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Abstract

The security of information is an indispensable element of a communication system when

transmitted signals are vulnerable to eavesdropping. This issue is a challenging problem in

a wireless network as propagated signals can be easily captured by unauthorized receivers,

and so achieving a perfectly secure communication is a desire in such a wiretap channel.

On the other hand, cryptographic algorithms usually lack to attain this goal due to the

following restrictive assumptions made for their design. First, wiretappers basically have

limited computational power and time. Second, each authorized party has often access to

a reasonably large sequence of uniform random bits concealed from wiretappers.

To guarantee the security of information, Information Theory (IT) offers the following

two approaches based on physical-layer security.

First, IT suggests using wiretap (block) codes to securely and reliably transmit mes-

sages over a noisy wiretap channel. No confidential common key is usually required for the

wiretap codes. The secrecy problem investigates an optimum wiretap code that achieves

the secrecy capacity of a given wiretap channel.

Second, IT introduces key agreement (block) codes to exchange keys between legitimate

parties over a wiretap model. The agreed keys are to be reliable, secure, and (uniformly)

random, at least in an asymptotic sense, such that they can be finally employed in sym-

metric key cryptography for data transmission. The key agreement problem investigates

an optimum key agreement code that obtains the key capacity of a given wiretap model.

In this thesis, we study the key agreement problem for two wiretap models: a Dis-

crete Memoryless (DM) model and a Gaussian model. Each model consists of a wiretap

channel paralleled with an authenticated public channel. The wiretap channel is from a

transmitter, called Alice, to an authorized receiver, called Bob, and to a wiretapper, called

Eve. The Probability Transition Function (PTF) of the wiretap channel is controlled by a

random sequence of Channel State Information (CSI), which is assumed to be non-causally

available at Alice. The capacity of the public channel is C
P1

∈ [0,∞) in the forward direc-

tion from Alice to Bob and C
P2

∈ [0,∞) in the backward direction from Bob to Alice. For
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each model, the key capacity as a function of the pair (C
P1
, C

P2
) is denoted by C

K
(C

P1
, C

P2
).

We investigate the forward key capacity of each model, i.e., C
K
(C

P1
, 0) in this thesis. We

also study the key generation over the Gaussian model when Eve’s channel is less noisy

than Bob’s.

In the DM model, the wiretap channel is a Discrete Memoryless State-dependent Wire-

tap Channel (DM-SWC) in which Bob and Eve each may also have access to a sequence

of Side Information (SI) dependent on the CSI. We establish a Lower Bound (LB) and an

Upper Bound (UB) on the forward key capacity of the DM model. When the model is less

noisy in Bob’s favor, another UB on the forward key capacity is derived. The achievable

key agreement code is asymptotically optimum as C
P1

→ ∞. For any given DM model,

there also exists a finite capacity C∗
P1
, which is determined by the DM-SWC, such that the

forward key capacity is achievable if C
P1

≥ C∗
P1
. Moreover, the key generation is saturated

at capacity C
P1

= C∗
P1
, and thus increasing the public channel capacity beyond C∗

P1
makes

no improvement on the forward key capacity of the DM model. If the CSI is fully known

at Bob in addition to Alice, C∗
P1

= 0, and so the public channel has no contribution in key

generation when the public channel is in the forward direction.

The achievable key agreement code of the DM model exploits both a random generator

and the CSI as resources for key generation at Alice. The randomness property of channel

states can be employed for key generation, and so the agreed keys depend on the CSI in

general. However, a message is independent of the CSI in a secrecy problem. Hence, we

justify that the forward key capacity can exceed both the main channel capacity and the

secrecy capacity of the DM-SWC.

In the Gaussian model, the wiretap channel is a Gaussian State-dependent Wiretap

Channel (G-SWC) with Additive White Gaussian Interference (AWGI) having average

power Λ. For simplicity, no side information is assumed at Bob and Eve. Bob’s channel

and Eve’s channel suffer from Additive White Gaussian Noise (AWGN), where the corre-

lation coefficient between noise of Bob’s channel and that of Eve’s channel is given by ̺.

We prove that the forward key capacity of the Gaussian model is independent of ̺.

Moreover, we establish that the forward key capacity is positive unless Eve’s channel is
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less noisy than Bob’s. We also prove that the key capacity of the Gaussian model vanishes

if the G-SWC is physically degraded in Eve’s favor. However, we justify that obtaining a

positive key capacity is feasible even if Eve’s channel is less noisy than Bob’s according to

our achieved LB on the key capacity for case (C
P1
, C

P2
) → (∞,∞). Hence, the key capacity

of the Gaussian model is a function of ̺.

In this thesis, an LB on the forward key capacity of the Gaussian model is achieved.

For a fixed Λ, the achievable key agreement code is optimum for any C
P1

∈ [0,∞) in both

low Signal-to-Interference Ratio (SIR) and high SIR regimes. We show that the forward

key capacity is asymptotically independent of C
P1

and Λ as the SIR goes to infinity, and

thus the public channel and the interference have negligible contributions in key generation

in the high SIR regime. On the other hand, the forward key capacity is a function of C
P1

and Λ in the low SIR regime. Contributions of the interference and the public channel in

key generation are significant in the low SIR regime that will be illustrated by simulations.

The proposed key agreement code asymptotically achieves the forward key capacity of

the Gaussian model for any SIR as C
P1

→ ∞. Hence, C
K
(∞, 0) is calculated, and it is sug-

gested as a UB on C
K
(C

P1
, 0). Using simulations, we also compute the minimum required

C
P1

for which the forward key capacity is upper bounded within a given tolerance.

The achievable key agreement code is designed based on a generalized version of the

Dirty Paper Coding (DPC) in which transmitted signals are correlated with the CSI. The

correlation coefficient is to be determined by C
P1
. In contrast to the DM model, the LB

on the forward key capacity of a Gaussian model is a strictly increasing function of C
P1

according to our simulations. This fact is an essential difference between this model and

the DM model.

For C
P1

= 0 and a fixed Λ, the forward key capacity of the Gaussian model exceeds the

main channel capacity of the G-SWC in the low SIR regime. By simulations, we show that

the interference enhances key generation in the low SIR regime. In this regime, we also

justify that the positive effect of the interference on the (forward) key capacity is generally

more than its positive effect on the secrecy capacity of the G-SWC, while the interference

has no influence on the main channel capacity of the G-SWC.
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Chapter 1

Introduction

The security of information is a challenging problem in communication systems where

transmission signals are exposed to eavesdroppers. The secure communication plays a

crucial role in a wireless network where propagated signals are easily accessible by (hid-

den) antennas of unauthorized receivers (wiretappers). Hence, a milestone in design of a

wireless communication system is to guarantee that the transmitted information over a

given communication channel [1] is reliably decoded [1,2] by authorized receivers such that

the wiretappers remain ignorant about that information after interception of transmitted

signals [3, Ch. 17].

In this thesis, we assume that the communication channels are authenticated which

means wiretappers are not able to tamper with messages, communication signals, and la-

bels of communication signals in any sense. We are also interested in scenarios with one

authorized transmitter, called Alice, and two receivers: an intended receiver, called Bob,

and a (passive) wiretapper, called Eve.

This chapter is organized as follows. We give an overview of the notion of channel

coding in Section 1.1. We demonstrate the concept of security in cryptography and its

advantages and drawbacks in Section 1.2. We introduce the physical layer security in Sec-

tion 1.3 and Section 1.4: in the former, we define wiretap channels and the secrecy problem;

in the latter, we define the concept of key agreement problems in information theory and
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privacy amplification, and we review the main related work in these fields. As this thesis

is regarding wiretap channels with random states, we introduce the fundamental classes of

state-dependent channels with the corresponding results and applications in Section 1.5.

Next, we review seminal articles and methodology in the field of state-dependent wiretap

models in Section 1.6; we then focus on wiretap models with random states. Motivations

of this work are justified in Section 1.7. Also, the challenges of our models are given in this

section. In Section 1.8, we briefly express the models together with the main contributions

of this thesis. Finally, we state the organization of next chapters in Section 1.9.

1.1 Communication over Noisy Channels

In a real communication system, communication channels are often noisy. Shannon [4]

represented a mathematical model for a noisy communication channel. According to this

work, noisy channels are modeled by a set of input alphabet(s), a set of output alphabet(s),

and a probability transition function (PTF) [1–3], which expresses the probability of ob-

servation of a channel output signal given a channel input signal. As an example, the

mathematical model of a point-to-point communication channel is defined as follows.

Definition 1.1. The mathematical model of a point-to-point communication channel is

determined by triple (Xn,Yn,Py|x), where

• n is the number of transmissions over the channel, or equivalently, it is called the

block length of an input vector (the input signal to the channel) and that of the

output vector (the output signal from the channel);

• Xn is called an (n-tuple) input alphabet, i.e., x ∈ Xn, where x is the input random

vector with length n;

• Yn is called an (n-tuple) output alphabet, i.e., y ∈ Yn, where y is the output random

vector with length n;

• Py|x is called a probability transition function, which is the conditional probability

distribution function y given x.
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An important class of communication channels is the class of memoryless channels [1,2]

in which channel output symbol at any time instant i ∈ {1, . . . , n} depends on only the

channel input symbol of the time instant i and it is conditionally independent of other input

symbols and output symbols at any time τ 6= i, where τ ∈ {1, . . . , n}. In the following, a

memoryless channel with finite input and output alphabets is defined.

Definition 1.2 (Discrete memoryless channel). A point-to-point channel (Xn,Yn,Py|x) is

called a discrete memoryless channel (DMC) [1, 2] if

∀ (x,y) ∈ Xn × Yn : Py|x(y|x) =
n∏

i=1

PY |X(yi|xi) , (1.1)

where PY |X is the conditional probability of a symbol Y ∈ Y given symbol X ∈ X. PY |X

is called the probability transition function (PTF) of the DMC. For simplicity, the DMC

is characterized by triple (X,Y,PY |X).

Now, assume Alice wishes to send message M through the DMC to Bob such that he

can retrieve message M̂ with a desired level of reliability determined by average probability

of error P{M̂ 6= M}. To achieve this goal, she maps M to an n−length vector x by an

(encoding) function F , which is called an encoder. Then, she sends the codeword x to Bob

by n times transmissions over the communication channel. Finally, Bob maps the received

signal y to message M̂ by a (decoding) function D, which is called a decoder. The pair of

functions (F ,D) is also referred to as a coding scheme. The mathematical model of this

communication system is sketched in Figure (1.1) based on Shannon’s study [4].

According to Shannon’s work [4, 5], a communication channel is said to be perfectly

reliable (zero-error) if

P{M̂ 6= M} = 0 .

Shannon [5] proved that it is possible to send a positive rate over a point-to-point DMC

with perfect reliability if and only if (iff) for every y ∈ Y there exists (x, x′) ∈ X2, where

x 6= x′, such that PY |X(y|x′)PY |X(y|x) = 0. This result shows that achieving a perfectly

reliable communication is not feasible in most channels. Hence, the asymptotic behavior
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Figure 1.1: A communication system with a point-to-point noisy channel.

of the average probability of error is considered in general to examine the reliability of a

communication system as follows.

Definition 1.3 (Asymptotic reliability (AR) condition). Let M = {1, . . . , ⌈2nR⌉}, where
R ∈ R

+ ∪ {0} and n ∈ N. Assume message M ∈ M is a uniformly distributed random

variable and RV M̂ ∈ M is the decoded message at Bob. Define Perror(n) , P{M̂ 6= M}.
The communication from Alice to Bob over the point-to-point channel (Xn,Yn,Py|x) is

said to be asymptotically reliable if there exists a pair of functions (F ,D) with1

F : M → Xn (1.2a)

D : Yn → M (1.2b)

such that

lim
n→∞

Perror(n) = lim
n→∞

1

⌈2nR⌉

⌈2nR⌉
∑

i=1

P{M̂ 6= i} = 0 , (1.3)

where M̂ = D(y), x = F(M), and conditional probability of y given x is Py|x. Further, the

information rate R is called an achievable rate with respect to the asymptotic reliability

(AR) condition (1.3).

In information theory, a fundamental objective of channel coding problem is to find the

1The encoder and the decoder are assumed to be deterministic functions. In fact, randomization at
either the encoder or the decoder does not increase channel capacity of the point-to-point channel [3, 6].
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channel capacity as follows.

Definition 1.4. (Channel capacity) The supremum of all achievable rates with respect to

the asymptotic reliability (AR) condition (1.3) is defined as the channel capacity of the

point-to-point channel (Xn,Yn,Py|x).

Assuming rate R is an achievable rate, we sometimes need to examine how Perror(n) → 0

as n → ∞. Specially, this issue has a practical importance when a negligible positive

error is tolerable due to the application because large block length leads to delay in the

decoding step. On the other hand, a trade-off between the finite block length and the

average probability of error is an essential issue to design an encoder-decoder for a given

channel. The reliability-exponent is utilized to measure how the average probability of

error converges to zero.

Definition 1.5. The reliability condition 1.3 is said to be achievable with reliability-

exponent εr if there exists a pair of functions (F ,D) according to (1.2) such that

lim inf
n→∞

−1

n
log(Perror(n)) ≥ εr . (1.4)

As an example, the capacity and reliability-exponent of a point-to-point DMC is given

by [1, 4]

C = max
PX

I(X ; Y ) , (1.5)

εr = max
PX

max
λ∈[0,1]

[T (λ,PX)− λR] , (1.6)

where function I(X ; Y ) , EPXY (x,y)(log
(

PY |X(y|x)
PY (y)

)

) is the mutual information function

between RVs X and Y , and

T (λ,PX) = − log

(
∑

y∈Y
(
∑

x∈X
PX(PY |X)

1
1+λ )1+λ)

)

. (1.7)
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Figure 1.2: Shannon’s model: Noise-free secrecy system.

1.2 One-Time Pad System

The problem of secure transmission of messages, which is known as a secrecy problem, was

mathematically formulated by Shannon [7] in 1949. As shown in Figure 1.2, Shannon’s

model [7] consists of two noise-free communication channels: a main channel from Alice

to Bob, and a wiretap channel from Alice to Eve. A third party, known as a key generator,

distributes a common secret, called a key, to Alice and Bob before they launch commu-

nication such that Eve has no access to the key. In Shannon’s model [7], Alice and Bob

exploit the symmetric-key cryptography [8] to keep the data transmission secure 2.

Specifically, assume M, K, and CI are the message set, the key set and the cipher

set, respectively, such that each set has a fixed finite size. Also, denote the message, the

key, and the cipher, which are random variables (RVs), by M , K, and CI respectively.

Define the function Qa : K×M → CI as the encryption function at Alice and the function

Qb : K×Y → M as the decryption function at Bob, where Y is the output alphabet set of

the main channel.

Alice wishes to send the message M ∈ M to Bob reliably (M̂ = M) in the presence

of Eve such that Eve is unable to reduce her ambiguity about the message M having Z

2For definition of asymmetric key (public key) cryptography, see [9].
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from the wiretap channel. To achieve this goal, Alice computes cipher CI = Qa(K,M)

and sends it to Bob. Bob, who receives Y = CI from the noise-free main channel, retrieves

the message M̂ ∈ M by M̂ = Qb(K, Y ). Eve obtains the same copy of the cipher as Bob

does, i.e., Z = Y = CI. Then, she does her best to reduce her level of ambiguity about

message M .

The perfect security condition guarantees that Eve is unable to reduce her ambiguity

about message M with having intercepted signal Z, no matter how much time, memory

and computational power she needs. Shannon [7] mathematically formulated this condition

by the (Shannon) entropy function [4] (see also (2.1) and (2.2)) as follows.

Definition 1.6 (Perfect security (Shannon’s criterion for security [7])). Recalling Shan-

non’s model in Figure 1.2, the communication system is said to be perfectly secure against

Eve, if there exist functions Qa and Qb such that

H(M) = H(M |Z) , (1.8)

where function

H(M |Z) , H(M,Z)−H(Z)

is called the equivocation function.

Shannon [7] proved that condition

H(K) ≥ H(M) (1.9)

is a necessary condition for the perfect security of symmetric-key cryptography (Shannon’s

model in Figure 1.2). That is, the uncertainty of the key must be at least as large as the

uncertainty of the message. Shannon [4] proved that a one-time pad system, which was

originally proposed by Vernam [10], can implement a perfectly secure communication if

a key-stream generator [8, Page 21] with H(K) = H(M) is provided. As an example of

the one-time pad system, the perfect security of Shannon’s model with Modulo-Additive

functions [8] is established in the following lemma.
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Lemma 1.1 (Modulo-Additive functions for the one-time pad system [7]). Let M = K =

{1, . . . , N0}, where N0 ∈ N. Let Qa and Qb be addition functions modulo N0
3, i.e.,

CI=Qa(K,M)=K +M (mod N0) (1.10a)

M̂=Qb(K, Y ) =K + Y (mod N0) . (1.10b)

Assume that the message M ∈ M is picked up at random according to an arbitrary distri-

bution. If K ∈ K is a uniformly distributed random variable whose realization is given by

the key generator to both Alice and Bob, then Shannon’s model is perfectly secure according

to Definition 1.6.

Although ease of implementation of the encryption and decryption functions in a one-

time pad system, distribution of a confidential key with H(K) ≥ H(M), which demands

private channels from the key generator to Alice and to Bob, remains a challenging issue

in practice. Hence, the implementation of a one-time pad system is not usually practical.

The one-time pad system can also be exploited to provide security in a (noisy) wiretap

channel. To illustrate this idea, let us first define the (noisy) wiretap channel with one

sender (Alice) and two receivers (Bob and Eve), where Eve is a wiretapper, as follows.

Definition 1.7 (Wiretap channel). A wiretap channel with one sender (Alice) and one

main receiver (Bob) and one wiretapper (Eve) is characterized by (Xn,Yn × Zn,Pyz|x),

where

• n is the block length;

• x is the channel input (from Alice), y is the first channel output (to Bob), z is the

second channel output (to Eve);

• Xn is the input alphabet, i.e., x ∈ Xn;

• Yn is the first output alphabet and Zn is the second output alphabet, i.e., (y, z) ∈
Yn × Zn;

• Pyz|x is the probability transition function (PTF) of the wiretap channel.

3When N0 = 2, the addition function is called Exclusive-OR (XOR).
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Figure 1.3: Set-up of a one-time pad system in a (noisy) wiretap channel.

The following example shows that concatenation of a one-time pad and an encoder-

decoder can provide perfect security in a (noisy) wiretap channel if condition (1.9) is met.

Example 1.1. As shown in Figure 1.3, assume Alice is connected to Bob, the legitimate re-

ceiver, and to Eve, the wiretapper, through a (noisy) wiretap channel (Xn,Yn×Zn,Py,z|x).

A uniformly distributed key K ∈ {1, . . . , N0} is provided to both Alice and Bob by a key

generator. Alice wishes to send a message M ∈ {1, . . . , N0} over the channel to Bob with

perfect security in presence of Eve. To do this, Alice, first enciphers the message M into

a cipher CI by CI = Qa(K,M) according to (1.10a); then, she encodes CI by an encoder

F into x according to (1.2a) and sends it. Correspondingly, the receiver first decodes

the received signal y by a decoder D according to (1.2b) so that he recovers his cipher

ĈI ∈ M, and finally he calculates his message M̂ = Qb(K, ĈI) according to (1.10b). In

this case, the communication is perfectly secure according to Definition 1.6; however, the

reliability of the communication depends on the choice of functions F and D as well as the

communication rate H(M)
n

.

To design a practical symmetric-key cryptographic algorithm, a key with a reasonable

size is applied which violates condition (1.9). That key must provide a given level of con-

ditional security which depends on the application and on the proficiency of the (possible)
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wiretappers. That is, cryptographic algorithms are usually designed based on computa-

tional security and/or complexity of known attacks rather than the perfect security. In

these cases, eavesdroppers are assumed to be equipped with limited processing power and

time. A computationally secure algorithm is designed based on either the assumed yet

unproven hardness of a certain problem such as discrete logarithm or a proof with certain

computational restrictions. Generally, the accurate meaning of the computational security

depends on the applications for which the cryptographic algorithm is to be designed and

on the constraints assumed for wiretappers. Despite the practical benefit of such a cryp-

tographic algorithm which demands a key with a reasonable size, it might be broken some

day due to rapid growth of computational processors. Hence, these algorithms should be

maintained with new cryptographic techniques such that they fulfill the requested level of

computational security against eavesdroppers with up-to-date technologies.

1.3 Information-Theoretic Security

The perfect security in Figure 1.3 is acquired by concatenation of a one-time pad system

and a channel encoder-decoder. That is, the enciphering-deciphering step is separated

from the encoding-decoding step. In Example 1.1, the overall channel from input terminal

of the encoder to the output terminal of the decoder is assumed to be noiseless. Hence,

condition (1.9) is applied to the design of the one-time pad system in Figure 1.3.

Now, suppose a noisy wiretap channel in which the encoding and enciphering can be

jointly implemented in one step as well as the decoding and deciphering. The question is

if condition (1.9) is still required to provide perfect security in this new model. If yes, a

perfectly secure communication system would be still practically infeasible because of the

key-distribution issue. If no, violation of condition (1.9) might result in an implementation

of a secure communication system with no key-distribution concerns.

In 1975, Wyner [11] proved that the security4 is achievable in an asymptotic sense (see

Definition 1.8) with no pre-shared key if Eve receives a noisy copy of Bob’s received signal

4We reserve term perfect security only for Shannon’s criterion for security given in Definition 1.6.
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Figure 1.4: Wyner’s model: Degraded noisy wiretap model.

from Alice. This work justified the idea that sending a positive secure rate is possible

without using any key if Bob has an advantage over Eve. The achievable security, which

is referred to as information-theoretic security, is guaranteed even if Eve has unlimited

computational power and time. As shown in Figure 1.4, Wyner’s model is based on the

fact that the legitimate receiver has a physical advantage over the wiretapper in most real

communication systems. In Wyner’s model, Bob’s advantage over Eve is that Eve receives

a degraded version [2, 6] of Bob’s signal, e.g., the eavesdropper is located further from the

transmitter than the legitimate receiver. Wyner [11] exploited this advantage rather than

a common key between Alice and Bob to securely transmit a message.

For his model in Figure 1.4, Wyner [11] assumed that the main channel and the wiretap

channel are DMCs. He developed the idea of using a (block) wiretap coding scheme to

achieve an (asymptotically) secure and reliable communication over the wiretap model.

The wiretap coding scheme consists of three components: an encoder W, a decoder D, and

a wiretap codebook [3, 6], where the block length is assumed to be n. In Figure 1.4, x, y,

and z are three random vectors which represent the emitted signal by Alice, the received

signal by Bob, and the received signal by Eve, respectively. An objective of the wiretap

coding scheme is to provide security in addition to reliability in an asymptotic sense.

When no security condition matters, in Section 1.1, we mentioned that the AR condition
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is met by using a pair of suitable deterministic encoder-decoder for a given DMC from Alice

to Bob. When security is a concern in the wiretap channel, Wyner [11] suggested using a

stochastic encoder 5, where a given message M maps randomly into a codeword x from a

set of codewords according to stochastic function W. In other words, a wiretap codebook

consists of all mappings from any message to the corresponding set6 of codewords such

that the total sets partition the set of all codewords in that wiretap codebook. Hence, the

randomized encoding function is represented by conditional distribution function W(x|M),

i.e.,

∀M ∈ M :
∑

x∈Xn

W(x|M) = 1 (1.11)

where the elements of matrix W(x|M) are non-negative. The role of the randomized

encoder in Wyner’s model is illustrated as follows.

The stochastic encoder encodes a message as if it adds (applies) an artificial random

noise to the output of a deterministic encoder. Bob considers this noise as extra noise on

top of noise of the main channel, and so he decodes the message from the noisy signal at

expense of loosing some portion of his achievable rate with respect to the AR condition 1.3.

However, this noise can exhaust the capacity of Eve’s channel as she receives a degraded

(noisier) version of Bob’s signal, and so she can attain no information about the message.

Motivated byWyner [11], the security level of a wiretap channel against Eve is measured

by equivocation rate [13] (see Subsection 2.2.1). In this thesis, we examine the security of

the communication in an asymptotic sense according to the following definition.

Definition 1.8 (Asymptotic security (AS) condition). Let M = {1, . . . , ⌈2nR⌉}, where

R ∈ R
+ ∪ {0} and n ∈ N. Assume message M ∈ M is a uniformly distributed random

variable. The communication from Alice to Bob over wiretap channel (Xn,Yn×Zn,Pyz|x) is

said to be asymptotically secure if there exists a stochastic function W according to (1.11)

such that

lim
n→∞

1

n
I(M ; z) = 0 . (1.12)

5It is also known as a randomized encoder [12].
6This set is also known as a bin in information theory.
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where I(M ; z) is obtained from joint distribution function

P(M, z) =
1

|M|
∑

(x,y)∈Xn×Yn

Pyz|x(y, z|x)W(x|M) .

Further, rate R is said to satisfy the AS condition.

In the field of information-theoretic security, a fundamental objective of a secrecy prob-

lem is to find the secrecy capacity [11] of a given wiretap channel as introduced below7.

Definition 1.9 (Secrecy capacity). An achievable rate R with respect to the AR condition

(1.3) in Definition 1.3 is called a securely achievable rate if it satisfies the AS condition

according to Definition 1.8 as well. The supremum of all securely achievable rates is called

the secrecy capacity.

Wyner [11] characterized the secrecy capacity of a discrete memoryless wiretap chan-

nel, i.e. the main channel and the wiretap channel are both DMCs in Figure 1.4 (see

Subsection 2.2.1 for more details). Leung-Yan-Cheong [14] simplified the secrecy capac-

ity of Wyner’s model where both the main channel and wiretap channel are symmetric

DMCs [1, Page 94]. This secrecy capacity, which is achieved at the uniform input distri-

bution on the main channel, is simplified to

C
S
= Cm − Cmw , (1.13)

where Cm and Cmw are the capacity of the main channel, from Alice to Bob, and the

capacity of the overall main-wiretap channel, from Alice to Eve, respectively.

As shown in Figure 1.5, Leung-Yan-Cheong and Hellman [13] extended Wyner’s model

to a (physically) degraded8 Gaussian wiretap channel in which the main channel and the

wiretap channel are two continuous9 memoryless (and discrete time) channels [1, Ch. 7]

7In fact, the capacity-equivocation region of the wiretap channel is the main goal of the secrecy problem
(see Subsection 2.2.1 for more details).

8See Subsection 2.2.1 for definitions of different types of degradedness.
9The input and output alphabets of a continuous channel each consist of a set of real numbers.
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Figure 1.5: The Gaussian wiretap channel.

with independent additive white Gaussian noise (AWGN) [1, Sec. 7.4]. Specifically, random

vectors g1 and g′
2 are independent Gaussian noise with independent and identically dis-

tributed (i.i.d.) components having distribution N (0, σ2
1) and distribution N (0, σ2

2 − σ2
1),

respectively, where σ2 ≥ σ1. Alice’s transmitter is subject to average power constraint
1
n
E(xxt) ≤ Γ as well [1, Sec. 7.4]. For the Gaussian wiretap channel, the authors [13]

showed that (1.13) holds, i.e.,

C
S
=

1

2
log

(
1 + Γ

σ2
1

1 + Γ
σ2
2

)

. (1.14)

Csiszár and Körner [12] generalized Wyner’s result to a broadcast channel (BC) [2,15]

with a transmitter (Alice) and two receivers (Bob and Eve). They [12] characterized the

secrecy capacity of the BC, where both Bob and Eve decode a common message and Bob

retrieves an extra private message from his received signal. For this model, they proved

that a non-zero secrecy capacity always exists unless Eve’s channel is less noisy [16] (see

Definition 2.9) than Bob’s channel.
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1.4 The Key Agreement Problem

Another notable problem in the field of information-theoretic security is the key agreement

problem which was introduced by Maurer [17] as well as Ahlswede and Csiszár [18,19]. In

this section, the concept of the key agreement problem is illustrated in Subsection 1.4.1.

Main key agreement models and related work are reviewed in Subsection 1.4.2. Finally, the

privacy amplification is introduced in Subsection 1.4.3 for security enhancement of agreed

keys.

1.4.1 The Concept

In an information-theoretic key agreement problem, generally, some legitimate parties on

a communication network wish to share a secret (key) reliably by using a (block) key

agreement coding scheme such that wiretappers are unable to gain any information about

the key. To do this, some signals are to be communicated between authorized parties

(subject to constraints of the network) in presence of the wiretappers. This step, which is

known as key exchange, is usually performed prior to the transmission of messages. At the

end of the key exchange step, each authorized party retrieves his/her own key by decoding

total available signals at his/her terminal. The agreed keys are finally to be exploited for

symmetric-key cryptography [8] in the step of the transmission of messages [17, 18, 20].

Hence, the keys are selected from a same alphabet (key) set with a finite size, which is

denoted by K in this thesis. Moreover, the agreed keys must satisfy the AR condition

and the AS condition in the same way as messages (M, M̂) ∈ M2 do in Definition 1.3 and

Definition 1.8, respectively.

Further to these two conditions, any key is required to look like a uniformly distributed

random variable as the third condition; thus, the key is often called a secure common

randomness in the literature, e.g., [3, 18, 19, 21]. This condition is called the asymptotic

randomness condition (ARN) as block length n → ∞. Near uniformity of a RV with a

finite size can be measured in various ways; one popular way in information theory, which

is used in our work, is to compare the entropy rate of the RV with that of a uniformly
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distributed RV with the same size [3, Ch. 17].

These conditions are clarified as follows based on the key agreement model sketched in

Figure 1.6. In Figure 1.6, assume that Alice and Bob want to share a key by key exchange

over the wiretap channel (Xn,Yn × Zn,Pyz|x) according to Definition 1.7 as well as over

a public channel [17] (see Definition 3.1 for more details). Due to the nature of a public

channel, any signal sent over this channel is accessible by Eve. Although the eavesdropper

is able to obtain the same copy of transmitted signals over the public channel, she is not

able to tamper those signals in any sense as the channel is assumed to be authenticated10.

For generalization, assume that Alice, Bob, and Eve have also access to side information

a, b, and e, respectively (see Chapter 3 for more details.). Let map the total signals

transmitted over the public channel to a random variable denoted by P . After the key

exchange step, Alice and Bob retrieve key K ∈ K and K̂ ∈ K from all available information

at her/his terminal, respectively.

For the key exchange step an admissible key agreement coding scheme, including

encoders, decoders, key generators, and a key agreement codebook, is utilized based on

restrictions of a given model (see Chapter 3 and Chapter 4 for more details and examples).

After the key exchange step, the agreed keys must satisfy the following conditions such

that they are acceptable for symmetric-key cryptography.

Definition 1.10. Assume an admissible key agreement coding scheme with key set K =

{1, . . . , ⌈2nRK ⌉}, where R
K
∈ R

+ ∪ {0} and n ∈ N. Let K ∈ K and K̂ ∈ K be Alice’s key

and Bob’s key at the end of the key exchange step. The efficiency of the admissible key

agreement coding scheme is examined by the following functions.

1. The reliability of (K, K̂) is measured by the average probability of error

Perror(n) , P{K̂ 6= K} , (1.15)

which is a function of block length n.

10See [22–24] for key agreement problems over unauthenticated public channels.
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Figure 1.6: Key agreement between Alice and Bob in presence of Eve.

2. The security level of K is measured by the leakage rate

R
L
(n) ,

1

n
I(K; z, e, P ) , (1.16)

which is a function of block length n.

3. The randomness of K is measured by11

X (n) ,
log(|K|)−H(K)

n
, (1.17)

which is a function of block length n.

A fundamental objective of a key agreement problem is to find the key capacity of a

given model according to the following definition.

11log(|K|)−H(K) = DKL(PK ||P ′
K
), which is Kullback-Leibler divergence function [2,3] between distri-

bution PK of K and the uniform distribution P ′
K
(k) = 1

|K| on set K.
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Definition 1.11. A key rate R
K
is said to be achievable if there exists an admissible key

agreement code such that12

The AR Condition : lim
n→∞

Perror(n) = 0 , (1.18a)

The AS Condition : lim
n→∞

R
L
(n) = 0 , (1.18b)

The ARN Condition : lim
n→∞

X (n) = 0 , (1.18c)

The Key Rate : lim inf
n→∞

H(K)

n
≥ R

K
. (1.18d)

For a given key agreement problem, the supremum of all achievable key rates is called the

key capacity of the given model, and it is denoted by C
K
.

As a special case, when the public channel is one-way from Alice to Bob (forward direc-

tion), it is referred to as the forward public channel and the corresponding key capacity is

called forward key capacity. Similarly, a unilateral public channel from Bob to Alice (back-

ward direction) is called a backward public channel, and the corresponding key capacity is

called backward key capacity.

Now, suppose that Alice and Bob complete the key exchange step such that their agreed

keys satisfy conditions (1.18). Then, Alice wishes to send a message securely to Bob by

using a symmetric-key cryptographic algorithm. How much is the largest achievable secure

rate by using the agreed keys for encryption-decryption? This question is addressed by the

following lemma13.

Lemma 1.2. Let K = {1, . . . , ⌈2nRK ⌉} and N0 = ⌈2nRK ⌉. Assume that Alice and Bob

agree on keys (K, K̂) ∈ K2, which satisfy conditions (1.18). Having the agreed keys, Alice

then encrypts and sends message M ∈ {1, . . . , N0}, independent of K, to Bob according to

12In Appendix A, we prove that the AS condition for K together with the AR condition for (K, K̂)
implies the AS condition for K̂.

13This lemma is originally given in Ahlswede-Csiszár [18, Lem. 2.1] for a noiseless wiretap channel. How-
ever, we state the lemma with a slight generalization for a noisy wiretap channel according to Example 1.1.
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Figure 1.3, where

CI=Qa(K,M)=K +M (mod N0)

M̂=Qb(K̂, CI)=K̂ + ĈI (mod N0) .

according to (1.10). Then, rate R = min{R
K
, C

S
} is a securely achievable rate according

to Definition 1.9, where C
S
is the secrecy capacity of the wiretap channel.

In general, any securely achievable rate sent over the wiretap channel (Xn,Yn×Zn,Pyz|x)

can be exploited as a secure common randomness (key) between Alice and Bob. Hence,

C
K
≥ C

S
(1.19)

holds for any given wiretap model. In Chapter 3 and Chapter 4, we show that this in-

equality can be strict.

