It has to be remarked that an ad hoc tuning of

the deletion probability for each edges should plausibly allow to obtain sparser or denser

graphs. We have give a rough bound on the number of edges in a typical graph obtained

via the Hamiltonian in Eq.(5.35). The bound does not contradict the possibility that such
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a graph has an homogeneous structure like a lattice. Additionally to the number of edges,

it may be worth to have some information about cliques. A clique is a complete subgraph.

Cliques are then the densest regions in a graph. Knowing the size of the largest cliques

gives a bound on the maximum degree and clearly tells about the possibility of having

dense regions. In the Appendix we will prove that the growth of the largest cliques is

logarithmic with respect to the number of vertices. This behavior also occurs for random

graphs.

Numerical simulations were performed to obtain information on the behavior of the

classical system under different initial conditions. We are going to discuss the case of the

complete graph KN as initial state. Complete graphs are interesting for several reasons.

First of all, every edge of KN is eligible for interaction. This implies that edges rapidly

transform in particles. As we can see in Fig. 5.5 (a), the number of particles increases

rapidly until it reaches an equilibrium value Ñ0(N). The number of steps to reach the

equilibrium distribution is the same for all the graph sizes, and is of the order of the

inverse of the only time scale introduced, given by ∼ P−1
i . It is interesting to understand

the equilibrium distribution of the degree for the various graphs KN . To obtain a better

shape for this distribution, we increased the number of simulations from 30 to 60. The

result can be seen in Fig. 5.5 (b). We find that the distribution is Poisson (De is the degree),

as it is for random graphs:

PN(De) =
1

R
e−

(De−f(N))2

Q(N) (5.49)
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where R is a normalization constant. In Fig. 5.5 (a) we find that the function f(N) is, for

the graph KN , given by

f(N) =
N

2
, (5.50)

while the function Q(N) of Fig. 5.5 (b) is

Q(N) =

√
N

2
. (5.51)

It has to be remarked that this result agrees for large N with the combinatorial proof in

the last section.

132



0 50 100 150 200 250
0

2

4

6

8

10

12

lo
g(

N
p(N

))
Particles number average (log scale) N

p
(N) as a function of the time step N

N

0 50 100 150 200 250
0

0.05

0.1

0.15

D

D
K

N

 (
D

)

Degree distribution D
K

N

(D) for various complete graphs K
N

0 200 400 600
6

8

10

12

N

lo
g(

N
p(N

))

Average number of particles for 
complete graphs K

N
, long times

(b)

(a)

K
36

K
36

K
400

K
400

K
324

K
324

K
256

K
256

K
196

K
196

K
144

K
144

K
100

K
100

K
64

K
64

Figure 5.5: a) Plot of the logarithm of the average number of particles Np as a function of the
number of steps. The initial conditions were complete graphs with N vertices, KN , with hopping
probability Ph = 1 and interacting probability Pi = 0.1. b) In this plot we have the same quantity
of (a), log(Np(N)), plotted as a function of the graph size N at long times (when at equilibrium).
c) Plot of the equilibrium degree distributions for each graph KN . The hopping and interaction
probabilities for each simulation are Ph = 1 and Pi = 0.1 respectively. The distributions are
obtained averaging over 60 simulations. At equilibrium, we obtain Poisson distributions centered
on N

2 , as shown in Fig. (5.6) (b), and variance Q(N) =
√
N
2 , as shown in Fig. (5.6) (a). This agrees

with standard results of the theory of random graphs.
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Chapter 6
Geometry and Emergence

Since the discovery of the Hawking and Unruh effects, it was clear that gravity is fun-

damentally different from the other forces we know. A new thermodynamics had to be

associated to black hole physics: they require a modification of the second law of thermo-

dynamics. This is one of the biggest puzzles in theoretical physics.

In this chapter we will introduce a mapping between connectivity of the graph and

the evolution equation for a scalar field in curved space 1. We will find that the Bose-

Hubbard Hamiltonian with homogeneous couplings on a lattice with varying vertex de-

gree is equivalent to a Bose-Hubbard Hamiltonian on a regular-degree graph but with

site-dependent effective couplings (similar to the behavior seen in [66]). This makes it

possible to connect the coefficients in the Hamiltonian to geometric properties of the

graph. The picture which emerges from this analysis is the one of Fig. 6.1: the graph

modifies the strength of the interaction in the Bose-Hubbard Hamiltonian, and this ap-

1This section is based on [112]. The role of the author of the present thesis in the paper was mostly on the
analytical results. He proved analytically that the trapped surface configuration has a Hamiltonian which
is gapped, and derived the effective Hamiltonian and the effective equation for the probability. Also, the
emergence of the mass from multi-particle interaction.
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Figure 6.1: The scheme representing the relations between the graph, the hopping energies fi,j of
the Bose-Hubbard model and the emergent metric: the graph modifies the strength of the interac-
tion in the Bose-Hubbard Hamiltonian, which in turn translates into a curved geometry (for the
appropriate states).

pears as a curved geometry to the propagating matter.

It is important to note that the emergent curved space is a dynamical property of the

system. The geometry that the particles propagating on the graph see depends on the

dynamics of the particles and it is not just a property of the graph and, in addition, the

resulting motion of the particles will change the graph and so affect the geometry.

In the present Chapter, moreover, we study the model for a particular class of graphs

that have been conjectured to be analogues of trapped surfaces. We are interested in the

approximation k � t, which can be seen as the equivalent of ignoring the backreaction of

the matter on the geometry. For simplicity, we will set U = k = 0 in eqn. (5.35), meaning

that

Ĥ = Ĥv + Ĥhop. (6.1)

In this case, the total number of particles on the graph is a conserved charge. Ĥv and

Ĥlinks are constants on fixed graphs with fixed number of particles. The Hamiltonian is

the ordinary Bose-Hubbard model on a fixed graph, but that graph can be unusual, with
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sites of varying connectivity and with more than one edge connecting two sites. Our aim

will then be to study the effective geometry that matter in this model sees.

Even on a fixed lattice, the Hubbard model is difficult to analyze, with few results

in higher dimensions. It would seem that our problem, propagation on a lattice with

connectivity which varies from site to site is also very difficult. Fortunately, it turns out

that for our purposes it is sufficient to restrict attention to lattices with certain symmetries.

To avoid confusion with the the time variable, in the following the coupling constant

previously called t associated to the hopping of the particles will be renamed Ehop.

6.1 Foliated and rotationally invariant graphs

In this Section we define graphs with two particular properties which we call foliation and

rotational invariance. These properties will allow us to greatly simplify the calculations

that follow without loss of generality. We will see that the problem of finding the ground

state of hopping Hamiltonians, on graphs with these properties can be simplified to the

solution of the one-dimensional Bose-Hubbard model.

6.1.1 Foliated graphs

A foliated graph is a graph that can be decomposed into a set of subgraphs connected by

edges in a successive way. More precisely, let gi be a labeling of subgraphs of a graph G

and Ei a labeling of the set of edges connecting the sets gi, such that ∪i(gi∪Ei) = G. Then,

Definition 1. A graph G is foliated if it can be decomposed in several disjoint subgraphs gi with
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Figure 6.2: A 2-d lattice that can be foliated.

the following properties:

1. All the subgraphs gi are degree regular.

2. All the edges of a subgraph gi connect a vertex in gi to a vertex in gi−1 or gi+1.

3. The number of edges connecting a vertex in gi (gi+1) to vertices in gi+1 (gi) is the same for

every vertex of gi (gi+1). This number is called relative degree and is represented by di,i+1

(di+1,i).

Notice that the name, foliated, comes from the fact that these graphs can be decom-

posed into subgraphs such as any foliated structure can be separated into thin layers.

Examples of foliated graphs are presented in Figs. 6.2 and 6.3.

The number of edges that connect two consecutive subgraphs gi and gi+1 is given by

di,i+1Ni = di+1,iNi+1 , (6.2)

where Ni is the number of vertices of gi.

In order to discuss the properties of the hopping Hamiltonians defined by foliated

graphs, let us introduce a natural coordinates (i,m) to specify a vertex of a foliated graph.
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Figure 6.3: A non-planar lattice that can be 1-foliated.

The coordinate i specifies the subgraph gi and m refers to the particular vertex in gi. The

hopping Hamiltonian of a foliated graph in terms of these coordinates can be written as

Ĥfol = −
R−1∑
i=0

Ni−1∑
m,m′=0

A
(i)
mm′b

†
i,mbi,m′ + h.c.

−
R−1∑
i=0

Ni−1∑
m=0

Ni+1−1∑
m′=0

B
(i)
mm′b

†
i,mbi+1,m′ + h.c. , (6.3)

where b†i,m(bi,m) is the creation (annihilation) operator of a particle at the vertex (i,m), R is

the number of layers gi, A
(i)
mm′ is the adjacency matrix of the subgraph gi, and B(i)

mm′ stands

for the edges between the vertices of gi and gi+1.

In this model, the delocalized states on the subgraphs gi are particularly interesting.

These are states of a particle which is completely and uniformly spread over the graph gi,

defined as follows:

Definition 2. The delocalized state, | i〉, in gi is defined by

| i〉 =
1√
Ni

Ni−1∑
m=0

| i,m〉. (6.4)
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The delocalized state | i〉 is an eigenstate of the hopping Hamiltonian defined from the

degree-regular subgraph gi,

Ĥ
(i)
fol = −

Ni−1∑
m,m′=0

A
(i)
mm′b

†
i,mbi,m′ + h.c. . (6.5)

More explicitly,

Ĥ
(i)
fol | i〉 =

1√
Ni

Ni−1∑
m=0

(
Ni−1∑
m′=0

A
(i)
m′m

)
| i,m〉 = −di,iEhop | i〉 , (6.6)

where we have used the degree-regularity of the graph, di,i =
∑

mA
(i)
nm, for all n. For

example, when the graph gi is a chain, the completely delocalized state is the ground state

of the system and has energy −2, with 2 is the degree of the vertices of a 1-dimensional

chain.

The subspace spanned by the delocalized states | i〉 is an eigenspace of the system,

since the projector onto this subspace,

P̂d =
R−1∑
i=0

|i〉〈i|, (6.7)

commutes with the Hamiltonian (6.3), [Hfol, Pd] = 0. Therefore, the time evolution of any

superposition of delocalized states lies always in this subspace (it is a superposition of

delocalized states). This allows us to define an effective Hamiltonian for the delocalized
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states,

Ĥeff := P̂dĤfolP̂d (6.8)

=
R−1∑
i=0

(fi,i+1 (| i+ 1〉〈i | + | i〉〈i+ 1 |) + µi|i〉〈i|) ,

where µi = 〈i | Ĥfol | i〉 = −Ehopdi,i and

fi,i+1 := 〈i | Ĥfol | i+ 1〉 = −Ehop di,i+1

√
Ni

Ni+1

. (6.9)

Note that the Hamiltonian (6.8) is a one-dimensional Bose-Hubbard Hamiltonian with

chemical potential µi and tunneling coefficient fi,i+1.

The mass term (or chemical potential) µ, is fattened by the edges connecting the nodes

within the subgraph gi of the foliated graph. This is one the main results of the thesis. This

behavior resembles a scalar field not-minimally coupled to (classical) gravity, where the

mass of the particle is multiplied by a curvature factor. In our case, the role of the curva-

ture is played by −Ehopdi,i (see Sec. 6.3).

The extension to higher dimensions is straightforward. It requires the extension of

one-dimensional foliated graphs to graphs which can be foliated in multiple directions,

thus resembling an ordinary lattice, but with multiple links between pairs of sites. The

coefficients fk,k−1 will depend on the direction of the foliation that the particle is hopping

to.

We have found an eigenspace of the foliated Hamiltonians for which the effective

Hamiltonian is particularly simple. However, this eigenspace will not, in general, contain
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relevant eigenstates of the Hamiltonian such as the ground state. In order to ensure this,

we require another symmetry.

6.1.2 Rotationally invariant graphs

Let us present next our definition of the rotationally invariant graphs.

Definition 3. A graph G is called N -rotationally invariant if there exists an embedding of G to

the plane that is invariant by rotations of an angle 2π/N .

With the exception of those graphs that have a vertex in the center, N -rotationally in-

variant graphs allow for a labeling of their vertices (n, θ) ∈ N × ZN such that their ad-

jacency matrix A(nθ) ,(n′θ′) only depends on n, n′ and θ − θ′. We can make use of these

coordinates (n, θ) in order to write the Hamiltonian defined by a rotationally invariant

graph

Hrot = −
N−1∑
θ=0

∑
n,n′

Ann′b
†
nθbn′θ + h.c.

