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Abstract 

The Bayesian design approach is an experimental design technique which has the same 

objectives as standard experimental (full or fractional factorial) designs but with significant 

practical benefits over standard design methods. The most important advantage of the Bayesian 

design approach is that it incorporates prior knowledge about the process into the design to 

suggest a set of future experiments in an optimal, sequential and iterative fashion. Since for 

many complex polymerizations prior information is available, either in the form of 

experimental data or mathematical models, use of a Bayesian design methodology could be 

highly beneficial. Hence, exploiting this technique could hopefully lead to optimal 

performance in fewer trials, thus saving time and money. 

 
In this thesis, the basic steps and capabilities/benefits of the Bayesian design approach will be 

illustrated. To demonstrate the significant benefits of the Bayesian design approach and its 

superiority to the currently practised (standard) design of experiments, case studies drawn from 

representative complex polymerization processes, covering both batch and continuous 

processes, are presented. These include examples from nitroxide-mediated radical 

polymerization of styrene (bulk homopolymerization in the batch mode), continuous 

production of nitrile rubber in a train of CSTRs (emulsion copolymerization in the continuous 

mode), and cross-linking nitroxide-mediated radical copolymerization of styrene and divinyl 

benzene (bulk copolymerization in the batch mode, with cross-linking). All these case studies 

address important, yet practical, issues in not only the study of polymerization kinetics but 

also, in general, in process engineering and improvement. Since the Bayesian design technique 

is perfectly general, it can be potentially applied to other polymerization variants or any other 

chemical engineering process in general.  

 
Some of the advantages of the Bayesian methodology highlighted through its application to 

complex polymerization scenarios are: improvements with respect to information content 

retrieved from process data, relative ease in changing factor levels mid-way through the 

experimentation, flexibility with factor ranges, overall “cost”-effectiveness (time and 
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effort/resources) with respect to the number of experiments, and flexibility with respect to 

source and quality of prior knowledge (screening experiments versus models and/or 

combinations). The most important novelty of the Bayesian approach is the simplicity and the 

natural way with which it follows the logic of the sequential model building paradigm, taking 

full advantage of the researcher’s expertise and information (knowledge about the process or 

product) prior to the design, and invoking enhanced information content measures (the Fisher 

Information matrix is maximized, which corresponds to minimizing the variances and reducing 

the 95% joint confidence regions, hence improving the precision of the parameter estimates). 

 
In addition, the Bayesian analysis is amenable to a series of statistical diagnostic tests that one 

can carry out in parallel. These diagnostic tests serve to quantify the relative importance of the 

parameters (intimately related to the significance of the estimated factor effects) and their 

interactions, as well as the quality of prior knowledge (in other words, the adequacy of the 

model or the expert’s opinions used to generate the prior information, as the case might be). 

 
In all the case studies described in this thesis, the general benefits of the Bayesian design were 

as described above. More specifically, with respect to the most complex of the examples, 

namely, the cross-linking nitroxide-mediated radical polymerization (NMRP) of styrene and 

divinyl benzene, the investigations after designing experiments through the Bayesian approach 

led to even more interesting detailed kinetic and polymer characterization studies, which cover 

the second part of this thesis. This detailed synthesis, characterization and modeling effort, 

trigged by the Bayesian approach, set out to investigate whether the cross-linked polymer 

network synthesized under controlled radical polymerization (CRP) conditions had a more 

homogeneous structure compared to the network produced by regular free radical 

polymerization (FRP). In preparation for the identification of network homogeneity indicators 

based on polymer properties, cross-linking kinetics of nitroxide-mediated radical 

polymerization of styrene (STY) in the presence of a small amount of divinyl benzene (DVB; 

as the cross-linker) and N-tert-butyl-N-(2-methyl)-1-phenylpropyl)-O-(1-phenylethyl) 

hydroxylamine (I-TIPNO; as the unimolecular initiator) was investigated in detail and the 
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results were contrasted with regular FRP of STY/DVB and homopolymerization of STY in the 

presence of I-TIPNO, as reference systems. The effect of [DVB], [I-TIPNO] and [DVB]/ [I-

TIPNO] were investigated on rate, molecular weights, gel content and swelling index. In 

parallel to our experimental investigations, a detailed mathematical model was developed and 

validated with the respective experimental data. Not only did model predictions follow the 

general experimental trends very well but also were in good agreement with experimental 

observations. Pursuing our investigations for a more reliable indicator for network 

homogeneity, corresponding branched and cross-linked polymers were characterized. Thermo-

mechanical analysis was used as an attempt to investigate the difference between polymer 

networks synthesized through FRP and NMRP. Results from both Differential Scanning 

Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) showed that at the same cross-

link density and conversion level, polymer networks produced by FRP and NMRP exhibit 

indeed comparable structures.  

 
Overall, it was notable that a wealth of process information was generated by such a practical 

experimental design technique, and with minimal experimental effort compared to previous 

(undesigned) efforts (and associated, often not well founded, claims) in the literature! 
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Chapter 1. Introduction 

 
For many polymerizations, experimental data may be available either from industrial or 

exploratory laboratory work. In addition, mathematical models usually do exist, albeit often 

with unreliable and/or highly correlated parameters, and sometimes even unverified 

mechanistic bases. In complex polymerization systems, these problems are even more 

prominent. Hence, ideas from the (statistical) design of experiments applied as early as 

possible can be very beneficial for the clarification of polymerization kinetics. Classical 

experimental design methods (for example, (fractional) factorial designs) have been used 

extensively and are useful in optimizing a wide variety of systems. However, these designs 

usually ignore the prior knowledge available and are often limited when the system digresses 

from linear behavior. Using more efficient experimental designs, which can accommodate both 

prior information and nonlinearities, could (hopefully) lead to optimal performance in fewer 

trials. 

 
Bayesian design is a powerful and largely unstudied (in the polymerization area) experimental 

design methodology, which can accommodate practical limitations encountered in classical 

(fractional) factorial designs. This approach incorporates prior knowledge about a process into 

the design in order to suggest a set of future experiments in an optimal, sequential and iterative 

fashion. In addition, Bayesian design allows the use of a nonlinear (fully mechanistic) model 

along with experimental information (hence, it is essentially an optimal model-based design of 

experiments).  

 
The approach is based on Bayes’ theorem which is well established, especially among 

statisticians. Application of the Bayesian technique to chemical systems has been more 

practiced in the areas of drug and cell transport kinetics, pharmaceutical kinetics and analyses 

of catalytic systems, with the common characteristic of all these applications being that they 

are concerned with parameter estimation, but not with the issue of the design of experiments. 

The literature on the application of the Bayesian methodology to polymerization systems is 

scarce, with the exception of applications to emulsion terpolymerization kinetics and to particle 

size distribution studies in suspension polymerization, all in our group. 
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Looking at the last 15 years or so, whereas many advances have taken place in the area of 

polymer reaction engineering, Bayesian design of experiments has not been exploited 

extensively nor frequently in complex polymerization systems, which could benefit 

tremendously from its important traits. These observations motivated current work with the 

following objectives in mind: 

 
1. Formalize the application of the Bayesian approach as a tool for the design of 

experiments 

2. Shed light on the performance of the Bayesian design approach 

3. Expand the implementation of the Bayesian design of experiments in polymer reaction 

engineering (PRE), which could lead to optimal performance in fewer trials, thus 

saving time and money 

4. Exploit the Bayesian technique to guide one in addressing important practical issues in 

the study of polymerization processes 

 
In order to meet our objectives, this thesis is organized into eleven chapters: 

 
In Chapter 2, basic background on the Bayesian design of experiments is discussed and 

contrasted with standard experimental designs. A literature review is presented on applications 

of the Bayesian design approach to different general chemical engineering processes, but not 

on polymerization systems. Polymerization applications are the topic of the chapters that 

follow.  

 
Details of the Bayesian design approach (including its principles, capabilities, benefits and 

different steps needed for its implementation) are discussed in Chapter 3. In order to visualize 

the inner workings of the approach and its superiority to the currently practiced (standard) 

design of experiments, the Bayesian design is then applied to a simple simulation bench-

marking example.  

 
With the purpose of further formalizing the application of the Bayesian approach as a tool for 

the design of experiments (objective #1), the Bayesian approach is implemented in Chapter 4 

to a more complicated system, namely, the nitroxide-mediated radical polymerization of 
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styrene. In this chapter several case studies are presented that clearly illustrate the benefits of 

the Bayesian method. 

 
To shed light on the performance of the Bayesian design approach (objective #2), a series of 

statistical diagnostic tests can be carried out, which are discussed in Chapter 5. These 

diagnostic tests serve to quantify the relative importance of the parameters (intimately related 

to the significance of the estimated factor effects) and their interactions, as well as the quality 

of prior knowledge (in other words, the adequacy of the model or the expert’s opinions used to 

generate the prior information, as the case might be). Different measures of information 

content are also presented in Chapter 5 (e.g., the Fisher Information matrix is maximized, 

which corresponds to minimizing the variances and reducing the 95% joint confidence regions, 

hence improving the precision of the parameter estimates). 

 
In order to satisfy objective # 3, expanding the implementation of the Bayesian approach to 

other polymerizations, case studies are drawn from representative complex polymerization 

processes, covering both batch and continuous processes. Chapter 4 includes examples from 

bi- and uni-molecular nitroxide-mediated radical bulk homopolymerization of styrene in the 

batch mode. Chapter 6 contains the application of the Bayesian approach to emulsion 

copolymerization of acrylonitrile/butadiene (nitrile rubber or NBR) in a continuous train of 

CSTRs. Chapter 8 shows the implementation of the Bayesian design to cross-linking bulk 

copolymerizations (of styrene (STY) and divinyl benzene (DVB) under controlled radical 

polymerization conditions in batch). All these case studies, drawn from different 

polymerization processes, will clearly illustrate that what is novel in the Bayesian approach is 

the simplicity and the natural way with which it follows the logic of the sequential model 

building paradigm, taking full advantage of the researcher’s expertise and information 

(knowledge about the process or product) prior to the design. 

 
In pursuit of addressing further interesting process questions related to the cross-linking 

polymerization of STY/DVB under controlled radical polymerization (and in parallel, 

objective #4), Chapter 9 includes polymer synthesis, kinetic and mathematical modeling of this 

polymerization system. The techniques used to characterize the corresponding branched and 

cross-linked polymers are presented in Chapter 10. 



4 
 

Finally, Chapter 11 presents the main conclusions from the current work. In this chapter, the 

most significant research contributions from this thesis and recommendations for future 

research steps are also discussed. Several appendices complement the material in the chapters 

of this thesis. These appendices represent essentially “offsprings” from the research covered in 

the chapters and address peripheral but closely related issues. Figure 1.1 shows a flow chart for 

the overall thesis organization. 
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 Background and Literature Review on Bayesian Design Chapter 2.

of Experiments 

 
Some basic background and literature review on the Bayesian design of experiments is 

discussed in this chapter. Since this thesis has touched upon many different topics (several 

polymerization processes), specific literature review and related references for each 

polymerization process will be presented at the beginning of each relevant chapter and not 

repeated here for the sake of brevity. First, a brief overview of the characteristics and benefits 

of the classical (standard) design of experiments (i.e., mainly referring to the (fractional) 

factorial designs) is presented. Subsequently, the standard design of experiments is contrasted 

to the Bayesian design of experiments, since the latter approach is pursued further in our 

research. Bayes’ theorem is then discussed and a literature review on the application of the 

Bayesian design approach to different chemical engineering processes is presented.  

 
It should be mentioned up front that the purpose of this chapter is not a literature review on 

applications of Bayesian theory (versus frequentist statistics). For that large area of statistics, 

there are many reference books one can consult (e.g., see Meyer and Collier (1970) or Bolstad 

(2007)), and this is not in the scope of this research. Rather, our purpose is to make use of a 

specific tool from Bayesian statistics, as applied to the design of experiments as an alternative 

approach. 

 

2.1 Classical (Standard) Design of Experiments: Brief Overview 
 
Usually, experiments are performed to obtain (or confirm) some knowledge about a particular 

process or system. An experiment, in general, can be defined as a test (or series of tests) in 

which, purposeful changes are made to the input variables of a process or system, and the 

changes observed in the output response are recorded (tracked) (Montgomery, 2005). The 

results and conclusions that can be drawn from the analysis of an experiment depend to a large 

extent on the manner in which the data were collected. Essentially, in every experiment the aim 

of the researcher/scientist is to maximize the information content about the process. However, 

without carefully designed experiments, there will be little information content to maximize 

(Box et al., 2005). Thus, a suitable experimental design should be implemented in advance 
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(since it is referred to as “design”, it should be accomplished in advance at the “design 

stage”!), in order to collect appropriate experimental data which could result in valid and 

objective conclusions. 

 
Statistical design of experiments, probably introduced and formalized for the first time by R. 

A. Fisher (Fisher, 1926), refers to the process of planning the experiment in a way that 

appropriate data, which could be analyzed by formal statistical methods, will be collected, 

resulting in unbiased conclusions. To use the statistical approach in designing and analyzing an 

experiment, it is necessary for everybody involved in the experiment to have a clear idea in 

advance of exactly what is to be studied, how the data are to be collected, and at least a 

qualitative understanding of how these data are to be analyzed (Montgomery, 2005).  

 
Figure 2.1 outlines the recommended flow chart to follow when designing an experiment. The 

first step is to state the problem and set the objectives of experimentation, evidently. Although 

this might seem like a rather obvious point, in practice, usually, the objectives of the 

experiment (and a clear expression of the problem at hand) are rarely specified (clearly) at the 

outset. It is important to keep the overall objective in mind, as the specific questions to be 

addressed during experimentation are related directly to the overall objective chosen. For 

example, is the objective characterization or factor screening, as in a new process or system, 

or is it optimization or stability, as in a mature or well-understood system? (Montgomery, 

2005) 

 
The next step (as shown in Figure 2.1) is selecting the response(s) and the factors with their 

related levels or ranges. In selecting the responses, the experimenter should be certain that 

these responses will really provide useful information about the process under study. The 

potential design factors that the experimenter may wish to vary in the experiment should also 

be specified from the beginning. It is important to investigate all factors that may be of 

importance and this is where process knowledge, which is combination of practical experience 

and theoretical background, is necessary. Once the design factors are chosen, one should 

choose the ranges over which these factors will be varied or the specific levels at which runs 

will be made. When the objective of the experiment is factor screening, it is usually best to 

keep the number of levels low (generally, two levels work well), and the range, over which the 
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factors are varied, relatively broad. As more information is gathered about importance of 

factors and the levels which produce the best results, the region of interest will usually become 

narrower.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One should know from the outset, based on the resources and the time available, how many 

experiments could be afforded during experimentation. Based on the number of experiments 

that could be carried out, one can then choose the appropriate experimental design to follow. In 

selecting the design, it is important to keep the experimental objectives in mind. After the 

appropriate design is chosen, the next step is performing the chosen experiments in the lab 
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Figure 2.1 Guidelines for designing an experiment (Montgomery, 2005) 
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(refer again to Figure 2.1). When running the experiments, it is vital to monitor the process 

carefully to ensure that everything is being done according to plan. Error in experimental (and 

the related characterization) procedures at this stage can often destroy the whole validity of the 

experimental design (Montgomery, 2005).  

 
After running the experiments (which is the most time-consuming stage), statistical methods 

should then be used to analyze the data so that results and conclusions are objective (and 

quantitative) rather than judgmental (and qualitative) in nature. If the experiment has been 

designed correctly and if it has been performed according to the design, the statistical methods 

required are not elaborate (Montgomery, 2005). In the last stage, by coupling the statistical 

analysis with good engineering or process knowledge and common sense, a sound conclusion 

could be derived.  

 
Throughout the entire process, it is important to keep in mind that experimentation should be 

looked at as an important part of a learning process, where a tentative hypothesis is formulated 

about a process, experiments are then carried out to investigate this hypothesis and based on 

the results collected, a new, improved hypothesis could then be articulated. One of the most 

common and rather major mistakes is to design a single, large, comprehensive experimentation 

phase at once. In other words, an appropriate experimental design is one that is carried out in 

an iterative fashion. In addition, as experiments progress, more information is obtained which 

could lead to dropping some input variables, adding others, changing the region of exploration 

for some factors, or add new responses. Consequently, besides being iterative, an experimental 

design is best to be sequential, in order to accommodate possible changes in the design that 

might occur during experimentation. As a general rule of thumb, no more than about 25 

percent of the available resources should be invested in the first sequence of the experiments 

(Box et al., 2005; Montgomery, 2005). This is to ensure that sufficient resources are available 

to accommodate the runs with the altered settings, or perform confirmation runs, and 

ultimately, accomplish the final objective of the experimentation without running out of 

resources. 

 
There are several experimental designs available to choose from. One strategy of 

experimentation that is used extensively in practice (especially in chemistry, biology and 
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materials science, ironically three areas that are in most need of a good statistical design of 

experiments!) is the “one-factor-at a-time” (OFAT) approach. This method involves varying 

one factor while keeping the other factors constant. Although this approach seems like a simple 

method to follow, it often requires a considerable amount of experimental work. In addition, it 

fails to consider any possible interaction between the factors. An interaction is the failure of 

one factor to produce the same effect on the response at different levels of another factor. 

Interactions between factors are very common, and if they occur, the OFAT strategy will 

usually produce poor results. Many scientists do not recognize this, and, consequently, OFAT 

experiments are run frequently in practice (Montgomery, 2005). 

 
The alternative to the OFAT methodology is the so-called factorial experimentation. This 

approach is one of the main approaches to the statistical design of experiments and has proven 

to be much more efficient than OFAT and with many advantages over it (Box et al., 2005; 

Montgomery, 2005). A factorial experiment is an experiment whose design involves two or 

more factors, each with discrete possible values or "levels", and whose experimental units take 

on all possible combinations of these levels across all such factors (Montgomery, 2005). A 

factorial design may also be called a fully-crossed design. Such an experiment allows studying 

the effect of each factor on the response variable, as well as the effects of interactions between 

factors on the response variable. The most widely used design is the 2k factorial design, in 

which the effects of k factors are studied, while each factor has only two levels. These levels 

could be quantitative, such as two temperature or pressure levels, or qualitative, such as two 

machines, two operators or perhaps, presence or absence of a factor. 

 
Clearly, as the number of factors of interest increases, the number of runs required increases 

rapidly; for instance, a 10-factor experiment with all factors at two levels would require 210= 

1024 runs. This quickly becomes infeasible from a time and resource viewpoint (of course, if 

the process studied involves electronics and signal processing, in which each trial has a 

duration of a few seconds or minutes only, then a 210 full factorial is not only feasible but 

imperative). Hence, considering typical process engineering scenarios involving long 

experiment durations and even longer product characterization stages, if there are four to five 

or more factors, it is usually unnecessary to run all possible combinations of factor levels since 

high order interactions are usually negligible. A fractional factorial experiment is thus a 
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variation of the basic full factorial design in which only a subset of the runs is used. This 

design will provide good information about the main effects as well as some information about 

how these factors interact. A 2k-p fractional factorial design, consisting of 2k-p runs, is a 

ଵ

ଶ೛
	fraction of the 2k full factorial design. For the above case of a 10-factor experiment, as an 

example, a 
ଵ

ଶమ
	 fraction of 210 will have 210-2 = 256 runs, a considerable reduction in the number 

of trials. 

 
Full or fractional factorial designs are probably the most frequently used statistical design 

techniques for planning experiments in science and engineering (these factorial-type designs 

will be referred to from here on as “conventional” (but not in a derogatory sense) or “standard” 

experimental designs). However, quite often, these elegant and very useful techniques have 

several limitations and cannot satisfy several practical needs, as listed in Table 2.1. For 

instance, most of the experiments are strictly limited in the time and material resources that are 

available. A conventional experimental design does provide fractional factorial experiments to 

economize on effort but often the resources available do not match the number of trials which 

must be made for a specific fraction. Further practical difficulties involve impractical treatment 

combinations, experiments which go astray because of missing observations, redefinition of 

factor levels as the experiment proceeds, factors which require different number of levels, and 

dropping/ adding factors.  

 
 

Table 2.1 Typical limitations encountered in standard designs 

Issues 
Available resources do not match the number of trials that can be designed 

Handling of impractical treatment combinations 
Handling of situations with missing observations 

Factor levels change in the middle of experimentation 
Factors with several (or combination of ) levels 

Dropping/adding factors 
Not a sequential and iterative approach 

Nonlinearities 
Incorporation of prior knowledge 
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Although some of the issues with standard designs cited in Table 2.1 have solutions (with 

varying degrees of effort), these are usually known only to experts in the design of 

experiments. Hence, it often happens that the practicing scientist or engineer is not aware of 

the solutions, cannot easily handle the issues faced and, as a result, gives up on the use of 

statistical designs altogether. Therefore, using efficient experimental designs which can 

accommodate these restrictions could (hopefully) lead to optimal performance in fewer trials, 

thus saving time and money. 

 
Finally, and more importantly, in the standard experimental designs minimal amount of prior 

knowledge is used/exploited. Most of the time there is some prior knowledge available about 

the process under study and the purpose of the experimentation is to strengthen/clarify an 

opinion already present (Bolstad, 2007). Ignoring this prior information, which is usually 

translated into a waste of time, materials and other experimental resources, does not sound like 

a reasonable thing to do! As prior information is already available within existing data, it is 

logical that it should be used in order to contribute to the optimality of the designed 

experiments, and hence to improved models and performance of the process in question 

(Bolstad, 2007). 

 

2.2 Bayesian Design of Experiments 
 
Bayesian design is a powerful and efficient experimental design methodology, which can 

accommodate practical limitations encountered in classical (fractional) factorial designs (as in 

Table 2.1). This design offers some distinct advantages that make it particularly attractive from 

both an industrial and theoretical perspective (Bolstad, 2007). 

 
The most significant advantage of the Bayesian approach is that it incorporates prior 

knowledge about a process into the design in order to suggest a set of future experiments in an 

optimal, sequential and iterative fashion. The exercise of casting prior knowledge about a 

process into a mathematical form (as will be shown in later chapters) forces the experimenter 

to brainstorm/hypothesize and perhaps come to a clearer understanding of the process or even 

anticipate/solve some of the problems that triggered the specific questions about the process 

even before starting the experiments. Prior information can be updated in a sequential manner, 
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thus allowing, in parallel, the optimal update of key unknown parameters. In addition, prior 

information involves contributions from both the prior experimental region and a (usually non-

linear) mathematical model for the process, thus making use of both experimental information 

and mechanistic models (in a way similar to optimal filtering techniques). Hence, Bayesian 

design could be essentially called an optimal model-based design of experiments.  

 
Another advantage of the Bayesian design of experiments involves experimental flexibility. 

Unlike factorial designs, the number of experiments is unrestricted. As mentioned in section 

2.1, in standard factorial designs one must perform a number of trials equal to an integer power 

of 2. When applying a Bayesian scheme, one can use as many experiments as he/she wants. In 

addition, dealing with common (often problematic) issues present in factorial designs, such as 

missing observations or design factors and levels needing to be added, dropped, or altered 

during the experimentation phase, is easier in the Bayesian design approach.    

 
The Bayesian approach can be used to determine the relative importance of different operating 

factors and also to identify the “best” operating conditions. This design can shed light on the 

most uncertain parts of our process understanding, identify the least reliable (less well-known) 

parameters, e.g., uncertain values of kinetic rate constants, and further guide sensitivity 

analysis studies focusing on key uncertain parameters in one’s model.  

 

2.2.1 Bayes’ Theorem 
 
The main idea of Bayesian methodology comes from Bayes’ rule: 

 

ܲሺݕ|ߠሻ ൌ 	
ܲሺߠ|ݕሻ	ܲሺߠሻ

ܲሺݕሻ
 

Eq.  2.1

                                                                                                                                                                     
where ߠ is a vector of unknown parameters of interest and ݕ	is a vector of n observations 

whose probability distribution ܲሺߠ|ݕሻ	depends on the values of these parameters. ܲሺߠሻ	is the 

prior distribution of ߠ which tells us what is known about ߠ before the collection (hence, 

knowledge) of the data. Correspondingly, ܲሺݕ|ߠሻ is the Bayesian posterior distribution of ߠ 

which tells us what is known about ߠ given the knowledge of the data. ܲሺݕሻ	is referred to as 

the sampling distribution (or data distribution) for fixed parameters ߠ.   
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When the data ݕ are known and the parameters ߠ are unknown, ܲሺߠ|ݕሻ	may be regarded as a 

function not of y but of ߠ. When so regarded, it is called the likelihood function of ߠ for given 

ሻݕሻ. ܲሺݕ|ߠand can be written as ݈ሺ ݕ 	ൌ ׬	 ܲሺߠ|ݕሻ	ܲሺߠሻ	݀ߠ		is constant and acts as a 

normalizing factor to ensure that the Bayesian posterior integrates to unity (Box and Tiao, 

1973). We can thus write Bayes’ formula as  

 
ܲሺݕ|ߠሻ ∝ 	݈ሺݕ|ߠሻ	ܲሺߠሻ Eq.  2.2

 
In other words, Bayes’ theorem tells us that the probability distribution for	ߠ posterior to the 

data ݕ is proportional to the product of the likelihood for ߠ given ݕ, ݈ሺݕ|ߠሻ, and the 

distribution for ߠ prior to the data, ܲሺߠሻ (Box and Tiao, 1973).   

 
The prior distribution of ߠ is interpreted as a “degree of belief”, which is subjective. Each 

person can have his/her prior, which contains the relative weights that the person gives to every 

possible parameter value. It measures how “plausible” the person considers each parameter 

value to be, before observing the data (Bolstad, 2007). After data ሺݕሻ are collected, the 

person’s belief about the parameters (ܲሺߠሻ) is revised through the Bayes’ theorem. The 

likelihood function, ݈ሺݕ|ߠሻ, is the function through which the data ݕ modify the prior 

knowledge of ߠ. It can therefore be regarded as representing the information about ߠ coming 

from the data (Bolstad, 2007). The posterior distribution, ܲሺݕ|ߠሻ, is then our modified belief 

about the parameters, after analyzing the data; hence, it contains information from both prior 

distribution and the observed data (experimental measurements).  

 
Bayes’ theorem is appealing because it provides a mathematical formulation of how previous 

knowledge may be combined with new knowledge (and hence, updates). It allows us to 

continually update information about a set of parameters ߠ as more observations are taken 

(Box and Tiao, 1973). Bayes’ theorem has been implemented, in many different fields, to 

develop algorithms for parameter estimation and adaptation, model discrimination, or design of 

experiments. The following section touches upon some of the applications of the Bayesian 

approach in the chemical engineering field. However, since this work is more focused on 

polymerization processes and the aim has been more on the design of experiments, this 
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literature review is by no means a comprehensive one over the whole general chemical 

engineering field, but rather a selective one with more emphasis on polymerization processes.  

 

2.3 Representative Applications of Bayesian Approach in Chemical Engineering: A 

review of recent literature  

 
Certainly, Bayesian methods are well established, especially among statisticians. Although the 

Bayesian approach does not seem like a standard kit for chemical engineers, there have been 

many applications relevant to chemical and process engineering appearing in the literature over 

the years. Some classical applications of Bayesian design in chemical engineering date back to 

the early 1960s (for example, the work by Box and co-workers (Box and Draper, 1965; Box 

and Tiao, 1965 and Box and Tiao, 1968). Over the years, applications of the Bayesian 

technique have evolved, from being used only in catalytic (reaction) chemical engineering, to 

various other specialized branches of chemical engineering. 

 
Duran and White (1995) applied the Bayesian framework to estimate model parameters for 

heat transfer in a packed bed using data from ill-controlled experiments. They showed that the 

Bayesian approach was superior to the standard estimation techniques, as it not only accounted 

for several important error sources (that could not be considered in the standard approaches), 

but also provided a probability distribution for these errors. The alternative solution to using 

the Bayesian approach would be to perform the experiments again under better controlled 

conditions, which would be a far more costly alternative. 

 
The Bayesian technique has been also applied to microbial systems (Bois et al., 1997; Pouillot 

et al., 2003; and Coleman and Block, 2006). In all these applications, Bayesian statistical 

inference was used to model the development of a microbial system, and estimate the 

parameters of the related model. For example, Boise et al. (1997) modeled the development of 

biofilm in an industrial pilot drinking-water network by using a Bayesian approach, and 

derived statistical distributions for the model parameters, based on experimental data.  

 
Another area where the Bayesian methodology had been applied is drug and cell transport. 

Murphy et al. (2004) developed a systematic and iterative Bayesian scheme and sets of rules 
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for the design of enzyme kinetic experiments. By using the Bayesian approach, they selected 

the optimum design to collect data suitable for accurate modeling and parameter estimation. 

Later, they used this algorithm to study other important kinetic systems, including drug 

transport, receptor binding, microbial culture and cell transport kinetics. They showed that by 

implementing the Bayesian technique, they could reduce the error in estimating the parameters 

of their models, and at the same time increase the overall efficiency and cost-effectiveness of 

the process (because of reducing the necessary amount of experiments and data points 

measured).  

 
The Bayesian approach has traditionally been suggested for building models (among many 

alternative mechanisms) for catalytic reaction systems. Reilly and Blau (1974) and Froment 

(1975) summarized earlier efforts in this area. However, at the time, the computational 

challenges associated with the implementation of the Bayesian scheme made its adaptation 

prohibitive among the wider catalytic reaction community. Recent advances in high speed 

computation have made it possible for researchers to exploit the Bayesian method. For 

example, Blau and co-workers recently revisited the Bayesian approach in order to build 

kinetic models for catalytic systems (Blau et al., 2008; Hsu et al., 2009). In their work, the 

Bayesian methodology was used to estimate model parameters, discriminate between rival 

models and design new experiments to improve both model discrimination and fidelity of the 

parameter estimates. 

 
The Bayesian approach has also been applied to pharmaceutical kinetics. For example, 

Hermanto et al. (2008) used Bayesian methodology to estimate the kinetic parameters of a 

model for polymorphic crystallization of L-glutamic acid. The kinetic model was developed 

from batch experiments with in situ measurements, including ATR-FTIR spectroscopy, to infer 

the solute concentration and provide crystal size information. In their work, a marginal 

probability distribution for each parameter was determined, which could give insight regarding 

uncertainties in the parameters, and also be of significant value in developing robust control 

strategies for the crystallization process.    

 
More recently, Omidbakhsh et al. (2010) applied the Bayesian methodology to a disinfectant 

formulation process. Hydrogen peroxide was used as the basic chemical in formulating new 
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disinfectants; however, this chemical is not very stable and loses its antibacterial activity very 

quickly. Therefore, developing a model which could accurately predict peroxide loss in future 

formulations was desirable. The Bayesian approach was used to design the least possible 

number of trials which could then be used to obtain a robust model for prediction of peroxide 

loss. The prior information was based on historical data.  

 
Although the Bayesian methodology has been used widely in many different chemical 

engineering fields, the literature on the application of Bayesian approaches to polymerization 

systems is scarce. Dube et al. (1996) were the first to present a systematic study of emulsion 

terpolymerization using the Bayesian design of experiments technique. The Bayesian 

experimental design was used to design 18 trials, in three sequences of 4-, 4- and 10- trials, in 

order to study the effect of seven different factors on four different responses. The seven 

factors studied were temperature, initiator, monomer, emulsifier, chain transfer and impurity 

concentrations, and type of initiator used. The responses collected from batch emulsion 

terpolymerization were batch time, terpolymer composition, weight-average molecular weight, 

and total number of particles. Subsequently, Vivaldo-Lima et al. (2006) used the Bayesian 

design to determine the relative importance of process factors in suspension copolymerization. 

They designed two sequences of 4-trials each to study the effect of six different factors 

([CTA], [stabilizer], speed of agitation, dispersed phase hold-up, and two factors from impeller 

geometry) on mean particle size and coefficient of variation of the particle size distribution.  

 
Scrutinizing all the Bayesian framework applications (including the ones mentioned above as 

well as others from the scientific literature not cited herein for the sake of brevity), one can see 

that the common characteristic is that they are concerned with admittedly very important, 

(multi)parameter estimation questions (of kinetic rate constants), but not so often with the issue 

of the design of experiments. Apart from Dube et al. (1996), Vivaldo-Lima et al. (2006) and 

Hsu et al. (2009), who dealt with the design of experiments both theoretically and 

experimentally (i.e., the design stage and how this can aid further decisions about optimizing 

process operation and product performance), there are not many cases where Bayesian ideas 

have been formally applied to the design of an actual scientific experiment, followed by 

conducting the experiments, analyzing the data, updating the information, and conducting the 

next (optimal) trial(s). Most often, based on the scientific literature on the topic, data already 
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collected are subjected to Bayesian analysis, with suggestions as to how the scenario could 

possibly have improved, had Bayesian design of experiments been applied at the outset. 

 
In addition, looking at the last 15 years or so, whereby many advances have taken place in 

polymerization systems, Bayesian design of experiments has not been exploited extensively 

nor frequently in complex polymerization systems, which could benefit tremendously from its 

important traits. Complex polymerization processes are directly amenable/conducive to 

analysis following Bayesian approaches. In most polymerization processes mathematical 

models do exist, albeit often with unreliable parameter values and/or even unverified 

mechanistic bases (i.e., reaction mechanisms). In the cases of complex, new and emerging 

technologies, this problem is even more prominent. Hence, using ideas from the design of 

experiments (applied statistical methodology) to clarify polymerization kinetics seems 

beneficial. The Bayesian design of experiments combines, by definition, experimental data and 

prior modeling information, thus leading naturally to mathematical model updates and the 

identification of optimal operating (experimental) conditions (regions) in order to achieve 

certain polymer property targets. 

 
In order to illustrate the principles and capabilities/benefits of the Bayesian design approach 

and its superiority to the currently practiced (standard) design of experiments (and, certainly, to 

the still dominant lack of practice of using designed experiments!), case studies are presented 

in this thesis, drawn from different complex polymerization processes. These case studies 

address important, yet practical, issues in not only the study of polymerization kinetics but 

also, in general, in process engineering and improvement. A preview of the important process 

issues and, accordingly, topics that can be handled efficiently by the Bayesian design approach 

are listed in Table 2.2. Before presenting results from the implementation of Bayesian design 

to different polymerization processes, the general Bayesian experimental design framework 

developed by Reilly (1993) is presented in Chapter 3 and applied to a simple case study for 

demonstration purposes. 
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Table 2.2 Overview of issues handled by the Bayesian design approach 

Issue 

Sources of prior knowledge (screening experiments vs. models) 

Effect of informative vs. non-informative priors 

Accommodating factor level and range changes and/or extra trial(s) mid-way through experimentation 

Designing n-trial experiments vs. sequences of fewer trials 

Diagnostic criteria for the quality of prior knowledge and significance of estimated effects 

Single vs. multi-response scenarios 

Handling process constraints and impractical treatment combinations 

Increase of information content, flexibility and cost effectiveness 
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 Bayesian Design Framework Chapter 3.

 
Standard experimental design methods, e.g., (fractional) factorial designs, have been employed 

extensively and are useful in optimizing a wide variety of systems. However, these designs 

usually suffer from several limitations and cannot handle certain situations, as listed in Table 

2.1 of Chapter 2. In addition, these approaches do not take direct advantage of the considerable 

prior knowledge that is available about the reaction system to design experiments. As prior 

information is already available within existing data, it is logical that it should be used in order 

to contribute to the optimality of the designed experiments, and hence to improved models and 

performance of the process in question. Using a more efficient experimental design which can 

accommodate restrictions encountered in the standard experimental designs could (hopefully) 

lead to optimal performance in fewer trials, thus saving time and money. 

 
Such efficient designs can be found in the family of Bayesian approaches. Bayesian design is a 

powerful and largely unstudied (in the polymerization area) experimental design methodology, 

which can accommodate practical limitations encountered in standard (fractional) factorial 

designs. The other significant advantage of the approach is that it incorporates prior knowledge 

about a process into the design in order to suggest a set of future experiments in an optimal, 

sequential and iterative fashion. In addition, Bayesian design allows the use of a nonlinear 

(fully mechanistic) model along with experimental information (hence, it is essentially an 

optimal model-based design of experiments). The approach can shed light on the most 

uncertain parts of our process understanding, identify the least reliable (less well known) 

parameters (e.g., uncertain values of kinetic rate constants), and further guide sensitivity 

analysis studies focusing on key uncertain parameters in one’s model. 

 
Details about the Bayesian design approach to experimentation are discussed in this chapter 

and in order to visualize the inner workings of the approach and its superiority to the currently 

practiced (standard) design of experiments, the Bayesian design is applied to a simple 

simulation bench-marking example. 
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3.1 Bayesian Approach to Experimentation: Algorithmic Steps 
 
As discussed in section 2.2, the Bayesian methodology is based on Bayes’ theorem which 

states that: 

 

 

 
The prior distribution captures what is known about the parameters (or a process) before the 

collection (hence, knowledge) of the data. Prior knowledge may be based on the subjective 

opinion of the “expert”, some exploratory literature data, or could be provided from a 

nonlinear/mechanistic model of the process under study or of a similar process. The likelihood 

function is the function through which the observed data points modify the prior knowledge 

about the parameters. It can therefore be regarded as the contribution about the parameters 

coming from the data. The posterior distribution reflects one’s belief about the parameters after 

the data have been generated. Bayes’ theorem basically quantifies the improvement in our 

knowledge about the parameters by weighing prior knowledge with the new information 

generated by the experimental data (Hsu et al., 2009). The Bayesian approach has a sequential 

nature and provides a mathematical formulation of how previous knowledge may be combined 

with new knowledge. It basically allows one to continually update information about a set of 

parameters as more observations are collected. 

 
The Bayesian approach to experimentation requires a model for the process response(s) as a 

function (denoted as f in Eq.  3.1) of the factors or variables under study, and a distribution 

function which contains the prior knowledge about the process (parts of this theoretical 

background on the Bayesian approach to experimentation is based on Reilly (1993)). 

 

ݕ ൌ 	݂ሺܺ, ሻߠ േ	ߝ Eq.  3.1

 

In our study, we will use a linear regression model (Eq.  3.2), for simplicity, and a multivariate 

normal distribution for the prior knowledge (Eq.  3.3). Using a linear regression model is not 

only extremely common but will also serve to illustrate the basic steps in a relatively simple 

way, easy to follow and visualize. Consider the linear regression model: 

ondistributifunction             on        distributi
parameterpriorlikelihoodparameterparameterposterior 
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ݕ ൌ ߠܺ	 ൅	ߝ 
Eq.  3.2

 

where ݕ is an ݊	 ൈ 	1 vector of observations with ݕ௜ representing the ith observation. ܺ is an 

݊	 ൈ  design matrix, with its elements having the values of +1 and -1, corresponding to the ݌	

high and low levels of the design factors, respectively (these experiments and the methodology 

in general are by no means restricted to two levels but two levels were again chosen in order to 

reduce the number of trials required, for the sake of simplicity in these illustrative stages). A 

row of the ܺ	 matrix corresponds to an experimental trial (treatment).	݊ is the number of trials 

and ݌ is the number of parameters or effects (݌ includes the mean, the main effects, and all of 

the interactions; for a 2m factorial experiment, ݌ is 2m). ߠ is the ݌ ൈ 	1 vector of true, yet 

unknown, values of parameters, with each parameter identified by its subscripts (e.g., ߠଷ଻	is the 

parameter for the two-factor interaction between factor 3 and factor 7). Finally, ߝ	is the error 

vector which is assumed to be normally distributed with mean 0 and variance matrix Iσ2 (I is 

the identity matrix). σ2 is the variance of the response(s).  

 
The prior knowledge of  can be represented by: 

 

ߠ ∶ 	ܰ	ሾߙ;	ܷሿ  Eq.  3.3

 
that is, the knowledge held about ߠ	 before the experiment can be expressed by the multivariate 

normal distribution with mean ߙ and variance/covariance matrix ܷ, where ߙ is a ݌ ൈ 	1 known 

vector of the parameter means and ܷ is a positive definite ݌	 ൈ  known matrix of the ݌	

variances (covariance(s) if they exist) of the parameter means. At first glance, it may seem 

strange that in order to use the Bayesian design approach, one must initially have estimates of 

the parameters; after all, it is the purpose of the experiment to obtain such estimates! However, 

as mentioned by Box and Hunter (1965), this paradox is merely an example of the fact that any 

experimental design uses the experimenter’s beliefs about the situation being studied. In fact, 

the exercise of casting prior knowledge about a process into a mathematical form (as will be 

shown later) forces the experimenter to brainstorm/hypothesize and perhaps come to a clearer 

understanding of the process or even anticipate/solve some of the problems that triggered the 

specific questions about the process even before starting the experiments. 
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Prior knowledge can have different shapes and forms; it may simply be some advance 

knowledge, however vague, of the parameters in a linear model underlying a factorial 

experiment. In other situations, an engineer/scientist with expert knowledge of the system may 

be able to mentally estimate values, i.e., arrive at sufficiently good “guesses” of the response 

variable(s) for known values of the factors. Another situation where prior knowledge is 

available is when the kinetic parameters to be used in a nonlinear/mechanistic model are 

possibly available from literature information. However, in many cases they cannot be used as 

“the values” for the kinetic parameters of the system/model under consideration because 

maybe a different experimental approach has been used in order to determine/ calculate/ 

measure/ estimate them. On the other hand, ignoring them totally does not sound like a 

reasonable thing to do either! 

 
After the prior knowledge is stored in the form of ߙ and ܷ, Bayes’ theorem may be applied to 

give the posterior distribution of the parameter values (details behind the derivation of Eq.  3.4 

are discussed in section A. 1 of Appendix A):  

 

ቀߠቚݕቁ :	ܰ ቊ൤ܷିଵ 	൅	ሺ
1
ଶߪ
ሻܺᇱܺ൨

ିଵ

൤ܷିଵߙ ൅ ሺ
1
ଶߪ
ሻܺᇱݕ ൨ ; ൤ܷିଵ ൅ ሺ

1
ଶߪ
ሻܺᇱܺ൨

ିଵ

ቋ Eq.  3.4

 

The design problem is therefore that of choosing the “best” n-trial fraction of a factorial 

experiment. One can search for the best set of trials by maximizing the determinant in Eq.  3.5. 

Hence, the optimality problem is reduced to that of choosing ܺ in order to maximize H 

(additional remarks about Eq.  3.5 are presented in section A.2 of Appendix A): 

 

	ܪ ൌ 	 ฬܫ 	൅	ሺ
1
ଶߪ
ሻ	ܷܺܺᇱ	ฬ	 Eq.  3.5

 
The optimality criterion of maximizing the determinant H reduces to the well-known D-

optimality criterion of maximizing หܺᇱܺ	ห	in the special case when there is no prior knowledge 

about the parameters. After the completion of a set of experiments (design sequence), the 

vector of parameter means (ߙ) and variance/covariance matrix (ܷ) are updated using Eq.  3.6 
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and Eq.  3.7, respectively (note that the updated ߙ is now defined (renamed) as ߠ, the posterior 

means of the parameters).  

 

ߠ 	ൌ 	 ൤ܷିଵ 	൅	ሺ
1
ଶߪ
ሻܺᇱܺ൨

ିଵ

൤ܷିଵߙ ൅ ሺ
1
ଶߪ
ሻܺᇱݕ ൨ Eq.  3.6

 

ܷ ൌ ൤ܷିଵ 	൅	ሺ
1
ଶߪ
ሻܺᇱܺ൨

ିଵ

 Eq.  3.7

 

The next sequence of experiments can then be chosen, once more following the optimality 

criterion of maximizing determinant H (Eq.  3.5). One can make a decision at some point 

during the course of the experimentation to halt the experimentation based on the 

corresponding variance of the parameters. That is, once the values of all of the parameters of 

interest are known with an acceptable degree of certainty, the experimentation can be stopped. 

 
Implementation of the Bayesian design of experiments requires several steps. Table 3.1 gives a 

summary of the different steps (of the algorithm) that have to be taken in order to design 

experiments through the Bayesian approach. Going through the general steps of Table 3.1 

might be straightforward at first glance, however, considerable time/effort/sophistication is 

needed starting with step 4, and then at every update (e.g., steps 7 and 8). The combination of 

extended/meaningful “brainstorming” (steps 1 and 2) and detailed experimental response 

characterization (steps 4 to 7) as linked by the optimality step 3, will hopefully lead to not only 

a more flexible design/experimentation scheme but also a much more informative posterior. As 

one can see from scrutinizing the steps (1-8) of Table 3.1, the Bayesian design approach is 

optimal, sequential and iterative.  
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Table 3.1 Summary steps for implementing the Bayesian design approach 

1) Select the design factors and their levels; select response(s). 

2) Cast the prior knowledge into a vector of prior parameter estimates (ߙ) and a prior 

variance/covariance matrix (ܷ) 

3) Select the “best” experiment using the search algorithm described by Eq.  3.5 

4) Run and analyze the experiments (which have been selected using Eq.  3.5)  

5) Update vector of parameter means (ߠ) and variance/covariance matrix (ܷ) using Eq.  3.6 

and Eq.  3.7 

6) Given the new variance/covariance matrix (ܷ), use Eq.  3.5 to select the next sequence of 

trials 

7) Analyze the experiments and update ߠ and ܷ; repeat steps 5 to 7. 

8) Stop the experimentation once the values of parameters of interest are known with an 

accepted degree of certainty. Update the vector of parameters for the last time, after the 

analysis of the final sequence of experiments 

 

3.2 Simple Case Study 

 
The steps of Table 3.1 are “visualized” using a simple simulation “bench-marking” example 

herein. This example tackles the selection of twelve runs in two sequences of 8- and 4-trials 

each, with a single response and five independent variables. We begin with a linear model for 

the process, as follows: 

 


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


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Eq.  3.8 

 

 
where y is the response and i are the parameters. For a five-factor factorial design, with two 

levels per factor, the model would have 3222 5  kp  parameters corresponding to a 

constant term ( 0 ), 5k  main factor effects,     10])!25(!2[/!55
22 k  two-factor 
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interactions, and similarly, 10 three-factor interactions, 5 four-factor interactions and 1 five-

factor interaction. In this example, the effects of four- and five-factor interactions are assumed 

to be highly unlikely and are not included, hence, we end up with     262 54  kkkp  

parameters in the model. ix  represents the ith factor (setting) or coefficient of parameter i. In a 

typical two-level design of experiments scenario, the ix s assume the values of +1 and - 1, 

signifying the upper and lower level of the factor (independent variable), respectively.   is the 

error, assumed to be normally distributed with mean 0  and known covariance matrix 2I . 2 , 

the variance of the response, is assumed to be known and equal to 2 for our example 

calculations. The true values of the parameters ( 
i ), i.e., the values used to simulate the 

experiments, are shown in the second column of Table 3.2.  

 
The next step is to cast our prior knowledge of the process into  and U (see step 2 in Table 

3.1). The prior parameter values (guessed or generated from the true parameter values to 

simulate a situation when we have reasonable starting estimates of the parameters and their 

associated uncertainties) are shown in the third column of Table 3.2. Note that only two of the 

interaction effects ( 12  and 34 ) are expected to be nonzero in the opinion of the “expert”. 

“Expert” opinion is again used to make a calculated guess about the prior elements of the 

variance/covariance matrix (Uii) for each parameter (see fourth column of Table 3.2), i.e., the 

“expert” is expressing how certain he/she is about the prior parameter values. In general, U is a 

pp  matrix, however, in our case it is  pp  26   26. The diagonal elements (Uii) of the 

prior U are shown in the fourth column of Table 3.2 (the off-diagonal elements are assumed to 

be zero initially).  
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Table 3.2 Prior knowledge about the parameters 

Parameter True 
i Prior 

i  Prior iiU  Prior standard 
deviation 

Prior  
2 standard deviations 

0  200 180 100 10 20 

1  20 15 10 3.162 6.32 

2  1 0 5 2.236 4.47 

3  10 20 10 3.162 6.32 

4  -15 -10 10 3.162 6.32 

5  1 0 5 2.236 4.47 

12  10 8 5 7.071 4.47 

13  0 0 3 1.732 3.46 

14  0 0 3 1.732 3.46 

15  0 0 3 1.732 3.46 

23  0 0 3 1.732 3.46 

24  0 0 3 1.732 3.46 

25  0 0 3 1.732 3.46 

34  10 14 5 2.236 4.47 

35  0 0 3 1.732 3.46 

45  0 0 3 1.732 3.46 

123  0 0 1.5 1.225 2.46 

124  0 0 1.5 1.225 2.46 

125  0 0 1.5 1.225 2.46 

134  0 0 1.5 1.225 2.46 

135  0 0 1.5 1.225 2.46 

145  0 0 1.5 1.225 2.46 

234  0 0 1.5 1.225 2.46 

235  0 0 1.5 1.225 2.46 

245  0 0 1.5 1.225 2.46 

345  0 0 1.5 1.225 2.46 

 

Considering the prior 2 standard deviations (last column of Table 3.2), one can see that all of 

the true parameter values are within the 95% confidence interval of the prior parameter values, 

except parameter three ( 3 ). A deliberate discrepancy is introduced for 3  (the level of 

uncertainty is underestimated for this factor) in order to check the behavior of Bayesian 

methodology in the presence of false prior information.  The variance/covariance matrix (U) 

will have an effect on the design of experiments, as seen in Eq.  3.5. Herein lies one advantage 

of the Bayesian technique: small elements in the variance/covariance matrix will make a 

particular factor less important in the design, while larger elements will “steer” the design in 
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the direction of obtaining more information about the lesser known variables. In other words, 

the Bayesian technique will help one avoid generating unnecessary information about factors 

that are already well known. One can notice from the 4th column of Table 3.2 that the main 

parameters (and, hence, effects) and two-factor interactions have larger variances than three-

factor interactions. In addition, we are expecting to gain more information about the main 

effects, the interaction between factors 1 and 2 ( 12 ), and also the interaction between factors 3 

and 4 ( 34 ) during the sequential Bayesian updates, as higher Uii have been allocated to these 

parameters in the variance/covariance matrix. 

 
Next, optimal experiments are selected by employing the design criterion (see Eq.  3.5). Let’s 

assume that F  is the pp  matrix of coefficients for the full factorial experiment. Then X  

would be the n rows of F , which are chosen as the next trials to be run (n<p). Hence, the 

design problem becomes that of choosing X  ( pn  ) from F  to maximize our criterion (the 

determinant H of Eq.  3.5). Since in this specific example we have assumed that higher than 

three-factor interactions are negligible, F  is a  pp 2626  matrix and X  is a pn   

submatrix of F. Let’s say that 8 trials are desired to be selected for the first sequence of 

experiments ( 8n  ); hence, X  is a 268  matrix. There are  26
8 = 1,562,275 possible 8-trial 

sequences to choose from. Out of all the possible 8-trial sequences, eight happen to yield the 

maximum value for the determinant (H= 2.92 1410 ). Since no initial conditions are specified, 

one of the eight “optimal” 8-trial sequences is chosen at random and the chosen levels (+1’s 

and -1’s) for the main factors are shown in Table 3.3, along with the simulated response, y, 

“obtained” for each trial (the whole 268  X  matrix, containing interaction terms is not 

shown for the sake of brevity). The simulated responses are obtained by substituting the coded 

values of the factors (+1’s and -1’s) into the model using the true values of the parameters (see 

second column of Table 3.2), and subsequently adding normally distributed error (of variance 

2  equal to 2, as discussed earlier) to the results in order to simulate process variability. 
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Table 3.3 8 trials of the first sequence of the simulated example 

Trial ࢞૚ ࢞૛ ࢞૜ ࢞૝ ࢞૞ Simulated process response 

1 -1 -1 -1 -1 1 207.32 

2 -1 -1 1 1 -1 196.59 

3 -1 1 -1 1 1 134.11 

4 -1 1 1 -1 -1 183.72 

5 1 -1 -1 1 -1 174.97 

6 1 -1 1 -1 1 224.91 

7 1 1 -1 -1 -1 246.03 

8 1 1 1 1 1 237.75 

 

Next, the posterior variance/covariance matrix is calculated using Eq.  3.7 and the 

corresponding 26 ൈ 	26	matrix is shown in Table 3.4 (since ܷ is symmetric, only the lower 

diagonal elements are shown). One can now observe the presence of nonzero off-diagonal 

elements in the (updated) posterior variance/covariance matrix ܷ	of Table 3.4. This updated 

matrix can now be used back in Eq.  3.5 to design (in an iterative sequential fashion) the next 

sequence of trials. 

 
Eq.  3.6 is then employed to calculate the posterior  , using the prior   (third column of 

Table 3.2), the prior U  (a diagonal matrix with diagonal elements shown in the 4th column of 

Table 3.2), the responses y (last column of Table 3.3) and the X  matrix (part of which is 

shown in Table 3.3).  

 
To improve the parameter estimates and further decrease uncertainty (i.e., decrease the U 

elements), let’s say that a second sequence of 4 trials is desired. The updated U from the first 

sequence of 8 trials (Table 3.4) can now be used as the prior variance/covariance matrix for the 

design of this new 4-trial experiment. Eq.  3.5 is employed again and out of all possible 4-trial 

sequences, two happened to yield the maximum value for the determinant (H= 61044.2  ). 

One of these “optimal” 4-trial sequences is chosen and is shown in Table 3.5 along with the 

simulated response, y, for each trial. The updated variance/covariance matrix is shown in Table 

3.6. Comparing Table 3.4 with Table 3.6, one can see that after the second sequence of 

experiments, the uncertainties about the parameters (diagonal elements of the U matrix) have 
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decreased. Eq.  3.6 can be employed again to calculate the posterior   after the second 

sequence of 4 trials. The calculations are the same as for the first sequence and the final results 

are shown in the 5th column of  Table 3.7 (the superscript in )(
i denotes the sequence of trials). 

 

Table 3.4 Posterior variance/covariance matrix U after the first sequence of experiments 

 
 

 
 

Table 3.5 4 trials of the second sequence of the simulated example 

Trial ࢞૚ ࢞૛ ࢞૜ ࢞૝ ࢞૞ Simulated process response 

1 -1 -1 -1 -1 -1 204.25 

2 -1 1 1 -1 1 189.49 

3 1 -1 -1 1 1 172.46 

4 1 1 1 1 -1 237.25 

 

 

 

 

 

 

 

3.15
0 3.22
0 0 2.44
0 0 0 3.22
0 0 0 0 3.22
0 0 0 0 0 2.78
0 0 0 0 0 0 3.11
0 0 0 0 0 -1.33 0 2.2
0 0 0 0 0 0 0 0 2.03
0 0 0 -2.03 0 0 0 0 0 2.39
0 0 0 0 0 0 0 0 -0.97 0 2.03
0 0 0 0 0 -1.33 0 -0.8 0 0 0 2.2
0 0 0 0 -2.03 0 0 0 0 0 0 0 2.39
0 0 0 0 0 0 -1.89 0 0 0 0 0 0 3.11
0 -2.03 0 0 0 0 0 0 0 0 0 0 0 0 2.39
0 0 -1.54 0 0 0 0 0 0 0 0 0 0 0 0 2.08
0 0 0 0 -1.02 0 0 0 0 0 0 0 -0.31 0 0 0 1.35
0 0 0 -1.02 0 0 0 0 0 -0.31 0 0 0 0 0 0 0 1.35
0 0 0 0 0 0 0 0 -0.49 0 -0.49 0 0 0 0 0 0 0 1.26
0 0 -0.77 0 0 0 0 0 0 0 0 0 0 0 0 -0.46 0 0 0 1.27

-1.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.48
0 0 0 0 0 0 -0.57 0 0 0 0 0 0 -0.57 0 0 0 0 0 0 0 1.33
0 -1.02 0 0 0 0 0 0 0 0 0 0 0 0 -0.31 0 0 0 0 0 0 0 1.35
0 0 0 0 0 0 -0.57 0 0 0 0 0 0 -0.57 0 0 0 0 0 0 0 -0.17 0 1.33

-1.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.02 0 0 0 1.48
0 0 0 0 0 0 0 0 -0.49 0 -0.49 0 0 0 0 0 0 0 -0.24 0 0 0 0 0 0 1.26



30 
 

Table 3.6 Posterior variance/covariance matrix U after the second sequence of experiments 

 

A series of statistical diagnostic tests can now be carried out in addition to the previous steps. 

These diagnostic tests serve to quantify the relative importance of the parameters (i.e., factor 

effects) and their interactions, as well as the quality of prior knowledge (in other words, the 

adequacy of the model used to generate the “prior knowledge”, as the case might be). 

 
Results from these statistical diagnostic tests for our example are also shown in Table 3.7. The 

second column shows the true values of the parameter means, the third column presents the 

initial values of the parameter means (α), and the fourth and fifth columns contain the updated 

estimates of the parameter means after the first and second sequence, respectively. Test 1 

(column six of Table 3.7) is defined as the ratio of the prior mean (3rd column of Table 3.7) to 

the prior standard deviation of the mean [αi/(Uii)
1/2], where (Uii)

1/2 is shown in the fifth column 

of Table 3.2. This test checks the null hypothesis that αi = 0 purely in the opinion of the 

‘‘expert’’ (the person who assigned the values for the prior effects and variances). It is 

essentially a measure of the uncertainty of the ‘‘expert’’. A value greater than 2 or less than -2 

is considered significant (this is equivalent to a 95.44% confidence interval). Test 2 is a 

measure of the actual significance of an effect. For instance, the test 2 value after the second 

sequence of experiments (7th column of Table 3.7) is equal to the second updated estimate of 

the effect, )2(
i  (see fifth column of Table 3.7), divided by the square root of the corresponding 

diagonal element of the last posterior variance/covariance matrix (see Table 3.6; [ )2(
i

1.35
0 2.31
0 0 1.88
0 0 -0.74 2.24
0 -0.91 0 0 2.31
0 0 0 0 0 1.35
0 0 0 0 0 0.62 2.84
0 0 0 0 0 -0.61 -0.31 1.84

-0.60 0 0 0 0 0 0 0 1.83
0 0 0.83 -0.94 0 0 0 0 0 1.17

-0.60 0 0 0 0 0 0 0 -1.17 0 1.83
0 0 0 0 0 -0.61 -0.31 -1.16 0 0 0 1.84
0 1.02 0 0 -1.02 0 0 0 0 0 0 0 1.25
0 0 0 0 0 0.62 -2.16 -0.31 0 0 0 -0.31 0 2.84
0 -1.02 0 0 1.02 0 0 0 0 0 0 0 -1.13 0 1.25
0 0 -0.83 0.94 0 0 0 0 0 -1.05 0 0 0 0 0 1.17
0 -0.14 0 0 -1.15 0 0 0 0 0 0 0 -0.15 0 0.15 0 1.33
0 0 -0.11 -1.16 0 0 0 0 0 -0.14 0 0 0 0 0 0.14 0 1.33

0.59 0 0 0 0 0 0 0 -0.29 0 -0.29 0 0 0 0 0 0 0 1.06
0 0 -0.94 -0.22 0 0 0 0 0 0.25 0 0 0 0 0 -0.25 0 -0.03 0 1.22

-0.59 0 0 0 0 0 0 0 0.29 0 0.29 0 0 0 0 0 0 0 -0.28 0 1.06
0 0 0 0 0 -0.60 -0.31 0.30 0 0 0 0.30 0 -0.31 0 0 0 0 0 0 0 1.08
0 -1.15 0 0 -0.14 0 0 0 0 0 0 0 0.15 0 -0.15 0 -0.02 0 0 0 0 0 1.33
0 0 0 0 0 -0.60 -0.31 0.30 0 0 0 0.30 0 -0.31 0 0 0 0 0 0 0 -0.42 0 1.08

-0.59 0 0 0 0 0 0 0 0.29 0 0.29 0 0 0 0 0 0 0 -0.28 0 -0.44 0 0 0 1.06
0.59 0 0 0 0 0 0 0 -0.29 0 -0.29 0 0 0 0 0 0 0 -0.44 0 -0.28 0 0 0 -0.28 1.06
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/(Upost(ii))
1/2]). Once again, a value greater than 2 or less than -2 implies significance. Finally, 

test 3 is a measure of the quality of the expert’s opinion. For instance, test 3 after the second 

sequence of experimentation (8th column of Table 3.7) is equal to ( )2(
i - i ) divided by the 

square root of the diagonal element of the last posterior variance/covariance matrix (see again 

Table 3.6; [( )2(
i - i ) /(Upost(ii))

1/2]). A significant value greater than 2 or less than -2 implies 

that portion(s) of the mechanistic model related to the response(s) and the effects in question 

may need further refinement. As explained in Dube et al. (1996) and Vivaldo-Lima et al. 

(2006), caution should be exercised in the interpretation of this test, since correlation and 

nonlinearity in the model equations could also cause the results of test 3 to become 

significant/insignificant. The numerical results for tests 2 and 3 after the first sequence (of 

eight trials), have also been included in columns 9 and 10 in Table 3.7, for the reader to 

appreciate the evolution of the output from these test values. 

 
A careful analysis of the summary results of Table 3.7 can lead to several interesting remarks. 

Comparing the true values of the parameters ( 
i  in Table 3.7), the prior estimates of the 

parameters ( i in Table 3.7), and the estimates of the parameters after the first and second 

sequence, one observes that the parameter estimates have improved in the direction of the true 

values. For example, Figure 3.1a illustrates the evolution for parameter 3 from the prior value        

( 3 ) towards the true value ( 
3 ) throughout the experimentation. As one can see, initially the 

value for parameter 3 had been estimated by the “expert” to be 20, while the posterior estimate 

after the second sequence ( )2(
3 ) has been updated to be 12.88, a value much closer to the true 

value of 10. Comparing the corresponding variance values (see Figure 3.1b), one can observe 

that the Bayesian design moves in the direction of minimizing the variance in the parameters.  

Figure 3.1 is just one way of “visualizing” and demonstrating the improvements achieved by 

the Bayesian methodology.  
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Table 3.7 Summary results of diagnostic tests 

 

 

 

 

 

 

 

 

 

 

 

Parameter True 

i  

Prior 

i  
)1(

i  )2(
i  Test 1 Test 2 

(after 2nd 
seq.) 

Test 3 
(after 2nd 

seq.) 

Test 2 
(after 1st  

seq.) 

Test 3 
(after 1st  

seq.) 

0  200 180 200.024 200.425 18 172.4089 17.5702 112.742 11.2865 

1  20 15 18.553 18.284 4.7434 12.0325 2.1613 10.3384 1.9797 

2  1 0 -0.140 -0.432 0 -0.3153 -0.3153 -0.0895 -0.0895 

3  10 20 13.266 12.880 6.3246 8.6028 -4.7554 7.3925 -3.7525 

4  -15 -10 -13.268 -13.537 -3.1623 -8.9082 -2.3274 -7.3935 -1.8210 

5  1 0 0.154 0.613 0 0.5283 0.5283 0.0927 0.0927 

12  10 8 7.716 7.517 1.1314 4.4569 -0.2863 4.3731 -0.1609 

13  0 0 0.093 -0.137 0 -0.1014 -0.1014 0.0625 0.0625 

14  0 0 0.086 0.220 0 0.1631 0.1631 0.0604 0.0604 

15  0 0 -2.020 -1.589 0 -1.4688 -1.4688 -1.3068 -1.3068 

23  0 0 0.086 0.220 0 0.1631 0.1631 0.0604 0.0604 

24  0 0 0.093 -0.137 0 -0.1014 -0.1014 0.0625 0.0625 

25  0 0 -0.980 -0.680 0 -0.6071 -0.6071 -0.6342 -0.6342 

34  10 14 13.716 13.517 6.2610 8.0144 -0.2863 7.7736 -0.1609 

35  0 0 1.066 1.366 0 1.2193 1.2193 0.6894 0.6894 

45  0 0 -0.084 0.287 0 0.2655 0.2655 -0.0582 -0.0582 

123  0 0 -0.490 -0.530 0 -0.4604 -0.4604 -0.4223 -0.4223 

124  0 0 -1.010 -1.068 0 -0.9276 -0.9276 -0.8702 -0.8702 

125  0 0 0.043 -0.089 0 -0.0860 -0.0860 0.0383 0.0383 

134  0 0 -0.042 -0.130 0 -0.1174 -0.1174 -0.0372 -0.0372 

135  0 0 0.300 0.107 0 0.1039 0.1039 0.2470 0.2470 

145  0 0 -0.085 0.108 0 0.1044 0.1044 -0.0739 -0.0739 

234  0 0 0.533 0.493 0 0.4277 0.4277 0.4591 0.4591 

235  0 0 -0.085 0.108 0 0.1044 0.1044 -0.0739 -0.0739 

245  0 0 0.300 0.107 0 0.1039 0.1039 0.2470 0.2470 

345  0 0 0.043 -0.089 0 -0.0860 -0.0860 0.0383 0.0383 
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Based on the results of test 1 (6th column of Table 3.7), the significant parameters purely in the 

opinion of the “expert” (highlighted entries in Table 3.7 indicate a value greater than 2 ) are 

0 , 1 , 3 , 4 and 34 . The results of test 2 (7th column of Table 3.7) reveal that the actual 

Figure 3.1 Evolution of mean of parameter 3 ( ) and the corresponding variance 

( ) through the course of experimentation 
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significant parameters, based on the new observations, are 0 , 1 , 3 , 4 , 12  and 34 . Finally, 

test 3 (8th column of Table 3.7) shows that the “expert’s” opinion in the cases of 1 , 3 , 4  is 

questionable. The values of test 3 for 1  and 4  are arguably very close to 2  but what is 

interesting is the result for 3 . In the incorporation of prior knowledge stage, we had 

deliberately decided to give a very false initial value for 3  in order to check whether the 

Bayesian analysis can “spot” that. The result of test 3 indicates that the Bayesian design has 

indeed “spotted” this and identified that the expert’s opinion is not valid about 3 , yet another 

of the implicit advantages of the Bayesian design. 

