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Abstract

In this dissertation we study the problem of making electronic voting trustworthy
through the use of cryptographic end-to-end (E2E) audits. In particular, we present a
series of novel proposals for cryptographic election verification with a focus on real-world
practicality. We begin by outlining fundamental requirements of E2E election verifica-
tion, important properties for a real-world settings, and provide a review of previous and
concurrent related work. Our research results are then presented across three parts.

In the first part we examine how E2E election verification can be made more procedurally
familiar to real-world voters and election administrators. We propose and implement an
E2E add-on for conventional optical-scan based voting systems, and highlight our experi-
ences running an election using this system in a United States municipality.

In the second part we examine how E2E election verification can be made more conceptually
and procedurally simple for election verifiers/auditors. We present a non-cryptographic
E2E system based on physical document security assumptions as an educational tool. We
extend this system to a cryptographic setting to show how the procedures of cryptographic
election verification can be completed with relatively tiny software code bases, or by using
common-place programs such as a desktop spreadsheet. We then present an approach that
allows verifiers to conduct cryptographic audits without having to plan for it prior to an
election.

In the third part we examine how the methods in the first part can be extended to provide
a level of privacy/distribution of trust similar to that of classical cryptographic voting
protocols, while maintaining the (comparatively) intuitive optical-scan interface. To that
end, we propose a novel paradigm for secure distributed document printing that allows
optical-scan ballots to be printed in a way that still lets voters check their ballots have been
counted, while keeping their voting preferences secret from election officials and everyone
else.

Finally we outline how the results obtained in each of the three parts can be combined to
create a cryptographically end-to-end verifiable voting system that simultaneously offers
a conventional optical-scan ballot, ballot secrecy assured by a distribution of trust, and a
simple, cryptographically austere set of audit procedures.
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Preface

On Polls and Proofs

A voter once said: ‘I think this election went awry.’
‘Let me give you a proof,’ came a cryptographer’s reply.
Said the voter: ‘Proof? What is that, and why should I care?’
‘A proof is anything that convinces me,’ said the cryptographer with a stare.

Now a sound one just might when it’s right
So by chance, at first glance, our plan seems alright.

But proving you didn’t cheat can be quite a feat
When the voter’s path lay not in math... even if the proof ’s complete!

For the voter may wince when told to be convinced
By a proof made in zero-knowledge requiring a degree from college.

Indeed I concede: regarding perfection of elections
Cryptographic proofs are the worst form of crime.
Except for all those other proofs that have been tried from time to time...
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Chapter 1

Introduction

It’s not the voting that’s democracy;
it’s the counting.

Tom Stoppard, Jumpers

Over the last decade we have witnessed a fundamental change in how elections are
being conducted around the world: many voters now cast ballots through electronic means.
As one particularly compelling example of the adoption of electronic voting technologies,
consider the United States. In 2008, over 90% of jurisdictions (accounting for almost 99%
of the population) used electronic systems for voting [Uni08].

However, software execution is not inherently observable, generating fundamental and
widespread concern over the prominent use of such devices in the democratic process.
Furthermore, beginning in 2004 with Kohno et al. [KSRW04], independent reviews have
continued to uncover serious security vulnerabilities in widely-used commercial systems;
vulnerabilities that allow, among other things, undetectable manipulation of election results
when an adversary gains access to the system, even under reasonable threat scenarios.
Recent studies have examined systems by ES&S [ACC+08], Premier/Diebold [CFH+07,
BEH+08], Sequoia [BCE+07, AGH+09, CFK+09], and Hart-InterCivic [IRS+07, BEH+08].

In response, some have advocated a return to hand-counted paper ballots.1 Tallying
by hand is known to be an effective solution for relatively straightforward elections (e.g.,
at the Canadian Provincial and Federal levels), but the approach does not scale well in
general. This can be a deal-breaker when considering complex tabulation rules such as
the single-transferable vote (STV) counting method used in Australia and elsewhere. It
also cannot accommodate the frequent, long and complex ballots common to many U.S.

1See e.g., http://blackboxvoting.org/
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jurisdictions. Consider, as an example, the logistical needs of a mid-to-large sized United
States county such as Travis County, Texas. Servicing half a million registered voters across
210 precincts, in 2010 alone Travis County held 264 general-, special-, bond-, board-, runoff-
, proposition-, and primary-elections, on 5 separate dates, for offices at the federal-, state-,
county- city-, school/college-, municipal utility- and political party-levels of government.2

Given this level of complexity, and despite an awareness of the potential risks, the Travis
County County Clerk has indicated electronic voting is their only viable option.3 Many
jurisdictions across the United States and elsewhere feel similarly, and the adoption of
electronic voting is a trend we can expect to see continue into the foreseeable future.

And although hand-counted ballots offer a high degree of transparency to individuals
physically present to observe the tally, it is often unrealistic for a single observer to witness
the entire election from end to end. Typically, trust must be delegated to others when
considering more than a single polling place (or in the event the ballots are recounted at
a later date). The correctness of an election therefore often relies on the integrity of a
trusted physical chain-of-custody. Of course even this limited security model is mooted by
the introduction of electronic components.

Cryptographic Election Verification. We seek a solution that provides compelling ev-
idence, to anyone, at any time after the election, that all precincts reported accurate results.
We seek a solution that certifies the correctness of the election results, not of the voting
equipment. Ultimately we seek an informational solution that can provide two seemingly
incongruous properties: proof that an election was counted correctly, while simultaneously
protecting ballot secrecy. Our solution rests in cryptographic election verification.

Cryptographically end-to-end (E2E) verifiable voting allows election outcomes to be
independently and universally verified by members of the public. It provides voters with a
special receipt of their cast ballot—one that allows them to verify their vote was included
in the outcome, but does not reveal to anyone how they voted. The ability to check
this receipt, combined with a special cryptographic proof of correctness establishes a high
degree of confidence in the correctness of the election outcome.

1.1 Problem Statement

Over two decades after the seminal groundwork was laid by Chaum [Cha81], Benaloh
[Ben87] and others, cryptographic election verification has been used in real elections with

2http://www.co.travis.tx.us/county_clerk/election/
3Dana Debeauvoir. Keynote Address. EVT/WOTE, 2011.
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binding results (cf. [ECCP07a, AMPQ09, CCC+10]). Yet despite these advances in real-
world practicality, the use of cryptography in elections has remained a point of contention.
A consensus is emerging among researchers and election officials that conceptual and pro-
cedural simplification will be central to the future of cryptographic election verification.4

This trend is reflected in a 2009 German Federal Constitutional Court decision which states
that if verification of a tally requires “specialist knowledge,” it is unconstitutional [Fed09].

As a minimum requirement of an election system, any proposed solution must not un-
duly burden users in the completion of their primary tasks, i.e., casting a ballot, tabulating
votes, etc. Ideally, the procedures for cryptographically verifying an election would also
be technically and conceptually simple so as to facilitate the greatest adoption and par-
ticipation in the audits. As a trivial solution, procedural and conceptual simplifications
can usually be made at the expense of security properties (and vice versa). The result has
been a tension that has arisen between cryptographers and election officials in the design
of trustworthy voting systems.

1.2 Thesis Statement

As we have attempted to briefly argue in the introduction, the design of electronic voting
technology certainly appears to exhibit a tension between security and real-world practi-
cality. Whereas the electronic voting equipment industry seems to be producing practical
systems at the expense of security, so too does academia seem to be proposing secure
protocols at the expense of practicality.

An important question in the design of electronic voting technology, therefore, is
whether this seemingly zero-sum relationship between properties is a fundamental limi-
tation of the design space, or simply a product of overly narrow design goals.

Thesis Statement. With regard to the design of electronic voting technology, we claim
security, privacy, and trustworthiness does not exist in a zero-sum relationship with real-
world practicality. Indeed designers of electronic voting equipment can (and should) seek
to offer both properties in conjunction.

Objectives and Scope. Our objective is the design of a voting system that balances
the real-world needs of voters, election officials, and auditors with the privacy and integrity
properties of cryptographic end-to-end verifiable voting systems. In particular, our goal

4See for example talks by Epstein, Gilbert, Jones, Sergeant, Volkamer, and Wallach at the NIST
Workshop on End-to-End Voting Systems, Washington D.C., 2009. http://csrc.nist.gov/groups/ST/
e2evoting/
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is the design of a voting system that combines the real-world practicality of a conven-
tional paper optical-scan voting system with similar security properties as those offered by
more theoretically minded proposals for cryptographic election verification. The proposed
solution will seek to meet three objectives simultaneously:

• Objective I: Improve real-world practicality for voters and election offi-
cials. Design an end-to-end verifiable voting system with a familiar paper optical-
scan voting interface—one that plausibly could be voted on and counted without
requiring specialized knowledge, devices, or training,

• Objective II: Improve real-world practicality for election verifiers. Provide
the public with a simplified cryptographic proof—one that could plausibly be verified
without specialized software and with less emphasis on specialist knowledge,

• Objective III: Distribute trust in paper ballot elections. Achieve objectives
I and II without relying on trusted entities/devices to protect ballot secrecy.

1.3 Contributions

In this section we outline the contributions of this dissertation and describe how they fit
in with the thesis statement.

1.3.1 Organization and Outline of Contributions

This document contains excerpts from 10 peer-reviewed publications made in support of
the thesis statement; each is organized into its own chapter. A list of contributions are
presented at the beginning of each chapter. The chapters are organized as follows:

• Preliminaries and related work, presented in Chapter 2, describes core require-
ments and desired properties of cryptographically verifiable voting, and summarizes
related work—both previous and concurrent with this research,

• Interface Improvements for Voters and Election Officials: Part I presents
results for making E2E more practical for voters and election officials:

– Scantegrity, a cryptographically verifiable add-on to a conventional optical-
scan voting system [CEC+08], presented in Chapter 3,
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– Scantegrity II, an improvement to the original proposal simplifying the dispute
resolution process through the use of invisible ink confirmation codes [CCC+09],
presented in Chapter 4,

– Real-world election including findings from a usability study [SCC+10] and
the experiences implementing and running Scantegrity II in a municipal elec-
tion [CCC+10], presented in Chapter 5.

• Technical simplifications for election auditors: Part II presents results for
making E2E more practical for election auditors/verifiers:

– Aperio, an E2E verifiable voting system based on tamper-evident documents
conceived as a means of educating the general public about the end-to-end
properties without requiring knowledge of cryptography [ECA08], presented in
Chapter 6,

– Eperio, an electronic (i.e., cryptographic) version of Aperio whose simplified
back-end permits cryptographically verifiable election audits to be performed
with minimal requirements for custom software (such performing verification in
a desktop spreadsheet) [ECHA10], presented in Chapter 7,

– CommitCoin, a scheme allowing election auditors to meaningfully verify a
commitment-based election proof at any time after the election by presenting a
proof-of-work based argument that a commitment was made sufficiently far in
the past [CE12], presented in Chapter 8.

• Paper-ballot elections with distributed trust: Part III presents results for
improving the privacy of the techniques presented in Part I through the distribution
of trust in both the cryptographic back end, and the paper-ballot front end. It
includes:

– Toward oblivious printing, a two-party method for printing a randomized,
human-readable secret [ECHA09], presented in Chapter 9,

– Scantegrity with distributed trust, a Scantegrity variant with two-party
distributed trust and ballots printed using the above technique [EHH11], pre-
sented in Chapter 10,

– Multi-party oblivious printing, a generalization of [ECHA09] allowing the
contents of an encryption to be printed in human-readable form, but for which
none of the printers learn the result [EH12b], presented in Chapter 11.

• HOVER, presented in Chapter 12, presents an E2E verifiable voting system outlin-
ing how the results obtained in each of the three parts can be combined to create
a cryptographically end-to-end verifiable voting system that simultaneously offers a
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conventional optical-scan ballot, ballot secrecy assured by a distribution of trust, and
a simple, cryptographically austere set of audit procedures.

• Concluding remarks are given in Chapter 13, summarizing how the results pre-
sented in this dissertation met the objectives set out in the thesis statement.

1.3.2 Contributions in Context

Our review of the literature begins in Section 2.2; it would bring context to the discussion
of our contributions, however, to place them in terms relative to previous work. As a
starting point, we broadly define previous work to mean cryptographically verifiable voting
schemes with fully electronic interfaces, multi-party distribution of trust, and those that
employ cryptographic proof techniques requiring extensive expert knowledge. One such
example is the seminal voting scheme due to Cramer et al. [CGS97].

For illustrative purposes, we provide a high-level roadmap of our contributions relative
to previous work in Figure 1.1. We proceed by meeting each thesis objective individually,
and conclude with a sketch for combining the results into a single system.

These contributions and their relationship with previous work are:

• Contributions toward objective I: The work presented in Part I focuses on sim-
plifying the ballot casting and counting procedures for voters and election officials
through the use of paper optical-scan ballots. Printing paper ballots, however, re-
quires a trusted entity, offering weaker protections of ballot secrecy. As depicted in
Figure 1.1, this offers improved real-world practicality at the expense of decreased
protections to ballot secrecy, relative to previous work,

• Contributions toward objective II: The work presented in Part II focuses on
simplifying the protocols presented in Part I to reduce the conceptual and technical
requirements of election verifiers. As depicted in Figure 1.1, this improves real-world
practicality relative to the results of Part I.

• Contributions toward objective III: The work presented in Part III focuses on
mitigating the privacy trade-off incurred by Part I through novel techniques for print-
ing paper ballots in a distributed setting. As depicted in Figure 1.1, this improves
protections to ballot secrecy relative to the results of Part I.

• Final Result. The final result of this dissertation, presented in Chapter 12, combines
the properties achieved in Parts I, II, and III. As depicted in Figure 1.1, the resulting
system offers distribution of trust that is comparable to previous work, while offering
greatly improved real-world practicality to voters, election officials and verifiers.
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Figure 1.1: Roadmap depicting the direction of this research in relation to previous work.
The result is a verifiable voting system that improves real-world practicality for voters, election officials,
and verifiers while offering a distribution of trust comparable to previous work.
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Chapter 2

Preliminaries and Related Work

In the cryptographic literature,
electronic voting protocols are known
as the prime examples of secure
multi-party computations.

Ronald Cramer, Rosario Gennaro,
Berry Schoenmakers [CGS97]

2.1 Preliminaries

The ultimate goal of this research, and that of trustworthy voting in general, is to provide
compelling and universal evidence (i.e., proof) that a given election outcome is correct. By
correct, we mean that the given election result was counted as the electorate collectively
intended. Proving that an election was counted-as-intended constitutes proving the cor-
rectness of all aspects of an election that transpire between when voters cast their ballots
and when a result is declared. An election offering such a proof is said to be end-to-end
(E2E) verifiable. An end-to-end verifiable election typically involves the following entities:

• A set of voters with the authority to cast a ballot in an election. Voters typically are
issued (or themselves construct) a privacy-preserving “receipt” of their cast ballot
that they can use as part of the wider election audit,
• A set of election officials/trustees who organize and run the election, report results,

and produce a universal and publically verifiable (usually cryptographic) proof of
election correctness,
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• A set of verifiers/auditors whose job is to verify the correctness of the proof issued
by the trustees.

2.1.1 End-to-end Correctness Proofs

Proving that an election was counted-as-intended typically involves the trustees simulta-
neously proving three (composing) properties to voters:

• Cast-as-Intended: At a high level, a voter votes by selecting their preferred out-
come from a set of possible outcomes and then declaring this preference to the election
trustees. The trustees issue a proof that establishes that they received the voter’s
preference as it was declared (i.e., cast),
• Collected-as-Cast: Cast preferences are stored until all preferences have been re-

ceived. When the election is complete, a collection of preferences will be aggregated
according to a preference aggregation rule. The trustees issue a proof that this col-
lection of preferences to be aggregated is equivalent to the set of all cast preferences,
• Counted-as-Collected: Finally, the trustees must declare an election outcome.

The trustees issue a proof that establishes that the declared outcome is equivalent to
the result of applying the preference aggregation rule to the collection of preferences.

Verification of these proofs typically occurs at two levels: voter verification in which
voters individually check that their preferences are correctly reflected in the overall proof,
and universal verification in which anyone can verify that the overall proof is consistent
with the declared election result.

Soundness. The proposals discussed throughout this document implement the above
correctness proofs through a variety of approaches. In contrast to conventional techniques
(e.g., chain-of-custody) the soundness of these proofs are built on security assumptions
other than simply trust. Soundness is typically premised around cryptographic and statis-
tical assumptions, although in the case of Aperio (see Section 6), physical tamper-evidence
is also considered.

2.1.2 Requirements for Ballot Secrecy

There has been some debate in the literature as to whether ballot secrecy is a fundamental
requirement of end-to-end verification, or not. Popoveniuc et al. [PKRV10] argue, as does
Jones in a position paper [Jon09], that ballot secrecy should be regarded as a separate and
orthogonal property. Despite this, one of the first uses of the term “end-to-end” was made
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by the United States Election Assistance Commission [Uni05] in which they define an “end
to end cryptographic independent verification system” as one which “issues a paper receipt
to the voter that contains information that permits the voter to verify that the choices were
recorded correctly” but “does not permit the voter to reveal his or her selections.”

For the purposes of this document, and consistent with our previous work, we define
end-to-end verification in the context of secret-ballot elections. We outline ballot secrecy
in terms of protection against an adversary attempting to learn voting preferences in the
following scenarios:

• Passive secrecy: observing a public transcript of the protocol is not sufficient for
an adversary to recover a voter’s cast preference,
• Distribution of trust: observing the private inputs of some number of trustees

(below a critical threshold) is not sufficient for an adversary to recover a voter’s cast
preference,
• Receipt-freeness: a voter is unable to create a receipt/vote obfuscation that reveals

to an adversary information about their cast preference,
• Coercion-resistance: following a secure registration protocol between a voter and

trustees made prior to an election, an adversary instructing a voter to vote in a certain
way is unable to distinguish between compliance and non-compliance, despite being
able to observe the voter’s private inputs during voting. See Juels et al. [JCJ05] for
a formalization.

All the proposals discussed below achieve passive secrecy (unless noted). The presence
of distribution of trust and receipt-freeness vary across proposals. Coercion resistance was
proposed mainly in the context of Internet voting and is mostly out of scope for work on
in-person/polling place voting.

2.1.3 Privacy-preserving Receipts

The receipt paradigm is an integral part of the end-to-end proof methodology. During the
voting process a voter is given the option to receive (or construct) a “receipt” of their vote.
The receipt allows the voter to verify that their preference was collected-as-cast, while
simultaneously enforcing ballot secrecy (i.e., the receipt is receipt-free).

Clarification on the Dual Use of “Receipt.” The term “receipt” often appears in
two different (though related) contexts in the literature. Our usage in this dissertation is
as follows:
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• Receipt-free (adjective): A guarantee of ballot secrecy as defined above,
• Receipt (noun): An obfuscation of a voter’s preference, presented to the voter when

they cast their ballot, allowing them to later verify their preference was collected-as-
cast by the trustees.

Vote Obfuscation. There are several approaches to obfuscating a voter’s preference.
Examples from the literature include:

• Encrypting a preference: A voter encrypts their preference. This encryption is
cast and a copy is retained as a receipt, e.g., [Adi08, JCJ05, CCM08],
• Selecting a preference from a randomly permuted a list of choices: A list

of choices is presented to the voter in a randomized order (relative to some canonical
ordering). The position of the voter’s preferred choice within this randomized list is
cast and a copy is retained as a receipt, e.g., [CRS05, PH06, AR06, ECA08],
• Substituting a preference for a randomized code: A list of choices is presented

to the voter. Each choice is associated with a randomized code. The code associated
with the voter’s preferred choice is cast and a copy is retained as a receipt, e.g.,
[BMR07, CEC+08, CCC+08],
• Secret sharing a preference: A voter’s cast preference is secret-shared in some

fashion. Some number of shares sufficient to recover the voter’s preference are cast.
The voter retains a copy of some number of shares (insufficient to recover the pref-
erence) as a receipt, e.g., [Cha04, RS07],
• Floating receipts: A voter casts their preference unobfuscated. The voter receives

a copy of the unobfuscated voting preference of another (random and anonymous)
voter as a receipt, e.g., [Cus01, RS07].1

2.1.4 Practical Requirements for Verifiable Elections

Several important considerations must also be made in the design of end-to-end verifiable
voting system intended for a real-world setting:

• Procedural simplicity:

– Primary election tasks: Users should be able to accurately complete their
primary tasks pertaining to the election,2 i.e., voting, election administration,
etc,

1We include such systems, noting they have been criticized for not fully achieving the E2E proper-
ties [ECA08].

2This is also true of conventional voting systems.
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– Secondary verification tasks: Users should be able to complete their sec-
ondary tasks pertaining to election verification, i.e., receipt creation, receipt
checking, anti-coercion strategy, proof generation, proof verification, etc.

• Conceptual simplicity: The details of the cryptographic proof should be conceptu-
ally accessible to the widest possible audience within the constraints of the required
security properties,
• Psychological acceptability:

– Mental model: The voting interface should not plausibly be in conflict with a
voter’s mental model, for example, by leading the voter to (erroneously) believe
they are being instructed to destroy their ballot (cf. [ECCP07a]), or are being
required to cast a preference for a disagreeable candidate (cf. [JJB06]),

– Modularity of cryptographic components: Cryptographic end-to-end ver-
ification of an election should not fundamentally interfere with other existing
verification methods, e.g., a voter-verified paper audit trail (VVPAT).

• Legal requirements: Any proposed solution must comply with local election laws.
Legal compliance can be a design challenge as many jurisdictions require, e.g., fixed-
order candidate lists and unobfuscated paper-audit trails.

2.1.5 Limitations of End-to-end Verification

Cryptographic end-to-end election verification is by no means a silver-bullet solution to
protecting the democratic process. We provide a brief (non-exhaustive) list of examples of
aspects of the democratic process not protected by the end-to-end model:

• Voter suppression: impediments to voting (some legal, some illegal) including:

– Deleting voter lists to disrupt registration,

– Disenfranchising certain voters through polling place taxes and literacy tests,

– Under-resourcing certain polling places to cause overly long line-ups,

– Partisan challenges to the eligibility of certain voters, for example, through the
use of caging lists,

– Voter intimidation,

– Dis-/mis-information propagated on election day, for example, designed to cause
voters to go to the wrong polling place, or perhaps to mark their ballot incor-
rectly,
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• Partisan gerrymandering: redrawing of electoral districts to advantage a par-
ticular candidate/party by diluting (or concentrating) the influence of a particular
demographic on the election outcome,

• Registration fraud: attacks stemming from improper registration including ballot
stuffing and voter impersonation,

• Denial of service: attacks ranging from simple power outages at the polling place,
overloading web-servers with traffic (as in the case of internet voting), or submitting
numerous phony votes (so-called “board flooding”) in coercion resistant internet vot-
ing schemes to overload the computational capacity of election officials attempting
to cryptographically validate submitted ballots.

• Side-channel attacks: vote buying/selling made possible by through side-channel
attacks at the polling place such as the (illegal) use of cell-phone cameras in the
voting booth to provide evidence of one’s vote.

See Popoveniuc et al. for further detail [PKRV10]. In many cases, and unlike the kinds of
fraud cryptographic verification seeks to detect, the occurrence of one of the above attacks
leaves sufficient evidence to be protected against by legal or policy based (as opposed to
technical) measures. Finally, it is worth noting that even under ideal scenarios in which all
avenues of electoral fraud are discounted, the impossibility theorem due to Arrow [Arr50]
proves no method exists for aggregating voter preferences into an election result that is
guaranteed to be fair under a particular set of reasonable requirements.

2.1.6 Document Security Primitives

Invisible Ink. Invisible ink refers to a chemically reactive ink with the following prop-
erties:

• In its initial (unactivated) state, it is clear/unpigmented,

• When combined with a developing agent, an irreversible chemical reaction occurs
(activation) causing the ink to darken/pigment.

Simple invisible inks can be derived from common acidic household substances, such as
lemon juice or vinegar. A solution of such a substance diluted in water, can be used
to write a secret message onto a sheet of paper. This clear solution, once dried, can be
developed (i.e., activated) by exposing the paper to a heat source thereby revealing the
secret message.
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The term “invisible ink,” however, is somewhat of a misnomer. Messages printed in
invisible ink are not fully invisible, since any liquid changes the reflective characteristics
of the paper it is printed on. For this reason we employ a second non-reactive “dummy”
with the following properties:

• Its characteristics (pigmentation, reflectivity, etc) are visually indistinguishable from
unactivated reactive ink,

• Contact with the developer ink will produce negligible pigmentation change, making
it easily visually distinguishable from activated reactive ink.

Messages initially printed using reactive ink are followed with an application of non-reactive
ink in the negative space (i.e., the space around and between the message), thereby creating
a region that is uniformly reflective, thus concealing the message. Alternatively, as will be
explored in future chapters, the dummy ink could also be a chemically reactive ink with
an anti-catalyst to slow its development. Printing in this way would allow a message to
be visible for only a brief period of time after activation. The ideal security properties of
invisible ink printing are:

• Invisibility: Messages printed in invisible ink should be unreadable prior to activa-
tion,

• Activation-evident: Activated ink should be irreversible and plainly evident.

Work presented in Chapters 4 and 5 undertakes development of invisible inks for verifiable
optical-scan election ballots. In this setting, the inks are specifically designed to be both
amenable for use with commercial-off-the-shelf ink-jet printers, as well as activated by
a developer chemical placed into a special-purpose pen (as opposed to a heat source).
Technical improvements to the indistinguishability of invisible ink, especially under black
light, employ randomized overprinting of variably ultraviolet-reactive (but non-activating)
inks to effectively camouflage the message when viewed under an assortment of wavelengths
of light.

Document Authentication. We rely on document authenticity throughout Part III to
prevent a class of attacks potentially allowing an adversary to undetectably learn secret
information through the execution of an oblivious printing protocol. During such an exe-
cution, each party (i.e., printer) prints their share of a secret on the document in invisible
ink. Document authentication prevents a corrupted printer from activating the invisible
ink applied by previous printers to learn the shares of other printers, and then reprinting
the document in an effort to escape detection.
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Potential techniques for fingerprinting physical paper documents include paper color,
paper texture, and ink splatter. It was shown by Buchanan et al. [BCJ+05] that fiber
patterns can be used to uniquely identify paper documents. Recent work due to Clarkson et
al. proposes a practical scheme based on fuzzy feature extraction from the three dimensional
shape of the paper [CWF+09]. This fingerprinting scheme can be implemented using a
commodity scanner and is robust against additional ink being printed on the paper, as
well as light mishandling of the document. Sharma et al. [SSB11] implement a paper
fingerprinting scheme based on texture speckles using a USB microscope costing under
$100.

Document fingerprinting is outside of our scope. For the sake of this dissertation,
we assume that there exists an practical, efficient, and accurate paper fingerprint scheme
through which printers can determine whether the same physical sheet of paper was present
at each stage of the protocol’s execution.

2.1.7 Cryptographic Preliminaries

We briefly outline some of the main cryptographic primitives used by our systems. We
note that these primitives are standard across the cryptographic voting literature.

Visual Cryptography. A visual cryptography scheme (VCS) is a visual secret sharing
scheme in which a (secret) message or graphical image is split into a number of shares.
Individually the shares reveal no information about the message. However when any per-
missible combination of shares are combined, the message becomes visually perceptible. In
its classical manifestation, visual crypto shares are printed on transparent plastic sheets
using conventional inks. The sheets are stacked (i.e., overlayed) to recover the message.
Creation of the shares is typically undertaken by a “dealer” who knows the message and
enforces its secrecy across any non-permissible combination of shares.

An early example of visual secret sharing is due to Kafri and Keren [KK87] (what
they call “random grids”), although Naor and Shamir [NS94] are generally credited with
the paradigm in the security literature. The latter outline a collection of visual crypto
schemes for which the shares of some threshold k > 2 out of n printers are necessary to
recover the image and is denoted as (k, n)-VCS. Ateniese et al. [ABSS96] generalize this
notion to access structures for which the message is recoverable under arbitrarily defined
subsets of participants. A survey of a number of variations of visual cryptography is
presented in [Yan11]. Other pertinent references are the perceptual effects of misaligned
shares [LWL09], the use of seven-segment displays with VC [Bor07], and the application
of VC to electronic voting [Cha04].
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Homomorphic Encryption. Let 〈DKG,Enc,DDec〉 be a distributed public-key encryp-
tion scheme. Without loss of generality, DKG generates two private key shares x1 and x2
for parties P1 and P2 respectively and a joint public key Y . Encryption JmK = EncY (m, r)
is semantically secure and homomorphic in at least one operation. Decryption m =
DDec(x1, x2)(JmK) requires both key shares. Specifically we will make use of exponential
Elgamal [CGS97] with distributed decryption [Ped91]. For simplicity we will omit the
public key when implied.

Mixnets. Mixnets have long been a fixture in cryptographic voting. We will make fre-
quent use of reencryption mixnets (cf. [PIK93]) to create our proofs. Rerandomization of
a ciphertext c (often referred to in the literature as reencryption—especially in the context
of mixnets) is accomplished by computing c′ = ReRand(c, r) = c ·Enc(0, r).3 By rerandom-
izing and shuffling a batch of ciphertexts we implement a simple reencryption mixnet, Mix.
When applying Mix to a matrix of ciphertexts, we describe mixing as occurring on tuples
of ciphertexts grouped by columns and shuffled by rows.

Commitments. Briefly, a cryptographic commitment scheme Comm(m, r) takes message
m and randomness r and produces commitment c. Open(c,m, r) takes the commitment
and asserted message m and randomness r and returns accept iff Comm(m, r) = c. A
commitment is said to be binding if it is hard to find any {m,m′, r, r′} where m 6= m′ such
that Open(Comm(m, r),m′, r′) accepts. A commitment is said to be hiding if it is hard
to find any (m, r( given c such that Open(c,m, r) accepts. As a stronger requirement of
hiding, it should also be hard to extract partial information about m given c.

Fair Cut-and-choose Challenges. A staple part of the cut-and-choose correctness
proofs contained throughout this document is the ability to generate random challenges in
a way that is fair. Loosely speaking, fairness, requires that no one is able to predict, or
reliably influence the output with non-negligible advantage. Furthermore, the fairness of
the method should be somehow observable to voters. Both the heuristic due to Fiat and
Shamir [FS86], and the notion of a random beacon (cf. [Rab83, CH10]) are possibilities.
Clark et al. [CEA07b] have suggested the use of financial data (e.g., stock market closing
prices) as a means of generating election audit challenges, which may be considered fair
and observable on the assumption that reliable and fine-grained market manipulation is
infeasible. Clark and Hengartner later showed [CH10] that stock closing prices provide
sufficient entropy for this purpose.

3Replace 0 with the identity element for other groups.
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2.2 Related Work

Research into cryptographically verifiable voting entered its 30th year in 2011. The past
three decades have seen considerable advancement in this field. As an important applica-
tion of cryptography, advances in voting have coincided with a number of broader advances,
including mixnets, additively homomorphic encryption, distributed decryption and others.
This history might roughly be divided across three eras:

• Early work: seminal early work beginning in the early 1980’s to the mid 2000’s,

• Transitional work: a period marking a move toward real-world practicality begin-
ning in the mid 2000’s, including the origins of this research,

• Concurrent work: recent work done concurrently with this research (i.e., 2008–
2012).

2.2.1 Early Previous Work

Mixnets and the First Crypto Voting Scheme. The first cryptographic voting pro-
tocol was proposed in 1981 by Chaum in his seminal paper on mixnets [Cha81]. The scheme
combines the use of (non-verifiable) decryption mixnets with digital signatures. Voters are
responsible for creating their own signing key pair. Voters submit their verification key
through the mixnet (operated by the trustees) allowing the trustees to create a roster of
authorized (but anonymized) signing keys. In the second phase, voters send a signed vote
through the mixnet. Trustees ensure that each received vote corresponds to a valid sig-
nature in the roster. They then tally all qualified votes. Voters can individually check
their vote appears in the list of qualified votes, and anyone can repeat the tally (since the
qualified votes are in cleartext). The scheme offers passive secrecy and distributed trust
but is clearly not receipt-free: a voter can betray their cast preference by revealing their
singing key.

Chaum later proposed a voting scheme based on DC-Nets [Cha88] offering uncondi-
tional passive secrecy. Bos later refined this approach [Bos92] using Pedersen commit-
ments [Ped92].

Homomorphic Tallying. In addition to mixnet-based voting, one other approach has
become prevalent: homomorphic tallying. As the name suggests, and in contrast to mixnet-
based voting, homomorphic tallies are computed under encryption. In its basic form a voter
encrypts their preference using an additively homomorphic encryption scheme, casting the
ciphertext. Trustees can compute a tally by decrypting the product of all cast ciphertexts.
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The primary technical challenges at the time were twofold: one was to create an addi-
tively homomorphic encryption scheme. The other was to develop a means for a voter to
prove that the ciphertext they cast contained a valid preference. Being an additive scheme,
it is fundamental to correctness that a voter not be able to over-vote (or subtract votes!).

Benaloh introduced this direction via a series of publications [BF85, Ben86a, Ben86b].
His additively homomorphic encryption scheme was also an important step in its own right:
it improved upon the encryption scheme of Goldwasser and Micali [GM84] by allowing the
homomorphic addition of much larger numbers. Although decryption in Benaloh’s scheme
was still a hard problem in general, it was feasible to search the set of possible outcomes
of any plausibly sized election. His scheme also paved the way for Paillier’s additive
scheme [Pai99], which allowed generalized decryption.

Techniques for distributed decryption of Benaloh’s cipher were not available at the time
and so follow-up work included various approaches for achieving distribution of trust by
having voters essentially act as dealers in a secret sharing scheme, breaking their votes into
shares [BY86, Ben87]. Sako and Kilian [SK94] and Cramer et al. [CFSY96] later presented
several optimizations. The latter introduced a number of useful proof techniques still
widely used today.

Receipt-freeness. Benaloh and Tuinstra eventually introduced the notion of receipt-
freeness [BT94], a property that enforces ballot secrecy even if the voter intends to disclose
their preferences (e.g., for the purposes of vote-selling). In contrast to the previous ho-
momorphic proposals, the voter does not create the encryption of their own preference.
Instead, the trustees create the encryptions of all potential choices, leaving the voter to
select and cast the ciphertext corresponding to their preference.

Of course, the trustees must be able to prove to the voter that the chosen ciphertext
correctly encrypts the voter’s preference, but without giving the voter information to prove
this fact to others. At a high level, this is accomplished by a cut-and-choose protocol. In its
most basic form the trustees transmit n ciphertexts to the voter, each randomly encrypting
either a “yes” or a “no” vote for a particular candidate. For each such ciphertext, the
trustees assert the corresponding plaintext. Based on these assertions, the voter chooses one
of the ciphertexts corresponding to their preference, and challenges the trustees to verifiably
decrypt the others. The voter checks the resulting plaintexts match the corresponding
assertions. When satisfied, the voter’s chosen ciphertext is cast. Since the voter did not
learn the random factor used to encrypt their preference, the voter is unable to prove its
contents to a third party despite being confident of the plaintext. Hirt and Sako [HS00]
later demonstrated an attack on receipt-freeness of Benaloh and Tuinstra’s scheme.
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Universally Verifiable Mixnets. Compared to the advances in homomorphic tallying,
little had been published on mixnet voting schemes in the decade since Chaum’s original
proposal. Park et al. [PIK93] eventually proposed the reencryption mixnet as an alternative
to DC-Nets used in Chaum’s second scheme. Sako and Kilian used this to present the first
universally verifiable mix network [SK95].

Recall that in Chaum’s original voting scheme, the mixnet was not verifiable. This
meant a voter had to rely on some additional mechanism (digital signatures in this case)
to be able to receive assurance their vote was correctly counted. Recall that by contrast,
Benaloh’s solution to receipt-freeness involved the trustees preparing the ballots on the
voter’s behalf instead. So given that a voter could not individually verify the mixnet, the
technical challenge at the time involved making the mixnet verifiable to anyone (i.e., uni-
versally verifiable). Their solution rests on a cut-and-choose protocol similar to a proof of
graph isomorphism. The resulting voting system is receipt-free4 and has distributed trust,
but carries a considerable computational cost relative to homomorphic-based proposals.

Distribution of Trust in Homomorphic Schemes. Leveraging advances in homo-
morphic encryption schemes occurring since Benaloh’s early work (i.e., Elgamal), Cramer
et al [CGS97] presented a proposal for a voting scheme that offered not just distributed
trust, but threshold distributed trust. Their proof techniques were very efficient compared
to earlier proposals and form the basis of many systems even today. It still leaves the
voter to prove the validity of their own vote and is not receipt-free as a consequence.
Hirt and Sako later extended this work by adding receipt-freeness and introducing efficient
techniques for combining multiple candidate counters into a single ciphertext [HS00].

Coercion Resistance. Juels et al. [JCJ05] defined the notion of coercion-resistance
as a privacy protection to voters casting ballots in a non-private environment (e.g., the
Internet). The intention here is to describe a scenario in which an adversary can corrupt
a voter—even as they are casting their ballot. In addition to receipt-freeness, they define
coercion-resistance as also protecting against the following attacks:

• Randomization: An adversary shall not be able to receive proof as to whether a
voter complied with the adversary’s directive to cast a random preference,
• Forced abstention: An adversary shall not be able to receive proof as to whether

a voter complied with the adversary’s directive to abstain from casting a ballot,5

4They assume trustees transmit the proof of ballot correctness to the voter over a deniable channel.
5This requirement may conflict with the laws of certain jurisdictions, for example, in Australia, where

voting is mandatory.

20



• Simulation: No adversary shall be able to undetectably cast a preference on behalf
of a voter.6

The mechanism commonly employed to achieve coercion-resistance is to require voters
to perform a private registration step prior to the election in which the voter receives a
credential. The technical challenge is twofold: one is to make real and fake credentials
indistinguishable from a coercer’s perspective, so they will not know when a real or fake
vote is being cast. The other challenge is to make real and fake credentials distinguishable
to the trustees so that fake ones can be restrained from inclusion in the tally.

2.2.2 Transitional Work: Voting Unassisted

Beginning in the mid-2000’s voting research entered a new phase. Until this point in the
literature a voter was essentially modeled either as being an interactive Turing-machine,
or as accessing a trusted computational assistant. Beginning with a proposal in 2004 by
Chaum [Cha04], this new direction set out to develop means for human voters to be able to
obfuscate their vote without requiring a computational assistant. Chaum’s scheme involved
a voter interacting with a direct-recording electronic (DRE) touchscreen interface. The
DRE would print a physical ballot showing the voter’s preference in human-readable form.
The ballot itself consisted of two visual crypto shares (cf. [NS94]) which were separated.
One layer was chosen randomly to be destroyed; the other was optically scanned, and the
voter retained a copy as a receipt.

Later, Ryan et al. proposed Prêt à Voter [CRS05], the first system to offer a pre-
printed optical-scan ballot. A Prêt à Voter ballot paper consists of two halves separated
by a perforation: one half contains a list of candidates presented in an independent random
order. The other half contains a location for a voter to mark a preference. When marking
was complete, the voter detached the candidate list and destroyed it. The remaining
portion was optically scanned, and the voter retained a copy as a receipt. Since the
candidate list order was randomized, the vote can not be determined from the position of
the voter’s mark alone.

With regard to receipt-freeness, these proposals take the physical analog to the receipt-
free systems of the 90’s: a set of election trustees create the obfuscation on the voter’s
behalf.

Punchscan. Chaum’s 2004 scheme proved challenging to deploy in practice on account
of the double-layer visual-crypto ballot. He later proposed Punchscan as a (slightly) more
practical, and purely optical-scan follow-up [PH06, FCS06].

6This is a non-trivial threat in remote/Internet voting. For in-person voting schemes, this is typically
handled by conventional identification techniques (e.g., photo ID) and is out of the scope of this work.
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Punchscan sacrifices distributed trust for simplified cryptographic proofs, but curiously
offered a considerably less usable ballot relative to that used by Prêt à Voter. Similar
to Chaum’s 2004 scheme, the ballot consisted of two stacked paper sheets. The top sheet
consists of randomized codes beside a fixed-order candidate list. The bottom sheet contains
codes in a different (i.e., independent) random ordering. Holes punched in the top sheet
allow the codes on the bottom sheet to show through. Using a bingo dauber, the voter
would mark the hole containing the same code as the one appearing beside their preferred
candidate. Similar to the 2004 scheme, one sheet would be destroyed, and the other scanned
and retained as a receipt.

We implemented Punchscan and deployed it in a graduate student election at the
University of Ottawa [ECCP07a]. We later entered the implementation into VoComp, a
voting system design competition in 2007 [ECCP07b, CCEP07]. Although serious concerns
were expressed by the judges over usability,7 a more mature implementation (and a small
security vulnerability discovered in the Prêt à Voter implementation) resulted in Punchscan
being awarded the grand prize.8 This work formed the basis of the Master’s thesis due
to Essex [Ess08]. Numerous practical limitations of Punchscan remained, however, and
tackling some of these issues forms the basis of the research beginning in Part I.

Toward End-to-end Verification Without Cryptography. A number of other of
non-cryptographic proposals were made in the spirit of simpler, easier-to-explain exam-
ples of the end-to-end paradigm although these schemes (like their conventional counter-
parts) rely on trust assumptions for correctness. Custodio introduced the floating receipt
model [Cus01]. Araujo et al. later proposed variants [ACG06, AR08]. As we note later in
Chapter 6, correctness is still contingent on a trusted physical chain-of-custody. Another
proposal was ThreeBallot [RS07], which relies on trusted hardware components to ensure
correctness. Further a number of papers pointed to vulnerabilities to passive secrecy in
several scenarios [CEA07a, CKW08, HSS09] as well as coercive strategies to undermine
receipt-freeness [KRMC10].

2.2.3 Concurrent Work

We now briefly review work done concurrently with this research (from the late 2000’s to
present) consisting primarily of work done on in-person optical-scan schemes, with some
discussion of Internet/remote voting schemes.

With regard to cryptographically verifiable optical-scan (the focus of this dissertation),
the literature can be roughly separated into two categories: systems using single layer

7http://www.vocomp.org
8http://www.wired.com/threatlevel/2007/07/us-team-wins-vo/
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ballot forms but reliant on trusted parties/hardware and systems with distributed trust
but with multi layer ballot forms.

Single Layer Optical-scan Ballots with Trusted Components. The Prêt-à-Voter
[CRS05, RS06, RBH+09] system and its variants [AR06, XSH08, RT09a, Rya11, CBH+11]
also offer the voter a single-layer ballot form with randomized candidate list. Although
the correctness proofs are usually described as a multi-party computation, ballot forms
are generated by a trusted printer. Cast ballots are generally “encrypted” though variants
exist that leave a human readable paper trail [LR08].

Benaloh [Ben08] proposes that receipts be generated and printed by a special-purpose
device connected to the optical scanner. This has the distinct advantage that the ballots
contain no identifying information (beyond the vote). However the issue of trusted ballot
printing instead becomes a matter of trusted receipt printing.

In addition to the proposals above, several papers have found subtle potential attacks on
the receipt-freeness of optical-scan based schemes under certain conditions [MN07, BMR07,
CHL09, KRMC10].

Distributed Trust Optical-scan with Multi Layer Ballots. Kubiak [Kub06] and
Carback et al. [CPSC07] propose mostly distributed modifications of the Punchscan sys-
tem [PH06]. The former still relies on a trusted ballot printer; the latter distributes
printing but still relies on trusted hardware to generate ballot tuples. Popoveniuc and
Carback [PC10] later propose a three-party distributed version of Punchscan in which
top-, middle-, and bottom-sheet permutations are each generated by independent printing
authorities. In all cases voters must use an indirect marking procedure.

Moran and Naor [MN07] propose an improved multi layer ballot form that does not
rely on indirection and with considerably stronger, provable, security properties. Voters are
issued layers in separate sealed envelopes. Once inside the booth the voters are directed
to remove each layer from its envelope and stack the layers in a particular order. The
resultant candidate list is horizontally offset from the optical scan ovals by a randomized
amount.

Lundin et al. [LTR+06] propose a distributed construction of the Prêt-à-Voter ballot
based on a form of dealerless 2-party visual cryptography. The voter must be careful
to align the VC shares in the booth in order to reconstruct the candidate list. Most
recently Küsters et al. [KTV09] present a version of Prêt-à-Voter system without a trusted
printer, physically implementing a re-encryption mixnet using scratch-off coatings. The
voter receives a separate ballot for each candidate, which can be cumbersome for races
involving more than a few candidates.

23



Other Optical-scan Schemes. Chaum proposed the first physical receipt based voting
system [Cha04]. It consisted of two visual crypto layers showing the name of the voted
candidate. A receipt is created by separating the layers and destroying one of them. Paul et
al. [PERW03] propose visual crypto for use in voter authentication for (non-cryptographic)
remote voting systems. Scratch & Vote [AR06], Scratch, Click & Vote [KZ10] and Pretty
Good Democracy [RT09a] make use of scratch-off coatings to conceal encryption random
factors and confirmation codes. Finally, Kelsey et al. [KRMC10] propose a voter-coercion
strategy involving the use of scratch-off cards to direct voter action.

DRE-based Schemes. Although optical-scan systems remain predominant in the liter-
ature, a number of proposals have been made for fully-electronic interfaces (i.e., DRE’s).
Neff proposed MarkPledge [Nef04], a DRE-based protocol that was briefly spun into a busi-
ness (VoteHere). Neff and Adida later proposed a number of security enhancements [AN06,
AN09] as did Joaquim and Ribeiro [JR11]. Müller-Quade at al. presented a number of vari-
ants of a DRE-based scheme for which receipt-freeness is provided by a secure hardware
component implementing a random number generator [BMR07, BHK+09, BHMQ+08].

Remote/Internet Voting Schemes. Although somewhat outside of the scope of our
research, we briefly summarize advances in verifiable remote/Internet voting.

Kuty lowski and Zagorski made several proposals for code-based Internet voting [KZ07,
KZ10] designed at mitigating threats to correctness and privacy in the presence of malware.
Joaquim et al. also present a number of similar proposals [JR07, JRF09, JRF10]. Ryan et
al. proposed an Internet voting scheme based on acknowledgment codes [RT09b, HRT10].

Adida proposed the Helios system [Adi08], an implementation of Sako and Kilian’s
universally verifiable scheme adapted to an Internet setting, and which does not provide
receipt-freeness.9 Adida et al. went on to deploy a number of Helios variants in several
university student elections [AMPQ09, BGP11].

Clarkson et al. [CCM08] developed an implementation of Juels et al.’s coercion-resistant
Internet voting scheme. The quadratic complexity of Juels et al.’s scheme prompted a
number of follow-up papers. Smith [Smi05] and Weber et al. [WAB07] presented the first
proposals for a variant with linear tallying, but both were subsequently shown to not be
coercion resistant [AFT07, SDW08]. A number of proposals have followed since by Araujo
et al. [AFT07, AFT10, ARR+10], Haenni et al. [SHD10, KHF11, SHKS11, SKHS11, HS11],
and others [CH11, BGR11], focusing on providing a linear tally amid various trade-offs
relative to Juels et al.’s scheme. The area continues to be an active direction of research,

9To impress this point, Adida added a “coerce me” button to the voting interface, which emails a
recipient the random factors used to encrypt a user’s ballot.

24



although numerous and fundamental obstacles to real-world practicality remain with regard
to usability, and even potentially the legality of such schemes.

2.2.4 Real-world Deployment

A number of cryptographically verifiable voting systems have been deployed previously in
elections with binding results.

Remote/Internet Elections. Davenport et al. [DNW96] implemented a version of the
scheme due to Fujioka et al. [FOO92] and ran an Internet-based student council election
at Princeton in 1996. Herschberg [Her97] deployed a related implementation for a student
council election at MIT the following year. Furukawa et al. [FMM+02, FMS10] deployed
a scheme based on Sako and Kilian’s scheme [SK95] which has been used by NEC Corp.
for running internal corporate elections since 2002. The Rijnland Internet Election System
(RIES) was used in public elections in the Netherlands in 2004 and 2006 [HJP05, HJS+08].
Adida et al. [AMPQ09] deployed a homomorphically tallied variant of Helios [Adi08] for
the elections of the Recteur of Université Catholique de Louvain in 2009, and again in the
Princeton undergraduate student government election. RIES and Helios are not receipt-
free, and none of them are coercion-resistant.

In-person Optical-scan Elections. Bismark et al. [BHP+09] partially deployed Prêt
à Voter in a student election at the University of Surrey in 2007, however, Surrey election
officials halted the election midway through polling, reverting back to their conventional
(non-cryptographic) setup. Essex el al. [ECCP07a] deployed Punchscan for a student
council election at the University of Ottawa in 2007. Buckland et al. recently announced
plans on behalf of the Victorian Electoral Commission (VEC) of Australia to field Prêt à
Voter in future elections [BBTW12].
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Interface Improvements for Voters
and Election Officials

27





Chapter 3

Scantegrity

It needs to be a paper ballot, not a
receipt that comes out of a
machine—a sturdy paper ballot.

Bev Harris [Row08]

This chapter is adapted from published work co-authored with David Chaum et al. [CEC+08].

3.1 Introductory Remarks

Based on the feedback received during our experiences deploying with Punchscan [ECCP07a,
ECCP07b], it became apparent that it would be more helpful to voters and election of-
ficials if cryptographic election verification could be offered as an add-on to an existing
optical-scan set-up, rather than as a stand-alone system requiring new equipment, a new
ballot style, and new procedures.

Our intuition was straightforward: make the ballot look as much like a traditional
optical-scan ballot as possible. Doing so would potentially allow election officials to con-
tinue using their equipment, and, ideally, would allow voters to retain their mental models
of how to mark and cast ballots.

To that end we present Scantegrity, an add-on to optical-scan based voting systems that
combines the ideas of cryptographic E2E verifiability with a familiar paper ballot. Because
of its comparability with existing optical-scan infrastructure, we believe Scantegrity can be
deployed in a variety of jurisdictions at a minimal cost, while potentially dovetailing with
common existing procedural requirements, such as paper audit trails and manual recounts.
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For the great number of voters already familiar with optical-scan ballots, Scantegrity is
the first cryptographically verifiable voting system that would not require them to re-learn
how to mark and cast their ballots.

Although Scantegrity has been largely subsumed by Scantegrity II (presented in Chap-
ter 3), we include it in this dissertation both as an introduction to the approach, as well
as to underscore the difference in dispute resolution procedures (a major contribution of
Scantegrity II).

Contributions. The contributions of this chapter are summarized as follows:

• Scantegrity: a cryptographically verifiable add-on system that can be interfaced with
conventional optical scan voting systems allowing

– A conventional ballot marking procedure,

– A simple, opt-in, receipt creation procedure,

– An unencrypted paper audit trail.

• An in-person procedure for resolving disputes over receipt transcription.

3.2 Voter Experience

The voter experience in Scantegrity is identical to that of regular optical scan systems
except that the voter has the option of taking home a privacy-preserving receipt. To
create such a receipt, a voter tears off a perforated corner of the ballot, called a ballot chit,
which contains a serial number. In addition, as shown in Figure 3.1, the voter writes down
the randomly-assigned code letter listed next to the candidate she chose. Note that in the
ballot shown, the letter ‘T’ is beside the chosen candidate’s name, but on other ballots ‘T’
is associated with a candidate chosen independently (and randomly). Thus knowing that
someone voted for a particular code letter does allow one to know for which candidate was
voted.