1.4.2 The Source-Type Model vs. The Channel-Type Model

For the key agreement between Alice and Bob in presence of Eve, Ahlswede and Csiszár [18]

introduced two fundamental paradigms14: the source-type model and the channel-type

model.

The source-type model [18] has a discrete memoryless multiple source (DMMS) with

three-component vectors (a,b, e) distributed according to probability mass function (PMF)

P(a,b, e) =
n∏

i=1

PABE(ai, bi, ei). Source vectors a, b, e are available non-causally (prior

to the key exchange step) at Alice, Bob, and Eve, respectively. Moreover, there exists a

noiseless public channel with unlimited capacity for two-way communication between Alice

and Bob. The source-type key agreement model is sketched in Figure 1.7.

Ahlswede and Csiszár [18] characterized the forward key capacity of the source-type

14These paradigms are still studied by many researchers in the field of information-theoretic key agree-
ment, e.g., see publications [25–27]. On the other hand, papers [28, 29] studied the key agreement over
two-way DMCs with no public channel.
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PABE(ai, bi, ei)

Figure 1.7: Key agreement over a source-type model.

model as

C
K
= max

PU|A PW |U

[I(U ;B|W )− I(U ;E|W )] (1.20)

where U and W are auxiliary RVs such that W → U → A → (B,E) forms a Markov

chain. They [18] also attained the following upper bound (UB) on the key capacity of the

source-type model:

C
K
≤ I(A;B|E) . (1.21)

This UB is tight for the following special cases:

1. when e is independent of (a,b), e.g., e = 0; in this case

C
K
= I(A;B) , (1.22)

2. when A → B → E forms a Markov chain; in this case C
K
= I(A;B)− I(A;E),

3. when A → E → B forms a Markov chain, then C
K
= 0,

4. when either Alice or Bob has access to Eve’s signal15, then C
K
= I(A;B|E).

15This situation rarely occurs in real world as Eve has no motivation to share her intercepted signal with
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Figure 1.8: Key agreement over a channel-type model.

For the first case, the authors [18] constructed the key agreement coding scheme based

on Slepian-Wolf source coding strategy [32]. In this case, the key capacity is achieved with

only one single transmission over the public channel in either forward or backward direc-

tion. Hence, the key capacity, the forward key capacity, and the backward key capacity

are all equal [18, Prop 1].

For the second case, the key capacity is achieved with only one single transmission over

the public channel in the forward direction. Hence, the key capacity and the forward key

capacity are equal [18, Thm. 1].

For the last case, the key capacity equals the backward or forward key capacity, respec-

tively, according as Alice or Bob is informed [18, Thm. 3].

In a channel-type model, the parties have access to two channels: a (noisy) discrete

memoryless wiretap channel (DM-WC) with PTF P(y, z|x) =
n∏

i=1

PY Z|X(yi, zi|xi), and a

noiseless public channel with unlimited capacity in both directions. This model is depicted

in Figure 1.8.

Ahlswede and Csiszár [18] obtained the forward key capacity of the channel-type

model as

C
K
= max

P
U
P
X|U

[I(U ; Y )− I(U ;Z)] , (1.23)

legitimate parties [30, 31].
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where U is an auxillary RV such that U → X → (Y, Z). The forward key capacity equals

the secrecy capacity of the corresponding DM-WC16 [12], and no transmission over the

public channel is required for key generation [18, Thm. 2]. Also, they [18] derived a UB on

the key capacity of the channel-type model, i.e.,

C
K
≤ max

P
X

I(X ; Y |Z) , (1.24)

where P
X

is the input distribution on the DM-WC. This UB is tight for the following

special cases:

1. when the DM-WC becomes a (private) DMC from Alice to Bob as sketched in Fig-

ure 1.9; in this case

C
K
= max

P
X

I(X ; Y ) , (1.25)

2. when Eve’s channel is a degraded version17 of Bob’s channel, i.e., X → Y → Z; in

this case, C
K
= max

P
X

[I(X ; Y )− I(X ;Z)],

3. when Bob’s channel is a degraded version of Eve’s, i.e., X → Z → Y , where the key

capacity in this case is [18, Thm. 2]

C
K
= 0 , (1.26)

4. when either Alice or Bob has full access to Eve’s received signal z; in this case

C
K
= max

P
X

I(X ; Y |Z),

5. when the outputs of the DM-WC are independent given its input, i.e., Y → X → Z;

the key capacity in this case is [18, Thm. 2-Corol. 2]

C
K
= max

P
X

[I(X ; Y )− I(Y ;Z)] . (1.27)

16See Section 2.2.1 for the secrecy capacity of the DM-WC.
17See Section 2.2.1 for the definition of degradedness.
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Figure 1.9: Key agreement over a channel-type model with a private DMC.

For the first case, the DMC is intrinsically secure against Eve, and the key capacity of

the model equals the (ordinary) capacity of the DMC, which is achievable without using the

public channel at all [18, Prop. 1]. For the second case, the key capacity equals the secrecy

capacity of the wiretap channel, and the public channel is not used at all [18, Thm. 2].

This means that the public channel is not required for key generation in cases 1 and 2. In

other words, for these cases, the key capacity, the forward key capacity, and the backward

key capacity are all equal.

For the fourth case, the key capacity equals the backward or forward key capacity,

respectively, according as Alice or Bob is informed [18, Thm. 3]. In this case, the known

signal of the wiretapper at one of legitimate terminals may contribute in key generation

more than the first case where the wiretapper has no access to the main channel. This is

due to the fact that the positive effect of the information gained by authorized parties from

Eve’s signal can be more than the negative effect of her presence in the key agreement.

For the fifth case, the key capacity equals the backward key capacity, which is achieved

with one single transmission over the public channel in the backward direction. Also, it

is generally larger than forward key capacity of the model [18, Thm. 2-Corol. 2]. This

case was originally studied by Maurer [17, 33]. He assumed a binary symmetric channel

(BSC) [1] as the main channel (from Alice to Bob) and a BSC as the wiretap channel (from
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Alice to Eve) such that the channels have independent noise. Using the public channel in

backward direction for key generation, he proved that achieving a positive key rate is fea-

sible even if the capacity of the wiretap channel (from Alice to Eve) exceeds that of the

main channel (from Alice to Bob).

In similar and parallel publications, Khisti et al. [34] and Prabhakaran et al. [35, 36]

merged the source-type model with the channel-type model, where the parties have access

to a DMMS further to a DM-WC. This combined model has no public channel at all.

Khisti et al. [34] achieved a lower bound (LB) and a UB on the key capacity. The bounds

coincide when the wiretap channel is a product of reversely degraded channels18 [6, 37].

Prabhakaran et al. [35,36] investigated a trade-off between the key capacity and secrecy

capacity of the model. They applied a separation strategy which converts the DM-WC into

a public bit pipe and a private bit pipe [35,36]. According to this sub-optimal strategy, an

achievable key rate is obtained by the use of the private pipe (from Alice to Bob). With

the help of these pipes, another key rate is added to the last one from the correlated source

components (see [35, Thm. 1] for more details). The strategy is shown to become optimum

when both the DM-WC and the DMMS can be decomposed into product of two degraded

BCs [37] and product of two degraded DMMS, respectively. The first sub-channel and

sub-source components are degraded in Bob’s favor, and the second ones are degraded in

Eve’s favor [35, 36].

Nitinawarat [38] as well as Watanabe and Oohama [39, 40] investigated the key capac-

ity for a source-type model where the DMMS is replaced by a Gaussian multiple source.

Specifically, Nitinawarat [38] assumed that Alice and Bob have correlated Gaussian SI and

Eve has no SI. Applying a rate limited quantization on the Gaussian SI, the author calcu-

lated the key capacity given in (1.22) for the Gaussian RVs in his model [38]. Watanabe

and Oohama [39, 40] considered three correlated Gaussian vectors generated i.i.d. accord-

ing to a fixed covariance matrix. Each vector is given to one party. They investigated

the forward key capacity over a rate limited one-way public channel with capacity C
P1
.

The forward key capacity is obtained as a function of the public channel capacity for the

18Also, it is referred to as a degraded channel in Eve’s favor [35].
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following special case.

Theorem 1.1. Consider a source-type model, which is sketched in Figure 1.7, with a

Gaussian multiple source such that its public channel is one-way in the forward direction

with capacity C
P1

∈ [0,∞). Specifically, assume (a,b, e) is i.i.d. according to (A,B,E) ∼
N ((0, 0, 0),Σ3×3), where

Σ3×3 =







Σa Σab Σae

Σba Σb Σbe

Σea Σeb Σe







(1.28)

is a positive definite covariance matrix with Σab 6= 0. If Markov chain A → B → E holds,

then

C
K
=

1

2
log

(

Σb|ae 2
−2C

P1 + Σb|e(1− 2
−2C

P1 )

Σb|ae

)

, (1.29)

where Σb|ae and Σb|e are the conditional variance of B given (A,E) and E, respectively.

1.4.3 Privacy Amplification

Comparing the security condition given in Definition 1.8 with Shannon’s criterion of secu-

rity (perfect security) given in Definition 1.6 implies that a secure communication is the

sense of Definition 1.8 is not necessarily a secure communication in the sense of Defini-

tion 1.6. That is, Definition 1.8 requires only Eve’s ratio of information about the message

to be negligible. Hence, she can gain a possibly considerable amount of information about

the message. Similarly, Condition 1.18b guarantees that only Eve’s ratio of information

about the key is negligible but not her information about any single bit of the key. On

the other hand, a pair of agreed keys according to Definition 1.11 guarantees only a secure

communication in the sense of Definition 1.8 according to Lemma 1.2.

Conclusively, Definition 1.8 and Definition 1.11 are too weak to provide privacy require-

ments [7,8] for the entire message and the entire key, respectively. Thus, the AS conditions

in these definitions are referred to as the weak sense of security in the literature [3, 41].

Also, the achievable key rate and key capacity introduced in Definition 1.11 are known as
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the weak sense of achievable key rate and that of key capacity, respectively 19.

New definition for the achievable key rate is given below to assure that the entire key

is secure. Following [3], we first combine the security and the randomness conditions of

Definition 1.11 into a security index

S(n) , log(|K|)−H(K|z, e, P ) , (1.30)

where K, z, e and P are defined in Subsection 1.4.1 according to Figure 1.6.

The reliability-exponent for the average probability of error 1.15 in a key agreement

problem can be defined in a similar way as it was given in Definition (1.5) for messages.

In the following definition, the reliability-exponent and the security-exponent for the key

agreement model sketched in Figure 1.6 are defined.

Definition 1.12. Assume an admissible key agreement coding scheme with key set K =

{1, . . . , ⌈2nRK ⌉}, where R
K

∈ R
+ ∪ {0} and n ∈ N. Let K ∈ K and K̂ ∈ K be Alice’s

key and Bob’s key at the end of the key exchange step. The reliability condition (1.18a)

and security condition 1.18b are said to be met with reliability-exponent εr and security-

exponent εs, respectively, if there exists an admissible key agreement coding scheme such

that

lim inf
n→∞

−1

n
log(Perror(n)) ≥ εr , (1.31a)

lim inf
n→∞

−1

n
log(S(n)) ≥ εs . (1.31b)

where Perror(n) and S(n) are given in (1.15) and (1.30), respectively.

In the following, a strong sense of key capacity is defined. This definition guarantees

the privacy requirement [7, 8]of any single bit of the agreed keys.

Definition 1.13. A key rate R
K
is said to be strongly achievable if conditions (1.18) are

19In this thesis, we treat the weak sense of security, achievable key rate, key capacity unless otherwise
is stated.
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satisfied with reliability-exponent εr > 0 and security-exponent εs > 0, respectively. The

supremum of all strongly achievable key rates is called the key capacity in the strong sense.

Comparing Definition 1.13 with Definition 1.11, the key capacity in the strong sense

is generally a lower bound on the key capacity in the weak sense. However, Maurer and

Wolf [41] proved that the key capacity of a source-type model in the strong sense equals

the key capacity of that model in the weak sense. They [41] also established this equality

for a channel-type model with no public channel 20 (see [3, Page. 450-451] for more details).

In the following, their technique is briefly explained.

At the end of the key exchange step, Alice and Bob retrieve key K and key K̂, respec-

tively, with a weakly achievable key rate R
K
according to Definition 1.11; thus, Eve gains

substantial information about the keys. Hence, the final step of a key agreement problem

is to strengthen the security and reliability of the agreed keys. This step is called privacy

amplification which gives Alice and Bob key K ′ and key K̂ ′, respectively, with strongly

achievable key rate R′
K
according to Definition 1.13.

Privacy amplification was introduced by Bennett et al. [42] in the context of quantum

cryptography as a method to extract secrecy from weakly random (partially secure) se-

quences. Universal hashing [43] and extractors [3, Sec. 17.1] are techniques for the privacy

amplification [24, 41].

Maurer and Wolf [41] applied extractors to an achievable key rate in the weak sense to

enhance its security and reliability specifications. For the privacy amplification, they [24,41]

show that using extractors is a better technique than using hash functions in the sense that

it requires shorter messages to be communicated between Alice and Bob.

20In fact, Maurer and Wolf [41] proved that the strong sense of secrecy capacity [41] and the weak
sense of secrecy capacity (Definition 1.9) are equal for Csiszár-Körner’s wiretap channel [12]. However, the
secrecy capacity and key capacity of this model are equal when there is no public channel [18].
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1.5 Channels with Random States

In this thesis, we focus on the class of state-dependent wiretap models. Before describing

our model, we review the essential research in the field of state-dependent channels in this

section.

Physical properties of a communication channel which control its PTF can be mod-

eled by channel state information (CSI), and the corresponding channel is called a state-

dependent channel. In wireless communications, the CSI includes scattering, fading, in-

terference and power decay of a propagated signal. In wire-line communications, physical

conditions of lines, like temperature or external forces (vibrations) are modeled as the CSI.

Variations in the noise level due to interference or signal level due to fading can be also

modeled as the CSI.

The output(s) of a state-dependent channel are a stochastic function of both the chan-

nel inputs and the CSI as a random vector. Specifically, a state-dependent channel has a

collection of PTFs, where realization of the CSI at each transmission determines the actual

PTF for that transmission. State-dependent channels model a large variety of practical

channels, e.g., [6]:

• Compound channels [3]: The PTF is unknown for both sender and receiver, and it

is only known over a set of PTFs;

• Arbitrary varying channels [44, 45]: The PTF alters per symbol transmission; e.g.,

channels suffered from Jamming signals;

• Host image in digital watermarking [46];

• Wireless fading channels [47];

• Writing on defected memories [48–50].

In this thesis, we are interested in the class of channels with random states where the

CSI, which is represented by s, is an i.i.d. random vector according to state distribution

P(s) =
n∏

i=1

PS(si). In this section, we review the capacity of memoryless channels with

random states. We consider the channels with a transmitter (Alice), a receiver (Bob), and
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PTF P(y|x, s) =
n∏

i=1

PY |XS(yi|xi, si). No feedback is assumed from Bob to Alice. Alice and

Bob each may have access to a random vector as side information (SI) . Let the SI at Alice

be a, which has the same length as that of s. If the whole sequence a is available to Alice

prior to each block transmission, the SI is said to be non-causal. For any i ∈ {1, . . . , n}, if
only sequence ai1 is known at Alice before transmission of ith symbol, the SI is said to be

causal21. The SI is said to be fully known at the transmitter if a = s; otherwise, it is said

to be partially known.

The significant publications which study the (ordinary) capacity of the channels with

random states are as follows.

In 1958, Shannon [51] derived the ordinary capacity of a state-dependent DMC with

casually known CSI at the transmitter. He proved that the capacity of this channel equals

that of a DMC without any state, which has the same output alphabet and an extended

input alphabet. The input alphabet of this equivalent channel consists of all mappings from

the state alphabet to the input alphabet of the original channel. A particular input letter

of the equivalent channel can be considered as a particular function (strategy) from the

state alphabet to the input alphabet of the original channel. Shannon utilized strategies in

which the input to the channel depends only on the current state of the channel but not on

previous ones. He established that this type of strategies are sufficient for the equivalent

channel to achieve capacity of the original channel [52].

Goldsmith and Varaiya [47] achieved the capacity of a fading channel in two cases:

When the CSI is fully (whether causally or non-causally) known at both the transmitter

and receiver, and when the CSI is known at the receiver alone. Optimal schemes are based

on power adaption. For the former, they used a water-pouring in time domain as the

optimal power adaption.

Kuznetsov and Tsybakov [48] studied coding for a memory with defective cells, which

is an example of a DMC with non-causally known CSI at the transmitter. Although

they offered some coding techniques for this channel, they did not attain its capacity.

21If there is no feedback from the receiver to the sender, it doesn’t matter whether the SI at the receiver
is available causally or non-causally in the sense of capacity. This is due to the fact that the receiver is
assumed to decode after receiving the whole block code.
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Gélfand and Pinsker [49] as well as Heegard and El Gamal [50] investigated capacity of

a state-dependent DMC with random states, where the CSI is non-causally known at the

transmitter but not at the receiver. The capacity is given by [49]

C = max
P
XU|S

[I(U ; Y )− I(U ;S)] , (1.32)

where U is an auxiliary RV such that U → (X,S) → Y forms a Markov chain. Further, the

capacity of this channel when i.i.d. random vector of SI dependent on the CSI is available

at Bob was studied in [53, 54], and it is given by

C = max
P
XU|S

[I(U ; Y,B)− I(U ;S)] , (1.33)

where B represents the SI at Bob and U is an auxiliary RV such that U → (X,S) → (B, Y )

forms a Markov chain (PY B|XS is given by the channel).

Costa [55] extended Gélfand-Pinsker’s work to an AWGN channel with additive white

Gaussian interference (AWGI), where the interference (state) is non-causally known at the

transmitter. This model is sketched in Figure 1.10. In his model, Costa assumed that the

interference, s, and the noise, g, are sequences of i.i.d. components distributed according

to S ∼ N (0,Λ) and G ∼ N (0, σ2), respectively. Also, the transmitter is subject to average

power constraint 1
n
(xxt) ≤ Γ, where x is the transmission signal. In his celebrated paper,

writing on a dirty paper [55], Costa showed that the capacity of this channel equals that

of an AWGN channel with no interference, i.e.,

C =
1

2
log(1 +

Γ

σ2
) . (1.34)

The optimum coding strategy, which is known as dirty paper coding (DPC), is to adapt

transmitted signal to the state (dirts) such that the receiver obtains maximum possible

information from contaminated signal. Costa [55] proved that equation (1.32) with U =

X+γS can be applied to his model to compute the capacity. In this strategy, X ∼ N (0,Γ)

such that X and S are statistically independent. Then, he calculated the optimum value
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Figure 1.10: Costa’s Model: Gaussian channel with known interference at the sender.

of γ as

γ =
Γ

Γ + σ2
, (1.35)

which is interestingly independent of Λ. Based on DPC, the trivial idea of canceling the

known interference at the transmitter is not generally optimal.

Consider the causal version of Costa’s model, i.e., a power limited Gaussian channel

with AWGN and AWGI where realizations of the interference are causally known only at

the transmitter. In [56], the authors achieved the capacity of this channel in the high

signal-to-noise ratio (SNR) regime by lattice strategy. Although an LB and a UB on the

capacity are derived in [56], the capacity of this channel is not known for all SNRs.

1.6 State-Dependent Wiretap Models

As mentioned in the last section, the class of state-dependent channels models several

important communication channels. Thus, the security issue of this class needs much con-

sideration, specially in a state-dependent wireless network where unauthorized receivers

inherently attend. To provide this demand, several research groups have studied various

state-dependent wiretap models; among them, we highlight the following major studies in

which two legitimate parties (Alice and Bob) and a wiretapper (Eve) have access to the
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channel:

The compound wiretap channel was investigated in [57–59]. The PTF of a compound

channel is determined by the realization of the CSI, which is unknown to Alice, Bob, and

Eve; however, the PTF (or the CSI) of the compound channel is known only within a set of

candidates. This channel can be treated as a multi-cast channel with multiple wiretappers.

In other words, the number of states available to Bob becomes the number of receivers

such that each state corresponds to one receiver, and the number of states available to Eve

becomes the number of eavesdroppers such that each state corresponds to one eavesdrop-

per [57, 58]. An achievable coding scheme must be able to reliably transmit a message to

all receivers such that it remains perfectly secure against all wiretappers. An LB and a

UB on the secrecy capacity is reported in [57]. The LB achieves the secrecy capacity for

a degraded compound channel [57]. When the CSI is known at the receiver, the secrecy

capacity of the semi-deterministic compound channel and the parallel Gaussian compound

channel are attained in [58] and [59], respectively.

Han Vinck’s research group studied the secrecy problem in state-dependent channels

with random states [60–62]. Mitrpant and Han Vinck [60] merged Costa’s model (Fig-

ure 1.10) with Gaussian wiretap channel (Figure 1.5) to model a Gaussian state-dependent

wiretap channel (G-SWC) with a physically degraded wiretapper. They [60] achieved an

LB on the secrecy capacity which shows the secrecy capacity of the G-SWC with known

CSI at Alice is generally larger than that of the corresponding Gaussian wiretap chan-

nel [13], which has no interference. Although known CSI at Alice gives no improvement

on the ordinary capacity in Costa’s model [55], it generally enlarges the secrecy capacity

of a G-SWC. The achievable wiretap coding scheme is constructed based on DPC [55]

with wiretap strategies [11, 31]. The scheme has not been proven yet to be optimum in

general case. However, it is optimal in low signal (power) to interference (power) ratio

(SIR) regime as well as high SIR regime; in low SIR, it equals the (ordinary) capacity of

the main channel (from Alice to Bob) as well. A UB on the secrecy capacity is also derived

in [60]. This bound is the secrecy capacity of an enhanced Gaussian wiretap channel in

which Alice is generously permitted to control both her input signal and the interference.
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In Chapter 2, this work will be reviewed in more details.

In [61,62], the authors considered a degraded discrete memoryless state-dependent wire-

tap channel (DM-SWC) with PTF P(y, z|x, s) =
n∏

i=1

PY |XS(yi|xi, si)PZ|Y (zi|yi), where s is

drawn i.i.d. according to
n∏

i=1

PS(si) and it is non-causally known at Alice. Using double

random binning [6], an LB on the secrecy capacity and an achievable rate-equivocation re-

gion (see Chapter 2) are established in this work. The LB is optimally equals the ordinary

capacity of the main channel if sending a positive (information) rate from Alice to Eve

is not possible at the capacity achieving distribution of the main channel. Moreover, two

UBs are reported in [61]: the first one is the ordinary capacity of the main channel (from

Alice to Bob), and the second one is the secrecy capacity of an enhanced channel in which

s is governed by Alice as the second input further to x. In Chapter 2, this work will be

reviewed in more details.

Liu and Chen [63] extended the results of paper [61] to a DM-SWC with two sided

non-causal SI at Alice and Bob. They [63] obtained an achievable rate-equivocation region

for their model by combining the strategies of paper [61] with those of paper [53].

Khisti et al. [64] studied the key agreement problem over a DM-SWC with P(y, z|x, s) =
n∏

i=1

PY Z|XS(yi, zi|xi, si). In their model, s is drawn i.i.d. according to
n∏

i=1

PS(si) and it is

fully known at both Alice and Bob in non-causal form. They [64] investigated the key

capacity for the following two cases:

• When no public channel is available. In this case, the key capacity is given by

C
K
= max

PXU|S

[I(U ; Y |S)− I(U ;Z|S) +H(S|Z)] , (1.36)

where U is an auxiliary RV such that U → (X,S) → (Y, Z) form a Markov chain.

• When a public channel with unlimited capacity in both directions is available. In this

case, if noise of Bob’s channel and that of Eve’s channel are mutually independent [64,
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Remk. 3], i.e., Y → (X,S) → Z, then the key capacity is given by

C
K
= max

PX|S

[I(X ; Y |Z, S) +H(S|Z)] . (1.37)

In [64], the key agreement coding scheme generates the achievable key rate based on two

different resources: a random number generator, and the CSI. However, this result is not

surprising as both Alice and Bob already have two exactly the same copies of the CSI at

the beginning of each transmission. Hence, the CSI can be concluded as a secure common

randomness when the portion which is revealed to Eve through the wiretap channel is

removed.

Chia and El Gamal [65] investigated secrecy capacity of a DM-SWC when the CSI is

fully known at both Alice and Bob. When the CSI is available causally, they achieved

an LB on the secrecy capacity. When the CSI is available non-causally, they also derived

a UB on the secrecy capacity. As the secrecy capacity of the non-causal case is not less

than that of the causal case, they applied this UB to the causal case as well. From these

bounds, they proved the secrecy capacity for the DM-SWC if Eve’s channel is less noisy

than Bob’s [16] for every state vector s. They [65, Thm. 3] showed that the secrecy capacity

for that special channel is the same for both causal and non-causal cases. This means the

optimal wiretap coding scheme for the non-causal case of a less noisy DM-SWC does not

utilize the future instants of the given CSI for encoding at each symbol transmission. The

achievable scheme is built on the following strategy:

For encoding, any message is split into two independent parts: the first part is encoded

by wiretap coding strategy [11], and the second part is encrypted by a one-time pad

system [10] and encoded with a deterministic encoder, where the key is taken from the

CSI (The portion which is not revealed to Eve through her channel). The strategy exploits

block Markov encoding [6] because the key used for encryption of the second part has

been already agreed between Alice and Bob based on the released CSI at the last block

transmission.
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1.7 Motivations

In this thesis, we study the key agreement problem over a state-dependent wiretap channel

paralleled with a public channel. The channel state is drawn i.i.d. according to a given

distribution and it is non-causally known at the transmitter. In Chapter 3, we study

the discrete memoryless (DM) model in which the wiretap channel is a DM-SWC (see

Section 1.6). This model is an extension of Gélfand-Pinsker’s model demonstrated in

Section 1.5. In Chapter 4, we study the Gaussian model in which the wiretap channel is

a power-limited Gaussian wiretap channel with additive interference (channel state). This

model is an extension of Costa’s model sketched in Figure 1.10.

In this section, we illustrate the motivations for the key agreement problem definitions.

We express a motivation of the DM model and that of the Gaussian model in Example 1.2

and Example 1.3, respectively.

Example 1.2. An essential part of cloud computing [66] is data storage and management.

As shown in Figure 1.11, suppose that multiple users connect to a server through a wireless

internet, which writes and stores data on multiple storage devices, e.g., hard disks. If a

memory cell of a storage device is proper, the data read from it is the same as the data

written on it. The written data is also referred to as the cell state. However, in practice,

some cells of a storage device may be defected. The defected cells are those ones whose

stored data can be read with random error [6, 50]. Hence, the relation between the read

data and the written data is statistically determined by a PTF. In this scenario, the server

knows the status of all memory cells at any time. On the other hand, the noisy channel

from each user to the server is characterized by another PTF. Thus, an overall (noisy)

channel, which is in fact memoryless, can be modeled from cell states to each receiver.

An important issue in cloud computing is privacy of the data received by each user. To

apply symmetric-key cryptography for this issue, a key distribution step is required before

a data transmission step begins. One solution is to model the scenario as a key agreement

problem over a discrete memoryless state-dependent wiretap channel from the cells to the

receivers in which the cell states are non-causally known at the transmitter. Investigation
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Figure 1.11: A motivation of the discrete memoryless model.

of a generalized model of this problem is the original motivation of the key agreement

problem over the DM model in Chapter 3. Specifically, we wish to study the effects of the

known states in key generation when a public channel, e.g., a web server with unrestricted

accessibility, is available.

Example 1.3. Suppose a wireless network in which a transmitter is capable of serving

multiple users at the same time, e.g., a base station in a cellular network [67] as sketched in

Figure 1.12 for two users. In this case, the transmitter propagates an individual signal for

each intended receiver. Each receiver’s antenna collects a weighted sum of all propagated

signals, where the coefficients of the summation are determined by the characteristic of the

wireless channel. Each receiver is interested in its own signal and considers the weighted

36



Figure 1.12: A motivation of the Gaussian model.

summation of the signals of other users as the interference signal. As a simple case, assume

that the wireless channel coefficients are known at the sender and they do not change in the

period of each block code transmission. In this scenario, the transmitter, who generates all

the propagated signals, knows the interference of each user in advance of the transmission.

This is due to the fact that the transmitted signal of each user can be calculated at the

beginning of each block transmission in the transmitter as a function of the user’s message.

Although the interference is an impediment for data communication, it may be exploited
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for secure key generation between the transmitter and each receiver in presence of other

users. Investigation of a simplified model of this problem is the original motivation of the

key agreement problem over the Gaussian model in Chapter 4.

To explain why the key agreement of a state-dependent wiretap channel differs from

that of a channel-type model as sketched in Figure 1.8, let us simplify the DM model as

follows: Suppose the key agreement problem over a DM-SWC (with no public channel)

where side information is available at neither Bob nor Eve. For any sent symbol over

the state-dependent wiretap channel, the CSI leaks to Bob and to Eve, i.e., Eve and Bob

obtain some information about the current channel state. The leakage of the CSI to Bob

and that of the CSI to Eve each depends on the channel input distribution, the distribution

of the CSI, and the PTF of the wiretap channel. The leakage of the CSI to Bob makes an

advantage for key generation because he partially obtains some information about the CSI,

which is fully known at Alice. This information can be exploited as a common randomness

for the key agreement, and so it seems that Alice should select the channel input such

that this leakage is improved. On the other hand, the leakage of the CSI to Eve makes a

disadvantage for key generation because she obtains some information about the CSI and

thus about the common information of Alice and Bob. It seems that Alice should choose

the channel input such that this leakage is reduced. Hence, a trade-off between these

two effects should be carefully considered in the proposed key agreement coding scheme.

Further, Alice can govern these effects only by channel input distribution, where she can

generate the transmission signal as a function of past, current, and future channel states.

This is the main challenge of this problem which is still open in its general case. Note

that the wiretap codebook for the Wyner model, which is optimum for the key agreement

problem over a wiretap channel (channel-type model with no public channel) [18], is not

optimum for the key agreement problem over a DM-SWC because it does not take into

account the challenge of the leakage effects22.

As mentioned in Subsection 1.4.2, the key capacity over a DM-WC in parallel with a

22Similarly, the secrecy capacity of a Gaussian wiretap channel with interference (G-SWC) is strictly
larger than that of a Gaussian wiretap channel (with no interference) according to Figure 2.6 (see Subsec-
tion 2.2.3 for more details).
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forward public channel (the channel-type model [18]) equals the secrecy capacity of the

DM-WC as given in (2.11), and the public channel is useless in key generation. At first

glance, similarly, the key capacity over a state-dependent wiretap channel paralleled with

a forward public channel seems to be equal to the secrecy capacity of that wiretap channel

and the public channel has no benefit in key generation (at least when Bob has no SI).

Investigation of this hypothesis was an initial motivation of this research.

In this study, we prove that this hypothesis is not generally true. In fact, the public

channel contributes in key generation even if Bob has no SI. Further, the following inspiring

questions are addressed in this investigation.

• Do the i.i.d. random vectors of the CSI provide a helpful source of randomness at

Alice for key generation?

• If the CSI is fully known at Bob as well, does this common information (between

Alice and Bob) suffice to achieve key capacity of the model such that no key exchange

over the wiretap channel or the public channel is required?

• If the public channel is involved in the key exchange, is the key capacity a strictly

increasing function of the public channel capacity? What is the trade-off between

the public channel capacity and the achieved key rate?

• How does the key capacity relate to the main channel capacity and the secrecy

capacity of the wiretap channel?

• For a given wiretap channel, what is the maximum key capacity no matter how

much the public channel capacity is? Is this key capacity achievable by using a finite

capacity of the public channel? If no, is there any finite public channel capacity such

that this key capacity can be achieved within a reasonable tolerance?

• Is it possible to obtain a positive key rate when Eve’s channel is less noisy than

Bob’s channel in the Gaussian model? Does it depend on the direction of the public

channel?

• What is the effect of the noise covariance matrix of the Gaussian wiretap channel in

key generation?
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1.8 Contributions

In this section, we briefly describe our models, contributions and methodology. The details

will be given in Chapter 3 and Chapter 4.

We study the key agreement problem in two models: a discrete memoryless (DM) model

and a Gaussian model. Each model has one sender (Alice), an authorized receiver (Bob),

and an eavesdropper (Eve). Each model also consists of two parallel channels: a memoryless

wiretap channel with random states, and an authenticated public channel between Alice

and Bob. The capacity of the public channel is given by the pair (C
P1
, C

P2
), where C

P1
∈

[0,∞) and C
P2

∈ [0,∞) are the capacity of the public channel in the forward direction

(from Alice to Bob) and in the backward direction (from Bob to Alice), respectively. The

key capacity of each model is denoted by C
K
(C

P1
, C

P2
) as a function of (C

P1
, C

P2
).

In Subsection 1.8.1, we express the DM model and the main results and methodology,

which will be given in details in Chapter 3. In Subsection 1.8.2, we express the Gaussian

model and the related contributions and methodology, which will be given in details in

Chapter 4.

1.8.1 The DM Model

The wiretap channel in the DM model is a DM-SWC (see Section 1.6). The CSI is an i.i.d.

random vector which controls the PTF of the wiretap channel. We assume that realizations

of the CSI are non-causally known at the transmitter. We suppose that each receiver has

access to an i.i.d. random vector dependent on the CSI according to a known joint PMF.

In the DM model, we assume that the public channel is one-way in the forward direction,

i.e., C
P2

= 0. The main objective of this work is to find (bound) the forward key capacity

C
K
(C

P1
, 0) as a function of C

P1
.

