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Abstract

Longitudinal data arise commonly in many fields including public health studies and survey

sampling. Valid inference methods for longitudinal data are of great importance in scientific

researches. In longitudinal studies, data collection are often designed to follow all the

interested information on individuals at scheduled times. The analysis in longitudinal

studies usually focuses on how the data change over time and how they are associated

with certain risk factors or covariates. Various statistical models and methods have been

developed over the past few decades. However, these methods could become invalid when

data possess additional features.

First of all, incompleteness of data presents considerable complications to standard

modeling and inference methods. Although we hope each individual completes all of the

scheduled measurements without any absence, missing observations occur commonly in

longitudinal studies. It has been documented that biased results could arise if such a feature

is not properly accounted for in the analysis. There has been a large body of methods in

the literature on handling missingness arising either from response components or covariate

variables, but relatively little attention has been directed to addressing missingness in both

response and covariate variables simultaneously. Important reasons for the sparsity of the

research on this topic may be attributed to substantially increased complexity of modeling

and computational difficulties.

In Chapter 2 and Chapter 3 of the thesis, I develop methods to handle incomplete

longitudinal data using the pairwise likelihood formulation. The proposed methods can

handle longitudinal data with missing observations in both response and covariate variables.

A unified framework is invoked to accommodate various types of missing data patterns. The

performance of the proposed methods is carefully assessed under a variety of circumstances.

In particular, issues on efficiency and robustness are investigated. Longitudinal survey data

from the National Population Health Study are analyzed with the proposed methods.
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The other difficulty in longitudinal data is model selection. Incorporating a large num-

ber of irrelevant covariates to the model may result in computation, interpretation and

prediction difficulties, thus selecting parsimonious models are typically desirable. In par-

ticular, the penalized likelihood method is commonly employed for this purpose. However,

when we apply the penalized likelihood approach in longitudinal studies, it may involve

high dimensional integrals which are computationally expensive.

We propose an alternative method using the composite likelihood formulation. Formu-

lation of composite likelihood requires only a partial structure of the correlated data such

as marginal or pairwise distributions. This strategy shows modeling tractability and com-

putational cheapness in model selection. Therefore, in Chapter 4 of this thesis, I propose a

composite likelihood approach with penalized function to handle the model selection issue.

In practice, we often face the model selection problem not only from choosing proper covari-

ates for regression predictor, but also from the component of random effects. Furthermore,

the specification of random effects distribution could be crucial to maintain the validity of

statistical inference. Thus, the discussion on selecting both covariates and random effects

as well as misspecification of random effects are also included in Chapter 4.

Chapter 5 of this thesis mainly addresses the joint features of missingness and model

selection. I propose a specific composite likelihood method to handle this issue. A typical

advantage of the approach is that the inference procedure does not involve explicit missing

process assumptions and nuisance parameters estimation.
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Chapter 1

Introduction

1.1 Overview

Longitudinal data arise commonly in many fields including clinical trials and health re-

search. Data are typically collected by following up individuals over a period of time.

Statistical methods for longitudinal analysis have been quickly developed over the past

few decades (e.g. Laird and Ware, 1982; Diggle et al., 2002). For dealing with different

research interests in longitudinal data, three classes of models are commonly employed in

applications. The three classes of models are mixed effects models, marginal models, and

transition models (Fitzmaurice et al., 2004).

Mixed effects models are desirable when research focuses on the response for an in-

dividual rather than for the entire population. Early studies of this area involves linear

mixed models for repeated measurements proposed by Harville (1977) and Patterson and

Thompson (1971), who develop the restricted maximum likelihood (REML) to modify the

loss of degree of freedom issue arising in the estimation for the variance of components.

Laird and Ware (1982) propose estimation method for linear mixed effects models using

the EM algorithm (Dempster et al., 1977) and the empirical Bayes method. Extensions

that accommodate both linear mixed effects models (LMM) and generalized linear models

1



(GLM) (McCullagh and Nelder, 1989) are generalized linear mixed effects models (GLMM)

(Breslow and Clayton, 1993; Stiratelli et al., 1984), which have been widely used for various

settings.

Marginal models are commonly used in population studies. A typical estimation

method for marginal models is the so-called generalized estimating equations (GEE) ap-

proach (Liang and Zeger, 1986). Early theoretical discussions on estimating functions in-

clude Godambe (1960, 1976) and Godambe and Thompson (1984). Liang and Zeger (1986),

Zeger and Liang (1986) and Zeger et al. (1988) introduce the idea of estimating functions

into the setting of longitudinal studies. The GEE method does not require specification of

the full joint distribution for the longitudinal data, but only the marginal structure. In its

implementation, a working correlation matrix is called in if the true association structure

for longitudinal data is not modeled. Consistent estimates of parameters in the marginal

structure can be obtained, provided the mean structure is correctly specified. An extension

of the GEE method, named GEE2, is discussed by Prentice (1988) and Zhao and Prentice

(1990) among others. The GEE2 approach facilitates estimation of association parameters.

Transitional models (Molenberghs and Verbeke, 2005) focus on modeling the depen-

dence of individual’s response on its history, together with covariates. Therefore, it is

convenient if the research interest lies in the influence of previous outcomes on the current

response. Frequently, transition models are formulated in conjunction with certain Markov

conditions, which restrict the dependence of the current response to a limited number of

past observations.

Longitudinal Data Arising in Clusters

In many situations, longitudinal data arise in clusters. A typical case is sociological survey

studies that involve communities, families or schools with repeated assessments of indi-

vidual members over time. For example, Payment et al. (1991) conduct a randomized

intervention trial based on 606 households. The study measures the health outcomes of in-

terest for each household member over a 15-month period. Cameron et al. (1999) study the
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social influences on smoking prevention by following 100 elementary schools from grades 6

to 8.

There are many potential goals when analyzing longitudinal data arising in clusters.

For example, Roy and Lin (2002) discuss the EM algorithm to handle outcomes with

nonignorable dropouts and missing covariates. Yi and Cook (2002) propose a weighted

GEE approach to handle longitudinal data arising in clusters with missingness. Fieuws and

Verbeke (2006) discuss a pairwise fitting strategy under the framework of mixed models.

1.2 Modeling Strategies

In this section, we introduce basic notations and symbols. Suppose that there are n subjects

with m visits. Let Yij denote the response for subject i at visit j, i = 1, 2, . . . , n, j =

1, 2, . . . ,m. Take Yi = (Yi1, Yi2, . . . , Yim)T , i = 1, 2, . . . , n. Let Xij = (Xij1, . . . , Xijp)
T be the

p×1 covariate vector for subject i in visit j, and Xi = (XT
i1, X

T
i2, . . . , X

T
im)T . The interest of

longitudinal studies usually lies in understanding the relationship between response Yi and

covariates Xi. In particular, we let f(Yi|Xi; θ) denote the conditional probability density

or mass function of Yi given Xi, where parameter θ takes values in a parameter space Θ.

1.2.1 Generalized Linear Models

Specification of f(Yi|Xi; θ) often involves modeling the marginal distribution f(Yij|Xi; θ)

for which generalized linear models (GLM) family can be introduced with

f(Yij|Xi; θ) = exp

[{
Yijτij − b(τij)

}
/a(φ) + c(Yij;φ)

]
, (1.1)

where a(·), b(·) and c(·) are some specific functions, φ is a scale parameter and τij is the

canonical parameter with E(Yij|Xi) = b′(τij) and V ar(Yij|Xi) = a(φ)b′′(τij). We further

assume that the marginal distribution of Yij depends only on the covariate vector for subject

3



i at time j (Pepe and Anderson, 1994), and thus f(Yij|Xi; θ) = f(Yij|Xij; θ). Furthermore,

a regression model can be introduced as

h
{
E(Yij|Xi)

}
= XT

ijβ,

where h is a differentiable monotone link function, and β is the p× 1 vector of regression

coefficients. Particularly, the canonical link function h satisfies τij = h
{
E(Yij|Xi)

}
= XT

ijβ.

If the Yij are assumed to be independent for all j = 1, . . . ,m, given covariates Xi, the

f(Yi|Xi; θ) is then given by

f(Yi|Xi; θ) =
m∏
j=1

f(Yij|Xi; θ).

However, this assumption is normally invalid for longitudinal settings. Therefore, various

types of joint distributions are proposed to feature different association structures of lon-

gitudinal data. For instance, multivariate normal distributions are commonly employed to

handle continuous data, and multivariate probit models (e.g. Ashford and Sowden, 1970;

Ochi and Prentice, 1984) are used for binary outcomes. Although there are some available

multivariate distributions, directly modeling the joint distribution of f(Yi|Xi; θ) for indi-

vidual applications still remains to be a daunting task if not impossible (Lindsay et al.,

2011).

1.2.2 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) are used to handle associated observations

by adding random effects and further assuming independence for the Yij (j = 1, . . . ,m)

given covariates and random effects. Denote ui to be the vector for random effects. Let

Zij = (Zij1, . . . , Zijq)
T be the q × 1 random effects covariate vector for subject i at visit j,

and Zi = (ZT
i1, Z

T
i2, . . . , Z

T
im)T . Zi is most typically a subset of columns of Xi. Given random

effects ui and covariates Xi and Zi, the conditional distribution of Yij is given by

f(Yij|Xi, Zi, ui; θ) = exp
[
{Yijτij − b(τij)}/a(φ) + c(Yij;φ)

]
, (1.2)
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where with similar notations to (1.1), E(Yij|Xi, Zi, ui) = b′(τij), Var(Yij|Xi, Zi, ui) =

a(φ)b′′(τij) and the regression model is specified as

h{E(Yij|Xi, Zi, ui; θ)} = XT
ijβ + ZT

ijui,

in which, again, f(Yij|Xi, Zi, ui; θ) = f(Yij|Xij, Zij, ui; θ) is assumed.

As a result, the joint distribution of f(Yi|Xi; θ) is obtained by integrating out the

unobservable random effects ui:

f(Yi|Xi, Zi) =

∫ { m∏
j=1

f(Yij|Xi, Zi, ui)

}
f(ui)dui, (1.3)

where f(ui) is the joint distribution for random effects.

The integrals in (1.3) can be intractable as there are generally no closed forms in GLMM

settings. To deal with this issue, many algorithms are developed to approximate the

integrals, such as Gauss-Hermite quadrature (Longford, 1994), Laplacian approximation,

adaptive Gauss-Hermite quadrature (Pinheiro and Bates, 1995), penalized quasi-likelihood

(Breslow and Clayton, 1993), marginal quasi-likelihood (Goldstein, 2002), Monte Carlo

Newton-Raphson and Monte Carlo EM (McCulloch, 1997; Booth and Hobert, 1999).

1.2.3 Generalized Estimating Equations

Generalized estimating equations (GEE) methods circumvent the direct modeling on f(Yi|Xi; θ)

by basing inference on appropriately “combining” marginal distribution elements of Yi. For

simplicity, we rewrite the notations in (1.1) with E(Yij|Xi) = µij and V ar(Yij|Xi) = vij.

Take µi = (µi1, . . . , µim)T , and θ = (βT , ξT )T , where ξ represents all parameters other than

β. Define

Ui(β, ξ) = DiV
−1
i (Yi − µi), (1.4)

where Di = ∂µTi /∂β, Vi = B
1/2
i Ri(ξ)B

1/2
i , Bi = diag(vi1, . . . , vim), and Ri(ξ) is a working

correlation matrix for Yi. The GEE approach estimates β by solving
n∑
i=1

Ui(β, ξ) =
n∑
i=1

DiV
−1
i (Yi − µi) = 0,
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where the correlation parameters ξ are treated as nuisance. Parameters ξ can be estimated

via the method of moments given β (Liang and Zeger, 1986). An advantage of the GEE

approach is that the estimator of regression coefficients β is robust even if the correlation

structure Ri(ξ) is misspecified.

1.3 Composite Likelihood

Composite likelihood, initiated by Besag (1975, 1977) and further developed by Lindsay

(1988), Arnold and Strauss (1991) and Cox and Reid (2004), provides a useful inference

alternative in place of the full likelihood based inference. Instead of specifying the full

distribution, we only need to specify some partial structures of f(Yi|Xi; θ) in the composite

likelihood formulation. The composite likelihood method can ease issues related to complex

modeling. Moreover, inference results based on the composite likelihood formulations are

robust in the sense that association structures higher than those used in the formulation

can be misspecified. These advantages become more obvious when the dimension of Yi

increases.

Efficiency loss is the typical price that the composite likelihood method pays as opposed

to the likelihood approach. Geys et al. (1997, 1998) confirm that the composite likelihood

estimators are less efficient than maximum likelihood. Kuk (2007) claims that the pairwise

likelihood inference can be inefficient and a hybrid pairwise likelihood method is proposed

to augment efficiency. Simulation studies by Troxel et al. (1998) empirically demonstrate

that inference based on the marginal likelihood method is less efficient than that of the full

likelihood method.

Many applications of composite likelihood methods can be found in a variety of set-

tings. To name some, for example, Heagerty and Lele (1998), Curriero and Lele (1999) and

Varin et al. (2005) discuss the composite likelihood estimation approach for binary spatial

data analysis, while Fearnhead and Donnelly (2002) use the composite likelihood idea to

handle genetic data. Hanfelt (2004) takes the composite conditional likelihood approach
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for sparse clustered data. Chatelain et al. (2008) study pairwise likelihood estimation for

multivariate mixed Poisson models. Multilevel probit models are discussed with the com-

posite likelihood method by Kuk and Nott (2000). Renard et al. (2002), Zhao and Joe

(2005) and Joe and Lee (2009) conduct pairwise likelihood inferences for analyzing corre-

lated binary data. Yi et al. (2011b) and He and Yi (2011) employ the composite likelihood

method to handle clustered binary data with missing observations. Wei et al. (1989) use

marginal distribution to handle multivariate incomplete failure time data. Parner (2001)

uses composite likelihood to analyze familial survival data. Gao and Song (2011) propose

the composite likelihood EM algorithm and apply it to handle multivariate hidden Markov

models. Detailed discussion and review on the composite likelihood method can be found

in Lindsay et al. (2011), Varin (2008) and Varin et al. (2011).

1.3.1 Formulation of Composite Likelihood

With longitudinal response Yi = (Yi1, Yi2, . . . , Yim)T , we consider the composite likelihood

formulation following Lindsay et al. (2011):

C(θ) =

Ncl∏
k=1

{
L(Sk; θ)

}wk , (1.5)

where Ncl is the number of factors in C(θ), each L(Sk; θ) is a user-selected sub-likelihood

generated from f(Yi; θ) with Sk being a conditional or marginal set of variables, and wk is

a certain weight.

For example, if Sk consists of a single or paired response component, the log composite

likelihood contributed from subject i is given by

`c(Yi; θ) =
∑
j<j′

`c(Yij, Yij′ ; θ) =
∑
j<j′

{Bijj′`(Yij, Yij′ ; θ)−Bij`(Yij; θ)−Bij′`(Yij′ ; θ)} , (1.6)

where Bijj′ , Bij and Bij′ are scalar weights. When all Bijj′ = 1 and Bij = Bij′ = 0,

equation (1.6) results in all-pairwise marginal log likelihood (APW), obtained by consid-

ering
∏

j<j′ f(Yij, Yij′ ; θ). When all Bijj′ = 2 and Bij = Bij′ = 1, equation (1.6) gives
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all-pairwise conditional log likelihood (APC), obtained by considering
∏

j 6=j′ f(Yij|Yij′ ; θ).
Pairwise marginal or pairwise conditional likelihood are perhaps the most widely used

formulations. In our following discussions, we will focus on such forms.

1.3.2 Statistical Properties

Consistency

Under regularity conditions, equation (1.6) provides consistent estimators of θ, since all el-

ements in the right side of the equation have zero expectation, E {∂ log f(Yij, Yij′ ; θ)/∂θ} =

0. That is,

E
{∂ log f(Yij, Yij′ ; θ)

∂θ

}
=

∫
∂ log f(Yij, Yij′ ; θ)

∂θ
f(Yi1, Yi2, . . . , Yim; θ)dYi1dYi2 · · · dYim

=

∫
∂ log f(Yij, Yij′ ; θ)

∂θ
f(Yij, Yij′ ; θ)dYijdYij′ = 0.

Efficiency

Next, we consider possible efficiency loss in contrast to the full likelihood method. Let

S(θ) =
∑n

i=1 ∂ log f(Yi; θ)/∂θ be the score function obtained from the full likelihood, and

H(θ) =
∑n

i=1

∑
j<j′ ∂`c(Yij, Yij′ ; θ)/∂θ be the composite score function, respectively. The

Godambe information matrix (Godambe, 1991) is then given by

IH(θ) = E{∂H(θ)/∂θ}T
[
E{H(θ)HT (θ)}

]−1

E{∂H(θ)/∂θ},

and

IS(θ) = E{S(θ)ST (θ)},

for the composite and full likelihood, respectively. If θ is a scalar, Lindsay (1988) indicates

that

IH(θ) =
Cov2{H(θ), S(θ)}

Var(H(θ))
= ρ2

H(θ),S(θ)IS(θ) (1.7)
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where ρH(θ),S(θ) denotes the linear correlation coefficient between H(θ) and S(θ). Therefore,

it implies that compared to the full likelihood, the composite likelihood method may incur

efficiency loss.

To further explain the efficiency loss issue, we propose a general framework to portray

the relationship between the full likelihood and the composite likelihood derived from

equation (1.6):

log f(Yi; θ) = k

{∑
j<j′

`c(Yij, Yij′ ; θ) +
∑
j<j′

˜̀
ijj′(θ)

}
, (1.8)

where k = 1/{
∑

j<j′ Bijj′} (
∑

j<j′ Bijj′ 6= 0) and ˜̀
ijj′(θ) has

Bij`(Yij; θ) +Bij′`(Yij′ ; θ) +Bijj′ log f(Yi|Yij, Yij′ ; θ).

It can be seen from equation (1.8) that composite likelihood can be viewed as a partial

“section” from full likelihood with a term (i.e. ˜̀
ijj′(θ)) removed.

Let H̃(θ) =
∑n

i=1

∑
j<j′ ∂

˜̀
ijj′(θ)/∂θ. Suppose we still assume θ to be scalar, and apply
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the argument in equation (1.7), we can obtain

IH(θ)

=
cov2(S(θ), H(θ))

Var(H(θ))

=
cov2(k(H(θ) + H̃(θ)), H(θ))

Var(H(θ))

=
k2
{

Var(H(θ))2 + 2cov(H(θ), H̃(θ))Var(H(θ)) + cov2(H(θ), H̃(θ))
}

Var(H(θ))

= k2
{

Var(H(θ)) + 2cov(H(θ), H̃(θ)) +
cov2(H(θ), H̃(θ))

Var(H(θ))

}
= k2

{
Var(H(θ)) + 2cov(H(θ), H̃(θ)) + Var(H̃(θ))− Var(H̃(θ))

+
cov2(H(θ), H̃(θ))

Var(H(θ))Var(H̃(θ))
Var(H̃(θ))

}
= k2

{
Var(H(θ)) + 2cov(H(θ), H̃(θ)) + Var(H̃(θ))− Var(H̃(θ))(1− ρ2

H(θ),H̃(θ)
)
}

= k2
{

Var(H(θ) + H̃(θ))− Var(H̃(θ))(1− ρ2
H(θ),H̃(θ)

)
}

= IS(θ)− k2Var(H̃(θ))(1− ρ2
H(θ),H̃(θ)

).

Thus, we can have an intuitive idea that the information loss of composite likelihood

depends on both the variance of the “removed” term and the correlation between the

composite likelihood score function and the “removed” term.

1.3.3 Computational Issue

The lower-dimension modeling strategy in composite likelihoods leads to computation

cheapness in many studies. In particular, it reduces the dimensions of integrals in many

scenarios. For example, GLMM models with crossed random effects often involve high-

dimensional intractable integrals. Bellio and Varin (2005) propose pairwise likelihood ap-

proach to reduce 20-dimensional integrals to 3-dimensional integrals in the analysis of
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salamander mating data. Troxel et al. (1998) use the implementation of marginal likeli-

hood to reduce high-dimensional integrals for longitudinal data analysis. Moreover, Fieuws

and Verbeke (2006) argue that computation can become difficult as the dimension of the

random-effects vector increases, even in the case of linear mixed models where the integrals

can be calculated analytically. They introduce a pairwise modeling strategy to circumvent

this problem.

Parzen et al. (2007) and Lindsay et al. (2011) discuss that the calculation of the like-

lihood functions for all pairs can be computational expensive. If the composite likelihood

functions include all bivariate distributions, the number of pairs could also increase fast as

the data dimension increases. However, this issue of composite likelihood could be handled

with parallel computing facilities (Almasi and Gottlieb, 1989), in which many simpler cal-

culations are carried out simultaneously under the computer architecture with multicore

processors. Thus, the composite likelihood is promising in many applications with parallel

computing resources.

1.4 Model Selection

Model selection is an important topic in statistical inference. When more than one model

is possible to fit the data, we are interested in selection of the one that fits data the best

or nearly the best. To achieve this goal, many approaches are developed. Below we discuss

several strategies of model selection.

1.4.1 Best Subset Selection

A large family of model selection methods is based on the best subset selection. Normally,

the best subset selection first conducts likelihood estimation for all possible candidate

models, and then calculates a measure corresponding to a certain criterion for each model.

The candidate model with minimum (or maximum) criterion value would be preferred.
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Denote `(Y ; θ) to be the log full likelihood function. Some well-known information criteria

involve the Akaike information criterion (AIC) (Akaike, 1973)

AIC = −2`(Y ; θ) + 2k,

where k is the dimension of θ, and Bayesian information criterion (BIC) (Schwarz, 1978)

BIC = −2`(Y ; θ) + k log n.

Further studies in this area include Konishi et al. (2004) for applying the BIC criterion to

the choice of smoothing parameters and the adaptive model selection approach proposed

by Shen and Ye (2002).

Note that the AIC/BIC methods can only be applied when a full likelihood function

is available. Varin and Vidoni (2005) discuss a composite likelihood Akaike information

criterion (cAIC) with

cAIC = −2`c(Y ; θ) + 2× df(θ),

where `c(Y ; θ) is the log composite likelihood function and the effective number of degrees

of freedom df(θ) is defined as

df(θ) = tr
{
J(θ)H−1(θ)

}
.

Here J(θ) =
∑n

i=1{∂`c(Yi; θ)/∂θ}{∂`c(Yi; θ)/∂θ}T and H(θ) = −∂2`c(Y ; θ)/∂θ∂θT . Gao

and Song (2010) propose a composite likelihood Bayesian information criteria (cBIC) with

cBIC = −2`c(Y ; θ) + log(n)× df(θ),

1.4.2 Penalized Likelihood

Although the best subset selection is widely used in statistical inference, Fan and Li (2001,

2006) argue that these selection procedures ignore stochastic errors inherited in the stages
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of variable selections, and their computational time increases exponentially with the pa-

rameter dimensionality. To overcome this problem, many techniques involving simultane-

ous estimation and variable selection are developed. These include the bridge regression

(Frank and Friedman, 1993), the least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996, 2011), smoothly clipped absolute deviation (SCAD) penalty (Fan and

Li, 2001), least angle regression (LARS) (Efron et al., 2004), elastic net (Zou and Hastie,

2005), adaptive LASSO (Zou, 2006), minimax concave (MCP) penalty (Zhang, 2010) and

LASSO regression with the strong heredity constraint (Choi et al., 2010). Other studies

of model selections such as single index methods can be found in Naik and Tsai (2001),

Kong and Xia (2007), etc.

Fan and Li (2001, 2004, 2006) propose a unified penalized likelihood framework that

extends these approaches to generalized linear models (GLM). Similar extensions can also

be found in Park and Hastie (2007). For variable selection, a penalized likelihood can be

written as

`pen(Y ; θ) = `(Y ; θ)− n
p∑
s=1

pλ(|βs|), (1.9)

where pλ(|βs|) is a penalty function for the s-th element in β. Various penalty functions

can be implemented. For instance, the SCAD penalty (Fan and Li, 2001) is

pλ(|βs|) = λ

∫ |βs|
0

min
{

1,
(aλ− x)+

(a− 1)λ

}
dx,

and LASSO penalty (Tibshirani, 1996) is taken as

pλ(|βs|) = λ|βs|,

for some a > 2 and λ > 0.

According to the above examples, it can be seen that the variable selection can be

achieved by introducing penalized functions. The influence of the penalty can be simply

described as “pressing down except zero”, which leads to a function that is much easier to

have extreme value at zero. To further illustrate this, we consider a toy example with only
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one observation y and one parameter β for regression model y = β + ε, where ε ∼ N(0, 1).

Then the log likelihood function is logL = − log(
√

2π)− (y − β)2/2 and the penalized log

likelihood function is PlogL = − log(
√

2π) − (y − β)2/2 − pλ(|β|). Here we set a = 3.7,

λ = 0.5 and y = 0,−0.5, 0.5, 2, and plot both SCAD and LASSO functions against different

values of β. The likelihood estimates are obtained by maximizing likelihood functions with

respect to β. Let β̂logL and β̂PlogL denote the estimates from logL and PlogL likelihood

functions, respectively. Figures 1.1 and 1.2 display the comparison between logL and

PlogL with SCAD and LASSO penalties, respectively. It can be seen that the SCAD and

LASSO penalties “press down” the likelihood functions except for the points with β = 0.

Therefore, comparing with β̂logL, β̂PlogL is more likely to have β̂PlogL = 0.

14



−1.0 −0.5 0.0 0.5 1.0

−
3.

0
−

2.
0

−
1.

0
0.

0

β

F
un

ct
io

n 
V

al
ue

y = 0

β̂PlogL=β̂logL=0

−1.0 −0.5 0.0 0.5 1.0

−
3.

0
−

2.
0

−
1.

0
0.

0

β

F
un

ct
io

n 
V

al
ue

y = 0.5

β̂PlogL=0 β̂logL=0.5

−1.0 −0.5 0.0 0.5 1.0

−
3.

0
−

2.
0

−
1.

0
0.

0

β

F
un

ct
io

n 
V

al
ue

y = − 0.5

β̂PlogL=0β̂logL=− 0.5

−1 0 1 2 3

−
5

−
4

−
3

−
2

−
1

0

β

F
un

ct
io

n 
V

al
ue

y = 2

β̂PlogL=2

β̂logL=2

Figure 1.1: Comparison between the log likelihood function (logL) and the penalized log likelihood

function (PlogL) with SCAD penalty. : logL function; : PlogL function. The estimates

from logL and PlogL are labeled as β̂logL and β̂PlogL, respectively.
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Figure 1.2: Comparison between the log likelihood function (logL) and the penalized log likelihood

function (PlogL) with LASSO penalty. : logL function; : PlogL function. The estimates

from logL and PlogL are labeled as β̂logL and β̂PlogL, respectively.

Now we discuss the implementation procedure. In principle, model selection and es-

timation results can be obtained by maximizing the penalized log likelihood function in

(1.9). However, the penalty functions such as SCAD and LASSO are singular at the origin,

and they do not have continuous second order derivatives. Following Fan and Li (2001), a

local approximation approach is available to approximate the penalty term by a quadratic

function. This approach is based on the fact that when βs is close to the true value βs0,
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we have {
pλ(|βs|)

}′
= p′λ(|βs|)sgn(βs) ≈ {p′λ(|βs0|)/|βs0|}βs,

for βs0 6= 0. Then we have

{
pλ(|βs|)

}′′ ≈ [{p′λ(|βs0|)/|βs0|}βs]′ = p′λ(|βs0|)/|βs0|,

which leads to the Newton-Raphson algorithm that can be used in searching for the esti-

mates.

1.4.3 Model Selection for Longitudinal Data

Recently, many researchers extend model selection methods to longitudinal data analysis.

To deal with a correlated dataset, Liu et al. (1999) propose a generalized cross-validation

selection method based on the Predicted Residual Sum of Squares (PRESS). Pauler (1998)

proposes a BIC method for choosing fixed effects in normal linear mixed models, and

Weiss et al. (1997) conduct fixed effects selection in random effects models using Bayesian

approaches. Pinheiro and Bates (2000) discuss the use of likelihood ratio tests, AIC and

BIC for selecting fixed effects and random effects under mixed effect models.

Much recent work focuses on the model selection on both fixed and random effects

in longitudinal data studies. Yafune et al. (2005) discuss an extended information crite-

rion and Vaida and Blanchard (2005) discuss a conditional Akaike information criterion,

respectively. Moreover, Smith and Kohn (2002), Chen and Dunson (2003) and Kinney

and Dunson (2007) propose Bayesian approaches for fixed and random effects selections.

Under the penalized likelihood framework, Bondell et al. (2010) discuss the penalized joint

likelihood method with an adaptive penalty for the selection and estimation of both fixed

and random effects, and Ibrahim et al. (2010) propose a method for a general class of

mixed effects models using maximum penalized likelihood estimation along with SCAD

and adaptive LASSO penalty functions.
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Furthermore, semiparametric models (Diggle et al., 2002) are widely adopted to analyze

longitudinal data with parametric fixed effects to represent covariate effects and a smooth

function to model the time effects. Fan and Li (2004) propose model selection and esti-

mation procedures for regression covariates with semi-parametric models. Ni et al. (2010)

discuss a double-penalized likelihood approach, where two types of penalties are jointly

imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric base-

line function and a nonconcave shrinkage penalty on linear coefficients to accommodate

model sparsity. Other work related to longitudinal model selection includes penalized GEE

approaches discussed by Fu (2003), Johnson et al. (2008) and Tong et al. (2009).

1.5 Missing Data in Longitudinal Studies

Suppose we fit a dataset with model f(Yi|Xi; θ) and the observations involve incomplete

response. Let Ri = (Ri1, . . . , Rim)T be the corresponding missing data indicator vector,

where Rij = 1 if Yij is observed and Rij = 0 if Yij is missing.

Monotone missing data patterns occur if a subject misses one assessment, returning

to the study is impossible. That is, Rij = 0 implies Rij′ = 0 whenever j′ > j. Monotone

missingness is also phrased as drop-out. Otherwise, missing data patterns are called non-

monotone. That is, a subject may miss one assessment, but returning to the study is still

possible, this is also referred to as intermittent missingness.

For ease of exposition, sometimes we write Yi = (Y obs
i , Y mis

i ), where Y obs
i and Y mis

i

represent subvectors consisting of observed and unobserved components of Yi, respectively.

Either Y obs
i or Y mis

i can be null, depending on whether or not Yij (j = 1, . . . ,m) is observed.

1.5.1 Missing Data Mechanism

Early work on dealing with missing data involves complete-case/available-data analysis

(Kim and Curry, 1977) and naive imputation missing values (Buck, 1960). Recent work is
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generally based on the framework discussed by Rubin (1976) and Little and Rubin (2002).

Missing data mechanism is often classified into three classes: missing completely at random

(MCAR), missing at random (MAR) and missing not at random (MNAR). MCAR features

the situation where the missing data probability is independent of the variables subject to

missingness, given covariates

P (Ri|Yi, Xi) = P (Ri|Xi).

MAR says that given covariates, the missing data probability may depend on the vari-

ables prone to missingness, but only depend on the observed variables:

P (Ri|Yi, Xi) = P (Ri|Y obs
i , Xi).

MNAR facilitates the most general situation for which the missing data probability can

depend on the unobserved data, even conditional on covariates:

P (Ri|Yi, Xi) = P (Ri|Y obs
i , Y mis

i , Xi).

1.5.2 Likelihood-Based Methods

Likelihood approaches for incomplete longitudinal data are developed by constructing the

joint distribution of response variable Yi and the missing data indicators Ri, given the

covariates Xi. Three classes of likelihood-based models are commonly applied. One is

based on the so-called selection models (Little and Rubin, 2002) with the joint distribution

of Yi and Ri factorized as

f(Ri, Yi|Xi; θ, α) = f(Ri|Yi, Xi;α)f(Yi|Xi; θ), (1.10)

where the distribution of Ri given response and covariates involves parameter α, which

is assumed to be functionally independent of θ, the parameter vector associated with the
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response model. Another approach is pattern-mixture models (Little, 1995; Thijs et al.,

2002), in which the factorization of the joint distribution is

f(Ri, Yi|Xi; δ, γ) = f(Yi|Ri, Xi; δ)f(Ri|Xi; γ),

where the distribution of Yi is modeled conditionally on both covariates and missing data

indicators, and parameters δ and γ are often assumed to be distinct.

Furthermore, shared-parameter models (Wu and Carroll, 1988; Albert and Follmann,

2003) assume that Yi and Ri are conditionally independent, given a random variable ξi,

therefore, we can write

f(Ri, Yi|Xi; δ, γ) =

∫
f(Yi|Xi, ξi; δ)f(Ri|Xi, ξi; γ)f(ξi) dξi,

where f(ξi) is the density function for the random variable ξi.

When the research interest focuses on the model of f(Yi|Xi; θ), it is often natural to

use selection models, where the response model does not include any missing indicators.

In this thesis, we limit the discussion mainly to selection models. In particular, inference

can be achieved using the observed likelihood

Li(Y
obs
i , Ri|Xi; θ, α) =

∫
f(Y obs

i , Y mis
i |Xi; θ)f(Ri|Y obs

i , Y mis
i , Xi;α)dY mis

i . (1.11)

When the missing mechanism is MAR (or MCAR), equation (1.11) becomes

Li(Yi, Ri|Xi; θ, α) =

∫
f(Y obs

i , Y mis
i |Xi; θ)f(Ri|Y obs

i , Y mis
i , Xi;α)dY mis

i

=

∫
f(Y obs

i , Y mis
i |Xi; θ)f(Ri|Y obs

i , Xi;α)dY mis
i

= f(Ri|Y obs
i , Xi;α) ·

∫
f(Y obs

i , Y mis
i |Xi; θ)dY

mis
i

= f(Ri|Y obs
i , Xi;α) · f(Y obs

i |Xi; θ).

Since we also assume α and θ to be functionally independent, inference about θ can directly

be conducted based on the model f(Y obs
i |Xi; θ) for the observed data only and the missing
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data model can be ignored. When the missing mechanism is MNAR, the integrals in the

likelihood function (1.11) are often intractable.

Maximization of the observed likelihood can be implemented using the Newton-Raphson

algorithm. However, the Newton-Raphson algorithm could be sensitive to the initial val-

ues. An alternative approach for handling missing data is to use the so-called Expectation

Maximization (EM) algorithm (Dempster et al., 1977). To be specific, the EM algorithm

involves the E and M steps. In the E-step, we evaluate the conditional expectation of the

complete data log likelihood:

Qi(θ, α|θ(t), α(t)) = E
{

logLi(Yi, Ri|Xi; θ, α)|Y obs
i , Xi, Ri; θ

(t), α(t)
}

(1.12)

where θ(t) and α(t) denote the parameters’ value estimated from the previous tth iteration,

and Li(Yi, Ri|Xi; θ, α) is the complete data likelihood contributed from subject i, which is

determined by (1.10). The M-step maximizes Qi(θ, α|θ(t), α(t)) with respect to parameters

θ and α, and the maximizer is taken as θ(t+1) and α(t+1). The EM algorithm iterates the E

and M steps until (θ(t+1), α(t+1)) reaches convergence.

We comment on the numerical performance of the Newton-Raphson and EM methods.

