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Abstract

Longitudinal data arise commonly in many fields including public health studies and survey
sampling. Valid inference methods for longitudinal data are of great importance in scientific
researches. In longitudinal studies, data collection are often designed to follow all the
interested information on individuals at scheduled times. The analysis in longitudinal
studies usually focuses on how the data change over time and how they are associated
with certain risk factors or covariates. Various statistical models and methods have been
developed over the past few decades. However, these methods could become invalid when

data possess additional features.

First of all, incompleteness of data presents considerable complications to standard
modeling and inference methods. Although we hope each individual completes all of the
scheduled measurements without any absence, missing observations occur commonly in
longitudinal studies. It has been documented that biased results could arise if such a feature
is not properly accounted for in the analysis. There has been a large body of methods in
the literature on handling missingness arising either from response components or covariate
variables, but relatively little attention has been directed to addressing missingness in both
response and covariate variables simultaneously. Important reasons for the sparsity of the
research on this topic may be attributed to substantially increased complexity of modeling

and computational difficulties.

In Chapter 2 and Chapter 3 of the thesis, I develop methods to handle incomplete
longitudinal data using the pairwise likelihood formulation. The proposed methods can
handle longitudinal data with missing observations in both response and covariate variables.
A unified framework is invoked to accommodate various types of missing data patterns. The
performance of the proposed methods is carefully assessed under a variety of circumstances.
In particular, issues on efficiency and robustness are investigated. Longitudinal survey data

from the National Population Health Study are analyzed with the proposed methods.



The other difficulty in longitudinal data is model selection. Incorporating a large num-
ber of irrelevant covariates to the model may result in computation, interpretation and
prediction difficulties, thus selecting parsimonious models are typically desirable. In par-
ticular, the penalized likelihood method is commonly employed for this purpose. However,
when we apply the penalized likelihood approach in longitudinal studies, it may involve

high dimensional integrals which are computationally expensive.

We propose an alternative method using the composite likelihood formulation. Formu-
lation of composite likelihood requires only a partial structure of the correlated data such
as marginal or pairwise distributions. This strategy shows modeling tractability and com-
putational cheapness in model selection. Therefore, in Chapter 4 of this thesis, I propose a
composite likelihood approach with penalized function to handle the model selection issue.
In practice, we often face the model selection problem not only from choosing proper covari-
ates for regression predictor, but also from the component of random effects. Furthermore,
the specification of random effects distribution could be crucial to maintain the validity of
statistical inference. Thus, the discussion on selecting both covariates and random effects

as well as misspecification of random effects are also included in Chapter 4.

Chapter 5 of this thesis mainly addresses the joint features of missingness and model
selection. I propose a specific composite likelihood method to handle this issue. A typical
advantage of the approach is that the inference procedure does not involve explicit missing

process assumptions and nuisance parameters estimation.
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Chapter 1

Introduction

1.1 Overview

Longitudinal data arise commonly in many fields including clinical trials and health re-
search. Data are typically collected by following up individuals over a period of time.
Statistical methods for longitudinal analysis have been quickly developed over the past
few decades (e.g. Laird and Ware, 1982; Diggle et al., 2002). For dealing with different
research interests in longitudinal data, three classes of models are commonly employed in
applications. The three classes of models are mixed effects models, marginal models, and

transition models (Fitzmaurice et al., 2004).

Mixed effects models are desirable when research focuses on the response for an in-
dividual rather than for the entire population. Early studies of this area involves linear
mixed models for repeated measurements proposed by Harville (1977) and Patterson and
Thompson (1971), who develop the restricted maximum likelihood (REML) to modify the
loss of degree of freedom issue arising in the estimation for the variance of components.
Laird and Ware (1982) propose estimation method for linear mixed effects models using
the EM algorithm (Dempster et al., 1977) and the empirical Bayes method. Extensions

that accommodate both linear mixed effects models (LMM) and generalized linear models

1



(GLM) (McCullagh and Nelder, 1989) are generalized linear mixed effects models (GLMM)
(Breslow and Clayton, 1993; Stiratelli et al., 1984), which have been widely used for various

settings.

Marginal models are commonly used in population studies. A typical estimation
method for marginal models is the so-called generalized estimating equations (GEE) ap-
proach (Liang and Zeger, 1986). Early theoretical discussions on estimating functions in-
clude Godambe (1960, 1976) and Godambe and Thompson (1984). Liang and Zeger (1986),
Zeger and Liang (1986) and Zeger et al. (1988) introduce the idea of estimating functions
into the setting of longitudinal studies. The GEE method does not require specification of
the full joint distribution for the longitudinal data, but only the marginal structure. In its
implementation, a working correlation matrix is called in if the true association structure
for longitudinal data is not modeled. Consistent estimates of parameters in the marginal
structure can be obtained, provided the mean structure is correctly specified. An extension
of the GEE method, named GEE2, is discussed by Prentice (1988) and Zhao and Prentice

(1990) among others. The GEE2 approach facilitates estimation of association parameters.

Transitional models (Molenberghs and Verbeke, 2005) focus on modeling the depen-
dence of individual’s response on its history, together with covariates. Therefore, it is
convenient if the research interest lies in the influence of previous outcomes on the current
response. Frequently, transition models are formulated in conjunction with certain Markov
conditions, which restrict the dependence of the current response to a limited number of

past observations.

Longitudinal Data Arising in Clusters

In many situations, longitudinal data arise in clusters. A typical case is sociological survey
studies that involve communities, families or schools with repeated assessments of indi-
vidual members over time. For example, Payment et al. (1991) conduct a randomized
intervention trial based on 606 households. The study measures the health outcomes of in-

terest for each household member over a 15-month period. Cameron et al. (1999) study the

2



social influences on smoking prevention by following 100 elementary schools from grades 6
to 8.

There are many potential goals when analyzing longitudinal data arising in clusters.
For example, Roy and Lin (2002) discuss the EM algorithm to handle outcomes with
nonignorable dropouts and missing covariates. Yi and Cook (2002) propose a weighted
GEE approach to handle longitudinal data arising in clusters with missingness. Fieuws and

Verbeke (2006) discuss a pairwise fitting strategy under the framework of mixed models.

1.2 Modeling Strategies

In this section, we introduce basic notations and symbols. Suppose that there are n subjects

with m visits. Let Y}; denote the response for subject ¢ at visit j, 7 = 1,2,...,n, j =
1,2,. Lo,m. TakeYi = (}/;'1,}/;‘2, . ,}/;m)T, 1= 1,2, o, n. LetX” = (Xijla c. ,Xijp)T be the
p x 1 covariate vector for subject i in visit j, and X; = (X1, X5, ..., X )T. The interest of

longitudinal studies usually lies in understanding the relationship between response Y; and
covariates X;. In particular, we let f(Y;|X;;0) denote the conditional probability density

or mass function of Y; given X;, where parameter 6 takes values in a parameter space ©.

1.2.1 Generalized Linear Models

Specification of f(Y;|X;;0) often involves modeling the marginal distribution f(Y;;|X;;6)

for which generalized linear models (GLM) family can be introduced with
F(Yy1Xi:0) = exp | {Yijmi; — b(7i;) }/a(9) + c(Yyj; 0) | (1.1)

where a(-), b(-) and ¢(-) are some specific functions, ¢ is a scale parameter and 7;; is the
canonical parameter with E(Y};|X;) = V/(7;;) and Var(Y;;|X;) = a(¢)b’(1;;). We further

assume that the marginal distribution of Y;; depends only on the covariate vector for subject



i at time j (Pepe and Anderson, 1994), and thus f(Y;;|X;;0) = f(Yi;|Xi;; 0). Furthermore,

a regression model can be introduced as
W{E(Y;1X0)} = X8,

where h is a differentiable monotone link function, and 3 is the p x 1 vector of regression

coefficients. Particularly, the canonical link function h satisfies 7;; = h{ E(Y;;| X;)} = X7

If the Y;; are assumed to be independent for all j = 1,...,m, given covariates X;, the
f(Y:] X;; 0) is then given by

m

FYiIX550) = [ [ £ (V351X 0).

j=1
However, this assumption is normally invalid for longitudinal settings. Therefore, various
types of joint distributions are proposed to feature different association structures of lon-
gitudinal data. For instance, multivariate normal distributions are commonly employed to
handle continuous data, and multivariate probit models (e.g. Ashford and Sowden, 1970;
Ochi and Prentice, 1984) are used for binary outcomes. Although there are some available
multivariate distributions, directly modeling the joint distribution of f(Y;|X;;6) for indi-
vidual applications still remains to be a daunting task if not impossible (Lindsay et al.,
2011).

1.2.2 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) are used to handle associated observations
by adding random effects and further assuming independence for the Y;; (j = 1,...,m)
given covariates and random effects. Denote u; to be the vector for random effects. Let
Zii = (Zij1y ..., Zijg)" be the ¢ x 1 random effects covariate vector for subject i at visit j,
and Z, = (Z}, Z%, ..., ZF T Z; is most typically a subset of columns of X;. Given random

effects u; and covariates X; and Z;, the conditional distribution of Yj; is given by
f(Y;j|Xi7 Ziy Us; Q) = exp [{Yz’jTij - b(Tij)}/@(¢) + C(Y;ﬁ )]7 (1-2)

4



where with similar notations to (1.1), E(Y};|X;, Z;,u;) = V(m;), Var(Yy|Xi, Zi,w;) =

a(¢)b”(7;;) and the regression model is specified as
P{E(Y| X5, Zi, ui; 0)} = XZ}B + ijui,
in which, again, f(Y;;|Xi, Zi, wi; 0) = f(Yi;|Xij, Zij, wi; 0) is assumed.

As a result, the joint distribution of f(Y;|X;;6) is obtained by integrating out the

unobservable random effects u;:
fYilXi, Zi) = / {H f(Yi] X, Ziaui)} f(u)dug, (1.3)
j=1

where f(u;) is the joint distribution for random effects.

The integrals in (1.3) can be intractable as there are generally no closed forms in GLMM
settings. To deal with this issue, many algorithms are developed to approximate the
integrals, such as Gauss-Hermite quadrature (Longford, 1994), Laplacian approximation,
adaptive Gauss-Hermite quadrature (Pinheiro and Bates, 1995), penalized quasi-likelihood
(Breslow and Clayton, 1993), marginal quasi-likelihood (Goldstein, 2002), Monte Carlo
Newton-Raphson and Monte Carlo EM (McCulloch, 1997; Booth and Hobert, 1999).

1.2.3 Generalized Estimating Equations

Generalized estimating equations (GEE) methods circumvent the direct modeling on f(Y;|X;;0)
by basing inference on appropriately “combining” marginal distribution elements of Y;. For
simplicity, we rewrite the notations in (1.1) with E(Y;;|X;) = w;; and Var(Y;;|X;) = vij.
Take f1; = (pti1, - - -, ptim) ", and @ = (BT, €7)T, where € represents all parameters other than
B. Define

Ui(B.€) = DV (Y — ), (1.4)
where D; = oul' /08, V; = BI*R;(€)B}"*, B; = diag(v, . . ., vim), and R;(€) is a working

correlation matrix for Y;. The GEE approach estimates 3 by solving

D U(B,&) =D DV (Vi — i) =0,
=1

=1



where the correlation parameters £ are treated as nuisance. Parameters £ can be estimated
via the method of moments given B (Liang and Zeger, 1986). An advantage of the GEE
approach is that the estimator of regression coefficients 3 is robust even if the correlation

structure R;(§) is misspecified.

1.3 Composite Likelihood

Composite likelihood, initiated by Besag (1975, 1977) and further developed by Lindsay
(1988), Arnold and Strauss (1991) and Cox and Reid (2004), provides a useful inference
alternative in place of the full likelihood based inference. Instead of specifying the full
distribution, we only need to specify some partial structures of f(Y;|X;;6) in the composite
likelihood formulation. The composite likelihood method can ease issues related to complex
modeling. Moreover, inference results based on the composite likelihood formulations are
robust in the sense that association structures higher than those used in the formulation
can be misspecified. These advantages become more obvious when the dimension of Y;

mcreases.

Efficiency loss is the typical price that the composite likelihood method pays as opposed
to the likelihood approach. Geys et al. (1997, 1998) confirm that the composite likelihood
estimators are less efficient than maximum likelihood. Kuk (2007) claims that the pairwise
likelihood inference can be inefficient and a hybrid pairwise likelihood method is proposed
to augment efficiency. Simulation studies by Troxel et al. (1998) empirically demonstrate
that inference based on the marginal likelihood method is less efficient than that of the full
likelihood method.

Many applications of composite likelihood methods can be found in a variety of set-
tings. To name some, for example, Heagerty and Lele (1998), Curriero and Lele (1999) and
Varin et al. (2005) discuss the composite likelihood estimation approach for binary spatial
data analysis, while Fearnhead and Donnelly (2002) use the composite likelihood idea to
handle genetic data. Hanfelt (2004) takes the composite conditional likelihood approach



for sparse clustered data. Chatelain et al. (2008) study pairwise likelihood estimation for
multivariate mixed Poisson models. Multilevel probit models are discussed with the com-
posite likelihood method by Kuk and Nott (2000). Renard et al. (2002), Zhao and Joe
(2005) and Joe and Lee (2009) conduct pairwise likelihood inferences for analyzing corre-
lated binary data. Yi et al. (2011b) and He and Yi (2011) employ the composite likelihood
method to handle clustered binary data with missing observations. Wei et al. (1989) use
marginal distribution to handle multivariate incomplete failure time data. Parner (2001)
uses composite likelihood to analyze familial survival data. Gao and Song (2011) propose
the composite likelihood EM algorithm and apply it to handle multivariate hidden Markov
models. Detailed discussion and review on the composite likelihood method can be found
in Lindsay et al. (2011), Varin (2008) and Varin et al. (2011).

1.3.1 Formulation of Composite Likelihood

With longitudinal response Y; = (Y1, Yio, ..., Yin)?, we consider the composite likelihood
formulation following Lindsay et al. (2011):

~TL{sany™ (19

where N is the number of factors in C(0), each L(Sk;0) is a user-selected sub-likelihood
generated from f(Y;;6) with Sy being a conditional or marginal set of variables, and wy, is

a certain weight.

For example, if S; consists of a single or paired response component, the log composite

likelihood contributed from subject ¢ is given by

(Vi 0) = D Le(Yig, Yigrs0) = Y {Bijyrl(Yig, Yigrs 0) = Biyl(Yiy;0) = Biyel(Yiy; 0)}, (1.6)

J<j’ Jj<y’

v, Bi; and B,y are scalar weights. When all B;;; = 1 and B;; = B;jy = 0,

53"

where B;
equation (1.6) results in all-pairwise marginal log likelihood (APW), obtained by consid-
ering Hj<j, f(Yi;,Yi;0). When all B;;;; = 2 and B;; = B;y = 1, equation (1.6) gives

7



all-pairwise conditional log likelihood (APC), obtained by considering [], ., f(Yi;|Yij; 6).
Pairwise marginal or pairwise conditional likelihood are perhaps the most widely used

formulations. In our following discussions, we will focus on such forms.

1.3.2 Statistical Properties
Consistency

Under regularity conditions, equation (1.6) provides consistent estimators of 6, since all el-
ements in the right side of the equation have zero expectation, £ {0log f(Y;;,Yi;;0)/00} =
0. That is,

E{Glogf(yij,yij'; 9)}

06
1 Yii, Yii:
_ /8 ng(alé7 )" )f<K17K2,;Y;,m;0>d}/lld§/l2dYZ
[ oy v gaviavy <o

Efficiency

Next, we consider possible efficiency loss in contrast to the full likelihood method. Let
S(0) =>7"  0log f(Y;;0)/00 be the score function obtained from the full likelihood, and
H(0) = > 221 >0 0Le(Yij, Yijr;:0) /00 be the composite score function, respectively. The

Godambe information matrix (Godambe, 1991) is then given by
-1
Iyy(0) = E{OH(0)/00}" | E{H(0)H" (0)}| E{0H(0)/00},
and
Is(0) = E{S(0)S" (0)},

for the composite and full likelihood, respectively. If 6 is a scalar, Lindsay (1988) indicates

that
B Cov?{H(0),S(0)}

Tu(9) = Var(H(0))

= /)?—I(G),S(G)IS(G) (1.7)
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where pr(p),5(9) denotes the linear correlation coefficient between H(6) and S(6). Therefore,
it implies that compared to the full likelihood, the composite likelihood method may incur

efficiency loss.

To further explain the efficiency loss issue, we propose a general framework to portray
the relationship between the full likelihood and the composite likelihood derived from
equation (1.6):

log f(Y;;0) = k {Z Ce(Yig, Yigr; 0) + Zéijj/(e)} : (1.8)

j<g’ J<y’

where k£ = 1/{Z]<j, BZ]J/} (Z]<]’ BZ]]’ 7é 0) and gw/(@) has
Byjl(Yi;;0) + Bijrl(Yijr; 0) + Bijj log f(Yi]Yis, Yij; 0).

It can be seen from equation (1.8) that composite likelihood can be viewed as a partial

“section” from full likelihood with a term (i.e. £;;;/(f)) removed.

Let H(0) = S Zj<j, azl-jj,(e)/ae. Suppose we still assume 6 to be scalar, and apply



the argument in equation (1.7), we can obtain

Iu(0)

_ covZ(S(0), H(#))

Var(H(8))
_ cov?(k(H(0) + H(0)), H(0))

Var(H (6))

B k?{var(ﬂ(e))Q + 2cov(H(0), H(0))Var(H(8)) + cov?(H(6), ﬁ(e))}
- Var(H(6)) ]
_ k:Q{Var(H(Q))+2COV(H(8),JEI(9)) cov\gg((i}ég)(e))}

- k?{var(H(e)) + 2cov(H(0), H(0)) + Var(H(6)) — Var(H(6))
cov?(H(0), H(0)) -
Var(H(Q))Var(I:I(Q))Var(H(Q))}
= K{Nar(H(0)) + 2cov(H (0), H(6)) + Var(H(0)) = Var(H(0)) (1 = g5 ) |
= B{Nar(H(0) + H(6)) — Var(H0)(1 = p%y 70) }

= Is(0) — k*Var(H(0))(1 = pF ) i0)):
Thus, we can have an intuitive idea that the information loss of composite likelihood
depends on both the variance of the “removed” term and the correlation between the

composite likelihood score function and the “removed” term.

1.3.3 Computational Issue

The lower-dimension modeling strategy in composite likelihoods leads to computation
cheapness in many studies. In particular, it reduces the dimensions of integrals in many
scenarios. For example, GLMM models with crossed random effects often involve high-
dimensional intractable integrals. Bellio and Varin (2005) propose pairwise likelihood ap-

proach to reduce 20-dimensional integrals to 3-dimensional integrals in the analysis of
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salamander mating data. Troxel et al. (1998) use the implementation of marginal likeli-
hood to reduce high-dimensional integrals for longitudinal data analysis. Moreover, Fieuws
and Verbeke (2006) argue that computation can become difficult as the dimension of the
random-effects vector increases, even in the case of linear mixed models where the integrals
can be calculated analytically. They introduce a pairwise modeling strategy to circumvent

this problem.

Parzen et al. (2007) and Lindsay et al. (2011) discuss that the calculation of the like-
lihood functions for all pairs can be computational expensive. If the composite likelihood
functions include all bivariate distributions, the number of pairs could also increase fast as
the data dimension increases. However, this issue of composite likelihood could be handled
with parallel computing facilities (Almasi and Gottlieb, 1989), in which many simpler cal-
culations are carried out simultaneously under the computer architecture with multicore
processors. Thus, the composite likelihood is promising in many applications with parallel

computing resources.

1.4 Model Selection

Model selection is an important topic in statistical inference. When more than one model
is possible to fit the data, we are interested in selection of the one that fits data the best
or nearly the best. To achieve this goal, many approaches are developed. Below we discuss

several strategies of model selection.

1.4.1 Best Subset Selection

A large family of model selection methods is based on the best subset selection. Normally,
the best subset selection first conducts likelihood estimation for all possible candidate
models, and then calculates a measure corresponding to a certain criterion for each model.

The candidate model with minimum (or maximum) criterion value would be preferred.

11



Denote £(Y';0) to be the log full likelihood function. Some well-known information criteria
involve the Akaike information criterion (AIC) (Akaike, 1973)

AIC = —20(Y: 0) + 2k,
where k is the dimension of 6, and Bayesian information criterion (BIC) (Schwarz, 1978)
BIC = —2((Y;0) + klogn.

Further studies in this area include Konishi et al. (2004) for applying the BIC criterion to
the choice of smoothing parameters and the adaptive model selection approach proposed
by Shen and Ye (2002).

Note that the AIC/BIC methods can only be applied when a full likelihood function
is available. Varin and Vidoni (2005) discuss a composite likelihood Akaike information
criterion (cAIC) with

cAIC = —2(.(Y;0) + 2 x df(h),

where £.(Y;0) is the log composite likelihood function and the effective number of degrees
of freedom df(#) is defined as

dt(0) = tr{J(O)H(0)}.

Here J(0) = Y7 {00.(Y;;0)/00}{0¢0.(Yi;0)/060}" and H(0) = —0%(.(Y;60)/0006". Gao
and Song (2010) propose a composite likelihood Bayesian information criteria (cBIC) with

cBIC = —2(.(Y;0) + log(n) x df(6),

1.4.2 Penalized Likelihood

Although the best subset selection is widely used in statistical inference, Fan and Li (2001,

2006) argue that these selection procedures ignore stochastic errors inherited in the stages
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of variable selections, and their computational time increases exponentially with the pa-
rameter dimensionality. To overcome this problem, many techniques involving simultane-
ous estimation and variable selection are developed. These include the bridge regression
(Frank and Friedman, 1993), the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996, 2011), smoothly clipped absolute deviation (SCAD) penalty (Fan and
Li, 2001), least angle regression (LARS) (Efron et al., 2004), elastic net (Zou and Hastie,
2005), adaptive LASSO (Zou, 2006), minimax concave (MCP) penalty (Zhang, 2010) and
LASSO regression with the strong heredity constraint (Choi et al., 2010). Other studies
of model selections such as single index methods can be found in Naik and Tsai (2001),
Kong and Xia (2007), etc.

Fan and Li (2001, 2004, 2006) propose a unified penalized likelihood framework that
extends these approaches to generalized linear models (GLM). Similar extensions can also
be found in Park and Hastie (2007). For variable selection, a penalized likelihood can be

written as

lpen(Y50) = £(Y50) —n Y pa(IBa]), (1.9)

where py(|fs]) is a penalty function for the s-th element in 3. Various penalty functions

can be implemented. For instance, the SCAD penalty (Fan and Li, 2001) is

(aX —z)+
(a—1)A e

and LASSO penalty (Tibshirani, 1996) is taken as

|8s]
oa(|Bs|) = )\/0 min{l,

pa(Bs]) = Al

for some ¢ > 2 and A > 0.

According to the above examples, it can be seen that the variable selection can be
achieved by introducing penalized functions. The influence of the penalty can be simply
described as “pressing down except zero”, which leads to a function that is much easier to

have extreme value at zero. To further illustrate this, we consider a toy example with only
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one observation y and one parameter ( for regression model y = 8 + €, where e ~ N (0, 1).
Then the log likelihood function is logL, = —log(v/27) — (y — 3)?/2 and the penalized log
likelihood function is Plogl, = —log(v/27) — (y — 8)?/2 — pa(|B]). Here we set a = 3.7,
A=05andy =0,—0.5,0.5,2, and plot both SCAD and LASSO functions against different
values of 3. The likelihood estimates are obtained by maximizing likelihood functions with
respect to . Let BlogL and BplogL denote the estimates from logl. and Plogl. likelihood
functions, respectively. Figures 1.1 and 1.2 display the comparison between logl. and
Plogl, with SCAD and LASSO penalties, respectively. It can be seen that the SCAD and
LASSO penalties “press down” the likelihood functions except for the points with g = 0.

Therefore, comparing with BlogL, BplogL is more likely to have BplogL =0.
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Figure 1.1: Comparison between the log likelihood function (logL) and the penalized log likelihood
function (PlogL) with SCAD penalty. - - =: logL function; ——: PlogL function. The estimates

from logL and PlogL are labeled as BlogL and ﬁplogL, respectively.

15



y=0 y=0.5

[} N () B
= : = :
g : s :
c N c N
S : S :
5 b : ° :
5 o : S :
ooq : w :
o : ) :
o — H o - H
! T T T T T ! T T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0
g B
y=-0.5 y=2
I A N =2
o | Bw=o0s 5. o P
o P : ~
[} — N (] —
= : 3 1
(] o B [
> T — : >
A : - o
S i : 2
£ o : g 9
I o : [
! : <
- B |
o N
o : P
! T T T T T
-1.0 -05 0.0 0.5 1.0
B B

Figure 1.2: Comparison between the log likelihood function (logL) and the penalized log likelihood
function (PlogL) with LASSO penalty. = = =: logL function; ——: PlogL function. The estimates

from logL and PlogL are labeled as BlogL and BplogL, respectively.

Now we discuss the implementation procedure. In principle, model selection and es-
timation results can be obtained by maximizing the penalized log likelihood function in
(1.9). However, the penalty functions such as SCAD and LASSO are singular at the origin,
and they do not have continuous second order derivatives. Following Fan and Li (2001), a
local approximation approach is available to approximate the penalty term by a quadratic

function. This approach is based on the fact that when f, is close to the true value By,
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we have
{PA(8:D} = ph(1Bs)sen(B8,) = {pA(|Bsol) /|50l } B
for B4 # 0. Then we have

{pA(18:1)}" = [ {A(1Bs0])/1Bsol}Bs | = PA(1Bs0])/1Bsol

which leads to the Newton-Raphson algorithm that can be used in searching for the esti-

mates.

1.4.3 Model Selection for Longitudinal Data

Recently, many researchers extend model selection methods to longitudinal data analysis.
To deal with a correlated dataset, Liu et al. (1999) propose a generalized cross-validation
selection method based on the Predicted Residual Sum of Squares (PRESS). Pauler (1998)
proposes a BIC method for choosing fixed effects in normal linear mixed models, and
Weiss et al. (1997) conduct fixed effects selection in random effects models using Bayesian
approaches. Pinheiro and Bates (2000) discuss the use of likelihood ratio tests, AIC and

BIC for selecting fixed effects and random effects under mixed effect models.

Much recent work focuses on the model selection on both fixed and random effects
in longitudinal data studies. Yafune et al. (2005) discuss an extended information crite-
rion and Vaida and Blanchard (2005) discuss a conditional Akaike information criterion,
respectively. Moreover, Smith and Kohn (2002), Chen and Dunson (2003) and Kinney
and Dunson (2007) propose Bayesian approaches for fixed and random effects selections.
Under the penalized likelihood framework, Bondell et al. (2010) discuss the penalized joint
likelihood method with an adaptive penalty for the selection and estimation of both fixed
and random effects, and Ibrahim et al. (2010) propose a method for a general class of
mixed effects models using maximum penalized likelihood estimation along with SCAD

and adaptive LASSO penalty functions.
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Furthermore, semiparametric models (Diggle et al., 2002) are widely adopted to analyze
longitudinal data with parametric fixed effects to represent covariate effects and a smooth
function to model the time effects. Fan and Li (2004) propose model selection and esti-
mation procedures for regression covariates with semi-parametric models. Ni et al. (2010)
discuss a double-penalized likelihood approach, where two types of penalties are jointly
imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric base-
line function and a nonconcave shrinkage penalty on linear coefficients to accommodate
model sparsity. Other work related to longitudinal model selection includes penalized GEE
approaches discussed by Fu (2003), Johnson et al. (2008) and Tong et al. (2009).

1.5 Missing Data in Longitudinal Studies

Suppose we fit a dataset with model f(Y;|X;;6) and the observations involve incomplete
response. Let R; = (Ri1,..., Riyn)? be the corresponding missing data indicator vector,

where R;; = 1if Yj; is observed and R;; = 0 if Y}; is missing.

Monotone missing data patterns occur if a subject misses one assessment, returning
to the study is impossible. That is, R;; = 0 implies R;;; = 0 whenever j' > j. Monotone
missingness is also phrased as drop-out. Otherwise, missing data patterns are called non-
monotone. That is, a subject may miss one assessment, but returning to the study is still

possible, this is also referred to as intermittent missingness.

For ease of exposition, sometimes we write Y; = (Y%, V™) where Y% and Y;™*

represent subvectors consisting of observed and unobserved components of Y;, respectively.

Either Y;°* or Y;™* can be null, depending on whether or not Y;; (j = 1,...,m) is observed.

1.5.1 Missing Data Mechanism

Early work on dealing with missing data involves complete-case/available-data analysis

(Kim and Curry, 1977) and naive imputation missing values (Buck, 1960). Recent work is
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generally based on the framework discussed by Rubin (1976) and Little and Rubin (2002).
Missing data mechanism is often classified into three classes: missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR). MCAR features
the situation where the missing data probability is independent of the variables subject to

missingness, given covariates

MAR says that given covariates, the missing data probability may depend on the vari-

ables prone to missingness, but only depend on the observed variables:

P(Ri|Y;, X;) = P(Ri|Y;™, X;).

MNAR facilitates the most general situation for which the missing data probability can

depend on the unobserved data, even conditional on covariates:

P(R|Y;, X;) = P(R|Y, Y™, X).

1.5.2 Likelihood-Based Methods

Likelihood approaches for incomplete longitudinal data are developed by constructing the
joint distribution of response variable Y; and the missing data indicators R;, given the
covariates X;. Three classes of likelihood-based models are commonly applied. One is
based on the so-called selection models (Little and Rubin, 2002) with the joint distribution
of Y; and R; factorized as

F(R:, Y| X550, a) = f(R|Y:, Xis o) f(Yi]| X543 0), (1.10)

where the distribution of R; given response and covariates involves parameter «, which

is assumed to be functionally independent of 6, the parameter vector associated with the
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response model. Another approach is pattern-mizture models (Little, 1995; Thijs et al.,

2002), in which the factorization of the joint distribution is
(R, Yi| X35 0,7) = f(YilRi, Xi; 0) f(Ril Xi5 ),

where the distribution of Y; is modeled conditionally on both covariates and missing data

indicators, and parameters ¢ and ~ are often assumed to be distinct.

Furthermore, shared-parameter models (Wu and Carroll, 1988; Albert and Follmann,
2003) assume that Y; and R; are conditionally independent, given a random variable &;,

therefore, we can write
PR YilXi09) = [ F0G1XG,650)F(RIX, 65)(6) s

where f(&;) is the density function for the random variable &;.

When the research interest focuses on the model of f(Y;|X;;0), it is often natural to
use selection models, where the response model does not include any missing indicators.
In this thesis, we limit the discussion mainly to selection models. In particular, inference

can be achieved using the observed likelihood
LY, Ry Xi:6,0) = / FOVEP Y5 X3 0) F(RYE, Y5, X )dYy™, (111)
When the missing mechanism is MAR (or MCAR), equation (1.11) becomes
Li(Yi, Ri| X330, 0) = /f(WbS,Yimis|Xz‘; O)f (Ri| Y, Y™, X5 ) d Y™™
= [ RO Y ORIV X )y

— f(RiD/iObs;Xi;Oé) . /f(Y;Obs,Y;mlﬂX“e)dY;mls
= f(R|Y™, Xi;0) - (Y] X550).

Since we also assume « and 6 to be functionally independent, inference about 6 can directly

be conducted based on the model f(Y;?*|X;;6) for the observed data only and the missing
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data model can be ignored. When the missing mechanism is MNAR, the integrals in the

likelihood function (1.11) are often intractable.