The results of Chapter 3 are partially presented in paper [68]. The main contributions

of this chapter are as follows.
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(a). Lower bound on C
K
(C

P1
, 0). At the first look, the (forward) key capacity seems

to be equal to the secrecy capacity of the DM-SWC. That is, a pair of messages (M, M̂),

where M is a uniform RV emitted from a source, in the corresponding secrecy problem

is treated as a pair of agreed keys (K, K̂) in the key agreement problem. However, this

idea is not generally true, and the secrecy capacity should be just considered as the first

achievable subkey rate of the key capacity. We will show that another achievable subkey

rate can be generally generated on top of the secrecy capacity with the help of the known

CSI at Alice (even if it is not known at Bob and the public channel capacity is zero). This

key rate is determined by the DM-SWC. Our suggested key agreement code exploits both

a random generator and the CSI as resources for the key generation. The i.i.d. channel

state vector with a large enough length guarantees the randomness of the generated key

according to the asymptotic equipartition property (AEP) [2, Ch. 3]. In other words, the

CSI at Alice and the leaked CSI at Bob is a resource to provide common randomness for

the key generation if the leaked CSI to Eve is removed from the common randomness. To

do this, we apply a random quantization method to map a revealed channel state vector

to a codeword from the key agreement codebook. On the other hand, the number of the

codewords can be increased as the capacity of the public channel grows. As a result, this

may lead to an increment of the achieved key rate as intuitively explained in the following:

the key agreement codebook consists of multiple enumerated wiretap subcodebooks such

that each one is constructed similar to Csiszár and Körner’s wiretap codebook [12] (there

is no CSI in their model though). At each block transmission, the released state sequence

candidates a set of codewords from the whole key agreement codebook by using a selection

rule. One codeword from that set is selected at random23, by the encoder for key and

signal generation. Similar to Csiszár and Körner’s secrecy problem [12], the index of that

codeword in its wiretap subcodebook determines Alice’s key. Then, Alice sends the index

of that wiretap subcodebook over the public channel to Bob. Hence, the number of wiretap

subcodebooks is restricted by the capacity of the forward channel. Knowing this wiretap

subcodebook, Bob can retrieve the codeword and achieve a secure key rate determined by

23We call it random quantization method.
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that wiretap subcodebook. The encoder and decoder utilize strong (letter) typicality (see

Subsection 2.1.1) to generate or to retrieve their keys, respectively. The random coding

arguments [2, 6], Markov lemma (see Lemma 2.1), Fano’s inequality [2, Thm. 2.10.1] and

Wyner’s wiretap strategy [11] are frequently used to establish the AR, AS, and ARN

conditions for the agreed keys.

(b). Upper bounds on C
K
(C

P1
, 0). Two UBs on C

K
(C

P1
, 0) are derived in this thesis.

Each UB is offered in the form of an optimization (maximization) problem subject to a

constraint given by the capacity of the public channel. For each upper bound, we derive

two inequality equations. The first one bounds the key capacity of the DM model, and

the second one gives a condition based on the public channel capacity for the first one.

The first UB is valid for any DM model in general, while the second UB is derived based

on the assumption that the DM model is less noisy in Bob’s favor. This UB can be also

considered as a (loose) UB for the general model as well because the less noisy assumption

makes an enhanced model in the sense of the key generation between Alice and Bob. We

have frequently used Fano’s inequality [2, Thm. 2.10.1], Csiszár-Körner’s sum identity (see

Appendix D), data processing inequality [2, Thm. 2.8.1], the chain rules for the entropy

and mutual information functions, and the time-sharing strategy [2, 6, 12] in proofs of the

UBs.

(c). Optimum Cases. Our achievable key agreement code is optimum for the following

special cases:

• when the capacity of the public channel is unlimited in the forward direction, i.e.,

C
P1

→ ∞;

• when the capacity of the public channel exceeds a finite capacity C∗
P1
, which is de-

termined by the DM-SWC. For any DM-SWC, we obtain C∗
P1

and show that it is

finite;

• when the wiretap channel does not exist. This special case coincides with the results

of key agreement models with a common randomness given in publications [18, 21]
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with the following difference. In Subsection 3.3.3, we will prove that the forward key

capacity can be obtained by using one auxiliary RV and using two auxiliary RVs, as

given in [18, 21], is not necessary to achieve the forward key capacity;

• when both Alice and Bob fully know the CSI. This special case was studied in

paper [64], where the authors established the key capacity for special case C
P1

= 0.

Extending their work, we prove that the achieved key capacity also equals the forward

key capacity of the DM model for any C
P1

> 0. That is, the public channel has no

benefit in this case for key generation.

1.8.2 The Gaussian Model

The wiretap channel in the Gaussian model is a G-SWC (see Section 1.6). The CSI is

in the form of AWGI. We assume that realizations of the interference are non-causally

known at the transmitter. In addition to the additive interference, Bob’s channel and

Eve’s channel are affected by two individual AWGN, which are distributed i.i.d. according

to N
(

(0, 0),

[

σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

])

, where ̺ ∈ [−1, 1], σ2
1 and σ2

2 are the noise correlation

coefficient, noise variance of Bob’s channel and that of Eve’s channel, respectively. In the

Gaussian model, however, no SI at Bob and Eve is assumed for simplicity of calculations

(see Subsection 5.1.2 for future work).

The main objective of this work is to find (bound) the forward key capacity C
K
(C

P1
, 0)

as a function of C
P1
. Also, we want to determine if the key agreement is feasible if Eve’s

channel is less noisy than Bob’s. Also, we are interested in the effect of the noise correlation

coefficient ̺ on the key generation.

The results of Chapter 4 are partially presented in paper [69]. The main contributions

of this chapter are as follows.

(a). Lower bound on C
K
(C

P1
, 0). The LB on C

K
(C

P1
, 0) of the DM model can not be

directly extended to a continuous alphabet with the infinite size. We examine the possibil-

ity of this extension for the Gaussian model in this research. The LB on the forward key

43



capacity is established as an extension of the achievable key agreement coding scheme of

the DM model. We apply the weakly (entropy) typicality (see Subsection 2.1.1) for contin-

uous RVs and the generalized Markov lemma24 [71] (see Remark 2.3) for a Gaussian input

distribution to justify the validity of the extension. Based on our achievable key agreement

code, the input distribution on G-SWC is a Gaussian distribution which satisfies the input

power constraint. To construct the transmission signal, we establish a generalized version

of the DPC and we combine it with Wyner’s wiretap strategies [11]. In the ordinary DPC

strategy used by Costa [55] in his model (Figure 1.10), condition E(XS) = 0 suffices to

achieve the (ordinary) capacity as the message is independent of the CSI. However, in our

work, X is to be correlated with S as the generated key is generally correlated with the

CSI, and this correlation helps to increase the achievable key rate. In our achievable key

agreement code, the transmitted signal conveys information about both the CSI and ran-

domization to the receivers. The correlation coefficient between the transmitted sequence

and the CSI sequence determines the weight of each key generation resource, and it is to be

determined according to the transmitter power constraint, the interference average power,

and the limited public channel capacity such that the maximum possible key rate achieves.

We justify that the forward key capacity is positive as long as Bob’s channel is less noisy

than Eve’s σ2 > σ1. In this thesis, we prove that the noise correlation coefficient has no

effect on C
K
(C

P1
, 0). Specifically, we establish that the forward key capacity of a given

Gaussian model equals that of an equivalent Gaussian model with a physically degraded

G-SWC.

(b). Upper bound on C
K
(C

P1
, 0). The UBs on the forward key capacity derived for

the DM model are not generally valid for the Gaussian model. This is due to the fact that

the size of alphabets in the DM model is finite, and this fact is applied to establish those

UBs. First, assume that Bob’s channel is less noisy than Eve’s, i.e., σ2 > σ1. To prove the

UB on the forward key capacity of a Gaussian model, we prove the UB for its equivalent

Gaussian model with a physically degraded channel. As the forward key capacity of both

24The author appreciates Prof. Mitran for this important point based on paper [70].
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models are proved to be the same, the UB is also valid for the original Gaussian model

with an arbitrary noise correlation coefficient ̺. The UB is valid for any C
P1

≥ 0. We

will prove this UB by use of Fano’s inequality [2, Thm. 2.10.1], Jensen’s inequality [2],

entropy power inequality [2], and the fact that Eve’s channel is assumed to be a physically

degraded version of Alice’s in the physically degraded G-SWC. Second, assume that Eve’s

channel is less noisy than Bob’s, i.e., σ1 ≥ σ2. We derive another UB on C
K
(C

P1
, 0) which

shows the forward key capacity is always zero in this case.

(c). Special Cases. In this thesis, we prove that the suggested key agreement code is

optimum in the sense that it achieves the forward key capacity in the following special

cases:

• when the SIR goes to zero (and the interference average power is fixed) for any

C
P1

≥ 0. This special case coincides with the results of paper [40] for special case

degraded Gaussian multiple source (see Theorem 1.1 for more details);

• when the SIR goes to infinity, C
K
(C

P1
, 0) → 1

2
log
(

σ2
2

σ2
1

)

for any C
P1

≥ 0. In this case,

the forward key capacity is independent of C
P1
, the interference average power, and

the transmission power;

• when C
P1

→ ∞ for any SIR. In this case, we show that the transmission signal

is asymptotically aligned with the interference to achieve the forward key capacity.

That is, the transmitter amplifies the interference according to its maximum available

power and forwards it to the wiretap channel.

Further, we study the key capacity C
K
(∞,∞) when Eve’s channel is less noisy than

Bob’s, i.e., σ1 > σ2 to determine if key generation is possible in this case. We prove

that C
K
(∞,∞) = 0 if the G-SWC is physically degraded in Eve’s favor, i.e., ̺ = σ2

σ1
.

If σ2

2σ1
≥ ̺, we construct a key agreement code for key generation by the extension of

Maurer’s method [17], which is originally given for BSCs, to the Gaussian model. Hence,

we achieve a positive LB on C
K
(∞,∞) for case σ2

2σ1
> ̺. Consequently, the key capacity

of the Gaussian model is a function of the noise correlation coefficient ̺.

Moreover, we simulate the LB and the UB on C
K
(C

P1
, 0) for a Gaussian model by using
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MATLABr. With the simulations, the following facts are illustrated as well.

• An essential difference between the Gaussian model and the DM model is that the

LB on C
K
(C

P1
, 0) is a strictly increasing function of C

P1
; however, it is bounded.

• The forward key capacity can be larger than both the secrecy capacity and main

channel capacity (even) when no public channel is available.

• If the SIR is positive in dB, the difference between the LB and the calculated UB on

C
K
(C

P1
, 0) is less than .15% for any C

P1
≥ 0.

1.8.3 The Parallel Work

In a parallel independent work to [72], we learned that Khisti et al. [73,74] have studied the

key agreement problem over our investigated models for the following two special cases.

(a). No Public Channel. For the DM model with no public channel, the authors [74,

Thm. 1] have proven an LB on the key capacity which is the same as Theorem 3.1 when

C
P1

= 0 is relaxed. For this model, a UB on the key capacity is also given in [74, Thm. 2].

The UB is derived with generous assumptions to make an enhanced model (in Alice and

Bob’s favor) as follows. Bob is permitted to know Eve’s received signal, and Alice is per-

mitted to govern the CSI as the second channel input further to her transmission signal.

With these assumptions, Eve’s received signal is a degraded version of Bob’s. Finally, the

secrecy capacity of this model, which can be deduced from (2.16), is reported as a UB on

the key capacity of the model of interest.

For the Gaussian model with a physically degraded G-SWC, Khisti [73, Prop. 2]

achieved an LB on C
K
(0, 0) when the SNR at the main channel is not negative (in dB). In

this special case, the LB of the Gaussian model is obtained from that of the DM model

by direct calculation of the results for continuous Gaussian RVs. In the high SIR (with

the high SNR) regime, this LB coincides our achieved LB (for special case C
P1

= 0), which

results in Corollary 4.2 of this work for this special case. Khisti et al. [73,74] also derived a
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UB on C
K
(0, 0) by direct calculation of the corresponding UB on C

K
(0, 0) of the DM model

for Gaussian RVs. That UB equals C
K
(∞, 0), which is achieved in [69] and in Theorem 4.2.

(b). Two-Way Public Channel with Unlimited Capacity in both Directions.

In this case, Khisti [73] first studied the DM model. For this model, he achieved an LB on

the key capacity as a maximization of two individual LBs on the key capacity [73, Thm. 3].

The first LB is the LB on the key capacity when C
P1

= 0, which is achieved for the last

case in part (a). The second LB is obtained by “a natural modification of Maurer’s coding

scheme [17, 18]” [73]. The second LB generally requires one forward transmission and one

backward transmission over the public channel.

Using the strategy mentioned in the last case in part (a), a UB on the key capacity

is derived for this case as well. The UB is tight when the outputs of the DM-SWC are

independent given its inputs, i.e., Y → (X,S) → Z forms a Markov chain. If this condition

holds, the key capacity is characterized by [73, Thm. 5]

C
K
(∞,∞) = max

PX|S

I(X,S; Y |Z) . (1.38)

Khisti [73] extended the key capacity given in (1.38) to the Gaussian model in which

Eve’s channel is a physically degraded version of Bob’s. For this special case, C
K
(∞,∞)

is reported [73, Prop. 5] by direct calculation of (1.38) for Gaussian RVs.

1.9 Organization of the Thesis

In this introduction, we have reviewed the essential points of information-theoretic secu-

rity in wiretap communication channels with the focus on key agreement models. The

organization of the rest of this thesis is as follows.

• Chapter 2: This chapter justifies the basic models and method that will be exploited

to prove our results. The chapter consists of two main sections: in the first section,

we will define mathematical tools required to establish our results. In the second
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section, we will present the seminal related work of secrecy problems, which will be

served for comparison in Chapter 3 and Chapter 4.

• Chapter 3: The key agreement problem over the DM model is investigated in this

chapter.

• Chapter 4: The key agreement problem over the Gaussian model is investigated in

this chapter.

• Chapter 5: In this chapter, we will conclude our work. In the conclusion, we will

mention the strategies used in our work. We will also highlight the ties of our research

to previous work. Finally, we will offer the future work in this chapter.
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Chapter 2

Fundamentals

In the this chapter, we introduce the mathematical methods and fundamental definitions

and models which will be utilized in the next chapters. In this chapter, we survey the

main related secrecy problems in the field of information-theoretic security. One purpose

of this chapter is to review the essential points, results and wiretap strategies introduced

in fundamental research [11, 12]. These strategies form the base of information-theoretic

security. Accordingly, we study the secrecy problem over a discrete memoryless wiretap

channel in Subsection 2.2.1.

Before we declare our key agreement problems, the main points, achievements, and

strategies in significant publications [60,61] are surveyed in this chapter. These publications

study the secrecy problem over wiretap channels with non-causal side information. Their

strategies with novel modifications will be exploited in our problems. In the next chapter,

the results of those papers will be further referred to compare our achieved LBs on the key

capacity with the best known LBs/UBs on the secrecy capacity. To do this, the secrecy

problem over a DM-SWC is reviewed in Subsection 2.2.2. The secrecy capacity over a

G-SWC is surveyed in Subsection 2.2.3 as well.
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2.1 Mathematical Tools

In this section, we present the fundamental definitions and basic lemmas, which will be

used in the next chapters to establish our proofs.

2.1.1 Typicality

Shannon [4] introduced the notion of typical sequences. Two types of typicality are used

in this thesis: Strong typicality [2, Sec. 10.6] and weak typicality [2, Ch. 3]. In this

subsection, we define the strong typicality and the weak typicality. We also state the main

useful lemmas of typical sequences, which are related to our work, without proofs. More

details can be found in references [2, 3, 75].

The weak typicality, which is also known as entropy-typicality [75], is defined as follows.

Definition 2.1 (Weak typicality). Assume ǫ ∈ (0, 1). Let X be an alphabet set with a

finite size. Let x ∈ Xn be a sequence generated i.i.d. according to P(x) =
∏n

i=1PX(xi). x

is said to be an ǫ-weakly typical sequence with respect to the PMF PX on X if

∣
∣
∣
∣
−1

n
log(P(x))−H(X)

∣
∣
∣
∣
< ǫ ,

where function

H(X) , −
∑

x∈X
PX(x) log(PX(x)) (2.1)

is (Shannon) entropy function. Moreover, Tǫ(PX) is called an ǫ-weakly typical set, which

contains all x ∈ Xn such that x is an ǫ-weakly typical sequence with respect to PX .

Definition 2.1 can be extended for multiple random vectors as follows.

Definition 2.2 (Weak joint typicality). Assume ǫ ∈ (0, 1) and ℓ ∈ N. Let Xi be an

alphabet set with a finite size, where i ∈ {1, . . . , ℓ}. Assume an ℓ-tuple of sequences
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(x1, . . . ,xℓ) ∈ Xn
1 × . . .× Xn

ℓ is drawn i.i.d. according to

P(x1, . . . ,xℓ) =
n∏

i=1

PX1...Xℓ
(x1i, . . . , xℓi) .

The ℓ-tuple of sequences (x1, . . . ,xℓ) is said to be ǫ-weakly (jointly) typical with respect

to the distribution PX1...Xℓ
on X1 × . . .× Xℓ if

∣
∣
∣
∣
−1

n
log(P(xi1 , . . . ,xij ))−H(Xi1 , . . . , Xij)

∣
∣
∣
∣
< ǫ

holds for any j ∈ {1, . . . , ℓ} and any 1 ≤ i1 < i2 < . . . < ij ≤ ℓ, where function

H(Xi1, . . . , Xij) , −
∑

υ1∈Xi1

. . .
∑

υj∈Xij

PXi1
...Xij

(υ1, . . . , υj) log(PXi1
...Xij

(υ1, . . . , υj)) (2.2)

is (Shannon) joint entropy function. Moreover, Tǫ(PX1...Xℓ
) is called an ǫ-weakly (jointly)

typical set, which contains all (x1, . . . ,xℓ) ∈ X1× . . .×Xℓ such that (x1, . . . ,xℓ) is ǫ-weakly

(jointly) typical with respect to the distribution PX1...Xℓ
.

Remark 2.1. Although weak typicality in Definition 2.1 and Definition 2.2 is introduced

for discrete random sequences, it can be extended to continuous random sequences if the

PMFs and the entropy functions are replaced by the corresponding probability density

functions and the differential entropy functions, respectively [2, 75]. An ǫ-weakly typi-

cal set with respect to normal distribution N ((µ1, . . . , µℓ),Σℓ×ℓ) on R
ℓ is represented by

Tǫ(N ((µ1, . . . , µℓ),Σℓ×ℓ)) in this thesis. This notation will be frequently used in Subsec-

tion 4.1.

The strong typicality, which is also known as letter typicality [75], is defined as follows.

Definition 2.3 (Strong typicality). Assume ǫ ∈ (0, 1). Let X be an alphabet set with a

finite size. A sequence x ∈ Xn is said to be an ǫ-strongly typical sequence with respect to
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a distribution PX on X if for every letter υ ∈ X

∣
∣
∣
∣

1

n
η(υ|x)− PX(υ)

∣
∣
∣
∣
<

{
ǫ
|X| , : if PX(υ) > 0;

0, : if PX(υ) = 0.
(2.3)

where η(υ|x) is the number of occurrences of the letter υ in vector x. Moreover, T∗
ǫ(PX)

is called an ǫ-strongly typical set, which contains all x ∈ Xn such that x is an ǫ-strongly

typical sequence with respect to the distribution PX .

Definition 2.3 can be generalized to define strongly (jointly) typical sequences as follows.

Definition 2.4 (Strong joint typicality). Assume ǫ ∈ (0, 1) and ℓ ∈ N. Let Xi be an

alphabet set with a finite size, where i ∈ {1, . . . , ℓ}. An ℓ-tuple of sequences (x1, . . . ,xℓ) ∈
Xn

1 × . . .×Xn
ℓ is said to be ǫ-strongly (jointly) typical with respect to distribution PX1...Xℓ

on X1 × . . .× Xℓ if for every (υ1, . . . , υℓ) ∈ X1 × . . .× Xℓ

∣
∣
∣
∣

η(υ1, . . . , υℓ|x1, . . . ,xℓ)

n
−PX1...Xℓ

(υ1, . . . , υℓ)

∣
∣
∣
∣
<

{
ǫ

|X1|...|Xℓ| : if PX1...Xℓ
(υ1, . . . , υℓ) > 0;

0 : if PX1...Xℓ
(υ1, . . . , υℓ) = 0.

where η(υ1, . . . , υℓ|x1, . . . ,xℓ) is the number of occurrences of the ℓ-tuple letters (υ1, . . . , υℓ)

of sequences (x1, . . . ,xℓ). Moreover, T∗
ǫ(PX1...Xℓ

) is called an ǫ-strongly (jointly) typical set,

which contains all (x1, . . . ,xℓ) ∈ Xn
1 × . . .× Xn

ℓ such that (x1, . . . ,xℓ) is ǫ-strongly typical

sequences with respect to distribution PX1...Xℓ
.

From Definition 2.4, if (x1, . . . ,xℓ) ∈ T∗
ǫ(PX1...Xℓ

), then any sequences (xi1 ,xi2, . . . ,xij ) ∈
T∗
ǫ (PXi1

Xi2
...Xij

), where j ∈ {1, . . . , ℓ} and 1 ≤ i1 < i2 < . . . < ij ≤ ℓ.

Remark 2.2. The strong typicality according to Definition 2.3 and Definition 2.4 can not

be extended to continuous random vectors, because counting the occurrences of a given

letter is meaningless in this case.

Markov lemma is a powerful tool for the proofs of Chapter 3. This lemma is stated in

the following.
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Lemma 2.1 (Markov lemma). Assume discrete RVs (X, Y, Z) ∈ X×Y× Z form Markov

chain X → Y → Z, i.e. PXY Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y) for any (x, y, z) ∈
X × Y × Z. If for a given (y, z) ∈ T∗

ǫ(PY Z), random vector x is drawn according to
∏n

i=1P(xi|yi), then

P{(x,y, z) ∈ T∗
ǫ (PXY Z)|(y, z) ∈ T∗

ǫ (PY Z)} > 1− δ

where δ → 0 as n → ∞.

In the following remark, we verify if the Markov lemma can be exploited for the Gaussian

model in Chapter 4.

Remark 2.3. According to Remark 2.2, Markov lemma given in Lemma 2.1 does not apply

to continuous RVs. However, Oohama [71] proved that Markov lemma still holds for

Gaussian RVs if strongly typical sets in Lemma 2.1 are replaced by the corresponding

weakly typical sets.

2.2 Wiretap Channels

In this section, we state the preliminary definitions of wiretap channels. These definitions

are necessary to present our problems in the next chapters. We also review the secrecy

problem in some wiretap models that will be recalled in Chapter 3 and Chapter 4 for

comparison.

2.2.1 Wiretap Channels without Side Information

In this subsection, we define and review the secrecy problem over a memoryless wiretap

channel (with no SI) based on publications [11], [12], [14], and [13].

Secrecy problem over a discrete memoryless wiretap channel (DM-WC) is presented in

Figure 2.1. In the following, we declare the problem definitions.
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DM-WC
x

y

z

Bob’s Decoder
M̂ = D(y)

Eve’s Receiver

M
n∏

i=1
PY Z|X(yi, zi|xi)

Alice’s
Encoder

W(x|M)

Figure 2.1: A discrete memoryless wiretap channel (with no SI).

Definition 2.5 (DM-WC). Recalling Definition 1.7, assume the wiretap channel (Xn,Yn×
Zn,Pyz|x) with one sender (Alice) and two receivers (Bob and Eve). The wiretap channel

is called a discrete memoryless wiretap channel (DM-WC) if

• X, Y, and Z are finite sets;

• the PTF of the channel with input x ∈ Xn, and output (y, z) ∈ Yn×Zn is P(y, z|x) =
n∏

i=1

PY Z|X(yi, zi|xi).

For simplicity, a DM-WC is characterized by (X,Y× Z,PY Z|X).

Based on the discussions given in Section 1.3, an admissible wiretap coding scheme of

a DM-WC for the secrecy problem is formulated as follows.

Definition 2.6. An admissible wiretap code (⌈2nR⌉, n), where code block length n ∈ N

and information rate R ∈ R
+ ∪ {0}, consists of the following components:

• a message set M = {1, . . . , ⌈2nR⌉}. Message M is a RV which is uniformly distributed

over M;

• a (stochastic) encoder W : M → Xn at Alice. This encoder maps each message

M ∈ M to a codeword x ∈ Xn according to PMF W(x|M), where







W(x|M) ≥ 0 : ∀x ∈ Xn, ∀M ∈ M;
∑

x∈Xn

W(x|M) = 1 : ∀M ∈ M;
(2.4)
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• a decoder D : Yn → M at Bob. This decoder maps a received signal y ∈ Yn to a

message M̂ ∈ M according to function M̂ = D(y);

As indicated in Sections 1.1 and 1.3, the reliability and security level of messages for

a given admissible wiretap code are measured by the average probability of error function

and (normalized) equivocation rate function, respectively [11, 30], as defined below.

Definition 2.7 (Measurements). Assume an admissible wiretap code (⌈2nR⌉, n) designed
for the secrecy problem according to Definition 2.6.

1. The reliability of message M is measured by the average (block) probability of error

Perror(n) , P{M̂ 6= M} =
1

⌈2nR⌉

⌈2nR⌉
∑

i=1

P{D(y) 6= M |M = i} , (2.5)

which is a function of block length n.

2. The security level of message M at Eve is measured by the (normalized) equivocation

rate

R
E
(n) ,

1

n
H(M |z) , (2.6)

which is a function of block length n.

The main objective of the secrecy problem is to find the capacity-equivocation region

and secrecy capacity of a given model1. These terms are technically defined in the following.

Definition 2.8. A rate-equivocation pair (R,R
E
) is said to be achievable if there exists

an admissible wiretap code (⌈2nR⌉, n) such that

lim
n→∞

Perror(n) = 0 ; (2.7)

lim inf
n→∞

R
E
(n) ≥ R

E
. (2.8)

1Once the capacity-equivocation region of a given model is characterized, its secrecy capacity can be
derived by an optimization problem. However, the secrecy capacity of a model is usually used as a criterion
to compare it with other models in the field of information-theoretic security.
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The capacity-equivocation region is the closure of the union of all achievable rate-equivocation

pairs (R,R
E
). Moreover, the leakage rate is defined as

R
L
, R− R

E
. (2.9)

If the pair (R,R) is achievable, i.e., R
L
= 0, then rate R is said to be (securely) achievable

with respect to the AR condition 1.3 and the AS condition 1.12.

In Definition (1.9), the secrecy capacity is defined; equivalently, the supremum of all

(securely) achievable rates R such that (R,R) is an achievable rate-equivocation pair is

called the secrecy capacity.

The capacity-equivocation region and the secrecy capacity of the DM-WC is character-

ized by Csiszár and Körner [12] as follows.

Theorem 2.1. The capacity-equivocation region of the DM-WC is

C
E
=

⋃

PV UPX|V PY Z|X







(R,R
E
) :

0 ≤ R ≤ I(V ; Y ),

0 ≤ R
E
≤ R,

R
E
≤ I(V ; Y |U)− I(V ;Z|U)







, (2.10)

where U ∈ U and V ∈ V are two auxiliary random variables such that U → V → X →
(Y, Z), |U| ≤ |X|+ 3, and |V| ≤ (|X|+ 1)(|X|+ 3). The secrecy capacity of the DM-WC is

also given by

C
S
= max

V→X→(Y,Z)
[I(V ; Y )− I(V ;Z)] . (2.11)

The role of U and V in Theorem 2.1 can be explained as follows: V corresponds to the

total message that can be decoded by Bob; however, U is a portion of that message which

can be retrieved by both Bob and Eve. So, U is not secure by using the wiretap coding

scheme. The other portion of V satisfies the AS condition 1.12 by using the wiretap coding

scheme.
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The secrecy capacity given in Theorem 2.1 can be simplified for some DM-WCs. To

show this fact, let us first assume the following special cases of the DM-WCs2.

• Physically degraded wiretap channels : a memoryless wiretap channel is said to be

physically degraded in Bob’s favor if the PTF of the channel can be factorized as

∀x ∈ X, ∀(y, z) ∈ Y× Z : PY Z|X(y, z|x) = PY |X(y|x)PZ|Y (z|y) , (2.12)

As depicted in Figure 1.4, the Wyner’s model [11] consists of a physically degraded

wiretap channel in which PY |X and PZ|Y are PTF of the main channel and that of

the wiretap channel, respectively.

• Stochastically degraded wiretap channels : a memoryless wiretap channel is defined as

a stochastically degraded wiretap channel in Bob’s favor if its conditional marginal

distributions are the same as those of a physically degraded wiretap channel; that is,

if there exists a PTF P ′
Z|Y such that

∀ x ∈ X, z ∈ Z : PZ|X(z|x) =
∑

y ∈Y
PY |X(y|x)P ′

Z|Y (z|y) . (2.13)

• Less noisy wiretap channels : This special case is a generalization of physically/

stochastically degraded wiretap channels. The less noisy ordering was introduced by

Körner and Marton [16] to compare two noisy channels as follows.

Definition 2.9 (Less noisy wiretap channel). Bob’s channel is said to be less noisy

than Eve’s channel (less noisy wiretap channel in Bob’s favor) if for every auxiliary

RV U with property U → X → (Y, Z), we have

I(U ; Y ) ≥ I(U ;Z) . (2.14)

2In fact, this classification is valid for a memoryless wiretap channel with continuous alphabets as
well [2, 6].
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According to this definition, a physically/stochastically degraded wiretap channel is

a less noisy channel as well; however, the converse in not generally true [6]. Also,

a physically degraded, stochastically degraded, and a less noisy wiretap channel

in Eve’s favor can be defined if Y is switched to Z in (2.12), (2.13), and (2.14),

respectively.

With applying (2.14) to Theorem 2.1, the results given in this theorem can be simplified

for less noisy wiretap channels (and so for degraded wiretap channels) if V = X and U = 0

are relaxed [12, Thm. 3] as follows.

Theorem 2.2. The capacity-equivocation region of a less noisy DM-WC is

C
E
=

⋃

PXPY Z|X







(R,R
E
) :

0 ≤ R ≤ I(X ; Y ),

0 ≤ R
E
≤ R,

R
E
≤ I(X ; Y )− I(X ;Z)







. (2.15)

The secrecy capacity of a less noisy DM-WC is also given by

C
S
= max

PX

[I(X ; Y )− I(X ;Z)] . (2.16)

Theorem 2.2 gives the capacity-equivocation region and the secrecy capacity of Wyner’s

model [11] as well. According to [12, Corol. 3], the secrecy capacity of the DM-WC is always

positive unless the DM-WC is less noisy in Eve’s favor.

In a less noisy wiretap channel, if both I(X ; Y ) and I(X ;Z) achieve their maximum

values at one distribution P∗
X , then the capacity-equivocation region given in Theorem 2.2

can be simplified as follows [14].

C
E
= {(R,R

E
) : 0 ≤ R

E
≤ R ≤ Cm, RE

≤ Cm − Cmw} , (2.17)

where Cm = max
PX

I(X ; Y ) and Cmw = max
PX

I(X ;Z) are the capacity of the main channel

(from Alice to Bob) and the capacity of the overall wiretap channel (from Alice to Eve),
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C
S
= Cm − Cmw

R
E

C
S CmO R

C
E

A B

Figure 2.2: The capacity-equivocation region for a degraded symmetric DM-WC.

respectively. In this case, the secrecy capacity of the DM-WC is C
S
= Cm − Cmw, which

is given in (1.13) as well. Region C
E
, which is given in 2.17, is sketched in Figure 2.2. An

example of this model is a physically degraded DM-WC in which both the main channel

(from Alice to Bob) and the wiretap channel (from Bob to Eve) are symmetric DMCs [1,2].

According to Figure 2.2, line OA corresponds to the securely achievable rates, in which

point A corresponds to the secrecy capacity. Increasing the information rate above C
S
does

not increase the (normarized) equivocation rate of the communication, and thus leakage

rate R
L
grows linearly as function of R. At point B, the leakage rate is Cmw; in other

words, in average, portion Cm−Cmw

Cm
of the achievable rate satisfies the AS condition 1.12,

and portion Cmw

Cm
of the rate is retrievable by Eve.

2.2.2 Degraded Discrete Memoryless Wiretap Channel with Ran-

dom States

In this subsection, we define a (physically) degraded3 discrete memoryless state-dependent

wiretap channel (DM-SWC) with random states, which are non-causally known at the

transmitter. The secrecy problem over this channel is reviewed in this subsection according

to publications [61, 62]. The model is illustrated in Figure 2.3 and it is defined as follows.

3In this subsection, the wiretap channel is physically degraded in Bob’s favor; however, the results are
valid for a stochastically degraded channel as well.
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Alice’s
Encoder
W(x|M, s)

Degraded DM-SWC
n∏

i=1
PY |XS(yi|xi, si)PZ|Y (zi|yi)

Bob’s Decoder

Eve’s Receiver

x

z

y

n∏

i=1

PS(si)

s

M̂ = D(y)

M

Figure 2.3: A degraded DM-SWC with non-causal CSI at the transmitter.

Definition 2.10 (Degraded DM-SWC). A (physically) degraded DM-SWC in Bob’s favor

with non-causal CSI at Alice is determined by (S,X,Y× Z,PS,PY Z|XS), where

• finite sets X, Y, and Z are the channel input alphabet (from Alice), the first chan-

nel output alphabet (to Bob), and the second channel output alphabet (to Eve),

respectively;

• S is the state alphabet with a finite size; also, random vector s ∈ Sn, which is called

CSI, is drawn i.i.d. according to distribution P(s) =
n∏

i=1

PS(si);

• prior to each block transmission, Alice knows the realization of random vector s;

• the PTF of the channel with the input x ∈ Xn, state s ∈ Sn, and output pair

(y, z) ∈ Yn × Zn is P(y, z|x, s) =
n∏

i=1

PY |XS(yi|xi, si)PZ|Y (zi|yi), i.e., Eve receives a

degraded version of Bob’s signal through a channel with PTF PZ|Y .

An admissible wiretap coding scheme for the secrecy problem over the degraded DM-

SWC is defined as follows.

Definition 2.11. An admissible wiretap code (⌈2nR⌉, n), where code block length n ∈ N

and information rate R ∈ R
+ ∪ {0}, consists of the following components:

• a message set M = {1, . . . , ⌈2nR⌉}. Message M is a RV which is uniformly distributed

over M;
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• a (stochastic) encoder W : M × Sn → Xn at Alice. Knowing side information s,

this encoder maps each message M ∈ M to a codeword x ∈ Xn according to PMF

W(x|M, s), where







W(x|M, s) ≥ 0 : ∀x ∈ Xn, ∀M ∈ M, ∀s ∈ Sn;
∑

x∈Xn

W(x|M, s) = 1 : ∀M ∈ M, ∀s ∈ Sn;
(2.18)

• a decoder D : Yn → M at Bob. This decoder maps a received signal y ∈ Yn to a

message M̂ ∈ M according to function M̂ = D(y).

The measurements given in Definition 2.7 are also applied to the admissible wiretap

codes defined in Definition 2.11. Bounds on the secrecy capacity of the degraded DM-SWC

according to Definition 1.9 is given in the following theorem [61, 62].

