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Abstract

Large systems are often constructed using small subsystems which are connected. These
interconnections can lead to complex behavior; for example, the entire system may become
unstable even if each of the individual subsystems are stable by themselves. The unstable
systems can be stabilized with the use of a shared feedback controller. The effects of one
subsystem on the state of other subsystems (coupling) can be reduced if each subsystem has
access to the state information of the subsystems that are affecting its state. However, this
solution requires communication between the controller and the subsystems and between
subsystems. If there are limited communication resources, management of this resource is
also required. Hence there is a need for a scheduling policy that specifies which subsystem
should use the communication resource at any given time.

We start our formulation by first investigating systems that contain only stable subsys-
tems. If the connected system is unstable due to coupling, the system cannot be scheduled.
Therefore, we first proceed to extend previous work on stability of connected systems in
order to formulate computationally efficient schedulability checks for these systems. We
provide sufficient and necessary conditions for certain topologies and results for scalar
systems that are dependent on the number of subsystems.

Then we proceed to formulate a centralized scheduling policy based on results of con-
nective stability. Here we constrain ourselves to first studying systems with only a single
communication resource that restricts only one subsystem to transmit its state in a given
time slot. We study the best input a subsystem may apply once it has knowledge of
the state of another subsystem that is affecting its state. We also provide evidence from
simulations to support the performance increase in using the proposed algorithm.

Finally, we extend these results to formulate a decentralized scheduling policy that
supports multiple communication resources. We also analyze a possible way of improving
the scheduling policy using similarity transformations and show that such a methodology
does not guarantee performance improvement and in-fact may lead to worse performance.
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Chapter 1

Introduction

Most (if not all) large systems are composed of smaller subsystems that are interconnected
together. Some of these systems exist naturally (as in the instance of eco-systems [23])
while others arise as a result of human design ( as in the example of large scale power
systems [22]). In such systems, the state of one subsystem can affect the other subsystems
in the network as a result of being connected. We will refer to this form of interaction as
coupling. Furthermore, the level of coupling between states of each subsystem can vary
dynamically or could be static during the operation of the system. In such systems, the
coupling effects could be reduced if a subsystem has prior knowledge of the dynamics of
the coupling and the current state of the coupled subsystem.

In such systems that require the sharing of one’s state information with other subsys-
tems, the communication resource needs to be managed. Hence, the resource must be
scheduled such that the communication data required to maintain stability is transferred
to each subsystem within the time period in which it is required.

Our focus here will be on developing a scheduling scheme for connected dynamical
systems of the above form that require information to be communicated, and therefore
requires the communication resource to be managed. The scope of our work will be limited
to the case where individual subsystems are assumed to be stable by themselves, which is
a requirement of connective stability [24]. We start by extending previous work by Siljak
on connective stability for discrete time systems [19] for different network topologies. We
then consider the case where subsystems are stable without the presence of coupling and
we discuss the formulation of a scheduling policy to minimize effects of coupling when the
system is connected.

The thesis will address the following issues with respect to scheduling for such systems.
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1. Develop a simplified schedulability tests for some common topologies

2. Develop a scheduling scheme for a centralized connected system to achieve stability

3. Develop a scheduling scheme for a decentralized connected system to achieve stability

1.1 Related Work

Many prior works have presented results on analyzing connected systems using concepts
such as connective stability [19], [24], [22], [21], [20], [26], [27], [25], [6] or switching systems
[30], [1], [9]. Loosely speaking if a system is connectively stable, the system will remain
stable even as the coupling varies between its maximum or zero [19] [24]. However, con-
nective stability requires each subsystem to be stable when the subsytem is isolated from
any coupling effects or connections from other subsystems. The work based on switching
system theory deals with systems that switch between various subsystems according to a
switching rule [30], [1], [9].

In the area of real-time scheduling, there have been various scheduling schemes de-
veloped for distributed control systems. The work by Marti describes the problems in
adapting scheduling theory in real-time theory to solving control theory problems dealing
with stability [10]. There is also work by the same author on extending classical real time
scheduling policies such as ‘Earliest Deadline First (EDF)’ to control systems [29]. The
proposed ‘LEF’ policy deals with giving higher priority in terms of using the resource to the
subsystem that has the largest deviation between its actual response and desired response
at a given time. The issue of resolving packet drops due to contention was also addressed
in a work by Zhang [31]. The work presented in Zhang’s paper differs in its approach
from the work presented in this thesis in that it works within the confines of an ALOHA
network.

Work by Nilsson on problems with real time scheduling of control systems [13] delves in
to the issues faced with jitter, and other lower level problems. These issues while important,
were too specific for consideration in designing our scheduling policy.

We also considered the possibility of modeling the problem of scheduling the trans-
mission resource using work on resource allocation in other areas such as processors for
stability related functions. Work by Gupta on anytime control algorithms based on time
varying processor availability [16], [3] was considered. The model under study in that paper
required the resource availability to follow a distribution or function. Our work focuses on
the structure of the interconnections and does not assume a distribution on the resource.
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A work by Hespanha develops a methodology to construct a deadline, period and
execution time for a control system [12]. After these quantities are defined and calculated
for a given system, a standard technique such as EDF is used to schedule the system.

In the paper by Michel, Miller & Tang on connective stability [11], they develop a
result based on the concept of stability preserving links. The result shows that if the
interconnections satisfy the stability preserving conditions, then the system is connectively
stable. While the result is based on a different approach than the use of Lyapunov methods,
the analysis requires strongly connected groups of subsystems and requires transformation
of the original system based on graph theoretic decompositions.

In work related to modeling a connected system as a packet transmitting network [12],
[18], [2] the goal is to determine when such a system is mean square stable. In these
works, the properties of the system under study are captured by a set of inequalities.
These inequalities are constructed by considering the probabilities that each subsystem
state would be of a particular form. If a solution exists to the set of inequalities, then the
corresponding system is also guaranteed to be mean square stable [32], [5]. There is also
work on developing a result for connective stability in such a packet network [6]. Here the
goal is once again to find conditions under which the system would be connectively stable.

Another type of work on connected systems deal with using the network itself as a
controller [15][14]. Each subsystem in such a network updates its state as a linear combi-
nation of the states of the neighboring subsystems. It is shown in [15] that such a strategy
will cause the network itself to act as a controller. The problem of packet drops in such
networks are handled in [4] [7] [18] [17]. All these works discuss the problem of maintaining
mean square stability of the system.

Our work differs from these existing works in that

1. We extend current results for specific network topologies to obtain simpler results.

2. While previous results only address the issue of stability, we use the existing results
to develop scheduling policies to achieve faster and more reliable convergence.

1.2 Notation and Previous Results

In this thesis, we will consider discrete-time linear systems composed of N subsystems,
where each subsystem is of the form
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xi(k + 1) = Aiixi(k) +Biiui(k) +
N∑
j=1

eijAijxj(k) (1.1)

with state vector xi ∈ Rn, ui ∈ Rm, (Aii, Bii) are system matrices with correct dimensions,
and Aijxj(k) represents the coupling from subsystem j on subsystem i. The scalar eij
represents the coupling strength which varies between 0 (no coupling) and 1 (maximum
coupling).