 
In fact, the results of tests 2 and 3 immediately after the first sequence of 8 trials (see columns 

9 and 10 of Table 3.7) show that basically the same conclusions can be drawn from the 

diagnostic tests even after the first 8 trials. Hence, if one is interested solely in determining the 

relative importance of process factors (significant parameters), the first sequence of 8 trials is 

sufficient to address that. However, depending upon the intended target, if one is more focused 

on parameter estimation and on increasing parameter precision, then the second sequence of 4 

trials is desirable in order to decrease parameter uncertainty (translated into lower parameter 

variances, vis á vis compare Table 3.4 and Table 3.6). 

 
If a standard fractional factorial design was chosen to be carried out in this example (5 factors 

while being limited to only 12 runs), a ¼ fraction (8 experiments) would have been chosen. 

Another flexible trait of the Bayesian approach is that it allows one to easily run an experiment 

with a non-standard number of trials (for example, 12 runs, as in this example). This can only 

result in a more efficient use of resources, while providing acceptable parameter estimates.  

 
Now that the basic details about the Bayesian design framework have been discussed in this 

chapter and implemented to a simple case study, the application of this technique to different 

case studies, drawn from various polymerization processes, will be presented in the next 

chapters and more light will be shed on its significant benefits over the standard design of 

experiments.   
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Chapter 4. Bayesian Design of Experiments Applied to Nitroxide-

Mediated Radical Polymerization (NMRP) 

 
After the development of the general framework for the Bayesian design of experiments 

(Chapter 3), the method was then used to design experiments for nitroxide-mediated radical 

polymerization (NMRP), in order to enhance our understanding of the important process 

characteristics. In this chapter, a brief background on NMRP is first presented, along with a 

summary of the modeling effort for NMRP of styrene. Then, various case studies are described 

which illustrate the significant benefits of the Bayesian design approach via its application to 

both bimolecular and unimolecular NMRP.   

 

4.1 Brief Background on NMRP 
 
In order to improve the performance of polymeric materials and broaden their application 

ranges, synthesis of polymers with controlled composition/molecular architecture (and for 

some specific applications, narrow molecular weight distribution) has become an attractive 

area in polymer research. Well defined polymeric materials with controlled microstructure 

(architecture) are accessible by controlled radical polymerizations (CRP). Its versatility and 

ability to produce novel polymer structures (block and gradient copolymers; star, comb, and 

hyperbranched architectures) are perhaps the main reasons for the increased academic (and 

potentially industrial) interest. The future for CRP seems bright, and it is anticipated that new 

products will be introduced in the market within the next several years (Rutsch and Cech, 

2007).  

 
There are several approaches to controlled radical polymerization. All of these approaches 

employ some sort of dynamic equilibrium between growing free/active radicals and various 

types of dormant species (see Figure 4.1). Nitroxide-mediated radical polymerization is one of 

the three most popular approaches towards CRP. Polymeric materials synthesized by NMRP 

have the potential for uses as coatings, adhesives, lubricants, gels, thermoplastic elastomers, as 

well as materials for biomedical applications (Matyjaszewski and Spanswick, 2005). The 

success of this technically simple approach can be related to the ability of stable nitroxide free 

radicals (X• in Figure 4.1) to react with the carbon-centered free radical of the growing 
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polymer chain end (Rn• in Figure 4.1), in a reversible process. This dramatically lowers the 

concentration of active (free) radicals in the polymerization system and, coupled with the 

inability of the nitroxide free radicals to initiate new chain growth, leads to controlled 

polymerization (Moad and Solomon, 2006). 

 

 

 

 

 

 

 

 

 

 

 

The main features of NMRP are: 

 
i) Linear kinetic plot in semi-logarithmic coordinates (ln [M]0/ [M] vs. time) for an isothermal 

batch reactor ([M]0: concentration of monomer at time 0; [M]: concentration of monomer at 

time t). With instantaneous initiation and negligible termination, the total radical 

concentration remains (almost) constant during polymerization, and this results in a linear 

trend in ln [M]0/ [M] vs. time, as shown in Figure 4.2. Curvature indicates deviation from the 

ideal situation caused by slow initiation, loss of radicals by termination, or other side 

reactions. 
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Figure 4.1 A general CRP equilibrium between dormant and active species 
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ii) Linear increase in average molecular weights with conversion. This is quite different from 

regular free radical polymerization (FRP), in which high molecular weights are produced 

right from the outset (see Figure 4.3). Ideally, NMRP produces polymers with degrees of 

polymerization (DP: number of monomer repeat units in a chain) predetermined by the ratio 

of the concentration of consumed monomer to the introduced initiator (DPn = [M]/ [I]0). 

 

 
 

 

 

  

 

 

 

 

 

iii) Low polydispersity values (PDI, the ratio of the weight-average to number-average 

molecular weight (Mw/Mn)), which results in narrow molecular weight distributions (MWD). 

termination 
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Figure 4.2 First order kinetic plot for NMRP 

Figure 4.3 Comparison of the molecular weight behaviour vs. conversion for NMRP and FRP
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PDI values are typically in the range of 1.1 to 1.4, which are well below the lowest limit for 

FRP. Figure 4.4 (drawn from our experimental work) compares as an example size exclusion 

chromatography (SEC) data of polystyrene made by NMRP (Curve C) to polystyrene made 

by anionic polymerization (Curve B) and regular free radical polymerization (FRP; Curve 

A). As can be seen in Figure 4.4, the polystyrene made by NMRP has a much narrower 

MWD than the sample made by FRP and the MWD from this sample is very close to the one 

made by anionic polymerization (chromatography “standard”). 

 
iv) Having reactive polymer chain ends which allow the re-initiation of the polymerization. 

 
In general, these characteristics are the prominent features of ionic polymerization. However, 

these features are now also accessible by the more robust and versatile radical polymerization 

(controlled radical polymerization), under less stringent conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Size exclusion chromatographs of polystyrene samples. Curve A:
polystyrene made by  FRP (PDI= 2), Curve B: a SEC 'standard' polystyrene made by
anionic polymerization (PDI = 1.1), Curve C: polystyrene made by NMRP (PDI = 1.2) 
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In NMRP, two initiating approaches can be used. In the first, a nitroxide radical (such as 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)), along with a primary free radical initiator 

such as benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN) are used as the initiation 

system. This approach is called bimolecular initiation. In this method, the initiator decomposes 

to primary radicals of high reactivity, which initiate the polymerization of monomer. The 

nitroxide radical then forms a labile bond (C–O) with the radical chain, leading to the 

formation of alkoxyamines in situ. The C–O bond is weak enough to reversibly dissociate at 

higher temperatures (for example, greater than 100°C for TEMPO), thus establishing the 

activation-deactivation equilibrium between dormant and active chains. Figure 4.5 illustrates 

the nitroxide radical polymerization of styrene through the bimolecular approach with TEMPO 

as nitroxide, and benzoyl peroxide as initiator. This approach was first used by Georges et al. 

(1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.5 Bimolecular NMRP of styrene with TEMPO as the controller and
benzoyl peroxide as initiator 
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The second option to NMRP is unimolecular initiation. This approach was first illustrated by 

Fukuda et al. (1996) and Greszta and Matyjaszewski (1996), almost at the same time. In the 

unimolecular NMRP, a single molecule initiator is used, which on dissociation generates two 

radicals. One of the radicals should be of high reactivity to initiate the polymerization, while 

the second one should be a low reactivity, stable nitroxide radical. The structure of these 

initiators is usually based on the alkoxyamine functionality. The C–O bond of the small-

molecule alkoxyamine derivative is thermolytically unstable and decomposes on heating to 

give an initiating radical as well as the stable nitroxide radical. Following initiation the 

polymerization proceeds as described previously for the bimolecular case. Figure 4.6 shows the 

mechanism for the unimolecular NMRP of styrene using a TEMPO-based alkoxyamine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Unimolecular NMRP of styrene using a TEMPO-based
alkoxyamine as the unimolecular initiator 
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NMRP was first discovered by Solomon et al. (1986), however, it received significant attention 

only after the influential work of Georges et al. (1993) on bimolecular NMRP, and subsequent 

work of Fukuda et al. (1996) and Greszta et al. (1996) on unimolecular NMRP. Since then, the 

literature on NMRP has developed in several directions. Representative examples of reviews 

on chemistry and mechanistic aspects can be found in the literature (Hawker et al., 2001; 

Fischer, 2003; Goto and Fukuda, 2004; Shipp, 2005; Braunecker and Matyjaszewski, 2007; 

Bertin et al., 2011; Grubbs, 2011). Although at first glance the NMRP seems relatively well-

studied, there is still considerable amount of effort needed to better understand this system, 

from both a mechanistic point of view and also its use as a tool for the construction of useful 

new polymer architectures (Bertin et al., 2011; Grubbs, 2011). 

 
Looking critically at the literature, one can make the following observations: i) Systematic 

modeling efforts are sporadic and, usually, very specific over a narrow experimental 

region/recipe. Parameter estimates are usually unreliable, as most of them are often guessed. ii) 

Detailed /reliable experimental results are still rare, and experimental runs are usually carried 

out in non-systematic ways (making the mathematical modeling stage even more complicated, 

with added uncertainties with respect to important parameter values). For instance, conversion 

vs. time data points reported in the past only capture the first few hours of the experiment and 

low to medium conversion, whereas average molecular weight data are usually not readily 

available and, if available, are presented at a limited number of conversion levels. In addition, 

checks for reproducibility and independent replication are almost non-existent. iii) Design of 

experiments and systematic, concerted approaches are lacking. Hardly any group has tried to 

combine the available information from both experimental observations and mathematical 

models in an experimental design scheme.  

 
Essentially, these general observations are a confirmation that such a system would be readily 

amenable to (and could potentially benefit tremendously from) analysis using model-based 

experimental design schemes, namely a Bayesian approach. The development of the 

mathematical model for NMRP is briefly discussed in the next section, as this model is one of 

the “tools” used in the model-based Bayesian method.  
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4.2 Mathematical Modeling for NMRP of Styrene 
 
The kinetic model for NMRP of styrene used is based on Bonilla et al. (2002) and the summary 

of the modeling effort presented here draws heavily from the work of Belincanta-Ximenes et 

al. (2007) and Roa-Luna et al. (2007b). The reaction mechanism used, as the basis for the 

derivation of the model, is summarized in Table 4.1. The model was based on mole balances 

for the main recipe ingredients. As an example, the mole balances for initiator, monomer, 

polymeric radicals and dead polymer species are shown in Eq.  4.1 to Eq.  4.4; for the list of all 

molar balances, refer to Belincanta et al. (2007). In order to track molecular weight 

development, the method of moments was used. Three polymer populations were considered in 

the system: polymer radicals, dead polymer, and dormant polymer. As shown by Roa-Luna et 

al. (2007a), diffusion-controlled (DC) effects did not influence the NMRP systems 

significantly, therefore, they were not considered in the model. Overall, the model consisted of 

22 ordinary differential equations. All the kinetic rate constants were assumed to be 

independent of chain length and are cited in Table 4.2, presented as Arrhenius functions of 

activation energies and temperature.  
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Eq.  4.2
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Eq.  4.4

 

         
     

2

dim ia p in

p fM decomp x

d M
2k M k M D k M D M R

dt

k M R k M R k MNO

  

 

               

        

  
     

2
p in tc td

da x a r x fM fD

d R
k M M D R (k k )( R )

dt

k NO R k R NO k R M k R D


   

   

                      

                 

      2

fM fD t

d P
k R M k R D k R

dt
               

   d

d I
k I

dt
 



 

43 
 

Table 4.1 General mechanism for NMRP kinetics (Roa-Luna et al., 2007b)  

Description Step 

Chemical initiation 2 dk
inI R  

Nitroxyl ether decomposition 2

2


  

ka

dE in xk
NO R NO  

Mayo dimerization dim kM M D  

Thermal initiation i    akM D D M  

First propagation (primary radicals) 
1

  pk

inR M R  

First propagation (monomeric radicals) 
1

  pk
M M R  

First propagation (dimeric radicals) 
1

  pk
D M R  

Propagation 
1

 
 pk

r rR M R  

Dormant living exchange (monomeric alkoxyamine) 
  

ka

dax xk
M NO MNO  

Dormant living exchange (polymeric alkoxyamine) 
  

ka

dar x r xk
R NO R NO  

Alkoxyamine decomposition  decompk

x xMNO M HNO  

Rate enhancement reaction 3   hk
x xD NO D HNO  

Termination by combination  
 tck

r s r sR R P  

Termination by disproportionation    tdk
r s r sR R P P  

Transfer to monomer    fMk

r rR M P M  

Transfer to dimer    fDk

r rR D P D  
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Table 4.2 Kinetic rate constants for the monomolecular and bimolecular NMRP processes (T 
[K] and R [cal mol-1 K-1]) (Belincanta-Ximenes et al., 2007) 

Variable Unit Bimolecular  Unimolecular  

kd(BPO)  s-1 15 30000
1.7 10 exp

   
 RT

 - 

f0   0.54-0.55 a) - 

kdim  L mol-1 s-1 16185.1
188.97 exp

RT
  
 

 16185.1
188.97 exp

RT
  
 

 

kia  L mol-1 s-1 12 36598.55
6.359 10 exp

RT
   
 

 12 36598.55
6.359 10 exp

RT
   
 

 

kp0  L mol-1 s-1 7 7769.17
4.266 10 exp

RT
   
 

 7 7769.17
4.266 10 exp

RT
   
 

 

kt0 L mol-1 s-1 10 3081.84
2.002 10 exp

RT
   
 

 10 3081.84
2.002 10 exp

RT
   
 

 

ktd/kt0   0.0 0.0 

kfM  L mol-1 s-1 6 13372
9.376 10 exp

RT
   
 

 6 13372
9.376 10 exp

RT
   
 

 

kfD  L mol-1 s-1 50 50 

ka2  s-1 0.0 13 29683
2.0 10 exp

RT
   
 

 

kd2 L mol-1 s-1 0.0 9 3722
5.03 10 exp

RT
   
 

 

kda  L mol-1 s-1 9 3722
5.03 10 exp

RT
   
 

 9 3722
5.03 10 exp

RT
   
 

 

ka  s-1 13 29683
2.0 10 exp

RT
   
 

 13 29683
2.0 10 exp

RT
   
 

 

kdecomp  s-1 14 36639.6
5.7 10 exp

   
 RT

 14 36639.6
5.7 10 exp   

 RT
 

kh3      L mol-1 s-1 0.001 0.001 

a) Initiator efficiency (f) range depending on reaction temperature.  

 

A comparison between model predictions and experimental data for conversion, number-

average molecular weights and polydispersity values are shown in Figure 4.7, Figure 4.8, and 

Figure 4.9, respectively. As can be seen, the model predicts the general trends perfectly. The 

agreement between model predictions and experimental data is fairly good for conversion and 
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polydispersity values, however, the model underpredicts the experimental data for number- 

average molecular weights. 
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Figure 4.7 Comparison of experimental data and model predictions for conversion vs. 
time, at 120 °C and [TEMPO]/[BPO] = 1.1 
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Figure 4.8 Comparison of experimental data and model predictions for
polydispersity vs. conversion, at 120 °C and [TEMPO]/[BPO] = 1.1 
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The model was also capable of simulating concentrations of intermediate species like nitroxyl 

radicals, dead, dormant and living species. This was extremely useful, as it offered additional 

insight in the polymerization behavior, and was used in formulating viable explanations for the 

behavior of many variables. As an example, Figure 4.10 shows the simulated profiles for 

nitroxyl radicals, active radicals, dormant species, and dead polymer versus conversion for 

different [TEMPO]/[BPO] ratios at 120°C; in this figure, R stands for [TEMPO]/ [BPO] molar 

ratio. 

 
As illustrated in this section, the mathematical model already developed for NMRP of styrene 

looks quite reasonable and the predicted profiles for different responses were in satisfactory 

agreement with experimental data. This model was a good starting point and, since in principle 

the mechanistic model contained a good deal of prior information about the process, it could be 

employed in the Bayesian model-based design scheme.  
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Figure 4.9 Comparison of experimental data and model predictions for number-average
molecular weight vs. conversion, at 120 °C and [TEMPO]/[BPO] = 1.1 



 

47 
 

a) 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

 

 

 

 

 

 

c)      d) 

 

 

 

 

 

 

 

 

 

 

0.E+00

1.E-02

2.E-02

3.E-02

4.E-02

5.E-02

0 0.2 0.4 0.6 0.8 1

Conversion, x

C
o

n
ce

n
tr

a
ti

o
n

 (
M

o
l.

L
-1

)

R = 0.9

R = 1.1

R = 1.2

R = 1.5

0.E+00

2.E-03

4.E-03

6.E-03

8.E-03

0 0.2 0.4 0.6 0.8 1

Conversion, x

C
o

n
ce

n
tr

at
io

n
 (

M
o

l.
 L

-1
)

R = 0.9

R = 1.1

R = 1.2

R = 1.5

0.E+00

1.E-08

2.E-08

3.E-08

0 0.2 0.4 0.6 0.8 1

Conversion, x

C
o

n
ce

n
tr

at
io

n
 (

M
o

l.
 L

-1
)

R = 0.9

R = 1.1

R = 1.2

R = 1.5

0 0.2 0.4 0.6 0.8 1

C
o

n
c

e
n

tr
a

ti
o

n
 (

M
o

l.
 L

-1
)

R = 0.9

R = 1.1

R = 1.2

R = 1.5

10-8

10-2

10-4

10-6

Figure 4.10 Effect of [TEMPO]/[BPO] on simulated profiles of a) nitroxyl radicals, b) active
radicals, c) dormant species, and d) dead polymer for NMRP of styrene at 120°C 
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4.3 Results and Discussion: Case Studies with Bayesian Design in NMRP  
 
The Bayesian design of experiments is now implemented to controlled radical polymerization 

(CRP) and more specifically to the nitroxide-mediated radical polymerization (NMRP) of 

styrene, as a first example of a complex polymerization process. The case studies drawn from 

both bimolecular (Case Studies 1 to 4) and unimolecular NMRP (Case Studies 5 and 6) are 

presented herein in order to demonstrate some of the many benefits of Bayesian methodology, 

outlined in Table 2.2 (see section 2.3 in Chapter 2). 

 

 Case Study 1: Design of Two Optimal Experiments 4.3.1
 
To demonstrate how the Bayesian approach works, two experiments were initially designed in 

Case Study 1. In this case study the Bayesian method was implemented to bimolecular NMRP.  

 
Selection of Design Factors and Levels: As mentioned previously in Table 3.1, the first step in 

implementing the Bayesian design of experiments is choosing the design factors and their 

levels. Three factors have been chosen and are shown (with their initial levels) in Table 4.3.  

 

Table 4.3 Selected factors and their levels (bimolecular NMRP)٭ 

Ingredient Amount (Low) Amount (High) 
T (°C ) 120 °C 130 °C 
[I]0 (M) 0.036 0.072 
[N]0 (M) 0.058 0.086 

٭
T = temperature, [I]0 = initial initiator concentration, [N]0 = initial nitroxide concentration 

 

The selection of factors and their low and high level values were based on a detailed and 

critical analysis of the literature (Veregin et al., 1995; Veregin et al., 1996a, b; Goto and 

Fukuda, 1997b; Zhang and Ray, 2002), combined with some of our previous experience about 

bimolecular NMRP (Roa-Luna et al., 2007; Nabifar et al., 2008). In the case of temperature, 

low and high levels chosen were 120 and 130 °C because values of kinetic rate constants were 

readily available for these two temperatures. However, later in this chapter (see case study 3), 

results for an expanded range are also presented (e.g., low level: 110 °C and high level: 140 

°C), in order to illustrate how the Bayesian design scheme can easily accommodate an 

expanded factor range, if so desired. 1 wt% (with respect to monomer) was chosen for the low 
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level values of both initiator and nitroxide; for the high level value of initiator, 2 wt% was 

chosen. It was decided not to select 2 wt% for the high level of nitroxide since the nitroxide 

would act as inhibitor instead of mediator with this amount (0.116 M). Investigating the 

literature (Goto and Fukuda, 1997a), it was found that the system would still act as a controlled 

polymerization if 0.086 M nitroxide was added to 2 wt% (0.072M) of initiator. A two-level 

design was chosen in order to reduce the number of experiments and also to have a simpler 

case for step-by-step demonstration purposes.  

 
Selection of Response(s): There are no restrictions on the number of responses that can be 

chosen in the Bayesian design technique. For example, Dube et al. (1996) looked at 

applications of Bayesian design to emulsion terpolymerization having four responses, while 

Vivaldo-Lima et al. (2006) implemented the Bayesian design to suspension copolymerization 

with two responses. In this case study, the Bayesian design was implemented to a single 

response. Application of the approach to case studies with multiple responses is going to be 

discussed in Case Study 5 and also in later chapters. Reaction time or batch time (in hrs) to 

reach 75% conversion was chosen as the single response. The reason that batch time (the time 

needed to reach a specific conversion level) was picked as the response first is that it is one of 

the most important features in any polymerization process and it is usually desirable to 

minimize it, especially in the case of CRP/NMRP. It was chosen to measure the batch time at 

the 75% conversion level because based on experience with the NMRP of styrene (Roa-Luna 

et al., 2007; Nabifar et al., 2008), usually after this point there was a plateau in the profiles of 

conversion vs. time. In addition, at higher conversion levels (>80%), the profiles of conversion 

vs. time for different operating conditions usually overlapped.  

 
The variance of the batch time response was calculated from previous sets of experiments 

(Roa-Luna et al., 2007; Nabifar et al., 2008). It was felt (based on process information and 

experience) that due to various sources of error in the experiments such as sampling error, 

evaporation of ingredients, conversion measurement error, etc., the time for a batch to reach 

75% conversion would vary by  1 hr about 95% of the time, thus, the variance was 1σ 2  .  

 
Incorporation of Prior Knowledge: Having chosen the factors (and their levels) and the 

response(s) of interest, casting prior information into the vector α and the matrix U was the 
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next step (see Table 3.1). α, the vector of the parameter means, and U, the matrix of the 

variance/covariance of the means, can be considered as the storehouse of prior knowledge. 

Prior knowledge can have different shapes and forms; in this case study, to generate the prior 

information about the parameters and the variances of the effects, the general mechanistic 

model developed for bimolecular NMRP (discussed in section 4.2) was used to obtain the 

responses for a 23 conventional factorial design (8 trials). As explained in section 4.2, this 

model was a good starting point because in principle a mechanistic model contains a good deal 

of prior information (by definition) about the process in question. The computer simulations 

were run and the corresponding responses were recorded for each of the 23 = 8 trials. α (the 

vector of parameter means) was obtained by performing linear regression on the data and is 

shown in the second column of Table 4.4. 

 
The parameters were then multiplied by 2 (except for the mean) to represent the effect of going 

from the low level to the high level of the design factor. In order to determine the variances of 

the effects, each effect was then examined separately and, based on our knowledge of the 

process, a ‘guess’ of the maximum/minimum value of the effect was made. This stage was 

where most of the brainstorming takes place. In the cases where the parameter was considered 

to be well known, a smaller interval of uncertainty was given, i.e., a smaller fluctuation about 

the mean was tolerated. The difference between the effect and its maximum or minimum was 

taken to be 2σ on a normal distribution curve. Dividing this value by 2 and squaring it gave the 

variance of the effect. Recognizing that the parameters were multiplied by 2 to give the effects, 

dividing the variances of the effects by 4 gave the diagonal elements of the prior 

variance/covariance matrix (U), which are shown in the last column of Table 4.4. The off-

diagonal elements were initially all set to zero.  

 
For more clarity, an example is now given on how prior variances were calculated. Consider 

the case of the effect of temperature on batch time. As shown in Table 4.4, the value obtained 

from the 23 standard factorial design of experiments (using the mechanistic model) for the 

parameter was -5.129. Multiplying the parameter by 2 gave the effect of going from the low 

temperature level to the high level (i.e., -10.258). Assuming a normal distribution for the 

effect, it was decided that the effect could vary from -12.258 to -8.258 (that is,  2 hrs, in a 

worst case scenario) about 95% of the time. In other words, 2σ = 2 and σ2= 1. As mentioned 
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above, this was the variance of the effect, so in order to obtain the variance of the parameter, 

the variance of the effect (σ2= 1) was divided by 4. Thus, the diagonal element of the prior 

variance/covariance matrix, U, was U2 = 0.25, as shown in Table 4.4.  

 

Table 4.4 Elements of prior α and U for batch time  

Effect  αi Ui

Mean 11.346 0.01
 T -5.129 0.25
 [I] -0.563 0.0625
 [N] 0.079 0.0443

[I]T  0.251 0.0039
[N]T  -0.107 0.0056
[N][I]  0.032 0.0625

[N][I]T  -0.043 0.0156
 

Selection of Experimental Designs: As mentioned in section 3.1, the basic idea for the design 

of experiments was to choose the set of conditions (X) in order to maximize the determinant H 

(see Eq. 3.5 in chapter 3). Following the metric for designing experiments, four 2-trial 

experiments were found that corresponded to a maximized H (H = 2.106); the results, showing 

the level of each factor are shown in Table 4.5. An interesting point to notice in this table was 

that all sets of 2-trials chosen by the Bayesian design followed a similar pattern. For example, 

if we look at set # 1, the first trial was chosen with all factors at the low level; the second run 

was suggesting to keep the same settings and just change the temperature level from low to 

high. In a similar way, for instance with set # 3, the first experiment was chosen with 

temperature and nitroxide set at low level while the initiator concentration was at high level. 

The second trial was suggesting the same settings but again changing the temperature level 

from low to high. Overall, in all the 2-trial sets, the only factor that was changing sign, when 

going from the first to the second suggested run, was temperature. Checking the last column of 

Table 4.4 (remembering that it shows the diagonal elements of U), one can see that the largest 

variance belongs to temperature (U2 = 0.25). Hence, in a logical way, the Bayesian 

methodology was assigning more importance to temperature and choosing to change its sign 

(level) only.  

 



 

52 
 

Table 4.5 Four possible 2-trial experiments in Case Study 1 

No.  T     [I]0    [N]0

1 -1      -1      -1  

 1      -1      -1 

2 -1      -1       1 

 1      -1       1 

3 -1       1     -1 

 1       1     -1 

4 -1       1      1 

 1       1      1 

 

 

Now to verify this pattern, let’s assume that more importance was allocated to nitroxide 

concentration, by assigning a variance of 0.25 to it (Table 4.6 shows the corresponding U 

matrix). The experiments suggested by the Bayesian design (Table 4.7) were different. The 

pattern in all these 2-trial experiments was to keep the temperature and initiator concentration 

constant and change the sign of nitroxide concentration only. In conclusion, the Bayesian 

design considers the experimenter’s prior knowledge about the system; if more knowledge is 

available about a specific parameter before the experiment, a smaller initial variance for that 

parameter is assigned. If, on the other hand, it is desired to find out more information about a 

specific parameter, higher initial variances can be allocated in the U matrix.  

 
Table 4.6 Alternative prior U for batch time 

Effect Ui

Mean 0.01
 T 0.0443
 [I] 0.0625
 [N] 0.25

[I]T 0.0625
[N]T 0.0056
[N][I] 0.0039

[N][I]T  0.0156
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Table 4.7 Four possible 2-trial experiments (with altered U) 

No.   T     [I]0    [N]0

1  1      -1      -1  

 1      -1       1 

2 -1      -1       1 

-1      -1      -1 

3 -1       1      -1 

-1       1       1 

4 -1       1       1 

-1       1      -1 

 

Now, going back to our initial case, since all of the four 2-trial experiments of Table 4.5 

yielded the same H, one of them was chosen randomly (say, set # 3). The corresponding visual 

illustration of the design is shown in Figure 4.11. As can be seen in Trial 1, the suggestion was 

to run an experiment at 120 °C, with initiator concentration of 0.072 M and nitroxide 

concentration of 0.058 M. The initiator and nitroxide concentrations for Trial 2 were the same 

as in Trial 1 (0.072 and 0.058 M, respectively), but the suggestion was to change the 

temperature to 130 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

-2

-1

0

1

2

T [I] [N]

Trial 2
Trial 1

Figure 4.11 Visual illustration of the 2-trial experiment chosen for Case Study 1 
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As shown in Table 3.1, the next step in the Bayesian design framework is to update the 

posterior vector of the parameters (θ) and the (updated) posterior variance/covariance matrix 

(U).  Eq. 3.6 was employed to calculate θ (shown in Table 4.8), using the prior vector of 

parameter means (α) and the prior Us (both shown in Table 4.4), along with the responses y 

(also reported in the last two lines of Table 4.8) and the X matrix (set # 3 in Table 4.5).  

Comparing Table 4.4 and Table 4.8, one can see that initiator concentration, nitroxide 

concentration and the interaction between initiator and nitroxide were the only parameter 

coefficients that have changed significantly. Eq. 3.7 can then be used to obtain the posterior 

variance/covariance matrix (U); the results are shown in Table 4.9. One can now observe the 

presence of non-zero off-diagonal elements in the (updated) posterior variance/covariance 

matrix. This updated U can now be used back in Eq. 3.5 to design (in an iterative sequential 

fashion) the next set of experiments (results shown in Case Study 2).  

 

Table 4.8 Posterior vector of parameters for Case Study 1  

Parameter Coefficient ߠ௜
ଵ† for batch time 

 Mean  11.360 
 T -5.129 
 [I] -0.470 
 [N] 0.0137 

[I]T  0.251 
[N]T  -0.107 
[N][I]  -0.060 

[N][I]T   -0.043 
 Batch time response (hr)- Trial 1 16.40 
 Batch time response (hr)- Trial 2 6.94 

                          †  θ୧
ଵ is the updated vector of parameter means after the first sequence 

 

 

 

 

 

 

 

 



 

55 
 

Table 4.9 Posterior variance/covariance matrix, U, for Case Study 1  

0.009853 0 -0.00092 0.000652 0 0 0.00092 0 
0 0.169371 0 0 -0.00126 0.001814 0 0.005039 

-0.00092 0 0.05675 0.004077 0 0 0.00575 0 
0.000652 0 0.004077 0.04142 0 0 -0.00408 0 

0 -0.00126 0 0 0.003887 2.83E-05 0 7.87E-05 
0 0.001814 0 0 2.83E-05 0.005584 0 -0.00011 

0.00092 0 0.00575 -0.00408 0 0 0.05675 0 
0 0.005039 0 0 7.87E-05 -0.00011 0 0.01531 

 

 

 Case Study 2: Design of Four Optimal Experiments (n-trial Experiments vs. 4.3.2
Sequences of Fewer Trials) 
 
The “chronology” of events to design four optimal experiments for bimolecular NMRP still 

with batch time as response is documented in Case Study 2. This case study is connected to 

Case Study 1, hence the factors chosen and their levels are as in Table 4.3. The “sequential 

approach” looked at two sequences of 2-trials each. The first sequence of 2-trials was the one 

designed in Case Study 1 (see set # 3 in Table 4.5). In Case Study 2, the updated θ and the 

posterior U from the first sequence (reported in Case Study 1; see Table 4.8 and Table 4.9) 

were then used to arrive at the second sequence of 2-trials. This approach was contrasted to the 

design of a “single 4-trial experiment”, in which four experiments were designed at once. For 

further illustration purposes, the results from these two variations of Bayesian design were 

compared to the corresponding 4-trial experiment designed through a conventional fractional 

factorial design. 

 
Sequential approach (two sequences of 2-trials each): As explained in Table 3.1, the updated 

U after the first sequence is used as the prior U in Eq. 3.5, to design the set of experiments for 

the second sequence. Here, the 2-trial experiment chosen in Case Study 1 (set # 3 in Table 4.5) 

was picked as the first sequence of the experimentation (visual illustration in Figure 4.11). 

Then, the updated U matrix (shown in Table 4.9) was used in Eq. 3.5 to design the second 

sequence of 2-trials. The only 2-trial run that gave the highest H is illustrated in Figure 4.12 

(with H = 1.9114). Contrasting with Figure 4.11, one can see that the Bayesian design is 

suggesting to run both trials at the high levels of initiator and nitroxide (0.072 and 0.086M) and 

just change the temperature from low to high. 
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The decision to use the sequential approach (run two sequences of 2-trials each), instead of 

running a single 4-trial sequence, was made to accommodate cases where the experimenter 

might not be certain that the chosen factor levels were the most adequate. However, the 

sequential approach may not necessarily yield the “optimum” choice (highest H) (Dube et al., 

1996; Omidbakhsh et al., 2010). In order to check and confirm this, in the next attempt, a 

single 4-trial experiment was designed and the results were compared with the corresponding 

sequential approach. 

 
Single 4-trial experiment: In this approach, the prior α and prior U (from Table 4.4) were used 

directly to design four experiments at once. The Bayesian design suggested two sets of 4-trial 

experiments, shown in Table 4.10. For comparison purposes, the two sequences of 2-trials (i.e., 

a total of four trials) designed through the sequential approach are also cited along with the 

corresponding H value (see Figure 4.13 for the corresponding illustrations). Comparing the H 

values one can see that both single 4-trial experiments were only slightly better than the 

sequential approach. Keeping in mind the flexibility that the sequential approach offers (e.g., 

changing the level of factors, adding/dropping factors, etc.) and due to the fact that the single 

4-trial approach was not producing a significantly higher H value, the sequential approach was 

deemed a better way of designing a total of four runs. 

 

 

-2

-1

0

1

2

T [I] [N]

Trial 1

Trial 2

Figure 4.12 Illustration of the second sequence of 2-trials (Case Study 2) 
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Table 4.10 Two possible sets of 4-trial experiments along with the four trials of the 
“sequential approach” (Case Study 2) 

 
No.        T              [I]0                   [N]0 H-value 
1  -1 -1 -1 

-1 -1  1 
-1  1 -1 
-1  1  1 

 

4.065 

2  1 -1 -1 
1 -1  1 
1  1 -1 
1  1  1 

 

4.065 

Sequential 
Approach 

 -1  1 -1 
 1  1 -1 
-1  1  1 
 1  1  1 

 

4.026 

 

 

Figure 4.13 illustrates our options in a clearer way; as can be seen, experiments 1 and 2 (Figure 

4.13a and Figure 4.13b, chosen by the single 4-trial strategy) are “mirror” images of each other 

with respect to factor T. In each of these single 4-trial experiments, the level of temperature 

was kept constant in all trials (in Figure 4.13a at the low and in Figure 4.13b at the high level), 

while the levels for [I] and [N] were changing.  In the sequential approach (Figure 4.13c) on 

the other hand, the levels of T and [N] were changing, while [I] was set at the high level. Based 

on our U matrix (see again Table 4.4), and due to the fact that temperature had the highest 

variance, changing the temperature level seemed like the appropriate thing to do in order to 

reveal more information about the T factor. 
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a)    b)                                                                                       

 

 

 

 

 

 

 

                                   c) 

 

 

 

 

 
 
 

 
 
Comparison with standard fractional factorial design: Several qualitative statements were 

made in section 2.2, regarding the superiority of the Bayesian design with respect to the 

standard factorial designs. A quantitative measure is now presented in order to reinforce the 

previous statements. Recall that the algorithm used to find the “best” design in the Bayesian 

framework attempts to maximize the determinant H (see Eq. 3.5 section 3.1), hence, a design 

with the highest value of determinant H is recognized as the “optimal” one. The two half-

fractions recommended by a regular fractional factorial design are shown in Table 4.11 along 

with their H values. It can be seen that in all cases, the experiments designed through the 

Bayesian approach were better than the ones designed through fractional factorials (compare 

the H values of Table 4.10 and Table 4.11). Hence, H calculations showed that Bayesian-

designed experiments were superior in the D-optimal sense.  

 

 

Figure 4.13 Illustration of 4-trial experiments in Case Study 2, a) first single 4-trial
experiment, b) second single 4-trial experiment, c) two sequences of 2-trials 
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Table 4.11 Two half-fractions from standard fractional factorial design (Case Study 2) 

No.        T             [I]0                   [N]0 H-value 
1 -1 -1  1 

 1 -1 -1 
-1  1 -1 
 1  1  1 

 

3.884 

2 -1 -1 -1 
 1 -1  1 
-1  1  1 
 1  1 -1 

 

3.765 

 

 

The corresponding plot for the fraction of Table 4.11 with higher H is shown in Figure 4.14. 

As can be seen, the 4-trial experiment chosen by the fractional factorial design was completely 

balanced with respect to all factors (the levels of all factors are changing). Altering the levels 

of all factors is desirable if there was no knowledge available prior to the experiment and the 

experimenter wanted to find information about all factors. However, if one is more interested 

in the effect of, say, one or two factors only, changing the level of all factors at the same time 

is superfluous. The 4-trial experiment suggested by the fractional factorial could be a special 

case in the Bayesian design when the variances of all the effects are equally high (non-

informative prior) or equally low (informative prior). In that scenario the Bayesian design will 

allocate equal importance to all of the factors and alter the levels for all. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Illustration of 4-trial experiment suggested by fractional factorial 
design (Case Study 2) 
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 Case Study 3: Expanding the Range of a Factor after the First Sequence  4.3.3
 
This case study demonstrates yet another advantage of the Bayesian design which is flexibility 

to change the factor levels in the middle of experimentation. Let’s assume that after designing 

the first 2-trial sequence with the low and high temperature levels at 120 and 130 °C (see Case 

Study 1), the experimenter decides to change the temperature levels to 110 and 140 °C in the 

second sequence in order to expand the range of temperature. While impossible to do so in 

(fractional) factorial designs, it is shown here that using the Bayesian design approach one can 

accommodate the change in temperature range following fairly straightforward steps (the same 

steps can be taken if the range of more factors is changed). This case study is again in a way 

connected to Case Study 1, where the Bayesian design approach was implemented on to the 

bimolecular NMRP, with batch time as the single response. Table 4.3 summarizes the selected 

factors; the levels for all factors are the same, except for temperature, as explained above. 

 
Due to the expanded range, the coding for the temperature levels in the first sequence had to be 

changed (from the original -1 and +1). Based on the new coding system (110 °C assigned to 

low level (-1) and 140 to high level (+1)), the design levels for the first sequence of 

experiments (set # 3 in Table 4.4) were revised and are shown in Table 4.12.  

 

Table 4.12 Sequence 1: Revised coding of factor levels in Case Study 3 

T  [I]0 [N]0 
-0.33 1 -1 

    0.33 1 -1 
 

 

Since the range between high and low levels was changed, other revisions were necessary. 

Initially, the difference was 130 - 120 =10 °C but after the modification, the difference is 140 – 

110 = 30 °C. This change affected the values of the prior parameters (second column, Table 

4.4), as well as the prior variances (elements of the U matrix; third column, Table 4.4). Thus, 

the values for the prior parameters and variances had to be modified; the updated Table 4.4 is 

shown in Table 4.13.  

 

 

 



 

61 
 

Table 4.13 Updated elements of initial α and U for Case Study 3 

Effect  αi Ui

Mean 11.346 0.01
 T -15.387 7.562
 [I] -0.563 0.078
 [N] 0.079 0.04

[I]T  0.754 0.25
[N]T  -0.321 0.0625
[N][I]  0.032 0.000225

[N][I]T   -0.129 0.0025
 
 

Among the changes to adjust for the expanded temperature range, the Uposterior matrix 

(calculated after the first sequence) had to be updated using Eq. 3.7 (see section 3.1). The 

corresponding X matrix to be used in this equation included the design levels shown in Table 

4.12; the corresponding prior U was a diagonal matrix with diagonal elements shown in the last 

column of Table 4.13. The updated Uposterior (not shown here for the sake of brevity) was then 

used in the design generating program to find the next “best” 2-trial sequence following the 

same procedure as for the first sequence, that is, to find designs that were optimal by 

comparing values of the determinant H. Two 2-trial sequences were found that had the highest 

H, shown in Table 4.14.  

 

Table 4.14 2-trial experiments suggested in sequence 2 (expanded rage) 

No.   T           [I]0             [N]0  
1 -1           -1         -1  

 1           -1         -1 

2 -1            1          1 

 1            1          1 

 

One of the sets in Table 4.14 was chosen randomly and its visual illustration is given in 

Figure 4.15, along with the trials from the first sequence. The change in coding of the 

temperature levels after the first sequence resulted in temperature attaining more than two 

levels (i.e., effectively “exposed” more process information which leads naturally to 

studying nonlinearities!). Again, the flexibility to allow changes of the levels of the factors 
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with relative ease is another advantage of the Bayesian design that is not easily achieved in 

conventional factorial designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Case Study 4: Design of Five Optimal Experiments (with a Different Response) 4.3.4
 

As shown in Case Study 2, one of the advantages of the Bayesian approach is that one can 

design and proceed with several (smaller) optimal sequences of fewer trials per sequence. 

Another advantage of the Bayesian method, as mentioned in section 2.2, is that this approach is 

flexible with respect to the number of experiments that can be designed; when applying a 

Bayesian scheme, one can use as many experiments as he/she wants. This is unlike the 

standard fractional designs, where the number of trials designed can only be equal to an integer 

power of 2. In order to demonstrate this additional flexibility of the Bayesian design and 

reinforce the benefit of having a sequential nature, in Case Study 4, two sequences of 3- and 2-

trials each were considered through the Bayesian design, and this design was then compared 

with the corresponding single 5-trial experiment.  

 

Figure 4.15 Illustration of the two sequences of 2-trial experiments 
(expanded range) 
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In this case study, the Bayesian design was again applied to the bimolecular NMRP with the 

same three factors (and their levels) considered in Case Study 1 (therefore, for the selected 

factors and their levels see Table 4.3). However, the single response chosen for this case study 

was weight-average molecular weight (number-average could be chosen in an equivalent way). 

Molecular weight was selected to be measured at 50% conversion, first of all because 50% was 

the mid-point of the process, so the molecular weight behaviour was well established by then. 

In addition, prior experimental information (Roa-Luna et al., 2007; Nabifar et al., 2008) 

advised that molecular weight measurements show more scatter at higher conversion levels 

(80-95%) for NMRP of styrene. Replicates of molecular weight measurements available from 

prior experimental work gave a good idea about the expected variability in the response. In our 

case,  it was  calculated  from independent replicates that  molecular weight values  varied  by 

~  916 gr/mol, leading to a variance of 840,000. 

 
Following the framework offered in Table 3.1, after the design factors (and their levels) and 

responses were selected, the next step would be casting the prior knowledge into the vector of 

prior parameter means (α) and the prior variance/covariance matrix (U). To generate the initial 

values for the parameter means, a 23 standard factorial design was used and the corresponding 

molecular weight responses were obtained again from the general mechanistic model 

developed for NMRP of styrene (see Section 4.2). The vector of prior parameter means (α), 

shown in the second column of Table 4.15, was obtained via conducting linear regression on 

the results. In order to determine the variances of the parameters, each parameter was again 

multiplied by two to give the magnitude of the effect, then effects were examined separately 

and based on our knowledge of the process, a reasonable estimate of the maximum/minimum 

value was made. This stage was where most of the brainstorming took place. In cases where 

the effect (or the parameter) was considered to be well known, a smaller interval of uncertainty 

was given, i.e., a smaller fluctuation about the mean was tolerated. The difference between the 

effect and its maximum or minimum was taken to be 2σ on a normal distribution curve. 

Dividing this value by 2 and squaring it gave the variance of the effect. Recognizing that a 

parameter is multiplied by 2 to give the effect, dividing the variance of the effect by 4 gave the 

diagonal element of the prior variance/covariance matrix (U) (third column of Table 4.15); the 

off-diagonal elements were initially all set to zero.  
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Table 4.15 Elements of prior α and U for Case 4 

Parameter αi Uii

Mean 7007 1,934,392
 T 160 2,500
 [I] -552 62,500
 [N] -1125 1,562,500

[I]T  -183 7,656
[N]T  107 15,625
[N][I]  -175 7,656

[N][I]T   140 156
 

For more clarity, a sample of calculations for the prior variances is given here. Let’s look at the 

interaction effect between temperature and nitroxide concentration ( [N]T ). This interaction 

was considered to have an effect on molecular weight but the magnitude of the effect was in 

question. It was expected to likely obtain a negative overall value for this interaction effect 

(considering that nitroxide concentration had a large negative effect on molecular weight), 

while the value obtained from the linear regression was positive. At this point, we decided to 

stick to the regression estimate and assign a larger variability to the value. Another option 

would be to alter the value of the effect somewhat based on one’s more informed opinion, if 

possible. The parameter value was 107.0975, the effect was therefore 214.195, and the 

variability was assigned to be  500 about 95% of the time. Thus, σ = 250, σ2 = 62,500 and U13 

= σ2/4 = 15,625.  

 
Sequential approach (sequences of 3- and 2-trials each): Again, considering the optimality 

criterion of maximizing the determinant H (see Eq. 3.5 in Section 3.1), there were eight 3-trial 

experiments which corresponded to the same maximum H (H = 59.1403); the results, 

containing the levels for each factor, are shown in Table 4.16. Since all the experiments gave 

the same H value, one can be chosen randomly (say, set # 4) and the related pattern is 

illustrated in Figure 4.16. As can be seen, the suggestion was to run the first trial with all the 

factors at the low level; the third run was exactly the other extreme, having all the factors at the 

high level, while trial 2 set temperature and initiator concentration at the high, and nitroxide 

concentration at the low level.  
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After the U matrix was updated (not shown here for the sake of brevity), the next optimal 2-

trial experiment was designed, again using Eq. 3.5 in Section 3.1.  The 2-trial experiment that 

corresponds to the highest value of H is shown in Table 4.17, along with the 3-trial experiment 

from the first sequence.  The corresponding molecular weight responses (shown in the last 

column of Table 4.17) were calculated via adding a random error to the response generated 

from the mechanistic model.  

 

 

Table 4.16 Set of eight possible 3-trial experiments in Case 4 

No.         T             [I]0                      [N]0 
1 -1 -1 -1 

-1 -1  1 
 1  1  1 

 

2 -1 -1 -1 
-1 -1  1 
 1  1 -1 

 

3 -1 -1  1 
 1  1 -1 
 1  1  1 

 

4 -1 -1 -1 
  1  1 -1 
  1  1  1 

 

5  -1  1 -1 
  1 -1 -1 
 1 -1  1 

 

6  -1  1 -1 
 -1  1  1 
 1 -1  1 

 

7 -1  1 -1 
-1  1  1 
 1 -1 -1 

 

8 -1  1 1 
 1 -1 -1 
 1 -1  1 
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Table 4.17 Five experiments via “sequential” choice in Case 4 

        T            [I]0                  [N]0              Molecular weight 
response (g/mol) 

First sequence 
(3-trials) 

-1 -1 -1 
 1  1 -1 
 1  1  1 

 

7243 
6300 
6107 

 

Second sequence 
(2-trials) 

    -1     -1   1 
1     -1   1 

 

8048 
7593 

 

 

Single 5-trial experiment: In designing five trials in one batch, the Bayesian algorithm resulted 

in eight optimal sets with H =197.4, cited in Table 4.18. As can be seen by scrutinizing the 

entries of Table 4.17 and Table 4.18Table 4.18, the 5-trial experiment chosen by the 

“sequential” approach was actually among the best 5-trial experiments (set # 4) resulting from 

the single 5-trial (“batch”) choice, hence leading to the same H value (H = 197.4). So again, 

given that there was no difference in the H value, and considering the fact that in many 

circumstances it is highly desirable to use a sequential procedure (flexibility being the obvious 

advantage along with minimization of wasted resources), the sequential approach seemed to be 

the superior choice. Furthermore, a comparison of conventional fractional factorial designs 

Figure 4.16 Visual illustration of the 3-trial experiment chosen by Bayesian design 
(Case 4) 
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with the Bayesian design performed in this case study was not straightforward, since the 

number of trials (equal to 5) did not correspond to any fractional factorial design (these designs 

require 2n trials). This highlights yet another advantage of the Bayesian design, i.e., no 

restrictions in the number of experiments that can be performed. 
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Table 4.18 Eight sets of possible 5-trial experiments (Case 4) 

        T             [I]0                   [N]0       
1 -1 -1 -1 

-1 -1  1 
-1  1 -1 
 1  1 -1 
 1  1  1 

 

2 -1 -1 -1 
-1 -1  1 
 1 -1 -1 
 1  1 -1 
 1  1  1 

 

3 -1 -1 -1 
-1  1        -1 
-1  1  1 
 1 -1 -1 
 1 -1  1 

 

4 -1 -1 -1 
-1 -1  1 
 1 -1  1 
 1  1 -1 
 1  1  1 

 

5 -1 -1 -1 
-1 -1  1 
-1  1  1 
 1  1 -1 
 1  1  1 

 

6 -1  1 -1 
-1  1  1 
 1 -1 -1 
 1 -1  1 
 1  1 -1 

 

7 -1  1 -1 
-1  1  1 
 1 -1 -1 
 1 -1  1 
 1  1  1 

 

8 -1 -1  1 
-1  1 -1 
-1  1  1 
 1 -1 -1 
 1 -1  1 
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 Case Study 5: Single- vs. Multi-response Scenarios 4.3.5
 
In order to show the flexibility of the Bayesian design in handling multi-response scenarios, 

this case study is applied to unimolecular NMPR of styrene with both batch time at 75% 

conversion, and weight-average molecular weight at 50% conversion as responses. As 

explained in Section 4.1, the unimolecular approach uses a single molecule (usually an 

alkoxyamine) that upon dissociation generates a propagating and a stable nitroxide radical.   

 
The details of Case Study 5 are cited in Appendix B, since the basic steps of the procedure are 

the same as in other case studies of this chapter. In addition, several multi-response scenarios 

will be handled in case studies of the chapters that follow in this thesis. 

 

 Case Study 6: Source of Prior Knowledge 4.3.6
 
Yet another flexibility of the Bayesian design approach is related to the source of prior 

knowledge. As mentioned previously in Chapter 3, the prior knowledge can have different 

shapes and forms. In the case studies presented up to now, the prior knowledge was provided 

from a mechanistic model developed for NMRP of styrene. In Case Study 6, however, a 

different source is used to generate the prior information.  

 
In this case study, the Bayesian approach was implemented to the unimolecular NMRP of 

styrene to design three experiments. The same three factors chosen for Case Study 5 were used 

in this case study (temperature, initial concentration of the unimolecular initiator, and number-

average molecular weight of the unimolecular initiator), as listed with their initial levels in  

Table 4.19. The number-average molecular weight at 50% conversion was chosen as the single 

response. Molecular weight was again selected to be measured at 50% conversion (the reason 

explained in Case Study 4). The variance of the molecular weight response was calculated 

from replicated molecular weight measurements available from prior experimental work, 

giving a good idea about the variability in average molecular weight. From replicated results, it 

was calculated that molecular weight values vary by ~  916 gr/mol, leading to a variance of 

840,000. 
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Table 4.19 Selected factors and their levels in Case 6 (unimolecular NMRP, T = temperature, 
[I]0 = initial unimolecular initiator concentration,  = average molecular weight of the 
unimolecular initiator) 
 

Level T (°C) [I]0 (M) )(IM n  (g/mol) 

low 120 0.03 2,200 
high 140 0.05 6,200 

 

In order to demonstrate that the source of prior knowledge in the Bayesian design approach 

could be altered depending on one’s choices, in this case study a different model, shown in Eq.  

4.5, was used to generate prior knowledge. It is well known that the number-average molecular 

weight (Mn) for any living polymerization (including CRP) can be mechanistically related to 

the ratio of the concentration of consumed monomer to the introduced initiator 

(Matyjaszewski, 1997):  

 

 Eq.  4.5

 

where 0][M  is the initial concentration of monomer, ][M  is the concentration of monomer at 

any time t, 0][I  is the initial concentration of unimolecular initiator, and monM  is the molecular 

weight of the monomer (in our case, styrene). Responses for the 23 standard factorial design 

were provided using Eq.  4.5 and the calculated values for the prior α and U are shown in Table 

4.20; calculations were carried out in the same way as in previous case studies.  

 

Table 4.20 Elements of initial α and U for Case Study 6 

Effect  αi Ui

Mean 9213 6,250,000
 T -98 12,656
 [I] -2686 202,500
 Mn[I] -730 250,000

[I]T  30 225
][MT n I  11 15,625

[I][I] nM  -3 22,500
[I][I]T nM -0.25 5,625
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Let’s look at a hypothetical scenario where initially it was decided to run only two 

experiments. There were four 2-trial experiments all corresponding to a maximized H (H = 

33.88); one was again chosen randomly and is shown in Figure 4.17. Carefully checking 

Figure 4.17, one can see that all factors are changing sign from one trial to the next in the 

design chosen. Since it was assumed that this case study had a non-informative prior (not a lot 

of information was known about any of the effects), large variances were allocated to each 

factor (see Table 4.20), and hence the Bayesian design suggested to change the sign of all 

factors to investigate their effects.  

 

 

 

                             Set 1:  

                             Set 2:  

  

 

 

Now, let’s assume that after the first two trials were carried out in the lab, the experimenter 

was informed that an extra run could be afforded. Here is an illustration of another advantage 

of the Bayesian design, namely, the ability to incorporate an extra run (or runs) in the design 

and thus gain additional information from performing it (as will be discussed shortly, it was 

found that the amount of information obtained was 119.6% greater when the extra trial was 

run). After running the first two experiments in the lab (the corresponding molecular weight 

responses are shown in Table 4.21), Eq. 3.6 (shown in Section 3.1) was used to update the 

vector of parameter means and the corresponding values are shown in Table 4.21. Then the 

covariance matrix was updated (using Eq. 3.7 in Section 3.1) and based on the new U (shown 

in Table 4.22), the next single trial was designed. Comparing Table 4.20 and Table 4.22, one 

can see the presence of off-diagonal elements in the U matrix. Figure 4.18 illustrates all three 

runs suggested by the Bayesian design for this case study; one can see that the extra trial was 

suggested to be run with all factors at the high level.  

 

 

T 

[I] 

Mn[I] 

-1

+1 +1

+1

Figure 4.17 Visual illustration of experiments chosen for Case Study 6 
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Table 4.21 Posterior vector of parameters after the first 2-trial experiment in Case Study 6 

Parameter Coefficient 
1 § 

 Mean  10,361 
 T -118 
 [I] -3,007 
 Mn[I] -333 

[I]T  30 

][MT n I  8.206 
[I][I] nM  -7.145 

[I][I]T nM  8.67 
Molecular weight response- Trial 1 13,935 
Molecular weight response- Trial 2 7,000 

                                                       
§

 1  is the updated vector of parameter means after the first sequence 

 

Table 4.22 Posterior variance/covariance matrix, U, for Case Study 6 (first two trials) 

 
427,033 0 0 0 -210 14,557 20,963 0 

0 12,476 -2,877 3,552 0 0 0 80 
0 -2,877 156,466 56,832 0 0 0 1,279 
0 3,552 56,832 179,837 0 0 0 -1,579 

-210 0 0 0 225 0.524 0.754 0 
14,557 0 0 0 0.524 15,589 -52 0 
20,963 0 0 0 0.754 -52 22,424 0 

0 80 1,279 -1,579 0 0 0 5,589 
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T [I] Mn(I)

Trial 1
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Trial 3

Figure 4.18 Visual illustration of the three runs suggested for Case Study 6 
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One can always check whether or not it was worth running the single extra trial and here we 

demonstrate the incremental gain for this. The major objective in the Bayesian design approach 

is to minimize the (hyper)volume of the posterior joint confidence region (JCR) of the 

parameter values. Hence, the percentage decrease in the (hyper)volume of the JCR can be the 

criterion to quantify the improvement of a design over another. As the (hyper)volume of the 

posterior JCR of the parameters is proportional to the inverse of the determinant H, one can 

simply calculate the percentage increase in the determinant H to quantify the improvement 

obtained in performing an extra trial. Thus, the benefit of running the extra trial is determined 

by comparing the H value of the first 2-trial sequence with the 3-trials (i.e., the first two trials 

plus the addition of the extra run). The percentage improvement of the H value is 119.6%. As a 

result, running an extra trial indeed increased the information content of the process. Not being 

able to use this extra run in (fractional) factorial designs is another shortcoming of the standard 

designs.  

 

4.4 Statistical Diagnostic Tests 

 
In addition to all the analysis in the case studies conducted so far, a series of statistical 

diagnostic tests can be carried out. These diagnostic tests serve to quantify the relative 

importance of the parameters and their interactions, as well as the quality of prior knowledge 

(in other words, the adequacy of the model used to generate the “prior knowledge”, as the case 

might be). For the sake of brevity, we will only describe these tests for the last case study 

(Case Study 6), since results for the other cases are analogous.  

 
Results from these statistical diagnostic tests for Case Study 6 are shown in Table 4.23. The 

second column shows the initial values of the means of the parameters (α) (as shown in Table 

4.20), whereas the third column contains the final updated estimates of the means of the 

parameters ( ; after the third trial). Test 1 (column 6 of Table 4.23) is defined as the ratio of 

the prior means to the prior standard deviations of the means [αi/(Uii)
1/2], where Uiis are shown 

in the fourth column of Table 4.23. This test checks the null hypothesis that αi = 0 purely in the 

opinion of the ‘‘expert’’ (the person who assigned the values for the prior effects and 

variances). It is essentially a measure of the uncertainty of the ‘‘expert’’. A value greater than 2 

or less than -2 is considered significant (this is equivalent to a 95.44% confidence interval). 
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Test 2 is a measure of the actual significance of an effect. It is equal to the last updated 

estimate of the effect,  (see third column of Table 4.23), divided by the square root of the 

diagonal element of the last posterior variance/covariance matrix (shown in the fifth column of 

Table 4.23). Once again, a value greater than 2 or less than -2 implies significance. Finally, 

Test 3 (last column of Table 4.23) is equal to ( i  - αi) divided by the square root of the 

diagonal element of the last posterior variance/covariance matrix. Test 3 is a measure of the 

quality of the expert’s opinion. A significant value, a value greater than 2 or less than -2, for 

Test 3 implies that portion(s) of the mechanistic model related to the response(s) and the 

effects in question may need refinement. As explained in Dube et al. (1996) and Vivaldo-Lima 

et al. (2006), caution should be exercised in the interpretation of this test, since correlation and 

nonlinearity in the model equations could also cause the results of Test 3 to become 

significant/insignificant. 

 

Table 4.23 Results of diagnostic tests for Case Study 6 

Effect αi θi Prior Uii ࢏࢏ࢁ
૛  Test 1 Test 2 Test 3 

Mean 9213.19 10576.19 6,250,000 311,156 3.685 18.960 2.443 
T -98.46 -112.38 12,656 12,382 -0.875 -1.010 -0.125 

[I] -2686.15 -2908.92 202,500 132,172 -5.969 -8.001 -0.613 

 Mn[I] -730.03 -222.40 250,000 148,965 -1.460 -0.576 1.315 

[I]T  30.28 30.33 225 225 2.019 2.022 0.003 

][MT n I  11.08 22.21 15,625 15,098 0.089 0.181 0.091 

][][ IMI n  -3.01 13.02 22,500 21,407 -0.020 0.089 0.110 

[I][I]T nM  -0.25 11.17 5,625 5,574 -0.003 0.150 0.153 

 
 

The results from Test 1 in Table 4.23 indicate that in the “expert’s opinion”, initiator 

concentration ([I]) and the interaction between temperature and initiator ( [I]T ) are influential 

factors on the molecular weight response. Temperature (T) and initiator molecular weight 

(Mn[I]) are not affecting the molecular weight response (within the considered operating 

conditions). The results from Test 2 verify the actual significance of an effect; as can be seen in 

Table 4.23, the results are in agreement with the expert’s opinion. Lastly, Test 3 implies that 

the expert’s opinion is valid and the model used seems reliable. 
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An extremely important point worth mentioning here is that for the results of Case Study 6 and 

of Table 4.23 related to the diagnostic tests, we were able to confirm the exact trends based on 

experimental results from a recent kinetic investigation with a unimolecular initiator in the 

literature (Zhou et al., 2010). What is even more important is that the literature experimental 

study reaches certain conclusions after performing twelve runs. Case Study 6 and Table 4.23 

basically arrive at the same conclusions (via the Bayesian scheme) after only three runs! This 

is yet another confirmation of how powerful an approach the Bayesian design is, leading to 

considerable savings in experimental time, effort, resources and hence cost, by focusing on the 

most essential changes of factor settings, based on minimum prior information about the 

system from either very few preliminary experimental runs or a reasonable mechanistic model.  

 

4.5 Concluding Remarks 

 
The Bayesian approach is a powerful, largely unstudied (in the polymerization area) 

experimental design methodology which offers several distinct advantages over standard 

experimental designs that make it particularly attractive from both an industrial and theoretical 

perspective. This chapter highlights numerous advantages of the Bayesian design over standard 

(fractional) factorial design via presentation of several case studies drawn from the NMRP of 

styrene.  

 
As shown in Case Study 2, the Bayesian design is an improvement from the point of view of 

information content retrieved from process data compared to conventional designs. The 

approach allows for flexibility to changing levels of factors with relative ease (as shown in 

Case Study 3). Bayesian design is flexible and “cost”-effective with respect to the number of 

experiments that can be designed (see Case Studies 4 and 6). The inherent sequential nature of 

the design methodology with any number of runs is another powerful feature (Case Studies 2 

to 6). In addition, this approach can be also applied to cases with multiple-responses (see Case 

Study 5 in Appendix B).   

 
The most distinguished feature of the Bayesian methodology is its ability to incorporate the 

prior knowledge into the design (as demonstrated in all case studies). This is in contrast to 

standard (admittedly important) design methods, which try to generate process data without 
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any input from the “expert” other than the specification of the model and (often set incorrectly) 

operating ranges for the factors involved. The exercise of casting the prior knowledge about a 

process into a mathematical form (estimating prior parameter means and prior variance matrix) 

forces the experimenter to brainstorm/define clearer objectives for the overall experimentation 

and perhaps come to a better understanding of the process or even anticipate/solve some of the 

problems that triggered the specific questions about the process, even before starting the 

experiments. Prior information can come from a variety of sources, including both empirical or 

other simpler models (see Case Study 6) and fully mechanistic models (case studies 1 to 5).  

 
Finally, the method is amenable to formal statistical diagnostic tests, which can eventually 

shed more light on the quality of prior knowledge and the significance of the estimated effects 

(relative importance of factors), and through these on some of the most uncertain parts of out 

process understanding (model). Since the technique is perfectly general, it can be potentially 

applied to other complex polymerization variants and chemical engineering processes, with 

uncertain models/parameters, especially in industrial settings.  
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Chapter 5. Diagnostic Checks and Measures of Information in the 

Bayesian Design of Experiments  

 
5.1 Introduction 
 
A Bayesian approach to the design of experiments has the same objectives as standard 

experimental (full or fractional factorial) designs but with significant practical benefits over 

standard design methods. The ability of the Bayesian approach to incorporate prior process 

knowledge (which is available in most of the cases but usually discarded) into the design (prior 

knowledge coming from a variety of sources) is a distinct advantage. This and other 

advantages of the Bayesian methodology (improvements with respect to information content 

retrieved from process data, relative ease in changing factor levels in the middle of 

experimentation, flexibility with factor ranges and overall “cost”-effectiveness (time and 

effort/resources) with respect to the number of experiments) were highlighted in Chapter 4, 

with examples from complex polymerization scenarios drawn specifically from the nitroxide-

mediated radical polymerization (NMRP) of styrene, under both bimolecular and unimolecular 

initiating options.  

