
Perceptuomotor incoordination during 

manually-assisted search 
 

 

 

by 

 

 

Grayden J. F. Solman 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Psychology 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

© Grayden J. F. Solman 2012 

 



 

 ii 

Author's Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

  

I understand that my thesis may be made electronically available to the public. 

 

 



 

 iii 

Abstract 

The thesis introduces a novel search paradigm, and explores a previously unreported behavioural 

error detectable in this paradigm. In particular, the ‘Unpacking Task’ is introduced – a search task in 

which participants use a computer mouse to sort through random heaps of items in order to locate a 

unique target. The task differs from traditional search paradigms by including an active motor 

component in addition to purely perceptual inspection. While completing this task, participants are 

often found to select and move the unique target item without recognizing it, at times continuing to 

make many additional moves before correcting the error. This ‘unpacking error’ is explored with 

perceptual, memory load, and instructional manipulations, evaluating eye-movements and motor 

characteristics in additional to traditional response time and error rate metrics. It is concluded that the 

unpacking error arises because perceptual and motor systems fail to adequately coordinate during 

completion of the task. In particular, the motor system is found to ‘process’ items (i.e., to select and 

discard them) more quickly than the perceptual system is able to reliably identify those same items. 

On those occasions where the motor system selects and rejects the target item before the perceptual 

system has had time to resolve its identity, the unpacking error results. These findings have important 

implications for naturalistic search, where motor interaction is common, and provide further insights 

into the conditions under which perceptual and motor systems will interact in a coordinated or an 

uncoordinated fashion. 



 

 iv 

Acknowledgements 

I am grateful in particular to my advisor, Daniel Smilek, for his relentless optimism and consistent 

direction, and to Allan Cheyne for many fruitful and engaging discussions. I am also thankful to my 

committee members, Britt Anderson and James Danckert, for their valuable comments and advice, 

and to the research assistants who have aided in this project: Brandon Ralph, Trish Varao Sousa, 

Nicholas Wu, Vivian Cheng, Kaitlyn Gahagan, and Sandy Vuong. This work was supported by 

NSERC. 



 

 v 

Table of Contents 
Author's Declaration............................................................................................................................... ii!

Abstract.................................................................................................................................................. iii!

Acknowledgements ............................................................................................................................... iv!

Table of Contents ................................................................................................................................... v!

List of Figures........................................................................................................................................ vi!

1. Introduction ........................................................................................................................................ 1!

2. The Experiments................................................................................................................................. 9!

2.1 Experiment 1 .............................................................................................................................. 11!

2.2 Experiment 2 .............................................................................................................................. 19!

2.3 Experiment 3 .............................................................................................................................. 24!

2.4 Experiment 4 .............................................................................................................................. 39!

2.5 Experiment 5 .............................................................................................................................. 54!

2.6 Experiment 6 .............................................................................................................................. 59!

2.7 Experiment 7 .............................................................................................................................. 70!

2.8 Error Rates and Set Size: Meta-analysis .................................................................................... 77!

3. General Discussion........................................................................................................................... 78!

3.1 The Unpacking Error .................................................................................................................. 78!

3.2 Relation to Documented Errors .................................................................................................. 81!

3.3 Concluding Comments ............................................................................................................... 85!

Appendix A Trace Computation – Experiment 3................................................................................. 87!

Bibliography ......................................................................................................................................... 89!

 



 

 vi 

List of Figures 
Figure 1.1 Neisser’s Perceptual Cycle. Adapted from Neisser (1976). ..................................................2!

Figure 1.2 Expanded Perceptual Cycle as applied to search behaviour..................................................4!

Figure 1.3 Expanded Perceptual Cycle for search, highlighting the novel component of active 

exploration. .............................................................................................................................................7!

Figure 2.1Sample displays for the Dissimilar item set (A) and Similar item set (B). Participants were 

instructed to locate the target item, displayed in the green box on the right, and to drag it onto the 

green target box.....................................................................................................................................13!

Figure 2.2 Search items composing the Similar stimulus set. ..............................................................14!

Figure 2.3 Response Times (seconds) for Experiment 1, plotted across Set Size for Similar items 

(solid line) and Dissimilar items (dashed line). Error bars depict one standard error of the mean.......17!

Figure 2.4 Proportion of trials having Caught errors (trials where the target was moved twice in 

succession, with the second move being to the target box) and Uncaught errors (trials where the target 

was moved at least twice, with at least one intervening non-target move) in Experiment 1. Values are 

plotted across Set Size for Similar items (solid line) and Dissimilar items (dashed line). Error bars 

depict one standard error of the mean. ..................................................................................................18!

Figure 2.5 Response Times (seconds) for Experiment 2, plotted across Set Size for search under Load 

(solid line) and No Load (dashed line) conditions. Error bars depict one standard error of the mean. 22!

Figure 2.6 Proportion of trials having Caught errors and Uncaught errors in Experiment 2. Values are 

plotted across Set Size for search under Load (solid line) and No Load (dashed line) conditions. Error 

bars depict one standard error of the mean. ..........................................................................................23!

Figure 2.7 Example display from the Yoked-vision condition in Experiment 3. Each item was 

displayed only as a blank grey card unless it had been selected. The identity of a selected card was 

visible only while the mouse button was depressed. The target template was always visible. ............26!

Figure 2.8 Response Times (seconds) for Experiment 3, plotted across Set Size for search under 

Yoked-vision (dashed line) Full-vision (solid line) conditions. Error bars depict one standard error of 

the mean. ...............................................................................................................................................28!

Figure 2.9 Proportion of trials having Caught errors and Uncaught errors in Experiment 3. Values are 

plotted across Set Size for search under Yoked-vision (dashed line) and Full-vision (solid line) 

conditions. Error bars depict one standard error of the mean. ..............................................................31!

Figure 2.10 Characteristics of mouse movements for trial-terminating target moves on correct trials, 

plotted for Full-vision and Yoked-vision conditions. The dashed line indicates the total velocity of the 



 

 vii 

movement (in degrees per second), while the solid line indicates the component of this movement in 

the direction of the response box. Positive values indicate movement toward the response box, and 

negative values indicate movement away from the response box. Shading represents the significance 

level for a t-test against zero................................................................................................................. 32!

Figure 2.11 Characteristics of mouse movements for erroneous target moves on Caught and Uncaught 

error trials, and for a comparison non-target move on correct trials (Standard) plotted for Full-vision 

and Yoked-vision conditions. The dashed line indicates the total velocity of the movement (in degrees 

per second), while the solid line indicates the component of this movement in the direction of the 

response box. Positive values indicate movement toward the response box, and negative values 

indicate movement away from the response box. A value at zero indicates movement orthogonal to 

the direction of the response box. Shading represents the significance level for a t-test against zero. 35!

Figure 2.12 Distribution of error severity for Uncaught errors (indexed by the number of intervening 

moves between initial and final movement of the target), plotted for Yoked-vision (dashed line) and 

Full-vision (solid line) conditions. Error bars depict one standard error of the mean. * p < .001. ...... 38!

Figure 2.13 Proportion of Trials in Experiment 4 having Caught errors (solid line) and Uncaught 

errors (dashed line), plotted across Set Size. Error bars depict one standard error of the mean. ......... 42!

Figure 2.14  Data alignment procedure for eye-tracking samples. Samples were aligned relative to 

individual moves. The Recording Space (left) refers to the native on-screen coordinate system. Within 

the Recording Space, each move defined a vector from the grab location to the drop location. This 

vector was taken as the positive y-axis for Plotting space, and samples were reflected about this axis. 

All samples surrounding a given type of move (e.g., first target move on Uncaught error trials) were 

translated into this common reference frame and then averaged into traces. The resulting ‘Plotting 

Space’ can be understood as follows. The starting position for a move is at the origin, and the drop 

position is at some positive distance up the y-axis. Negative values on the y-axis indicate movement 

in the opposite direction from the actual move. The x-axis has only positive values, and represents 

distance orthogonal to the movement vector........................................................................................ 43!

Figure 2.15 Mouse (left) and Eye (right) movement traces relative to the final, trial-terminating target 

move on correct trials (refer to Figure 2.14 and text for description of the plotting space). The grey 

disc and enclosed rectangle at the origin indicate the starting position of the target, while the empty 

disc and enclosed rectangle at the top left of each plot indicate the drop position of the target (for 

these moves, this is the response box). Traces are plotted for the period prior to the movement (1) and 



 

 viii 

for the period during the movement itself (2). Numbered circular markers indicate the beginning time 

points for each trace. .............................................................................................................................45!

Figure 2.16 Mouse (left) and Eye (right) movement traces relative to the erroneous target move on 

Caught (top row) and Uncaught (middle row) trials, and relative to a typical non-target move during a 

correct trial (Standard move; bottom row). Traces are plotted for the period prior to the movement 

(1), during the movement (2), and following the movement (3). Numbered circular markers indicate 

the beginning time points for each trace. The filled triangles on the eye-movement panels (right side) 

indicates the location of the response box. ...........................................................................................47!

Figure 2.17  Average time spent looking at the target (ms) during the period preceding target 

movement (and following the previous movement). Plotted for the final, trial-terminating target move 

on Correct trials, for the first (erroneous) target move on Caught and Uncaught error trials, and for a 

typical non-target move on a correct trial (Standard). Error bars depict one standard error of the mean.

...............................................................................................................................................................49!

Figure 2.18  Probability that the target template (co-extensive in space with the response box) was 

being inspected at times surrounding movement of the target (midpoint of the movement aligned to 

time zero). The sole target move was used for Correct trials (hashed line), while the first target move 

was used for Caught errors (thin black line) and Uncaught errors (thick grey line). Values were 

computed for the 5 seconds preceding and following the move. Correct trials (hashed) terminate 

following the target move, and so do not contribute data to the post-move period. Error bars depict 

one standard error of the mean..............................................................................................................52!

Figure 2.19 Proportion of trials in Experiment 5 having Caught errors (solid line) and Uncaught errors 

(dashed line), plotted across Set Size. Error bars depict one standard error of the mean. ....................56!

Figure 2.20 Move latencies (A) and durations (B) preceding, during, and following an Uncaught 

error. Lags refer to moves within a given error trial. Error bars depict one standard error of the mean.

...............................................................................................................................................................58!

Figure 2.21 Response Times (seconds) for Experiment 6, plotted for each Instruction condition (Slow, 

None, Fast), across interaction methods (Mouse, Touch) and Set Size (12, 24). Error bars depict one 

standard error of the mean. ...................................................................................................................64!

Figure 2.22 Number of moves per trial for Experiment 6, plotted for each Instruction condition (Slow, 

None, Fast), across interaction methods (Mouse, Touch) and Set Size (12, 24). Error bars depict one 

standard error of the mean. ...................................................................................................................65!



 

 ix 

Figure 2.23 Percent error for Experiment 6, with rates of Caught and Uncaught errors plotted 

separately. Error rates are plotted for each Instruction condition (Slow, None, Fast), across interaction 

methods (Mouse, Touch) and Set Size (12, 24). Error bars depict one standard error of the mean..... 68!

Figure 2.24 Example display from the Forced Deposit condition in Experiment 7. When an item was 

selected, a red dot (white in the figure) would appear in a random unoccupied location in the grid at 

the top of the display. Participants were required to place the selected item in that position; otherwise 

the item would return to the position it had prior to being selected. The target item could also be 

moved directly to the response box. ..................................................................................................... 71!

Figure 2.25 (A) Response Times (seconds) and (B) Number of moves per trial for Experiment 7, 

plotted for Normal and Forced Deposit condition. Error bars depict one standard error of the mean. * 

p < .001. ................................................................................................................................................ 74!

Figure 2.26 Caught and Uncaught error rates in Experiment 7, plotted for Normal and Forced Deposit 

conditions. Error bars depict one standard error of the mean............................................................... 75!

 





 1 

1. Introduction 

The natural environment for human behaviour comprises enormous numbers of objects distributed 

across broad regions of space. Consequently, search can be seen as a necessary and central 

component of human behaviour, enabling us to locate and bring together the tools and resources 

required for a task, be they material, informational, or social. Search guides the deployment of limited 

receptive fields and attentional resources, selecting which aspects of the environment should be 

considered at each moment until the target is detected. With generality then, search can be described 

as an iterative guess-and-check process, with considerable variability in how the guessing is informed 

(e.g., by salience, memory, or prediction), and in how the checks are carried out (e.g., by covert 

attentional shifts, eye movements, or positional/postural changes in space). This characterization can 

be further understood as a specific instance of Neisser’s ‘perceptual cycle’ (Neisser, 1976; Figure 

1.1), such that an internal model generates a guess about the target location, which directs exploratory 

behaviours to sample the environment in order to evaluate the prediction. The results of this sample 

may then be used to update the model. 

 The existing search literature has studied a range of components in this model, but has 

predominantly focused on a particular subset. In Figure 1.2, each component of the perceptual cycle 

in Figure 1.1 has been subdivided to illustrate the range of sub-processes that may be considered, so 

that both the world itself and the exploratory processes engaged in search may be examined at 

multiple nested scales (i.e., with body position constraining head movements, head position 

constraining eye-movements, etc.), and the internal model may use a variety of different sources of 

information (e.g., stimulus characteristics, memory, prediction). Many of the earliest and best-

understood characteristics of search have been investigated in the context of within-visual field 

attentional shifts (i.e., covert attention; Carrasco & McElree, 2001; Hunt & Kingstone, 2003; Posner, 

1980), guided by salience- and feature-based target predictions (e.g., Duncan & Humphreys, 1989;  
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Figure 1.1 Neisser’s Perceptual Cycle. Adapted from Neisser (1976).  
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Triesman & Gelade, 1980; Wolfe, 1994a, 2007). At this level of analysis, illustrated in Figure 1.2 as 

the Attention-samples-Visual Field subcomponent of the Exploration-samples-World arc, 

investigation has focused on evaluating how features of the visual array interact with the target 

representation to determine search performance, as measured by response times, hit rates and false 

alarms, and time-per-item slopes (‘search efficiency’).  