The norm of a matrix will be denoted by ‖·‖. For an example, ‖x‖2 denotes the 2-norm

of x which is the root mean square of a vector x which is
√∑N

i=1 x
2
i . The p-norm is denoted

by ‖ · ‖p. For a positive definite matrix P , the P -norm is defined as (xTPx)1/2.

We now summarize the important results on connective stability and few other relevant
results. These results will be used in our derivations and analysis in the thesis.

1.2.1 M-matrices

A matrix with non-positive off diagonal elements, if it satisfies certain properties, is called
an M-matrix [24]. Properties of M-matrices that will be used frequently in this thesis are
given below

Theorem 1.1 If W is an M-matrix, then the following conditions are satisfied and equiv-
alent [24]

1. There exist a vector d ∈ RN
+ , di > 0, i ∈ N , such that vector c ∈ RN

+ defined as

c = Wd (1.2)

is positive, that is ci > 0 for all i ∈ N .

2. All leading principal minors of W are positive.

3. W is a positive quasi-dominant diagonal matrix, that is wii > 0, i ∈ N , and there
exists numbers di > 0 such that

diwii >

N∑
j=1,j 6=i

djwij (1.3)

∀i ∈ N .
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4. The real part of each eigenvalue of W is positive.

The properties of an M-matrix are useful in determining whether a system is connec-
tively stable.

1.2.2 Connective Stability

Let E denote a matrix where each entry at position i,j represents the strength of the
coupling from subsystem j on i (eij) at a given time. Since the coupling strength eij ∈ [0, 1],
there are many possible unique instances of E that have different values of eij. Let Ē denote
the set of all such possible E. Then one can define connective stability as follows [24]

Definition 1.1 A system is connectively stable if it is stable in the sense of Lyapunov for
all E ∈ Ē

The above definition of connectively stability implies that the system without any
coupling must also be stable (since 0 ∈ Ē). This would be satisfied if and only if each
subsystem is stable by itself. Therefore, for a system to be connectively stable Aii must
also have all its eigenvalues inside the unit circle, for each i.

If the coupling terms are bounded, it is possible to arrive at a sufficient condition for
connective stability [19] [24]. In the case of the subsystem in 1.1, it is clear that the
coupling can be bounded using the inequality

‖
N∑
j=1

eijAijxj(k)‖2 ≤
N∑
j=1

eijξij‖xj‖2 (1.4)

where

ξij = ‖Aij‖2 . (1.5)

Given that Aii is stable, it is also possible to find a Lyapunov function of the form

vi(xi) = (xTi Hixi)
1/2,∀i = 1, 2, .., N (1.6)

where H is a positive definite matrix that satisfies
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ATiiHiAii −Hi = −Gi (1.7)

where Gi is also a positive definite matrix. The condition in 1.7 guarantees that the
Lyapunov function in 1.6 is decreasing for all t ≥ 0.

Definition 1.2 The robustness bound of such a system is shown [19] to be given by

ξv(Gi) =
σm(Gi)

σ
1/2
M (Hi)σ

1/2
M (Hi −Gi) + σM(Hi)

(1.8)

where σm and σM are the minimum and maximum eigenvalues of the matrix in their
respective arguments. The robustness bounds of each subsystem can be used to derive an
upper-bound for the Lyapunov function of the system [19], [24]. Therefore, if the robustness
bound is more exact, the derived upper-bound will be much tighter. It has also been shown
[19] that the robustness bound is more maximized when Gi is the identity matrix and more
exact when Aii is in diagonal form.

To analyze stability of the overall system, it is natural to consider a Lyapunov function
that is constructed in terms of the Lyapunov functions for each of the individual subsystems
as [19], [24]

v[x(k)] =
∑
i∈N

divi(xi) (1.9)

where di is positive for each i.

Using the above definition, Siljak derives the following results [19].

Theorem 1.2 The rate of decrease of the Lyapunov function given in 1.9, where each
subsystem’s Lyapunov function is of the form of 1.6, can be upper-bounded as

4v[x(k)] ≤ −mTWw̄(x) ∀x ∈ Rn (1.10)

where

m = [d1σ
1/2
M (H1), d2σ

1/2
M (H2), ..., dNσ

1/2
M (HN)]T (1.11)
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Wij(x) =

{
ξv(Gi)− eijξij if i = j

−eijξij if i 6= j
(1.12)

w̄(x) = [‖x1(k)‖, ‖x2(k)‖, ...., ‖xN(k)‖]T (1.13)

Theorem 1.3 A discrete-time connected system is connectively stable if W is an M-
matrix, where W is defined as

Wij(x) =

{
ξv(Gi)− eijξij if i = j

−eijξij if i 6= j
(1.14)

for the case when eij = 1

The system matrix Aii of each subsystem i determines the robustness bound ξv(Gi)
from 1.7, 1.8 and the strength of the coupling and its dynamics are factored in through
eijξij.

1.2.3 Input to State Stability

In a connected system, the coupling can be seen as an incoming input to each subsystem. It
can be useful to be able to predict the stability of a system based on information available
about its inputs and dynamics of that system. The following theorem gives such a result
[8]

Theorem 1.4 A system is input-to-state stable if there exists a KL-function β : R≥0 ×
R≥0 → R≥0 and a K-function γ such that, for each input u and initial state ξ, it holds that

|x(k, ξ, u)| ≤ β(|ξ|, k) + γ(‖u‖) (1.15)

for each k ∈ Z+
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In the above, the function γ : R≥0 → R≥0 is a K − function i.e. it is continuous,
strictly increasing and γ(0) = 0 [8]. The function β : R≥0 × R≥0 → R≥0 is a K L-function
i.e. for each fixed t ≥ 0, the function β(·, t) is a k=function, and for each s ≥ 0 the function
β(s, ·) is decreasing and β(s, t)→ 0 as t→∞ [8].

This theorem allows us to conclude that a system is stable given that the inputs to a
system are bounded and the system is stable without any inputs.

The rest of the thesis is organized as follows. In Chapter 2, we use the results on con-
nective stability to analyze systems with different interconnection topologies. In Chapter
3, we develop a scheduling algorithm for a centralized system where only one subsystem
can transmit its state to others in the network at each time step. In Chapter 4, we extend
the scheduling algorithm for a decentralized system and consider a system where multiple
subsystems can transmit their state at once.
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Chapter 2

Connective Stability of Common
Topologies

2.1 Introduction

In this chapter we study different topologies and how previous work on connective stability
[19], [24] applies to these structures. In Chapter 1, we presented Theorem 1.3 which was
a sufficient condition for connective stability. The goal of the analysis we present in this
Chapter is to identify simplified tests and necessary conditions for connective stability given
specific topologies. These simplified stability checks would act as a schedulability check for
the scheduling policy we will develop in subsequent sections. There exists previous work [21]
[23] which analyzes different matrix types (such as Metzler matrices and interval matrices)
to develop stricter or less conservative results for connective stability. But Metzler matrices
differ from the matrices that occur in our work in that it requires off-diagonal elements
to be non-negative. In the situations we consider, from the definition of the W matrix
in Equation 2.1, and eij in Equation 1.5, the off-diagonal elements of W will always be
non-positive i.e., W is a “Z-matrix”. Our work also deals with the variation of coupling
anywhere in the interval of [0, 1] and therefore gives a more general result than with interval
matrices.
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2.2 Modeling the Interconnection of the System as a

Graph

The interconnection topology of each system discussed is captured within the W matrix
(given in (2.1)). The W matrix acts as an adjacency matrix in that

Wij =

{
non zero if state of subsystem j affects i

0 if no coupling.
(2.1)

This also means that the system can be treated as a graph where the coupling strength
between two plants would be captured as a weighted edge. We can therefore refer to graph
properties such as cycles when we refer to the system topology. A system (or equivalent
graph) that has no cycles will be referred to as an acyclic topology. Since Wij 6= Wji, the
adjacency matrix (W matrix) of such systems will represent that of a directed graph and
will therefore be referred to as a directed topology.