 
Table 5.1 gives a compendium of experimental design issues that can effectively be handled by 

the Bayesian design approach (and hence pose typical limitations for standard experimental 

designs). Most of these issues along with the more superior performance of the Bayesian 

approach in handling them were demonstrated via the case studies presented in Chapter 4. 

Table 5.2 summarizes all the case studies discussed in Chapter 4 along with the case studies 

drawn from other polymerization processes, studied previously in our group (the last two 

entries of Table 5.2 summarize the work by Dube et al. (1996) and Vivaldo-Lima et al. 

(2006)). An “identifier letter” in Table 5.1 cross-references the entries (design issues) of Table 

5.1 with the corresponding case studies in Table 5.2, where the issues have been addressed. A 

few explanations/remarks for the entries of Table 5.2: (a) T, [I] and [N] stand for 

polymerization temperature, initiator concentration (I represents initiator, in general) and 

controller (for example, TEMPO) concentration, respectively (b) (I)Mn  represents the average 

molecular weight of the unimolecular initiator (c) CTA is chain transfer agent (d) Comparisons 
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of the number of Bayesian trials are made (see first column of Table 5.2) with either full 

factorial trials (2k, k = number of experimental factors considered in the design) or fractional 

factorial trials (usually, half fraction of a full factorial design); observe how much fewer the 

Bayesian runs are with respect to both full and fractional factorial trials (e) The column of 

responses (third column of Table 5.2) gives a feel about the many different measured variables 

that can be employed (single- and multi-response scenarios). 

 
Table 5.1 Overview of issues handled by the Bayesian design approach 

Issue Identifier 

Flexible wrt number of trials that can be designed A 
Changing factor level/range in the middle of experimentation B 
Accommodating extra trial(s) mid-way through experimentation C 
Sequential nature (n-trials vs. sequences of fewer trials) D 
Process constraints (and impractical treatment combinations) E 
Situations with missing observation(s) F 
Increase of information content G 
Possible detection of nonlinearities H 
Incorporation of prior knowledge I 
Flexible wrt source of prior knowledge  
(screening experiments vs. models and/or combinations) 

J 

Flexible wrt quality of prior knowledge 
(informative vs. non-informative priors) 

K 

Factors with several (or combination of) levels L 
Dropping/adding factors M 
Iterative fashion N 
Single vs. multi-response scenarios O 

 
 
Two typical questions that often arise in Bayesian design implementations have to do with how 

effectively one can make statements about the quality of prior knowledge and the significance 

of the estimated effects (from the designed experiments), and about the gain in information 

content. These two important questions were not addressed in detail in earlier parts of the 

thesis and hence they are the topic of the present chapter. In other words, the following 

questions, intimately related to the Bayesian experimental design technique, will be addressed 

in what follows: (1) What statistical diagnostic criteria can one use in order to shed light on the 

quality of prior knowledge and the significance of estimated effects? (2) What measures of 

information (content) are available and what different aspects of the design procedure can they 

emphasize? Addressing questions (1) and (2) above not only clarifies the design steps further 
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but also could only make one more confident in the effectiveness and practicality of the 

Bayesian design of experiments procedure. 

 
In order to address the above questions, a case study from the bimolecular NMRP of styrene is 

presented in this chapter, where the Bayesian approach is implemented to design two 

sequences of 2-trials each. The results from the Bayesian approach are compared with a 

standard fractional factorial design. The improved effectiveness of the Bayesian design is 

demonstrated through a discussion of diagnostic criteria (on the quality of prior knowledge and 

the significance of estimated effects) and enhanced information content measures. 
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Table 5.2 Case studies/examples with Bayesian design implementations on complex 

polymerization scenarios 

Case study Process details Responses Identifier 
Design 2 experiments 
(Full factorial experiment (exp) = 8)  

Bimolecular NMRP 
Three factors (T, [I], [N]) 
Prior knowledge: mechanistic 
model 
 

Single: 
batch time 

A, I, K, N 

Design 4 exp (two sequences of 2-
trials each vs. 4-trials; comparison 
with fractional factorial) 
(Full factorial exp = 8; half fraction 
of full factorial = 4) 
 

Bimolecular NMRP 
Three factors (T, [I], [N]) 
Prior knowledge: mechanistic 
model 

Single: 
batch time 

A, D, G, 
I, K, N 

Design 4 experiments (expanded T 
range in the middle of 
experimentation) 
(Full factorial exp =  8) 
 

Bimolecular NMRP 
Three factors (T, [I], [N]) 
Prior knowledge: mechanistic 
model 

Single: 
batch time A, B, D, 

H, I, L, N 

Design 3 experiments 
(accommodating extra trial to gain 
new information) 
(Full factorial exp =  8) 
 

Unimolecular NMRP  
Three factors (T, [I], )(IM n ) 

Prior knowledge: empirical model 

Single:  
number-average 
molecular 
weight 

A,C, D, 
G, I, J, K, 

N 

Design 5-trial experiment vs. two 
sequences of 3- and 2- trials each 
(Full factorial exp=  8) 

Bimolecular NMRP 
Three factors (T, [I], [N]) 
Prior knowledge: mechanistic 
model 
 

Single: 
weight-average 
molecular 
weight 

A, D, G, 
I, N 

Two sequences of 2-trials each 
(design experiments that are nearly 
optimal for all responses) 
(Full factorial exp=  8) 

Unimolecular NMRP  
Three factors (T, [I], )(IM n ) 

Prior knowledge: reduction of 
mechanistic model from 
bimolecular to unimolecular  
 

Two: 
batch time and 
weight-average 
molecular 
weight 

A, D, G, 
I, N, O 

Three sequences of 4-, 4- and  
10-trials each 
(Full factorial exp =  128) 

Emulsion terpolymerization  
Seven factors (T, [I], [monomer], 
[CTA], [impurity], [emulsifier],  
I type) 
Prior knowledge: mechanistic 
model  

Four: 
batch time, 
terpolymer 
composition, 
weight-average 
molecular 
weight, total # of 
particles 

A, B, C, 
D, E, F, I, 
L, M, N, 

O 

Two sequences of 4-trials each  
(Full factorial exp =  64) 

Suspension polymerization  
Six factors ([CTA], [stabilizer], 
speed of agitation, dispersed phase 
hold-up, two factors from impeller 
geometry 
Prior knowledge: mechanistic 
model 
 

Two: 
mean particle 
size, coefficient 
of variation of 
the particle size 
distribution 

A, E, F, I, 
N, O 
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5.1 Design Stage 
 
As mentioned in Table 3.1 of Chapter 3, the first step in implementing the Bayesian approach 

is selection of the design factors with their levels, and the responses. Three factors were chosen 

for this case study and are shown (with their initial levels) in Table 5.3. The selection of factors 

and their low and high levels were based on a detailed and critical analysis of the literature, 

combined with some of our previous experience about the process (Roa-Luna et al., 2007; 

Nabifar et al., 2008), as discussed in detail in Chapter 4. Reaction (batch) time (in hrs) to reach 

60% conversion was chosen as the single response in this case study. It was felt (based on 

process information and experience) that due to various sources of experimental error, the time 

for a batch to reach 60% conversion would vary by  1 hr about 95% of the time.  

 
Table 5.3 Selected factors and their levels (T = temperature, [I] = initiator concentration, [N] = 
nitroxide concentration) 

Level T (°C) [I] (M) [N] (M) 
low 120 0.0305 0.0324 
high 130 0.036 0.0396 

 

Casting the prior knowledge into the vector of parameter means (α) and the 

variance/covariance matrix (U) was the next important step (see Table 3.1 in Chapter 3). To 

generate the initial values for the parameter means, a 23 standard factorial design was used and 

the corresponding batch times were obtained from a general mechanistic model developed for 

NMRP of styrene (details of the modeling effort have been discussed in Section 4.2). The 

vector of parameter means (α), shown in the second column of Table 5.4, was obtained via 

conducting a linear regression on the results (see Eq. 3.2 in Chapter 3). In order to determine 

the variances of the parameters, each parameter was examined separately and based on our 

knowledge of the process, a reasonable estimate of the variance was made. This stage was 

where most of the brainstorming took place. In cases where the parameter (or the effect) was 

considered to be well known, a smaller interval of uncertainty was given, i.e., a smaller 

fluctuation about the mean was tolerated. Since in the bimolecular NMRP of styrene nitroxide 

concentration plays an important role, it was genuinely desired to find out more information 

about the model term involving this factor. Hence, higher initial variances were allocated to the 

parameters related to nitroxide concentration ([N]) and its interactions. The diagonal elements 
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of the prior variance/covariance matrix (U) are shown in the third column of Table 5.4; the off-

diagonal elements were initially all set to zero.  

 
Table 5.4 Elements of prior α and U  

Parameter αi Uii

Mean 7.795 11.95
 T -3.189 0.25
 [I] -0.295 0.25
 [N] 0.250 6.25

[I]T  0.167 0.0068
[N]T  -0.178 1.562
[N][I]  -0.239 0.562

[N][I]T   0.144 0.016 
 

The next step is selection of the “best” experiments using the search algorithm. As an example, 

it was decided to run a total of four experiments in two sequences of 2-trials each (as shown in 

Chapter 4, the Bayesian technique allows one to design any number of trials per sequence, and 

any number of sequences). Following the metric for designing experiments, i.e., maximizing 

the determinant H (Eq. 3.5 of Chapter 3), four 2-trial experiments were found that 

corresponded to a maximized H (H= 460.77), as shown in Table 5.5.  

 
Now let’s make a few practical remarks, in order to demonstrate the efficiency of the design 

procedure and the importance of the interplay between Bayesian steps and “process” sense. If 

this case study were examined blindly, somebody could have picked one of the four 

experiments of Table 5.5 completely randomly. However, combining knowledge about the 

bimolecular NMRP of styrene with the suggested results from the Bayesian design, we can 

now make a more judicious choice of the appropriate experiment, which is optimal from both a 

statistical and process sense. For instance, from previous experience with the bimolecular 

NMRP of styrene we know that the ratio of concentrations of nitroxide to initiator ([N]/[I]) is 

important. Experiments 1 and 3 (and experiments 2 and 4) in Table 5.5 lead to trials with the 

same nitroxide to initiator ratio at two different temperatures. It was decided to choose the 

lower temperature (120 °C), as it was the most common temperature used in bimolecular 

NMRP. Hence, running experiments 1 and 2 would be preferable. Between experiments 1 and 

2, experiment 1 would appear even more preferable, as in this experiment a wider range of 



83 
 

[N]/[I] was examined (1.06-1.3 vs. 0.9-1.1). Hence, experiment 1 was conducted for the first 

sequence of 2 trials and the corresponding batch time responses are shown in Table 5.5. Here 

we demonstrated the importance of a parallel correct scientific/practical decision, not a 

statistical one, which might not be apparent, if not for the added emphasis of the Bayesian 

methodology on prior information. 

 

Table 5.5 Four possible 2-trial experiments for the first sequence 

No. T [I] [N] [N]/[I] Batch time response 

1 -1 -1 -1 1.06 9.63 

 -1 -1  1 1.30 13.26 

2 -1  1 -1 0.9 - 

 -1  1  1 1.1 - 

3  1 -1 -1 1.06 - 

  1 -1  1 1.30 - 

4  1  1 -1 0.9 - 

  1  1  1 1.1 - 

 
 
For the next step, Eq. 3.7 of Chapter 3 was employed to calculate the posterior 

variance/covariance matrix (shown in Table 5.6; one can now observe the presence of non-zero 

off-diagonal elements, i.e., covariance elements, in the updated U matrix). The updated 

variance/covariance matrix was then used back in Eq. 3.5 (of Chapter 3) to design (in an 

iterative sequential fashion) the next sequence that maximizes the determinant H. Only one 2-

trial experiment corresponded to the highest value of H (H= 78.73) this time. The 

corresponding levels for the factors are shown in Table 5.7, along with the batch time 

responses obtained from conducting experiments in the lab. Scrutinizing again Table 5.5 and 

Table 5.7, one can see that the Bayesian design is choosing the second sequence at a higher 

temperature level (130°C) and different ratios of [N]/[I]. Therefore, in a very succinct way, the 

total of 4 runs (two sequences of 2-trials) covered both temperatures and all four different 

[N]/[I] ratios.  
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Table 5.6 Posterior variance/covariance matrix U after the first sequence of experiments 

 
 

 

Table 5.7 The second sequence of 2 trials 

T [I] [N] [N]/[I] Batch time response (hrs) 

1 1 -1 0.9 3 

1 1 1 1.1 5 

 
The updated variance/covariance matrix is shown in Table 5.8. Comparing Table 5.6 with 

Table 5.8, one can see that after the second sequence of experiments, the uncertainties about 

the parameters (diagonal elements of the U matrix) have decreased. Also, most of the 

covariances (off-diagonal elements of the U matrix; measures of the strength of the correlation 

between parameters) appearing in the first sequence (Table 5.6) were zero in the second 

sequence (Table 5.8). Eq. 3.6 of Chapter 3 was then employed to calculate the posterior   after 

each sequence of 2-trials (results are shown in the 3rd and 4th column of Table 5.9; the 

superscript in )(
i denotes the sequence of trials). 

 

Table 5.8 Posterior variance/covariance matrix U after the second sequence of experiments 

 

0.9286 0.2306 0.2306 0 -0.0063 0 0 0

0.2306 0.2452 -0.0048 0 0.0001 0 0 0

0.2306 -0.0048 0.2452 0 0.0001 0 0 0

0 0 0 1.8563 0 1.0984 0.3954 -0.0110

-0.0063 0.0001 0.0001 0 0.0068 0 0 0

0 0 0 1.0984 0 1.2879 -0.0989 0.0027

0 0 0 0.3954 0 -0.0989 0.5269 0.0010

0 0 0 -0.0110 0 0.0027 0.0010 0.0156

0.2514 0 0 0 -0.0067 0 0 0

0 0.1667 -0.0833 0 0 0 0 0

0 -0.0833 0.1667 0 0 0 0 0

0 0 0 0.2548 0 0 0 -0.0150

-0.0067 0 0 0 0.0068 0 0 0

0 0 0 0 0 0.5345 -0.3701 0

0 0 0 0 0 -0.3701 0.4293 0

0 0 0 -0.0150 0 0 0 0.0156
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5.2 Statistical Diagnostic Tests: Discussion 
 
A series of statistical diagnostic tests can now be carried out in addition to the analysis 

presented so far. These diagnostic tests serve to quantify the relative importance of the 

parameters (i.e., factor effects) and their interactions, as well as the quality of prior knowledge 

(in other words, the adequacy of the model used to generate the “prior knowledge”, as the case 

might be). Results from these statistical diagnostic tests for our example are shown in Table 

5.9. The 2nd column presents the initial values of the parameter means (α); the 3rd and 4th 

columns contain the updated estimates of the parameter means after the first and second 

sequence, respectively. Test 1 (5th column of Table 5.9) is defined as the ratio of the prior 

mean (2nd column of Table 5.9) to the prior standard deviation of the mean [αi/(Uii)
1/2], where 

(Uii) is shown in the third column of Table 5.4. This test checks the null hypothesis that αi = 0 

purely in the opinion of the ‘‘expert’’ (the person who assigned the values for the prior effects 

and variances). It is essentially a measure of the uncertainty of the ‘‘expert’’. A value greater 

than 2 or less than -2 is considered significant (this is equivalent to a 95.44% confidence 

interval). Test 2 is a measure of the actual significance of an effect. For instance, the test 2 

value after the second sequence of experiments (6th column of Table 5.9) is equal to the second 

updated estimate of the effect, )2(
i , divided by the square root of the corresponding diagonal 

element of the last posterior variance/covariance matrix (see Table 5.8; [ )2(
i /(Upost(ii))

1/2]). 

Once again, a value greater than 2 or less than -2 implies significance. Finally, test 3 is a 

measure of the quality of the expert’s opinion. For instance, test 3 after the second sequence of 

experimentation (7th column of Table 5.9) is equal to ( )2(
i - i ) divided by the square root of 

the diagonal element of the last posterior variance/covariance matrix (see again Table 5.8; [(

)2(
i - i ) /(Upost(ii))

1/2]). A significant value greater than 2 or less than -2 implies that portion(s) 

of the mechanistic model related to the response(s) and the effects in question may need further 

refinement.  
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Table 5.9 Summary results of diagnostic tests 

Parameter Prior αi 
(1)
iθ  (2)

iθ  Test 1 
Test 2 

(after 2nd seq.) 
Test 3 

(after 2nd seq.) 

Mean 7.795 7.795 7.561 2.255 15.079 -0.466 
 T -3.189 -3.189 -3.269 -6.378 -8.006 -0.195 
 [I] -0.295 -0.295 -0.374 -0.589 -0.917 -0.195 
 [N] 0.250 0.953 1.220 0.100 2.417 1.921 

[I]T  0.167 0.167 0.167 2.021 2.020 -0.002 
[N]T  -0.178 -0.354 -0.170 -0.142 -0.233 0.010 
[N][I]  -0.239 -0.302 -0.236 -0.318 -0.360 0.004 

[N][I]T   0.144 0.146 0.147 1.155 1.176 0.019 
 

A careful analysis of the summary results of Table 5.9 can lead to several interesting remarks. 

Based on the results of test 1, the influential factors on the batch time response, purely in the 

opinion of the “expert”, were temperature (T) and the interaction between temperature and 

initiator concentration (T [I]). The results of test 2 revealed that the actual significant 

parameters, based on the new observations, are T, [N], and T [I]. Initiator concentration ([I]) 

was not affecting the batch time response (within the considered operating conditions). This 

result explained why in kinetic studies of bimolecular NMRP, most of the time the 

concentration of initiator was kept constant while the concentration of nitroxide was varied to 

study the effect of [N]/[I] (Veregin et al., 1996a, b; Nabifar et al., 2008; Zhang and Ray, 2002). 

Finally, test 3 showed that the results were in agreement with the expert’s opinion. However, 

the value of test 3 for [N] was arguably very close to 2 and thus indicates that the expert’s 

opinion about the nitroxide concentration might not be overly accurate. The result of test 3 

indicated that the Bayesian design has indeed “spotted” this and identified that the expert’s 

opinion was not valid about [N], yet another of the implicit advantages of Bayesian design. 

 

5.3 Measures of Information Content: Discussion 
 
In order to “visualize” and demonstrate the improvement achieved by the Bayesian 

methodology (compared to a standard fractional factorial design), various possible measures of 

information (content) are discussed next. The Fisher information is a way of measuring the 

amount of information that an experiment carries about an unknown parameter θ. The Fisher 

information and the estimated variance are reciprocal, thus minimizing the variance 
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corresponds to maximizing the information. In the case of multi-parameter scenarios, the 

means of the parameters form a vector and their variances are included in a 

variance/covariance matrix. The inverse of the variance/covariance matrix is called the 

“information matrix”. Since the Fisher information is now in the form of a matrix, this matrix 

could be compressed using a real-valued summary statistic (like the determinant or trace of the 

matrix). Being real-valued functions, these “information criteria” can now be maximized.  

 
In the Bayesian design of experiments, the information matrix is the reciprocal of the posterior 

variance/covariance matrix (Eq. 3.7 of Chapter 3). The summary statistic used in our approach 

is the determinant. Hence, Fisher information (FI) = | XXU  )1( 21  |. Scrutinizing the 

determinant H (Eq. 3.5 of Chapter 3), one can see that our experimental criterion to arrive at 

optimal experiments is indeed a function of the Fisher information. For our example case study 

presented here, FI after two sequences of 2-trials each is 71042.8  . The Fisher information 

would be 71065.6   in the case of a half fraction of a full factorial design. Therefore, the 

Bayesian design is an improvement with respect to information content.  

 
Another advantage of the Bayesian design is that it moves in the direction of minimizing the 

variance of the parameters. For example, Figure 5.1 illustrates the evolution of the variances 

for the nitroxide concentration effect (corresponding to element U44 of the variance/covariance 

matrix) throughout the experimentation. As one can see, this value has dropped from 6.25 in 

the prior (Table 5.4) to 1.85 (Table 5.6) to 0.25 after the second sequence (Table 5.8), thus 

demonstrating that the Bayesian design in its sequential nature minimizes the uncertainty in the 

parameter values (translating uncertainty into variance of the effects and the related 

parameters). 
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Another indication that the Bayesian approach is an improvement over the corresponding 

standard fractional factorial design can be visualized through the estimated response from the 

regression model (Ymodel), where Ymodel = X . Figure 5.2 illustrates an example of the 

evolution of the estimated response for the conditions of the first trial of the second sequence 

(the 1st row of Table 5.7) through the course of experimentation and compares the 

corresponding estimated response with the actually observed value (Yexp; solid line in Figure 

5.2). The estimated response from the fractional factorial experiment is also shown for 

comparison (dashed line in Figure 5.2). As one can see, Ymodel after the second sequence of the 

Bayesian experiments is very close to the actually observed Yexp, while the corresponding 

Ymodel calculated for the fractional factorial experiment is farther away from the actually 

observed value. Once more, in the Bayesian steps, Ymodel moves in the direction of minimizing 

its difference with Yexp. 
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Figure 5.1 Evolution of variance ( ) through the course of experimentation 
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Finally, Figure 5.3 illustrates yet another measure of information content, as expressed by the 

95 % joint confidence region (JCR). It can be seen in Figure 5.3a, b and c that the areas of the 

joint confidence regions are significantly reduced from prior to the first sequence, and then 

from the first sequence to the second sequence of experimentation. The reduction indicates that 

the precision in parameter estimates has increased. These figures also contain the JCRs for the 

corresponding standard fractional factorial design and they all demonstrate that the novel 

Bayesian approach is indeed significantly more effective than the standard fractional factorial 

(much smaller JCRs for the Bayesian designed experiments).  

 
The joint confidence region for the T-[I] parameters is slightly tilted after the second sequence 

(see Figure 5.3a), indicating that the T and [I] related parameters are moderately correlated. 

Going back to the results of Table 5.6 and Table 5.8, translating covariances into the 

corresponding correlation values (Covariance (i, j) / [Variance (i)   Variance (j)]0.5), one 

would see that most of the correlation coefficients are considerably smaller in absolute value 

than 1. In theory, the magnitude of the correlation values is the factor that would affect the 

orientation of the final joint confidence regions of the parameters.  For instance, in Table 5.8, 

U32 shows the covariance between [I] and T. U32 being non-zero will give rise to a joint 

confidence region that is tilted. The negative covariance (U32 = - 0.0833) implies that initiator 

concentration  effect, [I], tends to decrease as the temperature effect, T, increases (see Figure 

5.3a). The JCRs in Figure 5.3b and Figure 5.3c are completely horizontal, representing 

completely uncorrelated parameters (which again confirms the results of Table 5.6 and Table 

5.8).  
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Figure 5.2 Evolution of Ymodel through the course of experimentation 
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Figure 5.3 95% joint confidence regions (JCRs) for parameters, a) T-[I], b) T-[N], 
and c) [I]-[N] 
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5.4 Concluding Remarks 
 
Two important questions, intimately related to the Bayesian design of experiments, were 

addressed via implementing this technique to NMRP of styrene. The first had to do with 

statistical diagnostic criteria that one can use in order to make statements about the quality of 

prior knowledge and the significance of estimated factor effects. These statistical diagnostic 

checks can “spot” and identify situations when the expert’s opinion (prior knowledge) is not 

valid about certain parameters (hence, factor effects). The second question was concerned with 

enhanced information measures (obtained from the Bayesian procedure versus a standard 

design of experiments), as another illustration of the effectiveness and practicality of the 

approach. It was shown that the Fisher Information  matrix is maximized in the Bayesian 

approach, which corresponds to minimizing the variances and reducing the 95% joint 

confidence regions (JCR), hence improving the precision of the parameter estimates.  
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Chapter 6. Bayesian Design of Experiments Applied to the 

Continuous Production of Nitrile Rubber in a Train of CSTRs 

 
In the previous chapters, the general framework for the Bayesian design of experiments was 

presented in detail and the application of this technique to bulk homopolymerization of styrene 

in unimolecular and bimolecular nitroxide-mediated radical polymerization (NMRP) in batch 

mode was discussed. In this chapter, the Bayesian technique is applied to a more complex 

system, namely, emulsion copolymerization of acrylonitrile (AN) and butadiene (Bd) in a train 

of CSTRs. In Chapter 8, the Bayesian design of experiments will be implemented to an even 

more complex system, the bulk cross-linking NMRP of STY/DVB in the batch mode. 

 
In this chapter, a brief introduction to nitrile rubber is initially presented followed by a 

summary of recent modeling efforts conducted in our group (Washington et al., 2010; 

Madhuranthakam and Penlidis, 2011 and 2012). This section is not a detailed explanation of 

the modeling work, but rather a short summary to convince the reader that the model 

developed in our group is capable of predicting the correct trends and behavior and can thus be 

reliably used to provide the prior knowledge in implementing the Bayesian design approach to 

the continuous production of NBR rubber. Finally, results from implementing the Bayesian 

design of experiments are discussed in Section 6.3. 

 
6.1 Introduction 
 
Nitrile-butadiene (or, simply, nitrile) rubber (NBR) is produced through emulsion 

copolymerization of acrylonitrile (AN) and butadiene (Bd). The main indicators for product 

quality are the polymer molecular weight, degree of branching and the level of bound AN in 

the copolymer (AN copolymer composition). The average molecular weights usually range 

from  2.5	 ൈ 	10ହ to 6	 ൈ 	10ହ with varying degrees of polydispersity and branching. AN 

copolymer composition can vary between 15% to 50% depending on desired product 

properties and final uses Although the physical and chemical properties of the rubber vary 

depending on copolymer composition, NBR rubber is generally resistant to oil, fuel, and other 

chemicals (the more nitrile within the polymer, the higher the resistance to oils but the lower 

the flexibility of the material). 
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By selecting the appropriate acrylonitrile content in balance with other molecular structure 

properties (e.g., molecular weight, branching and polydispersity), NBR rubber can be used in a 

wide variety of application areas requiring oil, fuel, and chemical resistance. Its ability to 

withstand a range of temperatures from -40 °C to +108 °C makes it an ideal material for 

aeronautical applications as well. NBR rubber is used in the automotive and aeronautical 

industry to make fuel and oil handling hoses, seals, O rings, gaskets, as well as transmission 

belts. It is also used to create moulded goods, footwear, adhesives, pigment binder, sealants, 

sponges, expanded foams, and floor mats.  

 
The emulsion latexes can be produced using batch/semibatch or continuous reactor modes 

based on demand and quality requirements. On an industrial scale, a continuous process is used 

to produce nitrile rubber in large volumes while a batch process is typically used for smaller 

quantities of specialty products. In the continuous process, many stirred tank reactors (CSTRs) 

are connected in series to form a train with the outflow from the previous reactor entering the 

next reactor as an inflow. The train of CSTRs mimics plug flow behavior so that polymer 

characteristics similar to those obtained in a batch reactor can be obtained in addition to the 

advantage of higher production and output over batch production.  

 
In the production of nitrile rubber, depending on the temperature at which the 

copolymerization takes place, the terms ’cold’ and ’hot’ recipe are used. Cold recipes are those 

that use a redox radical initiation mechanism with temperatures in the range of 5°C to 15°C. 

Hot recipes employ persulfate initiators that thermally decompose to free radicals in the range 

of 30°C to 50°C. A typical example of both recipe types can be seen in Table 6.1. The ratio of 

AN to Bd can vary depending on the desired final rubber properties. The amount of water can 

also vary; however, this is primarily dependent on the desirable “solids content” level to be 

obtained and, secondarily, on the heat generated by polymerization and the available heat 

transfer capacity of the reactor cooling system. Electrolytes are often used to help control and 

maintain the colloidal stability of the polymer particles. Polymerization initiator systems used 

are mainly water soluble and designed to generate a continuous supply of free radicals. The 

choice of emulsifier is dependent on the monomers, polymerization conditions (i.e., 

temperature, latex stability), and the influence on the final product. Typically, more than one 

emulsifier with differing functionalities may be used to control and stabilize particle formation 
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and growth. A detailed discussion on the functionality of each recipe ingredient can be found 

in the extensive and by now classical source by Hofmann (1964). 

 

Table 6.1 Typical nitrile rubber polymerization recipes (Washington et al., 2010) 

  Parts per Hundred Monomer (pphm) 

Material Typical Chemical Cold recipe Hot recipe 

Acrylonitrile  30 - 35 30 - 35 

Butadiene  65 - 70 65 - 70 

Water  170 - 200 170 - 200 

Electrolyte Na2CO3, K2CO3 0.3 - 0.5 0.3 - 0.5 

Peroxide Initiator PMHP, DIBHPa 0.04 - 0.2 - 

Metal Ion Iron chelateb 0.005 - 0.1 - 

Reducing Agent SFSc 0.04 - 0.2 - 

Persulfate Initiator KPS, SPS, APSd - 0.2 - 0.4 

Primary Emulsifier  Tamol, Daxad, SDSe 1.0 - 5.0 1.0 - 5.0 

Secondary Emulsifier Dresinate, Potassium 

oleate, Emersol 

0.1 - 5.0 0.1 - 5.0 

Chain Transfer Agent Mercaptan f 0.2 - 0.6 0.2 - 0.6 

Temperature  5 – 15°C 30 – 50°C 
a para-menthane (PMHP) or di-isobutyl hydroperoxide (DIBHP); b e.g. FeSO4.7H2O; c Sodium formaldehyde 
sulfoxylate (SFS); d Potassium (KPS), sodium (SPS), or ammonium persulfate (APS); e Sodium dodecyl sulfate 
(SDS); f e.g., tert-dodecyl mercaptan (t-DDM) 
 

 

6.2 NBR Rubber Model Development 
 
A mathematical model for the emulsion copolymerization of AN and Bd has recently been 

developed in our group by Washington et al. (2010) and further modified by Madhuranthakam 

and Penlidis (2011, 2012). The purpose of this modeling effort was to simulate the industrial 

production of NBR in batch, semi-batch, continuous and trains of continuous reactors, using a 

cold recipe, and evaluate the model with (whatever limited) sets of experimental data and 

process property trends could be found either in the literature or based on industrial practice. 
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The final target would be to use the model for the derivation of optimal scenarios for reactor 

train start-ups and other operational or grade change policies.  

 
The mechanistic aspects considered in this model were: initiation, propagation, termination, 

transfer to monomer, polymer and CTA, reactions with impurities (both water and monomer 

soluble), and reactions with internal and terminal double bonds. Appropriate reactions were 

considered in both the aqueous and particle phases. Table 6.2 summarizes the reaction 

mechanism considered.   

 

 

Table 6.2 Reaction mechanism for the emulsion copolymerization of NBR rubber (Washington 
et al., 2010) 

Mechanism  Reaction/Event 

Redox decomposition 12 2 · 3 2
2 8 4 4

kS O Fe SO Fe SO      

 23 2kFe SFS Fe SFS      

Thermal decomposition 2 ·
2 8 42dkS O SO   

Radical initiation 
'

· ·
4 1,

japk

j jSO M R    

Propagation · ·
, 1,

pij
k

n i j n jR M R    

Termination 
· ·

, , ( ) r o  tk
n i m j m n n mR R P P P   

Transfer to monomer · ·
, ,

fmij
k

n i j n i jR M P M   

Transfer to polymer · ·
, , , ,

fpij
k

n i m j n i m jR P P R   

Transfer to CTA  · ·
, ,

fctaij
k

n i n i jj
R CTA P CTA   

Reaction with internal double bonds · ·
, ,

pij
ki

n i m n m iR P R



  

Reaction with terminal double bonds · ·
, ,

pij
kt

n i m n m iR P R




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Reaction with water-soluble impurities ·
,

fwsiij
k

n i j iR WSI P   

Reaction with monomer-soluble impurities ·
,

fmsiij
k

n i j iR MSI P   

Micellar nucleation 
·

, Micelle Particlecmk
n iR    

Homogeneous nucleation 
·

, Particleh

cr

k
j i jR M   

Capture of radical by particle 
· ·
, ,

cp

a p

k

n i n iR R  

Desorption of radical from particle 
· ·
1, 1,

des

p a

k
i iR R  

 

The model was cast in a dynamic form using 32 ordinary differential equations that track the 

changes in recipe ingredient moles, number of particles, polymer volume, temperature, and the 

first three molecular weight moments (along with tri- and tetra-functional branching averages) 

over time. Appendix C contains an overview of the most important mathematical model 

equations. The particle generation was modeled considering both micellar and homogeneous 

nucleation, the latter included due to the high water solubility of AN. Radical desorption was 

initially included in the model according to Asua et al. (1989), however, later simulations by 

Madhuranthakam and Penlidis (2011) showed that desorption is negligible in NBR emulsion 

polymerization and the polymerization follows Case II emulsion kinetics. The pseudo-kinetic 

rate constant method was employed to capture the dependency of overall rate constants not 

only on temperature but also on composition, polymer weight fraction, monomer conversion 

and radical chain length. The model predictions included monomer conversion, copolymer 

composition (as bound AN level in the copolymer, ANF ), number- and weight-average 

molecular weights ( nM , wM ), tri- and tetra-functional branching frequencies ( 3BN , 4BN ), and 

the number and average size of polymer latex particles (number of particles ( pN ) and particle 

diameter ( pd )). Model parameters were obtained from the open literature or arrived at after 

sensitivity analysis or, occasionally, parameter estimation based on (limited) experimental 

data.  

 



97 
 

Washington et al. (2010) compared model simulations to industrial data for NBR emulsion 

carried out in a batch reactor. Figure 6.1 illustrates the comparison between model predictions 

and experimental data for conversion, copolymer composition, particle diameter and molecular 

weight; the overall picture is quite satisfactory and good results were obtained. It was also 

found that both monomer and water soluble impurities had a profound impact on model 

predictions and they were necessary aspects to model in order to obtain a good fit to industrial 

data. The influence of emulsifier and initiator concentration on particle nucleation have been 

studied in both batch and continuous reactors and it was shown that the NBR model developed 

behaved according to the experimental findings of other similar Case II systems (Washington 

et al., 2010).  

 
 

 
Figure 6.1 NBR batch reactor simulation and comparison to industrial data for (a) conversion, 
(b) cumulative copolymer composition, (c) average particle diameter, and (d) molecular weight 
averages (Washington et al., 2010) 
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With a multiphase system like emulsion polymerization, it is necessary to determine the 

concentration of each component in each phase. There are two important partitioning methods 

that have been used to calculate the concentration of components in different phases: the 

constant partition coefficient approach (PCA) used by Washington et al. (2010), and the 

thermodynamic approach (TDA) employed by Madhuranthakam and Penlidis (2011).  In the 

PCA option, the ratio of the concentrations of a reaction species in two different phases is 

assumed to be constant over the course of polymerization. These constants, otherwise referred 

to as partition coefficients, are often simply guessed or adjusted to fit process data, or at best, 

obtained empirically from experiments using parameter estimation techniques. On the other 

hand, in the thermodynamic option, thermodynamic equations that describe the equilibrium 

among different phases are used. In this method the monomers are assumed to be distributed 

among different phases corresponding to a dynamic equilibrium and hence, the partial molar 

free energies (ΔG) of monomer j in the different phases are equal. Madhuranthakam and 

Penlidis (2011) compared the model simulations obtained for NBR emulsion polymerization 

using the PCA and the TDA partitioning options and showed that the profiles for different 

process variables (conversion, cumulative copolymer composition of AN, average particle 

diameter, average molecular weights and average tri- and tetra-functional branching 

frequencies) are very similar, if not identical, for both batch and continuous reactors. However, 

the profiles corresponding to the volume of polymer particles (Vp), volume of  monomer 

droplets (Vd) and average number of radicals per particle ( n ) with respect to time showed 

much more significant differences for the different approaches used for partitioning. 

Madhuranthakam and Penlidis (2011) explained that major differences between the two 

approaches were due to how the monomer concentrations in the particles and in the aqueous 

phase were estimated after the monomer droplets disappeared. In PCA, a constant coefficient is 

used to estimate the concentration of monomer in the corresponding phases, while in TDA, the 

estimation of monomer in the particle phase after the droplets disappear is also a function of 

particle size in addition to the different monomer-monomer and monomer-polymer 

interactions. In order to compensate for this in the PCA option, Madhuranthakam and Penlidis 

(2011) used a different value of the partition coefficient after the monomer droplets disappear 

and showed that using modified coefficients in PCA would make the estimates comparable to 

those obtained using the TDA option. They hence concluded that both PCA and TDA 
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approaches work equally satisfactorily and the choice of adopting one over the other is based 

on the information available and the selection/preference with respect to the general modeling 

framework. 

 
The model also has the capability to simulate different properties for a train of CSTR reactors. 

Figure 6.2 illustrates typical simulation results for a train of 10 reactors each with a volume of 

20,000L and a mean residence time of 60 min. The reactor start up procedure used was to have 

all the reactors initially full of water before the material was fed to the first reactor. Simulation 

profiles for conversion, copolymer composition, particle number and size, weight-average 

molecular weight and tri-functional branching frequency are presented in Figure 6.2. Operating 

the reactor train with a residence time of 60 minutes per reactor yields a gradual increase in 

conversion which reaches a steady-state of approximately 77% in the final reactor at around 

26.6 hours (Figure 6.2a). A similar time is required for copolymer composition (Figure 6.2b), 

particle size (Figure 6.2c) and particle number (Figure 6.2d), while the molecular properties 

(i.e., wM , 3BN , in Figure 6.2e and Figure 6.2f, respectively) require approximately 30 hours to 

achieve steady-state in the final reactor. Copolymer composition begins to drift in the fourth 

reactor (Figure 6.2b), and the monomer droplet phase vanishes in the sixth reactor, which is 

evident from a decrease in the swollen particle diameter (Figure 6.2c). From Figure 6.2d it can 

be seen that particle nucleation occurs only in the first reactor followed by a long transient 

period where the steady-state is initially preceded by a large overshoot. The distinct "double-

hump" in Np in the first reactor is a result of the startup procedure and the use of two 

emulsifiers in the recipe, which are initially below their critical micelle concentration. From 

Figure 6.2e the weight-average molecular weight appears to increase starting in the fifth 

reactor. The tri-functional chain branching frequency profile (Figure 6.2f) reveals a sharp 

increase beyond the sixth reactor, which indicates the onset of gel formation. 
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Figure 6.2 Continuous reactor train simulation for conversion (a), copolymer composition (b), 
average particle diameter (c), particle number (d), weight-average molecular weight (e) and tri-
functional branching frequency (f) (Washington et al., 2010) 

 

 

 



101 
 

The mathematical model was also used to simulate different start-up policies in a single CSTR 

and in a train of CSTR reactors (Washington et al., 2010; Madhuranthakam and Penlidis, 

2011). The transient behavior typically seen upon reactor start-ups is very important for the 

efficient production of NBR emulsion and can be used to minimize off-spec product, and 

optimize flow rates of various ingredients. Four different types of start-up procedures were 

investigated, and these included starting the reactor full of “batch recipe” (i.e., all ingredients 

charged in the same proportions as in batch operation), full of water (i.e., have all reactors 

initially full of water before material was fed to the first reactor), empty and half full of water. 

The simulations showed that using a reactor initially full of “batch recipe” results in an initial 

overshoot in conversion due to the large initial burst in particle nucleation, as the emulsifier 

and initiator concentrations are also at high level. Conversion reaches the steady state around 

five to six residence times, which is expected in a CSTR operation. In addition, number- and 

weight-average molecular weights converged quickly to their steady-state values. On the other 

end, starting the reactor up initially full of water shows a much longer transient period in each 

of the reactor variables, which is to be expected since the concentration levels of all the 

reaction species build up gradually and rather slowly. The profiles for various polymerization 

variables with empty start-up were found to be lying between those obtained with the full of 

“recipe” and full of water start-ups, while the profiles corresponding to half full of water start-

up were very similar to those of empty start-up. A full of “recipe” start-up results in “off-spec” 

product that would be a waste, if not controlled. In contrast, reactor full of water or empty 

results in suppressed transients and smooth/gradual profiles for different polymer properties. 

However, start-up of the reactor train with full of “recipe” would yield lower time periods 

(settling times) to reach the target compared to the times obtained with either empty or full of 

water start-ups. In addition to the time periods, the monomer droplets would disappear, for 

example, in the fifth reactor with “full of recipe” start-up, while this happens in the sixth 

reactor (or later) with other start-ups. If the droplets disappear early in a reactor train, the 

remaining reactors can be used merely for polymerization in the particle phase. Hence, 

Madhuranthakam and Penlidis (2011) concluded that depending on the manufacturing policies, 

different start-ups can be applied and the model developed can be used for prediction purposes 

as it gives a very good insight into the transient behavior, steady state time, and effect on the 

level of the final properties of the polymer.  
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Washington et al. (2010) and Madhuranthakam and Penlidis (2012) also used the model to 

discuss miscellaneous operating procedures for a train of eight reactors to target desired 

properties of the NBR emulsion and at the same time reduce the amount of off-spec material 

during the transient period before reaching steady state. It was shown that the total number of 

particles can be increased by increasing the molar flow of initiator and surfactant. Also, in 

order to have a constant copolymer composition, the AN flow can be split between the first 

two reactors or the molar flow of AN can be increased, with the latter procedure being 

superior.  Further, it was concluded that CTA could be added intermittently along the reactor 

train to control the average molecular weights and branching frequencies that would otherwise 

become extremely high, especially in the last few reactors of the train. 

 
All in all, the current model is a detailed mechanistic model that has the ability to handle 

different start-up scenarios and different feed policies and operating procedures, in addition to 

options such as including desorption, monomer and water soluble impurities, and even using 

different monomer partitioning approaches. The aim of this introduction was to give a 

summary of the capabilities of the model and also to set the stage for using the model in 

implementing the Bayesian design of experiments on emulsion NBR. More details on this 

model and its features can be found in Washington et al. (2010), and Madhuranthakam and 

Penlidis (2011, 2012). This model is used to generate the prior knowledge during the 

implementation of the Bayesian design approach to the continuous production of NBR rubber. 

Case studies are discussed and experiments designed through the Bayesian approach are 

compared to experiments suggested by other standard statistical designs. Effectively, one could 

view the Bayesian design approach under the same context as Evolutionary Operation (EVOP). 

EVOP has been specifically developed in aid of continuous processes and production (Hunter 

and Kittrell, 1966; Box and Draper, 1969), essentially as a way to experiment with a 

continuous process (and involving only a small number of operating factors, say, two or three, 

at a time) without disrupting production. 
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6.3 Results and Discussion: Implementation of Bayesian design to the continuous 
production of nitrile rubber  
 
A detailed discussion on the inner workings of the Bayesian design procedure has been 

presented in Chapter 3 and will not be repeated herein for the sake of brevity. Instead, an 

overview of the different steps for implementing the Bayesian design is given in a point form 

in Table 6.3. The steps of this methodology are illustrated in detail for the continuous 

production of nitrile rubber in a train of 8 CSTRs in this section.  

 

Table 6.3 Summary steps for implementing the Bayesian design of experiments 

1. Select the design factors and their levels; select response(s). 

2. Incorporation of prior knowledge: cast the prior knowledge into a vector of prior parameters estimates (ߙ) 

and a prior variance/covariance matrix (ܷ) 

3. Select the “best” experimental setting (X)  by maximizing determinant H: 

 Eq.  6.1 

4. Run and analyze the experiments to obtain response(s) (y) 

5. Apply Bayes’ theorem to obtain the posterior distribution and update ߙ and ܷ using the following equations: 

])1([])1([ˆ
2

11
2

1 yXUXXU  

  Eq.  6.2 

 Eq.  6.3 

6. Given the new U, use Eq. 6.1 to select the next sequence of trials 

7. Analyze the experiments and update  and U; repeat steps 3 to 8 

8. Stop the experimentation once the values of parameters of interest are known with accepted degree of 

certainty. Update the vector of parameters, after the analysis of the final sequence of experiments. 

 

Three different case studies with respect to the responses were initially investigated. In the first 

case, responses after the last reactor (8th reactor) were studied, i.e., when the train had reached 

operational steady state. In the second case study, responses were considered at the output of 

the 2nd reactor, while in the third scenario, responses were considered just after the monomer 

droplets had disappeared (output of 4th reactor). Only the results of the first case study are 

discussed herein, since the trends in the other two case studies were similar to the first one and 

hence not repeated here for the sake of brevity.  

XXUIH  )1( 2

1
2

1 ])1([   XXUU 
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Two sequences of 4-trials each are designed, and contrasted with an 8-trial optimal design. 

Comparisons are offered with fractional factorial and Plackett–Burman designs. Several 

diagnostic checks are presented that shed light on the quality of prior knowledge and the 

significance of estimated effects.  

 
Selection of Design Factors and Levels: As shown in Table 6.3, the first step in implementing 

the Bayesian design is choosing the design factors and their levels. Four factors were chosen 

and shown with the corresponding low and high levels in Table 6.4. When selecting factors 

and their low and high level values, it was tried to keep the settings as close to the real 

industrial production as possible. We based our study on an already existing industrial set up, 

with a train of 8 CSTR reactors, each having a volume of 20,000 L. The existing production 

line functions with a mean residence time (θ) of 60 min for each reactor. Recipe ingredients 

similar to the ones shown in Table 6.1 for polymerization of nitrile rubber with the cold recipe 

were implemented and the start-up procedure used was the “full of recipe” one. Starting the 

train with all reactors full of the “batch recipe” means that all polymerization ingredients 

(except for the initiator or redox initiator part) were added in each reactor, so initially, the 

concentration and ingredient proportions were equal to those of a “typical batch reactor 

recipe”. In Table 6.4, the low level settings of the factors represent the current operation setting 

in the industrial set up with a residence time of 60 min. Since the reactors have the same 

volume, the residence time had to be changed in order to change the ingredient flow rates. The 

high level of factors corresponds to a residence time of 45 min. 

 
After brainstorming with the process experts, it was felt that the important factors to study 

were related to initiator, emulsifier, monomer, water, and chain transfer agent flow rates. Using 

the cold recipe for the production of NBR rubber, peroxide initiator (I) is not the only 

component in charge of starting the initiation stage; reducing agent (RA) and iron (metal) 

compound (IMC) also play a role. However, since they are not independent from each other to 

be considered as separate factors (since they have to satisfy certain proportions), all of them 

were lumped together as factor (RA/ IMC/ I), referred to from now on as initiation factor (INT) 

throughout this chapter. Essentially, INT accounts for the redox initiation package components. 
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The ratio of monomer to latex ሺ ெ

ሺெାௐሻ
ሻ	is an important factor related to the total solids content 

of the finally produced NBR latex. The typical ratio used in industrial continuous production of 

NBR rubber is about 0.6. It is important to keep this ratio the same, if there is a need to change 

both monomer and water levels during plant-wide experimentation. Hence, once more, 

monomer and water could not be presented as separate factors, and they were hence combined 

in one factor, referred to as WM throughout the chapter. In both low and high levels of WM, 

the ratio ሺ ெ

ሺெାௐሻ
ሻ  is kept at 0.6. 

 

Table 6.4 Selected factors and their levels for implementing Bayesian design to continuous 
production of nitrile rubber 

Factor Name 
(Low) level† 

θ = 60 min 

(High) level† 

θ = 45 min 

INT: RA/ IMC/ I 

RA: Sodium formaldehyde sulfoxylate (SFS) 

0.046/ 0.004/ 0.165 0.062/ 0.005/ 0.220 Iron (metal) compound (IMC):  FeSO4.7H2O  
I: p-menthane hydroperoxide (PMHP) 

E 
Tamol (primary emulsifier)/ Dresinate 
(secondary emulsifier) 

1.670/ 0.890 2.228/ 1.183 

WM: (M1, M2)/ 
W 

(AN, Bd)/ W  
(48.6, 160.3)/ 

121.36 
(64.8, 213.7)/ 

161.81 

CTA tert-dodecyl mercaptan 0.33 0.44 
† Volumetric flow rate (L/min); θ : residence time; INT: initiation factor, composed of reducing agent (RA), 
Iron(metal)compound (IMC) and peroxide initiator (I); E: emulsifier flow rate, including both primary and 
secondary emulsifier; WM: latex flow rate, comprised of monomer 1 (M1, acrylonitrile(AN)), monomer 2 (M2, 
butadiene (Bd)) and water (W); CTA: chain transfer agent 
 

Selection of Responses: There are no restrictions on the number of responses that can be 

accommodated by the Bayesian design technique. Responses chosen here were based on 

practical considerations and measurements so as to mimic as much as possible what could 

ideally be done in industry. Responses chosen were conversion (x), the cumulative amount of 

acrylonitrile (AN) bound in the copolymer (cumulative copolymer composition of 

acrylonitrile, ܨത஺ே), and weight-average molecular weight	ሺܯഥ௪ሻ. Variances of responses were 

estimated from previous sets of experiments and are summarized in Table 6.5. It was felt 

(based on process information and experience) that due to various sources of error in the 

experiments, the standard error associated with the conversion measurement was around 5% (σ 

= 0.05), hence, σ2 = 2.5 × 10-3. The typical H-NMR spectroscopy error is around 5% (Dube et 
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al., 1996), therefore, the variance for  ܨത஺ே is also σ2 = 2.5 × 10-3. From experience with 

emulsion polymerization, the error in measuring molecular weights is σ = 25,000 (Dube and 

Penlidis, 1996); hence, the variance for 	ܯഥ௪ is σ2 = 6.25 × 108. These are essentially the default 

values of the response variances. If, at any specific stage, variances other than the ones 

indicated in Table 6.5 were used, this will be stated up front. 

 

Table 6.5 Variance of the responses 

Response Variance 

Conversion (x) 2.50 ൈ 10ିଷ 

Cumulative copolymer composition (ܨത஺ே) 2.50 ൈ 10ିଷ 

Weight-average molecular weight ( ܯഥ௪) 6.25 ൈ 10଼ 

 

Incorporation of Prior Knowledge: As shown in Table 6.3, casting the prior knowledge into 

the vector of parameter means (ߙ) and the variance/covariance matrix (ܷ) is the next important 

step. To generate the initial values for the parameter means, a 24 standard factorial design was 

used, and the corresponding conversion, copolymer composition and molecular weight 

responses were obtained from the mechanistic model developed in our group 

(Madhuranthakam and Penlidis, 2011). As explained in the previous section, this model, based 

on the reaction mechanism and consisting of mole balances for the main recipe ingredients and 

detailed population balances for the molecular weight part, eventually leads to the development 

of 32 ordinary differential equations. This model is a good starting point as in principle a 

mechanistic model contains a good deal of prior information about the process. 

 
In all the cases studies, vectors of parameter means (ߙ) were obtained via conducting linear 

regression on the results. In order to determine the variances of the parameters (ܷ), each 

parameter was examined separately and based on our knowledge of the process, a reasonable 

estimate was made. This stage was where most of the brainstorming took place. In cases where 

the parameter was considered to be well-known, a smaller interval of uncertainty was given, 

i.e., a smaller fluctuation about the mean was tolerated. The estimated variances occupy the 

diagonal elements of the prior variance/covariance matrix; off diagonal elements (covariances) 

are initially set to zero. 
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Selection of Experimental Design: As illustrated in Table 6.3, the basic idea for the design of 

experiments in the Bayesian design approach is to choose X in order to maximize the 

determinant H (see Eq.  6.1 in Table 6.3). Three case studies were initially investigated in order 

to demonstrate how the Bayesian design scheme works when applied to the continuous 

production of nitrile rubber. Results from one of these three case studies (practically speaking, 

the most important one) are cited and discussed in detail in this chapter, whereas results from 

the other two case studies are not discussed here for the sake of brevity. The results from the 

other two case studies (output from the 2nd and 4th reactor) are in agreement with the results 

from the major one, and exhibit the same (or very similar) trends. The major case study shown 

herein tackles data from a train of 8 CSTRs, the way they would be available in practice, under 

steady state operation of the CSTR train, hence it is more realistic.  

 
6.3.1 Case Study 1: Responses after the 8th reactor 
 
In this case study, responses after the last reactor (8th reactor) are considered. Two sequences 

of 4-trials each are designed, and contrasted with an 8-trial optimal design. For further 

illustration purposes, the experiments design through the Bayesian approach are compared to 

the corresponding 8-trial experiments designed through fractional factorial and Plackett–

Burman designs. Steps 1 and 2 of the procedure cited in Table 6.3 have been explained above. 

See Table 6.4 for factors and their levels, and Table 6.5 for the variances of the responses. The 

prior vector of parameter means (ߙ) and the diagonal elements of the variance/covariance 

matrix (ܷ) (shown in Table 6.6, Table 6.7 and Table 6.8 for conversion, copolymer 

composition and molecular weight responses, respectively) have been calculated following the 

framework explained under ‘Incorporation of Prior Knowledge’.  
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Table 6.6 Elements of prior α and U after the 8th reactor for conversion 

Parameter αi Uii 
Mean 5.93E-01 2.50E-03 

INT 1.12E-02 4.00E-06 

E 3.85E-02 5.63E-05 

WM -1.44E-01 3.03E-03 

CTA -5.00E-05 1.60E-09 

INT ൈ E -5.25E-04 1.00E-08 

INT ൈ WM 2.35E-03 1.00E-06 

INT ൈ CTA 1.25E-05 1.00E-10 

Eൈ WM -1.12E-04 2.50E-09 

E ൈ CTA 6.94E-18 1.00E-34 

WM ൈ CTA -6.94E-18 4.90E-35 

INT ൈ E	ൈ WM 1.75E-04 6.40E-07 

INT ൈ E	ൈ CTA -1.25E-05 6.40E-09 

INT ൈ WM	ൈ CTA -1.25E-05 6.40E-09 

E ൈ WM	ൈ CTA 6.94E-18 1.00E-34 

 

 

Table 6.7 Elements of prior α and U after the 8th reactor for copolymer composition 

Parameter αi Uii 
Mean 2.73E-01 2.50E-03 

INT 2.62E-03 8.10E-07 

E 6.53E-03 1.00E-06 

WM -2.94E-03 8.10E-07 

CTA -6.25E-06 1.60E-11 

INT ൈ E -3.12E-05 1.69E-10 

INT ൈ WM 3.94E-04 2.25E-08 

INT ൈ CTA 6.25E-06 2.50E-11 

Eൈ WM -5.94E-04 2.25E-08 

E ൈ CTA -6.25E-06 2.50E-11 

WM ൈ CTA -6.25E-06 2.50E-11 

INT ൈ E	ൈ WM -1.06E-04 1.00E-08 

INT ൈ E	ൈ CTA 6.25E-06 6.40E-11 

INT ൈ WM	ൈ CTA 6.25E-06 6.40E-11 

E ൈ WM	ൈ CTA -6.25E-06 6.40E-11 
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Table 6.8 Elements of prior α and U after the 8th reactor for weight-average molecular 
weight 

Parameter αi Uii 
Mean 113,160 6.25E+08 

INT 3,306 2.25E+06 

E 14,030 2.50E+07 

WM -43,676 1.44E+08 

CTA -14,777 1.23E+07 

INT ൈ E -156 1.00E+04 

INT ൈ WM -223 4.00E+04 

INT ൈ CTA -403 3.24E+04 

Eൈ WM -5,141 7.29E+06 

E ൈ CTA -1,768 5.63E+05 

WM ൈ CTA 5,090 4.00E+06 

INT ൈ E	ൈ WM 476 1.60E+05 

INT ൈ E	ൈ CTA 3 4.00E+00 

INT ൈ WM	ൈ CTA -9 6.40E+01 

E ൈ WM	ൈ CTA 588 2.50E+05 

 

 
6.3.1.1 Sequential Approach (Two Sequences of 4-Trials Each) 
 
The prior variances (U) were fed to the Bayesian design algorithm, and the best 4-trial 

experiments (X in Eq.  6.1) that maximized the determinant H were chosen for each response, 

separately. There happen to be four optimal 4-trial designs detected for each of x,  ܨത஺ே and 

 with the determinant H equal to 32.09, 5.02, and 13.0, respectively. Since we were dealing	௪,ܯ

with a multi-response case, it was important to check whether an optimal design for one 

response was nearly optimal for the other two. Hence, the optimal trials for one response were 

combined with the U matrices and σ2 from the other responses in order to re-evaluate the 

determinant H for the other two responses. For example, the optimal designs for the conversion 

response were each used along with the variance/covariance matrix (U) and σ2 for copolymer 

composition in order to recalculate the determinant H for copolymer composition. In each case, 

the overall optimality criterion was calculated, which was the summation of the H determinants 

for the three responses (D = H(x) + H ሺܨത஺ேሻ + H (ܯ௪ሻሻ. It was observed that using the four 4-

trial designs from ܯ௪	 decreased the overall optimality criterion less (D (ܯ௪ሻ = 50.12 vs. D 

ሺܨത஺ேሻ = 49.52 and D (x) = 50. 06). Hence, one of the 4-trial designs from the ܯ௪ response had 

to be chosen as the optimal design for the first sequence of experiments. 
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To choose the best 4-trial design out of the 4 optimal options of  ܯ௪, considerable 

brainstorming had to be carried out. With respect to the output levels of the CSTR train, one 

usually aims at sufficiently high levels of conversion (for productivity reasons) and molecular 

weight averages (for product quality and final rubber property balance), at the same time trying 

to achieve a range of copolymer composition content to be as narrow as possible (for improved 

copolymer chain compatibility) around 25%.  In doing so and keeping in mind the above 

CSTR train general output specifications, we decided to favor experimental trials with higher 

levels of INT and E flow rates and lower WM levels. These choices were made in order to 

produce polymer particles with smaller particle size (E effect) and reduce the probability of 

extremely high chain lengths and branching/cross-linking levels (INT effect), while trying to 

maintain production rate at high levels (low WM and high INT). After applying the above 

logic, the first sequence of 4-trial experiments was chosen and is shown in Table 6.9. The 

corresponding x, ܨത஺ே and ܯ௪ responses are also shown in Table 6.9 and were calculated via 

adding a random error to the response generated from the mechanistic model. 

 

Table 6.9 First 4-trial sequence  

INT  E  WM  CTA  x   ࡺ࡭ഥࡲ  ࢝ࡹ

‐1  ‐1  ‐1  1  0.788  0.367  166,430 

‐1  1  1  1  0.574  0.173  114,552 

1  ‐1  1  ‐1  0.325  0.168  22,240 

1  1  ‐1  ‐1  0.683  0.386  151,480 

 
 
Next, Eq.  6.3 in Table 6.3 can be employed to calculate the posterior variance/covariance 

matrices. The prior vector of parameter means (ߙ) and the prior ܷs, shown in the second and 

third columns of Table 6.6, Table 6.7 and Table 6.8, are used along with the X matrix (shown 

in Table 6.9) and responses (reported in the last three columns of Table 6.9) in order to 

calculate posterior variance/covariance matrices. The corresponding matrices for conversion, 

copolymer composition, and weight-average molecular weight responses are shown in Table 

6.10, Table 6.11, and Table 6.12, respectively. One can now observe the presence of nonzero 

off-diagonal elements, i.e., covariance elements, in the updated ܷ matrices.  
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The updated variance/covariance matrix can now be used back in Eq.  6.1 to design (in an 

iterative sequential fashion) the next 4-trial sequence that maximizes the determinant H. In the 

second sequence, only one optimal 4-trial design for each x,  ܨത஺ே and ܯ௪	was found to 

maximize the determinant H. In order to find a design that was nearly optimal for all responses, 

the designs from one response were used in the H recalculations for the other two responses 

and the overall optimality criterion (D) was calculated in the same way as discussed for the 

first sequence. For example, the optimal design from conversion was used in the H 

recalculation for copolymer composition and molecular weight (using Uposterior from copolymer 

composition and molecular weight, respectively) and vice versa (the designs from copolymer 

composition and molecular weight were used in the H recalculations for conversion). Again, 

upon scrutinizing the overall optimality criterion (D), the 4-trial sequence designed through 

molecular weight decreased the overall D less dramatically. Table 6.13 shows the design that 

was chosen along with the corresponding responses shown in the last columns, calculated as 

explained earlier. Comparing Table 6.9 and Table 6.13, one can see that levels for INT, E and 

CTA are the same in both sequences and the only difference between the two sequences is in 

the levels of WM.  
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Table 6.10 Posterior variance/covariance matrix U after the first 4-trial sequence for conversion response  

5.00E‐04                             

0  3.97E‐06                           

0  0  5.16E‐05                         

0  0  0  5.18E‐04                       

0  1.02E‐11  0  0  1.60E‐09                     

0  0  0  8.29E‐09  0  1.00E‐08                   

0  0  8.24E‐08  0  0  0  9.99E‐07                 

8.00E‐11  0  0  0  0  0  0  1.00E‐10               

0  1.59E‐11  0  0  ‐6.36E‐15  0  0  0  2.50E‐09             

0  0  0  ‐8.29E‐35  0  2.74E‐40  0  0  0  1.00E‐34           

0  0  ‐4.04E‐36  0  0  0  7.18E‐38  0  0  0  4.90E‐35         

5.12E‐07  0  0  0  0  0  0  ‐2.05E‐14  0  0  0  6.40E‐07       

0  0  5.28E‐10  0  0  0  ‐9.38E‐12  0  0  0  4.60E‐40  0  6.40E‐09     

0  0  0  5.30E‐09  0  ‐1.75E‐14  0  0  0  1.75E‐40  0  0  0  6.40E‐09   

‐8.00E‐35  0  0  0  0  0  0  3.20E‐42  0  0  0  2.05E‐38  0  0  1.00E‐34 
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Table 6.11 Posterior variance/covariance matrix U after the first 4-trial sequence for cumulative copolymer response  

5.00E‐04                             

0  8.09E‐07                           

0  0  9.98E‐07                         

0  0  0  8.09E‐07                       

0  2.07E‐14  0  0  1.60E‐11                     

0  0  0  2.19E‐13  0  1.69E‐10                   

0  0  3.59E‐11  0  0  0  2.25E‐08                 

2.00E‐11  0  0  0  0  0  0  2.50E‐11               

0  2.91E‐11  0  0  ‐5.75E‐16  0  0  0  2.25E‐08             

0  0  0  ‐3.24E‐14  0  6.75E‐18  0  0  0  2.50E‐11           

0  0  ‐3.99E‐14  0  0  0  8.99E‐16  0  0  0  2.50E‐11         

8.00E‐09  0  0  0  0  0  0  ‐8.00E‐17  0  0  0  1.00E‐08       

0  0  1.02E‐13  0  0  0  ‐2.30E‐15  0  0  0  2.56E‐18  0  6.40E‐11     

0  0  0  8.28E‐14  0  ‐1.73E‐17  0  0  0  2.56E‐18  0  0  0  6.40E‐11   

‐5.12E‐11  0  0  0  0  0  0  5.12E‐19  0  0  0  2.05E‐16  0  0  6.40E‐11 
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Table 6.12 Posterior variance/covariance matrix U after the first 4-trial sequence for weight-average molecular weight response  

1.25E+08                             

0  2.22E+06                           

0  0  2.16E+07                         

0  0  0  7.51E+07                       

0  1.55E+05  0  0  1.14E+07                     

0  0  0  4.79E+03  0  1.00E+04                   

0  0  5.40E+03  0  0  0  4.00E+04                 

2.59E+04  0  0  0  0  0  0  3.24E+04               

0  9.21E+04  0  0  ‐5.02E+05  0  0  0  6.99E+06             

0  0  0  ‐2.69E+05  0  1.87E+01  0  0  0  5.61E+05           

0  0  ‐5.40E+05  0  0  0  8.64E+02  0  0  0  3.91E+06         

1.28E+05  0  0  0  0  0  0  ‐6.63E+00  0  0  0  1.60E+05       

0  0  5.40E‐01  0  0  0  ‐8.64E‐04  0  0  0  8.64E‐02  0  4.00E+00     

0  0  0  3.06E+01  0  ‐2.13E‐03  0  0  0  1.20E‐01  0  0  0  6.40E+01   

‐2.00E+05  0  0  0  0  0  0  1.04E+01  0  0  0  5.12E+01  0  0  2.50E+05 
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Table 6.13 Second 4-trial sequence  

INT E WM CTA x ࡲഥ࢝ࡹ ࡺ࡭ 

-1 -1 1 1 0.497 0.361 99,702 

-1 1 -1 1 0.867 0.181 101,240 

1 -1 -1 -1 0.607 0.371 109,770 

1 1 1 -1 0.401 0.179 143,091 

 

The updated variance/covariance matrices are shown in Table 6.14, Table 6.15, and Table 

6.16. Comparing variance/covariance matrices after the first and second sequence for each 

response (for example, compare Table 6.10 and Table 6.14 for conversion), one can see that 

after the second sequence of experiments, the uncertainties about the parameters (diagonal 

elements of the U matrix) have decreased. Also, most of the covariances (off-diagonal 

elements of the U matrix; measures of the strength of the correlation between parameters) 

appearing in the first sequence (Table 6.10) are zero in the second sequence (Table 6.14). This 

trend is the same for the other two responses.  Eq.  6.2 of Table 6.3 can now be employed to 

calculate the posterior vector of parameters (ߠ) after each sequence of 4-trials for each 

response. Further remarks about these results are presented in the Statistical Diagnostic Tests 

section.  
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Table 6.14 Posterior variance/covariance matrix U after the second 4-trial sequence for conversion response  

2.78E‐04                             

0  3.95E‐06                           

0  0  4.77E‐05                         

0  0  0  2.83E‐04                       

0  2.02E‐11  0  0  1.60E‐09                     

0  0  0  0  0  1.00E‐08                   

0  0  0  0  0  0  9.97E‐07                 

8.89E‐11  0  0  0  0  0  0  1.00E‐10               

0  0  0  0  0  0  0  0  2.50E‐09             

0  0  0  0  0  3.20E‐39  0  0  0  1.00E‐34           

0  0  0  0  0  0  1.56E‐37  0  0  0  4.90E‐35         

0  0  0  0  0  0  0  0  0  0  0  6.39E‐07       

0  0  9.76E‐10  0  0  0  0  0  0  0  0  0  6.40E‐09     

0  0  0  5.80E‐09  0  0  0  0  0  0  0  0  0  6.40E‐09   

0  0  0  0  0  0  0  0  0  0  0  2.04E‐37  0  0  1.00E‐34 
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Table 6.15 Posterior variance/covariance matrix U after the second 4-trial sequence for cumulative copolymer response  

2.78E‐04                             

0  8.08E‐07                           

0  0  9.97E‐07                         

0  0  0  8.08E‐07                       

0  4.14E‐14  0  0  1.60E‐11                     

0  0  0  0  0  1.69E‐10                   

0  0  0  0  0  0  2.25E‐08                 

2.22E‐11  0  0  0  0  0  0  2.50E‐11               

0  0  0  0  0  0  0  0  2.25E‐08             

0  0  0  0  0  1.35E‐17  0  0  0  2.50E‐11           

0  0  0  0  0  0  1.80E‐15  0  0  0  2.50E‐11         

0  0  0  0  0  0  0  0  0  0  0  1.00E‐08       

0  0  2.04E‐13  0  0  0  0  0  0  0  0  0  6.40E‐11     

0  0  0  1.65E‐13  0  0  0  0  0  0  0  0  0  6.40E‐11   

0  0  0  0  0  0  0  0  0  0  0  2.05E‐15  0  0  6.40E‐11 
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Table 6.16 Posterior variance/covariance matrix U after the second 4-trial sequence for weight-average molecular weight response  

6.95E+07                             

0  2.20E+06                           

0  0  1.89E+07                         

0  0  0  5.06E+07                       

0  2.98E+05  0  0  1.06E+07                     

0  0  0  0  0  1.00E+04                   

0  0  0  0  0  0  4.00E+04                 

2.88E+04  0  0  0  0  0  0  3.24E+04               

0  0  0  0  0  0  0  0  6.67E+06             

0  0  0  0  0  7.15E+01  0  0  0  5.58E+05           

0  0  0  0  0  0  1.95E+03  0  0  0  3.81E+06         

0  0  0  0  0  0  0  0  0  0  0  1.60E+05       

0  0  9.70E‐01  0  0  0  0  0  0  0  0  0  4.00E+00     

0  0  0  4.15E+01  0  0  0  0  0  0  0  0  0  6.40E+01   

‐2.00E+05  0  0  0  0  0  0  1.04E+01  0  0  0  5.12E+01  0  0  2.50E+05 
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6.3.1.2 Single 8-Trial Experiment 
 
The sequential approach is now contrasted to the design of a “single” 8-trial experiment, in 

which eight experiments are designed at once. In this approach, the prior vector of parameter 

means (ߙ) and the prior ܷs (see Table 6.6, Table 6.7, and Table 6.8 for conversion, copolymer 

composition and weight-average molecular weight, respectively) are used directly to design 

eight experiments at once. The Bayesian design suggested two sets of 8-trial experiments for 

each response and again, the analysis showed that the experiments designed for molecular 

weight decrease the overall D less; hence, one of the 8-trial experiments was chosen as the 

optimal 8-trial experiment and is shown in Table 6.17. For comparison purposes, the values of 

the H determinant and overall optimality criterion (D) of the sequential approach are shown in 

Table 6.18 along with the corresponding values for the single 8-trial experiment. It can be seen 

from the overall D that the single 8-trial experiment is only slightly better than the sequential 

approach. Keeping in mind the flexibility that the sequential approach offers (e.g., changing 

the level of factors, adding/dropping factors, etc.) and due to the fact that the single 8-trial 

approach is not producing a significantly higher D value, the sequential approach is deemed a 

better way of designing a total of eight runs. 