Theorem 2.3. The secrecy capacity of the degraded DM-SWC, which is introduced in

Definition 2.10, is bounded by

max
U→(X,S)→Y→Z

min{I(U ; Y )− I(U ;S), I(U ; Y )− I(U ;Z)} ≤ C
S
≤ min{R1, R2} , (2.19)

where

R1 = max
U→(X,S)→Y

[I(U ; Y )− I(U ;S)] , (2.20)

R2 = max
U→(X,S)→Y→Z

[I(U ; Y )− I(U ;Z)] . (2.21)

The structure of the achievable wiretap coding scheme is based on double random

binning [6], which is generated by combination of Gélfand-Pinsker’s coding strategy [49]

and wiretap coding strategies [11, 31]. Two upper bounds on the secrecy capacity are

reported in Theorem 2.3: the first one (R1) is the (ordinary) capacity of the main channel

given in (1.32), and the second one (R2) is the secrecy capacity of the DM-WC given

in (2.11). The second UB is derived based on the fact that a (degraded) DM-WC with

input (X,S) is an enhanced channel of the degraded DM-SWC in the sense that the secrecy
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capacity of the former is not less than the secrecy capacity of the latter.

It is still an open problem if any of the bounds in Theorem 2.3 is tight or not. However,

the LB is proved to be optimal [61] in the following special case.

Corollary 2.1. Assume the main channel capacity of the degraded DM-SWC, which is

given in (1.32), is achievable at input distribution P∗
X|SUP∗

U |SPS. At this distribution, if

I(U∗;S) ≥ I(U∗;Z∗), then the secrecy capacity optimally equals the main channel capacity,

i.e.,

C
S
= max

U→(X,S)→Y→Z
[I(U ; Y )− I(U ;S)] = I(U∗; Y ∗)− I(U∗;S) ,

where I(U∗;S), I(U∗; Y ∗), and I(U∗;Z∗) are calculated at distribution

PY ZXUS = PZ|YPY |XSP∗
X|SUP∗

U |SPS .

As implied by Corollary 2.1, the side information can assist Alice to (securely) achieve

the main channel capacity with respect to the AS condition 1.12.

2.2.3 Gaussian Wiretap Channel with Additive Interference

As mentioned in Section 1.6, the secrecy problem of a physically degraded Gaussian wire-

tap channel with AWGI was studied by Mitrpant et al. [60,76]. Their model is illustrated

in Figure 2.4. In this subsection, we highlight the main results and ideas of that work.

A (physically) degraded Gaussian wiretap channel with AWGI is defined as follows.

Definition 2.12 (Physically degraded G-SWC). A physically degraded Gaussian state-

dependent wiretap channel (G-SWC) in Bob’s favor (respectively, in Eve’s favor) with

non-causally known CSI at the transmitter is determined by 4-tuple (Γ,Λ, σ2
1, σ

2
2) ∈ R

+4
,

where

• random vector x ∈ R
n is the channel input (from Alice), which is subject to average
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Encoder
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Bob’s Decoder
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t ≤ Γ
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x+ s y = x+ s+ g1

S ∼N (0,Λ)

Eve’s Receiver

M M̂ = D(Y )

z = y+ g′
2

g1

g′
2

s

s

Figure 2.4: Secrecy problem over a physically degraded G-SWC in Bob’s favor.

power constraint
1

n
xxt ≤ Γ ; (2.22)

• random vector s ∈ R
n, which is known as interference, is drawn i.i.d. according to

S ∼ N (0,Λ);

• the realization of random vector s is known at Alice prior to each block transmission;

• if σ2 ≥ σ1, the channel is physically degraded in Bob’s favor, and then

– random matrix G =

[

g1

g′
2

]

represents Gaussian noise of the channel, where

g1 ∈ R
n and g′

2 ∈ R
n are independent random vectors such that components

of g1 and those of g′
2 are drawn i.i.d. according to N (0, σ2

1) and N (0, σ2
2 − σ2

1),

respectively;

– y ∈ R
n, and z ∈ R

n are the first channel output (to Bob) and the second

channel output (to Eve), respectively, such that

y = x + s+ g1 , (2.23a)

z = y + g′
2 , (2.23b)
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which means that Eve receives a noisy version of Bob’s signal;

• if σ1 > σ2, the channel is physically degraded in Eve’s favor, and then

– random matrix G =

[

g′
1

g2

]

represents Gaussian noise of the channel, where

g′
1 ∈ R

n and g2 ∈ R
n are independent random vectors such that components

of g′
1 and those of g2 are drawn i.i.d. according to N (0, σ2

1 − σ2
2) and N (0, σ2

2),

respectively;

– y ∈ R
n, and z ∈ R

n are the first channel output (to Bob) and the second

channel output (to Eve), respectively, such that

z = x + s+ g2 , (2.24a)

y = z+ g′
1 , (2.24b)

which means Bob receives a noisy version of Eve’s signal.

An admissible wiretap coding scheme for the secrecy problem over the G-SWC is defined

as follows.

Definition 2.13. An admissible wiretap code (⌈2nR⌉, n), where code block length n ∈ N

and information rate R ∈ R
+ ∪ {0}, consists of the following components:

• a message set M = {1, . . . , ⌈2nR⌉}. Message M is a RV which is uniformly distributed

over M;

• a (stochastic) encoder W : M × R
n → R

n at Alice. Having state vector s, the

encoder maps each message M ∈ M to a codeword x ∈ R
n according to conditional

distribution W(x|M, s) such that the average power constraint (2.22) is met, where







W(x|M, s) ≥ 0 : ∀x ∈ R
n, ∀M ∈ M, ∀s ∈ R

n;
∑

x∈Rn

W(x|M, s) = 1 : ∀M ∈ M, ∀s ∈ R
n;

(2.25)

• a decoder D : Rn → M at Bob. This decoder maps a received signal y ∈ R
n to a

message M̂ ∈ M according to function M̂ = D(y).
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The measurements given in Definition 2.7 are also applied to the admissible wiretap

codes defined in Definition 2.13. The secrecy capacity of the (physically) degraded G-SWC

according to Definition (1.9) is bounded in the following theorem [60, 76].

Theorem 2.4. Let C
S
be the capacity of a (physically) degraded G-SWC with non-causally

known interference at the transmitter. Let define

R(α) ,
1

2
log

(
Γ(Γ + Λ+ σ2

1)

(Γ + α2Λ)(Γ + Λ + σ2
1)− (Γ + αΛ)2

)

, (2.26)

RZ(α) ,
1

2
log

(
(Γ + Λ + σ2

1)[(1− α)2ΓΛ + σ2
2(Γ + α2Λ)]

(Γ + Λ + σ2
2)[(1− α)2ΓΛ + σ2

1(Γ + α2Λ)]

)

, (2.27)

α∗ ,
Γ

Γ + σ2
1

, (2.28)

α0 ,
ΓΛ + Γ

√

Λ(Γ + Λ + σ2
2)

Λ(Γ + σ2
2)

. (2.29)

Γl ,

[

−σ2
1 −

Λ

2
+

√

Λ2 + 4Λ(σ2
2 − σ2

1)

2

]+

, (2.30)

Γh , −Λ

2
+

√

Λ2 + 4Λσ2
2

2
. (2.31)

Also, Cm = R(α∗) is the capacity of the main channel [55]. Then, the secrecy capacity of

the degraded G-SWC is lower bounded by

C
S
≥







Cm : if 0 ≤ Γ ≤ Γl

R(α0) : if Γl ≤ Γ ≤ Γh

RZ(1) : if Γ ≥ Γh .

(2.32)

Mitrpant and Han Vinck [60] applied DPC strategy [55] to construct an achievable

wiretap code based on double random binning. The structure of the double random binning

for the degraded G-SWC is the same as that of the degraded DM-SWC in Theorem 2.3.

To explain this idea, let U = X + αS, where X and S are orthogonal RVs with Gaussian

distributions according to N (0,Γ) and N (0,Λ), respectively; α ∈ R
+ is a constant as
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well. Hence, R(α) and RZ(α), which is defined in (2.26) and (2.27) respectively, can be

formulated as [60]

R(α) = I(U ; Y )− I(U ;S) , (2.33)

RZ(α) = I(U ; Y )− I(U ;Z) .

Similar to Theorem 2.3, we have

C
S
≥ max

α
min{R(α),RZ(α)} . (2.34)

Maximum value of RZ(α) and that of R(α) are achieved at α = 1 and α = α∗,

respectively. Also, R(α) and RZ(α) coincide at α = α0. These values of α are given in

Theorem 2.4. According to [55], α = α∗ is the optimum value for the DPC to achieve

capacity Cm = R(α∗). Value of α∗ is independent of variance of the interference Λ. Now,

consider the secrecy problem for the G-SWC, and denote the optimum value of α used in

the corresponding DPC by αopt. The following statements determine the value of αopt as a

function of power Γ (when other parameters are assumed to be fixed).

• 0 ≤ Γ ≤ Γl: In this case Cm = R(α∗) ≤ RZ(α
∗), and so secrecy capacity C

S
= Cm is

achievable with αopt = α∗. At Γ = Γl, α0 = α∗ and so R(α∗) = RZ(α
∗).

• Γl < Γ ≤ Γh: In this case

RZ(α
∗) ≤ RZ(α0) = R(α0) < R(α∗) = Cm , (2.35)

where α∗ < α0 ≤ 1. As α goes from α∗ to 1, RZ(α) increases and R(α) decreases.

In this case, αopt = α0 where these functions coincide, and so C
S
≥ R(α0) = RZ(α0)

according to (2.34). At Γ = Γh, α0 = 1, and so RZ(α) ≤ R(1) = RZ(1) for any α.
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Figure 2.5: Comparison of optimum values of α (in the DPC) versus SIR in the G-SWC.

• Γ > Γh: In this case

R(α0) = RZ(α0) ≤ RZ(1) < R(1) , (2.36)

where α∗ ≤ 1 < α0. R(α) decreases from its maximum point R(α∗) as α goes from

α∗ to α0, and RZ(1) = max
α

RZ(α). Hence, in this case αopt = 1 and so

C
S
≥ RZ(1) =

1

2
log

(
(Γ + Λ + σ2

1)σ
2
2

(Γ + Λ + σ2
2)σ

2
1

)

(2.37)

according to (2.34) and Theorem 2.4.
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In Figure 2.5, we compare the optimum value α for which the capacity is achieved, i.e.

α∗, with that for which the LB on the secrecy capacity, which is given in 2.34, is achieved,

i.e. αopt. The parameters in this figure are Λ = 1, σ2
1 = .1, and σ2

2 = .4. According to

Figure 2.5, αopt is the same as α∗ for 0 ≤ Γ ≤ Γl. For Γl < Γ ≤ Γh, αopt equals α0 and it is

larger than α∗. For Γ > Γh, αopt = 1 and α∗ < αopt < α0.

In Figure 2.6, the LB and UBs on the secrecy capacity of the (physically) degraded

G-SWC is sketched [60], where Λ = 1, σ2
1 = .1, and σ2

2 = .4 are fixed. In this figure, curve

(1) illustrates the LB on the secrecy capacity for the G-SWC according to Theorem 2.4;

curve (2) is the main channel capacity (from Alice to Bob) of the G-SWC; curve (3) is an

UB on the secrecy capacity claimed by Mitrpant and Han Vinck [60] (it will be discussed

in the following); curve (4) is the secrecy capacity of the corresponding Gaussian wiretap

channel sketched in Figure 1.5 (same parameters Γ, σ2
1 , σ

2
2, and no interference, i.e., Λ = 0)

according to (1.14).

According to Theorem 2.4, the DPC is optimum for the secrecy problem when Γ ≤
Γl [60]. Mitrpant and Han Vinck [60] also claimed that the LB given in (2.37) is optimum for

Γ ≥ Γh because of the following discussion. Assume Alice is able to govern the interference

as its input. In other words, the interference is a part of Alice’s transmitted signal which

has a fixed power Λ. Thus, the authors [60] deduced that a Gaussian wiretap channel with

transmission power Γ+Λ is an enhanced wiretap channel of the given G-SWC. As the LB

in (2.37) is actually the secrecy capacity of that enhanced channel (replace Γ by Γ + Λ

in (1.14)), the authors concluded that the LB (2.37) is tight.

In Figure 2.6, the LB on the secrecy capacity of the G-SWC is also compared with

the secrecy capacity of a Gaussian wiretap channel (when there is no interference) [13].

This comparison shows that non-causal availability of the interference at Alice enhances

the secrecy capacity of a Gaussian wiretap channel. This notable fact is in contrast with

the fact that the channel capacity of Costa’s model [55] is the same as that of the Gaussian

channel (when there is no interference) [1, 2]. In other words, knowing the interference at

Alice does not affect the main channel capacity of the G-SWC, but it enlarges its secrecy

capacity (comparing with a corresponding Gaussian wiretap channel with no interference).
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Chapter 3

The Discrete Memoryless Model

In this chapter, we study the key agreement problem over a discrete memoryless (DM)

model. The model consists of a wiretap channel with random states and a parallel one-way

public channel in the forward direction with capacity C
P1

∈ [0,∞). The CSI is drawn i.i.d.,

and its realizations are fully and non-causally known at Alice. The goal of this work is to

characterize the (forward) key capacity of the DM model as a function of C
P1
.

The rest of this chapter is organized as follows. In Section 3.1, we will define the public

channel in its general form, and we will introduce the key agreement problem over a DM

model. In that section, we will technically define an admissible key agreement coding

scheme for the key agreement problem. In Section 3.2, we will state the achieved bounds

on the (forward) key capacity of the model. Finally, we will establish the proofs of the

results in Section 3.3.

3.1 Problem Definitions

In this section, we define the key agreement problem over the DM model. Before we

present the DM model, let us define a two-way (authenticated) public channel with given

capacity in each direction. As a special case, a one-way public channel is also specified in

71



the following definition.

Definition 3.1 (Public channel). Assume n ∈ N is time duration, and side information

a and b is available at Alice and Bob, respectively. Let p1 , (P11, P12, . . . , P1n) ∈ P11 ×
P12 × . . .P1n and p2 , (P21, P22, . . . , P2n) ∈ P21 × P22 × . . .P2n be the forward public

message sequence and the backward public message sequence, respectively, where P1τ and

P2τ are the alphabet set of the forward message and that of the backward message at time

τ ∈ {1, . . . , n}, respectively. A public channel with a given capacity pair (C
P1
, C

P2
) is a

noiseless channel between Alice and Bob which consists of a noiseless forward channel from

Alice to Bob with capacity C
P1

and a noiseless backward channel from Bob to Alice with

capacity C
P2

such that

• at time instant τ ∈ {1, . . . , n}, the forward message P1τ is sent from Alice to Bob

(in the forward direction), and the backward message P2τ is sent from Bob to Alice

(in the backward direction);

• P1τ is a function of all available information at Alice up to time τ − 1, i.e., it is a

(stochastic) function of a and (P21, P22, . . . , P2(τ−1)), where P20 , 0;

• P2τ is a function of all available information at Bob up to time τ − 1, i.e., it is a

(stochastic) function of b, (P11, P12, . . . , P1(τ−1)), where P10 , 0, and (Y1, Y2, . . . , Yτ−1),

if there exists a wiretap channel connected from Alice to Bob with output symbol

Yτ at time τ ;

• p1 and p2 are intercepted by Eve;

• the communication rate over the public channel is subject to

forward capacity constraint: lim sup
n→∞

log(|P1|)
n

≤ C
P1

, (3.1a)

backward capacity constraint: lim sup
n→∞

log(|P2|)
n

≤ C
P2

, (3.1b)

where P1 , P11 × . . .× P1n and P2 , P21 × . . .× P2n.

If C
P2

= 0, the public channel is called a (one-way) forward public channel; if C
P1

= 0,

the public channel is called a (one-way) backward public channel.
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As sketched in Figure 3.1, the DM model consists of two parallel channels: a discrete

memoryless state-dependent wiretap channel (DM-SWC) with non-causally known CSI at

the transmitter and a forward public channel. In the following, the DM-SWC is defined.

Definition 3.2 (DM-SWC). A DM-SWC with known non-causal CSI at the transmitter

is determined by 9-tuple (S,B,E,X,Y,Z,PS(s),PBE|S(b, e|s),PY Z|XS(y, z|x, s)), where

• finite sets X, Y, and Z are the channel input alphabet (from Alice), the first chan-

nel output alphabet (to Bob), and the second channel output alphabet (to Eve),

respectively;

• S is the state alphabet with a finite size; also, random vector s ∈ Sn, which is called

CSI, is drawn i.i.d. according to distribution P(s) =
n∏

i=1

PS(si);

• the PTF of the channel with the input x ∈ Xn, state s ∈ Sn, and output pair

(y, z) ∈ Yn × Zn is P(y, z|x, s) =
n∏

i=1

PY Z|XS(yi, zi|xi, si);

• random vectors s ∈ Sn, b ∈ Bn, and e ∈ En are three-component SI available prior

to each transmission at Alice, Bob, and Eve, respectively;

• the three-component SI is drawn i.i.d. according to

P(b, e, s) =

n∏

i=1

PB E S(bi, ei, si) =

n∏

i=1

PS(si)

n∏

i=1

PBE|S(bi, ei|si) . (3.2)

In the DM model, Alice governs two encoders: the wiretap channel encoder W and the

public channel encoder F . Randomization at the encoders is permitted. Alice generates

her key with a key generator function K1, and then she sends key agreement signals to Bob

over both the wiretap channel and the noiseless public channel with capacity C
P1
.

The output of the wiretap channel encoder W is a block code with length n, which is

sent in n successive transmissions over the wiretap channel. However, we assume, without

any loss of generality, that the public channel encoder F transmits public message P at

time instant n, i.e., p1 = ( 0, . . . , 0
︸ ︷︷ ︸

(n−1) times

, P ). This is due to the following fact. There is no

feedback from Bob to Alice, and Alice’s SI is available non-causally prior to sending the

public message. On the other hand, Bob is supposed to retrieve his key at the end of
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Figure 3.1: The key agreement problem over the DM model.

nth transmission over the wiretap channel. Hence, transmission of the public message by

successive uses of the public channel has the same effect on key generation as if the whole

public message is sent in a single transmission parallel to nth transmission of encoder W.

Finally, Bob decodes his key at the end of n transmissions over the wiretap channel by

applying a key generator function1 K2 to his received signals (y,b, P ).

Eve has access to e and P from her SI and the public channel, respectively; she also

receives z from the wiretap channel. Having (z, e, P ), Eve does her best to deduce any

information about the keys.

The objective of the key agreement problem is to find the forward key capacity for the

model by using an admissible key agreement code, which is defined as follows.

Definition 3.3. An admissible key agreement code (⌈2nRK ⌉, n), where R
K
∈ R

+∪{0} and

code block length n ∈ N, for the DM model consists of the following components:

1The key generator function at Bob is also called a decoder when the public channel is one-way in the
forward direction.
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• a key set K = {1, . . . , ⌈2nRK ⌉}. This set is publicity known to all parties;

• a randomization RV Q with distribution PQ over Q, where Q is an arbitrary set with

a finite size. For randomization, Alice generates a RV Q ∈ Q independent of s;

• key generator function K1 : Q × Sn → K. Observing s, Alice computes her key

K = K1(Q, s);

• wiretap channel encoding function W : Q× Sn → Xn. Alice transmits x = W(Q, s)

over the wiretap channel in n transmissions;

• public channel encoding function F : Q× Sn → P1n, where P1n is assumed to be the

range of function F which is subject to capacity constraint2 (3.1a), where |P1| = |P1n|.
Alice sends public message P = F(Q, s) over the public channel at time instant n;

• key generator (decoding) function K2 : Y
n × Bn × P1n → K. At the end of receiving

y, b, and P , Bob decodes his key K̂ = K2(y,b, P ).

The efficiency of an admissible key agreement coding scheme is measured by the av-

erage probability of error, the leakage rate, and the randomness of (K, K̂) as defined in

Definition 1.10.

For a given public channel capacity pair (C
P1
, 0), an achievable rate R

K
is defined in

Definition 1.11, where the admissible key agreement code is introduced in Definition 3.3.

The (forward) key capacity of the DM model can be defined as follows.

Definition 3.4. Recall the admissible key agreement code in Definition 3.3. For a given

public channel capacity C
P1

∈ [0,∞), the supremum of all achievable key rates according

to Definition 1.11 is called (forward) key capacity of that public channel. The forward

key capacity is denoted by function C
K
(C

P1
, 0), where (C

P1
, 0) is the pair of public channel

capacity.

The ultimate objective of this chapter is to find (or bound) the forward key capacity

of the DM model as a function of C
P1
.

Following Definition 2.9, we extend the definition of the less noisy property to the class

2In fact, we assumed P11 = P12 = . . . = P1(n−1) = {0}.
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of DM-SWCs. To do this, we assume a DM-SWC as a broadcast channel [2] with augmented

input (x, s) and with augmented outputs (y,b) and (z, e). To simplify the notations, we

represent augmented outputs with the new symbolˇon wiretap channel outputs, e.g.,

Y̌i = (Yi, Bi) , (3.3a)

Ži = (Zi, Ei) (3.3b)

for any i ∈ {1, . . . , n}.

Definition 3.5. For a given channel state distribution PS, the state-dependent channel is

said to be less noisy with respect to PS in Bob’s favor if

I(U ; Y̌ ) ≥ I(U ; Ž) (3.4)

holds for every auxiliary random variable U such that U → (X,S) → (Y̌ , Ž) forms a

Markov chain. A special class of less noisy DM-SWCs is the class of (physically) degraded

DM-SWCs for which

PY̌ Ž|XS = PŽ|Y̌PY̌ |XS , (3.5)

holds. A physically degraded DM-SWC is less noisy with respect to any channel state

distribution PS.

3.2 Statement of Main Results

In this section, we declare the main results for the DM model defined in Section 3.1.

Theorem 3.1 (Lower bound on the forward key capacity). Assume the DM model with

public channel capacity C
P1

∈ [0,∞). Define the set

O(C
P1
) , {PXU |S : C

P1
+ I(U ; Y̌ ) ≥ I(U ;S)} , (3.6)

where U ∈U with cardinality |U| ≤ |S||X| + 3 is an auxiliary RV such that U → (X,S)→
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(Y̌ , Ž). Then, the forward key capacity of the DM model with public channel capacity C
P1

is lower bounded by

C
K
(C

P1
, 0) ≥ max

PXU|S∈ O(C
P1

)
[I(U ; Y̌ )− I(U ; Ž)] . (3.7)

Comparing Theorem 3.1 with Corollary 2.1, we conclude that the key capacity exceeds

both the main channel capacity and the secrecy capacity in some DM-SWCs, which are

specified in the following corollary.

Corollary 3.1. Let C
P1

= 0. Assume a physically degraded DM-SWC according to (3.5).

Assume the main channel capacity of the DM-SWC, which is given in (1.33), is achievable

at input distribution P∗
X|SUP∗

U |SPS. At this distribution, if I(U∗;S) > I(U∗; Ž∗), then

C
K
(0, 0) ≥ I(U∗; Y̌ ∗)− I(U∗; Ž∗) > C

S
= Cm = I(U∗; Y̌ ∗)− I(U∗;S) ,

where I(U∗;S), I(U∗; Y̌ ∗), and I(U∗; Ž∗) are calculated at distribution

PŽ|Y̌PY̌ XUS = PY̌ Ž|XSP∗
X|SUP∗

U |SPS .

Moreover, the UBs on the forward key capacity of the DM model are as follows.

Theorem 3.2 (Upper bound on the forward key capacity). Let U be an auxiliary RV such

that U → (X,S) → (Y̌ , Ž). Then, the forward key capacity is upper bounded by

C
K
(C

P1
, 0) ≤ max

U→(X,S)→(Y̌ , Ž)

s.t. C
P1

+ I(U ; Y̌ ) +H(X |S,U) ≥ I(U ;S)

[I(U ; Y̌ )− I(U ; Ž)] .

Theorem 3.3 (Upper bound on the forward key capacity of a less noisy DM-SWC). Let

U and V be two auxiliary RVs such that (U, V ) → (X,S) → (Y̌ , Ž). If the channel is less

noisy with respect to the given distribution PS in Bob’s favor, then the forward key capacity
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is upper bounded by

C
K
(C

P1
, 0) ≤ max

(U, V )→(X,S)→(Y̌ , Ž)

s.t. C
P1

+ I(U ; Y̌ ) ≥ I(U ;S)

[I(U, V ; Y̌ )− I(U, V ; Ž)] .

As a special case, the following corollary shows that the forward key capacity of a

source-type model given in (1.20), which is originally established in [18, 21], is achievable

by using a single auxiliary RV.

Corollary 3.2. When no wiretap channel exists, i.e., X = Y = Z = {0}, the forward key

capacity of the model is given by

C
K
(C

P1
, 0) = max

U→S→(B,E)

s.t. C
P1

+ I(U ;B) ≥ I(U ;S)

[I(U ;B) − I(U ;E)] ,

where U ∈U is an auxiliary RV with |U|≤|S|+ 3.

When the capacity of the public channel becomes unlimited, the forward key capacity

is achieved as stated in the following theorem.

Theorem 3.4 (Public channel with unlimited capacity). If C
P1

→ ∞, then the forward

key capacity of the model is

C
K
(∞, 0) = max

U→(X,S)→(Y̌ ,Ž)
[I(U ; Y̌ )− I(U ; Ž)] . (3.8)

Further, if the channel is less noisy with respect to the distribution PS(s) in Bob’s favor,

then the forward key capacity can be simplified to

C
K
(∞, 0) = max

PX|S

[I(X,S; Y̌ )− I(X,S; Ž)] . (3.9)

C
K
(C

P1
, 0) is a non-decreasing function of C

P1
. Hence, C

K
(∞, 0) is the maximum forward
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key capacity that can be attained by a DM model with a fixed DM-SWC. However, we do

not demand an unlimited public channel capacity to achieve C
K
(∞, 0). Further, C

K
(C

P1
, 0)

is not a strictly increasing function of C
P1
. These facts are established in the following

corollary.

Corollary 3.3. For a given DM-SWC, let distribution

P∗
XU |S ∈ argmax

PXU|S

[I(U ; Y̌ )− I(U ; Ž)] ,

where U → (X,S) → (Y̌ , Ž). Define C∗
P

, [I(U∗;S) − I(U∗; Y̌ ∗)]+, which is calcu-

lated according to distribution PY̌ |XSP∗
XU |SPS. Then, C∗

P
is finite and for any C

P1
≥ C∗

P
,

C
K
(C

P1
, 0) = C

K
(∞, 0), where C

K
(∞, 0) is given by Theorem 3.4.

Now, consider a DM-SWC in which the CSI is fully known at both Alice and Bob (no

matter if it is fully known at Eve or not). In [64], the (forward) key capacity of this model

is obtained for the special case no public channel as given in (1.36). Based on Corollary 3.3,

we show that the public channel does not help the forward key capacity in this case. That

is, the result of [64] is optimum for any C
P1

≥ 0 as well. In this case, the forward key

capacity is obtained from Theorem 3.1 and Corollary 3.3 as follows.

Corollary 3.4. If Bob has access to the CSI, i.e., b = s, then the forward key capacity of

the model for any public channel capacity C
P1

≥ 0 is

C
K
(C

P1
, 0) = max

U→(X,S)→(Y,Z,E)
[I(U ; Y |S)− I(U ;Z|S) +H(S|Z,E)] .

3.3 The Proofs

In this section, we prove the results given in Section 3.2 as follows.
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3.3.1 The Proof of Theorem 3.1

The strategy of the proof is as follows. First, we prove that R
K

= I(U ; Y̌ ) − I(U ; Ž) is

an achievable key rate if PXU |S ∈ O(C
P1
). Proving this fact, the LB is obtained by taking

the supremum on all achievable key rates. On the other hand, |U|≤|S||X|+3 follows from

support lemma [6] as proved in [12, Appendix]. Hence, the size of set U is finite and we

can switch the supremum with the maximum according to Appendix B.

In the following, we prove that R
K
is an achievable key rate with the use of the strong

typicality introduced in Subsection 2.1.1. In Subsubsection 3.3.1.1, the preliminaries of

the proof is expressed where the distribution on RVs for different cases are established.

In Subsubsection 3.3.1.2, we create an admissible key agreement code for the DM model

satisfying the LB given in Theorem 3.1. In Subsubsection 3.3.1.3, we analyze the efficiency

of the admissible key agreement code according to Definition 1.10.

3.3.1.1 Preliminaries

Select set U such that |U|≤|S||X|+3. Given C
P1
, PBE|S , and PY Z|XS from the DM model,

arbitrarily select conditional PMFs PU |S and PX|US to fix

PY ZXUBE|S = PBE|SPU |SPX|USPY Z|XS (3.10)

such that C
P1

≥ I(U ;S) − I(U ; Y,B). From (3.10), Markov chains (B,E) → S → U and

(B,E) → (U, S) → X and (U,B,E) → (X,S) → (Y, Z) are justified. Also, PU (u) =
∑

s∈S
PU |S(u|s)PS(s) is fixed by (3.10), where u ∈ U.

If I(U ; Ž) ≥ I(U ; Y̌ ), then no key rate can be agreed between Alice and Bob, and so

K = {1}; if not, the admissible key agreement code is constructed in the next subsubsection.

3.3.1.2 Key Agreement Code Generation

Sequences u are generated i.i.d. according to PU . For any ǫ ∈ (0, 1), randomly pick up

N0 ≤ 2n(H(U)−ǫ) sequences u for the codebook generation. Each sequence u is called a
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codeword. The structure of the key agreement codebook is based on double random bin-

ning as explained below.

As shown in Figure 3.2, the (key agreement) codebook is constructed with N1 enu-

merated bins such that each bin consists of N2 enumerated sub-bins. N0 codewords are

randomly partitioned in all N1N2 sub-bins such that each sub-bin is filled with the same

number of codewords. Let consider each sub-bin as a set of codewords. Denote sub-bin

j located in bin i by the locator set Lij , where i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}; each
locator set has also the same number |L| , |Lij| = N0

N1N2
codewords. Define

Ii ,
N2⋃

j=1

Lij (3.11)

as the set of all codewords placed in bin i, where i ∈ {1, . . . , N1}; each bin has the same

|Ii| = N0

N1
codewords. For i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}, (i, j) is called the label of

codeword u, if u ∈ Lij ; i is also called its bin-label as u ∈ Ii. Finally, the matrix of all

labeled codewords is publicly released as the (key agreement) codebook, i.e.,

C =







u1

...

u
N0






. (3.12)

At each block code transmission, the encoder selects a codeword, which is specified

by ũ, from the codebook C. Having s and codeword ũ, transmitted signal x is gener-

ated according to P(x|s, ũ) =
n∏

i=1

PX|SU(xi|si, ũi). At the end of the transmission of the

whole block code, Bob decodes a codeword û from the codebook C. Specifications of the

codebook, the encoding and the decoding functions are individually determined for the

following two cases.

(a). Case I(U ; Y̌ ) ≥ I(U ;S).
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Figure 3.2: Structure of codebook C formed with a double random binning strategy.

• Codebook Specifications.

N0 = 2n(I(U ;Y̌ )−ǫ1), (3.13)

N1 = 2n[I(U ;Y̌ )−ǫ1−max{I(U ;S)+ǫ0, I(U ;Ž)−ǫ2}], (3.14)

N2 = 2n[max{I(U ;S)+ǫ0, I(U ;Ž)−ǫ2}−(I(U ;Ž)−ǫ3)], (3.15)

|L| = 2n[I(U ;Ž)−ǫ3], (3.16)

where 1 > ǫ0 > ǫ1 > ǫ > ǫ3 > ǫ2 > 0 are fixed real values.

• Encoding. Let define K1 , {1, . . . , N1}, K2 , {1, . . . , N2}, and assume key set

K = {1, . . . , N1.N2}. Alice generates a uniformly distributed RV Q ∈ K1. Given

s and Q, she picks up codeword ũ at uniformly random from the set {u : u ∈
IQ, (u, s) ∈ T∗

ǫ (PUS)}. If the set is void, the encoder randomly sends a codeword
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from set IQ, but an error will be declared at the encoder. Assume ũ ∈ Lij , where

i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}. Fix a one-to-one function K̃1 : K1 × K2 → K.

Then, K = K̃1(i, j). In this case the encoder sends no public message over the public

channel, i.e., P = 0. From equations (3.14) and (3.15), size of the key set is

|K| = N1N2 = 2n[I(U ;Y̌ )−I(U ;Ž)−ǫ1+ǫ3] . (3.17)

• Decoding. Observing b and receiving y from the DM-SWC, the legitimate decoder

builds the decoding set

D1 = {u : u ∈ C, (u,y,b) ∈ T∗
ǫ (PUY B)} .

If |D1| 6= 1 or ũ /∈ D1, the decoder declares an error; if not, K̂ = K̃1(i, j), where

ũ ∈ D1, and (i, j) is the label of codeword û = ũ.

(b). Case I(U ; Y̌ ) < I(U ;S).

• Codebook Specifications.

N0 = 2n(I(U ;S)+ǫ0) , (3.18)

N1 = 2n[I(U ;S)−I(U ;Y̌ )+ǫ0+ǫ1] , (3.19)

N2 = 2n[I(U ;Y̌ )−I(U ;Ž)−ǫ1+ǫ2] , (3.20)

|L| = 2n(I(U ;Ž)−ǫ2) , (3.21)

where 1 > ǫ0 > ǫ1 > ǫ > ǫ2 > 0 are fixed real values.

• Encoding. Let key set K = {1, . . . , N2}. Observing s, Alice picks up codeword ũ at

uniformly random from set {u : u ∈ C, (u, s) ∈ T∗
ǫ (PUS)}. The encoder declares an

error if this set is void, and then codeword ũ is randomly chosen from codebook C.

Assume that the label of ũ is (I, J), where I ∈ {1, . . . , N1} and J ∈ {1, . . . , N2}.
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Then, P = I and K = J . Therefore, P ∈ {1, . . . , N1} and K ∈ K. In this case

|P1| = 2n[I(U ;S)−I(U ;Y̌ )+ǫ0+ǫ1] , (3.22)

|K| = 2n[I(U ;Y̌ )−I(U ;Ž)−ǫ1+ǫ2] , (3.23)

due to equations (3.19) and (3.20).

• Decoding. Bob’s decoder knows the bin-label of the sent codeword from public mes-

sage P . Having P , y and b, it constructs the set

D2 = {u : u ∈ IP , (u,y,b) ∈ T∗
ǫ (PUY B)} .