After the election results have been tallied by the underlying optical scan system,
election officials post a public record containing the Scantegrity serial numbers and chosen
code letters of all the scanned ballots but not the candidate that was associated with the
letter on the particular ballot. The voter can retrieve this public record, look up her serial
number, and verify that the code letters she wrote down match what is in the posted
record. A copy of the receipt can be made and given to third parties who can also check
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Figure 3.1: The Scantegrity Ballot. Scantegrity uses an optical scan ballot with randomly assigned
code letters located next to each choice (left). The perforated chit in the corner contains a serial number
and a space for the voter to write down a code. The chit is torn off and kept by the voter as a receipt
(right). For concreteness, we use a depict a contest from the ballot of Polk County, FL in 2000.

the public record. The more receipts that are checked, the higher the chance of detecting
a problem with the public record [APR07].

Correct letters indicate to the voter that the officials properly scanned and recorded her
vote as she intended. However if the public record contains a letter that is different than
what a voter recorded, the voter can challenge the record through the dispute resolution
process (outlined in Section 3.5).

All receipts may be verified via these processes, providing proof that the votes on the
ballots were recorded as they were cast. Additionally this public record is used to tabulate
the results independently of the optical scan vote counting system. The next section will
explain how this tabulation is done and how the result can be verified by any independent
party.

3.3 The Switchboard

We have seen how the public record allows voters to use their receipt to verify that their
votes were recorded-as-cast. In addition, this record can also be used by independent
entities to verify the tally—that the results were counted-as-recorded. Tally verification is
a challenge because the system must not directly reveal the links between code letter and
candidate in order to preserve ballot secrecy.

Although Scantegrity is not the first system to provide counted-as-recorded integrity
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verification, it provides, in our opinion, one of the simplest solutions to this problem. The
importance of solution simplicity cannot be overemphasized in voting—it allows the widest
possible audience to understand how the voting system works.

The approach of some of the E2E solutions has been to use a mix network [Cha81] to
create an anonymous but verifiable link between receipt and vote. One of the properties
of a mix network is that a cryptographic operation is applied at each node in the network
to obscure the path of messages through it. This is especially important for identifiable
(i.e., unique) data such as email messages. Some E2E systems provided information on the
ballot receipt (the “onion”) to allow the mix network to perform the correct cryptographic
operations to count the vote correctly. Punchscan, the direct ancestor of Scantegrity,
utilizes a simplified two-stage mix network with efficient cryptographic operations. It also
does not require that the ballot receipt bear the onion.

We observe that election data does not necessarily need to be explicitly encrypted.
Under the familiar “plurality” voting system (aka “first-past-the-post”), the voter expresses
her intent by making a mark beside the candidate of her choice. A cast ballot therefore can
be expressed in terms of a specific collection of marked or unmarked regions. Importantly,
if treated individually, the states of these markable regions are not unique, and therefore
need not be encrypted as they pass through an anonymizing network. Instead of using a
mix network architecture, we can achieve the same anonymity properties through a simpler
process—a secret permutation of the states of the markable regions (akin to shuffling a deck
of cards). Thus the unique aspect of the Scantegrity component is that the permutation
is used to recover the vote while hiding the link between serial number and vote.

The switchboard can be described as a collection of circuits established between specific
markable regions on ballots in the election (i.e., marked or not marked) and a particular
candidate (i.e., “voted for” or “not voted for”). The state of each markable region on each
ballot in the election will be transmitted to votes for the corresponding candidates in the
election results.

Finally, there must also be a way for the public to independently verify that marks are
being transmitted through the switchboard to the correctly associated candidate without
simultaneously exposing both end-points of the circuit (i.e., receipt and vote).

3.3.1 Auditing the Switchboard

For voters to be confident in the switchboard’s ability to produce a correct tally, some
information must be revealed for the purposes of verification. Initially when the ballots and
Switchboard are created, this secret information is committed to using a cryptographically
secure bit-commitment scheme [Ess08].
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Figure 3.2: The Switchboard. Marks beside code letters are routed to marks beside candidates using a
random and obliviously generated circuit-switched network.

Before the election, these commitments are generated and published eventually allowing
independent entities to verify that the secret data revealed during the audit process could
not have been simply “cooked-up” on the spot. The verification requires that some secret
data be publicly revealed and its correctness verified against the data committed to. We
use two ways of revealing secret information:

1. Reveal the full secret and then discard it from use in the election,

2. Reveal partial information that is insufficient for revealing the secret.

We use the first technique to verify the correctness of the association between code letter
and candidate in the switchboard. Before the election, half of the ballots are randomly
chosen to be publicly revealed, along with their serial numbers and connections through
the switchboard. Those performing this printing audit can ensure that the path through
the switchboard for each candidate on each of the revealed ballots leads to a vote for the
correct candidate in the results. These ballots are destroyed and will not be used in the
election. If the ballots were chosen fairly and randomly, we have a high level of assurance
that the remaining sealed ballots are printed and routed correctly.

After the close of polls, we use the second technique to audit the switchboard. If we
segment the Switchboard into a composition of two randomly generated circuit-switched
networks (i.e., permutations), then revealing a link in one of the networks does not reveal
the full connection. Voters’ marks travel through the first network and are recorded in an
intermediary location. The marks in the intermediary position then continue through the
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Figure 3.3: Ballot printing audit performed before an election. As an example we see revealed
ballots #001 and #004, the association of code letters, and their connections through the switchboard.
This information is made publicly available, and any independent party can plainly see a mark for Alice
or Bob would have been correctly registered as a vote for Alice or Bob respectively. Once revealed, these
ballots will not be used in the election.

second network to their final place in the results table. For each intermediary position, the
election trustees are challenged to reveal either the link to it through the first network or
the link from it through the second network but never both. Thus the connection between
a recorded receipt and its position in the final results table is never revealed. For each of
these links, it is publicly verified that a mark (or absence of mark) traveled through the
link unchanged. In this way, observers are given a high level of certainty that the remaining
secret links also routed marks correctly. To increase the statistical certainty of the audit,
multiple instances of the switchboard with different random links can be used.1

The print and mark audits outlined in this section, in conjunction with the receipt
check, provide the end-to-end nature of the verification process: integrity is ensured from
the printing of the ballots all the way through to the final tally.

Although these audits are conceptually simple to perform, any non-trivial-sized election
would warrant the use of a software audit tool to perform these repetitive checks quickly.
The software tool is intended to be open source, exceptionally easy to use, and universally
available to anyone for free. Concerned parties can undertake to code their own indepen-
dent version following a published specification. Ultimately, however, the software tool is
only required for verifying cryptographic commitments—that the revealed audit data has
not been altered. The audit itself can still be performed manually on paper ballots for

1For each link, there is a 50 percent chance that the secret part was changed and the results successfully
altered, this decreases by 1/2 for each switchboard instance.
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Figure 3.4: Mark audit performed after the election. As an example we see that ballot #002 shows a
mark for the candidate with code letter ‘B’ and that this mark was correctly recorded in the intermediate
position. Likewise we can see that the first vote for Alice in the results table was correctly copied from
the intermediary position. Knowing only one link does not reveal the connection between code letter and
candidate, preserving the privacy of the receipt.

those so inclined.

3.4 System Architecture

An illustration of how Scantegrity interfaces with the optical scan election process is shown
in Figure 3.5. The election authority—a collection of election trustees—use a workstation
on three separate occasions to compute all the information needed by Scantegrity. This
set of “meetings” represents the three core processes of Scantegrity:

1. Before the ballots are printed, election trustees use the workstation to compute the
serial number and code letters to add to the optical scan ballots as well as generate
the switchboard connections. They cryptographically commit to this (secret) data
and post the commitments publically,

2. After the marked ballots are scanned on election day, the electronic ballot images
(EBIs) are given to the Scantegrity system. The code letters and corresponding
voter-created marks made on each ballot are posted to the public record. Voters can
check that the public record matches their receipts,

3. After the election results are tabulated and published, auditors challenge the election
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trustees to open one half of the switchboard for each marking region to prove that
they counted the ballots faithfully.

Using the workstation, the officials can regenerate all the data needed for each meeting,
preventing the need for physically storing any sensitive election data. The workstation is
secured through the removal of any external memory sources, and the open-source op-
erating system and software is booted from a self-contained medium that can undergo
attestation by anyone present both before and after its use. Fortifying the workstation is
done to protect voter privacy; the integrity of the election is unconditional and thus inde-
pendent of the trustworthiness of the workstation. We implemented and deployed such a
workstation in a student election [ECCP07a, ECCP07b].

3.5 Resolving Disputes

Because the voter is left to record their confirmation code, it is possible that a dispute may
arise between the voter and the election authority over which code appeared next to the
cast candidate. Possible reasons for a dispute include voter transcription error, scanner
error, or malfeasance by either party. We require a procedure, therefore, to convince both
parties, as well as the broader public, as to which party is at fault. This procedure,
furthermore, should not reveal the voter’s preference. We achieve this in a partial sense:
while the public does not learn the voter’s preference during the execution of the dispute
resolution procedure, the election authority does.2

To protect ballot secrecy, the dispute resolution procedure proceeds in two phases. First
the election authority proves that it is in physical possession of the voter’s ballot. Second,
the election authority proves which code letter appears beside the voter’s preference. The
procedure requires the voter to have retained their receipt chit.

In the first phase, the election authority retrieves the original ballot and places it
in a privacy sleeve that only shows the ballot serial number and chit perforation (see
Figure 3.6(a)). The voter can then compare the perforation pattern of their chit against
the ballot. If it is necessary, forensic analysis can be performed to match the fibers of the
chit to the ballot.

In the second phase, the election authority moves the ballot to a second privacy sleeve
that only shows the optical-scan ovals and confirmation codes. The official notes the
position of the marked letter and drops the sleeve into an empty lottery-style hopper. The
election authority then collects a set of dummy ballots with the same code letter marked

2In Chapter 10 we describe how the dispute resolution procedure can be extended to hide the voter
preferences from the election authority.
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Figure 3.5: Overall Election Process with Scantegrity. Scantegrity inserts itself into the traditional
optical scan election process, creating a separate mechanism for independent universal verification of
election results. Election trustees use a workstation to create letters and add them to the ballots. After
voting, they use the workstation again, reading the electronic ballot images (EBIs) to interpret marks
on each ballot and post the chosen letters. They use the workstation a third time to respond to audit
challenges, and everyone can check the responses to be sure the results decrypted properly.
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(a) Proving Possession of Ballot (b) Proving Code Letter Marked

Figure 3.6: Scantegrity Dispute Resolution Procedure. Left: the receipt chit is physically matched
to the originating ballot (sheathed in a special privacy envelope/sleeve). Right: the original ballot (and
several dummy ballots obscuring candidate preference) prove which code was marked.

for each of the other candidates, puts them in similar privacy sleeves, and drops them
into the hopper. After tumbling the hopper, the election official retrieves each privacy
sleeve envelope and places it in plain view (see Figure 3.6(b)). Since the ballot was already
matched to the chit, it is guaranteed to be in this collection. Thus the election officials have
successfully demonstrated what code letter was voted for without revealing the candidate
that was voted for. The single code letter (marked on all the shown ballots) can then be
compared to the public record. After all disputes are settled, everyone can assume that
the public record of chosen letters is correct, and that no ballots were lost. If necessary,
officials re-compute the results from the corrected public record.

A physical in-person dispute resolution procedure is obviously inefficient and does not
scale well. The major contribution of the next chapter will be to develop an informational
dispute resolution procedure for Scantegrity.

3.6 Implementation

We have created a Java-based software implementation and merged it with the Punchscan
codebase. Our software is general enough to author ballots of both styles, even allowing
an election to mix Punchscan ballots with Scantegrity ballots. The software takes a ballot
layout in PDF format as input and produces a multiple-page PDF document of the ballot
collection with letters and serial numbers inserted.
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We tested our implementation with both moderate and large sized elections. On a
1.73 GHz laptop, we were able to tabulate 1 million ballots in under 10 minutes. Using
actual statistics from Florida’s 2000 Polk County election,3 where there were 32 contests
with an average of 3.2 candidates per contest, we tabulated 200,000 ballots in under 4 min-
utes, slightly more than the number of ballots that were cast in that election. Auditing
the results took less than 2 minutes.

3.7 Concluding Remarks

Scantegrity is a potentially attractive solution to the problem of real-world trustworthy
voting. In addition to a universal cryptographic end-to-end verifiable result, it offers an
opt-in procedure for receipt creation, which, as a crucial benefit, allows voters to mark
their preferences vote using a familiar paper ballot. Furthermore, the add-on nature of
Scantegrity provides an opportunity for election officials to largely retain their existing
optical-scan equipment and polling place procedures. It also leaves leaves officials with a
conventional (i.e., human-readable/unencrypted) paper record.

As such, Scantegrity comes much closer to meeting existing laws and requirements
of many jurisdictions than its predecessors. The in-person dispute resolution procedure,
however, remains a major limitation of this approach. In the next chapter, we will tackle
the problem of automating the dispute resolution process.

3Election website for Polk County, Florida. Retrieved in 2007. http://www.polkelections.com/
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Chapter 4

Scantegrity II

The purpose of any election system is
to provide sufficient evidence to
convince the loser of an election that
he or she has genuinely lost.

ACCURATE research
proposal [RWB+05]

This chapter is adapted from published work co-authored with David Chaum et al. [CCC+08,
CCC+09]

4.1 Introductory Remarks

The voter-created receipts introduced by Scantegrity are advantageous from a usability
perspective owing to their opt-in nature: voters can complete their primary task (i.e., vote)
without learning new procedures. As a major disadvantage of this approach, however, and
in contrast to Punchscan and Prêt à Voter, receipts are not automatically created by the
act of marking a ballot, requiring instead a conscious action on behalf of the voter (i.e.,
recording a confirmation code). Furthermore, because receipt creation is unsupervised,
it is possible for disputes to occasionally arise between voters and election officials over
which confirmation code is correct. Scantegrity II addresses this latter point in a more
sophisticated manner than its predecessor.

A cumbersome in-person dispute resolution protocol was proposed in the previous chap-
ter (see Section 3.5). In this chapter we present Scantegrity II, a variant of Scantegrity
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that allows disputes to be handled through an online (as opposed to in-person) protocol.
The approach to an online dispute resolution procedure is twofold: one is to increase the
code space so as to make guessing valid codes statistically unlikely. The other is to only
reveal to the voter the codes corresponding to their selections.

In Scantegrity II, voters mark ballots using a special ballot-marking pen, which makes
legible pre-printed confirmation codes corresponding to voter selections. The link between
confirmation codes and voter selections is cryptographically protected, with the key(s)
being shared by election officials. Voters may note down their confirmation codes onto a
chit that is detachable from the ballot. After the election, all voted confirmation codes are
posted online, where voters may check them. The final tally is computed in a verifiable
manner from the posted confirmation codes.

The functionality of Scantegrity II is enabled by the use of invisible ink, in the following
ways:

• Confirmation codes and ballot ovals are printed with invisible ink, which darkens
when it reacts with the ink in the ballot-marking pen; the confirmation code ink
reacts more slowly than the ballot oval ink, and hence darkens several minutes after
the oval does. Thus, the code is visible for several minutes after being marked, during
which the voter may note it on the chit. On the other hand, the confirmation code
may be assumed to be indistinguishable from its background in an unmarked oval.
This allows the Scantegrity II system to provide a confirmation code to the voter
only after the voter has made the corresponding ballot selection.

• The Scantegrity II chit bears two serial numbers that are required of the voter in
order to check the confirmation codes online. These serial numbers are also indis-
tinguishable from the background until made legible through the use of a decoding
pen. The ink in the decoding pens is different from the ink in the ballot-marking
pens. Poll workers reveal the serial numbers using a decoding pen after the ballot
is cast. This prevents voters from falsely claiming that a valid confirmation code,
obtained from an uncast ballot, came from a cast ballot. When it is not possible to
use the different inks required for chit serial numbers and decoder pens, it is possible
to achieve a similar end, though with weaker integrity guarantees, by requiring that a
record be kept, by polling officials and observers, of serial numbers of spoiled ballots.

Contributions. The contributions of this chapter are summarized as follows:

• An improved, informational, dispute resolution procedure based on voter knowledge
of a confirmation code,
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• An invisible ink printing process for physically disseminating confirmation codes to
voters,

• A ballot with closely related marking and scanning procedures to that of Scantegrity
(and conventional optical-scan) ballots.

4.2 Scantegrity II Procedures

Scantegrity II provides integrity guarantees through the use of a confirmation code pro-
vided to each voter for each ballot selection. All confirmation codes are posted on a website
after the election, and all results are obtained through the processing of these codes. The
Scantegrity II protocol defines the manner in which participants in the election—voters,
election administrators, and observers—interact with the voting system in order to ensure
that (i) confirmation codes are correctly present on the ballots, (ii) marked confirmation
codes are correctly present on the website, and (iii) confirmation codes are correctly pro-
cessed to obtain the final tally. The protocol is designed to enable the detection of election
fraud if it has occurred, as well as to prevent false charges of election fraud. This section
provides an (intentionally) informal description of the protocol; its purpose is to provide a
description that is somewhat accessible to voters, poll workers, and election administrators,
and to prepare the reader for the more formal description in the next section.

4.2.1 The Vote Casting Procedure

This section describes the vote casting procedure, which is very similar to that of a regular
optical scan ballot. The slight differences between the two are as follows: first, the un-
marked ballot itself looks slightly different: it bears a detachable chit that can be used to
note confirmation codes. Second, while marking the ballot, voters will notice the appear-
ance of confirmation codes, which will also disappear after a few minutes. Third, voters
or observers may audit ballots to determine whether printed confirmation codes correctly
reflect voter selections; such ballots may not then be cast. While we have simplified the
ballot audit procedure considerably, it does not have a corresponding equivalent in the reg-
ular optical scan protocol, and might appear complicated to voters and officials. Similarly,
spoiled ballots are discarded using a procedure that is more complex than that used for
optical scan. Fourth, voters interact with a polling official after the vote is successfully
cast, in order to expose serial numbers on the receipt chit.

The Scantegrity II Ballot. The Scantegrity II ballot consists of two parts: the main
body and the chit; see Figure 4.1. Similar to an optical scan ballot, the main body of
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Figure 4.1: A Scantegrity II ballot showing the main body (top) with one marked position and machine-
readable serial number; left chit (bottom left) with a developed chit serial number and confirmation code
written in; and right chit (bottom right) with an undeveloped chit serial number. This figure is meant
to demonstrate the parts of the ballot and does not represent the actual final state of the portions after
voting.

a Scantegrity II ballot contains, for each contest, a list of valid selections printed in a
canonical order pre-determined by polling place procedures (e.g., alphabetical, rotated
across precincts, etc.). Next to each possible selection is a markable region, oval in shape.

Differing from an optical scan ballot, the background of each oval is printed with a
reacting ink. The confirmation code corresponding to the selection for the particular ballot
is printed inside the oval. The ink used to print the confirmation code is similar to that used
for the oval background, but is slow-reacting. Both inks look the same when printed on the
ballot paper; they may be assumed to be indistinguishable to the human eye before the oval
is marked with the ballot-marking pen (see Section 4.5 for details on the validity of this
assumption). Further, we assume that voters will not be able to take expensive spectral
analysis equipment into the polling booth; such equipment might aid in the ability to
distinguish between background and confirmation number. Thus, we assume that, before
marking, the oval has a single color, and confirmation codes are indistinguishable from
the background of the oval; that is, confirmation codes are invisible. Additionally, a
Scantegrity II ballot contains a ballot serial number that is machine-readable but not
easily read or memorized by a human (e.g., a two-dimensional barcode).

The chit is attached to the bottom of the ballot via a perforation, such that it can be
easily detached. It has two halves, left and right; the halves can be detached from each
other using a pair of scissors. On each half is a chit serial number: the left chit serial
number and the right chit serial number. These chit serial numbers are distinct from each
other and from the ballot serial number; we describe later how they are used to ensure
that voters cannot make false claims regarding confirmation codes on uncast ballots. Both
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the left and right chit serial numbers are printed in invisible ink such that they are neither
human nor machine readable before being decoded using a special decoder pen. Both the
left and right chit serial numbers are assumed to appear after they are marked with the
decoder pen.

Ballot Marking. Upon arrival, a voter is authorized to cast a ballot, and is handed the
next one in the pile; it is enclosed in a privacy sleeve. At this time, she may choose to
audit a ballot, which she may choose from the existing ballot pile. For details on the ballot
audit procedure, see Section 4.2.2.

In order to vote for a particular selection, the voter fills in the corresponding oval
using a ballot-marking pen. In accordance with the invisible ink printed on the ballot, the
background of the oval will immediately turn dark, leaving a confirmation code visible in
the foreground. The relative darkness of any marked ovals to unmarked ones will allow an
optical scanner employing dark mark logic to register the oval as marked. The foreground
of the oval will be human-readable and a voter interested in verifying that her vote is in
the virtual collection of votes to be tallied may record the code on the chit portion of the
ballot. Uninterested voters may disregard the codes.

The link between a confirmation code and the corresponding selection on a particular
ballot is protected cryptographically. We omit the details underlying the generation and
protection of the data until the next section. At this stage, however, we do note the follow-
ing: the disclosure of a confirmation code does not reveal the selection, if the cryptographic
techniques used are assumed secure, and election officials are assumed not to collude to
determine the selection.

Although not apparent to the voter, the confirmation code is printed in a slow-reacting
invisible ink that will also turn dark, but only after the passage of several minutes (e.g.,
five to seven minutes). At this time, the oval will be completely dark and the code will no
longer be visible, leaving no human-readable unique information on the ballot.

As an option, the two-dimensional bar-coded serial number could also have slow reacting
ink in its background such that if a voter marked it, it would turn solid black.

Section 4.5 describes how a masking ink and appropriate printing techniques may be
used to reduce the ability to distinguish between the inks, even with the use of microscopes
and spectral equipment. Indeed, it may be assumed that the slow and fast-reacting invisible
inks are, for all practical purposes, indistinguishable (i) before exposure and (ii) T seconds
after both have been exposed, where T is the response time of the slow-reacting ink. After
a period long enough to include reaction times, a filled-in Scantegrity II ballot provides,
for all practical purposes, an amount of information that is similar to that on an optical
scan ballot, and can be used in a manual recount with a level of privacy very similar to
that of optical scan.
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Spoiling the Ballot. If the voter makes an error in marking a ballot or wishes to register
a protest vote through spoiling the ballot, it is returned to the poll worker. Without seeing
the contents of the ballot, the poll worker removes the ballot from the privacy sleeve and
detaches the right side of the chit from the ballot. The main body and left chit are shredded
in view of the voter. The right chit is retained by the poll worker and used to verify that
the number of ballots issued is identical to the sum of the number of ballots tallied, print-
audited, and spoiled. The number of spoiled ballots allowed per voter is typically limited
by pre-determined polling place procedures.

Casting the Ballot. When the voter has satisfactorily marked a ballot, it is returned to
the poll worker. As previously, the poll worker detaches the chit from the ballot. Further,
with the choices on the ballot still concealed, the poll worker places the main body of the
ballot into the scanner, which records the ballot serial number and the marked choices.
In the preferred version of the protocol, voters are not allowed to cast undervoted or
overvoted ballots. If a voter does not wish to vote for a particular candidate, she must
make a selection of “none of the above”. If the scanner detects an undervote or overvote,
the voter is returned her ballot, and will spoil it and re-enter the issuance procedure. Note
that, in the US, the requirement that a voter be notified of undervotes or overvotes is not
uncommon; in fact the Help America Vote Act requires that voters be notified of overvotes
if electronic equipment is used. However, requiring that undervoted or overvoted ballots
not be cast is considerably stricter, and decreases the usability of the voting system. The
alternative version of the protocol does not ban undervotes or overvotes in cast ballots.
However, in this version, a secure chain of custody is required to ensure that unvoted races
were not changed to voted ones, nor voted races overvoted.

In order for the scanner to read the serial number, it must be encoded in a two-
dimensional barcode as the scanner can only recognize marked or unmarked regions.

After a successful scan, the two serial numbers on the chit are developed by the poll
worker. The voter may leave with the chit. It is expected that public interest groups will
make available the possibility of creating a copy of chits to alleviate the need for concerned
but time-constrained voters to personally participate in auditing the election.

Casting without Automation. For polling places without adequate voting technology
or in the event of a power failure, Scantegrity II may still proceed with the voter being
issued the chit in the same manner. The main body of the ballot will, instead of being
scanned, be placed into a sealed ballot box that has been certified as being empty prior
to sealing. If scanning technology is unavailable at the polling place, the ballots may be
transported to a central scanning location.
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Accounting for Ballots. At the end of the day, poll workers and official observers make
a note of the numbers of spoiled, voted and audited ballots, and ensure that their sum
is equal to the number of used ballots. These numbers are made publicly available; this
prevents ballot stuffing. Further, they note down the exposed chit serial numbers of voted,
spoiled and audited ballots, so these cannot be changed after the election.

4.2.2 Election Audit Procedures

A voter may participate in auditing the election in several ways. In addition to checking
the confirmation numbers on her ballot, she may audit a printed ballot, and check the
processing of confirmation codes. Election observers may also participate in the latter
processing check.

Auditing a Printed Ballot. Voters wishing to audit a printed ballot may choose one
from the ballot pile; we refer to the process of auditing the ballot as the print audit. They
will each be issued a ballot main body and the left or right half of the chit, with the
serial number activated using the decoder pen; which half is chosen may be determined
by a flipped coin. The other half of the chit is removed and retained by the pollworker in
a clear box on the poll worker table. At her leisure, the voter fully marks the ballot to
reveal all the confirmation codes, which she may check using the procedure in the following
section.

Checking Confirmation Numbers. At a pre-arranged time after the polls close, voters
who recorded the confirmation codes associated with the candidates they voted for, or
those who wish to check the confirmation codes on a print-audited ballot, may visit a
website where they will be prompted for the serial number on the chit. In the case of
voted ballots, the voter will have two serial numbers—left and right; either is suitable to
identify the ballot uniquely. Upon entering a serial number, the website will report the
confirmation codes in the positions it believes were marked for voted ballots, but will not
report the candidates associated with these codes. For this reason, providing a copy of the
confirmation codes in no way undermines the secrecy of the ballot. Voters are encouraged
to share their confirmation codes, share photographs of their chits, or post screen-captures
of the results. In the case of an audited ballot, entering the serial number will similarly
report the confirmation codes that should appear on the ballot and, only in this case, also
reveal the candidates associated with each code.

All confirmation codes and their associated candidates are committed to prior to the
election to ensure the values or associations cannot be changed. Thus, the audited ballots
provide probabilistic evidence that the confirmation codes were correctly printed on the
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ballots. The correct and full inclusion of confirmation codes from a voted ballot provides
probabilistic evidence that the votes were properly scanned and not maliciously altered.
Full details are provided in Section 4.3, and the strength of this evidence is quantified in
Section 4.4.

Checking the Processing of Confirmation Numbers. Due to the commitments to
confirmation codes and candidates before the beginning of the election, it is known that
candidates are mapped to confirmation codes and that this mapping cannot be changed.
Further, through the print audits, voters are assured that this mapping has been faithfully
transposed to the printed ballots they marked. By checking the inclusion of their con-
firmation codes, they are further assured that the marks they made for candidates have
been faithfully transposed to confirmation codes consistent with those on the ballot. The
final step is to check that the confirmation codes are properly mapped back to the correct
candidates.

The protocol for achieving this check will be based on an open specification. Voters
may either obtain software from a software provider they trust, or write their own soft-
ware, to check the processing of the confirmation numbers. All required information for
writing the software (such as the format of the data and what the data are) is provided by
Scantegrity II to all interested parties. Those administering the election are encouraged to
appoint an independent auditor to perform this check so as to provide at least one audit of
the tally computation from confirmation codes. The details of this check are also provided
in Section 4.3.

4.2.3 Dispute Resolution Process

If any voters discover incorrect confirmation codes or ballots that are incorrectly designated
as voted, print-audited, or spoiled, they may file disputes. In the case of a confirmation
code being incorrect, they may provide the confirmation code they believe should be on the
ballot. A voter’s knowledge of a valid confirmation code on the ballot that is not present on
the website, suggests an error or malfeasance; the validity of the code can be established
since the codes are committed to, and the likelihood of guessing a correct code can be
made low through the use of longer codes (exact quantification to follow in Section 4.4).
If a voted ballot is incorrectly designated, the voter can provide both chit serial numbers
to prove that it was voted. Similarly, if a print-audited ballot is incorrectly designated,
the voter or independent auditor can provide all the confirmation codes on the ballot to
prove that it was print-audited. In the case when the voter knows all confirmation codes
in an overvoted ballot, this ballot’s designation cannot be changed to print-audited as the
voter knows both serial numbers. In order to ensure that unvoted races are not voted, and
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that properly voted ballots are not changed to overvoted ones, a restriction of not allowing
undervotes or overvotes on cast ballots is required.

4.3 Cryptographic Proof of Tally

The following describes the method used for proving the correctness of an election outcome
while simultaneously maintaining voter anonymity. It is based on the protocol described
in Chapter 3, adapted to the enhanced polling procedures described in Section 4.2.

4.3.1 Ballot Definition

For simplicity we consider a notation based on a single contest ballot. Generalization
to ballots containing multiple races, as well as elections containing multiple ballot styles,
should be viewed as multiple independent executions of the single contest case described
herein. Let L = (s0, . . . , sn−1) define a list of n ballot selections (e.g., candidates, choices,
etc).

4.3.2 Roles

We consider three categories of entities participating in the election with the acknowledge-
ment that the entities are role-based and thus an individual might possibly assume any or
all roles.

Voters: Voters are those with the authority to cast a ballot in the election. We assume
that voter authentication (external to this discussion) is undertaken prior to ballot
issuing and that only authenticated voters are issued ballots. In this section we will
refer to a particular voter as V .

Election Trustees: Let T be the set of t election trustees, T1, . . . , Tt ∈ T . The trustees
engage in the cryptographic protocol to setup and generate the correctness proofs of
the election. T would generally consist of public officials and, optionally, candidate
representatives. The protocol is intended to proceed when a minimum number of
trustees are present—not requiring the presence of all so as to mitigate the disruption
caused by any individual trustee’s absence at various stages of the protocol.

Verifier: The set of verifiers A consists of all agents verifying the correctness proofs herein.
The intention is that the tally-correctness be “universally verifiable” as defined in
[SK95]—meaning that any voter, citizen or observer can participate either directly, or
through delegation, in the verification of the tally if they so choose.
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Other Entities: Poll workers are responsible for administering the voting process, in-
structing and assisting voters, as well as enforcing the registration, ballot issuing,
marking and casting procedures outlined in the previous section.

Finally, we require the existence of a public bulletin board BB that implements an
append-only public record. In practice it might be implemented as a mirrored public
website.

4.3.3 Functions

In this section, we outline the main functions used in the protocol. For a positive integer
len, we use [len] to denote the set of integers [0, 1 . . . len− 1].

The functions consist of:

1. A parameter initialization function that, given a security parameter, provides an
election-specific nonce and minimum key lengths.

2. A trustee threshold-key generation function that produces individual trustee keys for
trustees and a master key that can be reconstructed from a minimum threshold τ
number of trustee keys. This function takes as input the election-specific nonce, the
value of τ , and input bit strings from the trustees, the entropy of which provides the
entropy of the keys generated.

3. A master-key reconstruction function that, given a set of τ or more trustee keys,
reconstructs the master key.

4. A subkey generation function that is a cryptographic one-way function, accepts a
master key and an identifier, and outputs another key.

5. A keyed permutation function that, given a key and the value len, generates a pseudo-
random permutation of integers in the range [len].

6. A cryptographic commitment function that is computationally hiding and computa-
tionally binding.

7. A ballot generation function that, given the candidate list, the confirmation code
alphabet and length, the election master key, and the number of ballots required,
generates the master list of ballots.

Details of each of these functions follow.

Parameter Initialization: P ← Parameters(1p) accepts a security parameter p and out-
puts a set of functional parameters P including a unique election-specific nonce λ
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selected in accordance with a public convention (not considered here), and a spec-
ification of cryptographic algorithms used to realize certain cryptographic one-way
and trapdoor functions, as well as specifying their enforced minimum key lengths.
For brevity, we will omit continual reference to P by assuming all following functions
accept it as input.

Trustee Threshold-Key Generation: (k1, . . . , kt, K) ← TrusteeKeys(ω1, . . . , ωt, τ, λ)
accepts an arbitrary-length random bit string, denoted ωi ∈ {0, 1}∗, from each trustee
Ti, as well as a threshold 1 ≤ τ ≤ t, specifying the number of trustees needed to
reconstruct a unique election master key K. It outputs a distinct key for each of
the trustees, k1, . . . , kt, as well as a master key K. We do not consider the policy
guidelines for selecting trustees or τ in this section. K is such that, if at least one ωi is
uniformly distributed across all possibilities, K will be as well. K is also dependent on
the election nonce λ (so if the same value of ωi were supplied in a different election, K
would be different). K is only used as private input to other functions. Each output
key ki is transmitted over an authenticated and physically untappable channel to the
corresponding trustee Ti.

Election Master Key Reconstruction: ∅/K ← ElectionKey({j1, . . . , jn}) accepts as
input a set {j1, . . . , jn} of keys and outputs the unique election master key K if and
only if |{j1, . . . , jn} ∩ {k1, . . . , kt}| ≥ τ . Otherwise it returns a symbol (denoted by ∅)
indicating the function failed to reconstruct the key.

The assumption for the two preceding algorithms is briefly stated: given any unbounded
adversary A, the advantage of A (over a random guess) in guessing K, given any set
containing fewer than τ keys from k1, . . . , kt, is exactly zero. One suitable construction is
due to Pedersen [Ped91], and has been suggested for use in voting by Benaloh [Ben06]. A
suitable notion of an untappable channel is the one due to Sako and Kilian [SK95].

Sub-key Generation: κID ← SubKey(K, ID) is a cryptographic one-way function that
accepts a master key K and identifier ID and outputs another key κID, where ID
defines what key is to be generated.

Keyed Permutation: π ← Perm(κ, len) accepts a key κ and list length len, and outputs
π : [len] → [len] where π is a permutation selected pseudo-randomly from the set of
possible permutations of len elements Πlen. The function π depends on κ. We use
the notation X ′(i) ← X(π(i)) to denote the element-wise shuffle of a len-element set
X for 0 ≤ i < len. Finally, we define a special-case null index, denoted ∅, in which
π(∅) = ∅ for all π ∈ Πlen.

Cryptographic Commitment: We consider a cryptographic commitment protocol as
including the following pair of functions: m̄ ← Commit(κ,m) accepts a key κ and an
arbitrary length message m to obtain a commitment m̄. 0/1 ← Decommit(κ′,m′, x)

51



accepts a commitment x, key κ′, and message m′, and outputs 1 if Commit(κ′,m′) = x.
Otherwise it outputs 0.

The cryptographic assumptions for these algorithms are briefly stated: given any prob-
abilistic polynomial time-bounded A producing messages m and m′, and keys κ and κ′,
the probability that m 6= m′ and Commit(κ′,m′) = Commit(κ,m) is a negligible quantity
in the security parameter p. That is, A cannot find two distinct messages that produce the
same commitment. This is an informal definition of the computationally binding property
of a commitment. Additionally, given any probabilistic polynomial time-bounded A,

|Pr[A(Commit(κ,m)) = 1]− Pr[A(Commit(κ,m′)) = 1]|

is a negligible quantity in the security parameter p. That is, A cannot distinguish between
a commitment to m and one to m′, if the commitments use the same key. This is an
informal definition of the computationally hiding property of commitment functions.

Generate Ballots: P ← GenerateBallots(L,Σ, `,K, b) accepts ballot selection/candidate
list L of size n, confirmation-code alphabet Σ (typically the set of alphanumeric char-
acters), confirmation-code length `, election master key K, and the overall number of
ballots to be generated b. P contains three lists. The first is a list of b ballots, sorted
by serial number, each with n selections, each selection associated with a confirmation
code in Σ`. In addition to this list, P also bears space for the voters’ choices after
ballots are filled, and a third list which bears the corresponding candidates.

We deviate slightly from the notation introduced in [CCC+08]. Let P denote the
canonical “master” list associating codes, candidates, and voter-made marks, which we
define as the triple of (b · n)-element lists P = {Q,R,S}. For all 0 ≤ j < bn,

1. Q is a list of serial numbers and confirmation codes, including serial numbers (α, β, γ)
for each ballot, and confirmation codes q for each selection in a ballot. Let Q(j) =
{αj, βj, γj, qj},

2. R will eventually represent the list of scanned voter-made marks r ∈ {0, 1} indicating
the absence or presence of a mark (i.e., vote) made for an associated selection. Let
R(j) = rj, and let all rj be initialized to 0,

3. S is a list consisting of b repetitions of selection/candidate list L = (s0, . . . , sn−1).
Let S(j) = s(j mod n).

1

For notational convenience throughout the rest of this chapter we will use the index g
to refer to a given ballot Bg, and its associated voter-receipt Vg where g = αj = bj/nc.
For any j 6= j′ let αj = αj′ , βj = βj′ , γj = γj′ if bj/nc = bj′/nc.

1Note that this construction differs slightly from that of Chapter 3.
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Serial numbers β, γ shall be selected independently (without replacement) by a secure
pseudorandom number generator seeded by the election master key K. These numbers
shall be selected from range defined by p, such that correctly guessing an unknown β or γ
would occur with a small (but not cryptographically negligible) probability.

Finally, confirmation codes q will be independently selected by a pseudorandom genera-
tor such that confirmation codes are not repeated across a given ballot Bg, namely qj 6= qj′
if bj/nc = bj′/nc, for distinct j, j′.

See Figure 4.2 for an example of a list of four ballots when there are two candidates on
the ballot, and confirmation codes consist of three alphanumeric symbols.

j α β γ q
0 0000 7973 4630 7LH

1 0000 7973 4630 WT9

2 0001 2567 1490 J3K

3 0001 2567 1490 TC3

4 0002 4900 7891 9JH

5 0002 4900 7891 J3K

6 0003 1631 5275 KWK

7 0003 1631 5275 H7T
(a) Table Q

j r
0 0
1 1
2 0
3 1
4 1
5 0
6 0
7 1

(b) Table
R

j s
0 Alice

1 Bob

2 Alice

3 Bob

4 Alice

5 Bob

6 Alice

7 Bob
(c) Table S

Figure 4.2: An example of the (private) Scantegrity II master list P associating codes, candidates, and
voter-made marks. Tables Q, R, and S when there are two candidates, s0 = Alice and s1 = Bob. For
example, a vote for Alice on Ballot 0000 would reveal the confirmation code 7LH, however one for Bob

would reveal WT9. Note that, for purposes of illustration, we show one way in which the R table may be
populated based on votes cast during the election. The function GenerateBallots() however, initializes all
these values to zero. In this example, the votes cast on Ballots 0000, 0001, 0002 and 0003 were for Bob,
Bob, Alice and Bob respectively, and would reveal confirmation codes WT9, TC3, 9JH and H7T respectively.
The publicly published versions of tables Q and S will contain commitments to the information shown
above, this detail is provided in Step 6c of the setup phase in section 4.3.5. There is no information in
Table R before votes are cast, and there is no information made public about this table before the election.

4.3.4 Trusted Computation Platform

The protocol assumes the existence of a hardware device, referred to as the trusted compu-
tation platform, which the trustees use to evaluate the various functions described above.
This device relies on the following assumptions related to the preservation of ballot secrecy:

• Private and authenticated input: the ability to receive input from authenticated
trustees via a physically untappable channel,
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• Private evaluation: the ability to evaluate a function such that the intermediate
values cannot be recovered by passive or active attack of the hardware or software
components,

• Correctness: the ability to attest that the functions being evaluated are equivalent
to available and predefined source code.

Note that the correctness assumption enables the trustees to be certain that the re-
quired computations are being computed correctly, and hence increases the reliability of
the computation from the perspective of the honest trustee. It does not affect the ability
of the voter or the auditor to detect a cheating trustee.

With the failure of any of these trust assumptions, it may become possible for a ma-
licious subset of trustees to recover information related to the association between voting
intent and ballot serial number. For example, this can be accomplished by observing a
sufficient number of trustee keys, observing intermediate state, or altering the functions to
overtly or covertly leak this information.

None of these assumptions, including the correctness assumption, dictates the sound-
ness of the tally. In the event that any or all of these assumptions are subverted (or any
cryptographic assumption is found not to hold), the correctness of the final tally can still
be ascertained through the independent verification mechanism described in this section.

4.3.5 Protocol

Setup Phase. The trustees in set T generate their threshold trustee keys and initialize
the bulletin board BB using Candidate list L, security parameter p, number of ballots
to be generated b, valid trustee threshold list τ , code alphabet Σ, code length l, and a
heuristic security parameter I where {L, p, b,Σ, l, τ, I} is issued to T by an external entity
not considered herein. The voting system commits to several proof instances, with the audit
checking for consistency between them. I is the number of proof instances constructed by
the system.

Let the notationXi(j) = xi,j denote the j-th element in the i-th instance of a shuffled list
Xi. Additionally let the notation X ′i, X

′′
i and X ′′′i denote list X shuffled by the composition

of permutations (π(i,1)), (π(i,2) ◦ π(i,1)) and (π(i,3) ◦ π(i,2) ◦ π(i,1)), respectively.

Using a trusted computing platform, the trustees perform the following computations:

1. Initialize security parameters: P ← Parameters(1p),

2. Initialize bulletin board: Post {P,L, p, b,Σ, l, τ, I}, and the specification of all func-
tions to BB,
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3. Generate trustee keys: Each trustee Ti contributes entropy ωi and is issued cor-
responding trustee key ki via an untappable channel with the trusted computing
platform (k1, k2, . . . , kt)← TrusteeKeys(ω1, . . . , ωt, τ, λ).

4. Generate election key: assuming the trusted platform is stateful during this phase,
the election master key K is generated by the previous step. (Note that key K must
not leave or be leaked from the trusted platform during computation, nor should the
trusted platform be stateful between the setup, result declaration, and audit response
phases. A minimum of τ keys from {k1, k2, . . . , kt} can regenerate all the information
required for the result declaration and audit response phases.)

5. Generate ballots: the trusted platform computes
P = {Q,R,S} ← GenerateBallots(L,Σ, l,K, b), and transmits P via a private channel
to a trusted printing service which produces paper ballots with corresponding serial
numbers and confirmation codes in invisible ink. Note that initially the recorded
voter marks table R is empty.

6. Shuffle P and cryptographically commit to the shuffles:

The following mixnet-like construction shuffles the two lists Q and S and posts com-
mitments to the two shuffled lists and to the shuffles. The shuffles are constructed in
a manner that will make the tally-verification audit simple to implement, as will be
seen later. See Figure 4.3 for an illustration on the example of Figure 4.2. Note that,
in this example only, we use cyclic permutations and a swap merely in an attempt
to illustrate the mixnet-like construction in as simple a manner as possible. We do
not advocate the restriction of permutations to a set of a few permutations, but,
as mentioned below, require that each permutation be chosen in a pseudo-random
manner from the set of all possible permutations of the respective tables.

(a) Generate permutations: For each back-end, the trusted platform computes three
permutations. That is, for 0 ≤ i < I, the trusted platform computes:

• π(i,1) ← Perm(Subkey(K, {“1st”, i}), (b · n))

• π(i,2) ← Perm(Subkey(K, {“2nd”, i}), (b · n))

• π(i,3) ← Perm(Subkey(K, {“3rd”, i}), (b · n))

(b) Shuffle lists: For each back-end the trusted platform computes a single-shuffled
instance Q′i of Q and a triple-shuffled instance S′′′i of S. Note the number of
primes (′) denote the number of shuffles that have been applied to the list list.
That is, for 0 ≤ i < I and 0 ≤ j < (b · n), the trusted platform computes:

• Q′i(j)← Q(π(i,1)(j))

• S′′′i (j)← Si(π(i,3)(π(i,2)(π(i,1)(j))))
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j α β γ q
0 0000 7973 4630 WT9

1 0001 2567 1490 J3K

2 0001 2567 1490 TC3

3 0002 4900 7891 9JH

4 0002 4900 7891 J3K

5 0003 1631 5275 KWK

6 0003 1631 5275 H7T

7 0000 7973 4630 7LH

(a) Table Q′1

j s
0 Bob

1 Alice

2 Bob

3 Alice

4 Bob

5 Alice

6 Alice

7 Bob

(b) Table S′′′1

Figure 4.3: Scantegrity II Switchboard showing tables Q′ and S′′′ for the example of Figure 4.2. Q′ is
Q permuted by π(1,1), which is an upward circular shift of one unit, and S′′′ is S permuted by π(1,3) ◦
π(1,2) ◦ π(1,1), where π(1,2) corresponds to an upward circular shift of two units, and π(1,3) swaps the last
two elements in the list. Note that the confirmation numbers of Q′ can be made to match up with the
correct candidates in S′′′ if the permutation π(1,3)◦π(1,2) is applied to Q′. Note that the confirmation codes
do not appear publicly at this stage, rather cryptographic commitments to each code are posted instead.
Note also that we use simple permutations such as these merely for the purposes of illustration. For the
system to properly hide the association between codes and candidates, we require that each permutation
be chosen (pseudo-randomly) from the set of all possible permutations.

(c) Commitments: The trusted platform commits to each back-end—the shuffled
confirmation code numbers, the corresponding candidate lists, and the permu-
tation values—on an element-by-element basis. For each single-shuffled code list
Q′i(j) = {αi,j, βi,j, γi,j, qi,j}, triple-shuffled candidate list S′′′i (j) = si,j, and the
corresponding elements of permutations π(i,h)(j) the trusted platform computes
commitments as follows.

For 1 ≤ h ≤ 3, 0 ≤ i < I and 0 ≤ j < (b · n),

• ᾱi,j ← Commit(Subkey(K, {“α”, i, j}), αi,j)
• β̄i,j ← Commit(Subkey(K, {“β”, i, j}), βi,j)
• γ̄i,j ← Commit(Subkey(K, {“γ”, i, j}), γi,j)
• q̄i,j ← Commit(Subkey(K, {“q”, i, j}), qi,j)
• s̄i,j ← Commit(Subkey(K, {“s”, i, j}), si,j)
• Q̄

′
i(j)← {ᾱi,j, β̄i,j, γ̄i,j, q̄i,j}

• S̄
′′′
i (j)← s̄i,j

• π̄(i,h)(j)← Commit(Subkey(K, {“π”, h, i, j}),
π(i,h)(j))

(d) The trusted platform publishes all Q̄
′
i, S̄

′′′
i , and π̄(i,h) to BB.
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7. The trusted platform’s internal state is purged.

A diagram of the Switchboard tables and permutations is shown in Figure 4.4.

Figure 4.4: Topology of the Scantegrity II Switchboard. Master table P links serial numbers (Q) with voter
marks (R) for candidates (S). P is obfuscated by applying three independent random shuffles π(i,1), π(i,2),
and π(i,3) to each table, as shown above. I independent instances of these shuffled tables are created and
cryptographically committed to. For each instance i, one of either π(i,2) or π(i,3), can be challenged by the
public to be revealed. In this way the correctness of P can be audited without directly revealing the links
between elements in Q,R, and S.

Voting Phase. A voter V , upon being successfully authenticated by poll workers, is
given a ballot Bg = {αg, βg, γg, qgn, qgn+1 . . . , qgn+n−1, s0, s1, . . . , sn−1} consisting of a se-
rial number αg printed in an optical-scan readable “barcode” and selection/candidate list
s0, . . . , sn−1 printed in normal ink. Serial numbers βg, γg and the corresponding confirma-
tion codes qgn, qgn+1, . . . , qgn+n−1 are printed in invisible ink.

To vote, V marks the optical scan bubble beside the desired selection sd using the
decoder pen, which reveals the confirmation code qgn+d.

Upon scanning ballot Bg, the optical scanner shall produce an “electronic ballot image”
EBIg = {αg, rgn, rgn+1, . . . , rgn+n−1} where rgn+d = 1 if and only a darkened region (i.e., a
mark) was detected inside the optical scan bubble beside the d-th selection sd. All other
d̂ 6= d shall register rgn+d̂ = 0. The specific electoral system in use would dictate how many
marks (i.e., distinct d’s) are permissible on a single ballot. V can then choose to construct
a vote receipt V Rg = {βg, γg, qgn+d} for each sd marked.

Instead of voting on a particular ballot, V can select it to be “print-audited” in ac-
cordance with the procedures specified in Section 4.2. All confirmation codes are re-
vealed, and one of {βg, γg} = δg is revealed. The print-audited ballot becomes PAg =
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{δg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1}. For example, if Ballot 0001 of Figure 4.2 were
not voted but were print-audited, and β1 revealed, the print-audited ballot would be
PA0001 = {2567, J3K, TC3, Alice, Bob}. (Note that print-audited ballots cannot be voted).

Declaring Results. After the polling concludes, a valid subset of trustees (as defined
by τ) assemble to tally and declare the results. The trustees also make available data
regarding the tally processing that will be audited in the audit phase. Given the set of
all EBIs recorded during the election, the trustees proceed using the trusted platform as
follows,

1. Regenerate election master key: Each trustee Ti transmits their trustee key ki over
an untappable channel to the trusted platform. The election master key K is recon-
structed by calling ElectionKey({j1, . . . , jn}) if at least τ trustees supply correct keys
(where {j1, j2, . . . , jn} are n keys provided by n trustees).

2. Regenerate ballot list: Ballot list P is reconstructed by rerunning step 5) of the setup
phase,

3. Construct list of recorded marks: For each EBIg recorded during the election, pop-
ulate R by setting R(gn+ j) = rgn+j for 0 ≤ j < n and rgn+j ∈ EBIg. Any unused,
spoiled or print-audited ballot Bg inherently constitutes an EBIg with all rgn+j = 0.

4. Post voted codes: During the dispute resolution period (described in Section 4.2) all
voted codes shall be published. For all R(gn+ d) = 1 post {βgn+d, γgn+d, qgn+d} and
corresponding commitment keys.

5. Post results: Using P tabulate the election results and post them to BB,

6. Post double-shuffled marks list for audit purposes:

(a) Regenerate permutations: For 0 ≤ i < I and 0 ≤ j < (b ·n) the trusted platform
recomputes permutations:

• π(i,1) ← Perm(Subkey(K, {“1st”, i}), (n · b))
• π(i,2) ← Perm(Subkey(K, {“2nd”, i}), (n · b))

(b) Shuffle Lists: For 0 ≤ i < I and 0 ≤ j < (b · n) the trusted platform computes
I independent double-shuffled instances R′′i of Ri

• R′′i (j)← R(π(i,2)(π(i,1)(j)))

(c) The trusted platform publishes all R′′i to BB and purges its internal state.
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α β γ q
0000 7973 4630 WT9

0001 2567 1490 TC3

0002 4900 7891 9JH

0003 1631 5275 H7T
(a) Revealed values of Table Q

j r
0 1
1 1
2 0
3 0
4 1
5 0
6 1
7 0

(b) Table
R′′1

Figure 4.5: Example Switchboard Tables (Post-election). The revealed confirmation numbers, (entries in
Q) and revealed table R′′1 , which is a shuffled version of R, using the permutation π(1,2) ◦ π(1,1), where
π(1,1) is an upward circular shift of one unit, and π(1,2) corresponds to an upward circular shift of two
units. The tally will be “3 votes for Alice and one vote for Bob”. The permutations used are secret.
Note that, if R′′1 is permuted by π(1,3), the votes will be listed wrt candidate list S′′′ of Figure 4.3. If list
Q′i of the same figure is permuted by π(1,2), the confirmation codes will be listed as corresponding to the
choices of R′′1 above. Note also that we use simple permutations for the purposes of illustration. For the
system itself, we advocate that each permutation be chosen pseudo-randomly from the set of all possible
permutations, without restricting this set to the set of simple permutations such as cyclic permutations or
swaps.
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See Figure 4.5 for an illustration using the example of Figures 4.2 and 4.3.