 

Table 6.17  “Single” 8-trial experiment along with the responses  

INT E WM CTA x ࡲഥ࢝ࡹ ࡺ࡭ 

-1 -1 -1 -1 0.588 0.167 100,580 

-1 -1 1 1 0.497 0.161 99,702 

-1 1 -1 1 0.667 0.181 101,240 

-1 1 1 -1 0.374 0.374 35,391 

1 -1 -1 1 0.807 0.371 173,880 

1 -1 1 -1 0.325 0.368 122,240 

1 1 -1 -1 0.883 0.186 151,480 

1 1 1 1 0.601 0.379 120,461 
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Table 6.18 Comparison of sequential approach with single 8-trial experiment 

 Determinant H  

Experiment x ࡲഥ࢝ࡹ ࡺ࡭ Overall D 

2 sequences of  4-trials 115.48443 9.07728 46.63024 171.19411 

Single 8-trial 115.48448 9.07728 46.80732 171.36907 

 

 

6.3.1.3 Comparison with Standard Statistical Designs 
 
Several qualitative statements have been made in the previous sections regarding the 

superiority of the Bayesian design with respect to standard factorial designs. In order to 

reinforce these previous statements, a quantitative measure is presented, where experiments 

designed through the Bayesian approach are compared with 8-trial experiments designed 

through fractional factorial and Plackett–Burman designs.  

 
The 8-trial experiment designed through the Bayesian approach was compared with a 2ூ௏

ସିଵ 

fractional factorial design. The comparison was made based on the value of the determinant H. 

The 2ூ௏
ସିଵ design is a 

ଵ

ଶ
 fraction of a full 2ସ factorial experiment and consists of a total of 8 runs. 

The two half-fractions recommended by a regular fractional factorial design are shown in 

Table 6.19. It can be seen that Fraction 1 is exactly the same as the 8-trial experiment designed 

through the Bayesian design (compare Table 6.17 and Table 6.19), hence giving exactly the 

same H values. Fraction 2 also gives the same H values for all responses. Therefore, one can 

say that the Bayesian suggestion for the 8-trial experiment is at least as good as the standard 

fractional factorial design experiment in the D-optimal sense. Therefore, overall, the Bayesian 

design is superior, since it offers the extra flexibility of designing sequences of fewer trials 

with the related benefits, as discussed earlier herein and also in earlier chapters. 
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Table 6.19 Two half-fractions from standard fractional factorial design 

Fraction 1 Fraction 2
INT E WM CTA INT E WM CTA 

-1 -1 -1 -1 -1 -1 -1 1 

-1 -1 1 1 -1 -1 1 -1 

-1 1 -1 1 -1 1 -1 -1 

-1 1 1 -1 -1 1 1 1 

1 -1 -1 1 1 -1 -1 -1 

1 -1 1 -1 1 -1 1 1 

1 1 -1 -1 1 1 -1 1 

1 1 1 1 1 1 1 -1 

 

Next, the 8-trial experiment designed through the Bayesian approach was compared with an 8-

trial experiment designed through a Plackett–Burman (PB) design. PB designs are economical 

designs with the run number a multiple of four rather than a power of 2. The number of runs 

for typical Plackett-Burman designs are 4, 8, 12, 16, 20 and so on. PB designs allow the 

estimation of k main effects using k + 1 runs. These designs are very efficient screening 

designs when only main effects are of interest. PB designs are resolution III, meaning that 

main effects are, in general, heavily confounded with two-factor interactions. Therefore, these 

designs are very useful for economically detecting large main effects, only when one can 

assume that all interactions are negligible compared to the important main effects 

(Montgomery, 2005).  

 
In our case, we were looking for designing 8 runs for 4 factors. 8 runs could be designed using 

a 2ଷ full factorial. A 2ଷ design could accommodate up to 7 factors in the PB context. To 

construct a PB design for 4 factors, 3 columns of a 2ଷ design should be dropped. Table 6.20 

presents the corresponding PB designs along with their overall optimality criterion (D). Design 

No. 1 is only slightly better than the 8-trial sequence from the Bayesian design, when 

comparing the overall optimality criterion values (D) (DBayesian = 171.36907 vs. DPB = 

171.36912). Designs No. 2 and 3 both give D values much lower than the D value from the 

Bayesian design. Design No. 4 is exactly the same as the 8-trial from the Bayesian design, 

hence, has the same D. Once again, one can conclude that the Bayesian design experiment is 

better than or as good as the PB design experiments in the D-optimal sense. 
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Table 6.20 8-trial runs from Plackett–Burman (PB) designs 

No INT E WM CTA = INT ൈ E Overall D 

1 -1 -1 -1 1 

171.36912 

  -1 -1 1 1 

  -1 1 -1 -1 

  -1 1 1 -1 

  1 -1 -1 -1 

  1 -1 1 -1 

  1 1 -1 1 

  1 1 1 1 

  INT E WM CTA = INT ൈ WM Overall D 

2 -1 -1 -1 1 

171.30833 

  -1 -1 1 -1 

  -1 1 -1 1 

  -1 1 1 -1 

  1 -1 -1 -1 

  1 -1 1 1 

  1 1 -1 -1 

  1 1 1 1 

  INT E WM CTA = E ൈ WM Overall D 

3 -1 -1 -1 1 

169.96154 

  -1 -1 1 -1 

  -1 1 -1 -1 

  -1 1 1 1 

  1 -1 -1 1 

  1 -1 1 -1 

  1 1 -1 -1 

  1 1 1 1 

  INT E WM CTA = INT ൈ E ൈ WM Overall D 

4 -1 -1 -1 -1 

171.36907 

  -1 -1 1 1 

  -1 1 -1 1 

  -1 1 1 -1 

  1 -1 -1 1 

  1 -1 1 -1 

  1 1 -1 -1 

  1 1 1 1 
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6.3.2 Statistical Diagnostic Tests 
 
A series of statistical diagnostic tests can now be carried out in addition to results discussed in 

subsection 6.3.1. These diagnostic tests serve to quantify the relative importance of the 

parameters (i.e., factor effects) and their interactions, as well as the quality of prior knowledge 

(in other words, the adequacy of the model used to generate the “prior knowledge”, as the case 

might be).  

 
Results from these statistical diagnostic tests are shown in Table 6.21, Table 6.22, and Table 

6.23 for conversion, copolymer composition, and molecular weight responses, respectively. 

The 2nd column in all tables presents the initial values of the parameter means (α); the 3rd and 

4th columns contain the updated estimates of the parameter means after the first and second 

sequence, respectively.  The 5th column shows the estimates of parameter means after the 

“single” 8-trial experiment. Test 1 (10th column of Table 6.21, Table 6.22, and Table 6.23) is 

defined as the ratio of the prior mean to the prior standard deviation (Std) of the mean 

[αi/(Uii)
1/2]. For example, in the case of conversion response (Table 6.21), test 1 is the ratio of 

the 2nd column, divided by the sixth column of Table 6.21. This test is essentially a measure of 

the uncertainty of the ‘‘expert’’. 

 
Test 2 is a measure of the actual significance of an effect. For instance, the test 2 values after 

the second sequence of experiments for conversion response (12th column of Table 6.21) is 

equal to the second updated estimate of the effect, )2(
i (4th column in Table 6.21), divided by 

the square root of the corresponding diagonal element of the last posterior variance/covariance 

matrix (8th column of Table 6.21), [ )2(
i /(Upost(ii))

1/2]. There is another test (test 3) that measures 

the quality of the expert’s opinion. For instance, test 3 after the  second sequence  of 

experimentation is equal to ( )2(
i - i ) divided by the square root of the diagonal element of the 

last posterior variance/covariance matrix, [( )2(
i - i ) /(Upost(ii))

1/2]. Test 3 is not shown here, 

since none of the values were significant which implies that the expert’s opinion was valid, and 

the model used seemed reliable. 
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Table 6.21 shows the main effects and two factor interactions for the conversion response. 

Based on the results of test 2, among main factors, WM had the strongest effect followed by E 

and INT. WM had a large and negative effect on conversion. At first glance one might argue 

that this does not make sense, since we are increasing monomer flow rate and hence the rate of 

polymerization should increase. However, this was not the case here. In emulsion processes, 

the rate of polymerization is proportional to the concentration of monomer in the particles 

(ሾܯሿ௣ሻ; see Eq.  6.4. The concentration of monomer in the particles is fixed in emulsion 

polymerization and is only affected by the thermodynamics of the system. Therefore, a higher 

flow rate of monomer will not affect ሾܯሿ௣, it will just dilute the system and hence decrease 

conversion. In addition, a higher WM level has a higher water flow rate, and that also adds to 

the dilution effect. 

 

ܴ௣ ൌ 	݇௣	ሾܯሿ௣ 	
௣ܰ	 ത݊

஺ܰ
 

Eq.  6.4

 

ܴ௣: Rate of polymerization ௣ܰ : Number of particles 
݇௣	: Propagation rate constant ത݊ : Average number of radicals per particle 
ሾܯሿ௣: Monomer concentration in particles ஺ܰ: Avogadro’s number 

 
Both emulsifier (E) and initiator (INT) flow rates had a positive and relatively large effect on 

conversion. This is as expected; both effects influence the number of particles ( ௣ܰ) and 

increasing ௣ܰ will increase the rate of polymerization, according to Eq.  6.4. Addition of more 

emulsifier creates more micelles, which could eventually lead to generation of more particles 

(higher ௣ܰ), and hence, a higher rate of polymerization. Addition of more initiator increases 

the number of radicals in the reaction mixture, which again results in generating more particles 

and increasing the rate of polymerization. Chain transfer flow rate (CTA) showed no 

significant effect on conversion response in our operating region (conversion range of 0.32 to 

0.86), as expected. Among 2-factor interactions, INT ൈ E, INT ൈ WM and E ൈ WM were 

significant. This was straightforward; as all three main factors were significant, the 2-factor 

interactions between them would be important too. Based on test 2, the most important 2-factor 

interaction influencing the conversion response was INT ൈ E.  Comparing tests 1 and 2 for the 
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conversion response, one can see that the expert’s opinion has been valid in all cases and has 

predicted the significant effects correctly.  

 
Results of the diagnostic tests for the copolymer composition response are cited in Table 6.22. 

Test 2 results showed that E, WM and INT were important effects, with the order of 

importance as cited here. Again, CTA did not show a significant effect on the copolymer 

composition response. The important 2-factor interactions were Eൈ WM, INT ൈ WM and E ൈ 

WM.  
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Table 6.21 Summary results of diagnostic tests for conversion response  

 

 

 

 

 

 

Parameter Prior  ߠ௜
ሺଵሻ ߠ௜

ሺଶሻ ߠ௜
଼ି௧௥௜௔௟ Prior  

Std 
Std  

(after 1st  seq.) 
Std  

(after 2st  seq.) 
Std 

(after 8 trials) 
Test 1 Test 2 

(after1st seq.) 
Test 2 

(after 2nd seq.) 
Test 2 

(after 8 trials) 

Mean 5.93E-01 5.93E-01 5.93E-01 5.93E-01 5.00E-02 2.24E-02 1.67E-02 1.67E-02 11.86 26.50 35.57 35.57 

INT 1.12E-02 1.06E-02 9.94E-03 1.18E-02 2.00E-03 1.99E-03 1.99E-03 1.99E-03 5.60 5.30 5.00 5.95 

E 3.85E-02 3.85E-02 3.85E-02 3.85E-02 7.50E-03 7.18E-03 6.90E-03 6.90E-03 5.13 5.35 5.57 5.57 

WM -1.44E-01 -1.44E-01 -1.44E-01 -1.44E-01 5.50E-02 2.28E-02 1.68E-02 1.68E-02 -2.61 -6.31 -8.54 -8.54 

CTA -5.00E-05 -4.97E-05 -4.95E-05 -4.97E-05 4.00E-05 4.00E-05 4.00E-05 4.00E-05 -1.25 -1.24 -1.24 -1.24 

INT × E -5.25E-04 -5.25E-04 -5.25E-04 -5.23E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 -5.25 -5.25 -5.25 -5.23 

INT × WM 2.35E-03 2.35E-03 2.35E-03 2.19E-03 1.00E-03 9.99E-04 9.98E-04 9.98E-04 2.35 2.35 2.35 2.19 

INT × CTA 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.25 1.25 1.25 1.25 

E× WM -1.12E-04 -1.12E-04 -1.13E-04 -1.12E-04 5.00E-05 5.00E-05 5.00E-05 5.00E-05 -2.25 -2.24 -2.25 -2.25 

E × CTA 6.94E-18 6.94E-18 6.94E-18 6.94E-18 1.00E-17 1.00E-17 1.00E-17 1.00E-17 0.69 0.69 0.69 0.69 

WM × CTA -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 -0.99 -0.99 -0.99 -0.99 

i
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Table 6.22 Summary results of diagnostic tests for copolymer composition response 

 

 

 

 

 

 

 

 

Parameter Prior  ߠ௜
ሺଵሻ

௜ߠ 
ሺଶሻ

௜ߠ 
଼ି௧௥௜௔௟ Prior  

Std 
Std  

(after 1st  seq.) 
Std  

(after 2st  seq.) 
Std 

(after 8 trials) 
Test 

1 
Test 2 

(after1st seq.) 
Test 2 

(after 2nd seq.) 
Test 2 

(after 8 trials) 

Mean 2.73E-01 2.73E-01 2.73E-01 2.73E-01 5.00E-02 2.24E-02 1.67E-02 1.67E-02 5.47 12.22 16.40 16.40 

INT 2.62E-03 2.62E-03 2.62E-03 2.75E-03 9.00E-04 8.99E-04 8.99E-04 8.99E-04 2.91 2.91 2.91 3.06 

E 6.53E-03 6.53E-03 6.37E-03 6.53E-03 1.00E-03 9.99E-04 9.98E-04 9.98E-04 6.53 6.54 6.38 6.54 

WM -2.94E-03 -3.07E-03 -3.07E-03 -2.81E-03 9.00E-04 8.99E-04 8.99E-04 8.99E-04 -3.27 -3.42 -3.42 -3.13 

CTA -6.25E-06 -6.25E-06 -6.25E-06 -6.25E-06 4.00E-06 4.00E-06 4.00E-06 4.00E-06 -1.56 -1.56 -1.56 -1.56 

INT × E -3.12E-05 -3.12E-05 -3.12E-05 -3.13E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 -2.40 -2.40 -2.40 -2.41 

INT × WM 3.94E-04 3.94E-04 3.90E-04 3.94E-04 1.50E-04 1.50E-04 1.50E-04 1.50E-04 2.63 2.63 2.60 2.63 

INT × CTA 6.25E-06 6.25E-06 6.25E-06 6.25E-06 5.00E-06 5.00E-06 5.00E-06 5.00E-06 1.25 1.25 1.25 1.25 

E× WM -5.94E-04 -5.94E-04 -5.94E-04 -5.90E-04 1.50E-04 1.50E-04 1.50E-04 1.50E-04 -3.96 -3.96 -3.96 -3.93 

E × CTA -6.25E-06 -6.25E-06 -6.25E-06 -6.25E-06 5.00E-06 5.00E-06 5.00E-06 5.00E-06 -1.25 -1.25 -1.25 -1.25 

WM × CTA -6.25E-06 -6.25E-06 -6.25E-06 -6.25E-06 5.00E-06 5.00E-06 5.00E-06 5.00E-06 -1.25 -1.25 -1.25 -1.25 

i
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Table 6.23 Summary results of diagnostic tests for weight-average molecular weight response  

 

 

Parameter Prior  ߠ௜
ሺଵሻ

௜ߠ 
ሺଶሻ

௜ߠ 
଼ି௧௥௜௔௟ Prior  

Std 
Std  

(after 1st  seq.) 
Std  

(after 2st  seq.) 
Std 

(after 8 trials) 
Test 1 Test 2 

(after1st seq.) 
Test 2 

(after 2nd seq.) 
Test 2 

(after 8 trials) 

Mean 1.13E+05 1.13E+05 1.13E+05 1.13E+05 2.50E+04 1.12E+04 8.33E+03 8.33E+03 4.53 10.11 13.58 13.58 

INT 3.31E+03 2.67E+03 2.70E+03 4.00E+03 1.50E+03 1.49E+03 1.48E+03 1.48E+03 2.20 1.79 1.82 2.71 

E 1.40E+04 1.40E+04 1.40E+04 7.97E+03 5.00E+03 4.65E+03 4.35E+03 4.35E+03 2.81 3.02 3.22 1.83 

WM -4.37E+04 -4.37E+04 -2.75E+04 -2.75E+04 1.20E+04 8.66E+03 7.12E+03 7.12E+03 -3.64 -5.04 -3.86 -3.86 

CTA -1.48E+04 -1.13E+04 -1.15E+04 -1.14E+04 3.50E+03 3.38E+03 3.26E+03 3.25E+03 -4.22 -3.36 -3.52 -3.50 

INT × E -1.56E+02 -1.56E+02 -1.53E+02 -1.56E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 -1.56 -1.56 -1.53 -1.56 

INT × WM -2.23E+02 -2.23E+02 -2.23E+02 -2.23E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 -1.12 -1.12 -1.12 -1.12 

INT × CTA -4.03E+02 -4.03E+02 -4.03E+02 -4.03E+02 1.80E+02 1.80E+02 1.80E+02 1.80E+02 -2.24 -2.24 -2.24 -2.24 

E× WM -5.14E+03 -3.09E+03 -3.00E+03 -5.14E+03 2.70E+03 2.64E+03 2.58E+03 2.58E+03 -1.90 -1.17 -1.16 -1.99 

E × CTA -1.77E+03 -1.77E+03 -1.95E+03 -1.77E+03 7.50E+02 7.49E+02 7.47E+02 7.47E+02 -2.36 -2.36 -2.61 -2.37 

WM × CTA 5.09E+03 5.09E+03 5.09E+03 5.09E+03 2.00E+03 1.98E+03 1.95E+03 1.95E+03 2.54 2.57 2.61 2.61 

i
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Table 6.23 summarizes the diagnostic checks for the weight-average molecular weight 

response. The significant factors affecting weight-average molecular weight were WM, CTA 

and E. WM had the highest and negative effect. Based on a simplified version of the 

relationship between some average molecular weight and the relevant rates of initiation, 

transfer and polymerization, as given by Eq.  6.5 (this equation will do for the purposes of our 

discussion and analysis, even if simplified), as  ܴ௣ decreases, so does the average molecular 

weight of the polymer produced. Let’s call this average molecular weight MW. As explained 

previously, the WM factor has a negative effect on ܴ௣ due to dilution, hence the same effect on 

MW (and, eventually, we would expect the same effect on number- and weight-average 

molecular weights). The strongly significant effect of CTA is an important demonstration of 

why CTAs are widely used for molecular weight control, especially in rubber production. The 

CTA effect manifested itself in the rate of transfer (ܴ௧௥) in Eq.  6.5. The transfer of a radical 

center from a growing polymer radical to the CTA stops the growth of the polymer radical and 

thus lowers the molecular weight and that is why ܴ௧௥ is inversely proportional to MW in Eq.  

6.5. Emulsifier flow rate (E) affects molecular weight through	ܴ௣; as discussed previously, 

increasing E, increases ܴ௣ and therefore MW increases with increasing E (see Eq.  6.5). An 

interesting point to note here is that the INT flow rate is not detected as an important factor in 

the diagnostic tests for average molecular weight. The reason could be that increasing INT will 

affect both 	ܴூ and 	ܴ௣ and, as can be seen in Eq.  6.5, these two could have the tendency to 

cancel out and that might explain the reason why the effect of INT does not appear significant 

in test 2 of Table 6.23. As for the effect of 2-factor interactions on MW all the 2-factor 

interactions involving CTA were deemed important ( Eൈ CTA, INTൈ CTA  and WM ൈ CTA).  

 

1
ܹܯ

ൌ
ܴூ
ܴ௣
	൅	

ܴ௧௥
ܴ௣

 
Eq.  6.5

 
MW: some  average molecular weight ܴூ: Initiation Rate 

ܴ௧௥: Rate of transfer reactions ܴ௣: Propagation rate 

 

In all the diagnostic check tables above, test 2 is reported after the first 4-trials (after 1st seq.), 

after the second 4-trials (after 2nd seq.), and after the single 8-trial (see columns 11th, 12th and 

13th in Table 6.21, Table 6.22, and Table 6.23). The results show that in most cases, basically 
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the same conclusions can be drawn from the diagnostic tests, even after the first 4-trial 

experiment. Hence, if one is interested solely in determining the relative importance of process 

factors (significant parameters), one sequence of 4-trials is sufficient to address that. However, 

depending upon the intended target, if one is more focused on parameter precision, then the 

second sequence of four trials or a “single” 8-trial may be desirable in order to decrease 

parameter uncertainty (translated into lower parameter variances). However, in this specific 

case, there is not much difference between the variances from the 1st sequence, 2nd sequence 

and 8-trials (compare columns 7th, 8th and 9th of Table 6.21, Table 6.22, and Table 6.23, 

respectively). In conclusion, one can run only 4 trials and obtain the same trends as the ones 

after 8 trials and this is, once again, yet another demonstration of the benefits of the sequential 

approach and the Bayesian approach, in general.  

 

6.4 Concluding Remarks 
 
The Bayesian design technique, previously shown to be a valuable approach in the study of 

batch homopolymerization of styrene in bulk, was also proven to be a practical tool in 

designing experiments for the emulsion copolymerization of AN/Bd in a continuous train of 

CSTRs. This was the first time that the Bayesian design of experiments was implemented to a 

continuous process. The motivation behind this study was to investigate the potential of the 

Bayesian design of experiments in relation to the Evolutionary Operation (EVOP) in a 

continuous process. 

 
It was shown that designing 8 experiments in two sequences of 4-trials each was almost as 

good an option as designing a single 8-trial experiment. The sequential nature of the Bayesian 

approach offers the flexibility to change the conditions with relative ease.  Comparison with 

standard experimental designs, namely, fractional factorial and Plackett-Burman designs 

showed that the Bayesian design is better than or as good as the standard experimental design 

techniques in the D-optimal sense. Therefore, overall, the Bayesian design is superior, since it 

offers the extra flexibility of designing sequences of fewer trials with the related benefits, as 

discussed earlier herein and also in earlier chapters. 
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Finally, the Bayesian approach is amenable to formal statistical diagnostic tests, which can 

eventually shed more light on the quality of prior knowledge and the significance of the 

estimated effects (relative importance of factors), and through these on some of the most 

uncertain parts of out process understanding (model). The results of these statistical tests 

revealed that the model used was indeed valid and confirmed many established kinetic 

theories. In addition, it was shown that INT, E and WM were significant factors for conversion 

and copolymer composition, while CTA did not have any significant effect. The factors 

influencing molecular weights were INT, WM and CTA.  
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Chapter 7. Gazing into the Abyss 

 
Both experience and educational research have indicated over many years that almost all PhD 

students go through ups and downs during their PhD program. Therefore, the corresponding 

PhD trajectory would look like a typical oscillatory behavior, with satisfaction as the positive 

part of the graph, and frustration as the negative part of it. This graph (satisfaction and 

frustration curves versus the different stages of the PhD program) has a horizontal line at zero, 

so one may see satisfaction as positive ‘bursts’, followed by frustration as negative ‘dips’. Of 

course, if one is learning something, the frustration curves may dominate, whereas the 

satisfaction curves will become more apparent when the experimental or modeling work 

produces good results. My supervisor had explained these aspects by going over a talk that he 

had given on the subject in the late 1980s. 

 
Not surprisingly, my own PhD trajectory followed this typical behavior. I was certainly elated 

when I passed my PhD comprehensive exam successfully, in Jan. 2009, but shortly after that, I 

hit the frustration part of the curves, as nothing wanted to work or produce the expected 

results! During this frustrating period, my supervisor had several long discussions with me, in 

which he explained what was happening to me, and in fact managed to anticipate most of the 

situations and emotions that I was going through. He indicated that at some point after the PhD 

comprehensive exam, the PhD candidate can obtain a very good appreciation of the concept of 

infinity or the ‘abyss’ ahead of her/him, and that was exactly what I was going through. I tried 

many different ways to get out of the quagmire and get on with the program, however, nothing 

seemed to work! To cut a long story short, finally, in Dec. 2010, I decided to pay a visit to 

some friends in Chile as an immediately-acting and strong medication (my supervisor was very 

supportive of me taking that break in order to recharge my batteries). 

 
While in Chile, I saw a very interesting painting that depicted a small Aymara (the indigenous 

ethnic group in the Andes and Altiplano regions of South America) family, taking a mid-day 

rest, with their water gourds on the side, at the edge of a hill in the Andean Altiplano (a high 

plateau in the Andes). The painting stayed with me and when I came back to Canada, well 

rested and eventually cured from the ‘frustration malady’, I decided to paint my own rendition 

of the Chilean painting in watercolor media.  
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My painting is shown in Figure 7.1. It is based on the Chilean painting that I came across 

during my travels, but it is my own interpretation. It is entitled ‘Gazing into the Abyss’, and 

shows two people, gazing down at the abyss of the high planes of the Andes, with their water 

gourds on the side. This painting is, of course, metaphorical and depicts me and my supervisor, 

while gazing at the abyss of my PhD research. Indeed, with my supervisor always on my side, 

willing not only to offer technical opinions and guidance at any time, but also willing to admit 

and accept that sometimes he also could just sit along with me and gaze at the abyss himself, 

my job became less daunting. 

 
This painting is dedicated to my supervisor and mentor, and many times a “father-figure”, and 

always a good friend, Professor Alexander Penlidis, with many thanks for his willingness to be 

supportive in different ways, matching my different learning needs, at every step along the 

PhD “Altiplano Pass”, always full of challenging (and rather tempting) ideas in long tea 

sessions! 
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Figure 7.1 Gazing into the Abyss (Nabifar A., Feb 2010) 
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Chapter 8. Bayesian Design Applied to Cross-liking NMRP of 

Styrene with Divinyl Benzene 

 
Cross-linked polymers (polymer networks) are very important in technology, medicine, 

biotechnology, agriculture, and other areas. They are used as construction materials, paints and 

coatings, polymer glasses with high mechanical strength and high thermal stability, rubbers, 

ion-exchange resins and sorbents, insoluble polymer supported reagents, controlled drug-

release matrices, electronics and cables, food packaging, sensors, ‘‘smart’’ materials, artificial 

organs, implants, superabsorbent materials, etc. In order to obtain an optimal performance in 

most of these applications, a uniform structure of the polymer network is desirable. 

 
Usually, cross-linked polymers are produced via regular free-radical polymerization (FRP).  

The polymerization is very fast and leads to polymer networks with high gel content at fairly 

low conversion levels. This makes cross-linking through FRP not a well-controlled process and 

the networks that are formed are not homogeneous. That means that within one sample, some 

sections may be very tightly cross-linked (high crosslink density), while other sections could 

exhibit a very loose network. This poses a problem, since a varying property distribution at the 

molecular level (i.e., heterogeneity) can lead to a polymer having inconsistent macroscopic 

properties. While the high density crosslinks will likely form a glassy substance, the lower 

density crosslinks will form a more amorphous gel. The non-uniformity of network 

morphology within cross-linked polymers makes consistent production challenging and limits 

their marketability. Therefore, it would be desirable to search for a synthetic route to produce 

polymer networks with homogenous structure (morphology). 

 
Recently, the claim has been made that cross-linking under controlled radical polymerization 

(CRP) conditions might result in a more homogeneous network. Therefore, synthesis, 

characterization and modeling of polymer networks by CRP have received considerable 

attention in the last decade and production of cross-linked polymer by controlled radical 

copolymerization of vinyl and divinyl monomers has already been addressed in the open 

literature. The relevant literature review will be discussed in detail in Chapter 9 (the 

experimental chapter) and not repeated here for the sake of brevity. However, the main 
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conclusion, based on the comprehensive literature review of Chapter 9 is as follows: although 

the research conducted in the literature points to the direction that production of a more 

homogeneous polymer network is possible through CRP techniques, the hard evidence is only 

indirect and based on rather theoretical speculations of how polymer networks are produced. 

Perhaps, a more detailed and comprehensive study is required to clarify many existing 

conflicting statements encountered in the literature, and also find a more formal, direct, and 

reliable way (if such a way exists) of characterizing the cross-linked polymer network with 

respect to homogeneity (and the closely related cross-link density distribution). 

 
These observations motivated our work on cross-linking nitroxide-mediated radical 

polymerization (NMRP) of styrene (STY) in the presence of small amounts of a common 

cross-linker, divinyl benzene (DVB). The cross-linked copolymer of STY/DVB is used for 

chromatographic applications and as a precursor for ion-exchange resins. It is also a system 

well studied under regular free radical polymerization conditions, hence an excellent system 

for the fundamental comparison between networks synthesized through CRP and FRP, and 

also for addressing the quest to identify a more formal indicator for network homogeneity. 

 
An experimental study of the cross-linking NMRP of STY with DVB was first carried out in 

our group following a bimolecular NMRP approach, where a popular nitroxide controller, 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), was added to the mixture of monomers and (a 

typical) initiator, such as benzoyl peroxide (BPO) (Tuinman et al., 2006).  The results on 

monomer conversion, molecular weights, gel fraction, and swelling index were compared 

against a STY/DVB copolymer synthesized through FRP. No significant auto-acceleration 

effect was detected in the early and intermediate conversion ranges. It was observed that the 

gelation point was significantly delayed. However, based on the experimental data collected, it 

was not possible to offer any statements related to the homogeneity of the network synthesized 

through NMRP. 

 
Later on, a detailed mechanistic model for cross-linking NMRP of STY with DVB was 

developed in our group (Hernandez-Ortiz et al., 2009). Performance of the model was 

validated using the experimental data available from Tuinman et al. (2006). The agreement 

between model predictions and experimental data for polymerization rate, molecular weights, 
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gelation point and sol consumption was fairly good. However, the experimental data available 

were focused on only one nitroxide concentration, and molecular weight and gel content data 

were not collected over the whole conversion range. Hence, supplementary experimental 

information was required in order to:  

 Fully verify the validity of the trajectories predicted by the model 

 Develop the ability of the model further to use nitroxides other than TEMPO  

 Address our question of whether a network synthesized through NMRP is more 

homogeneous than the network produced through FRP  

 
Since considerable prior knowledge related to cross-linking NMRP of styrene with DVB was 

already available from previous experimental and modeling efforts, application of the Bayesian 

design of experiments seemed like a perfect approach.  By using the Bayesian design 

technique, the valuable prior knowledge would be practically incorporated into the design. This 

would help to come up with the “best” settings, to be carried out in the laboratory, to collect 

meaningful experimental data that could satisfy the needs mentioned above. In addition, using 

the Bayesian design would, in principle, result in running fewer experiments, hence saving 

considerable time and resources (since a typical polymerization trial, and especially a cross-

linking polymerization one, may take more than a month, to plan, prepare, execute, and 

subsequently fully characterize the resulting polymer product).  

 
For the above reasons, it was decided to apply the Bayesian design of experiments to cross-

linking NMRP of styrene with DVB. Implementation of the Bayesian design to this system is 

discussed in this chapter. Information about the model developed and further detailed literature 

background will be presented, at length, in Chapter 9 and not repeated here for the sake of 

brevity. 

 

8.1 Bayesian Design Preliminaries  
 
As explained in Chapter 3 and summarized in Figure 8.1, implementation of the Bayesian 

design of experiments requires several steps. A step by step discussion on the application of the 

Bayesian design methodology to cross-linking NMRP of STY with DVB is presented in this 
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chapter. The related experimental parts (e.g., polymerization method, characterization 

techniques, etc.) are presented in detail in Chapter 9. 

 
 
 

 
 
Selection of Design Factors and Levels: As can be seen in Figure 8.1, the first step in the 

Bayesian procedure is selecting design factors and their levels. Three factors were chosen and 

are shown (with their initial levels) in Table 8.1. Selection of factors and their low and high 

level values were based on a detailed and critical analysis of the literature (Ide & Fukuda, 

1999; Drache et al., 2007; Zhou et al., 2010), combined with some of our previous experience 

with cross-linking NMRP (Tuinman et al., 2006; Hernandez-Ortiz et al., 2009). Based on our 

NO 

Select responses and design factors and 
their levels

Cast prior knowledge into  
a vector of prior parameters () and  

a prior variance/covariance matrix (U)  

Select “best” experiments using U and  (or ) 

Conduct and analyze experiments 

Update U and  (or ) 

YES 
END 

Goal met? 

(Satisfied with U and ?) 

Figure 8.1 Procedure for the Bayesian design of experiments 
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prior information, it was felt that temperature (T), concentration of alkoxyamine initiator ([N]) 

and concentration of the cross-linker ([DVB]) could be influential factors in the cross-linking 

polymerization of STY and DVB. 

 
Table 8.1 Selected factors and their levels (cross-linking NMRP; T = temperature, [N] = 
alkoxyamine concentration, [DVB] = cross-linker concentration) 

Level T (°C) [N]  
(wt%) 

[DVB] 
(wt%)

low 120 1 1 
high 130 2 1.5 

 
In the case of temperature, low and high levels chosen were 120 and 130 °C because these 

were common temperatures used in NMRP polymerization of styrene and values of kinetic rate 

constants were readily available for these two temperatures. Divinyl benzene (DVB) was used 

as the cross-linker. The cross-linked copolymerization of STY/DVB is a system well studied 

under regular free radical polymerization conditions, and also some research has already been 

carried out on the cross-linking NMRP of STY/DVB in our group (Tuinman et al., 2006; 

Hernandez-Ortiz et al., 2009) and in the literature (e.g., Ide & Fukuda, 1997; Ide & Fukuda, 

1999; Zetterlund et al., 2005; Zetterlund et al., 2006).  

 
It was decided to use an alkoxyamine unimolecular initiator as opposed to using a nitroxide 

and a bimolecular approach. An alkoxyamine can act as both initiator and nitroxide upon 

decomposition. By using a unimolecular approach one can avoid the complications that occur 

because of the side reactions between nitroxide and the (peroxide) initiator in the bimolecular 

approach, as discussed by Moad et al. (1981), Georges et al. (2002) and Fu et al. (2007). A 

unimolecular initiator based on TEMPO was synthesized in our lab and a comprehensive 

kinetic study on the polymerization of styrene with this unimolecular initiator was carried out 

by Zhou et al. (2010). Based on this experience, it was decided to use a commercially available 

alkoxyamine initiator, as it would eliminate the difficulties involved in making the 

unimolecular   initiator   consistently.   After a   complete    survey   of    the      commercially  

available alkoxyamine initiators, N-tert-butyl-N-(2-methyl-1-phenylpropyl)-O-(1-

phenylethyl)hydroxylamine (TIPNO-based alkoxyamine) was chosen, since based on previous 

research, relatively faster rates could be achieved using this alkoxyamine (Benoit et al., 1999; 
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Drache et al., 2007). When decomposing, this alkoxyamine produces 2,2,5-trimethyl-4-phenyl-

3-azahexane-3-nitroxide which is known as a TIPNO nitroxide. TIPNO and its alkoxyamine 

were first synthesized by Benoit et al. (1999), where a series of acyclic -hydrogen-bearing 

nitroxides and their corresponding alkoxyamines were synthesized to be used for the controlled 

radical polymerization of a wide range of monomers. 

 
One wt% (with respect to monomer) was chosen for the low level values of both alkoxyamine 

initiator and cross-linker. For the high level value of alkoxyamine initiator, 2 wt% was chosen; 

based on Drache et al. (2007), polymerization of styrene with 2 wt% TIPNO-based 

alkoxyamine had the characteristics of controlled-radical polymerization and gave acceptable 

rates, without TIPNO slowing the reaction considerably or acting as an inhibitor. Based on our 

previous experience with cross-linking polymerization of STY with DVB (Tuinman et al., 

2006), it was noted that handling the polymerization mixture was very difficult with 3 wt% 

DVB, as the system gelled very quickly and the polymer mixture became very viscous; hence, 

1.5 wt% was chosen as the high level for the cross-linker. 

 
Selection of Responses: It was decided that three responses satisfied our objectives of 

controlling the polymer production rate and product quality. The responses chosen were: 

conversion at gel point, gel content at 85% conversion, and weight-average molecular weight 

at 45% conversion. Conversion at gel point gave information on the extent of reaction at the 

gel point and how much the presence of TIPNO-based alkoxyamine had affected the cross-

linking reaction. Gel content and weight-average molecular weight were specified to be 

measured at particular conversion levels. Gel content was chosen to be measured at 85% 

conversion because of the interest in obtaining a well-developed polymer network for further 

characterization. From previous experience by Tuinman et al. (2006), it was known that the 

presence of the controller (i.e., nitroxide) would delay gelation and a well-developed network 

was achieved only towards the end of the reaction, therefore, measuring gel content at 85% 

conversion seemed suitable. Weight-average molecular weight was selected to be measured at 

45% conversion because again, based on Tuinman et al. (2006), copolymer of STY with DVB 

would gel at higher conversion levels and therefore, it would be impossible to have reliable 

molecular weight measurements. 
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The prior variances for the responses, calculated from previous experience, are shown in Table 

8.2. The error associated with conversion is usually considered around 3-5% (Dube et al. 

(1996); Roa-Luna et al. (2007); Nabifar et al. (2008)). However, since in cross-linking 

polymerization of STY with DVB we are dealing with gels, which means that there might be 

higher error associated with the conversion measurement, 6% error was considered for 

conversion, resulting in a prior variance of  3.60	 ൈ 10ିଷ. The error in gel content was estimated 

from experimental data from Tuinman et al. (2006). Later in our study, a detailed replicated 

study of the gel content measurement was carried out, which is presented in Appendix D. The 

error estimated from this replication was in good agreement with Tuinman et al. (2006). The 

variance of the molecular weight response was calculated from replicated molecular weight 

measurements available from prior experimental work, which gave a good idea about the 

variability in weight-average molecular weight. From replicated results, it was calculated that 

molecular weight values vary by ൎ	5000 gr/mol in the current range of molecular weights, 

leading to a variance of  2.50 ൈ 10଻. 

 

Table 8.2 Prior variances of the responses of interest 

Response  Prior Variance 

Conversion at gel point 3.60 ൈ 10ିଷ 

Gel content  7.05 ൈ 10ିସ 

Molecular weight (weight-average) 2.50 ൈ 10଻

 

Incorporation of Prior Knowledge: Having chosen the factors (and their levels) and the 

response(s) of interest, as illustrated in Figure 8.1, casting prior information into the vector 

α and the matrix U was the next step. α, the vector of the parameter means, and U, the 

variance/covariance matrix of the means, can be considered as the storehouse of prior 

knowledge. To generate the prior information about the parameters and their variances, a 

general mechanistic model developed for cross-linking NMRP of styrene by Hernandez-

Ortiz et al. (2009), was used to obtain the responses for a 23 standard factorial design (8 

trials). Details about this mechanistic model and the related predicted profiles will be 

presented in Chapter 9. The computer simulations were run and the corresponding responses 

were recorded for each of the 23 = 8 trials. α (the vector of parameter means) was obtained 
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by performing linear regression on the data and is shown in the second columns of Table 

8.3, Table 8.4, and Table 8.5, for conversion, gel content and weight-average molecular 

weight responses, respectively. It was decided that the three-factor interaction (T	 ൈ	ሾNሿ 	ൈ

	ሾDVBሿ ) was not important; hence, it was not included in the results. 

 
In order to determine the variances of the parameters, each parameter was examined 

separately and, based on our knowledge of the process, a ‘guess’ of the maximum/minimum 

value of the parameter was made. This stage was where most of the brainstorming took 

place. In the cases where the parameter was considered to be well known, a smaller interval 

of uncertainty was given, i.e., a smaller variance. The diagonal elements of the prior 

variance/covariance matrices (U) for conversion, gel content and molecular weight 

responses are shown in the third columns of Table 8.3, Table 8.4, and Table 8.5, 

respectively. The off-diagonal elements were initially all set to zero.  

 
 

Table 8.3 Elements of prior α and U for conversion at gel point in cross-linking NMRP   

Effect  αi Uii Test 1 
Mean 0.663 1.00E-04 66.30 

 T 0.004 4.00E-06 1.97 

 [N] 0.091 2.03E-03 2.03 

 [DVB] -0.052 6.25E-04 -2.07 

T	 ൈ	ሾNሿ 0.001 4.90E-07 0.79 

T	 ൈ	ሾDVBሿ 0.001 8.10E-07 1.40 

ሾNሿ ൈ	ሾDVBሿ -0.005 6.25E-06 -2.06 

 
 
 

Table 8.4 Elements of prior α and U for gel content at 85% conversion in cross-linking 
NMRP 

Effect  αi Uii Test 1 
Mean 0.664 8.10E-05 73.73 

 T -0.005 6.76E-06 -1.87 

 [N] -0.227 4.00E-04 -11.33 

 [DVB] 0.139 4.00E-04 6.95 

T	 ൈ	ሾNሿ -0.006 9.00E-06 -1.86 

T	 ൈ	ሾDVBሿ 0.003 9.00E-06 1.16 

ሾNሿ ൈ	ሾDVBሿ 0.079 9.00E-04 2.62 
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Table 8.5 Elements of prior α and U for molecular weight at 45% in cross-linking NMRP 

Effect  αi Uii Test 1 
Mean 34,607 1.23E+07 9.89 

 T -3,898 4.00E+06 -1.95 

 [N] -22,643 4.90E+07 -3.23 

 [DVB] 12,215 2.50E+07 2.44 

T	 ൈ	ሾNሿ 3,802 4.00E+06 1.90 

T	 ൈ	ሾDVBሿ -3,656 4.00E+06 -1.83 

ሾNሿ ൈ	ሾDVBሿ -11,173 9.00E+06 -3.72 

 

Scrutinizing the 2nd columns of Table 8.3, Table 8.4, and Table 8.5, one can observe that the 

values of prior parameters for the temperature effect (for all three responses) were the 

smallest among the parameters values of the main factors and were closer to the values for 

the two-factor interactions. Although it was expected that temperature, in fact, shows a 

significant effect on our responses, it was decided to keep the related parameters as they 

were first arrived at and also assign relatively smaller variances for the temperature effects 

at the same time. The reason was that the effect of temperature on our responses was 

considered to be well known. At the same time, we were interested in finding more 

information about the effects of the TIPNO-based alkoxyamine, the cross-linker and the 

interaction between them (if there were any present). Therefore, relatively higher initial 

variances were allocated to these parameters (see the 3rd columns in Table 8.3, Table 8.4, 

and Table 8.5). The corresponding values for test 1 are shown in the last columns of Table 

8.3, Table 8.4, and Table 8.5. This test checked the null hypothesis that αi = 0 purely in the 

opinion of the ‘‘expert’’ (the person who assigned the values for the prior effects and 

variances). It was essentially a measure of the uncertainty of the ‘‘expert’’. A value greater 

than 2 or less than -2 was considered significant (this is equivalent to a 95.44% confidence 

interval). Test 1 was defined as the ratio of the prior mean (αi) to the prior standard 

deviation (Std) of the mean (Uii)
1/2. As can be seen in Table 8.3, Table 8.4, and Table 8.5, 

based on the expert’s opinion, [N], [DVB] and ሾNሿ ൈ	ሾDVBሿ were considered important 

factors that would influece all three responses.  
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8.2 Selection of Experimental Designs and Discussion  
 
It was decided to run a total of 3 experiments in two sequences, 2-trials first followed by 1-

trial. As illustrated in Figure 8.1, the next step is using the prior variances (U) in the Bayesian 

design algorithm to choose the design conditions (X), in order to satisfy the optimality criterion 

(maximizing the determinant H) for each response. There happen to be four optimal 2-trial 

designs detected for each response. The optimal experiments from the conversion response 

were the same as the ones for the molecular weight response. Since two out of the three 

responses were optimal with the experiments designed for conversion, one of the 2-trial 

designs from this response was chosen as the ‘best’ 2-trial for the first sequence.  

 
Table 8.6 shows the four possible ‘optimal’ 2-trial experiments. It can be seen that all sets of 2-

trial experiments chosen by the Bayesian design follow a similar pattern, and the only setting 

being changed from the first trial to the second one within the first sequence is the level of [N]. 

For example, if we look at set No. 1, the first trial is chosen with all the factors at the low level; 

the second is suggesting to keep the same settings and just change the [N] level from low to 

high. From our previous experience with the cross-linking NMRP of styrene (Tuinman et al. 

(2006)), we know that it is easier to handle samples at lower levels of cross-linker and 

temperature. Hence, set No. 1 is chosen as the first sequence of 2-trials. This is, once again, a 

demonstration of one of the benefits of Bayesian design, whereby combining our process 

knowledge with the Bayesian design approach, we could make a judicious choice of the 

appropriate experiment, which may be optimal in both statistical and process senses. As the 

next step of the procedure (see Figure 8.1), these experiments were run in the lab and the 

responses were collected, as shown in Table 8.7. The related experimental details and the 

profiles of conversion, molecular weights, and gel content versus time are discussed in detail in 

Chapter 9 and not shown here for the sake of brevity. 
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Table 8.6 Four possible 2-trial experiments for the first sequence in cross-linking NMRP 

No. T [N] [DVB] 
1 -1 

-1 

-1 

 1 

-1 

-1 

2  1 

 1 

-1 

 1 

-1 

-1 

3 -1 

-1 

-1 

 1 

 1 

 1 

4  1 

 1  

-1 

 1 

 1 

 1 

 

 
Table 8.7 Experimental responses for the first sequence in cross-linking NMRP 

T [N] [DVB] 
Conversion 

@ gel point 

Gel content 

@ x = 85% 

Molecular weights 

@ x = 45% 

-1 -1 -1 0.617 0.915 53,889 

-1  1 -1 0.834 0.484 14,756 

 
For all the responses, the posterior variance/covariance matrix was calculated using the prior 

vector of parameter means (ߙ), and the prior ܷ (shown in the second and third columns of 

Table 8.3, Table 8.4, and Table 8.5, respecively), along with the X matrix (part of it shown in 

Table 8.7), and the responses collected via experimentation (reported in the last three columns 

of Table 8.7). The updated variance/covariance matrices were then used back into the Bayesian 

procedure to design (in an iterative sequential fashion) the next sequence of 1-trial that 

maximized the determinant H for all three responses. This time was one set of experimental 

conditions that maximized the determinant H for all responses. Hence, it was chosen as the 

second sequence and was carried out in the laboratory.  

 
The settings along with the corresponding responses collected from the single trial are shown 

in Table 8.8. As can be seen, the Bayesian design is suggesting to keep the temperature at the 

low level, while running the experiment at the high levels of [N] and [DVB]. The design 



146 

 

suggested by the Bayesian approach made process sense. We ran both trials in the first 

sequence with low levels of [DVB], hence it made sense to run the experiment in the second 

sequence at the high level of [DVB], as we were interested in finding more information about 

[DVB] (by changing the level of this factor, we could gather more information). Although the 

temperature level was also kept constant at -1 in the first sequence, since we were relatively 

certain about T, it was more convenient experimentally to keep T at the low level, and that was 

also what was suggested by the Bayesian approach. The level suggested by the Bayesian 

design for [N] also made process sense. As we would be running the experiment at the high 

level of [DVB], having a higher level for [N] would make it easier to control the gelation and 

avoid a very viscous polymerization mixture, which would be difficult to handle.  

 

Table 8.8 Experimental responses for the second sequence in cross-linking NMRP 

T [N] [DVB] 
Conversion 

@ gel point 

Gel content 

@ x = 85% 

Molecular weights 

@ x = 45% 

-1 1 1 0.723 0.774 23,682 

 
Figure 8.2 shows the visual illustration of all three runs suggested by the Bayesian design for 

cross-linking NMRP of STY with DVB. As can be seen in trial 1, the suggestion was to run an 

experiment at 120 °C, with 1 wt% alkoxyamine and 1 wt% cross-linker. The temperature and 

the cross-linker concentration for trial 2 were the same as in trial 1 (120 °C and 1 wt%, 

respectively), but the suggestion was to change the alkoxyamine concentration to 2 wt%. 

Finally, trial 3 was suggested to be run at low temperature (120 °C) and high levels of both 

alkoxyamine and cross-linker (2 wt% and 1.5 wt%, respectively).  

 
The smallest number of experiments that could be designed through a standard fractional 

factorial design was four experiments, which is the	ଵ
ଶ
ሺ2ଷ). The 4-trial experiment chosen by the 

fractional factorial design would be completely balanced with respect to all the factors (the 

level of all the factors would be changing). Altering the levels of all the factors would be 

desirable if there were no knowledge available a priori, and the experimenter was equally 

interested in finding more information about all three factors. However, in our case, since the 

interest was more focused on finding more information about the effects of the alkoxyamine 
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and the cross-linker on our three responses, changing the level of all factors at the same time 

would be superfluous. Once again, some of the advantages of the Bayesian design approach 

were illustrated. There were no restrictions in the number of experiments that could be 

performed in the Bayesian design method (3 in the Bayesian vs. 4 in the standard fractional 

factorial). In addition, runs could be ‘tailored’ to the experimenter’s interest in the Bayesian 

design, where more emphasis could be given to one or two factors only. 

 
 

 

 

 

 

 

 

 

 

Figure 8.2 Visual illustration of the three runs suggested by the Bayesian design for 
cross-linking NMRP of STY and DVB 
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8.3 Diagnostic Tests and Further Discussion 
 
In addition to the analysis presented above, a series of diagnostic tests can be carried out. A 

detailed discussion about these tests was presented in Chapter 3, however, whenever necessary, 

explanations are repeated here to remind the reader.  These diagnostic tests serve to quantify 

the relative importance of the parameters (i.e., factor effects) and their interactions, as well as 

the quality of prior knowledge (in other words, the adequacy of the model used to generate the 

“prior knowledge). 

 
Results from these statistical diagnostic tests are shown in Table 8.9, Table 8.10, and Table 

8.11 for conversion, gel content, and molecular weight responses, respectively. The 2nd 

columns in all the tables present the initial values of the parameter means (α), while the 3rd 

columns contain the updated estimates of the parameter means after the second sequence. The 

prior standard deviations assigned to each parameter are shown in column 4, while column 5 

exhibits the updated values for the standard deviations after the second sequence. Test 1 is 

shown in the 6th columns of these tables. As mentioned before, this test is a measure of the 

uncertainty of the ‘‘expert’’ and is defined as the ratio of the prior mean to the prior standard 

deviation (Std) of the mean [αi/(Uii)
1/2]. A value greater than 2 or less than -2 is considered 

significant (this is equivalent to a 95.44% confidence interval). Results for test 2 after the 

second sequence are shown in the 7th column. Test 2 is a measure of the actual significance of 

an effect and can be calculated after each sequence. It is equal to the updated estimate of the 

effect,  , divided by the square root of the diagonal element of the posterior 

variance/covariance matrix (which is equal to the standard deviation of the diagonal elements). 

Once again, a value greater than 2 or less than -2 implies significance.  

 
Results of the diagnostic tests for the conversion response, shown in Table 8.9, indicate that the 

TIPNO-based alkoxyamine ([N]) had the highest positive effect on this response. This trend 

was expected; as [N] was increased, the gel point was delayed to a higher conversion. For 

example, in the first sequence of our experiments (see Table 8.7), conversion at gel point was 

shifted from 62% to 83%, when [N] was increased from low to high (i.e., from 1 wt% to 2 

wt%). The cross-linker concentration had the second highest effect on conversion; however, 

this effect was negative, meaning that by increasing [DVB], conversion at gel point was lower. 
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Again, this trend was anticipated; as we increased the amount of cross-linker, the polymer 

mixture would get more viscous and therefore, would gel sooner (at lower conversions). For 

example, if the conversion at gel point for the second run in the first sequence (see last row in 

Table 8.7) was compared with this response in the second sequence (see Table 8.8), it could be 

seen that while keeping T and [N] at the same levels, going from low to high [DVB], would 

shift (decrease) the conversion at gel point from 83% to 72%.  

 
Our results show that the interaction between [N] and [DVB] was also among the factors 

influencing the conversion at gel point. (For confirmation purposes, a fourth run was carried 

out in the laboratory with low level of [N] and high level of [DVB] (complementing the run in 

the second sequence; see the first settings in run No. 3 of Table 8.6). Details about this run will 

be discussed in Chapter 9). The corresponding interaction plot for [N] and [DVB], based on 

our experimental data, is shown in Figure 8.3. As can be seen, at both levels of [N], the cross-

linker concentration ([DVB]) had a strong negative effect on conversion at gel point. However, 

the effect of [DVB] at the low level of [N] (blue line) was not as strong as this effect at the 

high level of [N] (red line). Figure 8.3 illustrates that there was interaction present between [N] 

and [DVB] (revealed by the nonparallel lines) and this confirmed that our result from test 2 

about the ሾNሿ ൈ	 ሾDVBሿ parameter was indeed valid (see Table 8.9), hence the Bayesian design 

had correctly spotted this interaction. It can also be seen that results from test 1 and test 2 were 

in good agreement, therefore the expert’s opinion was valid, and the model used gave reliable 

trends for the conversion at gel point response. 
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Table 8.9 Summary results of diagnostic tests for conversion at gel point response in  

cross-linking NMRP 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

Parameter Prior  ߠ௜
ሺଶሻ Prior  

Std 
Std  

(after 2st  seq.) 
Test 1 Test 2 

(after 2nd seq.) 

Mean 0.663 0.664 1.00E-02 9.66E-03 66.30 68.80 

T 0.004 0.004 2.00E-03 2.00E-03 1.97 1.95 

[N] 0.091 0.102 4.50E-02 2.79E-02 2.03 3.65 

[DVB] -0.052 -0.052 2.50E-02 2.06E-02 -2.07 -2.52 

T	 ൈ	ሾNሿ 0.001 0.001 7.00E-04 7.00E-04 0.79 0.78 

T	 ൈ	ሾDVBሿ 0.001 0.001 9.00E-04 9.00E-04 1.40 1.40 

ሾNሿ ൈ	ሾDVBሿ -0.005 -0.005 2.50E-03 2.49E-03 -2.06 -2.04 

i

Figure 8.3 Interaction plot for [DVB] and [N]: conversion at  
gel point response 
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Table 8.10 summarizes the diagnostic tests for the gel content response (at 85% conversion). 

As can be seen, concentration of the TIPNO-based alkoxyamine ([N]) had the highest effect on 

gel content as well; however, this factor had a negative effect on the response. This trend made 

sense; the presence of the alkoxyamine controller ([N]) slows down the reaction and delays the 

gelation in NMRP, hence, the amount of gel (gel content) produced at 85% conversion will be 

lower for the run with higher concentration of the alkoxyamine. This trend was observed in our 

experiments; in the first sequence of our experiments (see Table 8.7), gel content changed from 

0.91 to 0.48 when [N] was increased from the low to the high level (i.e., from 1 wt% to 2 

wt%).  

 
On the other hand, [DVB] had a significant positive effect on the gel content, as would have 

been expected. When the concentration of the cross-linker increases, there would be more gel 

produced, resulting in higher gel content at 85% conversion. For example, if the gel content at 

85% for the second run in the first sequence (see last row in Table 8.7) is compared with the 

gel content of the second sequence (see Table 8.8), it can be seen that while keeping T and [N] 

at the same level, going from low to high [DVB], shifts (increases) the gel content from 0.48 to 

0.77. Again, the interaction between [N] and [DVB] appeared as significant for the gel content 

response in Table 8.10. The same as for the conversion response, the interaction plot is shown 

in Figure 8.4. Once more, the interaction between [N] and [DVB] was obvious in the 

nonparallel lines (see blue and red lines in Figure 8.4). At both levels of [N], the cross-linker 

concentration ([DVB]) had a strong positive effect on gel content. However, the effect of 

[DVB] at the low level of [N] (blue line) was not as strong as this effect at the high level of [N] 

(red line). This confirmed that the test 2 result about the ሾNሿ ൈ	ሾDVBሿ parameter (shown in 

Table 8.10) was indeed valid, and once more the Bayesian design had correctly spotted this 

interaction. 

 

Comparing the results of test 1 and test 2 in Table 8.10, it can be seen that although based on 

expert’s opinion it was decided to consider temperature and its interactions not important (see 

Test 1 in Table 8.10), results from test 2 (which is an indicator of the actual significance of an 

effect) in Table 8.10 indicate that T and T	 ൈ	ሾNሿ  could also be important factors influencing 

gel content. This result may be pointing to the direction that the mechanistic model’s 
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predictions of the gel content response with respect to T might need some correction. However, 

this could as well be an artifact; as previously mentioned by Dube et al. (1996) and Vivaldo-

Lima et al. (2006), caution should be exercised in the interpretation of the results of the 

diagnostic tests, as correlation and nonlinearity in the model equations could also cause the 

results of these tests to become significant. At this point, since we do not have any 

experimental clarification of the trend recognized by the Bayesian design, we cannot make any 

comments. Hence, one of the future recommendations will be to run an experiment at the high 

temperature level (130 °C), and contrast the results obtained for gel content response with the 

results from the low T level.   

 

 

Table 8.10 Summary results of diagnostic tests for gel content at 85% conversion response in 
cross-linking NMRP 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Prior  ߠ௜
ሺଶሻ Prior  

Std 
Std  

(after 2st  
seq.) 

Test 1 Test 2 
(after 2nd seq.) 

Mean 
0.664 0.690 9.00E-03 8.23E-03 73.73 83.80 

T 
-0.005 -0.007 2.60E-03 2.58E-03 -1.87 -2.72 

[N] 
-0.227 -0.160 2.00E-02 1.36E-02 -11.33 -11.82 

[DVB] 
0.139 0.083 2.00E-02 1.36E-02 6.95 6.12 

T	 ൈ	ሾNሿ 
-0.006 -0.007 3.00E-03 2.98E-03 -1.86 -2.37 

T	 ൈ	ሾDVBሿ 
0.003 0.005 3.00E-03 2.98E-03 1.16 1.59 

ሾNሿ ൈ	ሾDVBሿ 
0.079 0.092 3.00E-02 1.53E-02 2.62 6.04 

i
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Finally, Table 8.11 illustrates the corresponding diagnostic tests for the molecular weight 

response (at 45% conversion). Again, [N] had the highest negative effect. As [N] increased, the 

weight average molecular weight at 45% conversion decreased. This is as expected; the inverse 

relationship between molecular weight and concentration of alkoxyamine initiator has been 

noted previously and is one of the characteristics of an ideal controlled radical polymerization 

(Matyjaszewski, 2002). On the other hand, [DVB] had a positive effect, meaning that by 

increasing the cross-linker concentration, molecular weight also increased, which was also 

expected. Based on the results of test 2 in Table 8.11, the ሾNሿ ൈ	ሾDVBሿ parameter was also 

spotted as a significant factor influencing the weight average molecular weight. The interaction 

plot of [DVB] and [N] for the molecular weight response, shown in Figure 8.5, offers a visual 

illustration of this interaction. Although at both levels of [N], the cross-linker concentration 

([DVB]) had a strong positive effect on the molecular weight response, the effect of [DVB] at 

the high level of [N] (blue line) was slightly more significant than this effect at the low level of 

[N] (red line).  

Figure 8.4 Interaction plot for [DVB] and [N]: gel content at 85% conversion 
response 
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Table 8.11 Summary results of diagnostic tests for molecular weight at 45% conversion 
response in cross-linking NMRP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.5 Interaction plot for [DVB] and [N]: molecular weight at 45% conversion response 

 

Parameter Prior 
 

௜ߠ
ሺଶሻ Prior  

Std 
Std  

(after 2st  seq.) 
Test 1 Test 2 

(after 2nd seq.) 