−
N−1∑
θ=0

N−1∑
ϕ=1

∑
n,n′

B
(ϕ)
n,n′b

†
nθbn′θ+ϕ + h.c., (6.10)

where b†n,θ (bn,θ) is the creation (annihilation) operator at the vertex (n, θ), Ann′ is the adja-

cency matrix of the graph of any angular sector and B
(ϕ)
n,n′ is the adjacency matrix of two

angular sectors at an angular distance ϕ in units of 2π/N .
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Let us introduce the rotation operator L̂ defined by

L̂bn,θ = br,θ+1L̂

L̂b†n,θ = b†r,θ+1L̂ . (6.11)

The effect of the operator L is particularly easy to understand in the single particle case:

L̂ | n, θ〉 = L̂b†n,θ | 0〉 = b†n,θ+1L̂ | 0〉 =| n, θ + 1〉 , (6.12)

where we have assumed that the vacuum is invariant under a rotation L̂ | 0〉 =| 0〉.

Note that L̂ is unitary and its application N times gives the identity, L̂N = 1. This

implies that its eigenvalues are integer multiples of 2π/N .

Another interesting property of L is that commutes both with the rotationally invari-

ant Hamiltonians and with the number operator N̂p,

[Ĥrot, L̂] = [N̂p, L̂] = [Ĥrot, N̂p] = 0 . (6.13)

Therefore Ĥrot, N̂p, and L̂ form a complete set of commuting observables and the Hamil-

tonian is diagonal in blocks of constant L̂ and N̂p. This allows us to simplify the problem

of finding the ground state and the first excited states of the system, a very useful fact we

will use in the next section.

Note that rotational invariance and foliability are not equivalent. There are graphs

which can be foliated and are not rotationally invariant and vice-versa. An example is
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Figure 6.4: A foliated graph which is not rotationally invariant.

given in Fig. 6.4.

We have seen that both for the cases of foliated graphs and the rotationally invari-

ant graphs, the subspace spanned by the completely delocalized states is an eigenspace of the

system. In the foliated model, effective dynamics in this eigenspace are given by a one-

dimensional Bose-Hubbard Hamiltonian. In the rotational invariant case, this eigenspace

contains the ground state of the system. Thus, the ground state of graphs with both sym-

metries lies in the subspace of completely delocalized states and the computational effort

to find it is equivalent to the solution of a one-dimensional Bose-Hubbard model. This

allows us to analyze a complicated model using the approximation of a one-dimensional

spin chain, with obvious advantages, especially for numerical work.

6.2 Regions of high connectivity as trapped surfaces

In [111], it has been observed that the Hamiltonian (6.63) caused trapping of matter in

regions of higher connectivity. The basic mechanism is the following: consider a graph

consisting of two set of nodes, A and B, separated by a set of points C on the boundary.

Let the vertices in A be of much higher degree than the vertices in B, dA � dB (see Fig.

6.5). If the number of edges departing from the set C and going to the set A is much

higher than the number of edges going from C to B, then the hopping particles have a
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high probability of being “trapped” into the region A.

Our task in this Section is to make this heuristic argument precise and determine

whether these high connectivity configurations are spin-system analogues of trapped sur-

faces. We will do this by studying specific states that are graphs with symmetries that

contain a core (trap) of N nodes. Fig. 6.6 is an example of such a graph. Such states are

1-foliated graphs and we will be able to use the properties we discovered above.

6.2.1 Classical trapping

In order to gain some intuition on the trapping, let us consider the classical analogue of

the problem. In the classical setup, a particle has a well-defined position in some site of

A. At each time step of length ~/Ehop, the particle randomly jumps to another site of the

graph connected to its current site by an edge. This process is successively repeated until

the particle escapes from A. How much time is required (on average) for the particle to

escape from the highly connected region?

In this simple model, the probability that the particle jumps to a site outside A is

pesc =
Next

N − 1 +Next
, (6.14)

where Next is the number of links that connect a site in A with the environment, and N is

the total number of sites in A. The evaporation time is then given by

tev =
~

Ehop

1

pesc
≈ ~
Ehop

N

Next
, (6.15)
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C

Figure 6.5: A region of higher connectivity in a regular graph.

Figure 6.6: The KN graph.

where we have assumed that N � Next. In the large N limit, the particle is trapped in A.

6.2.2 Quantum case: the KN configuration

In this section we study the spectrum and the configuration of the ground state and the

finite temperature states of the hopping Hamiltonian on the graph of Figure 6.6 which we

will call the KN graph. This is a 1-foliated graph with a completely connected core. We

will show that the model on KN can be solved analytically in the thermodynamic limit.

The position of a vertex of the KN graph can be specified by means of the integer

spherical coordinates r and θ, with ranges 0 ≤ r ≤ R − 1 and 0 ≤ θ ≤ N − 1. Then, the
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quantum state of a particle with a well-defined position in the graph can be written as

| r, θ〉 = b†r,θ | 0〉 , (6.16)

where | 0〉 is the vacuum state and b†r,θ the corresponding creation operator. Using these

coordinates, the hopping Hamiltonian defined by the KN graph becomes

Ĥ0 =
N−1∑
θ=0

R−1∑
r=0

(
b†r+1,θbr,θ + b†r,θ+1br,θ + h.c.

)
(6.17)

+
∑
|θ−θ′|≥2

b†0,θ′b0,θ ,

where h.c. is the Hermitian conjugate. Note that the second term in Eq. (6.17) corresponds

to hopping in the completely connected region, while the first sum is hopping outside

that core. Our question is how the introduction of this completely connected region (the

second sum) changes the spectrum and the eigenstates of the system.

Single particle case. Let us first work out the single particle sector of the Hamiltonian.

In order to determine the eigenstates and eigenvalues of Ĥ0, we will write the Hamil-

tonian in the eigenbasis of the rotation operator L̂ defined in equation (6.11). The eigen-

states of L̂ read

| r, `〉 =
1√
N

N−1∑
θ=0

ei 2π
N
`θ | r, θ〉 , (6.18)
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with eigenvalues

L̂ | r, `〉 = ei 2π
N
` | r, `〉 , (6.19)

where ` = 0, 1, . . . , N − 1. The Hamiltonian is diagonal in blocks of constant ` and can be

written as

Ĥ =
N−1∑
`=0

Ĥ` , (6.20)

where Ĥ` = P̂`ĤP̂` are the projections onto the eigenspaces of L̂ with the projectors P̂`

defined as

P̂` =
R−1∑
r=0

|r, `〉〈r, `| . (6.21)

Inserting Eq. (6.21) into the definition of Ĥ`, we get

Ĥ` = −Nδ`0|0〉〈0| − 2 cos

(
2π

N
`

)
θ

(
r − 1

2

)
|r〉〈r|

− (| r + 1〉〈r | + | r〉〈r + 1 |) , (6.22)

where θ(·) is the Heaviside step function, introduced to make the second term of the right

hand side vanish when r = 0.

Note that Ĥ` is translationally invariant in the limit R→∞ for ` > 0. Therefore, it can
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be analytically diagonalized by the discrete Fourier transform

| kr, `〉 =
1√
R

R−1∑
r=0

ei 2π
R
krr | r, `〉 , (6.23)

with kr = 0, . . . , R− 1 and 1 ≤ ` ≤ N − 1. We find

Ĥ` | kr, `〉 = 2

(
1− cos

(
2π

R
kr

)
− cos

(
2π

N
`

))
| kr, `〉 (6.24)

up to 1/R corrections that vanish in the infinite limit.

Let us now consider the subspace ` = 0 of the rotationally invariant states. Because the

Hamiltonian commutes with L̂, the ground state | GS〉 of the system must be invariant

under its action: L̂ | GS〉 =| GS〉. Therefore, | GS〉 belongs to this subspace. On it, we can

explicitly construct the matrix for the Hamiltonian Ĥ`=0:

Ĥ`=0 = −Ehop



N 1 0 · · · 0

1 2 1
. . . ...

0 1 2
. . . 0

... . . . . . . . . . 1

0 · · · 0 1 2


. (6.25)

It is a tridiagonal matrix with characteristic polynomial pR(λ) = det(Ĥ − λI) which can
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be written in a recursive way as

p0(λ) = 1,

p1(λ) = −N , (6.26)

pn(λ) = −(2− λ)pn−1(λ)− pn−2(λ) .

Note that because of the recursive relation, it is not clear whether the other eigenvalues

apart from the first one depend on N or not.

It is easy to see that, if we rescale Ehop = Ẽhop/N and take N → ∞, the only element

left in the matrix is the element associated to the |0〉 state. Thus, at N → ∞, the ground

state becomes | r = 0, ` = 0〉 and the gap between it and the first excited state scales as N .

In the thermodynamic limit, the ground state of the single particle sector corresponds to

a particle completely delocalized in the complete graph,

lim
N→∞

| GS〉 =| r = 0, ` = 0〉 =
1√
N

N−1∑
θ=0

| 0, θ〉 . (6.27)

The rest of eigenvectors of the subspace ` = 0 are orthogonal to | GS〉 =| r = 0, ` = 0〉,

and therefore lie in the subspace spanned by | r, ` = 0〉with r ≥ 1. The Hamiltonian can be

analytically diagonalized in this subspace by the same transformation used in Eq. (6.23):

| k, 0〉 =
1√
R

R−1∑
r=1

ei 2π
R
kr | r, 0〉 , (6.28)

with k = 0, . . . , R− 2.
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In conclusion, we have seen that the KN model has a unique ground state which is protected

by a gap which increases linearly with the size N of the completely connected region. The rest of

the eigenvalues form an energy band which is the same as if we had the KN graph without

the completely connected region,

Ek` = 2

(
1− cos

(
2π

R
kr

)
− cos

(
2π

N
`

))
. (6.29)

These results are numerically confirmed by Figs. 6.7 and 6.8. In Fig. 6.7, the energies

of the ground state, the first excited state and the state with maximum energy are plotted

against the size of the completely connected region. In Fig. 6.8, we have plotted the fi-

delity between the ground state of the system and the completely delocalized state in the

completely connected region vs N .

Multi-particle case. Let us next analyze what happens when there are several particles

in the KN configuration, interacting with an on-site potential.

The Hamiltonian of the multi-particle KN model can be decomposed in its one-body

and two-body parts,

Ĥ = Ĥ0 + V̂ (6.30)

where Ĥ0 is defined in Eq. (6.17) and V̂ is an on-site interaction among the particles:

V̂ = u

R−1∑
r=0

N−1∑
θ=0

b†rθb
†
rθbrθbrθ , (6.31)
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with u the energy penalty for two particles in the same site.

Because the interaction V̂ commutes with the number operator N̂ and the rotation

transformation L̂, Ĥ , L̂ and N̂ form a complete set of commuting observables. It is con-

venient to write Ĥ0 and V̂ in terms of the creation and annihilation operators

ηk` =
1√
RN

N−1∑
θ=0

R−1∑
r=0

ei 2π
R
kr ei 2π

N
`θbr,θ, ∀` ≥ 1, (6.32)

ηk0 =
1√
RN

N−1∑
θ=0

R−1∑
r=1

ei 2π
R−1

r br,0, (6.33)

ηgs =
1√
N

N−1∑
θ=0

b0,θ . (6.34)

As it has been previously shown, the one-body term in the Hamiltonian is

Ĥ0 = −Nη†gsηgs +
∑
k`

Ek`η
†
k`ηk` , (6.35)

and the interaction reads

V̂ = u
∑
k`

δ`1+`2,`3+`4δk1+k2,k3+k4 η̂
†
k1`1

η†k2`2ηk3`3ηk4`4

+ u η†gsη
†
gsηgsηgs , (6.36)

where the sum runs over all possible ki and `i for i = 1, . . . , 4 and the Krönecker delta

shows that the interaction conserves the quantum numbers ` and k. Note that the single-

particle ground state is completely decoupled from the states of the energy band. There-
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fore, the state of n particles,

| GS〉 =
(
η†gs

)n
| 0〉 , (6.37)

is an eigenstate of the system with energy −nN + un(n− 1)/2. Furthermore, as the inter-

action is a positive operator, we can ensure that | GS〉 is the ground state of the system as

long as n < N .

Thus, the ground state of the many-body problem is a Bose-Einstein condensate of delocalized

particles at the completely connected region. The large gap and the features of the on-site in-

teraction make this condensate robust at finite temperatures and against adding interact-

ing particles. Thus, the completely connected region of the KN model can be considered

a trapped surface.

However, it is not clear whether every completely connected region is a trapped sur-

face. In particular, we would like to see what happens when the connectivity does not

change as abruptly as in the KN system. For this reason, in Section 6.4 we will parametrize

the fall-off of the parameters and study the localization of particles. Moreover, we would

like to relate this fall-off to an effective curved space-time geometry, as in an analogue

gravity system. In order to do this, then, a correspondence between the connectivity of

the graph and the curvature of the space-time is required. Establishing this relation is our

task for the next section.
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6.3 Correspondence between graph connectivity and curved

geometry

In this section we establish a relation between the connectivity of a graph and the cur-

vature of its continuous analogue geometry. In order to do this, we restrict the time-

dependent Schrödinger equation to the manifold formed by the classical states, that is,

single-particle states with a well-defined but unknown position. The equation of motion

obtained corresponds to the equation of propagation of light in inhomogeneous media,

similarly to black hole analogue systems. Once we have such a wave equation, we can

extract the corresponding metric. In the second part of the section, the dispersion relation

and the continuous limit are discussed for the transitionally invariant case.