Examples of an interconnected system with a directed cycle topology is shown in figure
2.1 and a directed acyclic topology is shown in figure 2.2.

Figure 2.1: Example of a Directed Cycle Topology
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Figure 2.2: Example of a Directed Acyclic Topology

2.3 Directed Acyclic Topology

Theorem 2.1 If a coupled system has a directed acyclic topology, then the system is con-
nectively stable if and only if each subsystem by itself (with no coupling) is stable.

Proof : The necessity of this is clear from the definition of connective stability which
requires that the subsystems are stable.

Then we prove sufficiency by induction as follows.

In a directed acyclic topology, there must be subsystems with no incoming connections.
These subsystems we label as level 1 subsystems. The subsystems only having incoming
connections from level 1 subsystems we label as level 2. The ones that have incoming
connections from level 1 and level 2 subsystems we call level 3 and so on.

Now each subsystem at level k can only have incoming connections from subsystems
that belong to level k−1 and less since the topology is directed and acyclic. So we proceed
to prove the sufficiency condition by induction as follows.

If a subsystem is a level 1 subsystem, these subsystems are by-themselves stable (the
condition of the theorem). The inputs to the level 2 subsystems, which are a linear combi-
nation of the states of level 1 subsystems, are asymptotically approaching zero since level 1
subsystems are stable. Since the inputs to the level two subsystems are approaching zero,

11



and subsystems by themselves are stable, we can also know from the results of input to
state stability (Theorem 1.4) that level 2 subsystems are also stable.

Let us now assume subsystems at level k are stable. Then the subsystem from level
one to level k must also be stable. Subsystems at level k + 1 will only have incoming
connections from subsystems at level 1 to level k. Since all these subsystems from level 1
to k are stable, the inputs to level k + 1 subsystems are also approaching zero. Therefore,
from input to state stability, we see that subsystems at level k + 1 are also stable since
inputs are approaching zero and the subsystems by themselves are also stable.

Thus, we have proved by induction that if the subsystems are stable by themselves and
are connected according to a directed acyclic topology, then the system is connectively
stable. �

The above result also implies that when we deal with directed acyclic systems, we need
not worry about the dynamics of the interconnections but only of the stability of each
subsystem. The result also suggests that it might be possible to refine the connective
stability test presented by Siljak [19], [24].

Before we provide a refined connective stability test, the following lemma must be
developed since it is useful for proving the validity of the refined test.

Lemma 2.1 If in a connected system, the subsystems by themselves are stable, then the
corresponding robustness bound of each subsystem is positive.

Proof : The Robustness bound of a system i was given by Equation 1.8 as

ξv(Gi) =
σm(Gi)

σ
1/2
M (Hi)σ

1/2
M (Hi −Gi) + σM(Hi)

.

By definition, Gi and Hi are positive definite matrices which only exist if the system is
stable. Since they are positive definite, the eigenvalues are all positive. Therefore all their
eigenvalues σm(Gi), σM(Hi) are all positive as well.

With respect to σ
1/2
M (Hi), it appears that it can be either negative and positive. But

the origin of this quantity in the expression for the robustness bound comes from the
upper-bounding of the Lyapunov Function in terms of its norm [19] i.e.,

σ1/2
m (Hi)‖xi‖2 ≤ (xTi Hixi)

1/2 ≤ σ
1/2
M (Hi)‖xi‖2 .

12



Since the Lyapunov function is a positive decreasing function, the upper-bound of the
function cannot be negative. So the quantity σ

1/2
M (Hi) in this context must be positive.

Also, Hi and Gi satisfy

ATi HiAi −Hi = −Gi

⇔ ATi HiAi = Hi −Gi .

Now diagonalizing Hi as P TλP where λ is a matrix with all the eigenvalues of Hi on the
diagonal, we get

ATi P
TλPAi = Hi −Gi

⇔ (PAi)
Tλ(PAi) = Hi −Gi .

Using the above expression on the LHS for Hi −Gi, we get that for any vector y

yT (Hi −Gi)y = yT (PA)Tλ(PAi)y

= (PAiy)Tλ(PAiy) .

Let (PAiy) = y′, then

yT (Hi −Gi)y = y′Tλy

= y′2(1)λ(1, 1) + ....+ y′2(N)λ(N,N)

Since y′2(n) ≥ 0,∀n = 1, 2, ..N and λ is a diagonal matrix with positive values, the
above sum is also non-negative. Hence yT (Hi −Gi)y > 0 for all y. Therefore, (Hi −Gi) is
positive semi-definite. Therefore, all eigenvalues of (Hi −Gi) are non-negative.

Since σ
1/2
M (Hi − Gi) is non-negative and all the other terms in the expression for the

robustness bound are positive, the robustness bound itself must be positive. �

Extending the connective stability test in Theorem 1.3, we can also say the following

13



Theorem 2.2 A connected system with directed acyclic topology is connectively stable if
and only if the W-matrix is an M-matrix.

Proof : From the work shown previously, it is clear that if the W-matrix of a system is
an M-matrix, then any system is connectively stable. What remains therefore to be shown
is that if a system with a directed, acyclic topology is stable, then the W-matrix must also
be an M-matrix.

This can be shown as follows:

For a directed acyclic topology with N sub-systems, the subsystems can be ordered such
that Wi,j=0 for j > i in the W-matrix since eij = 0. Also, for the system to be connectively
stable, by definition, each sub-system by itself must be stable. If each subsystem by itself
is stable, then the robustness bound is positive (from Lemma 2.1).

If the robustness bounds are positive, all the elements in the diagonal of the W-matrix
are positive (it is assumed that eii = 0). Since W is a triangular matrix and principal
minors are therefore the product of diagonal elements, all the principal minors of the
W-matrix are also positive. Thus, the W-matrix must also be an M-matrix. �

2.4 Scalar Systems with a Directed Cycle Topology

For this analysis, we will use the following system which is an equivalent scalar system to
the system in 1.1

xi(k + 1) = aixi(k) + γiui(k) +
N∑
j=1

eijβijxj(k). (2.2)

We will consider the case where γiui(k) = 0 since we will not discuss how to determine
the optimal input term ui(k) to apply in this section. For this chapter, we will limit our
analysis to determining only whether a system is connectively stable.

2.4.1 Heterogeneous Systems

In this section, we consider general systems with non-homogeneous dynamics i.e. a1 6=
a2 6= .... 6= aN

14



Theorem 2.3 If a connected network of subsystems (where each system is stable itself)
has a topology of a directed cycle, then the system is connectively stable if the determinant
of the corresponding W-matrix (given in Equation 2.1) is positive.