Maximization of the observed likelihood can be implemented using the Newton-Raphson
algorithm. However, the Newton-Raphson algorithm could be sensitive to the initial val-
ues. An alternative approach for handling missing data is to use the so-called Ezpectation
Mazimization (EM) algorithm (Dempster et al., 1977). To be specific, the EM algorithm
involves the E and M steps. In the E-step, we evaluate the conditional expectation of the

complete data log likelihood:
Qi(0,al0W, o) = E{log L;(V;, Ri| X 0, a)| Y, Xi, Ri; 00, oV} (1.12)

where #®) and a® denote the parameters’ value estimated from the previous tth iteration,
and L;(Y;, Ri| X;; 0, ) is the complete data likelihood contributed from subject ¢, which is
determined by (1.10). The M-step maximizes Q;(6, a|0®, a®) with respect to parameters
6 and «, and the maximizer is taken as 8¢+tY) and a(**Y. The EM algorithm iterates the E

and M steps until (+Y, a*+1)) reaches convergence.

We comment on the numerical performance of the Newton-Raphson and EM methods.
Although directly maximizing observed likelihood functions via Newton-Raphson can reach
the estimation purpose, the maximization might be very sensitive to starting values. Poor
starting values can lead to the failure of convergence. The EM algorithm is relatively more
stable but is subject to slow convergence. Often, a combined the Newton-Raphson and the
EM approach is used, where the algorithm starts with the EM, then the Newton-Raphson

is used for speed after a certain number of iterations.

In implementing the E-step, commonly, the integrals in equation (1.12) have no ana-
lytical form. A typical method to handle this is the so-called MC-EM algorithm (Ibrahim
et al., 2001), which approximates the intractable expectation form. Namely, for a suffi-

ciently large M;, generate M; samples of Y™ from the conditional distribution

f(ifimis’}/;pbi Xi7 Rla H(t)7 a(t))a

21



and approximate the @; function in equation (1.12) by

Law )T

M;
~ 1 - .
) @t )y - _— (ymis obs ] .
Qi(0, )0, oY) = i wg_llogL,(Y Y% Ri| X;; 0, ),

where Y;* is the wth sample of ¥;/™**. The M step then maximizes Qi(0, a0, o) with

respect to parameters ¢ and «.

1.5.3 GEE-Based Methods

GEE analysis based on (1.4) is valid when the missing data mechanism is MCAR. When
data are MAR or MNAR, GEE approaches may result in biased estimators (Fitzmaurice
et al., 1995). Robins et al. (1995), and Rotnitzky et al. (1998) developed a modified ap-
proach using the inverse probability weighted generalized estimating equations (IPWGEE)
to handle incomplete data with MAR.

Let 6 = (87,¢7)T, where ¢ represents all parameters other than 3 in the response
models. Take « to be the parameters corresponding to missingness probabilities. The
IPWGEE are formulated with (1.4) modified as:

Z Uz(ﬁ> 57 Oé) = Z Dl‘/;_lAl(a)(Y; - M1)7
=1 =1

where A;(a) is a diagonal weight matrix with A;(a) = diag{I(R;; = 1)/m;(a)}, j =
1,2,...,m), and m;;(o) = P(R;; = 1|Y;, Xi; o).

Much recent work provides various extensions of the IPWGEE methods. For example,
Yi and Cook (2002) propose a modified IPWGEE approach to handle incomplete longitu-
dinal data arising in clusters. Cook et al. (2004) compare IPWGEE with the imputation
method using the last observation carried forward (LOCF) strategy. Carpenter and Ken-
ward (2006) discuss a doubly robust estimation strategy based on IPWGEE. Chen et al.
(2010) introduce an IPWGEE approach to handle longitudinal datasets with missingness
in both response and covariates. Yi et al. (2012) propose a functional generalized method

of moments method to handle missing data and measurement error simultaneously.
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1.5.4 Other Methods

Besides likelihood and GEE based methods, many other approaches are developed to deal
with incomplete longitudinal data as well. For example, missing data can be handled
via the Bayesian approach. This approach involves specifying the distribution of variables
subject to missingness and the prior distribution of parameters, and then uses the posterior
distribution to obtain estimates. Related studies include Press and Scott (1976), Ibrahim
et al. (2002) and Daniels and Hogan (2008).

Alternatively, multiple imputation is another useful method to handle missing data. It
first creates multiple “complete” datasets by imputing certain values into missing blanks,
then individually analyzes each “complete” dataset, and finally combines the results into
final estimates. Multiple imputation is discussed by many authors, including Glynn et al.
(1993), Schafer and Olsen (1998) and Schafer and Yucel (2002). A comparative review for
the four classes approaches is provided by Ibrahim et al. (2005). Some specific applications
of multiple imputation for incomplete data are studied by Landrum and Becker (2001).

1.5.5 Nonidentifiability Issue

When we handle the missingness in missing not at random (MNAR), nonidentifiability in
missing data process could be an issue due to the lack of information on the unobserved
variable components. As discussed by many authors, such as Ibrahim et al. (2005) and
Yi et al. (2011a), it is often difficult to analytically check whether or not the models are
identifiable. When this concern arises, a viable way is to carry out sensitivity analyses to
assess how inference results may change by altering the models and parameter values for

the missing data processes.

Fitzmaurice et al. (1996) illustrate that there still exists identifiable models even the
missing mechanism is MNAR. Under MNAR, Ibrahim et al. (2005) suggest that the EM
algorithm can be applied to numerically distinguish identifiable/nonidentifiable models.

For nonidentifiable models, the EM algorithm may diverge.
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To further demonstrate the nonidentifiability issues with missingness, we consider an
example involving two models. Suppose the binary response variable Y; are independent
forall e =1,...,n. Let n = 1000. Denote R; = 1 if Y; is observed, and R; = 0 otherwise.
We assume that the missing data probability depends on unobserved response variable Y;,
which leads the missing data mechanism to be MNAR. The observed likelihood defined in
(1.11) becomes

n

L= II|tre - urm®
x{P(R; = 0Y; = 1)P(Y; = 1) + P(R; = 0]Y; = 0)P(Y; = 0)}' ™.

(1.13)

We introduce two models as follows.

Model 1 Let P(Y; = 1) = p, P(R; = 1]Y;) = expit(ag + a1Y;), where expit(t) =
exp(t)/(1+exp(t)). The likelihood function (1.13) has a parameter set (p, ag, ).
One dataset is generated with p = 0.2, exp(ag) = 0.2 and exp(ay) = 0.5.

Model 2 Let P(Y; = 1|X;) = expit(Gy + 51 X;), where X; is a completely observed bi-
nary variable with P(X; = 1) = 0.5. P(R; = 1|Y;, X;) = expit(ap + a1Y5),
which follows the one in Model 1. The likelihood function has parameter set
(Bo, B1, o, 7). One dataset is generated with exp(fy) = 1.5, exp(51) = 0.5,
exp(ap) = 0.2 and exp(ay) = 0.5.

According to Fitzmaurice et al. (1996), the parameters (p, g, aq) or (Bo, b1, o, 1)

are not statistically identifiable if there exists parameters (p*,af,af) # (p,ap,aq) or
(ﬁéa Bika 0587 051() 7é (ﬁOa ﬁla Qo, Ctl)a such that

Li(p7 o, al) = Li(p*v O‘S? O‘I)?

or

Li(Bo, B1, o, 1) = Li( By, By, ap, a1)-
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To evaluate the model identifiability, we fix a; at a set of values in the likelihood
function (1.13). Given fixed oy, the likelihood function (1.13) is maximized with respect
to (p,ap) and (S, f1,ap) for Model 1 and Model 2, respectively. Thus, we obtain the
profile likelihoods for two models. Figure 1.3 displays the values of the maximized profile
likelihoods given various of ;. It can be observed that the profile likelihood for Model
1 is flat which implies that Model 1 is nonidentifiable. Because we have L;(p, g, 1) =
Li(p*, af, of) with a; # af. On the other hand, the profile likelihood for Model 2 is a
curve, which suggests that Model 2 could be identifiable.

Model 1 Model 2

|
-475.0
|

-416.72
|

Likelihood Values
-416.76
|

Likelihood Values
-475.2
|

-416.80
|
-475.4
|

Figure 1.3: The profile likelihood values with «y to be fized at a set of values for Model 1 and
Model 2, respectively.

We set different initial values and maximize the likelihood function (1.13) for Model 1
and Model 2, respectively. Table 1.1 displays the corresponding likelihood estimates when
the maximization algorithm converges. Model 1 results in different estimates from various

initial values, while the estimates from Model 2 are stable.
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Table 1.1: The initial values and likelihood estimates for Model 1 and Model 2, respectively.

Model 1
Initial values Likelihood estimates
p o1 Qo p Qo Qq
-1 0.380 —2.045 —0.016
1 -1 0 0.509 —1.777 —0.606
0.537 —1.709 —0.732
Model 2
Initial values Likelihood estimates
Bo B a1 Bo B Qo aq

-1 0.247 —-0.582 —-1.812 —0.576
1 1 1 0 0.247 —0.582 —-1.812 —-0.576
0.247 —-0.582 —1.812 —0.576

Therefore, identifiability issues may arise when the data records are missing with MNAR
mechanism. It may not be identifiable for some models, but can be identifiable for others.
In practice, setting a grid of initial values can be helpful in checking model identifiability.
With diverse starting values, nonidentifiable likelihoods may lead to different maximized
results. This agrees with the discussion in Glonek (1999). On the other hand, the identi-

fiable models would be stable with various of initial values.

1.6 Model Misspecification

Let g(y) be the “true” joint density function for independent random vectors Y;, i =
1,...,n. Suppose a working density function f(y;0) =[]\, f(vi;0) with 6 € © is used for
estimation of €, where y; is the realizations of Y;. The validity of the statistical inference

requires correct model specification to some extent. White (1982) investigates the impact
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of model misspecification on estimation of the parameter 6. Under certain regularity condi-
tions, if we apply a misspecified model to fit a dataset, then the resultant estimator, denoted
by é*, for the parameter € would converge in probability to a limit, say #*, which may differ
from the true parameter value 6. If the working density function is correctly specified in
a sense that the class of {f(y; 0):0¢ @} contains g(y), i.e., there exists §y € © such that
F(y:00) = g(y), then the working estimator 6 = arg maxgee 7' log f(y; ) is consistent for

the “true” parameter 6.

Yi and Reid (2010) extend White’s results from the maximum likelihood framework to
the framework of estimating equations. Suppose our inference is based on a biased working
estimating function h(y; ), which means Ey{h(Y;6)} # 0. Assume that the equation

Haf0) = =3 hlyis0) = 0

has a root § € © for any given random sample y1, . .., y,, then Yi and Reid (2010) show
that under regularity conditions, 0 is consistent to a limit, say 6*, where 6* is determined
by

Ep{h(Y;0%)} = 0.

This result can be used in the study of the misspecification issue related to composite
likelihood. Specifically, let £.(y; 6) be a log composite likelihood function formulated from

a model which could be misspecified. Then under certain regularity conditions, the limit

EY{M} =0, (1.14)

6* is the solution of

00
where the expectation is taken under the true joint distribution for the Y variable with pa-
rameter 6. In most situations, equation (1.14) does not have an analytically closed solution.

Hence the relationship between 6* and 6 is frequently evaluated via numerical assessment.
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1.7 Motivating Example: The National Population
Health Survey Data

1.7.1 Background

The National Population Health Survey (NPHS) collects health information and related
socio-demographic information by following a group of Canadian household residents for
10 cycles. The survey is conducted every second year from 1994/1995 and has completed
eight cycles: Cycle 1 (1994/1995), Cycle 2 (1996/1997), Cycle 3 (1998/1999), Cycle 4
(2000/2001), Cycle 5 (2002/2003), Cycle 6 (2004/2005), Cycle 7 (2006/2007) and Cycle
8 (2008/2009). The questions for the NPHS include many aspects of in-depth health
information such as health status, use of health services, chronic conditions and activity
restrictions. Moreover, social background questions, including age, sex, education, income

level and marital status, are contained in the questionnaire.

1.7.2 Missing Data

The NPHS started with a sample of 17276 individuals spreading out in the ten provinces
across Canada. Each individual is asked to complete a questionnaire in every two years.
Although we hope the survey would successfully collect complete health records for 17276
members in all cycles, the NPHS data are subject to information incompletion due to many
reasons. Three main possible cases are non-tracing, refusal or unknown to question items,

and death.

Non-tracing denotes the situation that interviewers failed to reach the respondents.
To deal with non-tracing issue, many approaches were introduced into the survey. For
example, workload restriction on maximum interviewees is set for reducing overburden
cases; interviewers are trained to apply several survey skills (e.g., making calls or visits at

various times of the day, making an appointment to call back or come back if previous time
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is not convenient); and the survey also attempted to track individuals who moved within
Canada or to United States. Despite those efforts, there were still a few non-tracing cases
in each cycle and the non-tracing rate in all 17276 members slightly increased with each
cycle from 1.7% in Cycle 2 to 5.4% in Cycle 7.

Refusal or unknown to question items leads to another source of information loss.
Respondents would refuse to participate in the survey because of privacy, time schedule
arrangement or other concerns. The NPHS made efforts to persuade all members to con-
tinue the study. For example, a persuasive letter would be sent to respondents if they
decided to quit the survey; senior interviewers or other experienced interviewers would try
to follow refusals to convince them to rejoin the survey. Though many strategies were
applied, refusal rate in survey sample increased from 3.1% in Cycle 1 to 13.2% in Cycle
7. Besides the situation that respondents refused to attend the survey, respondents might
attend the survey but refuse to report some question items. A typical example in the
NPHS data is that respondents may finish other questions but refuse to report their in-
come status. Moreover, for some questions, a respondent may not find a proper result and

then just report as unknown, which also results in an incomplete record.

Until Cycle 7, there are 2032 (11.76%) members who died before the end of the NPHS.
Death causes longitudinal health information to be cut off at a specific cycle. However,
different from previous situations, where the related health information is existent but
unobserved, death leads to another source of information loss that may not be well handled
by general approaches. For example, if a respondent was dead at a particular cycle, we

may not record variables such as Body Mass Index (BMI), alcohol or tobacco consumption.

To handle longitudinal data with death, one option is to build joint models to postulate
both longitudinal records and death information (Diehr and Patrick, 2003; Dufouil et al.,
2004; Kurland and Heagerty, 2005; Harel et al., 2007). However, such discussions are
beyond the scope of this thesis. Here, we only focus on the case that missing data arise

from non-tracing and refusal-to-answer settings.
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1.7.3 A Subsample from NPHS

The analysis of the NPHS data focuses on modeling the influence of income, age, education
and marital status on population health. The data we select contains 6 cycles’ observations
(from Cycle 1 to Cycle 6), including 1349 males with age between 50-70 at Cycle 1, and
less than 80 at Cycle 6. All the deceased are excluded from our sample data. Missingness

occurs in two variables: health status and household income.

Health status is measured by the Health Utilities Index Mark (HUI) from eight at-
tributes: vision, hearing, speech, ambulation, dexterity, emotion, cognition, and pain and
discomfort (Feeny et al., 2002). Household income (INC) is measured by provincial level of
household income which ranges from 1 to 10, where 1 denotes household income ranks at

decile 1 in the related province, while 10 denotes highest 10 percent of household income.

In our sample data, 36.69% individuals have missing observations in the HUI variable
and 52.93% have missing observations in the INC. Only 43.21% of the members have
complete observations for both the HUI and the INC in 6 cycles. Table 1.2 shows the

missing data rate of both variables, and Table 1.3 displays various missing data patterns.

Table 1.2: Missing data rates for health status and household income variables in the
NPHS data (%)

Cycle 1 2 3 4 5 6
HUI 53 88 11.9 168 223 25.6
INC 87 13.2 17.1 24.0 29.0 33.4
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Table 1.3: Missing data patterns for health status and household income variables in the
NPHS data

Percentage HUI INC
in Observation 1 2 3 4 5 6 1 2 3 4 5 6
43.2% v v v v v v v vV v v
4.2% v X X X X X v X X X X X
2% v v v v v v v X v v v VY
1% v v vV v X Vv v Vv Vv v X VY
1% x v v v v V v v v v vV

v' Observed; X Missing

1.8 Outline of Thesis

This thesis develops various inference strategies for longitudinal data using the composite
likelihood framework. We particularly address features on missing observations and model
selections. Issues of consistency and efficiency are investigated. The remaining chapters

are organized in the following structure.

Chapter 2

In Chapter 2, analysis methods using the composite likelihood framework are explored
for incomplete longitudinal continuous data. Incomplete data can involve non-monotone
missingness for both response and covariates with MNAR mechanisms. In particular,
we compare a two-stage estimation strategy and a pairwise method. Simulation studies

show that both methods lead to consistent estimators. Issues of efficiency and robustness
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are carefully investigated. Longitudinal survey data from the National Population Health

Study are analyzed with the proposed methods.

Chapter 3

Chapter 3 discusses analysis methods using the composite likelihood for incomplete longi-
tudinal binary data. This chapter parallels Chapter 2 in structures, but considers probit
models that are useful for binary data. Again, both response and covariates may be miss-
ing with a MNAR mechanism. We explore a two-stage estimation strategy and a pairwise
likelihood method. Simulation studies show that both methods result in consistent esti-
mators. Efficiency and robustness are investigated as well. Longitudinal survey data from

the National Population Health Study are analyzed with the proposed methods.

Chapter 4

In Chapter 4, we address issues on model selection using the composite likelihood method
for more complex data: longitudinal data arising in clusters. We propose a flexible mod-
eling framework to account for complex association structures. In particular, we discuss
two forms of composite likelihood function: all pairwise marginal likelihood (APW) and
all pairwise conditional likelihood (APC). The SCAD penalty is applied in the composite
likelihood functions, and the related oracle properties are established. Simulations demon-
strate that the proposed method gives consistent estimators and is able to select important
variables. The composite likelihood EM algorithm and the model misspecification issues

are explored in detail.

Chapter 5

Chapter 5 extends the development in Chapter 4 to accommodate the situation that re-

sponse or covariates are subject to missingness. Conditional likelihood functions are con-
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structed to accommodate missingness effects. Preliminary simulation results demonstrate

that the proposed approach outperforms the naive estimation method.

Chapter 6

Chapter 6 summarizes overall results and outlines some further possible extensions of the

proposed methods.
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Chapter 2

A Pairwise Likelihood Approach for
Longitudinal Data with Missing
Observations in Both Response and

Covariates

2.1 Introduction

Longitudinal data arise commonly in fields including clinical trials and health research.
Longitudinal studies are often designed to collect information on individuals at scheduled
times, but missing observations occur frequently. Incompleteness of data presents consider-
able challenges in standard analysis methods, especially when both response and covariate
variables incur missingness. A large body of methods have been developed with the pri-
mary focus being on either the missingness in response or the missingness in covariates
(e.g. Diggle and Kenward, 1994; Little, 1995; Ibrahim et al., 1999, 2001). Research on
missingness in both response and covariates is relatively limited, although several authors

have developed methods for certain situations.
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Under different model assumptions, Shardell and Miller (2008), Chen et al. (2008),
Stubbendick and Ibrahim (2003) and Stubbendick and Ibrahim (2006) develop likelihood-
based approaches, while Chen et al. (2010) propose a marginal method using the inverse
probability weighted generalized estimating equation. Although likelihood-based methods
are efficient in estimation of parameters, they require full distributional assumptions, which
makes the results sensitive to model misspecification. On the other hand, Chen et al.
(2010) relax modeling assumption for the response process by assuming only the marginal

structure. The method is mainly developed to handle data that are missing at random.

It is desirable to develop methods that are robust yet flexible to handle various types of
missingness in both response and covariate measurements. The purpose of this manuscript
is to describe a general approach based on the pairwise likelihood formulation (Lindsay,
1988; Cox and Reid, 2004; Lindsay et al., 2011) to handle longitudinal data with incomplete
response and covariates. A unified framework is invoked to accommodate various types
of missing data patterns. In particular, our methods can accommodate the existing work
as a special case. For instance, Troxel et al. (1998), Parzen et al. (2007) and Troxel
et al. (2010) propose marginal and pairwise likelihood methods respectively to deal with
missing data when the missingness occurs only in response. Parzen et al. (2006) propose a
marginal modeling approach that is suitable for the simultaneous missingness in response
and covariates. Our method is flexible to handle the situation when the response and

covariates are missing not necessarily simultaneously.

The reminder of the chapter is organized as follows. Section 2.2 introduces the notations
and model setups. Inference methods are presented in Section 2.3. In Section 2.4, we report
on numerical assessment of the performance of the proposed methods, together with an
application to the data arising from the longitudinal National Population Health Survey
(NPHS). To further evaluate the performance of the proposed methods, we study the
relative efficiency and robustness to model the misspecification in Sections 2.5 and 2.6,

respectively.
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2.2 Notations and Model Setups

Suppose that there are n subjects and m follow-up occasions. Let Y;; and X;; be the
response variable and a covariate vector for subject ¢ at occasion 7j, respectively, i =
1,2,...,n;5 = 1,2,...,m. Both Y}; and Xj;; are subject to missingness. Let Z;; be a
vector of covariates that can be observed completely. Here we start with the case that Xj;

is a scalar. Extensions to accommodate multiple covariates X;; are discussed in Chapter 6.
Denote }/; = (1/;1, }/;2, e ,Y;m)T, Xz == (Xih Xi2 e ,Xim)T and Zl = (Zg, Zg, ceey ZZI;n)T

If interest lies in understanding the complete relationship between response Y; and
covariates (X;, Z;), one may invoke a full distribution of f(Y;|X;, Z;;0) with parameter 6
varying in a space ©. Then inference objective would focus on estimation of parameter 6.
In practice, it may be difficult to specify a proper distribution form f, especially when the
dimensions of Y; and covariates (X, Z;) are large. Often, instead of working on the full
distribution structure, our interest centers on a partial structure of f such as lower order
distributions for some components of Y;, for example, marginal or pairwise distributions.
This strategy has a number of advantages, including transparent interpretation, modeling
tractability and lower computational cost. In the chapter we confine our attention to

explore pairwise modeling strategies in the context with missing observations.

2.2.1 The Response Process

For j < k, let f(Yy;, YielXs, Zi; B, 05, 1Y) be the probability density or mass function for
paired responses Y;; and Yj;, where 3, af/ and @Y are parameters associated with marginal
mean, variance and association measures, respectively. Assume that f(Y};, Yik| Xi, Zi; B, 05, P?)

is a bivariate normal density function. That is, conditional on (X;, Z;),
(Yij, Yir) ~ No((pd;, )" g0, ¥i),

where Nj(-,-) denotes a bivariate normal distribution with mean and covariance matrix

indicated by the arguments, and Eijk(oj, 3k) is a 2 X 2 covariance matrix with diagonal
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elements 05 and correlation coefficient ’l,b?k. Commonly, a regression model is postulated to
reflect the dependence of marginal mean /Liyj on the covariates at occasion j. For instance,
consider pf; = Xi;0, + Z;8., where B8 = (B2, BT is a (¢ + 1) x 1 vector of regression

parameters linking covariates and response.

2.2.2 The Covariate Process

For j < k, let f(Xi;, Xik| Zi; o, 02, 4") be the probability density or mass function for paired

2

- and 1" are parameters corresponding to marginal

covariates X;; and X;;, where «, o
mean, variance and association measures, respectively. Analogous to the modeling of the

response variable, we assume that, condition on Z;,
(Xijs Xiw) ~ No((p5, 1) " Bije (02,9 %)),

T 2 . . . T .
where (7; and o3 are the marginal mean and variance of Xj;, respectively, and 1)}, is the
correlation coefficient between Xj; and Xy, Furthermore, we feature marginal mean ff;

by a regression model, such as puj; = Z% o, where « is a vector of regression coefficients.

2.2.3 Missing Data Process

Define R}, = 1 if Yj; is observed, and R}, = 0 otherwise. Rj; = 1 if Xj; is observed,
and RY, = 0 otherwise. Let R! = (R}, Rl,...,R),)" and Rf = (R}, R}, ..., R;,)".
Write V; = (YT ymsTT - and X; = (X7, X™sT)T to distinguish the observed and
unobserved components of Y; and Xj;, respectively. For ease of exposition, we put Y;; =
(Y;?bs, V%), where either Y;2* and Y% can be null, depending on whether or not Yj; is

observed. Similarly, write X;; = ( Xi(}b57 ngr,ns)‘

For the missing data process, we follow the same lines to postulate pairwise models.

In particular, we model P(R};, = 1, R}, = 1|Y;, X;, Z;, Rj;, Rj;) and P(Rf;, = 1, R =

ij0 ik

11Y;, Xi, Z;) for j < k. As a result, the distribution P(R}, = 1, R}, = 1,R}; = 1, Rj, =
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11Y;, X, Z;) is uniquely determined. A common assumption (e.g., Troxel et al. (1998)) is

made:

P(R}, =1, R}, = 1,Rj; =1, R}, = 11Y;, X;, Z;)
= P(R?j = 1>R?k = 17R§Ej = 1,Rfk = 1’ Y;jaY;'kaXijaXikazij>Zik)~
We employ a pairwise probit model to postulate (R}, Ry,) or (R, Rj). Specifi-
cally, assume there are latent variables (Rf], ]%Zyk)T that follow a bivariate normal distri-
bution Ny((0,0)", 3i.(1, p%)); then fifj determines the binary variable R}; according to
N R , . - . Ry -
R}, = I(R}; < n3"), j = 1,---,m, where I(-) is the indicator function and 7" is
the linear predictor for Rf] Such a modeling scheme has been constantly used for bi-
nary data analysis. See Ashford and Sowden (1970), Joe (1997), Renard et al. (2002)
and Chaganty and Joe (2004), for details. More explicitly, the pairwise model can be
written as P(R); = 1,Ry = 1|Y;, X;, Z;, R, Ry,) = @2((ngy7775€y)T,Eijk(].,p?k)), and
P(RY = 1,Ry, = 1Y, X, Zi) = @0, nii)", Bijr(1, p%.)), where ®y(u,v) is the bi-

variate cumulative distribution function for the No((0,0)7,v) evaluated at u = (uy, us).

Furthermore, regression models are employed to facilitate the dependence of each con-
ditional probability on associated variables. To be specific, we have ng‘y =T ;y] and
ng-z = X‘Tsfj. A= AT AT are missing process related regression parameters. Efj and
&, are subsets of {Y;, Xi;, Zy, Ri;} and {Yy, X,

ijs Z;;}, respectively. Varying choices of
these subsets can feature different types of dependence among missing data indicators.

B

2.3 Estimation and Inference

2.3.1 Marginal and Pairwise Likelihoods

Let v = (BT, al AT, 05, 02)T be the parameters associated with the marginal structure,

and & = (7, ™" p¥T p*T)T be the set of parameters which governs the association
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structure in the pairwise models. Write 8 = (y7,87)7. Let
Loily) = J]FOG" X3 Ry, R5125)
=1
= TL[ [ 5001Xo0 2 X0 SR, RV, X, 2V 50X
=1

be the observed likelihood for subject ¢ with an independence structure temporarily as-

sumed for repeated measurements, and

Leas(8) = TI{ [+ [ 5050 Vil Xoss X 20, 20 (X5, Xal 2. 2

j<k

x f(RY., RY,, RY,, R% Y, Yie, Xij, Xow, Zij, Zik)dsggmdxgﬁs(m;msczx;g“}.

YRl 179

be the observed pairwise likelihood for subject i. Then the marginal likelihood and pairwise

likelihood are respectively given by

Lcoi(y) = Hﬁm,i(’?’), (2.1)
Lo(0) = H Le2.4(0). (2.2)

Provided mild regularity conditions, solving the pseudo-score functions dlogLc1 () /0y =
0 and OlogL2(0)/060 = 0 results in consistent estimators of v and 8, respectively. A proof

is sketched in supplementary material.

2.3.2 Inference Procedures

We now employ two algorithms for estimation of 8. Approach 1 involves direct maximiza-
tion of the pairwise likelihood (2.2) (labeled as PL). An alternative method is a two-stage
approach (labeled as TS) which first maximizes marginal likelihood (2.1) to obtain the es-

timator of 7, and then maximizes pairwise likelihood (2.2), resulting in the estimator of 4.
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Compared to the PL, although some efficiency loss may incur in the TS, an obvious advan-
tage is the substantial gain in the ease of computation due to the fact that the dimension
of integrals in marginal likelihood is a lot smaller than that in the pairwise likelihood.

Let Si;(y) = 0logLo1.i(7) /0T, Sai(v) = OlogLe:(0)/0~4T, and Sy (8) = OlogLes.:(0)/06" .
Define Hz = (Sli(’}’)T, SQi((S)T)T, and 52@<0) = (Sgi(’)/)T, Szi((s)T)T.

Pairwise Likelihoods (PL) Inference

We employ the Newton-Raphson algorithm to maximize the pairwise likelihood function
(2.2). The pairwise likelihood (PL) estimators are denoted by 8p; = (45, 85,)". We

update the estimates by the iterative equation

verY Ve ol v 0 50
PIGD) - 5O - {ZDz } 'ZSQi(7PL76PL)7 (2.3)
PL PL =1 =1

where
t t
Do _ [ OSu(rE) 0V 08u(vpy) 08"
L\ 08u(8EL)/0vT 05u(dyy) /08"
and t =0,1,..., until (vH¢ ™, 850 NT converges to the solution (55, , SiL)T.

Under regularity conditions, \/ﬁ(é pr, — 0) has an asymptotic normal distribution with
mean 0 and covariance matrix {FE(D;)} ' E{S%(0)S%(0)" }{E(D;)}~'*. In particular, for
primarily interesting parameter 3, we need to establish the asymptotic distribution of its
estimator 3p;. Rewrite 8 = (87, v")7, and Sy (8) = (S5:(8)7, Sz (v)T)T. Define

J* = E{055i(8)/98"} — E{95%(8)/0v"} - E7H{9Sk(v)/0v"} - ET{052:(8)/0v" },
and
K* = E{S:(B) - 52:(B)"} — E{0S%(8)/0v"} - E~H{dS2(v)/0v" } - E{S%i(v)S2(B8)"}
~[B105:(8)/00") - B 05 (0) 007} B(Su(0)5x(8)}]
+E{955(8)/0v"} - EH{0S5%(v)/0v"} - E{Syi(v)Su(v)"}
-E7H{085(v)/0v"} - ET{08x:(8)/0v" }.
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Then /n (ZS’ pL — ﬂ) has an asymptotic normal distribution with mean 0 and covariance

matrix J* 1K*{J*1}T. The proof is outlined in supplementary material.

Two-Stage Inference

Under the two-stage inference scheme, an estimate, denoted 4g, of ~ is first obtained as
the maximizer of the marginal likelihood Ly (7). With this 4,g, we then maximize the
pairwise likelihood Leo(91g, ), with respect to 8, and the maximizer d7s is taken as the
estimate of 8. To be specific, the two-stage procedure can be realized using the iterative

equation

Ve =~ {ZaSu 2)/oy" } ZSM A0, t=1,2,...

until convergence. Similarly, update the estimate of § using the iterative equation

o5t = oy - {E:a$wh®5%H@y} E:Sm7ﬂbjﬂ t=12,...

until convergence.

B T
An alternative to obtain the estimator Opg = (Ymg, d75)" is to employ the joint iterative

equation to update the estimate:
(t+1) () n
Y Y 1
O N I B Z DY S Hiv ik, 81%). (2.4)
Org 6TS i=1

where

pro _ ((OSuGi/t o
C T\ 0suai/on" 05u(8)) 08" )

At each iteration, the update obtained from (2.4) may differ from that obtained from
the two-stage algorithm. However, the updated values from these two procedures con-

verge to the same limit under mild regularity conditions (Newey and McFadden, 1994).
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While the two-stage algorithm provides an easy way for estimation, the algorithm based
on (2.4) is more convenient to establish the asymptotic distribution of the estimator. Un-
der regularity conditions, \/ﬁ(éTg — 0) is asymptotically normally distributed with mean
0 and covariance matrix {E(D)}Y 'E{H;HI}{E(D;)}~'". Rewrite v = (87, v*")7, and
S1i(y) = (Su(B)", Sii(v*)")".