Extensions to this original core of research exist for all three components of the cycle (often in 

combination), evaluating further aspects of the internal model, the nature of the search environment, 

and the exploratory behaviours. For instance, in addition to strictly feature-based models, 

considerable research has evaluated the influence of memory across various temporal scales (for an 

overview, see Shore & Klein, 2000), including (1) perceptual learning – i.e., learning across many 

trials (e.g., Brockmole, Castelhano, & Henderson, 2006; Chun & Jiang, 1998, 1999; Endo & Takeda, 

2005; Jiang & Leung, 2005; Jiang & Song, 2005; Leonard, Rettenbach, Nase, & Sireteanu, 2002; 

Olson & Chun, 2002; Sireteanu & Rettenbach, 1995), (2) within-trial memory for inspected locations 

(e.g., Dickinson & Zelinsky, 2007; Gilchrist, & Harvey, 2000; Horowitz  & Wolfe, 1998, 2003; 

Körner, & Gilchrist, 2007; Kristjánsson, 2000; McCarley, Wang, Kramer, Irwin, & Peterson, 2003; 

Peterson, Beck, & Vomela, 2007; Peterson, Kramer, Wang, Irwin, & McCarley, 2001), (3) general 

trial-to-trial priming and inhibition (e.g., Goolsby & Suzuki, 2001; Hillstrom, 2000; Horowitz, 1995; 

Kumada & Humphreys, 2002; Maljkovic & Nakayama, 1994, 1996, 2000; McPeek, Maljkovic, 

Nakayama, 1999), and (4) trial-to-trial memory for specific items (e.g., Howard, Pharaon, Körner, 

Smith, & Gilchrist, 2011; Kunar, Flusberg, & Wolfe, 2008; Oliva, Wolfe, & Arsenio, 2004; Solman 

& Smilek, 2010, 2012; Võ & Wolfe, 2012; Williams, Henderson, & Zacks, 2005; Wolfe, Klempen, & 

Dahlen, 2000). Similarly, a great deal of work has investigated the role of prior experience and 

consequent expectancies for search in meaningful scenes (e.g., Biederman,  
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Figure 1.2 Expanded Perceptual Cycle as applied to search behaviour. 
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 Mezzanotte, & Rabinowitz, 1982; De Graef, Christiaens, & d’Ydewalle, 1990; Eckstein, Drescher, & 

Shimozaki, 2006; Hollingworth & Henderson, 1998; Neider & Zelinsky, 2006; Torralba, Oliva, 

Castelhano, & Henderson, 2006).  

Several lines of research, many overlapping with those discussed above, have also investigated 

how search can be influenced by the characteristics of the search environment. Whereas the classical 

visual search paradigm (i.e., Triesman & Gelade, 1980; designed to investigate the role of visual 

features in guiding attention), used randomly arranged and mostly semantically-meaningless stimuli, 

more recent work has attempted to generalize these findings to more ecological settings. Researchers 

have evaluated search in (1) displays with probabilistic item distributions (e.g., Geng & Behrmann, 

2005; Lewicki, Czyzewska, & Hoffman, 1987; Miller, 1988; Smith, Hood, & Gilchrist, 2010; 

Williams, Pollatsek, Cave, & Stroud, 2009), (2) displays with repeated, or slowly varying item 

configurations (e.g., Chun & Jiang, 1998; Solman & Smilek, 2010; Wolfe, et al., 2000), (3) displays 

with complex moving and visually-changing items (Kunar and Watson, 2011), (4) naturalistic scenes 

and images (e.g., Brockmole et al., 2006; Eckstein, et al., 2006; Evans et al., 2011; Torralba, et al., 

2006; Van Wert, Horowitz, & Wolfe, 2009; Wolfe, 1994b; Wolfe, Alvarez, Rosenholtz, Kuzmova, & 

Sherman, 2011; Wolfe, et al., 2007), and (5) large-scale search environments (e.g., Smith, Hood, & 

Gilchrist, 2008, 2010; Smith, Wallace, Hood, Gilchrist, 2009; Solman, Cheyne, & Smilek, In Press). 

Finally, and most germane to the current work, studies of search have increasingly moved from 

covert attentional shifts within the visual field to overt exploratory behaviours that can alter the 

position (and thereby the contents) of the visual field. The bulk of this effort has made use of eye-

movement recordings to examine how overt attention is deployed, and how overt and covert attention 

interact in guiding search (e.g., Acks, Zelinsky, & Sprott, 2002; Findlay & Gilchrist, 2003; Gilchrist 

& Harvey, 2000; Henderson, Brockmole, Castelhano, & Mack, 2007; Hooge & Erkelens, 1999; 

Howard et al., 2011; Itti & Koch, 2000; Motter & Holsapple, 2007; Najemnik & Geisler, 2005; Rao, 
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Zelinsky, Hayhoe, & Ballard, 2002; Solman, Cheyne, & Smilek, 2011; Yarbus, 1967; Zelinsky, Rao, 

Hayhoe, & Ballard, 1997). Scales of exploratory behaviours beyond eye-movements have only rarely 

been evaluated, even in the broader context of visual attention in general, with a small body of work 

examining head movements (primarily in applied settings; e.g., Barnes, 1979; Robinson, Koth, & 

Ringenbach, 1976; Summala, Pasanen, Räsänen, & Sievänen, 1996), mouse-mediated exploration / 

simulated embodiment (e.g., Smilek, Frischen, Reynolds, Gerritson, & Easwood, 2007; Solman, 

Cheyne, & Smilek, In Press), and fully-embodied search contexts (i.e., involving movement of the 

entire body in space: Smith, et al., 2008, 2009, 2010; or in virtual reality: Thomas et al., 2006). 

These trends will no doubt continue, improving our models of search, and expanding the scope of 

situations to which these models can be applied. However, there is a further, qualitatively separable 

component of exploratory behaviour that has not yet been addressed in the context of search. In 

particular, exploration in naturalistic settings involves not only ‘receptive’ exploration (i.e., changes 

to the position of receptors and receptive fields with respect to the environment), but also ‘active’ 

exploration – where the configuration of the environment itself is manipulated and altered to facilitate 

search, illustrated in Figure 1.3 as a distinct class of exploratory behaviour. Active exploration is 

engaged when we open drawers and containers, leaf through stacks of papers, and rummage through 

bags, to give a few examples. Indeed, in many naturalistic settings, active exploration is necessary to 

successfully complete search – as in the case where a target is concealed, or contained. Consequently, 

failing to study active exploration limits our understanding of search in two ways – both in terms of 

how the exploratory process unfolds, and in terms of the range of search environments it is possible to 

study.  
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Figure 1.3 Expanded Perceptual Cycle for search, highlighting the novel component of active 

exploration. 
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This gap in our understanding may be particularly consequential given the centrality of action to 

the study of psychology and human behaviour (e.g., Cisek, 2007; Cisek & Kalaska, 2010; Gottlieb, 

2007; Rosenbaum, 2005), and the close interactions and overlaps between motor and sensory systems 

(e.g., Ambrosini, Sinigaglia, & Costantini, 2012; Berman & Colby, 2009; Gordon, et al., 2011; 

Hannus, Cornelissen, Lindemann, & Bekkering, 2005; Hatsopoulos & Suminski, 2011; Nii, Uematsu, 

Lesser, & Gordon, 1996). Further, in addition to the theoretical importance of motor behaviour, there 

is a growing body of research drawing critical insights about cognition through use of continuous 

motor responses as a measure (for review, see Freeman, Dale, & Farmer, 2011). For these reasons, 

studies of search must be expanded to incorporate active exploratory behaviours. This thesis provides 

an initial effort to address this need. 
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2.The Experiments 

The present research was motivated by the absence in the existing search literature of studies 

examining active exploration in search. A novel search paradigm, the ‘Unpacking Task,’ was 

developed – introducing a search context that allowed participants to physically interact with the 

search items. Participants performed a computer-based search task, in which a heap of overlapping 

search items was presented on the screen and subjects were instructed to use the mouse to ‘unpack’ 

the heap in order to locate a target item. This task simulated everyday search behaviors, such as 

looking for an object in a full drawer or on a cluttered desk, contexts that require the searcher to move 

objects to find the target. While performing this task, it was observed that participants would often 

make a striking error in which the target item was actually selected, moved, and rejected without 

being recognized. Notably, this error occurred even though the target was present on every trial, and 

trials would terminate only when this target was successfully located.  

In Experiments 1 and 2, we introduce this ‘unpacking error,’ and evaluate the effects of three 

traditional visual search manipulations on error prevalence: 1) set size, 2) item similarity, and 3) dual 

task conditions (concurrent memory load). We demonstrate a robust effect of item similarity, but 

minimal impacts of either set size or memory load on the prevalence of the error, and consequently 

argue that the error must have a perceptual root, but is unlikely to arise from a central resource 

limitation. In Experiment 3, we evaluate a perceptual-motor dissociation account, introducing a 

yoked-vision condition wherein an item’s identity is available only while it is being acted upon, 

forcing a tighter coupling between perception and action. Remarkably, we find that the rate of 

consequential errors is unaffected by this manipulation. Tellingly, we also find that the severity of an 

error, as measured by its consequences, is reduced in the yoked-vision condition. Consistent with the 

effects of item similarity, this finding suggests that items not yet fully processed may suffer from 
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interference by other items in the display. In Experiment 4, we evaluate the error more closely by 

measuring both eye-movements and mouse-movements during the task. Here we rule out the trivial 

account that participants simply fail to look at the target before moving it, and provide additional 

detail about the temporal and spatial characteristics of the error. In Experiment 5, we assess individual 

move characteristics preceding and following an error, and provide evidence for unconscious 

recognition of the error as indexed by robust post-undetected-error slowing. In Experiment 6, we 

evaluate whether the perceptuomotor incoordination hypothesized to cause the error may reflect task 

specific idiosyncrasies and not a naturalistic outcome. In particular, we compare: (1) use of the mouse 

to use of a touch screen, and (2) three different participant instructions emphasizing speed to varying 

degrees. We find that the error is increased when using the more naturalistic interface (the touch 

screen), and that instructional manipulations have little influence on participant behaviour – 

improving our confidence in the ecological validity of the findings. In Experiment 7, we directly 

manipulate movement speed by introducing a forced deposit condition, and demonstrate that the error 

is significantly attenuated when participants are forced to plan their movements more carefully. 

Finally, we provide a meta-analysis of the results across all comparable conditions to evaluate the 

possibility of a Set Size effect on the error rate. We find that, with sufficient power, a small effect of 

Set Size on error rates is detectable. 

In summary, we suggest that the unpacking error reflects a fundamental dissociation between 

perception and action during manually-assisted search. In particular, despite the obvious requirement 

that potential targets be inspected before being selected or discarded, it appears that the motor system 

is only loosely constrained by this perceptual requirement and need not wait for feedback signaling 

complete perceptual inspection and decision. Such motor haste likely speeds motor-assisted search 

overall, but means that the perceptual system is often left to play catch-up with the consequences of 

these movements, and so item identification may be left incomplete. When this happens with target 
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items, the unpacking error occurs as the target is selected, moved, and rejected prior to full 

identification. These conclusions, and their implications for search are expanded in the General 

Discussion. 

2.1 Experiment 1 

In Experiment 1, we introduce the Unpacking Task – a novel search task in which participants use the 

mouse to search through a virtual heap of items presented as square cards on a computer display. 

During this task, we find that participants sometimes select and move the target item without 

recognizing it as the target – a phenomenon we term the ‘unpacking error’. We manipulate Set Size 

and inter-item similarity, and show that the unpacking error is more prevalent in conditions where 

items are similar to each other (and consequently difficult to discriminate), but that the error rate does 

not appear to be influenced by Set Size. 

Methods 

Subjects. Sixteen undergraduate students (15 female, 1 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision. 

Search Items. Each item was displayed on a square gray virtual ‘card’ subtending 3 degrees of 

visual angle (d.v.a.). Items on a given trial were selected from one of two item sets. The Dissimilar 

item set had 32 possible items, comprising the full cross of four shapes (circle, square, triangle, star) 

and eight colors (all of the possible 3-bit RGB colours). The Similar set had 24 possible items, each 

comprising a white bounding square and a unique pattern of horizontal and vertical white lines 

(Figure 2.2).  

Displays. Examples of a Dissimilar and Similar search display are shown in panels A and B of 

Figure 2.1, respectively. Each search display consisted of a gray screen with a heap of overlapping 
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items centered on the screen, and a target template displayed in a green box on the right side of the 

screen. The target box subtended 6 d.v.a. and was centered on a point one third the width of the 

screen from the right side and centered vertically. The stack of items consisted of either 12 or 24 of 

the items from either the Dissimilar or the Similar set. Initial item positions were generated randomly 

within a bounding box centered on the screen. To vary the overall degree of overlap, this bounding 

box had a total area of either 0.3 (high overlap), 0.8 (medium overlap), or 1.3 (low overlap) times the 

total area that would be required to display all of the items without overlap. For set size 12 these 

boxes were 5.6 d.v.a., 9.2 d.v.a., and 11.7 d.v.a., respectively. For set size 24 these boxes were 7.9 

d.v.a., 13.0 d.v.a., and 16.5 d.v.a., respectively. 