Proof : If the W matrix is an M-matrix, the system is connectively stable. According
to Theorem 1.1, a matrix is an M-matrix if all its principal minors are positive.

If the graph is directed and cyclic, one can construct the W matrix for the system with
N subsystems of the form in 2.2 as

Wij =


ζij if i = j

−‖βij‖2 if i = j − 1 or i = 1, j = N

0 others

where ζij is the robustness bound. Therefore, the W-matrix will be lower triangular except
for the non-zero element −‖β1,N‖2.

All principal minors up to N − 1 x N − 1, will simply be the product of the diagonals
(since −‖β1,N‖2 is not part of any of these principal minors, each principal minor is a
triangular matrix). Since the robustness bounds are positive, the product of robustness
bounds (ζij) is also positive, making the principal minors up to the N − 1th positive. So
the only principal minor that needs to be checked for is the N x N principal minor. This
is just the determinant. Therefore, if the determinant is also positive, then the W-matrix
has all positive principal minors, and is therefore an M-matrix, which then from Theorem
1.3 gives connective stability. �

We can also derive an expression for the robustness bound in terms of the subsystem
scalar ai as follows.

Theorem 2.4 If a connected network of N scalar subsystems (which are stable by them-
selves) is of the form

xi[k + 1] = aixi[k] + bixj[k],∀i, j = 1, 2, ..N

where bixj[k] is the coupling due to interconnections, then the robustness bound of each
subsystem i is given by 1− |ai|.
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Proof : To calculate the robustness bound using Equation 1.8, we require Hi and Gi such
that Equation 1.7 is satisfied. Setting Gi = 1 (it is shown in [19] that Gi = I maximizes
the robustness bound) in Equation 1.7, we obtain

a2iHi −Hi = −1

Hi =
1

1− a2i

Substituting the above values into the robustness bound Equation 1.8 gives

ξv(Gi) =
1

1
(1−a2i )1/2

( 1
(1−a2i )

− 1)1/2 + 1
(1−a2i )

=
1

1
(1−a2i )1/2

|ai|
(1−a2i )1/2

+ 1
(1−a2i )

=
1

|ai|+1

(1−a2i )

=
1

|ai|+1
(1−|ai|)(1+|ai|))

=
1
1

(1−|ai|)

= 1− |ai|

as required. �

2.4.2 Homogeneous Systems

In this section, we consider the systems where the dynamics aii, bij are the same. The goal
of analyzing such systems is to investigate the possibility of arriving at a necessary and
sufficient condition for connective stability.

Theorem 2.5 If a connected network (with a directed cycle topology) of N homogeneous
scalar subsystems (where each system is stable by itself without coupling), is of the form
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xi[k + 1] = axi[k] + bxj[k], ∀i = 1, 2, .., N, j =

{
i+ 1 if i < N

1 if i = N

where N is an even number, the system is connectively stable if and only if |a|+ |b| < 1

Proof : For such a system, the W -matrix will be of the form

Wij(x) =


α if i = j

−β if i = j − 1 or i = 1, j = N

0 else

where α is the robustness bound according to the previous theorem, α = 1 − |a| and
β = |b| . In Theorem 2.3 (on determining connective stability of a system with directed
cyclic topology), it was shown that we only require the determinant of the W-matrix to be
positive. Using the theorem gives us

αN − (β)N > 0

⇔ αN > (β)N

⇔ α > β

⇔ 1− |a| > |b|
⇔ |a|+ |b| < 1

as required.

We prove necessity as follows. According to the condition of the theorem, we have that

|a|+ |b| < 1 .

So to show that this condition is necessary for stability, we must show that if |a|+|b| > 1,
the system is unstable.

Now the system matrix A consisting of all N subsystems will be of the form
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Aij =


a if i = j

b if i = j − 1 or i = 1, j = N

0 else

Since a and b can be positive or negative, we must consider all possibilities.

If a > 0, b > 0 the characteristic equation for calculating the eigenvalues λ would be

(λ− |a|)N − (−|b|)N = 0

to which λ = |a| + |b| is a solution. So if |a| + |b| > 1, then one eigenvalue of the system
would be greater than 1 making the system unstable.

If a < 0, b > 0 the characteristic equation for calculating the eigenvalues λ would be

(λ+ |a|)N − (−|b|)N = 0

to which λ = −|a| ± |b| is a solution, which means λ = −(|a| + |b|) is a solution. So
if |a| + |b| > 1, then one eigenvalue of the system would have magnitude greater than 1
making the system unstable.

If a > 0, b < 0 the characteristic equation for calculating the eigenvalues λ would be

(λ− |a|)N − (|b|)N = 0

to which λ = |a| + |b| is a solution. So if |a| + |b| > 1, then one eigenvalue of the system
would have magnitude greater than 1 making the system unstable.

If a < 0, b < 0 the characteristic equation for calculating the eigenvalues λ would be

(λ+ |a|)N − (|b|)N = 0

to which λ = −(|a|+ |b|) is a solution. So if |a|+ |b| > 1, then one eigenvalue of the system
would be greater than 1 making the system unstable. �

In the case of having odd number of plants (N is odd), it was not possible to construct
a sufficient and necessary condition. But a simplified sufficient condition for stability can
still be presented as follows.

Theorem 2.6 If there are N subsystems in a connected system (in a directed cycle topol-
ogy), where N is odd, then the system is connectively stable if |a|+ |b| < 1.
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Proof : Follows the same form as proof of Theorem 2.5 �

It is however possible to produce a necessary condition for connective stability for
systems with an odd number of subsystems as well. The result, unlike in the case with
an even number of subsystems, depends on the whether a, b are positive or negative. We
summarize the results in the theorem below.

Theorem 2.7 If there are N subsystems, where N is odd, then the system is unstable

1. If a > 0, b > 0, and |a|+ |b| > 1

2. If a > 0, b < 0, and

N > 2π(2k + 1)/ cos−1[(1− |a|2 − |b|2)/2|a||b|]

3. If a < 0, b > 0, and

N > 2π(2k)/ cos−1[−(1− |a|2 + |b|2)/2|a||b|]

4. If a < 0, b < 0, and

N > 2π(2k + 1)/ cos−1[−(1− |a|2 − |b|2)/2|a||b|]

where k = −(N − 1)/2, ...− 1, 0, 1, ..., (N − 1)/2.

Proof :

If a > 0, b > 0 the characteristic equation for calculating the eigenvalues λ is

(λ− |a|)N + (−|b|)N = 0

to which λ = |a| + |b| is a solution. So if |a| + |b| > 1, then one eigenvalue of the system
would be greater than 1 making the system unstable.