Note that, at this stage, the list R′′i is such that, if permuted by π(i,3), the votes will be
listed as obtained for the candidate list S′′′i . Further, if list Q′i is permuted by π(i,2), the
confirmation codes will be listed in the order of the votes R′′i .

Audit Challenge and Response. In order to ensure robust, correct behavior by the
trustees and in turn, the correctness of the election outcome, two audits are carried out.
We first describe the tally computation audit. For each back-end committed to by the
trustee, a coin flip determines whether the trustees will demonstrate that the ballot marks
of the corresponding public table R′′i correspond correctly to (a) the announced tally or (b)
the public confirmation codes for voted ballots. This is done by opening the commitments
to the permutation π(i,3)(j) ∀ j or to the permutation π(i,2)(j) ∀ j respectively. Second,
we describe the print audit. For values of j, in the original ballot list Q, corresponding
to print-audited ballots, permutation values π(i,2)(j) and π(i,3)(j) are opened ∀i. We now
describe these audits in more detail.

1. Public challenge of trustees: some time after the trustees have completed declaring
the results and posting the shuffled marks lists, each instance of Q′i,R

′′
i ,S

′′′
i is chal-

lenged to be partially revealed for the purposes of auditing. A fair public coin C is
tossed I times providing a series of audit challenges C ∈ {0, 1}I , which are posted to
BB.

2. For the tally computation audit. For 0 ≤ i < I and 0 ≤ j < (b · n) the trusted
platform performs the following actions:

(a) If C(i) = 0, regenerate and publish the confirmation codes Q′i and the association
between Q′i and R′′i . That is, regenerate and publish the following:

• The second permutation π(i,2)

• The commitment subkeys of π(i,2) : κπ(i,2)(j)← Subkey(K, {“π”, 2, i, j}) ∀j
• The commitment subkeys to all elements of Q′i : κxi,j ← Subkey(K, {“x”, i, j})

where x = {α, β, γ, q} ∀j
(b) If C(i) = 1, regenerate and publish the permuted candidate list S′′′i , as well

as the association between R′′i and S′′′i . That is, regenerate and publish the
following:

• The third permutation π(i,3)

• The commitment subkeys of π(i,3) : κπ(i,3)(j)← Subkey(K, {“π”, 3, i, j}) ∀j
• The commitment subkeys to S′′′i : κsi,j ← Subkey(K, {“s”, i, j}) ∀j
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3. For the ballot audit, compute all permutation elements and commitment keys not
computed in tally audit and required for the purposes of demonstrating the entire
path of the ballot through the mixnet-like construction. That is, the trusted com-
puting platform does the following for 0 ≤ i < I

(a) If C(i) = 0 :

• Regenerate π(i,3) (do not publish it)

• For each ballot PAg = {δg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1} that is
print-audited:

i. Search for all elements in Q′i such that the second component is δg.
If there is no such element, search for all elements in Q′i such that the
third component is δg. That is, find all j′ such that Q′i(j

′) = {∗, δg, ∗, ∗},
failing which, find all j′ such that Q′i(j

′) = {∗, ∗, δg, ∗}. For all such j′:

– Compute j′′′ ← π(i, 3)(j′′) where j′′ ← π(i, 2)(j′) has already been
computed in the tally computation audit,

– Publish π(i, 3)(j′′). Compute and publish the subkey used to commit
to π(i,3)(j

′′): κπ(i,3)(j
′′)← Subkey(K, {“π”, 3, i, j′′}),

– Publish S′′′i (j′′′). Compute and publish the commitment subkey for
this value: κsi,j′′′ ← Subkey(K, {“s”, i, j′′′}).

(b) If C(i) = 1:

• Regenerate π(i,2) (do not publish it)

• For each ballot PAg = {δg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1} that is
print-audited:

i. Search for all elements in Q′i such that the second component is δg.
If there is no such element, search for all elements in Q′i such that the
third component is δg. That is, find all j′ such that Q′i(j

′) = {∗, δg, ∗, ∗},
failing which, find all j′ such that Q′i(j

′) = {∗, ∗, δg, ∗}. For all such j′:

– Compute j′′ ← π(i, 2)(j′). Note that j′′′ ← π(i, 3)(j′′) has already
been computed in the tally computation audit,

– Publish π(i,2)(j
′). Compute and publish the subkey used to commit

to π(i,2)(j
′): κπ(i,2)(j

′)← Subkey(K, {“π”, 2, i, j′}),
– Publish Q′i(j

′). Compute and publish the commitment subkey for
this value: κxi,j′ ← Subkey(K, {“x”, i, j′}) where x = {αg, βg, γg, q}.

4.3.6 Correctness Proofs

We summarize the proofs of correctness that verifying agents A can perform and explicitly
state conditions under which the proof completes successfully. Note that in general the
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best practice response to proofs that do not complete successfully (i.e., fail) is an open
policy question, and not considered here. Specifically in case of voter receipts however, a
failed receipt check has a dispute resolution process described in section 4.2.3.

Note that, for the print audit and tally check correctness proofs, A will verify commit-
ments. In particular, A will confirm that all commitment keys that were challenged as a
result of the challenge coin-tosses and the print-audit were responded to (i.e., published on
BB) during steps 2 and 3 in the previous section. For all commitment keys κx to message
x posted to BB during the audit, A searches BB for the corresponding message x and com-
mitment value x̄, and tests whether Decommit(κx, x, x̄) outputs 1 (valid). This verification
step is successful if and only if all of A’s executions of Decommit() output 1.

Receipt Check. For all challenges C(i) = 0 and 0 ≤ j < (b · n), A locates permutations
π(i,2), code lists Q′i and recorded mark lists R′′i on BB. A reconstructs the assertion of
the voting system, that Q′i(j) is marked or not marked as indicated by the mark value
R′′i (π(i,2)(j)).

This verification step successfully verifies voter-receipt V Rg = {βg, γg, qgn+d} if and
only if A is able to conclude that all reconstructed assertions agree with V Rg. Specifically
for 0 ≤ i < I, V Rg is said to agree with the assertions if {βg, γg, qgn+d} exists at position j
in Q′i, if R′′i (π(i,2)(j)) = 1, and if all other occurrences of βg and γg (that is, all n− 1 other

values of tuples {βg, γg, qgn+d̂} found at positions Q′i(ĵ) correspondingly show recorded

mark R′′i (π(i,2)(ĵ)) = 0.

Print Audit. A reconstructs assertions of the code-candidate associations of each print-
audited ballot. For all i, 0 ≤ i ≤ I, and for each print-audited ballot
PAg = {δg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1} :

1. A searches for all elements in Q′i such that the second component is δg. If there is
no such element, A searches for all elements in Q′i such that the third component is
δg. That is, A finds all j′ such that Q′i(j

′) = {∗, δg, ∗, ∗}, failing which, A finds all j′

such that Q′i(j
′) = {∗, ∗, δg, ∗}. For all such j′:

• A locates permutation element π(i,2)(j
′), computes j′′ ← π(i,2)(j

′), locates per-
mutation element π(i,3)(j

′′), computes j′′′ ← π(i,3)(j
′′),

• A locates R′′i (j
′′) and S′′′i (j′′′),

• The assertion is that Q′i(j
′) is the confirmation number corresponding to the

candidate S′′′i (j′′′) and that the unique ballot with one serial number δg has not
been voted.
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2. This verification step successfully verifies the print-audited ballot if it agrees with
the assertions. That is, if A is able to obtain n values of j′ and conclude that, ∀j′:

• The corresponding commitments were opened correctly,

• {δg, qgn+ι} ∈ Q′i(j
′) for some ι such that 0 ≤ ι ≤ n− 1 and that each value of ι

corresponds to exactly one value of j′,

• R′′i (j
′′) = 0,

• S′′′i (j′′′) = sι.

Tally Check.

1. A will check that the corresponding commitments were opened correctly.

2. A will verify BB self-consistency:

(a) For all C(i) = 0, A performs the receipt check as described above. This ver-
ification step successfully verifies BB self-consistency if all receipts verified by
voters verify correctly.

(b) For all C(i) = 1, A locates π(i,3), R′′i and S′′′i on BB. For all j, A reconstructs the
assertion of recorded mark R′′i (j) made for candidate S′′′i (π(i,3)(j)), and computes
the election outcome by tallying each of these assertions. He checks the declared
tally against the computed tally. This verification step successfully verifies BB
self-consistency if the two tallies are identical.

4.4 Security Analysis

In the previous section, we described the verification proofs for receipt checks, the tally
check, and print-audited ballots. In this section, we both quantify the effectiveness of
the verification and consider the security of the Scantegrity II to additional attacks, most
involving a procedural element not easily captured by a cryptographic description. Thus,
the goal of this analysis is to sketch the security heuristics underlying the design, and not
to rigorously prove security properties in a formal cryptographic model.

We consider three categories of attacks. The first category are manipulation attacks, in
which the goal of the attacker is to manipulate the final tally so that the election’s outcome
is more favorable to the attacker’s preferred candidate(s). The second are identification
attacks, where the goal of the attacker is to form a link between voting intent and ballot
receipts. The final category are disruption attacks, in which the attacker wishes to prevent
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the completion or certification of the election. Since, in general, disruption attacks are
applicable in any voting system, and difficult to prevent, we will only consider a special-
case of disruption involving the prevention of certification of any tally in the event the
attacker feels the results may be unfavorable.

In order to best frame this discussion we note that, as an enhancement to optical scan,
Scantegrity II is inherently constrained by our design goal of non-interference with the
underlying optical scan processes. For this reason, Scantegrity II is designed to be a strict
improvement over optical scan systems with manual recounts. However, components which
cannot be secured without intervening in the underlying processes of optical scan are not
pursued.

4.4.1 Assumptions

The level of security of Scantegrity II depends on the nature of the attack. Critical compo-
nents offer probabilistic security that is invariant to the adversary’s computational power,
while other components premise their security on one or more assumptions, both procedu-
ral and cryptographic in nature. The security setting of our analysis includes the following
assumptions,

1. The existence of a trusted computing platform for use by election officials (contra
identification attacks),

2. The set of collusive officials in the election authority does not satisfy the threshold
requirement for recovery of the master key (identification and disruption),

3. Chain-of-custody over the printed ballots prior to voting day (identification),

4. The inability of voters and others to read codes printed in invisible ink (manipulation,
identification),

5. Proper balancing of the pollbook (manipulation),

6. The intractability of obtaining information about a message given only its crypto-
graphic commitment (identification), and

7. The intractability of opening a cryptographic commitment of a message differing
from that message initially committed to (manipulation).

In our view, most of these assumptions are reasonable and standard in the literature.
The trusted platform is a scaled-down computing device, with no external memory, running
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software attested by the trustees that performs the cryptographic operations. To avoid
collusion among trustees, they could be selected from competing political parties. Using
a threshold scheme allows the election to proceed even if a group of trustees is unable, or
refuses, to supply their key share. Prior to the election, printed ballots must be protected
against an adversary revealing codes and reprinting substitute ballots. Assumption 4 is
unique to our approach and we provide justification for it in Section 4.5. “Balancing the
pollbook” refers to the assumption that the sum of the number of voted, tallied and spoiled
ballots is equal to the number of cast ballots, which is not larger than the number of voters.
Assumptions 6 and 7 are referred to as the hiding and binding properties of commitments
respectively in the previous section.

4.4.2 Manipulation Attacks

Printing. An adversary may misprint ballot Bg, so that the code qgn+d̂ associated with
candidate sd̂ in the master list P is printed beside a different candidate sd (or all candidates)
on the same ballot. If the adversary then modifies any EBIg associated with such a
misprinted ballot such that rgn+d̂ = 1 and rgn+d = 0, the system will count the vote for sd̂
and report qgn+d as the confirmation code, which is consistent with what appears on the
ballot.

The print audit mechanism, described in Section 4.3, is designed to make such an attack
detectable by revealing discrepancies between printed ballots and Q′i, using commitments
Q̄′i under assumption 7. If the number of ballots chosen to be print-audited is 0 ≤ ba ≤ b
where b is the number of ballots in the election overall, the probability of detecting at least
1 of 1 ≤ bf ≤ b misprinted ballots is,

Pr[detection] = 1−
(
b−bf
ba

)(
b
ba

)
=

(b− bf )!(b− ba)!
b!(b− bf − ba)!

(4.1)

Voting. One line of manipulation attack can exist in systems that are not diligent in
spoiling ballots [KRMC07, Ben07]. If an attacker has a line of communication with the
voter, the voter can be instructed to mark her ballot and wait for further instruction.
The attacker then communicates to the voter to either spoil the ballot or cast it. If the
spoiled ballot is not protected or destroyed, the attacker may consult it to see how the
voter would have voted had the attacker instructed the voter to cast the ballot. The line
of communication can be eliminated by using random material on the ballots to determine
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the instruction, in a way analogous to the approach of making interactive protocols non-
interactive. Scantegrity II avoids this line of attack by having spoiled ballots shredded in
front of the voter, without the poll worker seeing the contents of the ballot.

A second line of manipulation attack can exploit the presence of undervoted ballots. An
attacker may add additional marks to a contest left empty by the voter during a recount or
appropriately modify the digital records.2 This attack is not introduced by Scantegrity II
and exists in any optical scan voting system. One method of prevention is to require each
voter to mark a “none of the above” selection when denoting an undervote. Similarly, an
attacker might try to prevent a correctly-cast ballot from being tallied by overvoting it;
this attack is prevented by not allowing any overvoted ballots to be cast.

Auditing. Consider a manipulation attack based on swapping voter-made marks in R′′i
from one candidate to the attacker’s preferred candidate. To prevent this attack, with
probability 1

2
, each back-end will be challenged to open the correspondence between the

lists R′′i and Q′i, and any modified mark states for these instances will be incongruent with
the voter receipts. The attacker may gamble, only modifying marks in roughly half of the
back-end instances in the hope that exactly these will have challenge C(i) = 1 and thus
that, instead, that the correspondence between the lists R′′i and S′′′i is instead revealed in
the modified instances i. The probability of doing so is 2−I . However if a different subset is
revealed, the tallies across the subsets will differ and the attack is detectable. Alternatively,
the attacker might modify R′′i for all instances 1 ≤ i ≤ I, which guarantees self-consistent
tallies but also guarantees the attack is detectable by the receipt check protocol. At first
glance this may seem to be an irrational strategy until one considers the possibility of only
a small subset of voters actually checking their receipts. With I instances, br ≤ b ballots
actually cast, bc ballot receipts checked, and bm modifications to each R′′i , the probability
of detection is (br − bm)!(br − bc)!/br!(br − bm − bc)!. The adversary will choose the least
detectable of the two strategies, thus,

Pr[det.] = min(1− 1

2I
, 1− (br − bm)!(br − bc)!

br!(br − bm − bc)!
). (4.2)

By estimating bc and bounding bm as half of the smallest margin of victory we can certify
an election for, we can use this equation to determine a suitable I for our implementation
such that the first term exceeds the estimated value of the second. In most instances,
I = 10 is suitable.

2Although this issue was previously known to the authors, we acknowledge David Wagner for raising
it in private correspondence.
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A second approach to manipulating the tally is to change the final state of the ballots.
Ballots can have one of three states: voted, print-audited, or spoiled. Under assumption
5, we assume that modifications must preserve the number of ballots in each state. If
a voted ballot is maliciously modified to be spoiled, a spoiled ballot must be converted
into a voted ballot. To prevent these transitions, the voter retains positive evidence of
ballots being in a voted state: knowledge of both serial numbers, {βg, γg}. Alternatively,
for a print-audited ballot, the voter retains positive evidence a ballot was print-audited via
knowledge of all the confirmation codes on the ballot, {qgn, qgn+1 . . . qgn+n−1} but only one
of {βg, γg}. Both pieces of information would be unknown to the voter if the ballot were
in any other state when the voter left the polling place.

In the case of spoiled ballots, the voter does not retain anything. However, if a spoiled
ballot is maliciously converted into a voted ballot, a voted ballot will need to be spoiled,
and the corresponding voter can prove malfeasance through knowledge of both chit serial
numbers. Of course and adversary could attempt to choose a voter who appears unlikely
to check his or her receipt, and is a practical limitation of our approach.

The transition from a spoiled to print-audited state is important for different reasons.
This transition does not change the tally directly, however it is indirectly useful in facili-
tating the first manipulation attack presented in Section 4.4.2. By misreporting a spoiled
ballot as print-audited, the confirmation codes on the ballot would be released during the
verification process allowing a coercer to see if the ballot matched the conditions of the
contract for spoiling the ballot. Under assumption 5, this attack will be detectable as it
requires a print-audited ballot to be made into a spoiled ballot. To prevent this attack, the
trustees could first publish a list of ostensibly spoiled ballots prior to releasing the print
audit confirmation codes. If an auditor discovers her print-audited ballot is in the wrong
state, the discrepancy can be caught prior to releasing the codes.

4.4.3 Identification Attacks

Initialization. The earliest opportunity for identification occurs during the election ini-
tialization process. Successfully changing or introducing faults into the initialization pro-
tocol could generate a permutation of P or subsequent lists that is known to the attacker.
This is not possible if the protocol is run on a trusted computing platform and assumption
1 holds. Without direct interference with the protocol, the attacker may provide struc-
tured data instead of randomness in the protocol. However under assumption 2 and the
construction of the threshold key generation scheme, any amount less than the minimum
threshold of shares leaks negligible information for the purposes of determining the key.

Printing. After the ballots are printed, a number of identification attacks may be con-
ducted including the addition of revealing marks on the ballots or revealing the codes on
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the ballots, recording these codes, and reprinting the ballots with unrevealed ink. The
prevention of these attacks is based on assumption 3.

Auditing. After the election has concluded, the data generated and published for voter-
verification of the tally must meet the requisite ballot secrecy. Given no information other
than the tally, a certain level of information can be obtained about which candidate a voter
selected. The tally provides a probability distribution for the possible selections and may
even exclude selections, based, for example, on a candidate receiving zero votes. This level
of information is often legally required and thus acceptable. If the attacker is provided, in
addition, with the information on each voter’s receipt, further information is revealed: how
many marks the voter made and the codes associated with these marks. Our assertion of
ballot secrecy is that no additional information is leaked about the association between a
mark and code on a receipt and any element in the set of selections in the tally.

Opening only one of the commitments to either (a) the correspondence between con-
firmation codes Q′i and voter marks R′′i or (b) the correspondence between voter marks
R′′i and candidates S′′′i reveals no information about permutations π(i,3) or π(i,2) respec-
tively. Hence the association between Q and S is always hidden by one cryptographic
permutation. The commitment to the permutation key, if binding, uniquely identifies the
permutation however reversing the commitment is assumed intractable by assumption 6.

4.4.4 Disruption Attacks

In general, disruption attacks are easy to detect but difficult to prevent. Many of the
manipulation attacks could be reconstructed as disruption attacks, and the same mecha-
nisms would detect them. However, as stated, we limit our consideration to disruption for
the purpose of preventing the certification of an undesired tally (or an expected undesired
tally, if the information is based on exit polls for example).

Initialization. During the initialization phase, each trustee in the election authority
supplies entropy to seed the random number generator used to generate all the permuta-
tion keys and commitment secrets needed in the election. Instead of maintaining state,
since the state information would need to remain private, when the tally and audit chal-
lenge/response phases are entered, the trustees re-enter their key shares to recreate all the
necessary data. To prevent a malicious trustee from withholding their entropy or supplying
the wrong entropy, we use a threshold key generation scheme (optionally with robustness
to a finite number of errors). Under assumption 2, a suitable threshold will allow the
reconstruction of the data despite malicious trustees.
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Auditing. During the auditing phase, an attacker may file a spurious dispute about the
results of a receipt-check. Since the election authority has committed to the confirmation
codes that appeared on the ballot, it can rule out any claimed codes that did appear on the
ballot. Thus, filing a spurious but plausible dispute reduces to randomly guessing another
code on the ballot. The election authority can quantify the probability of this and create
an appropriate statistical trigger that predicts actual receipt-check problems. Let n be
the number of candidates on a candidate list L for a particular race and let Σl be the
cardinality of the set of unique confirmation codes. The probability of guessing a plausible
code on a voted ballot is p = (n− 1)/(Σl− 1). If D disputes are filed and G are considered
plausible, the expected value of G if disputes are fabricated is µ = D ·p. We set the trigger
value τν such that the probability of obtaining at least τν plausible discrepancies if all
filed disputes are random guesses is less than some acceptably small amount (e.g., > 1%).
We can use the following bound on the right tail of the binomial distribution [CLRS00].
For any r > µ, Pr[G− µ ≥ r] ≤ (µe/r)r.

For example, for 5 candidates, 8000 possible codes, and 1000 disputes filed, assuming
no scanning error, p = 4/7999 = 0.0005 and µ = 1000 · 0.0005 = 0.5. Using r = 4.5 we get
Pr[G ≥ 5] ≤ (0.5e/4.5)4.5 = 0.0046 < 0.01, so we can set τν = 5. If at least 5 out of the
1000 disputes filed are plausible discrepancies, then an investigation should be instigated.
To allow for up to some acceptable rate s of scanning error, we can incorporate s into the
probability p of guessing a correct code and compute the statistical trigger as above with
the new value of p.

4.5 Invisible Ink

Recalling our description of invisible ink from Section 2.1.6 we define a matrix of pixels
for the purposes of printing the confirmation codes inside the optical scan bubbles. Pixels
that form the “foreground” confirmation code characters are printed in one ink, while
the remaining “background” pixels are printed in the other ink. In order to produce the
darkest average color density of a marked optical scan bubble (and therefore most visible to
the scanner), the background pixels are printed with the invisible ink, and the foreground
pixels are printed in the non-reactive dummy ink (or slower-reacting ink if the application
warrants disappearing codes).

The developer ink is incorporated into a “decoder pen”, a felt-tipped highlighter style
marker along with a basic yellow pigment to provide voters with visual feedback as to
where they have marked. A photograph of the decoder pen activating the invisible ink in
an optical scan oval is shown in Figure 4.6.

We implemented the invisible ink printing process using an Epson C88+ color inkjet
printer in which we replace the manufacturer-supplied yellow and magenta inks with the
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Figure 4.6: Decoder Pen Activating Invisible Ink.

reactive and non-reactive inks respectively. Electronic files used for ballot printing are
prepared in this false-color mapping whereby yellow and magenta colored regions in the
digital file will print in reactive and non-reactive inks respectively. The invisible ink printing
process is depicted in Figure 4.7.

4.5.1 Invisible Ink Threat Model

Threats to Scantegrity II that take advantage of the limitations of the invisible ink are
those in which an adversary is able to:

1. Distinguish between confirmation codes and their backgrounds. The ability to dis-
tinguish would allow:

(a) voters to falsely claim election fraud,

(b) anyone with access to ballots to violate ballot secrecy by connecting confirmation
codes to selections,

2. Distinguish between chit serial numbers and backgrounds. The ability to distinguish
would allow:

(a) voters to claim that an uncast ballot was cast,
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Figure 4.7: Invisible Ink Printing Process.

(b) anyone with access to uncast ballots to connect chit serial numbers and confir-
mation codes with voter selections (in combination with (1)),

3. Distinguish between the two-dimensional barcode and background. The ability to dis-
tinguish would allow anyone with access to marked ballots to connect two-dimensional
bar-codes with voter selections.

4.5.2 Invisible Ink Assumptions

The main security assumption about the inks is that the slow and fast reacting inks used
for printing confirmation codes and oval backgrounds respectively are not distinguishable
before, and sufficiently after, they have been marked with the ballot-marking pen (“suffi-
ciently after” is taken to mean that the time period is long enough to allow the slow-reacting
ink to react). We make a similar assumption about the indistinguishability of the chit serial
numbers and the two-dimensional barcode from their background.

Note also that the assumptions we make are about physical properties of chemicals, and
the detectability of differences. Clearly, most chemicals (if not all) can be distinguished
from one another through a sufficiently sophisticated test; our arguments are that, for all
practical purposes, our assumption holds, and we describe here our efforts to make it more
difficult to distinguish among the inks, particularly by the naked or microscopically-aided
human eye.
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Finally, the ability to distinguish enables voters to make false charges of election fraud,
and anyone to connect information about ballot choices with confirmation codes and serial
numbers. If voters are assumed to not have access to ballots outside the polling booths,
or to specialized equipment (including the decoding pen) inside the booth, the indistin-
guishability assumption is only required to hold with respect to the human eye in order to
prevent false charges of election fraud.

4.5.3 Procedures For Printing With the Inks

In this section we describe ways in which the indistinguishability assumptions may be
defeated, and our efforts to preserve indistinguishability. Note that the inks proposed for
printing on ballots can be used in regular ink-jet printers.

To prevent the soaking of paper. Any type of ink used by inkjet printers soaks into
the paper. Even if the ink used to print the codes would be completely invisible, the soaked
paper would allow the codes to be easily read. To avoid this, we use two types of ink: a
reacting ink used to print the background of the oval and a slow-reactive ink used to print
the confirmation codes. Both inks have the same color (a light yellow) if printed on the
same piece of paper. The reacting ink turns black immediately when it interacts with the
ink of the marking pen, while the ink used for the codes undergoes the same reaction at
a slower pace. Thus, the immediate result is a yellow confirmation code inside a black
oval—the highest contrast color combination. After several minutes, the slow reacting ink
will have reacted leaving the oval completely black.

To avoid the overlapping of inks. We divide an optical-scan oval in small square
pixels. Each pixel is entirely printed with either reactive or slow-reactive ink, but never
with a combination of them. A small constant-sized gap is left between any two adjacent
pixels, such that when two adjacent tiles are printed with different inks, the two inks never
overlap even if they diffuse outward as they absorb into the paper. Without such a gap, a
border of overlapping types of ink could emerge, under a microsocope, for example, making
the border easier to detect. Additionally, we ensure that the position of the code in the
oval is not fixed; the codes can be shifted left or right.

The addition of camouflaging fluorescence. The use of special types of radiation
can expose invisible inks. Our initial experiments printing with invisible ink demonstrated
that the confirmation codes became visible under fluorescent/UV light.

To safeguard the codes against passive attacks, we developed a UV camouflaging process
using a UV-reactive “masking ink” that is colorless under normal lighting conditions but
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Figure 4.8: UV-Reactive Invisible Ink Camouflaging.

has high fluorescence/reactivity under UV light. After the invisible/dummy inks have been
applied, independent random amounts of masking ink is applied to each pixel of the oval.
This is designed to mask the eventual difference in fluorescence between the reactive ink
and slow reactive ink used for the codes, as well as a cover to prevent lifting particles from
the paper with tape. A photograph depicting camouflaged invisible ink optical-scan ovals
under UV light is shown in Figure 4.8.

Ballot-marking pens. The ballot-marking/“decoder” pens that we use to mark the
ovals have a tip that is wider than the height of the oval. A voter can mark the entire oval
using a single strike of the pen which is faster than penciling in the mark. Even if the voter
pens in more than the oval, the result is a clean, perfectly filled oval. The use of invisible
ink also deters stray dark marks that can confuse scanners, although the light yellow hue
of the ink could still be visible. The portion of the chit reserved for the voter to record the
confirmation codes can also have a solid layer of the same reacting ink, so that the voter
may record the codes with the same pen.

4.6 Concluding Remarks

Like its predecessor Scantegrity, Scantegrity II provides voters with a familiar optical scan
voting experience and an opt-in receipt creation procedure. Since receipt creation is un-
supervised, disputes can occasionally arise between voters and election officials over which
confirmation code correctly reflected what the voter saw in the booth. As a main con-
tribution of this chapter, Scantegrity II introduced an informational dispute resolution
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procedure that improves upon that of its predecessor by eliminating the requirements that
the voter appear in-person, bearing the original receipt chit, and the associated physical/-
forensic requirements of authenticating it against the original cast ballot. In Scantegrity
II, knowledge of the correct confirmation code suffices to resolve the dispute (in either
direction), allowing the process to be automated and even conducted remotely.

Up until this point in our research, however, there were many unanswered questions of
a practical nature: would voters be confused by the role of the invisible ink? How many
would create and check their receipt? Would we be able to print Scantegrity II ballots
en masse? Put simply: how would the system perform in reality? We will tackle these
questions in the following chapter.
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Chapter 5

Scantegrity in Practice at Takoma
Park, MD

Cryptographic voting is definitely not
ready for prime time.

David Dill [Dil07]

There are cryptographic techniques ...
but those are not ready for prime time
in my opinion.

Avi Rubin [Wei08]

This chapter is adapted from published work co-authored with David Chaum et al. [CCC+10].

5.1 Introductory Remarks

In this chapter we present a case study of Scantegrity II’s use in the 2009 municipal election
of Takoma Park, Maryland, beginning in February 2008 when the Scantegrity research team
was approached by Takoma Park officials, to the final cryptographic audit in December
2009.
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Despite several limitations of the implementation, we found that the amount of extra
work needed by officials to use Scantegrity II while administering an election is acceptable
given the promise of improved voter satisfaction and indisputability of the outcome.

Another observation from the election is that the election officials and voters surveyed
seemed to appreciate the system. Since voters who do not wish to verify can simply proceed
as usual, ignoring the codes revealed in the filled ovals, the system is least intrusive for
these voters. Those voters who did check their codes, and even many who did not, seem
to appreciate the opportunity.

We describe the process of developing Scantegrity II to handle the Takoma Park election
specifications, which includes the original agreement with the city, printing the special
ballots with invisible-ink confirmation codes, actually running the election, and verifying
that the election outcome was correct. Throughout this chapter we interchangeably use the
term “Scantegrity” either to refer to the Scantegrity II voting system, or the Scantegrity
research team, which should be clear in context.

Contributions. The contributions of this chapter are summarized as follows:

• A case study of the first governmental election to use a paper-based cryptographically
verifiable election system (with Scantegrity II),

– The adaption of the basic Scantegrity II ballot and protocol to a Instant-runoff
Vote (IRV) style election,

– A full-scale implementation,

– Results of an exit survey of voter impressions.

5.2 The Setting

For several reasons, the implementation of voting systems is a difficult task. Most voting
system users—i.e., the voters—are untrained and elections happen infrequently. Voter
privacy requirements preclude the usual sorts of feedback and auditing methods common
in other applications, such as banking. Also, government regulations and pre-existing
norms in the conduct of elections are difficult to change. These issues can pose significant
challenges when deploying new voting systems, and it is therefore useful to understand the
setting in which the election took place.
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5.2.1 About Takoma Park

The city of Takoma Park is located in Montogomery County, Maryland, shares a city line
with Washington, D.C, and is governed by a mayor and a six-member City Council. The
city has about 17,000 residents1 and almost 11,000 registered voters. A seven-member
Board of Elections conducts local elections in collaboration with the City Clerk. In the
past, the city has used hand counts and optical scan voting, as well as DREs for state
elections.

The Montgomery County US Census Update Data of 2005 provides some demographic
information about the city. Median household income in 2004 was $48,675. The percentage
of households with computers was 87.4%, and about 32% of Takoma Park residents above
the age of twenty-five had a graduate, professional or doctoral degree. It is an ethnically
diverse city: 45.8% of its residents identify their race as “White,” 36.3% as “Black,” 9.7%
as “Asian or Pacific Islander” and 8.2% as “Other” (individuals of Hispanic origin form the
major component of this category). Further, 44.4% of its households have a foreign-born
head of household or spouse, and 44.8% of residents above the age of five spoke a language
other than English at home.

Instant Runoff Voting (IRV). Takoma Park has used IRV in municipal city elections
since 2006. IRV is a ranked choice system where each voter assigns each candidate a
rank according to her preferences. The rules2 used by Takoma Park (and the Scantegrity
software) for counting IRV ballots are relatively standard.3

5.2.2 Agreement with the City

As with any municipal government in the US, Takoma Park is allowed to choose its own
voting system for city elections. For county, state, and federal elections, it is constrained
by county, state, and federal election laws.

Takoma Park and the Scantegrity Voting System Team (SVST) signed a Memorandum
of Understanding (MOU), in which the SVST agreed to provide equipment, software,
training assistance, and technical support. The City of Takoma Park agreed to provide
election-related information on the municipality, election workers, consumable materials,
and perform or provide all other election duties or materials not provided by us. No goods
or funds were exchanged.

1See http://www.takomaparkmd.gov/about.html.
2For the exact laws used by Takoma Park, see page 22 of http://www.takomaparkmd.gov/code/pdf/

charter.pdf. Section (f), concerning eliminating multiple candidates, was used in our implementation
for tie-breaking only.

3See e.g., http://en.wikipedia.org/wiki/Instant_Runoff_Voting
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Figure 5.1: Timeline of 2009 Takoma Park Election. Each box represents an event, and the numbers next
to each box are the day(s) the event took place during the indicated month.

According to the MOU, if approved by the city council, the election was to be conducted
in compliance with all applicable laws and policies of the city. This included using Instant
Runoff Voting as defined by the City of Takoma Park Municipal Charter.

The SVST also agreed to pursue an accessible ballot-marking device for the election,
but was later relieved of satisfying this requirement. Unfortunately, Scantegrity is not yet
fitted with a voter interface for those with visual or motor disabilities, and accessible user
interfaces were also not used in Takoma Park’s previous optical scan elections.

5.2.3 Timeline

Scantegrity was approached by the Takoma Park Board of Elections in late February 2008,
and, after considering other voting systems, the Board voted to recommend a contract
with Scantegrity in June 2008. Following a public presentation to the City Council in July
2008, the MOU was signed in late November 2008, about nine months after the initial
contact. As part of the Scantegrity agreement with Takoma Park, both parties would run
a “mock election” in partnership as a feasibility test to ascertain the system’s readiness
and to make any necessary changes or improvements for the actual election.

The SVST held an open workshop in February 2009 to plan and discuss the mock and
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actual elections. This workshop was held at the Takoma Park Community Center and was
attended by Board of Election members, the City Clerk, current members (and a retired
member) from the Montgomery County Board of Elections, as well as a representative each
from the Pew Trust and FairVote.

The mock election was held April 2009 during Takoma Park’s annual Arbor Day in
which local residents cast ballots for their favorite tree. The BoE requested a number of
revisions and tweaks be made to the Scantegrity system as a result of the mock election,
including: ballot revisions (no detachable chit,4 but instead a separate voter verification
card), pen revisions (two-ended, with different sized tips), scanner station revisions (better
voter flow, no monitor, two scanners), privacy sleeve (no lock, no clipboard, folding design,
feeds directly into scanner), and confirmation codes (three decimal digits). We also took
the opportunity to conduct a user study of Scantegrity during the mock election [SCC+10],
the results of which are outside the scope of this work.

Following the mock election, the SVST proposed a redesigned system taking into consid-
eration feedback from voters and poll workers (through surveys) and the Board of Elections.
The Board voted to recommend use of the redesigned system in July 2009; this was made
official in the city election ordinance in September 2009.5 Beginning around June 2009, a
meeting with representatives of the SVST was on the agenda of most monthly Board of
Election meetings. Additionally, SVST members met many times with the City Clerk and
the Chair of the Board of Elections to plan for the election.

The final list of candidates was available approximately a month before the election, on
October 2. The Scantegrity meetings initializing the data and ballots were held in October
(see Section 5.5), as was a final workshop to test the system. Absentee ballots were sent out
by the City Clerk in the middle of October. The SVST delivered ballots to the City Clerk
in late October, and early voting began almost a week before the election, on October 28.
Poll worker training sessions were held by the city on October 28 and 31, and polling on
November 3, 2009, from 7 am to 8 pm. The final Scantegrity audits were completed on 17
December 2010; all auditors were of the opinion that the election outcomes were correct
(for details see section 5.5).

5.3 Scantegrity Overview

This section describes some of the real-world particulars of Scantegrity at Takoma Park.

4Unlike Scantegrity, the information dispute resolution procedure of Scantegrity II does not require a
physical connection between ballot and receipt.

5See http://www.takomaparkmd.gov/clerk/agenda/items/2009/090809-3.pdf, section 2-D, page 2.
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The Ballot. The Scantegrity ballot looks similar to a conventional optical scan ballot.
See Figure 5.2 for a sample of the ballot used in the election. It contains a matrix of the
choices and optical scan ovals allowing the voter to rank their choices. Marking an oval
reveals a random 3-digit confirmation code.

Confirmation Codes. The confirmation codes are unique within each contest on each
ballot, and are generated independently and uniformly pseudorandomly. The confirmation
code corresponding to any given choice on any given ballot is hidden and unknown to any
voter until the voter marks the bubble for that choice.

Voter Experience. To vote, a voter first checks in at the polling place and receives a
Scantegrity ballot in a privacy sleeve. The privacy sleeve is used to cover the ballot and
keep private the contents of the ballot. Inside the voting booth, there is a special “decoder
pen” and a stack of blank “voter verification cards.” The voter uses the decoder pen to
mark the ballot. As on a conventional optical scan ballot, she fills in the bubble next to
each of her selections. Marking a bubble with the decoder pen simultaneously leaves a
dark mark inside the bubble and reveals a previously hidden confirmation code printed
in invisible ink. Additionally voters were required to rank their preferences as part of
the instant-runoff voting (IRV) style employed by Takoma Park (see Figure 5.3(a) for a
depiction of how this ballot style looks when marked).

If a voter makes a mistake, she can ask a poll worker to replace her ballot with a new
one. The first ballot is marked “spoiled,” and its ballot ID is added to the list of spoiled
ballot IDs maintained by the election judges.

Verification Card. If the voter wishes to verify her vote later on the election website,
she can copy her ballot ID and her revealed confirmation codes onto a voter verification
card. She keeps the verification card for future reference. She then takes her ballot to the
scanning station and feeds the ballot into an optical scanner, which reads the ballot ID and
the marked bubbles. The verification card is shown in Figure 5.3(b). Spanish instructions
were printed on the reverse. Relevant fields were were printed with reactive ink, allowing
voters to use the same pen to mark the ballot and record confirmation numbers. Voters
were issued a two sided pen with chisel- and bullet-tips.

The voter can verify her vote on the election website by checking that her revealed
confirmation codes and ballot ID have been posted correctly. If she finds any discrepancy,
the voter can file a complaint through the website, within a complaint period. When filing
a complaint, the voter must provide the confirmation codes that were revealed on her ballot
as evidence of the validity of the complaint.
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Tear-off line Ward number

Reactive ink,
darkens when
marked with
pen

2D machine-
readable bar codeAlignment mark

For voter to look up
online

Figure 5.2: An unmarked Takoma Park 2009 ballot for Ward 1 showing instructions in Spanish and English,
the options, the circular alignment marks, the 2D barcode, the ballot serial number (on the stub, meant
for poll workers to keep track of the number of ballot used) and the online verification number (for voters
to check their codes). The true ballot was printed on legal size paper and was hence larger than shown.
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(a) Infographic showing the Takoma Park instant-runoff style ballot with
Scantegrity II invisible ink confirmation codes.

You have the OPTION of verifying your vote on-line after you return home.  It is not necessary to do so. You may ignore this 
step entirely; your cast ballot will be counted whether or not you do this verification. 
 
If you wish to verify your vote on-line, perform the following steps: 
1. Fill out your ballot according to the instructions provided on the ballot.  “Confirmation numbers” will appear inside the ovals you 
mark. 
2. BEFORE YOU CAST YOUR BALLOT Record the Online Verification Number and the confirmation numbers below, using the 
narrow tip of the special pen (note that Wards 1-5 will not have a 3rd choice confirmation number for  the city council race).  
 
“On-Line Verification Number" from the bottom right corner of your ballot  
 

 
 
 
 
 
 
 
 
 
 

3. Cast your ballot as usual using the poll-site scanner.  DO NOT CAST THIS SHEET, but take it home with you.  
4. After you have returned home, use a computer with an Internet connection to access the City Clerk’s web page: 
www.takomaparkmd.gov/clerk. Here you will see instructions for verifying that the confirmation numbers you wrote down are 
correctly recorded. Note that the confirmation numbers are randomly generated and cannot be used to determine your vote.  
 

Thank you for verifying your vote! 
The Takoma Park Board of Elections  

INSTRUCTIONS FOR VERIFYING YOUR VOTE ON-LINE AFTER YOU RETURN HOME 
PARA LAS INSTRUCCIONES EN ESPAÑOL VEA AL DORSO  

Confirmation Numbers 1st Choice 2nd Choice 3rd Choice 

Mayor    

City Council Member    

(b) Verification card for writing down confirmation numbers (true size 8.5” x 11”).

Figure 5.3: Supplementary materials provided to the voter.
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Figure 5.4: Election Workflow. The core election work flow in Scantegrity is similar to an optical scan
election: a software backend creates ballot images that are printed, used by voters, and scanned. The
results are fed to the backend which creates the tally. The audit capacity is provided by 3 extra steps: (1)
create the initial digital audit trail and audit a portion of it, (2) audit the ballots to ensure correctness
when printing, and (3) audit the final tally.

Digital Audit Trail. Prior to the election, a group of election trustees secret-share a
seed to a pseudorandom number generator (PRNG). The trustees then input their shares
to a trusted workstation to generate the pseudorandom confirmation codes for all ballots,
as well as a set of tables of cryptographic commitments to form the digital audit trail.
These tables allow individual voters to verify that their votes have been included in the
tally, and allow any interested party to verify that the tally has been computed correctly,
without revealing how any individual voter voted.

Auditing. After the election, any interested party can audit the election by using soft-
ware to check the correctness of the data and final tally on the election website. Addi-
tionally, at the polling place on the day of the election, any interested party can choose to
audit the printing of the ballots. A print audit consists of marking all of the bubbles on
a ballot, and then either making a photocopy of the fully marked ballot or copying down
all of the revealed confirmation codes. The ballot ID is recorded by an election judge as
audited. After the election, one can check that all of the confirmation codes on the audited
ballot, and their correspondence with ballot choices, are posted correctly on the election
website.

5.4 Implementation

The election required a cryptographic backend, a scanner, and a website. These 3 com-
ponents form the basic election system and their interaction is described in Figure 5.4.
In addition, Takoma Park required software to resolve write-in candidate selections and
produce a formatted tally on election night.

Scantegrity protects against manipulation of election results and maintains, but does
not improve, the privacy properties of optical scan voting systems that use serial numbers.
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To compromise voter privacy using Scantegrity features, an attacker must associate receipts
to voters and determine what confirmation numbers are associated to each candidate. This
is similar to violating privacy by other means; for example, an attacker could compromise
the scanner and determine the order in which voters used the device, or examine physical
records and associate serial numbers to voters. The scanner and backend components
protect voter privacy, but the website and the write-in candidate resolver do not because
they work with public information only. Each component is written in Java. We describe
the implementation and functions of each one in the following sections.

5.4.1 Cryptographic Backend

Implementation. The cryptographic backend that provides the cryptographic verifiable
audit data utilizes the Punchscan code base [PH06, ECCP07b] written in Java 1.5 using
the BouncyCastle cryptography library.6 Key management in the Punchscan backend is
handled by a simple threshold [Sha79] cryptosystem that asks for a username and pass-
word from the election officials. The code base was adapted to implement the Scantegrity
Switchboard functionality (cf. Chapters 3 and 4). Although the resulting software and
audit data sets were larger and more complicated to verify than strictly necessary, reusing
Punchscan code saved considerable work and time.

Popoveniuc and Vora provide additional detail [PV08], which we will briefly summarize.
The Punchscan backend uses a two-stage mix process based on cryptographic commitments
published before the election. Each mix, the left mix and the right mix, takes marked
positions as input, shuffles the ballots, and reorders each marked position on each ballot
according to a prescribed (pre-committed) permutation. The result is the set of cleartext
votes, where position 0 corresponds to candidate 0, 1 to 1, etc. Between the two mixes, for
example, position 0 may in fact correspond to candidate 5, depending on the permutation
in the right mix.

The Punchscan backend partitions [PS07] each contest such that each contest is treated
as an independent election with a separate set of commitments. In the case of Takoma Park,
each ward race and the mayor’s race are treated as separate elections. (The announcement
of separate mayoral race vote counts for each ward is required by Takoma Park). The
scanner is responsible for creating the input files for each individual election.

Meetings of Trustees. Election officials hold a series of meetings using the backend
to conduct an election. Before the election, during Meeting 1 (Initialization), they choose
passwords that are used to generate master key, which in turn is used as a seed for generat-
ing all other data (pseudo) random for the election. After each meeting, secret data (such

6http://www.bouncycastle.org
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as the mapping from confirmation codes to candidates) is regenerated from the passwords
when it is needed again. In Meeting 1 the backend software creates a digital audit trail by
committing to the Punchscan representation of candidate choices and to the mixset: the
left and right mix operations for each ballot. Later, during Meeting 2 (Pre-Election Au-
dit), the backend software responds to an audit of the trail demonstrating that the mixset
decrypts ballots correctly. At this time, the backend also commits to the Scantegrity front-
end, consisting of the linkage between the Scantegrity front-end and its Punchscan backend
used for decryption.

After the election, election officials run Meeting 3 (Results), publishing the election
results and the voted confirmation numbers. For the purposes of the tally audit, the
system also publishes the outputs of the left and right mixes. In Meeting 4 (Post-Election
Audit), officials respond to the challenges of the tally computation audit. Either the entire
left mix or the entire right mix operations are revealed, and the auditor checks them against
data published in Meeting 3.

The Meeting 4 audit catches, with probability one half, a voting system that cheats
in the tally computation. To provide higher confidence in the results, the backend creates
multiple sets of left and right mixes; in Takoma Park, we created 40 sets for each election, 20
of which were audited. Given 2 contests per ballot and 40 sets of left and right mixes, there
are a total of 160 commitments per ballot in the audit trail, in addition to a commitment
per contestant per ballot for each confirmation number (15–18, depending on the Ward).

The implementation uses two classes of “random” number sources. The first is used to
generate the digital audit trail, and the second is used for auditing the trail. Both types
of sources must be unpredictable to an adversary, and we describe each in turn.

Cryptographic Audit Dataset. The Punchscan backend generates the mixes and com-
mitments using entropy provided by each election official during initialization of the thresh-
hold encryption. This provided a “seed” for a pseudorandom number generator (based on
the SHA256 hash function).

We also used this random source to generate the confirmation numbers when changing
the Punchscan backend to support Scantegrity. Unfortunately, we introduced an error in
the generation when switching from alphanumeric to numeric confirmation numbers as a
result of findings in the Mock election [SCC+10]. This resulted in approximately 8.5 bits
of entropy as opposed to the expected 10 bits. We discovered this error after we started
printing and it was too late to regenerate the audit trail.

The error increased the chance that an adversary could guess an unseen confirmation
code to approximately one in 360 rather than the intended one in 1000: a small decrease
in the protection afforded against malicious voters trying to guess unseen codes in order
to discredit the system.
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Verification. Random numbers are needed to generate challenges for the various au-
diting steps (print audit, randomized partial checking). These numbers should be unpre-
dictable in advance to an adversary. They should also be “verifiable” after the fact as
having come from a “truly random” source that is not manipulable by an adversary.

We chose to use the closing prices of the stocks in the Dow Jones Industrial Average as
our verifiable but unpredictable source to seed the pseudorandom number generator (the
use of stock prices for this purpose was first described in [CEA07b]). These prices are
sufficiently unpredictable for our purposes, yet verifiable after the fact. However, it turns
out that post-closing “adjustments” can sometimes be made to the closing prices, which
can make these prices less than ideal for our purposes in terms of verifiability.

Scanner Software. The original intent of Scantegrity was to build on top of an existing
optical scan system. There was no pre-existing optical scan system in use at Takoma Park,
so we implemented a simple system using EeePC 900 netbooks and Fujitsu 6140 scanners.

The scanning software is written in Java 1.6. It uses a bash shell script to call the SANE
scanimage program7 and polls a directory on the filesystem to acquire ballot images. Once
an image is acquired it uses circular alignment marks to adjust the image, reads the barcode
using the ZXing QRCode Library,8 and uses a simple threshold algorithm to determine if
a mark is made on the ballot.

Individual races on each ballot are identified by ward information in the barcode, which
is non-sequential and randomly generated. The ballot id in the barcode and the web
verification numbers on each ballot are different numbers, and the association between
each number type is protected by the backend system. Write-in candidate areas, if that
candidate is selected by the voter, are stored as clipped raw images with the ballot scan
results. Ballot scan results are stored in a random location in a memory mapped file.

The current implementation of the scanning software does not protect data in transit
to the backend, which poses a risk for denial of service. Checking of the correctness of the
scanner is done through the Scantegrity audit. The data produced by the scanner does not
compromise voter privacy, but—assuming an attacker could intercept scanner data—voter
privacy could be compromised at the scanner through unique write-in candidates on the
ballot, through a compromised scanner, by bugs in the implementation, or by relying on
the voter to make readable copies of the barcode to get a ballot id.

Tabulator/Write-In Software. At the request of Takoma Park we created an addi-
tional piece of software, the Election Resolution Manager (ERM), that allows election

7http://www.sane-project.org/
8http://code.google.com/p/zxing/
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judges to manually determine for each write-in vote what candidate the vote should be
counted toward. The other responsibility of the ERM is to act as part of the backend. It
collates data from each scanner and prepares the input files for the backend.

To resolve write-ins with this software, the user cycles through each image, and either
types in the name of the intended candidate or selects the name from a list of previously
identified candidates composed of the original candidates and any previously typed candi-
date names. The user is not shown the whole ballot, so he does not know what the other
selections are on that ballot, or what rank the write-in was given. We call this process
resolving a vote because the original vote is changed from the generic “Write-In” candidate
to the candidate that was intended by the voter. The ERM produces a PDF of each image,
the candidate selection for that image, and a unique number to identify the selection.

Scantegrity handles write-in candidates just like other optical scan systems by treating
the write-in position as a candidate. Therefore, the backend does not know how each write-
in position was resolved, and two results records are created: one with write-in resolution
provided by the ERM, and one without write-in resolution provided by the backend.

To check the additional record generated by the ERM, an observer reduces the resolved
results record and verifies that the set of resolved ballots is the same as the set of unresolved
ballots. To audit that the judges chose the correct candidates for each write-in, the observer
refers to the PDF generated during write-in resolution. The PDF allows the observer to
reference each resolved ballot entry in the resolved results file and verify that the image
was properly transcribed.

One caveat of this approach is that if a write-in candidate wins, a malicious authority
could modify these images to change results, but could not deny that the write-in position
had received a winning number of votes. This situation would require additional procedures
to verify the write-ins (e.g. a hand count, and/or careful audit of the transcriptions by
each judge).

Website. Beyond communicating the election outcome itself, the role of the election
website is to serve as a “bulletin board” (BB) to broadcast the cryptographic audit data
set (i.e., cryptographic commitments, responses to audit challenges, etc). In addition,
voters can use this website to check their receipts, and file a dispute if the receipt is
misreported. We provided an implementation with these features written in Java 1.6. It
used the Stripes Framework9 and an Apache Derby database backend.10 In practice, we
only used part of this implementation.

Originally, our plan was to have Takoma Park host the website, but officials chose a
hybrid approach where they hosted election information and results. That website would

9http://www.stripesframework.org/
10http://db.apache.org/derby/
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link to our server to provide a receipt checking tool and audit data. After the election,
officials would provide us with a copy of the public data files to publish. This decision
caused a number of changes to our approach.

We decided to only use the receipt checking code from the implementation, and, to
make downloading more convenient for auditors, post all election data on our publicly
available subversion repository.11 Additionally, both auditors agreed to mirror the data.

A primary security requirement for the Scantegrity BB is to provide authenticated
broadcast communication from election officials to the public. We met this requirement
with digital signatures. A team member (Carback) created signed copies of each file with
gnupg12 using his public key from May 28, 2009.