Procedure. Each trial began with the appearance of the search display.  Participants were instructed 

to find the target as quickly as possible, the template for which was shown in the green box on the 

right side of the screen (Figure 2.1). They could use the mouse to move items anywhere on the screen 

to uncover occluded items.  The trial was terminated when participants found the target and dragged it 

onto the green box containing the target template. The next search trial commenced after a 250 ms 

delay.  Three factors were intermixed over the course of 240 trials: Set Size (12, 24), Item Type 

(Dissimilar, Similar), and overlap (High, Medium, Low; see Displays section). Participants performed 

5 practice trials followed by 240 experimental trials. The initial configuration of the items, as well as 

the grab time, drop time, and drop coordinates of each moved item were recorded.  

The experiment was created in MATLAB, using version 3 of the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997), and run on an Apple mini, with OS X 10.6.4 and a 2.4GHz Intel Core 2 

Duo processor. The stimulus displays were presented on a 19” ViewSonic VA1912wb monitor at a 

resolution of 1440 by 900 at a distance of 55 cm. 
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Figure 2.1Sample displays for the Dissimilar item set (A) and Similar item set (B). Participants 

were instructed to locate the target item, displayed in the green box on the right, and to drag it 

onto the green target box. 
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Figure 2.2 Search items composing the Similar stimulus set. 
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Results 

Response Times. Response Times (RTs) were measured from trial onset to release of the target item 

inside the response box, and were analyzed for all trials. The values of this measure were highly 

skewed, and so were adjusted using a log transform. The values plotted and analyzed are based on the 

anti-logs of the mean log RTs for each subject. Overall RTs are plotted across Set Size in Figure 2.3, 

for both Similar and Dissimilar items. Analyzing RTs with a Type (Dissimilar, Similar) by Set Size 

(12, 24) ANOVA, we found all effects to be highly significant (all Fs > 193, ps < .001). In particular, 

search was both faster and more efficient (shallower time/item slopes; Type by Set Size interaction) 

for Dissimilar than for Similar items. 

Unpacking Errors. Unpacking error trials were defined as trials on which the target was moved 

(i.e., selected by depression of the mouse button, and dropped by release of the mouse button) without 

terminating search. These trials were further subdivided into ‘Caught’ and ‘Uncaught’ errors. Caught 

errors were those trials where the target item was moved twice in succession, i.e. once in error, with 

the next move terminating the trial. Uncaught errors occurred on those trials where at least one non-

target item was moved between the first (erroneous) target move, and the final (trial-terminating) 

target move. Error rates for Caught and Uncaught errors are plotted across set size for Similar and 

Dissimilar items in Figure 2.4. These data were analyzed with an Error Type (Caught, Uncaught) by 

Type (Dissimilar, Similar) by Set Size (12, 24) repeated measures ANOVA. Overall, participants 

made significantly more errors for the Similar item set than for the Dissimilar set, F(1, 15) = 20.69, 

MSE = .003, p < .001. In addition, item set interacted with error type, F(1, 15) = 15.70, MSE = .001, 

p < .005. For Similar items, Caught and Uncaught errors were equally prevalent (F = 1.04, p = .325), 

whereas for Dissimilar items, Uncaught errors were significantly less likely than Caught errors, 

F(1,15) = 28.9, MSE = .001, p < .001. No other effects reached significance (largest F = 2.9, p = 

.111). Finally, despite a strong effect of Set Size on response times, there was no measurable effect on 
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error rates (F = 2.8, p = .115). In summary, these results suggest a perceptual basis for the unpacking 

error, and provide a preliminary indication that the error is unlikely to arise from a central resource 

limitation, or from a similar load-dependent mechanism. 
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Figure 2.3 Response Times (seconds) for Experiment 1, plotted across Set Size for Similar items 

(solid line) and Dissimilar items (dashed line). Error bars depict one standard error of the 

mean. 
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Figure 2.4 Proportion of trials having Caught errors (trials where the target was moved twice in 

succession, with the second move being to the target box) and Uncaught errors (trials where the 

target was moved at least twice, with at least one intervening non-target move) in Experiment 1. 

Values are plotted across Set Size for Similar items (solid line) and Dissimilar items (dashed 

line). Error bars depict one standard error of the mean. 
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2.2 Experiment 2 

One possible explanation for the unpacking error is that participants may simply forget the identity of 

the target while searching. By this account, the error would occur when participants moved the target 

item in the period between forgetting its identity and re-inspecting the target template. This 

explanation is weakened by the absence of a set size effect on error prevalence, as we would expect 

more episodes of forgetting as trial length increases at higher set sizes.  Nonetheless, the memory 

failure account merits a more direct evaluation. In Experiment 2 the unpacking task was performed 

both alone and with the addition of a concurrent memory load, a manipulation known to impair visual 

search performance (e.g. Woodman, Vogel, & Luck, 2001). If the unpacking error occurs because 

participants forget the target identity, then error prevalence should increase as memory load increases. 

Methods 

Subjects. Twenty-eight undergraduate students (19 female, 9 male) from the University of 

Waterloo participated for course credit. All participants reported normal or corrected-to-normal visual 

acuity, and normal color vision. 

Displays. Search displays were identical to those in Experiment 1, but using only the Similar item 

set. Each memory load trial also included two memory displays (sample and test).  Memory sample 

displays replicated those used in Woodman, Vogel, & Luck (2001), consisting of four small colored 

squares presented centrally. Memory test displays were identical to the sample on half of the trials, 

and different for the other half. When non-matching, the memory test displays differed from the 

sample by changing the color of one random square. 

Procedure. The procedure used in Experiment 2 was similar to that of Experiment 1, with the 

exception of an added concurrent memory task on half of the trials. On Load trials, a memory sample 

was displayed for 500 ms, followed by a 500 ms fixation display, then onset of the search display, 
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which was terminated when the target was moved to and deposited on the green target template box 

(recall Figure 2.2).  After search was terminated, a blank screen was displayed for 500 ms, followed 

by a memory test display presented for 2,000 ms. Participants had to report whether the memory 

sample and test displays were the same or different on that trial.  Responses were given after the 

presentation of the memory test display during which time the screen indicated the response options 

(‘SAME’: ‘m’ key vs. ‘DIFFERENT’: ‘z’ key). Once the response to the memory test display was 

given, the display with the response options was terminated and a blank screen appeared for 500 ms 

followed by onset of the next trial. On No Load trials, each trial was preceding by a 1,000 ms fixation 

display. We recorded memory task accuracy, as well as the initial configuration of the items, and the 

grab time, drop time, and drop coordinates of each move during search. 

Memory Load was blocked, with 120 trials of search alone, and 120 trials of search under Load. 

The order of these conditions was counterbalanced across participants. Each block of 120 trials 

consisted of 60 trials at Set Size 12, and 60 trials at Set Size 24, randomly intermixed. During Load 

trials, the test matched the sample on 50% of the trials. The ratio of the bounding area to total item 

area was drawn randomly from the range [0.5, 1.0] on each trial. All trials used the Similar item set 

only. Participants were given 5 practice trials followed by 240 experimental trials.  

Results 

Memory Task Performance. Participants responded correctly on the memory task on 81.4% and 

80.2% of trials for Set Size 12 and 24, respectively. These values were not significantly different (F < 

1, p > .48). 

Response Times. As in Experiment 1, Response Times were highly skewed, and so the presented 

values are the anti-logs of the mean log RTs. Overall Response Times (excluding load trials with 

memory errors) are plotted in Figure 2.5, and were tested with a Memory Load (Load, No Load) by 

Set Size (12, 24) ANOVA. The analysis showed a robust effect of Set Size, F(1, 27) = 390.5, MSE = 
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0.68, p < .001, and also, critically, a strong effect of Memory load, F(1, 27) = 13.1, MSE = 1.23, p < 

.005. The interaction was not significant (no change in efficiency; F < 1, p > .5).  

Unpacking Errors. The rates of Caught and Uncaught unpacking errors (again excluding load trials 

with memory errors) are plotted in Figure 2.6. The data were analyzed with an Error Type (Caught, 

Uncaught) by Memory Load (Load, No Load) by Set Size (12, 24) ANOVA. No effects reached 

significance (largest F = 2.6, p = .122). As in Experiment 1, we note that despite robust effects of both 

Set Size and Memory Load on overall RTs, neither of these effects had measurable consequences on 

the rate of the unpacking error. These results again speak against an account of the error requiring a 

central resource limitation. In addition, the lack of a memory load effect on the prevalence of the 

unpacking error also suggests that the error is not the result of participants simply forgetting the target 

during the course of the trial. 
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Figure 2.5 Response Times (seconds) for Experiment 2, plotted across Set Size for search under 

Load (solid line) and No Load (dashed line) conditions. Error bars depict one standard error of 

the mean. 
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Figure 2.6 Proportion of trials having Caught errors and Uncaught errors in Experiment 2. 

Values are plotted across Set Size for search under Load (solid line) and No Load (dashed line) 

conditions. Error bars depict one standard error of the mean. 
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2.3 Experiment 3 

In Experiments 1 and 2, we found that participants often interact with the target item but fail to 

recognize it during the unpacking task. Notably, the prevalence of the unpacking error seems to be 

influenced only by the perceptual characteristics of the items, and not by either set size or memory 

load manipulations, discounting an explanation relying on central resource limitations. An alternative 

possibility is that the unpacking error reflects a dissociation between the motor processes engaged in 

moving and uncovering items in the display, and the perceptual processes engaged in analyzing those 

items thereby made available for inspection. An intuitive expectation for manually-assisted search 

would be that items should be identified prior to manipulation – in order to determine whether the 

item should be rejected or submitted as the target. The existence of the unpacking error however, 

suggests that this intuitive sequence, ‘inspect, decide, act,’ is not necessarily followed. Instead, it may 

be that the motor system takes precedence (a ‘motor first’ strategy), or that the two systems operate in 

parallel, and are not necessarily bound to the same item. 

In Experiment 3, we attempt to clarify these distinctions by forcing a tighter coupling between 

perceptual and motor processes. To this end, we introduce a yoked-vision condition, wherein the 

identity of an item is only visible while that item is being acted upon. This manipulation has two 

principle effects. First, we can explicitly assess the degree to which participants evaluate the identity 

of an item prior to moving it, as the item’s identity is only available upon selection. A second, indirect 

effect of this manipulation is to reduce the overall perceptual load of the display without changing the 

perceptual difficulty of processing an individual item. 

Consequently, we can make the following predictions. A pure ‘inspect, decide, act’ strategy would 

result in moves characterized by a stationary component after depression of the mouse button, 

followed by a directed ballistic movement either to the response box for the target item, or to some 

other location on the screen for rejected item. In this case, error rates should either be unaffected, or 
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else should be reduced – as the yoked-vision condition ensures there is no competing perceptual 

information while an item is being inspected. In contrast, a ‘motor first’ strategy would result in 

moves characterized by an immediate ballistic movement, undifferentiated for target and non-target 

items. In this case, we would expect a marked increase in error rates, as the movement would likely 

often terminate prior to the completion of inspection, and in the case of correct responses we would 

expect evidence of in-flight correction in movement. 

Methods 

Participants. Twenty undergraduate students (14 female, 6 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision. 

Displays. Search displays were identical to those used in previous experiments, again using only 

the Similar item set. Full-vision trials were identical to previous experiments (Figure 2.2, panel B), 

whereas on Yoked-Vision trials items were displayed as undifferentiated solid gray ‘cards’ until they 

were selected. While selected (from mouse depression to mouse release), an individual item’s identity 

was visible (Figure 2.7).  

Procedure. Each trial began with the appearance of the search display.  Participants were instructed 

to find the target as quickly as possible, the template for which was shown in the green box on the 

right side of the screen (recall Figures 2.2, 2.7). They could use the mouse to move items anywhere 

on the screen to uncover occluded items.  The trial was terminated when participants found the target 

and dragged it onto the green box containing the target template. The next search trial commenced 

after a 250 ms delay. On Full-vision trials, the identity of the item on each virtual card was 

continuously visible throughout the trial (Figure 2.2, panel B). On Yoked-vision trials, item identities 

were displayed only for selected items, appearing at the onset of item selection (depression of the  
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Figure 2.7 Example display from the Yoked-vision condition in Experiment 3. Each item was 

displayed only as a blank grey card unless it had been selected. The identity of a selected card 

was visible only while the mouse button was depressed. The target template was always visible. 
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mouse button), and disappearing on release of the item (release of the mouse button). When 

unselected, all items appeared as identical featureless grey cards (Figure 2.7). 

Participants completed 80 trials of Full-vision search and 80 trials of Yoked-vision search, blocked 

with order counterbalanced across participants, with an equal number of each Set Size (12, 24) 

randomly intermixed in each block. Participants performed 3 practice trials of each type prior to 

beginning the experimental trials. The initial configuration of the items, as well as the grab time, drop 

time, and drop coordinates of each moved item were recorded. In addition, the state of the mouse was 

sampled throughout the experiment (see Appendix A: Trace Computation). 

Apparatus. The experiment was created in MATLAB, using version 3 of the Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997), and run on an Apple mini, with OS X 10.6.4 and a 2.4GHz 

Intel Core 2 Duo processor. The stimulus displays were presented on a 19” ViewSonic VA1912wb 

monitor at a resolution of 1440 by 900 at a distance of 55 cm. 