Mean 
34,607 39,349 3.50E+03 2.77E+03 9.89 14.20 

T 
-3,898 -5,446 2.00E+03 1.87E+03 -1.95 -2.91 

[N] 
-22,643 -23,925 7.00E+03 3.65E+03 -3.23 -6.56 

[DVB] 
12,215 10,102 5.00E+03 3.29E+03 2.44 3.07 

T	 ൈ	ሾNሿ 
3,802 3,906 2.00E+03 1.94E+03 1.90 2.01 

T	 ൈ	ሾDVBሿ 
-3,656 -3,318 2.00E+03 1.91E+03 -1.83 -1.74 

ሾNሿ ൈ	ሾDVBሿ 
-11,173 -8,214 3.00E+03 2.52E+03 -3.72 -3.26 

i
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Although based on expert’s opinion (test 1), temperature and its interactions were considered 

insignificant factors for the molecular weight response, test 2, which demonstrates the actual 

significance of an effect, was again significant for T and (borderline significant) for T	 ൈ	ሾNሿ 

(see Table 8.11). Temperature was expected to have a relatively significant effect on molecular 

weight, however, the T parameter calculated from the linear (regression) model based on the 

molecular weight response, as predicted by the non-linear mechanistic model, was smaller 

compared to the [N] and [DVB] parameters (see i for T in Table 8.5 and Table 8.11). It is 

interesting to see that the Bayesian design, in fact, had picked this up and the analysis showed 

that indeed temperature could be an important effect on the molecular weight response. 

Therefore, either the mechanistic model’s predictions of the molecular weight response need 

some correction, or there could be some nonlinearities or correlations present that had caused 

the test 2 results to be simply an artifact, as indicated earlier by Dube et al. (1996) and 

Vivaldo-Lima et al. (2006). At this point, since we do not have any experimental evidence of 

the effect of temperature on the molecular weight response, we cannot make any further 

comments. Hence, one of the future recommendations will be to run an experiment at the high 

temperature level, and compare the results obtained for molecular weight with the results at the 

low T level.   

 
8.4 Concluding Remarks 

 
The Bayesian design of experiments was successfully implemented to the cross-linking 

nitroxide-mediated radical copolymerization of styrene and divinyl benzene. The prior 

knowledge, generated from a mechanistic model already developed for cross-linking NMRP, 

was used in the Bayesian approach to design three ‘optimal’ experiments. After conducting 

these experiments in the laboratory and analyzing the results, we were able to determine the 

relative importance of the factors in the cross-linking nitroxide-mediated radical 

copolymerization of styrene and divinyl benzene. This was found to be in agreement with the 

experimental trends presented in Chapter 9. The combination of the mechanistic nature of the 

model used as the prior knowledge generator, the versatility of the Bayesian technique, and our 

process sense, allowed us to obtain valuable information about the effects of different factors 

via running a minimal number of experiments! 
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Our initial speculation that both alkoxyamine concentration and cross-linker concentration 

were significant factors on the responses of conversion at gel point, gel content at 85% 

conversion and molecular weight at 45%, was confirmed via the diagnostic tests that are part of 

the Bayesian design approach. Results from our diagnostic checks also determined that there 

were interactions present between [N] and [DVB] for all three responses. The interaction plots 

also corroborated the findings from our diagnostic tests and visually illustrated the interaction 

between [N] and [DVB]. However, when it came down to the temperature effect, the expert’s 

opinion was not always in agreement with the actual significance of the effect picked up 

through the diagnostic checks. Hence, further investigations are needed in order to determine 

whether this discrepancy was indeed true (i.e., the mechanistic model needs improvement with 

respect to the temperature effect), or simply an artifact caused by nonlinearities and possible 

correlations induced by the equations, which might have caused these slightly anomalous 

results. The trends observed here from the Bayesian analysis (diagnostic checks) will be 

experimentally verified in Chapter 9.  
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Chapter 9. Cross-linking NMRP of Styrene with Divinyl Benzene 

 
Results from the cross-linking kinetics of nitroxide-mediated radical polymerization (NMRP) 

of styrene (STY) in the presence of a small amount of divinyl benzene (DVB) are presented in 

this chapter. The experimental conditions used in this study were arrived at through the 

Bayesian design of experiments of Chapter 8. First, a brief introduction on the concept of 

cross-linking is offered, followed by a selective review of literature studies on cross-linking 

under controlled radical polymerization (CRP) and, more specifically, nitroxide-mediated 

radical polymerization (NMRP). Subsequently, the experimental and characterization 

techniques used to study cross-linking NMRP of STY/DVB are described. Then, a summary of 

the mechanistic mathematical model (including the reaction scheme and other general 

considerations) developed for cross-linking NMRP of STY/DVB is given in the modeling 

section. This section relies heavily on the mechanistic model development efforts of 

Hernandez-Ortiz et al. (2009 and 2012). 

 
In the results and discussion section, the performance of styrene polymerization with N-tert-

butyl-N-(2-methyl-1-phenylpropyl)-O-(1-phenylethyl) hydroxylamine (referred to as TIPNO-

based alkoxyamine or I-TIPNO) is first examined to see if the system exhibits controlled 

behavior. Then, typical profiles for cross-linking NMRP of STY/DVB in the presence of this 

alkoxyamine (as controller) are presented and contrasted with cross-linking under regular free 

radical polymerization, and NMRP of styrene (in the absence of cross-linker). Subsequently, 

the performance of cross-linking NMRP is evaluated based on rate of polymerization, 

molecular weights, polydispersity values and gel content under different operating conditions 

(different cross-linker and nitroxide concentrations). Finally, prediction profiles from the 

mathematical model are contrasted with experimental data to check the validity of the 

developed model with respect to both NMRP and cross-linking NMRP of STY/DVB with this 

TIPNO-based alkoxyamine. 
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9.1 Introduction and Selective Literature Review 
 
A cross-linked polymer can be defined as a macromolecule in which essentially all units are 

connected to each other. A highly cross-linked polymer results in a polymer network which is 

characterized by having an “infinite” molecular weight. Cross-linked polymers exhibit 

completely different properties when compared to linear polymers with identical chemical 

compositions. Figure 9.1 shows various typical structures for polymers. Degree of 

branching/cross-linking influences polymer properties such as density, melt viscosity, and 

crystallinity; it also determines the flow behavior of the material. Non-cross-linked polymers 

are in general thermoplastic, they can be melted and cast, extruded, or (injection) molded, 

while highly cross-linked polymers become thermoset, and they do not flow when heated.  

 
 

 

 

 

 

 

 

 

 

Cross-linking is especially important from a commercial point of view. Production of cross-

linked polymer may be undesirable for some applications; in such cases, chain transfer agents 

can be used to prevent or delay gelation. On the other hand, many commercial polymers owe 

their value to their cross-linked structures, which can range from slightly cross-linked materials 

(as in the case of elastomers), to highly cross-linked materials (as in the case of thermosets). 

Cross-linked polymers are very important in several areas, like medicine, biotechnology and 

agriculture, with multiple applications, such as super absorbent materials, chromatography 

packings, ion-exchange resins, dental restorative materials, and additives in surface coatings. 

They are also used in cosmetics and pharmaceuticals, drug-delivery systems, artificial organs, 

sensors, optics and electronics (Patrickios, 2010).  

Figure 9.1 Various polymer molecular architectures: a) linear, b) randomly branched,
c) cross-linked 

a) b) c) 
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Cross-linking can be achieved via physical or chemical routes. Chemical cross-linking can 

either ensue as part of the polymerization process (step growth polymerization and free radical 

polymerization), or as a post-processing stage (vulcanization and end linking prepolymers) 

(Odian, 2004). Cross-linked polymers can be obtained by step-growth polymerization when the 

functionality of one of the monomers is greater than two. Many thermoset polymers of major 

commercial importance, like unsaturated polyesters, polyurethanes, melamines, phenolic and 

urea formaldehyde resins, epoxy resins, and silicones, are synthesized by step-growth 

polymerization. In these systems, the cross-linking process, which leads to a polymer network 

formation, is usually referred to as curing. Vulcanization is a post-processing chemical 

technique where linear polymer chains become cross-linked by the action of certain agents that 

attack some active functional groups present in the polymer backbone, thus improving the 

mechanical properties of the resultant polymer structure. Vulcanization by sulfur bonding is 

one of the main techniques employed for cross-linking of polymer chains with diene groups, 

like natural rubber, styrene-butadiene rubber and polybutadiene. In end-linking cross-linking, 

two f-functional reactive groups are attached to each end of the linear pre-polymer and the 

cross-link step is then performed by bonding of the end groups (f: average functionality of 

cross-links, i.e., the number of effective elastic chains of the network attached to one given 

branch point). Anionic polymerization is among the techniques used for the synthesis of well-

defined macromolecules by the end-linking route (Odian, 2004). 

 
The regular free radical (FRP) copolymerization of a vinyl monomer with a small amount of a 

divinyl monomer is another method for the preparation of polymer networks, and offers one of 

the simplest routes. In these systems, the divinyl monomer acts both as a co-monomer and as a 

cross-linker. The reaction between vinyl and divinyl monomers leads to the formation of 

macromolecules with pendant vinyl groups. Depending on the reaction conditions, the pendant 

vinyl group from one polymer molecule can either react with the propagating radical center of 

a different chain, forming a single new macromolecule with an increased chain length 

(intermolecular cross-linking reaction), or with the radical center on the same polymer 

molecule, causing connective loops or cycles within the macromolecule (intramolecular cross-

linking). In the case of intramolecular cross-linking, if the two reacting sites are attached to the 

same primary chain, a primary cycle results; on the other hand, if the two reacting sites are 
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attached to two different primary chains (which have already experienced cross-linking), a 

secondary cycle is formed. Figure 9.2 shows a schematic of different types of cross-linking in 

FRP. Intramolecular reactions, in contrast to intermolecular ones, do not contribute to the 

growth of the molecular structure during polymerization and, therefore, they do not affect the 

molar mass distribution of the polymer population. However, these reactions manifest 

themselves by a shift to a higher value of the critical conversion for onset of gelation, and by a 

reduced amount of gel content during the formation of the polymer network. 

 

 
 
Intermolecular and intramolecular cross-linking tend to occur simultaneously because both 

reactions involve the same functional groups. The relative reaction rates are determined by 

polymer concentration and chain length. Thus, at very low polymer concentrations, 

intramolecular cross-linking dominates, yielding highly cross-linked particles (usually referred 

to as microgels) as product, whereas at higher polymer concentrations, intermolecular cross-

linking is the dominant route, leading to a polymer network (Gao et al., 2007). The presence of 

microgels in the network structure brings about an extremely restricted segmental mobility, 

while other regions of the polymer network experience a more mobile local environment, 

resulting in a heterogeneous distribution of segmental mobilities and broader relaxation time 

distributions. 

 
Although regular free radical polymerization (FRP) has been extensively used for 

copolymerization of monovinyl monomers and divinyl cross-linkers, and has many advantages 

Figure 9.2 Different types of cross-linking: a) intermolecular, b) intramolecular, yielding a
primary cycle, c) intramolecular, yielding a secondary cycle 
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over other polymerization mechanisms (including mild experimental conditions and various 

applicable monomer species), the network synthesized through this route is rather 

heterogeneous in structure. This heterogeneity in the structure is mainly ascribed to several 

inherent features of FRP, including slow initiation, fast chain propagation and high termination 

rates (Gao et al., 2007). The slow initiation results in gradual and continuous production of 

primary radicals, while the fast chain propagation and unavoidable termination allow the 

presence of dead polymer molecules with high molecular weights and numerous pendant vinyl 

groups per chain, from the beginning of the reaction. However, at the early stages of reaction, 

the environment is very dilute (because of the presence of a lot of monomer) and under dilute 

conditions, polymer chains hardly ever overlap with each other to produce a cross-linked 

network. Therefore, initially most of the pendant double bonds are consumed through 

intramolecular cross-linking which results in highly cross-linked nanodomains (microgels). As 

the reaction proceeds and the polymer concentration increases, these nanodomains further react 

with each other by intermolecular reaction and agglomerate. The agglomeration process will 

continue until the onset of gelation is eventually reached, when all these microgels are 

interconnected (see Figure 9.4). Therefore, gel formation by means of conventional free radical 

copolymerization is the result of a continuous association of microgels, where each one could 

experience a different crosslink history, and as a result, these gels are intrinsically 

heterogeneous. This mechanism have been experimentally confirmed via the studies of Soper 

et al. (1972), Holdaway et al. (1978), Mrkvicìkova and Kratochvil (1981) and Landin and 

Macosko (1988). They showed that significant amounts of vinyl groups were doubly reacted 

even at zero conversion, when, clearly, no intermolecular reactions were possible. Hence, the 

initial stage of the reaction was dominated by intramolecular x-linking and most of the 

consumed cross-linker was used to make small rings. 

 
Most applications of cross-linked polymers (especially in pharmaceuticals, bioengineering or 

biomedicine) require a structural perfection for optimal performance (Patrickios, 2010). Figure 

9.3 illustrates schematic representations of three polymer networks with different degrees of 

structural perfection. On the left is depicted a perfect (or ‘‘model’’) network, where the length 

of the polymer chains between the cross-linking nodes (elastic chain length) and the number of 

polymer chains emanating from each cross-linking node (core functionality) are both well-
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defined (Hild, 1997). An imperfect network is drawn on the right. In this network, both the 

elastic chain lengths and the core functionality are broadly distributed. Furthermore, this last 

network bears other defects, such as dangling chains, loops and totally unattached chains. In 

between these two extremes is the structure of an almost-perfect (‘‘quasi-model’’) network, 

shown in the middle of the figure and exhibiting only a small number of defects (Patrickios, 

2010). The majority of polymer networks produced and studied to date, through regular free 

radical copolymerization, are imperfect networks and have rather a heterogeneous structure (as 

discussed above). Therefore, it would be desirable to have a synthetic route to produce model 

or quasi-model networks that have homogeneous structures. 

 
 

 

 

 

 

 

 

 

Recently, the claim has been made that copolymerizing vinyl and divinyl monomers under 

controlled radical polymerization (CRP) might result in a more homogeneous network 

compared to FRP. The difference between the synthesized networks through CRP and FRP is 

attributed to having a rather different cross-linking mechanism. In CRP, due to fast initiation 

and almost negligible termination, all polymer chains are initiated at approximately the same 

time, and the number of primary growing chains is nearly constant throughout the 

polymerization. In addition, the fast activation/deactivation equilibrium causes slow and 

controlled growth of the polymer chains in CRP, where only a few monomer units are 

incorporated into the chains in every activation/deactivation cycle. During the dormant periods, 

the polymer chains cannot propagate but they have enough time for chain relaxation and 

diffusion, which increases the chance of radical centers randomly reacting with the available 

pendant double bonds from other molecules and hence, favoring more the intermolecular 

cross-linking. These characteristics, which seem to reduce the intramolecular cyclization, 

Figure 9.3 Polymer networks of different degrees of perfection (Patrickios, 2010) 

a) Model network       b) Quasi-model network       c) Imperfect network 
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might encourage the production of a less heterogeneous structure and a polymer network closer 

to a model or quasi-model one. Figure 9.4 shows a schematic of the assumed differences 

between networks synthesized through FRP and CRP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on these speculations, synthesis, characterization and modeling of polymer networks by 

CRP have received considerable attention in the last decade or so. Probably the first group 

reporting the use of CRP to prepare cross-linked networks was Solomon and coworkers (Abrol 

et al., 1997 and 2001) and thereafter, more research has been carried out in this area. Table 9.1 

captures the essence of the relevant work carried out in the literature on the cross-linking 

NMRP process. (Of course, parallel to the progress in cross-linking NMRP, there also have 

been developments in both ATRP and RAFT. For instance, Wang and Zhu (2005) and Yu et al. 

(2001, 2008) have reported on the ATRP of methacrylates with divinyl monomers, whereas 

Gao et al. (2007, 2008a and 2008b) have studied the copolymerization of acrylate monomers 

with diacrylate as cross-linkers in ATRP. For representative work in RAFT one can refer to 

Norisuye et al. (2005) and Dong et al. (2008). However, since the focus of this work is cross-

linking NMRP, no detailed literature review on the other CRP techniques is offered here; for a 

Figure 9.4 Assumed differences between the network formation mechanism through
FRP and CRP  
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comprehensive summary of the work in RAFT, ATRP and INIFERTER see Hernandez-Ortiz 

et al. (2009)). 

 
Although at first glance the cross-linking polymerization under CRP seems relatively well 

studied in the literature, with the production of a more homogeneous polymer network under 

CRP an “accepted” concept, our observation after a comprehensive literature review is as 

follows: although the research conducted in the literature points to the direction that production 

of a more homogeneous polymer network is possible through CRP techniques, “concrete” 

evidence is only indirect and based on rather theoretical speculations of how polymer networks 

are produced (e.g., conversion of pendant double bonds in the initial stages of the reaction, 

theory of gelation, swelling ratios, etc.). Perhaps, a more detailed and comprehensive study is 

required to clarify many existing conflicting statements encountered in the literature, and also 

find a more formal, direct, and reliable way (if such a way exists) of characterizing the cross-

linked polymer network with respect to homogeneity (and the closely related cross-link density 

distribution). 
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Table 9.1 Relevant literature on cross-linking NMRP  
Group Main studies Comments 
Solomon and coworkers 
 
(Abrol et al., 1997 and 
2001) 

 Synthesized statistical and star microgels of TBS/DVB via NMRP, using a 
unimolecular initiator (TBS: t-butylstyrene); solution polymerization with benzene 
 Multimodal distribution observed in the DRI detector  
 Displayed a considerably higher molecular weight through SEC-MALLS than that 
determined with SEC using polystyrene standards for calibration 

 First group to report NMRP to prepare cross-
linked networks  
 No trajectory for conversion or MWs.  
 No mention of homogeneity 
 Just mentioned that attempts to prepare 
microgels using AIBN (instead of the 
alkoxyamine), at the same concentrations of 
reactants used in their study, gave extensive 
gelation 
 Impossible to make star microgels via FRP as 
there are no functionalities at the ends of the 
chain to facilitate the formation of such 
molecular architecture 
 

Fukuda and coworkers 
 
(Ide and Fukuda, 1997 
and 1999) 

 Copolymerization of styrene with small amount of 4,4´-divinylbiphenyl, in the 
presence of an oligomeric polystyryl adduct (PS-TEMPO), at 125°C 
 Evaluated pendant vinyl reactivity before the gel point  

o The pendant vinyl concentration before the gel point (Cp) was determined 
using UV spectroscopy; the plot of Cp vs. styrene polymerization (C1) for NMRP 
showed an almost linear behavior; in contrast, the same plot for FRP showed 
high values of Cp at relatively low C1, which indicates the consumption of 
pendant double bonds via intramolecular (cyclization) reactions 

 Evaluated gelation behaviour  
o Determined swelling ratio, gel content and molecular weights between cross-
links (Mc) according to Flory and Rehner 
o Showed that the polymer synthesized under NMRP swells more and the 
gelation is delayed. In addition, Mc is claimed to be much higher for NMRP 
samples. However, Mc values are shown for low conversions only! 

 

 Study almost at the same time as Solomon and 
coworkers above  
 Conclusions about  network homogeneity are 
made based on the pendant vinyl concentration 
before the gel point!  
 Mc is an average value and does not give any 
information about the distribution, which 
basically dictates the homo- or hetero-geneity of 
the network! 
 Made a sweeping statement in the conclusions 
that NMRP will be more homogenous than FRP 
based on DMA studies, but no experimental 
evidence offered 
 

Fréchet and coworkers  
 
(Peters et al., 1999; 
Viklund et al., 2001) 

 Solution copolymerization of styrene and divinyl benzene, in the presence of 
different NMRP controllers to produce porous poly(styrene-co-divinyl benzene) 
monoliths for chromatographic applications 

 They showed that the unique porous structure 
resulted not from the controlled free radical 
nature of the polymerization but rather from the 
effect of the elevated reaction temperature on 
the solvency of the specific porogen employed 
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Zetterlund  and 
coworkers 
 
(Alam et al., 2006; Saka 
et al., 2007; Tanaka et 
al., 2007; Zetterlund et 
al., 2005, 2009a and  
2009b) 
 

 STY/DVB (f2= 0.01) with PS-TEMPO initiator at T = 125 °C in both bulk and 
miniemulsion 

o Pendant double bond conversion determined from combination of NMR and 
GC 
o Higher cross-link density and rate of polymerization in bulk compared to 
miniemulsion 
o Detailed analysis of inter- and intra-molecular pendant conversion with 
monomer conversion carried out for bulk/solution and miniemulsion 
o Comparison of experimental gelation points with theoretical predictions based 
on Flory-Stockmayer (FS) gelation theory for solution and miniemulsion  

 STY/DVB copolymerization via NMRP (with TEMPO) at 125 °C compared to 
STY/DVB copolymerization via FRP at 70 °C, in micro-suspension 

o Mechanical properties of individual micron-sized particles were compared 
o X-linked polymer particles prepared by NMRP exhibit different mechanical 
properties than X-linked particles prepared by FRP at low to intermediate 
conversion: compressive strength, deformation at break and breaking energy 
remain approximately constant from low to high conversion in FRP, while in 
NMRP these quantities increase linearly with conversion 
 

 Relatively high pendant conversion even at 
low polymer content  in bulk could be  
indicative of intramolecular cross-linking 
 No comparison with FRP presented in bulk 
 Showed that although at low to intermediate 
conversion X-linked particles synthesized 
through NMRP exhibited different mechanical 
characteristics than particles synthesized 
through FRP, at higher conversions (>70%) 
both systems exhibited very similar mechanical 
properties 

Sato and coworkers 
(Hirano et al., 2005) 

 Polymerization of DVB in the presence of nitrobenzene as a retarder, using an excess 
of dimethyl 2,2`-azobisisobutyrate (MAIB) to promote the formation of 
hyperbranched structures, at 70 and 80°C 

o  Based on the initial polymerization rate equation, they found, at 70°C, that the 
radicals coming from the nitro group of nitrobenzene behave as a NMRP 
controller, forming dormant polymer molecules. 

 No comparison with FRP presented in bulk 
 No mention of homogeneity 

Dias and coworkers 
(Goncalves et al., 2010) 

 Modeling work on STY/DVB copolymerization in the presence of TEMPO  Modeling predictions offered only for 
molecular weights, and rate of polymerization; 
no prediction for cross-link density 
 No discussion of homogeneity 
 Limited experimental data  
 

 

 



167 
 

The observations of Table 9.1 motivated our work on cross-linking NMRP of styrene (STY) in 

the presence of small amounts of a common cross-linker, divinyl benzene (DVB). The cross-

linked copolymer of STY/DVB is used for chromatographic applications and as a precursor for 

ion-exchange resins. It is also a system well studied under regular free radical polymerization 

conditions, hence an excellent system for a meaningful comparison between networks 

synthesized through CRP and FRP, and also for addressing the quest to identify a more formal 

indicator for network homogeneity. 

 
As discussed in Chapter 8, prior work had already been carried out in our group on cross-

linking NMRP in both experimental (Tuinman et al., 2006) and modeling (Hernandez-Ortiz et 

al., 2009) fronts. However, the experimental data available were focused on only one nitroxide 

concentration, and molecular weight and gel content data were not collected over the whole 

conversion range. In addition, based on the experimental data collected, it was not possible to 

offer any statements related to the homogeneity of the network synthesized through NMRP. 

Hence, supplementary experimental information was required in order to:  

 
o Fully verify the validity of the trajectories predicted by the model 

o Develop the ability of the model further to use nitroxides other than TEMPO  

o Address our question of whether a network synthesized through NMRP is more 

homogeneous than a network produced through FRP 

 
Since considerable prior knowledge related to cross-linking NMRP of styrene with DVB was 

already available from previous experimental and modeling efforts, it was felt that the area 

would be an excellent application of the Bayesian design of experiments, especially in order to 

save considerable time and resources. The details on the implementation of the Bayesian 

design to cross-linking NMRP were already discussed in Chapter 8. This chapter is dedicated 

to the experimental details of the runs suggested by the Bayesian approach. The kinetic study 

described here was carried out in preparation for the identification of network homogeneity 

indicators, the topic of Chapter 10. 
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9.2 Experimental  
 

9.2.1 Reagent Purification 
 
Styrene (STY) and divinyl benzene (DVB) were both obtained from Sigma Aldrich. DVB was 

a technical grade (> 80% DVB, 18% Ethylstyrene, <  0.5 % Diethylbenzene, and < 0.12% 4-

tert-butylpyrocatechol). STY was washed three times with a 10 w/v % sodium hydroxide 

solution, washed three times with distilled water, dried over calcium chloride and distilled 

under vacuum to remove the inhibitor and impurities. Solvents such as ethanol, 

dichloromethane, tetrahydrofuran, and acetone, used during the course of the experiments, and 

both di-tert-butyl peroxide (Trigonox B) and N-tert-Butyl-N-(2-methyl-1-phenylpropyl)-O-(1-

phenylethyl) hydroxylamine (TIPNO-based alkoxyamine) were used as received from 

suppliers (AKZO chemicals, and Sigma Aldrich, respectively). For detailed discussion of 

experimental methods see the ampoule polymerization manual (McIsaac et al., 1993). 

 

9.2.2 Polymer Synthesis 
 
The homo- and co-polymerizations were completed in borosilicate glass ampoules (capacity ~ 

4 mL). Reagents were weighed, mixed and pipetted into ampoules. Ampoules were then 

degassed by several vacuum-freeze-thaw cycles, sealed under vacuum with a gas/oxygen torch 

and immersed in a silicone oil bath having a temperature control of 0.1 °C. Ampoules were 

removed at selected time intervals to ensure a well-defined conversion versus time plot. Once 

removed from the bath, the ampoules were placed in liquid nitrogen to stop the polymerization. 

Ampoules were then thawed, weighed, and opened. The contents were dissolved in 

dichloromethane, and poured into a flask containing ethanol to precipitate the polymer. The 

polymer samples were air-dried to remove the solvent and vacuum-dried for three days at 

approximately 60°C until a constant weight was reached (McManus and Penlidis, 1996). 

 

9.2.3 Polymer Characterization 
 
Conversion levels were determined by gravimetry. Gravimetry involved comparing the weight 

of the isolated dried polymer to the weight of the monomer initially added in the ampoule as 

shown below: 
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Eq.  9.1

 
Polymer products were then characterized for molecular weight (averages and molecular 

weight distribution) by using size exclusion chromatography (SEC). SEC was also used for 

branching detection and characterization of the branched polymers. The general concept of 

SEC characterization is discussed below in subsection 9.2.3.1 (a more detailed discussion 

about the usage of SEC for branching detection will be given in Chapter 10). Gel content and 

swelling index for the samples were determined using a Soxhlet extraction setup, following 

ASTM D2765-01. Toluene was used as the reflux solvent. Subsection 9.2.3.2 contains more 

details about Soxhlet extraction.  

 

9.2.3.1 Size Exclusion Chromatography 
 
Size exclusion chromatography (SEC), also referred to as gel permeation chromatography 

(GPC), is the most popular and convenient method for determining average molecular weights 

and molecular weight distribution (MWD) of a polymer. As its name implies, SEC works on 

the principle of size exclusion. A very dilute polymer solution is passed through a column of 

porous particles. The molecules that are large cannot enter the pores of the packing and as 

such, they elute faster. Smaller molecules that can penetrate or diffuse into the pores are 

retained in the column and elute at a later time. Thus a sample is fractionated by molecular 

hydrodynamic volume and the resulting profile describes the molecular weight distribution. A 

concentration detector (e.g., differential refractometer (DRI) or UV detector) is placed 

downstream of the columns to measure the polymer concentration of each fraction as a 

function of time. The actual method for determining molecular weight averages and the MWD 

depends upon the presence of any accompanying detectors. For comprehensive information on 

SEC refer to” Size Exclusion Chromatography” by Mori and Barth (1999). 

 
The SEC setup used in this study consisted of a Waters solvent delivery system and 

autosampler followed by Viscotek’s quad detector equipped with a UV detector, low- and 

right-angle laser light scattering detectors (LALLS/RALLS), differential refractometer (DRI) 

and viscometer in series. The setup was maintained at 30 °C with tetrahydrofuran as the mobile 

phase flowing at a rate of 1.0 mL/min. One PLgel 5 μm guard column (50 7.5 mm) and three 

100% 
ampouleinmonomerofmassinitial

polymerofmass
conversion
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PLgel 5 μm Mixed-C columns (300   7.5 mm) from Varian (now Agilent) were used with the 

detectors. The laser operated at 670 nm and the light-scattering intensity was measured at 7° 

(LALLS) and 90° (RALLS). Data analysis for this system was performed using OmniSEC 

software version 3.0 (Viscotek). The polymer was dissolved in THF to obtain concentrations of 

~0.2 wt% and the injection volume varied between 100 and 200 μL (Scorah et al., 2004). Prior 

to injection, polymer solutions were filtered through a 0.2 μm filter to remove any insoluble 

materials, if present.  

 
The second virial coefficient for the light-scattering equation was assumed to be negligible as 

very low concentrations of polymer were employed. A replicated study was carried out to 

determine the values of the specific refractive index increment (dn/dc) for both homo- and co-

polymerization of styrene in NMRP (to be used in the light scattering analysis in SEC). The 

dn/dc values were determined using a Brookhaven BI-DNDC Differential Refractometer and 

the results were independently replicated to establish the error associated with this instrument 

(calculated error was ~ 0.004 mL/g). All the dn/dc values determined for our samples were 

within the 95% confidence interval for the value of 0.185mL/g (0.185  0.008 mL/g). Hence, it 

was decided to simply use the value of 0.185mL/g as the specific refractive index increment in 

the light scattering analysis for all the polystyrene samples.  

 
Since we were dealing with a cross-linking system, which is difficult to deal with in the 

laboratory due to the presence of gel material, presence of a considerable amount of error in 

experimentation and subsequent analyses was expected. As a result, when determining the 

molecular weights, higher (than normal) experimental errors were involved in addition to the 

typical instrumental error. To properly identify the sources and magnitudes of errors in 

determining molecular weights, a replicated experiment was conducted and subjected to 

extensive characterization using a hierarchical design (Box et al., 2005). This design was used 

to separate the total variation in the molecular weight measurement into parts assignable to 

three sources: error associated with the SEC measurement itself (analytical error), error related 

to the polymerization process/reactor, and the variability in the measurements corresponding to 

different sampling times. Results from this detailed study are presented in Appendix D. Our 

analysis showed that the error associated with the GPC (analytical error) was much lower than 
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the error associated with the other two (higher) levels. Also, the error related with the weight-

average molecular weight was higher than that of the number-average molecular weight. 

 

9.2.3.2 Soxhlet Extraction 
 
In the characterization of cross-linked polystyrene samples, Soxhlet extraction was used to 

separate the insoluble (gel) fraction from the soluble one (sol). Figure 9.5 provides a schematic 

typical of a Soxhlet extraction setup. A small amount of polymer is placed in a cellulose 

thimble and then the thimble is positioned inside the extraction chamber, as shown in Figure 

9.5. The solvent reservoir is heated such that a suitable amount of vapour can be condensed 

overhead of the thimble, in the condenser. The warm solvent then flows over the polymer in 

the thimble dissolving and extracting the soluble fraction of the polymer sample. Once enough 

vapour has been condensed, and the extraction chamber is almost full, the solvent drains 

through the siphon arm and back into the solvent reservoir. This process can be repeated and 

continued for several hours.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Due to the fact that low amounts of polymer were used, losses in the weight of the thimble 

during the procedure hindered the determination of reliable values for gel content. For this 

Figure 9.5 Soxhlet extraction apparatus 
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reason, prior to the extraction process, the cellulose thimbles were placed inside the apparatus, 

refluxed with toluene for one hour and half, dried under vacuum and then weighed. In the 

extraction procedure, toluene was refluxed over approximately 20 mg of polymer for 12 hrs 

(for confirmation purposes, the extraction procedure was carried out at 6, 12 and 24 hrs for 

several samples, in order to check if 12 hrs was sufficient to obtain reliable gel content and 

swelling index results. The outcome of the exercise showed that both gel content and swelling 

index values were the same for 12 and 24 hrs, hence 12 hrs was chosen for our extraction 

procedure). The thimbles containing insoluble polymer were removed from the setup, pat dried 

to remove the excess solvent, and then weighed. After that, the thimbles containing the 

insoluble polymer were placed inside a vacuum oven for a week at 60 °C to dry. Finally, the 

dried thimbles were weighed to allow for the calculation of the gel content and swelling index. 

For some of the samples, the soluble fraction of the polymer was recovered from the solvent 

reservoir to be analyzed with SEC. 

 
Gel content is defined as the mass fraction of the cross-linked polymer that is insoluble in a 

specific solvent after extraction under specific conditions, and can be determined using the 

following equation: 

 

	ݐ݊݁ݐ݊݋ܿ	݈݁ܩ ൌ 	
݀݁݅ݎ݀	݄݁ݐ	݂݋	ݏݏܽܯ ݎ݁݉ݕ݈݋݌
݈ܽ݊݅݃݅ݎ݋	݄݁ݐ	݂݋	ݏݏܽܯ ݈݁݌݉ܽݏ

 
Eq.  9.2

 
Swelling index is a measure of the type of gel. Gel with a low swelling index is referred to as 

“hard” or “tight” gel and usually indicates the presence of material that does not break easily. 

A high swelling index normally indicates the presence of a “loose” gel. Swelling index can be 

determined using: 

 

	ݔ݁݀݊ܫ	݈݈݃݊݅݁ݓܵ ൌ 		
݈݈݊݁݋ݓݏ	݄݁ݐ	݂݋	ݏݏܽܯ ݈݃݁
݀݁݅ݎ݀	݄݁ݐ	݂݋	ݏݏܽܯ ݈݃݁

 
Eq.  9.3

 
Determining the gel content and swelling index by Soxhlet extraction is prone to considerable 

error because of the nature of the procedure (although not always appreciated and even more 

rarely quantified). In our case, the error was even higher since very small amounts of polymer 

were used. To obtain an estimate of the error for the Soxhlet extraction setup, independent 
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replicates were conducted. The variance calculated from the error analysis for the gel content 

was 7.05	 ൈ	10ିସ (corresponding to േ 1.23 % error), while the variance for the swelling index 

was 12.23% (corresponding to േ1.62 % error). Details of the error analysis are presented in 

Appendix E. 

 

The molecular weight between cross-links (Mc) was calculated according to the Flory and 

Rehner approach (for tetrafunctional cross-linking): 

 

௖ܯ ൌ 	
ߩ
߭௘

 Eq.  9.4

 
where ߩ is the density of the polymer, and ߭௘ is the number of cross-links per unit volume 

(Hild, 1997): 

  

߭௘ ൌ 	
െሾ݈݊ሺ1 െ ௥ܸሻ ൅ ௥ܸ ൅ ߯	 ௥ܸଶሿ

ቈ ଵܸ	ሺ ௥ܸ

ଵ
ଷ െ	 ௥ܸ

2 ሻ቉

 
Eq.  9.5

 

௥ܸ is the volume fraction of polymer in a swollen gel and can be calculated as (Okay, 1988): 

 

௥ܸ 	ൌ 	 ቂ1	 ൅	ሺ݈݈݃݊݅݁ݓݏ	ݔ݁݀݊݅	 െ 1ሻ ൈ
ߩ
݀
ቃ
ିଵ

 
Eq.  9.6

 
 and d are the densities of polymer and solvent, respectively (in our case, X-linked ߩ

polystyrene and toluene). The values of  ߩ and d used are 1.08 g/ml and 0.867 g/ml (at 20 °C), 

respectively. ଵܸ is the molar volume of the solvent; for toluene, ଵܸ is 106.3 ml/mol (Okay, 

1988). ߯ is the polymer-solvent interaction parameter. The required value of  ߯ for the 

polystyrene-toluene system was obtained from (Okay, 1988): 

 
߯	 ൌ 	0.455 െ 	0.155	 ൈ	 ௥ܸ Eq.  9.7

 
After calculating the values of  ௥ܸ and ߯ from Eq.  9.6 and Eq.  9.7, respectively, one can then 

calculate ߭௘ from Eq.  9.5 and subsequently, calculate Mc from Eq.  9.4. 

 



174 
 

9.2.3.3 Nuclear Magnetic Resonance Spectroscopy 
 
The fractions of unreacted pendant double bonds in the nitroxide-mediate copolymerization of 

STY/DVB (before the gelation point) were determined by 1H-NMR using a Bruker AVANCE 

500 NMR spectrometer. Deuterated methylene chloride was used as the solvent and the 

measurements were taken at room temperature. The relative amounts of total double bonds 

reacted (this included both STY and DVB) and residual double bonds (from unreacted DVB; 

the final sample was purified, so there was no unreacted STY or DVB present) in the 

copolymer were estimated from absorption peaks of the spectra. In the case of reacted double 

bonds from both STY and DVB, the five protons in the –C6H5 group were taken at 6.5-7.5 

ppm (integrated area under the curve: A)), while for the unreacted pendant double bonds, one 

of the protons of the =CH2 group was found at δ = 5.2 ppm (integrated area under the peak: 

B). Hence, the fraction of unreacted pendant double bonds was calculated by  
஻

஺ ହ⁄
 . Figure 9.6 

shows a typical spectrum for the cross-linking NMRP of STY/DVB.  
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Figure 9.6 H-NMR spectra for cross-linked NMRP of STY with 1wt% DVB and 1 wt% I-TIPNO
at 33% conversion 
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9.2.4 Experimental Summary and Design 
 
In an attempt to determine the importance of different factors influencing the cross-linking 

NMRP of STY, the Bayesian approach was utilized to design three experiments in two 

sequences. As discussed in Chapter 8, three main factors were identified (concentration of the 

TIPNO-based alkoxyamine, DVB concentration and temperature) and high and low levels 

were chosen for each, as can be seen in Table 9.2. Experiments  #4 and  #5 in Table 9.2 show 

the experimental settings suggested by the Bayesian approach for the first sequence, while the 

single trial of the second sequence is experiment # 7. Experiment  #6  was carried out for 

confirmation purposes and to complement experiment # 7. 

 
Results from these four designed experiments were contrasted with homopolymerization of 

STY in the presence of I-TIPNO and regular FRP of STY/DVB, as reference systems. 

Experiments # 1 and 2 in Table 9.2 show the homopolymerization of styrene with low and high 

levels of I-TIPNO, respectively, while experiment # 3 is the regular free radical polymerization 

of styrene with 1 wt% DVB and 0.0053 M Trigonox B (as initiator).  

 
In order to check the reproducibility of the experimental data obtained, completely independent 

replicates were conducted for some of the runs. Reliability of molecular weight measurements 

was also checked by running GPC replicates at different times.  

 
 
Table 9.2 Summary of experiments designed for the kinetic study of cross-linked NMRP of 
STY 

Experiment # 
Temperature  

(°C) 
[I-TIPNO] [DVB] [DVB]/[I-TIPNO] 

(molar ratio) wt% M wt% 

1 120 1.0 0.028 -- -- 
2 120 2.0 0.058 -- -- 
3 120 -- -- 1.0 -- 

4 120 1.0 0.027 1.0 2.50 
5 120 2.0 0.055 1.0 1.25 
6 120 1.0 0.028 1.5 3.75 
7 120 2.0 0.056 1.5 1.87 
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9.3 Mathematical Modeling 
 
The mathematical modeling for cross-linking NMRP of STY/DVB is presented in this section 

and is heavily based on Hernandez-Ortiz et al. (2009 and 2012). This kinetic model was based 

on a detailed reaction mechanism. The reactions considered in the polymerization mechanism 

included reversible deactivation of alkoxyamine, dimer formation, thermal initiation, monomer 

propagation, reversible deactivation of polymer radicals, propagation through pendant double 

bonds (cross-linking and cyclization reactions), bimolecular termination and transfer reactions 

(transfer to monomer, dimer, polymer and other small molecules). Alkoxyamine 

decomposition was considered as a side reaction in the polymerization scheme (Li et al., 1995; 

Nilsen et al., 2006; Aldabbagh et al., 2008), while the reaction between dimer and nitroxide 

and the addition of nitroxide to monomer double bonds typically present during NMRP in the 

presence of TEMPO, were neglected. The detailed polymerization scheme can be found in 

Hernandez-Ortiz et al. (2009). A more simplified summary version is presented in Table 9.3. In 

this table, M is the monomer (in the current copolymerization system, two different types of 

monomers were involved, styrene and divinyl benzene). NOE ,  Rin
●

 , 
●NOX ,  D,  Rr

●, Rr NOX , 

Ps
*, Rs

*NOX , Pr, and  HNOX  in Table 9.3 are the alkoxyamine, primary free radical, nitroxyl 

stable free radical, dimer, polymer radical of size r, dormant polymer of size r, polymer 

molecule of size s which participates in cross-linking,  dormant polymer of size s with 

deactivated radical which participates in cross-linking, dead polymer of size r and 

hydroxylamine. 

  
In order to make the mathematical treatment tractable, it was assumed that every polymer 

radical contained only one active center (monoradical assumption), and that every dormant 

polymer molecule contained only one nitroxyl capping unit (monofunctional assumption). 

These assumptions implied that a polymer molecule could only be living, dormant or dead at 

once, and it was considered that when an active polymer molecule attacked the double pendant 

bond of a dormant polymer, a new polymer radical was formed. Pseudo-rate constants are 

listed in the third column of Table 9.3. 
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Table 9.3 Simplified polymerization scheme for cross-linking NMRP with alkoxyamine as 
unimolecular initiator 

Process Reaction Rate 
constant 

Alkoxyamine deactivation 
(unimolecular initiation) XinE ON  RNO  


  ka2, kd2 

Dimerization  D MM   kdim 

Thermal initiation 1
   R D MD  kthi 

First propagation   

 Primary radicals 1
    R RM in  ki 

 Dimeric radicals 1
    R DM  ki 

Propagation   R M R rr 1
   kp 

Reversible deactivation of polymeric radicals  XrXr ON RON  R

   kda, ka 

Cross-linking   

 Living to dead polymer   R P R srsr 
   kp

* 

 Living to dormant polymer srXsr   R ON R R 
   kp

*
 

Termination   

 Disproportionation srsr   P P R R    ktd 

 Combination srsr P R R 
   ktc 

Chain Transfer to:   

 Monomer    R P M R rr 1
   kfm 

 Dimer    D P D R rr
   kfD 

 Polymer srsr   R P P R    kfp 

Termination   

 Disproportionation srsr   P P R R    ktd 

 Combination srsr P R R 
   ktc 

Alkoxyamine decomposition   

 Nitroxyl ether decomposition XE  HONM  NO   kdecomp 

 Polymeric alkoxyamine XrXr  HON P ONR   kdecomp 
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Based on the kinetic mechanism, species balance equations were derived. The complete set of 

these equations is given in Hernandez-Ortiz et al. (2009). Balances for monomer and nitroxyl 

radical  are shown in Eq.  9.8 and Eq.  9.9, as examples of the balance equations for small 

molecules, while the mass balance for dead polymer radicals is shown in Eq.  9.10, as 

representative for polymer molecules (living, dormant, and dead polymer).   

 

Monomer 
conversion             

         -x NOk NOk  Y-x kk

-x TR Dk-x  Dk -xk 
dt

dx

XiNO Edecompfmp

inithi

11

1112

0

2
dim








 Eq.  9.8
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Eq.  9.9

 
Dead 
polymer  

 

Eq.  9.10

 
In order to follow the molecular weight development, in terms of number and weight averages, 

the method of moments was used. There were three polymer populations in this system: 

“living” polymer radicals, dead polymer molecules, and dormant species. The number-average 

molecular weight was the ratio of the first moments of all the species to their zeroth moment, 

while the weight-average molecular weight was the ratio of their second moments to their first 

moments. The model also included equations for the average cross-link density, divinyl 

monomer consumption and accumulated copolymer composition. All in all, the model for the 

cross-linking NMRP consisted of twenty three ordinary differential equations (ODEs); twelve 

of them were balance equations for small molecules, nine were moment equations for the 
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molecular weight development, one equation accounted for the calculation of average crosslink 

density, and the other one the calculated divinyl monomer consumption. The system of ODEs 

was solved and the predicted profiles were generated. The criterion for gel formation was 

weight-average molecular weight reaching a value greater or equal to 107. 

 
This kinetic model was originally developed for cross-linking NMRP of STY/DVB with 

TEMPO (Hernandez-Ortiz et al. (2009)), therefore it was altered to be applicable to the 

TIPNO-based alkoxyamine as well. Most of the kinetic parameters used in the simulations 

were the same as the ones presented in Hernandez-Ortiz et al. (2009) and are not cited here for 

the sake of brevity. The activation rate constant, ka2 = 3.3 ൈ 10 -3  s-1 (Marque et al., 2000), the 

deactivation rate constant, kd2 = 8.2 ൈ 10 6  L. mol-1. s-1 (Sobek et al., 2001), and the 

decomposition rate constant, kdecomp = 6.2 ൈ 10 -5  s-1  (Aldabbagh et al., 2008), were used for I-

TIPNO at 120 °C. Although the model was originally developed for the cross-linking NMRP 

of vinyl and divinyl monomers, its validity was also tested by reducing the model to check if it 

showed an acceptable prediction ability for NMRP homopolymerization of styrene. The 

predicted profiles from the model for conversion, molecular weights and polydispersity were 

contrasted to our experimental data for NMRP of styrene with I-TIPNO; results are presented 

in Subsection 9.4.1.2. Comparison results for cross-linking NMRP of styrene with DVB and I-

TIPNO are presented in Subsection 9.4.2.5.  

 

 

 

 

 

 

 

 

 

 

 

 



181 
 

9.4 Results and Discussion 
 

9.4.1 Kinetic Investigation of NMRP of Styrene with TIPNO-based Alkoxyamine 
 
As explained earlier, NMRP of styrene in the presence of a nitroxide controller was carried out 

in our investigations to serve as a reference for comparison with the cross-linking 

copolymerization of STY/DVB in the presence of a nitroxide controller. It was decided to use 

NMRP in the unimolecular approach as opposed to the bimolecular approach, since by using 

the former approach one could avoid the complications that occur because of side reactions 

between the nitroxide and the initiator in the latter approach, which affects both nitroxide 

concentration and the initiator efficiency factor (see Moad et al. (1981), Georges et al. (2002) 

and Fu et al. (2007)).  

 
A unimolecular initiator based on TEMPO was synthesized in our lab and a comprehensive 

kinetic study of polymerization of styrene with this unimolecular initiator was carried out by 

Zhou et al. (2010). However, there were several chemistry steps involved related to the careful 

synthesis and characterization of this unimolecular initiator. Based on this experience, it was 

decided to use a commercially available unimolecular initiator, as it would eliminate the 

difficulties involved in making the unimolecular initiator and also save a lot of time.  

 
Given prior experience we have had with a Ciba nitroxide, Irgatec CR76 (described in Psarreas 

et al. (2007) but for a totally different application) and its availability in our lab, it was decided 

to investigate the potential replacement of the commonly used nitroxide (TEMPO) with this 

nitroxide in our study. However, thorough kinetic investigations on styrene polymerization 

using Ciba’s Irgatec CR76 (NOR) over several temperature levels showed that there was no 

controlled radical polymerization behavior; the system behaved rather like regular thermal 

polymerization of styrene (Nabifar et al., 2010). Results from this detailed investigation are 

presented in Appendix F.  

 
In pursuit of finding a proper unimolecular initiator, and after a complete survey of the 

commercially available alkoxyamine initiators, N-tert-butyl-N-(2-methyl-1-phenylpropyl)-O-

(1-phenylethyl) hydroxylamine (called TIPNO-based alkoxyamine or I-TIPNO from hereon) 

was chosen to be used in our study. When it decomposes, this alkoxyamine produces 2,2,5-
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trimethyl-4-phenyl-3-azahexane-3-oxyle, which is commonly referred to as TIPNO nitroxide. 

TIPNO and its alkoxyamine (shown in Figure 9.7) were first described by Benoit et al. (1999), 

where a series of acyclic -hydrogen- bearing nitroxides and their corresponding alkoxyamines 

were synthesized to be used for the controlled radical polymerization of a wide range of 

monomers. This alkoxyamine is commercially available and can be purchased from Sigma 

Aldrich.  

 
 
 

 

 

 

 

 

 

 

9.4.1.1 Comparison with NMRP of STY with TEMPO-based Unimolecular Initiator 
 

The results of styrene polymerization in the presence of TIPNO-based alkoxyamine are 

presented in this subsection. The polymerizations were carried out at 120 °C with different 

concentrations of the alkoxyamine under bulk conditions. Figure 9.8a shows the conversion vs. 

time plot of styrene polymerization with 1 and 2 wt % TIPNO-based alkoxyamine 

(corresponding to 0.0.28 and 0.058 molar concentration (M), respectively, and shown as [I-

TIPNO] in the figure). As can be seen, the results for both concentrations are relatively close to 

each other and also close to the experimental data presented by Drache et al. (2007) (for 

styrene polymerization  with  0.05  M  TIPNO-based  alkoxyamine  at 123 °C). The  

corresponding  ln ([M]0/[M]) vs. time plots are illustrated in Figure 9.8b; a linear relationship 

can be observed for the first 15 hrs of the reaction. This is typical behavior for controlled 

radical polymerization (as discussed in Chapter 4), which suggests that TIPNO is acting as a 

suitable unimolecular initiator. The rate of polymerization is only imperceptibly higher for the 

run with higher alkoxyamine concentration; the effect of alkoxyamine concentration is not 

Figure 9.7 Structures of a) N-tert-butyl-N-(2-methyl-1-phenylpropyl)-O-(1-phenylethyl)
hydroxylamine (TIPNO-based alkoxyamine), and b) 2,2,5-trimethyl-4-phenyl-3-azahexane-3-
oxyle (TIPNO) 

a) b)
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significant on the rate of polymerization, as observed previously for other nitroxides (Fukuda 

et al., 1996).  

 

a) 
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Figure 9.9 presents a comparison between the data from our experimental run (styrene 

polymerized with [I-TIPNO] = 0.028 M), and the data obtained by Zhou et al. (2010) (styrene 

polymerization with [I-TEMPO] = 0.03 M). It is apparent that the polymerization rate of the 

styrene polymerization in the presence of TIPNO-based unimolecular initiator (I-TIPNO) is 

higher than in the case of I-TEMPO; this behaviour was also observed by Benoit et al. (1999) 

Figure 9.8 a) Conversion vs. time, b) ln ([M]0/[M]) vs. time, for styrene 
polymerization at 120 °C, with TIPNO-based alkoxyamine 
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and Drache et al. (2007). A complementary replicate run was also carried out, shown in Figure 

9.9, to collect more data and also check the reproducibility of the data. As can be seen, the 

experimental data are very reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The corresponding average molecular weight vs. conversion data are shown in Figure 9.10a. 

Both number- and weight-average molecular weights increase linearly with conversion, which 

serves as another indicator of controlled behaviour of styrene polymerization with TIPNO. The 

run with higher alkoxyamine concentration (I- TIPNO) has lower average molecular weights, 

as expected based on Eq.  9.11, which shows the theoretically calculated number-average 

molecular weight (the factor 104.5 in Eq. 9.11 is the molecular weight of styrene monomer). 

Polydispersity (PDI) vs. conversion data are shown in Figure 9.10b. PDI values are below 1.3, 

well below typical PDI values for regular free radical polymerization. The average molecular 

weights and PDI values for styrene polymerization with [I-TIPNO] = 0.05 M at 123 °C 

determined by Drache et al. (2007) are also illustrated alongside our experimental data; as can 

be seen, there is good agreement between the two experimental data sets.  

Figure 9.9 Rate comparison for STY polymerization with TIPNO-based and  
TEMPO-based unimolecular initiators, at 120 °C 
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௡ܯ ൌ 	 ሾܵݕݐሿ଴ ൈ ௦௧௬݊݋݅ݏݎ݁ݒ݊݋ܿ ൈ
104.15
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Eq.  9.11

 

Figure 9.11a compares the molecular weight results from our experiment (with 0.028 M [I-

TIPNO]) to the results of Zhou et al. (2010) (with [I-TEMPO] at 0.03 M). It can be seen that 

the molecular weight data for the TEMPO-based unimolecular initiator are lower than the 

molecular weights for the TIPNO-based one. Also, it seems that the TIPNO-based initiator 

offers better control of the polymerization reaction at higher conversions, i.e., a linear 

correlation between average molecular weights and conversion is maintained even at higher 

conversions, which is not the case for the TEMPO-based initiator. The corresponding PDI 

values are shown in Figure 9.11b; both polymerizations showed PDI values well below 1.3. 
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a) 
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Figure 9.10 Molecular weights (a) and polydispersity (b) vs. conversion, for
styrene polymerization at 120 °C, with TIPNO-based alkoxyamine 
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a) 
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Figure 9.11 Molecular weights (a) and polydispersity (b) vs. conversion comparisons,
for STY polymerization with TIPNO-based and TEMPO-based unimolecular
initiators, at 120 °C 



188 
 

9.4.1.2 Comparison of Model Predictions with Experimental Data 
 
Figure 9.12 shows a comparison of model predictions and experimental data of conversion 

versus time, for the NMRP of STY with TIPNO-based unimolecular initiator at 120 °C. It is 

observed in Figure 9.12a, b (for both concentrations of [I- TIPNO]) that the model captures the 

trends perfectly and the agreement between model predictions and experimental data is good. 

The corresponding comparisons for average molecular weights versus conversion are shown in 

Figure 9.13. It can be seen that the model captures the linear relationship between molecular 

weights and conversion perfectly; however, it underestimates the values of the molecular 

weights. This qualitative disagreement between model predictions and experimental data is 

more pronounced for the higher concentration of TIPNO-based initiator (see Figure 9.13b). 

The agreement in the polydispersity index (PDI) versus conversion profile is very good for 

both concentrations of the TIPNO-based initiator, as can be seen in Figure 9.14a and b. Again 

the model captures the behaviour of PDI perfectly, i.e., initially high values of PDI, lower than 

1.5 values during most of the polymerization, and then slight increase in the values towards the 

end of the reaction.  

 
In conclusion, the model captures well the controlled-radical polymerization features, such as 

linear increase of molecular weights with conversion and low PDI values. However, the 

quantitative agreement in the molecular weight versus conversion profiles is still not 

completely satisfactory, in spite of the inclusion of some known side reactions. Further 

investigation is required to find the reason for this discrepancy. 

 

 

 

 

 

 

 

 

 

 



189 
 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.12 Comparison of model predictions and experimental data of conversion
vs. time, for styrene polymerization at 120 °C with TIPNO-based alkoxyamine, a) [I-
TIPNO] = 0.028 M (1 wt%), b) [I- TIPNO] = 0.058 M (2 wt%) 
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Figure 9.13 Comparison of model predictions and experimental data of average
molecular weights vs. conversion, for styrene polymerization at 120 °C with
TIPNO-based alkoxyamine, a) [I- TIPNO] = 0.028 M (1 wt%), b) [I- TIPNO] =
0.058 M (2 wt%) 
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a) 
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 Figure 9.14 Comparison of model predictions and experimental data of PDI vs.
conversion, for styrene polymerization at 120 °C with TIPNO-based alkoxyamine,
a) [I- TIPNO] = 0.028 M (1 wt%), b) [I- TIPNO] = 0.058 M (2 wt%) 
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9.4.2 Kinetic Investigation for NMRP of STY/DVB with TIPNO-based Alkoxyamine 
 
Now that it is well-established that styrene polymerization in the presence of TIPNO-based 

alkoxyamine exhibits controlled-radical polymerization characteristics, results from the cross-

linking kinetics of NMRP of STY/ DVB with this unimolecular initiator are presented in this 

subsection. As mentioned earlier, this kinetic study is carried out in preparation for the 

identification of network homogeneity indicators based on polymer properties (which will be 

discussed in Chapter 10). Results are contrasted with regular FRP of STY/DVB and 

homopolymerization of STY in the presence of I-TIPNO, as reference systems. The effect of 

cross-linker concentration and I-TIPNO concentration and subsequently the [DVB]/ [I-TIPNO] 

molar ratio are investigated on rate, molecular weights, gel content and swelling index. In 

order to build more confidence in the observed data from such a complex, noisy and 

experimentally uncertain system, careful independent replication was carried out for most of 

the runs.  In parallel to our experimental investigations, a detailed mathematical model has 

been developed. Comparisons between experimental data and model predictions will also be 

discussed in this subsection. 

 

9.4.2.1 Comparison with NMRP of STY with I-TIPNO and with FRP of STY/ DVB 
 
Conversion versus  time for styrene  copolymerization  with 1 wt% DVB, in the presence of  

[I-TIPNO] = 0.028 M (1 wt %) (Experiment # 4 in Table 9.2; chosen as the base case for our 

study) is presented in Figure 9.15 (see open rhombic symbols). As can be seen, the rate of 

polymerization is slower than the regular styrene copolymerization with 1 wt% DVB (see open 

circles in Figure 9.15; this was conducted in the absence of TIPNO-based alkoxyamine), and is 

almost identical to the conversion versus time profile for styrene homopolymerization with [I-

TIPNO] = 0.028 M (1 wt %) (also shown in Figure 9.15; see black triangles). This experiment 

was replicated to check for reproducibility; the replicated conversion levels were very close to 

the original data, confirming the reliability of our data (compare crosses and open rhombic 

symbols in Figure 9.15). Our experimental data points were also compared to the data for 

bimolecular NMRP of STY/DVB in the presence of BPO as initiator and TEMPO as 

controller, collected by Tuinman et al. (2006). It can be seen in Figure 9.15 that the cross-

linking NMRP of styrene with TEMPO as controller is slower than this reaction with the 
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TIPNO-based unimolecular initiator; this observation is in agreement with the comparison of 

homopolymerization of styrene for these two nitroxides (see Figure 9.9). 

 

 

Figure 9.16 shows the corresponding average molecular weights. The insert in the figure shows 

the molecular weight values just before the gelation point. The molecular weights for styrene 

homopolymerization with I-TIPNO are also illustrated in this insert for comparison purposes. 

As can be seen in the insert, both number- and weight-average molecular weights increase 

linearly with conversion until about 33% conversion, and these values are very close to the 

ones from NMRP of styrene with I-TIPNO. However, just after the 33% conversion, average 

molecular weights start deviating from linearity (with Mw increasing more rapidly compared to 

Mn), which could be an indication of branching in the system (as will be discussed in more 

detail in Chapter 10). Around the 60% conversion level (approximately 8 hrs), there is a 

sudden jump in Mw, which is an indirect indication that the system had gelled. Due to the 

presence of DVB, the system had become viscous and had lost the ‘controlled’ behavior. After 

the gelation point, there is a drop in the average molecular weights. The reason is that only the 

soluble fraction of the produced polymer (sol) is analyzed via GPC and typically this sol 

fraction has lower molecular weight.  

Figure 9.15 Conversion vs. time for STY/DVB with [I-TIPNO] = 0.028 M (1 wt %) and  
[DVB] = 1 wt % at 120 °C; comparison with FRP, NMRP and STY/DVB with TEMPO 
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Molecular weights vs. conversion for NMRP of STY/DVB with TEMPO (carried out by 

Tuinman et al. (2006)) are shown in Figure 9.17, for comparison purposes.  As can be seen, the 

general trends are almost the same as STY/DVB with I-TIPNO (illustrated in Figure 9.16). 

However, in the case of NMRP with TEMPO, the system is not as well behaved as NMRP 

with I-TIPNO (there is a lot of error in the molecular weight measurements), and the system 

had gelled around 55% conversion.  

 
The behavior observed for cross-linking STY/DVB under NMRP conditions was entirely 

different from that of cross-linking in free radical polymerization.  Figure 9.18 shows the 

molecular weights vs. conversion for cross-linking polymerization of styrene with 1 % DVB, 

in the absence of nitroxide controller. It can be observed that the mixture gels in much earlier 

stages of the polymerization (almost around 7% conversion, corresponding to 30 min 

polymerization time) and there is no controlled features as was observed for the cross-linking 

NMRP (compare Figure 9.18 with Figure 9.16). 

Figure 9.16 Molecular weights vs. conversion for STY/DVB with [I-TIPNO] = 0.028 M
(1 wt %) and [DVB] = 1 wt % at 120 °C; comparison with NMRP of STY 
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Figure 9.17 Molecular weights vs. conversion for STY/DVB with [TEMPO]
= 0.0396 M and [DVB] = 1 wt % at 120 °C (Tuinman et al. (2006) 

Figure 9.18 Molecular weights vs. conversion for STY/DVB at 120 °C
with [TrigB] = 0.0053 M, [DVB] = 1 wt % 
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Polydispersity values follow the same trend, as shown in Figure 9.19. For cross-linking NMRP 

with I-TIPNO (see open rhombic symbols in Figure 9.19), the PDI values are well below 2 and 

close to the values of NMRP of styrene with I-TIPNO (see black triangles in Figure 9.19) up to 

33% conversion, after which the PDI values start to increase until reaching a high value of 11 

at the gelation point (which is around 60% conversion). The behavior for the cross-linked 

styrene under regular radical polymerization is totally different; the gel point is shifted to a 

much lower conversion (see the jump in PDI around 7% conversion) and also the magnitude of 

the PDI at the gelation point is not as high as the ones in NMRP systems. The corresponding 

PDI values for cross-linking NMRP with TEMPO show the same trends as the one with I-

TIPNO, however, same as with the molecular weight trends, the jump in PDI value, 

corresponding to the gelation point, is shifted to a lower conversion (around 55% conversion) 

in this case. 

 

 

 

Figure 9.19 PDI vs. conversion for STY/DVB with [I-TIPNO] = 0.028 M (1 wt %) and 
[DVB] = 1 wt % at 120 °C; comparison with FRP, NMRP and STY/DVB with
TEMPO 



197 
 

Gel content and swelling index for our samples from cross-linked NMRP were measured in 

toluene, following the technique discussed in Subsection 9.2.3.2, and are shown in Figure 

9.20a and b, respectively. The gel content increased very rapidly after the gelation point (see 

open rhombic symbols in Figure 9.20a), while the swelling index decreased from a maximum 

at the gelation point to a plateau lower value at high conversions (see open rhombic symbols in 

Figure 9.20b). The decrease in the swelling index suggests that the polymer network is loose at 

the onset of the gelation point and it becomes more compact, as the polymerization proceeds. 

Compared to the corresponding gel content and the swelling index for the copolymerization of 

STY/DVB using free radical polymerization (shown by the open circles in Figure 9.20a and b), 

the gelation point in NMRP is shifted to a significantly higher conversion (7% in FRP vs. 60% 

in NMRP). In addition, the swelling index at the gelation point for the cross-linked polystyrene 

under FRP is much lower than the one for the cross-linked NMRP (35% vs. 54%; see Figure 

9.20b), suggesting that the corresponding network for cross-linked FRP starts much tighter 

than the one for NMRP. However, it seems that as polymerization proceeds, the swelling index 

plateau at high conversions for both polymerizations emerges (see Figure 9.20b), suggesting 

that at high conversions, when both polymerizations are well developed, the swelling indices 

for both polymerization are almost similar. This behaviour can be observed more clearly in 

Figure 9.21, which exhibits swelling index vs. gel content for both FRP and NMRP cross-

linked samples. It can be seen that when the polymerization is well developed for both 

systems, and at almost the same gel content, the swelling indices are identical (both systems 

swell 10% at around 90% gel content).  

 
The gel content and swelling index values for cross-linking NMRP of styrene with TEMPO 

(determined by Tuinman et al. (2006)) are also shown in Figure 9.20 for comparison purposes 

(see filled circles). As can be seen, the gelation point is shifted from 60% to around 55% 

conversion for Tuinman et al. (2006). Apart from this difference, both gel content and swelling 

index behaviors are identical to our cross-linked polystyrene samples in the presence of 

TIPNO-based alkoxyamine.  

 
The comparison of the molecular weight between cross-links (Mc) versus conversion for FRP 

and NMRP is shown in Figure 9.22. Mc was calculated following the Flory-Rehner equation, 

as discussed in Subsection 9.2.3.2. The Mc determined for FRP is not strongly dependent on 
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conversion (if one excludes the initially high values) and is smaller than the Mc determined for 

NMRP, showing that the network synthesized through FRP seems tighter than the one 

synthesized through NMRP. It is worth noticing that towards the end of the reaction, at high 

conversions, the Mc values for FRP and NMRP are relatively very close together.  