Define
J* = E{051(8)/0B8"} — E{0S1(B)/0v*T} - E7H{0Sy(v*)/ov T} - ET{0S1:(B)/0v*T},

and

K™ = E{Su(B)- Su(B)"} — E{0Su(8)/0v* "} - E=H{0S1u(v") /ov* T} - E{Sy(v*)S1(8)"}
~[Es.(8) /00Ty - B (080" 00T} - B(S1(0")51u(8))]
+[E{0514(8) /00 T} - E7H0S(07) /00T } - B{Si(v")Su(v7)}

EH081(v") 00T} - ET{05,:(8) /00" }.

Then /n <BTS — B) has an asymptotic normal distribution with mean 0 and covariance

matrix J* LK**{J*1}T. The proof is outlined in the supplementary material.

2.4 Numerical Studies

2.4.1 Empirical Assessment of the Proposed Methods

In this section, we assess the empirical performance of the proposed methods through a
simulation study. One hundred and 500 simulations are run for the PL and TS methods,
respectively. We consider a setting with m = 3 and n = 150, and simulate longitudinal
continuous responses from a normal model with ,u?j = Bo + £1Xij, where X;; is a time-
dependent continuous covariate generated from a normal distribution with 7, = ap. Set

Bo = —2, 1 = 2 and oy = 1. The association among responses is specified as exchangeable
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with 05 = 1 and correlation coefficient Y, specified as 0.5. The association among covariate

components is specified as exchangeable with 02 = 1 and ¢* = 0.5.

For the response and covariate missingness process, we take

nﬁy =\ + AN/ X,; + NRY,  and

i)

The true values for the regression parameters of missing data processes are set to be
Ap =5 =15\ = —1, and A\§ = 0.5. For the joint distribution of the response and

covariate HllSSll’lg processes, we consider

P(Rzl =1 RzQ - z3 - |Y X Rzl? 227 ) (1)3((77iR1y77]£y7ngy)T7Zi<17p:‘ll/23>>7

and P(Ry = 1, R = 1, Ry = 1|Y;, X;) = ®3((n*, nis" nfi")", Bi(1, plas)), respectively,
where ®3(u*, v*) is the cumulative distribution function for the N3((0,0,0)”, v*) evaluated
at u* = (uf,us, uj). We take X;(1, p¥ys) and X;(1, pi,y3) to have exchangeable association

forms with correlation coefficients p¥, p*, respectively. The true values are set as p¥ = p* =
0.5.

The results are reported in Table 2.1, where the bias is the percent relative bias, ASE
and ESE are the average of model-based standard errors and empirical standard errors,
respectively, and CP% represents the empirical coverage probability for the 95% confidence
intervals. The table shows that our PL and TS approaches both yield small bias and satis-
factory coverage probability for the response parameters in both the mean and association
structures. As expected, the PL approach results in smaller ASE and ESE for parameter
By than the TS method, which confirms the PL approach is more efficient than the TS
method. A good agreement between ASE and ESE indicates that variance estimates for
the corresponding estimators are valid. In covariate and missing processes, it can be seen
that the biases are negligible and ASE/ESE are similar for most of the parameters, which

implies two approaches also provide reasonable inference on covariate and missing models.
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2.4.2 Application to the NPHS Data

The National Population Health Survey (NPHS) is a longitudinal study that collects health
information and related socio-demographic information by following a group of Canadian
household residents. The questions for the NPHS include many aspects of in-depth health
information such as health status, use of health services, chronic conditions and activity
restrictions. Moreover, social background questions, including age, sex and income level,
are contained in the questionnaire. A research interest focuses on modeling the influence
of income on population health. The data we analyze here contain 3 cycles’ observations
(from Cycle 4 to Cycle 6), including n = 300 males with age between 50-70 at Cycle 1,
and less than 80 at Cycle 6. All the deceased subjects are excluded from the analysis.

Health status is measured by the Health Utilities Index (HUI) Mark after zero-mean
normalization with observed average 0.85 and standard deviation 0.21. The higher HUI
score indicates better health. The covariate prone to missingness is household income
(INC), which is measured by provincial level of household income with zero-mean nor-
malization with observed average 5.27 and standard deviation 2.88. The other covariate,
denoted by CYCLE is cycle number with values —1,0, 1 that correspond to Cycle 4,5 and

6, respectively.

In the data analyzed here, 21.3% individuals have missing observations in HUI variable
and 35.7% have missing observations in INC. Only 62.3% of the members have complete
observations for both HUI and INC in all 3 cycles. The missingness proportions in HUI
from Cycle 4 to Cycle 6 are 2.7%, 11.0% and 17.7%, respectively, while the missingness
proportions in INC from Cycle 4 to Cycle 6 are 9.3%, 17.3%, 27.3%, respectively. Table
5.1 displays a sample data subset.
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Table 2.2: Sample data from the NPHS

HUI INC

ID
4 ) 6 4 ) 6

1 0577 0.577 0.577 1.645 1.645 1.645
2 0577 - 0.256  -0.440 - -0.788
3 0.134 -0.582 -0.314 0.950 1.297
4 0.704 0.704 0.256 -1.135 - -0.093
5 -0.945 0.577 -1.135 -1.483 -1.135
6 0.577 . -0.788 -0.440
7 0.704 . . -0.788

- represents missing observations

Let HUL;, INC;; and CYCLE;; be the normalized Health Utility Index score, nor-
malized income level, and cycle numbers for individual 7 at Cycle j. Let R;; = (R}, Rf;)
represent the missing indicator where Rfj = 1 denotes subject ¢’s HUI is observed at Cycle
J, and Riyj = 0 otherwise. Similarly, Rj; = 1 means that subject i’s INC is observed at

Cycle j and Rj; = 0 otherwise.

We assume that HUI and INC follow marginal models

157
INC,; = ag + 0, CYCLE,; + &%, (2.6)
respectively, where ¥, ~ N(0,07), f; ~ N(0,02).

The missing data processes are specified as

nY = N + WHUL; + MINCy; + MR + MCYCLE;, (2.7)

i = A + ATHUL; + A§INCy; + AJCYCLE;;. (2.8)

We further assume an AR(1) association structure for each process with corresponding

association parameters Y, ¥*, p¥ and p* for HUI, INC, RY and R”, respectively.
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With models (2.5)-(2.8), we analyze the data using the PL and TS methods, and report
the results in Table 2.3 and Table 2.4.

Table 2.3: Analysis of the NPHS data using the pairwise likelihood, two-stage estimation

approach and naive method: Response models

PL} TS
Parameter Estimate SE  p-value Estimate S.E. p-value
INTERC. (By) -0.045 0.053 0.393 -0.040  0.064  0.530
INC (51) 0.219  0.042 < 0.001 0.231 0.045 < 0.001
CYCLE (62)  -0.041  0.027 0.125 -0.029  0.035  0.405
Variance (03) 0.957  0.122 < 0.001 0.938 0.120 < 0.001
Association  (¢Y) 0.677  0.046 < 0.001 0.667  0.045 < 0.001

1 PL and TS respectively denote the pairwise likelihood and two-stage inference procedures, respectively.
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Table 2.4: Analysis of the NPHS data using the pairwise likelihood and two-stage estima-

tion approach: Covariate and missing-data models

PL TS
Parameter Estimate SE  p-value Estimate SE  p-value
Model for INC
Intercept % 0.001 0.025  0.969 0.141 0.133  0.288
CYCLE a;  -0.107  0.025 < 0.001 -0.067  0.048  0.165
Variance in HUI o2 1.015  0.048 < 0.001 1.066  0.106 < 0.001
Association P 0.835 0.022 < 0.001 0.832 0.023 < 0.001
Response Missing Model
Intercept b 0.074  0.129  0.568 -0.144  0.224  0.519
HUI Y 0.045 0.088  0.606 -0.166  0.121  0.170
INC A 0.058 0.114  0.610 0.226 0.158  0.152
Ry A 2.166 0.170 < 0.001 2.475 0.295 < 0.001
CYCLE Ay -0.254  0.099 0.010 -0.258  0.104  0.013
Association pY 0.636 0.118 < 0.001 0.624 0.130 < 0.001
Covariate Missing Model
Intercept S 0.971 0.064 < 0.001 1.105 0.257 < 0.001
HUI AY 0.145 0.053  0.007 0.189 0.146  0.196
INC A3 0.029 0.105  0.782 -0.429 0328  0.192
CYCLE Af 0 -0.343  0.059 < 0.001 -0.413  0.085 < 0.001
Association p* 0.570 0.059 < 0.001 0.595 0.068 < 0.001

For the response model in Table 2.3, PL and TS approaches reveal that the cycle time
is not statistically significant, whereas income has a significant positive effect on health
index. People are more likely to have better health if they have higher income. Moreover,
it can be seen that the PL method yields smaller standard errors than the TS approach,

which agrees with the finding in the previous subsection. For the model of household
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income in Table 2.4, the PL method indicates as the survey cycle increases, the income
would significantly decrease, while the TS approach reveals an insignificant temporal effect

on income.

For the missing probability in Table 2.4, both PL and TS show insignificance of HUI
and INC in the response missing data model, and only PL suggests a significant positive
effect of HUT in the covariate missing-data model. Moreover, the significance of A} and A%
suggests that the missing rate for both response and covariate increases as the longitudinal
research cycle increases. Estimation of A} indicates an association between missingness of

the response and of the covariate.

2.5 Efficiency Assessment

To fully understand the performance of the proposed methods, in this section we assess the
efficiency of the PL and TS algorithms. To this end, we invoke estimating function theory.
Suppose U(0) = >_"_, U;(0) are estimating functions for parameter 6, where E[U;(0)] = 0,
then under regularity conditions, the solution, say é, to U(@) = 0 has an asymptotic normal

distribution

A

V(0 — 8) —p N(0,17'(9)), (2.9)

where 1(0) is the Godambe information matrix (Godambe, 1991) defined as
1(8) = Eo[0U:(6)/06"]" Eo[Us(0)Us(6)"](8) Eo[0Ui(8)/06"].

The Godambe information matrix or its inverse provides us a basis to evaluate efficiency
of estimators obtained from different methods or from distinct conditions. In particular,

we are interested in two scenarios concerning the marginal response parameter 3.

In the first case, we are interested in comparing the efficiency of estimators of 3 that
are obtained when nuisance parameters are known or estimated. This study would pro-

vide insight into variability induced by an additional estimation procedure for nuisance
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parameters. Following the notations in Section 3.3, if nuisance parameter v or v* is un-
known, then the estimation of 8 can proceed by solving (0/00)logLc2(0) = 0 for the
PL approach and (8/87)logLc1(y) = 0 for the TS approach. Let Op, = (BiL,ﬁgL)T

T
and Y5 = (Bpg, Ving)” be the result estimators for PL and TS approaches, respectively.

Then its asymptotic covariance is determined by (2.9), yielding the asymptotic covariance
[Ei(ﬁ) for Bpy, :

Ip(B) = E{85%(8)/98"}-Di - ET{05:(8)/08"}
—E{@Szi(ﬂ)/OﬁT} : E_I{S%(ﬁ)sm(ﬂ)T} ) E{Szi(ﬁ)szi(V)T} Do - ET{asm(ﬂ)/aVT}
- [E{&SQZ-(B)/&@T} : E_I{Sm(/@)Sm(B)T} ) E{Sm(ﬁ)szi(’/)T} “Da - ET{OS%(B)/aVT}]T
+E{05(8)/ov"} - Dy - ET{95%(8)/ov"} (2.10)

where Dy = [B{S5(8)S(8)"}~ B{Sx(8) S (v)" }- B~ {5(0)Su0) "} B{S(0)Su(8)}]

—i
and D, = [E{Sgi(U)SQi(I/)T}—E{SQi<V)SQi(/B)T}'E_l{S2i(ﬂ)52i(B)T}'E{S%(/B)S%(V)T}} .
Moreover, for TS method, we can obtain Irg(3) by respectively replacing S9;(3), S2i(v)
and v into Sy;(8), Si;(v*) and v* in (2.10).

On the other hand, if nuisance parameter v is known, the estimation of the 3 parameter
can proceed by solving (0/08)logLec2(B3) = 0 for the PL approach and (0/08)logLc1(B) =
0 for the TS approach, respectively. The resulting estimator, denoted by B pr, and BTS

have the asymptotic covariance f;i(ﬁ) given by

Ip(B) = E[05:(8)/08"] - {E[S:(8)5x(8)"1} " - ET[05:(8)/08"], (2.11)

while INT_é(ﬁ) can be obtained by replacing Sy;(3) into Sy;(3).

To compare the efficiency of the PL estimators 8 pr, and B pr, one needs only to compare
Ip1(B) and Ipy(B). Similarly, comparison of Ipg(3) and I7s(B) indicates the efficiency of
the TS estimators Bp¢ and B,g. The difference in (2.10) and (2.11) quantify the amount
of additional variation induced in estimating parameter v that would be contained in the
asymptotic covariance matrix of the estimator for 3 if v were unknown. It is a common

conception that B pp and BTS are more efficient than B pr, and BTS, respectively. However,
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this is not obviously perceived from (2.10) and (2.11). In principle, the differences of (2.10)
and (2.11) depend on the model structures as well as the true value of relevant parameters,
agreeing with the discussion in Henmi and Eguchi (2004). To illustrate this, we conduct a

numerical study here.

To be specific, we consider the two scenarios. Scenario I assumes the same missing
data model as in Section 2.4.1, while in scenario I, we specify the missing data process as
ng-y = 1.5—0.5y;; —0.5R{; and n/I* = 1.5—y;;. Let avar(BjX) denote the asymptotic variance
of estimator BJX for parameter 3; (j = 0, 1), obtained from the X method, where X refers to
either the PL or TS method. Table 2.5 displays the relative efficiency of the estimators for
3 parameters that is defined as the ratio RX (3;) = avars(B]X)/avar(BjX) for j =0, 1, where
avars(ﬁA]X ) and avar(3:) are jth diagonal element of I, }(8) and Iy'(8), respectively, and
I, x(B) is similar to Ix(3) in (2.10) under the assumption some or all nuisance parameters
are unknown. All the entries for PL and TS are no bigger than 1, suggesting that the
involvement of unknown nuisance parameters in the estimation would reduce the efficiency
for B estimators. The more unknown nuisance parameters are involved, the larger efficiency
loss tend to occur for both PL and TS. Furthermore, the efficiency loss depends on the
model form as well. Under scenario I, the efficiency loss is less striking. But scenario II
leads to more substantial efficiency deduction which can be as high as nearly 20% for two
methods. It is also interesting to report that the efficiency loss induced from unknown
association parameters is null for TS and very small for PL, which is at nearly 1.5% in

Scenario II.
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Table 2.5: Efficiency comparison of the (3 estimators under various scenarios of unknown

nuisance parameters

Scenario 17
Nuisance Para. RfL (50) st (ﬁo) RfL (61) R;FS (61)

> 0; a X O

T x v v v 0.999  1.000 0.998  1.000
2y x 1.000  0.999 0.989  0.993
3 vV ovox 0.992 0.988 0.963 0.957
4 X X oW 1.000 0.999 0.987 0.993
5 X VX W/ 0.990 0.988 0.962 0.955
6 vVooX X/ 0.990 0.979 0.942 0.928
7 X X X 4/ 0.989 0.979 0.940 0.927
8 v v oV X 0.999  1.000 0.996  1.000
9 X X X X 0.988 0.979 0.939 0.927

Scenario 2
S 1;Tu1sance E\ara.{s RfL (50) RZS(B0> RfL (ﬁl) RZS (51)
O'y (81

I x v v V 0.985  0.994 1.000  0.990
2V x v 1.000  0.999 0.881  0.856
3 v Vv ox 0.994  0.988 0.960  0.955
4 X X oW 0.985 0.994 0.867 0.818
5 X VX W/ 0.975 0.978 0.959 0.937
6 vVooxXo X/ 0.993 0.987 0.854 0.824
7 X X X 4/ 0.975 0.978 0.832 0.773
8 Vv 4 X 0.997  1.000 0.984  1.000
9 X X X X 0.973 0.978 0.830 0.773

t Scenario 1 follows identical settings in continuous variable simulation study in Section 2.4.1. Scenario 2 involves
analogous settings in response and covariate processes, but the missing process has ngy =1.5-0.5y;; — 0.5R§3j7

nﬁz = 15 — yij-

x X and 4/ indicate the corresponding nuisance parameter is unknown or known,respectively.

Next, we are interested in assessing efficiency for estimators obtained from different
methods. Again, we consider the model settings in Section 2.4.1. To highlight com-
parisons on the B parameter, we assume all nuisance parameters are known for sim-
plicity. For the TS method, avar(57) is the diagonal element of [E{9S;(8)/08" }]7* -
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E{S1:(8)S2(B)"} - [E{0S1:(B)/0B"}]'T; for the PL method avar(BFr) is the diagonal
element of [E{0S4(8)/087 ™" - E{S5(8)S2(B)T} - [E{0S%(B8)/08"}]~'T; while for the
ML approach, avar(3)) is obtained from the diagonal element of [E{S(8)SF(8)7} 1,
where S¥(8) is the score function of B from the fully specified likelihood function. Let
Rurrirs(B;) = avar(BML) favar(B15), Rarr.pr(B;) = avar(BME) Javar(BF), and Rpr.rs(B;) =
avar(Bf Ly avar(BjTS ) (j = 0,1) be the relative efficiency for corresponding estimators. We

consider the case with a common exchangeable correlation coefficient p = ¥ = ¥ = p¥ =

T

pr.

We evaluate the relative efficiency of the PL and TS estimators with respect to the ML
estimator and display the result in Figure 2.1. As expected, both the PL and TS methods
incur efficiency loss. As the correlation becomes stronger, the loss of efficiency increases.
When the measurements are uncorrelated, the PL, TS and ML methods produce the same
asymptotic variance. In addition, the efficiency loss in using the PL method is less striking
than that incurred by using the TS method. It is noted that efficiency loss associated with
intercept [y is less profound than that for the covariate effect ;. To better visualize the
relative performance of the PL and TS methods, we show the relative efficiency Rpr.rs(5;)

(j =0,1) in Figure 2.2 as well.

0.90 0.95 1.00
I I I

Ratio

0.85
I

0.80
I

-0.4 -0.2 0.0 0.2 0.4
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Figure 2.2: Relative efficiency with respect to common correlation coefficient p. Rpr.7s(Bo) @ —

== Rprrs(f1) :

2.6 Sensitivity Analysis for Model Misspecification

The validity of the proposed method requires the correct model specification, and this
involves modeling of the response, covariate and missing data processes. Now we investigate

the impact of model misspecification on the estimation of the parameter .

If we apply a misspecified model to fit data, then the resultant estimator, denoted
by é*, for the parameter @ would converge in probability to a limit, say @*, which may
differ from the true parameter value 6. Specifically, let £*(8*) be the marginal or pairwise
likelihood function formulated from a misspecified model. Then according to the result in
Yi and Reid (2010), under certain regularity conditions, the limit 8" is the solution of

AlogL* (6"
Evx.n) {%TH} —0, (2.12)

where the expectation is taken under the true joint distribution for Y, X and R variables.
In most situations, equation (2.12) does not have an analytically closed solution. Hence

the relationship between 8 and 6 is frequently evaluated via numerical assessment. Now
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we undertake numerical studies by assuming the similar settings described in Section 2.4.1,

and focus the discussion primarily on parameter 3.

Firstly, to compare the robustness of the PL. method relative to the TS method, we first
consider the case that all the marginal models including response, covariate and missing
processes are correctly specified, but the association structures are misspecified. The true

correlation matrix for the response process

1 Y4k YV —k
wy‘i‘/{? 1 wy“‘/ﬁ: )
Wk Wts 1

is used to generate the data, but a misspecified correlation structure with common corre-
lation coefficient

Loy ¥

L E

(LI
is used to fit the data. Moreover, the covariate and missing processes are misspecified by
a common correlation coefficient but the true correlation matrix follows same form as the

respomnse process.

In Figure 2.3 we display the relative biases defined as (100 x (8* —/3)/5). It is seen that
for both PL and TS methods, the asymptotic relative biases for Sy and (3; are negligible,
showing that both approaches are robust to the misspecification of association structures

under current model settings.
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Figure 2.3: Asymptotic relative bias for regression coefficients By and B1 for PL and TS methods
when the association structures for the response, covariate and missing processes are all mis-
specified. The models for estimation involves common correlation coefficient. However, the true

correlation matriz for response process has the form in (2.13).

In the reminder of this section, we focus the assessment on the misspecification of
some marginal models. First, we consider the case that the marginal mean model for the
response process is misspecified but other processes are modeled correctly. In particular,
we generate data from the following two means models along with other models described
in Section 2.4.1: (1) pf; = Bo+ 1 Xij+ k- j; and (2) pf; = Bo+ B1Xij+ k- 235+ j. Regardless
of the true model, we always fit the data with the model in Section 2.4.1 where the mean
is specified as p;; = By + 51X;;. Figure 2.4 displays the asymptotic percent relative bias
against varying degrees of k. It is observed that when a specific term in response process
is ignored, the bias would occur. As expected, the stronger influence of the omitting term

on response, the larger the relative bias. Moreover, the PL and TS methods result in same
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bias patterns.
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Figure 2.4: Asymptotic percent relative bias for regression coefficients By and B1 when response
models are misspecified. The model for estimation is ,ui/j = fo + B1Xi;, while true models are:
,u?i’j = fo+ 1 Xij + k- j for mean model (1) and ,u?j = fo+ 1 Xij + k- Xij - for mean model (2),
respectively. PL method: == =; TS method:

Finally, we evaluate the impact of misspecifying the missing processes while the response
and covariate process are retained being correctly specified. True models of the missing
processes given by ngy = A + A X + AR, + kY and nf;x = \j + A X, + kY, are
particularly considered. But we fit data with models described in Section 2.4.1, where in
particular, the missing data models are nﬁy = N+ A X5+ M RE, and nft* = Nf+ A\ X5 In
Figure 2.5, we display the asymptotic relative biases for 5y and ;. Again, various patterns

of inflating biases are observed, and the PL and TS methods follow similar pattern.
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Figure 2.5: Asymptotic relative bias for regression coefficients By and B1 when the missing data
process is misspecified. The model for estimation is specified in Section 2.4.1, while the true model

18 ngy = )\g + )\‘;inj + )\ngj + kY , ng-x = N\j + AT X;j + kY. PL method: = = =; TS method:

Appendix A: Proof of Unbiasedness of Estimating Func-

tions

To show unbiasedness of estimating functions, it suffices to show that

§- Do ggl,xv)] o

Ey, x, rY r?|z,
=1

The proof of Ey, x, rv gz >, 0log Lo :(0)/06] = 0 follows analogously. Let
Kl,ij = ( ’ ijs ).f(X1j|sz)P(RZJ] = 1>Rf] = 1‘Y;]7X’L]7Z )
Kasy = [ {F0%1X0 21 (X120 PURY = 0.R = 1Yy, X, Z5) | Y5

K37ij :/{ ( | 55 ) (XZ]|ZZ])P(R% = 17RZ; :0|}/;]’le72 )}dija

and
Kagy = [ [ {000, 2 (X Z) PR = 0.y = 01y, Xs Z0) } aYigd X
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then we write

n

log L (y > {Ry Rilog Ky + (1 — RY) R log Koy

=1 j=1

—i—Rﬁ’j(l — Rj;)log K35 + (1 — Rﬁ”j)(l — Rj;)log sz-}. (2.13)

By the distinctness of the parameters in different processes, we have

- 810gK1,ij
Em,xi,Rﬁ',RﬂZ@-)<R%Rij—a/@ )

T alOgKl,i'
= Exiz) {E(Rf,Rfm,Xi,Z» (Riijzj—j) }

B
Olo i)
= Em,xizn{P(R% =1, RS, = 1Yy, Xij, Zij) gf (V| Xis )}.

B
Note that
Ky = [(Xijl Zig) - Boviixozm {P(RY = 0, RY; = 1Yy, Xij, Z) }
then for the second term in (2.13), we have
Ly

= Exiz) -Emxi,zi){E(Rg,Rfm,Xi,Zi)((1 - R%)R%%g_?w) H

= Ex,z) _E(Y;.'Xiyzi){P(jo — 0, R, = 1|V, Xyj, Z; )<8lo§§2,z‘j>}]

= Ex,z) :{E(mxi,zi){P(R?j =0, R}, = 1Yy, Xy, Z )}} y K;j " 3.;(;;]

1 8K2’Z-j }

N E(Xi|Zi){f(Xij‘Zij) o8 (2:14)
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By the distinctness of the parameters in different processes, we have
8K2,ij _ / af(}/w ‘Xij, Zz])
o o

_ / dlog f(Yij|Xij. Zij)
op

= f(XilZij) - Exviixi,2:) {

(Xij|Zij) P(R}; = 0, Rj; = 1]Yi;, X5, Zz’j)} dY;

F (Vi X2 Z) £ (Xi3|Z) P(RY, = 0, RS, = 1|Yij,xij,zij>} av;,

Olog f(Yij| Xij, Zij)
B

P(R?j =0, R}, = 1|Yij, X5, Zi )}

therefore, (2.14) becomes

dlo iy
Em,XAZi){P(R?j=0,R§§:1|YZ],XU,Z) g f (Y| Xy )}.

e
Analogously, for the third and fourth terms in (2.13), we obtain
O0log K. iq - dlo 17
E(%) = E(E,Xdzi){P(R?j = 17Rij = 0|Y;]7X1WZ ) gf( 8ﬂ| : )}7
and
Olog Ky ;; . dlo it
E(%) :E(i/i,XAZz‘){P(R?j :OaRij :O|Y1J7X1J7Z ) gf( (9,3‘ . )}a

where the expectation “E” is evaluated with respect to the conditional distribution of
(Y;, X, R!, RY) given Z;.

Then combining these results leads to

E{Zé)logﬁc“ /3,8} ZZE(YX|Z){8Ing( i1 Xij, Zi5)/08} = 0.
i=1

i=1 j=1

Appendix B: Asymptotic Distribution for B PL

We sketch the proof of the asymptotic distribution for ,@ pr, and the asymptotic distribu-
tion for Bpg follows similarly. Appendix A shows that E{S(8)} = 0. Apply estimating

function theory leads to the asymptotic distribution
Vi(Opp —6) —p N(0,{E(D:)} " E{5(6)52(6)" HE(D,)} ™). (2.15)
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Rewrite 8 = (BT, V)T and S5i(0) = (S9(B)7, Sas(1)T)T, yielding
T
B(Dy) = & 05808 05x(B)/0v"
(9521(1/)/86T 8521‘(1/)/81/T
and

E{S55(6)5(0)"} = E ( S2:(8)S2:(B)T  S9i(8) S (V)T ) |

S5i(1)S2i(B)" Sai(v)Sai(v)T

Using (2.15), we obtain the asymptotic covariance matrix for /n(8p, — B8) using the

left-upper block matrix from

. » 85’21' 8521‘
g1 ( asaﬁ(Tﬁ) S%V(TB) )E ( S2i(B)S2:(B)T  S2i(B)Sai ()" ) E1 ( a,e(Tﬂ) 8V(TB) )

3?5&”) a‘gfj(T”) SQi(V)SQi(/@)T SQi(V>S2i(V)T &Zzgy) 822,,1'(;)
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Chapter 3

Analysis of Longitudinal Binary Data
with Missing Response and

Covariates

3.1 Introduction

To provide a complement of Chapter 2 which focuses on continuous responses, we address
the analysis of longitudinal binary data with the composite likelihood method. The re-
mainder of this chapter is organized as follows. Section 3.2 introduces notations and the
model setups. Inference methods are presented in Section 3.3. In Section 3.4, we analyze
the National Population Health Survey (NPHS) data with the proposed methods. To eval-
uate the performance of the proposed methods, we conduct various empirical studies and

report the results in Section 3.5. Concluding remarks are given in Section 3.6.
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3.2 Model Formulation

3.2.1 Response Process

Suppose that there are n subjects and m assessment times. Let Y;; be the binary response
variable, and X;; be a covariate vector for subject i at occasion j. Both Y;; and X;; are
subject to missingness. For ease of exposition, here we consider the case that X;; is
a scalar. An extension to multiple covariates X;; is discussed in Chapter 6. Let Z;
be a vector of covariates that have complete observations. Let Y; = (Yi1, Yio, ..., Yin)T,
Xi= (X, Xio.. ., Xo) T and Z; = (Z1, 7L, ..., ZT T,

To model the relationship between the response and the covariates, one may attempt to
fully specify a distributional form for P(Y; = y;|X;, Z;), where y; is a binary vector. How-
ever, this could be difficult in many situations, especially when the dimension m is large.
Moreover, fully modeling a multivariate distribution can introduce considerable compu-
tation cost (e.g. Ochi and Prentice (1984)). To protect against model misspecification

and ease computation, we consider a pairwise modeling strategy. First, we introduce some

notations. For a given 2 X 2 correlation matrix

I v
v = ,
V12 1
let ¢2(z;v) be the probability density function for a bivariate normal distribution, given
by
1
O2(z;v) = (2m) [T exp (= 52"V ),

where z = (21, 29)7. For u = (uy,uz)?, let ®y(u;v) denote the corresponding bivariate

cumulative distribution function:
ug ul
Oy (u;v) = / / ¢o(z;v) dzydzs.
—00 —00

Now we consider bivariate probit models for paired responses Y;; and Yi, j < k, @ =
1....

, ,n. Namely, we set

P(Vy = 1Ya = 1] X, Z) = & (s S(040)). (3.1

ijk
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where 0y, = (1, ;)" is the linear predictors, and X(¢};,) is a 2 x 2 covariance matrix
with diagonal elements 1 and correlation coefficient 1/13]. - Requiring the diagonal elements
of B(¢)7;,) to be 1 is to ensure model identifiability (e.g., Renard et al. (2002) and Roy and

Banerjee (2009)).

To make modeling more parsimonious, we further consider a regression model to reflect

the dependence of n;yj on the covariates at occasion j :
77%’]- = XijB: + Z§ 2
where 8 = (8., BL)7 is a vector of regression parameters linking the covariates and the
response. With this step, it is immediate that
P(Yi; = 1|X;, Z;) = ®1(nf)), (3.2)

where ®;(u;) represents the cumulative distribution function for the standard normal dis-
tribution N(0,1), i.e., ®1(w1) = [ ¢1(21) dzy with ¢y (21) = (2m) "2 exp (— 27/2).

Analogous to a transformation discussed in (Hawkins, 1989), we model correlation

coefficient w?jk with a regression model

1497
log (#) = WY (Y wl)y), (3.3)
- Yijk

where ¥ is the vector of regression coefficients, w;?’jk is a vector of covariates, and hY is
a known function that takes values over the entire real number line. For instance, setting
hY (¥, ijk) to be a scalar ¥ leads to an exchangeable correlation structure, while taking

Lt [{exp?) — 1) o) + 1]
= [fexpw) 13/ fepter) + 13]

results in an AR(1) correlation structure. An obvious advantage of (3.3) is to provide

R (BY; wi,) = log

ijk

a reparameterization for correlation coefficient wfjk, so there is no need to impose any
constraints on parameter Y. Moreover, (3.3) enables us to describe complex dependence
of association structures on covariates by specifying different forms of the hy(ll)y;w?i’jk)

function, such as a linear function h¥(p?; w?,,) = (wl;, ) .
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3.2.2 Covariate Process

By analogy, to postulate the covariate process, we do not attempt to specify the full distri-
bution with probability density (or mass) function f(X;|Z;) (or P(X; = x;|Z;)). Instead,
we focus on specifying a pairwise distribution to gain protection from misspecification of

higher order structures. If X;; is binary, we consider for j < k,
P(Xiy =1, X = 1| Z3) = 02 (mis B0, (3.4)

where 0} = (7723’ n& )T, and a regression model is applied to reflect the dependence of i
on the covariates Z;
= Zie, (3.5)

with a being the vector of regression parameters. It is immediate that

P(Xi; =1 Z;) = ©1(nj). (3.6)

Following the same spirit in response process, correlation coefficient ¢77, is modeled as

1+9F

log | ——2% | = h"(¥"; wiy), (3.7)
1- zyk !

where * is the vector of regression coefficients, Wi is a vector of covariates, and h* is a

specified function.