Although directly maximizing observed likelihood functions via Newton-Raphson can reach

the estimation purpose, the maximization might be very sensitive to starting values. Poor

starting values can lead to the failure of convergence. The EM algorithm is relatively more

stable but is subject to slow convergence. Often, a combined the Newton-Raphson and the

EM approach is used, where the algorithm starts with the EM, then the Newton-Raphson

is used for speed after a certain number of iterations.

In implementing the E-step, commonly, the integrals in equation (1.12) have no ana-

lytical form. A typical method to handle this is the so-called MC-EM algorithm (Ibrahim

et al., 2001), which approximates the intractable expectation form. Namely, for a suffi-

ciently large Mi, generate Mi samples of Y mis
i from the conditional distribution

f(Y mis
i |Y obs

i , Xi, Ri; θ
(t), α(t)),
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and approximate the Qi function in equation (1.12) by

Q̂i(θ, α|θ(t), α(t)) =
1

Mi

Mi∑
w=1

logLi(Y
mis
i,w , Y obs

i , Ri|Xi; θ, α),

where Y mis
i,w is the wth sample of Y mis

i . The M step then maximizes Q̂i(θ, α|θ(t), α(t)) with

respect to parameters θ and α.

1.5.3 GEE-Based Methods

GEE analysis based on (1.4) is valid when the missing data mechanism is MCAR. When

data are MAR or MNAR, GEE approaches may result in biased estimators (Fitzmaurice

et al., 1995). Robins et al. (1995), and Rotnitzky et al. (1998) developed a modified ap-

proach using the inverse probability weighted generalized estimating equations (IPWGEE)

to handle incomplete data with MAR.

Let θ = (βT , ξT )T , where ξ represents all parameters other than β in the response

models. Take α to be the parameters corresponding to missingness probabilities. The

IPWGEE are formulated with (1.4) modified as:

n∑
i=1

Ui(β, ξ, α) =
n∑
i=1

DiV
−1
i ∆i(α)(Yi − µi),

where ∆i(α) is a diagonal weight matrix with ∆i(α) = diag
{
I(Rij = 1)/πij(α)

}
, j =

1, 2, . . . ,m), and πij(α) = P (Rij = 1|Yi, Xi;α).

Much recent work provides various extensions of the IPWGEE methods. For example,

Yi and Cook (2002) propose a modified IPWGEE approach to handle incomplete longitu-

dinal data arising in clusters. Cook et al. (2004) compare IPWGEE with the imputation

method using the last observation carried forward (LOCF) strategy. Carpenter and Ken-

ward (2006) discuss a doubly robust estimation strategy based on IPWGEE. Chen et al.

(2010) introduce an IPWGEE approach to handle longitudinal datasets with missingness

in both response and covariates. Yi et al. (2012) propose a functional generalized method

of moments method to handle missing data and measurement error simultaneously.
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1.5.4 Other Methods

Besides likelihood and GEE based methods, many other approaches are developed to deal

with incomplete longitudinal data as well. For example, missing data can be handled

via the Bayesian approach. This approach involves specifying the distribution of variables

subject to missingness and the prior distribution of parameters, and then uses the posterior

distribution to obtain estimates. Related studies include Press and Scott (1976), Ibrahim

et al. (2002) and Daniels and Hogan (2008).

Alternatively, multiple imputation is another useful method to handle missing data. It

first creates multiple “complete” datasets by imputing certain values into missing blanks,

then individually analyzes each “complete” dataset, and finally combines the results into

final estimates. Multiple imputation is discussed by many authors, including Glynn et al.

(1993), Schafer and Olsen (1998) and Schafer and Yucel (2002). A comparative review for

the four classes approaches is provided by Ibrahim et al. (2005). Some specific applications

of multiple imputation for incomplete data are studied by Landrum and Becker (2001).

1.5.5 Nonidentifiability Issue

When we handle the missingness in missing not at random (MNAR), nonidentifiability in

missing data process could be an issue due to the lack of information on the unobserved

variable components. As discussed by many authors, such as Ibrahim et al. (2005) and

Yi et al. (2011a), it is often difficult to analytically check whether or not the models are

identifiable. When this concern arises, a viable way is to carry out sensitivity analyses to

assess how inference results may change by altering the models and parameter values for

the missing data processes.

Fitzmaurice et al. (1996) illustrate that there still exists identifiable models even the

missing mechanism is MNAR. Under MNAR, Ibrahim et al. (2005) suggest that the EM

algorithm can be applied to numerically distinguish identifiable/nonidentifiable models.

For nonidentifiable models, the EM algorithm may diverge.
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To further demonstrate the nonidentifiability issues with missingness, we consider an

example involving two models. Suppose the binary response variable Yi are independent

for all i = 1, . . . , n. Let n = 1000. Denote Ri = 1 if Yi is observed, and Ri = 0 otherwise.

We assume that the missing data probability depends on unobserved response variable Yi,

which leads the missing data mechanism to be MNAR. The observed likelihood defined in

(1.11) becomes

Li =
n∏
i=1

[{
P (Ri = 1|Yi)P (Yi)

}Ri
×
{
P (Ri = 0|Yi = 1)P (Yi = 1) + P (Ri = 0|Yi = 0)P (Yi = 0)

}1−Ri
]
.

(1.13)

We introduce two models as follows.

Model 1 Let P (Yi = 1) = p, P (Ri = 1|Yi) = expit(α0 + α1Yi), where expit(t) =

exp(t)/(1+exp(t)). The likelihood function (1.13) has a parameter set (p, α0, α1).

One dataset is generated with p = 0.2, exp(α0) = 0.2 and exp(α1) = 0.5.

Model 2 Let P (Yi = 1|Xi) = expit(β0 + β1Xi), where Xi is a completely observed bi-

nary variable with P (Xi = 1) = 0.5. P (Ri = 1|Yi, Xi) = expit(α0 + α1Yi),

which follows the one in Model 1. The likelihood function has parameter set

(β0, β1, α0, α1). One dataset is generated with exp(β0) = 1.5, exp(β1) = 0.5,

exp(α0) = 0.2 and exp(α1) = 0.5.

According to Fitzmaurice et al. (1996), the parameters (p, α0, α1) or (β0, β1, α0, α1)

are not statistically identifiable if there exists parameters (p∗, α∗0, α
∗
1) 6= (p, α0, α1) or

(β∗0 , β
∗
1 , α

∗
0, α

∗
1) 6= (β0, β1, α0, α1), such that

Li(p, α0, α1) = Li(p
∗, α∗0, α

∗
1),

or

Li(β0, β1, α0, α1) = Li(β
∗
0 , β

∗
1 , α

∗
0, α

∗
1).
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To evaluate the model identifiability, we fix α1 at a set of values in the likelihood

function (1.13). Given fixed α1, the likelihood function (1.13) is maximized with respect

to (p, α0) and (β0, β1, α0) for Model 1 and Model 2, respectively. Thus, we obtain the

profile likelihoods for two models. Figure 1.3 displays the values of the maximized profile

likelihoods given various of α1. It can be observed that the profile likelihood for Model

1 is flat which implies that Model 1 is nonidentifiable. Because we have Li(p, α0, α1) =

Li(p
∗, α∗0, α

∗
1) with α1 6= α∗1. On the other hand, the profile likelihood for Model 2 is a

curve, which suggests that Model 2 could be identifiable.
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Figure 1.3: The profile likelihood values with α1 to be fixed at a set of values for Model 1 and

Model 2, respectively.

We set different initial values and maximize the likelihood function (1.13) for Model 1

and Model 2, respectively. Table 1.1 displays the corresponding likelihood estimates when

the maximization algorithm converges. Model 1 results in different estimates from various

initial values, while the estimates from Model 2 are stable.
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Table 1.1: The initial values and likelihood estimates for Model 1 and Model 2, respectively.

Model 1

Initial values Likelihood estimates

p α1 α0 p α0 α1

−1 0.380 −2.045 −0.016

1 −1 0 0.509 −1.777 −0.606

1 0.537 −1.709 −0.732

Model 2

Initial values Likelihood estimates

β0 β1 α1 α0 β0 β1 α0 α1

−1 0.247 −0.582 −1.812 −0.576

1 1 1 0 0.247 −0.582 −1.812 −0.576

1 0.247 −0.582 −1.812 −0.576

Therefore, identifiability issues may arise when the data records are missing with MNAR

mechanism. It may not be identifiable for some models, but can be identifiable for others.

In practice, setting a grid of initial values can be helpful in checking model identifiability.

With diverse starting values, nonidentifiable likelihoods may lead to different maximized

results. This agrees with the discussion in Glonek (1999). On the other hand, the identi-

fiable models would be stable with various of initial values.

1.6 Model Misspecification

Let g(y) be the “true” joint density function for independent random vectors Yi, i =

1, . . . , n. Suppose a working density function f(y; θ) =
∏n

i=1 f(yi; θ) with θ ∈ Θ is used for

estimation of θ, where yi is the realizations of Yi. The validity of the statistical inference

requires correct model specification to some extent. White (1982) investigates the impact
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of model misspecification on estimation of the parameter θ. Under certain regularity condi-

tions, if we apply a misspecified model to fit a dataset, then the resultant estimator, denoted

by θ̂∗, for the parameter θ would converge in probability to a limit, say θ∗, which may differ

from the true parameter value θ0. If the working density function is correctly specified in

a sense that the class of
{
f(y; θ) : θ ∈ Θ

}
contains g(y), i.e., there exists θ0 ∈ Θ such that

f(y; θ0) = g(y), then the working estimator θ̂ = arg maxθ∈Θ n
−1 log f(y; θ) is consistent for

the “true” parameter θ0.

Yi and Reid (2010) extend White’s results from the maximum likelihood framework to

the framework of estimating equations. Suppose our inference is based on a biased working

estimating function h(y; θ), which means Eθ
{
h(Y ; θ)

}
6= 0. Assume that the equation

Hn(θ) =
1

n

n∑
i=1

h(yi; θ) = 0

has a root θ̂ ∈ Θ for any given random sample y1, . . . , yn, then Yi and Reid (2010) show

that under regularity conditions, θ̂ is consistent to a limit, say θ∗, where θ∗ is determined

by

Eθ
{
h(Y ; θ∗)

}
= 0.

This result can be used in the study of the misspecification issue related to composite

likelihood. Specifically, let `c(y; θ) be a log composite likelihood function formulated from

a model which could be misspecified. Then under certain regularity conditions, the limit

θ∗ is the solution of

EY

{
∂`c(y; θ∗)

∂θ

}
= 0, (1.14)

where the expectation is taken under the true joint distribution for the Y variable with pa-

rameter θ. In most situations, equation (1.14) does not have an analytically closed solution.

Hence the relationship between θ∗ and θ is frequently evaluated via numerical assessment.
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1.7 Motivating Example: The National Population

Health Survey Data

1.7.1 Background

The National Population Health Survey (NPHS) collects health information and related

socio-demographic information by following a group of Canadian household residents for

10 cycles. The survey is conducted every second year from 1994/1995 and has completed

eight cycles: Cycle 1 (1994/1995), Cycle 2 (1996/1997), Cycle 3 (1998/1999), Cycle 4

(2000/2001), Cycle 5 (2002/2003), Cycle 6 (2004/2005), Cycle 7 (2006/2007) and Cycle

8 (2008/2009). The questions for the NPHS include many aspects of in-depth health

information such as health status, use of health services, chronic conditions and activity

restrictions. Moreover, social background questions, including age, sex, education, income

level and marital status, are contained in the questionnaire.

1.7.2 Missing Data

The NPHS started with a sample of 17276 individuals spreading out in the ten provinces

across Canada. Each individual is asked to complete a questionnaire in every two years.

Although we hope the survey would successfully collect complete health records for 17276

members in all cycles, the NPHS data are subject to information incompletion due to many

reasons. Three main possible cases are non-tracing, refusal or unknown to question items,

and death.

Non-tracing denotes the situation that interviewers failed to reach the respondents.

To deal with non-tracing issue, many approaches were introduced into the survey. For

example, workload restriction on maximum interviewees is set for reducing overburden

cases; interviewers are trained to apply several survey skills (e.g., making calls or visits at

various times of the day, making an appointment to call back or come back if previous time
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is not convenient); and the survey also attempted to track individuals who moved within

Canada or to United States. Despite those efforts, there were still a few non-tracing cases

in each cycle and the non-tracing rate in all 17276 members slightly increased with each

cycle from 1.7% in Cycle 2 to 5.4% in Cycle 7.

Refusal or unknown to question items leads to another source of information loss.

Respondents would refuse to participate in the survey because of privacy, time schedule

arrangement or other concerns. The NPHS made efforts to persuade all members to con-

tinue the study. For example, a persuasive letter would be sent to respondents if they

decided to quit the survey; senior interviewers or other experienced interviewers would try

to follow refusals to convince them to rejoin the survey. Though many strategies were

applied, refusal rate in survey sample increased from 3.1% in Cycle 1 to 13.2% in Cycle

7. Besides the situation that respondents refused to attend the survey, respondents might

attend the survey but refuse to report some question items. A typical example in the

NPHS data is that respondents may finish other questions but refuse to report their in-

come status. Moreover, for some questions, a respondent may not find a proper result and

then just report as unknown, which also results in an incomplete record.

Until Cycle 7, there are 2032 (11.76%) members who died before the end of the NPHS.

Death causes longitudinal health information to be cut off at a specific cycle. However,

different from previous situations, where the related health information is existent but

unobserved, death leads to another source of information loss that may not be well handled

by general approaches. For example, if a respondent was dead at a particular cycle, we

may not record variables such as Body Mass Index (BMI), alcohol or tobacco consumption.

To handle longitudinal data with death, one option is to build joint models to postulate

both longitudinal records and death information (Diehr and Patrick, 2003; Dufouil et al.,

2004; Kurland and Heagerty, 2005; Harel et al., 2007). However, such discussions are

beyond the scope of this thesis. Here, we only focus on the case that missing data arise

from non-tracing and refusal-to-answer settings.
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1.7.3 A Subsample from NPHS

The analysis of the NPHS data focuses on modeling the influence of income, age, education

and marital status on population health. The data we select contains 6 cycles’ observations

(from Cycle 1 to Cycle 6), including 1349 males with age between 50-70 at Cycle 1, and

less than 80 at Cycle 6. All the deceased are excluded from our sample data. Missingness

occurs in two variables: health status and household income.

Health status is measured by the Health Utilities Index Mark (HUI) from eight at-

tributes: vision, hearing, speech, ambulation, dexterity, emotion, cognition, and pain and

discomfort (Feeny et al., 2002). Household income (INC) is measured by provincial level of

household income which ranges from 1 to 10, where 1 denotes household income ranks at

decile 1 in the related province, while 10 denotes highest 10 percent of household income.

In our sample data, 36.69% individuals have missing observations in the HUI variable

and 52.93% have missing observations in the INC. Only 43.21% of the members have

complete observations for both the HUI and the INC in 6 cycles. Table 1.2 shows the

missing data rate of both variables, and Table 1.3 displays various missing data patterns.

Table 1.2: Missing data rates for health status and household income variables in the

NPHS data (%)

Cycle 1 2 3 4 5 6

HUI 5.3 8.8 11.9 16.8 22.3 25.6

INC 8.7 13.2 17.1 24.0 29.0 33.4
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Table 1.3: Missing data patterns for health status and household income variables in the

NPHS data

Percentage HUI INC

in Observation 1 2 3 4 5 6 1 2 3 4 5 6

43.2% X X X X X X X X X X X X

4.2% X × × × × × X × × × × ×
· · ·
2% X X X X X X X × X X X X

1% X X X X × X X X X X × X

1% × X X X X X X X X X X X

X Observed; × Missing

1.8 Outline of Thesis

This thesis develops various inference strategies for longitudinal data using the composite

likelihood framework. We particularly address features on missing observations and model

selections. Issues of consistency and efficiency are investigated. The remaining chapters

are organized in the following structure.

Chapter 2

In Chapter 2, analysis methods using the composite likelihood framework are explored

for incomplete longitudinal continuous data. Incomplete data can involve non-monotone

missingness for both response and covariates with MNAR mechanisms. In particular,

we compare a two-stage estimation strategy and a pairwise method. Simulation studies

show that both methods lead to consistent estimators. Issues of efficiency and robustness
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are carefully investigated. Longitudinal survey data from the National Population Health

Study are analyzed with the proposed methods.

Chapter 3

Chapter 3 discusses analysis methods using the composite likelihood for incomplete longi-

tudinal binary data. This chapter parallels Chapter 2 in structures, but considers probit

models that are useful for binary data. Again, both response and covariates may be miss-

ing with a MNAR mechanism. We explore a two-stage estimation strategy and a pairwise

likelihood method. Simulation studies show that both methods result in consistent esti-

mators. Efficiency and robustness are investigated as well. Longitudinal survey data from

the National Population Health Study are analyzed with the proposed methods.

Chapter 4

In Chapter 4, we address issues on model selection using the composite likelihood method

for more complex data: longitudinal data arising in clusters. We propose a flexible mod-

eling framework to account for complex association structures. In particular, we discuss

two forms of composite likelihood function: all pairwise marginal likelihood (APW) and

all pairwise conditional likelihood (APC). The SCAD penalty is applied in the composite

likelihood functions, and the related oracle properties are established. Simulations demon-

strate that the proposed method gives consistent estimators and is able to select important

variables. The composite likelihood EM algorithm and the model misspecification issues

are explored in detail.

Chapter 5

Chapter 5 extends the development in Chapter 4 to accommodate the situation that re-

sponse or covariates are subject to missingness. Conditional likelihood functions are con-
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structed to accommodate missingness effects. Preliminary simulation results demonstrate

that the proposed approach outperforms the naive estimation method.

Chapter 6

Chapter 6 summarizes overall results and outlines some further possible extensions of the

proposed methods.
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Chapter 2

A Pairwise Likelihood Approach for

Longitudinal Data with Missing

Observations in Both Response and

Covariates

2.1 Introduction

Longitudinal data arise commonly in fields including clinical trials and health research.

Longitudinal studies are often designed to collect information on individuals at scheduled

times, but missing observations occur frequently. Incompleteness of data presents consider-

able challenges in standard analysis methods, especially when both response and covariate

variables incur missingness. A large body of methods have been developed with the pri-

mary focus being on either the missingness in response or the missingness in covariates

(e.g. Diggle and Kenward, 1994; Little, 1995; Ibrahim et al., 1999, 2001). Research on

missingness in both response and covariates is relatively limited, although several authors

have developed methods for certain situations.
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Under different model assumptions, Shardell and Miller (2008), Chen et al. (2008),

Stubbendick and Ibrahim (2003) and Stubbendick and Ibrahim (2006) develop likelihood-

based approaches, while Chen et al. (2010) propose a marginal method using the inverse

probability weighted generalized estimating equation. Although likelihood-based methods

are efficient in estimation of parameters, they require full distributional assumptions, which

makes the results sensitive to model misspecification. On the other hand, Chen et al.

(2010) relax modeling assumption for the response process by assuming only the marginal

structure. The method is mainly developed to handle data that are missing at random.

It is desirable to develop methods that are robust yet flexible to handle various types of

missingness in both response and covariate measurements. The purpose of this manuscript

is to describe a general approach based on the pairwise likelihood formulation (Lindsay,

1988; Cox and Reid, 2004; Lindsay et al., 2011) to handle longitudinal data with incomplete

response and covariates. A unified framework is invoked to accommodate various types

of missing data patterns. In particular, our methods can accommodate the existing work

as a special case. For instance, Troxel et al. (1998), Parzen et al. (2007) and Troxel

et al. (2010) propose marginal and pairwise likelihood methods respectively to deal with

missing data when the missingness occurs only in response. Parzen et al. (2006) propose a

marginal modeling approach that is suitable for the simultaneous missingness in response

and covariates. Our method is flexible to handle the situation when the response and

covariates are missing not necessarily simultaneously.

The reminder of the chapter is organized as follows. Section 2.2 introduces the notations

and model setups. Inference methods are presented in Section 2.3. In Section 2.4, we report

on numerical assessment of the performance of the proposed methods, together with an

application to the data arising from the longitudinal National Population Health Survey

(NPHS). To further evaluate the performance of the proposed methods, we study the

relative efficiency and robustness to model the misspecification in Sections 2.5 and 2.6,

respectively.
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2.2 Notations and Model Setups

Suppose that there are n subjects and m follow-up occasions. Let Yij and Xij be the

response variable and a covariate vector for subject i at occasion j, respectively, i =

1, 2, . . . , n; j = 1, 2, . . . ,m. Both Yij and Xij are subject to missingness. Let Zij be a

vector of covariates that can be observed completely. Here we start with the case that Xij

is a scalar. Extensions to accommodate multiple covariates Xij are discussed in Chapter 6.

Denote Yi = (Yi1, Yi2, . . . , Yim)T , Xi = (Xi1, Xi2 . . . , Xim)T and Zi = (ZT
i1, Z

T
i2, . . . , Z

T
im)T .

If interest lies in understanding the complete relationship between response Yi and

covariates (Xi, Zi), one may invoke a full distribution of f(Yi|Xi, Zi; θ) with parameter θ

varying in a space Θ. Then inference objective would focus on estimation of parameter θ.

In practice, it may be difficult to specify a proper distribution form f , especially when the

dimensions of Yi and covariates (Xi, Zi) are large. Often, instead of working on the full

distribution structure, our interest centers on a partial structure of f such as lower order

distributions for some components of Yi, for example, marginal or pairwise distributions.

This strategy has a number of advantages, including transparent interpretation, modeling

tractability and lower computational cost. In the chapter we confine our attention to

explore pairwise modeling strategies in the context with missing observations.

2.2.1 The Response Process

For j < k, let f(Yij, Yik|Xi, Zi;β, σ
2
y,ψ

y) be the probability density or mass function for

paired responses Yij and Yik, where β, σ2
y and ψy are parameters associated with marginal

mean, variance and association measures, respectively. Assume that f(Yij, Yik|Xi, Zi;β, σ
2
y ,ψ

y)

is a bivariate normal density function. That is, conditional on (Xi, Zi),

(Yij, Yik) ∼ N2((µyij, µ
y
ik)

T ,Σijk(σ
2
y ,ψ

y
jk)),

where N2(·, ·) denotes a bivariate normal distribution with mean and covariance matrix

indicated by the arguments, and Σijk(σ
2
y,ψ

y
jk) is a 2× 2 covariance matrix with diagonal
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elements σ2
y and correlation coefficient ψy

jk. Commonly, a regression model is postulated to

reflect the dependence of marginal mean µyij on the covariates at occasion j. For instance,

consider µyij = Xijβx + ZT
ijβz, where β = (βx,β

T
z )T is a (q + 1) × 1 vector of regression

parameters linking covariates and response.

2.2.2 The Covariate Process

For j < k, let f(Xij, Xik|Zi;α, σ2
x,ψ

x) be the probability density or mass function for paired

covariates Xij and Xik, where α, σ2
x and ψx are parameters corresponding to marginal

mean, variance and association measures, respectively. Analogous to the modeling of the

response variable, we assume that, condition on Zi,

(Xij, Xik) ∼ N2((µxij, µ
x
ik)

T ,Σijk(σ
2
x,ψ

x
jk)),

where µxij and σ2
x are the marginal mean and variance of Xij, respectively, and ψx

jk is the

correlation coefficient between Xij and Xik. Furthermore, we feature marginal mean µxij

by a regression model, such as µxij = ZT
ijα, where α is a vector of regression coefficients.

2.2.3 Missing Data Process

Define Ry
ij = 1 if Yij is observed, and Ry

ij = 0 otherwise. Rx
ij = 1 if Xij is observed,

and Rx
ij = 0 otherwise. Let Ry

i = (Ry
i1, R

y
i2, . . . , R

y
im)T and Rx

i = (Rx
i1, R

x
i2, . . . , R

x
im)T .

Write Yi = (Y obsT
i , Y misT

i )T , and Xi = (XobsT
i , XmisT

i )T to distinguish the observed and

unobserved components of Yi and Xi, respectively. For ease of exposition, we put Yij =

(Y obs
ij , Y mis

ij ), where either Y obs
ij and Y mis

ij can be null, depending on whether or not Yij is

observed. Similarly, write Xij = (Xobs
ij , X

mis
ij ).

For the missing data process, we follow the same lines to postulate pairwise models.

In particular, we model P (Ry
ij = 1, Ry

ik = 1|Yi, Xi, Zi, R
x
ij, R

x
ik) and P (Rx

ij = 1, Rx
ik =

1|Yi, Xi, Zi) for j < k. As a result, the distribution P (Ry
ij = 1, Ry

ik = 1, Rx
ij = 1, Rx

ik =
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1|Yi, Xi, Zi) is uniquely determined. A common assumption (e.g., Troxel et al. (1998)) is

made:

P (Ry
ij = 1, Ry

ik = 1, Rx
ij = 1, Rx

ik = 1|Yi, Xi, Zi)

= P (Ry
ij = 1, Ry

ik = 1, Rx
ij = 1, Rx

ik = 1| Yij, Yik, Xij, Xik, Zij, Zik).

We employ a pairwise probit model to postulate (Ry
ij, R

y
ik) or (Rx

ij, R
x
ik). Specifi-

cally, assume there are latent variables (R̃y
ij, R̃

y
ik)

T that follow a bivariate normal distri-

bution N2((0, 0)T ,Σijk(1,ρ
y
jk)); then R̃y

ij determines the binary variable Ry
ij according to

Ry
ij = I(R̃y

ij ≤ ηRyij ), j = 1, · · · ,m, where I(·) is the indicator function and ηRyij is

the linear predictor for Ry
ij. Such a modeling scheme has been constantly used for bi-

nary data analysis. See Ashford and Sowden (1970), Joe (1997), Renard et al. (2002)

and Chaganty and Joe (2004), for details. More explicitly, the pairwise model can be

written as P (Ry
ij = 1, Ry

ik = 1|Yi, Xi, Zi, R
x
ij, R

x
ik) = Φ2((ηRyij , η

Ry
ik )T ,Σijk(1,ρ

y
jk)), and

P (Rx
ij = 1, Rx

ik = 1|Yi, Xi, Zi) = Φ2((ηRxij , η
Rx
ik )T ,Σijk(1,ρ

x
jk)), where Φ2(u,v) is the bi-

variate cumulative distribution function for the N2((0, 0)T ,v) evaluated at u = (u1, u2).

Furthermore, regression models are employed to facilitate the dependence of each con-

ditional probability on associated variables. To be specific, we have ηRyij = λyTξyij and

ηRxij = λxTξxij. λ = (λyT ,λxT )T are missing process related regression parameters. ξyij and

ξxij are subsets of {Yij, Xij, Zij, R
x
ij} and {Yij, Xij, Zij}, respectively. Varying choices of

these subsets can feature different types of dependence among missing data indicators.

2.3 Estimation and Inference

2.3.1 Marginal and Pairwise Likelihoods

Let γ = (βT ,αT ,λT , σ2
y, σ

2
x)
T be the parameters associated with the marginal structure,

and δ = (ψyT ,ψxT ,ρyT ,ρxT )T be the set of parameters which governs the association
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structure in the pairwise models. Write θ = (γT , δT )T . Let

LC1,i(γ) =
m∏
j=1

f(Y obs
ij , Xobs

ij , R
y
ij, R

x
ij|Zij)

=
m∏
j=1

∫ ∫
f(Yij|Xij, Zij)f(Xij|Zij)f(Ry

ij, R
x
ij|Yij, Xij, Zij)dY

mis
ij dXmis

ij ,

be the observed likelihood for subject i with an independence structure temporarily as-

sumed for repeated measurements, and

LC2,i(θ) =
∏
j<k

{∫
· · ·
∫
f(Yij, Yik|Xij, Xik, Zij, Zik)f(Xij, Xik|Zij, Zik)

×f(Ry
ij, R

x
ij, R

y
ik, R

x
ik|Yij, Yik, Xij, Xik, Zij, Zik)dY

mis
ij dXmis

ij dY mis
ik dXmis

ik

}
.

be the observed pairwise likelihood for subject i. Then the marginal likelihood and pairwise

likelihood are respectively given by

LC1(γ) =
n∏
i=1

LC1,i(γ), (2.1)

LC2(θ) =
n∏
i=1

LC2,i(θ). (2.2)

Provided mild regularity conditions, solving the pseudo-score functions ∂logLC1(γ)/∂γ =

0 and ∂logLC2(θ)/∂θ = 0 results in consistent estimators of γ and θ, respectively. A proof

is sketched in supplementary material.

2.3.2 Inference Procedures

We now employ two algorithms for estimation of θ. Approach 1 involves direct maximiza-

tion of the pairwise likelihood (2.2) (labeled as PL). An alternative method is a two-stage

approach (labeled as TS) which first maximizes marginal likelihood (2.1) to obtain the es-

timator of γ, and then maximizes pairwise likelihood (2.2), resulting in the estimator of δ.
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Compared to the PL, although some efficiency loss may incur in the TS, an obvious advan-

tage is the substantial gain in the ease of computation due to the fact that the dimension

of integrals in marginal likelihood is a lot smaller than that in the pairwise likelihood.

Let S1i(γ) = ∂logLC1,i(γ)/∂γT , S2i(γ) = ∂logLC2,i(θ)/∂γT , and S2i(δ) = ∂logLC2,i(θ)/∂δT .

Define Hi = (S1i(γ)T , S2i(δ)T )T , and S2i(θ) = (S2i(γ)T , S2i(δ)T )T .

Pairwise Likelihoods (PL) Inference

We employ the Newton-Raphson algorithm to maximize the pairwise likelihood function

(2.2). The pairwise likelihood (PL) estimators are denoted by θPL = (γTPL, δ
T
PL)T . We

update the estimates by the iterative equation(
γ

(t+1)
PL

δ
(t+1)
PL

)
=

(
γ

(t)
PL

δ
(t)
PL

)
−

{ n∑
i=1

D
(t)
i

}−1

·
n∑
i=1

S2i(γ
(t)
PL, δ

(t)
PL), (2.3)

where

D
(t)
i =

(
∂S2i(γ

(t)
PL)/∂γT ∂S2i(γ

(t)
PL)/∂δT

∂S2i(δ
(t)
PL)/∂γT ∂S2i(δ

(t)
PL)/∂δT

)
,

and t = 0, 1, . . . , until (γ
T (t+1)
PL , δ

T (t+1)
PL )T converges to the solution (γ̂TPL, δ̂

T

PL)T .

Under regularity conditions,
√
n(θ̂PL − θ) has an asymptotic normal distribution with

mean 0 and covariance matrix {E(Di)}−1E{S2i(θ)S2i(θ)T}{E(Di)}−1T . In particular, for

primarily interesting parameter β, we need to establish the asymptotic distribution of its

estimator β̂PL. Rewrite θ = (βT ,υT )T , and S2i(θ) = (S2i(β)T , S2i(υ)T )T . Define

J∗ = E{∂S2i(β)/∂βT} − E{∂S2i(β)/∂υT} · E−1{∂S2i(υ)/∂υT} · ET{∂S2i(β)/∂υT},

and

K∗ = E{S2i(β) · S2i(β)T} − E{∂S2i(β)/∂υT} · E−1{∂S2i(υ)/∂υT} · E{S2i(υ)S2i(β)T}

−
[
E{∂S2i(β)/∂υT} · E−1{∂S2i(υ)/∂υT} · E{S2i(υ)S2i(β)T}

]T
+E{∂S2i(β)/∂υT} · E−1{∂S2i(υ)/∂υT} · E{S2i(υ)S2i(υ)T}

·E−1{∂S2i(υ)/∂υT} · ET{∂S2i(β)/∂υT}.
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Then
√
n
(
β̂PL − β

)
has an asymptotic normal distribution with mean 0 and covariance

matrix J∗−1K∗{J∗−1}T . The proof is outlined in supplementary material.

Two-Stage Inference

Under the two-stage inference scheme, an estimate, denoted γ̂TS, of γ is first obtained as

the maximizer of the marginal likelihood LC1(γ). With this γ̂TS, we then maximize the

pairwise likelihood LC2(γ̂TS, δ), with respect to δ, and the maximizer δ̂TS is taken as the

estimate of δ. To be specific, the two-stage procedure can be realized using the iterative

equation

γ
(t+1)
TS = γ

(t)
TS −

{ n∑
i=1

∂S1i(γ
(t)
TS)/∂γT

}−1

·
n∑
i=1

S1i(γ
(t)
TS), t = 1, 2, . . .

until convergence. Similarly, update the estimate of δ using the iterative equation

δ
(t+1)
TS = δ

(t)
TS −

{ n∑
i=1

∂S2i(γ̂TS, δ
(t)
TS)/∂δT

}−1

·
n∑
i=1

S2i(γ̂TS, δ
(t)
TS), t = 1, 2, . . .

until convergence.

An alternative to obtain the estimator θ̂TS = (γ̂TTS, δ̂
T

TS)T is to employ the joint iterative

equation to update the estimate:(
γ

(t+1)
TS

δ
(t+1)
TS

)
=

(
γ

(t)
TS

δ
(t)
TS

)
−

{ n∑
i=1

D
∗(t)
i

}−1

·
n∑
i=1

Hi(γ
(t)
TS, δ

(t)
TS), (2.4)

where

D
∗(t)
i =

(
∂S1i(γ

(t)
TS)/∂γT 0

∂S2i(δ
(t)
TS)/∂γT ∂S2i(δ

(t)
TS)/∂δT

)
.

At each iteration, the update obtained from (2.4) may differ from that obtained from

the two-stage algorithm. However, the updated values from these two procedures con-

verge to the same limit under mild regularity conditions (Newey and McFadden, 1994).
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While the two-stage algorithm provides an easy way for estimation, the algorithm based

on (2.4) is more convenient to establish the asymptotic distribution of the estimator. Un-

der regularity conditions,
√
n(θ̂TS − θ) is asymptotically normally distributed with mean

0 and covariance matrix {E(D∗i )}−1E{HiH
T
i }{E(D∗i )}−1T . Rewrite γ = (βT ,υ∗T )T , and

S1i(γ) = (S1i(β)T , S1i(υ
∗)T )T .

Define

J∗∗ = E{∂S1i(β)/∂βT} − E{∂S1i(β)/∂υ∗T} · E−1{∂S1i(υ
∗)/∂υ∗T} · ET{∂S1i(β)/∂υ∗T},

and

K∗∗ = E{S1i(β) · S1i(β)T} − E{∂S1i(β)/∂υ∗T} · E−1{∂S1i(υ
∗)/∂υ∗T} · E{S1i(υ

∗)S1i(β)T}

−
[
E{∂S1i(β)/∂υ∗T} · E−1{∂S1i(υ

∗)/∂υ∗T} · E{S1i(υ
∗)S1i(β)T}

]T
+
[
E{∂S1i(β)/∂υ∗T} · E−1{∂S1i(υ

∗)/∂υ∗T} · E{S1i(υ
∗)S1i(υ

∗)T}

·E−1{∂S1i(υ
∗)/∂υ∗T} · ET{∂S1i(β)/∂υ∗T}

]
.

Then
√
n
(
β̂TS − β

)
has an asymptotic normal distribution with mean 0 and covariance

matrix J∗∗−1K∗∗{J∗∗−1}T . The proof is outlined in the supplementary material.

2.4 Numerical Studies

2.4.1 Empirical Assessment of the Proposed Methods

In this section, we assess the empirical performance of the proposed methods through a

simulation study. One hundred and 500 simulations are run for the PL and TS methods,

respectively. We consider a setting with m = 3 and n = 150, and simulate longitudinal

continuous responses from a normal model with µyij = β0 + β1Xij, where Xij is a time-

dependent continuous covariate generated from a normal distribution with µxij = α0. Set

β0 = −2, β1 = 2 and α0 = 1. The association among responses is specified as exchangeable
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with σ2
y = 1 and correlation coefficient ψy, specified as 0.5. The association among covariate

components is specified as exchangeable with σ2
x = 1 and ψx = 0.5.