 
Now that the general trends for conversion, average molecular weights and gel content are 

established for cross-linking NMRP of styrene, and the trajectories have been compared with 

the ones of homopolymerization of styrene with I-TIPNO and regular free radical 

polymerization of styrene and DVB as reference systems, the following subsections will 

document the effects of cross-linker and alkoxyamine concentrations in this system.  
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Figure 9.20 a) gel content, b) swelling index, vs. conversion for STY/DVB with
[I-TIPNO] = 0.028 M (1 wt %) and [DVB] = 1 wt % at 120 °C; comparison with 
FRP, NMRP and STY/DVB with TEMPO 



200 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.21 Comparison of the swelling index vs. gel content for 
STY/DVB network cross-linked under NMRP and FRP 

Figure 9.22 Mc vs. conversion for STY/DVB with [I-TIPNO] 
= 0.028 M (1 wt %) and [DVB] = 1 wt % at 120 °C; 
comparison with FRP and NMRP 
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9.4.2.2 Effect of I-TIPNO Concentration 
 
As outlined in Table 9.2, two levels of alkoxyamine concentration were chosen for our study 

(see Experiments #4 to #7 in Table 9.2). Therefore, it was possible to study the effect of 

alkoxyamine concentration on the rate of polymerization, molecular weights and gel content. 

Our base case (Experiment #4) is compared with Experiment # 5, displaying the effect of [I-

TIPNO] at the low level of DVB, while Experiment #6 is compared to Experiment #7, 

illustrating the effect of [I-TIPNO] at the high level of DVD.  

 
Figure 9.23a shows the effect of the alkoxyamine concentration on conversion vs. time at the 

low level of DVB. As can be seen, the rate of polymerization was independent of the 

alkoxyamine concentration, as observed previously for nitroxide-mediated 

homopolymerization of styrene with I-TIPNO (see Figure 9.8) and other nitroxides (Fukuda et 

al., 1996). Although it seems that above 25 hrs, the conversions tend to be higher for the run 

with [I-TIPNO]= 1%, our speculation is that this discrepancy between the two runs was due to 

the higher level of error at high conversions (due to a very viscous, and difficult to handle 

polymerization mixture). Our speculations were confirmed with the runs at higher [DVB], as 

shown in Figure 9.23b. As can be seen, although these two runs had different levels of 

alkoxyamine, their rates of polymerization were almost identical. 

 

a)                                                                           b) 

Figure 9.23 Effect of [I-TIPNO] on conversion vs. time at, a) low [DVB] and b) at high [DVB]
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The corresponding molecular weight averages for low and high [DVB] are shown in Figure 

9.24 and Figure 9.25, respectively. As can be seen, at both low and high [DVB], the runs with 

the lower alkoxyamine concentration had gelled earlier and the molecular weights at the 

gelation point were higher. For example, in Figure 9.24, the polymer synthesized with 1 wt % 

alkoxyamine gelled around 60% conversion (with Mw @ gelation point = 1,430,000 g/mol), 

whereas the polymer made  with  2  wt%  alkoxyamine  gelled  closer to   80%  conversion ( 

with Mw @ gelation  point  = 1, 216,000 g/mol).  

 
The inserts in both figures show the trends of the molecular weights at conversions below the 

gelation point. It is obvious in both inserts that runs with higher I-TIPNO had lower molecular 

weights. This is again in agreement with our previous observations for homopolymerization of 

styrene with I-TIPNO (see Figure 9.10) and with a unimolecular initiator based on TEMPO 

(Zhou et al., 2010), and also in agreement with the theory that the molecular weights are 

inversely proportional to the alkoxyamine concentration in NMRP systems (see Eq.  9.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.24 Effect of [I-TIPNO] on molecular weights at low [DVB]  
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The trends in gel content confirmed our experimental data for average molecular weights. As 

can be seen in Figure 9.26, at both low and high levels of DVB, the runs with the lower 

alkoxyamine concentration not only gelled earlier but also had higher gel content at the same 

conversion level.  

 

a) b) 

Figure 9.26 Effect of [I-TIPNO] on gel content vs. conversion at, a) low [DVB] and b) high [DVB] 

Figure 9.25 Effect of [I-TIPNO] on molecular weights at high [DVB] 
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9.4.2.3 Effect of DVB Concentration 
 
The next factor studied was DVB concentration. Referring back to Table 9.2, in this 

subsection, Experiment # 4 (our base case) is compared with Experiment #6 (effect of [DVB] 

at low alkoxyamine concentration), while Experiment # 5 is compared with Experiment #7 

(effect of [DVB] at high alkoxyamine concentration). According to Tuinman et al. (2006), 

concentration of DVB did not have any effect on the polymerization rate in cross-linking 

NMRP of STY/ DVB with TEMPO. This behavior was also observed for our experiments in 

cross-linking NMRP of STY/ DVB with the TIPNO-based alkoxyamine. As can be seen in 

Figure 9.27, the conversion vs. time profiles are almost identical for both low and high [DVB], 

at both low alkoxyamine concentration (Figure 9.27a) and high alkoxyamine concentration 

(Figure 9.27b).  

 
a) b) 

 

Figure 9.28 and Figure 9.29 illustrate the corresponding comparisons for molecular weights. At 

both low and high levels of alkoxyamine, the run with the higher DVB concentration gelled 

earlier (at a lower conversion), however, the difference between the conversion levels (at the 

gelation point) was more significant at the higher level of alkoxyamine. That is, at [I-TIPNO] = 

1 wt%, X @gel point (1 wt%) = 0.617 and X @gel point (1.5 wt%) = 0.558 (see Figure 9.28), while at [I-

TIPNO] = 2 wt%, X @gel point (1 wt%) = 0.824 and X @gel point (1.5 wt%) = 0.723 (see Figure 9.29). 

Figure 9.27 Effect of [DVB] on conversion vs. time at, a) low [I-TIPNO], b) at high [I-TIPNO] 
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This is consistent with our finding from the implementation of the Bayesian design, as was 

observed in Figure 8.3. The inserts in both Figure 9.28 and Figure 9.29 compare the molecular 

weights before the gelation point. As can be seen, the effect of [DVB] on the molecular 

weights is more pronounced at the higher level of alkoxyamine, i.e., the difference between 

molecular weights is higher in Figure 9.29 compared to Figure 9.28. This observation is again 

in agreement with our Bayesian design study of the cross-linking system, as observed in Figure 

8.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.28 Effect of [DVB] on molecular weights at low [I-TIPNO]  
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The trends in gel content confirmed our experimental data for average molecular weights. As 

can be seen in Figure 9.30, at both low and high concentrations of alkoxyamine, the runs with 

the higher DVB concentration not only gelled earlier but also had higher gel content at the 

same conversion level. This trend is again consistent with the trend observed in our Bayesian 

approach for the cross-linking system, as observed in Figure 8.4. 

 
a) b) 

Figure 9.30 Effect of [DVB] on gel content vs. conversion at, a) low [I-TIPNO] and b) high [I-
TIPNO] 

Figure 9.29 Effect of [DVB] on molecular weights at high [I-TIPNO] 
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9.4.2.4 Effect of [DVB]/ [I-TIPNO] Molar Ratio 
 
Using two concentration levels for each I-TIPNO and DVB resulted in four different molar 

([DVB]/ [TIPNO]) ratios. The effect of this molar ratio is investigated on conversion, 

molecular weights and gel analysis data. As can be observed in Figure 9.31, the [DVB]/ [I-

TIPNO] molar ratio does not affect the rate of polymerization, at least at the DVB levels 

employed. The non-significant effect of controller concentration (I-TIPNO) was as expected 

and has been observed for other systems as well (Tuinman et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contrary to what was observed for rate of polymerization, the effect of [DVB]/ [I-TIPNO] was 

significant on average molecular weights, and polydispersity, as can be seen in Figure 9.32 and 

Figure 9.33, respectively. The combination of high DVB concentration and low I-TIPNO 

concentration (i.e., maximizing the [DVB]/ [I-TIPNO] ratio) resulted in the earliest gelation 

point and hence, fastest loss of ‘livingness’. As the [DVB]/ [I-TIPNO] ratio decreased, the gel 

point was observed at higher conversion levels. For all the different ratios, before the vicinity 

of the gelation point, the average molecular weights increased linearly with conversion, and the 

polydispersity values were lower than 1.5. However, when closer to the gelation point, the 

“controlled” or “livingness” behavior was lost and one could observe a jump in average 

molecular weights and  polydispersity values at the gelation point. 

Figure 9.31 Effect of [DVB]/ [I- TIPNO] on conversion vs. time 
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a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.32 Effect of [DVB]/ [I- TIPNO] on a) number-average
molecular weight, b) weight-average molecular weight, vs. conversion 
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These observations, based on the jump in average molecular weight values versus conversion 

data, were confirmed also through more direct steps measuring the gel content using a Soxhlet 

extraction setup. As can be seen in Figure 9.34a, the largest [DVB]/ [I-TIPNO] resulted in the 

earliest gelation point (around 56% conversion) and as this ratio decreased the gelation was 

delayed towards higher conversion (e.g., gelation happened around 83% conversion for 

[DVB]/ [I-TIPNO] = 1.25). Furthermore, our swelling index results, shown in Figure 9.34b, 

indicated that the lower the [DVB]/ [I-TIPNO] ratio, the ‘looser’ the polymer network was at 

higher conversions, which resulted in higher molecular weight between cross-links (Mc), as 

corroborated in Figure 9.35. 

 

 

 

 

 

 

 

 

Figure 9.33 Effect of [DVB]/ [I- TIPNO] on polydispersity vs. conversion 
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a)  

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.34 Effect of [DVB]/ [I- TIPNO] on a) gel content, b) swelling index 
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In Figure 9.36, the gel content, swelling index and molecular weight between cross-links (Mc) 

values for different [DVB]/[I-TIPNO] ratios are contrasted at 85% conversion level, as an 

example. As the [DVB]/ [I-TIPNO] ratio increases, the gel content at 85% conversion 

increases (see Figure 9.36a), while the swelling index decreases (see Figure 9.36b); this in turn 

indicates a tighter network and as a result a lower Mc is obtained (see Figure 9.36c). 

 

 

 

 

 

 

 

 

 

 

Figure 9.35 Effect of [DVB]/ [I- TIPNO] on molecular weight 
between cross-links vs. conversion  
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Figure 9.36 Effect of [DVB]/ [I- TIPNO] on a) gel content, b) swelling 
index, c) Mc, at 85% conversion 
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9.4.2.5 Comparison of Model Predictions versus Experimental Data 
 
In parallel to our experimental investigations, a detailed mathematical model for the 

copolymerization kinetics of STY/ DVB in the presence of nitroxide-type controllers has been 

developed (Hernandez-Ortiz et al., 2009 and 2012). In this subsection, the predicted profiles 

for polymerization rate, molecular weight averages and gel content are validated with the 

respective experimental data for NMRP copolymerization of STY/ DVB in the presence of 

TIPNO-based alkoxyamine. These validations took place independently (between two different 

research groups in two universities in two countries), without additional parameter fitting (thus 

indirectly confirming the validity and generality of the developed mathematical model and 

accompanying database of kinetic and physical/ chemical characteristics and parameters).  

 
Figure 9.37 shows a comparison of model predictions of conversion versus time for all the 

different levels of [DVB]/ [I-TIPNO]. As can be seen, the model captured the trends extremely 

well and there is good agreement between experimental data and model predictions. For 

[DVB]/ [I-TIPNO] = 2.5 and 3.75, the model seems to imperceptibly underpredict the 

experimental data at a couple of spots along the full trajectory, but that is certainly related to 

the error associated with the experimental data, as explained earlier.  
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a)                                                                           b) 

 
c)                                                                            d) 

 

The corresponding comparisons for molecular weights versus conversion are shown in Figure 

9.38. The model captured well the slow and linear increase of molecular weights with 

conversion during the pre-gelation period up to very close to gelation point. Also, the indirect 

indication of the gelation point (the jump in weight-average molecular weight vs. conversion) 

predicted by the model was in fairly good agreement with the experimental data for all 

attempted conditions. After the gelation point, the values of molecular weight averages are for 

the sol fraction. Given that no attempt was made at fitting the data, the agreement can be 

deemed impressive.  

Figure 9.37 Comparison of model predictions and experimental data of conversion vs. time for
a) [DVB]/ [I- TIPNO] = 1.25, b) [DVB]/ [I- TIPNO] = 1.87, c) [DVB]/ [I- TIPNO] = 2.5, d) 
[DVB]/ [I- TIPNO] = 3.75 
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a)  b) 

c)     d) 

 

Comparisons between experimental and predicted profiles of gel content versus conversion are 

shown in Figure 9.39. The model predicted the trajectories for the gel content well. Given that 

there is considerable amount of error present in the Soxhlet measurements, the agreement 

between experimental data and the model predictions are indeed impressive. 

 

  

Figure 9.38 Comparison of model predictions and experimental data of molecular weights vs.
conversion for a) [DVB]/ [I- TIPNO] = 1.25, b) [DVB]/ [I- TIPNO] = 1.87, c) [DVB]/ [I-
TIPNO] = 2.5, d) [DVB]/ [I- TIPNO] = 3.75 
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a)                                                                          b) 

 
c)                                                                           d) 

 

The model is also capable of predicting the amount of the average fraction of reacted and 

unreacted pendant double bonds (PDB) in divinyl benzene. Figure 9.40a shows the profiles of 

the reacted PDB for all the different [DVB]/ [I-TIPNO] ratios. As the ratio increases, so does 

the amount of reacted PDB, which results in higher gel content, as was observed in Figure 

9.34a.  On the other hand, the profiles of unreacted PDB for different ratios do not follow the 

same trend (see Figure 9.40b). It can be seen that the profiles of unreacted PDB are actually 

only affected by DVB concentration and are almost independent of alkoxyamine 

concentration; this means that the profiles for [DVB]/ [I- TIPNO] = 1.25 and [DVB]/ [I-

Figure 9.39 Comparison of model predictions and experimental data of gel content vs.
conversion for a) [DVB]/ [I- TIPNO] = 1.25, b) [DVB]/ [I- TIPNO] = 1.87, c) [DVB]/ [I-
TIPNO] = 2.5, d) [DVB]/ [I- TIPNO] = 3.75 
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TIPNO] = 2.5 are close together, whereas the profiles for [DVB]/ [I- TIPNO] = 1.87 and 

[DVB]/ [I-TIPNO] = 3.75 are almost identical (see Table 9.2 for a reminder about the levels of 

[DVB] and [I-TIPNO]). The initial amount of unreacted PDB at zero percent conversion is 

equal to 2f20 (f20: the initial concentration of the cross-linker). As the initial amount of cross-

linker increases, so does the amount of unreacted PDB. However, towards the end of the 

reaction (i.e., at high conversions), the profiles for the unreacted PDB merge and hence, the 

amount of unreacted PDB is the same for all runs and independent of the initial cross-linker 

concentration (see Figure 9.40b). 

 
NMR spectroscopy was used to determine the experimental values for the unreacted pendant 

double bond fraction for some samples before the gelation point (see Subsection 9.2.3.3). 

Figure 9.41 illustrates the comparison between model predictions and experimental values. As 

can be seen, the model predictions overpredict the experimental data only slightly and this 

discrepancy is within the error associated with NMR measurements (observe that the y = x + 

0.005 in Figure 9.41; i.e., assuming 0.5% error in NMR measurements). When reacted, both 

styrene and divinyl benzene showed identical peaks in the NMR spectrum, hence it was not 

possible to differentiate between the two, in order to determine the experimental values for the 

reacted double bonds of divinyl benzene. 
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a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.40 Effect of [DVB]/ [I- TIPNO] on a) 
reacted PDB, b) unreacted PDB, versus conversion 
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9.5 Concluding Remarks 
 
Results on the cross-linking kinetics of nitroxide-mediated radical polymerization of styrene 

with divinyl benzene in the presence of TIPNO-based alkoxyamine were presented in this 

chapter, in preparation for the identification of network homogeneity indicators based on 

polymer properties, which will be discussed in Chapter 10.  

 
Results were contrasted with regular FRP of STY/DVB and homopolymerization of STY in 

the presence of I-TIPNO, as reference systems. Our investigations showed that the presence of 

I-TIPNO as a mediator in the copolymerization of STY/ DVB slowed down the rate of 

polymerization, delayed the onset of gelation, yielded lower average molecular weights and 

polydispersities, and produced a ‘looser’ polymer network compared to the regular free radical 

copolymerization of the two monomers. The copolymerization reaction exhibited controlled 

behaviour up to the vicinity of the gelation point (i.e., linear increase of average molecular 

weights with conversion, and low polydispersity values (well below typical PDI values in 

regular free radical polymerization). However, after the gelation point, and due to the presence 

of the cross-linker (DVB), the polymerization mixture became very viscous, and this led to the 

loss of ‘livingness’ of the NMRP process at higher conversion levels. 

Figure 9.41 Comparison of model predictions and experimental
data for unreacted double bonds (mole fraction) 
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The effects of  I-TIPNO concentration, DVB level and the corresponding [DVB]/ [I-TIPNO] 

molar ratio were investigated on polymerization rate, average molecular weights (number- and 

weight-average, and polydispersity), gel content, swelling index and molecular weight between 

cross-links. The experimental results (which were independently replicated, in order to build 

more confidence in the observed data from such a complex, noisy and experimentally uncertain 

system) showed that I-TIPNO and DVB concentrations do not affect the rate of polymerization 

(at least at the DVB levels employed; the non-significant effect of I-TIPNO concentration was 

as expected). On the other hand, their effects on average molecular weights, gel content and 

network morphology were noticeable. Using a higher I-TIPNO concentration, while keeping 

the same DVB concentration, delayed the gelation point. In contrast, using a higher DVB 

concentration, while keeping the same I-TIPNO concentration, accelerated the formation of 

gel. All in all, our studies revealed that combinations of high DVB concentration and low I-

TIPNO concentration (i.e., maximizing the [DVB]/ [I-TIPNO] ratio) resulted in the earliest 

gelation point and hence, fastest loss of ‘livingness’. As the [DVB]/ [I-TIPNO] ratio decreased, 

the gelation point was observed at higher conversion levels. These observations were 

confirmed both indirectly, based on the jump in average molecular weight values versus 

conversion data, and also through more direct steps measuring the gel content and swelling 

index using a Soxhlet extraction setup. Furthermore, our Soxhlet results indicated that the 

lower the [DVB]/ [I-TIPNO] ratio, the ‘looser’ the polymer network (observed through both 

swelling index and molecular weight between cross-links). 

 
In parallel to our experimental investigations, a detailed mathematical model has been 

developed and validated with the respective experimental data. These validations took place 

independently (between two different research groups in two universities in two countries), 

without additional parameter fitting (thus indirectly confirming the validity and generality of 

the developed mathematical model and accompanying database of kinetic and physical/ 

chemical characteristics and parameters). Not only did model predictions follow the general 

experimental data trends but also were in good agreement with experimental observations. 

After this sound kinetic study, the results of our investigations for a more reliable and 

comprehensive indicator for network homogeneity will be discussed in Chapter 10. 
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Chapter 10. Characterizing Branched and Cross-linked Polymers 

Synthesized under NMRP 

 
Characterization of branched and cross-linked polystyrene samples, synthesized via nitroxide-

mediated radical polymerization (NMRP) in the presence of a small amount of divinyl benzene 

(DVB), is presented in this chapter. Results are compared with cross-linked polystyrene 

samples synthesized through regular free radical polymerization (FRP). The kinetic data of 

both NMRP and FRP systems have been discussed in detail in Chapter 9. Initially, a detailed 

review is presented on efforts in the literature to address the homogeneity of the network 

synthesized through CRP. Characterization of branched polystyrene samples (before the 

gelation point) using size exclusion chromatography (SEC) is then discussed in the results and 

discussion section, followed by characterization of cross-linked (X-linked) polystyrene 

samples with thermo-mechanical analysis, as a tool for determining the homogeneity or 

heterogeneity of the network. Finally, a discussion about several other potential techniques to 

determine homogeneity or heterogeneity of a cross-linked network is offered. 

 

10.1 Introduction and Literature Review 
 
The structure of a polymer network can simply be depicted as a three dimensional “mesh” 

formed by polymer chains interconnected by crosslink points. A homogeneous “mesh” would 

be obtained if a uniform distribution of functional groups took place with the absence of 

structural defects. The resulting cross-linked network would have little variation in the 

molecular weight between cross-links (Mc). However, usually the actual structure of this 

“mesh” is not regular and the distribution of polymer chain length between joining points is 

unequal throughout the whole network. So, a polymer network represents an ensemble of 

regions (domains) of different structures with different crosslink densities, resulting in a 

heterogeneous structure. 

 
This heterogeneity in the polymer network affects properties such as swelling, elasticity, 

transparency and permeability. In addition, the structural heterogeneity results in a dramatic 

reduction in the strength of the cross-linked material. There are many applications where these 
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material properties are required (e.g., super absorbents, contact lenses). Hence, production of a 

more uniform network is desirable.  

 
Polymer networks are often synthesized through regular free radical polymerization. However, 

due to rather complex reaction kinetics originating from the difference in reactivity between 

monomers and formation of intramolecular cross-linking (cyclization), the structures of these 

networks are rather heterogeneous, which results in a wide distribution of Mc in the network 

(Okay, 1988; Bastide et al., 1990; Elliott and Bowman, 1999; Matsumoto et al., 1999; 

Gundogan et al., 2004). Recently, the claim has been made that copolymerizing vinyl and 

divinyl monomers under controlled radical polymerization (CRP) conditions will result in a 

homogeneous network. The claim is based on the premise that the slow and simultaneous 

growth of the primary chains in CRP could potentially result in a more homogeneous 

distribution of the pendant vinyl compared to FRP, which in return results in favoring 

intermolecular crosslinking over intramolecular crosslinking (cyclization), which could then 

lead to the formation of a more homogenous polymer network. Since the first study of cross-

linking under CRP by Ide and Fukuda et al. (1997), a lot of effort has been put into addressing 

the question of homogeneity of the polymer network synthesized through CRP; Table 10.1 

summarizes all the work carried out so far (in the last column of Table 10.1, Q stands for 

“question on network homogeneity”).  
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Table 10.1 Summary of literature work addressing the homogeneity of network synthesized through CRP 

Group Proof Exp. Tech. Comments Addressed our Q? 

Fukuda and co-workers 
(Ide and Fukuda, 1997 and 
1999) 

Theory --  Copolymerization of styrene with small amount of 4,4´-divinylbiphenyl, in 
the presence of an oligomeric polystyryl adduct (PS-TEMPO), at 125°C 

o For more details, see the second entry in Table 9.1 

 No, no experimental 
results offered to 
measure the 
morphology of the 
network! 

 Conclusion about 
network homogeneity 
drawn only from 
kinetic data! 

Bowman and co-workers 
(Kannurpatti et al., 1997 
and 1998) 

Exp. DMA  INIFERTER controlled radical polymerization used to study the 
mechanical properties of networks formed by dimethacrylates 

 DMA measurements used to glean information regarding structural 
heterogeneity 

o Distribution of relaxation times of the cross-linked polymers 
characterized  by performing frequency scan experiments 

o Structural heterogeneity measured by the width of the distribution 
of relaxation times of the networks  

 No, but informative 

Peppas and co-workers  

(Ward and Peppas, 2000; 
Ward et al., 2002) 

Model 
(2000) 

Exp. (2002) 

DMA  Percolation (random walk) modeling technique was applied to model 
 INIFERTER controlled radical polymerization  

o Presence of INIFERTER-based initiator resulted in more primary 
cycles at the beginning of the reaction: more heterogeneous network!  

o Gelation was delayed in the case of INIFERTER polymerization, 
correlated to the formation of more primary cycles (more primary 
cycles, resulting in more microgel regions; system not growing, thus 
delaying the gel point) 

o For high cross-linking concentration, no difference between CRP 
and FRP detected! 

o Pendant double bond reactivity the same in FRP and CRP 
 Experimental work focused on dimethacrylates 

o From DMA measurements, concluded that the presence of the 
controller had no effect on the heterogeneity of the polymer network 
(the width of tan δ peaks for CRP and FRP almost identical), because 
the pendant double bond reactivity is not affected by the presence of 
the controller 

 Yes, with some 
evidence, but no 
replication! 
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Crescenzi et al. (Crescenzi 
et al., 2002) 

Exp. Rheology and 
SEM 

 Comparison of the structures of methacrylated compounds cross-linked 
with FRP and RAFT 
 Network formed via RAFT swelled to a greater extent than the one via 
FRP, with a more pronounced difference at lower conversion 
 SEM showed that the porosity of the gels could be more effectively 
regulated with RAFT 

 No direct solid 
evidence! No 
replication! 

Wang et al. 
(Wang and Zhu, 2005a and 
b) 

Theory --  ATRP of dimethacrylates-branching 
 Pregel cross-link density agreed with Flory’s gelation theory, and from 
that concluded that the network was homogeneous! 
 Number of branches per molecule was estimated from a molecular weight 
versus conversion regression 

 No! No analytical 
technique exists to 
fully characterize 
branched or cross-
linked polymers! 

Norisuye and co-workers 
(Norisuye et al., 2005) 

Exp. Static/dynamic 
light scattering 

(SLS/DLS) 

 RAFT copolymerization of STY/DVB 
 Different scattering intensity behavior observed for FRP and RAFT 
 

 Evidence from light 
scattering analysis 
showed different 
behavior, but does that 
mean a more 
homogenous network 
for CRP?  

Bannister et al.  
(Bannister et al., 2006) 

Theory and 
modeling 

--  ATRP  copolymerization of dimethacrylates -branching 
 Analysis of the branching statistics suggested that the network formation 
is almost perfectly fitted by the classic Flory-Stockmayer model for 
gelation! 

 No! Leap from 
kinetics to 
morphology 

Zetturlund and co-workers 
(Zetterlund et al., 2005; 
Alam et al., 2006; Saka et 
al., 2007; Tanaka et al., 
2007; Zetterlund et al., 
2009a and b) 

Theory and 
Exp. 

SEM and  
Micro-

compression 
testing 

 

 STY/DVB with PS-TEMPO initiator at T = 125 °C in miniemulsion 
o Comparison of the experimental gel points with the theoretical 
prediction based on FS gelation theory for bulk/solution and 
miniemulsion  

o X-linked polymer particles prepared by NMRP exhibit different 
mechanical properties than X-linked particles prepared by FRP at 
low to intermediate conversion 

o Compressive strength, deformation at break and breaking energy 
remain approximately constant from low to high conversion in FRP; 
while in NMRP these quantities increase linearly with conversion 

 Yes, but in 
miniemulsion (not 
applicable to our case)  
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Zhu and co-workers 
ATRP: 
(Yu et al., 2007 and 2009); 
RAFT: 
(Yu et al., 2008) 

Exp. DMA  ATRP and RAFT of dimethacrylates  
o Kinetic evolution followed by DSC 
o Structural evolution followed by DMA 
o Comparison of DMA results for CRP and FRP showed that samples 
from FRP produced narrower peak width of the tan δ curve, 
suggesting a more homogeneous network 

o Gelation process followed by both rheological measurements and 
solvent extraction 

o Micro-gelation occurred much earlier than macro-gelation in FRP, 
however, for ATRP their occurrence overlapped 

Yes, with evidence, 
however no replicates! 
 
It is not indicated if the 
comparison is at the 
same conversion level 
or at the same X-link 
densityt! 

Matyjaszewski and co-
workers  
(Gao et al., 2007, 2008a ,b 
and 2009; Gao and 
Matyjaszewski, 2009; Li et 
al., 2009; Van Camp et al. 
2010) 

Theory and 
Modeling 

--  ATRP of different acrylate monomers and diacrylate cross-linkers 
 Studied the kinetics of the reaction 

o Including the effects of initial molar ratio of cross-linker to initiator, 
the concentration of reagents, the relative reactivity of cross-linker 
compared to monomer, the initiator efficiency, and polydispersity of 
the primary chains on gelation 

o An example of a group that still uses OFAT to study the effect of 
different factors! 

 Predici and Monte Carlo simulations to model the kinetics of the reaction 
o Experimental gel points were approximately equal to gel points 
predicted by simulator  

No! Leap from kinetic 
data to structural 
homogeneity! 
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Our extensive literature review shows that the methods that have been used so far for analysis 

of network structure in CRP (and in FRP, in general) can be subdivided into different 

categories: 

 
1. Analysis of chemical conversion: Several techniques such as spectroscopy (UV, IR, FTIR, 

and NMR) or wet chemistry (titration, such as bromination) have been used to monitor the 

amount of reacted and unreacted pendant double bonds. However, no exact quantitative 

information on the network structure can be obtained from these techniques, since reacted 

groups can form not only chemical cross-links but also cycles and loops. Furthermore, side 

reactions, which can easily cause additional cross-links, complicate data interpretation due 

to overlapping of signals from different types of chemical groups in complex mixtures 

(Litvinov and Dias, 2001). Ironically, the first group that has made claims about 

homogeneity of networks in CRP had used UV spectroscopy to make their claims (Fukuda 

et al, 1997). 

 
2. Flory-Stockmayer theory: In this approach, the theoretical conversion at the gelation point, 

calculated through Flory-Stockmayer theory (xg theo.), is compared to the experimental or 

actual one (xg act.). If the actual conversion at the gelation point is only one to two orders 

of magnitudes larger than the theoretical one (xg act./ xg theo.~ 1-2), then the conclusion is 

drawn that the network formed follows the Flory-Stockmayer theory, which has been 

developed for an ideal network, hence the network should be homogeneous. However, 

Flory- Stockmayer theory is developed for an “ideal network” in which no defects are 

present and the network should obey some simplified assumptions (equal reactivity of 

double bonds, no intramolecular cross-linking and independent reaction of all groups). 

There is a considerable debate about the validity and applicability of this theory to 

networks synthesized through CRP, as one cannot guarantee that CRP could fall under the 

simplified assumptions made for an “ideal network”!  Oddly, the majority of work on 

network homogeneity in CRP has concentrated on this approach (see again Table 10.1). 

 
3. Characterization of physical properties: In this category, some common methods like 

equilibrium swelling and mechanical measurements (stress-strain or elastic modulus) have 

been used to draw conclusions about the network structure. Although these methods 
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provide valuable information (such as modulus, stress-strain behavior, and glass transition 

temperature) that is desirable for practical applications, they are based on rubber elasticity 

theory, which is related to an average cross-link density and not the distribution of cross-

links in the network (Litvinov and Dias, 2001). 

 
4. Analysis of molecular mobility of polymer chains: Dynamic mechanical analysis (DMA) is 

among the techniques under this category which has been used by several groups to make 

inferences regarding the structural heterogeneity of polymer networks formed. This method 

provides information about the mobility of polymer chains and since chain motion is 

strongly coupled to the length of network chains, information on network structure and 

network homogeneity could be potentially obtained in this way.  

 
It has been observed that in highly cross-linked networks, the transition (Tg) does not take 

place at a unique temperature and occurs over a wide range of temperatures. This broad 

distribution of relaxation times was related to the heterogeneous structure of the 

corresponding networks, as they contained very highly cross-linked regions (i.e., 

microgels) as well as less densely cross-linked regions connecting the microgels. The 

distribution of relaxation times in the various microregions of the polymers is reflected in 

the mechanical behaviour of these cross-linked materials and has been used in the past by 

several researchers as a measure of the structural heterogeneity (Kannurpatti et al., 1997). 

Qualitatively, this structural heterogeneity was observed by measuring the peak width of 

tan δ curves. The broader the distribution, the more heterogeneous the network is.  

 
A couple of groups have tried using DMA for determining the homogeneity of a network in 

CRP; however, contradictory results have been reported. With one group, reporting on a 

more homogeneous network in CRP (see the entry for Zhu and co-workers in Table 10.1), 

while others either found that the presence of the controller had no effect on the 

heterogeneity of the polymer network (see the entry for Peppas and co-workers in Table 

10.1) or concluded that the results were difficult to interpret (see the Kannurpatte and co-

workers entry in Table 10.1). 
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5. Scattering techniques: Since the gel heterogeneity is closely connected to spatial 

concentration fluctuations, scattering methods such as static or dynamic light scattering 

could potentially be used to investigate this spatial “inhomogeneity” (Norisuye et al., 

2003). The gel “inhomogeneity” can be manifested by comparing the scattering intensities 

from the gel and from a semi-dilute solution of the same polymer at the same 

concentration. The scattering intensity from the gel is always larger than that from the 

polymer solution. The excess scattering over the scattering from the polymer solution is 

related to the degree of “inhomogeneity” in the gels. 

  
Norisuye et al. (2005) had been the only group so far that investigated the potential of 

using light scattering techniques for comparing networks in CRP and FRP. They have used 

different curve fitting techniques to come up with model functions to describe the data 

collected from the light scattering measurements. Although differences have been observed 

between components of the total scattering intensity for CRP and FRP, the connection 

between these observations and the network morphology is not clearly stated. Hence, the 

jury is still out with respect to further investigating whether the scattering techniques could 

in fact be useful techniques in providing information about the morphology or structure of 

the network. 

 
Most of the approaches that have been used so far for characterizing networks synthesized 

through CRP (i.e., see comments 1 to 3 above) are in fact indirect macro-indicators that give 

some idea about the degree and kinetics of cross-linking and no information about the 

morphology of the network. Researchers have used these indicators to make claims about 

network homogeneity (see the literature review in Table 10.1). However, this jump from, 

essentially, kinetic data and gel average characteristics is based on very speculative arguments. 

Although other more practical techniques such as DMA and scattering techniques have been 

attempted to give an answer to the question of homogeneity of the network in CRP, these 

efforts are rather incomprehensive and highly unreliable because of lack of reproducibility (see 

comments 4 and 5 above).  

 
In addition, most of the researchers agreed that no matter what behavior they were following 

(mechanical analysis (Kannurpatti et al., 1997; Tanaka et al., 2007) or light scattering 



 
 

229 
 

(Norisuye et al., 2005) or swelling behavior  (Ide and Fukuda, 1999)), the behaviors observed 

for FRP and CRP were actually similar towards the end of the reaction! Of course, since the 

gelation is delayed in CRP, it would be expected that less gel is developed at the earlier stages 

of the reaction compared to FRP, hence, could it be that the different behavior observed for the 

two systems was caused by different levels of cross-link density? 

 
These observations motivated us to look for a more formal, direct, and reliable way (if such a 

way exists) of characterizing the cross-linked polymer network. We knew that in order to make 

inferences about the structure or morphology of a polymer network and clarify many existing 

conflicting statements encountered in the literature, the ultimate target is the cross-link density 

distribution, albeit a very difficult distribution to obtain. Looking for such techniques in the 

more general network and cross-linked literature (e.g., cross-linking in rubber, or hydrogels) 

we found a couple of techniques that could possibly give indirect information about the cross-

link density distribution. Among those techniques we managed to conduct thermo-mechanical 

analysis. Results from this investigation are presented below. Other potential techniques that 

might give information about the cross-link density distribution are also presented towards the 

end of this chapter.   

 
Before the discussion about the characterization of cross-linked polystyrene, one subsection is 

dedicated to the characterization of branched polystyrene samples using SEC. During the early 

stages of copolymerization of STY and DVB, branched primary macromolecules are formed at 

the DVB repeat units. The branched polystyrene samples synthesized through NMRP are 

compared to the ones synthesized through FRP.  
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10.2 Background and Experimental Methods 
 

10.2.1 Branching Detection with SEC 
 
Branched polymers are macromolecules containing three or more long chains that are attached 

together. Branched polymers lie between linear polymers and cross-linked polymers. 

Branching can result from the synthesis method or from post-synthesis modification of the 

polymer. Polymers may have a wide variety of branching structures depending on how they 

have been made or modified. Figure 10.1 shows different types of branching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Occurrence of branching (even in small amounts) can influence polymer properties 

considerably. Long-chain branching (LCB) can influence both dilute solution and melt 

properties. A comprehensive literature survey and a good review of different techniques to 

detect long chain branching is provided by Scorah et al. (2007). In this work, our focus will be 

solely on the effect of branching on polymer solution properties and whenever referring to 

branching we mean long chain branching (LCB). 

 
Studies have shown that a branched chain is more compact compared to a linear chain with the 

same number of units. As a result, branching decreases the size of a polymer chain in a dilute 

Figure 10.1 Various polymer molecule architectures 
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solution (see Figure 10.2). If we can measure the density or size of a branched molecule and 

compare it to a linear molecule of similar chemistry, we might be able to get information on 

the nature of the branching. Various contraction factors can be used to quantify the reduction 

of molecule’s size because of branching. 

 

 

One way to represent the size of a polymer chain is radius of gyration which is simply the 

square root of the mean-square radius: 

 

ܴ௚ ൌ 〈ܵଶ〉
ଵ
ଶൗ   Eq.  10.1

 
where the mean-square radius is given by Eq.  10.2: 

 

〈ܵଶ〉 ൌ 〈෍
௜ݎ
ଶ

ܰ

ே

௜ୀଵ

〉 
Eq.  10.2

 
The polymer molecule is considered to be comprised of N small elements of identical mass and 

 ௜ is the distance of the ith unit from the polymer molecule’s center of gravity. To assess theݎ

decrease in size due to branching, the radius of gyration of a branched polymer is compared to 

the radius of gyration for a linear analog at the same molecular weight: 

 

݃	 ൌ 	
〈ܵଶ〉௕௥
〈ܵଶ〉௟

ቤ
ெ

ൌ
ܴ௚	௕௥
ଶ

ܴ௚	௟
ଶ ቤ

ெ

 Eq.  10.3

 

Figure 10.2 Schematic diagram illustrating difference in size for a branched and linear
molecule 
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g is called branching or contraction factor. The subscript M indicates that both branched (br) 

and linear (l) chains have the same molecular weight. Since branched polymers are more 

compact than linear polymers, g will always be less than unity, with smaller values indicating a 

higher degree of branching.  

 
ܴ௚	and eventually g can be obtained experimentally using multi-angle laser light scattering 

(MALLS), where the particle size can be determined by measuring the angular dependence of 

the intensity of the scattered radiation between polymer particles and the probing radiation. 

Light scattering experiments provide a z-average estimate of the radius of gyration (ܴ௚ሺ௭ሻ). For 

samples with a narrow molecular weight distribution, this does not pose a problem as ܴ௚= 

ܴ௚ሺ௭ሻ. However, when the sample is polydisperse, ܴ௚ሺ௭ሻ will increase and is no longer 

equivalent to ܴ௚. In this situation, the influence of branching can be completely masked by a 

large polydispersity. Hence, some fractionation method must be used in order to obtain 

monodisperse fractions.  Coupling a light scattering device with gel permeation 

chromatography (GPC) is a method to overcome this problem. GPC will fractionate the 

polymer sample, therefore, the light scattering detector cell contains monodisperse fractions at 

any particular time and a distribution of the radius of gyration as a function of molecular 

weight can be obtained. 

 
Another indicator of the size of a polymer molecule in solution is hydrodynamic volume. 

Hydrodynamic volume is a volume of a hypothetical impenetrable sphere that would display 

the same properties as the polymer coil (Painter and Coleman, 2009). Hydrodynamic volume 

depends upon the nature of the polymer-solvent pair, chain architecture and temperature. A 

branched polymer with the same number of segments as a linear sample occupies a smaller 

hydrodynamic volume, at the same temperature and solvent. Hydrodynamic volume, ௛ܸ, is 

related to the intrinsic viscosity of a dilute solution: 

 

ሾߟሿ ൌ 	2.5	 ௛ܸ ൤
ܣ
ܯ
൨ Eq.  10.4

where A is Avogadro’s number and M is the molecular weight of the polymer. Hence, intrinsic 

viscosity is a property also influenced by branching and based on Eq.  10.4, presence of 

branching leads to smaller intrinsic viscosity values.  
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By measuring the solution viscosity as a function of polymer concentration, the intrinsic 

viscosity can be calculated using a viscometer, which leads to useful information about the 

polymer’s molecular properties: 

 

ሾߟሿ ൌ 	 lim
௖→଴

1
ܿ
	൬
ߟ
଴ߟ
െ 1൰ Eq.  10.5

 
c is the concentration of polymer in solution, η the solution viscosity and η0 the viscosity of the 

pure solvent. A branching or contraction factor can also be defined using intrinsic viscosity, in 

a way analogous to Eq.  10.3:  

 

݃ᇱ ൌ 	
ሾߟሿ௕௥
ሾߟሿ௟

ቤ
ெ

 Eq.  10.6

 
Since intrinsic viscosity is easier to measure compared to radius of gyration, considerably more 

experimental work can be found that has reported intrinsic viscosity for branched molecules. 

Thus, it is desirable to relate the two contraction factors. Simple theoretical relationships 

between g and	 g’ have not been developed and the analysis has been based on empirical 

equations, the most common one being: 

 
݃′ ൌ 	݃ఌ Eq.  10.7

 
where ߝ is the so-called structure factor, which typically varies in the range of 0.5 for low 

branching to 1.5 for high branching, with 0.75 for medium branching.  In general, the value of 

the structure factor is affected by experimental conditions and the type of branching. In 

styrene/divinylbenzene copolymers, ߝ has been observed to be 0.65 for low conversion and 

1.41 at high conversion (Ambler & McIntyre, 1977). 

 
Long chain branching can be detected using different characterization techniques. Most 

common ones are: spectroscopic methods like nuclear resonance spectroscopy (NMR), 

chromatographic methods like gel permeation chromatography (GPC) and rheological methods 

like zero-shear viscosity. The method we focused on in this work is branch detection using 

GPC. 
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GPC separates polymer molecules based on their hydrodynamic volume, which is found to be 

proportional to the product of intrinsic viscosity and molecular weight (see Eq.  10.4): 

 

௛ܸ ∝ 	 ሾߟሿ	ܯ Eq.  10.8

  
This relationship has become the basis for molecular weight determination in GPC. Detection 

of branching using GPC depends on the type of detectors available and the type of information 

collected. For linear and branched polymer molecules with the same molecular weight, it is 

known that the branched molecule has a smaller intrinsic viscosity, so will elute later than the 

linear molecule with the same molecular weight. As a result, using GPC with only a 

concentration detector will underestimate the molecular weight of branched polymers. In order 

to use GPC for branch detection, another detector is needed in addition to a concentration 

detector.  

 
GPC with a MALLS detector can be used to determine the radius of gyration as a function of 

molecular weight. Radius of gyration can be related to molecular weight by the following 

equation: 

 
ܴ௚ ൌ ܯோ೒ܭ

జ Eq.  10.9

 
where ܭோ೒ and ߭ are constants which are affected not only by the experimental conditions 

(solvent, temperature) but also by the polymer structure. For randomly branched polymers ߭ 

has been found to be close to 0.5 and in some cases much lower. In plots of ܴ௚- M, presence of 

branching is detected by a decrease in slope compared to a linear sample (see Figure 10.3).  

Using a MALLS detector allows for the determination of g directly and calculation of 

branching parameters such as branching number and frequency using an appropriate Zimm-

Stockmayer expression. The Zimm-Stockmayer equations are a series of expressions that 

depend on polymer shape (e.g., star, comb, etc.), polydispersity, and number of the arms per 

branching point. These expressions relate branching number to the contraction factor g. Scorah 

et al. (2007) illustrated a detailed table summarizing all the theoretical equations for calculating 

the contraction factor for various types of branched polymers. For instance, STY/ DVB 

branched polymer is a randomly branched, monodisperse molecule and the number of arms per 
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branching point is three (tri-functional); the related Zimm-Stockmayer equation is shown 

below (Scorah et al., 2007): 

 

݃ ൌ ൤ሺ1 ൅	
ത݊
7
ሻ
ଵ
ଶ ൅

4ത݊
ߨ9
൨
	ି	ଵଶ

 
Eq.  10.10

 
where ത݊ is (number average) number of branch points per molecule. In addition, a branching 

frequency (ߣ) defined as the average number of branch points per molecule per molecular 

weight, can also be determined from Eq.  10.11: 

 

ߣ ൌ
ത݊	ܨோ
ܯ

 Eq.  10.11

 
where ܯ is molar mass of each chromatograph slice and ܨோ is the molar mass of the repeating 

factor, defined as the mass of 100 repeat units. For STY/DVB copolymer, ܨோ is equal to 10400, 

which is the mass of 100 units of STY. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3 Radius of gyration as a function of molecular weight for polystyrene
(GPC at 30 °C with 1 ml/min of tetrahydrofuran) (Scorah et al., 2007) 
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Another GPC detector which is very common for determining branching is an online 

viscometer. Using an online viscometer, the intrinsic viscosity of a branched polymer can be 

measured. The intrinsic viscosity can be related to molecular weight using the Mark-Houwink-

Sakurada (MHS) equation: 

 
ሾߟሿ ൌ ఈ Eq.  10.12ܯሾఎሿܭ

 
 is	ߙ ,are the so-called MHS constants. For a randomly branched polymer molecule ߙ ሾఎሿandܭ

smaller compared to that for a linear molecule. In general, ߙ	decreases with increasing 

molecular weight for randomly branched polymers. From the molecular weight and intrinsic 

viscosity data collected, the MHS plot can be constructed for branched molecules and 

comparison can be made to linear polymers. In order to measure the degree of branching, the 

same polymer with a linear structure needs to be available or the MHS parameters for the 

linear polymer must be known. Figure 10.4 shows an example of MHS plot for branched 

polystyrene compared with a linear sample obtained using GPC. As the level of branching 

increases, the logሾߟሿ vs. log M plot deviates more and more from linearity.   

 

 

 

Figure 10.4 Intrinsic viscosity vs. molecular weight for polystyrene (GPC at 30 °C with 1
ml/min of tetrahydrofuran) (Scorah et al., 2007) 
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Having the measured intrinsic viscosity of the branched polymer, one can determine g’ (see Eq.  

10.6). It is expected that g’	decreases with molecular weight. At low molecular weights, the 

amount of branching is almost zero and hence, intrinsic viscosity of the branched molecule is 

the same as the linear and	g’	= 1. As molecular weight increases so does branching, and this 

will lead to a decrease in g’.	 In order to calculate branching parameters, Eq.  10.7 should be 

used to obtain g, while	applying a reliable value for the contraction factor (ε). The branching 

number and branching frequency can then be determined from the known value of g, using the 

appropriate Zimm-Stockmayer expression.  

 

10.2.2 Differential Scanning Calorimetry (DSC) 
 
Thermal properties of a polymer can give insight into its molecular structure. Differential 

Scanning Calorimetry (DSC) is a thermo-analytical technique often used for studying phase 

transitions in polymers (Mathot, 1993). DSC measures the temperature and heat flow 

associated with phase transitions in materials. With this technique a sample and an inert 

reference are heated and cooled in a controlled environment. The reference pan is subjected to 

a chosen heating/cooling program, e.g., 20°C/min. The heat flow to the sample is adjusted in 

such a way that at all times the temperature of the sample is equal to that of the reference. If a 

heat-related change takes place in the sample (glass transition, melting, crystallization), the 

sample either absorbs or emits heat. In order to keep the temperature of both sample and 

reference the same, more or less heating power is needed. The heating power difference 

between sample and reference from such a heat change is directly related to the heat flow, 

which is tracked by the DSC curves. DSC measurements provide thus quantitative and 

qualitative information about physical and chemical changes that involve endothermic or 

exothermic processes, or changes in heat capacity (Mathot, 1993). Figure 10.5 gives an 

example of how the heat flow curve would look like for a few typical phase transition events 

for a polymer. Exothermic behaviour (crystallization) shows up as increase on the heat flow 

curve, thus resulting in a concave peak. On the other hand, an endothermic event (glass 

transition or melting) shows up as decrease in the heat flow curve, thus as a drop or a convex 

peak. 
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DSC can be used to measure glass transition temperature (Tg) for amorphous polymers like 

polystyrene. Amorphous polymers are hard, rigid and glassy below Tg, while at temperatures 

above the glass transition temperature they are soft and flexible. Many physical and 

mechanical properties show profound changes in the region of the glass transition. These 

properties include the coefficient of thermal expansion, heat capacity, refractive index, 

mechanical damping, elastic modulus, and tensile strength (Nielsen and Landel, 1994).  DSC 

determines the glass transition temperature based on changes in heat capacity. Many points on 

the DSC curve can be used to determine Tg, and Figure 10.6 shows various points on the heat 

capacity vs. temperature curve. Point A shows the onset of transition, while point C marks the 

end of the change in heat capacity, Cp. The width ΔTg is defined by ΔTg = TC –TA. Point B is 

where half the specific heat increment has occurred (1/2 ΔCp) and it is the typical point mostly 

used to show glass transition temperature. 

 
 

 
 
 
 
 
 
 

ΔH 

Figure 10.5 Schematic representation of thermal events recorded by DSC (Mathot, 1993) 
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Several factors related to chemical structure are known to affect the glass transition 

temperature. The glass transition temperature increases with number-average molecular weight 

to a limiting asymptotic value of ௚ܶ
଴	for infinite molecular weight (Nielsen & Landel, 1994) 

and is given by: 

 

௚ܶ ൌ 	 ௚ܶ
଴ െ	

ܭ
௡ܯ

 
Eq.  10.13

where K is a constant characteristic of each polymer. For polystyrene (PS) K = 1.75 X 105, so 

its Tg value increases from about 83 °C for a molecular weight of 104 to 100 °C for infinite 

molecular weight (Nielsen & Landel, 1994).  Another factor affecting Tg is cross-linking; by 

introducing restrictions on the molecular motion of a chain, cross-linking increases the glass 

transition of a polymer. Low degrees of cross-linking increase Tg only slightly above that of 

the uncross-linked polymer. However, it is well established that an increase in the degree of 

crosslinking in a polymer network results in an increase in Tg (provided copolymerization 

effects are relatively small). The incremental thermal property at Tg such as ΔCp decreases as 

the degree of crosslinking increases (see Figure 10.7 and Table 10.2). At a very high degree of 

crosslinking, ΔCp becomes practically unobservable (Ellis et al., 1983). 

 
 

Figure 10.6 The glass transition region showing some commonly used definitions of Tg. A: onset,
C: end, and B is the point where half the specific heat increment has occurred (Mathot, 1993) 
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Table 10.2 DSC results of PS compared to cross-linked PS with different levels of DVB 
(Ellis et al., 1983) 

Sample % DVB (w/w) Onset (TA) TB (Tg) ΔCp  (J/g.C) 

PS 0 105 112 0.283 

PS-T1 5 111.7 117 0.252 

PS-T4 21 130 142 0.2 

PS-T5 35.7 145 171.9 0.095 

TA: onset of transition; TB (Tg): point where half of the specific heat increment has occurred, used as indicator of 
Tg (as a reminder, refer to Figure 10.6); Tc: end of transition; ΔCp: change in heat capacity 

 

It is well known that Tg is a result of relaxed segmental motions (Harrison, 1985). In a cross-

linked polymer, there is a considerable range of molecular weights between crosslinks (Mc) 

and it is expected that longer chains between crosslink points (i.e., higher molecular weight 

between crosslinks) will be activated and relax at lower temperatures compared to the very 

short chain segments between crosslink points (resulting from a tighter network) (Ellis et al., 

1983). Therefore, a transition plot obtained from a DSC scan represents the glass transition of a 

Figure 10.7 Typical DSC traces for A (PS), B (PS cross-linked with 35% DVB)
(Ellis et al., 1983) 
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spectrum of chains and it is expected that a more heterogeneous network (broader distribution 

of Mc values) should produce a broader Tg range. The slope of the transition line could also be 

an acceptable indicator for the degree of network uniformity. It is expected that a more uniform 

polymer network (narrower distribution of Mc values) will exhibit a sharper transition, which 

translates into a larger slope. 

 
In conclusion, in order to use DSC to obtain information related to network uniformity (or 

homogeneity), additional pieces of information such as ΔTg, ΔH, ΔCp and the slope of the 

transition line are useful. In our pursuit of finding a proper technique to differentiate between 

cross-linked polystyrene synthesized through nitroxide-mediated radical polymerization and 

regular radical polymerization, samples from both polymerization processes have been 

characterized using DSC and the related results are presented in section 10.3.2.1. 

 
10.2.2.1 Experimental 
 
DSC analysis was carried out on a TA Instruments DSC Q2000 module. The heating method 

used was the following: 

 
  Equilibrate at 40°C  

  Cycle 1: 20°C/min ramp from 40°C to 180°C; Isothermal for 5 min @ 180°C 

  Cycle 2: 10°C/min ramp from 180°C to 40°C; Isothermal for 5 min @ 40°C 

  Cycle 3: 10°C/min ramp from 40°C to 180°C 

 
Each DSC sample size used per run was about 5 - 7 mg. Three cycles were used to clear the 

thermal history of the sample. The data collected for the third cycle was used for the analysis. 

In order to check the reproducibility of the data, two DSC samples were prepared and each 

sample was run twice.  All data points reported here are the average of four readings. 
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10.2.3 Dynamic Mechanical Analysis 
 
Polymers have unique viscoelastic properties which combine the characteristics of elastic 

solids and viscous fluids. A perfectly elastic solid acts as an ideal spring and all the energy 

given to it will be stored in the material. On the other hand, the energy given to a purely 

viscous fluid will be used to deform the material and the energy will be lost into heat. Since 

polymers have the characteristics of both elastic solids and viscous fluids, a certain fraction of 

the energy given to them can be stored in the material (storage modulus, related to the elastic 

part), while the rest will be dissipated into heat (loss modulus, related to the viscous part) 

(Nielsen & Landel, 1994). 

 
Dynamic Mechanical Analysis (DMA) is used for studying the viscoelastic behavior of 

polymer materials. An oscillatory or pulsing force (sinusoidal stress) is applied to a sample and 

the response (strain) of the material is measured. Stress (σ) applied is described by Eq.  10.14, 

while the resulting strain (ε) is described by Eq.  10.15. As can be seen, both stress and strain 

have a sinusoidal shape with frequency ω, however, strain lags behind stress by a phase angle 

difference δ (see also Figure 10.8).  For a perfectly elastic solid, the resulting strain and the 

applied stress will be perfectly in phase. For a purely viscous fluid, there will be a 90 degree 

phase lag of strain with respect to stress. Since viscoelastic polymers have the characteristics in 

between the two extremes, there will be some phase lag δ between 0 and 90 degrees during 

DMA tests and stress will have a component in phase with strain and a component exactly 90 

degrees out of phase with strain (Nielsen & Landel, 1994), as seen in Eq.  10.14. 

 
 
	ߪ ൌ ݐሺ߱	݊݅ݏ	଴ߪ	 ൅ ሻߜ ൌ 	 ሺߪ଴	ܿݏ݋	ߜሻ ݊݅ݏ ݐ߱ ൅ ሺߪ଴ ݊݅ݏ ሻߜ ݏ݋ܿ ݐ߱  Eq.  10.14

 
ߝ ൌ 	  	ሻݐሺ߱	݊݅ݏ	଴ߝ
 
 

Eq.  10.15

t: time 
 : stress at t = 0	଴ߪ
 : strain at  t = 0	଴ߝ
 

in phase with ε 90 degrees out of phase with ε
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Stress and strain are related through the modulus, with modulus being the ratio of stress to 

strain. The modulus measured in a DMA test is a complex modulus ሺܧ∗ሻ,	which consists of a 

storage modulus (ܧᇱሻ and a loss modulus (ܧ"ሻ, as shown in Eq.  10.16. Storage modulus 

measures the stored energy, representing the elastic portion, while loss modulus measures the 

energy dissipated as heat, representing the viscous portion (Nielsen & Landel, 1994). 

Therefore, ܧᇱ is the component of stress in phase with strain divided by the maximum strain 

 is the ratio of the component of stress 90 degrees out of phase with "ܧ while ,(Eq.  10.17) (	଴ߝ)

strain to ߝ଴	(Eq.  10.18). The ratio of loss modulus to storage modulus is called the loss tangent 

(tan δ) or damping factor and is shown in Eq.  10.19.  

 

∗ܧ 	ൌ ᇱܧ	 ൅ Eq.  10.16 	"ܧ݅
 

ᇱܧ 	ൌ 	
ߜ	ݏ݋ܿ	଴ߪ
	଴ߝ

 
Eq.  10.17

 

"ܧ 	ൌ 	
ߜ	݊݅ݏ	଴ߪ
	଴ߝ

 
Eq.  10.18

 

	ߜ	݊ܽݐ ൌ
"ܧ

ᇱܧ
 

Eq.  10.19

 

Material Response 
Phase angle δ 

Applied stress 

Amplitude 

Figure 10.8 Schematic representation of stress and strain curves in DMA (Cheng, 2008) 
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The damping term is a measure of the ratio of energy dissipated as heat to the maximum 

energy stored in the material during one cycle of oscillation. The dynamic mechanical 

properties, especially tan δ, are sensitive to all kinds of molecular motions that are going on in 

a material, even in the solid state. Hence, DMA testing can be used to detect transitions, 

relaxation processes, structural heterogeneities, and even determine indirectly molecular 

weights, molecular weight distributions (MWD), the composition of copolymers, and the 

degree and heterogeneity of crosslinking (Nielsen & Landel, 1994). 

 
Two major kinds of test modes can be used to probe the viscoelastic properties of polymers 

with DMA: temperature sweep and frequency sweep tests. In a temperature sweep, the 

complex modulus is measured at low constant frequency while varying the temperature. On the 

other hand, in the frequency sweep, the sample is held at a fixed temperature and the complex 

modulus is measured at varying frequency. Peaks observed in ܧ"	and tan δ and the dramatic 

change in  ܧᇱ with respect to both frequency and temperature can be associated with the glass 

transition, which corresponds to the ability of chains to move past each other. 

 
Figure 10.9 shows typical viscoelastic regions seen in the storage modulus obtained from 

DMA. At lower temperatures (below Tg), the sample is in the glassy plateau where it is hard or 

rock- like. Localized bending and stretching of bonds is occurring and tan δ is below 0.01. As 

temperature increases, the sample reaches the glass transition region, where the sample 

becomes less hard and the storage modulus decreases while tan δ peaks. As temperature 

increases and passes the glass transition region, the sample enters the rubbery plateau, where it 

is springy. Main backbone chains exhibit gradual slippage and tan δ starts to decrease. Next is 

a viscous region where the sample is like a viscous fluid and flows as temperature increases. 

Large scale main chain mobility occurs. Finally, the fluid region (often treated as part of the 

viscous region) is where the sample is flowing, water-like. Free chain movement and inter-

chain slipping occur (Menard, 2008).  
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Figure 10.10 shows temperature sweep data (storage modulus and tan δ) collected in our lab 

for polystyrene using a frequency of 1 Hz. It can be observed that the storage modulus 

decreases steadily with temperature; according to Nielsen & Landel (1994), this is mostly due 

to thermal expansion. The drop in storage modulus by several decades around 105 °C 

corresponds to the glass transition region and it is accompanied by an increase in the value of 

tan δ, which is at a maximum around 120 °C. At temperatures above the glass transition, the 

storage modulus drops sharply to zero and tan δ also decreases. After the glass transition, the 

sample becomes too soft to support itself as a rectangular bar in the DMA set up, hence, the 

data points after around 130 °C are not meaningful, and eventually the run had to be stopped 

before being able to observe the viscous region, which should occur around 240°C. 
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Figure 10.9 Regions of viscoelastic behavior (Menard, 2008) 
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When the polymer is cross-linked, the maximum of the tan δ peak shifts to higher temperatures 

and the dramatic drop in storage modulus and the increase in loss modulus, happening at the 

glass transition, also shift to higher temperatures. As the degree of crosslinking increases, both 

the maximum in tan δ and the drop in storage modulus shift to higher temperatures (Nielsen & 

Landel, 1994). Our results for a typical linear polystyrene (PS) are compared to the ones for 

cross-linked polystyrene with 1% DVB in Figure 10.11, where the shift of tan δ, ܧᇱ		and ܧᇱᇱ to 

higher temperatures can clearly be observed. It is also observable that the storage modulus 

starts at higher values for cross-linked polystyrene, while the starting value for the loss 

modulus is actually lower for cross-linked polystyrene. Therefore, according to Eq.  10.19, the 

initial values of tan δ will be lower for the cross-linked PS (as observed in Figure 10.11). This 

is due to the fact that cross-linking increases the ability of the polymer material to store more 

energy.  Although not clearly seen in Figure 10.11, it is a fairly well-known fact that the value 

of storage modulus after the glass transition is higher for a cross-linked polymer compared to a 

linear polymer (Flory, 1953). In addition, as the degree of cross-linking increases, so does the 
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Figure 10.10 Dynamic mechanical properties for polystyrene as a function of
temperature (data collected in this work) 
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value of 	ܧᇱ after the glass transition (Mark et al., 1985). This is reasonable, since as % cross-

linking increases, the molecular weight between cross-links (Mc) decreases, and based on Eq.  

10.20 (Mark et al., 1985), the storage modulus is inversely proportional to Mc:  

 

ᇱܧ ൌ 		
ܴܶߩ
௖ܯ

 
Eq.  10.20

 Polymer density :ߩ
R: Gas constant 
T: Absolute temperature 
 
 

 
 
As can be seen in Figure 10.11, although the initial values of loss modulus were lower for 

cross-linked polystyrene, this trend is reversed after the glass transition temperature, and in 

addition, the peak of loss modulus becomes higher, which results in observing a higher 

maximum (peak) for the tan δ of the cross-linked polystyrene (see also Eq.  10.19). 

Figure 10.11 Effect of cross-linking on dynamic mechanical data of polystyrene;
polystyrene cross-linked with 1% divinyl benzene (data collected in this work) 
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As mentioned previously, according to Nielsen & Landel (1994), dynamic mechanical 

properties, especially tan δ, are sensitive to all kinds of molecular motions that are going on in 

a material. There have been several studies in the literature investigating homogeneity or 

heterogeneity of polymer networks by means of dynamic mechanical analysis, where the 

broadening of tan δ has been attributed to a broader distribution of the molecular weights 

between cross-links or to heterogeneity in the network structure (Simon et al., 1991; Tieghi et 

al., 1992; Zosel, 1995; Kannurpatti et al., 1998; Rey et al., 2004). Ide and Fukuda (1999) had 

alluded to the fact that mechanical characteristics can be used to show the homogeneity of the 

network in NMRP of styrene and divinyl benzene, but never showed any evidence or 

experimental data to corroborate their claim. (In fact, several papers in the literature have since 

referred to the paper by Ide and Fukuda (1999), basically accepting the statement (which was 

made in passing at the very end of the 1999 paper), and, furthermore, reporting it as if Ide and 

Fukuda “had shown” unambiguous experimental evidence on the homogeneous vs. 

heterogeneous network topic). Later on, Yu et al. (2007) compared a network prepared by 

conventional free radical polymerization to one produced through Atom Transfer Radical 

Polymerization (ATRP) and showed that the product synthesized through ATRP was more 

homogeneous, documented by a narrower peak width of the tan δ curve. Based on these 

literature statements, it was decided that DMA testing could be a potential technique to 

indicate the heterogeneity of a cross-linked network. Hence, dynamic mechanical analysis was 

carried out on our cross-linked polymers and the results of samples synthesized through regular 

free radical polymerization were compared to samples from nitroxide-mediated radical 

polymerization (NMRP). 

 
10.2.3.1 Experimental 
 
The dynamic mechanical measurements were carried out in a Q800 dynamic mechanical 

analyzer from TA Instruments in a multi-strain mode. After trying several clamps, a single 

cantilever clamp was used, as it is a good general purpose mode for evaluating thermoplastics 

and highly damped materials (e.g., elastomers). A sinusoidal stress of 1 Hz frequency was 

applied. A stress-strain experiment was carried out prior to formal testing to establish the linear 

viscoelastic region (LVR) and also to find test conditions that give optimal results. LVR is the 

linear part of a stress–strain curve where an increase in stress is accompanied by a proportional 
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increase in strain, that is the modulus is constant and the change in dimensions is reversible. 

Figure 10.12a shows storage modulus for different amplitudes (μm). As can be seen, storage 

modulus is constant up to an amplitude of about 6 μm, after which there is a slight decrease in 

storage modulus. From Figure 10.12a, it seems safe to pick an amplitude of 5 μm. Figure 

10.12b shows that an amplitude of 5 μm corresponds to a strain of about 0.05% and the stress 

vs. strain curve (Figure 10.12c) shows that the 0.05% value of strain lies in the linear part of 

the stress-strain curve. A temperature sweep mode was used to record changes in storage 

modulus, loss modulus and tan δ with temperature over a range of 60 °C to 160 °C with a 

ramping rate of 2 ºC/min. Two specimens were prepared from each polymer sample and an 

independent DMA test was carried out for the specimens in order to check the reproducibility 

of the results (which is infrequently done in the literature, if at all!). 