If X;; is continuous, a bivariate normal distribution can be an option to postulate paired
variables X;;, = (Xi;, X;)T. That is, conditional on Z;, assume X;;; has the probability

density function

Jo(@ijis i, (02, V)

— 1 xT x — x
= (2m) 1|E( Ogs Uk)| 12 exp{ - §($ka - F"ijk)Tz(Uza z‘jk) l(l"z'jk - Mz‘jk)}a (3-8)

where i, = (zij, zir)", wiy = (1, 1), and B(o2, 47, ) is a 2 x 2 covariance matrix with

diagonal elements being o2 and the correlation coefficient being 1%, . It is noted that Wi

ijk*
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2

and o

are the conditional marginal mean and variance of X;; given Z;, respectively. By
analogy, uf; and ¥, may be respectively modulated as (3.5) and (3.7). More generally, a
bivariate skew normal distribution can be employed to model non-normal X;;;, for greater
flexibility. Properties of this type of distributions are discussed by Azzalini and Capitanio

(1999).

3.2.3 Missing Data Process

Let Rfj = 1 if Yj; is observed and 0 otherwise. Let Rfj = 1 if Xj; is observed and 0
otherwise. Denote RY = (RY,RY, ..., R )T and R* = (RY,R%,...,R%,)T. For the
missing data process, we follow the same lines to postulate pairwise models. In particular,
we only model P(R); = 1, R}, = 1|Y;, X;, Z;, R, Rf,) and P(R; = 1, Ry, = 1Y, X;, Zy),

which uniquely determine the distribution P(R}; = 1, R}, = 1, Rf; = 1, Rj, = 1|Y;, X;, Z;).
Specifically, for j < k, the pairwise model is specified as

P(Riyj = 17R§‘Ik =1V, X;, Zi, R}, Ryy,) = (IDQ("?E%; E(p?iij))a

% R

and
P(Rj; = 1, Ry, = 13, X;, Z;) = @2(nflf; S(pf), (3.9)

Ry Ry

R €T T L

, and the regression models
R T
Uijy = ?Z
and
Rx AJ?T x
My = €z’j
can be introduced to reflect the dependence of (ngy, ngx) on response and covariate vari-

ables, respectively. A = ()\yT, )\xT)T are the regression parameters related to the missing

data process, and &7; and &j; are subsets of {Yi;, Xy, Zi;, Ri;} and {Yj;, Xij, Zi;}, respec-

tively. Similarly, the correlation coefficients pi."jk and pjj;. can be modeled as
L+ pfy,
e (1222) oty
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and

1+ pF,
o (02 ) < i

respectively, where p¥ and p* are the vectors of regression coefficients, lek and W,Lj L are
subsets of {Yy;, X, Zij, Ri;} and {Yy;, Xij, Zi;}, respectively, and h™ and h'™ are given
functions. It is immediate that

1 1
P(RY, =1,R; =1Y;, X;, Z) = Y Y P(RY, =1, Rl =l R = 1, Ry, = i |Yi, X,, Z,).
rk ()rk =0

(3.10)

3.3 Estimation and Inference

3.3.1 Marginal and Pairwise Likelihoods

Let v = (87, a”, A")T be the parameters associated with the marginal structure, and § =
(d)yT,lme, pyT, pzT)T be the set of parameters which governs the association structure in
the pairwise models. For ease of exposition, we only consider the case with binary variable
X,; for the covariate process. With a continuous X;;, modifications in the exposition are

immediate by changing the probability mass function to the probability density function

(Y2, i),

can be null, depending on whether or not y;; is observed.

and replacing the corresponding summation with an integral. We put y;; =

S mzs

where either y"b and y;7

_ obs ,.mis
Similarly, write z;; = (2%, [*).
First, we temporarily assume an independence structure among the response compo-
nents, and denote

1 1

Lovi(y H{ DD Py =yl X, Zy)P(Xy = 14| Z)

j=1 yznzs 01‘?”3 0

X P(RY =1l Yy = 15 |Vig, Xij. Zi) }

177
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as the observed likelihood contributed by subject i, where the probability mass (or density)
functions are determined by (3.2), (3.6), and (3.10). For j < k, let

ﬁCQ,i(PYa - H { Z Z = Yij, szz - yzk’Xzy sz) Zz]a Z )

mis mis mis mis
‘7<k sz Yik Izg Lok

XP(Xij = %‘j,Xk = %k’ z]aZik)
X P(RY =14, By = 1, R = v, B, = ri Vi, Yo, Xij, X Zij, Za) }

75 zg’

be the observed pairwise likelihood contributed from subject i, where the probability mass
(or density) functions are determined by (3.1), (3.4), and (3.9). Then the marginal likeli-

hood and pairwise likelihood are respectively given by

Loi(y Hﬁcu (3.11)

and

Loy, 0 HEC’Qz v,0 (3.12)

3.3.2 Inference Procedures

Let 8 = (47,67, Sy, = 0log Lo1i(7)/07, Saiy = 0log Loni(7y,8)/07, and Sy s =
O0log Looi(7y,0)/068. Define H; = (SITW, SQTM)T7 and Sy; 9 = (S,

3inS%:.5)" . We employ two

approaches for the estimation of €: the pairwise likelihood (PL) approach and the two-stage
(TS) estimation.

Pairwise Likelihoods

Estimation of @ can be carried out using the Newton-Raphson algorithm. Let 6
(7T® §TNT denote the estimate at the tth iteration. We update the estimates of @ by

the iterative equation

(t+1) ( ) n
(guﬂ) ) ( 50 ) {ZD (0) } A Su00™}, t=01,..
i=1

69



until convergence, where D; = 0Sy;9/00" . Let 0p, = (35, 5, pr)] denote the convergence
value. Using estimating function theory, it can be shown that under regularity conditions,

\/ﬁ(é pr, — 6) has an asymptotic normal distribution with mean 0 and covariance matrix
{E(D;)} " E{S2i685 o HED:)}

Two-Stage Algorithm

For the ease of computation, we describe a two-stage estimation algorithm. In the first

stage, we estimate the marginal parameter v based on Sy, using the iteration equation

AU = {Zasm )y JoyT } 1.{271:311,7(7@)}, t=1,2,...
=1

where () represents the estimate of 4 at the tth iteration. Let 4,4 denote the estimate

of v at convergence.

In the second stage, we use Sy; 5 to estimate the association parameter § by fixing + to

be 4,g. Specifically, we update the estimate of § by the iteration equation:
n 1
5(t+1) :6(t) - {ZaSQi,(s(ﬁ/TSv /aéT} {ZSQZE 7TSv )}a t= 1727"'7
i=1

where 8® represents the estimate of § at the tth iteration. Let d7g denote the es-
timate of & at convergence, and let Org = (’yTS,(STS) . Under regularity conditions,

\/ﬁ(éTs — 0) is asymptotically normally distributed with mean 0 and covariance matrix
{E(D)} 1 E{HHT}[{E(D;)}]", where

D — (9811-,7/8'); 0
‘ @Sgi’(s/a"}’T 882@5/8671 .

The proof is sketched in the Appendix.
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3.4 The NPHS Data Sample

We apply the proposed methods to analyze the NPHS data of 1394 males who were assessed
for 6 cycles. At Cycle 1, the individuals’ age ranged between 50 and 70. At Cycle 6 all the
subjects were under age 80. All the deceased subjects were excluded from the analysis. The
response of interest is the indicator of normal Health Utilities Index (HUI) Mark versus
abnormal Health Utilities Index Mark measured at each cycle, where 0.89 was taken as
a threshold value. Meanwhile, covariate measurements describing participants’ provincial
level of household income (INC) were also taken. The income covariate was obtained by
classifying the provincial level income (ranging from 1-10) as high or low, where 5 is a cutoff
point. One objective of the study was to investigate how an individual’s health status was
associated with his/her income, and whether or not there was a temporal effect on health.
Let the binary response variable Y;; equal to 1 if the ¢th individual has HUI score higher
than 0.89 at time j, and 0 otherwise; let X;; equal to 1 if the 7th individual has INC higher

than 5 at time j, and 0 otherwise.

In the data set, only 43.2% of the individuals have complete observations for both
response and covariate in all the 6 cycles. The response missingness proportions for the
6 cycles are 5.3%, 8.9%, 11.9%, 16.8%, 22.3%, and 25.6%, respectively, while the INC
covariate missingness proportions are 8.7%, 13.2%, 17.1%, 24.0%, 29.0% and 33.4%, re-
spectively. Various types of missingness patterns are present. A sample of missingness

patterns is displayed in Table 5.1.

71



Table 3.1: Missing data patterns for the HUI and INC variables in the NPHS data (%)

HUI INC
Percentage

1 2 3 4 5 6 1 2 3 4 5 6

43.2% v v v v Y v v v
4.2% vV X X X X X vV X X X X X
2% v v Vv v v Y v X v v v Y
1% v vV v vV X V v v v v x V
1% X v v v v V v v v v v

v Observed; x Missing

We assume that response and covariate processes followed marginal structures

77% = Bo + 51 Xij + B2 Zij, (3.13)
and
ny; = Qo + a1 2y, (3.14)

respectively, where Z;; = j is set to be —2,—1,0, 1, 2, 3, corresponding to Cycle 1 to Cycle
6.

The marginal structures of missing data processes were specified as
mY = N+ MYy + MX; + MRS+ N Zy, (3.15)
and
nit = N 4 MYy + A Xy + A2y (3.16)

To complete pairwise modeling, we used an AR(1) correlation structure for paired variables
at times j and k for the response, covariate and missing data processes. Thus, for the
models described in Section 3.2, we had the association parameters ¥, p*, p¥ and p* for

response, covariate and missing models, respectively.
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We analyzed the data using the PL and TS methods. As a comparison, we employed
a naive approach that is often used by analysts to handle data with missing observations.
That is, we applied the generalized estimating equations (GEE) method to the complete
data only, and denoted this method by NGEE. The correlation structure for the NGEE
method was set to be unstructured. Tables 3.2 and 3.3 record the analysis results. For
the response model in Table 3.2, the PL. and TS approaches suggest that income has a
significant positive effect on health index. People are more likely to have a better health
status if they have higher income. There is no evidence of temporal effects on health status.
The analysis results suggest a positive pairwise correlation among outcome measurements.

The naive GEE approach indicates the same nature of findings.

Table 3.2: Analysis of the NPHS data using the pairwise likelihood (PL), two-stage esti-
mation (TS) and naive GEE (NGEE) methods: response models

PL TS NGEE
Parameter Estimate SE p-value Estimate SE p-value Estimate SE p-value
Intercept  (Bp) 0.351 0.039 < 0.001 0.328 0.037 < 0.001 0.405 0.032 < 0.001
INC (81) 0.355 0.041 < 0.001 0.410  0.057 < 0.001 0.238 0.037 < 0.001
(B2)
)

-0.014 0.010 0.148 -0.012  0.011 0.282 -0.016  0.009 0.086
1.873 0.065 < 0.001 1.811 0.073 < 0.001 - - -

Cycle

Association (Y

For the covariate model of household income in Table 3.3, the PL and TS methods
indicate different estimate results. The PL method suggests a negative temporal effect
on the income, whereas the TS approach does not find a significant temporal effect on
the income. For the missing data processes, although the PL and TS approaches produce

estimates with different magnitudes, they suggest similar nature of the estimates.

73



Table 3.3: Analysis of the NPHS data using the pairwise likelihood (PL) and two-stage es-
timation (T'S) approaches: results for parameters associated with the covariate and missing

data processes

PL TS
Parameter Estimate SE p-value Estimate SE p-value
Covariate (INC) Model
Intercept (cp) -0.023 0.044 0.599 0.291 0.051 < 0.001
Cycle (a1) -0.122 0.011 < 0.001 -0.020 0.029 0.481
Association (Pp*) 2.626 0.087 < 0.001 2.094 0.173 < 0.001

Response Missingness Model

Intercept  (A\y) -0.318 0.108 0.003 -0.131  0.160 0.411
HUI (AY) 0.110 0.158 0.486 -0.277  0.169 0.101
INC (A\y) 0.075 0.085 0.377 0.055 0.098 0.579
Cycle (Af) -0.071 0.016 < 0.001 -0.072  0.016 < 0.001
Ry (A\}) 2228 0.061 < 0.001 2.371  0.075 < 0.001

Association (p¥)  1.626 0.140 < 0.001 1.587  0.109 < 0.001
Covariate Missingness Model
Intercept (AF) 0.755 0.085 < 0.001 2.609 2.262 0.249

HUI (A\f) -0.014 0.071 0.838 0.085 0.112 0.447
INC (A%) 0439 0.208 0.035 -2.102  2.355  0.372
Cycle (N%) -0.165 0.011 <0.001 -0.243 0.022 < 0.001
Association (p*) 1.977 0.086 < 0.001 2379 0.095 < 0.001

3.5 Empirical Studies

3.5.1 Performance of the Proposed Methods

In this section, we assess the empirical performance of the proposed methods through
simulation studies. Five hundred simulations are run for the parameter configuration con-
sidered. We take a setting with m = 3 and n = 500, and simulate longitudinal binary re-
sponses from the joint distribution P(Y;; = 1,2 = 1,Yis = 1| X;) = O3((n}1, 0, ni5) 5 ),
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where @5 is the cumulative distribution function for a trivariate normal distribution that is
defined similarly to ®; in Section 3.2, and ¥ is a correlation matrix with an exchangeable

correlation coefficient 1¥:

L yp¥ oY
S=| gv 1 g
(UL

The regression model linking n;yj with covariate is specified as
ni; = Bo + B1Xi,
where we set 5y = —0.5, 1 = 1 and ¥¥Y = 0.9.
Analogously, missingness-prone binary covariates X;; are generated from P(X; =
1L, Xp=1,X;3=1) = ®3((nh,n%,n%)T; %), where we set
77?} = (v,

and X" takes the same form as X, except that Y is replaced by ¥*. We take oy = 0.25
and ¥* = 0.5.

The response missingness process is generated similarly using P(RY, = 1, R, = 1, RY; =

1Y, X, RY) = <I>3((7]§y, ngy, ngy)T; Y1) where we specify

meY = N+ Yy + MRE,

and L7 takes the same form as ¥ except that ¥ is replaced by pY. For the covariate
missingness process, we generate Rj; using the distribution P(Rj; = 1, Rj = 1, Rjz = 1 |

Y;, X;) = ®3((nfe, nke nf*)T, 287) where the marginal regression model is
mi = A5+ ATV,

and X7 takes the same form as ¥ except that ¥ is replaced by p®. The true values for

the regression parameters in the missing-data processes are set to be A\j = A\§ = —0.5,
A = A7 =15, \ = —0.5 and p¥ = p* = 0.5.
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We assess the performance of the PL and the TS approaches in contrast to the naive
method NGEE, described in Section 3.4. In the NGEE approach, all incomplete observa-
tions are ignored and only the complete data are used for the estimation. We report the
results in Table 3.4, where “bias” represents the percent relative bias, “ASE” and “ESE”
are the average of model-based and empirical standard errors, respectively, and CP% repre-
sents the empirical coverage probability for the 95% confidence intervals. The results show
that our PL and T'S approaches yield small biases and satisfactory coverage probabilities
for both the mean and the association parameters. ASE and ESE agree reasonably well for
the PL and the TS methods, suggesting the consistency of variance estimates. The NGEE
method, on the other hand, yields remarkably biased results.
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3.5.2 Sensitivity Analysis

Now we evaluate the sensitivity of our methods. In particular, we consider the case that
the marginal structures for missing data processes are misspecified, while the association
structures of the missing models are correctly specified. The response and covariate pro-
cesses are retained to be correctly specified, as described in Section 3.5.1. To be specific,
we generate the missing data indicators from the model with the true marginal structures
ngy = N+ Myij + MR}, + Ky, and /i = A + Xy; + ka5, but we fit data with models
described in Section 3.5.1 with ngy = N+ Myi; + M RY and 9" = A\§ + Ayy;.

Under model misspecification, the resultant estimator for the parameter 6, denoted
by é*, would converge in probability to a limit 8, say. This limit 6" is, under certain

regularity conditions, the solution of

(3.17)

0log L*(0*
E(Y,X,Ry,Rz\z) {—g ( )} =0,

00"
where the expectation is taken under the true joint distribution for the (Y, X, RY, R*)
variables given Z, and £*(6) is the marginal or pairwise likelihood function formulated
from the misspecified model (Yi and Reid, 2010).

In our analysis here, (3.17) does not have a closed form solution. We use numerical
approximations to display the asymptotic relative biases, defined as (100 x (5* — 3)/3),
against varying degrees of k. The results are shown in Figure 3.1. It is seen that when
a specific term in missing data process is ignored, the bias may occur. As expected, the
stronger influence of the omitting term on the missing process model, the larger the relative
bias. While the PL and TS methods show similar trends in bias, the PL. method tends to
produce smaller bias than the T'S method.
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Figure 3.1: Asymptotic relative bias for regression coefficients By and (31 when the marginal
structures in missing data process are misspecified. The model for estimation is specified in
Section 3.5.1, while the true model is nﬁy =N+ Ny + )\ngj + Kkxij, ngm = Aj + A{yij + kxij.
PL method: == =; TS method: —.

3.5.3 Efficiency Assessment

We are also interested in assessing the efficiency of the estimators obtained from the PL
and the TS methods. This assessment is carried out as opposed to the maximum likeli-
hood (ML) method. We consider the model setting in Section 3.5.1, but set a common
exchangeable correlation coefficient p = ¢¥ = ¢* = p¥ = p”. To highlight comparison on

the B parameter, we assume all other nuisance parameters are known for simplicity.

Let avar( Af L) denote the asymptotic variance for the estimator of 3; obtained from
the PL method. It is calculated by similar approaches in Section 3.3, with all nuisance
parameters set to be fixed. Analogously, we obtain the asymptotic variance avar( AlTS ) for
the estimator of 51 obtained from the TS approach. Let avar( A{‘“) denote the asymp-
totic variance of the estimator for 8; obtained from the maximum likelihood method, i.e.,
obtained from the diagonal element of | E{SI(3)SF (B)T}] B evaluated at the maximum
likelihood estimate, where S¥(3) is the score function of B from the fully specified likeli-
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hood function. Then, the relative efficiency of the PL estimator with respect to the ML
estimator is given by avar(4ML) /avar(3FL), and the relative efficiency of the TS estimator

against the ML estimator is given by avar(3ML) /avar(5TS).

Figure 3.2 shows that the PL and TS methods incur different degrees of efficiency loss.
When the measurements are uncorrelated (i.e. p = 0), the PL, TS and ML methods pro-
duce the same asymptotic variance, as shown by the peak of the curves. As the correlation
becomes stronger, the efficiency loss increases. It is seen that the efficiency loss in using
the PL method is less striking than that incurred by using the T'S method.

Ratio of Efficiency
08 088 090 092 094 09 098 100

Figure 3.2: Relative efficiency of estimators for B1. The TS method: ; the PL method:

Appendix

To show the asymptotic distribution of our two-stage approach, we proceed with two steps.

First, we show E(H;) = 0, and then we derive the asymptotic distribution.

30



The proof of £(H;) =0

To show E(H;) = 0, it suffices to show that E{> " dlog Lc1:(7v)/08} = 0. The proof
for other elements in H; follows analogously. Let

159 <Ny

Ky = f(Yij| Xy, Zi) f(Xij| Zig) P(RY; = 1, Ry = 1|Yiy, Xy5, Zij),

KM_Z{f Xy, i) f(Xig| Zig) P(RYy = 0, RS = 1Yy, X, Z4) |,

IR
zg—o

]

Kov= 3 { £Vl X Z0g) F (X Z2) P(RY, = 1, R = 01Yig, Xij, Zig) |
X;;=0

and

Kip= Y. Z{ (Vig| Xigs Zig) (X 22 P(RY, = 0, RSy = 0Yig, Xi5, Z) }.

g
Yij=0 X;;=0

then we write

log L (y Z {Ry R log K45 + (1 — RY;)Ri; log Koy
i=1 j=1

+RY;(1 — Rj;)log K345 + (1 — Rj;)(1 — Rj;) log Kéw}. (3.18)

By the distinctness of the parameters in different processes, we have

- GlogKu ;
By, X, RV, R212) (R%Rij —5 )

B
= E(Yi,XiZi){P(Rf-’j =1, R = 1|Yy;, Xij, Zi )8logf( a\ﬂ i) )}‘
Note that
K5 = [(Xijl Zig) - Brvijx,z { P(RY = 0, Ry = 1Yy, Xij, Z35)
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then for the second term in (3.18), we have

;v 810gK2 ii
Em,xi,Rf,Rﬂzi){(l - Ry RG— 57 }

op

_ - alOgK id
= E(Xi|Zi) E(YiXi’Zi){E(RZ-J,RﬂYi,Xi,Zi) ((1 _ RZ)RUTQ,]) }:|

: 810 K ii
~ By | By { PR = 0, = 173, X5, 2,) (225520

: 1 0K ;i
~ Boaiz) {E(Y;|Xi7zi){P(R§/j - O’Rfj = 1|Y;J7Xz]aZ )}} - Ko 5 X 0;]}

L -

1 OKQ,-}

- s B | 3.19

By the distinctness of the parameters in different processes, we have

1

0K i ( 17 x
—ag’] = > { ’5] ) F(Xi|Zig) P(R; = 0, B = 1Yy, Xij, Zi )}
Y;;=0

1
alogf( | 7 ) T
- YX::(){ B : F(Yi| Xij, Zij) f (X351 Zij) P(RY; = 0, Ry = 1|Yiy, Xij, Zij)

Olo it
= f(Xz'j|Zij)'E(Yi|Xi,Z,-){ 8/l Xy

) x
op P(R%:O,Rz’j:HYWXU’Z )

therefore, (3.19) becomes

810 R
E(Yi,Xilzi){p(joZQ,R%:HY”,XU,Z) gf(aﬁ| J )}.

Analogously, for the third and fourth terms in (3.18), we obtain

log K log f (Y1 Xi5,
E(M):Em,XAZi){p(jo:1,33:011@],&],2)a o8 Jl Xy )},

B B
and
alOgK4,ij - y z alogf(Yw| ijs )
E( a/@ > - E(Yi,Xi|Zi){P(Rij - 07 Rij - O’Y;J’XU? Z ) 8ﬁ }7
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where the expectation “E” is evaluated with respect to the conditional distribution of
(Yi, Xy, RY, RY) given Z;.
Then combining these results leads to

n

E {Zalog 501,1(’7)/55} => Y Ey,.x,z) {0log f (Y| Xy, Z;5) 08} = 0.
=1

i=1 j=1

Asymptotic Distribution

- T
An alternative to obtain the estimator 875 = (g, d7g)" is to employ the joint iterative

equation to update the estimate:

(t+1) (t) n . on
( g(t+1) ) - ( Z(t) ) - {ZD?(V(t):é(t))} 1 : Z {Hz‘(‘)’(t),(s(t))}, (3.20)
i=1

=1

At each iteration, the update obtained from (3.20) may differ from that obtained from
the two-stage algorithm. However, updated values from these two procedures converge to
the same limit under mild regularity conditions (Prentice, 1988). When the algorithm in
(3.20) reaches convergence, the n=' > " | H,(0r5) = 0 condition will be satisfied. Then

the mean-value theorem gives
! iH-(G)Jr{liD*(é)}(é —0)=0 (3.21)
n £ 7 n - i TS — Y .

where 0 is a value “between” the true value 6 and éTS.

Multiplying /7 and solving for \/n(67g — 6) gives

NG - —{% > D;(é)}_li S Hi(0). (3.22)

=1 i=

Under regularity conditions, the property E(H;) = 0 ensures that Ors —p 0. Because
0 lies between 6 and QTS, it will also be consistent to 6. Then the first term in (3.22)
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is consistent to [F(D?)]™! if matrix E(D}) is nonsingular. On the other hand, the cen-
tral limit theorem implies that the second term in (3.22) has the limiting distribution
N(0, E{H,;H'}). Therefore, it follows from the Slutzky theorem that the asymptotic dis-

tribution for \/ﬁ(éTS — 0) is a normal distribution with mean 0 and covariance matrix

{EMD))} E{HH] H{ED;)} .

Some Computation Details

Here we present some derivatives that are used in the implementation of our methods. Let

Al = Z Z { _meZk _yzk’szsz:Zsz )p<ij :xijaXik :xzk’ZZ]7Z )
yZZLlS’y:fLZS 'Z";Lls 77LZS
XP(Ry _Tprx = zijka: = g'JkaRfk :Tzk| ”LJ?YikvX%mX ZZJ7Z )}7

and

A2 = lOgP(Y yzm}/zk_yzﬂ i zk;ZZJvzk)+1OgP(Xij :x’ij7Xik :ZEZklZU,Z )
+log P(RY; = 1, Rj; = 1, R}, = = 11Y};, Yir, Xij, Xik, Zij, Zix),
then log Lc2,(0) in (3.12) can be rewritten as
log L2:(0) = Z I(r i+ iy, < 4)log Ay + I(r); +ri5 +rj + 1 = 4) Ag,
j<k
leading to the score function

1 0A,
A, 06

0A;

dlog Ecg i 2
00’

Z[T iy i < 4)—

i<k

+I(r i + i+ i = 4)
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where

0A
8_01 == Z Z { ymaY;k*yzk‘leaszvzmaZ )}
ZJZ7"}’7L'L.57 ”LITLZS mzs mlS
P(ij - xijka - xzk| iJs sz)
P<Ry _T;UWRZ = zJ’R?k = zykvak :Tzk‘YZJ?Y XZJ,X”C,Z”,Z )
0
‘f‘P(}/z:ysz yzk| i Zk)ZZ]7Z ) 8_0{P<Xij:xiijik:xzk‘Zsz )}
P(Ry _T%,Rm = U’Rf’k = ?kaRfk _le‘ z]yY;kaXiﬁXikaZmaZ )
+P(Y;‘j:yij7Y;k yzk| i) z/mZZ]?Z ) P(Xij:$ij7X $2k|ZZ]’Z )
9 .
g { PR = vl R = v RY, = v, Rl = v Y, Yie, Xig, Xows Zigs Za) } .
and
9A, %{P(K‘ = Yij, Yir = Yin| X Xiw, Zij, Zin )} . a%{P(Xij = @ij, Xik = Tik| Zij, Zin )}
00 B P<Y —yszzk yzk| K zk)ZUuZ ) P(XZ] :xij7Xik :Ilk|ZZJ7Z )
{P(Ry *szngx - 217Rfk7 ik fk*ﬁk’ ij> Yiks Xijs Xiks Zijs Zik >}
+
P<Ry _szijx _vaRiJk = iyk;szk _Tzk| l]? XU?‘XZ’“?ZU’Z )

Similarly, we can work out the second derivatives:

02108 Loo.(6) 1 9A, (9ANT 1 A
3 4 s = .
90007 ;I T T TR T < 4) A2°90 { 90 } A, 00007
5.A2
—{—[(r + 7“ s rzk + 5 =4) (&O—&BT) .
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Chapter 4

Simultaneous Methods of Variable
Selection and Estimation for

Longitudinal Data Arising in Clusters

4.1 Introduction

In longitudinal studies, datasets can involve a large number of covariates. However, not all
of them are relevant to explain the response variable. Properly selecting variables to build

a feasible model is important for valid inference.

Many studies on variable selection methods focus on the analysis of univariate data. The
methods include the best subset selection (Akaike, 1973; Schwarz, 1978), stepwise selection
(Yan and Su, 2009), and shrinkage methods (Frank and Friedman, 1993; Tibshirani, 1996,
2011). However, relatively limited work has been done for longitudinal data arising in
clusters. Fan and Li (2001) propose a variable selection approach by imposing the smoothly
clipped absolute deviation (SCAD) penalty on log likelihood for generalized linear models
on independent data. Fan and Li (2004) discuss a variable selection method based on

semiparametric model for longitudinal data. However, their methods ignore the correlation
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in longitudinal data. Ni et al. (2010) study the model selection methods for both covariates
and semiparametric components under linear mixed effects models with a double penalty
strategy. Bondell et al. (2010) and Ibrahim et al. (2010) discuss double penalty ideas for

the selection of both covariates and random effects via the EM algorithm.

A challenge on handling longitudinal data, or even longitudinal data arising in clus-
ters, comes from substantially increased modeling complexity and computational difficulty.
With clusters present in longitudinal studies, the likelihood functions become cumbersome.
Fieuws and Verbeke (2006) argue that for longitudinal clustered data under random effects
models, computation will become difficult as the dimension of the random-effects vector
is often high, even in the case of linear mixed models where the integrals may be calcu-
lated analytically. Thus, an obvious paradox for longitudinal data arising in clusters is
that although likelihood methods are straightforward to be formulated with penalty func-
tions accommodated for variable section, the complexity in modeling and the intensity in

computing seriously prevent universal use of such methods.

It is desirable to develop methods that preserve advantages of existing methods and
overcome their shortcomings. The purpose of this chapter is to describe a general variable
selection approach based on the pairwise likelihood formulation (Lindsay, 1988; Arnold
and Strauss, 1991; Cox and Reid, 2004; Lindsay et al., 2011) to handle longitudinal clus-
tered data. Pairwise likelihood functions focus only on partial structures of data, and often
enjoy transparent interpretation, modeling tractability and computational cheapness. Fur-
thermore, as opposed to the full likelihood method, the pairwise likelihood formulation is
robust in the sense that association structures higher than those used in the formulation are
left unspecified. Two specific types of pairwise likelihood, all-pairwise marginal likelihood
(APW) and all-pairwise conditional likelihood (APC), are introduced in this chapter. The
SCAD penalty is used for variable section. We particularly form the development under

random effects models.

A further relevant and interesting topic concerns the validity of model assumptions.

When these assumptions are violated, estimation and selection results could be biased
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or incorrect. There are some studies in dealing with misspecified model selection issues
(Lv and Liu, 2010). However, little work has been done under the penalized likelihood
or penalized composite likelihood framework. In this chapter, we explore the asymptotic

results obtained from misspecified models.

The rest of the chapter is organized as follows. Section 4.2 describes the generalized
linear mixed models (GLMMs) formulation and notations. We then introduce the formu-
lations of the composite likelihood methods. Section 4.3 presents the penalized composite
likelihood and the implementation algorithm. This section also derives the asymptotic
results for our penalized composite likelihood approach. Section 4.4 demonstrates the
asymptotic results obtained from misspecified models. To evaluate the performance of the
proposed methods, we conduct various empirical studies and display the results in Section
4.5. The application of our methods into a real data analysis is illustrated in Section 4.6,

and concluding remarks are given in Section 4.7.