For the response and covariate missingness process, we take

ηRyij = λy0 + λy1Xij + λy2R
x
ij, and

ηRxij = λx0 + λx1Xij.

The true values for the regression parameters of missing data processes are set to be

λy0 = λx0 = 1.5, λy1 = λx1 = −1, and λy2 = 0.5. For the joint distribution of the response and

covariate missing processes, we consider

P (Ry
i1 = 1, Ry

i2 = 1, Ry
i3 = 1|Yi, Xi, R

x
i1, R

x
i2, R

x
i3) = Φ3((ηRyi1 , η

Ry
i2 , η

Ry
i3 )T ,Σi(1,ρ

y
123)),

and P (Rx
i1 = 1, Rx

i2 = 1, Rx
i3 = 1|Yi, Xi) = Φ3((ηRxi1 , η

Rx
i2 , η

Rx
i3 )T ,Σi(1,ρ

x
123)), respectively,

where Φ3(u∗,v∗) is the cumulative distribution function for the N3((0, 0, 0)T ,v∗) evaluated

at u∗ = (u∗1, u
∗
2, u
∗
3). We take Σi(1,ρ

y
123) and Σi(1,ρ

x
123) to have exchangeable association

forms with correlation coefficients ρy, ρx, respectively. The true values are set as ρy = ρx =

0.5.

The results are reported in Table 2.1, where the bias is the percent relative bias, ASE

and ESE are the average of model-based standard errors and empirical standard errors,

respectively, and CP% represents the empirical coverage probability for the 95% confidence

intervals. The table shows that our PL and TS approaches both yield small bias and satis-

factory coverage probability for the response parameters in both the mean and association

structures. As expected, the PL approach results in smaller ASE and ESE for parameter

β1 than the TS method, which confirms the PL approach is more efficient than the TS

method. A good agreement between ASE and ESE indicates that variance estimates for

the corresponding estimators are valid. In covariate and missing processes, it can be seen

that the biases are negligible and ASE/ESE are similar for most of the parameters, which

implies two approaches also provide reasonable inference on covariate and missing models.
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2.4.2 Application to the NPHS Data

The National Population Health Survey (NPHS) is a longitudinal study that collects health

information and related socio-demographic information by following a group of Canadian

household residents. The questions for the NPHS include many aspects of in-depth health

information such as health status, use of health services, chronic conditions and activity

restrictions. Moreover, social background questions, including age, sex and income level,

are contained in the questionnaire. A research interest focuses on modeling the influence

of income on population health. The data we analyze here contain 3 cycles’ observations

(from Cycle 4 to Cycle 6), including n = 300 males with age between 50-70 at Cycle 1,

and less than 80 at Cycle 6. All the deceased subjects are excluded from the analysis.

Health status is measured by the Health Utilities Index (HUI) Mark after zero-mean

normalization with observed average 0.85 and standard deviation 0.21. The higher HUI

score indicates better health. The covariate prone to missingness is household income

(INC), which is measured by provincial level of household income with zero-mean nor-

malization with observed average 5.27 and standard deviation 2.88. The other covariate,

denoted by CYCLE is cycle number with values −1, 0, 1 that correspond to Cycle 4, 5 and

6, respectively.

In the data analyzed here, 21.3% individuals have missing observations in HUI variable

and 35.7% have missing observations in INC. Only 62.3% of the members have complete

observations for both HUI and INC in all 3 cycles. The missingness proportions in HUI

from Cycle 4 to Cycle 6 are 2.7%, 11.0% and 17.7%, respectively, while the missingness

proportions in INC from Cycle 4 to Cycle 6 are 9.3%, 17.3%, 27.3%, respectively. Table

5.1 displays a sample data subset.
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Table 2.2: Sample data from the NPHS

ID
HUI INC

4 5 6 4 5 6

1 0.577 0.577 0.577 1.645 1.645 1.645

2 0.577 · 0.256 -0.440 · -0.788

3 0.134 -0.582 -0.314 0.950 1.297 ·
4 0.704 0.704 0.256 -1.135 · -0.093

5 · -0.945 0.577 -1.135 -1.483 -1.135

6 · 0.577 · -0.788 -0.440 ·
7 0.704 · · -0.788 · ·
· represents missing observations

Let HUIij, INCij and CYCLEij be the normalized Health Utility Index score, nor-

malized income level, and cycle numbers for individual i at Cycle j. Let Rij = (Ry
ij, R

x
ij)

represent the missing indicator where Ry
ij = 1 denotes subject i’s HUI is observed at Cycle

j, and Ry
ij = 0 otherwise. Similarly, Rx

ij = 1 means that subject i’s INC is observed at

Cycle j and Rx
ij = 0 otherwise.

We assume that HUI and INC follow marginal models

HUIij = β0 + β1INCij + β2CYCLEij + εyij, (2.5)

INCij = α0 + α1CYCLEij + εxij, (2.6)

respectively, where εyij ∼ N(0, σ2
y), ε

x
ij ∼ N(0, σ2

x).

The missing data processes are specified as

ηRyij = λy0 + λy1HUIij + λy2INCij + λy3R
x
ij + λy4CYCLEij, (2.7)

ηRxij = λx0 + λx1HUIij + λx2INCij + λx3CYCLEij. (2.8)

We further assume an AR(1) association structure for each process with corresponding

association parameters ψy, ψx, ρy and ρx for HUI, INC, Ry and Rx, respectively.
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With models (2.5)-(2.8), we analyze the data using the PL and TS methods, and report

the results in Table 2.3 and Table 2.4.

Table 2.3: Analysis of the NPHS data using the pairwise likelihood, two-stage estimation

approach and naive method: Response models

PL‡ TS

Parameter Estimate SE p-value Estimate S.E. p-value

INTERC. (β0) -0.045 0.053 0.393 -0.040 0.064 0.530

INC (β1) 0.219 0.042 < 0.001 0.231 0.045 < 0.001

CYCLE (β2) -0.041 0.027 0.125 -0.029 0.035 0.405

Variance (σ2
y) 0.957 0.122 < 0.001 0.938 0.120 < 0.001

Association (ψy) 0.677 0.046 < 0.001 0.667 0.045 < 0.001

‡ PL and TS respectively denote the pairwise likelihood and two-stage inference procedures, respectively.
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Table 2.4: Analysis of the NPHS data using the pairwise likelihood and two-stage estima-

tion approach: Covariate and missing-data models

PL TS

Parameter Estimate SE p-value Estimate SE p-value

Model for INC

Intercept α0 0.001 0.025 0.969 0.141 0.133 0.288

CYCLE α1 -0.107 0.025 < 0.001 -0.067 0.048 0.165

Variance in HUI σ2
x 1.015 0.048 < 0.001 1.066 0.106 < 0.001

Association ψx 0.835 0.022 < 0.001 0.832 0.023 < 0.001

Response Missing Model

Intercept λy0 0.074 0.129 0.568 -0.144 0.224 0.519

HUI λy1 0.045 0.088 0.606 -0.166 0.121 0.170

INC λy2 0.058 0.114 0.610 0.226 0.158 0.152

Rx
ij λy3 2.166 0.170 < 0.001 2.475 0.295 < 0.001

CYCLE λy4 -0.254 0.099 0.010 -0.258 0.104 0.013

Association ρy 0.636 0.118 < 0.001 0.624 0.130 < 0.001

Covariate Missing Model

Intercept λx0 0.971 0.064 < 0.001 1.105 0.257 < 0.001

HUI λx1 0.145 0.053 0.007 0.189 0.146 0.196

INC λx2 0.029 0.105 0.782 -0.429 0.328 0.192

CYCLE λx3 -0.343 0.059 < 0.001 -0.413 0.085 < 0.001

Association ρx 0.570 0.059 < 0.001 0.595 0.068 < 0.001

For the response model in Table 2.3, PL and TS approaches reveal that the cycle time

is not statistically significant, whereas income has a significant positive effect on health

index. People are more likely to have better health if they have higher income. Moreover,

it can be seen that the PL method yields smaller standard errors than the TS approach,

which agrees with the finding in the previous subsection. For the model of household
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income in Table 2.4, the PL method indicates as the survey cycle increases, the income

would significantly decrease, while the TS approach reveals an insignificant temporal effect

on income.

For the missing probability in Table 2.4, both PL and TS show insignificance of HUI

and INC in the response missing data model, and only PL suggests a significant positive

effect of HUI in the covariate missing-data model. Moreover, the significance of λy4 and λx3

suggests that the missing rate for both response and covariate increases as the longitudinal

research cycle increases. Estimation of λy3 indicates an association between missingness of

the response and of the covariate.

2.5 Efficiency Assessment

To fully understand the performance of the proposed methods, in this section we assess the

efficiency of the PL and TS algorithms. To this end, we invoke estimating function theory.

Suppose U(θ) =
∑n

i=1 Ui(θ) are estimating functions for parameter θ, where E[Ui(θ)] = 0,

then under regularity conditions, the solution, say θ̂, to U(θ) = 0 has an asymptotic normal

distribution
√
n(θ̂ − θ)→D N(0, I−1(θ)), (2.9)

where I(θ) is the Godambe information matrix (Godambe, 1991) defined as

I(θ) = Eθ[∂Ui(θ)/∂θT ]TEθ[Ui(θ)Ui(θ)T ]−1(θ)Eθ[∂Ui(θ)/∂θT ].

The Godambe information matrix or its inverse provides us a basis to evaluate efficiency

of estimators obtained from different methods or from distinct conditions. In particular,

we are interested in two scenarios concerning the marginal response parameter β.

In the first case, we are interested in comparing the efficiency of estimators of β that

are obtained when nuisance parameters are known or estimated. This study would pro-

vide insight into variability induced by an additional estimation procedure for nuisance
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parameters. Following the notations in Section 3.3, if nuisance parameter ν or ν∗ is un-

known, then the estimation of β can proceed by solving (∂/∂θ)logLC2(θ) = 0 for the

PL approach and (∂/∂γ)logLC1(γ) = 0 for the TS approach. Let θ̂PL = (β̂
T

PL, ν̂
T
PL)T

and γ̂TS = (β̂
T

TS, ν̂
∗T
TS)T be the result estimators for PL and TS approaches, respectively.

Then its asymptotic covariance is determined by (2.9), yielding the asymptotic covariance

I−1
PL(β) for β̂PL :

IPL(β) = E{∂S2i(β)/∂βT } ·D1 · ET {∂S2i(β)/∂βT }

−E{∂S2i(β)/∂βT } · E−1{S2i(β)S2i(β)T } · E{S2i(β)S2i(ν)T } ·D2 · ET {∂S2i(β)/∂νT }

−
[
E{∂S2i(β)/∂βT } · E−1{S2i(β)S2i(β)T } · E{S2i(β)S2i(ν)T } ·D2 · ET {∂S2i(β)/∂νT }

]T
+E{∂S2i(β)/∂νT } ·D2 · ET {∂S2i(β)/∂νT } (2.10)

where D1 =
[
E{S2i(β)S2i(β)T}−E{S2i(β)S2i(ν)T}·E−1{S2i(ν)S2i(ν)T}·E{S2i(ν)S2i(β)T}

]−1

,

and D2 =
[
E{S2i(ν)S2i(ν)T}−E{S2i(ν)S2i(β)T}·E−1{S2i(β)S2i(β)T}·E{S2i(β)S2i(ν)T}

]−1

.

Moreover, for TS method, we can obtain ITS(β) by respectively replacing S2i(β), S2i(ν)

and ν into S1i(β), S1i(ν
∗) and ν∗ in (2.10).

On the other hand, if nuisance parameter ν is known, the estimation of the β parameter

can proceed by solving (∂/∂β)logLC2(β) = 0 for the PL approach and (∂/∂β)logLC1(β) =

0 for the TS approach, respectively. The resulting estimator, denoted by β̃PL and β̃TS

have the asymptotic covariance Ĩ−1
PL(β) given by

ĨPL(β) = E[∂S2i(β)/∂βT ] · {E[S2i(β)S2i(β)T ]}−1 · ET [∂S2i(β)/∂βT ], (2.11)

while Ĩ−1
TS(β) can be obtained by replacing S2i(β) into S1i(β).

To compare the efficiency of the PL estimators β̂PL and β̃PL, one needs only to compare

IPL(β) and ĨPL(β). Similarly, comparison of ITS(β) and ĨTS(β) indicates the efficiency of

the TS estimators β̂TS and β̃TS. The difference in (2.10) and (2.11) quantify the amount

of additional variation induced in estimating parameter ν that would be contained in the

asymptotic covariance matrix of the estimator for β if ν were unknown. It is a common

conception that β̃PL and β̃TS are more efficient than β̂PL and β̂TS, respectively. However,
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this is not obviously perceived from (2.10) and (2.11). In principle, the differences of (2.10)

and (2.11) depend on the model structures as well as the true value of relevant parameters,

agreeing with the discussion in Henmi and Eguchi (2004). To illustrate this, we conduct a

numerical study here.

To be specific, we consider the two scenarios. Scenario I assumes the same missing

data model as in Section 2.4.1, while in scenario II, we specify the missing data process as

ηRyij = 1.5−0.5yij−0.5Rx
ij and ηRxij = 1.5−yij. Let avar(β̂Xj ) denote the asymptotic variance

of estimator β̂Xj for parameter βj (j = 0, 1), obtained from the X method, where X refers to

either the PL or TS method. Table 2.5 displays the relative efficiency of the estimators for

β parameters that is defined as the ratio RX
s (βj) = avars(β̂

X
j )/avar(β̃Xj ) for j = 0, 1, where

avars(β̂
X
j ) and avar(β̃Xj ) are jth diagonal element of I−1

s,X(β) and Ĩ−1
X (β), respectively, and

Is,X(β) is similar to IX(β) in (2.10) under the assumption some or all nuisance parameters

are unknown. All the entries for PL and TS are no bigger than 1, suggesting that the

involvement of unknown nuisance parameters in the estimation would reduce the efficiency

for β estimators. The more unknown nuisance parameters are involved, the larger efficiency

loss tend to occur for both PL and TS. Furthermore, the efficiency loss depends on the

model form as well. Under scenario I, the efficiency loss is less striking. But scenario II

leads to more substantial efficiency deduction which can be as high as nearly 20% for two

methods. It is also interesting to report that the efficiency loss induced from unknown

association parameters is null for TS and very small for PL, which is at nearly 1.5% in

Scenario II.
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Table 2.5: Efficiency comparison of the β estimators under various scenarios of unknown

nuisance parameters

Scenario 1†

Nuisance Para.s
σ2
y α λ δ

RPL
s (β0) RTS

s (β0) RPL
s (β1) RTS

s (β1)

1 ×∗
√ √ √

0.999 1.000 0.998 1.000
2

√
×
√ √

1.000 0.999 0.989 0.993
3

√ √
×
√

0.992 0.988 0.963 0.957
4 × ×

√ √
1.000 0.999 0.987 0.993

5 ×
√
×
√

0.990 0.988 0.962 0.955
6

√
× ×

√
0.990 0.979 0.942 0.928

7 × × ×
√

0.989 0.979 0.940 0.927
8

√ √ √
× 0.999 1.000 0.996 1.000

9 × × × × 0.988 0.979 0.939 0.927
Scenario 2

Nuisance Para.s
σ2
y α λ δ

RPL
s (β0) RTS

s (β0) RPL
s (β1) RTS

s (β1)

1 ×∗
√ √ √

0.985 0.994 1.000 0.990
2

√
×
√ √

1.000 0.999 0.881 0.856
3

√ √
×
√

0.994 0.988 0.960 0.955
4 × ×

√ √
0.985 0.994 0.867 0.818

5 ×
√
×
√

0.975 0.978 0.959 0.937
6

√
× ×

√
0.993 0.987 0.854 0.824

7 × × ×
√

0.975 0.978 0.832 0.773
8

√ √ √
× 0.997 1.000 0.984 1.000

9 × × × × 0.973 0.978 0.830 0.773

† Scenario 1 follows identical settings in continuous variable simulation study in Section 2.4.1. Scenario 2 involves

analogous settings in response and covariate processes, but the missing process has ηRyij = 1.5− 0.5yij − 0.5Rxij ,

ηRxij = 1.5− yij .

∗ × and
√

indicate the corresponding nuisance parameter is unknown or known,respectively.

Next, we are interested in assessing efficiency for estimators obtained from different

methods. Again, we consider the model settings in Section 2.4.1. To highlight com-

parisons on the β parameter, we assume all nuisance parameters are known for sim-

plicity. For the TS method, avar(β̃TSj ) is the diagonal element of [E{∂S1i(β)/∂βT}]−1 ·
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E{S1i(β)S2i(β)T} · [E{∂S1i(β)/∂βT}]−1T ; for the PL method avar(β̃PLj ) is the diagonal

element of [E{∂S2i(β)/∂βT}]−1 · E{S2i(β)S2i(β)T} · [E{∂S2i(β)/∂βT}]−1T ; while for the

ML approach, avar(β̃ML
j ) is obtained from the diagonal element of [E{SFi (β)SFi (β)T}]−1,

where SFi (β) is the score function of β from the fully specified likelihood function. Let

RML:TS(βj) = avar(β̃ML
j )/avar(β̃TSj ), RML:PL(βj) = avar(β̃ML

j )/avar(β̃PLj ), andRPL:TS(βj) =

avar(β̃PLj )/avar(β̃TSj ) (j = 0, 1) be the relative efficiency for corresponding estimators. We

consider the case with a common exchangeable correlation coefficient ρ = ψy = ψx = ρy =

ρx.

We evaluate the relative efficiency of the PL and TS estimators with respect to the ML

estimator and display the result in Figure 2.1. As expected, both the PL and TS methods

incur efficiency loss. As the correlation becomes stronger, the loss of efficiency increases.

When the measurements are uncorrelated, the PL, TS and ML methods produce the same

asymptotic variance. In addition, the efficiency loss in using the PL method is less striking

than that incurred by using the TS method. It is noted that efficiency loss associated with

intercept β0 is less profound than that for the covariate effect β1. To better visualize the

relative performance of the PL and TS methods, we show the relative efficiency RPL:TS(βj)

(j = 0, 1) in Figure 2.2 as well.

−0.4 −0.2 0.0 0.2 0.4

0.
80

0.
85

0.
90

0.
95

1.
00

ρ

R
at

io

Figure 2.1: Relative efficiency with respect to common correlation coefficient ρ. RML:TS(β0) :

; RML:PL(β0) : ; RML:TS(β1) : ; RML:PL(β1) : .
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Figure 2.2: Relative efficiency with respect to common correlation coefficient ρ. RPL:TS(β0) :

; RPL:TS(β1) : .

2.6 Sensitivity Analysis for Model Misspecification

The validity of the proposed method requires the correct model specification, and this

involves modeling of the response, covariate and missing data processes. Now we investigate

the impact of model misspecification on the estimation of the parameter θ.

If we apply a misspecified model to fit data, then the resultant estimator, denoted

by θ̂
∗
, for the parameter θ would converge in probability to a limit, say θ∗, which may

differ from the true parameter value θ. Specifically, let L∗(θ∗) be the marginal or pairwise

likelihood function formulated from a misspecified model. Then according to the result in

Yi and Reid (2010), under certain regularity conditions, the limit θ∗ is the solution of

E(Y,X,R)

{
∂logL∗(θ∗)

∂θ∗

}
= 0, (2.12)

where the expectation is taken under the true joint distribution for Y,X and R variables.

In most situations, equation (2.12) does not have an analytically closed solution. Hence

the relationship between θ∗ and θ is frequently evaluated via numerical assessment. Now
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we undertake numerical studies by assuming the similar settings described in Section 2.4.1,

and focus the discussion primarily on parameter β.

Firstly, to compare the robustness of the PL method relative to the TS method, we first

consider the case that all the marginal models including response, covariate and missing

processes are correctly specified, but the association structures are misspecified. The true

correlation matrix for the response process
1 ψy + κ ψy − κ

ψy + κ 1 ψy + κ

ψy − κ ψy + κ 1

 ,

is used to generate the data, but a misspecified correlation structure with common corre-

lation coefficient 
1 ψy ψy

ψy 1 ψy

ψy ψy 1

 ,

is used to fit the data. Moreover, the covariate and missing processes are misspecified by

a common correlation coefficient but the true correlation matrix follows same form as the

response process.

In Figure 2.3 we display the relative biases defined as (100× (β∗−β)/β). It is seen that

for both PL and TS methods, the asymptotic relative biases for β0 and β1 are negligible,

showing that both approaches are robust to the misspecification of association structures

under current model settings.
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Figure 2.3: Asymptotic relative bias for regression coefficients β0 and β1 for PL and TS methods

when the association structures for the response, covariate and missing processes are all mis-

specified. The models for estimation involves common correlation coefficient. However, the true

correlation matrix for response process has the form in (2.13).

In the reminder of this section, we focus the assessment on the misspecification of

some marginal models. First, we consider the case that the marginal mean model for the

response process is misspecified but other processes are modeled correctly. In particular,

we generate data from the following two means models along with other models described

in Section 2.4.1: (1) µyij = β0 +β1Xij +κ · j; and (2) µyij = β0 +β1Xij +κ ·xij · j. Regardless

of the true model, we always fit the data with the model in Section 2.4.1 where the mean

is specified as µyij = β0 + β1Xij. Figure 2.4 displays the asymptotic percent relative bias

against varying degrees of κ. It is observed that when a specific term in response process

is ignored, the bias would occur. As expected, the stronger influence of the omitting term

on response, the larger the relative bias. Moreover, the PL and TS methods result in same
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bias patterns.
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Figure 2.4: Asymptotic percent relative bias for regression coefficients β0 and β1 when response

models are misspecified. The model for estimation is µyij = β0 + β1Xij, while true models are:

µyij = β0 + β1Xij +κ · j for mean model (1) and µyij = β0 + β1Xij +κ ·Xij · j for mean model (2),

respectively. PL method: ; TS method: .

Finally, we evaluate the impact of misspecifying the missing processes while the response

and covariate process are retained being correctly specified. True models of the missing

processes given by ηRyij = λy0 + λy1Xij + λy2R
x
ij + κYij and ηRxij = λx0 + λx1Xij + κYij, are

particularly considered. But we fit data with models described in Section 2.4.1, where in

particular, the missing data models are ηRyij = λy0 +λy1Xij +λy2R
x
ij, and ηRxij = λx0 +λx1Xij. In

Figure 2.5, we display the asymptotic relative biases for β0 and β1. Again, various patterns

of inflating biases are observed, and the PL and TS methods follow similar pattern.
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Figure 2.5: Asymptotic relative bias for regression coefficients β0 and β1 when the missing data

process is misspecified. The model for estimation is specified in Section 2.4.1, while the true model

is ηRyij = λy0 + λy1Xij + λy2R
x
ij + κYij, η

Rx
ij = λx0 + λx1Xij + κYij . PL method: ; TS method:

.

Appendix A: Proof of Unbiasedness of Estimating Func-

tions

To show unbiasedness of estimating functions, it suffices to show that

EYi,Xi,Ryi ,Rxi |Zi

[
n∑
i=1

∂ logLC1,i(γ)

∂β

]
= 0.

The proof of EYi,Xi,Ryi ,Rxi |Zi [
∑n

i=1 ∂ logLC2,i(θ)/∂θ] = 0 follows analogously. Let

K1,ij = f(Yij|Xij, Zij)f(Xij|Zij)P (Ry
ij = 1, Rx

ij = 1|Yij, Xij, Zij),

K2,ij =

∫ {
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
dYij,

K3,ij =

∫ {
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 1, Rx
ij = 0|Yij, Xij, Zij)

}
dXij,

and

K4,ij =

∫∫ {
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 0|Yij, Xij, Zij)

}
dYijdXij,
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then we write

logLC1(γ) =
n∑
i=1

m∑
j=1

{
Ry
ijR

x
ij logK1,ij + (1−Ry

ij)R
x
ij logK2,ij

+Ry
ij(1−Rx

ij) logK3,ij + (1−Ry
ij)(1−Rx

ij) logK4,ij

}
. (2.13)

By the distinctness of the parameters in different processes, we have

E(Yi,Xi,R
y
i ,R

x
i |Zi)

(
Ry
ijR

x
ij

∂logK1,ij

∂β

)
= E(Yi,Xi|Zi)

{
E(Ryi ,R

x
i |Yi,Xi,Zi)

(
Ry
ijR

x
ij

∂logK1,ij

∂β

)}
= E(Yi,Xi|Zi)

{
P (Ry

ij = 1, Rx
ij = 1|Yij, Xij, Zij)

∂logf(Yij|Xij, Zij)

∂β

}
.

Note that

K2,ij = f(Xij|Zij) · E(Yi|Xi,Zi)
{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
,

then for the second term in (2.13), we have

E(Yi,Xi,R
y
i ,R

x
i |Zi)

{
(1−Ry

ij)R
x
ij

∂logK2,ij

∂β

}
= E(Xi|Zi)

[
E(Yi|Xi,Zi)

{
E(Ryi ,R

x
i |Yi,Xi,Zi)

(
(1−Ry

ij)R
x
ij

∂logK2,ij

∂β

)}]
= E(Xi|Zi)

[
E(Yi|Xi,Zi)

{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

(∂logK2,ij

∂β

)}]
= E(Xi|Zi)

[{
E(Yi|Xi,Zi){P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)}

}
× 1

K2,ij

× ∂K2,ij

∂β

]
= E(Xi|Zi)

{
1

f(Xij|Zij)
· ∂K2,ij

∂β

}
. (2.14)
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By the distinctness of the parameters in different processes, we have

∂K2,ij

∂β
=

∫ {
∂f(Yij |Xij , Zij)

∂β
f(Xij |Zij)P (Ryij = 0, Rxij = 1|Yij , Xij , Zij)

}
dYij

=

∫ {
∂ log f(Yij |Xij , Zij)

∂β
f(Yij |Xij , Zij)f(Xij |Zij)P (Ryij = 0, Rxij = 1|Yij , Xij , Zij)

}
dYij

= f(Xij |Zij) · E(Yi|Xi,Zi)

{
∂ log f(Yij |Xij , Zij)

∂β
P (Ryij = 0, Rxij = 1|Yij , Xij , Zij)

}
,

therefore, (2.14) becomes

E(Yi,Xi|Zi)

{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
.

Analogously, for the third and fourth terms in (2.13), we obtain

E
(∂ logK3,ij

∂β

)
= E(Yi,Xi|Zi)

{
P (Ry

ij = 1, Rx
ij = 0|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
,

and

E
(∂ logK4,ij

∂β

)
= E(Yi,Xi|Zi)

{
P (Ry

ij = 0, Rx
ij = 0|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
,

where the expectation “E” is evaluated with respect to the conditional distribution of

(Yi, Xi, R
y
i , R

x
i ) given Zi.

Then combining these results leads to

E

{
n∑
i=1

∂ logLC1,i(γ)/∂β

}
=

n∑
i=1

m∑
j=1

E(Yi,Xi|Zi) {∂ log f(Yij|Xij, Zij)/∂β} = 0.

Appendix B: Asymptotic Distribution for β̂PL

We sketch the proof of the asymptotic distribution for β̂PL and the asymptotic distribu-

tion for β̂TS follows similarly. Appendix A shows that E{S2i(θ)} = 0. Apply estimating

function theory leads to the asymptotic distribution

√
n(θ̂PL − θ)→D N(0, {E(Di)}−1E{S2i(θ)S2i(θ)T}{E(Di)}−1T ). (2.15)
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Rewrite θ = (βT ,νT )T , and S2i(θ) = (S2i(β)T , S2i(ν)T )T , yielding

E(Di) = E

(
∂S2i(β)/∂βT ∂S2i(β)/∂νT

∂S2i(ν)/∂βT ∂S2i(ν)/∂νT

)
,

and

E{S2i(θ)S2i(θ)T} = E

(
S2i(β)S2i(β)T S2i(β)S2i(ν)T

S2i(ν)S2i(β)T S2i(ν)S2i(ν)T

)
.

Using (2.15), we obtain the asymptotic covariance matrix for
√
n(β̂PL − β) using the

left-upper block matrix from

E−1

(
∂S2i(β)

∂βT
∂S2i(β)
∂νT

∂S2i(ν)

∂βT
∂S2i(ν)
∂νT

)
E

(
S2i(β)S2i(β)T S2i(β)S2i(ν)T

S2i(ν)S2i(β)T S2i(ν)S2i(ν)T

)
E−1

(
∂S2i(β)

∂βT
∂S2i(β)
∂νT

∂S2i(ν)

∂βT
∂S2i(ν)
∂νT

)T

.
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Chapter 3

Analysis of Longitudinal Binary Data

with Missing Response and

Covariates

3.1 Introduction

To provide a complement of Chapter 2 which focuses on continuous responses, we address

the analysis of longitudinal binary data with the composite likelihood method. The re-

mainder of this chapter is organized as follows. Section 3.2 introduces notations and the

model setups. Inference methods are presented in Section 3.3. In Section 3.4, we analyze

the National Population Health Survey (NPHS) data with the proposed methods. To eval-

uate the performance of the proposed methods, we conduct various empirical studies and

report the results in Section 3.5. Concluding remarks are given in Section 3.6.
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3.2 Model Formulation

3.2.1 Response Process

Suppose that there are n subjects and m assessment times. Let Yij be the binary response

variable, and Xij be a covariate vector for subject i at occasion j. Both Yij and Xij are

subject to missingness. For ease of exposition, here we consider the case that Xij is

a scalar. An extension to multiple covariates Xij is discussed in Chapter 6. Let Zij

be a vector of covariates that have complete observations. Let Yi = (Yi1, Yi2, . . . , Yim)T ,

Xi = (Xi1, Xi2 . . . , Xim)T and Zi = (ZT
i1, Z

T
i2, . . . , Z

T
im)T .

To model the relationship between the response and the covariates, one may attempt to

fully specify a distributional form for P (Yi = yi|Xi, Zi), where yi is a binary vector. How-

ever, this could be difficult in many situations, especially when the dimension m is large.

Moreover, fully modeling a multivariate distribution can introduce considerable compu-

tation cost (e.g. Ochi and Prentice (1984)). To protect against model misspecification

and ease computation, we consider a pairwise modeling strategy. First, we introduce some

notations. For a given 2× 2 correlation matrix

v =

(
1 v12

v12 1

)
,

let φ2(z; v) be the probability density function for a bivariate normal distribution, given

by

φ2(z; v) = (2π)−1|v|−1/2 exp
(
− 1

2
zTv−1z

)
,

where z = (z1, z2)T . For u = (u1, u2)T , let Φ2(u; v) denote the corresponding bivariate

cumulative distribution function:

Φ2(u; v) =

∫ u2

−∞

∫ u1

−∞
φ2(z; v) dz1dz2.

Now we consider bivariate probit models for paired responses Yij and Yik, j < k, i =

1, · · · , n. Namely, we set

P (Yij = 1, Yik = 1 | Xi, Zi) = Φ2

(
ηyijk; Σ(ψyijk)

)
, (3.1)
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where ηyijk = (ηyij, η
y
ik)

T is the linear predictors, and Σ(ψyijk) is a 2 × 2 covariance matrix

with diagonal elements 1 and correlation coefficient ψyijk. Requiring the diagonal elements

of Σ(ψyijk) to be 1 is to ensure model identifiability (e.g., Renard et al. (2002) and Roy and

Banerjee (2009)).

To make modeling more parsimonious, we further consider a regression model to reflect

the dependence of ηyij on the covariates at occasion j :

ηyij = Xijβx + ZT
ijβz,

where β = (βx,β
T
z )T is a vector of regression parameters linking the covariates and the

response. With this step, it is immediate that

P (Yij = 1|Xi, Zi) = Φ1(ηyij), (3.2)

where Φ1(u1) represents the cumulative distribution function for the standard normal dis-

tribution N(0, 1), i.e., Φ1(u1) =
∫ u1

−∞φ1(z1) dz1 with φ1(z1) = (2π)−1/2 exp
(
− z2

1/2
)
.

Analogous to a transformation discussed in (Hawkins, 1989), we model correlation

coefficient ψyijk with a regression model

log

(
1 + ψyijk
1− ψyijk

)
= hy(ψy; wy

ijk), (3.3)

where ψy is the vector of regression coefficients, wy
ijk is a vector of covariates, and hy is

a known function that takes values over the entire real number line. For instance, setting

hy(ψy; wy
ijk) to be a scalar ψy leads to an exchangeable correlation structure, while taking

hy(ψy; wy
ijk) = log

1 +
[
{exp(ψy)− 1}/{exp(ψy) + 1}

]|j−k|
1−

[
{exp(ψy)− 1}/{exp(ψy) + 1}

]|j−k|


results in an AR(1) correlation structure. An obvious advantage of (3.3) is to provide

a reparameterization for correlation coefficient ψyijk, so there is no need to impose any

constraints on parameter ψy. Moreover, (3.3) enables us to describe complex dependence

of association structures on covariates by specifying different forms of the hy(ψy; wy
ijk)

function, such as a linear function hy(ψy; wy
ijk) = (wy

ijk)
Tψy.
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3.2.2 Covariate Process

By analogy, to postulate the covariate process, we do not attempt to specify the full distri-

bution with probability density (or mass) function f(Xi|Zi) (or P (Xi = xi|Zi)). Instead,

we focus on specifying a pairwise distribution to gain protection from misspecification of

higher order structures. If Xij is binary, we consider for j < k,

P (Xij = 1, Xik = 1 | Zi) = Φ2

(
ηxijk; Σ(ψxijk)

)
, (3.4)

where ηxijk = (ηxij, η
x
ik)

T , and a regression model is applied to reflect the dependence of ηxij

on the covariates Zi

ηxij = ZT
ijα, (3.5)

with α being the vector of regression parameters. It is immediate that

P (Xij = 1 | Zi) = Φ1(ηxij). (3.6)

Following the same spirit in response process, correlation coefficient ψxijk is modeled as

log

(
1 + ψxijk
1− ψxijk

)
= hx(ψx; wx

ijk), (3.7)

where ψx is the vector of regression coefficients, wx
ijk is a vector of covariates, and hx is a

specified function.

If Xij is continuous, a bivariate normal distribution can be an option to postulate paired

variables Xijk = (Xij, Xik)
T . That is, conditional on Zi, assume Xijk has the probability

density function

f2(xijk;µ
x
ijk,Σ(σ2

x, ψ
x
ijk))

= (2π)−1|Σ(σ2
x, ψ

x
ijk)|−1/2 exp

{
− 1

2
(xijk − µxijk)TΣ(σ2

x, ψ
x
ijk)
−1(xijk − µxijk)

}
, (3.8)

where xijk = (xij, xik)
T , µxijk = (µxij, µ

x
ik)

T , and Σ(σ2
x, ψ

x
ijk) is a 2×2 covariance matrix with

diagonal elements being σ2
x and the correlation coefficient being ψxijk. It is noted that µxij
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and σ2
x are the conditional marginal mean and variance of Xij given Zi, respectively. By

analogy, µxij and ψxijk may be respectively modulated as (3.5) and (3.7). More generally, a

bivariate skew normal distribution can be employed to model non-normal Xijk for greater

flexibility. Properties of this type of distributions are discussed by Azzalini and Capitanio

(1999).