An error will be declared by the decoder if |D2| 6= 1 or ũ /∈ D2; if not, then ũ = û

and assume that the label of codeword ũ ∈ D2 is (P, K̂), where K̂ ∈ K. Finally, K̂

is chosen by Bob as his key.

3.3.1.3 Analysis

Any codebook, as a random matrix, has codewords u1, . . . ,uN0 such that each codeword

is drawn i.i.d. according to PU(u). Hence, a random codebook is generated according to

P(C) =

n∏

j=1

N0∏

i=1

PU (uij) . (3.24)

We prove that the average probability of error and the average leakage rate over all ran-

domly generated key agreement codebooks vanishes as n → ∞. Then, this turns out that

there exists at least one codebook with small enough probability of error and small enough

leakage rate as n → ∞ due to the random coding argument [2,6]. Specifically, assume that

for any ǫ ∈ (0, 1) there exists n ≥ N such that

E(Perror(n)) ≤ ǫ , (3.25a)

1

n
I(K; ž, P,C) ≤ ǫ , (3.25b)
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where C is a random codebook with distribution (3.24) and E indicates an average over

the random codebook ensemble. Thus, from equations (3.25) we have

2ǫ ≥ E(Perror(n)) +
1

n
I(K; ž, P,C) , (3.26)

= E(Perror(n))−
1

n
H(K|ž, P,C) +

1

n
H(K)

= E(Perror(n))−
1

n

∑

C0

H(K|ž, P,C = C0)P(C = C0) +
1

n
H(K)

where (3.26) follows from equations (3.25a) and (3.25b). From (3.26), it can be con-

cluded [2] that there exists a key agreement codebook C0 such that

Perror(n)−
1

n
H(K|ž, P,C0) +

1

n
H(K) ≤ 2ǫ

or equivalently

Perror(n) +
1

n
I(K; ž, P,C0) ≤ 2ǫ (3.27)

Therefore, from (3.27) we conclude

Perror(n) ≤ 2ǫ , (3.28a)

1

n
I(K; ž, P,C0) ≤ 2ǫ , (3.28b)

that leads to the approval of the AR and AS conditions according to Definition 1.11.

In the sequel, we prove equations (3.25a) and (3.25b) in part (a) and part (b), respec-

tively to justify the AR and AS conditions. Moreover, we will prove that H(K|ž, P,C) ≥
log(|K|) − nǫ for any ǫ ∈ (0, 1) in part (b), and thus the ARN condition, given in Defini-

tion 1.11, is established according to the fact that H(K) ≥ H(K|ž, P,C).

To simplify notations, let define I0 , {u1, . . . ,uN0} as the set of all codewords in this

part. According to Definition 1.10, we examine the following conditions for the proposed

key agreement code.
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(a). The Average Probability of Error. Assume that EV1 and EV2 are error events

at the encoding step and the decoding step, respectively. We have

E(Perror(n)) ≤
∑

s ∈ Sn

P(s)[P(EV1 ∪ EV2|s)] , (3.29)

≤
∑

s ∈ T∗
ǫ (PS)

P(s)[P(EV1 ∪ EV2|s)] +
∑

s /∈ T∗
ǫ (PS)

P(s) , (3.30)

≤
∑

s ∈ T∗
ǫ (PS)

P(s)[P(EV1 ∪ EV2|s)] +
ǫ

4
, (3.31)

=
∑

s ∈ T∗
ǫ (PS)

P(s)[P(EV1|s) + P(EV2|EVc
1, s)] +

ǫ

4
, (3.32)

where the expectation in (3.29) is over all code-books C with distribution given in (3.24);

equation (3.31) follows from the fact that

∑

s /∈ T∗
ǫ (PS)

P(s) ≤ ǫ

4

for large enough n ≥ n11(ǫ) [2, Sec. 11.2]. Hence, we focus our attention to s ∈ T∗
ǫ (PS).

With this assumption, the terms in (3.32) are evaluated in the following.

Error at the Encoder. Error event at the encoder is

EV1 , {∄u ∈ IQ : (s,u) ∈ T∗
ǫ (PSU)} . (3.33)

Now, the first term in (3.32) is bounded as follows:

P(EV1|s) ≤ (1− 2−n(I(U ;S)+ǫ))|IQ| (3.34)

≤ (1− 2−n(I(U ;S)+ǫ))2
n(I(U ;S)+ǫ0)

(3.35)

≤ exp(−2−n(I(U ;S)+ǫ))2
n(I(U ;S)+ǫ0) (3.36)

= exp(−2−n(I(U ;S)+ǫ).2n(I(U ;S)+ǫ0))

= exp(−2n(ǫ0−ǫ))
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≤ ǫ

4
(3.37)

where

• (3.34) follows from the fact that the codewords have been generated independently

and from [2, Lem. (10.6.2)] for large enough n ≥ n12(ǫ) such that

ǫ0 ≥ ǫ+
1

n
log(− ln(

ǫ

4
)) > ǫ (3.38)

• (3.35) holds because 0 < 1 − 2−n(I(U ;S)+ǫ) < 1 and |IQ| = N0

N1
≥ 2n(I(U ;S)+ǫ0) due to

equations (3.13) and (3.14) as well as equations (3.18) and (3.19);

• (3.36) holds from inequality 1 + a ≤ exp(a) for any real value a;

• (3.37) is valid due to (3.38);

The encoder finally sends codeword ũ based on observation of s. If no error declared at

the encoder (conditioned on EVc
1 and given vector s), we have (ũ, s) ∈ T∗

ǫ (PUS).

Error at the Decoder. Error event at the decoder is defined as

EV2 , EV21 ∪ EV22 , (3.39)

where

EV21 = {(y,b, ũ) 6∈ T∗
ǫ (PY BU)} , (3.40)

EV22 = {∃u 6= ũ ∈ IP : (y,b,u) ∈ T∗
ǫ (PY BU)} . (3.41)

Therefore, we have

P(EV2|EVc
1, s) = P(EV21|EVc

1, s) + P(EV22|EVc
21,EV

c
1, s) , (3.42)

according to (3.39). The first term in the right-hand-side of (3.42) is bounded by the

following lemma.

Lemma 3.1. For any ǫ ∈ (0, 1), there exists n ≥ n21(ǫ) such that P(EV21|EVc
1, s) ≤ ǫ

4
.

87



Proof.

P(EV21|EVc
1, s) ≤ P(EV211|EVc

1, s) + P(EV212|EVc
211,EV

c
1, s) (3.43)

where

EV211 , {(b, s, ũ) 6∈ T∗
ǫ (PBSU )} , (3.44)

E212 , {(y,b, s, ũ) 6∈ T∗
ǫ (PY BSU)} . (3.45)

From (3.10), we have U → S → B; from condition EVc
1, we conclude (ũ, s) ∈ T∗

ǫ (PUS) for

given s; hence, there exists n ≥ n211(ǫ) such that P(E211) <
ǫ
8
due to Markov lemma [2,

Lem. 15.8.1] and the fact that b is drawn according to
n∏

i=1

PB|S(bi|si), where PB|S(b|s) =
∑

e∈E
PBE|S(b, e|s).
From (3.10), we have B → (U, S) → Y ; from condition Ec

211(s), we conclude (ũ,b, s) ∈
T∗
ǫ (PUΥBS) for given s; thus, there exists n ≥ n212(ǫ) such that P(E212) ≤ ǫ

8
due to Markov

lemma [2, Lem. 15.8.1] and the fact that y is drawn according to
n∏

i=1

PY |US(yi|ũi, si), where

PY |US(y|u, s)=
∑

x∈X
PY |XS(y|x, s)PX|US(x|u, s) due to equation (3.10).

Thus, the proof of the lemma is completed if n21(ǫ) > max{n211(ǫ), n212(ǫ)}.

The second term in the right-hand-side of (3.42) is bounded as follows:

P(EV22|EVc
21,EV

c
1, s) = P(EV22|EVc

21, s) (3.46)

≤
∑

u 6= ũ

u ∈ IP

P((y,b,u) ∈ T∗
ǫ (PY BU)|EVc

21, s) (3.47)

=
∑

u∈IP

∑

u 6= ũ

u ∈ IP

P(ũ = u|EVc
21, s)P((y,b,u) ∈ T∗

ǫ (PY BU )|EVc
21, s, ũ)
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≤
∑

u∈IP

∑

u 6= ũ

u ∈ IP

P(ũ = u|EVc
21, s)2

−n(I(U ;Y,B)−ǫ) (3.48)

≤
∑

u∈IP

P(ũ = u|EVc
21, s)[2

−n(I(U ;Y,B)−ǫ)(|IP | − 1)]

< [2−n(I(U ;Y,B)−ǫ)2n(I(U ;Y,B)−ǫ1)]
∑

u∈IP

P(ũ = u|EVc
21, s) (3.49)

= 2−n(ǫ1−ǫ) (3.50)

≤ ǫ

4
(3.51)

where

• (3.46) follows from the fact that EVc
1 ⊆ EVc

12;

• (3.47) is a union bound on (3.46);

• (3.48) follows from [2, Lem. (10.6.2)] for large enough n ≥ n22(ǫ);

• (3.49) follows from |I0| = N0 for the first case according to (3.13), also from |IP | = N0

N1

for P ∈ {1, . . . , N1} (the second case) according to equations (3.18) and (3.19);

• (3.50) follows from
∑

u∈IP
P(ũ = u|EVc

21, s, P ) = 1;

• (3.51) follows if

ǫ1 ≥ ǫ− 1

n
log(

ǫ

4
) > ǫ , (3.52)

As a result, if ǫ1 satisfies (3.52), from equations (3.42), (3.51), and Lemma 3.1, we conclude

P(EV2|EVc
1, s) ≤

ǫ

2
(3.53)

for n ≥ n2(ǫ), where n2(ǫ) , max{n21(ǫ), n22(ǫ)}.

Conditions (3.38) and (3.52) have been already satisfied due to the specifications of

the key agreement codebook. From equations (3.32), (3.37), and (3.53), we conclude that
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there exists n ≥ max{n1(ǫ), n2(ǫ)} such that

E(Perror(n)) ≤ ǫ (3.54)

for any ǫ ∈ (0, 1). This equation approves the validity of (3.25a).

(b). The Average Leakage Rate.

Lemma 3.2. For any ǫ5 > 0, there exists n ≥ n5(ǫ5) such that H(u|K, ž, P,C) < nǫ5,

provided ǫ0 > ǫ2 > ǫ.

Proof. Suppose an arbitrary decoder ∆ wishing to retrieve sent codeword ũ from K, ž,

and P as its input information. The output of this decoder is denoted by û. Having K

and P , the label of codeword ũ is uniquely determined with no error according to the

encoding functions, which are publicly known. Hence, decoder ∆ is to find û from the

sub-bin in which ũ is located. No matter what the decoding function of ∆ is, from Fano’s

inequality [2, Thm. 2.10.1], we have

H(u|K, ž, P,C) ≤ H(u|K, ž, P ) (3.55)

≤ B(ϑ) + ϑ log(|L|) ,
≤ B(ϑ) + n(I(U ; Ž)− ǫ2)ϑ , (3.56)

where

B(x) , −x log(x)− (1− x) log(1− x), (3.57)

ϑ , P(û 6= ũ|K, ž, P ). (3.58)

and (3.56) follows from equations (3.16) and (3.21) as ǫ3 > ǫ2 > 0.

The right-hand-side of (3.56) is valid for any decoder and it is determined by the

decoder’s probability of error ϑ. However, the value of left-hand-side is independent of

decoder ∆, and it is determined by the joint PMF of (u, K, ž, P ). So, any decoder ∆ with
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probability of error ϑ gives a corresponding UB, as a function of ϑ, on H(u|K, ž, P ).

On the other hand, we can claim that there exists a (strongly) jointly typical decoder

∆ for which ϑ ≤ ǫ for any ǫ ∈ (0, 1). This decoder is called ∆∗. The proof of this claim is

similar to that of the AR condition in the last part with the following modifications.

• B,Y , Y̌ , and their corresponding vectors are replaced by E,Z, Ž, and their corre-

sponding vectors, respectively;

• IP is changed to LIJ , where the random pair (I, J) is the label of codeword u

• Markov chain U → (X,S) → Z holds due to (3.10).

Finally, from (3.56) we conclude the lemma for decoder ∆∗ as for any ǫ5 ∈ (0, 1) there

exists a decoder ∆∗ with probability of error ϑ ≤ ǫ such that B(ϑ)+n(I(U ; Ž)− ǫ2)ϑ ≤ ǫ5

holds.

Lemma 3.3. H(u|P,C) ≥ n[I(U ; Y̌ ) − ǫ1], where ǫ1 ∈ (0, 1) was fixed in the codebook

generation.

Proof. Consider C as a random matrix of independently drawn codewords. Let RV I

denote the label of codeword u in codebook C. In other words, I is the row number of

random matrix C in which u is located.

H(u|P,C) = H(u, P |C)−H(P |C)

= H(u|C) +H(P |u,C)−H(P |C)

= H(u) +H(C|u)−H(C) +H(P |u,C)−H(P |C)

= H(u) +H(C|u)−H(C)−H(P |C) (3.59)

= H(u) +H(C|u, I) +H(I|u)−H(I|u,C)−H(C)−H(P |C)

= H(u) +H(C|u, I) +H(I|u)−H(C)−H(P |C) (3.60)

≥ H(u) +

N0∑

ℓ=1
ℓ 6=I

H(uℓ) +H(I|u)−
N0∑

ℓ=1

H(uℓ)− log(|P1|) (3.61)

= H(I|u)− log(|P1|) (3.62)
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= log(N0)− log(|P1|) (3.63)

= n[I(U ; Y̌ )− ǫ1] (3.64)

where

• (3.59) holds because P , if it is not zero as in the first case of code-books, is determined

by bin-index of u in C;

• (3.60) holds because I is uniquely determined by u and C;

• (3.61) follows from the following facts:

a. Codebook C is filled with codewords u at uniformly random;

b. Codewords u are drawn independently;

c. H(P |C) ≤ log(|P1|), where

log(|P1|) =
{

0 : if I(U ; Y̌ ) ≥ I(U ;S),

n[I(U ;S)− I(U ; Y̌ ) + ǫ0 + ǫ1] : if I(U ; Y̌ ) < I(U ;S)
(3.65)

due to public message encoding functions.

• (3.62) follows from H(u) = H(uI);

• (3.63) follows from the fact that when C is not given P{I = i|u} = 1
N0

for any

i ∈ {1, . . . , N0}, because a permutation of a codebook containing u results in an-

other codebook with the same PMF in which the label of codeword u is shifted cor-

respondingly. Hence,
∑

C

P(I = i|C,u)P(C|u) is the same for any i ∈ {1, . . . , N0}
(P(I = i|C,u) = 1 if label of u in C is i; otherwise, it is zero.);

• (3.64) follows from equations (3.13), (3.18), and (3.65).

Lemma 3.4. For any ǫ6 ∈ (0, 1), there exists n ≥ n6(ǫ6) such that 1
n
H(ž|u) ≥ H(Ž|U)−ǫ6.
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Proof.

H(ž|u) = H(z, e|u) (3.66)

= −
∑

(u,z,e)∈(Un,Zn,En)

P(z, e|u)P(u) log(P(z, e|u)) (3.67)

≥ −
∑

(u,z,e)∈T∗
ǫ (PUZE)

P(z, e|u)P(u) log(P(z, e|u)) (3.68)

≥ −n
∑

u∈T∗
ǫ (PU )

P(u)× (3.69)

[
∑

υ∈U

η(υ|u)
n

∑

(z,e)∈(Z,E)
PZ,E|U(z, e|u) log(PZ,E|U(z, e|u))] (3.70)

≥ n
∑

u∈T∗
ǫ (PU )

P(u)× (3.71)

[
∑

u∈U
(PU(U = u)− ǫ′)

∑

(z,e)∈(Z,E)
−PZ,E|U(z, e|u) log(PZ,E|U(z, e|u))] (3.72)

= n
∑

u∈T∗
ǫ (PU )

P(u)H(Z,E|U)(1− ǫ′′) (3.73)

≥ n(1− ǫ)H(Z,E|U)(1− ǫ′′) (3.74)

= n(H(Ž|U)− ǫ6) (3.75)

(3.76)

where

• (3.68) distribution PUZE is calculated from (3.10);

• (3.70) η(υ|u) represents the number of indices i ∈ {1, . . . , n} such that υ = ui (see

Section 2.1.1 for more details); also,

P(s,x|u)P(z, e|x, s) =
n∏

i=1

PSX|U(si, xi|ui)PZE|XS(zi, ei|xi, si) ,

where PSX|U and PZE|XS are calculated according to (3.10) (see also [53, Page 1634]);

• (3.72) follows from the fact that sequence u is ǫ-strongly typical (see [3, Sec. 2]);
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• (3.74) follows from
∑

u∈T∗
ǫ (PU )

P(u) ≥ 1− ǫ;

• (3.75) holds for any ǫ6 ∈ (0, 1) if ǫ′, ǫ′′, and ǫ were selected small enough such that

previous inequalities hold.

Finally, for any ǫ ∈ (0, 1), we complete the proof as follows:

H(K|ž, P,C) = H(K|ž, P,u,C) + I(K;u|ž, P,C)

= H(u|ž, P,C)−H(u|K, ž, P,C) (3.77)

= H(u|P,C)−H(ž|P,C) +H(ž|u, P,C)− nǫ5 (3.78)

≥ H(u|P,C)−H(ž) +H(ž|u)− nǫ5 (3.79)

≥ n[I(U ; Y̌ )− ǫ1]−
n∑

i=1

H(Ži) +

n∑

i=1

H(Ži|Ui)− n(ǫ5 + ǫ6) (3.80)

= n[I(Y̌ ;U)− I(Ž;U)]− n(ǫ1 + ǫ5 + ǫ6) (3.81)

≥ log(|K|)− n(ǫ2 + ǫ5 + ǫ6) (3.82)

≥ H(K)− nǫ (3.83)

where

• (3.77) follows from the fact that K is a function of u for given codebook C;

• (3.78) follows from Lemma 3.2 for n ≥ n5(ǫ5);

• (3.79) holds as H(ž|u,C) = H(ž|u) follows from Markov chain (C, P ) → u → (e, z);

Also, H(ž) ≥ H(ž|P,C);

• (3.81) holds because of the following facts:

a. The first term follows from Lemma 3.3;
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b. The second term follows from

H(ž) ≤
n∑

i=1

H(Ži) (3.84)

= n
n∑

i=1

1

n
H(Žτ |τ = i) (3.85)

= nH(Žτ |τ) (3.86)

≤ nH(Žτ ) (3.87)

= nH(Ž)

for a uniformly distributed RV τ ∈ {1, . . . , n}. Finally, let Z , Zτ ;

c. The third term follows from Lemma 3.4;

• (3.81) follows from equations (3.13), (3.21);

• (3.82) holds from equations (3.17) and (3.23);

• (3.83) is valid from log(|K|) ≥ H(K) and ǫ > ǫ1 + ǫ5 + ǫ6.

Hence, (3.83) approves the validity of (3.25b).

3.3.2 The Proof of Corollary 3.1

According to Corollary 2.1, we have

C
S
= Cm = I(U∗; Y̌ ∗)− I(U∗;S)

which is also valid if side information is available at Bob or/and Eve3. From Theorem 3.1,

we also understand that R
K
= I(U∗; Y̌ ∗)− I(U∗; Ž∗) is an achievable key rate if the DM-

SWC is less noisy in Bob’s favor. The fact that I(U∗;S) > I(U∗; Ž∗) completes the proof

of this corollary.

3If side information is available at any receiver, an augmented output can be considered at that receiver,
and thus the secrecy capacity can be extended to this case.
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3.3.3 The Proof of Theorem 3.2

The proof of the UB is established in two steps. In the first step, we obtain a UB on the

forward key capacity of the DM model due to the effect of the DM-SWC on the achievable

key rate. In the second step, we derive a constraint imposed by C
P1

due to the public

channel.

First, fix an arbitrarily small ǫ ≥ 0. According to Definition 1.11, a key rate R
K

is achievable if there exists an admissible key agreement code (⌈2nRK ⌉, n), which returns

(K, K̂), for the given ǫ such that

Perror(n) ≤
ǫ

3
, (3.88a)

R
L
(n) ≤ ǫ

3
, (3.88b)

X (n) ≤ ǫ

3
, (3.88c)

H(K)

n
+

ǫ

3
≥ R

K
. (3.88d)

where Perror(n), RL
(n), X (n) are defined in Definition (1.10). Then, we can derive the UB

in the following two steps.

(a). The effect of the wiretap channel on R
K
. First, we establish the following

lemma.

Lemma 3.5. Let PWUBESXY Z be a joint distribution on W×U×B×E× S×X×Y×Z

such that Markov chains W → (U,B,E) → (X,S) → (Y, Z) and W → (U,B,E, S) → X

hold, where the marginal distribution PBES is fixed. Recalling notations (3.3), define the

function

L(PUSXY̌ Ž|W=wm
) , I(U ; Y̌ |W = wm)− I(U ; Ž|W = wm) ,

where wm ∈ W is fixed. Then, there exists a distribution P∗
USXY̌ Ž

with marginal distribution

PBES such that

I(U∗; Y̌ ∗)− I(U∗; Ž∗) = L(PUSXY̌ Ž|W=wm
) , (3.89)
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where the left-hand-side is calculated at distribution P∗
USXY̌ Ž

.

Proof. Let

P∗
WUSXY̌ Ž , PBESP∗

W |BESP∗
U |WBESPX|UBESPY Z|XS (3.90)

where PBES, PX|UBES, and PY Z|XS are marginal distributions of PWUSXBY EZ and

∀(b, e, s) ∈ B× E× S :

P∗
W |BES(w|b, e, s) ,

{

1, :If w = wm;

0, :Otherwise.
(3.91a)

∀(u, b, e, s) ∈ U× B× E× S :

P∗
U |WBES(u|w, b, e, s) ,

{ PW |BES(wm|b,e,s)PU|BESW (u|b,e,s,wm)

PW (wm)
, :If w = wm;

0, :Otherwise.

(3.91b)

From (3.90) and (3.91a), we have

P∗
W (w) =

∑

s∈ S

P∗
W |S(w|s)PS(s) =

{

1, :If w = wm;

0, :Otherwise.
(3.92)

Moreover, from (3.90) and (3.91b) and (3.92), we have

∀u ∈ U : P∗
U(u) = PU |W (u|wm) . (3.93)

From (3.90) and (3.92), for any (wm, u, b, e, s) ∈ W×U×B×E× S (with fixed given wm)

we conclude that

P∗
UBES|W (u, b, e, s|wm) = P∗

BES|W (b, e, s|wm)P∗
U |BESW (u|b, e, s, w)

=
PBES(b, e, s)P∗

W |BES(wm|b, e, s)
P∗

W (wm)
P∗

U |BESW (u|b, e, s, wm)

97



= PBES(b, e, s)

(PW |BES(wm|b, e, s)
PW (wm)

PU |BESW (u|b, e, s, wm)

)

= PUBES|W (u, b, e, s|wm)

From this equation, for any (u, b, e, s, x, y, z) ∈ U × B × E × S × X × Y × Z and fixed

wm ∈ W, we have

P∗
UBESXY Z|W (u, b, e, s, x, y, z|wm) = PUSXY Z|W (u, b, e, s, x, y, z|wm)

due to Markov chains W → U → (X,S) → (Y, Z) and W → (U,B,E, S) → X and (3.90).

As a result,

L(PUSXY̌ Ž|W=wm
) = L(P∗

USXY̌ Ž|W=wm
) .

On the other hand, from (3.92), which is valid for distribution P∗
WUSXY̌ Ž

, we can redefine

W = {wm} for this distribution, and so I(U ; Y̌ |W = wm)−I(U ; Ž |W = wm) = I(U ; Y̌ )−
I(U ; Ž) at P∗

UBESXY Z(u, b, e, s, x, y, z) = P∗
UBESXY Z|W (u, b, e, s, x, y, z|wm). Hence, the

lemma is established.

Now, we prove the UB as follows.

nR
K
≤ H(K) + n

ǫ

3
(3.94)

≤ I(K; K̂) + n
2ǫ

3
(3.95)

≤ I(K;y,b, P ) + n
2ǫ

3
(3.96)

≤ I(K;y,b, P )− I(K; z, e, P ) + nǫ (3.97)

= I(K; Y̌ n
1 |P )− I(K; Žn

1 |P ) + nǫ (3.98)

=

n∑

i=1

[I(K; Y̌i|Y̌ i−1
1 , P )− I(K; Ži|Žn

i+1, P )] + nǫ (3.99)

=
n∑

i=1

[I(K; Y̌i|Y̌ i−1
1 , Žn

i+1, P )− I(K; Ži|Y̌ i−1
1 , Žn

i+1, P )] + nǫ (3.100)
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=
n∑

i=1

[I(Ui; Y̌i|Wi)− I(Ui; Ži|Wi)] + nǫ (3.101)

= n[
1

n

n∑

i=1

I(Uτ ; Y̌τ |Wτ , τ = i)− 1

n

n∑

i=1

I(Uτ ; Žτ |Wτ , τ = i)] + nǫ

= n[I(Uτ ; Y̌τ |Wτ , τ)− I(Uτ ; Žτ |Wτ , τ)] + nǫ (3.102)

= n[I(U ; Y̌ |W )− I(U ; Ž|W )] + nǫ (3.103)

= n
∑

w∈W
[I(U ; Y̌ |W = w)− I(U ; Ž|W = w)]P

W
(w) + nǫ

≤ n[I(U ; Y̌ |W = wm)− I(U ; Ž|W = wm)] + nǫ (3.104)

= n[I(U∗; Y̌ ∗)− I(U∗; Ž∗)] + nǫ (3.105)

≤ n sup
U→(X,S)→(Y,Z)

[I(U ; Y̌ )− I(U ; Ž)] + nǫ

= n max
U→(X,S)→(Y,Z)

[I(U ; Y̌ )− I(U ; Ž)] + nǫ (3.106)

where

• (3.94) follows from (3.88d);

• (3.95) follows from (3.88a) and H(K|K̂) ≤ n ǫ
3
due to Fano’s inequality [2, Thm.

2.10.1];

• (3.96) holds due to data processing inequality [2, Thm. 2.8.1] as K̂ = K2(y,b, P )

and so K → (y,b, P ) → K̂;

• (3.97) follows from (3.88b);

• (3.98) follows from (3.3).

• (3.99) is valid because of the chain rule for mutual information [2, Thm. 2.5.2];

• (3.100) holds from Csiszár-Körner’s sum identity (see Appendix D);

• (3.101) holds by definitions Wi , (P Y̌ i−1
1 Žn

i+1) and Ui , (K,Wi), i.e.,

Ui , (KPY̌ i−1
1 Žn

i+1) ; (3.107)

• (3.102) holds as a time-sharing RV τ with a uniform distribution over {1, . . . , n},

99



which is independent of (K,P, Sn
1 , X

n
1 , Y̌

n
1 , Ž

n
1 ), is applied;

• (3.103) follows from definitions

U , (Uτ , τ) , (3.108a)

W , (Wτ , τ) , (3.108b)

X , Xτ , (3.108c)

Y̌ , Y̌τ , (3.108d)

Ž , Žτ ; (3.108e)

Also, note that Markov chain W → U → (X,S) → (Y̌ , Ž) is valid; U and W are also

reserved for alphabet set of U and that of W , respectively;

• (3.104) follows from
∑

w∈W
P

W
(w) = 1 and selection

wm ∈ argmax
w∈W

[I(U ; Y̌ |W = w)− I(U ; Ž|W = w)] ,

and so the equality in (3.104) holds if

∀w ∈ W : w ∈ argmax
w∈W

[I(U ; Y̌ |W = w)− I(U ; Ž|W = w)] ; (3.109)

• (3.105) follows from Lemma 3.5 according to distribution P∗
USXY̌ Ž

for which Markov

chains W → U → (X,S) → (Y, Z) and (U,W,X, Y, Z) → S → (B,E) hold;

• (3.106) follows from Appendix B and the fact that U is a finite set according

to (3.107) and (3.108a) for a given n;

(b) The effect of the public channel on R
K
.

nC
P
≥ log(|P1|) (3.110)

≥ H(P )

= H(KP )−H(K|P )

= H(KP )− I(K; Y n
1 B

n
1 |P )−H(K|PY n

1 B
n
1 )
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≥ H(KP )− I(K; Y n
1 B

n
1 |P )− nǫ (3.111)

≥ H(KP )− I(KP ; Y̌ n
1 )− nǫ (3.112)

≥ H(KP )−H(KP |Xn
1 S

n
1 )− I(KP ; Y̌ n

1 )− nǫ (3.113)

= I(KP ;Xn
1 S

n
1 )− I(KP ; Y̌ n

1 )− nǫ

=

n∑

i=1

I(KP ;XiSi|Xn
i+1S

n
i+1)−

n∑

i=1

I(KP ; Y̌i|Y̌ i−1
1 )− nǫ (3.114)

=

n∑

i=1

[I(KPY̌ i−1
1 ;XiSi|Xn

i+1S
n
i+1)− I(Y i−1

1 ;XiSi|KPXn
i+1S

n
i+1)]

+
n∑

i=1

[I(KPXn
i+1S

n
i+1; Y̌i|Y̌ i−1

1 )− I(Xn
i+1S

n
i+1; Y̌i|KPY̌ i−1

1 )]− nǫ

=

n∑

i=1

[I(KPY̌ i−1
1 ;XiSi|Xn

i+1S
n
i+1)− I(KPXn

i+1S
n
i+1; Y̌i|Y̌ i−1

1 )]− nǫ (3.115)

=
n∑

i=1

[I(KPXn
i+1S

n
i+1Y̌

i−1
1 ;XiSi)− I(KPXn

i+1S
n
i+1Y̌

i−1
1 ; Y̌i)]

−
n∑

i=1

[I(Xn
i+1S

n
i+1;XiSi)− I(Y̌ i−1

1 ; Y̌i)]− nǫ

≥
n∑

i=1

[I(KPXn
i+1S

n
i+1Y̌

i−1
1 ;XiSi)− I(KPXn

i+1S
n
i+1Y̌

i−1
1 ; Y̌i)]

−
n∑

i=1

I(Xn
i+1S

n
i+1;XiSi)− nǫ (3.116)

=

n∑

i=1

[I(KPXn
i+1S

n
i+1Ž

n
i+1Y̌

i−1
1 ;XiSi)− I(KPXn

i+1S
n
i+1Ž

n
i+1Y̌

i−1
1 ; Y̌i)]

−
n∑

i=1

[I(Žn
i+1;XiSi|KPXn

i+1S
n
i+1Y̌

i−1
1 )− I(Žn

i+1; Y̌i|KPXn
i+1S

n
i+1Y̌

i−1
1 )]

−
n∑

i=1

I(Xn
i+1S

n
i+1;XiSi)− nǫ

=
n∑

i=1

[I(KPXn
i+1S

n
i+1Ž

n
i+1Y̌

i−1
1 ;XiSi)− I(KPXn

i+1S
n
i+1Ž

n
i+1Y̌

i−1
1 ; Y̌i)]
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−
n∑

i=1

I(Xn
i+1S

n
i+1;XiSi)− nǫ (3.117)

=

n∑

i=1

[I(KPŽn
i+1Y̌

i−1
1 ;XiSi)− I(KPŽn

i+1Y̌
i−1
1 ; Y̌i)]

+
n∑

i=1

[I(Xn
i+1S

n
i+1;XiSi|KPŽn

i+1Y̌
i−1
1 )− I(Xn

i+1S
n
i+1; Y̌i|KPŽn

i+1Y̌
i−1
1 )]

−
n∑

i=1

I(Xn
i+1S

n
i+1;XiSi)− nǫ

≥
n∑

i=1

[I(KPŽn
i+1Y̌

i−1
1 ;Si) + I(Xn

i+1S
n
i+1;Xi|Si)− I(KPŽn

i+1Y̌
i−1
1 ; Y̌i)]

−
n∑

i=1

[H(XiSi)−H(XiSi|Xn
i+1S

n
i+1)]− nǫ (3.118)

=

n∑

i=1

[I(KPŽn
i+1Y̌

i−1
1 ;Si) +H(Xi|Si)−H(Xi|KPŽn

i+1Y̌
i−1
1 Si)− I(KPŽn

i+1Y̌
i−1
1 ; Y̌i)]

−
n∑

i=1

H(XiSi) +H(Xn
1 S

n
1 )− nǫ (3.119)

=

n∑

i=1

[I(Ui;Si)−H(Xi|UiSi)− I(Ui; Y̌i)]

+
n∑

i=1

H(Xi|Si)−
n∑

i=1

H(Xi|Si) +H(Xn
1 |Sn

1 ) + [
n∑

i=1

H(Si)−H(Sn
1 )]− nǫ (3.120)

=

n∑

i=1

[I(Ui;Si)−H(Xi|UiSi)− I(Ui; Y̌i)] +H(Xn
1 |Sn

1 )− nǫ (3.121)

≥
n∑

i=1

[I(Ui;Si)−H(Xi|UiSi)− I(Ui; Y̌i)]− nǫ (3.122)

= n[

n∑

i=1

1

n
I(Ui;Si|τ = i)−

n∑

i=1

1

n
I(Ui; Y̌i|τ = i)

−
n∑

i=1

1

n
H(Xi|UiSi, τ = i)]− nǫ

= n[I(Uτ ;Sτ |τ)−H(Xτ |UτSτ , τ)− I(Uτ ; Y̌τ |τ)]− nǫ (3.123)
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≥ n[I(Uτ , τ ;Sτ )− I(Uτ , τ ; Y̌τ)−H(Xτ |Uτ , τ, Sτ )]− nǫ (3.124)

= n[I(U ;S)− I(U ; Y̌ )−H(X|U, S)]− nǫ (3.125)

where

• (3.110) follows from public channel capacity constraint given in (3.1a);

• (3.111) holds due to Fano’s inequality [2, Thm. 2.10.1] as well as satisfaction of the

AR condition (1.18a) by the code, because K̂ = K2(Y
n
1 , B

n
1 , P );

• (3.112) follows from substitution Y̌ n
1 = (Y n

1 , B
n
1 ); also, let Y̌i = (YiBi);

• (3.113) holds due to H(KP |Xn
1 S

n
1 ) ≥ 0;

• (3.114) follows from the mutual information chain rule [2, Ch. 2];

• (3.115) follows from Csiszár-Körner’s sum identity (see Appendix D);

• (3.116) follows from I(Y̌ i−1
1 ; Y̌i) ≥ 0;

• (3.117) holds due to Markov chains XiSi → Xn
i+1S

n
i+1 → Žn

i+1 and Y̌i → Xn
i+1S

n
i+1 →

Žn
i+1 as the wiretap channel is memoryless;

• (3.118) follows from data processing inequality [2, Thm. 2.8.1] because Markov chain

KPY̌ i−1
1 Žn

i+1X
n
i+1S

n
i+1 → XiSi → Yi holds as the wiretap channel is memoryless;

• (3.119) follows from
n∑

i=1

H(XiSi|Xn
i+1S

n
i+1) = H(Xn

1 S
n
1 ) due to entropy chain rule [2];

• (3.120) is valid due to Definition 3.107;

• (3.121) follows from the fact that Sn
1 is drawn i.i.d., and so

n∑

i=1

H(Si) = H(Sn
1 );

• (3.122) follows from H(Xn
1 |Sn

1 ) ≥ 0;

• (3.123) follows by assuming τ is a uniform RV over {1, . . . , n} such that it is inde-

pendent of (KPSn
1X

n
1 Y̌

n
1 Ž

n
1 );

• (3.124) holds as distribution of Sτ does not depend on τ (Sn
1 is i.i.d.); also, I(Uτ , τ ; Y̌τ ) ≥

I(Uτ ; Y̌τ |τ), where the equality holds if Y̌ n
1 is i.i.d.;

• (3.125) follows from definitions (3.108), also Sτ can be replaced by S as distribution

of Sτ does not depend on τ (Sn
1 is i.i.d.);

As equations (3.106) and (3.125) are valid for any achievable rate R
K
, and any ǫ ∈ (0, 1)
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and a correspondingly large enough n, the theorem is concluded.