Results 

Response Times. Response Times were taken as the time between onset of the search display, and 

release of the target item within the response box. Response times were again positively skewed, and 

hence log - anti-log transformations were again employed. The data (Figure 2.8) were analyzed with a 

Vision (Full, Yoked) by Set Size (12, 24) repeated measures ANOVA. Search was found to be faster 

for Full-vision than for Yoked-vision, F(1, 19) = 102.6, MSE = 1.021, p < .001, faster for the smaller 

set size, F(1, 19) = 332.8, MSE = 0.998, p < .001, and more efficient (i.e., shallower time/item slopes; 

Vision by Set Size interaction) for Full-vision than for Yoked-vision, F(1, 19) = 5.9, MSE = 0.543, p 

< .05. 
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Figure 2.8 Response Times (seconds) for Experiment 3, plotted across Set Size for search under 

Yoked-vision (dashed line) Full-vision (solid line) conditions. Error bars depict one standard 

error of the mean. 
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Unpacking Errors. The rates of Caught and Uncaught unpacking errors are plotted in Figure 2.9 for 

both Vision conditions across Set Size, and were analyzed with an Error Type (Caught, Uncaught) by 

Vision (Full, Yoked) by Set Size repeated measures ANOVA. All three main effects were significant 

(Fs > 4.6, ps < .05), but were qualified by interactions. In particular, we observed both a significant 

Vision by Set Size interaction, F(1, 19) = 6.50, MSE = .002, p < .05, and a significant Vision by Error 

Type interaction, F(1, 19) = 107.4, MSE = .015, p < .001. To clarify these interactions, we first 

conducted a separate Error Type by Set Size ANOVA for each Vision condition. A significant effect 

of Set Size was observed for Yoked-Vision, F(1, 19) = 7.24, MSE = .005, p < .05, but not for Full-

Vision (F < 1). Similarly, a prominent effect of Error Type was observed for Yoked-Vision, F(1, 19) 

= 84.8, MSE = .032, p < .001, but not for Full-Vision (F = 1.4, p = .245). The interactions were not 

significant (Fs < 1). To further highlight the nature of the omnibus Vision by Error Type interaction, 

we performed an additional Vision by Set Size ANOVA for Caught and Uncaught errors separately, 

to evaluate the effect of Vision condition on each of the error types. As is clear from the figure, there 

were significantly more Caught errors under Yoked-Vision conditions, F(1, 19) = 94.4, MSE = .031, 

p < .001. The high rate of Caught errors under Yoked-Vision is a natural consequence of the 

definition of the error and of the manipulation – the first time a participant can see the identity of an 

item is during its first movement, and any instance where the target is dropped at the end of this first 

movement and then immediately retrieved is coded as a Caught error. Most critically, and strikingly, 

there was no measurable difference across Vision conditions in the rate of Uncaught errors (F < 1, p > 

.5). 

Movement Traces. Mouse movements were recorded throughout performance of the task, enabling 

analysis of movement trajectories. Here we evaluate the first (erroneous) target move for both Caught 

and Uncaught error trials, and contrast these to the trial-terminating target move on Correct trials, and 

to a typical non-target move on Correct trials (Standard move). The movements were evaluated for 
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two primary purposes. First, we assessed the task-relevant spatial characteristics of the moves, by 

examining how much of the movement at each sample was directed towards the response box – as 

this is where the item should be placed for a correct target identification (measured by projection of 

the instantaneous movement vector onto the vector directed to the response box location; see 

Appendix A for full methodological details of trace computation). Second, we examine several more 

traditional temporal metrics of the movements: 1) total movement time, 2) peak speed, and 3) time to 

peak speed. All metrics are examined separately for each Vision condition. 
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Figure 2.9 Proportion of trials having Caught errors and Uncaught errors in Experiment 3. 

Values are plotted across Set Size for search under Yoked-vision (dashed line) and Full-vision 

(solid line) conditions. Error bars depict one standard error of the mean. 
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Figure 2.10 Characteristics of mouse movements for trial-terminating target moves on correct 

trials, plotted for Full-vision and Yoked-vision conditions. The dashed line indicates the total 

velocity of the movement (in degrees per second), while the solid line indicates the component of 

this movement in the direction of the response box. Positive values indicate movement toward 

the response box, and negative values indicate movement away from the response box. Shading 

represents the significance level for a t-test against zero. 
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We first examine the trial-terminating target move on Correct trials, plotted for Full-Vision and 

Yoked-Vision conditions in Figure 2.10. The grey hashed line indicates the overall, undirected, 

instantaneous speed. The solid line indicates the instantaneous component of the movement directed 

towards (positive deflection) or away from (negative deflection) the response box. This directed 

component was tested against zero at each sample. In the figure, the area under the curve is shaded to 

indicate significance. Dark shading indicates samples significantly different under a conservative 

Bonferroni correction (! = .001), light shading indicates samples significantly different at a more 

liberal threshold (! = .01), and non-shaded areas indicate samples not significantly different from 

zero at either alpha level. 

Under Full-Vision conditions, the trial-terminating target move consists of a single, rapidly-

executed movement towards the response box, taking approximately 715 ms, with a peak speed of 

59.9°/s1 at 207 ms. Comparing the undirected speed envelope to the component directed towards the 

response box, we can see that the overall movement is directed almost perfectly towards the response 

box. 

A very different picture emerges under Yoked-vision conditions. Here, movement towards the 

response box is not initiated at the onset of target selection. Instead, for a period of roughly 350 ms, 

the item is moved in a direction orthogonal to the response box (positive speed envelope with 

component trace not different from zero), followed by a rapid movement towards the response box, 

signaling recognition of the target. Total movement time is approximately 1124 ms, with peak speed 

at 680 ms. Notably, subtracting recognition time, the remaining movement has a comparable duration 

and peak time to that observed under Full-Vision conditions. Likewise, the peak velocity of 58.3°/s is 

not different from that under Full-Vision (t(19) < 1, p > .5). Critically, this pattern of movement is not 

                                                      
! The peak speed reported here is slightly different from that observed in the Figure because the peak 
occurred at differing time points for different subjects."
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consistent with an ‘inspect, decide, act’ behavioral sequence, but instead with a mid-flight correction 

to an already initiated rejection. 

We next evaluate the movement traces for the first (erroneous) target movement in both Caught 

and Uncaught errors, and compare this movement to a Standard non-target item movement. We plot 

these traces in Figure 2.11, for both Vision conditions and all three move types (Standard, Caught, 

Uncaught)2. The most critical feature is clearly evident across all panels. Specifically, in all cases the 

move is directed either completely orthogonal to, or slightly in the opposite direction from the 

response box. In other words, on both Caught and Uncaught error trials, the first target move during 

the trial is qualitatively indistinguishable from a typical non-target move. This finding is particularly 

informative for Caught errors, as it rules out the trivial case of ‘undershoots’ – where participants 

perhaps intended to move the target item to the response box but accidentally dropped it too soon. 

Instead, it is clear that at no point during the move is there any component directed towards the 

response box.  

A closer look at the detailed metrics does indicate some differentiation between these movement 

classes. First examining the Full-Vision case, we find that all three moves have similar total duration 

(Standard: 257 ms, Caught: 258 ms, Uncaught: 243 ms; no significant differences), and similar peak 

times (Standard: 141 ms, Caught: 118 ms, Uncaught: 131 ms; no significant differences), but that 

peak velocity is lower for Caught errors (26.9°/s) than for Standard moves (37.9°/s) or Uncaught 

errors (37.5°/s) (ts > 3.5, ps < .005), while peak velocity did not differ between Standard moves and 

Uncaught errors. For Yoked-Vision we find a different pattern of results. While peak velocities did 

                                                      
#"We do not include the final, trial-terminating, target move in the figure or in the subsequent 
analyses, but we note here for the interested reader that these moves were qualitatively 
indiscriminable across error types and correct trials."
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Figure 2.11 Characteristics of mouse movements for erroneous target moves on Caught and 

Uncaught error trials, and for a comparison non-target move on correct trials (Standard) 

plotted for Full-vision and Yoked-vision conditions. The dashed line indicates the total velocity 

of the movement (in degrees per second), while the solid line indicates the component of this 

movement in the direction of the response box. Positive values indicate movement toward the 

response box, and negative values indicate movement away from the response box. A value at 

zero indicates movement orthogonal to the direction of the response box. Shading represents 

the significance level for a t-test against zero. 
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not differ (Standard: 26.2°/s, Caught: 23.3°/s, Uncaught: 25.9°/s), total durations for both Caught 

(291 ms) and Uncaught (271 ms) errors were significantly shorter than for Standard moves (401 ms) 

(ts > 6.2, ps < .001). Caught and Uncaught errors did not differ from each other on this measure. 

Likewise, peak times for both Caught (168 ms) and Uncaught (157 ms) errors were shorter than for 

Standard moves (242 ms), but did not differ from each other. Although reflected in different 

measures, in both vision conditions we see evidence for the predictable conclusion that errors are 

generally associated with faster movements – consistent with the overall suggestion that, on error 

trials in particular, action is preempting perceptual identification. 

Error Severity. Given the surprising finding that the rate of Uncaught errors was completely 

unaffected by the Yoked-Vision manipulation, we sought to examine these errors more closely to see 

if there might be more subtle differences. In particular, we assessed whether or not there were 

differences between vision conditions in the number of intervening moves on Uncaught error trials. In 

Figure 2.12 we plot the proportion of Uncaught Error trials having differing numbers of intervening 

moves, for both Full-Vision and Yoked-Vision conditions. The data were analyzed with a Vision 

(Full, Yoked) by Intervening Moves (1, 2, 3, 4, 5-9, 10+) repeated measures ANOVA. Predictably, 

because total proportions for both Vision groups were constrained to 1.0, there was no main effect of 

Vision (F < 1). More importantly, there was both a significant effect of Intervening Moves, F(5, 95) = 

29.4, MSE = .030, p < .001, and a significant interaction, F(5, 95) = 30.0, MSE = .024, p < .001. This 

interaction was explored by conducting a paired-samples t-test at each level of the Intervening Moves 

variable. Correcting for multiple comparisons, these tests confirmed what is visually apparent in the 

figure – that Uncaught Errors under Yoked-Vision are more likely relative to Full-Vision to have only 

a single intervening move between the first and last target moves, t(19) = 7.218, p < .001, and less 

likely relative to Full-Vision to have 5 or more intervening moves, ts > 4.3, ps < .001. 
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Figure 2.12 Distribution of error severity for Uncaught errors (indexed by the number of 

intervening moves between initial and final movement of the target), plotted for Yoked-vision 

(dashed line) and Full-vision (solid line) conditions. Error bars depict one standard error of the 

mean. * p < .001. 
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This finding is initially counter-intuitive, as the Yoked-vision condition does not afford re-

inspection of discarded items to the same degree as the Full-vision condition; in the Yoked-vision 

condition an item’s identity is no longer visible as soon as it is released. Consequently, one might 

expect that once an error is made in the Yoked-vision condition, it should be much less likely for the 

participant to catch the error quickly. The finding can be explained, however, by postulating that the 

processing of item identity occurs primarily internally, and consequently may persist even after the 

physical stimulus is no longer available. In this case, the likelihood of successfully noticing an error 

would depend on the ability of this residual processing to complete prior to being disrupted by new 

information. Consequently, the Yoked-vision condition may be seen as protective of this persisting 

identity processing, as the rate of incoming disruptive information is reduced. In contrast, in the Full-

vision condition there is both an increased overall perceptual load from the display as a whole, as well 

as the opportunity for perceptual systems to begin processing the next candidate earlier (i.e., before it 

is selected for movement). Both of these factors would increase the likelihood of masking or 

otherwise disrupting the residual trace of the erroneously rejected target. Such an account is also 

consistent with the finding in Experiment 1 of differences in Uncaught error rates across item 

similarity. In that instance, the highly dissimilar item set was protective against errors for two 

reasons: 1) the items could be identified more quickly and reliably, and 2) the reduced perceptual 

overlap between items would be protective against disruption of residual processing. 

2.4 Experiment 4 

In the preceding experiments we have argued that the unpacking error results from a counter-intuitive 

behavioral strategy during manually-assisted search, wherein the motor processes responsible for 

unpacking the display are largely decoupled from perceptual analysis of the items being manipulated. 

Despite the fact that the participant’s sole task is to locate a target item and reject non-target items, we 

find consistent evidence that the motor system regularly acts on items before they have been 
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classified as target or non-target. There is however, an important alternative that must be addressed 

before this account can be fully endorsed. In particular, it is critical to verify that participants do in 

fact give themselves the opportunity to inspect the target item prior to an error. That is, one could 

imagine that the unpacking error is a simple consequence of a momentary distraction during which 

participants look elsewhere during the period of target selection and rejection. To assess this 

hypothesis, in Experiment 4 we repeat the standard (Full-Vision) unpacking task, while concurrently 

recording eye-movements. We can thereby directly evaluate whether or not participants have had an 

opportunity to examine the target prior to erroneously rejecting it.  

Methods 

Subjects. Twenty undergraduate students (12 female, 8 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision.  

Displays. Search items were taken from the Similar item set in Experiment 1 and all subsequent 

experiments. Likewise, the display generation process was identical to that used in prior experiments. 

Procedure. Each trial began with the appearance of the search display.  Participants were instructed 

to find the target as quickly as possible, the template for which was shown in the green box on the 

right side of the screen. They could use the mouse to move items anywhere on the screen to uncover 

occluded items.  The trial was terminated when participants found the target and dragged it onto the 

green box containing the target template. The next search trial commenced after a 250 ms delay.  