3.2.3 Missing Data Process

Let Ry
ij = 1 if Yij is observed and 0 otherwise. Let Rx

ij = 1 if Xij is observed and 0

otherwise. Denote Ry
i = (Ry

i1, R
y
i2, . . . , R

y
im)T and Rx

i = (Rx
i1, R

x
i2, . . . , R

x
im)T . For the

missing data process, we follow the same lines to postulate pairwise models. In particular,

we only model P (Ry
ij = 1, Ry

ik = 1|Yi, Xi, Zi, R
x
ij, R

x
ik) and P (Rx

ij = 1, Rx
ik = 1|Yi, Xi, Zi),

which uniquely determine the distribution P (Ry
ij = 1, Ry

ik = 1, Rx
ij = 1, Rx

ik = 1|Yi, Xi, Zi).

Specifically, for j < k, the pairwise model is specified as

P (Ry
ij = 1, Ry

ik = 1|Yi, Xi, Zi, R
x
ij, R

x
ik) = Φ2(ηRyijk; Σ(ρyijk)),

and

P (Rx
ij = 1, Rx

ik = 1|Yi, Xi, Zi) = Φ2(ηRxijk; Σ(ρxijk)), (3.9)

where ηRyijk = (ηRyij , η
Ry
ik )T , ηRxijk = (ηRxij , η

Rx
ik )T , and the regression models

ηRyij = λy
T

ξyij

and

ηRxij = λx
T

ξxij

can be introduced to reflect the dependence of (ηRyij , η
Rx
ij ) on response and covariate vari-

ables, respectively. λ = (λy
T

,λx
T

)T are the regression parameters related to the missing

data process, and ξyij and ξxij are subsets of {Yij, Xij, Zij, R
x
ij} and {Yij, Xij, Zij}, respec-

tively. Similarly, the correlation coefficients ρyijk and ρxijk can be modeled as

log

(
1 + ρyijk
1− ρyijk

)
= hRy(ρy; wRy

ijk),
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and

log

(
1 + ρxijk
1− ρxijk

)
= hRx(ρx; wRx

ijk),

respectively, where ρy and ρx are the vectors of regression coefficients, wRy
ijk and wRx

ijk are

subsets of {Yij, Xij, Zij, R
x
ij} and {Yij, Xij, Zij}, respectively, and hRy and hRx are given

functions. It is immediate that

P (Ry
ij = 1, Rx

ij = 1|Yi, Xi, Zi) =
1∑

ryik=0

1∑
rxik=0

P (Ry
ij = 1, Ry

ik = ryik, R
x
ij = 1, Rx

ik = rxik|Yi, Xi, Zi).

(3.10)

3.3 Estimation and Inference

3.3.1 Marginal and Pairwise Likelihoods

Let γ = (βT ,αT ,λT )T be the parameters associated with the marginal structure, and δ =

(ψyT ,ψxT ,ρy
T
,ρx

T
)T be the set of parameters which governs the association structure in

the pairwise models. For ease of exposition, we only consider the case with binary variable

Xij for the covariate process. With a continuous Xij, modifications in the exposition are

immediate by changing the probability mass function to the probability density function

and replacing the corresponding summation with an integral. We put yij = (yobsij , y
mis
ij ),

where either yobsij and ymisij can be null, depending on whether or not yij is observed.

Similarly, write xij = (xobsij , x
mis
ij ).

First, we temporarily assume an independence structure among the response compo-

nents, and denote

LC1,i(γ) =
m∏
j=1

{ 1∑
ymisij =0

1∑
xmisij =0

P (Yij = yij|Xij, Zij)P (Xij = xij|Zij)

×P (Ry
ij = ryij, R

x
ij = rxij|Yij, Xij, Zij)

}
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as the observed likelihood contributed by subject i, where the probability mass (or density)

functions are determined by (3.2), (3.6), and (3.10). For j < k, let

LC2,i(γ, δ) =
∏
j<k

{ ∑
ymisij ,ymisik

∑
xmisij ,xmisik

P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik)

×P (Xij = xij, Xik = xik|Zij, Zik)

×P (Ry
ij = ryij, R

x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

}
be the observed pairwise likelihood contributed from subject i, where the probability mass

(or density) functions are determined by (3.1), (3.4), and (3.9). Then the marginal likeli-

hood and pairwise likelihood are respectively given by

LC1(γ) =
n∏
i=1

LC1,i(γ), (3.11)

and

LC2(γ, δ) =
n∏
i=1

LC2,i(γ, δ). (3.12)

3.3.2 Inference Procedures

Let θ = (γT , δT )T , S1i,γ = ∂ logLC1,i(γ)/∂γ, S2i,γ = ∂ logLC2,i(γ, δ)/∂γ, and S2i,δ =

∂ logLC2,i(γ, δ)/∂δ. Define Hi = (ST1i,γ ,S
T
2i,δ)

T , and S2i,θ = (ST2i,γ ,S
T
2i,δ)

T . We employ two

approaches for the estimation of θ: the pairwise likelihood (PL) approach and the two-stage

(TS) estimation.

Pairwise Likelihoods

Estimation of θ can be carried out using the Newton-Raphson algorithm. Let θ(t) =

(γT (t), δT (t))T denote the estimate at the tth iteration. We update the estimates of θ by

the iterative equation(
γ(t+1)

δ(t+1)

)
=

(
γ(t)

δ(t)

)
−

{ n∑
i=1

Di(θ
(t))
}−1

·
{ n∑

i=1

S2i,θ(θ
(t))
}
, t = 0, 1, . . .
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until convergence, where Di = ∂S2i,θ/∂θ
T . Let θ̂PL = (γ̂TPL, δ̂

T

PL)T denote the convergence

value. Using estimating function theory, it can be shown that under regularity conditions,
√
n(θ̂PL − θ) has an asymptotic normal distribution with mean 0 and covariance matrix

{E(Di)}−1E{S2i,θS
T
2i,θ}{E(Di)}−1T .

Two-Stage Algorithm

For the ease of computation, we describe a two-stage estimation algorithm. In the first

stage, we estimate the marginal parameter γ based on S1i,γ using the iteration equation

γ(t+1) = γ(t) −
{ n∑

i=1

∂S1i,γ(γ(t))/∂γT
}−1

·
{ n∑

i=1

S1i,γ(γ(t))
}
, t = 1, 2, . . .

where γ(t) represents the estimate of γ at the tth iteration. Let γ̂TS denote the estimate

of γ at convergence.

In the second stage, we use S2i,δ to estimate the association parameter δ by fixing γ to

be γ̂TS. Specifically, we update the estimate of δ by the iteration equation:

δ(t+1) = δ(t) −
{ n∑

i=1

∂S2i,δ(γ̂TS, δ
(t))/∂δT

}−1

·
{ n∑

i=1

S2i,δ(γ̂TS, δ
(t))
}
, t = 1, 2, . . . ,

where δ(t) represents the estimate of δ at the tth iteration. Let δ̂TS denote the es-

timate of δ at convergence, and let θ̂TS = (γ̂TTS, δ̂
T

TS)T . Under regularity conditions,
√
n(θ̂TS − θ) is asymptotically normally distributed with mean 0 and covariance matrix

{E(D∗i )}−1E{HiH
T
i }
[
{E(D∗i )}−1

]T
, where

D∗i =

(
∂S1i,γ/∂γ

T 0

∂S2i,δ/∂γ
T ∂S2i,δ/∂δ

T

)
.

The proof is sketched in the Appendix.
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3.4 The NPHS Data Sample

We apply the proposed methods to analyze the NPHS data of 1394 males who were assessed

for 6 cycles. At Cycle 1, the individuals’ age ranged between 50 and 70. At Cycle 6 all the

subjects were under age 80. All the deceased subjects were excluded from the analysis. The

response of interest is the indicator of normal Health Utilities Index (HUI) Mark versus

abnormal Health Utilities Index Mark measured at each cycle, where 0.89 was taken as

a threshold value. Meanwhile, covariate measurements describing participants’ provincial

level of household income (INC) were also taken. The income covariate was obtained by

classifying the provincial level income (ranging from 1-10) as high or low, where 5 is a cutoff

point. One objective of the study was to investigate how an individual’s health status was

associated with his/her income, and whether or not there was a temporal effect on health.

Let the binary response variable Yij equal to 1 if the ith individual has HUI score higher

than 0.89 at time j, and 0 otherwise; let Xij equal to 1 if the ith individual has INC higher

than 5 at time j, and 0 otherwise.

In the data set, only 43.2% of the individuals have complete observations for both

response and covariate in all the 6 cycles. The response missingness proportions for the

6 cycles are 5.3%, 8.9%, 11.9%, 16.8%, 22.3%, and 25.6%, respectively, while the INC

covariate missingness proportions are 8.7%, 13.2%, 17.1%, 24.0%, 29.0% and 33.4%, re-

spectively. Various types of missingness patterns are present. A sample of missingness

patterns is displayed in Table 5.1.
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Table 3.1: Missing data patterns for the HUI and INC variables in the NPHS data (%)

Percentage
HUI INC

1 2 3 4 5 6 1 2 3 4 5 6

43.2% X X X X X X X X X X X X

4.2% X × × × × × X × × × × ×
· · ·
2% X X X X X X X × X X X X

1% X X X X × X X X X X × X

1% × X X X X X X X X X X X

X Observed; × Missing

We assume that response and covariate processes followed marginal structures

ηyij = β0 + β1Xij + β2Zij, (3.13)

and

ηxij = α0 + α1Zij, (3.14)

respectively, where Zij = j is set to be −2,−1, 0, 1, 2, 3, corresponding to Cycle 1 to Cycle

6.

The marginal structures of missing data processes were specified as

ηRyij = λy0 + λy1Yij + λy2Xij + λy3R
x
ij + λy4Zij, (3.15)

and

ηRxij = λx0 + λx1Yij + λx2Xij + λx3Zij. (3.16)

To complete pairwise modeling, we used an AR(1) correlation structure for paired variables

at times j and k for the response, covariate and missing data processes. Thus, for the

models described in Section 3.2, we had the association parameters ψy, ψx, ρy and ρx for

response, covariate and missing models, respectively.
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We analyzed the data using the PL and TS methods. As a comparison, we employed

a naive approach that is often used by analysts to handle data with missing observations.

That is, we applied the generalized estimating equations (GEE) method to the complete

data only, and denoted this method by NGEE. The correlation structure for the NGEE

method was set to be unstructured. Tables 3.2 and 3.3 record the analysis results. For

the response model in Table 3.2, the PL and TS approaches suggest that income has a

significant positive effect on health index. People are more likely to have a better health

status if they have higher income. There is no evidence of temporal effects on health status.

The analysis results suggest a positive pairwise correlation among outcome measurements.

The naive GEE approach indicates the same nature of findings.

Table 3.2: Analysis of the NPHS data using the pairwise likelihood (PL), two-stage esti-

mation (TS) and naive GEE (NGEE) methods: response models

PL TS NGEE

Parameter Estimate SE p-value Estimate SE p-value Estimate SE p-value

Intercept (β0) 0.351 0.039 < 0.001 0.328 0.037 < 0.001 0.405 0.032 < 0.001

INC (β1) 0.355 0.041 < 0.001 0.410 0.057 < 0.001 0.238 0.037 < 0.001

Cycle (β2) -0.014 0.010 0.148 -0.012 0.011 0.282 -0.016 0.009 0.086

Association (ψy) 1.873 0.065 < 0.001 1.811 0.073 < 0.001 - - -

For the covariate model of household income in Table 3.3, the PL and TS methods

indicate different estimate results. The PL method suggests a negative temporal effect

on the income, whereas the TS approach does not find a significant temporal effect on

the income. For the missing data processes, although the PL and TS approaches produce

estimates with different magnitudes, they suggest similar nature of the estimates.
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Table 3.3: Analysis of the NPHS data using the pairwise likelihood (PL) and two-stage es-

timation (TS) approaches: results for parameters associated with the covariate and missing

data processes

PL TS

Parameter Estimate SE p-value Estimate SE p-value

Covariate (INC) Model

Intercept (α0) -0.023 0.044 0.599 0.291 0.051 < 0.001

Cycle (α1) -0.122 0.011 < 0.001 -0.020 0.029 0.481

Association (ψx) 2.626 0.087 < 0.001 2.094 0.173 < 0.001

Response Missingness Model

Intercept (λy0) -0.318 0.108 0.003 -0.131 0.160 0.411

HUI (λy1) 0.110 0.158 0.486 -0.277 0.169 0.101

INC (λy2) 0.075 0.085 0.377 0.055 0.098 0.579

Cycle (λy3) -0.071 0.016 < 0.001 -0.072 0.016 < 0.001

Rxij (λy4) 2.228 0.061 < 0.001 2.371 0.075 < 0.001

Association (ρy) 1.626 0.140 < 0.001 1.587 0.109 < 0.001

Covariate Missingness Model

Intercept (λx0) 0.755 0.085 < 0.001 2.609 2.262 0.249

HUI (λx1) -0.014 0.071 0.838 0.085 0.112 0.447

INC (λx2) 0.439 0.208 0.035 -2.102 2.355 0.372

Cycle (λx3) -0.165 0.011 < 0.001 -0.243 0.022 < 0.001

Association (ρx) 1.977 0.086 < 0.001 2.379 0.095 < 0.001

3.5 Empirical Studies

3.5.1 Performance of the Proposed Methods

In this section, we assess the empirical performance of the proposed methods through

simulation studies. Five hundred simulations are run for the parameter configuration con-

sidered. We take a setting with m = 3 and n = 500, and simulate longitudinal binary re-

sponses from the joint distribution P (Yi1 = 1, Yi2 = 1, Yi3 = 1 | Xi) = Φ3((ηyi1, η
y
i2, η

y
i3)T ; Σ),
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where Φ3 is the cumulative distribution function for a trivariate normal distribution that is

defined similarly to Φ2 in Section 3.2, and Σ is a correlation matrix with an exchangeable

correlation coefficient ψy:

Σ =


1 ψy ψy

ψy 1 ψy

ψy ψy 1

 .

The regression model linking ηyij with covariate is specified as

ηyij = β0 + β1Xij,

where we set β0 = −0.5, β1 = 1 and ψy = 0.9.

Analogously, missingness-prone binary covariates Xij are generated from P (Xi1 =

1, Xi2 = 1, Xi3 = 1) = Φ3((ηxi1, η
x
i2, η

x
i3)T ; Σx), where we set

ηxij = α0,

and Σx takes the same form as Σ, except that ψy is replaced by ψx. We take α0 = 0.25

and ψx = 0.5.

The response missingness process is generated similarly using P (Ry
i1 = 1, Ry

i2 = 1, Ry
i3 =

1 | Yi, Xi, R
x
i ) = Φ3((ηRyi1 , η

Ry
i2 , η

Ry
i3 )T ; ΣRy), where we specify

ηRyij = λy0 + λy1Yij + λy2R
x
ij,

and ΣRy takes the same form as Σ except that ψy is replaced by ρy. For the covariate

missingness process, we generate Rx
ij using the distribution P (Rx

i1 = 1, Rx
i2 = 1, Rx

i3 = 1 |
Yi, Xi) = Φ3((ηRxi1 , η

Rx
i2 , η

Rx
i3 )T ; ΣRx), where the marginal regression model is

ηRxij = λx0 + λx1Yij,

and ΣRx takes the same form as Σ except that ψy is replaced by ρx. The true values for

the regression parameters in the missing-data processes are set to be λy0 = λx0 = −0.5,

λy1 = λx1 = 1.5, λy2 = −0.5 and ρy = ρx = 0.5.
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We assess the performance of the PL and the TS approaches in contrast to the naive

method NGEE, described in Section 3.4. In the NGEE approach, all incomplete observa-

tions are ignored and only the complete data are used for the estimation. We report the

results in Table 3.4, where “bias” represents the percent relative bias, “ASE” and “ESE”

are the average of model-based and empirical standard errors, respectively, and CP% repre-

sents the empirical coverage probability for the 95% confidence intervals. The results show

that our PL and TS approaches yield small biases and satisfactory coverage probabilities

for both the mean and the association parameters. ASE and ESE agree reasonably well for

the PL and the TS methods, suggesting the consistency of variance estimates. The NGEE

method, on the other hand, yields remarkably biased results.
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3.5.2 Sensitivity Analysis

Now we evaluate the sensitivity of our methods. In particular, we consider the case that

the marginal structures for missing data processes are misspecified, while the association

structures of the missing models are correctly specified. The response and covariate pro-

cesses are retained to be correctly specified, as described in Section 3.5.1. To be specific,

we generate the missing data indicators from the model with the true marginal structures

ηRyij = λy0 + λy1yij + λy2R
x
ij + κxij, and ηRxij = λx0 + λx1yij + κxij, but we fit data with models

described in Section 3.5.1 with ηRyij = λy0 + λy1yij + λy2R
x
ij and ηRxij = λx0 + λx1yij.

Under model misspecification, the resultant estimator for the parameter θ, denoted

by θ̂
∗
, would converge in probability to a limit θ∗, say. This limit θ∗ is, under certain

regularity conditions, the solution of

E(Y,X,Ry ,Rx|Z)

{
∂ logL∗(θ∗)

∂θ∗

}
= 0, (3.17)

where the expectation is taken under the true joint distribution for the (Y,X,Ry, Rx)

variables given Z, and L∗(θ∗) is the marginal or pairwise likelihood function formulated

from the misspecified model (Yi and Reid, 2010).

In our analysis here, (3.17) does not have a closed form solution. We use numerical

approximations to display the asymptotic relative biases, defined as (100 × (β∗ − β)/β),

against varying degrees of κ. The results are shown in Figure 3.1. It is seen that when

a specific term in missing data process is ignored, the bias may occur. As expected, the

stronger influence of the omitting term on the missing process model, the larger the relative

bias. While the PL and TS methods show similar trends in bias, the PL method tends to

produce smaller bias than the TS method.
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Figure 3.1: Asymptotic relative bias for regression coefficients β0 and β1 when the marginal

structures in missing data process are misspecified. The model for estimation is specified in

Section 3.5.1, while the true model is ηRyij = λy0 + λy1yij + λy2R
x
ij + κxij, η

Rx
ij = λx0 + λx1yij + κxij .

PL method: ; TS method: .

3.5.3 Efficiency Assessment

We are also interested in assessing the efficiency of the estimators obtained from the PL

and the TS methods. This assessment is carried out as opposed to the maximum likeli-

hood (ML) method. We consider the model setting in Section 3.5.1, but set a common

exchangeable correlation coefficient ρ = ψy = ψx = ρy = ρx. To highlight comparison on

the β parameter, we assume all other nuisance parameters are known for simplicity.

Let avar(β̂PL1 ) denote the asymptotic variance for the estimator of β1 obtained from

the PL method. It is calculated by similar approaches in Section 3.3, with all nuisance

parameters set to be fixed. Analogously, we obtain the asymptotic variance avar(β̂TS1 ) for

the estimator of β1 obtained from the TS approach. Let avar(β̂ML
1 ) denote the asymp-

totic variance of the estimator for β1 obtained from the maximum likelihood method, i.e.,

obtained from the diagonal element of
[
E{SFi (β)SFi (β)T}

]−1

evaluated at the maximum

likelihood estimate, where SFi (β) is the score function of β from the fully specified likeli-
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hood function. Then, the relative efficiency of the PL estimator with respect to the ML

estimator is given by avar(β̂ML
1 )/avar(β̂PL1 ), and the relative efficiency of the TS estimator

against the ML estimator is given by avar(β̂ML
1 )/avar(β̂TS1 ).

Figure 3.2 shows that the PL and TS methods incur different degrees of efficiency loss.

When the measurements are uncorrelated (i.e. ρ = 0), the PL, TS and ML methods pro-

duce the same asymptotic variance, as shown by the peak of the curves. As the correlation

becomes stronger, the efficiency loss increases. It is seen that the efficiency loss in using

the PL method is less striking than that incurred by using the TS method.
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Figure 3.2: Relative efficiency of estimators for β1. The TS method: ; the PL method:

.

Appendix

To show the asymptotic distribution of our two-stage approach, we proceed with two steps.

First, we show E(Hi) = 0, and then we derive the asymptotic distribution.
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The proof of E(Hi) = 0

To show E(Hi) = 0, it suffices to show that E {
∑n

i=1 ∂ logLC1,i(γ)/∂β} = 0. The proof

for other elements in Hi follows analogously. Let

K1,ij = f(Yij|Xij, Zij)f(Xij|Zij)P (Ry
ij = 1, Rx

ij = 1|Yij, Xij, Zij),

K2,ij =
1∑

Yij=0

{
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
,

K3,ij =
1∑

Xij=0

{
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 1, Rx
ij = 0|Yij, Xij, Zij)

}
,

and

K4,ij =
1∑

Yij=0

1∑
Xij=0

{
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 0|Yij, Xij, Zij)

}
,

then we write

logLC1(γ) =
n∑
i=1

m∑
j=1

{
Ry
ijR

x
ij logK1,ij + (1−Ry

ij)R
x
ij logK2,ij

+Ry
ij(1−Rx

ij) logK3,ij + (1−Ry
ij)(1−Rx

ij) logK4,ij

}
. (3.18)

By the distinctness of the parameters in different processes, we have

E(Yi,Xi,R
y
i ,R

x
i |Zi)

(
Ry
ijR

x
ij

∂logK1,ij

∂β

)
= E(Yi,Xi|Zi)

{
E(Ryi ,R

x
i |Yi,Xi,Zi)

(
Ry
ijR

x
ij

∂logK1,ij

∂β

)}
= E(Yi,Xi|Zi)

{
P (Ry

ij = 1, Rx
ij = 1|Yij, Xij, Zij)

∂logf(Yij|Xij, Zij)

∂β

}
.

Note that

K2,ij = f(Xij|Zij) · E(Yi|Xi,Zi)
{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
,
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then for the second term in (3.18), we have

E(Yi,Xi,R
y
i ,R

x
i |Zi)

{
(1−Ry

ij)R
x
ij

∂logK2,ij

∂β

}
= E(Xi|Zi)

[
E(Yi|Xi,Zi)

{
E(Ryi ,R

x
i |Yi,Xi,Zi)

(
(1−Ry

ij)R
x
ij

∂logK2,ij

∂β

)}]
= E(Xi|Zi)

[
E(Yi|Xi,Zi)

{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

(∂logK2,ij

∂β

)}]
= E(Xi|Zi)

[{
E(Yi|Xi,Zi){P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)}

}
× 1

K2,ij

× ∂K2,ij

∂β

]
= E(Xi|Zi)

{
1

f(Xij|Zij)
· ∂K2,ij

∂β

}
. (3.19)

By the distinctness of the parameters in different processes, we have

∂K2,ij

∂β
=

1∑
Yij=0

{
∂f(Yij|Xij, Zij)

∂β
f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}

=
1∑

Yij=0

{
∂ log f(Yij|Xij, Zij)

∂β
f(Yij|Xij, Zij)f(Xij|Zij)P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
= f(Xij|Zij) · E(Yi|Xi,Zi)

{
∂ log f(Yij|Xij, Zij)

∂β
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

}
,

therefore, (3.19) becomes

E(Yi,Xi|Zi)

{
P (Ry

ij = 0, Rx
ij = 1|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
.

Analogously, for the third and fourth terms in (3.18), we obtain

E
(∂ logK3,ij

∂β

)
= E(Yi,Xi|Zi)

{
P (Ry

ij = 1, Rx
ij = 0|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
,

and

E
(∂ logK4,ij

∂β

)
= E(Yi,Xi|Zi)

{
P (Ry

ij = 0, Rx
ij = 0|Yij, Xij, Zij)

∂ log f(Yij|Xij, Zij)

∂β

}
,
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where the expectation “E” is evaluated with respect to the conditional distribution of

(Yi, Xi, R
y
i , R

x
i ) given Zi.

Then combining these results leads to

E

{
n∑
i=1

∂ logLC1,i(γ)/∂β

}
=

n∑
i=1

m∑
j=1

E(Yi,Xi|Zi) {∂ log f(Yij|Xij, Zij)/∂β} = 0.

Asymptotic Distribution

An alternative to obtain the estimator θ̂TS = (γ̂TTS, δ̂
T

TS)T is to employ the joint iterative

equation to update the estimate:(
γ(t+1)

δ(t+1)

)
=

(
γ(t)

δ(t)

)
−

{ n∑
i=1

D∗i (γ
(t), δ(t))

}−1

·
n∑
i=1

{
Hi(γ

(t), δ(t))
}
, (3.20)

At each iteration, the update obtained from (3.20) may differ from that obtained from

the two-stage algorithm. However, updated values from these two procedures converge to

the same limit under mild regularity conditions (Prentice, 1988). When the algorithm in

(3.20) reaches convergence, the n−1
∑n

i=1 Hi(θ̂TS) = 0 condition will be satisfied. Then

the mean-value theorem gives

1

n

n∑
i=1

Hi(θ) +
{ 1

n

n∑
i=1

D∗i (θ̃)
}

(θ̂TS − θ) = 0, (3.21)

where θ̃ is a value “between” the true value θ and θ̂TS.

Multiplying
√
n and solving for

√
n(θ̂TS − θ) gives

√
n(θ̂TS − θ) = −

{ 1

n

n∑
i=1

D∗i (θ̃)
}−1 1√

n

n∑
i=1

Hi(θ). (3.22)

Under regularity conditions, the property E(Hi) = 0 ensures that θ̂TS →p θ. Because

θ̃ lies between θ and θ̂TS, it will also be consistent to θ. Then the first term in (3.22)
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is consistent to [E(D∗i )]
−1 if matrix E(D∗i ) is nonsingular. On the other hand, the cen-

tral limit theorem implies that the second term in (3.22) has the limiting distribution

N(0, E{HiH
T
i }). Therefore, it follows from the Slutzky theorem that the asymptotic dis-

tribution for
√
n(θ̂TS − θ) is a normal distribution with mean 0 and covariance matrix

{E(D∗i )}−1E{HiH
T
i }{E(D∗i )}−1T .

Some Computation Details

Here we present some derivatives that are used in the implementation of our methods. Let

A1 =
∑

ymisij ,ymisik

∑
xmisij ,xmisik

{
P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik)P (Xij = xij, Xik = xik|Zij, Zik)

×P (Ry
ij = ryij, R

x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

}
,

and

A2 = logP (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik) + logP (Xij = xij, Xik = xik|Zij, Zik)

+ logP (Ry
ij = 1, Rx

ij = 1, Ry
ik = 1, Rx

ik = 1|Yij, Yik, Xij, Xik, Zij, Zik),

then logLC2,i(θ) in (3.12) can be rewritten as

logLC2,i(θ) =
∑
j<k

I(ryij + rxij + ryik + rxik < 4) logA1 + I(ryij + rxij + ryik + rxik = 4)A2,

leading to the score function

∂ logLC2,i(θ)

∂θ
=
∑
j<k

I(ryij + rxij + ryik + rxik < 4)
1

A1

∂A1

∂θ
+ I(ryij + rxij + ryik + rxik = 4)

∂A2

∂θ
,
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where

∂A1

∂θ
=

∑
ymisij ,ymisik

∑
xmisij ,xmisik

[
∂

∂θ

{
P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik)

}
·P (Xij = xij, Xik = xik|Zij, Zik)

·P (Ry
ij = ryij, R

x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

+P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik) ·
∂

∂θ

{
P (Xij = xij, Xik = xik|Zij, Zik)

}
·P (Ry

ij = ryij, R
x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

+P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik) · P (Xij = xij, Xik = xik|Zij, Zik)

· ∂
∂θ

{
P (Ry

ij = ryij, R
x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

}]
,

and

∂A2

∂θ
=

∂
∂θ

{
P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik)

}
P (Yij = yij, Yik = yik|Xij, Xik, Zij, Zik)

+

∂
∂θ

{
P (Xij = xij, Xik = xik|Zij, Zik)

}
P (Xij = xij, Xik = xik|Zij, Zik)

+

∂
∂θ

{
P (Ry

ij = ryij, R
x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

}
P (Ry

ij = ryij, R
x
ij = rxij, R

y
ik = ryik, R

x
ik = rxik|Yij, Yik, Xij, Xik, Zij, Zik)

.

Similarly, we can work out the second derivatives:

∂2 logLC2,i(θ)

∂θ∂θT
=

∑
j<k

I(ryij + rxij + ryik + rxik < 4)

[
− 1

A2
1

∂A1

∂θ

{∂A1

∂θ

}T
+

1

A1

∂A2
1

∂θ∂θT

]
+I(ryij + rxij + ryik + rxik = 4)

(
∂A2

2

∂θ∂θT

)
.
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Chapter 4

Simultaneous Methods of Variable

Selection and Estimation for

Longitudinal Data Arising in Clusters

4.1 Introduction

In longitudinal studies, datasets can involve a large number of covariates. However, not all

of them are relevant to explain the response variable. Properly selecting variables to build

a feasible model is important for valid inference.

Many studies on variable selection methods focus on the analysis of univariate data. The

methods include the best subset selection (Akaike, 1973; Schwarz, 1978), stepwise selection

(Yan and Su, 2009), and shrinkage methods (Frank and Friedman, 1993; Tibshirani, 1996,

2011). However, relatively limited work has been done for longitudinal data arising in

clusters. Fan and Li (2001) propose a variable selection approach by imposing the smoothly

clipped absolute deviation (SCAD) penalty on log likelihood for generalized linear models

on independent data. Fan and Li (2004) discuss a variable selection method based on

semiparametric model for longitudinal data. However, their methods ignore the correlation
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in longitudinal data. Ni et al. (2010) study the model selection methods for both covariates

and semiparametric components under linear mixed effects models with a double penalty

strategy. Bondell et al. (2010) and Ibrahim et al. (2010) discuss double penalty ideas for

the selection of both covariates and random effects via the EM algorithm.

A challenge on handling longitudinal data, or even longitudinal data arising in clus-

ters, comes from substantially increased modeling complexity and computational difficulty.

With clusters present in longitudinal studies, the likelihood functions become cumbersome.

Fieuws and Verbeke (2006) argue that for longitudinal clustered data under random effects

models, computation will become difficult as the dimension of the random-effects vector

is often high, even in the case of linear mixed models where the integrals may be calcu-

lated analytically. Thus, an obvious paradox for longitudinal data arising in clusters is

that although likelihood methods are straightforward to be formulated with penalty func-

tions accommodated for variable section, the complexity in modeling and the intensity in

computing seriously prevent universal use of such methods.

It is desirable to develop methods that preserve advantages of existing methods and

overcome their shortcomings. The purpose of this chapter is to describe a general variable

selection approach based on the pairwise likelihood formulation (Lindsay, 1988; Arnold

and Strauss, 1991; Cox and Reid, 2004; Lindsay et al., 2011) to handle longitudinal clus-

tered data. Pairwise likelihood functions focus only on partial structures of data, and often

enjoy transparent interpretation, modeling tractability and computational cheapness. Fur-

thermore, as opposed to the full likelihood method, the pairwise likelihood formulation is

robust in the sense that association structures higher than those used in the formulation are

left unspecified. Two specific types of pairwise likelihood, all-pairwise marginal likelihood

(APW) and all-pairwise conditional likelihood (APC), are introduced in this chapter. The

SCAD penalty is used for variable section. We particularly form the development under

random effects models.

A further relevant and interesting topic concerns the validity of model assumptions.

When these assumptions are violated, estimation and selection results could be biased
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or incorrect. There are some studies in dealing with misspecified model selection issues

(Lv and Liu, 2010). However, little work has been done under the penalized likelihood

or penalized composite likelihood framework. In this chapter, we explore the asymptotic

results obtained from misspecified models.

The rest of the chapter is organized as follows. Section 4.2 describes the generalized

linear mixed models (GLMMs) formulation and notations. We then introduce the formu-

lations of the composite likelihood methods. Section 4.3 presents the penalized composite

likelihood and the implementation algorithm. This section also derives the asymptotic

results for our penalized composite likelihood approach. Section 4.4 demonstrates the

asymptotic results obtained from misspecified models. To evaluate the performance of the

proposed methods, we conduct various empirical studies and display the results in Section

4.5. The application of our methods into a real data analysis is illustrated in Section 4.6,

and concluding remarks are given in Section 4.7.

4.2 Model Setup

Suppose there are n clusters and Ji subjects within cluster i, i = 1, 2, . . . , n. We assume that

each subject is assessed at K specified time points. Let Yijk denote the response for subject

j in cluster i at visit k, k = 1, 2, . . . , K. Take Yij = (Yij1, Yij2, . . . , YijK)T , j = 1, 2, . . . , Ji,

and Yi = (Y T
i1 , Y

T
i2 , . . . , Y

T
iJi

)T , i = 1, 2, . . . , n. Let ui denote a random effects vector cor-

responding to cluster i, i = 1, 2, . . . , n. Let Xijk = (Xijk,1, . . . , Xijk,p)
T be the p × 1 fixed

effect covariate vector for subject j in cluster i at time k, Xij = (XT
ij1, X

T
ij2, . . . , X

T
ijK)T ,

and Xi = (XT
i1, X

T
i2, . . . , X

T
iJi

)T . Let Zijk = (Zijk,1, . . . , Zijk,q)
T be the q × 1 random effect

covariate vector, Zij = (ZT
ij1, Z

T
ij2, . . . , Z

T
ijk)

T and Zi = (ZT
i1, Z

T
i2, . . . , Z

T
iJi

)T .
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4.2.1 Generalized Linear Mixed Models

The usual generalized linear mixed models (GLMMs) consist of two steps of modeling

(Laird and Ware, 1982; McCulloch, 1997). In the first step, we assume that conditional

on random effects ui, the Yijk (j = 1, . . . , Ji; k = 1, . . . , K) are independent and have the

probability (density) function given by

f(yijk|ui) = exp
[
{yijkτijk − b(τijk)}/a(φ) + c(yijk;φ)

]
, (4.1)

where a(·), b(·) and c(·) are given functions, φ is a scale parameter, and τijk is the canonical

parameter. This leads to E(Yijk|ui) = b′(τijk), and Var(Yijk|ui) = a(φ)b′′(τijk).

The second step links the conditional mean of Yijk to the covariates with a regression

model

h{E(Yijk|ui)} = XT
ijkβ + ZT

ijkui, (4.2)

where h is a monotone link function, β is the vector of p×1 fixed effect coefficients, and the

random effects vector ui is assumed to follow a certain distribution, such as a multivariate

normal distribution. Let f(ui;α) denote the joint probability density function of ui, where

α is an associated parameter vector.

Different types of random effects models can be obtained by various choices of the Zijk

vector or random effects vector ui. For instance, (4.2) includes commonly used one-way

(Fieuws and Verbeke, 2006), two-way (Sutradhar and Rao, 2003) or three-way (Bellio and

Varin, 2005) random effects models:

h{E(Yijk|νi)} = XT
ijkβ + νi, (4.3)

h{E(Yijk|νi, ωj)} = XT
ijkβ + νi + ωj, (4.4)

or

h{E(Yijk|νi, ωj, τk)} = XT
ijkβ + νi + ωj + τk, (4.5)

where νi, ωj and τk are random effects which respectively facilitate cluster-level, subject-

level and time-specific heterogeneity, and are assumed to be independent of each other.
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Under the conditional independence assumption that the Yijk are independent given

ui and covariates, inference can, in principle, be carried out by maximizing the observed

likelihood with unobservable random effects integrated out. For example, under model

(4.5), the marginal likelihood is given by

n∏
i=1

∫ [∫∫ { Ji∏
j=1

K∏
k=1

f(yijk|νi, ωj, τk)
}
f(ωj)f(τk) dωj dτk

]
f(νi)dνi. (4.6)

Evaluation of this likelihood requires calculation of n(K + 1) +
∑n

i=1 Ji dimensional

integrals. Several serious issues would arise here. The number of integrals involved in

(4.6) rapidly grows with the number of random effects, creating increasing computational

intensity, especially for the case that integrals are intractable. In addition, specifying

appropriate distributions for random effects could be difficult, because random effects are

not observable. Moreover, the conditional independence assumption for the Yijk given ui

can be inflexible to handle data with complex association.