If a > 0, b < 0 the characteristic equation for calculating the eigenvalues λ is

(λ− |a|)N + (|b|)N = 0

19



to which λ = |a|+ |b|ej2π(2k+1)/N where k = −(N − 1)/2, ...− 1, 0, 1, ..., (N − 1)/2. One can
find the specific N for which the system is unstable by solving as before

||a|+ |b|ej2π(2k+1)/N | > 1

|a|2 + 2|a||b| cos[2π(2k + 1)/N ]+

|b|2 cos2[2π(2k + 1)/N ]+

|b|2 sin2[2π(2k + 1)/N ] > 1

2|a||b| cos[2π(2k + 1)/N ] > [1− (|a|2 + |b|2)]
cos[2π(2k + 1)/N ] > [1− (|a|2 + |b|2)]/2|a||b|

Therefore, if RHS of the inequality is less than −1, then any N satisfies the requirement.
More generally, note that the RHS is strictly less than 1, and the argument of the LHS
goes to zero as N increases. Thus, for N sufficiently large, this condition will be satisfied.
i.e., for

N > 2π(2k + 1)/ cos−1[[1− (|a|2 + |b|2)]/2|a||b|]
all k between k = −(N − 1)/2, ...− 1, 0, 1, ..., (N − 1)/2.

If a < 0, b > 0 the characteristic equation for calculating the eigenvalues λ would then
be

(λ+ |a|)N + (−|b|)N = 0

to which λ = −|a| + |b|ej2πk/N is a solution. The system would be unstable if |λ| =
| − |a|+ |b|ej2πk/N | > 1. Therefore, using the same procedure as above we obtain

N > 2π(2k)/ cos−1[−(1− |a|2 + |b|2)/2|a||b|] .

If a < 0, b < 0 the characteristic equation for calculating the eigenvalues λ would then
be

(λ+ |a|)N + (|b|)N = 0

to which λ = −|a| + |b|ej2π(2k+1)/N where k = −(N − 1)/2, ...− 1, 0, 1, ..., (N − 1)/2. One
can then find the specific N for which the system is unstable by using the same procedure
as above to show that N > 2π(2k + 1)/ cos−1[(1− |a|2 − |b|2)/2|a||b|].

�
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2.5 Summary

In this section, we have formulated simplified connective stability tests for various topolo-
gies. We also presented conditions under which the system could be stabilized. These
results will act as simplified schedulability tests for our scheduling policy when the un-
derlying network topology matches those considered in this section. It will also help in
restructuring the network or modifying the network to achieve stability.
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Chapter 3

Scheduling Scheme based on
Connective Stability

3.1 Introduction

In this chapter we extend the previous work on connective stability [19] to develop a
scheduling algorithm. The system analyzed will consist of subsystems of the form given
in (1.1). We assume that in the connected system, each subsystem is stable without any
coupling i.e. Aii has all eigenvalues inside the unit circle. We also assume that there is a
centralized scheduler that can observe the state of each subsystem. The connected system
will allow a single subsystem to transmit its state to all other subsystems at a given time
slot. The centralized controller will determine which subsystem should transmit based on
its impact in increasing the rate of decrease of an appropriate Lyapunov function of the
entire system. Such restricted access to the communication resource may be present in
systems where there is a single resource that is shared by all subsystems. 1 Since the
Lyapunov function only gives an upper-bound on the actual evolution of the state, the
scheduling algorithm will be based on an approximation. In this section, we will show that
knowing the state of another subsystem and using that information to reduce the effects
of coupling on another subsystem is beneficial. Then we will determine the optimal input
that a controller should apply to the subsystem to reduce the effects of coupling by another
subsystem. Using the results from our analysis, we will devise a scheduling algorithm.

1In the next Chapter of this thesis, we will remove this restriction to address a general model where
the communication resource can be shared between more than one subsystem at a time.
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Finally, we will compare the scheduling algorithm against other possible schemes through
simulations.

3.2 Effect of Reducing Coupling

In a connected system of N subsystems, let αij ∈ [0, 1] be the additive reduction in coupling
eij (recall that eij is the coupling by subsystem j on subsystem i). The resultant coupling
will therefore be eij = 1− αij. The resultant W matrix (defined in (2.1)) W ′ can then be
defined as

W ′
ij(x) =

{
ξv(Gi)− (1− αij)ξij if i = j

−(1− αij)ξij if i 6= j
(3.1)

Using Theorem 1.2, the change in the upper-bound on the rate of decrease in the
Lyapunov function is defined as

−mTWw(x)− (−mTW ′w(x)) , −mT (4W ′(x))w(x)

−mT (4W ′(x))w(x) = −
N∑
i=1

mi(
N∑
j=1

αijξij‖xj‖2) (3.2)

According to the above, when the coupling is reduced, the upper bound on the decrease
in the Lyapunov function is larger compared to having a coupling strength of 1. So it can be
concluded that reducing the coupling may be beneficial in increasing the rate of convergence
toward stability.

We can therefore state the following theorem using the above result.

Theorem 3.1 An estimate for the increase in the overall system’s Lyapunov function’s
rate of decrease, as a result of reducing the coupling effects from a subsystem
j is

∑N
i=1mi(

∑N
j=1 αijξij‖xj‖2)
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3.3 Optimal Input to Apply

From the above section, it is clear that reducing the coupling may increase the rate of
decrease of the Lyapunov function for the overall system. If the states of other subsystems
are known, it should be possible for that subsystem to apply an input which would act
to reduce or negate the effect of coupling from other states. This section analyzes this
possibility.

We will analyze the system described in (1.1) where the input term is given by Biiui(k).
The matrix Bii is the input matrix of the system while ui(k) is free to be appropriately
chosen. The question we seek to answer is what would be the optimal input u(k) to apply.

To constrain the problem, we will limit our analysis to a system where only one sub-
system may transmit its state to all other subsystems at a given time step k. It is also
assumed that each of the subsystems are aware of the nature of the coupling matrices
Aij. Thus, when the other subsystems receive the state that has been transmitted, each of
them can apply an input to compensate or negate the effects of the coupling. Given that
subsystem j transmitted its state to all other subsystems, the problem of finding the best
input ui for subsystem i to apply in order to minimize the coupling effects from subsystem
j can be formulated as

Optimal ui(k) = argminui(k)‖Biiui(k) + Aijxj‖2 (3.3)

= −(BT
iiBii)

−1BT
iiAijxj (3.4)

In order to calculate the reduction in coupling achieved by applying this input, we can
substitute this optimal ui(k) back into (1.1) and obtain an expression for the new coupling
which we denote A′ij, as

A′ijxj = [−Bii(B
T
iiBii)

−1BT
ii + I]Aijxj .

Bounding both sides of the equation above in terms of the 2-norm one gets the following

‖Aij‖ = ‖ −Bii(B
T
iiBii)

−1BT
ii + I‖‖Aij‖

Then by comparing the the LHS and RHS of the above equation, we obtain an ex-
pression for the new reduced coupling e′ij as

e′ij = ‖ −Bii(B
T
iiBii)

−1BT
ii + I‖ . (3.5)
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Interestingly, the above result shows that the maximum possible reduction in coupling
is independent of the state of the subsystem. This makes it possible to calculate these
values prior to system operation for all subsystems.

Given the above results, one can now formulate a scheduling policy that can determine
which subsystem state to transmit at a given time slot. We assume for now that a central-
ized monitor is aware of the state of each subsystem. So the goal of this scheduling process
is to best schedule the transmission of state information so that when each subsystems
applies this received state information to reduce the coupling, it will result in the best
decrease in the overall Lyapunov function for that time step.