Participants performed 5 practice trials, then completed two blocks of 75 trials each, with 

calibration of the eye-tracker prior to each block of experimental trials. An equal number of each Set 

Size (12, 24) was intermixed across trials. The initial configuration of the items, as well as the grab 

time, drop time, and drop coordinates of each moved item were recorded. In addition, both cursor and 

eye-movements were recorded throughout the task.  
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Apparatus. The experiment was created in MATLAB, using version 3 of the Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997), and run on an Apple mini, with OS X 10.6.4 and a 2.4GHz 

Intel Core 2 Duo processor. The stimulus displays were presented on a 19” Dell 1905FP monitor at a 

resolution of 1280 by 1024 at a distance of 55 cm. Eye-movements were recorded using a desktop-

mounted Eyelink 1000 system (SR Research), with participants’ heads stabilized by a chin and 

forehead rest. A nine-point calibration routine was used, with acceptance criteria of less than 0.5° 

average deviation, and less than 1.0° maximum deviation. 

Results 

Response Times. Response Times were again log-transformed to correct for positive skew. Mean 

RTs were nearly identical to those from matched conditions in Experiments 1, 2, and 3 (Set Size 12: 

4.831 sec (SE: 0.108); Set Size 24: 8.417 sec (SE: 0.228). 

Unpacking Errors. Overall, Caught errors were produced on 7.2% of trials, and Uncaught errors on 

8.0% of trials. These error rates are plotted across Set Size in Figure 2.13, and were analyzed with an 

Error Type (Caught, Uncaught) by Set Size (12, 24) repeated measures ANOVA. No effects reached 

significance (largest F = 2.7, p = .115).  

Eye Movements. We first provide a qualitative assessment of the spatial pattern of overt attention 

surrounding a critical move. For this purpose, we first normalize the data to a common, move-centred 

reference frame (Figure 2.14 and following description). 
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Figure 2.13 Proportion of Trials in Experiment 4 having Caught errors (solid line) and 

Uncaught errors (dashed line), plotted across Set Size. Error bars depict one standard error of 

the mean. 
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Figure 2.14  Data alignment procedure for eye-tracking samples. Samples were aligned relative 

to individual moves. The Recording Space (left) refers to the native on-screen coordinate 

system. Within the Recording Space, each move defined a vector from the grab location to the 

drop location. This vector was taken as the positive y-axis for Plotting space, and samples were 

reflected about this axis. All samples surrounding a given type of move (e.g., first target move 

on Uncaught error trials) were translated into this common reference frame and then averaged 

into traces. The resulting ‘Plotting Space’ can be understood as follows. The starting position 

for a move is at the origin, and the drop position is at some positive distance up the y-axis. 

Negative values on the y-axis indicate movement in the opposite direction from the actual move. 

The x-axis has only positive values, and represents distance orthogonal to the movement vector. 
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For each critical move, we first compute the oriented vector from the grab point of the move to the 

drop point of the move. Setting the grab location as the origin, this vector is taken as our positively-

oriented y-axis (‘move axis’), and the orthogonal vector as our x-axis (‘lateral axis’). All eye and 

mouse samples considered in relation to a given move are registered into this move-centred reference 

frame. While the move axis is meaningfully signed (positive values toward the drop location, 

negative values away from the drop location), the lateral axis is not. Consequently, we collapse our 

samples into the two positive lateral quadrants by reflecting the points from the negative quadrants 

about the move axis. Following these transformations, we obtain a common space in which to 

compare eye- and mouse-movements for the period preceding, during, and following a given 

movement. 

In Figure 2.15 we show mouse (left side) and eye (right side) movements for the period preceding 

(trace 1) and during (trace 2) the trial-terminating target move on Correct trials. The beginning of 

each trace is indicated by a filled circle. The grey disc centred at the origin indicates the spatial extent 

of the target item before it is moved (the enclosed rectangle indicates the size of an individual virtual 

card, while the enclosing circle indicates the possible area covered across rotations). The empty 

rectangle and enclosing circle at the top left of each plot indicates the destination. Correct trial-

terminating moves are easily interpretable. The mouse first moves onto the target item, then moves 

the item to its destination. The eye is slightly ahead of the mouse, starting on the item then moving 

away towards the drop location (the response box, for these trials). The eye continues toward the drop 

location following movement onset (beginning of trace 2), then terminates near the drop location. 
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Figure 2.15 Mouse (left) and Eye (right) movement traces relative to the final, trial-terminating 

target move on correct trials (refer to Figure 2.14 and text for description of the plotting space). 

The grey disc and enclosed rectangle at the origin indicate the starting position of the target, 

while the empty disc and enclosed rectangle at the top left of each plot indicate the drop 

position of the target (for these moves, this is the response box). Traces are plotted for the 

period prior to the movement (1) and for the period during the movement itself (2). Numbered 

circular markers indicate the beginning time points for each trace. 
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Of even greater interest are the error trials, for which the first target moves are plotted in Figure 

2.16 along with a Standard move for comparison. In these figures, we also plot a small filled triangle 

to indicate the approximate location of the response box. Mouse behaviour is highly similar across 

move types, with the exception of the post-move trace (trace 3) on Caught errors. For all three move 

types, the mouse moves onto the item (trace 1), then moves the item directly towards the drop 

location3 (trace 2). For both Standard moves and Uncaught errors, the mouse subsequently returns to 

the general neighborhood of the grab location (trace 3). For Caught errors, the mouse begins to move 

back toward the grab location then reverses mid-flight to return to the erroneously rejected target. Eye 

movements are even more informative. For both Standard moves and Uncaught errors, we see that the 

eye begins and remains in the general neighborhood of the grab location. In other words, there is no 

indication that participants give much attention to the terminal location, or to the item while in 

motion. For Caught errors, in contrast, the eye is near the grab location prior to the move, begins to 

track the item in motion, then diverges toward the response box – perhaps to verify the target 

template – reverses once more to reassess the item’s identity, then finally moves again toward the 

response box, presumably for a final targeting of the now-identified target. With these qualitative 

descriptions in mind, we next examine more quantitative measures. 

Time on Target. Of focal importance is to determine whether or not participants are in fact 

attending to the target location prior to moving it. To this end, we computed the cumulative time-on-

target during the period preceding the grab time for the target move and following the drop time of 

the preceding move. This measure is plotted for Correct trials, Caught errors, Uncaught errors, and for 

a comparison Standard move in Figure 2.17. There are two important features of this data to 

highlight. First, and most critical, we see that even in the case of Uncaught errors participants spend  

                                                      
$"Examining the movement direction in comparison to the approximate response box location, we see 
a good replication of the results from Experiment 3 – the initial target move is directed approximately 
orthogonal to the response box, with a small bias to be moving in the opposite direction."
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Figure 2.16 Mouse (left) and Eye (right) movement traces relative to the erroneous target move 

on Caught (top row) and Uncaught (middle row) trials, and relative to a typical non-target 

move during a correct trial (Standard move; bottom row). Traces are plotted for the period 

prior to the movement (1), during the movement (2), and following the movement (3). 

Numbered circular markers indicate the beginning time points for each trace. The filled 

triangles on the eye-movement panels (right side) indicates the location of the response box. 
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Figure 2.17  Average time spent looking at the target (ms) during the period preceding target 

movement (and following the previous movement). Plotted for the final, trial-terminating target 

move on Correct trials, for the first (erroneous) target move on Caught and Uncaught error 

trials, and for a typical non-target move on a correct trial (Standard). Error bars depict one 

standard error of the mean. 
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an average of 300 ms looking at the target. Consequently, we can rule out an account that posits the 

error as being a simple consequence of not having had opportunity to process the target prior to 

moving it. Notably, there is an important distinction to be held in mind between looking and seeing – 

the fact that the item has been foveated does not, by necessity, imply that it is being actively 

processed by the visual system (see e.g., Reichle, Reineberg, & Schooler, 2010). However, for 

present purposes, it is of most critical import that the observer has had ample opportunity to process 

the item (i.e., that failure to identify the target was not merely due to the target being inaccessible to 

the visual system). To assess potential differences between trial types, we conducted a one-way 

ANOVA on Time on Target. The effect of trial type was only marginal, F(3, 57) = 2.2, MSE = 

12,691, p = .095. Nonetheless, we further evaluated paired comparisons between each of the trial 

types, using a Bonferroni correction (! = .008). Only the difference between Correct and Standard 

trials reached significance at this level (t(19) = 3.41, p < .005), although the Correct vs. Uncaught 

comparison approached criterion (t(19) = 2.76, p = .013). We note however, that the total duration of 

the pre-move segment is also longer for Correct trials – likely due to the additional post-identification 

demands of response preparation. This suggestion is supported by an increased rate of template 

inspection prior to a correct trial-terminating move (see following analysis). Consequently, the 

modest increase in pre-move time-on-target for Correct trials is likely reflective of revisitation 

following template inspection, or a simple consequence of increased idle time while the response is 

prepared, and unlikely to reflect any substantial increase in identification-related processing time. 

Template Inspection. Examining the qualitative data suggests an additional possible account for the 

error. Although the results from the memory load manipulation in Experiment 2 suggested that the 

error was unlikely to be due to a failure of memory for the target, the pattern of eye-movements for 

Caught errors in the present experiment certainly indicates that participants feel the need to confirm 

the target identity – suggesting that the stored target template is imperfect. Consequently, it is 
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reasonable to suggest that the occurrence and severity of unpacking errors could be related to the 

strength of the target representation, which in turn should be related to how recently the physical 

target template has been inspected. Correct trials would result when the template has been most 

recently inspected, followed by Caught errors when the template has been inspected only recently 

enough to provide a partial match or a ‘hunch,’ and Uncaught errors resulting when the template has 

not been inspected recently enough to be functional. Alternatively, the stored template may be equally 

reliable across trial types, with the differential behavioral outcomes resulting from differences in the 

quality of the perceptual input – a notion consistent with the pattern of time-on-target data presented 

above. To evaluate these alternatives, we examined the probability of template inspection surrounding 

a critical move. If errors result from differential template quality, we should see the probability of 

template inspection prior to a move increase as we examine Uncaught, Caught, and Correct moves. 

Conversely, if the probability of template inspection is undifferentiated across trial types, then it is 

unlikely that differences in stored template quality are responsible for the errors.  

In Figure 2.18 we plot for each trial type the probability that a participant is looking at the target 

template during the five seconds preceding and following (where applicable) the target move. At time 

zero, we plot this measure for the midpoint of the target move. Correcting for multiple comparisons, 

we find that the likelihood of fixating the template on Correct trials begins to increase relative to both 

types of error trials approximately 750 ms prior to onset of the movement. This is likely to reflect 

verification of the target identity, and preparatory targeting of the trial-terminating movement. 

Significant differences between Caught and Uncaught errors emerge only following movement onset 

(i.e., at time zero and thereafter). From these results, we see that differences in pre-movement 

template checking behaviour do not appear to predict errors, and certainly do not differentiate 

between Caught and Uncaught errors. Instead it appears that the likelihood of template inspection 

increases in response to the target, either for verification or for movement-targeting purposes.
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Figure 2.18  Probability that the target template (co-extensive in space with the response box) 

was being inspected at times surrounding movement of the target (midpoint of the movement 

aligned to time zero). The sole target move was used for Correct trials (hashed line), while the 

first target move was used for Caught errors (thin black line) and Uncaught errors (thick grey 

line). Values were computed for the 5 seconds preceding and following the move. Correct trials 

(hashed) terminate following the target move, and so do not contribute data to the post-move 

period. Error bars depict one standard error of the mean. 
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2.5 Experiment 5 

Although there are reasonable grounds for differentiating between Caught and Uncaught errors, as 

evidenced by meaningfully dissociable behavioral precedents and outcomes, they can also be 

considered to lie on a spectrum of error severity – with Caught errors being, by definition, equivalent 

to Uncaught errors with zero intervening moves. In this light, it is interesting to note that the eye-

movement data reported above indicate that participants had some tacit awareness of the error on 

Caught error trials, apparently beginning to move the eye towards the target template and response 

box even while the erroneous movement was in progress. It is of interest then, to evaluate whether or 

not there are similar but more subtle indications of error awareness on Uncaught error trials. One 

candidate measure is readily available from the error monitoring literature. In particular, post-error 

slowing has been observed to be dissociable from conscious awareness of an error (e.g. Hester, Foxe, 

Molholm, Shpaner, & Garavan, 2005; Hester, Simões-Franklin, & Garavan, 2007; Rabbitt, 2002). 

Although typically evaluated at the trial level, the nature of the unpacking task enables us to evaluate 

post-error slowing at the level of individual moves within a given trial. In Experiment 5, we replicate 

the standard unpacking task and evaluate average movement speed for trials preceding and following 

an Uncaught error. 

Methods 

Subjects. Thirty undergraduate students (25 female, 5 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision.  

Displays and Procedure. Search items, display generation, and trial procedures were identical to 

those used in Experiment 4. Participants completed 160 search trials, with an equal number of each 

Set Size (12, 24) randomly intermixed. Participants performed 5 practice trials followed by 160 
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experimental trials. The initial configuration of the items, as well as the grab time, drop time, and 

drop coordinates of each moved item were recorded.  

The experiment was created in MATLAB, using version 3 of the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997), and run on an Apple mini, with OS X 10.6.4 and a 2.4GHz Intel Core 2 

Duo processor. The stimulus displays were presented on a 19” ViewSonic VA1912wb monitor at a 

resolution of 1440 by 900 at a distance of 55 cm. 

Results 

Outliers. Response times on a small number of trials were found to be very large (some exceeding 

60 seconds). Closer inspection revealed that generally these long times did not result from a 

disproportionate number of moves in the trial, but instead from a single very long delay between 

terminating one move and beginning the next. It is unlikely that these pauses could occur while 

participants remained on task. Consequently, we removed trials on the basis of a conservative move-

latency outlier threshold. Specifically, we removed any trial on which the delay between any two 

moves was 10 standard deviations or more from the subject’s mean. This resulted in the removal of 1 

trial from nine of the subjects, 2 trials from three of the subjects, and no trials from the remaining 18 

subjects. Response times on the excluded trials were one average more than 30 seconds longer than 

the mean response times on the remaining trials.  