To overcome these limitations of GLMMs, we now propose a wider class of models that

generalize GLMMs: generalized linear mixed pairwise models (GLMPMs).

4.2.2 Generalized Linear Mixed Pairwise Models

Define (j, k) < (j′, k′) if j < j′ or j = j′, k < k′. For any (j, k) < (j′, k′), let Yi;jk;j′k′ =

(Yijk, Yij′k′)
T . Generalized linear mixed pairwise models (GLMPMs) are specified by two

steps. In the first step, unlike that GLMMs assume conditional independence among the

Yijk given random effects ui, GLMPMs assume conditional independence among the Yi;jk;j′k′

pairs. To be specific, conditional on random effects, say ũi, pairs Yi;jk;j′k′ are independent

and have the probability (density) function belonging to the bivariate exponential family

f(yi;jk;j′k′|ũi) = exp
[
τ̃Ti;jk;j′k′yi;jk;j′k′ − b̃(τ̃i;jk;j′k′) + c̃(yi;jk;j′k′)

]
, (4.7)
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where b̃(·) and c̃(·) are known functions, τ̃i;jk;j′k′ = (τ̃ijk, τ̃ij′k′)
T is a 2×1 vector of canonical

parameters. Analogous to the property of GLMMs, it can be shown that

E
(
Yi;jk;j′k′ |ũi

)
=

∂

∂τ̃i;jk;j′k′
b̃(τ̃i;jk;j′k′), (4.8)

and

Var
(
Yi;jk;j′k′|ũi

)
=

(
Var(Yijk|ũi) Cov(Yijk, Yij′k′ |ũi)

Cov(Yijk, Yij′k′|ũi) Var(Yij′k′ |ũi)

)

where Var(Yijk|ũi) = ∂2

∂τ̃ijk∂τ̃ijk
b̃(τ̃i;jk;j′k′), and Cov(Yijk, Yij′k′ |ũi) = ∂2

∂τ̃ijk∂τ̃ij′k′
b̃(τ̃i;jk;j′k′).

Let µ̃i;jk;j′k′ = E(Yi;jk;j′k′|ũi) be the conditional mean vector for the pair vector Yi;jk;j′k′

given random effects ũi. In the second step, we link the conditional mean of Yi;jk;j′k′ to the

covariates with a bivariate regression model

h̃(µ̃i;jk;j′k′) = (XT
ijkβ + ZT

ijkũi, X
T
ij′k′β + ZT

ij′k′ũi), (4.9)

where h̃ is a bivariate transformation with a given form.

Model (4.9) accommodates model (4.2) as a special case but requires weaker assump-

tions. For instance, in model (4.9), if ũi =
{

(ν̃i, ω̃j, τ̃k, ω̃j′ , τ̃k′)
T , (j, k) < (j′, k′)

}
, then

setting

Zijkũi = ν̃i + ω̃j + τ̃k

and

Zij′k′ũi = ν̃i + ω̃j′ + τ̃k′

leads to model (4.5) if all random effects ν̃i, ω̃j, τ̃k, ω̃j′ , τ̃k′ are assumed to be independent

of each other. This strong independence assumption is, however, not required in forming

model (4.9). In other words, in forming (4.5), we require all components in ũi to be

mutually independent, but in forming (4.9), we only assume pairwise independence among

the ũi.

The joint density function of (Yijk, Yij′k′) is given by

f(yijk, yij′k′) =

∫∫
f(yijk|ũi)f(yij′k′|ũi)f(ũi)dũi,
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where f(ũi) is the density function for random effects ũi. As a result, the probability density

function of f(yijk) is given by f(yijk) =
∫
f(yijk, yij′k′) dyij′k′ . As an example, with model

(4.5), we have the pairwise probability density function

f(yijk, yij′k′) =
∏

(j,k)<(j′,k′)

∫
f(yijk|ν̃i, ω̃j, τ̃k)f(yij′k′ |ν̃i, ω̃j′ , τ̃k′)f(ν̃i)f(ω̃j)

·f(τ̃k)f(ω̃j′)f(τ̃k′) dν̃i dω̃j dτ̃k dω̃j′ dτ̃k′ .

This formulation considerably simplifies the computation of integrals. To formulate this

pairwise likelihood, only 5 dimensional integrals are needed to compute, while the formu-

lation of the full likelihood (4.6) involves n(K + 1) +
∑n

i=1 Ji dimensional integrals.

4.2.3 Pairwise Likelihoods

Now we consider a pairwise modeling strategy instead of fully specifying f(yi|xi, zi). Let

`(yijk) and `(yijk, yij′k′) be the marginal and pairwise observed log likelihoods for yijk and

(yijk, yij′k′), given xi and zi, respectively. Similar to but not the same as Lindsay et al.

(2011), a general form of pairwise log likelihood `c(yijk, yij′k′) with respect to yijk and yij′k′

can be written as

`c(yijk, yij′k′) = Bjk,j′k′`(yijk, yij′k′)−Bjk`(yijk)−Bj′k′`(yij′k′), (4.10)

where Bjk,j′k′ , Bjk and Bj′k′ are scalar weights. We limit our discussion to two specific

scenarios. When all Bjk,j′k′ = 1 and Bjk = Bj′k′ = 0, (4.10) results in all-pairwise marginal

log likelihood (APW). When all Bjk,j′k′ = 2 and Bjk = Bj′k′ = 1, (4.10) becomes all-

pairwise conditional log likelihood (APC). Thus, estimation of the model parameters can

be conducted by optimizing

`c(y) =
n∑
i=1

`c(yi) =
n∑
i=1

∑
(j,k)<(j′,k′)

`c(yijk, yij′k′). (4.11)
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4.3 Methodology: Selecting Fixed Effects

In this section, we focus on selecting fixed effects only by treating random effects ũi being

adequately specified. Denote ψ = (βT , ξT )T , where ξ represents all parameters other than

β. To achieve both model selection and parameter estimation in (4.10), we propose to

maximize the following penalized pairwise log likelihood function:

`pen1(y) = `c(y)− n
p∑
s=1

pλ(|βs|), (4.12)

where pλ(|βs|) is the penalty function for the s-th element in β. Following Fan and Li

(2001, 2004), we adopt the SCAD penalty, which has nice properties such as unbiasedness,

sparsity and continuity properties. The SCAD penalty is a nonconcave function defined

by pλ(0) = 0 and for βs > 0, its first derivative satisfies

p′λ(βs) = λ

{
I(βs ≤ λ) +

(aλ− βs)+

(a− 1)λ
I(βs > λ)

}
(4.13)

where a > 2 and λ > 0.

Following Fan and Li (2001), one may maximize (4.12) by using the Newton-Raphson

algorithm, where a second order Taylor’s series approximation of pλ(|βs|) is often used.

Alternatively, we describe an implementation method that shares the same spirit of the

EM algorithm. At the tth iteration for the E-step, let the complete log pairwise likelihood

for (Yijk, Yij′k′) be

`cpl(yijk, yij′k′ , ũi;ψ) = log
{
f(yijk, yij′k′|ũi;ψ)f(ũi;ψ)

}
,

and define

Qcpl(ψ|ψ(t−1)) =
n∑
i=1

∑
(j,k)<(j′,k′)

E{`cpl(Yijk, Yij′k′ , ũi;ψ)|Yijk, Yij′k′ ;ψ(t−1)}

=
n∑
i=1

∑
(j,k)<(j′,k′)

∫
`cpl(yijk, yij′k′ , ũi;ψ)f(ũi|yijk, yij′k′ ;ψ(t−1))dũi.
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Then, at the t−th iteration, the conditional expectation of the complete log composite

likelihood function is given by

Q(ψ|ψ(t−1)) = Qcpl(ψ|ψ(t−1)),

or

Q(ψ|ψ(t−1)) = 2Qcpl(ψ|ψ(t−1))− `c(Yijk,ψ)− `c(Yij′k′ ,ψ),

corresponding to the APW and APC methods respectively.

As a result, at the t−th iteration, the penalized Q-function for variable selection is

given by

Qλ(ψ|ψ(t−1)) = Q(ψ|ψ(t−1))− n
p∑
s=1

pλ(|βs|).

In the M-step, we maximize Qλ(ψ|ψ(t−1)) with respect to ψ to obtain ψ(t). In this

step, we again encounter the non-differentiality of penalty functions. Conventionally, the

quadratic approximation approach can be used to approximate the penalty function. The

E and M steps are iterated until convergence of ψ(t).

The aforementioned algorithm is implemented with given tuning parameters (a(r), λ(r)).

In practice, a suitable value of (a(r), λ(r)) is not obvious, and one can consider a specified grid

of candidates for (a(r), λ(r)). For each r, one can use the algorithm above to obtain a solution

ψ̂r. The final model selection and estimates ψ̂ can be realized based on certain selection cri-

teria. For instance, recent studies (Wang et al., 2007; Bondell et al., 2010; Ma and Li, 2010;

Zhang et al., 2010) show that the Bayesian information criterion (BIC) is consistent for

model selection given that the true model lies in the class of candidate models. Let H̃(ψ̂r) =

−∂2`pen1(y; ψ̂r)/∂ψ̃r∂ψ̃
T

r , and J̃(ψ̂r) =
∑n

i=1{∂`c(yi; ψ̂r)/∂ψ̃r}{∂`c(yi; ψ̂r)/∂ψ̃r}T , where

ψ̃r denotes the parameter set in which the 0 elements in ψ̂r are removed.

Under maximum likelihood inference framework, we can take the number of nonzero

parameters in ψ̂r as the degrees of freedom. However, this strategy may produce biased

selection results under our pairwise likelihood framework. Define df(a(r),λ(r))(ψ̃r) to be the
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degrees of freedom given by tr{J̃(ψ̂r)H̃(ψ̂r)
−1}. Then we define

BIC(a(r),λ(r)) = −2`c(y; ψ̂r) + log(n)× df(a(r),λ(r))(ψ̃r). (4.14)

We then choose the solution ψ̂ that minimizes the BIC(a(r),λ(r)) criterion.

4.4 Methodology: Selecting Both Fixed and Random

Effects

In this section, we discuss the model selection strategy for choosing appropriate random

effects as well as fixed effects. For ease of exposition, we set Ji = J for all i = 1, . . . , n. Let

D be the q∗× q∗ covariance matrix for ũi (i = 1, . . . , n), where q∗ is the number of random

effects variables in ũi. Let dlm be the (l,m) element of D.

Cholesky decomposition approach is widely applied in longitudinal data studies to select

random effects. Chen and Dunson (2003) use the modified Cholesky decomposition to select

random effects in linear mixed models. Bondell et al. (2010) and Ibrahim et al. (2010)

combine the decomposition approach with the EM algorithm. However, the Cholesky

decomposition strategy may not be proper for longitudinal data arising in clusters. To

circumvent this problem, we propose a new decomposition strategy and develop a modified

Expectation/Conditional Maximization Either algorithm (ECME) (Liu and Pierce, 1994;

Schafer, 1998) for model selection and estimation.

4.4.1 Review of Cholesky Decomposition

The Cholesky decomposition specifies a covariance matrix D as D = LLT , where L is a

lower triangular matrix with positive diagonal entries. The modified Cholesky decomposi-

tion further assumes the form

D = D∗ΓΓTD∗, (4.15)
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where D∗ is a diagonal matrix with D∗ = diag(d∗1, d
∗
2, . . . , d

∗
q∗), and Γ is a lower triangular

matrix with diagonal elements 1. This relationship immediately implies that once d∗l = 0,

then the elements in the lth row or lth column of D would be zero. That is, eliminating

the lth random effect can be featured by setting d∗l = 0.

Two issues may arise if the (modified) Cholesky decomposition approach is applied

handle longitudinal data arising in clusters. To see this, we consider a simple case involving

longitudinal data arising in clusters with Ji = 2 for i = 1, . . . , n. Let f(ũi) = f(ũi1, ũi2) be

the joint distribution of two random effects ũi1 and ũi2. Assume f(ũi) is a bivariate normal

density with covariance matrix

D =

(
σ2
u a1σ

2
u

a1σ
2
u σ2

u

)
, (4.16)

where 0 ≤ a1 < 1. Note that two random variables ũi1 and ũi2 have identical variance,

which implies that if we decide to take away one random variable, the other should also

be removed.

However, if the modified Cholesky decomposition is applied, we obtain D = D∗ΓΓTD∗,

with

Γ =

(
1

a1/
√

1− a2
1 1

)
and

D∗ =

(
d∗1

d∗2

)
,

where d∗1 = σu, and d∗2 = σu
√

1− a2
1, which are not equal unless a1 = 0. When a1 is nearly

1, d∗2 is almost equal to 0, and variable selection procedure based on a finite sample may

yield d̂∗1 > 0 and d̂∗2 = 0. Hence, ũi2 could be removed from the model but ũi1 is kept. Thus,

this model selection returns a contradictory result to the original setting that ũi1 and ũi2

are equally important in the model.

To show another drawback related to the Cholesky decomposition under pairwise like-

lihood framework, we follow the same example and consider two paired observations. The
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random effects distribution for the two pairs could be f(ũi2) and f(ũi1, ũi2), which are two

normal distributions with variance σ2
u and covariance matrix

(
σ2
u a1σ

2
u

a1σ
2
u σ2

u

)
, respectively.

If using the modified Cholesky decomposition, the same random effect ũi2 is represented

by σu and σu
√

1− a2
1 in two diagonal matrices, respectively. Therefore, if a1 6= 0, the

same random effect component ũi2 would be differently represented in different pairwise

likelihood functions, which is obviously problematic.

These examples illustrate that the selection procedure can not meaningfully incorporate

the relationship among parameters in covariance matrix D. Special care is often needed to

avoid meaningless selection results.

4.4.2 The Algorithm

Covariance Matrix Decomposition

We propose a matrix decomposition for symmetric D based on the fact that

D =


d11 d12 · · · d1q∗

d21 d22 · · · d2q∗

. . . · · · . . . . . .

dq∗1 dq∗2 · · · dq∗q∗



=


d2

1 d1d2r12 · · · d1dq∗r1q∗

d1d2r12 d2
2 · · · d2dq∗r2q∗

. . . · · · . . . . . .

d1dq∗r1q∗ d2dq∗r2q∗ · · · d2
q∗

 ,

where dl =
√
dll, (l = 1, . . . , q∗) and rlm = dlm/

√
dlldmm for l = 1, . . . , q∗; m = 1, . . . , q∗;

l < m.

Thus, the decomposition can be written as

D = DRD, (4.17)
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where D is a q∗ × q∗ diagonal matrix diag(d1, d2, . . . , , dq∗), and R is a square matrix with
1 r12 · · · r1q∗

r12 1 · · · r2q∗

. . . · · · . . . . . .

r1q∗ r2q∗ · · · 1

 .

The decomposition in (4.17) takes the elements in D as standard error for each random

effect, while R’s elements as correlation coefficients of random effects. According to the

description in Section 4.4.1, there could be predetermined identical variance parameters

in D for the model of longitudinal data arising clusters. If two random variables are set

to have identical variance parameters, say the q1th and q2th (q1 6= q2) random effects, the

decomposition in (4.17) just returns d̃ = dq1 = dq2 . If d̃ = 0, two random variables are

removed simultaneously. Thus, it can be seen that our decomposition circumvents the

problems in the Cholesky approach.

Based on the covariance matrix decomposition approach, we introduce the doubly pe-

nalized log pairwise likelihood

`pen2(y;β,D,R) = `c(y;β,D,R)− n
p∑
s=1

pλβ(|βs|)− n
Q∑
l=1

pλd̃(|d̃l|), (4.18)

where `c(y;β,D,R) is the unpenalized pairwise likelihood functions determined by (4.10),

pλβ(|βs|) is the penalty function for fixed effects, Q is the number of distinct variance

parameters for random effects, and pλd̃(|d̃l|) is the penalty function for random effects with

lth distinct variance parameter. In addition, it is straightforward to obtain the penalized

Q-function defined similarly in Section 4.3 as

Qλ(β,D,R|β(t−1),D(t−1),R(t−1))

= Q(β,D,R|β(t−1),D(t−1),R(t−1))− n
p∑
s=1

pλβ(|βs|)− n
Q∑
l=1

pλd̃(|d̃l|),

where Q(β,D,R|β(t−1),D(t−1),R(t−1)) is Q-function determined in Section 4.3.
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A Modified ECEM Algorithm

We employ a modified Expectation/Conditional Maximization Either algorithm (ECME)

(Liu and Pierce, 1994; Schafer, 1998) to maximize the composite likelihood function. Our

modified ECME algorithm updates the parameters in composite likelihood via both the

Newton-Raphson and the EM approaches in turn. In particular, for the parameters β(t−1),

D(t−1), R(t−1), the algorithm has

1. Fix (D(t−1),R(t−1)), and update β(t) by maximizing `pen2(Y ;β(t−1),D(t−1),R(t−1)). If

β
(t)
s is very close to 0, then set β̂s = 0, and remove its corresponding elements from

the iteration.

2. Fix (β(t),R(t−1)), and update D(t) by maximizing Qλ(D|β(t),D(t−1),R(t−1)). If d̃
(t)
l is

very close to 0, then set ˆ̃dl = 0, remove corresponding random variables from the

model and the related elements in R(t−1) are also deleted.

3. Fix (β(t),D(t)), and update R(t) by maximizing Qλ(R|β(t),D(t),R(t−1)).

Iteratively run the updating procedure until convergence, and denote the estimator as ψ̂. In

practice, the tuning parameters can be selected by the composite BIC strategy determined

in Section 4.3.

4.5 Asymptotic Results

We now discuss the asymptotic results for our pairwise variable selection strategy. For

ease of exposition, we consider the selection for fixed effects variables only, and the se-

lection for random effects follows analogously with more complex notations involved. Let

β0 = (β10, . . . , βp0) denote the true parameter value of β, which is written, without loss of

generality, as β0 = (βT0I ,β
T
0II)

T , where β0I = (β10, . . . , βp10)T is the vector consisting of all

non-zero values and β0II = (βp1+1,0, . . . , βp0)T = 0Tβ0II
includes all zero components of β.
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Correspondingly, write β = (βTI ,β
T
II)

T , ψ = (βTI ,β
T
II , ξ

T )T , and ψ0 = (βT0I ,0
T
β0II

, ξT0 ) with

ξ0 being the true value of ξ.

For any square matrix M of the same dimension as ψ, let M̃ denote the sub-matrix

after removing the (p1 +1)st, . . . , and pth rows and columns from the matrix M . Similarly,

for any vector α of the same dimension as ψ, we use α̃ to denote the resulting vector

after removing the (p1 + 1)st, . . . , and pth elements from the vector α. For example, ψ̃0 =

(βT0I , ξ
T
0 )T .

Consistency of the estimator ψ̂ is established by the following theorem, and its proof

is outline in Appendix B.

Theorem 1: Under regularity conditions in Appendix A, there exists a local maximizer

ψ̂ of `pen1(Y ;ψ) such that

‖ψ̂ −ψ0‖ = Op(n
−1/2),

The sparsity is suggested by the following result, and its proof is outlined in Appendix

C.

Theorem 2: Under regularity conditions in Appendix A, with probability tending to

1, for any given βI and ξ satisfying

‖βI − β0I‖ = Op(n
−1/2) and ‖ξ − ξ0‖ = Op(n

−1/2),

we have

`pen1(Y ;βI ,0, ξ) = max‖βII‖≤Cn−1/2`pen1(Y ;βI ,βII , ξ) for any positive constant C.

Now we come to the oracle property of the estimator ψ̂. Let

Σ = diag{p′′λn(|β01|), . . . , p′′λn(|β0p|),0ξ},

and

b =
((
p′λn(|β01|)sgn(β01), . . . , p′λn(|β0p|)sgn(β0p)

)T
,0Tξ

)T
,
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where 0ξ is a zero vector with the same length as ξ. The asymptotic property is suggested

by the following result, and its proof is outlined in Appendix D.

Theorem 3: Under regularity conditions in Appendix A, with probability tending to 1,

the root-n consistent local maximizers ψ̂ in Theorem 1 must satisfy:

(a). Sparsity: β̂II = 0.

(b). Asymptotic normality:
√
n(D̃(ψ̃0)+Σ̃){ ˜̂

ψ−ψ̃0+(D̃(ψ̃0)+Σ̃)−1b̃} →D N(0, M̃(ψ̃0)).

where M(ψ) = EYi;ψ0

[{
∂`c(Yi;ψ)/∂ψ

}{
∂`c(Yi;ψ)/∂ψ

}T]
, and

D(ψ) = EYi;ψ0

{
−∂2`c(Yi;ψ)/∂ψ∂ψT

}
,

and similar definitions are applied to M̃(ψ̃0) and D̃(ψ̃0).

4.6 Numerical Studies

4.6.1 Simulation for Selecting Fixed Effects

Linear Mixed Model

We now conduct a simulation study for the linear mixed model. The data are generated

from the model

Yijk = XT
ijkβ + uij + εijk, (4.19)

where the residual εi = (εi11, . . . , εijk, . . . , εiJiK)T are normally distributed with joint distri-

bution specified in the following examples, ui = (ui1, . . . , uij, . . . , uiJi)
T are random effects

with a distribution specified in the following examples, and the residual εi is independent

of the random effects ui. Set p = 8, σ2
ε = 1 and β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Covariates

Xijk = (Xijk,1, Xijk,2, . . . , Xijk,8)T are generated from a multivariate normal distribution

with mean zero and covariance matrix V = [σ2
st], where σ2

st = ρstσ
2. We set ρst = ρ|s−t|,

ρ = 0.5 and σ2 = 1. We particularly consider the following scenarios.
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Example 1: n = 200, Ji = J = 1, for i = 1, . . . , n, and K = 5. This corresponds to

an ordinary longitudinal setting with 5 visits times. The model is set to

be ordinary LMMs with the εi to be independently distributed with joint

distribution N5(0, σ2
ε I5), where I5 is a 5× 5 identity matrix. Random effects

ui become one-dimensional and have a normal distribution N1(0, σ2
u) with

σ2
u = 1.

Example 2: The setup is the same as in Example 1 but we take n = 500.

Example 3: n = 60, Ji = J = 3 and K = 3. This corresponds to longitudinal data

with 3 subjects in each cluster by following 3 visits times. The model is set

to be ordinary LMMs with the εi to be independently distributed with joint

distribution N9(0, σ2
ε I9), where I9 is a 9×9 identity matrix. For each subject,

we set ui = (ui1, ui2, ui3) to be 3-dimensional random effects following a

normal distribution N3(0, R), where

R = σ2
u


1 ρ∗ ρ∗

ρ∗ 1 ρ∗

ρ∗ ρ∗ 1

 ,

with ρ∗ = 0.5.

Example 4: The setup is the same as in Example 3 but we take n = 300.

We describe a measure that is used to feature the performance of the estimates obtained

from different models. Let µ = Eui
{
E(Yijk|ui, Xi, Zi)

}
= Eui{h−1(XT

ijkβ0 + ZT
ijkui)}, and

µ̂ = Eui{h−1(XT
ijkβ̂ + ZT

ijkui)}, where h(·) is the link function defined in (4.1), β̂ is an

estimator obtained from the proposed method. The expectations are evaluated with respect

to the true model. We define

MME(µ̂) = E(Xi,Zi){µ̂− µ}2,

and use this measure to quantify the marginal model error induced by estimator β̂, where

the expectation is taken with respect to the marginal distribution for (Xi, Zi).
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For each example, we repeat the simulation 500 times and fit each dataset by maxi-

mum likelihood (ML), all-pairwise marginal likelihood (APW) and all-pairwise conditional

likelihood (APC) approaches. Tuning parameters are selected by fixing a = 3.7 but only

searching for λ. In Examples 1 and 2, we also explore searching for both a and λ.

Table 4.3 reports the average of zero coefficients. The column labeled “Correct” presents

the average of zero coefficients that are correctly estimated, and the column labeled “In-

correct” depicts the average of non-zero coefficients erroneously set to zero. We report the

median ratios of MME, denoted by R.MME, for a selected model to that of the un-penalized

estimate under the unpenalized model in each of the ML, APW and APC scenarios, re-

spectively. We also report the median of MME, denoted by M.MME, for selected models

in each of ML, APW and APC scenarios. Table 4.4 summaries the estimated (β1, β2, β5),

their relative biases, empirical standard errors, model-based standard errors, and coverage

rates of 95% confidence intervals.

For all six examples, three methods show a good sparsity property. Moreover, compared

to the ML method, the APW and the APC approaches produce similar rates of shrinking

unimportant coefficients to zero, and higher R.MME. The APC outperforms the APW

with higher shrinkage rates and smaller R.MME. It can be seen that the estimates of the

βs have relatively small biases in all cases. The standard error formulas perform well in

most cases as they are close to the empirical estimates. It is interesting to note that the

APW approach provides slightly larger standard errors than the APC method.

Tables 4.3-4.5 further illustrate the approach with grid searching on both a and λ. No

obvious difference from only searching on λ is revealed. Moreover, two tuning parameter

selection methods result in a similar model selection and estimation results. Since fixing

a = 3.7 has a cheaper computation cost, we only use this tuning parameter selection

approach in our subsequent studies.
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Logistic Mixed Model

We now conduct a simulation study for the logistic mixed model. The data are generated

from the model

logit{P (Yijk = 1|Xi, Zi, ui)} = XT
ijkβ + uij,

where logit(a) is a logistic link function in a form of log{a/(1− a)}, Xijk, β and uij, which

are the same as those in linear mixed model simulation. We particularly consider the

following two scenarios.

Example 1: n = 200, Ji = J = 1, for i = 1, . . . , n, and K = 5. Other parameter settings

follow from Example 1 in linear mixed model.

Example 2: The example is the same as Example 1 except we take n = 800.

Example 3: The setup is the same as the one in Example 1, except that we take n = 200,

Ji = J = 3 and K = 4, and set ui = (ui1, ui2, ui3) to be 3-dimensional

random effects following a normal distribution N3(0, R), where

R = σ2
u


1 ρ∗ ρ∗

ρ∗ 1 ρ∗

ρ∗ ρ∗ 1

 ,

with ρ∗ = 0.3.

Example 4: The setup is the same as Example 3, except we take n = 400.

Table 4.6 shows a good sparsity property with estimating results excluding large pro-

portion of the zero coefficients covariates, while all non-zero coefficients corresponded co-

variates are maintained in the model. Moreover, compared to the ML method, the APW

and the APC approaches produce similar rate of shrinking unimportant coefficients to

zero, and higher M.MME. The APW outperforms the APC with higher shrinkage rate and

smaller M.MME. It can be seen that our estimates of βs have relatively small biases in
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all cases. The standard error formulas’ performance are slightly lower than the empirical

estimates. It is interesting to report that the APC approaches provides slightly larger

standard error than the APW method with respect to regression coefficients.

Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. The data are generated

from the model

log
{
E(Yijk|Xi, Zi, ui)

}
= XT

ijkβ + uij, (4.20)

where β = (1.2, 0.6, 0, 0, 0.8, 0, 0, 0)T , uij and Xijk are the same as that of linear mixed

model. We consider following scenarios

Example 1: n = 60, Ji = J = 1 for i = 1, . . . , n, and K = 5. Other parameter settings

follow from Example 1 in linear mixed model.

Example 2: The setup is the same as the one in Example 1, except we take n = 500.

Example 3: n = 60, Ji = J = 3, K = 2, and set ui = (ui1, ui2, ui3) to be 3-dimensional

random effect following a normal distribution N3(0, R), where R follows the

same settings as in the logistic case.

Example 4: The setup is the same as the one in Example 3, except we take n = 300.

The results are shown in Table 4.9. All three methods show a good sparsity property.

The APC method outperforms the APW approach with higher shrinkage rate and smaller

M.MME. It can be seen that the estimates of the βs have relatively small biases in all cases.

The standard error formulas’ performance are slightly smaller than empirical estimates. It

is interesting to report that the APW approach provides slightly larger standard error than

the APC method with respect to regression coefficients.
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4.6.2 Simulation for Both Fixed and Random Effects

Linear Mixed Model

We simulate data set consisting of n independent observations according to the model Yi =

XT
i β+ZT

i ui+εi, i = 1, . . . , n, where εi = (εi11, . . . , εijk, . . . , εiJiK)T are normally distributed

with joint distribution specified in the following examples, ui = (ui1, . . . , uij, . . . , uiJi)
T are

random effects with a distribution specified in the following examples, and the residual εi

is independent of the random effects ui. Set σ2
ε = 1 and β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . We

consider the true model

Yijk = uij,0 + (β1 + uij,1)Xijk,1 + (β2 + uij,2)Xijk,2 + β5Xijk,5 + εijk.

Moreover, uij = (uij,0, uij,1, uij,2) for i = 1, . . . , n; j = 1, . . . , Ji follows multivariate normal

random vectors with zero mean and the true covariance matrix

D =


9 4.8 0.6

4.8 4 1

0.6 1 1

 .

The covariates Xijk are generated as in fixed effect selecting case. We set Zi = Xi plus a

random intercept term.

We particularly consider the following cases:

Situation 1: Generate Data from GLMMs

Scenario 1: n = 100, Ji = J = 1, for i = 1, . . . , n, and K = 5. This corresponds to

an ordinary longitudinal setting with 5 visits times. The model is set to

be ordinary GLMMs with the εi to be independently distributed with joint

distribution N5(0, σ2
ε I5), where I5 is an 5× 5 identity matrix.

Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 300.

107



Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 100,

Ji = J = 3 and K = 3, and set ui = (ui1, ui2, ui3)T to be random effects with

zero mean and covariance matrix D3, where

D3 =


D ρ∗D ρ∗D

ρ∗D D ρ∗D

ρ∗D ρ∗D D

 ,

with ρ∗ = 0.5.

Scenario 4: The setup is the same as the one in Scenario 3, but n = 300.

Situation 2: Generate Data from GLMPMs

Scenario 1: n = 100, Ji = J = 1, for i = 1, . . . , n, and K = 5. The setup is the same

as the one in Scenario 1 in GLMMs, but the model is set to be GLMPMs

with εi to have correlated distribution N5(0, σ2
εA5), with A5 to have AR(1)

structure with correlation coefficient ρe = 0.5.

Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 300.

Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 100,

Ji = J = 3 and K = 3. We set ui follows Scenario 3 in GLMM, and εi to

have correlated distribution N9(0, σ2
εA9), with A9 to have

A9 =


Ae

Ae

Ae

 ,

where Ae is 3 × 3 matrix of AR(1) structure with correlation coefficient

ρe = 0.5.

Scenario 4: The setup is the same the one in Scenario 3, but n = 300.
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For comparing model selection results, we employ mean squared errors for fixed ef-

fects: MSEβ = ||β − β̂||2 and mean squared errors for random effects: MSED =

||
√

diag(D)−
√

diag(D̂)||2. We report the median of both quantities, denoted by M.MSEβ

and M.MSED. Moreover, we report the median ratios of MSEβ and M.MSED, denoted

by R.MSEβ and R.MSED, for a selected model to that of the un-penalized estimate,

respectively.

For each scenario, we repeat the simulation 500 times and fit each dataset by maximum

likelihood (ML) and all-pairwise marginal likelihood (APW). Tables 4.12 and 4.15 report

the average of zero coefficients. The column labeled “Correct1” presents the average of fixed

zero coefficients that are correctly estimated. The column labeled “Incorrect1” depicts the

average of fixed non-zero coefficients erroneously set to zero. Similarly, columns labeled

“Correct2” and “Incorrect2” represent the selection precision average for random effects.

Tables 4.13 and 4.16 summarize the estimated (β1, β2, β5), their relative biases, empir-

ical standard errors, model-based standard errors, and coverage rates of 95% confidence

intervals.

For all examples above, two methods show a good sparsity property when sample size

increases. Moreover, compared to the ML method, the APW approach produces similar

rates of shrinking unimportant fixed and random coefficients to zero under large sample

size. It can be seen that the estimates of the βs have relatively small biases in all cases. The

standard error formulas perform well in large sample cases: they are close to the empirical

estimates.

Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. We consider Y ∗ijk to be

generated from a Poisson distribution with

log
{
E(Y ∗ijk|Xi, Zi, ui)

}
= XT

ijkβ + ZT
ijkuij. (4.21)
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We also generate another Poisson data Y ∗∗ij (j = 1, . . . , Ji) with mean to be 1. Y ∗ijk and Y ∗∗i

are independent. We set β = (1.2, 0.6, 0, 0, 0.8, 0, 0, 0)T , while Xijk and Zijk are the same

as that of the linear mixed model.

Situation 1: Generate Data from GLMM

Scenario 1: n = 250, Ji = J = 1, for i = 1, . . . , n,and K = 9. We take Y ∗ijk as the

response. uij follows multivariate normal random vectors with zero mean

and the true covariance matrix

D =


0.25 0.015 0.02

0.015 0.09 0.03

0.02 0.03 0.04

 .

Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 500.

Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 250,

Ji = J = 3 and K = 4, and set ui to be random effects with zero mean and

covariance matrix D3, where

D3 =


D ρ∗D ρ∗D

ρ∗D D ρ∗D

ρ∗D ρ∗D D

 ,

with ρ∗ = 0.5.

Scenario 4: The setup is the same as the one in Scenario 3, but n = 500.

Situation 2: Generate Data from GLMPMs

Scenario 1: n = 250, Ji = J = 1, for i = 1, . . . , n, and K = 9. We take the response

Yijk = Y ∗ijk + Y ∗∗i . Other settings follow Situation 1.
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Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 500.

Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 250,

Ji = J = 3 and K = 4. We set ui follows Scenario 3 in GLMMs, and

Yijk = Y ∗ijk + Y ∗∗ij , with Y ∗∗ij to be independent for j = 1, 2, 3.

Scenario 4: The setup is the same as the one in Scenario 3 but n = 500.

Tables 4.18-4.23 show that when data are generated by GLMMs or GLMPMs, our

GLMPMs always have good sparsity property, relatively small biases for the estimates of

βs, and good performance for the standard error formulas in most cases. On the other hand,

GLMMs perform poor when the data are generated from GLMPMs, where the estimates

are significantly biased.

4.6.3 Data Analysis

The National Population Health Survey (NPHS) is a longitudinal study that collects health

information and related socio-demographic information by following a group of Canadian

household residents. The questions for the NPHS include many aspects of in-depth health

information such as health status, use of health services, chronic conditions and activity

restrictions. Moreover, social background questions, including age, sex and income level,

are contained in the questionnaire. A research interest focuses on modeling the influence

of income on population health. The data we analyze here contain observations from 6

cycles, including n = 1033 males with age between 50-70 at Cycle 1, and less than 80 at

Cycle 6. All the deceased subjects are excluded from the analysis.

Health status (HUI) is measured by the Health Utilities Index Mark after zero-mean

normalization. The higher HUI score indicates a better health status. The covariate

prone to missingness is household income (INC), which is measured by provincial level of

household income with zero-mean normalization. The other covariate, denoted by CYCLE
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is cycle number after log-transformation, respectively. All observations with incomplete

HUI or INC are excluded from the analysis.