In the scheduling policy we propose in this section, the possible decrease in the Lya-
punov function is estimated by using the M-matrix based results from the previous Chapter.
The subsystem state whose transmission would lead to the largest decrease is chosen to
be transmitted. We particularly use the result of Theorem 3.1 to estimate the possible
increase in the rate of decrease of the Lyapunov function for a system. Since only one
subsystem will be transmitting at each time step, the difference in rate of decrease due to
transmission of a particular subsystem z can be estimated as −

∑N
i=1mie

′
izξiz‖xz‖. This

reduction of the result in according to Theorem 3.1 is possible since all the αij terms other
than for j = z will be zero. So only the state of the plant that is being transmitted affects
the change in the upper bound of the rate of decrease in the Lyapunov function.

3.4 Scheduling Algorithm

Combining the results above, we can formulate the following algorithm

Algorithm 3.1 The Precomputations:-

1. Compute the ξij terms using ξij = ‖Aij‖2.

2. Compute the robustness bounds ξv(Gi) using Equation (1.8) for each plant i.

3. Compute the W-matrix as given in (2.1).

4. Check if W is an M-matrix. If so, the system is connectively stable. Find a positive
row vector d such that dW is a positive vector.

5. Calculate the maximum possible reduction in coupling e′ij using (3.5).
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The scheduling policy:-

1. At each time step, and for each subsystem j, evaluate Pj = −
∑N

i=1mie
′
ijξij‖xj‖.

2. Pick the subsystem j whose transmission leads to the maximum decrease in the Lya-
punov function (i.e. argminjPj).

3. Each subsystem i 6= j will then apply the input ui as given in Equation (3.4).

As can be seen above, the steps that require the bulk of the computation can already
be calculated off-line and be stored. The run-time computations or the scheduling policy
itself require relatively simple operations of multiplications and additions.

3.5 Simulation

To evaluate the above scheduling policy, we evaluated it against four other policies via
simulations.

1. Normal Coupling: Here the system is left to evolve naturally. No states are trans-
mitted and no reduction in coupling takes place. This provides the natural evolution
of the system state to compare against other solutions.

2. H-norm Reduction: Applies the scheduling algorithm formulated in Algorithm 1.

3. Random: Randomly picks which state to send to the other plants at each time step.

4. Greedy: Picks the state to send by evaluating all the possibilities to send and picking
the one that gives the most reduction in the Lyapunov function defined in (1.6). This
is different from the ‘H-norm Reduction’ since the ‘H-norm Reduction’ is based on an
upper bound of the Lyapunov function given in Theorem 1.2. The ‘Greedy’ algorithm
evaluates the resulting state of each subsystem after a time step and the resulting
value of the Lyapunov function. In this way, it evaluates all the possible decreases in
Lyapunov function as a result of transmitting the state of each subsystem j. Then
it chooses the subsystem that results in the maximum decrease.
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5. Brute Force: This method operates in the same way as the Greedy Policy except
it looks ahead to multiple time steps to decide on which current transmission will
give the best reduction of the overall system state (as computed by the Lyapunov
function) in the future.

Note: The ‘Brute Force’ and ’Greedy’ require the exact decrease in the Lyapunov
function (unlike the ‘H-norm policy’ that operates using an upper bound’). To perform
such an evaluation, the scheduler needs access to the current state of the system as well as
all the possible resulting states of the system due to reduced coupling. Evaluating all the
possible resulting states of the system is a computationally heavy procedure and cannot
be supported by all systems. This makes ‘Brute Force’ and Greedy’ less desirable options
compared to the ‘H-norm reduction’ policy.

The reason for simulating the system with coupling and no scheduling algorithms is
that it allows us to measure the effect of reducing the coupling. Now as described in the
above sections, even though the scheduling policy requires only simple computations for
its operation, it still does need some computation. Therefore, it is also useful to compare it
against a Random scheduling policy where no computation is required and the subsystem
to transmit is arbitrarily selected. If a random scheduling policy performs as well as the
proposed scheduling policy, then it would be meaningless to implement the scheduling
policy on a system.

While a Random scheduling policy and ‘Normal Coupling’ were included to observe
whether the new scheduling scheme is justified, the ‘Brute-Force’ and ‘Greedy’ gives us a
measure of how well our scheduling policy performs against computationally heavy policies
that require future state information. Both ‘Greedy’ and ‘Brute Force’ policies are com-
putationally intensive to be implemented for a system but can give insight as to how well
one can perform if the scheduler were able to have more knowledge and resources. Since
the brute-force evaluates the possible improvement of the system state over multiple time
steps to the future, it can make a better decision on the subsystem state to transmit at a
given time such that it will have the best possible impact a certain number of time-steps
in to the future. The ‘Greedy’ policy on the other hand, is simply the ‘Brute-Force’ policy
that looks ahead to only by one time step. In other words, it transmits the state of the
subsystem that can have the best impact on the overall system in the next immediate time
step.

The simulations were conducted for systems with various number of subsystems, dif-
ferent number of state variables, and different interconnection topologies.

Figures 3.1 and 3.2 show a system with 5 subsystems where each contains 2 state
variables (the data for the system used in the simulation is provided in the Appendix).
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Figure 3.1: Value of Lyapunov function under different scheduling policies
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Figure 3.2: Comparison of improvement in performance by each scheduling policy
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Figure 3.1 shows the evolution of the state of each system under different scheduling
policies. The Figure 3.2 plots the percentage improvement of the four transmission policies
compared to the ‘Normal Coupling’ scenario.

Note that the ‘Brute-Force’, ‘Greedy’ and ‘H-norm reduction’ (our proposed scheduling
policies) perform equally in this case and therefore MATLAB plots it as one line. Also,
the lookahead was set to 2 time steps in the above simulation to save computation time.
A lookahead of more than 2 time steps resulted in a simulation times reaching more than
an hour.

As seen from the above plot, the scheduling algorithm proposed in the previous sections
does perform better than the random policy and ‘Normal Coupling’. The performance
difference can be high as 20% during certain periods. In general, while the proposed
scheduled policy does perform significantly better than the random scheduling policy and
‘Normal Coupling’, the ‘Greedy’ and ‘Brute-Force’ does perform better in systems with
certain number of states and combination of initial values. But this has not been by a
significant amount compared to the improvement over ‘Normal Coupling’ and the random
scheduling policy.

Therefore, the simulation results can be considered to validate the scheduling policy as
a competitive and reliable policy in minimizing the effects of coupling on the state of the
system.

From the Figure 3.2, it can be seen that the proposed algorithm gives more than a 50
percent improvement in performance compared to ‘Normal Coupling’ starting from around
40 time steps onwards. Also important is that the proposed algorithm performs as well as
a greedy algorithm and has a significant 15 percent improvement over random scheduling.

It must be noted that in some cases, with complex interconnections between subsystems,
random performs much worse than the proposed algorithm.

3.6 Summary

In this section, we have developed a centralized scheduling policy based on connective
stability. We have also provided simulation results that show the performance improvement
of the scheduling policy compared to competing policies. In the next chapter we will extend
the Algorithm 1 in this section by removing the constraint of transmitting one subsystem
state per time step.
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Chapter 4

Extensions

4.1 Introduction

In the previous chapter, we considered a centralized system where only one subsystem
is allowed to transmit at a given time. Here we relax this constraint by first studying a
decentralized system and then introducing simultaneous multiple transmissions.