3.3.4 The Proof of Theorem 3.3

For any i ∈ {1, . . . , n}, let Ui = (P Y̌ i−1
1 Sn

i+1) and Vi = (KXn
i+1); thus, the Markov chain

(Ui, Vi) → (Xi, Si) → (Y̌i, Ži) is valid for every i. Further, we can write

nC
P
≥ log(|P1|) (3.126)

≥ H(P )

≥ I(P ;Sn
1 )

=
n∑

i=1

I(P ;Si|Sn
i+1)

=

n∑

i=1

[I(PY̌ i−1
1 ;Si|Sn

i+1)− I(Y̌ i−1
1 ;Si|Sn

i+1, P )]

=

n∑

i=1

[I(PY̌ i−1
1 Sn

i+1;Si)− I(Sn
i+1; Y̌i|Y̌ i−1

1 , P )] (3.127)

≥
n∑

i=1

[I(Ui;Si)− I(Ui; Y̌i)]

= n[
1

n

n∑

i=1

I(Uτ ;Sτ |τ = i)− 1

n

n∑

i=1

I(Uτ ; Y̌τ |τ = i)] ,

= n[I(Uτ ;Sτ |τ)− I(Uτ ; Y̌τ |τ)] (3.128)

≥ n[I(Uτ , τ ;Sτ )− I(Uτ , τ ; Y̌τ )] (3.129)

= n[I(U ;S)− I(U ; Y̌ )] , (3.130)

where

• (3.126) follows from public channel capacity constraint given in (3.1a);

• (3.127) follows from the fact that s is i.i.d. and from Csiszár-Körner’s sum identity (see

Appendix D);

• (3.128) holds as a time-sharing RV τ with a uniform distribution over {1, . . . , n}, which is

independent of (K,P, Sn
1 ,X

n
1 , Y̌

n
1 , Žn

1 ), is applied;
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• (3.129) holds because τ is independent of Sτ (s is i.i.d.);

• (3.130) follows from definitions U , (Uτ , τ), Y̌ , Y̌τ , and S , Sτ .

Restarting from (3.100), we also have

nR
K
(C

P1
) ≤

n∑

i=1

[I(K, Y̌ i−1
1 , Žn

i+1, P ; Y̌i)− I(K, Y̌ i−1
1 , Žn

i+1, P ; Ži)] + nǫ (3.131)

=

n∑

i=1

[I(K, Y̌ i−1
1 , Žn

i+1,X
n
i+1, S

n
i+1, P ; Y̌i)− I(K, Y̌ i−1

1 , Žn
i+1,X

n
i+1, S

n
i+1, P ; Ži)]

−
n∑

i=1

[I(Xn
i+1, S

n
i+1; Y̌i|K, Y̌ i−1

1 , Žn
i+1, P )− I(Xn

i+1, S
n
i+1; Ži|K, Y̌ i−1

1 , Žn
i+1, P )] + nǫ

≤
n∑

i=1

[I(Ui, Vi; Y̌i)− I(Ui, Vi; Ži)] + nǫ (3.132)

= n[
1

n

n∑

i=1

I(Uτ , Vτ ; Y̌τ |τ = i)− 1

n

n∑

i=1

I(Uτ , Vτ ; Žτ |τ = i)] + nǫ (3.133)

= n[I(Uτ , Vτ ; Y̌τ |τ)− I(Uτ , Vτ ; Žτ |τ)] + nǫ

≤ n[I(Uτ , Vτ , τ ; Y̌τ )− I(Uτ , Vτ , τ ; Žτ )] + nǫ (3.134)

= n[I(U, V ; Y̌ )− I(U, V ; Ž)] + nǫ , (3.135)

where

• (3.131) holds due to less noisy property given in Definition 3.5;

• (3.132) follows from Markov chain (K, Y̌ i−1
1 , P ) → (Xn

i+1, S
n
i+1) → Žn

i+1 (The DM-SWC is

memoryless) and from less noisy property in Definition 3.5 (The second bracket in (3.132)

is always non-negative);

• (3.133) holds because a time-sharing RV τ with a uniform distribution over {1, . . . , n},
which is independent of (K,P, Sn

1 ,X
n
1 , Y̌

n
1 , Žn

1 ), is introduced;

• (3.134) holds due to less noisy property in Definition 3.5, i.e., I(τ ; Ž)− I(τ ; Y̌ ) ≤ 0;

• (3.135) follows from definitions U , (Uτ , τ), V , (Vτ , τ), Y̌ , Y̌τ , and Ž , Žτ .
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3.3.5 The Proof of Corollary 3.2

The proof directly follows from Theorems 3.1 and 3.2 when X = Y = Z = {0} is relaxed.

3.3.6 The Proof of Theorem 3.4

When C
P1

→ ∞, O(C
P1
) defined in Theorem 3.1 contains any arbitrary distribution PXU |S(x, u|s)

without any restriction as I(U ;S) ≤ H(S) ≤ log(|S|) < ∞ always holds. This confirms the direct

part from Theorem 3.1. The converse part is also concluded from Theorem 3.2 as the constraint

on the maximization is relaxed as C
P1

→ ∞.

When the DM model is less noisy in Bob’s favor, the upper bound (3.106) is simplified as

follows:

nR
K
≤ max

U→(X,S)→(Y,Z)
[I(U ; Y̌ )− I(U ; Ž)] + nǫ

= max
U→(X,S)→(Y,Z)

[I(U,X, S; Y̌ )− I(U,X, S; Ž)]− [I(X,S; Y̌ |U)− I(X,S; Ž|U)] + nǫ

(3.136)

≤ max
PX|S

[I(X,S; Y̌ )− I(X,S; Ž)] + nǫ , (3.137)

where (3.137) holds from Markov chain U → (X,S) → (Y̌ , Ž) and from less noisy property

stated in Definition 3.5 (The second bracket in (3.136) is always non-negative as a conditional

mutual information is expected value of unconditional ones [12].). On the other hand, upper

bound (3.137) is achievable according to Theorem 3.1 for U = (X,S) as C
P1

→ ∞.

3.3.7 The Proof of Corollary 3.3

The proof is concluded directly from Theorems 3.1 and 3.4 based on the following facts:

(a) P ∗
XU |S(x, u|s) ∈ O(C

P1
) for any C

P1
≥ C∗

P
;

(b) O(C
P1
) ⊆ O(∞) for any C

P1
≥ 0.
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Also, the existence of the maximum value is given by Appendix B. Also, C∗
P
is finite because

C∗
P
= [I(U∗;S)− I(U∗; Y̌ ∗)]+ ≤ H(S) ≤ log(|S|) < ∞ .

3.3.8 The Proof of Corollary 3.4

Let substitute Y̌ = (Y,B) and Ž = (Z,E) in Corollary 3.3. For any distribution PXU |S, we

have I(U ;S) − I(U ;Y, S) ≤ 0; thus, C∗
P

= 0, and so C
K
(C

P1
, 0) is independent of C

P1
. Hence,

C
K
(C

P1
, 0) = C

K
(0, 0). The proof of the corollary is finalized from [64, Thm. 1] and the fact that

U → S → E according to (3.10).
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Chapter 4

The Gaussian Model

In this chapter, we study the key agreement problem over a Gaussian model. The model consists

of a Gaussian wiretap channel with AWGI, which is non-causally known at the transmitter, and

a parallel public channel. This model can be considered as an extension of the DM model studied

in Chapter 3. In Definition 2.12, a physically degraded Gaussian wiretap channel with AWGI is

introduced. In this chapter, we assume a generalized Gaussian wiretap channel with two receivers,

Bob and Eve, such that the channel is not necessarily physically degraded in either Bob’s or Eve’s

favor. In fact, noise at Bob’s channel and noise at Eve’s channel are assumed to be correlated,

which is determined by noise covariance matrix.

In this chapter, we carefully examine the possibility of extending the results of Chapter 3 to

the Gaussian model. Specifically, we justify the extension of Theorem 3.1 by using generalized

Markov lemma [71] for Gaussian RVs (see Remark 2.3). The LB on the forward key capacity is

obtained by using a Gaussian auxiliary random variable. However, the existence of the maximum

value of all achievable key rates, as claimed in Theorem 3.1 and proved in Appendix B, can not

be extended to the Gaussian model because the size of the channel state alphabet is not finite.

Hence, the supremum of all achievable rates will be established in Theorem 4.1 as the forward

key capacity.

On the other hand, the UBs given in Theorem 3.2 and Theorem 3.3 do not apply to the

Gaussian model because the corresponding proofs rely on the finiteness of the alphabets of the

RVs in the DM model. For the same reason, we can not claim that the forward key capacity is
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a constant (equals C
K
(∞, 0)) when the public channel capacity is beyond a finite value based on

Corollary 3.3. In fact, our simulations show that the forward key capacity is a strictly increasing

function of the public channel capacity in the Gaussian model.

In lemma 4.2, we justify that the Gaussian model is equivalent to a Gaussian model with a

physically degraded Gaussian wiretap channel as long as the forward key capacity is concerned.

Based on this fact, the forward key capacity is not a function of the correlation coefficient between

noise of Bob’s channel and that of Eve’s channel. Using this equivalence, we prove the UB on the

forward key capacity of the corresponding Gaussian model with a physically degraded Gaussian

wiretap channel, and then we apply that UB to the forward key capacity of the original Gaussian

model. This strategy is similar to obtaining the UB on the capacity of a Gaussian BC [2,6].

On the other hand, we show that this equivalence does not hold when transmissions over

the public channel are permitted in the backward direction. Specifically, we establish that the

backward key capacity vanishes if the Gaussian wiretap channel is physically degraded in Eve’s

favor, but the backward key capacity can be positive even if the Gaussian wiretap channel is less

noisy in Eve’s favor. In this case, we use a strategy similar to Maurer’s method [17], which was

originally offered for a wiretap model where the main channel, from Alice to Bob, and the wiretap

channel, from Alice to Eve, are two independent BSCs. Motivated by this method, we show that

the backward key capacity and thus the key capacity are functions of the correlation coefficient

between noise of Bob’s channel and that of Eve’s channel.

After the UB on the forward key capacity is obtained, we establish the optimality of the

achievable scheme in Theorem 4.2 for the special case of unlimited capacity of the public channel.

We also calculate the forward key capacity for any public channel capacity in low SIR and high

SIR regimes.

The rest of this chapter is organized as follows. In Section 4.1, we will present the Gaussian

model. In this section, we will technically define an admissible key agreement coding scheme for

the model and the objective of the problem. In Section 4.2, we will declare our main results. We

will simulate our results for a Gaussian model with given parameters in Section 4.3. Finally, we

will establish the proofs of our results in Section 4.4.
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4.1 Problem Definitions

We consider a Gaussian model with three parties: a sender (Alice), a legitimate receiver (Bob),

and an eavesdropper (Eve). As depicted in Figure 4.1, the model consists of a public channel be-

tween Alice and Bob according to Definition 3.1 and a Gaussian state-dependent wiretap channel

(G-SWC) defined as follows.

Definition 4.1 (G-SWC). A G-SWC with non-causal SI at the transmitter and no SI at the

receivers is determined by (Γ,Λ, σ2
1 , σ

2
2 , ̺) ∈ R

+4 × [−1, 1], where

• random vector x ∈ R
n, which is the channel input (from Alice), is subject to average power

constraint
1

n
xxt ≤ Γ ; (4.1)

• random vector s ∈ R
n, which is known as interference, is drawn i.i.d. according to N (0,Λ);

• random matrix G2×n =

[

g1

g2

]

represents Gaussian noise of the channel, where g1 ∈ R
n and

g2 ∈ R
n are Gaussian noise of Bob’s channel and that of Eve’s channel, respectively. The

components of (g1,g2) are drawn i.i.d. according to (G1, G2) ∼ N
(

(0, 0),

[

σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

])

,

where ̺ is called the noise correlation coefficient;

• y and z are the first channel output (to Bob), and the second channel output (to Eve),

respectively, such that

y = x+ s+ g1 , (4.2a)

z = x+ s+ g2 ; (4.2b)

• the realization of random vector s is known at Alice prior to each block transmission1.

Alice and Bob wish to agree on a common secret key by transmission(s) over the Gaussian

model in presence of Eve. To do this, Alice and Bob exploit an admissible key agreement code

defined as follows.

Definition 4.2. Let i ∈ {1, . . . , n} be the time index. Recall the characteristics of a public

1No SI at Bob and Eve is assumed for simplicity of calculations, i.e., b = e = 0.
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Alice’s Bob’s Decoder
1
nxx

t ≤ Γ

Xi = Wi(Q1, s, P
(i−1)
21 )

Interference

x+ s y = x+ s+ g1

Si ∼N (0,Λ)

Eve’s Receiver

K K̂

I(K;z,p1,p2)
nz = x+ s+ g2

g1

g2

Public Channel with Capacity (C
P1
, C

P2
)

P1i = F1i(Q1, s, P
(i−1)
21 )

s

s

Encoder

P2i = F2i(Q2, Y
(i−1)
1 , P

(i−1)
11 )

x

Figure 4.1: Key agreement over the Gaussian model.

channel from Definition 3.1. An admissible key agreement code (⌈2nRK ⌉, n), where R
K
∈ R

+∪{0}
and code block length n ∈ N, for the Gaussian model consists of the following components:

• a key set K = {1, . . . , ⌈2nRK ⌉}. This set is publicity known to all parties;

• two randomization RVs with distributions PQ1 and PQ2 over Q1 and Q2, respectively,

where Q1 and Q2 are arbitrarily finite sets. For randomization, Alice and Bob generate RV

Q1 ∈ Q1 and RV Q2 ∈ Q2, respectively, such that Q1, Q2, and s are mutually independent.

Also, Q2 is independent of y;

• public channel encoding functions

(at Alice) F1i : Q1 ×R
n × (P21 × . . .× P2(i−1)) → P1i , (4.3a)

(at Bob) F2i : Q2 ×R
(i−1) × (P11 × . . . × P1(i−1)) → P2i . (4.3b)

Alice and Bob transmit forward public message P1i = F1i(Q1, s, P
(i−1)
21 ) and backward

public message P2i = F2i(Q2, Y
(i−1)
1 , P

(i−1)
11 ) over the public channel at time instant i
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subject to capacity constraints

forward capacity constraint: lim sup
n→∞

1

n
log(|P1|)≤C

P1
, (4.4a)

backward capacity constraint: lim sup
n→∞

1

n
log(|P2|)≤C

P2
. (4.4b)

• wiretap channel encoding function Wi : Q1×R
n×(P21× . . .×P2(i−1)) → R. Alice generates

Xi = Wi(Q1, s, P
(i−1)
21 ) and transmits it at time instant i over the wiretap channel such

that average power constraint (4.1) is met;

• key generator functions2

(at Alice): K1 : Q1 ×R
n × P2→K , (4.5a)

(at Bob): K2 : Q2 ×R
n × P1→K . (4.5b)

At the end of all transmissions, Alice and Bob compute K = K1(Q1, s,p2) and K̂ =

K2(Q2,y,p1), respectively.

As illustrated in the following remark, a physically degraded G-SWC as defined in Defini-

tion 2.12 is a special case of the G-SWC given in Definition 4.1.

Remark 4.1. In Definition 4.1, if ̺ = σ1
σ2

then I(X + S;Z|Y ) = 0 and the G-SWC is a physically

degraded in Bob’s favor according to Definition 2.12. Similarly, if ̺ = σ2
σ1

then I(X + S;Y |Z) =

0 and the G-SWC is a physically degraded in Eve’s favor according to Definition 2.12. See

equations 4.108 for more details.

The Gaussian model with a physically degraded G-SWC in Bob’s favor (respectively, in Eve’s

favor) is sketched in Figure 4.2 (respectively, in Figure 4.3).

When the public channel is one-way in the forward direction, the functions introduced in

Definition 4.2 can be simplified as follows with an abuse of the notions.

Definition 4.3. Assume no public channel is available from Bob to Alice, i.e., C
P2

= 0. Let

2The key generator function at Bob is also called a decoder when C
P2

= 0.
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1
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t ≤ Γ

Xi = Wi(Q1, s, P
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Figure 4.2: Key agreement over a physically degraded Gaussian model in Bob’s favor.
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Figure 4.3: Key agreement over a physically degraded Gaussian model in Eve’s favor.
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Q2 = 0 and p2 = 0. In this case, the key generator functions are specified by

(at Alice): K1 : Q1 ×R
n→K (4.6a)

(at Bob): K2 : R
n × P1→K , (4.6b)

where Alice and Bob generate the keys according to K = K1(Q1, s) and K̂ = K2(y,p1), respec-

tively. In this case, the public channel encoder at Alice is also denoted by function

F : Q1 ×R
n → P1 , (4.7)

where she sends public message p1 = F(Q1, s) over the public channel in n transmissions. The

wiretap channel encoder is also represented by function

W : Q1 ×R
n → R

n , (4.8)

where Alice transmits signal x = W(Q1, s) over the wiretap channel in n transmissions.

When C
P2

= 0, the assumptions Q2 = 0 and p2 = 0 in Definition 4.3 impose no loss on the

forward key capacity due to Lemma 4.1 and Definition 3.1, respectively.

An admissible key agreement code for the Gaussian model is defined in Definition 4.2. For the

Gaussian model, the efficiency of an admissible key agreement code is measured by the average

probability of error, the leakage rate, and the randomness of (K, K̂) as introduced in Defini-

tion 1.10 when b = e = 0 is relaxed and P , (p1,p2)
3.

For a given public channel capacity pair (C
P1
, C

P2
), an achievable rate R

K
is defined in Def-

inition 1.11, where the admissible key agreement code is introduced in Definition 4.2. The key

capacity of the Gaussian model can be also defined as follows.

Definition 4.4. Recall the admissible key agreement code in Definition 4.2. For a given public

channel capacity C
P1

∈ [0,∞) and C
P2

∈ [0,∞), the supremum of all achievable key rates ac-

cording to Definition 1.11 is called the key capacity of that public channel. The key capacity is

denoted by function C
K
(C

P1
, C

P2
), where (C

P1
, C

P2
) is the pair of public channel capacity.

3As mentioned in Subsection 1.4.1, P is a one-to-one function of all transmitted signals over the public
channel during n-time slot transmissions.
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In this chapter, we are interested in C
K
(C

P1
, 0) according to Definition 4.4. Also, we investigate

C
K
(∞,∞) when Eve’s channel is less noisy than Bob’s. We also study the effect of ̺ on the key

capacity.

4.2 Statement of Main Results

In this section, we focus on a Gaussian model with a G-SWC (Γ,Λ, σ2
1 , σ

2
2 , ̺) as defined in Sec-

tion 4.1. This section consists of two subsections: in Subsection 4.2.1, we investigate the forward

key capacity of the model; and in Subsection 4.2.2, we study effects of the public channel feedback

on the key capacity when Eve’s channel is less noisy than Bob’s.

4.2.1 Forward Public Channel

In this subsection, we assume the public channel is one-way in the forward direction, i.e., C
P2

= 0.

We are interested in bounds on C
K
(C

P1
, 0).

The following lemma allows to relax randomization Q2 = 0 at Bob when C
P2

= 0.

Lemma 4.1. Randomization at Bob does not increase the forward key capacity of the Gaussian

model.

When the public channel is in the forward direction, the following lemma justifies that the key

capacity of a G-SWC as defined in Definition 4.1 equals to the key capacity of its corresponding

physically degraded G-SWC.

Lemma 4.2. Recall Definition 2.12. The forward key capacity of the Gaussian model equals the

forward key capacity of the Gaussian model with a physically degraded G-SWC (Γ,Λ, σ2
1 , σ

2
2) in

either Bob’s favor (if σ2
2 > σ2

1), as sketched in Figure 4.2, or Eve’s favor (if σ1 ≥ σ2), as sketched

in Figure 4.3.

In the following theorems, we establish the LB and the UB on the forward key capacity of

the Gaussian model. To do this, we first prove the bounds on the forward key capacity of the

equivalent physically degraded model and then we apply the results to the actual Gaussian model

according to Lemma 4.2.
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Theorem 4.1 (Lower bound on the forward key capacity). Let σ2
2 > σ2

1. Assume the Gaussian

model with public channel capacity C
P1

∈ [0,∞). Define the set

O(C
P1
) ,







(γ, ρ) : γ ∈ [0, 1], ρ ∈ (−1, 1),

C
P1

≥ 1
2 log

(
(1−ρ2)(1−γ)2ΓΛ+σ2

1(Γ+γ2Λ+2ρ γ
√
ΓΛ )

(1−ρ2)Γ(Γ+2ρ
√
ΓΛ+Λ+σ2

1)

)






. (4.9)

Then, the key rate

R
K
(γ, ρ, C

P1
) =

1

2
log

(

[(1− ρ2)(1− γ)2ΓΛ + σ2
2(Γ + γ2Λ + 2ρ γ

√
ΓΛ )](Γ + 2ρ

√
ΓΛ + Λ + σ2

1)

[(1− ρ2)(1− γ)2ΓΛ + σ2
1(Γ + γ2Λ + 2ρ γ

√
ΓΛ )](Γ + 2ρ

√
ΓΛ + Λ + σ2

2)

)

(4.10)

is an achievable key rate of the Gaussian model for any (γ, ρ) ∈ O(C
P1
). Also, let

R
K
(C

P1
, 0) , sup

(γ,ρ)∈ O(C
P1

)
R

K
(γ, ρ, C

P1
) (4.11)

then, the forward key capacity of the model is lower bounded by

C
K
(C

P1
, 0) ≥ R

K
(C

P1
, 0) . (4.12)

As a special case, an achievable key rate on the forward key capacity of the Gaussian model in

low SIR regime can be calculated from Theorem 4.1. Using Lemma 4.2 together with Theorem 1.1,

which is originally proved by Watanabe and Oohama [40], the optimality of the achievable key

agreement code is illustrated. Hence, the forward key capacity in low SIR is given by the following

corollary.

Corollary 4.1. Assume σ2
1, σ

2
2, and Λ in the Gaussian model are fixed, where σ2

2 > σ2
1. In low

SIR regime, i.e., Γ
Λ → 0, the forward key capacity of the Gaussian model is given by

lim
Γ→0

C
K
(C

P1
, 0) =

1

2
log
(

(1− 22CK (∞,0))2
−2C

P1 + 22CK (∞,0)
)

, (4.13)

where C
K
(∞, 0) = 1

2 log
(
σ2
2(Λ+σ2

1)

σ2
1(Λ+σ2

2)

)

is the forward key capacity of the Gaussian model when

C
P1

→ ∞ and Γ → 0.
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When the public channel has unlimited capacity, the following important theorem proves that

C
K
(∞, 0) is optimally achievable. Further, C

K
(∞, 0) gives a UB on the forward key capacity,

which is a non-decreasing function of C
P1
.

Theorem 4.2 (Key capacity for unlimited public channel capacity). Let σ2
2 > σ2

1. If C
P1

→ ∞,

then the key capacity of the model is

C
K
(∞, 0) =

1

2
log

(

(Γ + Λ + 2
√
ΓΛ + σ2

1)σ
2
2

(Γ + Λ + 2
√
ΓΛ + σ2

2)σ
2
1

)

. (4.14)

Moreover, for any C
P1

≥ 0, C
K
(C

P1
, 0) is upper bounded by

C
K
(∞, 0) ≥ C

K
(C

P1
, 0) . (4.15)

When (power) signal-to-interference ratio (SIR) is high enough, C
K
(∞, 0) is asymptotically

achievable by the following corollary.

Corollary 4.2. Let σ2
2 > σ2

1. In high SIR regime, i.e., Γ
Λ → ∞, the forward key capacity of the

Gaussian model is

lim
Γ
Λ
→∞

C
K
(C

P1
, 0) =

1

2
log

(
σ2
2

σ2
1

)

(4.16)

for any C
P1

∈ [0,∞).

A natural question regarding forward key capacity of the Gaussian model is that if Bob’s

channel is required to be less noisy than Eve’s channel such that the key generation is possible.

The following corollary answers this question.

Corollary 4.3. The forward key capacity is non-zero iff Bob’s channel is less noisy than Eve’s

channel, i.e.,

σ2
2 > σ2

1 ⇔ C
K
(C

P1
, 0) > 0 . (4.17)

4.2.2 Two-Way Public Channel

In this subsection, we assume the public channel is two-way, but Eve’s channel is less noisy than

Bob’s channel, i.e. σ2
1 ≥ σ2

2 . We are interested in bounds on C
K
(∞,∞).
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Although condition σ2
2 > σ2

1 is required to have a positive forward key capacity according to

Corollary 4.3, this condition might be unnecessary for key generation when the public channel

is two-way, i.e., C
P2

> 0. In the following theorem, we focus on the key capacity of a Gaussian

model when Eve’s channel is less noisy than Bob’s channel. This theorem proves that Lemma 4.1

can not be extended to general case when a feedback from Bob to Alice exists, i.e., C
P2

> 0.

Theorem 4.3. Let Eve’s channel be less noisy than Bob’s channel, i.e., σ2
1 ≥ σ2

2, in the Gaussian

model.

(a) If the G-SWC is a physically degraded Gaussian wiretap channel in Eve’s favor as sketched

in Figure 4.3, i.e., ̺ = σ2
σ1
, then

C
K
(∞,∞) = 0 .

(b) If correlation coefficient of noise satisfies σ2
2σ1

≥ ̺, then

C
K
(∞,∞) ≥ 1

2
log

(

1 +
σ2
2 − 2ρσ1σ2

σ2
1

)

.

Part (a) of Theorem 4.3 is an extension of the key capacity of a degraded DM model, as

given in (1.26) by Ahlswede and Csiszár [18], to the Gaussian model with a physically degraded

G-SWC in Eve’s favor. Part (b) of Theorem 4.3 is an extension of Maurer’s scheme [17] to the

Gaussian model with the backward public channel.

Comparing Theorem 4.2 with Theorem 4.3, we understand that the key capacity is a function

of the correlation coefficient of noise (̺) when the backward public channel exists. However, the

forward public channel is independent of ̺. The characterization of the key capacity for any

̺ ∈ [−1, 1] remains as an open problem for future work.
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4.3 Simulations

In this section, we illustrate simulation results for a Gaussian model with a forward public channel.

Assume a Gaussian model with parameters

{
σ2
1
Λ = 0.1 ,
σ2
2
Λ = 0.4 .

(4.18)

In our simulations σ2
1, σ

2
2 , Λ are fixed, and the desired plots are sketched as a function of SIR,

i.e., (ΓΛ)dB . In the following, we consider the concepts behind each figure:

• Figure 4.4: Recalling Theorem 4.1, the LB on C
K
(C

P1
, 0) is simulated in this figure for 5

different values of C
P1
. The UB on the key capacity is also sketched in this figure according

to Theorem 4.2. This UB is the maximum achievable key capacity over the Gaussian model

with any C
P1

≥ 0. for a given G-SWC. According to this simulation, inequality

R
K
(0, 0) < R

K
(.25) < R

K
(.5) < R

K
(1) < R

K
(2) < C

K
(∞, 0) (4.19)

holds for any SIR. When Γ
Λ = 1, we have

{

R
K
(0, 0) = .9478 ,

C
K
(∞, 0) = .9491 .

(4.20)

Hence, we observe that R
K
(0, 0) is .137% less than C

K
(∞, 0), which is the maximum achiev-

able key capacity for the given G-SWC. This difference is even less for other values of C
P1

according to (4.19). Moreover, |R
K
(0, 0) − C

K
(∞, 0)| → 0 as Γ

Λ → ∞. In other words, the

LB on C
K
(C

P1
, 0) for any C

P1
≥ 0 asymptotically achieves

lim
Γ
Λ
→∞

C
K
(C

P1
, 0) =

1

2
log

(
σ2
2

σ2
1

)

= 1 bit/trans. .

This fact was established before in Corollary 4.2. Hence, the public channel has negligible

contribution in key generation in high SIR regime.
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• Figure 4.5 and Figure 4.6: Assume (γ∗, ρ∗) is the optimum4 value of the pair (γ, ρ) in the

sense that the supremum of (4.11) is obtained. Figure 4.5 and Figure 4.6 exhibit γ∗ and

ρ∗ versus SIR, respectively, for 6 values of C
P1
. According to these figures, both γ∗ and ρ∗

are increasing functions of C
P1

for any SIR. Specially,

∀ (
Γ

Λ
) ∈ R

+ : lim
C
P1

→∞
(γ∗, ρ∗) = (1, 1) .

Moreover, both γ∗ and ρ∗ are increasing functions of SIR (ΓΛ) for any C
P1

≥ 0. Specially

∀ C
P1

≥ 0 : lim
Γ
Λ
→∞

(γ∗, ρ∗) = (1, 1).

• Figure 4.7: Assume the Gaussian model with C
P1

= 0 (the G-SWC alone). In this figure,

we compare the (ordinary) capacity of the main channel [55], the known LB on the secrecy

capacity [60], and the LB on the key capacity given in Theorem 4.1. Obviously, the secrecy

capacity is upper bounded by the main channel capacity. However, as it is illustrated in

this figure, R
K
(0, 0) exceeds the ordinary capacity of the G-SWC when (ΓΛ)dB < −8.5 dB.

In this region, this means that

C
S
≤ Cm < R

K
(0, 0) ≤ C

K
(0) ,

where C
S
and Cm are the secrecy capacity and the main channel capacity of the G-SWC,

respectively. In other words, the key capacity in low SIR regime is generally greater than

both the main channel capacity and the secrecy capacity as it can be generated with assis-

tance of the interference.

• Figure 4.8: According to the achievable scheme stated in Theorem 4.1, the Gaussian model

demands an unlimited public channel capacity to achieve C
K
(∞, 0), which is the maximum

achievable key capacity for a given G-SWC. This fact was shown in (4.19) as well. This

is in contrast with the DM model in which C
K
(∞, 0) is achievable by using a finite public

channel capacity. However, with a finite public channel capacity in the Gaussian model,

4In this section, we seek the optimum values based on simulations which is subject to computational
approximations.
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the achieved key rate can be significantly close to C
K
(∞, 0). Specifically, let ζ (in percent)

be the relative difference between C
K
(∞, 0) and R

K
(C

P1
, 0), which is the achieved LB on

C
K
(C

P1
, 0) according to Theorem 4.1. In Figure 4.8, we investigate the minimum public

channel capacity C∗
P1

such that

∣
∣
∣
∣
∣

R
K
(C∗

P1
, 0) − C

K
(∞, 0)

C
K
(∞, 0)

∣
∣
∣
∣
∣
× 100 < ζ . (4.21)

According to this figure, the minimum required C∗
P1

versus SIR is sketched for three values

of ζ. Based on this figure, we show that there exists a finite public channel capacity

C∗
P1

< ∞ for the Gaussian model such that R
K
(C∗

P1
, 0) approximately equals C

K
(∞, 0) in

the sense of (4.21). In other words, for any C
P1

≥ C∗
P1
, R

K
(C

P1
, 0) achieves C

K
(∞, 0), which

is a UB on C
K
(C

P1
, 0), in approximate sense

∣
∣
∣
∣

R
K
(C

P1
, 0) − C

K
(∞, 0)

C
K
(∞, 0)

∣
∣
∣
∣
× 100 < ζ , (4.22)

which is valid due to R
K
(C∗

P1
, 0) ≤ R

K
(C

P1
, 0) ≤ C

K
(C

P1
, 0) ≤ C

K
(∞, 0).
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P1
.

123



−30 −20 −10 0 10
0

0.2

0.4

0.6

0.8

1

SIR (Γ

Λ
), dB

γ
∗

Optimum γ vs. SIR for fixed (
σ2

1

Λ
)
dB

= −10 dB and (
σ2

2

Λ
)
dB

= −3.98 dB

 

 

C
P1

= 0 bit/trans.

C
P1

= .25 bit/trans.

C
P1

= .5 bit/trans.

C
P1

= 1 bit/trans.

C
P1

= 2 bit/trans.

Figure 4.5: Coefficient γ∗ for the Gaussian model with capacity C
P1
.

124



−30 −20 −10 0 10
0

0.2

0.4

0.6

0.8

1

SIR (Γ

Λ
), dB

ρ
∗

Optimum ρ vs. SIR for fixed (
σ2

1

Λ
)
dB

= −10 dB and (
σ2

2

Λ
)
dB

= −3.98 dB

 

 

C
P1

= 0 bit/trans.

C
P1

= .25 bit/trans.

C
P1

= .5 bit/trans.

C
P1

= 1 bit/trans.

C
P1

= 2 bit/trans.

C
P1

= 4 bit/trans.

Γ

σ2

1

= 1

Figure 4.6: Correlation coefficient ρ∗ for the Gaussian model with capacity C
P1
.

125



−30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Rate vs. SIR for fixed (

σ2

1

Λ
)
dB

= −10 dB and (
σ2

2

Λ
)
dB

= −3.98 dB

SIR (Γ

Λ
), dB

A
ch

ie
va

b
le

R
a
te

,
b
it
s/

tr
a
n
s.