4.2 Model Setup

Suppose there are n clusters and J; subjects within cluster i, 7 = 1,2, ..., n. We assume that
each subject is assessed at K specified time points. Let Y;;;, denote the response for subject
j in cluster i at visit k, k = 1,2,..., K. Take Y;; = (Yij1, Yijo,-- ., Yij)', 7= 1,2,...,J;
and V; = (Y, VI ... ,YEZ_)T, 1 =1,2,...,n. Let u; denote a random effects vector cor-
responding to cluster i, i = 1,2,...,n. Let Xy = (Xijk1,---, Xijkp)' be the p x 1 fixed
effect covariate vector for subject j in cluster 4 at time k, Xy = (X[, X[, ..., X[x)",
and X; = (X[, X0, ..., X[ )" Let Ziji, = (Zijia, -, Zijig)" be the ¢ x 1 random effect

; _ (7T T T \T _(yT T T\T
covariate vector, Z;; = (Zj;1, Zijo, -+, Zig)” and Z; = (Z3y, Zig, -+, Zig,)" -
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4.2.1 Generalized Linear Mixed Models

The usual generalized linear mixed models (GLMMs) consist of two steps of modeling
(Laird and Ware, 1982; McCulloch, 1997). In the first step, we assume that conditional
on random effects w;, the Y (j =1,...,J;;k =1,..., K) are independent and have the
probability (density) function given by

f(Wigrlui) = exp [ {yiemije — 0(7iji) }/a(9) + c(yiji; @) | (4.1)

where a(-), b(-) and ¢(-) are given functions, ¢ is a scale parameter, and 7, is the canonical
parameter. This leads to E(Yj;x|u;) = b'(7ijx), and Var(Yi|u;) = a(é)b”(7ijk)-

The second step links the conditional mean of Yjj; to the covariates with a regression

model
h{E(ngk|Uz>} = ngﬁ + ngui; (4-2>

where h is a monotone link function, 3 is the vector of p x 1 fixed effect coefficients, and the
random effects vector u; is assumed to follow a certain distribution, such as a multivariate
normal distribution. Let f(u;; ) denote the joint probability density function of u;, where

« is an associated parameter vector.

Different types of random effects models can be obtained by various choices of the Z;;;,
vector or random effects vector ;. For instance, (4.2) includes commonly used one-way

(Fieuws and Verbeke, 2006), two-way (Sutradhar and Rao, 2003) or three-way (Bellio and

Varin, 2005) random effects models:

MEYijelvi)} = XiuB + v, (4.3)
h{E(Yijklvi, wj)} = ngﬁ + Vi +wj, (4.4)

or
WEYilviswj, i)} = X8 + v +wj + 7, (4.5)

where v;, w; and 75, are random effects which respectively facilitate cluster-level, subject-

level and time-specific heterogeneity, and are assumed to be independent of each other.
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Under the conditional independence assumption that the Yj;, are independent given
u; and covariates, inference can, in principle, be carried out by maximizing the observed
likelihood with unobservable random effects integrated out. For example, under model

(4.5), the marginal likelihood is given by

I/ |//{1

J

J;
f(v)du;. (4.6)

K
11 7 wisilvi, s, Tk)}f(wj)f(m) dw; dry

1 k=1

Evaluation of this likelihood requires calculation of n(K + 1) + > | J; dimensional
integrals. Several serious issues would arise here. The number of integrals involved in
(4.6) rapidly grows with the number of random effects, creating increasing computational
intensity, especially for the case that integrals are intractable. In addition, specifying
appropriate distributions for random effects could be difficult, because random effects are
not observable. Moreover, the conditional independence assumption for the Y, given u;

can be inflexible to handle data with complex association.

To overcome these limitations of GLMMs, we now propose a wider class of models that

generalize GLMMs: generalized linear mixed pairwise models (GLMPMs).

4.2.2 Generalized Linear Mixed Pairwise Models

Define (j,k) < (j',k) if j < j or j =7, k < K. For any (j,k) < (j', k), let Vi jm =
(Yijk, Yijr)T. Generalized linear mixed pairwise models (GLMPMs) are specified by two
steps. In the first step, unlike that GLMMs assume conditional independence among the
Yk given random effects u;, GLMPMs assume conditional independence among the Y.z irw
pairs. To be specific, conditional on random effects, say ;, pairs Y; ;. are independent

and have the probability (density) function belonging to the bivariate exponential family

FWisirgn |s) = exp |7 sootigngne — 0Fagugn) + W) | (4.7)
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where l;() and ¢(-) are known functions, 7.k = (Tijk, Tijorr )’ 18 @ 2 x 1 vector of canonical
parameters. Analogous to the property of GLMMs, it can be shown that
N 0
E(Ha‘k;j/k'!%‘) =

= —— bFiipinw), 4.8
5 ) (48)

and
Var(Yila)  Cov(Yi, Y i
Val"(yi;jk;j/kflﬂi> = ar( Jk|U)~ OV( Ik Jlj|u>
Cov(Yijk, Yijw |T;) Var (Yo |t;)

where Var(Y;jkWi) = %E(ﬁ;jk;j’k’% and COV(K]‘k, }/ij’k”ai) = %E(ﬁ;jk;j’k’)

Let fi;.jk,50 = E(Yijk;jir|Ui) be the conditional mean vector for the pair vector Y .k
given random effects @;. In the second step, we link the conditional mean of Y. to the

covariates with a bivariate regression model

h(fhisjnsgon) = (ngﬁ + Z;f?kﬂi, Xg;’k’ﬂ + Zg}fk/ﬂi), (4.9)
where h is a bivariate transformation with a given form.

Model (4.9) accommodates model (4.2) as a special case but requires weaker assump-
tions. For instance, in model (4.9), if @ = {(ﬁi,@j,%k,wj,,%k,)if,(j, k) < (j’,k’)}, then
setting
and

ZijierlUy = Ui + Wy + Tpy
leads to model (4.5) if all random effects 7;, @;, 7%, @;/, ) are assumed to be independent
of each other. This strong independence assumption is, however, not required in forming
model (4.9). In other words, in forming (4.5), we require all components in ; to be

mutually independent, but in forming (4.9), we only assume pairwise independence among
the ﬁl

The joint density function of (Y, Y ) is given by
I Wigh Yijrrr) = // T @ignl @) f (yagew [s) f () dd,
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where f(1;) is the density function for random effects @;. As a result, the probability density
function of f(yijx) is given by f(yiju) = [ f(Yijk, Yijiwr) dyigne. As an example, with model
(4.5), we have the pairwise probability density function

T Wijk, Yigrwr) = H /f(yijk|77i,@j,%k)f(yijfkfwz‘,@ju%k')f(ﬁi)f(@j)
(4,k)<(3"K")
f(T) f (@) f(Tar) diy dwj Ay, dvjr AT

This formulation considerably simplifies the computation of integrals. To formulate this
pairwise likelihood, only 5 dimensional integrals are needed to compute, while the formu-
lation of the full likelihood (4.6) involves n(K + 1) + >_" , .J; dimensional integrals.

4.2.3 Pairwise Likelihoods

Now we consider a pairwise modeling strategy instead of fully specifying f(y;|z;, z;). Let
0(yijx) and £(Yijk, Yijwr) be the marginal and pairwise observed log likelihoods for y;;; and
(Yijk, Yijrwr), given x; and z;, respectively. Similar to but not the same as Lindsay et al.
(2011), a general form of pairwise log likelihood £.(y;jk, yij) With respect to v, and v,

can be written as

Ce(Yiji, Vi) = Bkl Yijis Yijrwr) — Bl Yiji) — B (Yijrwer ) (4.10)

where By, Bjr and Bjy are scalar weights. We limit our discussion to two specific
scenarios. When all By, v = 1 and Bj, = By = 0, (4.10) results in all-pairwise marginal
log likelihood (APW). When all B = 2 and Bj;, = By = 1, (4.10) becomes all-
pairwise conditional log likelihood (APC). Thus, estimation of the model parameters can
be conducted by optimizing

n n

le(y) = ch(yz‘) = Z Ce(Yijher Yiginr)- (4.11)

=1 =1 (5,k)<(J" k)
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4.3 Methodology: Selecting Fixed Effects

In this section, we focus on selecting fixed effects only by treating random effects u; being
adequately specified. Denote 1 = (37, £€7)T, where & represents all parameters other than
B. To achieve both model selection and parameter estimation in (4.10), we propose to

maximize the following penalized pairwise log likelihood function:

lpen1 () = Le(y) =1 > pA(1Bs]), (4.12)

where py(|5s|) is the penalty function for the s-th element in B. Following Fan and Li
(2001, 2004), we adopt the SCAD penalty, which has nice properties such as unbiasedness,
sparsity and continuity properties. The SCAD penalty is a nonconcave function defined

by pA(0) = 0 and for 55 > 0, its first derivative satisfies

—@(ij f)iwws > A)} (4.13)

P8 = A {I(Bs <N+

where a > 2 and A > 0.

Following Fan and Li (2001), one may maximize (4.12) by using the Newton-Raphson
algorithm, where a second order Taylor’s series approximation of py(|fGs|) is often used.
Alternatively, we describe an implementation method that shares the same spirit of the
EM algorithm. At the tth iteration for the E-step, let the complete log pairwise likelihood
for (Yijk, Yijiw) be

Copt (Yigies Yy Ui ) = log {f Wiy Yigrwe U5 ) f (s 1/))},

and define

Qe (Pl Y) = Z E{lon(Yije, Vi it )|V, Vi 000}

(G,k)<(5" k)

= Z Z / et (Yijhes Yigrre s Uzﬂp)f(ﬂi\yijk,yij'k';¢(t71))dﬂi-
=1 / k"
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Then, at the t—th iteration, the conditional expectation of the complete log composite

likelihood function is given by

Q("M@b(t_l)) = Qcm(whp(t_l))?

or
Q(¢|,¢)(t—1)) = 2Qcpl(¢|’¢)(t_1)> - gc(Yijka 17b> - EC(}/;j’k’a ¢)7
corresponding to the APW and APC methods respectively.

As a result, at the t—th iteration, the penalized Q-function for variable selection is

given by
Qa9 D) = Qb)Y = n > pa(IBi]).
s=1

In the M-step, we maximize Q,(tp|ep"™) with respect to 1 to obtain ¥®. In this
step, we again encounter the non-differentiality of penalty functions. Conventionally, the
quadratic approximation approach can be used to approximate the penalty function. The

E and M steps are iterated until convergence of p®.

The aforementioned algorithm is implemented with given tuning parameters (a(™, A\(")).
In practice, a suitable value of (a™, A(") is not obvious, and one can consider a specified grid
of candidates for (a™, \("). For each r, one can use the algorithm above to obtain a solution
ﬂjr. The final model selection and estimates t can be realized based on certain selection cri-
teria. For instance, recent studies (Wang et al., 2007; Bondell et al., 2010; Ma and Li, 2010;
Zhang et al., 2010) show that the Bayesian information criterion (BIC) is consistent for
model selection given that the true model lies in the class of candidate models. Let H (’JJT) =
e (3 ,) [0, 0 and T () = S (Ol ) /0%, HOH () /0,7 where

er denotes the parameter set in which the 0 elements in {br are removed.

Under maximum likelihood inference framework, we can take the number of nonzero
parameters in 1:&,“ as the degrees of freedom. However, this strategy may produce biased

selection results under our pairwise likelihood framework. Define df(,u) m)(%,) to be the
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degrees of freedom given by tr{j (’(,Ab )ﬁ (1,)7'}. Then we define

BIC aM A(M) —20.(y; ¢ ) + log(n) x df aM (M) (’ljb ). (4.14)

We then choose the solution {p that minimizes the BIC(am’ () criterion.

4.4 Methodology: Selecting Both Fixed and Random
Effects

In this section, we discuss the model selection strategy for choosing appropriate random
effects as well as fixed effects. For ease of exposition, we set J; = J foralli =1,...,n. Let
D be the ¢* x ¢* covariance matrix for 4; (i = 1,...,n), where ¢* is the number of random

effects variables in @;. Let dj,,, be the (I, m) element of D.

Cholesky decomposition approach is widely applied in longitudinal data studies to select
random effects. Chen and Dunson (2003) use the modified Cholesky decomposition to select
random effects in linear mixed models. Bondell et al. (2010) and Ibrahim et al. (2010)
combine the decomposition approach with the EM algorithm. However, the Cholesky
decomposition strategy may not be proper for longitudinal data arising in clusters. To
circumvent this problem, we propose a new decomposition strategy and develop a modified
Expectation/Conditional Maximization Either algorithm (ECME) (Liu and Pierce, 1994;

Schafer, 1998) for model selection and estimation.

4.4.1 Review of Cholesky Decomposition

The Cholesky decomposition specifies a covariance matrix D as D = LLT, where L is a
lower triangular matrix with positive diagonal entries. The modified Cholesky decomposi-
tion further assumes the form

D = D*ITT D, (4.15)
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where D* is a diagonal matrix with D* = diag(dj, ds, ..., d;.), and T' is a lower triangular
matrix with diagonal elements 1. This relationship immediately implies that once d; = 0,
then the elements in the [th row or [th column of D would be zero. That is, eliminating

the /th random effect can be featured by setting d; = 0.

Two issues may arise if the (modified) Cholesky decomposition approach is applied
handle longitudinal data arising in clusters. To see this, we consider a simple case involving
longitudinal data arising in clusters with J; = 2 for i = 1,...,n. Let f(u;) = f(@1, Ui2) be

the joint distribution of two random effects @;; and ;5. Assume f(1;) is a bivariate normal

2 2
D= ( R > , (4.16)
2 2
a0, g

where 0 < a; < 1. Note that two random variables u;; and #;, have identical variance,

density with covariance matrix

which implies that if we decide to take away one random variable, the other should also

be removed.

However, if the modified Cholesky decomposition is applied, we obtain D = D*I'TT D*,

with
1
I —
(al/ 1—a3 1)
po ()
dy

where df = o, and dj = 0,4/1 — a}, which are not equal unless a; = 0. When q; is nearly

and

1, d; is almost equal to 0, and variable selection procedure based on a finite sample may
yield cZ’{ > 0 and cfg = 0. Hence, ;5 could be removed from the model but u;; is kept. Thus,
this model selection returns a contradictory result to the original setting that ;; and ;.

are equally important in the model.

To show another drawback related to the Cholesky decomposition under pairwise like-

lihood framework, we follow the same example and consider two paired observations. The
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random effects distribution for the two pairs could be f(;2) and f(@;1, ;2), which are two

2 2
o . . ) . . o, a0, .
normal distributions with variance o, and covariance matrix ) , ) respectively.
amo, o

If using the modified Cholesky decomposition, the same random effect ;o is represented
by o, and o,4/1 —a? in two diagonal matrices, respectively. Therefore, if a; # 0, the
same random effect component ;5 would be differently represented in different pairwise

likelihood functions, which is obviously problematic.

These examples illustrate that the selection procedure can not meaningfully incorporate
the relationship among parameters in covariance matrix D. Special care is often needed to

avoid meaningless selection results.

4.4.2 The Algorithm

Covariance Matrix Decomposition

We propose a matrix decomposition for symmetric D based on the fact that

d11 d12 s dlq*
_D _ d21 d22 : qu*
dq*l dq*2 T dq*q*
d% d1d27”12 cee dldq* T'1g*
B didarya d3 o dadgeToge
dldq* qu* deq* TQq* ... dg*

where d; = vdy, (I =1,...,¢%) and r,, = di/Vdudym for L =1,...,¢"; m = 1,... q¢%
[ <m.

Thus, the decomposition can be written as

D = DRD, (4.17)
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where D is a ¢* x ¢* diagonal matrix diag(dy, ds,...,,d,), and R is a square matrix with

1 T12 rlq*
T12 1 To¢*
qu* TQq* A 1

The decomposition in (4.17) takes the elements in D as standard error for each random
effect, while R’s elements as correlation coefficients of random effects. According to the
description in Section 4.4.1, there could be predetermined identical variance parameters
in D for the model of longitudinal data arising clusters. If two random variables are set
to have identical variance parameters, say the ¢;th and goth (¢1 # ¢2) random effects, the
decomposition in (4.17) just returns d = dg, = dg,. If d = 0, two random variables are
removed simultaneously. Thus, it can be seen that our decomposition circumvents the

problems in the Cholesky approach.

Based on the covariance matrix decomposition approach, we introduce the doubly pe-

nalized log pairwise likelihood

p Q
lpen2(y; B, D, R) = Lo(y; B, D, R) =1 > _pa,(1B:) = n Y paj(|dil),  (4.18)
s=1 =1

where £.(y; B, D, R) is the unpenalized pairwise likelihood functions determined by (4.10),
Pxs(1Bs]) is the penalty function for fixed effects, Q is the number of distinct variance
parameters for random effects, and p,\d(\chD is the penalty function for random effects with
[th distinct variance parameter. In addition, it is straightforward to obtain the penalized

Q-function defined similarly in Section 4.3 as
Q\(B,D, R, DY, REY)

P Q
= Q(B,D,RIBV, DD RED) — 0> " py (18:]) = > pa, (i),
s=1 =1

where Q(3, D, R|B""V, D=1 RE-1) is Q-function determined in Section 4.3.
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A Modified ECEM Algorithm

We employ a modified Expectation/Conditional Maximization Either algorithm (ECME)
(Liu and Pierce, 1994; Schafer, 1998) to maximize the composite likelihood function. Our
modified ECME algorithm updates the parameters in composite likelihood via both the

Newton-Raphson and the EM approaches in turn. In particular, for the parameters B(tfl),
D1 RE-D the algorithm has

1. Fix (D¢ RED) and update BY by maximizing lpen(Y; 84D, DD RED) If
5§t) is very close to 0, then set BS = 0, and remove its corresponding elements from

the iteration.

2. Fix (89, R=D), and update D® by maximizing Q,(D|3", DD RED) If czl(t) is
very close to 0, then set d, = 0, remove corresponding random variables from the

model and the related elements in R¢~Y are also deleted.

3. Fix (89, D®), and update R® by maximizing Q,(R|BY, D" RE1).

Iteratively run the updating procedure until convergence, and denote the estimator as zAb In
practice, the tuning parameters can be selected by the composite BIC strategy determined

in Section 4.3.

4.5 Asymptotic Results

We now discuss the asymptotic results for our pairwise variable selection strategy. For
ease of exposition, we consider the selection for fixed effects variables only, and the se-
lection for random effects follows analogously with more complex notations involved. Let
Bo = (Bi0s - - -, Bpo) denote the true parameter value of 3, which is written, without loss of
generality, as B, = (8¢}, Bon)"> where Bg; = (Bio; - - -, Bp0)T is the vector consisting of all

non-zero values and By = (Bp41.0,---,0p0)" = ng includes all zero components of 3.

100



Correspondingly, write 8 = (8], 85)7, % = (BT, 8%, €7)7, and o, = (8L,05, ,&7) with
&o being the true value of €.

For any square matrix M of the same dimension as 1, let M denote the sub-matrix
after removing the (p; + 1)st, ..., and pth rows and columns from the matrix M. Similarly,
for any vector a of the same dimension as 1, we use & to denote the resulting vector

after removing the (p; + 1)st, ..., and pth elements from the vector a. For example, {po =
(ﬁ g] ) 5(? )T'
Consistency of the estimator @Z is established by the following theorem, and its proof

is outline in Appendix B.

Theorem 1: Under regularity conditions in Appendix A, there exists a local maximizer
I{b of gpenl (Y, 'l,b) such that

b = ol = Op(n~"72),

The sparsity is suggested by the following result, and its proof is outlined in Appendix
C.

Theorem 2: Under regularity conditions in Appendix A, with probability tending to
1, for any given 3; and ¢ satisfying

181 = Borll = Op(n™1%) and i€ = &oll = Op(n™17%),
we have

lpen1 (Y5 81,0,8) = max g <cn-1/2lpent (Y5 Br, B, §) for any positive constant C.

Now we come to the oracle property of the estimator 17) Let

X = diag{p/)in(‘ﬁ()ﬂ)v cee 7p;<n(’60p‘)7 05}7

and

b= ( (64, (1o Dsn(Gor). .2, (1o sen(n,) - 0F)
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where 0¢ is a zero vector with the same length as . The asymptotic property is suggested

by the following result, and its proof is outlined in Appendix D.

Theorem 3: Under regularity conditions in Appendix A, with probability tending to 1,

the root-n consistent local maximizers '{b in Theorem 1 must satisfy:
(a). Sparsity: 8, = 0.
(b). Asymptotic normality: v/a(D(3hy)+5){th—th+(D(ehe) +£) b} —p N(0, M (ghy)).
T
where M(3) = By, {{%(Yi;¢>/8¢}{a£c<n;¢>/a¢} } and
D() = By, {—0%(Yi;9) /099" } |

and similar definitions are applied to M (),) and D(a,).

4.6 Numerical Studies

4.6.1 Simulation for Selecting Fixed Effects
Linear Mixed Model

We now conduct a simulation study for the linear mixed model. The data are generated

from the model

Yijp = X;‘gkﬁ + Uij + €ijik, (4.19)
where the residual €; = (€11, . .., €ijk, - - -, €i7,5)" are normally distributed with joint distri-
bution specified in the following examples, u; = (w1, . .., Uij, - .., u;z;)" are random effects

with a distribution specified in the following examples, and the residual ¢; is independent
of the random effects u;. Set p = 8, 02 = 1 and B = (3,1.5,0,0,2,0,0,0)7. Covariates
Xiie = (Xijra, Xijk2, -+, Xijrg)? are generated from a multivariate normal distribution
with mean zero and covariance matrix V = [0%], where 02, = py02. We set py = pl*7l,

p = 0.5 and 02 = 1. We particularly consider the following scenarios.
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Example 1:

Example 2:

Example 3:

Example 4:

n=200,J, =J=1,fori=1,...,n, and K = 5. This corresponds to
an ordinary longitudinal setting with 5 visits times. The model is set to
be ordinary LMMs with the ¢; to be independently distributed with joint
distribution N5(0,0215), where I5 is a 5 x 5 identity matrix. Random effects
u; become one-dimensional and have a normal distribution N;(0,02) with

o2 =1.
The setup is the same as in Example 1 but we take n = 500.

n = 60, J; = J = 3 and K = 3. This corresponds to longitudinal data
with 3 subjects in each cluster by following 3 visits times. The model is set
to be ordinary LMMs with the ¢; to be independently distributed with joint
distribution Ng(0, 02Iy), where I is a 9 x 9 identity matrix. For each subject,
we set u; = (u;1, U2, u;3) to be 3-dimensional random effects following a

normal distribution N3(0, R), where

—_

s
*

)
*

R =02 *

u

BT )
—

i)

*

with p* = 0.5.

The setup is the same as in Example 3 but we take n = 300.

We describe a measure that is used to feature the performance of the estimates obtained
from different models. Let p = E,,{ E(Yiji|ui, Xi, Zi) } = By {h (X [uBo + Z[jui)}, and
o= Eui{h_l(Xg;kﬁ + Z5ui)}, where h(-) is the link function defined in (4.1), B is an
estimator obtained from the proposed method. The expectations are evaluated with respect
to the true model. We define

MME(f) = B,z — 1)

and use this measure to quantify the marginal model error induced by estimator B, where

the expectation is taken with respect to the marginal distribution for (X;, Z;).
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For each example, we repeat the simulation 500 times and fit each dataset by maxi-
mum likelihood (ML), all-pairwise marginal likelihood (APW) and all-pairwise conditional
likelihood (APC) approaches. Tuning parameters are selected by fixing a = 3.7 but only

searching for . In Examples 1 and 2, we also explore searching for both a and A.

Table 4.3 reports the average of zero coefficients. The column labeled “Correct” presents
the average of zero coefficients that are correctly estimated, and the column labeled “In-
correct” depicts the average of non-zero coefficients erroneously set to zero. We report the
median ratios of MME, denoted by R.MME;, for a selected model to that of the un-penalized
estimate under the unpenalized model in each of the ML, APW and APC scenarios, re-
spectively. We also report the median of MME, denoted by M.MME, for selected models
in each of ML, APW and APC scenarios. Table 4.4 summaries the estimated (1, (2, 85),
their relative biases, empirical standard errors, model-based standard errors, and coverage

rates of 95% confidence intervals.

For all six examples, three methods show a good sparsity property. Moreover, compared
to the ML method, the APW and the APC approaches produce similar rates of shrinking
unimportant coefficients to zero, and higher R.MME. The APC outperforms the APW
with higher shrinkage rates and smaller R.MME. It can be seen that the estimates of the
B have relatively small biases in all cases. The standard error formulas perform well in
most cases as they are close to the empirical estimates. It is interesting to note that the

APW approach provides slightly larger standard errors than the APC method.

Tables 4.3-4.5 further illustrate the approach with grid searching on both a and A. No
obvious difference from only searching on A is revealed. Moreover, two tuning parameter
selection methods result in a similar model selection and estimation results. Since fixing
a = 3.7 has a cheaper computation cost, we only use this tuning parameter selection

approach in our subsequent studies.
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Logistic Mixed Model

We now conduct a simulation study for the logistic mixed model. The data are generated
from the model
logit{ P(Yijr = 1|X;, Zi, u;)} = X508 + wiy,

where logit(a) is a logistic link function in a form of log{a/(1 —a)}, Xi;x, B and u;;, which
are the same as those in linear mixed model simulation. We particularly consider the

following two scenarios.
Example 1: n =200, J;=J=1,fort=1,...,n, and K = 5. Other parameter settings
follow from Example 1 in linear mixed model.
Example 2: The example is the same as Example 1 except we take n = 800.

Example 3: The setup is the same as the one in Example 1, except that we take n = 200,
J; = J =3 and K = 4, and set u; = (u;1,u;2,u;3) to be 3-dimensional

random effects following a normal distribution N3(0, R), where

—_

PP
R — 0-5 * 1 p* ,
pro1

*

D

with p* = 0.3.

Example 4: The setup is the same as Example 3, except we take n = 400.

Table 4.6 shows a good sparsity property with estimating results excluding large pro-
portion of the zero coefficients covariates, while all non-zero coefficients corresponded co-
variates are maintained in the model. Moreover, compared to the ML method, the APW
and the APC approaches produce similar rate of shrinking unimportant coefficients to
zero, and higher M.MME. The APW outperforms the APC with higher shrinkage rate and

smaller M.MME. It can be seen that our estimates of 3 have relatively small biases in
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all cases. The standard error formulas’ performance are slightly lower than the empirical
estimates. It is interesting to report that the APC approaches provides slightly larger

standard error than the APW method with respect to regression coefficients.

Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. The data are generated

from the model
log {E(Y;jk‘Xh Zi, Uz)} = ngﬁ + U, (4.20)

where 8 = (1.2,0.6,0,0,0.8,0,0,0)7, u;; and X;;;, are the same as that of linear mixed

model. We consider following scenarios

Example 1: n =60, J; =J =1fort=1,...,n, and K = 5. Other parameter settings

follow from Example 1 in linear mixed model.
Example 2: The setup is the same as the one in Example 1, except we take n = 500.

Example 3: n =060, J; =J =3, K = 2, and set u; = (u;1, U, u;3) to be 3-dimensional
random effect following a normal distribution N3(0, R), where R follows the

same settings as in the logistic case.

Example 4: The setup is the same as the one in Example 3, except we take n = 300.

The results are shown in Table 4.9. All three methods show a good sparsity property.
The APC method outperforms the APW approach with higher shrinkage rate and smaller
M.MME. It can be seen that the estimates of the §; have relatively small biases in all cases.
The standard error formulas’ performance are slightly smaller than empirical estimates. It
is interesting to report that the APW approach provides slightly larger standard error than

the APC method with respect to regression coefficients.
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4.6.2 Simulation for Both Fixed and Random Effects
Linear Mixed Model

We simulate data set consisting of n independent observations according to the model Y; =
XIB+Z ui+e,i=1,...,n, where ¢, = (€11, .- ., €ijk,-- -, €is,i)" are normally distributed
with joint distribution specified in the following examples, u; = (w1, . .., wij, ..., u;y,)" are
random effects with a distribution specified in the following examples, and the residual ¢;
is independent of the random effects u;. Set 02 = 1 and B = (3,1.5,0,0,2,0,0,0)T. We

consider the true model
Yiji = wijo + (81 + i) Xijra + (B2 + uijo) Xk + Bs Xijrs + €ijic-

Moreover, w;; = (uij0, Uij1, wij2) for i =1,...,n; j=1,..., J; follows multivariate normal

random vectors with zero mean and the true covariance matrix

9 48 0.6
D=148 4 1
06 1 1

The covariates X;;;, are generated as in fixed effect selecting case. We set Z; = X; plus a

random intercept term.

We particularly consider the following cases:

Situation 1: Generate Data from GLMMs

Scenario 1: n = 100, J; = J =1, fori = 1,...,n, and K = 5. This corresponds to
an ordinary longitudinal setting with 5 visits times. The model is set to
be ordinary GLMMs with the ¢; to be independently distributed with joint

distribution N3(0,0215), where I5 is an 5 x 5 identity matrix.

Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 300.
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Scenario 3:

Scenario 4:

Situation 2:

Scenario 1:

Scenario 2:

Scenario 3:

Scenario 4:

The setup is the same as the one in Scenario 1, except that we take n = 100,
Ji=J=3and K = 3, and set u; = (u;1, U2, u;3)" to be random effects with
zero mean and covariance matrix Ds, where
D p*D p*D
Ds=1| p*D D p*D |,
p*D p*D D
with p* = 0.5.

The setup is the same as the one in Scenario 3, but n = 300.

Generate Data from GLMPMs

n =100, J;=J =1,fori=1,...,n, and K = 5. The setup is the same
as the one in Scenario 1 in GLMMSs, but the model is set to be GLMPMs
with €; to have correlated distribution N5(0,02A5), with A5 to have AR(1)

structure with correlation coefficient p, = 0.5.
The setup is the same as the one in Scenario 1, but we take n = 300.

The setup is the same as the one in Scenario 1, except that we take n = 100,
Ji = J =3 and K = 3. We set u; follows Scenario 3 in GLMM, and ¢; to
have correlated distribution Ng(0,02Ag), with Ag to have

A
A9 = Ae 5
Ae

where A, is 3 x 3 matrix of AR(1) structure with correlation coefficient
pe = 0.5.

The setup is the same the one in Scenario 3, but n = 300.
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For comparing model selection results, we employ mean squared errors for fixed ef-
fects: MSEg = ||8 — B|> and mean squared errors for random effects: MSEp, =
||\/diag(D) -/ diag(D)|[?>. We report the median of both quantities, denoted by M.MSEg
and M.MSEp. Moreover, we report the median ratios of M\SEg and M.MSEp, denoted
by R.MSEz and R.MSEp, for a selected model to that of the un-penalized estimate,

respectively.

For each scenario, we repeat the simulation 500 times and fit each dataset by maximum
likelihood (ML) and all-pairwise marginal likelihood (APW). Tables 4.12 and 4.15 report
the average of zero coefficients. The column labeled “Correct1” presents the average of fixed
zero coefficients that are correctly estimated. The column labeled “Incorrect1” depicts the
average of fixed non-zero coefficients erroneously set to zero. Similarly, columns labeled

“Correct2” and “Incorrect2” represent the selection precision average for random effects.

Tables 4.13 and 4.16 summarize the estimated (31, s, 35), their relative biases, empir-
ical standard errors, model-based standard errors, and coverage rates of 95% confidence

intervals.

For all examples above, two methods show a good sparsity property when sample size
increases. Moreover, compared to the ML method, the APW approach produces similar
rates of shrinking unimportant fixed and random coefficients to zero under large sample
size. It can be seen that the estimates of the 3, have relatively small biases in all cases. The
standard error formulas perform well in large sample cases: they are close to the empirical

estimates.

Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. We consider Y;%; to be
generated from a Poisson distribution with
log { B(Y;34/ X, Zi,wi) f = X584+ Zhus. (4.21)
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We also generate another Poisson data Y;3* (j = 1,...,J;) with mean to be 1. Y% and ¥;**
are independent. We set 3 = (1.2,0.6,0,0,0.8,0,0,0)", while X;;, and Z;;; are the same

as that of the linear mixed model.

Situation 1: Generate Data from GLMM

Scenario 1: n = 230, J; = J = 1, for ¢« = 1,...,n,and K = 9. We take Y7, as the
response. u;; follows multivariate normal random vectors with zero mean

and the true covariance matrix

0.25 0.015 0.02
D=1 0015 0.09 0.03
0.02 0.03 0.04

Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 500.

Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 250,
J; = J =3 and K =4, and set u; to be random effects with zero mean and

covariance matrix Ds, where

D p*D p*D
Ds= | p*D D p*D |,
p*D p*D D

with p* = 0.5.

Scenario 4: The setup is the same as the one in Scenario 3, but n = 500.