4.2 Decentralized Control

We consider now the extension of the above scheduling policy in the absence of a centralized
controller. In such an arrangement, it is desirable that each subsystem performs part of the
computation required to decide which subsystem state should be transmitted at a given
time step.

The possible improvement of the decrease in the Lyapunov function given by Equation
3.2 can be simplified to −

∑N
i=1mie

′
ijξij‖xj‖ as we indicated in the previous section. To

evaluate the expression, one only requires knowledge of the W-matrix, the di and the
eigenvalues of Hi, all of which are computed off-line. Then the other piece of information
required is the state of the subsystem that will be transmitted.

Since each subsystem is aware of its own state, each subsystem j can evaluate the
expression −

∑N
i=1mie

′
ijξij‖xj‖. Then the subsystem that has the highest decrease should

be allowed to transmit its state.

Therefore the scheduling policy for a decentralized system will be as follows:-
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1. At each time step, each subsystem j evaluates Pj for Pj = −
∑N

i=1mie
′
ijξij‖xj‖, where

j ∈ {1, 2, ..N}

2. The subsystem with the smallest Pj (largest negative Pj) will transmit for that time
step.

The first step above differs from the previous centralized policy in that it only requires
each subsystem to have information about its own state and dynamics of the other sub-
systems. Since the information on the dynamics of each subsystem can be stored within
each subsystem, the first step above can proceed without any communication between the
subsystems during runtime.

Step 2 would now be different from the centralized policy in that there is no centralized
scheduler that can determine who has the smallest Pj. We will address the question of
dealing with this problem in a decentralized system when we formulate the scheduling
algorithm later in this Chapter.

4.3 Multiple Transmissions per Time Slot

In this section we consider a system where more than one subsystem may transmit per
time step. We will consider the number of transmissions to be limited to L where L ≤ N .
The goal will be to devise a scheduling policy that efficiently picks the number of plants
to transmit.

Let W ′(x) be the corresponding W matrix (as given in (3.1)) of the system. Recall that
in the case of a single subsystem transmitting per time-step, 4W ′(x) in Equation (3.1) will
have only one non-zero column corresponding to the subsystem that is transmitted. When
multiple subsystems are transmitted, there will be multiple non-zero columns in W ′(x).

Let 4Wz be the 4W ′(x) for the case where only one subsystem z will be transmitting
in the time slot. Then the matrix 4Wz has only one non-zero column at column z cor-
responding to the decrease due to transmission of subsystem z’s state. The 4W ′(x) can
now be written as a sum of 4Wz corresponding to each subsystem z that is transmitted.
Therefore, the increase in the decrease of the Lyapunov function per time step due to L
transmissions by subsystems z ∈ {1, 2, ..., L} can be rewritten as

−mT (4W ′
ij(x))w(x) = −mT (4W ′

1(x) + ...+4W ′
L(x))w(x)
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which can be simplified to

= −mT (4W ′
1(x))w(x) + ...+−mT (4W ′

L(x))w(x) . (4.1)

What the above result indicates is that to find the maximum attainable decrease in the
Lyapunov function due to multiple transmissions, one only needs to consider the decrease
by transmitting each subsystem state. So after evaluating the possible increase at each
time step, the N subsystems that give the maximum increase in the rate of decrease of the
Lyapunov function can be selected for transmission.

The scheduling policy for an interconnected system with L transmissions per time-step
can therefore be stated as follows:-

1. At each time step, the controller evaluates Pj for Pj = −
∑N

i=1mie
′
ijξij‖xj‖, where

j ∈ {1, 2, ..N}

2. The L subsystems with the smallest Pj (largest negative Pj) will transmit for that
time step.

For a decentralized system with L transmissions, the work of the controller in the above
scheduling policy will simply be done by each of the subsystems just as in the case for L = 1
discussed in the previous section. But for the step 2, a mechanism is needed that allows
all of the L subsystems to know that they may transmit in a given time slot. We now turn
our attention to proposing a solution to this problem.

4.4 Decentralized Scheduling Algorithm

In the previous sections, it was shown that in a decentralized system, the computations for
determining the impact of transmitting one’s own state can be computed by that subsystem
itself. But we still require a self-determining mechanism that allows the optimal subsystem
to transmit its state based on its computations. Since there is no centralized scheduler that
would have access to the possible impact that transmitting each subsystem state would
have, each subsystem has to determine by itself whether to transmit at a given time slot.

Previous work on decentralized systems do propose solutions to this problem. A work
by Tang [28] discusses the possibility of spreading information by flooding the network
with the information that is required to be transmitted. Such a system is pointed out as
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infeasible since it requires a lot of energy to transmit all information to every part of the
network, requires the subsystems to be aware of the system topology, and is prone to a
single point failure. The same work goes on to discuss a ”Controlled Hopwise Averaging
(CHA)” scheme as an alternative. The fundamental idea of this scheme is to use a function
that maps the decrease in the Lyapunov function to the next time to transmit. So each
subsystem can use its estimated decrease to determine when it should transmit next. For
this scheme to work, it is assumed that there is no propagation delay in the system and
no errors in transmission. The scheme is also asynchronous.

This makes the CHA scheme ideal for our current application as well. We will assume
that each subsystem has an internal timer that can be used to keep track of time. The
original centralized algorithm given in Algorithm 3.1 can now be rewritten as follows for a
decentralized system with L transmissions per time slot.

Algorithm 4.1 The Precomputations:-

1. Compute the ξij terms using ξij = ‖Aij‖2.

2. Compute the robustness bounds ξv(Gi) using Equation 1.8 for each plant i.

3. Compute the W-matrix as given in 2.1.

4. Check if W is an M-matrix. If so, the system is connectively stable. Find a positive
row vector d such that dW is a positive vector.

5. Calculate the maximum possible reduction in coupling e′ij using Equation 3.5.

The scheduling policy:-

1. At each time step, and for each subsystem j that is a candidate for transmission,
each subsystem j evaluates Pj = −

∑N
i=1mie

′
ijξij‖xj‖.

2. All subsystems then find the next time to transmit using f(Pj). The function f maps
the value of Pj (the rate of decrease in the Lyapunov Function) to a time delay after
which the subsystem should transmit.

3. Each subsystem waits for the period of time given by the function f and then transmits
its own state.
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4. If a subsystem receives L transmissions before transmitting its own state, then it no
longer waits to transmit it’s own state within that time slot. It will then use the
received state information in its input and moves back to step 1 in the scheduling
policy.

5. If a subsystem receives L − 1 transmissions after transmitting its own state, then it
will use the received state information in its input and moves back to step 1 in the
scheduling policy.

The function f in this scenario will have to be defined such that the probability of
two systems having the same ‘next time to transmit’ is unlikely. It would also need to
take into account the granularity of the unit of time perceived by each subsystem. The
choice of f will also depend on the dynamics of each subsystem and the interactions within
the subsystem. If the subsystems are similar in their dynamics and have similar coupling
interactions between subsystems, the probability of obtaining the same time delay is higher.
Similarly, if the dynamics of the subsystems are different or the coupling strength between
subsystems are different, there would be a greater freedom in choosing f . Therefore, we did
not investigate the possible functions that may be used for f since it is closely dependent
on the system and specific application. The problem is also a mapping problem which is
outside the scope of the scheduling problem discussed in this Thesis.