 
The specimens examined were thin rectangular sheets of 0.6 mm thickness and 20 mm ൈ	5 mm 

area. The samples were compression molded at 190 േ 10 °C following the procedure below, 

tailored from ASTM method D4703-10a: The stainless steel mold was preheated between two 

ferrotype plates to 190 °C, then enough material was poured in the mold, distributing it evenly 

in the cavity. The set up was then placed in the preheated press. The material was preheated for 

5 min by applying only a contact pressure. Two cycles of 2 min pressure-30 sec release were 

applied, with 10,000 lbf. At the last stage, the material was cooled down under pressure to 80 

°C using compressed air. The pressure- release cycles were applied to make sure there were no 

bubbles trapped in the sample. When the temperature of the press was around 80 °C, it was 

opened and the mold was quench-cooled to room temperature and the specimen was taken out 

of the mold and examined to make sure it had a smooth surface and there were no bubbles 

trapped in it or any cracks on the surface. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.12 Strain and frequency sweep for PS sample; a) Storage
Modulus vs. Amplitude, b) Strain vs. Amplitude, c) Stress vs. Strain 
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10.3 Results and Discussion 
 

10.3.1 Long Chain Branching in NMRP of STY/DVB  
 
Presence of a di-functional monomer (DVB) in radical copolymerization of STY/DVB could 

lead to production of branched polystyrene before the formation of cross-linked polystyrene at 

the gelation point. In regular radical copolymerization of STY/DVB at high temperatures, the 

gelation point occurs at the very early stages of conversion (since the molecular weights are 

high from the beginning); hence, progression of branching with conversion is hard to detect 

before the gel point. For instance, crosslinking happens around 7% conversion for STY 

copolymerization with 1% DVB at 120 °C. Figure 10.13 shows intrinsic viscosity vs. 

molecular weight in logarithmic scale for polystyrene at different conversions. At 1.4% 

conversion, there is no sign of branching and log ሾߟሿ increases linearly with log M. This plot 

deviates slightly from linearity at higher molecular weights for the sample at 3.4% conversion, 

resulting in  an average number of branch points per molecule equal to 10 ( ത݊ 	ൌ 10). At 7% 

conversion the sample is highly cross-linked and the deviation from linearity is prominent in 

Figure 10.13, with 	ഥ݊ 	ൌ 184. The evidence of branching can also be observed in the shoulders 

or bimodality of the GPC chromatograms for different detectors. Figure 10.14 shows 

viscometer signals vs. retention volume. It can be seen that at 1.4% conversion there is no sign 

of shouldering in the viscometer signal. At 3.4% conversion there is a slight shoulder 

appearing at lower retention volume, which indicates small amounts of high molecular weight 

species produced by branching. At 7% conversion, the shoulder is prominent and the 

concentration of linear polystyrene (observed in the RI signal, not shown here for the sake of 

brevity) is almost negligible in comparison with the shoulder  
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Figure 10.13 Intrinsic viscosity as a function of molecular weight for polystyrene at
different conversions 
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Figure 10.14 GPC chromatograms for polystyrene with 1% DVB at different
conversions 
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In the case of controlled radical copolymerization of STY/DVB, presence of I-TIPNO delays 

the gelation point and branched polystyrenes are produced at higher conversions. Comparing 

the weight average molecular weight vs. conversion plot from this experiment with controlled 

radical polymerization of STY with I-TIPNO, one can see that, in the initial stages of the 

reaction, the copolymerization reaction follows the linear increase in molecular weights with 

conversion, however, at about 35% conversion, deviation from linearity emerges especially for 

weight average molecular weight, indicating the formation of high molecular weight chains by 

addition to branch points (see Figure 10.15).  Figure 10.16 compares the corresponding GPC 

chromatograms for STY copolymerization with 1% DVB and 1% I-TIPNO and STY 

homopolymerization with 1% I-TIPNO. Figure 10.16a shows the chromatograms at 10% 

conversion; as can be seen, presence of DVB does not show any effect. However, at 35% 

conversion (see Figure 10.16b), one can see a shoulder at lower retention volumes which 

corresponds to the presence of high molecular weight polymer formed by branching of the 

controlled molecular weight chains. 

 

 

Figure 10.15 Weight average molecular weight vs. conversion for branched (1% DVB) and
linear polystyrene synthesized through controlled radical polymerization with 1 % I-TIPNO 
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Figure 10.16 Comparison of GPC chromatograms of controlled
copolymerization (1% DVB, 1% I-TIPNO) and controlled
polymerization of styrene (1% I-TIPNO), a) at 10% conversion, b) at
35% conversion 
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As mentioned previously, the level of branching can be described by the contraction factors g 

and	g’. The GPC set up used for characterizing our samples was equipped with a viscometer 

but not a multi-angle light scattering. Hence, it was only possible to experimentally determine 

intrinsic viscosity (ሾηሿ), shown in Table 10.3, for different conversion levels. In order to 

calculate g’ from Eq.  10.6, the intrinsic viscosity of a linear analogue at the same molecular 

weight was required. Whenever available, the intrinsic viscosity of linear polystyrene 

synthesized through controlled radical polymerization with the same level of I-TIPNO was 

used.  In cases where the linear analogue was not available from our experiments, the 

following Mark-Houwink equation, from the Polymer Handbook (Brandrup et al., 1999), was 

used for linear polystyrene in tetrahydrofuran (THF)):  

 

ሾߟሿ ൌ 	1.1 ൈ 10ିସܯ଴.଻ଶହ Eq.  10.21

 
Eq.  10.7 was used to calculate g	contraction factor values from g’. The value of the structure 

factor (ߝ) used was 0.75 (Ambler and McIntyre, 1977). The g and	g’ data for controlled radical 

copolymerization of STY with 1% DVB and 1% I-TIPNO are shown in Table 10.3, with g’	in 

the range of 0.211-0.955 and g in the range of 0.126-0.941. The polymers with higher 

branching clearly give lower g and	g’ values, at the same molecular weights.  Subsequently, to 

calculate branching number and frequency, Eq.  10.10 and Eq.  10.11 were used and the results 

are also shown in Table 10.3. Branch frequency per 100 STY units is plotted vs. conversion in 

Figure 10.17. It can be seen that branch frequency increases with conversion but is still low 

just before the gelation point, where the average number of branch points per 100 STY units 

jumps to 7 (value of λ for the last entry is not a meaningful value, since λ could not be higher 

than 1 for our case with 1 wt% DVB. However, qualitatively this value means that the 

macromolecule is not branched anymore, and it is cross-linked, hence not possible to find the 

branching number).  

 

 

 

 

 



 
 

256 
 

Table 10.3 Branching characteristics for controlled radical copolymerization of STY with 1% 
DVB and 1% I-TIPNO  
 

Time (hr) Conv. Mn Mw PDI ሾࣁሿ g’ g 	࢔ഥ  ࣅ 

2 0.244 10,941 13,745 1.256 0.114 0.955 0.941 0.51 0.25 

3 0.332 15,931 20,836 1.31 0.143 0.967 0.956 1.22 0.31 

4 0.373 22,851 35,164 1.54 0.194 0.897 0.865 2.59 0.40 

5 0.463 28,271 54,881 1.94 0.228 0.763 0.698 5.84 0.65 

6 0.544 37,977 113,261 2.98 0.309 0.610 0.517 13.38 0.82 

7 0.568 45,871 250,489 5.46 0.424 0.471 0.367 28.46 0.93 

7 0.576 46,078 262,716 5.70 0.432 0.464 0.359 32.91 0.96 

8 0.617 128,902 1.38E+06 10.73 0.656 0.211 0.126 354.04 7.06 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.18 shows the progression of viscometer responses with retention volume for 

polystyrene samples, synthesized through controlled radical copolymerization of styrene with 

1% DVB and 1% I-TIPNO. It can be seen that as conversion increases the chromatogram shifts 

towards lower retention volumes, which represents higher molecular weights, and there is the 

presence of a shoulder appearing in the peak that becomes broader and broader as conversion 

Figure 10.17 Branch frequency vs. conversion for controlled radical 
copolymerization of styrene with 1% DVB and 1% I-TIPNO 
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increases. This shoulder is the widest at 60% conversion, which is the gelation point. After this 

point, we have cross-linked polystyrene which is not soluble in THF for GPC analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of DVB concentration: Let’s keep the case of 1% DVB and 1% I-TIPNO as our base 

case. Then  for controlled radical copolymerization of styrene with the same level of I-TIPNO 

(1%) but higher level of DVB (1.5%), branching levels are higher, as expected (and also 

observed in Chapter 9; see subsection 9.4.2.3), due to the presence of more DVB. Table 10.4 

shows the related branching information for this run. It can be seen that g’	 is	 in the range of 

0.133-0.998 and g in the range of 0.068-0.998.  At around 45% conversion, the run with higher 

percentage of DVB has lower g’	and g values and hence, it is more branched resulting in a 

higher branching frequency (compare Table 10.3 and Table 10.4). Comparisons between the 

branch frequencies are shown in Figure 10.19. It can be seen that branch frequency increases 

with conversion for both runs; however, the run with higher percentage of DVB has higher 

branching frequencies at all conversion levels, and the branching parameters, ሺ	࢔ഥ) and ሺࣅሻ, are 

higher at the gel point, which happens at lower conversion for the run with higher % DVB. 
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Figure 10.18 GPC chromatograms for polystyrene synthesized through controlled
radical copolymerization with 1% DVB and 1% I-TIPNO, at different conversions 
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Again, the branching characteristics for the last entry of the table are not meaningful, as at 

gelation point the branching relationships become out of trend. 

 
Table 10.4 Branching characteristics for controlled radical copolymerization of STY with 1.5% 
DVB and 1% I-TIPNO  
 

Time (hr) Conv. Mn Mw PDI ሾࣁሿ g’ g ࢔ഥ  ࣅ 

2 0.263 10,098 13,244 1.31 0.107 0.998 0.998 0.88 0.35 

2.5 0.299 12,707 17,721 1.40 0.121 0.918 0.892 1.54 0.51 

3 0.344 15,143 23,631 1.56 0.139 0.853 0.809 3.20 0.81 

4 0.421 23,323 51,334 2.20 0.201 0.706 0.629 7.98 1.01 

5 0.475 26,500 102,458 3.87 0.240 0.511 0.408 20.79 1.70 

6 0.558 107,695 1.81E+06 16.80 0.502 0.133 0.068 1396.68 20.09 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 10.19 Effect of % DVB on branch frequency vs. conversion data 
for controlled radical copolymerization of styrene with 1% I-TIPNO 
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Effect of I-TIPNO concentration: In the case of controlled radical copolymerization of STY 

with the same level of DVB as the base case (1% ) but higher level of I-TIPNO (2%), branches 

are produced at higher conversions (35% for 1% I-TIPNO vs. 50% for 2% I-TIPNO). Table 

10.5 shows the corresponding branching information for this run. It can be seen that g’	varies	in 

the range of 0.189-0.991 and g in the range of 0.109-0.988.  Effect of I-TIPNO percentage on 

branch frequency is shown in Figure 10.20. It can be seen that branch frequency increases with 

conversion for both runs; however, the run with higher percentage of I-TIPNO produces 

branched polystyrene with lower branching frequencies. The gelation is delayed for the case of 

higher I-TIPNO, as expected and was observed previously in Chapter 9 (see subsection 

9.4.2.2). On the other hand, at gelation point, branching frequency and branching number are 

higher than in the case of 1% I-TIPNO. This could be due to the fact that at higher conversions, 

higher % of I-TIPNO also contributes to branching, as will be discussed in detail below.  

 
 
Table 10.5 Branching characteristics for controlled radical copolymerization of STY with 1% 
DVB and 2% I-TIPNO  
 

Time (hr) Conv. Mn Mw PDI ሾࣁሿ g’ g 	࢔ഥ  ࣅ 

4.5 0.507 12,050 16,982 1.41 0.127 0.991 0.988 0.51 0.20 

6.5 0.612 17,677 30,479 1.72 0.164 0.838 0.790 2.96 0.62 

10 0.729 26,686 83,046 3.11 0.245 0.606 0.513 10.83 1.06 

12.5 0.788 31,931 191,048 5.98 0.337 0.456 0.351 24.59 1.27 

14.5 0.795 40,813 497,367 12.19 0.509 0.344 0.241 67.35 1.29 

17 0.834 70,160 1.07E+06 15.24 0.487 0.189 0.109 610.93 10.85 
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Figure 10.21 compares the weight average molecular weight vs. conversion plot from this 

experiment with controlled radical homopolymerization of STY with 2% I-TIPNO, one can see 

that, in the initial stages of the reaction, the copolymerization reaction follows the linear 

increase in molecular weights with conversion, however, at about 50% conversion, deviation 

from linearity emerges.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 10.20 Effect of % I-TIPNO on branch frequency vs. conversion
data for controlled radical copolymerization of styrene with 1% DVB 

Figure 10.21 Weight average molecular weight vs. conversion for branched and linear
polystyrene synthesized through controlled radical polymerization with 2 % I-TIPNO
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The corresponding GPC chromatograms for STY copolymerization with 1% DVB and 2% I-

TIPNO and STY homopolymerization with 2% I-TIPNO are shown in Figure 10.22. Figure 

10.22a shows the chromatograms at 10% conversion; as can be seen, the presence of DVB 

does not show any effect on the Refractive Index (RI) signal. However, at 50% conversion (see 

Figure 10.22b), one can see a shoulder at lower retention volumes which corresponds to 

branching because of the presence of DVB. At around 85% conversion, the system with DVB 

is gelled, which results in a significant broadening in the RI signal (see Figure 10.22c).  

 
It is interesting to notice that the RI signal for the system without DVB also shows a slight 

shoulder at this conversion, which could be an indication of low levels of branching. This 

shoulder was not observed in the case of homopolymerizaion of styrene with 1% I-TIPNO 

until around 93% conversion. It can be seen from Figure 10.23a that for 1% I-TIPNO, there is 

no evidence of branching at 92% conversion. There is a broadening in the signal at 93% 

conversion, and a more prominent shoulder at 95%.  However, for 2% I-TIPNO (Figure 

10.23b), there is a noticeable shoulder appearing at 87% conversion, which becomes very 

prominent (and a lot more relative to Figure 10.23a) as conversion increases. 
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Figure 10.22 Comparison of GPC chromatograms of controlled copolymerization (1%
DVB, 2% I-TIPNO) and controlled polymerization of styrene (2% TIPNO), a) at 10%
conversion, b) at 50% conversion, and c) at 85% conversion 
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Figure 10.23 GPC chromatograms for polystyrene synthesized through controlled
radical polymerization with a) 1% TIPNO, b) 2% TIPNO, at different conversions 
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Marx et al. (2009) synthesized different TIPNO-based alkoxyamines and showed that 

polymerizing styrene with a styrenic alkoxyamine (structure (1) in Figure 10.24) will result in 

branched polystyrene at conversions higher than 30%, as illustrated in Figure 10.24. Having 

first established the reproducibility of the obtained results in Figure 10.23 (i.e., the observed 

shoulders are not artifacts of error), our explanation is as follows. During polymerization of 

styrene with I-TIPNO, at low to moderate conversion levels, the preference is the addition of 

styrene units to the growing radical, due to the abundance of styrene vinyl bonds. Hence, 

structure (1), even if present in nominal amounts (almost as impurity), might be transformed 

into linear TIPNO-end-capped styrenic macromolecules (structure (2) in Figure 10.24). 

However, at higher conversion levels (certainly higher than 70-80%, based on experience by 

analogy with other polymerizations), where the concentration of styrene monomer (and hence 

styrenic vinyl double bonds) is decreased, the concentration of terminal double bonds of 

structure (2) will be relatively higher, to the point that these terminal double bonds will become 

competitive for radicals, and hence the presence of structure (2) might start producing 

branched polystyrene molecules. This could certainly explain the appearance of a growing 

shoulder at higher molecular weights in the GPC traces (at very high conversion levels, above 

92% for 1% I-TIPNO, as in Figure 10.23a, and at lower conversion levels, around 85%, as 

seen in Figure 10.23b for 2% I-TIPNO). In the next step, we tried to check with the I-TIPNO 

supplier, Sigma Aldrich, who could not enlighten us further but did not deny the fact that there 

might be very low levels or traces of other reactive admixtures in such a chemical (e.g., the 

purity is reported as 99+%, with the possibility of the remaining 0.5-1% to be reactive, very 

much so as admixtures of 0.5-1% of diacrylates or dimethacrylates that might be present in 

99+% pure butyl acrylate on a regular basis). 

 
 

 

 

 

 

Figure 10.24 Synthesis of branched polystyrene with styrenic TIPNO-based alkoxyamine 
(Marx et al., 2009) 

(1) (2)
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In the next step, we tried to see if we could find any corroborating evidence from the TIPNO 

literature at large. In all the research conducted previously in the literature, polymerization had 

been stopped before high conversions were reached and that could explain why production of 

branched polystyrene with TIPNO (or I-TIPNO) at higher conversions was never reported or 

observed before. Hence, in our next forensic step, we decided to resort to NMR. Figure 10.25 

shows the NMR spectrum of TIPNO in deuterated chloroform. The insert in the middle 

magnifies the region between 4.6 to 6.2 ppm. As can be seen in the insert, there is a double 

peak appearing around 5.6 ppm along with the multiplet at ~ 5.2 ppm, which correspond to the 

presence of two of the vinylic protons in structure (1) of Figure 10.24 (the third proton 

appearing around 6.6 ppm in the NMR spectrum is not evident in the insert of Figure 10.24 but 

magnifying the figure one can observe it). Hence, one can postulate/speculate with more 

certainty now that the purchased TIPNO from Sigma Aldrich did indeed contain small amounts 

of structure (1) of Figure 10.24. Therefore, one can conclude that shoulders observed at higher 

conversions, in the GPC traces for polymerization of styrene with TIPNO, could be attributed 

to branched polystyrene produced due to the presence of small amounts of structure (1), 

present in the TIPNO mixture. 

 
What is left as a confirmation exercise in future work is the further purification of TIPNO 

(following typical purification methods such as precipitation/recrystallization, or 

chromatography). GPC chromatograms from polymerization using purified TIPNO can then be 

compared to the high conversion results of Figure 10.23 (with TIPNO as received). We are in 

contact with Sigma Aldrich in order to coordinate such a comparison. 
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Figure 10.25 H-NMR spectrum of I-TIPNO recorded in deuterated chloroform (performed by the author) 
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The results discussed so far indicate that both I-TIPNO and DVB percentages have significant 

effects on the branching characteristics. At 1% I-TIPNO, branching increased with the higher 

percentage of DVB. Figure 10.26 illustrates the same trend at 2% TIPNO; higher percentage of 

DVB results in higher branching frequencies and earlier gelation.  Table 10.6 shows the 

branching information for controlled radical copolymerization of STY with 1.5% DVB and 2% 

I-TIPNO. It can be seen that g’	varies	in the range of 0.162-0.791 and g in the range of 0.108-

0.731. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 10.6 Branching characteristics for controlled radical copolymerization of STY with 1.5% 
DVB and 2% I-TIPNO  
 

Time (hr) Conv. Mn Mw PDI ሾࣁሿ g’ g 	࢔ഥ  ࣅ 

4 0.467 11,416 18,527 1.62 0.108 0.791 0.731 3.74 1.19 

6 0.585 18,700 54,452 2.91 0.181 0.610 0.517 10.78 1.52 

8 0.670 30,699 348,115 11.34 0.366 0.320 0.219 69.03 2.38 

10 0.723 34,714 1.09E+06 31.51 0.424 0.162 0.088 232.96 12.85 

 

Figure 10.27 illustrates the effect of I-TIPNO percentage at 1.5% DVB. In the same way as for 

the case of 1% DVB, gelation is delayed for the higher percentage of I-TIPNO. However, due 

to lack of lower conversion data for the run with higher I-TIPNO, it is difficult to state whether 

Figure 10.26 Effect of % DVB on branch frequency vs. conversion data for 
controlled radical copolymerization of styrene with 2% I-TIPNO 
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the trends are the same as in the case of 1% DVB. What is evident is that at 50% conversion, 

the run with lower I-TIPNO produces polystyrene with higher branching frequencies. The run 

with 1% I-TIPNO illustrates higher branching frequency at the gel point, compared to the run 

with 2% TIPNO (λ (1% I-TIPNO) = 20.09 vs. λ (2% I-TIPNO) = 12.85, in Figure 10.27 around the gel 

point). This trend is reversed when comparing the branching frequencies at the gelation point 

with 1% DVB (λ (1% I-TIPNO) = 7.06 vs. λ (2% I-TIPNO) = 10.85, in Figure 10.20 around the gelation 

point). The reason could be that the gel point for 1% DVB and 2% I-TIPNO occurred at 85% 

conversion, which is around the conversion level where I-TIPNO itself also contributes to 

branching (see Figure 10.22c and Figure 10.23b). On the other hand, the gel point for 1.5% 

DVB and 2% I-TIPNO occurred around 72% conversion, which is below the conversion level 

at which TIPNO itself contributes to branching. 

 
 

 

 

 

 

 

 

 

 

 
Table 10.7 shows a summary of the runs with different combinations of low and high % 

TIPNO and % DVB. Figure 10.28 summarizes the branching frequency vs. conversion data for 

all the runs. The red window in Figure 10.28 looks at all the runs at 50% conversion. 

Branching frequency for run 6 is the highest, followed by run 7, run 4 and then run 5 (see also 

the last column in Table 10.7). As for the gelation point, run 6 gels earliest (higher DVB and 

lower I-TIPNO), followed by run 4, run 7 and run 5 (lower DVB and higher I-TIPNO) (see the 

Figure 10.27 Effect of % TIPNO on branch frequency vs. conversion data 
for controlled radical copolymerization of styrene with 1.5 % DVB 
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4th column of Table 10.7). This is in agreement with observations presented in Chapter 9 (see 

Subsection 9.4.2.4). However, the branching frequency at the gelation point (5th column in 

Table 10.7) does not follow the exact order of the gelation point occurrence. Runs with higher 

% DVB produce higher branching frequency at the gel point (run 6 followed by run 7), the 

next high branching frequency belongs to run 5 (1% DVB and 2% I-TIPNO), and finally the 

lowest branching frequency at gelation belongs to run 4. 

 
Table 10.7 Summary of runs 

Run %  DVB % TIPNO 
[DVB]/[TIPNO] 

molar ratio 
x @ gelation ࣅ @ gelation ࣅ @ x= 50% 

4 1 1 2.5 0.617 7.06 0.82 

5 1 2 1.25 0.834 10.85 0.20 

6 1.5 1 3.75 0.558 20.09 1.70 

7 1.5 2 1.87 0.723 12.85 1.19 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.28 Branch frequency vs. conversion data for controlled radical 
copolymerization of styrene with different levels of I-TIPNO and DVB 
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10.3.2 Thermo-Mechanical Analysis 
 
In this subsection thermal and mechanical properties of polymer networks synthesized through 

nitroxide-mediated radical polymerization (NMRP) are compared to networks synthesized 

through regular free radical polymerization (FRP). Both thermal and mechanical properties of 

a polymer can give insight into its molecular structure. The first part covers discussion on the 

results of Differential Scanning Calorimetry (DSC) tests on our polymer samples while the 

second part discusses the results of Dynamic Mechanical Analysis (DMA).  

 

10.3.2.1 Differential Scanning Calorimetry (DSC) 
 
DSC is used to differentiate between cross-linked polystyrene (PS) synthesized through 

nitroxide-mediated radical polymerization (NMRP) and PS cross-linked through regular free 

radical polymerization. Table 10.8 summarizes the DSC results; Runs 3 and 3B are synthesized 

through NMRP with 1% I-TIPNO and 1% DVB, whereas run 2B is synthesized through 

regular radical polymerization with 1% DVB only. Comparisons are carried out at two 

different conversion levels, namely, around 65% (2B-10 vs. 3B-2 and 3-11) and 96% 

conversion level (2B-12 vs. 3-15 and 3-16).  Samples at lower conversion levels have different 

% gel, whereas samples at higher conversion have almost the same amount of gel. It was 

decided that the comparisons would be more meaningful at about the same gel level. It can be 

seen that using a nitroxide in the copolymerization of styrene (STY) with divinyl benzene 

(DVB) resulted in a shift of Tg to lower temperatures. At around 65% conversion level, Tg has 

shifted from 107.83 °C for 2B-10 to 103.62°C for 3B-2 and 3-11. On the other hand, at 97% 

conversion, Tg has shifted from 106.80 °C for 2B-12 to 96.43°C and 97.58 °C for 3-15 and 3-

16, respectively.  
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Table 10.8 DSC results of PS cross-linked with 1% DVB; comparison between NMRP cross-
linking (Run 3 and 3B; 1% TIPNO) and regular radical cross-linking (Run 2B) 

Sample 
% 

I-TIPNO 
x 

% 
Gel 

TB (Tg) 
ºC 

ΔTg 

ºC 
ΔH 

(W/g) 
ΔCp 

(J/ºC.g) 
Slope 

(W/g. ºC) 

2B-10 - 0.62 100 107.83 5.17 0.0564 0.3408 -9.58E-03 

3B-2 1 0.64 40 103.63 5.56 0.0562 0.3390 -8.97E-03 

3-11 1 0.67 50 103.62 4.79 0.0544 0.3273 -1.00E-02 

2B-12 - 0.97 100 106.80 5.36 0.0563 0.3400 -9.45E-03 

3-15 1 0.96 93 96.43 10.93 0.0510 0.3056 -4.04E-03 

3-16 1 0.97 95 97.58 10.75 0.0538 0.3224 -4.78E-03 

x: conversion;; TB (Tg): point where half of the specific heat increment has occurred, used as indicator of Tg 
(as a reminder, refer to Figure 10.6); ΔTg = TC- TA, where TA is onset and Tc is the end of transition; ΔH: 
change in heat flow; ΔCp: change in heat capacity; Slope: slope of the transition line. 

 

Additional information such as ΔTg,  ΔH, ΔCp and slope of the transition line have also been 

calculated from the DSC curves in order to obtain information related to network uniformity.  

Figure 10.29 shows typical results extracted from DSC (sample 2B-12). The top curve shows 

heat capacity behavior, while the lower curve captures the heat flow. Tg is determined from the 

heat flow plot and the slope of the transition and the range of Tg are indicated on the plot. It 

can be seen in Table 10.8 that at 97% conversion the slope of the transition line is almost twice 

in the case of regular radical polymerization (e.g., FRP: -9.45 ൈ	10ିଷ vs. NMRP: -4.78 

ൈ	10ିଷ). This is also confirmed by the ΔTg results, with ΔTg for 2B-12 being almost half of 

the ones for samples 3-15 and 3-16.  These results indicate that the transition is sharper for 2B-

12 and occurs in a narrower temperature range, which suggests a more uniform polymer 

network when compared to 3-15 and 3-16. In the cases of the data for ΔH and ΔCp, the values 

for all three samples are fairly close to each other and it is difficult to make a comment just by 

looking at the numbers. However, by running statistical tests (discussed below), it was 

concluded that there was indeed no difference between the data for ΔH and ΔCp. 
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For samples around 65% conversion, it is not possible to visually distinguish the differences 

between values of ΔTg, ΔH, ΔCp and slope of the transition line. Hence, formal statistical 

hypothesis testing has been carried out to make an inference for differences in the values of 

Table 10.8.  Table 10.9 summarizes the statistical hypothesis testing carried out to compare if 

the values of ΔTg, ΔH, ΔCp and slope of the transition line for sample 2B-10 are different from 

the values of sample 3B-2. The four readings from DSC for each sample are shown in Table 

10.9 along with the sample average and variance. For example, to compare the ΔTg values of  

2B-10 and 3B-2 (see column 3 of Table 10.9),  the null hypothesis stated is H0 : μ (ΔTg (2B-10))  

- μ (ΔTg (3B-2))  = 0 and tested against the alternative hypothesis of  H1 : μ (ΔTg (2B-10))  - μ (ΔTg 

(3B-2)) ≠ 0.  In all the calculations it is assumed that the distribution variances are the same but 

unknown, hence two sample variances are pooled to form an estimate of distribution variance 

(ܵ௣ଶ). For example, for ΔTg:   
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Figure 10.29 Typical results extracted from a DSC run (2B-12) 
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ܵ௣ଶ 	ൌ 		
ܧ6.79 െ 02	 ൅ ܧ2.19 െ 01

2
ൌ 1.43E െ 01 

Eq.  10.22

 
tobs for the hypothesis testing is calculated as:  

 

	௢௕௦ݐ 	ൌ 	
ଵܺതതത െ ܺଶതതത

ܵ௣ට
1
݊ଵ
൅ 1
݊ଶ

	ൌ 	
5.17 െ 5.56

	ට1.43ܧ െ 01 ሺ14 ൅
1
4ሻ

ൌ െ1.47 
Eq.  10.23

 
tobs calculated is now compared to values read from the t distribution with ݊ଵ ൅ ݊ଶ െ 2	 degrees 

of freedom. In our study, for a 95% confidence level, tobs is contrasted against t6, 0.025 = 2.45. If 

|௢௕௦ݐ	| 	൐ 	  ଺,଴.଴ଶହ, reject the null hypothesis and conclude that the two values compared areݐ

different. On the other hand, if |	ݐ௢௕௦| 	൏ 	  ଺,଴.଴ଶହ , we fail to reject the null hypothesis andݐ

conclude that the two values compared are the same. In the case of comparing ΔTg values for 

samples 2B-10 and 3B-2, |	െ1.47| 	൏ 	2.45, hence we failed to reject the null hypothesis and 

concluded that the two values are the same. The other hypothesis tests for ΔH, ΔCp and slope 

of the transition line are also shown in Table 10.9. As can be seen, all the hypothesis tests fail 

to reject the null. Therefore, it is concluded that all the values are statistically the same, and it 

is not possible to conclude through DSC testing if 2B-10 has a more uniform network 

compared to 3B-2 (as seen for 2B-12 vs. 3-15 and 3-16). The only statement that can be made 

based on the DSC data is that sample 2B-10 has a higher Tg compared to 3B-2. The 

comparison table for 2B-10 and 3-11 is shown in Subsection G.1 in Appendix G and the 

conclusion is the same, i.e., again it is not possible to differentiate between 2B-10 and 3-11 

through DSC measurements.  
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Table 10.9 Comparison of DSC data for 2B-10 and 3B-2 of  Table 10.8 

Sample Stat. indicator 
ΔTg 

ºC 
ΔH 

(W/g) 
ΔCp 

(J/ºC.g) 
Slope 

(W/g.ºC) 
2B-10   5.53 0.0634 0.3862 -0.00989 

    4.91 0.0531 0.3202 -0.00991 
    5.1 0.0543 0.3258 -0.00888 
    5.13 0.0549 0.3310 -0.00962 
    
  average 5.17 0.0564 0.3408 -9.58E-03 
  variance 6.79E-02 2.22E-05 9.36E-04 2.31E-07 

3B-2   5.96 0.0582 0.3520 -0.00882 
    5.97 0.0555 0.3366 -0.00792 
    5.15 0.0569 0.3408 -0.00976 
    5.16 0.0542 0.3266 -0.00936 
    
  average 5.56 0.0562 0.3390 -8.97E-03 
  variance 2.19E-01 3.00E-06 1.11E-04 6.35E-07 

ܵ௣ଶ 1.43E-01 1.26E-05 5.23E-04 4.33E-07 
tobs -1.47 0.09 0.11 -1.31 

t6, 0.025  = 2.45 Fail to reject Fail to reject Fail to reject Fail to reject 
 
 

In conclusion, DSC measurements showed that the presence of nitroxide in cross-linked 

polymerization of styrene with DVB shifts the glass transition to lower temperatures. This 

overall observation was expected. At around 65% conversion, there was no difference detected 

between FRP and NMRP for the values of ΔTg, ΔH, ΔCp and slope of the transition line. 

However, at 97% conversion, FRP samples exhibited lower ΔTg, and sharper slope of 

transition line compared to NMRP samples, which could be an indicator of FRP samples 

having a more homogeneous polymer network. This was not as expected and, in fact, 

somewhat surprising. 
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10.3.2.2 Dynamic Mechanical Analysis (DMA) 
 
To investigate the structure of the networks prepared through nitroxide-mediated radical 

polymerization (NMRP) and regular free radical polymerization (FRP), dynamic mechanical 

analysis was carried out on samples from both NMRP and FRP of styrene with 1% DVB. 

Table 10.10 summarizes the information of these samples. As can be seen, an attempt was 

made to compare samples at similar (practically speaking, the same) conversion levels; in the 

last comparison, 2B-12 with 3-15 and 3-16, all three samples were also at a similar % gel. To 

check the reproducibility of the results, a separate specimen was made for each polymer 

sample and independent measurements were carried out. Figure 10.30 shows tan δ and storage 

modulus data for two independent DMA measurements of sample 2B-10. Subsection G.2 in 

Appendix G contains additional figures showing the replicates for other samples.  

 

Table 10.10 Summary of conversion and % gel for DMA samples 

 

Sample 
% 

I-TIPNO 
x 

% 
Gel 

2B-10 - 0.62 100 

3B-2 1 0.64 40 

2B-12 - 0.97 100 

3-15 1 0.96 93 

3-16 1 0.97 95 

 

Figure 10.30 shows the storage modulus and tan δ trends for cross-linked PS synthesized 

through FRP at 62% conversion (sample 2B-10). In order to eliminate the effect of sample 

geometry, storage modulus values were normalized by dividing each value with the starting 

storage modulus. As can be seen, both tan δ and storage modulus trends of two independent 

replicates are in good agreement. The modulus behavior was well captured over a temperature 

range of 60 to 140°C; both curves decreased from a glassy state value of ∼1.7 × 109 Pa to a 

rubbery state value of ∼1.8 × 106 Pa. The storage modulus in the rubbery region is an 

indication of the crosslinking density of the network. Tan δ distributions were also fully 

captured; width (breadth) at half maximum height (WHM) has been used as an indicator for 
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the breadth of the tan δ distribution. For sample 2B-10, WHM is 11.27 °C while WHM = 10.88 

°C for the replicate; as observed, the WHM values are very close to each other and tan δ data 

are reproducible. The same agreement between replicates has also been shown in all 

independent determinations of Appendix G. 

 
 

 

Figure 10.31a compares samples 2B-10 (regular free radical (FRP) with 1% DVB) and 3B-2 (a 

sample synthesized through NMRP at the same conversion level and DVB level, but with 1% 

I-TIPNO). FRP is much faster that NMRP, and gels earlier than NMRP; as a result, although 

the samples are at the same conversion level, they have different gel content (see Table 10.10). 

It can be seen from Figure 10.31a that the storage modulus for the NMRP sample (sample 3B-

2), which has a lower % gel, is lower. This trend is as expected; as % cross-linking decreases, 

the molecular weight between cross-links (Mc) increases. For example, the molecular weight 

between cross-links for 2B-10 (higher % gel) is ܯ௖	 ൌ 	2.62	 ൈ	10ସ, whereas for sample 3B-2 
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Figure 10.30 Storage modulus and Tan delta for cross-linked PS at 62% conversion,
synthesized through regular radical polymerization with 1% DVB (sample 2B-10) 
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(lower % gel), ܯ௖	 ൌ 	4.52	 ൈ	10ହ. Based on Eq.  10.20, storage modulus is inversely 

proportional to Mc, therefore since ܯ௖	ሺଷ஻ିଶሻ ൐ ଶ஻ିଵ଴ܧ then	ሺଶ஻ିଵ଴ሻ,	௖ܯ
ᇱ ൐ ଷ஻ିଶܧ

ᇱ .  

 
In addition to having a lower storage modulus, the dramatic drop in storage modulus 

corresponding to glass transition is also shifted to lower temperatures for the NMRP sample 

(sample 3B-2). This result is again in agreement with the DSC data (see column 5 of Table 

10.8 for 2B-10 and 3B-2), although the glass transition temperature (Tg) determined through 

DMA is higher than the one from DSC data. This behavior is expected and has been mentioned 

before by Nielsen and Landel (1994). Figure 10.32a and b compare the glass transition 

temperature determined through DMA and DSC for samples 3B-2 and 2B-10, respectively. It 

can be seen that Tg determined through DMA is almost 10 °C higher than the one determined 

through DSC for both 3B-2 and 2B-10.  

 
Figure 10.31a also shows tan δ peaks for samples 3B-2 and 2B-10. It can be seen that, as for 

the storage modulus, the tan δ peak is also shifted towards lower temperatures for the sample 

synthesized through NMRP (sample 3B-2). Figure 10.31b shows the superposition of the two 

tan δ distributions. It can be seen that the width at maximum height (WHM) is larger for 3B-2 

(sample synthesized through NMRP); WHM(NMRP) = 13.01 °C vs. WHM(FRP) = 11.27 °C. At 

first glance, one might argue that the differences between the two distributions of Figure 

10.31b are within the error of the dynamic mechanical analyzer. However, the error in WHM 

has been estimated from independent replication (see Figure 10.30, and G.1, G.2 and G.3 of 

Appendix G) and is around േ0.8 °C (the estimate of σ is s = 0.4 °C).  The difference between 

the WHM values from samples 3B-2 and 2B-10 is 1.74 °C, which is higher than the error 

associated with the DMA instrument. Hence, one can conclude that the sample synthesized 

through NMRP has a broader distribution compared to the sample from FRP and this could be 

an indicator that the former sample has a more heterogeneous polymer network compared to 

the latter. This was not as expected and, in fact, somewhat surprising, as the difference 

between samples 2B-10 and 3B-2 with respect to the homogeneity of the network was not 

detected through the DSC measurements (see Table 10.8). In addition, based on literature 

statements, we were expecting sample 3B-2 (NMRP) to show a more homogeneous network 

than 2B-10 (FRP). 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
b) 
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10.31 Storage modulus (a) and tan δ (b) versus temperature for samples
prepared by NMRP (3B-2) and FRP (2B-10) 
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a) 

b) 

Figure 10.32 Comparison between glass transitions measured through DMA and DSC for  
a) 3B-2, b) 2B-10 

DMA 

DSC 

DMA 

DSC 
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Figure 10.33 shows the same comparison but between two samples that have the same 

conversion and the same gel content (see information for samples 2B-12 and 3-16 in Table 

10.10). As can be seen in Figure 10.33a, the storage modulus is a bit higher for 3-16 but the 

difference between ܧᇱs is not very significant, and one can argue that the difference is within 

the error for determining the storage modulus through DMA. This is a valid conclusion, as the 

two samples are at the same gel content and have fairly close Mc values (Mc(2B-12) = 0.4 ൈ	10ସ 

vs. Mc(3-16) = 2 ൈ	10ସ), hence, based on Eq.  10.20, it is expected that they have almost the 

same ܧᇱ. The same way as in the previous comparison (see Figure 10.31a), the drop in storage 

modulus due to glass transition is shifted to lower temperatures for the NMRP sample. This 

behavior was as expected and also observed in the DSC measurements; compare Tg values for 

2B-12 and 3-16 in Table 10.8. Figure 10.33a also shows tan δ peaks for samples 3-16 and 2B-

12. It can be seen that, as in Figure 10.31a, the tan δ peak for the sample synthesized through 

NMRP (sample 3-16) is also shifted towards lower temperatures. Figure 10.33b shows the 

superposition of the two tan δ distributions. It can be seen that, again as observed in Figure 

10.31b, the width at maximum height (WHM) is larger for the sample synthesized through 

NMRP (WHM (3-16)
 = 14.39 °C vs. WHM (2B-12) = 11.85 °C). As discussed for Figure 10.31, a 

broader tan δ peak would be an indicator of a more heterogeneous polymer network (for the 

NMRP sample). These results are in agreement with the DSC measurements for samples 3-16 

and 2B-12, where we measured a larger ΔTg and a smaller slope of transition for the sample 

synthesized through NMRP (sample 3-16). The figure comparing samples 3-15 and 2B-12 is 

shown in Appendix G (see Figure G.4). The same trend and behavior as samples 3-16 and 2B-

12 can be observed for samples 3-15 and 2B-12. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.33 Storage modulus and tan δ versus temperature for samples prepared by
NMRP (3-16) and FRP (2B-12) 
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10.3.2.3 Further Discussion and Concluding Remarks 
 
Structural differences between samples synthesized through NMRP and FRP with 1% DVB 

have been investigated by means of thermo-mechanical measurements. A summary of our 

observations is cited in Table 10.11. Differential Scanning Calorimetry (DSC) is a reliable test 

to determine the glass transition temperature. Our DSC results showed that Tg values for 

NMRP samples were shifted to lower temperatures, compared to FRP samples (see the row of 

Tg(DSC) in Table 10.11for 64%, 97% and 96% conversions). The shift of Tg towards lower 

temperatures for NMRP samples was also observed by the Dynamic Mechanical Analysis 

(DMA) determinations. Both the drop in storage modulus and the maximum in the tan δ peak 

(corresponding to the glass transition region in DMA) were shifted towards lower temperatures 

(see “Drop in ܧᇱin glass transition region (DMA)” and “tan δ maximum (DMA)” entries in 

Table 10.11). This was as expected, since cross-linked samples under NMRP conditions should 

in principle have a looser network (higher Mc values) compared to cross-linked samples under 

FRP. 

 
ΔTg and the slope of the transition line in the heat flow curve measured in DSC reflect the fact 

that a polymer contains segments that could have different Tg values. A larger ΔTg or a milder 

slope of the transition line are indicators for a broader glass transition region, hence revealing 

that the corresponding polymer could potentially have segments with low and high Tg values, 

and could thus be considered as a heterogeneous network (Nielsen and Landel, 1994). The 

measured ΔTg values and the slopes of the transition lines for NMRP and FRP samples at 

lower conversions did not show any significant differences based on our formal statistical tests 

(see “ΔTg (DSC)” entry for x~ 63 % in Table 10.11). However, for the samples at higher 

conversion levels that had the same gel content, the differences between ΔTg values and the 

slopes of the transition lines for NMRP and FRP samples were remarkable and detected 

through the formal statistical tests (see “ΔTg (DSC)” entries for x~ 97 % and x~ 96 % in Table 

10.11). ΔTg values measured through DSC for NMRP samples were twice the ΔTg values 

measured for FRP samples, while the slope of transition for the former was half of the slope for 

the latter samples. These results could be an indicator that the networks synthesized through 

NMRP were in fact more heterogeneous than the networks synthesized through FRP, and this 

was not as expected! 
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The corresponding indicator in DMA determinations is the breadth of the tan δ peak. 

According to Nielsen and Landel (1994), the broadening of the tan δ peak is often assumed to 

be due to a broad distribution in molecular weights between cross-links or some other kind of 

heterogeneity in the network structure. Our results showed that the breadths of the tan δ peaks 

for the NMRP samples were larger (around 2 to 3 °C) than those of the tan δ peaks for the FRP 

samples (see “tan δ breadth-WHM (DMA)” entries in Table 10.11). Hence, our results are not 

in agreement with the results shown by Yu et al. (2007; 2009) and the claims by Ide and 

Fukuda (1999). Ide and Fukuda (1999) claimed that the DMA tests should show a narrower 

distribution for samples synthesized through NMRP. However, they never showed any 

experimental results to corroborate their claim. The results shown by Yu et al. (2007; 2009) 

were for samples synthesized through Atom Transfer Radical Polymerization (ATRP) but the 

authors never offered any replication or statistical analysis of their results! 

 
As discussed previously, the glassy plateau in ܧᇱ (determined by DMA) is higher for the FRP 

sample at 63% conversion. The reason was that the FRP sample had a higher gel content, 

compared to the NMRP sample. However, when the FRP and NMRP samples were at the same 

gel content, they exhibited the same glassy plateau in ܧᇱ(see “Glassy plateau in ܧᇱ” entries for 

97% and 96% conversions in Table 10.11) and these trends were as expected. 

 
Further investigation is required to address the observed discrepancies in the literature. First of 

all, additional replications of DMA results are needed to reinforce that the differences observed 

in the WHMs are truly differences between samples and not due to instrumental error. 

Secondly, according to Nielsen and Landel (1994), to carefully examine this trend, the 

temperature sweep results need to be complemented with frequency sweeps. However, since at 

this point we did not have enough polymer material to perform further tests, these become 

recommendations for immediate future work. If after further investigation, the results still 

indicate that networks synthesized through NMRP are more heterogeneous than the ones from 

FRP, one possible explanation could be that since the gel point is delayed in NMRP, these 

systems go through more branching before gelation than the FRP systems. Therefore, there 

might be molecules with various lengths of branched arms available in NMRP and when 

eventually transformed to a polymer network, the resulting structure could be more 
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heterogeneous. Certainly, further careful investigations are needed in order to clarify these 

speculative statements. 
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Table 10.11 Summary of DSC and DMA observations 

 

 x ~ 63 % x ~ 97 % x ~ 96 % 

Observation  2B-10 

(FRP) 

(100 % gel) 

3B-2 

(NMRP) 

(40 % gel) 

Q* 2B-12 

(FRP) 
(100% gel) 

3-16 

(NMRP) 
(95% gel ) 

Q 2B-12 

(FRP) 
(100% gel) 

3-15 

(NMRP) 
(93% gel ) 

Q 

Tg (DSC)  Lower Y  Lower Y  Lower Y 

ΔTg (DSC)  Same N  Larger N  Larger N 

Slope of transition line (DSC) Same  N  Milder N  Milder N 

Glassy plateau in ܧᇱ (DMA) Higher  Y Same  Y Same  Y 

Drop in ܧᇱin glass transition region (DMA)  Earlier Y  Earlier Y  Earlier Y 

tan δ maximum (DMA)  Earlier Y  Earlier Y  Earlier Y 

tan δ breadth-WHM  (DMA)  Broader N  Broader N  Broader N 

* Q is short for question and refers to the question, whether the expected trend was detected; Y is short for Yes, meaning that the trend detected by our results 
was as expected; N is short for No, meaning that the trend detected by our results was not expected. 
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10.3.3 Recommendation of Other Techniques for Detecting Homogeneity of the Network 
 

10.3.3.1 Can Ultrasonics Provide an Indicator? 
 
Ultrasonic waves are sound waves that are of higher frequency than the human audible range. 

These waves can be used for many different applications. Depending on their frequency and 

intensity, ultrasonic waves can either penetrate a medium and measure the reflection signature 

or supply focused energy. Table 10.12 shows different applications of ultrasonic waves 

categorized by different intensities (I) and frequencies. 

 
High frequency (>1 MHz) and low intensity ultrasonic waves do not change the medium; 

instead, they are affected by the medium. Hence, using ultrasonic waves with high frequencies 

and low intensities gives us the ability to “see through” a solid material and detect surface or 

internal flaws (hence, internal “structure”) without affecting the material in an adverse manner. 

This feature can be used for non-destructive testing and examination (NDT/NDE), medical 

diagnosis, chemical analysis and the study of material properties.  

 

 

Table 10.12 Application of ultrasonic waves (Bruinewoud, 2005)  

20 kHz- 500 kHz > 1 MHz 
I > 10 W/cm2 I  < 1 W/cm2 I  < 1 W/cm2 I  > 1 W/cm2 

Welding 
Cleaning 

Cell disruption 
Sterilisation 
Lithotripsy 

Chemical reactions 

Sonophoresis Flaw detection 
Medical diagnosis 
Chemical analysis 
Material properties 

Massage therapy 
Tumour treatment 

Surgery 
Drug delivery 

 

 

Ultrasonic methods have been successfully used in polymer technology and industry and some 

examples are presented herein. Ultrasonics were used for in-line monitoring of the degree of 

mixing and the melt temperature in extrusion processes (Chen et al., 1998; Franca et al., 2000). 

Alig et al. (1994) used ultrasonic spectroscopy to measure longitudinal modulus and determine 

structural relaxation times during the curing of an epoxy. Ultrasonic methods were used to 

characterize glass transition temperature in epoxy resins (Nguyen et al., 1995); results were 

shown to be close to the measurements by Dynamic Mechanical Analysis (DMA). In addition, 
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influence of fillers on the thermal properties of the epoxy matrix in a composite material was 

also studied and characterized using ultrasonic techniques. Constable et al. (2003) used in-situ 

ultrasonic spectroscopy to study the ring-opening metathesis polymerization of 

dicyclopentadiene. Changes in the density, wave speed, acoustic modulus, and attenuation 

were all simultaneously monitored to determine the rate constant for the crosslinking reaction.  

The effects of binding various modifiers to polystyrene’s aromatic ring were also investigated 

(Oral et al., 2011; 2012), where the elastic properties were determined using ultrasound. 

Recently, properties and internal structure (phase structure, morphology) of two devulcanized 

rubber blends were compared using ultrasonic waves (Zhu et al., 2011). 

 
Ultrasonic Properties: The properties which are tracked in typical ultrasonic measurements are 

velocity, as inferred from an arrival time, and attenuation, as inferred from a rate of decay of 

the wave. Velocity is usually the easiest ultrasonic variable to measure. The speed of sound in 

a medium is directly related to both elastic modulus and density. Thus, changes in either 

elasticity or density will affect the wave’s traveling time through a sample of a given thickness. 

Additionally, varying degrees of heterogeneity may have an effect on sound velocity. The 

velocity,	ܸ, at which sound travels in the sample is calculated by 

 

ܸ ൌ 	
݀

݀ െ ݐ∆ ൈ ௪ܸ
ൈ ௪ܸ 

Eq.  10.24

where 

௪ܸ─ the speed at which ultrasound travels in water (1500 m/s); 

 ݀─ sample thickness; 

 .the difference in the pulse arrival time with and without sample ─ ݐ∆

 
This velocity calculated by Zhu et al. (2011) is a wave group velocity, which includes both 

longitudinal wave velocity ( ௅ܸ) and shear wave velocity ( ௦ܸ). Using Fast-Fourier-transform 

(FFT) plots one can obtain  ௅ܸ and ௦ܸ separately. Table 10.13 shows typical wave velocities for 

polystyrene (PS) samples measured by the pulse-echo ultrasound method at room temperature 

using 5 MHz transducers (Oral et al., 2011). As can be seen, a higher molecular weight 

corresponds to higher density and velocity in polystyrene samples.  
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Table 10.13 Variation of density (ρ), ௅ܸ and ௦ܸ (Oral et al., 2011) 

Polymer ρ (g/cm3) ௅ܸ (m/s) ௦ܸ (m/s) 

PS (Mw= 5 X 105) 1.051 2355േ0.04 1155േ 0.03 

PS (Mw= 3.5 X 105) 1.043 2352േ0.04 1153േ 0.03 

 
Attenuation of the ultrasonic wave traveling through a medium depends on the properties of 

the medium too. The reasons for attenuation are energy absorption (thermal energy) and/or 

reflection, refraction, diffraction and dispersion of the waves, particularly for heterogeneous 

media. Attenuation (Att, ݀ܤ ܿ݉ൗ ) can be obtained from  

 

ݐݐܣ ൌ 	
1
݀
ൈ ሺ݃݋݈	20

଴ܣ
ܣ
ሻ 

Eq.  10.25

where ݀  is the thickness, and readings ܣ	and ܣ଴ are the gain reading values to maintain the 

pulse amplitude at 80% of the full scale; with (ܣ) and without (ܣ଴) samples in the path 

between the emitter and receiver ultrasonic sensors, respectively (Zhu et al., 2011). The 

weakening of the ultrasonic wave is usually characterized by the wave attenuation coefficient α 

ܤ݀) ൗݖܪ.݉ܿ ), which determines the change of the acoustic pressure after the wave has traveled 

a unitary distance through the given medium. Table 10.14 gives an idea of typical attenuation 

values expected for some polymers. As can be seen, polystyrene has the lowest attenuation 

value; it is more than three times lower than the next lowest option, poly methylmethacrylate 

(PMMA). Having relatively low attenuation value, polystyrene has extensive application is 

industrial ultrasound. The trade name used in industry, associated with cross-linked 

polystyrene is “Rexolite”. “Rexolite” is a favorite material used for plastic wedges in 

ultrasound applications. 
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Table 10.14 Typical attenuation values for some polymers from Selfridge, Institute of 
Electrical and Electronics Engineers (IEEE), 1985 (in Ginzel, 1996) 

Material Attenuation (dB/mm) @ 5 MHz 

ABS (acrylonitrile /butadiene / styrene copolymer) 1.11 

PMMA - Acrylic (Plexiglas & safety glazing) 0.64 

Delrin 3.03 

Nylon(black) 1.60 

Polystyrene 0.18 

PVC (Polyvinyl chloride) 1.12 

Styrene Butadiene 2.43 

 

Ultrasonic Apparatus: Typically, the fluid-assisted ultrasonic apparatus consists of a 

pulser/receiver, a transducer, a water tank and a display device. A representative schematic of 

fluid-assisted transmission through an ultrasound apparatus is shown in Figure 10.34. The 

fluid-assisted ultrasonic method uses a fluid medium between the transducer and the sample. 

This is normally realized by setting the sample in a water tank that includes submerged 

transducers. A pulser/receiver is an electronic device that can produce electrical pulses. Driven 

by the pulser, the transducer generates high frequency ultrasonic oscillations. These 

oscillations, when coming in contact with a sample, produce waves at the surface of the sample 

that propagate into the material. In the case of the through transmission method, the wave is 

received by a second transducer positioned on the other side of the sample, and then acquired, 

saved, and possibly displayed by an oscilloscope (Landais, 2011).  In this case, one transducer 

acts as a transmitter while the second acts as receiver. To receive all the ultrasonic energy sent 

by the transmitter and passed through the sample, the two transducers have to be well aligned 

and this is achieved by using the turntable (see Figure 10.34).  
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Possibility for STY/DVB Samples:Based on this brief literature review on the subject of 

ultrasound measurements for polymers, it is evident that the ultrasound properties of polymers, 

such as wave velocity and attenuation, are strongly affected by their molecular structure 

(Nguyen et al., 1995; Oral et al., 2011, 2012; Zhu et al., 2011). Hence, measurements of wave 

velocity and attenuation for our cross-linked polystyrene samples might provide information 

related to the homogeneity or heterogeneity of the synthesized network.  

 
In our study, for each STY/DVB sample, 3 specimens of 2 cm ൈ	2 cm with different 

thicknesses (2 mm, 4 mm, and 6 mm) should be prepared; this translates roughly into 5 to 10 

grs of polymer for each STY/DVB sample. However, with our ampoule polymerizations, at 

high conversion, each ampoule gives around 2 grs of polymer. Hence, to produce enough 

polymer material for the ultrasound measurements, multiple ampoules are needed to be 

prepared for a single STY/DVB sample (to provide 3 specimens). Care should be taken in 

preparing ultrasound samples with good surface quality, as the reflection levels of ultrasound 

waves at the surface are dependent upon surface roughness (Zhu et al., 2011). 

 
The acoustic measurements can be conducted using an available apparatus in our laboratory, 

developed in collaboration with Eclipse Scientific Inc. and Materials Research Institute (MRI), 

Waterloo, Ontario, Canada. The apparatus consists of an immersion tank filled with deionized 

water and two ISA boards installed inside a PC. In the immersion tank, a rail sits at the bottom 

and two ultrasound sensors (one emitter and one receiver, interchangeable) are mounted on two 

Figure 10.34 Principle of an ultrasonic apparatus (Landais, 2011) 
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sliding blocks along the rail. A windowed sample mounting plate crosses the rail in the middle 

between the two detectors. The two detectors are connected by shielded cables to the ISA 

board, where ultrasonic signals are generated and received according to the control software 

Winspec (for more details about the apparatus, refer to (Zhu et al., 2011)). 

 
Wave velocity and attenuation measurements should be conducted on samples with different 

thicknesses in the pulse-echo mode with a single wave frequency (suggested frequency 5 

MHz) at room temperature. The pulse arrival time should be recorded for the wave velocity 

measurements, using Eq.  10.24. The wave amplitude is also recorded for calculating the 

attenuation using Eq.  10.25. Figure 10.35 shows typical qualitative trends expected. As the 

thickness of the sample increases, the velocity at which the 5 MHz ultrasound wave travels in 

the sample decreases, while the attenuation level increases. By changing the frequency of the 

ultrasound in the tuned tone-burst mode, the attenuation coefficient could be obtained for each 

polymer sample (Zhu et al., 2011). Figure 10.36 shows the attenuation levels (dB) at different 

sample thicknesses and ultrasonic frequencies. The expected qualitative trend is that a thicker 

sample and a higher frequency lead to a higher level of attenuation (Zhu et al., 2011). 
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Figure 10.35 a) Velocity, b) Attenuation level, of 5 MHz ultrasound
wave as a function of sample thickness 
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Figure 10.36 Attenuation level (dB) at different thickness and ultrasonic
frequency 
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According to Zhu et al. (2011), the degree of crosslinking does not affect the wave velocity 

significantly and the velocity remains constant with sample thickness within a typical error of 

5%. However, as the degree of crosslinking increases, higher attenuation levels are expected. 

Hence, attenuation can be used as an indicator for the degree of crosslinking in our STY/DVB 

samples. As the gel content (degree of crosslinking) increases, higher attenuation values are 

expected. 

 
Based on the studies of Oral et al. (2011, 2012) and Zhu et al. (2011), polymers with different 

densities have different ultrasonic properties (both velocity and attenuation). Hence, it might be 

possible to detect different ultrasonic properties with STY/DVB samples synthesized through 

controlled radical polymerization (CRP) and samples synthesized through regular free radical 

polymerization (FRP), as they exhibit different cross-link densities (and, presumably, networks 

of different homogeneity). 

 
Oral et al. (2011, 2012) have used the ultrasonic measurements to calculate characteristic 

elasticity constants (longitudinal modulus, shear modulus, Young’s modulus). Another 

interesting aspect to explore in STY/DVB cross-linked samples could be the use of the 

ultrasonic characteristics in order to determine the viscoelastic properties of polymer samples 

and compare the results with results obtained from Dynamic Mechanical Analysis (DMA).  

Further study could measure the ultrasonic variables at different temperatures to calculate 

longitudinal moduli and tan delta. Figure 10.37 shows typical results from Nguyen et al. 

(1995).  
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Nguyen et al. (1995) also used the ultrasonic technique to characterize the influence of 

different fillers on the thermal properties of an epoxy matrix in a composite material. 

Experimental curves of longitudinal velocity and attenuation for pure epoxy and composites 

with different filler characteristics are shown in Figure 10.38. As can be seen, different 

microstructures result in different velocities and glass transition temperatures. In addition, the 

attenuation peak changes in both amplitude and width.  

 
This brief literature review on the topic of ultrasonics reveals that ultrasonic measurements 

could potentially provide us with valuable information about STY/DVB polymer networks. 

Two more final remarks: 

1) The discussion in this section, more so like an afterthought, is by no means meant to be 

exhaustive. It was rather triggered by parallel work in our labs on ultrasonic 

characteristics of rubber blends. 

2) Whether ultrasound measurements could eventually reveal specific information about 

the homogeneity or heterogeneity of a cross-linked network is still debatable, however 

the overall idea is worth exploring further. In essence, this brief exposure to the topic is 

eventually a glorified recommendation (see Chapter 11), due to lack of time for further 

investigation during the course of this thesis. 

Figure 10.37 Longitudinal moduli and loss tangent calculated from
the longitudinal velocity and attenuation (Nguyen et al., 1995) 
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Figure 10.38 a) Longitudinal velocities, and b) attenuation, versus temperature of
pure epoxy and composites at 2 MHz (○ pure epoxy,   composite made with
0.5pm tungsten particles in a volume fraction of 0.17,     composite made with 5
pm tungsten particles in a volume fraction of 0.25) (Nguyen et al., 1995) 

a) 

 

 

 

 

 

 

 

 

b) 
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10.3.3.2 Nuclear Magnetic Resonance (NMR) Spectroscopy: Indicator for homogeneity? 
 
One method that could potentially give some information regarding the homogeneity of a 

polymer network is NMR spectroscopy. NMR imaging or microscopy have been used 

previously in the literature for the determination of spatial heterogeneity of rubbery materials 

on the scale of 15-50 μm. Different types of NMR relaxation experiments have been used for 

analysis of local and long-range spatial mobility of polymer chains. Since chain motion is 

strongly coupled to the length of network chains, chemical information on network structure 

and network defects can be obtained in this way. Selective information on the mobility of 

polymer chain units of different chemical origins can be obtained by means of selective NMR 

relaxation experiments (Litvinov and Dias, 2001).  

 
O' Connor et al. (1996) used 1H NMR to determine the level of heterogeneity in domain sizes 

as small as 20 μm. In their study, the focus was on the solvent rather than the network. Their 

method utilized the differences in chemical shift between solvent absorbed into the cross-

linked polymer and that of solvent outside the polymer. This chemical shift was then correlated 

to macroscopic swelling though a simple model which attempts to account for both the 

chemical cross-links and chain entanglements. One problem with their technique was that they 

needed a series of standard materials with known swelling characteristics for calibration. 

 
Other groups like Litvinov and Dias (2001) and Saalwachter (2007) focused on analysis of 

chain mobility with respect to cross-link density using NMR relaxation experiments. NMR 

relaxation times, especially spin-spin relaxation time (T2), are largely affected by local 

segmental mobility. In addition to the mean cross-link density, the analysis of T2 relaxation can 

provide information on network defects and heterogeneous distribution of network junctions. 

The sensitivity of the T2 experiments to the molecular scale heterogeneity is due to the local 

origin of the relaxation process, which is predominantly governed by the near-neighbor 

environment and intrachain effects for T2 relaxation at temperatures well above the Tg 

(Litvinov and Dias, 2001). In a simplified picture, the total T2 relaxation decay for a 

heterogeneous elastomer is a weighted sum of decays from the different submolecules which 

are defined as network chains between the chemical and the physical junctions, chain loops, 

and chain-end blocks. These submolecules possess different relaxation characteristics due to 
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differences in the large spatial scale mobility. The relative contribution of the submolecules to 

the total proton T2 relaxation decay is proportional to the number of protons, which are 

attached to these chain fragments (Litvinov and Dias, 2001). A quantitative analysis of the 

decay shape is not always straightforward due to the complex origin of the relaxation function 

itself and the structural heterogeneity of the long chain molecules (Saalwachter, 2007).  

 

10.3.3.3 How about Scattering Techniques? 
 
Since gel homogeneity or heterogeneity is closely connected to spatial concentration 

fluctuations, scattering methods such as light scattering, or more recently developed 

microscopic techniques such as small-angle X-ray (SAXS) and neutron scattering (SANS), 

might be helpful in gaining information about the structure of the polymer network.  So far the 

effectiveness of these techniques has been demonstrated mainly in networks formed by step 

growth polymerization and less densely cross-linked polymer.  

 
Gundogan et al. (2004) studied the “inhomogeneity” of polymer gel via using static and 

dynamic light scatting. By comparing the scattering intensities from the gel and from a semi-

dilute solution of the same polymer at the same concentration, they showed that the excess 

scattering over the scattering from the polymer solution is related to the degree of 

“inhomogeneity” in the gels. However, the drawback in their technique is that the 

concentration and/or density fluctuations also interfere with the scattering intensity. In 

addition, for the light scattering measurements, all glassware needs to be kept dust-free and 

should be carried out in a dust-free glove box.  

 
Liu et al. (2006) used dynamic light scattering to characterize hydrogel structures. The 

scattering was separated into two parts: the frozen-in component, arising from spatial 

“inhomogeneity”, and the liquid-like component due to thermal concentration fluctuations. 

Subtracting the scattering intensity arising from the thermal concentration fluctuations, from 

the ensemble-average scattering intensity, led to the intensity coming from the frozen-in spatial 

“inhomogeneity”.  

 
Some groups used SANS as a technique to characterize the structure of a polymer network 

(Horkay et al., 2000; Norisuye et al., 2003; Hammouda, 2010). However, the use of SANS as a 
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characterization technique is not very straightforward, as it usually needs a model function to 

be fitted to the collected data (and the choice of the model is still the subject of debate among 

physicists).  

 

10.3.3.4 Other potential techniques? 
 
Among other potential techniques that might provide some information about the homogeneity 

of a network is fluorescence. Leicht and Fuhrmann (1981) used 9-vinylanthracene as the 

fluorescence indicator and monitored the segmental density via a microstructure-sensitive 

fluorescence polarization method. The issue here is the efficiency of incorporation of 

fluorescence dyes (molecules). 

 

10.4 Concluding Remarks 
 
Production of cross-linked polymer with homogeneous structure is desirable for several 

applications. It has been widely acknowledged that structural “inhomogeneities” are especially 

present in systems with very low gelation point conversions and complexities that are specific 

to regular free radical polymerization (Kannurpatti et al., 1996). In parallel, it has been claimed 

that cross-linked polymers synthesized through controlled radical polymerization can produce 

a homogenous polymer network. However, a reliable characterization method to evaluate 

structural homogeneity in these systems is sorely absent in the literature. Hence, it is highly 

desirable to seek a reliable characterization technique to evaluate the structure of polymer 

networks synthesized through controlled radical polymerization (and other polymerizations).  