Preliminary analysis indicates that random intercept may be sufficient to account for

the correlation across cycles, and cubic terms of INC and CYCLE together with their

interactions may be relevant in modeling HUI. This motivates us to consider variable

selection in the following model

Yijk = Xijkβ + uij + εijk, (4.22)

where Ji = 1 K = 6 for all i, Yijk is the HUI score for subject i measured at Cycle k, Xijk is

a 16×1 vector of variables measured at j: Intercept, INC, INC2, INC3, CYCLE, CYCLE2,

CYCLE3, CYCLE, INC × CYCLE, INC2 × CYCLE, INC3 × CYCLE, INC × CYCLE2,

INC2 × CYCLE2, INC3 × CYCLE2, INC× CYCLE3, INC2 × CYCLE3, INC3 × CYCLE3.

uij ∼ N(0, σ2
u) is the subject specific random effect and εijk ∼ N(0, σ2

ε) is the independent

residual error.

We apply the ML, APW and APC procedures to model (5.12). Table 5.2 displays the

model fitting and selection results. The three methods obtain relatively comparable results

that exclude all interaction terms, but suggest a cubic influence from cycle time. The ML

approach claims that income has only a linear effect on health index, while the APW and

APC methods suggest that income also has a cubic influence on HUI as well.
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4.7 Model Selection under Misspecified Models

Our previous discussions are all based on the assumption that both the conditional pair-

wise distribution and the distribution for random effects are correctly specified. When

these assumptions are violated, the estimation and the selection results could be biased or

incorrect. To be specific, we focus on the estimation and selection bias for fixed effects, and

the random effects conclusions can be obtained by the same spirit. With the logistic mixed

model with misspecified random effects, Heagerty and Kurland (2001) explore several types

of model misspecfication and find that biased results can be yielded. Other studies include

Neuhaus et al. (1992, 1994), Verbeke et al. (2001) and Neuhaus and McCulloch (2006).

Recently, there are some studies dealing with the misspecified model selection issue. For

example, Varin and Vidoni (2005) and Gao and Song (2010) propose pairwise AIC and

pairwise BIC for the variable selection with pairwise likelihood, which includes “pseudo”

association structures. More generally, Lv and Liu (2010) discuss a semi-Bayesian infor-

mation criterion (SIC) with a particular decomposition for taking goodness of model fit,

model complexity and model misspecification simultaneously. However, little work was

done under the penalized likelihood or penalized pairwise likelihood framework.

4.7.1 Misspecified Models

Here we develop theoretical results in the variable selection via penalized pairwise likeli-

hood. We particularly consider the case that the distribution for random effects is misspec-

ified. For ease of notations, we use superscript ∗ to indicate the corresponding quantities

under a misspecified model. In particular, let `∗c(Y ;ψ∗) be the corresponding version of

the log pairwise likelihood function (4.11) when random effects are misspecified, where

ψ∗ = (β∗T , ξ∗T )T , β∗ represents the p × 1 vector of regression coefficients, and ξ∗ repre-

sents all the remaining parameters.

In application, we may obtain ψ̂
∗

via the maximization of penalized pairwise likelihood
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function

`∗pen1(y;ψ∗) = `∗c(y;ψ∗)− n
p∑
s=1

pλ(|β∗s |) (4.23)

where pλ(|β∗s |) is taken as the SCAD penalty function for the s-th element in β∗.

Yi and Reid (2010) demonstrate that the estimator ψ̂
∗

would converge in probability to

a limit ψ∗0. This limit ψ∗0 = (β∗T0 , ξ∗T0 )T is, under certain regularity conditions, the solution

of

E(Y ;ψ0)

{
∂`∗c(Y ;ψ∗)

∂ψ∗

}
= 0, (4.24)

where the expectation is taken under the true joint distribution with true parameter value

ψ0. According to (4.24), the solution, ψ∗0, is a function of ψ0. The discrepancy amount

between ψ∗0 and ψ0 indicates the degree of biased results.

Asymptotic Results for Misspecified Models

Now we examine the asymptotic properties for ψ∗. Without loss of generality, we write

β∗0 = (β∗T0I ,β
∗T
0II)

T , where β∗0I = (β∗10, . . . , β
∗
p∗10)T is the p∗1 × 1 vector consisting of all non-

zero values while β∗0II = (β∗p∗1+1,0, . . . , β
∗
p0)T = 0Tβ∗0II is the (p− p∗1)× 1 vector. We comment

that p∗1 could differ from p1. Thus, we have ψ∗0 = (β∗T0I ,0
T∗
β0II

, ξ∗T0 ). Correspondingly, write

β∗ = (β∗TI ,β
∗T
II )T , ψ∗ = (β∗TI ,β

∗T
II , ξ

∗T )T .

Similar to Section 4.5, for any square matrix M of the same dimension as ψ, let M̃

denote the sub-matrix after removing the (p∗1 + 1)st, . . . , and pth rows and columns from

the matrix M . For any vector α of the same dimension as ψ∗, we use α̃∗ to denote the

resulting vector after removing the (p∗1 + 1)st, . . . , and pth elements from the vector α. For

example, ψ̃
∗
0 = (β∗T0I , ξ

∗T
0 )T .

In Appendices F, G and H, we sketch the proofs of the following results.

Theorem 4: Under the regularity condition outlined in Appendix E, there exists a

local maximizer ψ̂
∗

of `∗pen1(Y ;ψ∗) such that

‖ψ̂
∗
−ψ∗0‖ = Op(n

−1/2).
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Theorem 5: Under the regularity condition outlined in Appendix E, with probability

tending to 1, for any given β∗I and ξ∗ satisfying

‖β∗I − β∗0I‖ = Op(n
−1/2) and ‖ξ∗ − ξ∗0‖ = Op(n

−1/2),

we have

`∗pen1(Y ;β∗I ,0, ξ
∗) = max‖β∗II‖≤Cn−1/2`∗pen1(Y ;β∗I ,β

∗
II , ξ

∗) for any positive constant C.

Now we define Σ∗ = diag{p′′λn(|β∗10|), . . . , p′′λn(|β∗p0|),0ξ∗}, and

b∗ =
((
p′λn(|β∗10|)sgn(β∗10), . . . , p′λn(|β∗p0|)sgn(β∗p0)

)T
,0Tξ∗

)T
,

where 0ξ∗ is a zero vector with the same dimension as that of ξ∗.

Theorem 6: Under the regularity condition outlined in Appendix E, with probability

tending to 1, the root-n consistent local maximizers ψ̂
∗

in Theorem 4 must satisfy:

(a). Sparsity: β̂
∗
II = 0.

(b). Asymptotic normality:
√
n(D̃∗(ψ̃

∗
0)+Σ̃∗){ ˜̂

ψ∗−ψ̃∗0+(D̃∗(ψ̃
∗
0)+Σ̃∗)−1b̃∗} →D N(0, M̃∗(ψ̃

∗
0)),

where M∗(ψ∗) = EYi;ψ0

[{
∂`∗c(Yi;ψ

∗)/∂ψ∗
}{

∂`∗c(Yi;ψ
∗)/∂ψ∗

}T]
, and

D∗(ψ∗) = EYi;ψ0

{
−∂2`∗c(Yi;ψ

∗)/∂ψ∗∂ψ∗T
}
.

Similar definitions are applied to M̃∗(ψ̃
∗
0) and D̃∗(ψ̃

∗
0).

4.7.2 Numerical Studies

Here we conduct a simulation to evaluate the impact of misspecification of random effects.

In particular, we consider the case that the true distribution for random effects is skewed-

normal but the working distribution is assumed to be normal. Skewed-normal distributions
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have been studied by many authors such as Azzalini (1985), Azzalini and Valle (1996),

Azzalini and Capitanio (1999), Arellano-Valle et al. (2005) and Lin and Lee (2008). Such

distributions relax the symmetric assumption and provide flexibility to capture a broad

range of non-normal features. A p-dimensional random vector ui follows a skew-normal

distribution SNp(µ,D,α) with location vector µ, dispersion matrix D (a p × p positive

definite matrix) and skewness vector α = (α1, . . . , αp)
T , if its probability density function

is given by

f(ui) = 2φp(ui;µ,D)Φ1

{
αTD−1/2(ui − µ)

}
,

where D is the diagonal matrix with its components extracting from matrix D’s diag-

onal elements, φp(ui;µ,D) is the n−dimensional normal density function with mean µ

and covariance D for ui and Φ1(·) is the cumulative distribution function for the N(0, 1)

distribution.

We generate data from the model

Yijk = XT
ijkβ0 + ZT

ijkuij + εijk, (4.25)

where the residual εi = (εi11, . . . , εijk, . . . , εiJiK)T are independently distributed with marginal

distribution N(0, σ2
ε ), ui = (ui1, . . . , uij, . . . , uiJi)

T are random effects with a distribution

specified in following examples, and the residual εi is independent of the random effects

ui. Set σ2
ε = 1 and β0 = (1.2, 0.6, 0, 0, 0.8, 0, 0, 0)T . Covariates Xijk are generated the same

way as in the correct specified model cases. The matrix of Zijk is set equal to Xijk. For

simplicity, the simulation inference only estimates β while we set all other parameters to

be known.

The simulation study is conducted under following scenarios.

Scenario 1: n = 250, Ji = J = 1, and K = 5. This corresponds to an ordinary longitudi-

nal setting with 5 visits times. Random effects ui = ui1 follow skewed normal

distribution SN8(0, D,α), where D is a diagonal matrix with element to be

4 and α = (1,−1.2
√

π
8−π , 0, 1,−1.6

√
π

8−π , 1, 0, 0)T .
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Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 1000.

Scenario 3: n = 250, Ji = J = 3, and K = 3. This corresponds to longitudinal data

arising in clusters with 3 subjects setting with 3 visits times. Random effects

ui = (uTi1, u
T
i2, u

T
i3)T follow skewed normal distribution SN24(0, D̃, α̃), where

D̃ is a diagonal matrix with element to be 9 and α̃ = (αT ,αT ,αT )T with

α = (1,−
√

18π
90−15π

, 0, 1,−
√

32π
90−15π

, 1, 0, 0)T .

Scenario 4: The setup is the same as the one in Scenario 1, but we take n = 500.

When we use a misspecified model (non-skewed normal random effects) to estimate the

dataset, the solution of equation (4.24) has β∗0, which is different from true value β0. Table

4.2 displays different values for β in the true and the misspecified models.

Table 4.2: The parameter values for the true model and misspecified model for the simu-

lation study
Xijk,1 Xijk,2 Xijk,3 Xijk,4

True Model β1 = 1.2 β2 = 0.6 β3 = 0 β4 = 0

Misspecified Model (Scenario 1 & 2) β∗1 = 1.2 + 1
2

√
8−π
π β∗2 = 0 β∗3 = 0 β∗4 = 1

2

√
8−π
π

Misspecified Model (Scenario 3 & 4) β∗1 = 1.2 +
√
2

10

√
90−15π

π β∗2 = 0 β∗3 = 0 β∗4 =
√
2

10

√
90−15π

π

Xijk,5 Xijk,6 Xijk,7 Xijk,8

True Model β5 = 0.8 β6 = 0 β7 = 0 β8 = 0

Misspecified Model (Scenario 1 & 2) β∗5 = 0 β∗6 = 1
2

√
8−π
π β∗7 = 0 β∗8 = 0

Misspecified Model (Scenario 3 & 4) β∗5 = 0 β∗6 =
√
2

10

√
90−15π

π β∗7 = 0 β∗8 = 0

For each scenario, we repeat the simulation 500 times and fit each dataset by the max-

imum likelihood (ML), all-pairwise marginal pairwise likelihood (APW) and all-pairwise

conditional pairwise likelihood (APC) approaches. Each method is applied with correct

skewed-normal random effects (labeled as “
√

”) and incorrect normal random effects (la-

beled as “×”).
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Table 4.24 reports the model selection precision rate for each variable. The columns

labeled “RCS-Nonzero” (rate of correct selection of non-zero coefficients) presents the rate

of each non-zero coefficient that is correctly estimated as non-zero, and the column labeled

“RCS-Zero” (rate of correct selection of zero coefficients) depicts the rate of each zero

coefficients that is correctly set to zero.

For both scenarios, under the correct model, all the three methods show a good sparsity

property. They often correctly distinguish the zero and non-zero coefficients. As expected,

as the sample size increased, the precision improves. However, when a wrong model is

implemented, all the three methods show poor selection results. In particular, the erroneous

model always leads our methods to make incorrect selection by setting β2 and β5 to zero,

but taking β4 and β6 to non-zero. Associated standard errors for the misspecified model

may not increase as the sample size increases.

Table 4.25 summaries the estimates of β1, its relative biases, empirical standard errors,

model-based standard errors, and coverage rates of 95% confidence intervals. It is observed

that the estimates of the β1 have relatively small biases under the correctly specified model

as the sample size increases. The misspecified model, on the other hand, yields remarkably

biased estimates regardless of the sample size. It is interesting to note that “RCS-Nonzero”

for β1 is always 100 in the simulation we consider; this is partially due to that both β1 in

the true model and β∗1 in the misspecified model are not zero.

Appendices: Proofs of Theoretical Results

A. Regularity Conditions

In this subsection, we list regularity conditions are needed for the subsequent development.

(C1). For all i, `c(Yi;ψ) is three-times continuously differentiable.
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(C2). `c(Yi;ψ), |∂`c(Yi;ψ)
∂ψj

|2, |∂
2`c(Yi;ψ)
∂ψj∂ψk

|, and | ∂
3`c(Yi;ψ)

∂ψj∂ψk∂ψl
| are dominated by some functions

Bi(Yi, Xi, Zi) for all j, k, l = 1, . . . , dim(ψ), in which ψj is the j−th element of ψ.

Moreover, Eψ0
{Bi(Yi, Xi, Zi)} <∞ for all i.

(C3). Eψ

{
∂`c(Yi;ψ)

∂ψ

}
= 0,

(C4). Let M(ψ) = Eψ0

[{
∂
∂ψ
`c(Yi;ψ)

}{
∂
∂ψ
`c(Yi;ψ)

}T]
, and D(ψ) = Eψ0

{
−∂2`c(Yi;ψ)

∂ψ∂ψT

}
.

Assume that

1

n

n∑
i=1

{ ∂

∂ψ
`c(Yi;ψ)

}{ ∂

∂ψ
`c(Yi;ψ)

}T
= M(ψ) + op(1),

and

− 1

n

n∑
i=1

{∂2`c(Yi;ψ)

∂ψ∂ψT

}
= D(ψ) + op(1).

Similar definitions and requirements are applied to M̃(ψ̃) and D̃(ψ̃).

(C5). There exists an open subset ω that contains the true parameter point ψ0 such that

for all ψ ∈ ω, D(ψ) and D̃(ψ̃) are positive definite.

(C6). Let λn be the tunning parameter with the dependence on cluster size n explicitly

spelled out. Define

an = maxs=1,...,p{p′λn(|βs0|) : βs0 6= 0},

bn = maxs=1,...,p{p′′λn(|βs0|) : βs0 6= 0},

We assume that

(C6.1). λn = op(1),

(C6.2). an = Op(n
−1/2),

(C6.3). bn = op(1).

(C7). We assume that

(C7.1). liminfn→∞liminfε→0+p′λn(ε)/λn > 0.

(C7.2). limn→∞
√
nλn =∞.
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B. Consistency

Proof: Let αn = n−1/2 + an. Adapting the arguments by Fan and Li (2001, 2002), we need

to show that for any given ε > 0, there exists a large constant Cε such that

P
{

sup‖u‖=Cε`pen1(Y ;ψ0 + αnu) < `pen1(Y ;ψ0)
}
≥ 1− ε,

where u = ((u1, . . . , up1 , . . . , up)
T , uTξ )T , uξ is a vector with the same length as ξ, and

‖x‖ =
√
xTx.

Suppose Cε is sufficiently large such that ‖(u1, . . . , up1)‖ > 0. Note that pλn(0) = 0, we

consider

Kn(u) = `pen1(Y ;ψ0 + αnu)− `pen1(Y ;ψ0)

= `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p∑
s=1

pλn(|βs0 + αnus|) + n

p∑
s=1

pλn(|βs0|)

= `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p1∑
s=1

pλn(|βs0 + αnus|)− n
p∑

s=p1+1

pλn(|0 + αnus|))

+n

p1∑
s=1

pλn(|βs0|) + n

p∑
s=p1+1

pλn(|0|)

≤ `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p1∑
s=1

pλn(|βs0 + αnus|) + n

p1∑
s=1

pλn(|βs0|), (4.26)

because of the fact that n
∑p

s=p1+1 pλn(|0 + αnus|)) ≥ 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and

(C2), we obtain

`c(Y ;ψ0 + αnu) = `c(Y ;ψ0) + αn

{
∂`c(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`c(Y ;ψ0)

∂ψ∂ψT

}
uα2

n

+

p∑
s=1

Op(|αnus|3)

= `c(Y ;ψ0) + αn

{
∂`c(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`c(Y ;ψ0)

∂ψ∂ψT

}
uα2

n{1 + op(1)}

(4.27)

121



and

n

p1∑
s=1

{
pλn(|βs0 + αnus|)

}
= n

p1∑
s=1

pλn(|βs0|) + n

p1∑
s=1

αnp
′
λn(|βs0|)sgn(βs0)us + n

p1∑
s=1

α2
np
′′
λn(|βs0|)u2

s{1 + o(1)}.

(4.28)

Substituting (4.27)(4.28) into (4.26), we obtain

Kn(u) ≤ αn

{∂`c(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`c(Y ;ψ0)

∂ψ∂ψT

}
uα2

n{1 + op(1)}

−
p1∑
s=1

n{αnp′λn(|β0s|)sgn(β0s)us + α2
np
′′
λn(|β0s|)u2

s{1 + o(1)}}

denote
===== A+ B − C. (4.29)

Now we individually examine A, B, and C. By Hölder’s inequality, the A term on the

right-hand side of (4.29) is

αn

{∂`c(Y ;ψ0)

∂ψ

}T
u = n1/2αnn

−1/2
{∂`c(Y ;ψ0)

∂ψ

}T
u

≤ n1/2αn

∣∣∣∣n−1/2
{∂`c(Y ;ψ0)

∂ψ

}T
u

∣∣∣∣
≤ n1/2αn

∥∥∥n−1/2∂`c(Y ;ψ0)

∂ψ

∥∥∥ · ∥∥∥u∥∥∥. (4.30)

By (C1), (C2) and (C3), we obtain that, n−1/2 ∂`c(Y ;ψ0)
∂ψ

= Op(1), A can be bounded by

n1/2αn‖u‖.

For the B term, since 1
n

{
∂2`c(Y ;ψ0)

∂ψ∂ψT

}
= Op(1) by (C1) and (C2), we obtain that

uT
{
∂2`c(Y ;ψ0)

∂ψ∂ψT

}
uα2

n is bounded by nα2
n‖u‖2.

For the C term, we obtain that, using Hölder’s inequality,

p1∑
s=1

nαnp
′
λn(|βs0|)sgn(βs0)us ≤ nαnan

∣∣∣ p1∑
s=1

us

∣∣∣ ≤ nαnan‖u‖ · ‖1‖ =
√
p1nαnan‖u‖.
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Furthermore, by the definition of bn, we obtain
p1∑
s=1

nα2
np
′′
λn(|β0s|)u2

s{1 + o(1)} ≤ nα2
nbn‖u‖2{1 + o(1)}.

Note that nαnan = Op(nα
2
n), and bn = op(1) by (C6.3), therefore, term C is bounded by

nαnan‖u‖.

Since an = Op(n
−1/2) from (C6.2), all A, B and C are of the order Op(nα

2
n). If ‖u‖ = Cε

is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D(ψ0) is positive

definite, then we have

P
{

sup‖u‖=CεKn(u) < 0
}

= P
{

sup‖u‖=Cε`pen1(Y ;ψ0 + αnu) < `pen1(Y ;ψ0)
}
≥ 1− ε,

which indicates at least 1 − ε that there exists a local maximum in {ψ0 + αnu}. Hence,

there exists a local maximizer such that ‖ψ̂ −ψ0‖ = Op(αn).

C. Sparsity

Proof: By Theorem 1, it suffices to show that with probability tending to 1 as n → ∞, for

any given βI satisfying ‖βI −β0I‖ = Op(n
−1/2), ξ satisfying ‖ξ− ξ0‖ = Op(n

−1/2), and for

εn = Cn−1/2, and s = p1 + 1, . . . , p, we have

∂`pen1(Y ;ψ)

∂βs
< 0 for 0 < βs < εn,

and
∂`pen1(Y ;ψ)

∂βs
> 0 for − εn < βs < 0.

With Taylor Series expansion, we obtain

∂`pen1(Y ;ψ)

∂βs
=

∂`c(Y ;ψ)

∂βs
− np′λn(|βs|)sgn(βs)

=
∂`c(Y ;ψ0)

∂βs
+
{∂2`c(Y ;ψ0)

∂βs∂ψ

}T
(ψ −ψ0)

+(ψ −ψ0)T
{∂3`pen1(Y ; ψ̇)

∂βs∂ψ∂ψ
T

}
(ψ −ψ0)− np′λn(|βs|)sgn(βs)

denote
===== A+ B + C − np′λn(|βs|)sgn(βs)
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where ψ̇ lies “between” ψ and ψ0. By the assumption that ‖ψ − ψ0‖ = Op(n
−1/2), then

it follows that

A = Op(n
1/2), B = Op(n

1/2), C = Op(1),

and thus

(nλn)−1A = Op(n
−1/2/λn), (nλn)−1B = Op(n

−1/2/λn), and (nλn)−1C = Op(n
−1/λn).

As a result, we obtain

∂`pen1(Y ;ψ)

∂βs
= nλn{(nλn)−1(A+ B + C)− λ−1

n p′λn(|βs|)sgn(βs)}

= nλn{Op(n
−1/2/λn)− λ−1

n p′λn(|βs|)sgn(βs)}. (4.31)

By the regularity condition (C6), liminfn→∞liminfε→0+p′λn(ε)/λn > 0 and limn→∞
√
nλn =

∞, the sign of the derivative in (4.31) is determined by βs. Thus we have

∂`pen1(Y ;ψ)

∂βs
< 0 for 0 < βs < εn,

and
∂`pen1(Y ;ψ)

∂βs
> 0 for − εn < βs < 0.

This completes the proof.

D. Asymptotic Distribution

Proof: Part (a) follows from Theorem 1 and Theorem 2. Now we show part (b). By

Theorem 1 and Theorem 2, there exists a ψ̂ = (β̂I ,0, ξ̂) that is a root-n consistent local

maximizer of `pen1(Y ;ψ), and that satisfies

∂`pen1(Y ; ψ̃)

∂ψ̃

∣∣∣
ψ̃=

˜̂
ψ

= 0.

By Taylor Series expansion, we obtain

∂`c(Y ; ψ̃0)

∂ψ̃
+

{
∂2`c(Y ; ψ̃0)

∂ψ̃∂ψ̃
T

+ op(1)

}
(
˜̂
ψ − ψ̃0)− n

{
b̃ + {Σ̃ + op(1)}(˜̂

ψ − ψ̃0)
}

= 0.
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Thus, we obtain

− 1√
n

{
∂2`c(Y ; ψ̃0)

∂ψ̃∂ψ̃
T

+ op(1)

}
(
˜̂
ψ− ψ̃0) +

√
n
[
b̃ + {Σ̃ + op(1)}(˜̂

ψ− ψ̃0)
]

=
1√
n

∂`c(Y ; ψ̃)

∂ψ̃
.

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain

√
n{D̃(ψ̃0)(

˜̂
ψ − ψ̃0) + b̃ + Σ̃(

˜̂
ψ − ψ̃0)} →D N(0, M̃(ψ̃0)),

i.e.
√
n
[
{D̃(ψ̃0) + Σ̃}(˜̂

ψ − ψ̃0) + b̃
]
→D N(0, M̃(ψ̃0)).

E. Regularity Conditions for Misspecified Model

In this subsection, we list regularity conditions that are needed for the subsequent devel-

opment.

(C1). For all i, `∗c(Yi;ψ
∗) is three-times continuously differentiable.

(C2). `∗c(Yi;ψ
∗), |∂`

∗
c(Yi;ψ

∗)
∂ψ∗j

|2, |∂
2`∗c(Yi;ψ

∗)
∂ψ∗j ∂ψ

∗
k
|, and |∂

3`∗c(Yi;ψ
∗)

∂ψ∗j ∂ψ
∗
k∂ψ

∗
l
| are dominated by some functions

Bi(Yi, Xi, Zi) for all j, k, l = 1, . . . , dim(ψ∗), in which ψ∗j is the j−th element of ψ∗.

Moreover, EYi;ψ0
{Bi(Yi, Xi, Zi)} <∞ for all i.

(C3). The solution for ψ∗ in the equation EYi;ψ0

{
∂`∗c(Yi;ψ

∗)
∂ψ∗

}
= 0 is ψ∗0.

(C4). Let M∗(ψ∗) = EYi;ψ0

[{
∂

∂ψ∗
`∗c(Yi;ψ

∗)
}{

∂
∂ψ∗

`∗c(Yi;ψ
∗)
}T]

, and

D∗(ψ∗) = EYi;ψ0

{
−∂

2`∗c(Yi;ψ
∗)

∂ψ∗∂ψ∗T

}
.

Assume that

1

n

n∑
i=1

{ ∂

∂ψ∗
`∗c(Yi;ψ

∗)
}{ ∂

∂ψ∗
`∗c(Yi;ψ

∗)
}T

= M∗(ψ∗) + op(1),
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and

− 1

n

n∑
i=1

{∂2`∗c(Yi;ψ
∗)

∂ψ∗∂ψ∗T

}
= D∗(ψ∗) + op(1).

Similar definitions and requirements are applied to M̃∗(ψ̃
∗
) and D̃∗(ψ̃

∗
).

(C5). There exists an open subset ω that contains the parameter point ψ∗0 such that for all

ψ∗ ∈ ω, D∗(ψ∗) and D̃∗(ψ∗) are positive definite.

(C6). Let λn be the tunning parameter with the dependence on cluster size n explicitly

spelled out. Define

an = maxs=1,...,p{p′λn(|β∗s0|) : β∗s0 6= 0},

bn = maxs=1,...,p{p′′λn(|β∗s0|) : β∗s0 6= 0},

We assume that

(C6.1). λn = op(1),

(C6.2). an = Op(n
−1/2),

(C6.3). bn = op(1).

(C7). We assume that

(C7.1). liminfn→∞liminfε→0+p′λn(ε)/λn > 0.

(C7.2). limn→∞
√
nλn =∞.

F. Consistency under Misspecified Model

Proof: Let αn = n−1/2 + an. We need to show that for any given ε > 0, there exists a large

constant Cε such that

P
{

sup‖u‖=Cε`
∗
pen1(Y ;ψ∗0 + αnu) < `∗pen1(Y ;ψ∗0)

}
≥ 1− ε,
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where u = ((u1, . . . , up∗1 , . . . , up)
T , uTξ∗)

T , uξ∗ is a vector with the same length as ξ∗, and

‖x‖ =
√
xTx.

Suppose Cε is sufficiently large such that ‖(u1, . . . , up∗1)‖ > 0. Note that pλn(0) = 0, we

consider

Kn(u) = `∗pen1(Y ;ψ∗0 + αnu)− `∗pen1(Y ;ψ∗0)

= `∗c(Y ;ψ∗0 + αnu)− `∗c(Y ;ψ∗0)− n
p∑
s=1

pλn(|β∗s0 + αnus|) + n

p∑
s=1

pλn(|β∗s0|)

= `∗c(Y ;ψ∗0 + αnu)− `∗c(Y ;ψ∗0)− n
p∗1∑
s=1

pλn(|β∗s0 + αnus|)− n
p∑

s=p∗1+1

pλn(|0 + αnus|))

+n

p∗1∑
s=1

pλn(|β∗s0|) + n

p∑
s=p∗1+1

pλn(|0|)

≤ `∗c(Y ;ψ∗0 + αnu)− `∗c(Y ;ψ∗0)− n
p∗1∑
s=1

pλn(|β∗s0 + αnus|) + n

p∗1∑
s=1

pλn(|β∗s0|), (4.32)

because of the fact that n
∑p

s=p∗1+1 pλn(|0 + αnus|)) ≥ 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and

(C2), we obtain

`∗c(Y ;ψ∗0 + αnu) = `∗c(Y ;ψ∗0) + αn

{
∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u +

1

2
uT
{∂2`∗c(Y ;ψ∗0)

∂ψ∗∂ψ∗T

}
uα2

n

+

p∑
s=1

Op(|αnus|3)

= `∗c(Y ;ψ∗0) + αn

{
∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u +

1

2
uT
{∂2`∗c(Y ;ψ∗0)

∂ψ∗∂ψ∗T

}
uα2

n{1 + op(1)}

(4.33)

127



and

n

p∗1∑
s=1

{
pλn(|β∗s0 + αnus|)

}
= n

p∗1∑
s=1

pλn(|β∗s0|) + n

p∗1∑
s=1

αnp
′
λn(|β∗s0|)sgn(β∗s0)us + n

p∗1∑
s=1

α2
np
′′
λn(|β∗s0|)u2

s{1 + o(1)}.

(4.34)

Substituting (4.33)(4.34) into (4.32), we obtain

Kn(u) ≤ αn

{∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u +

1

2
uT
{∂2`∗c(Y ;ψ∗0)

∂ψ∗∂ψ∗T

}
uα2

n{1 + op(1)}

−
p∗1∑
s=1

n{αnp′λn(|β∗s0|)sgn(β∗s0)us + α2
np
′′
λn(|β∗s0|)u2

s{1 + o(1)}}

denote
===== A+ B − C. (4.35)

Now we individually examine A, B, and C. By Hölder’s inequality, the A term on the

right-hand side of (4.35) is

αn

{∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u = n1/2αnn

−1/2
{∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u

≤ n1/2αn

∣∣∣∣n−1/2
{∂`∗c(Y ;ψ∗0)

∂ψ∗

}T
u

∣∣∣∣
≤ n1/2αn

∥∥∥n−1/2∂`
∗
c(Y ;ψ∗0)

∂ψ∗

∥∥∥ · ∥∥∥u∥∥∥. (4.36)

By (C1), (C2) and (C3), we obtain that, n−1/2 ∂`
∗
c(Y ;ψ∗0)

∂ψ∗
= Op(1), A can be bounded by

n1/2αn‖u‖.

For the B term, since 1
n

{
∂2`∗c(Y ;ψ∗0)

∂ψ∗∂ψ∗T

}
= Op(1) by (C1) and (C2), we obtain that

uT
{
∂2`∗c(Y ;ψ∗0)

∂ψ∗∂ψ∗T

}
uα2

n is bounded by nα2
n‖u‖2.

For the C term, we obtain that, using Hölder’s inequality,

p∗1∑
s=1

nαnp
′
λn(|β∗s0|)sgn(β∗s0)us ≤ nαnan

∣∣∣ p∗1∑
s=1

us

∣∣∣ ≤ nαnan‖u‖ · ‖1‖ =
√
p∗1nαnan‖u‖.
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Furthermore, by the definition of bn, we obtain

p∗1∑
s=1

nα2
np
′′
λn(|β∗s0|)u2

s{1 + o(1)} ≤ nα2
nbn‖u‖2{1 + o(1)}.

Note that nαnan = Op(nα
2
n), and bn = op(1) by (C6.3). Therefore, term C is bounded by

nαnan‖u‖.

Since an = Op(n
−1/2) from (C6.2), all A, B and C are of the order Op(nα

2
n). If ‖u‖ = Cε

is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D∗(ψ∗0) is positive

definite, then we have

P
{

sup‖u‖=CεKn(u) < 0
}

= P
{

sup‖u‖=Cε`
∗
pen1(Y ;ψ∗0 + αnu) < `∗pen1(Y ;ψ∗0)

}
≥ 1− ε,

which indicates at least 1 − ε that there exists a local maximum in {ψ∗0 + αnu}. Hence,

there exists a local maximizer such that ‖ψ̂
∗
−ψ∗0‖ = Op(αn).

G. Sparsity under Misspecified Model

Proof: By Theorem 4, it suffices to show that with probability tending to 1 as n → ∞, for

any given β∗I satisfying ‖β∗I −β∗0I‖ = Op(n
−1/2), ξ∗ satisfying ‖ξ∗− ξ∗0‖ = Op(n

−1/2). Then

for εn = Cn−1/2, and s = p∗1 + 1, . . . , p, we have to prove

∂`∗pen1(Y ;ψ∗)

∂β∗s
< 0 for 0 < β∗s < εn,

and
∂`∗pen1(Y ;ψ∗)

∂β∗s
> 0 for − εn < β∗s < 0.
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With Taylor Series expansion, we obtain

∂`∗pen1(Y ;ψ∗)

∂β∗s
=

∂`∗c(Y ;ψ∗)

∂β∗s
− np′λn(|β∗s |)sgn(β∗s )

=
∂`∗c(Y ;ψ∗0)

∂β∗s
+
{∂2`∗c(Y ;ψ∗0)

∂β∗s∂ψ
∗

}T
(ψ∗ −ψ∗0)

+(ψ∗ −ψ∗0)T
{∂3`∗pen1(Y ; ψ̇

∗
)

∂β∗s∂ψ
∗∂ψ∗T

}
(ψ∗ −ψ∗0)− np′λn(|β∗s |)sgn(β∗s )

denote
===== A+ B + C − np′λn(|β∗s |)sgn(β∗s )

where ψ̇
∗

lies “between” ψ∗ and ψ∗0. By the assumption that ‖ψ∗−ψ∗0‖ = Op(n
−1/2), then

it follows that

A = Op(n
1/2), B = Op(n

1/2), C = Op(1),

and thus

(nλn)−1A = Op(n
−1/2/λn), (nλn)−1B = Op(n

−1/2/λn), and (nλn)−1C = Op(n
−1/λn).

As a result, we obtain

∂`∗pen1(Y ;ψ∗)

∂β∗s
= nλn{(nλn)−1(A+ B + C)− λ−1

n p′λn(|β∗s |)sgn(β∗s )}

= nλn{Op(n
−1/2/λn)− λ−1

n p′λn(|β∗s |)sgn(β∗s )}. (4.37)

By the regularity condition (C6), liminfn→∞liminfε→0+p′λn(ε)/λn > 0 and limn→∞
√
nλn =

∞, the sign of the derivative in (4.37) is determined by β∗s . Thus we have

∂`∗pen1(Y ;ψ∗)

∂β∗s
< 0 for 0 < β∗s < εn,

and
∂`∗pen1(Y ;ψ∗)

∂β∗s
> 0 for − εn < β∗s < 0.

This completes the proof.
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H. Asymptotic Distribution under Misspecified Model

Proof: Part (a) follows from Theorem 4 and Theorem 5. Now we show part (b). By

Theorem 4 and Theorem 5, there exists a ψ̂
∗

= (β̂
∗
I ,0, ξ̂

∗) that is a root-n consistent local

maximizer of `∗pen1(Y ;ψ∗), and that satisfies

∂`∗pen1(Y ; ψ̃
∗
)

∂ψ̃
∗

∣∣∣
ψ̃
∗
=

˜̂
ψ∗

= 0.