6.3.1 Restriction of the time-dependent Schrödinger equation to the set

of classical states

Since we want to study the dynamics of a single particle on a fixed graph, it is only neces-

sary to consider the single particle sector. The one dimensional Bose-Hubbard model for

a single particle reads,

Ĥ0 =
M−1∑
n=0

fn,n+1 (| n〉〈n+ 1 | + | n+ 1〉〈n |) +
∑
n

µn|n〉〈n| , (6.38)

where fn,n+1 are the tunneling coefficients between sites n and n + 1, µn is the chemical

potential at the site n, and M is the size of the lattice.
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In this setup, let us introduce the convex set of classical statesMC , parameterized as

ρ(Ψ) =
M−1∑
n=0

Ψn|n〉〈n| , (6.39)

where Ψn is the probability of finding the particle at the site n. The states inMC are clas-

sical because the uncertainty in the position is classical, that is, they represent a particle

with an unknown but well-defined position.

The aim of this section is to restrict the Schrödinger equation of the whole convex set

of density matrices to the convex setMC and obtain the effective equations of motion for

the classical states. In order to do this we will follow the same procedure as in Ref. [67].

We will approximate the time evolution generated by Ĥ0 without ever leaving the convex

setMC . This procedure consists basically of two steps:

1. Time evolution. Insert the initial state ρ(t) ∈MC into the time-dependent Schrödinger

equation to get its evolution ρ(t+ ∆t) after a short time ∆t.

2. Restriction to MC . Find the state in MC that best approximates the evolved state

ρ(t+ ∆t).

If we take the infinitesimal limit ∆t → 0 of the previous steps we are going to get a

differential equation for the field Ψn(t).

Let us mention that the time-dependent Gross-Pitaevskii equation can also be derived

by this method, that is, by restricting the Schrödinger equation to the manifold defined

by states parametrized by | ϕ〉 = exp
(∫
Dxϕ(x)b†x

)
| 0〉, where b†x is the field operator that

creates a particle at position x. In Ref. [67], the second step is something that must be done
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in order to restrict the equations of motion to the desired manifold. Nevertheless, in our

case, decoherence can give a physical interpretation to this step. Since our particle is under

the effect of a noisy environment, its density matrix is going to be constantly dephased

by the interaction between the particle and its reservoir.

If we insert ρ(t) in the time-dependent Schrödinger equation we obtain:

∂tρ(t) =
∑
n

∂tΨn(t)|n〉〈n| = i[Ĥ0, ρ(t)] , (6.40)

where, in general, the right hand side cannot be written in terms of the left hand side, and

therefore the previous equation cannot be fulfilled. Note that the Hamiltonian pushes

ρ(t+ ∆t) out of theMC .

Thus, the best approximation to ρ(t + ∆t) in the convex setMC is obtained by mini-

mizing the distance

‖
∑
n

∂tΨn(t)|n〉〈n| − i
[
Ĥ0, ρ(t)

]
‖ , (6.41)

For the Hamiltonian (6.38), the commutator [Ĥ0, ρ(t)] reads

[Ĥ0,ρ(t)] =
∑
n

fn,n+1 (Ψn+1 −Ψn) (| n〉〈n+ 1 | + | n+ 1〉〈n |) , (6.42)

and therefore the state inMC that best approximates ρ(t+ ∆t) fulfills

∂tΨn(t) = 0 . (6.43)
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This forces us to consider the second order in ∆t, and therefore the effective equation of

motion for Ψn(t) is going to be a second order differential equation in time. We then have

∂2
t ρ(t) =

∑
n

∂2
t Ψn(t)|n〉〈n| = − 1

~2

[
Ĥ0, [Ĥ0, ρ(t)]

]
.

The dephased state in the position eigenbasis that best approximates ρ(t + ∆t) can

be easily determined by computing the double commutator of the previous equation. It

obeys the evolution

~2

2
∂2
t Ψn(t) =−

(
f 2
n,n+1 + f 2

n−1,n

)
Ψn(t) (6.44)

+ f 2
n−1,nΨn−1(t) + f 2

n,n+1Ψn−1(t) .

In order to rewrite the previous expression in a nicer way, let us add and subtract the

quantity f 2
n−1,n(Ψn+1(t) + Ψn(t)) in the right-hand side, obtaining

~2

2
∂2
t Ψn(t) =f 2

n−1,n (Ψn+1(t) + Ψn−1(t)− 2Ψn(t))

+
(
f 2
n+1,n − f 2

n−1,n

)
(Ψn+1(t)−Ψn(t)) . (6.45)

This equation becomes a wave equation in the continuum,

∂2
t Ψ(x, t)− ∂x

(
c2(x)∂xΨ(x, t)

)
= 0 , (6.46)
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where

1

c(x)
=

√
~2

2f 2(x)E2
hop

=
~

Ehop
√

2f 2(x)
, (6.47)

and Ψ(x, t) and f(x) are the continuous limit functions of Ψn(t) and fn,n−1 respectively.

We have shown that the equation of motion of the Bose-Hubbard model, restricted to the convex

set formed by classical states, is the wave equation. This is a significant result that establishes

a relation between the coupling constants of the Bose-Hubbard model and the speed of

propagation of the fields Ψ(x, t). Equation (6.46) has the same form as the equation for

propagation of light in media with a space-dependent refraction index, as is also the case

in black hole analogue systems [69].

A few comments are in order. In equation (6.46), the constant of the speed of light is quan-

tized. It is proportional to the inverse of the number of links between the nodes in this

simplified model. This constant depends on the hopping coupling constant of the hamil-

tonian, Ehop. Finally, even though equation (6.46) is for a scalar quantity, the analogy with

a Klein-Gordon field can not be pushed too far. The equation refers to the 1-particle den-

sity from which we started from, Ψn(t) = 〈n | ρ(t) | n〉, and so is completely classical.

A generalization of equation (6.46) to the case of many distinguishable interacting par-

ticles is given in detail in the Appendix, where we analyze also the effect of a local and

non-local interaction.
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6.3.2 Dispersion relation and continuum limit

Let us consider in more detail the translational invariant case in which fn−1,n = f and

µn = µ for all n. In this case, the continuous wave equation (6.46) becomes

∂2
t Ψ(x, t)− c2∂2

xΨ(x, t) = 0 , (6.48)

where c is the speed of propagation.

In order to understand the continuum limit, we evaluate the dispersion relation for

the propagation of probability in the translationally invariant case. Let us introduce a

discrete Fourier transform in the spatial coordinate and a continuous Fourier transform

in the temporal coordinate, given by

Ψn(t) =
1√
M

M−1∑
k=0

Ψ̃k(t)e
− i 2π

M
nk , (6.49)

and Ψ̃k(t) = Aeiωkt+Be− iωkt. After a straightforward calculation, we find that the relation

between ωk and k is given by

ωkc =
√

2

√
1− cos

(
2π

M
k

)
. (6.50)

Note that this dispersion relation is different from that of the quantum excitations. In

order to see this, we Fourier transform the Hamiltonian in the translational invariant

modes. We define the field momentum Ψk(t) as Ψk(t) = 〈k | ρ(t) | k〉, where | k〉 =∑
m e

i 2πkm/M/
√
M | m〉 are the eigenstates of the translationally invariant Hamiltonian
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Ĥ0 | k〉 = ~ωHk | k〉, with

~ωHk = 2

(
1− cos

(
2πk

M

))
. (6.51)

Therefore,

Ψk(t) =
∑
n,m

ei 2πk(n−m)/Mρn,m(t), (6.52)

and, for the classical states ρn,m(t) = δn,mΨn(t),

Ψk(t) =
1

M

M−1∑
n=0

Ψn(t) =
1

M
. (6.53)

Note now that Eq. (6.51) differs from (6.50). In fact, at the quantum level, the continuum

limit gives the ordinary galilean invariance, while at the quantum level, the continuum

limit gives excitations (time-evolving probability densities) which are Lorentz invariant.

However, the continuum limit is tricky because we have continuous time and discrete

space, and no spatial scale to send to zero with the inverse of the number of lattice points

(the graph is not embedded in any geometry). Thus the continuum limit is in the time

scale of the modes. If we rescale ωk → ω̃k/M (or equivalently c), we find that

ω̃k c =
√

2M

√
1− cos

(
2π

M
k

)
, (6.54)
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and, therefore,

lim
M→∞

ω̃k ≈ 2π
k

c
. (6.55)

That is, only modes that are slow with respect to the time scale set by c see the continuum.

Note that by rescaling the speed of propagation c, the continuum limit can be obtained

by a double scaling limit, Ehop → EhopM and M → ∞ for lattice size M . In this limit,

the probability density has a Lorentz invariant dispersion relation. Another interesting

rescaling which gives Lorentz invariant dispersion relations is the rescaling of ~.

To conclude the discussion, let us note that the speed of propagation of the probability

sets the timescale of the interaction: if there are P points with constant speed of light

given by c, then the timescale of the propagation of the interaction in the classical limit in

that region is given by tdyn = P/c.

An embedding of the graph in space, on the other hand, would mean requiring that

Ψn(t) depends on a point in space and a length scale a (the lattice spacing): Ψn(t) ≡

Ψ(b0 + na, t), and that the coupling constant scales as Ehop → Ehop/a. In this case the

continuum limit a→ 0 gives the ordinary dispersion relation.

6.3.3 Lieb-Robinson bound for hopping bosons

A general result, which will now be useful, has been given in [161]. This is strictly related

to our result, as it establish a finite speed of propagation for the interacting Bose-Hubbard
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model, defined as:

ĤBH = −Ehop
∑
j,k

Aj,k(b̂
†
j b̂k + h.c.) +

U

2

∑
j

N̂j(N̂j − 1)− µ
∑
j

N̂j. (6.56)

In the limit U → ∞ we obtain a Bose-Hubbard model with Hard-Core bosons. Here we

consider the adjacency matrix being the one of a graph G given by a square lattice, where

there exist a natural metric, given by d(j, k) = |j − k|. The arguments directly generalize

to Hamiltonians of the form

ĤBH = −Ehop
∑
j,k

Aj,k(b̂
†
j b̂k + h.c.) + f({N̂1,j · · · N̂L,j}j∈G). (6.57)

The result is similar to ours, since in order to obtain the bound, we focus on particular

expectation values, as the local particle density, given by ψj(t) = tr(N̂j ρ̂(t)). Also in this

case, the proof of the result that we are going to describe, relies on the time derivative of

ψj(t). Using standard bounds, one’s can prove that:

|ψ̇j(t)| ≤ 2Ehop
∑
j,k

Aj,k|tr(b̂†j b̂kρ̂(t))| (6.58)

Using then the operatorial version of the Cauchy-Schwarz inequality, one can show that

the following inequality holds

|ψ̇j(t)| ≤ Ehop
(
D ψj(t) +

∑
j,k

Aj,kψk(t)
)
, (6.59)
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where D is the degree of the graph. An equality can then be imposed, and integrating the

resulting equation, one obtains

ψi(t) ≤ eDEhopt[eEhopAt]ijψj(t). (6.60)

An analysis on the operator exponential shows that it is possible to bound also the off-

diagonal elements, as:

[eEhopAt]ij ≤ Cev̄t−d(i,j) (6.61)

with ξ ≈ 3.59, and C ≈ 10. Thus, with the prefactor, the Lieb-Robinson speed becomes

v = v̄ +DEhop.

We notice that the differential equation that we obtained in 6.46 is tighter than this

Lieb-Robinson speed, as for us v̄ = 0. We have implicitly assumed that the particles were

Hard-Core bosons, thus U =∞. We would like to stress that v̄ = 0 is obtained also for the

case U = 0 [161].

It is usually believed that the Lieb-Robinson bound is associated to a classical light

cone, i.e. a classical Doppler effect. Instead, here we have shown that this bound could

be related to a relativistic effect. How general is this result is an open question and we

believe it should be further investigated.
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6.4 Model with parametrized fall-off of connectivity

In this section, we study a graph with a trapped surface (completely connected region)

whose boundary is extended and the connectivity of its nodes decreases gradually to-

wards the outer edge of the boundary. We parametrize the fall-off of the parameters of

the model and study the localization of a one-particle state. We use the techniques devel-

oped in Secs. 6.1 and 6.2 to find the ground state of the system and check its robustness

against finite temperature and many interacting particles.

This section summarizes the two main ideas of this chapter: the relation between the

connectivity of a graph and the optical parameter, and the analysis of the power of trap-

ping of a completely connected region.

6.4.1 The Model

Let us consider a 2-dimensional rotational invariant graph where the connectivity fr,r+1

between two layers r and r + 1 is not constant (KN case), but decreases as

−fr,r+1 = Ehopdr,r+1

√
Nr

Nr+1

=

(
1 +

N

rγ

)
. (6.62)

dr,r+1 is the relative degree of a site of the r-th subgraph towards the r + 1-th subgraph,

Nr is the number of vertices in the layer r, and γ is a parameter that controls how fast

the connectivity decreases. Note that this choice is consistent because we can always tune

Ehop to be small enough, Nr = N uniform, and dr,r+1 to be such that we can approximate

the rhs of Eq. (6.62). The KN model corresponds to γ → ∞ together with N . We expect
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that the larger γ is, the larger is the localization.