Without authenticated communication, it would be impossible to prove if different
results were provided to different people. Our specific approach to the website requires
observers to verify signatures and check with each other if they receive identical copies of
the data (and verify the consistency of the signatures over time). Our auditors, Adida and
Zagórski, performed these actions, but we do not know the extent of this communication
otherwise. As usual with our approach to Scantegrity, we are enabling detection of errors
(genuine or malicious).

There are several potential threats to the bulletin board model–we will briefly enumerate
some of them. At a high level, threats pertain primarily to misreporting of results, or
to voter identification. With regard to results reporting, an adversary may attempt to
misreport results by substituting actual election data with false data. In the event that all
parties verify signatures of information they receive, and check consistency with the signed
files, incorrect confirmation codes on the bulletin board would be detected by voters, and
incorrect computation of the tally by anyone checking the tally computation audit. If the
voter checking confirmation codes does not check consistency with the rest of the bulletin
board (by, for example, downloading the bulletin board data, checking all the signatures
and checking that his or her confirmation code is also correctly noted in the entire bulletin
board data) he or she may be deceived into believing their ballot was accurately recorded
and counted. Similarly, if the various signatures are not cross checked across individuals or
observed over time, an adversary may replace the confirmation codes after they have been
checked, or send different ones to voters and to auditors. An adversary may also attempt
an identification attack, whereby the objective is to link voter identities with receipt data,
such as by recording IP addresses of voters who check their receipts.

11http://scantegrity.org/svn/data/takoma-nov3-2009/
12http://www.gnupg.org/
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5.5 The Election

In this section, we describe the election as events unfold chronologically over time.

5.5.1 Preparations Prior to Election Day

Preparations for the election include running the first 2 backend meetings, and creating
the ballot.

Election Verifiers/Auditors. The Board of Elections requested cryptographers Dr.
Ben Adida (Center for Research on Computation and Society, Harvard University) and
Dr. Filip Zagórski (Institute of Mathematics and Computer Science, Wroclaw University
of Technology, Poland) to perform independent audits of the digital data published by
Scantegrity in general, and of the tally computation in particular. Dr. Adida13 and Dr.
Zagórski14 maintained websites describing the audits and the results of the audits, and
Dr. Adida also blogged the audit.15 Before the election, Dr. Adida pointed out several
instances when the Scantegrity information was insufficient; Scantegrity documentation
was updated as a result.

The Board of Elections also requested Ms. Lillie Coney (Associate Director, Electronic
Privacy Information Center and Public Policy Coordinator for the National Committee
for Voting Integrity (NCVI)) to perform print audits on Election Day. Ms. Coney chose
ballots at random through the day, exposed the confirmation codes for all options on
the ballot, and kept these with her until after the end of the complaint period, when
Scantegrity opened commitments to all unvoted and unspoiled ballots (and hence to all
ballots she had audited). Ms. Coney then checked that the correspondence between codes
and confirmation numbers on her ballots matched those on the website.

Meeting 1: Switchboard Generation and Commitment. Four election officials (the
City Clerk, the Chair, Vice Chair and a member of the Board of Elections: Jessie Carpen-
ter, Anne Sergeant, Barrie Hofmann and Jane Johnson, respectively) were established as
election trustees in Meeting 1, held on October 12, 2009.

It was explained to the trustees that, through their passwords, they would generate
the confirmation codes and share the secret used to tally election results. Further, it was
explained that, without more than a threshold of passwords, the election could not be

13http://sites.google.com/site/takomapark2009audit/
14http://zagorski.im.pwr.wroc.pl/scantegrity/
15http://benlog.com/articles/category/takoma-park-2009/
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tallied by Scantegrity, and that if a threshold number of passwords was not accessible (if
they were forgotten, for example, or trustees were unavailable due to sickness) the only
available counts would be manual counts. A threshold of two trustees was determined
based on anticipated availability of the officials, and it was explained that two trustees
could collude to determine the correspondence between confirmation numbers and codes,
and hence that each trustee should keep her password secret.

The trustees generated commitments to the decryption paths for each of 5000 ballots
per ward (for six wards). Scantegrity published the commitments on October 13, 2009 at
12:13 am.

Meeting 2: Pre-election Switchboard Audit. In Meeting 2, held on October 14,
2009, trustees used Scantegrity-written code to respond to challenges generated using stock
market data at closing on October 14. Half of the ballot decryption paths committed to
in Meeting 1 were opened. Additionally, trustees constructed ballots (associations between
candidates and confirmation codes) at this meeting, and generated commitments to them.
Scantegrity published the stock market data, the challenges, and the responses.

Ballot Design. The ballot used for the 2009 election was based on ballots used for the
2007 election. We made the conscious choice to modify (as little as possible) a design
already used successfully in a past election, and not to use the ballot we had designed
for the mock election. The main reason for reusing the ballot design was that it would
be familiar to voters. The ballot was required to contain instructions in both English
and Spanish: marking instructions, instructions for write-ins, instructions for IRV and any
Scantegrity-related instructions (see Figure 5.2).

Printing Ballots. We use “invisible” ink to print the marking positions that reveal
confirmation codes to voters. We used refillable inkjet cartridges in multiple color positions
of an Epson R280 printer to print confirmation codes. The ink is not actually invisible,
but looks like a yellow bubble before marking and a dark bubble with light yellow codes
after marking.16

We initially began printing with 6 printers, but they proved unreliable. It was our
expectation that using large amounts of commodity hardware would scale, but it did not.
We did not anticipate the number of failure modes we experienced and our printing process
was delayed by approximately one and a half days.

16See http://scantegrity.org/~carback1/ink for more information on the printing process
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Ballot Delivery. Mail-in (absentee) ballots were delivered to the City Clerk on 16 Oc-
tober. Early, in-person voting ballots were delivered on October 27 for early voting on
October 28, and all other ballots a couple of days later on October 30.

Absentee ballots were identical to in-person voting ballots except they did not contain
online verification numbers and voters were not given any instructions on checking confir-
mation numbers online. They were returned by mail in double envelopes and scanned with
the early votes. Confirmation numbers for these ballots were, however, made available
online after scanning, so that there was no distinction in published data between absentee
and in-person voted ballots.

The board decided to issue ballots without confirmation numbers due to the small
number of anticipated absentee votes and the costs associated with mailing ballots with
special pens. Mailing the ballots with confirmation codes would allow verification of con-
firmation codes, but opens up new attacks: the possibility of false charges of election fraud
by adversaries who might expose confirmation codes and reprint ballots, or use expensive
equipment to attempt to determine the invisible codes. Strong verification for absentee
ballots is an ongoing research subject within the Scantegrity team.

Early in-person voters used Scantegrity ballots with all Scantegrity functionality, except
that the early votes were scanned in after the polls closed on Election Day, and not by voters
themselves. Voters were, however, provided verification cards and could check confirmation
codes for these ballots online.

Poll Worker Training. Several training sessions were held in the weeks prior to the elec-
tion. Manuals from the previous election were updated and a companion guide was created
with Scantegrity-specific instructions. Election judges were given these two manuals, and
a member from our team demonstrated the voting process at one session.

Voter Education. Voter education for this election focused on online verification. Ar-
ticles in the City newspaper before the real election indicated that voters could check
confirmation numbers online; this was also announced on the city’s election website.17

Scanner Setup. We attempted to minimize, not prevent,18 the potential for using the
wrong software by installing our software on top of Ubuntu Linux on SD flash cards, setting
the “read-only” switch on each card, and setting up the software to read and write to USB
sticks. We fingerprinted the first card after testing with the sha1sum utility and cloned it

17http://www.takomaparkmd.gov/clerk/election/2009/
18Scantegrity would detect manipulation at the scanner. A better solution would use trusted hardware

technology (e.g. a TPM [FSC09]).
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to a second card for the other netbook. Each netbook was set to boot from the card and
BIOS configuration was locked with a password.

Both flash cards were checked with the sha1sum utility then placed into the netbook
which was placed into a lock box and delivered to Takoma Park. The USB sticks were
initialized with scanner configuration files. We uniquely identified each scanner by changing
the ScannerID field in the configuration files, then we placed the corresponding USB sticks
(3 for each netbook) into the lock box.

Upon delivery of the scanners the day before the election, we gave election officials the
lock box keys and showed them how to open the lock boxes. We confirmed with election
officials the contents of each box and the officials verified, with our assistance, that the
USB memory sticks did not contain any ballot data by looking at the configuration file
and making sure the ballot data file was blank.19 To protect against virus infection on the
sticks we set them to read-only for this procedure.

5.5.2 Election Day

On Election Day, November 3, 2009, polls were open from 7 am to 8 pm at a single polling
location, the Takoma Park Community Center. Several members of the SVST were present
through most of the day in the building in case of technical difficulty. One SVST member
was permitted in the polling room at most times as an observer, and a couple of SVST
members were present in the vestibule giving out and collecting survey forms through most
of the day. Lillie Coney of the Electronic Privacy Information Center, who performed a
print audit on the request of the Board of Elections, was present in the polling room
through a large part of the day.

Starting the Election. The scanner was the only SVST equipment to set up and it was
a turn key system. Election judges needed to plug in the USB sticks and power on the
netbooks. The scanner was attached to a scanning apparatus, and cables were run into the
lockbox that contained the netbook. When ready, the scanner would beep 3 times. After
reading a ballot, the scanner would beep 1 time. During shutdown, the scanner would beep
another 3 times. If there were any failure modes the scanner would beep continuously or
not beep at all.

Election judges set up the check-in tables, pollbooks, and voting booths. The election
started on time.

19These were the only 2 files on the disk at this time. Additionally, election officials did not check
fingerprints on the flash cards. Since no third party had reviewed the code or fingerprinted it they relied
on our chain of custody.
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Voting. The election proceeded quite smoothly, with very few (small) glitches. An SVST
member was able to assist polling officials in fixing a problem with their poll books (not
provided by Scantegrity). Voters had some initial problems with the use of the scanner
and the privacy sleeve, some seeking assistance from election judges who also had difficulty.
After an explanation to the election judges by the Chair of the Board of Elections, the use
of the scanner was considerably smoother. With a few ballots, the privacy sleeve was not
letting go of the ballots; one ballot was mangled considerably but scanned fine. Seventeen
scanned ballots had lines on them that caused the scanner to be unable to read votes, and
one ballot had alignment marks manipulated such that it was also unreadable. Images of
all unreadable scans are saved, so we were able to manually enter in these votes. Of the
seventeen ballots, many ballots had a line in the same location, which is consistent with
there being a foreign substance on a ballot put into the scanner. These problems did not
affect our ability to count the votes.

During the day, Ms. Coney chose about fifty ballots at random, uniformly distributed
across wards, and exposed the confirmation codes for all options for the ballots. A copy of
each ballot was made for her to take with her; the copies were signed by the Chair of the
BoE.

Towards the end of the day, after the local NPR station carried clips from an interview
with the Chair of the Board of Elections and a voter, the polling station saw a large
increase in the number of voters, with the line taking up much of the floor outside the
polling room. The SVST generated commitments to more ballots than was required. The
number of printed ballots ended up being almost twice the number of voted ballots.

Absentee and early voted ballots were scanned in after the closing of polls. Afterward,
the scanners were shut down. The chief judge opened each lock box, set all sticks to read
only, removed 2 USB sticks (leaving the third with the scanning netbook), and locked the
lock box. Our team was given 1 stick for the ERM system. The other was kept by the city.

Meeting 3: Scantegrity-derived Results. Trustees used Scantegrity code to generate
results without provisional ballots at about 10 pm. The Chair of the Board of Election an-
nounced the results to those present at the polling place at the time (including candidates,
their representatives, voters, etc.); this was also televised live by the local TV station.
Confirmation codes and the election day tally were posted on the Scantegrity website.

5.5.3 After the Election

On the next day, around 2 pm, results including verified provisional ballots were pub-
lished. Takoma Park representatives had announced a tally without provisional ballots the
night before, and followed with the tally that included verified provisionals in accordance
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Mayor Votes Ward Councilor Votes Ward Councilor Votes
Roger B. Schlegel 664 Ward 1 Josh Wright 434 Ward 4 Terry Seamens 196
Bruce Williams 1000 Write-ins 13 Eric Mendoza 12
Write-ins 17 Ward 2 Colleen Clay 236 Write-ins 2

Write-ins 15 Ward 5 Reuben Snipper 71
Ward 3 Dan Robinson 397 Write-ins 10

Write-ins 34 Ward 6 Navid Nasr 61
Fred Schultz 138
Write-ins 0

Table 5.1: The 2009 Takoma Park Election: City certified election results for the Mayoral and City
Councilors’ races.

with standard Takoma Park procedures. The final Meeting 3 results were published on
November 4th just before midnight.

The number of registered voters were 10,934 and 1728 votes were cast (15.8%). The
city-certified final tally for each contest is provided in Table 5.1. In each race, a majority
was won after tallying voters’ first choices.

Hand Count and Certification. Following a hand count performed by representatives
from both the SVST and Takoma Park, the Chair of the Board of Elections certified the
results of the hand count to the City Council at 7 pm on November 5. The hand count and
the Scantegrity count differed because officials were able to better determine voter intent
during the hand count. For example, in the mayoral race, the scanner count determined
that 646 votes were cast for candidate Schlegel, 972 for Williams, 15 for various write-
in candidates, and 90 were not cast. The certified hand count totals were 664 votes for
Schlegel, 1000 for Williams and 17 for write-in candidates. Thus 48 of a total of 1681 votes
in this race would not have been counted by a scanner count alone. The discrepancy was
caused by voters marking ballots outside of the designated marking areas. Such marks,
while not read by the scanner by definition, are considered valid votes by Takoma Park
law. Similarly, 8 of a total of 447 votes for Ward 1 council member, 8 of 251 for Ward 2,
16 of 431 for Ward 3, 10 of 210 for Ward 4, 2 of 81 for Ward 5 and 11 of 199 for Ward 6
were added to scanner vote totals after hand counting.

Meeting 4: Post-Election Audit. During Meeting 4, held on November 6 at 6 p.m.,
trustees used Scantegrity-written code to reveal all codes on voted ballots, and to reveal
everything for all the ballots that were not spoiled or voted upon. Trustees also responded
to pseudo-random challenges generated by stock market results at closing on November
6. Scantegrity published all data on November 7th around 9am. While the SVST could
have chosen to use closing data on an earlier date, such as November 4 or November 5,
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which could have been more stable, the team chose to stick to its earlier-announced plan
(of using the freshest stock market data) for the sake of consistency.

On November 9, 2009, Dr. Adida and Dr. Zagórski independently confirmed that Scant-
egrity correctly responded to all digital challenges. In particular, they confirmed that the
tally computation audit data was correct. Both made available independently written
code on their websites that voters and others could use to check the tally computation
commitments.

Confirmation Code Dispute Resolution. The period for complaints regarding the
election (including complaints about missing confirmation codes) expired at 6 pm on
November 6. The Scantegrity website recorded 81 unique ballot ID verifications, of which
about 66 (almost 4% of the total votes) were performed before the deadline. The SVST was
also told by a BoE member that at least a few voters checked codes on auditor websites.
Both Dr. Adida and Dr. Zagórski made the confirmation codes available on their websites
after the election.

The number of voters who checked their ballots on-line before the Takoma Park com-
plaint deadline (66), while not large, was sufficient to have detected (with high probability)
any errors or fraud large enough to have changed the election outcome. (Detailed calcula-
tions omitted here; these calculations are not so simple, due to the use of IRV.)

Scantegrity received a single complaint by a voter who had trouble deciphering a digit
in the code and noted it as “0,” while the Scantegrity website presented it as “8.” The
voter requested that codes be printed more clearly in the future. He also stated that if
he were not a trusting individual, he would believe that he had proof that his vote was
altered.

All codes for all voted ballots were revealed after the dispute resolution period, and all
commitments verified by two independent auditors, Dr. Adida and Dr. Zagórski. Hence,
the probability that the code was in error is very small, albeit non-zero. Scantegrity does
not believe the code was in error, and there were no other complaints regarding confirmation
numbers.

Audit of Ballot Printing. Dr. Zagórski provided an interface allowing Ms. Coney to
check the commitments opened by Scantegrity in Meeting 4 against the candidate/con-
firmation code correspondence on the ballots she audited. In her report [Con09], she
confirmed that the correspondence between confirmation numbers and candidates on all
the printed ballots audited by her was correctly provided by the interface.

Followup. The Board of Elections and an SVST representative met to discuss the elec-
tion and opportunities for improvement several weeks after the election. Both sides were
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largely satisfied with the election. Indeed Scantegrity was successfully used in the following
municipal election of Takoma Park in November 2011.

5.6 Surveys and Observations of Voter Experiences

To understand the experiences of voters and poll workers, we timed some of the voters
as they voted, asked voters and poll workers to fill out two questionnaires, and informally
solicited comments from voters as they left the precinct building. Approved by the Board of
Elections and UMBC’s Institutional Review Board, our procedures respected the constraint
of not interfering with the election process. This section summarizes the results of our
observations and surveys.

Timing Data. Sitting unobtrusively as official observers in a designated area of the
polling room for part of the day, two helpers (not members of the Scantegrity team) timed
93 voters as they carried out the voting process. Using stopwatches, they measured the
number of seconds that transpired from the time the voter received a ballot to the time
the voter began walking away from the scanner.

Voting times ranged from 55 secs. to 10 mins. (the second-longest time was 385 secs.),
with a mean of 167 secs. and a median of 150 secs. On average, voters who appeared older
took longer than voters who appeared younger. Most of the time was spent marking the
ballot. The average time to vote was significantly faster than during the April 2009 mock
election, when voters took approximately 8 mins. on average due primarily to scanning
delays [SCC+10].

The observers noted that many voters did not fully use the privacy sleeve as intended,
removing the ballot before scanning rather than inserting the privacy sleeve with the ballot
into the scanning slot. Two of the 93 observed voters initially inserted the privacy sleeve
upside-down, causing the ballot not to be fed into the scanner (even though the scanner
could read the ballot in any orientation). A few ran into difficulties trying to insert the
sleeve with one hand while holding something else in the other hand.

Election Day Comments From Voters. As voters left the precinct building, members
of the Scantegrity team conducting the written surveys, and a helper (a usability expert who
is not a member of the Scantegrity team) solicited comments from voters with questions
like, “What did you think of the new voting system?” The helper solicited comments
1:30–3:00pm and 7–8pm. A common response was, “It was easy.”

Quite a few voters did not understand that they could verify their votes online and that,
to do so, they had to write down the code numbers revealed by their ballot choices. Some
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explained that they intentionally did not read any instructions because they “knew how
to vote.” Others failed to notice or understand instructions on posters along the waiting
line, in the voting booth, on the ballot, and in the Takoma Park Newsletter.

In response, later in the day, we announced to voters as they entered the building that
there is a new system; to verify your vote, write down the code numbers. These verbal
announcements seemed to have some positive effect, and there were fewer voter comments
expressing lack of awareness of the verification option after we began the announcements.
Nevertheless, some voters still were unaware of the verification option. It was a humbling
experience to see first-hand how difficult it can be to get across the most basic points
effectively, especially the first time a new system is used.

Some of the voters complained about the double-ended pen, not knowing which end to
use, or having trouble writing in candidates with the chisel-point (the narrow point was
intended for write-ins). A small number of voters had difficulty seeing the code numbers,
perhaps largely because repeatedly pressing too hard could erode the paper. A few voters
expressed concern about the difficulty of writing down the code numbers, had the ballot
been much longer or had there been a large number of competing candidates.

Many voters expressed a strong confidence in the integrity of elections, while a small
minority expressed sharp distrust in previous electronic election technology. These feelings
seemed to be based more on a general subjective belief rather than on detailed knowledge
of election procedures and technology. Similarly, those expressing strong confidence in
Scantegrity seemed to like the concept of verification but did not understand in detail why
Scantegrity provides high outcome assurance.

Survey of Voter Experiences. As voters were leaving the precinct, we invited them
to fill out two one-sided survey forms: a field-study questionnaire, and a demographics
questionnaire. The field study asked voters about the voting system they just used, with
most answers expressed on a seven-point Likert scale. The last question invited voters to
make any additional suggestions or comments. Each pair of forms had matching serial
numbers to permit correlation of the field study responses with demographics. 271 voters
filled out the forms.

Fifty-one voters wrote comments on the questionnaires, often pointing out confusion
about various aspects of the process but with no consistent theme. (1) Some were unaware
of verification option. (2) Some did not realize they were supposed to write down code
numbers. (3) Some found the pens confusing to use: they did not realize that the pens
would expose code numbers, and they did not know which end to use. (4) Some found
code numbers were hard to read. (5) Some did not understand how to mark an IRV
ballot. (6) Some did not know how to place the ballot into the scanner. (7) One had no
difficulty but wondered if seniors or people who speak neither English nor Spanish might
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Figure 5.5: Voter responses to Survey Questions 5, 9, 10, 13 from all 271 voters completing the survey.
Using a seven-point Likert scale, voters indicated how strongly they agreed or disagreed with each statement
about the voting system they had just used (1 = strongly disagree, 7 = strongly agree). Each histogram
shows the number of voters responding for each of the seven agreement levels. The four questions shown
are the following: (5) Overall, the voting system was easy to use. (9) I have confidence that my receipt
by itself does not reveal how I voted. (10) The option to verify my vote online afterwards increases my
confidence in the election results. (13) I have confidence in this voting system.

have difficulties. (8) One wondered if the government might be able to discern his vote
by linking his IP address used during verification with his ballot serial number and noting
the time that he was issued a ballot (this may be possible if the cryptography is broken
or in other scenarios, but it would be more direct to have the scanner log how he voted).
(9) Many suggested that it would have been helpful to have better instructions, including
instruction while they wait in line.

Figure 5.5 shows how voters responded to four questions from the field study ques-
tionnaire. These results strongly show that voters found the voting system easy to use
(Question 5), and that they had confidence in the system (Question 13). Question 10
showed that the option to check votes on line increased voter confidence in the election
results. Question 9 showed that voters had confidence that the receipt alone did not reveal
how they voted; this finding is notable given that it is widely suspected that many people
erroneously believe that all E2E receipts reveal ballot choices.

Survey of Poll Worker Experiences. Each of the twelve poll workers was given an
addressed and stamped envelope with two questionnaires (field study and demographics)
to fill out and mail to the researchers after the election. The field study focused on their
experiences administering Scantegrity, with most answers expressed on a seven-point Likert
scale. This questionnaire also included four open-ended questions. Each pair of forms had
matching serial numbers. Five forms were returned.
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Poll workers noted the following difficulties. (1) There was too much information. (2)
Some voters did not understand what to do, including how to create a receipt. (3) Some
voters did not understand how to mark an IRV ballot. (4) The privacy sleeve was hard to
use with one hand. (5) The double-ended pens created confusion. (6) Voters, poll workers,
and the Scantegrity team have different needs. One wondered if Scantegrity was worth the
extra trouble.

They offered the following suggestions: (1) Simplify the ballot. (2) Provide receipts
so that voters do not have to copy code numbers. (3) Develop better pre-election voter
education.

5.7 Discussion and Lessons Learned

Overall, this project should be deemed a success: the goals of the election were met, and
there were no major snafus. Many aspects of the Scantegrity design and implementation
worked well, while some could be improved in future elections.

Technological Challenges. Perhaps the most challenging aspect for future elections is
scaling up ballot printing. The printers we used were not very reliable.

Variations on the Scantegrity design worth exploring include the printing of voter re-
ceipts (rather than having voters copy confirmation codes by hand)—there are clearly
security aspects to handle if one does this. The design should also be extended for better
accessibility. The special pen might be improved by having only a single medium-tip point,
rather than two tips of different sizes. The scanning operation and its interaction with the
privacy sleeve should be studied and improved.

The website, while sufficient, might utilize existing research in distributed systems to
reduce the requirements on observers and voters to continually monitor the site for updates
or modifications. The scanner could also be improved with more sophisticated image
analysis, and also to better handle unreadable ballots. It only occured to us after the
election that the write-in resolution process could have greater utility if it were expanded
to deal with unreadable and unclear ballots.

Real World Deployment of Research Systems. As is common with many projects,
too much was left until the last minute. Better project management would have been
helpful, and key aspects should have been finalized earlier. Materials and procedures
should be more extensively tested beforehand.
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One of the most important lessons learned is the value of close collaboration and clear
communication between election officials and the election system providers (whether they
be researchers or vendors).

Another lesson learned is that it is both important to provide voters with clear explana-
tions of the new features of a voting system, and to do so efficiently, with minimal impact
on throughput. Resolving the tension between these requirements definitely needs further
exploration. For example, it might be worthwhile to have an instructional video explaining
the Scantegrity system that voters could watch as they come in. The permanent adoption
of Scantegrity II in a jurisdiction would, however, alleviate the educational burden over
time, as voters learn the system’s features in successive elections.

Comparison With Post-election Audits. It is interesting to compare Scantegrity
with the other major technique for election outcome verification: post-election audits.
Because these audits do not allow anyone to check that a particular ballot was counted
correctly, they do not provide the level of integrity guarantee provided by Scantegrity.

Post-election audits, even those with redundant digital and physical records like optical
scan systems, only address errors or malfeasance in the counting of votes and not in the
chain of custody.20 In contrast, end-to-end voting systems such as Scantegrity provide
a “verifiable chain of custody.” Voters can check that their ballots are included in the
tally, and anyone—not just a privileged group of auditors—can check that those ballots
are tallied as intended.

It must be admitted, however, that the additional integrity benefits provided by Scant-
egrity II come at the cost of somewhat increased complexity and at the cost of an increased
(but manageable) risk to voter privacy (since ballots are uniquely identifiable). That said,
some jurisdictions and/or election systems require or use serial numbers on ballots anyway,
and we have proposed several possible approaches to appropriately destroy or obfuscate
serial number information. Furthermore, as a corollary to the work of Calandrino et
al. [CCF11], a voter wishing to “fingerprint” a ballot can do so without being detected in
current paper ballot systems simply by marking ovals in distinctive ways.

5.8 Concluding Remarks

The successful use of the Scantegrity II voting system in the Takoma Park election of
November 3, 2009 demonstrates that voters and election officials can use sophisticated

20Having multiple records may make an attacker’s job harder, but note that the attacker only has to
change the record that will ultimately be used and/or trusted (not necessarily both). Also, redudancy can
work against a system, as changing a digital record in an obviously malicious way may allow time for a
more subtle manipulation of the physical record.
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cryptographic techniques to organize a transparent secret ballot election with a familiar
voting experience. The election results show considerable satisfaction by both voters and
pollworkers, indicating that end-to-end voting technology has matured to the point of being
ready and usable for real binding governmental elections. Finally, as a testament to the
success of the 2009 election, Takoma Park and the Scantegrity research team continued
their partnership, where Scantegrity was deployed for a second time in that city for their
municipal election of 2011.

The focus of Part I has been squarely on providing verifiability (a secondary task)
without interfering with voting/election administration (the primary task). But there is
a fundamental difference between making something verifiable, and having it be verified.
With the advances of Part I in hand, the focus of Part II will be to foster broader and
deeper participation in election verification.
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Part II

Technical Simplifications for Election
Auditors

103





Chapter 6

Aperio

For a voting system to be viable,
reasonable ordinary people have to be
able to understand and authenticate
it.

Bev Harris [Row08]

This chapter is adapted from published work co-authored with Jeremy Clark, and super-
vised by Carlisle Adams [ECA08].

6.1 Introductory Remarks

The work of Scantegrity II at Takoma Park demonstrated that cryptographic election veri-
fication could be refined to the point of being feasible in a governmental election. A major
criticism still faced by Scantegrity, however, is that cryptographic election verification is
fundamentally too conceptually complex for the average voter. It became an important
research objective, therefore, to design an end-to-end system that could abstract out the
cryptographic primitives in favor of a more pedagogically friendly (less technical) analog.

As a starting point consider three proposals made by Rivest and Smith [RS07] for such
systems that do not directly utilize cryptography. The first two proposals (ThreeBallot
and VAV) have strongly counter-intuitive ballot marking procedures,1 and relies on trusted
hardware to validate ballots. The third and more elegant proposal, Twin, requires no

1ThreeBallot, for example, requires a voter to cast some “votes” for candidates other than their pref-
erence, while VAV introduces the notion of an ‘anti-vote.’
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electronic equipment or special ballot marking or tabulation procedures, although does
carry an inherent custody assumption that the “floating receipt” being issued to the voter
is a valid copy of the ballot of another (anonymous) voter.

In this chapter we describe Aperio, a simple paper-based election integrity verification
mechanism with a straightforward paper ballot, and with end-to-end integrity properties
that do not rely on chain-of-custody assumptions. Instead we follow an approach similar
to Moran and Naor [MN05] based on tamper-evident envelopes, which has the advantage
of being a strong physical analog to cryptographic commitments, as well as being an item
commonly used in conventional elections.

Contributions. The contributions of this chapter include the Aperio election verification
protocol, that offers:

• A conventional hand-counted paper ballot,

• An end-to-end verifiable audit trail based on tamper resistant envelopes rather than
cryptographic assumptions,

• A close physical analog to commitment-based cryptographic schemes.

6.2 Basic Paper Scheme

6.2.1 Ballot Format

In a conventional paper-ballot election, a voter is issued a single sheet of paper—a ballot.
Under the Aperio scheme, a voter is instead issued a “ballot assembly,” which consists of
a paper ballot sheet, a receipt sheet and any number of audit sheets stacked and joined in
such a way that only the top ballot layer is visible to the voter. These layers are defined
as follows:

• A ballot: used to describe any paper Australian ballot2 with the specific property
that the list of candidates or proposals is printed in an independently random order
across the set of ballots in an election,

2“An official ballot printed at public expense on which the names of all the candidates and propos-
als appear and which is distributed only at the polling place and marked in secret.” Merriam-Webster
Dictionary.
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• A receipt: used to describe a sheet of paper, equivalent in size and layout to a
“ballot,” but without a candidate list, and additionally a unique serial number,

• An audit sheet: is used to describe a sheet of paper, equivalent in size and layout
to a “ballot” but without a candidate list. It does not contain a serial number, but
has pre-printed regions in which to write one. Additionally provided is a region in
which to mark a “commitment reference number.”

For simplicity of the following description, we will consider the base-case ballot assem-
bly, which includes two audit sheets. We will refer to the assembly’s layers by a standard
office-paper color pallet, in which the ballot, receipt, and two audit sheets are assigned
the colors “white,” “canary,” “goldenrod,” and “pink,” respectively (see Figure 6.1). The
sheets are stacked in such a way that voter-made marks on the ballot sheet will be trans-
fered to the other sheets using carbon-copy, or alternatively NCR brand (carbonless copy)
paper (see Figure 6.2).

Figure 6.1: Ballot Assembly: (Top left) Paper “Australian” ballot with random candidate order
(white). (Top right) Receipt with unique serial number (canary). (Bottom left) Audit sheet with
“commitment reference number” (goldenrod). (Bottom right) Audit sheet with independently assigned
“commitment reference number” (pink).

6.2.2 Initial Setup

As in other E2E systems, the entity responsible for printing ballots is generally entrusted
with voter privacy. For simplicity we describe the following operations as being performed
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Figure 6.2: Ballot Assembly (Exploded View): Marks made on the top “ballot” layer are transfered
to the “receipt” and “audit sheet” layers using “carbon-copy” style paper.

by a single privacy-entrusted entity, although as we will see in Part III, protocols for
printing ballots in threshold-trust/oblivious manner, are available.

Generating Ballots. In order to preserve voter privacy, the association of candidate
order and serial number must be secret and arbitrary, such that knowledge of one in no way
implies knowledge of the other. Consider a stack of b ballots, each with an independently
randomly printed candidate order. Likewise consider a stack of b receipts each with unique
serial number. An arbitrary association can be formed by drawing the top ballot and receipt
sheets from the respective stacks and joining (e.g., stapling) them together. Additionally
the (blank) audit sheets are joined to the ballot and receipt sheets, constituting a specific
instance of a ballot assembly. This is repeated to create b independent ballot assemblies.

Generating Commitment Lists. A “commitment list” is defined as a list of b rows
pre-printed with a monotonically increasing set of b “commitment reference numbers.”
Next to each commitment reference number is a region, initially blank, that will contain
an associated value. We define two types of commitment lists:

• Receipt commitment lists contain a set of b distinct commitment reference num-
bers, each with a (randomly) associated serial number,

• Ballot commitment lists contain the same set of b distinct commitment reference
numbers, each with a (randomly) associated candidate list ordering.

To generate the commitment lists, we begin by considering a particular audit trail
color (e.g., pink). The pink receipt commitment list and pink ballot commitment list are
generated as follows:
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1. A ballot assembly is drawn from the stack and the serial number s is noted. A non-
replaced random number i ∈ [b] is selected (e.g., on a slip of paper drawn from a
hat),

2. The pink audit sheet of the ballot is exposed, and the number i is written in the
commitment reference number space,

3. On the pink receipt commitment list, the number s is written in the blank space
beside commitment reference number i,

4. On the pink ballot commitment list, the candidate order o is written in the blank
space beside commitment reference number i.

These steps are performed on all ballot assemblies. The pink audit trail is now complete
and the goldenrod receipt commitment list and goldenrod ballot commitment list (and any
additional audit trail colors) can be generated in the same manner. An example ballot
assembly and corresponding entries in the commitment lists are depicted in Figure 6.3.

Figure 6.3: Commitment Lists: For each audit trail (goldenrod and pink in this case) two commitment
lists are generated – a receipt list and a ballot list, each randomly associating serial numbers and
respectively candidate orderings with a distinct commitment reference number.

Committing. For an election with two audit trails (pink and goldenrod), the election
trustees generate the pink receipt, pink ballot, goldenrod receipt and goldenrod ballot com-
mitment lists. They lock these values in time (i.e., commit to them) through the following
procedure:
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1. Each commitment list is placed in its own appropriately labeled tamper-evident doc-
ument envelope and sealed,

2. The trustees present the sealed envelopes to the verifiers, who are given the oppor-
tunity to inspect the exterior of the envelope and sign on the flaps,

3. The envelopes are returned into the custody of the trustees.

6.2.3 Print Audit Selections

In order to ensure the commitment reference numbers of the ballot assemblies point to the
same candidate orderings/serial numbers appearing on the ballot and receipt layers, some
ballot assemblies will be selected by the verifiers for a “print audit.” The procedure could
vary between jurisdictions, but one recommendation would be for the print audit selections
to be made in conjunction with the random spot checks of the poll registration book at
the polling place during election day (as is the procedure in many paper ballot elections
today). A verifier would select a ballot at random from the stack of ballots, and the poll
worker would mark the ballot as spoiled (e.g., by punching a hole through the layers). The
spoiled ballot would then be given to the verifier to retain for a later auditing procedure.

6.2.4 Voting

Voting is conducted in accordance with the jurisdiction’s procedures for paper ballot elec-
tions. An eligible and authenticated voter is issued a ballot assembly by a poll official
and is directed to a voting booth. The voter marks the ballot assembly as they normally
would in any conventional paper ballot election. They return the ballot assembly to the
poll official, who first inspects the assembly to ensure the respective layers are still sealed
together. The official then separates and distributes the ballot layers in the following way:
the ballot layer is cast in the ballot box. The receipt (canary) layer is issued to the voter
as a receipt. The pink and goldenrod audit sheets are cast into “pink” and “goldenrod”
audit boxes respectively.

6.2.5 Election Outcome

After the close of the polls, the election results are tallied normally, in accordance with the
pre-existing procedures of the jurisdiction for paper ballot elections using contents of the
ballot box and is referred to as the “official tally.” At the close of the polls, the “pink”
and “goldenrod” audit boxes are relinquished into custody of the verifiers.
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6.2.6 Decomitting

A coin is flipped in public. If the outcome is heads, the pink audit box is selected to
become the ballot audit trail and the goldenrod audit box is selected to become the receipt
audit trail. If the outcome is tails, the opposite envelopes are selected. Trustees respond
by releasing (i.e., decommiting) the corresponding commitment envelopes through the
following procedure:

1. Trustees relinquish selected commitment envelopes into the custody of the verifiers,

2. Verifiers inspect envelopes for the presence of their signatures on the flap and for the
absence of evidence of physical tampering of the envelope,

3. Trustees destroy (e.g., shred) the remaining unselected commitment envelopes.

In the following explanation of the receipt and tally audit, for clarity, we will assume a
case in which heads was the outcome of the coin flip—meaning goldenrod and pink were
selected to become the receipt and ballot audit trails, respectively.

6.2.7 Receipt Audit

Using the contents of the goldenrod audit trail box in conjunction with the goldenrod
receipt commitment list, a receipt trail can be reconstituted in the following way (see
Figure 6.4):

1. A goldenrod audit sheet is drawn from the goldenrod audit trail box. The commit-
ment reference number i ∈ [b] is noted,

2. The i-th row of the goldenrod receipt commitment list is consulted, and corresponding
serial number s is noted,

3. The number s is written into the blank serial number space on the audit sheet.

These steps are performed on all goldenrod audit sheets. The reconstituted receipts
can be cross-referenced against voter receipts to ensure the records match. Voters could
optionally give their receipts to the verifiers to cross-reference on their behalf, or alter-
natively the verifiers could publish the reconstituted receipt trail in a public venue (e.g.,
newspaper) with which voters could check for themselves.
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Figure 6.4: Reconstituting the Receipt Audit Trail: The decommited (goldenrod) receipt com-
mitment list (Left) can be used to reconstitute receipts from the corresponding (goldenrod) audit trail
(Middle). The reconstituted receipt audit trail can be cross-referenced against voter receipts (Right).

6.2.8 Tally Audit

Using the contents of the pink audit trail box in conjunction with the pink ballot commit-
ment list, a ballot can be reconstituted in the following way (see Figure 6.5):

1. A pink audit sheet is drawn from the pink audit trail box. The commitment reference
number j ∈ [b] is noted,

2. The j-th row of the pink ballot commitment list is consulted, and corresponding
candidate list ordering o noted,

3. The candidates are written in order o into the blank candidate name spaces on the
audit sheet.

These steps are performed on all pink audit sheets. The reconstituted ballots can be
tallied and cross-referenced against the official tally to ensure a match.

6.2.9 Print Audit

Recalling the randomly selected (spoiled) ballots from section 6.2.3, the correctness of a
ballot assembly’s printing can be verified in the following way:

1. For a given ballot assembly, candidate order o and serial number s are noted,

2. The ballot assembly’s pink and goldenrod audit layers are reconstituted into ballot
and receipt audit layers as described in sections 6.2.7 and 6.2.8 to recover the o′ and
s′ pointed to by the respective commitment reference numbers,

3. The printing of this given ballot assembly is correct if o = o′ and s = s′.
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Figure 6.5: Reconstituting the Ballot Audit Trail: The decommited (pink) ballot commitment list
(Left) can be used to reconstitute ballots from the corresponding (pink) audit trail (Middle). The
reconstituted ballot audit trail can be tallied and the totals cross-referenced against the official tally
(Right).

6.3 Security Analysis

In this section, we describe how Aperio meets the E2E integrity criteria as outlined in
Chapter 2. Further, we analyze the attack vectors that an adversary could use to attempt
to corrupt the results of an election and demonstrate the protections offered by Aperio to
thwart these attacks.

6.3.1 A Positive Assertion of Security

Let an unmarked Aperio ballot assembly be the tuple 〈o, s, cp, cg〉 for candidate order,
serial number, commitment reference number of the pink sheet, and commitment reference
number of the goldenrod sheet. Let ρ denote the position marked by the voter on each
element of the ballot assembly. For the following discussion, again consider the instance
in which the pink receipt commitment list and the goldenrod ballot commitment list were
selected to be decommitted (although the following security properties are invariant to any
particular selection). The audit process establishes the following facts:

1. The voter’s receipt contains 〈s, ρ〉. By matching the voter’s receipt to the receipt
commitment list, it can be verified that ρ′ (of row s of the receipt commitment
list) matches the ρ on the voter’s receipt. Therefore, the voter’s mark is included
unmodified in the collection of ballots—the first E2E criterion,

2. The print audit verifies that s and cp printed on a ballot are the same as in the
commitment reference sheet and additionally,
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3. Verifies o and cg are the same as on the ballot reference sheet,

4. Since 2 and 3 are dependent on a random decision, it is probable that s and cg also
are consistent between the printed ballots and reference sheets, and additionally,

5. It is probable that o and cp also are consistent between the printed ballots and
reference sheets. If the printed ballots are not consistent, this would be detected
with probability 1− (1− Y )x−1 where Y is the percentage of receipts checked and x
is the number of audit sheets,

6. By combining facts 2 and 5, or similarly 3 and 4, we infer that s and o on the sheets
are consistent with what the voter saw in the polling booth,

7. By combining 1 and 6, the voter is assured that the same ρ at s on their receipt is
in the ballot commitment list somewhere beside the same o that was on their ballot,

8. Finally, given 7, the voter can generate a correct tally for all votes using the ballot
reference sheet proving that the collection of ballots is tallied correctly—the second
property of an E2E election.

The indirectness of this proof prevents the voter from proving which candidate they
voted for to a coercer or someone wishing to purchase their vote. The tally that was
generated to provide fact 8 can also be compared to the official tally generated using the
original paper ballots for additional assurance.

6.3.2 Prevented Attacks

In addition to the positive security properties already outlined, it may be also useful to
demonstrate a set of attacks it is not susceptible to.

• Adding or removing ballots. In order to increase the number of votes for a can-
didate, an adversary may “stuff” the ballot box with extra ballots for their candidate
of choice. Alternatively, given that elections are local events and that correlations
often exist between a locality and a political preference, an adversary may attempt
to destroy cast ballots in a discriminatory manner by choosing locations based on
expected political preference. We assume that a voter registration list is maintained
with the number of voters who cast ballots in the election. This information may
also be corroborated by election observers. The number of ballots and audit sheets
should be identical between them and should also be identical to the total voters on
the registration.
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• Modifying ballots. A more sophisticated adversary would avoid upsetting the
number of cast ballots by either replacing existing ballots with new ballots marked
for their candidate or modifying the marks on existing ballots. Since a ballot assem-
bly is distributed between distinct boxes, the tuple 〈o, s, cp, cg〉 becomes unlinked and
subsequently unassociable once cast into the respective boxes. If an adversary mod-
ifies or replaces o on a ballot, then the audit tally will not match the tally generated
from adding up all the top layers. Its not in the interest of an adversary to modify
cp or cg, as there is no way of knowing which candidate a vote is for and which it will
be mapped to if modified. Furthermore, there is only a 50% chance that the tally
will change at all—alternatively the box will be used to decommit receipts. In either
case, such modifications will be detectable either because the tallies will not match,
or the receipts will not match. Since cg and cp hide o, the voter cannot change both
an o on a ballot and, say, cg on a goldenrod audit sheet in a way that consistently
changes both tallies, should the goldenrod ballot commitment list be opened.

• Misprinting ballots. An adversary could also misprint ballot assemblies before
voting day, or mix-and-match sheets from one ballot assembly with sheets of another.
Most of these attacks will not affect the tally (only the receipts) and there is only one
method for potentially modifying the tally in an undetectable way: switch both o and
one audit sheet, say cg, with another ballot with a different order o′, where o 6= o′.
If the goldenrod ballot commitment list is selected to be decommited, the two tallies
will match, otherwise the attack will be detected. Furthermore, since the adversary
has no guarantee of which voter will receive the misprinted ballot, votes cannot be
predictably directed to a particular favored candidate. This attack is marginal and
can be further mitigated by using more than two audit layers, which exponentially
decreases the probability of a successful execution of this attack.

• Forced randomization attack. An adversary could coerce a voter into returning
with a receipt with a particular position marked. Since the adversary has no knowl-
edge of o, this is equivalent to forcing the voter to throw away their vote by voting for
a random candidate as demonstrated in [PS08]. Since a random vote will be given to
each candidate with equal probability, coercing a random votes will have the same
effect as coercing a voter to not vote at all—the latter likely being easier to execute.

• Chain voting. An adversary who can capture an unmarked ballot can execute a
chain voting attack where they fill out the unmarked ballot for a candidate they
choose, then coerce a voter into casting the adversary’s ballot in place of the un-
marked ballot the voter receives, and demand that the voter return to them the
voter’s unmarked ballot so they can execute the attack ad infinitum. This can be
mitigated by the use of a detachable, uniquely marked “counterfoil.” As the voter
registration official issues the ballot, the number n on the counterfoil is noted. When
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the voter returns, the official verifies the presence of the counterfoil and notes the
number n′. If n = n′, the voter has not exchanged ballots. The counterfoil is then
detached and discarded, and the ballot assembly and the casting procedure contin-
ues as in section 6.2.4. As an option, the counterfoil could be additionally utilized to
initially seal the ballot layers together to prevent anyone from viewing s, cg and cp
beforehand.

• Pattern Attacks. A voter wishing to sell their vote could mark their ballot in a
pattern that is likely to be uniquely identifiable and then point out its location to
the buyer in the ballot commitment list. This can be mitigated by partitioning the
audit into subaudits: i.e., having separate commitment lists for each contest or small
collections of contests. Exactly how to partition a ballot to marginalize a pattern
attack can be determined statistically—i.e., [HSS09].

6.4 Privacy

In this section we describe how the scheme protects voter privacy. With the exception of
the privacy entrusted entity that generates and prints ballot assemblies, no information
about how a voter votes becomes known to the other entities (i.e., voter, poll officials,
verifiers) with the following justification:

• Ballot assembly. It is easy to see that through the decommiting process, i.e.,
〈cp, cg〉 opens to 〈o, s〉, and therefore 〈cp, cg, ρ〉 ⇒ 〈o, s, ρ〉, which is the basis of the
print audit of spoiled ballot assemblies. Privacy is preserved on these ballot assemblies
given ρ = ∅ (i.e., is unmarked). Assuming poll procedure is followed, then 〈cp, cg〉
will be physically unlinked by the poll official and logically unlinked by the mixing in
the audit trail ballot boxes. It is central to voter privacy that neither the voters, poll
officials nor verifiers see 〈cp, cg〉 leading up to, and during, the ballot casting process.
The assembly layers might be sealed (e.g., glued) together as previously suggested
by a tear-off “counterfoil.”

• Ballot receipt. Given that 〈o, s〉 were randomly selected in section 6.2.2, and known
only to the privacy entrusted entity, then to all other entities 〈s〉; 〈o〉 and therefore
〈s, ρ〉; 〈o, s, ρ〉 given receipt 〈s, ρ〉.

• Receipt Commitment Lists. Given ballot commitment lists,
CBg = {〈cg1 , o1〉 , · · · , 〈cgb , ob〉} and CBp = {〈cp1 , o1〉 , · · · , 〈cpb , ob〉} and receipt com-
mitment lists CRg = {〈cg1 , s1〉 , · · · , 〈cgb , sb〉} and CRp = {〈cp1 , s1〉 , · · · , 〈cpb , sb〉},
but given that only one of 〈CBg, CRp〉 and 〈CRg, CBp〉 are ever made public, it is

116



easy to see 〈cgi , oi〉 < 〈cgi , si〉 and 〈cpi , oi〉 < 〈cpi , si〉 and thus 〈cgi , ρi〉 ; 〈oi, si, ρi〉
and likewise 〈cpi , ρi〉; 〈oi, si, ρi〉.

6.4.1 Prevented Attacks

Under the privacy properties, a link cannot be established between a vote and a receipt,
and therefore the receipt cannot be used to prove how a voter voted. That is to say
any observer, given only the ballot receipt, cannot “guess” a voter’s selections with non-
negligible advantage. These privacy properties address the following attacks:

• Vote buying. A voter who votes a certain way, following an arrangement made
between the voter and any entity a priori to voting, cannot subsequently prove how
they voted. This effectively relegates vote buying to, at best, conventional threats,
or at worst, to the previously mentioned forced-randomization attack,

• Retribution. A subtly different threat, often overlooked in the literature, is the
circumstance in which no precursory voting agreement exists, yet a possibility of ret-
ribution exists if the voter’s selections become known a posteriori to voting. Concern
for future retribution would be legitimate cause for a voter to vote differently than
intended, and therefore is arguably as serious a concern as vote buying and must
likewise not be facilitated by any proposed receipt scheme.

6.5 Concluding Remarks

In this chapter we introduced Aperio, an election scheme with cryptographic-like verifiabil-
ity based instead on physical tamper-evident paper documents. We believe Aperio may be
useful as a tool for educating non-technical audiences about the concepts and procedures
behind cryptographic election audits, without the comparatively conceptually-heavy de-
mands of learning the cryptography itself. Through this approach, we believe Aperio can
help foster the eventual acceptance of its cryptographic counterparts among the general
public.

With Aperio, we deconstructed end-to-end election verification to its essentials. Never-
theless, relative to physical security assumptions, cryptographic assumptions offer stronger
integrity/privacy assurances, in addition to being far more practical from the perspective
of scalability. In the following chapter we bring Aperio into an electronic setting with the
hope of maintaining a connection with its physical counterpart, while offering increased
protections and scalability.
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Chapter 7

Eperio

Is a system ‘universally verifiable’
when only a few mathematicians can
understand why it can be trusted?

David Dill [Dil07]

This chapter is adapted from published work co-authored with Jeremy Clark, and super-
vised by Urs Hengartner and Carlisle Adams [ECHA10].

7.1 Introductory Remarks

Aside from issues of the psychological/legal acceptability of cryptography in elections, there
are questions about the technical complexity of performing the audits. We contend that
the technical complexities added by cryptography are a barrier to widespread participation
in the audits. For example, although the 2009 election in Takoma Park demonstrated that
voters and election officials had a basic understanding of how to build and check receipts,
only two individuals are known to have conducted the cryptographic component of the
audit: both are experts in the field and worked in collaboration with us to implement their
audit software.1

In the interest of promoting wider participation in the election audit process, we believe
it is important to minimize the role of cryptography in the audit procedures. Ideally,
custom audit software could be avoided, or at least minimized.

1Software and audit results available online at
http://github.com/benadida/scantegrity-audit/ and
http://zagorski.im.pwr.wroc.pl/scantegrity/
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In this chapter we present Eperio, an electronically tabulated version of Aperio. In its
basic form the Eperio protocol involves a verifier downloading a set of encrypted files from
an election website, opening a subset of them by entering a password and comparing the
files to one another for consistency using a spreadsheet application or small software script.

Contributions. The contributions of this chapter are summarized as follows:

• The Eperio cryptographic election verification protocol,

• A proposal for implementing cryptographic commitments using symmetric-key en-
cryption,

• A software implementation of the Eperio system, which includes,

– An election verification script written in 50 lines of Python,
– An election verification procedure using TrueCrypt and OpenOffice Calc spread-

sheet application as an alternative to an automated script,

• A performance analysis of Eperio demonstrating that it requires fewer cryptographic
operations, smaller audit datasets, less execution time and fewer lines of software
than other recently deployed cryptographic election verification systems.

7.1.1 Motivation

Despite the important milestones made by previous work (cf. Section 2.2), cryptographic
voting is often criticized, among other things, for being difficult to implement and conduct.
The recent municipal election in the United States provides a good example: the two
independent auditors of that election each wrote several hundred lines of software code
to pore over the two and a half gigabytes of cryptographic audit data (supra note 1).
Many systems in the literature employ advanced cryptographic primitives and techniques
not typically found in standard software libraries. This often results in the cryptographic
software components of such protocols needing to be custom coded, and has pointed us
toward being less reliant on custom implementations.

Is simplicity central to the acceptance of cryptographic voting? On the one hand, there
are examples of the general population accepting cryptography without understanding the
protocols that enable it (e.g., online banking or wireless network privacy). It is also the
case that some citizens do not fully appreciate current voting procedures (e.g., statistical
recounts or ballot counterfoils) used to add some level of election integrity.