By Taylor Series expansion, we obtain

∂`∗c(Y ; ψ̃
∗
0)

∂ψ̃
∗ +

{
∂2`∗c(Y ; ψ̃

∗
0)

∂ψ̃
∗
∂ψ̃
∗T + op(1)

}
(
˜̂
ψ∗ − ψ̃∗0)− n

{
b̃∗ + {Σ̃∗ + op(1)}(˜̂

ψ∗ − ψ̃∗0)
}

= 0.

Thus, we obtain

1√
n

{
∂2`∗c(Y ; ψ̃

∗
0)

∂ψ̃
∗
∂ψ̃
∗T + op(1)

}
(
˜̂
ψ∗−ψ̃∗0)−

√
n
[
b̃∗+{Σ̃∗+op(1)}(˜̂

ψ∗−ψ̃∗0)
]

= − 1√
n

∂`∗c(Y ; ψ̃
∗
)

∂ψ∗
.

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain

√
n{D̃∗(ψ̃∗0)(

˜̂
ψ∗ − ψ̃∗0) + b̃∗ + Σ̃∗(

˜̂
ψ∗ − ψ̃∗0)} →D N(0, M̃∗(ψ̃

∗
0)),

i.e.
√
n
[
{D̃∗(ψ̃∗0) + Σ̃∗}(˜̂

ψ∗ − ψ̃∗0) + b̃∗
]
→D N(0, M̃∗(ψ̃

∗
0)).
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Appendices: Simulation Results

Simulation for Selecting Fixed Effects

Linear Mixed Model

Table 4.3: Simulation results for the fixed effects selection under linear mixed model: model

selection

Avg. No. of 0 Coefficients

Method R.MME(%)‡ 1000×M.MME Correct∗ Incorrect∗∗

ML†(a,λ) 47.770 13.423 4.738 0

MLλ 48.230 13.553 4.735 0

Example 1 APW(a,λ) 54.311 16.968 4.614 0

n = 60, J = 1,K = 5 APWλ 55.270 17.301 4.598 0

APC(a,λ) 52.870 14.907 4.637 0

APCλ 53.646 15.225 4.629 0

ML(a,λ) 34.297 1.153 5 0

MLλ 34.699 1.152 5 0

Example 2 APW(a,λ) 33.859 1.250 5 0

n = 500, J = 1,K = 5 APWλ 34.543 1.250 5 0

APC(a,λ) 34.340 1.145 5 0

APCλ 34.679 1.152 5 0

MLλ 45.515 7.186 4.806 0

Example 3 APWλ 48.875 10.019 4.682 0

n = 60, Ji = 3,K = 3 APCλ 46.875 8.613 4.747 0

MLλ 33.806 1.103 5 0

Example 4 APWλ 34.303 1.442 4.999 0

n = 300, Ji = 3,K = 3 APCλ 33.620 1.241 5 0

† ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,

respectively. (a, λ), λ denote the tuning parameter selection by both a, λ and only searching λ with fixing a = 3.7, respectively.

‡ R.MME represents the median of ratios of MME of a selected model to that of the un-penalized estimate under the full model in ML,

APW, APC methods, respectively. M.MME denotes the median of MME for selected models in ML, APW and APC scenarios.

∗ “Correct” presents the average restricted to the true zero coefficients. 0 represents no true zero coefficient is shrink, while 5 implies

all true zero coefficients are restricted into zero.

∗∗ “Incorrect” depicts the average of significant coefficients erroneously set to zero. 0 represents no significant coefficient is shrink, while

3 implies all significant coefficients are erroneously set to zero.
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Logistic Mixed Model

Table 4.6: Simulation results for the fixed effects selection under logistic mixed model:

model selection

Avg. No. of 0 Coefficients

Method R.MME(%) 1000×M.MME Correct Incorrect

ML†λ 40.816 0.486 4.907 0

Example 1 APWλ 43.364 0.507 4.813 0

n = 200, Ji = J = 1,K = 5 APCλ 49.784 0.592 4.703 0

MLλ 36.357 0.097 4.967 0

Example 2 APWλ 36.572 0.097 4.961 0

n = 800, Ji = J = 1,K = 5 APCλ 37.150 0.098 4.948 0

MLλ 44.060 0.247 4.886 0

Example 3 APWλ 45.738 0.398 4.895 0

n = 200, Ji = J = 3,K = 4 APCλ 48.837 0.270 4.891 0

MLλ 41.212 0.068 4.940 0

Example 4 APWλ 44.589 0.132 4.942 0

n = 400, Ji = J = 3,K = 4 APCλ 44.982 0.127 4.970 0

† ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood and all-pairwise conditional pairwise

likelihood approaches, respectively. λ denotes the tuning parameter selection by only searching λ with fixing a = 3.7.
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Poisson Mixed Model

Table 4.9: Simulation results for the fixed effects selection under Poisson mixed model:

model selection

Avg. No. of 0 Coefficients

Method R.MME(%) M.MME Correct Incorrect

ML†λ 75.460 47.159 4.633 0

Example 1 APWλ 82.396 65.310 4.302 0

n = 60, Ji = J = 1,K = 5 APCλ 82.222 53.579 4.328 0

MLλ 75.448 4.532 5 0

Example 2 APWλ 77.834 7.108 4.998 0

n = 500, Ji = J = 1,K = 5 APCλ 74.370 5.033 5 0

MLλ 86.560 75.026 4.484 0

Example 3 APWλ 109.717 173.273 4.055 0

n = 60, Ji = J = 3,K = 2 APCλ 96.514 103.141 4.200 0

MLλ 75.118 11.706 4.930 0

Example 4 APWλ 71.482 17.412 4.866 0

n = 300, Ji = J = 3,K = 2 APCλ 71.078 15.439 4.892 0

† ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood and all-pairwise conditional pairwise

likelihood approaches, respectively. λ denotes the tuning parameter selection by only searching λ with fixing a = 3.7.
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Simulation for Both Fixed and Random Effects

Linear Mixed Model

Situation 1: Generate Data from GLMMs

Table 4.12: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMMs: model selection in the linear mixed model

Fixed Coefficients Random Coefficients
M.MSE‡β R.MSEβ M.MSED R.MSED Correct1∗∗ Incorrect1 Correct2 Incorrect2

Scenario 1: n = 100, Ji = J = 1,K = 5
GLMM MLλ 0.086 0.531 0.366 0.517 4.652 0 4.150 0

APWλ 0.127 0.653 0.104 0.171 3.812 0 5.538 0
GLMPM MLλ 0.075 0.518 0.395 0.554 4.588 0 4.020 0

APWλ 0.126 0.649 0.105 0.175 3.548 0 5.516 0
Scenario 2: n = 300, Ji = J = 1,K = 5
GLMM MLλ 0.018 0.371 0.033 0.061 4.968 0 5.802 0

APWλ 0.026 0.438 0.025 0.044 4.764 0 5.976 0
GLMPM MLλ 0.020 0.400 0.038 0.070 4.960 0 5.806 0

APWλ 0.026 0.439 0.024 0.044 4.718 0 5.950 0
Scenario 3: n = 100, Ji = J = 3,K = 3
GLMM MLλ 0.049 0.492 0.033 0.059 4.744 0 5.912 0

APWλ 0.112 0.746 0.009 0.016 3.522 0 5.264 0
GLMPM MLλ 0.049 0.495 0.035 0.064 4.736 0 5.798 0

APWλ 0.110 0.745 0.011 0.018 3.454 0 4.994 0
Scenario 4: n = 300, Ji = J = 3,K = 3
GLMM MLλ 0.012 0.390 0.009 0.017 4.970 0 6 0

APWλ 0.021 0.472 0.003 0.005 4.670 0 6 0
GLMPM MLλ 0.012 0.384 0.009 0.017 4.974 0 5.998 0

APWλ 0.021 0.478 0.003 0.005 4.666 0 5.594 0

† ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. λ denotes the tuning

parameter selection by searching λ with fixing a = 3.7, respectively.

‡ MSEβ = ||β − β̂||2, MSED = ||
√

diag(D)−
√

diag(D̂)||2. M.MSEβ and M.MSED are the median of both quantities. R.MSEβ

and R.MSED are the median ratios of MSEβ and MSED, for a selected model to that of the un-penalized estimate, respectively.

∗ “Correct1” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient

is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrect1” depicts that the average of

significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

∗∗ “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero

coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the

average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Situation 2: Generate Data from GLMPMs

Table 4.15: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMPMs: model selection in the linear mixed model

Fixed Coefficients Random Coefficients

M.MSE‡β R.MSEβ M.MSED R.MSED Correct1∗∗ Incorrect1 Correct2 Incorrect2

Scenario 1: n = 100, Ji = J = 1,K = 5
GLMM MLλ 0.068 0.563 0.173 0.323 4.686 0 5.576 0

APWλ 0.092 0.611 0.108 0.219 3.988 0 5.998 0
GLMPM MLλ 0.059 0.538 0.289 0.441 4.668 0 4.700 0

APWλ 0.092 0.625 0.124 0.201 3.810 0 5.366 0
Scenario 2: n = 300, Ji = J = 1,K = 5
GLMM MLλ 0.017 0.433 0.062 0.145 4.984 0 6 0

APWλ 0.024 0.471 0.056 0.129 4.828 0 6 0
GLMPM MLλ 0.016 0.455 0.032 0.064 4.968 0 5.914 0

APWλ 0.023 0.472 0.027 0.048 4.788 0 5.770 0
Scenario 3: n = 100, Ji = J = 3,K = 3
GLMM MLλ 0.040 0.534 0.132 0.264 4.806 0 6 0

APWλ 0.097 0.729 0.071 0.144 3.604 0 6 0
GLMPM MLλ 0.038 0.501 0.035 0.063 4.834 0 5.904 0

APWλ 0.093 0.735 0.010 0.018 3.722 0 4.916 0
Scenario 4: n = 300, Ji = J = 3,K = 3
GLMM MLλ 0.010 0.429 0.117 0.236 4.988 0 6 0

APWλ 0.021 0.497 0.051 0.106 4.730 0 6 0
GLMPM MLλ 0.010 0.422 0.009 0.016 4.994 0 5.996 0

APWλ 0.019 0.504 0.003 0.006 4.766 0 5.422 0

† ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. λ denotes the tuning

parameter selection by searching λ with fixing a = 3.7, respectively.

‡ MSEβ = ||β − β̂||2, MSED = ||
√

diag(D)−
√

diag(D̂)||2. M.MSEβ and M.MSED are the median of both quantities. R.MSEβ

and R.MSED are the median ratios of MSEβ and MSED, for a selected model to that of the un-penalized estimate, respectively.

∗ “Correct1” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient

is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrect1” depicts that the average of

significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

∗∗ “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero

coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the

average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Poisson Mixed Model

Situation 1: Generate Data from GLMM

Table 4.18: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMMs: model selection in the Poisson mixed model

100× 100× Fixed Coefficients Random Coefficients

M.MSE‡β R.MSEβ M.MSED R.MSED Correct1∗∗ Incorrect1 Correct2 Incorrect2

Scenario 1: n = 250, Ji = J = 1,K = 9
GLMM MLλ 0.060 0.306 0.126 0.086 5 0 5.942 0

APWλ 0.101 0.357 0.044 0.029 4.988 0 5.610 0
GLMPM MLλ 0.060 0.300 0.122 0.081 5 0 5.982 0

APWλ 0.101 0.357 0.044 0.029 4.988 0 5.754 0
Scenario 2: n = 500, Ji = J = 1,K = 9
GLMM MLλ 0.033 0.325 0.116 0.079 5 0 5.994 0

APWλ 0.058 0.364 0.014 0.009 5 0 5.870 0
GLMPM MLλ 0.033 0.326 0.114 0.077 5 0 6 0

APWλ 0.058 0.364 0.014 0.009 5 0 5.910 0
Scenario 3: n = 250, Ji = J = 3,K = 4
GLMM MLλ 0.054 0.303 0.223 0.005 5 0 5.762 0

APWλ 0.087 0.345 0.257 0.057 4.990 0 4.650 0
GLMPM MLλ 0.055 0.302 0.255 0.006 5 0 5.834 0

APWλ 0.091 0.332 2.525 0.056 5 0 5.124 0
Scenario 4: n = 500, Ji = J = 3,K = 4
GLMM MLλ 0.028 0.316 0.009 0.002 5 0 5.962 0

APWλ 0.054 0.387 0.251 0.056 5 0 5.030 0
GLMPM MLλ 0.027 0.302 0.009 0.002 5 0 5.982 0

APWλ 0.057 0.409 0.049 0.011 5 0 5.038 0

† ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. λ denotes the tuning

parameter selection by searching λ with fixing a = 3.7, respectively.

‡ MSEβ = ||β − β̂||2, MSED = ||
√

diag(D)−
√

diag(D̂)||2. M.MSEβ and M.MSED are the median of both quantities. R.MSEβ

and R.MSED are the median ratios of MSEβ and MSED, for a selected model to that of the un-penalized estimate, respectively.

∗ “Correct1” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient

is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrect1” depicts that the average of

significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

∗∗ “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero

coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the

average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Situation 2: Generate Data from GLMPMs

Table 4.21: Simulation results for doubly selection fixed and random effects under the case

that data are generated by GLMPMs: model selection in the Poisson mixed model

100× 100× Fixed Coefficients Random Coefficients

M.MSE‡β R.MSEβ M.MSED R.MSED Correct1∗∗ Incorrect1 Correct2 Incorrect2

Scenario 1: n = 250, Ji = J = 1,K = 9
GLMM MLλ 3.451 0.999 32.883 0.696 4.378 0 1.110 0

APWλ 4.187 0.892 54.010 0.929 4.996 0 2.106 0
GLMPM MLλ 0.066 0.303 0.155 0.103 5 0 5.968 0

APWλ 0.113 0.356 0.045 0.029 4.988 0 5.596 0
Scenario 2: n = 500, Ji = J = 1,K = 9
GLMM MLλ 2.571 0.864 31.856 0.668 4.688 0 1.488 0

APWλ 4.139 0.896 54.839 0.927 5 0 1.938 0
GLMPM MLλ 0.032 0.304 0.140 0.095 5 0 5.998 0

APWλ 0.066 0.376 0.014 0.009 4.996 0 5.862 0
Scenario 3: n = 250, Ji = J = 3,K = 4
GLMM MLλ 25.047 1.036 31.264 0.336 4.994 0 0.352 0

APWλ 17.815 0.922 51.366 0.309 4.971 0 0.367 0
GLMPM MLλ 0.056 0.310 0.027 0.006 5 0 5.884 0

APWλ 0.129 0.396 0.252 0.056 4.968 0 5.162 0
Scenario 4: n = 500, Ji = J = 3,K = 4
GLMM MLλ 21.617 1.042 31.129 0.336 5 0 0.470 0

APWλ 17.715 0.932 52.018 0.309 5 0 0.096 0
GLMPM MLλ 0.028 0.290 0.007 0.002 5 0 5.972 0

APWλ 0.073 0.390 0.250 0.056 5 0 5.324 0

† ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. λ denotes the tuning

parameter selection by searching λ with fixing a = 3.7, respectively.

‡ MSEβ = ||β − β̂||2, MSED = ||diag(D)− diag(D̂)||2. M.MSEβ and M.MSED are the median of both quantities. R.MSEβ and

R.MSED are the median ratios of MSEβ and MSED, for a selected model to that of the un-penalized estimate, respectively.

∗ “Correct1” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient

is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrect1” depicts that the average of

significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

∗∗ “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero

coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the

average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Model Selection under Misspecified Models

Table 4.24: Simulation results for the fixed effects selection under misspecified linear mixed

model: model selection precision rate (%) for each variable

RCS-Nonzero RCS-Zero

Method β1 β2 β5 β3 β4 β6 β7 β8
ML(
√

)† 100∗ 93.2 99.0 96.0∗∗ 96.8 96.2 98.4 98.0
ML(×) 100 2.6 3.6 96.0 7.0 6.0 97.4 97.8

Example 1 APW(
√

) 100 98.4 99.2 78.6 80.6 81.0 85.8 86.0
n = 250, Ji = J = 1,K = 5 APW(×) 100 20.8 24.4 77.0 2.8 1.8 80.8 83.6

APC(
√

) 100 98.6 99.4 81.6 83.0 84.2 87.6 88.0
APC(×) 100 18.4 19.8 81.6 2.6 2.0 83.6 85.2
ML(
√

) 100 100 100 98.6 97.8 99.4 99.6 99.6
ML(×) 100 1.2 0.6 98.8 0 0 99.2 100

Example 2 APW(
√

) 100 100 100 95.4 94.0 97.2 98.4 97.6
n = 1000, Ji = J = 1,K = 5 APW(×) 100 5.6 10.0 95.0 0 0 96.4 97.4

APC(
√

) 100 100 100 97.4 95.8 98.4 99.0 98.2
APC(×) 100 2.6 4.6 97.8 0 0 98.4 98.0
ML(
√

) 100 85.4 98.8 94.8 96.4 97.0 98.2 98.4
ML(×) 100 6.4 7.2 92.8 20.6 18.4 95.2 96.4

Example 3 APW(
√

) 100 97.6 100 69.2 74.2 77.0 81.2 77.8
n = 250, Ji = J = 3,K = 3 APW(×) 100 26.6 28.8 71.4 5.8 4.8 79.0 77.4

APC(
√

) 100 97.8 100 70.8 75.2 78.0 82.2 79.0
APC(×) 100 25.6 27.4 71.6 5.2 4.6 79.2 78.6
ML(
√

) 100 97.8 99.8 98.0 97.8 98.4 99.2 98.6
ML(×) 100 1.8 3.6 97.2 6.8 7.6 98.2 97.8

Example 4 APW(
√

) 100 99.6 100 80.6 79.8 84.0 89.2 90.4
n = 500, Ji = J = 3,K = 3 APW(×) 100 19.4 26.0 80.6 1.8 1.6 85.6 88.0

APC(
√

) 100 99.8 100 84.0 79.2 86.4 90.6 88.6
APC(×) 100 20.6 25.8 81.8 1.4 1.0 86.8 88.6

† ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,

respectively. (
√

) and (×) denote the model with correct skewed-normal random effects and the model with incorrect normal random

effects, respectively.

∗ The values under “RCS-Nonzero” column presents the rate of corresponding non-zero coefficient that is correctly estimated as

non-zero.

∗∗ The values under “RCS-Zero” depicts the rate of related zero coefficient that is correctly set to zero.
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Table 4.25: Simulation results for the fixed effects selection under misspecified linear mixed

model: regression coefficient estimation for β1

β1

Method Bias(%) ESE ASE CP(%)

ML(
√

)† -1.362 0.171 0.160 93.8

ML(×) 50.331 0.174 0.158 3.4

Example 1 APW(
√

) -9.910 0.197 0.148 80.2

n = 250, Ji = J = 1,K = 5 APW(×) 38.843 0.191 0.153 22.2

APC(
√

) -9.014 0.187 0.154 82.2

APC(×) 40.816 0.183 0.145 15.2

ML(
√

) -0.258 0.081 0.080 95.0

ML(×) 51.557 0.082 0.080 0

Example 2 APW(
√

) -2.426 0.095 0.093 91.2

n = 1000, Ji = J = 1,K = 5 APW(×) 49.022 0.096 0.087 0

APC(
√

) -1.935 0.089 0.088 93.2

APC(×) 50.045 0.090 0.086 0

ML(
√

) 1.315 0.188 0.179 93.2

ML(×) 42.819 0.190 0.173 15.6

Example 3 APW(
√

) -9.899 0.205 0.145 80.6

n = 250, Ji = J = 3,K = 3 APW(×) 28.163 0.202 0.162 52.2

APC(
√

) -9.634 0.199 0.150 81.4

APC(×) 28.729 0.196 0.158 50.0

ML(
√

) 0.556 0.123 0.129 96.4

ML(×) 43.653 0.119 0.124 1.2

Example 4 APW(
√

) -6.133 0.139 0.130 88.0

n = 500, Ji = J = 3,K = 3 APW(×) 33.048 0.134 0.121 14.2

APC(
√

) -5.737 0.142 0.146 86.4

APC(×) 33.331 0.135 0.127 12.4

† ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,

respectively. (
√

) and (×) denote the model with correct skewed-normal random effects and the model with incorrect normal random

effects, respectively.
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Chapter 5

Variable Selection via Composite

Likelihood for Incomplete

Longitudinal Data Arising in Clusters

5.1 Introduction

Longitudinal data arising in clusters are typically collected by following up subjects in

clusters over a period of time. Incomplete data and variable selection issues are important

for such data. Incompleteness of data presents a challenge in standard analysis methods,

because analysis with missingness ignored may lead to biased results. On the other hand,

irrelevantly incorporating a large number of covariates to the model may result in the

difficulty of computation, interpretation and prediction, thus parsimonious models are

typically desirable. Many existing methods focus on handling either the missing data or

the variable selection, but not both (e.g. Wu and Carroll, 1988; Diggle and Kenward, 1994;

Little, 1995; Akaike, 1973; Tibshirani, 1997; Fan and Li, 2001). Ni et al. (2010) propose

a double-penalized likelihood approach to deal with the model selection for incomplete

response data with missing at random (MAR)(Little and Rubin, 2002), but the method is
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not applicable if missingness occurs in both the response and the covariates under missing

not at random (MNAR) scenarios.

Another particular issue for longitudinal data arising in clusters may be attributed to

substantially increased modeling complexity and computational difficulty. With clusters

present in longitudinal studies, the likelihood function may become cumbersome. Fieuws

and Verbeke (2006) argue that for longitudinal data arising in clusters under random effects

models, computation will become difficult as the dimension of the random effects vector

increases.

It is desirable to develop methods that can accommodate missingness, variable selection

and complex modeling issues. In this chapter, we propose a unified penalized missingness

modified composite likelihood framework (Lindsay, 1988; Arnold and Strauss, 1991; Cox

and Reid, 2004; Lindsay et al., 2011) to handle various features. In particular, our method

can accommodate data missing not at random (MNAR) for both the response and the

covariates. Moreover, it is flexible to handle the situation when the response and the co-

variates are missing not simultaneously. For the missing not at random (MNAR) case, our

inference requires only some “structural” assumptions for the missing data process. Under

the assumptions, we do not need to specify a specific model form for the missing data pro-

cess, which circumvents the misspecification and non-identifiability problems (Fitzmaurice

et al., 1996). We further add penalized terms in the likelihood functions to facilitate the

variable selection, while the composite likelihood formulations involve simpler model form

and cheapness in computation.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

notations and models. In Section 5.3, we provide details on the inference strategy. A

study of the NPHS data will be illustrated in Section 5.4. Numerical studies concerning

asymptotic bias will be given in Section 5.5. Concluding remarks are given in Section 5.6.
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5.2 Model Formulation

5.2.1 Generalized Linear Mixed Models

Suppose that there are n clusters and Ji subjects within cluster i, i = 1, 2, . . . , n. Further

suppose that there are K visits planed. Let Yijk denote the response for subject j in cluster

i at the visit k, k = 1, 2, . . . , K. Take Yij = (Yij1, Yij2, . . . , YijK)T , j = 1, 2, . . . , Ji. and

Yi = (Y T
i1 , Y

T
i2 , . . . , Y

T
iJi

)T , i = 1, 2, . . . , n. Let Xijk = (Xijk,1, . . . , Xijk,p)
T be the p× 1 fixed

effect covariate vector for subject j in cluster i at time k, Xij = (XT
ij1, X

T
ij2, . . . , X

T
ijK)T ,

and Xi = (XT
i1, X

T
i2, . . . , X

T
iJi

)T . Let Zijk = (Zijk,1, . . . , Zijk,q)
T be the q × 1 random effect

covariates vector. Zij and Zi are defined by following the similar pattern as Xij and Xi.

Let ui denote a random effects vector corresponding to cluster i, i = 1, 2, . . . , n.

Conditional on random effects ui and covariate vectors, Yijk follows the distribution

given by

f(Yijk|Xi, Zi, ui) = exp
[
{Yijkτijk − b(τijk)}/a(φ) + c(Yijk;φ)

]
, (5.1)

where a(·), b(·) and c(·) are some specific functions, φ is a scale parameter, τijk is a canonical

parameter, E(Yijk|Xi, Zi, ui) = b′(τijk) and Var(Yijk|Xi, Zi, ui) = a(φ)b′′(τijk). We further

consider a regression model

h{E(Yijk|Xi, Zi, ui)} = XT
ijkβ + ZT

ijkui,

where h is a link function and β is a p×1 vector for fixed effect coefficients. Note that when

Ji = 1 for all i = 1, . . . , n, the aforementioned model becomes ordinary generalized linear

mixed models (GLMMs) (Laird and Ware, 1982). Under the conditional independence

assumption given random effects ui, we have

f(Yi|Xi, Zi, ui) =

Ji∏
j=1

K∏
k=1

f(Yijk|Xi, Zi, ui),

and thus the statistical inference can be applied by the likelihood of Yi with integrating

out the unobservable random effects given by

f(Yi|Xi, Zi) =

∫
f(Yi|Xi, Zi, ui)f(ui) dui (5.2)
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where f(ui) is the distribution of random effects ui.

5.2.2 Missing Data Models

In longitudinal studies, individuals in clusters may not be completely observed at all occa-

sions. Missingness can occur in both the response and the covariates measurements. Here

we start with the case that all subjects in all clusters are observed at visit 1, but they

can be missing at any other visit. Extensions to accommodating more general cases are

discussed in Section 5.2.4.

Let Rijk = 1 if the observation for cluster i, subject j at occasion k are complete

(both the response and the covariates are fully observed) and Rijk = 0 otherwise. Then

we take Ri = (Ri11, Ri12, . . . , RiJiK)T . Write Yi = (Y obs
i , Y mis

i ), Xi = (Xobs
i , Xmis

i ), and

Zi = (Zobs
i , Zmis

i ), to distinguish the observed and unobserved components of Yi, Xi and

Zi, respectively. The full likelihood for (Yi, Xi, Zi, Ri) in the ith cluster can be written as

f(Yi, Xi, Zi, Ri) = f(Ri|Yi, Xi, Zi;φ)f(Xi, Zi|υ)f(Yi|Xi, Zi;ψ),

where parameters φ, υ and ψ are assumed to be functionally independent.

If the missing data mechanism is missing not at random (MNAR), we have

f(Ri|Yi, Xi, Zi;φ) = f(Ri|Y obs
i , Y mis

i , Xobs
i , Xmis

i , Zobs
i , Zmis

i ;φ),

where the missing data probability depends on the unobserved components of Yi, Xi and

Zi.

Therefore, the statistical inference can use the observed data full likelihood function

f(Ri, Y
obs
i , Xobs

i , Zobs
i ) =

∫∫∫
f(Ri|Yi, Xi, Zi;φ)f(Xi, Zi|υ)f(Yi|Xi, Zi;ψ) dY mis

i dXmis
i dZmis

i ,

(5.3)

where the integrals are taken for all unobserved responses and covariates. The observed

data likelihood function in (5.3) requires fully specification of response process f(Yi|Xi, Zi;ψ),
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covariates process f(Xi, Zi|υ) and missing data process f(Ri|Yi, Xi, Zi;φ). Moreover, the

full likelihood estimation for interested parameter ψ involves a large set of nuisance param-

eters φ and υ. To circumvent the difficulties in the full likelihood, we propose a composite

likelihood strategy.

5.2.3 Composite Likelihood

In the spirit of the conditional likelihood discussed in Fitzmaurice et al. (2005), we assume

the missing mechanism satisfies

P (Rijk = 1|Yijk, Yij′1, Xi, Zi) = P (Rijk = 1|Yijk, Xi, Zi), (5.4)

for all k 6= 1, j = 1, . . . , Ji and j′ = 1, . . . , Ji.

Under the assumption in (5.4), we can prove that the conditional likelihood form for

Yij′1 (j′ = 1, . . . , Ji) given observed Yijk (j = 1, . . . , Ji; k 6= 1) has

f(Yij′1 | Yijk, Xi, Zi, Rijk = 1;ψ,φ) = f(Yij′1 | Yijk, Xi, Zi;ψ).

This implies that in cluster i, the conditional distribution of Yij′1 given Yijk in a com-

plete observation for subject j at occasion k, equals to the conditional distribution of

f(Yij′1 | Yijk, Xi, Zi;ψ). Therefore, it can be shown that the log likelihood obtained from

the complete observation I(Rijk = 1) log f(Yij′1 | Yijk, Xi, Zi;ψ) leads to unbiased estimat-

ing equations. The proof is sketched in Appendix 1.

However, the assumption in (5.4) may not secure such equalities for the marginal form

of Yijk to have

f(Yijk | Xi, Zi, Rijk = 1;ψ,φ) = f(Yijk | Xi, Zi;ψ),

and the conditional form for Yijk given Yij′1 to have

f(Yijk | Yij′1, Xi, Zi, Rijk = 1;ψ,φ) = f(Yijk | Yij′1, Xi, Zi;ψ).
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Thus, the log likelihood functions obtained from the complete observation

I(Rijk = 1) log f(Yijk | Xi, Zi;ψ),

and

I(Rijk = 1) log f(Yijk | Yij′1, Xi, Zi;ψ)

may lead to biased estimation equations.

Therefore, the inference can take the log composite likelihood for subject i as

`(Yi)

= log

{∏
j<j′

{
f(Yij1|Yij′1, Xi, Zi)f(Yij′1|Yij1, Xi, Zi)

}
×

∏
j=1,...,Ji
j′=1,...,Ji
k 6=1

f(Yij′1|Yijk, Xi, Zi)
I(Rijk=1)

}
.

(5.5)

According to (5.5), we need a composite likelihood modeling strategy by implementing

pairwise conditional log likelihood forms. The key difference between the composite likeli-

hood and full likelihood methods is, instead of working on the full distribution structure,

the composite likelihood approach only centers on partial structures of the probability

distributions. In particular, the log likelihood (5.5) only requires the specification of con-

ditional distribution form as Yijk given Yij′k′ , Xi, and Zi, which can be obtained from (5.1)

by

f(Yijk|Yij′k′ , Xi, Zi) =
f(Yijk, Yij′k′ , Xi, Zi)

f(Yij′k′ , Xi, Zi)

=

∫
f(Yijk|Xi, Zi, ui)f(Yij′k′ |Xi, Zi, ui)f(ui) dui∫

f(Yij′k′|Xi, Zi, ui)f(ui) dui
.

Note that comparing with the full likelihood (5.3), our log composite likelihood function

(5.5) does not involve the specification of the covariates process f(Xi, Zi|υ) and the missing

data process f(Ri|Yi, Xi, Zi;φ). Moreover, the integrals for unobserved response Y mis and

covariates Xmis, Zmis are not included in (5.5). Thus, the composite likelihood shows

modeling tractability and computational cheapness.
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5.2.4 Extensions

Previous discussions assume that all subjects in clusters are observed at visit 1, but they

can be missing at any other visits. In applications, this requirement may be too restrictive.

Moreover, assumption (5.4) is quite strong since it does not allow the missingness depends

on any of the response in the first occasion.

In fact, the missingness modified composite likelihood approach can be applied as long

as for each cluster i, there exists some j, k which are free of missingness. Let Si be the

subset of (i11, i12, . . . , iJiK) that includes the missingness-free occasions for cluster i, while

Ri is the complementary of Si to display the missingness-prone occasions for cluster i. Then

assume

P (Rijk = 1|Yijk, Yij′k′ , Xi, Zi) = P (Rijk = 1|Yijk, Xi, Zi), (5.6)

for some ijk ∈ Ri and ij′k′ ∈ Si. Let (ijk, ij′k′) ∈ A if they meet the assumption (5.6).

We obtain a general composite likelihood for cluster i as

`(Yi) = log

[ ∏
ijk∈Si
ij′k′∈Si

{
f(Yijk|Yij′k′ , Xi, Zi)f(Yij′k′|Yijk, Xi, Zi)

}

×
∏

(ijk,ij′k′)∈A

f(Yij′k′ |Yijk, Xi, Zi)
I(Rijk=1)

]
. (5.7)

Therefore, the composite likelihood function has

`(Y ) =
n∑
i=1

`(Yi). (5.8)

5.3 Selecting Fixed Effects Using the Composite Like-

lihood

In this section, we focus on selecting fixed effect. Denote ψ = (βT , ξT )T , where ξ represents

all parameters other than β. To achieve both the model selection and the parameter esti-
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mation, we propose to maximize the following penalized composite log likelihood function:

`pen(Y ;ψ) = `(Y ;ψ)− n
p∑
s=1

pλ(|βs|), (5.9)

where `(Y ;ψ) is defined in (5.8), pλ(|βs|) is the penalty function for the s-th element in β.

Following Fan and Li (2001, 2004), we adopt the SCAD penalty. The SCAD penalty is a

nonconcave function defined by pλ(0) = 0 and for βs > 0, its first derivative satisfies

p′λ(βs) = λ

{
I(βs ≤ λ) +

(aλ− βs)+

(a− 1)λ
I(βs > λ)

}
for some a > 2 and λ > 0. In practice, 2-dimensional grid searching for optimal tuning

parameter (a, λ) can be computational expensive. Based on the calculation of Bayesian

risk, Fan and Li (2001) suggests setting a = 3.7, and only searching for λ.

Given known values of tuning parameter a = 3.7 and λ(r), the estimate of ψ, denoted

by ψ̂r, is the maximizer of the penalized composite likelihood. That is

ψ̂r = argmaxψ`pen(Y ;ψ).

The maximization can be implemented using the Newton-Raphson algorithm. However,

the SCAD penalty function is singular at the origin, and does not have continuous second

order derivatives. We can apply the local quadratic approximation approach proposed by

Fan and Li (2001) to circumvent this problem with a modified Newton-Raphson algorithm

for the tth iteration:

ψ(t+1)
r = ψ(t)

r −
{∂2`(Y ;ψ(t))

∂ψ∂ψT
− nW (t)

}−1{∂`(Y ;ψ(t))

∂ψ
− nU (t)

}
, t = 0, 1, . . . (5.10)

where W (t) = diag{p′λr(|β
(t)
1 |)/|β

(t)
1 |, . . . , p′λr(|β

(t)
p |)/|β(t)

p |,0ξ}, U (t) = W (t) · (β(t)T ,0Tξ )T ,

and 0ξ is the 0-vector with equal length as ξ. If β
(t+1)
s is very close to 0, then set β̂s = 0,

and remove its corresponding elements in (5.10) from the iteration. The estimates ψ̂r is

obtained when all parameters converge to a stable set.

The aforementioned maximization algorithm is conducted based on a fixed tuning pa-

rameters (a(r), λ(r)). In practice, (a(r), λ(r)) is chosen on a grid and the solution ψ̂r is
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obtained for each r. The final model selection and estimates ψ̂ can be realized based on

certain selection critera. For instance, recent studies (Wang et al., 2007; Bondell et al.,

2010; Ma and Li, 2010; Zhang et al., 2010) show that the Bayesian information criterion

(BIC) is consistent for model selection given the true model lies in the class of candidate

models. The BIC criterion has the form

BIC(a(r),λ(r)) = −2`(Y ; ψ̂r) + log(n)× df(a(r),λ(r))(ψ̃r), (5.11)

where ψ̃r denotes the parameter set in which the 0 elements in ψ̂r are removed, df(a(r),λ(r))(ψ̃r)

is the effective number of degrees of freedom given by tr(J̃(ψ̂r)H̃(ψ̂r)
−1), (Varin and Vi-

doni, 2005; Gao and Song, 2010) where H̃(ψ̂r) = −∂2`pen(Y ;ψ̂r)

∂ψ̃r∂ψ̃
T
r

, and

J̃(ψ̂r) =
n∑
i=1

∂`(Yi; ψ̂r)

∂ψ̃r

{∂`(Yi; ψ̂r)

∂ψ̃r

}T .