6.4.2 Trapped surface

The rotational symmetry allows us to perform the same diagonalization procedure fol-

lowed in Sec. 6.2. That is, we will diagonalize the Hamiltonian in blocks corresponding

to the eigenspaces of the rotation operator L̂. Unlike the KN graph, the diagonalization

in such subspaces must be done numerically. This is not a problem in the single particle

sector. We can then determine the ground state and the gap of the system.

In Fig. 6.9, we have found the spectrum of the system. We see that the ground state

is protected by a gap that increases linearly with the size of the completely connected

region N . By the same argument as in the KN model, this gap guarantees that the com-

pletely connected region is a trapped surface robust against finite temperature and against

adding several interacting particles.

To characterize the ground state of the system, the probability distribution of the po-

sition of the particle is plot in Fig. 6.10. We note that, unlike the KN model, the particle is

not completely localized inside the trapped surface, but localized in a small region in and

around the trapping surface.

In Fig. 6.11, the localization of the particle inside the completely connected region is

plotted against its size and for three different parameters γ = 1/2, 1 and 2. Both this plot

and Fig. 6.10 illustrate that, the higher the parameter γ, the stronger the localization in the

completely connected region.
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Figure 6.9: Plot of the energies of the ground state E0, the first excited state E1, and the state
with maximum energy Emax, with respect to the size of the trapping surface, N , for a rotational
invariant graph with decaying connectivity (1 + N/r), in the single particle sector. Note that the
gap E1 − E0 increases linearly with N .
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Figure 6.10: Probability distribution of the position of the particle. The particle is completely con-
fined around the trapping surface. The larger the fall-off coefficient γ, the larger the confinement.
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Figure 6.11: Localization of a single particle in a trapped surface vs its size. The localization of the
particle increases with the size N and the fall-off coefficient γ (see the definition of γ in Eq. (6.62)).

6.5 Emergence of the mass for the scalar field

As we have seen, the equation of motion for the particle on the graph, is the one of a

massless scalar field. Moreover, inserting a chemical potential is useless, as the term

cancels when taking a second derivative of the field. We here describe two mechanism to

obtain a mass for the field 2.

6.5.1 Emergence of the mass from disordered locality

A fascinating idea proposed by Wheeler in the early years of Quantum Gravity, is that,

at the Planck scale, geometry may be bumpy due to quantum fluctuations. This is the

quantum foam [108]. While intuitively natural, this idea is very complicated to put into

2This section is based on the work of [112] and [113]. The role of the author was the derivation of the
new effective equation with the correction due to the superposition of graphs, and the calculation of the
running of the effective masses.
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action. In the present section, we will use the framework of Quantum Graphity [80, 111,

112] to construct a simple model of quantum foam.

A key feature of a quantum foam is its non-local nature. While non-locality is unde-

sirable in quantum field theory, the situation in quantum gravity is open. It is often said

that the only way to cure the divergences appearing perturbatively in quantizations of

gravity without introducing new physics (i.e., string theory or super-symmetric exten-

sions of gravity), is to introduce some kind of non-locality in the action which smears

out Green functions evaluated on one point only. Until now, ghosts in the theory have

blocked research in this direction (some progress has been achieved recently in [56]). For

the purposes of the present work, it is important to note that there are two possible types

of non-locality which contribute in different ways. One, violation of microlocality, dis-

appears when the cut-off is taken to zero, while the other, violation of macrolocality, or

disordered locality, does not [15]. Violations of macrolocality amount to the presence of

what a relativist would call a wormhole [110], a path through spacetime disallowed in

a Lorentzian topology. General relativity allows for such paths and, in principle, they

should be taken into account in a full quantum theory of gravity. In principle, in order

to have traversable wormholes, the common positive-energy conditions and some other

conditions on the throats have to be satisfied. In principle, the analogy between links

violating macrolocality in graphs and wormholes could be considered far-fetched. How-

ever, the effect of the two is the same: particles have the possibility to take shortcuts. Thus

we believe that by modeling wormholes with macrolocal links, even though we are not

studying wormholes per se, we are studying their effect on quantum particles.
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Also, in graph-based quantum gravity states, such as in Loop Quantum Gravity [33],

Causets [120] or Quantum Graphity [121], spacetimes which are not macrolocal are very

natural, and violation of macrolocality appears in the form of non-local links. A first

study of the physics of these non-local links was carried out in [15, 122].

We will extend eqn. (6.46) to one which allows the interaction with a static quantum

foam. Instead of a classical background state (a single graph), we will consider a state

that is a superposition of many graphs. This amounts to a quantum foam with a super-

position of Planck scale sized wormholes. In our setting, the intrinsic discreteness of the

graph sets the minimum scale. Assuming foliability of the graph, we can define a metric

distance as in [112]. We can then study the effect of the quantumness of the graph on the

dispersion relations. It is natural to construct graph states in which the largest contri-

bution comes from the graph with the Lorentz invariant dispersion relations. The states

with non-local links violate macrolocality and give corrections to Lorentz invariance. We

will construct states with a distribution of wormholes which is suppressed by their com-

binatorial length. In addition, the distribution depends on the density of wormholes. We

will then calculate the effect on the Lorentz dispersion relations in the continuum limit.

The result is, as expected, a non-local differential equation for the evolution of the particle

probability density.

It is reasonable to expect that a wormhole will violate local Lorentz invariance. A par-

ticle can hop through the wormhole and behave like a superluminal particle. As we will

see, the presence of all these shortcuts has an effect on the local speed of propagation of

probability density. Also, we will find that the probability density acquires a mass which
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depends on the density of wormholes. The overall dispersion relation is thus Lorentz

invariant and with a square-positive mass. However, this depends on the distribution of

wormholes and thus we will study two particular cases. Using the framework of Quan-

tum Graphity and the techniques developed in [112], we will calculate the emergent mass

and the constants appearing in the effective equation.

We will study the model for a particular class of graphs that have been conjectured

to be analogues of trapped surfaces. We are interested in the approximation k � Ehop,

which can be seen as the equivalent of ignoring the backreaction of the matter on the

geometry. As in [112], we will consider an Hamiltonian of the form

Ĥ = Ĥv + Ĥhop. (6.63)

In this case, the total number of particles on the graph is a conserved charge. Ĥv and

Ĥlinks are constants on fixed graphs with fixed number of particles. The Hamiltonian

is the ordinary Bose-Hubbard model on a fixed graph, but that graph can be unusual,

with sites of varying connectivity and with more than one edge connecting two sites.

Our aim will then be to study the non-local and quantum corrections to the effective

geometry which can be encoded in the graph, as shown in [112]. Even on a fixed lattice,

the Hubbard model is difficult to analyze, with few results in higher dimensions. It would

seem that our problem, propagation on a lattice with connectivity which varies from site

to site is also very difficult. Fortunately, it turns out that for our purposes it is sufficient

to restrict attention to lattices with certain symmetries and then to restrict to an effective
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1+1 dimensional model.

A non-local state distribution

In this section, we show the effect of having a quantum superposition of graph in (6.67)

on the equation (6.45). The effect of a quantum superposition of graphs. In order to do the

explicit calculation, we will modify the Bose-Hubbard interaction. Let us consider a one-

dimensional Bose-Hubbard of the form,

Ĥ =
∑
i

Ai,i−1(â†i âi + h.c.) (6.64)

and then consider its generalization, from Ai,j = δj,i−1 + δj,i+1, to Âi,j = N̂ij , with N̂ij =

b̂†ij b̂ij and b̂ij ,b̂
†
ij the ladder operators on the Hilbert space of the link ij. N̂ij is then the

number operator on the Hilbert space of the graph, as usually considered in Quantum

Graphity. This allows, instead of using fixed classical graphs, fixed quantum graphs, where

the state |ψgraph〉 is superposition of different graphs. The full quantum Hamiltonian for

the system is, as usual, on an Hilbert space of the form

|ψtotal〉 = Span{|ψgraph〉 ⊗ |ψbosons〉}. (6.65)

Using this, we want now to repeat the same calculation we performed in the previous

sections, i.e. compute:

∂2
t ψz(t) = −i T r{[Ĥ, [Ĥ, ρ̂(t)]]N̂ ′z}, (6.66)
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with ψn = 〈N̂ ′n〉, N̂ ′n number operator on the bosons defined on the node n, and ρ̂ the

density matrix on the total system. Let us assume that the graph is not dynamical. We

will also to use the Born approximation, that is,

ρ̂(t) ≈ ρ̂g ⊗ ρ̂b(t), (6.67)

with ρ̂g the density matrix of the graph and ρ̂b(t) the density matrix of the bosons. This

approximation allows us to consider a particle disentangled enough from the graph to be

“followed” using the equation (6.46). It is also a physical requirement, which accounts for

the existence of the particle on its own. In general, we expect that at long times the full

Hamiltonian thermalizes to a specific graph, depending on the parameter of the Hamilto-

nian which defines the metastable state. Later on, we will rescale the coupling constant of

the hopping Hamiltonian in order to obtain the continuum limit. Thus, one could think

that this rescaling affects the state of the graph at infinity. However, the hopping of the

bosons allows the graph to thermalize, as it has been shown in [111]. Rescaling this con-

stant, just changes the time it takes for the system to thermalize, but not the asymptotic

state of the graph. As a matter of fact, we do not know yet a Hamiltonian which gives a

specific graph state asymptotically. However, the results of [123] in two dimensions and

those of [80], support the conjecture that, in general, such a Hamiltonian exists.

Based on these considerations, we conjecture the following graph state, |ψgraph〉 =

|ψcl〉+ |ψnl〉with 〈ψcl|ψnl〉 = 0. |ψnl〉 is a correction to the classical graph state |ψcl〉 consid-

ered in [112] that we will discuss (and construct) in the next section. For the time being,
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let us consider the effect of this correction on eqn. (6.45). We have ρ̂g = |ψgraph〉〈ψgraph|.

Thus:

ρ̂g = |ψcl〉〈ψcl|+ |ψnl〉〈ψnl|+ (|ψnl〉〈ψcl|+ |ψcl〉〈ψnl|). (6.68)

Let us now evaluate these traces. A straightforward calculation shows that,

−
E2
hop

~2
∂2
t ψn = Tr {(Ĥ2ρ̂+ ρ̂Ĥ2 − 2Ĥρ̂Ĥ)N̂z}

= 2
∑
ij,mn

[
Tr{ÂijÂmnρ̂g}Tr{â†i âj â†mânρ̂bN̂z}

− Tr{Âij ρ̂gÂmn}Tr{â†i âj ρ̂bâ†mânN̂z}
]
. (6.69)

We now substitute the equation for ρ̂g, and obtain:

−
E2
hop

~2
∂2
t ψn = 4̃ψn(t) + Cn(t), (6.70)

with 4̃ψn(t) is the discrete second derivative and Cn(t) is:

Cn(t) = 2
∑
ij,mn

[
PijmnTr{â†i âj â†mânρ̂bN̂z} −QijQmnTr{â†i âj ρ̂bâ†mânN̂z}

]
, (6.71)

with:

Pijmn = 〈ψnl|ÂijÂmn|ψnl〉, (6.72)

Qij = 〈ψnl|Âij|ψnl〉, (6.73)
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Figure 6.12: The intuitive picture of non-local links inserted in the graph.

where we used the orthogonality condition 〈ψnl|ψcl〉 = 0.

Our task now is to evaluate these two quantities on different classes of interesting

states.

The choice of the quantum state for the graph

Let us now introduce the states on which we will evaluate the quantities defined in the

previous section, Pijmn and Qij . Motivated by the fact that we can reduce using the trans-

lationally symmetric graphs to one line, we will restrict our attention to a one-dimensional

lattices.