We contend that universal verification—the ability of anyone to participate in the
election audit—is fundamental to the spirit of cryptographic election audits, and that
lowering the technical complexity of the audits follows in that spirit.
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Eperio Ballot and Receipt. As a research direction focused on improving the experi-
ence of election verifiers, Eperio is agnostic about the ballot and receipt mechanism. We
only require that there exist some way to uniquely reference each optical-scan oval on each
ballot in the election. We call this a unique markable region (UMR).

Without loss of generality, throughout the rest of this chapter we will use a randomized-
candidate list ballot similar to the Prêt à Voter system [CRS05]. We note randomized
candidate orderings are not legal in all jurisdictions, and that a randomized code ballot
style (similar to Scantegrity) can be used interchangeably without modification to the
Eperio protocol. To mark such a ballot, a voter first locates their preferred candidate and
marks the associated optical-scan oval. The voter then separates the optical-scan ovals
portion and candidate list portion, tearing along a perforation (see Figure 7.1). The ovals
portion is scanned and retained by the voter as a receipt. The candidate list is shredded
by the voter before leaving the polling place.

7.2 The Eperio Protocol

Eperio is closely related to the Punchscan and Scantegrity cryptographic election verifi-
cation protocols. Unlike Punchscan and Scantegrity which use a mixnet-like structure to
achieve the E2E integrity and privacy properties, Eperio combines its audit data into a
single cryptographic table structure. This in turn permits a coarser, more efficient, crypto-
graphic commitment scheme. It also facilitates interesting implementation options such as
cryptographic commitments based on file-encryption and E2E verification in a spreadsheet.

As an intuition of this structure consider several ballot boxes, each of which contains
a photocopy of each ballot cast in an election. If you shake one of the ballot boxes, the
ballots will land with an ordering that is random and independent of the other boxes.
However if you were to open that box and tally up the ballots, it will still produce the
same winner as all the other boxes. In this way, verifying an election tally with Eperio
constitutes proving that each such ballot box is a shuffled copy of (i.e., is isomorphic to)
every other box. This physical analogy is inherited from Aperio. In the following sections,
we will extend this approach to a cryptographic setting.

7.2.1 Protocol Sketch

As a brief overview of the protocol, a set of trustees will jointly generate a table with
three columns. The first column will contain a unique reference for each markable region
(e.g., optical scan bubble) on each ballot in the election. The second column will indicate
whether a given region was marked or not marked (or alternatively if the ballot was selected
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for an audit). Finally the third column will contain the candidate/choice associated with
each markable region.

The rows of this table are randomly shuffled (analogous to shaking a ballot box). It is
easy to see that if the first two columns are revealed, the information should correspond
to the set of all of the receipts in the election. If the last two columns are revealed, the
information should correspond to the final tally. If all three columns are revealed (or the
contents of an unrevealed column are implied through some functional dependency), then
ballot secrecy is compromised. The Eperio protocol proves the correct formation of all
three columns by only revealing the information implied in two of the three columns. It
uses a composition of cut-and-choose and random audit techniques inspired by randomized
partial checking [JJR02].

7.2.2 Entities

The Eperio protocol relies on the following entities, which are standard in most E2E voting
systems:

• A set of n election trustees (or the prover), P , tasked with generating a verifiable
tally. P is assumed to be a set of mutually distrustful and non-collusive trustees.
However the protocol can tolerate t ≤ n−1

2
trustees who collude or refuse to partici-

pate.
• The set of authenticated voters who cast ballots in the election.
• The first set of verifiers, V1, who verify that their receipts were collected correctly

(Collected-as-Marked). V1 are either voters, or auditors that were given access to a
copy of a voter’s receipt.
• The second set of verifiers, V2, who verify that the ballots are printed correctly

(Marked-as-Intended). V2 are either voters or auditors who went in person to obtain
a ballot to audit.
• The third set of verifiers, V3, who verify that the tally is computed correctly from

the collected receipts (Counted-as-Collected). V3 can include anyone in any location
with access to the election data.
• A malicious adversarial prover, P ′, who will attempt to convince the verifiers that

an incorrect tally is correct.
• A malicious adversarial verifier, V ′, who will attempt to break voter privacy and

determine which candidate was selected on a given receipt (or any non-negligible
information about this selection).
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7.2.3 Functions

The Eperio protocol requires a set of standard functions from the cryptographic literature:
a threshold key agreement modeled after the one due to Pedersen [Ped91], a cryptographi-
cally secure pseudorandom number generator (PRNG), a perfect shuffle algorithm, a mes-
sage commitment scheme (either perfectly binding or perfectly hiding), and a public coin
(or random beacon) to generate non-interactive challenges.

Distributed Key Generation/Reconstruction

◦ (y1, . . . , yn, κ)← DKG(n, t, `, f1, . . . , fn)
◦ κ← KeyRec(yj1 , . . . , yjt+1)

DKG accepts from each of the n trustees a polynomial of degree t, fi, with coefficients
of bit-length ` such that they are elements of Zq for a suitably-sized prime q. The

coefficients are summed together, mod q, to produce a new polynomial f̂ . Each trustee
i receives yi = f̂(i) as their share and the value κ = f̂(0) forms a shared secret of
bit-length `. t should be set such that n ≥ 2t+1. KeyRec accepts at least t+1 shares,
yj1 , . . . , yjt+1 , from a subset of the trustees and outputs the shared secret κ.

Pseudorandom Number Generation

◦ {0, 1}` ← PRNG(κ, `)

PRNG is a stateful function which takes as input the shared secret, κ, as a seed and
returns l new pseudo-random bits each time it is invoked. For simplicity, we omit ` if
the size of the output is clear from the context.

Permutation

◦ π(Wi)← Permute(w1, . . . , wu,Π)
◦ π(Wi)← PermuteBlock(w1, . . . , wu, s,Π)

Permute accepts as input a list Wi of u elements and a number, Π = O(u log(u)),
of random bits sufficient to perfectly shuffle the list2 and returns a list containing
elements w1, . . . , wu in permuted order. For some s which divides u, PermuteBlock
applies Permute independently to each of the u/s non-overlapping sub lists in Wi.

2Generating a random integer from random bits is non-deterministic when the integer is not a perfect
power of 2. Perfect shuffling algorithms, like Fisher-Yates, require random integers. An upper bound on
the expected number of bits is 2(log2 u!).
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Figure 7.1: Left: E2E-enabled optical scan ballots. Each ballot consists of a unique serial number,
a candidate list printed in an independent random order, and a perforation between the optical scan
ovals and the candidate list. Upon marking the ballot, the candidate list is detached and shredded. The
remaining piece is scanned and granted as a receipt. Because the candidate orderings are independent
across ballots, knowing the mark position alone does not reveal how a voter voted. Right: Eperio table.
Each optical scan oval (referenced by a serial number and absolute position), its mark-state (marked or
unmarked) and the corresponding candidate name are recorded in a randomly assigned row.

Commitment

◦ c← Commit(m, r)
◦ {0, 1} ← Reveal(c, r,m)

Commit takes as input an arbitrary length messagem and a random factor r. It outputs
a commitment to the message c. Reveal accepts values m, r, and c, and outputs 1 iff
c is a valid commitment to m and r. Otherwise it outputs 0.

Public Coin Toss

◦ {0, 1} ← PublicCoin()

PublicCoin returns a uniformly random bit. The output should be unpredictable prior
to being invoked and verifiable a posteriori.

7.2.4 Lists and Tables

The Eperio protocol relies on a particular data structure, called the Eperio table, which is
constructed from a set of private inputs by the trustees. The Eperio table is a novel data
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structure and the primary contribution of this chapter. It is shown in Figure 7.1 with a
permutation-style ballot, which we use to illustrate the protocol.

To facilitate clarity, we also denote some intermediate lists and tables used in its con-
struction. We use a bold typeface to denote ordered lists and tables, and a blackboard
typeface to denote unordered sets.

The following list and set are public inputs to the system decided on prior to the
election.

UMR List: U is the list of each unique markable region (UMR) for the s
candidates on each of the b ballots. Elements are encoded as a ballot
serial number and a position, and are listed in ascending order. The
length of the list is u = s · b.

Candidate/Selection Roster: S is the set of selections or candidates to
appear on the ballot, for each contest. Elements are encoded as a char-
acter string of arbitrary length. The size of the set is s. Without loss of
generality, we assume a single contest.

These are used by the trustees, in conjunction with the functions defined above, to create
the following private list.

Candidate/Selection List: S← U×S is the list of candidates for each po-
sition on a ballot composed by randomly selecting, without replacement
per ballot, an element from S. It is ordered by U. The length of the list
is u.

The marks list will denote the final status of a markable region. It is empty prior to the
election and is provided as a public input to the system after every ballot has been cast.

Marks List: M is the list of marks corresponding to each markable region in
U. Elements include marked (1), unmarked (0), and print audited (-1).
The length of the list is u.

The concatenation of these three lists defines a table that collects all the private information
of the election.

Print Table: P is a table formed by joining U,M, and S. The dimensions of
the table are u× 3.
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A proof of election integrity subsumes a proof that the relations between each list in P is
consistent with a universal view of the election. Pairwise, a correct U-M relation implies
ballots were collected as marked (Collected-as-Marked), a correct U-S relation implies
ballots were printed correctly (Marked-as-Intended), and a correct M-S relation implies
the ballots were counted as collected (Counted-as-Collected). Note that revealing P(i,j) for
all i and j is sufficient, under our assumptions, for independently verifying the correctness
of the tally. Unfortunately, this trivial approach would also destroy the privacy preserving
property of the ballot receipt—in conjunction with P, receipts would provide proof of
which candidate was selected. Instead, we require a non-trivial approach that can both
establish integrity and preserve ballot secrecy.

The Eperio table is a data structure that, with a set of queries, can prove the correct
formation of P while maintaining the same level of privacy provided by only revealing the
list of receipts and the final tally. Specifically, it is a collection of x instances of P that
have been independently shuffled row-wise. By revealing portions of and relations on this
structure, we will show that a complete and robust proof of integrity can be established
with this minimal disclosure.

Eperio Table: E is a table formed by x instances of P, each of them indepen-
dently shuffled row-wise. The dimensions of the table are u× 3× x.

7.2.5 Protocol

We now outline the protocol for generating an Eperio table and the various outputs required
for proving it encodes a correct tally. The focus of this chapter is on the protocol for
verifying this proof, which is orthogonal to the issue of how the data is generated. However
the security proof we provide in the next section encompasses the generation of the data,
and so we give it consideration. The first three steps of the protocol are conducted prior to
the election: initial setup, generating the Eperio table, and generating the commitments
to the Eperio table. These steps are performed with a blackbox computation (for more on
this primitive, see Section 7.4).

Initial Setup. The setup assumes that a list of candidates, S, is available as well as the
number of ballots, b, to be used in the election. The first task is for the trustees to generate
an election secret and receive shares of this secret.

◦ (y1, . . . , yn, κ)← DKG(n, t, l, f1, . . . , fn)
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Generate Eperio Table. Next, the trustees generate the Eperio table E. U is formed
by listing the ballot and position numbers in order. To form S, the candidate list is repeated
b times (which we denote by Sb) and then randomly permuted on a ballot-by-ballot basis.

◦ ΠS ← PRNG(κ)
◦ Si ← PermuteBlock(Sb, s,ΠS)

Table P is created by placing U, M, and S beside each other in columns. M is initially
empty, but in future meetings will include the marks recorded during the election. P is
used to print the ballots. We use the symbol : to denote an entire vector within a matrix.

◦ P(:,1) ← U
◦ P(:,2) ←M
◦ P(:,3) ← S

Finally, x independent row-wise shufflings of P are generated. Each shuffled instance of P
is stored in the Eperio table, E(i,j,k).

◦ For k = 1 to x,
◦ ΠE ← PRNG(κ)
◦ E(:,1,k) ← Permute(P(:,1),ΠE)
◦ E(:,2,k) ← Permute(P(:,2),ΠE)
◦ E(:,3,k) ← Permute(P(:,3),ΠE)

We define, for future use, the following function. It encapsulates all the steps in this
‘generate Eperio table’ section.

◦ E← GenE(κ)

Generate Commitments. The trustees are now ready to commit to the data in E. For
each instance 1 ≤ k ≤ x, they will commit to both the E(:,1,k) and E(:,3,k) columns. This
requires x× 2 commitments. The random factors for these commitments are stored in an
x× 2 table R. The resulting commitment is stored in the corresponding table C.

◦ For i = 1 to 2, j = 2i− 1, and k = 1 to x,
◦ R(i,k) ← PRNG(κ)
◦ C(i,k) ← Commit(E(:,j,k),R(i,k))

◦ Publish C
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Note that 2i− 1 is simply the mapping {1→ 1, 2→ 3}, used to denote that commitments
to the first and third columns of E are stored, respectively, in the first and second rows of
C. C is published to the bulletin board.

Voting. Registered and authenticated voters are issued a paper ballot with a randomized
candidate list according to P. After marking the ballot, the candidate list is detached and
destroyed (e.g., placed in to a paper shredder). The remaining strip is scanned by an
optical scanner and the strip is retained by the voter as a receipt. The optical scanners
will record for each ballot which position was marked, as well as the ballots that were print
audited. After the election, these are placed into the list M. Without knowing P(:,3), this
information does not reveal which candidate was voted for and can be published.

◦ Publish M

Compute Tally. At least t + 1 trustees submit their election secrets to the blackbox
computation, which regenerates the key and the Eperio table. This time, the completed
marks list is shuffled along with the rest of the table.

◦ κ← KeyRec(yj1 , . . . , yjt+1)
◦ E← GenE(κ)

For each instance x, they publish the corresponding marks list. Each of these lists is a
shuffled version of the original M.

◦ Publish: E(:,2,:)

Finally, a tally is computed from any E(:,2,k) and E(:,3,k) pair of columns, and the list of
totaled values for each candidate, denoted τ , is published. This can be considered an
asserted tally, as the purpose of E2E verification is to prove that this tally is correct.

Generate the Linkage List. To ensure that the Eperio table is consistent with what
actually appears on the printed ballots in the election, verifiers have the ability to keep
an issued ballot for purposes of auditing its printing. If a ballot was chosen to be print
audited and the first position contained candidate Bob, then a row corresponding to this
markable region will exist in E at an unknown row. The row will be different for each
instance. If the ballot is printed correctly, each corresponding row in each instance should
contain Bob in the third column. The print auditor would like assurance of this fact.

However since commitments to only entire columns E(:,1,k) and E(:,3,k) exist, this fact
cannot be directly revealed without revealing both columns for a given instance. Doing
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this would reveal which candidate was selected for every receipt and cannot be pursued.
Instead, the election trustees will indirectly establish this fact. The trustees assert the
row number, a, in each instance corresponding to every audited markable region. Which
markable regions are audited is contained in the marks list, M, with -1 recorded for that
entry. The list of asserted row numbers is called the linkage list, L, and it is made public.

◦ for i = 1 to u and k = 1 to x:
◦ if Mi = -1:
◦ Find: a s.t. E(a,1,k) = Ui

◦ L(i,k) ← a

Audit Challenge and Response. After the tally has been posted, the trustees prove
to an independent auditor that the tally was calculated correctly. They do this through a
cut-and-choose protocol. First the trustees regenerate the election secret and the Eperio
table.

◦ κ← KeyRec(yj1 , . . . , yjt+1)
◦ E← GenE(κ)

Next, they invoke the public coin toss function to generate one flip for each of the x
instances.

◦ for k = 1 to x:
◦ z ← PublicCoin()
◦ Zk ← z
◦ Publish: R(z+1,k)

◦ Publish: E(:,2z+1,k)

Each flip is recorded in Zk. Depending on the flip, they either reveal the first two or
last two columns in each instance. Recall that E(:,2,:) was published previously. This is
illustrated in Figure 7.2.

7.2.6 Verification

We now show the steps that the verifiers take to check that the published data corresponds
to a tally that is correct. Recall there are three sets of audits (and corresponding verifiers).
The first set, V1, are the voters who check their receipts (or provide a copy to someone
they delegate to check on their behalf). If the receipt corresponds to ballot number b and
contains s positions that are either marked (1) or unmarked (0), the auditor should check
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Figure 7.2: Auditing Eperio table instances. Two example instances of the Eperio table during audit-
ing. Each instance alleges to contain the same information, but in an independently shuffled order. Left:
E(:,3,1) was challenged (then revealed), allowing verifiers to tally the election. Right: E(:,1,2) was
challenged (then revealed) allowing voters to check their receipts. The grey bars symbolize cryptographic
commitments that will remain unopened to protect ballot secrecy.

that the status of each position i on the receipt matches the status recorded at Mj, where
j = s(b− 1) + i.

The second set of verifiers, V2, should check the linkage list against their print audited
ballots. Let a = L(i,k) for an i on their ballot and an instance k. Depending on the random
coin for instance k, V2 should check that E(a,1,k) matches the associated markable region
on the ballot or E(a,3,k) matches the associated candidate. They should do this for all i on
their print audited ballot and each k in the election.

These two audits establish that the reported marks correspond to what appeared on
voters’ completed ballots and that what appears on the ballot corresponds to what is in
the pre-committed Eperio table. The final step is to ensure that the asserted tally, τ ,
corresponds to the marks. Recall that for each of the x instances, a random coin was
flipped to reveal value z ∈r {0, 1}. The third set of verifiers, V3, should do the following.

◦ for k = 1 to x:
◦ z ← Zk

◦ Check Reveal(C(z+1,k),R(z+1,k),E(:,2z+1,k))
◦ If z = 0:
◦ Check {E(:,1,k),E(:,2,k)} ∼= {Ui,Mi}

◦ If z = 1:
◦ Check {E(:,2,k),E(:,3,k)} ∼= τ

Here ∼= means that the two pairs of tables are isomorphic—i.e., they are a permuted
representation of the same information.
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7.3 Security

In this section, we summarize the main results of our security proof, which can be found in
the full paper [ECHA12]. Given a transcript of the entire protocol, the asserted tally can
be either accepted or rejected. If the transcript is correct and matches the asserted tally,
the decision will always be to accept (completeness). If the asserted tally is not correct,
the decision will be to reject with a high probability (soundness). Finally, the outputs do
not provide any information that can be used by a computationally bounded adversary
to determine any non-negligible information about which candidate was voted for by any
voter (computational secrecy).

Let P be an unbounded prover (the election authority) and V be a PPT-bounded
verifier. Either entity may employ a malicious strategy and we denote this with a prime
(P ′,V ′). Recall that τ represents the asserted tally and let ρ be the asserted receipts.

Soundness. The soundness of Eperio relies on two assumptions:

1. The function Commit(m, r) is perfectly binding. That is, for any m1 such that
Commit(m1, r1) = c1, there does not exist any r2 and m2 6= m1 such that
Reveal(c1, r2,m2) = 1.

2. The invocation of function PublicCoin() at the start of the post-election audit is
perfectly unpredictable at the close of the election.

Let b′r be the number of modified ballot receipts, and 0 ≤ p1 ≤ 1 represent the fraction
of voters who conduct a receipt check. Let b′p be the number of misprinted ballots, and
0 ≤ p2 ≤ 1 be the fraction of ballots that are print audited. Recall there are x instances in
E(:,:,k), for 1 ≤ k ≤ x. Given the above assumptions hold, it is proven (in the full paper)
that the probability of V rejecting a malformed transcript from P ′ is:

Pr[REJECTP ′,V ] = min[(1− (1− p1)b
′
r),

(1− (1− p2)b
′
p)(1− 1

2x
)].

Computational Secrecy. The secrecy of Eperio relies on the following assumptions:

1. The number of colluding trustees is at most t.
2. At least one trustee submits to DKG an fi drawn with uniform randomness from Ztq.
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3. All outputs are computed with a blackbox.
4. Any polynomial-sized output from PRNG(κ) provides no non-negligible advantage to

a PPT-bounded adversary in guessing either κ, the next bit in the output, or any
unobserved previous bit.

5. The function Commit(m, r) is semantically secure and computationally hiding. That
is, given either c1 = Commit(m1, r1) or c2 = Commit(m2, r2) for any chosen m1 and
m2, a PPT-bounded adversary should have no non-negligible advantage in guessing
which message was committed to.

Let εA4 and εA5 be the advantage specified in assumptions 4 and 5. Given all of the
assumptions hold, we prove in the full paper [ECHA12] that the advantage of P ′ recovering
non-negligible information about any voter’s selection given the full transcript as opposed
to just the final tally is:

|Pr[RecoverSel(ViewV ′(ρ, τ,C,L,E(:,2,:),Rz) = 1]−
Pr[RecoverSel(ViewV ′(τ)) = 1]| ≤

εA4 + εA5.

Additional Claims. In addition to the above proofs, we also show in the full paper that
Eperio is complete and can be modified to have everlasting privacy (i.e., V is unbounded
and P is PPT-bounded).

7.4 Practical Primitives

In this section, we revisit a few of the cryptographic primitives needed in Eperio. In
particular, we are interested in options that allow for useful deployment options.

Blackbox Computation The Eperio protocol requires the generation of the Eperio
table to be done using a blackbox computation. While in theory, the task performed
by the blackbox could be made into a multiparty computation (where only privacy is
required as correctness is provided by Eperio), we instead propose the use of a semi-
trusted computer. It is semi-trusted in the sense of only providing private evaluation of
functions; the correctness can be determined through the audit. That said, mechanisms
are provided to encourage correct evaluation. To this end, we assume disclosed source code
for the functions to be evaluated is provided in advance and some attestation mechanism
is available to ensure it is the same code running on the computer.
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All tasks performed by the trustees can be accomplished by regenerating the Eperio
table, and the regeneration of this table can be accomplished through a threshold of secret
shares from the trustees. Therefore the computer should not have any persistent mem-
ory and its internal state should be purged after the outputs have been published. While
this assumption may seem strong, in each of the recent occasions where end-to-end verifi-
able voting systems were used in real-life binding elections, semi-trusted computers were
deployed: e.g., Punchscan at the University of Ottawa [ECCP07a], Helios at Université
Catholique de Louvain (for key generation from the description in their paper) [AMPQ09],
and Scantegrity at Takoma Park, MD (cf. Chapter 5).

Cryptographic Commitment. We are interested in using symmetric-key file encryp-
tion as a commitment function for its speed, simplicity and widespread availability of
software implementations. For Eperio, this means putting the columns of the Eperio ta-
ble into individuals files, encrypting them under a randomly chosen key, and posting the
encryption as a commitment. To open the commitment, the encryption key is revealed
and the file can be decrypted. While our implementation of Eperio can be easily modified
to work with any standard commitment function, we use this approach to simplify the
experience for voters who want to verify the proof for themselves. File encryption utilities
are readily available, easy to use, and the commitment has message recovery.

Let E be a pseudorandom permutation (PRP): {0, 1}k × {0, 1}m → {0, 1}m. Let M be
a message of L m-bit blocks and let IV be a random m-bit initialization vector. Define E
to be the cipher block chaining (CBC) mode of encryption that encrypts M = m1, . . . ,mL

under k-bit key K and m-bit IV . E is defined as: c0 = IV and ci = E(K, ci−1 ⊕ mi).
Assume M is exactly L · m bits long and k = m. Let D be its inverse decryption function
applied to C = c0, . . . , cL under K: M = D(K,C).

Theorem 1: As defined, E is indistinguishable under a chosen plaintext
attack (CPA) [BDJR97]

.

Conjecture 1: As defined, D behaves like a pseudorandom function with
respect to collisions when C is held constant (note the difference from
standard assumptions on M and C with a fixed K). That is, M ←
DC(K) has random collisions for a fixed C and a variable K.

Theorem 2: Define a commitment with message recovery function as (c, IV)←
Commit(M,K) = E(K, IV,M‖f(M)), where E is, as defined, CBC
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mode with a pseudorandom permutation, and f(M) = M‖M is a re-
dundancy function.3 Define M ′ ← Reveal(C,K) = D(K,C). M ′ is only
accepted when M ′ has the correct form M‖f(M) for some M . We show
that such a commitment is computationally hiding under Theorem 1 and
statistically binding under Conjecture 1.

We omit a proof of Theorem 2 here but it is included in the full version of the pa-
per [ECHA12]. Because the commitment has message recovery, its Reveal function differs
slightly from the commitment used earlier. We have demonstrated a very specific statisti-
cally hiding commitment function that can be constructed from a block cipher, assuming
conjecture 1 holds. We model this ideal functionality in the real-world with AES-128-CBC
in the next section.

Public Coin Toss. Voting systems often require the use of a public coin for the purposes
of fairly implementing the cut-and-choose aspect of the audits. In the case of conventional
voting, it is used to select precincts for manual recounts. Cordero et al. suggest a pro-
tocol using dice [CWD06]. Clark et al. note that dice outcomes are only observable by
those in the room, and suggest a protocol for auditing E2E ballots using stock market
prices [CEA07b], which has recently been given a more formal analysis [CH10]. This was
suggested earlier by Waters et al. outside of the voting context [WJHF04a]. A further
alternative is to use the Fiat-Shamir heuristic [FS86], which is secure in the random oracle
model. However, a requirement for Fiat-Shamir is that the challenge space is large. In our
case, the number of challenge bits is the same as the number of proof instances—for 10 or
20 instances, Fiat-Shamir proofs can be easily simulated under real-world assumptions and
is thus unsuitable for our needs. Thus, we use the stock market protocol. The output from
a statistically-sound PRNG is seeded with a random extraction of a pre-selected portfolio
of closing stock prices. Evaluation of challenges occurs at least a full business day after
the audit data has been committed to [CH10].

7.5 Implementation

Election Generation Tool. The hardware/OS platform design of the election genera-
tion software tool follows directly from previous systems such as Punchscan and Scantegrity
whereby a diskless, stand-alone computer is booted from a Linux live-CD. The Eperio
election generation software is then loaded via a USB-key after being certified by exter-
nal experts. Election data is generated and written back on to the USB sticks, at which

3We thank and acknowledge Ronald L. Rivest for suggesting this redundancy function for creating a
binding commitment from a block cipher. Any errors in the analysis are our own.
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Figure 7.3: Election generation wizard. Trustees are guided through the complete process of selecting
election parameters and setting up strong passwords prior to generating ballots and cryptographic audit
data.

point the computer is shut down. The election generation software itself is separated in
to graphical user-interface, and cryptographic/back-end components. The primary cryp-
tographic operations (i.e., file-encryption based commitments) were realized using func-
tion calls to OpenSSL. We implemented the election generation tool in Python using the
GTK+ GUI library, which is a standard to most GNOME Linux live-CD distributions.
The graphical layout consists of a multi-panel “wizard” work flow (shown in figure 7.3)
to incrementally guide election trustees through parameter selection and password input.
Unlike the Punchscan/Scantegrity software implementation, which requires some initial
system configuration, the Eperio trustee interface software is intended to be self-contained
and runnable directly following a live-CD boot. A specification of the audit data is given
in Appendix A.1.

Bulletin Board. The implementation of secure public, append-only bulletin boards is
an open area of research. In its simplest form, the bulletin board consists of signed election
audit data available on a public FTP server administered by the election authority, and
which is closely monitored and archived/mirrored by any interested party. Mirroring of
audit data can be an important peer-service provided between verifiers since the election
authority may maliciously attempt to modify commitment data throughout the course of
the election. It also ensures long-term archiving of the audit data, which may otherwise
be removed following the election.

Verification Script. As a primary objective of Eperio, the verification script was de-
signed to be compact and execute swiftly. A Python script externally calls OpenSSL to
decrypt relevant commitment files and then performs the audits on them. We implemented
proofs of the marked-as-intended and counted-as-collected properties in a compact fifty (50)
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lines of Python code (see Appendix A.2). As will be discussed in the following section, this
represents the smallest implementation of a verification interface relative to other major
released implementations by an order of magnitude. We tested this implementation on
Ubuntu 7.10 (Python 2.5) and 9.10 (Python 2.6) as well as on Mac OSX Leopard and
found that it could be executed without additional installation or configuration. Verifiers
using Windows would be required to install Python and OpenSSL, or as an alternative,
they could be directed to burn and boot Linux live CD. With the verification scripts on
a USB key the entire audit can be completed without actually installing or configuring
software on a verifier’s machine.

Verification using Spreadsheets. An interesting alternative to writing a custom code-
base is to use a spreadsheet that can import a CSV file as a worksheet. We believe that
spreadsheets can help broaden the appeal of E2E verification, given many citizens who
are not accustomed to reading/writing/running code do use spreadsheets. Spreadsheets
have grown to become one of the most familiar computer applications, capturing a di-
verse cross-section of users in government, enterprise, and consumer sectors. They are
also widely available: OpenOffice.org, a freely-downloadable open-source office productiv-
ity suite (which includes the Calc spreadsheet application), reports over a hundred million
downloads.4

We have developed a set of simple manual verification steps using TrueCrypt and
OpenOffice Calc. As an overview of this implementation, the user manually copies and
pastes the revealed encryption keys into the TrueCrypt volume password dialog to mount
the encrypted volume. The unencrypted CSV file can now be loaded directly in to the
spreadsheet program as a worksheet. The verifier can then complete the audit using only
simple spreadsheet operations (COPY, PASTE, SORT, etc). A full set of directions are given
in Appendix A.3. As an alternative to manual verification, most spreadsheet applications
integrate power macro/scripting languages that could automate the audit checks.

Spreadsheets as an All-in-one Election Audit Tool. Although many spreadsheets
support basic file-encryption, cases of improper implementation (as in [Wu05]) have led to
a general distrust of spreadsheets as an encryption service. We observed that OpenOffice’s
file encryption leaks partial information about a file’s contents by storing an unencrypt-
ed/unsalted hash of the first 1024 bytes of the compressed spreadsheet,5 making it un-
suitable as an implementation of the commitment scheme proposed in section 7.4. Indeed
it is not clear whether any of the major contemporary spreadsheet applications would be
suitable for implementing file-encryption based commitments. Nevertheless, the prospect

4http://stats.openoffice.org
5Open Document Format for Office Applications (OpenDocument) v1.2
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of an “all-in-one” election verification tool already installed on most voters’ computers is
an intriguing one.

7.6 Performance Comparison

Let us examine the technical requirements of election audits by comparing Eperio to several
other major implementations. For space reasons we restrict our comparison to recent
systems that have been deployed in binding elections, specifically Punchscan, Prêt à Voter,
Helios and Scantegrity II. As outlined in Section 7.2, Eperio uses a cut-and-choose protocol
to verify the correctness of the ballot data structure. Through the use of the linkage-
list construct for print auditing, and the symmetric-key commitment scheme outlined in
Section 7.4, the protocol allows for the commitment of entire columns, causing the number
of required symmetric-key block operations to grow with the number of voters/candidates
divided by the block size. The compactness of the verification process follows from it:
verification involves running a file-decryption utility, followed by a sort and comparison of
columns with the asserted outcome.

System Mod Exp Mod Mult Sym Key Ops Data (B) LOC (approx)

Eperio – – 3iv(log(2v))/16 6iv(log(2v) + 2) + 16i 50
Scantegrity – – 7.5civ 168civ 1000
Punchscan – – 7.5iv + 9v 168iv + 224v 2000

Prêt-á-Voter 1.5itv – itv 288itv + 192v 1000
Helios v2. 9cv + ct 9cv 2.5cv 2064cv 1500

Table 7.1: Technical requirements for election verification: comparison of Eperio with other im-
plementations for cryptographic audits involving v voters, c candidates, t trustees and i proof
instances.

Both Punchscan and Scantegrity rely on a similar cut-and-choose protocol to audit their
respective data structures, but utilize a particular commitment and print-audit scheme
that requires each table element to be committed to separately resulting in a much larger
dataset and number of symmetric-key operations. Unlike Eperio and Scantegrity however,
Punchscan encodes ballot information in a way that is mostly invariant to the number of
candidates, resulting in some savings in terms of data/number of overall block operations,
although it requires additional ballot commitments as a result of its particular ballot style.
Punchscan was first deployed during University of Ottawa Graduate Students Association’s
(GSAÉD) annual general election in 2007 [ECCP07a]. This election dataset (denoted
GSAED07 in Table 7.2) and verification source code (written in C#) are available online.6

Scantegrity was deployed during the 2009 Takoma Park municipal election (supra note 2).

6http://punchscan.org/gsaed/
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This election dataset (denoted TAKOMA09 in Table 7.2) and verification source code (Python
and JAVA) are also available online (supra note 3). We used the Python implementation
to produce timing results in Table 7.2.

Prêt à Voter [CRS05], also an E2E mechanism for optical-scan elections, uses ran-
domized partial checking of the correct behaviour of nodes in a decryption mixnet [JJR02].
Each election trustee separately maintains two mix nodes in this network, and auditing
the mixnet involves verifying the public-key decryption of half of the ciphertexts emanat-
ing from a given mix node. The number of public-key operations a verifier must perform
therefore is the number of trustees times the number of voters. Auditing ballot printing
also involves decryptions proportional to the number of trustees. Prêt à Voter differs from
Eperio, Punchscan and Scantegrity in that it does not pre-commit to cryptographic ballot
forms—they can be generated (and audited) on-demand. This means only cast ballots
are included in the mixnet, but the print audit still requires more ballot forms be printed
than will actually be cast. Prêt à Voter was deployed in 2007 for the University of Surrey
Students’ Union (USSU) Sabbatical Elections. The audit dataset (USSU07) is not currently
available online. The verification interface was written in JAVA.7

Helios v2. [AMPQ09] is an E2E mechanism for remote voting that uses homomorphic
tallying (i.e., tallying under encryption) to protect voter privacy. To ensure the tally is
correct, a zero-knowledge proof of correctness accompanies the encryption of each candidate
on each ballot in the election. Likewise, a proof of decryption accompanies the final tally.
The primary computational requirement of Helios election verification comes from auditing
the inputs—each ballot requires 4 modular exponentiations per candidate. The Helios
verification interface was written in Python.8 Helios v2. was deployed in 2009 in an election
at Universite Catholique de Louvain. The the election dataset (UCL09) is not currently
available online. Timing analysis of a reference election of the original implementation,
Helios v1., is presented in [Adi08] and is denoted in Table 7.2 as HELv1REF.

Audit Dataset Size. For an election involving v voters, c candidates, t trustees and i
proof instances, Table 7.1 expresses each system in terms of the number of modular expo-
nentiations, modular multiplications, and symmetric-key block operations required during
the verification process, along with the size of the audit dataset (bytes) and contributed
software lines of code (LOC) of the respective implementation. In the case of paper-ballot
systems, we include an additional 0.5v ballots for the print audit. In the case of systems
with pre-committed ballots, an additional 0.5v ballots are included to account for spoilage.
Although the execution and data complexities of the systems are all linear in the election
parameters, Eperio’s performance advantage stems from its smaller constant factor.

7http://www.pretavoter.com/
8http://www.heliosvoting.org/
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Election Scantegrity Punchscan Helios Eperio

TAKOMA09 1127s – – 162s

GSAED07 – 75s – 9s

HELv1REF – – 14400s 1s

Table 7.2: Comparison of election verification times. Eperio times are for simulated datasets of
equivalently sized election.

Timing. Basic timing analysis of election verification on available data is presented in
Table 7.2. Our test platform was a 1.8GHz dual-core HP laptop running Ubuntu Linux
9.10. Eperio timings were performed on data simulating equivalently sized elections.

Comparing execution times of the Eperio verification script relative to three other sys-
tems (Punchscan, Scantegrity, Helios) on three election datasets shows Eperio significantly
faster in time-to-verify. As a concrete example, using the Punchscan verification tool to
audit the 2007 Punchscan election in [ECCP07a], it took us 75 seconds to complete, while
an equivalently sized election run with Eperio took us 9 seconds.

The timing result for the Scantegrity audit on the TAKOMA09 dataset includes several
audits relating to the Scantegrity II ballot and voting method of the specific election that
we did not replicate, suggesting that a more precise timing analysis would produce a smaller
margin.

Code Size: Is Less Really More? Table 7.1 lists the approximate code size of pub-
lished verification software showing Eperio having a significantly smaller code base than
related systems. As a performance metric however, software lines of code (LOC) is limited.
There is debate as to how code lines should be counted, as well as which components to
even include. It also does not take into account whether more efficient implementations
could be created. Setting these questions aside, are small code bases important for E2E
audit software?

While ultimately smaller code bases are not a proof of relative simplicity or ease of
implementation, we believe it is a signal of simplicity as well as a gesture for engaging a
wider audience.

7.7 Concluding Remarks

Despite fundamental limitations, source code reviews remain the conventional approach to
electronic voting today. Such undertakings involve code bases of hundreds of thousands
of lines of code that often may only be scrutinized by independent observers under strict
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conditions. By contrast, cryptographic election verification is inherently public, universal,
and undertaken on results themselves, not the machines that produce them. The software
involved is also typically much smaller than a DRE. With Eperio, the software is smaller
still—four orders of magnitude smaller—and verification can even be performed manually
without any custom software. By making verification more accessible to voters, we contend
that Eperio is an important democracy enhancing technology.

Eperio, like Scantegrity, relies on blackbox computation to protect ballot secrecy. Fu-
ture work could explore a distributed version of the protocol, as well as a deeper exploration
of the security of commitments based on block ciphers, such as proving its security in a
suitable model (e.g., the ideal cipher model).
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Chapter 8

CommitCoin

With cryptographic voting schemes,
some of the most critical events occur
very early in the election cycle, at a
time when it is difficult to find
observers.

Douglas W. Jones [Jon09]

This chapter is adapted from published work co-authored with Jeremy Clark [CE12].

8.1 Introductory Remarks

The election schemes presented in the previous chapters have, for the most part, been based
on cryptographic commitments. The soundness of a commitment scheme, and hence the
election itself, fundamentally cannot be assured unless relevant messages are exchanged in
the proper order. A fundamental limitation of election schemes based on commitments,
therefore, is an early-participation requirement placing a number of constraints on election
verification:

• It requires a verifier to understand the principals of election verification (or at least
of cryptographic commitments) prior to the election,

• It requires a verifier to be aware that the particular election will be offering the option
of cryptographic verification,
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• It requires a verifier to perform an action, i.e., download the commitments, prior to
the election.

We believe requiring would-be verifiers to plan ahead for an election audit represents a
significant obstacle. Central to our goal of making election verification more accessible, we
seek to eliminate this early-participation requirement.

In this chapter, we show that an election authority can produce a commitment and later
convince a verifier that the commitment was made prior to the election, premised on the
assumption that the election authority does not have unusual computational power. We
call this “carbon dating.” We show a general approach to carbon dating using moderately
hard puzzles and then propose a specific instantiation. CommitCoin harnesses the existing
processing power of the Bitcoin network without trusting it, and is designed to leave the
commitment value evident in the public Bitcoin transcript in a way that does not destroy
currency.

Contributions. The contributions of this chapter are summarized as follows:

• The carbon dating paradigm—a fuzzy time stamping mechanism based on moder-
ately hard puzzles,

• CommitCoin, a protocol for carbon dating cryptographic commitments using the
BitCoin P2P network,

• An application of CommitCoin in carbon dating the Scantegrity commitments of the
2011 Takoma Park municipal election.

8.2 Preliminaries and Related Work

Secure Time-Stamping. Secure time-stamping [HS90] is a protocol for preserving the
chronological order of events. Generally, messages are inserted into a hash chain to ensure
their relative temporal ordering is preserved under knowledge of any subsequent value
in the chain. The chain is constructed by a distributed time-stamping service (TSS) and
values are broadcast to interested participants. Messages are typically batched into a
group, using a hash tree [BdM91, BHS91, BLLV98, PRQ+98] or an accumulator [BdM93],
before insertion in the chain. Time-stamping is a mature field with standardization1 and
commercial implementations.

1ISO IEC 18014-3; IETF RFC 3161; ANSI ASC X9.95
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A secure timeline is a “tamper-evident, temporally-ordered, append-only sequence” of
events [MB02]. If an event Eti occurs at time ti, a secure timeline can only establish that
it was inserted after Eti−1

and before Eti+1
was. To determine ti by consulting the chain,

one must either trust the TSS to vouch for the correct time, or, to partially decide, trust a
recipient of a subsequent value in the chain to vouch for when that value was received (if at
tj, we can establish ti < tj). However should conflicting values emerge, implying different
hash chains, there is no inherent way to resolve which chain is correct beyond consensus.

Non-Interactive Time-Stamping. An approach closely related to our notion of car-
bon dating is non-interactive time-stamping [MSTS04]. In such a scheme, stampers are not
required to send any message at stamping time. The proposed scheme is in the bounded
storage model. At each time interval, a long random bitstring is broadcast to all parties.
Stampers store a subset that is functionally dependent on the message they are timestamp-
ing. Verifiers also captured their own subset, called a sketch, at every time interval. This
allows verification of the timestamp by anyone who is participating in the protocol, but
not by a party external to the protocol. By contrast, our notion of carbon dating allows
verification by anyone but is not necessarily non-interactive.

Proof of Work. The literature considers applications of moderately hard functions or
puzzles that take a certain amount of computational resources to solve. These are variably
called pricing [DN92], timing [FM97], delaying [GS98], or cost [GJMM98, Bac02] functions;
and time-lock [RSW96, BN00, MMV11] or client [JB99, ANL00, DS01, WR03, WJHF04b,
DMR06, TBFG07, CMSW09, SKR+11] puzzles. Proof of work is sometimes used as an
umbrella term [JJ99]. Among other applications, proof of work can be used to deter
junk email [DN92, GJMM98] and denial of service attacks [JB99, DS01, Bac02, WR03,
WJHF04b], construct time-release encryption and commitments [RSW96, BN00], and mint
coins in digital currencies [RS96, Bac02, Nak08].

We consider proof of work as three functions: 〈Gen, Solve,Verify〉. The generate function
p = Gen(d, r) takes difficulty parameter d and randomness r and generates puzzle p. The
solve function s = Solve(p) generates solution s from p. Solve is a moderately hard function
to compute, where d provides an expectation on the number of CPU instructions or memory
accesses needed to evaluate Solve. Finally, verification Verf(p, s) accepts iff s is a correct
solution to p.

Time-Stamping & Proof of Work. Bitcoin is a peer-to-peer digital currency that
uses secure time-stamping to maintain a public transcript of every transaction [Nak08].
However new events (groups of transactions) are appended to the hash chain only if they
include the solution to a moderately hard puzzle generated non-interactively from the
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previous addition. Peers compete to solve each puzzle and the solver is awarded newly
minted coins. A secure timeline with proof of work provides a mechanism to both limit the
creation of new currency and to make it computationally difficult to change a past event
and then catch up to the length of the original chain (peers accept the longest chain as
canonical).

8.3 Commitments with Carbon Dating

A protocol for carbon dating commitments is provided in Protocol 8.1. It is a natural
application of proof of work protocols but one that does not seem to have been specifically
noted in the literature before.2 Alice commits to a message m and instantiates a puzzle
p based on the commitment value c that will take, on expectation, ∆t units of time to
solve. Alice begins solving p. Should a new party, Bob, become interested in when c was
committed to, Alice will later produce the solution s. When given s, Bob concludes that
p, and thus c, were created at least ∆t time units before the present time. Since p will
not take exactly ∆t to solve, there is some variance in the implied instantiation time. We
consider the case where Bob is only interested in whether the commitment was made well
before a specific time of interest, which we call the pivot time.

PROTOCOL 8.1 (Commitments with Carbon Dating).

Input: Alice has message m at t1.

Output: Bob decides if m was known by Alice prior to pivot time t2.

The protocol:
1. Pre-instantiation: At t0, Alice commits to m with randomness r by computing c =

Comm(m, r). She then generates a puzzle based on c with difficulty d (such that the time
to solve it is approximately ∆t) by computing p = Gen(d, c). She outputs 〈c, p〉.

2. Instantiation: At t1, Alice begins computing s = Solve(p).

3. Resolution: At t3 = t1 + ∆t, Alice completes s = Solve(p) and outputs 〈s,m, r〉. Bob checks

that both Verf(s,Gen(d, c)) and Open(c,m, r) accept. If so, Bob decides if t3 −∆t
?
� t2

If useful, a few extensions to Protocol 8.1 are possible. It should be apparent that
carbon dating can be used for any type of sufficiently random message (e.g., plaintexts,
ciphertexts, signatures, etc.) by replacing c in Gen(d, c) with the message. Second, the
commitment can be guaranteed to have been made after a given time by, e.g., including
recent financial data in the puzzle instantiation [CH10]. Finally, the resolution period can

2Concurrent to the review of this work, it is independently proposed and studied [MVM11].
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be extended by instantiating a new puzzle with the solution to the current puzzle (assuming
the puzzles are entropy-preserving; see [GS98] for a definition of this property).3

8.3.1 Puzzle Properties

For carbon dating, we require the proof of work puzzle to have specific properties. Consider
two representative proof of work puzzles from the literature (and recall c is the commitment
value and d is a difficulty parameter). The first puzzle (Prs), based on repeated squaring, is
to compute Solve(d, c,N) = c2

d
mod N where N = q1q2 for unknown large primes q1 and

q2, and 2d � N [RSW96, BN00, KC10]. The second puzzle (Ph), based on hash preimages,
is to find an x such that y = H(c, x) has d leading zeros (where H is a cryptographic hash
function)4 [GJMM98, ANL00, Bac02, Nak08]. We contrast the properties of Prs and Ph

with the properties of an ideal puzzle scheme for carbon dating (Pcd).

Pcd should be moderately hard given a sufficiently random c as a parameter. Prs requires
d modular multiplications and Ph requires 2d−1 hashes on average. Neither precomputation,
amortizing the cost of solving many puzzles, or parallelization should be useful for solving
Pcd. Parallelization is useful in solving Ph, while Prs is by design inherently sequential.
Verify in Pcd should be efficient for anyone. This is the case in Ph but not Prs, where
efficient verification requires knowing the factorization of N ,5 making Prs useful only when
the puzzle creator and solver are different parties.6 When surveying the literature, we
found that like Prs and Ph, each type of puzzle is either parallelizable or only verifiable by
the puzzle creator. Designing a non-interactive, non-parallelizable puzzle appears to be an
open problem.

Finally, we require a few properties specific to our scheme. It should be hard to choose
c such that the puzzle is not moderately hard. Given s = Solve(Gen(d, c)) and s′ =
Solve(Gen(d, c′)), it should be hard to find any pair of puzzles such that s = s′. Further, it
should not be efficient to convert 〈s, c〉 into 〈s′, c′〉.

3It may be preferable to solve a chain of short puzzles, rather than a single long puzzle, to allow (by
the law of large numbers) the average solution time to converge and to reduce the amount of time Bob
must wait for the solution.

4Let H : {0, 1}∗ → {0, 1}m. Then for d ≤ m, find any x such that y ∈ ({0}d‖{0, 1}m−d).
5The totient of N serves as a trapdoor: compute δ = 2d mod φ(N) and then s = cδ mod N .
6Alice could use Prs with the smallest unfactored N from the RSA challenges. Assuming continued

interest in factoring these numbers, Alice’s solution will eventually be verifiable. However she risks (a) it
being factored before she solves the puzzle or (b) it never being factored at all. It also assumes non-collusion
between Alice and RSA (assuming they know the factors).
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8.3.2 Limitations

Aside from a good candidate for Pcd, the primary limitation to Protocol 8.1 is that
the implied instantiation time is fuzzy. Carbon dating is best when the ratio between
instantiation-to-pivot and pivot-to-resolution is maximized but the timing of the pivot is
often unknowable. Another limitation is that Alice could commit to many different mes-
sages but only claim one. This excludes carbon dating (and non-interactive timestamping)
from, e.g., predicting election results or game outcomes. Generally, the scheme only works
for accepting a committed message from an exponentially large set. A final limitation is
that Alice must devote a CPU to solely solving the problem for a long period of time. We
address this last limitation with CommitCoin, and then later provide an example where the
first two limitations are not as applicable.

8.4 Carbon Dating with Bitcoin

Bitcoin is a peer-to-peer digital currency. A simplification of the scheme is as follows:
participants are identified by a public signing key. A transaction includes a sender, receiver,
and amount to be transferred (units of bitcoins are denoted BTC), and it is digitally signed
by the sender and broadcast to the network. Transactions are batched together (into a
“block”) and then appended to a hash chain (“block chain”) by solving the Ph hash puzzle
on the block (d = 53 bits currently). The first node to broadcast a solution is awarded
newly minted coins (currently 50 BTC) plus any transaction fees (currently optional). At
the time of writing, one large Bitcoin mining pool, Deepbit, reports being able to compute
242 hashes/second, while the network solves a puzzle on average every 10 minutes.7

8.4.1 The CommitCoin Protocol

If Alice can put her commitment value into a Bitcoin transaction, it will be included in the
chain of puzzles and the network will provide carbon dating without Alice having to perform
the computation herself. Bob only has to trust that Alice cannot produce a fraudulent block
chain, longer than the canonical one and in less time. This idea has been considered on
the Bitcointalk message board8 in the context of the distributed network vouching for the
timestamp. Our observation is that even if you do not trust the timestamp or any node in
the network, the proof of work itself can be used to carbon date the transaction (and thus
commitment value).

7http://deepbit.net; http://blockexplorer.com/q/interval
8http://goo.gl/fBNnA
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PROTOCOL 8.2 (CommitCoin).

Input: Alice has message m, key pair 〈sk, pk〉 associated with a Bitcoin account. Without loss of
generality the account has a balance of > 2 BTC.

Output: The Bitcoin block chain visibly containing the commitment to m.

The protocol:
1. Pre-instantiation: At t0, Alice does the following:

(a) Alice commits to m with randomness r by computing c = Comm(m, r).

(b) Alice generates new temporary key pair 〈sk′, pk′〉 with sk′ = c.

2. Instantiation: At t1, Alice does the following:

(a) Alice generates transaction τ1 = 〈pk → pk′, 2〉 to send 2 BTC from pk to pk′ and signs it
with randomness ρ: σ1 = Signsk(τ1, ρ). She outputs 〈τ1, σ1〉 to the Bitcoin network.

(b) Alice generates transaction τ2 = 〈pk′ → pk, 1〉 to send 1 BTC from pk′ back to pk and
signs it with randomness ρ′: σ2 = Signsk′(τ2, ρ

′). She outputs 〈τ2, σ2〉 to the Bitcoin
network.

3. Tag & Open: At t2, after τ1 and τ2 have been finalized, Alice generates transaction τ3 =
〈pk′ → pk, 1〉 to send the remaining 1 BTC from pk′ back to pk and signs it with the same
randomness ρ′: σ3 = Signsk′(τ3, ρ

′). She outputs 〈τ3, σ3〉 to the Bitcoin network.

4. Extraction: At t3, Bob can recover c by extracting sk′ from σ2 and σ3.

Remark: For simplicity we do not consider transaction fees.

Alice has control over at least three parameters in a Bitcoin transaction: her private
key(s), her public key(s), and the randomness used in the signature algorithm which,
importantly, is ECDSA. If she sets the receiver’s public key9 to be her commitment value
c and sends 1 BTC to it, the 1 BTC will be unrecoverable (akin to burning money). We
consider this undesirable for two reasons: (a) it is financially wasteful for Alice and (b) it
is not being a good citizen of the Bitcoin community.

By setting c equal to a private key or the signature randomness and following the
protocol, c itself will never directly appear in the transcript. To get around this, Alice sets
c to the private key of a new account and then purposely leaks the value of the private
key by signing two different transactions with the same randomness. The CommitCoin
protocol is given in Protocol 8.2. Since c is randomized, it has sufficient entropy to function
(temporarily) as a secret key. A few bits of the secret key could be used as a pointer (e.g.,
URL) to a place to post the opening of the commitment.