Situation 2: Generate Data from GLMPMs

Scenario 1: n =250, J;, =J =1,forv=1,...,n, and K = 9. We take the response

Yijr = Y}, + Y. Other settings follow Situation 1.
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Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 500.

Scenario 3: The setup is the same as the one in Scenario 1, except that we take n = 250,
J; = J = 3 and K = 4. We set u; follows Scenario 3 in GLMMs, and
Yijp = Y5, + V5", with Y;7* to be independent for j = 1,2, 3.

ijk 17

Scenario 4: The setup is the same as the one in Scenario 3 but n = 500.

Tables 4.18-4.23 show that when data are generated by GLMMs or GLMPMs, our
GLMPMs always have good sparsity property, relatively small biases for the estimates of
Bs, and good performance for the standard error formulas in most cases. On the other hand,
GLMMSs perform poor when the data are generated from GLMPMs, where the estimates

are significantly biased.

4.6.3 Data Analysis

The National Population Health Survey (NPHS) is a longitudinal study that collects health
information and related socio-demographic information by following a group of Canadian
household residents. The questions for the NPHS include many aspects of in-depth health
information such as health status, use of health services, chronic conditions and activity
restrictions. Moreover, social background questions, including age, sex and income level,
are contained in the questionnaire. A research interest focuses on modeling the influence
of income on population health. The data we analyze here contain observations from 6
cycles, including n = 1033 males with age between 50-70 at Cycle 1, and less than 80 at
Cycle 6. All the deceased subjects are excluded from the analysis.

Health status (HUI) is measured by the Health Utilities Index Mark after zero-mean
normalization. The higher HUI score indicates a better health status. The covariate
prone to missingness is household income (INC), which is measured by provincial level of

household income with zero-mean normalization. The other covariate, denoted by CYCLE
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is cycle number after log-transformation, respectively. All observations with incomplete

HUT or INC are excluded from the analysis.

Preliminary analysis indicates that random intercept may be sufficient to account for
the correlation across cycles, and cubic terms of INC and CYCLE together with their
interactions may be relevant in modeling HUI. This motivates us to consider variable

selection in the following model
Yije = XijiBB + wij + €iji, (4.22)

where J; = 1 K = 6 for all 7, Y}, is the HUI score for subject ¢ measured at Cycle k, Xy, is
a 16 x 1 vector of variables measured at j: Intercept, INC, INC? INC?, CYCLE, CYCLE?,
CYCLE?, CYCLE, INC x CYCLE, INC? x CYCLE, INC?® x CYCLE, INC x CYCLE?,
INC? x CYCLE?, INC? x CYCLE?, INC x CYCLE?, INC? x CYCLE?, INC?® x CYCLE?.
u;; ~ N(0,02) is the subject specific random effect and €5, ~ N (0, 02) is the independent

residual error.

We apply the ML, APW and APC procedures to model (5.12). Table 5.2 displays the
model fitting and selection results. The three methods obtain relatively comparable results
that exclude all interaction terms, but suggest a cubic influence from cycle time. The ML
approach claims that income has only a linear effect on health index, while the APW and

APC methods suggest that income also has a cubic influence on HUI as well.
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4.7 Model Selection under Misspecified Models

Our previous discussions are all based on the assumption that both the conditional pair-
wise distribution and the distribution for random effects are correctly specified. When
these assumptions are violated, the estimation and the selection results could be biased or
incorrect. To be specific, we focus on the estimation and selection bias for fixed effects, and
the random effects conclusions can be obtained by the same spirit. With the logistic mixed
model with misspecified random effects, Heagerty and Kurland (2001) explore several types
of model misspecfication and find that biased results can be yielded. Other studies include
Neuhaus et al. (1992, 1994), Verbeke et al. (2001) and Neuhaus and McCulloch (2006).
Recently, there are some studies dealing with the misspecified model selection issue. For
example, Varin and Vidoni (2005) and Gao and Song (2010) propose pairwise AIC and
pairwise BIC for the variable selection with pairwise likelihood, which includes “pseudo”
association structures. More generally, Lv and Liu (2010) discuss a semi-Bayesian infor-
mation criterion (SIC) with a particular decomposition for taking goodness of model fit,
model complexity and model misspecification simultaneously. However, little work was

done under the penalized likelihood or penalized pairwise likelihood framework.

4.7.1 Misspecified Models

Here we develop theoretical results in the variable selection via penalized pairwise likeli-
hood. We particularly consider the case that the distribution for random effects is misspec-
ified. For ease of notations, we use superscript * to indicate the corresponding quantities
under a misspecified model. In particular, let ¢X(Y;4") be the corresponding version of
the log pairwise likelihood function (4.11) when random effects are misspecified, where
P* = (ﬁ*T, &)1 B* represents the p x 1 vector of regression coefficients, and £* repre-

sents all the remaining parameters.

In application, we may obtain 1:/1* via the maximization of penalized pairwise likelihood
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function

et (43 97) = C:(y; ") —anA (18:1) (4.23)

where py(|Z]) is taken as the SCAD penalty functlon for the s-th element in 3%,

Yi and Reid (2010) demonstrate that the estimator 1:/1* would converge in probability to

a limit 4. This limit 45 = (857, &) is, under certain regularity conditions, the solution

of
oLV 9")
E. — T 2t =0 4.24
e (4.24
where the expectation is taken under the true joint distribution with true parameter value

1. According to (4.24), the solution, 1, is a function of ;. The discrepancy amount

between 1, and 1), indicates the degree of biased results.

Asymptotic Results for Misspecified Models

Now we examine the asymptotic properties for 1. Without loss of generality, we write

By = (87, BT, where B, = (B, - - - , Byso)" s the pj x 1 vector consisting of all non-
. * * T T s
Z€ero Values while 85 = (B5: 4100+ Bpo)” = 03, is the (p— p;) x 1 vector. We comment

that p* could differ from p,. Thus, we have 4}, = (857, Oﬁou 7). Correspondingly, write
B =878, ¥ = (8.8 . &)

Similar to Section 4.5, for any square matrix M of the same dimension as ¥, let M
denote the sub-matrix after removing the (pj + 1)st,...,and pth rows and columns from
the matrix M. For any vector « of the same dimension as 1, we use &* to denote the

resulting vector after removing the (p} + 1)st, ..., and pth elements from the vector «. For
example, {bo (501 ) 6 ) :
In Appendices F, G and H, we sketch the proofs of the following results.

Theorem 4: Under the regularity condition outlined in Appendix E, there exists a
local maximizer ¢ of ¢ en1 (Y3 97) such that

I =5l = Op(n~2).
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Theorem 5: Under the regularity condition outlined in Appendix E, with probability
tending to 1, for any given @7 and £* satisfying

187 = Biull = Op(n™7%) and [l€" = &5l = Op(n ™),

we have
Coem1 (Y3 87,0,8") = max) g i <cn1/2Lpen1 (Y3 87, B €) for any positive constant C.

Now we define ¥* = diag{p} (|5, .. ,p’A’n(]ﬁ;fO]), O+ }, and

b* = (84, (1Biohsen(Bia). - .24, (1B Dsen(50)) " 0L )
where Og+ is a zero vector with the same dimension as that of £*.

Theorem 6: Under the regularity condition outlined in Appendix E, with probability

tending to 1, the root-n consistent local maximizers 1:b* in Theorem 4 must satisfy:
(a). Sparsity: 3, = 0.
(b). Asymptotic normality: /n(D*(9g)+5*){th* —thg+(D* (¢5)+5*)"1b*} —p N(0, M*(ab,)),
* * T
where M*(h*) = By,y, [{az;;(m;zp )jow H ot (v v o | } ,and

D*(") = By, {0 (Yi; ") /09" 0™ } .

Similar definitions are applied to M*(ep,) and D* ().

4.7.2 Numerical Studies

Here we conduct a simulation to evaluate the impact of misspecification of random effects.
In particular, we consider the case that the true distribution for random effects is skewed-

normal but the working distribution is assumed to be normal. Skewed-normal distributions
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have been studied by many authors such as Azzalini (1985), Azzalini and Valle (1996),
Azzalini and Capitanio (1999), Arellano-Valle et al. (2005) and Lin and Lee (2008). Such
distributions relax the symmetric assumption and provide flexibility to capture a broad
range of non-normal features. A p-dimensional random vector wu; follows a skew-normal
distribution SN, (i, D, o) with location vector p, dispersion matrix D (a p X p positive
definite matrix) and skewness vector a = (avy, ..., )7, if its probability density function
is given by

f(ui) = 20, (ui; 1, D)‘Dl{aT@_l/Q(ui - M)},

where ® is the diagonal matrix with its components extracting from matrix D’s diag-
onal elements, ¢,(u;; 1, D) is the n—dimensional normal density function with mean p
and covariance D for u; and ®4(+) is the cumulative distribution function for the N(0,1)

distribution.

We generate data from the model

Yije = X5Bo + Zipuig + €ijis (4.25)
where the residual ¢; = (€11, - - -, €ijks - - -, €0, &)1 are independently distributed with marginal
distribution N(0,02), u; = (us, ..., Ui, .., u;y,)" are random effects with a distribution

specified in following examples, and the residual ¢; is independent of the random effects
u;. Set 02 =1 and B, = (1.2,0.6,0,0,0.8,0,0,0)". Covariates X;;; are generated the same
way as in the correct specified model cases. The matrix of Z;;; is set equal to X;;;. For
simplicity, the simulation inference only estimates 3 while we set all other parameters to

be known.

The simulation study is conducted under following scenarios.

Scenario 1: n =250, J; = J =1, and K = 5. This corresponds to an ordinary longitudi-
nal setting with 5 visits times. Random effects u; = u;; follow skewed normal

distribution SNg(0, D, o), where D is a diagonal matrix with element to be

4and e = (1,-1.2,/37,0,1,-1.6,/37,1,0,0).
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Scenario 2: The setup is the same as the one in Scenario 1, but we take n = 1000.

Scenario 3: n = 250, J; = J = 3, and K = 3. This corresponds to longitudinal data
arising in clusters with 3 subjects setting with 3 visits times. Random effects
u; = (ul, ul, uk)T follow skewed normal distribution SNyy(0, D, &), where

D is a diagonal matrix with element to be 9 and & = (a”,a”,a”)” with
a= (1= /505 0,1, =/ @55 1,0,0)".

Scenario 4: The setup is the same as the one in Scenario 1, but we take n = 500.

When we use a misspecified model (non-skewed normal random effects) to estimate the
dataset, the solution of equation (4.24) has 3, which is different from true value 3,. Table
4.2 displays different values for 3 in the true and the misspecified models.

Table 4.2: The parameter values for the true model and misspecified model for the simu-

lation study

Xijk1 Xijk2 Xijk,3 Xijra
True Model 61 =1.2 62 =0.6 ﬁ3 =0 ﬁ4 =0
Misspecified Model (Scenario 1 & 2)  fgf =1.2+ 1,/8% B3 =0 By=0 pi=1/8=
Misspecified Model (Scenario 3 & 4) S =12+ % 20-15m By =0 B3 =0 B = % 20157
Xijk,5 Xijk,6 Xijk,7 Xijkg
True Model [‘35 =0.8 55 = ﬂ7 =0 Bg =0
Misspecified Model (Scenario 1 & 2) Bz =0 Be=13 /52 Br=0 Bs=0
Misspecified Model (Scenario 3 & 4) B =0 Be = Y2, /015 gx Br=0

For each scenario, we repeat the simulation 500 times and fit each dataset by the max-
imum likelihood (ML), all-pairwise marginal pairwise likelihood (APW) and all-pairwise
conditional pairwise likelihood (APC) approaches. Each method is applied with correct
skewed-normal random effects (labeled as “y/”) and incorrect normal random effects (la-

beled as “x7).
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Table 4.24 reports the model selection precision rate for each variable. The columns
labeled “RCS-Nonzero” (rate of correct selection of non-zero coefficients) presents the rate
of each non-zero coefficient that is correctly estimated as non-zero, and the column labeled
“RCS-Zero” (rate of correct selection of zero coefficients) depicts the rate of each zero

coefficients that is correctly set to zero.

For both scenarios, under the correct model, all the three methods show a good sparsity
property. They often correctly distinguish the zero and non-zero coefficients. As expected,
as the sample size increased, the precision improves. However, when a wrong model is
implemented, all the three methods show poor selection results. In particular, the erroneous
model always leads our methods to make incorrect selection by setting S and (5 to zero,
but taking £; and (g to non-zero. Associated standard errors for the misspecified model

may not increase as the sample size increases.

Table 4.25 summaries the estimates of 3y, its relative biases, empirical standard errors,
model-based standard errors, and coverage rates of 95% confidence intervals. It is observed
that the estimates of the 8, have relatively small biases under the correctly specified model
as the sample size increases. The misspecified model, on the other hand, yields remarkably
biased estimates regardless of the sample size. It is interesting to note that “RCS-Nonzero”
for 5y is always 100 in the simulation we consider; this is partially due to that both 3; in

the true model and /7 in the misspecified model are not zero.

Appendices: Proofs of Theoretical Results

A. Regularity Conditions

In this subsection, we list regularity conditions are needed for the subsequent development.

(C1). For all i, £.(Y;; 1) is three-times continuously differentiable.
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2 .
(C2). LY ), |‘%C(Y P2, |88€Z§§;¢)| and |%| are dominated by some functions

B;(Y:, X;, Z;) for all j,k,l = 1,...,dim(¢), in which 1; is the j—th element of .
Moreover, Ey {B;(Y;, Xi, Z;)} < oo for all i.

865 i
(C3). El,,{#} —0,

(©0). Lot (p) = B, | {Fe.vie) {p i)} | and D) = B {25052}

Assume that

2 ggt i ggtan} = e +o,

and

1~ [ 0%e(Yip)
-2 z; {—wa } — D(3p) + 0p(1).

Similar definitions and requirements are applied to M (1)) and D()).

(C5). There exists an open subset w that contains the true parameter point 1, such that
for all ¢ € w, D(v) and D(v) are positive definite.

(C6). Let A, be the tunning parameter with the dependence on cluster size n explicitly
spelled out. Define

Qp = MaXg=q,..., {p/\n(|ﬁ80‘) BSO 7é 0}7
bn - maXs:l,l..,p{p)\n“ﬁsOD : /BSO 7é O},

We assume that

(C6.1). A\, = 0,(1),
(C6.2). a, = O,(n~Y?),
(C6.3). by, = 0p(1).
(C7). We assume that
(C7.1). liminf,_, liminf._,o+p) (€)/A, > 0.

(C7.2). lim,,_oo/nA, = 00.
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B. Consistency

Proof: Let a,, = n~'/2 + a,,. Adapting the arguments by Fan and Li (2001, 2002), we need

to show that for any given € > 0, there exists a large constant C, such that

P {Sup”uH:Cegpenl (Y7 ¢0 + OanI) < gpenl(Y; 'Iub(])} Z 1— €,

where u = ((ur,. .., Up,,...,up)" uf)", ue is a vector with the same length as &, and
|lz|| = VaTz.

Suppose C. is sufficiently large such that |[(uq,...,u,,)|| > 0. Note that p,,(0) =0, we

consider
Kn(u) = gpenl (Y7 'l,bo + Oénll) - épenl (Y, ¢0)

= EC(Y7 ¢0 + anu) - ec(Ya 1/)0) - nZP/\n(wso + anusD + nsznOBSOD
s=1 s=1

p1 p
= Lo(Y5 9o+ o) = Le(Y5the) = n Y pa(1Bs0 + amtis) =1 D> pa, (10 + ay])
s=1 s=p1+1
p1 p
+n Y pa((Bo) +n Y pau((0])
s=1 s=p1+1

< (Y + agu) — (Y5 4pg) — nzp/\n(’ﬁso + anus]) + nzp)\n<’ﬁ50‘)7 (4.26)
s=1 s=1

because of the fact that n 0, pa, (|0 + anusl)) > 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and
(C2), we obtain

. T :
8fc(Ya¢o) } u 1uT{a2€c(Ya¢O) }ua2
2

LYy +apu) = (Y1) + an {T 5 DT n

p
+ Y Op(lovnus|*)
s=1

fuaZ{1 +o,(1)}

(4.27)

ALY 4hy) }Tu N ;HT {82€C(Y;¢0)

= éc(y;¢0) +an{ 87,0 9 8¢8¢T
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and

w3 {0+ an)}
s=1

= 1) pa (Bl + 1) anph, (1Bsl)sen(Buo)us +n Y anpl (1Bsl)uz{1+o(1)}.
s=1 s=1 s=1

(4.28)
Substituting (4.27)(4.28) into (4.26), we obtain
(Y )\T 1 (0%e(Y;9h,)
K,(u) < an{To} u §uT{W¢TU}uai{l +0,(1)}
= nfanpl, (1Bo))sgn(Bos)us + anpf, (8o ud {1 + o(1)}}
s=1
denole. A4+ B—C. (4.29)

Now we individually examine A, B, and C. By Hoélder’s inequality, the A term on the
right-hand side of (4.29) is

&n{ LY ) }Tu _ n1/2ann—1/2{ (Y5 ,) }Tu

) O
< n'2q, n—1/2{ 8&(;;"#0) }Tu
< n'2a, n_l/zw ’ : Hu” (4.30)

By (C1), (C2) and (C3), we obtain that, n~!/2%2%) — O, (1), A can be bounded by

nl/zan||u||.

For the B term, since %{M} = O,(1) by (Cl) and (C2), we obtain that

DT
T 82({: Y;’lﬁ :
u {W}uai is bounded by na?||ul|?.

For the C term, we obtain that, using Holder’s inequality,

p1

p1
Znanpl)\nﬂﬂsODsgn(ﬂsO)us S no,an Zus
s=1

— s=1

< nanan”“” : Hl” = \/p_lnanan”u”-
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Furthermore, by the definition of b,, we obtain
Znaip&'n [Bos[)uz {1 + o(1)} < nagbal[ul*{1+ o(1)}.

Note that nana, = Op(naz), and b, = 0,(1) by (C6.3), therefore, term C is bounded by
nogan|ul|.

Since a,, = O,(n~'/2) from (C6.2), all A, B and C are of the order O,(na?). If |u| = C,
is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D(w,) is positive

definite, then we have
p{sup||uH:C€Kn(u) < O} =P {Sup||u||:C€€pen1(Y; ’¢O + Oénll) < gpenl<Y; ¢0)} >1- €,

which indicates at least 1 — e that there exists a local maximum in {t, + «,u}. Hence,

there exists a local maximizer such that ||¢) — | = O,(a,).

C. Sparsity

Proof: By Theorem 1, it suffices to show that with probability tending to 1 as n — oo, for
any given B, satisfying ||3; — Byl = O,(n~Y?), € satisfying || — &|| = O,(n~%/?), and for
€n =Cn"Y2 and s =p; +1,...,p, we have

Mpen1 (Y1)
9Ps

Olpen1 (Y5 )
9Ps

With Taylor Series expansion, we obtain

ag enl(Y;d)) . agc(y7¢> o /
pa—ﬁs = —aﬁs np,\n(\55|)sgn(ﬁs)
(Y5 ,) PL(Y ;9P\ T

aﬁs . +{ 8658¢0 } (11[)_1700)

Pl (Y 9/ ,
(- %)T{Wmﬁ)}w — o) — nph, (|6 )sen(8,)

Lot A+ B+C —nph (|8:)sen(Bs)

<0 for 0 < B, < €y,

and
>0 for —e¢, <[, <0.
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where 1 lies “between” 9 and 1p,. By the assumption that |9 — 4| = O,(n~/?), then
it follows that
A= Op<n1/2)7 B= Op(nl/z)a C = 0,(1),

and thus

(nA,) tA = Op(nfl/z/)\n), (nA,) 1B = Op(n’l/Q/)\n), and (n\,)'C = O,(n'/\,).

As a result, we obtain

et E0) o f(uhn) ™ (A B+) = 254, (1 sen50)
= AL A) ~ 278, (5o} (451

By the regularity condition (C6), liminf,_,liminf,_,o+p) (€)/An > 0 and lim,_,o\/nA, =
00, the sign of the derivative in (4.31) is determined by fs. Thus we have
Mpen1 (Y5 9)
0Ps

<0 for 0 < B, < €y,

and

(%penl (Y§ '¢)
0Ps

>0 for —e¢, <fB <.

This completes the proof.

D. Asymptotic Distribution

Proof: Part (a) follows from Theorem 1 and Theorem 2. Now we show part (b). By
Theorem 1 and Theorem 2, there exists a 1?) = (fi I O,é) that is a root-n consistent local

maximizer of {pe,1(Y;7), and that satisfies

8gpenl (Ya {b)

b ‘M: -

By Taylor Series expansion, we obtain

OU(Yithy) | {a%(Y; Py

o oo +op<1>} (% = o) = n{B+{£ + 0, ()} %) | = 0.
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Thus, we obtain

1 OL(Y;9h)
Vi ogog” /

+op<1>}<zl—¢o>+¢ﬁ b+ {5+ 0} = )] = ==

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain

Vi{D (o) (3 — ) + b+ S(th — 1)} —p N(0, M(3h,)),

ie.
VDo) + SHab = o) + b —p N(0, M (3hy)).
E. Regularity Conditions for Misspecified Model

In this subsection, we list regularity conditions that are needed for the subsequent devel-

opment.

(C1). For all ¢, £5(Y;;%™) is three-times continuously differentiable.

w (V. kY | O (Ya®) (2 92 (Yap®) 3z (Yirp™)
(C2). LY d"), [T [Tausaur 0% 90L00F
Bi(Y;, Xy, Z;) for all j k1 =1,... ,dim(%)"), in which ¢} is the j—th element of "

Moreover, Ey,.y {B;(Yi, X;, Z;)} < oo for all 4.

|, and | are dominated by some functions

(C3). The solution for @™ in the equation Eympo{%} =0 is ;.

(€0 Let 21°(8") = By, | {205 9 {0 w) | | ana

0 (Vi 9"

Assume that

n

%Z { af;* (i) H az*ézm; )} = M) +o0,(0),
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and

L [PV e
_HE{W} = D*(4") + 0,(1).

Similar definitions and requirements are applied to M*(2p" ) and D* (2" ).

(C5). There exists an open subset w that contains the parameter point 1 such that for all
P € w, D*(¥") and [)*(z,b*) are positive definite.

(C6). Let A, be the tunning parameter with the dependence on cluster size n explicitly

spelled out. Define

We assume that

(C6.1). A = 0p(1),
(C6.2). a, = O,(n~1?),
(C6.3). b, = 0p(1).

(C7). We assume that

(C7.1). liminf,_, liminf._,o+p) (€)/An > 0.
(C7.2). lim,_s\/n\, = 0.

F. Consistency under Misspecified Model

Proof: Let o, = n~'/? 4+ a,,. We need to show that for any given € > 0, there exists a large

constant C. such that

P {supyjec, Goent (Vs 05 + au) < & (Yiapg) } > 1 — ¢,
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T

where u = ((u1, ..., ups, ..., up)", uf)", ue- is a vector with the same length as £*, and

|lz|| = VaTz.

Suppose C. is sufficiently large such that ||(ui,...,up:)|| > 0. Note that py,(0) =0, we

consider
Kn(u) = g;()enl (Y7 wg + anu) - é;enl (Y’ ¢[>§)

= G545+ anu) = C(YVig) —n ) pa (185 + ans]) + 1) pa, (165

s=1 s=1

P p
= G595+ anu) = £(YV595) —n Y pa (18 +anus) —n D pa (0 + anuy)))

s=1 s=pi+1
Pi P
+n ) a8 + 7 Y pa(0])
s=1 s=pj+1

21 pi
< Gy 4 aqu) = GYVipg) —n > pa (18 + ants]) £ 1) pa (18%)). (4:32)

s=1 s=1
because of the fact that n zgszJrlpAn(]O + a,ugl)) > 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and
(C2), we obtain

* A T
C(Yipy+ au) = gz(y;¢3)+an{M} u+1uT{

82@’2(1”; ‘bg) 2
o 2 }“O‘

aqp*ad)*T n
p

+ 3 Op(lomus )
s=1

(Y5 9) }T u+ Lurf PV )

= g + o { A ' { G

fuaZ{1 +0,(1)}

(4.33)

2
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and

nfj{mn(w:omnus\)}

= nszn (185D +nzanpxn (185%)sgn(55) us+nzaip&’ (182 Due{1+ o(1)}.

s=1
(4.34)
Substituting (4.33)(4.34) into (4.32), we obtain
K,(u) < QH{W}TU—F %uT{%}uai{l +o0,(1)}
Pi
- Zl n{anph, (185])sgn(Bio)us + anpy (1BiDui{1l +o(1)}}
denole. A J; B-C. (4.35)

Now we individually examine A, B, and C. By Holder’s inequality, the A term on the
right-hand side of (4.35) is

an{agzg;;:’%)}Tu . Ve n—1/2{(%*(;; ¢0)} u
< n'q, n—1/2{ Migl;*%) }Tu
< ', n_l/gaé:(;;;*@bé)u , H“H (4.36)

By (C1), (C2) and (C3), we obtain that, n*1/2% = 0,(1), A can be bounded by

n'2a,||ul|.

For the B term, since - M = 0O,(1) by (C1) and (C2), we obtain that
Op*ap* P
T{%}uai is bounded by na?||ul|?.

For the C term, we obtain that, using Holder’s inequality,

l

Py

1
Z nanp, (185))sen(B5)us < nayan, Zus

s=1 s=1

< nanan”“” : ||1|| =V pinananHuH-
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Furthermore, by the definition of b,, we obtain

Zmipﬁ (182 Due{1 + o(1)} < nagba[lul*{1 + o(1)}.

Note that nay,a, = Oy(na?), and b, = 0,(1) by (C6.3). Therefore, term C is bounded by

nagan|ul|.

Since a,, = O,(n~*/2) from (C6.2), all A, B and C are of the order O,(na?). If |u| = C.
is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D*(v);) is positive

definite, then we have

P{sup”uH:QKn(u) < O} =P {sup”u” clrent (V05 4+ apu) < G (Yiph)} > 1 —¢,

which indicates at least 1 — € that there exists a local maximum in {t; + o, u}. Hence,

there exists a local maximizer such that ||gp — || = O,(a,).

G. Sparsity under Misspecified Model

Proof: By Theorem 4, it suffices to show that with probability tending to 1 as n — oo, for
any given 3} satisfying |3} — Bi;|| = O,(n~1/2), £* satisfying ||¢* — &|| = O,(n~/?). Then

for ¢, = Cn~Y2 and s = p} +1,...,p, we have to prove
or? ;)
%w for 0 < B < e,
and . .
agpenl( 7¢ )

a5 >0 for —e¢, <f; <0.
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With Taylor Series expansion, we obtain

W = g sen(s)
_ oY) | g PLVPONT
SR IR e e IO

83€;en1 (Y7 ¢*)

T =) { G = ) — (3 sn(57)

A+ B+ C —np)\ (15:])sgn(57)

denote

where 4" lies “between” * and ;. By the assumption that ||¢* — || = O,(n~/2), then
it follows that
A=0,n'?),  B=0,n"%, C=0,1),

and thus

() PA = 0,(n7V2/N,),  (nA) B =0,(n"Y2/),), and (n\,)7'C = O,(n7t/N,).

As a result, we obtain

W = (M) N A+ B+C) — S, (187)sen()}

= A0, (02 /N) — AP (182])sen(B85) ) (4.37)

By the regularity condition (C6), liminf, ,,liminf. o+ p} (€)/An > 0 and lim, /A, =
00, the sign of the derivative in (4.37) is determined by £%. Thus we have

ag;enl (Y’ w*)

5 <0 for 0 < f; < ey,

and .
8€;en1(y; 170 )

5 >0 for —e¢, <pl<O.

This completes the proof.
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H. Asymptotic Distribution under Misspecified Model

Proof: Part (a) follows from Theorem 4 and Theorem 5. Now we show part (b). By
Theorem 4 and Theorem 5, there exists a 1:/)* = (,@;, 0, é*) that is a root-n consistent local

maximizer of £f,,(Y;1"), and that satisfies

penl

ag;;enl (Y? {b*)

. =0
O &=

By Taylor Series expansion, we obtain

2%, {%?iyi‘fﬁ + op<1>} (" =) = n{B + {5+ (0} 87 = 9} =0
o oY O

Thus, we obtain

1 [P0y ) T e a1 G
Tn {W +0p(1)} (4 —@bo)—\/ﬁ[b HE +op (1) H " =) | = BV e

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain
V(D™ (o) (" = tby) + b" + £7(3" — o)} —p N(0, M (1h)),

1.e.

VA[{D" (@) + S Hw — aby) + B = N(O, NI (b)),
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Appendices: Simulation Results

Simulation for Selecting Fixed Effects

Linear Mixed Model

Table 4.3: Simulation results for the fixed effects selection under linear mixed model: model

selection
Avg. No. of 0 Coefficients

Method R.MME(%)* 1000xM.MME Correct* Incorrect™*
ML{, ,, ~ 47.770 13.423 4.738 0
ML, 48.230 13.553 4.735 0
Example 1 APW (4 5 54.311 16.968 4.614 0
n==60,J=1,K=5 APW, 55.270 17.301 4.598 0
APC(q ) 52.870 14.907 4.637 0
APC, 53.646 15.225 4.629 0
ML 4,2 34.297 1.153 5 0
ML, 34.699 1.152 5 0
Example 2 APW 4z 33.859 1.250 5 0
n=>500,J =1,K=5 APW, 34.543 1.250 5 0
APCq ) 34.340 1.145 5 0
APC, 34.679 1.152 5 0
ML, 45.515 7.186 4.806 0
Example 3 APW, 48.875 10.019 4.682 0
n=2=60,J;,=3,K=3 APC, 46.875 8.613 4.747 0
ML, 33.806 1.103 5 0
Example 4 APW, 34.303 1.442 4.999 0
n=300,J;, =3, K =3 APC, 33.620 1.241 5 0

T ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,
respectively. (a, A\), A denote the tuning parameter selection by both a, A and only searching A with fixing a = 3.7, respectively.

I R.MME represents the median of ratios of MME of a selected model to that of the un-penalized estimate under the full model in ML,
APW, APC methods, respectively. M.MME denotes the median of MME for selected models in ML, APW and APC scenarios.

* “Correct” presents the average restricted to the true zero coefficients. 0 represents no true zero coefficient is shrink, while 5 implies

all true zero coefficients are restricted into zero.

% “Incorrect” depicts the average of significant coefficients erroneously set to zero. 0 represents no significant coefficient is shrink, while

3 implies all significant coefficients are erroneously set to zero.
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Logistic Mixed Model

Table 4.6: Simulation results for the fixed effects selection under logistic mixed model:

model selection

Avg. No. of 0 Coefficients
Method R.MME(%) 1000xM.MME Correct Incorrect

ML{  40.816 0.486 4.907 0

Example 1 APW,  43.364 0.507 4.813 0
n=200,J;=J=1K=5 APC,  49.784 0.592 4.703 0
ML,  36.357 0.097 4.967 0

Example 2 APW,  36.572 0.097 4.961 0
n=800,J;=J=1,K=5 APC,  37.150 0.098 4.948 0
MLy 44.060 0.247 4.886 0

Example 3 APW,  45.738 0.398 4.895 0
n=200,J;=J=3K=4 APC, 48837 0.270 4.891 0
MLy,  41.212 0.068 4.940 0

Example 4 APW,  44.589 0.132 4.942 0
n=400,J;=J=3,K =4 APC,  44.982 0.127 4.970 0

T ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood and all-pairwise conditional pairwise

likelihood approaches, respectively. A denotes the tuning parameter selection by only searching A with fixing a = 3.7.