4.5 Transformed System

It would be interesting to consider at this point the question of how well the scheduling
policy performs on a system that has been transformed using a similarity transformation.
A previous work by Siljak [19] tells us that the estimate of the robustness bound of a
subsystem is exact when the system matrix Aii is of diagonal form. Thus, if we can reduce
the subsystems given in Equation 1.1 to have a diagonal system matrix, then hypothetically,
the corresponding robustness bound estimate will be more exact and hints toward a possible
performance improvement of the scheduling policy.

However, the situation is complicated by the fact that, although the robustness bound
is now exact, the other terms in the W-matrix given in Equation 1.3 have changed (due to
the transformation of the coupling matrices).

The analysis that follows is an attempt to study the possible effect that transforming
the system might have on the effectiveness of the scheduling policy by using simulations.
For simplification of the analysis, we will only consider a system containing homogeneous
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subsystems. It must also be noted that this is a simulation based analysis rather than
a rigorous mathematical analysis. The reason for this form of analysis is due to the fact
that the effects on the coupling matrices due to diagonalizing the system matrix using a
similarity transformation is not straightforward when there are no direct restrictions on
the matrices involved.

4.5.1 Diagonalization of the System Matrix

We will consider a system where Aii = Ajj ∀i, j ∈ {1, .., N} and assume the case where
Aii is diagonalizable as P−1i ΛiiPi where Pi is the matrix of eigenvectors of Aii and Λii is a
diagonal matrix containing the eigenvalues of Aii. We then diagonalize the system given
by 1.1 using a similarity transformation as follows

P−1i xi(k + 1) = ΛiiP
−1
i xi(k) + P−1i BiiPiP

−1
i ui(k) +

N∑
j=1

eijP
−1
i AijPiP

−1
i xj(k) . (4.2)

We may now denote P−1i xi[k] by x̄i[k], thus simplifying the above equation as

x̄i(k + 1) = Λiix̄i(k) + P−1i BiiPiūi(k) +
N∑
j=1

eijP
−1
i AijPix̄j(k) (4.3)

The following result follows immediately from the definition of connective stability

Lemma 4.1 If a system is connectively stable, the system obtained by the similarity trans-
formation of each of its subsystems is also connectively stable

We will now study the above system using simulations.

4.5.2 Simulation Results for Transformed System

Figures 4.1 and 4.2 below show the results of simulating a scheduling policy based on a
given system and its transformed system.

It must be noted that in the simulation for the transformed system, the transformed
system was run in parallel with a version of the regular system. However, the regular
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system was scheduled by using the scheduling policy on the data from the transformed
system. Both the transformed system and its corresponding version of the regular system
were updated using the state transmission that was determined for the transformed system.
Another separate version of the regular system was also run in parallel for comparison of
performance.

The reason for such a procedure is that it gives us the ability to compare the perfor-
mance effect by using the transformed system in the scheduling policy by measuring its
state size. In this arrangement, the state can be estimated using the same H-norm for both
systems. While the transformed system itself would have a different H-norm making the
comparison meaningless, the regular version run in parallel will have the same H-norm.

Figure 4.1 gives us an example of where the scheduling policy based on the transformed
system leads to worse performance compared to the scheduling policy based on the regular
system. Figure 4.2 gives the difference in performance as a percentage of the regular system
calculated as

Regular system’s state size− Transformed system’s state size

Transformed system’s state size
× 100% (4.4)

From the simulations, we can conclude that running the scheduling policy based on
a transformed system does not always lead to better performance since the algorithm
seems to perform better on the untransformed system compared to the transformed sys-
tem. Therefore we can conclude that in general, it is not guaranteed that we will have a
performance improvement by transforming the system to a diagonal form.

4.6 Summary

In this section, we have reformulated the centralized scheduling policy for a decentralized
system with multiple communication resources. We have also studied the possibility of
improving the performance of the scheduling policy by using a transformed system for
scheduling and shown that such a transformation does not guarantee an improvement in
performance.
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Figure 4.1: Comparison of state evolution
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Chapter 5

Conclusions

In this thesis, we have considered the problem of formulating a reliable scheduling policy
for classes of connected networks. The connective stability of a system guarantees that the
system will remain stable independent of the variations in effects due to interconnections.
This makes the proposed scheduling scheme reliable (with respect to maintaining stability)
since it operates by varying the interconnection strengths on connected systems. We began
by extending the previous results on connected systems to common network topologies in
order to obtain more simplified tests for connective stability of such interconnected systems.
These tests would then be the schedulability tests for the proposed scheduling policy.
Then using insights from this analysis and existing results, we proceeded to construct a
centralized scheduling policy for interconnected systems that were connectively stable. The
scheduling policy was then modified for a decentralized system and to support multiple
transmissions per time step. We also delved into the possible effects that transforming the
system using a similarity transformation might have on the performance of the proposed
scheduling algorithm. It was shown that applying the proposed scheduling algorithm to a
transformed system does not necessarily lead to an increase in performance and may cause
it to perform worse compared to an untransformed system.

For future research, one possible direction would be to extend the work on the possible
mapping functions that may be used for the decentralized algorithm. Such a function is
tightly dependent on the properties of the application and the dynamics of the system
and will therefore require careful study of specific systems in order to recommend possible
mapping functions.
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APPENDIX

The data used for simulating the interconnected network for comparison between various
scheduling policies.

A =



0.37 0.75 0 0 0 0 0 0 0 0
0.55 0.14 0 0 0 0 0 0 0 0

0 0 0.54 0.13 0 0 0 0 0 0
0 0 1.28 0.46 0 0 0 0 0 0

0.01 0.05 0.01 0.08 0.23 0.25 0 0 0 0
0.10 0.09 0.07 0.02 0.76 0.63 0 0 0 0
0.03 0.07 0.08 0.09 0.08 0.07 0.59 0.40 0.09 0.03
0.04 0.05 0.07 0.03 0.04 0.07 0.61 0.12 0.08 0.04

0 0 0.08 0.00 0 0 0.03 0.00 0.69 0.67
0 0 0.01 0.03 0 0 0.02 0.01 0.22 0.24



B =



0.45 0.33 0 0 0 0 0 0 0 0
0.54 0.05 0 0 0 0 0 0 0 0

0 0 0.38 0.96 0 0 0 0 0 0
0 0 0.02 0.27 0 0 0 0 0 0
0 0 0 0 0.09 0.67 0 0 0 0
0 0 0 0 0.32 0.36 0 0 0 0
0 0 0 0 0 0 0.19 0.44 0 0
0 0 0 0 0 0 0.67 0.65 0 0
0 0 0 0 0 0 0 0 0.92 0.52
0 0 0 0 0 0 0 0 0.84 0.86


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X0 =



50
50
50
50
50
50
50
50
50
50



Adjacency Matrix =


0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 0 1
0 1 0 1 0



Note: A, B are the system matrices for the interconnected system and X0 is the initial
state of the system. The adjacency matrix shows the topology of the system.
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