 

 

(1) LB on the secrecy capacity

(2) LB on forward key capacity

(3) The main channel capacity

(2)

(1)

(3)

Figure 4.7: Comparison of key capacity, secrecy capacity and capacity of the G-SWC.

126



−30 −20 −10 0 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SIR (Γ

Λ
), dB

C
P
1
,
b
it
s/

tr
a
n
s.

Required C
P1

vs. SIR for fixed (
σ2

1

Λ
)
dB

= −10 dB and (
σ2

2

Λ
)
dB

= −3.98 dB

 

 

ζ = 5%

ζ = 1%

ζ = 0.1%

Figure 4.8: The minimum required C
P1

to achieve C
K
(∞, 0) within tolerance ζ .

127



4.4 The Proofs

The detailed proofs of the results given in Section 4.2 are established in this section as follows.

4.4.1 The Proof of Lemma 4.1

Let C
P2

= 0 due to the assumption of this lemma. Having (z, e, P ), the security and randomness

of K does not depend on K̂ according to Definition 1.10. Also, K does not depend on Q2. Hence,

using a randomization at Bob has no effect on the security and randomness of K.

On the other hand, K = K1(Q1, s), x = W(Q1, s), and p1 = F(Q1, s). Hence, Markov chain

K → (Q1, s) → (p1,y) → (Q2,p1,y) → K̂ holds as Q2 is independent of (Q1, s,p1,y) according

to Definition 4.2. Hence, (p1,y) is a sufficient statistic [2, Sec. 2.9] of (Q2,p1,y) for K̂. Hence,

we conclude that randomization at Bob (Q2) does not decrease the average probability of error

P{K̂ 6= K}.
As a result, the randomization at Bob does not enhance the reliability, the security level, and

the randomness of (K, K̂) as defined in Definition 1.10. Hence, Q2 = 0 is relaxed when forward

key capacity is investigated.

4.4.2 The Proof of Lemma 4.2

Recalling Definition (4.3), let first justify the following lemma.

Lemma 4.3. P(K, K̂) and P(K, z,p1) are uniquely determined by probability density functions5

P(y|x + s), P(z|x + s), P(s), and probability mass function P(Q1).

5With an abuse of the notations in this section, P is also used as a probability density function for
continuous RVs.
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Proof. P(K, K̂) is given by

P(K, K̂) =

∫

s∈ Rn

∫

y∈ Rn

∑

Q1∈ Q1

P(K, K̂,Q1, s,y) dy ds

=

∫

s∈ Rn

∫

y∈ Rn

∑

Q1∈ Q1

P(K̂ |Q1, s,K,y)P(y|Q1 , s,K)P(K|Q1, s)P(Q1)P(s) dy ds

(4.23)

=

∫

s∈ Rn

∫

y∈ Rn

∑

Q1∈ Q1
K=K1(Q1,s)
x=W(Q1,s)

P(K̂ |Q1, s,K,x,p1 ,y)P(y|Q1, s,x,K)P(Q1)P(s) dy ds

(4.24)

=

∫

s∈ Rn

∫

y∈ Rn

∑

Q1∈ Q1

K=K1(Q1,s)
x=W(Q1,s)

K̂=K2(y,F(Q1,s))

P(y|x + s)P(Q1)P(s) dy ds (4.25)

where

• (4.23) is valid because Q1 and s are independent;

• (4.24) holds as x = W(Q1, s) and p1 = F(Q1, s) are deterministic functions of (Q1, s);

• (4.25) follows from the fact that K̂ = K2(y,p1) = K2(y,F(Q1, s)) and Markov chain

(K,Q1, s,x) → (x+ s) → y.

Further, P(K, z,p1) is given by

P(K, z,p1) =

∫

s∈ Rn

∑

Q1∈ Q1

P(K, z,p1,Q1, s) ds

=

∫

s∈ Rn

∑

Q1∈Q1

P(z|K,Q1, s,p1)P(K|Q1, s,p1)P(p1|Q1, s)P(Q1)P(s) ds

(4.26)

=

∫

s∈ Rn

∑

Q1∈ Q1
x=W(Q1,s)

P(z|K,Q1, s,x,p1)P(K|Q1, s)P(p1|Q1, s)P(Q1)P(s) ds

(4.27)
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=

∫

s∈ Rn

∑

Q1∈ Q1
K=K1(Q1,s)
p1=F(Q1,s)
x=W(Q1,s)

P(z|x + s)P(Q1)P(s) ds (4.28)

where

• (4.26) holds because Q1 and s are independent;

• (4.27) follows from Markov chain p1 → (Q1, s) → K and from the fact that x is a deter-

ministic function of (Q1, s);

• (4.28) holds due to Markov chain (K,Q1, s,x,p1) → (x+ s) → z.

Finally, equations (4.25) and (4.28) establish the lemma.

According to Definition 1.10, the reliability of the pair (K, K̂) is determined by P(K, K̂), and

its security level and randomness are uniquely characterized by P(K, z,p1).

According to Lemma 4.3, the reliability, security, and randomness of (K, K̂), as defined in

Definition 1.10, depend on joint distribution P(p1,y, z,x, s, Q1) but only through the conditional

marginal distributions P(y|x+s), P(z|x+s), P(s), and P(Q1). Hence, we conclude the following

statement.

First, let σ2 > σ1. Based on Lemma 4.3, if z is replaced by z′ = y + g′
2, where g′

2 is drawn

i.i.d. according to N (0, σ2
2 − σ2

1) independent of g1, the efficiency of an admissible key agreement

code does not change. Second, let σ1 ≥ σ2. Based on Lemma 4.3, similarly, if y is replaced by

y′ = z+ g′
1, where g′

1 is drawn i.i.d. according to N (0, σ2
1 − σ2

2) independent of g2, the efficiency

of an admissible key agreement code does not change. As a result, the forward key capacity of

a Gaussian model equals that of its corresponding Gaussian model with a physically degraded

wiretap channel.

4.4.3 The Proof of Theorem 4.1

We first examine if we can extend the proof of Theorem 3.1, which is given in Subsection 3.3.1,

to that of Theorem 4.1 (subject to possible modifications).

The mutual information function can be defined for continuous RVs by using the concept of

quantization with asymptotically small error (see [77, Lem. 5.5.1], [2, Ch. 8], and [6, Page 23] for
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more details). Assume that (X,Y ) ∈ R
2 is a pair of continuous RVs which is drawn according to

probability density function P(x, y). Then, the mutual information function between X ∼ P(x)

and Y ∼ P(y) is defined as

I(X;Y ) ,

∫

y∈R

∫

x∈R
P(x, y) log

( P(x, y)

P(x)P(y)

)

dx dy . (4.29)

Recall the definitions of typicality in Subsection 2.1.1. According to Remark 2.2, the strong

typicality used in the proof of Theorem 3.1 can not be defined for continuous RVs. However,

the definition of weak (entropy) typicality can be applied to both discrete and continuous RVs

according to Remark 2.1.

On the other hand, equations (3.37) and (3.51) still hold if the statements of strong typicality

are replaced by those of weak typicality. However, the validity of Lemma 3.1 and Lemma 3.2 relies

on the the validity of Markov lemma, which is not generally true for weak typicality. However,

according to Remark 2.3, the Markov lemma can be generalized for Gaussian input distributions

based on weak typicality [70].

With applying weak typicality and generalized Markov lemma [71], the proof of Lemma 3.1

and that of Lemma 3.2 can be extended to the Gaussian model subject to finding a Gaussian

input distribution satisfying average power constraint (4.1). Once these lemmas are established,

the AR, AS, and ARN conditions will be approved by following the lines of Subsection 3.3.1.

To complete the proof by using this approach, we seek an admissible key agreement code to

generate the claimed achievable key rate as well as to produce signal x according to a Gaussian

distribution satisfying constraint (4.1).

To do this, for any ǫ ∈ (0, 1), select real numbers Γ0 = Γ − ǫ, γ ∈ [0, 1], and ρ ∈ (−1, 1).

Define

β , ρ

√

Γ0

Λ
, (4.30a)

α , γ + β . (4.30b)

Also, let

X = T + βS , (4.31a)

U = T + αS , (4.31b)
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where T is a Gaussian RV generated according to T ∼ N (0,Γ0 − β2Λ) such that T and S are

independent, i.e., E(TS) = 0. Hence, from (4.31a), X is a Gaussian RV drawn according to

X ∼ N (0,Γ0) such that E(XS) = βΛ = ρ
√
Γ0Λ. Also, from (4.31b), U is a Gaussian RV drawn

according to U ∼ N (0,Γ0 + (α2 − β2)Λ).

Equations (4.31) will be later used for generation of x by using generalized DPC. By apply-

ing (4.30b), equations (4.31) can be merged into

U = X + γS , (4.32)

where the correlation coefficient between X and S is ρ ∈ (−1, 1).

If x is generated i.i.d. according to X ∼ N (0,Γ0) (as we demonstrate it in the sequel), the

channel outputs y and z are also i.i.d. Gaussian random vectors because of equations (4.2) and

the fact that s, g1, and g2 are i.i.d. Gaussian vectors. Hence, distributions of Xi, Si, Yi, Zi, G1i,

and G2i do not depend on time instant i ∈ {1, . . . , n}. Thus, we have

Y = X + S +G1 (4.33a)

Z = X + S +G2 (4.33b)

where G1 ∼ N (0, σ2
1) and G2 ∼ N (0, σ2

2) are AWGN.

I(U ;S), I(U ;Y ), and I(U ;Z) are computable from equations (4.32) and (4.33). To do this,

we first need the following expressions.

E(U2) = E(X2) + γ2E(S2) + 2γE(XS)

= Γ0 + γ2Λ + 2ρ γ
√

Γ0Λ , (4.34a)

E(US) = E(XS) + γE(S2)

= ρ
√

Γ0Λ+ γΛ , (4.34b)

E(Y 2) = E(X2) + 2E(XS) + E(S2) + E(G2
1) + 2E((X + S)G1)

= Γ0 + 2ρ
√

Γ0Λ + Λ+ σ2
1 , (4.34c)
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E(UY ) = E(X2) + (1 + γ)E(XS) + γE(S2) + E(G1X) + γE(G1S)

= Γ0 + ρ(1 + γ)
√

Γ0Λ + γΛ , (4.34d)

E(Z2) = E(X2) + 2E(XS) + E(S2) + E(G2
2) + 2E((X + S)G2)

= Γ0 + 2ρ
√

Γ0Λ + Λ+ σ2
2 , (4.34e)

E(UZ) = E(X2) + (1 + γ)E(XS) + γE(S2) + E(G2X) + γE(G2S)

= Γ0 + ρ(1 + γ)
√

Γ0Λ + γΛ . (4.34f)

where equations (4.34c), (4.34d), (4.34e) and (4.34f) hold from the fact that (G1, G2) is inde-

pendent of (X,S). We use [2, Thm. 8.4.1] to calculated entropy of a (multivariate) normal

distribution. Thus, from equations (4.34), we have

I(U ;S) = ~(U) + ~(S)− ~(U,S)

=
1

2
log

( E(U2)E(S2)

E(U2)E(S2)− (E(US))2

)

=
1

2
log

(
Γ0 + γ2Λ+ 2ρ γ

√
Γ0Λ

(1− ρ2)Γ0

)

, (4.35)

I(U ;Y ) = ~(U) + ~(Y )− ~(U, Y )

=
1

2
log

( E(U2)E(Y 2)

E(U2)E(Y 2)− (E(UY ))2

)

=
1

2
log

(
(Γ0 + γ2Λ + 2ρ γ

√
Γ0Λ )(Γ0 + 2ρ

√
Γ0Λ + Λ+ σ2

1)

(1− ρ2)(1 − γ)2Γ0Λ+ σ2
1(Γ0 + γ2Λ+ 2ρ γ

√
Γ0Λ )

)

, (4.36)

I(U ;Z) = ~(U) + ~(Z)− ~(U,Z)

=
1

2
log

( E(U2)E(Z2)

E(U2)E(Z2)− (E(UZ))2

)

=
1

2
log

(
(Γ0 + γ2Λ + 2ρ γ

√
Γ0Λ )(Γ0 + 2ρ

√
Γ0Λ + Λ+ σ2

2)

(1− ρ2)(1 − γ)2Γ0Λ+ σ2
2(Γ0 + γ2Λ+ 2ρ γ

√
Γ0Λ )

)

. (4.37)
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Now, we revise the admissible key agreement code given for the DM model to obtain an

admissible key agreement code for the Gaussian model. In the Gaussian model, codewords u are

generated i.i.d. according to U ∼ N (0,Γ0 + (α2 − β2)Λ). Having I(U ;S), I(U ;Y ), and I(U ;Z),

the key agreement codebook of the Gaussian model is constructed with the same specifications

as those of the DM model (see Subsection 3.3.1). The key generator, encoding and decoding

functions of the Gaussian model are similar to those of the DM model with the difference that

the strong typicality rule used in those functions is to be replaced by the weak typicality rule for

the Gaussian model.

A revealed random vector s is weakly typical due to AEP [2, Thm. 8.2.2] with high probability

as n → ∞, i.e., P{s ∈ Tǫ0(N (0,Λ))} > 1 − ǫ0 for any ǫ0 ∈ (0, 1) and block length n ≥ n0(ǫ0).

This is equivalent to

| 1
n
sst − Λ| ≤ ǫ′0 , (4.38)

where ǫ′0 = 2 ln(2)Λ ǫ0 according to Lemma C.1.

Having s, Alice selects codeword ũ from the key agreement codebook such that the pair

(ũ, s) ∈ Tǫ1(N
(

(0, 0),

[

E(U2) E(US)

E(US) E(S2)

])

) for 0 < ǫ0 ≤ ǫ1 < 1 and n ≥ n1(ǫ1). If no error

declares at the encoder6 such codeword ũ exists in the codebook. According to Lemma C.2

and (4.31b), this joint typicality leads to

| 1
n
tst| ≤ ǫ′1 (4.39)

where ǫ′1 =
ǫ1 ln(2)

α [3(Γ0 − β2Λ) + 2α2Λ] and

t = ũ− αs . (4.40)

Once codeword ũ is selected, signal x is generated by

x = t+ βs (4.41)

= ũ− γs (4.42)

6As mentioned at the beginning of the proof, equations (3.37) and (3.51) are still valid if weak typicality
is applied for their proofs. So, the probability of error at the encoder vanishes as n → ∞.
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where (4.42) follows from equations (4.30b) and (4.40). From (4.42), we conclude that x is a

Gaussian vector as ũ and s are i.i.d. Gaussian random vectors. x is also i.i.d. according to

X ∼ N (0,Γ0) due to equations (4.31) and (4.42). Moreover, ǫ1-weak typicality of (ũ, s) leads to

ǫ2-weak typicality of (x, ũ, s) for 0 < ǫ1 ≤ ǫ2 < 1 and n ≥ n2(ǫ2) due to (4.42) [2, Thm. 15.2.1].

Hence x ∈ Tǫ2(N (0,Γ0)), which is resulted in

| 1
n
xxt − Γ0| ≤ ǫ′2 (4.43)

for ǫ′2 = 2 ln(2)Γ0 ǫ2 due to Lemma C.1. If

ǫ ≥ ǫ′2 (4.44)

holds, power constraint (4.1) is met from (4.43) as Γ0 = Γ − ǫ. On the other hand, (4.44) is

achievable for any ǫ ∈ (0, 1) and n ≥ max{n0(ǫ0), n1(ǫ1), n2(ǫ2)} if ǫ0, ǫ1, and ǫ2 are initially

selected small enough.

We also have

| 1
n
xst − ρ

√

Γ0Λ| = | 1
n
(t+ βs)st − βΛ| (4.45)

≤ | 1
n
tst|+ β| 1

n
sst − Λ| (4.46)

≤ ǫ′1 + βǫ′0 (4.47)

< ǫ′1 +

√

Γ0

Λ
ǫ′0 (4.48)

≤ ǫ3 , (4.49)

where

• (4.45) holds due to equations (4.41) and (4.30a);

• (4.46) holds due to triangle inequality [78];

• (4.47) follows from equations (4.38) and (4.39);

• (4.48) follows from β <
√

Γ0
Λ due to (4.30a) and the fact that ρ ∈ (−1, 1);

• (4.49) holds for any ǫ3 ∈ (0, 1) if ǫ1 and ǫ0 are initially selected such that 1 > ǫ3 ≥
ǫ′1 +

√
Γ0
Λ ǫ′0.
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Equation (4.49) shows the essential difference between our strategy with that of ordinary

DPC [55]. Let θ be the angle between vectors x and s. In DPC [55], x and s are asymptotically

orthogonal, i.e., cos(θ) → 0 as n → ∞. However, in our strategy, cos(θ) → ρ as n → ∞.

Eventually, we provide a Gaussian distribution for the channel input satisfying the power con-

straint (4.1). As mentioned before, the proof can be completed with the lines of Subsection 3.3.1

when generalized Markov lemma [70, 71] for the Gaussian distribution is applied in place of the

ordinary Markov lemma according to Remark 2.3. Hence, rate

R
K
(γ, ρ, C

P1
) = I(U ;Y )− I(U ;Z)

=
1

2
log

(
[(1− ρ2)(1− γ)2Γ0Λ+ σ2

2(Γ0 + γ2Λ+ 2ρ γ
√
Γ0Λ )](Γ0 + 2ρ

√
Γ0Λ + Λ+ σ2

1)

[(1− ρ2)(1− γ)2Γ0Λ+ σ2
1(Γ0 + γ2Λ+ 2ρ γ

√
Γ0Λ )](Γ0 + 2ρ

√
Γ0Λ + Λ+ σ2

2)

)

is achievable subject to

C
P1

≥ I(U ;S)− I(U ;Y ) (4.50)

=
1

2
log

(
(1− ρ2)(1− γ)2Γ0Λ+ σ2

1(Γ0 + γ2Λ+ 2ρ γ
√
Γ0Λ )

(1− ρ2)Γ0(Γ0 + 2ρ
√
Γ0Λ+ Λ+ σ2

1)

)

where Γ0 = Γ− ǫ for a given ǫ ∈ (0, 1). The LB on the forward key capacity is also obtained by

taking the supremum of all achievable rates R
K
(γ, ρ, C

P1
).

4.4.4 The Proof of Corollary 4.1

The proof consists of two parts. In the first part, we prove that the key rate given in (4.13) is

achievable. In the second part, we show that the key rate coincides the forward key capacity

given in Theorem 1.1.

(a). The Direct Part. Let

ρ = 1 +
2σ2

1

Λ− (Λ + σ2
1)2

2C
P1

, (4.51)

γ =

√

Γ

Λ
. (4.52)
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Recalling Theorem 4.1, we prove that (γ, ρ) ∈ O(C
P1
) when Γ → 0 (and Λ is fixed) in the

following.

C
P1

=
1

2
log

(
Λ

Λ+ σ2
1

+
2σ2

1

(1− ρ)(Λ + σ2
1)

)

(4.53)

=
1

2
log

(
(1− ρ2)Λ + 2σ2

1(1 + ρ)

(1− ρ2)(Λ + σ2
1)

)

= lim
Γ
Λ
→0

1

2
log




(1− ρ2)(1−

√
Γ
Λ)

2 + 2
σ2
1
Λ (1 + ρ)

(1− ρ2)(ΓΛ + 2ρ
√

Γ
Λ + 1 +

σ2
1
Λ )





= lim
Γ
Λ
→0

1

2
log

(

(1− ρ2)(1 − γ)2ΓΛ + σ2
1(Γ + γ2Λ+ 2ρ γ

√
ΓΛ )

(1− ρ2)Γ(Γ + 2ρ
√
ΓΛ + Λ+ σ2

1)

)

(4.54)

where

• (4.53) follows from (4.51);

• (4.54) follows from (4.52);

From (4.54), we conclude (γ, ρ) ∈ O(C
P1
) as Γ → 0.

lim
Γ→0

R
K
(γ, ρ, C

P1
) = lim

Γ→0

1

2
log

(
[(1− ρ2)ΓΛ + 2σ2

2Γ(1 + ρ)](Λ + σ2
1)

[(1− ρ2)ΓΛ + 2σ2
1Γ(1 + ρ)(Λ + σ2

2)

)

(4.55)

=
1

2
log

(
[(1 − ρ)Λ + 2σ2

2 ](Λ + σ2
1)

[(1 − ρ)Λ + 2σ2
1 ](Λ + σ2

2)

)

=
1

2
log

(

Λσ2
1 + σ2

2 [(Λ + σ2
1)2

2C
P1 − Λ]

σ2
1(Λ + σ2

1)2
2C

P1

)

(4.56)

=
1

2
log

(

Λ(σ2
1 − σ2

2)2
−2C

P1 + σ2
2(Λ + σ2

1)

σ2
1(Λ + σ2

2)

)

(4.57)

where

• (4.55) follows from (4.10) and (4.52);

• (4.56) follows from (4.51).

From (4.57), we conclude that the key rate (4.13) is achievable, whereC
K
(∞, 0) = 1

2 log
(
σ2
2(Λ+σ2

1)

σ2
1(Λ+σ2

2)

)

.
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(b). The Converse Part. The converse part follows from Theorem 1.1 and Lemma 4.2 as

follows.

First, assume that the G-SWC in the Gaussian model is physically degraded in Bob’s favor,

i.e., ̺ = σ1
σ2
. Hence,

E(G1G2) = σ2
1 (4.58)

When Γ → 0, Alice, Bob, and Eve have access to S, S+G1, and S+G2, respectively. Consequently,

multivariate Gaussian RV (S, S +G1, S +G2) ∼ N ((0, 0, 0),Σ3×3), where

Σ3×3 =







Λ Λ Λ

Λ Λ + σ2
1 Λ + σ2

1

Λ Λ + σ2
1 Λ + σ2

2







(4.59)

due to the fact that S is independent of (G1, G2) as well as (4.58). Recalling Theorem 1.1, we

have

Σb|e = Σb − ΣbeΣ
−1
e Σeb

=
(Λ + σ2

1)(σ
2
2 − σ2

1)

Λ + σ2
2

(4.60a)

Σb|ae = Σb −
(

Σbe Σba

)
(

Σe Σea

Σae Σa

)−1(

Σeb

Σab

)

= σ2
1(1−

σ2
1

σ2
2

) (4.60b)

where (4.60a) and (4.60b) follow from (4.59).

From Theorem 1.1 and equations (4.60), we conclude that the achievable key rate (4.57) is

the forward key capacity of the Gaussian model when ̺ = σ1
σ2

and Γ → 0. On the other hand,

from Lemma 4.2, we conclude that the forward key capacity (4.57) is valid for a Gaussian model

with Γ → 0 and any ̺ ∈ [−1, 1].
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4.4.5 The Proof of Theorem 4.2

The proof consists of two parts: in the first part, we prove the direct part (achievability) of the

theorem; in the second one, we derive its converse part (optimality).

(a). The Direct Part. Let γ = 1 and ρ = 1 − δ, where δ ∈ (0, 1). Assume δ → 0; thus,

(1, 1 − δ) ∈ O(C
P1
) if condition

C
P1

≥ 1

2
log

(

σ2
1(Γ + Λ + 2

√
ΓΛ )

δ Γ(Γ + 2
√
ΓΛ + Λ+ σ2

1)

)

. (4.61)

is met. To satisfy this condition, select C
P1

(as a function of δ) large enough such that condi-

tion (4.61) is met for the given δ ∈ (0, 1). In other words, (1, 1 − δ) ∈ O(C
P1
) with δ → 0 as

C
P1

→ ∞. Hence,

R
K
(1, 1 − δ, C

P1
) =

1

2
log

(

σ2
2(Γ + Λ + 2(1− δ)

√
ΓΛ + σ2

1)

σ2
1(Γ + Λ + 2(1− δ)

√
ΓΛ + σ2

2)

)

(4.62)

is an achievable key rate according to (4.10), where δ → 0, δ > 0, as C
P1

→ ∞. As a result, the

following LB on C
K
(∞, 0) is asymptotically achievable according to (4.62) as δ → 0, δ > 0, and

C
P1

→ ∞:

C
K
(∞, 0) ≥ 1

2
log

(

(Γ + Λ + 2
√
ΓΛ + σ2

1)σ
2
2

(Γ + Λ + 2
√
ΓΛ + σ2

2)σ
2
1

)

. (4.63)

(b). The Converse Part. We prove a UB on the forward key capacity of a Gaussian model

with a physically degraded G-SWC (Γ,Λ, σ2
1 , σ

2
2) in Bob’s favor. According to Lemma 4.2, the

UB on the forward key capacity is valid for its equivalent Gaussian model with the G-SWC

(Γ,Λ, σ2
1 , σ

2
2 , ̺) as defined in Section 4.1.

Let i ∈ {1, . . . , n} be the time instant. According to (2.23), for a physically degraded G-SWC
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in Bob’s favor (σ2
2 > σ2

1), we have

Yi = Xi + Si +G1i (4.64a)

Zi = Yi +G′
2i , (4.64b)

where G1i ∼ N (0, σ2
1) and G′

2i ∼ N (0, σ2
2 − σ2

1) are independent. We first establish the following

lemma.

Lemma 4.4. Let i ∈ {1, . . . , n} be the time instant and define

Υi , E((Xi + Si)
2) . (4.65)

Assume a G-SWC with average power constraint (4.1) and the interference average power Λ.

Then, there exists a real number ρ ∈ [−1, 1] such that

1

n

n∑

i=1

Υi ≤ Γ + Λ+ 2ρ
√
ΓΛ , (4.66)

where the equality holds if Xi ∼ N (0,Γ) for any i ∈ {1, . . . , n}.

Proof. The proof is similar to [79, Eq. 90-92] as follows.

1

n

n∑

i=1

Υi =
1

n

n∑

i=1

E(S2
i ) +

1

n

n∑

i=1

E(X2
i ) +

2

n

n∑

i=1

E(XiSi)

≤ Λ + Γ +
2

n

n∑

i=1

E(XiSi) , (4.67)

where (4.67) follows from

• E(S2
i ) = Λ as Si ∼ N (0,Λ) for any i ∈ {1, . . . , n},

• 1
n

n∑

i=1
E(X2

i ) = E( 1n
n∑

i=1
X2

i ) ≤ Γ due to average power constraint (4.1).

Also, the equality in (4.67) holds if Xi ∼ N (0,Γ) for any i ∈ {1, . . . , n}.
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On the other hand,

| 2
n

n∑

i=1

E(XiSi)| ≤
2

n

n∑

i=1

√

E(X2
i )E(S2

i ) (4.68)

≤ 2

√
√
√
√

(

1

n

n∑

i=1

E(X2
i )

)(

1

n

n∑

i=1

E(S2
i )

)

(4.69)

= 2

√
√
√
√E( 1

n

n∑

i=1

X2
i )Λ (4.70)

≤ 2
√
ΓΛ , (4.71)

where

• (4.68) holds due to Cauchy-Schwarz inequality [80] (E(XiSi))
2 ≤ E(X2

i )E(S2
i );

• (4.69) follows from Cauchy-Schwarz inequality

(
n∑

i=1

√

E(X2
i )
√

E(S2
i )

)2

≤
(

n∑

i=1

E(X2
i )

)(
n∑

i=1

E(S2
i )

)

;

• (4.70) holds as Si ∼ N (0,Λ) for any i ∈ {1, . . . , n};
• (4.71) holds due to average power constraint (4.1).

Thus, from (4.70), we conclude that there exists a real number −1 ≤ ρ ≤ 1 such that

2

n

n∑

i=1

E(XiSi) = 2ρ
√
ΓΛ . (4.72)

Applying (4.72) to (4.67), the lemma is approved.

Fix an arbitrarily small ǫ ≥ 0. According to Definition 1.11, a key rate R
K

is achievable if

there exists an admissible key agreement code (⌈2nRK ⌉, n), which returns (K, K̂), for the given

ǫ such that equations (3.88) are held. Assuming σ2
1 ≥ σ2

2 , we derive a UB on the achievable key

rate R
K
, when C

P2
= 0, as follows.
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nR
K
≤ H(K) + n

ǫ

3
(4.73)

≤ I(K; K̂) + n
2ǫ

3
(4.74)

≤ I(K;y,p1, Q2) + n
2ǫ

3
(4.75)

≤ I(K;y,p1) + n
2ǫ

3
(4.76)

≤ I(K;y,p1)− I(K; z,p1) + nǫ (4.77)

= I(K;y|p1)− I(K; z|p1) + nǫ (4.78)

=
n∑

i=1

[I(Ui;Yi|Wi)− I(Ui;Zi|Wi)] + nǫ (4.79)

=

n∑

i=1

([I(Ui;Yi)− I(Ui;Zi)]− [I(Wi;Yi)− I(Wi;Zi)]) + nǫ (4.80)

≤
n∑

i=1

[I(Ui,Xi, Si;Yi)− I(Ui,Xi, Si;Zi)− I(Xi, Si;Yi|Ui) + I(Xi, Si;Zi|Ui)] + nǫ

(4.81)

=
n∑

i=1

([I(Xi, Si;Yi)− I(Xi, Si;Zi)]− [I(Xi, Si;Yi|Ui)− I(Xi, Si;Zi|Ui)]) + nǫ

(4.82)

≤
n∑

i=1

[I(Xi, Si;Yi)− I(Xi, Si;Zi)] + nǫ (4.83)

=

n∑

i=1

[~(Yi)− ~(Yi|Xi, Si)− ~(Zi) + ~(Zi|Xi, Si)] + nǫ

=
n∑

i=1

[~(Yi)− ~(Xi + Si +G1i|Xi, Si)− ~(Zi) + ~(Xi + Si +G2i|Xi, Si)] + nǫ

(4.84)

=

n∑

i=1

[~(Yi)− ~(G1i)− ~(Zi) + ~(G2i)] + nǫ (4.85)

=
n

2
log(2πeσ2

2)−
n

2
log(2πeσ2

1) +

n∑

i=1

[~(Yi)− ~(Yi +G′
2i)] + nǫ (4.86)
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≤ n

2
log(

σ2
2

σ2
1

) +
n∑

i=1

[~(Yi)−
1

2
log(22~(G

′
2i) + 22~(Yi))] + nǫ (4.87)

≤ n

2
log(

σ2
2

σ2
1

) +

n∑

i=1

[
1

2
log(2πeE(Y 2

i ))−
1

2
log(22~(G

′
2i) + 2log(2πeE(Y

2
i )))] + nǫ (4.88)

=
n

2
log

(
σ2
2

σ2
1

)

+

n∑

i=1

[
1

2
log(2πe(Υi + σ2

1))

−1

2
log(2πe(σ2

2 − σ2
1) + 2πe(Υi + σ2

1))] + nǫ (4.89)

=
n

2
log

(
σ2
2

σ2
1

)

+
1

2

n∑

i=1

log

(
Υi + σ2

1

Υi + σ2
2

)

+ nǫ

≤ n

2
log

(
σ2
2

σ2
1

)

+
n

2
log

(
1
n

∑n
i=1Υi + σ2

1
1
n

∑n
i=1Υi + σ2

2

)

+ nǫ (4.90)

≤ n

2
log

(

σ2
2(Γ + Λ + 2ρ

√
ΓΛ + σ2

1)

σ2
1(Γ + Λ + 2ρ

√
ΓΛ + σ2

2)

)

+ nǫ (4.91)

≤ n

2
log

(

σ2
2(Γ + Λ + 2

√
ΓΛ + σ2

1)

σ2
1(Γ + Λ + 2

√
ΓΛ + σ2

2)

)

+ nǫ (4.92)

where

• (4.73) and (4.74) follow from the lines of (3.94) and (3.95), respectively, which are valid

in the Gaussian model as well;

• (4.75) follows from data processing inequality [2, Thm. 2.8.1] due to K → (Q2,y,p1) → K̂;

• (4.76) follows from the fact that Q2 is independent of (K,y,p1) when C
P2

= 0;

• (4.77) follows from (3.88b), where P is a one-to-one function of p1 and e = 0 in Defini-

tion 1.10;

• (4.79) follows from the proof of (3.101), which is valid for the Gaussian model as well,

where P is a one-to-one function of p1 as well as Y̌i = Yi and Ži = Zi for any i ∈ {1, . . . , n}
because neither Bob nor Eve has SI in the Gaussian model. Also, Wi , (Y i−1

1 Zn
i+1P ) and

Ui , (K,Wi);

• (4.80) follows from Markov chain

Wi → Ui → (Xi, Si) → Yi → Zi (4.93)

143



which is valid due to definition Ui , (K,Wi) and equations (4.64) for any i ∈ {1, . . . , n};
• (4.81) and (4.82) follow from data processing inequality [2, Thm. 2.8.1] due to (4.93);

• (4.83) follows from data processing inequality [2, Thm. 2.8.1] due to (Xi, Si) → (Ui, Yi) →
Zi, which is valid because of (4.64) and (4.93), i.e.,

I(Xi, Si;Yi|Ui)− I(Xi, Si;Zi|Ui) = I(Xi, Si;Yi, Zi|Ui)− I(Xi, Si;Zi|Ui, Yi)− I(Xi, Si;Zi|Ui)

= I(Xi, Si;Yi|Ui, Zi)

≥ 0 ;

• (4.84) follows from equations (4.64), where G2i = G1i +G′
2i;

• (4.85) follows from the fact that G1i and G2i = G1i +G′
2i are independent of (Xi, Si);

• (4.86) follows from entropy of normal distributions [2, Thm. 8.4.1] and (4.64b);

• (4.87) follows from 22~(Yi+G′
2i) ≥ 22~(Yi) + 22~(G

′
2i) due to entropy power inequality [2,

Thm. 17.7.3] and the fact that G′
2i is independent of Yi in (4.64b);

• (4.88) follows from the fact that ~(Yi)− 1
2 log(2

2~(G′
2i) + 22~(Yi)) is an increasing function

of ~(Yi) as ~(G′
2i) = 1

2 log(2πe(σ
2
2 − σ2

1)) [2, Thm. 8.4.1] is fixed; it also follows from

~(Yi) ≤ 1
2 log(2πeE(Y 2

i )) due to [2, Thm. 8.6.5] as E(Yi) = 0 with the equality when

Yi ∼ N (0, E(Y 2
i ));

• (4.89) holds due to E(Y 2
i ) = Υi+σ2

1 according to (4.65) and the fact that G1i is independent

of (Xi, Si);

• (4.90) holds by applying Jensen’s inequality [2, Thm. 2.6.2] to log
(
Υi+σ2

1

Υi+σ2
2

)

as a concave

function of Υi due to σ2
2 > σ2

1;

• (4.91) follows from the fact that log
(
ξ+σ2

1

ξ+σ2
2

)

is an increasing function of ξ ∈ R
+ ∪ {0} due

to σ2
2 > σ2

1 ; then, it is valid because of Lemma 4.4 for some −1 ≤ ρ ≤ 1;

• (4.92) holds because function 1
2 log

(
σ2
2(Γ+Λ+2ρ

√
ΓΛ+σ2

1)

σ2
1(Γ+Λ+2ρ

√
ΓΛ+σ2

2)

)

is an increasing function of ρ

provided σ2
2 > σ2

1 .
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4.4.6 The Proof of Corollary 4.2

First, as Γ
Λ → ∞ the UB on the key capacity is

lim
Γ
Λ
→∞

C
K
(C

P1
, 0) ≤ lim

Γ
Λ
→∞

C
K
(∞, 0)

=
1

2
log

(
σ2
2

σ2
1

)

(4.94)

according to Theorem 4.2.