 
The results of our study on the characterization of polymer structure via thermo-mechanical 

analysis (DMA and DSC) showed that there was no difference detected between the two 

networks synthesized through CRP and FRP. In order to reinforce our results further, a 

frequency sweep can be carried out to complement the results of our temperature sweep. Other 

potential techniques that one can investigate include SANS, SAXS, NMR and ultrasonics.   
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Chapter 11. Concluding Remarks, Main Contributions and Future 

Recommendations 

 
11.1 Concluding Remarks 
 
The Bayesian approach is a powerful, largely unstudied (in the polymerization area) design of 

experiments method that has the same objectives as the standard experimental designs but with 

significant practical benefits over standard design methods, which make it particularly 

attractive from both an industrial and theoretical perspective. Numerous advantages of the 

Bayesian design over standard (fractional) factorial designs have been highlighted in this 

thesis. The most distinct advantage of the Bayesian approach is its ability to incorporate into 

the design prior process knowledge, which is available in most of the cases but usually 

discarded. This and other advantages of the Bayesian methodology were highlighted in this 

thesis with examples drawn from complex polymerization scenarios, specifically from the 

nitroxide-mediated radical polymerization (NMRP) of styrene (under both bimolecular and 

unimolecular initiating options), emulsion copolymerization of acrylonitrile/butadiene (nitrile 

rubber or NBR) in a continuous train of CSTRs, and cross-linking NMRP of styrene and 

divinyl benzene.  

 
Table 11.1 gives a compendium of experimental design issues that can effectively be handled 

by the Bayesian design approach. All of these issues along with the superior performance of 

the Bayesian approach (over standard experimental designs) in handling them were 

demonstrated via case studies discussed throughout this thesis, drawn from the three different 

complex polymerization scenarios mentioned above. The effort was to illustrate that the 

Bayesian design approach can be exploited in many different processes (bulk/emulsion), batch 

and continuous, and even more complex systems with cross-linking, and can lead to optimal 

performance in fewer trials, thus saving time and money. In addition, the novelty of the 

approach is the simplicity and the natural way with which it follows the logic of the sequential 

model building paradigm, taking full advantage of the researcher’s expertise and information 

(knowledge about the process or product) prior to the design, and invoking enhanced 

information content measures (the Fisher Information matrix is maximized, which corresponds 

to minimizing the variances and reducing the 95% joint confidence regions, hence improving 
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the precision of the parameter estimates). The bottom line is that the Bayesian design is a 

balanced approach which is statistically correct and scientifically sound, and yet very practical! 

 
Table 11.1 Overview of issues handled by the Bayesian design approach 

Issues handled in Bayesian design 

Incorporation of prior knowledge (screening experiments, models and/or combinations) 
Flexible wrt quality of prior knowledge (informative vs. non-informative prior) 

Sequential nature (n-trials vs. sequences of fewer trials) 
Iterative fashion 

Increase of information content 
Statistical diagnostic tests 

“Tailoring” runs to experimenter's intended target 
Single vs. multi-response 

Flexible wrt number of trials that can be designed 
Process constraints (and impractical treatment combinations) 

Changing factor level/range in the middle of experimentation 
Possible detection of nonlinearities 

Accommodating extra trial(s) mid-way through experimentation 
Balance: statistically correct and scientifically sound, yet practical, decisions 

 

In all the case studies described in this thesis, the general benefits of the Bayesian design were 

as described above. More specifically, with respect to the most complex of the examples, 

namely, the cross-linking nitroxide-mediated radical polymerization (NMRP) of styrene and 

divinyl benzene, the investigations after designing experiments through the Bayesian approach 

led to even more interesting detailed kinetic and polymer characterization studies, which cover 

the second part of this thesis (Chapters 9 and 10). This detailed synthesis, characterization and 

modeling effort, trigged by the Bayesian approach, set out to investigate whether the cross-

linked polymer network synthesized under controlled radical polymerization (CRP) conditions 

had a more homogeneous structure compared to the network produced by regular free radical 

polymerization (FRP).  

 
In preparation for the identification of network homogeneity indicators based on polymer 

properties, cross-linking kinetics of NMRP of STY in the presence of a small amount of DVB 

(as the cross-linker) and I-TIPNO (as the unimolecular initiator) was investigated in detail. In 

Chapter 9, the results were contrasted with regular FRP of STY/DVB and homopolymerization 

of STY in the presence of I-TIPNO, as reference systems. Our investigations showed that 
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NMRP copolymerization exhibited controlled behaviour up to the vicinity of the gelation 

point, after which ‘livingness’ was lost. Presence of I-TIPNO slowed down the rate, delayed 

the onset of gelation, yielded lower molecular weights, and produced a ‘looser’ polymer 

network compared to regular FRP of the two monomers.  

 
In our designed experiments (with careful independent replication, in order to build more 

confidence in the observed data from such a complex, noisy and experimentally uncertain 

system), two concentration levels were used for I-TIPNO and DVB, which resulted in four 

different molar ratio ratios. The effects of [DVB], [I-TIPNO] and [DVB]/ [I-TIPNO] molar 

ratio were investigated on rate, molecular weights, gel content and swelling index. Results 

showed that the rate of polymerization was not affected by [I-TIPNO], [DVB], or [DVB]/ [I-

TIPNO] (at least at the DVB levels employed; the non-significant effect of I-TIPNO 

concentration was as expected). On the other hand, the effect of these factors on molecular 

weights, gel content and network morphology were noticeable. Using a higher [I-TIPNO], 

while keeping the same [DVB], delayed the gel point. In contrast, using a higher [DVB], while 

keeping the same [I-TIPNO], accelerated the formation of gel. All in all, our studies revealed 

that maximizing the [DVB]/ [TIPNO] molar ratio resulted in the earliest gelation point and 

hence, fastest loss of ‘livingness’. As the [DVB]/ [TIPNO] ratio decreased, the gel point was 

observed at higher conversion levels and the corresponding polymer network was ‘looser’. 

 
In parallel to our experimental investigations, a detailed mathematical model was developed. 

The predicted profiles for polymerization rate, molecular weight averages and gel content (or 

swelling index) were validated with the respective experimental data for NMRP 

copolymerization of STY/ DVB in the presence of TIPNO. These validations took place 

independently (between two different research groups in two universities in two countries), 

without additional parameter fitting (thus indirectly confirming the validity and generality of 

the developed mathematical model and accompanying database of kinetic and physical/ 

chemical characteristics and parameters). Not only did model predictions follow the general 

experimental trends very well but also were in good agreement with experimental 

observations.  
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Pursuing our investigations for a more reliable indicator for network homogeneity, Chapter 10 

contained characterization of the corresponding branched and cross-linked polymers. Thermo-

mechanical analysis was used to investigate the difference between polymer networks 

synthesized through FRP and NMRP. Results from both Differential Scanning Calorimetry 

(DSC) and Dynamic Mechanical Analysis (DMA) showed that at the same cross-link density 

and conversion level, polymer networks produced by FRP and NMRP exhibit indeed 

comparable structures.  

 
Overall, it was impressive to see what a wealth of process information was generated by a such 

a practical experimental design technique, and with minimal experimental effort compared to 

previous (undesigned) efforts (and associated, often not well founded, claims) in the literature! 

 

11.2 Main Contributions 
 
The research in this thesis has made the following original contributions: 

 
1. Although the basics of the Bayesian approach have been suggested in 1993 (Reilly, 

1993), the technique has not been formalized and publicized as a practical tool that can 

be applied to various chemical engineering processes. Through work in this thesis (see 

Chapters 2 to 4), the application of the Bayesian approach as a tool for the design of 

experiments was formalized. In addition, the inner workings of the technique were 

investigated in detail. 

  
2. Two typical questions that often arise in Bayesian design implementations have to do 

with how effectively one can make statements about the quality of prior knowledge and 

the significance of the estimated effects (from the designed experiments), and about the 

gain in information content. These two important questions were not addressed in 

earlier Bayesian design implementations (Dube et al., 1996; Vivaldo-Lima et al. 2006) 

and are among the main contributions of the present work (see Chapter 5). A 

quantitative comparison between the Bayesian approach and standard experimental 

designs was carried out via comparing different measures of information content. For 

example, it was shown that Fisher’s information matrix was maximized in the Bayesian 

approach, which corresponds to minimizing the variances and reducing the 95% joint 
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confidence regions (JCR), hence improving the precision of the parameter estimates. 

All in all, these quantitative comparisons made one more confident in the effectiveness 

and practicality of the Bayesian design of experiments procedure. 

 
3. Although Bayes’ theorem is well established, especially among statisticians, and has 

been implemented to some chemical systems (for example drug and cell transport 

kinetics, pharmaceutical kinetics and analyses of catalytic systems), the practice of 

using the Bayesian approach (as described in this thesis) as a tool for designing 

experiments in polymerization processes has been sorely missing. The effort in this has 

been to expand the implementation of the Bayesian design of experiments in polymer 

reaction engineering (PRE), which could lead to optimal performance in fewer trials, 

thus saving time and money. Chapters 4, 6 and 8 illustrate applications of the Bayesian 

design to three complex polymerization processes. 

 
4. The role of the Bayesian technique as an excellent tool to guide one in addressing 

important practical issues in the study of polymerization processes was clearly 

demonstrated by the application of this technique to the most complex polymerization 

system (out of three relatively complex ones), namely, the cross-linking NMRP of 

STY/DVB (see Chapters 8 to 10). 

 

11.3 Recommendations for Future Steps 
 
Bayesian Design Approach: 

 
 Use a non-linear model in the Bayesian design to replace Eq. 3.2 in Chapter 3. Initially, 

and for practical purposes, one can start with a reduced non-linear model, in order to 

make things simpler. This has already been initiated in a MASc thesis (Mark Hazlett), 

essentially an offspring of this PhD thesis. In addition, comparisons with regular D-

optimal designs are being conducted. The results will be forthcoming in September 2012.  

 
 Combine Bayesian methodology with other statistical criteria to reduce parameter 

correlation (focus on parameter values) (e.g., combine with the work in Franceschini and 

Macchietto (2008a and b)). 
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 Design experiments for the cross-linking NMRP (in Chapter 8) to investigate the effect 

of temperature on polymerization properties (this has already been planned as the MASc 

project of a new student, Alison Scott). 

 
Cross-linking NMRP: 

 
 Adding chain transfer agent to a regular free radical cross-linking polymerization system 

to lower the average molecular weight of the primary chains to the level of the nitroxide-

mediated radical polymerization, so that the two systems can be compared without 

significant effects of chain length differences. 

 
 Further purification of TIPNO-based alkoxyamine (following typical purification 

methods such as precipitation/recrystallization, or chromatography). GPC 

chromatograms from polymerization using purified I-TIPNO can then be compared to 

the high conversion results of the I-TIPNO “as received”. 

 
 Further investigation is required to address the observed discrepancies in the literature. 

First of all, additional replications of DMA results are needed to reinforce that the 

differences observed in the WHMs are truly differences between samples and not due to 

instrumental error. Secondly, according to Nielsen and Landel (1994), to carefully 

examine this trend, the temperature sweep results need to be complemented with 

frequency sweeps. 

 
 Using other characterization techniques for detecting homogeneity of the network. As 

discussed in detail in Subsection 10.3.3, ultrasonics (Zhu et al., 2011), NMR 

spectroscopy (Saalwachter, 2007), scattering techniques like SANS (Norisuye et al. 

2005) and using fluorescence polarization methods (Leicht and Fuhrmann, 1981)  could 

be potentially useful approaches (whole theses in themselves) to indicate homogeneity or 

heterogeneity of the network synthesized through controlled radical polymerization.  
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Appendix A. Clarification of Equations in Chapter 3 

 
A.1. Derivation of Eq. 3.4 

 
Consider a linear regression model below: 

 Eq.  A.1

 

where: 
 
  1: ny                pnX :  

  1: p               1: n  

Bayes’ rule: 
 

P(y)

θPθ |P(y
P(


 y  Eq.  A.2

 

As mentioned in section 2.2.1 when the data y are known and the parameters θ are unknown, 

P(y) is constant (so there is no need to be calculated) and P(y|θ) is called the likelihood 

function of θ for given y and can be written as l(θ|y). Bayes’ theorem can thus be rewritten as: 

 

 θPy)l(θyP(θ c  Eq.  A.3

 
where c is a constant. Both y |l( and θP  are multivariate normal probability density 

functions specified as per below:  

 
),(:y |l( 2 IXN  Eq.  A.4

 

),(:)( UNP   Eq.  A.5

 
In general, a multivariate normal probability density function is specified as below: 

),(: VNz   Eq.  A.6

 

  Xy
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where   is the mean and V  the variance. Therefore, the problem of finding the posterior 

distribution for  ,  yP(θ , simplifies down to multiplying two multivariate normal 

distributions, y |l( and θP . 
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 Eq.  A.11

 
If we show that Eq.  A.11 can be in the form of Eq.  A.8, then that means that  yP(θ  is also a 

multivariate normal distribution. Rearranging Eq.  A.11 we obtain: 
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or  
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Comparing Eq.  A.13 with Eq.  A.8, it can be concluded that  yP(θ  has the form of a 

multivariate normal distribution with:  
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From Eq.  A.14, the variance of the distribution V  is:  
 

1
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 Eq.  A.16

 

From Eq.  A.15, the mean of the distribution   is: 
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In conclusion, the posterior distribution of the parameter values,  yP(θ , is a multivariate 

normal distribution, as claimed in Chapter 3:  

 

}])1([;])1([])1([{:)|( 1
2

1
2

11
2

1   XXUyXUXXUNyP   Eq.  A.18

 
 

A.2. More explanations for Eq. 3.5 
 
The joint confidence region for the posterior distribution of the parameter values is described 

mathematically by 

 

KV   )ˆ()ˆ( 1   Eq.  A.19

 

where ̂  is the posterior mean, K is a constant which depends on the number of parameters and 

the probability level, and V is the posterior covariance matrix defined by 

 

1
2

1 ])1()[(   XXUV   Eq.  A.20

 

In general, the objective of the design is to select experimental conditions such that the 

uncertainty in the estimated parameters is minimized, which can further be translated to the 

(hyper)volume of the joint confidence region being minimized. The (hyper)volume of such a 

region is  
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 Eq.  A.21

 

where   denotes the gamma function and p is the number of parameters. All the quantities in 

Eq.  A.21 are constant except V , the posterior covariance matrix. So one can say that the 

(hyper) volume of the joint confidence region for the parameters is proportional to 2
1

V . Thus, 
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the (hyper)volume of the posterior probability region may be minimized by choosing the 

experiment which minimizes    1
2

1 )1()(   XXU  , or maximizes  

 

XXUG   )1()( 2
1

  Eq.  A.22

 

The fundamental identity rule (Mardia et al., 1988) is applied to G to provide a simplified 

version 

 

   H

XUXIUG   )1()( 2
1

  Eq.  A.23

 
In conclusion, the design problem is defined as choosing experiment X so as to maximize H 

(as in Eq. 3.5 of Chapter 3). 
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Appendix B. Details of Case Study 5 of Chapter 4: Single- vs. 

Multi-response Scenarios 

 

Three factors were chosen (temperature, initial concentration of the unimolecular initiator, and 

number-average molecular weight of the unimolecular initiator), listed in Table B.1 with their 

initial levels. Four runs were designed in two sequences of 2-trials each. The model initially 

developed for bimolecular NMRP was modified to accommodate unimolecular NMRP. 

Subsequently, this model was used to generate the responses for a 23 conventional factorial 

design. Values of prior α and prior U for both responses are shown in Table B.2 and Table B.3. 

The variance for batch time was 1, whereas molecular weight had a variance of 840,000 (again 

the choices of variances were based on previous experience, as explained in Case Study 1 and 

4, for batch time and molecular weights, respectively). 

 

Table B.1 Selected factors and their levels in Case 5 (unimolecular NMRP, T = temperature, 
[I]0 = initial unimolecular initiator concentration, )(IM n = average molecular weight of the 
unimolecular initiator) 
 
 

Level T (°C) [I]0 (M) )(IM n  (g/mol) 

low 120 0.03 2,200 
high 140 0.05 6,200 

 

 

Table B.2 Elements of initial α and U for batch time response (Case 5) 

Parameter αi Uii

Mean 10.741 67.535
 T -7.630 6.25
 [I] 0.089 1.562
 Mn[I] 0.739 1.562

[I]T  -0.083 0.002
][MT n I  -0.450 0.051

[I][I] nM  0.225 0.01
[I][I]T nM -0.091 6.25E-06
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Table B.3 Elements of initial α and U for molecular weight response (Case 5) 

Parameter αi Uii

Mean 8,949 5,773,320
 T 603 90,000
 [I] -1,977 1,000,000
 Mn[I] -199 9,506

[I]T  394 22,500
][MT n I  442 15,625

[I][I] nM  437 30,625
[I][I]T nM 447 625

 

After implementing the Bayesian design for both responses, there happen to be four optimal 2-

trial designs detected for batch time with the determinant H equal to 2689.84, and four 2-trial 

designs for molecular weight with the determinant H equal to 54.93. Since we were dealing 

with a multi-response case, it was important to check whether an optimal design for one 

response was nearly optimal for the other one. Hence, the optimal trials for one response were 

combined with the U matrix and σ2 from the other response in order to re-evaluate the 

determinant H for the latter response (using Eq 3.5 of Chapter 3). For example, the optimal 

designs for the batch time response were each used in Eq. 3.5, along with the 

variance/covariance matrix (U) for molecular weight, in order to recalculate the determinant H 

for molecular weight. All four 2-trial designs from batch time decreased the determinant value 

for molecular weight by 1.75%. On the other hand, using the optimal designs from molecular 

weight in the recalculation of the determinant H for batch time (using the U matrix for batch 

time) decreased the value of the determinant by 13.34%. As can be seen, using the optimal 

designs from batch time for the H calculation for molecular weight decreased the determinant 

less and hence, one of them was chosen (randomly for the sake of the example) as “the optimal 

design” for the first sequence of experiments. 

 
After updating  and U for batch time and molecular weight (not shown here for the sake of 

brevity), the next sequence of experiments was designed. There happened to be only one 2-trial 

design which maximized the determinant H for the molecular weight response, while for batch 

time there were two 2-trial experiments that corresponded to the highest H. In order to find a 

design that was nearly optimal for both responses, the designs from batch time were used in the 

H recalculations for molecular weight (using Uposterior from molecular weight) and vice versa 


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(the design from molecular weight was used in the H recalculations for batch time). Upon 

scrutinizing the results, again the experiments designed through batch time decreased the 

determinant H of the molecular weight response less dramatically. Figure B.1 shows the design 

that was chosen. As can be seen, in the second sequence, the concentration for the unimolecular 

initiator is set at the high level for both of the trials ([I] = 0.05M), while temperature and the 

molecular weight of the unimolecular initiator were changing from low to high level from one 

trial to the other.  

 
This case shows that the Bayesian design methodology can be used in multi-response situations 

and, even more importantly, it can suggest experiments that are nearly optimal for all 

responses. In our case, batch time and a certain average molecular weight were the responses 

used. However, other responses like rate of polymerization or polydispersity can also be 

employed. 

 

 

 

Figure B.1 Visual illustration of the second sequence of 2-trials suggested for Case 5 
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Appendix C. Model Equations for the Production of Acrylonitrile-

Butadiene Emulsion 

 
1. Initiator Balance 
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4. Particle Nucleation  
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5. Water Balance 
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6. Monomer and Polymer Balances 
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8. Emulsifier Balance 

jinj

j
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e
FF
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9. Impurities Balance 
 

Water soluble impurities 
 

awsiZZ
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Monomer soluble impurities 
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10. Chain Transfer Agent Balance 
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11. Molecular Weight Distribution Moments Balances 
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12. Branching Average Balances 
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Notation (for Appendix C) 

iBN  Average number of tri- and tetra-functional branches (i = 3, 4) per 

chain (#/molecule)  

ctaj jth chain transfer agent 

ej jth emulsifier 

f Initiation efficiency 
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[i]a Concentration of species i (= I, RA, Fe2+, Fe3+) in aqueous phase 

[I]a Concentration of initiator in aqueous phase (mol/L) 

I Initiator 

iniF  Total molar inflow of species i = I, RA, Fe, Fe2+, Fe3+, mj, polj, w, ej, 

wsij, msij, ctaj (mol/min) 

Fe Iron 

Fi Total molar outflow of species i = I, RA, Fe, Fe2+, Fe3+, mj, polj, w, ej, 

wsij, msij, ctaj (mol/min) 

k1,k2 Reaction rate constants (L/mol/min) 

kcm Micelle radical capture rate constant (dm/min) 

kd Decomposition rate constant (initiator) (L/mol/min) 

kh Homogeneous nucleation rate constant (min-1) 

pa
mi

K /  Partition coefficient of monomer i between aqueous and particle phase 

mj jth monomer 

msij jth monomer soluble impurity 

NA Avogadro's number (#/mol) 

Ni Total moles of species i = I, RA, Fe, Fe2+, Fe3+, mj, polj, w, ej, wsij, 

msij, ctaj 

Np Number of particles (#) 

polj jth polymer 

rmic Average micelle radius (dm) 

RA Reducing agent 

RI Rate of initiation (mol/L/min) 
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 32 ,,
FeFeRA RRR  Rates of redox ingredient consumption (mol/L/min) 

Rmic, Rhom Rate of micellar and homogeneous nucleation (#/L/min) 

hom][ aR  Concentration of radicals in the aqueous phase capable of undergoing 

homogeneous nucleation (mol/L) 

mic
aR ][   Concentration of radicals in the aqueous phase capable of being 

captured by micelles  (mol/L) 

pj
ctaR  Rate of chain transfer agent consumption (mol/L/min) 

pjaj
pp RR ,  Rates of polymerization in aqueous and particle phases (mol/L/min) 

ajpj
wsimsi RR ,  Rates of impurity consumption (monomer and water soluble) 

(mol/L/min) 

ipQVR  Rate of moment generation for moments i = 0, 1, 2 (mol/L/min) 

iop BNQV
R  Rate of iBN  generation for i = 3, 4 (mol/L/min) 

Va,Vp Volume of aqueous and particle phase (L) 

p
m

a
m ii

VV ,  Volume of monomer i in aqueous and particle phase (L) 

ipQV  ith  moments of the molecular weight distribution (mol) 

iop BNQV  Zeroth moments of the ith (tri- and tetra-) functional branching 

frequency distributions (mol #/molecule) 

w water 

wsij jth water soluble monomer 

mic
des  Rate of recapture of desorbed radicals by micelles (#/L/min) 
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Appendix D. Hierarchical Data Analysis of a Replicated NMRP of 

STY/DVB 

 
Extensive data collection and careful sample characterization through the full conversion range 

serve to maximize the information content of the experiments. However, in experimental data, 

there is always some amount of noise or variation induced by known and/or unknown 

disturbances. Hence, it is crucial not only to examine the trends obtained from data, but also to 

perform thorough assessment of the quality of the data. This can be accomplished by 

measuring the quantifiable uncertainties contributed by the various sources involved in the 

experimentation. 

 
It is well-known that systems involving DVB as the cross-linker, involve gel materials that are 

difficult to deal with in the laboratory. This will introduce considerable amount of error into 

experimentation and subsequent analyses. Hence, when measuring polymer properties, such as 

molecular weights, experimental errors (from various sources) and instrumental errors are 

involved and it is important to identify and separate them. 

 
As part of our comprehensive kinetic study, number- and weight-average molecular weights of 

the produced polymers were measured at various conversion levels using Gel Permeation 

Chromatography (GPC). To properly identify the sources and magnitudes of errors in 

measuring molecular weights, a replicated experiment was conducted and subjected to 

extensive characterization using a hierarchical design (Box et al., 1978). A hierarchical or 

nested design can be used to separate the total variation in the molecular weight measurement 

into parts assignable to the three sources: error associated with the GPC measurement itself 

(analytical error), the error related to the polymerization process/reactor (carried out under 

identical conditions), and the variability in the measurement corresponding to different 

sampling times. 

 
D.1 Experimental Studies 
 
To check the reproducibility of our experiments, independent polymerization runs were 

conducted for Exp 4 and 5 of Table 9.2. During the replicated run for Exp 4, samples were 
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taken out at 60 min (early steps of the reaction), 420 min (mid-range of reaction) and 480 min 

(gel vicinity). These times represented the 11%, 57% and 62% conversion levels for Exp 4 and 

corresponded to 15%, 58% and 65% conversion levels for the replicate of Exp 4. For Exp 5, 

samples were duplicated at 150 min (beginning of the reaction), 1020 min (gel vicinity), 1140 

min (after gel point) and 1500 min (well after gel point and almost at the end of reaction). 

These times corresponded to 34%, 83%, 85% and 88% conversion levels for Exp 5 and 

represented 35%, 83%, 84% and 88% conversion levels for the replicate of Exp 5. These 

independent replications permitted the calculation of variability related to different batches of 

polymerization. The raw data tables for number- and weight-average molecular weight for both 

Exp 4 and 5 are shown below. 

 
Table D.1 Raw data for number-average molecular weights for Exp 4 ([I-TIPNO] = 1 wt%, 
[DVB] = 1 wt%) 
Time Polymerization GPC Ytpg ݕത௧௣ ݕത௧  തݕ 

1 (60 min) 1 1 7,452 6,928 7,102 46,944 
2 6,404 

2 1 6,991 7,275 
2 7,559 

2 (420 min) 1 1 47,739 48,314 47,243 
2 48,888 

2 1 47,347 46,172 
2 44,996 

3 (480 min) 1 1 129,257 111,261 86,487 
2 93,264 

2 1 55,645 61,714 
2 67,783 

 

Table D.2 Raw data for weight-average molecular weights for Exp 4 ([I-TIPNO] = 1 wt%, 
[DVB] = 1 wt%) 
Time Polymerization GPC Ytpg ݕത௧௣ ݕത௧  തݕ 

1 (60 min) 1 1 10,640 12,208 10,492 464,318 
2 13,775 

2 1 8,559 8,777 
2 8,994 

2 (420 min) 1 1 282,551 283,021 278,278 
2 283,491 

2 1 279,493 273,535 
2 267,576 

3 (480 min) 1 1 1,430,000 1,549,000 1,104,184 
2 1,668,000 

2 1 555,586 659,369 
2 763,151 
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Table D.3 Raw data for number-average molecular weights for Exp 5 ([I-TIPNO] = 2 wt%, 
[DVB] = 1 wt%) 
Time Polymerization GPC Ytpg ݕത௧௣ ݕത௧  തݕ 

1 (150 min) 1 1 7,469 7,215 7,291 52,281 
2 6,960 

2 1 7,506 7,367 
2 7,228 

2 (1020 min) 1 1 178,946 198,754 128,622 
2 218,562 

2 1 45,520 58,490 
2 71,459 

3 (1140 min) 1 1 69,703 51,377 40,068 
2 33,050 

2 1 27,136 28,760 
2 30,384 

4 (1500 min) 1 1 31,603 33,279 33,144 
2 34,955 

2 1 28,876 33,009 
2 37,141 

 

Table D.4 Raw data for weight-average molecular weights for Exp 5 ([I-TIPNO] = 2 wt%, 
[DVB] = 1 wt%) 
Time Polymerization GPC Ytpg ݕത௧௣ ݕത௧  തݕ 

1 (150 min) 1 1 8,902 8,965 9,085 669,185 
2 9,028 

2 1 9,016 9,205 
2 9,393 

2 (1020 min) 1 1 3,025,000 3,094,000 2,023,738 
 2 3,163,000 

2 1 940,622 953,477 
2 966,331 

3 (1140 min) 1 1 867,144 717,494 475,920 
2 567,843 

2 1 236,698 234,346 
2 231,994 

4 (1500 mins) 1 1 124,981 135,630 167,999 
2 146,278 

2 1 131,463 200,368 
2 269,272 

 

D.2 Theoretical Background 
 
Experimental values are subject to various forms of error, contributed by one or more sources. 

If the average of the experimental values is assumed to be the true value, the deviation from the 

true value can be attributed to the individual deviations caused by each source. Hence, each 

measurement can be represented by Eq.  D.1. 

 



346 
 

y ൌ μ േ Aୟ േ	Bୠ േ	Cୡ  Eq.  D.1

 
where ߤ	is the mean value of y, and ܣ௔, ,௕ܤ	  ௖ are the quantified errors (A, B, C)ܥ	

associated with sources a, b, and c. 

 
A nested hierarchical design was used to estimate the components of variance in each 

measurement. Three levels of the nested design were examined in this study. The lowest level 

was the analytical error (error associated with the measurements conducted using the GPC 

(G)). This was examined by performing replicate analyses. The next level was the 

polymerization level (P), which compared the difference between two polymerizations carried 

out under identical conditions).The highest level was the time (T), which examined the error 

associated with the measurements conducted at various times during the course of the reaction. 

This was also indicative of the level of conversion of the monomer. 

 
The variance associated with each level was represented as VG, VP, and VT. Each observation 

was then defined as ytp1, ytp2, …, ytpg, where there were G replicated analytical tests made on 

the Pth polymerization, and Tth time. The averages for the Pth level are defined as ݕത௧௣. The 

variance in the GPC measurements was calculated as in Equation 2, with ܸீ  being an estimate 

of ீߪ
ଶ	having TP(G-1) degrees of freedom:  

 

Vୋ ൌ MSୋ ൌ
SSୋ

TPሺG െ 1ሻ
ൌ
∑ ∑ ∑ ൫y୲୮୥ െ yത୲୮൯

ଶୋ
୥

୔
୮

୘
୲

TPሺG െ 1ሻ
 

Eq.  D.2

 
The variance in the polymerization reactions ሺ ௉ܸሻ was determined by calculating the averages 

of the values obtained for different polymerization reactions for each of the different times. 

These were defined as ݕത௧ in Equation 3, and VP was calculated as follows: 

 

V୔ ൌ MS୔ ൌ
SS୮

TሺP െ 1ሻ
ൌ
G∑ ∑ ൫yത୲୮ െ yത୲൯

ଶ୔
୮

୘
୲

TሺP െ 1ሻ
 

Eq.  D.3

 
The variance calculated using Eq.  D.3 was not an estimate of the variance in the 

polymerization reactions alone. Because it was calculated by pooling the averages calculated 

from the various GPC readings, the value of ௉ܸ was actually a combination of the variance in 
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the GPC measurements, as well as the variance in the polymerization reactions. The individual 

variance contributed by the polymerization reactions was calculated using Eq.  D.4.  

 
V୔ ൌ σୋ

ଶ ൅ G	σ୔
ଶ   Eq.  D.4

 

Finally, to calculate VT  Eq.  D.5 was used: 

 

V୘ ൌ MS୘ ൌ
SS୘

ሺT െ 1ሻ
ൌ
PG∑ ሺyത୲ െ yതሻଶ୘

ୱ୲

T െ 1
 

Eq.  D.5

 
Again, the estimated value calculated in Eq.  D.5 is an estimate of the variance contributed by 

each of the three factors, the GPC readings, the polymerization reactions, and the time variable. 

The error contributed solely by the time variable can be calculated by equating Eq.  D.5 to Eq.  

D.6.  

 
்ܸ ൌ ீߪ

ଶ ൅ ௉ߪܩ
ଶ ൅ ்ߪܩܲ

ଶ  Eq.  D.6

 

D.3 Hierarchical Layout 
 
In Exp 4, the three samples taken out at 60min, 420 min and 480 min (t = 3) were reproduced 

in the replicated run (p = 2). For each polymerization sample two independent GPC 

measurements were carried out (g = 2). Thus, the design was of a 3x2x2 layout, as shown in 

Figure D.1. 

 

 

 

 

 

 

 
In Exp 5,  the samples taken out at four different time intervals (t= 4; 150 min, 1020 min, 1140 

min and 1500 min) were replicated in an independent polymerization run (p= 2), and for each 

polymerization sample two GPC measurements were carried out (g= 2). Thus, the design was 

of a 4x2x2 layout, as shown in Figure D.2. 

Time 

Polymerization 

GPC 

Figure D.1 Hierarchical layout for Exp 4 
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Figure D.2 Hierarchical layout for Exp 5 

 

D.4 Results 
 
From each of the polymerization samples, two independent GPC samples were prepared and 

dissolved in THF, then injected into the GPC set up and analyzed for molecular weight. The 

raw experimental data tables are shown in Table D.1 to Table D.4. Error analyses were 

performed for both number- and weight-average molecular weights (Mn and Mw). ANOVA 

tables were prepared to present the variance quantified for the three levels studied in this 

experiment. These results are summarized in Table D.5 to Table D.8. 

 

Table D.5 ANOVA table for number-average molecular weight in Exp 4 

Source df SS MS Variance Estimates 

Time 2 1.26E+10 6.30E+09 1.37E+09 

Polymerization 3 2.46E+09 8.20E+08 3.49E+08 

GPC 6 7.26E+08 1.21E+08 1.21E+08 

Total 11 1.58E+10 
 

  

Table D.6 ANOVA table for weight-average molecular weight in Exp 4 

Source df SS MS Variance Estimates 

Time 2 2.60E+12 1.30E+12 2.59E+11 

Polymerization 3 7.92E+11 2.64E+11 1.28E+11 

GPC 6 4.99E+10 8.32E+09 8.32E+09 

Total 11 3.44E+12 
 

 

 

 

Time 

Polymerization 

GPC 
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Table D.7 ANOVA table for number-average molecular weight in Exp 5 

Source df SS MS Variance Estimates 

Time 3 3.35E+10 1.12E+10 1.53E+09 

Polymerization 4 2.02E+10 5.05E+09 2.41E+09 

GPC 8 1.84E+09 2.30E+08 2.30E+08 

Total 15 5.55E+10 
 

Table D.8 ANOVA table for weight-average molecular weight in Exp 5 

Source df SS MS Variance Estimates 

Time 3 1.02E+13 3.41E+12 5.52E+11 

Polymerization 4 4.82E+12 1.20E+12 5.98E+11 

GPC 8 6.44E+10 8.05E+09 8.05E+09 

Total 15 1.51E+13 
 

Based on the ANOVA tables provided for Exp 4 (see Table D.5 and Table D.6), the analytical 

error associated with only the GPC measurements, was calculated to be 1.21E+08 for Mn, and 

8.32E+09 for Mw. These values were calculated based on Eq.  D.2. On the basis of a 95% 

confidence interval, and using a t-distribution, this translates into an analytical error of ±21,553 

for Mn and an error of ±178,815 for Mw. This is the error solely based on the GPC 

measurements.  

 
Using Eq.  D.3 and Eq.  D.4, the error related to polymerization was found to be 3.49E+08 and 

1.28E+11 for the number- and weight-average molecular weights, respectively. This is 

indicative of the variability in the two polymers that were prepared, and thus, reflects the 

degree of inconsistency in the preparation techniques. Lastly, using Eq.  D.5 and Eq.  D.6, the 

error in the molecular weight measurements corresponding to different times (conversions) 

was 1.37E+09 and 2.59E+11, respectively, for number-and weight-average molecular weights 

(see summary Table D.9). This reflects the variance in both molecular weights as the reaction 

progresses (at various conversions). 

 
Similarly, Table D.7 and Table D.8 summarize the ANOVA tables for Exp 5. In this 

experiment, the analytical component of the variance was found to be 2.30E+08 for Mn and 

8.05E+09 for Mw. Calculations similar to those performed for Exp 4 translated in an error of 
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±29,709 for Mn and an error of ±175,823 for Mw, again for a 95% confidence interval. The 

variance associated with the polymerization component was 2.41E+09 for Mn and 5.98E+11 

for Mw. Finally, the variability corresponding to different times (conversions) was 1.53E+09 

and 5.52E+11 for Mn and Mw, respectively. These results are summarized in Table D.9. These 

results can also be presented in pictorial format, as shown in Figure D.3 and Figure D.4 below.  

 

Table D.9 Summary of the results obtained for Exp 4 and Exp 5 

 Overall Mean Variance 
 in GPC ሺீߪ

ଶሻ 
Variance in 

Polymerization ሺߪ௉
ଶሻ 

Variance in 
Time ሺ்ߪ

ଶሻ 
Exp 4 

Mn 46,944 1.21E+08 3.49E+08 1.37E+09 
Mw 31,970 8.32E+09 1.28E+11 2.59E+11 

Exp 5 
Mn 52,281 2.30E+08 2.41E+09 1.53E+09 
Mw 669,185 8.05E+09 5.98E+11 5.52E+11 
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Figure D.3 Visual representation of the variances contributed by the various levels in the
data collected for number- and weight-average molecular weights for Exp 4 

σ
G
=91,232 

σ
P
=357,439 

σ
T
=508,95

Number-Average Molecular Weight     Weight-Average Molecular Weight 
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From the above calculations, it was visible that error caused by the GPC was of the lowest 

magnitude when compared to the other levels, for both experiments. Hypothesis testing was 

also conducted to determine the impact of the different variables using an F-test. These tests 

were used to conclude whether or not the error was significant, by determining the validity of 

the null hypothesis using a 5% significance to determine whether or not it was a possibility for 

the error value to be zero. The hypothesis testing was conducted by using a critical value, ܨ௖, 

from the F-distribution, based on the appropriate degrees of freedom, and comparing it to the 

observed ܨ௢௕௦.  Sample calculations for Mn from Exp 4 are shown below, the calculations for 

the rest are analogous. 

 
 
 

Number-Average Molecular Weight     Weight-Average Molecular Weight 

Figure D.4 Visual representation of the variances contributed by the various levels in the data
collected for number- and weight-average molecular weights for Exp 5 
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To test the significance of the contribution of variability due to different times: 

 
ଶ்ߪ	:௢ܪ ൌ 0   

ଶ்ߪ	:ଵܪ ൐ 0 

௢௕௦ܨ ൌ
்ܵܯ
௉ܵܯ

ൌ
6.30E ൅ 09
8.20E ൅ 08

ൌ 7.69	 

௖ܨ ൌ ଶ,ଷ,଴.଴ହܨ ൌ 9.55 

 
Therefore, since	ܨ௢௕௦ ൏  ௖, we fail to reject the null hypothesis. This means the errorܨ

associated with different polymerization times does not have a significant contribution to 

overall variability. 

 
To test the significance of the contribution to variability due to different polymerizations: 

 
௉ଶߪ	:௢ܪ ൌ 0   

௉ଶߪ	:ଵܪ ൐ 0 

௢௕௦ܨ ൌ
௉ܵܯ
ீܵܯ

ൌ
8.20E ൅ 08
1.21E ൅ 08

ൌ 6.78	 

௖ܨ ൌ ଷ,଺,଴.଴ହܨ ൌ 4.76 

 
Therefore, since ܨ௢௕௦ ൐  ௖, here the null hypothesis is rejected. This means the error associatedܨ

with different polymerizations does have a significant contribution to overall variability. 

 
Similar testing was conducted for the remaining cases, summarized in Table D.10 (for 

variability in T) and Table D.11 (for variability in P).  

 

Table D.10 Hypothesis testing for variability in T 

Variability in T Fc Fobs Conclusion 
Exp 4, Mn 9.55 7.69 Fail to reject null 
Exp 4, Mw 9.55 4.93 Fail to reject null 
Exp 5, Mn 6.59 2.21 Fail to reject null 
Exp 5, Mw 6.59 2.83 Fail to reject null 
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Table D.11 Hypothesis testing for variability in P 

Variability in P Fc Fobs Conclusion 

Exp 4, Mn 4.76 6.78 Reject null 

Exp 4, Mw 4.76 31.70 Reject null 

Exp 5, Mn 3.84 21.96 Reject null 

Exp 5, Mw 3.84 149.73 Reject null 

 

The hypothesis testing on 	்ߪ
ଶ failed to reject the null hypothesis of 	்ߪ

ଶ ൌ 0  for both Exp 4 and 

5 (on both Mn and Mw).  That means that the error associated with different times does not 

have a significant contribution to overall variability. On the other hand the null hypothesis of 

௉ߪ
ଶ ൌ 0 was rejected for both Exp 4 and 5 (on both Mn and Mw). That means that there is strong 

evidence to conclude that the polymerization (process) error has a significant contribution to 

overall error.  

 
The results obtained were compared to a previous study conducted on the error associated with 

GPC for a BA/MMA/VAc emulsion terpolymerization (Dube and Penlidis, 1996). In that 

earlier study, it had been found that the value for the variance in the GPC readings was 

1.28E+08 for the number-average molecular weight, and 1.47E+08 for the weight-average 

molecular weight. Upon comparison (see Table D.9), the values for the variance of number-

average molecular weights showed good agreement with Dube and Penlidis (1996). In contrast, 

the variance values for weight-average molecular weights were higher by an order of 

magnitude than the value obtained in Dube and Penlidis (1996). However, the good sign is that 

the variance values for weight-average molecular weights were very consistent variances. The 

differences in variances for weight-average molecular weight between this study and Dube and 

Penlidis (1996) could be related to the fact that the current system involves the formation of 

gel. At the point of formation of gel material (gelation point), the weight-average molecular 

weight tends to go really high. Such a system is prone to a large magnitude of error from 

multiple sources, namely, errors both during polymerization and GPC preparation (slight 

differences in the exact occurrence of the gelation point due to polymerization induction time 

variations; not filtering everything or filtering too much during GPC), and although one can 

still measure values of Mw for samples obtained in principle at the same times (at the gelation 

point or a bit earlier), the values may be significantly different from each other.  
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D.5 Conclusions 
 
Often during experimental studies, studying the quality of the data obtained is as crucial as 

examining the results of the experiments themselves.  In the experiments described herein, the 

errors in the number- and weight-average molecular weights of STY/DVB copolymers were 

quantified using a hierarchical design (which allows one to scrutinize the error sources 

associated with the various steps of replication). The experimental design consisted of three 

layers; replicates of GPC measurements and of polymerization reactions at various time 

intervals. Thus, the three layers included (from top to bottom) sampling times, polymerization 

process and GPC measurements.   

 
Our analysis showed that the error associated with the GPC (analytical error) was much lower 

than the error associated with the other two (higher) levels. Table D.9 gives a summary of the 

error estimates (variances) obtained. The GPC errors in Exp 4 were ±21,553 for Mn and 

±178,815 for Mw. For Exp 5, these values were ±29,709 for Mn and ±173,823 for Mw. Thus, it 

was also evident that the error associated with the weight-average molecular weight was much 

higher than that of the number-average molecular weight.  
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Appendix E. Error Analysis for Swelling Index and Gel Content  

 

Determining the gel content and swelling index by Soxhlet extraction is prone to considerable 

error because of the nature of the procedure. In our case, the error was even higher since very 

small amounts of polymer were used. In order to have an estimate of error associated with gel 

content and swelling index. The Soxhlet extraction was repeated for several independent 

samples. The pooled variance for both swelling index and gel content was calculated and based 

on that the standard deviation and 95% confidence interval for both properties were 

determined. The results are summarized in Table E.1. The variance calculated from the error 

analysis for the gel content was 7.05	 ൈ	10ିସ (corresponding to േ 1.23 error), while the 

variance for the swelling index was 12.23% (corresponding to േ1.62 % error), as shown in the 

last three rows of Table E.1. 

 

 

Table E.1 Error Analysis for swelling index and gel content 

Sample* 
Time 
(hr) 

Conversion Swelling Index Gel Content 
Variance 

(Swelling Index) 
Variance 

(Gel Content) 

3B-5 0.75 0.103 28.5755 0.7966 
23.5222 0.0028 

3B-5 (Rep) 0.75 0.103 35.4344 0.7222 

3B-7 1.5 0.252 6.9641 1.0006 
0.0534 0.0001 

3B-7 (Rep) 1.5 0.252 7.2908 0.9880 

4-10 8 0.617 54.0000 0.0011 
16.4008 0.0003 

4-10 (Rep) 8 0.617 48.2727 0.0245 

4-11 9 0.671 27.4761 0.4937 
4.5684 0.0004 

4-11 (Rep) 9 0.671 24.4534 0.5214 

4-12 15 0.798 10.8801 0.9262 
3.3643 0.0000 

4-12 (Rep) 15 0.798 13.4741 0.9252 

5B-1 16 0.826 0.0000 0.0000 
0.0000 0.0000 

5B-1 (Rep) 16 0.826 0.0000 0.0000 

5-9 17 0.834 0.0000 0.0000 
0.0000 0.0000 

5-9 (Rep) 17 0.834 0.0000 0.0000 

5B-3 19 0.840 26.8112 0.4571 
7.2599 0.0002 

5B-3 (Rep) 19 0.840 30.6217 0.4360 

5-14 27.5 0.905 16.6525 0.5888 
17.4568 0.0011 

5-14 (Rep) 27.5 0.905 22.5613 0.5423 
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6-12 4 0.421 0.0000 0.0000 
0.0000 0.0000 

6-12 (Rep) 4 0.421 0.0000 0.0000 

6B-1 5 0.475 0.0000 0.0000 
0.0000 0.0000 

6B-1 (Rep) 5 0.475 0.0000 0.0000 

6-13 6 0.558 60.7333 0.1312 
136.0926 0.0034 

6-13 (Rep) 6 0.558 44.2353 0.0490 

6B-4 10 0.741 9.6048 0.8959 
0.4016 0.0016 

6B-4 (Rep) 10 0.741 8.7086 0.8398 

7B-2 7 0.614 0.0000 0.0000 
0.0000 0.0000 

7B-2 (Rep) 7 0.614 0.0000 0.0000 

7-4 8 0.670 0.0000 0.0000 
0.0000 0.0000 

7-4 (Rep) 8 0.670 0.0000 0.0000 

7-6 12 0.789 12.3122 0.5958 
7.2846 0.0003 

7-6 (Rep) 12 0.789 16.1292 0.5720 

7-9 16 0.834 14.3643 0.7170 
2.8946 0.0008 

7-9 (Rep) 16 0.834 11.9583 0.7573 

7-11 40 0.924 7.2898 0.9439 
0.8719 0.0018 

7-11 (Rep) 40 0.924 8.6104 0.8833 

    
Pooled 

Variance 
12.2317 7.05 ൈ 10ିସ 

    
Standard 

Deviation 
3.4974 0.0265 

    
Confidence 

Interval 
1.6157 1.23% 

 

* Based on experiment numbers in summary Table 9.2. 
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Appendix F. Kinetic Aspects of Styrene Polymerization with an 

Acyloxyamine 

 
The evaluation of largely unstudied kinetic aspects of styrene polymerization with a (relatively 

new) acyloxyamine over several temperature levels are presented in this Appendix. This 

Appendix is heavily based on the paper published by Nabifar et al. (2010) in the Journal of 

Macromolecular Science, Part A: Pure and Applied Chemistry, v47, 496. The kinetic data of 

polymerization of STY with this acyloxyamine were contrasted with regular styrene 

polymerization and styrene polymerization with TEMPO.  

 
F.1 Introduction 
 
Hindered amines have various applications as “chemical additives”. They are well-known as 

powerful stabilizers to protect plastics from the negative influence of light and heat. Recently, 

tailor-made hindered amines have been introduced with applications beyond stabilization. By 

adjusting the structure and the substitution pattern adjoining the functional group, these 

nitroxyl compounds can have a broad area of application. For example, they can be used as 

flame retardants, as mediators in controlled radical polymerization (CRP), and as alternatives 

to peroxides for degradation of polypropylene (PP) (Pfaendner, 2006) 

 
PP degradation for production of controlled-rheology polypropylenes (CRPP) is well 

established and has been studied extensively (Tzoganakis et al., 1998a, b and c). This process 

(industrially referred to as “vis-breaking”) is usually done in an extruder at elevated 

temperatures by adding peroxides as a source of radicals, which effect the breakdown of the 

chains. The most common free radical initiators used in CRPP production are mono- and di-

functional peroxides. Recently, work carried out in our group studied the effect of a tetra-

functional initiator in CRPP (Scorah et al., 2009) in order to investigate whether branching 

could also be imparted by a tetra-functional peroxide. However, a peroxide-free process is 

more desirable from the perspective of chemicals, handling, safety and potentially improved 

product quality. As a result, a relatively new hindered amine (trade name Irgatec CR76) with 

the structure of an acyloxyamine has been tailor-made by Ciba Specialty Chemicals (now part 

of BASF, however referred to as Ciba throughout the text herein) and potential uses of this 
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chemical in PP degradation have been described by Pfaendner (2006) and Roth et al. (2006). 

Aside from the preliminary proprietary Ciba evaluations, use of this radical generator as a 

potentially safer radical source in CRPP production was recently investigated by Psarreas et al. 

(2007) and the effect of processing temperature and acyloxyamine concentration on molecular 

weight averages, molecular weight distribution and rheological properties was reported. 

 
In Pfaendner (2006), several potential uses of the new acyloxyamine along with other radical 

generators are briefly mentioned, however, detailed kinetic investigations and information in 

the literature are scarce. Hence, given the prior experience we have had with the acyloxyamine, 

described in Psarreas et al. (2007) but for a totally different application, the next logical step 

was to evaluate largely unstudied kinetic aspects of this new acyloxyamine for polymerization 

applications. In this paper, a kinetic study of styrene polymerization with the acyloxyamine 

(from now on simply referred to as AcAm) is presented and the results are contrasted with 

regular free radical styrene polymerization (as in Gao and Penlidis (1996)) and also with 

styrene polymerization under controlled radical conditions (as in Nabifar et al. (2009)). 

 

F.2 Experimental 
 
F.2.1 Reagent Purification 
 
Styrene (Aldrich Canada Ltd., Oakville, ON) was washed three times with a 10 w/v % sodium 

hydroxide solution and three times with distilled water, dried over calcium chloride and 

distilled under vacuum. Solvents (tetrahydrofuran, ethanol, dichloromethane, and acetone) 

needed during experimental analysis were used as received. Both benzoyl peroxide (BPO) 

initiator and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) controller were used as received 

from suppliers (ATOFINA Chemicals, King of Prussia, PA and Aldrich, respectively) without 

further purification.  

 
The hindered amine (structure shown in Figure F.1) was also used as received. It is a sterically 

hindered N-acyloxyamine in the form of a stable concentrate with a molecular weight of 638 

g/mol. It has low volatility and can be safely transported or stored at ambient temperature. 
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F.2.2 Polymer Synthesis and Characterization 
 
Experimental steps, namely, polymer synthesis (procedures and recovery of the polymer 

product from ampoules) and polymer characterization, carried out for the experiments reported 

herein, were the same as described previously in Nabifar et al. (2008, 2009), hence not 

reported again for the sake of brevity.  

 
F.2.3 Summary of Experiments 
 
Table F.1 summarizes the operating conditions of experimental runs. To investigate 

polymerization kinetics, runs 1 to 5 were conducted with styrene and AcAm (with the AcAm 

concentration being at a level typical of what is employed for peroxides). Run 1 was conducted 

at 120°C, while runs 2, 3, 4 and 5 were conducted at 150, 180, 210 and 230°C, in order to 

investigate the effect of temperature and relate to other styrene polymerization conditions. 

 
For comparison purposes, regular (purely) thermal polymerization of styrene was conducted in 

the absence of initiator or AcAm at 120 and 210°C (runs 8 and 9, respectively). Experimental 

data for thermal polymerization of styrene at 180 and 230°C were borrowed from Gao and 

Penlidis (1996). For additional comparisons, runs were conducted with styrene but in the 

presence of TEMPO (a frequently used mediator in nitroxide-mediated radical polymerization 

(NMRP)), at 120 and 180°C (runs 6 and 7, respectively). The initial TEMPO concentration for 

these runs was as typically used in NMRP processes (Nabifar et al., 2008 and 2009).  
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Figure F.1 Structure of acyloxyamine (AcAm)
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Table F.1 Summary of experimental runs 

EXP # Recipe T (°C) Initial 

Concentration, M 

1 STY + AcAm 120 [AcAm]0 = 0.036 

2  150 [AcAm]0 = 0.036 

3  180 [AcAm]0 = 0.036 

4  210 [AcAm]0 = 0.036 

5  230 [AcAm]0 = 0.036 

6 STY + TEMPO 120 [TEMPO]0 = 0.0396 

7  180 [TEMPO]0 = 0.0396 

8 STY 120 - 

9  210 - 

 

F.3 Results and Discussion 
 
Figure F.2 shows conversion vs. time data for styrene polymerization with 0.036 M of the 

acyloxyamine at different temperatures (runs 1 to 5 of Table F.1). It can clearly be seen that 

increasing the temperature increases the rate of polymerization (as expected for any radical 

polymerization). Rate of polymerization is extremely fast at higher temperatures, especially at 

210 and 230°C in which polymerizations are completed almost after 20-30 minutes. The insert 

in Figure F.2 shows the first 100 min of the reaction. It can be seen that for example, after 30 

min, conversion is 6% for 120°C, 27% for 150°C, 77% for 180°C and 99% for both 210 and 

230°C. Comparing further the runs at 210 and 230°C, one can see in the insert of Figure F.2 

that in the first 10-15 min of the reaction, the rate of polymerization at 210°C is only slightly 

lower than the rate at 230°C, however, after that initial stage, the profiles of conversion vs. 

time for these two temperatures are overlapping. These observations suggest that at 

temperatures between 120 and 180°C, the profiles of conversion vs. time are affected 

predominantly by the change in temperature, however, at higher temperatures (above 180°C), 

the corresponding profiles of conversion vs. time are not significantly influenced by 

temperature changes.  
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Figure F.3 illustrates the corresponding number-average molecular weights and 

polydispersities vs. conversion. As can be seen in the upper plot, there is production of high 

molecular weight polymer right from the start of the reaction and molecular weights stay 

almost constant with conversion for all temperatures. Increasing the temperature decreases the 

molecular weights, a typical feature in any radical polymerization. For example, at 60% 

conversion, number-average molecular weight is decreasing from the order of 280,000 g/mol 

for 120°C to around 22,000 g/mol for 230°C. A point to note here is that the decrease in 

molecular weight values is less pronounced at higher temperatures. As can be seen in Figure 

F.3, the difference between number-average molecular weights for 210 and 230°C is not as 

large as the corresponding differences for the temperature range between 120 and 180°C. 

Independently replicated measurements for average molecular weight values were also 

conducted at 210°C, and as can be seen in the upper plot of Figure F.3, there is a very good 

agreement between the two replicated runs. 
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The corresponding polydispersity values, shown in the lower plot, are in the range of 1.4 to 

2.4, which are in the same range as values for purely thermal polymerization of styrene. At this 

point one can speculate that the behavior of styrene polymerization with AcAm is identical to 

that of regular (purely) thermal polymerization of styrene (no initiator added). To further check 

this, the next subsection compares experimental results of styrene with added AcAm, with 

experimental results and modeling simulations for thermal polymerization of styrene. 

 

F.3.1 Comparison with Thermal Polymerization of Styrene 
 
In this subsection styrene polymerization with AcAm is contrasted with regular thermal 

polymerization of styrene in order to appreciate better the effect of AcAm. At 180 and 230°C, 

our results with AcAm are contrasted with data from the literature (Gao and Penlidis (1996) 

reviewed and discussed a large number of experimental data sources on regular thermal 

polymerization of styrene). For further clarification, our experimental results on styrene 

polymerization with AcAm are selectively contrasted with model predictions for regular 
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(purely) thermal styrene polymerization. The modeling predictions presented herein are from a 

general comprehensive model developed by Jung (2008), where more details can be found.  

 
Figure F.4 compares conversion versus time data for styrene with AcAm with the 

corresponding data for (purely) thermal polymerization of styrene, at 120°C (runs 1 and 8 of 

Table 1). As can be seen, the polymerization with AcAm is acting as regular thermal 

polymerization of styrene, as if they were two ‘replicate’ runs. Two independent replicates 

were analyzed for styrene polymerization with AcAm, to check for reproducibility; as can be 

seen, the results from the replicates are in good agreement (white triangles vs. black 

diamonds).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The corresponding comparisons for number-average molecular weights (Mn) and weight-

average molecular weights (Mw) are shown in Figure F.5. The molecular weight experimental 

data for the run with AcAm are again almost identical with the ones from regular thermal 

polymerization of styrene. Figure F.5 also illustrates molecular weight model predictions for 

regular thermal styrene; it can be seen that model predictions capture the general behaviour, 

being acceptably close to the corresponding experimental results. 
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Figure F.4 Conversion vs. time data at 120°C: experimental
results of styrene with AcAm vs. experimental results for
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Figure F.6 contrasts conversion versus time data for styrene polymerization with AcAm at 

180°C, with the corresponding data for regular thermal polymerization of styrene from Arai et 

al. (reported in Gao and Penlidis (1996)), at 179.5°C.  It can be seen that the two data sets are 

in excellent agreement up to about 85% conversion, after which point conversion levels for 

regular thermal polymerization of styrene become lower. In this case, our speculation is that 

since the two experiments were carried out in two different laboratories, the source of 

discrepancy after 85% conversion could be attributed to typical measurement error and hence 

one could claim that there is no significant difference between styrene polymerization with 

AcAm and regular thermal polymerization of styrene at this temperature level. 
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Figure F.5 Average molecular weight data at 120 °C: experimental
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The corresponding comparisons for average molecular weights are shown in Figure F.7. There 

is excellent agreement between weight-average molecular weight data, as if again there were 

two independent “replicate” experiments. For number-average molecular weights, the literature 

data on regular thermal styrene polymerization are slightly lower than styrene polymerization 

with AcAm (black circles vs. open diamonds). The corresponding model predictions for 

styrene polymerization slightly overestimate the molecular weight experimental data for both 

styrene polymerization with AcAm and purely thermal polymerization of styrene. However, 

the predictions capture the general behavior of the molecular weights, and again they are 

acceptably close to the corresponding experimental results. 
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Figure F.8 compares conversion vs. time data for styrene polymerization with AcAm and 

styrene thermal polymerization at 210°C (runs 4 and 9 of Table F.1). As can be seen, the two 

data sets are in good agreement up to 60% conversion but after that there is a jump in 

conversion values for styrene with AcAm. For example, after only 15 minutes, the conversion 

level is 96% for styrene with AcAm, while only 83% for (purely) thermal styrene 

polymerization. The model predictions capture the behavior of styrene thermal polymerization 

almost perfectly. The observations now start suggesting that AcAm seems to have an initiator-

like contribution to styrene polymerization. However, the corresponding average molecular 

weights in Figure F.9 do not yet reflect the expected decrease in molecular weights due to 

AcAm’s initiator-like behavior, although one can argue that the data for styrene with AcAm 

are slightly lower than the ones for thermal polymerization. 
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To clarify our speculations, another experiment for styrene polymerization with AcAm was 

carried out at even a higher temperature (230°C; run 5 in Table F.1). Figure F.10 compares the 

corresponding conversion versus time data with data for styrene thermal polymerization. As 

can be seen, the run with AcAm is definitely faster than the purely thermal one (after only 5 

min have elapsed, the run with AcAm shows 97% conversion). The model predictions follow 

once more the styrene thermal polymerization behavior almost perfectly. The corresponding 

molecular weight data are shown in Figure F.11. As can be seen, both number- and weight-

average molecular weights for styrene with AcAm are lower compared to the values for purely 

thermal polymerization of styrene. These results show that at 230°C, AcAm again contributes 

as an initiator to styrene polymerization (increasing the rate of polymerization while decreasing 

molecular weights). This contribution had possibly started manifesting itself even at 180 and 

210°C (see Figure F.6 to Figure F.9 and the discussion around them), but was not as evident at 

lower temperatures. According to Rutsch and Cech (2007), AcAm dissociates to aminyl and 

acyloxy radicals at high temperatures (more preferably at the higher temperature levels of 

polymer degradation operations, above 200 °C), as shown in Figure F.12, and that is why 

AcAm exhibits this additional initiator-like contribution at temperature levels above 180-

200°C.  
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Figure F.10 Conversion vs. time data at 230°C: experimental results of styrene
with AcAm vs. experimental results and model predictions for thermal styrene 
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F.3.2 Comparison with Thermal Polymerization of Styrene in the Presence of TEMPO 
 
Figure F.13 compares conversion vs. time data for styrene polymerization with AcAm and 

styrene polymerization with TEMPO, at 120°C and 180°C (runs 1 and 6, and 3 and 7 of Table 

F.1). It can be observed that the run with AcAm is much faster than the one with TEMPO, 

however, the difference between polymerization rates at 180°C is not as significant as at the 

120°C level. At 120°C (Figure F.13a), after 24 h, the conversion level is 90% with AcAm and 
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Figure F.11 Average molecular weight data at 230°C: experimental results of
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only 30% with TEMPO, while at 180°C (Figure F.13b) after 2 h, conversion is 98% with 

AcAm and 73% with TEMPO. Other observations for the 180°C temperature level are a 

plateau in conversion level for styrene polymerization with TEMPO after about 2.5 h, and a 

much shorter (almost negligible) induction period at the beginning of the reaction compared to 

the run with TEMPO at 120°C.  

 

a)       b) 

 

The corresponding molecular weights for polymerization of styrene with TEMPO at 120°C are 

shown in Figure F.14a, showing an almost linear increase of molecular weights with 

conversion, typical of any controlled radical polymerization. Comparing these data with 

molecular weights obtained from polymerization of styrene with AcAm (Figure F.5), one can 

see that the molecular weights are much lower. Figure F.14b illustrates molecular weight vs. 

conversion for styrene polymerization with TEMPO at 180 °C. As can be seen, polymerization 

is not controlled at these conditions, since molecular weights are not increasing linearly with 

conversion. Comparing these results with styrene polymerization with AcAm (Figure F.7), one 

again can see that molecular weights are much lower; at 60% conversion, the number-average 

molecular weight is about 10,000 g/mol for styrene polymerization with TEMPO (Figure 

F.14a), while at the same conversion level, the molecular weight is about 78,000 g/mol for 

styrene with AcAm (Figure F.7).  
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a)                                                                   b) 

 

Although styrene polymerization with TEMPO had been classified as controlled radical 

polymerization at lower temperatures (see Nabifar et al. (2009)), at elevated temperatures it 

could not be classified as controlled. However, comparing the molecular weight results to 

styrene polymerization with AcAm shows that the presence of TEMPO lowers the molecular 

weights dramatically. Radicals generated through thermal polymerization of styrene are 

trapped by TEMPO and the duration that the radicals are in the dormant mode is relatively 

long, thus causing the dramatic decrease in molecular weights. Although both AcAm and 

TEMPO can be categorized as hindered amines, they contribute very differently in styrene 

polymerization.  

 

F.4 Conclusions 
 
Selective kinetic investigations on styrene polymerization using an acyloxyamine over several 

temperature levels showed that the system behaves rather like regular (purely) thermal 

polymerization of styrene at temperature levels between 120-180°C, whereas at temperatures 

above 180-200°C AcAm seems to have an initiator-like contribution, thus increasing the rate 

of polymerization while decreasing molecular weights.  
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Appendix G. Complementary Data for Subsection 10.3.2 

 

G.1 Statistical Analysis for DSC Data 

 

Table G.1 Comparison of DSC data for 2B-10 and 3-11 of Table 10.8 

Sample Stat. indicator ΔTg 
ΔH 

(W/g) 
ΔCp 

(J/°C.g) 
Slope 

(W/g.°C) 
2B-10   5.53 0.0634 0.3862 -0.00989 

    4.91 0.0531 0.3202 -0.00991 
    5.1 0.0543 0.3258 -0.00888 
    5.13 0.0549 0.3310 -0.00962 
    
  average 5.17 0.0564 0.3408 -9.58E-03 
  variance 6.79E-02 2.22E-05 9.36E-04 2.31E-07 

3-11   4.8 0.0582 0.3489 -0.01036 
    4.64 0.0493 0.2964 -0.00955 
    4.77 0.0602 0.3617 -0.01040 
    4.93 0.0502 0.3022 -0.00969 
    
  average 4.79 0.0544 0.3273 -1.00E-02 
  variance 1.42E-02 3.05E-05 1.08E-03 1.95E-07 

 4.10E-02 2.64E-05 1.01E-03 2.13E-07 
tobs 2.67* 0.55 0.60 1.30 

t6, 0.025  = 2.45 Fail to reject Fail to reject Fail to reject Fail to reject 
* tobs for ΔTg  is slightly larger than 2.45. However, with 99% confidence, the test fails to reject H0 
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G.2 Replicates for DMA measurements (see Table 10.10) 
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Figure G.1 Storage modulus and Tan δ for cross-linked PS at 97% conversion, synthesized 

through free radical polymerization with 1% DVB (sample 2B-12) 
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Figure G.2 Storage modulus and Tan δ for cross-linked PS at 64% conversion, synthesized through

nitroxide-mediated radical polymerization with 1% DVB (sample 3B-2) 
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Figure G.3 Storage modulus and Tan δ for cross-linked PS at 97% conversion, synthesized

through nitroxide-mediated radical polymerization with 1% DVB (sample 3-16) 
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b) 

a) 

Figure G.4 Storage modulus and tan δ versus temperature for samples prepared by NMRP (3-

15) and FRP (2B-12) with 1% DVB 
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