Let us consider first a metric on the classical graph, with d(i, j) the distance between

the nodes of the classical graph |ψcl〉, with all the ordinary properties of distances. On

a one-dimensional line this distance could be, for instance, given by |i − j|. Let us then

construct states with non-local links on top. We want to penalize states with too long

non-local links. We then introduce a factor ρ(i, j), which depends on a distance d(i, j)

evaluated on the base graph, assuming that d(i, j) ≥ 0, and a parameter l describing how

non-local the links are w.r.t. the length of the graph. Then we define the operator:

T̂l =
∑
i<j

ρ(i, j) â†ij, (6.74)

176



with

∑
i<j

ρ(i, j)2 = 1, (6.75)

which ensures that ρ(i, j)2 can be interpreted as a classical probability distribution. When

applied to |ψcl〉 this operator generates a superposition of all the possible non-local links

which can be created on |ψcl〉, with a factor that with the distance of the links,

|ψ1
nl〉 = T̂l|ψcl〉, (6.76)

and we can imagine to apply this operator several times to create more non-local links,

|ψRnl〉 =
T̂Rl
R!
|ψcl〉. (6.77)

The meaning to give to l is thus that of a cut-off in the length of these non-local links. Note

that we can bias the number of links on which we want to peak the quantum non-local

state the same way,

T̂Kl =
∞∑
s=1

Ks

s!
T̂ sl = eKT̂l − 1. (6.78)

We see then that we can write the quantum state for the graph in the convenient form:

|ψnl〉 =
[
1 + eKT̂l

]
|ψcl〉. (6.79)
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This state depends explicitly on two parameters, l and K, and on the classical graph

together with its distance. On this state we now want to evaluate:

Pijmn = 〈ψnl|ÂijÂmn|ψnl〉 = 〈ψcl|T̂K†l ÂijÂmnT̂
K
l |ψcl〉, (6.80)

and

Qij = 〈ψnl|Âij|ψnl〉 = 〈ψcl|T̂K†l ÂijT̂
K
l |ψcl〉. (6.81)

Let us then consider first the average. We note that, since Âij acts like a projector, and

states with different powers of the T̂l operators are orthogonal, we can write:

Qij =
∞∑
s=1

K2s

s!2
〈ψcl|T †sl ÂijT sl |ψcl〉. (6.82)

To clarify the idea, let us consider the case in which we add just a link. In this case,

the state is the sum over all possible links which can be created, with a factor ρ2(i, j).This

link can be created in one way only, and so Âij projects on the only state which can be

non-zero. A very straightforward calculation shows that

〈ψcl|T †1l ÂijT 1
l |ψcl〉 = 2 ρ2(i, j). (6.83)
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For the higher order term, we instead have:

〈ψcl|T †sl ÂijT sl |ψcl〉 = ρ2(i, j)
∑

i1,j1,··· ,is−1,js−1

s−1∏
l=1

ρ2(il, jl). (6.84)

It is easy to see that

∑
i1,j1,··· ,is−1,js−1

s∏
l=1

ρ2(il, jl) ≈ 2s s (l L)s, (6.85)

due to the fact that the integration is over the line, while the distribution has an extension

of circa l combinatorial points. The factor 2s comes from the fact that there are 2 points we

are summing over and the s factor from the s sums appearing in T sl . Thus, we can write:

〈ψcl|T †sl ÂijT sl |ψcl〉 = cs ρ
2(i, j) 2s s (L l)s−1. (6.86)

In principle, given a distribution, we can calculate this factor from eq. (6.85). We will

calculate these factors later for two particular distributions. Plugging eqn. (6.86) into Qij ,

we obtain

Qij =
∞∑
s=1

K2s

s!2
2s s (L l)s−1ρ2(i, j)cs = ρ2(i, j)R(K, l L), (6.87)

with:

R(K, l L) =
∞∑
s=1

K2s

s!2
cs 2s s (l L)s−1, (6.88)
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and, therefore,

QijQmn = ρ2(i, j)ρ2(m,n)R(K, l L)2. (6.89)

We can, in fact, do an analogous calculation for Pijmn and find that:

Pijmn = ρ2(i, j)ρ2(m,n)L(K, l L), (6.90)

with:

L(K, l L) =
∞∑
s=1

K2s

s!2
cs(l L)s−2 2s s. (6.91)

Going back to the original problem, we find that the correction to the discrete Lorentz

equation is:

Cz = 2
∑
ij,mn

ρ2(i, j)ρ2(m,n)
[
L(K, l L)Tr{â†i âj â†mânρ̂bN̂z}−R(K, l L)2Tr{â†i âj ρ̂bâ†mânN̂z}

]
.

(6.92)

If we define:

S(K, l L) = (l L) R(K, l L) = (l L)2 L(K, l L), (6.93)
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Figure 6.13: A plot of the function S(x) which appears in eq. (6.94).

with S(K, l L) =
∑∞

s=1
K2s

s!2
cs (l L)s 2s s, then we obtain:

Cz(t) = 2
∑
ij,mn

ρ2(i, j)ρ2(m,n)S(K, l L)
[
Tr{â†i âj â†mânρ̂bN̂z}−S(K, l L)Tr{â†i âj ρ̂bâ†mânN̂z}

]
.

(6.94)

We see that the function S(K, l L) depends, as a matter of fact, on ξ = K
√
l L, S(K, l L) ≡

S(ξ) =
∑∞

s=1 cs [ ξ
s

s!
]2 2s s. A plot of the function S(K, lL) can be found in Fig. 6.13. The

traces can be evaluated, as done in ([112]), and the result is:

Cz(t) = 2
1

(l L)2

∑
j

ρ4(z, j)S(K, l L)(ψz − S(K, l L)ψj). (6.95)

Some comments are now in order. First of all, note that the equation has the shape of a

second derivative. To understand this, we can look at a term of the form
∑
|k|≥2 J(k)(ψz −
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ψz+k). This term can be written as:

∑
k

J(k) · · · = −J(2)
(
ψz+2− 2ψz +ψz−2

)
− J(3)

(
ψz+3− 2ψz +ψz−3

)
− J(4) · · · . (6.96)

This is a sum of discrete second derivatives with a non-local mass,

J(k)
(
ψz+k−2ψz +ψz−k

)
= −J(k)

(
ψz+k−1 +ψz−k+1

)
−J(k)

k−1∑
i=2

(
ψz+i+1−2ψz+i+ψz+i−1

)
,

(6.97)

so we expect, in the end, to obtain a mass term out of this equation and, when we will

have rearranged all the terms, we will.

Note that, for the case cs = 1, S(ξ) = 1 for ξ = 0.903, and so K = 0.903√
l L

. We then see

that K2 plays the role of the density of non-local links per units of l L.

To end this section, we have to calculate the norm of this state. This can be written as:

|〈ψnl|ψnl〉| =
√

1 + 〈ψcl|eKT̂
†
l eKT̂l |ψcl〉2 + 2Re{〈ψcl|eKT̂l |ψcl〉}, (6.98)

which reads,

|〈ψnl|ψnl〉| =
√

1 +
(
〈ψcl|eKT̂

†
l eKT̂l |ψcl〉2 − 1

)
} (6.99)
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and substituting for the T operators, we finally find

N = |〈ψnl|ψnl〉| =
√

1 +
(∑
s=1

K2s

(s!)2

∑
i<j

ρ(i, j)2
)2

=

√
1 +

(∑
s=1

K2s

(s!)2
2ss
)2

=
√

1 + S2(K, l L).

(6.100)

We can thus normalize the graph state by dividing by a factor of N.

The modified dispersion relation due to disordered locality

The general case. We will now discuss the continuum limit. As we have seen, the contin-

uum limit is obtained by rescaling Ehop → ẼhopL and then sending L → ∞. Please note

that Ehop appears whenever we hop with a particle, so in these calculations it appears

everywhere but in the ∂2
t term. In order to perform the continuum limit, first we have to

make sense of the quantity (ψz − S(K, l L)ψj) at least for the flat case, which we know

correspond to Lorentz from [112]. We can add and subtract,

(S(K, l L)− 1)ψz + (S(K, l L)ψz − S(K, l L)ψj) =

= (S(K, l L)− 1)ψz + S(K, l L)(ψz − ψz−1 + ψz−1 + ψz−2 − · · · − ψj). (6.101)

In the continuum limit this becomes (S(K, l L) − 1)ψ(z, t) + S(K, l L)
∫ z
j
∂ξψ(ξ, t)dξ, and

thus Cz(t) reads:

Cz(t) =

∫
L

dx ρ4(z, x)[
(S(K, l L)− 1)S(K, l L)

(l L)2
ψ(z, t)+

S2(K, l L)

(l L)2

∫ z

x

∂ξψ(ξ, t)dξ], (6.102)
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which is:

Cz(t) = ψ(z, t)

∫
L

dx ρ4(z, x)
(S(K, l L)− 1)S(K, l L)

(l L)2
+
S2(K, l L)

(l L)2

∫
L

ρ4(z, x)

∫ z

x

∂ξψ(ξ, t) dξ dx.

(6.103)

This can be written as:

Cz(t) = ψ(z, t)F (K, l L) +O(K, l L)

∫
L

ρ4(z, x)

∫ z

x

∂ξψ(ξ, t) dξ dx, (6.104)

with F (K, l L) =
∫
L
dxρ4(z, x) (S(K,l L)−1)S(K,l L)

(l L)2
,O(K, l L) = S2(K,l L)

(l L)2
. Please note here that

these steps have been performed naively, though we have an explicit dependence on L in

S. It is important to point out that the only way to keep the function S(l L,K) finite is to

rescale the quantity K2l ≈ K̃2 l̃
L

. To keep the discussion simple, let us discuss this point at

the end of the section. L is the combinatorial length of the 1-d lattice we are considering,

and over which ψ(x, t) is defined. Thus the equation of motion for the flat case is given,

in the continuum, by:

[∂2
t − c2

(
1 +S2(K, l L)

)
∂2
z −F (K, l L)]ψ(z, t) = O(K, l L)

∫
L

ρ4(z, x)

∫ z

x

∂ξψ(ξ, t) dξ dx,

(6.105)

which is an integro-differential equation for the field integrated over the line, which

shows the strong non-local character of the equation.

We note that there is a contribution to the speed of propagation of the signal, due to the
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fact that particle can hop on many more graphs than the single classical one. This factor

contributes with a c2S2(K, l L) added to the effective speed c2. Let us stress that this con-

tribution is merely due to the fact that there are many more graphs in the superposition,

and not due to the fact that the particle can hop further: this is kept track of in the Cz(t)

term of the equation. Also, we see that F (l,K) becomes a mass, due to non-locality, while

on the r.h.s. there a new term appears. We can further reduce the equation by evaluating

the integrals. It is clear that in order to have a finite result, which is physically expected,

we have to rescale at this point only l ≈ l̃/L, keeping K2 independent from L. Said this,

we see that the distribution itself, when is well chosen, becomes a δ function and therefore

the models becomes local again.

Let us now calculate the terms at the leading order in 1/L, since that is what we are

interested in. The discrete differential equation becomes:

[∂2
t − c2

(
1 + S2(K, l L)

)
∂̃2
z − F̃ (K, l L)]ψz(t) = −O(K, l L)

L∑
x=0

ρ4(z, x)ψz(t), (6.106)

where ∂̃2
z is the discrete spatial second derivative. Using now (6.50), we see that the dis-

persion relation for the field becomes:

ωkc
(
1 + S2(K, l L)

)
=
√

2

√
1− cos

(2π

L
k
)

+ F̃ (K, l L) + ρ̃4(k)O(K, l L) (6.107)

Please note that with this rescaling of K, we have that S(K, l L) can be expanded in even
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powers of 1/L:

S(K, l L) = 2
K̃2 l L

L2
+ 8

K̃2(l L)2

L4
+ · · · . (6.108)

Thus, we see that the superluminal effect, which is, the factor 1 +S2(K, l L), becomes one

in the limit L→∞; also, in the same limit, only the part quadratic in K survives. At this

point the equation would become, in the continuum:

[∂2
t − c2∂2

z − F̃ (K, l L)]ψ(z, t) = −O(K, l L)

∫
L

ρ4(z, x)ψ(z, t) dz (6.109)

with F̃ (k, l L) = F (K, l L) + O(K, l L)
∫
L
ρ4(z, x) dx. Note that, while F̃ might seem to be

dependent on the point z, being F̃ dependent on z − x and integrated over x, it is indeed

independent from it. In particular, if we define l L ≡ ξ, in the limit L → ∞ and with

the rescaling of K and l, S(K, l L) → 2K̃2ξ. We see now that the only way to obtain the

continuum dispersion relation by rescaling c→ c̃/L, as done for the single-graph state, is

to rescale also K, with K → K̃/L.

Just as an exercise, we can insert a trivial spatially-constant solution, which then be-

comes of the form ∂2
t ψ(t) = R(K, l L)ψ(t). whereR(K, l L) = F (K, l L)+2O(K, l L)

∫
L
ρ4(z, x) dx.

Note that this quantity is always positive, so constant solutions are stable. Let us try to

find a generic solution, instead. Let’s do it for the equation:

[∂2
t − c̃2∂2

x + c̃2q]ψ(x, t) = −c̃2

∫
L

σ(z, x)ψ(y, t) dy. (6.110)
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Since the equation is linear in the field ψ, we can solve it by means of a Fourier transform.

We then look at the dispersion relation for the function ψ(x, t), with q and P generic

functions. We can do it by Fourier transform. In this case, the integral on the right, being

a convolution, becomes just the product of the Fourier transform of the single functions.

Thus we have:

−ω2 + k2c̃2 + c̃2q = −c̃2σ(k), (6.111)

and we have that:

ω = ±c
√
k̃2 + q + σ̃(k). (6.112)

Now, of course σ̃(k) depends on the distribution of non-local links that we inserted in the

wavefunction of the graph.