135



‘L€ = p» Suixy ym Y Suiyoaeas A[uo Aq uorjoofes 1ojowrered Sutung o) sejousp Y ‘A[oarjoadsaa

‘soyorordde pooyieyi] asimired [euorrpuos asimired-[fe pue pooyrayi| osimired peurdiew astmared-jje ‘pooyr[ey] wnwixew jussarder DIV ‘MJV ‘TIN L

006 6010 €210 G9€°0 076 6600 0TT'0 LIE0 0'€6 TST0 69T°0 S8ZI'0 YDAV v =X‘e=r="r‘'o0v =u
GZ6 TeT0 T€T0  6CT'T 676 S0T'0 TTT'0 6ET'T TG6  TLTO GLT0 €OT'T  YMJV p ordurexy

7'€6  680°0 600 TTT'T 8F6 0800 S80°0 GTI'T 7'e6  FET0 SET0 91670 YN

T98 SPT'0 G8T'0 969°0-  ¥'88 GET'0 OLT'0 €36°0- €06 €030 6620 SPO'T- YDAV v =X‘€e=r="‘00c="u
L'88  TLT'0 9020 GTL0 6'T6 2ST'0 FIT'0  L0O'T L'68 TPT0 2620 8660  YMIV ¢ odurexy

8F6 8ST0 69T°0 6761 876 TPT'0 LST'0  18CT 766 02C0 LET0  SSL'T YN

76 20T°0 90T°0 S8TF0 766 €60°0 €600 L9G°0 €Y6  TPT0 €P1°0 FEP0 YDAV S=M‘1=r="r‘008=u
€76 €010 9010 ¥LV0 676 F60°0 €600 0650 LF6  TPT0 PFT0 ¢Sh0 XMV ¢ ordurexy

G¥6  OT'0 €0T'0 6650 096 €60°0 600 90L0 166 TPT0 CFT0  T8S0 YTIN

¢'L8  L6T°0 0SC°0 L6V0- 618 TIST'0 G1¢0 T6T°0- 606 TLTO SIE0 0900 XDV ¢=‘T=r="‘00C="u
G06 T0T0 0FC0 6780 9'T6 LST'0 9020 9TIT'T 676 TST0 6080 TETT  YMJV T ordurexy

I'76 0120 9220 F98'T G¢F6 1610 S61°0 €ITT 1'96 062°0 7620 ¥10°C SN

(%)dD dSV dST (%)serd  (%)dD dSV dSH (%)serd  (%)dD dSV dSH (%)serd  poyieN

% eyl g

g SIUBIOPO0D UOLS

-$91891 JO UOIJRUWIIISO [OPOUWL PAXIW DIISISO[ JOPUN UOI}IS]AS SO0 POXI) oY} 10J SNSoI UOIJe[NWIS /' e,

136



‘L'e = o Suixy yum Y Surydress A[uo £q uor1oo[es rojouwrered Juruny oyl sejousp Y ‘A[oarydadsox

‘soyoroirdde pooyreyI] asimared [ruorpuod asmmired-[[e pur pooyreyI] osimired [eurdiew astmared-[[e ‘pooyr[eyl] wnwixew juasaider DIV ‘MdV ‘TIN L

066  ¥90°0 S90°0 SEV'Y 006 LFT'0 9910 ¥000- YDAV ¥ =X‘€=r="00v =u
676 ¥90°0 L90°0 9650 ¢'e6  PLT0 6410 0L5T  YMAV 7 ordurexy
706 0900 SS0°0 899°0- €6 STI0 PRI0  0LET TN
7’66 €600 00T°0 G6SG L 7’88 8610 ¢S¢'0 ¢cl'e- YDAV V=M€= ="'00g="u
€¢6 7600 8600 66T T'68 GPZ0 T0€°0 8860  YMIV ¢ ofdurex;y
0F6 LS00 1600 TEI'0 9F6 €230 TSC0 6TFT TN
- - - - 676 €210 SoI'0 1800 YDAV S=MT1=r="008=u
- - - - 2’96 921°0 810 0120~  YMIV ¢ ordurexy
- - - - 866 €210 ¥GI'0 9070 TN
- - - - 196 €920 8L5°0 8ST'e-  XDAV G=XM‘1=[="00c="u
- - - - 096 092°0 920 60T~ YMAV T odurexy
- - - - I'86 GST0 €960 I€V'C g\
(%)dD dSV dsd (%)serd  (%)dD dSV HASH (%)serd  POURIN
d "o

s1ojowreIed s100p0

WOPURI JO UOTPRUWI}SS ([POUL POXIUL OIPSL30] IOPUN UOTIID[S S$}I9]Jd PAXT o1} 10] SHNSSI UOIR[NUWIS R 9[qe],

137



Poisson Mixed Model

Table 4.9: Simulation results for the fixed effects selection under Poisson mixed model:

model selection

Avg. No. of 0 Coefficients
Method R.MME(%) M.MME Correct Incorrect

MLi 75460  47.159  4.633 0

Example 1 APW, 82396 65310 4.302 0
n==60J;=J=1,K=5 APC, 82222 53579 4.328 0
ML, 75448  4.532 5 0

Example 2 APW,  77.834  T7.108  4.998 0
n=>500,J;=J=1,K=5 APC, 74370  5.033 5 0
ML, 86560  75.026  4.484 0

Example 3 APW,  109.717  173.273  4.055 0
n==60J;=J=3K=2 APCy, 96514  103.141 4.200 0
ML, 75118  11.706  4.930 0

Example 4 APW, 71.482 17.412  4.866 0
n=300,J;=J=3K=2 APCy, 71078 15439 4.892 0

T ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood and all-pairwise conditional pairwise

likelihood approaches, respectively. XA denotes the tuning parameter selection by only searching A with fixing a = 3.7.
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Simulation for Both Fixed and Random Effects
Linear Mixed Model

Situation 1: Generate Data from GLMMs

Table 4.12: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMMs: model selection in the linear mixed model

Fixed Coeflicients Random Coefficients

M.MSE; RMSEg M.MSEp RMSEp Correctl®™ Incorrectl Correct2 Incorrect2

Scenario I: n=100,J;, =J=1,K =5

GLMM ML, 0.086 0.531 0.366 0.517 4.652 0 4.150 0
APW, 0.127 0.653 0.104 0.171 3.812 0 5.538 0

GLMPM ML, 0.075 0.518 0.395 0.554 4.588 0 4.020 0
APW, 0.126 0.649 0.105 0.175 3.548 0 5.516 0

Scenario 2: n=300,J;, =J=1,K =5

GLMM ML, 0.018 0.371 0.033 0.061 4.968 0 5.802 0
APW,  0.026 0.438 0.025 0.044 4.764 0 5.976 0

GLMPM MLy 0.020 0.400 0.038 0.070 4.960 0 5.806 0
APW,  0.026 0.439 0.024 0.044 4.718 0 5.950 0

Scenario 3: n=100,J; =J=3,K =3

GLMM ML, 0.049 0.492 0.033 0.059 4.744 0 5.912 0
APW, 0.112 0.746 0.009 0.016 3.522 0 5.264 0

GLMPM ML, 0.049 0.495 0.035 0.064 4.736 0 5.798 0
APW, 0.110 0.745 0.011 0.018 3.454 0 4.994 0

Scenario 4: n=300,J;, =J =3, K =3

GLMM ML, 0.012 0.390 0.009 0.017 4.970 0 6 0
APW, 0.021 0.472 0.003 0.005 4.670 0 6 0

GLMPM MLy 0.012 0.384 0.009 0.017 4.974 0 5.998 0
APW, 0.021 0.478 0.003 0.005 4.666 0 5.594 0

T ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. A denotes the tuning

parameter selection by searching A with fixing a = 3.7, respectively.

i MSEg=||8 - BlI?>, MSEp = ||\/diag(D) — y/diag(D)||>. M.MSEg and M.MSEp are the median of both quantities. R.MSEg
and R.MSEp are the median ratios of MSEg and MSEp, for a selected model to that of the un-penalized estimate, respectively.

* “Correctl” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient
is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrectl” depicts that the average of
significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

% “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero
coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the
average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Situation 2: Generate Data from GLMPMs

Table 4.15: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMPMs: model selection in the linear mixed model

Fixed Coefficients Random Coefficients

M.MSE; RMSEs M.MSEp R.MSEp Correctl™ Incorrectl Correct2 Incorrect2

Scenario 1: n=100,J;, =J=1,K =5

GLMM ML, 0.068 0.563 0.173 0.323 4.686 0 5.576 0
APW,  0.092 0.611 0.108 0.219 3.988 0 5.998 0

GLMPM ML, 0.059 0.538 0.289 0.441 4.668 0 4.700 0
APW, 0.092 0.625 0.124 0.201 3.810 0 5.366 0

Scenario 2: n =300,J;, =J=1,K =5

GLMM ML, 0.017 0.433 0.062 0.145 4.984 0 6 0
APW, 0.024 0.471 0.056 0.129 4.828 0 6 0

GLMPM ML, 0.016 0.455 0.032 0.064 4.968 0 5.914 0
APW, 0.023 0.472 0.027 0.048 4.788 0 5.770 0

Scenario 3: n =100,J;, =J =3, K =3

GLMM ML, 0.040 0.534 0.132 0.264 4.806 0 6 0
APW,  0.097 0.729 0.071 0.144 3.604 0 6 0

GLMPM ML, 0.038 0.501 0.035 0.063 4.834 0 5.904 0
APW, 0.093 0.735 0.010 0.018 3.722 0 4.916 0

Scenario 4: n =300,J; =J =3, K =3

GLMM ML, 0.010 0.429 0.117 0.236 4.988 0 6 0
APW, 0.021 0.497 0.051 0.106 4.730 0 6 0

GLMPM ML, 0.010 0.422 0.009 0.016 4.994 0 5.996 0
APW, 0.019 0.504 0.003 0.006 4.766 0 5.422 0

T ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. A denotes the tuning
parameter selection by searching X with fixing a = 3.7, respectively.

I MSEg=||B— Bl1%2, MSEp = ||\/diag(D) — 1/diag(D)]|?. M.MSEg and M.MSEp are the median of both quantities. R.MSEg
and R.MSEp are the median ratios of MSEg and MSEp, for a selected model to that of the un-penalized estimate, respectively.

* “Correctl” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient
is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrectl” depicts that the average of
significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

% “Correct2” presents the average restricted to the true random effects zero coefficients. O represents that no true random effects zero
coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the
average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Poisson Mixed Model

Situation 1: Generate Data from GLMM

Table 4.18: Simulation results for doubly selecting fixed and random effects under the case

that data are generated by GLMMs: model selection in the Poisson mixed model

100x 100x Fixed Coefficients Random Coefficients

M.MSE; RMSEg M.MSEp R.MSEp Correctl*™ Incorrectl Correct2 Incorrect2

Scenario 1: n =250,J;, =J=1,K =9

GLMM ML, 0.060 0.306 0.126 0.086 5 0 5.942 0
APW, 0.101 0.357 0.044 0.029 4.988 0 5.610 0

GLMPM MLy 0.060 0.300 0.122 0.081 5 0 5.982 0
APW, 0.101 0.357 0.044 0.029 4.988 0 5.754 0

Scenario 2: n =500,J;, =J=1,K =9

GLMM ML, 0.033 0.325 0.116 0.079 5 0 5.994 0
APW,  0.058 0.364 0.014 0.009 5 0 5.870 0

GLMPM MLy 0.033 0.326 0.114 0.077 5 0 6 0
APW,  0.058 0.364 0.014 0.009 5 0 5.910 0

Scenario 3: n =250,J;, =J=3,K =4

GLMM MLy 0.054 0.303 0.223 0.005 5 0 5.762 0
APW,  0.087 0.345 0.257 0.057 4.990 0 4.650 0

GLMPM MLy 0.055 0.302 0.255 0.006 5 0 5.834 0
APW,  0.091 0.332 2.525 0.056 5 0 5.124 0

Scenario 4: n =500,J;, =J =3, K =4

GLMM ML, 0.028 0.316 0.009 0.002 5 0 5.962 0
APW,  0.054 0.387 0.251 0.056 5 0 5.030 0

GLMPM MLy 0.027 0.302 0.009 0.002 5 0 5.982 0
APW,  0.057 0.409 0.049 0.011 5 0 5.038 0

T ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. A denotes the tuning

parameter selection by searching A with fixing a = 3.7, respectively.

it MSEg=|IB— BH2, MSEp = ||\/diag(D) — y/diag(ﬁ)HzA M.MSEg and M.MSEp are the median of both quantities. R.MSEg
and R.MSEp are the median ratios of MSEg and MSEp, for a selected model to that of the un-penalized estimate, respectively.

* “Correctl” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient
is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrectl” depicts that the average of
significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

% “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero
coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the
average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Situation 2: Generate Data from GLMPMs

Table 4.21: Simulation results for doubly selection fixed and random effects under the case

that data are generated by GLMPMs: model selection in the Poisson mixed model

100 x 100 x Fixed Coefficients Random Coefficients

M.MSE; RMSEs M.MSEp R.MSEp Correctl™ Incorrectl Correct2 Incorrect2

Scenario 1: n=250,J;, =J=1,K =9

GLMM ML, 3.451 0.999 32.883 0.696 4.378 0 1.110 0
APW, 4.187 0.892 54.010 0.929 4.996 0 2.106 0

GLMPM ML, 0.066 0.303 0.155 0.103 5 0 5.968 0
APW, 0.113 0.356 0.045 0.029 4.988 0 5.596 0

Scenario 2: n =500,J;, =J=1,K =9

GLMM ML, 2.571 0.864 31.856 0.668 4.688 0 1.488 0
APW, 4.139 0.896 54.839 0.927 5 0 1.938 0

GLMPM ML, 0.032 0.304 0.140 0.095 5 0 5.998 0
APW,  0.066 0.376 0.014 0.009 4.996 0 5.862 0

Scenario 3: n =250,J;, =J =3, K =4

GLMM ML, 25.047 1.036 31.264 0.336 4.994 0 0.352 0
APW, 17.815 0.922 51.366 0.309 4.971 0 0.367 0

GLMPM ML, 0.056 0.310 0.027 0.006 5 0 5.884 0
APW, 0.129 0.396 0.252 0.056 4.968 0 5.162 0

Scenario 4: n =500,J; =J =3, K =4

GLMM ML, 21.617 1.042 31.129 0.336 5 0 0.470 0
APW, 17.715 0.932 52.018 0.309 5 0 0.096 0

GLMPM ML, 0.028 0.290 0.007 0.002 5 0 5.972 0
APW, 0.073 0.390 0.250 0.056 5 0 5.324 0

T ML and APW represent maximum likelihood and all-pairwise marginal pairwise likelihood, respectively. A denotes the tuning
parameter selection by searching X with fixing a = 3.7, respectively.

f MSEg =8 — B|I?>, MSEp = ||diag(D) — diag(D)||?>. M.MSEg and M.MSEp are the median of both quantities. R.MSEg and
R.MSEp are the median ratios of MSEg and MSEp, for a selected model to that of the un-penalized estimate, respectively.

* “Correctl” presents the average restricted to the true fixed effects zero coefficients. 0 represents no true fixed effects zero coefficient
is shrink, while 5 implies that all true fixed effects zero coefficients are restricted into zero. “Incorrectl” depicts that the average of
significant fixed effects coefficients erroneously set to zero. 0 represents that no significant fixed effects coefficient is shrink, while 3

implies that all significant fixed effects coefficients are erroneously set to zero.

% “Correct2” presents the average restricted to the true random effects zero coefficients. 0 represents that no true random effects zero
coefficient is shrink, while 6 implies that all true random effects zero coefficients are restricted into zero. “Incorrect2” depicts the
average of significant random effects coefficients that are erroneously set to zero. 0 represents that no significant random effects

coefficient is shrink, while 3 implies that all significant random effects coefficients are erroneously set to zero.
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Model Selection under Misspecified Models

Table 4.24: Simulation results for the fixed effects selection under misspecified linear mixed

model: model selection precision rate (%) for each variable

RCS-Nonzero RCS-Zero

Method 81 f2 B Bs  Bs Bs  Pr  PBs

N[L(\/)Jr 100* 93.2 99.0 96.0** 96.8 96.2 98.4 98.0

ML(x) 100 2.6 3.6 960 7.0 6.0 97.4 97.8

Example 1 APW(y/) 100 98.4 99.2 78.6 80.6 81.0 85.8 86.0

n=250,J;=J=1,K=5 APW(x) 100 20.8 24.4 77.0 2.8 1.8 80.8 83.6

APC(V/) 100 98.6 99.4 81.6 83.0 84.2 87.6 88.0

><) 100 18.4 19.8 81.6 2.6 2.0 83.6 85.2

ML(y/) 100 100 100 98.6 97.8 99.4 99.6 99.6

ML(X) 100 1.2 0.6 98.8 0 0 99.2 100

Example 2 APW(y/) 100 100 100 954 94.0 97.2 98.4 97.6

n=1000,J; =J=1,K =5 APW(x) 100 5.6 10.0 95.0 0 0 964 974

APC(\/) 100 100 100 97.4 95.8 98.4 99.0 98.2

x) 100 2.6 4.6 97.8 0 0 98.4 98.0

ML(y/) 100 85.4 98.8 94.8 96.4 97.0 98.2 98.4

ML(X) 100 6.4 7.2 92.8 20.6 18.4 95.2 96.4

Example 3 APW(y/) 100 97.6 100 69.2 74.2 77.0 81.2 77.8

n=250,J; =J=3,K=3 APW(x) 100 26.6 28.8 71.4 5.8 4.8 79.0 774

APC(\/) 100 97.8 100 70.8 75.2 78.0 82.2 79.0
x)

100 25.6 274 716 5.2 4.6 79.2 78.6
ML(y/) 100 97.8 99.8 98.0 97.8 98.4 99.2 98.6

ML(x) 100 1.8 3.6 972 6.8 7.6 98.2 978

Example 4 APW(y/) 100 99.6 100 80.6 79.8 84.0 89.2 90.4
n=>500,J; =J=3,K=3 APW(x) 100 194 26.0 80.6 1.8 1.6 85.6 88.0
APC(y/) 100 99.8 100 84.0 79.2 86.4 90.6 88.6
x) 100 20.6 25.8 81.8 1.4 1.0 86.8 88.6

T ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,
respectively. (1/) and (X) denote the model with correct skewed-normal random effects and the model with incorrect normal random
effects, respectively.

#* The values under “RCS-Nonzero” column presents the rate of corresponding non-zero coefficient that is correctly estimated as

non-zero.

% The values under “RCS-Zero” depicts the rate of related zero coefficient that is correctly set to zero.
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Table 4.25: Simulation results for the fixed effects selection under misspecified linear mixed

model: regression coefficient estimation for 3,

b1

Method Bias(%) ESE ASE CP(%)
ML(\/)T -1.362  0.171 0.160 93.8

ML(x) 50.331 0.174 0.158 34

Example 1 APW(y/) -9.910 0.197 0.148 80.2
n=250,J;=J=1,K=5 APW(x) 38.843 0.191 0.153 22.2
APC(y) -9.014 0.187 0.154 82.2

APC( ) 40.816 0.183 0.145 15.2
ML(y/) -0.258 0.081 0.080 95.0

ML(x) 51557 0.082 0.080 0

Example 2 APW(y/) -2.426 0.095 0.093 91.2
n=1000,J;=J=1,K=5 APW(x) 49.022 0.096 0.087 0
APC(y/) -1.935 0.089 0.088 93.2

APC( ) 50.045 0.090 0.086 0

(¢) 1.315 0.188 0.179 932

x)  42.819 0.190 0.173 15.6

Example 3 APW(\/) -9.899  0.205 0.145 80.6
n=250,J;=J=3K=3 APW(x) 28163 0.202 0.162 52.2
APC(y/) -9.634 0.199 0.150 81.4

APC( ) 28.729 0.196 0.158 50.0

ML(y/) 0556 0.123 0.129 96.4

ML(x) 43.653 0.119 0.124 1.2

Example 4 APW(y/) -6.133 0.139 0.130 88.0
n="500,J;=J=3K=3 APW(x) 33.048 0.134 0.121 14.2
APC(y/) -5.737 0.142 0.146 86.4

APC(x) 33.331 0.135 0.127 124

t ML, APW, APC represent maximum likelihood, all-pairwise marginal pairwise likelihood, all-pairwise conditional pairwise likelihood,
respectively. (1/) and (x) denote the model with correct skewed-normal random effects and the model with incorrect normal random

effects, respectively.
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Chapter 5

Variable Selection via Composite
Likelihood for Incomplete

Longitudinal Data Arising in Clusters

5.1 Introduction

Longitudinal data arising in clusters are typically collected by following up subjects in
clusters over a period of time. Incomplete data and variable selection issues are important
for such data. Incompleteness of data presents a challenge in standard analysis methods,
because analysis with missingness ignored may lead to biased results. On the other hand,
irrelevantly incorporating a large number of covariates to the model may result in the
difficulty of computation, interpretation and prediction, thus parsimonious models are
typically desirable. Many existing methods focus on handling either the missing data or
the variable selection, but not both (e.g. Wu and Carroll, 1988; Diggle and Kenward, 1994;
Little, 1995; Akaike, 1973; Tibshirani, 1997; Fan and Li, 2001). Ni et al. (2010) propose
a double-penalized likelihood approach to deal with the model selection for incomplete
response data with missing at random (MAR)(Little and Rubin, 2002), but the method is
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not applicable if missingness occurs in both the response and the covariates under missing

not at random (MNAR) scenarios.

Another particular issue for longitudinal data arising in clusters may be attributed to
substantially increased modeling complexity and computational difficulty. With clusters
present in longitudinal studies, the likelihood function may become cumbersome. Fieuws
and Verbeke (2006) argue that for longitudinal data arising in clusters under random effects
models, computation will become difficult as the dimension of the random effects vector

mcreases.

It is desirable to develop methods that can accommodate missingness, variable selection
and complex modeling issues. In this chapter, we propose a unified penalized missingness
modified composite likelihood framework (Lindsay, 1988; Arnold and Strauss, 1991; Cox
and Reid, 2004; Lindsay et al., 2011) to handle various features. In particular, our method
can accommodate data missing not at random (MNAR) for both the response and the
covariates. Moreover, it is flexible to handle the situation when the response and the co-
variates are missing not simultaneously. For the missing not at random (MNAR) case, our
inference requires only some “structural” assumptions for the missing data process. Under
the assumptions, we do not need to specify a specific model form for the missing data pro-
cess, which circumvents the misspecification and non-identifiability problems (Fitzmaurice
et al., 1996). We further add penalized terms in the likelihood functions to facilitate the
variable selection, while the composite likelihood formulations involve simpler model form

and cheapness in computation.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce
notations and models. In Section 5.3, we provide details on the inference strategy. A
study of the NPHS data will be illustrated in Section 5.4. Numerical studies concerning

asymptotic bias will be given in Section 5.5. Concluding remarks are given in Section 5.6.
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5.2 Model Formulation

5.2.1 Generalized Linear Mixed Models

Suppose that there are n clusters and J; subjects within cluster ¢, : = 1,2, ..., n. Further
suppose that there are K visits planed. Let Y;;; denote the response for subject j in cluster
i at the visit k, k = 1,2,..., K. Take Y;; = (Yij1,Yije, ..., Yijx)', 7 = 1,2,..., J;. and
Y= (1,35, ... Y )T i=1,2,...,n. Let Xjjr, = (Xijua, ..., Xijup)' be the p x 1 fixed
effect covariate vector for subject j in cluster ¢ at time k, X;; = (Xi?ngz, e ,XgK)T,
and X; = (X7, X3, ... X)) Let Zij = (Zijas - - -» Zijeg)" be the ¢ x 1 random effect
covariates vector. Z;; and Z; are defined by following the similar pattern as X;; and X;.

Let u; denote a random effects vector corresponding to cluster 7, i = 1,2,...,n.
Conditional on random effects u; and covariate vectors, Y;;; follows the distribution
given by
f(Y;jk’Xi, Zi, ui) = exp {Y;jkTijk - b(Tijk)}/a(¢) + C(Yzjk; P)|, (5.1)
where a(-), b(+) and ¢(-) are some specific functions, ¢ is a scale parameter, 7% is a canonical
parameter, E(Y;;,| X;, Z;,w;) = b/ (7i;6) and Var(Y,|Xi, Zi, wi) = a(@)b”(7%). We further
consider a regression model

MEYl Xi, Zisui)} = X5B + Zh s,

where h is a link function and 3 is a px 1 vector for fixed effect coefficients. Note that when
Ji =1for all i =1,...,n, the aforementioned model becomes ordinary generalized linear
mixed models (GLMMs) (Laird and Ware, 1982). Under the conditional independence

assumption given random effects u;, we have

Ji K
fYilXi, Zisw) = H H Y| X, Zi, wi),
J=1k=1

and thus the statistical inference can be applied by the likelihood of Y; with integrating

out the unobservable random effects given by

OG0 Z;) = / FYiIXs Zoy i) () (5.2)
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where f(u;) is the distribution of random effects ;.

5.2.2 Missing Data Models

In longitudinal studies, individuals in clusters may not be completely observed at all occa-
sions. Missingness can occur in both the response and the covariates measurements. Here
we start with the case that all subjects in all clusters are observed at visit 1, but they
can be missing at any other visit. Extensions to accommodating more general cases are

discussed in Section 5.2.4.

Let R, = 1 if the observation for cluster i, subject j at occasion k are complete
(both the response and the covariates are fully observed) and R;j, = 0 otherwise. Then
we take R; = (R, Rita, ..., Rigre)?. Write Y; = (Y0, V/™s) ) X; = (X%, X™#) and
Z; = (Z2%, Z™), to distinguish the observed and unobserved components of V;, X; and
Z;, respectively. The full likelihood for (Y;, X;, Z;, R;) in the ith cluster can be written as

f(Yi, Xi, Zi, Ri) = f(Ri|Y:, X, Zis @) f(Xa, Zi|v) f(Yi| Xa, Zis ),

where parameters ¢, v and 1 are assumed to be functionally independent.

If the missing data mechanism is missing not at random (MNAR), we have
f(Rzli/u Xi7 sz ¢> - f(RiD/iObsa }/;jmis7 Xi0b87 Xz?nis7 Zngs7 Zznzs7 ¢>)

where the missing data probability depends on the unobserved components of Y;, X; and
Z;.

Therefore, the statistical inference can use the observed data full likelihood function
PR X0, 20 = [ [ SORIY X 20811 (X Zi0) (VX0 Zisg) @y axy az,
(5.3)

where the integrals are taken for all unobserved responses and covariates. The observed

data likelihood function in (5.3) requires fully specification of response process f(Y;|X;, Zi; ¥),
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covariates process f(X;, Z;|v) and missing data process f(R;|Y:, Xi, Zi; ¢). Moreover, the
full likelihood estimation for interested parameter 1) involves a large set of nuisance param-
eters ¢ and v. To circumvent the difficulties in the full likelihood, we propose a composite

likelihood strategy.

5.2.3 Composite Likelihood

In the spirit of the conditional likelihood discussed in Fitzmaurice et al. (2005), we assume

the missing mechanism satisfies

forallk#£1,57=1,...,J;and j =1,...,J;.
Under the assumption in (5.4), we can prove that the conditional likelihood form for
Yiin (' =1,...,J;) given observed Yijx (j =1,...,Ji;k # 1) has

f(Y;j’l | Yz‘jksz'a ZuRijk = 1;'7/)#") = f(Y;j’l | Yz‘jk,Xm Zz‘?'ﬁ)‘

This implies that in cluster 4, the conditional distribution of Y;;; given Y, in a com-
plete observation for subject j at occasion k, equals to the conditional distribution of
f (Y | Yijk, Xi, Zi;4p). Therefore, it can be shown that the log likelihood obtained from
the complete observation I(R;j, = 1)log f(Yijn1 | Yijk, Xi, Zi; ) leads to unbiased estimat-
ing equations. The proof is sketched in Appendix 1.

However, the assumption in (5.4) may not secure such equalities for the marginal form

of ;i to have
f(Y;jk | Xi,Zi,Rijk = 1;¢7¢) = f(Yz'jk ’ Xi,Zz'ﬂb);

and the conditional form for Yj;; given Y;; to have

FYije | Yij, Xi, Zis Rijie = 1590, @) = f(Yije | Y, Xi, Zis ).
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Thus, the log likelihood functions obtained from the complete observation
I(Rijr = 1)1og f(Yiji | Xi, Zi; ),
and
I(Rijr = 1) log f(Yije | Yijrn, Xi, Zi; )
may lead to biased estimation equations.

Therefore, the inference can take the log composite likelihood for subject ¢ as

(Y)
1< j=1,..,J;
jlzl ..... J’i
kA1

(5.5)

According to (5.5), we need a composite likelihood modeling strategy by implementing
pairwise conditional log likelihood forms. The key difference between the composite likeli-
hood and full likelihood methods is, instead of working on the full distribution structure,
the composite likelihood approach only centers on partial structures of the probability
distributions. In particular, the log likelihood (5.5) only requires the specification of con-
ditional distribution form as Y;j; given Y;;, X;, and Z;, which can be obtained from (5.1)
by
f Vg, Yigr, X, Z3)

fYijinr, Xi, Zi)
J Yl X, Ziy wi) f (Yigrw | X5, Ziwa) f(ws) du
S f Y| X, Ziywi) f (i) dug .

f(}/;jk‘n/;]’k"a X’L) ZZ)

Note that comparing with the full likelihood (5.3), our log composite likelihood function
(5.5) does not involve the specification of the covariates process f(X;, Z;|v) and the missing
data process f(R;|Y;, X;, Z;; ¢). Moreover, the integrals for unobserved response Y and
covariates X™* 7™ are not included in (5.5). Thus, the composite likelihood shows

modeling tractability and computational cheapness.
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5.2.4 Extensions

Previous discussions assume that all subjects in clusters are observed at visit 1, but they
can be missing at any other visits. In applications, this requirement may be too restrictive.
Moreover, assumption (5.4) is quite strong since it does not allow the missingness depends

on any of the response in the first occasion.

In fact, the missingness modified composite likelihood approach can be applied as long
as for each cluster 7, there exists some j, k which are free of missingness. Let S; be the
subset of (i11,412,...,4J;K) that includes the missingness-free occasions for cluster ¢, while
R; is the complementary of S; to display the missingness-prone occasions for cluster ¢. Then

assume
P(Rijk = 1Yk, Y, Xi, Zi) = P(Riji = 1|Yiji, Xi, Z3), (5.6)

for some ijk € R; and ij'k’ € S;. Let (ijk,ij'k’) € A if they meet the assumption (5.6).

We obtain a general composite likelihood for cluster ¢ as

() = 1og[ T {F Ol X Z0F Vil YVigw, X0, 20}
iJkES;
ij'k'€S;

X H FYije|Yije, X, Zi)I(R"‘ik’:l)} . (5.7)
(ijk,ij' k' )EA

Therefore, the composite likelihood function has

1) =2 v, (5.8)

5.3 Selecting Fixed Effects Using the Composite Like-
lihood

In this section, we focus on selecting fixed effect. Denote ¥ = (,BT, T where £ represents

all parameters other than 3. To achieve both the model selection and the parameter esti-
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mation, we propose to maximize the following penalized composite log likelihood function:
p
Cpen (Y5 h) = 0(Y390) —n > pa(|Ba)), (5.9)
s=1

where ((Y'; 1)) is defined in (5.8), pA(|5s|) is the penalty function for the s-th element in 3.
Following Fan and Li (2001, 2004), we adopt the SCAD penalty. The SCAD penalty is a
nonconcave function defined by p,(0) = 0 and for 55 > 0, its first derivative satisfies

(a)‘ B BS)JF
WI(& > A)}

s = {16, <+
for some a > 2 and A > 0. In practice, 2-dimensional grid searching for optimal tuning
parameter (a,A\) can be computational expensive. Based on the calculation of Bayesian

risk, Fan and Li (2001) suggests setting a = 3.7, and only searching for .