9Technically, it is a fingerprint of the public key.
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8.5 A (Simplified) Example of CommitCoin

We committed to the title and abstract of the CommitCoin paper [CE12] and, as proof of
concept, inserted it into the Bitcoin block chain on September 15, 2011 (the submission
deadline for FC 2012). We used a simplified version of CommitCoin, with c set to be
the public key fingerprint. As noted, it effectively burns a small amount of money. This
example is intended as an easy-to-follow proof of concept for embedding values into the
block chain using available tools. An implementation of Protocol 8.2 using c as the private
key (avoiding such money burning) is left for future work.

First we ran,

openssl rand -out random.dat 20

creating a file containing a 20 byte random factor. Then we concatenated the randomness
to the end of the abstract PDF and hashed it using RIPEMD-160,

cat abstract.pdf random.dat > preimage.dat

openssl dgst -ripemd160 preimage.dat

giving us the result:

135e3712334428d4061efe4e5ffd5ff817aeb817

This serves as a basic commitment scheme. We called an online tool10 to convert this hash
into a valid Bitcoin address giving us:

12mQhpvGYdBrvDJq6sFGwEe3GETaqEM4Jk

Finally, we used the Bitcoin Faucet11 to send BTC0.005 to this address. This transaction
ostensibly appeared in the Bitcoin blockchain on 2011-09-16 00:24:32 which can be seen in
blockexplorer.12 However it may be the case that we actually committed to our abstract
long after 2011-09-16 00:24:32, and colluded with blockexplorer or the Bitcoin network to
display the wrong timestamp. How can you really be sure?

10http://blockexplorer.com/q/hashtoaddress/135e3712334428d4061efe4e5ffd5ff817aeb817
11https://freebitcoins.appspot.com/
12http://blockexplorer.com/tx/2993c284f0b6838386ddd286af415384560d93cc4e27d25087fd6534f8e...
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At the time of publication, many more blocks have been added to the blockchain. Each
block that is added is a solution to a moderately hard problem. Suppose we actually
committed to the abstract yesterday. That means we would have had to forge the entire
chain from Block 14553513 to the current block.14 Given each block takes on average 10
minutes for the entire Bitcoin network to solve, we would have required substantially more
computing power than the entire Bitcoin network to have solved that many blocks in single
day.

8.6 Use with Scantegrity

An interesting application of carbon dating is in cryptographic end-to-end verifiable elec-
tions such as Scantegrity. The soundness of such elections, however, relies in part on
commitments made prior to the election. If a corrupt election authority changed the pre-
election commitments after the election without being noticed, an incorrect tally could
be made to verify. It is natural to assume that many people may only become interested
in verifying an election after it is complete. Since the pivot (election day) is known, the
commitments can be made well in advance, reducing the uncertainty of the carbon dating
protocol. Moreover, owing to the design of Scantegrity, invalid commitments will only vali-
date negligibly, ruling out precommitting to many possible values as an attack. Scantegrity
was used in the 2011 municipal election in Takoma Park, MD (two years after the elec-
tion in Chapter 5) and CommitCoin was used to provide carbon dating of the pre-election
commitments. See Appendix B for details.

8.7 Concluding Remarks

Commitment-based election verification has the inherent limitation that verifiers are re-
quired to become involved in the audit process prior to the election. With CommitCoin, we
can provide carbon dating of commitments in a way that is simple to verify, and through
the use of BitCoin, nearly effortless to provide. In this scenario, even verifiers who become
involved a postiori to the election are able receive a proof that is sound from their view of
the protocol transcript.

13http://blockexplorer.com/b/145535
14http://blockexplorer.com/q/getblockcount
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Part III

Paper-ballot Based Elections with
Distributed Trust
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Chapter 9

Toward Oblivious Ballot Printing: A
Two-party Approach

The printing press is either the
greatest blessing or the greatest curse
of modern times.

E. F. Schumacher

This chapter is adapted from published work co-authored with Jeremy Clark, and super-
vised by Urs Hengartner and Carlisle Adams [ECHA09].

9.1 Introductory Remarks

For the purposes of protecting ballot secrecy, a complete ballot should not be seen by any
individual party except the voter. In the previous chapters, however, a single entity is
entrusted with printing ballots. Toward the eventual goal of printing cryptographically
verifiable optical-scan ballots in a distributed trust setting, we consider the problem of
printing secret text (e.g., confirmation codes) on paper, in a human-readable format, with-
out the printer(s) learning the result. In this chapter we propose a two-party protocol
to distributively generate and print secrets. We leave integration with a verifiable voting
system to following chapters.

Contributions. The contributions of this chapter are summarized as follows:
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• A protocol for printing arbitrary-length messages using a trusted dealer,

• A protocol for two non-colluding printers to randomly and obliviously select and
print a single element from a set of elements,

• A protocol for two non-colluding printers to randomly and obliviously select and
print a random permutation on a set of elements,

• An optimization for printing alphanumeric characters using 16-segment display logic.

9.1.1 Visual Crypto Preliminaries

Recalling the description of visual cryptography from Section 2.1.7, we utilize a basic two-
party version in this chapter. Consider a secret image s as an m×n matrix of pixels, where
each pixel is either 0 for transparent or 1 for opaque. The first share α is generated by
randomly selecting a 0 or 1 for each pixel. This share is then XORed with the secret image
to generate the second share β. Thus, the original can be reconstructed by s = α ⊕ β.
However, printing α and β on their own sheet of transparency paper and stacking them is
equivalent to an OR operation, not an XOR.

To correct for this, the basic VC scheme maps each pixel in α and β into a 2× 2 block
of sub-pixels, which we call a VC-pixel. Without loss of generality this map is defined as
�→��

�� and �→��
��. By layering VC pixels, we get either a fully opaque VC-pixel, defined as a

1, or a half-transparent VC-pixel, defined as a 0. This emulates the exclusive-or operation
where: ��

��=��
��+��

��=��
��+��

��, while ��
��=��

��+��
��and ��

��=��
��+��

��.

9.2 Print an Arbitrary-length Secret Using a Dealer

General Model. A dealer D wants to have an arbitrary-length secret printed on a sheet
of paper, intended for a recipient R, by a third party. D instructs two non-colluding entities
offering print service, Printer A and Printer B, on how to print an image of a secret without
either printer learning the secret.

Motivating Example. Consider the case where a bank, D, wants to distribute credit
card numbers and activation codes to a large set of customers, R, through the mail. Due
to the volume, the bank must outsource the printing to a printing service, Printer A, but
is concerned that these secret numbers may be surreptitiously compromised. Instead, we
would like to distribute the trust between two printers so that both printers would have to
be compromised, or collude with each other, to learn the secrets.
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Figure 9.1: Distributed printing. Printers A and B receive separate visual crypto shares of a message.
Printer A prints its share in invisible ink and passes the sheet on to Printer B who, in turn, prints its share
on top.

Solution. The core of our proposed solution is a visual cryptography scheme in which
individual shares are printed by separate, non-colluding, printers in succession onto a single
sheet of paper using invisible ink, as shown in Figure 9.1.1 This approach differs from the
original VC proposal, which suggests printing shares on cellulose acetate (i.e., overhead)
transparencies, which can be aligned on top of a non-transparent share, such as a computer
monitor or piece of paper, to reveal the secret [NS94]. The advantage of employing a single-
sheet approach over that of a multi-sheet approach is threefold.

• Alignment: With VC, proper alignment (or registration) is necessary to recon-
struct the message. Misalignments less than a sub-pixel reduce the contrast of the
message, while greater misalignments render it unreadable [LWL09]. In our single-
sheet scheme, alignment of the shares is a matter of attention for the printers, not
the recipient. Presumably an industrial printing process is better suited to guarantee
proper share alignment than the recipient.
• Usability: Our single-sheet approach offers a simpler user experience. The role

of visual cryptography is not central to the recipient recovering the message and
arguably, the recipient could be completely unaware of it.2

• Fewer Chains of Custody: Perhaps most important, physical separation of shares
need not be enforced prior to the recipient receiving them. Assuming the scheme

1While the last printer could print its share in non-invisible ink, we assume that each share is printed
in invisible ink. This prevents the last printer’s share from being learned if the paper is observed by earlier
printers after being fully printed.

2Our scheme still requires the recipient to have a decoder pen, although in the case of trustworthy
voting, the decoder pen directly substitutes the use of a normal pen when marking a ballot.
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is secure within the privacy model described below, then the recipient will receive
decisive feedback (i.e., tamper evidence) if the secret was viewed prior to its receipt.

As the primary application of invisible inks are in the transport of secret messages, in
general we consider two threats to message secrecy:

• Passive exposure: A message written in invisible ink becomes temporarily visible
in a particular environment (e.g., ultraviolet light), to an optical sensor (e.g., eye,
camera, etc.).
• Active exposure: A message written in invisible ink is rendered permanently visible

by initiating a one-way chemical process that develops (i.e., activates) pigmentation
in the ink.

We seek to mitigate these threats by requiring an invisible ink printing process with
the following characteristics:

• Indistinguishability of undeveloped ink: A message printed in invisible ink is
said to be resistant to passive exposure if any two messages are indistinguishable.
• Tamper evidence: A message printed in invisible ink is said to be resistant to active

exposure if any actively attacked message is easily distinguished from an untouched
message.

A simple attack for eschewing indistinguishability and tamper-evidence is one where
a malicious party actively exposes (i.e., develops) the message, records it, and reprints it
on a new sheet of paper. The key to preventing this line of attack is in establishing the
authenticity of the paper sheet. Using a document authentication scheme such as that
mentioned in Section 2, either the dealer, recipient, and/or the printers would seek to
establish document authenticity at some time after the printing process.

In the working example above, the bank could keep an inventory of sheets issued to
Printer A and could verify their authenticity after having the sheets returned by Printer
B (it could also at this time reveal the invisible ink). Alternatively, the recipient could
perform the verification upon receiving the paper. In the following sections concerning
schemes that do not employ a dealer, Printer A will publish an inventory of the sheets
issued to Printer B. Both printers can check the sheets against the inventory at any point
in the protocol, and after Printer B has applied its shares, the sheets can be authenticated
by the recipient. A final alternative is to use an honest-but-curious third party to provide
this service. In all cases, the verification could be conducted through a random audit of a
small portion of the sheets.
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(a) Activating the invisible ink. (b) Revealed message.

Figure 9.2: An obliviously printed document from the recipient’s perspective.

Definition 9.1. Invisible Ink Secrecy Model. We say a message printed in invisible
ink is physically secure in the invisible ink secrecy model if that message is indistinguishable
under passive exposure, and tamper-evident under active exposure.

Assuming the existence of an invisible ink printing system, secure in the invisible ink
secrecy model, we propose a simple distributed printing scheme, outlined in algorithm 9.1,
involving a trusted dealer D issuing two VC-shares of a secret to two printers: Printer A
and Printer B. Printer A prints its share on a piece of paper in invisible ink. This sheet
is given to Printer B, which prints its share in invisible ink, directly on top of Printer A’s
share. The resulting sheet is provided to a recipient R, who uses a special developing pen
to reveal the combined shares (and hence the secret). See Figure 9.2.

9.3 Print a Randomly Selected Secret without a Dealer

General Model. Two non-colluding entities offering print service, Printer A and Printer
B, randomly and obliviously select a message from a public set of possible messages. The
pixel representation (i.e., image) of the message is printed on a sheet of paper intended
for a recipient R without the use of a dealer. The selected message is unknown to both
Printer A and Printer B and will only be known by R. Furthermore, printers A and B can
each enforce the randomness of the selection independent of each other.

Motivating Example. Consider the case where Printer A and Printer B want to print a
random alpha-numeric character on a sheet of paper to give to R. By doing this successive
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Algorithm 9.1: Printing a secret with a trusted dealer

Dealer D’s Private Input: Secret message s ∈ [0, 1]
m×n

as m× n monochrome pixel matrix

1 Dealer D should:
2 Fingerprint sheet of paper p

3 Choose α ∈R [0, 1]
m×n

4 Compute β = s⊕ α
5 Send α and β to Printer A and B respectively

6 Printer A should:
7 Print α in invisible ink onto p
8 Send p to Printer B

9 Printer B should:
10 Print β in invisible ink on top of α on p
11 Send p to Dealer D

12 Dealer D should:
13 Authenticate paper p
14 Send p to recipient R

times, they could print a multi-character string where each character is independently
selected at random. Scantegrity II, as an example, requires secret and random codes
to be printed beside each candidate and already uses invisible ink to hide the value of
the codes. Another example is ThreeBallot [RS07], which requires a set of statistically
unique identifiers to be printed on each ballot. Printers or poll-workers who observe these
identifiers, prior to the ballot being cast, threaten ballot secrecy.

Protocol. Let the set of possible messages be S and of order N = |S|. Consider, as in
the motivating example above, that S = {A . . . Z, 0, . . . , 9} in which each si ∈ S shall
be represented as an m by n monochrome pixel matrix that visually expresses it. At a
high-level, Printer A will generate a random visual crypto image, α, as her share, and print
it onto the paper in invisible ink. She will then, for each message si ∈ S, generate the
complementary set of shares for Printer B: βi = α ⊕ si, for 1 ≤ i ≤ N . She randomly
permutes the order of the set, obfuscates each element, and sends the set to Printer B.
Printer B then selects γ ∈R [1, N ] to be deobfuscated, where ∈R denotes the uniform
random selection of an element from a set. He then prints βγ over top of α in invisible ink.

We require three additional properties of this distributed protocol in the absence of a
dealer, namely:

i. Printer A should not learn which visual crypto share βγ was selected by B.
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Algorithm 9.2: Printing a single secret character with oblivious transfer
Public Parameters: Set of alphanumeric characters S, and primitive roots g, h ∈ Gq

1 Printer B should:
2 Choose index to select: γ ∈R [1, N ]
3 Choose random secret: x ∈R Z∗q
4 Commit to private choice: y = gxhγ

5 Send y to Printer A

6 Printer A should:
7 Perform lines 2, 3, and 7 from Algorithm 9.1
8 for 1 ≤ i ≤ N do
9 Select ith message from set: si ∈ S

10 Compute complimentary share: βi = α⊕ si
11 Randomly permute index: βi → βj=π(i)

12 Choose random secret: rj ∈R Z∗q
13 Compute: cj = 〈aj , bj〉 =

〈
grj , βj(

y
hj )rj

〉
14 Send p and set of cj ’s, ordered by j, to Printer B

15 Printer B should:
16 Flip coin c = {H,T} with Pr[H] = ρ
17 if c = H then
18 Request α, βj , and rj , ∀j, from Printer A.
19 If correct, repeat protocol from Line 7.

20 else
21 Select cγ

22 Compute: βγ =
bγ

(aγ)x

23 Print: βγ on top of α on paper p

24 Recipient or Printer A should:
25 Authenticate paper p

ii. Printer B should not learn the value of any share βi other than the single share, βγ,
he selected.

iii. Printer B should not know which message si corresponds to βγ.

We utilize a 1-out-of-N oblivious transfer protocol to achieve properties (i) and (ii).
si is perfectly hidden by Printer A’s share α. Thus (iii) holds under the assumption of
non-collusion of the printers.

The full details of the protocol are provided in Algorithm 9.2. The oblivious transfer
sub-protocol is due to Tzeng [Tze04], which we selected for its reusable public parameters
and minimal message exchange (2-pass). It is set in the ring of integers modulo a large
prime p, with multiplicative subgroup of prime order q. By using a Pedersen commitment
in line 4, Printer B’s choice of share is perfectly hidden ensuring (i). Property (ii) holds
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because line 22 for an arbitrary j reduces to βjh
rj(γ−j) allowing the recovery of βj only

when γ = j.3 Property (iii) holds because si = sπ−1(j) = βj ⊕ α, and Printer B does not
know α or random permutation π().

Printer A could misconstruct the set of βj values such that when they are combined
with α, they do not each produce a unique character (e.g., any selection by Printer B
will result in the same character being printed). Given property (ii), Printer B could not
detect such an attack directly. Thus Printer B shall, with some probability ρ, perform
a cut-and-choose audit of Printer A’s construction of α and βj values to ensure they are
properly formed.

An additional feature of the protocol is that both parties contribute to the random
selection of si ∈ S. Printer A chooses a random permutation π : i → j, and Printer
B selects a random index γ to print. Thus if one of the two parties select messages
deterministically, the contribution of the other will be to ensure the printed message is, in
fact, randomly selected.

This protocol outlines how to print a single, secret, random, and obliviously selected
alphanumeric character on a piece of paper. It is easy to see that the oblivious transfer
could be conducted several times, independently, to produce a string of characters for
applications such as those offered above as motivating examples.

9.4 Print a Permutation of a Set of Messages without

a Dealer

General Model. Two non-colluding entities offering print service, Printer A and Printer
B, randomly select a permutation and apply it to a public set of possible messages. The
pixel representations (i.e., images) are printed on a sheet of paper intended for a recipient
R without the use of a dealer. The order of these images is unknown to both Printer A and
Printer B and will only be known by R. Furthermore, printers A and B can each enforce
the randomness of the permutation independent of each other.

Motivating Example. A number of voting systems with cryptographic end-to-end in-
tegrity require ballots to be printed with a randomized candidate ordering. Prêt-à-voter

3Security remark: The only way for Printer B to recover βj given 〈g, h, x, γ, aj = grj , bj = βjh
rj(γ−j)〉

for j 6= γ would be to perform a discrete logarithm: either solving logg(g
rj ) allowing B to compute hrj

and then recover βj by trying all values of bj/(h
rj(γ−j)), assuming a correct βj is recognizable from some

discernible structure, or alternatively, compute logg(h) to find x′ such that gx
′
hj = y to similarly recover

βj from bj . Concerning the latter, it is thus important that g, h are generated by Printer A or through a
distributed key generation (DKG) protocol.
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[CRS05] and Aperio [ECA08] require candidate names to be listed on the ballot in an
independent random order. The candidate list could be developed immediately prior to
voting to increase voter privacy. Alternatively, consider a contest where the names of prizes
are printed in invisible ink on a set of tickets. For example, a batch of one dozen tickets
could be printed as follows: ten shall say “please play again” while the other two shall
each name a different prize. By applying a random permutation to these twelve strings,
not even those running the contest will know for certain which tickets contain a prize.4

Solution. A permutation of a set of N images requires N elements to be printed. In its
most basic form the 1-out-of-N oblivious transfer (see algorithm 9.2) is run N times, with
Printer A selecting N independent, random, visual crypto shares α. However instead of
applying independently selected permutations π1, · · · , πN at each successive execution, the
same random permutation π1 is applied to S when constructing the complementary set of
VC shares {β(1,k), · · · , β(N,k)} during the k-th execution.

However since a permutation of elements requires every element to be appear once and
only once, we shall require a mechanism to enforce non-repetition of elements. Such non-
repetition of VC shares constructed by Printer A can be made through a similar cut-and-
choose process as that mentioned in section 9.3. However to enforce non-repetition of the
selections made by Printer B, we extend algorithm 9.2 by algorithm 9.3 such that Printer
B proves the uniqueness of her selections, γk, without revealing the order of selection, as
well as providing Printer A with the ability to perform a cut-and-choose on Printer B’s
selections.

As a brief description of algorithm 9.3, Printer B constructs N commitments yk =
gxkhγk and sends them, along with the sum of random factors x̂ to Printer A. We index
each message in the set using a public set of indices, selected from a superincreasing
sequence κ (e.g., {k ∈ Z : κk = 2k}). Thus, if Printer B selects the same index more
than once, it is impossible to adjust the other selections such that they sum to κ̂ and are
valid indices. Printer B could select an index not in κ, however this would forfeit him from
learning at least one proper share. This will be caught by the cut-and-choose subprotocol
in lines 12-15, which can be thought of as an optional step for scenarios where a malicious
printer could get away with misprinting a share.5 To verify that each of the commitments
yk contains a unique index choice, Printer A will calculate their product ŷ causing the
exponents γκ to sum. Given public parameter κ̂ and Printer B’s assertion x̂, Printer A will
verify whether ŷ = gx̂hκ̂ thus verifying B’s honesty in selecting each element once.

4This could prevent documented cases of fraud, such as,
http://archives.cnn.com/2001/LAW/08/21/monopoly.arrests/

5For example, in the voting scenario, the permutation will be observed by the voter to be correct before
it is used, thus not requiring this optional step. However it may be desirable for printing tickets in a
contest.
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Algorithm 9.3: Printing a secret permutation with oblivious transfer
Public Parameters: Superincreasing indices κ = {κ1, · · · , κN} that sum to κ̂.

1 Printer B should:
2 for 1 ≤ k ≤ N do
3 Choose, without replacement, index: γk ∈R κ
4 Choose random secret: xk ∈R Z∗q
5 Commit to private choice: yk = gxkhγk

6 Send yk to Printer A

7 Compute x̂ =
∑N
k=1 xk and send to Printer A

8 Printer A should:

9 Compute: ŷ =
∏N
k=1 yk

10 Verify: ŷ = gx̂hκ̂

11 Flip coin c = {H,T} with Pr[H] = ρ
12 if c = H then
13 Request γk, xk, and yk, ∀k, from Printer B.
14 If correct, repeat protocol from Line 1.

15 for 1 ≤ k ≤ N do
16 Run Algorithm 9.2 at line 7.

9.5 Efficiently Print Text

General Model. Two non-colluding printers, Printer A and Printer B, randomly select
a short string of alphanumeric characters from a public set of possible strings. The model
has the same properties as the general model in Section 9.3 but is optimized for the use of
alphanumeric strings. It can be used in conjunction with Algorithms 9.2 and 9.3.

Motivating Example. An official is to issue a survey that contains a question about
sensitive information that respondents may not answer honestly for fear of retribution. A
mitigating technique is randomized response, where a sensitive question can be replaced
with its negation in a random fraction of the surveys [AJL04]. Thus the issuers do not learn
any particular respondent’s true response with certainty, but can statistically adjust the
results to estimate the number of respondents who answered in a particular way. Consider
the problem of obliviously printing a survey, where a particular question is randomly
selected from a set that contains nine elements of question Q and one instance of question
¬Q. The answers are returned on a different sheet of paper (e.g., a Scantron form), and
the question sheet is discarded by the respondent after using it. The mechanism in this
section can also be used to optimize the motivating examples in Section 9.4: for printing
candidate names in voting systems or the names of prizes in a contest.
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Solution. There is an upper limit to the size of the message that can be transferred in
one instance of the protocol: in this case, it is the security parameter of the system, which
is likely to be 1024 or 2048 bits. For the purpose of efficiency, our motivation is to encode
as many characters as possible into one ciphertext payload.

We defined messages to be a monochrome pixel matrix of dimensions m×n. Consider,
for example, the image of a character to be 26 by 18 sub-pixels that are either white or
black (the resolution that will be used in Figure 9.3). These parameters would require 117
bits per character, allowing just over half a dozen characters to fit into a single ciphertext
payload. Increasing the resolution (and hence the readability) comes at the cost of using
additional encryptions to convey the same content. To improve on this, we can use segment
displays. In a segment display, alpha-numeric characters are displayed by driving a subset
of 16 segments, or 7 segments if we restrict ourselves to numbers. At 16 bits per character,
we can fit over 60 alpha-numeric characters into one 1024-bit secret: enough to encode a
short question, candidate name—regardless of the character resolution.

(a) Printer A’s layer: α up-sampled. (b) Printer B’s layer: β up-sampled.

(c) Static background mask. (d) The three layers combined.

Figure 9.3: Visual Crypto Up-sampling. Example of a string of text using 16-segment up-sampling,
comprised of two visual crypto layers set against a static background. Instead of representing each segment
as a collection of traditional 2×2 visual crypto pixels, each segment’s share can be transmitted as a single
bit and then ‘up-sampled’ to an arbitrarily large, public, and pre-arranged visual crypto pixel pattern
for improved perceptual clarity. In this way visual crypto shares can be fully expressed by 16 bits per
alphanumeric character, regardless of perceptual resolution.

With the use of Algorithm 9.2, Printer A can obliviously transfer one of many message
shares to Printer B, where the share (βγ) is a sequence of 16-bit segment encodings. If
the exclusive-or of this sequence is taken with Printer A’s accompanying sequence (α), the
result is the character encoding of a randomly selected string (sγ). However, we deviate
from Algorithm 9.2 in that Printer A and B cannot print α and βγ directly. Instead Printer
A and B must up-sample their 16-segment sequences into a VC share.

The process of up-sampling works as follows. A pixel matrix of any dimension is
partitioned into segments and background; white and black in Figure 9.3(c) respectively.
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To aid with perception, the segment portion (white portion) is filled with random-looking
VC pixels (recall a VC pixel is a 2x2 sub-pixel representation of a pixel). This same pixel
mask can be used for every character. Printer A up-samples α by taking the pixel mask
and for every segment, either leaving the segment as is if α is 0 for that segment or flipping
all the bits in the segment if α is 1. See Figure 9.3(a). Printer A prints this and the
background mask in invisible ink. Similarly Printer B up-samples β using the same pixel
masks, generates a VC share in Figure 9.3(b), and prints it.

9.6 Concluding Remarks

We have demonstrated an interesting, novel paradigm: obliviously chosen messages can be
printed on a sheet of paper without the printers learning the result. We have outlined a
number of scenarios where such a property may be useful, including password distribution,
cryptographic voting, contests, and randomized response surveys. Indeed these protocols
may be relevant to other applications of visual cryptography, in particular those requiring
a dealer-less solution, as well as to other types of document and display media.

In particular, we pursue this line of work as a starting point for distributing the associ-
ation between confirmation code and associated candidate on cryptographically verifiable
optical-scan ballots—a necessity for strong ballot secrecy. The methods presented in this
chapter could be used to print a randomized confirmation code on a ballot in a two-party
distribution of trust. Integrating the outcome into the broader cryptographic election pro-
tocol, however, is not immediately possible. In the following chapter, we will integrate the
techniques presented in this chapter into a Scantegrity-like voting system with distributed
trust.
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Chapter 10

Scantegrity 3-D: Scantegrity with
Distributed Trust

Every officer, clerk, and agent in
attendance at a polling station shall
maintain and aid in maintaining the
secrecy of the voting.

Ballot Act, 1872. United Kingdom

This chapter is adapted from published work co-authored with Christian Henrich and Urs
Hengartner [EHH11].

10.1 Introductory Remarks

Despite the usability advantages of a paper optical-scan ballot, the cryptographic schemes
presented in the previous chapters actually offer less protection to ballot secrecy than con-
ventional elections do. In Scantegrity, for example, knowing the candidate associated with
a confirmation code is sufficient to recover voting intent. Of critical importance, therefore,
are the trust assumptions surrounding the entities responsible for printing ballots.

In this chapter we tackle the problem of designing a trustworthy optical-scan voting
system offering the following desirable properties in full combination:

1. Distributed trust: No single party, including the ballot printer(s), gains an ad-
vantage in deducing how a voter voted or in linking a receipt to its corresponding
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clear-text vote. This is a vital requirement of any secret ballot election employing
the receipt paradigm.

2. Single layer ballot form: A ballot is a single sheet of paper with a fixed order
candidate list1 and the voter marks the optical scan ovals directly beside their chosen
candidate. Multi layer ballots are an artifact of cryptographic voting, requiring voters
to re-learn how to cast a ballot. Our experience in running real-world cryptographic
elections—both with single layer and with multi layer ballot forms—has indicated
to us that multi layer ballots are more cumbersome for voters and more difficult to
administer for election officials.

3. Human-readable paper audit trail: Pursuant to the legal requirements of many
jurisdictions, voting intent remains plainly evident on cast ballot forms. Such an audit
trail also allows for recoverability in the event of lost or forgotten cryptographic keys
or other unforeseen errors.

4. Public paper audit trail: The collection of cast ballot forms (i.e., the paper audit
trail) can be made public without revealing the link between receipt and clear-text
vote. A public audit paper trail may also be a legal requirement and is critical in
protecting ballot secrecy during a manual recount.

In this chapter we propose Scantegrity 3-D, a two-party version of Scantegrity II that
meets each of the four requirements above. Some of these properties have been examined
in the literature, but no proposal has achieved all of them. Scantegrity and Scantegrity II
achieve 2 and 3. Prêt à Voter and Scratch & Vote achieve 2 and 4 [CRS05, RS06, AR06,
XSH08], two Punchscan variants achieve only 4 [CPSC07, Kub06], and each of Split-Ballot
Voting, ClearVote and Kusters et al. achieve 1 and 4 [MN07, PC10, KTV09]. A proposal
due to Benaloh [Ben08] achieves 2, 3, and 4.

Key Differences between Scantegrity II and Scantegrity 3-D. Scantegrity 3-D
structurally differs from Scantegrity and Scantegrity II in two important ways. Firstly, we
use a composition of two secret master permutations created independently by two non-
colluding parties for the audit dataset. Each party is responsible for issuing its own proof
on its own master permutation. Roughly speaking this might be viewed as the composition
of two independently generated Scantegrity audit datasets.

Secondly, ballot and receipt information is split into two shares such that any one share
does not provide sufficient information to break ballot secrecy. In both cases techniques for
secure two-party computation are used to generate election data instead of a single trusted

1There are also potential advantages to using ballots with randomized candidate lists. Our system can
accomodate this approach with minor protocol changes.
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computer. Physical security mechanisms are used to enforce separation of shares during
ballot printing. Protocol changes are mostly internal to the election officials, preserving
the voter experience and audit procedures of Scantegrity (aside from having to check twice
as many proofs).

Contributions. The contributions of this chapter are summarized as follows:

• Basic System: a two-party version of Scantegrity for creating ballot forms with
randomized confirmation codes that meets properties 1, 2, and 3. It relies on a
private paper audit trail and an in-person physical dispute-resolution procedure.

• Improved System: a two-party version of Scantegrity II that uses ‘self-blanking’
invisible ink confirmation codes. It improves on the basic system by allowing the
paper audit trail to be made public, thereby achieving all four properties. In addition
it offers an informational dispute-resolution allowing disputes to be resolved based
on knowledge of a confirmation code (as opposed to physical possession of a receipt).

10.2 Preliminaries

10.2.1 Physical Primitives

End-to-end verifiable ballots often employ physical security methods as part of the re-
ceipt creation process. The use of physical security mechanisms can be contentious due
to inherent questions regarding their cost, feasibility, and real-world security properties.
However, there is precedent for protocols built around ideal physical security mechanisms
(cf. [GKR08, MN05]). We assume that the physical security mechanisms (cf. Section 2.1.6)
used in this chapter—namely invisible ink and document authentication—function ideally.
Broadly speaking, the ballot secrecy properties of our systems reduce to those of Scan-
tegrity’s when the physical security mechanism fail.

10.2.2 Cryptographic Primitives

A Scalar Homomorphic XOR with Exponential Elgamal. For two bits m1,m2 ∈
{0, 1} and their associated encryptions, we describe a method based on exponential Elgamal
to implement a scalar homomorphic operation ⊕̃ for which Jm1K⊕̃m2 produces a ciphertext
that encrypts the bitwise xor of the associated plaintext bits, i.e., Jm1 ⊕m2K.
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The first party constructs a ciphertext c = 〈c1, c2〉 = 〈gr, gmyr〉 form ∈ {0, 1} and trans-
mits c to the second party. Recalling the ciphertext rerandomization function ReRand()
(cf. 2.1.7), the second party will select their bit m′ ∈ {0, 1} and compute the partially-
homomorphic xor, c ⊕̃m′ = PHX(c,m′) where

PHX(c,m) =

{
ReRand(c) m = 0
ReRand(〈c−11 , g1c−12 〉) m = 1

.

This scheme is essentially the same as the inversion scheme used by Neff in [Nef04].
Importantly, this approach alone only provides security against passive adversaries: the
first party could construct a malformed ciphertext, while the second party could throw
away the first party’s contribution all together. The simplest way to provide integrity would
be to run a cut-and-choose protocol whereby both parties output numerous instances of
〈c1, c2〉 = PHX(c,m′) and conduct a coin-toss protocol to select some instances to challenge.
Parties would open the challenged instances (revealing their respective message bits and
random factors), and retain the unopened ones for further use.

Commitments. We use a cryptographic commitment scheme (cf. Section 2.1.7) to com-
mit to permutations as part of a cut-and-choose proof of shuffle. The dispute resolution
procedure in the improved system requires the prover to either unveil (i.e., de-commit to)
the code, or alternatively to issue a non-interactive proof of plaintext inequality. A com-
mitment inherent to IND-CPA secure encryption fits this dual role. Here a sender commits
to a message m by posting its encryption JmK = Enc(m, r). Later the commitment can
be unveiled when the sender reveals an m′, r′, allowing anyone to verify Enc(m′, r′) = JmK,
and hence m′ = m. This approach is commonly used in several voting schemes (e.g.,
[Ben07, AR06, SDW08]).

10.2.3 Participants

There are several entities that participate in the election.

• A set of voters with the authority to cast a ballot in the election, optionally construct
a privacy-preserving receipt of their vote, and optionally participate in an election
audit,
• An election operations commission C with the capability and authority to orga-

nize and run an election, operate a polling place, optically scan ballots, report results,
act as a custodian of the cast ballot record, and participate in an in-person dispute
resolution procedure,
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• Two independent ballot printers P1,P2 who possess the capability and author-
ity to print documents in the untrusted printing model and participate in a secure
(cryptographic) two-party computation,
• An election scrutineer S with the authority to audit the correctness of printed

ballots relative to their cryptographic representation. Additionally S acts as a proxy
for voters during disputes with C to protect their identity. In practice there might
be any number of election auditors, representing the candidates or other democracy
groups.

As a fundamental requirement of our security model, we assume that neither printer nor
election commission collude with one another.

10.3 The Basic System

The basic system produces a public and universally verifiable cryptographic proof attesting
to the correctness of the election’s outcome. This correctness proof is based on the cut-
and-choose techniques of Scantegrity/Scantegrity II. Without loss of generality we consider
a single-contest election involving n ballots2 and m candidates. The basic system involves
several protocols. The protocols generateBallots, preElectionPrep, postElectionPrep encom-
pass the preparation for the public election audits. Note that each of these protocols
taken individually is only secure in an honest-but-curious setting. To make them robust
against an active adversary we make use of a set of audit protocols proveScan, proveReceipt,
provePrinting and resolveDispute. A summary of notations used is presented in Table 10.1.

n Number of ballots to print T List of all ballot-tuples
m Number of candidates BallotTable Table of ballot information
d Bit-length of ballot-id ReceiptTable Table of receipt information
L List of candidate names MP1/MP2 Printer 1/2’s master permutation
Σ Confirmation code alphabet π/ρ Random perm’ns composing to MP1

α Soundness parameter σ/τ Random perm’ns composing to MP2

b/B Ballot-id/list of ... MidMarks Intermediate mark state list
r/R Receipt-id/list of ... MidMarksP1 P1’s intermediate mark state list
c/C Confirmation code/list of ... MidMarksP2 P2’s intermediate mark state list
µ Mark-state of opscan oval eid Election-unique identifier

Table 10.1: Notations used to describe Scantegrity 3-D.

2The number of ballots printed is the total number of voters times a heuristically chosen expansion
factor to account for audited and spoiled ballots.
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The Ballot. The basic optical-scan paper ballot form has a pre-printed, fixed-order
candidate list L = {l1 . . . lm}. Adjacent to each candidate is an optical scan oval with
a mark state µ ∈ {0, 1} corresponding respectively to whether the oval was unmarked or
marked. The ballot form is separated into two regions by a perforation. The top constitutes
the ballot portion, and the bottom is the receipt portion. An alphabet Σ of m confirmation
codes is defined. Each optical scan oval (and hence each candidate) is associated with a
confirmation code drawn independently at random, and without replacement, from Σ. A
ballot-id b is a d-bit3 vector printed on the ballot portion. An independent receipt-id r is
printed on the receipt portion. The first printer prints the receipt-ids under a scratch-off
coating and the second prints the confirmation codes. Both printers will jointly print the
ballot-id in invisible ink. Printing of the ballot- and receipt-ids is done such that each
printer only knows what it prints (and not what its counterpart prints). The basic ballot
is depicted in Figure 10.1(a).

Alice

Bob

Carol

Y

Z

X

For office use only

1

(a) Unmarked ballot form.

Alice

Bob

Carol

Y

Z

X

For office use only

#1573My confirmation code is Z

1

(b) Top: Cast ballot portion with
activated ballot-id. Bottom: Com-
pleted receipt portion with revealed
receipt-id.

Figure 10.1: Basic ballot: Optical-scan ballot form with ballot portion (top) and tear-off receipt portion
(bottom) depicting a randomized confirmation code list, a unique ballot-id printed in invisible ink visual-
crypto and a unique receipt-id beneath a scratch-off coating. Ballot printing is distributed between two
printers such that neither can match receipts with cast ballots.

Ballot Tuple. A ballot is fully specified by the tuple {b, r, c}, which denotes the asso-
ciation between a unique ballot-id bit vector b ∈ {0, 1}d, a unique receipt-id r ∈ {1 . . . n},
and a random permutation of confirmation codes c = π(Σ) for a permutation π drawn
independently and uniformly at random from the set of possible permutations of Σ.

3Since in the basic scheme ballot-ids are the xor of random bit vectors, d is chosen to be large enough
so as to make duplicate ballot-ids highly unlikely.
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10.3.1 Election Preparation

The election is initialized as follows: election commission C initializes a public bulletin
board BB4 and a unique election identifier eid. Printers P1 and P2 jointly run DKG
(cf Chapter 2.1.7). They post the public key Y to public bulletin board BB and re-
tain their respective private key shares x1, x2. This list of public parameters pubParam =
{n,m, d, L,Σ, α, eid, Y } is posted to BB. All functions/protocols accept pubParam as input.

Ballot Tuple Creation. The printers now jointly generate encrypted ballot tuples by
running generateBallots. This protocol is given in Algorithm 10.1.

Ballot Printing. The n ballot forms are printed in three steps. For each ballot-tuple a
paper ballot is prepared in the following order:

• Static background: directions, candidate names, etc, printed in black ink,
• P1’s share: the receipt-id is printed and concealed under scratch-off coating, P1’s

share of the ballot-id is printed in invisible ink visual-crypto,
• P2’s share: the confirmation codes are printed in regular ink, P2’s share of the

ballot-id printed in invisible ink visual-crypto over P1’s share.

The completed ballot forms are then randomly shuffled and delivered into the custody of
the election commission C. Throughout the ballot printing and voting phases the printers
will conduct random audits of ballot forms to ensure their authenticity and to look for
signs of tampering (e.g, to catch if someone reveals the secret information then replaces
the ballot with a replica). Note that if either printer prints something other than their
contribution in generateBallots (e.g., if a printer prints an all-black VC pixel), this will be
caught in provePrinting with statistical confidedence dependent on the number of audited
ballots.

Pre-Election Proof Preparation. The printers initialize the public audit dataset and
cut-and-choose correctness proofs by running preElectionPrep. This protocol is given in
Algorithm 10.2.

Voting and Receipt Creation. An individual wishing to vote shall attend the polling
place and authenticate themselves to C. All qualified and authenticated individuals (i.e.,
voters) are then eligible to receive a ballot. The voter selects a ballot form at random

4Typically modelled as an append-only broadcast channel with state (cf. [BF85]).
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Algorithm 10.1: generateBallots
Participants: Printers P1,P2

1 Printer P1 should:
2 for i ∈ {1 . . . n} do
3 Encrypt vectors of random bits: B′(i)← (Enc(randBit), . . . ,Enc(randBit));
4 Post a non-malleable commitment to each randBit along with the random factor used to

encrypt it.

5 Encrypt and shuffle receipt-ids: R← Shuffle(Enc(1), . . . ,Enc(n));
6 Output cryptographic commitments to B′ and R;

7 Printer P2 should:
8 for i ∈ {1 . . . n} do
9 Randomly shuffle and encrypt code confirmation codes:

C(i)← Shuffle(Enc(Σ(1)), . . . ,Enc(Σ(m)));

10 Output a cryptographic commitment to C;

11 Both Printers should:
12 Unveil their respective commitments. Verify the other party’s commitments, and terminate the

protocol if the verification fails. Otherwise continue to the next step;

13 Printer P2 should:
14 for i ∈ {1 . . . n}; j ∈ {1 . . . d} do
15 Homomorphically xor random bits: b′1 . . . b

′
d ← B′(i);

16 B(i)← (b′1⊕̃ randBit, . . . , b′d⊕̃ randBit);
17 Post a non-malleable commitment to each randBit along with the random factor used in

computing the xor.

18 Output B to P1

19 Remark: Shuffle(X) applies a permutation to a list X, drawn independently and uniformly
randomly from the set of permutations of size |X|. randBit returns a single bit drawn independently
and uniformly at random. It is possible that P2 might attempt to maliciously select its bits as a
function of P1’s. However P2 will not know (beyond a guess) what to print on the ballot, and will
be caught in ProvePrinting with statistical certainty.

from a stack of unmarked ballot forms and takes it, a regular (black) marking pen, and a
privacy sleeve into a private voting booth. The voter marks the oval next to their preferred
candidate li on the ballot portion. Then, if they so choose, the voter creates a receipt of
their vote by noting the code letter ci and writes it in the appropriate space on the receipt
portion. The voter then places the marked ballot form into the privacy sleeve and returns
it to the poll worker. The poll worker confirms the receipt-id’s scratch-off coating is still
intact and the ballot-id has not been activated (rejecting the ballot in such a case), then
detaches the receipt portion and places it on a table in view of the voter. The ballot
portion is then fed into the optical scanner. If the ballot is rejected the receipt portion is
retained by the poll worker. If the ballot portion is successfully cast, the receipt portion is
returned to the voter and the voting process is complete. A diagram showing completed
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Algorithm 10.2: preElectionPrep
Participants: Printers P1,P2

Public Input: Candidate list L
Private Input: Lists of encrypted ballot-ids B, receipt-ids R, and code shuffles C

1 Both Printers should:
//Expand the n ballot tuples into a table of mn rows (one for every candidate on every ballot):

2 for i ∈ {0 . . . n− 1} do
3 c1 . . . cm ← C(i);
4 for 0 ≤ j ≤ m− 1 do
5 T (1,mi+ j)← B(i);
6 T (2,mi+ j)← Enc(L(j + 1));
7 T (3,mi+ j)← R(i);
8 T (4,mi+ j)← cj ;

//P1 followed by P2 using master permutations MP1 and MP2 respectively:
9 T ′ ← Mix(T );

//Create ballot and receipt tables:
10 ;
11 BallotTable← DDec(T ′(1 . . . 2, :));
12 ReceiptTable← DDec(Mix(T ′(3 . . . 4, :));
13 Post BallotTable,ReceiptTable to BB

//Prepare cut-and-choose proof of correspondence between elements in the ballot and receipt tables:
14 Printer P1 should:
15 for i ∈ {1 . . . α} do
16 Choose πi ∈R Πmn;
17 Set ρi such that ρi ◦ πi = MP1;
18 Post Commit(πi),Commit(ρi) to BB

19 Printer P2 should:
20 for i ∈ {1 . . . α} do
21 Choose σi ∈R Πmn;
22 Set τi such that τi ◦ σi = MP2;
23 Post Commit(σi),Commit(τi) to BB

24 Remark: Let x ∈R Πy denote a permutation function x drawn independently and uniformly at
random from the set of permutations of list of y elements. Let MP1,MP2 ∈R Πmn. Then for
i ∈ {1 . . . α}, we have τi ◦ σi ◦ ρi ◦ πi = MP2 ◦MP1.

ballot and receipt portions is depicted in Figure 10.1(b).

Timing Attacks. In some jurisdictions, poll workers keep a poll book of voter identities
in the order they voted. If the scanner were to likewise maintain the order of cast ballots
it, taken along with the poll book, would compromise ballot secrecy. Since in our case the
ballot is drawn at random from the pile, and the poll worker does not see the ballot- or
receipt-ids, this threat can be mitigated by having voters cast ballots into a ballot box at
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the polling place and then scanning them later at a central location.

Election Close-down. After the election, C posts the preliminary election tally obtained
by the optical scanners. This procedure along with reporting results, declaring of winners,
and any judicially mandated manual recounts are all done entirely in accordance with
pre-existing election procedure/law, and are not directly part of this protocol.

Post-Election Proof Preparation. After the election C populates the BallotTable with
the mark state information collected by the optical scanners. With this data the printers
and can now finalize the cut-and-choose correctness proof by running postElectionPrep.
This protocol is given in Algorithm 10.3. A diagram showing the relationship between the
various mark lists is given in Table 10.2.

Algorithm 10.3: postElectionPrep
Participants: Election Commission C, Printers P1,P2

Private Input: Secret Master permutations MP1,MP2, Scanned Cast Ballots

//Populate BallotTable with scanner data
1 Election commission C should:
2 foreach {b, s, µ} recorded by scanner do
3 Find i for which ballotTable(1, i) = b;
4 and ballotTable(2, i) = s;
5 ballotTable(3, i)← µ

6 Post ballotTable(3, :) to BB.

//Propagate marks from BallotTable to ReceiptTable
7 Printer P1 should:
8 MidMarks← MP1(BallotTable(3, :));
9 Post MidMarks to BB for i ∈ {1 . . . α} do

10 MidMarksP1i ← πi(BallotTable(3, :));
11 Post MidMarksP1i to BB

12 Printer P2 should:
13 ReceiptTable(3, :)← MP2(MidMarks);
14 Post ReceiptTable(3, :) to BB. for i ∈ {1 . . . α} do
15 MidMarksP2i ← σi(MidMarks);
16 Post MidMarksP2i to BB
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MP1−−−−−−−−−−−−→ MP2−−−−−−−−−−−−→
BallotTable(3, :) MidMarks ReceiptTable(3, :)

πi−→ MidMarksP1i
ρi−→ σi−→ MidMarksP2i

τi−→

Table 10.2: Diagram of Mark Transformations.

10.4 Verifying the election

There are three simultaneous properties that must be proven in order for the overall results
to be proven correct. These audits include:

• Proving correct mark-state reporting by C: Using their receipt, a voter V
checks whether C correctly registered their vote by running proveScan,
• Proving mark-state propagation by P1,P2: The printers prove to any interested

party that they honestly applied their master permutations to mark state information
in BallotTable by running proveReceipt,
• Proving printed ballot forms match BB: A scrutineer S5 runs provePrinting with

the printers to verify that the ballot tuple information conveyed by the paper ballot
forms matches the ballot tuple representation in BB. Audited ballots are spoiled and
not counted.

The audit protocols proveScan, provePrinting and proveReceipt employed by the basic
scheme are below in listed in Algorithms 10.4, 10.5 and 10.6 respectively.

10.4.1 Dispute Resolution

We now describe the dispute resolution procedure for the basic scheme presented in Sec-
tion 10.3, which is based on the in-person procedure of Scantegrity (cf. Chapter 3), modified
to enhance ballot secrecy.

In order to conceal the identity of the voter from C (who has their ballot) we assume
there exists a scrutineer S that will function as a proxy for the voter during the procedure.
Note that the voter will have to trust S to honestly follow the protocol.

Note however S does not learn how the voter voted. The dispute resolution procedure
for the basic scheme is as follows:

5A scrutineer is not strictly necessary. Voters themselves may choose to initiate this audit, although in
our experience they rarely do!
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Algorithm 10.4: proveScan
Participants: Any voter V who created a receipt
Public Input: ReceiptTable, V’s receipt {r, cv}
//Check receipt against ReceiptTable:

1 Voter V should:
2 Find row i for which ReceiptTable(1, i) = r;
3 and ReceiptTable(2, i) = cv;
4 if ReceiptTable(3, i) = 1 then
5 ACCEPT

6 else
7 Run resolveDispute

1. The a scrutineer S, acting on behalf of a voter, transmits the voter’s receipt-id rv to
P1,

2. P1 finds the row in R that contains the encryption r and transmits this index i to
P2,

3. P1 and P2 each (privately) send to C the bit vectors they used to construct B(i),

4. C computes the bitwise xor of the received bit vectors and locates the ballot portion
with the resultant ballot-id,

5. S places their receipt portion in a privacy sleeve that hides the receipt-id,

6. S and C continue with the Scantegrity dispute resolution procedure (cf. Chapter 3).

A Possible Dilemma. In many cases the voter will be found to have made a transcrip-
tion error. However a major dilemma arises from this procedure when it is that case that
C has misreported the code: the voter must give up ballot secrecy to prove to the public
that C is in error.

One of our fundamental requirements for ballot secrecy is that no one be permitted to
know the association between ballot-id and receipt-id. If the voter wrote down their code
incorrectly, this is not a problem: C can prove it without needing to know the receipt-id.
However if C reported the code incorrectly, then the receipt-id would need to be made public
to prove the discrepancy between the physical and electronic records. This violates ballot
secrecy as we have defined it. Still, in the case that the ballot-id/receipt-id association
needs to be revealed, it may still suffice if the association between voter identity and
receipt-id is suppressed. This however would essentially require the voter to never show
their receipt to anyone. We leave solving this dilemma to future work, noting that it is
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Algorithm 10.5: proveReceipt
Participants: Printers P1,P2 and any interested party
Public Input: A vector Challenge of α challenge bits.

1 Both Printers should:
2 for i ∈ {1 . . . α} do
3 if Challenge(i) = 0 then
4 P1 unveils commitment to πi;
5 P2 unveils commitment to σi

6 if Challenge(i) = 1 then
7 P1 unveils commitment to ρi;
8 P2 unveils commitment to τi

9 All decommitment information is posted to BB.

10 Anyone can:
11 Run verifyCommit on all of the unveiled commitments;
12 for i ∈ {1 . . . α} do
13 if Challenge(i) = 0 then
14 Check: πi(BallotTable(3, :)) = MidMarksP1i;
15 Check: σi(MidMarksP2i) = ReceiptTable(3, :)

16 if Challenge(i) = 1 then
17 Check: ρi(MidMarksP1i) = MidMarks;
18 Check: τi(MidMarks) = MidMarksP2i

19 Remark: Challenge is generated by a public coin toss, or the Fiat-Shamir heuristic when
appropriate (e.g., for α > 80.)

mooted by the use of an informational dispute resolution process. We now present an
improved system with such an informational dispute resolution procedure.

10.5 Improved System

In this section we present a system that improves upon the basic system in two ways:
First, it replaces the physical dispute resolution procedure with an informational dispute
procedure. Second, the collection of cast ballots (i.e., the paper audit trail) can be viewed
publicly without compromising ballot secrecy.

Informational Dispute Resolution. The dispute resolution procedure of the basic
system is inefficient and time consuming. Chaum et al. proposed the notion of invisible
ink confirmation codes in Scantegrity II as an informational means of resolving dispute.
Under this approach, codes are printed in invisible ink, and only revealed to the voter if
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Algorithm 10.6: provePrinting
Participants: Printers P1,P2, Scruitineer S
Public Input: A printed ballot chosen at random by S

1 Scrutineer S should:
2 Activate/scratch-off hidden areas on ballot form to reveal ballot tuple;
3 Post ballot tuple {b, L, r, c} to BB
4 Printer P1 should:
5 foreach BallotTable(1, i) = b do
6 Unveil the commitments to P1’s share of b (i.e., ballot id bits and associated random

factors);
7 foreach j ∈ {1 . . . α} do
8 Post iπj ← πj(i);
9 Post iρj ← ρj(iπj )

10 Printer P2 should:
11 foreach iρj do
12 Unveil the commitments to P2’s share of b (i.e., ballot id bits and associated random

factors used to compute the xor with P1’s share);
13 foreach j ∈ {1 . . . α} do
14 Post iσj ← σj(iρj );
15 Post iτj ← τj(iσj )

16 Anyone can:
17 Run verifyCommit on all of the unveiled commitments;
18 Recompute ballot-id b using the unveiled id bits and associated random factors and ensure it

matches both the electronic and printed versions;
19 foreach BallotTable(1, i) = b do
20 foreach j ∈ {1 . . . α} do
21 Output an error and exit if the following does not hold: BallotTable(3, i) =

MidMarksP1j(iπj ) = MidMarks(iρj ) = MidMarksP2j(iρj ) = ReceiptTable(3, iτj );

22 Output 1;

marked. Assuming the code space is sufficiently large so as to make successful random guess
unlikely, then knowledge of any valid code can be taken as evidence that a voter correctly
created their receipt. Any discrepancy found between a receipt and the ReceiptTable can
then be attributed to C (assuming the other correctness proofs are valid). In the improved
system, we create and print the codes using a private printing protocol. Thus the role of
invisible ink is twofold: it restricts the voter’s knowledge of unmarked codes and it prevents
the printers from linking receipts to votes.