Response Times. The distribution of response times in this task was heavily skewed. The response 

times plotted and analyzed are therefore the anti-logs of the mean log-RTs. Overall response times 

were consistent with previous experiments (Set Size 12: 4.899 sec (SE: 0.141); Set Size 24: 7.850 sec 

(SE: 0.277). 
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Figure 2.19 Proportion of trials in Experiment 5 having Caught errors (solid line) and 

Uncaught errors (dashed line), plotted across Set Size. Error bars depict one standard error of 

the mean. 
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Unpacking Errors. Caught and Uncaught error rates are plotted in Figure 2.19, and were analyzed 

with an Error Type (Caught, Uncaught) by Set Size (12, 24) repeated measures ANOVA. No effects 

reached significance (largest F = 3.0, p = .094). 

Post Error Slowing. To assess whether post-error slowing is observed following Uncaught errors, 

we evaluated the characteristics of the eight moves prior to an erroneous target move, as well as the 

eight moves following the error4. In general, both move latencies (the time between dropping the 

previous item and grabbing the current item) and move durations (the time between grabbing an item 

and dropping it) were found to be highly variable, particularly near the ends of trials. To obtain more 

stable estimates of these values surrounding an error, we grouped lags in pairs (i.e. E-4 & E-3, E-2 & 

E-1, E+1 & E+2, E+3 & E+4, etc.; reported hereafter as E-8, E-6, E-4, E-2, E+2, E+4, E+6, E+8). In 

addition, individual subject means were included in the analyses only when based on a minimum of 

three samples. Given these criteria, the nine collapsed lag values had the following sample sizes: 19, 

22, 26, 28, 29, 29, 28, 27, 25, with the earliest lag (E-8) being least well represented. Lags closest to 

the error move were, predictably, the best sampled. Values for the missing cells were imputed using a 

linear trend point estimation, with samples ordered on the basis of values observed at the error move, 

which had no missing cells. One subject made no errors, and so was not included in the analysis. 

Finally, we note that because move latencies and durations changed noticeably (in both magnitude 

and variability) across individual trials, a meaningful baseline could not be produced. Consequently, 

we evaluate only the raw values across lags, with particular focus on local changes surrounding the 

error. Figure 2.20 shows the lagged values for both move latencies (panel A) and move durations 

(panel B).  

                                                      
%"Reasoning that both the first and last moves in a given trial are qualitatively different from the 
remaining moves, these moves were not included in the analysis."
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Figure 2.20 Move latencies (A) and durations (B) preceding, during, and following an Uncaught 

error. Lags refer to moves within a given error trial. Error bars depict one standard error of 

the mean. 
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Move characteristics were evaluated by conducting an Order (Pre-error, Post-error) by Lag (4 

levels) ANOVA for both Latencies and Durations. Post-error slowing was clearly demonstrated in the 

data, with Post-error values significantly greater than Pre-error values for both Latency: F(1,28) = 

31.00, MSE = 47,668, p < .001, and Duration: F(1,28) = 23.86, MSE = 11,386, p < .001. To assess 

whether these differences result from discontinuities at the error move, as is suggested by visual 

inspection, and not simply from a gradual increase in values over time, we performed a paired-

samples t-test between the values on the Error move, and the values both immediately preceding and 

immediately following the Error move. Consistent with an error-induced discontinuity, pre-error 

values did not differ from the error values (Latency: t(28) = .127, p > .85; Duration: t(28) = 1.188, p > 

.24), but post-error values were significantly greater than the error values (Latency: t(28) = 2.317, p < 

.05; Duration: t(28) = 4.411, p < .001). That we observe a qualitative and measurable shift in 

behaviour immediately following an Uncaught error, strongly supports the notion that the error is in 

fact recognized at an implicit level. Consistent with our findings in Experiment 4, the apparent 

implicit recognition reported here further supports the conclusion that the target item is being 

processed prior to being moved on error trials. 

2.6 Experiment 6 

Based on the preceding studies, we have suggested that the unpacking error arises directly from the 

unique interaction of motor and perceptual processes in the Unpacking task. In particular, contrary to 

intuitive expectations, it seems that motor systems are not attendant to perceptual systems while 

participants complete the search task. Instead, motor actions are frequently initiated and concluded 

before perceptual processes have had an opportunity to adequately identify the target of action. This 

perceptuomotor incoordination account is consistent with research demonstrating that visual 

processing can be tuned to specific aspects of a task to the detriment of others (e.g., Ballard, Hayhoe, 

& Pelz, 1995; Hayhoe, Bensinger, & Ballard, 1998; Hoffman, Landau, & Pagani, 2003); that an item 
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has been perceptually processed to support action does not imply that information about its identity 

has also been processed. Likewise, the more specific motor-speeding hypothesis for the error – that 

the incoordination is in the direction of motor processes unfolding too quickly for perceptual 

processes – is supported by research indicating that motor sequences are regularly planned several 

moves ahead, and these planned actions are able to bias spatial attention (e.g., Baldauf & Deubel, 

2008; 2010). 

While the proposed perceptuomotor incoordination hypothesis is well supported by the data 

presented thus far, in order to be confident in generalizing these results to other contexts, it is 

important to verify that this incoordination is a consequence of the general characteristics of the task 

– and not merely an artifactual consequence of the particular instantiation presented here. To this end, 

in Experiment 6, we manipulate two aspects of the experiment that might have artificially induced 

incoordination during the task: 1) the method of interaction, and 2) instructional biases toward 

speeding. 

First, we note that there are potentially important differences between the use of a mouse (an 

‘indirect pointer’) and use of the hand (a ‘direct pointer’). Although there is good reason to believe 

that use of a mouse may be comparable in many ways to use of the hand (e.g., Bassolino, Serino, 

Ubaldi, & Ladavas, 2010; Goldenberg, & Iriki, 2007), there are important differences that could lead 

to increased incoordination while using a mouse relative to using the hand. Of particular importance 

is the fact that movements of the on-screen cursor are greatly amplified relative to the movement of 

the physical mouse. In this sense, by minimizing the energetic demands for a given movement, use of 

a mouse may facilitate speeded movements. Under the specific motor speeding incoordination 

hypothesis for the unpacking error, this feature of the mouse interface could result in an increased rate 

of error relative to more naturalistic interfaces. To evaluate this concern, we compare performance on 
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the unpacking task while using a mouse (indirect pointer) to performance while using a touch screen 

(direct pointer).  

A second factor of importance to the unpacking error concerns the influence of instructions on 

participant strategies. A critical assumption underlying the ecological validity of the unpacking error 

is that the excessive motor speeding relative to perceptual limits reflects a naturally occurring 

strategic decision (though likely unconscious) made by participants. In contrast, it is possible that the 

degree of speeding was biased by use of traditional search instructions to locate the target on each 

trial as quickly as possible. Consequently, in addition to the interface manipulation, we also include a 

between-subjects instructional manipulation. Participants performed the unpacking task under one of 

three instruction conditions (refer to methods for precise wording): 1) ‘traditional’ instructions, 

encouraging speed, 2) unbiased instructions, not mentioning speed, or 3) explicit slowing instructions. 

If the unpacking error results only because of an unnatural induction toward speeded responding, then 

participants performing the task under slowing instructions, and instructions not emphasizing speed, 

should be markedly slower at the task, and should produce fewer errors. 

Methods 

Subjects. Sixty undergraduate students (39 female, 21 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision. The instructional manipulation was applied across successive cohorts, with 

20 subjects in each. 

Displays. Search items were taken from the Similar item set in Experiment 1 and all subsequent 

experiments. Likewise, the display generation process was identical to that used in prior experiments.  

Procedure. Each trial began with the appearance of the search display.  Participants were instructed 

to find the target item, the template for which was shown in the green box on the right side of the 
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screen. They could move items anywhere on the screen to uncover occluded items, in whatever order 

they wished. The trial was terminated when participants found the target and dragged it onto the green 

box containing the target template. The next search trial commenced after a 250 ms delay.   

Three factors were varied in the experiment. An Instruction manipulation was administered 

between participants, with varying degrees of emphasis on speed. Twenty participants completed the 

task under each of three instructions: 1) Fast: “Your task is to locate [the target] in the stack and to 

drag it onto the green target box. Try to find each target as quickly as possible,” 2) None: “Your task 

is to locate [the target] in the stack and to drag it onto the green target box,” and 3) Slow: “Your 

task is to locate [the target] in the stack and to drag it onto the green target box. While you are 

completing this task, it is important that you do not rush. Don’t worry about going too slowly. Take 

your time and think carefully about each move you make as you work on locating the target item in 

each trial”. Pointer Type (Mouse, Touch) was blocked within participants and counterbalanced, so 

that each participant completed 80 trials using the mouse, and 80 trials using the touch screen (the 

cursor was not displayed during touch trials). Within each block of 80 trials, Set Size (12, 24) was 

randomly intermixed. Participants performed 3 practice trials for each Pointer Type followed by the 

160 experimental trials. The initial configuration of the items, as well as the grab time, drop time, and 

drop coordinates of each moved item were recorded.  

The experiment was created in MATLAB, using version 3 of the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997), and run on an Apple mini, with OS X 10.6.4 and a 2.4GHz Intel Core 2 

Duo processor. The stimulus displays were shown on a 21.5” Dell ST2220T monitor at a resolution of 

1920 x 1080 at a distance of 55 cm, with the display surface positioned at an angle of approximately 

35 degrees from horizontal. As the OS X operating system does not provide native support for touch 

input on the Dell ST2220T monitor, a third party driver was used (Touch Base Ltd., www.touch-

base.com). 
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Results 

Response Times. Response Times (RTs) were highly skewed, and so were adjusted using a log 

transform. The values plotted and analyzed are based on the anti-logs of the mean log RTs for each 

subject (Figure 2.21).  

The data were analyzed with an Instruction (Fast, None, Slow; between) by Pointer Type (Mouse, 

Touch; within) by Set Size (12, 24; within) mixed factors repeated measures ANOVA. A main effect 

of Set Size, F(1, 57) = 718.0, MSE = 1.097, p < .001, and a significant effect of Instruction, F(2, 57) = 

5.94, MSE = 6.080, p < .005, were observed, but no other effects reached significance (largest F = 

1.69, p = .194). The effect of Instruction was further resolved by running a separate ANOVA for each 

pair of Instruction conditions, revealing what is evident from the figure: RTs under Fast instructions 

were faster than under either None, F(1, 38) = 8.09, MSE = 6.202, p < .01, or Slow instructions, F(1, 

38) = 10.9, MSE = 5.307, p < .005, whereas None and Slow instructions did not differ (F < 1, p = 

.840). These results indicate that the instructions to “find each target as quickly as possible” did 

prompt participants to go somewhat faster than they otherwise would have, which is important for 

subsequent considerations of the error data.  

Number of Moves. As with RTs, the number of moves required during search were subjected to a 

log-anti-log transform to correct for skew prior to plotting and analysis (Figure 2.22). The data were 

analyzed with an Instruction (Fast, None, Slow; between) by Pointer Type (Mouse, Touch; within) by 

Set Size (12, 24; within) mixed factors repeated measures ANOVA. Mirroring RTs, search required a 

greater number of moves under the larger Set Size, F(1, 57) = 262.9, MSE = 1.075, p < .001. 

Interestingly, in contrast to RTs, there was also a significant effect of Pointer Type, F(1,57) = 22.4, 

MSE = 1.484, p < .001, such that search using the Touch screen involved slightly more moves on 

average than did search using the Mouse. Given that RTs did not differ across Pointer Type, this  
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Figure 2.21 Response Times (seconds) for Experiment 6, plotted for each Instruction condition 

(Slow, None, Fast), across interaction methods (Mouse, Touch) and Set Size (12, 24). Error bars 

depict one standard error of the mean. 
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Figure 2.22 Number of moves per trial for Experiment 6, plotted for each Instruction condition 

(Slow, None, Fast), across interaction methods (Mouse, Touch) and Set Size (12, 24). Error bars 

depict one standard error of the mean. 
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finding indicates that each individual move while using the Touch screen was faster on average than 

the individual moves made while using the Mouse. No other effects reached significance (largest F = 

1.931, p = .170); notably, this includes the absence of an effect of Instruction. 

Unpacking Errors. The rates of Caught and Uncaught errors are plotted in Figure 2.23. The data 

were analyzed with an Instruction (Fast, None, Slow; between) by Error Type (Caught, Uncaught; 

within) by Pointer Type (Mouse, Touch; within) by Set Size (12, 24; within) mixed factors repeated 

measures ANOVA. We found no main effect of Instruction (F < 1, p = .534), nor any significant 

interactions with Instruction (largest F = 2.040, p = .139). There was however, both a small main 

effect of Set Size, F(1, 57) = 4.58, MSE = 16.416, p < .05, and a main effect of Pointer Type, F(1, 57) 

= 39.7, MSE = 49.341, p < .001, such that errors were more prevalent for the larger Set Size and for 

Touch and compared to Mouse conditions. Both of these effects were further qualified by interactions 

with Error Type (Set Size by Error Type: F(1, 57) = 5.14, MSE = 30.648, p < .05; Pointer Type by 

Error Type: F(1,57) = 15.3, MSE = 27.027, p < .001). These interactions were further examined by 

conducting a separate Instruction (Fast, None, Slow) by Pointer Type (Mouse, Touch) by Set Size 

(12, 24) ANOVA for Caught and for Uncaught errors. The effect of Set Size was present only for 

Uncaught errors, F(1, 57) = 10.5, MSE = 21.435, p < .005, and not for Caught errors (F < 1, p = .590). 