Given known values of tuning parameter a = 3.7 and A", the estimate of 1), denoted

by @Ab,,, is the maximizer of the penalized composite likelihood. That is

":br = argmaxqupen(Y; ¢)
The maximization can be implemented using the Newton-Raphson algorithm. However,
the SCAD penalty function is singular at the origin, and does not have continuous second
order derivatives. We can apply the local quadratic approximation approach proposed by
Fan and Li (2001) to circumvent this problem with a modified Newton-Raphson algorithm
for the tth iteration:
020(Y - 1 9UY : p®
YD = ) {(—"’DT) _ nW(t)} {M _ nU‘t)}, t=0,1,... (5.10)
Do o

where WO = diag{p}, (|5”))/161"].....05, (18"D)/185"]. 0¢}, U® = W - (897 0",
and O is the O-vector with equal length as &. If 5§t+1) is very close to 0, then set Bs =0,
and remove its corresponding elements in (5.10) from the iteration. The estimates '(Abr is

obtained when all parameters converge to a stable set.

The aforementioned maximization algorithm is conducted based on a fixed tuning pa-

rameters (a”, \(). In practice, (a{”,A\(") is chosen on a grid and the solution ’l])r is
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obtained for each r. The final model selection and estimates 1,Ab can be realized based on
certain selection critera. For instance, recent studies (Wang et al., 2007; Bondell et al.,
2010; Ma and Li, 2010; Zhang et al., 2010) show that the Bayesian information criterion
(BIC) is consistent for model selection given the true model lies in the class of candidate

models. The BIC criterion has the form

BIC (4 Ay = —20(Y; P,) + log(n) x df 40 20 (), (5.11)

where 9, denotes the parameter set in which the 0 elements in 1:bT are removed, df,m o) (v,)

is the effective number of degrees of freedom given by tr(J (e, )H(2p,)*), (Varin and Vi-

doni, 2005; Gao and Song, 2010) where H(v,) = —822’;2"—%, and

% S OU(Yiab,)  OU(Yi 9,
J@h,) =) — e ==
i=1 1/)7* 'le
Under some mild regulation conditions (see Appendix 2), the asymptotic properties for

our method can be established. The proof is sketched in Appendix 3.

5.4 Application

The National Population Health Survey (NPHS) is a longitudinal study that collects health
information and related socio-demographic information by following a group of Canadian
household residents. The questions for the NPHS include many aspects of in-depth health
information such as health status, use of health services, chronic conditions and activity
restrictions. Moreover, social background questions, including age, sex and income level,
are contained in the questionnaire. A research interest focuses on modeling the influence
of income on population health. The data we analyze here contain 6 cycles’ observations
(from Cycle 1 to Cycle 6), including n = 1033 males with age between 50-70 at Cycle 1,
and less than 80 at Cycle 6. All the deceased subjects are excluded from the analysis.

Health status (HUI) is measured by the Health Utilities Index Mark after zero-mean

normalization. The higher HUI score indicates a better health status. The covariate
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prone to missingness is household income (INC), which is measured by provincial level of

household income with zero-mean normalization. The other covariate, denoted by CYCLE

is cycle number after log-transformation, respectively.

In the data set, the first two occasions are complete for all subjects. However, only
43.2% of the individuals have complete observations for both the response and the covariate
in the following 4 cycles. The missingness proportions in the response in the following 4
cycles are 11.9%, 16.8%, 22.3%, and 25.6%, respectively, while the missingness proportions
in the covariate are 17.1%, 24.0%, 29.0% and 33.4%, respectively. Various types of miss-

ingness patterns are present. A sample of summarized proportions is displayed in Table

o.1.

Table 5.1: Missing data proportions for HUI and INC variables in the NPHS data (%)

HUI INC
Percentage
1 2 3 4 5 6 1 2 3 4 5 6
43.2% YA R Y Y Y RV ARV, v vV
2% vV VvV VYV VOV Y XV VY
1% vV VvV VX vV Y Y Y Vv
1% vV VY x x WY Y X X

v/ Observed; X Missing

Orpana et al. (2009) indicate that random intercept is sufficient to account for the
correlation across cycles. Moreover, both cubic terms of INC and CYCLE with interactions

are of interest in the modeling of HUI. This motivates us to consider variable selection in
the following model

Yije = XijiB + wij + €iji, (5.12)
where J; = 1 for all 4, Yjj; is the HUI score for subject ¢ measured at Cycle k, X;;;, is a
16 x 1 vector of variables measured at j: Intercept, INC, INC?, INC?, CYCLE, CYCLE?,
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CYCLE?, CYCLE, INC x CYCLE, INC? x CYCLE, INC?® x CYCLE, INC x CYCLE?,
INC? x CYCLE?, INC? x CYCLE?, INC x CYCLE?, INC? x CYCLE?, INC? x CYCLE?.
u;; ~ N(0,02) is the subject specific random effect and €5, ~ N(0,02) is the independent

residual error.

We apply our composite likelihood procedure (CL) to model (5.12). As a comparison,
we employ a naive approach that is often used by analysts to handle data with missing
observations. That is, we apply the naive maximum likelihood method to the complete data
only, and denote this method by NML. In the NML approach, all incomplete observations
are ignored and only complete data are used for estimation, where the likelihood formula

for the ith cluster can be written as

e

J

N

J, K
T4/ Vil Xio Ziy ) Yooe | f () s

1 k=1

Table 5.2 displays the model fitting and selection results. Two methods obtain relatively
comparable results that income has only a linear effect on health index. They also suggest
a cubic temporal effect. The NML approach excludes all of the interaction terms, while

CL maintains some higher order interaction terms.

165



Table 5.2: Analysis results for the NPHS data: entries represent the estimates and standard

errors (in brackets)

NMLT CL

Variable Full Model  Selected Model Full Model  Selected Model
Intercept —0.020(0.041)  0.001(0.028) -0.006(0.041)  0.016(0.031)
INC 0.109(0.064)  0.085(0.014) 0.092(0.068)  0.080(0.019)
INC? -0.012(0.027) -0.020(0.028)

INC? -0.003(0.033) 0.002(0.034)

CYCLE 0.349(0.216)  0.073(0.019) 0.563(0.232)  0.080(0.019)
CYCLE? -0.284(0.315) -0.669(0.380)

CYCLE? 0.033(0.116)  -0.039(0.007) 0.164(0.147)  -0.044(0.007)
INC x CYCLE -0.258(0.380) -0.084(0.468)

INC? x CYCLE -0.130(0.166) -0.229(0.201)  0.017(0.008)
INC? x CYCLE 0.236(0.203) 0.398(0.262)

INC x CYCLE? 0.291(0.551) -0.067(0.778)

INC? x CYCLE? 0.165(0.244) 0.422(0.339)

INC? x CYCLE? -0.353(0.297) -0.717(0.441)  -0.013(0.006)
INC x CYCLE? -0.092(0.202) 0.039(0.307)

INC? x CYCLE? -0.047(0.090) -0.149(0.132)

INC? x CYCLE? 0.134(0.109) 0.269(0.174)  -0.022(0.005)

1t NML and CL represent naive maximum likelihood to complete data and our composite likelihood, respectively.

5.5 Simulation Studies of the Proposed Methods

5.5.1 Measure of Marginal Model Error

In this section, we implement the proposed method to various models, including linear
mixed models and Poisson mixed models. First, we describe a measure that is used to

feature the performance of the estimates obtained from different models.
Let pu(-) = Eu { E(Yijl X, Ziswi) } = By {h" (X [1Bo+ ZTwi) }, and ji(-) = By {h™'(
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A

Z5gui)}, where h(-) is the link function defined in (5.1), B is an estimator obtained from
the proposed method. The expectations are evaluated with respect to the true model. We

define

MME(ji(-)) = Ex, z {fi(-) — p(-)}?,
and use this measure to quantify the marginal model error induced by estimator B It can
be seen that MME is a generalized model error measure (Fan and Li, 2001, 2002, 2004)

that takes the random effects into considerations. Other available model error measure can
be found from Bondell et al. (2010).

5.5.2 Linear Mixed Model

We now conduct a simulation study for the linear mixed model. The data are generated

from the model
Yijik = XijiB + wij + €ijk, (5.13)

where the €, are independently distributed with N(0,0?), and independent of the u;;.
wp = (Winy .., U Ji)T are random effects with a given distributions. Set 02 = 4 and 3 =
(3,1.5,0,0,2,0,0,0)". Covariates X;jx = (Xijk1, Xijk2,---, Xijrs)’ are generated from a
multivariate normal distribution with zero mean and covariance matrix V = [¢%], where

0%, = pao?. We set py = pl*~!l, p=0.5 and 0 = 1.

We particularly consider the following scenarios.

Example 1: n =200, J =1, and K = 10. This corresponds to an ordinary longitudinal
setting with 10 visits times. Random effects u; are one-dimensional having a
normal distribution N;(0,¢2) with ¢ = 1. For each subject, we set the first
2 occasions to be always observed while the rest 8 occasions to be subjected
to missingness. In every missingness-prone observation, the probability of

observing complete covariates expit{yy+71Yi;+72Xijr,1}, and the probability
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Example 2:

Example 3:

Example 4:

of observing response P(R?jk = 1) are set to be

8
expit{yo +1Yi; + 73 Z KXighp + 14l )

p=1

where 79 = 2.5, 11 = —1.5, 72 = —0.5, 73 = —0.1 and 4 = 0.4.
The setup follows from Example 1 but n = 800.

The setup follows from Example 1, except that we take J; = 3 and K = 5.
Take the first occasion to be always observed for each subject and set u; =

(w1, Wiz, u;3) to be 3-dimensional random effects with N3(0, R), where

—_

PPt
R=ay| p* 1 p* |,
p o1

*

D

with p* = 0.5.

The setup follows from Example 3 but n = 800.

5.5.3 Poisson Mixed Model

We now conduct a simulation study for the Poisson mixed model. The data are generated

from the model

log{ E(Yiju| Xi, Zi, wi) } = XijB + uij.- (5.14)

where 8 = (1.2,0.6,0,0,0.8,0,0,0)7, u;; and X;;;, are the same as that of linear mixed

model.

We consider following scenario:

Example 1:

n =120, J =1 and K = 10. Other parameter settings follows from Example

1 in the linear mixed model. For each subject, we set the first 2 occasions to
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be always observed while the rest 8 occasions to be subjected to missingness.
In every observation, the probability of observing complete covariates X
is expit{yo + 71Yi; + 72Xijk1}, and the probability of observing complete
response Yjji, is

8
expit{yo +71Yi; + 73 Z KXighp + 14l )

p=1

where v9 = —1, 11 = 2, 72 = —0.5, 73 = —0.1 and 4 = 0.25.
Example 2: The setup follows from Example 1, but n = 500.

Example 3: n =120, J; = 3, and K = 5. and set u; = (u;1, U, u;3) to be 3-dimensional
random effect with N3(0, R), where

with p* = 0.3.

Example 4: The setup follows from Example 3, but n = 300.

We assess the performance of the proposed composite likelihood (CL) approach, in
contrast to the naive maximum likelihood based on complete data (NML). All simulation
results are included in Appendix 4. Tables 5.3 and 5.4 report the average of zero coefficients.
The column labeled “Correct” presents the average of zero coefficients that are correctly
estimated, and the column labeled “Incorrect” depicts the average of non-zero coefficients
that are erroneously set to zero. We report the median ratios of MME, denoted by R.MME,
for a selected model to that of the un-penalized estimate under the unpenalized model
scenarios, respectively. We also report the median of MME, denoted by M.MME. Tables
5.5 and 5.6 summarize the estimated (S, fs, 05), their relative biases, empirical, model-

based standard errors and 95% coverage rate.
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For all examples, both methods show a good sparsity property. The results show that
our CL approach yields small biases and satisfactory coverage probabilities for both the
mean and the association parameters. ASE and ESE agree reasonably well for the method,
suggesting the consistency of variance estimates. The NML method, on the other hand,

yields remarkably biased estimates and low coverage rate.

Appendix

1. Consistency

The proof involves two steps. For the first step, we prove
fYijn | Yijr, Xi, Ziy Rijre = 1390, @) = f(Yign | Yijr, Xi, Zis 1), (5.15)

forallk#1,57=1,...,J;and j =1,...,J;.

Since we have

f(yij’l | Yijr, Xi, Ziy Rijre = 1,9 ®)
Y, Yijn, Rige = 1| Xy, Zi; 9, @)
F Yk, Rijk = 1| X4, Zis 4, @)
f(Yz‘jk,Yij/l | Xi, Zz';/l/))f(Rijk =1 | Yij, Yiji, Xi, Zi; ¢)
f(Y%jk | Xi, Zi;¢)f(Rijk =1 ’ Yij, Xi, Zi; ¢)
(By the assumption in (5.4))
TYiji, Yign | Xi, Zijs )
TYie | Xis Zisop 7

which implies the conclusion.

Then we prove that the estimating equations obtained in (5.5) are unbiased estimating
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equations. We then obtain

o4 (Y| X, Zis )
By, RilX: Zivp.o 0
- [Z {810gf<}/§j1|yéj’1,Xi,Zi;¢) i alng<Y;j’1|Yij17Xini5¢>}
= Y, Ri| X, Zi5p,¢
J<j’ o o
dlog f(Yijn | Yije, Xi, Zis )
+ Y I(Rp=1) : 81/)]
j=1,....J;
i'=1,....J;
k1
B ZE | {alogf(Emmj"thZi;@b) n 810gf(Y;j’1|Yz‘j17Xini?¢)}
= Y, Ri| X, Zip, ¢
: B} 0
i<y’ ¥ v
dlog f(Yiin | Yijk, X, Zs;
+ Y Eryx.zowe [I(Rijk = 1) Ev,|x: 2 Ry | S |a¢1k i }}
=i
k1

(By the settings that observations in visit 1 are always complete)

810 }/;" YZ 7XZaZ’M¢
= 04+ Y. Erx.zme [I(Rijk = 1) By, |V X0 2o B | 8 /Wi | Yign )}]
=

o
7=1,..., i
i'=1,....J;
kA1
(By the conclusion from (5.15))
dlog f(Yijn | Yijk, Xi, Zi; )
— ERijk\Xi,Zi;dhfﬁ [I(Rijk = 1)EYZ-J-/1|Yijk7Xi:Zi§¢{ ’ aqu }}
7=1,..., Ji
i'=1,....,J;
k#1
= 0.

2. Regularity Conditions

Now we establish the asymptotic distribution of the resulting estimator. Let 8, = (S1o, - - -, 5p0)
be the true parameter value of 3, and we write, without loss of generality, 3, = (ﬁ&, BEH)T,
where Bo; = (B0, - - -, Bpi0)” is the p; x 1 vector consisting of all non-zero values while 3, =
(Bors1.0s -+ -5 Bp0) = Oz;OH is the (p—p1) x 1 vector. Thus, we have ¥, = (B¢, Ogoﬂ,fg) with

& being the true value of ¢. Correspondingly, write 8 = (8%, 81)7, ¥ = (BT, 81, €M7,

171



For any square matrix M of the same dimension as 1, let M denote the sub-matrix
after removing the (p; + 1,...,p) rows and columns from the matrix M. Similarly, for
any vector o of the same dimension as ¥, we use & to denote the resulting vector after

removing the (p; +1,... elements from the vector a. For example, ¥, = (8L, 1T
g (p ) D ple, 0 01>50

The following conditions are needed to establish the asymptotic properties of 1,Ab

(C1). For all 7, £(Y;;4)) is three-times continuously differentiable.

(C2). £(Yi;), |‘%g;f¢) 2, |a;i(,}g$f) |, and |%| are dominated by some functions B;(Y;, X;, Z;)
J J J

for all j,k,1 = 1,...,dim(¢), in which ¢; is the j—th element of 1. Moreover,
Ey ABi(Yi, Xi, Z;)} < oo for all 4.

(C3). E,p{%f)} _ 0,

(C4). Let M(3) = Ey, [{%m ¥) H{ (v ﬂ and D(ap) = By, { %0,
Assume that

23 (e {0} = )+ o),

and

L~ [\
—5;{—8¢8¢T b= D(w) + 0,(1).

Similar definitions and requirements are applied to M (v) and D(a)).

(C5). There exists an open subset w that contains the true parameter point 1, such that
for all ¥ € w, D(%) and [)(17;) are positive definite.

(C6). Let A, be the tunning parameter with the dependence on cluster size n explicitly

spelled out. Define

We assume that
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(C6.1). A = 0p(1),
(C6.2). a, = O,(n~Y?),
(C6.3). by, = 0p(1).

(C7). We assume that

(C7.1). liminf,_, liminf._,o+p) (€)/A, > 0.
(C7.2). lim,,_o0/nA, = 00.

3. Asymptotic Results
Consistency

Theorem 1: There exists a local maximizer 9 of £pe,(Y;4)) such that
b — 4ol = Op(n™"* + an).

Proof: Let o, = n"/? + a,. Adapting the arguments by Fan and Li (2001, 2002), we

need to show that for any given € > 0, there exists a large constant C. such that

P {supyjec byen(Y; 90 + an) < Lpen(Yithg)} > 1 —¢,

where u = ((u1,...,up,, ..., up)", uf)", ue is a vector with the same length as ¢, and

T

Suppose C, is sufficiently large such that ||(ug,...,u,, )|| > 0. Note that py,(0) =0, we
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consider

Kp(u) = Loen(Y;%0 + anu) — pen (Y5 9g)

= £C<Y; '(po + CVnu) - EC(Y; 1;00) - nZP,\n(Wso + OénusD + nsz\n(WsOD
s=1 s=1

p

- EC(Y;¢0+O%U) _éc(Ya,’vbO) _nzpkn(|680+anus|) —n Z pkn(|0+anus|))

s=1 s=p1+1
p1 p
+n) pa (1Bl +1 > pas(l0])
s=1 s=p1+1

< Le(Yitho + ) = Le(Yithg) = n Y pa([Bs0 + ans]) + 1Y pau(1Bol),  (5.16)

s=1 s=1
because of the fact that n 0 . pa, (|0 4+ anusl)) > 0.

By the standard argument on the Taylor expansion and the conditions from (C1) and
(C2), we obtain

(Y 4py) }T wi L [PLH

Lyt am) = i+ o, { PR s fur{ S

p

+> Opllanusl’)

s=1

. T ]
= L(Y3%) + an {8£(Y7 ¢0>} u -+ 1uT{M

T R L vl LEA LR

(5.17)

and

w3 {0+ an)}
s=1

p1 p1 p1
= ) o (Bl) + 1) anph, (1Bol)sgn(Beo)us + 1Y anph, (18wl Juz{1 + o(1)}.

s=1 s=1 s=1

(5.18)
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Substituting (5.17) and (5.18) into (6.1), we obtain

(Y ;)\ T 1 7y 0%U(Y; ) 2
K,(u) < an{To} u+u {W}uan{l—kop(l)}

= > nfanp), (1Bo.)sen(Bos)us + anph, (1Bo.Jui{l +o(1)}}
s=1

denote A4+ B-C. (5.19)

Now we individually examine A, B, and C. By Holder’s inequality, the A term on the
right-hand side of (5.19) is

&n{ (Y ;1) }Tu n1/2oznn*1/2{ (Y ;1) } u

P 9
< n'2q, _1/2{8£(§¢¢0)} u
< n'2a, _1/2%1;%)“ Hu” (5.20)

By (C1), (C2) and (C3), we obtain that, n~!/22%) — O,(1), A can be bounded by

nl/zan||u||.

For the B term, since %{le;%iﬁ)) } = 0,(1) by (C1) and (C2), we obtain that uT{ a;ﬁgfﬁ) }uoz?1

is bounded by na?||ul|?.

For the C term, we obtain that, using Holder’s inequality,

p1

D

s=1

< nayan|[ul] - 11| = vprnanan||u].

p1
Z nanpl)\n(|550|)sgn<ﬂ50>us S na,an
s=1
Furthermore, by the definition of b,, we obtain
Zmip&’ (1BosDuz{l + o(1)} < nagby|luf*{1 + o(1)}.

Note that na,a, = Oy(na?), and b, = 0,(1) by (C6.3). Therefore, term C is bounded by

nagan|ul|.
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Since a,, = O,(n~/2) from (C6.2), all A, B and C are of the order O,(na?). If |[u|| = C.
is sufficiently large, then B dominates A and C. Moreover, by (C4)-(C5), D(%),) is positive
definite, then we have

P{Sup”u”:CEKn(u) < 0} =P {SupHuH:ijen(Y; 'lpo + Oénu> < gpen(Y; ¢0>} 2 1-— €,

which indicates at least 1 — e that there exists a local maximum in {t, + «,u}. Hence,

there exists a local maximizer such that |3 — || = O,(a,).

Sparsity

Lemma 1: With probability tending to 1, for any given 3; and ¢ satisfying

18, = Borll = Op(n™%),  and ||€ — & = O,(n7Y?),

we have
lpen (Y3 81,0,8) = max)g 1 <cn-1/2pen(Y; B1, Bir: §) for any constant C.

Proof: By Theorem 1, it suffices to show that with probability tending to 1 as n — oo,

for any given 3; satisfying ||8; — Bo; || = Op(n™1/2), € satisfying ||¢ — & || = O,(n™1/2), and

—~1/2

fore, =Cn~ /%, and s =p; + 1,...,p, we have

pen(Y;9)
a—ﬂs<0 for 0 < s < €,
and '
W>O for —¢, < s <O.
With Taylor Series expansion, we obtain
Ol pen (Y olY; ,
e = N(X)*CY
_ OE(Y; "#0) 82€(Y; ¢0) T
Ol pen (Y )™ ,
(0= o) { T 0 — ) — o (5. s

Lot A+ B+C —nph (|8:])sen(Bs)
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where 1" lies “between” 1 and 1p,. By the assumption that |9 — b, = O,(n"'/?), then
it follows that
A= Op<n1/2)7 B = Op(nl/z)a C = 0,(1),

and thus

(nA,) tA = Op(n’1/2/)\n), (nA\,) 1B = Op(n’1/2/)\n), and (n\,)'C = O,(n1/\,).

As a result, we obtain

%BY;W = A { (M) A+ B+C) — APy (18.])sen(B)}

= 1A {0, (02 N0) = A4, (1Bs)sen(B,)}- (5.21)

By the regularity condition (C6), liminf,_,liminf._o+p} (€)/An > 0 and lim,,oo/nAn =
00, the sign of the derivative in (5.21) is determined by fs. Thus we have

Olpen (Y5 7)
03

<0 for0< By <€y,
and

Olpen (Y5 1)
9Ps

>0 for —e¢, < B, <O.

This completes the proof.

Asymptotic Distribution

Now we come to the proof of oracle property. Denote

% = diag{py, (|Bo1]); - - - PX, (|Bop|), Oc},

and

b= ((p&n(|501|)sgn(501), o ,p&n(|60p|)sgn(/60p))T, 0?>T.

Theorem 2: With probability tending to 1, the root-n consistent local maximizers 1:b in

Theorem 1 must satisfy:
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(a). Sparsity: B, = 0.

(b). Asymptotic normality: \/ﬁ(b({bo)+Z~]){1:b—17)0+(l~)(1,~b0)+2~])*1f)} —p N(0, M(2,)).

Proof: Part (a) follows from Lemma 1. Now we show part (b). By Theorem 1, there
exists a 1 = (8,,0,€) that is a root-n consistent local maximizer of lpen (Y 4p), and that

satisfies -
Olpen(Y'; ) ’ o
oY =1

By Taylor Series expansion, we obtain

o) {W{Y;}%To) s op<1>} (=) —n{b+ {2+ 0,()} b — )} = 0.
oY Yo

Thus, we obtain

1 {8240/; o)
Vil agog

+op<1>} (% =) = Va[b+ £+ 0,0} %) = ——=

Applying Slusky’s theorem and the Central Limiting Theorem, we obtain

VDo) (1 — o) + b+ 59 — )} —p N(0, M (b)),

1.e.
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4. Simulation Results

Variable Selection

Table 5.3: Simulation results for the incomplete data via the linear mixed model: model

selection
Avg. No. of 0 Coefficients
Method R.MME(%)* M.MME Correct*  Incorrect**
Example 1 NML{  81.310 0.050  4.889 0
n=200,J =1,K =10 CL, 54.329 0.046 4.478 0
Example 2 NMLy 93.009 0.042 4.993 0
n=23800,J =1, K =10 CL, 39.108 0.008 4.923 0
Example 3 NMLy 84.830 0.047 4.908 0
n=20,J;=3,K=5 CLy 51.222 0.031  4.540 0
Example 4 NML) 96.086 0.043 4.990 0
n=23800,J;, =3, K=5 CLjy 39.133 0.005 4.920 0

t NML and CL represent naive maximum likelihood to complete data and the proposed composite likelihood, respectively. A denotes

the tuning parameter selection by only A with fixing a = 3.7.

I C.MME represents the median of ratios of MME of a selected model to NML and CL, respectively. A.MME denotes the median of
ratios of MME of a selected model to that of the un-penalized full model with CL estimate.

* “Correct” presents the average restricted to the true zero coefficients. 0 represents that no true zero coefficient is shrink, while 5

implies that all true zero coefficients are restricted into zero.

% “Incorrect” depicts the average of significant coefficients that are erroneously set to 0. 0 represents that no significant coefficient is

shrink, while 3 implies that all significant coefficients are erroneously set to zero.
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Table 5.4: Simulation results for the incomplete data via the Poisson mixed model: model

selection

Avg. No. of 0 Coefficients
Method R.MME(%) M.MME Correct Incorrect

Example 1 NML!{ ~ 98.842 91409 4.984 0
n=120,7=1,K =10 CL, 78.626  27.118  4.690 0
Example 2 NML,  97.637  77.657 5 0
n=>500,/ =1,K =10 CL, 74.057 5787  4.999 0
Example 3 NML,  98.701  105.598  4.990 0
n=120,J;=3,K=5 CL, 84.812 32,023 4.724 0
Example 4 NML,  98.081 101778 5 0
n=300,J;=3,K=5 CL, 73716 9.272  4.964 0

7 NML and CL represent naive maximum likelihood to complete data and the proposed composite likelihood, respectively. A denotes

the tuning parameter selection by only A with fixing a = 3.7.

Parameter Estimation
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Chapter 6

Discussion and Future Research

6.1 Composite Likelihood Analysis for Incomplete Lon-
gitudinal Data

In Chapter 2 and Chapter 3, we develop two estimation approaches using the pairwise
likelihood to handle longitudinal data with missing values in both the response and the
covariate variables. The analysis of the NPHS data using the proposed methods demon-
strates their utility of real applications. Simulation studies show reliable and satisfactory
performance of our methods. The PL method is appealing for its higher efficiency, while
the TS approach is easier to implement. Our empirical studies show, as expected, that
relative to the maximum likelihood method, both the PL and the TS approaches may incur
efficiency loss, especially when repeated measurements are strongly correlated. However,
this limitation is compensated by the robustness of our methods as against the full likeli-
hood method. The proposed methods would still lead to consistent estimates even when
third order association structures for the response process are mis-modeled, whereas the
likelihood method would break down if the full distribution of data is misspecified.

The proposed methods can be extended to accommodate circumstances with multiple
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covariates being subject to missingness. In particular, let X;; = (Xi,...,X;;,) with

p>2,and Hf, = {Xij,...,Xij,—1} with » =2,...,p. Noticing the factorization
P(X;j = x5, Xit = x| Z;) = P(Xijn = vij1, Xim = Tir1|Zi)

p
T
H zyr = Zijr, Xik:r mzkr’ 1]7«7 ikrs Zz)
r—

where x;; = (zj1,...,%ip)", we only need to model a sequence of conditional bivariate

distributions
{P(Xijr = Tijr, Xik'r mzkr| z]ra z’a;gm Zz)a r= 27 s 7p} (61)

in order to determine the distribution of P(X;; = x;;, Xix = xi|Z;) for j < k. Analogous
to the formulation in Section 3.2.2, we can postulate the bivariate distributions for (6.1).

A similar strategy applies to modeling the missing data processes.

As opposed to the full likelihood, (’g) terms are involved in the pairwise likelihood for-
mulation. Although the number of these terms grows quadratically in m, the computation
of pairwise likelihoods are often much cheaper than that for the full likelihood. In general,
the computational cost to produce the full likelihood is heavily dependent on the dimension
m. It can grow exponentially in m, and this may occur, for instance, when calculation
of the distribution of the marginal subset requires integration over a set of m unobserved
random variables. In this case, the pairwise likelihood method has a clear computational
gain over the full likelihood approach. For more discussion on computational expense as-
sociated with a composite likelihood formulation, see Lindsay et al. (2011) and Bellio and
Varin (2005).

Finally, we comment that our discussion is focused on bivariate normal or probit models
for the responses. The proposed methods can be modified to handle other types of data.
For example, if the data is continuous and non-normal, bivariate skew normal distributions
(Azzalini and Valle, 1996) may be employed. With longitudinal ordinal data, one may
employ the model discussed by Qu et al. (1995) using the bivariate probit model and

adopt the development here for data analysis.
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6.2 Variable Selection via Composite Likelihood for
Analysis of Longitudinal Data Arising in Clusters

In chapter 4 we develop composite likelihood framework to handle longitudinal data arising
in clusters with variable selection. The asymptotic properties of our methods are proved
and simulation studies show their satisfactory performance in both the model selection
and the estimation. Comparing with maximum likelihood approach, our methods are less
efficient, but they outperform the full likelihood method in robustness and convenience in

the model specification.

Moreover, we also study the variable selection for both fixed and random effects. Al-
though Cholesky decomposition strategy is widely used in selecting random effects (Bondell
et al., 2010; Ibrahim et al., 2010), our study shows that they may not be proper for lon-
gitudinal data arising in clusters. In addition, the Cholesky decomposition may lead to
inappropriate results for the composite likelihood. Thus, to circumvent this problem, we
propose a standard error-correlation coefficient decomposition strategy. Furthermore, a
modified ECME algorithm (Liu and Pierce, 1994) is employed for the model selection and

the estimation.

Furthermore, this chapter shows that the model is misspecified, the parameter estima-
tion and the variable selection results could be biased or incorrect. Based on the framework
proposed by Yi and Reid (2010), we prove that, under certain regularity conditions, the
misspecified model may asymptotically lead to biased results. The simulation studies in
this chapter demonstrate that if we misspecify the random effect distributions in the sta-

tistical inference, biased selection and estimation outcomes may occur.
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6.3 Variable Selection via Composite Likelihood for

Incomplete Longitudinal Data arising in Clusters

In chapter 5 we develop estimation approach using the missingness modified composite
likelihood to handle incomplete longitudinal data arising in clusters with variable selection.
Simulation studies show reliable and satisfactory performance of our methods. It provides
valid variable selection and parameter estimation results, while naive estimation approach

may result in biased estimation outcomes.

Moreover, our method outperforms other approaches because it does not require the
specification and estimation of missing data process, which is often employed in the in-
ference under missing not at random (MNAR) scenario. This simplification results in the
augmentation for the estimation procedure. Firstly, the estimators can avoid the bias from
the misspecification of the missing data processes described in Chapter 2 and Chapter 3.
Secondly, the estimation procedure does not include a large set of nuisance parameters to
postulate the missing data process. Thirdly, our missingness modified composite likelihood

functions does not involve integrals which can be intractable for the computation.

However, our missingness modified composite likelihood is not assumption free for all

missing mechanisms. To be specific, it assumes
P(Rijx = 1Yy, Yijwr, Xi, Zi) = P(Rije = 1Y, Xi, Zs), (6.2)

for some ijk in the missingness-prone set and ij'k’ in the missingness-free set. This as-
sumption can not be directly tested from the dataset. To evaluate the validity of the
missing data assumption, Qu et al. (2011) propose an assessment approach for weighted
generalized estimating equations. However, this method can not be directly used in the
composite likelihood framework with model selection, and further study in this area is

needed.

Another typical drawback of our method is that it only uses the observations with

complete response and covariates, while all other incomplete records are not included.
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This leads to a significant efficiency loss, especially for the data with high missing rate.

Therefore, studies for improving efficiency under missing data scenarios are required.
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