Under some mild regulation conditions (see Appendix 2), the asymptotic properties for

our method can be established. The proof is sketched in Appendix 3.

5.4 Application

The National Population Health Survey (NPHS) is a longitudinal study that collects health

information and related socio-demographic information by following a group of Canadian

household residents. The questions for the NPHS include many aspects of in-depth health

information such as health status, use of health services, chronic conditions and activity

restrictions. Moreover, social background questions, including age, sex and income level,

are contained in the questionnaire. A research interest focuses on modeling the influence

of income on population health. The data we analyze here contain 6 cycles’ observations

(from Cycle 1 to Cycle 6), including n = 1033 males with age between 50-70 at Cycle 1,

and less than 80 at Cycle 6. All the deceased subjects are excluded from the analysis.

Health status (HUI) is measured by the Health Utilities Index Mark after zero-mean

normalization. The higher HUI score indicates a better health status. The covariate
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prone to missingness is household income (INC), which is measured by provincial level of

household income with zero-mean normalization. The other covariate, denoted by CYCLE

is cycle number after log-transformation, respectively.

In the data set, the first two occasions are complete for all subjects. However, only

43.2% of the individuals have complete observations for both the response and the covariate

in the following 4 cycles. The missingness proportions in the response in the following 4

cycles are 11.9%, 16.8%, 22.3%, and 25.6%, respectively, while the missingness proportions

in the covariate are 17.1%, 24.0%, 29.0% and 33.4%, respectively. Various types of miss-

ingness patterns are present. A sample of summarized proportions is displayed in Table

5.1.

Table 5.1: Missing data proportions for HUI and INC variables in the NPHS data (%)

Percentage
HUI INC

1 2 3 4 5 6 1 2 3 4 5 6

43.2%
√ √ √ √ √ √ √ √ √ √ √ √

· · ·
2%

√ √ √ √ √ √ √ √
×
√ √ √

1%
√ √ √ √

×
√ √ √ √ √

×
√

1%
√ √ √ √

× ×
√ √ √ √

× ×
√

Observed; × Missing

Orpana et al. (2009) indicate that random intercept is sufficient to account for the

correlation across cycles. Moreover, both cubic terms of INC and CYCLE with interactions

are of interest in the modeling of HUI. This motivates us to consider variable selection in

the following model

Yijk = Xijkβ + uij + εijk, (5.12)

where Ji = 1 for all i, Yijk is the HUI score for subject i measured at Cycle k, Xijk is a

16× 1 vector of variables measured at j: Intercept, INC, INC2, INC3, CYCLE, CYCLE2,
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CYCLE3, CYCLE, INC × CYCLE, INC2 × CYCLE, INC3 × CYCLE, INC × CYCLE2,

INC2 × CYCLE2, INC3 × CYCLE2, INC× CYCLE3, INC2 × CYCLE3, INC3 × CYCLE3.

uij ∼ N(0, σ2
u) is the subject specific random effect and εijk ∼ N(0, σ2

ε) is the independent

residual error.

We apply our composite likelihood procedure (CL) to model (5.12). As a comparison,

we employ a naive approach that is often used by analysts to handle data with missing

observations. That is, we apply the naive maximum likelihood method to the complete data

only, and denote this method by NML. In the NML approach, all incomplete observations

are ignored and only complete data are used for estimation, where the likelihood formula

for the ith cluster can be written as

LNML
i =

∫ [ Ji∏
j=1

K∏
k=1

{f(Yijk|Xi, Zi, ui)}Rijk
]
f(ui) dui.

Table 5.2 displays the model fitting and selection results. Two methods obtain relatively

comparable results that income has only a linear effect on health index. They also suggest

a cubic temporal effect. The NML approach excludes all of the interaction terms, while

CL maintains some higher order interaction terms.
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Table 5.2: Analysis results for the NPHS data: entries represent the estimates and standard

errors (in brackets)

NML† CL
Variable

Full Model Selected Model Full Model Selected Model

Intercept −0.020(0.041) 0.001(0.028) -0.006(0.041) 0.016(0.031)

INC 0.109(0.064) 0.085(0.014) 0.092(0.068) 0.080(0.019)

INC2 -0.012(0.027) -0.020(0.028)

INC3 -0.003(0.033) 0.002(0.034)

CYCLE 0.349(0.216) 0.073(0.019) 0.563(0.232) 0.080(0.019)

CYCLE2 -0.284(0.315) -0.669(0.380)

CYCLE3 0.033(0.116) -0.039(0.007) 0.164(0.147) -0.044(0.007)

INC× CYCLE -0.258(0.380) -0.084(0.468)

INC2 × CYCLE -0.130(0.166) -0.229(0.201) 0.017(0.008)

INC3 × CYCLE 0.236(0.203) 0.398(0.262)

INC× CYCLE2 0.291(0.551) -0.067(0.778)

INC2 × CYCLE2 0.165(0.244) 0.422(0.339)

INC3 × CYCLE2 -0.353(0.297) -0.717(0.441) -0.013(0.006)

INC× CYCLE3 -0.092(0.202) 0.039(0.307)

INC2 × CYCLE3 -0.047(0.090) -0.149(0.132)

INC3 × CYCLE3 0.134(0.109) 0.269(0.174) -0.022(0.005)

† NML and CL represent naive maximum likelihood to complete data and our composite likelihood, respectively.

5.5 Simulation Studies of the Proposed Methods

5.5.1 Measure of Marginal Model Error

In this section, we implement the proposed method to various models, including linear

mixed models and Poisson mixed models. First, we describe a measure that is used to

feature the performance of the estimates obtained from different models.

Let µ(·) = Eui
{
E(Yijk|Xi, Zi, ui)

}
= Eui{h−1(XT

ijkβ0+ZT
ijkui)}, and µ̂(·) = Eui{h−1(XT

ijkβ̂+

166



ZT
ijkui)}, where h(·) is the link function defined in (5.1), β̂ is an estimator obtained from

the proposed method. The expectations are evaluated with respect to the true model. We

define

MME(µ̂(·)) = EXi,Zi{µ̂(·)− µ(·)}2,

and use this measure to quantify the marginal model error induced by estimator β̂. It can

be seen that MME is a generalized model error measure (Fan and Li, 2001, 2002, 2004)

that takes the random effects into considerations. Other available model error measure can

be found from Bondell et al. (2010).

5.5.2 Linear Mixed Model

We now conduct a simulation study for the linear mixed model. The data are generated

from the model

Yijk = Xijkβ + uij + εijk, (5.13)

where the εijk are independently distributed with N(0, σ2
ε ), and independent of the uij.

ui = (ui1, . . . , uiJi)
T are random effects with a given distributions. Set σ2

ε = 4 and β =

(3, 1.5, 0, 0, 2, 0, 0, 0)T . Covariates Xijk = (Xijk,1, Xijk,2, . . . , Xijk,8)T are generated from a

multivariate normal distribution with zero mean and covariance matrix V = [σ2
st], where

σ2
st = ρstσ

2. We set ρst = ρ|s−t|, ρ = 0.5 and σ2 = 1.

We particularly consider the following scenarios.

Example 1: n = 200, J = 1, and K = 10. This corresponds to an ordinary longitudinal

setting with 10 visits times. Random effects ui are one-dimensional having a

normal distribution N1(0, σ2
u) with σ2

u = 1. For each subject, we set the first

2 occasions to be always observed while the rest 8 occasions to be subjected

to missingness. In every missingness-prone observation, the probability of

observing complete covariates expit{γ0+γ1Yij+γ2Xijk,1}, and the probability
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of observing response P (Ry
ijk = 1) are set to be

expit{γ0 + γ1Yij + γ3

8∑
p=1

Xijk,p + γ4R
x
ijk},

where γ0 = 2.5, γ1 = −1.5, γ2 = −0.5, γ3 = −0.1 and γ4 = 0.4.

Example 2: The setup follows from Example 1 but n = 800.

Example 3: The setup follows from Example 1, except that we take Ji = 3 and K = 5.

Take the first occasion to be always observed for each subject and set ui =

(ui1, ui2, ui3) to be 3-dimensional random effects with N3(0, R), where

R = σ2
u


1 ρ∗ ρ∗

ρ∗ 1 ρ∗

ρ∗ ρ∗ 1

 ,

with ρ∗ = 0.5.

Example 4: The setup follows from Example 3 but n = 800.

5.5.3 Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. The data are generated

from the model

log{E(Yijk|Xi, Zi, ui)} = Xijkβ + uij. (5.14)

where β = (1.2, 0.6, 0, 0, 0.8, 0, 0, 0)T , uij and Xijk are the same as that of linear mixed

model.

We consider following scenario:

Example 1: n = 120, J = 1 and K = 10. Other parameter settings follows from Example

1 in the linear mixed model. For each subject, we set the first 2 occasions to
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be always observed while the rest 8 occasions to be subjected to missingness.

In every observation, the probability of observing complete covariates Xijk

is expit{γ0 + γ1Yij + γ2Xijk,1}, and the probability of observing complete

response Yijk is

expit{γ0 + γ1Yij + γ3

8∑
p=1

Xijk,p + γ4R
x
ijk},

where γ0 = −1, γ1 = 2, γ2 = −0.5, γ3 = −0.1 and γ4 = 0.25.

Example 2: The setup follows from Example 1, but n = 500.

Example 3: n = 120, Ji = 3, and K = 5. and set ui = (ui1, ui2, ui3) to be 3-dimensional

random effect with N3(0, R), where

R = σ2
u


1 ρ∗ ρ∗

ρ∗ 1 ρ∗

ρ∗ ρ∗ 1

 ,

with ρ∗ = 0.3.

Example 4: The setup follows from Example 3, but n = 300.

We assess the performance of the proposed composite likelihood (CL) approach, in

contrast to the naive maximum likelihood based on complete data (NML). All simulation

results are included in Appendix 4. Tables 5.3 and 5.4 report the average of zero coefficients.

The column labeled “Correct” presents the average of zero coefficients that are correctly

estimated, and the column labeled “Incorrect” depicts the average of non-zero coefficients

that are erroneously set to zero. We report the median ratios of MME, denoted by R.MME,

for a selected model to that of the un-penalized estimate under the unpenalized model

scenarios, respectively. We also report the median of MME, denoted by M.MME. Tables

5.5 and 5.6 summarize the estimated (β1, β2, β5), their relative biases, empirical, model-

based standard errors and 95% coverage rate.
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For all examples, both methods show a good sparsity property. The results show that

our CL approach yields small biases and satisfactory coverage probabilities for both the

mean and the association parameters. ASE and ESE agree reasonably well for the method,

suggesting the consistency of variance estimates. The NML method, on the other hand,

yields remarkably biased estimates and low coverage rate.

Appendix

1. Consistency

The proof involves two steps. For the first step, we prove

f(Yij′1 | Yijk, Xi, Zi, Rijk = 1;ψ,φ) = f(Yij′1 | Yijk, Xi, Zi;ψ), (5.15)

for all k 6= 1, j = 1, . . . , Ji and j′ = 1, . . . , Ji.

Since we have

f(Yij′1 | Yijk, Xi, Zi, Rijk = 1;ψ,φ)

=
f(Yijk, Yij′1, Rijk = 1 | Xi, Zi;ψ,φ)

f(Yijk, Rijk = 1 | Xi, Zi;ψ,φ)

=
f(Yijk, Yij′1 | Xi, Zi;ψ)f(Rijk = 1 | Yijk, Yij′1, Xi, Zi;φ)

f(Yijk | Xi, Zi;ψ)f(Rijk = 1 | Yijk, Xi, Zi;φ)

(By the assumption in (5.4))

=
f(Yijk, Yij′1 | Xi, Zij;ψ)

f(Yijk | Xi, Zi;ψ
,

which implies the conclusion.

Then we prove that the estimating equations obtained in (5.5) are unbiased estimating
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equations. We then obtain

EYi,Ri|Xi,Zi;ψ,φ

{
∂`i(Yi|Xi, Zi;ψ)

∂ψ

}
= EYi,Ri|Xi,Zi;ψ,φ

[∑
j<j′

{∂ log f(Yij1|Yij′1, Xi, Zi;ψ)

∂ψ
+
∂ log f(Yij′1|Yij1, Xi, Zi;ψ)

∂ψ

}
+

∑
j=1,...,Ji
j′=1,...,Ji
k 6=1

I(Rijk = 1) · ∂ log f(Yij′1 | Yijk, Xi, Zi;ψ)

∂ψ

]

=
∑
j<j′

EYi,Ri|Xi,Zi;ψ,φ

{∂ log f(Yij1|Yij′1, Xi, Zi;ψ)

∂ψ
+
∂ log f(Yij′1|Yij1, Xi, Zi;ψ)

∂ψ

}
+

∑
j=1,...,Ji
j′=1,...,Ji
k 6=1

ERijk|Xi,Zi;ψ,φ

[
I(Rijk = 1)EYi|Xi,Zi,Rijk;ψ,φ

{∂ log f(Yij′1 | Yijk, Xi, Zi;ψ)

∂ψ

}]

(By the settings that observations in visit 1 are always complete)

= 0 +
∑

j=1,...,Ji
j′=1,...,Ji
k 6=1

ERijk|Xi,Zi;ψ,φ

[
I(Rijk = 1)EYij′1|Yijk,Xi,Zi,Rijk;ψ,φ

{∂ log f(Yij′1 | Yijk, Xi, Zi;ψ)

∂ψ

}]

(By the conclusion from (5.15))

=
∑

j=1,...,Ji
j′=1,...,Ji
k 6=1

ERijk|Xi,Zi;ψ,φ

[
I(Rijk = 1)EYij′1|Yijk,Xi,Zi;ψ

{∂ log f(Yij′1 | Yijk, Xi, Zi;ψ)

∂ψ

}]

= 0.

2. Regularity Conditions

Now we establish the asymptotic distribution of the resulting estimator. Let β0 = (β10, . . . , βp0)

be the true parameter value of β, and we write, without loss of generality, β0 = (βT0I ,β
T
0II)

T ,

where β0I = (β10, . . . , βp10)T is the p1×1 vector consisting of all non-zero values while β0II =

(βp1+1,0, . . . , βp0)T = 0Tβ0II
is the (p−p1)×1 vector. Thus, we have ψ0 = (βT0I ,0

T
β0II

, ξT0 ) with

ξ0 being the true value of ξ. Correspondingly, write β = (βTI ,β
T
II)

T , ψ = (βTI ,β
T
II , ξ

T )T .
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For any square matrix M of the same dimension as ψ, let M̃ denote the sub-matrix

after removing the (p1 + 1, . . . , p) rows and columns from the matrix M . Similarly, for

any vector α of the same dimension as ψ, we use α̃ to denote the resulting vector after

removing the (p1 + 1, . . . , p) elements from the vector α. For example, ψ̃0 = (βT0I , ξ
T
0 )T .

The following conditions are needed to establish the asymptotic properties of ψ̂.

(C1). For all i, `(Yi;ψ) is three-times continuously differentiable.

(C2). `(Yi;ψ), |∂`(Yi;ψ)
∂ψj

|2, |∂
2`(Yi;ψ)
∂ψj∂ψk

|, and | ∂
3`(Yi;ψ)

∂ψj∂ψk∂ψl
| are dominated by some functionsBi(Yi, Xi, Zi)

for all j, k, l = 1, . . . , dim(ψ), in which ψj is the j−th element of ψ. Moreover,

Eψ0
{Bi(Yi, Xi, Zi)} <∞ for all i.

(C3). Eψ

{
∂`(Yi;ψ)
∂ψ

}
= 0,

(C4). Let M(ψ) = Eψ0

[{
∂
∂ψ
`(Yi;ψ)

}{
∂
∂ψ
`(Yi;ψ)

}T]
, and D(ψ) = Eψ0

{
−∂2`(Yi;ψ)

∂ψ∂ψT

}
.

Assume that

1

n

n∑
i=1

{ ∂

∂ψ
`(Yi;ψ)

}{ ∂

∂ψ
`(Yi;ψ)

}T
= M(ψ) + op(1),

and

− 1

n

n∑
i=1

{∂2`(Yi;ψ)

∂ψ∂ψT

}
= D(ψ) + op(1).

Similar definitions and requirements are applied to M̃(ψ̃) and D̃(ψ̃).

(C5). There exists an open subset ω that contains the true parameter point ψ0 such that

for all ψ ∈ ω, D(ψ) and D̃(ψ̃) are positive definite.

(C6). Let λn be the tunning parameter with the dependence on cluster size n explicitly

spelled out. Define

an = maxs=1,...,p{p′λn(|βs0|) : βs0 6= 0},

bn = maxs=1,...,p{p′′λn(|βs0|) : βs0 6= 0},

We assume that
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(C6.1). λn = op(1),

(C6.2). an = Op(n
−1/2),

(C6.3). bn = op(1).

(C7). We assume that

(C7.1). liminfn→∞liminfε→0+p′λn(ε)/λn > 0.

(C7.2). limn→∞
√
nλn =∞.

3. Asymptotic Results

Consistency

Theorem 1: There exists a local maximizer ψ̂ of `pen(Y ;ψ) such that

‖ψ̂ −ψ0‖ = Op(n
−1/2 + an).

Proof: Let αn = n−1/2 + an. Adapting the arguments by Fan and Li (2001, 2002), we

need to show that for any given ε > 0, there exists a large constant Cε such that

P
{

sup‖u‖=Cε`pen(Y ;ψ0 + αnu) < `pen(Y ;ψ0)
}
≥ 1− ε,

where u = ((u1, . . . , up1 , . . . , up)
T , uTξ )T , uξ is a vector with the same length as ξ, and

‖x‖ =
√
xTx.

Suppose Cε is sufficiently large such that ‖(u1, . . . , up1)‖ > 0. Note that pλn(0) = 0, we
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consider

Kn(u) = `pen(Y ;ψ0 + αnu)− `pen(Y ;ψ0)

= `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p∑
s=1

pλn(|βs0 + αnus|) + n

p∑
s=1

pλn(|βs0|)

= `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p1∑
s=1

pλn(|βs0 + αnus|)− n
p∑

s=p1+1

pλn(|0 + αnus|))

+n

p1∑
s=1

pλn(|βs0|) + n

p∑
s=p1+1

pλn(|0|)

≤ `c(Y ;ψ0 + αnu)− `c(Y ;ψ0)− n
p1∑
s=1

pλn(|βs0 + αnus|) + n

p1∑
s=1

pλn(|βs0|), (5.16)

because of the fact that n
∑p

s=p1+1 pλn(|0 + αnus|)) ≥ 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and

(C2), we obtain

`c(Y ;ψ0 + αnu) = `c(Y ;ψ0) + αn

{
∂`(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`(Y ;ψ0)

∂ψ∂ψT

}
uα2

n

+

p∑
s=1

Op(|αnus|3)

= `c(Y ;ψ0) + αn

{
∂`(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`(Y ;ψ0)

∂ψ∂ψT

}
uα2

n{1 + op(1)}

(5.17)

and

n

p1∑
s=1

{
pλn(|βs0 + αnus|)

}
= n

p1∑
s=1

pλn(|βs0|) + n

p1∑
s=1

αnp
′
λn(|βs0|)sgn(βs0)us + n

p1∑
s=1

α2
np
′′
λn(|βs0|)u2

s{1 + o(1)}.

(5.18)
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Substituting (5.17) and (5.18) into (6.1), we obtain

Kn(u) ≤ αn

{∂`(Y ;ψ0)

∂ψ

}T
u +

1

2
uT
{∂2`(Y ;ψ0)

∂ψ∂ψT

}
uα2

n{1 + op(1)}

−
p1∑
s=1

n{αnp′λn(|β0s|)sgn(β0s)us + α2
np
′′
λn(|β0s|)u2

s{1 + o(1)}}

denote
===== A+ B − C. (5.19)

Now we individually examine A, B, and C. By Hölder’s inequality, the A term on the

right-hand side of (5.19) is

αn

{∂`(Y ;ψ0)

∂ψ

}T
u = n1/2αnn

−1/2
{∂`(Y ;ψ0)

∂ψ

}T
u

≤ n1/2αn

∣∣∣∣n−1/2
{∂`(Y ;ψ0)

∂ψ

}T
u

∣∣∣∣
≤ n1/2αn

∥∥∥n−1/2∂`(Y ;ψ0)

∂ψ

∥∥∥ · ∥∥∥u∥∥∥. (5.20)

By (C1), (C2) and (C3), we obtain that, n−1/2 ∂`(Y ;ψ0)
∂ψ

= Op(1), A can be bounded by

n1/2αn‖u‖.

For the B term, since 1
n

{
∂2`(Y ;ψ0)

∂ψ∂ψT

}
= Op(1) by (C1) and (C2), we obtain that uT

{
∂2`(Y ;ψ0)

∂ψ∂ψT

}
uα2

n

is bounded by nα2
n‖u‖2.

For the C term, we obtain that, using Hölder’s inequality,

p1∑
s=1

nαnp
′
λn(|βs0|)sgn(βs0)us ≤ nαnan

∣∣∣ p1∑
s=1

us

∣∣∣ ≤ nαnan‖u‖ · ‖1‖ =
√
p1nαnan‖u‖.

Furthermore, by the definition of bn, we obtain

p1∑
s=1

nα2
np
′′
λn(|β0s|)u2

s{1 + o(1)} ≤ nα2
nbn‖u‖2{1 + o(1)}.

Note that nαnan = Op(nα
2
n), and bn = op(1) by (C6.3). Therefore, term C is bounded by

nαnan‖u‖.

175



Since an = Op(n
−1/2) from (C6.2), all A, B and C are of the order Op(nα

2
n). If ‖u‖ = Cε

is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D(ψ0) is positive

definite, then we have

P
{

sup‖u‖=CεKn(u) < 0
}

= P
{

sup‖u‖=Cε`pen(Y ;ψ0 + αnu) < `pen(Y ;ψ0)
}
≥ 1− ε,

which indicates at least 1 − ε that there exists a local maximum in {ψ0 + αnu}. Hence,

there exists a local maximizer such that ‖ψ̂ −ψ0‖ = Op(αn).

Sparsity

Lemma 1: With probability tending to 1, for any given βI and ξ satisfying

‖βI − β0I‖ = Op(n
−1/2), and ‖ξ − ξ0‖ = Op(n

−1/2),

we have

`pen(Y ;βI ,0, ξ) = max‖βII‖≤Cn−1/2`pen(Y ;βI ,βII , ξ) for any constant C.

Proof: By Theorem 1, it suffices to show that with probability tending to 1 as n → ∞,
for any given βI satisfying ‖βI −β0I‖ = Op(n

−1/2), ξ satisfying ‖ξ− ξ0‖ = Op(n
−1/2), and

for εn = Cn−1/2, and s = p1 + 1, . . . , p, we have

∂`pen(Y ;ψ)

∂βs
< 0 for 0 < βs < εn,

and
∂`pen(Y ;ψ)

∂βs
> 0 for − εn < βs < 0.

With Taylor Series expansion, we obtain

∂`pen(Y ;ψ)

∂βs
=

∂`(Y ;ψ)

∂βs
− np′λn(|βs|)sgn(βs)

=
∂`(Y ;ψ0)

∂βs
+
{∂2`(Y ;ψ0)

∂βs∂ψ

}T
(ψ −ψ0)

+(ψ −ψ0)T
{∂3`pen(Y ;ψ∗)

∂βs∂ψ∂ψ
T

}
(ψ −ψ0)− np′λn(|βs|)sgn(βs)

denote
===== A+ B + C − np′λn(|βs|)sgn(βs)
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where ψ∗ lies “between” ψ and ψ0. By the assumption that ‖ψ −ψ0‖ = Op(n
−1/2), then

it follows that

A = Op(n
1/2), B = Op(n

1/2), C = Op(1),

and thus

(nλn)−1A = Op(n
−1/2/λn), (nλn)−1B = Op(n

−1/2/λn), and (nλn)−1C = Op(n
−1/λn).

As a result, we obtain

∂`pen(Y ;ψ)

∂βs
= nλn{(nλn)−1(A+ B + C)− λ−1

n p′λn(|βs|)sgn(βs)}

= nλn{Op(n
−1/2/λn)− λ−1

n p′λn(|βs|)sgn(βs)}. (5.21)

By the regularity condition (C6), liminfn→∞liminfε→0+p′λn(ε)/λn > 0 and limn→∞
√
nλn =

∞, the sign of the derivative in (5.21) is determined by βs. Thus we have

∂`pen(Y ;ψ)

∂βs
< 0 for 0 < βs < εn,

and
∂`pen(Y ;ψ)

∂βs
> 0 for − εn < βs < 0.

This completes the proof.

Asymptotic Distribution

Now we come to the proof of oracle property. Denote

Σ = diag{p′′λn(|β01|), . . . , p′′λn(|β0p|),0ξ},

and

b =
((
p′λn(|β01|)sgn(β01), . . . , p′λn(|β0p|)sgn(β0p)

)T
,0Tξ

)T
.

Theorem 2: With probability tending to 1, the root-n consistent local maximizers ψ̂ in

Theorem 1 must satisfy:
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(a). Sparsity: β̂II = 0.

(b). Asymptotic normality:
√
n(D̃(ψ̃0)+Σ̃){ ˜̂

ψ−ψ̃0+(D̃(ψ̃0)+Σ̃)−1b̃} →D N(0, M̃(ψ̃0)).

Proof: Part (a) follows from Lemma 1. Now we show part (b). By Theorem 1, there

exists a ψ̂ = (β̂I ,0, ξ̂) that is a root-n consistent local maximizer of `pen(Y ;ψ), and that

satisfies
∂`pen(Y ; ψ̃)

∂ψ̃

∣∣∣
ψ̃=

˜̂
ψ

= 0.

By Taylor Series expansion, we obtain

∂`(Y ; ψ̃0)

∂ψ̃
+

{
∂2`(Y ; ψ̃0)

∂ψ̃∂ψ̃
T

+ op(1)

}
(
˜̂
ψ − ψ̃0)− n

{
b̃ + {Σ̃ + op(1)}(˜̂

ψ − ψ̃0)
}

= 0.

Thus, we obtain

1√
n

{
∂2`(Y ; ψ̃0)

∂ψ̃∂ψ̃
T

+ op(1)

}
(
˜̂
ψ − ψ̃0)−

√
n
[
b̃ + {Σ̃ + op(1)}(˜̂

ψ − ψ̃0)
]

= − 1√
n

∂`(Y ; ψ̃)

∂ψ
.

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain

√
n{D̃(ψ̃0)(

˜̂
ψ − ψ̃0) + b̃ + Σ̃(

˜̂
ψ − ψ̃0)} →D N(0, M̃(ψ̃0)),

i.e.
√
n
[
{D̃(ψ̃0) + Σ̃}(˜̂

ψ − ψ̃0) + b̃
]
→D N(0, M̃(ψ̃0)).
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4. Simulation Results

Variable Selection

Table 5.3: Simulation results for the incomplete data via the linear mixed model: model

selection

Avg. No. of 0 Coefficients

Method R.MME(%)‡ M.MME Correct∗ Incorrect∗∗

Example 1 NML†λ 81.310 0.050 4.889 0

n = 200, J = 1,K = 10 CLλ 54.329 0.046 4.478 0

Example 2 NMLλ 93.009 0.042 4.993 0

n = 800, J = 1,K = 10 CLλ 39.108 0.008 4.923 0

Example 3 NMLλ 84.830 0.047 4.908 0

n = 200, Ji = 3,K = 5 CLλ 51.222 0.031 4.540 0

Example 4 NMLλ 96.086 0.043 4.990 0

n = 800, Ji = 3,K = 5 CLλ 39.133 0.005 4.920 0

† NML and CL represent naive maximum likelihood to complete data and the proposed composite likelihood, respectively. λ denotes

the tuning parameter selection by only λ with fixing a = 3.7.

‡ C.MME represents the median of ratios of MME of a selected model to NML and CL, respectively. A.MME denotes the median of

ratios of MME of a selected model to that of the un-penalized full model with CL estimate.

∗ “Correct” presents the average restricted to the true zero coefficients. 0 represents that no true zero coefficient is shrink, while 5

implies that all true zero coefficients are restricted into zero.

∗∗ “Incorrect” depicts the average of significant coefficients that are erroneously set to 0. 0 represents that no significant coefficient is

shrink, while 3 implies that all significant coefficients are erroneously set to zero.
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Table 5.4: Simulation results for the incomplete data via the Poisson mixed model: model

selection

Avg. No. of 0 Coefficients

Method R.MME(%) M.MME Correct Incorrect

Example 1 NML†λ 98.842 91.409 4.984 0

n = 120, J = 1,K = 10 CLλ 78.626 27.118 4.690 0

Example 2 NMLλ 97.637 77.657 5 0

n = 500, J = 1,K = 10 CLλ 74.057 5.787 4.999 0

Example 3 NMLλ 98.701 105.598 4.990 0

n = 120, Ji = 3,K = 5 CLλ 84.812 32.023 4.724 0

Example 4 NMLλ 98.081 101.778 5 0

n = 300, Ji = 3,K = 5 CLλ 73.716 9.272 4.964 0

† NML and CL represent naive maximum likelihood to complete data and the proposed composite likelihood, respectively. λ denotes

the tuning parameter selection by only λ with fixing a = 3.7.

Parameter Estimation
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Chapter 6

Discussion and Future Research

6.1 Composite Likelihood Analysis for Incomplete Lon-

gitudinal Data

In Chapter 2 and Chapter 3, we develop two estimation approaches using the pairwise

likelihood to handle longitudinal data with missing values in both the response and the

covariate variables. The analysis of the NPHS data using the proposed methods demon-

strates their utility of real applications. Simulation studies show reliable and satisfactory

performance of our methods. The PL method is appealing for its higher efficiency, while

the TS approach is easier to implement. Our empirical studies show, as expected, that

relative to the maximum likelihood method, both the PL and the TS approaches may incur

efficiency loss, especially when repeated measurements are strongly correlated. However,

this limitation is compensated by the robustness of our methods as against the full likeli-

hood method. The proposed methods would still lead to consistent estimates even when

third order association structures for the response process are mis-modeled, whereas the

likelihood method would break down if the full distribution of data is misspecified.

The proposed methods can be extended to accommodate circumstances with multiple
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covariates being subject to missingness. In particular, let Xij = (Xij1, . . . , Xijp)
′ with

p ≥ 2, and Hx
ijr = {Xij1, . . . , Xij,r−1} with r = 2, . . . , p. Noticing the factorization

P (Xij = xij, Xik = xik|Zi) = P (Xij1 = xij1, Xik1 = xik1|Zi)

·
p∏
r=2

P (Xijr = xijr, Xikr = xikr|Hx
ijr, H

x
ikr, Zi)

where xij = (xij1, . . . , xijp)
T , we only need to model a sequence of conditional bivariate

distributions {
P (Xijr = xijr, Xikr = xikr|Hx

ijr, H
x
ikr, Zi), r = 2, . . . , p

}
(6.1)

in order to determine the distribution of P (Xij = xij, Xik = xik|Zi) for j < k. Analogous

to the formulation in Section 3.2.2, we can postulate the bivariate distributions for (6.1).

A similar strategy applies to modeling the missing data processes.

As opposed to the full likelihood,
(
m
2

)
terms are involved in the pairwise likelihood for-

mulation. Although the number of these terms grows quadratically in m, the computation

of pairwise likelihoods are often much cheaper than that for the full likelihood. In general,

the computational cost to produce the full likelihood is heavily dependent on the dimension

m. It can grow exponentially in m, and this may occur, for instance, when calculation

of the distribution of the marginal subset requires integration over a set of m unobserved

random variables. In this case, the pairwise likelihood method has a clear computational

gain over the full likelihood approach. For more discussion on computational expense as-

sociated with a composite likelihood formulation, see Lindsay et al. (2011) and Bellio and

Varin (2005).

Finally, we comment that our discussion is focused on bivariate normal or probit models

for the responses. The proposed methods can be modified to handle other types of data.

For example, if the data is continuous and non-normal, bivariate skew normal distributions

(Azzalini and Valle, 1996) may be employed. With longitudinal ordinal data, one may

employ the model discussed by Qu et al. (1995) using the bivariate probit model and

adopt the development here for data analysis.
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6.2 Variable Selection via Composite Likelihood for

Analysis of Longitudinal Data Arising in Clusters

In chapter 4 we develop composite likelihood framework to handle longitudinal data arising

in clusters with variable selection. The asymptotic properties of our methods are proved

and simulation studies show their satisfactory performance in both the model selection

and the estimation. Comparing with maximum likelihood approach, our methods are less

efficient, but they outperform the full likelihood method in robustness and convenience in

the model specification.

Moreover, we also study the variable selection for both fixed and random effects. Al-

though Cholesky decomposition strategy is widely used in selecting random effects (Bondell

et al., 2010; Ibrahim et al., 2010), our study shows that they may not be proper for lon-

gitudinal data arising in clusters. In addition, the Cholesky decomposition may lead to

inappropriate results for the composite likelihood. Thus, to circumvent this problem, we

propose a standard error-correlation coefficient decomposition strategy. Furthermore, a

modified ECME algorithm (Liu and Pierce, 1994) is employed for the model selection and

the estimation.

Furthermore, this chapter shows that the model is misspecified, the parameter estima-

tion and the variable selection results could be biased or incorrect. Based on the framework

proposed by Yi and Reid (2010), we prove that, under certain regularity conditions, the

misspecified model may asymptotically lead to biased results. The simulation studies in

this chapter demonstrate that if we misspecify the random effect distributions in the sta-

tistical inference, biased selection and estimation outcomes may occur.
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6.3 Variable Selection via Composite Likelihood for

Incomplete Longitudinal Data arising in Clusters

In chapter 5 we develop estimation approach using the missingness modified composite

likelihood to handle incomplete longitudinal data arising in clusters with variable selection.

Simulation studies show reliable and satisfactory performance of our methods. It provides

valid variable selection and parameter estimation results, while naive estimation approach

may result in biased estimation outcomes.

Moreover, our method outperforms other approaches because it does not require the

specification and estimation of missing data process, which is often employed in the in-

ference under missing not at random (MNAR) scenario. This simplification results in the

augmentation for the estimation procedure. Firstly, the estimators can avoid the bias from

the misspecification of the missing data processes described in Chapter 2 and Chapter 3.

Secondly, the estimation procedure does not include a large set of nuisance parameters to

postulate the missing data process. Thirdly, our missingness modified composite likelihood

functions does not involve integrals which can be intractable for the computation.

However, our missingness modified composite likelihood is not assumption free for all

missing mechanisms. To be specific, it assumes

P (Rijk = 1|Yijk, Yij′k′ , Xi, Zi) = P (Rijk = 1|Yijk, Xi, Zi), (6.2)

for some ijk in the missingness-prone set and ij′k′ in the missingness-free set. This as-

sumption can not be directly tested from the dataset. To evaluate the validity of the

missing data assumption, Qu et al. (2011) propose an assessment approach for weighted

generalized estimating equations. However, this method can not be directly used in the

composite likelihood framework with model selection, and further study in this area is

needed.

Another typical drawback of our method is that it only uses the observations with

complete response and covariates, while all other incomplete records are not included.
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This leads to a significant efficiency loss, especially for the data with high missing rate.

Therefore, studies for improving efficiency under missing data scenarios are required.
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