Two specific distributions. Let us consider two specific cases:

• ρ1(x− y) = π
1
4

√
l e−

(x−y)2

2l2 ;

• ρ2(x− y) =
√

2 l e−
|x−y|

2l .

In these cases we find, using standard tables of Fourier transforms:

• σ̃1(k) = e−
k2

a ;

• σ̃2(k) = a
a2+k2

.
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and thus, keeping track of all the factors, we obtain:

ω1 = ±1

c

√
k2

1 + S2(K, l L)
+ F̃1(K, l L) +O(K, l L)e−

k2l2

8 , (6.113)

and

ω2 = ±1

c

√
k2

1 + S2(K, l L)
+ F̃2(K, l L) +

2O(K, l L)

π

l2

l2 + k2
, (6.114)

with F̃1(K, l L) =
√

2 O2(K, l L) and F̃2(K, l L) = O2(K, l L), which can be calculated by

evaluating
∫
L
ρ4
i (x− y)dx. We have that S2(K, l L) = 4K̃4ξ2/L4 and thus can be neglected

with respect to 1. Also, since the c contribute with a factor of L2 within the square root,

also S2 can be neglected, and it contributes only the mass term in the L. Now we note a

nice property: both the two distributions go to 0 for k → ∞, that is, at high energy the

dispersion relations become Lorentz again. We see then that the total effect the one of

having an effective scale-dependent mass, which runs from one mass to another one, in

both cases:

m1(k) =
1

l L

√
S2(K, l L) + S(K, l L)e−

k2l2

8 , (6.115)

m2(k) =
1

l L

√
S2(K, l L) + S(K, l L)

2

π

l2

l2 + k2
. (6.116)
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The masses which are intertwined are given by

m1(0) =
1

l L

√
S2(K, l L) + S(K, l L), m1(∞) =

S(K, l L)

l L
, (6.117)

m2(0) =
1

l L

√
S2(K, l L) +

2

π
S(K, l L), m2(∞) =

S(K, l L)

l L
. (6.118)

This property, of intertwining two different masses between k = 0 and k = ∞ is shared

by any function which is at least C1. It is remarkable, instead, that the mass at k =∞ does

not depend on the distribution we inserted at hand. In fact, any Cr distribution will lead

to a Fourier transformed distribution which goes to zero at k = ∞ as 1/kr and thus tend

to a finite value for the mass. Note that, if we send l → 0, as required to have S finite,

the dependence on the scale seems to disappear, leaving a Lorentz dispersion relation

with a mass which depends on the function S. However, we have to remember that,

in fact these Fourier distributions come from the discrete dispersion relation. There, the

distributions depend on 2πk/L. If we define k̃L = k, then we have that the distributions

cancel out the dependence on L, leaving exactly (6.117) and (6.118) but dependent on this

new momentum k̃. Still, this mass depends on the distribution we have chosen through

σ̃i(k̃ = 0) and so it has a valuable effect. We plot the running of (l L)mi(k̃) as a function of

x = K2 l L, for the case L = 1 in Fig. (6.14) and L =∞ in Fig. (6.15).

We would like to point out that the appearance of a mass which is square-positive is

rather surprising. The physical reason is that, before starting the calculation, we would
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Figure 6.14: The running of mi(k̃) for x = 0.1, l = 1 and L = 1.

Figure 6.15: The running of mi(k̃) for x = 0.1, l = 1 and L =∞.
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have expected that the presence of these non-local links would have shown a superlumi-

nal effect due to the non-local links themselves. However, the effective speed of prop-

agation is higher because of the superposition of the graphs and not the non-local links.

Indeed, the non-local links contributed only in the mass, thus the term Cz(t) additional to

the differential equation we obtained. Besides, this mass is square-positive, thus it is an

effective mass and not a tachyonic one, which we would have expected from the presence

of wormholes on physical grounds. The fact that it is square positive comes merely from

the fact that the equation comes from a quantum mechanical average, and thus the terms

appear squared.

6.5.2 Emergence of the mass from multi-particles interactions

In this section, we generalize the results of Section 6.3 to the case of multiple particles

hopping on the graph. As we will see, the interaction of the particles will allow the field

to acquire a mass.

Free motion. Let us first consider K distinguishable particles in states which are tensor

products of delocalized states. This will allow us to track every single particle using a

number operator.

Since the particles are distinguishable, we cannot use the standard second quantiza-

tion formalism. Instead, a quantum state of the system must be described by

| ΦK〉 =
Ñ∑

m1,...,mK=1

cm1,...,mK |m1〉 ⊗ · · · ⊗ |mK〉 , (6.119)
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where | mi〉 is the state of the i-th particle at the site mi, and Ñ is the total number of sites

of the lattice. Note that the dimension of the Hilbert space is ÑK .

Let us also introduce a number operators N̂i, defined as the tensor product of the

number operator on the site of the particle i with identity operators on all sites except i

so that the total number operator is N̂ =
∑K

i=1 N̂i. This number operator counts the total

number of particles on the graph. To see how to go from the 1-particle case to this number

operator, let us define N̂k
i as the number operator on the vertex k for the particle i. In this

case we can write N̂ =
∑

i,k N̂
k
i , and define a number operator for a region A of the graph

as N̂A =
∑

k∈A,i N̂
k
i . This consistently measures the number of particles in a region A of

the graph.

It is easiest to start with the 2-particle case and then extend the analysis to K particles.

The main complication compared to the 1-particle case is that we now have a density

matrix with 4 indices. In the non-diagonal case, we have

ρ =
∑

k1,k2,k1′,k2′

Uk1,k2,k1′,k2′(t)|k1〉〈k2| ⊗ |k′1〉〈k′2|. (6.120)

Fortunately, we also have Ĥ = Ĥ1 + Ĥ2, with [Ĥ1, Ĥ2] = 0. A straightforward calculation

shows that we can use the result from the 1-particle case:

[
Ĥ, [Ĥ, ρ]

]
=
[
Ĥ1, [Ĥ1, ρ]

]
+
[
Ĥ2, [Ĥ2, ρ]

]
+ R̂, (6.121)
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where the mixed term is

R̂ = 2
(
Ĥ1Ĥ2ρ+ ρĤ1Ĥ2 − Ĥ1ρĤ2 − Ĥ2ρĤ1

)
. (6.122)

We follow the same steps as in the 1-particle case and evaluate the second derivative of

the expectation value of the two number operators to find

∂2
t α

1
k + ∂2

t α
2
k =− 1

~2

(
Tr
[
[Ĥ1, [Ĥ1, ρ]]N̂1

k

]
+ Tr

[
[Ĥ2, [Ĥ2, ρ]]N̂2

k

]
+ Tr

[
R̂ρ(N̂1

k + N̂2
k )
] )
. (6.123)

It is easy to understand what happens when ρ = ρ1 ⊗ ρ2. In this case we have

Uk1,k2,k1′,k2′(t) = Uk1,k2(t)Ũk1′,k2′(t), (6.124)

and the first and second terms on the r.h.s. of Eq. (6.123) reduce to discrete second-order

derivatives, as in the 1-particle case. We therefore only have to deal with the Tr
[
R̂ρ(N̂1

k +

N̂2
k )
]

term.

Another way to see this is by noticing that N̂j acts as a projector on the one-particle

states. We have Tr[Ĥ1ρĤ2] = Tr[Ĥ2Ĥ1ρ], using the properties of the trace. Term by term,

we can show that, for each Ĥi and Ĥj , the mixed term vanishes for any number of par-

ticles. Defining R̂ij = ĤiĤjρ + ρĤiĤj − ĤiρĤj − ĤjρĤi, we find that the many-particle
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equation becomes,

∑
i

∂2
t α

i
k(t) =

∑
i

∇αik + 2Tr

[[∑
<ij>

R̂ij

]∑
i

N̂ i
k

]
, (6.125)

where∇αik is the second order discrete derivative ∂x(c∂x(·)).

We can now use the same argument as in the 2-particle case to show that all the terms

R̂ij vanish independently. We define αk := 1
2

∑
i α

i
k to be the probability of finding a par-

ticle at k. This quantity satisfies the same equation as the one-particle sector probability:

∑
i

∂2
t α

i
k(t) =

∑
i

∇αik. (6.126)

That is, particles are independent from each other and each follows its own equation

(6.126).

Interaction. Including interaction, in general, the Hamiltonian of the system can be

written as

Ĥ =
K∑
i=1

Ĥi +
∑
i<j

Ĥij , (6.127)

where Ĥi = 1̂⊗ · · · 1̂︸ ︷︷ ︸
i−1 times

⊗Ĥ ⊗ 1̂⊗ · · · ⊗ 1̂︸ ︷︷ ︸
K−i−1 times

. For what follows, again we first check the case

of two particles, and calculate what happens to Eq. (6.126) when we add an interaction

term. The most general interaction Hamiltonian is of the form Ĥint =
∑

ijkl Ũijkl â
1†
i â

1
j ⊗
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â2†
k â

2
l . We make a simplifying assumption which is natural for delocalized states, and

require that the potential respects their symmetries. The simplest such local potential is

of the form

Ĥint =
∑
k

Ik|k〉〈k| ⊗ |k〉〈k|. (6.128)

If we add this Hamiltonian to the free one, additional terms appear on the rhs in Eq. (6.126).

These can be traced back to the additional commutators in the expansion of the full

Hamiltonian,

Ĉ :=
[
Ĥ1, [Ĥint, ρ]

]
+
[
Ĥint, [Ĥ1, ρ]

]
+ (1→ 2) +

[
Ĥint, [Ĥint, ρ]

]
, (6.129)

that come from expanding the full hamiltonian ĤT = Ĥ1 + Ĥ2 + Ĥint in the double com-

mutators and keeping only the terms involving free Hamiltonians. Since we want to

distinguish the single particles in the continuum limit, we consider the approximation

‖Ĥint‖ � ‖Ĥ1/2‖, with ‖T̂‖ = supv
‖T̂ v‖
|v| . This gives a product of the density matrices of

the single particles.

A lengthy but straightforward calculation shows that, when we restrict to diagonal

density matrices in the subspace of the single particles, we find:

Tr[ĈN̂1
k ] = Tr[ĈN̂2

k ] = 0. (6.130)
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This means that, surprisingly, in the continuum limit, the wave equations for the fields

are decoupled if we use a local potential of the form (6.128).

The next generalization is a potential which is slightly non-local. The simplest such

potential is given by

Ĥint =
∑
k

Ik |k + 1〉〈k + 1| ⊗ |k〉〈k| (6.131)

for the case of 2-particles. In this case, an even longer but still straightforward evaluation

of Tr[ĈN1
k ] or Tr[ĈN2

k ] shows that these traces are nonzero. They take the form

Tr[ĈN1
k ] = fk,kUk,k(t)Ũk+1,k+1(t)(Ik+1 − Ik), (6.132)

and

Tr[ĈN2
k ] = fk,kUk+1,k+1(t)Ũk,k(t)(Ik+1 − Ik). (6.133)

That is, in the continuum limit, the equations for the two probability fields are coupled.

If we define αk(t) := Uk,k(t) and βk(t) := Ũk,k the probability fields obey

∂2
t αk −∇αk = αkβk+1fk,k(Ik+1 − Ik) (6.134)

∂2
t βk −∇βk = βkαk+1fk,k(Ik+1 − Ik) (6.135)

If we define µ(x) to be the continuum equivalent of fk,k and I(x) the continuum equivalent
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of Ik, we have

2α(x, t) = α(x, t)β(x, t)µ(x)I ′(x) (6.136)

2β(x, t) = β(x, t)α(x, t)µ(x)I ′(x). (6.137)

These equations can be straightforwardly generalized to the case of more than two parti-

cles if the potential is the sum of a 2-body interaction for each pair of particles of the type∑
〈ij〉 Ĥ

ij
int, with

Ĥ ij
int =

∑
k

1̂⊗ · · · 1̂⊗ |k〉〈k|︸ ︷︷ ︸
i−th

⊗1̂⊗ · · · ⊗ 1̂⊗ |k − 1〉〈k − 1|︸ ︷︷ ︸
j−th

⊗1̂ · · · ⊗ 1̂ I ijk . (6.138)

The sum 〈ij〉 is over all pairs of particles. If αi(x, t) is the probability field for particle i,

we obtain, for each particle, the following coupled differential equations:

2αi = αi(
∑
j 6=i

∂I ijαj)µ. (6.139)

We can now define m2
i = (

∑
j 6=i ∂I

ijαj)µ. The EOM becomes,

2αi −m2
i (x, t)α

i = 0 (6.140)

The effective mass m2
i is determined by the interaction with the other particles. The study

of the interaction is important to understand, but beyond of the scope of the present

discussion.
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CONCLUSIONS

In this thesis we described a journey through graphs and quantum mechanics, motivated

by the necessity of obtaining a pre-geometric model of emergent gravity. Along these

lines, in previous works [80, 54], quantum graphity was proposed and analyzed: it is a

background independent spin system for emergent locality, geometry and matter. We

discussed how such simple models could say something about general relativity and

cosmology. After having described the generic troublesome properties of classical and

quantum general relativity, we introduced the first model of Quantum Graphity, aimed

to understand alternatives to inflation, Variable Speed of Light theories, as a Quantum

Mechanical effect of a time-varying graph.