Public Paper Trail. Invisible ink confirmation codes require a code space that makes
random guessing statistically unlikely. For example Scantegrity II proposes a 3-digit code
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(making a random guess successful 0.1% of the time times the number of candidates).
However in the presence of unique (or semi-unique) codes, access to cast ballots coupled
with the public audit dataset is sufficient (or nearly sufficient) to allow any observer to
link receipts to clear-text votes. This not only means that the paper ballot record must
be kept secret, but further that the custodian of the ballot record (i.e., C) is trusted with
knowledge of how voters voted. This is one of the major limitations of Scantegrity II.
To address this privacy weak-spot, we require a method for not only privately printing a
confirmation code, but for displaying it only while the voter is in the booth. In the presence
of “disappearing” codes, not only can we offer distributed trust with respect to P1,P2 and
C, but we can also make the paper ballot record public.

10.5.1 Self-blanking Confirmation Codes

We propose a method for printing of confirmation codes that is self-blanking (i.e., the
message is only temporarily visible). The standard invisible ink described by Scantegrity II
activates instantaneously. That is to say, the chemical reaction responsible for the ink’s
pigmentation completes on the order of milliseconds. As previously suggested in Chapter 4,
a slower reacting ink might be made by the addition of an anti-catalyst. This substance, if
present, can slow down pigmentation by seconds or minutes (depending on design needs).
Combining the technique of visual cryptography with such a ‘slow’ invisible ink, we can
construct a self-blanking pixel (see Table 10.3). Finally, combining self-blanking pixels
with the two-party oblivious printing protocol of Chapter 9, we can print confirmation
codes that are both distributed and self-blanking.

Result when activated
a b VC(a) VC(b) t = 0 t > 0 t >> 0
0 0 �∅ ∅�
0 1 �∅ �∅
1 0 ∅� ∅�
1 1 ∅� �∅

Table 10.3: Self-blanking VC Pixel. Two sub-pixels contain invisible ink. Each party applies an anti-
catalyst (white box) to one sub-pixel. Sub-pixels containing this substance darken more slowly than those
without (t = 0 is the moment of activation). Eventually all sub-pixels darken “blanking” the pixel’s value.

179



10.5.2 The Improved Ballot

The improved ballot differs from the basic ballot in that it makes use of self-blanking
invisible ink confirmation codes. The codes are printed inside the optical scan ovals in self-
blanking invisible ink. When the voter marks an oval using the specially provided activator
pen, the confirmation code is revealed allowing the voter (finite) opportunity to write down
the code on their receipt. Eventually the oval darkens completely indicating that the oval
was chosen by the voter, but not what the confirmation code was (see Figure 10.2).

1

(a) t = 0

1

(b) t > 0

1

(c) t >> 0

Figure 10.2: Optical-scan oval with self-blanking confirmation code after being marked with an
activator pen (t = 0 is the moment of activation).

10.5.3 Changes to the protocols

The addition of self-blanking invisible-ink confirmation codes induces some changes to the
protocols presented in Section 10.3, which are summarized as follows:

• Ballot tuples: P2 generates ballot-ids. Both printers run a private printing protocol
to select a confirmation code and distribute it to VC shares,
• Ballot printing: P2 prints ballot-ids in invisible ink. Both printers print their

shares of the confirmation codes using self-blanking visual crypto pixels,
• Informational dispute resolution: As in Scantegrity II, the printers only publish

the confirmation code corresponding to the voted candidate. In the case of a dispute,
the printers jointly issue a non-interactive proof of plaintext inequality between all
remaining (unencrypted) codes on the disputed ballot (see Algorithm 10.7).

Changes to generateBallots. The generateBallots algorithm of the basic system is ad-
justed as follows: P1 is still responsible for generating and printing a list of unique receipt-
ids R. P2 now solely generates and prints the ballot-ids B. Both printers collaborate to
privately generate and print the confirmation codes C using the 2-party oblivious printing
protocol of Chapter 9.
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Changes to Ballot Printing. As in the basic ballot, P1 prints the receipt-ids R(i)
and conceals them under scratch-off coating. For each optical-scan bubble, P1 applies
a solid background of invisible ink and overlays its visual crypto share using the anti-
catalyst. Maintaining the ordering, P1 transfers the ballots to P2, who prints the ballot-
ids B(i) in invisible ink (n.b., without visual crypto). It then applies its VC shares to the
corresponding optical-scan bubbles. Printing self-blanking confirmation codes is depicted
in Table 10.4.

Invisible ink background Background Mask

a0

a1

a2

a3

a4

a5

a6

a = {0, 1, 1, 1, 0, 1, 0}
P1’s share

b0

b1

b2

b3

b4

b5

b6

b = {0, 0, 1, 0, 1, 1, 1}
P2’s share

a⊕ b = {0, 1, 0, 1, 1, 0, 1}
Result when activated

Table 10.4: Printing a self-blanking invisible ink confirmation code: P1 and P2 run a two-party
protocol to select a code and distribute it to VC shares (a, b respectively). They respectively apply an
anti-catalyst over a solid invisible ink background. When activated, the code becomes temporally visible
(eventually darkening to all black).

Changes to preElectionPrep. For the most part, the improved system has the same
overall structure in terms of the cut-and-choose proof. The preElectionPrep is executed
in the same way, obviously with the minor difference that the elements of ballot-id list
B are now single ciphertexts (as opposed to lists of d encrypted bits), and the elements
of receipt-id list R are now encrypted as bit-vectors. When ReceiptTable is generated,
the receipt-ids are decoded from their 7-segement bit-vector representation into a single
integer. However before ReceiptTable is posted to BB, the printers will encrypt each of the
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confirmation codes (now in integer form) to facilitate the informational dispute resolution
procedure. They will save the random factors used in these encryptions for later use.

Changes to proveScan. After the election is complete and the mark state information
has been updated, the printers will decrypt and post every code ReceiptTable(2, i), for
which ReceiptTable(3, i) = 1. They will additionally post each associated random factor as
proof of decryption.

Changes to provePrinting. When A audits the printing of a ballot, the codes will only be
temporarily visible after activation. This is problematic should A need to use the ballot as
evidence in the event of provePrinting fails. There are several ways this might be addressed.
One way would be for A to take a photograph or video of the activated codes however this
may not constitute strong enough evidence. Another way would be to require multiple
independent auditors to be present when revealing codes. The evidence then would be the
testimony of (honest) auditors which may be problematic if a dispute arises over which
codes were observed. Finally, we could conjecture the existence of a “fixer” chemical that
could halt (or slow) the reaction. This could potentially be accomplished by applying high
concentrations of the anti-catalyst substance immediately after activation.

Changes to the Dispute Resolution Procedure. The voter can file a dispute by
submitting their receipt-id r and the confirmation code cv they claimed to have seen. Re-
call in Scantegrity II, C responds by unveiling all the commitments to confirmation codes
on the dispute ballot ballot. This is acceptable within their security assumptions since
C is trusted to protect ballot secrecy. However since in our system C is untrusted, the
printers must prove in zero-knowledge that the disputed code is not equal to any of the
encrypted codes in ReceiptTable, and nothing more. If cv is a valid confirmation code of
receipt-id r, the printers prove the decryption of the associated code in ReceiptTable. If
cv is not a valid confirmation code, for each row i for which ReceiptTable(1, :) = r, the
printers (jointly acting as a single prover) issue a non-interactive proof of plaintext inequal-
ity between ReceiptTable(2, i) and cv. An algorithm for a proof of plaintext inequality,
plaintextInequalityProof, is given in Algorithm 10.7.

10.6 Security Analysis of the Improved System

To briefly summarize our results, owing to the similarities between systems, we reduce the
correctness of the improved system to that of Scantegrity II. Although Scantegrity has
been peer reviewed and used in a real election we are not aware of a formal proof of the
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Algorithm 10.7: plaintextIneqalityProof
Participants: Printers P1,P2 acting as a single prover P, Voter V
Public Input: An asserted confirmation code m′, an encrypted confirmation code c = E(m),

public key 〈g, q, y = gsk〉
1 Prover P should:

//Encrypt asserted code m′

2 Post 〈c1, c2〉 = 〈gr,myr〉;
//Blind quotient of m/m′

3 Select b ∈r Z∗q and post c′ = 〈c′1, c′2〉 = 〈(c1)b, ( c2m′ )
b〉;

//Prove knowledge of b
4 Post proof of conjunction on DDH-tuple 〈c1, c2m′ , c

′
1, c
′
2〉;

//Post decryption of c′

5 Post 〈rb, ( mm′ )
b〉 = 〈u, v〉

6 Verifier V should:
7 Verify proof of knowledge of b in step 4;
8 Verify decryption of c′: 〈gu, vyu〉 = 〈c′1, c′2〉;
9 Verify plaintext inequality of m,m′: v 6= 1;

10 Output 0 and exit if any the above do not hold, otherwise output 1.

11 Remark: This is essentially the plaintext equality test due to Jakobsson and Jules [JJ00] adapted
for a single prover. A proof of conjunction of DDH-tuples is due to Chaum and Pedersen [CP92].

correctness. A formal security proof for the improved system would include a formal secu-
rity proof for Scantegrity II and is out of the scope for this chapter. A proof of correctness
of Eperio offers some insight into how such a proof would proceed (see the Eperio technical
report [ECHA12]). With respect to secrecy we present an argument that the improved
system protects voter privacy even when one printer is corrupted. Assumptions regarding
the physical primitives can be found there as well.

10.6.1 Assumptions

For the security analysis we have to consider the properties of several physical components
employed by the improved system of Section 10.5.

Tamper Evidence. Although scratch-off coating and invisible ink function as a form
of physical commitment scheme, they do not offer the strong assumptions that govern the
unveiling of a cryptographic commitment scheme since anyone can open such a physical
commitment. We make use of tamper evidence in the physical commitment setting as a
weaker alternative to the hiding property of a cryptographic commitment (cf. [MN05]).
Instead of the hiding property of cryptographic commitment, a physical commitment ide-
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ally has the property that an adversary must actively tamper with a document to reveal
its secret, which then will be evident to the intended recipient.

Scratch-Off Coating. We use scratch-off coating to reversibly conceal some information
printed onto a ballot. First we assume that such coating is secure under passive attack,
i.e., the message cannot be read without actively tampering with the coating. However
anyone can easily remove the coating, so instead of a hiding property we make the ideal
assumption that revealing the information under the coating can only be done in a way
that it is evident. By checking the integrity of the scratch-off coating anyone can reliably
decide whether or not the physical commitment was opened before. If the coating is intact,
anyone can be convinced that the content of the commitment is still hidden. In the presence
of tamper evidence this type of physical commitment can viewed as binding in the sense
that modifying the underlying message would require tampering.

Invisible Ink. For the use of invisible ink we make similar ideal security assumptions
as for scratch-off coating with regards to security to passive attack and tamper evidence
in the case of active attack. In contrast to scratch-off coating however, it is possible, and
actually desirable, to be able to add (but not remove) printed information.

‘Slow’ Invisible Ink. The improved system employs invisible ink with delayed activation
or ‘slow’ invisible ink. In addition to our assumptions about normal invisible ink we assume
that after a certain time after activation the information printed is no longer readable and
thus effectively erased.

10.6.2 Correctness

For the proof of correctness we assume both the voting authority of Scantegrity II, as well as
the election commission and both printers of the improved system, are corrupted and under
the complete control of an adversary A. For simplicity we combine the election commission
C and printers P1 and P2 and denote it as C. Note that in this case C knows everything
printed in invisible ink or under a scratch-off coating and the physical assumptions only
prevent uncorrupted voters from learning information protected that way. We further
assume that both voting systems use the same commitment scheme.

Assume there exists an adversary A able to undetectably cheat in an election run using
our improved system. We show how this adversary can then be used to undetectably cheat
in a Scantegrity II election by giving a translation from A to an attack on Scantegrity II.
Let E = {C,V1 . . .Vn} be an election system with election commitee C and voters V1 . . .Vn.
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We say an election system is sound, if, for all adversaries A, the probability of a verifier
accepting an invalid correctness proof is negligible in the security parameter.

Technique. Toward a contradiction, we will show how to use the existence of A, which
implements a correctness attack on our system, to leverage the equivalent attack on the
Scantegrity II system. We will accomplish this with rewindable black-box access to A. At
a highlevel, we translate an election being run with Scantegrity II into an election being
run with our system. At each phase of the election, we receive output from A and translate
it into the equivalent output in Scantegrity II. We are essentially generating the equivalent
election in both systems in parallel. Of course, by using A, the tally in our system is
undetectably incorrect. We show how to translate this into an undetectably incorrect tally
in Scantegrity II. Since this should not be possible if Scantegrity II provides correctness,
it must be the case that A cannot exist.

Reduction. We generate the public parameters of the Scantegrity II election, translate
them into PubParam, and initialize A with them. This is a direct translation. We then
take the output of preElectionPrep as generated by A and attempt to translate it back into
the preelection data for Scantegrity II. This translation is possible to do directly but for
convenience we will extract, via rewinding A the permutations π, ρ, σ and τ , which are
the permutations between BallotTable and ReceiptTable. For the extraction to work, we
simulate two successful elections to request two different openings of the cut and choose
proof for the correctness of the permutation. As it is a 1-out-of-2 proof this is enough to
learn the permutations. With this knowledge we prepare the public information for the
Scantegrity II election as follows:

Employing the similarities between BallotTable in our system and the S table of Scan-
tegrity II, we initially group all rows in BallotTable with identical ballot-ids, then remove
the ballot-id column. This corresponds to the Scantegrity II S table. Let this mapping
be called MS. Next we map ReceiptTable to the equivalent Q table. These two tables are
identical except we relabel receipt-ids in ReceiptTable as “ballot-ids” in the Q table. Let
this mapping be MQ.

Under the assumption that both systems use the same commitment scheme, we directly
transfer all commitments as-is. From the permutations extracted from A and the mappings
MQ and MS we compute the mapping that maps each cell in table Q to one in table S.

We do this by composing permutations ρ, τ and preparing Q-pointers that correspond
to this resultant permutation. Similarly we generate the S-pointers from the composition
of permutations π, σ. Then we publish the tables Q, R and S.

During the election phase A has access to ballot choices made by each voter and returns
a confirmation code together with the receipt-id to the voter.
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After the election phase we queryA for the mark positions in BallotTable and ReceiptTable.
Using MQ and MS we translate these positions to the corresponding entries in Q and S
and publish them. We also publish the incorrect tally given by A. The audit challenges
are directly translated from Scantegrity II into our system. A responds to the challenges
by unveiling the corresponding sub-permutations, either {ρ, τ} or {π, σ}, which will be
accepting by definition of A. We then translate this accepting proof into Scantegrity II by
unveiling the corresponding Q- or S-pointers. At this point a verifier in Scantegrity II will
accept the incorrect tally. This fact contradicts the correctness of Scantegrity II—therefore
we conclude A does not exist.

10.6.3 Voter Privacy (Sketch)

For space considerations we only sketch the properties of voter privacy. One aspect of our
improved system is that voter privacy is still guaranteed if one printer is corrupted. We
claim that the additional information an adversary A gains by corrupting one printer is
insufficient to learn anything about the choice of a single voter.

A corrupts P1. When A corrupts P1 the additional information gained is the secret key
x1, a share of each code and for each i ∈ {1 . . . α} the two permutations πi and ρi. Also
A learns all corresponding receipt-ids. The security properties of the encryption scheme
prevent A from decrypting any ciphertexts by only knowing x1. During the postelection
proof only one of σi or τi is ever revealed, thereforeA does not learn the master permutation
of P2. Thus no information is revealed about the permutation between BallotTable and
ReceiptTable given that the commitment scheme is hiding. Because P1 prints its share of
ballot tuples first, it does not learn anything about P2’s share, which in turn ensures A
learns nothing about the association between BallotTable and ReceiptTable.

A corrupts P2. When A corrupts P2 the additional information gained is the secret key
x2, a share of each code and for each i ∈ {1 . . . α} the two permutations σi and τi. For the
same reasons as above this does not give A an advantage in breaking voter privacy. Because
P1 printed the receipt-id and covered it in scratch-off coating, and printed its share of the
confirmation codes in invisible ink, A learns nothing about the association between receipt-
ids, codes, and ballot-ids assuming the security properties of these physical primitives as
stated in previous sections.

If P2 is able to read the receipt-ids (by breaking the security assumption about the
scratch-off coating), or the shares of P1 (by breaking the security assumptions about in-
visible ink), or is even able to replace the ballots printed by P1 without leaving evidence,
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P2 learns enough to break voter privacy. In this case the privacy of the improved system
reduces to that of Scantegrity II with a corrupted printer.

A coerces V. When A coerces V , we seek assurance that V cannot prove how he/she
voted to A . This property is known as coercion resistance. It has been shown by Küsters
et al. that Scantegrity II achieves coercion resistance [KTV10]. We do not attempt to prove
coercion resistance for our system but given the demonstrated similarities between both
the cryptography and the ballot, we would expect a proof of coercion resistance would be
easy to construct following their result.

We have to assume that A does not have unlimited access to the public paper trail.
Specifically A must not be able to recognize any ballot, for example by making an in-depth
analysis of the fibre structure as used for ensuring document authenticity. If A is able to
identify a ballot and has made a similar fibre analysis while the ballots were in the custody
of a corrupted printer A would be able to pair a receipt of a coerced voter with the retained
part of the ballot in the public paper trail. This problem is not specific to our improved
system but always occurs when A gains enough information to link a paper receipt to a
plaintext ballot in the public paper trail. A simple countermeasure would be to restrict
the access to the public paper trail.

10.7 Discussion

10.7.1 Technical Challenges

The formulation of invisible inks has many areas for improvement. Although we have made
progress in the manufacture of invisible inks in the context of Scantegrity, we observed our
ink chemistry led to rapid degradation in the print-heads causing printers to eventually fail
after printing only a fraction of a single precinct’s worth of ballots. It also seems possible
that codes could be passively attacked (i.e., read without activation) under laboratory-
based forensic analysis. It would be important to the credibility of invisible ink to have a
sense of how costly this would be.

Proper alignment (i.e., registration) of shares has long been a limitation of visual cryp-
tography. Assuming an optical scan oval width of 1 cm and the visual crypto pattern
depicted in Figure 10.2, the sub pixels would be on the order of 3 mm wide. Assuming a
quality tolerance of >90% overlap of subpixels between shares, then the printing alignment
would require a tolerance on the order of about 0.3mm (in both horizontal and vertical
axes). It seems plausible current consumer printers could achieve this. Printing confir-
mation codes in the improved scheme would require finer granularity. A rough estimate
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based on the codes in used in the 2008 Takoma Park election suggests one VC sub-pixel
per millimeter might suffice. This would require a precision on the order of 100µm which
likely exceeds the capability of consumer printing technology. We envision a device that
could simultaneously scan positional markers on the document and align the print head
relative to them in real time. The author is not aware of any existing implementation of
this, but note it may be an interesting avenue for future work.

10.7.2 Usability Questions

Sherman et al. [SCC+10] have studied some basic usability questions about invisible ink
confirmation codes. There are however several additional and potentially important usabil-
ity questions that would need to be answered before self-blanking invisible ink confirmation
codes could be used in a real election.

Perhaps the most important question would be to understand how disappearing ink
might interfere with the voter marking the ballot as intended. It is certainly possible that
the voter’s mental model of marking a ballot may be affected by the delayed darkening of
the oval. Would this delay represent confusing feedback for the voter while they attempt
to confirm whether they successfully marked the ballot as they had intended to?

Another important question pertains to the potential pitfall to privacy if the voter
leaves the booth too early. The voter would need to be instructed to stay in the booth
until the oval has darkened fully (and hence the code has disappeared). The longer it takes
for an oval to darken, the more likely it would be that a voter might choose to disregard
the instruction and leave the booth anyway. A näıve technical solution would be to dilute
the inhibiting substance to speed up the reaction. However this comes at cost of giving the
voter a smaller window of opportunity to write down the code on their receipt. This might
especially be problematic for multi contest ballots if the voter decides to complete marking
the ballot first and then record their codes later, as the codes may have disappeared by
then.

10.8 Concluding Remarks

In this chapter we presented two systems for verifiable optical-scan voting with single
layer ballots and without trusted components. The basic system based on randomized
confirmation codes utilizes existing techniques for invisible ink printing. The improved
system proposes a novel self-blanking invisible ink, allowing us to construct a system with
more efficient dispute resolution procedure and public paper audit trail.
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Both systems are two-party protocols. Ultimately however it would be desirable to
be able to distribute trust among arbitrarily many printers. With some modification the
improved system presented in Section 10.5 could likely be extended to a secure multi-party
protocol.

The primary challenge is to develop an effective approach to distributing the ballot
printing among more than two printers. This requires a fundamentally different approach
from the two-party private printing scheme of Chapter 9, and is the subject of the following
chapter.
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Chapter 11

Multi-party Oblivious Printing

The blind envy the one-eyed.

Juvenal

This chapter is adapted from published work supervised by Urs Hengartner [ECHA09].

11.1 Introductory Remarks

The previous two chapters outline our research results in designing a trustworthy optical-
scan voting system with fully distributed trust. The approach taken in Chapter 9, however,
is only offers distribution of trust between two parties only, and a multi-party extension
is not forthcoming under that approach. Furthermore, the approach is limited by the fact
that the protocol cannot output an associated ciphertext along with the printed document,
making the resulting voting protocol presented in Chapter 10 more complex than strictly
necessary.

In this chapter we extend oblivious printing to a fully multi-party setting, and tackle
the issue of outputting the associated ciphertext. The result allows us to draw a conceptual
and procedural circle around the ballot generation and printing phase, which, as we will
later show in Chapter 12, allows for a simpler description of the overall protocol, in addition
to offering distribution of trust which is comparable to a fully electronic voting scheme.

Contributions. The contributions of this chapter include multi-party protocols, secure
against a malicious adversary for:
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• Obliviously printing the contents of an encrypted plaintext,

• A contrast improvement when generating and obliviously printing a randomized mes-
sage,

• Generating and obliviously printing an Elgamal/DSA keypair.

11.1.1 The Oblivious Printing Model

Oblivious printing is a protocol in which a group of printers cooperate to print a secret
message. This message can be revealed and read by the intended recipient, but remains
unknown to the printers. Oblivious printing is accomplished through a combination of
cryptographic and document security techniques. The high level procedure is sketched as
follows:

1. Message selection: Printers execute a secure multi-party protocol to select a
message (under encryption) from an alphabet of valid messages.

2. Graphical Secret Sharing: Printers convert the message (under encryption)
into a graphical image. Using a dealerless protocol they secret share the pixels
between themselves.

3. Invisible ink overprinting: Pixel shares are converted into a visual crypto pat-
tern. Using invisible ink each printer successively prints their share on the same sheet
of paper and in a known location/orientation.

4. Message recovery: The recipient of the completed document activates the invisi-
ble ink of the combined shares (e.g., using a special activation pen), thereby revealing
the message. This step is depicted in Figure 9.2.

We presented a preliminary two-party protocol for oblivious printing of randomized
messages based on oblivious transfers in Chapter 9. The techniques presented in this chap-
ter generalize the model to a fully multi-party setting. Additionally this approach allows
for the secret message to be simultaneously output as an obliviously printed document
and as an associated ciphertext allowing greater possibilities for integration into broader
protocols.
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11.2 Visual Cryptography in this Setting

Recalling the discussion of visual cryptography from Section 2.1.7, we first review the
notion of contrast for an n-out-of-n visual crypto scheme. Shamir and Naor [NS94] prove
the optimal number of sub-pixels for an (n, n)-VCS is 2n−1. In this scenario, if the dealer
wishes to share a black pixel, shares are constructed such that when an authorized set of
printers combine their shares, each of the resulting 2n−1 sub-pixels will be black. Similarly
if the dealer wishes to share a white pixel, one of the resulting sub-pixels will be white (the
other 2n−1−1 will be black). This is used to define a measure of contrast, α, as being the
relative difference in intensity between the combined shares resulting from a white pixel
and a black pixel in the original image. The optimal contrast for an (n, n)-VCS is thus
α = 1

2n−1 .

11.2.1 Fixed Pattern Visual Cryptography

We make use of some aspects of visual cryptography for the purposes of oblivious printing;
however there are several important differences with how it is typically presented in the
literature:

1. Invisible ink shares: Printers successively overprint their shares in invisible ink
on a single sheet of paper. Activation of the combined invisible ink shares recovers
the message.

2. Dealerless share creation: The message is distributed to shares by a multi-
party computation.

3. Fixed sub-pixel patterns: Each printer has a fixed pair of sub-pixel patterns.
Which of the two patterns the printer ends up printing is secret, but the patterns
themselves are a public input to the protocol.

We will make use of a set of sub-pixel patterns that implement an XOR operation. Work
has been done into visual cryptography in a variety of physically XOR-ing media including
interferometers [LNS+02], light polarization [THvLT05], and even image reversal using
modern photocopy machines [VK04]. In our approach, however, the XOR is approximated
in an underlying physical medium (i.e., over-printed shares of invisible ink) that implements
an OR.

Definition 11.1. An n-input visual XOR, n-VCX, describes a set of sub-pixel patterns
that visually implement an XOR of the input bits in a physically OR-ing medium.
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Let S be an n× 2n−1 binary matrix for which each column is unique and has an even
Hamming weight. Let S be the element-wise complement of S. Let sub-pixel pattern
matrix Φ be as follows: Φ(`, 0) = S(`, :) and Φ(`, 1) = S(`, :).

For a set of Boolean values a1 . . . an ∈ {0, 1} and their associated logical exclusive-or
a′ =

⊕n
i=1 ai, we say the sub-pixel pattern matrix Φ implements an n-input visual crypto

exclusive-or, if the sub-pixel pattern produced by overlaying shares Φ(1, a1) . . .Φ(n, an)
has the following outcome: the total number of black sub-pixels is 2n−1−1 if a′= 0, and
respectively 2n−1 when a′=1. If the ai’s contain an even number of ones (i.e., the XOR is
zero), then exactly one of the columns will end up with all 0’s (i.e., a white sub-pixel) due
to the way the matrix was designed and the pixel will be visually interpreted as white. If
the ai’s contain an odd number of ones (i.e., their XOR is one), all columns will contain
a non-zero number of 1’s due to the way the matrix was designed and the pixel will be
visually interpreted as black. Φ implements an n-VCX.

Example 11.1. A 4-VCX: Let inputs [a1, a2, a3, a4] = [1, 0, 0, 1] and,

S =


0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 1 0 0 0 1

 .
We have Φ(1, 1) = [1, 1, 1, 0, 1, 0, 0, 0], Φ(2, 0) = [0, 0, 1, 0, 1, 0, 1, 1], Φ(3, 0) =
[0, 1, 0, 0, 1, 1, 0, 1], and Φ(4, 1) = [1, 0, 0, 0, 1, 1, 1, 0]. When the vectors are OR-ed, it pro-
duces the sub-pixel pattern [1, 1, 1, 1, 0, 1, 1, 1]. Such a pattern is visually interpreted as
intended, i.e., a white pixel with contrast α = 1

8
.

11.3 Obliviously Printing an Encrypted Message

In this section we present a protocol for obliviously printing the contents of a ciphertext
for which the associated plaintext is within a known, bounded, alphabet of m possible
valid messages. Given an encrypted plaintext JpK, a set of n printers P1 . . .Pn, each with a
share of the decryption key, will jointly print p as a (u×v)-pixel image Ip depicting p in a
human- or machine-readable form such that no printer learns p. We leave the origin of JpK
generic although we envision it as being the output of some other (previous) multi-party
computation.

11.3.1 Translation Table

A translation table is defined in which each element is a valid possible message that can
be printed and for which each message consists of an association between a plaintext value
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and a bitmap that depicts it. The translation table is taken as input to the protocol and is
used to facilitate the translation of a message—under encryption—from its plaintext form
to its bitmap depiction.

Let translation table T consist of m message pairs representing the set of valid messages
that can be printed. Each message pair 〈t, It〉 ∈ T consists of a plaintext value t in the
plaintext domain, and a (u×v)-pixel monochrome bitmap It depicting t as a human- or
machine-readable image. Each value It(i, j) ∈ {0, 1} corresponds respectively to a white or
black pixel.1 We use the notation JT K to denote the element-wise encryption of T . Each
message pair 〈t, It〉 ∈ T , can be regarded as a vector of uv+1 elements, [t, It(0, 0), . . . , It(u−
1, v−1)] where each element is encrypted separately. The initial encryption of each element
is taken with a known random factor (e.g., 0). Mixing JT K involves re-randomizing each
element and shuffling by the message pair vectors.

In order to facilitate mixing and searching for elements in JT K under encryption, |T | in
practice will be small relative to the plaintext domain. Because It will be encrypted at the
pixel level we note that for practical purposes the image size should be kept small. Using
the upsampling technique proposed in Chapter 9, a single alphanumeric character (or digit)
can be fully described in 16 (respectively 7) encryptions regardless of the resolution of the
visual crypto sub-pixel pattern used.

11.3.2 Setup

Let 〈DKG,Enc,DDec〉 be an encryption scheme with distributed decryption. Distributed
key generation DKG(n) generates a public key, e, and a private key share, di associated
with printer Pi. Encryption JmK = Ence(m, r) is semantically secure and homomorphic in
one operation. Distributed decryption DDecdi(c) of a ciphertext c is possible with all n
printers applying their shares di. Without loss of generality we use Elgamal [Ped91].

11.3.3 The Protocol

The protocol for obliviously printing a p ∈ T given JpK is described in Protocol 11.3 and
consists of Sub-protocols 11.3(a) and 11.3(b). Briefly, Sub-protocol 11.3(a) encrypts and
mixes T and searches it (under encryption) for the entry corresponding to p, outputting
the associated encrypted bitmap. The process of searching the encrypted translation table
for a value and outputting the associated encrypted image as described in Step 2 of Sub-
protocol 11.3(a) is closely related to the Mix and Match system [JJ00]. In Step 1 of

1Printing uses a subtractive color model and thus the plaintext values assigned to color intensities are
the reverse of that found in the computer graphics literature.
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PROTOCOL 11.3 (Obliviously Print p given JpK).
Input: Translation table T , encrypted plaintext JpK, sub-pixel matrix Φ implementing an (n+1)-VCX,
soundness parameter ρ.

Output: A document with a (u×v)-pixel image depicting p, printed in invisible ink and with contrast
α= 1

2n .

The protocol:
1. Translate encrypted plaintext into associated pixel-wise encrypted image: Run

Sub-protocol 11.3(a).

2. Obliviously print encrypted image: Run Sub-protocol 11.3(b).

Sub-protocol 11.3(b) the printers secret share a pixel by homomorphically XOR-ing it
with random bits in a manner similar to the technique used by Cramer et al. [CD01].

SUB-PROTOCOL 11.3(a) (Translate JpK into JIpK).
Input: Translation table T , encrypted plaintext JpK.
Output: A (u×v) pixel-wise encrypted image of p (i.e., JIpK).
The protocol:

1. Encrypt and verifiably mix translation table T : Each printer participates in a veri-
fiable mix network, which encrypts and shuffles the message pairs 〈ti, Iti〉 ∈ T . The result is
denoted JT ′K.

2. Find JpK in JT ′K: printers search JT ′K attempting to locate a JtiK for which ti = p:

(a) For each message pair 〈JtiK, JItiK〉 ∈ JT ′K, the printers perform a test of plaintext-equality
between JpK and JtiK.

(b) If a match is found, output the corresponding pixel-wise encrypted bitmap JItiK. If no
match is found the protocol terminates and an error message is output.

Remark: Various protocols exist for verifiable mix networks. One efficient and statistically sound
technique for multi-column mixing is due to Sako and Kilian[SK95]. The plaintext equality test (PET)
is due to Juels and Jakobsson [JJ00].

Finalization Layer. Given n printers note that Protocol 11.3 uses an (n+ 1)-VCX.
An additional “finalization” layer allows the printers to verify the correctness of printing
without ever revealing the message. For each pixel, each printer will generate a random bit,
and using the sub-pixel pattern matrix, print it in invisible ink. A cut-and-choose proof is
performed in Step 2 to demonstrate the printers correctly printed their random bits. Then
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an (n+1)-th finalization layer is computed by homomorphically XOR-ing the message bit
with each of the random bits. Since the finalization layer is essentially a one-time pad, it
can be decrypted without revealing the message. Finally, the finalization layer is printed
using black ink, the correctness of which can be verified visually by inspection.

11.3.4 Obliviously Printing an Arbitrary Plaintext

In Protocol 11.3 we showed how to obliviously print a plaintext p ∈ T given its encryption.
As was previously mentioned, in order to make mixing and searching JT K feasible, |T | will
typically be quite small relative to the plaintext space.

We briefly sketch how a solution accommodating an arbitrary message from the plain-
text space might be approached. To print an arbitrary p, first the printers would define
an alphabet Σ (e.g., the Latin alphabet) for which p could be represented as a string Σ`.
The printers would execute a multi-party pre-protocol to convert JpK into a collection of
ciphertexts Jp1K . . . Jp`K for which p = p1|| . . . ||p` (a homomorphic/universally verifiable
multi-party protocol for extracting bit-fields under encryption is left to future work). The
printers would then run Protocol 11.3 for each pi, printing the result on the same sheet of
paper.

11.4 Obliviously Printing a Randomized Message

In this section we present a contrast optimization in the special case where the printers are
printing a randomized message r ∈R T . Although Protocol 11.3 can also be used for this
purpose the protocol presented in this section has a contrast of α = 1

2n−1 (as opposed to
α = 1

2n
). Protocol 11.3 allows the printers to engage in a cut-and-choose proof of correct

printing without revealing p directly. This is done at the expense of contrast: the use of the
finalization layer introduces an additional layer forcing the n printers use an (n+1)-VCX,
which has half the contrast relative to an n-VCX.

If the message is randomized, then revealing it as part of a cut-and-choose process does
not reveal information about the remaining (unactivated) messages. So instead of partially
printing ρ copies of a single message p, auditing ρ− 1 copies and finalizing the remaining
copy, the printers instead obliviously print ρ complete and independently random messages,
of which they audit ρ− 1. The protocol is described in Protocol 11.4.

Arbitrary-length random messages can be built by repeated (independent) executions
of Protocol 11.4 on the same sheet of paper, which may be useful in the creation of strong
passwords, cryptographic keys or random tokens. Note in this setting the bit-field extrac-
tion step outlined in Section 11.3.4 would be unnecessary.
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SUB-PROTOCOL 11.3(b) (Obliviously Print JItK).
Input: A (u×v) pixel-wise encrypted image JItK, sub-pixel matrix Φ implementing an (n+1)-VCX,
soundness parameter ρ.

Output: A document with It printed in invisible ink with contrast α= 1
2n .

The protocol:

1. Obliviously Print ρ instances of It: For each 1 ≤ i ≤ ρ :

(a) Print a new instance (sheet): For each pixel JIt(j, k)K:

i. Post commitments to random bits: Each printer P`≤n draws a random bit
bi,j,k,` ∈R {0, 1} and broadcasts a non-malleable commitment to it.

ii. Secret share pixel: The n printers jointly compute an encrypted finalization
pixel Jfi,j,kK = Jt(j, k)⊕ bi,j,k,1 ⊕ . . .⊕ bi,j,k,nK using a scalar homomorphic XOR.

iii. Print sub-pixel pattern in invisible ink: Each printer P`≤n records the unique
physical characteristics of the paper sheet and overprints the sub-pixel pattern
Φ(`, bi,j,k,`) in invisible ink on the i-th document instance at the position associ-
ated with pixel (j, k).

2. Perform cut-and-choose proof of correct printing: The printers select ρ−1 docu-
ments at random to audit (see remark). For each chosen sheet:

(a) Unveil commitments: Each printer unveils their uv commitments from Step 1(a)-i.

(b) Prove XOR: Each printer broadcasts their random factor used in computing the scalar
homomorphic XOR in Step 1(a)-ii.

(c) Activate invisible ink: The printers collectively activate the invisible ink revealing
the result of Step 1(a)-iii.

(d) Verify: Each printer performs the following steps. If any of them do not hold, the
protocol is terminated and an error message output:

i. Check commitments: Verify commitments produced in Step 2(a).

ii. Check XOR: Recompute the homomorphic XOR using Jt(j, k)K and random factors
revealed in Step 2(b) and confirm result equals finalization pixel from Step 1(a)-ii.

iii. Check printing: For each pixel ensure the combined VC sub-pixel pattern created
by the bits revealed in 2(a) corresponds to the printed version revealed in Step 2(c).

iv. Check paper: Authenticate the sheet against those in Step 1(a)-iii.

3. Finalize the remaining sheet:

(a) Decrypt finalization layer: The printers decrypt the finalization pixels Jfi,j,kK.

(b) Print finalization layer: The printers authenticate the sheet. If the sheet is not
recognized, the protocol terminates and an error message is output. Without loss of
generality P1 prints the finalization layer: each pixel Φ(n + 1, fi,j,k) is printed in black
ink at the associated position. The other printers check the finalization layer is printed
correctly. The resulting document is securely delivered to its intended recipient.

Remark: See Section 10.2.2 for a description of the scalar homomorphic XOR using exponential
Elgamal. The heuristic due to Fiat and Shamir [FS86] can be used to fairly select documents to audit.
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PROTOCOL 11.4 (Obliviously Print a Random r ∈r T ).

Input: Translation table T , sub-pixel matrix Φ implementing an n-VCX, soundness parameter ρ

Output: A document with a (u×v)-pixel image depicting a random r ∈r T , printed in invisible ink
and with contrast α= 1

2n−1 . Encrypted plaintext JrK.
The protocol:

1. Obliviously print ρ independent rand. msgs.: For each 1 ≤ i ≤ ρ:

(a) Select random message pair from T : Run Step 1) from Sub-protocol 11.3(a) to
generate JT ′i K. Without loss of generality the printers select encrypted message pair
JT ′i (0)K = 〈JriK, JIriK〉.

(b) Obliviously print JIriK: Run Step 1a) from Sub-protocol 11.3(b) with the following
modifications:

• Without loss of generality, the first (n− 1) printers P`<n−1 partially decrypt the
secret shared pixel Jfi,j,kK created in Step 1(a)-ii by applying their respective shares
of the private key.

• Similar to Step 1(a)-iii each printer P`<n−1 overprints their VC sub-pixel pat-
tern Φ(`, bi,j,k,`). Printer Pn decrypts the partial decryption of Jfi,j,kK and prints
Φ(n, (bi,j,k,n ⊕ fi,j,k)) in invisible ink.

2. Perform cut-and-choose proof of correct printing: The printers select and audit
ρ−1 documents as in Step 2 of Sub-protocol 11.3(a).

3. Output remaining sheet: The remaining document Ir′ is securely delivered to its intended
recipient. The associated ciphertext Jr′K is output.

11.4.1 Generating and Obliviously Printing a DSA/Elgamal Key-
pair

One interesting variation of Protocol 11.4 might be generating and obliviously printing
an DSA/Elgamal keypair for which the printers do not know the private key. This could
potentially be an interesting approach to building a PKI in which a group of printers acting
as a distributed CA issues keypairs in physical form.

The keypair can be rendered in a convenient encoding such as alphanumeric (e.g.,
Base64) or 2-D barcode (e.g., a QR-code). We note that 2-D barcodes often contain addi-
tional error correction information. Creating a valid error-correction code under encryption
is something we leave to future work. We present a protocol for generating and obliviously
printing a DSA/Elgamal keypair in Protocol 11.5.
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PROTOCOL 11.5 (Generate and Obliviously Print a DSA/Elgamal
Keypair).

Input: A large prime p = 2αq+1 (for an integer α), a generator g ∈ Gq, an encoding alphabet Σ
(e.g., Base64) for which |Σ| is a power of 2.

Output: A document with public key y = gsk printed in black ink, and secret key sk printed in
invisible ink.

The protocol:

1. For 0 ≤ i <
⌊ log2(q)

|Σ|

⌋
:

(a) Initialize Ti: For 0 ≤ j < |Σ|: Add message pair 〈gj+|Σ|i, IΣ(j)〉 to Ti.

(b) Obliviously Print Private Key Segment: Printing on the same sheet each time
so as to build a string of characters, run Protocol 11.4 with Ti as input, receiving an
(encrypted) segment of the private key ci = JgskiK.

2. Recover public key: Printers decrypt JyK = Jg
∑
i riK =

∏
i ci. Without loss of generality

P1 prints the result in black ink and other printers confirm the value is correctly printed. The
result is securely delivered to the intended recipient.

Remark: If the secret key’s bit length does not evenly divide the encoding alphabet, the above loop is
run one final time with a reduced alphabet Σ′⊂Σ where |Σ′| = dlog2(q)e mod |Σ|.

11.5 Mitigating Contrast Drop-off with AND-ing Inks

Using the basic invisible ink described above we note that contrast declines exponentially
in the number of printers. In practice this greatly limits the number of printers that can
participate and still produce a legible message. Other factors like image size, resolution
and font play a role in legibility but in general we would not expect an obliviously printed
document to be legible with more than about half a dozen printers.

We have discussed invisible ink in the context of a physical disjunction (i.e., an OR).
In that setting a pixel will darken on activation if any of the shares contain invisible ink.
However it seems invisible ink printing could offer other possibilities if the pigmentation
reaction could be customized to realize a different logical construction. We briefly exam-
ine the properties that can be achieved if it were possible to formulate invisible inks that
implement a physical conjunction (i.e., an AND). Chemically it seems possible such inks
could be formulated; the basic invisible ink as described throughout this dissertation al-
ready constitutes a type of chemically-based conjunction: pigmentation occurs only when
the invisible ink and activating substances are combined. Granted it would likely be a
challenge to formulate conjunctive inks that were invisible for more than a small k. We are
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not aware of the existence of such inks. It is worth noting, however, that if such inks could
be formulated, they have the potential, at least in theory, to achieve optimal contrast (i.e.,
α = 1) in the presence of arbitrarily many printers.

Definition 11.2. A set of k inks are k-way conjunctive if, upon activation, a pixel darkens
iff all k inks are physically present.

We denote an n-VCX implemented with k such “AND-ing” inks as a (k, n)-VCXA. To
create sub-pixel share matrix Φ in this setting we begin by constructing the (n × 2n−1)
matrix S (refer to Definition 11.1) and then evenly segmenting it into 2n−1

k
sub-matrices of

size (n× k). Each sub-matrix represents a sub-pixel, and each element in the sub-matrix
instructs the printer whether to print the associated ink in that sub-pixel or not. Using
this approach a (k, n)-VCXA has a contrast α = k

2n−1 (k is a power of 2 and the optimal
contrast ratio remains α = 1).

Example 11.2. A (4, 4)-VCXA: Let inputs [a1, a2, a3, a4] and S be the same as in Ex-
ample 11.1. The 4-way conjunctive inks are labeled A,B,C, and D. Each share instructs
the printer which of the four inks to print in each of the two-subpixels. The shares are:
Φ(1, 1) = [{A,B,C}, {A}], Φ(2, 0) = [{C}, {A,C,D}], Φ(3, 0) = [{B}{A,B,D}], and
Φ(4, 1) = [{A}, {A,B,C}]. The conjunction of the shares produces [{A,B,C}, {A,B,C,D}].
Since the first sub-pixel will not contain the ink D when the shares are printed, it will never
activate. The second sub-pixel will contain all four inks when printed and therefore will
darken when activated. The pixel therefore will contain one white and one black sub-pixel
which is visually interpreted as intended, i.e., a white pixel with contrast α = 1

2
. By com-

parison with Example 11.1 the contrast is 4× greater.

11.6 Example Applications

11.6.1 Electronic Voting

Cryptographically verifiable electronic voting is a natural application for oblivious printing.
In this setting voters receive a receipt of their ballot that allows them to confirm their vote
was correctly counted, yet without revealing it to anyone. A vital requirement of any secret
ballot election employing the receipt paradigm is that no single party, including the ballot
printer(s), may gain an advantage in deducing how a voter voted.

Printing Verifiable Optical-scan Ballots. In Chapter 10 we presented a two-party
approach to obliviously printing ballots based on the two-party techniques of Chapter 9.
Through the work presented in this chapter, we are now in a position to extend it to a fully
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multi-party setting—a feature long realized in fully-electronic proposals (see the following
chapter).

Multi-factor ballots for Internet Voting. Internet voting has been a recent and pop-
ular topic of interest. One successful open-source and cryptographically verifiable Internet
voting platform is Helios.2 Helios accepts encrypted votes (along with zero-knowledge
proofs of validity), which are then homomorphically tallied [AMPQ09]. One fundamental
and well-known limitation of this approach is that the voter’s computer must be trusted to
construct the encrypted ballot and is vulnerable to viruses/malware. Using Protocol 11.5,
encrypted Helios votes could be prepared on a voter’s behalf and mailed to them on an
obliviously printed ballot form. The voter would cast their vote by submitting the cipher-
text corresponding to their candidate. Similarly, a verifiable Internet voting scheme due
to Ryan and Teague [RT09b] proposes a multi-factor solution based on acknowledgment
codes cards, which are mailed to the voter. The acknowledgment code cards contain secret
information and so oblivious printing may be of use here also.

Coercion-resistant Internet Voting. Beginning with Juels et al. [JCJ05], work into
coercion-resistant internet voting has attempted to extend privacy protection to voters,
even when casting their ballots in an unsupervised environment. Clark and Hengart-
ner [CH11] propose a coercion-resistant scheme based in part on an in-person registration
protocol requiring voters to select secret passphrases and be able to (privately) compute
randomized encryptions of them. Such passphrases and their encryptions could instead
be pre-computed and obliviously printed by a distributed election authority, potentially
simplifying the in-person registration phase and simultaneously enforcing higher-entropy
passphrases.

Electronic Cash. Bitcoin3 is an interesting recent proposal for digital currency. Trans-
actions are timestamped and inserted into a common transaction history (known as a
“block chain”) using a proof-of-work model. An account consists of a DSA keypair: a
private signing key is used for sending funds and a public key is used for receiving them.
A transaction consists of two components. The first component points to an earlier trans-
action in the block chain in which funds were sent to the account corresponding with the
user’s public key (and for which the funds have not already been spent). The second com-
ponent involves the user signing the transaction (which includes the destination account)
using the private signing key. Typically these keys are stored on a user’s machine in a
“wallet” file. One interesting alternative is Bitbills,4 a service which issues Bitcoins in

2http://heliosvoting.org
3http://bitcoin.org
4http://bitbills.com
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physical form. A Bitbill consists of a plastic card (similar to a credit card) corresponding
to a set amount of Bitcoins. The associated private signing key is printed on the card as a
2-D barcode and hidden under a tamper-evident/holographic covering. The funds can be
redeemed by scanning the card with a smartphone.

Importantly, knowledge of the private signing key is necessary and sufficient to transfer
funds and recent criminal activity has focused on stealing such keys from users’ computers5

as well as from online Bitcoin bank accounts.6 Therefore any currency issuing service like
Bitbills would have to be trusted never to redeem the cards it issues, and to prevent any
private keys from falling into the hands of hackers. Oblivious printing could be used to
create a distributed currency issuing service. With Protocol 11.5 adapted to an elliptic curve
setting, keypairs could be generated and printed without any individual issuer knowing the
private key thereby enforcing that only the cardholder can redeem the funds.

11.7 Security Analysis

We briefly sketch some of the security properties of our system. For space reasons we limit
our discussion to Protocol 11.3 (i.e., Subprotocols 11.3(a) and 11.3(b)).

Cryptographic Security. Informally there are two security properties we seek for the
cryptographic component of the protocol. One is integrity : a printer should be convinced
that the combined shares depict an image of the (encrypted) input. The other property is
secrecy : an adversary in collusion with a subset of printers should not be able to determine
the input.

We assume the commitment function is non-malleable, hiding and binding. The as-
sumptions regarding encryption are stated in Section 11.3.2. The completeness, soundness
and secrecy of Sub-protocol 11.3(a) follow directly from [JJ00, JJR02]. If the printers fol-
low Sub-protocol 11.3(b) they will always produce a finalization layer that, when XOR-ed
with the individual shares, recovers the input. Secrecy of the commitments and encryp-
tions follow from the assumptions. Secrecy of the decrypted finalization layer follows if one
or more printers select random bits. Soundness is probabilistic and follows from the cut-
and-choose proof. The independence of the random bits is enforced by the non-malleable
commitment function. Correct computation of the homomorphic XOR is established by
the cut-and-choose proof when printers reveal their commitments and the random factors
used to compute the XOR.

5http://bitcointalk.org/index.php?topic=16457.0
6http://mybitcoin.com/archives/20110804.txt
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Physical Security. For simplicity we proceed with our discussion of physical security in
a setting in which the printers receive their shares from a trusted dealer through a private
and authenticated channel. In the physical setting we seek two security properties. One
is integrity : a printer should be convinced that the combined printed shares match the
combined received shares. The other property is tamper evidence which is closely related
to secrecy: an adversary should not be able to determine the output of the protocol without
corrupting all printers or tampering with the document, which will then be evident.

We assume the invisible ink can only be read in its activated state and that activated ink
is plainly evident. We assume that a sheet of paper can be authenticated. Completeness
of Sub-protocol 11.3(b) is self-evident. Secrecy of the shares follows from the properties
of an n-VCX. If a printer attempts to read the document by activating the ink it will
be evident following from the assumptions of the invisible ink. If a printer attempts to
replace a valid document with a fake it will be evident following the assumptions regarding
document authentication. Soundness is probabilistic and follows the cut-and-choose proof.
If a printer prints nothing in a sub-pixel where it was to print invisible ink, it will either be
covered by invisible ink from another share, and does not alter the intended outcome, or,
it will not be covered by another share in which case it will be detectable by the cut-and-
choose and attributable by examining the electronic shares. If a printer prints invisible
ink in a sub-pixel where it was to print nothing, it will be detected similarly but is not
attributable.

It is important to note that nothing fundamentally prevents an adversary in physical
possession a document from activating the ink and reading its contents. The severity of
this threat will depend greatly on the use case. For example if the document contains
a unique secret, additional physical security measures are necessary to protect document
secrecy. Alternatively if the document contains an arbitrary secret (e.g., a new password),
it may suffice for the recipient of a tampered document to simply request it be invalidated
and a new one be issued.

11.8 Concluding Remarks

In this chapter we generalized oblivious printing to a fully multi-party setting. We pre-
sented three protocols: a generic protocol for obliviously printing an encrypted plaintext,
a protocol with improved contrast for obliviously printing a random message, and third
protocol to generate and obliviously print a DSA/Elgamal keypair. We then proposed a
contrast optimization based on the AND-ing invisible inks and provided some example
applications for electronic voting and digital cash.