The effect of Pointer Type was observed for both classes of error, but appeared stronger for Uncaught 

errors, F(1, 57) = 79.2, MSE = 26.320, p < .001, than for Caught errors, F(1, 57) = 5.74, MSE = 

50.048, p < .05. No other effects reached significance in these follow-up ANOVAs (largest F = 1.272, 

p = .288), or in the overall omnibus ANOVA (largest F = 2.475, p = .121). 

Discussion 

The foregoing results provide several important conclusions. First, despite the possible facilitation 

of speeded movements offered by the amplification inherent in a mouse interface, we found instead 

that use of a direct interface actually resulted in increased speeding – with a greater number of moves 
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made in the same total time. Consistent with the motor speeding hypothesis of the unpacking error, 

this increased rate of movement using the direct interface was associated with an increased rate of 

uncaught errors during search. These results clearly demonstrate that the unpacking error is not 

simply a result of using an indirect pointer, and that the likelihood of the error may if anything be 

attenuated by using less naturalistic interfaces. Second, we have shown that the excessive speeding 

that seems to cause the unpacking error is not a consequence of speeding instructions. Although a 

small increase in response times (~20%) was observed for None and Slow instructions relative to Fast 

instructions, implying that instructions did have some influence over participant behaviour, this 

increase did not translate to a measurable reduction in the rate of unpacking errors. Although this 

result provides an important demonstration that the unpacking error does not result because of an 

imposed strategy of speeding, it also poses a potential problem for the motor speeding hypothesis. In 

particular, despite measurable slowing under None and Slow instructions, the rate of the error did not 

decrease as would be predicted. However, the slowing itself was not particularly dramatic, and the 

error rates themselves have large variance, raising the possibility that there was simply not enough 

slowing to produce a detectable effect on error rates. To resolve this issue, in Experiment 7 we 

introduce a much stronger manipulation of motor speed.     
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Figure 2.23 Percent error for Experiment 6, with rates of Caught and Uncaught errors plotted 

separately. Error rates are plotted for each Instruction condition (Slow, None, Fast), across 

interaction methods (Mouse, Touch) and Set Size (12, 24). Error bars depict one standard error 

of the mean. 
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2.7 Experiment 7 

 In Experiment 6 we found that instructional manipulations had minimal impact on the speed 

at which participants completed the unpacking task. While this supports the conclusion that the 

unpacking error arises from naturally adopted strategies as opposed to instructional biases, it 

unfortunately does not allow us to draw strong conclusions regarding the motor speeding hypothesis 

itself. In Experiment 7, we address this issue more directly, by manipulating motor speed through the 

structure of the task itself. In particular, we introduce a ‘Forced Deposit’ condition, wherein 

participants are no longer able to freely arrange items as they remove them from the heap, but must 

instead place each item in a designated position on the screen. We reasoned that forcing participants 

to make movements towards a specific endpoint would result in greater attention to the movement as 

a whole, and a consequent slowing of each movement. Given the motor speeding hypothesis of the 

unpacking error, this slowing should result in a significant reduction in the rate of the unpacking error 

relative to the standard unpacking task (where movement endpoints are unconstrained). 

Methods 

Subjects. Twenty-four undergraduate students (18 female, 6 male) from the University of Waterloo 

participated for course credit. All participants reported normal or corrected-to-normal visual acuity, 

and normal color vision.  

Displays. Search items were taken from the Similar item set in Experiment 1 and all subsequent 

experiments. Likewise, the display generation process was similar to that used in prior experiments, 

with some exceptions. First, Set Size was not manipulated in this experiment, so that every display 

consisted of 18 search items. Second, for trials in the new Forced Deposit condition, there was also a 

2-by-9 empty grid arrayed along the top of the screen (Figure 2.24). Each cell matched the size of the 

items in the search display. Participants in this condition were required to place items into the grid, as 

described below. 
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Figure 2.24 Example display from the Forced Deposit condition in Experiment 7. When an item 

was selected, a red dot (white in the figure) would appear in a random unoccupied location in 

the grid at the top of the display. Participants were required to place the selected item in that 

position; otherwise the item would return to the position it had prior to being selected. The 

target item could also be moved directly to the response box. 
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Procedure. Each trial began with the appearance of the search display.  Participants were instructed 

to find the target item, the template for which was shown in the green box on the right side of the 

screen. Participants completed trials in two conditions. In the Normal condition, participants could 

move items anywhere on the screen to uncover occluded items, in whatever order they wished, as in 

the previous studies. In the Forced condition, in contrast, participants were restricted in how they 

could move items off of the stack. When an item was selected, a red dot would appear in a random 

empty location in the grid at the top of the display (Figure 2.24). Participants were required to place 

the item in that spot, and failing to do so resulted in the item returning to its original position in the 

heap. The target item for each trial could either be moved to its designated location in the grid, or be 

moved directly to the response box to terminate the trial. In both conditions, participants were 

instructed to locate the target item and move it directly to the response box to terminate the trial. The 

next search trial commenced after a 250 ms delay.   

Participants performed 1 practice trial in each condition, followed by 120 experimental trials. 

Experimental condition (Normal vs Forced) was blocked, with each participant completing 60 trials 

of Normal unpacking and 60 trials of Forced Deposit unpacking. The order of these blocks was 

counterbalanced across participants. The initial configuration of the items, as well as the grab time, 

drop time, and drop coordinates of each moved item were recorded.  

Apparatus. The experiment was written and executed in Python using the pygame module, and run 

on an Apple mini, with OS X 10.6.4 and a 2.4GHz Intel Core 2 Duo processor. The stimulus displays 

were presented on a 24” Philips 244E2SB monitor at a resolution of 1920 by 1080, at a distance of 55 

cm. 

Results 

Response Times and Number of Moves. As in the previous experiment, both Response Times (RTs) 

and the number of moves required during search were highly skewed. Both measures were adjusted 
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using a log transform; the values plotted and analyzed are based on the anti-logs of the mean log RTs 

/ Number of Moves for each subject. The data are plotted in Figure 2.25, with Response Times 

plotted in panel A, and Number of Moves plotted in panel B. 

Each measure was analyzed with a one-factor repeated measures ANOVA, with experimental 

condition (Normal, Forced) as the factor. Search in the Forced condition took longer, F(1, 23) = 62.4, 

MSE = 3.513, p < .001, and involved fewer moves, F(1, 23) = 20.0, MSE = 1.354, p < .001, as 

compared to search in the Normal condition. These results clearly validate the manipulation of 

movement speed, showing that not only did participants take longer overall during Forced search, but 

that they did so taking fewer moves – i.e., each individual move was substantially slowed for Forced 

search versus Normal unpacking. 

Unpacking Errors. Error rates are plotted in Figure 2.26, and were analyzed with a Condition 

(Standard, Forced Deposit) by Error Type (Caught, Uncaught) repeated measures ANOVA. A 

marginal effect of Error Type was found, suggesting that Uncaught errors were slightly more 

prevalent than Caught errors, F(1, 23) = 4.20, MSE = 20.120, p = .052. Most critically however, there 

was a significant main effect of Condition, such that fewer errors occurred in the Forced condition, 

F(1, 23) = 32.8, MSE = 36.069, p < .001. The interaction was not significant (F = 2.5, p = .128). 

Coupled with the Response Time and Number of Moves data, these results confirm that when 

participants are induced to be slower and more considered in their movements during the unpacking 

task, the rate of the unpacking error is markedly decreased. 
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Figure 2.25 (A) Response Times (seconds) and (B) Number of moves per trial for Experiment 7, 

plotted for Normal and Forced Deposit condition. Error bars depict one standard error of the 

mean. * p < .001. 
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Figure 2.26 Caught and Uncaught error rates in Experiment 7, plotted for Normal and Forced 

Deposit conditions. Error bars depict one standard error of the mean. 
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Discussion 

In the preceding experiments, participant behaviour on the Unpacking task indicated that the 

unpacking error is likely to result from excessive motor speeding, so that items are being selected and 

moved at a rate that outpaces the perceptual analysis necessary for reliable identification of those 

items. In Experiment 7, we provided a direct test of this hypothesis by forcing participants to slow 

down their movements through the structure of the task. As predicted by the motor-speeding 

hypothesis for the unpacking error, when participants were made to slow down, they likewise 

committed fewer unpacking errors. 
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2.8 Error Rates and Set Size: Meta-analysis 

Although error rates were rarely found to be significantly impacted by set size in any given 

experimental sample, there is a clear trend across experiments for a small effect of set size. In the 

interests of completeness, we provide a brief meta-analysis of error rates collected across matched 

conditions in each of the experiments. The full sample included the Similar item set trials from 

Experiment 1 (n = 16), the No Load trials from Experiment 2 (n = 28), the Full-Vision trials from 

Experiment 3 (n = 20), all trials from Experiment 4 (n = 20) and Experiment 5 (n = 30), and the 

Mouse trials under standard instructions from Experiment 6 (n = 20), yielding a total sample of 134 

participants. The data were entered into an Error Type (Caught, Uncaught) by Set Size (12, 24), by 

Experiment (1, 2, 3, 4, 5, 6) mixed factors ANOVA. A significant effect of Experiment was observed, 

F(5, 128) = 3.06, MSE = 76.894, p < .05, but Experiment did not interact with any other variables 

(largest F = 1.39, ps = .233) so we do not interpret this result further. We also note a small effect of 

Error Type, F(1, 128) = 4.08, MSE = 44.275, p < .05, such that Uncaught errors were slightly more 

prevalent. Critically, a significant effect of Set Size was found, F(1, 128) = 13.6, MSE = 13.112, p < 

.001. The effect was further examined by conducting a paired-samples t-test between Set Size 12 and 

Set Size 24 for each error type separately. We found no difference between Set Sizes for Caught 

errors (t(133) = 1.130, p = .260), but a significant difference between Set Sizes for Uncaught errors, 

t(133) = 3.686, p < .001. Although measurable with sufficient power, we note that the effect 

constitutes a negligible difference of approximately 1.5%, or just over a tenth of a percent per item. 
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3.General Discussion 

A core component of search in the real world involves physical interaction with, and reconfiguration 

of critical elements of the search environment – including candidate targets. Here, we have introduced 

a novel search paradigm, the ‘Unpacking task,’ which includes these components of naturalistic 

search. The logical expectation for search of this type would hold that items should be consistently 

evaluated as candidate targets prior to being rejected. In contrast, we observed that participants 

frequently discard the target item during search, despite visually fixating and manipulating this target 

item, and despite the fact that locating the target is their exclusive task in most experiments. In seven 

experiments, we have attempted to elucidate the nature and characteristics of this error. In the 

following, we first propose an account for the unpacking error consistent with the data presented, then 

discuss the relation between the unpacking error and other common behavioral errors, and finally 

provide some concluding comments. 

3.1 The Unpacking Error 

Locating a target item in the Unpacking task involves the use of two distinct processes, by now quite 

familiar to psychologists: perception for identification, and perception for action (Goodale & Milner, 

1992; Jeannerod, 1994). In the present context, the former (hereafter simply the ‘identification’ 

system) is responsible for determining the identity of a given item, or more generally, for determining 

whether or not the target item is present/visible in the display. The latter process (hereafter the 

‘action’ system) is responsible for rearranging items in the display in order to uncover occluded 

items, thus making them accessible to the identification process. Implicit, and intuitively appealing in 

this description, is that, in the context of manual search, the action system should be slaved to the 

identification system. At times, however, the action system appears to be unresponsive to the 

identification system or, alternatively, the identification systems fails to assert sufficient control over 
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the action system. In either case, the action system appears to be decoupled from the identification 

system and hence from the core demand of the search task: to locate the sole target item, and is 

instead slaved to the more general aim of simply unpacking the heap – removing occlusion in order to 

ensure that any given item could in principle be inspected. This kind of dissociation is consistent with 

the idea that instantaneous visual processing is strongly tailored to immediate task demands (Ballard, 

Hayhoe, & Pelz, 1995; Hayhoe, Bensinger, & Ballard, 1998; Hoffman, Landau, & Pagani, 2003). 

When an item is selected for movement, it is not necessary that the item also be identified – its spatial 

coordinates are sufficient to support the motor program.  

Such a division of labor may have interesting consequences, in particular when there is a 

discrepancy between the speed of processing for action and for identification. There appear to be two 

crucial thresholds in the relative timing of identification and action. First, if identification of an item 

completes prior to the onset of action, then the unpacking error will be avoided. Conversely, should 

identification fail to complete prior to movement onset, then the relative pace of ongoing identity 

analysis and subsequent movements will determine the severity of the error. If identification of the 

moved item completes prior to disruption by subsequent items, then the error will be caught, or else 

will have only minimal consequences. Conversely, if identification of the moved item is disrupted by 

subsequent item processing prior to completion, then the error is likely to be highly consequential. 

This hypothesis is supported, in particular, by Experiments 1, 3, and 7. When item identities can be 

quickly processed, as with the Dissimilar item set in Experiment 1, then the rate of consequential 

errors is low. Likewise, for Similar item sets – where identity processing is slower – reducing the 

level of distracting perceptual information in the display, as in the Yoked-vision condition in 

Experiment 3, leaves the rate of consequential errors unaffected, but reduces the severity of these 

errors. In this case, the increased processing demands make it more likely that the first threshold is 

crossed, but the reduced interference helps to prevent the second threshold from being crossed. 
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Finally, in Experiment 7 the motor speed was slowed, increasing the time available for perception to 

complete prior to the first threshold – and consequently reducing error rates. 