Simplifications along the route allowed a treatment of an otherwise intractable prob-

lem. We collected many results, all of them useful for a better understanding of the phe-

nomenology of the models.

In the first Quantum Graphity model, we introduced a technique to map the Quantum

Graphity Hamiltonian on the line graph of a complete graph. This procedure required the

introduction of the Kirchhoff matrix of a graph and the n-string matrices related to these.

This mapping was general and not specific to Quantum Graphity. Using this mapping in
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a weak coupling approximation of the first model, the mean field theory approximation

and the low temperature expansion, we studied the properties of the model near zero

temperature, not before having identified the average degree as a order parameter. We

found that the model is dual to an Ising model with external nonzero magnetic field if

we neglected the interaction terms due to loops. In particular, we showed that the aver-

age degree is naturally a good order parameter for the mean field theory approximation

and we found, implicitly, its average distribution using the mapped Hamiltonian and the

mean field theory approximation for the 3-loop term. We then studied the susceptibility

function and showed how the duality with the Ising model can help to interpret the re-

sults. We have shown that the model possesses a phase transition and at T = 0 the system

goes to the ground state as expected. While this result was expected on general grounds,

the mapping we used simplified the problem and allowed a quantitative analysis. In par-

ticular, the transition point was not known, nor the corrections to the mean degree due to

the loop terms. More into the specific, what emerged from the study of the average distri-

bution for the degree is that, if the vertex degree term dominates (gV � gL), the loop term

corrections to the average degree of the ground state are suppressed at T = 0. We found

the dependence on the coupling constants explicitly and this result is confirmed by the

study of the susceptibility. Thanks to the mean field theory approximation, we found the

contribution of all loops to the susceptibility and showed that the susceptibility function

tends to the Ising one when T approaches zero. We then applied this procedure to the

degenerate case, and showed that the degeneracy does not change the average degree at

low temperature, but only the speed with which this ground state is reached. As a final
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remark, we stress that the vertex degree is an important quantity in the model. In fact,

as shown in [54] using the Lieb-Robinson bound, the speed with which information can

propagate on graphs is bounded by a degree-dependent quantity.

As the temperature drops, the speed of the emergent light, hobbyhorse of the Quan-

tum Graphity model, must drop with the degree. This gives a profile of the speed of

propagation of signals when the temperature is slowly decreased in the model, and thus

as a function of time. Of course, this can be considered as a theory with Variable Speed of

Light.

The second model we introduced, was a modification of the first one. Motivated by

the problematic appearance of an external temperature, the quantum states of this new

system were dynamical graphs whose connectivity represents the locality of space. The

Hamiltonian of [80] is not unitary: the universe starts at a high energy configuration (non-

local) and evolves to a low energy one (local). This has clear limitations when applied to a

cosmological context. The second model was originally intended as an energy-conserving

version of [80], in which graph edges can be deleted, matter created and viceversa. The

Hamiltonian we was is essentially an extension of the Hubbard model to a dynamical

lattice. In this system, the basic building blocks of the theory are not events, but quantum

physical systems Si, represented by a finite-dimensional Hilbert space Hi and a Hamil-

tonian Hi. That is, instead of an event, we have the space of all possible states of Si

and the dynamical rules for the time evolution of these. The aim is to study the rela-

tionships among the Si and find geometry as the emerging structure imposed by these

relationships, independently of their state. In fact, what we have can be considered as a
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unification of matter and geometry to matter only. Certain configurations (bound states)

of matter play the role of spatial adjacency in the dynamical sense that they will deter-

mine whether interaction of other particles is allowed or not. In that sense, geometry is

not fundamental but rather a convenient way to simplify the fundamental evolution of

matter. From the condensed matter point of view, we have presented a Hubbard model

in which the particles hop on a graph whose shape is determined by the motion of the

particles and it is itself a quantum variable.

In order to get an intuition on the behavior of the system, we simulated the quantum

system for a complete graph with 4 vertices and hard core bosons and we analyzed the

entanglement dynamics of the system, including the one between the particle and edge

degrees of freedom. We argued that for the weakly interacting system, entanglement and

loss of unitarity for the reduced system can be seen in presence of very high curvature.

Moreover, the eigenstate thermalization of the model is studied under two different sets

of parameters. Thermalization occurs when potential energy dominates over kinetic en-

ergy.

The model with bosons has some features of other models studied in a diversity of

contexts and with different purposes. The first central aspect is a quantum dynamics in-

volving a set of graphs. Quantum evolution on graphs is a subject of study related to spin

systems, as a generalization of spin chains (see the review by Bose [24]), and quantum

walks on graphs, where a particle undergoes a Schrödinger dynamics hopping between

the vertices (see the review by Kempe [28]) where, at each time step, a particle is in a su-

perposition of different vertices. Of course, the main difference with respect to our model
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is in the fact that in our model the graph is evolving in time as part of the system’s evo-

lution. Focusing on another area, it may be interesting to highlight a parallel with the

work of Gudder [27], who studied discrete-space time building on ideas of Bohm [23].

In the model described by Gudder, the graph is interpreted as a discrete phase-space in

which the vertices represent discrete positions which a particle can occupy, and the edges

represent discrete directions that a particle can propagate. This setting was primarily

introduced to describe the internal dynamics of elementary particles. From this perspec-

tive, each particle is associated to a graph: vertices represent quark-like constituents of a

particle and edges represent interaction paths for gluons which are emitted and absorbed

by the vertices. Another aspect of this model is that we have many particles evolving at

the same time. In the mathematical literature there is a growing number of examples of

random walks with multiple particles/agents [25, 22, 26].

In a unitary system for cosmological evolution, the interesting question to ask is whether

the system has long-lived metastable states. We studied this question rigorously, using

analysis in terms of Markov chains, and also gave an intuitive argument, in both cases

finding that dynamical equilibrium is reached when, starting from zero initial particles,

half the initial number of edges are destroyed.

An important issue to emphasize is that these models assumes the existence of a no-

tion of time and of time evolution as given by a Hamiltonian, as opposed to the con-

strained evolution of canonical pure gravity. It is a general question for all condensed

matter approaches to quantum gravity whether such evolution is consistent with the dif-

feomorphism invariance of general relativity. While it is not possible to settle this question
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without first knowing whether the condensed matter microscopic system has a low en-

ergy phase which is general relativity, we can make a few comments, as well as point the

reader to more extensive discussion of this issue elsewhere [42, 32]. In general, there are

two possible notions of time: the time related to the g00 component of the metric describ-

ing the geometry at low energy and the time parameter in the fundamental microscopic

Hamiltonian. Let us call the first geometric time and the second fundamental time. In a ge-

ometrogenesis context, it is clear that the geometric time will only appear at low energy,

when geometry appears. The problem of the emergence of geometric time is the same as

the problem of the emergence of space, of geometry. The constrained evolution of gen-

eral relativity, often called “time does not exist”, refers to geometric time. By making the

geometry not fundamental, we are able to make a distinction between the geometric and

the fundamental time, which opens up the possibility that, while the geometric time is a

symmetry, the fundamental time is real. It is important to note that the relation between

geometric and fundamental time is non-trivial and that the existence of a fundamental

time does not necessarily imply a preferred geometric time. We also note that, in the

presence of matter in general relativity, a proper time can be identified. The particular

system studied here has matter and in that sense it is perhaps more natural that it also

has a straightforward notion of time.

We expect that several features of this model has still some potentials. For instance,

there is nothing in the Hamiltonian to encourage the system to settle in metastable states

that are regular graphs. Emergence of geometric symmetries such as Friedman-Robertson-

Walker symmetries was not a goal at this stage but can be incorporated in future work by

203



additional terms in the Hamiltonian as in [80], or possibly also by introducing causality

restrictions as in [1]. Finally, we believe that this model is interesting from the condensed

matter point of view. Condensed matter systems are always defined on a given lattice. In

this model, the lattice itself is a quantum variable.

Using still the second model with bosons, but neglecting the dynamics of the graph,

we discussed in the specific what is the role that the connectivity possesses and connected

with the Lieb-Robinson bounds. As it is well known, Quantum mechanics drastically de-

viates from the ordinary intuition because of its nonlocality, or action-at-distance. We do,

however, know that in condensed matter systems we observe excitations with relativis-

tic dispersion relations. Why is this? An analogue of this problem is sound in classical

systems. Newtonian mechanics is nonlocal but Newton himself evaluated the speed of

propagation of sound in gases.

It is now fairly well-understood that theories with nonlocal action but local interac-

tions have excitations that are locally covariant in certain limits. The amount of nonlo-

cality can be bounded using the Lieb-Robinson bounds [70], as we discussed in the first

model. In the third part of the thesis we explored this notion of locality in the Hubbard

model.

We found that the vertex degree plays a central role as it is related to the local speed

of propagation of the classical probability distribution of matter on the lattice. Our anal-

ysis is relevant for the idea that relativity, general and special, may be emergent from

an underlying theory which is local and quantum. Going further than the analysis of the

Lieb-Robinson bounds in [54], we looked at emergence of an effective curved geometry in
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the Hubbard model. The quantum Hamiltonian evolution of the one-particle density for

a particular set of states leads to an equation of motion that approximates the wave equa-

tion for a scalar particle in curved space. The same equation appears in optical systems

with a varying refraction index and is thus connected with Analogue Models.

It is widely known that this equation can be cast in the domain of general relativity by

noticing that it is the same as evolution in Gordon’s space-time. This connection cannot

be made in 1+1-dimensions, the case we considered, but equation (6.46) can be extended

to more than one spatial dimension by considering graphs which can be foliated in more

than one directions.

We should stress also that this has been achieved on a Bose-Hubbard model on graphs

with varying vertex degree and multiple edges between sites. The important picture to

keep in mind to understand this mechanism is Fig. 6.1. The graph modifies the strength

of the interaction of the original Bose-Hubbard model and, for the particular states we are

interested in, we can obtain Eq. (6.46) for the particle localization.

As with the emergent wave equation, this result is reminiscent of the physics of ana-

logue gravity systems . It is then interesting to consider the model of [111] as a rather

unusual analogue gravity model.

Also, we have investigated physical models related to Quantum Gravity which had

been suggested in the literature as models of non-locality. One of the most striking theo-

retical consequences of General Relativity is the existence of wormholes and black holes.

In the present thesis we considered such a possibility in a toy model constructed using

the framework Quantum Graphity. In order to do so, we had to extend the results of
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[112] to a case in which the quantum state of the background is a superposition of many

graph states. The superposition of this graphs has been chosen such that it is dominated

by a graph on which, as we showed in earlier works, the expectation values of number

operators of the bosons hopping on it satisfy a closed equation for probability density in

the classical regime, i.e. a wave equation. We extended the formula previously obtained

and studied a particular case, which is, graphs which violate micro- and macro- locality.

As discussed, a violation of macro-locality can be interpreted, within the model, as the

presence of non-local links in the background spacetime. This is a concrete example of

a quantum foam within the framework of Quantum Graphity [80, 111]. The graph state

was chosen on the basis of what we know from low energy physics, which is, Lorentz

invariance is satisfied up and above the Planck scale [132]. We thus constructed the states

which represent corrections to the low-energy physics. We assumed that the non-local

links (i.e. the wormholes) are suppressed by a length according to a certain distribution.

The length is measured by a combinatorial distance based on the low energy graph and

which defines the state and the distance. We chosen two natural distances, given by the

cases d(x, y) = (x − y)2 and d(x, y) = |x − y|. We found that, in the continuum limit,

there is no superluminal effect on the low-energy physics, i.e. the speed of propagation

is unaffected. However, there is an appearance of momentum dependent masses for the

scalar field that can be calculated within the model. These masses are surprisingly square-

positive and thus do not violate the physics of the restricted Lorentz group, i.e., are not

tachyonic and a simple analysis showed that this mass runs with the energy scale and, in

particular, runs to zero at high energy. We ask ourselves if a similar phenomenon hap-
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pens for the other fields. This analysis suggested the possibility that a quantum foam

could contribute, in principle, to the mass of a quantum field. As suggested in [15] and

[122], the possibility of having non-local link states within Loop Quantum Gravity is very

natural. Also, it has been suggested that these states could add something to the dark

energy puzzle discussion. We suggested also a second mechanism for the generation of

the mass of the hopping particle, due to the interaction with different particles on the

graph. We found that a local interaction is not able to give a mass to the field. We thus

extended our search to different type of interactions, and found that the mass emerges

from non-local ones in the continuous limit. These particles might well be in a multiplet,

but an interaction able to assign a pseudo-spin to it has to be found.