Second, for any fixed C
P1

∈ [0,∞), γ ∈ [0, 1], and ρ ∈ (−1, 1) we have

lim
Γ
Λ
→∞

1

2
log

(

(1− ρ2)(1 − γ)2ΓΛ + σ2
1(Γ + γ2Λ+ 2ρ γ

√
ΓΛ )

(1− ρ2)Γ(Γ + 2ρ
√
ΓΛ + Λ+ σ2

1)

)

= −∞ ;

hence, (γ, ρ) ∈ O(C
P1
) according to (4.9). Therefore, we obtain the following LB on the key

capacity from Theorem 4.1:

lim
Γ
Λ
→∞

C
K
(C

P1
, 0) ≥ 1

2
log

(
σ2
2

σ2
1

)

, (4.95)

for γ = 1 and ρ → 1. Eventually, equations (4.94) and (4.95) confirm the corollary.

4.4.7 The Proof of Corollary 4.3

The proof consists of two parts: in the direct part, we prove that if σ2
2 > σ2

1 then C
K
(C

P1
, 0) > 0;

in the converse part, we prove that if σ2
1 ≥ σ2

2 then R
K
≤ nǫ, for any achievable forward key rate

R
K

and arbitrarily small ǫ ≥ 0.

(a). The Direct Part. We show that for any C
P1

> 0 there exists (γ, ρ) ∈ O(C
P1
) such that

R
K
(γ, ρ, C

P1
) > 0. Recalling Theorem 4.1, let (γ, ρ) = (0, 0); then, (γ, ρ) ∈ O(C

P1
) because

1

2
log

(

(1− ρ2)(1− γ)2ΓΛ + σ2
1(Γ + γ2Λ+ 2ρ γ

√
ΓΛ )

(1− ρ2)Γ(Γ + 2ρ
√
ΓΛ + Λ+ σ2

1)

)

=
1

2
log

(
ΓΛ + σ2

1Γ

Γ(Γ + Λ + σ2
1)

)

< 0
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≤ C
P1

.

The achievable rate with (γ, ρ) = (0, 0) is

R
K
(0, 0, C

P1
) =

1

2
log

(
(ΓΛ + σ2

2Γ)(Γ + Λ + σ2
1)

(ΓΛ + σ2
1Γ)(Γ + Λ + σ2

2)

)

=
1

2
log




1 + Γ

(Λ+σ2
1)

1 + Γ
(Λ+σ2

2)



 ,

which is positive when σ2
2 > σ2

1 . Hence, the forward key capacity is positive when σ2
2 > σ2

1 .

(b). The Converse Part. We prove a UB on the forward key capacity of a Gaussian model

with a physically degraded G-SWC (Γ,Λ, σ2
1 , σ

2
2) in Eve’s favor. According to Lemma 4.2, the

UB on the forward key capacity is valid for its equivalent Gaussian model with the G-SWC

(Γ,Λ, σ2
1 , σ

2
2 , ̺) as defined in Section 4.1.

According to (2.24) and Definition 4.1, for a physically degraded G-SWC in Eve’s favor

(σ2
1 ≥ σ2

2), we have

y = z+ g′
1 (4.96)

where g′
1 is independent of (Q1, s,g2), and it is distributed i.i.d. according to N (0, σ2

1 − σ2
2) .

Fix an arbitrarily small ǫ ≥ 0. According to Definition 1.11, a key rate R
K

is achievable if

there exists an admissible key agreement code (⌈2nRK ⌉, n), which returns (K, K̂), for the given ǫ

such that equations (3.88) are met.

Assuming σ2
1 ≥ σ2

2 , we derive a UB on the achievable key rate R
K
, when C

P2
= 0, in the

following. We can restart from (4.78) because this step is valid when σ2
1 ≥ σ2

2 as well.

nR
K
≤ I(K;y|p1)− I(K; z|p1) + nǫ

= I(K;y|p1)− I(K;y, z|p1) + I(K;y|p1, z) + nǫ

= −I(K; z|y,p1) + I(K;y|p1, z) + nǫ

= −I(K; z|y,p1) + I(K;g′
1|p1, z) + nǫ (4.97)

= −I(K; z|y,p1) + nǫ (4.98)

≤ nǫ (4.99)
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where

• (4.97) follows from (4.96);

• (4.98) is valid because g′
1 is independent of (Q1, s,g2), and so it is independent of K =

K1(Q1, s), x = W(Q1, s), p1 = F(Q1, s) and z = x+ s+ g2 according to Definition 4.3.

Hence, if ǫ → 0, equation (4.99) proves that the forward key capacity of a Gaussian model

with a physically degraded G-SWC in Eve’s favor, i.e., σ2
1 ≥ σ2

2 , vanishes. Using Lemma 4.2, we

can extend this result to the Gaussian model with a G-SWC having parameters (Γ,Λ, σ2
1 , σ

2
2 , ̺),

where σ2
1 ≥ σ2

2 and ̺ ∈ [−1, 1], as specified in Definition 4.1.

4.4.8 The Proof of Theorem 4.3

Recalling Definition 4.2 for the notations, we prove this theorem in the following two parts.

(a). Part (a) of Theorem 4.3. To prove this part, we need the following lemma, which is

proved in [3, Lem. 17.18].

Lemma 4.5. For any i ∈ {1, . . . , n}, assume that P1i is a function of A, E, and P i−1
21 ,

(P21, P22, . . . , P2(i−1)), while P2i is a function of B, E, and P i
11 , (P11, P12, . . . , P1i). Then

I(A;B|E) ≥ I(A;B|E,p1,p2) ,

where p1 , Pn
11 and p2 , Pn

21.

Fix an arbitrarily small ǫ ≥ 0. According to Definition 1.11, a key rate R
K

is achievable if

there exists an admissible key agreement code (⌈2nRK ⌉, n), which returns (K, K̂), for the given ǫ

such that equations (3.88) are held.

As the channel is assumed to be physically degraded in Eve’s favor, (4.96) holds. Using this

equation, we derive a UB on the achievable key rate R
K

in the following.
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nR
K
≤ H(K) + n

ǫ

3
(4.100)

≤ I(K; K̂) + n
2ǫ

3
(4.101)

≤ I(K;y,p1, Q2) + n
2ǫ

3
(4.102)

≤ I(K;y,p1,p2, Q2) + n
2ǫ

3

≤ I(K;y,p1,p2, Q2)− I(K; z,p1,p2) + nǫ (4.103)

= I(K;y, z,p1,p2, Q2)− I(K; z|y,p1,p2, Q2)− I(K; z,p1,p2) + nǫ

= I(K;y, Q2|z,p1,p2)− I(K; z|y,p1,p2, Q2) + nǫ

≤ I(K;y, Q2|z,p1,p2) + nǫ

≤ I(K,Q1, s;y, Q2|z,p1,p2) + nǫ

= I(Q1, s;y, Q2|z,p1,p2) + nǫ (4.104)

≤ I(Q1, s;y, Q2|z) + nǫ (4.105)

= I(Q1, s;y|z) + nǫ (4.106)

=
n∑

i=1

I(Q1, s;Yi|z, Y (i−1)
1 ) + nǫ

≤ nǫ (4.107)

where

• (4.100) follows from (3.88d);

• (4.101) follows from (3.88a) and thus H(K|K̂) ≤ n ǫ
3 due to Fano’s inequality [2, Thm.

2.10.1];

• (4.102) holds due to data processing inequality [2, Thm. 2.8.1] as K̂ = K2(Q2,y,p1) and

so K → (Q2,y,p1) → K̂;

• (4.103) follows from (3.88b), where P is a one-to-one function of (p1,p2) and e = 0 in

Definition 1.10;

• (4.104) follows from the fact that K is a deterministic function of (Q1, s,p2);

• (4.105) follows from Lemma 4.5, where A, B, and E in this lemma must be substituted

by (Q1, s), (Q2,y), and z, respectively;

• (4.106) follows from the fact that Q2 is independent of (Q1, s,y) according to Definition 4.2;
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Figure 4.9: Key generation over a Gaussian model with a backward public channel.

• (4.107) follows from the fact that for any given i ∈ {1, . . . , n} and Zi, Yi = Zi+G′
1i is inde-

pendent of (Q1, s, (Z1, . . . , Zi−1, Zi+1, . . . , Zn), Y
(i−1)
1 ) because the G-SWC is memoryless

and physically degraded.

Hence, if ǫ → 0, equation (4.107) proves that the key capacity C
K
(∞,∞) of a Gaussian model

with a physically degraded G-SWC in Eve’s favor, i.e., σ2
1 ≥ σ2

2, vanishes.

(b). Part (b) of Theorem 4.3. First, let define independent Gaussian vectors g, g′
1, and

g′
2, which are drawn i.i.d. according to N (0, ̺σ1σ2), N (0, σ2

1 − ρσ1σ2), and N (0, σ2
2 − ρσ1σ2),

respectively. Then, the Gaussian noise vectors can be written as

g1 = g + g′
1 , (4.108a)

g2 = g + g′
2 . (4.108b)

This is due to the fact that the distribution of a pair of jointly Gaussian RVs is uniquely de-

termined by a covariance matrix. From (4.108), if ̺ = σ1
σ2

then g′
1 = 0 (in probability) and the

channel is physically degraded in Bob’s favor. Similarly, if ̺ = σ2
σ1

then g′
2 = 0 (in probability)

and the channel is physically degraded in Eve’s favor (see Remark 4.1).

The proof is justified as follows according to Figure 4.9. According to Corollary 4.3, no key
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rate can be agreed by using the G-SWC alone because Eve has an advantage over Bob on the

G-SWC. Hence, Alice sends nothing in our key agreement scheme, i.e. x = 0. Bob generates

a Gaussian wiretap codebook [13]. He generates the key according to randomization RV Q2,

which is uniformly distributed. Bob treats Q2 as a message and encodes it into codeword u by

using the Gaussian wiretap codebook. Observing y = s+ g1 from the wiretap channel, he sends

p2 = u + y = u + s + g1 over the public channel in the backward direction. Alice, who knows

s, calculates v = p2 − s = u + g1. On the other hand, Eve, who receives z = s + g2 from the

wiretap channel, is able to obtain p2 − z = u+ g1 − g2 = u+ g′
1 − g′

2 according to (4.108).

As a result, the public channel from Bob to Alice can be considered as a Gaussian wiretap

channel7 according to Figure 1.5, where Bob is the sender and Alice and Eve are the receivers.

Also, the transmission signal of the Gaussian wiretap channel is u, and Alice and Eve receive

u+ g1 and u+ g′
1 − g′

2, respectively. Hence, Bob can achieve secure rate

R =
1

2
log




1 + Ω

σ2
1

1 + Ω
σ2
1+σ2

2−2̺σ1σ2



 (4.109)

according to (1.14), where Ω is the variance of U (u is generated i.i.d. according to U ∼ N (0,Ω)).

This secure rate can be treated as an achievable key rate between Alice and Bob, i.e., R
K
(∞,∞) =

R. When the capacity of public channel is unlimited in the backward direction, Ω → ∞ gives

the maximum achievable key rate by the proposed scheme, and the result of this theorem is

concluded.

According to the proposed key agreement code, p2 − z is a sufficient statistic of z,p2 for key

K conditioned on key agreement codebook C, i.e., I(K;p2 − z|C) = I(K;p2, z|C). This fact,

which is proved below, approves that the justification, as explained above, for the security of the

code is correct.

H(K|z,p2,C) = H(K|p2 − z,p2,C)

= H(K,p2|p2 − z,C)−H(p2|p2 − z,C)

= H(K|p2 − z,C) +H(p2|K,p2 − z,C)−H(p2|p2 − z,C)

= H(K|p2 − z,C)

7The Gaussian wiretap channel is introduced as a physically degraded channel in paper [13]; however,
the secrecy capacity given in (1.14) still holds if the wiretap channel is stochastically degraded.
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Chapter 5

Conclusions

In this work, we have investigated two information-theoretic key agreement problems: the key

agreement over a discrete memoryless (DM) wiretap model, and the key agreement over a Gaus-

sian wiretap model. The key is to be agreed between the sender (Alice) and the legitimate receiver

(Bob) in presence of eavesdropper (Eve). Each model consists of a state-dependent wiretap chan-

nel with non-causal side information in parallel with a public channel. The CSI is fully known at

Alice as well. The ultimate aim of this research is to characterize the key capacity as a function

of (C
P1
, C

P2
), where C

P1
and C

P2
are the capacity of public channel in the forward direction and

backward direction, respectively (see Definition 3.1 for more details).

For the DM model, we have derived two UBs on the forward key capacity. The UB given in

Theorem 3.2 is valid for any DM model; however, the UB given in Theorem 3.3 is established

for a DM model in which the wiretap channel is less noisy in Bob’s favor. Each of these upper

bounds is in a form of a maximization problem subject to a constraint which is imposed by the

limited capacity of the public channel.

In Theorems 3.1, 3.2, and 3.3, X is drawn according to conditional PMF PX|US when (U,S) is

given, and so X is a stochastic function of (U,S) in general. Hence, H(X|U,S) 6= 0 in general in

Theorem 3.2. This fact is in contrast with the fact that X suffices to be a deterministic function

of (U,S) in (1.32) according to [49]. In other words, randomized generation of transmitted signal

X from (U,S) can generally enhance the key capacity, but it has no effect on the main channel

capacity.
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For each of the DM model and Gaussian model, we have achieved an LB on the forward key

capacity, i.e., when C
P2

= 0, as a function of C
P1

∈ [0,∞). The achievable key agreement code

exploits two resources in key generation: the first resource is a random generator at Alice, and

the second one is the random channel state sequences. As demonstrated in Section 2.2, the CSI

is capable of enhancing the secrecy capacity of a wiretap channel with random states. However,

we have shown that the positive effect of the CSI on the forward key capacity is generally more

than that of the secrecy capacity because the random CSI, which contains no information about

the message in the secrecy problem, is a valuable resource in key generation. Hence, the forward

key capacity of a wiretap channel with random states is generally larger than its secrecy capacity.

With the use of the public channel, contribution of the CSI in key generation may be intensified

according to our achievable key agreement code.

For the DM model, however, the forward key capacity is not generally a strictly increasing

function of the public channel capacity over interval C
P1

∈ [0,∞). For every discrete memoryless

state-dependent wiretap channel, there exists a finite public channel capacity C∗
P1

such that the

forward key capacity does not increase over interval C
P1

∈ [C∗
P1
,∞). This capacity is determined

by the wiretap channel. As a matter of fact, this saturation in key generation is due to the state

alphabet set which is finite, and so the entropy rate of the CSI (as a source) can be described

with a finite number of bits. Hence, the contribution of the CSI in key generation does not grow

if the capacity of the public channel exceeds some finite value, i.e., C∗
P1
.

On the other hand, the achieved LB on the forward key capacity of a Gaussian model is a

strictly increasing function over interval C
P1

∈ [0,∞) at any SIR Γ
Λ ∈ R

+ because of our simula-

tions. This is due to the fact that the size of state alphabet set is infinite, and the entropy rate of

the CSI (as a source) can not be described (error free) with a limited number of bits. Hence, the

contribution of the interference (CSI) in key generation can be increased if the public message,

which is correlated with the CSI, is sent over the public channel. According to our achievable

scheme, the public message improves Bob’s knowledge about the interference more than Eve’s,

and thus it regenerates the achievable key rate. However, neither Bob nor Eve can retrieve the

channel state vector (without error) unless the capacity of the public channel goes to infinity. In

this special case, Bob can asymptotically retrieve the channel state vector with arbitrarily small

error.

When C
P1

→ ∞, the optimum solution for the key generation is to amplify the interference
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at the transmitter according to its maximum power Γ and to forward it to the wiretap chan-

nel. In this case, the number of codewords exponentially goes to infinity. The codewords are

partitioned into subcodebooks such that each subcodebook represents a wiretap codebook of a

Gaussian wiretap channel [13] with equivalent power constraint Γ′ = (
√
Γ +

√
Λ)2. A codeword

is selected at random among codewords which are weakly typical with the released channel state

sequence at Alice. Then, the label of its subcodebook is sent over the public channel. Hence, the

achievable key rate equals the securely achievable rate by the subcodebook. We have proven that

this strategy achieves the forward key capacity of the Gaussian model. According to (1.14), we

have calculated the forward key capacity of the Gaussian model as

∀ (
Γ

Λ
) ∈ R

+ : C
K
(∞, 0) =

1

2
log




1 + Γ′

σ2
1

1 + Γ′

σ2
2



 , (5.1)

where σ2
1 and σ2

2 are noise variance of Bob’s channel and that of Eve’s channel, respectively.

The LB on the forward key capacity for any C
P1

∈ [0,∞) asymptotically converges to
1
2 log

(
σ2
2

σ2
1

)

as Γ → ∞. This forward key capacity asymptotically equals (5.1) when Γ′ → ∞.

This comparison justifies that the public channel has negligible contribution in the key genera-

tion in high SIR regime. On the other hand, that forward key capacity asymptotically equals the

secrecy capacity of a Gaussian wiretap channel1 (with the same parameters and no interference)

given in (1.14) as Γ → ∞. Hence, the random generator as the first resource of key generation

takes the dominant role over the interference as the second resource of key generation in high

SIR regime. In low SIR regime, the second resource of key generation becomes dominant over the

first one because the transmitted power is considerably less than the interference average power.

In this regime, the public channel significantly assists Alice and Bob for the key generation.

In the Gaussian model, we have proven that the forward key capacity is positive if and only

if Bob’s channel is less noisy than Eve’s channel, i.e., σ2
2 > σ2

1. When C
P2

= 0, the correlation

coefficient ̺ between noise of Bob’s channel and that of Eve’s channel has no effect on the forward

key capacity. Hence, the forward key capacity of a given Gaussian model is the same as that

of an equivalent Gaussian model with a physically degraded wiretap channel (see Chapter 4 for

more details). Based on this fact, a UB on the forward key capacity of the Gaussian model is

1Random generator is the only resource to provide security in a Gaussian wiretap channel (without
interference) [13].
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calculated, which equals C
K
(∞, 0) as given in (5.1).

On the other hand, we have shown that the key capacity is a function of ̺ in the Gaussian

model. Specially, the key capacity is zero for any (C
P1
, C

P2
) ∈ R

+ ×R
+ if the wiretap channel is

physically degraded in Eve’s favor, or equivalently

∀ (
Γ

Λ
) ∈ R

+ : C
K
(∞,∞) = 0 , (5.2)

when ̺ = σ2
σ1
. However, the key capacity is positive provided ̺ < σ2

2σ1
even if Eve’s channel is less

noisy than Bob’s. For this special case, we have extended Maurer’s strategy [17], which is given

for a binary symmetric wiretap channel, to the Gaussian model.

For the achievable forward key rate of the Gaussian model, we have applied a Gaussian input

distribution on the Gaussian wiretap channel in our achievable key agreement code. The input

sequence x is correlated with the state sequence s, where x is generated according to the general-

ized DPC strategy. The correlation coefficient ρ between X and S is a function of C
P1
. In other

words, sequence x can be expressed as sum of two sequences, i.e., x = t + βs from (4.41). The

first sequence, t, which is (asymptotically) orthogonal to s, conveys the information about the

output of the random generator (the first resource of key generation at Alice) to the receivers.

The second sequence, βs, conveys the information about the interference (the second resource of

key generation at Alice) to the receivers. These pieces of information assist Alice and Bob, who

is suffering from less noise than Eve, in key generation as mentioned above. Although the second

sequence (βs) is beneficial in the key agreement problem, it is useless in Costa’s problem [55].

The reason is the agreed key is dependent on the CSI, but a message is independent of the CSI,

and so β = 0 in [55].

5.1 Future Work Directions

In this section, the future research directions based on this research are offered, which can be

followed by ambitious researchers in the field of information-theoretic security.
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5.1.1 Bounds on the Forward Key Capacity of the Gaussian

Model

By simulations, we have shown that the LB on forward key capacity of the Gaussian model is a

strictly increasing function of the public channel capacity. However, the mathematical proof of

this conjecture is still required. Also, the LB is achieved by applying Gaussian input distribution

to the wiretap channel. We have proven that this input distribution is optimal when C
P1

→ ∞
as well as when Γ

Λ → ∞. However, the Gaussian distribution may not be optimal for all model

parameters.

On the other hand, the UB on the forward key capacity is loose in low SIR regime. To derive

a tighter UB, we suggest treating supremum of equation (4.91) over set of eligible values of ρ.

The set of eligible ρ’s is a subset of set [0, 1] which is to be determined by a constraint imposed

by public channel capacity C
P1

(when it is finite), and thus obtaining this set is our next future

work.

5.1.2 Gaussian Models with Side Information at All Parties

In the Gaussian model, we assumed no SI at Bob and Eve for simplicity of calculations. An

extended key agreement problem of this work is to suppose Gaussian SI correlated with the CSI

at both Bob and Eve, e.g., the SI is a noisy version of the CSI. We suggest using a similar

achievable key agreement scheme that is given in Chapter 4 for this new model. To do this, we

can assume a Gaussian wiretap channel with augmented outputs in the same way that we applied

this method in Chapter 3.

In this thesis, the CSI is also assumed to be fully known at Alice. A generalized version of

this key agreement problem is to suppose that the SI at Alice is dependent on the CSI but it is

not equal to the CSI (the CSI is partially known at Alice).

The generalization of the results of this thesis for the Gaussian model in which noisy versions

of the interference is available at parties is offered as future work.
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5.1.3 Key Agreement over Wiretap Models with a Two-Way

Public Channel

The main focus of this thesis is on the forward key capacity. However, we will continue this

research to characterize (bound) the key capacity of the wiretap models as a function of (C
P1
, C

P2
).

For the DM model, the achieved LB on the forward key capacity given in Theorem 3.1 is

also an LB on the key capacity. When the capacity of the public channel is unlimited in both

directions, the key agreement problem was studied by Khisti [73]. As explained in Section 1.8,

an LB on the key capacity of this model is obtained in [73, Thm. 3]. Using the strategy of this

theorem, an improved LB on the key capacity of the DM model is proposed as

C
K
(∞,∞) = max{max

PX|S

[I(X,S; Y̌ )− I(Y̌ ; Ž)], C
K
(∞, 0)} , (5.3)

where C
K
(∞, 0) is given in Theorem 3.4.

For the Gaussian model, we have studied the key capacity when Eve’s channel is less noisy

than Bob’s channel in this work. As given in Theorem 4.3, we have proven that the key capacity

is a function of noise correlation coefficient ̺. We have also calculated an LB on C
K
(∞,∞) when

̺ ≤ σ2
2σ1

. Further, for case ̺ = σ2
σ1
, we have established that the key capacity vanishes as given

in (5.2). However, bounds on the key capacity is still open for other values of ̺ as well as for

finite values of C
P2
.

5.1.4 Reliability-Exponent and Security-Exponent of the Key

Agreement

The reliability-exponent and security-exponent are defined in Definition 1.12. The reliability-

exponent and security-exponent determine how fast the average probability of error Perror(n)
given in (1.15) and security index S(n) given in (1.30) goes to zero, respectively.

In this work, we have used joint typicality (see Section 2.1.1) for encoding and decoding in

Chapter 3 and Chapter 4. However, a jointly typical decoder is not optimal in the sense of

minimizing the average probability of error. In fact, this suboptimal decoder can achieve the

key capacity in some special cases (see Chapter 3 and Chapter 4). A maximum likelihood (ML)
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decoder [6, Page 72], on the other hand, is an optimal decoder to obtain minimum average prob-

ability of error. This means that the reliability-exponent2 of a ML decoder is generally better

than that of a jointly typical decoder. However, jointly typical decoding is preferred for ease

of analysis as long as the block length is sufficiently large. This is why Cover and Thomas [2]

developed this method for the multi-user information theory.

The lemmas used for (jointly) typicality to analyze the AR condition and the AS condition in

Chapters 3 and 4 justify the asymptotic behavior of those conditions. In other words, although

typical sequences are very intuitive and efficient for sufficiently large block length, they can not

be used to derive the exponents [81].

Large deviation theory [2, Ch. 11] deals with small probability events with (usually) an expo-

nentially vanishing probability. The method of types [3, 81] is a powerful tool in large deviation

theory to derive the security-exponent and reliability-exponent in the DM model. According

to this method, sequences with a given length n are partitioned into classes according to type

(empirical distribution). Next, an (error) event can be decomposed into its intersections with the

type classes. Adding the probability of these intersections, the probability of the (error) event

is acquired. The exponent of this probability is determined by the exponential asymptote of the

largest intersection probability because the number of the type classes increases polynomially

with n (the number of sequences of each type grows exponentially with n). To bound an intersec-

tion probability, it is sufficient to bound the cardinality of the corresponding intersection because

of the equiprobable property (according to a memoryless probabilistic model) of sequences inside

each type class (see Sanov’s theorem [2, Thm. 11.4.1] for specific details).

Motivated by Gallager [1], Tzu-Han et al. [82] applied an ML decoder to derive the reliability-

exponent for his key agreement model.

As an extension of this work, we suggest evaluation of the reliability-exponent and the security-

exponent using the demonstrated methods. Also, publications [82, 83] are constructive for this

objective.

2When the public channel is available in the forward direction, the security-exponent is independent of
the decoding rule at Bob.
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Appendix A

Relation between Entropy Functions

of Agreed Keys

Lemma A.1. Let (K, K̂) ∈ K2 be a pair of agreed keys that satisfy the AR condition. Also,

assume that |K| < 2nc for a positive constant c. For any ǫ ∈ (0, 1), there exists n ≥ N(ǫ), where

N is a function of ǫ, such that

1

n
|H(K|T )−H(K̂|T )| < ǫ , (A.1)

where T is an arbitrary RV.

Proof.
1

n
H(K, K̂ |T ) = 1

n
H(K|T ) + 1

n
H(K̂|K,T ) (A.2)

=
1

n
H(K̂|T ) + 1

n
H(K|K̂, T ) (A.3)

On the other hand,

1

n
H(K̂|K,T ) ≤ 1

n
H(K̂|K) , (A.4)

≤ 1

n
(B(ν) + ν log(|K| − 1)) , (A.5)
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≤ 1

n
(B(ǫ1) + ǫ1 log(|K|)) , (A.6)

≤ 1

n
(ǫ2 + cnǫ1) , (A.7)

≤ ǫ , (A.8)

where

• (A.5) follows from Fano’s inequality [2, Thm. 2.11.1], and ν , Pr{K 6= K̂};
• (A.6) holds due to the AR condition, i.e., ν < ǫ1 for any ǫ1 > 0 and n ≥ N(ǫ1);

• (A.7) follows by selection of a small enough ǫ2 such that B(ǫ1) < ǫ2; also, it follows from

assumption |K| < 2nc;

• (A.8) is valid by appropriate selection of ǫ2 for a given ǫ ∈ (0, 1) and n ≥ N(ǫ) ≥ N(ǫ1).

Similarly, for every ǫ ∈ (0, 1) and n > N(ǫ) we have

1

n
H(K|K̂, T ) ≤ ǫ. (A.9)

Hence, the proof is completed by applying equations (A.8) and (A.9) in (A.3).
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Appendix B

Existence of Maximum Values

In this appendix, we prove that the maximum value given in Theorem 3.1 exists. In fact, the

lower bound given in (3.7) was originally in the form of

C
K
(C

P1
, 0) ≥ sup

PXU|S∈O(C
P1

)
[I(U ; Y̌ )− I(U ; Ž)] . (B.1)

However, the supremum can be replaced by the maximum due to the proof given in this appendix.

For the proof, we need the following lemmas, which are established in book [84].

Lemma B.1. If F is a continuous function on a compact set1 O, then F has an absolute

maximum and an absolute minimum on set O.

Lemma B.2. If set O is a closed and bounded set in R
N , where N ∈ N, then set O is compact.

Recalling (3.7), set O(C
P1
) is a closed and bounded set in R

|X|.|U|.|S| due to the following facts.

• Each element PXU |S ∈ O(C
P1
) can be written as a vector in R

|X|.|U|.|S|. Hence, set O(C
P1
)

can be considered as a subset of R|X|.|U|.|S|, where sets S and X are finite alphabet sets in

the DM model as well as set U because |U|≤|S||X|+3. Also, any element PXU |S ∈ O(C
P1
)

is bounded as 0 ≤ PXU |S ≤ 1. Hence, set O(C
P1
) is a bounded set in R

N , where N =

|X|.|U|.|S|.
1Definition of a compact set is given in [84, Sec. 4.8]. However, we will prove compactness of set O(C

P1
)

by using Lemma B.2.
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• Function I(U ;S)− I(U ; Y̌ ) is a continuous and bounded function because

−H(Y̌ ) ≤ I(U ;S)− I(U ; Y̌ ) ≤ H(S) ,

where H(Y̌ ) and H(S) are finite in the DM model. Also, the inequality, which is not in a

strict form, in C
P1

+ I(U ; Y̌ ) ≥ I(U ;S) guarantees that boundary points are included in

the set O(C
P1
).

As a result, set O(C
P1
) is a compact set due to Lemma B.2. On the other hand, function

I(U ; Y̌ )−I(U ; Ž) is a continuous function on compact set O(C
P1
), and thus it attains its absolute

maximum value in the set O(C
P1
) according to Lemma B.1. Hence, supremum in (B.1) can be

replaced by maximum as in (3.7).
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Appendix C

AEP for Gaussian Random Vectors

This appendix is originally taken from [76, Sec. 2.4] with some modifications.

Lemma C.1. If x is a random vector drawn i.i.d. according to X ∼ N(0,Γ0), then the following

two statements are equivalent for any ǫ ∈ (0, 1) and ǫ′ = 2 ln(2)Γ0 ǫ:

(a) x ∈ Tǫ(N (0,Γ0)) ,

(b) | 1nxxt − Γ0| ≤ ǫ′ .

Proof.

x ∈ Tǫ(N (0,Γ0)) ⇔ (C.1)

ǫ ≥ | − 1

n
log






n∏

i=1

e
−X2

i
2 Γ0√
2πΓ0




− ~(X)| ⇔ (C.2)

ǫ ≥ | − 1

n
log








e

−
n∑

i=1
X2

i

2 Γ0

(2πΓ0)
n
2








− 1

2
log(2πeΓ0)| ⇔ (C.3)

ǫ ≥

∣
∣
∣
∣
∣
∣
∣
∣

− 1

n ln(2)

−
n∑

i=1
X2

i

2Γ0
+

1

2
log(2πΓ0)−

1

2
log(2πeΓ0)

∣
∣
∣
∣
∣
∣
∣
∣

⇔ (C.4)
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ǫ ≥

∣
∣
∣
∣
∣
∣
∣
∣

− 1

n ln(2)

−
n∑

i=1
X2

i

2 Γ0
− 1

2 ln(2)

∣
∣
∣
∣
∣
∣
∣
∣

⇔ (C.5)

2 ln(2)Γ0 ǫ ≥ | 1
n
xxt − Γ0| ⇔ (C.6)

ǫ′ ≥ | 1
n
xxt − Γ0| , (C.7)

where equations (C.2) and (C.3) follow from definition of weak typicality [2, Sec. 8.2] and entropy

of a normal distribution [2, Thm. 8.4.1], respectively.

Lemma C.2 (Lemma 2.11 [76]). Let t and s be two sequences of i.i.d. random variables T ∼
N (0, σ2

0), and S ∼ N (0,Λ), respectively, such that T is independent of S. Let u = t + αs for

a constant α ∈ R
+. For any ǫ ∈ (0, 1), if (u, s) ∈ Tǫ

(

N
(

(0, 0),

[

σ2
0 + α2Λ αΛ

αΛ Λ

]))

, then

t ∈ T2ǫ(N (0, σ2
0)), and

| 1
n
tst| ≤ ǫ ln(2)

α
(3σ2

0 + 2α2Λ) . (C.8)
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Appendix D

Csiszár-Körner’s Sum Identity

This appendix contains an essential identity in the field of network information theory. This

identity is credited to Csiszár and Körner according to their publication [12]. This identity is

usually beneficial to derive upper bounds in several network information-theoretic problems. The

identity is given as the sake of reference in the following lemma.

Lemma D.1 (Csiszár-Körner’s sum identity [12]). Let Y, Z, and T be alphabet sets. Assume that

random vector (Y n, Zn, T ) ∈ Yn × Zn × T is generated according to a joint distribution function

PYnZnT . Define Y 0
1 , Zn

n+1 , 0. Then, the following identity holds:

n∑

i=1

I(Zn
i+1;Yi|Y i−1

1 , T ) =

n∑

i=1

I(Y i−1
1 ;Zi|Zn

i+1, T ) . (D.1)

Proof.
n∑

i=1

I(Zn
i+1;Yi|Y i−1

1 , T ) =

n∑

i=1

n∑

j=i+1

I(Zj;Yi|Y i−1
1 , Zn

j+1, T ) (D.2)

=
n∑

j=2

j−1
∑

i=1

I(Zj;Yi|Y i−1
1 , Zn

j+1, T ) (D.3)

=

n∑

j=2

I(Zj;Y
j−1
1 |Zn

j+1, T ) (D.4)

=

n∑

i=1

I(Y i−1
1 ;Zi|Zn

i+1, T ) , (D.5)
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where

• (D.2) and (D.4) follow from the chain rule for mutual information [2, Thm. 2.5.2];

• (D.3) follows from switching the order of summations;

• (D.5) follows from replacing dummy variable j with i and from the fact that Y 0
1 = 0.
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