While we believe our experience with invisible ink printing (cf. Chapters 4 and 5)
suggests that invisible ink overprinting will provide the necessary properties, an obvious

204



direction for future work is to test this hypothesis in practice. Other important questions
will include finding realistic upper bounds on the number of participants, and on sub-pixel
resolution producing legible results.
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Chapter 12

Putting it all Together

This chapter is adapted from published work supervised by Urs Hengartner [EH12a].

12.1 Introductory Remarks

In this Chapter we present HOVER (Hash-Only VERification), a sketch of a protocol for
a trustworthy voting system that combines the research results presented in the previous
chapters. At the core of HOVER is Scantegrity. We borrow aspects from Eperio to simplify
audit procedures, such as through verification in a spreadsheet. We apply oblivious printing
and the related techniques of Scantegrity 3-D to distribute trust among multiple election
trustees without increasing the technical requirements of the election audit. Finally, we
round out the system with a proposal for hash-only verification, which we believe can be a
tool for educating less-technical audiences about the merits of cryptographically verifiable
elections.

Contributions. The contributions of this chapter are summarized as follows:

• A proposal for hash-only verification.

• HOVER: a cryptographically verifiable optical-scan system with:

– A conventionally marked paper optical-scan ballot, as developed in Part I,

– A simplified audit procedure based on the results of Part II,

– Multi-party distribution of trust, as developed in Part III
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12.2 Hash-only Verification

In this chapter we propose an end-to-end proof based around a cryptographic hash func-
tion. Why hashing? To facilitate our discussion, our rationale is given from the perspective
of two groups: a non-expert technical audience with a very basic background in cryptog-
raphy but with a potential interest in election auditing, and a general audience without
any background in cryptography but with an interest in learning about the underlying
principles.

To a non-expert technical audience interested in performing an audit, hashing is one of
the most commonly encountered cryptographic primitives. For example, anyone who has
downloaded open source software is likely to have directly encountered a hash. Hashing is
also one of the few primitives that is commonly found in the standard libraries of (or at
least widely available for) many programming languages. A file hash can even be computed
directly from a UNIX based command line (e.g., Linux and Mac OS), and numerous free
websites and utilities exist for users of other operating systems. By comparison, many of
the cryptographic primitives favored in the literature (e.g., homomorphic encryption and
zero-knowledge proofs) do not have widely available implementations, often requiring that
they be implemented from scratch.

To a general audience interested in understanding the cryptographic properties, hashing
provides an intuitive parallel with physical fingerprints. Such a metaphor seems potentially
useful given the popularity of prime-time crime dramas. For example, a viewer of such a
show might conceivably understand that police could not easily identify a fingerprint that
was not already in their criminal database (preimage resistance). Such a person might
also understand that finding two people with matching fingerprints is unlikely (collision
resistance) and that finding another person whose fingerprints match their own would
be even more unlikely (second preimage resistance). Although this is only an imperfect
analogy, we can reasonably expect to face fewer obstacles connecting a new concept to an
existing and well formed mental model. By comparison, many of the primitives favored
in the literature do not have nearly as strong a connection to an existing model. For
example, semantically-secure additively homomorphic public-key encryption would require
conveying three novel concepts instead one: randomized encryption, adding “under the
covers”, and asymmetric keys, none of which have as strong a physical analogy.

12.2.1 A Special Purpose Hash-based Commitment

To the end of a hash-only verifiable election scheme, we would like to employ a hash
function (under specific assumptions) as a computationally hiding and computationally
binding commitment scheme. Cryptographic commitments are at the core of a number of
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trustworthy voting protocols such as Scantegrity and Eperio. A number of commitment
schemes exist in the literature, such as the unconditionally hiding commitment scheme due
to Pedersen [Ped92]. In this application we are interested in using hashing for its relative
technical and conceptual simplicity.

Given a collision-resistant hash function H and a message m, however, H(m) is not a
commitment to m in general. For one thing, hashing a message is not computationally
hiding when m is not chosen from a sufficiently large space. For example, committing to
a single bit b ∈ {0, 1} by posting c = H(b) is trivially opened by checking which of H(0)
and H(1) produce c. Under certain circumstances, however, such as when the message
is itself a sufficiently large random factor, a hash could potentially function as part of an
application-specific commitment. Although a commitment function based on a collision-
resistant hash function can be considered a “false solution” in general, we believe it may
be suitable for our specific needs.

Given a collision-resistant hash function H : {0, 1}∗ → {0, 1}` and an efficient descrip-
tion of permutation space Π, for |Π| ≥ 2`, we define an application-specific commitment
function as follows: Comm(π) takes permutation π ∈R Π and produces a commitment
c = H(π). Open(c, π′) takes a commitment c and an asserted permutation π′ ∈ Π and
returns accept iff H(π′) = c.

For π, π′ ∈ Π, Comm is binding as long as an adversary cannot find a collision, i.e.,
H(π) = H(π′) for any π 6= π′, or, find a second preimage, i.e., given π find a π′ 6= π such
that H(π) = H(π′). We assume it is computationally infeasible to find valid collisions as
part of the collision-resistant properties of H. We assume it is computationally infeasible
to find valid second preimages as part of the one-way properties of H (discussed below).
Comm is hiding as long as an adversary cannot exhaustively search the message space, or
invert the hash function, i.e., given c, it should be hard to find a π ∈ Π such that H(π) = c.
We assume π is chosen uniformly at random from Π and that |Π| is sufficiently large that
exhaustively searching the message space is computationally infeasible. We assume it is
computationally infeasible to invert H as part of the one-way properties of H.

An important question is whether collision-resistance implies one-wayness. Bellare and
Rogaway [BR05] show that an adversary with the ability to attack the one-wayness of a
hash function H : D → R has negligible advantage over an adversary with the ability to
attack the collision-resistance of H in the case where |R|/|D| is also negligible. For typical
real-world election parameters, we show a collision-resistant hash function will imply one-
wayness for our purposes.

In our particular application the message we are committing to (i.e., the hash image)
is a random permutation of a list of the mark state (i.e., marked or unmarked) of each of
the optical-scan ovals on each of the ballots cast in the election. In an election involving c
candidates and v voters, this list consists of cv elements, of which there are (cv)! possible
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permutations. As an example, for a small election of c = 2, v = 50 voters, and a hash
function with an output of length of ` = 256 bits, we have |D| = 100!, |R| = 2256, and
|R|/|D| ≈ 2−269, which is negligible in `.1

As Halevi and Micali [HM96] warn, however, despite H being collision resistant and
one-way, there are no guarantees about the feasibility of computing partial information
about m given H(m). Their point is that to ensure the commitment is hiding, we must
require additional properties of H. For the sake of this article we exclude the threat of
partial information leakage, for example, by modeling H as a random function. This is
somewhat in contradiction to our real-world setting, so it is worth briefly outlining potential
consequences when there exists an adversary who is able to extract a small number of bits
from m given H(m). Although we believe that the overall threat to voter privacy is low,
we note that proving this would be complex and would require specific assumptions about
the distribution of the leakage for a given hash function. Still, we note aspects of our
system offer an inherent degree of fault tolerance. For example, a leakage of g bits is
not sufficient to fully determine any single input/output pair of a permutation so long as
log2(cv!)/cv > g. Thus leaking a small number of bits (e.g., 1–2) would never be sufficient
to fully determine any single input/output pairing of a permutation for most election sizes.
Intersection attacks combining partial leakages across multiple proof instances, however,
remain a possibility. Based on previous (unpublished) analysis of Scantegrity however, we
contend this threat is fairly minimal when considering small leakages.

12.3 Basics and Election Setup

HOVER is a paper optical-scan voting system largely related to the Scantegrity sys-
tem [CCC+08, CCC+09]. For simplicity, we will describe the election correctness proof
as being generated by a single trusted authority. Although a trusted authority cannot cre-
ate a false (but accepting) proof, like in Scantegrity, it does receive sufficient information
to link individual voters to their voting intentions. In the following section, therefore, we
outline how recent advances in secure document printing [EH12b] can be used to distribute
trust among multiple authorities.

A single election trustee T initializes an election by establishing a public append-
only bulletin board BB. For an election involving c candidates and v voters, T defines a
permutation space Π consisting of all possible permutations of cv elements. T posts c, v, an
efficient description of Π, a description of a collision resistant hash function H, a canonical
list of candidate names N , and an alphabet of c valid/possible confirmation codes D to
BB. Note in practice v is several times larger than the actual number of registered voters
to allow for some ballots to be spoiled and/or audited.

1We say a function f is negligible in positive integer k if f(k) < 1/poly(k).

210



T generates v ballots, each containing c unique tuples {s, d, n} associated with a specific
optical scan oval on the ballot. This tuple consists of a ballot specific serial number
s ∈ {1, . . . , v}, a code letter d ∈ D assigned randomly without replacement, and the
associated candidate name n ∈ N . Note that the association between a given code d and
candidate name n is independent and random across ballots. All v ballot tuples form a
master ballot table B = {Bs, Bd, Bn}. B is given to a trusted printer who prints each of
the v ballots.

For each proof instance i = 1 . . . p, T chooses two random permutations ρi, σi ∈R Π
and computes shuffled candidate list Bni

= ρi ◦ σi(Bn). T posts serial number lists Bs,
code list Bd, each of the p shuffled candidate lists Bni

, and commitments to the associated
random permutations, H(ρi) and H(σi), to BB.

To vote, a voter marks the optical-scan oval appearing beside their chosen candidate’s
name n̂. A voter creates a receipt r = {ŝ, d̂} by writing down the serial number ŝ appearing
on their ballot and the code letter d̂ appearing beside the marked oval. A ballot, its receipt,
and the associated entry in the bulletin board are depicted in Figure 12.1.

Because of the unsupervised nature of receipt creation, it is possible that disputes can
arise between a voter and T over which code was marked. In its basic form, HOVER
utilizes the in-person dispute resolution procedure from Scantegrity (cf. Chapter 3), which
uses a non-cryptographic cut-and-choose proof befitting with our design goals, although
as discussed in previous chapters, does not scale well and is cumbersome to administer in
practice. Scantegrity II informational dispute resolution (cf. Chapter 4) is more practical,
though as a drawback, it is conceptually more complicated and must be adapted to a
distributed trust setting such as discussed in Chapter 10. This comes, however, at the
conceptual cost of a zero-knowledge proof. Designing a dispute resolution procedure that
is scalable, uses an economy of cryptography, and yet is secure in a distrbuted trust setting,
is a matter we leave for future work.

12.3.1 Linkage Lists

As a simplification over Scantegrity, HOVER commits to the full specification of random
permutations σi and ρi, whereas Scantegrity publishes separate commitments to each indi-
vidual input/output pair. Committing to an entire permutation not only allows us to use
the simpler commitment scheme described above, it also results in substantially fewer cryp-
tographic operations overall: 2p commitments in the former case, and 2pcv commitments
in the latter case.

An important part of a trustworthy election is the ability for a voter to receive assur-
ance that the code/candidate association appearing on a given paper ballot is faithfully
represented in the bulletin board tables. In a Scantegrity election, a voter (or some other
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Figure 12.1: Top: A marked ballot and receipt. Bottom: A bulletin board showing receipt and candidate
information including serial numbers Bs, confirmation codes Bd, and the mark state of the associated
optical scan ovals Md (left). A list of candidate names Bn and the associated mark states Mn (left) is
dissociated from the corresponding entries in Bs, Bd, and Md by a secret shuffle. The shuffle is expressed
as the composition of two independent random permutations σ and ρ—one may later be challenged by the
public to be revealed as part of a cut-and-choose proof of correctness. Additional independent shufflings
can be generated to increase soundness.

designated 3rd party auditor) may challenge T to prove the correct printing of any ballot.
For each element in serial number list Bs and code list Bd associated with serial number
ŝ of the challenged ballot, T discloses each associated element in each of the p candidate
lists Bci by opening the commitments to the associated input/output pairs in ρi and σi
(2pc openings in total). Ballot ŝ is then considered spoiled and may not be voted on; a
poll worker marks the paper ballot accordingly, and a flag is placed beside the associated
entries in the bulletin board.

Because HOVER commits to permutations as a whole, it cannot reveal individual
input/output pairs directly. To address this, we make use of the “linkage list” construction
used by Eperio (cf. Chapter 7). Instead of proving code/candidate links by directly
opening the affected commitments, T merely asserts the links in a linkage list LL. The
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correctness of these assertions can later be confirmed (with high probability) as part of the
post-election audit. Although we feel the linkage list approach provides a much simpler
verification process through full-permutation commitments, a major drawback is that faults
in the printing are only discovered after the election.

An important question is whether our hash based commitment securely composes with
the use of a linkage list. Through the linkage list, we are intentionally disclosing partial
information about permutations ρi and σi. This by itself is not an issue: the number of
unaudited ballots is always at least as large as the total number of voters, meaning the
effective permutation space Πef ⊆ Π will still be large despite partial disclosures due to the
print audit. It could be the case, however, that a real-world cryptographic hash function
might leak additional bits as a consequence of this partial disclosure. Of course, if H is
a random function, information revealed by the print audit cannot be used to compute
unknown bits.

12.3.2 Election Challenges and Audit

After the election, T uses the data collected by the optical scanners during the election
to create a mark state list Md of cast ballots. Md(i) ← 1 iff the confirmation code Bd(i)
on ballot Bs(i) was recorded as having been marked, or Md(i) ← 0 if it was unmarked.
Md(i) ← ∅ if the ballot was spoiled and/or print audited. T posts Md to BB. Finally,
for each proof instance i = 1 . . . p, T creates shuffled marks tables Mi = σi(Md) and
Mci = ρi(Mi), and posts these lists to BB. A shuffled candidate name list Bni

and the
associated marks list Mni

are sufficient to compute an election tally. Anyone can check
that each of the p instances produce the same election result.

Audit Challenges. For each proof instance i = 1 . . . p the public will collectively issue
a challenge to T to reveal either σi or ρi. T responds in kind by opening the associ-
ated commitments. There are a number of ways to produce challenge bits, the essential
property is that T must not be able to predict the outcome with an advantage over a
random guess. One potentially suitable source of entropy for small scale elections will
be the upcoming random beacon currently being implemented by the National Institute
of Standards and Technology (NIST) [FIP11]. The NIST beacon will draw on hardware
based entropy sources, offering the public digitally signed random bit strings in a persistent
on-line database. Although in general the NIST beacon will be agnostic about what its
outputs are being used for, it still represents a trusted component in this context, which
may not be suitable for larger elections. An alternative is randomness extracted from fi-
nancial data—a method we used in the 2009 Scantegrity election in Takoma Park. Clark
and Hengartner provide an analysis of this approach as well as suggestions for securely
combining the outputs of multiple independent sources [CH10].
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Election Audit. A voter can use their receipt r = {s, d̂} to check that, for each row
s ∈ Bs, all the associated mark states in Md are unmarked, except for the one associated
with their recorded confirmation code d̂ in Bd. Anyone can check that the mark states
were correctly propagated between the receipt and candidate tables by checking against
the opened permutations, i.e., by checking that Mi = σi(Md) or that Mni

= ρi(Mi).
The printing of challenged ballots is verified first by checking that the code/candidate
associations indicated in the linkage list match those indicated on the corresponding paper
ballot. Finally, the partial permutations in the linkage list are checked against the opened
permutations.

12.3.3 Verification in a Spreadsheet

A common roadblock faced by many real-world implementations of cryptographic election
verification is the relative complexity of the software. Unlike conventional software, which
can effectively function as a black box, election verification software must be developed in
a way that is functionally and conceptually transparent. Consistent with our design goals,
the election protocol should allow the verification software to be written in an economy
of lines of code (or perhaps more aptly put: “an economy of attention”2). Similarly, due
to the nature of highly specialized cryptographic components necessary to many crypto
voting protocols, the option to use existing software often does not exist.

Borrowing from the design goals set out in Eperio, we believe a verifier should be able
to audit a cryptographic election using existing software as much as possible, or, looked
at from the other direction, be required to write as few lines of software as possible. With
Eperio we presented a small audit tool written in 50 lines of Python. As an alternative—
one requiring no new lines of code—we presented an example in which an election could be
manually audited using a desktop spreadsheet. Although a manual audit would be tedious
for large scale elections, the widespread use of spreadsheets does present an interesting
opportunity for explaining the election audit in familiar terms. In this way the audit can
be communicated as a series of basic spreadsheet operations such as copying and pasting
columns of data, and simple commands like sort and find.

To facilitate spreadsheet verification, T encodes each of the ballot and mark lists
(Bs, Bd, etc) as a comma-separated values (CSV) file. The random permutations ρi and
σi, are expressed as lists of shuffled integers 1 . . . cv, also encoded as CSV files. Hashes of
permutation files are posted as commitments. T responds to the post-election challenges
by posting the relevant permutation files. The verifier first checks that the asserted file is
valid, i.e., it is in the correct encoding, and that the file only contains a valid shuffle of the
integers 1 . . . cv. The verifier then executes a command line file hash utility and compares

2Quote thanks to Ian Goldberg.
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the result to the posted commitment. For example, if H is SHA-256, the verifier could run
the file hashing utility sha256sum. Optionally these tasks can be automated using a simple
shell script. Once satisfied the commitments are correct, the verifier opens each of the files
in a spreadsheet, e.g., OpenOffice Calc. The audit steps are followed mostly as above. To
perform a permutation, e.g., to check if Mi = σi(Md), the verifier copies the list of shuffled
integers from the σi worksheet and pastes them into the Md sheet. The verifier then sorts
the sheet using the shuffled integers as the sorting key. The verifier pastes Md (now shuf-
fled) into the Mi worksheet and tests the lists for equality. The linkage lists are checked
similarly. A number of built-in spreadsheet commands exist for efficiently performing such
comparisons, and audit can be automated by a spreadsheet macro.

12.4 Distributing Trust

So far T has been described as a single trusted entity, i.e., one who knows the associations
between receipts and ballots (i.e., between voters and cleartext votes). Scantegrity, as an
example, makes extensive use of trusted entities and hardware: the optical scanners, the
ballot printers and even the poll workers gain access to receipt/vote combinations. Because
of the physical nature of the paper optical scan ballot, however, distributing trust in this
setting has proven to be a challenge. We using the secure multi-party oblivious printing
protocol of Chapter 11 to overcome the need for a trusted printer.

Let T be replaced by a collection of t trustees T1 . . . Tt. First, the trustees run an
oblivious printing protocol to randomly generate and obliviously print the confirmation
codes on each of the v ballots. The output of this protocol includes the obliviously printed
ballots, as well as a vector of encryptions of each of the code/candidate associations for
each ballot. These encryptions are made using a semantically secure public-key encryption
scheme for which the decryption key is distributed among the trustees.

For each proof instance i = 1 . . . p, each of the j = 1 . . . t trustees separately generates
and posts commitments to 2 random permutations ρji , σ

j
i . Next, the trustees compute

the shuffled candidate name lists Bni
using a reencryption mixnet taking the encrypted

candidate names as input and decrypting the shuffled result. The overall permutation
on the candidate list Bni

is thus ρti ◦ ρt−1i ◦ · · · ◦ σ2
i ◦ σ1

i . The trustees similarly apply
these permutations when populating the marks lists after the election. During the audit
challenge, each trustee Tj opens the commitment to the requested permutation, either
σji or ρji . The audit proceeds as above except with the verifiers checking a composition
of the trustees’ permutations, i.e., by checking either Mi = σti ◦ · · · ◦ σ1

i (Md) or Mni
=

ρti ◦ · · · ◦ ρ1i (Mi).

This approach allows HOVER to be run with a distributed set of trustees and without
a trusted printer. However this approach does not offer fully distributed trust: the confir-
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mation code associated with the chosen candidate is still revealed to the optical scanner
(and potentially the poll workers) when a ballot is cast. Following the approach taken in
Chapter 10, we can define two independent serial numbers: one for the ballot, and one
for the receipt. We discuss the additional procedures necessary such that no single entity
in the election, including the voter, ever sees both serial numbers. Finally, although the
verifier must verify the openings of t times as many commitments, at a conceptual level
the audit procedure is essentially the same as in the single-party case.

12.5 Concluding Remarks

Returning to our design criteria we consider how HOVER meets the design goals. In
terms of cryptographic verifiability, HOVER provides computationally sound election au-
dits similar to those proposed in Scantegrity and Eperio. With regard to distribution of
trust, HOVER makes use of the new oblivious printing paradigm to offer optical-scan pa-
per ballots allowing a voter to cast a vote and construct a receipt, without anyone else
finding out who they voted for. In terms of the latter two properties—a usable voting
interface, and a conceptually simple verification procedure—it is harder to ascertain how
HOVER fares without doing a usability study. HOVER offers voters and election officials
a familiar paper optical-scan ballot. Our voter poll in the 2009 Takoma Park election (see
Chapter 5) suggested voters and election officials found Scantegrity II ballots reasonably
intuitive to use. It is unclear, however, how these perceptions would be altered by the
changes introduced by the obliviously printed elements, and would be a question for future
work. Until we can satisfactorily address the threat of coercion in internet voting, however,
we can expect paper ballot optical-scan to be the dominant approach to cryptographically
verifiable voting.

Finally with regard to a simple verification procedure, we proposed a simple verification
procedure based around a hash-based commitment. We argue that, at a conceptual level,
hashing has a closer connection to an everyday paradigm than many of the primitives found
in the voting literature. At a technical level, we explain how hash-based commitments can
lead to smaller code sizes of audit software, even giving an example of how it might be
performed in a desktop spreadsheet. Ultimately it is our hope HOVER will be a stepping
stone toward greater acceptance and awareness among non-cryptographers of the merits
of cryptographic election verification.
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Chapter 13

Discussion, Future Work, and
Conclusion

Always vote for principle, though you
may vote alone, and you may cherish
the sweetest reflection that your vote
is never lost.

John Quincy Adams

This chapter contains excerpts from published work [EH12a].

13.1 Discussion

The design of cryptographically end-to-end verifiable elections is both a technical and social
challenge. At a technical level, cryptography can make elections verifiable in a way that
fundamentally exceeds conventional approaches. It offers each voter a means to check that
their ballot was counted correctly, without revealing it to anyone. The trustworthiness of
such elections is the product of statements proven directly about the election results, not
of individual voting machines, or the software they supposedly run.

Through this dissertation we have attempted to innovate the technical in the hope
of innovating the social, so as to bring cryptographic election verification closer to the
mainstream (i.e., what cryptographers call the “real world”). One possibly for gauging how
far we have come is Stu Feldman’s roadmap for technical maturity (as quoted in [Gee01])
consisting of the following milestones:
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1. You have a good idea,

2. You can make your idea work,

3. You can convince a friend to try it,

4. People stop asking why you are doing it,

5. Other people are asked why they are not doing it.

Beginning with Chaum and Benaloh in the 1980’s onward to recent times, we see the
foundations of our “good idea.” Where has this dissertation taken us from there? How
have we done with respect to our objectives (as stated in Section 1.2)?

Objective I: Improve Real-world Practicality for Voters and Election Officials.
With Chapters 3 and 4 we began with our good idea: a cryptographically verifiable voting
system based on a conventional optical-scan paper ballot. In Chapter 5 we made our idea
work, and convinced a friend1 (Takoma Park) to try it.

What we found was, in stark contrast to our early attempts with Punchscan, voters
found the ballot intuitive to mark, and appreciated the fact they could create a ballot
receipt (but didn’t have to). The Takoma Park election officials, for their part, were able
to administer the election without major hindrance. Although only a formal usability
study could confirm, our experiences running elections of this kind indicate that our goal
of improving real-world practicality for voters and election officials was met.

Objective II: Improve Real-world Practicality for Election Verifiers. With Chap-
ters 6, 7, and 8 we pursued the challenge of getting people to stop asking why we are doing
cryptographic election verification.

Aperio offers individuals interested in the procedures of cryptographic election verifica-
tion to learn about it in a non-technical way. Eperio and CommitCoin simplifies procedural
and software requirements for auditors with some technical background. Eperio vastly di-
minishes the size of audit software, as well as modularizes the role of cryptography, with
Aperio forming a pedagogical stepping stone. CommitCoin removes the requirement that
potential election verifiers become involved prior to the election. Through this work, elec-
tion verifiers have been given choice in audit software, a more flexible schedule, and a
gentler learning curve.

1Feldman’s original quote was “convince a gullible friend to try it.” Takoma Park, however, spent over
a year investigating our proposal before voting to adopt it.
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Objective III: Distribute Trust in Paper Ballot Elections. With Chapters 9, 10,
and 11 we pursued the challenge of distributing trust of printing cryptographically verifiable
paper optical-scan ballots. Although this line of research does not fit in to Feldman’s
progression directly, it does so indirectly—strong protections to ballot secrecy, after all,
should be a pre-condition for adoption.

Throughout this dissertation we have argued the practical merits of optical-scan relative
to fully electronic schemes. Prior to this work, however, the only options for trustworthy
optical-scan voting were to either accept weaker assurances of ballot secrecy due to reliance
on trusted hardware/entities, or, to burden voters with unusual/novel ballot styles and
marking procedures. Following this work, we can offer voters a paper optical-scan ballot
and better protections on ballot secrecy through a distribution of trust.

13.2 Future Work

The final stage of Feldman’s timeline—other people are asked why they are not running
cryptographically verifiable elections—remains to be seen. Perhaps we may not witness
this in the foreseeable future: the necessary legal and policy framework for large scale
deployment will take time, even if widespread demand for the technology can eventually
be fostered. There are, however, a number of technical and usability improvements that
could be investigated in the meantime:

• Future work arising from Part I:

– Usability of successive elections: with any new technology there is an asso-
ciated learning curve. It would be important to understand how the perceived
and actual usability of Scantegrity improves through exposure to successive elec-
tions. Preliminary data of the 2011 Takoma Park election (the second successive
use of Scantegrity) suggests that voters may be more confident with procedures
the second time around, although a formal user-study to confirm this will be an
important next step.

– Error detection success rates: a major issue central to cryptographic ver-
ification is just how likely the general public is to detect election audit errors
when they occur. A user study (in the context of a mock election) would be
useful for understanding how verifiers might interpret errors when they occur,
as well as what action they might take in communicating it to the appropriate
authorities,

– Error attribution: if an error is detected in an election, it would be vitally
important to be able to distinguish between a benign procedural/technical fail-
ure and a malicious/fraudulent act. Further, improvements to the underlying
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cryptography might be a useful direction for future work for the purposes of at-
tributing the error to a particular hardware device, polling station, poll worker,
ballot printer, voter, or election official, etc.

– Fault recovery policies: our research has thus far focused on detecting
election-related errors, but the field has thus far made little progress in cre-
ating policies for handling interpreting errors and recovering from them. In
what circumstance should an election found to contain errors be re-run? In
what circumstance should the results be upheld? These questions will prove
critical in the decision making process viz. adoption and deployment.

– Fault recovery technologies: one of the most promising and unexplored
areas for future work is the development of cryptographic means to reliably and
convincingly recovering from faults detected by the audits, specifically without
resorting to re-running the election.

– Invisible ink printing at scale: one area for future work would be refinement
of the invisible ink printing process. As a proof of concept, ballot printing for
the 2009 Takoma Park election was successful, however, the ink chemistry at
the time caused premature printer failure resulting in high production costs.
Printing with commercial inkjet printers is also slow, labor intensive, and costly.
Although we made improvements in the inks for the 2011 election, printer life
span and production output must be improved before elections on the scale
of a medium sized cities, or larger, will be feasible and cost effective. One
possible area for exploration would be to develop an invisible toner (as opposed
to ink), and integrate it into a high-speed digital industrial press. Our private
conversations with a large provider of such technology suggests that this may
be possible.

• Future work arising from Part II:

– Security of commitments: the security of commitment schemes based on
simple primitives such as block-cipher encryption or hashes should be studied
in greater detail, with associated security proofs made in stronger models.

– Usability of verification: the usability of the verification procedure is an
important and unexplored area. It would be interesting to establish success
rates for verification using a range of verification tools (small script, spreadsheet,
etc.).

– Testing understandability: it would be very important to the potential suc-
cess of cryptographic election verification to gather qualitative data with regard
to how understandable the principles are to different demographics, such as the
general public, election officials, non-expert technical audiences, etc., as well as
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to understand how much education is needed to bring average users from each
demographic to the point where they would find a successful election audit to
be convincing.

• Future work arising from Part III:

– Feasibility of invisible ink overprinting: our experience with single layer
invisible ink printing (as in Scantegrity) suggests that multiple layer overprinting
will likely perform as required by the oblivious printing paradigm. This has yet
to be confirmed in practice, however, and will be an important next step. One
important question would be to place a practical upper bound on how many
layers could be combined. A related question pertains to the practical limits
of image registration, i.e., whether commercial printers can reliably be made to
print in exactly the same spot on a sheet of paper twice,

– Upper bound on participants: our use of visual cryptography results in
contrast levels that decline exponentially in the number of participants. It
would be important to study the legibility of obliviously printed documents,
varying the number of printers, sub-pixel resolution, absolute print size, font,
etc. Early experiments suggest three parties is a minimal lower bound (i.e.,
more than three parties may be possible),

– Attribution: with the oblivious printing protocol presented in this disserta-
tion, it is generally possible to catch attempts to manipulate the message result;
however, for the most part, it is not possible to attribute such malicious behav-
ior to a particular printer. Future work should focus on developing efficient
modifications to the cut-and-choose printing audit so as to be able to attribute
faults to the responsible printers, allowing the protocol to be rerun without the
offending parties present,

– Usability of Scantegrity 3-D ballots: Several potential usability issues
would need to be established with regard to the privacy mechanisms of oblivi-
ously printed/Scantegrity 3-D ballots. Three areas to investigate would be the
secure transportation/storage of ballots between the printers and the polling
place, proper handling of ballots by poll workers when issuing blank ballots and
scanning marked ballots, and finally, how well voters will reliably understand
how to protect their ballot choices (e.g., waiting until the disappearing ink has
completed reacting).
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13.3 Final Remarks

Recall the old engineering adage: “fast, good, cheap—pick any two.” It is a testament
to the trade offs inherent to any design project. Over the last 30 years of research into
cryptographically end-to-end verifiable elections, the trade offs have primarily been be-
tween cryptographic verifiability, distribution of trust, a usable voting interface, and a
conceptually simple verification procedure. Cryptographers have tended to optimize on
the former two, whereas election officials and voters have championed the latter two. In
our view, compromise across each of these properties is necessary to advance the cause of
trustworthy elections.

In this dissertation, we have attempted to build a bridge between the priorities of both
groups—from blackboard to election board. Our experience has been that, at times, neither
group has felt entirely satisfied. Still, we take heart in the fact that a successful negotiation
tends to proceed in such a manner. We still believe cryptographic verification represents
the future of elections, and the research presented in this dissertation was made in support
of this belief. By making cryptographic end-to-end election verification more accessible
to the public, we contend that this research is an important step toward safeguarding
democracy in the digital age.
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Wahlprüfungsbeschwerden, 2009.

[FIP11] M. J. Fischer, M. Iorga, and R. Peralta. A Public Randomness Service.
Technical report, National Institute of Standards and Technology, 2011.

[FM97] M. K. Franklin and D. Malkhi. Auditable Metering with Lightweight Security.
In Financial Cryptography, 1997.

[FMM+02] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An Implementa-
tion of a Universally Verifiable Electronic Voting Scheme Based on Shuffling.
In FC, 2002.

[FMS10] J. Furukawa, K. Mori, and K. Sako. An Implementation of a Mix-Net Based
Network Voting Scheme and Its Use in a Private Organization. In Towards
Trustworthy Elections, volume 6000 of LNCS. Springer, 2010.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for
Large Scale Elections. In ASIACRYPT, pages 244–251, 1992.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems. In CRYPTO, pages 186–194, 1986.

[FSC09] R. A. Fink, A. T. Sherman, and R. Carback. TPM meets DRE: Reducing
the Trust Base for Electronic Voting Using Trusted Platform Modules. Trans.
Info. For. Sec., 4(4):628–637, 2009.

[Gee01] D. Geer. Technical Maturity, Reliability, Implicit Taxes, and Wealth Creation.
login: The magazine of Usenix & Sage, 26(8), 2001.

[GJMM98] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. Curbing Junk E-mail
Via Secure Classification. In Financial Cryptography, 1998.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-Time Programs. In
CRYPTO, 2008.

230



[GM84] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Sciences, 28:2:270299, 1984.

[GS98] D. M. Goldschlag and S. G. Stubblebine. Publicly Verifiable Lotteries: Ap-
plications of Delaying Functions. In Financial Cryptography, 1998.

[Her97] M. A. Herschberg. Secure Electronic Voting Over the World Wide Web.
Master’s thesis, MIT, 1997.

[HJP05] E. Hubbers, B. Jacobs, and W. Pieters. RIES: Internet Voting in Action. In
Computer Software and Applications Conference (COMPSAC), pages 417–
424, 2005.

[HJS+08] E. Hubbers, B. Jacobs, B. Schoenmakers, H. van Tilborg, and B. de Weger.
Description and Analysis of the RIES Internet Voting System. Technical
report, Eindhoven Institute for the Protection of Systems and Information
(EiPSI), 2008.

[HM96] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing. In CRYPTO, 1996.

[HRT10] J. Heather, P. Y. A. Ryan, and V. Teague. Pretty Good Democracy for More
Expressive Voting Schemes. In ESORICS, 2010.

[HS90] S. Haber and W. S. Stornetta. How to Time-Stamp a Digital Document. In
CRYPTO, 1990.

[HS00] M. Hirt and K. Sako. Efficient Receipt-Free Voting Based on Homomorphic
Encryption. In EUROCRYPT, 2000.

[HS11] R. Haenni and O. Spycher. Secure Internet Voting on Limited Devices with
Anonymized DSA Public Keys. In EVT/WOTE, 2011.

[HSS09] K. Henry, D. R. Stinson, and J. Sui. The Effectiveness of Receipt-Based
Attacks on ThreeBallot. IEEE TIFS, 4(4):699–707, 2009.

[IRS+07] S. Inguva, E. Rescorla, H. Shacham, , and D. S. Wallach. Source Code Review
of the Hart InterCivic Voting System. In State of California’s Top to Bottom
Review, 2007.

[JB99] A. Juels and J. Brainard. Client Puzzles: A Cryptographic Defense Against
Connection Depletion Attacks. In NDSS, 1999.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant Electronic Elec-
tions. In ACM WPES, 2005.

231



[JJ99] M. Jakobsson and A. Juels. Proofs of Work and Bread Pudding Protocols.
In Communications and Multimedia Security, 1999.

[JJ00] M. Jakobsson and A. Juels. Mix and Match: Secure Function Evaluation via
Ciphertexts. In ASIACRYPT, 2000.

[JJB06] H. Jones, J. Juang, and G. Belote. ThreeBallot in the Field. MIT Course
Project, 2006.

[JJR02] M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust for
Electronic Voting by Randomized Partial Checking. In USENIX Security
Symposium, pages 339–353, 2002.

[Jon09] D. W. Jones. Some Problems with End-to-End Voting. In NIST End-to-End
Voting Systems Workshop, 2009.

[JR07] R. Joaquim and C. Ribeiro. CodeVoting: Protection Against Automatic Vote
Manipulation in an Uncontrolled Environment. In VOTE-ID, 2007.

[JR11] R. Joaquim and C. Ribeiro. An Efficient and Highly Sound Voter Verification
Technique and its Implementation. In VOTE-ID, 2011.

[JRF09] R. Joaquim, C. Ribeiro, and P. Ferreira. VeryVote: A Voter Verifiable Code
Voting System. In VOTE-ID, 2009.

[JRF10] R. Joaquim, C. Ribeiro, and P. Ferreira. Improving Remote Voting Security
with CodeVoting. In Towards Trustworthy Elections, volume 6000 of LNCS.
Springer, 2010.

[KC10] G. O. Karame and S. Capkun. Low-cost Client Puzzles Based on Modular
Exponentiation. In ESORICS, 2010.

[KHF11] R. Koenig, R. Haenni, and S. Fischli. Preventing Board Flooding Attacks in
Coercion-Resistant Electronic Voting Schemes. In SEC, 2011.

[KK87] O. Kafri and E. Keren. Encryption of Pictures and Shapes by Random Grids.
Optics Letters, 12:6:377–379, 1987.

[KRMC07] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum. Hacking Paper: Some
Random Attacks on Paper-Based E2E Systems. In Frontiers of Electronic
Voting, 2007.

[KRMC10] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum. Attacking Paper-Based
E2E Voting Systems. In Towards Trustworthy Elections, volume 6000 of
LNCS, pages 370–387. Springer, 2010.

232



[KSRW04] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. Analysis of
an Electronic Voting System. In IEEE Symposium on Security and Privacy,
2004.
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Appendix A

Eperio Implementation Details

A.1 Eperio Audit Data Specification

All (unencrypted and decrypted) election data files are formatted as UTF-8 encoded
Comma Separated Values (CSV). Columns are separated by the delimiter ‘,’ (0x2C) and
rows are separated by a carriage return (0x0A).

File Naming and Formatting Convention. For an election of b ballots, c candidates,
I proof instances, of which p were print audited, the following files will be generated and
posted to the bulletin board through the course of the election verification timeline

$electionDir$/AssertedReceipts.csv: is a bc× 2 list containing an asser-
tion of all receipt information created during an election. Each element
in (:, 1) is unique election references: s-p where 1 ≤ s ≤ b is a ballot
serial number and 0 ≤ p ≤ c − 1 a mark position. Elements in column
(:,2) represent the corresponding mark state registered during the elec-
tion, either 0, 1, or -1 indicating the corresponding unique reference was
either unmarked, marked or print audited respectively.

$electionDir$/AssertedTally.csv: is a bc× 2 list containing an assertion
of aggregate voting intent created during an election. Column (:, 1) is
a list of b repetitions of c candidate names. Elements in column (:, 2)
represent the corresponding mark state.

$electionDir$/LinkageList.csv: is a p× i+ 2 list containing an assertion
of the association between receipt (:, 1) and candidate (:, 2) for all print
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audited ballots, as well as an assertion of the row number the entry in
each of the I instances of shuffled receipt (U) and tally (S) lists.

$electionDir$/ChallengeKeys.csv: is a i× 2 list containing a respond to
the audit challenge. Elements at (i, 1) represent the relative file path
to the file that was challenged: the i-th shuffled instance of the receipt
list $electionDir$/i/Ui or tally list $electionDir$/i/Si respectively.
Elements at (i,2) represent the corresponding revealed decryption key to
the file (128-bits, BASE64 encoded).

For each instance 1 ≤ i ≤ I:

$electionDir$/i/Si.csv: is a bc × 3 list representing a shuffled instance
of column (:,1) of AssertedTally.csv repeated three times (as per the
commitment scheme described in section 7.4) in columns (:, 1), (:, 2) and
(:, 3) respectively.

$electionDir$/i/Ui.csv: is a bc × 3 list representing a shuffled instance of
column (:, 1) of AssertedReceipts.csv repeated three times as above.

$electionDir$/Marks/Mi.csv: is a bc×1 list representing a shuffled instance
of column (:, 2 of AssertedReceipts.csv and AssertedTally.csv.

File Encryption Conventions. 128-bit file encryption keys are derived by the semi-
trusted trustee workstation and BASE64 encoded for convenience of transmission over the in-
ternet. The two file encryption options (OpenSSL and TrueCrypt) use their own password-
based key derivation functions. OpenSSL and TrueCrypt encrypted files are denoted by
the .enc and .tcr extensions, and use AES-128-CBC and AES-128-XTS encryption modes
respectively. There is no inherent way to bypass the key-derivation process of these appli-
cations to directly apply a binary key. As such the BASE64 encoded keys are supplied as
passwords and each program (OpenSSL, TrueCrypt, etc) will derive its own (binary) en-
cryption key using its own particular password based key derivation function. In OpenSSL
the workstation applies the -a command option to BASE64 encode the encrypted output
for safe internet transport.
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A.2 Python Code for Eperio Verification

1 import csv , os , s t r i ng , sys
2 def openCSV( f i leName ) :
3 data = [ ]
4 f i l eCon t en t s = open ( fi leName , ’ r ’ )
5 for i in f i l eCon t en t s :
6 data . append ( i . s t r i p ( ) . s p l i t ( ” , ” ) )
7 return data
8 def v e r i f yFa i l e d ( errorMsg ) :
9 print errorMsg

10 sys . e x i t ( )
11 def verifyCommitment ( i n s t anc e ) :
12 os . system ( ” opens s l enc −d −aes−128−cbc −a −in ” + in s t ance [ 0 ] + ” . enc −out ” +

in s tance [ 0 ] + ” . csv −pass pass : ” + in s tance [ 1 ] )
13 data = openCSV( in s t anc e [ 0 ] . s t r i p ( ’ ” ’ ) + ” . csv ” )
14 c o l = [ ]
15 for i in data :
16 i f i [ 0 ] != i [ 1 ] or i [ 0 ] != i [ 2 ] :
17 v e r i f yFa i l e d ( ” Inva l i d Commitment” )
18 return [ i [ 0 ] for i in data ]
19 def getMarks ( i n s t ance ) :
20 marks = openCSV( ” . /Marks/M”+ in s tance [ 0 ] [ 2 : 4 ] + ” . csv ” )
21 return [ i [ 0 ] for i in marks ]
22

23 a s sRece ip t s = sor t ed (openCSV( ’ . / Asse r tedRece ipt s . csv ’ ) )
24 as sTa l l y = sor t ed (openCSV( ’ . / Asser tedTal ly . csv ’ ) )
25 pwds = openCSV( ’ . / ChallengeKeys . csv ’ )
26 l i n k a g eL i s t = openCSV( ’ . / L inkageL i s t . csv ’ )
27 for i , i n s t ance in enumerate (pwds ) :
28 merged=[ ]
29 data = verifyCommitment ( i n s t ance )
30 marks = getMarks ( i n s t ance )
31 for index in range ( l en ( data ) ) :
32 merged . append ( [ data [ index ] , marks [ index ] ] )
33 i f i n s t ance [ 0 ] [ 5 ] == ”U” :
34 for ba l l o t , l i nkage in enumerate ( l i n k a g eL i s t ) :
35 i f l i n k a g eL i s t [ b a l l o t ] [ 0 ] != merged [ i n t ( l i n k a g eL i s t [ b a l l o t ] [ i

+2]) −1 ] [0 ] or merged [ i n t ( l i n k a g eL i s t [ b a l l o t ] [ i +2]) −1 ] [1 ] !=
”−1” :

36 v e r i f yFa i l e d ( ”Linkage l i s t FAIL : Rece ipt i n s t ance #%d
does not does not match l i nkage l i s t ” % ( i +1) )

37 i f a s sRece ip t s == sor t ed (merged ) :
38 print ” Ins tance %d v e r i f i e d ” % ( i +1)
39 else :
40 v e r i f yFa i l e d ( ” V e r i f i c a t i o n FAIL : Rece ipt i n s t ance #%d does not

match a s s e r t ed r e c e i p t l i s t ! ” % ( i +1) )
41 e l i f i n s t ance [ 0 ] [ 5 ] == ”S” :
42 for ba l l o t , l i nkage in enumerate ( l i n k a g eL i s t ) :
43 i f l i n k a g eL i s t [ b a l l o t ] [ 1 ] != merged [ i n t ( l i n k a g eL i s t [ b a l l o t ] [ i

+2]) −1 ] [0 ] or merged [ i n t ( l i n k a g eL i s t [ b a l l o t ] [ i +2]) −1 ] [1 ] !=
”−1” :

44 v e r i f yFa i l e d ( ”Linkage l i s t FAIL : Tal ly i n s t anc e #%d do\
t e x t t t {BASE64} encodedes not does not match l i nkage
l i s t ” % ( i +1) )

45 i f as sTa l l y == sor t ed (merged ) :
46 print ” Ins tance %d v e r i f i e d ” % ( i +1)
47 else :
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48 v e r i f yFa i l e d ( ” V e r i f i c a t i o n FAIL : Tal ly i n s t ance #%s does not
match a s s e r t ed t a l l y l i s t ! ” % ( i +1) )

49 else :
50 v e r i f yFa i l e d ( ” Ins tance f i l ename i s i n c o r r e c t l y formatted ” )

A.3 User Instructions for Manual/Spreadsheet Veri-

fication

The following instructions were tested in OpenOffice.org Calc 3.0 and TrueCrypt 6.0a. The
user is assumed to have downloaded all relevant data files to directory /$electionDir$/.
Let i represent the instance number the verifier wishes to check.

Part I: Verify Commitments

In Calc:

• Open $electionDir$/ChallengeKeys.csv

• Let $filePath$ represent the contents of cell Ai

In TrueCrypt :

• Select a free drive letter (without loss of generality assume Z:)

• Click Select File → Select $electionDir$/$filePath$.trc → Open

In Calc:

• Click on cell Bi → CTRL + C

In TrueCrypt :

• Click Mount → CTRL+V → OK

In Calc:

• Open Z:/$filePath$.csv,

• In cell D1 type formula =A1=B1,
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• Click on cell D1 once and double click on the square in the bottom right corner of
the cell to apply the formula to all cells in the column,

• In cell E1 type formula =A1=C1,

• Click on cell E1 once and double click on the square as before,

• In cell F1 type formula =COUNTIF(D1:E65536;0),1

• If F1 equals 0, the commitment is verified.

Part II: Comparing decommitted list to assterted list

In Calc:

• Let $asserted$ represent $electionDir$/AssertedReceipts.csv if $filePath$ is
/i/Ui, otherwise let it represent $electionDir$/AssertedTally.csv if $filePath$
is /i/Si

• Open $electionDir$/$asserted$.csv,

• Click Data → Sort. Select Sort by Column A (Ascending) and Then by Column B

(Ascending) → OK,

• In Z:/$filePath$.csv click on column A → CTRL+C,

• Open $electionDir$/Marks/Mi.csv,

• Right click on column A → Insert Columns → CTRL+V,

• Click Data → Sort. Select Sort by Column A (Ascending) and Then by Column B

(Ascending) → OK,

• Holding CTRL click columns A and B → CTRL+C,

• In the asserted list, click column C → CTRL+V,

• In cell E1 type formula =A1=C1 and apply formula to all cells in the column as
previously described,

• In cell F1 type formula =B1=D1 and apply to all cells in the column,

• In cell G1 type formula =COUNTIF(E1:F65536;0),

165536 is the maximum row number in OpenOffice 3.0.
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• If G1 equals 0, Z:/$filePath$.csv matches $electionDir$/AssertedReceipts.csv.

PART III: Comparing decommitted list to linkage list

In Calc:

• Let X = A if the asserted receipt list was opened during Part II otherwise let X = B

if the asserted tally was opened instead. Let Y be the i+ 2-th letter of the alphabet,

• Open $electionDir$/LinkageList.csv,

• For each print audited ballot 1 ≤ j ≤ p:

– Click on cell Y j → CTRL+C,

– In Z:/$filePath$.csv in the name box (top left) type ‘A’→ CTRL+V→ Enter.
The audit fails if the contents of the active (highlighted) cell do not match the
contents of cell Xj in the linkage list.

– In $electionDir$/Marks/Mi.csv in the name box type ‘A’→ CTRL+V→ Enter.
The audit fails if the contents of the active cell does not equal -1.

246



Appendix B

Carbon Dating the 2011 Takoma
Park Pre-election Commitments

The Scantegrity pre-election commitments were made with CommitCoin on Oct 18, 2011
for the municipal election of Takoma Park, MD held on Nov 08, 2011. The 6 MeetingO-
neOut.xml files from the Scantegrity data (which contain the pre-election commitments
of the 6 wards of Takoma Park’s election) were inserted into the block chain using the
same simplified version of CommitCoin used for the proof-of-concept above. Since the files
already contained randomized commitments generated by Scantegrity, we simply hashed
them to an appropriate size. The Bitcoin blockchain will show BTC0.01 was sent to the
hash of each of these 6 files.

Bitcoin’s blockchain forms a proof-of-work. Participants in the Bitcoin network use
their computers to compete to “solve blocks” (i.e., to find partial hash preimages). The
average number of hashes required to solve a block at the current difficulty level is 252. The
network is currently able to solve one block on average every 12 minutes. An adversary
attempting to change the commitments of the Takoma Park election (e.g., on election
night, Nov 8th, 2011) would have to produce an alternate (but valid) block chain, which
would require them to compute over 263 hashes. As the block chain grows through time
(through the course of commerce done with Bitcoin), so would the attacker’s work load.

We used the following approach:

1. Convert file to hash: RIPEMD160(file) = hash
2. Convert hash to Bitcoin address format: Hash2Address(hash) = BitcoinAddress
3. Send funds to BitcoinAddress: URL of transaction

The files already contain the commitments. The transactions below appeared in the
Bitcoin blockchain at (2011-10-18 17:26:00):
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baseURL = https://scantegrity.org/svn/data/takoma-nov8-2011/

RIPEMD160(ward1/MeetingOneOut.xml) = f6458eceefd326af9d4fe74125bdc2e762d28ac9
http://blockexplorer.com/q/hashtoaddress/f6458eceefd326af9d4fe74125bdc2e762d28ac9 =

1PTAZ9wMZ2Ff9RgLt4UMXMh7vbBNdTDVbs
Transaction:
http://blockexplorer.com/tx/3789397fc352e93e7f1e7be3b770a04bff251ae36fa601125372336c626cb743

RIPEMD160(ward2/MeetingOneOut.xml) = d2a8535ba5a61bad576d2adecb54c700c40ae2d4
http://blockexplorer.com/q/hashtoaddress/d2a8535ba5a61bad576d2adecb54c700c40ae2d4 =

1LCrYkh7nDRippJXx79kzVRvsbG13gKagN
Transaction:
http://blockexplorer.com/tx/769104a1676b56232a1e64f3001c874926945ff1ca2854484ccea32faf10621a

RIPEMD160(ward3/MeetingOneOut.xml) = abc960bcd48b89b8b2a8e6fdb3713d6f2a50ecf5
http://blockexplorer.com/q/hashtoaddress/abc960bcd48b89b8b2a8e6fdb3713d6f2a50ecf5 =

1GfKnnSffFBEtb3334M19LX5GCtQjNV3Du
Transaction:
http://blockexplorer.com/tx/9a7c41157b09a5df78cbeb0b9158d310639eded63a015fe571ba96c8dd012903

RIPEMD160(ward4/MeetingOneOut.xml) = a6866ea967e326fe9f28f8ae76ea32a396cb5f29
http://blockexplorer.com/q/hashtoaddress/a6866ea967e326fe9f28f8ae76ea32a396cb5f29 =

1GBWDMzPjREp1kh6UDKfrqzJySpMNKJCF8
Transaction:
http://blockexplorer.com/tx/a265acda0eb4f71fd6655894810d11b268f1e4de56dd018a90897f7d6c28a4ce

RIPEMD160(ward5/MeetingOneOut.xml) = 5dce8714c84d7df569e4c4dc7dad24fd3d8aeccc
http://blockexplorer.com/q/hashtoaddress/5dce8714c84d7df569e4c4dc7dad24fd3d8aeccc =

19Z1FdkgY4ab7S2oF2mrVJmHTkbRNsZV3X
Transaction:
http://blockexplorer.com/tx/630630365bd80cf0c5011709bb23f2f3bd4e9944c513ba79d2d43b45fdb0e848

RIPEMD160(ward6/MeetingOneOut.xml) = 8e62d49a002b35e5463c887a8961739d70d45ac5
http://blockexplorer.com/q/hashtoaddress/8e62d49a002b35e5463c887a8961739d70d45ac5 =

1DysM6u7Mu7Gfp1cug6EpBSshijZg1CakY
Transaction:
http://blockexplorer.com/tx/0a1f9361f068c1f3f05f16a8bea89173ad20045bd6f5e6f57611ce6e925185f5
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