In summary, we explored not only technical points, but also fundamental facts of a re-

lational approach to quantum gravity. The notion of time, given since the very beginning

as an external parameter, changed through the thesis. At the end we have shown that

a Lorentzian metric emerges and that curvature can be encoded in the graph. We hope

that our work can at least instill the doubt that phenomena given for granted can have

an origin which is very different from the standard description. Variable Speed of Light

theories were our hobbyhorse in the beginning, but we are quite confident that other in-

teresting phenomena can be studied in simple models like the ones we have discussed in

this thesis.
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Appendix A
Random Walk

The following general result is useful to study the random walks described in the thesis:

Theorem A.0.1. Let G be a graph drawn from any random walk on GN with stationary distribu-

tion π. Assume that there exists α < 2 such that

g(π) = max
G,H∈V (GN )

[π]G
[π]H

< eN
α

. (A.1)

Then

1. E (|E(G)|) = 1
2

(
N
2

)
+ o(1);

2. For t ≥
√
Nα
(
N
2

)
,

Prob
[∣∣∣∣|E(G)| − 1

2

(
N

2

)∣∣∣∣ > t

]
≤ 8 exp(−Nα).

Proof. We will prove the theorem by proving a deviation bound for Prob
[∣∣|E(G)| − 1

2

(
N
2

)∣∣ > t
]

in terms of t.
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Let

At =

{
G :

∣∣∣∣|E(G)| − 1

2

(
N

2

)∣∣∣∣ ≤ t

}
.

Note that At contains both connected and disconnected graphs.

LetC be a function from the set of all graphs onN vertices to the set {0, 1}. Specifically,

let

C(G) :=


1 if G is connected;

0 otherwise.

Let C(N, t) denote the probability that a graph drawn uniformly at random from At is

connected. The probability that a graph drawn from the random walk belongs to At is∑
G∈At C(G)[π]G; likewise for G /∈ At. We will now bound the quotient between these two

probabilities. It is well known, see e.g. [18], that

C(N, t) = 1 + o(1)
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for, e.g., t < N/2. Then

∑
H/∈At C(H)[π]H∑
G∈At C(G)[π]G

≤ g(π)

∑
H/∈At C(H)∑
G∈At C(G)

(A.2)

≤ g(π)
|At|

|At|C(N, t)

≤ g(π)
|At|

|At|(1 + o(1))

≤ 2g(π)
|At|
|At|

This can be written as

2g(π)
PN,t

1− PN,t
, (A.3)

where

PN,t = |At|/2(N2 )

is the probability that a binomial random variable with distribution Bin(
(
N
2

)
, 1

2
) deviates

more than t from its expectation. Using the Chernoff bound we have then

PN,t ≤ 2 exp

(
−2t2(
N
2

) )
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If t =
√
Nα
(
N
2

)
we can thus bound (A.3) as

2g(π)
PN,t

1− PN,t
≤ 2g(π)4 exp(

−2t2(
N
2

) ) (A.4)

= 8g(π) exp(−2nα)

= 8 exp(−Nα)

Since the denominator in the first step of Eq. (A.2) is less than 1 we have the following

bound for our walk

Prob [H /∈ At] ≤
∑
H/∈At

C(H)[π]H ≤ 8 exp(−Nα) (A.5)

For our range of α the value of t is o
((
N
2

))
which means that for a graph from At the

number of edges is 1
2

(
N
2

)
+ o(1) and the contribution to the expected number of edges

from graphs not in At is between zero and
(
N
2

)
8 exp(−Nα). This is o(1). Thus the total

expectation is 1
2

(
N
2

)
+ o(1). 2

Corollary A.0.2. Let G be a graph drawn from a simple random walk on GN . Then

E(|E(G)|) =
1

2

(
N

2

)
+ o(1)

Proof. We know that the underlying graph of this random walk is bipartite and that in the

asymptotic limit the stationary distribution oscillates between πeven and πodd depending

on whether we have taken an even or an odd number of steps. However if we start a
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new walk by not changing the graph in the first time step with probability 1/2, the new

stationary distribution will be

π =
1

2
(πeven + πodd). (A.6)

Since we are looking at graphs with N vertices, d(i) is at most
(
N
2

)
and not less than N−2.

Hence,

g(π) ≤ N2 −N
2n− 4

.

and the corollary follows from Theorem A.0.1. 2

Note that here we only used the fact the walk converges towards a stationary distribu-

tion on GN and that g(π) is bounded by a polynomial in N for this walk. The same result

holds for any form of walk on GN for which g(π) is not exponential in N .

Let us recall that a random event happens asymptotically almost surely, or a.a.s, if the

probability for the event is 1 − o(1). A clique in a graph is a subgraph isomorphic to

the complete graph. The clique number of a graph G, denoted by ω(G), is the number of

vertices of the largest clique in G.

Theorem A.0.3. Let G be a graph drawn from a simple random walk on GN . Then there exist

constants c1 < c2 such that a.a.s the clique number ω(G) satisfies

c0 log(N)− c1 ≤ ω(G) ≤ c0 log(N) + c2.
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Proof. It is well known, see, e.g., Chapter 11 of [18], that the expected clique number of a

uniform random graph with edge probability 1
2

is

2

log 2
log(N) = c0 logN

and that the following concentration bounds hold

Prob [ω(G)− c0 logN ≥ r] < N−r, (A.7)

Prob [c0 logN − ω(G) ≥ r] < N−b2
r−2
2 c (A.8)

We can now proceed in the same way as in the proof of Theorem A.0.1 using the set

Bu
t = {G|ω(G)− c0 logN}| ≤ t}

to give a bound on the upper tail probability and

Bl
t = {G|c0 logN − ω(G)}| ≤ t}

for the lower tail probability, together with the bound on g(π) from the proof of Corollary

A.0.2 and the concentration bounds from the inequalities (A.7) and (A.8). This gives the
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following inequalities:

Prob [ω(G)− c0 logN ≥ r] < c1
N(N − 1)

N − 2
N−r (A.9)

Prob [c0 logN − ω(G) ≥ r] <
N(N − 1)

N − 2
N
−
⌊

2
t−2
2

⌋
(A.10)

We can now use these inequalities to bound the contributions to the expected clique num-

ber. A clear but lengthy calculation can show that the contributions from the two tails are

asymptotically bounded by two constants, giving us the bound stated in the theorem. 2

A rigorous analysis of the expected number of edges when we consider particles will

be more difficult, since the model corresponds to a random walk on a directed graph, i.e.,

a graph in which edges have a direction. This is associated to an adjacency matrix which

is not necessarily symmetric. There are transitions where, e.g., an edge is deleted and the

particle distribution changes so that the endpoint of the edge do not have any particles

on them, thus making the re-addition of the edge impossible in the next step. However,

for states with a large number of particles, such as any graph with less than 1
2

(
n
2

)
edges,

the vast majority of transitions will be reversible, as it is in the case without particles.

Let us consider the number of possible transitions from a state (G,x) defined as fol-

lows: here G has n vertices, t edges which are part of triangles, s edges with endpoints
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at distance 2, and p indistinguishable particles. If we assume that there are particles at all

vertices we have three types of transitions which can be explicitly enumerated:

1. There are
(
n+p−1

p

)
transitions which correspond to redistributing the particles with-

out changing G.

2. There are t
(
n+p
p+1

)
transitions which correspond to deleting an edge and redistributing

the p+ 1 particles.

3. There are s
(
n+p−2
p−1

)
transitions which correspond to adding an edge and redistribut-

ing the p− 1 particles.

Only the number of transitions of the last type is affected by the assumption that there

are particles at all vertices.

If p ≈ c1
2

(
n
2

)
we can estimate

(
n+p−1

p

)
as

(
n+ p− 1

p

)
≈ pn−1

n!

(
1 +

n(n− 1)

2p
+O(p−2)

)
≈ pn−1

(n/e)n
(1 +

1

c
+O(p−2))

≈ en

n

(p
n

)n−1

(1 +
1

c
+O(p−2))

≈ en

n

(
c
n− 1

2n

)n−1

(1 +
1

c
+O(p−2))

≈ O
(

(ce)n

n

)

Inserting this into the numbers of transitions given above, shows that for this model

the maximum degree of the transition graph is bounded from above by a simple exponen-

tial, and the minimum degree is of course still greater than a multiple of n. According to
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Theorem 1 this is not sufficient to change the expected number of edges from being 1
2

(
n
2

)
.

In order to make this analysis fully rigorous it is also necessary to show that the states

with unoccupied vertices do not make a significant contribution, which will be lengthy

but mostly a technical issue.

The discussion for a case with distinguishable particles will be very similar but
(
n+p−1

p

)
will be replaced by np which is large enough to escape Theorem 1. These counts also give

an easy way to implement a simulation algorithm for both models. Just pick uniformly

among all the possible transitions from the current state. If we do not consider particles

or consider indistinguishable particles, the degrees of the vertices in the graphs will be

close to those of random graphs with probability 1/2. This is more or less for the same

reason that Theorem 1 works. The number of “typical” graphs in G(n, 1
2
) is so large that

their behavior will still control these models.
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[22] C. Avin, M. Koucký, Z. Lotker, Proceedings of the Conference ICALP, 121, (2008).

[23] D. Bohm, The Scientist Speculates, I. J. Good, ed. Basic Books, New York (1962), pp.

302-314.

[24] S. Bose, Contemp. Phys., Vol. 48 1, 13-30 (2007)

[25] C. Cooper, A. M. Frieze, T. Radzik, Multiple Random Walks and Interacting Particles

Systems, Lecture notes in Computer Science, Springer Berlin, Volume 5556 (2009),

pp. 388-410

[26] C. Cooper, A. M. Frieze, Internet Mathematics 1, 57-90 (2003)

[27] S. P. Gudder, Found. Phys. 18 7, 751-776 (1988)

[28] J. Kempe, Contemp. Physics, Vol. 44 4, pp.307-327 (2003)

[29] S. Popescu, A. J. Short, A. Winter, Nature Physics 754 (2006); N. Linden, S. Popescu,

A. J. Short, A.Winter, arXiv:0812.2385 (2008)

[30] L. Campos Venuti, P. Zanardi, arXiv:0907.0683 (2009)

[31] X. G. Wen, Phys. Rev. D 68, 065003 (2003); Phys. Rev. B 68, 115413 (2003)

[32] F. Markopoulou, “Space does not exist, so time can“,

http://www.fqxi.org/community/essay/winners (2008)

[33] R. Gambini, J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity, Cam-

bridge U. Press, New York (2000); C. Rovelli, Quantum Gravity, Cambridge U.

219



Press, New York (2004); T. Thiemann, arXiv:gr-qc/0110034. (2001); A. Ashtekar, J.

Lewandowski, Class. Quant. Grav. 21, R53 (2004), arXiv:gr-qc/0404018

[34] J. D. Bekenstein Phys. Rev. D 7 (8): 2333–2346 (1973)

[35] J. M. Bardeen, B. Carter, S. W. Hawking, Comm. in Math. Phys. 31 (2): 161–170 (1973)

[36] V. E. Hubeny, S. Minwalla, M. Rangamani, Contribution to “Black Holes in Higher

Dimensions”, Cambridge Press, edited by G. Horowitz, arXiv:1107.5780 (2011)

[37] F. Markopoulou, arXiv:hep-th/0604120. (2006)

[38] D. W. Kribs, F. Markopoulou, arXiv:gr-qc/0510052 (2005)

[39] Z. C. Gu and X. G. Wen, arXiv:gr-qc/0606100 (2006)

[40] S. S. Lee, arXiv:gr-qc/0609107 (2006)

[41] G. Volovik, The Universe in a Helium Droplet, Oxford University Press (2009)

[42] F. Markopoulou, in Approaches to Quantum Gravity - towards a new understanding

of space, time and matter, edited by D. Oriti, Cambridge Univ. Press (2009)

[43] P. Gibbs, Int.J.Theor.Phys.35:1037–1062, (1996)

[44] M.Levin , X. G. Wen, “Fermions, strings, and gauge fields in lattice spin models,”

Phys. Rev. B 67, 245316 (2003) [arXiv:cond-mat/0302460]; M.A.Levin , X.G. Wen,

“String-net condensation: A physical mechanism for topological phases,” Phys.

Rev. B 71, 045110 (2005) arXiv:cond-mat/0404617; M.Levin, X.G.Wen, arXiv:hep-

th/0507118 (2005);

220



[45] E. Curiel, Phyl. of Sci. 68 (Proceedings) pp. 424-441 0031-8248/2001/68supp-0034;

[46] C. Rovelli, Phys. Rev. Lett., 14, 3288-3291, (1996) arXiv:gr-qc/9603063; A. Ghosh,

A. Perez, Phys. Rev. Lett. 107, 241301 (2011), arXiv:1107.1320v3; E. Bianchi,

arXiv:1204.5122 ;

[47] C. Rovelli, L. Smolin, Nucl.Phys. B442 (1995) 593-622; Erratum-ibid. B456 (1995) 753;

[48] T. Padmanabhan , Rep. Prog. Phys. 73 : 6901 (2010). arXiv:0911.5004;

[49] Beineke, L. W., ”Derived graphs of digraphs”, in Sachs, H.; Voss, H.-J.; Walter, H.-J.,
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