That such a dissociation can be observed in a naturalistic context – and is apparently more likely 

when the ecological validity of the task is improved (Experiment 6) – raises interesting possibilities 

about how these two systems may interact more generally, and about how goal-oriented planning may 

unfold in naturalistic settings. In particular, in the case of the unpacking task, we can conceive of 

several different plans to achieve the goal of locating a target item. The naïve, and obvious plan 

would be to inspect each item in turn, discarding it if it is not the target, and moving it to the response 

box if it is the target. Such a process would undoubtedly be successful, but is apparently deemed too 

time-consuming – regardless of whether instructions emphasize speed or emphasize slowing 

(Experiment 6). An alternative plan would be to allow the motor system to randomly5 permute 

through configurations of the environment at its own pace, leaving the perceptual system to evaluate 

the outcomes of these permutations. While such an approach introduces the possibility of errors – 

which may at times be highly consequential – it may nonetheless reduce the average expected search 

time. Indeed, the positive skew distribution in response times seen across all the experiments reported 

here supports such an approach, shifting the bulk of the distribution to faster response times at the 

cost of a small number of much longer response times when an error is made. The prevalence of such 

distributions in naturalistic observations (the well-known power law, for instance; see e.g., Van 

Orden, Holden, & Turvey, 2005) suggests that this kind of tradeoff may indeed be the rule, and not 

the exception when it comes to real world behaviours like foraging.  

                                                      
&"The suggestion that this process is truly ‘random’ is likely unfair to the motor system, but is 
intended only to illustrate the overall flavor of this alternate strategy. A more apt characterization 
might hold that this motor exploration is not random, but rather is merely unconstrained by 
information related to the broader goal."
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3.2 Relation to Documented Errors 

In the following, we examine how the unpacking error we have introduced is related to a number of 

previously documented behavioral errors. In particular, we examine the relation of the unpacking 

error to (1) inattentional blindness, (2) change blindness, (3) ‘misses’ in classical visual search, and 

(4) action slips in routine behavior. 

Inattentional Blindness. When attention is focused on a particular location, feature, or component 

of a task, unexpected events occurring outside of this focus often go unnoticed – a phenomenon 

referred to as inattentional blindness (Becklen & Cervone, 1983; Mack & Rock, 1998; Neisser & 

Becklen, 1975; Simons & Chabris, 1999). As in the inattentional blindness paradigm, the unpacking 

task involves two processes, perception and action, which might potentially vie for attention and 

consequently interfere with one another. There are several reasons to doubt such an assessment. First, 

while most inattentional blindness effects involve missing an unexpected and peripherally relevant 

event, it is difficult to argue that the target in the unpacking task – the primary and exclusive goal of 

the task – falls under the same category. It seems reasonable to differentiate failing to notice 

something unexpected and irrelevant, and failing to notice the object of an explicit, targeted search. 

Secondly, we note that the characteristics of the motor system’s behavior do not suggest an attentive 

focus on this process, but instead involve rapid, largely untargeted movements, typically without 

attendant eye-movements. Such seemingly automatic behavior is inconsistent with attentive focus. 

Indeed, we argue that the error is less likely to be a result of attending to the action process instead of 

the inspection process, and more likely a result of not attending to the action process enough, 

allowing this system to outpace the more demanding inspection process. Consequently, though one 

might reasonably make a case for ‘inattentional impulsivity,’ an inattentional blindness account seems 

unlikely. Finally, we note that while inattentional blindness has been found to increase under 
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conditions of memory load (Fougnie & Marois, 2007; Todd, Fougnie, & Marois, 2005), we found no 

such effects for the unpacking error. 

Change Blindness. It has also been shown that individuals are surprisingly poor at identifying 

unexpected changes in the visual array, provided abrupt onset signals are masked, even for apparently 

quite dramatic changes (Droll, Hayhoe, Triesch, & Sullivan, 2005; McConkie & Zola, 1979; Levin & 

Simons, 1997; O’Regan, Rensik, & Clark, 1999). While demonstrations of change blindness clearly 

highlight the limitations of our perceptual abilities, there is little reason to believe that the present 

results arise from a common mechanism. As with inattentional blindness, but not with the unpacking 

error, change blindness also increases as distraction increases (Smilek, Eastwood & Merikle, 2000). 

More critically, the unpacking error occurs under continuous viewing conditions, and, most 

importantly, in the absence of any change to the stimulus. The most immediately relevant 

demonstration of change blindness is found in Droll, Hayhoe, Triesh, & Sullivan (2005). These 

authors recorded hand and eye-movements during a virtual reality block sorting task, and reported the 

remarkable finding that changes could be made (during a period of saccadic suppression) to an item 

in hand without participants noticing, so that an item would be sorted on the basis of the 

characteristics it had when it was first selected, and not on the basis of its unexpectedly updated 

features. This result provides important insights into the nature of visual representations and visual 

working memory during movement, indicating that the representation of an item’s identity is not 

necessarily updated after it has been used for selection. Critically however, during the unpacking 

error the motor behavior is enacted before identification, and consequently is not a failure to update 

the representation, but a failure to acquire one in the first place.   

Visual Search Misses. The Unpacking task incorporates a motor component into the traditional 

visual search paradigm, introducing the dimension of depth and the consequent potential for 

occlusion of the target, thereby requiring introduction of a motor component to the search repertoire – 
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conceptually analogous to the factor of eccentricity, which necessitates visual orienting actions (e.g. 

eye-movements). Consequently, it is important to explore the relation between the unpacking error 

and errors observed in traditional visual search. In particular, it has been reliably demonstrated that 

during visual search tasks in which the target is sometimes present and sometimes absent, participants 

will often ‘miss’ the target item, responding that it is absent even when it was in fact present, and the 

rate of this error typically increases as target prevalence decreases (Rich et al., 2008; Van Wert, 

Horowitz, & Wolfe, 2009; Wolfe, Horowitz, Kenner, 2005; Wolfe et al., 2007; but see Fleck & 

Mitroff, 2007). We acknowledge that errors of this type are closely related to the unpacking error, but 

highlight several important caveats for such a comparison.  

First, we note that Rich and colleagues (2008) have demonstrated with eye-tracking data that the 

bulk of miss errors occur on trials where the target item was not fixated in the course of search – 

indicating that, in the majority of cases, target misses arise because search was terminated 

prematurely, not because participants failed to identify an inspected item. In contrast, we have shown 

that the target is typically fixated for approximately 300 ms prior to an unpacking error, and that this 

level of inspection differs only marginally from the amount of inspection prior to correct target 

detection. Notably, there is also a minority of target misses during visual search for which the target 

item was in fact fixated, and these errors are certainly more closely related to the unpacking error. 

However, even in the case of these more similar errors, we note that the motor component in the 

unpacking task introduces a compounding factor in the severity of the error by imposing an external 

time limit on inspection. It would be interesting to investigate whether the rate of eye-movements 

during traditional visual search might also show a tendency to outpace the rate of identification 

processes. 

Second, it is important to note that in the experiments presented here, the target was present on 

every trial, corresponding to a 100% prevalence rate. This presents a fundamental contrast to studies 
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of visual search misses, where by necessity the target must be absent on some of the trials in order to 

measure misses. In these studies, a high prevalence condition is typically one where the target is 

present on 50% of trials, while a low prevalence condition generally has a target present on only 1%-

5% of trials. Misses occur in both conditions, but are particularly common in the low prevalence case. 

These errors have been explained using the ‘multiple-decision model,’ which proposes that search 

responses are influenced by a response criterion, which biases evaluation of target-presence in the 

attended region of the search array, and a quitting threshold that governs when searchers decide to 

stop looking and respond that the target is absent (Wolfe & Van Wert, 2010). In particular, under 

conditions of low target prevalence searchers are thought to become biased toward ‘absent’ responses 

locally, and likewise reduce their quitting threshold, giving up more quickly. Under high prevalence 

conditions, these effects are reversed, so that local inspection is biased toward ‘present’ responses, 

and the quitting threshold is increased. Given the 100% target prevalence rate in the Unpacking task, 

the multiple-decision model – which successfully explains visual search misses – appears ill-suited to 

explain the unpacking error.  

Action Slips. Finally, the unpacking error also seems reminiscent of action slips in routine 

behaviour (e.g. Botvinick & Plaut, 2004; Cooper & Shallice, 2000; Norman, 1981; Reason, 1979; 

Wagenaar, Hudson, & Reason, 1990; Zapf & Reason, 1994). In particular, we note that the unpacking 

error appears to result from a failure to adequately control the action system – and in particular a 

failure to maintain task-appropriate contingencies between action and identification. Such an account 

raises an interesting possibility for models of behavioral control. Specifically, we suggest that 

subgoaling is not necessarily a matter of decomposing a task into a linear set of sub-goals, but rather 

that tasks may sometimes be partitioned into temporally overlapping sub-tasks carried out by 

dissociable systems. In the present case, the unpacking task is partitioned into two main sub-

components: unpacking, and inspecting. These two components can be carried out by separable 
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systems, and consequently operate heterarchically (Norman, 1981) – leading to errors of 

discoordination when the two systems fail to share critical information, or fail to adequately cross-

regulate. Consistent with such an account is the observation of post-error slowing in the unpacking 

task, indicating some rudimentary awareness of the error, and a consequent attempt to increase 

control over the action system. 

3.3 Concluding Comments 

In the present research, we have extended the classical visual search paradigm to include a more 

active exploratory component by having participants search through a heap of items. In so doing, we 

discovered that the most obvious and intuitive strategic approach to search – identifying an item 

before choosing how to act on it (i.e., whether to discard it, or accept it as the target) – is not 

necessarily the strategy that is typically used. Instead, the search process as a whole seems to be 

decomposed into a motor task (“make items available to inspection”), and a perceptual task 

(“determine whether or not the target is among those items available to inspection”). Critically, rather 

than coupling these processes, so that, for instance, only those items known to be non-targets are 

rejected by the motor system, it appears that the two processes are allowed to run concurrently, but 

largely without mutual control. As a consequence, the motor system at times outpaces the perceptual 

system, rejecting an item before it has been fully processed, and consequently before it can be 

determined whether or not that item is the target. While it has long been known that perception for 

action and perception for identification are dissociable (Goodale & Milner, 1992; Jeannerod, 1994), 

observations of this dissociation have typically involved either lesions to one system or the other 

(e.g., Carey, Harvey, & Milner, 1996; Goodale, Milner, Jakobson, & Carey, 1991; James, Culham, 

Humphrey, Milner, & Goodale, 2003; Milner, et al., 1991; Rice, et al., 2006), or the use of careful 

experimental designs that place the two systems in conflict, typically using visual illusions (e.g., 

Aglioti, DeSouza, & Goodale, 1995; Bruno, Bernardis, & Gentilucci, 2008; Haffenden & Goodale, 
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1998; Ganel, Tanzer, & Goodale, 2008; Goodale, 2008; Króliczak, Heard, Goodale, & Gregory, 

2006). In contrast, the unpacking error appears to capture some aspect of this dissociation during a 

naturalistic task where the intuitive expectation would not only hold that the two systems should not 

be dissociated, but that they should in fact be fairly closely coupled. 
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Appendix A 

Trace Computation – Experiment 3 

Data was sampled throughout performance of the task. Because both sampling and stimulus display 

were handled by the same program, sampling times varied based on computational load. With no item 

selected, data was sampled at an average rate of once every 20.5 ms (48.6 Hz). When an item was 

selected, the rate decreased to an average of once every 33.3 ms (30.0 Hz). For each sample we 

recorded the mouse coordinates, the time that the sample was recorded, the identity of the item 

currently selected (if any), and the offset of the selection point on the item (if an item was selected). 

In conjunction with trial level specification of the starting state, and redundant recordings of coarse 

move characteristics (item, grab time, drop time, drop coordinates), these data allowed full 

reconstruction of the display’s state at a rate of 30.0 – 48.6 Hz. 

To extract task-relevant features from the movement data, each trial was first divided into segments 

falling into one of three categories: 1) mouse free segments – contiguous series of samples with no 

item selection, 2) standard move segments – contiguous series of samples with a non-target item 

selected, and 3) target move segments – contiguous series of samples with the target item selected. 

For each sample within a segment, we estimated the instantaneous velocity (in degrees per second) on 

the basis of that sample and the samples immediately preceding and following. Instantaneous velocity 

for the first and last samples within a trace was computed using only the single neighboring sample, 

and was divided by two to attenuate edge artifacts (equivalent to assuming the mouse is stationary 

before and after the segment). 

 

For each sample within a segment, we also computed the vector from the sample coordinate to the 

center of the response box. We then determined the projection of the instantaneous velocity of the 

sample onto this response box vector – the component of the movement at that time that was directed 
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towards the response box. Because the response box had spatial extent, the projection was set to zero 

if the sample coordinate was within the bounds of the response box.  

Average traces were computed across all matching segments across all trials for each subject. Each 

matching segment was sampled at 50 evenly spaced time points (the absolute spacing varied 

depending on the total duration of each segment). Temporal smoothing was applied by computing a 

weighted average at each time point of the instantaneous velocity and of the projection onto the 

response box vector across all samples in the segment, using a Gaussian kernel with a standard 

deviation of 30 ms. The values at each ordinal time point were averaged across segments for each 

subject, along with the average sampling time across segments.  

Traces were computed separately for Correct trials (trials where the target item was moved only 

once – to the response box), Caught error trials (trials where the target item was moved twice, but 

without any intervening activity) and Uncaught error trials (trials where the target item was moved 

two or more times, with at least one move occurring between the first target move and the trial-

terminating target move). All traces were computed separately for Visible and Yoked conditions. 
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